1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2019 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright (c) 2019, Klara Inc. 28 * Copyright (c) 2019, Allan Jude 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/arc.h> 33 #include <sys/dmu.h> 34 #include <sys/dmu_send.h> 35 #include <sys/dmu_impl.h> 36 #include <sys/dbuf.h> 37 #include <sys/dmu_objset.h> 38 #include <sys/dsl_dataset.h> 39 #include <sys/dsl_dir.h> 40 #include <sys/dmu_tx.h> 41 #include <sys/spa.h> 42 #include <sys/zio.h> 43 #include <sys/dmu_zfetch.h> 44 #include <sys/sa.h> 45 #include <sys/sa_impl.h> 46 #include <sys/zfeature.h> 47 #include <sys/blkptr.h> 48 #include <sys/range_tree.h> 49 #include <sys/trace_zfs.h> 50 #include <sys/callb.h> 51 #include <sys/abd.h> 52 #include <sys/vdev.h> 53 #include <cityhash.h> 54 #include <sys/spa_impl.h> 55 56 kstat_t *dbuf_ksp; 57 58 typedef struct dbuf_stats { 59 /* 60 * Various statistics about the size of the dbuf cache. 61 */ 62 kstat_named_t cache_count; 63 kstat_named_t cache_size_bytes; 64 kstat_named_t cache_size_bytes_max; 65 /* 66 * Statistics regarding the bounds on the dbuf cache size. 67 */ 68 kstat_named_t cache_target_bytes; 69 kstat_named_t cache_lowater_bytes; 70 kstat_named_t cache_hiwater_bytes; 71 /* 72 * Total number of dbuf cache evictions that have occurred. 73 */ 74 kstat_named_t cache_total_evicts; 75 /* 76 * The distribution of dbuf levels in the dbuf cache and 77 * the total size of all dbufs at each level. 78 */ 79 kstat_named_t cache_levels[DN_MAX_LEVELS]; 80 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS]; 81 /* 82 * Statistics about the dbuf hash table. 83 */ 84 kstat_named_t hash_hits; 85 kstat_named_t hash_misses; 86 kstat_named_t hash_collisions; 87 kstat_named_t hash_elements; 88 kstat_named_t hash_elements_max; 89 /* 90 * Number of sublists containing more than one dbuf in the dbuf 91 * hash table. Keep track of the longest hash chain. 92 */ 93 kstat_named_t hash_chains; 94 kstat_named_t hash_chain_max; 95 /* 96 * Number of times a dbuf_create() discovers that a dbuf was 97 * already created and in the dbuf hash table. 98 */ 99 kstat_named_t hash_insert_race; 100 /* 101 * Statistics about the size of the metadata dbuf cache. 102 */ 103 kstat_named_t metadata_cache_count; 104 kstat_named_t metadata_cache_size_bytes; 105 kstat_named_t metadata_cache_size_bytes_max; 106 /* 107 * For diagnostic purposes, this is incremented whenever we can't add 108 * something to the metadata cache because it's full, and instead put 109 * the data in the regular dbuf cache. 110 */ 111 kstat_named_t metadata_cache_overflow; 112 } dbuf_stats_t; 113 114 dbuf_stats_t dbuf_stats = { 115 { "cache_count", KSTAT_DATA_UINT64 }, 116 { "cache_size_bytes", KSTAT_DATA_UINT64 }, 117 { "cache_size_bytes_max", KSTAT_DATA_UINT64 }, 118 { "cache_target_bytes", KSTAT_DATA_UINT64 }, 119 { "cache_lowater_bytes", KSTAT_DATA_UINT64 }, 120 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 }, 121 { "cache_total_evicts", KSTAT_DATA_UINT64 }, 122 { { "cache_levels_N", KSTAT_DATA_UINT64 } }, 123 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } }, 124 { "hash_hits", KSTAT_DATA_UINT64 }, 125 { "hash_misses", KSTAT_DATA_UINT64 }, 126 { "hash_collisions", KSTAT_DATA_UINT64 }, 127 { "hash_elements", KSTAT_DATA_UINT64 }, 128 { "hash_elements_max", KSTAT_DATA_UINT64 }, 129 { "hash_chains", KSTAT_DATA_UINT64 }, 130 { "hash_chain_max", KSTAT_DATA_UINT64 }, 131 { "hash_insert_race", KSTAT_DATA_UINT64 }, 132 { "metadata_cache_count", KSTAT_DATA_UINT64 }, 133 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 }, 134 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 }, 135 { "metadata_cache_overflow", KSTAT_DATA_UINT64 } 136 }; 137 138 #define DBUF_STAT_INCR(stat, val) \ 139 atomic_add_64(&dbuf_stats.stat.value.ui64, (val)); 140 #define DBUF_STAT_DECR(stat, val) \ 141 DBUF_STAT_INCR(stat, -(val)); 142 #define DBUF_STAT_BUMP(stat) \ 143 DBUF_STAT_INCR(stat, 1); 144 #define DBUF_STAT_BUMPDOWN(stat) \ 145 DBUF_STAT_INCR(stat, -1); 146 #define DBUF_STAT_MAX(stat, v) { \ 147 uint64_t _m; \ 148 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \ 149 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\ 150 continue; \ 151 } 152 153 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 154 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 155 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr); 156 static int dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags); 157 158 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu, 159 dmu_buf_evict_func_t *evict_func_sync, 160 dmu_buf_evict_func_t *evict_func_async, 161 dmu_buf_t **clear_on_evict_dbufp); 162 163 /* 164 * Global data structures and functions for the dbuf cache. 165 */ 166 static kmem_cache_t *dbuf_kmem_cache; 167 static taskq_t *dbu_evict_taskq; 168 169 static kthread_t *dbuf_cache_evict_thread; 170 static kmutex_t dbuf_evict_lock; 171 static kcondvar_t dbuf_evict_cv; 172 static boolean_t dbuf_evict_thread_exit; 173 174 /* 175 * There are two dbuf caches; each dbuf can only be in one of them at a time. 176 * 177 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands 178 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs 179 * that represent the metadata that describes filesystems/snapshots/ 180 * bookmarks/properties/etc. We only evict from this cache when we export a 181 * pool, to short-circuit as much I/O as possible for all administrative 182 * commands that need the metadata. There is no eviction policy for this 183 * cache, because we try to only include types in it which would occupy a 184 * very small amount of space per object but create a large impact on the 185 * performance of these commands. Instead, after it reaches a maximum size 186 * (which should only happen on very small memory systems with a very large 187 * number of filesystem objects), we stop taking new dbufs into the 188 * metadata cache, instead putting them in the normal dbuf cache. 189 * 190 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that 191 * are not currently held but have been recently released. These dbufs 192 * are not eligible for arc eviction until they are aged out of the cache. 193 * Dbufs that are aged out of the cache will be immediately destroyed and 194 * become eligible for arc eviction. 195 * 196 * Dbufs are added to these caches once the last hold is released. If a dbuf is 197 * later accessed and still exists in the dbuf cache, then it will be removed 198 * from the cache and later re-added to the head of the cache. 199 * 200 * If a given dbuf meets the requirements for the metadata cache, it will go 201 * there, otherwise it will be considered for the generic LRU dbuf cache. The 202 * caches and the refcounts tracking their sizes are stored in an array indexed 203 * by those caches' matching enum values (from dbuf_cached_state_t). 204 */ 205 typedef struct dbuf_cache { 206 multilist_t *cache; 207 zfs_refcount_t size; 208 } dbuf_cache_t; 209 dbuf_cache_t dbuf_caches[DB_CACHE_MAX]; 210 211 /* Size limits for the caches */ 212 unsigned long dbuf_cache_max_bytes = ULONG_MAX; 213 unsigned long dbuf_metadata_cache_max_bytes = ULONG_MAX; 214 215 /* Set the default sizes of the caches to log2 fraction of arc size */ 216 int dbuf_cache_shift = 5; 217 int dbuf_metadata_cache_shift = 6; 218 219 static unsigned long dbuf_cache_target_bytes(void); 220 static unsigned long dbuf_metadata_cache_target_bytes(void); 221 222 /* 223 * The LRU dbuf cache uses a three-stage eviction policy: 224 * - A low water marker designates when the dbuf eviction thread 225 * should stop evicting from the dbuf cache. 226 * - When we reach the maximum size (aka mid water mark), we 227 * signal the eviction thread to run. 228 * - The high water mark indicates when the eviction thread 229 * is unable to keep up with the incoming load and eviction must 230 * happen in the context of the calling thread. 231 * 232 * The dbuf cache: 233 * (max size) 234 * low water mid water hi water 235 * +----------------------------------------+----------+----------+ 236 * | | | | 237 * | | | | 238 * | | | | 239 * | | | | 240 * +----------------------------------------+----------+----------+ 241 * stop signal evict 242 * evicting eviction directly 243 * thread 244 * 245 * The high and low water marks indicate the operating range for the eviction 246 * thread. The low water mark is, by default, 90% of the total size of the 247 * cache and the high water mark is at 110% (both of these percentages can be 248 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 249 * respectively). The eviction thread will try to ensure that the cache remains 250 * within this range by waking up every second and checking if the cache is 251 * above the low water mark. The thread can also be woken up by callers adding 252 * elements into the cache if the cache is larger than the mid water (i.e max 253 * cache size). Once the eviction thread is woken up and eviction is required, 254 * it will continue evicting buffers until it's able to reduce the cache size 255 * to the low water mark. If the cache size continues to grow and hits the high 256 * water mark, then callers adding elements to the cache will begin to evict 257 * directly from the cache until the cache is no longer above the high water 258 * mark. 259 */ 260 261 /* 262 * The percentage above and below the maximum cache size. 263 */ 264 uint_t dbuf_cache_hiwater_pct = 10; 265 uint_t dbuf_cache_lowater_pct = 10; 266 267 /* ARGSUSED */ 268 static int 269 dbuf_cons(void *vdb, void *unused, int kmflag) 270 { 271 dmu_buf_impl_t *db = vdb; 272 bzero(db, sizeof (dmu_buf_impl_t)); 273 274 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 275 rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL); 276 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 277 multilist_link_init(&db->db_cache_link); 278 zfs_refcount_create(&db->db_holds); 279 280 return (0); 281 } 282 283 /* ARGSUSED */ 284 static void 285 dbuf_dest(void *vdb, void *unused) 286 { 287 dmu_buf_impl_t *db = vdb; 288 mutex_destroy(&db->db_mtx); 289 rw_destroy(&db->db_rwlock); 290 cv_destroy(&db->db_changed); 291 ASSERT(!multilist_link_active(&db->db_cache_link)); 292 zfs_refcount_destroy(&db->db_holds); 293 } 294 295 /* 296 * dbuf hash table routines 297 */ 298 static dbuf_hash_table_t dbuf_hash_table; 299 300 static uint64_t dbuf_hash_count; 301 302 /* 303 * We use Cityhash for this. It's fast, and has good hash properties without 304 * requiring any large static buffers. 305 */ 306 static uint64_t 307 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 308 { 309 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid)); 310 } 311 312 #define DTRACE_SET_STATE(db, why) \ 313 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \ 314 const char *, why) 315 316 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 317 ((dbuf)->db.db_object == (obj) && \ 318 (dbuf)->db_objset == (os) && \ 319 (dbuf)->db_level == (level) && \ 320 (dbuf)->db_blkid == (blkid)) 321 322 dmu_buf_impl_t * 323 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid) 324 { 325 dbuf_hash_table_t *h = &dbuf_hash_table; 326 uint64_t hv; 327 uint64_t idx; 328 dmu_buf_impl_t *db; 329 330 hv = dbuf_hash(os, obj, level, blkid); 331 idx = hv & h->hash_table_mask; 332 333 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 334 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 335 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 336 mutex_enter(&db->db_mtx); 337 if (db->db_state != DB_EVICTING) { 338 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 339 return (db); 340 } 341 mutex_exit(&db->db_mtx); 342 } 343 } 344 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 345 return (NULL); 346 } 347 348 static dmu_buf_impl_t * 349 dbuf_find_bonus(objset_t *os, uint64_t object) 350 { 351 dnode_t *dn; 352 dmu_buf_impl_t *db = NULL; 353 354 if (dnode_hold(os, object, FTAG, &dn) == 0) { 355 rw_enter(&dn->dn_struct_rwlock, RW_READER); 356 if (dn->dn_bonus != NULL) { 357 db = dn->dn_bonus; 358 mutex_enter(&db->db_mtx); 359 } 360 rw_exit(&dn->dn_struct_rwlock); 361 dnode_rele(dn, FTAG); 362 } 363 return (db); 364 } 365 366 /* 367 * Insert an entry into the hash table. If there is already an element 368 * equal to elem in the hash table, then the already existing element 369 * will be returned and the new element will not be inserted. 370 * Otherwise returns NULL. 371 */ 372 static dmu_buf_impl_t * 373 dbuf_hash_insert(dmu_buf_impl_t *db) 374 { 375 dbuf_hash_table_t *h = &dbuf_hash_table; 376 objset_t *os = db->db_objset; 377 uint64_t obj = db->db.db_object; 378 int level = db->db_level; 379 uint64_t blkid, hv, idx; 380 dmu_buf_impl_t *dbf; 381 uint32_t i; 382 383 blkid = db->db_blkid; 384 hv = dbuf_hash(os, obj, level, blkid); 385 idx = hv & h->hash_table_mask; 386 387 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 388 for (dbf = h->hash_table[idx], i = 0; dbf != NULL; 389 dbf = dbf->db_hash_next, i++) { 390 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 391 mutex_enter(&dbf->db_mtx); 392 if (dbf->db_state != DB_EVICTING) { 393 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 394 return (dbf); 395 } 396 mutex_exit(&dbf->db_mtx); 397 } 398 } 399 400 if (i > 0) { 401 DBUF_STAT_BUMP(hash_collisions); 402 if (i == 1) 403 DBUF_STAT_BUMP(hash_chains); 404 405 DBUF_STAT_MAX(hash_chain_max, i); 406 } 407 408 mutex_enter(&db->db_mtx); 409 db->db_hash_next = h->hash_table[idx]; 410 h->hash_table[idx] = db; 411 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 412 atomic_inc_64(&dbuf_hash_count); 413 DBUF_STAT_MAX(hash_elements_max, dbuf_hash_count); 414 415 return (NULL); 416 } 417 418 /* 419 * This returns whether this dbuf should be stored in the metadata cache, which 420 * is based on whether it's from one of the dnode types that store data related 421 * to traversing dataset hierarchies. 422 */ 423 static boolean_t 424 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db) 425 { 426 DB_DNODE_ENTER(db); 427 dmu_object_type_t type = DB_DNODE(db)->dn_type; 428 DB_DNODE_EXIT(db); 429 430 /* Check if this dbuf is one of the types we care about */ 431 if (DMU_OT_IS_METADATA_CACHED(type)) { 432 /* If we hit this, then we set something up wrong in dmu_ot */ 433 ASSERT(DMU_OT_IS_METADATA(type)); 434 435 /* 436 * Sanity check for small-memory systems: don't allocate too 437 * much memory for this purpose. 438 */ 439 if (zfs_refcount_count( 440 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) > 441 dbuf_metadata_cache_target_bytes()) { 442 DBUF_STAT_BUMP(metadata_cache_overflow); 443 return (B_FALSE); 444 } 445 446 return (B_TRUE); 447 } 448 449 return (B_FALSE); 450 } 451 452 /* 453 * Remove an entry from the hash table. It must be in the EVICTING state. 454 */ 455 static void 456 dbuf_hash_remove(dmu_buf_impl_t *db) 457 { 458 dbuf_hash_table_t *h = &dbuf_hash_table; 459 uint64_t hv, idx; 460 dmu_buf_impl_t *dbf, **dbp; 461 462 hv = dbuf_hash(db->db_objset, db->db.db_object, 463 db->db_level, db->db_blkid); 464 idx = hv & h->hash_table_mask; 465 466 /* 467 * We mustn't hold db_mtx to maintain lock ordering: 468 * DBUF_HASH_MUTEX > db_mtx. 469 */ 470 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 471 ASSERT(db->db_state == DB_EVICTING); 472 ASSERT(!MUTEX_HELD(&db->db_mtx)); 473 474 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 475 dbp = &h->hash_table[idx]; 476 while ((dbf = *dbp) != db) { 477 dbp = &dbf->db_hash_next; 478 ASSERT(dbf != NULL); 479 } 480 *dbp = db->db_hash_next; 481 db->db_hash_next = NULL; 482 if (h->hash_table[idx] && 483 h->hash_table[idx]->db_hash_next == NULL) 484 DBUF_STAT_BUMPDOWN(hash_chains); 485 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 486 atomic_dec_64(&dbuf_hash_count); 487 } 488 489 typedef enum { 490 DBVU_EVICTING, 491 DBVU_NOT_EVICTING 492 } dbvu_verify_type_t; 493 494 static void 495 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 496 { 497 #ifdef ZFS_DEBUG 498 int64_t holds; 499 500 if (db->db_user == NULL) 501 return; 502 503 /* Only data blocks support the attachment of user data. */ 504 ASSERT(db->db_level == 0); 505 506 /* Clients must resolve a dbuf before attaching user data. */ 507 ASSERT(db->db.db_data != NULL); 508 ASSERT3U(db->db_state, ==, DB_CACHED); 509 510 holds = zfs_refcount_count(&db->db_holds); 511 if (verify_type == DBVU_EVICTING) { 512 /* 513 * Immediate eviction occurs when holds == dirtycnt. 514 * For normal eviction buffers, holds is zero on 515 * eviction, except when dbuf_fix_old_data() calls 516 * dbuf_clear_data(). However, the hold count can grow 517 * during eviction even though db_mtx is held (see 518 * dmu_bonus_hold() for an example), so we can only 519 * test the generic invariant that holds >= dirtycnt. 520 */ 521 ASSERT3U(holds, >=, db->db_dirtycnt); 522 } else { 523 if (db->db_user_immediate_evict == TRUE) 524 ASSERT3U(holds, >=, db->db_dirtycnt); 525 else 526 ASSERT3U(holds, >, 0); 527 } 528 #endif 529 } 530 531 static void 532 dbuf_evict_user(dmu_buf_impl_t *db) 533 { 534 dmu_buf_user_t *dbu = db->db_user; 535 536 ASSERT(MUTEX_HELD(&db->db_mtx)); 537 538 if (dbu == NULL) 539 return; 540 541 dbuf_verify_user(db, DBVU_EVICTING); 542 db->db_user = NULL; 543 544 #ifdef ZFS_DEBUG 545 if (dbu->dbu_clear_on_evict_dbufp != NULL) 546 *dbu->dbu_clear_on_evict_dbufp = NULL; 547 #endif 548 549 /* 550 * There are two eviction callbacks - one that we call synchronously 551 * and one that we invoke via a taskq. The async one is useful for 552 * avoiding lock order reversals and limiting stack depth. 553 * 554 * Note that if we have a sync callback but no async callback, 555 * it's likely that the sync callback will free the structure 556 * containing the dbu. In that case we need to take care to not 557 * dereference dbu after calling the sync evict func. 558 */ 559 boolean_t has_async = (dbu->dbu_evict_func_async != NULL); 560 561 if (dbu->dbu_evict_func_sync != NULL) 562 dbu->dbu_evict_func_sync(dbu); 563 564 if (has_async) { 565 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, 566 dbu, 0, &dbu->dbu_tqent); 567 } 568 } 569 570 boolean_t 571 dbuf_is_metadata(dmu_buf_impl_t *db) 572 { 573 /* 574 * Consider indirect blocks and spill blocks to be meta data. 575 */ 576 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) { 577 return (B_TRUE); 578 } else { 579 boolean_t is_metadata; 580 581 DB_DNODE_ENTER(db); 582 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 583 DB_DNODE_EXIT(db); 584 585 return (is_metadata); 586 } 587 } 588 589 590 /* 591 * This function *must* return indices evenly distributed between all 592 * sublists of the multilist. This is needed due to how the dbuf eviction 593 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 594 * distributed between all sublists and uses this assumption when 595 * deciding which sublist to evict from and how much to evict from it. 596 */ 597 static unsigned int 598 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 599 { 600 dmu_buf_impl_t *db = obj; 601 602 /* 603 * The assumption here, is the hash value for a given 604 * dmu_buf_impl_t will remain constant throughout it's lifetime 605 * (i.e. it's objset, object, level and blkid fields don't change). 606 * Thus, we don't need to store the dbuf's sublist index 607 * on insertion, as this index can be recalculated on removal. 608 * 609 * Also, the low order bits of the hash value are thought to be 610 * distributed evenly. Otherwise, in the case that the multilist 611 * has a power of two number of sublists, each sublists' usage 612 * would not be evenly distributed. 613 */ 614 return (dbuf_hash(db->db_objset, db->db.db_object, 615 db->db_level, db->db_blkid) % 616 multilist_get_num_sublists(ml)); 617 } 618 619 /* 620 * The target size of the dbuf cache can grow with the ARC target, 621 * unless limited by the tunable dbuf_cache_max_bytes. 622 */ 623 static inline unsigned long 624 dbuf_cache_target_bytes(void) 625 { 626 return (MIN(dbuf_cache_max_bytes, 627 arc_target_bytes() >> dbuf_cache_shift)); 628 } 629 630 /* 631 * The target size of the dbuf metadata cache can grow with the ARC target, 632 * unless limited by the tunable dbuf_metadata_cache_max_bytes. 633 */ 634 static inline unsigned long 635 dbuf_metadata_cache_target_bytes(void) 636 { 637 return (MIN(dbuf_metadata_cache_max_bytes, 638 arc_target_bytes() >> dbuf_metadata_cache_shift)); 639 } 640 641 static inline uint64_t 642 dbuf_cache_hiwater_bytes(void) 643 { 644 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 645 return (dbuf_cache_target + 646 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100); 647 } 648 649 static inline uint64_t 650 dbuf_cache_lowater_bytes(void) 651 { 652 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 653 return (dbuf_cache_target - 654 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100); 655 } 656 657 static inline boolean_t 658 dbuf_cache_above_lowater(void) 659 { 660 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > 661 dbuf_cache_lowater_bytes()); 662 } 663 664 /* 665 * Evict the oldest eligible dbuf from the dbuf cache. 666 */ 667 static void 668 dbuf_evict_one(void) 669 { 670 int idx = multilist_get_random_index(dbuf_caches[DB_DBUF_CACHE].cache); 671 multilist_sublist_t *mls = multilist_sublist_lock( 672 dbuf_caches[DB_DBUF_CACHE].cache, idx); 673 674 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 675 676 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 677 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 678 db = multilist_sublist_prev(mls, db); 679 } 680 681 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 682 multilist_sublist_t *, mls); 683 684 if (db != NULL) { 685 multilist_sublist_remove(mls, db); 686 multilist_sublist_unlock(mls); 687 (void) zfs_refcount_remove_many( 688 &dbuf_caches[DB_DBUF_CACHE].size, db->db.db_size, db); 689 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 690 DBUF_STAT_BUMPDOWN(cache_count); 691 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 692 db->db.db_size); 693 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE); 694 db->db_caching_status = DB_NO_CACHE; 695 dbuf_destroy(db); 696 DBUF_STAT_BUMP(cache_total_evicts); 697 } else { 698 multilist_sublist_unlock(mls); 699 } 700 } 701 702 /* 703 * The dbuf evict thread is responsible for aging out dbufs from the 704 * cache. Once the cache has reached it's maximum size, dbufs are removed 705 * and destroyed. The eviction thread will continue running until the size 706 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 707 * out of the cache it is destroyed and becomes eligible for arc eviction. 708 */ 709 /* ARGSUSED */ 710 static void 711 dbuf_evict_thread(void *unused) 712 { 713 callb_cpr_t cpr; 714 715 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 716 717 mutex_enter(&dbuf_evict_lock); 718 while (!dbuf_evict_thread_exit) { 719 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 720 CALLB_CPR_SAFE_BEGIN(&cpr); 721 (void) cv_timedwait_sig_hires(&dbuf_evict_cv, 722 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 723 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 724 } 725 mutex_exit(&dbuf_evict_lock); 726 727 /* 728 * Keep evicting as long as we're above the low water mark 729 * for the cache. We do this without holding the locks to 730 * minimize lock contention. 731 */ 732 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 733 dbuf_evict_one(); 734 } 735 736 mutex_enter(&dbuf_evict_lock); 737 } 738 739 dbuf_evict_thread_exit = B_FALSE; 740 cv_broadcast(&dbuf_evict_cv); 741 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 742 thread_exit(); 743 } 744 745 /* 746 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 747 * If the dbuf cache is at its high water mark, then evict a dbuf from the 748 * dbuf cache using the callers context. 749 */ 750 static void 751 dbuf_evict_notify(uint64_t size) 752 { 753 /* 754 * We check if we should evict without holding the dbuf_evict_lock, 755 * because it's OK to occasionally make the wrong decision here, 756 * and grabbing the lock results in massive lock contention. 757 */ 758 if (size > dbuf_cache_target_bytes()) { 759 if (size > dbuf_cache_hiwater_bytes()) 760 dbuf_evict_one(); 761 cv_signal(&dbuf_evict_cv); 762 } 763 } 764 765 static int 766 dbuf_kstat_update(kstat_t *ksp, int rw) 767 { 768 dbuf_stats_t *ds = ksp->ks_data; 769 770 if (rw == KSTAT_WRITE) { 771 return (SET_ERROR(EACCES)); 772 } else { 773 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count( 774 &dbuf_caches[DB_DBUF_METADATA_CACHE].size); 775 ds->cache_size_bytes.value.ui64 = 776 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size); 777 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes(); 778 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes(); 779 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes(); 780 ds->hash_elements.value.ui64 = dbuf_hash_count; 781 } 782 783 return (0); 784 } 785 786 void 787 dbuf_init(void) 788 { 789 uint64_t hsize = 1ULL << 16; 790 dbuf_hash_table_t *h = &dbuf_hash_table; 791 int i; 792 793 /* 794 * The hash table is big enough to fill all of physical memory 795 * with an average block size of zfs_arc_average_blocksize (default 8K). 796 * By default, the table will take up 797 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 798 */ 799 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE) 800 hsize <<= 1; 801 802 retry: 803 h->hash_table_mask = hsize - 1; 804 #if defined(_KERNEL) 805 /* 806 * Large allocations which do not require contiguous pages 807 * should be using vmem_alloc() in the linux kernel 808 */ 809 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP); 810 #else 811 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); 812 #endif 813 if (h->hash_table == NULL) { 814 /* XXX - we should really return an error instead of assert */ 815 ASSERT(hsize > (1ULL << 10)); 816 hsize >>= 1; 817 goto retry; 818 } 819 820 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 821 sizeof (dmu_buf_impl_t), 822 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 823 824 for (i = 0; i < DBUF_MUTEXES; i++) 825 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 826 827 dbuf_stats_init(h); 828 829 /* 830 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 831 * configuration is not required. 832 */ 833 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0); 834 835 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 836 dbuf_caches[dcs].cache = 837 multilist_create(sizeof (dmu_buf_impl_t), 838 offsetof(dmu_buf_impl_t, db_cache_link), 839 dbuf_cache_multilist_index_func); 840 zfs_refcount_create(&dbuf_caches[dcs].size); 841 } 842 843 dbuf_evict_thread_exit = B_FALSE; 844 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 845 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 846 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 847 NULL, 0, &p0, TS_RUN, minclsyspri); 848 849 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc", 850 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t), 851 KSTAT_FLAG_VIRTUAL); 852 if (dbuf_ksp != NULL) { 853 for (i = 0; i < DN_MAX_LEVELS; i++) { 854 snprintf(dbuf_stats.cache_levels[i].name, 855 KSTAT_STRLEN, "cache_level_%d", i); 856 dbuf_stats.cache_levels[i].data_type = 857 KSTAT_DATA_UINT64; 858 snprintf(dbuf_stats.cache_levels_bytes[i].name, 859 KSTAT_STRLEN, "cache_level_%d_bytes", i); 860 dbuf_stats.cache_levels_bytes[i].data_type = 861 KSTAT_DATA_UINT64; 862 } 863 dbuf_ksp->ks_data = &dbuf_stats; 864 dbuf_ksp->ks_update = dbuf_kstat_update; 865 kstat_install(dbuf_ksp); 866 } 867 } 868 869 void 870 dbuf_fini(void) 871 { 872 dbuf_hash_table_t *h = &dbuf_hash_table; 873 int i; 874 875 dbuf_stats_destroy(); 876 877 for (i = 0; i < DBUF_MUTEXES; i++) 878 mutex_destroy(&h->hash_mutexes[i]); 879 #if defined(_KERNEL) 880 /* 881 * Large allocations which do not require contiguous pages 882 * should be using vmem_free() in the linux kernel 883 */ 884 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 885 #else 886 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 887 #endif 888 kmem_cache_destroy(dbuf_kmem_cache); 889 taskq_destroy(dbu_evict_taskq); 890 891 mutex_enter(&dbuf_evict_lock); 892 dbuf_evict_thread_exit = B_TRUE; 893 while (dbuf_evict_thread_exit) { 894 cv_signal(&dbuf_evict_cv); 895 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 896 } 897 mutex_exit(&dbuf_evict_lock); 898 899 mutex_destroy(&dbuf_evict_lock); 900 cv_destroy(&dbuf_evict_cv); 901 902 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 903 zfs_refcount_destroy(&dbuf_caches[dcs].size); 904 multilist_destroy(dbuf_caches[dcs].cache); 905 } 906 907 if (dbuf_ksp != NULL) { 908 kstat_delete(dbuf_ksp); 909 dbuf_ksp = NULL; 910 } 911 } 912 913 /* 914 * Other stuff. 915 */ 916 917 #ifdef ZFS_DEBUG 918 static void 919 dbuf_verify(dmu_buf_impl_t *db) 920 { 921 dnode_t *dn; 922 dbuf_dirty_record_t *dr; 923 uint32_t txg_prev; 924 925 ASSERT(MUTEX_HELD(&db->db_mtx)); 926 927 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 928 return; 929 930 ASSERT(db->db_objset != NULL); 931 DB_DNODE_ENTER(db); 932 dn = DB_DNODE(db); 933 if (dn == NULL) { 934 ASSERT(db->db_parent == NULL); 935 ASSERT(db->db_blkptr == NULL); 936 } else { 937 ASSERT3U(db->db.db_object, ==, dn->dn_object); 938 ASSERT3P(db->db_objset, ==, dn->dn_objset); 939 ASSERT3U(db->db_level, <, dn->dn_nlevels); 940 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 941 db->db_blkid == DMU_SPILL_BLKID || 942 !avl_is_empty(&dn->dn_dbufs)); 943 } 944 if (db->db_blkid == DMU_BONUS_BLKID) { 945 ASSERT(dn != NULL); 946 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 947 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 948 } else if (db->db_blkid == DMU_SPILL_BLKID) { 949 ASSERT(dn != NULL); 950 ASSERT0(db->db.db_offset); 951 } else { 952 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 953 } 954 955 if ((dr = list_head(&db->db_dirty_records)) != NULL) { 956 ASSERT(dr->dr_dbuf == db); 957 txg_prev = dr->dr_txg; 958 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL; 959 dr = list_next(&db->db_dirty_records, dr)) { 960 ASSERT(dr->dr_dbuf == db); 961 ASSERT(txg_prev > dr->dr_txg); 962 txg_prev = dr->dr_txg; 963 } 964 } 965 966 /* 967 * We can't assert that db_size matches dn_datablksz because it 968 * can be momentarily different when another thread is doing 969 * dnode_set_blksz(). 970 */ 971 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 972 dr = db->db_data_pending; 973 /* 974 * It should only be modified in syncing context, so 975 * make sure we only have one copy of the data. 976 */ 977 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 978 } 979 980 /* verify db->db_blkptr */ 981 if (db->db_blkptr) { 982 if (db->db_parent == dn->dn_dbuf) { 983 /* db is pointed to by the dnode */ 984 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 985 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 986 ASSERT(db->db_parent == NULL); 987 else 988 ASSERT(db->db_parent != NULL); 989 if (db->db_blkid != DMU_SPILL_BLKID) 990 ASSERT3P(db->db_blkptr, ==, 991 &dn->dn_phys->dn_blkptr[db->db_blkid]); 992 } else { 993 /* db is pointed to by an indirect block */ 994 int epb __maybe_unused = db->db_parent->db.db_size >> 995 SPA_BLKPTRSHIFT; 996 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 997 ASSERT3U(db->db_parent->db.db_object, ==, 998 db->db.db_object); 999 /* 1000 * dnode_grow_indblksz() can make this fail if we don't 1001 * have the parent's rwlock. XXX indblksz no longer 1002 * grows. safe to do this now? 1003 */ 1004 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) { 1005 ASSERT3P(db->db_blkptr, ==, 1006 ((blkptr_t *)db->db_parent->db.db_data + 1007 db->db_blkid % epb)); 1008 } 1009 } 1010 } 1011 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 1012 (db->db_buf == NULL || db->db_buf->b_data) && 1013 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 1014 db->db_state != DB_FILL && !dn->dn_free_txg) { 1015 /* 1016 * If the blkptr isn't set but they have nonzero data, 1017 * it had better be dirty, otherwise we'll lose that 1018 * data when we evict this buffer. 1019 * 1020 * There is an exception to this rule for indirect blocks; in 1021 * this case, if the indirect block is a hole, we fill in a few 1022 * fields on each of the child blocks (importantly, birth time) 1023 * to prevent hole birth times from being lost when you 1024 * partially fill in a hole. 1025 */ 1026 if (db->db_dirtycnt == 0) { 1027 if (db->db_level == 0) { 1028 uint64_t *buf = db->db.db_data; 1029 int i; 1030 1031 for (i = 0; i < db->db.db_size >> 3; i++) { 1032 ASSERT(buf[i] == 0); 1033 } 1034 } else { 1035 blkptr_t *bps = db->db.db_data; 1036 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 1037 db->db.db_size); 1038 /* 1039 * We want to verify that all the blkptrs in the 1040 * indirect block are holes, but we may have 1041 * automatically set up a few fields for them. 1042 * We iterate through each blkptr and verify 1043 * they only have those fields set. 1044 */ 1045 for (int i = 0; 1046 i < db->db.db_size / sizeof (blkptr_t); 1047 i++) { 1048 blkptr_t *bp = &bps[i]; 1049 ASSERT(ZIO_CHECKSUM_IS_ZERO( 1050 &bp->blk_cksum)); 1051 ASSERT( 1052 DVA_IS_EMPTY(&bp->blk_dva[0]) && 1053 DVA_IS_EMPTY(&bp->blk_dva[1]) && 1054 DVA_IS_EMPTY(&bp->blk_dva[2])); 1055 ASSERT0(bp->blk_fill); 1056 ASSERT0(bp->blk_pad[0]); 1057 ASSERT0(bp->blk_pad[1]); 1058 ASSERT(!BP_IS_EMBEDDED(bp)); 1059 ASSERT(BP_IS_HOLE(bp)); 1060 ASSERT0(bp->blk_phys_birth); 1061 } 1062 } 1063 } 1064 } 1065 DB_DNODE_EXIT(db); 1066 } 1067 #endif 1068 1069 static void 1070 dbuf_clear_data(dmu_buf_impl_t *db) 1071 { 1072 ASSERT(MUTEX_HELD(&db->db_mtx)); 1073 dbuf_evict_user(db); 1074 ASSERT3P(db->db_buf, ==, NULL); 1075 db->db.db_data = NULL; 1076 if (db->db_state != DB_NOFILL) { 1077 db->db_state = DB_UNCACHED; 1078 DTRACE_SET_STATE(db, "clear data"); 1079 } 1080 } 1081 1082 static void 1083 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 1084 { 1085 ASSERT(MUTEX_HELD(&db->db_mtx)); 1086 ASSERT(buf != NULL); 1087 1088 db->db_buf = buf; 1089 ASSERT(buf->b_data != NULL); 1090 db->db.db_data = buf->b_data; 1091 } 1092 1093 static arc_buf_t * 1094 dbuf_alloc_arcbuf_from_arcbuf(dmu_buf_impl_t *db, arc_buf_t *data) 1095 { 1096 objset_t *os = db->db_objset; 1097 spa_t *spa = os->os_spa; 1098 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1099 enum zio_compress compress_type; 1100 uint8_t complevel; 1101 int psize, lsize; 1102 1103 psize = arc_buf_size(data); 1104 lsize = arc_buf_lsize(data); 1105 compress_type = arc_get_compression(data); 1106 complevel = arc_get_complevel(data); 1107 1108 if (arc_is_encrypted(data)) { 1109 boolean_t byteorder; 1110 uint8_t salt[ZIO_DATA_SALT_LEN]; 1111 uint8_t iv[ZIO_DATA_IV_LEN]; 1112 uint8_t mac[ZIO_DATA_MAC_LEN]; 1113 dnode_t *dn = DB_DNODE(db); 1114 1115 arc_get_raw_params(data, &byteorder, salt, iv, mac); 1116 data = arc_alloc_raw_buf(spa, db, dmu_objset_id(os), 1117 byteorder, salt, iv, mac, dn->dn_type, psize, lsize, 1118 compress_type, complevel); 1119 } else if (compress_type != ZIO_COMPRESS_OFF) { 1120 ASSERT3U(type, ==, ARC_BUFC_DATA); 1121 data = arc_alloc_compressed_buf(spa, db, 1122 psize, lsize, compress_type, complevel); 1123 } else { 1124 data = arc_alloc_buf(spa, db, type, psize); 1125 } 1126 return (data); 1127 } 1128 1129 static arc_buf_t * 1130 dbuf_alloc_arcbuf(dmu_buf_impl_t *db) 1131 { 1132 spa_t *spa = db->db_objset->os_spa; 1133 1134 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 1135 } 1136 1137 /* 1138 * Loan out an arc_buf for read. Return the loaned arc_buf. 1139 */ 1140 arc_buf_t * 1141 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 1142 { 1143 arc_buf_t *abuf; 1144 1145 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1146 mutex_enter(&db->db_mtx); 1147 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) { 1148 int blksz = db->db.db_size; 1149 spa_t *spa = db->db_objset->os_spa; 1150 1151 mutex_exit(&db->db_mtx); 1152 abuf = arc_loan_buf(spa, B_FALSE, blksz); 1153 bcopy(db->db.db_data, abuf->b_data, blksz); 1154 } else { 1155 abuf = db->db_buf; 1156 arc_loan_inuse_buf(abuf, db); 1157 db->db_buf = NULL; 1158 dbuf_clear_data(db); 1159 mutex_exit(&db->db_mtx); 1160 } 1161 return (abuf); 1162 } 1163 1164 /* 1165 * Calculate which level n block references the data at the level 0 offset 1166 * provided. 1167 */ 1168 uint64_t 1169 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset) 1170 { 1171 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 1172 /* 1173 * The level n blkid is equal to the level 0 blkid divided by 1174 * the number of level 0s in a level n block. 1175 * 1176 * The level 0 blkid is offset >> datablkshift = 1177 * offset / 2^datablkshift. 1178 * 1179 * The number of level 0s in a level n is the number of block 1180 * pointers in an indirect block, raised to the power of level. 1181 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 1182 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 1183 * 1184 * Thus, the level n blkid is: offset / 1185 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT)))) 1186 * = offset / 2^(datablkshift + level * 1187 * (indblkshift - SPA_BLKPTRSHIFT)) 1188 * = offset >> (datablkshift + level * 1189 * (indblkshift - SPA_BLKPTRSHIFT)) 1190 */ 1191 1192 const unsigned exp = dn->dn_datablkshift + 1193 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT); 1194 1195 if (exp >= 8 * sizeof (offset)) { 1196 /* This only happens on the highest indirection level */ 1197 ASSERT3U(level, ==, dn->dn_nlevels - 1); 1198 return (0); 1199 } 1200 1201 ASSERT3U(exp, <, 8 * sizeof (offset)); 1202 1203 return (offset >> exp); 1204 } else { 1205 ASSERT3U(offset, <, dn->dn_datablksz); 1206 return (0); 1207 } 1208 } 1209 1210 /* 1211 * This function is used to lock the parent of the provided dbuf. This should be 1212 * used when modifying or reading db_blkptr. 1213 */ 1214 db_lock_type_t 1215 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, void *tag) 1216 { 1217 enum db_lock_type ret = DLT_NONE; 1218 if (db->db_parent != NULL) { 1219 rw_enter(&db->db_parent->db_rwlock, rw); 1220 ret = DLT_PARENT; 1221 } else if (dmu_objset_ds(db->db_objset) != NULL) { 1222 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw, 1223 tag); 1224 ret = DLT_OBJSET; 1225 } 1226 /* 1227 * We only return a DLT_NONE lock when it's the top-most indirect block 1228 * of the meta-dnode of the MOS. 1229 */ 1230 return (ret); 1231 } 1232 1233 /* 1234 * We need to pass the lock type in because it's possible that the block will 1235 * move from being the topmost indirect block in a dnode (and thus, have no 1236 * parent) to not the top-most via an indirection increase. This would cause a 1237 * panic if we didn't pass the lock type in. 1238 */ 1239 void 1240 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, void *tag) 1241 { 1242 if (type == DLT_PARENT) 1243 rw_exit(&db->db_parent->db_rwlock); 1244 else if (type == DLT_OBJSET) 1245 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag); 1246 } 1247 1248 static void 1249 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1250 arc_buf_t *buf, void *vdb) 1251 { 1252 dmu_buf_impl_t *db = vdb; 1253 1254 mutex_enter(&db->db_mtx); 1255 ASSERT3U(db->db_state, ==, DB_READ); 1256 /* 1257 * All reads are synchronous, so we must have a hold on the dbuf 1258 */ 1259 ASSERT(zfs_refcount_count(&db->db_holds) > 0); 1260 ASSERT(db->db_buf == NULL); 1261 ASSERT(db->db.db_data == NULL); 1262 if (buf == NULL) { 1263 /* i/o error */ 1264 ASSERT(zio == NULL || zio->io_error != 0); 1265 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1266 ASSERT3P(db->db_buf, ==, NULL); 1267 db->db_state = DB_UNCACHED; 1268 DTRACE_SET_STATE(db, "i/o error"); 1269 } else if (db->db_level == 0 && db->db_freed_in_flight) { 1270 /* freed in flight */ 1271 ASSERT(zio == NULL || zio->io_error == 0); 1272 arc_release(buf, db); 1273 bzero(buf->b_data, db->db.db_size); 1274 arc_buf_freeze(buf); 1275 db->db_freed_in_flight = FALSE; 1276 dbuf_set_data(db, buf); 1277 db->db_state = DB_CACHED; 1278 DTRACE_SET_STATE(db, "freed in flight"); 1279 } else { 1280 /* success */ 1281 ASSERT(zio == NULL || zio->io_error == 0); 1282 dbuf_set_data(db, buf); 1283 db->db_state = DB_CACHED; 1284 DTRACE_SET_STATE(db, "successful read"); 1285 } 1286 cv_broadcast(&db->db_changed); 1287 dbuf_rele_and_unlock(db, NULL, B_FALSE); 1288 } 1289 1290 /* 1291 * Shortcut for performing reads on bonus dbufs. Returns 1292 * an error if we fail to verify the dnode associated with 1293 * a decrypted block. Otherwise success. 1294 */ 1295 static int 1296 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags) 1297 { 1298 int bonuslen, max_bonuslen, err; 1299 1300 err = dbuf_read_verify_dnode_crypt(db, flags); 1301 if (err) 1302 return (err); 1303 1304 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 1305 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1306 ASSERT(MUTEX_HELD(&db->db_mtx)); 1307 ASSERT(DB_DNODE_HELD(db)); 1308 ASSERT3U(bonuslen, <=, db->db.db_size); 1309 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP); 1310 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS); 1311 if (bonuslen < max_bonuslen) 1312 bzero(db->db.db_data, max_bonuslen); 1313 if (bonuslen) 1314 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen); 1315 db->db_state = DB_CACHED; 1316 DTRACE_SET_STATE(db, "bonus buffer filled"); 1317 return (0); 1318 } 1319 1320 static void 1321 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn) 1322 { 1323 blkptr_t *bps = db->db.db_data; 1324 uint32_t indbs = 1ULL << dn->dn_indblkshift; 1325 int n_bps = indbs >> SPA_BLKPTRSHIFT; 1326 1327 for (int i = 0; i < n_bps; i++) { 1328 blkptr_t *bp = &bps[i]; 1329 1330 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, indbs); 1331 BP_SET_LSIZE(bp, BP_GET_LEVEL(db->db_blkptr) == 1 ? 1332 dn->dn_datablksz : BP_GET_LSIZE(db->db_blkptr)); 1333 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr)); 1334 BP_SET_LEVEL(bp, BP_GET_LEVEL(db->db_blkptr) - 1); 1335 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0); 1336 } 1337 } 1338 1339 /* 1340 * Handle reads on dbufs that are holes, if necessary. This function 1341 * requires that the dbuf's mutex is held. Returns success (0) if action 1342 * was taken, ENOENT if no action was taken. 1343 */ 1344 static int 1345 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags) 1346 { 1347 ASSERT(MUTEX_HELD(&db->db_mtx)); 1348 1349 int is_hole = db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr); 1350 /* 1351 * For level 0 blocks only, if the above check fails: 1352 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 1353 * processes the delete record and clears the bp while we are waiting 1354 * for the dn_mtx (resulting in a "no" from block_freed). 1355 */ 1356 if (!is_hole && db->db_level == 0) { 1357 is_hole = dnode_block_freed(dn, db->db_blkid) || 1358 BP_IS_HOLE(db->db_blkptr); 1359 } 1360 1361 if (is_hole) { 1362 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1363 bzero(db->db.db_data, db->db.db_size); 1364 1365 if (db->db_blkptr != NULL && db->db_level > 0 && 1366 BP_IS_HOLE(db->db_blkptr) && 1367 db->db_blkptr->blk_birth != 0) { 1368 dbuf_handle_indirect_hole(db, dn); 1369 } 1370 db->db_state = DB_CACHED; 1371 DTRACE_SET_STATE(db, "hole read satisfied"); 1372 return (0); 1373 } 1374 return (ENOENT); 1375 } 1376 1377 /* 1378 * This function ensures that, when doing a decrypting read of a block, 1379 * we make sure we have decrypted the dnode associated with it. We must do 1380 * this so that we ensure we are fully authenticating the checksum-of-MACs 1381 * tree from the root of the objset down to this block. Indirect blocks are 1382 * always verified against their secure checksum-of-MACs assuming that the 1383 * dnode containing them is correct. Now that we are doing a decrypting read, 1384 * we can be sure that the key is loaded and verify that assumption. This is 1385 * especially important considering that we always read encrypted dnode 1386 * blocks as raw data (without verifying their MACs) to start, and 1387 * decrypt / authenticate them when we need to read an encrypted bonus buffer. 1388 */ 1389 static int 1390 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags) 1391 { 1392 int err = 0; 1393 objset_t *os = db->db_objset; 1394 arc_buf_t *dnode_abuf; 1395 dnode_t *dn; 1396 zbookmark_phys_t zb; 1397 1398 ASSERT(MUTEX_HELD(&db->db_mtx)); 1399 1400 if (!os->os_encrypted || os->os_raw_receive || 1401 (flags & DB_RF_NO_DECRYPT) != 0) 1402 return (0); 1403 1404 DB_DNODE_ENTER(db); 1405 dn = DB_DNODE(db); 1406 dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL; 1407 1408 if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) { 1409 DB_DNODE_EXIT(db); 1410 return (0); 1411 } 1412 1413 SET_BOOKMARK(&zb, dmu_objset_id(os), 1414 DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid); 1415 err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE); 1416 1417 /* 1418 * An error code of EACCES tells us that the key is still not 1419 * available. This is ok if we are only reading authenticated 1420 * (and therefore non-encrypted) blocks. 1421 */ 1422 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID && 1423 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) || 1424 (db->db_blkid == DMU_BONUS_BLKID && 1425 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)))) 1426 err = 0; 1427 1428 DB_DNODE_EXIT(db); 1429 1430 return (err); 1431 } 1432 1433 /* 1434 * Drops db_mtx and the parent lock specified by dblt and tag before 1435 * returning. 1436 */ 1437 static int 1438 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags, 1439 db_lock_type_t dblt, void *tag) 1440 { 1441 dnode_t *dn; 1442 zbookmark_phys_t zb; 1443 uint32_t aflags = ARC_FLAG_NOWAIT; 1444 int err, zio_flags; 1445 boolean_t bonus_read; 1446 1447 err = zio_flags = 0; 1448 bonus_read = B_FALSE; 1449 DB_DNODE_ENTER(db); 1450 dn = DB_DNODE(db); 1451 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1452 ASSERT(MUTEX_HELD(&db->db_mtx)); 1453 ASSERT(db->db_state == DB_UNCACHED); 1454 ASSERT(db->db_buf == NULL); 1455 ASSERT(db->db_parent == NULL || 1456 RW_LOCK_HELD(&db->db_parent->db_rwlock)); 1457 1458 if (db->db_blkid == DMU_BONUS_BLKID) { 1459 err = dbuf_read_bonus(db, dn, flags); 1460 goto early_unlock; 1461 } 1462 1463 err = dbuf_read_hole(db, dn, flags); 1464 if (err == 0) 1465 goto early_unlock; 1466 1467 /* 1468 * Any attempt to read a redacted block should result in an error. This 1469 * will never happen under normal conditions, but can be useful for 1470 * debugging purposes. 1471 */ 1472 if (BP_IS_REDACTED(db->db_blkptr)) { 1473 ASSERT(dsl_dataset_feature_is_active( 1474 db->db_objset->os_dsl_dataset, 1475 SPA_FEATURE_REDACTED_DATASETS)); 1476 err = SET_ERROR(EIO); 1477 goto early_unlock; 1478 } 1479 1480 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1481 db->db.db_object, db->db_level, db->db_blkid); 1482 1483 /* 1484 * All bps of an encrypted os should have the encryption bit set. 1485 * If this is not true it indicates tampering and we report an error. 1486 */ 1487 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) { 1488 spa_log_error(db->db_objset->os_spa, &zb); 1489 zfs_panic_recover("unencrypted block in encrypted " 1490 "object set %llu", dmu_objset_id(db->db_objset)); 1491 err = SET_ERROR(EIO); 1492 goto early_unlock; 1493 } 1494 1495 err = dbuf_read_verify_dnode_crypt(db, flags); 1496 if (err != 0) 1497 goto early_unlock; 1498 1499 DB_DNODE_EXIT(db); 1500 1501 db->db_state = DB_READ; 1502 DTRACE_SET_STATE(db, "read issued"); 1503 mutex_exit(&db->db_mtx); 1504 1505 if (DBUF_IS_L2CACHEABLE(db)) 1506 aflags |= ARC_FLAG_L2CACHE; 1507 1508 dbuf_add_ref(db, NULL); 1509 1510 zio_flags = (flags & DB_RF_CANFAIL) ? 1511 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED; 1512 1513 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr)) 1514 zio_flags |= ZIO_FLAG_RAW; 1515 /* 1516 * The zio layer will copy the provided blkptr later, but we need to 1517 * do this now so that we can release the parent's rwlock. We have to 1518 * do that now so that if dbuf_read_done is called synchronously (on 1519 * an l1 cache hit) we don't acquire the db_mtx while holding the 1520 * parent's rwlock, which would be a lock ordering violation. 1521 */ 1522 blkptr_t bp = *db->db_blkptr; 1523 dmu_buf_unlock_parent(db, dblt, tag); 1524 (void) arc_read(zio, db->db_objset->os_spa, &bp, 1525 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags, 1526 &aflags, &zb); 1527 return (err); 1528 early_unlock: 1529 DB_DNODE_EXIT(db); 1530 mutex_exit(&db->db_mtx); 1531 dmu_buf_unlock_parent(db, dblt, tag); 1532 return (err); 1533 } 1534 1535 /* 1536 * This is our just-in-time copy function. It makes a copy of buffers that 1537 * have been modified in a previous transaction group before we access them in 1538 * the current active group. 1539 * 1540 * This function is used in three places: when we are dirtying a buffer for the 1541 * first time in a txg, when we are freeing a range in a dnode that includes 1542 * this buffer, and when we are accessing a buffer which was received compressed 1543 * and later referenced in a WRITE_BYREF record. 1544 * 1545 * Note that when we are called from dbuf_free_range() we do not put a hold on 1546 * the buffer, we just traverse the active dbuf list for the dnode. 1547 */ 1548 static void 1549 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1550 { 1551 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 1552 1553 ASSERT(MUTEX_HELD(&db->db_mtx)); 1554 ASSERT(db->db.db_data != NULL); 1555 ASSERT(db->db_level == 0); 1556 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1557 1558 if (dr == NULL || 1559 (dr->dt.dl.dr_data != 1560 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1561 return; 1562 1563 /* 1564 * If the last dirty record for this dbuf has not yet synced 1565 * and its referencing the dbuf data, either: 1566 * reset the reference to point to a new copy, 1567 * or (if there a no active holders) 1568 * just null out the current db_data pointer. 1569 */ 1570 ASSERT3U(dr->dr_txg, >=, txg - 2); 1571 if (db->db_blkid == DMU_BONUS_BLKID) { 1572 dnode_t *dn = DB_DNODE(db); 1573 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1574 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP); 1575 arc_space_consume(bonuslen, ARC_SPACE_BONUS); 1576 bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen); 1577 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) { 1578 arc_buf_t *buf = dbuf_alloc_arcbuf_from_arcbuf(db, db->db_buf); 1579 dr->dt.dl.dr_data = buf; 1580 bcopy(db->db.db_data, buf->b_data, arc_buf_size(buf)); 1581 } else { 1582 db->db_buf = NULL; 1583 dbuf_clear_data(db); 1584 } 1585 } 1586 1587 int 1588 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 1589 { 1590 int err = 0; 1591 boolean_t prefetch; 1592 dnode_t *dn; 1593 1594 /* 1595 * We don't have to hold the mutex to check db_state because it 1596 * can't be freed while we have a hold on the buffer. 1597 */ 1598 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1599 1600 if (db->db_state == DB_NOFILL) 1601 return (SET_ERROR(EIO)); 1602 1603 DB_DNODE_ENTER(db); 1604 dn = DB_DNODE(db); 1605 1606 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1607 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL && 1608 DBUF_IS_CACHEABLE(db); 1609 1610 mutex_enter(&db->db_mtx); 1611 if (db->db_state == DB_CACHED) { 1612 spa_t *spa = dn->dn_objset->os_spa; 1613 1614 /* 1615 * Ensure that this block's dnode has been decrypted if 1616 * the caller has requested decrypted data. 1617 */ 1618 err = dbuf_read_verify_dnode_crypt(db, flags); 1619 1620 /* 1621 * If the arc buf is compressed or encrypted and the caller 1622 * requested uncompressed data, we need to untransform it 1623 * before returning. We also call arc_untransform() on any 1624 * unauthenticated blocks, which will verify their MAC if 1625 * the key is now available. 1626 */ 1627 if (err == 0 && db->db_buf != NULL && 1628 (flags & DB_RF_NO_DECRYPT) == 0 && 1629 (arc_is_encrypted(db->db_buf) || 1630 arc_is_unauthenticated(db->db_buf) || 1631 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) { 1632 zbookmark_phys_t zb; 1633 1634 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1635 db->db.db_object, db->db_level, db->db_blkid); 1636 dbuf_fix_old_data(db, spa_syncing_txg(spa)); 1637 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE); 1638 dbuf_set_data(db, db->db_buf); 1639 } 1640 mutex_exit(&db->db_mtx); 1641 if (err == 0 && prefetch) { 1642 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1643 flags & DB_RF_HAVESTRUCT); 1644 } 1645 DB_DNODE_EXIT(db); 1646 DBUF_STAT_BUMP(hash_hits); 1647 } else if (db->db_state == DB_UNCACHED) { 1648 spa_t *spa = dn->dn_objset->os_spa; 1649 boolean_t need_wait = B_FALSE; 1650 1651 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 1652 1653 if (zio == NULL && 1654 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) { 1655 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1656 need_wait = B_TRUE; 1657 } 1658 err = dbuf_read_impl(db, zio, flags, dblt, FTAG); 1659 /* 1660 * dbuf_read_impl has dropped db_mtx and our parent's rwlock 1661 * for us 1662 */ 1663 if (!err && prefetch) { 1664 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1665 flags & DB_RF_HAVESTRUCT); 1666 } 1667 1668 DB_DNODE_EXIT(db); 1669 DBUF_STAT_BUMP(hash_misses); 1670 1671 /* 1672 * If we created a zio_root we must execute it to avoid 1673 * leaking it, even if it isn't attached to any work due 1674 * to an error in dbuf_read_impl(). 1675 */ 1676 if (need_wait) { 1677 if (err == 0) 1678 err = zio_wait(zio); 1679 else 1680 VERIFY0(zio_wait(zio)); 1681 } 1682 } else { 1683 /* 1684 * Another reader came in while the dbuf was in flight 1685 * between UNCACHED and CACHED. Either a writer will finish 1686 * writing the buffer (sending the dbuf to CACHED) or the 1687 * first reader's request will reach the read_done callback 1688 * and send the dbuf to CACHED. Otherwise, a failure 1689 * occurred and the dbuf went to UNCACHED. 1690 */ 1691 mutex_exit(&db->db_mtx); 1692 if (prefetch) { 1693 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1694 flags & DB_RF_HAVESTRUCT); 1695 } 1696 DB_DNODE_EXIT(db); 1697 DBUF_STAT_BUMP(hash_misses); 1698 1699 /* Skip the wait per the caller's request. */ 1700 if ((flags & DB_RF_NEVERWAIT) == 0) { 1701 mutex_enter(&db->db_mtx); 1702 while (db->db_state == DB_READ || 1703 db->db_state == DB_FILL) { 1704 ASSERT(db->db_state == DB_READ || 1705 (flags & DB_RF_HAVESTRUCT) == 0); 1706 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, 1707 db, zio_t *, zio); 1708 cv_wait(&db->db_changed, &db->db_mtx); 1709 } 1710 if (db->db_state == DB_UNCACHED) 1711 err = SET_ERROR(EIO); 1712 mutex_exit(&db->db_mtx); 1713 } 1714 } 1715 1716 return (err); 1717 } 1718 1719 static void 1720 dbuf_noread(dmu_buf_impl_t *db) 1721 { 1722 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1723 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1724 mutex_enter(&db->db_mtx); 1725 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1726 cv_wait(&db->db_changed, &db->db_mtx); 1727 if (db->db_state == DB_UNCACHED) { 1728 ASSERT(db->db_buf == NULL); 1729 ASSERT(db->db.db_data == NULL); 1730 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1731 db->db_state = DB_FILL; 1732 DTRACE_SET_STATE(db, "assigning filled buffer"); 1733 } else if (db->db_state == DB_NOFILL) { 1734 dbuf_clear_data(db); 1735 } else { 1736 ASSERT3U(db->db_state, ==, DB_CACHED); 1737 } 1738 mutex_exit(&db->db_mtx); 1739 } 1740 1741 void 1742 dbuf_unoverride(dbuf_dirty_record_t *dr) 1743 { 1744 dmu_buf_impl_t *db = dr->dr_dbuf; 1745 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1746 uint64_t txg = dr->dr_txg; 1747 1748 ASSERT(MUTEX_HELD(&db->db_mtx)); 1749 /* 1750 * This assert is valid because dmu_sync() expects to be called by 1751 * a zilog's get_data while holding a range lock. This call only 1752 * comes from dbuf_dirty() callers who must also hold a range lock. 1753 */ 1754 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1755 ASSERT(db->db_level == 0); 1756 1757 if (db->db_blkid == DMU_BONUS_BLKID || 1758 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1759 return; 1760 1761 ASSERT(db->db_data_pending != dr); 1762 1763 /* free this block */ 1764 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1765 zio_free(db->db_objset->os_spa, txg, bp); 1766 1767 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1768 dr->dt.dl.dr_nopwrite = B_FALSE; 1769 dr->dt.dl.dr_has_raw_params = B_FALSE; 1770 1771 /* 1772 * Release the already-written buffer, so we leave it in 1773 * a consistent dirty state. Note that all callers are 1774 * modifying the buffer, so they will immediately do 1775 * another (redundant) arc_release(). Therefore, leave 1776 * the buf thawed to save the effort of freezing & 1777 * immediately re-thawing it. 1778 */ 1779 arc_release(dr->dt.dl.dr_data, db); 1780 } 1781 1782 /* 1783 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1784 * data blocks in the free range, so that any future readers will find 1785 * empty blocks. 1786 */ 1787 void 1788 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1789 dmu_tx_t *tx) 1790 { 1791 dmu_buf_impl_t *db_search; 1792 dmu_buf_impl_t *db, *db_next; 1793 uint64_t txg = tx->tx_txg; 1794 avl_index_t where; 1795 dbuf_dirty_record_t *dr; 1796 1797 if (end_blkid > dn->dn_maxblkid && 1798 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1799 end_blkid = dn->dn_maxblkid; 1800 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid); 1801 1802 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP); 1803 db_search->db_level = 0; 1804 db_search->db_blkid = start_blkid; 1805 db_search->db_state = DB_SEARCH; 1806 1807 mutex_enter(&dn->dn_dbufs_mtx); 1808 db = avl_find(&dn->dn_dbufs, db_search, &where); 1809 ASSERT3P(db, ==, NULL); 1810 1811 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1812 1813 for (; db != NULL; db = db_next) { 1814 db_next = AVL_NEXT(&dn->dn_dbufs, db); 1815 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1816 1817 if (db->db_level != 0 || db->db_blkid > end_blkid) { 1818 break; 1819 } 1820 ASSERT3U(db->db_blkid, >=, start_blkid); 1821 1822 /* found a level 0 buffer in the range */ 1823 mutex_enter(&db->db_mtx); 1824 if (dbuf_undirty(db, tx)) { 1825 /* mutex has been dropped and dbuf destroyed */ 1826 continue; 1827 } 1828 1829 if (db->db_state == DB_UNCACHED || 1830 db->db_state == DB_NOFILL || 1831 db->db_state == DB_EVICTING) { 1832 ASSERT(db->db.db_data == NULL); 1833 mutex_exit(&db->db_mtx); 1834 continue; 1835 } 1836 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 1837 /* will be handled in dbuf_read_done or dbuf_rele */ 1838 db->db_freed_in_flight = TRUE; 1839 mutex_exit(&db->db_mtx); 1840 continue; 1841 } 1842 if (zfs_refcount_count(&db->db_holds) == 0) { 1843 ASSERT(db->db_buf); 1844 dbuf_destroy(db); 1845 continue; 1846 } 1847 /* The dbuf is referenced */ 1848 1849 dr = list_head(&db->db_dirty_records); 1850 if (dr != NULL) { 1851 if (dr->dr_txg == txg) { 1852 /* 1853 * This buffer is "in-use", re-adjust the file 1854 * size to reflect that this buffer may 1855 * contain new data when we sync. 1856 */ 1857 if (db->db_blkid != DMU_SPILL_BLKID && 1858 db->db_blkid > dn->dn_maxblkid) 1859 dn->dn_maxblkid = db->db_blkid; 1860 dbuf_unoverride(dr); 1861 } else { 1862 /* 1863 * This dbuf is not dirty in the open context. 1864 * Either uncache it (if its not referenced in 1865 * the open context) or reset its contents to 1866 * empty. 1867 */ 1868 dbuf_fix_old_data(db, txg); 1869 } 1870 } 1871 /* clear the contents if its cached */ 1872 if (db->db_state == DB_CACHED) { 1873 ASSERT(db->db.db_data != NULL); 1874 arc_release(db->db_buf, db); 1875 rw_enter(&db->db_rwlock, RW_WRITER); 1876 bzero(db->db.db_data, db->db.db_size); 1877 rw_exit(&db->db_rwlock); 1878 arc_buf_freeze(db->db_buf); 1879 } 1880 1881 mutex_exit(&db->db_mtx); 1882 } 1883 1884 kmem_free(db_search, sizeof (dmu_buf_impl_t)); 1885 mutex_exit(&dn->dn_dbufs_mtx); 1886 } 1887 1888 void 1889 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 1890 { 1891 arc_buf_t *buf, *old_buf; 1892 dbuf_dirty_record_t *dr; 1893 int osize = db->db.db_size; 1894 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1895 dnode_t *dn; 1896 1897 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1898 1899 DB_DNODE_ENTER(db); 1900 dn = DB_DNODE(db); 1901 1902 /* 1903 * XXX we should be doing a dbuf_read, checking the return 1904 * value and returning that up to our callers 1905 */ 1906 dmu_buf_will_dirty(&db->db, tx); 1907 1908 /* create the data buffer for the new block */ 1909 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); 1910 1911 /* copy old block data to the new block */ 1912 old_buf = db->db_buf; 1913 bcopy(old_buf->b_data, buf->b_data, MIN(osize, size)); 1914 /* zero the remainder */ 1915 if (size > osize) 1916 bzero((uint8_t *)buf->b_data + osize, size - osize); 1917 1918 mutex_enter(&db->db_mtx); 1919 dbuf_set_data(db, buf); 1920 arc_buf_destroy(old_buf, db); 1921 db->db.db_size = size; 1922 1923 dr = list_head(&db->db_dirty_records); 1924 /* dirty record added by dmu_buf_will_dirty() */ 1925 VERIFY(dr != NULL); 1926 if (db->db_level == 0) 1927 dr->dt.dl.dr_data = buf; 1928 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 1929 ASSERT3U(dr->dr_accounted, ==, osize); 1930 dr->dr_accounted = size; 1931 mutex_exit(&db->db_mtx); 1932 1933 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx); 1934 DB_DNODE_EXIT(db); 1935 } 1936 1937 void 1938 dbuf_release_bp(dmu_buf_impl_t *db) 1939 { 1940 objset_t *os __maybe_unused = db->db_objset; 1941 1942 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 1943 ASSERT(arc_released(os->os_phys_buf) || 1944 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 1945 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 1946 1947 (void) arc_release(db->db_buf, db); 1948 } 1949 1950 /* 1951 * We already have a dirty record for this TXG, and we are being 1952 * dirtied again. 1953 */ 1954 static void 1955 dbuf_redirty(dbuf_dirty_record_t *dr) 1956 { 1957 dmu_buf_impl_t *db = dr->dr_dbuf; 1958 1959 ASSERT(MUTEX_HELD(&db->db_mtx)); 1960 1961 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 1962 /* 1963 * If this buffer has already been written out, 1964 * we now need to reset its state. 1965 */ 1966 dbuf_unoverride(dr); 1967 if (db->db.db_object != DMU_META_DNODE_OBJECT && 1968 db->db_state != DB_NOFILL) { 1969 /* Already released on initial dirty, so just thaw. */ 1970 ASSERT(arc_released(db->db_buf)); 1971 arc_buf_thaw(db->db_buf); 1972 } 1973 } 1974 } 1975 1976 dbuf_dirty_record_t * 1977 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1978 { 1979 dnode_t *dn; 1980 objset_t *os; 1981 dbuf_dirty_record_t *dr, *dr_next, *dr_head; 1982 int txgoff = tx->tx_txg & TXG_MASK; 1983 boolean_t drop_struct_rwlock = B_FALSE; 1984 1985 ASSERT(tx->tx_txg != 0); 1986 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1987 DMU_TX_DIRTY_BUF(tx, db); 1988 1989 DB_DNODE_ENTER(db); 1990 dn = DB_DNODE(db); 1991 /* 1992 * Shouldn't dirty a regular buffer in syncing context. Private 1993 * objects may be dirtied in syncing context, but only if they 1994 * were already pre-dirtied in open context. 1995 */ 1996 #ifdef ZFS_DEBUG 1997 if (dn->dn_objset->os_dsl_dataset != NULL) { 1998 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1999 RW_READER, FTAG); 2000 } 2001 ASSERT(!dmu_tx_is_syncing(tx) || 2002 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 2003 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2004 dn->dn_objset->os_dsl_dataset == NULL); 2005 if (dn->dn_objset->os_dsl_dataset != NULL) 2006 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 2007 #endif 2008 /* 2009 * We make this assert for private objects as well, but after we 2010 * check if we're already dirty. They are allowed to re-dirty 2011 * in syncing context. 2012 */ 2013 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2014 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2015 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2016 2017 mutex_enter(&db->db_mtx); 2018 /* 2019 * XXX make this true for indirects too? The problem is that 2020 * transactions created with dmu_tx_create_assigned() from 2021 * syncing context don't bother holding ahead. 2022 */ 2023 ASSERT(db->db_level != 0 || 2024 db->db_state == DB_CACHED || db->db_state == DB_FILL || 2025 db->db_state == DB_NOFILL); 2026 2027 mutex_enter(&dn->dn_mtx); 2028 dnode_set_dirtyctx(dn, tx, db); 2029 if (tx->tx_txg > dn->dn_dirty_txg) 2030 dn->dn_dirty_txg = tx->tx_txg; 2031 mutex_exit(&dn->dn_mtx); 2032 2033 if (db->db_blkid == DMU_SPILL_BLKID) 2034 dn->dn_have_spill = B_TRUE; 2035 2036 /* 2037 * If this buffer is already dirty, we're done. 2038 */ 2039 dr_head = list_head(&db->db_dirty_records); 2040 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg || 2041 db->db.db_object == DMU_META_DNODE_OBJECT); 2042 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg); 2043 if (dr_next && dr_next->dr_txg == tx->tx_txg) { 2044 DB_DNODE_EXIT(db); 2045 2046 dbuf_redirty(dr_next); 2047 mutex_exit(&db->db_mtx); 2048 return (dr_next); 2049 } 2050 2051 /* 2052 * Only valid if not already dirty. 2053 */ 2054 ASSERT(dn->dn_object == 0 || 2055 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2056 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2057 2058 ASSERT3U(dn->dn_nlevels, >, db->db_level); 2059 2060 /* 2061 * We should only be dirtying in syncing context if it's the 2062 * mos or we're initializing the os or it's a special object. 2063 * However, we are allowed to dirty in syncing context provided 2064 * we already dirtied it in open context. Hence we must make 2065 * this assertion only if we're not already dirty. 2066 */ 2067 os = dn->dn_objset; 2068 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa)); 2069 #ifdef ZFS_DEBUG 2070 if (dn->dn_objset->os_dsl_dataset != NULL) 2071 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 2072 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2073 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 2074 if (dn->dn_objset->os_dsl_dataset != NULL) 2075 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 2076 #endif 2077 ASSERT(db->db.db_size != 0); 2078 2079 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2080 2081 if (db->db_blkid != DMU_BONUS_BLKID) { 2082 dmu_objset_willuse_space(os, db->db.db_size, tx); 2083 } 2084 2085 /* 2086 * If this buffer is dirty in an old transaction group we need 2087 * to make a copy of it so that the changes we make in this 2088 * transaction group won't leak out when we sync the older txg. 2089 */ 2090 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 2091 list_link_init(&dr->dr_dirty_node); 2092 list_link_init(&dr->dr_dbuf_node); 2093 if (db->db_level == 0) { 2094 void *data_old = db->db_buf; 2095 2096 if (db->db_state != DB_NOFILL) { 2097 if (db->db_blkid == DMU_BONUS_BLKID) { 2098 dbuf_fix_old_data(db, tx->tx_txg); 2099 data_old = db->db.db_data; 2100 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 2101 /* 2102 * Release the data buffer from the cache so 2103 * that we can modify it without impacting 2104 * possible other users of this cached data 2105 * block. Note that indirect blocks and 2106 * private objects are not released until the 2107 * syncing state (since they are only modified 2108 * then). 2109 */ 2110 arc_release(db->db_buf, db); 2111 dbuf_fix_old_data(db, tx->tx_txg); 2112 data_old = db->db_buf; 2113 } 2114 ASSERT(data_old != NULL); 2115 } 2116 dr->dt.dl.dr_data = data_old; 2117 } else { 2118 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL); 2119 list_create(&dr->dt.di.dr_children, 2120 sizeof (dbuf_dirty_record_t), 2121 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 2122 } 2123 if (db->db_blkid != DMU_BONUS_BLKID) 2124 dr->dr_accounted = db->db.db_size; 2125 dr->dr_dbuf = db; 2126 dr->dr_txg = tx->tx_txg; 2127 list_insert_before(&db->db_dirty_records, dr_next, dr); 2128 2129 /* 2130 * We could have been freed_in_flight between the dbuf_noread 2131 * and dbuf_dirty. We win, as though the dbuf_noread() had 2132 * happened after the free. 2133 */ 2134 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2135 db->db_blkid != DMU_SPILL_BLKID) { 2136 mutex_enter(&dn->dn_mtx); 2137 if (dn->dn_free_ranges[txgoff] != NULL) { 2138 range_tree_clear(dn->dn_free_ranges[txgoff], 2139 db->db_blkid, 1); 2140 } 2141 mutex_exit(&dn->dn_mtx); 2142 db->db_freed_in_flight = FALSE; 2143 } 2144 2145 /* 2146 * This buffer is now part of this txg 2147 */ 2148 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 2149 db->db_dirtycnt += 1; 2150 ASSERT3U(db->db_dirtycnt, <=, 3); 2151 2152 mutex_exit(&db->db_mtx); 2153 2154 if (db->db_blkid == DMU_BONUS_BLKID || 2155 db->db_blkid == DMU_SPILL_BLKID) { 2156 mutex_enter(&dn->dn_mtx); 2157 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2158 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2159 mutex_exit(&dn->dn_mtx); 2160 dnode_setdirty(dn, tx); 2161 DB_DNODE_EXIT(db); 2162 return (dr); 2163 } 2164 2165 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 2166 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2167 drop_struct_rwlock = B_TRUE; 2168 } 2169 2170 /* 2171 * If we are overwriting a dedup BP, then unless it is snapshotted, 2172 * when we get to syncing context we will need to decrement its 2173 * refcount in the DDT. Prefetch the relevant DDT block so that 2174 * syncing context won't have to wait for the i/o. 2175 */ 2176 if (db->db_blkptr != NULL) { 2177 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 2178 ddt_prefetch(os->os_spa, db->db_blkptr); 2179 dmu_buf_unlock_parent(db, dblt, FTAG); 2180 } 2181 2182 /* 2183 * We need to hold the dn_struct_rwlock to make this assertion, 2184 * because it protects dn_phys / dn_next_nlevels from changing. 2185 */ 2186 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 2187 dn->dn_phys->dn_nlevels > db->db_level || 2188 dn->dn_next_nlevels[txgoff] > db->db_level || 2189 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 2190 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 2191 2192 2193 if (db->db_level == 0) { 2194 ASSERT(!db->db_objset->os_raw_receive || 2195 dn->dn_maxblkid >= db->db_blkid); 2196 dnode_new_blkid(dn, db->db_blkid, tx, 2197 drop_struct_rwlock, B_FALSE); 2198 ASSERT(dn->dn_maxblkid >= db->db_blkid); 2199 } 2200 2201 if (db->db_level+1 < dn->dn_nlevels) { 2202 dmu_buf_impl_t *parent = db->db_parent; 2203 dbuf_dirty_record_t *di; 2204 int parent_held = FALSE; 2205 2206 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 2207 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2208 parent = dbuf_hold_level(dn, db->db_level + 1, 2209 db->db_blkid >> epbs, FTAG); 2210 ASSERT(parent != NULL); 2211 parent_held = TRUE; 2212 } 2213 if (drop_struct_rwlock) 2214 rw_exit(&dn->dn_struct_rwlock); 2215 ASSERT3U(db->db_level + 1, ==, parent->db_level); 2216 di = dbuf_dirty(parent, tx); 2217 if (parent_held) 2218 dbuf_rele(parent, FTAG); 2219 2220 mutex_enter(&db->db_mtx); 2221 /* 2222 * Since we've dropped the mutex, it's possible that 2223 * dbuf_undirty() might have changed this out from under us. 2224 */ 2225 if (list_head(&db->db_dirty_records) == dr || 2226 dn->dn_object == DMU_META_DNODE_OBJECT) { 2227 mutex_enter(&di->dt.di.dr_mtx); 2228 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 2229 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2230 list_insert_tail(&di->dt.di.dr_children, dr); 2231 mutex_exit(&di->dt.di.dr_mtx); 2232 dr->dr_parent = di; 2233 } 2234 mutex_exit(&db->db_mtx); 2235 } else { 2236 ASSERT(db->db_level + 1 == dn->dn_nlevels); 2237 ASSERT(db->db_blkid < dn->dn_nblkptr); 2238 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 2239 mutex_enter(&dn->dn_mtx); 2240 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2241 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2242 mutex_exit(&dn->dn_mtx); 2243 if (drop_struct_rwlock) 2244 rw_exit(&dn->dn_struct_rwlock); 2245 } 2246 2247 dnode_setdirty(dn, tx); 2248 DB_DNODE_EXIT(db); 2249 return (dr); 2250 } 2251 2252 static void 2253 dbuf_undirty_bonus(dbuf_dirty_record_t *dr) 2254 { 2255 dmu_buf_impl_t *db = dr->dr_dbuf; 2256 2257 if (dr->dt.dl.dr_data != db->db.db_data) { 2258 struct dnode *dn = DB_DNODE(db); 2259 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 2260 2261 kmem_free(dr->dt.dl.dr_data, max_bonuslen); 2262 arc_space_return(max_bonuslen, ARC_SPACE_BONUS); 2263 } 2264 db->db_data_pending = NULL; 2265 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 2266 list_remove(&db->db_dirty_records, dr); 2267 if (dr->dr_dbuf->db_level != 0) { 2268 mutex_destroy(&dr->dt.di.dr_mtx); 2269 list_destroy(&dr->dt.di.dr_children); 2270 } 2271 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2272 ASSERT3U(db->db_dirtycnt, >, 0); 2273 db->db_dirtycnt -= 1; 2274 } 2275 2276 /* 2277 * Undirty a buffer in the transaction group referenced by the given 2278 * transaction. Return whether this evicted the dbuf. 2279 */ 2280 static boolean_t 2281 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2282 { 2283 dnode_t *dn; 2284 uint64_t txg = tx->tx_txg; 2285 dbuf_dirty_record_t *dr; 2286 2287 ASSERT(txg != 0); 2288 2289 /* 2290 * Due to our use of dn_nlevels below, this can only be called 2291 * in open context, unless we are operating on the MOS. 2292 * From syncing context, dn_nlevels may be different from the 2293 * dn_nlevels used when dbuf was dirtied. 2294 */ 2295 ASSERT(db->db_objset == 2296 dmu_objset_pool(db->db_objset)->dp_meta_objset || 2297 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 2298 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2299 ASSERT0(db->db_level); 2300 ASSERT(MUTEX_HELD(&db->db_mtx)); 2301 2302 /* 2303 * If this buffer is not dirty, we're done. 2304 */ 2305 dr = dbuf_find_dirty_eq(db, txg); 2306 if (dr == NULL) 2307 return (B_FALSE); 2308 ASSERT(dr->dr_dbuf == db); 2309 2310 DB_DNODE_ENTER(db); 2311 dn = DB_DNODE(db); 2312 2313 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2314 2315 ASSERT(db->db.db_size != 0); 2316 2317 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 2318 dr->dr_accounted, txg); 2319 2320 list_remove(&db->db_dirty_records, dr); 2321 2322 /* 2323 * Note that there are three places in dbuf_dirty() 2324 * where this dirty record may be put on a list. 2325 * Make sure to do a list_remove corresponding to 2326 * every one of those list_insert calls. 2327 */ 2328 if (dr->dr_parent) { 2329 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 2330 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 2331 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 2332 } else if (db->db_blkid == DMU_SPILL_BLKID || 2333 db->db_level + 1 == dn->dn_nlevels) { 2334 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 2335 mutex_enter(&dn->dn_mtx); 2336 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 2337 mutex_exit(&dn->dn_mtx); 2338 } 2339 DB_DNODE_EXIT(db); 2340 2341 if (db->db_state != DB_NOFILL) { 2342 dbuf_unoverride(dr); 2343 2344 ASSERT(db->db_buf != NULL); 2345 ASSERT(dr->dt.dl.dr_data != NULL); 2346 if (dr->dt.dl.dr_data != db->db_buf) 2347 arc_buf_destroy(dr->dt.dl.dr_data, db); 2348 } 2349 2350 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2351 2352 ASSERT(db->db_dirtycnt > 0); 2353 db->db_dirtycnt -= 1; 2354 2355 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 2356 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf)); 2357 dbuf_destroy(db); 2358 return (B_TRUE); 2359 } 2360 2361 return (B_FALSE); 2362 } 2363 2364 static void 2365 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx) 2366 { 2367 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2368 2369 ASSERT(tx->tx_txg != 0); 2370 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2371 2372 /* 2373 * Quick check for dirtiness. For already dirty blocks, this 2374 * reduces runtime of this function by >90%, and overall performance 2375 * by 50% for some workloads (e.g. file deletion with indirect blocks 2376 * cached). 2377 */ 2378 mutex_enter(&db->db_mtx); 2379 2380 if (db->db_state == DB_CACHED) { 2381 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2382 /* 2383 * It's possible that it is already dirty but not cached, 2384 * because there are some calls to dbuf_dirty() that don't 2385 * go through dmu_buf_will_dirty(). 2386 */ 2387 if (dr != NULL) { 2388 /* This dbuf is already dirty and cached. */ 2389 dbuf_redirty(dr); 2390 mutex_exit(&db->db_mtx); 2391 return; 2392 } 2393 } 2394 mutex_exit(&db->db_mtx); 2395 2396 DB_DNODE_ENTER(db); 2397 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 2398 flags |= DB_RF_HAVESTRUCT; 2399 DB_DNODE_EXIT(db); 2400 (void) dbuf_read(db, NULL, flags); 2401 (void) dbuf_dirty(db, tx); 2402 } 2403 2404 void 2405 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2406 { 2407 dmu_buf_will_dirty_impl(db_fake, 2408 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx); 2409 } 2410 2411 boolean_t 2412 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2413 { 2414 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2415 dbuf_dirty_record_t *dr; 2416 2417 mutex_enter(&db->db_mtx); 2418 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2419 mutex_exit(&db->db_mtx); 2420 return (dr != NULL); 2421 } 2422 2423 void 2424 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2425 { 2426 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2427 2428 db->db_state = DB_NOFILL; 2429 DTRACE_SET_STATE(db, "allocating NOFILL buffer"); 2430 dmu_buf_will_fill(db_fake, tx); 2431 } 2432 2433 void 2434 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2435 { 2436 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2437 2438 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2439 ASSERT(tx->tx_txg != 0); 2440 ASSERT(db->db_level == 0); 2441 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2442 2443 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 2444 dmu_tx_private_ok(tx)); 2445 2446 dbuf_noread(db); 2447 (void) dbuf_dirty(db, tx); 2448 } 2449 2450 /* 2451 * This function is effectively the same as dmu_buf_will_dirty(), but 2452 * indicates the caller expects raw encrypted data in the db, and provides 2453 * the crypt params (byteorder, salt, iv, mac) which should be stored in the 2454 * blkptr_t when this dbuf is written. This is only used for blocks of 2455 * dnodes, during raw receive. 2456 */ 2457 void 2458 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder, 2459 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx) 2460 { 2461 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2462 dbuf_dirty_record_t *dr; 2463 2464 /* 2465 * dr_has_raw_params is only processed for blocks of dnodes 2466 * (see dbuf_sync_dnode_leaf_crypt()). 2467 */ 2468 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 2469 ASSERT3U(db->db_level, ==, 0); 2470 ASSERT(db->db_objset->os_raw_receive); 2471 2472 dmu_buf_will_dirty_impl(db_fake, 2473 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx); 2474 2475 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2476 2477 ASSERT3P(dr, !=, NULL); 2478 2479 dr->dt.dl.dr_has_raw_params = B_TRUE; 2480 dr->dt.dl.dr_byteorder = byteorder; 2481 bcopy(salt, dr->dt.dl.dr_salt, ZIO_DATA_SALT_LEN); 2482 bcopy(iv, dr->dt.dl.dr_iv, ZIO_DATA_IV_LEN); 2483 bcopy(mac, dr->dt.dl.dr_mac, ZIO_DATA_MAC_LEN); 2484 } 2485 2486 static void 2487 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx) 2488 { 2489 struct dirty_leaf *dl; 2490 dbuf_dirty_record_t *dr; 2491 2492 dr = list_head(&db->db_dirty_records); 2493 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2494 dl = &dr->dt.dl; 2495 dl->dr_overridden_by = *bp; 2496 dl->dr_override_state = DR_OVERRIDDEN; 2497 dl->dr_overridden_by.blk_birth = dr->dr_txg; 2498 } 2499 2500 /* ARGSUSED */ 2501 void 2502 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx) 2503 { 2504 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2505 dbuf_states_t old_state; 2506 mutex_enter(&db->db_mtx); 2507 DBUF_VERIFY(db); 2508 2509 old_state = db->db_state; 2510 db->db_state = DB_CACHED; 2511 if (old_state == DB_FILL) { 2512 if (db->db_level == 0 && db->db_freed_in_flight) { 2513 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2514 /* we were freed while filling */ 2515 /* XXX dbuf_undirty? */ 2516 bzero(db->db.db_data, db->db.db_size); 2517 db->db_freed_in_flight = FALSE; 2518 DTRACE_SET_STATE(db, 2519 "fill done handling freed in flight"); 2520 } else { 2521 DTRACE_SET_STATE(db, "fill done"); 2522 } 2523 cv_broadcast(&db->db_changed); 2524 } 2525 mutex_exit(&db->db_mtx); 2526 } 2527 2528 void 2529 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 2530 bp_embedded_type_t etype, enum zio_compress comp, 2531 int uncompressed_size, int compressed_size, int byteorder, 2532 dmu_tx_t *tx) 2533 { 2534 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2535 struct dirty_leaf *dl; 2536 dmu_object_type_t type; 2537 dbuf_dirty_record_t *dr; 2538 2539 if (etype == BP_EMBEDDED_TYPE_DATA) { 2540 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 2541 SPA_FEATURE_EMBEDDED_DATA)); 2542 } 2543 2544 DB_DNODE_ENTER(db); 2545 type = DB_DNODE(db)->dn_type; 2546 DB_DNODE_EXIT(db); 2547 2548 ASSERT0(db->db_level); 2549 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2550 2551 dmu_buf_will_not_fill(dbuf, tx); 2552 2553 dr = list_head(&db->db_dirty_records); 2554 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2555 dl = &dr->dt.dl; 2556 encode_embedded_bp_compressed(&dl->dr_overridden_by, 2557 data, comp, uncompressed_size, compressed_size); 2558 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 2559 BP_SET_TYPE(&dl->dr_overridden_by, type); 2560 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 2561 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 2562 2563 dl->dr_override_state = DR_OVERRIDDEN; 2564 dl->dr_overridden_by.blk_birth = dr->dr_txg; 2565 } 2566 2567 void 2568 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx) 2569 { 2570 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2571 dmu_object_type_t type; 2572 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset, 2573 SPA_FEATURE_REDACTED_DATASETS)); 2574 2575 DB_DNODE_ENTER(db); 2576 type = DB_DNODE(db)->dn_type; 2577 DB_DNODE_EXIT(db); 2578 2579 ASSERT0(db->db_level); 2580 dmu_buf_will_not_fill(dbuf, tx); 2581 2582 blkptr_t bp = { { { {0} } } }; 2583 BP_SET_TYPE(&bp, type); 2584 BP_SET_LEVEL(&bp, 0); 2585 BP_SET_BIRTH(&bp, tx->tx_txg, 0); 2586 BP_SET_REDACTED(&bp); 2587 BPE_SET_LSIZE(&bp, dbuf->db_size); 2588 2589 dbuf_override_impl(db, &bp, tx); 2590 } 2591 2592 /* 2593 * Directly assign a provided arc buf to a given dbuf if it's not referenced 2594 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 2595 */ 2596 void 2597 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 2598 { 2599 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2600 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2601 ASSERT(db->db_level == 0); 2602 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); 2603 ASSERT(buf != NULL); 2604 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size); 2605 ASSERT(tx->tx_txg != 0); 2606 2607 arc_return_buf(buf, db); 2608 ASSERT(arc_released(buf)); 2609 2610 mutex_enter(&db->db_mtx); 2611 2612 while (db->db_state == DB_READ || db->db_state == DB_FILL) 2613 cv_wait(&db->db_changed, &db->db_mtx); 2614 2615 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); 2616 2617 if (db->db_state == DB_CACHED && 2618 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 2619 /* 2620 * In practice, we will never have a case where we have an 2621 * encrypted arc buffer while additional holds exist on the 2622 * dbuf. We don't handle this here so we simply assert that 2623 * fact instead. 2624 */ 2625 ASSERT(!arc_is_encrypted(buf)); 2626 mutex_exit(&db->db_mtx); 2627 (void) dbuf_dirty(db, tx); 2628 bcopy(buf->b_data, db->db.db_data, db->db.db_size); 2629 arc_buf_destroy(buf, db); 2630 xuio_stat_wbuf_copied(); 2631 return; 2632 } 2633 2634 xuio_stat_wbuf_nocopy(); 2635 if (db->db_state == DB_CACHED) { 2636 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 2637 2638 ASSERT(db->db_buf != NULL); 2639 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 2640 ASSERT(dr->dt.dl.dr_data == db->db_buf); 2641 2642 if (!arc_released(db->db_buf)) { 2643 ASSERT(dr->dt.dl.dr_override_state == 2644 DR_OVERRIDDEN); 2645 arc_release(db->db_buf, db); 2646 } 2647 dr->dt.dl.dr_data = buf; 2648 arc_buf_destroy(db->db_buf, db); 2649 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 2650 arc_release(db->db_buf, db); 2651 arc_buf_destroy(db->db_buf, db); 2652 } 2653 db->db_buf = NULL; 2654 } 2655 ASSERT(db->db_buf == NULL); 2656 dbuf_set_data(db, buf); 2657 db->db_state = DB_FILL; 2658 DTRACE_SET_STATE(db, "filling assigned arcbuf"); 2659 mutex_exit(&db->db_mtx); 2660 (void) dbuf_dirty(db, tx); 2661 dmu_buf_fill_done(&db->db, tx); 2662 } 2663 2664 void 2665 dbuf_destroy(dmu_buf_impl_t *db) 2666 { 2667 dnode_t *dn; 2668 dmu_buf_impl_t *parent = db->db_parent; 2669 dmu_buf_impl_t *dndb; 2670 2671 ASSERT(MUTEX_HELD(&db->db_mtx)); 2672 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 2673 2674 if (db->db_buf != NULL) { 2675 arc_buf_destroy(db->db_buf, db); 2676 db->db_buf = NULL; 2677 } 2678 2679 if (db->db_blkid == DMU_BONUS_BLKID) { 2680 int slots = DB_DNODE(db)->dn_num_slots; 2681 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots); 2682 if (db->db.db_data != NULL) { 2683 kmem_free(db->db.db_data, bonuslen); 2684 arc_space_return(bonuslen, ARC_SPACE_BONUS); 2685 db->db_state = DB_UNCACHED; 2686 DTRACE_SET_STATE(db, "buffer cleared"); 2687 } 2688 } 2689 2690 dbuf_clear_data(db); 2691 2692 if (multilist_link_active(&db->db_cache_link)) { 2693 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 2694 db->db_caching_status == DB_DBUF_METADATA_CACHE); 2695 2696 multilist_remove(dbuf_caches[db->db_caching_status].cache, db); 2697 (void) zfs_refcount_remove_many( 2698 &dbuf_caches[db->db_caching_status].size, 2699 db->db.db_size, db); 2700 2701 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 2702 DBUF_STAT_BUMPDOWN(metadata_cache_count); 2703 } else { 2704 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 2705 DBUF_STAT_BUMPDOWN(cache_count); 2706 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 2707 db->db.db_size); 2708 } 2709 db->db_caching_status = DB_NO_CACHE; 2710 } 2711 2712 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 2713 ASSERT(db->db_data_pending == NULL); 2714 ASSERT(list_is_empty(&db->db_dirty_records)); 2715 2716 db->db_state = DB_EVICTING; 2717 DTRACE_SET_STATE(db, "buffer eviction started"); 2718 db->db_blkptr = NULL; 2719 2720 /* 2721 * Now that db_state is DB_EVICTING, nobody else can find this via 2722 * the hash table. We can now drop db_mtx, which allows us to 2723 * acquire the dn_dbufs_mtx. 2724 */ 2725 mutex_exit(&db->db_mtx); 2726 2727 DB_DNODE_ENTER(db); 2728 dn = DB_DNODE(db); 2729 dndb = dn->dn_dbuf; 2730 if (db->db_blkid != DMU_BONUS_BLKID) { 2731 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 2732 if (needlock) 2733 mutex_enter_nested(&dn->dn_dbufs_mtx, 2734 NESTED_SINGLE); 2735 avl_remove(&dn->dn_dbufs, db); 2736 membar_producer(); 2737 DB_DNODE_EXIT(db); 2738 if (needlock) 2739 mutex_exit(&dn->dn_dbufs_mtx); 2740 /* 2741 * Decrementing the dbuf count means that the hold corresponding 2742 * to the removed dbuf is no longer discounted in dnode_move(), 2743 * so the dnode cannot be moved until after we release the hold. 2744 * The membar_producer() ensures visibility of the decremented 2745 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 2746 * release any lock. 2747 */ 2748 mutex_enter(&dn->dn_mtx); 2749 dnode_rele_and_unlock(dn, db, B_TRUE); 2750 db->db_dnode_handle = NULL; 2751 2752 dbuf_hash_remove(db); 2753 } else { 2754 DB_DNODE_EXIT(db); 2755 } 2756 2757 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 2758 2759 db->db_parent = NULL; 2760 2761 ASSERT(db->db_buf == NULL); 2762 ASSERT(db->db.db_data == NULL); 2763 ASSERT(db->db_hash_next == NULL); 2764 ASSERT(db->db_blkptr == NULL); 2765 ASSERT(db->db_data_pending == NULL); 2766 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 2767 ASSERT(!multilist_link_active(&db->db_cache_link)); 2768 2769 kmem_cache_free(dbuf_kmem_cache, db); 2770 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 2771 2772 /* 2773 * If this dbuf is referenced from an indirect dbuf, 2774 * decrement the ref count on the indirect dbuf. 2775 */ 2776 if (parent && parent != dndb) { 2777 mutex_enter(&parent->db_mtx); 2778 dbuf_rele_and_unlock(parent, db, B_TRUE); 2779 } 2780 } 2781 2782 /* 2783 * Note: While bpp will always be updated if the function returns success, 2784 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 2785 * this happens when the dnode is the meta-dnode, or {user|group|project}used 2786 * object. 2787 */ 2788 __attribute__((always_inline)) 2789 static inline int 2790 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 2791 dmu_buf_impl_t **parentp, blkptr_t **bpp) 2792 { 2793 *parentp = NULL; 2794 *bpp = NULL; 2795 2796 ASSERT(blkid != DMU_BONUS_BLKID); 2797 2798 if (blkid == DMU_SPILL_BLKID) { 2799 mutex_enter(&dn->dn_mtx); 2800 if (dn->dn_have_spill && 2801 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 2802 *bpp = DN_SPILL_BLKPTR(dn->dn_phys); 2803 else 2804 *bpp = NULL; 2805 dbuf_add_ref(dn->dn_dbuf, NULL); 2806 *parentp = dn->dn_dbuf; 2807 mutex_exit(&dn->dn_mtx); 2808 return (0); 2809 } 2810 2811 int nlevels = 2812 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; 2813 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2814 2815 ASSERT3U(level * epbs, <, 64); 2816 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2817 /* 2818 * This assertion shouldn't trip as long as the max indirect block size 2819 * is less than 1M. The reason for this is that up to that point, 2820 * the number of levels required to address an entire object with blocks 2821 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In 2822 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 2823 * (i.e. we can address the entire object), objects will all use at most 2824 * N-1 levels and the assertion won't overflow. However, once epbs is 2825 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be 2826 * enough to address an entire object, so objects will have 5 levels, 2827 * but then this assertion will overflow. 2828 * 2829 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we 2830 * need to redo this logic to handle overflows. 2831 */ 2832 ASSERT(level >= nlevels || 2833 ((nlevels - level - 1) * epbs) + 2834 highbit64(dn->dn_phys->dn_nblkptr) <= 64); 2835 if (level >= nlevels || 2836 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << 2837 ((nlevels - level - 1) * epbs)) || 2838 (fail_sparse && 2839 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 2840 /* the buffer has no parent yet */ 2841 return (SET_ERROR(ENOENT)); 2842 } else if (level < nlevels-1) { 2843 /* this block is referenced from an indirect block */ 2844 int err; 2845 2846 err = dbuf_hold_impl(dn, level + 1, 2847 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 2848 2849 if (err) 2850 return (err); 2851 err = dbuf_read(*parentp, NULL, 2852 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2853 if (err) { 2854 dbuf_rele(*parentp, NULL); 2855 *parentp = NULL; 2856 return (err); 2857 } 2858 rw_enter(&(*parentp)->db_rwlock, RW_READER); 2859 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 2860 (blkid & ((1ULL << epbs) - 1)); 2861 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs))) 2862 ASSERT(BP_IS_HOLE(*bpp)); 2863 rw_exit(&(*parentp)->db_rwlock); 2864 return (0); 2865 } else { 2866 /* the block is referenced from the dnode */ 2867 ASSERT3U(level, ==, nlevels-1); 2868 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 2869 blkid < dn->dn_phys->dn_nblkptr); 2870 if (dn->dn_dbuf) { 2871 dbuf_add_ref(dn->dn_dbuf, NULL); 2872 *parentp = dn->dn_dbuf; 2873 } 2874 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 2875 return (0); 2876 } 2877 } 2878 2879 static dmu_buf_impl_t * 2880 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 2881 dmu_buf_impl_t *parent, blkptr_t *blkptr) 2882 { 2883 objset_t *os = dn->dn_objset; 2884 dmu_buf_impl_t *db, *odb; 2885 2886 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2887 ASSERT(dn->dn_type != DMU_OT_NONE); 2888 2889 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 2890 2891 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t), 2892 offsetof(dbuf_dirty_record_t, dr_dbuf_node)); 2893 2894 db->db_objset = os; 2895 db->db.db_object = dn->dn_object; 2896 db->db_level = level; 2897 db->db_blkid = blkid; 2898 db->db_dirtycnt = 0; 2899 db->db_dnode_handle = dn->dn_handle; 2900 db->db_parent = parent; 2901 db->db_blkptr = blkptr; 2902 2903 db->db_user = NULL; 2904 db->db_user_immediate_evict = FALSE; 2905 db->db_freed_in_flight = FALSE; 2906 db->db_pending_evict = FALSE; 2907 2908 if (blkid == DMU_BONUS_BLKID) { 2909 ASSERT3P(parent, ==, dn->dn_dbuf); 2910 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 2911 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 2912 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 2913 db->db.db_offset = DMU_BONUS_BLKID; 2914 db->db_state = DB_UNCACHED; 2915 DTRACE_SET_STATE(db, "bonus buffer created"); 2916 db->db_caching_status = DB_NO_CACHE; 2917 /* the bonus dbuf is not placed in the hash table */ 2918 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 2919 return (db); 2920 } else if (blkid == DMU_SPILL_BLKID) { 2921 db->db.db_size = (blkptr != NULL) ? 2922 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 2923 db->db.db_offset = 0; 2924 } else { 2925 int blocksize = 2926 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 2927 db->db.db_size = blocksize; 2928 db->db.db_offset = db->db_blkid * blocksize; 2929 } 2930 2931 /* 2932 * Hold the dn_dbufs_mtx while we get the new dbuf 2933 * in the hash table *and* added to the dbufs list. 2934 * This prevents a possible deadlock with someone 2935 * trying to look up this dbuf before it's added to the 2936 * dn_dbufs list. 2937 */ 2938 mutex_enter(&dn->dn_dbufs_mtx); 2939 db->db_state = DB_EVICTING; /* not worth logging this state change */ 2940 if ((odb = dbuf_hash_insert(db)) != NULL) { 2941 /* someone else inserted it first */ 2942 kmem_cache_free(dbuf_kmem_cache, db); 2943 mutex_exit(&dn->dn_dbufs_mtx); 2944 DBUF_STAT_BUMP(hash_insert_race); 2945 return (odb); 2946 } 2947 avl_add(&dn->dn_dbufs, db); 2948 2949 db->db_state = DB_UNCACHED; 2950 DTRACE_SET_STATE(db, "regular buffer created"); 2951 db->db_caching_status = DB_NO_CACHE; 2952 mutex_exit(&dn->dn_dbufs_mtx); 2953 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 2954 2955 if (parent && parent != dn->dn_dbuf) 2956 dbuf_add_ref(parent, db); 2957 2958 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2959 zfs_refcount_count(&dn->dn_holds) > 0); 2960 (void) zfs_refcount_add(&dn->dn_holds, db); 2961 2962 dprintf_dbuf(db, "db=%p\n", db); 2963 2964 return (db); 2965 } 2966 2967 /* 2968 * This function returns a block pointer and information about the object, 2969 * given a dnode and a block. This is a publicly accessible version of 2970 * dbuf_findbp that only returns some information, rather than the 2971 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock 2972 * should be locked as (at least) a reader. 2973 */ 2974 int 2975 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid, 2976 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift) 2977 { 2978 dmu_buf_impl_t *dbp = NULL; 2979 blkptr_t *bp2; 2980 int err = 0; 2981 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2982 2983 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2); 2984 if (err == 0) { 2985 *bp = *bp2; 2986 if (dbp != NULL) 2987 dbuf_rele(dbp, NULL); 2988 if (datablkszsec != NULL) 2989 *datablkszsec = dn->dn_phys->dn_datablkszsec; 2990 if (indblkshift != NULL) 2991 *indblkshift = dn->dn_phys->dn_indblkshift; 2992 } 2993 2994 return (err); 2995 } 2996 2997 typedef struct dbuf_prefetch_arg { 2998 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 2999 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 3000 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 3001 int dpa_curlevel; /* The current level that we're reading */ 3002 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 3003 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 3004 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 3005 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 3006 } dbuf_prefetch_arg_t; 3007 3008 /* 3009 * Actually issue the prefetch read for the block given. 3010 */ 3011 static void 3012 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 3013 { 3014 ASSERT(!BP_IS_REDACTED(bp) || 3015 dsl_dataset_feature_is_active( 3016 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3017 SPA_FEATURE_REDACTED_DATASETS)); 3018 3019 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp)) 3020 return; 3021 3022 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 3023 arc_flags_t aflags = 3024 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH; 3025 3026 /* dnodes are always read as raw and then converted later */ 3027 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) && 3028 dpa->dpa_curlevel == 0) 3029 zio_flags |= ZIO_FLAG_RAW; 3030 3031 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3032 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 3033 ASSERT(dpa->dpa_zio != NULL); 3034 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL, 3035 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb); 3036 } 3037 3038 /* 3039 * Called when an indirect block above our prefetch target is read in. This 3040 * will either read in the next indirect block down the tree or issue the actual 3041 * prefetch if the next block down is our target. 3042 */ 3043 static void 3044 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb, 3045 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3046 { 3047 dbuf_prefetch_arg_t *dpa = private; 3048 3049 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 3050 ASSERT3S(dpa->dpa_curlevel, >, 0); 3051 3052 if (abuf == NULL) { 3053 ASSERT(zio == NULL || zio->io_error != 0); 3054 kmem_free(dpa, sizeof (*dpa)); 3055 return; 3056 } 3057 ASSERT(zio == NULL || zio->io_error == 0); 3058 3059 /* 3060 * The dpa_dnode is only valid if we are called with a NULL 3061 * zio. This indicates that the arc_read() returned without 3062 * first calling zio_read() to issue a physical read. Once 3063 * a physical read is made the dpa_dnode must be invalidated 3064 * as the locks guarding it may have been dropped. If the 3065 * dpa_dnode is still valid, then we want to add it to the dbuf 3066 * cache. To do so, we must hold the dbuf associated with the block 3067 * we just prefetched, read its contents so that we associate it 3068 * with an arc_buf_t, and then release it. 3069 */ 3070 if (zio != NULL) { 3071 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 3072 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) { 3073 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 3074 } else { 3075 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 3076 } 3077 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 3078 3079 dpa->dpa_dnode = NULL; 3080 } else if (dpa->dpa_dnode != NULL) { 3081 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 3082 (dpa->dpa_epbs * (dpa->dpa_curlevel - 3083 dpa->dpa_zb.zb_level)); 3084 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 3085 dpa->dpa_curlevel, curblkid, FTAG); 3086 if (db == NULL) { 3087 kmem_free(dpa, sizeof (*dpa)); 3088 arc_buf_destroy(abuf, private); 3089 return; 3090 } 3091 3092 (void) dbuf_read(db, NULL, 3093 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); 3094 dbuf_rele(db, FTAG); 3095 } 3096 3097 dpa->dpa_curlevel--; 3098 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 3099 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 3100 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 3101 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 3102 3103 ASSERT(!BP_IS_REDACTED(bp) || 3104 dsl_dataset_feature_is_active( 3105 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3106 SPA_FEATURE_REDACTED_DATASETS)); 3107 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) { 3108 kmem_free(dpa, sizeof (*dpa)); 3109 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 3110 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 3111 dbuf_issue_final_prefetch(dpa, bp); 3112 kmem_free(dpa, sizeof (*dpa)); 3113 } else { 3114 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3115 zbookmark_phys_t zb; 3116 3117 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3118 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE) 3119 iter_aflags |= ARC_FLAG_L2CACHE; 3120 3121 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3122 3123 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 3124 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 3125 3126 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3127 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio, 3128 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3129 &iter_aflags, &zb); 3130 } 3131 3132 arc_buf_destroy(abuf, private); 3133 } 3134 3135 /* 3136 * Issue prefetch reads for the given block on the given level. If the indirect 3137 * blocks above that block are not in memory, we will read them in 3138 * asynchronously. As a result, this call never blocks waiting for a read to 3139 * complete. Note that the prefetch might fail if the dataset is encrypted and 3140 * the encryption key is unmapped before the IO completes. 3141 */ 3142 void 3143 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 3144 arc_flags_t aflags) 3145 { 3146 blkptr_t bp; 3147 int epbs, nlevels, curlevel; 3148 uint64_t curblkid; 3149 3150 ASSERT(blkid != DMU_BONUS_BLKID); 3151 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3152 3153 if (blkid > dn->dn_maxblkid) 3154 return; 3155 3156 if (level == 0 && dnode_block_freed(dn, blkid)) 3157 return; 3158 3159 /* 3160 * This dnode hasn't been written to disk yet, so there's nothing to 3161 * prefetch. 3162 */ 3163 nlevels = dn->dn_phys->dn_nlevels; 3164 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 3165 return; 3166 3167 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3168 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 3169 return; 3170 3171 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 3172 level, blkid); 3173 if (db != NULL) { 3174 mutex_exit(&db->db_mtx); 3175 /* 3176 * This dbuf already exists. It is either CACHED, or 3177 * (we assume) about to be read or filled. 3178 */ 3179 return; 3180 } 3181 3182 /* 3183 * Find the closest ancestor (indirect block) of the target block 3184 * that is present in the cache. In this indirect block, we will 3185 * find the bp that is at curlevel, curblkid. 3186 */ 3187 curlevel = level; 3188 curblkid = blkid; 3189 while (curlevel < nlevels - 1) { 3190 int parent_level = curlevel + 1; 3191 uint64_t parent_blkid = curblkid >> epbs; 3192 dmu_buf_impl_t *db; 3193 3194 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 3195 FALSE, TRUE, FTAG, &db) == 0) { 3196 blkptr_t *bpp = db->db_buf->b_data; 3197 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 3198 dbuf_rele(db, FTAG); 3199 break; 3200 } 3201 3202 curlevel = parent_level; 3203 curblkid = parent_blkid; 3204 } 3205 3206 if (curlevel == nlevels - 1) { 3207 /* No cached indirect blocks found. */ 3208 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 3209 bp = dn->dn_phys->dn_blkptr[curblkid]; 3210 } 3211 ASSERT(!BP_IS_REDACTED(&bp) || 3212 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset, 3213 SPA_FEATURE_REDACTED_DATASETS)); 3214 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp)) 3215 return; 3216 3217 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 3218 3219 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 3220 ZIO_FLAG_CANFAIL); 3221 3222 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 3223 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 3224 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3225 dn->dn_object, level, blkid); 3226 dpa->dpa_curlevel = curlevel; 3227 dpa->dpa_prio = prio; 3228 dpa->dpa_aflags = aflags; 3229 dpa->dpa_spa = dn->dn_objset->os_spa; 3230 dpa->dpa_dnode = dn; 3231 dpa->dpa_epbs = epbs; 3232 dpa->dpa_zio = pio; 3233 3234 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3235 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level)) 3236 dpa->dpa_aflags |= ARC_FLAG_L2CACHE; 3237 3238 /* 3239 * If we have the indirect just above us, no need to do the asynchronous 3240 * prefetch chain; we'll just run the last step ourselves. If we're at 3241 * a higher level, though, we want to issue the prefetches for all the 3242 * indirect blocks asynchronously, so we can go on with whatever we were 3243 * doing. 3244 */ 3245 if (curlevel == level) { 3246 ASSERT3U(curblkid, ==, blkid); 3247 dbuf_issue_final_prefetch(dpa, &bp); 3248 kmem_free(dpa, sizeof (*dpa)); 3249 } else { 3250 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3251 zbookmark_phys_t zb; 3252 3253 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3254 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level)) 3255 iter_aflags |= ARC_FLAG_L2CACHE; 3256 3257 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3258 dn->dn_object, curlevel, curblkid); 3259 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3260 &bp, dbuf_prefetch_indirect_done, dpa, prio, 3261 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3262 &iter_aflags, &zb); 3263 } 3264 /* 3265 * We use pio here instead of dpa_zio since it's possible that 3266 * dpa may have already been freed. 3267 */ 3268 zio_nowait(pio); 3269 } 3270 3271 /* 3272 * Helper function for dbuf_hold_impl() to copy a buffer. Handles 3273 * the case of encrypted, compressed and uncompressed buffers by 3274 * allocating the new buffer, respectively, with arc_alloc_raw_buf(), 3275 * arc_alloc_compressed_buf() or arc_alloc_buf().* 3276 * 3277 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl(). 3278 */ 3279 noinline static void 3280 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db) 3281 { 3282 dbuf_dirty_record_t *dr = db->db_data_pending; 3283 arc_buf_t *newdata, *data = dr->dt.dl.dr_data; 3284 3285 newdata = dbuf_alloc_arcbuf_from_arcbuf(db, data); 3286 dbuf_set_data(db, newdata); 3287 rw_enter(&db->db_rwlock, RW_WRITER); 3288 bcopy(data->b_data, db->db.db_data, arc_buf_size(data)); 3289 rw_exit(&db->db_rwlock); 3290 } 3291 3292 /* 3293 * Returns with db_holds incremented, and db_mtx not held. 3294 * Note: dn_struct_rwlock must be held. 3295 */ 3296 int 3297 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 3298 boolean_t fail_sparse, boolean_t fail_uncached, 3299 void *tag, dmu_buf_impl_t **dbp) 3300 { 3301 dmu_buf_impl_t *db, *parent = NULL; 3302 3303 /* If the pool has been created, verify the tx_sync_lock is not held */ 3304 spa_t *spa = dn->dn_objset->os_spa; 3305 dsl_pool_t *dp = spa->spa_dsl_pool; 3306 if (dp != NULL) { 3307 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock)); 3308 } 3309 3310 ASSERT(blkid != DMU_BONUS_BLKID); 3311 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3312 ASSERT3U(dn->dn_nlevels, >, level); 3313 3314 *dbp = NULL; 3315 3316 /* dbuf_find() returns with db_mtx held */ 3317 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid); 3318 3319 if (db == NULL) { 3320 blkptr_t *bp = NULL; 3321 int err; 3322 3323 if (fail_uncached) 3324 return (SET_ERROR(ENOENT)); 3325 3326 ASSERT3P(parent, ==, NULL); 3327 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 3328 if (fail_sparse) { 3329 if (err == 0 && bp && BP_IS_HOLE(bp)) 3330 err = SET_ERROR(ENOENT); 3331 if (err) { 3332 if (parent) 3333 dbuf_rele(parent, NULL); 3334 return (err); 3335 } 3336 } 3337 if (err && err != ENOENT) 3338 return (err); 3339 db = dbuf_create(dn, level, blkid, parent, bp); 3340 } 3341 3342 if (fail_uncached && db->db_state != DB_CACHED) { 3343 mutex_exit(&db->db_mtx); 3344 return (SET_ERROR(ENOENT)); 3345 } 3346 3347 if (db->db_buf != NULL) { 3348 arc_buf_access(db->db_buf); 3349 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 3350 } 3351 3352 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 3353 3354 /* 3355 * If this buffer is currently syncing out, and we are 3356 * still referencing it from db_data, we need to make a copy 3357 * of it in case we decide we want to dirty it again in this txg. 3358 */ 3359 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 3360 dn->dn_object != DMU_META_DNODE_OBJECT && 3361 db->db_state == DB_CACHED && db->db_data_pending) { 3362 dbuf_dirty_record_t *dr = db->db_data_pending; 3363 if (dr->dt.dl.dr_data == db->db_buf) 3364 dbuf_hold_copy(dn, db); 3365 } 3366 3367 if (multilist_link_active(&db->db_cache_link)) { 3368 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3369 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 3370 db->db_caching_status == DB_DBUF_METADATA_CACHE); 3371 3372 multilist_remove(dbuf_caches[db->db_caching_status].cache, db); 3373 (void) zfs_refcount_remove_many( 3374 &dbuf_caches[db->db_caching_status].size, 3375 db->db.db_size, db); 3376 3377 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 3378 DBUF_STAT_BUMPDOWN(metadata_cache_count); 3379 } else { 3380 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 3381 DBUF_STAT_BUMPDOWN(cache_count); 3382 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 3383 db->db.db_size); 3384 } 3385 db->db_caching_status = DB_NO_CACHE; 3386 } 3387 (void) zfs_refcount_add(&db->db_holds, tag); 3388 DBUF_VERIFY(db); 3389 mutex_exit(&db->db_mtx); 3390 3391 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 3392 if (parent) 3393 dbuf_rele(parent, NULL); 3394 3395 ASSERT3P(DB_DNODE(db), ==, dn); 3396 ASSERT3U(db->db_blkid, ==, blkid); 3397 ASSERT3U(db->db_level, ==, level); 3398 *dbp = db; 3399 3400 return (0); 3401 } 3402 3403 dmu_buf_impl_t * 3404 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) 3405 { 3406 return (dbuf_hold_level(dn, 0, blkid, tag)); 3407 } 3408 3409 dmu_buf_impl_t * 3410 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) 3411 { 3412 dmu_buf_impl_t *db; 3413 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 3414 return (err ? NULL : db); 3415 } 3416 3417 void 3418 dbuf_create_bonus(dnode_t *dn) 3419 { 3420 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 3421 3422 ASSERT(dn->dn_bonus == NULL); 3423 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL); 3424 } 3425 3426 int 3427 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 3428 { 3429 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3430 3431 if (db->db_blkid != DMU_SPILL_BLKID) 3432 return (SET_ERROR(ENOTSUP)); 3433 if (blksz == 0) 3434 blksz = SPA_MINBLOCKSIZE; 3435 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 3436 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 3437 3438 dbuf_new_size(db, blksz, tx); 3439 3440 return (0); 3441 } 3442 3443 void 3444 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 3445 { 3446 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 3447 } 3448 3449 #pragma weak dmu_buf_add_ref = dbuf_add_ref 3450 void 3451 dbuf_add_ref(dmu_buf_impl_t *db, void *tag) 3452 { 3453 int64_t holds = zfs_refcount_add(&db->db_holds, tag); 3454 VERIFY3S(holds, >, 1); 3455 } 3456 3457 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 3458 boolean_t 3459 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 3460 void *tag) 3461 { 3462 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3463 dmu_buf_impl_t *found_db; 3464 boolean_t result = B_FALSE; 3465 3466 if (blkid == DMU_BONUS_BLKID) 3467 found_db = dbuf_find_bonus(os, obj); 3468 else 3469 found_db = dbuf_find(os, obj, 0, blkid); 3470 3471 if (found_db != NULL) { 3472 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 3473 (void) zfs_refcount_add(&db->db_holds, tag); 3474 result = B_TRUE; 3475 } 3476 mutex_exit(&found_db->db_mtx); 3477 } 3478 return (result); 3479 } 3480 3481 /* 3482 * If you call dbuf_rele() you had better not be referencing the dnode handle 3483 * unless you have some other direct or indirect hold on the dnode. (An indirect 3484 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 3485 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 3486 * dnode's parent dbuf evicting its dnode handles. 3487 */ 3488 void 3489 dbuf_rele(dmu_buf_impl_t *db, void *tag) 3490 { 3491 mutex_enter(&db->db_mtx); 3492 dbuf_rele_and_unlock(db, tag, B_FALSE); 3493 } 3494 3495 void 3496 dmu_buf_rele(dmu_buf_t *db, void *tag) 3497 { 3498 dbuf_rele((dmu_buf_impl_t *)db, tag); 3499 } 3500 3501 /* 3502 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 3503 * db_dirtycnt and db_holds to be updated atomically. The 'evicting' 3504 * argument should be set if we are already in the dbuf-evicting code 3505 * path, in which case we don't want to recursively evict. This allows us to 3506 * avoid deeply nested stacks that would have a call flow similar to this: 3507 * 3508 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 3509 * ^ | 3510 * | | 3511 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 3512 * 3513 */ 3514 void 3515 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag, boolean_t evicting) 3516 { 3517 int64_t holds; 3518 uint64_t size; 3519 3520 ASSERT(MUTEX_HELD(&db->db_mtx)); 3521 DBUF_VERIFY(db); 3522 3523 /* 3524 * Remove the reference to the dbuf before removing its hold on the 3525 * dnode so we can guarantee in dnode_move() that a referenced bonus 3526 * buffer has a corresponding dnode hold. 3527 */ 3528 holds = zfs_refcount_remove(&db->db_holds, tag); 3529 ASSERT(holds >= 0); 3530 3531 /* 3532 * We can't freeze indirects if there is a possibility that they 3533 * may be modified in the current syncing context. 3534 */ 3535 if (db->db_buf != NULL && 3536 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 3537 arc_buf_freeze(db->db_buf); 3538 } 3539 3540 if (holds == db->db_dirtycnt && 3541 db->db_level == 0 && db->db_user_immediate_evict) 3542 dbuf_evict_user(db); 3543 3544 if (holds == 0) { 3545 if (db->db_blkid == DMU_BONUS_BLKID) { 3546 dnode_t *dn; 3547 boolean_t evict_dbuf = db->db_pending_evict; 3548 3549 /* 3550 * If the dnode moves here, we cannot cross this 3551 * barrier until the move completes. 3552 */ 3553 DB_DNODE_ENTER(db); 3554 3555 dn = DB_DNODE(db); 3556 atomic_dec_32(&dn->dn_dbufs_count); 3557 3558 /* 3559 * Decrementing the dbuf count means that the bonus 3560 * buffer's dnode hold is no longer discounted in 3561 * dnode_move(). The dnode cannot move until after 3562 * the dnode_rele() below. 3563 */ 3564 DB_DNODE_EXIT(db); 3565 3566 /* 3567 * Do not reference db after its lock is dropped. 3568 * Another thread may evict it. 3569 */ 3570 mutex_exit(&db->db_mtx); 3571 3572 if (evict_dbuf) 3573 dnode_evict_bonus(dn); 3574 3575 dnode_rele(dn, db); 3576 } else if (db->db_buf == NULL) { 3577 /* 3578 * This is a special case: we never associated this 3579 * dbuf with any data allocated from the ARC. 3580 */ 3581 ASSERT(db->db_state == DB_UNCACHED || 3582 db->db_state == DB_NOFILL); 3583 dbuf_destroy(db); 3584 } else if (arc_released(db->db_buf)) { 3585 /* 3586 * This dbuf has anonymous data associated with it. 3587 */ 3588 dbuf_destroy(db); 3589 } else { 3590 boolean_t do_arc_evict = B_FALSE; 3591 blkptr_t bp; 3592 spa_t *spa = dmu_objset_spa(db->db_objset); 3593 3594 if (!DBUF_IS_CACHEABLE(db) && 3595 db->db_blkptr != NULL && 3596 !BP_IS_HOLE(db->db_blkptr) && 3597 !BP_IS_EMBEDDED(db->db_blkptr)) { 3598 do_arc_evict = B_TRUE; 3599 bp = *db->db_blkptr; 3600 } 3601 3602 if (!DBUF_IS_CACHEABLE(db) || 3603 db->db_pending_evict) { 3604 dbuf_destroy(db); 3605 } else if (!multilist_link_active(&db->db_cache_link)) { 3606 ASSERT3U(db->db_caching_status, ==, 3607 DB_NO_CACHE); 3608 3609 dbuf_cached_state_t dcs = 3610 dbuf_include_in_metadata_cache(db) ? 3611 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE; 3612 db->db_caching_status = dcs; 3613 3614 multilist_insert(dbuf_caches[dcs].cache, db); 3615 size = zfs_refcount_add_many( 3616 &dbuf_caches[dcs].size, 3617 db->db.db_size, db); 3618 3619 if (dcs == DB_DBUF_METADATA_CACHE) { 3620 DBUF_STAT_BUMP(metadata_cache_count); 3621 DBUF_STAT_MAX( 3622 metadata_cache_size_bytes_max, 3623 size); 3624 } else { 3625 DBUF_STAT_BUMP( 3626 cache_levels[db->db_level]); 3627 DBUF_STAT_BUMP(cache_count); 3628 DBUF_STAT_INCR( 3629 cache_levels_bytes[db->db_level], 3630 db->db.db_size); 3631 DBUF_STAT_MAX(cache_size_bytes_max, 3632 size); 3633 } 3634 mutex_exit(&db->db_mtx); 3635 3636 if (dcs == DB_DBUF_CACHE && !evicting) 3637 dbuf_evict_notify(size); 3638 } 3639 3640 if (do_arc_evict) 3641 arc_freed(spa, &bp); 3642 } 3643 } else { 3644 mutex_exit(&db->db_mtx); 3645 } 3646 3647 } 3648 3649 #pragma weak dmu_buf_refcount = dbuf_refcount 3650 uint64_t 3651 dbuf_refcount(dmu_buf_impl_t *db) 3652 { 3653 return (zfs_refcount_count(&db->db_holds)); 3654 } 3655 3656 uint64_t 3657 dmu_buf_user_refcount(dmu_buf_t *db_fake) 3658 { 3659 uint64_t holds; 3660 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3661 3662 mutex_enter(&db->db_mtx); 3663 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt); 3664 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt; 3665 mutex_exit(&db->db_mtx); 3666 3667 return (holds); 3668 } 3669 3670 void * 3671 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 3672 dmu_buf_user_t *new_user) 3673 { 3674 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3675 3676 mutex_enter(&db->db_mtx); 3677 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3678 if (db->db_user == old_user) 3679 db->db_user = new_user; 3680 else 3681 old_user = db->db_user; 3682 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3683 mutex_exit(&db->db_mtx); 3684 3685 return (old_user); 3686 } 3687 3688 void * 3689 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 3690 { 3691 return (dmu_buf_replace_user(db_fake, NULL, user)); 3692 } 3693 3694 void * 3695 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 3696 { 3697 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3698 3699 db->db_user_immediate_evict = TRUE; 3700 return (dmu_buf_set_user(db_fake, user)); 3701 } 3702 3703 void * 3704 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 3705 { 3706 return (dmu_buf_replace_user(db_fake, user, NULL)); 3707 } 3708 3709 void * 3710 dmu_buf_get_user(dmu_buf_t *db_fake) 3711 { 3712 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3713 3714 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3715 return (db->db_user); 3716 } 3717 3718 void 3719 dmu_buf_user_evict_wait() 3720 { 3721 taskq_wait(dbu_evict_taskq); 3722 } 3723 3724 blkptr_t * 3725 dmu_buf_get_blkptr(dmu_buf_t *db) 3726 { 3727 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3728 return (dbi->db_blkptr); 3729 } 3730 3731 objset_t * 3732 dmu_buf_get_objset(dmu_buf_t *db) 3733 { 3734 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3735 return (dbi->db_objset); 3736 } 3737 3738 dnode_t * 3739 dmu_buf_dnode_enter(dmu_buf_t *db) 3740 { 3741 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3742 DB_DNODE_ENTER(dbi); 3743 return (DB_DNODE(dbi)); 3744 } 3745 3746 void 3747 dmu_buf_dnode_exit(dmu_buf_t *db) 3748 { 3749 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3750 DB_DNODE_EXIT(dbi); 3751 } 3752 3753 static void 3754 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 3755 { 3756 /* ASSERT(dmu_tx_is_syncing(tx) */ 3757 ASSERT(MUTEX_HELD(&db->db_mtx)); 3758 3759 if (db->db_blkptr != NULL) 3760 return; 3761 3762 if (db->db_blkid == DMU_SPILL_BLKID) { 3763 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys); 3764 BP_ZERO(db->db_blkptr); 3765 return; 3766 } 3767 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 3768 /* 3769 * This buffer was allocated at a time when there was 3770 * no available blkptrs from the dnode, or it was 3771 * inappropriate to hook it in (i.e., nlevels mismatch). 3772 */ 3773 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 3774 ASSERT(db->db_parent == NULL); 3775 db->db_parent = dn->dn_dbuf; 3776 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 3777 DBUF_VERIFY(db); 3778 } else { 3779 dmu_buf_impl_t *parent = db->db_parent; 3780 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3781 3782 ASSERT(dn->dn_phys->dn_nlevels > 1); 3783 if (parent == NULL) { 3784 mutex_exit(&db->db_mtx); 3785 rw_enter(&dn->dn_struct_rwlock, RW_READER); 3786 parent = dbuf_hold_level(dn, db->db_level + 1, 3787 db->db_blkid >> epbs, db); 3788 rw_exit(&dn->dn_struct_rwlock); 3789 mutex_enter(&db->db_mtx); 3790 db->db_parent = parent; 3791 } 3792 db->db_blkptr = (blkptr_t *)parent->db.db_data + 3793 (db->db_blkid & ((1ULL << epbs) - 1)); 3794 DBUF_VERIFY(db); 3795 } 3796 } 3797 3798 static void 3799 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 3800 { 3801 dmu_buf_impl_t *db = dr->dr_dbuf; 3802 void *data = dr->dt.dl.dr_data; 3803 3804 ASSERT0(db->db_level); 3805 ASSERT(MUTEX_HELD(&db->db_mtx)); 3806 ASSERT(DB_DNODE_HELD(db)); 3807 ASSERT(db->db_blkid == DMU_BONUS_BLKID); 3808 ASSERT(data != NULL); 3809 3810 dnode_t *dn = DB_DNODE(db); 3811 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=, 3812 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1)); 3813 bcopy(data, DN_BONUS(dn->dn_phys), DN_MAX_BONUS_LEN(dn->dn_phys)); 3814 DB_DNODE_EXIT(db); 3815 3816 dbuf_sync_leaf_verify_bonus_dnode(dr); 3817 3818 dbuf_undirty_bonus(dr); 3819 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 3820 } 3821 3822 /* 3823 * When syncing out a blocks of dnodes, adjust the block to deal with 3824 * encryption. Normally, we make sure the block is decrypted before writing 3825 * it. If we have crypt params, then we are writing a raw (encrypted) block, 3826 * from a raw receive. In this case, set the ARC buf's crypt params so 3827 * that the BP will be filled with the correct byteorder, salt, iv, and mac. 3828 */ 3829 static void 3830 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr) 3831 { 3832 int err; 3833 dmu_buf_impl_t *db = dr->dr_dbuf; 3834 3835 ASSERT(MUTEX_HELD(&db->db_mtx)); 3836 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 3837 ASSERT3U(db->db_level, ==, 0); 3838 3839 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) { 3840 zbookmark_phys_t zb; 3841 3842 /* 3843 * Unfortunately, there is currently no mechanism for 3844 * syncing context to handle decryption errors. An error 3845 * here is only possible if an attacker maliciously 3846 * changed a dnode block and updated the associated 3847 * checksums going up the block tree. 3848 */ 3849 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 3850 db->db.db_object, db->db_level, db->db_blkid); 3851 err = arc_untransform(db->db_buf, db->db_objset->os_spa, 3852 &zb, B_TRUE); 3853 if (err) 3854 panic("Invalid dnode block MAC"); 3855 } else if (dr->dt.dl.dr_has_raw_params) { 3856 (void) arc_release(dr->dt.dl.dr_data, db); 3857 arc_convert_to_raw(dr->dt.dl.dr_data, 3858 dmu_objset_id(db->db_objset), 3859 dr->dt.dl.dr_byteorder, DMU_OT_DNODE, 3860 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac); 3861 } 3862 } 3863 3864 /* 3865 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it 3866 * is critical the we not allow the compiler to inline this function in to 3867 * dbuf_sync_list() thereby drastically bloating the stack usage. 3868 */ 3869 noinline static void 3870 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 3871 { 3872 dmu_buf_impl_t *db = dr->dr_dbuf; 3873 dnode_t *dn; 3874 zio_t *zio; 3875 3876 ASSERT(dmu_tx_is_syncing(tx)); 3877 3878 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 3879 3880 mutex_enter(&db->db_mtx); 3881 3882 ASSERT(db->db_level > 0); 3883 DBUF_VERIFY(db); 3884 3885 /* Read the block if it hasn't been read yet. */ 3886 if (db->db_buf == NULL) { 3887 mutex_exit(&db->db_mtx); 3888 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 3889 mutex_enter(&db->db_mtx); 3890 } 3891 ASSERT3U(db->db_state, ==, DB_CACHED); 3892 ASSERT(db->db_buf != NULL); 3893 3894 DB_DNODE_ENTER(db); 3895 dn = DB_DNODE(db); 3896 /* Indirect block size must match what the dnode thinks it is. */ 3897 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 3898 dbuf_check_blkptr(dn, db); 3899 DB_DNODE_EXIT(db); 3900 3901 /* Provide the pending dirty record to child dbufs */ 3902 db->db_data_pending = dr; 3903 3904 mutex_exit(&db->db_mtx); 3905 3906 dbuf_write(dr, db->db_buf, tx); 3907 3908 zio = dr->dr_zio; 3909 mutex_enter(&dr->dt.di.dr_mtx); 3910 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 3911 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 3912 mutex_exit(&dr->dt.di.dr_mtx); 3913 zio_nowait(zio); 3914 } 3915 3916 /* 3917 * Verify that the size of the data in our bonus buffer does not exceed 3918 * its recorded size. 3919 * 3920 * The purpose of this verification is to catch any cases in development 3921 * where the size of a phys structure (i.e space_map_phys_t) grows and, 3922 * due to incorrect feature management, older pools expect to read more 3923 * data even though they didn't actually write it to begin with. 3924 * 3925 * For a example, this would catch an error in the feature logic where we 3926 * open an older pool and we expect to write the space map histogram of 3927 * a space map with size SPACE_MAP_SIZE_V0. 3928 */ 3929 static void 3930 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr) 3931 { 3932 #ifdef ZFS_DEBUG 3933 dnode_t *dn = DB_DNODE(dr->dr_dbuf); 3934 3935 /* 3936 * Encrypted bonus buffers can have data past their bonuslen. 3937 * Skip the verification of these blocks. 3938 */ 3939 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)) 3940 return; 3941 3942 uint16_t bonuslen = dn->dn_phys->dn_bonuslen; 3943 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 3944 ASSERT3U(bonuslen, <=, maxbonuslen); 3945 3946 arc_buf_t *datap = dr->dt.dl.dr_data; 3947 char *datap_end = ((char *)datap) + bonuslen; 3948 char *datap_max = ((char *)datap) + maxbonuslen; 3949 3950 /* ensure that everything is zero after our data */ 3951 for (; datap_end < datap_max; datap_end++) 3952 ASSERT(*datap_end == 0); 3953 #endif 3954 } 3955 3956 /* 3957 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is 3958 * critical the we not allow the compiler to inline this function in to 3959 * dbuf_sync_list() thereby drastically bloating the stack usage. 3960 */ 3961 noinline static void 3962 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 3963 { 3964 arc_buf_t **datap = &dr->dt.dl.dr_data; 3965 dmu_buf_impl_t *db = dr->dr_dbuf; 3966 dnode_t *dn; 3967 objset_t *os; 3968 uint64_t txg = tx->tx_txg; 3969 3970 ASSERT(dmu_tx_is_syncing(tx)); 3971 3972 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 3973 3974 mutex_enter(&db->db_mtx); 3975 /* 3976 * To be synced, we must be dirtied. But we 3977 * might have been freed after the dirty. 3978 */ 3979 if (db->db_state == DB_UNCACHED) { 3980 /* This buffer has been freed since it was dirtied */ 3981 ASSERT(db->db.db_data == NULL); 3982 } else if (db->db_state == DB_FILL) { 3983 /* This buffer was freed and is now being re-filled */ 3984 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 3985 } else { 3986 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 3987 } 3988 DBUF_VERIFY(db); 3989 3990 DB_DNODE_ENTER(db); 3991 dn = DB_DNODE(db); 3992 3993 if (db->db_blkid == DMU_SPILL_BLKID) { 3994 mutex_enter(&dn->dn_mtx); 3995 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) { 3996 /* 3997 * In the previous transaction group, the bonus buffer 3998 * was entirely used to store the attributes for the 3999 * dnode which overrode the dn_spill field. However, 4000 * when adding more attributes to the file a spill 4001 * block was required to hold the extra attributes. 4002 * 4003 * Make sure to clear the garbage left in the dn_spill 4004 * field from the previous attributes in the bonus 4005 * buffer. Otherwise, after writing out the spill 4006 * block to the new allocated dva, it will free 4007 * the old block pointed to by the invalid dn_spill. 4008 */ 4009 db->db_blkptr = NULL; 4010 } 4011 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 4012 mutex_exit(&dn->dn_mtx); 4013 } 4014 4015 /* 4016 * If this is a bonus buffer, simply copy the bonus data into the 4017 * dnode. It will be written out when the dnode is synced (and it 4018 * will be synced, since it must have been dirty for dbuf_sync to 4019 * be called). 4020 */ 4021 if (db->db_blkid == DMU_BONUS_BLKID) { 4022 ASSERT(dr->dr_dbuf == db); 4023 dbuf_sync_bonus(dr, tx); 4024 return; 4025 } 4026 4027 os = dn->dn_objset; 4028 4029 /* 4030 * This function may have dropped the db_mtx lock allowing a dmu_sync 4031 * operation to sneak in. As a result, we need to ensure that we 4032 * don't check the dr_override_state until we have returned from 4033 * dbuf_check_blkptr. 4034 */ 4035 dbuf_check_blkptr(dn, db); 4036 4037 /* 4038 * If this buffer is in the middle of an immediate write, 4039 * wait for the synchronous IO to complete. 4040 */ 4041 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 4042 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 4043 cv_wait(&db->db_changed, &db->db_mtx); 4044 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN); 4045 } 4046 4047 /* 4048 * If this is a dnode block, ensure it is appropriately encrypted 4049 * or decrypted, depending on what we are writing to it this txg. 4050 */ 4051 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT) 4052 dbuf_prepare_encrypted_dnode_leaf(dr); 4053 4054 if (db->db_state != DB_NOFILL && 4055 dn->dn_object != DMU_META_DNODE_OBJECT && 4056 zfs_refcount_count(&db->db_holds) > 1 && 4057 dr->dt.dl.dr_override_state != DR_OVERRIDDEN && 4058 *datap == db->db_buf) { 4059 /* 4060 * If this buffer is currently "in use" (i.e., there 4061 * are active holds and db_data still references it), 4062 * then make a copy before we start the write so that 4063 * any modifications from the open txg will not leak 4064 * into this write. 4065 * 4066 * NOTE: this copy does not need to be made for 4067 * objects only modified in the syncing context (e.g. 4068 * DNONE_DNODE blocks). 4069 */ 4070 *datap = dbuf_alloc_arcbuf_from_arcbuf(db, db->db_buf); 4071 bcopy(db->db.db_data, (*datap)->b_data, arc_buf_size(*datap)); 4072 } 4073 db->db_data_pending = dr; 4074 4075 mutex_exit(&db->db_mtx); 4076 4077 dbuf_write(dr, *datap, tx); 4078 4079 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4080 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 4081 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr); 4082 DB_DNODE_EXIT(db); 4083 } else { 4084 /* 4085 * Although zio_nowait() does not "wait for an IO", it does 4086 * initiate the IO. If this is an empty write it seems plausible 4087 * that the IO could actually be completed before the nowait 4088 * returns. We need to DB_DNODE_EXIT() first in case 4089 * zio_nowait() invalidates the dbuf. 4090 */ 4091 DB_DNODE_EXIT(db); 4092 zio_nowait(dr->dr_zio); 4093 } 4094 } 4095 4096 void 4097 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 4098 { 4099 dbuf_dirty_record_t *dr; 4100 4101 while ((dr = list_head(list))) { 4102 if (dr->dr_zio != NULL) { 4103 /* 4104 * If we find an already initialized zio then we 4105 * are processing the meta-dnode, and we have finished. 4106 * The dbufs for all dnodes are put back on the list 4107 * during processing, so that we can zio_wait() 4108 * these IOs after initiating all child IOs. 4109 */ 4110 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 4111 DMU_META_DNODE_OBJECT); 4112 break; 4113 } 4114 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 4115 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 4116 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 4117 } 4118 list_remove(list, dr); 4119 if (dr->dr_dbuf->db_level > 0) 4120 dbuf_sync_indirect(dr, tx); 4121 else 4122 dbuf_sync_leaf(dr, tx); 4123 } 4124 } 4125 4126 /* ARGSUSED */ 4127 static void 4128 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4129 { 4130 dmu_buf_impl_t *db = vdb; 4131 dnode_t *dn; 4132 blkptr_t *bp = zio->io_bp; 4133 blkptr_t *bp_orig = &zio->io_bp_orig; 4134 spa_t *spa = zio->io_spa; 4135 int64_t delta; 4136 uint64_t fill = 0; 4137 int i; 4138 4139 ASSERT3P(db->db_blkptr, !=, NULL); 4140 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 4141 4142 DB_DNODE_ENTER(db); 4143 dn = DB_DNODE(db); 4144 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 4145 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 4146 zio->io_prev_space_delta = delta; 4147 4148 if (bp->blk_birth != 0) { 4149 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 4150 BP_GET_TYPE(bp) == dn->dn_type) || 4151 (db->db_blkid == DMU_SPILL_BLKID && 4152 BP_GET_TYPE(bp) == dn->dn_bonustype) || 4153 BP_IS_EMBEDDED(bp)); 4154 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 4155 } 4156 4157 mutex_enter(&db->db_mtx); 4158 4159 #ifdef ZFS_DEBUG 4160 if (db->db_blkid == DMU_SPILL_BLKID) { 4161 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4162 ASSERT(!(BP_IS_HOLE(bp)) && 4163 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4164 } 4165 #endif 4166 4167 if (db->db_level == 0) { 4168 mutex_enter(&dn->dn_mtx); 4169 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 4170 db->db_blkid != DMU_SPILL_BLKID) { 4171 ASSERT0(db->db_objset->os_raw_receive); 4172 dn->dn_phys->dn_maxblkid = db->db_blkid; 4173 } 4174 mutex_exit(&dn->dn_mtx); 4175 4176 if (dn->dn_type == DMU_OT_DNODE) { 4177 i = 0; 4178 while (i < db->db.db_size) { 4179 dnode_phys_t *dnp = 4180 (void *)(((char *)db->db.db_data) + i); 4181 4182 i += DNODE_MIN_SIZE; 4183 if (dnp->dn_type != DMU_OT_NONE) { 4184 fill++; 4185 i += dnp->dn_extra_slots * 4186 DNODE_MIN_SIZE; 4187 } 4188 } 4189 } else { 4190 if (BP_IS_HOLE(bp)) { 4191 fill = 0; 4192 } else { 4193 fill = 1; 4194 } 4195 } 4196 } else { 4197 blkptr_t *ibp = db->db.db_data; 4198 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4199 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 4200 if (BP_IS_HOLE(ibp)) 4201 continue; 4202 fill += BP_GET_FILL(ibp); 4203 } 4204 } 4205 DB_DNODE_EXIT(db); 4206 4207 if (!BP_IS_EMBEDDED(bp)) 4208 BP_SET_FILL(bp, fill); 4209 4210 mutex_exit(&db->db_mtx); 4211 4212 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG); 4213 *db->db_blkptr = *bp; 4214 dmu_buf_unlock_parent(db, dblt, FTAG); 4215 } 4216 4217 /* ARGSUSED */ 4218 /* 4219 * This function gets called just prior to running through the compression 4220 * stage of the zio pipeline. If we're an indirect block comprised of only 4221 * holes, then we want this indirect to be compressed away to a hole. In 4222 * order to do that we must zero out any information about the holes that 4223 * this indirect points to prior to before we try to compress it. 4224 */ 4225 static void 4226 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4227 { 4228 dmu_buf_impl_t *db = vdb; 4229 dnode_t *dn; 4230 blkptr_t *bp; 4231 unsigned int epbs, i; 4232 4233 ASSERT3U(db->db_level, >, 0); 4234 DB_DNODE_ENTER(db); 4235 dn = DB_DNODE(db); 4236 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4237 ASSERT3U(epbs, <, 31); 4238 4239 /* Determine if all our children are holes */ 4240 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) { 4241 if (!BP_IS_HOLE(bp)) 4242 break; 4243 } 4244 4245 /* 4246 * If all the children are holes, then zero them all out so that 4247 * we may get compressed away. 4248 */ 4249 if (i == 1ULL << epbs) { 4250 /* 4251 * We only found holes. Grab the rwlock to prevent 4252 * anybody from reading the blocks we're about to 4253 * zero out. 4254 */ 4255 rw_enter(&db->db_rwlock, RW_WRITER); 4256 bzero(db->db.db_data, db->db.db_size); 4257 rw_exit(&db->db_rwlock); 4258 } 4259 DB_DNODE_EXIT(db); 4260 } 4261 4262 /* 4263 * The SPA will call this callback several times for each zio - once 4264 * for every physical child i/o (zio->io_phys_children times). This 4265 * allows the DMU to monitor the progress of each logical i/o. For example, 4266 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z 4267 * block. There may be a long delay before all copies/fragments are completed, 4268 * so this callback allows us to retire dirty space gradually, as the physical 4269 * i/os complete. 4270 */ 4271 /* ARGSUSED */ 4272 static void 4273 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg) 4274 { 4275 dmu_buf_impl_t *db = arg; 4276 objset_t *os = db->db_objset; 4277 dsl_pool_t *dp = dmu_objset_pool(os); 4278 dbuf_dirty_record_t *dr; 4279 int delta = 0; 4280 4281 dr = db->db_data_pending; 4282 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 4283 4284 /* 4285 * The callback will be called io_phys_children times. Retire one 4286 * portion of our dirty space each time we are called. Any rounding 4287 * error will be cleaned up by dbuf_write_done(). 4288 */ 4289 delta = dr->dr_accounted / zio->io_phys_children; 4290 dsl_pool_undirty_space(dp, delta, zio->io_txg); 4291 } 4292 4293 /* ARGSUSED */ 4294 static void 4295 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 4296 { 4297 dmu_buf_impl_t *db = vdb; 4298 blkptr_t *bp_orig = &zio->io_bp_orig; 4299 blkptr_t *bp = db->db_blkptr; 4300 objset_t *os = db->db_objset; 4301 dmu_tx_t *tx = os->os_synctx; 4302 dbuf_dirty_record_t *dr; 4303 4304 ASSERT0(zio->io_error); 4305 ASSERT(db->db_blkptr == bp); 4306 4307 /* 4308 * For nopwrites and rewrites we ensure that the bp matches our 4309 * original and bypass all the accounting. 4310 */ 4311 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4312 ASSERT(BP_EQUAL(bp, bp_orig)); 4313 } else { 4314 dsl_dataset_t *ds = os->os_dsl_dataset; 4315 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 4316 dsl_dataset_block_born(ds, bp, tx); 4317 } 4318 4319 mutex_enter(&db->db_mtx); 4320 4321 DBUF_VERIFY(db); 4322 4323 dr = db->db_data_pending; 4324 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4325 ASSERT(dr->dr_dbuf == db); 4326 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 4327 list_remove(&db->db_dirty_records, dr); 4328 4329 #ifdef ZFS_DEBUG 4330 if (db->db_blkid == DMU_SPILL_BLKID) { 4331 dnode_t *dn; 4332 4333 DB_DNODE_ENTER(db); 4334 dn = DB_DNODE(db); 4335 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4336 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 4337 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4338 DB_DNODE_EXIT(db); 4339 } 4340 #endif 4341 4342 if (db->db_level == 0) { 4343 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 4344 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 4345 if (db->db_state != DB_NOFILL) { 4346 if (dr->dt.dl.dr_data != db->db_buf) 4347 arc_buf_destroy(dr->dt.dl.dr_data, db); 4348 } 4349 } else { 4350 dnode_t *dn; 4351 4352 DB_DNODE_ENTER(db); 4353 dn = DB_DNODE(db); 4354 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4355 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 4356 if (!BP_IS_HOLE(db->db_blkptr)) { 4357 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift - 4358 SPA_BLKPTRSHIFT; 4359 ASSERT3U(db->db_blkid, <=, 4360 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 4361 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 4362 db->db.db_size); 4363 } 4364 DB_DNODE_EXIT(db); 4365 mutex_destroy(&dr->dt.di.dr_mtx); 4366 list_destroy(&dr->dt.di.dr_children); 4367 } 4368 4369 cv_broadcast(&db->db_changed); 4370 ASSERT(db->db_dirtycnt > 0); 4371 db->db_dirtycnt -= 1; 4372 db->db_data_pending = NULL; 4373 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 4374 4375 /* 4376 * If we didn't do a physical write in this ZIO and we 4377 * still ended up here, it means that the space of the 4378 * dbuf that we just released (and undirtied) above hasn't 4379 * been marked as undirtied in the pool's accounting. 4380 * 4381 * Thus, we undirty that space in the pool's view of the 4382 * world here. For physical writes this type of update 4383 * happens in dbuf_write_physdone(). 4384 * 4385 * If we did a physical write, cleanup any rounding errors 4386 * that came up due to writing multiple copies of a block 4387 * on disk [see dbuf_write_physdone()]. 4388 */ 4389 if (zio->io_phys_children == 0) { 4390 dsl_pool_undirty_space(dmu_objset_pool(os), 4391 dr->dr_accounted, zio->io_txg); 4392 } else { 4393 dsl_pool_undirty_space(dmu_objset_pool(os), 4394 dr->dr_accounted % zio->io_phys_children, zio->io_txg); 4395 } 4396 4397 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 4398 } 4399 4400 static void 4401 dbuf_write_nofill_ready(zio_t *zio) 4402 { 4403 dbuf_write_ready(zio, NULL, zio->io_private); 4404 } 4405 4406 static void 4407 dbuf_write_nofill_done(zio_t *zio) 4408 { 4409 dbuf_write_done(zio, NULL, zio->io_private); 4410 } 4411 4412 static void 4413 dbuf_write_override_ready(zio_t *zio) 4414 { 4415 dbuf_dirty_record_t *dr = zio->io_private; 4416 dmu_buf_impl_t *db = dr->dr_dbuf; 4417 4418 dbuf_write_ready(zio, NULL, db); 4419 } 4420 4421 static void 4422 dbuf_write_override_done(zio_t *zio) 4423 { 4424 dbuf_dirty_record_t *dr = zio->io_private; 4425 dmu_buf_impl_t *db = dr->dr_dbuf; 4426 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 4427 4428 mutex_enter(&db->db_mtx); 4429 if (!BP_EQUAL(zio->io_bp, obp)) { 4430 if (!BP_IS_HOLE(obp)) 4431 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 4432 arc_release(dr->dt.dl.dr_data, db); 4433 } 4434 mutex_exit(&db->db_mtx); 4435 4436 dbuf_write_done(zio, NULL, db); 4437 4438 if (zio->io_abd != NULL) 4439 abd_put(zio->io_abd); 4440 } 4441 4442 typedef struct dbuf_remap_impl_callback_arg { 4443 objset_t *drica_os; 4444 uint64_t drica_blk_birth; 4445 dmu_tx_t *drica_tx; 4446 } dbuf_remap_impl_callback_arg_t; 4447 4448 static void 4449 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size, 4450 void *arg) 4451 { 4452 dbuf_remap_impl_callback_arg_t *drica = arg; 4453 objset_t *os = drica->drica_os; 4454 spa_t *spa = dmu_objset_spa(os); 4455 dmu_tx_t *tx = drica->drica_tx; 4456 4457 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4458 4459 if (os == spa_meta_objset(spa)) { 4460 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx); 4461 } else { 4462 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset, 4463 size, drica->drica_blk_birth, tx); 4464 } 4465 } 4466 4467 static void 4468 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx) 4469 { 4470 blkptr_t bp_copy = *bp; 4471 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4472 dbuf_remap_impl_callback_arg_t drica; 4473 4474 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4475 4476 drica.drica_os = dn->dn_objset; 4477 drica.drica_blk_birth = bp->blk_birth; 4478 drica.drica_tx = tx; 4479 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback, 4480 &drica)) { 4481 /* 4482 * If the blkptr being remapped is tracked by a livelist, 4483 * then we need to make sure the livelist reflects the update. 4484 * First, cancel out the old blkptr by appending a 'FREE' 4485 * entry. Next, add an 'ALLOC' to track the new version. This 4486 * way we avoid trying to free an inaccurate blkptr at delete. 4487 * Note that embedded blkptrs are not tracked in livelists. 4488 */ 4489 if (dn->dn_objset != spa_meta_objset(spa)) { 4490 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset); 4491 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 4492 bp->blk_birth > ds->ds_dir->dd_origin_txg) { 4493 ASSERT(!BP_IS_EMBEDDED(bp)); 4494 ASSERT(dsl_dir_is_clone(ds->ds_dir)); 4495 ASSERT(spa_feature_is_enabled(spa, 4496 SPA_FEATURE_LIVELIST)); 4497 bplist_append(&ds->ds_dir->dd_pending_frees, 4498 bp); 4499 bplist_append(&ds->ds_dir->dd_pending_allocs, 4500 &bp_copy); 4501 } 4502 } 4503 4504 /* 4505 * The db_rwlock prevents dbuf_read_impl() from 4506 * dereferencing the BP while we are changing it. To 4507 * avoid lock contention, only grab it when we are actually 4508 * changing the BP. 4509 */ 4510 if (rw != NULL) 4511 rw_enter(rw, RW_WRITER); 4512 *bp = bp_copy; 4513 if (rw != NULL) 4514 rw_exit(rw); 4515 } 4516 } 4517 4518 /* 4519 * Remap any existing BP's to concrete vdevs, if possible. 4520 */ 4521 static void 4522 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx) 4523 { 4524 spa_t *spa = dmu_objset_spa(db->db_objset); 4525 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4526 4527 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)) 4528 return; 4529 4530 if (db->db_level > 0) { 4531 blkptr_t *bp = db->db.db_data; 4532 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) { 4533 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx); 4534 } 4535 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) { 4536 dnode_phys_t *dnp = db->db.db_data; 4537 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==, 4538 DMU_OT_DNODE); 4539 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT; 4540 i += dnp[i].dn_extra_slots + 1) { 4541 for (int j = 0; j < dnp[i].dn_nblkptr; j++) { 4542 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL : 4543 &dn->dn_dbuf->db_rwlock); 4544 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock, 4545 tx); 4546 } 4547 } 4548 } 4549 } 4550 4551 4552 /* Issue I/O to commit a dirty buffer to disk. */ 4553 static void 4554 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 4555 { 4556 dmu_buf_impl_t *db = dr->dr_dbuf; 4557 dnode_t *dn; 4558 objset_t *os; 4559 dmu_buf_impl_t *parent = db->db_parent; 4560 uint64_t txg = tx->tx_txg; 4561 zbookmark_phys_t zb; 4562 zio_prop_t zp; 4563 zio_t *pio; /* parent I/O */ 4564 int wp_flag = 0; 4565 4566 ASSERT(dmu_tx_is_syncing(tx)); 4567 4568 DB_DNODE_ENTER(db); 4569 dn = DB_DNODE(db); 4570 os = dn->dn_objset; 4571 4572 if (db->db_state != DB_NOFILL) { 4573 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 4574 /* 4575 * Private object buffers are released here rather 4576 * than in dbuf_dirty() since they are only modified 4577 * in the syncing context and we don't want the 4578 * overhead of making multiple copies of the data. 4579 */ 4580 if (BP_IS_HOLE(db->db_blkptr)) { 4581 arc_buf_thaw(data); 4582 } else { 4583 dbuf_release_bp(db); 4584 } 4585 dbuf_remap(dn, db, tx); 4586 } 4587 } 4588 4589 if (parent != dn->dn_dbuf) { 4590 /* Our parent is an indirect block. */ 4591 /* We have a dirty parent that has been scheduled for write. */ 4592 ASSERT(parent && parent->db_data_pending); 4593 /* Our parent's buffer is one level closer to the dnode. */ 4594 ASSERT(db->db_level == parent->db_level-1); 4595 /* 4596 * We're about to modify our parent's db_data by modifying 4597 * our block pointer, so the parent must be released. 4598 */ 4599 ASSERT(arc_released(parent->db_buf)); 4600 pio = parent->db_data_pending->dr_zio; 4601 } else { 4602 /* Our parent is the dnode itself. */ 4603 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 4604 db->db_blkid != DMU_SPILL_BLKID) || 4605 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 4606 if (db->db_blkid != DMU_SPILL_BLKID) 4607 ASSERT3P(db->db_blkptr, ==, 4608 &dn->dn_phys->dn_blkptr[db->db_blkid]); 4609 pio = dn->dn_zio; 4610 } 4611 4612 ASSERT(db->db_level == 0 || data == db->db_buf); 4613 ASSERT3U(db->db_blkptr->blk_birth, <=, txg); 4614 ASSERT(pio); 4615 4616 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 4617 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 4618 db->db.db_object, db->db_level, db->db_blkid); 4619 4620 if (db->db_blkid == DMU_SPILL_BLKID) 4621 wp_flag = WP_SPILL; 4622 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; 4623 4624 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 4625 DB_DNODE_EXIT(db); 4626 4627 /* 4628 * We copy the blkptr now (rather than when we instantiate the dirty 4629 * record), because its value can change between open context and 4630 * syncing context. We do not need to hold dn_struct_rwlock to read 4631 * db_blkptr because we are in syncing context. 4632 */ 4633 dr->dr_bp_copy = *db->db_blkptr; 4634 4635 if (db->db_level == 0 && 4636 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 4637 /* 4638 * The BP for this block has been provided by open context 4639 * (by dmu_sync() or dmu_buf_write_embedded()). 4640 */ 4641 abd_t *contents = (data != NULL) ? 4642 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL; 4643 4644 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy, 4645 contents, db->db.db_size, db->db.db_size, &zp, 4646 dbuf_write_override_ready, NULL, NULL, 4647 dbuf_write_override_done, 4648 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 4649 mutex_enter(&db->db_mtx); 4650 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 4651 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 4652 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite); 4653 mutex_exit(&db->db_mtx); 4654 } else if (db->db_state == DB_NOFILL) { 4655 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 4656 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 4657 dr->dr_zio = zio_write(pio, os->os_spa, txg, 4658 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp, 4659 dbuf_write_nofill_ready, NULL, NULL, 4660 dbuf_write_nofill_done, db, 4661 ZIO_PRIORITY_ASYNC_WRITE, 4662 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 4663 } else { 4664 ASSERT(arc_released(data)); 4665 4666 /* 4667 * For indirect blocks, we want to setup the children 4668 * ready callback so that we can properly handle an indirect 4669 * block that only contains holes. 4670 */ 4671 arc_write_done_func_t *children_ready_cb = NULL; 4672 if (db->db_level != 0) 4673 children_ready_cb = dbuf_write_children_ready; 4674 4675 dr->dr_zio = arc_write(pio, os->os_spa, txg, 4676 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db), 4677 &zp, dbuf_write_ready, 4678 children_ready_cb, dbuf_write_physdone, 4679 dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE, 4680 ZIO_FLAG_MUSTSUCCEED, &zb); 4681 } 4682 } 4683 4684 EXPORT_SYMBOL(dbuf_find); 4685 EXPORT_SYMBOL(dbuf_is_metadata); 4686 EXPORT_SYMBOL(dbuf_destroy); 4687 EXPORT_SYMBOL(dbuf_loan_arcbuf); 4688 EXPORT_SYMBOL(dbuf_whichblock); 4689 EXPORT_SYMBOL(dbuf_read); 4690 EXPORT_SYMBOL(dbuf_unoverride); 4691 EXPORT_SYMBOL(dbuf_free_range); 4692 EXPORT_SYMBOL(dbuf_new_size); 4693 EXPORT_SYMBOL(dbuf_release_bp); 4694 EXPORT_SYMBOL(dbuf_dirty); 4695 EXPORT_SYMBOL(dmu_buf_set_crypt_params); 4696 EXPORT_SYMBOL(dmu_buf_will_dirty); 4697 EXPORT_SYMBOL(dmu_buf_is_dirty); 4698 EXPORT_SYMBOL(dmu_buf_will_not_fill); 4699 EXPORT_SYMBOL(dmu_buf_will_fill); 4700 EXPORT_SYMBOL(dmu_buf_fill_done); 4701 EXPORT_SYMBOL(dmu_buf_rele); 4702 EXPORT_SYMBOL(dbuf_assign_arcbuf); 4703 EXPORT_SYMBOL(dbuf_prefetch); 4704 EXPORT_SYMBOL(dbuf_hold_impl); 4705 EXPORT_SYMBOL(dbuf_hold); 4706 EXPORT_SYMBOL(dbuf_hold_level); 4707 EXPORT_SYMBOL(dbuf_create_bonus); 4708 EXPORT_SYMBOL(dbuf_spill_set_blksz); 4709 EXPORT_SYMBOL(dbuf_rm_spill); 4710 EXPORT_SYMBOL(dbuf_add_ref); 4711 EXPORT_SYMBOL(dbuf_rele); 4712 EXPORT_SYMBOL(dbuf_rele_and_unlock); 4713 EXPORT_SYMBOL(dbuf_refcount); 4714 EXPORT_SYMBOL(dbuf_sync_list); 4715 EXPORT_SYMBOL(dmu_buf_set_user); 4716 EXPORT_SYMBOL(dmu_buf_set_user_ie); 4717 EXPORT_SYMBOL(dmu_buf_get_user); 4718 EXPORT_SYMBOL(dmu_buf_get_blkptr); 4719 4720 /* BEGIN CSTYLED */ 4721 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, ULONG, ZMOD_RW, 4722 "Maximum size in bytes of the dbuf cache."); 4723 4724 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW, 4725 "Percentage over dbuf_cache_max_bytes when dbufs must be evicted " 4726 "directly."); 4727 4728 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW, 4729 "Percentage below dbuf_cache_max_bytes when the evict thread stops " 4730 "evicting dbufs."); 4731 4732 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, ULONG, ZMOD_RW, 4733 "Maximum size in bytes of the dbuf metadata cache."); 4734 4735 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, INT, ZMOD_RW, 4736 "Set the size of the dbuf cache to a log2 fraction of arc size."); 4737 4738 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, INT, ZMOD_RW, 4739 "Set the size of the dbuf metadata cache to a log2 fraction of arc " 4740 "size."); 4741 /* END CSTYLED */ 4742