1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright (c) 2019, Klara Inc. 28 * Copyright (c) 2019, Allan Jude 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/arc.h> 33 #include <sys/dmu.h> 34 #include <sys/dmu_send.h> 35 #include <sys/dmu_impl.h> 36 #include <sys/dbuf.h> 37 #include <sys/dmu_objset.h> 38 #include <sys/dsl_dataset.h> 39 #include <sys/dsl_dir.h> 40 #include <sys/dmu_tx.h> 41 #include <sys/spa.h> 42 #include <sys/zio.h> 43 #include <sys/dmu_zfetch.h> 44 #include <sys/sa.h> 45 #include <sys/sa_impl.h> 46 #include <sys/zfeature.h> 47 #include <sys/blkptr.h> 48 #include <sys/range_tree.h> 49 #include <sys/trace_zfs.h> 50 #include <sys/callb.h> 51 #include <sys/abd.h> 52 #include <sys/vdev.h> 53 #include <cityhash.h> 54 #include <sys/spa_impl.h> 55 #include <sys/wmsum.h> 56 #include <sys/vdev_impl.h> 57 58 kstat_t *dbuf_ksp; 59 60 typedef struct dbuf_stats { 61 /* 62 * Various statistics about the size of the dbuf cache. 63 */ 64 kstat_named_t cache_count; 65 kstat_named_t cache_size_bytes; 66 kstat_named_t cache_size_bytes_max; 67 /* 68 * Statistics regarding the bounds on the dbuf cache size. 69 */ 70 kstat_named_t cache_target_bytes; 71 kstat_named_t cache_lowater_bytes; 72 kstat_named_t cache_hiwater_bytes; 73 /* 74 * Total number of dbuf cache evictions that have occurred. 75 */ 76 kstat_named_t cache_total_evicts; 77 /* 78 * The distribution of dbuf levels in the dbuf cache and 79 * the total size of all dbufs at each level. 80 */ 81 kstat_named_t cache_levels[DN_MAX_LEVELS]; 82 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS]; 83 /* 84 * Statistics about the dbuf hash table. 85 */ 86 kstat_named_t hash_hits; 87 kstat_named_t hash_misses; 88 kstat_named_t hash_collisions; 89 kstat_named_t hash_elements; 90 kstat_named_t hash_elements_max; 91 /* 92 * Number of sublists containing more than one dbuf in the dbuf 93 * hash table. Keep track of the longest hash chain. 94 */ 95 kstat_named_t hash_chains; 96 kstat_named_t hash_chain_max; 97 /* 98 * Number of times a dbuf_create() discovers that a dbuf was 99 * already created and in the dbuf hash table. 100 */ 101 kstat_named_t hash_insert_race; 102 /* 103 * Statistics about the size of the metadata dbuf cache. 104 */ 105 kstat_named_t metadata_cache_count; 106 kstat_named_t metadata_cache_size_bytes; 107 kstat_named_t metadata_cache_size_bytes_max; 108 /* 109 * For diagnostic purposes, this is incremented whenever we can't add 110 * something to the metadata cache because it's full, and instead put 111 * the data in the regular dbuf cache. 112 */ 113 kstat_named_t metadata_cache_overflow; 114 } dbuf_stats_t; 115 116 dbuf_stats_t dbuf_stats = { 117 { "cache_count", KSTAT_DATA_UINT64 }, 118 { "cache_size_bytes", KSTAT_DATA_UINT64 }, 119 { "cache_size_bytes_max", KSTAT_DATA_UINT64 }, 120 { "cache_target_bytes", KSTAT_DATA_UINT64 }, 121 { "cache_lowater_bytes", KSTAT_DATA_UINT64 }, 122 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 }, 123 { "cache_total_evicts", KSTAT_DATA_UINT64 }, 124 { { "cache_levels_N", KSTAT_DATA_UINT64 } }, 125 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } }, 126 { "hash_hits", KSTAT_DATA_UINT64 }, 127 { "hash_misses", KSTAT_DATA_UINT64 }, 128 { "hash_collisions", KSTAT_DATA_UINT64 }, 129 { "hash_elements", KSTAT_DATA_UINT64 }, 130 { "hash_elements_max", KSTAT_DATA_UINT64 }, 131 { "hash_chains", KSTAT_DATA_UINT64 }, 132 { "hash_chain_max", KSTAT_DATA_UINT64 }, 133 { "hash_insert_race", KSTAT_DATA_UINT64 }, 134 { "metadata_cache_count", KSTAT_DATA_UINT64 }, 135 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 }, 136 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 }, 137 { "metadata_cache_overflow", KSTAT_DATA_UINT64 } 138 }; 139 140 struct { 141 wmsum_t cache_count; 142 wmsum_t cache_total_evicts; 143 wmsum_t cache_levels[DN_MAX_LEVELS]; 144 wmsum_t cache_levels_bytes[DN_MAX_LEVELS]; 145 wmsum_t hash_hits; 146 wmsum_t hash_misses; 147 wmsum_t hash_collisions; 148 wmsum_t hash_chains; 149 wmsum_t hash_insert_race; 150 wmsum_t metadata_cache_count; 151 wmsum_t metadata_cache_overflow; 152 } dbuf_sums; 153 154 #define DBUF_STAT_INCR(stat, val) \ 155 wmsum_add(&dbuf_sums.stat, val); 156 #define DBUF_STAT_DECR(stat, val) \ 157 DBUF_STAT_INCR(stat, -(val)); 158 #define DBUF_STAT_BUMP(stat) \ 159 DBUF_STAT_INCR(stat, 1); 160 #define DBUF_STAT_BUMPDOWN(stat) \ 161 DBUF_STAT_INCR(stat, -1); 162 #define DBUF_STAT_MAX(stat, v) { \ 163 uint64_t _m; \ 164 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \ 165 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\ 166 continue; \ 167 } 168 169 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 170 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 171 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr); 172 static int dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags); 173 174 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu, 175 dmu_buf_evict_func_t *evict_func_sync, 176 dmu_buf_evict_func_t *evict_func_async, 177 dmu_buf_t **clear_on_evict_dbufp); 178 179 /* 180 * Global data structures and functions for the dbuf cache. 181 */ 182 static kmem_cache_t *dbuf_kmem_cache; 183 static taskq_t *dbu_evict_taskq; 184 185 static kthread_t *dbuf_cache_evict_thread; 186 static kmutex_t dbuf_evict_lock; 187 static kcondvar_t dbuf_evict_cv; 188 static boolean_t dbuf_evict_thread_exit; 189 190 /* 191 * There are two dbuf caches; each dbuf can only be in one of them at a time. 192 * 193 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands 194 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs 195 * that represent the metadata that describes filesystems/snapshots/ 196 * bookmarks/properties/etc. We only evict from this cache when we export a 197 * pool, to short-circuit as much I/O as possible for all administrative 198 * commands that need the metadata. There is no eviction policy for this 199 * cache, because we try to only include types in it which would occupy a 200 * very small amount of space per object but create a large impact on the 201 * performance of these commands. Instead, after it reaches a maximum size 202 * (which should only happen on very small memory systems with a very large 203 * number of filesystem objects), we stop taking new dbufs into the 204 * metadata cache, instead putting them in the normal dbuf cache. 205 * 206 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that 207 * are not currently held but have been recently released. These dbufs 208 * are not eligible for arc eviction until they are aged out of the cache. 209 * Dbufs that are aged out of the cache will be immediately destroyed and 210 * become eligible for arc eviction. 211 * 212 * Dbufs are added to these caches once the last hold is released. If a dbuf is 213 * later accessed and still exists in the dbuf cache, then it will be removed 214 * from the cache and later re-added to the head of the cache. 215 * 216 * If a given dbuf meets the requirements for the metadata cache, it will go 217 * there, otherwise it will be considered for the generic LRU dbuf cache. The 218 * caches and the refcounts tracking their sizes are stored in an array indexed 219 * by those caches' matching enum values (from dbuf_cached_state_t). 220 */ 221 typedef struct dbuf_cache { 222 multilist_t cache; 223 zfs_refcount_t size ____cacheline_aligned; 224 } dbuf_cache_t; 225 dbuf_cache_t dbuf_caches[DB_CACHE_MAX]; 226 227 /* Size limits for the caches */ 228 unsigned long dbuf_cache_max_bytes = ULONG_MAX; 229 unsigned long dbuf_metadata_cache_max_bytes = ULONG_MAX; 230 231 /* Set the default sizes of the caches to log2 fraction of arc size */ 232 int dbuf_cache_shift = 5; 233 int dbuf_metadata_cache_shift = 6; 234 235 static unsigned long dbuf_cache_target_bytes(void); 236 static unsigned long dbuf_metadata_cache_target_bytes(void); 237 238 /* 239 * The LRU dbuf cache uses a three-stage eviction policy: 240 * - A low water marker designates when the dbuf eviction thread 241 * should stop evicting from the dbuf cache. 242 * - When we reach the maximum size (aka mid water mark), we 243 * signal the eviction thread to run. 244 * - The high water mark indicates when the eviction thread 245 * is unable to keep up with the incoming load and eviction must 246 * happen in the context of the calling thread. 247 * 248 * The dbuf cache: 249 * (max size) 250 * low water mid water hi water 251 * +----------------------------------------+----------+----------+ 252 * | | | | 253 * | | | | 254 * | | | | 255 * | | | | 256 * +----------------------------------------+----------+----------+ 257 * stop signal evict 258 * evicting eviction directly 259 * thread 260 * 261 * The high and low water marks indicate the operating range for the eviction 262 * thread. The low water mark is, by default, 90% of the total size of the 263 * cache and the high water mark is at 110% (both of these percentages can be 264 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 265 * respectively). The eviction thread will try to ensure that the cache remains 266 * within this range by waking up every second and checking if the cache is 267 * above the low water mark. The thread can also be woken up by callers adding 268 * elements into the cache if the cache is larger than the mid water (i.e max 269 * cache size). Once the eviction thread is woken up and eviction is required, 270 * it will continue evicting buffers until it's able to reduce the cache size 271 * to the low water mark. If the cache size continues to grow and hits the high 272 * water mark, then callers adding elements to the cache will begin to evict 273 * directly from the cache until the cache is no longer above the high water 274 * mark. 275 */ 276 277 /* 278 * The percentage above and below the maximum cache size. 279 */ 280 uint_t dbuf_cache_hiwater_pct = 10; 281 uint_t dbuf_cache_lowater_pct = 10; 282 283 /* ARGSUSED */ 284 static int 285 dbuf_cons(void *vdb, void *unused, int kmflag) 286 { 287 dmu_buf_impl_t *db = vdb; 288 bzero(db, sizeof (dmu_buf_impl_t)); 289 290 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 291 rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL); 292 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 293 multilist_link_init(&db->db_cache_link); 294 zfs_refcount_create(&db->db_holds); 295 296 return (0); 297 } 298 299 /* ARGSUSED */ 300 static void 301 dbuf_dest(void *vdb, void *unused) 302 { 303 dmu_buf_impl_t *db = vdb; 304 mutex_destroy(&db->db_mtx); 305 rw_destroy(&db->db_rwlock); 306 cv_destroy(&db->db_changed); 307 ASSERT(!multilist_link_active(&db->db_cache_link)); 308 zfs_refcount_destroy(&db->db_holds); 309 } 310 311 /* 312 * dbuf hash table routines 313 */ 314 static dbuf_hash_table_t dbuf_hash_table; 315 316 /* 317 * We use Cityhash for this. It's fast, and has good hash properties without 318 * requiring any large static buffers. 319 */ 320 static uint64_t 321 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 322 { 323 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid)); 324 } 325 326 #define DTRACE_SET_STATE(db, why) \ 327 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \ 328 const char *, why) 329 330 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 331 ((dbuf)->db.db_object == (obj) && \ 332 (dbuf)->db_objset == (os) && \ 333 (dbuf)->db_level == (level) && \ 334 (dbuf)->db_blkid == (blkid)) 335 336 dmu_buf_impl_t * 337 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid) 338 { 339 dbuf_hash_table_t *h = &dbuf_hash_table; 340 uint64_t hv; 341 uint64_t idx; 342 dmu_buf_impl_t *db; 343 344 hv = dbuf_hash(os, obj, level, blkid); 345 idx = hv & h->hash_table_mask; 346 347 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 348 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 349 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 350 mutex_enter(&db->db_mtx); 351 if (db->db_state != DB_EVICTING) { 352 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 353 return (db); 354 } 355 mutex_exit(&db->db_mtx); 356 } 357 } 358 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 359 return (NULL); 360 } 361 362 static dmu_buf_impl_t * 363 dbuf_find_bonus(objset_t *os, uint64_t object) 364 { 365 dnode_t *dn; 366 dmu_buf_impl_t *db = NULL; 367 368 if (dnode_hold(os, object, FTAG, &dn) == 0) { 369 rw_enter(&dn->dn_struct_rwlock, RW_READER); 370 if (dn->dn_bonus != NULL) { 371 db = dn->dn_bonus; 372 mutex_enter(&db->db_mtx); 373 } 374 rw_exit(&dn->dn_struct_rwlock); 375 dnode_rele(dn, FTAG); 376 } 377 return (db); 378 } 379 380 /* 381 * Insert an entry into the hash table. If there is already an element 382 * equal to elem in the hash table, then the already existing element 383 * will be returned and the new element will not be inserted. 384 * Otherwise returns NULL. 385 */ 386 static dmu_buf_impl_t * 387 dbuf_hash_insert(dmu_buf_impl_t *db) 388 { 389 dbuf_hash_table_t *h = &dbuf_hash_table; 390 objset_t *os = db->db_objset; 391 uint64_t obj = db->db.db_object; 392 int level = db->db_level; 393 uint64_t blkid, hv, idx; 394 dmu_buf_impl_t *dbf; 395 uint32_t i; 396 397 blkid = db->db_blkid; 398 hv = dbuf_hash(os, obj, level, blkid); 399 idx = hv & h->hash_table_mask; 400 401 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 402 for (dbf = h->hash_table[idx], i = 0; dbf != NULL; 403 dbf = dbf->db_hash_next, i++) { 404 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 405 mutex_enter(&dbf->db_mtx); 406 if (dbf->db_state != DB_EVICTING) { 407 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 408 return (dbf); 409 } 410 mutex_exit(&dbf->db_mtx); 411 } 412 } 413 414 if (i > 0) { 415 DBUF_STAT_BUMP(hash_collisions); 416 if (i == 1) 417 DBUF_STAT_BUMP(hash_chains); 418 419 DBUF_STAT_MAX(hash_chain_max, i); 420 } 421 422 mutex_enter(&db->db_mtx); 423 db->db_hash_next = h->hash_table[idx]; 424 h->hash_table[idx] = db; 425 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 426 uint64_t he = atomic_inc_64_nv(&dbuf_stats.hash_elements.value.ui64); 427 DBUF_STAT_MAX(hash_elements_max, he); 428 429 return (NULL); 430 } 431 432 /* 433 * This returns whether this dbuf should be stored in the metadata cache, which 434 * is based on whether it's from one of the dnode types that store data related 435 * to traversing dataset hierarchies. 436 */ 437 static boolean_t 438 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db) 439 { 440 DB_DNODE_ENTER(db); 441 dmu_object_type_t type = DB_DNODE(db)->dn_type; 442 DB_DNODE_EXIT(db); 443 444 /* Check if this dbuf is one of the types we care about */ 445 if (DMU_OT_IS_METADATA_CACHED(type)) { 446 /* If we hit this, then we set something up wrong in dmu_ot */ 447 ASSERT(DMU_OT_IS_METADATA(type)); 448 449 /* 450 * Sanity check for small-memory systems: don't allocate too 451 * much memory for this purpose. 452 */ 453 if (zfs_refcount_count( 454 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) > 455 dbuf_metadata_cache_target_bytes()) { 456 DBUF_STAT_BUMP(metadata_cache_overflow); 457 return (B_FALSE); 458 } 459 460 return (B_TRUE); 461 } 462 463 return (B_FALSE); 464 } 465 466 /* 467 * Remove an entry from the hash table. It must be in the EVICTING state. 468 */ 469 static void 470 dbuf_hash_remove(dmu_buf_impl_t *db) 471 { 472 dbuf_hash_table_t *h = &dbuf_hash_table; 473 uint64_t hv, idx; 474 dmu_buf_impl_t *dbf, **dbp; 475 476 hv = dbuf_hash(db->db_objset, db->db.db_object, 477 db->db_level, db->db_blkid); 478 idx = hv & h->hash_table_mask; 479 480 /* 481 * We mustn't hold db_mtx to maintain lock ordering: 482 * DBUF_HASH_MUTEX > db_mtx. 483 */ 484 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 485 ASSERT(db->db_state == DB_EVICTING); 486 ASSERT(!MUTEX_HELD(&db->db_mtx)); 487 488 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 489 dbp = &h->hash_table[idx]; 490 while ((dbf = *dbp) != db) { 491 dbp = &dbf->db_hash_next; 492 ASSERT(dbf != NULL); 493 } 494 *dbp = db->db_hash_next; 495 db->db_hash_next = NULL; 496 if (h->hash_table[idx] && 497 h->hash_table[idx]->db_hash_next == NULL) 498 DBUF_STAT_BUMPDOWN(hash_chains); 499 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 500 atomic_dec_64(&dbuf_stats.hash_elements.value.ui64); 501 } 502 503 typedef enum { 504 DBVU_EVICTING, 505 DBVU_NOT_EVICTING 506 } dbvu_verify_type_t; 507 508 static void 509 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 510 { 511 #ifdef ZFS_DEBUG 512 int64_t holds; 513 514 if (db->db_user == NULL) 515 return; 516 517 /* Only data blocks support the attachment of user data. */ 518 ASSERT(db->db_level == 0); 519 520 /* Clients must resolve a dbuf before attaching user data. */ 521 ASSERT(db->db.db_data != NULL); 522 ASSERT3U(db->db_state, ==, DB_CACHED); 523 524 holds = zfs_refcount_count(&db->db_holds); 525 if (verify_type == DBVU_EVICTING) { 526 /* 527 * Immediate eviction occurs when holds == dirtycnt. 528 * For normal eviction buffers, holds is zero on 529 * eviction, except when dbuf_fix_old_data() calls 530 * dbuf_clear_data(). However, the hold count can grow 531 * during eviction even though db_mtx is held (see 532 * dmu_bonus_hold() for an example), so we can only 533 * test the generic invariant that holds >= dirtycnt. 534 */ 535 ASSERT3U(holds, >=, db->db_dirtycnt); 536 } else { 537 if (db->db_user_immediate_evict == TRUE) 538 ASSERT3U(holds, >=, db->db_dirtycnt); 539 else 540 ASSERT3U(holds, >, 0); 541 } 542 #endif 543 } 544 545 static void 546 dbuf_evict_user(dmu_buf_impl_t *db) 547 { 548 dmu_buf_user_t *dbu = db->db_user; 549 550 ASSERT(MUTEX_HELD(&db->db_mtx)); 551 552 if (dbu == NULL) 553 return; 554 555 dbuf_verify_user(db, DBVU_EVICTING); 556 db->db_user = NULL; 557 558 #ifdef ZFS_DEBUG 559 if (dbu->dbu_clear_on_evict_dbufp != NULL) 560 *dbu->dbu_clear_on_evict_dbufp = NULL; 561 #endif 562 563 /* 564 * There are two eviction callbacks - one that we call synchronously 565 * and one that we invoke via a taskq. The async one is useful for 566 * avoiding lock order reversals and limiting stack depth. 567 * 568 * Note that if we have a sync callback but no async callback, 569 * it's likely that the sync callback will free the structure 570 * containing the dbu. In that case we need to take care to not 571 * dereference dbu after calling the sync evict func. 572 */ 573 boolean_t has_async = (dbu->dbu_evict_func_async != NULL); 574 575 if (dbu->dbu_evict_func_sync != NULL) 576 dbu->dbu_evict_func_sync(dbu); 577 578 if (has_async) { 579 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, 580 dbu, 0, &dbu->dbu_tqent); 581 } 582 } 583 584 boolean_t 585 dbuf_is_metadata(dmu_buf_impl_t *db) 586 { 587 /* 588 * Consider indirect blocks and spill blocks to be meta data. 589 */ 590 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) { 591 return (B_TRUE); 592 } else { 593 boolean_t is_metadata; 594 595 DB_DNODE_ENTER(db); 596 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 597 DB_DNODE_EXIT(db); 598 599 return (is_metadata); 600 } 601 } 602 603 /* 604 * We want to exclude buffers that are on a special allocation class from 605 * L2ARC. 606 */ 607 boolean_t 608 dbuf_is_l2cacheable(dmu_buf_impl_t *db) 609 { 610 vdev_t *vd = NULL; 611 zfs_cache_type_t cache = db->db_objset->os_secondary_cache; 612 blkptr_t *bp = db->db_blkptr; 613 614 if (bp != NULL && !BP_IS_HOLE(bp)) { 615 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva); 616 vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev; 617 618 if (vdev < rvd->vdev_children) 619 vd = rvd->vdev_child[vdev]; 620 621 if (cache == ZFS_CACHE_ALL || 622 (dbuf_is_metadata(db) && cache == ZFS_CACHE_METADATA)) { 623 if (vd == NULL) 624 return (B_TRUE); 625 626 if ((vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && 627 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) || 628 l2arc_exclude_special == 0) 629 return (B_TRUE); 630 } 631 } 632 633 return (B_FALSE); 634 } 635 636 static inline boolean_t 637 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level) 638 { 639 vdev_t *vd = NULL; 640 zfs_cache_type_t cache = dn->dn_objset->os_secondary_cache; 641 642 if (bp != NULL && !BP_IS_HOLE(bp)) { 643 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva); 644 vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev; 645 646 if (vdev < rvd->vdev_children) 647 vd = rvd->vdev_child[vdev]; 648 649 if (cache == ZFS_CACHE_ALL || ((level > 0 || 650 DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)) && 651 cache == ZFS_CACHE_METADATA)) { 652 if (vd == NULL) 653 return (B_TRUE); 654 655 if ((vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && 656 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) || 657 l2arc_exclude_special == 0) 658 return (B_TRUE); 659 } 660 } 661 662 return (B_FALSE); 663 } 664 665 666 /* 667 * This function *must* return indices evenly distributed between all 668 * sublists of the multilist. This is needed due to how the dbuf eviction 669 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 670 * distributed between all sublists and uses this assumption when 671 * deciding which sublist to evict from and how much to evict from it. 672 */ 673 static unsigned int 674 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 675 { 676 dmu_buf_impl_t *db = obj; 677 678 /* 679 * The assumption here, is the hash value for a given 680 * dmu_buf_impl_t will remain constant throughout it's lifetime 681 * (i.e. it's objset, object, level and blkid fields don't change). 682 * Thus, we don't need to store the dbuf's sublist index 683 * on insertion, as this index can be recalculated on removal. 684 * 685 * Also, the low order bits of the hash value are thought to be 686 * distributed evenly. Otherwise, in the case that the multilist 687 * has a power of two number of sublists, each sublists' usage 688 * would not be evenly distributed. In this context full 64bit 689 * division would be a waste of time, so limit it to 32 bits. 690 */ 691 return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object, 692 db->db_level, db->db_blkid) % 693 multilist_get_num_sublists(ml)); 694 } 695 696 /* 697 * The target size of the dbuf cache can grow with the ARC target, 698 * unless limited by the tunable dbuf_cache_max_bytes. 699 */ 700 static inline unsigned long 701 dbuf_cache_target_bytes(void) 702 { 703 return (MIN(dbuf_cache_max_bytes, 704 arc_target_bytes() >> dbuf_cache_shift)); 705 } 706 707 /* 708 * The target size of the dbuf metadata cache can grow with the ARC target, 709 * unless limited by the tunable dbuf_metadata_cache_max_bytes. 710 */ 711 static inline unsigned long 712 dbuf_metadata_cache_target_bytes(void) 713 { 714 return (MIN(dbuf_metadata_cache_max_bytes, 715 arc_target_bytes() >> dbuf_metadata_cache_shift)); 716 } 717 718 static inline uint64_t 719 dbuf_cache_hiwater_bytes(void) 720 { 721 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 722 return (dbuf_cache_target + 723 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100); 724 } 725 726 static inline uint64_t 727 dbuf_cache_lowater_bytes(void) 728 { 729 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 730 return (dbuf_cache_target - 731 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100); 732 } 733 734 static inline boolean_t 735 dbuf_cache_above_lowater(void) 736 { 737 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > 738 dbuf_cache_lowater_bytes()); 739 } 740 741 /* 742 * Evict the oldest eligible dbuf from the dbuf cache. 743 */ 744 static void 745 dbuf_evict_one(void) 746 { 747 int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache); 748 multilist_sublist_t *mls = multilist_sublist_lock( 749 &dbuf_caches[DB_DBUF_CACHE].cache, idx); 750 751 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 752 753 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 754 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 755 db = multilist_sublist_prev(mls, db); 756 } 757 758 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 759 multilist_sublist_t *, mls); 760 761 if (db != NULL) { 762 multilist_sublist_remove(mls, db); 763 multilist_sublist_unlock(mls); 764 (void) zfs_refcount_remove_many( 765 &dbuf_caches[DB_DBUF_CACHE].size, db->db.db_size, db); 766 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 767 DBUF_STAT_BUMPDOWN(cache_count); 768 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 769 db->db.db_size); 770 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE); 771 db->db_caching_status = DB_NO_CACHE; 772 dbuf_destroy(db); 773 DBUF_STAT_BUMP(cache_total_evicts); 774 } else { 775 multilist_sublist_unlock(mls); 776 } 777 } 778 779 /* 780 * The dbuf evict thread is responsible for aging out dbufs from the 781 * cache. Once the cache has reached it's maximum size, dbufs are removed 782 * and destroyed. The eviction thread will continue running until the size 783 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 784 * out of the cache it is destroyed and becomes eligible for arc eviction. 785 */ 786 /* ARGSUSED */ 787 static void 788 dbuf_evict_thread(void *unused) 789 { 790 callb_cpr_t cpr; 791 792 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 793 794 mutex_enter(&dbuf_evict_lock); 795 while (!dbuf_evict_thread_exit) { 796 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 797 CALLB_CPR_SAFE_BEGIN(&cpr); 798 (void) cv_timedwait_idle_hires(&dbuf_evict_cv, 799 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 800 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 801 } 802 mutex_exit(&dbuf_evict_lock); 803 804 /* 805 * Keep evicting as long as we're above the low water mark 806 * for the cache. We do this without holding the locks to 807 * minimize lock contention. 808 */ 809 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 810 dbuf_evict_one(); 811 } 812 813 mutex_enter(&dbuf_evict_lock); 814 } 815 816 dbuf_evict_thread_exit = B_FALSE; 817 cv_broadcast(&dbuf_evict_cv); 818 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 819 thread_exit(); 820 } 821 822 /* 823 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 824 * If the dbuf cache is at its high water mark, then evict a dbuf from the 825 * dbuf cache using the callers context. 826 */ 827 static void 828 dbuf_evict_notify(uint64_t size) 829 { 830 /* 831 * We check if we should evict without holding the dbuf_evict_lock, 832 * because it's OK to occasionally make the wrong decision here, 833 * and grabbing the lock results in massive lock contention. 834 */ 835 if (size > dbuf_cache_target_bytes()) { 836 if (size > dbuf_cache_hiwater_bytes()) 837 dbuf_evict_one(); 838 cv_signal(&dbuf_evict_cv); 839 } 840 } 841 842 static int 843 dbuf_kstat_update(kstat_t *ksp, int rw) 844 { 845 dbuf_stats_t *ds = ksp->ks_data; 846 847 if (rw == KSTAT_WRITE) 848 return (SET_ERROR(EACCES)); 849 850 ds->cache_count.value.ui64 = 851 wmsum_value(&dbuf_sums.cache_count); 852 ds->cache_size_bytes.value.ui64 = 853 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size); 854 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes(); 855 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes(); 856 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes(); 857 ds->cache_total_evicts.value.ui64 = 858 wmsum_value(&dbuf_sums.cache_total_evicts); 859 for (int i = 0; i < DN_MAX_LEVELS; i++) { 860 ds->cache_levels[i].value.ui64 = 861 wmsum_value(&dbuf_sums.cache_levels[i]); 862 ds->cache_levels_bytes[i].value.ui64 = 863 wmsum_value(&dbuf_sums.cache_levels_bytes[i]); 864 } 865 ds->hash_hits.value.ui64 = 866 wmsum_value(&dbuf_sums.hash_hits); 867 ds->hash_misses.value.ui64 = 868 wmsum_value(&dbuf_sums.hash_misses); 869 ds->hash_collisions.value.ui64 = 870 wmsum_value(&dbuf_sums.hash_collisions); 871 ds->hash_chains.value.ui64 = 872 wmsum_value(&dbuf_sums.hash_chains); 873 ds->hash_insert_race.value.ui64 = 874 wmsum_value(&dbuf_sums.hash_insert_race); 875 ds->metadata_cache_count.value.ui64 = 876 wmsum_value(&dbuf_sums.metadata_cache_count); 877 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count( 878 &dbuf_caches[DB_DBUF_METADATA_CACHE].size); 879 ds->metadata_cache_overflow.value.ui64 = 880 wmsum_value(&dbuf_sums.metadata_cache_overflow); 881 return (0); 882 } 883 884 void 885 dbuf_init(void) 886 { 887 uint64_t hsize = 1ULL << 16; 888 dbuf_hash_table_t *h = &dbuf_hash_table; 889 int i; 890 891 /* 892 * The hash table is big enough to fill one eighth of physical memory 893 * with an average block size of zfs_arc_average_blocksize (default 8K). 894 * By default, the table will take up 895 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 896 */ 897 while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8) 898 hsize <<= 1; 899 900 retry: 901 h->hash_table_mask = hsize - 1; 902 #if defined(_KERNEL) 903 /* 904 * Large allocations which do not require contiguous pages 905 * should be using vmem_alloc() in the linux kernel 906 */ 907 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP); 908 #else 909 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); 910 #endif 911 if (h->hash_table == NULL) { 912 /* XXX - we should really return an error instead of assert */ 913 ASSERT(hsize > (1ULL << 10)); 914 hsize >>= 1; 915 goto retry; 916 } 917 918 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 919 sizeof (dmu_buf_impl_t), 920 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 921 922 for (i = 0; i < DBUF_MUTEXES; i++) 923 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 924 925 dbuf_stats_init(h); 926 927 /* 928 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 929 * configuration is not required. 930 */ 931 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0); 932 933 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 934 multilist_create(&dbuf_caches[dcs].cache, 935 sizeof (dmu_buf_impl_t), 936 offsetof(dmu_buf_impl_t, db_cache_link), 937 dbuf_cache_multilist_index_func); 938 zfs_refcount_create(&dbuf_caches[dcs].size); 939 } 940 941 dbuf_evict_thread_exit = B_FALSE; 942 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 943 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 944 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 945 NULL, 0, &p0, TS_RUN, minclsyspri); 946 947 wmsum_init(&dbuf_sums.cache_count, 0); 948 wmsum_init(&dbuf_sums.cache_total_evicts, 0); 949 for (i = 0; i < DN_MAX_LEVELS; i++) { 950 wmsum_init(&dbuf_sums.cache_levels[i], 0); 951 wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0); 952 } 953 wmsum_init(&dbuf_sums.hash_hits, 0); 954 wmsum_init(&dbuf_sums.hash_misses, 0); 955 wmsum_init(&dbuf_sums.hash_collisions, 0); 956 wmsum_init(&dbuf_sums.hash_chains, 0); 957 wmsum_init(&dbuf_sums.hash_insert_race, 0); 958 wmsum_init(&dbuf_sums.metadata_cache_count, 0); 959 wmsum_init(&dbuf_sums.metadata_cache_overflow, 0); 960 961 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc", 962 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t), 963 KSTAT_FLAG_VIRTUAL); 964 if (dbuf_ksp != NULL) { 965 for (i = 0; i < DN_MAX_LEVELS; i++) { 966 snprintf(dbuf_stats.cache_levels[i].name, 967 KSTAT_STRLEN, "cache_level_%d", i); 968 dbuf_stats.cache_levels[i].data_type = 969 KSTAT_DATA_UINT64; 970 snprintf(dbuf_stats.cache_levels_bytes[i].name, 971 KSTAT_STRLEN, "cache_level_%d_bytes", i); 972 dbuf_stats.cache_levels_bytes[i].data_type = 973 KSTAT_DATA_UINT64; 974 } 975 dbuf_ksp->ks_data = &dbuf_stats; 976 dbuf_ksp->ks_update = dbuf_kstat_update; 977 kstat_install(dbuf_ksp); 978 } 979 } 980 981 void 982 dbuf_fini(void) 983 { 984 dbuf_hash_table_t *h = &dbuf_hash_table; 985 int i; 986 987 dbuf_stats_destroy(); 988 989 for (i = 0; i < DBUF_MUTEXES; i++) 990 mutex_destroy(&h->hash_mutexes[i]); 991 #if defined(_KERNEL) 992 /* 993 * Large allocations which do not require contiguous pages 994 * should be using vmem_free() in the linux kernel 995 */ 996 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 997 #else 998 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 999 #endif 1000 kmem_cache_destroy(dbuf_kmem_cache); 1001 taskq_destroy(dbu_evict_taskq); 1002 1003 mutex_enter(&dbuf_evict_lock); 1004 dbuf_evict_thread_exit = B_TRUE; 1005 while (dbuf_evict_thread_exit) { 1006 cv_signal(&dbuf_evict_cv); 1007 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 1008 } 1009 mutex_exit(&dbuf_evict_lock); 1010 1011 mutex_destroy(&dbuf_evict_lock); 1012 cv_destroy(&dbuf_evict_cv); 1013 1014 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 1015 zfs_refcount_destroy(&dbuf_caches[dcs].size); 1016 multilist_destroy(&dbuf_caches[dcs].cache); 1017 } 1018 1019 if (dbuf_ksp != NULL) { 1020 kstat_delete(dbuf_ksp); 1021 dbuf_ksp = NULL; 1022 } 1023 1024 wmsum_fini(&dbuf_sums.cache_count); 1025 wmsum_fini(&dbuf_sums.cache_total_evicts); 1026 for (i = 0; i < DN_MAX_LEVELS; i++) { 1027 wmsum_fini(&dbuf_sums.cache_levels[i]); 1028 wmsum_fini(&dbuf_sums.cache_levels_bytes[i]); 1029 } 1030 wmsum_fini(&dbuf_sums.hash_hits); 1031 wmsum_fini(&dbuf_sums.hash_misses); 1032 wmsum_fini(&dbuf_sums.hash_collisions); 1033 wmsum_fini(&dbuf_sums.hash_chains); 1034 wmsum_fini(&dbuf_sums.hash_insert_race); 1035 wmsum_fini(&dbuf_sums.metadata_cache_count); 1036 wmsum_fini(&dbuf_sums.metadata_cache_overflow); 1037 } 1038 1039 /* 1040 * Other stuff. 1041 */ 1042 1043 #ifdef ZFS_DEBUG 1044 static void 1045 dbuf_verify(dmu_buf_impl_t *db) 1046 { 1047 dnode_t *dn; 1048 dbuf_dirty_record_t *dr; 1049 uint32_t txg_prev; 1050 1051 ASSERT(MUTEX_HELD(&db->db_mtx)); 1052 1053 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 1054 return; 1055 1056 ASSERT(db->db_objset != NULL); 1057 DB_DNODE_ENTER(db); 1058 dn = DB_DNODE(db); 1059 if (dn == NULL) { 1060 ASSERT(db->db_parent == NULL); 1061 ASSERT(db->db_blkptr == NULL); 1062 } else { 1063 ASSERT3U(db->db.db_object, ==, dn->dn_object); 1064 ASSERT3P(db->db_objset, ==, dn->dn_objset); 1065 ASSERT3U(db->db_level, <, dn->dn_nlevels); 1066 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 1067 db->db_blkid == DMU_SPILL_BLKID || 1068 !avl_is_empty(&dn->dn_dbufs)); 1069 } 1070 if (db->db_blkid == DMU_BONUS_BLKID) { 1071 ASSERT(dn != NULL); 1072 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 1073 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 1074 } else if (db->db_blkid == DMU_SPILL_BLKID) { 1075 ASSERT(dn != NULL); 1076 ASSERT0(db->db.db_offset); 1077 } else { 1078 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 1079 } 1080 1081 if ((dr = list_head(&db->db_dirty_records)) != NULL) { 1082 ASSERT(dr->dr_dbuf == db); 1083 txg_prev = dr->dr_txg; 1084 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL; 1085 dr = list_next(&db->db_dirty_records, dr)) { 1086 ASSERT(dr->dr_dbuf == db); 1087 ASSERT(txg_prev > dr->dr_txg); 1088 txg_prev = dr->dr_txg; 1089 } 1090 } 1091 1092 /* 1093 * We can't assert that db_size matches dn_datablksz because it 1094 * can be momentarily different when another thread is doing 1095 * dnode_set_blksz(). 1096 */ 1097 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 1098 dr = db->db_data_pending; 1099 /* 1100 * It should only be modified in syncing context, so 1101 * make sure we only have one copy of the data. 1102 */ 1103 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 1104 } 1105 1106 /* verify db->db_blkptr */ 1107 if (db->db_blkptr) { 1108 if (db->db_parent == dn->dn_dbuf) { 1109 /* db is pointed to by the dnode */ 1110 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 1111 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 1112 ASSERT(db->db_parent == NULL); 1113 else 1114 ASSERT(db->db_parent != NULL); 1115 if (db->db_blkid != DMU_SPILL_BLKID) 1116 ASSERT3P(db->db_blkptr, ==, 1117 &dn->dn_phys->dn_blkptr[db->db_blkid]); 1118 } else { 1119 /* db is pointed to by an indirect block */ 1120 int epb __maybe_unused = db->db_parent->db.db_size >> 1121 SPA_BLKPTRSHIFT; 1122 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 1123 ASSERT3U(db->db_parent->db.db_object, ==, 1124 db->db.db_object); 1125 /* 1126 * dnode_grow_indblksz() can make this fail if we don't 1127 * have the parent's rwlock. XXX indblksz no longer 1128 * grows. safe to do this now? 1129 */ 1130 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) { 1131 ASSERT3P(db->db_blkptr, ==, 1132 ((blkptr_t *)db->db_parent->db.db_data + 1133 db->db_blkid % epb)); 1134 } 1135 } 1136 } 1137 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 1138 (db->db_buf == NULL || db->db_buf->b_data) && 1139 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 1140 db->db_state != DB_FILL && !dn->dn_free_txg) { 1141 /* 1142 * If the blkptr isn't set but they have nonzero data, 1143 * it had better be dirty, otherwise we'll lose that 1144 * data when we evict this buffer. 1145 * 1146 * There is an exception to this rule for indirect blocks; in 1147 * this case, if the indirect block is a hole, we fill in a few 1148 * fields on each of the child blocks (importantly, birth time) 1149 * to prevent hole birth times from being lost when you 1150 * partially fill in a hole. 1151 */ 1152 if (db->db_dirtycnt == 0) { 1153 if (db->db_level == 0) { 1154 uint64_t *buf = db->db.db_data; 1155 int i; 1156 1157 for (i = 0; i < db->db.db_size >> 3; i++) { 1158 ASSERT(buf[i] == 0); 1159 } 1160 } else { 1161 blkptr_t *bps = db->db.db_data; 1162 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 1163 db->db.db_size); 1164 /* 1165 * We want to verify that all the blkptrs in the 1166 * indirect block are holes, but we may have 1167 * automatically set up a few fields for them. 1168 * We iterate through each blkptr and verify 1169 * they only have those fields set. 1170 */ 1171 for (int i = 0; 1172 i < db->db.db_size / sizeof (blkptr_t); 1173 i++) { 1174 blkptr_t *bp = &bps[i]; 1175 ASSERT(ZIO_CHECKSUM_IS_ZERO( 1176 &bp->blk_cksum)); 1177 ASSERT( 1178 DVA_IS_EMPTY(&bp->blk_dva[0]) && 1179 DVA_IS_EMPTY(&bp->blk_dva[1]) && 1180 DVA_IS_EMPTY(&bp->blk_dva[2])); 1181 ASSERT0(bp->blk_fill); 1182 ASSERT0(bp->blk_pad[0]); 1183 ASSERT0(bp->blk_pad[1]); 1184 ASSERT(!BP_IS_EMBEDDED(bp)); 1185 ASSERT(BP_IS_HOLE(bp)); 1186 ASSERT0(bp->blk_phys_birth); 1187 } 1188 } 1189 } 1190 } 1191 DB_DNODE_EXIT(db); 1192 } 1193 #endif 1194 1195 static void 1196 dbuf_clear_data(dmu_buf_impl_t *db) 1197 { 1198 ASSERT(MUTEX_HELD(&db->db_mtx)); 1199 dbuf_evict_user(db); 1200 ASSERT3P(db->db_buf, ==, NULL); 1201 db->db.db_data = NULL; 1202 if (db->db_state != DB_NOFILL) { 1203 db->db_state = DB_UNCACHED; 1204 DTRACE_SET_STATE(db, "clear data"); 1205 } 1206 } 1207 1208 static void 1209 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 1210 { 1211 ASSERT(MUTEX_HELD(&db->db_mtx)); 1212 ASSERT(buf != NULL); 1213 1214 db->db_buf = buf; 1215 ASSERT(buf->b_data != NULL); 1216 db->db.db_data = buf->b_data; 1217 } 1218 1219 static arc_buf_t * 1220 dbuf_alloc_arcbuf(dmu_buf_impl_t *db) 1221 { 1222 spa_t *spa = db->db_objset->os_spa; 1223 1224 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 1225 } 1226 1227 /* 1228 * Loan out an arc_buf for read. Return the loaned arc_buf. 1229 */ 1230 arc_buf_t * 1231 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 1232 { 1233 arc_buf_t *abuf; 1234 1235 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1236 mutex_enter(&db->db_mtx); 1237 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) { 1238 int blksz = db->db.db_size; 1239 spa_t *spa = db->db_objset->os_spa; 1240 1241 mutex_exit(&db->db_mtx); 1242 abuf = arc_loan_buf(spa, B_FALSE, blksz); 1243 bcopy(db->db.db_data, abuf->b_data, blksz); 1244 } else { 1245 abuf = db->db_buf; 1246 arc_loan_inuse_buf(abuf, db); 1247 db->db_buf = NULL; 1248 dbuf_clear_data(db); 1249 mutex_exit(&db->db_mtx); 1250 } 1251 return (abuf); 1252 } 1253 1254 /* 1255 * Calculate which level n block references the data at the level 0 offset 1256 * provided. 1257 */ 1258 uint64_t 1259 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset) 1260 { 1261 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 1262 /* 1263 * The level n blkid is equal to the level 0 blkid divided by 1264 * the number of level 0s in a level n block. 1265 * 1266 * The level 0 blkid is offset >> datablkshift = 1267 * offset / 2^datablkshift. 1268 * 1269 * The number of level 0s in a level n is the number of block 1270 * pointers in an indirect block, raised to the power of level. 1271 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 1272 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 1273 * 1274 * Thus, the level n blkid is: offset / 1275 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT)))) 1276 * = offset / 2^(datablkshift + level * 1277 * (indblkshift - SPA_BLKPTRSHIFT)) 1278 * = offset >> (datablkshift + level * 1279 * (indblkshift - SPA_BLKPTRSHIFT)) 1280 */ 1281 1282 const unsigned exp = dn->dn_datablkshift + 1283 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT); 1284 1285 if (exp >= 8 * sizeof (offset)) { 1286 /* This only happens on the highest indirection level */ 1287 ASSERT3U(level, ==, dn->dn_nlevels - 1); 1288 return (0); 1289 } 1290 1291 ASSERT3U(exp, <, 8 * sizeof (offset)); 1292 1293 return (offset >> exp); 1294 } else { 1295 ASSERT3U(offset, <, dn->dn_datablksz); 1296 return (0); 1297 } 1298 } 1299 1300 /* 1301 * This function is used to lock the parent of the provided dbuf. This should be 1302 * used when modifying or reading db_blkptr. 1303 */ 1304 db_lock_type_t 1305 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, void *tag) 1306 { 1307 enum db_lock_type ret = DLT_NONE; 1308 if (db->db_parent != NULL) { 1309 rw_enter(&db->db_parent->db_rwlock, rw); 1310 ret = DLT_PARENT; 1311 } else if (dmu_objset_ds(db->db_objset) != NULL) { 1312 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw, 1313 tag); 1314 ret = DLT_OBJSET; 1315 } 1316 /* 1317 * We only return a DLT_NONE lock when it's the top-most indirect block 1318 * of the meta-dnode of the MOS. 1319 */ 1320 return (ret); 1321 } 1322 1323 /* 1324 * We need to pass the lock type in because it's possible that the block will 1325 * move from being the topmost indirect block in a dnode (and thus, have no 1326 * parent) to not the top-most via an indirection increase. This would cause a 1327 * panic if we didn't pass the lock type in. 1328 */ 1329 void 1330 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, void *tag) 1331 { 1332 if (type == DLT_PARENT) 1333 rw_exit(&db->db_parent->db_rwlock); 1334 else if (type == DLT_OBJSET) 1335 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag); 1336 } 1337 1338 static void 1339 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1340 arc_buf_t *buf, void *vdb) 1341 { 1342 dmu_buf_impl_t *db = vdb; 1343 1344 mutex_enter(&db->db_mtx); 1345 ASSERT3U(db->db_state, ==, DB_READ); 1346 /* 1347 * All reads are synchronous, so we must have a hold on the dbuf 1348 */ 1349 ASSERT(zfs_refcount_count(&db->db_holds) > 0); 1350 ASSERT(db->db_buf == NULL); 1351 ASSERT(db->db.db_data == NULL); 1352 if (buf == NULL) { 1353 /* i/o error */ 1354 ASSERT(zio == NULL || zio->io_error != 0); 1355 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1356 ASSERT3P(db->db_buf, ==, NULL); 1357 db->db_state = DB_UNCACHED; 1358 DTRACE_SET_STATE(db, "i/o error"); 1359 } else if (db->db_level == 0 && db->db_freed_in_flight) { 1360 /* freed in flight */ 1361 ASSERT(zio == NULL || zio->io_error == 0); 1362 arc_release(buf, db); 1363 bzero(buf->b_data, db->db.db_size); 1364 arc_buf_freeze(buf); 1365 db->db_freed_in_flight = FALSE; 1366 dbuf_set_data(db, buf); 1367 db->db_state = DB_CACHED; 1368 DTRACE_SET_STATE(db, "freed in flight"); 1369 } else { 1370 /* success */ 1371 ASSERT(zio == NULL || zio->io_error == 0); 1372 dbuf_set_data(db, buf); 1373 db->db_state = DB_CACHED; 1374 DTRACE_SET_STATE(db, "successful read"); 1375 } 1376 cv_broadcast(&db->db_changed); 1377 dbuf_rele_and_unlock(db, NULL, B_FALSE); 1378 } 1379 1380 /* 1381 * Shortcut for performing reads on bonus dbufs. Returns 1382 * an error if we fail to verify the dnode associated with 1383 * a decrypted block. Otherwise success. 1384 */ 1385 static int 1386 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags) 1387 { 1388 int bonuslen, max_bonuslen, err; 1389 1390 err = dbuf_read_verify_dnode_crypt(db, flags); 1391 if (err) 1392 return (err); 1393 1394 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 1395 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1396 ASSERT(MUTEX_HELD(&db->db_mtx)); 1397 ASSERT(DB_DNODE_HELD(db)); 1398 ASSERT3U(bonuslen, <=, db->db.db_size); 1399 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP); 1400 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS); 1401 if (bonuslen < max_bonuslen) 1402 bzero(db->db.db_data, max_bonuslen); 1403 if (bonuslen) 1404 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen); 1405 db->db_state = DB_CACHED; 1406 DTRACE_SET_STATE(db, "bonus buffer filled"); 1407 return (0); 1408 } 1409 1410 static void 1411 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn) 1412 { 1413 blkptr_t *bps = db->db.db_data; 1414 uint32_t indbs = 1ULL << dn->dn_indblkshift; 1415 int n_bps = indbs >> SPA_BLKPTRSHIFT; 1416 1417 for (int i = 0; i < n_bps; i++) { 1418 blkptr_t *bp = &bps[i]; 1419 1420 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, indbs); 1421 BP_SET_LSIZE(bp, BP_GET_LEVEL(db->db_blkptr) == 1 ? 1422 dn->dn_datablksz : BP_GET_LSIZE(db->db_blkptr)); 1423 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr)); 1424 BP_SET_LEVEL(bp, BP_GET_LEVEL(db->db_blkptr) - 1); 1425 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0); 1426 } 1427 } 1428 1429 /* 1430 * Handle reads on dbufs that are holes, if necessary. This function 1431 * requires that the dbuf's mutex is held. Returns success (0) if action 1432 * was taken, ENOENT if no action was taken. 1433 */ 1434 static int 1435 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags) 1436 { 1437 ASSERT(MUTEX_HELD(&db->db_mtx)); 1438 1439 int is_hole = db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr); 1440 /* 1441 * For level 0 blocks only, if the above check fails: 1442 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 1443 * processes the delete record and clears the bp while we are waiting 1444 * for the dn_mtx (resulting in a "no" from block_freed). 1445 */ 1446 if (!is_hole && db->db_level == 0) { 1447 is_hole = dnode_block_freed(dn, db->db_blkid) || 1448 BP_IS_HOLE(db->db_blkptr); 1449 } 1450 1451 if (is_hole) { 1452 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1453 bzero(db->db.db_data, db->db.db_size); 1454 1455 if (db->db_blkptr != NULL && db->db_level > 0 && 1456 BP_IS_HOLE(db->db_blkptr) && 1457 db->db_blkptr->blk_birth != 0) { 1458 dbuf_handle_indirect_hole(db, dn); 1459 } 1460 db->db_state = DB_CACHED; 1461 DTRACE_SET_STATE(db, "hole read satisfied"); 1462 return (0); 1463 } 1464 return (ENOENT); 1465 } 1466 1467 /* 1468 * This function ensures that, when doing a decrypting read of a block, 1469 * we make sure we have decrypted the dnode associated with it. We must do 1470 * this so that we ensure we are fully authenticating the checksum-of-MACs 1471 * tree from the root of the objset down to this block. Indirect blocks are 1472 * always verified against their secure checksum-of-MACs assuming that the 1473 * dnode containing them is correct. Now that we are doing a decrypting read, 1474 * we can be sure that the key is loaded and verify that assumption. This is 1475 * especially important considering that we always read encrypted dnode 1476 * blocks as raw data (without verifying their MACs) to start, and 1477 * decrypt / authenticate them when we need to read an encrypted bonus buffer. 1478 */ 1479 static int 1480 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags) 1481 { 1482 int err = 0; 1483 objset_t *os = db->db_objset; 1484 arc_buf_t *dnode_abuf; 1485 dnode_t *dn; 1486 zbookmark_phys_t zb; 1487 1488 ASSERT(MUTEX_HELD(&db->db_mtx)); 1489 1490 if (!os->os_encrypted || os->os_raw_receive || 1491 (flags & DB_RF_NO_DECRYPT) != 0) 1492 return (0); 1493 1494 DB_DNODE_ENTER(db); 1495 dn = DB_DNODE(db); 1496 dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL; 1497 1498 if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) { 1499 DB_DNODE_EXIT(db); 1500 return (0); 1501 } 1502 1503 SET_BOOKMARK(&zb, dmu_objset_id(os), 1504 DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid); 1505 err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE); 1506 1507 /* 1508 * An error code of EACCES tells us that the key is still not 1509 * available. This is ok if we are only reading authenticated 1510 * (and therefore non-encrypted) blocks. 1511 */ 1512 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID && 1513 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) || 1514 (db->db_blkid == DMU_BONUS_BLKID && 1515 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)))) 1516 err = 0; 1517 1518 DB_DNODE_EXIT(db); 1519 1520 return (err); 1521 } 1522 1523 /* 1524 * Drops db_mtx and the parent lock specified by dblt and tag before 1525 * returning. 1526 */ 1527 static int 1528 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags, 1529 db_lock_type_t dblt, void *tag) 1530 { 1531 dnode_t *dn; 1532 zbookmark_phys_t zb; 1533 uint32_t aflags = ARC_FLAG_NOWAIT; 1534 int err, zio_flags; 1535 1536 err = zio_flags = 0; 1537 DB_DNODE_ENTER(db); 1538 dn = DB_DNODE(db); 1539 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1540 ASSERT(MUTEX_HELD(&db->db_mtx)); 1541 ASSERT(db->db_state == DB_UNCACHED); 1542 ASSERT(db->db_buf == NULL); 1543 ASSERT(db->db_parent == NULL || 1544 RW_LOCK_HELD(&db->db_parent->db_rwlock)); 1545 1546 if (db->db_blkid == DMU_BONUS_BLKID) { 1547 err = dbuf_read_bonus(db, dn, flags); 1548 goto early_unlock; 1549 } 1550 1551 err = dbuf_read_hole(db, dn, flags); 1552 if (err == 0) 1553 goto early_unlock; 1554 1555 /* 1556 * Any attempt to read a redacted block should result in an error. This 1557 * will never happen under normal conditions, but can be useful for 1558 * debugging purposes. 1559 */ 1560 if (BP_IS_REDACTED(db->db_blkptr)) { 1561 ASSERT(dsl_dataset_feature_is_active( 1562 db->db_objset->os_dsl_dataset, 1563 SPA_FEATURE_REDACTED_DATASETS)); 1564 err = SET_ERROR(EIO); 1565 goto early_unlock; 1566 } 1567 1568 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1569 db->db.db_object, db->db_level, db->db_blkid); 1570 1571 /* 1572 * All bps of an encrypted os should have the encryption bit set. 1573 * If this is not true it indicates tampering and we report an error. 1574 */ 1575 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) { 1576 spa_log_error(db->db_objset->os_spa, &zb); 1577 zfs_panic_recover("unencrypted block in encrypted " 1578 "object set %llu", dmu_objset_id(db->db_objset)); 1579 err = SET_ERROR(EIO); 1580 goto early_unlock; 1581 } 1582 1583 err = dbuf_read_verify_dnode_crypt(db, flags); 1584 if (err != 0) 1585 goto early_unlock; 1586 1587 DB_DNODE_EXIT(db); 1588 1589 db->db_state = DB_READ; 1590 DTRACE_SET_STATE(db, "read issued"); 1591 mutex_exit(&db->db_mtx); 1592 1593 if (dbuf_is_l2cacheable(db)) 1594 aflags |= ARC_FLAG_L2CACHE; 1595 1596 dbuf_add_ref(db, NULL); 1597 1598 zio_flags = (flags & DB_RF_CANFAIL) ? 1599 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED; 1600 1601 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr)) 1602 zio_flags |= ZIO_FLAG_RAW; 1603 /* 1604 * The zio layer will copy the provided blkptr later, but we need to 1605 * do this now so that we can release the parent's rwlock. We have to 1606 * do that now so that if dbuf_read_done is called synchronously (on 1607 * an l1 cache hit) we don't acquire the db_mtx while holding the 1608 * parent's rwlock, which would be a lock ordering violation. 1609 */ 1610 blkptr_t bp = *db->db_blkptr; 1611 dmu_buf_unlock_parent(db, dblt, tag); 1612 (void) arc_read(zio, db->db_objset->os_spa, &bp, 1613 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags, 1614 &aflags, &zb); 1615 return (err); 1616 early_unlock: 1617 DB_DNODE_EXIT(db); 1618 mutex_exit(&db->db_mtx); 1619 dmu_buf_unlock_parent(db, dblt, tag); 1620 return (err); 1621 } 1622 1623 /* 1624 * This is our just-in-time copy function. It makes a copy of buffers that 1625 * have been modified in a previous transaction group before we access them in 1626 * the current active group. 1627 * 1628 * This function is used in three places: when we are dirtying a buffer for the 1629 * first time in a txg, when we are freeing a range in a dnode that includes 1630 * this buffer, and when we are accessing a buffer which was received compressed 1631 * and later referenced in a WRITE_BYREF record. 1632 * 1633 * Note that when we are called from dbuf_free_range() we do not put a hold on 1634 * the buffer, we just traverse the active dbuf list for the dnode. 1635 */ 1636 static void 1637 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1638 { 1639 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 1640 1641 ASSERT(MUTEX_HELD(&db->db_mtx)); 1642 ASSERT(db->db.db_data != NULL); 1643 ASSERT(db->db_level == 0); 1644 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1645 1646 if (dr == NULL || 1647 (dr->dt.dl.dr_data != 1648 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1649 return; 1650 1651 /* 1652 * If the last dirty record for this dbuf has not yet synced 1653 * and its referencing the dbuf data, either: 1654 * reset the reference to point to a new copy, 1655 * or (if there a no active holders) 1656 * just null out the current db_data pointer. 1657 */ 1658 ASSERT3U(dr->dr_txg, >=, txg - 2); 1659 if (db->db_blkid == DMU_BONUS_BLKID) { 1660 dnode_t *dn = DB_DNODE(db); 1661 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1662 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP); 1663 arc_space_consume(bonuslen, ARC_SPACE_BONUS); 1664 bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen); 1665 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) { 1666 dnode_t *dn = DB_DNODE(db); 1667 int size = arc_buf_size(db->db_buf); 1668 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1669 spa_t *spa = db->db_objset->os_spa; 1670 enum zio_compress compress_type = 1671 arc_get_compression(db->db_buf); 1672 uint8_t complevel = arc_get_complevel(db->db_buf); 1673 1674 if (arc_is_encrypted(db->db_buf)) { 1675 boolean_t byteorder; 1676 uint8_t salt[ZIO_DATA_SALT_LEN]; 1677 uint8_t iv[ZIO_DATA_IV_LEN]; 1678 uint8_t mac[ZIO_DATA_MAC_LEN]; 1679 1680 arc_get_raw_params(db->db_buf, &byteorder, salt, 1681 iv, mac); 1682 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db, 1683 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, 1684 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf), 1685 compress_type, complevel); 1686 } else if (compress_type != ZIO_COMPRESS_OFF) { 1687 ASSERT3U(type, ==, ARC_BUFC_DATA); 1688 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db, 1689 size, arc_buf_lsize(db->db_buf), compress_type, 1690 complevel); 1691 } else { 1692 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size); 1693 } 1694 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size); 1695 } else { 1696 db->db_buf = NULL; 1697 dbuf_clear_data(db); 1698 } 1699 } 1700 1701 int 1702 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 1703 { 1704 int err = 0; 1705 boolean_t prefetch; 1706 dnode_t *dn; 1707 1708 /* 1709 * We don't have to hold the mutex to check db_state because it 1710 * can't be freed while we have a hold on the buffer. 1711 */ 1712 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1713 1714 if (db->db_state == DB_NOFILL) 1715 return (SET_ERROR(EIO)); 1716 1717 DB_DNODE_ENTER(db); 1718 dn = DB_DNODE(db); 1719 1720 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1721 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL && 1722 DBUF_IS_CACHEABLE(db); 1723 1724 mutex_enter(&db->db_mtx); 1725 if (db->db_state == DB_CACHED) { 1726 spa_t *spa = dn->dn_objset->os_spa; 1727 1728 /* 1729 * Ensure that this block's dnode has been decrypted if 1730 * the caller has requested decrypted data. 1731 */ 1732 err = dbuf_read_verify_dnode_crypt(db, flags); 1733 1734 /* 1735 * If the arc buf is compressed or encrypted and the caller 1736 * requested uncompressed data, we need to untransform it 1737 * before returning. We also call arc_untransform() on any 1738 * unauthenticated blocks, which will verify their MAC if 1739 * the key is now available. 1740 */ 1741 if (err == 0 && db->db_buf != NULL && 1742 (flags & DB_RF_NO_DECRYPT) == 0 && 1743 (arc_is_encrypted(db->db_buf) || 1744 arc_is_unauthenticated(db->db_buf) || 1745 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) { 1746 zbookmark_phys_t zb; 1747 1748 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1749 db->db.db_object, db->db_level, db->db_blkid); 1750 dbuf_fix_old_data(db, spa_syncing_txg(spa)); 1751 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE); 1752 dbuf_set_data(db, db->db_buf); 1753 } 1754 mutex_exit(&db->db_mtx); 1755 if (err == 0 && prefetch) { 1756 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1757 B_FALSE, flags & DB_RF_HAVESTRUCT); 1758 } 1759 DB_DNODE_EXIT(db); 1760 DBUF_STAT_BUMP(hash_hits); 1761 } else if (db->db_state == DB_UNCACHED) { 1762 spa_t *spa = dn->dn_objset->os_spa; 1763 boolean_t need_wait = B_FALSE; 1764 1765 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 1766 1767 if (zio == NULL && 1768 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) { 1769 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1770 need_wait = B_TRUE; 1771 } 1772 err = dbuf_read_impl(db, zio, flags, dblt, FTAG); 1773 /* 1774 * dbuf_read_impl has dropped db_mtx and our parent's rwlock 1775 * for us 1776 */ 1777 if (!err && prefetch) { 1778 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1779 db->db_state != DB_CACHED, 1780 flags & DB_RF_HAVESTRUCT); 1781 } 1782 1783 DB_DNODE_EXIT(db); 1784 DBUF_STAT_BUMP(hash_misses); 1785 1786 /* 1787 * If we created a zio_root we must execute it to avoid 1788 * leaking it, even if it isn't attached to any work due 1789 * to an error in dbuf_read_impl(). 1790 */ 1791 if (need_wait) { 1792 if (err == 0) 1793 err = zio_wait(zio); 1794 else 1795 VERIFY0(zio_wait(zio)); 1796 } 1797 } else { 1798 /* 1799 * Another reader came in while the dbuf was in flight 1800 * between UNCACHED and CACHED. Either a writer will finish 1801 * writing the buffer (sending the dbuf to CACHED) or the 1802 * first reader's request will reach the read_done callback 1803 * and send the dbuf to CACHED. Otherwise, a failure 1804 * occurred and the dbuf went to UNCACHED. 1805 */ 1806 mutex_exit(&db->db_mtx); 1807 if (prefetch) { 1808 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1809 B_TRUE, flags & DB_RF_HAVESTRUCT); 1810 } 1811 DB_DNODE_EXIT(db); 1812 DBUF_STAT_BUMP(hash_misses); 1813 1814 /* Skip the wait per the caller's request. */ 1815 if ((flags & DB_RF_NEVERWAIT) == 0) { 1816 mutex_enter(&db->db_mtx); 1817 while (db->db_state == DB_READ || 1818 db->db_state == DB_FILL) { 1819 ASSERT(db->db_state == DB_READ || 1820 (flags & DB_RF_HAVESTRUCT) == 0); 1821 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, 1822 db, zio_t *, zio); 1823 cv_wait(&db->db_changed, &db->db_mtx); 1824 } 1825 if (db->db_state == DB_UNCACHED) 1826 err = SET_ERROR(EIO); 1827 mutex_exit(&db->db_mtx); 1828 } 1829 } 1830 1831 return (err); 1832 } 1833 1834 static void 1835 dbuf_noread(dmu_buf_impl_t *db) 1836 { 1837 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1838 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1839 mutex_enter(&db->db_mtx); 1840 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1841 cv_wait(&db->db_changed, &db->db_mtx); 1842 if (db->db_state == DB_UNCACHED) { 1843 ASSERT(db->db_buf == NULL); 1844 ASSERT(db->db.db_data == NULL); 1845 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1846 db->db_state = DB_FILL; 1847 DTRACE_SET_STATE(db, "assigning filled buffer"); 1848 } else if (db->db_state == DB_NOFILL) { 1849 dbuf_clear_data(db); 1850 } else { 1851 ASSERT3U(db->db_state, ==, DB_CACHED); 1852 } 1853 mutex_exit(&db->db_mtx); 1854 } 1855 1856 void 1857 dbuf_unoverride(dbuf_dirty_record_t *dr) 1858 { 1859 dmu_buf_impl_t *db = dr->dr_dbuf; 1860 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1861 uint64_t txg = dr->dr_txg; 1862 1863 ASSERT(MUTEX_HELD(&db->db_mtx)); 1864 /* 1865 * This assert is valid because dmu_sync() expects to be called by 1866 * a zilog's get_data while holding a range lock. This call only 1867 * comes from dbuf_dirty() callers who must also hold a range lock. 1868 */ 1869 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1870 ASSERT(db->db_level == 0); 1871 1872 if (db->db_blkid == DMU_BONUS_BLKID || 1873 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1874 return; 1875 1876 ASSERT(db->db_data_pending != dr); 1877 1878 /* free this block */ 1879 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1880 zio_free(db->db_objset->os_spa, txg, bp); 1881 1882 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1883 dr->dt.dl.dr_nopwrite = B_FALSE; 1884 dr->dt.dl.dr_has_raw_params = B_FALSE; 1885 1886 /* 1887 * Release the already-written buffer, so we leave it in 1888 * a consistent dirty state. Note that all callers are 1889 * modifying the buffer, so they will immediately do 1890 * another (redundant) arc_release(). Therefore, leave 1891 * the buf thawed to save the effort of freezing & 1892 * immediately re-thawing it. 1893 */ 1894 arc_release(dr->dt.dl.dr_data, db); 1895 } 1896 1897 /* 1898 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1899 * data blocks in the free range, so that any future readers will find 1900 * empty blocks. 1901 */ 1902 void 1903 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1904 dmu_tx_t *tx) 1905 { 1906 dmu_buf_impl_t *db_search; 1907 dmu_buf_impl_t *db, *db_next; 1908 uint64_t txg = tx->tx_txg; 1909 avl_index_t where; 1910 dbuf_dirty_record_t *dr; 1911 1912 if (end_blkid > dn->dn_maxblkid && 1913 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1914 end_blkid = dn->dn_maxblkid; 1915 dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid, 1916 (u_longlong_t)end_blkid); 1917 1918 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP); 1919 db_search->db_level = 0; 1920 db_search->db_blkid = start_blkid; 1921 db_search->db_state = DB_SEARCH; 1922 1923 mutex_enter(&dn->dn_dbufs_mtx); 1924 db = avl_find(&dn->dn_dbufs, db_search, &where); 1925 ASSERT3P(db, ==, NULL); 1926 1927 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1928 1929 for (; db != NULL; db = db_next) { 1930 db_next = AVL_NEXT(&dn->dn_dbufs, db); 1931 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1932 1933 if (db->db_level != 0 || db->db_blkid > end_blkid) { 1934 break; 1935 } 1936 ASSERT3U(db->db_blkid, >=, start_blkid); 1937 1938 /* found a level 0 buffer in the range */ 1939 mutex_enter(&db->db_mtx); 1940 if (dbuf_undirty(db, tx)) { 1941 /* mutex has been dropped and dbuf destroyed */ 1942 continue; 1943 } 1944 1945 if (db->db_state == DB_UNCACHED || 1946 db->db_state == DB_NOFILL || 1947 db->db_state == DB_EVICTING) { 1948 ASSERT(db->db.db_data == NULL); 1949 mutex_exit(&db->db_mtx); 1950 continue; 1951 } 1952 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 1953 /* will be handled in dbuf_read_done or dbuf_rele */ 1954 db->db_freed_in_flight = TRUE; 1955 mutex_exit(&db->db_mtx); 1956 continue; 1957 } 1958 if (zfs_refcount_count(&db->db_holds) == 0) { 1959 ASSERT(db->db_buf); 1960 dbuf_destroy(db); 1961 continue; 1962 } 1963 /* The dbuf is referenced */ 1964 1965 dr = list_head(&db->db_dirty_records); 1966 if (dr != NULL) { 1967 if (dr->dr_txg == txg) { 1968 /* 1969 * This buffer is "in-use", re-adjust the file 1970 * size to reflect that this buffer may 1971 * contain new data when we sync. 1972 */ 1973 if (db->db_blkid != DMU_SPILL_BLKID && 1974 db->db_blkid > dn->dn_maxblkid) 1975 dn->dn_maxblkid = db->db_blkid; 1976 dbuf_unoverride(dr); 1977 } else { 1978 /* 1979 * This dbuf is not dirty in the open context. 1980 * Either uncache it (if its not referenced in 1981 * the open context) or reset its contents to 1982 * empty. 1983 */ 1984 dbuf_fix_old_data(db, txg); 1985 } 1986 } 1987 /* clear the contents if its cached */ 1988 if (db->db_state == DB_CACHED) { 1989 ASSERT(db->db.db_data != NULL); 1990 arc_release(db->db_buf, db); 1991 rw_enter(&db->db_rwlock, RW_WRITER); 1992 bzero(db->db.db_data, db->db.db_size); 1993 rw_exit(&db->db_rwlock); 1994 arc_buf_freeze(db->db_buf); 1995 } 1996 1997 mutex_exit(&db->db_mtx); 1998 } 1999 2000 kmem_free(db_search, sizeof (dmu_buf_impl_t)); 2001 mutex_exit(&dn->dn_dbufs_mtx); 2002 } 2003 2004 void 2005 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 2006 { 2007 arc_buf_t *buf, *old_buf; 2008 dbuf_dirty_record_t *dr; 2009 int osize = db->db.db_size; 2010 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2011 dnode_t *dn; 2012 2013 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2014 2015 DB_DNODE_ENTER(db); 2016 dn = DB_DNODE(db); 2017 2018 /* 2019 * XXX we should be doing a dbuf_read, checking the return 2020 * value and returning that up to our callers 2021 */ 2022 dmu_buf_will_dirty(&db->db, tx); 2023 2024 /* create the data buffer for the new block */ 2025 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); 2026 2027 /* copy old block data to the new block */ 2028 old_buf = db->db_buf; 2029 bcopy(old_buf->b_data, buf->b_data, MIN(osize, size)); 2030 /* zero the remainder */ 2031 if (size > osize) 2032 bzero((uint8_t *)buf->b_data + osize, size - osize); 2033 2034 mutex_enter(&db->db_mtx); 2035 dbuf_set_data(db, buf); 2036 arc_buf_destroy(old_buf, db); 2037 db->db.db_size = size; 2038 2039 dr = list_head(&db->db_dirty_records); 2040 /* dirty record added by dmu_buf_will_dirty() */ 2041 VERIFY(dr != NULL); 2042 if (db->db_level == 0) 2043 dr->dt.dl.dr_data = buf; 2044 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2045 ASSERT3U(dr->dr_accounted, ==, osize); 2046 dr->dr_accounted = size; 2047 mutex_exit(&db->db_mtx); 2048 2049 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx); 2050 DB_DNODE_EXIT(db); 2051 } 2052 2053 void 2054 dbuf_release_bp(dmu_buf_impl_t *db) 2055 { 2056 objset_t *os __maybe_unused = db->db_objset; 2057 2058 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 2059 ASSERT(arc_released(os->os_phys_buf) || 2060 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 2061 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 2062 2063 (void) arc_release(db->db_buf, db); 2064 } 2065 2066 /* 2067 * We already have a dirty record for this TXG, and we are being 2068 * dirtied again. 2069 */ 2070 static void 2071 dbuf_redirty(dbuf_dirty_record_t *dr) 2072 { 2073 dmu_buf_impl_t *db = dr->dr_dbuf; 2074 2075 ASSERT(MUTEX_HELD(&db->db_mtx)); 2076 2077 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 2078 /* 2079 * If this buffer has already been written out, 2080 * we now need to reset its state. 2081 */ 2082 dbuf_unoverride(dr); 2083 if (db->db.db_object != DMU_META_DNODE_OBJECT && 2084 db->db_state != DB_NOFILL) { 2085 /* Already released on initial dirty, so just thaw. */ 2086 ASSERT(arc_released(db->db_buf)); 2087 arc_buf_thaw(db->db_buf); 2088 } 2089 } 2090 } 2091 2092 dbuf_dirty_record_t * 2093 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx) 2094 { 2095 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2096 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid); 2097 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE); 2098 ASSERT(dn->dn_maxblkid >= blkid); 2099 2100 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP); 2101 list_link_init(&dr->dr_dirty_node); 2102 list_link_init(&dr->dr_dbuf_node); 2103 dr->dr_dnode = dn; 2104 dr->dr_txg = tx->tx_txg; 2105 dr->dt.dll.dr_blkid = blkid; 2106 dr->dr_accounted = dn->dn_datablksz; 2107 2108 /* 2109 * There should not be any dbuf for the block that we're dirtying. 2110 * Otherwise the buffer contents could be inconsistent between the 2111 * dbuf and the lightweight dirty record. 2112 */ 2113 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid)); 2114 2115 mutex_enter(&dn->dn_mtx); 2116 int txgoff = tx->tx_txg & TXG_MASK; 2117 if (dn->dn_free_ranges[txgoff] != NULL) { 2118 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1); 2119 } 2120 2121 if (dn->dn_nlevels == 1) { 2122 ASSERT3U(blkid, <, dn->dn_nblkptr); 2123 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2124 mutex_exit(&dn->dn_mtx); 2125 rw_exit(&dn->dn_struct_rwlock); 2126 dnode_setdirty(dn, tx); 2127 } else { 2128 mutex_exit(&dn->dn_mtx); 2129 2130 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2131 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn, 2132 1, blkid >> epbs, FTAG); 2133 rw_exit(&dn->dn_struct_rwlock); 2134 if (parent_db == NULL) { 2135 kmem_free(dr, sizeof (*dr)); 2136 return (NULL); 2137 } 2138 int err = dbuf_read(parent_db, NULL, 2139 (DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2140 if (err != 0) { 2141 dbuf_rele(parent_db, FTAG); 2142 kmem_free(dr, sizeof (*dr)); 2143 return (NULL); 2144 } 2145 2146 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx); 2147 dbuf_rele(parent_db, FTAG); 2148 mutex_enter(&parent_dr->dt.di.dr_mtx); 2149 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg); 2150 list_insert_tail(&parent_dr->dt.di.dr_children, dr); 2151 mutex_exit(&parent_dr->dt.di.dr_mtx); 2152 dr->dr_parent = parent_dr; 2153 } 2154 2155 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx); 2156 2157 return (dr); 2158 } 2159 2160 dbuf_dirty_record_t * 2161 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2162 { 2163 dnode_t *dn; 2164 objset_t *os; 2165 dbuf_dirty_record_t *dr, *dr_next, *dr_head; 2166 int txgoff = tx->tx_txg & TXG_MASK; 2167 boolean_t drop_struct_rwlock = B_FALSE; 2168 2169 ASSERT(tx->tx_txg != 0); 2170 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2171 DMU_TX_DIRTY_BUF(tx, db); 2172 2173 DB_DNODE_ENTER(db); 2174 dn = DB_DNODE(db); 2175 /* 2176 * Shouldn't dirty a regular buffer in syncing context. Private 2177 * objects may be dirtied in syncing context, but only if they 2178 * were already pre-dirtied in open context. 2179 */ 2180 #ifdef ZFS_DEBUG 2181 if (dn->dn_objset->os_dsl_dataset != NULL) { 2182 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 2183 RW_READER, FTAG); 2184 } 2185 ASSERT(!dmu_tx_is_syncing(tx) || 2186 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 2187 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2188 dn->dn_objset->os_dsl_dataset == NULL); 2189 if (dn->dn_objset->os_dsl_dataset != NULL) 2190 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 2191 #endif 2192 /* 2193 * We make this assert for private objects as well, but after we 2194 * check if we're already dirty. They are allowed to re-dirty 2195 * in syncing context. 2196 */ 2197 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2198 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2199 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2200 2201 mutex_enter(&db->db_mtx); 2202 /* 2203 * XXX make this true for indirects too? The problem is that 2204 * transactions created with dmu_tx_create_assigned() from 2205 * syncing context don't bother holding ahead. 2206 */ 2207 ASSERT(db->db_level != 0 || 2208 db->db_state == DB_CACHED || db->db_state == DB_FILL || 2209 db->db_state == DB_NOFILL); 2210 2211 mutex_enter(&dn->dn_mtx); 2212 dnode_set_dirtyctx(dn, tx, db); 2213 if (tx->tx_txg > dn->dn_dirty_txg) 2214 dn->dn_dirty_txg = tx->tx_txg; 2215 mutex_exit(&dn->dn_mtx); 2216 2217 if (db->db_blkid == DMU_SPILL_BLKID) 2218 dn->dn_have_spill = B_TRUE; 2219 2220 /* 2221 * If this buffer is already dirty, we're done. 2222 */ 2223 dr_head = list_head(&db->db_dirty_records); 2224 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg || 2225 db->db.db_object == DMU_META_DNODE_OBJECT); 2226 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg); 2227 if (dr_next && dr_next->dr_txg == tx->tx_txg) { 2228 DB_DNODE_EXIT(db); 2229 2230 dbuf_redirty(dr_next); 2231 mutex_exit(&db->db_mtx); 2232 return (dr_next); 2233 } 2234 2235 /* 2236 * Only valid if not already dirty. 2237 */ 2238 ASSERT(dn->dn_object == 0 || 2239 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2240 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2241 2242 ASSERT3U(dn->dn_nlevels, >, db->db_level); 2243 2244 /* 2245 * We should only be dirtying in syncing context if it's the 2246 * mos or we're initializing the os or it's a special object. 2247 * However, we are allowed to dirty in syncing context provided 2248 * we already dirtied it in open context. Hence we must make 2249 * this assertion only if we're not already dirty. 2250 */ 2251 os = dn->dn_objset; 2252 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa)); 2253 #ifdef ZFS_DEBUG 2254 if (dn->dn_objset->os_dsl_dataset != NULL) 2255 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 2256 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2257 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 2258 if (dn->dn_objset->os_dsl_dataset != NULL) 2259 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 2260 #endif 2261 ASSERT(db->db.db_size != 0); 2262 2263 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2264 2265 if (db->db_blkid != DMU_BONUS_BLKID) { 2266 dmu_objset_willuse_space(os, db->db.db_size, tx); 2267 } 2268 2269 /* 2270 * If this buffer is dirty in an old transaction group we need 2271 * to make a copy of it so that the changes we make in this 2272 * transaction group won't leak out when we sync the older txg. 2273 */ 2274 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 2275 list_link_init(&dr->dr_dirty_node); 2276 list_link_init(&dr->dr_dbuf_node); 2277 dr->dr_dnode = dn; 2278 if (db->db_level == 0) { 2279 void *data_old = db->db_buf; 2280 2281 if (db->db_state != DB_NOFILL) { 2282 if (db->db_blkid == DMU_BONUS_BLKID) { 2283 dbuf_fix_old_data(db, tx->tx_txg); 2284 data_old = db->db.db_data; 2285 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 2286 /* 2287 * Release the data buffer from the cache so 2288 * that we can modify it without impacting 2289 * possible other users of this cached data 2290 * block. Note that indirect blocks and 2291 * private objects are not released until the 2292 * syncing state (since they are only modified 2293 * then). 2294 */ 2295 arc_release(db->db_buf, db); 2296 dbuf_fix_old_data(db, tx->tx_txg); 2297 data_old = db->db_buf; 2298 } 2299 ASSERT(data_old != NULL); 2300 } 2301 dr->dt.dl.dr_data = data_old; 2302 } else { 2303 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL); 2304 list_create(&dr->dt.di.dr_children, 2305 sizeof (dbuf_dirty_record_t), 2306 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 2307 } 2308 if (db->db_blkid != DMU_BONUS_BLKID) 2309 dr->dr_accounted = db->db.db_size; 2310 dr->dr_dbuf = db; 2311 dr->dr_txg = tx->tx_txg; 2312 list_insert_before(&db->db_dirty_records, dr_next, dr); 2313 2314 /* 2315 * We could have been freed_in_flight between the dbuf_noread 2316 * and dbuf_dirty. We win, as though the dbuf_noread() had 2317 * happened after the free. 2318 */ 2319 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2320 db->db_blkid != DMU_SPILL_BLKID) { 2321 mutex_enter(&dn->dn_mtx); 2322 if (dn->dn_free_ranges[txgoff] != NULL) { 2323 range_tree_clear(dn->dn_free_ranges[txgoff], 2324 db->db_blkid, 1); 2325 } 2326 mutex_exit(&dn->dn_mtx); 2327 db->db_freed_in_flight = FALSE; 2328 } 2329 2330 /* 2331 * This buffer is now part of this txg 2332 */ 2333 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 2334 db->db_dirtycnt += 1; 2335 ASSERT3U(db->db_dirtycnt, <=, 3); 2336 2337 mutex_exit(&db->db_mtx); 2338 2339 if (db->db_blkid == DMU_BONUS_BLKID || 2340 db->db_blkid == DMU_SPILL_BLKID) { 2341 mutex_enter(&dn->dn_mtx); 2342 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2343 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2344 mutex_exit(&dn->dn_mtx); 2345 dnode_setdirty(dn, tx); 2346 DB_DNODE_EXIT(db); 2347 return (dr); 2348 } 2349 2350 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 2351 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2352 drop_struct_rwlock = B_TRUE; 2353 } 2354 2355 /* 2356 * If we are overwriting a dedup BP, then unless it is snapshotted, 2357 * when we get to syncing context we will need to decrement its 2358 * refcount in the DDT. Prefetch the relevant DDT block so that 2359 * syncing context won't have to wait for the i/o. 2360 */ 2361 if (db->db_blkptr != NULL) { 2362 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 2363 ddt_prefetch(os->os_spa, db->db_blkptr); 2364 dmu_buf_unlock_parent(db, dblt, FTAG); 2365 } 2366 2367 /* 2368 * We need to hold the dn_struct_rwlock to make this assertion, 2369 * because it protects dn_phys / dn_next_nlevels from changing. 2370 */ 2371 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 2372 dn->dn_phys->dn_nlevels > db->db_level || 2373 dn->dn_next_nlevels[txgoff] > db->db_level || 2374 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 2375 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 2376 2377 2378 if (db->db_level == 0) { 2379 ASSERT(!db->db_objset->os_raw_receive || 2380 dn->dn_maxblkid >= db->db_blkid); 2381 dnode_new_blkid(dn, db->db_blkid, tx, 2382 drop_struct_rwlock, B_FALSE); 2383 ASSERT(dn->dn_maxblkid >= db->db_blkid); 2384 } 2385 2386 if (db->db_level+1 < dn->dn_nlevels) { 2387 dmu_buf_impl_t *parent = db->db_parent; 2388 dbuf_dirty_record_t *di; 2389 int parent_held = FALSE; 2390 2391 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 2392 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2393 parent = dbuf_hold_level(dn, db->db_level + 1, 2394 db->db_blkid >> epbs, FTAG); 2395 ASSERT(parent != NULL); 2396 parent_held = TRUE; 2397 } 2398 if (drop_struct_rwlock) 2399 rw_exit(&dn->dn_struct_rwlock); 2400 ASSERT3U(db->db_level + 1, ==, parent->db_level); 2401 di = dbuf_dirty(parent, tx); 2402 if (parent_held) 2403 dbuf_rele(parent, FTAG); 2404 2405 mutex_enter(&db->db_mtx); 2406 /* 2407 * Since we've dropped the mutex, it's possible that 2408 * dbuf_undirty() might have changed this out from under us. 2409 */ 2410 if (list_head(&db->db_dirty_records) == dr || 2411 dn->dn_object == DMU_META_DNODE_OBJECT) { 2412 mutex_enter(&di->dt.di.dr_mtx); 2413 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 2414 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2415 list_insert_tail(&di->dt.di.dr_children, dr); 2416 mutex_exit(&di->dt.di.dr_mtx); 2417 dr->dr_parent = di; 2418 } 2419 mutex_exit(&db->db_mtx); 2420 } else { 2421 ASSERT(db->db_level + 1 == dn->dn_nlevels); 2422 ASSERT(db->db_blkid < dn->dn_nblkptr); 2423 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 2424 mutex_enter(&dn->dn_mtx); 2425 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2426 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2427 mutex_exit(&dn->dn_mtx); 2428 if (drop_struct_rwlock) 2429 rw_exit(&dn->dn_struct_rwlock); 2430 } 2431 2432 dnode_setdirty(dn, tx); 2433 DB_DNODE_EXIT(db); 2434 return (dr); 2435 } 2436 2437 static void 2438 dbuf_undirty_bonus(dbuf_dirty_record_t *dr) 2439 { 2440 dmu_buf_impl_t *db = dr->dr_dbuf; 2441 2442 if (dr->dt.dl.dr_data != db->db.db_data) { 2443 struct dnode *dn = dr->dr_dnode; 2444 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 2445 2446 kmem_free(dr->dt.dl.dr_data, max_bonuslen); 2447 arc_space_return(max_bonuslen, ARC_SPACE_BONUS); 2448 } 2449 db->db_data_pending = NULL; 2450 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 2451 list_remove(&db->db_dirty_records, dr); 2452 if (dr->dr_dbuf->db_level != 0) { 2453 mutex_destroy(&dr->dt.di.dr_mtx); 2454 list_destroy(&dr->dt.di.dr_children); 2455 } 2456 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2457 ASSERT3U(db->db_dirtycnt, >, 0); 2458 db->db_dirtycnt -= 1; 2459 } 2460 2461 /* 2462 * Undirty a buffer in the transaction group referenced by the given 2463 * transaction. Return whether this evicted the dbuf. 2464 */ 2465 static boolean_t 2466 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2467 { 2468 uint64_t txg = tx->tx_txg; 2469 2470 ASSERT(txg != 0); 2471 2472 /* 2473 * Due to our use of dn_nlevels below, this can only be called 2474 * in open context, unless we are operating on the MOS. 2475 * From syncing context, dn_nlevels may be different from the 2476 * dn_nlevels used when dbuf was dirtied. 2477 */ 2478 ASSERT(db->db_objset == 2479 dmu_objset_pool(db->db_objset)->dp_meta_objset || 2480 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 2481 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2482 ASSERT0(db->db_level); 2483 ASSERT(MUTEX_HELD(&db->db_mtx)); 2484 2485 /* 2486 * If this buffer is not dirty, we're done. 2487 */ 2488 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg); 2489 if (dr == NULL) 2490 return (B_FALSE); 2491 ASSERT(dr->dr_dbuf == db); 2492 2493 dnode_t *dn = dr->dr_dnode; 2494 2495 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2496 2497 ASSERT(db->db.db_size != 0); 2498 2499 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 2500 dr->dr_accounted, txg); 2501 2502 list_remove(&db->db_dirty_records, dr); 2503 2504 /* 2505 * Note that there are three places in dbuf_dirty() 2506 * where this dirty record may be put on a list. 2507 * Make sure to do a list_remove corresponding to 2508 * every one of those list_insert calls. 2509 */ 2510 if (dr->dr_parent) { 2511 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 2512 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 2513 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 2514 } else if (db->db_blkid == DMU_SPILL_BLKID || 2515 db->db_level + 1 == dn->dn_nlevels) { 2516 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 2517 mutex_enter(&dn->dn_mtx); 2518 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 2519 mutex_exit(&dn->dn_mtx); 2520 } 2521 2522 if (db->db_state != DB_NOFILL) { 2523 dbuf_unoverride(dr); 2524 2525 ASSERT(db->db_buf != NULL); 2526 ASSERT(dr->dt.dl.dr_data != NULL); 2527 if (dr->dt.dl.dr_data != db->db_buf) 2528 arc_buf_destroy(dr->dt.dl.dr_data, db); 2529 } 2530 2531 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2532 2533 ASSERT(db->db_dirtycnt > 0); 2534 db->db_dirtycnt -= 1; 2535 2536 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 2537 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf)); 2538 dbuf_destroy(db); 2539 return (B_TRUE); 2540 } 2541 2542 return (B_FALSE); 2543 } 2544 2545 static void 2546 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx) 2547 { 2548 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2549 2550 ASSERT(tx->tx_txg != 0); 2551 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2552 2553 /* 2554 * Quick check for dirtiness. For already dirty blocks, this 2555 * reduces runtime of this function by >90%, and overall performance 2556 * by 50% for some workloads (e.g. file deletion with indirect blocks 2557 * cached). 2558 */ 2559 mutex_enter(&db->db_mtx); 2560 2561 if (db->db_state == DB_CACHED) { 2562 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2563 /* 2564 * It's possible that it is already dirty but not cached, 2565 * because there are some calls to dbuf_dirty() that don't 2566 * go through dmu_buf_will_dirty(). 2567 */ 2568 if (dr != NULL) { 2569 /* This dbuf is already dirty and cached. */ 2570 dbuf_redirty(dr); 2571 mutex_exit(&db->db_mtx); 2572 return; 2573 } 2574 } 2575 mutex_exit(&db->db_mtx); 2576 2577 DB_DNODE_ENTER(db); 2578 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 2579 flags |= DB_RF_HAVESTRUCT; 2580 DB_DNODE_EXIT(db); 2581 (void) dbuf_read(db, NULL, flags); 2582 (void) dbuf_dirty(db, tx); 2583 } 2584 2585 void 2586 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2587 { 2588 dmu_buf_will_dirty_impl(db_fake, 2589 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx); 2590 } 2591 2592 boolean_t 2593 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2594 { 2595 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2596 dbuf_dirty_record_t *dr; 2597 2598 mutex_enter(&db->db_mtx); 2599 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2600 mutex_exit(&db->db_mtx); 2601 return (dr != NULL); 2602 } 2603 2604 void 2605 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2606 { 2607 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2608 2609 db->db_state = DB_NOFILL; 2610 DTRACE_SET_STATE(db, "allocating NOFILL buffer"); 2611 dmu_buf_will_fill(db_fake, tx); 2612 } 2613 2614 void 2615 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2616 { 2617 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2618 2619 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2620 ASSERT(tx->tx_txg != 0); 2621 ASSERT(db->db_level == 0); 2622 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2623 2624 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 2625 dmu_tx_private_ok(tx)); 2626 2627 dbuf_noread(db); 2628 (void) dbuf_dirty(db, tx); 2629 } 2630 2631 /* 2632 * This function is effectively the same as dmu_buf_will_dirty(), but 2633 * indicates the caller expects raw encrypted data in the db, and provides 2634 * the crypt params (byteorder, salt, iv, mac) which should be stored in the 2635 * blkptr_t when this dbuf is written. This is only used for blocks of 2636 * dnodes, during raw receive. 2637 */ 2638 void 2639 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder, 2640 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx) 2641 { 2642 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2643 dbuf_dirty_record_t *dr; 2644 2645 /* 2646 * dr_has_raw_params is only processed for blocks of dnodes 2647 * (see dbuf_sync_dnode_leaf_crypt()). 2648 */ 2649 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 2650 ASSERT3U(db->db_level, ==, 0); 2651 ASSERT(db->db_objset->os_raw_receive); 2652 2653 dmu_buf_will_dirty_impl(db_fake, 2654 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx); 2655 2656 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2657 2658 ASSERT3P(dr, !=, NULL); 2659 2660 dr->dt.dl.dr_has_raw_params = B_TRUE; 2661 dr->dt.dl.dr_byteorder = byteorder; 2662 bcopy(salt, dr->dt.dl.dr_salt, ZIO_DATA_SALT_LEN); 2663 bcopy(iv, dr->dt.dl.dr_iv, ZIO_DATA_IV_LEN); 2664 bcopy(mac, dr->dt.dl.dr_mac, ZIO_DATA_MAC_LEN); 2665 } 2666 2667 static void 2668 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx) 2669 { 2670 struct dirty_leaf *dl; 2671 dbuf_dirty_record_t *dr; 2672 2673 dr = list_head(&db->db_dirty_records); 2674 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2675 dl = &dr->dt.dl; 2676 dl->dr_overridden_by = *bp; 2677 dl->dr_override_state = DR_OVERRIDDEN; 2678 dl->dr_overridden_by.blk_birth = dr->dr_txg; 2679 } 2680 2681 /* ARGSUSED */ 2682 void 2683 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx) 2684 { 2685 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2686 dbuf_states_t old_state; 2687 mutex_enter(&db->db_mtx); 2688 DBUF_VERIFY(db); 2689 2690 old_state = db->db_state; 2691 db->db_state = DB_CACHED; 2692 if (old_state == DB_FILL) { 2693 if (db->db_level == 0 && db->db_freed_in_flight) { 2694 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2695 /* we were freed while filling */ 2696 /* XXX dbuf_undirty? */ 2697 bzero(db->db.db_data, db->db.db_size); 2698 db->db_freed_in_flight = FALSE; 2699 DTRACE_SET_STATE(db, 2700 "fill done handling freed in flight"); 2701 } else { 2702 DTRACE_SET_STATE(db, "fill done"); 2703 } 2704 cv_broadcast(&db->db_changed); 2705 } 2706 mutex_exit(&db->db_mtx); 2707 } 2708 2709 void 2710 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 2711 bp_embedded_type_t etype, enum zio_compress comp, 2712 int uncompressed_size, int compressed_size, int byteorder, 2713 dmu_tx_t *tx) 2714 { 2715 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2716 struct dirty_leaf *dl; 2717 dmu_object_type_t type; 2718 dbuf_dirty_record_t *dr; 2719 2720 if (etype == BP_EMBEDDED_TYPE_DATA) { 2721 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 2722 SPA_FEATURE_EMBEDDED_DATA)); 2723 } 2724 2725 DB_DNODE_ENTER(db); 2726 type = DB_DNODE(db)->dn_type; 2727 DB_DNODE_EXIT(db); 2728 2729 ASSERT0(db->db_level); 2730 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2731 2732 dmu_buf_will_not_fill(dbuf, tx); 2733 2734 dr = list_head(&db->db_dirty_records); 2735 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2736 dl = &dr->dt.dl; 2737 encode_embedded_bp_compressed(&dl->dr_overridden_by, 2738 data, comp, uncompressed_size, compressed_size); 2739 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 2740 BP_SET_TYPE(&dl->dr_overridden_by, type); 2741 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 2742 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 2743 2744 dl->dr_override_state = DR_OVERRIDDEN; 2745 dl->dr_overridden_by.blk_birth = dr->dr_txg; 2746 } 2747 2748 void 2749 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx) 2750 { 2751 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2752 dmu_object_type_t type; 2753 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset, 2754 SPA_FEATURE_REDACTED_DATASETS)); 2755 2756 DB_DNODE_ENTER(db); 2757 type = DB_DNODE(db)->dn_type; 2758 DB_DNODE_EXIT(db); 2759 2760 ASSERT0(db->db_level); 2761 dmu_buf_will_not_fill(dbuf, tx); 2762 2763 blkptr_t bp = { { { {0} } } }; 2764 BP_SET_TYPE(&bp, type); 2765 BP_SET_LEVEL(&bp, 0); 2766 BP_SET_BIRTH(&bp, tx->tx_txg, 0); 2767 BP_SET_REDACTED(&bp); 2768 BPE_SET_LSIZE(&bp, dbuf->db_size); 2769 2770 dbuf_override_impl(db, &bp, tx); 2771 } 2772 2773 /* 2774 * Directly assign a provided arc buf to a given dbuf if it's not referenced 2775 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 2776 */ 2777 void 2778 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 2779 { 2780 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2781 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2782 ASSERT(db->db_level == 0); 2783 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); 2784 ASSERT(buf != NULL); 2785 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size); 2786 ASSERT(tx->tx_txg != 0); 2787 2788 arc_return_buf(buf, db); 2789 ASSERT(arc_released(buf)); 2790 2791 mutex_enter(&db->db_mtx); 2792 2793 while (db->db_state == DB_READ || db->db_state == DB_FILL) 2794 cv_wait(&db->db_changed, &db->db_mtx); 2795 2796 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); 2797 2798 if (db->db_state == DB_CACHED && 2799 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 2800 /* 2801 * In practice, we will never have a case where we have an 2802 * encrypted arc buffer while additional holds exist on the 2803 * dbuf. We don't handle this here so we simply assert that 2804 * fact instead. 2805 */ 2806 ASSERT(!arc_is_encrypted(buf)); 2807 mutex_exit(&db->db_mtx); 2808 (void) dbuf_dirty(db, tx); 2809 bcopy(buf->b_data, db->db.db_data, db->db.db_size); 2810 arc_buf_destroy(buf, db); 2811 return; 2812 } 2813 2814 if (db->db_state == DB_CACHED) { 2815 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 2816 2817 ASSERT(db->db_buf != NULL); 2818 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 2819 ASSERT(dr->dt.dl.dr_data == db->db_buf); 2820 2821 if (!arc_released(db->db_buf)) { 2822 ASSERT(dr->dt.dl.dr_override_state == 2823 DR_OVERRIDDEN); 2824 arc_release(db->db_buf, db); 2825 } 2826 dr->dt.dl.dr_data = buf; 2827 arc_buf_destroy(db->db_buf, db); 2828 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 2829 arc_release(db->db_buf, db); 2830 arc_buf_destroy(db->db_buf, db); 2831 } 2832 db->db_buf = NULL; 2833 } 2834 ASSERT(db->db_buf == NULL); 2835 dbuf_set_data(db, buf); 2836 db->db_state = DB_FILL; 2837 DTRACE_SET_STATE(db, "filling assigned arcbuf"); 2838 mutex_exit(&db->db_mtx); 2839 (void) dbuf_dirty(db, tx); 2840 dmu_buf_fill_done(&db->db, tx); 2841 } 2842 2843 void 2844 dbuf_destroy(dmu_buf_impl_t *db) 2845 { 2846 dnode_t *dn; 2847 dmu_buf_impl_t *parent = db->db_parent; 2848 dmu_buf_impl_t *dndb; 2849 2850 ASSERT(MUTEX_HELD(&db->db_mtx)); 2851 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 2852 2853 if (db->db_buf != NULL) { 2854 arc_buf_destroy(db->db_buf, db); 2855 db->db_buf = NULL; 2856 } 2857 2858 if (db->db_blkid == DMU_BONUS_BLKID) { 2859 int slots = DB_DNODE(db)->dn_num_slots; 2860 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots); 2861 if (db->db.db_data != NULL) { 2862 kmem_free(db->db.db_data, bonuslen); 2863 arc_space_return(bonuslen, ARC_SPACE_BONUS); 2864 db->db_state = DB_UNCACHED; 2865 DTRACE_SET_STATE(db, "buffer cleared"); 2866 } 2867 } 2868 2869 dbuf_clear_data(db); 2870 2871 if (multilist_link_active(&db->db_cache_link)) { 2872 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 2873 db->db_caching_status == DB_DBUF_METADATA_CACHE); 2874 2875 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 2876 (void) zfs_refcount_remove_many( 2877 &dbuf_caches[db->db_caching_status].size, 2878 db->db.db_size, db); 2879 2880 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 2881 DBUF_STAT_BUMPDOWN(metadata_cache_count); 2882 } else { 2883 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 2884 DBUF_STAT_BUMPDOWN(cache_count); 2885 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 2886 db->db.db_size); 2887 } 2888 db->db_caching_status = DB_NO_CACHE; 2889 } 2890 2891 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 2892 ASSERT(db->db_data_pending == NULL); 2893 ASSERT(list_is_empty(&db->db_dirty_records)); 2894 2895 db->db_state = DB_EVICTING; 2896 DTRACE_SET_STATE(db, "buffer eviction started"); 2897 db->db_blkptr = NULL; 2898 2899 /* 2900 * Now that db_state is DB_EVICTING, nobody else can find this via 2901 * the hash table. We can now drop db_mtx, which allows us to 2902 * acquire the dn_dbufs_mtx. 2903 */ 2904 mutex_exit(&db->db_mtx); 2905 2906 DB_DNODE_ENTER(db); 2907 dn = DB_DNODE(db); 2908 dndb = dn->dn_dbuf; 2909 if (db->db_blkid != DMU_BONUS_BLKID) { 2910 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 2911 if (needlock) 2912 mutex_enter_nested(&dn->dn_dbufs_mtx, 2913 NESTED_SINGLE); 2914 avl_remove(&dn->dn_dbufs, db); 2915 membar_producer(); 2916 DB_DNODE_EXIT(db); 2917 if (needlock) 2918 mutex_exit(&dn->dn_dbufs_mtx); 2919 /* 2920 * Decrementing the dbuf count means that the hold corresponding 2921 * to the removed dbuf is no longer discounted in dnode_move(), 2922 * so the dnode cannot be moved until after we release the hold. 2923 * The membar_producer() ensures visibility of the decremented 2924 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 2925 * release any lock. 2926 */ 2927 mutex_enter(&dn->dn_mtx); 2928 dnode_rele_and_unlock(dn, db, B_TRUE); 2929 db->db_dnode_handle = NULL; 2930 2931 dbuf_hash_remove(db); 2932 } else { 2933 DB_DNODE_EXIT(db); 2934 } 2935 2936 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 2937 2938 db->db_parent = NULL; 2939 2940 ASSERT(db->db_buf == NULL); 2941 ASSERT(db->db.db_data == NULL); 2942 ASSERT(db->db_hash_next == NULL); 2943 ASSERT(db->db_blkptr == NULL); 2944 ASSERT(db->db_data_pending == NULL); 2945 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 2946 ASSERT(!multilist_link_active(&db->db_cache_link)); 2947 2948 kmem_cache_free(dbuf_kmem_cache, db); 2949 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 2950 2951 /* 2952 * If this dbuf is referenced from an indirect dbuf, 2953 * decrement the ref count on the indirect dbuf. 2954 */ 2955 if (parent && parent != dndb) { 2956 mutex_enter(&parent->db_mtx); 2957 dbuf_rele_and_unlock(parent, db, B_TRUE); 2958 } 2959 } 2960 2961 /* 2962 * Note: While bpp will always be updated if the function returns success, 2963 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 2964 * this happens when the dnode is the meta-dnode, or {user|group|project}used 2965 * object. 2966 */ 2967 __attribute__((always_inline)) 2968 static inline int 2969 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 2970 dmu_buf_impl_t **parentp, blkptr_t **bpp) 2971 { 2972 *parentp = NULL; 2973 *bpp = NULL; 2974 2975 ASSERT(blkid != DMU_BONUS_BLKID); 2976 2977 if (blkid == DMU_SPILL_BLKID) { 2978 mutex_enter(&dn->dn_mtx); 2979 if (dn->dn_have_spill && 2980 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 2981 *bpp = DN_SPILL_BLKPTR(dn->dn_phys); 2982 else 2983 *bpp = NULL; 2984 dbuf_add_ref(dn->dn_dbuf, NULL); 2985 *parentp = dn->dn_dbuf; 2986 mutex_exit(&dn->dn_mtx); 2987 return (0); 2988 } 2989 2990 int nlevels = 2991 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; 2992 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2993 2994 ASSERT3U(level * epbs, <, 64); 2995 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2996 /* 2997 * This assertion shouldn't trip as long as the max indirect block size 2998 * is less than 1M. The reason for this is that up to that point, 2999 * the number of levels required to address an entire object with blocks 3000 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In 3001 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 3002 * (i.e. we can address the entire object), objects will all use at most 3003 * N-1 levels and the assertion won't overflow. However, once epbs is 3004 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be 3005 * enough to address an entire object, so objects will have 5 levels, 3006 * but then this assertion will overflow. 3007 * 3008 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we 3009 * need to redo this logic to handle overflows. 3010 */ 3011 ASSERT(level >= nlevels || 3012 ((nlevels - level - 1) * epbs) + 3013 highbit64(dn->dn_phys->dn_nblkptr) <= 64); 3014 if (level >= nlevels || 3015 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << 3016 ((nlevels - level - 1) * epbs)) || 3017 (fail_sparse && 3018 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 3019 /* the buffer has no parent yet */ 3020 return (SET_ERROR(ENOENT)); 3021 } else if (level < nlevels-1) { 3022 /* this block is referenced from an indirect block */ 3023 int err; 3024 3025 err = dbuf_hold_impl(dn, level + 1, 3026 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 3027 3028 if (err) 3029 return (err); 3030 err = dbuf_read(*parentp, NULL, 3031 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 3032 if (err) { 3033 dbuf_rele(*parentp, NULL); 3034 *parentp = NULL; 3035 return (err); 3036 } 3037 rw_enter(&(*parentp)->db_rwlock, RW_READER); 3038 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 3039 (blkid & ((1ULL << epbs) - 1)); 3040 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs))) 3041 ASSERT(BP_IS_HOLE(*bpp)); 3042 rw_exit(&(*parentp)->db_rwlock); 3043 return (0); 3044 } else { 3045 /* the block is referenced from the dnode */ 3046 ASSERT3U(level, ==, nlevels-1); 3047 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 3048 blkid < dn->dn_phys->dn_nblkptr); 3049 if (dn->dn_dbuf) { 3050 dbuf_add_ref(dn->dn_dbuf, NULL); 3051 *parentp = dn->dn_dbuf; 3052 } 3053 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 3054 return (0); 3055 } 3056 } 3057 3058 static dmu_buf_impl_t * 3059 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 3060 dmu_buf_impl_t *parent, blkptr_t *blkptr) 3061 { 3062 objset_t *os = dn->dn_objset; 3063 dmu_buf_impl_t *db, *odb; 3064 3065 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3066 ASSERT(dn->dn_type != DMU_OT_NONE); 3067 3068 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 3069 3070 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t), 3071 offsetof(dbuf_dirty_record_t, dr_dbuf_node)); 3072 3073 db->db_objset = os; 3074 db->db.db_object = dn->dn_object; 3075 db->db_level = level; 3076 db->db_blkid = blkid; 3077 db->db_dirtycnt = 0; 3078 db->db_dnode_handle = dn->dn_handle; 3079 db->db_parent = parent; 3080 db->db_blkptr = blkptr; 3081 3082 db->db_user = NULL; 3083 db->db_user_immediate_evict = FALSE; 3084 db->db_freed_in_flight = FALSE; 3085 db->db_pending_evict = FALSE; 3086 3087 if (blkid == DMU_BONUS_BLKID) { 3088 ASSERT3P(parent, ==, dn->dn_dbuf); 3089 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 3090 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 3091 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 3092 db->db.db_offset = DMU_BONUS_BLKID; 3093 db->db_state = DB_UNCACHED; 3094 DTRACE_SET_STATE(db, "bonus buffer created"); 3095 db->db_caching_status = DB_NO_CACHE; 3096 /* the bonus dbuf is not placed in the hash table */ 3097 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3098 return (db); 3099 } else if (blkid == DMU_SPILL_BLKID) { 3100 db->db.db_size = (blkptr != NULL) ? 3101 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 3102 db->db.db_offset = 0; 3103 } else { 3104 int blocksize = 3105 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 3106 db->db.db_size = blocksize; 3107 db->db.db_offset = db->db_blkid * blocksize; 3108 } 3109 3110 /* 3111 * Hold the dn_dbufs_mtx while we get the new dbuf 3112 * in the hash table *and* added to the dbufs list. 3113 * This prevents a possible deadlock with someone 3114 * trying to look up this dbuf before it's added to the 3115 * dn_dbufs list. 3116 */ 3117 mutex_enter(&dn->dn_dbufs_mtx); 3118 db->db_state = DB_EVICTING; /* not worth logging this state change */ 3119 if ((odb = dbuf_hash_insert(db)) != NULL) { 3120 /* someone else inserted it first */ 3121 mutex_exit(&dn->dn_dbufs_mtx); 3122 kmem_cache_free(dbuf_kmem_cache, db); 3123 DBUF_STAT_BUMP(hash_insert_race); 3124 return (odb); 3125 } 3126 avl_add(&dn->dn_dbufs, db); 3127 3128 db->db_state = DB_UNCACHED; 3129 DTRACE_SET_STATE(db, "regular buffer created"); 3130 db->db_caching_status = DB_NO_CACHE; 3131 mutex_exit(&dn->dn_dbufs_mtx); 3132 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3133 3134 if (parent && parent != dn->dn_dbuf) 3135 dbuf_add_ref(parent, db); 3136 3137 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 3138 zfs_refcount_count(&dn->dn_holds) > 0); 3139 (void) zfs_refcount_add(&dn->dn_holds, db); 3140 3141 dprintf_dbuf(db, "db=%p\n", db); 3142 3143 return (db); 3144 } 3145 3146 /* 3147 * This function returns a block pointer and information about the object, 3148 * given a dnode and a block. This is a publicly accessible version of 3149 * dbuf_findbp that only returns some information, rather than the 3150 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock 3151 * should be locked as (at least) a reader. 3152 */ 3153 int 3154 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid, 3155 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift) 3156 { 3157 dmu_buf_impl_t *dbp = NULL; 3158 blkptr_t *bp2; 3159 int err = 0; 3160 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3161 3162 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2); 3163 if (err == 0) { 3164 *bp = *bp2; 3165 if (dbp != NULL) 3166 dbuf_rele(dbp, NULL); 3167 if (datablkszsec != NULL) 3168 *datablkszsec = dn->dn_phys->dn_datablkszsec; 3169 if (indblkshift != NULL) 3170 *indblkshift = dn->dn_phys->dn_indblkshift; 3171 } 3172 3173 return (err); 3174 } 3175 3176 typedef struct dbuf_prefetch_arg { 3177 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 3178 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 3179 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 3180 int dpa_curlevel; /* The current level that we're reading */ 3181 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 3182 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 3183 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 3184 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 3185 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */ 3186 void *dpa_arg; /* prefetch completion arg */ 3187 } dbuf_prefetch_arg_t; 3188 3189 static void 3190 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done) 3191 { 3192 if (dpa->dpa_cb != NULL) 3193 dpa->dpa_cb(dpa->dpa_arg, io_done); 3194 kmem_free(dpa, sizeof (*dpa)); 3195 } 3196 3197 static void 3198 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb, 3199 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3200 { 3201 dbuf_prefetch_arg_t *dpa = private; 3202 3203 dbuf_prefetch_fini(dpa, B_TRUE); 3204 if (abuf != NULL) 3205 arc_buf_destroy(abuf, private); 3206 } 3207 3208 /* 3209 * Actually issue the prefetch read for the block given. 3210 */ 3211 static void 3212 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 3213 { 3214 ASSERT(!BP_IS_REDACTED(bp) || 3215 dsl_dataset_feature_is_active( 3216 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3217 SPA_FEATURE_REDACTED_DATASETS)); 3218 3219 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp)) 3220 return (dbuf_prefetch_fini(dpa, B_FALSE)); 3221 3222 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 3223 arc_flags_t aflags = 3224 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH | 3225 ARC_FLAG_NO_BUF; 3226 3227 /* dnodes are always read as raw and then converted later */ 3228 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) && 3229 dpa->dpa_curlevel == 0) 3230 zio_flags |= ZIO_FLAG_RAW; 3231 3232 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3233 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 3234 ASSERT(dpa->dpa_zio != NULL); 3235 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, 3236 dbuf_issue_final_prefetch_done, dpa, 3237 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb); 3238 } 3239 3240 /* 3241 * Called when an indirect block above our prefetch target is read in. This 3242 * will either read in the next indirect block down the tree or issue the actual 3243 * prefetch if the next block down is our target. 3244 */ 3245 static void 3246 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb, 3247 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3248 { 3249 dbuf_prefetch_arg_t *dpa = private; 3250 3251 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 3252 ASSERT3S(dpa->dpa_curlevel, >, 0); 3253 3254 if (abuf == NULL) { 3255 ASSERT(zio == NULL || zio->io_error != 0); 3256 return (dbuf_prefetch_fini(dpa, B_TRUE)); 3257 } 3258 ASSERT(zio == NULL || zio->io_error == 0); 3259 3260 /* 3261 * The dpa_dnode is only valid if we are called with a NULL 3262 * zio. This indicates that the arc_read() returned without 3263 * first calling zio_read() to issue a physical read. Once 3264 * a physical read is made the dpa_dnode must be invalidated 3265 * as the locks guarding it may have been dropped. If the 3266 * dpa_dnode is still valid, then we want to add it to the dbuf 3267 * cache. To do so, we must hold the dbuf associated with the block 3268 * we just prefetched, read its contents so that we associate it 3269 * with an arc_buf_t, and then release it. 3270 */ 3271 if (zio != NULL) { 3272 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 3273 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) { 3274 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 3275 } else { 3276 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 3277 } 3278 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 3279 3280 dpa->dpa_dnode = NULL; 3281 } else if (dpa->dpa_dnode != NULL) { 3282 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 3283 (dpa->dpa_epbs * (dpa->dpa_curlevel - 3284 dpa->dpa_zb.zb_level)); 3285 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 3286 dpa->dpa_curlevel, curblkid, FTAG); 3287 if (db == NULL) { 3288 arc_buf_destroy(abuf, private); 3289 return (dbuf_prefetch_fini(dpa, B_TRUE)); 3290 } 3291 (void) dbuf_read(db, NULL, 3292 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); 3293 dbuf_rele(db, FTAG); 3294 } 3295 3296 dpa->dpa_curlevel--; 3297 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 3298 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 3299 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 3300 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 3301 3302 ASSERT(!BP_IS_REDACTED(bp) || 3303 dsl_dataset_feature_is_active( 3304 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3305 SPA_FEATURE_REDACTED_DATASETS)); 3306 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) { 3307 dbuf_prefetch_fini(dpa, B_TRUE); 3308 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 3309 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 3310 dbuf_issue_final_prefetch(dpa, bp); 3311 } else { 3312 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3313 zbookmark_phys_t zb; 3314 3315 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3316 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE) 3317 iter_aflags |= ARC_FLAG_L2CACHE; 3318 3319 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3320 3321 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 3322 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 3323 3324 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3325 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio, 3326 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3327 &iter_aflags, &zb); 3328 } 3329 3330 arc_buf_destroy(abuf, private); 3331 } 3332 3333 /* 3334 * Issue prefetch reads for the given block on the given level. If the indirect 3335 * blocks above that block are not in memory, we will read them in 3336 * asynchronously. As a result, this call never blocks waiting for a read to 3337 * complete. Note that the prefetch might fail if the dataset is encrypted and 3338 * the encryption key is unmapped before the IO completes. 3339 */ 3340 int 3341 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid, 3342 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb, 3343 void *arg) 3344 { 3345 blkptr_t bp; 3346 int epbs, nlevels, curlevel; 3347 uint64_t curblkid; 3348 3349 ASSERT(blkid != DMU_BONUS_BLKID); 3350 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3351 3352 if (blkid > dn->dn_maxblkid) 3353 goto no_issue; 3354 3355 if (level == 0 && dnode_block_freed(dn, blkid)) 3356 goto no_issue; 3357 3358 /* 3359 * This dnode hasn't been written to disk yet, so there's nothing to 3360 * prefetch. 3361 */ 3362 nlevels = dn->dn_phys->dn_nlevels; 3363 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 3364 goto no_issue; 3365 3366 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3367 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 3368 goto no_issue; 3369 3370 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 3371 level, blkid); 3372 if (db != NULL) { 3373 mutex_exit(&db->db_mtx); 3374 /* 3375 * This dbuf already exists. It is either CACHED, or 3376 * (we assume) about to be read or filled. 3377 */ 3378 goto no_issue; 3379 } 3380 3381 /* 3382 * Find the closest ancestor (indirect block) of the target block 3383 * that is present in the cache. In this indirect block, we will 3384 * find the bp that is at curlevel, curblkid. 3385 */ 3386 curlevel = level; 3387 curblkid = blkid; 3388 while (curlevel < nlevels - 1) { 3389 int parent_level = curlevel + 1; 3390 uint64_t parent_blkid = curblkid >> epbs; 3391 dmu_buf_impl_t *db; 3392 3393 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 3394 FALSE, TRUE, FTAG, &db) == 0) { 3395 blkptr_t *bpp = db->db_buf->b_data; 3396 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 3397 dbuf_rele(db, FTAG); 3398 break; 3399 } 3400 3401 curlevel = parent_level; 3402 curblkid = parent_blkid; 3403 } 3404 3405 if (curlevel == nlevels - 1) { 3406 /* No cached indirect blocks found. */ 3407 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 3408 bp = dn->dn_phys->dn_blkptr[curblkid]; 3409 } 3410 ASSERT(!BP_IS_REDACTED(&bp) || 3411 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset, 3412 SPA_FEATURE_REDACTED_DATASETS)); 3413 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp)) 3414 goto no_issue; 3415 3416 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 3417 3418 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 3419 ZIO_FLAG_CANFAIL); 3420 3421 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 3422 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 3423 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3424 dn->dn_object, level, blkid); 3425 dpa->dpa_curlevel = curlevel; 3426 dpa->dpa_prio = prio; 3427 dpa->dpa_aflags = aflags; 3428 dpa->dpa_spa = dn->dn_objset->os_spa; 3429 dpa->dpa_dnode = dn; 3430 dpa->dpa_epbs = epbs; 3431 dpa->dpa_zio = pio; 3432 dpa->dpa_cb = cb; 3433 dpa->dpa_arg = arg; 3434 3435 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3436 if (dnode_level_is_l2cacheable(&bp, dn, level)) 3437 dpa->dpa_aflags |= ARC_FLAG_L2CACHE; 3438 3439 /* 3440 * If we have the indirect just above us, no need to do the asynchronous 3441 * prefetch chain; we'll just run the last step ourselves. If we're at 3442 * a higher level, though, we want to issue the prefetches for all the 3443 * indirect blocks asynchronously, so we can go on with whatever we were 3444 * doing. 3445 */ 3446 if (curlevel == level) { 3447 ASSERT3U(curblkid, ==, blkid); 3448 dbuf_issue_final_prefetch(dpa, &bp); 3449 } else { 3450 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3451 zbookmark_phys_t zb; 3452 3453 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3454 if (dnode_level_is_l2cacheable(&bp, dn, level)) 3455 iter_aflags |= ARC_FLAG_L2CACHE; 3456 3457 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3458 dn->dn_object, curlevel, curblkid); 3459 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3460 &bp, dbuf_prefetch_indirect_done, dpa, prio, 3461 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3462 &iter_aflags, &zb); 3463 } 3464 /* 3465 * We use pio here instead of dpa_zio since it's possible that 3466 * dpa may have already been freed. 3467 */ 3468 zio_nowait(pio); 3469 return (1); 3470 no_issue: 3471 if (cb != NULL) 3472 cb(arg, B_FALSE); 3473 return (0); 3474 } 3475 3476 int 3477 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 3478 arc_flags_t aflags) 3479 { 3480 3481 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL)); 3482 } 3483 3484 /* 3485 * Helper function for dbuf_hold_impl() to copy a buffer. Handles 3486 * the case of encrypted, compressed and uncompressed buffers by 3487 * allocating the new buffer, respectively, with arc_alloc_raw_buf(), 3488 * arc_alloc_compressed_buf() or arc_alloc_buf().* 3489 * 3490 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl(). 3491 */ 3492 noinline static void 3493 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db) 3494 { 3495 dbuf_dirty_record_t *dr = db->db_data_pending; 3496 arc_buf_t *data = dr->dt.dl.dr_data; 3497 enum zio_compress compress_type = arc_get_compression(data); 3498 uint8_t complevel = arc_get_complevel(data); 3499 3500 if (arc_is_encrypted(data)) { 3501 boolean_t byteorder; 3502 uint8_t salt[ZIO_DATA_SALT_LEN]; 3503 uint8_t iv[ZIO_DATA_IV_LEN]; 3504 uint8_t mac[ZIO_DATA_MAC_LEN]; 3505 3506 arc_get_raw_params(data, &byteorder, salt, iv, mac); 3507 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db, 3508 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac, 3509 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data), 3510 compress_type, complevel)); 3511 } else if (compress_type != ZIO_COMPRESS_OFF) { 3512 dbuf_set_data(db, arc_alloc_compressed_buf( 3513 dn->dn_objset->os_spa, db, arc_buf_size(data), 3514 arc_buf_lsize(data), compress_type, complevel)); 3515 } else { 3516 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db, 3517 DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 3518 } 3519 3520 rw_enter(&db->db_rwlock, RW_WRITER); 3521 bcopy(data->b_data, db->db.db_data, arc_buf_size(data)); 3522 rw_exit(&db->db_rwlock); 3523 } 3524 3525 /* 3526 * Returns with db_holds incremented, and db_mtx not held. 3527 * Note: dn_struct_rwlock must be held. 3528 */ 3529 int 3530 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 3531 boolean_t fail_sparse, boolean_t fail_uncached, 3532 void *tag, dmu_buf_impl_t **dbp) 3533 { 3534 dmu_buf_impl_t *db, *parent = NULL; 3535 3536 /* If the pool has been created, verify the tx_sync_lock is not held */ 3537 spa_t *spa = dn->dn_objset->os_spa; 3538 dsl_pool_t *dp = spa->spa_dsl_pool; 3539 if (dp != NULL) { 3540 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock)); 3541 } 3542 3543 ASSERT(blkid != DMU_BONUS_BLKID); 3544 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3545 ASSERT3U(dn->dn_nlevels, >, level); 3546 3547 *dbp = NULL; 3548 3549 /* dbuf_find() returns with db_mtx held */ 3550 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid); 3551 3552 if (db == NULL) { 3553 blkptr_t *bp = NULL; 3554 int err; 3555 3556 if (fail_uncached) 3557 return (SET_ERROR(ENOENT)); 3558 3559 ASSERT3P(parent, ==, NULL); 3560 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 3561 if (fail_sparse) { 3562 if (err == 0 && bp && BP_IS_HOLE(bp)) 3563 err = SET_ERROR(ENOENT); 3564 if (err) { 3565 if (parent) 3566 dbuf_rele(parent, NULL); 3567 return (err); 3568 } 3569 } 3570 if (err && err != ENOENT) 3571 return (err); 3572 db = dbuf_create(dn, level, blkid, parent, bp); 3573 } 3574 3575 if (fail_uncached && db->db_state != DB_CACHED) { 3576 mutex_exit(&db->db_mtx); 3577 return (SET_ERROR(ENOENT)); 3578 } 3579 3580 if (db->db_buf != NULL) { 3581 arc_buf_access(db->db_buf); 3582 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 3583 } 3584 3585 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 3586 3587 /* 3588 * If this buffer is currently syncing out, and we are 3589 * still referencing it from db_data, we need to make a copy 3590 * of it in case we decide we want to dirty it again in this txg. 3591 */ 3592 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 3593 dn->dn_object != DMU_META_DNODE_OBJECT && 3594 db->db_state == DB_CACHED && db->db_data_pending) { 3595 dbuf_dirty_record_t *dr = db->db_data_pending; 3596 if (dr->dt.dl.dr_data == db->db_buf) 3597 dbuf_hold_copy(dn, db); 3598 } 3599 3600 if (multilist_link_active(&db->db_cache_link)) { 3601 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3602 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 3603 db->db_caching_status == DB_DBUF_METADATA_CACHE); 3604 3605 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 3606 (void) zfs_refcount_remove_many( 3607 &dbuf_caches[db->db_caching_status].size, 3608 db->db.db_size, db); 3609 3610 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 3611 DBUF_STAT_BUMPDOWN(metadata_cache_count); 3612 } else { 3613 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 3614 DBUF_STAT_BUMPDOWN(cache_count); 3615 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 3616 db->db.db_size); 3617 } 3618 db->db_caching_status = DB_NO_CACHE; 3619 } 3620 (void) zfs_refcount_add(&db->db_holds, tag); 3621 DBUF_VERIFY(db); 3622 mutex_exit(&db->db_mtx); 3623 3624 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 3625 if (parent) 3626 dbuf_rele(parent, NULL); 3627 3628 ASSERT3P(DB_DNODE(db), ==, dn); 3629 ASSERT3U(db->db_blkid, ==, blkid); 3630 ASSERT3U(db->db_level, ==, level); 3631 *dbp = db; 3632 3633 return (0); 3634 } 3635 3636 dmu_buf_impl_t * 3637 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) 3638 { 3639 return (dbuf_hold_level(dn, 0, blkid, tag)); 3640 } 3641 3642 dmu_buf_impl_t * 3643 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) 3644 { 3645 dmu_buf_impl_t *db; 3646 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 3647 return (err ? NULL : db); 3648 } 3649 3650 void 3651 dbuf_create_bonus(dnode_t *dn) 3652 { 3653 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 3654 3655 ASSERT(dn->dn_bonus == NULL); 3656 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL); 3657 } 3658 3659 int 3660 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 3661 { 3662 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3663 3664 if (db->db_blkid != DMU_SPILL_BLKID) 3665 return (SET_ERROR(ENOTSUP)); 3666 if (blksz == 0) 3667 blksz = SPA_MINBLOCKSIZE; 3668 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 3669 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 3670 3671 dbuf_new_size(db, blksz, tx); 3672 3673 return (0); 3674 } 3675 3676 void 3677 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 3678 { 3679 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 3680 } 3681 3682 #pragma weak dmu_buf_add_ref = dbuf_add_ref 3683 void 3684 dbuf_add_ref(dmu_buf_impl_t *db, void *tag) 3685 { 3686 int64_t holds = zfs_refcount_add(&db->db_holds, tag); 3687 VERIFY3S(holds, >, 1); 3688 } 3689 3690 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 3691 boolean_t 3692 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 3693 void *tag) 3694 { 3695 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3696 dmu_buf_impl_t *found_db; 3697 boolean_t result = B_FALSE; 3698 3699 if (blkid == DMU_BONUS_BLKID) 3700 found_db = dbuf_find_bonus(os, obj); 3701 else 3702 found_db = dbuf_find(os, obj, 0, blkid); 3703 3704 if (found_db != NULL) { 3705 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 3706 (void) zfs_refcount_add(&db->db_holds, tag); 3707 result = B_TRUE; 3708 } 3709 mutex_exit(&found_db->db_mtx); 3710 } 3711 return (result); 3712 } 3713 3714 /* 3715 * If you call dbuf_rele() you had better not be referencing the dnode handle 3716 * unless you have some other direct or indirect hold on the dnode. (An indirect 3717 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 3718 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 3719 * dnode's parent dbuf evicting its dnode handles. 3720 */ 3721 void 3722 dbuf_rele(dmu_buf_impl_t *db, void *tag) 3723 { 3724 mutex_enter(&db->db_mtx); 3725 dbuf_rele_and_unlock(db, tag, B_FALSE); 3726 } 3727 3728 void 3729 dmu_buf_rele(dmu_buf_t *db, void *tag) 3730 { 3731 dbuf_rele((dmu_buf_impl_t *)db, tag); 3732 } 3733 3734 /* 3735 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 3736 * db_dirtycnt and db_holds to be updated atomically. The 'evicting' 3737 * argument should be set if we are already in the dbuf-evicting code 3738 * path, in which case we don't want to recursively evict. This allows us to 3739 * avoid deeply nested stacks that would have a call flow similar to this: 3740 * 3741 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 3742 * ^ | 3743 * | | 3744 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 3745 * 3746 */ 3747 void 3748 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag, boolean_t evicting) 3749 { 3750 int64_t holds; 3751 uint64_t size; 3752 3753 ASSERT(MUTEX_HELD(&db->db_mtx)); 3754 DBUF_VERIFY(db); 3755 3756 /* 3757 * Remove the reference to the dbuf before removing its hold on the 3758 * dnode so we can guarantee in dnode_move() that a referenced bonus 3759 * buffer has a corresponding dnode hold. 3760 */ 3761 holds = zfs_refcount_remove(&db->db_holds, tag); 3762 ASSERT(holds >= 0); 3763 3764 /* 3765 * We can't freeze indirects if there is a possibility that they 3766 * may be modified in the current syncing context. 3767 */ 3768 if (db->db_buf != NULL && 3769 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 3770 arc_buf_freeze(db->db_buf); 3771 } 3772 3773 if (holds == db->db_dirtycnt && 3774 db->db_level == 0 && db->db_user_immediate_evict) 3775 dbuf_evict_user(db); 3776 3777 if (holds == 0) { 3778 if (db->db_blkid == DMU_BONUS_BLKID) { 3779 dnode_t *dn; 3780 boolean_t evict_dbuf = db->db_pending_evict; 3781 3782 /* 3783 * If the dnode moves here, we cannot cross this 3784 * barrier until the move completes. 3785 */ 3786 DB_DNODE_ENTER(db); 3787 3788 dn = DB_DNODE(db); 3789 atomic_dec_32(&dn->dn_dbufs_count); 3790 3791 /* 3792 * Decrementing the dbuf count means that the bonus 3793 * buffer's dnode hold is no longer discounted in 3794 * dnode_move(). The dnode cannot move until after 3795 * the dnode_rele() below. 3796 */ 3797 DB_DNODE_EXIT(db); 3798 3799 /* 3800 * Do not reference db after its lock is dropped. 3801 * Another thread may evict it. 3802 */ 3803 mutex_exit(&db->db_mtx); 3804 3805 if (evict_dbuf) 3806 dnode_evict_bonus(dn); 3807 3808 dnode_rele(dn, db); 3809 } else if (db->db_buf == NULL) { 3810 /* 3811 * This is a special case: we never associated this 3812 * dbuf with any data allocated from the ARC. 3813 */ 3814 ASSERT(db->db_state == DB_UNCACHED || 3815 db->db_state == DB_NOFILL); 3816 dbuf_destroy(db); 3817 } else if (arc_released(db->db_buf)) { 3818 /* 3819 * This dbuf has anonymous data associated with it. 3820 */ 3821 dbuf_destroy(db); 3822 } else { 3823 boolean_t do_arc_evict = B_FALSE; 3824 blkptr_t bp; 3825 spa_t *spa = dmu_objset_spa(db->db_objset); 3826 3827 if (!DBUF_IS_CACHEABLE(db) && 3828 db->db_blkptr != NULL && 3829 !BP_IS_HOLE(db->db_blkptr) && 3830 !BP_IS_EMBEDDED(db->db_blkptr)) { 3831 do_arc_evict = B_TRUE; 3832 bp = *db->db_blkptr; 3833 } 3834 3835 if (!DBUF_IS_CACHEABLE(db) || 3836 db->db_pending_evict) { 3837 dbuf_destroy(db); 3838 } else if (!multilist_link_active(&db->db_cache_link)) { 3839 ASSERT3U(db->db_caching_status, ==, 3840 DB_NO_CACHE); 3841 3842 dbuf_cached_state_t dcs = 3843 dbuf_include_in_metadata_cache(db) ? 3844 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE; 3845 db->db_caching_status = dcs; 3846 3847 multilist_insert(&dbuf_caches[dcs].cache, db); 3848 uint64_t db_size = db->db.db_size; 3849 size = zfs_refcount_add_many( 3850 &dbuf_caches[dcs].size, db_size, db); 3851 uint8_t db_level = db->db_level; 3852 mutex_exit(&db->db_mtx); 3853 3854 if (dcs == DB_DBUF_METADATA_CACHE) { 3855 DBUF_STAT_BUMP(metadata_cache_count); 3856 DBUF_STAT_MAX( 3857 metadata_cache_size_bytes_max, 3858 size); 3859 } else { 3860 DBUF_STAT_BUMP(cache_count); 3861 DBUF_STAT_MAX(cache_size_bytes_max, 3862 size); 3863 DBUF_STAT_BUMP(cache_levels[db_level]); 3864 DBUF_STAT_INCR( 3865 cache_levels_bytes[db_level], 3866 db_size); 3867 } 3868 3869 if (dcs == DB_DBUF_CACHE && !evicting) 3870 dbuf_evict_notify(size); 3871 } 3872 3873 if (do_arc_evict) 3874 arc_freed(spa, &bp); 3875 } 3876 } else { 3877 mutex_exit(&db->db_mtx); 3878 } 3879 3880 } 3881 3882 #pragma weak dmu_buf_refcount = dbuf_refcount 3883 uint64_t 3884 dbuf_refcount(dmu_buf_impl_t *db) 3885 { 3886 return (zfs_refcount_count(&db->db_holds)); 3887 } 3888 3889 uint64_t 3890 dmu_buf_user_refcount(dmu_buf_t *db_fake) 3891 { 3892 uint64_t holds; 3893 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3894 3895 mutex_enter(&db->db_mtx); 3896 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt); 3897 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt; 3898 mutex_exit(&db->db_mtx); 3899 3900 return (holds); 3901 } 3902 3903 void * 3904 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 3905 dmu_buf_user_t *new_user) 3906 { 3907 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3908 3909 mutex_enter(&db->db_mtx); 3910 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3911 if (db->db_user == old_user) 3912 db->db_user = new_user; 3913 else 3914 old_user = db->db_user; 3915 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3916 mutex_exit(&db->db_mtx); 3917 3918 return (old_user); 3919 } 3920 3921 void * 3922 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 3923 { 3924 return (dmu_buf_replace_user(db_fake, NULL, user)); 3925 } 3926 3927 void * 3928 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 3929 { 3930 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3931 3932 db->db_user_immediate_evict = TRUE; 3933 return (dmu_buf_set_user(db_fake, user)); 3934 } 3935 3936 void * 3937 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 3938 { 3939 return (dmu_buf_replace_user(db_fake, user, NULL)); 3940 } 3941 3942 void * 3943 dmu_buf_get_user(dmu_buf_t *db_fake) 3944 { 3945 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3946 3947 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3948 return (db->db_user); 3949 } 3950 3951 void 3952 dmu_buf_user_evict_wait() 3953 { 3954 taskq_wait(dbu_evict_taskq); 3955 } 3956 3957 blkptr_t * 3958 dmu_buf_get_blkptr(dmu_buf_t *db) 3959 { 3960 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3961 return (dbi->db_blkptr); 3962 } 3963 3964 objset_t * 3965 dmu_buf_get_objset(dmu_buf_t *db) 3966 { 3967 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3968 return (dbi->db_objset); 3969 } 3970 3971 dnode_t * 3972 dmu_buf_dnode_enter(dmu_buf_t *db) 3973 { 3974 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3975 DB_DNODE_ENTER(dbi); 3976 return (DB_DNODE(dbi)); 3977 } 3978 3979 void 3980 dmu_buf_dnode_exit(dmu_buf_t *db) 3981 { 3982 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3983 DB_DNODE_EXIT(dbi); 3984 } 3985 3986 static void 3987 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 3988 { 3989 /* ASSERT(dmu_tx_is_syncing(tx) */ 3990 ASSERT(MUTEX_HELD(&db->db_mtx)); 3991 3992 if (db->db_blkptr != NULL) 3993 return; 3994 3995 if (db->db_blkid == DMU_SPILL_BLKID) { 3996 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys); 3997 BP_ZERO(db->db_blkptr); 3998 return; 3999 } 4000 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 4001 /* 4002 * This buffer was allocated at a time when there was 4003 * no available blkptrs from the dnode, or it was 4004 * inappropriate to hook it in (i.e., nlevels mismatch). 4005 */ 4006 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 4007 ASSERT(db->db_parent == NULL); 4008 db->db_parent = dn->dn_dbuf; 4009 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 4010 DBUF_VERIFY(db); 4011 } else { 4012 dmu_buf_impl_t *parent = db->db_parent; 4013 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4014 4015 ASSERT(dn->dn_phys->dn_nlevels > 1); 4016 if (parent == NULL) { 4017 mutex_exit(&db->db_mtx); 4018 rw_enter(&dn->dn_struct_rwlock, RW_READER); 4019 parent = dbuf_hold_level(dn, db->db_level + 1, 4020 db->db_blkid >> epbs, db); 4021 rw_exit(&dn->dn_struct_rwlock); 4022 mutex_enter(&db->db_mtx); 4023 db->db_parent = parent; 4024 } 4025 db->db_blkptr = (blkptr_t *)parent->db.db_data + 4026 (db->db_blkid & ((1ULL << epbs) - 1)); 4027 DBUF_VERIFY(db); 4028 } 4029 } 4030 4031 static void 4032 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4033 { 4034 dmu_buf_impl_t *db = dr->dr_dbuf; 4035 void *data = dr->dt.dl.dr_data; 4036 4037 ASSERT0(db->db_level); 4038 ASSERT(MUTEX_HELD(&db->db_mtx)); 4039 ASSERT(db->db_blkid == DMU_BONUS_BLKID); 4040 ASSERT(data != NULL); 4041 4042 dnode_t *dn = dr->dr_dnode; 4043 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=, 4044 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1)); 4045 bcopy(data, DN_BONUS(dn->dn_phys), DN_MAX_BONUS_LEN(dn->dn_phys)); 4046 4047 dbuf_sync_leaf_verify_bonus_dnode(dr); 4048 4049 dbuf_undirty_bonus(dr); 4050 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 4051 } 4052 4053 /* 4054 * When syncing out a blocks of dnodes, adjust the block to deal with 4055 * encryption. Normally, we make sure the block is decrypted before writing 4056 * it. If we have crypt params, then we are writing a raw (encrypted) block, 4057 * from a raw receive. In this case, set the ARC buf's crypt params so 4058 * that the BP will be filled with the correct byteorder, salt, iv, and mac. 4059 */ 4060 static void 4061 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr) 4062 { 4063 int err; 4064 dmu_buf_impl_t *db = dr->dr_dbuf; 4065 4066 ASSERT(MUTEX_HELD(&db->db_mtx)); 4067 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 4068 ASSERT3U(db->db_level, ==, 0); 4069 4070 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) { 4071 zbookmark_phys_t zb; 4072 4073 /* 4074 * Unfortunately, there is currently no mechanism for 4075 * syncing context to handle decryption errors. An error 4076 * here is only possible if an attacker maliciously 4077 * changed a dnode block and updated the associated 4078 * checksums going up the block tree. 4079 */ 4080 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 4081 db->db.db_object, db->db_level, db->db_blkid); 4082 err = arc_untransform(db->db_buf, db->db_objset->os_spa, 4083 &zb, B_TRUE); 4084 if (err) 4085 panic("Invalid dnode block MAC"); 4086 } else if (dr->dt.dl.dr_has_raw_params) { 4087 (void) arc_release(dr->dt.dl.dr_data, db); 4088 arc_convert_to_raw(dr->dt.dl.dr_data, 4089 dmu_objset_id(db->db_objset), 4090 dr->dt.dl.dr_byteorder, DMU_OT_DNODE, 4091 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac); 4092 } 4093 } 4094 4095 /* 4096 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it 4097 * is critical the we not allow the compiler to inline this function in to 4098 * dbuf_sync_list() thereby drastically bloating the stack usage. 4099 */ 4100 noinline static void 4101 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4102 { 4103 dmu_buf_impl_t *db = dr->dr_dbuf; 4104 dnode_t *dn = dr->dr_dnode; 4105 4106 ASSERT(dmu_tx_is_syncing(tx)); 4107 4108 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4109 4110 mutex_enter(&db->db_mtx); 4111 4112 ASSERT(db->db_level > 0); 4113 DBUF_VERIFY(db); 4114 4115 /* Read the block if it hasn't been read yet. */ 4116 if (db->db_buf == NULL) { 4117 mutex_exit(&db->db_mtx); 4118 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 4119 mutex_enter(&db->db_mtx); 4120 } 4121 ASSERT3U(db->db_state, ==, DB_CACHED); 4122 ASSERT(db->db_buf != NULL); 4123 4124 /* Indirect block size must match what the dnode thinks it is. */ 4125 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4126 dbuf_check_blkptr(dn, db); 4127 4128 /* Provide the pending dirty record to child dbufs */ 4129 db->db_data_pending = dr; 4130 4131 mutex_exit(&db->db_mtx); 4132 4133 dbuf_write(dr, db->db_buf, tx); 4134 4135 zio_t *zio = dr->dr_zio; 4136 mutex_enter(&dr->dt.di.dr_mtx); 4137 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 4138 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4139 mutex_exit(&dr->dt.di.dr_mtx); 4140 zio_nowait(zio); 4141 } 4142 4143 /* 4144 * Verify that the size of the data in our bonus buffer does not exceed 4145 * its recorded size. 4146 * 4147 * The purpose of this verification is to catch any cases in development 4148 * where the size of a phys structure (i.e space_map_phys_t) grows and, 4149 * due to incorrect feature management, older pools expect to read more 4150 * data even though they didn't actually write it to begin with. 4151 * 4152 * For a example, this would catch an error in the feature logic where we 4153 * open an older pool and we expect to write the space map histogram of 4154 * a space map with size SPACE_MAP_SIZE_V0. 4155 */ 4156 static void 4157 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr) 4158 { 4159 #ifdef ZFS_DEBUG 4160 dnode_t *dn = dr->dr_dnode; 4161 4162 /* 4163 * Encrypted bonus buffers can have data past their bonuslen. 4164 * Skip the verification of these blocks. 4165 */ 4166 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)) 4167 return; 4168 4169 uint16_t bonuslen = dn->dn_phys->dn_bonuslen; 4170 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 4171 ASSERT3U(bonuslen, <=, maxbonuslen); 4172 4173 arc_buf_t *datap = dr->dt.dl.dr_data; 4174 char *datap_end = ((char *)datap) + bonuslen; 4175 char *datap_max = ((char *)datap) + maxbonuslen; 4176 4177 /* ensure that everything is zero after our data */ 4178 for (; datap_end < datap_max; datap_end++) 4179 ASSERT(*datap_end == 0); 4180 #endif 4181 } 4182 4183 static blkptr_t * 4184 dbuf_lightweight_bp(dbuf_dirty_record_t *dr) 4185 { 4186 /* This must be a lightweight dirty record. */ 4187 ASSERT3P(dr->dr_dbuf, ==, NULL); 4188 dnode_t *dn = dr->dr_dnode; 4189 4190 if (dn->dn_phys->dn_nlevels == 1) { 4191 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr); 4192 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]); 4193 } else { 4194 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf; 4195 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 4196 VERIFY3U(parent_db->db_level, ==, 1); 4197 VERIFY3P(parent_db->db_dnode_handle->dnh_dnode, ==, dn); 4198 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid); 4199 blkptr_t *bp = parent_db->db.db_data; 4200 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]); 4201 } 4202 } 4203 4204 static void 4205 dbuf_lightweight_ready(zio_t *zio) 4206 { 4207 dbuf_dirty_record_t *dr = zio->io_private; 4208 blkptr_t *bp = zio->io_bp; 4209 4210 if (zio->io_error != 0) 4211 return; 4212 4213 dnode_t *dn = dr->dr_dnode; 4214 4215 blkptr_t *bp_orig = dbuf_lightweight_bp(dr); 4216 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4217 int64_t delta = bp_get_dsize_sync(spa, bp) - 4218 bp_get_dsize_sync(spa, bp_orig); 4219 dnode_diduse_space(dn, delta); 4220 4221 uint64_t blkid = dr->dt.dll.dr_blkid; 4222 mutex_enter(&dn->dn_mtx); 4223 if (blkid > dn->dn_phys->dn_maxblkid) { 4224 ASSERT0(dn->dn_objset->os_raw_receive); 4225 dn->dn_phys->dn_maxblkid = blkid; 4226 } 4227 mutex_exit(&dn->dn_mtx); 4228 4229 if (!BP_IS_EMBEDDED(bp)) { 4230 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1; 4231 BP_SET_FILL(bp, fill); 4232 } 4233 4234 dmu_buf_impl_t *parent_db; 4235 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1); 4236 if (dr->dr_parent == NULL) { 4237 parent_db = dn->dn_dbuf; 4238 } else { 4239 parent_db = dr->dr_parent->dr_dbuf; 4240 } 4241 rw_enter(&parent_db->db_rwlock, RW_WRITER); 4242 *bp_orig = *bp; 4243 rw_exit(&parent_db->db_rwlock); 4244 } 4245 4246 static void 4247 dbuf_lightweight_physdone(zio_t *zio) 4248 { 4249 dbuf_dirty_record_t *dr = zio->io_private; 4250 dsl_pool_t *dp = spa_get_dsl(zio->io_spa); 4251 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 4252 4253 /* 4254 * The callback will be called io_phys_children times. Retire one 4255 * portion of our dirty space each time we are called. Any rounding 4256 * error will be cleaned up by dbuf_lightweight_done(). 4257 */ 4258 int delta = dr->dr_accounted / zio->io_phys_children; 4259 dsl_pool_undirty_space(dp, delta, zio->io_txg); 4260 } 4261 4262 static void 4263 dbuf_lightweight_done(zio_t *zio) 4264 { 4265 dbuf_dirty_record_t *dr = zio->io_private; 4266 4267 VERIFY0(zio->io_error); 4268 4269 objset_t *os = dr->dr_dnode->dn_objset; 4270 dmu_tx_t *tx = os->os_synctx; 4271 4272 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4273 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4274 } else { 4275 dsl_dataset_t *ds = os->os_dsl_dataset; 4276 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE); 4277 dsl_dataset_block_born(ds, zio->io_bp, tx); 4278 } 4279 4280 /* 4281 * See comment in dbuf_write_done(). 4282 */ 4283 if (zio->io_phys_children == 0) { 4284 dsl_pool_undirty_space(dmu_objset_pool(os), 4285 dr->dr_accounted, zio->io_txg); 4286 } else { 4287 dsl_pool_undirty_space(dmu_objset_pool(os), 4288 dr->dr_accounted % zio->io_phys_children, zio->io_txg); 4289 } 4290 4291 abd_free(dr->dt.dll.dr_abd); 4292 kmem_free(dr, sizeof (*dr)); 4293 } 4294 4295 noinline static void 4296 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4297 { 4298 dnode_t *dn = dr->dr_dnode; 4299 zio_t *pio; 4300 if (dn->dn_phys->dn_nlevels == 1) { 4301 pio = dn->dn_zio; 4302 } else { 4303 pio = dr->dr_parent->dr_zio; 4304 } 4305 4306 zbookmark_phys_t zb = { 4307 .zb_objset = dmu_objset_id(dn->dn_objset), 4308 .zb_object = dn->dn_object, 4309 .zb_level = 0, 4310 .zb_blkid = dr->dt.dll.dr_blkid, 4311 }; 4312 4313 /* 4314 * See comment in dbuf_write(). This is so that zio->io_bp_orig 4315 * will have the old BP in dbuf_lightweight_done(). 4316 */ 4317 dr->dr_bp_copy = *dbuf_lightweight_bp(dr); 4318 4319 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset), 4320 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd, 4321 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd), 4322 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL, 4323 dbuf_lightweight_physdone, dbuf_lightweight_done, dr, 4324 ZIO_PRIORITY_ASYNC_WRITE, 4325 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb); 4326 4327 zio_nowait(dr->dr_zio); 4328 } 4329 4330 /* 4331 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is 4332 * critical the we not allow the compiler to inline this function in to 4333 * dbuf_sync_list() thereby drastically bloating the stack usage. 4334 */ 4335 noinline static void 4336 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4337 { 4338 arc_buf_t **datap = &dr->dt.dl.dr_data; 4339 dmu_buf_impl_t *db = dr->dr_dbuf; 4340 dnode_t *dn = dr->dr_dnode; 4341 objset_t *os; 4342 uint64_t txg = tx->tx_txg; 4343 4344 ASSERT(dmu_tx_is_syncing(tx)); 4345 4346 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4347 4348 mutex_enter(&db->db_mtx); 4349 /* 4350 * To be synced, we must be dirtied. But we 4351 * might have been freed after the dirty. 4352 */ 4353 if (db->db_state == DB_UNCACHED) { 4354 /* This buffer has been freed since it was dirtied */ 4355 ASSERT(db->db.db_data == NULL); 4356 } else if (db->db_state == DB_FILL) { 4357 /* This buffer was freed and is now being re-filled */ 4358 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 4359 } else { 4360 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 4361 } 4362 DBUF_VERIFY(db); 4363 4364 if (db->db_blkid == DMU_SPILL_BLKID) { 4365 mutex_enter(&dn->dn_mtx); 4366 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) { 4367 /* 4368 * In the previous transaction group, the bonus buffer 4369 * was entirely used to store the attributes for the 4370 * dnode which overrode the dn_spill field. However, 4371 * when adding more attributes to the file a spill 4372 * block was required to hold the extra attributes. 4373 * 4374 * Make sure to clear the garbage left in the dn_spill 4375 * field from the previous attributes in the bonus 4376 * buffer. Otherwise, after writing out the spill 4377 * block to the new allocated dva, it will free 4378 * the old block pointed to by the invalid dn_spill. 4379 */ 4380 db->db_blkptr = NULL; 4381 } 4382 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 4383 mutex_exit(&dn->dn_mtx); 4384 } 4385 4386 /* 4387 * If this is a bonus buffer, simply copy the bonus data into the 4388 * dnode. It will be written out when the dnode is synced (and it 4389 * will be synced, since it must have been dirty for dbuf_sync to 4390 * be called). 4391 */ 4392 if (db->db_blkid == DMU_BONUS_BLKID) { 4393 ASSERT(dr->dr_dbuf == db); 4394 dbuf_sync_bonus(dr, tx); 4395 return; 4396 } 4397 4398 os = dn->dn_objset; 4399 4400 /* 4401 * This function may have dropped the db_mtx lock allowing a dmu_sync 4402 * operation to sneak in. As a result, we need to ensure that we 4403 * don't check the dr_override_state until we have returned from 4404 * dbuf_check_blkptr. 4405 */ 4406 dbuf_check_blkptr(dn, db); 4407 4408 /* 4409 * If this buffer is in the middle of an immediate write, 4410 * wait for the synchronous IO to complete. 4411 */ 4412 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 4413 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 4414 cv_wait(&db->db_changed, &db->db_mtx); 4415 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN); 4416 } 4417 4418 /* 4419 * If this is a dnode block, ensure it is appropriately encrypted 4420 * or decrypted, depending on what we are writing to it this txg. 4421 */ 4422 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT) 4423 dbuf_prepare_encrypted_dnode_leaf(dr); 4424 4425 if (db->db_state != DB_NOFILL && 4426 dn->dn_object != DMU_META_DNODE_OBJECT && 4427 zfs_refcount_count(&db->db_holds) > 1 && 4428 dr->dt.dl.dr_override_state != DR_OVERRIDDEN && 4429 *datap == db->db_buf) { 4430 /* 4431 * If this buffer is currently "in use" (i.e., there 4432 * are active holds and db_data still references it), 4433 * then make a copy before we start the write so that 4434 * any modifications from the open txg will not leak 4435 * into this write. 4436 * 4437 * NOTE: this copy does not need to be made for 4438 * objects only modified in the syncing context (e.g. 4439 * DNONE_DNODE blocks). 4440 */ 4441 int psize = arc_buf_size(*datap); 4442 int lsize = arc_buf_lsize(*datap); 4443 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 4444 enum zio_compress compress_type = arc_get_compression(*datap); 4445 uint8_t complevel = arc_get_complevel(*datap); 4446 4447 if (arc_is_encrypted(*datap)) { 4448 boolean_t byteorder; 4449 uint8_t salt[ZIO_DATA_SALT_LEN]; 4450 uint8_t iv[ZIO_DATA_IV_LEN]; 4451 uint8_t mac[ZIO_DATA_MAC_LEN]; 4452 4453 arc_get_raw_params(*datap, &byteorder, salt, iv, mac); 4454 *datap = arc_alloc_raw_buf(os->os_spa, db, 4455 dmu_objset_id(os), byteorder, salt, iv, mac, 4456 dn->dn_type, psize, lsize, compress_type, 4457 complevel); 4458 } else if (compress_type != ZIO_COMPRESS_OFF) { 4459 ASSERT3U(type, ==, ARC_BUFC_DATA); 4460 *datap = arc_alloc_compressed_buf(os->os_spa, db, 4461 psize, lsize, compress_type, complevel); 4462 } else { 4463 *datap = arc_alloc_buf(os->os_spa, db, type, psize); 4464 } 4465 bcopy(db->db.db_data, (*datap)->b_data, psize); 4466 } 4467 db->db_data_pending = dr; 4468 4469 mutex_exit(&db->db_mtx); 4470 4471 dbuf_write(dr, *datap, tx); 4472 4473 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4474 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 4475 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr); 4476 } else { 4477 zio_nowait(dr->dr_zio); 4478 } 4479 } 4480 4481 void 4482 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 4483 { 4484 dbuf_dirty_record_t *dr; 4485 4486 while ((dr = list_head(list))) { 4487 if (dr->dr_zio != NULL) { 4488 /* 4489 * If we find an already initialized zio then we 4490 * are processing the meta-dnode, and we have finished. 4491 * The dbufs for all dnodes are put back on the list 4492 * during processing, so that we can zio_wait() 4493 * these IOs after initiating all child IOs. 4494 */ 4495 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 4496 DMU_META_DNODE_OBJECT); 4497 break; 4498 } 4499 list_remove(list, dr); 4500 if (dr->dr_dbuf == NULL) { 4501 dbuf_sync_lightweight(dr, tx); 4502 } else { 4503 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 4504 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 4505 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 4506 } 4507 if (dr->dr_dbuf->db_level > 0) 4508 dbuf_sync_indirect(dr, tx); 4509 else 4510 dbuf_sync_leaf(dr, tx); 4511 } 4512 } 4513 } 4514 4515 /* ARGSUSED */ 4516 static void 4517 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4518 { 4519 dmu_buf_impl_t *db = vdb; 4520 dnode_t *dn; 4521 blkptr_t *bp = zio->io_bp; 4522 blkptr_t *bp_orig = &zio->io_bp_orig; 4523 spa_t *spa = zio->io_spa; 4524 int64_t delta; 4525 uint64_t fill = 0; 4526 int i; 4527 4528 ASSERT3P(db->db_blkptr, !=, NULL); 4529 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 4530 4531 DB_DNODE_ENTER(db); 4532 dn = DB_DNODE(db); 4533 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 4534 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 4535 zio->io_prev_space_delta = delta; 4536 4537 if (bp->blk_birth != 0) { 4538 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 4539 BP_GET_TYPE(bp) == dn->dn_type) || 4540 (db->db_blkid == DMU_SPILL_BLKID && 4541 BP_GET_TYPE(bp) == dn->dn_bonustype) || 4542 BP_IS_EMBEDDED(bp)); 4543 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 4544 } 4545 4546 mutex_enter(&db->db_mtx); 4547 4548 #ifdef ZFS_DEBUG 4549 if (db->db_blkid == DMU_SPILL_BLKID) { 4550 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4551 ASSERT(!(BP_IS_HOLE(bp)) && 4552 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4553 } 4554 #endif 4555 4556 if (db->db_level == 0) { 4557 mutex_enter(&dn->dn_mtx); 4558 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 4559 db->db_blkid != DMU_SPILL_BLKID) { 4560 ASSERT0(db->db_objset->os_raw_receive); 4561 dn->dn_phys->dn_maxblkid = db->db_blkid; 4562 } 4563 mutex_exit(&dn->dn_mtx); 4564 4565 if (dn->dn_type == DMU_OT_DNODE) { 4566 i = 0; 4567 while (i < db->db.db_size) { 4568 dnode_phys_t *dnp = 4569 (void *)(((char *)db->db.db_data) + i); 4570 4571 i += DNODE_MIN_SIZE; 4572 if (dnp->dn_type != DMU_OT_NONE) { 4573 fill++; 4574 i += dnp->dn_extra_slots * 4575 DNODE_MIN_SIZE; 4576 } 4577 } 4578 } else { 4579 if (BP_IS_HOLE(bp)) { 4580 fill = 0; 4581 } else { 4582 fill = 1; 4583 } 4584 } 4585 } else { 4586 blkptr_t *ibp = db->db.db_data; 4587 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4588 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 4589 if (BP_IS_HOLE(ibp)) 4590 continue; 4591 fill += BP_GET_FILL(ibp); 4592 } 4593 } 4594 DB_DNODE_EXIT(db); 4595 4596 if (!BP_IS_EMBEDDED(bp)) 4597 BP_SET_FILL(bp, fill); 4598 4599 mutex_exit(&db->db_mtx); 4600 4601 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG); 4602 *db->db_blkptr = *bp; 4603 dmu_buf_unlock_parent(db, dblt, FTAG); 4604 } 4605 4606 /* ARGSUSED */ 4607 /* 4608 * This function gets called just prior to running through the compression 4609 * stage of the zio pipeline. If we're an indirect block comprised of only 4610 * holes, then we want this indirect to be compressed away to a hole. In 4611 * order to do that we must zero out any information about the holes that 4612 * this indirect points to prior to before we try to compress it. 4613 */ 4614 static void 4615 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4616 { 4617 dmu_buf_impl_t *db = vdb; 4618 dnode_t *dn; 4619 blkptr_t *bp; 4620 unsigned int epbs, i; 4621 4622 ASSERT3U(db->db_level, >, 0); 4623 DB_DNODE_ENTER(db); 4624 dn = DB_DNODE(db); 4625 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4626 ASSERT3U(epbs, <, 31); 4627 4628 /* Determine if all our children are holes */ 4629 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) { 4630 if (!BP_IS_HOLE(bp)) 4631 break; 4632 } 4633 4634 /* 4635 * If all the children are holes, then zero them all out so that 4636 * we may get compressed away. 4637 */ 4638 if (i == 1ULL << epbs) { 4639 /* 4640 * We only found holes. Grab the rwlock to prevent 4641 * anybody from reading the blocks we're about to 4642 * zero out. 4643 */ 4644 rw_enter(&db->db_rwlock, RW_WRITER); 4645 bzero(db->db.db_data, db->db.db_size); 4646 rw_exit(&db->db_rwlock); 4647 } 4648 DB_DNODE_EXIT(db); 4649 } 4650 4651 /* 4652 * The SPA will call this callback several times for each zio - once 4653 * for every physical child i/o (zio->io_phys_children times). This 4654 * allows the DMU to monitor the progress of each logical i/o. For example, 4655 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z 4656 * block. There may be a long delay before all copies/fragments are completed, 4657 * so this callback allows us to retire dirty space gradually, as the physical 4658 * i/os complete. 4659 */ 4660 /* ARGSUSED */ 4661 static void 4662 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg) 4663 { 4664 dmu_buf_impl_t *db = arg; 4665 objset_t *os = db->db_objset; 4666 dsl_pool_t *dp = dmu_objset_pool(os); 4667 dbuf_dirty_record_t *dr; 4668 int delta = 0; 4669 4670 dr = db->db_data_pending; 4671 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 4672 4673 /* 4674 * The callback will be called io_phys_children times. Retire one 4675 * portion of our dirty space each time we are called. Any rounding 4676 * error will be cleaned up by dbuf_write_done(). 4677 */ 4678 delta = dr->dr_accounted / zio->io_phys_children; 4679 dsl_pool_undirty_space(dp, delta, zio->io_txg); 4680 } 4681 4682 /* ARGSUSED */ 4683 static void 4684 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 4685 { 4686 dmu_buf_impl_t *db = vdb; 4687 blkptr_t *bp_orig = &zio->io_bp_orig; 4688 blkptr_t *bp = db->db_blkptr; 4689 objset_t *os = db->db_objset; 4690 dmu_tx_t *tx = os->os_synctx; 4691 4692 ASSERT0(zio->io_error); 4693 ASSERT(db->db_blkptr == bp); 4694 4695 /* 4696 * For nopwrites and rewrites we ensure that the bp matches our 4697 * original and bypass all the accounting. 4698 */ 4699 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4700 ASSERT(BP_EQUAL(bp, bp_orig)); 4701 } else { 4702 dsl_dataset_t *ds = os->os_dsl_dataset; 4703 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 4704 dsl_dataset_block_born(ds, bp, tx); 4705 } 4706 4707 mutex_enter(&db->db_mtx); 4708 4709 DBUF_VERIFY(db); 4710 4711 dbuf_dirty_record_t *dr = db->db_data_pending; 4712 dnode_t *dn = dr->dr_dnode; 4713 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4714 ASSERT(dr->dr_dbuf == db); 4715 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 4716 list_remove(&db->db_dirty_records, dr); 4717 4718 #ifdef ZFS_DEBUG 4719 if (db->db_blkid == DMU_SPILL_BLKID) { 4720 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4721 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 4722 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4723 } 4724 #endif 4725 4726 if (db->db_level == 0) { 4727 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 4728 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 4729 if (db->db_state != DB_NOFILL) { 4730 if (dr->dt.dl.dr_data != db->db_buf) 4731 arc_buf_destroy(dr->dt.dl.dr_data, db); 4732 } 4733 } else { 4734 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4735 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 4736 if (!BP_IS_HOLE(db->db_blkptr)) { 4737 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift - 4738 SPA_BLKPTRSHIFT; 4739 ASSERT3U(db->db_blkid, <=, 4740 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 4741 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 4742 db->db.db_size); 4743 } 4744 mutex_destroy(&dr->dt.di.dr_mtx); 4745 list_destroy(&dr->dt.di.dr_children); 4746 } 4747 4748 cv_broadcast(&db->db_changed); 4749 ASSERT(db->db_dirtycnt > 0); 4750 db->db_dirtycnt -= 1; 4751 db->db_data_pending = NULL; 4752 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 4753 4754 /* 4755 * If we didn't do a physical write in this ZIO and we 4756 * still ended up here, it means that the space of the 4757 * dbuf that we just released (and undirtied) above hasn't 4758 * been marked as undirtied in the pool's accounting. 4759 * 4760 * Thus, we undirty that space in the pool's view of the 4761 * world here. For physical writes this type of update 4762 * happens in dbuf_write_physdone(). 4763 * 4764 * If we did a physical write, cleanup any rounding errors 4765 * that came up due to writing multiple copies of a block 4766 * on disk [see dbuf_write_physdone()]. 4767 */ 4768 if (zio->io_phys_children == 0) { 4769 dsl_pool_undirty_space(dmu_objset_pool(os), 4770 dr->dr_accounted, zio->io_txg); 4771 } else { 4772 dsl_pool_undirty_space(dmu_objset_pool(os), 4773 dr->dr_accounted % zio->io_phys_children, zio->io_txg); 4774 } 4775 4776 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 4777 } 4778 4779 static void 4780 dbuf_write_nofill_ready(zio_t *zio) 4781 { 4782 dbuf_write_ready(zio, NULL, zio->io_private); 4783 } 4784 4785 static void 4786 dbuf_write_nofill_done(zio_t *zio) 4787 { 4788 dbuf_write_done(zio, NULL, zio->io_private); 4789 } 4790 4791 static void 4792 dbuf_write_override_ready(zio_t *zio) 4793 { 4794 dbuf_dirty_record_t *dr = zio->io_private; 4795 dmu_buf_impl_t *db = dr->dr_dbuf; 4796 4797 dbuf_write_ready(zio, NULL, db); 4798 } 4799 4800 static void 4801 dbuf_write_override_done(zio_t *zio) 4802 { 4803 dbuf_dirty_record_t *dr = zio->io_private; 4804 dmu_buf_impl_t *db = dr->dr_dbuf; 4805 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 4806 4807 mutex_enter(&db->db_mtx); 4808 if (!BP_EQUAL(zio->io_bp, obp)) { 4809 if (!BP_IS_HOLE(obp)) 4810 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 4811 arc_release(dr->dt.dl.dr_data, db); 4812 } 4813 mutex_exit(&db->db_mtx); 4814 4815 dbuf_write_done(zio, NULL, db); 4816 4817 if (zio->io_abd != NULL) 4818 abd_free(zio->io_abd); 4819 } 4820 4821 typedef struct dbuf_remap_impl_callback_arg { 4822 objset_t *drica_os; 4823 uint64_t drica_blk_birth; 4824 dmu_tx_t *drica_tx; 4825 } dbuf_remap_impl_callback_arg_t; 4826 4827 static void 4828 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size, 4829 void *arg) 4830 { 4831 dbuf_remap_impl_callback_arg_t *drica = arg; 4832 objset_t *os = drica->drica_os; 4833 spa_t *spa = dmu_objset_spa(os); 4834 dmu_tx_t *tx = drica->drica_tx; 4835 4836 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4837 4838 if (os == spa_meta_objset(spa)) { 4839 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx); 4840 } else { 4841 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset, 4842 size, drica->drica_blk_birth, tx); 4843 } 4844 } 4845 4846 static void 4847 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx) 4848 { 4849 blkptr_t bp_copy = *bp; 4850 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4851 dbuf_remap_impl_callback_arg_t drica; 4852 4853 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4854 4855 drica.drica_os = dn->dn_objset; 4856 drica.drica_blk_birth = bp->blk_birth; 4857 drica.drica_tx = tx; 4858 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback, 4859 &drica)) { 4860 /* 4861 * If the blkptr being remapped is tracked by a livelist, 4862 * then we need to make sure the livelist reflects the update. 4863 * First, cancel out the old blkptr by appending a 'FREE' 4864 * entry. Next, add an 'ALLOC' to track the new version. This 4865 * way we avoid trying to free an inaccurate blkptr at delete. 4866 * Note that embedded blkptrs are not tracked in livelists. 4867 */ 4868 if (dn->dn_objset != spa_meta_objset(spa)) { 4869 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset); 4870 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 4871 bp->blk_birth > ds->ds_dir->dd_origin_txg) { 4872 ASSERT(!BP_IS_EMBEDDED(bp)); 4873 ASSERT(dsl_dir_is_clone(ds->ds_dir)); 4874 ASSERT(spa_feature_is_enabled(spa, 4875 SPA_FEATURE_LIVELIST)); 4876 bplist_append(&ds->ds_dir->dd_pending_frees, 4877 bp); 4878 bplist_append(&ds->ds_dir->dd_pending_allocs, 4879 &bp_copy); 4880 } 4881 } 4882 4883 /* 4884 * The db_rwlock prevents dbuf_read_impl() from 4885 * dereferencing the BP while we are changing it. To 4886 * avoid lock contention, only grab it when we are actually 4887 * changing the BP. 4888 */ 4889 if (rw != NULL) 4890 rw_enter(rw, RW_WRITER); 4891 *bp = bp_copy; 4892 if (rw != NULL) 4893 rw_exit(rw); 4894 } 4895 } 4896 4897 /* 4898 * Remap any existing BP's to concrete vdevs, if possible. 4899 */ 4900 static void 4901 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx) 4902 { 4903 spa_t *spa = dmu_objset_spa(db->db_objset); 4904 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4905 4906 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)) 4907 return; 4908 4909 if (db->db_level > 0) { 4910 blkptr_t *bp = db->db.db_data; 4911 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) { 4912 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx); 4913 } 4914 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) { 4915 dnode_phys_t *dnp = db->db.db_data; 4916 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==, 4917 DMU_OT_DNODE); 4918 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT; 4919 i += dnp[i].dn_extra_slots + 1) { 4920 for (int j = 0; j < dnp[i].dn_nblkptr; j++) { 4921 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL : 4922 &dn->dn_dbuf->db_rwlock); 4923 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock, 4924 tx); 4925 } 4926 } 4927 } 4928 } 4929 4930 4931 /* Issue I/O to commit a dirty buffer to disk. */ 4932 static void 4933 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 4934 { 4935 dmu_buf_impl_t *db = dr->dr_dbuf; 4936 dnode_t *dn = dr->dr_dnode; 4937 objset_t *os; 4938 dmu_buf_impl_t *parent = db->db_parent; 4939 uint64_t txg = tx->tx_txg; 4940 zbookmark_phys_t zb; 4941 zio_prop_t zp; 4942 zio_t *pio; /* parent I/O */ 4943 int wp_flag = 0; 4944 4945 ASSERT(dmu_tx_is_syncing(tx)); 4946 4947 os = dn->dn_objset; 4948 4949 if (db->db_state != DB_NOFILL) { 4950 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 4951 /* 4952 * Private object buffers are released here rather 4953 * than in dbuf_dirty() since they are only modified 4954 * in the syncing context and we don't want the 4955 * overhead of making multiple copies of the data. 4956 */ 4957 if (BP_IS_HOLE(db->db_blkptr)) { 4958 arc_buf_thaw(data); 4959 } else { 4960 dbuf_release_bp(db); 4961 } 4962 dbuf_remap(dn, db, tx); 4963 } 4964 } 4965 4966 if (parent != dn->dn_dbuf) { 4967 /* Our parent is an indirect block. */ 4968 /* We have a dirty parent that has been scheduled for write. */ 4969 ASSERT(parent && parent->db_data_pending); 4970 /* Our parent's buffer is one level closer to the dnode. */ 4971 ASSERT(db->db_level == parent->db_level-1); 4972 /* 4973 * We're about to modify our parent's db_data by modifying 4974 * our block pointer, so the parent must be released. 4975 */ 4976 ASSERT(arc_released(parent->db_buf)); 4977 pio = parent->db_data_pending->dr_zio; 4978 } else { 4979 /* Our parent is the dnode itself. */ 4980 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 4981 db->db_blkid != DMU_SPILL_BLKID) || 4982 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 4983 if (db->db_blkid != DMU_SPILL_BLKID) 4984 ASSERT3P(db->db_blkptr, ==, 4985 &dn->dn_phys->dn_blkptr[db->db_blkid]); 4986 pio = dn->dn_zio; 4987 } 4988 4989 ASSERT(db->db_level == 0 || data == db->db_buf); 4990 ASSERT3U(db->db_blkptr->blk_birth, <=, txg); 4991 ASSERT(pio); 4992 4993 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 4994 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 4995 db->db.db_object, db->db_level, db->db_blkid); 4996 4997 if (db->db_blkid == DMU_SPILL_BLKID) 4998 wp_flag = WP_SPILL; 4999 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; 5000 5001 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 5002 5003 /* 5004 * We copy the blkptr now (rather than when we instantiate the dirty 5005 * record), because its value can change between open context and 5006 * syncing context. We do not need to hold dn_struct_rwlock to read 5007 * db_blkptr because we are in syncing context. 5008 */ 5009 dr->dr_bp_copy = *db->db_blkptr; 5010 5011 if (db->db_level == 0 && 5012 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 5013 /* 5014 * The BP for this block has been provided by open context 5015 * (by dmu_sync() or dmu_buf_write_embedded()). 5016 */ 5017 abd_t *contents = (data != NULL) ? 5018 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL; 5019 5020 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy, 5021 contents, db->db.db_size, db->db.db_size, &zp, 5022 dbuf_write_override_ready, NULL, NULL, 5023 dbuf_write_override_done, 5024 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 5025 mutex_enter(&db->db_mtx); 5026 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 5027 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 5028 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite); 5029 mutex_exit(&db->db_mtx); 5030 } else if (db->db_state == DB_NOFILL) { 5031 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 5032 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 5033 dr->dr_zio = zio_write(pio, os->os_spa, txg, 5034 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp, 5035 dbuf_write_nofill_ready, NULL, NULL, 5036 dbuf_write_nofill_done, db, 5037 ZIO_PRIORITY_ASYNC_WRITE, 5038 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 5039 } else { 5040 ASSERT(arc_released(data)); 5041 5042 /* 5043 * For indirect blocks, we want to setup the children 5044 * ready callback so that we can properly handle an indirect 5045 * block that only contains holes. 5046 */ 5047 arc_write_done_func_t *children_ready_cb = NULL; 5048 if (db->db_level != 0) 5049 children_ready_cb = dbuf_write_children_ready; 5050 5051 dr->dr_zio = arc_write(pio, os->os_spa, txg, 5052 &dr->dr_bp_copy, data, dbuf_is_l2cacheable(db), 5053 &zp, dbuf_write_ready, 5054 children_ready_cb, dbuf_write_physdone, 5055 dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE, 5056 ZIO_FLAG_MUSTSUCCEED, &zb); 5057 } 5058 } 5059 5060 EXPORT_SYMBOL(dbuf_find); 5061 EXPORT_SYMBOL(dbuf_is_metadata); 5062 EXPORT_SYMBOL(dbuf_destroy); 5063 EXPORT_SYMBOL(dbuf_loan_arcbuf); 5064 EXPORT_SYMBOL(dbuf_whichblock); 5065 EXPORT_SYMBOL(dbuf_read); 5066 EXPORT_SYMBOL(dbuf_unoverride); 5067 EXPORT_SYMBOL(dbuf_free_range); 5068 EXPORT_SYMBOL(dbuf_new_size); 5069 EXPORT_SYMBOL(dbuf_release_bp); 5070 EXPORT_SYMBOL(dbuf_dirty); 5071 EXPORT_SYMBOL(dmu_buf_set_crypt_params); 5072 EXPORT_SYMBOL(dmu_buf_will_dirty); 5073 EXPORT_SYMBOL(dmu_buf_is_dirty); 5074 EXPORT_SYMBOL(dmu_buf_will_not_fill); 5075 EXPORT_SYMBOL(dmu_buf_will_fill); 5076 EXPORT_SYMBOL(dmu_buf_fill_done); 5077 EXPORT_SYMBOL(dmu_buf_rele); 5078 EXPORT_SYMBOL(dbuf_assign_arcbuf); 5079 EXPORT_SYMBOL(dbuf_prefetch); 5080 EXPORT_SYMBOL(dbuf_hold_impl); 5081 EXPORT_SYMBOL(dbuf_hold); 5082 EXPORT_SYMBOL(dbuf_hold_level); 5083 EXPORT_SYMBOL(dbuf_create_bonus); 5084 EXPORT_SYMBOL(dbuf_spill_set_blksz); 5085 EXPORT_SYMBOL(dbuf_rm_spill); 5086 EXPORT_SYMBOL(dbuf_add_ref); 5087 EXPORT_SYMBOL(dbuf_rele); 5088 EXPORT_SYMBOL(dbuf_rele_and_unlock); 5089 EXPORT_SYMBOL(dbuf_refcount); 5090 EXPORT_SYMBOL(dbuf_sync_list); 5091 EXPORT_SYMBOL(dmu_buf_set_user); 5092 EXPORT_SYMBOL(dmu_buf_set_user_ie); 5093 EXPORT_SYMBOL(dmu_buf_get_user); 5094 EXPORT_SYMBOL(dmu_buf_get_blkptr); 5095 5096 /* BEGIN CSTYLED */ 5097 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, ULONG, ZMOD_RW, 5098 "Maximum size in bytes of the dbuf cache."); 5099 5100 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW, 5101 "Percentage over dbuf_cache_max_bytes when dbufs must be evicted " 5102 "directly."); 5103 5104 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW, 5105 "Percentage below dbuf_cache_max_bytes when the evict thread stops " 5106 "evicting dbufs."); 5107 5108 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, ULONG, ZMOD_RW, 5109 "Maximum size in bytes of the dbuf metadata cache."); 5110 5111 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, INT, ZMOD_RW, 5112 "Set the size of the dbuf cache to a log2 fraction of arc size."); 5113 5114 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, INT, ZMOD_RW, 5115 "Set the size of the dbuf metadata cache to a log2 fraction of arc " 5116 "size."); 5117 /* END CSTYLED */ 5118