1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright (c) 2019, Klara Inc. 28 * Copyright (c) 2019, Allan Jude 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/arc.h> 33 #include <sys/dmu.h> 34 #include <sys/dmu_send.h> 35 #include <sys/dmu_impl.h> 36 #include <sys/dbuf.h> 37 #include <sys/dmu_objset.h> 38 #include <sys/dsl_dataset.h> 39 #include <sys/dsl_dir.h> 40 #include <sys/dmu_tx.h> 41 #include <sys/spa.h> 42 #include <sys/zio.h> 43 #include <sys/dmu_zfetch.h> 44 #include <sys/sa.h> 45 #include <sys/sa_impl.h> 46 #include <sys/zfeature.h> 47 #include <sys/blkptr.h> 48 #include <sys/range_tree.h> 49 #include <sys/trace_zfs.h> 50 #include <sys/callb.h> 51 #include <sys/abd.h> 52 #include <sys/vdev.h> 53 #include <cityhash.h> 54 #include <sys/spa_impl.h> 55 #include <sys/wmsum.h> 56 57 kstat_t *dbuf_ksp; 58 59 typedef struct dbuf_stats { 60 /* 61 * Various statistics about the size of the dbuf cache. 62 */ 63 kstat_named_t cache_count; 64 kstat_named_t cache_size_bytes; 65 kstat_named_t cache_size_bytes_max; 66 /* 67 * Statistics regarding the bounds on the dbuf cache size. 68 */ 69 kstat_named_t cache_target_bytes; 70 kstat_named_t cache_lowater_bytes; 71 kstat_named_t cache_hiwater_bytes; 72 /* 73 * Total number of dbuf cache evictions that have occurred. 74 */ 75 kstat_named_t cache_total_evicts; 76 /* 77 * The distribution of dbuf levels in the dbuf cache and 78 * the total size of all dbufs at each level. 79 */ 80 kstat_named_t cache_levels[DN_MAX_LEVELS]; 81 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS]; 82 /* 83 * Statistics about the dbuf hash table. 84 */ 85 kstat_named_t hash_hits; 86 kstat_named_t hash_misses; 87 kstat_named_t hash_collisions; 88 kstat_named_t hash_elements; 89 kstat_named_t hash_elements_max; 90 /* 91 * Number of sublists containing more than one dbuf in the dbuf 92 * hash table. Keep track of the longest hash chain. 93 */ 94 kstat_named_t hash_chains; 95 kstat_named_t hash_chain_max; 96 /* 97 * Number of times a dbuf_create() discovers that a dbuf was 98 * already created and in the dbuf hash table. 99 */ 100 kstat_named_t hash_insert_race; 101 /* 102 * Statistics about the size of the metadata dbuf cache. 103 */ 104 kstat_named_t metadata_cache_count; 105 kstat_named_t metadata_cache_size_bytes; 106 kstat_named_t metadata_cache_size_bytes_max; 107 /* 108 * For diagnostic purposes, this is incremented whenever we can't add 109 * something to the metadata cache because it's full, and instead put 110 * the data in the regular dbuf cache. 111 */ 112 kstat_named_t metadata_cache_overflow; 113 } dbuf_stats_t; 114 115 dbuf_stats_t dbuf_stats = { 116 { "cache_count", KSTAT_DATA_UINT64 }, 117 { "cache_size_bytes", KSTAT_DATA_UINT64 }, 118 { "cache_size_bytes_max", KSTAT_DATA_UINT64 }, 119 { "cache_target_bytes", KSTAT_DATA_UINT64 }, 120 { "cache_lowater_bytes", KSTAT_DATA_UINT64 }, 121 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 }, 122 { "cache_total_evicts", KSTAT_DATA_UINT64 }, 123 { { "cache_levels_N", KSTAT_DATA_UINT64 } }, 124 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } }, 125 { "hash_hits", KSTAT_DATA_UINT64 }, 126 { "hash_misses", KSTAT_DATA_UINT64 }, 127 { "hash_collisions", KSTAT_DATA_UINT64 }, 128 { "hash_elements", KSTAT_DATA_UINT64 }, 129 { "hash_elements_max", KSTAT_DATA_UINT64 }, 130 { "hash_chains", KSTAT_DATA_UINT64 }, 131 { "hash_chain_max", KSTAT_DATA_UINT64 }, 132 { "hash_insert_race", KSTAT_DATA_UINT64 }, 133 { "metadata_cache_count", KSTAT_DATA_UINT64 }, 134 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 }, 135 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 }, 136 { "metadata_cache_overflow", KSTAT_DATA_UINT64 } 137 }; 138 139 struct { 140 wmsum_t cache_count; 141 wmsum_t cache_total_evicts; 142 wmsum_t cache_levels[DN_MAX_LEVELS]; 143 wmsum_t cache_levels_bytes[DN_MAX_LEVELS]; 144 wmsum_t hash_hits; 145 wmsum_t hash_misses; 146 wmsum_t hash_collisions; 147 wmsum_t hash_chains; 148 wmsum_t hash_insert_race; 149 wmsum_t metadata_cache_count; 150 wmsum_t metadata_cache_overflow; 151 } dbuf_sums; 152 153 #define DBUF_STAT_INCR(stat, val) \ 154 wmsum_add(&dbuf_sums.stat, val); 155 #define DBUF_STAT_DECR(stat, val) \ 156 DBUF_STAT_INCR(stat, -(val)); 157 #define DBUF_STAT_BUMP(stat) \ 158 DBUF_STAT_INCR(stat, 1); 159 #define DBUF_STAT_BUMPDOWN(stat) \ 160 DBUF_STAT_INCR(stat, -1); 161 #define DBUF_STAT_MAX(stat, v) { \ 162 uint64_t _m; \ 163 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \ 164 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\ 165 continue; \ 166 } 167 168 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 169 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 170 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr); 171 static int dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags); 172 173 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu, 174 dmu_buf_evict_func_t *evict_func_sync, 175 dmu_buf_evict_func_t *evict_func_async, 176 dmu_buf_t **clear_on_evict_dbufp); 177 178 /* 179 * Global data structures and functions for the dbuf cache. 180 */ 181 static kmem_cache_t *dbuf_kmem_cache; 182 static taskq_t *dbu_evict_taskq; 183 184 static kthread_t *dbuf_cache_evict_thread; 185 static kmutex_t dbuf_evict_lock; 186 static kcondvar_t dbuf_evict_cv; 187 static boolean_t dbuf_evict_thread_exit; 188 189 /* 190 * There are two dbuf caches; each dbuf can only be in one of them at a time. 191 * 192 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands 193 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs 194 * that represent the metadata that describes filesystems/snapshots/ 195 * bookmarks/properties/etc. We only evict from this cache when we export a 196 * pool, to short-circuit as much I/O as possible for all administrative 197 * commands that need the metadata. There is no eviction policy for this 198 * cache, because we try to only include types in it which would occupy a 199 * very small amount of space per object but create a large impact on the 200 * performance of these commands. Instead, after it reaches a maximum size 201 * (which should only happen on very small memory systems with a very large 202 * number of filesystem objects), we stop taking new dbufs into the 203 * metadata cache, instead putting them in the normal dbuf cache. 204 * 205 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that 206 * are not currently held but have been recently released. These dbufs 207 * are not eligible for arc eviction until they are aged out of the cache. 208 * Dbufs that are aged out of the cache will be immediately destroyed and 209 * become eligible for arc eviction. 210 * 211 * Dbufs are added to these caches once the last hold is released. If a dbuf is 212 * later accessed and still exists in the dbuf cache, then it will be removed 213 * from the cache and later re-added to the head of the cache. 214 * 215 * If a given dbuf meets the requirements for the metadata cache, it will go 216 * there, otherwise it will be considered for the generic LRU dbuf cache. The 217 * caches and the refcounts tracking their sizes are stored in an array indexed 218 * by those caches' matching enum values (from dbuf_cached_state_t). 219 */ 220 typedef struct dbuf_cache { 221 multilist_t cache; 222 zfs_refcount_t size ____cacheline_aligned; 223 } dbuf_cache_t; 224 dbuf_cache_t dbuf_caches[DB_CACHE_MAX]; 225 226 /* Size limits for the caches */ 227 unsigned long dbuf_cache_max_bytes = ULONG_MAX; 228 unsigned long dbuf_metadata_cache_max_bytes = ULONG_MAX; 229 230 /* Set the default sizes of the caches to log2 fraction of arc size */ 231 int dbuf_cache_shift = 5; 232 int dbuf_metadata_cache_shift = 6; 233 234 static unsigned long dbuf_cache_target_bytes(void); 235 static unsigned long dbuf_metadata_cache_target_bytes(void); 236 237 /* 238 * The LRU dbuf cache uses a three-stage eviction policy: 239 * - A low water marker designates when the dbuf eviction thread 240 * should stop evicting from the dbuf cache. 241 * - When we reach the maximum size (aka mid water mark), we 242 * signal the eviction thread to run. 243 * - The high water mark indicates when the eviction thread 244 * is unable to keep up with the incoming load and eviction must 245 * happen in the context of the calling thread. 246 * 247 * The dbuf cache: 248 * (max size) 249 * low water mid water hi water 250 * +----------------------------------------+----------+----------+ 251 * | | | | 252 * | | | | 253 * | | | | 254 * | | | | 255 * +----------------------------------------+----------+----------+ 256 * stop signal evict 257 * evicting eviction directly 258 * thread 259 * 260 * The high and low water marks indicate the operating range for the eviction 261 * thread. The low water mark is, by default, 90% of the total size of the 262 * cache and the high water mark is at 110% (both of these percentages can be 263 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 264 * respectively). The eviction thread will try to ensure that the cache remains 265 * within this range by waking up every second and checking if the cache is 266 * above the low water mark. The thread can also be woken up by callers adding 267 * elements into the cache if the cache is larger than the mid water (i.e max 268 * cache size). Once the eviction thread is woken up and eviction is required, 269 * it will continue evicting buffers until it's able to reduce the cache size 270 * to the low water mark. If the cache size continues to grow and hits the high 271 * water mark, then callers adding elements to the cache will begin to evict 272 * directly from the cache until the cache is no longer above the high water 273 * mark. 274 */ 275 276 /* 277 * The percentage above and below the maximum cache size. 278 */ 279 uint_t dbuf_cache_hiwater_pct = 10; 280 uint_t dbuf_cache_lowater_pct = 10; 281 282 /* ARGSUSED */ 283 static int 284 dbuf_cons(void *vdb, void *unused, int kmflag) 285 { 286 dmu_buf_impl_t *db = vdb; 287 bzero(db, sizeof (dmu_buf_impl_t)); 288 289 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 290 rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL); 291 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 292 multilist_link_init(&db->db_cache_link); 293 zfs_refcount_create(&db->db_holds); 294 295 return (0); 296 } 297 298 /* ARGSUSED */ 299 static void 300 dbuf_dest(void *vdb, void *unused) 301 { 302 dmu_buf_impl_t *db = vdb; 303 mutex_destroy(&db->db_mtx); 304 rw_destroy(&db->db_rwlock); 305 cv_destroy(&db->db_changed); 306 ASSERT(!multilist_link_active(&db->db_cache_link)); 307 zfs_refcount_destroy(&db->db_holds); 308 } 309 310 /* 311 * dbuf hash table routines 312 */ 313 static dbuf_hash_table_t dbuf_hash_table; 314 315 /* 316 * We use Cityhash for this. It's fast, and has good hash properties without 317 * requiring any large static buffers. 318 */ 319 static uint64_t 320 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 321 { 322 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid)); 323 } 324 325 #define DTRACE_SET_STATE(db, why) \ 326 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \ 327 const char *, why) 328 329 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 330 ((dbuf)->db.db_object == (obj) && \ 331 (dbuf)->db_objset == (os) && \ 332 (dbuf)->db_level == (level) && \ 333 (dbuf)->db_blkid == (blkid)) 334 335 dmu_buf_impl_t * 336 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid) 337 { 338 dbuf_hash_table_t *h = &dbuf_hash_table; 339 uint64_t hv; 340 uint64_t idx; 341 dmu_buf_impl_t *db; 342 343 hv = dbuf_hash(os, obj, level, blkid); 344 idx = hv & h->hash_table_mask; 345 346 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 347 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 348 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 349 mutex_enter(&db->db_mtx); 350 if (db->db_state != DB_EVICTING) { 351 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 352 return (db); 353 } 354 mutex_exit(&db->db_mtx); 355 } 356 } 357 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 358 return (NULL); 359 } 360 361 static dmu_buf_impl_t * 362 dbuf_find_bonus(objset_t *os, uint64_t object) 363 { 364 dnode_t *dn; 365 dmu_buf_impl_t *db = NULL; 366 367 if (dnode_hold(os, object, FTAG, &dn) == 0) { 368 rw_enter(&dn->dn_struct_rwlock, RW_READER); 369 if (dn->dn_bonus != NULL) { 370 db = dn->dn_bonus; 371 mutex_enter(&db->db_mtx); 372 } 373 rw_exit(&dn->dn_struct_rwlock); 374 dnode_rele(dn, FTAG); 375 } 376 return (db); 377 } 378 379 /* 380 * Insert an entry into the hash table. If there is already an element 381 * equal to elem in the hash table, then the already existing element 382 * will be returned and the new element will not be inserted. 383 * Otherwise returns NULL. 384 */ 385 static dmu_buf_impl_t * 386 dbuf_hash_insert(dmu_buf_impl_t *db) 387 { 388 dbuf_hash_table_t *h = &dbuf_hash_table; 389 objset_t *os = db->db_objset; 390 uint64_t obj = db->db.db_object; 391 int level = db->db_level; 392 uint64_t blkid, hv, idx; 393 dmu_buf_impl_t *dbf; 394 uint32_t i; 395 396 blkid = db->db_blkid; 397 hv = dbuf_hash(os, obj, level, blkid); 398 idx = hv & h->hash_table_mask; 399 400 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 401 for (dbf = h->hash_table[idx], i = 0; dbf != NULL; 402 dbf = dbf->db_hash_next, i++) { 403 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 404 mutex_enter(&dbf->db_mtx); 405 if (dbf->db_state != DB_EVICTING) { 406 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 407 return (dbf); 408 } 409 mutex_exit(&dbf->db_mtx); 410 } 411 } 412 413 if (i > 0) { 414 DBUF_STAT_BUMP(hash_collisions); 415 if (i == 1) 416 DBUF_STAT_BUMP(hash_chains); 417 418 DBUF_STAT_MAX(hash_chain_max, i); 419 } 420 421 mutex_enter(&db->db_mtx); 422 db->db_hash_next = h->hash_table[idx]; 423 h->hash_table[idx] = db; 424 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 425 uint64_t he = atomic_inc_64_nv(&dbuf_stats.hash_elements.value.ui64); 426 DBUF_STAT_MAX(hash_elements_max, he); 427 428 return (NULL); 429 } 430 431 /* 432 * This returns whether this dbuf should be stored in the metadata cache, which 433 * is based on whether it's from one of the dnode types that store data related 434 * to traversing dataset hierarchies. 435 */ 436 static boolean_t 437 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db) 438 { 439 DB_DNODE_ENTER(db); 440 dmu_object_type_t type = DB_DNODE(db)->dn_type; 441 DB_DNODE_EXIT(db); 442 443 /* Check if this dbuf is one of the types we care about */ 444 if (DMU_OT_IS_METADATA_CACHED(type)) { 445 /* If we hit this, then we set something up wrong in dmu_ot */ 446 ASSERT(DMU_OT_IS_METADATA(type)); 447 448 /* 449 * Sanity check for small-memory systems: don't allocate too 450 * much memory for this purpose. 451 */ 452 if (zfs_refcount_count( 453 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) > 454 dbuf_metadata_cache_target_bytes()) { 455 DBUF_STAT_BUMP(metadata_cache_overflow); 456 return (B_FALSE); 457 } 458 459 return (B_TRUE); 460 } 461 462 return (B_FALSE); 463 } 464 465 /* 466 * Remove an entry from the hash table. It must be in the EVICTING state. 467 */ 468 static void 469 dbuf_hash_remove(dmu_buf_impl_t *db) 470 { 471 dbuf_hash_table_t *h = &dbuf_hash_table; 472 uint64_t hv, idx; 473 dmu_buf_impl_t *dbf, **dbp; 474 475 hv = dbuf_hash(db->db_objset, db->db.db_object, 476 db->db_level, db->db_blkid); 477 idx = hv & h->hash_table_mask; 478 479 /* 480 * We mustn't hold db_mtx to maintain lock ordering: 481 * DBUF_HASH_MUTEX > db_mtx. 482 */ 483 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 484 ASSERT(db->db_state == DB_EVICTING); 485 ASSERT(!MUTEX_HELD(&db->db_mtx)); 486 487 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 488 dbp = &h->hash_table[idx]; 489 while ((dbf = *dbp) != db) { 490 dbp = &dbf->db_hash_next; 491 ASSERT(dbf != NULL); 492 } 493 *dbp = db->db_hash_next; 494 db->db_hash_next = NULL; 495 if (h->hash_table[idx] && 496 h->hash_table[idx]->db_hash_next == NULL) 497 DBUF_STAT_BUMPDOWN(hash_chains); 498 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 499 atomic_dec_64(&dbuf_stats.hash_elements.value.ui64); 500 } 501 502 typedef enum { 503 DBVU_EVICTING, 504 DBVU_NOT_EVICTING 505 } dbvu_verify_type_t; 506 507 static void 508 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 509 { 510 #ifdef ZFS_DEBUG 511 int64_t holds; 512 513 if (db->db_user == NULL) 514 return; 515 516 /* Only data blocks support the attachment of user data. */ 517 ASSERT(db->db_level == 0); 518 519 /* Clients must resolve a dbuf before attaching user data. */ 520 ASSERT(db->db.db_data != NULL); 521 ASSERT3U(db->db_state, ==, DB_CACHED); 522 523 holds = zfs_refcount_count(&db->db_holds); 524 if (verify_type == DBVU_EVICTING) { 525 /* 526 * Immediate eviction occurs when holds == dirtycnt. 527 * For normal eviction buffers, holds is zero on 528 * eviction, except when dbuf_fix_old_data() calls 529 * dbuf_clear_data(). However, the hold count can grow 530 * during eviction even though db_mtx is held (see 531 * dmu_bonus_hold() for an example), so we can only 532 * test the generic invariant that holds >= dirtycnt. 533 */ 534 ASSERT3U(holds, >=, db->db_dirtycnt); 535 } else { 536 if (db->db_user_immediate_evict == TRUE) 537 ASSERT3U(holds, >=, db->db_dirtycnt); 538 else 539 ASSERT3U(holds, >, 0); 540 } 541 #endif 542 } 543 544 static void 545 dbuf_evict_user(dmu_buf_impl_t *db) 546 { 547 dmu_buf_user_t *dbu = db->db_user; 548 549 ASSERT(MUTEX_HELD(&db->db_mtx)); 550 551 if (dbu == NULL) 552 return; 553 554 dbuf_verify_user(db, DBVU_EVICTING); 555 db->db_user = NULL; 556 557 #ifdef ZFS_DEBUG 558 if (dbu->dbu_clear_on_evict_dbufp != NULL) 559 *dbu->dbu_clear_on_evict_dbufp = NULL; 560 #endif 561 562 /* 563 * There are two eviction callbacks - one that we call synchronously 564 * and one that we invoke via a taskq. The async one is useful for 565 * avoiding lock order reversals and limiting stack depth. 566 * 567 * Note that if we have a sync callback but no async callback, 568 * it's likely that the sync callback will free the structure 569 * containing the dbu. In that case we need to take care to not 570 * dereference dbu after calling the sync evict func. 571 */ 572 boolean_t has_async = (dbu->dbu_evict_func_async != NULL); 573 574 if (dbu->dbu_evict_func_sync != NULL) 575 dbu->dbu_evict_func_sync(dbu); 576 577 if (has_async) { 578 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, 579 dbu, 0, &dbu->dbu_tqent); 580 } 581 } 582 583 boolean_t 584 dbuf_is_metadata(dmu_buf_impl_t *db) 585 { 586 /* 587 * Consider indirect blocks and spill blocks to be meta data. 588 */ 589 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) { 590 return (B_TRUE); 591 } else { 592 boolean_t is_metadata; 593 594 DB_DNODE_ENTER(db); 595 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 596 DB_DNODE_EXIT(db); 597 598 return (is_metadata); 599 } 600 } 601 602 603 /* 604 * This function *must* return indices evenly distributed between all 605 * sublists of the multilist. This is needed due to how the dbuf eviction 606 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 607 * distributed between all sublists and uses this assumption when 608 * deciding which sublist to evict from and how much to evict from it. 609 */ 610 static unsigned int 611 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 612 { 613 dmu_buf_impl_t *db = obj; 614 615 /* 616 * The assumption here, is the hash value for a given 617 * dmu_buf_impl_t will remain constant throughout it's lifetime 618 * (i.e. it's objset, object, level and blkid fields don't change). 619 * Thus, we don't need to store the dbuf's sublist index 620 * on insertion, as this index can be recalculated on removal. 621 * 622 * Also, the low order bits of the hash value are thought to be 623 * distributed evenly. Otherwise, in the case that the multilist 624 * has a power of two number of sublists, each sublists' usage 625 * would not be evenly distributed. 626 */ 627 return (dbuf_hash(db->db_objset, db->db.db_object, 628 db->db_level, db->db_blkid) % 629 multilist_get_num_sublists(ml)); 630 } 631 632 /* 633 * The target size of the dbuf cache can grow with the ARC target, 634 * unless limited by the tunable dbuf_cache_max_bytes. 635 */ 636 static inline unsigned long 637 dbuf_cache_target_bytes(void) 638 { 639 return (MIN(dbuf_cache_max_bytes, 640 arc_target_bytes() >> dbuf_cache_shift)); 641 } 642 643 /* 644 * The target size of the dbuf metadata cache can grow with the ARC target, 645 * unless limited by the tunable dbuf_metadata_cache_max_bytes. 646 */ 647 static inline unsigned long 648 dbuf_metadata_cache_target_bytes(void) 649 { 650 return (MIN(dbuf_metadata_cache_max_bytes, 651 arc_target_bytes() >> dbuf_metadata_cache_shift)); 652 } 653 654 static inline uint64_t 655 dbuf_cache_hiwater_bytes(void) 656 { 657 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 658 return (dbuf_cache_target + 659 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100); 660 } 661 662 static inline uint64_t 663 dbuf_cache_lowater_bytes(void) 664 { 665 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 666 return (dbuf_cache_target - 667 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100); 668 } 669 670 static inline boolean_t 671 dbuf_cache_above_lowater(void) 672 { 673 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > 674 dbuf_cache_lowater_bytes()); 675 } 676 677 /* 678 * Evict the oldest eligible dbuf from the dbuf cache. 679 */ 680 static void 681 dbuf_evict_one(void) 682 { 683 int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache); 684 multilist_sublist_t *mls = multilist_sublist_lock( 685 &dbuf_caches[DB_DBUF_CACHE].cache, idx); 686 687 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 688 689 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 690 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 691 db = multilist_sublist_prev(mls, db); 692 } 693 694 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 695 multilist_sublist_t *, mls); 696 697 if (db != NULL) { 698 multilist_sublist_remove(mls, db); 699 multilist_sublist_unlock(mls); 700 (void) zfs_refcount_remove_many( 701 &dbuf_caches[DB_DBUF_CACHE].size, db->db.db_size, db); 702 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 703 DBUF_STAT_BUMPDOWN(cache_count); 704 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 705 db->db.db_size); 706 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE); 707 db->db_caching_status = DB_NO_CACHE; 708 dbuf_destroy(db); 709 DBUF_STAT_BUMP(cache_total_evicts); 710 } else { 711 multilist_sublist_unlock(mls); 712 } 713 } 714 715 /* 716 * The dbuf evict thread is responsible for aging out dbufs from the 717 * cache. Once the cache has reached it's maximum size, dbufs are removed 718 * and destroyed. The eviction thread will continue running until the size 719 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 720 * out of the cache it is destroyed and becomes eligible for arc eviction. 721 */ 722 /* ARGSUSED */ 723 static void 724 dbuf_evict_thread(void *unused) 725 { 726 callb_cpr_t cpr; 727 728 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 729 730 mutex_enter(&dbuf_evict_lock); 731 while (!dbuf_evict_thread_exit) { 732 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 733 CALLB_CPR_SAFE_BEGIN(&cpr); 734 (void) cv_timedwait_idle_hires(&dbuf_evict_cv, 735 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 736 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 737 } 738 mutex_exit(&dbuf_evict_lock); 739 740 /* 741 * Keep evicting as long as we're above the low water mark 742 * for the cache. We do this without holding the locks to 743 * minimize lock contention. 744 */ 745 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 746 dbuf_evict_one(); 747 } 748 749 mutex_enter(&dbuf_evict_lock); 750 } 751 752 dbuf_evict_thread_exit = B_FALSE; 753 cv_broadcast(&dbuf_evict_cv); 754 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 755 thread_exit(); 756 } 757 758 /* 759 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 760 * If the dbuf cache is at its high water mark, then evict a dbuf from the 761 * dbuf cache using the callers context. 762 */ 763 static void 764 dbuf_evict_notify(uint64_t size) 765 { 766 /* 767 * We check if we should evict without holding the dbuf_evict_lock, 768 * because it's OK to occasionally make the wrong decision here, 769 * and grabbing the lock results in massive lock contention. 770 */ 771 if (size > dbuf_cache_target_bytes()) { 772 if (size > dbuf_cache_hiwater_bytes()) 773 dbuf_evict_one(); 774 cv_signal(&dbuf_evict_cv); 775 } 776 } 777 778 static int 779 dbuf_kstat_update(kstat_t *ksp, int rw) 780 { 781 dbuf_stats_t *ds = ksp->ks_data; 782 783 if (rw == KSTAT_WRITE) 784 return (SET_ERROR(EACCES)); 785 786 ds->cache_count.value.ui64 = 787 wmsum_value(&dbuf_sums.cache_count); 788 ds->cache_size_bytes.value.ui64 = 789 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size); 790 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes(); 791 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes(); 792 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes(); 793 ds->cache_total_evicts.value.ui64 = 794 wmsum_value(&dbuf_sums.cache_total_evicts); 795 for (int i = 0; i < DN_MAX_LEVELS; i++) { 796 ds->cache_levels[i].value.ui64 = 797 wmsum_value(&dbuf_sums.cache_levels[i]); 798 ds->cache_levels_bytes[i].value.ui64 = 799 wmsum_value(&dbuf_sums.cache_levels_bytes[i]); 800 } 801 ds->hash_hits.value.ui64 = 802 wmsum_value(&dbuf_sums.hash_hits); 803 ds->hash_misses.value.ui64 = 804 wmsum_value(&dbuf_sums.hash_misses); 805 ds->hash_collisions.value.ui64 = 806 wmsum_value(&dbuf_sums.hash_collisions); 807 ds->hash_chains.value.ui64 = 808 wmsum_value(&dbuf_sums.hash_chains); 809 ds->hash_insert_race.value.ui64 = 810 wmsum_value(&dbuf_sums.hash_insert_race); 811 ds->metadata_cache_count.value.ui64 = 812 wmsum_value(&dbuf_sums.metadata_cache_count); 813 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count( 814 &dbuf_caches[DB_DBUF_METADATA_CACHE].size); 815 ds->metadata_cache_overflow.value.ui64 = 816 wmsum_value(&dbuf_sums.metadata_cache_overflow); 817 return (0); 818 } 819 820 void 821 dbuf_init(void) 822 { 823 uint64_t hsize = 1ULL << 16; 824 dbuf_hash_table_t *h = &dbuf_hash_table; 825 int i; 826 827 /* 828 * The hash table is big enough to fill all of physical memory 829 * with an average block size of zfs_arc_average_blocksize (default 8K). 830 * By default, the table will take up 831 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 832 */ 833 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE) 834 hsize <<= 1; 835 836 retry: 837 h->hash_table_mask = hsize - 1; 838 #if defined(_KERNEL) 839 /* 840 * Large allocations which do not require contiguous pages 841 * should be using vmem_alloc() in the linux kernel 842 */ 843 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP); 844 #else 845 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); 846 #endif 847 if (h->hash_table == NULL) { 848 /* XXX - we should really return an error instead of assert */ 849 ASSERT(hsize > (1ULL << 10)); 850 hsize >>= 1; 851 goto retry; 852 } 853 854 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 855 sizeof (dmu_buf_impl_t), 856 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 857 858 for (i = 0; i < DBUF_MUTEXES; i++) 859 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 860 861 dbuf_stats_init(h); 862 863 /* 864 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 865 * configuration is not required. 866 */ 867 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0); 868 869 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 870 multilist_create(&dbuf_caches[dcs].cache, 871 sizeof (dmu_buf_impl_t), 872 offsetof(dmu_buf_impl_t, db_cache_link), 873 dbuf_cache_multilist_index_func); 874 zfs_refcount_create(&dbuf_caches[dcs].size); 875 } 876 877 dbuf_evict_thread_exit = B_FALSE; 878 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 879 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 880 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 881 NULL, 0, &p0, TS_RUN, minclsyspri); 882 883 wmsum_init(&dbuf_sums.cache_count, 0); 884 wmsum_init(&dbuf_sums.cache_total_evicts, 0); 885 for (i = 0; i < DN_MAX_LEVELS; i++) { 886 wmsum_init(&dbuf_sums.cache_levels[i], 0); 887 wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0); 888 } 889 wmsum_init(&dbuf_sums.hash_hits, 0); 890 wmsum_init(&dbuf_sums.hash_misses, 0); 891 wmsum_init(&dbuf_sums.hash_collisions, 0); 892 wmsum_init(&dbuf_sums.hash_chains, 0); 893 wmsum_init(&dbuf_sums.hash_insert_race, 0); 894 wmsum_init(&dbuf_sums.metadata_cache_count, 0); 895 wmsum_init(&dbuf_sums.metadata_cache_overflow, 0); 896 897 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc", 898 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t), 899 KSTAT_FLAG_VIRTUAL); 900 if (dbuf_ksp != NULL) { 901 for (i = 0; i < DN_MAX_LEVELS; i++) { 902 snprintf(dbuf_stats.cache_levels[i].name, 903 KSTAT_STRLEN, "cache_level_%d", i); 904 dbuf_stats.cache_levels[i].data_type = 905 KSTAT_DATA_UINT64; 906 snprintf(dbuf_stats.cache_levels_bytes[i].name, 907 KSTAT_STRLEN, "cache_level_%d_bytes", i); 908 dbuf_stats.cache_levels_bytes[i].data_type = 909 KSTAT_DATA_UINT64; 910 } 911 dbuf_ksp->ks_data = &dbuf_stats; 912 dbuf_ksp->ks_update = dbuf_kstat_update; 913 kstat_install(dbuf_ksp); 914 } 915 } 916 917 void 918 dbuf_fini(void) 919 { 920 dbuf_hash_table_t *h = &dbuf_hash_table; 921 int i; 922 923 dbuf_stats_destroy(); 924 925 for (i = 0; i < DBUF_MUTEXES; i++) 926 mutex_destroy(&h->hash_mutexes[i]); 927 #if defined(_KERNEL) 928 /* 929 * Large allocations which do not require contiguous pages 930 * should be using vmem_free() in the linux kernel 931 */ 932 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 933 #else 934 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 935 #endif 936 kmem_cache_destroy(dbuf_kmem_cache); 937 taskq_destroy(dbu_evict_taskq); 938 939 mutex_enter(&dbuf_evict_lock); 940 dbuf_evict_thread_exit = B_TRUE; 941 while (dbuf_evict_thread_exit) { 942 cv_signal(&dbuf_evict_cv); 943 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 944 } 945 mutex_exit(&dbuf_evict_lock); 946 947 mutex_destroy(&dbuf_evict_lock); 948 cv_destroy(&dbuf_evict_cv); 949 950 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 951 zfs_refcount_destroy(&dbuf_caches[dcs].size); 952 multilist_destroy(&dbuf_caches[dcs].cache); 953 } 954 955 if (dbuf_ksp != NULL) { 956 kstat_delete(dbuf_ksp); 957 dbuf_ksp = NULL; 958 } 959 960 wmsum_fini(&dbuf_sums.cache_count); 961 wmsum_fini(&dbuf_sums.cache_total_evicts); 962 for (i = 0; i < DN_MAX_LEVELS; i++) { 963 wmsum_fini(&dbuf_sums.cache_levels[i]); 964 wmsum_fini(&dbuf_sums.cache_levels_bytes[i]); 965 } 966 wmsum_fini(&dbuf_sums.hash_hits); 967 wmsum_fini(&dbuf_sums.hash_misses); 968 wmsum_fini(&dbuf_sums.hash_collisions); 969 wmsum_fini(&dbuf_sums.hash_chains); 970 wmsum_fini(&dbuf_sums.hash_insert_race); 971 wmsum_fini(&dbuf_sums.metadata_cache_count); 972 wmsum_fini(&dbuf_sums.metadata_cache_overflow); 973 } 974 975 /* 976 * Other stuff. 977 */ 978 979 #ifdef ZFS_DEBUG 980 static void 981 dbuf_verify(dmu_buf_impl_t *db) 982 { 983 dnode_t *dn; 984 dbuf_dirty_record_t *dr; 985 uint32_t txg_prev; 986 987 ASSERT(MUTEX_HELD(&db->db_mtx)); 988 989 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 990 return; 991 992 ASSERT(db->db_objset != NULL); 993 DB_DNODE_ENTER(db); 994 dn = DB_DNODE(db); 995 if (dn == NULL) { 996 ASSERT(db->db_parent == NULL); 997 ASSERT(db->db_blkptr == NULL); 998 } else { 999 ASSERT3U(db->db.db_object, ==, dn->dn_object); 1000 ASSERT3P(db->db_objset, ==, dn->dn_objset); 1001 ASSERT3U(db->db_level, <, dn->dn_nlevels); 1002 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 1003 db->db_blkid == DMU_SPILL_BLKID || 1004 !avl_is_empty(&dn->dn_dbufs)); 1005 } 1006 if (db->db_blkid == DMU_BONUS_BLKID) { 1007 ASSERT(dn != NULL); 1008 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 1009 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 1010 } else if (db->db_blkid == DMU_SPILL_BLKID) { 1011 ASSERT(dn != NULL); 1012 ASSERT0(db->db.db_offset); 1013 } else { 1014 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 1015 } 1016 1017 if ((dr = list_head(&db->db_dirty_records)) != NULL) { 1018 ASSERT(dr->dr_dbuf == db); 1019 txg_prev = dr->dr_txg; 1020 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL; 1021 dr = list_next(&db->db_dirty_records, dr)) { 1022 ASSERT(dr->dr_dbuf == db); 1023 ASSERT(txg_prev > dr->dr_txg); 1024 txg_prev = dr->dr_txg; 1025 } 1026 } 1027 1028 /* 1029 * We can't assert that db_size matches dn_datablksz because it 1030 * can be momentarily different when another thread is doing 1031 * dnode_set_blksz(). 1032 */ 1033 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 1034 dr = db->db_data_pending; 1035 /* 1036 * It should only be modified in syncing context, so 1037 * make sure we only have one copy of the data. 1038 */ 1039 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 1040 } 1041 1042 /* verify db->db_blkptr */ 1043 if (db->db_blkptr) { 1044 if (db->db_parent == dn->dn_dbuf) { 1045 /* db is pointed to by the dnode */ 1046 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 1047 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 1048 ASSERT(db->db_parent == NULL); 1049 else 1050 ASSERT(db->db_parent != NULL); 1051 if (db->db_blkid != DMU_SPILL_BLKID) 1052 ASSERT3P(db->db_blkptr, ==, 1053 &dn->dn_phys->dn_blkptr[db->db_blkid]); 1054 } else { 1055 /* db is pointed to by an indirect block */ 1056 int epb __maybe_unused = db->db_parent->db.db_size >> 1057 SPA_BLKPTRSHIFT; 1058 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 1059 ASSERT3U(db->db_parent->db.db_object, ==, 1060 db->db.db_object); 1061 /* 1062 * dnode_grow_indblksz() can make this fail if we don't 1063 * have the parent's rwlock. XXX indblksz no longer 1064 * grows. safe to do this now? 1065 */ 1066 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) { 1067 ASSERT3P(db->db_blkptr, ==, 1068 ((blkptr_t *)db->db_parent->db.db_data + 1069 db->db_blkid % epb)); 1070 } 1071 } 1072 } 1073 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 1074 (db->db_buf == NULL || db->db_buf->b_data) && 1075 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 1076 db->db_state != DB_FILL && !dn->dn_free_txg) { 1077 /* 1078 * If the blkptr isn't set but they have nonzero data, 1079 * it had better be dirty, otherwise we'll lose that 1080 * data when we evict this buffer. 1081 * 1082 * There is an exception to this rule for indirect blocks; in 1083 * this case, if the indirect block is a hole, we fill in a few 1084 * fields on each of the child blocks (importantly, birth time) 1085 * to prevent hole birth times from being lost when you 1086 * partially fill in a hole. 1087 */ 1088 if (db->db_dirtycnt == 0) { 1089 if (db->db_level == 0) { 1090 uint64_t *buf = db->db.db_data; 1091 int i; 1092 1093 for (i = 0; i < db->db.db_size >> 3; i++) { 1094 ASSERT(buf[i] == 0); 1095 } 1096 } else { 1097 blkptr_t *bps = db->db.db_data; 1098 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 1099 db->db.db_size); 1100 /* 1101 * We want to verify that all the blkptrs in the 1102 * indirect block are holes, but we may have 1103 * automatically set up a few fields for them. 1104 * We iterate through each blkptr and verify 1105 * they only have those fields set. 1106 */ 1107 for (int i = 0; 1108 i < db->db.db_size / sizeof (blkptr_t); 1109 i++) { 1110 blkptr_t *bp = &bps[i]; 1111 ASSERT(ZIO_CHECKSUM_IS_ZERO( 1112 &bp->blk_cksum)); 1113 ASSERT( 1114 DVA_IS_EMPTY(&bp->blk_dva[0]) && 1115 DVA_IS_EMPTY(&bp->blk_dva[1]) && 1116 DVA_IS_EMPTY(&bp->blk_dva[2])); 1117 ASSERT0(bp->blk_fill); 1118 ASSERT0(bp->blk_pad[0]); 1119 ASSERT0(bp->blk_pad[1]); 1120 ASSERT(!BP_IS_EMBEDDED(bp)); 1121 ASSERT(BP_IS_HOLE(bp)); 1122 ASSERT0(bp->blk_phys_birth); 1123 } 1124 } 1125 } 1126 } 1127 DB_DNODE_EXIT(db); 1128 } 1129 #endif 1130 1131 static void 1132 dbuf_clear_data(dmu_buf_impl_t *db) 1133 { 1134 ASSERT(MUTEX_HELD(&db->db_mtx)); 1135 dbuf_evict_user(db); 1136 ASSERT3P(db->db_buf, ==, NULL); 1137 db->db.db_data = NULL; 1138 if (db->db_state != DB_NOFILL) { 1139 db->db_state = DB_UNCACHED; 1140 DTRACE_SET_STATE(db, "clear data"); 1141 } 1142 } 1143 1144 static void 1145 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 1146 { 1147 ASSERT(MUTEX_HELD(&db->db_mtx)); 1148 ASSERT(buf != NULL); 1149 1150 db->db_buf = buf; 1151 ASSERT(buf->b_data != NULL); 1152 db->db.db_data = buf->b_data; 1153 } 1154 1155 static arc_buf_t * 1156 dbuf_alloc_arcbuf(dmu_buf_impl_t *db) 1157 { 1158 spa_t *spa = db->db_objset->os_spa; 1159 1160 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 1161 } 1162 1163 /* 1164 * Loan out an arc_buf for read. Return the loaned arc_buf. 1165 */ 1166 arc_buf_t * 1167 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 1168 { 1169 arc_buf_t *abuf; 1170 1171 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1172 mutex_enter(&db->db_mtx); 1173 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) { 1174 int blksz = db->db.db_size; 1175 spa_t *spa = db->db_objset->os_spa; 1176 1177 mutex_exit(&db->db_mtx); 1178 abuf = arc_loan_buf(spa, B_FALSE, blksz); 1179 bcopy(db->db.db_data, abuf->b_data, blksz); 1180 } else { 1181 abuf = db->db_buf; 1182 arc_loan_inuse_buf(abuf, db); 1183 db->db_buf = NULL; 1184 dbuf_clear_data(db); 1185 mutex_exit(&db->db_mtx); 1186 } 1187 return (abuf); 1188 } 1189 1190 /* 1191 * Calculate which level n block references the data at the level 0 offset 1192 * provided. 1193 */ 1194 uint64_t 1195 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset) 1196 { 1197 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 1198 /* 1199 * The level n blkid is equal to the level 0 blkid divided by 1200 * the number of level 0s in a level n block. 1201 * 1202 * The level 0 blkid is offset >> datablkshift = 1203 * offset / 2^datablkshift. 1204 * 1205 * The number of level 0s in a level n is the number of block 1206 * pointers in an indirect block, raised to the power of level. 1207 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 1208 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 1209 * 1210 * Thus, the level n blkid is: offset / 1211 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT)))) 1212 * = offset / 2^(datablkshift + level * 1213 * (indblkshift - SPA_BLKPTRSHIFT)) 1214 * = offset >> (datablkshift + level * 1215 * (indblkshift - SPA_BLKPTRSHIFT)) 1216 */ 1217 1218 const unsigned exp = dn->dn_datablkshift + 1219 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT); 1220 1221 if (exp >= 8 * sizeof (offset)) { 1222 /* This only happens on the highest indirection level */ 1223 ASSERT3U(level, ==, dn->dn_nlevels - 1); 1224 return (0); 1225 } 1226 1227 ASSERT3U(exp, <, 8 * sizeof (offset)); 1228 1229 return (offset >> exp); 1230 } else { 1231 ASSERT3U(offset, <, dn->dn_datablksz); 1232 return (0); 1233 } 1234 } 1235 1236 /* 1237 * This function is used to lock the parent of the provided dbuf. This should be 1238 * used when modifying or reading db_blkptr. 1239 */ 1240 db_lock_type_t 1241 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, void *tag) 1242 { 1243 enum db_lock_type ret = DLT_NONE; 1244 if (db->db_parent != NULL) { 1245 rw_enter(&db->db_parent->db_rwlock, rw); 1246 ret = DLT_PARENT; 1247 } else if (dmu_objset_ds(db->db_objset) != NULL) { 1248 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw, 1249 tag); 1250 ret = DLT_OBJSET; 1251 } 1252 /* 1253 * We only return a DLT_NONE lock when it's the top-most indirect block 1254 * of the meta-dnode of the MOS. 1255 */ 1256 return (ret); 1257 } 1258 1259 /* 1260 * We need to pass the lock type in because it's possible that the block will 1261 * move from being the topmost indirect block in a dnode (and thus, have no 1262 * parent) to not the top-most via an indirection increase. This would cause a 1263 * panic if we didn't pass the lock type in. 1264 */ 1265 void 1266 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, void *tag) 1267 { 1268 if (type == DLT_PARENT) 1269 rw_exit(&db->db_parent->db_rwlock); 1270 else if (type == DLT_OBJSET) 1271 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag); 1272 } 1273 1274 static void 1275 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1276 arc_buf_t *buf, void *vdb) 1277 { 1278 dmu_buf_impl_t *db = vdb; 1279 1280 mutex_enter(&db->db_mtx); 1281 ASSERT3U(db->db_state, ==, DB_READ); 1282 /* 1283 * All reads are synchronous, so we must have a hold on the dbuf 1284 */ 1285 ASSERT(zfs_refcount_count(&db->db_holds) > 0); 1286 ASSERT(db->db_buf == NULL); 1287 ASSERT(db->db.db_data == NULL); 1288 if (buf == NULL) { 1289 /* i/o error */ 1290 ASSERT(zio == NULL || zio->io_error != 0); 1291 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1292 ASSERT3P(db->db_buf, ==, NULL); 1293 db->db_state = DB_UNCACHED; 1294 DTRACE_SET_STATE(db, "i/o error"); 1295 } else if (db->db_level == 0 && db->db_freed_in_flight) { 1296 /* freed in flight */ 1297 ASSERT(zio == NULL || zio->io_error == 0); 1298 arc_release(buf, db); 1299 bzero(buf->b_data, db->db.db_size); 1300 arc_buf_freeze(buf); 1301 db->db_freed_in_flight = FALSE; 1302 dbuf_set_data(db, buf); 1303 db->db_state = DB_CACHED; 1304 DTRACE_SET_STATE(db, "freed in flight"); 1305 } else { 1306 /* success */ 1307 ASSERT(zio == NULL || zio->io_error == 0); 1308 dbuf_set_data(db, buf); 1309 db->db_state = DB_CACHED; 1310 DTRACE_SET_STATE(db, "successful read"); 1311 } 1312 cv_broadcast(&db->db_changed); 1313 dbuf_rele_and_unlock(db, NULL, B_FALSE); 1314 } 1315 1316 /* 1317 * Shortcut for performing reads on bonus dbufs. Returns 1318 * an error if we fail to verify the dnode associated with 1319 * a decrypted block. Otherwise success. 1320 */ 1321 static int 1322 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags) 1323 { 1324 int bonuslen, max_bonuslen, err; 1325 1326 err = dbuf_read_verify_dnode_crypt(db, flags); 1327 if (err) 1328 return (err); 1329 1330 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 1331 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1332 ASSERT(MUTEX_HELD(&db->db_mtx)); 1333 ASSERT(DB_DNODE_HELD(db)); 1334 ASSERT3U(bonuslen, <=, db->db.db_size); 1335 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP); 1336 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS); 1337 if (bonuslen < max_bonuslen) 1338 bzero(db->db.db_data, max_bonuslen); 1339 if (bonuslen) 1340 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen); 1341 db->db_state = DB_CACHED; 1342 DTRACE_SET_STATE(db, "bonus buffer filled"); 1343 return (0); 1344 } 1345 1346 static void 1347 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn) 1348 { 1349 blkptr_t *bps = db->db.db_data; 1350 uint32_t indbs = 1ULL << dn->dn_indblkshift; 1351 int n_bps = indbs >> SPA_BLKPTRSHIFT; 1352 1353 for (int i = 0; i < n_bps; i++) { 1354 blkptr_t *bp = &bps[i]; 1355 1356 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, indbs); 1357 BP_SET_LSIZE(bp, BP_GET_LEVEL(db->db_blkptr) == 1 ? 1358 dn->dn_datablksz : BP_GET_LSIZE(db->db_blkptr)); 1359 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr)); 1360 BP_SET_LEVEL(bp, BP_GET_LEVEL(db->db_blkptr) - 1); 1361 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0); 1362 } 1363 } 1364 1365 /* 1366 * Handle reads on dbufs that are holes, if necessary. This function 1367 * requires that the dbuf's mutex is held. Returns success (0) if action 1368 * was taken, ENOENT if no action was taken. 1369 */ 1370 static int 1371 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags) 1372 { 1373 ASSERT(MUTEX_HELD(&db->db_mtx)); 1374 1375 int is_hole = db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr); 1376 /* 1377 * For level 0 blocks only, if the above check fails: 1378 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 1379 * processes the delete record and clears the bp while we are waiting 1380 * for the dn_mtx (resulting in a "no" from block_freed). 1381 */ 1382 if (!is_hole && db->db_level == 0) { 1383 is_hole = dnode_block_freed(dn, db->db_blkid) || 1384 BP_IS_HOLE(db->db_blkptr); 1385 } 1386 1387 if (is_hole) { 1388 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1389 bzero(db->db.db_data, db->db.db_size); 1390 1391 if (db->db_blkptr != NULL && db->db_level > 0 && 1392 BP_IS_HOLE(db->db_blkptr) && 1393 db->db_blkptr->blk_birth != 0) { 1394 dbuf_handle_indirect_hole(db, dn); 1395 } 1396 db->db_state = DB_CACHED; 1397 DTRACE_SET_STATE(db, "hole read satisfied"); 1398 return (0); 1399 } 1400 return (ENOENT); 1401 } 1402 1403 /* 1404 * This function ensures that, when doing a decrypting read of a block, 1405 * we make sure we have decrypted the dnode associated with it. We must do 1406 * this so that we ensure we are fully authenticating the checksum-of-MACs 1407 * tree from the root of the objset down to this block. Indirect blocks are 1408 * always verified against their secure checksum-of-MACs assuming that the 1409 * dnode containing them is correct. Now that we are doing a decrypting read, 1410 * we can be sure that the key is loaded and verify that assumption. This is 1411 * especially important considering that we always read encrypted dnode 1412 * blocks as raw data (without verifying their MACs) to start, and 1413 * decrypt / authenticate them when we need to read an encrypted bonus buffer. 1414 */ 1415 static int 1416 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags) 1417 { 1418 int err = 0; 1419 objset_t *os = db->db_objset; 1420 arc_buf_t *dnode_abuf; 1421 dnode_t *dn; 1422 zbookmark_phys_t zb; 1423 1424 ASSERT(MUTEX_HELD(&db->db_mtx)); 1425 1426 if (!os->os_encrypted || os->os_raw_receive || 1427 (flags & DB_RF_NO_DECRYPT) != 0) 1428 return (0); 1429 1430 DB_DNODE_ENTER(db); 1431 dn = DB_DNODE(db); 1432 dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL; 1433 1434 if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) { 1435 DB_DNODE_EXIT(db); 1436 return (0); 1437 } 1438 1439 SET_BOOKMARK(&zb, dmu_objset_id(os), 1440 DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid); 1441 err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE); 1442 1443 /* 1444 * An error code of EACCES tells us that the key is still not 1445 * available. This is ok if we are only reading authenticated 1446 * (and therefore non-encrypted) blocks. 1447 */ 1448 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID && 1449 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) || 1450 (db->db_blkid == DMU_BONUS_BLKID && 1451 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)))) 1452 err = 0; 1453 1454 DB_DNODE_EXIT(db); 1455 1456 return (err); 1457 } 1458 1459 /* 1460 * Drops db_mtx and the parent lock specified by dblt and tag before 1461 * returning. 1462 */ 1463 static int 1464 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags, 1465 db_lock_type_t dblt, void *tag) 1466 { 1467 dnode_t *dn; 1468 zbookmark_phys_t zb; 1469 uint32_t aflags = ARC_FLAG_NOWAIT; 1470 int err, zio_flags; 1471 1472 err = zio_flags = 0; 1473 DB_DNODE_ENTER(db); 1474 dn = DB_DNODE(db); 1475 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1476 ASSERT(MUTEX_HELD(&db->db_mtx)); 1477 ASSERT(db->db_state == DB_UNCACHED); 1478 ASSERT(db->db_buf == NULL); 1479 ASSERT(db->db_parent == NULL || 1480 RW_LOCK_HELD(&db->db_parent->db_rwlock)); 1481 1482 if (db->db_blkid == DMU_BONUS_BLKID) { 1483 err = dbuf_read_bonus(db, dn, flags); 1484 goto early_unlock; 1485 } 1486 1487 err = dbuf_read_hole(db, dn, flags); 1488 if (err == 0) 1489 goto early_unlock; 1490 1491 /* 1492 * Any attempt to read a redacted block should result in an error. This 1493 * will never happen under normal conditions, but can be useful for 1494 * debugging purposes. 1495 */ 1496 if (BP_IS_REDACTED(db->db_blkptr)) { 1497 ASSERT(dsl_dataset_feature_is_active( 1498 db->db_objset->os_dsl_dataset, 1499 SPA_FEATURE_REDACTED_DATASETS)); 1500 err = SET_ERROR(EIO); 1501 goto early_unlock; 1502 } 1503 1504 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1505 db->db.db_object, db->db_level, db->db_blkid); 1506 1507 /* 1508 * All bps of an encrypted os should have the encryption bit set. 1509 * If this is not true it indicates tampering and we report an error. 1510 */ 1511 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) { 1512 spa_log_error(db->db_objset->os_spa, &zb); 1513 zfs_panic_recover("unencrypted block in encrypted " 1514 "object set %llu", dmu_objset_id(db->db_objset)); 1515 err = SET_ERROR(EIO); 1516 goto early_unlock; 1517 } 1518 1519 err = dbuf_read_verify_dnode_crypt(db, flags); 1520 if (err != 0) 1521 goto early_unlock; 1522 1523 DB_DNODE_EXIT(db); 1524 1525 db->db_state = DB_READ; 1526 DTRACE_SET_STATE(db, "read issued"); 1527 mutex_exit(&db->db_mtx); 1528 1529 if (DBUF_IS_L2CACHEABLE(db)) 1530 aflags |= ARC_FLAG_L2CACHE; 1531 1532 dbuf_add_ref(db, NULL); 1533 1534 zio_flags = (flags & DB_RF_CANFAIL) ? 1535 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED; 1536 1537 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr)) 1538 zio_flags |= ZIO_FLAG_RAW; 1539 /* 1540 * The zio layer will copy the provided blkptr later, but we need to 1541 * do this now so that we can release the parent's rwlock. We have to 1542 * do that now so that if dbuf_read_done is called synchronously (on 1543 * an l1 cache hit) we don't acquire the db_mtx while holding the 1544 * parent's rwlock, which would be a lock ordering violation. 1545 */ 1546 blkptr_t bp = *db->db_blkptr; 1547 dmu_buf_unlock_parent(db, dblt, tag); 1548 (void) arc_read(zio, db->db_objset->os_spa, &bp, 1549 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags, 1550 &aflags, &zb); 1551 return (err); 1552 early_unlock: 1553 DB_DNODE_EXIT(db); 1554 mutex_exit(&db->db_mtx); 1555 dmu_buf_unlock_parent(db, dblt, tag); 1556 return (err); 1557 } 1558 1559 /* 1560 * This is our just-in-time copy function. It makes a copy of buffers that 1561 * have been modified in a previous transaction group before we access them in 1562 * the current active group. 1563 * 1564 * This function is used in three places: when we are dirtying a buffer for the 1565 * first time in a txg, when we are freeing a range in a dnode that includes 1566 * this buffer, and when we are accessing a buffer which was received compressed 1567 * and later referenced in a WRITE_BYREF record. 1568 * 1569 * Note that when we are called from dbuf_free_range() we do not put a hold on 1570 * the buffer, we just traverse the active dbuf list for the dnode. 1571 */ 1572 static void 1573 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1574 { 1575 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 1576 1577 ASSERT(MUTEX_HELD(&db->db_mtx)); 1578 ASSERT(db->db.db_data != NULL); 1579 ASSERT(db->db_level == 0); 1580 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1581 1582 if (dr == NULL || 1583 (dr->dt.dl.dr_data != 1584 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1585 return; 1586 1587 /* 1588 * If the last dirty record for this dbuf has not yet synced 1589 * and its referencing the dbuf data, either: 1590 * reset the reference to point to a new copy, 1591 * or (if there a no active holders) 1592 * just null out the current db_data pointer. 1593 */ 1594 ASSERT3U(dr->dr_txg, >=, txg - 2); 1595 if (db->db_blkid == DMU_BONUS_BLKID) { 1596 dnode_t *dn = DB_DNODE(db); 1597 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1598 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP); 1599 arc_space_consume(bonuslen, ARC_SPACE_BONUS); 1600 bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen); 1601 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) { 1602 dnode_t *dn = DB_DNODE(db); 1603 int size = arc_buf_size(db->db_buf); 1604 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1605 spa_t *spa = db->db_objset->os_spa; 1606 enum zio_compress compress_type = 1607 arc_get_compression(db->db_buf); 1608 uint8_t complevel = arc_get_complevel(db->db_buf); 1609 1610 if (arc_is_encrypted(db->db_buf)) { 1611 boolean_t byteorder; 1612 uint8_t salt[ZIO_DATA_SALT_LEN]; 1613 uint8_t iv[ZIO_DATA_IV_LEN]; 1614 uint8_t mac[ZIO_DATA_MAC_LEN]; 1615 1616 arc_get_raw_params(db->db_buf, &byteorder, salt, 1617 iv, mac); 1618 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db, 1619 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, 1620 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf), 1621 compress_type, complevel); 1622 } else if (compress_type != ZIO_COMPRESS_OFF) { 1623 ASSERT3U(type, ==, ARC_BUFC_DATA); 1624 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db, 1625 size, arc_buf_lsize(db->db_buf), compress_type, 1626 complevel); 1627 } else { 1628 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size); 1629 } 1630 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size); 1631 } else { 1632 db->db_buf = NULL; 1633 dbuf_clear_data(db); 1634 } 1635 } 1636 1637 int 1638 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 1639 { 1640 int err = 0; 1641 boolean_t prefetch; 1642 dnode_t *dn; 1643 1644 /* 1645 * We don't have to hold the mutex to check db_state because it 1646 * can't be freed while we have a hold on the buffer. 1647 */ 1648 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1649 1650 if (db->db_state == DB_NOFILL) 1651 return (SET_ERROR(EIO)); 1652 1653 DB_DNODE_ENTER(db); 1654 dn = DB_DNODE(db); 1655 1656 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1657 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL && 1658 DBUF_IS_CACHEABLE(db); 1659 1660 mutex_enter(&db->db_mtx); 1661 if (db->db_state == DB_CACHED) { 1662 spa_t *spa = dn->dn_objset->os_spa; 1663 1664 /* 1665 * Ensure that this block's dnode has been decrypted if 1666 * the caller has requested decrypted data. 1667 */ 1668 err = dbuf_read_verify_dnode_crypt(db, flags); 1669 1670 /* 1671 * If the arc buf is compressed or encrypted and the caller 1672 * requested uncompressed data, we need to untransform it 1673 * before returning. We also call arc_untransform() on any 1674 * unauthenticated blocks, which will verify their MAC if 1675 * the key is now available. 1676 */ 1677 if (err == 0 && db->db_buf != NULL && 1678 (flags & DB_RF_NO_DECRYPT) == 0 && 1679 (arc_is_encrypted(db->db_buf) || 1680 arc_is_unauthenticated(db->db_buf) || 1681 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) { 1682 zbookmark_phys_t zb; 1683 1684 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1685 db->db.db_object, db->db_level, db->db_blkid); 1686 dbuf_fix_old_data(db, spa_syncing_txg(spa)); 1687 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE); 1688 dbuf_set_data(db, db->db_buf); 1689 } 1690 mutex_exit(&db->db_mtx); 1691 if (err == 0 && prefetch) { 1692 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1693 B_FALSE, flags & DB_RF_HAVESTRUCT); 1694 } 1695 DB_DNODE_EXIT(db); 1696 DBUF_STAT_BUMP(hash_hits); 1697 } else if (db->db_state == DB_UNCACHED) { 1698 spa_t *spa = dn->dn_objset->os_spa; 1699 boolean_t need_wait = B_FALSE; 1700 1701 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 1702 1703 if (zio == NULL && 1704 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) { 1705 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1706 need_wait = B_TRUE; 1707 } 1708 err = dbuf_read_impl(db, zio, flags, dblt, FTAG); 1709 /* 1710 * dbuf_read_impl has dropped db_mtx and our parent's rwlock 1711 * for us 1712 */ 1713 if (!err && prefetch) { 1714 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1715 db->db_state != DB_CACHED, 1716 flags & DB_RF_HAVESTRUCT); 1717 } 1718 1719 DB_DNODE_EXIT(db); 1720 DBUF_STAT_BUMP(hash_misses); 1721 1722 /* 1723 * If we created a zio_root we must execute it to avoid 1724 * leaking it, even if it isn't attached to any work due 1725 * to an error in dbuf_read_impl(). 1726 */ 1727 if (need_wait) { 1728 if (err == 0) 1729 err = zio_wait(zio); 1730 else 1731 VERIFY0(zio_wait(zio)); 1732 } 1733 } else { 1734 /* 1735 * Another reader came in while the dbuf was in flight 1736 * between UNCACHED and CACHED. Either a writer will finish 1737 * writing the buffer (sending the dbuf to CACHED) or the 1738 * first reader's request will reach the read_done callback 1739 * and send the dbuf to CACHED. Otherwise, a failure 1740 * occurred and the dbuf went to UNCACHED. 1741 */ 1742 mutex_exit(&db->db_mtx); 1743 if (prefetch) { 1744 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1745 B_TRUE, flags & DB_RF_HAVESTRUCT); 1746 } 1747 DB_DNODE_EXIT(db); 1748 DBUF_STAT_BUMP(hash_misses); 1749 1750 /* Skip the wait per the caller's request. */ 1751 if ((flags & DB_RF_NEVERWAIT) == 0) { 1752 mutex_enter(&db->db_mtx); 1753 while (db->db_state == DB_READ || 1754 db->db_state == DB_FILL) { 1755 ASSERT(db->db_state == DB_READ || 1756 (flags & DB_RF_HAVESTRUCT) == 0); 1757 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, 1758 db, zio_t *, zio); 1759 cv_wait(&db->db_changed, &db->db_mtx); 1760 } 1761 if (db->db_state == DB_UNCACHED) 1762 err = SET_ERROR(EIO); 1763 mutex_exit(&db->db_mtx); 1764 } 1765 } 1766 1767 return (err); 1768 } 1769 1770 static void 1771 dbuf_noread(dmu_buf_impl_t *db) 1772 { 1773 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1774 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1775 mutex_enter(&db->db_mtx); 1776 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1777 cv_wait(&db->db_changed, &db->db_mtx); 1778 if (db->db_state == DB_UNCACHED) { 1779 ASSERT(db->db_buf == NULL); 1780 ASSERT(db->db.db_data == NULL); 1781 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1782 db->db_state = DB_FILL; 1783 DTRACE_SET_STATE(db, "assigning filled buffer"); 1784 } else if (db->db_state == DB_NOFILL) { 1785 dbuf_clear_data(db); 1786 } else { 1787 ASSERT3U(db->db_state, ==, DB_CACHED); 1788 } 1789 mutex_exit(&db->db_mtx); 1790 } 1791 1792 void 1793 dbuf_unoverride(dbuf_dirty_record_t *dr) 1794 { 1795 dmu_buf_impl_t *db = dr->dr_dbuf; 1796 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1797 uint64_t txg = dr->dr_txg; 1798 1799 ASSERT(MUTEX_HELD(&db->db_mtx)); 1800 /* 1801 * This assert is valid because dmu_sync() expects to be called by 1802 * a zilog's get_data while holding a range lock. This call only 1803 * comes from dbuf_dirty() callers who must also hold a range lock. 1804 */ 1805 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1806 ASSERT(db->db_level == 0); 1807 1808 if (db->db_blkid == DMU_BONUS_BLKID || 1809 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1810 return; 1811 1812 ASSERT(db->db_data_pending != dr); 1813 1814 /* free this block */ 1815 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1816 zio_free(db->db_objset->os_spa, txg, bp); 1817 1818 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1819 dr->dt.dl.dr_nopwrite = B_FALSE; 1820 dr->dt.dl.dr_has_raw_params = B_FALSE; 1821 1822 /* 1823 * Release the already-written buffer, so we leave it in 1824 * a consistent dirty state. Note that all callers are 1825 * modifying the buffer, so they will immediately do 1826 * another (redundant) arc_release(). Therefore, leave 1827 * the buf thawed to save the effort of freezing & 1828 * immediately re-thawing it. 1829 */ 1830 arc_release(dr->dt.dl.dr_data, db); 1831 } 1832 1833 /* 1834 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1835 * data blocks in the free range, so that any future readers will find 1836 * empty blocks. 1837 */ 1838 void 1839 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1840 dmu_tx_t *tx) 1841 { 1842 dmu_buf_impl_t *db_search; 1843 dmu_buf_impl_t *db, *db_next; 1844 uint64_t txg = tx->tx_txg; 1845 avl_index_t where; 1846 dbuf_dirty_record_t *dr; 1847 1848 if (end_blkid > dn->dn_maxblkid && 1849 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1850 end_blkid = dn->dn_maxblkid; 1851 dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid, 1852 (u_longlong_t)end_blkid); 1853 1854 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP); 1855 db_search->db_level = 0; 1856 db_search->db_blkid = start_blkid; 1857 db_search->db_state = DB_SEARCH; 1858 1859 mutex_enter(&dn->dn_dbufs_mtx); 1860 db = avl_find(&dn->dn_dbufs, db_search, &where); 1861 ASSERT3P(db, ==, NULL); 1862 1863 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1864 1865 for (; db != NULL; db = db_next) { 1866 db_next = AVL_NEXT(&dn->dn_dbufs, db); 1867 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1868 1869 if (db->db_level != 0 || db->db_blkid > end_blkid) { 1870 break; 1871 } 1872 ASSERT3U(db->db_blkid, >=, start_blkid); 1873 1874 /* found a level 0 buffer in the range */ 1875 mutex_enter(&db->db_mtx); 1876 if (dbuf_undirty(db, tx)) { 1877 /* mutex has been dropped and dbuf destroyed */ 1878 continue; 1879 } 1880 1881 if (db->db_state == DB_UNCACHED || 1882 db->db_state == DB_NOFILL || 1883 db->db_state == DB_EVICTING) { 1884 ASSERT(db->db.db_data == NULL); 1885 mutex_exit(&db->db_mtx); 1886 continue; 1887 } 1888 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 1889 /* will be handled in dbuf_read_done or dbuf_rele */ 1890 db->db_freed_in_flight = TRUE; 1891 mutex_exit(&db->db_mtx); 1892 continue; 1893 } 1894 if (zfs_refcount_count(&db->db_holds) == 0) { 1895 ASSERT(db->db_buf); 1896 dbuf_destroy(db); 1897 continue; 1898 } 1899 /* The dbuf is referenced */ 1900 1901 dr = list_head(&db->db_dirty_records); 1902 if (dr != NULL) { 1903 if (dr->dr_txg == txg) { 1904 /* 1905 * This buffer is "in-use", re-adjust the file 1906 * size to reflect that this buffer may 1907 * contain new data when we sync. 1908 */ 1909 if (db->db_blkid != DMU_SPILL_BLKID && 1910 db->db_blkid > dn->dn_maxblkid) 1911 dn->dn_maxblkid = db->db_blkid; 1912 dbuf_unoverride(dr); 1913 } else { 1914 /* 1915 * This dbuf is not dirty in the open context. 1916 * Either uncache it (if its not referenced in 1917 * the open context) or reset its contents to 1918 * empty. 1919 */ 1920 dbuf_fix_old_data(db, txg); 1921 } 1922 } 1923 /* clear the contents if its cached */ 1924 if (db->db_state == DB_CACHED) { 1925 ASSERT(db->db.db_data != NULL); 1926 arc_release(db->db_buf, db); 1927 rw_enter(&db->db_rwlock, RW_WRITER); 1928 bzero(db->db.db_data, db->db.db_size); 1929 rw_exit(&db->db_rwlock); 1930 arc_buf_freeze(db->db_buf); 1931 } 1932 1933 mutex_exit(&db->db_mtx); 1934 } 1935 1936 kmem_free(db_search, sizeof (dmu_buf_impl_t)); 1937 mutex_exit(&dn->dn_dbufs_mtx); 1938 } 1939 1940 void 1941 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 1942 { 1943 arc_buf_t *buf, *old_buf; 1944 dbuf_dirty_record_t *dr; 1945 int osize = db->db.db_size; 1946 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1947 dnode_t *dn; 1948 1949 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1950 1951 DB_DNODE_ENTER(db); 1952 dn = DB_DNODE(db); 1953 1954 /* 1955 * XXX we should be doing a dbuf_read, checking the return 1956 * value and returning that up to our callers 1957 */ 1958 dmu_buf_will_dirty(&db->db, tx); 1959 1960 /* create the data buffer for the new block */ 1961 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); 1962 1963 /* copy old block data to the new block */ 1964 old_buf = db->db_buf; 1965 bcopy(old_buf->b_data, buf->b_data, MIN(osize, size)); 1966 /* zero the remainder */ 1967 if (size > osize) 1968 bzero((uint8_t *)buf->b_data + osize, size - osize); 1969 1970 mutex_enter(&db->db_mtx); 1971 dbuf_set_data(db, buf); 1972 arc_buf_destroy(old_buf, db); 1973 db->db.db_size = size; 1974 1975 dr = list_head(&db->db_dirty_records); 1976 /* dirty record added by dmu_buf_will_dirty() */ 1977 VERIFY(dr != NULL); 1978 if (db->db_level == 0) 1979 dr->dt.dl.dr_data = buf; 1980 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 1981 ASSERT3U(dr->dr_accounted, ==, osize); 1982 dr->dr_accounted = size; 1983 mutex_exit(&db->db_mtx); 1984 1985 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx); 1986 DB_DNODE_EXIT(db); 1987 } 1988 1989 void 1990 dbuf_release_bp(dmu_buf_impl_t *db) 1991 { 1992 objset_t *os __maybe_unused = db->db_objset; 1993 1994 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 1995 ASSERT(arc_released(os->os_phys_buf) || 1996 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 1997 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 1998 1999 (void) arc_release(db->db_buf, db); 2000 } 2001 2002 /* 2003 * We already have a dirty record for this TXG, and we are being 2004 * dirtied again. 2005 */ 2006 static void 2007 dbuf_redirty(dbuf_dirty_record_t *dr) 2008 { 2009 dmu_buf_impl_t *db = dr->dr_dbuf; 2010 2011 ASSERT(MUTEX_HELD(&db->db_mtx)); 2012 2013 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 2014 /* 2015 * If this buffer has already been written out, 2016 * we now need to reset its state. 2017 */ 2018 dbuf_unoverride(dr); 2019 if (db->db.db_object != DMU_META_DNODE_OBJECT && 2020 db->db_state != DB_NOFILL) { 2021 /* Already released on initial dirty, so just thaw. */ 2022 ASSERT(arc_released(db->db_buf)); 2023 arc_buf_thaw(db->db_buf); 2024 } 2025 } 2026 } 2027 2028 dbuf_dirty_record_t * 2029 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx) 2030 { 2031 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2032 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid); 2033 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE); 2034 ASSERT(dn->dn_maxblkid >= blkid); 2035 2036 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP); 2037 list_link_init(&dr->dr_dirty_node); 2038 list_link_init(&dr->dr_dbuf_node); 2039 dr->dr_dnode = dn; 2040 dr->dr_txg = tx->tx_txg; 2041 dr->dt.dll.dr_blkid = blkid; 2042 dr->dr_accounted = dn->dn_datablksz; 2043 2044 /* 2045 * There should not be any dbuf for the block that we're dirtying. 2046 * Otherwise the buffer contents could be inconsistent between the 2047 * dbuf and the lightweight dirty record. 2048 */ 2049 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid)); 2050 2051 mutex_enter(&dn->dn_mtx); 2052 int txgoff = tx->tx_txg & TXG_MASK; 2053 if (dn->dn_free_ranges[txgoff] != NULL) { 2054 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1); 2055 } 2056 2057 if (dn->dn_nlevels == 1) { 2058 ASSERT3U(blkid, <, dn->dn_nblkptr); 2059 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2060 mutex_exit(&dn->dn_mtx); 2061 rw_exit(&dn->dn_struct_rwlock); 2062 dnode_setdirty(dn, tx); 2063 } else { 2064 mutex_exit(&dn->dn_mtx); 2065 2066 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2067 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn, 2068 1, blkid >> epbs, FTAG); 2069 rw_exit(&dn->dn_struct_rwlock); 2070 if (parent_db == NULL) { 2071 kmem_free(dr, sizeof (*dr)); 2072 return (NULL); 2073 } 2074 int err = dbuf_read(parent_db, NULL, 2075 (DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2076 if (err != 0) { 2077 dbuf_rele(parent_db, FTAG); 2078 kmem_free(dr, sizeof (*dr)); 2079 return (NULL); 2080 } 2081 2082 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx); 2083 dbuf_rele(parent_db, FTAG); 2084 mutex_enter(&parent_dr->dt.di.dr_mtx); 2085 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg); 2086 list_insert_tail(&parent_dr->dt.di.dr_children, dr); 2087 mutex_exit(&parent_dr->dt.di.dr_mtx); 2088 dr->dr_parent = parent_dr; 2089 } 2090 2091 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx); 2092 2093 return (dr); 2094 } 2095 2096 dbuf_dirty_record_t * 2097 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2098 { 2099 dnode_t *dn; 2100 objset_t *os; 2101 dbuf_dirty_record_t *dr, *dr_next, *dr_head; 2102 int txgoff = tx->tx_txg & TXG_MASK; 2103 boolean_t drop_struct_rwlock = B_FALSE; 2104 2105 ASSERT(tx->tx_txg != 0); 2106 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2107 DMU_TX_DIRTY_BUF(tx, db); 2108 2109 DB_DNODE_ENTER(db); 2110 dn = DB_DNODE(db); 2111 /* 2112 * Shouldn't dirty a regular buffer in syncing context. Private 2113 * objects may be dirtied in syncing context, but only if they 2114 * were already pre-dirtied in open context. 2115 */ 2116 #ifdef ZFS_DEBUG 2117 if (dn->dn_objset->os_dsl_dataset != NULL) { 2118 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 2119 RW_READER, FTAG); 2120 } 2121 ASSERT(!dmu_tx_is_syncing(tx) || 2122 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 2123 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2124 dn->dn_objset->os_dsl_dataset == NULL); 2125 if (dn->dn_objset->os_dsl_dataset != NULL) 2126 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 2127 #endif 2128 /* 2129 * We make this assert for private objects as well, but after we 2130 * check if we're already dirty. They are allowed to re-dirty 2131 * in syncing context. 2132 */ 2133 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2134 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2135 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2136 2137 mutex_enter(&db->db_mtx); 2138 /* 2139 * XXX make this true for indirects too? The problem is that 2140 * transactions created with dmu_tx_create_assigned() from 2141 * syncing context don't bother holding ahead. 2142 */ 2143 ASSERT(db->db_level != 0 || 2144 db->db_state == DB_CACHED || db->db_state == DB_FILL || 2145 db->db_state == DB_NOFILL); 2146 2147 mutex_enter(&dn->dn_mtx); 2148 dnode_set_dirtyctx(dn, tx, db); 2149 if (tx->tx_txg > dn->dn_dirty_txg) 2150 dn->dn_dirty_txg = tx->tx_txg; 2151 mutex_exit(&dn->dn_mtx); 2152 2153 if (db->db_blkid == DMU_SPILL_BLKID) 2154 dn->dn_have_spill = B_TRUE; 2155 2156 /* 2157 * If this buffer is already dirty, we're done. 2158 */ 2159 dr_head = list_head(&db->db_dirty_records); 2160 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg || 2161 db->db.db_object == DMU_META_DNODE_OBJECT); 2162 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg); 2163 if (dr_next && dr_next->dr_txg == tx->tx_txg) { 2164 DB_DNODE_EXIT(db); 2165 2166 dbuf_redirty(dr_next); 2167 mutex_exit(&db->db_mtx); 2168 return (dr_next); 2169 } 2170 2171 /* 2172 * Only valid if not already dirty. 2173 */ 2174 ASSERT(dn->dn_object == 0 || 2175 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2176 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2177 2178 ASSERT3U(dn->dn_nlevels, >, db->db_level); 2179 2180 /* 2181 * We should only be dirtying in syncing context if it's the 2182 * mos or we're initializing the os or it's a special object. 2183 * However, we are allowed to dirty in syncing context provided 2184 * we already dirtied it in open context. Hence we must make 2185 * this assertion only if we're not already dirty. 2186 */ 2187 os = dn->dn_objset; 2188 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa)); 2189 #ifdef ZFS_DEBUG 2190 if (dn->dn_objset->os_dsl_dataset != NULL) 2191 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 2192 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2193 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 2194 if (dn->dn_objset->os_dsl_dataset != NULL) 2195 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 2196 #endif 2197 ASSERT(db->db.db_size != 0); 2198 2199 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2200 2201 if (db->db_blkid != DMU_BONUS_BLKID) { 2202 dmu_objset_willuse_space(os, db->db.db_size, tx); 2203 } 2204 2205 /* 2206 * If this buffer is dirty in an old transaction group we need 2207 * to make a copy of it so that the changes we make in this 2208 * transaction group won't leak out when we sync the older txg. 2209 */ 2210 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 2211 list_link_init(&dr->dr_dirty_node); 2212 list_link_init(&dr->dr_dbuf_node); 2213 dr->dr_dnode = dn; 2214 if (db->db_level == 0) { 2215 void *data_old = db->db_buf; 2216 2217 if (db->db_state != DB_NOFILL) { 2218 if (db->db_blkid == DMU_BONUS_BLKID) { 2219 dbuf_fix_old_data(db, tx->tx_txg); 2220 data_old = db->db.db_data; 2221 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 2222 /* 2223 * Release the data buffer from the cache so 2224 * that we can modify it without impacting 2225 * possible other users of this cached data 2226 * block. Note that indirect blocks and 2227 * private objects are not released until the 2228 * syncing state (since they are only modified 2229 * then). 2230 */ 2231 arc_release(db->db_buf, db); 2232 dbuf_fix_old_data(db, tx->tx_txg); 2233 data_old = db->db_buf; 2234 } 2235 ASSERT(data_old != NULL); 2236 } 2237 dr->dt.dl.dr_data = data_old; 2238 } else { 2239 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL); 2240 list_create(&dr->dt.di.dr_children, 2241 sizeof (dbuf_dirty_record_t), 2242 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 2243 } 2244 if (db->db_blkid != DMU_BONUS_BLKID) 2245 dr->dr_accounted = db->db.db_size; 2246 dr->dr_dbuf = db; 2247 dr->dr_txg = tx->tx_txg; 2248 list_insert_before(&db->db_dirty_records, dr_next, dr); 2249 2250 /* 2251 * We could have been freed_in_flight between the dbuf_noread 2252 * and dbuf_dirty. We win, as though the dbuf_noread() had 2253 * happened after the free. 2254 */ 2255 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2256 db->db_blkid != DMU_SPILL_BLKID) { 2257 mutex_enter(&dn->dn_mtx); 2258 if (dn->dn_free_ranges[txgoff] != NULL) { 2259 range_tree_clear(dn->dn_free_ranges[txgoff], 2260 db->db_blkid, 1); 2261 } 2262 mutex_exit(&dn->dn_mtx); 2263 db->db_freed_in_flight = FALSE; 2264 } 2265 2266 /* 2267 * This buffer is now part of this txg 2268 */ 2269 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 2270 db->db_dirtycnt += 1; 2271 ASSERT3U(db->db_dirtycnt, <=, 3); 2272 2273 mutex_exit(&db->db_mtx); 2274 2275 if (db->db_blkid == DMU_BONUS_BLKID || 2276 db->db_blkid == DMU_SPILL_BLKID) { 2277 mutex_enter(&dn->dn_mtx); 2278 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2279 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2280 mutex_exit(&dn->dn_mtx); 2281 dnode_setdirty(dn, tx); 2282 DB_DNODE_EXIT(db); 2283 return (dr); 2284 } 2285 2286 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 2287 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2288 drop_struct_rwlock = B_TRUE; 2289 } 2290 2291 /* 2292 * If we are overwriting a dedup BP, then unless it is snapshotted, 2293 * when we get to syncing context we will need to decrement its 2294 * refcount in the DDT. Prefetch the relevant DDT block so that 2295 * syncing context won't have to wait for the i/o. 2296 */ 2297 if (db->db_blkptr != NULL) { 2298 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 2299 ddt_prefetch(os->os_spa, db->db_blkptr); 2300 dmu_buf_unlock_parent(db, dblt, FTAG); 2301 } 2302 2303 /* 2304 * We need to hold the dn_struct_rwlock to make this assertion, 2305 * because it protects dn_phys / dn_next_nlevels from changing. 2306 */ 2307 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 2308 dn->dn_phys->dn_nlevels > db->db_level || 2309 dn->dn_next_nlevels[txgoff] > db->db_level || 2310 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 2311 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 2312 2313 2314 if (db->db_level == 0) { 2315 ASSERT(!db->db_objset->os_raw_receive || 2316 dn->dn_maxblkid >= db->db_blkid); 2317 dnode_new_blkid(dn, db->db_blkid, tx, 2318 drop_struct_rwlock, B_FALSE); 2319 ASSERT(dn->dn_maxblkid >= db->db_blkid); 2320 } 2321 2322 if (db->db_level+1 < dn->dn_nlevels) { 2323 dmu_buf_impl_t *parent = db->db_parent; 2324 dbuf_dirty_record_t *di; 2325 int parent_held = FALSE; 2326 2327 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 2328 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2329 parent = dbuf_hold_level(dn, db->db_level + 1, 2330 db->db_blkid >> epbs, FTAG); 2331 ASSERT(parent != NULL); 2332 parent_held = TRUE; 2333 } 2334 if (drop_struct_rwlock) 2335 rw_exit(&dn->dn_struct_rwlock); 2336 ASSERT3U(db->db_level + 1, ==, parent->db_level); 2337 di = dbuf_dirty(parent, tx); 2338 if (parent_held) 2339 dbuf_rele(parent, FTAG); 2340 2341 mutex_enter(&db->db_mtx); 2342 /* 2343 * Since we've dropped the mutex, it's possible that 2344 * dbuf_undirty() might have changed this out from under us. 2345 */ 2346 if (list_head(&db->db_dirty_records) == dr || 2347 dn->dn_object == DMU_META_DNODE_OBJECT) { 2348 mutex_enter(&di->dt.di.dr_mtx); 2349 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 2350 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2351 list_insert_tail(&di->dt.di.dr_children, dr); 2352 mutex_exit(&di->dt.di.dr_mtx); 2353 dr->dr_parent = di; 2354 } 2355 mutex_exit(&db->db_mtx); 2356 } else { 2357 ASSERT(db->db_level + 1 == dn->dn_nlevels); 2358 ASSERT(db->db_blkid < dn->dn_nblkptr); 2359 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 2360 mutex_enter(&dn->dn_mtx); 2361 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2362 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2363 mutex_exit(&dn->dn_mtx); 2364 if (drop_struct_rwlock) 2365 rw_exit(&dn->dn_struct_rwlock); 2366 } 2367 2368 dnode_setdirty(dn, tx); 2369 DB_DNODE_EXIT(db); 2370 return (dr); 2371 } 2372 2373 static void 2374 dbuf_undirty_bonus(dbuf_dirty_record_t *dr) 2375 { 2376 dmu_buf_impl_t *db = dr->dr_dbuf; 2377 2378 if (dr->dt.dl.dr_data != db->db.db_data) { 2379 struct dnode *dn = dr->dr_dnode; 2380 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 2381 2382 kmem_free(dr->dt.dl.dr_data, max_bonuslen); 2383 arc_space_return(max_bonuslen, ARC_SPACE_BONUS); 2384 } 2385 db->db_data_pending = NULL; 2386 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 2387 list_remove(&db->db_dirty_records, dr); 2388 if (dr->dr_dbuf->db_level != 0) { 2389 mutex_destroy(&dr->dt.di.dr_mtx); 2390 list_destroy(&dr->dt.di.dr_children); 2391 } 2392 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2393 ASSERT3U(db->db_dirtycnt, >, 0); 2394 db->db_dirtycnt -= 1; 2395 } 2396 2397 /* 2398 * Undirty a buffer in the transaction group referenced by the given 2399 * transaction. Return whether this evicted the dbuf. 2400 */ 2401 static boolean_t 2402 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2403 { 2404 uint64_t txg = tx->tx_txg; 2405 2406 ASSERT(txg != 0); 2407 2408 /* 2409 * Due to our use of dn_nlevels below, this can only be called 2410 * in open context, unless we are operating on the MOS. 2411 * From syncing context, dn_nlevels may be different from the 2412 * dn_nlevels used when dbuf was dirtied. 2413 */ 2414 ASSERT(db->db_objset == 2415 dmu_objset_pool(db->db_objset)->dp_meta_objset || 2416 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 2417 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2418 ASSERT0(db->db_level); 2419 ASSERT(MUTEX_HELD(&db->db_mtx)); 2420 2421 /* 2422 * If this buffer is not dirty, we're done. 2423 */ 2424 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg); 2425 if (dr == NULL) 2426 return (B_FALSE); 2427 ASSERT(dr->dr_dbuf == db); 2428 2429 dnode_t *dn = dr->dr_dnode; 2430 2431 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2432 2433 ASSERT(db->db.db_size != 0); 2434 2435 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 2436 dr->dr_accounted, txg); 2437 2438 list_remove(&db->db_dirty_records, dr); 2439 2440 /* 2441 * Note that there are three places in dbuf_dirty() 2442 * where this dirty record may be put on a list. 2443 * Make sure to do a list_remove corresponding to 2444 * every one of those list_insert calls. 2445 */ 2446 if (dr->dr_parent) { 2447 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 2448 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 2449 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 2450 } else if (db->db_blkid == DMU_SPILL_BLKID || 2451 db->db_level + 1 == dn->dn_nlevels) { 2452 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 2453 mutex_enter(&dn->dn_mtx); 2454 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 2455 mutex_exit(&dn->dn_mtx); 2456 } 2457 2458 if (db->db_state != DB_NOFILL) { 2459 dbuf_unoverride(dr); 2460 2461 ASSERT(db->db_buf != NULL); 2462 ASSERT(dr->dt.dl.dr_data != NULL); 2463 if (dr->dt.dl.dr_data != db->db_buf) 2464 arc_buf_destroy(dr->dt.dl.dr_data, db); 2465 } 2466 2467 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2468 2469 ASSERT(db->db_dirtycnt > 0); 2470 db->db_dirtycnt -= 1; 2471 2472 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 2473 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf)); 2474 dbuf_destroy(db); 2475 return (B_TRUE); 2476 } 2477 2478 return (B_FALSE); 2479 } 2480 2481 static void 2482 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx) 2483 { 2484 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2485 2486 ASSERT(tx->tx_txg != 0); 2487 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2488 2489 /* 2490 * Quick check for dirtiness. For already dirty blocks, this 2491 * reduces runtime of this function by >90%, and overall performance 2492 * by 50% for some workloads (e.g. file deletion with indirect blocks 2493 * cached). 2494 */ 2495 mutex_enter(&db->db_mtx); 2496 2497 if (db->db_state == DB_CACHED) { 2498 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2499 /* 2500 * It's possible that it is already dirty but not cached, 2501 * because there are some calls to dbuf_dirty() that don't 2502 * go through dmu_buf_will_dirty(). 2503 */ 2504 if (dr != NULL) { 2505 /* This dbuf is already dirty and cached. */ 2506 dbuf_redirty(dr); 2507 mutex_exit(&db->db_mtx); 2508 return; 2509 } 2510 } 2511 mutex_exit(&db->db_mtx); 2512 2513 DB_DNODE_ENTER(db); 2514 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 2515 flags |= DB_RF_HAVESTRUCT; 2516 DB_DNODE_EXIT(db); 2517 (void) dbuf_read(db, NULL, flags); 2518 (void) dbuf_dirty(db, tx); 2519 } 2520 2521 void 2522 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2523 { 2524 dmu_buf_will_dirty_impl(db_fake, 2525 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx); 2526 } 2527 2528 boolean_t 2529 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2530 { 2531 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2532 dbuf_dirty_record_t *dr; 2533 2534 mutex_enter(&db->db_mtx); 2535 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2536 mutex_exit(&db->db_mtx); 2537 return (dr != NULL); 2538 } 2539 2540 void 2541 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2542 { 2543 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2544 2545 db->db_state = DB_NOFILL; 2546 DTRACE_SET_STATE(db, "allocating NOFILL buffer"); 2547 dmu_buf_will_fill(db_fake, tx); 2548 } 2549 2550 void 2551 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2552 { 2553 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2554 2555 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2556 ASSERT(tx->tx_txg != 0); 2557 ASSERT(db->db_level == 0); 2558 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2559 2560 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 2561 dmu_tx_private_ok(tx)); 2562 2563 dbuf_noread(db); 2564 (void) dbuf_dirty(db, tx); 2565 } 2566 2567 /* 2568 * This function is effectively the same as dmu_buf_will_dirty(), but 2569 * indicates the caller expects raw encrypted data in the db, and provides 2570 * the crypt params (byteorder, salt, iv, mac) which should be stored in the 2571 * blkptr_t when this dbuf is written. This is only used for blocks of 2572 * dnodes, during raw receive. 2573 */ 2574 void 2575 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder, 2576 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx) 2577 { 2578 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2579 dbuf_dirty_record_t *dr; 2580 2581 /* 2582 * dr_has_raw_params is only processed for blocks of dnodes 2583 * (see dbuf_sync_dnode_leaf_crypt()). 2584 */ 2585 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 2586 ASSERT3U(db->db_level, ==, 0); 2587 ASSERT(db->db_objset->os_raw_receive); 2588 2589 dmu_buf_will_dirty_impl(db_fake, 2590 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx); 2591 2592 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2593 2594 ASSERT3P(dr, !=, NULL); 2595 2596 dr->dt.dl.dr_has_raw_params = B_TRUE; 2597 dr->dt.dl.dr_byteorder = byteorder; 2598 bcopy(salt, dr->dt.dl.dr_salt, ZIO_DATA_SALT_LEN); 2599 bcopy(iv, dr->dt.dl.dr_iv, ZIO_DATA_IV_LEN); 2600 bcopy(mac, dr->dt.dl.dr_mac, ZIO_DATA_MAC_LEN); 2601 } 2602 2603 static void 2604 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx) 2605 { 2606 struct dirty_leaf *dl; 2607 dbuf_dirty_record_t *dr; 2608 2609 dr = list_head(&db->db_dirty_records); 2610 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2611 dl = &dr->dt.dl; 2612 dl->dr_overridden_by = *bp; 2613 dl->dr_override_state = DR_OVERRIDDEN; 2614 dl->dr_overridden_by.blk_birth = dr->dr_txg; 2615 } 2616 2617 /* ARGSUSED */ 2618 void 2619 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx) 2620 { 2621 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2622 dbuf_states_t old_state; 2623 mutex_enter(&db->db_mtx); 2624 DBUF_VERIFY(db); 2625 2626 old_state = db->db_state; 2627 db->db_state = DB_CACHED; 2628 if (old_state == DB_FILL) { 2629 if (db->db_level == 0 && db->db_freed_in_flight) { 2630 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2631 /* we were freed while filling */ 2632 /* XXX dbuf_undirty? */ 2633 bzero(db->db.db_data, db->db.db_size); 2634 db->db_freed_in_flight = FALSE; 2635 DTRACE_SET_STATE(db, 2636 "fill done handling freed in flight"); 2637 } else { 2638 DTRACE_SET_STATE(db, "fill done"); 2639 } 2640 cv_broadcast(&db->db_changed); 2641 } 2642 mutex_exit(&db->db_mtx); 2643 } 2644 2645 void 2646 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 2647 bp_embedded_type_t etype, enum zio_compress comp, 2648 int uncompressed_size, int compressed_size, int byteorder, 2649 dmu_tx_t *tx) 2650 { 2651 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2652 struct dirty_leaf *dl; 2653 dmu_object_type_t type; 2654 dbuf_dirty_record_t *dr; 2655 2656 if (etype == BP_EMBEDDED_TYPE_DATA) { 2657 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 2658 SPA_FEATURE_EMBEDDED_DATA)); 2659 } 2660 2661 DB_DNODE_ENTER(db); 2662 type = DB_DNODE(db)->dn_type; 2663 DB_DNODE_EXIT(db); 2664 2665 ASSERT0(db->db_level); 2666 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2667 2668 dmu_buf_will_not_fill(dbuf, tx); 2669 2670 dr = list_head(&db->db_dirty_records); 2671 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2672 dl = &dr->dt.dl; 2673 encode_embedded_bp_compressed(&dl->dr_overridden_by, 2674 data, comp, uncompressed_size, compressed_size); 2675 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 2676 BP_SET_TYPE(&dl->dr_overridden_by, type); 2677 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 2678 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 2679 2680 dl->dr_override_state = DR_OVERRIDDEN; 2681 dl->dr_overridden_by.blk_birth = dr->dr_txg; 2682 } 2683 2684 void 2685 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx) 2686 { 2687 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2688 dmu_object_type_t type; 2689 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset, 2690 SPA_FEATURE_REDACTED_DATASETS)); 2691 2692 DB_DNODE_ENTER(db); 2693 type = DB_DNODE(db)->dn_type; 2694 DB_DNODE_EXIT(db); 2695 2696 ASSERT0(db->db_level); 2697 dmu_buf_will_not_fill(dbuf, tx); 2698 2699 blkptr_t bp = { { { {0} } } }; 2700 BP_SET_TYPE(&bp, type); 2701 BP_SET_LEVEL(&bp, 0); 2702 BP_SET_BIRTH(&bp, tx->tx_txg, 0); 2703 BP_SET_REDACTED(&bp); 2704 BPE_SET_LSIZE(&bp, dbuf->db_size); 2705 2706 dbuf_override_impl(db, &bp, tx); 2707 } 2708 2709 /* 2710 * Directly assign a provided arc buf to a given dbuf if it's not referenced 2711 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 2712 */ 2713 void 2714 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 2715 { 2716 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2717 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2718 ASSERT(db->db_level == 0); 2719 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); 2720 ASSERT(buf != NULL); 2721 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size); 2722 ASSERT(tx->tx_txg != 0); 2723 2724 arc_return_buf(buf, db); 2725 ASSERT(arc_released(buf)); 2726 2727 mutex_enter(&db->db_mtx); 2728 2729 while (db->db_state == DB_READ || db->db_state == DB_FILL) 2730 cv_wait(&db->db_changed, &db->db_mtx); 2731 2732 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); 2733 2734 if (db->db_state == DB_CACHED && 2735 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 2736 /* 2737 * In practice, we will never have a case where we have an 2738 * encrypted arc buffer while additional holds exist on the 2739 * dbuf. We don't handle this here so we simply assert that 2740 * fact instead. 2741 */ 2742 ASSERT(!arc_is_encrypted(buf)); 2743 mutex_exit(&db->db_mtx); 2744 (void) dbuf_dirty(db, tx); 2745 bcopy(buf->b_data, db->db.db_data, db->db.db_size); 2746 arc_buf_destroy(buf, db); 2747 return; 2748 } 2749 2750 if (db->db_state == DB_CACHED) { 2751 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 2752 2753 ASSERT(db->db_buf != NULL); 2754 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 2755 ASSERT(dr->dt.dl.dr_data == db->db_buf); 2756 2757 if (!arc_released(db->db_buf)) { 2758 ASSERT(dr->dt.dl.dr_override_state == 2759 DR_OVERRIDDEN); 2760 arc_release(db->db_buf, db); 2761 } 2762 dr->dt.dl.dr_data = buf; 2763 arc_buf_destroy(db->db_buf, db); 2764 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 2765 arc_release(db->db_buf, db); 2766 arc_buf_destroy(db->db_buf, db); 2767 } 2768 db->db_buf = NULL; 2769 } 2770 ASSERT(db->db_buf == NULL); 2771 dbuf_set_data(db, buf); 2772 db->db_state = DB_FILL; 2773 DTRACE_SET_STATE(db, "filling assigned arcbuf"); 2774 mutex_exit(&db->db_mtx); 2775 (void) dbuf_dirty(db, tx); 2776 dmu_buf_fill_done(&db->db, tx); 2777 } 2778 2779 void 2780 dbuf_destroy(dmu_buf_impl_t *db) 2781 { 2782 dnode_t *dn; 2783 dmu_buf_impl_t *parent = db->db_parent; 2784 dmu_buf_impl_t *dndb; 2785 2786 ASSERT(MUTEX_HELD(&db->db_mtx)); 2787 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 2788 2789 if (db->db_buf != NULL) { 2790 arc_buf_destroy(db->db_buf, db); 2791 db->db_buf = NULL; 2792 } 2793 2794 if (db->db_blkid == DMU_BONUS_BLKID) { 2795 int slots = DB_DNODE(db)->dn_num_slots; 2796 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots); 2797 if (db->db.db_data != NULL) { 2798 kmem_free(db->db.db_data, bonuslen); 2799 arc_space_return(bonuslen, ARC_SPACE_BONUS); 2800 db->db_state = DB_UNCACHED; 2801 DTRACE_SET_STATE(db, "buffer cleared"); 2802 } 2803 } 2804 2805 dbuf_clear_data(db); 2806 2807 if (multilist_link_active(&db->db_cache_link)) { 2808 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 2809 db->db_caching_status == DB_DBUF_METADATA_CACHE); 2810 2811 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 2812 (void) zfs_refcount_remove_many( 2813 &dbuf_caches[db->db_caching_status].size, 2814 db->db.db_size, db); 2815 2816 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 2817 DBUF_STAT_BUMPDOWN(metadata_cache_count); 2818 } else { 2819 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 2820 DBUF_STAT_BUMPDOWN(cache_count); 2821 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 2822 db->db.db_size); 2823 } 2824 db->db_caching_status = DB_NO_CACHE; 2825 } 2826 2827 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 2828 ASSERT(db->db_data_pending == NULL); 2829 ASSERT(list_is_empty(&db->db_dirty_records)); 2830 2831 db->db_state = DB_EVICTING; 2832 DTRACE_SET_STATE(db, "buffer eviction started"); 2833 db->db_blkptr = NULL; 2834 2835 /* 2836 * Now that db_state is DB_EVICTING, nobody else can find this via 2837 * the hash table. We can now drop db_mtx, which allows us to 2838 * acquire the dn_dbufs_mtx. 2839 */ 2840 mutex_exit(&db->db_mtx); 2841 2842 DB_DNODE_ENTER(db); 2843 dn = DB_DNODE(db); 2844 dndb = dn->dn_dbuf; 2845 if (db->db_blkid != DMU_BONUS_BLKID) { 2846 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 2847 if (needlock) 2848 mutex_enter_nested(&dn->dn_dbufs_mtx, 2849 NESTED_SINGLE); 2850 avl_remove(&dn->dn_dbufs, db); 2851 membar_producer(); 2852 DB_DNODE_EXIT(db); 2853 if (needlock) 2854 mutex_exit(&dn->dn_dbufs_mtx); 2855 /* 2856 * Decrementing the dbuf count means that the hold corresponding 2857 * to the removed dbuf is no longer discounted in dnode_move(), 2858 * so the dnode cannot be moved until after we release the hold. 2859 * The membar_producer() ensures visibility of the decremented 2860 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 2861 * release any lock. 2862 */ 2863 mutex_enter(&dn->dn_mtx); 2864 dnode_rele_and_unlock(dn, db, B_TRUE); 2865 db->db_dnode_handle = NULL; 2866 2867 dbuf_hash_remove(db); 2868 } else { 2869 DB_DNODE_EXIT(db); 2870 } 2871 2872 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 2873 2874 db->db_parent = NULL; 2875 2876 ASSERT(db->db_buf == NULL); 2877 ASSERT(db->db.db_data == NULL); 2878 ASSERT(db->db_hash_next == NULL); 2879 ASSERT(db->db_blkptr == NULL); 2880 ASSERT(db->db_data_pending == NULL); 2881 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 2882 ASSERT(!multilist_link_active(&db->db_cache_link)); 2883 2884 kmem_cache_free(dbuf_kmem_cache, db); 2885 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 2886 2887 /* 2888 * If this dbuf is referenced from an indirect dbuf, 2889 * decrement the ref count on the indirect dbuf. 2890 */ 2891 if (parent && parent != dndb) { 2892 mutex_enter(&parent->db_mtx); 2893 dbuf_rele_and_unlock(parent, db, B_TRUE); 2894 } 2895 } 2896 2897 /* 2898 * Note: While bpp will always be updated if the function returns success, 2899 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 2900 * this happens when the dnode is the meta-dnode, or {user|group|project}used 2901 * object. 2902 */ 2903 __attribute__((always_inline)) 2904 static inline int 2905 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 2906 dmu_buf_impl_t **parentp, blkptr_t **bpp) 2907 { 2908 *parentp = NULL; 2909 *bpp = NULL; 2910 2911 ASSERT(blkid != DMU_BONUS_BLKID); 2912 2913 if (blkid == DMU_SPILL_BLKID) { 2914 mutex_enter(&dn->dn_mtx); 2915 if (dn->dn_have_spill && 2916 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 2917 *bpp = DN_SPILL_BLKPTR(dn->dn_phys); 2918 else 2919 *bpp = NULL; 2920 dbuf_add_ref(dn->dn_dbuf, NULL); 2921 *parentp = dn->dn_dbuf; 2922 mutex_exit(&dn->dn_mtx); 2923 return (0); 2924 } 2925 2926 int nlevels = 2927 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; 2928 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2929 2930 ASSERT3U(level * epbs, <, 64); 2931 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2932 /* 2933 * This assertion shouldn't trip as long as the max indirect block size 2934 * is less than 1M. The reason for this is that up to that point, 2935 * the number of levels required to address an entire object with blocks 2936 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In 2937 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 2938 * (i.e. we can address the entire object), objects will all use at most 2939 * N-1 levels and the assertion won't overflow. However, once epbs is 2940 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be 2941 * enough to address an entire object, so objects will have 5 levels, 2942 * but then this assertion will overflow. 2943 * 2944 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we 2945 * need to redo this logic to handle overflows. 2946 */ 2947 ASSERT(level >= nlevels || 2948 ((nlevels - level - 1) * epbs) + 2949 highbit64(dn->dn_phys->dn_nblkptr) <= 64); 2950 if (level >= nlevels || 2951 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << 2952 ((nlevels - level - 1) * epbs)) || 2953 (fail_sparse && 2954 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 2955 /* the buffer has no parent yet */ 2956 return (SET_ERROR(ENOENT)); 2957 } else if (level < nlevels-1) { 2958 /* this block is referenced from an indirect block */ 2959 int err; 2960 2961 err = dbuf_hold_impl(dn, level + 1, 2962 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 2963 2964 if (err) 2965 return (err); 2966 err = dbuf_read(*parentp, NULL, 2967 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2968 if (err) { 2969 dbuf_rele(*parentp, NULL); 2970 *parentp = NULL; 2971 return (err); 2972 } 2973 rw_enter(&(*parentp)->db_rwlock, RW_READER); 2974 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 2975 (blkid & ((1ULL << epbs) - 1)); 2976 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs))) 2977 ASSERT(BP_IS_HOLE(*bpp)); 2978 rw_exit(&(*parentp)->db_rwlock); 2979 return (0); 2980 } else { 2981 /* the block is referenced from the dnode */ 2982 ASSERT3U(level, ==, nlevels-1); 2983 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 2984 blkid < dn->dn_phys->dn_nblkptr); 2985 if (dn->dn_dbuf) { 2986 dbuf_add_ref(dn->dn_dbuf, NULL); 2987 *parentp = dn->dn_dbuf; 2988 } 2989 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 2990 return (0); 2991 } 2992 } 2993 2994 static dmu_buf_impl_t * 2995 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 2996 dmu_buf_impl_t *parent, blkptr_t *blkptr) 2997 { 2998 objset_t *os = dn->dn_objset; 2999 dmu_buf_impl_t *db, *odb; 3000 3001 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3002 ASSERT(dn->dn_type != DMU_OT_NONE); 3003 3004 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 3005 3006 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t), 3007 offsetof(dbuf_dirty_record_t, dr_dbuf_node)); 3008 3009 db->db_objset = os; 3010 db->db.db_object = dn->dn_object; 3011 db->db_level = level; 3012 db->db_blkid = blkid; 3013 db->db_dirtycnt = 0; 3014 db->db_dnode_handle = dn->dn_handle; 3015 db->db_parent = parent; 3016 db->db_blkptr = blkptr; 3017 3018 db->db_user = NULL; 3019 db->db_user_immediate_evict = FALSE; 3020 db->db_freed_in_flight = FALSE; 3021 db->db_pending_evict = FALSE; 3022 3023 if (blkid == DMU_BONUS_BLKID) { 3024 ASSERT3P(parent, ==, dn->dn_dbuf); 3025 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 3026 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 3027 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 3028 db->db.db_offset = DMU_BONUS_BLKID; 3029 db->db_state = DB_UNCACHED; 3030 DTRACE_SET_STATE(db, "bonus buffer created"); 3031 db->db_caching_status = DB_NO_CACHE; 3032 /* the bonus dbuf is not placed in the hash table */ 3033 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3034 return (db); 3035 } else if (blkid == DMU_SPILL_BLKID) { 3036 db->db.db_size = (blkptr != NULL) ? 3037 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 3038 db->db.db_offset = 0; 3039 } else { 3040 int blocksize = 3041 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 3042 db->db.db_size = blocksize; 3043 db->db.db_offset = db->db_blkid * blocksize; 3044 } 3045 3046 /* 3047 * Hold the dn_dbufs_mtx while we get the new dbuf 3048 * in the hash table *and* added to the dbufs list. 3049 * This prevents a possible deadlock with someone 3050 * trying to look up this dbuf before it's added to the 3051 * dn_dbufs list. 3052 */ 3053 mutex_enter(&dn->dn_dbufs_mtx); 3054 db->db_state = DB_EVICTING; /* not worth logging this state change */ 3055 if ((odb = dbuf_hash_insert(db)) != NULL) { 3056 /* someone else inserted it first */ 3057 kmem_cache_free(dbuf_kmem_cache, db); 3058 mutex_exit(&dn->dn_dbufs_mtx); 3059 DBUF_STAT_BUMP(hash_insert_race); 3060 return (odb); 3061 } 3062 avl_add(&dn->dn_dbufs, db); 3063 3064 db->db_state = DB_UNCACHED; 3065 DTRACE_SET_STATE(db, "regular buffer created"); 3066 db->db_caching_status = DB_NO_CACHE; 3067 mutex_exit(&dn->dn_dbufs_mtx); 3068 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3069 3070 if (parent && parent != dn->dn_dbuf) 3071 dbuf_add_ref(parent, db); 3072 3073 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 3074 zfs_refcount_count(&dn->dn_holds) > 0); 3075 (void) zfs_refcount_add(&dn->dn_holds, db); 3076 3077 dprintf_dbuf(db, "db=%p\n", db); 3078 3079 return (db); 3080 } 3081 3082 /* 3083 * This function returns a block pointer and information about the object, 3084 * given a dnode and a block. This is a publicly accessible version of 3085 * dbuf_findbp that only returns some information, rather than the 3086 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock 3087 * should be locked as (at least) a reader. 3088 */ 3089 int 3090 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid, 3091 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift) 3092 { 3093 dmu_buf_impl_t *dbp = NULL; 3094 blkptr_t *bp2; 3095 int err = 0; 3096 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3097 3098 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2); 3099 if (err == 0) { 3100 *bp = *bp2; 3101 if (dbp != NULL) 3102 dbuf_rele(dbp, NULL); 3103 if (datablkszsec != NULL) 3104 *datablkszsec = dn->dn_phys->dn_datablkszsec; 3105 if (indblkshift != NULL) 3106 *indblkshift = dn->dn_phys->dn_indblkshift; 3107 } 3108 3109 return (err); 3110 } 3111 3112 typedef struct dbuf_prefetch_arg { 3113 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 3114 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 3115 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 3116 int dpa_curlevel; /* The current level that we're reading */ 3117 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 3118 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 3119 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 3120 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 3121 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */ 3122 void *dpa_arg; /* prefetch completion arg */ 3123 } dbuf_prefetch_arg_t; 3124 3125 static void 3126 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done) 3127 { 3128 if (dpa->dpa_cb != NULL) 3129 dpa->dpa_cb(dpa->dpa_arg, io_done); 3130 kmem_free(dpa, sizeof (*dpa)); 3131 } 3132 3133 static void 3134 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb, 3135 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3136 { 3137 dbuf_prefetch_arg_t *dpa = private; 3138 3139 dbuf_prefetch_fini(dpa, B_TRUE); 3140 if (abuf != NULL) 3141 arc_buf_destroy(abuf, private); 3142 } 3143 3144 /* 3145 * Actually issue the prefetch read for the block given. 3146 */ 3147 static void 3148 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 3149 { 3150 ASSERT(!BP_IS_REDACTED(bp) || 3151 dsl_dataset_feature_is_active( 3152 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3153 SPA_FEATURE_REDACTED_DATASETS)); 3154 3155 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp)) 3156 return (dbuf_prefetch_fini(dpa, B_FALSE)); 3157 3158 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 3159 arc_flags_t aflags = 3160 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH | 3161 ARC_FLAG_NO_BUF; 3162 3163 /* dnodes are always read as raw and then converted later */ 3164 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) && 3165 dpa->dpa_curlevel == 0) 3166 zio_flags |= ZIO_FLAG_RAW; 3167 3168 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3169 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 3170 ASSERT(dpa->dpa_zio != NULL); 3171 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, 3172 dbuf_issue_final_prefetch_done, dpa, 3173 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb); 3174 } 3175 3176 /* 3177 * Called when an indirect block above our prefetch target is read in. This 3178 * will either read in the next indirect block down the tree or issue the actual 3179 * prefetch if the next block down is our target. 3180 */ 3181 static void 3182 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb, 3183 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3184 { 3185 dbuf_prefetch_arg_t *dpa = private; 3186 3187 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 3188 ASSERT3S(dpa->dpa_curlevel, >, 0); 3189 3190 if (abuf == NULL) { 3191 ASSERT(zio == NULL || zio->io_error != 0); 3192 return (dbuf_prefetch_fini(dpa, B_TRUE)); 3193 } 3194 ASSERT(zio == NULL || zio->io_error == 0); 3195 3196 /* 3197 * The dpa_dnode is only valid if we are called with a NULL 3198 * zio. This indicates that the arc_read() returned without 3199 * first calling zio_read() to issue a physical read. Once 3200 * a physical read is made the dpa_dnode must be invalidated 3201 * as the locks guarding it may have been dropped. If the 3202 * dpa_dnode is still valid, then we want to add it to the dbuf 3203 * cache. To do so, we must hold the dbuf associated with the block 3204 * we just prefetched, read its contents so that we associate it 3205 * with an arc_buf_t, and then release it. 3206 */ 3207 if (zio != NULL) { 3208 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 3209 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) { 3210 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 3211 } else { 3212 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 3213 } 3214 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 3215 3216 dpa->dpa_dnode = NULL; 3217 } else if (dpa->dpa_dnode != NULL) { 3218 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 3219 (dpa->dpa_epbs * (dpa->dpa_curlevel - 3220 dpa->dpa_zb.zb_level)); 3221 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 3222 dpa->dpa_curlevel, curblkid, FTAG); 3223 if (db == NULL) { 3224 arc_buf_destroy(abuf, private); 3225 return (dbuf_prefetch_fini(dpa, B_TRUE)); 3226 } 3227 (void) dbuf_read(db, NULL, 3228 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); 3229 dbuf_rele(db, FTAG); 3230 } 3231 3232 dpa->dpa_curlevel--; 3233 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 3234 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 3235 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 3236 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 3237 3238 ASSERT(!BP_IS_REDACTED(bp) || 3239 dsl_dataset_feature_is_active( 3240 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3241 SPA_FEATURE_REDACTED_DATASETS)); 3242 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) { 3243 dbuf_prefetch_fini(dpa, B_TRUE); 3244 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 3245 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 3246 dbuf_issue_final_prefetch(dpa, bp); 3247 } else { 3248 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3249 zbookmark_phys_t zb; 3250 3251 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3252 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE) 3253 iter_aflags |= ARC_FLAG_L2CACHE; 3254 3255 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3256 3257 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 3258 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 3259 3260 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3261 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio, 3262 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3263 &iter_aflags, &zb); 3264 } 3265 3266 arc_buf_destroy(abuf, private); 3267 } 3268 3269 /* 3270 * Issue prefetch reads for the given block on the given level. If the indirect 3271 * blocks above that block are not in memory, we will read them in 3272 * asynchronously. As a result, this call never blocks waiting for a read to 3273 * complete. Note that the prefetch might fail if the dataset is encrypted and 3274 * the encryption key is unmapped before the IO completes. 3275 */ 3276 int 3277 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid, 3278 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb, 3279 void *arg) 3280 { 3281 blkptr_t bp; 3282 int epbs, nlevels, curlevel; 3283 uint64_t curblkid; 3284 3285 ASSERT(blkid != DMU_BONUS_BLKID); 3286 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3287 3288 if (blkid > dn->dn_maxblkid) 3289 goto no_issue; 3290 3291 if (level == 0 && dnode_block_freed(dn, blkid)) 3292 goto no_issue; 3293 3294 /* 3295 * This dnode hasn't been written to disk yet, so there's nothing to 3296 * prefetch. 3297 */ 3298 nlevels = dn->dn_phys->dn_nlevels; 3299 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 3300 goto no_issue; 3301 3302 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3303 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 3304 goto no_issue; 3305 3306 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 3307 level, blkid); 3308 if (db != NULL) { 3309 mutex_exit(&db->db_mtx); 3310 /* 3311 * This dbuf already exists. It is either CACHED, or 3312 * (we assume) about to be read or filled. 3313 */ 3314 goto no_issue; 3315 } 3316 3317 /* 3318 * Find the closest ancestor (indirect block) of the target block 3319 * that is present in the cache. In this indirect block, we will 3320 * find the bp that is at curlevel, curblkid. 3321 */ 3322 curlevel = level; 3323 curblkid = blkid; 3324 while (curlevel < nlevels - 1) { 3325 int parent_level = curlevel + 1; 3326 uint64_t parent_blkid = curblkid >> epbs; 3327 dmu_buf_impl_t *db; 3328 3329 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 3330 FALSE, TRUE, FTAG, &db) == 0) { 3331 blkptr_t *bpp = db->db_buf->b_data; 3332 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 3333 dbuf_rele(db, FTAG); 3334 break; 3335 } 3336 3337 curlevel = parent_level; 3338 curblkid = parent_blkid; 3339 } 3340 3341 if (curlevel == nlevels - 1) { 3342 /* No cached indirect blocks found. */ 3343 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 3344 bp = dn->dn_phys->dn_blkptr[curblkid]; 3345 } 3346 ASSERT(!BP_IS_REDACTED(&bp) || 3347 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset, 3348 SPA_FEATURE_REDACTED_DATASETS)); 3349 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp)) 3350 goto no_issue; 3351 3352 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 3353 3354 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 3355 ZIO_FLAG_CANFAIL); 3356 3357 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 3358 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 3359 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3360 dn->dn_object, level, blkid); 3361 dpa->dpa_curlevel = curlevel; 3362 dpa->dpa_prio = prio; 3363 dpa->dpa_aflags = aflags; 3364 dpa->dpa_spa = dn->dn_objset->os_spa; 3365 dpa->dpa_dnode = dn; 3366 dpa->dpa_epbs = epbs; 3367 dpa->dpa_zio = pio; 3368 dpa->dpa_cb = cb; 3369 dpa->dpa_arg = arg; 3370 3371 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3372 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level)) 3373 dpa->dpa_aflags |= ARC_FLAG_L2CACHE; 3374 3375 /* 3376 * If we have the indirect just above us, no need to do the asynchronous 3377 * prefetch chain; we'll just run the last step ourselves. If we're at 3378 * a higher level, though, we want to issue the prefetches for all the 3379 * indirect blocks asynchronously, so we can go on with whatever we were 3380 * doing. 3381 */ 3382 if (curlevel == level) { 3383 ASSERT3U(curblkid, ==, blkid); 3384 dbuf_issue_final_prefetch(dpa, &bp); 3385 } else { 3386 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3387 zbookmark_phys_t zb; 3388 3389 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3390 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level)) 3391 iter_aflags |= ARC_FLAG_L2CACHE; 3392 3393 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3394 dn->dn_object, curlevel, curblkid); 3395 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3396 &bp, dbuf_prefetch_indirect_done, dpa, prio, 3397 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3398 &iter_aflags, &zb); 3399 } 3400 /* 3401 * We use pio here instead of dpa_zio since it's possible that 3402 * dpa may have already been freed. 3403 */ 3404 zio_nowait(pio); 3405 return (1); 3406 no_issue: 3407 if (cb != NULL) 3408 cb(arg, B_FALSE); 3409 return (0); 3410 } 3411 3412 int 3413 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 3414 arc_flags_t aflags) 3415 { 3416 3417 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL)); 3418 } 3419 3420 /* 3421 * Helper function for dbuf_hold_impl() to copy a buffer. Handles 3422 * the case of encrypted, compressed and uncompressed buffers by 3423 * allocating the new buffer, respectively, with arc_alloc_raw_buf(), 3424 * arc_alloc_compressed_buf() or arc_alloc_buf().* 3425 * 3426 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl(). 3427 */ 3428 noinline static void 3429 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db) 3430 { 3431 dbuf_dirty_record_t *dr = db->db_data_pending; 3432 arc_buf_t *data = dr->dt.dl.dr_data; 3433 enum zio_compress compress_type = arc_get_compression(data); 3434 uint8_t complevel = arc_get_complevel(data); 3435 3436 if (arc_is_encrypted(data)) { 3437 boolean_t byteorder; 3438 uint8_t salt[ZIO_DATA_SALT_LEN]; 3439 uint8_t iv[ZIO_DATA_IV_LEN]; 3440 uint8_t mac[ZIO_DATA_MAC_LEN]; 3441 3442 arc_get_raw_params(data, &byteorder, salt, iv, mac); 3443 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db, 3444 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac, 3445 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data), 3446 compress_type, complevel)); 3447 } else if (compress_type != ZIO_COMPRESS_OFF) { 3448 dbuf_set_data(db, arc_alloc_compressed_buf( 3449 dn->dn_objset->os_spa, db, arc_buf_size(data), 3450 arc_buf_lsize(data), compress_type, complevel)); 3451 } else { 3452 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db, 3453 DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 3454 } 3455 3456 rw_enter(&db->db_rwlock, RW_WRITER); 3457 bcopy(data->b_data, db->db.db_data, arc_buf_size(data)); 3458 rw_exit(&db->db_rwlock); 3459 } 3460 3461 /* 3462 * Returns with db_holds incremented, and db_mtx not held. 3463 * Note: dn_struct_rwlock must be held. 3464 */ 3465 int 3466 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 3467 boolean_t fail_sparse, boolean_t fail_uncached, 3468 void *tag, dmu_buf_impl_t **dbp) 3469 { 3470 dmu_buf_impl_t *db, *parent = NULL; 3471 3472 /* If the pool has been created, verify the tx_sync_lock is not held */ 3473 spa_t *spa = dn->dn_objset->os_spa; 3474 dsl_pool_t *dp = spa->spa_dsl_pool; 3475 if (dp != NULL) { 3476 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock)); 3477 } 3478 3479 ASSERT(blkid != DMU_BONUS_BLKID); 3480 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3481 ASSERT3U(dn->dn_nlevels, >, level); 3482 3483 *dbp = NULL; 3484 3485 /* dbuf_find() returns with db_mtx held */ 3486 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid); 3487 3488 if (db == NULL) { 3489 blkptr_t *bp = NULL; 3490 int err; 3491 3492 if (fail_uncached) 3493 return (SET_ERROR(ENOENT)); 3494 3495 ASSERT3P(parent, ==, NULL); 3496 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 3497 if (fail_sparse) { 3498 if (err == 0 && bp && BP_IS_HOLE(bp)) 3499 err = SET_ERROR(ENOENT); 3500 if (err) { 3501 if (parent) 3502 dbuf_rele(parent, NULL); 3503 return (err); 3504 } 3505 } 3506 if (err && err != ENOENT) 3507 return (err); 3508 db = dbuf_create(dn, level, blkid, parent, bp); 3509 } 3510 3511 if (fail_uncached && db->db_state != DB_CACHED) { 3512 mutex_exit(&db->db_mtx); 3513 return (SET_ERROR(ENOENT)); 3514 } 3515 3516 if (db->db_buf != NULL) { 3517 arc_buf_access(db->db_buf); 3518 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 3519 } 3520 3521 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 3522 3523 /* 3524 * If this buffer is currently syncing out, and we are 3525 * still referencing it from db_data, we need to make a copy 3526 * of it in case we decide we want to dirty it again in this txg. 3527 */ 3528 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 3529 dn->dn_object != DMU_META_DNODE_OBJECT && 3530 db->db_state == DB_CACHED && db->db_data_pending) { 3531 dbuf_dirty_record_t *dr = db->db_data_pending; 3532 if (dr->dt.dl.dr_data == db->db_buf) 3533 dbuf_hold_copy(dn, db); 3534 } 3535 3536 if (multilist_link_active(&db->db_cache_link)) { 3537 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3538 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 3539 db->db_caching_status == DB_DBUF_METADATA_CACHE); 3540 3541 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 3542 (void) zfs_refcount_remove_many( 3543 &dbuf_caches[db->db_caching_status].size, 3544 db->db.db_size, db); 3545 3546 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 3547 DBUF_STAT_BUMPDOWN(metadata_cache_count); 3548 } else { 3549 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 3550 DBUF_STAT_BUMPDOWN(cache_count); 3551 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 3552 db->db.db_size); 3553 } 3554 db->db_caching_status = DB_NO_CACHE; 3555 } 3556 (void) zfs_refcount_add(&db->db_holds, tag); 3557 DBUF_VERIFY(db); 3558 mutex_exit(&db->db_mtx); 3559 3560 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 3561 if (parent) 3562 dbuf_rele(parent, NULL); 3563 3564 ASSERT3P(DB_DNODE(db), ==, dn); 3565 ASSERT3U(db->db_blkid, ==, blkid); 3566 ASSERT3U(db->db_level, ==, level); 3567 *dbp = db; 3568 3569 return (0); 3570 } 3571 3572 dmu_buf_impl_t * 3573 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) 3574 { 3575 return (dbuf_hold_level(dn, 0, blkid, tag)); 3576 } 3577 3578 dmu_buf_impl_t * 3579 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) 3580 { 3581 dmu_buf_impl_t *db; 3582 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 3583 return (err ? NULL : db); 3584 } 3585 3586 void 3587 dbuf_create_bonus(dnode_t *dn) 3588 { 3589 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 3590 3591 ASSERT(dn->dn_bonus == NULL); 3592 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL); 3593 } 3594 3595 int 3596 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 3597 { 3598 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3599 3600 if (db->db_blkid != DMU_SPILL_BLKID) 3601 return (SET_ERROR(ENOTSUP)); 3602 if (blksz == 0) 3603 blksz = SPA_MINBLOCKSIZE; 3604 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 3605 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 3606 3607 dbuf_new_size(db, blksz, tx); 3608 3609 return (0); 3610 } 3611 3612 void 3613 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 3614 { 3615 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 3616 } 3617 3618 #pragma weak dmu_buf_add_ref = dbuf_add_ref 3619 void 3620 dbuf_add_ref(dmu_buf_impl_t *db, void *tag) 3621 { 3622 int64_t holds = zfs_refcount_add(&db->db_holds, tag); 3623 VERIFY3S(holds, >, 1); 3624 } 3625 3626 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 3627 boolean_t 3628 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 3629 void *tag) 3630 { 3631 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3632 dmu_buf_impl_t *found_db; 3633 boolean_t result = B_FALSE; 3634 3635 if (blkid == DMU_BONUS_BLKID) 3636 found_db = dbuf_find_bonus(os, obj); 3637 else 3638 found_db = dbuf_find(os, obj, 0, blkid); 3639 3640 if (found_db != NULL) { 3641 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 3642 (void) zfs_refcount_add(&db->db_holds, tag); 3643 result = B_TRUE; 3644 } 3645 mutex_exit(&found_db->db_mtx); 3646 } 3647 return (result); 3648 } 3649 3650 /* 3651 * If you call dbuf_rele() you had better not be referencing the dnode handle 3652 * unless you have some other direct or indirect hold on the dnode. (An indirect 3653 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 3654 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 3655 * dnode's parent dbuf evicting its dnode handles. 3656 */ 3657 void 3658 dbuf_rele(dmu_buf_impl_t *db, void *tag) 3659 { 3660 mutex_enter(&db->db_mtx); 3661 dbuf_rele_and_unlock(db, tag, B_FALSE); 3662 } 3663 3664 void 3665 dmu_buf_rele(dmu_buf_t *db, void *tag) 3666 { 3667 dbuf_rele((dmu_buf_impl_t *)db, tag); 3668 } 3669 3670 /* 3671 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 3672 * db_dirtycnt and db_holds to be updated atomically. The 'evicting' 3673 * argument should be set if we are already in the dbuf-evicting code 3674 * path, in which case we don't want to recursively evict. This allows us to 3675 * avoid deeply nested stacks that would have a call flow similar to this: 3676 * 3677 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 3678 * ^ | 3679 * | | 3680 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 3681 * 3682 */ 3683 void 3684 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag, boolean_t evicting) 3685 { 3686 int64_t holds; 3687 uint64_t size; 3688 3689 ASSERT(MUTEX_HELD(&db->db_mtx)); 3690 DBUF_VERIFY(db); 3691 3692 /* 3693 * Remove the reference to the dbuf before removing its hold on the 3694 * dnode so we can guarantee in dnode_move() that a referenced bonus 3695 * buffer has a corresponding dnode hold. 3696 */ 3697 holds = zfs_refcount_remove(&db->db_holds, tag); 3698 ASSERT(holds >= 0); 3699 3700 /* 3701 * We can't freeze indirects if there is a possibility that they 3702 * may be modified in the current syncing context. 3703 */ 3704 if (db->db_buf != NULL && 3705 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 3706 arc_buf_freeze(db->db_buf); 3707 } 3708 3709 if (holds == db->db_dirtycnt && 3710 db->db_level == 0 && db->db_user_immediate_evict) 3711 dbuf_evict_user(db); 3712 3713 if (holds == 0) { 3714 if (db->db_blkid == DMU_BONUS_BLKID) { 3715 dnode_t *dn; 3716 boolean_t evict_dbuf = db->db_pending_evict; 3717 3718 /* 3719 * If the dnode moves here, we cannot cross this 3720 * barrier until the move completes. 3721 */ 3722 DB_DNODE_ENTER(db); 3723 3724 dn = DB_DNODE(db); 3725 atomic_dec_32(&dn->dn_dbufs_count); 3726 3727 /* 3728 * Decrementing the dbuf count means that the bonus 3729 * buffer's dnode hold is no longer discounted in 3730 * dnode_move(). The dnode cannot move until after 3731 * the dnode_rele() below. 3732 */ 3733 DB_DNODE_EXIT(db); 3734 3735 /* 3736 * Do not reference db after its lock is dropped. 3737 * Another thread may evict it. 3738 */ 3739 mutex_exit(&db->db_mtx); 3740 3741 if (evict_dbuf) 3742 dnode_evict_bonus(dn); 3743 3744 dnode_rele(dn, db); 3745 } else if (db->db_buf == NULL) { 3746 /* 3747 * This is a special case: we never associated this 3748 * dbuf with any data allocated from the ARC. 3749 */ 3750 ASSERT(db->db_state == DB_UNCACHED || 3751 db->db_state == DB_NOFILL); 3752 dbuf_destroy(db); 3753 } else if (arc_released(db->db_buf)) { 3754 /* 3755 * This dbuf has anonymous data associated with it. 3756 */ 3757 dbuf_destroy(db); 3758 } else { 3759 boolean_t do_arc_evict = B_FALSE; 3760 blkptr_t bp; 3761 spa_t *spa = dmu_objset_spa(db->db_objset); 3762 3763 if (!DBUF_IS_CACHEABLE(db) && 3764 db->db_blkptr != NULL && 3765 !BP_IS_HOLE(db->db_blkptr) && 3766 !BP_IS_EMBEDDED(db->db_blkptr)) { 3767 do_arc_evict = B_TRUE; 3768 bp = *db->db_blkptr; 3769 } 3770 3771 if (!DBUF_IS_CACHEABLE(db) || 3772 db->db_pending_evict) { 3773 dbuf_destroy(db); 3774 } else if (!multilist_link_active(&db->db_cache_link)) { 3775 ASSERT3U(db->db_caching_status, ==, 3776 DB_NO_CACHE); 3777 3778 dbuf_cached_state_t dcs = 3779 dbuf_include_in_metadata_cache(db) ? 3780 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE; 3781 db->db_caching_status = dcs; 3782 3783 multilist_insert(&dbuf_caches[dcs].cache, db); 3784 uint64_t db_size = db->db.db_size; 3785 size = zfs_refcount_add_many( 3786 &dbuf_caches[dcs].size, db_size, db); 3787 uint8_t db_level = db->db_level; 3788 mutex_exit(&db->db_mtx); 3789 3790 if (dcs == DB_DBUF_METADATA_CACHE) { 3791 DBUF_STAT_BUMP(metadata_cache_count); 3792 DBUF_STAT_MAX( 3793 metadata_cache_size_bytes_max, 3794 size); 3795 } else { 3796 DBUF_STAT_BUMP(cache_count); 3797 DBUF_STAT_MAX(cache_size_bytes_max, 3798 size); 3799 DBUF_STAT_BUMP(cache_levels[db_level]); 3800 DBUF_STAT_INCR( 3801 cache_levels_bytes[db_level], 3802 db_size); 3803 } 3804 3805 if (dcs == DB_DBUF_CACHE && !evicting) 3806 dbuf_evict_notify(size); 3807 } 3808 3809 if (do_arc_evict) 3810 arc_freed(spa, &bp); 3811 } 3812 } else { 3813 mutex_exit(&db->db_mtx); 3814 } 3815 3816 } 3817 3818 #pragma weak dmu_buf_refcount = dbuf_refcount 3819 uint64_t 3820 dbuf_refcount(dmu_buf_impl_t *db) 3821 { 3822 return (zfs_refcount_count(&db->db_holds)); 3823 } 3824 3825 uint64_t 3826 dmu_buf_user_refcount(dmu_buf_t *db_fake) 3827 { 3828 uint64_t holds; 3829 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3830 3831 mutex_enter(&db->db_mtx); 3832 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt); 3833 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt; 3834 mutex_exit(&db->db_mtx); 3835 3836 return (holds); 3837 } 3838 3839 void * 3840 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 3841 dmu_buf_user_t *new_user) 3842 { 3843 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3844 3845 mutex_enter(&db->db_mtx); 3846 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3847 if (db->db_user == old_user) 3848 db->db_user = new_user; 3849 else 3850 old_user = db->db_user; 3851 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3852 mutex_exit(&db->db_mtx); 3853 3854 return (old_user); 3855 } 3856 3857 void * 3858 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 3859 { 3860 return (dmu_buf_replace_user(db_fake, NULL, user)); 3861 } 3862 3863 void * 3864 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 3865 { 3866 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3867 3868 db->db_user_immediate_evict = TRUE; 3869 return (dmu_buf_set_user(db_fake, user)); 3870 } 3871 3872 void * 3873 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 3874 { 3875 return (dmu_buf_replace_user(db_fake, user, NULL)); 3876 } 3877 3878 void * 3879 dmu_buf_get_user(dmu_buf_t *db_fake) 3880 { 3881 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3882 3883 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3884 return (db->db_user); 3885 } 3886 3887 void 3888 dmu_buf_user_evict_wait() 3889 { 3890 taskq_wait(dbu_evict_taskq); 3891 } 3892 3893 blkptr_t * 3894 dmu_buf_get_blkptr(dmu_buf_t *db) 3895 { 3896 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3897 return (dbi->db_blkptr); 3898 } 3899 3900 objset_t * 3901 dmu_buf_get_objset(dmu_buf_t *db) 3902 { 3903 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3904 return (dbi->db_objset); 3905 } 3906 3907 dnode_t * 3908 dmu_buf_dnode_enter(dmu_buf_t *db) 3909 { 3910 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3911 DB_DNODE_ENTER(dbi); 3912 return (DB_DNODE(dbi)); 3913 } 3914 3915 void 3916 dmu_buf_dnode_exit(dmu_buf_t *db) 3917 { 3918 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3919 DB_DNODE_EXIT(dbi); 3920 } 3921 3922 static void 3923 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 3924 { 3925 /* ASSERT(dmu_tx_is_syncing(tx) */ 3926 ASSERT(MUTEX_HELD(&db->db_mtx)); 3927 3928 if (db->db_blkptr != NULL) 3929 return; 3930 3931 if (db->db_blkid == DMU_SPILL_BLKID) { 3932 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys); 3933 BP_ZERO(db->db_blkptr); 3934 return; 3935 } 3936 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 3937 /* 3938 * This buffer was allocated at a time when there was 3939 * no available blkptrs from the dnode, or it was 3940 * inappropriate to hook it in (i.e., nlevels mismatch). 3941 */ 3942 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 3943 ASSERT(db->db_parent == NULL); 3944 db->db_parent = dn->dn_dbuf; 3945 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 3946 DBUF_VERIFY(db); 3947 } else { 3948 dmu_buf_impl_t *parent = db->db_parent; 3949 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3950 3951 ASSERT(dn->dn_phys->dn_nlevels > 1); 3952 if (parent == NULL) { 3953 mutex_exit(&db->db_mtx); 3954 rw_enter(&dn->dn_struct_rwlock, RW_READER); 3955 parent = dbuf_hold_level(dn, db->db_level + 1, 3956 db->db_blkid >> epbs, db); 3957 rw_exit(&dn->dn_struct_rwlock); 3958 mutex_enter(&db->db_mtx); 3959 db->db_parent = parent; 3960 } 3961 db->db_blkptr = (blkptr_t *)parent->db.db_data + 3962 (db->db_blkid & ((1ULL << epbs) - 1)); 3963 DBUF_VERIFY(db); 3964 } 3965 } 3966 3967 static void 3968 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 3969 { 3970 dmu_buf_impl_t *db = dr->dr_dbuf; 3971 void *data = dr->dt.dl.dr_data; 3972 3973 ASSERT0(db->db_level); 3974 ASSERT(MUTEX_HELD(&db->db_mtx)); 3975 ASSERT(db->db_blkid == DMU_BONUS_BLKID); 3976 ASSERT(data != NULL); 3977 3978 dnode_t *dn = dr->dr_dnode; 3979 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=, 3980 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1)); 3981 bcopy(data, DN_BONUS(dn->dn_phys), DN_MAX_BONUS_LEN(dn->dn_phys)); 3982 3983 dbuf_sync_leaf_verify_bonus_dnode(dr); 3984 3985 dbuf_undirty_bonus(dr); 3986 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 3987 } 3988 3989 /* 3990 * When syncing out a blocks of dnodes, adjust the block to deal with 3991 * encryption. Normally, we make sure the block is decrypted before writing 3992 * it. If we have crypt params, then we are writing a raw (encrypted) block, 3993 * from a raw receive. In this case, set the ARC buf's crypt params so 3994 * that the BP will be filled with the correct byteorder, salt, iv, and mac. 3995 */ 3996 static void 3997 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr) 3998 { 3999 int err; 4000 dmu_buf_impl_t *db = dr->dr_dbuf; 4001 4002 ASSERT(MUTEX_HELD(&db->db_mtx)); 4003 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 4004 ASSERT3U(db->db_level, ==, 0); 4005 4006 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) { 4007 zbookmark_phys_t zb; 4008 4009 /* 4010 * Unfortunately, there is currently no mechanism for 4011 * syncing context to handle decryption errors. An error 4012 * here is only possible if an attacker maliciously 4013 * changed a dnode block and updated the associated 4014 * checksums going up the block tree. 4015 */ 4016 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 4017 db->db.db_object, db->db_level, db->db_blkid); 4018 err = arc_untransform(db->db_buf, db->db_objset->os_spa, 4019 &zb, B_TRUE); 4020 if (err) 4021 panic("Invalid dnode block MAC"); 4022 } else if (dr->dt.dl.dr_has_raw_params) { 4023 (void) arc_release(dr->dt.dl.dr_data, db); 4024 arc_convert_to_raw(dr->dt.dl.dr_data, 4025 dmu_objset_id(db->db_objset), 4026 dr->dt.dl.dr_byteorder, DMU_OT_DNODE, 4027 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac); 4028 } 4029 } 4030 4031 /* 4032 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it 4033 * is critical the we not allow the compiler to inline this function in to 4034 * dbuf_sync_list() thereby drastically bloating the stack usage. 4035 */ 4036 noinline static void 4037 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4038 { 4039 dmu_buf_impl_t *db = dr->dr_dbuf; 4040 dnode_t *dn = dr->dr_dnode; 4041 4042 ASSERT(dmu_tx_is_syncing(tx)); 4043 4044 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4045 4046 mutex_enter(&db->db_mtx); 4047 4048 ASSERT(db->db_level > 0); 4049 DBUF_VERIFY(db); 4050 4051 /* Read the block if it hasn't been read yet. */ 4052 if (db->db_buf == NULL) { 4053 mutex_exit(&db->db_mtx); 4054 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 4055 mutex_enter(&db->db_mtx); 4056 } 4057 ASSERT3U(db->db_state, ==, DB_CACHED); 4058 ASSERT(db->db_buf != NULL); 4059 4060 /* Indirect block size must match what the dnode thinks it is. */ 4061 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4062 dbuf_check_blkptr(dn, db); 4063 4064 /* Provide the pending dirty record to child dbufs */ 4065 db->db_data_pending = dr; 4066 4067 mutex_exit(&db->db_mtx); 4068 4069 dbuf_write(dr, db->db_buf, tx); 4070 4071 zio_t *zio = dr->dr_zio; 4072 mutex_enter(&dr->dt.di.dr_mtx); 4073 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 4074 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4075 mutex_exit(&dr->dt.di.dr_mtx); 4076 zio_nowait(zio); 4077 } 4078 4079 /* 4080 * Verify that the size of the data in our bonus buffer does not exceed 4081 * its recorded size. 4082 * 4083 * The purpose of this verification is to catch any cases in development 4084 * where the size of a phys structure (i.e space_map_phys_t) grows and, 4085 * due to incorrect feature management, older pools expect to read more 4086 * data even though they didn't actually write it to begin with. 4087 * 4088 * For a example, this would catch an error in the feature logic where we 4089 * open an older pool and we expect to write the space map histogram of 4090 * a space map with size SPACE_MAP_SIZE_V0. 4091 */ 4092 static void 4093 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr) 4094 { 4095 #ifdef ZFS_DEBUG 4096 dnode_t *dn = dr->dr_dnode; 4097 4098 /* 4099 * Encrypted bonus buffers can have data past their bonuslen. 4100 * Skip the verification of these blocks. 4101 */ 4102 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)) 4103 return; 4104 4105 uint16_t bonuslen = dn->dn_phys->dn_bonuslen; 4106 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 4107 ASSERT3U(bonuslen, <=, maxbonuslen); 4108 4109 arc_buf_t *datap = dr->dt.dl.dr_data; 4110 char *datap_end = ((char *)datap) + bonuslen; 4111 char *datap_max = ((char *)datap) + maxbonuslen; 4112 4113 /* ensure that everything is zero after our data */ 4114 for (; datap_end < datap_max; datap_end++) 4115 ASSERT(*datap_end == 0); 4116 #endif 4117 } 4118 4119 static blkptr_t * 4120 dbuf_lightweight_bp(dbuf_dirty_record_t *dr) 4121 { 4122 /* This must be a lightweight dirty record. */ 4123 ASSERT3P(dr->dr_dbuf, ==, NULL); 4124 dnode_t *dn = dr->dr_dnode; 4125 4126 if (dn->dn_phys->dn_nlevels == 1) { 4127 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr); 4128 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]); 4129 } else { 4130 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf; 4131 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 4132 VERIFY3U(parent_db->db_level, ==, 1); 4133 VERIFY3P(parent_db->db_dnode_handle->dnh_dnode, ==, dn); 4134 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid); 4135 blkptr_t *bp = parent_db->db.db_data; 4136 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]); 4137 } 4138 } 4139 4140 static void 4141 dbuf_lightweight_ready(zio_t *zio) 4142 { 4143 dbuf_dirty_record_t *dr = zio->io_private; 4144 blkptr_t *bp = zio->io_bp; 4145 4146 if (zio->io_error != 0) 4147 return; 4148 4149 dnode_t *dn = dr->dr_dnode; 4150 4151 blkptr_t *bp_orig = dbuf_lightweight_bp(dr); 4152 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4153 int64_t delta = bp_get_dsize_sync(spa, bp) - 4154 bp_get_dsize_sync(spa, bp_orig); 4155 dnode_diduse_space(dn, delta); 4156 4157 uint64_t blkid = dr->dt.dll.dr_blkid; 4158 mutex_enter(&dn->dn_mtx); 4159 if (blkid > dn->dn_phys->dn_maxblkid) { 4160 ASSERT0(dn->dn_objset->os_raw_receive); 4161 dn->dn_phys->dn_maxblkid = blkid; 4162 } 4163 mutex_exit(&dn->dn_mtx); 4164 4165 if (!BP_IS_EMBEDDED(bp)) { 4166 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1; 4167 BP_SET_FILL(bp, fill); 4168 } 4169 4170 dmu_buf_impl_t *parent_db; 4171 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1); 4172 if (dr->dr_parent == NULL) { 4173 parent_db = dn->dn_dbuf; 4174 } else { 4175 parent_db = dr->dr_parent->dr_dbuf; 4176 } 4177 rw_enter(&parent_db->db_rwlock, RW_WRITER); 4178 *bp_orig = *bp; 4179 rw_exit(&parent_db->db_rwlock); 4180 } 4181 4182 static void 4183 dbuf_lightweight_physdone(zio_t *zio) 4184 { 4185 dbuf_dirty_record_t *dr = zio->io_private; 4186 dsl_pool_t *dp = spa_get_dsl(zio->io_spa); 4187 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 4188 4189 /* 4190 * The callback will be called io_phys_children times. Retire one 4191 * portion of our dirty space each time we are called. Any rounding 4192 * error will be cleaned up by dbuf_lightweight_done(). 4193 */ 4194 int delta = dr->dr_accounted / zio->io_phys_children; 4195 dsl_pool_undirty_space(dp, delta, zio->io_txg); 4196 } 4197 4198 static void 4199 dbuf_lightweight_done(zio_t *zio) 4200 { 4201 dbuf_dirty_record_t *dr = zio->io_private; 4202 4203 VERIFY0(zio->io_error); 4204 4205 objset_t *os = dr->dr_dnode->dn_objset; 4206 dmu_tx_t *tx = os->os_synctx; 4207 4208 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4209 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4210 } else { 4211 dsl_dataset_t *ds = os->os_dsl_dataset; 4212 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE); 4213 dsl_dataset_block_born(ds, zio->io_bp, tx); 4214 } 4215 4216 /* 4217 * See comment in dbuf_write_done(). 4218 */ 4219 if (zio->io_phys_children == 0) { 4220 dsl_pool_undirty_space(dmu_objset_pool(os), 4221 dr->dr_accounted, zio->io_txg); 4222 } else { 4223 dsl_pool_undirty_space(dmu_objset_pool(os), 4224 dr->dr_accounted % zio->io_phys_children, zio->io_txg); 4225 } 4226 4227 abd_free(dr->dt.dll.dr_abd); 4228 kmem_free(dr, sizeof (*dr)); 4229 } 4230 4231 noinline static void 4232 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4233 { 4234 dnode_t *dn = dr->dr_dnode; 4235 zio_t *pio; 4236 if (dn->dn_phys->dn_nlevels == 1) { 4237 pio = dn->dn_zio; 4238 } else { 4239 pio = dr->dr_parent->dr_zio; 4240 } 4241 4242 zbookmark_phys_t zb = { 4243 .zb_objset = dmu_objset_id(dn->dn_objset), 4244 .zb_object = dn->dn_object, 4245 .zb_level = 0, 4246 .zb_blkid = dr->dt.dll.dr_blkid, 4247 }; 4248 4249 /* 4250 * See comment in dbuf_write(). This is so that zio->io_bp_orig 4251 * will have the old BP in dbuf_lightweight_done(). 4252 */ 4253 dr->dr_bp_copy = *dbuf_lightweight_bp(dr); 4254 4255 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset), 4256 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd, 4257 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd), 4258 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL, 4259 dbuf_lightweight_physdone, dbuf_lightweight_done, dr, 4260 ZIO_PRIORITY_ASYNC_WRITE, 4261 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb); 4262 4263 zio_nowait(dr->dr_zio); 4264 } 4265 4266 /* 4267 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is 4268 * critical the we not allow the compiler to inline this function in to 4269 * dbuf_sync_list() thereby drastically bloating the stack usage. 4270 */ 4271 noinline static void 4272 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4273 { 4274 arc_buf_t **datap = &dr->dt.dl.dr_data; 4275 dmu_buf_impl_t *db = dr->dr_dbuf; 4276 dnode_t *dn = dr->dr_dnode; 4277 objset_t *os; 4278 uint64_t txg = tx->tx_txg; 4279 4280 ASSERT(dmu_tx_is_syncing(tx)); 4281 4282 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4283 4284 mutex_enter(&db->db_mtx); 4285 /* 4286 * To be synced, we must be dirtied. But we 4287 * might have been freed after the dirty. 4288 */ 4289 if (db->db_state == DB_UNCACHED) { 4290 /* This buffer has been freed since it was dirtied */ 4291 ASSERT(db->db.db_data == NULL); 4292 } else if (db->db_state == DB_FILL) { 4293 /* This buffer was freed and is now being re-filled */ 4294 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 4295 } else { 4296 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 4297 } 4298 DBUF_VERIFY(db); 4299 4300 if (db->db_blkid == DMU_SPILL_BLKID) { 4301 mutex_enter(&dn->dn_mtx); 4302 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) { 4303 /* 4304 * In the previous transaction group, the bonus buffer 4305 * was entirely used to store the attributes for the 4306 * dnode which overrode the dn_spill field. However, 4307 * when adding more attributes to the file a spill 4308 * block was required to hold the extra attributes. 4309 * 4310 * Make sure to clear the garbage left in the dn_spill 4311 * field from the previous attributes in the bonus 4312 * buffer. Otherwise, after writing out the spill 4313 * block to the new allocated dva, it will free 4314 * the old block pointed to by the invalid dn_spill. 4315 */ 4316 db->db_blkptr = NULL; 4317 } 4318 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 4319 mutex_exit(&dn->dn_mtx); 4320 } 4321 4322 /* 4323 * If this is a bonus buffer, simply copy the bonus data into the 4324 * dnode. It will be written out when the dnode is synced (and it 4325 * will be synced, since it must have been dirty for dbuf_sync to 4326 * be called). 4327 */ 4328 if (db->db_blkid == DMU_BONUS_BLKID) { 4329 ASSERT(dr->dr_dbuf == db); 4330 dbuf_sync_bonus(dr, tx); 4331 return; 4332 } 4333 4334 os = dn->dn_objset; 4335 4336 /* 4337 * This function may have dropped the db_mtx lock allowing a dmu_sync 4338 * operation to sneak in. As a result, we need to ensure that we 4339 * don't check the dr_override_state until we have returned from 4340 * dbuf_check_blkptr. 4341 */ 4342 dbuf_check_blkptr(dn, db); 4343 4344 /* 4345 * If this buffer is in the middle of an immediate write, 4346 * wait for the synchronous IO to complete. 4347 */ 4348 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 4349 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 4350 cv_wait(&db->db_changed, &db->db_mtx); 4351 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN); 4352 } 4353 4354 /* 4355 * If this is a dnode block, ensure it is appropriately encrypted 4356 * or decrypted, depending on what we are writing to it this txg. 4357 */ 4358 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT) 4359 dbuf_prepare_encrypted_dnode_leaf(dr); 4360 4361 if (db->db_state != DB_NOFILL && 4362 dn->dn_object != DMU_META_DNODE_OBJECT && 4363 zfs_refcount_count(&db->db_holds) > 1 && 4364 dr->dt.dl.dr_override_state != DR_OVERRIDDEN && 4365 *datap == db->db_buf) { 4366 /* 4367 * If this buffer is currently "in use" (i.e., there 4368 * are active holds and db_data still references it), 4369 * then make a copy before we start the write so that 4370 * any modifications from the open txg will not leak 4371 * into this write. 4372 * 4373 * NOTE: this copy does not need to be made for 4374 * objects only modified in the syncing context (e.g. 4375 * DNONE_DNODE blocks). 4376 */ 4377 int psize = arc_buf_size(*datap); 4378 int lsize = arc_buf_lsize(*datap); 4379 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 4380 enum zio_compress compress_type = arc_get_compression(*datap); 4381 uint8_t complevel = arc_get_complevel(*datap); 4382 4383 if (arc_is_encrypted(*datap)) { 4384 boolean_t byteorder; 4385 uint8_t salt[ZIO_DATA_SALT_LEN]; 4386 uint8_t iv[ZIO_DATA_IV_LEN]; 4387 uint8_t mac[ZIO_DATA_MAC_LEN]; 4388 4389 arc_get_raw_params(*datap, &byteorder, salt, iv, mac); 4390 *datap = arc_alloc_raw_buf(os->os_spa, db, 4391 dmu_objset_id(os), byteorder, salt, iv, mac, 4392 dn->dn_type, psize, lsize, compress_type, 4393 complevel); 4394 } else if (compress_type != ZIO_COMPRESS_OFF) { 4395 ASSERT3U(type, ==, ARC_BUFC_DATA); 4396 *datap = arc_alloc_compressed_buf(os->os_spa, db, 4397 psize, lsize, compress_type, complevel); 4398 } else { 4399 *datap = arc_alloc_buf(os->os_spa, db, type, psize); 4400 } 4401 bcopy(db->db.db_data, (*datap)->b_data, psize); 4402 } 4403 db->db_data_pending = dr; 4404 4405 mutex_exit(&db->db_mtx); 4406 4407 dbuf_write(dr, *datap, tx); 4408 4409 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4410 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 4411 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr); 4412 } else { 4413 zio_nowait(dr->dr_zio); 4414 } 4415 } 4416 4417 void 4418 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 4419 { 4420 dbuf_dirty_record_t *dr; 4421 4422 while ((dr = list_head(list))) { 4423 if (dr->dr_zio != NULL) { 4424 /* 4425 * If we find an already initialized zio then we 4426 * are processing the meta-dnode, and we have finished. 4427 * The dbufs for all dnodes are put back on the list 4428 * during processing, so that we can zio_wait() 4429 * these IOs after initiating all child IOs. 4430 */ 4431 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 4432 DMU_META_DNODE_OBJECT); 4433 break; 4434 } 4435 list_remove(list, dr); 4436 if (dr->dr_dbuf == NULL) { 4437 dbuf_sync_lightweight(dr, tx); 4438 } else { 4439 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 4440 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 4441 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 4442 } 4443 if (dr->dr_dbuf->db_level > 0) 4444 dbuf_sync_indirect(dr, tx); 4445 else 4446 dbuf_sync_leaf(dr, tx); 4447 } 4448 } 4449 } 4450 4451 /* ARGSUSED */ 4452 static void 4453 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4454 { 4455 dmu_buf_impl_t *db = vdb; 4456 dnode_t *dn; 4457 blkptr_t *bp = zio->io_bp; 4458 blkptr_t *bp_orig = &zio->io_bp_orig; 4459 spa_t *spa = zio->io_spa; 4460 int64_t delta; 4461 uint64_t fill = 0; 4462 int i; 4463 4464 ASSERT3P(db->db_blkptr, !=, NULL); 4465 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 4466 4467 DB_DNODE_ENTER(db); 4468 dn = DB_DNODE(db); 4469 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 4470 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 4471 zio->io_prev_space_delta = delta; 4472 4473 if (bp->blk_birth != 0) { 4474 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 4475 BP_GET_TYPE(bp) == dn->dn_type) || 4476 (db->db_blkid == DMU_SPILL_BLKID && 4477 BP_GET_TYPE(bp) == dn->dn_bonustype) || 4478 BP_IS_EMBEDDED(bp)); 4479 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 4480 } 4481 4482 mutex_enter(&db->db_mtx); 4483 4484 #ifdef ZFS_DEBUG 4485 if (db->db_blkid == DMU_SPILL_BLKID) { 4486 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4487 ASSERT(!(BP_IS_HOLE(bp)) && 4488 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4489 } 4490 #endif 4491 4492 if (db->db_level == 0) { 4493 mutex_enter(&dn->dn_mtx); 4494 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 4495 db->db_blkid != DMU_SPILL_BLKID) { 4496 ASSERT0(db->db_objset->os_raw_receive); 4497 dn->dn_phys->dn_maxblkid = db->db_blkid; 4498 } 4499 mutex_exit(&dn->dn_mtx); 4500 4501 if (dn->dn_type == DMU_OT_DNODE) { 4502 i = 0; 4503 while (i < db->db.db_size) { 4504 dnode_phys_t *dnp = 4505 (void *)(((char *)db->db.db_data) + i); 4506 4507 i += DNODE_MIN_SIZE; 4508 if (dnp->dn_type != DMU_OT_NONE) { 4509 fill++; 4510 i += dnp->dn_extra_slots * 4511 DNODE_MIN_SIZE; 4512 } 4513 } 4514 } else { 4515 if (BP_IS_HOLE(bp)) { 4516 fill = 0; 4517 } else { 4518 fill = 1; 4519 } 4520 } 4521 } else { 4522 blkptr_t *ibp = db->db.db_data; 4523 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4524 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 4525 if (BP_IS_HOLE(ibp)) 4526 continue; 4527 fill += BP_GET_FILL(ibp); 4528 } 4529 } 4530 DB_DNODE_EXIT(db); 4531 4532 if (!BP_IS_EMBEDDED(bp)) 4533 BP_SET_FILL(bp, fill); 4534 4535 mutex_exit(&db->db_mtx); 4536 4537 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG); 4538 *db->db_blkptr = *bp; 4539 dmu_buf_unlock_parent(db, dblt, FTAG); 4540 } 4541 4542 /* ARGSUSED */ 4543 /* 4544 * This function gets called just prior to running through the compression 4545 * stage of the zio pipeline. If we're an indirect block comprised of only 4546 * holes, then we want this indirect to be compressed away to a hole. In 4547 * order to do that we must zero out any information about the holes that 4548 * this indirect points to prior to before we try to compress it. 4549 */ 4550 static void 4551 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4552 { 4553 dmu_buf_impl_t *db = vdb; 4554 dnode_t *dn; 4555 blkptr_t *bp; 4556 unsigned int epbs, i; 4557 4558 ASSERT3U(db->db_level, >, 0); 4559 DB_DNODE_ENTER(db); 4560 dn = DB_DNODE(db); 4561 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4562 ASSERT3U(epbs, <, 31); 4563 4564 /* Determine if all our children are holes */ 4565 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) { 4566 if (!BP_IS_HOLE(bp)) 4567 break; 4568 } 4569 4570 /* 4571 * If all the children are holes, then zero them all out so that 4572 * we may get compressed away. 4573 */ 4574 if (i == 1ULL << epbs) { 4575 /* 4576 * We only found holes. Grab the rwlock to prevent 4577 * anybody from reading the blocks we're about to 4578 * zero out. 4579 */ 4580 rw_enter(&db->db_rwlock, RW_WRITER); 4581 bzero(db->db.db_data, db->db.db_size); 4582 rw_exit(&db->db_rwlock); 4583 } 4584 DB_DNODE_EXIT(db); 4585 } 4586 4587 /* 4588 * The SPA will call this callback several times for each zio - once 4589 * for every physical child i/o (zio->io_phys_children times). This 4590 * allows the DMU to monitor the progress of each logical i/o. For example, 4591 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z 4592 * block. There may be a long delay before all copies/fragments are completed, 4593 * so this callback allows us to retire dirty space gradually, as the physical 4594 * i/os complete. 4595 */ 4596 /* ARGSUSED */ 4597 static void 4598 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg) 4599 { 4600 dmu_buf_impl_t *db = arg; 4601 objset_t *os = db->db_objset; 4602 dsl_pool_t *dp = dmu_objset_pool(os); 4603 dbuf_dirty_record_t *dr; 4604 int delta = 0; 4605 4606 dr = db->db_data_pending; 4607 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 4608 4609 /* 4610 * The callback will be called io_phys_children times. Retire one 4611 * portion of our dirty space each time we are called. Any rounding 4612 * error will be cleaned up by dbuf_write_done(). 4613 */ 4614 delta = dr->dr_accounted / zio->io_phys_children; 4615 dsl_pool_undirty_space(dp, delta, zio->io_txg); 4616 } 4617 4618 /* ARGSUSED */ 4619 static void 4620 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 4621 { 4622 dmu_buf_impl_t *db = vdb; 4623 blkptr_t *bp_orig = &zio->io_bp_orig; 4624 blkptr_t *bp = db->db_blkptr; 4625 objset_t *os = db->db_objset; 4626 dmu_tx_t *tx = os->os_synctx; 4627 4628 ASSERT0(zio->io_error); 4629 ASSERT(db->db_blkptr == bp); 4630 4631 /* 4632 * For nopwrites and rewrites we ensure that the bp matches our 4633 * original and bypass all the accounting. 4634 */ 4635 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4636 ASSERT(BP_EQUAL(bp, bp_orig)); 4637 } else { 4638 dsl_dataset_t *ds = os->os_dsl_dataset; 4639 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 4640 dsl_dataset_block_born(ds, bp, tx); 4641 } 4642 4643 mutex_enter(&db->db_mtx); 4644 4645 DBUF_VERIFY(db); 4646 4647 dbuf_dirty_record_t *dr = db->db_data_pending; 4648 dnode_t *dn = dr->dr_dnode; 4649 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4650 ASSERT(dr->dr_dbuf == db); 4651 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 4652 list_remove(&db->db_dirty_records, dr); 4653 4654 #ifdef ZFS_DEBUG 4655 if (db->db_blkid == DMU_SPILL_BLKID) { 4656 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4657 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 4658 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4659 } 4660 #endif 4661 4662 if (db->db_level == 0) { 4663 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 4664 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 4665 if (db->db_state != DB_NOFILL) { 4666 if (dr->dt.dl.dr_data != db->db_buf) 4667 arc_buf_destroy(dr->dt.dl.dr_data, db); 4668 } 4669 } else { 4670 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4671 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 4672 if (!BP_IS_HOLE(db->db_blkptr)) { 4673 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift - 4674 SPA_BLKPTRSHIFT; 4675 ASSERT3U(db->db_blkid, <=, 4676 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 4677 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 4678 db->db.db_size); 4679 } 4680 mutex_destroy(&dr->dt.di.dr_mtx); 4681 list_destroy(&dr->dt.di.dr_children); 4682 } 4683 4684 cv_broadcast(&db->db_changed); 4685 ASSERT(db->db_dirtycnt > 0); 4686 db->db_dirtycnt -= 1; 4687 db->db_data_pending = NULL; 4688 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 4689 4690 /* 4691 * If we didn't do a physical write in this ZIO and we 4692 * still ended up here, it means that the space of the 4693 * dbuf that we just released (and undirtied) above hasn't 4694 * been marked as undirtied in the pool's accounting. 4695 * 4696 * Thus, we undirty that space in the pool's view of the 4697 * world here. For physical writes this type of update 4698 * happens in dbuf_write_physdone(). 4699 * 4700 * If we did a physical write, cleanup any rounding errors 4701 * that came up due to writing multiple copies of a block 4702 * on disk [see dbuf_write_physdone()]. 4703 */ 4704 if (zio->io_phys_children == 0) { 4705 dsl_pool_undirty_space(dmu_objset_pool(os), 4706 dr->dr_accounted, zio->io_txg); 4707 } else { 4708 dsl_pool_undirty_space(dmu_objset_pool(os), 4709 dr->dr_accounted % zio->io_phys_children, zio->io_txg); 4710 } 4711 4712 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 4713 } 4714 4715 static void 4716 dbuf_write_nofill_ready(zio_t *zio) 4717 { 4718 dbuf_write_ready(zio, NULL, zio->io_private); 4719 } 4720 4721 static void 4722 dbuf_write_nofill_done(zio_t *zio) 4723 { 4724 dbuf_write_done(zio, NULL, zio->io_private); 4725 } 4726 4727 static void 4728 dbuf_write_override_ready(zio_t *zio) 4729 { 4730 dbuf_dirty_record_t *dr = zio->io_private; 4731 dmu_buf_impl_t *db = dr->dr_dbuf; 4732 4733 dbuf_write_ready(zio, NULL, db); 4734 } 4735 4736 static void 4737 dbuf_write_override_done(zio_t *zio) 4738 { 4739 dbuf_dirty_record_t *dr = zio->io_private; 4740 dmu_buf_impl_t *db = dr->dr_dbuf; 4741 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 4742 4743 mutex_enter(&db->db_mtx); 4744 if (!BP_EQUAL(zio->io_bp, obp)) { 4745 if (!BP_IS_HOLE(obp)) 4746 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 4747 arc_release(dr->dt.dl.dr_data, db); 4748 } 4749 mutex_exit(&db->db_mtx); 4750 4751 dbuf_write_done(zio, NULL, db); 4752 4753 if (zio->io_abd != NULL) 4754 abd_free(zio->io_abd); 4755 } 4756 4757 typedef struct dbuf_remap_impl_callback_arg { 4758 objset_t *drica_os; 4759 uint64_t drica_blk_birth; 4760 dmu_tx_t *drica_tx; 4761 } dbuf_remap_impl_callback_arg_t; 4762 4763 static void 4764 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size, 4765 void *arg) 4766 { 4767 dbuf_remap_impl_callback_arg_t *drica = arg; 4768 objset_t *os = drica->drica_os; 4769 spa_t *spa = dmu_objset_spa(os); 4770 dmu_tx_t *tx = drica->drica_tx; 4771 4772 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4773 4774 if (os == spa_meta_objset(spa)) { 4775 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx); 4776 } else { 4777 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset, 4778 size, drica->drica_blk_birth, tx); 4779 } 4780 } 4781 4782 static void 4783 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx) 4784 { 4785 blkptr_t bp_copy = *bp; 4786 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4787 dbuf_remap_impl_callback_arg_t drica; 4788 4789 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4790 4791 drica.drica_os = dn->dn_objset; 4792 drica.drica_blk_birth = bp->blk_birth; 4793 drica.drica_tx = tx; 4794 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback, 4795 &drica)) { 4796 /* 4797 * If the blkptr being remapped is tracked by a livelist, 4798 * then we need to make sure the livelist reflects the update. 4799 * First, cancel out the old blkptr by appending a 'FREE' 4800 * entry. Next, add an 'ALLOC' to track the new version. This 4801 * way we avoid trying to free an inaccurate blkptr at delete. 4802 * Note that embedded blkptrs are not tracked in livelists. 4803 */ 4804 if (dn->dn_objset != spa_meta_objset(spa)) { 4805 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset); 4806 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 4807 bp->blk_birth > ds->ds_dir->dd_origin_txg) { 4808 ASSERT(!BP_IS_EMBEDDED(bp)); 4809 ASSERT(dsl_dir_is_clone(ds->ds_dir)); 4810 ASSERT(spa_feature_is_enabled(spa, 4811 SPA_FEATURE_LIVELIST)); 4812 bplist_append(&ds->ds_dir->dd_pending_frees, 4813 bp); 4814 bplist_append(&ds->ds_dir->dd_pending_allocs, 4815 &bp_copy); 4816 } 4817 } 4818 4819 /* 4820 * The db_rwlock prevents dbuf_read_impl() from 4821 * dereferencing the BP while we are changing it. To 4822 * avoid lock contention, only grab it when we are actually 4823 * changing the BP. 4824 */ 4825 if (rw != NULL) 4826 rw_enter(rw, RW_WRITER); 4827 *bp = bp_copy; 4828 if (rw != NULL) 4829 rw_exit(rw); 4830 } 4831 } 4832 4833 /* 4834 * Remap any existing BP's to concrete vdevs, if possible. 4835 */ 4836 static void 4837 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx) 4838 { 4839 spa_t *spa = dmu_objset_spa(db->db_objset); 4840 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4841 4842 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)) 4843 return; 4844 4845 if (db->db_level > 0) { 4846 blkptr_t *bp = db->db.db_data; 4847 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) { 4848 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx); 4849 } 4850 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) { 4851 dnode_phys_t *dnp = db->db.db_data; 4852 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==, 4853 DMU_OT_DNODE); 4854 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT; 4855 i += dnp[i].dn_extra_slots + 1) { 4856 for (int j = 0; j < dnp[i].dn_nblkptr; j++) { 4857 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL : 4858 &dn->dn_dbuf->db_rwlock); 4859 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock, 4860 tx); 4861 } 4862 } 4863 } 4864 } 4865 4866 4867 /* Issue I/O to commit a dirty buffer to disk. */ 4868 static void 4869 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 4870 { 4871 dmu_buf_impl_t *db = dr->dr_dbuf; 4872 dnode_t *dn = dr->dr_dnode; 4873 objset_t *os; 4874 dmu_buf_impl_t *parent = db->db_parent; 4875 uint64_t txg = tx->tx_txg; 4876 zbookmark_phys_t zb; 4877 zio_prop_t zp; 4878 zio_t *pio; /* parent I/O */ 4879 int wp_flag = 0; 4880 4881 ASSERT(dmu_tx_is_syncing(tx)); 4882 4883 os = dn->dn_objset; 4884 4885 if (db->db_state != DB_NOFILL) { 4886 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 4887 /* 4888 * Private object buffers are released here rather 4889 * than in dbuf_dirty() since they are only modified 4890 * in the syncing context and we don't want the 4891 * overhead of making multiple copies of the data. 4892 */ 4893 if (BP_IS_HOLE(db->db_blkptr)) { 4894 arc_buf_thaw(data); 4895 } else { 4896 dbuf_release_bp(db); 4897 } 4898 dbuf_remap(dn, db, tx); 4899 } 4900 } 4901 4902 if (parent != dn->dn_dbuf) { 4903 /* Our parent is an indirect block. */ 4904 /* We have a dirty parent that has been scheduled for write. */ 4905 ASSERT(parent && parent->db_data_pending); 4906 /* Our parent's buffer is one level closer to the dnode. */ 4907 ASSERT(db->db_level == parent->db_level-1); 4908 /* 4909 * We're about to modify our parent's db_data by modifying 4910 * our block pointer, so the parent must be released. 4911 */ 4912 ASSERT(arc_released(parent->db_buf)); 4913 pio = parent->db_data_pending->dr_zio; 4914 } else { 4915 /* Our parent is the dnode itself. */ 4916 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 4917 db->db_blkid != DMU_SPILL_BLKID) || 4918 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 4919 if (db->db_blkid != DMU_SPILL_BLKID) 4920 ASSERT3P(db->db_blkptr, ==, 4921 &dn->dn_phys->dn_blkptr[db->db_blkid]); 4922 pio = dn->dn_zio; 4923 } 4924 4925 ASSERT(db->db_level == 0 || data == db->db_buf); 4926 ASSERT3U(db->db_blkptr->blk_birth, <=, txg); 4927 ASSERT(pio); 4928 4929 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 4930 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 4931 db->db.db_object, db->db_level, db->db_blkid); 4932 4933 if (db->db_blkid == DMU_SPILL_BLKID) 4934 wp_flag = WP_SPILL; 4935 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; 4936 4937 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 4938 4939 /* 4940 * We copy the blkptr now (rather than when we instantiate the dirty 4941 * record), because its value can change between open context and 4942 * syncing context. We do not need to hold dn_struct_rwlock to read 4943 * db_blkptr because we are in syncing context. 4944 */ 4945 dr->dr_bp_copy = *db->db_blkptr; 4946 4947 if (db->db_level == 0 && 4948 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 4949 /* 4950 * The BP for this block has been provided by open context 4951 * (by dmu_sync() or dmu_buf_write_embedded()). 4952 */ 4953 abd_t *contents = (data != NULL) ? 4954 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL; 4955 4956 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy, 4957 contents, db->db.db_size, db->db.db_size, &zp, 4958 dbuf_write_override_ready, NULL, NULL, 4959 dbuf_write_override_done, 4960 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 4961 mutex_enter(&db->db_mtx); 4962 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 4963 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 4964 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite); 4965 mutex_exit(&db->db_mtx); 4966 } else if (db->db_state == DB_NOFILL) { 4967 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 4968 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 4969 dr->dr_zio = zio_write(pio, os->os_spa, txg, 4970 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp, 4971 dbuf_write_nofill_ready, NULL, NULL, 4972 dbuf_write_nofill_done, db, 4973 ZIO_PRIORITY_ASYNC_WRITE, 4974 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 4975 } else { 4976 ASSERT(arc_released(data)); 4977 4978 /* 4979 * For indirect blocks, we want to setup the children 4980 * ready callback so that we can properly handle an indirect 4981 * block that only contains holes. 4982 */ 4983 arc_write_done_func_t *children_ready_cb = NULL; 4984 if (db->db_level != 0) 4985 children_ready_cb = dbuf_write_children_ready; 4986 4987 dr->dr_zio = arc_write(pio, os->os_spa, txg, 4988 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db), 4989 &zp, dbuf_write_ready, 4990 children_ready_cb, dbuf_write_physdone, 4991 dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE, 4992 ZIO_FLAG_MUSTSUCCEED, &zb); 4993 } 4994 } 4995 4996 EXPORT_SYMBOL(dbuf_find); 4997 EXPORT_SYMBOL(dbuf_is_metadata); 4998 EXPORT_SYMBOL(dbuf_destroy); 4999 EXPORT_SYMBOL(dbuf_loan_arcbuf); 5000 EXPORT_SYMBOL(dbuf_whichblock); 5001 EXPORT_SYMBOL(dbuf_read); 5002 EXPORT_SYMBOL(dbuf_unoverride); 5003 EXPORT_SYMBOL(dbuf_free_range); 5004 EXPORT_SYMBOL(dbuf_new_size); 5005 EXPORT_SYMBOL(dbuf_release_bp); 5006 EXPORT_SYMBOL(dbuf_dirty); 5007 EXPORT_SYMBOL(dmu_buf_set_crypt_params); 5008 EXPORT_SYMBOL(dmu_buf_will_dirty); 5009 EXPORT_SYMBOL(dmu_buf_is_dirty); 5010 EXPORT_SYMBOL(dmu_buf_will_not_fill); 5011 EXPORT_SYMBOL(dmu_buf_will_fill); 5012 EXPORT_SYMBOL(dmu_buf_fill_done); 5013 EXPORT_SYMBOL(dmu_buf_rele); 5014 EXPORT_SYMBOL(dbuf_assign_arcbuf); 5015 EXPORT_SYMBOL(dbuf_prefetch); 5016 EXPORT_SYMBOL(dbuf_hold_impl); 5017 EXPORT_SYMBOL(dbuf_hold); 5018 EXPORT_SYMBOL(dbuf_hold_level); 5019 EXPORT_SYMBOL(dbuf_create_bonus); 5020 EXPORT_SYMBOL(dbuf_spill_set_blksz); 5021 EXPORT_SYMBOL(dbuf_rm_spill); 5022 EXPORT_SYMBOL(dbuf_add_ref); 5023 EXPORT_SYMBOL(dbuf_rele); 5024 EXPORT_SYMBOL(dbuf_rele_and_unlock); 5025 EXPORT_SYMBOL(dbuf_refcount); 5026 EXPORT_SYMBOL(dbuf_sync_list); 5027 EXPORT_SYMBOL(dmu_buf_set_user); 5028 EXPORT_SYMBOL(dmu_buf_set_user_ie); 5029 EXPORT_SYMBOL(dmu_buf_get_user); 5030 EXPORT_SYMBOL(dmu_buf_get_blkptr); 5031 5032 /* BEGIN CSTYLED */ 5033 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, ULONG, ZMOD_RW, 5034 "Maximum size in bytes of the dbuf cache."); 5035 5036 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW, 5037 "Percentage over dbuf_cache_max_bytes when dbufs must be evicted " 5038 "directly."); 5039 5040 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW, 5041 "Percentage below dbuf_cache_max_bytes when the evict thread stops " 5042 "evicting dbufs."); 5043 5044 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, ULONG, ZMOD_RW, 5045 "Maximum size in bytes of the dbuf metadata cache."); 5046 5047 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, INT, ZMOD_RW, 5048 "Set the size of the dbuf cache to a log2 fraction of arc size."); 5049 5050 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, INT, ZMOD_RW, 5051 "Set the size of the dbuf metadata cache to a log2 fraction of arc " 5052 "size."); 5053 /* END CSTYLED */ 5054