1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 26 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 28 * Copyright (c) 2019, Klara Inc. 29 * Copyright (c) 2019, Allan Jude 30 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek 31 */ 32 33 #include <sys/zfs_context.h> 34 #include <sys/arc.h> 35 #include <sys/dmu.h> 36 #include <sys/dmu_send.h> 37 #include <sys/dmu_impl.h> 38 #include <sys/dbuf.h> 39 #include <sys/dmu_objset.h> 40 #include <sys/dsl_dataset.h> 41 #include <sys/dsl_dir.h> 42 #include <sys/dmu_tx.h> 43 #include <sys/spa.h> 44 #include <sys/zio.h> 45 #include <sys/dmu_zfetch.h> 46 #include <sys/sa.h> 47 #include <sys/sa_impl.h> 48 #include <sys/zfeature.h> 49 #include <sys/blkptr.h> 50 #include <sys/range_tree.h> 51 #include <sys/trace_zfs.h> 52 #include <sys/callb.h> 53 #include <sys/abd.h> 54 #include <sys/brt.h> 55 #include <sys/vdev.h> 56 #include <cityhash.h> 57 #include <sys/spa_impl.h> 58 #include <sys/wmsum.h> 59 #include <sys/vdev_impl.h> 60 61 static kstat_t *dbuf_ksp; 62 63 typedef struct dbuf_stats { 64 /* 65 * Various statistics about the size of the dbuf cache. 66 */ 67 kstat_named_t cache_count; 68 kstat_named_t cache_size_bytes; 69 kstat_named_t cache_size_bytes_max; 70 /* 71 * Statistics regarding the bounds on the dbuf cache size. 72 */ 73 kstat_named_t cache_target_bytes; 74 kstat_named_t cache_lowater_bytes; 75 kstat_named_t cache_hiwater_bytes; 76 /* 77 * Total number of dbuf cache evictions that have occurred. 78 */ 79 kstat_named_t cache_total_evicts; 80 /* 81 * The distribution of dbuf levels in the dbuf cache and 82 * the total size of all dbufs at each level. 83 */ 84 kstat_named_t cache_levels[DN_MAX_LEVELS]; 85 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS]; 86 /* 87 * Statistics about the dbuf hash table. 88 */ 89 kstat_named_t hash_hits; 90 kstat_named_t hash_misses; 91 kstat_named_t hash_collisions; 92 kstat_named_t hash_elements; 93 /* 94 * Number of sublists containing more than one dbuf in the dbuf 95 * hash table. Keep track of the longest hash chain. 96 */ 97 kstat_named_t hash_chains; 98 kstat_named_t hash_chain_max; 99 /* 100 * Number of times a dbuf_create() discovers that a dbuf was 101 * already created and in the dbuf hash table. 102 */ 103 kstat_named_t hash_insert_race; 104 /* 105 * Number of entries in the hash table dbuf and mutex arrays. 106 */ 107 kstat_named_t hash_table_count; 108 kstat_named_t hash_mutex_count; 109 /* 110 * Statistics about the size of the metadata dbuf cache. 111 */ 112 kstat_named_t metadata_cache_count; 113 kstat_named_t metadata_cache_size_bytes; 114 kstat_named_t metadata_cache_size_bytes_max; 115 /* 116 * For diagnostic purposes, this is incremented whenever we can't add 117 * something to the metadata cache because it's full, and instead put 118 * the data in the regular dbuf cache. 119 */ 120 kstat_named_t metadata_cache_overflow; 121 } dbuf_stats_t; 122 123 dbuf_stats_t dbuf_stats = { 124 { "cache_count", KSTAT_DATA_UINT64 }, 125 { "cache_size_bytes", KSTAT_DATA_UINT64 }, 126 { "cache_size_bytes_max", KSTAT_DATA_UINT64 }, 127 { "cache_target_bytes", KSTAT_DATA_UINT64 }, 128 { "cache_lowater_bytes", KSTAT_DATA_UINT64 }, 129 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 }, 130 { "cache_total_evicts", KSTAT_DATA_UINT64 }, 131 { { "cache_levels_N", KSTAT_DATA_UINT64 } }, 132 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } }, 133 { "hash_hits", KSTAT_DATA_UINT64 }, 134 { "hash_misses", KSTAT_DATA_UINT64 }, 135 { "hash_collisions", KSTAT_DATA_UINT64 }, 136 { "hash_elements", KSTAT_DATA_UINT64 }, 137 { "hash_chains", KSTAT_DATA_UINT64 }, 138 { "hash_chain_max", KSTAT_DATA_UINT64 }, 139 { "hash_insert_race", KSTAT_DATA_UINT64 }, 140 { "hash_table_count", KSTAT_DATA_UINT64 }, 141 { "hash_mutex_count", KSTAT_DATA_UINT64 }, 142 { "metadata_cache_count", KSTAT_DATA_UINT64 }, 143 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 }, 144 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 }, 145 { "metadata_cache_overflow", KSTAT_DATA_UINT64 } 146 }; 147 148 struct { 149 wmsum_t cache_count; 150 wmsum_t cache_total_evicts; 151 wmsum_t cache_levels[DN_MAX_LEVELS]; 152 wmsum_t cache_levels_bytes[DN_MAX_LEVELS]; 153 wmsum_t hash_hits; 154 wmsum_t hash_misses; 155 wmsum_t hash_collisions; 156 wmsum_t hash_elements; 157 wmsum_t hash_chains; 158 wmsum_t hash_insert_race; 159 wmsum_t metadata_cache_count; 160 wmsum_t metadata_cache_overflow; 161 } dbuf_sums; 162 163 #define DBUF_STAT_INCR(stat, val) \ 164 wmsum_add(&dbuf_sums.stat, val) 165 #define DBUF_STAT_DECR(stat, val) \ 166 DBUF_STAT_INCR(stat, -(val)) 167 #define DBUF_STAT_BUMP(stat) \ 168 DBUF_STAT_INCR(stat, 1) 169 #define DBUF_STAT_BUMPDOWN(stat) \ 170 DBUF_STAT_INCR(stat, -1) 171 #define DBUF_STAT_MAX(stat, v) { \ 172 uint64_t _m; \ 173 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \ 174 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\ 175 continue; \ 176 } 177 178 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 179 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr); 180 181 /* 182 * Global data structures and functions for the dbuf cache. 183 */ 184 static kmem_cache_t *dbuf_kmem_cache; 185 kmem_cache_t *dbuf_dirty_kmem_cache; 186 static taskq_t *dbu_evict_taskq; 187 188 static kthread_t *dbuf_cache_evict_thread; 189 static kmutex_t dbuf_evict_lock; 190 static kcondvar_t dbuf_evict_cv; 191 static boolean_t dbuf_evict_thread_exit; 192 193 /* 194 * There are two dbuf caches; each dbuf can only be in one of them at a time. 195 * 196 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands 197 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs 198 * that represent the metadata that describes filesystems/snapshots/ 199 * bookmarks/properties/etc. We only evict from this cache when we export a 200 * pool, to short-circuit as much I/O as possible for all administrative 201 * commands that need the metadata. There is no eviction policy for this 202 * cache, because we try to only include types in it which would occupy a 203 * very small amount of space per object but create a large impact on the 204 * performance of these commands. Instead, after it reaches a maximum size 205 * (which should only happen on very small memory systems with a very large 206 * number of filesystem objects), we stop taking new dbufs into the 207 * metadata cache, instead putting them in the normal dbuf cache. 208 * 209 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that 210 * are not currently held but have been recently released. These dbufs 211 * are not eligible for arc eviction until they are aged out of the cache. 212 * Dbufs that are aged out of the cache will be immediately destroyed and 213 * become eligible for arc eviction. 214 * 215 * Dbufs are added to these caches once the last hold is released. If a dbuf is 216 * later accessed and still exists in the dbuf cache, then it will be removed 217 * from the cache and later re-added to the head of the cache. 218 * 219 * If a given dbuf meets the requirements for the metadata cache, it will go 220 * there, otherwise it will be considered for the generic LRU dbuf cache. The 221 * caches and the refcounts tracking their sizes are stored in an array indexed 222 * by those caches' matching enum values (from dbuf_cached_state_t). 223 */ 224 typedef struct dbuf_cache { 225 multilist_t cache; 226 zfs_refcount_t size ____cacheline_aligned; 227 } dbuf_cache_t; 228 dbuf_cache_t dbuf_caches[DB_CACHE_MAX]; 229 230 /* Size limits for the caches */ 231 static uint64_t dbuf_cache_max_bytes = UINT64_MAX; 232 static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX; 233 234 /* Set the default sizes of the caches to log2 fraction of arc size */ 235 static uint_t dbuf_cache_shift = 5; 236 static uint_t dbuf_metadata_cache_shift = 6; 237 238 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */ 239 static uint_t dbuf_mutex_cache_shift = 0; 240 241 static unsigned long dbuf_cache_target_bytes(void); 242 static unsigned long dbuf_metadata_cache_target_bytes(void); 243 244 /* 245 * The LRU dbuf cache uses a three-stage eviction policy: 246 * - A low water marker designates when the dbuf eviction thread 247 * should stop evicting from the dbuf cache. 248 * - When we reach the maximum size (aka mid water mark), we 249 * signal the eviction thread to run. 250 * - The high water mark indicates when the eviction thread 251 * is unable to keep up with the incoming load and eviction must 252 * happen in the context of the calling thread. 253 * 254 * The dbuf cache: 255 * (max size) 256 * low water mid water hi water 257 * +----------------------------------------+----------+----------+ 258 * | | | | 259 * | | | | 260 * | | | | 261 * | | | | 262 * +----------------------------------------+----------+----------+ 263 * stop signal evict 264 * evicting eviction directly 265 * thread 266 * 267 * The high and low water marks indicate the operating range for the eviction 268 * thread. The low water mark is, by default, 90% of the total size of the 269 * cache and the high water mark is at 110% (both of these percentages can be 270 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 271 * respectively). The eviction thread will try to ensure that the cache remains 272 * within this range by waking up every second and checking if the cache is 273 * above the low water mark. The thread can also be woken up by callers adding 274 * elements into the cache if the cache is larger than the mid water (i.e max 275 * cache size). Once the eviction thread is woken up and eviction is required, 276 * it will continue evicting buffers until it's able to reduce the cache size 277 * to the low water mark. If the cache size continues to grow and hits the high 278 * water mark, then callers adding elements to the cache will begin to evict 279 * directly from the cache until the cache is no longer above the high water 280 * mark. 281 */ 282 283 /* 284 * The percentage above and below the maximum cache size. 285 */ 286 static uint_t dbuf_cache_hiwater_pct = 10; 287 static uint_t dbuf_cache_lowater_pct = 10; 288 289 static int 290 dbuf_cons(void *vdb, void *unused, int kmflag) 291 { 292 (void) unused, (void) kmflag; 293 dmu_buf_impl_t *db = vdb; 294 memset(db, 0, sizeof (dmu_buf_impl_t)); 295 296 mutex_init(&db->db_mtx, NULL, MUTEX_NOLOCKDEP, NULL); 297 rw_init(&db->db_rwlock, NULL, RW_NOLOCKDEP, NULL); 298 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 299 multilist_link_init(&db->db_cache_link); 300 zfs_refcount_create(&db->db_holds); 301 302 return (0); 303 } 304 305 static void 306 dbuf_dest(void *vdb, void *unused) 307 { 308 (void) unused; 309 dmu_buf_impl_t *db = vdb; 310 mutex_destroy(&db->db_mtx); 311 rw_destroy(&db->db_rwlock); 312 cv_destroy(&db->db_changed); 313 ASSERT(!multilist_link_active(&db->db_cache_link)); 314 zfs_refcount_destroy(&db->db_holds); 315 } 316 317 /* 318 * dbuf hash table routines 319 */ 320 static dbuf_hash_table_t dbuf_hash_table; 321 322 /* 323 * We use Cityhash for this. It's fast, and has good hash properties without 324 * requiring any large static buffers. 325 */ 326 static uint64_t 327 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 328 { 329 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid)); 330 } 331 332 #define DTRACE_SET_STATE(db, why) \ 333 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \ 334 const char *, why) 335 336 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 337 ((dbuf)->db.db_object == (obj) && \ 338 (dbuf)->db_objset == (os) && \ 339 (dbuf)->db_level == (level) && \ 340 (dbuf)->db_blkid == (blkid)) 341 342 dmu_buf_impl_t * 343 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid, 344 uint64_t *hash_out) 345 { 346 dbuf_hash_table_t *h = &dbuf_hash_table; 347 uint64_t hv; 348 uint64_t idx; 349 dmu_buf_impl_t *db; 350 351 hv = dbuf_hash(os, obj, level, blkid); 352 idx = hv & h->hash_table_mask; 353 354 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 355 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 356 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 357 mutex_enter(&db->db_mtx); 358 if (db->db_state != DB_EVICTING) { 359 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 360 return (db); 361 } 362 mutex_exit(&db->db_mtx); 363 } 364 } 365 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 366 if (hash_out != NULL) 367 *hash_out = hv; 368 return (NULL); 369 } 370 371 static dmu_buf_impl_t * 372 dbuf_find_bonus(objset_t *os, uint64_t object) 373 { 374 dnode_t *dn; 375 dmu_buf_impl_t *db = NULL; 376 377 if (dnode_hold(os, object, FTAG, &dn) == 0) { 378 rw_enter(&dn->dn_struct_rwlock, RW_READER); 379 if (dn->dn_bonus != NULL) { 380 db = dn->dn_bonus; 381 mutex_enter(&db->db_mtx); 382 } 383 rw_exit(&dn->dn_struct_rwlock); 384 dnode_rele(dn, FTAG); 385 } 386 return (db); 387 } 388 389 /* 390 * Insert an entry into the hash table. If there is already an element 391 * equal to elem in the hash table, then the already existing element 392 * will be returned and the new element will not be inserted. 393 * Otherwise returns NULL. 394 */ 395 static dmu_buf_impl_t * 396 dbuf_hash_insert(dmu_buf_impl_t *db) 397 { 398 dbuf_hash_table_t *h = &dbuf_hash_table; 399 objset_t *os = db->db_objset; 400 uint64_t obj = db->db.db_object; 401 int level = db->db_level; 402 uint64_t blkid, idx; 403 dmu_buf_impl_t *dbf; 404 uint32_t i; 405 406 blkid = db->db_blkid; 407 ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash); 408 idx = db->db_hash & h->hash_table_mask; 409 410 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 411 for (dbf = h->hash_table[idx], i = 0; dbf != NULL; 412 dbf = dbf->db_hash_next, i++) { 413 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 414 mutex_enter(&dbf->db_mtx); 415 if (dbf->db_state != DB_EVICTING) { 416 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 417 return (dbf); 418 } 419 mutex_exit(&dbf->db_mtx); 420 } 421 } 422 423 if (i > 0) { 424 DBUF_STAT_BUMP(hash_collisions); 425 if (i == 1) 426 DBUF_STAT_BUMP(hash_chains); 427 428 DBUF_STAT_MAX(hash_chain_max, i); 429 } 430 431 mutex_enter(&db->db_mtx); 432 db->db_hash_next = h->hash_table[idx]; 433 h->hash_table[idx] = db; 434 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 435 DBUF_STAT_BUMP(hash_elements); 436 437 return (NULL); 438 } 439 440 /* 441 * This returns whether this dbuf should be stored in the metadata cache, which 442 * is based on whether it's from one of the dnode types that store data related 443 * to traversing dataset hierarchies. 444 */ 445 static boolean_t 446 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db) 447 { 448 DB_DNODE_ENTER(db); 449 dmu_object_type_t type = DB_DNODE(db)->dn_type; 450 DB_DNODE_EXIT(db); 451 452 /* Check if this dbuf is one of the types we care about */ 453 if (DMU_OT_IS_METADATA_CACHED(type)) { 454 /* If we hit this, then we set something up wrong in dmu_ot */ 455 ASSERT(DMU_OT_IS_METADATA(type)); 456 457 /* 458 * Sanity check for small-memory systems: don't allocate too 459 * much memory for this purpose. 460 */ 461 if (zfs_refcount_count( 462 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) > 463 dbuf_metadata_cache_target_bytes()) { 464 DBUF_STAT_BUMP(metadata_cache_overflow); 465 return (B_FALSE); 466 } 467 468 return (B_TRUE); 469 } 470 471 return (B_FALSE); 472 } 473 474 /* 475 * Remove an entry from the hash table. It must be in the EVICTING state. 476 */ 477 static void 478 dbuf_hash_remove(dmu_buf_impl_t *db) 479 { 480 dbuf_hash_table_t *h = &dbuf_hash_table; 481 uint64_t idx; 482 dmu_buf_impl_t *dbf, **dbp; 483 484 ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level, 485 db->db_blkid), ==, db->db_hash); 486 idx = db->db_hash & h->hash_table_mask; 487 488 /* 489 * We mustn't hold db_mtx to maintain lock ordering: 490 * DBUF_HASH_MUTEX > db_mtx. 491 */ 492 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 493 ASSERT(db->db_state == DB_EVICTING); 494 ASSERT(!MUTEX_HELD(&db->db_mtx)); 495 496 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 497 dbp = &h->hash_table[idx]; 498 while ((dbf = *dbp) != db) { 499 dbp = &dbf->db_hash_next; 500 ASSERT(dbf != NULL); 501 } 502 *dbp = db->db_hash_next; 503 db->db_hash_next = NULL; 504 if (h->hash_table[idx] && 505 h->hash_table[idx]->db_hash_next == NULL) 506 DBUF_STAT_BUMPDOWN(hash_chains); 507 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 508 DBUF_STAT_BUMPDOWN(hash_elements); 509 } 510 511 typedef enum { 512 DBVU_EVICTING, 513 DBVU_NOT_EVICTING 514 } dbvu_verify_type_t; 515 516 static void 517 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 518 { 519 #ifdef ZFS_DEBUG 520 int64_t holds; 521 522 if (db->db_user == NULL) 523 return; 524 525 /* Only data blocks support the attachment of user data. */ 526 ASSERT(db->db_level == 0); 527 528 /* Clients must resolve a dbuf before attaching user data. */ 529 ASSERT(db->db.db_data != NULL); 530 ASSERT3U(db->db_state, ==, DB_CACHED); 531 532 holds = zfs_refcount_count(&db->db_holds); 533 if (verify_type == DBVU_EVICTING) { 534 /* 535 * Immediate eviction occurs when holds == dirtycnt. 536 * For normal eviction buffers, holds is zero on 537 * eviction, except when dbuf_fix_old_data() calls 538 * dbuf_clear_data(). However, the hold count can grow 539 * during eviction even though db_mtx is held (see 540 * dmu_bonus_hold() for an example), so we can only 541 * test the generic invariant that holds >= dirtycnt. 542 */ 543 ASSERT3U(holds, >=, db->db_dirtycnt); 544 } else { 545 if (db->db_user_immediate_evict == TRUE) 546 ASSERT3U(holds, >=, db->db_dirtycnt); 547 else 548 ASSERT3U(holds, >, 0); 549 } 550 #endif 551 } 552 553 static void 554 dbuf_evict_user(dmu_buf_impl_t *db) 555 { 556 dmu_buf_user_t *dbu = db->db_user; 557 558 ASSERT(MUTEX_HELD(&db->db_mtx)); 559 560 if (dbu == NULL) 561 return; 562 563 dbuf_verify_user(db, DBVU_EVICTING); 564 db->db_user = NULL; 565 566 #ifdef ZFS_DEBUG 567 if (dbu->dbu_clear_on_evict_dbufp != NULL) 568 *dbu->dbu_clear_on_evict_dbufp = NULL; 569 #endif 570 571 if (db->db_caching_status != DB_NO_CACHE) { 572 /* 573 * This is a cached dbuf, so the size of the user data is 574 * included in its cached amount. We adjust it here because the 575 * user data has already been detached from the dbuf, and the 576 * sync functions are not supposed to touch it (the dbuf might 577 * not exist anymore by the time the sync functions run. 578 */ 579 uint64_t size = dbu->dbu_size; 580 (void) zfs_refcount_remove_many( 581 &dbuf_caches[db->db_caching_status].size, size, dbu); 582 if (db->db_caching_status == DB_DBUF_CACHE) 583 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size); 584 } 585 586 /* 587 * There are two eviction callbacks - one that we call synchronously 588 * and one that we invoke via a taskq. The async one is useful for 589 * avoiding lock order reversals and limiting stack depth. 590 * 591 * Note that if we have a sync callback but no async callback, 592 * it's likely that the sync callback will free the structure 593 * containing the dbu. In that case we need to take care to not 594 * dereference dbu after calling the sync evict func. 595 */ 596 boolean_t has_async = (dbu->dbu_evict_func_async != NULL); 597 598 if (dbu->dbu_evict_func_sync != NULL) 599 dbu->dbu_evict_func_sync(dbu); 600 601 if (has_async) { 602 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, 603 dbu, 0, &dbu->dbu_tqent); 604 } 605 } 606 607 boolean_t 608 dbuf_is_metadata(dmu_buf_impl_t *db) 609 { 610 /* 611 * Consider indirect blocks and spill blocks to be meta data. 612 */ 613 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) { 614 return (B_TRUE); 615 } else { 616 boolean_t is_metadata; 617 618 DB_DNODE_ENTER(db); 619 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 620 DB_DNODE_EXIT(db); 621 622 return (is_metadata); 623 } 624 } 625 626 /* 627 * We want to exclude buffers that are on a special allocation class from 628 * L2ARC. 629 */ 630 boolean_t 631 dbuf_is_l2cacheable(dmu_buf_impl_t *db, blkptr_t *bp) 632 { 633 if (db->db_objset->os_secondary_cache == ZFS_CACHE_ALL || 634 (db->db_objset->os_secondary_cache == 635 ZFS_CACHE_METADATA && dbuf_is_metadata(db))) { 636 if (l2arc_exclude_special == 0) 637 return (B_TRUE); 638 639 /* 640 * bp must be checked in the event it was passed from 641 * dbuf_read_impl() as the result of a the BP being set from 642 * a Direct I/O write in dbuf_read(). See comments in 643 * dbuf_read(). 644 */ 645 blkptr_t *db_bp = bp == NULL ? db->db_blkptr : bp; 646 647 if (db_bp == NULL || BP_IS_HOLE(db_bp)) 648 return (B_FALSE); 649 uint64_t vdev = DVA_GET_VDEV(db_bp->blk_dva); 650 vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev; 651 vdev_t *vd = NULL; 652 653 if (vdev < rvd->vdev_children) 654 vd = rvd->vdev_child[vdev]; 655 656 if (vd == NULL) 657 return (B_TRUE); 658 659 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && 660 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) 661 return (B_TRUE); 662 } 663 return (B_FALSE); 664 } 665 666 static inline boolean_t 667 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level) 668 { 669 if (dn->dn_objset->os_secondary_cache == ZFS_CACHE_ALL || 670 (dn->dn_objset->os_secondary_cache == ZFS_CACHE_METADATA && 671 (level > 0 || 672 DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)))) { 673 if (l2arc_exclude_special == 0) 674 return (B_TRUE); 675 676 if (bp == NULL || BP_IS_HOLE(bp)) 677 return (B_FALSE); 678 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva); 679 vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev; 680 vdev_t *vd = NULL; 681 682 if (vdev < rvd->vdev_children) 683 vd = rvd->vdev_child[vdev]; 684 685 if (vd == NULL) 686 return (B_TRUE); 687 688 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && 689 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) 690 return (B_TRUE); 691 } 692 return (B_FALSE); 693 } 694 695 696 /* 697 * This function *must* return indices evenly distributed between all 698 * sublists of the multilist. This is needed due to how the dbuf eviction 699 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 700 * distributed between all sublists and uses this assumption when 701 * deciding which sublist to evict from and how much to evict from it. 702 */ 703 static unsigned int 704 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 705 { 706 dmu_buf_impl_t *db = obj; 707 708 /* 709 * The assumption here, is the hash value for a given 710 * dmu_buf_impl_t will remain constant throughout it's lifetime 711 * (i.e. it's objset, object, level and blkid fields don't change). 712 * Thus, we don't need to store the dbuf's sublist index 713 * on insertion, as this index can be recalculated on removal. 714 * 715 * Also, the low order bits of the hash value are thought to be 716 * distributed evenly. Otherwise, in the case that the multilist 717 * has a power of two number of sublists, each sublists' usage 718 * would not be evenly distributed. In this context full 64bit 719 * division would be a waste of time, so limit it to 32 bits. 720 */ 721 return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object, 722 db->db_level, db->db_blkid) % 723 multilist_get_num_sublists(ml)); 724 } 725 726 /* 727 * The target size of the dbuf cache can grow with the ARC target, 728 * unless limited by the tunable dbuf_cache_max_bytes. 729 */ 730 static inline unsigned long 731 dbuf_cache_target_bytes(void) 732 { 733 return (MIN(dbuf_cache_max_bytes, 734 arc_target_bytes() >> dbuf_cache_shift)); 735 } 736 737 /* 738 * The target size of the dbuf metadata cache can grow with the ARC target, 739 * unless limited by the tunable dbuf_metadata_cache_max_bytes. 740 */ 741 static inline unsigned long 742 dbuf_metadata_cache_target_bytes(void) 743 { 744 return (MIN(dbuf_metadata_cache_max_bytes, 745 arc_target_bytes() >> dbuf_metadata_cache_shift)); 746 } 747 748 static inline uint64_t 749 dbuf_cache_hiwater_bytes(void) 750 { 751 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 752 return (dbuf_cache_target + 753 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100); 754 } 755 756 static inline uint64_t 757 dbuf_cache_lowater_bytes(void) 758 { 759 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 760 return (dbuf_cache_target - 761 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100); 762 } 763 764 static inline boolean_t 765 dbuf_cache_above_lowater(void) 766 { 767 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > 768 dbuf_cache_lowater_bytes()); 769 } 770 771 /* 772 * Evict the oldest eligible dbuf from the dbuf cache. 773 */ 774 static void 775 dbuf_evict_one(void) 776 { 777 int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache); 778 multilist_sublist_t *mls = multilist_sublist_lock_idx( 779 &dbuf_caches[DB_DBUF_CACHE].cache, idx); 780 781 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 782 783 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 784 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 785 db = multilist_sublist_prev(mls, db); 786 } 787 788 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 789 multilist_sublist_t *, mls); 790 791 if (db != NULL) { 792 multilist_sublist_remove(mls, db); 793 multilist_sublist_unlock(mls); 794 uint64_t size = db->db.db_size; 795 uint64_t usize = dmu_buf_user_size(&db->db); 796 (void) zfs_refcount_remove_many( 797 &dbuf_caches[DB_DBUF_CACHE].size, size, db); 798 (void) zfs_refcount_remove_many( 799 &dbuf_caches[DB_DBUF_CACHE].size, usize, db->db_user); 800 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 801 DBUF_STAT_BUMPDOWN(cache_count); 802 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size + usize); 803 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE); 804 db->db_caching_status = DB_NO_CACHE; 805 dbuf_destroy(db); 806 DBUF_STAT_BUMP(cache_total_evicts); 807 } else { 808 multilist_sublist_unlock(mls); 809 } 810 } 811 812 /* 813 * The dbuf evict thread is responsible for aging out dbufs from the 814 * cache. Once the cache has reached it's maximum size, dbufs are removed 815 * and destroyed. The eviction thread will continue running until the size 816 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 817 * out of the cache it is destroyed and becomes eligible for arc eviction. 818 */ 819 static __attribute__((noreturn)) void 820 dbuf_evict_thread(void *unused) 821 { 822 (void) unused; 823 callb_cpr_t cpr; 824 825 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 826 827 mutex_enter(&dbuf_evict_lock); 828 while (!dbuf_evict_thread_exit) { 829 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 830 CALLB_CPR_SAFE_BEGIN(&cpr); 831 (void) cv_timedwait_idle_hires(&dbuf_evict_cv, 832 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 833 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 834 } 835 mutex_exit(&dbuf_evict_lock); 836 837 /* 838 * Keep evicting as long as we're above the low water mark 839 * for the cache. We do this without holding the locks to 840 * minimize lock contention. 841 */ 842 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 843 dbuf_evict_one(); 844 } 845 846 mutex_enter(&dbuf_evict_lock); 847 } 848 849 dbuf_evict_thread_exit = B_FALSE; 850 cv_broadcast(&dbuf_evict_cv); 851 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 852 thread_exit(); 853 } 854 855 /* 856 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 857 * If the dbuf cache is at its high water mark, then evict a dbuf from the 858 * dbuf cache using the caller's context. 859 */ 860 static void 861 dbuf_evict_notify(uint64_t size) 862 { 863 /* 864 * We check if we should evict without holding the dbuf_evict_lock, 865 * because it's OK to occasionally make the wrong decision here, 866 * and grabbing the lock results in massive lock contention. 867 */ 868 if (size > dbuf_cache_target_bytes()) { 869 if (size > dbuf_cache_hiwater_bytes()) 870 dbuf_evict_one(); 871 cv_signal(&dbuf_evict_cv); 872 } 873 } 874 875 /* 876 * Since dbuf cache size is a fraction of target ARC size, ARC calls this when 877 * its target size is reduced due to memory pressure. 878 */ 879 void 880 dbuf_cache_reduce_target_size(void) 881 { 882 uint64_t size = zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size); 883 884 if (size > dbuf_cache_target_bytes()) 885 cv_signal(&dbuf_evict_cv); 886 } 887 888 static int 889 dbuf_kstat_update(kstat_t *ksp, int rw) 890 { 891 dbuf_stats_t *ds = ksp->ks_data; 892 dbuf_hash_table_t *h = &dbuf_hash_table; 893 894 if (rw == KSTAT_WRITE) 895 return (SET_ERROR(EACCES)); 896 897 ds->cache_count.value.ui64 = 898 wmsum_value(&dbuf_sums.cache_count); 899 ds->cache_size_bytes.value.ui64 = 900 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size); 901 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes(); 902 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes(); 903 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes(); 904 ds->cache_total_evicts.value.ui64 = 905 wmsum_value(&dbuf_sums.cache_total_evicts); 906 for (int i = 0; i < DN_MAX_LEVELS; i++) { 907 ds->cache_levels[i].value.ui64 = 908 wmsum_value(&dbuf_sums.cache_levels[i]); 909 ds->cache_levels_bytes[i].value.ui64 = 910 wmsum_value(&dbuf_sums.cache_levels_bytes[i]); 911 } 912 ds->hash_hits.value.ui64 = 913 wmsum_value(&dbuf_sums.hash_hits); 914 ds->hash_misses.value.ui64 = 915 wmsum_value(&dbuf_sums.hash_misses); 916 ds->hash_collisions.value.ui64 = 917 wmsum_value(&dbuf_sums.hash_collisions); 918 ds->hash_elements.value.ui64 = 919 wmsum_value(&dbuf_sums.hash_elements); 920 ds->hash_chains.value.ui64 = 921 wmsum_value(&dbuf_sums.hash_chains); 922 ds->hash_insert_race.value.ui64 = 923 wmsum_value(&dbuf_sums.hash_insert_race); 924 ds->hash_table_count.value.ui64 = h->hash_table_mask + 1; 925 ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1; 926 ds->metadata_cache_count.value.ui64 = 927 wmsum_value(&dbuf_sums.metadata_cache_count); 928 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count( 929 &dbuf_caches[DB_DBUF_METADATA_CACHE].size); 930 ds->metadata_cache_overflow.value.ui64 = 931 wmsum_value(&dbuf_sums.metadata_cache_overflow); 932 return (0); 933 } 934 935 void 936 dbuf_init(void) 937 { 938 uint64_t hmsize, hsize = 1ULL << 16; 939 dbuf_hash_table_t *h = &dbuf_hash_table; 940 941 /* 942 * The hash table is big enough to fill one eighth of physical memory 943 * with an average block size of zfs_arc_average_blocksize (default 8K). 944 * By default, the table will take up 945 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 946 */ 947 while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8) 948 hsize <<= 1; 949 950 h->hash_table = NULL; 951 while (h->hash_table == NULL) { 952 h->hash_table_mask = hsize - 1; 953 954 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP); 955 if (h->hash_table == NULL) 956 hsize >>= 1; 957 958 ASSERT3U(hsize, >=, 1ULL << 10); 959 } 960 961 /* 962 * The hash table buckets are protected by an array of mutexes where 963 * each mutex is reponsible for protecting 128 buckets. A minimum 964 * array size of 8192 is targeted to avoid contention. 965 */ 966 if (dbuf_mutex_cache_shift == 0) 967 hmsize = MAX(hsize >> 7, 1ULL << 13); 968 else 969 hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24); 970 971 h->hash_mutexes = NULL; 972 while (h->hash_mutexes == NULL) { 973 h->hash_mutex_mask = hmsize - 1; 974 975 h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t), 976 KM_SLEEP); 977 if (h->hash_mutexes == NULL) 978 hmsize >>= 1; 979 } 980 981 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 982 sizeof (dmu_buf_impl_t), 983 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 984 dbuf_dirty_kmem_cache = kmem_cache_create("dbuf_dirty_record_t", 985 sizeof (dbuf_dirty_record_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 986 987 for (int i = 0; i < hmsize; i++) 988 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_NOLOCKDEP, NULL); 989 990 dbuf_stats_init(h); 991 992 /* 993 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 994 * configuration is not required. 995 */ 996 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0); 997 998 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 999 multilist_create(&dbuf_caches[dcs].cache, 1000 sizeof (dmu_buf_impl_t), 1001 offsetof(dmu_buf_impl_t, db_cache_link), 1002 dbuf_cache_multilist_index_func); 1003 zfs_refcount_create(&dbuf_caches[dcs].size); 1004 } 1005 1006 dbuf_evict_thread_exit = B_FALSE; 1007 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 1008 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 1009 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 1010 NULL, 0, &p0, TS_RUN, minclsyspri); 1011 1012 wmsum_init(&dbuf_sums.cache_count, 0); 1013 wmsum_init(&dbuf_sums.cache_total_evicts, 0); 1014 for (int i = 0; i < DN_MAX_LEVELS; i++) { 1015 wmsum_init(&dbuf_sums.cache_levels[i], 0); 1016 wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0); 1017 } 1018 wmsum_init(&dbuf_sums.hash_hits, 0); 1019 wmsum_init(&dbuf_sums.hash_misses, 0); 1020 wmsum_init(&dbuf_sums.hash_collisions, 0); 1021 wmsum_init(&dbuf_sums.hash_elements, 0); 1022 wmsum_init(&dbuf_sums.hash_chains, 0); 1023 wmsum_init(&dbuf_sums.hash_insert_race, 0); 1024 wmsum_init(&dbuf_sums.metadata_cache_count, 0); 1025 wmsum_init(&dbuf_sums.metadata_cache_overflow, 0); 1026 1027 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc", 1028 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t), 1029 KSTAT_FLAG_VIRTUAL); 1030 if (dbuf_ksp != NULL) { 1031 for (int i = 0; i < DN_MAX_LEVELS; i++) { 1032 snprintf(dbuf_stats.cache_levels[i].name, 1033 KSTAT_STRLEN, "cache_level_%d", i); 1034 dbuf_stats.cache_levels[i].data_type = 1035 KSTAT_DATA_UINT64; 1036 snprintf(dbuf_stats.cache_levels_bytes[i].name, 1037 KSTAT_STRLEN, "cache_level_%d_bytes", i); 1038 dbuf_stats.cache_levels_bytes[i].data_type = 1039 KSTAT_DATA_UINT64; 1040 } 1041 dbuf_ksp->ks_data = &dbuf_stats; 1042 dbuf_ksp->ks_update = dbuf_kstat_update; 1043 kstat_install(dbuf_ksp); 1044 } 1045 } 1046 1047 void 1048 dbuf_fini(void) 1049 { 1050 dbuf_hash_table_t *h = &dbuf_hash_table; 1051 1052 dbuf_stats_destroy(); 1053 1054 for (int i = 0; i < (h->hash_mutex_mask + 1); i++) 1055 mutex_destroy(&h->hash_mutexes[i]); 1056 1057 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 1058 vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) * 1059 sizeof (kmutex_t)); 1060 1061 kmem_cache_destroy(dbuf_kmem_cache); 1062 kmem_cache_destroy(dbuf_dirty_kmem_cache); 1063 taskq_destroy(dbu_evict_taskq); 1064 1065 mutex_enter(&dbuf_evict_lock); 1066 dbuf_evict_thread_exit = B_TRUE; 1067 while (dbuf_evict_thread_exit) { 1068 cv_signal(&dbuf_evict_cv); 1069 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 1070 } 1071 mutex_exit(&dbuf_evict_lock); 1072 1073 mutex_destroy(&dbuf_evict_lock); 1074 cv_destroy(&dbuf_evict_cv); 1075 1076 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 1077 zfs_refcount_destroy(&dbuf_caches[dcs].size); 1078 multilist_destroy(&dbuf_caches[dcs].cache); 1079 } 1080 1081 if (dbuf_ksp != NULL) { 1082 kstat_delete(dbuf_ksp); 1083 dbuf_ksp = NULL; 1084 } 1085 1086 wmsum_fini(&dbuf_sums.cache_count); 1087 wmsum_fini(&dbuf_sums.cache_total_evicts); 1088 for (int i = 0; i < DN_MAX_LEVELS; i++) { 1089 wmsum_fini(&dbuf_sums.cache_levels[i]); 1090 wmsum_fini(&dbuf_sums.cache_levels_bytes[i]); 1091 } 1092 wmsum_fini(&dbuf_sums.hash_hits); 1093 wmsum_fini(&dbuf_sums.hash_misses); 1094 wmsum_fini(&dbuf_sums.hash_collisions); 1095 wmsum_fini(&dbuf_sums.hash_elements); 1096 wmsum_fini(&dbuf_sums.hash_chains); 1097 wmsum_fini(&dbuf_sums.hash_insert_race); 1098 wmsum_fini(&dbuf_sums.metadata_cache_count); 1099 wmsum_fini(&dbuf_sums.metadata_cache_overflow); 1100 } 1101 1102 /* 1103 * Other stuff. 1104 */ 1105 1106 #ifdef ZFS_DEBUG 1107 static void 1108 dbuf_verify(dmu_buf_impl_t *db) 1109 { 1110 dnode_t *dn; 1111 dbuf_dirty_record_t *dr; 1112 uint32_t txg_prev; 1113 1114 ASSERT(MUTEX_HELD(&db->db_mtx)); 1115 1116 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 1117 return; 1118 1119 ASSERT(db->db_objset != NULL); 1120 DB_DNODE_ENTER(db); 1121 dn = DB_DNODE(db); 1122 if (dn == NULL) { 1123 ASSERT(db->db_parent == NULL); 1124 ASSERT(db->db_blkptr == NULL); 1125 } else { 1126 ASSERT3U(db->db.db_object, ==, dn->dn_object); 1127 ASSERT3P(db->db_objset, ==, dn->dn_objset); 1128 ASSERT3U(db->db_level, <, dn->dn_nlevels); 1129 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 1130 db->db_blkid == DMU_SPILL_BLKID || 1131 !avl_is_empty(&dn->dn_dbufs)); 1132 } 1133 if (db->db_blkid == DMU_BONUS_BLKID) { 1134 ASSERT(dn != NULL); 1135 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 1136 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 1137 } else if (db->db_blkid == DMU_SPILL_BLKID) { 1138 ASSERT(dn != NULL); 1139 ASSERT0(db->db.db_offset); 1140 } else { 1141 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 1142 } 1143 1144 if ((dr = list_head(&db->db_dirty_records)) != NULL) { 1145 ASSERT(dr->dr_dbuf == db); 1146 txg_prev = dr->dr_txg; 1147 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL; 1148 dr = list_next(&db->db_dirty_records, dr)) { 1149 ASSERT(dr->dr_dbuf == db); 1150 ASSERT(txg_prev > dr->dr_txg); 1151 txg_prev = dr->dr_txg; 1152 } 1153 } 1154 1155 /* 1156 * We can't assert that db_size matches dn_datablksz because it 1157 * can be momentarily different when another thread is doing 1158 * dnode_set_blksz(). 1159 */ 1160 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 1161 dr = db->db_data_pending; 1162 /* 1163 * It should only be modified in syncing context, so 1164 * make sure we only have one copy of the data. 1165 */ 1166 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 1167 } 1168 1169 /* verify db->db_blkptr */ 1170 if (db->db_blkptr) { 1171 if (db->db_parent == dn->dn_dbuf) { 1172 /* db is pointed to by the dnode */ 1173 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 1174 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 1175 ASSERT(db->db_parent == NULL); 1176 else 1177 ASSERT(db->db_parent != NULL); 1178 if (db->db_blkid != DMU_SPILL_BLKID) 1179 ASSERT3P(db->db_blkptr, ==, 1180 &dn->dn_phys->dn_blkptr[db->db_blkid]); 1181 } else { 1182 /* db is pointed to by an indirect block */ 1183 int epb __maybe_unused = db->db_parent->db.db_size >> 1184 SPA_BLKPTRSHIFT; 1185 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 1186 ASSERT3U(db->db_parent->db.db_object, ==, 1187 db->db.db_object); 1188 ASSERT3P(db->db_blkptr, ==, 1189 ((blkptr_t *)db->db_parent->db.db_data + 1190 db->db_blkid % epb)); 1191 } 1192 } 1193 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 1194 (db->db_buf == NULL || db->db_buf->b_data) && 1195 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 1196 db->db_state != DB_FILL && (dn == NULL || !dn->dn_free_txg)) { 1197 /* 1198 * If the blkptr isn't set but they have nonzero data, 1199 * it had better be dirty, otherwise we'll lose that 1200 * data when we evict this buffer. 1201 * 1202 * There is an exception to this rule for indirect blocks; in 1203 * this case, if the indirect block is a hole, we fill in a few 1204 * fields on each of the child blocks (importantly, birth time) 1205 * to prevent hole birth times from being lost when you 1206 * partially fill in a hole. 1207 */ 1208 if (db->db_dirtycnt == 0) { 1209 if (db->db_level == 0) { 1210 uint64_t *buf = db->db.db_data; 1211 int i; 1212 1213 for (i = 0; i < db->db.db_size >> 3; i++) { 1214 ASSERT(buf[i] == 0); 1215 } 1216 } else { 1217 blkptr_t *bps = db->db.db_data; 1218 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 1219 db->db.db_size); 1220 /* 1221 * We want to verify that all the blkptrs in the 1222 * indirect block are holes, but we may have 1223 * automatically set up a few fields for them. 1224 * We iterate through each blkptr and verify 1225 * they only have those fields set. 1226 */ 1227 for (int i = 0; 1228 i < db->db.db_size / sizeof (blkptr_t); 1229 i++) { 1230 blkptr_t *bp = &bps[i]; 1231 ASSERT(ZIO_CHECKSUM_IS_ZERO( 1232 &bp->blk_cksum)); 1233 ASSERT( 1234 DVA_IS_EMPTY(&bp->blk_dva[0]) && 1235 DVA_IS_EMPTY(&bp->blk_dva[1]) && 1236 DVA_IS_EMPTY(&bp->blk_dva[2])); 1237 ASSERT0(bp->blk_fill); 1238 ASSERT0(bp->blk_pad[0]); 1239 ASSERT0(bp->blk_pad[1]); 1240 ASSERT(!BP_IS_EMBEDDED(bp)); 1241 ASSERT(BP_IS_HOLE(bp)); 1242 ASSERT0(BP_GET_PHYSICAL_BIRTH(bp)); 1243 } 1244 } 1245 } 1246 } 1247 DB_DNODE_EXIT(db); 1248 } 1249 #endif 1250 1251 static void 1252 dbuf_clear_data(dmu_buf_impl_t *db) 1253 { 1254 ASSERT(MUTEX_HELD(&db->db_mtx)); 1255 dbuf_evict_user(db); 1256 ASSERT3P(db->db_buf, ==, NULL); 1257 db->db.db_data = NULL; 1258 if (db->db_state != DB_NOFILL) { 1259 db->db_state = DB_UNCACHED; 1260 DTRACE_SET_STATE(db, "clear data"); 1261 } 1262 } 1263 1264 static void 1265 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 1266 { 1267 ASSERT(MUTEX_HELD(&db->db_mtx)); 1268 ASSERT(buf != NULL); 1269 1270 db->db_buf = buf; 1271 ASSERT(buf->b_data != NULL); 1272 db->db.db_data = buf->b_data; 1273 } 1274 1275 static arc_buf_t * 1276 dbuf_alloc_arcbuf(dmu_buf_impl_t *db) 1277 { 1278 spa_t *spa = db->db_objset->os_spa; 1279 1280 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 1281 } 1282 1283 /* 1284 * Calculate which level n block references the data at the level 0 offset 1285 * provided. 1286 */ 1287 uint64_t 1288 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset) 1289 { 1290 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 1291 /* 1292 * The level n blkid is equal to the level 0 blkid divided by 1293 * the number of level 0s in a level n block. 1294 * 1295 * The level 0 blkid is offset >> datablkshift = 1296 * offset / 2^datablkshift. 1297 * 1298 * The number of level 0s in a level n is the number of block 1299 * pointers in an indirect block, raised to the power of level. 1300 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 1301 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 1302 * 1303 * Thus, the level n blkid is: offset / 1304 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT)))) 1305 * = offset / 2^(datablkshift + level * 1306 * (indblkshift - SPA_BLKPTRSHIFT)) 1307 * = offset >> (datablkshift + level * 1308 * (indblkshift - SPA_BLKPTRSHIFT)) 1309 */ 1310 1311 const unsigned exp = dn->dn_datablkshift + 1312 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT); 1313 1314 if (exp >= 8 * sizeof (offset)) { 1315 /* This only happens on the highest indirection level */ 1316 ASSERT3U(level, ==, dn->dn_nlevels - 1); 1317 return (0); 1318 } 1319 1320 ASSERT3U(exp, <, 8 * sizeof (offset)); 1321 1322 return (offset >> exp); 1323 } else { 1324 ASSERT3U(offset, <, dn->dn_datablksz); 1325 return (0); 1326 } 1327 } 1328 1329 /* 1330 * This function is used to lock the parent of the provided dbuf. This should be 1331 * used when modifying or reading db_blkptr. 1332 */ 1333 db_lock_type_t 1334 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag) 1335 { 1336 enum db_lock_type ret = DLT_NONE; 1337 if (db->db_parent != NULL) { 1338 rw_enter(&db->db_parent->db_rwlock, rw); 1339 ret = DLT_PARENT; 1340 } else if (dmu_objset_ds(db->db_objset) != NULL) { 1341 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw, 1342 tag); 1343 ret = DLT_OBJSET; 1344 } 1345 /* 1346 * We only return a DLT_NONE lock when it's the top-most indirect block 1347 * of the meta-dnode of the MOS. 1348 */ 1349 return (ret); 1350 } 1351 1352 /* 1353 * We need to pass the lock type in because it's possible that the block will 1354 * move from being the topmost indirect block in a dnode (and thus, have no 1355 * parent) to not the top-most via an indirection increase. This would cause a 1356 * panic if we didn't pass the lock type in. 1357 */ 1358 void 1359 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag) 1360 { 1361 if (type == DLT_PARENT) 1362 rw_exit(&db->db_parent->db_rwlock); 1363 else if (type == DLT_OBJSET) 1364 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag); 1365 } 1366 1367 static void 1368 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1369 arc_buf_t *buf, void *vdb) 1370 { 1371 (void) zb, (void) bp; 1372 dmu_buf_impl_t *db = vdb; 1373 1374 mutex_enter(&db->db_mtx); 1375 ASSERT3U(db->db_state, ==, DB_READ); 1376 1377 /* 1378 * All reads are synchronous, so we must have a hold on the dbuf 1379 */ 1380 ASSERT(zfs_refcount_count(&db->db_holds) > 0); 1381 ASSERT(db->db_buf == NULL); 1382 ASSERT(db->db.db_data == NULL); 1383 if (buf == NULL) { 1384 /* i/o error */ 1385 ASSERT(zio == NULL || zio->io_error != 0); 1386 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1387 ASSERT3P(db->db_buf, ==, NULL); 1388 db->db_state = DB_UNCACHED; 1389 DTRACE_SET_STATE(db, "i/o error"); 1390 } else if (db->db_level == 0 && db->db_freed_in_flight) { 1391 /* freed in flight */ 1392 ASSERT(zio == NULL || zio->io_error == 0); 1393 arc_release(buf, db); 1394 memset(buf->b_data, 0, db->db.db_size); 1395 arc_buf_freeze(buf); 1396 db->db_freed_in_flight = FALSE; 1397 dbuf_set_data(db, buf); 1398 db->db_state = DB_CACHED; 1399 DTRACE_SET_STATE(db, "freed in flight"); 1400 } else { 1401 /* success */ 1402 ASSERT(zio == NULL || zio->io_error == 0); 1403 dbuf_set_data(db, buf); 1404 db->db_state = DB_CACHED; 1405 DTRACE_SET_STATE(db, "successful read"); 1406 } 1407 cv_broadcast(&db->db_changed); 1408 dbuf_rele_and_unlock(db, NULL, B_FALSE); 1409 } 1410 1411 /* 1412 * Shortcut for performing reads on bonus dbufs. Returns 1413 * an error if we fail to verify the dnode associated with 1414 * a decrypted block. Otherwise success. 1415 */ 1416 static int 1417 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn) 1418 { 1419 void* db_data; 1420 int bonuslen, max_bonuslen; 1421 1422 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 1423 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1424 ASSERT(MUTEX_HELD(&db->db_mtx)); 1425 ASSERT(DB_DNODE_HELD(db)); 1426 ASSERT3U(bonuslen, <=, db->db.db_size); 1427 db_data = kmem_alloc(max_bonuslen, KM_SLEEP); 1428 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS); 1429 if (bonuslen < max_bonuslen) 1430 memset(db_data, 0, max_bonuslen); 1431 if (bonuslen) 1432 memcpy(db_data, DN_BONUS(dn->dn_phys), bonuslen); 1433 db->db.db_data = db_data; 1434 db->db_state = DB_CACHED; 1435 DTRACE_SET_STATE(db, "bonus buffer filled"); 1436 return (0); 1437 } 1438 1439 static void 1440 dbuf_handle_indirect_hole(void *data, dnode_t *dn, blkptr_t *dbbp) 1441 { 1442 blkptr_t *bps = data; 1443 uint32_t indbs = 1ULL << dn->dn_indblkshift; 1444 int n_bps = indbs >> SPA_BLKPTRSHIFT; 1445 1446 for (int i = 0; i < n_bps; i++) { 1447 blkptr_t *bp = &bps[i]; 1448 1449 ASSERT3U(BP_GET_LSIZE(dbbp), ==, indbs); 1450 BP_SET_LSIZE(bp, BP_GET_LEVEL(dbbp) == 1 ? 1451 dn->dn_datablksz : BP_GET_LSIZE(dbbp)); 1452 BP_SET_TYPE(bp, BP_GET_TYPE(dbbp)); 1453 BP_SET_LEVEL(bp, BP_GET_LEVEL(dbbp) - 1); 1454 BP_SET_BIRTH(bp, BP_GET_LOGICAL_BIRTH(dbbp), 0); 1455 } 1456 } 1457 1458 /* 1459 * Handle reads on dbufs that are holes, if necessary. This function 1460 * requires that the dbuf's mutex is held. Returns success (0) if action 1461 * was taken, ENOENT if no action was taken. 1462 */ 1463 static int 1464 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *bp) 1465 { 1466 ASSERT(MUTEX_HELD(&db->db_mtx)); 1467 arc_buf_t *db_data; 1468 1469 int is_hole = bp == NULL || BP_IS_HOLE(bp); 1470 /* 1471 * For level 0 blocks only, if the above check fails: 1472 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 1473 * processes the delete record and clears the bp while we are waiting 1474 * for the dn_mtx (resulting in a "no" from block_freed). 1475 */ 1476 if (!is_hole && db->db_level == 0) 1477 is_hole = dnode_block_freed(dn, db->db_blkid) || BP_IS_HOLE(bp); 1478 1479 if (is_hole) { 1480 db_data = dbuf_alloc_arcbuf(db); 1481 memset(db_data->b_data, 0, db->db.db_size); 1482 1483 if (bp != NULL && db->db_level > 0 && BP_IS_HOLE(bp) && 1484 BP_GET_LOGICAL_BIRTH(bp) != 0) { 1485 dbuf_handle_indirect_hole(db_data->b_data, dn, bp); 1486 } 1487 dbuf_set_data(db, db_data); 1488 db->db_state = DB_CACHED; 1489 DTRACE_SET_STATE(db, "hole read satisfied"); 1490 return (0); 1491 } 1492 return (ENOENT); 1493 } 1494 1495 /* 1496 * This function ensures that, when doing a decrypting read of a block, 1497 * we make sure we have decrypted the dnode associated with it. We must do 1498 * this so that we ensure we are fully authenticating the checksum-of-MACs 1499 * tree from the root of the objset down to this block. Indirect blocks are 1500 * always verified against their secure checksum-of-MACs assuming that the 1501 * dnode containing them is correct. Now that we are doing a decrypting read, 1502 * we can be sure that the key is loaded and verify that assumption. This is 1503 * especially important considering that we always read encrypted dnode 1504 * blocks as raw data (without verifying their MACs) to start, and 1505 * decrypt / authenticate them when we need to read an encrypted bonus buffer. 1506 */ 1507 static int 1508 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, dnode_t *dn, 1509 dmu_flags_t flags) 1510 { 1511 objset_t *os = db->db_objset; 1512 dmu_buf_impl_t *dndb; 1513 arc_buf_t *dnbuf; 1514 zbookmark_phys_t zb; 1515 int err; 1516 1517 if ((flags & DMU_READ_NO_DECRYPT) != 0 || 1518 !os->os_encrypted || os->os_raw_receive || 1519 (dndb = dn->dn_dbuf) == NULL) 1520 return (0); 1521 1522 dnbuf = dndb->db_buf; 1523 if (!arc_is_encrypted(dnbuf)) 1524 return (0); 1525 1526 mutex_enter(&dndb->db_mtx); 1527 1528 /* 1529 * Since dnode buffer is modified by sync process, there can be only 1530 * one copy of it. It means we can not modify (decrypt) it while it 1531 * is being written. I don't see how this may happen now, since 1532 * encrypted dnode writes by receive should be completed before any 1533 * plain-text reads due to txg wait, but better be safe than sorry. 1534 */ 1535 while (1) { 1536 if (!arc_is_encrypted(dnbuf)) { 1537 mutex_exit(&dndb->db_mtx); 1538 return (0); 1539 } 1540 dbuf_dirty_record_t *dr = dndb->db_data_pending; 1541 if (dr == NULL || dr->dt.dl.dr_data != dnbuf) 1542 break; 1543 cv_wait(&dndb->db_changed, &dndb->db_mtx); 1544 }; 1545 1546 SET_BOOKMARK(&zb, dmu_objset_id(os), 1547 DMU_META_DNODE_OBJECT, 0, dndb->db_blkid); 1548 err = arc_untransform(dnbuf, os->os_spa, &zb, B_TRUE); 1549 1550 /* 1551 * An error code of EACCES tells us that the key is still not 1552 * available. This is ok if we are only reading authenticated 1553 * (and therefore non-encrypted) blocks. 1554 */ 1555 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID && 1556 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) || 1557 (db->db_blkid == DMU_BONUS_BLKID && 1558 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)))) 1559 err = 0; 1560 1561 mutex_exit(&dndb->db_mtx); 1562 1563 return (err); 1564 } 1565 1566 /* 1567 * Drops db_mtx and the parent lock specified by dblt and tag before 1568 * returning. 1569 */ 1570 static int 1571 dbuf_read_impl(dmu_buf_impl_t *db, dnode_t *dn, zio_t *zio, dmu_flags_t flags, 1572 db_lock_type_t dblt, blkptr_t *bp, const void *tag) 1573 { 1574 zbookmark_phys_t zb; 1575 uint32_t aflags = ARC_FLAG_NOWAIT; 1576 int err, zio_flags; 1577 1578 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1579 ASSERT(MUTEX_HELD(&db->db_mtx)); 1580 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 1581 ASSERT(db->db_buf == NULL); 1582 ASSERT(db->db_parent == NULL || 1583 RW_LOCK_HELD(&db->db_parent->db_rwlock)); 1584 1585 if (db->db_blkid == DMU_BONUS_BLKID) { 1586 err = dbuf_read_bonus(db, dn); 1587 goto early_unlock; 1588 } 1589 1590 err = dbuf_read_hole(db, dn, bp); 1591 if (err == 0) 1592 goto early_unlock; 1593 1594 ASSERT(bp != NULL); 1595 1596 /* 1597 * Any attempt to read a redacted block should result in an error. This 1598 * will never happen under normal conditions, but can be useful for 1599 * debugging purposes. 1600 */ 1601 if (BP_IS_REDACTED(bp)) { 1602 ASSERT(dsl_dataset_feature_is_active( 1603 db->db_objset->os_dsl_dataset, 1604 SPA_FEATURE_REDACTED_DATASETS)); 1605 err = SET_ERROR(EIO); 1606 goto early_unlock; 1607 } 1608 1609 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1610 db->db.db_object, db->db_level, db->db_blkid); 1611 1612 /* 1613 * All bps of an encrypted os should have the encryption bit set. 1614 * If this is not true it indicates tampering and we report an error. 1615 */ 1616 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(bp)) { 1617 spa_log_error(db->db_objset->os_spa, &zb, 1618 BP_GET_LOGICAL_BIRTH(bp)); 1619 err = SET_ERROR(EIO); 1620 goto early_unlock; 1621 } 1622 1623 db->db_state = DB_READ; 1624 DTRACE_SET_STATE(db, "read issued"); 1625 mutex_exit(&db->db_mtx); 1626 1627 if (!DBUF_IS_CACHEABLE(db)) 1628 aflags |= ARC_FLAG_UNCACHED; 1629 else if (dbuf_is_l2cacheable(db, bp)) 1630 aflags |= ARC_FLAG_L2CACHE; 1631 1632 dbuf_add_ref(db, NULL); 1633 1634 zio_flags = (flags & DB_RF_CANFAIL) ? 1635 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED; 1636 1637 if ((flags & DMU_READ_NO_DECRYPT) && BP_IS_PROTECTED(bp)) 1638 zio_flags |= ZIO_FLAG_RAW; 1639 1640 /* 1641 * The zio layer will copy the provided blkptr later, but we need to 1642 * do this now so that we can release the parent's rwlock. We have to 1643 * do that now so that if dbuf_read_done is called synchronously (on 1644 * an l1 cache hit) we don't acquire the db_mtx while holding the 1645 * parent's rwlock, which would be a lock ordering violation. 1646 */ 1647 blkptr_t copy = *bp; 1648 dmu_buf_unlock_parent(db, dblt, tag); 1649 return (arc_read(zio, db->db_objset->os_spa, ©, 1650 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags, 1651 &aflags, &zb)); 1652 1653 early_unlock: 1654 mutex_exit(&db->db_mtx); 1655 dmu_buf_unlock_parent(db, dblt, tag); 1656 return (err); 1657 } 1658 1659 /* 1660 * This is our just-in-time copy function. It makes a copy of buffers that 1661 * have been modified in a previous transaction group before we access them in 1662 * the current active group. 1663 * 1664 * This function is used in three places: when we are dirtying a buffer for the 1665 * first time in a txg, when we are freeing a range in a dnode that includes 1666 * this buffer, and when we are accessing a buffer which was received compressed 1667 * and later referenced in a WRITE_BYREF record. 1668 * 1669 * Note that when we are called from dbuf_free_range() we do not put a hold on 1670 * the buffer, we just traverse the active dbuf list for the dnode. 1671 */ 1672 static void 1673 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1674 { 1675 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 1676 1677 ASSERT(MUTEX_HELD(&db->db_mtx)); 1678 ASSERT(db->db.db_data != NULL); 1679 ASSERT(db->db_level == 0); 1680 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1681 1682 if (dr == NULL || 1683 (dr->dt.dl.dr_data != 1684 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1685 return; 1686 1687 /* 1688 * If the last dirty record for this dbuf has not yet synced 1689 * and its referencing the dbuf data, either: 1690 * reset the reference to point to a new copy, 1691 * or (if there a no active holders) 1692 * just null out the current db_data pointer. 1693 */ 1694 ASSERT3U(dr->dr_txg, >=, txg - 2); 1695 if (db->db_blkid == DMU_BONUS_BLKID) { 1696 dnode_t *dn = DB_DNODE(db); 1697 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1698 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP); 1699 arc_space_consume(bonuslen, ARC_SPACE_BONUS); 1700 memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen); 1701 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) { 1702 dnode_t *dn = DB_DNODE(db); 1703 int size = arc_buf_size(db->db_buf); 1704 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1705 spa_t *spa = db->db_objset->os_spa; 1706 enum zio_compress compress_type = 1707 arc_get_compression(db->db_buf); 1708 uint8_t complevel = arc_get_complevel(db->db_buf); 1709 1710 if (arc_is_encrypted(db->db_buf)) { 1711 boolean_t byteorder; 1712 uint8_t salt[ZIO_DATA_SALT_LEN]; 1713 uint8_t iv[ZIO_DATA_IV_LEN]; 1714 uint8_t mac[ZIO_DATA_MAC_LEN]; 1715 1716 arc_get_raw_params(db->db_buf, &byteorder, salt, 1717 iv, mac); 1718 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db, 1719 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, 1720 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf), 1721 compress_type, complevel); 1722 } else if (compress_type != ZIO_COMPRESS_OFF) { 1723 ASSERT3U(type, ==, ARC_BUFC_DATA); 1724 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db, 1725 size, arc_buf_lsize(db->db_buf), compress_type, 1726 complevel); 1727 } else { 1728 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size); 1729 } 1730 memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size); 1731 } else { 1732 db->db_buf = NULL; 1733 dbuf_clear_data(db); 1734 } 1735 } 1736 1737 int 1738 dbuf_read(dmu_buf_impl_t *db, zio_t *pio, dmu_flags_t flags) 1739 { 1740 dnode_t *dn; 1741 boolean_t miss = B_TRUE, need_wait = B_FALSE, prefetch; 1742 int err; 1743 1744 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1745 1746 DB_DNODE_ENTER(db); 1747 dn = DB_DNODE(db); 1748 1749 /* 1750 * Ensure that this block's dnode has been decrypted if the caller 1751 * has requested decrypted data. 1752 */ 1753 err = dbuf_read_verify_dnode_crypt(db, dn, flags); 1754 if (err != 0) 1755 goto done; 1756 1757 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1758 (flags & DMU_READ_NO_PREFETCH) == 0; 1759 1760 mutex_enter(&db->db_mtx); 1761 if (!(flags & (DMU_UNCACHEDIO | DMU_KEEP_CACHING))) 1762 db->db_pending_evict = B_FALSE; 1763 if (flags & DMU_PARTIAL_FIRST) 1764 db->db_partial_read = B_TRUE; 1765 else if (!(flags & (DMU_PARTIAL_MORE | DMU_KEEP_CACHING))) 1766 db->db_partial_read = B_FALSE; 1767 miss = (db->db_state != DB_CACHED); 1768 1769 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 1770 /* 1771 * Another reader came in while the dbuf was in flight between 1772 * UNCACHED and CACHED. Either a writer will finish filling 1773 * the buffer, sending the dbuf to CACHED, or the first reader's 1774 * request will reach the read_done callback and send the dbuf 1775 * to CACHED. Otherwise, a failure occurred and the dbuf will 1776 * be sent to UNCACHED. 1777 */ 1778 if (flags & DB_RF_NEVERWAIT) { 1779 mutex_exit(&db->db_mtx); 1780 DB_DNODE_EXIT(db); 1781 goto done; 1782 } 1783 do { 1784 ASSERT(db->db_state == DB_READ || 1785 (flags & DB_RF_HAVESTRUCT) == 0); 1786 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, db, 1787 zio_t *, pio); 1788 cv_wait(&db->db_changed, &db->db_mtx); 1789 } while (db->db_state == DB_READ || db->db_state == DB_FILL); 1790 if (db->db_state == DB_UNCACHED) { 1791 err = SET_ERROR(EIO); 1792 mutex_exit(&db->db_mtx); 1793 DB_DNODE_EXIT(db); 1794 goto done; 1795 } 1796 } 1797 1798 if (db->db_state == DB_CACHED) { 1799 /* 1800 * If the arc buf is compressed or encrypted and the caller 1801 * requested uncompressed data, we need to untransform it 1802 * before returning. We also call arc_untransform() on any 1803 * unauthenticated blocks, which will verify their MAC if 1804 * the key is now available. 1805 */ 1806 if ((flags & DMU_READ_NO_DECRYPT) == 0 && db->db_buf != NULL && 1807 (arc_is_encrypted(db->db_buf) || 1808 arc_is_unauthenticated(db->db_buf) || 1809 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) { 1810 spa_t *spa = dn->dn_objset->os_spa; 1811 zbookmark_phys_t zb; 1812 1813 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1814 db->db.db_object, db->db_level, db->db_blkid); 1815 dbuf_fix_old_data(db, spa_syncing_txg(spa)); 1816 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE); 1817 dbuf_set_data(db, db->db_buf); 1818 } 1819 mutex_exit(&db->db_mtx); 1820 } else { 1821 ASSERT(db->db_state == DB_UNCACHED || 1822 db->db_state == DB_NOFILL); 1823 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 1824 blkptr_t *bp; 1825 1826 /* 1827 * If a block clone or Direct I/O write has occurred we will 1828 * get the dirty records overridden BP so we get the most 1829 * recent data. 1830 */ 1831 err = dmu_buf_get_bp_from_dbuf(db, &bp); 1832 1833 if (!err) { 1834 if (pio == NULL && (db->db_state == DB_NOFILL || 1835 (bp != NULL && !BP_IS_HOLE(bp)))) { 1836 spa_t *spa = dn->dn_objset->os_spa; 1837 pio = 1838 zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1839 need_wait = B_TRUE; 1840 } 1841 1842 err = 1843 dbuf_read_impl(db, dn, pio, flags, dblt, bp, FTAG); 1844 } else { 1845 mutex_exit(&db->db_mtx); 1846 dmu_buf_unlock_parent(db, dblt, FTAG); 1847 } 1848 /* dbuf_read_impl drops db_mtx and parent's rwlock. */ 1849 miss = (db->db_state != DB_CACHED); 1850 } 1851 1852 if (err == 0 && prefetch) { 1853 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, miss, 1854 flags & DB_RF_HAVESTRUCT, (flags & DMU_UNCACHEDIO) || 1855 db->db_pending_evict); 1856 } 1857 DB_DNODE_EXIT(db); 1858 1859 /* 1860 * If we created a zio we must execute it to avoid leaking it, even if 1861 * it isn't attached to any work due to an error in dbuf_read_impl(). 1862 */ 1863 if (need_wait) { 1864 if (err == 0) 1865 err = zio_wait(pio); 1866 else 1867 (void) zio_wait(pio); 1868 pio = NULL; 1869 } 1870 1871 done: 1872 if (miss) 1873 DBUF_STAT_BUMP(hash_misses); 1874 else 1875 DBUF_STAT_BUMP(hash_hits); 1876 if (pio && err != 0) { 1877 zio_t *zio = zio_null(pio, pio->io_spa, NULL, NULL, NULL, 1878 ZIO_FLAG_CANFAIL); 1879 zio->io_error = err; 1880 zio_nowait(zio); 1881 } 1882 1883 return (err); 1884 } 1885 1886 static void 1887 dbuf_noread(dmu_buf_impl_t *db, dmu_flags_t flags) 1888 { 1889 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1890 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1891 mutex_enter(&db->db_mtx); 1892 if (!(flags & (DMU_UNCACHEDIO | DMU_KEEP_CACHING))) 1893 db->db_pending_evict = B_FALSE; 1894 db->db_partial_read = B_FALSE; 1895 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1896 cv_wait(&db->db_changed, &db->db_mtx); 1897 if (db->db_state == DB_UNCACHED) { 1898 ASSERT(db->db_buf == NULL); 1899 ASSERT(db->db.db_data == NULL); 1900 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1901 db->db_state = DB_FILL; 1902 DTRACE_SET_STATE(db, "assigning filled buffer"); 1903 } else if (db->db_state == DB_NOFILL) { 1904 dbuf_clear_data(db); 1905 } else { 1906 ASSERT3U(db->db_state, ==, DB_CACHED); 1907 } 1908 mutex_exit(&db->db_mtx); 1909 } 1910 1911 void 1912 dbuf_unoverride(dbuf_dirty_record_t *dr) 1913 { 1914 dmu_buf_impl_t *db = dr->dr_dbuf; 1915 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1916 uint64_t txg = dr->dr_txg; 1917 1918 ASSERT(MUTEX_HELD(&db->db_mtx)); 1919 1920 /* 1921 * This assert is valid because dmu_sync() expects to be called by 1922 * a zilog's get_data while holding a range lock. This call only 1923 * comes from dbuf_dirty() callers who must also hold a range lock. 1924 */ 1925 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1926 ASSERT(db->db_level == 0); 1927 1928 if (db->db_blkid == DMU_BONUS_BLKID || 1929 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1930 return; 1931 1932 ASSERT(db->db_data_pending != dr); 1933 1934 /* free this block */ 1935 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1936 zio_free(db->db_objset->os_spa, txg, bp); 1937 1938 if (dr->dt.dl.dr_brtwrite || dr->dt.dl.dr_diowrite) { 1939 ASSERT0P(dr->dt.dl.dr_data); 1940 dr->dt.dl.dr_data = db->db_buf; 1941 } 1942 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1943 dr->dt.dl.dr_nopwrite = B_FALSE; 1944 dr->dt.dl.dr_brtwrite = B_FALSE; 1945 dr->dt.dl.dr_diowrite = B_FALSE; 1946 dr->dt.dl.dr_has_raw_params = B_FALSE; 1947 1948 /* 1949 * In the event that Direct I/O was used, we do not 1950 * need to release the buffer from the ARC. 1951 * 1952 * Release the already-written buffer, so we leave it in 1953 * a consistent dirty state. Note that all callers are 1954 * modifying the buffer, so they will immediately do 1955 * another (redundant) arc_release(). Therefore, leave 1956 * the buf thawed to save the effort of freezing & 1957 * immediately re-thawing it. 1958 */ 1959 if (dr->dt.dl.dr_data) 1960 arc_release(dr->dt.dl.dr_data, db); 1961 } 1962 1963 /* 1964 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1965 * data blocks in the free range, so that any future readers will find 1966 * empty blocks. 1967 */ 1968 void 1969 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1970 dmu_tx_t *tx) 1971 { 1972 dmu_buf_impl_t *db_search; 1973 dmu_buf_impl_t *db, *db_next; 1974 uint64_t txg = tx->tx_txg; 1975 avl_index_t where; 1976 dbuf_dirty_record_t *dr; 1977 1978 if (end_blkid > dn->dn_maxblkid && 1979 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1980 end_blkid = dn->dn_maxblkid; 1981 dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid, 1982 (u_longlong_t)end_blkid); 1983 1984 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP); 1985 db_search->db_level = 0; 1986 db_search->db_blkid = start_blkid; 1987 db_search->db_state = DB_SEARCH; 1988 1989 mutex_enter(&dn->dn_dbufs_mtx); 1990 db = avl_find(&dn->dn_dbufs, db_search, &where); 1991 ASSERT3P(db, ==, NULL); 1992 1993 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1994 1995 for (; db != NULL; db = db_next) { 1996 db_next = AVL_NEXT(&dn->dn_dbufs, db); 1997 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1998 1999 if (db->db_level != 0 || db->db_blkid > end_blkid) { 2000 break; 2001 } 2002 ASSERT3U(db->db_blkid, >=, start_blkid); 2003 2004 /* found a level 0 buffer in the range */ 2005 mutex_enter(&db->db_mtx); 2006 if (dbuf_undirty(db, tx)) { 2007 /* mutex has been dropped and dbuf destroyed */ 2008 continue; 2009 } 2010 2011 if (db->db_state == DB_UNCACHED || 2012 db->db_state == DB_NOFILL || 2013 db->db_state == DB_EVICTING) { 2014 ASSERT(db->db.db_data == NULL); 2015 mutex_exit(&db->db_mtx); 2016 continue; 2017 } 2018 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 2019 /* will be handled in dbuf_read_done or dbuf_rele */ 2020 db->db_freed_in_flight = TRUE; 2021 mutex_exit(&db->db_mtx); 2022 continue; 2023 } 2024 if (zfs_refcount_count(&db->db_holds) == 0) { 2025 ASSERT(db->db_buf); 2026 dbuf_destroy(db); 2027 continue; 2028 } 2029 /* The dbuf is referenced */ 2030 2031 dr = list_head(&db->db_dirty_records); 2032 if (dr != NULL) { 2033 if (dr->dr_txg == txg) { 2034 /* 2035 * This buffer is "in-use", re-adjust the file 2036 * size to reflect that this buffer may 2037 * contain new data when we sync. 2038 */ 2039 if (db->db_blkid != DMU_SPILL_BLKID && 2040 db->db_blkid > dn->dn_maxblkid) 2041 dn->dn_maxblkid = db->db_blkid; 2042 dbuf_unoverride(dr); 2043 } else { 2044 /* 2045 * This dbuf is not dirty in the open context. 2046 * Either uncache it (if its not referenced in 2047 * the open context) or reset its contents to 2048 * empty. 2049 */ 2050 dbuf_fix_old_data(db, txg); 2051 } 2052 } 2053 /* clear the contents if its cached */ 2054 if (db->db_state == DB_CACHED) { 2055 ASSERT(db->db.db_data != NULL); 2056 arc_release(db->db_buf, db); 2057 rw_enter(&db->db_rwlock, RW_WRITER); 2058 memset(db->db.db_data, 0, db->db.db_size); 2059 rw_exit(&db->db_rwlock); 2060 arc_buf_freeze(db->db_buf); 2061 } 2062 2063 mutex_exit(&db->db_mtx); 2064 } 2065 2066 mutex_exit(&dn->dn_dbufs_mtx); 2067 kmem_free(db_search, sizeof (dmu_buf_impl_t)); 2068 } 2069 2070 void 2071 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 2072 { 2073 arc_buf_t *buf, *old_buf; 2074 dbuf_dirty_record_t *dr; 2075 int osize = db->db.db_size; 2076 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2077 dnode_t *dn; 2078 2079 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2080 2081 DB_DNODE_ENTER(db); 2082 dn = DB_DNODE(db); 2083 2084 /* 2085 * XXX we should be doing a dbuf_read, checking the return 2086 * value and returning that up to our callers 2087 */ 2088 dmu_buf_will_dirty(&db->db, tx); 2089 2090 VERIFY3P(db->db_buf, !=, NULL); 2091 2092 /* create the data buffer for the new block */ 2093 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); 2094 2095 /* copy old block data to the new block */ 2096 old_buf = db->db_buf; 2097 memcpy(buf->b_data, old_buf->b_data, MIN(osize, size)); 2098 /* zero the remainder */ 2099 if (size > osize) 2100 memset((uint8_t *)buf->b_data + osize, 0, size - osize); 2101 2102 mutex_enter(&db->db_mtx); 2103 dbuf_set_data(db, buf); 2104 arc_buf_destroy(old_buf, db); 2105 db->db.db_size = size; 2106 2107 dr = list_head(&db->db_dirty_records); 2108 /* dirty record added by dmu_buf_will_dirty() */ 2109 VERIFY(dr != NULL); 2110 if (db->db_level == 0) 2111 dr->dt.dl.dr_data = buf; 2112 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2113 ASSERT3U(dr->dr_accounted, ==, osize); 2114 dr->dr_accounted = size; 2115 mutex_exit(&db->db_mtx); 2116 2117 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx); 2118 DB_DNODE_EXIT(db); 2119 } 2120 2121 void 2122 dbuf_release_bp(dmu_buf_impl_t *db) 2123 { 2124 objset_t *os __maybe_unused = db->db_objset; 2125 2126 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 2127 ASSERT(arc_released(os->os_phys_buf) || 2128 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 2129 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 2130 2131 (void) arc_release(db->db_buf, db); 2132 } 2133 2134 /* 2135 * We already have a dirty record for this TXG, and we are being 2136 * dirtied again. 2137 */ 2138 static void 2139 dbuf_redirty(dbuf_dirty_record_t *dr) 2140 { 2141 dmu_buf_impl_t *db = dr->dr_dbuf; 2142 2143 ASSERT(MUTEX_HELD(&db->db_mtx)); 2144 2145 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 2146 /* 2147 * If this buffer has already been written out, 2148 * we now need to reset its state. 2149 */ 2150 dbuf_unoverride(dr); 2151 if (db->db.db_object != DMU_META_DNODE_OBJECT && 2152 db->db_state != DB_NOFILL) { 2153 /* Already released on initial dirty, so just thaw. */ 2154 ASSERT(arc_released(db->db_buf)); 2155 arc_buf_thaw(db->db_buf); 2156 } 2157 } 2158 } 2159 2160 dbuf_dirty_record_t * 2161 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx) 2162 { 2163 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2164 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid); 2165 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE); 2166 ASSERT(dn->dn_maxblkid >= blkid); 2167 2168 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP); 2169 list_link_init(&dr->dr_dirty_node); 2170 list_link_init(&dr->dr_dbuf_node); 2171 dr->dr_dnode = dn; 2172 dr->dr_txg = tx->tx_txg; 2173 dr->dt.dll.dr_blkid = blkid; 2174 dr->dr_accounted = dn->dn_datablksz; 2175 2176 /* 2177 * There should not be any dbuf for the block that we're dirtying. 2178 * Otherwise the buffer contents could be inconsistent between the 2179 * dbuf and the lightweight dirty record. 2180 */ 2181 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid, 2182 NULL)); 2183 2184 mutex_enter(&dn->dn_mtx); 2185 int txgoff = tx->tx_txg & TXG_MASK; 2186 if (dn->dn_free_ranges[txgoff] != NULL) { 2187 zfs_range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1); 2188 } 2189 2190 if (dn->dn_nlevels == 1) { 2191 ASSERT3U(blkid, <, dn->dn_nblkptr); 2192 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2193 mutex_exit(&dn->dn_mtx); 2194 rw_exit(&dn->dn_struct_rwlock); 2195 dnode_setdirty(dn, tx); 2196 } else { 2197 mutex_exit(&dn->dn_mtx); 2198 2199 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2200 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn, 2201 1, blkid >> epbs, FTAG); 2202 rw_exit(&dn->dn_struct_rwlock); 2203 if (parent_db == NULL) { 2204 kmem_free(dr, sizeof (*dr)); 2205 return (NULL); 2206 } 2207 int err = dbuf_read(parent_db, NULL, DB_RF_CANFAIL | 2208 DMU_READ_NO_PREFETCH); 2209 if (err != 0) { 2210 dbuf_rele(parent_db, FTAG); 2211 kmem_free(dr, sizeof (*dr)); 2212 return (NULL); 2213 } 2214 2215 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx); 2216 dbuf_rele(parent_db, FTAG); 2217 mutex_enter(&parent_dr->dt.di.dr_mtx); 2218 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg); 2219 list_insert_tail(&parent_dr->dt.di.dr_children, dr); 2220 mutex_exit(&parent_dr->dt.di.dr_mtx); 2221 dr->dr_parent = parent_dr; 2222 } 2223 2224 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx); 2225 2226 return (dr); 2227 } 2228 2229 dbuf_dirty_record_t * 2230 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2231 { 2232 dnode_t *dn; 2233 objset_t *os; 2234 dbuf_dirty_record_t *dr, *dr_next, *dr_head; 2235 int txgoff = tx->tx_txg & TXG_MASK; 2236 boolean_t drop_struct_rwlock = B_FALSE; 2237 2238 ASSERT(tx->tx_txg != 0); 2239 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2240 DMU_TX_DIRTY_BUF(tx, db); 2241 2242 DB_DNODE_ENTER(db); 2243 dn = DB_DNODE(db); 2244 /* 2245 * Shouldn't dirty a regular buffer in syncing context. Private 2246 * objects may be dirtied in syncing context, but only if they 2247 * were already pre-dirtied in open context. 2248 */ 2249 #ifdef ZFS_DEBUG 2250 if (dn->dn_objset->os_dsl_dataset != NULL) { 2251 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 2252 RW_READER, FTAG); 2253 } 2254 ASSERT(!dmu_tx_is_syncing(tx) || 2255 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 2256 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2257 dn->dn_objset->os_dsl_dataset == NULL); 2258 if (dn->dn_objset->os_dsl_dataset != NULL) 2259 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 2260 #endif 2261 /* 2262 * We make this assert for private objects as well, but after we 2263 * check if we're already dirty. They are allowed to re-dirty 2264 * in syncing context. 2265 */ 2266 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2267 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2268 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2269 2270 mutex_enter(&db->db_mtx); 2271 /* 2272 * XXX make this true for indirects too? The problem is that 2273 * transactions created with dmu_tx_create_assigned() from 2274 * syncing context don't bother holding ahead. 2275 */ 2276 ASSERT(db->db_level != 0 || 2277 db->db_state == DB_CACHED || db->db_state == DB_FILL || 2278 db->db_state == DB_NOFILL); 2279 2280 mutex_enter(&dn->dn_mtx); 2281 dnode_set_dirtyctx(dn, tx, db); 2282 if (tx->tx_txg > dn->dn_dirty_txg) 2283 dn->dn_dirty_txg = tx->tx_txg; 2284 mutex_exit(&dn->dn_mtx); 2285 2286 if (db->db_blkid == DMU_SPILL_BLKID) 2287 dn->dn_have_spill = B_TRUE; 2288 2289 /* 2290 * If this buffer is already dirty, we're done. 2291 */ 2292 dr_head = list_head(&db->db_dirty_records); 2293 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg || 2294 db->db.db_object == DMU_META_DNODE_OBJECT); 2295 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg); 2296 if (dr_next && dr_next->dr_txg == tx->tx_txg) { 2297 DB_DNODE_EXIT(db); 2298 2299 dbuf_redirty(dr_next); 2300 mutex_exit(&db->db_mtx); 2301 return (dr_next); 2302 } 2303 2304 /* 2305 * Only valid if not already dirty. 2306 */ 2307 ASSERT(dn->dn_object == 0 || 2308 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2309 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2310 2311 ASSERT3U(dn->dn_nlevels, >, db->db_level); 2312 2313 /* 2314 * We should only be dirtying in syncing context if it's the 2315 * mos or we're initializing the os or it's a special object. 2316 * However, we are allowed to dirty in syncing context provided 2317 * we already dirtied it in open context. Hence we must make 2318 * this assertion only if we're not already dirty. 2319 */ 2320 os = dn->dn_objset; 2321 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa)); 2322 #ifdef ZFS_DEBUG 2323 if (dn->dn_objset->os_dsl_dataset != NULL) 2324 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 2325 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2326 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 2327 if (dn->dn_objset->os_dsl_dataset != NULL) 2328 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 2329 #endif 2330 ASSERT(db->db.db_size != 0); 2331 2332 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2333 2334 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) { 2335 dmu_objset_willuse_space(os, db->db.db_size, tx); 2336 } 2337 2338 /* 2339 * If this buffer is dirty in an old transaction group we need 2340 * to make a copy of it so that the changes we make in this 2341 * transaction group won't leak out when we sync the older txg. 2342 */ 2343 dr = kmem_cache_alloc(dbuf_dirty_kmem_cache, KM_SLEEP); 2344 memset(dr, 0, sizeof (*dr)); 2345 list_link_init(&dr->dr_dirty_node); 2346 list_link_init(&dr->dr_dbuf_node); 2347 dr->dr_dnode = dn; 2348 if (db->db_level == 0) { 2349 void *data_old = db->db_buf; 2350 2351 if (db->db_state != DB_NOFILL) { 2352 if (db->db_blkid == DMU_BONUS_BLKID) { 2353 dbuf_fix_old_data(db, tx->tx_txg); 2354 data_old = db->db.db_data; 2355 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 2356 /* 2357 * Release the data buffer from the cache so 2358 * that we can modify it without impacting 2359 * possible other users of this cached data 2360 * block. Note that indirect blocks and 2361 * private objects are not released until the 2362 * syncing state (since they are only modified 2363 * then). 2364 */ 2365 arc_release(db->db_buf, db); 2366 dbuf_fix_old_data(db, tx->tx_txg); 2367 data_old = db->db_buf; 2368 } 2369 ASSERT(data_old != NULL); 2370 } 2371 dr->dt.dl.dr_data = data_old; 2372 } else { 2373 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL); 2374 list_create(&dr->dt.di.dr_children, 2375 sizeof (dbuf_dirty_record_t), 2376 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 2377 } 2378 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) { 2379 dr->dr_accounted = db->db.db_size; 2380 } 2381 dr->dr_dbuf = db; 2382 dr->dr_txg = tx->tx_txg; 2383 list_insert_before(&db->db_dirty_records, dr_next, dr); 2384 2385 /* 2386 * We could have been freed_in_flight between the dbuf_noread 2387 * and dbuf_dirty. We win, as though the dbuf_noread() had 2388 * happened after the free. 2389 */ 2390 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2391 db->db_blkid != DMU_SPILL_BLKID) { 2392 mutex_enter(&dn->dn_mtx); 2393 if (dn->dn_free_ranges[txgoff] != NULL) { 2394 zfs_range_tree_clear(dn->dn_free_ranges[txgoff], 2395 db->db_blkid, 1); 2396 } 2397 mutex_exit(&dn->dn_mtx); 2398 db->db_freed_in_flight = FALSE; 2399 } 2400 2401 /* 2402 * This buffer is now part of this txg 2403 */ 2404 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 2405 db->db_dirtycnt += 1; 2406 ASSERT3U(db->db_dirtycnt, <=, 3); 2407 2408 mutex_exit(&db->db_mtx); 2409 2410 if (db->db_blkid == DMU_BONUS_BLKID || 2411 db->db_blkid == DMU_SPILL_BLKID) { 2412 mutex_enter(&dn->dn_mtx); 2413 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2414 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2415 mutex_exit(&dn->dn_mtx); 2416 dnode_setdirty(dn, tx); 2417 DB_DNODE_EXIT(db); 2418 return (dr); 2419 } 2420 2421 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 2422 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2423 drop_struct_rwlock = B_TRUE; 2424 } 2425 2426 /* 2427 * If we are overwriting a dedup BP, then unless it is snapshotted, 2428 * when we get to syncing context we will need to decrement its 2429 * refcount in the DDT. Prefetch the relevant DDT block so that 2430 * syncing context won't have to wait for the i/o. 2431 */ 2432 if (db->db_blkptr != NULL) { 2433 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 2434 ddt_prefetch(os->os_spa, db->db_blkptr); 2435 dmu_buf_unlock_parent(db, dblt, FTAG); 2436 } 2437 2438 /* 2439 * We need to hold the dn_struct_rwlock to make this assertion, 2440 * because it protects dn_phys / dn_next_nlevels from changing. 2441 */ 2442 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 2443 dn->dn_phys->dn_nlevels > db->db_level || 2444 dn->dn_next_nlevels[txgoff] > db->db_level || 2445 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 2446 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 2447 2448 2449 if (db->db_level == 0) { 2450 ASSERT(!db->db_objset->os_raw_receive || 2451 dn->dn_maxblkid >= db->db_blkid); 2452 dnode_new_blkid(dn, db->db_blkid, tx, 2453 drop_struct_rwlock, B_FALSE); 2454 ASSERT(dn->dn_maxblkid >= db->db_blkid); 2455 } 2456 2457 if (db->db_level+1 < dn->dn_nlevels) { 2458 dmu_buf_impl_t *parent = db->db_parent; 2459 dbuf_dirty_record_t *di; 2460 int parent_held = FALSE; 2461 2462 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 2463 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2464 parent = dbuf_hold_level(dn, db->db_level + 1, 2465 db->db_blkid >> epbs, FTAG); 2466 ASSERT(parent != NULL); 2467 parent_held = TRUE; 2468 } 2469 if (drop_struct_rwlock) 2470 rw_exit(&dn->dn_struct_rwlock); 2471 ASSERT3U(db->db_level + 1, ==, parent->db_level); 2472 di = dbuf_dirty(parent, tx); 2473 if (parent_held) 2474 dbuf_rele(parent, FTAG); 2475 2476 mutex_enter(&db->db_mtx); 2477 /* 2478 * Since we've dropped the mutex, it's possible that 2479 * dbuf_undirty() might have changed this out from under us. 2480 */ 2481 if (list_head(&db->db_dirty_records) == dr || 2482 dn->dn_object == DMU_META_DNODE_OBJECT) { 2483 mutex_enter(&di->dt.di.dr_mtx); 2484 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 2485 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2486 list_insert_tail(&di->dt.di.dr_children, dr); 2487 mutex_exit(&di->dt.di.dr_mtx); 2488 dr->dr_parent = di; 2489 } 2490 mutex_exit(&db->db_mtx); 2491 } else { 2492 ASSERT(db->db_level + 1 == dn->dn_nlevels); 2493 ASSERT(db->db_blkid < dn->dn_nblkptr); 2494 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 2495 mutex_enter(&dn->dn_mtx); 2496 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2497 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2498 mutex_exit(&dn->dn_mtx); 2499 if (drop_struct_rwlock) 2500 rw_exit(&dn->dn_struct_rwlock); 2501 } 2502 2503 dnode_setdirty(dn, tx); 2504 DB_DNODE_EXIT(db); 2505 return (dr); 2506 } 2507 2508 static void 2509 dbuf_undirty_bonus(dbuf_dirty_record_t *dr) 2510 { 2511 dmu_buf_impl_t *db = dr->dr_dbuf; 2512 2513 ASSERT(MUTEX_HELD(&db->db_mtx)); 2514 if (dr->dt.dl.dr_data != db->db.db_data) { 2515 struct dnode *dn = dr->dr_dnode; 2516 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 2517 2518 kmem_free(dr->dt.dl.dr_data, max_bonuslen); 2519 arc_space_return(max_bonuslen, ARC_SPACE_BONUS); 2520 } 2521 db->db_data_pending = NULL; 2522 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 2523 list_remove(&db->db_dirty_records, dr); 2524 if (dr->dr_dbuf->db_level != 0) { 2525 mutex_destroy(&dr->dt.di.dr_mtx); 2526 list_destroy(&dr->dt.di.dr_children); 2527 } 2528 kmem_cache_free(dbuf_dirty_kmem_cache, dr); 2529 ASSERT3U(db->db_dirtycnt, >, 0); 2530 db->db_dirtycnt -= 1; 2531 } 2532 2533 /* 2534 * Undirty a buffer in the transaction group referenced by the given 2535 * transaction. Return whether this evicted the dbuf. 2536 */ 2537 boolean_t 2538 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2539 { 2540 uint64_t txg = tx->tx_txg; 2541 boolean_t brtwrite; 2542 boolean_t diowrite; 2543 2544 ASSERT(txg != 0); 2545 2546 /* 2547 * Due to our use of dn_nlevels below, this can only be called 2548 * in open context, unless we are operating on the MOS. 2549 * From syncing context, dn_nlevels may be different from the 2550 * dn_nlevels used when dbuf was dirtied. 2551 */ 2552 ASSERT(db->db_objset == 2553 dmu_objset_pool(db->db_objset)->dp_meta_objset || 2554 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 2555 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2556 ASSERT0(db->db_level); 2557 ASSERT(MUTEX_HELD(&db->db_mtx)); 2558 2559 /* 2560 * If this buffer is not dirty, we're done. 2561 */ 2562 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg); 2563 if (dr == NULL) 2564 return (B_FALSE); 2565 ASSERT(dr->dr_dbuf == db); 2566 2567 brtwrite = dr->dt.dl.dr_brtwrite; 2568 diowrite = dr->dt.dl.dr_diowrite; 2569 if (brtwrite) { 2570 ASSERT3B(diowrite, ==, B_FALSE); 2571 /* 2572 * We are freeing a block that we cloned in the same 2573 * transaction group. 2574 */ 2575 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 2576 if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) { 2577 brt_pending_remove(dmu_objset_spa(db->db_objset), 2578 bp, tx); 2579 } 2580 } 2581 2582 dnode_t *dn = dr->dr_dnode; 2583 2584 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2585 2586 ASSERT(db->db.db_size != 0); 2587 2588 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 2589 dr->dr_accounted, txg); 2590 2591 list_remove(&db->db_dirty_records, dr); 2592 2593 /* 2594 * Note that there are three places in dbuf_dirty() 2595 * where this dirty record may be put on a list. 2596 * Make sure to do a list_remove corresponding to 2597 * every one of those list_insert calls. 2598 */ 2599 if (dr->dr_parent) { 2600 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 2601 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 2602 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 2603 } else if (db->db_blkid == DMU_SPILL_BLKID || 2604 db->db_level + 1 == dn->dn_nlevels) { 2605 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 2606 mutex_enter(&dn->dn_mtx); 2607 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 2608 mutex_exit(&dn->dn_mtx); 2609 } 2610 2611 if (db->db_state != DB_NOFILL && !brtwrite) { 2612 dbuf_unoverride(dr); 2613 2614 if (dr->dt.dl.dr_data != db->db_buf) { 2615 ASSERT(db->db_buf != NULL); 2616 ASSERT(dr->dt.dl.dr_data != NULL); 2617 arc_buf_destroy(dr->dt.dl.dr_data, db); 2618 } 2619 } 2620 2621 kmem_cache_free(dbuf_dirty_kmem_cache, dr); 2622 2623 ASSERT(db->db_dirtycnt > 0); 2624 db->db_dirtycnt -= 1; 2625 2626 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 2627 ASSERT(db->db_state == DB_NOFILL || brtwrite || diowrite || 2628 arc_released(db->db_buf)); 2629 dbuf_destroy(db); 2630 return (B_TRUE); 2631 } 2632 2633 return (B_FALSE); 2634 } 2635 2636 void 2637 dmu_buf_will_dirty_flags(dmu_buf_t *db_fake, dmu_tx_t *tx, dmu_flags_t flags) 2638 { 2639 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2640 boolean_t undirty = B_FALSE; 2641 2642 ASSERT(tx->tx_txg != 0); 2643 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2644 2645 /* 2646 * Quick check for dirtiness to improve performance for some workloads 2647 * (e.g. file deletion with indirect blocks cached). 2648 */ 2649 mutex_enter(&db->db_mtx); 2650 if (db->db_state == DB_CACHED || db->db_state == DB_NOFILL) { 2651 /* 2652 * It's possible that the dbuf is already dirty but not cached, 2653 * because there are some calls to dbuf_dirty() that don't 2654 * go through dmu_buf_will_dirty(). 2655 */ 2656 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2657 if (dr != NULL) { 2658 if (db->db_level == 0 && 2659 dr->dt.dl.dr_brtwrite) { 2660 /* 2661 * Block cloning: If we are dirtying a cloned 2662 * level 0 block, we cannot simply redirty it, 2663 * because this dr has no associated data. 2664 * We will go through a full undirtying below, 2665 * before dirtying it again. 2666 */ 2667 undirty = B_TRUE; 2668 } else { 2669 /* This dbuf is already dirty and cached. */ 2670 dbuf_redirty(dr); 2671 mutex_exit(&db->db_mtx); 2672 return; 2673 } 2674 } 2675 } 2676 mutex_exit(&db->db_mtx); 2677 2678 DB_DNODE_ENTER(db); 2679 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 2680 flags |= DB_RF_HAVESTRUCT; 2681 DB_DNODE_EXIT(db); 2682 2683 /* 2684 * Block cloning: Do the dbuf_read() before undirtying the dbuf, as we 2685 * want to make sure dbuf_read() will read the pending cloned block and 2686 * not the uderlying block that is being replaced. dbuf_undirty() will 2687 * do brt_pending_remove() before removing the dirty record. 2688 */ 2689 (void) dbuf_read(db, NULL, flags | DB_RF_MUST_SUCCEED); 2690 if (undirty) { 2691 mutex_enter(&db->db_mtx); 2692 VERIFY(!dbuf_undirty(db, tx)); 2693 mutex_exit(&db->db_mtx); 2694 } 2695 (void) dbuf_dirty(db, tx); 2696 } 2697 2698 void 2699 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2700 { 2701 dmu_buf_will_dirty_flags(db_fake, tx, DMU_READ_NO_PREFETCH); 2702 } 2703 2704 boolean_t 2705 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2706 { 2707 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2708 dbuf_dirty_record_t *dr; 2709 2710 mutex_enter(&db->db_mtx); 2711 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2712 mutex_exit(&db->db_mtx); 2713 return (dr != NULL); 2714 } 2715 2716 /* 2717 * Normally the db_blkptr points to the most recent on-disk content for the 2718 * dbuf (and anything newer will be cached in the dbuf). However, a pending 2719 * block clone or not yet synced Direct I/O write will have a dirty record BP 2720 * pointing to the most recent data. 2721 */ 2722 int 2723 dmu_buf_get_bp_from_dbuf(dmu_buf_impl_t *db, blkptr_t **bp) 2724 { 2725 ASSERT(MUTEX_HELD(&db->db_mtx)); 2726 int error = 0; 2727 2728 if (db->db_level != 0) { 2729 *bp = db->db_blkptr; 2730 return (0); 2731 } 2732 2733 *bp = db->db_blkptr; 2734 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 2735 if (dr && db->db_state == DB_NOFILL) { 2736 /* Block clone */ 2737 if (!dr->dt.dl.dr_brtwrite) 2738 error = EIO; 2739 else 2740 *bp = &dr->dt.dl.dr_overridden_by; 2741 } else if (dr && db->db_state == DB_UNCACHED) { 2742 /* Direct I/O write */ 2743 if (dr->dt.dl.dr_diowrite) 2744 *bp = &dr->dt.dl.dr_overridden_by; 2745 } 2746 2747 return (error); 2748 } 2749 2750 /* 2751 * Direct I/O reads can read directly from the ARC, but the data has 2752 * to be untransformed in order to copy it over into user pages. 2753 */ 2754 int 2755 dmu_buf_untransform_direct(dmu_buf_impl_t *db, spa_t *spa) 2756 { 2757 int err = 0; 2758 DB_DNODE_ENTER(db); 2759 dnode_t *dn = DB_DNODE(db); 2760 2761 ASSERT3S(db->db_state, ==, DB_CACHED); 2762 ASSERT(MUTEX_HELD(&db->db_mtx)); 2763 2764 /* 2765 * Ensure that this block's dnode has been decrypted if 2766 * the caller has requested decrypted data. 2767 */ 2768 err = dbuf_read_verify_dnode_crypt(db, dn, 0); 2769 2770 /* 2771 * If the arc buf is compressed or encrypted and the caller 2772 * requested uncompressed data, we need to untransform it 2773 * before returning. We also call arc_untransform() on any 2774 * unauthenticated blocks, which will verify their MAC if 2775 * the key is now available. 2776 */ 2777 if (err == 0 && db->db_buf != NULL && 2778 (arc_is_encrypted(db->db_buf) || 2779 arc_is_unauthenticated(db->db_buf) || 2780 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) { 2781 zbookmark_phys_t zb; 2782 2783 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 2784 db->db.db_object, db->db_level, db->db_blkid); 2785 dbuf_fix_old_data(db, spa_syncing_txg(spa)); 2786 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE); 2787 dbuf_set_data(db, db->db_buf); 2788 } 2789 DB_DNODE_EXIT(db); 2790 DBUF_STAT_BUMP(hash_hits); 2791 2792 return (err); 2793 } 2794 2795 void 2796 dmu_buf_will_clone_or_dio(dmu_buf_t *db_fake, dmu_tx_t *tx) 2797 { 2798 /* 2799 * Block clones and Direct I/O writes always happen in open-context. 2800 */ 2801 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2802 ASSERT0(db->db_level); 2803 ASSERT(!dmu_tx_is_syncing(tx)); 2804 ASSERT0(db->db_level); 2805 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2806 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 2807 2808 mutex_enter(&db->db_mtx); 2809 DBUF_VERIFY(db); 2810 2811 /* 2812 * We are going to clone or issue a Direct I/O write on this block, so 2813 * undirty modifications done to this block so far in this txg. This 2814 * includes writes and clones into this block. 2815 * 2816 * If there dirty record associated with this txg from a previous Direct 2817 * I/O write then space accounting cleanup takes place. It is important 2818 * to go ahead free up the space accounting through dbuf_undirty() -> 2819 * dbuf_unoverride() -> zio_free(). Space accountiung for determining 2820 * if a write can occur in zfs_write() happens through dmu_tx_assign(). 2821 * This can cause an issue with Direct I/O writes in the case of 2822 * overwriting the same block, because all DVA allocations are being 2823 * done in open-context. Constantly allowing Direct I/O overwrites to 2824 * the same block can exhaust the pools available space leading to 2825 * ENOSPC errors at the DVA allocation part of the ZIO pipeline, which 2826 * will eventually suspend the pool. By cleaning up sapce acccounting 2827 * now, the ENOSPC error can be avoided. 2828 * 2829 * Since we are undirtying the record in open-context, we must have a 2830 * hold on the db, so it should never be evicted after calling 2831 * dbuf_undirty(). 2832 */ 2833 VERIFY3B(dbuf_undirty(db, tx), ==, B_FALSE); 2834 ASSERT0P(dbuf_find_dirty_eq(db, tx->tx_txg)); 2835 2836 if (db->db_buf != NULL) { 2837 /* 2838 * If there is an associated ARC buffer with this dbuf we can 2839 * only destroy it if the previous dirty record does not 2840 * reference it. 2841 */ 2842 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 2843 if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) 2844 arc_buf_destroy(db->db_buf, db); 2845 2846 /* 2847 * Setting the dbuf's data pointers to NULL will force all 2848 * future reads down to the devices to get the most up to date 2849 * version of the data after a Direct I/O write has completed. 2850 */ 2851 db->db_buf = NULL; 2852 dbuf_clear_data(db); 2853 } 2854 2855 ASSERT3P(db->db_buf, ==, NULL); 2856 ASSERT3P(db->db.db_data, ==, NULL); 2857 2858 db->db_state = DB_NOFILL; 2859 DTRACE_SET_STATE(db, 2860 "allocating NOFILL buffer for clone or direct I/O write"); 2861 2862 DBUF_VERIFY(db); 2863 mutex_exit(&db->db_mtx); 2864 2865 dbuf_noread(db, DMU_KEEP_CACHING); 2866 (void) dbuf_dirty(db, tx); 2867 } 2868 2869 void 2870 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2871 { 2872 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2873 2874 mutex_enter(&db->db_mtx); 2875 db->db_state = DB_NOFILL; 2876 DTRACE_SET_STATE(db, "allocating NOFILL buffer"); 2877 mutex_exit(&db->db_mtx); 2878 2879 dbuf_noread(db, DMU_KEEP_CACHING); 2880 (void) dbuf_dirty(db, tx); 2881 } 2882 2883 void 2884 dmu_buf_will_fill_flags(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail, 2885 dmu_flags_t flags) 2886 { 2887 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2888 2889 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2890 ASSERT(tx->tx_txg != 0); 2891 ASSERT(db->db_level == 0); 2892 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2893 2894 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 2895 dmu_tx_private_ok(tx)); 2896 2897 mutex_enter(&db->db_mtx); 2898 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2899 if (db->db_state == DB_NOFILL || 2900 (db->db_state == DB_UNCACHED && dr && dr->dt.dl.dr_diowrite)) { 2901 /* 2902 * If the fill can fail we should have a way to return back to 2903 * the cloned or Direct I/O write data. 2904 */ 2905 if (canfail && dr) { 2906 mutex_exit(&db->db_mtx); 2907 dmu_buf_will_dirty_flags(db_fake, tx, flags); 2908 return; 2909 } 2910 /* 2911 * Block cloning: We will be completely overwriting a block 2912 * cloned in this transaction group, so let's undirty the 2913 * pending clone and mark the block as uncached. This will be 2914 * as if the clone was never done. 2915 */ 2916 if (db->db_state == DB_NOFILL) { 2917 VERIFY(!dbuf_undirty(db, tx)); 2918 db->db_state = DB_UNCACHED; 2919 } 2920 } 2921 mutex_exit(&db->db_mtx); 2922 2923 dbuf_noread(db, flags); 2924 (void) dbuf_dirty(db, tx); 2925 } 2926 2927 void 2928 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail) 2929 { 2930 dmu_buf_will_fill_flags(db_fake, tx, canfail, DMU_READ_NO_PREFETCH); 2931 } 2932 2933 /* 2934 * This function is effectively the same as dmu_buf_will_dirty(), but 2935 * indicates the caller expects raw encrypted data in the db, and provides 2936 * the crypt params (byteorder, salt, iv, mac) which should be stored in the 2937 * blkptr_t when this dbuf is written. This is only used for blocks of 2938 * dnodes, during raw receive. 2939 */ 2940 void 2941 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder, 2942 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx) 2943 { 2944 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2945 dbuf_dirty_record_t *dr; 2946 2947 /* 2948 * dr_has_raw_params is only processed for blocks of dnodes 2949 * (see dbuf_sync_dnode_leaf_crypt()). 2950 */ 2951 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 2952 ASSERT0(db->db_level); 2953 ASSERT(db->db_objset->os_raw_receive); 2954 2955 dmu_buf_will_dirty_flags(db_fake, tx, 2956 DMU_READ_NO_PREFETCH | DMU_READ_NO_DECRYPT); 2957 2958 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2959 2960 ASSERT3P(dr, !=, NULL); 2961 ASSERT3U(dr->dt.dl.dr_override_state, ==, DR_NOT_OVERRIDDEN); 2962 2963 dr->dt.dl.dr_has_raw_params = B_TRUE; 2964 dr->dt.dl.dr_byteorder = byteorder; 2965 memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN); 2966 memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN); 2967 memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN); 2968 } 2969 2970 static void 2971 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx) 2972 { 2973 struct dirty_leaf *dl; 2974 dbuf_dirty_record_t *dr; 2975 2976 ASSERT3U(db->db.db_object, !=, DMU_META_DNODE_OBJECT); 2977 ASSERT0(db->db_level); 2978 2979 dr = list_head(&db->db_dirty_records); 2980 ASSERT3P(dr, !=, NULL); 2981 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2982 dl = &dr->dt.dl; 2983 ASSERT0(dl->dr_has_raw_params); 2984 dl->dr_overridden_by = *bp; 2985 dl->dr_override_state = DR_OVERRIDDEN; 2986 BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg); 2987 } 2988 2989 boolean_t 2990 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx, boolean_t failed) 2991 { 2992 (void) tx; 2993 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2994 mutex_enter(&db->db_mtx); 2995 DBUF_VERIFY(db); 2996 2997 if (db->db_state == DB_FILL) { 2998 if (db->db_level == 0 && db->db_freed_in_flight) { 2999 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 3000 /* we were freed while filling */ 3001 /* XXX dbuf_undirty? */ 3002 memset(db->db.db_data, 0, db->db.db_size); 3003 db->db_freed_in_flight = FALSE; 3004 db->db_state = DB_CACHED; 3005 DTRACE_SET_STATE(db, 3006 "fill done handling freed in flight"); 3007 failed = B_FALSE; 3008 } else if (failed) { 3009 VERIFY(!dbuf_undirty(db, tx)); 3010 arc_buf_destroy(db->db_buf, db); 3011 db->db_buf = NULL; 3012 dbuf_clear_data(db); 3013 DTRACE_SET_STATE(db, "fill failed"); 3014 } else { 3015 db->db_state = DB_CACHED; 3016 DTRACE_SET_STATE(db, "fill done"); 3017 } 3018 cv_broadcast(&db->db_changed); 3019 } else { 3020 db->db_state = DB_CACHED; 3021 failed = B_FALSE; 3022 } 3023 mutex_exit(&db->db_mtx); 3024 return (failed); 3025 } 3026 3027 void 3028 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 3029 bp_embedded_type_t etype, enum zio_compress comp, 3030 int uncompressed_size, int compressed_size, int byteorder, 3031 dmu_tx_t *tx) 3032 { 3033 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 3034 struct dirty_leaf *dl; 3035 dmu_object_type_t type; 3036 dbuf_dirty_record_t *dr; 3037 3038 if (etype == BP_EMBEDDED_TYPE_DATA) { 3039 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 3040 SPA_FEATURE_EMBEDDED_DATA)); 3041 } 3042 3043 DB_DNODE_ENTER(db); 3044 type = DB_DNODE(db)->dn_type; 3045 DB_DNODE_EXIT(db); 3046 3047 ASSERT0(db->db_level); 3048 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 3049 3050 dmu_buf_will_not_fill(dbuf, tx); 3051 3052 dr = list_head(&db->db_dirty_records); 3053 ASSERT3P(dr, !=, NULL); 3054 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 3055 dl = &dr->dt.dl; 3056 ASSERT0(dl->dr_has_raw_params); 3057 encode_embedded_bp_compressed(&dl->dr_overridden_by, 3058 data, comp, uncompressed_size, compressed_size); 3059 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 3060 BP_SET_TYPE(&dl->dr_overridden_by, type); 3061 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 3062 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 3063 3064 dl->dr_override_state = DR_OVERRIDDEN; 3065 BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg); 3066 } 3067 3068 void 3069 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx) 3070 { 3071 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 3072 dmu_object_type_t type; 3073 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset, 3074 SPA_FEATURE_REDACTED_DATASETS)); 3075 3076 DB_DNODE_ENTER(db); 3077 type = DB_DNODE(db)->dn_type; 3078 DB_DNODE_EXIT(db); 3079 3080 ASSERT0(db->db_level); 3081 dmu_buf_will_not_fill(dbuf, tx); 3082 3083 blkptr_t bp = { { { {0} } } }; 3084 BP_SET_TYPE(&bp, type); 3085 BP_SET_LEVEL(&bp, 0); 3086 BP_SET_BIRTH(&bp, tx->tx_txg, 0); 3087 BP_SET_REDACTED(&bp); 3088 BPE_SET_LSIZE(&bp, dbuf->db_size); 3089 3090 dbuf_override_impl(db, &bp, tx); 3091 } 3092 3093 /* 3094 * Directly assign a provided arc buf to a given dbuf if it's not referenced 3095 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 3096 */ 3097 void 3098 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx, 3099 dmu_flags_t flags) 3100 { 3101 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 3102 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 3103 ASSERT(db->db_level == 0); 3104 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); 3105 ASSERT(buf != NULL); 3106 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size); 3107 ASSERT(tx->tx_txg != 0); 3108 3109 arc_return_buf(buf, db); 3110 ASSERT(arc_released(buf)); 3111 3112 mutex_enter(&db->db_mtx); 3113 if (!(flags & (DMU_UNCACHEDIO | DMU_KEEP_CACHING))) 3114 db->db_pending_evict = B_FALSE; 3115 db->db_partial_read = B_FALSE; 3116 3117 while (db->db_state == DB_READ || db->db_state == DB_FILL) 3118 cv_wait(&db->db_changed, &db->db_mtx); 3119 3120 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED || 3121 db->db_state == DB_NOFILL); 3122 3123 if (db->db_state == DB_CACHED && 3124 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 3125 /* 3126 * In practice, we will never have a case where we have an 3127 * encrypted arc buffer while additional holds exist on the 3128 * dbuf. We don't handle this here so we simply assert that 3129 * fact instead. 3130 */ 3131 ASSERT(!arc_is_encrypted(buf)); 3132 mutex_exit(&db->db_mtx); 3133 (void) dbuf_dirty(db, tx); 3134 memcpy(db->db.db_data, buf->b_data, db->db.db_size); 3135 arc_buf_destroy(buf, db); 3136 return; 3137 } 3138 3139 if (db->db_state == DB_CACHED) { 3140 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 3141 3142 ASSERT(db->db_buf != NULL); 3143 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 3144 ASSERT(dr->dt.dl.dr_data == db->db_buf); 3145 3146 if (!arc_released(db->db_buf)) { 3147 ASSERT(dr->dt.dl.dr_override_state == 3148 DR_OVERRIDDEN); 3149 arc_release(db->db_buf, db); 3150 } 3151 dr->dt.dl.dr_data = buf; 3152 arc_buf_destroy(db->db_buf, db); 3153 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 3154 arc_release(db->db_buf, db); 3155 arc_buf_destroy(db->db_buf, db); 3156 } 3157 db->db_buf = NULL; 3158 } else if (db->db_state == DB_NOFILL) { 3159 /* 3160 * We will be completely replacing the cloned block. In case 3161 * it was cloned in this transaction group, let's undirty the 3162 * pending clone and mark the block as uncached. This will be 3163 * as if the clone was never done. 3164 */ 3165 VERIFY(!dbuf_undirty(db, tx)); 3166 db->db_state = DB_UNCACHED; 3167 } 3168 ASSERT(db->db_buf == NULL); 3169 dbuf_set_data(db, buf); 3170 db->db_state = DB_FILL; 3171 DTRACE_SET_STATE(db, "filling assigned arcbuf"); 3172 mutex_exit(&db->db_mtx); 3173 (void) dbuf_dirty(db, tx); 3174 dmu_buf_fill_done(&db->db, tx, B_FALSE); 3175 } 3176 3177 void 3178 dbuf_destroy(dmu_buf_impl_t *db) 3179 { 3180 dnode_t *dn; 3181 dmu_buf_impl_t *parent = db->db_parent; 3182 dmu_buf_impl_t *dndb; 3183 3184 ASSERT(MUTEX_HELD(&db->db_mtx)); 3185 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3186 3187 if (db->db_buf != NULL) { 3188 arc_buf_destroy(db->db_buf, db); 3189 db->db_buf = NULL; 3190 } 3191 3192 if (db->db_blkid == DMU_BONUS_BLKID) { 3193 int slots = DB_DNODE(db)->dn_num_slots; 3194 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots); 3195 if (db->db.db_data != NULL) { 3196 kmem_free(db->db.db_data, bonuslen); 3197 arc_space_return(bonuslen, ARC_SPACE_BONUS); 3198 db->db_state = DB_UNCACHED; 3199 DTRACE_SET_STATE(db, "buffer cleared"); 3200 } 3201 } 3202 3203 dbuf_clear_data(db); 3204 3205 if (multilist_link_active(&db->db_cache_link)) { 3206 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 3207 db->db_caching_status == DB_DBUF_METADATA_CACHE); 3208 3209 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 3210 3211 ASSERT0(dmu_buf_user_size(&db->db)); 3212 (void) zfs_refcount_remove_many( 3213 &dbuf_caches[db->db_caching_status].size, 3214 db->db.db_size, db); 3215 3216 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 3217 DBUF_STAT_BUMPDOWN(metadata_cache_count); 3218 } else { 3219 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 3220 DBUF_STAT_BUMPDOWN(cache_count); 3221 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 3222 db->db.db_size); 3223 } 3224 db->db_caching_status = DB_NO_CACHE; 3225 } 3226 3227 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 3228 ASSERT(db->db_data_pending == NULL); 3229 ASSERT(list_is_empty(&db->db_dirty_records)); 3230 3231 db->db_state = DB_EVICTING; 3232 DTRACE_SET_STATE(db, "buffer eviction started"); 3233 db->db_blkptr = NULL; 3234 3235 /* 3236 * Now that db_state is DB_EVICTING, nobody else can find this via 3237 * the hash table. We can now drop db_mtx, which allows us to 3238 * acquire the dn_dbufs_mtx. 3239 */ 3240 mutex_exit(&db->db_mtx); 3241 3242 DB_DNODE_ENTER(db); 3243 dn = DB_DNODE(db); 3244 dndb = dn->dn_dbuf; 3245 if (db->db_blkid != DMU_BONUS_BLKID) { 3246 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 3247 if (needlock) 3248 mutex_enter_nested(&dn->dn_dbufs_mtx, 3249 NESTED_SINGLE); 3250 avl_remove(&dn->dn_dbufs, db); 3251 membar_producer(); 3252 DB_DNODE_EXIT(db); 3253 if (needlock) 3254 mutex_exit(&dn->dn_dbufs_mtx); 3255 /* 3256 * Decrementing the dbuf count means that the hold corresponding 3257 * to the removed dbuf is no longer discounted in dnode_move(), 3258 * so the dnode cannot be moved until after we release the hold. 3259 * The membar_producer() ensures visibility of the decremented 3260 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 3261 * release any lock. 3262 */ 3263 mutex_enter(&dn->dn_mtx); 3264 dnode_rele_and_unlock(dn, db, B_TRUE); 3265 #ifdef USE_DNODE_HANDLE 3266 db->db_dnode_handle = NULL; 3267 #else 3268 db->db_dnode = NULL; 3269 #endif 3270 3271 dbuf_hash_remove(db); 3272 } else { 3273 DB_DNODE_EXIT(db); 3274 } 3275 3276 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3277 3278 db->db_parent = NULL; 3279 3280 ASSERT(db->db_buf == NULL); 3281 ASSERT(db->db.db_data == NULL); 3282 ASSERT(db->db_hash_next == NULL); 3283 ASSERT(db->db_blkptr == NULL); 3284 ASSERT(db->db_data_pending == NULL); 3285 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 3286 ASSERT(!multilist_link_active(&db->db_cache_link)); 3287 3288 /* 3289 * If this dbuf is referenced from an indirect dbuf, 3290 * decrement the ref count on the indirect dbuf. 3291 */ 3292 if (parent && parent != dndb) { 3293 mutex_enter(&parent->db_mtx); 3294 dbuf_rele_and_unlock(parent, db, B_TRUE); 3295 } 3296 3297 kmem_cache_free(dbuf_kmem_cache, db); 3298 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3299 } 3300 3301 /* 3302 * Note: While bpp will always be updated if the function returns success, 3303 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 3304 * this happens when the dnode is the meta-dnode, or {user|group|project}used 3305 * object. 3306 */ 3307 __attribute__((always_inline)) 3308 static inline int 3309 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 3310 dmu_buf_impl_t **parentp, blkptr_t **bpp) 3311 { 3312 *parentp = NULL; 3313 *bpp = NULL; 3314 3315 ASSERT(blkid != DMU_BONUS_BLKID); 3316 3317 if (blkid == DMU_SPILL_BLKID) { 3318 mutex_enter(&dn->dn_mtx); 3319 if (dn->dn_have_spill && 3320 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 3321 *bpp = DN_SPILL_BLKPTR(dn->dn_phys); 3322 else 3323 *bpp = NULL; 3324 dbuf_add_ref(dn->dn_dbuf, NULL); 3325 *parentp = dn->dn_dbuf; 3326 mutex_exit(&dn->dn_mtx); 3327 return (0); 3328 } 3329 3330 int nlevels = 3331 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; 3332 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 3333 3334 ASSERT3U(level * epbs, <, 64); 3335 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3336 /* 3337 * This assertion shouldn't trip as long as the max indirect block size 3338 * is less than 1M. The reason for this is that up to that point, 3339 * the number of levels required to address an entire object with blocks 3340 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In 3341 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 3342 * (i.e. we can address the entire object), objects will all use at most 3343 * N-1 levels and the assertion won't overflow. However, once epbs is 3344 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be 3345 * enough to address an entire object, so objects will have 5 levels, 3346 * but then this assertion will overflow. 3347 * 3348 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we 3349 * need to redo this logic to handle overflows. 3350 */ 3351 ASSERT(level >= nlevels || 3352 ((nlevels - level - 1) * epbs) + 3353 highbit64(dn->dn_phys->dn_nblkptr) <= 64); 3354 if (level >= nlevels || 3355 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << 3356 ((nlevels - level - 1) * epbs)) || 3357 (fail_sparse && 3358 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 3359 /* the buffer has no parent yet */ 3360 return (SET_ERROR(ENOENT)); 3361 } else if (level < nlevels-1) { 3362 /* this block is referenced from an indirect block */ 3363 int err; 3364 3365 err = dbuf_hold_impl(dn, level + 1, 3366 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 3367 3368 if (err) 3369 return (err); 3370 err = dbuf_read(*parentp, NULL, DB_RF_CANFAIL | 3371 DB_RF_HAVESTRUCT | DMU_READ_NO_PREFETCH); 3372 if (err) { 3373 dbuf_rele(*parentp, NULL); 3374 *parentp = NULL; 3375 return (err); 3376 } 3377 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 3378 (blkid & ((1ULL << epbs) - 1)); 3379 return (0); 3380 } else { 3381 /* the block is referenced from the dnode */ 3382 ASSERT3U(level, ==, nlevels-1); 3383 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 3384 blkid < dn->dn_phys->dn_nblkptr); 3385 if (dn->dn_dbuf) { 3386 dbuf_add_ref(dn->dn_dbuf, NULL); 3387 *parentp = dn->dn_dbuf; 3388 } 3389 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 3390 return (0); 3391 } 3392 } 3393 3394 static dmu_buf_impl_t * 3395 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 3396 dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash) 3397 { 3398 objset_t *os = dn->dn_objset; 3399 dmu_buf_impl_t *db, *odb; 3400 3401 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3402 ASSERT(dn->dn_type != DMU_OT_NONE); 3403 3404 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 3405 3406 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t), 3407 offsetof(dbuf_dirty_record_t, dr_dbuf_node)); 3408 3409 db->db_objset = os; 3410 db->db.db_object = dn->dn_object; 3411 db->db_level = level; 3412 db->db_blkid = blkid; 3413 db->db_dirtycnt = 0; 3414 #ifdef USE_DNODE_HANDLE 3415 db->db_dnode_handle = dn->dn_handle; 3416 #else 3417 db->db_dnode = dn; 3418 #endif 3419 db->db_parent = parent; 3420 db->db_blkptr = blkptr; 3421 db->db_hash = hash; 3422 3423 db->db_user = NULL; 3424 db->db_user_immediate_evict = FALSE; 3425 db->db_freed_in_flight = FALSE; 3426 db->db_pending_evict = TRUE; 3427 db->db_partial_read = FALSE; 3428 3429 if (blkid == DMU_BONUS_BLKID) { 3430 ASSERT3P(parent, ==, dn->dn_dbuf); 3431 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 3432 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 3433 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 3434 db->db.db_offset = DMU_BONUS_BLKID; 3435 db->db_state = DB_UNCACHED; 3436 DTRACE_SET_STATE(db, "bonus buffer created"); 3437 db->db_caching_status = DB_NO_CACHE; 3438 /* the bonus dbuf is not placed in the hash table */ 3439 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3440 return (db); 3441 } else if (blkid == DMU_SPILL_BLKID) { 3442 db->db.db_size = (blkptr != NULL) ? 3443 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 3444 db->db.db_offset = 0; 3445 } else { 3446 int blocksize = 3447 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 3448 db->db.db_size = blocksize; 3449 db->db.db_offset = db->db_blkid * blocksize; 3450 } 3451 3452 /* 3453 * Hold the dn_dbufs_mtx while we get the new dbuf 3454 * in the hash table *and* added to the dbufs list. 3455 * This prevents a possible deadlock with someone 3456 * trying to look up this dbuf before it's added to the 3457 * dn_dbufs list. 3458 */ 3459 mutex_enter(&dn->dn_dbufs_mtx); 3460 db->db_state = DB_EVICTING; /* not worth logging this state change */ 3461 if ((odb = dbuf_hash_insert(db)) != NULL) { 3462 /* someone else inserted it first */ 3463 mutex_exit(&dn->dn_dbufs_mtx); 3464 kmem_cache_free(dbuf_kmem_cache, db); 3465 DBUF_STAT_BUMP(hash_insert_race); 3466 return (odb); 3467 } 3468 avl_add(&dn->dn_dbufs, db); 3469 3470 db->db_state = DB_UNCACHED; 3471 DTRACE_SET_STATE(db, "regular buffer created"); 3472 db->db_caching_status = DB_NO_CACHE; 3473 mutex_exit(&dn->dn_dbufs_mtx); 3474 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3475 3476 if (parent && parent != dn->dn_dbuf) 3477 dbuf_add_ref(parent, db); 3478 3479 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 3480 zfs_refcount_count(&dn->dn_holds) > 0); 3481 (void) zfs_refcount_add(&dn->dn_holds, db); 3482 3483 dprintf_dbuf(db, "db=%p\n", db); 3484 3485 return (db); 3486 } 3487 3488 /* 3489 * This function returns a block pointer and information about the object, 3490 * given a dnode and a block. This is a publicly accessible version of 3491 * dbuf_findbp that only returns some information, rather than the 3492 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock 3493 * should be locked as (at least) a reader. 3494 */ 3495 int 3496 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid, 3497 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift) 3498 { 3499 dmu_buf_impl_t *dbp = NULL; 3500 blkptr_t *bp2; 3501 int err = 0; 3502 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3503 3504 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2); 3505 if (err == 0) { 3506 ASSERT3P(bp2, !=, NULL); 3507 *bp = *bp2; 3508 if (dbp != NULL) 3509 dbuf_rele(dbp, NULL); 3510 if (datablkszsec != NULL) 3511 *datablkszsec = dn->dn_phys->dn_datablkszsec; 3512 if (indblkshift != NULL) 3513 *indblkshift = dn->dn_phys->dn_indblkshift; 3514 } 3515 3516 return (err); 3517 } 3518 3519 typedef struct dbuf_prefetch_arg { 3520 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 3521 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 3522 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 3523 int dpa_curlevel; /* The current level that we're reading */ 3524 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 3525 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 3526 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 3527 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 3528 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */ 3529 void *dpa_arg; /* prefetch completion arg */ 3530 } dbuf_prefetch_arg_t; 3531 3532 static void 3533 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done) 3534 { 3535 if (dpa->dpa_cb != NULL) { 3536 dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level, 3537 dpa->dpa_zb.zb_blkid, io_done); 3538 } 3539 kmem_free(dpa, sizeof (*dpa)); 3540 } 3541 3542 static void 3543 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb, 3544 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3545 { 3546 (void) zio, (void) zb, (void) iobp; 3547 dbuf_prefetch_arg_t *dpa = private; 3548 3549 if (abuf != NULL) 3550 arc_buf_destroy(abuf, private); 3551 3552 dbuf_prefetch_fini(dpa, B_TRUE); 3553 } 3554 3555 /* 3556 * Actually issue the prefetch read for the block given. 3557 */ 3558 static void 3559 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 3560 { 3561 ASSERT(!BP_IS_HOLE(bp)); 3562 ASSERT(!BP_IS_REDACTED(bp)); 3563 if (BP_IS_EMBEDDED(bp)) 3564 return (dbuf_prefetch_fini(dpa, B_FALSE)); 3565 3566 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 3567 arc_flags_t aflags = 3568 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH | 3569 ARC_FLAG_NO_BUF; 3570 3571 /* dnodes are always read as raw and then converted later */ 3572 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) && 3573 dpa->dpa_curlevel == 0) 3574 zio_flags |= ZIO_FLAG_RAW; 3575 3576 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3577 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 3578 ASSERT(dpa->dpa_zio != NULL); 3579 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, 3580 dbuf_issue_final_prefetch_done, dpa, 3581 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb); 3582 } 3583 3584 /* 3585 * Called when an indirect block above our prefetch target is read in. This 3586 * will either read in the next indirect block down the tree or issue the actual 3587 * prefetch if the next block down is our target. 3588 */ 3589 static void 3590 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb, 3591 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3592 { 3593 (void) zb, (void) iobp; 3594 dbuf_prefetch_arg_t *dpa = private; 3595 3596 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 3597 ASSERT3S(dpa->dpa_curlevel, >, 0); 3598 3599 if (abuf == NULL) { 3600 ASSERT(zio == NULL || zio->io_error != 0); 3601 dbuf_prefetch_fini(dpa, B_TRUE); 3602 return; 3603 } 3604 ASSERT(zio == NULL || zio->io_error == 0); 3605 3606 /* 3607 * The dpa_dnode is only valid if we are called with a NULL 3608 * zio. This indicates that the arc_read() returned without 3609 * first calling zio_read() to issue a physical read. Once 3610 * a physical read is made the dpa_dnode must be invalidated 3611 * as the locks guarding it may have been dropped. If the 3612 * dpa_dnode is still valid, then we want to add it to the dbuf 3613 * cache. To do so, we must hold the dbuf associated with the block 3614 * we just prefetched, read its contents so that we associate it 3615 * with an arc_buf_t, and then release it. 3616 */ 3617 if (zio != NULL) { 3618 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 3619 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) { 3620 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 3621 } else { 3622 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 3623 } 3624 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 3625 3626 dpa->dpa_dnode = NULL; 3627 } else if (dpa->dpa_dnode != NULL) { 3628 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 3629 (dpa->dpa_epbs * (dpa->dpa_curlevel - 3630 dpa->dpa_zb.zb_level)); 3631 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 3632 dpa->dpa_curlevel, curblkid, FTAG); 3633 if (db == NULL) { 3634 arc_buf_destroy(abuf, private); 3635 dbuf_prefetch_fini(dpa, B_TRUE); 3636 return; 3637 } 3638 (void) dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT | 3639 DMU_READ_NO_PREFETCH); 3640 dbuf_rele(db, FTAG); 3641 } 3642 3643 dpa->dpa_curlevel--; 3644 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 3645 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 3646 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 3647 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 3648 3649 ASSERT(!BP_IS_REDACTED(bp) || dpa->dpa_dnode == NULL || 3650 dsl_dataset_feature_is_active( 3651 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3652 SPA_FEATURE_REDACTED_DATASETS)); 3653 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) { 3654 arc_buf_destroy(abuf, private); 3655 dbuf_prefetch_fini(dpa, B_TRUE); 3656 return; 3657 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 3658 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 3659 dbuf_issue_final_prefetch(dpa, bp); 3660 } else { 3661 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3662 zbookmark_phys_t zb; 3663 3664 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3665 if (dpa->dpa_dnode) { 3666 if (dnode_level_is_l2cacheable(bp, dpa->dpa_dnode, 3667 dpa->dpa_curlevel)) 3668 iter_aflags |= ARC_FLAG_L2CACHE; 3669 } else { 3670 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE) 3671 iter_aflags |= ARC_FLAG_L2CACHE; 3672 } 3673 3674 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3675 3676 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 3677 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 3678 3679 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3680 bp, dbuf_prefetch_indirect_done, dpa, 3681 ZIO_PRIORITY_SYNC_READ, 3682 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3683 &iter_aflags, &zb); 3684 } 3685 3686 arc_buf_destroy(abuf, private); 3687 } 3688 3689 /* 3690 * Issue prefetch reads for the given block on the given level. If the indirect 3691 * blocks above that block are not in memory, we will read them in 3692 * asynchronously. As a result, this call never blocks waiting for a read to 3693 * complete. Note that the prefetch might fail if the dataset is encrypted and 3694 * the encryption key is unmapped before the IO completes. 3695 */ 3696 int 3697 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid, 3698 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb, 3699 void *arg) 3700 { 3701 blkptr_t bp; 3702 int epbs, nlevels, curlevel; 3703 uint64_t curblkid; 3704 3705 ASSERT(blkid != DMU_BONUS_BLKID); 3706 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3707 3708 if (blkid > dn->dn_maxblkid) 3709 goto no_issue; 3710 3711 if (level == 0 && dnode_block_freed(dn, blkid)) 3712 goto no_issue; 3713 3714 /* 3715 * This dnode hasn't been written to disk yet, so there's nothing to 3716 * prefetch. 3717 */ 3718 nlevels = dn->dn_phys->dn_nlevels; 3719 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 3720 goto no_issue; 3721 3722 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3723 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 3724 goto no_issue; 3725 3726 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 3727 level, blkid, NULL); 3728 if (db != NULL) { 3729 mutex_exit(&db->db_mtx); 3730 /* 3731 * This dbuf already exists. It is either CACHED, or 3732 * (we assume) about to be read or filled. 3733 */ 3734 goto no_issue; 3735 } 3736 3737 /* 3738 * Find the closest ancestor (indirect block) of the target block 3739 * that is present in the cache. In this indirect block, we will 3740 * find the bp that is at curlevel, curblkid. 3741 */ 3742 curlevel = level; 3743 curblkid = blkid; 3744 while (curlevel < nlevels - 1) { 3745 int parent_level = curlevel + 1; 3746 uint64_t parent_blkid = curblkid >> epbs; 3747 dmu_buf_impl_t *db; 3748 3749 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 3750 FALSE, TRUE, FTAG, &db) == 0) { 3751 blkptr_t *bpp = db->db_buf->b_data; 3752 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 3753 dbuf_rele(db, FTAG); 3754 break; 3755 } 3756 3757 curlevel = parent_level; 3758 curblkid = parent_blkid; 3759 } 3760 3761 if (curlevel == nlevels - 1) { 3762 /* No cached indirect blocks found. */ 3763 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 3764 bp = dn->dn_phys->dn_blkptr[curblkid]; 3765 } 3766 ASSERT(!BP_IS_REDACTED(&bp) || 3767 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset, 3768 SPA_FEATURE_REDACTED_DATASETS)); 3769 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp)) 3770 goto no_issue; 3771 3772 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 3773 3774 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 3775 ZIO_FLAG_CANFAIL); 3776 3777 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 3778 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 3779 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3780 dn->dn_object, level, blkid); 3781 dpa->dpa_curlevel = curlevel; 3782 dpa->dpa_prio = prio; 3783 dpa->dpa_aflags = aflags; 3784 dpa->dpa_spa = dn->dn_objset->os_spa; 3785 dpa->dpa_dnode = dn; 3786 dpa->dpa_epbs = epbs; 3787 dpa->dpa_zio = pio; 3788 dpa->dpa_cb = cb; 3789 dpa->dpa_arg = arg; 3790 3791 if (!DNODE_LEVEL_IS_CACHEABLE(dn, level)) 3792 dpa->dpa_aflags |= ARC_FLAG_UNCACHED; 3793 else if (dnode_level_is_l2cacheable(&bp, dn, level)) 3794 dpa->dpa_aflags |= ARC_FLAG_L2CACHE; 3795 3796 /* 3797 * If we have the indirect just above us, no need to do the asynchronous 3798 * prefetch chain; we'll just run the last step ourselves. If we're at 3799 * a higher level, though, we want to issue the prefetches for all the 3800 * indirect blocks asynchronously, so we can go on with whatever we were 3801 * doing. 3802 */ 3803 if (curlevel == level) { 3804 ASSERT3U(curblkid, ==, blkid); 3805 dbuf_issue_final_prefetch(dpa, &bp); 3806 } else { 3807 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3808 zbookmark_phys_t zb; 3809 3810 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3811 if (dnode_level_is_l2cacheable(&bp, dn, curlevel)) 3812 iter_aflags |= ARC_FLAG_L2CACHE; 3813 3814 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3815 dn->dn_object, curlevel, curblkid); 3816 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3817 &bp, dbuf_prefetch_indirect_done, dpa, 3818 ZIO_PRIORITY_SYNC_READ, 3819 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3820 &iter_aflags, &zb); 3821 } 3822 /* 3823 * We use pio here instead of dpa_zio since it's possible that 3824 * dpa may have already been freed. 3825 */ 3826 zio_nowait(pio); 3827 return (1); 3828 no_issue: 3829 if (cb != NULL) 3830 cb(arg, level, blkid, B_FALSE); 3831 return (0); 3832 } 3833 3834 int 3835 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 3836 arc_flags_t aflags) 3837 { 3838 3839 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL)); 3840 } 3841 3842 /* 3843 * Helper function for dbuf_hold_impl() to copy a buffer. Handles 3844 * the case of encrypted, compressed and uncompressed buffers by 3845 * allocating the new buffer, respectively, with arc_alloc_raw_buf(), 3846 * arc_alloc_compressed_buf() or arc_alloc_buf().* 3847 * 3848 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl(). 3849 */ 3850 noinline static void 3851 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db) 3852 { 3853 dbuf_dirty_record_t *dr = db->db_data_pending; 3854 arc_buf_t *data = dr->dt.dl.dr_data; 3855 arc_buf_t *db_data; 3856 enum zio_compress compress_type = arc_get_compression(data); 3857 uint8_t complevel = arc_get_complevel(data); 3858 3859 if (arc_is_encrypted(data)) { 3860 boolean_t byteorder; 3861 uint8_t salt[ZIO_DATA_SALT_LEN]; 3862 uint8_t iv[ZIO_DATA_IV_LEN]; 3863 uint8_t mac[ZIO_DATA_MAC_LEN]; 3864 3865 arc_get_raw_params(data, &byteorder, salt, iv, mac); 3866 db_data = arc_alloc_raw_buf(dn->dn_objset->os_spa, db, 3867 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac, 3868 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data), 3869 compress_type, complevel); 3870 } else if (compress_type != ZIO_COMPRESS_OFF) { 3871 db_data = arc_alloc_compressed_buf( 3872 dn->dn_objset->os_spa, db, arc_buf_size(data), 3873 arc_buf_lsize(data), compress_type, complevel); 3874 } else { 3875 db_data = arc_alloc_buf(dn->dn_objset->os_spa, db, 3876 DBUF_GET_BUFC_TYPE(db), db->db.db_size); 3877 } 3878 memcpy(db_data->b_data, data->b_data, arc_buf_size(data)); 3879 3880 dbuf_set_data(db, db_data); 3881 } 3882 3883 /* 3884 * Returns with db_holds incremented, and db_mtx not held. 3885 * Note: dn_struct_rwlock must be held. 3886 */ 3887 int 3888 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 3889 boolean_t fail_sparse, boolean_t fail_uncached, 3890 const void *tag, dmu_buf_impl_t **dbp) 3891 { 3892 dmu_buf_impl_t *db, *parent = NULL; 3893 uint64_t hv; 3894 3895 /* If the pool has been created, verify the tx_sync_lock is not held */ 3896 spa_t *spa = dn->dn_objset->os_spa; 3897 dsl_pool_t *dp = spa->spa_dsl_pool; 3898 if (dp != NULL) { 3899 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock)); 3900 } 3901 3902 ASSERT(blkid != DMU_BONUS_BLKID); 3903 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3904 if (!fail_sparse) 3905 ASSERT3U(dn->dn_nlevels, >, level); 3906 3907 *dbp = NULL; 3908 3909 /* dbuf_find() returns with db_mtx held */ 3910 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv); 3911 3912 if (db == NULL) { 3913 blkptr_t *bp = NULL; 3914 int err; 3915 3916 if (fail_uncached) 3917 return (SET_ERROR(ENOENT)); 3918 3919 ASSERT3P(parent, ==, NULL); 3920 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 3921 if (fail_sparse) { 3922 if (err == 0 && bp && BP_IS_HOLE(bp)) 3923 err = SET_ERROR(ENOENT); 3924 if (err) { 3925 if (parent) 3926 dbuf_rele(parent, NULL); 3927 return (err); 3928 } 3929 } 3930 if (err && err != ENOENT) 3931 return (err); 3932 db = dbuf_create(dn, level, blkid, parent, bp, hv); 3933 } 3934 3935 if (fail_uncached && db->db_state != DB_CACHED) { 3936 mutex_exit(&db->db_mtx); 3937 return (SET_ERROR(ENOENT)); 3938 } 3939 3940 if (db->db_buf != NULL) { 3941 arc_buf_access(db->db_buf); 3942 ASSERT(MUTEX_HELD(&db->db_mtx)); 3943 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 3944 } 3945 3946 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 3947 3948 /* 3949 * If this buffer is currently syncing out, and we are 3950 * still referencing it from db_data, we need to make a copy 3951 * of it in case we decide we want to dirty it again in this txg. 3952 */ 3953 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 3954 dn->dn_object != DMU_META_DNODE_OBJECT && 3955 db->db_state == DB_CACHED && db->db_data_pending) { 3956 dbuf_dirty_record_t *dr = db->db_data_pending; 3957 if (dr->dt.dl.dr_data == db->db_buf) { 3958 ASSERT3P(db->db_buf, !=, NULL); 3959 dbuf_hold_copy(dn, db); 3960 } 3961 } 3962 3963 if (multilist_link_active(&db->db_cache_link)) { 3964 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3965 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 3966 db->db_caching_status == DB_DBUF_METADATA_CACHE); 3967 3968 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 3969 3970 uint64_t size = db->db.db_size; 3971 uint64_t usize = dmu_buf_user_size(&db->db); 3972 (void) zfs_refcount_remove_many( 3973 &dbuf_caches[db->db_caching_status].size, size, db); 3974 (void) zfs_refcount_remove_many( 3975 &dbuf_caches[db->db_caching_status].size, usize, 3976 db->db_user); 3977 3978 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 3979 DBUF_STAT_BUMPDOWN(metadata_cache_count); 3980 } else { 3981 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 3982 DBUF_STAT_BUMPDOWN(cache_count); 3983 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 3984 size + usize); 3985 } 3986 db->db_caching_status = DB_NO_CACHE; 3987 } 3988 (void) zfs_refcount_add(&db->db_holds, tag); 3989 DBUF_VERIFY(db); 3990 mutex_exit(&db->db_mtx); 3991 3992 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 3993 if (parent) 3994 dbuf_rele(parent, NULL); 3995 3996 ASSERT3P(DB_DNODE(db), ==, dn); 3997 ASSERT3U(db->db_blkid, ==, blkid); 3998 ASSERT3U(db->db_level, ==, level); 3999 *dbp = db; 4000 4001 return (0); 4002 } 4003 4004 dmu_buf_impl_t * 4005 dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag) 4006 { 4007 return (dbuf_hold_level(dn, 0, blkid, tag)); 4008 } 4009 4010 dmu_buf_impl_t * 4011 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag) 4012 { 4013 dmu_buf_impl_t *db; 4014 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 4015 return (err ? NULL : db); 4016 } 4017 4018 void 4019 dbuf_create_bonus(dnode_t *dn) 4020 { 4021 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 4022 4023 ASSERT(dn->dn_bonus == NULL); 4024 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL, 4025 dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID)); 4026 dn->dn_bonus->db_pending_evict = FALSE; 4027 } 4028 4029 int 4030 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 4031 { 4032 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4033 4034 if (db->db_blkid != DMU_SPILL_BLKID) 4035 return (SET_ERROR(ENOTSUP)); 4036 if (blksz == 0) 4037 blksz = SPA_MINBLOCKSIZE; 4038 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 4039 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 4040 4041 dbuf_new_size(db, blksz, tx); 4042 4043 return (0); 4044 } 4045 4046 void 4047 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 4048 { 4049 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 4050 } 4051 4052 #pragma weak dmu_buf_add_ref = dbuf_add_ref 4053 void 4054 dbuf_add_ref(dmu_buf_impl_t *db, const void *tag) 4055 { 4056 int64_t holds = zfs_refcount_add(&db->db_holds, tag); 4057 VERIFY3S(holds, >, 1); 4058 } 4059 4060 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 4061 boolean_t 4062 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 4063 const void *tag) 4064 { 4065 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4066 dmu_buf_impl_t *found_db; 4067 boolean_t result = B_FALSE; 4068 4069 if (blkid == DMU_BONUS_BLKID) 4070 found_db = dbuf_find_bonus(os, obj); 4071 else 4072 found_db = dbuf_find(os, obj, 0, blkid, NULL); 4073 4074 if (found_db != NULL) { 4075 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 4076 (void) zfs_refcount_add(&db->db_holds, tag); 4077 result = B_TRUE; 4078 } 4079 mutex_exit(&found_db->db_mtx); 4080 } 4081 return (result); 4082 } 4083 4084 /* 4085 * If you call dbuf_rele() you had better not be referencing the dnode handle 4086 * unless you have some other direct or indirect hold on the dnode. (An indirect 4087 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 4088 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 4089 * dnode's parent dbuf evicting its dnode handles. 4090 */ 4091 void 4092 dbuf_rele(dmu_buf_impl_t *db, const void *tag) 4093 { 4094 mutex_enter(&db->db_mtx); 4095 dbuf_rele_and_unlock(db, tag, B_FALSE); 4096 } 4097 4098 void 4099 dmu_buf_rele(dmu_buf_t *db, const void *tag) 4100 { 4101 dbuf_rele((dmu_buf_impl_t *)db, tag); 4102 } 4103 4104 /* 4105 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 4106 * db_dirtycnt and db_holds to be updated atomically. The 'evicting' 4107 * argument should be set if we are already in the dbuf-evicting code 4108 * path, in which case we don't want to recursively evict. This allows us to 4109 * avoid deeply nested stacks that would have a call flow similar to this: 4110 * 4111 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 4112 * ^ | 4113 * | | 4114 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 4115 * 4116 */ 4117 void 4118 dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting) 4119 { 4120 int64_t holds; 4121 uint64_t size; 4122 4123 ASSERT(MUTEX_HELD(&db->db_mtx)); 4124 DBUF_VERIFY(db); 4125 4126 /* 4127 * Remove the reference to the dbuf before removing its hold on the 4128 * dnode so we can guarantee in dnode_move() that a referenced bonus 4129 * buffer has a corresponding dnode hold. 4130 */ 4131 holds = zfs_refcount_remove(&db->db_holds, tag); 4132 ASSERT(holds >= 0); 4133 4134 /* 4135 * We can't freeze indirects if there is a possibility that they 4136 * may be modified in the current syncing context. 4137 */ 4138 if (db->db_buf != NULL && 4139 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 4140 arc_buf_freeze(db->db_buf); 4141 } 4142 4143 if (holds == db->db_dirtycnt && 4144 db->db_level == 0 && db->db_user_immediate_evict) 4145 dbuf_evict_user(db); 4146 4147 if (holds == 0) { 4148 if (db->db_blkid == DMU_BONUS_BLKID) { 4149 dnode_t *dn; 4150 boolean_t evict_dbuf = db->db_pending_evict; 4151 4152 /* 4153 * If the dnode moves here, we cannot cross this 4154 * barrier until the move completes. 4155 */ 4156 DB_DNODE_ENTER(db); 4157 4158 dn = DB_DNODE(db); 4159 atomic_dec_32(&dn->dn_dbufs_count); 4160 4161 /* 4162 * Decrementing the dbuf count means that the bonus 4163 * buffer's dnode hold is no longer discounted in 4164 * dnode_move(). The dnode cannot move until after 4165 * the dnode_rele() below. 4166 */ 4167 DB_DNODE_EXIT(db); 4168 4169 /* 4170 * Do not reference db after its lock is dropped. 4171 * Another thread may evict it. 4172 */ 4173 mutex_exit(&db->db_mtx); 4174 4175 if (evict_dbuf) 4176 dnode_evict_bonus(dn); 4177 4178 dnode_rele(dn, db); 4179 } else if (db->db_buf == NULL) { 4180 /* 4181 * This is a special case: we never associated this 4182 * dbuf with any data allocated from the ARC. 4183 */ 4184 ASSERT(db->db_state == DB_UNCACHED || 4185 db->db_state == DB_NOFILL); 4186 dbuf_destroy(db); 4187 } else if (arc_released(db->db_buf)) { 4188 /* 4189 * This dbuf has anonymous data associated with it. 4190 */ 4191 dbuf_destroy(db); 4192 } else if (!db->db_partial_read && !DBUF_IS_CACHEABLE(db)) { 4193 /* 4194 * We don't expect more accesses to the dbuf, and it 4195 * is either not cacheable or was marked for eviction. 4196 */ 4197 dbuf_destroy(db); 4198 } else if (!multilist_link_active(&db->db_cache_link)) { 4199 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 4200 4201 dbuf_cached_state_t dcs = 4202 dbuf_include_in_metadata_cache(db) ? 4203 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE; 4204 db->db_caching_status = dcs; 4205 4206 multilist_insert(&dbuf_caches[dcs].cache, db); 4207 uint64_t db_size = db->db.db_size; 4208 uint64_t dbu_size = dmu_buf_user_size(&db->db); 4209 (void) zfs_refcount_add_many( 4210 &dbuf_caches[dcs].size, db_size, db); 4211 size = zfs_refcount_add_many( 4212 &dbuf_caches[dcs].size, dbu_size, db->db_user); 4213 uint8_t db_level = db->db_level; 4214 mutex_exit(&db->db_mtx); 4215 4216 if (dcs == DB_DBUF_METADATA_CACHE) { 4217 DBUF_STAT_BUMP(metadata_cache_count); 4218 DBUF_STAT_MAX(metadata_cache_size_bytes_max, 4219 size); 4220 } else { 4221 DBUF_STAT_BUMP(cache_count); 4222 DBUF_STAT_MAX(cache_size_bytes_max, size); 4223 DBUF_STAT_BUMP(cache_levels[db_level]); 4224 DBUF_STAT_INCR(cache_levels_bytes[db_level], 4225 db_size + dbu_size); 4226 } 4227 4228 if (dcs == DB_DBUF_CACHE && !evicting) 4229 dbuf_evict_notify(size); 4230 } 4231 } else { 4232 mutex_exit(&db->db_mtx); 4233 } 4234 } 4235 4236 #pragma weak dmu_buf_refcount = dbuf_refcount 4237 uint64_t 4238 dbuf_refcount(dmu_buf_impl_t *db) 4239 { 4240 return (zfs_refcount_count(&db->db_holds)); 4241 } 4242 4243 uint64_t 4244 dmu_buf_user_refcount(dmu_buf_t *db_fake) 4245 { 4246 uint64_t holds; 4247 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4248 4249 mutex_enter(&db->db_mtx); 4250 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt); 4251 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt; 4252 mutex_exit(&db->db_mtx); 4253 4254 return (holds); 4255 } 4256 4257 void * 4258 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 4259 dmu_buf_user_t *new_user) 4260 { 4261 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4262 4263 mutex_enter(&db->db_mtx); 4264 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4265 if (db->db_user == old_user) 4266 db->db_user = new_user; 4267 else 4268 old_user = db->db_user; 4269 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4270 mutex_exit(&db->db_mtx); 4271 4272 return (old_user); 4273 } 4274 4275 void * 4276 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4277 { 4278 return (dmu_buf_replace_user(db_fake, NULL, user)); 4279 } 4280 4281 void * 4282 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4283 { 4284 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4285 4286 db->db_user_immediate_evict = TRUE; 4287 return (dmu_buf_set_user(db_fake, user)); 4288 } 4289 4290 void * 4291 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4292 { 4293 return (dmu_buf_replace_user(db_fake, user, NULL)); 4294 } 4295 4296 void * 4297 dmu_buf_get_user(dmu_buf_t *db_fake) 4298 { 4299 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4300 4301 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4302 return (db->db_user); 4303 } 4304 4305 uint64_t 4306 dmu_buf_user_size(dmu_buf_t *db_fake) 4307 { 4308 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4309 if (db->db_user == NULL) 4310 return (0); 4311 return (atomic_load_64(&db->db_user->dbu_size)); 4312 } 4313 4314 void 4315 dmu_buf_add_user_size(dmu_buf_t *db_fake, uint64_t nadd) 4316 { 4317 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4318 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 4319 ASSERT3P(db->db_user, !=, NULL); 4320 ASSERT3U(atomic_load_64(&db->db_user->dbu_size), <, UINT64_MAX - nadd); 4321 atomic_add_64(&db->db_user->dbu_size, nadd); 4322 } 4323 4324 void 4325 dmu_buf_sub_user_size(dmu_buf_t *db_fake, uint64_t nsub) 4326 { 4327 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4328 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 4329 ASSERT3P(db->db_user, !=, NULL); 4330 ASSERT3U(atomic_load_64(&db->db_user->dbu_size), >=, nsub); 4331 atomic_sub_64(&db->db_user->dbu_size, nsub); 4332 } 4333 4334 void 4335 dmu_buf_user_evict_wait(void) 4336 { 4337 taskq_wait(dbu_evict_taskq); 4338 } 4339 4340 blkptr_t * 4341 dmu_buf_get_blkptr(dmu_buf_t *db) 4342 { 4343 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4344 return (dbi->db_blkptr); 4345 } 4346 4347 objset_t * 4348 dmu_buf_get_objset(dmu_buf_t *db) 4349 { 4350 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4351 return (dbi->db_objset); 4352 } 4353 4354 static void 4355 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 4356 { 4357 /* ASSERT(dmu_tx_is_syncing(tx) */ 4358 ASSERT(MUTEX_HELD(&db->db_mtx)); 4359 4360 if (db->db_blkptr != NULL) 4361 return; 4362 4363 if (db->db_blkid == DMU_SPILL_BLKID) { 4364 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys); 4365 BP_ZERO(db->db_blkptr); 4366 return; 4367 } 4368 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 4369 /* 4370 * This buffer was allocated at a time when there was 4371 * no available blkptrs from the dnode, or it was 4372 * inappropriate to hook it in (i.e., nlevels mismatch). 4373 */ 4374 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 4375 ASSERT(db->db_parent == NULL); 4376 db->db_parent = dn->dn_dbuf; 4377 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 4378 DBUF_VERIFY(db); 4379 } else { 4380 dmu_buf_impl_t *parent = db->db_parent; 4381 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4382 4383 ASSERT(dn->dn_phys->dn_nlevels > 1); 4384 if (parent == NULL) { 4385 mutex_exit(&db->db_mtx); 4386 rw_enter(&dn->dn_struct_rwlock, RW_READER); 4387 parent = dbuf_hold_level(dn, db->db_level + 1, 4388 db->db_blkid >> epbs, db); 4389 rw_exit(&dn->dn_struct_rwlock); 4390 mutex_enter(&db->db_mtx); 4391 db->db_parent = parent; 4392 } 4393 db->db_blkptr = (blkptr_t *)parent->db.db_data + 4394 (db->db_blkid & ((1ULL << epbs) - 1)); 4395 DBUF_VERIFY(db); 4396 } 4397 } 4398 4399 static void 4400 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4401 { 4402 dmu_buf_impl_t *db = dr->dr_dbuf; 4403 void *data = dr->dt.dl.dr_data; 4404 4405 ASSERT0(db->db_level); 4406 ASSERT(MUTEX_HELD(&db->db_mtx)); 4407 ASSERT(db->db_blkid == DMU_BONUS_BLKID); 4408 ASSERT(data != NULL); 4409 4410 dnode_t *dn = dr->dr_dnode; 4411 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=, 4412 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1)); 4413 memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys)); 4414 4415 dbuf_sync_leaf_verify_bonus_dnode(dr); 4416 4417 dbuf_undirty_bonus(dr); 4418 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 4419 } 4420 4421 /* 4422 * When syncing out a blocks of dnodes, adjust the block to deal with 4423 * encryption. Normally, we make sure the block is decrypted before writing 4424 * it. If we have crypt params, then we are writing a raw (encrypted) block, 4425 * from a raw receive. In this case, set the ARC buf's crypt params so 4426 * that the BP will be filled with the correct byteorder, salt, iv, and mac. 4427 */ 4428 static void 4429 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr) 4430 { 4431 int err; 4432 dmu_buf_impl_t *db = dr->dr_dbuf; 4433 4434 ASSERT(MUTEX_HELD(&db->db_mtx)); 4435 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 4436 ASSERT3U(db->db_level, ==, 0); 4437 4438 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) { 4439 zbookmark_phys_t zb; 4440 4441 /* 4442 * Unfortunately, there is currently no mechanism for 4443 * syncing context to handle decryption errors. An error 4444 * here is only possible if an attacker maliciously 4445 * changed a dnode block and updated the associated 4446 * checksums going up the block tree. 4447 */ 4448 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 4449 db->db.db_object, db->db_level, db->db_blkid); 4450 err = arc_untransform(db->db_buf, db->db_objset->os_spa, 4451 &zb, B_TRUE); 4452 if (err) 4453 panic("Invalid dnode block MAC"); 4454 } else if (dr->dt.dl.dr_has_raw_params) { 4455 (void) arc_release(dr->dt.dl.dr_data, db); 4456 arc_convert_to_raw(dr->dt.dl.dr_data, 4457 dmu_objset_id(db->db_objset), 4458 dr->dt.dl.dr_byteorder, DMU_OT_DNODE, 4459 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac); 4460 } 4461 } 4462 4463 /* 4464 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it 4465 * is critical the we not allow the compiler to inline this function in to 4466 * dbuf_sync_list() thereby drastically bloating the stack usage. 4467 */ 4468 noinline static void 4469 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4470 { 4471 dmu_buf_impl_t *db = dr->dr_dbuf; 4472 dnode_t *dn = dr->dr_dnode; 4473 4474 ASSERT(dmu_tx_is_syncing(tx)); 4475 4476 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4477 4478 mutex_enter(&db->db_mtx); 4479 4480 ASSERT(db->db_level > 0); 4481 DBUF_VERIFY(db); 4482 4483 /* Read the block if it hasn't been read yet. */ 4484 if (db->db_buf == NULL) { 4485 mutex_exit(&db->db_mtx); 4486 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 4487 mutex_enter(&db->db_mtx); 4488 } 4489 ASSERT3U(db->db_state, ==, DB_CACHED); 4490 ASSERT(db->db_buf != NULL); 4491 4492 /* Indirect block size must match what the dnode thinks it is. */ 4493 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4494 dbuf_check_blkptr(dn, db); 4495 4496 /* Provide the pending dirty record to child dbufs */ 4497 db->db_data_pending = dr; 4498 4499 mutex_exit(&db->db_mtx); 4500 4501 dbuf_write(dr, db->db_buf, tx); 4502 4503 zio_t *zio = dr->dr_zio; 4504 mutex_enter(&dr->dt.di.dr_mtx); 4505 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 4506 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4507 mutex_exit(&dr->dt.di.dr_mtx); 4508 zio_nowait(zio); 4509 } 4510 4511 /* 4512 * Verify that the size of the data in our bonus buffer does not exceed 4513 * its recorded size. 4514 * 4515 * The purpose of this verification is to catch any cases in development 4516 * where the size of a phys structure (i.e space_map_phys_t) grows and, 4517 * due to incorrect feature management, older pools expect to read more 4518 * data even though they didn't actually write it to begin with. 4519 * 4520 * For a example, this would catch an error in the feature logic where we 4521 * open an older pool and we expect to write the space map histogram of 4522 * a space map with size SPACE_MAP_SIZE_V0. 4523 */ 4524 static void 4525 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr) 4526 { 4527 #ifdef ZFS_DEBUG 4528 dnode_t *dn = dr->dr_dnode; 4529 4530 /* 4531 * Encrypted bonus buffers can have data past their bonuslen. 4532 * Skip the verification of these blocks. 4533 */ 4534 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)) 4535 return; 4536 4537 uint16_t bonuslen = dn->dn_phys->dn_bonuslen; 4538 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 4539 ASSERT3U(bonuslen, <=, maxbonuslen); 4540 4541 arc_buf_t *datap = dr->dt.dl.dr_data; 4542 char *datap_end = ((char *)datap) + bonuslen; 4543 char *datap_max = ((char *)datap) + maxbonuslen; 4544 4545 /* ensure that everything is zero after our data */ 4546 for (; datap_end < datap_max; datap_end++) 4547 ASSERT(*datap_end == 0); 4548 #endif 4549 } 4550 4551 static blkptr_t * 4552 dbuf_lightweight_bp(dbuf_dirty_record_t *dr) 4553 { 4554 /* This must be a lightweight dirty record. */ 4555 ASSERT3P(dr->dr_dbuf, ==, NULL); 4556 dnode_t *dn = dr->dr_dnode; 4557 4558 if (dn->dn_phys->dn_nlevels == 1) { 4559 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr); 4560 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]); 4561 } else { 4562 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf; 4563 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 4564 VERIFY3U(parent_db->db_level, ==, 1); 4565 VERIFY3P(DB_DNODE(parent_db), ==, dn); 4566 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid); 4567 blkptr_t *bp = parent_db->db.db_data; 4568 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]); 4569 } 4570 } 4571 4572 static void 4573 dbuf_lightweight_ready(zio_t *zio) 4574 { 4575 dbuf_dirty_record_t *dr = zio->io_private; 4576 blkptr_t *bp = zio->io_bp; 4577 4578 if (zio->io_error != 0) 4579 return; 4580 4581 dnode_t *dn = dr->dr_dnode; 4582 4583 blkptr_t *bp_orig = dbuf_lightweight_bp(dr); 4584 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4585 int64_t delta = bp_get_dsize_sync(spa, bp) - 4586 bp_get_dsize_sync(spa, bp_orig); 4587 dnode_diduse_space(dn, delta); 4588 4589 uint64_t blkid = dr->dt.dll.dr_blkid; 4590 mutex_enter(&dn->dn_mtx); 4591 if (blkid > dn->dn_phys->dn_maxblkid) { 4592 ASSERT0(dn->dn_objset->os_raw_receive); 4593 dn->dn_phys->dn_maxblkid = blkid; 4594 } 4595 mutex_exit(&dn->dn_mtx); 4596 4597 if (!BP_IS_EMBEDDED(bp)) { 4598 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1; 4599 BP_SET_FILL(bp, fill); 4600 } 4601 4602 dmu_buf_impl_t *parent_db; 4603 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1); 4604 if (dr->dr_parent == NULL) { 4605 parent_db = dn->dn_dbuf; 4606 } else { 4607 parent_db = dr->dr_parent->dr_dbuf; 4608 } 4609 rw_enter(&parent_db->db_rwlock, RW_WRITER); 4610 *bp_orig = *bp; 4611 rw_exit(&parent_db->db_rwlock); 4612 } 4613 4614 static void 4615 dbuf_lightweight_done(zio_t *zio) 4616 { 4617 dbuf_dirty_record_t *dr = zio->io_private; 4618 4619 VERIFY0(zio->io_error); 4620 4621 objset_t *os = dr->dr_dnode->dn_objset; 4622 dmu_tx_t *tx = os->os_synctx; 4623 4624 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4625 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4626 } else { 4627 dsl_dataset_t *ds = os->os_dsl_dataset; 4628 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE); 4629 dsl_dataset_block_born(ds, zio->io_bp, tx); 4630 } 4631 4632 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted, 4633 zio->io_txg); 4634 4635 abd_free(dr->dt.dll.dr_abd); 4636 kmem_free(dr, sizeof (*dr)); 4637 } 4638 4639 noinline static void 4640 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4641 { 4642 dnode_t *dn = dr->dr_dnode; 4643 zio_t *pio; 4644 if (dn->dn_phys->dn_nlevels == 1) { 4645 pio = dn->dn_zio; 4646 } else { 4647 pio = dr->dr_parent->dr_zio; 4648 } 4649 4650 zbookmark_phys_t zb = { 4651 .zb_objset = dmu_objset_id(dn->dn_objset), 4652 .zb_object = dn->dn_object, 4653 .zb_level = 0, 4654 .zb_blkid = dr->dt.dll.dr_blkid, 4655 }; 4656 4657 /* 4658 * See comment in dbuf_write(). This is so that zio->io_bp_orig 4659 * will have the old BP in dbuf_lightweight_done(). 4660 */ 4661 dr->dr_bp_copy = *dbuf_lightweight_bp(dr); 4662 4663 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset), 4664 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd, 4665 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd), 4666 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL, 4667 dbuf_lightweight_done, dr, ZIO_PRIORITY_ASYNC_WRITE, 4668 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb); 4669 4670 zio_nowait(dr->dr_zio); 4671 } 4672 4673 /* 4674 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is 4675 * critical the we not allow the compiler to inline this function in to 4676 * dbuf_sync_list() thereby drastically bloating the stack usage. 4677 */ 4678 noinline static void 4679 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4680 { 4681 arc_buf_t **datap = &dr->dt.dl.dr_data; 4682 dmu_buf_impl_t *db = dr->dr_dbuf; 4683 dnode_t *dn = dr->dr_dnode; 4684 objset_t *os; 4685 uint64_t txg = tx->tx_txg; 4686 4687 ASSERT(dmu_tx_is_syncing(tx)); 4688 4689 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4690 4691 mutex_enter(&db->db_mtx); 4692 /* 4693 * To be synced, we must be dirtied. But we might have been freed 4694 * after the dirty. 4695 */ 4696 if (db->db_state == DB_UNCACHED) { 4697 /* This buffer has been freed since it was dirtied */ 4698 ASSERT3P(db->db.db_data, ==, NULL); 4699 } else if (db->db_state == DB_FILL) { 4700 /* This buffer was freed and is now being re-filled */ 4701 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 4702 } else if (db->db_state == DB_READ) { 4703 /* 4704 * This buffer was either cloned or had a Direct I/O write 4705 * occur and has an in-flgiht read on the BP. It is safe to 4706 * issue the write here, because the read has already been 4707 * issued and the contents won't change. 4708 * 4709 * We can verify the case of both the clone and Direct I/O 4710 * write by making sure the first dirty record for the dbuf 4711 * has no ARC buffer associated with it. 4712 */ 4713 dbuf_dirty_record_t *dr_head = 4714 list_head(&db->db_dirty_records); 4715 ASSERT3P(db->db_buf, ==, NULL); 4716 ASSERT3P(db->db.db_data, ==, NULL); 4717 ASSERT3P(dr_head->dt.dl.dr_data, ==, NULL); 4718 ASSERT3U(dr_head->dt.dl.dr_override_state, ==, DR_OVERRIDDEN); 4719 } else { 4720 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 4721 } 4722 DBUF_VERIFY(db); 4723 4724 if (db->db_blkid == DMU_SPILL_BLKID) { 4725 mutex_enter(&dn->dn_mtx); 4726 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) { 4727 /* 4728 * In the previous transaction group, the bonus buffer 4729 * was entirely used to store the attributes for the 4730 * dnode which overrode the dn_spill field. However, 4731 * when adding more attributes to the file a spill 4732 * block was required to hold the extra attributes. 4733 * 4734 * Make sure to clear the garbage left in the dn_spill 4735 * field from the previous attributes in the bonus 4736 * buffer. Otherwise, after writing out the spill 4737 * block to the new allocated dva, it will free 4738 * the old block pointed to by the invalid dn_spill. 4739 */ 4740 db->db_blkptr = NULL; 4741 } 4742 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 4743 mutex_exit(&dn->dn_mtx); 4744 } 4745 4746 /* 4747 * If this is a bonus buffer, simply copy the bonus data into the 4748 * dnode. It will be written out when the dnode is synced (and it 4749 * will be synced, since it must have been dirty for dbuf_sync to 4750 * be called). 4751 */ 4752 if (db->db_blkid == DMU_BONUS_BLKID) { 4753 ASSERT(dr->dr_dbuf == db); 4754 dbuf_sync_bonus(dr, tx); 4755 return; 4756 } 4757 4758 os = dn->dn_objset; 4759 4760 /* 4761 * This function may have dropped the db_mtx lock allowing a dmu_sync 4762 * operation to sneak in. As a result, we need to ensure that we 4763 * don't check the dr_override_state until we have returned from 4764 * dbuf_check_blkptr. 4765 */ 4766 dbuf_check_blkptr(dn, db); 4767 4768 /* 4769 * If this buffer is in the middle of an immediate write, wait for the 4770 * synchronous IO to complete. 4771 * 4772 * This is also valid even with Direct I/O writes setting a dirty 4773 * records override state into DR_IN_DMU_SYNC, because all 4774 * Direct I/O writes happen in open-context. 4775 */ 4776 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 4777 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 4778 cv_wait(&db->db_changed, &db->db_mtx); 4779 } 4780 4781 /* 4782 * If this is a dnode block, ensure it is appropriately encrypted 4783 * or decrypted, depending on what we are writing to it this txg. 4784 */ 4785 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT) 4786 dbuf_prepare_encrypted_dnode_leaf(dr); 4787 4788 if (*datap != NULL && *datap == db->db_buf && 4789 dn->dn_object != DMU_META_DNODE_OBJECT && 4790 zfs_refcount_count(&db->db_holds) > 1) { 4791 /* 4792 * If this buffer is currently "in use" (i.e., there 4793 * are active holds and db_data still references it), 4794 * then make a copy before we start the write so that 4795 * any modifications from the open txg will not leak 4796 * into this write. 4797 * 4798 * NOTE: this copy does not need to be made for 4799 * objects only modified in the syncing context (e.g. 4800 * DNONE_DNODE blocks). 4801 */ 4802 int psize = arc_buf_size(*datap); 4803 int lsize = arc_buf_lsize(*datap); 4804 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 4805 enum zio_compress compress_type = arc_get_compression(*datap); 4806 uint8_t complevel = arc_get_complevel(*datap); 4807 4808 if (arc_is_encrypted(*datap)) { 4809 boolean_t byteorder; 4810 uint8_t salt[ZIO_DATA_SALT_LEN]; 4811 uint8_t iv[ZIO_DATA_IV_LEN]; 4812 uint8_t mac[ZIO_DATA_MAC_LEN]; 4813 4814 arc_get_raw_params(*datap, &byteorder, salt, iv, mac); 4815 *datap = arc_alloc_raw_buf(os->os_spa, db, 4816 dmu_objset_id(os), byteorder, salt, iv, mac, 4817 dn->dn_type, psize, lsize, compress_type, 4818 complevel); 4819 } else if (compress_type != ZIO_COMPRESS_OFF) { 4820 ASSERT3U(type, ==, ARC_BUFC_DATA); 4821 *datap = arc_alloc_compressed_buf(os->os_spa, db, 4822 psize, lsize, compress_type, complevel); 4823 } else { 4824 *datap = arc_alloc_buf(os->os_spa, db, type, psize); 4825 } 4826 memcpy((*datap)->b_data, db->db.db_data, psize); 4827 } 4828 db->db_data_pending = dr; 4829 4830 mutex_exit(&db->db_mtx); 4831 4832 dbuf_write(dr, *datap, tx); 4833 4834 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4835 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 4836 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr); 4837 } else { 4838 zio_nowait(dr->dr_zio); 4839 } 4840 } 4841 4842 /* 4843 * Syncs out a range of dirty records for indirect or leaf dbufs. May be 4844 * called recursively from dbuf_sync_indirect(). 4845 */ 4846 void 4847 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 4848 { 4849 dbuf_dirty_record_t *dr; 4850 4851 while ((dr = list_head(list))) { 4852 if (dr->dr_zio != NULL) { 4853 /* 4854 * If we find an already initialized zio then we 4855 * are processing the meta-dnode, and we have finished. 4856 * The dbufs for all dnodes are put back on the list 4857 * during processing, so that we can zio_wait() 4858 * these IOs after initiating all child IOs. 4859 */ 4860 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 4861 DMU_META_DNODE_OBJECT); 4862 break; 4863 } 4864 list_remove(list, dr); 4865 if (dr->dr_dbuf == NULL) { 4866 dbuf_sync_lightweight(dr, tx); 4867 } else { 4868 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 4869 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 4870 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 4871 } 4872 if (dr->dr_dbuf->db_level > 0) 4873 dbuf_sync_indirect(dr, tx); 4874 else 4875 dbuf_sync_leaf(dr, tx); 4876 } 4877 } 4878 } 4879 4880 static void 4881 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4882 { 4883 (void) buf; 4884 dmu_buf_impl_t *db = vdb; 4885 dnode_t *dn; 4886 blkptr_t *bp = zio->io_bp; 4887 blkptr_t *bp_orig = &zio->io_bp_orig; 4888 spa_t *spa = zio->io_spa; 4889 int64_t delta; 4890 uint64_t fill = 0; 4891 int i; 4892 4893 ASSERT3P(db->db_blkptr, !=, NULL); 4894 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 4895 4896 DB_DNODE_ENTER(db); 4897 dn = DB_DNODE(db); 4898 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 4899 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 4900 zio->io_prev_space_delta = delta; 4901 4902 if (BP_GET_LOGICAL_BIRTH(bp) != 0) { 4903 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 4904 BP_GET_TYPE(bp) == dn->dn_type) || 4905 (db->db_blkid == DMU_SPILL_BLKID && 4906 BP_GET_TYPE(bp) == dn->dn_bonustype) || 4907 BP_IS_EMBEDDED(bp)); 4908 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 4909 } 4910 4911 mutex_enter(&db->db_mtx); 4912 4913 #ifdef ZFS_DEBUG 4914 if (db->db_blkid == DMU_SPILL_BLKID) { 4915 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4916 ASSERT(!(BP_IS_HOLE(bp)) && 4917 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4918 } 4919 #endif 4920 4921 if (db->db_level == 0) { 4922 mutex_enter(&dn->dn_mtx); 4923 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 4924 db->db_blkid != DMU_SPILL_BLKID) { 4925 ASSERT0(db->db_objset->os_raw_receive); 4926 dn->dn_phys->dn_maxblkid = db->db_blkid; 4927 } 4928 mutex_exit(&dn->dn_mtx); 4929 4930 if (dn->dn_type == DMU_OT_DNODE) { 4931 i = 0; 4932 while (i < db->db.db_size) { 4933 dnode_phys_t *dnp = 4934 (void *)(((char *)db->db.db_data) + i); 4935 4936 i += DNODE_MIN_SIZE; 4937 if (dnp->dn_type != DMU_OT_NONE) { 4938 fill++; 4939 for (int j = 0; j < dnp->dn_nblkptr; 4940 j++) { 4941 (void) zfs_blkptr_verify(spa, 4942 &dnp->dn_blkptr[j], 4943 BLK_CONFIG_SKIP, 4944 BLK_VERIFY_HALT); 4945 } 4946 if (dnp->dn_flags & 4947 DNODE_FLAG_SPILL_BLKPTR) { 4948 (void) zfs_blkptr_verify(spa, 4949 DN_SPILL_BLKPTR(dnp), 4950 BLK_CONFIG_SKIP, 4951 BLK_VERIFY_HALT); 4952 } 4953 i += dnp->dn_extra_slots * 4954 DNODE_MIN_SIZE; 4955 } 4956 } 4957 } else { 4958 if (BP_IS_HOLE(bp)) { 4959 fill = 0; 4960 } else { 4961 fill = 1; 4962 } 4963 } 4964 } else { 4965 blkptr_t *ibp = db->db.db_data; 4966 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4967 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 4968 if (BP_IS_HOLE(ibp)) 4969 continue; 4970 (void) zfs_blkptr_verify(spa, ibp, 4971 BLK_CONFIG_SKIP, BLK_VERIFY_HALT); 4972 fill += BP_GET_FILL(ibp); 4973 } 4974 } 4975 DB_DNODE_EXIT(db); 4976 4977 if (!BP_IS_EMBEDDED(bp)) 4978 BP_SET_FILL(bp, fill); 4979 4980 mutex_exit(&db->db_mtx); 4981 4982 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG); 4983 *db->db_blkptr = *bp; 4984 dmu_buf_unlock_parent(db, dblt, FTAG); 4985 } 4986 4987 /* 4988 * This function gets called just prior to running through the compression 4989 * stage of the zio pipeline. If we're an indirect block comprised of only 4990 * holes, then we want this indirect to be compressed away to a hole. In 4991 * order to do that we must zero out any information about the holes that 4992 * this indirect points to prior to before we try to compress it. 4993 */ 4994 static void 4995 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4996 { 4997 (void) zio, (void) buf; 4998 dmu_buf_impl_t *db = vdb; 4999 blkptr_t *bp; 5000 unsigned int epbs, i; 5001 5002 ASSERT3U(db->db_level, >, 0); 5003 DB_DNODE_ENTER(db); 5004 epbs = DB_DNODE(db)->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 5005 DB_DNODE_EXIT(db); 5006 ASSERT3U(epbs, <, 31); 5007 5008 /* Determine if all our children are holes */ 5009 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) { 5010 if (!BP_IS_HOLE(bp)) 5011 break; 5012 } 5013 5014 /* 5015 * If all the children are holes, then zero them all out so that 5016 * we may get compressed away. 5017 */ 5018 if (i == 1ULL << epbs) { 5019 /* 5020 * We only found holes. Grab the rwlock to prevent 5021 * anybody from reading the blocks we're about to 5022 * zero out. 5023 */ 5024 rw_enter(&db->db_rwlock, RW_WRITER); 5025 memset(db->db.db_data, 0, db->db.db_size); 5026 rw_exit(&db->db_rwlock); 5027 } 5028 } 5029 5030 static void 5031 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 5032 { 5033 (void) buf; 5034 dmu_buf_impl_t *db = vdb; 5035 blkptr_t *bp_orig = &zio->io_bp_orig; 5036 blkptr_t *bp = db->db_blkptr; 5037 objset_t *os = db->db_objset; 5038 dmu_tx_t *tx = os->os_synctx; 5039 5040 ASSERT0(zio->io_error); 5041 ASSERT(db->db_blkptr == bp); 5042 5043 /* 5044 * For nopwrites and rewrites we ensure that the bp matches our 5045 * original and bypass all the accounting. 5046 */ 5047 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 5048 ASSERT(BP_EQUAL(bp, bp_orig)); 5049 } else { 5050 dsl_dataset_t *ds = os->os_dsl_dataset; 5051 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 5052 dsl_dataset_block_born(ds, bp, tx); 5053 } 5054 5055 mutex_enter(&db->db_mtx); 5056 5057 DBUF_VERIFY(db); 5058 5059 dbuf_dirty_record_t *dr = db->db_data_pending; 5060 dnode_t *dn = dr->dr_dnode; 5061 ASSERT(!list_link_active(&dr->dr_dirty_node)); 5062 ASSERT(dr->dr_dbuf == db); 5063 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 5064 list_remove(&db->db_dirty_records, dr); 5065 5066 #ifdef ZFS_DEBUG 5067 if (db->db_blkid == DMU_SPILL_BLKID) { 5068 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 5069 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 5070 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 5071 } 5072 #endif 5073 5074 if (db->db_level == 0) { 5075 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 5076 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 5077 5078 /* no dr_data if this is a NO_FILL or Direct I/O */ 5079 if (dr->dt.dl.dr_data != NULL && 5080 dr->dt.dl.dr_data != db->db_buf) { 5081 ASSERT3B(dr->dt.dl.dr_brtwrite, ==, B_FALSE); 5082 ASSERT3B(dr->dt.dl.dr_diowrite, ==, B_FALSE); 5083 arc_buf_destroy(dr->dt.dl.dr_data, db); 5084 } 5085 } else { 5086 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 5087 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 5088 if (!BP_IS_HOLE(db->db_blkptr)) { 5089 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift - 5090 SPA_BLKPTRSHIFT; 5091 ASSERT3U(db->db_blkid, <=, 5092 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 5093 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 5094 db->db.db_size); 5095 } 5096 mutex_destroy(&dr->dt.di.dr_mtx); 5097 list_destroy(&dr->dt.di.dr_children); 5098 } 5099 5100 cv_broadcast(&db->db_changed); 5101 ASSERT(db->db_dirtycnt > 0); 5102 db->db_dirtycnt -= 1; 5103 db->db_data_pending = NULL; 5104 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 5105 5106 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted, 5107 zio->io_txg); 5108 5109 kmem_cache_free(dbuf_dirty_kmem_cache, dr); 5110 } 5111 5112 static void 5113 dbuf_write_nofill_ready(zio_t *zio) 5114 { 5115 dbuf_write_ready(zio, NULL, zio->io_private); 5116 } 5117 5118 static void 5119 dbuf_write_nofill_done(zio_t *zio) 5120 { 5121 dbuf_write_done(zio, NULL, zio->io_private); 5122 } 5123 5124 static void 5125 dbuf_write_override_ready(zio_t *zio) 5126 { 5127 dbuf_dirty_record_t *dr = zio->io_private; 5128 dmu_buf_impl_t *db = dr->dr_dbuf; 5129 5130 dbuf_write_ready(zio, NULL, db); 5131 } 5132 5133 static void 5134 dbuf_write_override_done(zio_t *zio) 5135 { 5136 dbuf_dirty_record_t *dr = zio->io_private; 5137 dmu_buf_impl_t *db = dr->dr_dbuf; 5138 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 5139 5140 mutex_enter(&db->db_mtx); 5141 if (!BP_EQUAL(zio->io_bp, obp)) { 5142 if (!BP_IS_HOLE(obp)) 5143 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 5144 arc_release(dr->dt.dl.dr_data, db); 5145 } 5146 mutex_exit(&db->db_mtx); 5147 5148 dbuf_write_done(zio, NULL, db); 5149 5150 if (zio->io_abd != NULL) 5151 abd_free(zio->io_abd); 5152 } 5153 5154 typedef struct dbuf_remap_impl_callback_arg { 5155 objset_t *drica_os; 5156 uint64_t drica_blk_birth; 5157 dmu_tx_t *drica_tx; 5158 } dbuf_remap_impl_callback_arg_t; 5159 5160 static void 5161 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size, 5162 void *arg) 5163 { 5164 dbuf_remap_impl_callback_arg_t *drica = arg; 5165 objset_t *os = drica->drica_os; 5166 spa_t *spa = dmu_objset_spa(os); 5167 dmu_tx_t *tx = drica->drica_tx; 5168 5169 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 5170 5171 if (os == spa_meta_objset(spa)) { 5172 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx); 5173 } else { 5174 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset, 5175 size, drica->drica_blk_birth, tx); 5176 } 5177 } 5178 5179 static void 5180 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx) 5181 { 5182 blkptr_t bp_copy = *bp; 5183 spa_t *spa = dmu_objset_spa(dn->dn_objset); 5184 dbuf_remap_impl_callback_arg_t drica; 5185 5186 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 5187 5188 drica.drica_os = dn->dn_objset; 5189 drica.drica_blk_birth = BP_GET_LOGICAL_BIRTH(bp); 5190 drica.drica_tx = tx; 5191 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback, 5192 &drica)) { 5193 /* 5194 * If the blkptr being remapped is tracked by a livelist, 5195 * then we need to make sure the livelist reflects the update. 5196 * First, cancel out the old blkptr by appending a 'FREE' 5197 * entry. Next, add an 'ALLOC' to track the new version. This 5198 * way we avoid trying to free an inaccurate blkptr at delete. 5199 * Note that embedded blkptrs are not tracked in livelists. 5200 */ 5201 if (dn->dn_objset != spa_meta_objset(spa)) { 5202 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset); 5203 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 5204 BP_GET_LOGICAL_BIRTH(bp) > 5205 ds->ds_dir->dd_origin_txg) { 5206 ASSERT(!BP_IS_EMBEDDED(bp)); 5207 ASSERT(dsl_dir_is_clone(ds->ds_dir)); 5208 ASSERT(spa_feature_is_enabled(spa, 5209 SPA_FEATURE_LIVELIST)); 5210 bplist_append(&ds->ds_dir->dd_pending_frees, 5211 bp); 5212 bplist_append(&ds->ds_dir->dd_pending_allocs, 5213 &bp_copy); 5214 } 5215 } 5216 5217 /* 5218 * The db_rwlock prevents dbuf_read_impl() from 5219 * dereferencing the BP while we are changing it. To 5220 * avoid lock contention, only grab it when we are actually 5221 * changing the BP. 5222 */ 5223 if (rw != NULL) 5224 rw_enter(rw, RW_WRITER); 5225 *bp = bp_copy; 5226 if (rw != NULL) 5227 rw_exit(rw); 5228 } 5229 } 5230 5231 /* 5232 * Remap any existing BP's to concrete vdevs, if possible. 5233 */ 5234 static void 5235 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx) 5236 { 5237 spa_t *spa = dmu_objset_spa(db->db_objset); 5238 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 5239 5240 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)) 5241 return; 5242 5243 if (db->db_level > 0) { 5244 blkptr_t *bp = db->db.db_data; 5245 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) { 5246 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx); 5247 } 5248 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) { 5249 dnode_phys_t *dnp = db->db.db_data; 5250 ASSERT3U(dn->dn_type, ==, DMU_OT_DNODE); 5251 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT; 5252 i += dnp[i].dn_extra_slots + 1) { 5253 for (int j = 0; j < dnp[i].dn_nblkptr; j++) { 5254 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL : 5255 &dn->dn_dbuf->db_rwlock); 5256 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock, 5257 tx); 5258 } 5259 } 5260 } 5261 } 5262 5263 5264 /* 5265 * Populate dr->dr_zio with a zio to commit a dirty buffer to disk. 5266 * Caller is responsible for issuing the zio_[no]wait(dr->dr_zio). 5267 */ 5268 static void 5269 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 5270 { 5271 dmu_buf_impl_t *db = dr->dr_dbuf; 5272 dnode_t *dn = dr->dr_dnode; 5273 objset_t *os; 5274 dmu_buf_impl_t *parent = db->db_parent; 5275 uint64_t txg = tx->tx_txg; 5276 zbookmark_phys_t zb; 5277 zio_prop_t zp; 5278 zio_t *pio; /* parent I/O */ 5279 int wp_flag = 0; 5280 5281 ASSERT(dmu_tx_is_syncing(tx)); 5282 5283 os = dn->dn_objset; 5284 5285 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 5286 /* 5287 * Private object buffers are released here rather than in 5288 * dbuf_dirty() since they are only modified in the syncing 5289 * context and we don't want the overhead of making multiple 5290 * copies of the data. 5291 */ 5292 if (BP_IS_HOLE(db->db_blkptr)) 5293 arc_buf_thaw(data); 5294 else 5295 dbuf_release_bp(db); 5296 dbuf_remap(dn, db, tx); 5297 } 5298 5299 if (parent != dn->dn_dbuf) { 5300 /* Our parent is an indirect block. */ 5301 /* We have a dirty parent that has been scheduled for write. */ 5302 ASSERT(parent && parent->db_data_pending); 5303 /* Our parent's buffer is one level closer to the dnode. */ 5304 ASSERT(db->db_level == parent->db_level-1); 5305 /* 5306 * We're about to modify our parent's db_data by modifying 5307 * our block pointer, so the parent must be released. 5308 */ 5309 ASSERT(arc_released(parent->db_buf)); 5310 pio = parent->db_data_pending->dr_zio; 5311 } else { 5312 /* Our parent is the dnode itself. */ 5313 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 5314 db->db_blkid != DMU_SPILL_BLKID) || 5315 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 5316 if (db->db_blkid != DMU_SPILL_BLKID) 5317 ASSERT3P(db->db_blkptr, ==, 5318 &dn->dn_phys->dn_blkptr[db->db_blkid]); 5319 pio = dn->dn_zio; 5320 } 5321 5322 ASSERT(db->db_level == 0 || data == db->db_buf); 5323 ASSERT3U(BP_GET_LOGICAL_BIRTH(db->db_blkptr), <=, txg); 5324 ASSERT(pio); 5325 5326 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 5327 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 5328 db->db.db_object, db->db_level, db->db_blkid); 5329 5330 if (db->db_blkid == DMU_SPILL_BLKID) 5331 wp_flag = WP_SPILL; 5332 wp_flag |= (data == NULL) ? WP_NOFILL : 0; 5333 5334 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 5335 5336 /* 5337 * We copy the blkptr now (rather than when we instantiate the dirty 5338 * record), because its value can change between open context and 5339 * syncing context. We do not need to hold dn_struct_rwlock to read 5340 * db_blkptr because we are in syncing context. 5341 */ 5342 dr->dr_bp_copy = *db->db_blkptr; 5343 5344 if (db->db_level == 0 && 5345 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 5346 /* 5347 * The BP for this block has been provided by open context 5348 * (by dmu_sync(), dmu_write_direct(), 5349 * or dmu_buf_write_embedded()). 5350 */ 5351 abd_t *contents = (data != NULL) ? 5352 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL; 5353 5354 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy, 5355 contents, db->db.db_size, db->db.db_size, &zp, 5356 dbuf_write_override_ready, NULL, 5357 dbuf_write_override_done, 5358 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 5359 mutex_enter(&db->db_mtx); 5360 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 5361 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 5362 dr->dt.dl.dr_copies, dr->dt.dl.dr_gang_copies, 5363 dr->dt.dl.dr_nopwrite, dr->dt.dl.dr_brtwrite); 5364 mutex_exit(&db->db_mtx); 5365 } else if (data == NULL) { 5366 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 5367 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 5368 dr->dr_zio = zio_write(pio, os->os_spa, txg, 5369 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp, 5370 dbuf_write_nofill_ready, NULL, 5371 dbuf_write_nofill_done, db, 5372 ZIO_PRIORITY_ASYNC_WRITE, 5373 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 5374 } else { 5375 ASSERT(arc_released(data)); 5376 5377 /* 5378 * For indirect blocks, we want to setup the children 5379 * ready callback so that we can properly handle an indirect 5380 * block that only contains holes. 5381 */ 5382 arc_write_done_func_t *children_ready_cb = NULL; 5383 if (db->db_level != 0) 5384 children_ready_cb = dbuf_write_children_ready; 5385 5386 dr->dr_zio = arc_write(pio, os->os_spa, txg, 5387 &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db), 5388 dbuf_is_l2cacheable(db, NULL), &zp, dbuf_write_ready, 5389 children_ready_cb, dbuf_write_done, db, 5390 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 5391 } 5392 } 5393 5394 EXPORT_SYMBOL(dbuf_find); 5395 EXPORT_SYMBOL(dbuf_is_metadata); 5396 EXPORT_SYMBOL(dbuf_destroy); 5397 EXPORT_SYMBOL(dbuf_whichblock); 5398 EXPORT_SYMBOL(dbuf_read); 5399 EXPORT_SYMBOL(dbuf_unoverride); 5400 EXPORT_SYMBOL(dbuf_free_range); 5401 EXPORT_SYMBOL(dbuf_new_size); 5402 EXPORT_SYMBOL(dbuf_release_bp); 5403 EXPORT_SYMBOL(dbuf_dirty); 5404 EXPORT_SYMBOL(dmu_buf_set_crypt_params); 5405 EXPORT_SYMBOL(dmu_buf_will_dirty); 5406 EXPORT_SYMBOL(dmu_buf_is_dirty); 5407 EXPORT_SYMBOL(dmu_buf_will_clone_or_dio); 5408 EXPORT_SYMBOL(dmu_buf_will_not_fill); 5409 EXPORT_SYMBOL(dmu_buf_will_fill); 5410 EXPORT_SYMBOL(dmu_buf_fill_done); 5411 EXPORT_SYMBOL(dmu_buf_rele); 5412 EXPORT_SYMBOL(dbuf_assign_arcbuf); 5413 EXPORT_SYMBOL(dbuf_prefetch); 5414 EXPORT_SYMBOL(dbuf_hold_impl); 5415 EXPORT_SYMBOL(dbuf_hold); 5416 EXPORT_SYMBOL(dbuf_hold_level); 5417 EXPORT_SYMBOL(dbuf_create_bonus); 5418 EXPORT_SYMBOL(dbuf_spill_set_blksz); 5419 EXPORT_SYMBOL(dbuf_rm_spill); 5420 EXPORT_SYMBOL(dbuf_add_ref); 5421 EXPORT_SYMBOL(dbuf_rele); 5422 EXPORT_SYMBOL(dbuf_rele_and_unlock); 5423 EXPORT_SYMBOL(dbuf_refcount); 5424 EXPORT_SYMBOL(dbuf_sync_list); 5425 EXPORT_SYMBOL(dmu_buf_set_user); 5426 EXPORT_SYMBOL(dmu_buf_set_user_ie); 5427 EXPORT_SYMBOL(dmu_buf_get_user); 5428 EXPORT_SYMBOL(dmu_buf_get_blkptr); 5429 5430 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW, 5431 "Maximum size in bytes of the dbuf cache."); 5432 5433 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW, 5434 "Percentage over dbuf_cache_max_bytes for direct dbuf eviction."); 5435 5436 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW, 5437 "Percentage below dbuf_cache_max_bytes when dbuf eviction stops."); 5438 5439 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW, 5440 "Maximum size in bytes of dbuf metadata cache."); 5441 5442 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW, 5443 "Set size of dbuf cache to log2 fraction of arc size."); 5444 5445 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW, 5446 "Set size of dbuf metadata cache to log2 fraction of arc size."); 5447 5448 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD, 5449 "Set size of dbuf cache mutex array as log2 shift."); 5450