1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright (c) 2019, Klara Inc. 28 * Copyright (c) 2019, Allan Jude 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/arc.h> 33 #include <sys/dmu.h> 34 #include <sys/dmu_send.h> 35 #include <sys/dmu_impl.h> 36 #include <sys/dbuf.h> 37 #include <sys/dmu_objset.h> 38 #include <sys/dsl_dataset.h> 39 #include <sys/dsl_dir.h> 40 #include <sys/dmu_tx.h> 41 #include <sys/spa.h> 42 #include <sys/zio.h> 43 #include <sys/dmu_zfetch.h> 44 #include <sys/sa.h> 45 #include <sys/sa_impl.h> 46 #include <sys/zfeature.h> 47 #include <sys/blkptr.h> 48 #include <sys/range_tree.h> 49 #include <sys/trace_zfs.h> 50 #include <sys/callb.h> 51 #include <sys/abd.h> 52 #include <sys/vdev.h> 53 #include <cityhash.h> 54 #include <sys/spa_impl.h> 55 #include <sys/wmsum.h> 56 #include <sys/vdev_impl.h> 57 58 static kstat_t *dbuf_ksp; 59 60 typedef struct dbuf_stats { 61 /* 62 * Various statistics about the size of the dbuf cache. 63 */ 64 kstat_named_t cache_count; 65 kstat_named_t cache_size_bytes; 66 kstat_named_t cache_size_bytes_max; 67 /* 68 * Statistics regarding the bounds on the dbuf cache size. 69 */ 70 kstat_named_t cache_target_bytes; 71 kstat_named_t cache_lowater_bytes; 72 kstat_named_t cache_hiwater_bytes; 73 /* 74 * Total number of dbuf cache evictions that have occurred. 75 */ 76 kstat_named_t cache_total_evicts; 77 /* 78 * The distribution of dbuf levels in the dbuf cache and 79 * the total size of all dbufs at each level. 80 */ 81 kstat_named_t cache_levels[DN_MAX_LEVELS]; 82 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS]; 83 /* 84 * Statistics about the dbuf hash table. 85 */ 86 kstat_named_t hash_hits; 87 kstat_named_t hash_misses; 88 kstat_named_t hash_collisions; 89 kstat_named_t hash_elements; 90 kstat_named_t hash_elements_max; 91 /* 92 * Number of sublists containing more than one dbuf in the dbuf 93 * hash table. Keep track of the longest hash chain. 94 */ 95 kstat_named_t hash_chains; 96 kstat_named_t hash_chain_max; 97 /* 98 * Number of times a dbuf_create() discovers that a dbuf was 99 * already created and in the dbuf hash table. 100 */ 101 kstat_named_t hash_insert_race; 102 /* 103 * Statistics about the size of the metadata dbuf cache. 104 */ 105 kstat_named_t metadata_cache_count; 106 kstat_named_t metadata_cache_size_bytes; 107 kstat_named_t metadata_cache_size_bytes_max; 108 /* 109 * For diagnostic purposes, this is incremented whenever we can't add 110 * something to the metadata cache because it's full, and instead put 111 * the data in the regular dbuf cache. 112 */ 113 kstat_named_t metadata_cache_overflow; 114 } dbuf_stats_t; 115 116 dbuf_stats_t dbuf_stats = { 117 { "cache_count", KSTAT_DATA_UINT64 }, 118 { "cache_size_bytes", KSTAT_DATA_UINT64 }, 119 { "cache_size_bytes_max", KSTAT_DATA_UINT64 }, 120 { "cache_target_bytes", KSTAT_DATA_UINT64 }, 121 { "cache_lowater_bytes", KSTAT_DATA_UINT64 }, 122 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 }, 123 { "cache_total_evicts", KSTAT_DATA_UINT64 }, 124 { { "cache_levels_N", KSTAT_DATA_UINT64 } }, 125 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } }, 126 { "hash_hits", KSTAT_DATA_UINT64 }, 127 { "hash_misses", KSTAT_DATA_UINT64 }, 128 { "hash_collisions", KSTAT_DATA_UINT64 }, 129 { "hash_elements", KSTAT_DATA_UINT64 }, 130 { "hash_elements_max", KSTAT_DATA_UINT64 }, 131 { "hash_chains", KSTAT_DATA_UINT64 }, 132 { "hash_chain_max", KSTAT_DATA_UINT64 }, 133 { "hash_insert_race", KSTAT_DATA_UINT64 }, 134 { "metadata_cache_count", KSTAT_DATA_UINT64 }, 135 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 }, 136 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 }, 137 { "metadata_cache_overflow", KSTAT_DATA_UINT64 } 138 }; 139 140 struct { 141 wmsum_t cache_count; 142 wmsum_t cache_total_evicts; 143 wmsum_t cache_levels[DN_MAX_LEVELS]; 144 wmsum_t cache_levels_bytes[DN_MAX_LEVELS]; 145 wmsum_t hash_hits; 146 wmsum_t hash_misses; 147 wmsum_t hash_collisions; 148 wmsum_t hash_chains; 149 wmsum_t hash_insert_race; 150 wmsum_t metadata_cache_count; 151 wmsum_t metadata_cache_overflow; 152 } dbuf_sums; 153 154 #define DBUF_STAT_INCR(stat, val) \ 155 wmsum_add(&dbuf_sums.stat, val); 156 #define DBUF_STAT_DECR(stat, val) \ 157 DBUF_STAT_INCR(stat, -(val)); 158 #define DBUF_STAT_BUMP(stat) \ 159 DBUF_STAT_INCR(stat, 1); 160 #define DBUF_STAT_BUMPDOWN(stat) \ 161 DBUF_STAT_INCR(stat, -1); 162 #define DBUF_STAT_MAX(stat, v) { \ 163 uint64_t _m; \ 164 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \ 165 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\ 166 continue; \ 167 } 168 169 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 170 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 171 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr); 172 static int dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags); 173 174 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu, 175 dmu_buf_evict_func_t *evict_func_sync, 176 dmu_buf_evict_func_t *evict_func_async, 177 dmu_buf_t **clear_on_evict_dbufp); 178 179 /* 180 * Global data structures and functions for the dbuf cache. 181 */ 182 static kmem_cache_t *dbuf_kmem_cache; 183 static taskq_t *dbu_evict_taskq; 184 185 static kthread_t *dbuf_cache_evict_thread; 186 static kmutex_t dbuf_evict_lock; 187 static kcondvar_t dbuf_evict_cv; 188 static boolean_t dbuf_evict_thread_exit; 189 190 /* 191 * There are two dbuf caches; each dbuf can only be in one of them at a time. 192 * 193 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands 194 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs 195 * that represent the metadata that describes filesystems/snapshots/ 196 * bookmarks/properties/etc. We only evict from this cache when we export a 197 * pool, to short-circuit as much I/O as possible for all administrative 198 * commands that need the metadata. There is no eviction policy for this 199 * cache, because we try to only include types in it which would occupy a 200 * very small amount of space per object but create a large impact on the 201 * performance of these commands. Instead, after it reaches a maximum size 202 * (which should only happen on very small memory systems with a very large 203 * number of filesystem objects), we stop taking new dbufs into the 204 * metadata cache, instead putting them in the normal dbuf cache. 205 * 206 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that 207 * are not currently held but have been recently released. These dbufs 208 * are not eligible for arc eviction until they are aged out of the cache. 209 * Dbufs that are aged out of the cache will be immediately destroyed and 210 * become eligible for arc eviction. 211 * 212 * Dbufs are added to these caches once the last hold is released. If a dbuf is 213 * later accessed and still exists in the dbuf cache, then it will be removed 214 * from the cache and later re-added to the head of the cache. 215 * 216 * If a given dbuf meets the requirements for the metadata cache, it will go 217 * there, otherwise it will be considered for the generic LRU dbuf cache. The 218 * caches and the refcounts tracking their sizes are stored in an array indexed 219 * by those caches' matching enum values (from dbuf_cached_state_t). 220 */ 221 typedef struct dbuf_cache { 222 multilist_t cache; 223 zfs_refcount_t size ____cacheline_aligned; 224 } dbuf_cache_t; 225 dbuf_cache_t dbuf_caches[DB_CACHE_MAX]; 226 227 /* Size limits for the caches */ 228 static unsigned long dbuf_cache_max_bytes = ULONG_MAX; 229 static unsigned long dbuf_metadata_cache_max_bytes = ULONG_MAX; 230 231 /* Set the default sizes of the caches to log2 fraction of arc size */ 232 static int dbuf_cache_shift = 5; 233 static int dbuf_metadata_cache_shift = 6; 234 235 static unsigned long dbuf_cache_target_bytes(void); 236 static unsigned long dbuf_metadata_cache_target_bytes(void); 237 238 /* 239 * The LRU dbuf cache uses a three-stage eviction policy: 240 * - A low water marker designates when the dbuf eviction thread 241 * should stop evicting from the dbuf cache. 242 * - When we reach the maximum size (aka mid water mark), we 243 * signal the eviction thread to run. 244 * - The high water mark indicates when the eviction thread 245 * is unable to keep up with the incoming load and eviction must 246 * happen in the context of the calling thread. 247 * 248 * The dbuf cache: 249 * (max size) 250 * low water mid water hi water 251 * +----------------------------------------+----------+----------+ 252 * | | | | 253 * | | | | 254 * | | | | 255 * | | | | 256 * +----------------------------------------+----------+----------+ 257 * stop signal evict 258 * evicting eviction directly 259 * thread 260 * 261 * The high and low water marks indicate the operating range for the eviction 262 * thread. The low water mark is, by default, 90% of the total size of the 263 * cache and the high water mark is at 110% (both of these percentages can be 264 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 265 * respectively). The eviction thread will try to ensure that the cache remains 266 * within this range by waking up every second and checking if the cache is 267 * above the low water mark. The thread can also be woken up by callers adding 268 * elements into the cache if the cache is larger than the mid water (i.e max 269 * cache size). Once the eviction thread is woken up and eviction is required, 270 * it will continue evicting buffers until it's able to reduce the cache size 271 * to the low water mark. If the cache size continues to grow and hits the high 272 * water mark, then callers adding elements to the cache will begin to evict 273 * directly from the cache until the cache is no longer above the high water 274 * mark. 275 */ 276 277 /* 278 * The percentage above and below the maximum cache size. 279 */ 280 static uint_t dbuf_cache_hiwater_pct = 10; 281 static uint_t dbuf_cache_lowater_pct = 10; 282 283 static int 284 dbuf_cons(void *vdb, void *unused, int kmflag) 285 { 286 (void) unused, (void) kmflag; 287 dmu_buf_impl_t *db = vdb; 288 bzero(db, sizeof (dmu_buf_impl_t)); 289 290 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 291 rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL); 292 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 293 multilist_link_init(&db->db_cache_link); 294 zfs_refcount_create(&db->db_holds); 295 296 return (0); 297 } 298 299 static void 300 dbuf_dest(void *vdb, void *unused) 301 { 302 (void) unused; 303 dmu_buf_impl_t *db = vdb; 304 mutex_destroy(&db->db_mtx); 305 rw_destroy(&db->db_rwlock); 306 cv_destroy(&db->db_changed); 307 ASSERT(!multilist_link_active(&db->db_cache_link)); 308 zfs_refcount_destroy(&db->db_holds); 309 } 310 311 /* 312 * dbuf hash table routines 313 */ 314 static dbuf_hash_table_t dbuf_hash_table; 315 316 /* 317 * We use Cityhash for this. It's fast, and has good hash properties without 318 * requiring any large static buffers. 319 */ 320 static uint64_t 321 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 322 { 323 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid)); 324 } 325 326 #define DTRACE_SET_STATE(db, why) \ 327 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \ 328 const char *, why) 329 330 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 331 ((dbuf)->db.db_object == (obj) && \ 332 (dbuf)->db_objset == (os) && \ 333 (dbuf)->db_level == (level) && \ 334 (dbuf)->db_blkid == (blkid)) 335 336 dmu_buf_impl_t * 337 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid) 338 { 339 dbuf_hash_table_t *h = &dbuf_hash_table; 340 uint64_t hv; 341 uint64_t idx; 342 dmu_buf_impl_t *db; 343 344 hv = dbuf_hash(os, obj, level, blkid); 345 idx = hv & h->hash_table_mask; 346 347 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 348 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 349 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 350 mutex_enter(&db->db_mtx); 351 if (db->db_state != DB_EVICTING) { 352 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 353 return (db); 354 } 355 mutex_exit(&db->db_mtx); 356 } 357 } 358 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 359 return (NULL); 360 } 361 362 static dmu_buf_impl_t * 363 dbuf_find_bonus(objset_t *os, uint64_t object) 364 { 365 dnode_t *dn; 366 dmu_buf_impl_t *db = NULL; 367 368 if (dnode_hold(os, object, FTAG, &dn) == 0) { 369 rw_enter(&dn->dn_struct_rwlock, RW_READER); 370 if (dn->dn_bonus != NULL) { 371 db = dn->dn_bonus; 372 mutex_enter(&db->db_mtx); 373 } 374 rw_exit(&dn->dn_struct_rwlock); 375 dnode_rele(dn, FTAG); 376 } 377 return (db); 378 } 379 380 /* 381 * Insert an entry into the hash table. If there is already an element 382 * equal to elem in the hash table, then the already existing element 383 * will be returned and the new element will not be inserted. 384 * Otherwise returns NULL. 385 */ 386 static dmu_buf_impl_t * 387 dbuf_hash_insert(dmu_buf_impl_t *db) 388 { 389 dbuf_hash_table_t *h = &dbuf_hash_table; 390 objset_t *os = db->db_objset; 391 uint64_t obj = db->db.db_object; 392 int level = db->db_level; 393 uint64_t blkid, hv, idx; 394 dmu_buf_impl_t *dbf; 395 uint32_t i; 396 397 blkid = db->db_blkid; 398 hv = dbuf_hash(os, obj, level, blkid); 399 idx = hv & h->hash_table_mask; 400 401 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 402 for (dbf = h->hash_table[idx], i = 0; dbf != NULL; 403 dbf = dbf->db_hash_next, i++) { 404 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 405 mutex_enter(&dbf->db_mtx); 406 if (dbf->db_state != DB_EVICTING) { 407 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 408 return (dbf); 409 } 410 mutex_exit(&dbf->db_mtx); 411 } 412 } 413 414 if (i > 0) { 415 DBUF_STAT_BUMP(hash_collisions); 416 if (i == 1) 417 DBUF_STAT_BUMP(hash_chains); 418 419 DBUF_STAT_MAX(hash_chain_max, i); 420 } 421 422 mutex_enter(&db->db_mtx); 423 db->db_hash_next = h->hash_table[idx]; 424 h->hash_table[idx] = db; 425 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 426 uint64_t he = atomic_inc_64_nv(&dbuf_stats.hash_elements.value.ui64); 427 DBUF_STAT_MAX(hash_elements_max, he); 428 429 return (NULL); 430 } 431 432 /* 433 * This returns whether this dbuf should be stored in the metadata cache, which 434 * is based on whether it's from one of the dnode types that store data related 435 * to traversing dataset hierarchies. 436 */ 437 static boolean_t 438 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db) 439 { 440 DB_DNODE_ENTER(db); 441 dmu_object_type_t type = DB_DNODE(db)->dn_type; 442 DB_DNODE_EXIT(db); 443 444 /* Check if this dbuf is one of the types we care about */ 445 if (DMU_OT_IS_METADATA_CACHED(type)) { 446 /* If we hit this, then we set something up wrong in dmu_ot */ 447 ASSERT(DMU_OT_IS_METADATA(type)); 448 449 /* 450 * Sanity check for small-memory systems: don't allocate too 451 * much memory for this purpose. 452 */ 453 if (zfs_refcount_count( 454 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) > 455 dbuf_metadata_cache_target_bytes()) { 456 DBUF_STAT_BUMP(metadata_cache_overflow); 457 return (B_FALSE); 458 } 459 460 return (B_TRUE); 461 } 462 463 return (B_FALSE); 464 } 465 466 /* 467 * Remove an entry from the hash table. It must be in the EVICTING state. 468 */ 469 static void 470 dbuf_hash_remove(dmu_buf_impl_t *db) 471 { 472 dbuf_hash_table_t *h = &dbuf_hash_table; 473 uint64_t hv, idx; 474 dmu_buf_impl_t *dbf, **dbp; 475 476 hv = dbuf_hash(db->db_objset, db->db.db_object, 477 db->db_level, db->db_blkid); 478 idx = hv & h->hash_table_mask; 479 480 /* 481 * We mustn't hold db_mtx to maintain lock ordering: 482 * DBUF_HASH_MUTEX > db_mtx. 483 */ 484 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 485 ASSERT(db->db_state == DB_EVICTING); 486 ASSERT(!MUTEX_HELD(&db->db_mtx)); 487 488 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 489 dbp = &h->hash_table[idx]; 490 while ((dbf = *dbp) != db) { 491 dbp = &dbf->db_hash_next; 492 ASSERT(dbf != NULL); 493 } 494 *dbp = db->db_hash_next; 495 db->db_hash_next = NULL; 496 if (h->hash_table[idx] && 497 h->hash_table[idx]->db_hash_next == NULL) 498 DBUF_STAT_BUMPDOWN(hash_chains); 499 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 500 atomic_dec_64(&dbuf_stats.hash_elements.value.ui64); 501 } 502 503 typedef enum { 504 DBVU_EVICTING, 505 DBVU_NOT_EVICTING 506 } dbvu_verify_type_t; 507 508 static void 509 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 510 { 511 #ifdef ZFS_DEBUG 512 int64_t holds; 513 514 if (db->db_user == NULL) 515 return; 516 517 /* Only data blocks support the attachment of user data. */ 518 ASSERT(db->db_level == 0); 519 520 /* Clients must resolve a dbuf before attaching user data. */ 521 ASSERT(db->db.db_data != NULL); 522 ASSERT3U(db->db_state, ==, DB_CACHED); 523 524 holds = zfs_refcount_count(&db->db_holds); 525 if (verify_type == DBVU_EVICTING) { 526 /* 527 * Immediate eviction occurs when holds == dirtycnt. 528 * For normal eviction buffers, holds is zero on 529 * eviction, except when dbuf_fix_old_data() calls 530 * dbuf_clear_data(). However, the hold count can grow 531 * during eviction even though db_mtx is held (see 532 * dmu_bonus_hold() for an example), so we can only 533 * test the generic invariant that holds >= dirtycnt. 534 */ 535 ASSERT3U(holds, >=, db->db_dirtycnt); 536 } else { 537 if (db->db_user_immediate_evict == TRUE) 538 ASSERT3U(holds, >=, db->db_dirtycnt); 539 else 540 ASSERT3U(holds, >, 0); 541 } 542 #endif 543 } 544 545 static void 546 dbuf_evict_user(dmu_buf_impl_t *db) 547 { 548 dmu_buf_user_t *dbu = db->db_user; 549 550 ASSERT(MUTEX_HELD(&db->db_mtx)); 551 552 if (dbu == NULL) 553 return; 554 555 dbuf_verify_user(db, DBVU_EVICTING); 556 db->db_user = NULL; 557 558 #ifdef ZFS_DEBUG 559 if (dbu->dbu_clear_on_evict_dbufp != NULL) 560 *dbu->dbu_clear_on_evict_dbufp = NULL; 561 #endif 562 563 /* 564 * There are two eviction callbacks - one that we call synchronously 565 * and one that we invoke via a taskq. The async one is useful for 566 * avoiding lock order reversals and limiting stack depth. 567 * 568 * Note that if we have a sync callback but no async callback, 569 * it's likely that the sync callback will free the structure 570 * containing the dbu. In that case we need to take care to not 571 * dereference dbu after calling the sync evict func. 572 */ 573 boolean_t has_async = (dbu->dbu_evict_func_async != NULL); 574 575 if (dbu->dbu_evict_func_sync != NULL) 576 dbu->dbu_evict_func_sync(dbu); 577 578 if (has_async) { 579 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, 580 dbu, 0, &dbu->dbu_tqent); 581 } 582 } 583 584 boolean_t 585 dbuf_is_metadata(dmu_buf_impl_t *db) 586 { 587 /* 588 * Consider indirect blocks and spill blocks to be meta data. 589 */ 590 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) { 591 return (B_TRUE); 592 } else { 593 boolean_t is_metadata; 594 595 DB_DNODE_ENTER(db); 596 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 597 DB_DNODE_EXIT(db); 598 599 return (is_metadata); 600 } 601 } 602 603 /* 604 * We want to exclude buffers that are on a special allocation class from 605 * L2ARC. 606 */ 607 boolean_t 608 dbuf_is_l2cacheable(dmu_buf_impl_t *db) 609 { 610 vdev_t *vd = NULL; 611 zfs_cache_type_t cache = db->db_objset->os_secondary_cache; 612 blkptr_t *bp = db->db_blkptr; 613 614 if (bp != NULL && !BP_IS_HOLE(bp)) { 615 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva); 616 vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev; 617 618 if (vdev < rvd->vdev_children) 619 vd = rvd->vdev_child[vdev]; 620 621 if (cache == ZFS_CACHE_ALL || 622 (dbuf_is_metadata(db) && cache == ZFS_CACHE_METADATA)) { 623 if (vd == NULL) 624 return (B_TRUE); 625 626 if ((vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && 627 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) || 628 l2arc_exclude_special == 0) 629 return (B_TRUE); 630 } 631 } 632 633 return (B_FALSE); 634 } 635 636 static inline boolean_t 637 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level) 638 { 639 vdev_t *vd = NULL; 640 zfs_cache_type_t cache = dn->dn_objset->os_secondary_cache; 641 642 if (bp != NULL && !BP_IS_HOLE(bp)) { 643 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva); 644 vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev; 645 646 if (vdev < rvd->vdev_children) 647 vd = rvd->vdev_child[vdev]; 648 649 if (cache == ZFS_CACHE_ALL || ((level > 0 || 650 DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)) && 651 cache == ZFS_CACHE_METADATA)) { 652 if (vd == NULL) 653 return (B_TRUE); 654 655 if ((vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && 656 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) || 657 l2arc_exclude_special == 0) 658 return (B_TRUE); 659 } 660 } 661 662 return (B_FALSE); 663 } 664 665 666 /* 667 * This function *must* return indices evenly distributed between all 668 * sublists of the multilist. This is needed due to how the dbuf eviction 669 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 670 * distributed between all sublists and uses this assumption when 671 * deciding which sublist to evict from and how much to evict from it. 672 */ 673 static unsigned int 674 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 675 { 676 dmu_buf_impl_t *db = obj; 677 678 /* 679 * The assumption here, is the hash value for a given 680 * dmu_buf_impl_t will remain constant throughout it's lifetime 681 * (i.e. it's objset, object, level and blkid fields don't change). 682 * Thus, we don't need to store the dbuf's sublist index 683 * on insertion, as this index can be recalculated on removal. 684 * 685 * Also, the low order bits of the hash value are thought to be 686 * distributed evenly. Otherwise, in the case that the multilist 687 * has a power of two number of sublists, each sublists' usage 688 * would not be evenly distributed. In this context full 64bit 689 * division would be a waste of time, so limit it to 32 bits. 690 */ 691 return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object, 692 db->db_level, db->db_blkid) % 693 multilist_get_num_sublists(ml)); 694 } 695 696 /* 697 * The target size of the dbuf cache can grow with the ARC target, 698 * unless limited by the tunable dbuf_cache_max_bytes. 699 */ 700 static inline unsigned long 701 dbuf_cache_target_bytes(void) 702 { 703 return (MIN(dbuf_cache_max_bytes, 704 arc_target_bytes() >> dbuf_cache_shift)); 705 } 706 707 /* 708 * The target size of the dbuf metadata cache can grow with the ARC target, 709 * unless limited by the tunable dbuf_metadata_cache_max_bytes. 710 */ 711 static inline unsigned long 712 dbuf_metadata_cache_target_bytes(void) 713 { 714 return (MIN(dbuf_metadata_cache_max_bytes, 715 arc_target_bytes() >> dbuf_metadata_cache_shift)); 716 } 717 718 static inline uint64_t 719 dbuf_cache_hiwater_bytes(void) 720 { 721 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 722 return (dbuf_cache_target + 723 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100); 724 } 725 726 static inline uint64_t 727 dbuf_cache_lowater_bytes(void) 728 { 729 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 730 return (dbuf_cache_target - 731 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100); 732 } 733 734 static inline boolean_t 735 dbuf_cache_above_lowater(void) 736 { 737 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > 738 dbuf_cache_lowater_bytes()); 739 } 740 741 /* 742 * Evict the oldest eligible dbuf from the dbuf cache. 743 */ 744 static void 745 dbuf_evict_one(void) 746 { 747 int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache); 748 multilist_sublist_t *mls = multilist_sublist_lock( 749 &dbuf_caches[DB_DBUF_CACHE].cache, idx); 750 751 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 752 753 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 754 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 755 db = multilist_sublist_prev(mls, db); 756 } 757 758 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 759 multilist_sublist_t *, mls); 760 761 if (db != NULL) { 762 multilist_sublist_remove(mls, db); 763 multilist_sublist_unlock(mls); 764 (void) zfs_refcount_remove_many( 765 &dbuf_caches[DB_DBUF_CACHE].size, db->db.db_size, db); 766 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 767 DBUF_STAT_BUMPDOWN(cache_count); 768 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 769 db->db.db_size); 770 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE); 771 db->db_caching_status = DB_NO_CACHE; 772 dbuf_destroy(db); 773 DBUF_STAT_BUMP(cache_total_evicts); 774 } else { 775 multilist_sublist_unlock(mls); 776 } 777 } 778 779 /* 780 * The dbuf evict thread is responsible for aging out dbufs from the 781 * cache. Once the cache has reached it's maximum size, dbufs are removed 782 * and destroyed. The eviction thread will continue running until the size 783 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 784 * out of the cache it is destroyed and becomes eligible for arc eviction. 785 */ 786 static void 787 dbuf_evict_thread(void *unused) 788 { 789 (void) unused; 790 callb_cpr_t cpr; 791 792 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 793 794 mutex_enter(&dbuf_evict_lock); 795 while (!dbuf_evict_thread_exit) { 796 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 797 CALLB_CPR_SAFE_BEGIN(&cpr); 798 (void) cv_timedwait_idle_hires(&dbuf_evict_cv, 799 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 800 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 801 } 802 mutex_exit(&dbuf_evict_lock); 803 804 /* 805 * Keep evicting as long as we're above the low water mark 806 * for the cache. We do this without holding the locks to 807 * minimize lock contention. 808 */ 809 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 810 dbuf_evict_one(); 811 } 812 813 mutex_enter(&dbuf_evict_lock); 814 } 815 816 dbuf_evict_thread_exit = B_FALSE; 817 cv_broadcast(&dbuf_evict_cv); 818 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 819 thread_exit(); 820 } 821 822 /* 823 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 824 * If the dbuf cache is at its high water mark, then evict a dbuf from the 825 * dbuf cache using the callers context. 826 */ 827 static void 828 dbuf_evict_notify(uint64_t size) 829 { 830 /* 831 * We check if we should evict without holding the dbuf_evict_lock, 832 * because it's OK to occasionally make the wrong decision here, 833 * and grabbing the lock results in massive lock contention. 834 */ 835 if (size > dbuf_cache_target_bytes()) { 836 if (size > dbuf_cache_hiwater_bytes()) 837 dbuf_evict_one(); 838 cv_signal(&dbuf_evict_cv); 839 } 840 } 841 842 static int 843 dbuf_kstat_update(kstat_t *ksp, int rw) 844 { 845 dbuf_stats_t *ds = ksp->ks_data; 846 847 if (rw == KSTAT_WRITE) 848 return (SET_ERROR(EACCES)); 849 850 ds->cache_count.value.ui64 = 851 wmsum_value(&dbuf_sums.cache_count); 852 ds->cache_size_bytes.value.ui64 = 853 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size); 854 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes(); 855 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes(); 856 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes(); 857 ds->cache_total_evicts.value.ui64 = 858 wmsum_value(&dbuf_sums.cache_total_evicts); 859 for (int i = 0; i < DN_MAX_LEVELS; i++) { 860 ds->cache_levels[i].value.ui64 = 861 wmsum_value(&dbuf_sums.cache_levels[i]); 862 ds->cache_levels_bytes[i].value.ui64 = 863 wmsum_value(&dbuf_sums.cache_levels_bytes[i]); 864 } 865 ds->hash_hits.value.ui64 = 866 wmsum_value(&dbuf_sums.hash_hits); 867 ds->hash_misses.value.ui64 = 868 wmsum_value(&dbuf_sums.hash_misses); 869 ds->hash_collisions.value.ui64 = 870 wmsum_value(&dbuf_sums.hash_collisions); 871 ds->hash_chains.value.ui64 = 872 wmsum_value(&dbuf_sums.hash_chains); 873 ds->hash_insert_race.value.ui64 = 874 wmsum_value(&dbuf_sums.hash_insert_race); 875 ds->metadata_cache_count.value.ui64 = 876 wmsum_value(&dbuf_sums.metadata_cache_count); 877 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count( 878 &dbuf_caches[DB_DBUF_METADATA_CACHE].size); 879 ds->metadata_cache_overflow.value.ui64 = 880 wmsum_value(&dbuf_sums.metadata_cache_overflow); 881 return (0); 882 } 883 884 void 885 dbuf_init(void) 886 { 887 uint64_t hsize = 1ULL << 16; 888 dbuf_hash_table_t *h = &dbuf_hash_table; 889 int i; 890 891 /* 892 * The hash table is big enough to fill one eighth of physical memory 893 * with an average block size of zfs_arc_average_blocksize (default 8K). 894 * By default, the table will take up 895 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 896 */ 897 while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8) 898 hsize <<= 1; 899 900 retry: 901 h->hash_table_mask = hsize - 1; 902 #if defined(_KERNEL) 903 /* 904 * Large allocations which do not require contiguous pages 905 * should be using vmem_alloc() in the linux kernel 906 */ 907 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP); 908 #else 909 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); 910 #endif 911 if (h->hash_table == NULL) { 912 /* XXX - we should really return an error instead of assert */ 913 ASSERT(hsize > (1ULL << 10)); 914 hsize >>= 1; 915 goto retry; 916 } 917 918 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 919 sizeof (dmu_buf_impl_t), 920 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 921 922 for (i = 0; i < DBUF_MUTEXES; i++) 923 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 924 925 dbuf_stats_init(h); 926 927 /* 928 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 929 * configuration is not required. 930 */ 931 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0); 932 933 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 934 multilist_create(&dbuf_caches[dcs].cache, 935 sizeof (dmu_buf_impl_t), 936 offsetof(dmu_buf_impl_t, db_cache_link), 937 dbuf_cache_multilist_index_func); 938 zfs_refcount_create(&dbuf_caches[dcs].size); 939 } 940 941 dbuf_evict_thread_exit = B_FALSE; 942 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 943 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 944 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 945 NULL, 0, &p0, TS_RUN, minclsyspri); 946 947 wmsum_init(&dbuf_sums.cache_count, 0); 948 wmsum_init(&dbuf_sums.cache_total_evicts, 0); 949 for (i = 0; i < DN_MAX_LEVELS; i++) { 950 wmsum_init(&dbuf_sums.cache_levels[i], 0); 951 wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0); 952 } 953 wmsum_init(&dbuf_sums.hash_hits, 0); 954 wmsum_init(&dbuf_sums.hash_misses, 0); 955 wmsum_init(&dbuf_sums.hash_collisions, 0); 956 wmsum_init(&dbuf_sums.hash_chains, 0); 957 wmsum_init(&dbuf_sums.hash_insert_race, 0); 958 wmsum_init(&dbuf_sums.metadata_cache_count, 0); 959 wmsum_init(&dbuf_sums.metadata_cache_overflow, 0); 960 961 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc", 962 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t), 963 KSTAT_FLAG_VIRTUAL); 964 if (dbuf_ksp != NULL) { 965 for (i = 0; i < DN_MAX_LEVELS; i++) { 966 snprintf(dbuf_stats.cache_levels[i].name, 967 KSTAT_STRLEN, "cache_level_%d", i); 968 dbuf_stats.cache_levels[i].data_type = 969 KSTAT_DATA_UINT64; 970 snprintf(dbuf_stats.cache_levels_bytes[i].name, 971 KSTAT_STRLEN, "cache_level_%d_bytes", i); 972 dbuf_stats.cache_levels_bytes[i].data_type = 973 KSTAT_DATA_UINT64; 974 } 975 dbuf_ksp->ks_data = &dbuf_stats; 976 dbuf_ksp->ks_update = dbuf_kstat_update; 977 kstat_install(dbuf_ksp); 978 } 979 } 980 981 void 982 dbuf_fini(void) 983 { 984 dbuf_hash_table_t *h = &dbuf_hash_table; 985 int i; 986 987 dbuf_stats_destroy(); 988 989 for (i = 0; i < DBUF_MUTEXES; i++) 990 mutex_destroy(&h->hash_mutexes[i]); 991 #if defined(_KERNEL) 992 /* 993 * Large allocations which do not require contiguous pages 994 * should be using vmem_free() in the linux kernel 995 */ 996 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 997 #else 998 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 999 #endif 1000 kmem_cache_destroy(dbuf_kmem_cache); 1001 taskq_destroy(dbu_evict_taskq); 1002 1003 mutex_enter(&dbuf_evict_lock); 1004 dbuf_evict_thread_exit = B_TRUE; 1005 while (dbuf_evict_thread_exit) { 1006 cv_signal(&dbuf_evict_cv); 1007 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 1008 } 1009 mutex_exit(&dbuf_evict_lock); 1010 1011 mutex_destroy(&dbuf_evict_lock); 1012 cv_destroy(&dbuf_evict_cv); 1013 1014 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 1015 zfs_refcount_destroy(&dbuf_caches[dcs].size); 1016 multilist_destroy(&dbuf_caches[dcs].cache); 1017 } 1018 1019 if (dbuf_ksp != NULL) { 1020 kstat_delete(dbuf_ksp); 1021 dbuf_ksp = NULL; 1022 } 1023 1024 wmsum_fini(&dbuf_sums.cache_count); 1025 wmsum_fini(&dbuf_sums.cache_total_evicts); 1026 for (i = 0; i < DN_MAX_LEVELS; i++) { 1027 wmsum_fini(&dbuf_sums.cache_levels[i]); 1028 wmsum_fini(&dbuf_sums.cache_levels_bytes[i]); 1029 } 1030 wmsum_fini(&dbuf_sums.hash_hits); 1031 wmsum_fini(&dbuf_sums.hash_misses); 1032 wmsum_fini(&dbuf_sums.hash_collisions); 1033 wmsum_fini(&dbuf_sums.hash_chains); 1034 wmsum_fini(&dbuf_sums.hash_insert_race); 1035 wmsum_fini(&dbuf_sums.metadata_cache_count); 1036 wmsum_fini(&dbuf_sums.metadata_cache_overflow); 1037 } 1038 1039 /* 1040 * Other stuff. 1041 */ 1042 1043 #ifdef ZFS_DEBUG 1044 static void 1045 dbuf_verify(dmu_buf_impl_t *db) 1046 { 1047 dnode_t *dn; 1048 dbuf_dirty_record_t *dr; 1049 uint32_t txg_prev; 1050 1051 ASSERT(MUTEX_HELD(&db->db_mtx)); 1052 1053 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 1054 return; 1055 1056 ASSERT(db->db_objset != NULL); 1057 DB_DNODE_ENTER(db); 1058 dn = DB_DNODE(db); 1059 if (dn == NULL) { 1060 ASSERT(db->db_parent == NULL); 1061 ASSERT(db->db_blkptr == NULL); 1062 } else { 1063 ASSERT3U(db->db.db_object, ==, dn->dn_object); 1064 ASSERT3P(db->db_objset, ==, dn->dn_objset); 1065 ASSERT3U(db->db_level, <, dn->dn_nlevels); 1066 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 1067 db->db_blkid == DMU_SPILL_BLKID || 1068 !avl_is_empty(&dn->dn_dbufs)); 1069 } 1070 if (db->db_blkid == DMU_BONUS_BLKID) { 1071 ASSERT(dn != NULL); 1072 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 1073 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 1074 } else if (db->db_blkid == DMU_SPILL_BLKID) { 1075 ASSERT(dn != NULL); 1076 ASSERT0(db->db.db_offset); 1077 } else { 1078 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 1079 } 1080 1081 if ((dr = list_head(&db->db_dirty_records)) != NULL) { 1082 ASSERT(dr->dr_dbuf == db); 1083 txg_prev = dr->dr_txg; 1084 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL; 1085 dr = list_next(&db->db_dirty_records, dr)) { 1086 ASSERT(dr->dr_dbuf == db); 1087 ASSERT(txg_prev > dr->dr_txg); 1088 txg_prev = dr->dr_txg; 1089 } 1090 } 1091 1092 /* 1093 * We can't assert that db_size matches dn_datablksz because it 1094 * can be momentarily different when another thread is doing 1095 * dnode_set_blksz(). 1096 */ 1097 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 1098 dr = db->db_data_pending; 1099 /* 1100 * It should only be modified in syncing context, so 1101 * make sure we only have one copy of the data. 1102 */ 1103 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 1104 } 1105 1106 /* verify db->db_blkptr */ 1107 if (db->db_blkptr) { 1108 if (db->db_parent == dn->dn_dbuf) { 1109 /* db is pointed to by the dnode */ 1110 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 1111 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 1112 ASSERT(db->db_parent == NULL); 1113 else 1114 ASSERT(db->db_parent != NULL); 1115 if (db->db_blkid != DMU_SPILL_BLKID) 1116 ASSERT3P(db->db_blkptr, ==, 1117 &dn->dn_phys->dn_blkptr[db->db_blkid]); 1118 } else { 1119 /* db is pointed to by an indirect block */ 1120 int epb __maybe_unused = db->db_parent->db.db_size >> 1121 SPA_BLKPTRSHIFT; 1122 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 1123 ASSERT3U(db->db_parent->db.db_object, ==, 1124 db->db.db_object); 1125 /* 1126 * dnode_grow_indblksz() can make this fail if we don't 1127 * have the parent's rwlock. XXX indblksz no longer 1128 * grows. safe to do this now? 1129 */ 1130 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) { 1131 ASSERT3P(db->db_blkptr, ==, 1132 ((blkptr_t *)db->db_parent->db.db_data + 1133 db->db_blkid % epb)); 1134 } 1135 } 1136 } 1137 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 1138 (db->db_buf == NULL || db->db_buf->b_data) && 1139 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 1140 db->db_state != DB_FILL && !dn->dn_free_txg) { 1141 /* 1142 * If the blkptr isn't set but they have nonzero data, 1143 * it had better be dirty, otherwise we'll lose that 1144 * data when we evict this buffer. 1145 * 1146 * There is an exception to this rule for indirect blocks; in 1147 * this case, if the indirect block is a hole, we fill in a few 1148 * fields on each of the child blocks (importantly, birth time) 1149 * to prevent hole birth times from being lost when you 1150 * partially fill in a hole. 1151 */ 1152 if (db->db_dirtycnt == 0) { 1153 if (db->db_level == 0) { 1154 uint64_t *buf = db->db.db_data; 1155 int i; 1156 1157 for (i = 0; i < db->db.db_size >> 3; i++) { 1158 ASSERT(buf[i] == 0); 1159 } 1160 } else { 1161 blkptr_t *bps = db->db.db_data; 1162 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 1163 db->db.db_size); 1164 /* 1165 * We want to verify that all the blkptrs in the 1166 * indirect block are holes, but we may have 1167 * automatically set up a few fields for them. 1168 * We iterate through each blkptr and verify 1169 * they only have those fields set. 1170 */ 1171 for (int i = 0; 1172 i < db->db.db_size / sizeof (blkptr_t); 1173 i++) { 1174 blkptr_t *bp = &bps[i]; 1175 ASSERT(ZIO_CHECKSUM_IS_ZERO( 1176 &bp->blk_cksum)); 1177 ASSERT( 1178 DVA_IS_EMPTY(&bp->blk_dva[0]) && 1179 DVA_IS_EMPTY(&bp->blk_dva[1]) && 1180 DVA_IS_EMPTY(&bp->blk_dva[2])); 1181 ASSERT0(bp->blk_fill); 1182 ASSERT0(bp->blk_pad[0]); 1183 ASSERT0(bp->blk_pad[1]); 1184 ASSERT(!BP_IS_EMBEDDED(bp)); 1185 ASSERT(BP_IS_HOLE(bp)); 1186 ASSERT0(bp->blk_phys_birth); 1187 } 1188 } 1189 } 1190 } 1191 DB_DNODE_EXIT(db); 1192 } 1193 #endif 1194 1195 static void 1196 dbuf_clear_data(dmu_buf_impl_t *db) 1197 { 1198 ASSERT(MUTEX_HELD(&db->db_mtx)); 1199 dbuf_evict_user(db); 1200 ASSERT3P(db->db_buf, ==, NULL); 1201 db->db.db_data = NULL; 1202 if (db->db_state != DB_NOFILL) { 1203 db->db_state = DB_UNCACHED; 1204 DTRACE_SET_STATE(db, "clear data"); 1205 } 1206 } 1207 1208 static void 1209 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 1210 { 1211 ASSERT(MUTEX_HELD(&db->db_mtx)); 1212 ASSERT(buf != NULL); 1213 1214 db->db_buf = buf; 1215 ASSERT(buf->b_data != NULL); 1216 db->db.db_data = buf->b_data; 1217 } 1218 1219 static arc_buf_t * 1220 dbuf_alloc_arcbuf(dmu_buf_impl_t *db) 1221 { 1222 spa_t *spa = db->db_objset->os_spa; 1223 1224 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 1225 } 1226 1227 /* 1228 * Loan out an arc_buf for read. Return the loaned arc_buf. 1229 */ 1230 arc_buf_t * 1231 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 1232 { 1233 arc_buf_t *abuf; 1234 1235 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1236 mutex_enter(&db->db_mtx); 1237 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) { 1238 int blksz = db->db.db_size; 1239 spa_t *spa = db->db_objset->os_spa; 1240 1241 mutex_exit(&db->db_mtx); 1242 abuf = arc_loan_buf(spa, B_FALSE, blksz); 1243 bcopy(db->db.db_data, abuf->b_data, blksz); 1244 } else { 1245 abuf = db->db_buf; 1246 arc_loan_inuse_buf(abuf, db); 1247 db->db_buf = NULL; 1248 dbuf_clear_data(db); 1249 mutex_exit(&db->db_mtx); 1250 } 1251 return (abuf); 1252 } 1253 1254 /* 1255 * Calculate which level n block references the data at the level 0 offset 1256 * provided. 1257 */ 1258 uint64_t 1259 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset) 1260 { 1261 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 1262 /* 1263 * The level n blkid is equal to the level 0 blkid divided by 1264 * the number of level 0s in a level n block. 1265 * 1266 * The level 0 blkid is offset >> datablkshift = 1267 * offset / 2^datablkshift. 1268 * 1269 * The number of level 0s in a level n is the number of block 1270 * pointers in an indirect block, raised to the power of level. 1271 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 1272 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 1273 * 1274 * Thus, the level n blkid is: offset / 1275 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT)))) 1276 * = offset / 2^(datablkshift + level * 1277 * (indblkshift - SPA_BLKPTRSHIFT)) 1278 * = offset >> (datablkshift + level * 1279 * (indblkshift - SPA_BLKPTRSHIFT)) 1280 */ 1281 1282 const unsigned exp = dn->dn_datablkshift + 1283 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT); 1284 1285 if (exp >= 8 * sizeof (offset)) { 1286 /* This only happens on the highest indirection level */ 1287 ASSERT3U(level, ==, dn->dn_nlevels - 1); 1288 return (0); 1289 } 1290 1291 ASSERT3U(exp, <, 8 * sizeof (offset)); 1292 1293 return (offset >> exp); 1294 } else { 1295 ASSERT3U(offset, <, dn->dn_datablksz); 1296 return (0); 1297 } 1298 } 1299 1300 /* 1301 * This function is used to lock the parent of the provided dbuf. This should be 1302 * used when modifying or reading db_blkptr. 1303 */ 1304 db_lock_type_t 1305 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, void *tag) 1306 { 1307 enum db_lock_type ret = DLT_NONE; 1308 if (db->db_parent != NULL) { 1309 rw_enter(&db->db_parent->db_rwlock, rw); 1310 ret = DLT_PARENT; 1311 } else if (dmu_objset_ds(db->db_objset) != NULL) { 1312 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw, 1313 tag); 1314 ret = DLT_OBJSET; 1315 } 1316 /* 1317 * We only return a DLT_NONE lock when it's the top-most indirect block 1318 * of the meta-dnode of the MOS. 1319 */ 1320 return (ret); 1321 } 1322 1323 /* 1324 * We need to pass the lock type in because it's possible that the block will 1325 * move from being the topmost indirect block in a dnode (and thus, have no 1326 * parent) to not the top-most via an indirection increase. This would cause a 1327 * panic if we didn't pass the lock type in. 1328 */ 1329 void 1330 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, void *tag) 1331 { 1332 if (type == DLT_PARENT) 1333 rw_exit(&db->db_parent->db_rwlock); 1334 else if (type == DLT_OBJSET) 1335 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag); 1336 } 1337 1338 static void 1339 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1340 arc_buf_t *buf, void *vdb) 1341 { 1342 (void) zb, (void) bp; 1343 dmu_buf_impl_t *db = vdb; 1344 1345 mutex_enter(&db->db_mtx); 1346 ASSERT3U(db->db_state, ==, DB_READ); 1347 /* 1348 * All reads are synchronous, so we must have a hold on the dbuf 1349 */ 1350 ASSERT(zfs_refcount_count(&db->db_holds) > 0); 1351 ASSERT(db->db_buf == NULL); 1352 ASSERT(db->db.db_data == NULL); 1353 if (buf == NULL) { 1354 /* i/o error */ 1355 ASSERT(zio == NULL || zio->io_error != 0); 1356 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1357 ASSERT3P(db->db_buf, ==, NULL); 1358 db->db_state = DB_UNCACHED; 1359 DTRACE_SET_STATE(db, "i/o error"); 1360 } else if (db->db_level == 0 && db->db_freed_in_flight) { 1361 /* freed in flight */ 1362 ASSERT(zio == NULL || zio->io_error == 0); 1363 arc_release(buf, db); 1364 bzero(buf->b_data, db->db.db_size); 1365 arc_buf_freeze(buf); 1366 db->db_freed_in_flight = FALSE; 1367 dbuf_set_data(db, buf); 1368 db->db_state = DB_CACHED; 1369 DTRACE_SET_STATE(db, "freed in flight"); 1370 } else { 1371 /* success */ 1372 ASSERT(zio == NULL || zio->io_error == 0); 1373 dbuf_set_data(db, buf); 1374 db->db_state = DB_CACHED; 1375 DTRACE_SET_STATE(db, "successful read"); 1376 } 1377 cv_broadcast(&db->db_changed); 1378 dbuf_rele_and_unlock(db, NULL, B_FALSE); 1379 } 1380 1381 /* 1382 * Shortcut for performing reads on bonus dbufs. Returns 1383 * an error if we fail to verify the dnode associated with 1384 * a decrypted block. Otherwise success. 1385 */ 1386 static int 1387 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags) 1388 { 1389 int bonuslen, max_bonuslen, err; 1390 1391 err = dbuf_read_verify_dnode_crypt(db, flags); 1392 if (err) 1393 return (err); 1394 1395 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 1396 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1397 ASSERT(MUTEX_HELD(&db->db_mtx)); 1398 ASSERT(DB_DNODE_HELD(db)); 1399 ASSERT3U(bonuslen, <=, db->db.db_size); 1400 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP); 1401 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS); 1402 if (bonuslen < max_bonuslen) 1403 bzero(db->db.db_data, max_bonuslen); 1404 if (bonuslen) 1405 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen); 1406 db->db_state = DB_CACHED; 1407 DTRACE_SET_STATE(db, "bonus buffer filled"); 1408 return (0); 1409 } 1410 1411 static void 1412 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn) 1413 { 1414 blkptr_t *bps = db->db.db_data; 1415 uint32_t indbs = 1ULL << dn->dn_indblkshift; 1416 int n_bps = indbs >> SPA_BLKPTRSHIFT; 1417 1418 for (int i = 0; i < n_bps; i++) { 1419 blkptr_t *bp = &bps[i]; 1420 1421 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, indbs); 1422 BP_SET_LSIZE(bp, BP_GET_LEVEL(db->db_blkptr) == 1 ? 1423 dn->dn_datablksz : BP_GET_LSIZE(db->db_blkptr)); 1424 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr)); 1425 BP_SET_LEVEL(bp, BP_GET_LEVEL(db->db_blkptr) - 1); 1426 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0); 1427 } 1428 } 1429 1430 /* 1431 * Handle reads on dbufs that are holes, if necessary. This function 1432 * requires that the dbuf's mutex is held. Returns success (0) if action 1433 * was taken, ENOENT if no action was taken. 1434 */ 1435 static int 1436 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn) 1437 { 1438 ASSERT(MUTEX_HELD(&db->db_mtx)); 1439 1440 int is_hole = db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr); 1441 /* 1442 * For level 0 blocks only, if the above check fails: 1443 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 1444 * processes the delete record and clears the bp while we are waiting 1445 * for the dn_mtx (resulting in a "no" from block_freed). 1446 */ 1447 if (!is_hole && db->db_level == 0) { 1448 is_hole = dnode_block_freed(dn, db->db_blkid) || 1449 BP_IS_HOLE(db->db_blkptr); 1450 } 1451 1452 if (is_hole) { 1453 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1454 bzero(db->db.db_data, db->db.db_size); 1455 1456 if (db->db_blkptr != NULL && db->db_level > 0 && 1457 BP_IS_HOLE(db->db_blkptr) && 1458 db->db_blkptr->blk_birth != 0) { 1459 dbuf_handle_indirect_hole(db, dn); 1460 } 1461 db->db_state = DB_CACHED; 1462 DTRACE_SET_STATE(db, "hole read satisfied"); 1463 return (0); 1464 } 1465 return (ENOENT); 1466 } 1467 1468 /* 1469 * This function ensures that, when doing a decrypting read of a block, 1470 * we make sure we have decrypted the dnode associated with it. We must do 1471 * this so that we ensure we are fully authenticating the checksum-of-MACs 1472 * tree from the root of the objset down to this block. Indirect blocks are 1473 * always verified against their secure checksum-of-MACs assuming that the 1474 * dnode containing them is correct. Now that we are doing a decrypting read, 1475 * we can be sure that the key is loaded and verify that assumption. This is 1476 * especially important considering that we always read encrypted dnode 1477 * blocks as raw data (without verifying their MACs) to start, and 1478 * decrypt / authenticate them when we need to read an encrypted bonus buffer. 1479 */ 1480 static int 1481 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags) 1482 { 1483 int err = 0; 1484 objset_t *os = db->db_objset; 1485 arc_buf_t *dnode_abuf; 1486 dnode_t *dn; 1487 zbookmark_phys_t zb; 1488 1489 ASSERT(MUTEX_HELD(&db->db_mtx)); 1490 1491 if (!os->os_encrypted || os->os_raw_receive || 1492 (flags & DB_RF_NO_DECRYPT) != 0) 1493 return (0); 1494 1495 DB_DNODE_ENTER(db); 1496 dn = DB_DNODE(db); 1497 dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL; 1498 1499 if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) { 1500 DB_DNODE_EXIT(db); 1501 return (0); 1502 } 1503 1504 SET_BOOKMARK(&zb, dmu_objset_id(os), 1505 DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid); 1506 err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE); 1507 1508 /* 1509 * An error code of EACCES tells us that the key is still not 1510 * available. This is ok if we are only reading authenticated 1511 * (and therefore non-encrypted) blocks. 1512 */ 1513 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID && 1514 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) || 1515 (db->db_blkid == DMU_BONUS_BLKID && 1516 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)))) 1517 err = 0; 1518 1519 DB_DNODE_EXIT(db); 1520 1521 return (err); 1522 } 1523 1524 /* 1525 * Drops db_mtx and the parent lock specified by dblt and tag before 1526 * returning. 1527 */ 1528 static int 1529 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags, 1530 db_lock_type_t dblt, void *tag) 1531 { 1532 dnode_t *dn; 1533 zbookmark_phys_t zb; 1534 uint32_t aflags = ARC_FLAG_NOWAIT; 1535 int err, zio_flags; 1536 1537 err = zio_flags = 0; 1538 DB_DNODE_ENTER(db); 1539 dn = DB_DNODE(db); 1540 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1541 ASSERT(MUTEX_HELD(&db->db_mtx)); 1542 ASSERT(db->db_state == DB_UNCACHED); 1543 ASSERT(db->db_buf == NULL); 1544 ASSERT(db->db_parent == NULL || 1545 RW_LOCK_HELD(&db->db_parent->db_rwlock)); 1546 1547 if (db->db_blkid == DMU_BONUS_BLKID) { 1548 err = dbuf_read_bonus(db, dn, flags); 1549 goto early_unlock; 1550 } 1551 1552 err = dbuf_read_hole(db, dn); 1553 if (err == 0) 1554 goto early_unlock; 1555 1556 /* 1557 * Any attempt to read a redacted block should result in an error. This 1558 * will never happen under normal conditions, but can be useful for 1559 * debugging purposes. 1560 */ 1561 if (BP_IS_REDACTED(db->db_blkptr)) { 1562 ASSERT(dsl_dataset_feature_is_active( 1563 db->db_objset->os_dsl_dataset, 1564 SPA_FEATURE_REDACTED_DATASETS)); 1565 err = SET_ERROR(EIO); 1566 goto early_unlock; 1567 } 1568 1569 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1570 db->db.db_object, db->db_level, db->db_blkid); 1571 1572 /* 1573 * All bps of an encrypted os should have the encryption bit set. 1574 * If this is not true it indicates tampering and we report an error. 1575 */ 1576 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) { 1577 spa_log_error(db->db_objset->os_spa, &zb); 1578 zfs_panic_recover("unencrypted block in encrypted " 1579 "object set %llu", dmu_objset_id(db->db_objset)); 1580 err = SET_ERROR(EIO); 1581 goto early_unlock; 1582 } 1583 1584 err = dbuf_read_verify_dnode_crypt(db, flags); 1585 if (err != 0) 1586 goto early_unlock; 1587 1588 DB_DNODE_EXIT(db); 1589 1590 db->db_state = DB_READ; 1591 DTRACE_SET_STATE(db, "read issued"); 1592 mutex_exit(&db->db_mtx); 1593 1594 if (dbuf_is_l2cacheable(db)) 1595 aflags |= ARC_FLAG_L2CACHE; 1596 1597 dbuf_add_ref(db, NULL); 1598 1599 zio_flags = (flags & DB_RF_CANFAIL) ? 1600 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED; 1601 1602 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr)) 1603 zio_flags |= ZIO_FLAG_RAW; 1604 /* 1605 * The zio layer will copy the provided blkptr later, but we need to 1606 * do this now so that we can release the parent's rwlock. We have to 1607 * do that now so that if dbuf_read_done is called synchronously (on 1608 * an l1 cache hit) we don't acquire the db_mtx while holding the 1609 * parent's rwlock, which would be a lock ordering violation. 1610 */ 1611 blkptr_t bp = *db->db_blkptr; 1612 dmu_buf_unlock_parent(db, dblt, tag); 1613 (void) arc_read(zio, db->db_objset->os_spa, &bp, 1614 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags, 1615 &aflags, &zb); 1616 return (err); 1617 early_unlock: 1618 DB_DNODE_EXIT(db); 1619 mutex_exit(&db->db_mtx); 1620 dmu_buf_unlock_parent(db, dblt, tag); 1621 return (err); 1622 } 1623 1624 /* 1625 * This is our just-in-time copy function. It makes a copy of buffers that 1626 * have been modified in a previous transaction group before we access them in 1627 * the current active group. 1628 * 1629 * This function is used in three places: when we are dirtying a buffer for the 1630 * first time in a txg, when we are freeing a range in a dnode that includes 1631 * this buffer, and when we are accessing a buffer which was received compressed 1632 * and later referenced in a WRITE_BYREF record. 1633 * 1634 * Note that when we are called from dbuf_free_range() we do not put a hold on 1635 * the buffer, we just traverse the active dbuf list for the dnode. 1636 */ 1637 static void 1638 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1639 { 1640 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 1641 1642 ASSERT(MUTEX_HELD(&db->db_mtx)); 1643 ASSERT(db->db.db_data != NULL); 1644 ASSERT(db->db_level == 0); 1645 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1646 1647 if (dr == NULL || 1648 (dr->dt.dl.dr_data != 1649 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1650 return; 1651 1652 /* 1653 * If the last dirty record for this dbuf has not yet synced 1654 * and its referencing the dbuf data, either: 1655 * reset the reference to point to a new copy, 1656 * or (if there a no active holders) 1657 * just null out the current db_data pointer. 1658 */ 1659 ASSERT3U(dr->dr_txg, >=, txg - 2); 1660 if (db->db_blkid == DMU_BONUS_BLKID) { 1661 dnode_t *dn = DB_DNODE(db); 1662 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1663 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP); 1664 arc_space_consume(bonuslen, ARC_SPACE_BONUS); 1665 bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen); 1666 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) { 1667 dnode_t *dn = DB_DNODE(db); 1668 int size = arc_buf_size(db->db_buf); 1669 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1670 spa_t *spa = db->db_objset->os_spa; 1671 enum zio_compress compress_type = 1672 arc_get_compression(db->db_buf); 1673 uint8_t complevel = arc_get_complevel(db->db_buf); 1674 1675 if (arc_is_encrypted(db->db_buf)) { 1676 boolean_t byteorder; 1677 uint8_t salt[ZIO_DATA_SALT_LEN]; 1678 uint8_t iv[ZIO_DATA_IV_LEN]; 1679 uint8_t mac[ZIO_DATA_MAC_LEN]; 1680 1681 arc_get_raw_params(db->db_buf, &byteorder, salt, 1682 iv, mac); 1683 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db, 1684 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, 1685 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf), 1686 compress_type, complevel); 1687 } else if (compress_type != ZIO_COMPRESS_OFF) { 1688 ASSERT3U(type, ==, ARC_BUFC_DATA); 1689 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db, 1690 size, arc_buf_lsize(db->db_buf), compress_type, 1691 complevel); 1692 } else { 1693 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size); 1694 } 1695 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size); 1696 } else { 1697 db->db_buf = NULL; 1698 dbuf_clear_data(db); 1699 } 1700 } 1701 1702 int 1703 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 1704 { 1705 int err = 0; 1706 boolean_t prefetch; 1707 dnode_t *dn; 1708 1709 /* 1710 * We don't have to hold the mutex to check db_state because it 1711 * can't be freed while we have a hold on the buffer. 1712 */ 1713 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1714 1715 if (db->db_state == DB_NOFILL) 1716 return (SET_ERROR(EIO)); 1717 1718 DB_DNODE_ENTER(db); 1719 dn = DB_DNODE(db); 1720 1721 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1722 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL && 1723 DBUF_IS_CACHEABLE(db); 1724 1725 mutex_enter(&db->db_mtx); 1726 if (db->db_state == DB_CACHED) { 1727 spa_t *spa = dn->dn_objset->os_spa; 1728 1729 /* 1730 * Ensure that this block's dnode has been decrypted if 1731 * the caller has requested decrypted data. 1732 */ 1733 err = dbuf_read_verify_dnode_crypt(db, flags); 1734 1735 /* 1736 * If the arc buf is compressed or encrypted and the caller 1737 * requested uncompressed data, we need to untransform it 1738 * before returning. We also call arc_untransform() on any 1739 * unauthenticated blocks, which will verify their MAC if 1740 * the key is now available. 1741 */ 1742 if (err == 0 && db->db_buf != NULL && 1743 (flags & DB_RF_NO_DECRYPT) == 0 && 1744 (arc_is_encrypted(db->db_buf) || 1745 arc_is_unauthenticated(db->db_buf) || 1746 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) { 1747 zbookmark_phys_t zb; 1748 1749 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1750 db->db.db_object, db->db_level, db->db_blkid); 1751 dbuf_fix_old_data(db, spa_syncing_txg(spa)); 1752 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE); 1753 dbuf_set_data(db, db->db_buf); 1754 } 1755 mutex_exit(&db->db_mtx); 1756 if (err == 0 && prefetch) { 1757 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1758 B_FALSE, flags & DB_RF_HAVESTRUCT); 1759 } 1760 DB_DNODE_EXIT(db); 1761 DBUF_STAT_BUMP(hash_hits); 1762 } else if (db->db_state == DB_UNCACHED) { 1763 spa_t *spa = dn->dn_objset->os_spa; 1764 boolean_t need_wait = B_FALSE; 1765 1766 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 1767 1768 if (zio == NULL && 1769 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) { 1770 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1771 need_wait = B_TRUE; 1772 } 1773 err = dbuf_read_impl(db, zio, flags, dblt, FTAG); 1774 /* 1775 * dbuf_read_impl has dropped db_mtx and our parent's rwlock 1776 * for us 1777 */ 1778 if (!err && prefetch) { 1779 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1780 db->db_state != DB_CACHED, 1781 flags & DB_RF_HAVESTRUCT); 1782 } 1783 1784 DB_DNODE_EXIT(db); 1785 DBUF_STAT_BUMP(hash_misses); 1786 1787 /* 1788 * If we created a zio_root we must execute it to avoid 1789 * leaking it, even if it isn't attached to any work due 1790 * to an error in dbuf_read_impl(). 1791 */ 1792 if (need_wait) { 1793 if (err == 0) 1794 err = zio_wait(zio); 1795 else 1796 VERIFY0(zio_wait(zio)); 1797 } 1798 } else { 1799 /* 1800 * Another reader came in while the dbuf was in flight 1801 * between UNCACHED and CACHED. Either a writer will finish 1802 * writing the buffer (sending the dbuf to CACHED) or the 1803 * first reader's request will reach the read_done callback 1804 * and send the dbuf to CACHED. Otherwise, a failure 1805 * occurred and the dbuf went to UNCACHED. 1806 */ 1807 mutex_exit(&db->db_mtx); 1808 if (prefetch) { 1809 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1810 B_TRUE, flags & DB_RF_HAVESTRUCT); 1811 } 1812 DB_DNODE_EXIT(db); 1813 DBUF_STAT_BUMP(hash_misses); 1814 1815 /* Skip the wait per the caller's request. */ 1816 if ((flags & DB_RF_NEVERWAIT) == 0) { 1817 mutex_enter(&db->db_mtx); 1818 while (db->db_state == DB_READ || 1819 db->db_state == DB_FILL) { 1820 ASSERT(db->db_state == DB_READ || 1821 (flags & DB_RF_HAVESTRUCT) == 0); 1822 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, 1823 db, zio_t *, zio); 1824 cv_wait(&db->db_changed, &db->db_mtx); 1825 } 1826 if (db->db_state == DB_UNCACHED) 1827 err = SET_ERROR(EIO); 1828 mutex_exit(&db->db_mtx); 1829 } 1830 } 1831 1832 return (err); 1833 } 1834 1835 static void 1836 dbuf_noread(dmu_buf_impl_t *db) 1837 { 1838 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1839 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1840 mutex_enter(&db->db_mtx); 1841 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1842 cv_wait(&db->db_changed, &db->db_mtx); 1843 if (db->db_state == DB_UNCACHED) { 1844 ASSERT(db->db_buf == NULL); 1845 ASSERT(db->db.db_data == NULL); 1846 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1847 db->db_state = DB_FILL; 1848 DTRACE_SET_STATE(db, "assigning filled buffer"); 1849 } else if (db->db_state == DB_NOFILL) { 1850 dbuf_clear_data(db); 1851 } else { 1852 ASSERT3U(db->db_state, ==, DB_CACHED); 1853 } 1854 mutex_exit(&db->db_mtx); 1855 } 1856 1857 void 1858 dbuf_unoverride(dbuf_dirty_record_t *dr) 1859 { 1860 dmu_buf_impl_t *db = dr->dr_dbuf; 1861 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1862 uint64_t txg = dr->dr_txg; 1863 1864 ASSERT(MUTEX_HELD(&db->db_mtx)); 1865 /* 1866 * This assert is valid because dmu_sync() expects to be called by 1867 * a zilog's get_data while holding a range lock. This call only 1868 * comes from dbuf_dirty() callers who must also hold a range lock. 1869 */ 1870 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1871 ASSERT(db->db_level == 0); 1872 1873 if (db->db_blkid == DMU_BONUS_BLKID || 1874 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1875 return; 1876 1877 ASSERT(db->db_data_pending != dr); 1878 1879 /* free this block */ 1880 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1881 zio_free(db->db_objset->os_spa, txg, bp); 1882 1883 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1884 dr->dt.dl.dr_nopwrite = B_FALSE; 1885 dr->dt.dl.dr_has_raw_params = B_FALSE; 1886 1887 /* 1888 * Release the already-written buffer, so we leave it in 1889 * a consistent dirty state. Note that all callers are 1890 * modifying the buffer, so they will immediately do 1891 * another (redundant) arc_release(). Therefore, leave 1892 * the buf thawed to save the effort of freezing & 1893 * immediately re-thawing it. 1894 */ 1895 arc_release(dr->dt.dl.dr_data, db); 1896 } 1897 1898 /* 1899 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1900 * data blocks in the free range, so that any future readers will find 1901 * empty blocks. 1902 */ 1903 void 1904 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1905 dmu_tx_t *tx) 1906 { 1907 dmu_buf_impl_t *db_search; 1908 dmu_buf_impl_t *db, *db_next; 1909 uint64_t txg = tx->tx_txg; 1910 avl_index_t where; 1911 dbuf_dirty_record_t *dr; 1912 1913 if (end_blkid > dn->dn_maxblkid && 1914 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1915 end_blkid = dn->dn_maxblkid; 1916 dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid, 1917 (u_longlong_t)end_blkid); 1918 1919 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP); 1920 db_search->db_level = 0; 1921 db_search->db_blkid = start_blkid; 1922 db_search->db_state = DB_SEARCH; 1923 1924 mutex_enter(&dn->dn_dbufs_mtx); 1925 db = avl_find(&dn->dn_dbufs, db_search, &where); 1926 ASSERT3P(db, ==, NULL); 1927 1928 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1929 1930 for (; db != NULL; db = db_next) { 1931 db_next = AVL_NEXT(&dn->dn_dbufs, db); 1932 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1933 1934 if (db->db_level != 0 || db->db_blkid > end_blkid) { 1935 break; 1936 } 1937 ASSERT3U(db->db_blkid, >=, start_blkid); 1938 1939 /* found a level 0 buffer in the range */ 1940 mutex_enter(&db->db_mtx); 1941 if (dbuf_undirty(db, tx)) { 1942 /* mutex has been dropped and dbuf destroyed */ 1943 continue; 1944 } 1945 1946 if (db->db_state == DB_UNCACHED || 1947 db->db_state == DB_NOFILL || 1948 db->db_state == DB_EVICTING) { 1949 ASSERT(db->db.db_data == NULL); 1950 mutex_exit(&db->db_mtx); 1951 continue; 1952 } 1953 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 1954 /* will be handled in dbuf_read_done or dbuf_rele */ 1955 db->db_freed_in_flight = TRUE; 1956 mutex_exit(&db->db_mtx); 1957 continue; 1958 } 1959 if (zfs_refcount_count(&db->db_holds) == 0) { 1960 ASSERT(db->db_buf); 1961 dbuf_destroy(db); 1962 continue; 1963 } 1964 /* The dbuf is referenced */ 1965 1966 dr = list_head(&db->db_dirty_records); 1967 if (dr != NULL) { 1968 if (dr->dr_txg == txg) { 1969 /* 1970 * This buffer is "in-use", re-adjust the file 1971 * size to reflect that this buffer may 1972 * contain new data when we sync. 1973 */ 1974 if (db->db_blkid != DMU_SPILL_BLKID && 1975 db->db_blkid > dn->dn_maxblkid) 1976 dn->dn_maxblkid = db->db_blkid; 1977 dbuf_unoverride(dr); 1978 } else { 1979 /* 1980 * This dbuf is not dirty in the open context. 1981 * Either uncache it (if its not referenced in 1982 * the open context) or reset its contents to 1983 * empty. 1984 */ 1985 dbuf_fix_old_data(db, txg); 1986 } 1987 } 1988 /* clear the contents if its cached */ 1989 if (db->db_state == DB_CACHED) { 1990 ASSERT(db->db.db_data != NULL); 1991 arc_release(db->db_buf, db); 1992 rw_enter(&db->db_rwlock, RW_WRITER); 1993 bzero(db->db.db_data, db->db.db_size); 1994 rw_exit(&db->db_rwlock); 1995 arc_buf_freeze(db->db_buf); 1996 } 1997 1998 mutex_exit(&db->db_mtx); 1999 } 2000 2001 mutex_exit(&dn->dn_dbufs_mtx); 2002 kmem_free(db_search, sizeof (dmu_buf_impl_t)); 2003 } 2004 2005 void 2006 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 2007 { 2008 arc_buf_t *buf, *old_buf; 2009 dbuf_dirty_record_t *dr; 2010 int osize = db->db.db_size; 2011 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2012 dnode_t *dn; 2013 2014 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2015 2016 DB_DNODE_ENTER(db); 2017 dn = DB_DNODE(db); 2018 2019 /* 2020 * XXX we should be doing a dbuf_read, checking the return 2021 * value and returning that up to our callers 2022 */ 2023 dmu_buf_will_dirty(&db->db, tx); 2024 2025 /* create the data buffer for the new block */ 2026 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); 2027 2028 /* copy old block data to the new block */ 2029 old_buf = db->db_buf; 2030 bcopy(old_buf->b_data, buf->b_data, MIN(osize, size)); 2031 /* zero the remainder */ 2032 if (size > osize) 2033 bzero((uint8_t *)buf->b_data + osize, size - osize); 2034 2035 mutex_enter(&db->db_mtx); 2036 dbuf_set_data(db, buf); 2037 arc_buf_destroy(old_buf, db); 2038 db->db.db_size = size; 2039 2040 dr = list_head(&db->db_dirty_records); 2041 /* dirty record added by dmu_buf_will_dirty() */ 2042 VERIFY(dr != NULL); 2043 if (db->db_level == 0) 2044 dr->dt.dl.dr_data = buf; 2045 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2046 ASSERT3U(dr->dr_accounted, ==, osize); 2047 dr->dr_accounted = size; 2048 mutex_exit(&db->db_mtx); 2049 2050 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx); 2051 DB_DNODE_EXIT(db); 2052 } 2053 2054 void 2055 dbuf_release_bp(dmu_buf_impl_t *db) 2056 { 2057 objset_t *os __maybe_unused = db->db_objset; 2058 2059 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 2060 ASSERT(arc_released(os->os_phys_buf) || 2061 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 2062 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 2063 2064 (void) arc_release(db->db_buf, db); 2065 } 2066 2067 /* 2068 * We already have a dirty record for this TXG, and we are being 2069 * dirtied again. 2070 */ 2071 static void 2072 dbuf_redirty(dbuf_dirty_record_t *dr) 2073 { 2074 dmu_buf_impl_t *db = dr->dr_dbuf; 2075 2076 ASSERT(MUTEX_HELD(&db->db_mtx)); 2077 2078 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 2079 /* 2080 * If this buffer has already been written out, 2081 * we now need to reset its state. 2082 */ 2083 dbuf_unoverride(dr); 2084 if (db->db.db_object != DMU_META_DNODE_OBJECT && 2085 db->db_state != DB_NOFILL) { 2086 /* Already released on initial dirty, so just thaw. */ 2087 ASSERT(arc_released(db->db_buf)); 2088 arc_buf_thaw(db->db_buf); 2089 } 2090 } 2091 } 2092 2093 dbuf_dirty_record_t * 2094 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx) 2095 { 2096 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2097 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid); 2098 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE); 2099 ASSERT(dn->dn_maxblkid >= blkid); 2100 2101 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP); 2102 list_link_init(&dr->dr_dirty_node); 2103 list_link_init(&dr->dr_dbuf_node); 2104 dr->dr_dnode = dn; 2105 dr->dr_txg = tx->tx_txg; 2106 dr->dt.dll.dr_blkid = blkid; 2107 dr->dr_accounted = dn->dn_datablksz; 2108 2109 /* 2110 * There should not be any dbuf for the block that we're dirtying. 2111 * Otherwise the buffer contents could be inconsistent between the 2112 * dbuf and the lightweight dirty record. 2113 */ 2114 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid)); 2115 2116 mutex_enter(&dn->dn_mtx); 2117 int txgoff = tx->tx_txg & TXG_MASK; 2118 if (dn->dn_free_ranges[txgoff] != NULL) { 2119 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1); 2120 } 2121 2122 if (dn->dn_nlevels == 1) { 2123 ASSERT3U(blkid, <, dn->dn_nblkptr); 2124 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2125 mutex_exit(&dn->dn_mtx); 2126 rw_exit(&dn->dn_struct_rwlock); 2127 dnode_setdirty(dn, tx); 2128 } else { 2129 mutex_exit(&dn->dn_mtx); 2130 2131 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2132 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn, 2133 1, blkid >> epbs, FTAG); 2134 rw_exit(&dn->dn_struct_rwlock); 2135 if (parent_db == NULL) { 2136 kmem_free(dr, sizeof (*dr)); 2137 return (NULL); 2138 } 2139 int err = dbuf_read(parent_db, NULL, 2140 (DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2141 if (err != 0) { 2142 dbuf_rele(parent_db, FTAG); 2143 kmem_free(dr, sizeof (*dr)); 2144 return (NULL); 2145 } 2146 2147 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx); 2148 dbuf_rele(parent_db, FTAG); 2149 mutex_enter(&parent_dr->dt.di.dr_mtx); 2150 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg); 2151 list_insert_tail(&parent_dr->dt.di.dr_children, dr); 2152 mutex_exit(&parent_dr->dt.di.dr_mtx); 2153 dr->dr_parent = parent_dr; 2154 } 2155 2156 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx); 2157 2158 return (dr); 2159 } 2160 2161 dbuf_dirty_record_t * 2162 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2163 { 2164 dnode_t *dn; 2165 objset_t *os; 2166 dbuf_dirty_record_t *dr, *dr_next, *dr_head; 2167 int txgoff = tx->tx_txg & TXG_MASK; 2168 boolean_t drop_struct_rwlock = B_FALSE; 2169 2170 ASSERT(tx->tx_txg != 0); 2171 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2172 DMU_TX_DIRTY_BUF(tx, db); 2173 2174 DB_DNODE_ENTER(db); 2175 dn = DB_DNODE(db); 2176 /* 2177 * Shouldn't dirty a regular buffer in syncing context. Private 2178 * objects may be dirtied in syncing context, but only if they 2179 * were already pre-dirtied in open context. 2180 */ 2181 #ifdef ZFS_DEBUG 2182 if (dn->dn_objset->os_dsl_dataset != NULL) { 2183 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 2184 RW_READER, FTAG); 2185 } 2186 ASSERT(!dmu_tx_is_syncing(tx) || 2187 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 2188 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2189 dn->dn_objset->os_dsl_dataset == NULL); 2190 if (dn->dn_objset->os_dsl_dataset != NULL) 2191 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 2192 #endif 2193 /* 2194 * We make this assert for private objects as well, but after we 2195 * check if we're already dirty. They are allowed to re-dirty 2196 * in syncing context. 2197 */ 2198 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2199 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2200 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2201 2202 mutex_enter(&db->db_mtx); 2203 /* 2204 * XXX make this true for indirects too? The problem is that 2205 * transactions created with dmu_tx_create_assigned() from 2206 * syncing context don't bother holding ahead. 2207 */ 2208 ASSERT(db->db_level != 0 || 2209 db->db_state == DB_CACHED || db->db_state == DB_FILL || 2210 db->db_state == DB_NOFILL); 2211 2212 mutex_enter(&dn->dn_mtx); 2213 dnode_set_dirtyctx(dn, tx, db); 2214 if (tx->tx_txg > dn->dn_dirty_txg) 2215 dn->dn_dirty_txg = tx->tx_txg; 2216 mutex_exit(&dn->dn_mtx); 2217 2218 if (db->db_blkid == DMU_SPILL_BLKID) 2219 dn->dn_have_spill = B_TRUE; 2220 2221 /* 2222 * If this buffer is already dirty, we're done. 2223 */ 2224 dr_head = list_head(&db->db_dirty_records); 2225 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg || 2226 db->db.db_object == DMU_META_DNODE_OBJECT); 2227 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg); 2228 if (dr_next && dr_next->dr_txg == tx->tx_txg) { 2229 DB_DNODE_EXIT(db); 2230 2231 dbuf_redirty(dr_next); 2232 mutex_exit(&db->db_mtx); 2233 return (dr_next); 2234 } 2235 2236 /* 2237 * Only valid if not already dirty. 2238 */ 2239 ASSERT(dn->dn_object == 0 || 2240 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2241 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2242 2243 ASSERT3U(dn->dn_nlevels, >, db->db_level); 2244 2245 /* 2246 * We should only be dirtying in syncing context if it's the 2247 * mos or we're initializing the os or it's a special object. 2248 * However, we are allowed to dirty in syncing context provided 2249 * we already dirtied it in open context. Hence we must make 2250 * this assertion only if we're not already dirty. 2251 */ 2252 os = dn->dn_objset; 2253 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa)); 2254 #ifdef ZFS_DEBUG 2255 if (dn->dn_objset->os_dsl_dataset != NULL) 2256 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 2257 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2258 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 2259 if (dn->dn_objset->os_dsl_dataset != NULL) 2260 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 2261 #endif 2262 ASSERT(db->db.db_size != 0); 2263 2264 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2265 2266 if (db->db_blkid != DMU_BONUS_BLKID) { 2267 dmu_objset_willuse_space(os, db->db.db_size, tx); 2268 } 2269 2270 /* 2271 * If this buffer is dirty in an old transaction group we need 2272 * to make a copy of it so that the changes we make in this 2273 * transaction group won't leak out when we sync the older txg. 2274 */ 2275 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 2276 list_link_init(&dr->dr_dirty_node); 2277 list_link_init(&dr->dr_dbuf_node); 2278 dr->dr_dnode = dn; 2279 if (db->db_level == 0) { 2280 void *data_old = db->db_buf; 2281 2282 if (db->db_state != DB_NOFILL) { 2283 if (db->db_blkid == DMU_BONUS_BLKID) { 2284 dbuf_fix_old_data(db, tx->tx_txg); 2285 data_old = db->db.db_data; 2286 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 2287 /* 2288 * Release the data buffer from the cache so 2289 * that we can modify it without impacting 2290 * possible other users of this cached data 2291 * block. Note that indirect blocks and 2292 * private objects are not released until the 2293 * syncing state (since they are only modified 2294 * then). 2295 */ 2296 arc_release(db->db_buf, db); 2297 dbuf_fix_old_data(db, tx->tx_txg); 2298 data_old = db->db_buf; 2299 } 2300 ASSERT(data_old != NULL); 2301 } 2302 dr->dt.dl.dr_data = data_old; 2303 } else { 2304 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL); 2305 list_create(&dr->dt.di.dr_children, 2306 sizeof (dbuf_dirty_record_t), 2307 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 2308 } 2309 if (db->db_blkid != DMU_BONUS_BLKID) 2310 dr->dr_accounted = db->db.db_size; 2311 dr->dr_dbuf = db; 2312 dr->dr_txg = tx->tx_txg; 2313 list_insert_before(&db->db_dirty_records, dr_next, dr); 2314 2315 /* 2316 * We could have been freed_in_flight between the dbuf_noread 2317 * and dbuf_dirty. We win, as though the dbuf_noread() had 2318 * happened after the free. 2319 */ 2320 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2321 db->db_blkid != DMU_SPILL_BLKID) { 2322 mutex_enter(&dn->dn_mtx); 2323 if (dn->dn_free_ranges[txgoff] != NULL) { 2324 range_tree_clear(dn->dn_free_ranges[txgoff], 2325 db->db_blkid, 1); 2326 } 2327 mutex_exit(&dn->dn_mtx); 2328 db->db_freed_in_flight = FALSE; 2329 } 2330 2331 /* 2332 * This buffer is now part of this txg 2333 */ 2334 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 2335 db->db_dirtycnt += 1; 2336 ASSERT3U(db->db_dirtycnt, <=, 3); 2337 2338 mutex_exit(&db->db_mtx); 2339 2340 if (db->db_blkid == DMU_BONUS_BLKID || 2341 db->db_blkid == DMU_SPILL_BLKID) { 2342 mutex_enter(&dn->dn_mtx); 2343 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2344 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2345 mutex_exit(&dn->dn_mtx); 2346 dnode_setdirty(dn, tx); 2347 DB_DNODE_EXIT(db); 2348 return (dr); 2349 } 2350 2351 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 2352 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2353 drop_struct_rwlock = B_TRUE; 2354 } 2355 2356 /* 2357 * If we are overwriting a dedup BP, then unless it is snapshotted, 2358 * when we get to syncing context we will need to decrement its 2359 * refcount in the DDT. Prefetch the relevant DDT block so that 2360 * syncing context won't have to wait for the i/o. 2361 */ 2362 if (db->db_blkptr != NULL) { 2363 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 2364 ddt_prefetch(os->os_spa, db->db_blkptr); 2365 dmu_buf_unlock_parent(db, dblt, FTAG); 2366 } 2367 2368 /* 2369 * We need to hold the dn_struct_rwlock to make this assertion, 2370 * because it protects dn_phys / dn_next_nlevels from changing. 2371 */ 2372 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 2373 dn->dn_phys->dn_nlevels > db->db_level || 2374 dn->dn_next_nlevels[txgoff] > db->db_level || 2375 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 2376 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 2377 2378 2379 if (db->db_level == 0) { 2380 ASSERT(!db->db_objset->os_raw_receive || 2381 dn->dn_maxblkid >= db->db_blkid); 2382 dnode_new_blkid(dn, db->db_blkid, tx, 2383 drop_struct_rwlock, B_FALSE); 2384 ASSERT(dn->dn_maxblkid >= db->db_blkid); 2385 } 2386 2387 if (db->db_level+1 < dn->dn_nlevels) { 2388 dmu_buf_impl_t *parent = db->db_parent; 2389 dbuf_dirty_record_t *di; 2390 int parent_held = FALSE; 2391 2392 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 2393 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2394 parent = dbuf_hold_level(dn, db->db_level + 1, 2395 db->db_blkid >> epbs, FTAG); 2396 ASSERT(parent != NULL); 2397 parent_held = TRUE; 2398 } 2399 if (drop_struct_rwlock) 2400 rw_exit(&dn->dn_struct_rwlock); 2401 ASSERT3U(db->db_level + 1, ==, parent->db_level); 2402 di = dbuf_dirty(parent, tx); 2403 if (parent_held) 2404 dbuf_rele(parent, FTAG); 2405 2406 mutex_enter(&db->db_mtx); 2407 /* 2408 * Since we've dropped the mutex, it's possible that 2409 * dbuf_undirty() might have changed this out from under us. 2410 */ 2411 if (list_head(&db->db_dirty_records) == dr || 2412 dn->dn_object == DMU_META_DNODE_OBJECT) { 2413 mutex_enter(&di->dt.di.dr_mtx); 2414 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 2415 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2416 list_insert_tail(&di->dt.di.dr_children, dr); 2417 mutex_exit(&di->dt.di.dr_mtx); 2418 dr->dr_parent = di; 2419 } 2420 mutex_exit(&db->db_mtx); 2421 } else { 2422 ASSERT(db->db_level + 1 == dn->dn_nlevels); 2423 ASSERT(db->db_blkid < dn->dn_nblkptr); 2424 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 2425 mutex_enter(&dn->dn_mtx); 2426 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2427 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2428 mutex_exit(&dn->dn_mtx); 2429 if (drop_struct_rwlock) 2430 rw_exit(&dn->dn_struct_rwlock); 2431 } 2432 2433 dnode_setdirty(dn, tx); 2434 DB_DNODE_EXIT(db); 2435 return (dr); 2436 } 2437 2438 static void 2439 dbuf_undirty_bonus(dbuf_dirty_record_t *dr) 2440 { 2441 dmu_buf_impl_t *db = dr->dr_dbuf; 2442 2443 if (dr->dt.dl.dr_data != db->db.db_data) { 2444 struct dnode *dn = dr->dr_dnode; 2445 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 2446 2447 kmem_free(dr->dt.dl.dr_data, max_bonuslen); 2448 arc_space_return(max_bonuslen, ARC_SPACE_BONUS); 2449 } 2450 db->db_data_pending = NULL; 2451 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 2452 list_remove(&db->db_dirty_records, dr); 2453 if (dr->dr_dbuf->db_level != 0) { 2454 mutex_destroy(&dr->dt.di.dr_mtx); 2455 list_destroy(&dr->dt.di.dr_children); 2456 } 2457 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2458 ASSERT3U(db->db_dirtycnt, >, 0); 2459 db->db_dirtycnt -= 1; 2460 } 2461 2462 /* 2463 * Undirty a buffer in the transaction group referenced by the given 2464 * transaction. Return whether this evicted the dbuf. 2465 */ 2466 static boolean_t 2467 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2468 { 2469 uint64_t txg = tx->tx_txg; 2470 2471 ASSERT(txg != 0); 2472 2473 /* 2474 * Due to our use of dn_nlevels below, this can only be called 2475 * in open context, unless we are operating on the MOS. 2476 * From syncing context, dn_nlevels may be different from the 2477 * dn_nlevels used when dbuf was dirtied. 2478 */ 2479 ASSERT(db->db_objset == 2480 dmu_objset_pool(db->db_objset)->dp_meta_objset || 2481 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 2482 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2483 ASSERT0(db->db_level); 2484 ASSERT(MUTEX_HELD(&db->db_mtx)); 2485 2486 /* 2487 * If this buffer is not dirty, we're done. 2488 */ 2489 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg); 2490 if (dr == NULL) 2491 return (B_FALSE); 2492 ASSERT(dr->dr_dbuf == db); 2493 2494 dnode_t *dn = dr->dr_dnode; 2495 2496 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2497 2498 ASSERT(db->db.db_size != 0); 2499 2500 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 2501 dr->dr_accounted, txg); 2502 2503 list_remove(&db->db_dirty_records, dr); 2504 2505 /* 2506 * Note that there are three places in dbuf_dirty() 2507 * where this dirty record may be put on a list. 2508 * Make sure to do a list_remove corresponding to 2509 * every one of those list_insert calls. 2510 */ 2511 if (dr->dr_parent) { 2512 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 2513 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 2514 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 2515 } else if (db->db_blkid == DMU_SPILL_BLKID || 2516 db->db_level + 1 == dn->dn_nlevels) { 2517 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 2518 mutex_enter(&dn->dn_mtx); 2519 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 2520 mutex_exit(&dn->dn_mtx); 2521 } 2522 2523 if (db->db_state != DB_NOFILL) { 2524 dbuf_unoverride(dr); 2525 2526 ASSERT(db->db_buf != NULL); 2527 ASSERT(dr->dt.dl.dr_data != NULL); 2528 if (dr->dt.dl.dr_data != db->db_buf) 2529 arc_buf_destroy(dr->dt.dl.dr_data, db); 2530 } 2531 2532 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2533 2534 ASSERT(db->db_dirtycnt > 0); 2535 db->db_dirtycnt -= 1; 2536 2537 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 2538 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf)); 2539 dbuf_destroy(db); 2540 return (B_TRUE); 2541 } 2542 2543 return (B_FALSE); 2544 } 2545 2546 static void 2547 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx) 2548 { 2549 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2550 2551 ASSERT(tx->tx_txg != 0); 2552 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2553 2554 /* 2555 * Quick check for dirtiness. For already dirty blocks, this 2556 * reduces runtime of this function by >90%, and overall performance 2557 * by 50% for some workloads (e.g. file deletion with indirect blocks 2558 * cached). 2559 */ 2560 mutex_enter(&db->db_mtx); 2561 2562 if (db->db_state == DB_CACHED) { 2563 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2564 /* 2565 * It's possible that it is already dirty but not cached, 2566 * because there are some calls to dbuf_dirty() that don't 2567 * go through dmu_buf_will_dirty(). 2568 */ 2569 if (dr != NULL) { 2570 /* This dbuf is already dirty and cached. */ 2571 dbuf_redirty(dr); 2572 mutex_exit(&db->db_mtx); 2573 return; 2574 } 2575 } 2576 mutex_exit(&db->db_mtx); 2577 2578 DB_DNODE_ENTER(db); 2579 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 2580 flags |= DB_RF_HAVESTRUCT; 2581 DB_DNODE_EXIT(db); 2582 (void) dbuf_read(db, NULL, flags); 2583 (void) dbuf_dirty(db, tx); 2584 } 2585 2586 void 2587 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2588 { 2589 dmu_buf_will_dirty_impl(db_fake, 2590 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx); 2591 } 2592 2593 boolean_t 2594 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2595 { 2596 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2597 dbuf_dirty_record_t *dr; 2598 2599 mutex_enter(&db->db_mtx); 2600 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2601 mutex_exit(&db->db_mtx); 2602 return (dr != NULL); 2603 } 2604 2605 void 2606 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2607 { 2608 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2609 2610 db->db_state = DB_NOFILL; 2611 DTRACE_SET_STATE(db, "allocating NOFILL buffer"); 2612 dmu_buf_will_fill(db_fake, tx); 2613 } 2614 2615 void 2616 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2617 { 2618 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2619 2620 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2621 ASSERT(tx->tx_txg != 0); 2622 ASSERT(db->db_level == 0); 2623 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2624 2625 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 2626 dmu_tx_private_ok(tx)); 2627 2628 dbuf_noread(db); 2629 (void) dbuf_dirty(db, tx); 2630 } 2631 2632 /* 2633 * This function is effectively the same as dmu_buf_will_dirty(), but 2634 * indicates the caller expects raw encrypted data in the db, and provides 2635 * the crypt params (byteorder, salt, iv, mac) which should be stored in the 2636 * blkptr_t when this dbuf is written. This is only used for blocks of 2637 * dnodes, during raw receive. 2638 */ 2639 void 2640 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder, 2641 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx) 2642 { 2643 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2644 dbuf_dirty_record_t *dr; 2645 2646 /* 2647 * dr_has_raw_params is only processed for blocks of dnodes 2648 * (see dbuf_sync_dnode_leaf_crypt()). 2649 */ 2650 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 2651 ASSERT3U(db->db_level, ==, 0); 2652 ASSERT(db->db_objset->os_raw_receive); 2653 2654 dmu_buf_will_dirty_impl(db_fake, 2655 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx); 2656 2657 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2658 2659 ASSERT3P(dr, !=, NULL); 2660 2661 dr->dt.dl.dr_has_raw_params = B_TRUE; 2662 dr->dt.dl.dr_byteorder = byteorder; 2663 bcopy(salt, dr->dt.dl.dr_salt, ZIO_DATA_SALT_LEN); 2664 bcopy(iv, dr->dt.dl.dr_iv, ZIO_DATA_IV_LEN); 2665 bcopy(mac, dr->dt.dl.dr_mac, ZIO_DATA_MAC_LEN); 2666 } 2667 2668 static void 2669 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx) 2670 { 2671 struct dirty_leaf *dl; 2672 dbuf_dirty_record_t *dr; 2673 2674 dr = list_head(&db->db_dirty_records); 2675 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2676 dl = &dr->dt.dl; 2677 dl->dr_overridden_by = *bp; 2678 dl->dr_override_state = DR_OVERRIDDEN; 2679 dl->dr_overridden_by.blk_birth = dr->dr_txg; 2680 } 2681 2682 void 2683 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx) 2684 { 2685 (void) tx; 2686 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2687 dbuf_states_t old_state; 2688 mutex_enter(&db->db_mtx); 2689 DBUF_VERIFY(db); 2690 2691 old_state = db->db_state; 2692 db->db_state = DB_CACHED; 2693 if (old_state == DB_FILL) { 2694 if (db->db_level == 0 && db->db_freed_in_flight) { 2695 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2696 /* we were freed while filling */ 2697 /* XXX dbuf_undirty? */ 2698 bzero(db->db.db_data, db->db.db_size); 2699 db->db_freed_in_flight = FALSE; 2700 DTRACE_SET_STATE(db, 2701 "fill done handling freed in flight"); 2702 } else { 2703 DTRACE_SET_STATE(db, "fill done"); 2704 } 2705 cv_broadcast(&db->db_changed); 2706 } 2707 mutex_exit(&db->db_mtx); 2708 } 2709 2710 void 2711 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 2712 bp_embedded_type_t etype, enum zio_compress comp, 2713 int uncompressed_size, int compressed_size, int byteorder, 2714 dmu_tx_t *tx) 2715 { 2716 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2717 struct dirty_leaf *dl; 2718 dmu_object_type_t type; 2719 dbuf_dirty_record_t *dr; 2720 2721 if (etype == BP_EMBEDDED_TYPE_DATA) { 2722 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 2723 SPA_FEATURE_EMBEDDED_DATA)); 2724 } 2725 2726 DB_DNODE_ENTER(db); 2727 type = DB_DNODE(db)->dn_type; 2728 DB_DNODE_EXIT(db); 2729 2730 ASSERT0(db->db_level); 2731 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2732 2733 dmu_buf_will_not_fill(dbuf, tx); 2734 2735 dr = list_head(&db->db_dirty_records); 2736 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2737 dl = &dr->dt.dl; 2738 encode_embedded_bp_compressed(&dl->dr_overridden_by, 2739 data, comp, uncompressed_size, compressed_size); 2740 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 2741 BP_SET_TYPE(&dl->dr_overridden_by, type); 2742 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 2743 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 2744 2745 dl->dr_override_state = DR_OVERRIDDEN; 2746 dl->dr_overridden_by.blk_birth = dr->dr_txg; 2747 } 2748 2749 void 2750 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx) 2751 { 2752 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2753 dmu_object_type_t type; 2754 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset, 2755 SPA_FEATURE_REDACTED_DATASETS)); 2756 2757 DB_DNODE_ENTER(db); 2758 type = DB_DNODE(db)->dn_type; 2759 DB_DNODE_EXIT(db); 2760 2761 ASSERT0(db->db_level); 2762 dmu_buf_will_not_fill(dbuf, tx); 2763 2764 blkptr_t bp = { { { {0} } } }; 2765 BP_SET_TYPE(&bp, type); 2766 BP_SET_LEVEL(&bp, 0); 2767 BP_SET_BIRTH(&bp, tx->tx_txg, 0); 2768 BP_SET_REDACTED(&bp); 2769 BPE_SET_LSIZE(&bp, dbuf->db_size); 2770 2771 dbuf_override_impl(db, &bp, tx); 2772 } 2773 2774 /* 2775 * Directly assign a provided arc buf to a given dbuf if it's not referenced 2776 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 2777 */ 2778 void 2779 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 2780 { 2781 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2782 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2783 ASSERT(db->db_level == 0); 2784 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); 2785 ASSERT(buf != NULL); 2786 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size); 2787 ASSERT(tx->tx_txg != 0); 2788 2789 arc_return_buf(buf, db); 2790 ASSERT(arc_released(buf)); 2791 2792 mutex_enter(&db->db_mtx); 2793 2794 while (db->db_state == DB_READ || db->db_state == DB_FILL) 2795 cv_wait(&db->db_changed, &db->db_mtx); 2796 2797 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); 2798 2799 if (db->db_state == DB_CACHED && 2800 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 2801 /* 2802 * In practice, we will never have a case where we have an 2803 * encrypted arc buffer while additional holds exist on the 2804 * dbuf. We don't handle this here so we simply assert that 2805 * fact instead. 2806 */ 2807 ASSERT(!arc_is_encrypted(buf)); 2808 mutex_exit(&db->db_mtx); 2809 (void) dbuf_dirty(db, tx); 2810 bcopy(buf->b_data, db->db.db_data, db->db.db_size); 2811 arc_buf_destroy(buf, db); 2812 return; 2813 } 2814 2815 if (db->db_state == DB_CACHED) { 2816 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 2817 2818 ASSERT(db->db_buf != NULL); 2819 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 2820 ASSERT(dr->dt.dl.dr_data == db->db_buf); 2821 2822 if (!arc_released(db->db_buf)) { 2823 ASSERT(dr->dt.dl.dr_override_state == 2824 DR_OVERRIDDEN); 2825 arc_release(db->db_buf, db); 2826 } 2827 dr->dt.dl.dr_data = buf; 2828 arc_buf_destroy(db->db_buf, db); 2829 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 2830 arc_release(db->db_buf, db); 2831 arc_buf_destroy(db->db_buf, db); 2832 } 2833 db->db_buf = NULL; 2834 } 2835 ASSERT(db->db_buf == NULL); 2836 dbuf_set_data(db, buf); 2837 db->db_state = DB_FILL; 2838 DTRACE_SET_STATE(db, "filling assigned arcbuf"); 2839 mutex_exit(&db->db_mtx); 2840 (void) dbuf_dirty(db, tx); 2841 dmu_buf_fill_done(&db->db, tx); 2842 } 2843 2844 void 2845 dbuf_destroy(dmu_buf_impl_t *db) 2846 { 2847 dnode_t *dn; 2848 dmu_buf_impl_t *parent = db->db_parent; 2849 dmu_buf_impl_t *dndb; 2850 2851 ASSERT(MUTEX_HELD(&db->db_mtx)); 2852 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 2853 2854 if (db->db_buf != NULL) { 2855 arc_buf_destroy(db->db_buf, db); 2856 db->db_buf = NULL; 2857 } 2858 2859 if (db->db_blkid == DMU_BONUS_BLKID) { 2860 int slots = DB_DNODE(db)->dn_num_slots; 2861 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots); 2862 if (db->db.db_data != NULL) { 2863 kmem_free(db->db.db_data, bonuslen); 2864 arc_space_return(bonuslen, ARC_SPACE_BONUS); 2865 db->db_state = DB_UNCACHED; 2866 DTRACE_SET_STATE(db, "buffer cleared"); 2867 } 2868 } 2869 2870 dbuf_clear_data(db); 2871 2872 if (multilist_link_active(&db->db_cache_link)) { 2873 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 2874 db->db_caching_status == DB_DBUF_METADATA_CACHE); 2875 2876 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 2877 (void) zfs_refcount_remove_many( 2878 &dbuf_caches[db->db_caching_status].size, 2879 db->db.db_size, db); 2880 2881 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 2882 DBUF_STAT_BUMPDOWN(metadata_cache_count); 2883 } else { 2884 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 2885 DBUF_STAT_BUMPDOWN(cache_count); 2886 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 2887 db->db.db_size); 2888 } 2889 db->db_caching_status = DB_NO_CACHE; 2890 } 2891 2892 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 2893 ASSERT(db->db_data_pending == NULL); 2894 ASSERT(list_is_empty(&db->db_dirty_records)); 2895 2896 db->db_state = DB_EVICTING; 2897 DTRACE_SET_STATE(db, "buffer eviction started"); 2898 db->db_blkptr = NULL; 2899 2900 /* 2901 * Now that db_state is DB_EVICTING, nobody else can find this via 2902 * the hash table. We can now drop db_mtx, which allows us to 2903 * acquire the dn_dbufs_mtx. 2904 */ 2905 mutex_exit(&db->db_mtx); 2906 2907 DB_DNODE_ENTER(db); 2908 dn = DB_DNODE(db); 2909 dndb = dn->dn_dbuf; 2910 if (db->db_blkid != DMU_BONUS_BLKID) { 2911 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 2912 if (needlock) 2913 mutex_enter_nested(&dn->dn_dbufs_mtx, 2914 NESTED_SINGLE); 2915 avl_remove(&dn->dn_dbufs, db); 2916 membar_producer(); 2917 DB_DNODE_EXIT(db); 2918 if (needlock) 2919 mutex_exit(&dn->dn_dbufs_mtx); 2920 /* 2921 * Decrementing the dbuf count means that the hold corresponding 2922 * to the removed dbuf is no longer discounted in dnode_move(), 2923 * so the dnode cannot be moved until after we release the hold. 2924 * The membar_producer() ensures visibility of the decremented 2925 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 2926 * release any lock. 2927 */ 2928 mutex_enter(&dn->dn_mtx); 2929 dnode_rele_and_unlock(dn, db, B_TRUE); 2930 db->db_dnode_handle = NULL; 2931 2932 dbuf_hash_remove(db); 2933 } else { 2934 DB_DNODE_EXIT(db); 2935 } 2936 2937 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 2938 2939 db->db_parent = NULL; 2940 2941 ASSERT(db->db_buf == NULL); 2942 ASSERT(db->db.db_data == NULL); 2943 ASSERT(db->db_hash_next == NULL); 2944 ASSERT(db->db_blkptr == NULL); 2945 ASSERT(db->db_data_pending == NULL); 2946 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 2947 ASSERT(!multilist_link_active(&db->db_cache_link)); 2948 2949 kmem_cache_free(dbuf_kmem_cache, db); 2950 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 2951 2952 /* 2953 * If this dbuf is referenced from an indirect dbuf, 2954 * decrement the ref count on the indirect dbuf. 2955 */ 2956 if (parent && parent != dndb) { 2957 mutex_enter(&parent->db_mtx); 2958 dbuf_rele_and_unlock(parent, db, B_TRUE); 2959 } 2960 } 2961 2962 /* 2963 * Note: While bpp will always be updated if the function returns success, 2964 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 2965 * this happens when the dnode is the meta-dnode, or {user|group|project}used 2966 * object. 2967 */ 2968 __attribute__((always_inline)) 2969 static inline int 2970 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 2971 dmu_buf_impl_t **parentp, blkptr_t **bpp) 2972 { 2973 *parentp = NULL; 2974 *bpp = NULL; 2975 2976 ASSERT(blkid != DMU_BONUS_BLKID); 2977 2978 if (blkid == DMU_SPILL_BLKID) { 2979 mutex_enter(&dn->dn_mtx); 2980 if (dn->dn_have_spill && 2981 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 2982 *bpp = DN_SPILL_BLKPTR(dn->dn_phys); 2983 else 2984 *bpp = NULL; 2985 dbuf_add_ref(dn->dn_dbuf, NULL); 2986 *parentp = dn->dn_dbuf; 2987 mutex_exit(&dn->dn_mtx); 2988 return (0); 2989 } 2990 2991 int nlevels = 2992 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; 2993 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2994 2995 ASSERT3U(level * epbs, <, 64); 2996 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2997 /* 2998 * This assertion shouldn't trip as long as the max indirect block size 2999 * is less than 1M. The reason for this is that up to that point, 3000 * the number of levels required to address an entire object with blocks 3001 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In 3002 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 3003 * (i.e. we can address the entire object), objects will all use at most 3004 * N-1 levels and the assertion won't overflow. However, once epbs is 3005 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be 3006 * enough to address an entire object, so objects will have 5 levels, 3007 * but then this assertion will overflow. 3008 * 3009 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we 3010 * need to redo this logic to handle overflows. 3011 */ 3012 ASSERT(level >= nlevels || 3013 ((nlevels - level - 1) * epbs) + 3014 highbit64(dn->dn_phys->dn_nblkptr) <= 64); 3015 if (level >= nlevels || 3016 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << 3017 ((nlevels - level - 1) * epbs)) || 3018 (fail_sparse && 3019 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 3020 /* the buffer has no parent yet */ 3021 return (SET_ERROR(ENOENT)); 3022 } else if (level < nlevels-1) { 3023 /* this block is referenced from an indirect block */ 3024 int err; 3025 3026 err = dbuf_hold_impl(dn, level + 1, 3027 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 3028 3029 if (err) 3030 return (err); 3031 err = dbuf_read(*parentp, NULL, 3032 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 3033 if (err) { 3034 dbuf_rele(*parentp, NULL); 3035 *parentp = NULL; 3036 return (err); 3037 } 3038 rw_enter(&(*parentp)->db_rwlock, RW_READER); 3039 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 3040 (blkid & ((1ULL << epbs) - 1)); 3041 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs))) 3042 ASSERT(BP_IS_HOLE(*bpp)); 3043 rw_exit(&(*parentp)->db_rwlock); 3044 return (0); 3045 } else { 3046 /* the block is referenced from the dnode */ 3047 ASSERT3U(level, ==, nlevels-1); 3048 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 3049 blkid < dn->dn_phys->dn_nblkptr); 3050 if (dn->dn_dbuf) { 3051 dbuf_add_ref(dn->dn_dbuf, NULL); 3052 *parentp = dn->dn_dbuf; 3053 } 3054 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 3055 return (0); 3056 } 3057 } 3058 3059 static dmu_buf_impl_t * 3060 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 3061 dmu_buf_impl_t *parent, blkptr_t *blkptr) 3062 { 3063 objset_t *os = dn->dn_objset; 3064 dmu_buf_impl_t *db, *odb; 3065 3066 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3067 ASSERT(dn->dn_type != DMU_OT_NONE); 3068 3069 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 3070 3071 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t), 3072 offsetof(dbuf_dirty_record_t, dr_dbuf_node)); 3073 3074 db->db_objset = os; 3075 db->db.db_object = dn->dn_object; 3076 db->db_level = level; 3077 db->db_blkid = blkid; 3078 db->db_dirtycnt = 0; 3079 db->db_dnode_handle = dn->dn_handle; 3080 db->db_parent = parent; 3081 db->db_blkptr = blkptr; 3082 3083 db->db_user = NULL; 3084 db->db_user_immediate_evict = FALSE; 3085 db->db_freed_in_flight = FALSE; 3086 db->db_pending_evict = FALSE; 3087 3088 if (blkid == DMU_BONUS_BLKID) { 3089 ASSERT3P(parent, ==, dn->dn_dbuf); 3090 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 3091 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 3092 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 3093 db->db.db_offset = DMU_BONUS_BLKID; 3094 db->db_state = DB_UNCACHED; 3095 DTRACE_SET_STATE(db, "bonus buffer created"); 3096 db->db_caching_status = DB_NO_CACHE; 3097 /* the bonus dbuf is not placed in the hash table */ 3098 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3099 return (db); 3100 } else if (blkid == DMU_SPILL_BLKID) { 3101 db->db.db_size = (blkptr != NULL) ? 3102 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 3103 db->db.db_offset = 0; 3104 } else { 3105 int blocksize = 3106 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 3107 db->db.db_size = blocksize; 3108 db->db.db_offset = db->db_blkid * blocksize; 3109 } 3110 3111 /* 3112 * Hold the dn_dbufs_mtx while we get the new dbuf 3113 * in the hash table *and* added to the dbufs list. 3114 * This prevents a possible deadlock with someone 3115 * trying to look up this dbuf before it's added to the 3116 * dn_dbufs list. 3117 */ 3118 mutex_enter(&dn->dn_dbufs_mtx); 3119 db->db_state = DB_EVICTING; /* not worth logging this state change */ 3120 if ((odb = dbuf_hash_insert(db)) != NULL) { 3121 /* someone else inserted it first */ 3122 mutex_exit(&dn->dn_dbufs_mtx); 3123 kmem_cache_free(dbuf_kmem_cache, db); 3124 DBUF_STAT_BUMP(hash_insert_race); 3125 return (odb); 3126 } 3127 avl_add(&dn->dn_dbufs, db); 3128 3129 db->db_state = DB_UNCACHED; 3130 DTRACE_SET_STATE(db, "regular buffer created"); 3131 db->db_caching_status = DB_NO_CACHE; 3132 mutex_exit(&dn->dn_dbufs_mtx); 3133 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3134 3135 if (parent && parent != dn->dn_dbuf) 3136 dbuf_add_ref(parent, db); 3137 3138 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 3139 zfs_refcount_count(&dn->dn_holds) > 0); 3140 (void) zfs_refcount_add(&dn->dn_holds, db); 3141 3142 dprintf_dbuf(db, "db=%p\n", db); 3143 3144 return (db); 3145 } 3146 3147 /* 3148 * This function returns a block pointer and information about the object, 3149 * given a dnode and a block. This is a publicly accessible version of 3150 * dbuf_findbp that only returns some information, rather than the 3151 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock 3152 * should be locked as (at least) a reader. 3153 */ 3154 int 3155 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid, 3156 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift) 3157 { 3158 dmu_buf_impl_t *dbp = NULL; 3159 blkptr_t *bp2; 3160 int err = 0; 3161 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3162 3163 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2); 3164 if (err == 0) { 3165 *bp = *bp2; 3166 if (dbp != NULL) 3167 dbuf_rele(dbp, NULL); 3168 if (datablkszsec != NULL) 3169 *datablkszsec = dn->dn_phys->dn_datablkszsec; 3170 if (indblkshift != NULL) 3171 *indblkshift = dn->dn_phys->dn_indblkshift; 3172 } 3173 3174 return (err); 3175 } 3176 3177 typedef struct dbuf_prefetch_arg { 3178 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 3179 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 3180 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 3181 int dpa_curlevel; /* The current level that we're reading */ 3182 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 3183 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 3184 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 3185 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 3186 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */ 3187 void *dpa_arg; /* prefetch completion arg */ 3188 } dbuf_prefetch_arg_t; 3189 3190 static void 3191 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done) 3192 { 3193 if (dpa->dpa_cb != NULL) 3194 dpa->dpa_cb(dpa->dpa_arg, io_done); 3195 kmem_free(dpa, sizeof (*dpa)); 3196 } 3197 3198 static void 3199 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb, 3200 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3201 { 3202 (void) zio, (void) zb, (void) iobp; 3203 dbuf_prefetch_arg_t *dpa = private; 3204 3205 dbuf_prefetch_fini(dpa, B_TRUE); 3206 if (abuf != NULL) 3207 arc_buf_destroy(abuf, private); 3208 } 3209 3210 /* 3211 * Actually issue the prefetch read for the block given. 3212 */ 3213 static void 3214 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 3215 { 3216 ASSERT(!BP_IS_REDACTED(bp) || 3217 dsl_dataset_feature_is_active( 3218 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3219 SPA_FEATURE_REDACTED_DATASETS)); 3220 3221 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp)) 3222 return (dbuf_prefetch_fini(dpa, B_FALSE)); 3223 3224 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 3225 arc_flags_t aflags = 3226 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH | 3227 ARC_FLAG_NO_BUF; 3228 3229 /* dnodes are always read as raw and then converted later */ 3230 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) && 3231 dpa->dpa_curlevel == 0) 3232 zio_flags |= ZIO_FLAG_RAW; 3233 3234 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3235 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 3236 ASSERT(dpa->dpa_zio != NULL); 3237 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, 3238 dbuf_issue_final_prefetch_done, dpa, 3239 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb); 3240 } 3241 3242 /* 3243 * Called when an indirect block above our prefetch target is read in. This 3244 * will either read in the next indirect block down the tree or issue the actual 3245 * prefetch if the next block down is our target. 3246 */ 3247 static void 3248 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb, 3249 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3250 { 3251 (void) zb, (void) iobp; 3252 dbuf_prefetch_arg_t *dpa = private; 3253 3254 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 3255 ASSERT3S(dpa->dpa_curlevel, >, 0); 3256 3257 if (abuf == NULL) { 3258 ASSERT(zio == NULL || zio->io_error != 0); 3259 return (dbuf_prefetch_fini(dpa, B_TRUE)); 3260 } 3261 ASSERT(zio == NULL || zio->io_error == 0); 3262 3263 /* 3264 * The dpa_dnode is only valid if we are called with a NULL 3265 * zio. This indicates that the arc_read() returned without 3266 * first calling zio_read() to issue a physical read. Once 3267 * a physical read is made the dpa_dnode must be invalidated 3268 * as the locks guarding it may have been dropped. If the 3269 * dpa_dnode is still valid, then we want to add it to the dbuf 3270 * cache. To do so, we must hold the dbuf associated with the block 3271 * we just prefetched, read its contents so that we associate it 3272 * with an arc_buf_t, and then release it. 3273 */ 3274 if (zio != NULL) { 3275 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 3276 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) { 3277 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 3278 } else { 3279 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 3280 } 3281 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 3282 3283 dpa->dpa_dnode = NULL; 3284 } else if (dpa->dpa_dnode != NULL) { 3285 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 3286 (dpa->dpa_epbs * (dpa->dpa_curlevel - 3287 dpa->dpa_zb.zb_level)); 3288 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 3289 dpa->dpa_curlevel, curblkid, FTAG); 3290 if (db == NULL) { 3291 arc_buf_destroy(abuf, private); 3292 return (dbuf_prefetch_fini(dpa, B_TRUE)); 3293 } 3294 (void) dbuf_read(db, NULL, 3295 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); 3296 dbuf_rele(db, FTAG); 3297 } 3298 3299 dpa->dpa_curlevel--; 3300 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 3301 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 3302 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 3303 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 3304 3305 ASSERT(!BP_IS_REDACTED(bp) || 3306 dsl_dataset_feature_is_active( 3307 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3308 SPA_FEATURE_REDACTED_DATASETS)); 3309 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) { 3310 dbuf_prefetch_fini(dpa, B_TRUE); 3311 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 3312 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 3313 dbuf_issue_final_prefetch(dpa, bp); 3314 } else { 3315 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3316 zbookmark_phys_t zb; 3317 3318 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3319 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE) 3320 iter_aflags |= ARC_FLAG_L2CACHE; 3321 3322 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3323 3324 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 3325 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 3326 3327 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3328 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio, 3329 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3330 &iter_aflags, &zb); 3331 } 3332 3333 arc_buf_destroy(abuf, private); 3334 } 3335 3336 /* 3337 * Issue prefetch reads for the given block on the given level. If the indirect 3338 * blocks above that block are not in memory, we will read them in 3339 * asynchronously. As a result, this call never blocks waiting for a read to 3340 * complete. Note that the prefetch might fail if the dataset is encrypted and 3341 * the encryption key is unmapped before the IO completes. 3342 */ 3343 int 3344 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid, 3345 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb, 3346 void *arg) 3347 { 3348 blkptr_t bp; 3349 int epbs, nlevels, curlevel; 3350 uint64_t curblkid; 3351 3352 ASSERT(blkid != DMU_BONUS_BLKID); 3353 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3354 3355 if (blkid > dn->dn_maxblkid) 3356 goto no_issue; 3357 3358 if (level == 0 && dnode_block_freed(dn, blkid)) 3359 goto no_issue; 3360 3361 /* 3362 * This dnode hasn't been written to disk yet, so there's nothing to 3363 * prefetch. 3364 */ 3365 nlevels = dn->dn_phys->dn_nlevels; 3366 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 3367 goto no_issue; 3368 3369 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3370 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 3371 goto no_issue; 3372 3373 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 3374 level, blkid); 3375 if (db != NULL) { 3376 mutex_exit(&db->db_mtx); 3377 /* 3378 * This dbuf already exists. It is either CACHED, or 3379 * (we assume) about to be read or filled. 3380 */ 3381 goto no_issue; 3382 } 3383 3384 /* 3385 * Find the closest ancestor (indirect block) of the target block 3386 * that is present in the cache. In this indirect block, we will 3387 * find the bp that is at curlevel, curblkid. 3388 */ 3389 curlevel = level; 3390 curblkid = blkid; 3391 while (curlevel < nlevels - 1) { 3392 int parent_level = curlevel + 1; 3393 uint64_t parent_blkid = curblkid >> epbs; 3394 dmu_buf_impl_t *db; 3395 3396 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 3397 FALSE, TRUE, FTAG, &db) == 0) { 3398 blkptr_t *bpp = db->db_buf->b_data; 3399 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 3400 dbuf_rele(db, FTAG); 3401 break; 3402 } 3403 3404 curlevel = parent_level; 3405 curblkid = parent_blkid; 3406 } 3407 3408 if (curlevel == nlevels - 1) { 3409 /* No cached indirect blocks found. */ 3410 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 3411 bp = dn->dn_phys->dn_blkptr[curblkid]; 3412 } 3413 ASSERT(!BP_IS_REDACTED(&bp) || 3414 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset, 3415 SPA_FEATURE_REDACTED_DATASETS)); 3416 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp)) 3417 goto no_issue; 3418 3419 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 3420 3421 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 3422 ZIO_FLAG_CANFAIL); 3423 3424 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 3425 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 3426 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3427 dn->dn_object, level, blkid); 3428 dpa->dpa_curlevel = curlevel; 3429 dpa->dpa_prio = prio; 3430 dpa->dpa_aflags = aflags; 3431 dpa->dpa_spa = dn->dn_objset->os_spa; 3432 dpa->dpa_dnode = dn; 3433 dpa->dpa_epbs = epbs; 3434 dpa->dpa_zio = pio; 3435 dpa->dpa_cb = cb; 3436 dpa->dpa_arg = arg; 3437 3438 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3439 if (dnode_level_is_l2cacheable(&bp, dn, level)) 3440 dpa->dpa_aflags |= ARC_FLAG_L2CACHE; 3441 3442 /* 3443 * If we have the indirect just above us, no need to do the asynchronous 3444 * prefetch chain; we'll just run the last step ourselves. If we're at 3445 * a higher level, though, we want to issue the prefetches for all the 3446 * indirect blocks asynchronously, so we can go on with whatever we were 3447 * doing. 3448 */ 3449 if (curlevel == level) { 3450 ASSERT3U(curblkid, ==, blkid); 3451 dbuf_issue_final_prefetch(dpa, &bp); 3452 } else { 3453 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3454 zbookmark_phys_t zb; 3455 3456 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3457 if (dnode_level_is_l2cacheable(&bp, dn, level)) 3458 iter_aflags |= ARC_FLAG_L2CACHE; 3459 3460 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3461 dn->dn_object, curlevel, curblkid); 3462 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3463 &bp, dbuf_prefetch_indirect_done, dpa, prio, 3464 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3465 &iter_aflags, &zb); 3466 } 3467 /* 3468 * We use pio here instead of dpa_zio since it's possible that 3469 * dpa may have already been freed. 3470 */ 3471 zio_nowait(pio); 3472 return (1); 3473 no_issue: 3474 if (cb != NULL) 3475 cb(arg, B_FALSE); 3476 return (0); 3477 } 3478 3479 int 3480 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 3481 arc_flags_t aflags) 3482 { 3483 3484 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL)); 3485 } 3486 3487 /* 3488 * Helper function for dbuf_hold_impl() to copy a buffer. Handles 3489 * the case of encrypted, compressed and uncompressed buffers by 3490 * allocating the new buffer, respectively, with arc_alloc_raw_buf(), 3491 * arc_alloc_compressed_buf() or arc_alloc_buf().* 3492 * 3493 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl(). 3494 */ 3495 noinline static void 3496 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db) 3497 { 3498 dbuf_dirty_record_t *dr = db->db_data_pending; 3499 arc_buf_t *data = dr->dt.dl.dr_data; 3500 enum zio_compress compress_type = arc_get_compression(data); 3501 uint8_t complevel = arc_get_complevel(data); 3502 3503 if (arc_is_encrypted(data)) { 3504 boolean_t byteorder; 3505 uint8_t salt[ZIO_DATA_SALT_LEN]; 3506 uint8_t iv[ZIO_DATA_IV_LEN]; 3507 uint8_t mac[ZIO_DATA_MAC_LEN]; 3508 3509 arc_get_raw_params(data, &byteorder, salt, iv, mac); 3510 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db, 3511 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac, 3512 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data), 3513 compress_type, complevel)); 3514 } else if (compress_type != ZIO_COMPRESS_OFF) { 3515 dbuf_set_data(db, arc_alloc_compressed_buf( 3516 dn->dn_objset->os_spa, db, arc_buf_size(data), 3517 arc_buf_lsize(data), compress_type, complevel)); 3518 } else { 3519 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db, 3520 DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 3521 } 3522 3523 rw_enter(&db->db_rwlock, RW_WRITER); 3524 bcopy(data->b_data, db->db.db_data, arc_buf_size(data)); 3525 rw_exit(&db->db_rwlock); 3526 } 3527 3528 /* 3529 * Returns with db_holds incremented, and db_mtx not held. 3530 * Note: dn_struct_rwlock must be held. 3531 */ 3532 int 3533 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 3534 boolean_t fail_sparse, boolean_t fail_uncached, 3535 void *tag, dmu_buf_impl_t **dbp) 3536 { 3537 dmu_buf_impl_t *db, *parent = NULL; 3538 3539 /* If the pool has been created, verify the tx_sync_lock is not held */ 3540 spa_t *spa = dn->dn_objset->os_spa; 3541 dsl_pool_t *dp = spa->spa_dsl_pool; 3542 if (dp != NULL) { 3543 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock)); 3544 } 3545 3546 ASSERT(blkid != DMU_BONUS_BLKID); 3547 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3548 ASSERT3U(dn->dn_nlevels, >, level); 3549 3550 *dbp = NULL; 3551 3552 /* dbuf_find() returns with db_mtx held */ 3553 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid); 3554 3555 if (db == NULL) { 3556 blkptr_t *bp = NULL; 3557 int err; 3558 3559 if (fail_uncached) 3560 return (SET_ERROR(ENOENT)); 3561 3562 ASSERT3P(parent, ==, NULL); 3563 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 3564 if (fail_sparse) { 3565 if (err == 0 && bp && BP_IS_HOLE(bp)) 3566 err = SET_ERROR(ENOENT); 3567 if (err) { 3568 if (parent) 3569 dbuf_rele(parent, NULL); 3570 return (err); 3571 } 3572 } 3573 if (err && err != ENOENT) 3574 return (err); 3575 db = dbuf_create(dn, level, blkid, parent, bp); 3576 } 3577 3578 if (fail_uncached && db->db_state != DB_CACHED) { 3579 mutex_exit(&db->db_mtx); 3580 return (SET_ERROR(ENOENT)); 3581 } 3582 3583 if (db->db_buf != NULL) { 3584 arc_buf_access(db->db_buf); 3585 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 3586 } 3587 3588 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 3589 3590 /* 3591 * If this buffer is currently syncing out, and we are 3592 * still referencing it from db_data, we need to make a copy 3593 * of it in case we decide we want to dirty it again in this txg. 3594 */ 3595 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 3596 dn->dn_object != DMU_META_DNODE_OBJECT && 3597 db->db_state == DB_CACHED && db->db_data_pending) { 3598 dbuf_dirty_record_t *dr = db->db_data_pending; 3599 if (dr->dt.dl.dr_data == db->db_buf) 3600 dbuf_hold_copy(dn, db); 3601 } 3602 3603 if (multilist_link_active(&db->db_cache_link)) { 3604 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3605 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 3606 db->db_caching_status == DB_DBUF_METADATA_CACHE); 3607 3608 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 3609 (void) zfs_refcount_remove_many( 3610 &dbuf_caches[db->db_caching_status].size, 3611 db->db.db_size, db); 3612 3613 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 3614 DBUF_STAT_BUMPDOWN(metadata_cache_count); 3615 } else { 3616 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 3617 DBUF_STAT_BUMPDOWN(cache_count); 3618 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 3619 db->db.db_size); 3620 } 3621 db->db_caching_status = DB_NO_CACHE; 3622 } 3623 (void) zfs_refcount_add(&db->db_holds, tag); 3624 DBUF_VERIFY(db); 3625 mutex_exit(&db->db_mtx); 3626 3627 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 3628 if (parent) 3629 dbuf_rele(parent, NULL); 3630 3631 ASSERT3P(DB_DNODE(db), ==, dn); 3632 ASSERT3U(db->db_blkid, ==, blkid); 3633 ASSERT3U(db->db_level, ==, level); 3634 *dbp = db; 3635 3636 return (0); 3637 } 3638 3639 dmu_buf_impl_t * 3640 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) 3641 { 3642 return (dbuf_hold_level(dn, 0, blkid, tag)); 3643 } 3644 3645 dmu_buf_impl_t * 3646 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) 3647 { 3648 dmu_buf_impl_t *db; 3649 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 3650 return (err ? NULL : db); 3651 } 3652 3653 void 3654 dbuf_create_bonus(dnode_t *dn) 3655 { 3656 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 3657 3658 ASSERT(dn->dn_bonus == NULL); 3659 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL); 3660 } 3661 3662 int 3663 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 3664 { 3665 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3666 3667 if (db->db_blkid != DMU_SPILL_BLKID) 3668 return (SET_ERROR(ENOTSUP)); 3669 if (blksz == 0) 3670 blksz = SPA_MINBLOCKSIZE; 3671 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 3672 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 3673 3674 dbuf_new_size(db, blksz, tx); 3675 3676 return (0); 3677 } 3678 3679 void 3680 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 3681 { 3682 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 3683 } 3684 3685 #pragma weak dmu_buf_add_ref = dbuf_add_ref 3686 void 3687 dbuf_add_ref(dmu_buf_impl_t *db, void *tag) 3688 { 3689 int64_t holds = zfs_refcount_add(&db->db_holds, tag); 3690 VERIFY3S(holds, >, 1); 3691 } 3692 3693 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 3694 boolean_t 3695 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 3696 void *tag) 3697 { 3698 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3699 dmu_buf_impl_t *found_db; 3700 boolean_t result = B_FALSE; 3701 3702 if (blkid == DMU_BONUS_BLKID) 3703 found_db = dbuf_find_bonus(os, obj); 3704 else 3705 found_db = dbuf_find(os, obj, 0, blkid); 3706 3707 if (found_db != NULL) { 3708 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 3709 (void) zfs_refcount_add(&db->db_holds, tag); 3710 result = B_TRUE; 3711 } 3712 mutex_exit(&found_db->db_mtx); 3713 } 3714 return (result); 3715 } 3716 3717 /* 3718 * If you call dbuf_rele() you had better not be referencing the dnode handle 3719 * unless you have some other direct or indirect hold on the dnode. (An indirect 3720 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 3721 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 3722 * dnode's parent dbuf evicting its dnode handles. 3723 */ 3724 void 3725 dbuf_rele(dmu_buf_impl_t *db, void *tag) 3726 { 3727 mutex_enter(&db->db_mtx); 3728 dbuf_rele_and_unlock(db, tag, B_FALSE); 3729 } 3730 3731 void 3732 dmu_buf_rele(dmu_buf_t *db, void *tag) 3733 { 3734 dbuf_rele((dmu_buf_impl_t *)db, tag); 3735 } 3736 3737 /* 3738 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 3739 * db_dirtycnt and db_holds to be updated atomically. The 'evicting' 3740 * argument should be set if we are already in the dbuf-evicting code 3741 * path, in which case we don't want to recursively evict. This allows us to 3742 * avoid deeply nested stacks that would have a call flow similar to this: 3743 * 3744 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 3745 * ^ | 3746 * | | 3747 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 3748 * 3749 */ 3750 void 3751 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag, boolean_t evicting) 3752 { 3753 int64_t holds; 3754 uint64_t size; 3755 3756 ASSERT(MUTEX_HELD(&db->db_mtx)); 3757 DBUF_VERIFY(db); 3758 3759 /* 3760 * Remove the reference to the dbuf before removing its hold on the 3761 * dnode so we can guarantee in dnode_move() that a referenced bonus 3762 * buffer has a corresponding dnode hold. 3763 */ 3764 holds = zfs_refcount_remove(&db->db_holds, tag); 3765 ASSERT(holds >= 0); 3766 3767 /* 3768 * We can't freeze indirects if there is a possibility that they 3769 * may be modified in the current syncing context. 3770 */ 3771 if (db->db_buf != NULL && 3772 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 3773 arc_buf_freeze(db->db_buf); 3774 } 3775 3776 if (holds == db->db_dirtycnt && 3777 db->db_level == 0 && db->db_user_immediate_evict) 3778 dbuf_evict_user(db); 3779 3780 if (holds == 0) { 3781 if (db->db_blkid == DMU_BONUS_BLKID) { 3782 dnode_t *dn; 3783 boolean_t evict_dbuf = db->db_pending_evict; 3784 3785 /* 3786 * If the dnode moves here, we cannot cross this 3787 * barrier until the move completes. 3788 */ 3789 DB_DNODE_ENTER(db); 3790 3791 dn = DB_DNODE(db); 3792 atomic_dec_32(&dn->dn_dbufs_count); 3793 3794 /* 3795 * Decrementing the dbuf count means that the bonus 3796 * buffer's dnode hold is no longer discounted in 3797 * dnode_move(). The dnode cannot move until after 3798 * the dnode_rele() below. 3799 */ 3800 DB_DNODE_EXIT(db); 3801 3802 /* 3803 * Do not reference db after its lock is dropped. 3804 * Another thread may evict it. 3805 */ 3806 mutex_exit(&db->db_mtx); 3807 3808 if (evict_dbuf) 3809 dnode_evict_bonus(dn); 3810 3811 dnode_rele(dn, db); 3812 } else if (db->db_buf == NULL) { 3813 /* 3814 * This is a special case: we never associated this 3815 * dbuf with any data allocated from the ARC. 3816 */ 3817 ASSERT(db->db_state == DB_UNCACHED || 3818 db->db_state == DB_NOFILL); 3819 dbuf_destroy(db); 3820 } else if (arc_released(db->db_buf)) { 3821 /* 3822 * This dbuf has anonymous data associated with it. 3823 */ 3824 dbuf_destroy(db); 3825 } else { 3826 boolean_t do_arc_evict = B_FALSE; 3827 blkptr_t bp; 3828 spa_t *spa = dmu_objset_spa(db->db_objset); 3829 3830 if (!DBUF_IS_CACHEABLE(db) && 3831 db->db_blkptr != NULL && 3832 !BP_IS_HOLE(db->db_blkptr) && 3833 !BP_IS_EMBEDDED(db->db_blkptr)) { 3834 do_arc_evict = B_TRUE; 3835 bp = *db->db_blkptr; 3836 } 3837 3838 if (!DBUF_IS_CACHEABLE(db) || 3839 db->db_pending_evict) { 3840 dbuf_destroy(db); 3841 } else if (!multilist_link_active(&db->db_cache_link)) { 3842 ASSERT3U(db->db_caching_status, ==, 3843 DB_NO_CACHE); 3844 3845 dbuf_cached_state_t dcs = 3846 dbuf_include_in_metadata_cache(db) ? 3847 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE; 3848 db->db_caching_status = dcs; 3849 3850 multilist_insert(&dbuf_caches[dcs].cache, db); 3851 uint64_t db_size = db->db.db_size; 3852 size = zfs_refcount_add_many( 3853 &dbuf_caches[dcs].size, db_size, db); 3854 uint8_t db_level = db->db_level; 3855 mutex_exit(&db->db_mtx); 3856 3857 if (dcs == DB_DBUF_METADATA_CACHE) { 3858 DBUF_STAT_BUMP(metadata_cache_count); 3859 DBUF_STAT_MAX( 3860 metadata_cache_size_bytes_max, 3861 size); 3862 } else { 3863 DBUF_STAT_BUMP(cache_count); 3864 DBUF_STAT_MAX(cache_size_bytes_max, 3865 size); 3866 DBUF_STAT_BUMP(cache_levels[db_level]); 3867 DBUF_STAT_INCR( 3868 cache_levels_bytes[db_level], 3869 db_size); 3870 } 3871 3872 if (dcs == DB_DBUF_CACHE && !evicting) 3873 dbuf_evict_notify(size); 3874 } 3875 3876 if (do_arc_evict) 3877 arc_freed(spa, &bp); 3878 } 3879 } else { 3880 mutex_exit(&db->db_mtx); 3881 } 3882 3883 } 3884 3885 #pragma weak dmu_buf_refcount = dbuf_refcount 3886 uint64_t 3887 dbuf_refcount(dmu_buf_impl_t *db) 3888 { 3889 return (zfs_refcount_count(&db->db_holds)); 3890 } 3891 3892 uint64_t 3893 dmu_buf_user_refcount(dmu_buf_t *db_fake) 3894 { 3895 uint64_t holds; 3896 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3897 3898 mutex_enter(&db->db_mtx); 3899 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt); 3900 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt; 3901 mutex_exit(&db->db_mtx); 3902 3903 return (holds); 3904 } 3905 3906 void * 3907 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 3908 dmu_buf_user_t *new_user) 3909 { 3910 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3911 3912 mutex_enter(&db->db_mtx); 3913 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3914 if (db->db_user == old_user) 3915 db->db_user = new_user; 3916 else 3917 old_user = db->db_user; 3918 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3919 mutex_exit(&db->db_mtx); 3920 3921 return (old_user); 3922 } 3923 3924 void * 3925 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 3926 { 3927 return (dmu_buf_replace_user(db_fake, NULL, user)); 3928 } 3929 3930 void * 3931 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 3932 { 3933 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3934 3935 db->db_user_immediate_evict = TRUE; 3936 return (dmu_buf_set_user(db_fake, user)); 3937 } 3938 3939 void * 3940 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 3941 { 3942 return (dmu_buf_replace_user(db_fake, user, NULL)); 3943 } 3944 3945 void * 3946 dmu_buf_get_user(dmu_buf_t *db_fake) 3947 { 3948 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3949 3950 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3951 return (db->db_user); 3952 } 3953 3954 void 3955 dmu_buf_user_evict_wait() 3956 { 3957 taskq_wait(dbu_evict_taskq); 3958 } 3959 3960 blkptr_t * 3961 dmu_buf_get_blkptr(dmu_buf_t *db) 3962 { 3963 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3964 return (dbi->db_blkptr); 3965 } 3966 3967 objset_t * 3968 dmu_buf_get_objset(dmu_buf_t *db) 3969 { 3970 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3971 return (dbi->db_objset); 3972 } 3973 3974 dnode_t * 3975 dmu_buf_dnode_enter(dmu_buf_t *db) 3976 { 3977 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3978 DB_DNODE_ENTER(dbi); 3979 return (DB_DNODE(dbi)); 3980 } 3981 3982 void 3983 dmu_buf_dnode_exit(dmu_buf_t *db) 3984 { 3985 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3986 DB_DNODE_EXIT(dbi); 3987 } 3988 3989 static void 3990 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 3991 { 3992 /* ASSERT(dmu_tx_is_syncing(tx) */ 3993 ASSERT(MUTEX_HELD(&db->db_mtx)); 3994 3995 if (db->db_blkptr != NULL) 3996 return; 3997 3998 if (db->db_blkid == DMU_SPILL_BLKID) { 3999 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys); 4000 BP_ZERO(db->db_blkptr); 4001 return; 4002 } 4003 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 4004 /* 4005 * This buffer was allocated at a time when there was 4006 * no available blkptrs from the dnode, or it was 4007 * inappropriate to hook it in (i.e., nlevels mismatch). 4008 */ 4009 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 4010 ASSERT(db->db_parent == NULL); 4011 db->db_parent = dn->dn_dbuf; 4012 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 4013 DBUF_VERIFY(db); 4014 } else { 4015 dmu_buf_impl_t *parent = db->db_parent; 4016 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4017 4018 ASSERT(dn->dn_phys->dn_nlevels > 1); 4019 if (parent == NULL) { 4020 mutex_exit(&db->db_mtx); 4021 rw_enter(&dn->dn_struct_rwlock, RW_READER); 4022 parent = dbuf_hold_level(dn, db->db_level + 1, 4023 db->db_blkid >> epbs, db); 4024 rw_exit(&dn->dn_struct_rwlock); 4025 mutex_enter(&db->db_mtx); 4026 db->db_parent = parent; 4027 } 4028 db->db_blkptr = (blkptr_t *)parent->db.db_data + 4029 (db->db_blkid & ((1ULL << epbs) - 1)); 4030 DBUF_VERIFY(db); 4031 } 4032 } 4033 4034 static void 4035 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4036 { 4037 dmu_buf_impl_t *db = dr->dr_dbuf; 4038 void *data = dr->dt.dl.dr_data; 4039 4040 ASSERT0(db->db_level); 4041 ASSERT(MUTEX_HELD(&db->db_mtx)); 4042 ASSERT(db->db_blkid == DMU_BONUS_BLKID); 4043 ASSERT(data != NULL); 4044 4045 dnode_t *dn = dr->dr_dnode; 4046 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=, 4047 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1)); 4048 bcopy(data, DN_BONUS(dn->dn_phys), DN_MAX_BONUS_LEN(dn->dn_phys)); 4049 4050 dbuf_sync_leaf_verify_bonus_dnode(dr); 4051 4052 dbuf_undirty_bonus(dr); 4053 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 4054 } 4055 4056 /* 4057 * When syncing out a blocks of dnodes, adjust the block to deal with 4058 * encryption. Normally, we make sure the block is decrypted before writing 4059 * it. If we have crypt params, then we are writing a raw (encrypted) block, 4060 * from a raw receive. In this case, set the ARC buf's crypt params so 4061 * that the BP will be filled with the correct byteorder, salt, iv, and mac. 4062 */ 4063 static void 4064 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr) 4065 { 4066 int err; 4067 dmu_buf_impl_t *db = dr->dr_dbuf; 4068 4069 ASSERT(MUTEX_HELD(&db->db_mtx)); 4070 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 4071 ASSERT3U(db->db_level, ==, 0); 4072 4073 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) { 4074 zbookmark_phys_t zb; 4075 4076 /* 4077 * Unfortunately, there is currently no mechanism for 4078 * syncing context to handle decryption errors. An error 4079 * here is only possible if an attacker maliciously 4080 * changed a dnode block and updated the associated 4081 * checksums going up the block tree. 4082 */ 4083 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 4084 db->db.db_object, db->db_level, db->db_blkid); 4085 err = arc_untransform(db->db_buf, db->db_objset->os_spa, 4086 &zb, B_TRUE); 4087 if (err) 4088 panic("Invalid dnode block MAC"); 4089 } else if (dr->dt.dl.dr_has_raw_params) { 4090 (void) arc_release(dr->dt.dl.dr_data, db); 4091 arc_convert_to_raw(dr->dt.dl.dr_data, 4092 dmu_objset_id(db->db_objset), 4093 dr->dt.dl.dr_byteorder, DMU_OT_DNODE, 4094 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac); 4095 } 4096 } 4097 4098 /* 4099 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it 4100 * is critical the we not allow the compiler to inline this function in to 4101 * dbuf_sync_list() thereby drastically bloating the stack usage. 4102 */ 4103 noinline static void 4104 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4105 { 4106 dmu_buf_impl_t *db = dr->dr_dbuf; 4107 dnode_t *dn = dr->dr_dnode; 4108 4109 ASSERT(dmu_tx_is_syncing(tx)); 4110 4111 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4112 4113 mutex_enter(&db->db_mtx); 4114 4115 ASSERT(db->db_level > 0); 4116 DBUF_VERIFY(db); 4117 4118 /* Read the block if it hasn't been read yet. */ 4119 if (db->db_buf == NULL) { 4120 mutex_exit(&db->db_mtx); 4121 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 4122 mutex_enter(&db->db_mtx); 4123 } 4124 ASSERT3U(db->db_state, ==, DB_CACHED); 4125 ASSERT(db->db_buf != NULL); 4126 4127 /* Indirect block size must match what the dnode thinks it is. */ 4128 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4129 dbuf_check_blkptr(dn, db); 4130 4131 /* Provide the pending dirty record to child dbufs */ 4132 db->db_data_pending = dr; 4133 4134 mutex_exit(&db->db_mtx); 4135 4136 dbuf_write(dr, db->db_buf, tx); 4137 4138 zio_t *zio = dr->dr_zio; 4139 mutex_enter(&dr->dt.di.dr_mtx); 4140 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 4141 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4142 mutex_exit(&dr->dt.di.dr_mtx); 4143 zio_nowait(zio); 4144 } 4145 4146 /* 4147 * Verify that the size of the data in our bonus buffer does not exceed 4148 * its recorded size. 4149 * 4150 * The purpose of this verification is to catch any cases in development 4151 * where the size of a phys structure (i.e space_map_phys_t) grows and, 4152 * due to incorrect feature management, older pools expect to read more 4153 * data even though they didn't actually write it to begin with. 4154 * 4155 * For a example, this would catch an error in the feature logic where we 4156 * open an older pool and we expect to write the space map histogram of 4157 * a space map with size SPACE_MAP_SIZE_V0. 4158 */ 4159 static void 4160 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr) 4161 { 4162 #ifdef ZFS_DEBUG 4163 dnode_t *dn = dr->dr_dnode; 4164 4165 /* 4166 * Encrypted bonus buffers can have data past their bonuslen. 4167 * Skip the verification of these blocks. 4168 */ 4169 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)) 4170 return; 4171 4172 uint16_t bonuslen = dn->dn_phys->dn_bonuslen; 4173 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 4174 ASSERT3U(bonuslen, <=, maxbonuslen); 4175 4176 arc_buf_t *datap = dr->dt.dl.dr_data; 4177 char *datap_end = ((char *)datap) + bonuslen; 4178 char *datap_max = ((char *)datap) + maxbonuslen; 4179 4180 /* ensure that everything is zero after our data */ 4181 for (; datap_end < datap_max; datap_end++) 4182 ASSERT(*datap_end == 0); 4183 #endif 4184 } 4185 4186 static blkptr_t * 4187 dbuf_lightweight_bp(dbuf_dirty_record_t *dr) 4188 { 4189 /* This must be a lightweight dirty record. */ 4190 ASSERT3P(dr->dr_dbuf, ==, NULL); 4191 dnode_t *dn = dr->dr_dnode; 4192 4193 if (dn->dn_phys->dn_nlevels == 1) { 4194 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr); 4195 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]); 4196 } else { 4197 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf; 4198 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 4199 VERIFY3U(parent_db->db_level, ==, 1); 4200 VERIFY3P(parent_db->db_dnode_handle->dnh_dnode, ==, dn); 4201 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid); 4202 blkptr_t *bp = parent_db->db.db_data; 4203 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]); 4204 } 4205 } 4206 4207 static void 4208 dbuf_lightweight_ready(zio_t *zio) 4209 { 4210 dbuf_dirty_record_t *dr = zio->io_private; 4211 blkptr_t *bp = zio->io_bp; 4212 4213 if (zio->io_error != 0) 4214 return; 4215 4216 dnode_t *dn = dr->dr_dnode; 4217 4218 blkptr_t *bp_orig = dbuf_lightweight_bp(dr); 4219 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4220 int64_t delta = bp_get_dsize_sync(spa, bp) - 4221 bp_get_dsize_sync(spa, bp_orig); 4222 dnode_diduse_space(dn, delta); 4223 4224 uint64_t blkid = dr->dt.dll.dr_blkid; 4225 mutex_enter(&dn->dn_mtx); 4226 if (blkid > dn->dn_phys->dn_maxblkid) { 4227 ASSERT0(dn->dn_objset->os_raw_receive); 4228 dn->dn_phys->dn_maxblkid = blkid; 4229 } 4230 mutex_exit(&dn->dn_mtx); 4231 4232 if (!BP_IS_EMBEDDED(bp)) { 4233 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1; 4234 BP_SET_FILL(bp, fill); 4235 } 4236 4237 dmu_buf_impl_t *parent_db; 4238 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1); 4239 if (dr->dr_parent == NULL) { 4240 parent_db = dn->dn_dbuf; 4241 } else { 4242 parent_db = dr->dr_parent->dr_dbuf; 4243 } 4244 rw_enter(&parent_db->db_rwlock, RW_WRITER); 4245 *bp_orig = *bp; 4246 rw_exit(&parent_db->db_rwlock); 4247 } 4248 4249 static void 4250 dbuf_lightweight_physdone(zio_t *zio) 4251 { 4252 dbuf_dirty_record_t *dr = zio->io_private; 4253 dsl_pool_t *dp = spa_get_dsl(zio->io_spa); 4254 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 4255 4256 /* 4257 * The callback will be called io_phys_children times. Retire one 4258 * portion of our dirty space each time we are called. Any rounding 4259 * error will be cleaned up by dbuf_lightweight_done(). 4260 */ 4261 int delta = dr->dr_accounted / zio->io_phys_children; 4262 dsl_pool_undirty_space(dp, delta, zio->io_txg); 4263 } 4264 4265 static void 4266 dbuf_lightweight_done(zio_t *zio) 4267 { 4268 dbuf_dirty_record_t *dr = zio->io_private; 4269 4270 VERIFY0(zio->io_error); 4271 4272 objset_t *os = dr->dr_dnode->dn_objset; 4273 dmu_tx_t *tx = os->os_synctx; 4274 4275 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4276 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4277 } else { 4278 dsl_dataset_t *ds = os->os_dsl_dataset; 4279 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE); 4280 dsl_dataset_block_born(ds, zio->io_bp, tx); 4281 } 4282 4283 /* 4284 * See comment in dbuf_write_done(). 4285 */ 4286 if (zio->io_phys_children == 0) { 4287 dsl_pool_undirty_space(dmu_objset_pool(os), 4288 dr->dr_accounted, zio->io_txg); 4289 } else { 4290 dsl_pool_undirty_space(dmu_objset_pool(os), 4291 dr->dr_accounted % zio->io_phys_children, zio->io_txg); 4292 } 4293 4294 abd_free(dr->dt.dll.dr_abd); 4295 kmem_free(dr, sizeof (*dr)); 4296 } 4297 4298 noinline static void 4299 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4300 { 4301 dnode_t *dn = dr->dr_dnode; 4302 zio_t *pio; 4303 if (dn->dn_phys->dn_nlevels == 1) { 4304 pio = dn->dn_zio; 4305 } else { 4306 pio = dr->dr_parent->dr_zio; 4307 } 4308 4309 zbookmark_phys_t zb = { 4310 .zb_objset = dmu_objset_id(dn->dn_objset), 4311 .zb_object = dn->dn_object, 4312 .zb_level = 0, 4313 .zb_blkid = dr->dt.dll.dr_blkid, 4314 }; 4315 4316 /* 4317 * See comment in dbuf_write(). This is so that zio->io_bp_orig 4318 * will have the old BP in dbuf_lightweight_done(). 4319 */ 4320 dr->dr_bp_copy = *dbuf_lightweight_bp(dr); 4321 4322 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset), 4323 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd, 4324 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd), 4325 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL, 4326 dbuf_lightweight_physdone, dbuf_lightweight_done, dr, 4327 ZIO_PRIORITY_ASYNC_WRITE, 4328 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb); 4329 4330 zio_nowait(dr->dr_zio); 4331 } 4332 4333 /* 4334 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is 4335 * critical the we not allow the compiler to inline this function in to 4336 * dbuf_sync_list() thereby drastically bloating the stack usage. 4337 */ 4338 noinline static void 4339 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4340 { 4341 arc_buf_t **datap = &dr->dt.dl.dr_data; 4342 dmu_buf_impl_t *db = dr->dr_dbuf; 4343 dnode_t *dn = dr->dr_dnode; 4344 objset_t *os; 4345 uint64_t txg = tx->tx_txg; 4346 4347 ASSERT(dmu_tx_is_syncing(tx)); 4348 4349 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4350 4351 mutex_enter(&db->db_mtx); 4352 /* 4353 * To be synced, we must be dirtied. But we 4354 * might have been freed after the dirty. 4355 */ 4356 if (db->db_state == DB_UNCACHED) { 4357 /* This buffer has been freed since it was dirtied */ 4358 ASSERT(db->db.db_data == NULL); 4359 } else if (db->db_state == DB_FILL) { 4360 /* This buffer was freed and is now being re-filled */ 4361 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 4362 } else { 4363 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 4364 } 4365 DBUF_VERIFY(db); 4366 4367 if (db->db_blkid == DMU_SPILL_BLKID) { 4368 mutex_enter(&dn->dn_mtx); 4369 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) { 4370 /* 4371 * In the previous transaction group, the bonus buffer 4372 * was entirely used to store the attributes for the 4373 * dnode which overrode the dn_spill field. However, 4374 * when adding more attributes to the file a spill 4375 * block was required to hold the extra attributes. 4376 * 4377 * Make sure to clear the garbage left in the dn_spill 4378 * field from the previous attributes in the bonus 4379 * buffer. Otherwise, after writing out the spill 4380 * block to the new allocated dva, it will free 4381 * the old block pointed to by the invalid dn_spill. 4382 */ 4383 db->db_blkptr = NULL; 4384 } 4385 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 4386 mutex_exit(&dn->dn_mtx); 4387 } 4388 4389 /* 4390 * If this is a bonus buffer, simply copy the bonus data into the 4391 * dnode. It will be written out when the dnode is synced (and it 4392 * will be synced, since it must have been dirty for dbuf_sync to 4393 * be called). 4394 */ 4395 if (db->db_blkid == DMU_BONUS_BLKID) { 4396 ASSERT(dr->dr_dbuf == db); 4397 dbuf_sync_bonus(dr, tx); 4398 return; 4399 } 4400 4401 os = dn->dn_objset; 4402 4403 /* 4404 * This function may have dropped the db_mtx lock allowing a dmu_sync 4405 * operation to sneak in. As a result, we need to ensure that we 4406 * don't check the dr_override_state until we have returned from 4407 * dbuf_check_blkptr. 4408 */ 4409 dbuf_check_blkptr(dn, db); 4410 4411 /* 4412 * If this buffer is in the middle of an immediate write, 4413 * wait for the synchronous IO to complete. 4414 */ 4415 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 4416 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 4417 cv_wait(&db->db_changed, &db->db_mtx); 4418 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN); 4419 } 4420 4421 /* 4422 * If this is a dnode block, ensure it is appropriately encrypted 4423 * or decrypted, depending on what we are writing to it this txg. 4424 */ 4425 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT) 4426 dbuf_prepare_encrypted_dnode_leaf(dr); 4427 4428 if (db->db_state != DB_NOFILL && 4429 dn->dn_object != DMU_META_DNODE_OBJECT && 4430 zfs_refcount_count(&db->db_holds) > 1 && 4431 dr->dt.dl.dr_override_state != DR_OVERRIDDEN && 4432 *datap == db->db_buf) { 4433 /* 4434 * If this buffer is currently "in use" (i.e., there 4435 * are active holds and db_data still references it), 4436 * then make a copy before we start the write so that 4437 * any modifications from the open txg will not leak 4438 * into this write. 4439 * 4440 * NOTE: this copy does not need to be made for 4441 * objects only modified in the syncing context (e.g. 4442 * DNONE_DNODE blocks). 4443 */ 4444 int psize = arc_buf_size(*datap); 4445 int lsize = arc_buf_lsize(*datap); 4446 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 4447 enum zio_compress compress_type = arc_get_compression(*datap); 4448 uint8_t complevel = arc_get_complevel(*datap); 4449 4450 if (arc_is_encrypted(*datap)) { 4451 boolean_t byteorder; 4452 uint8_t salt[ZIO_DATA_SALT_LEN]; 4453 uint8_t iv[ZIO_DATA_IV_LEN]; 4454 uint8_t mac[ZIO_DATA_MAC_LEN]; 4455 4456 arc_get_raw_params(*datap, &byteorder, salt, iv, mac); 4457 *datap = arc_alloc_raw_buf(os->os_spa, db, 4458 dmu_objset_id(os), byteorder, salt, iv, mac, 4459 dn->dn_type, psize, lsize, compress_type, 4460 complevel); 4461 } else if (compress_type != ZIO_COMPRESS_OFF) { 4462 ASSERT3U(type, ==, ARC_BUFC_DATA); 4463 *datap = arc_alloc_compressed_buf(os->os_spa, db, 4464 psize, lsize, compress_type, complevel); 4465 } else { 4466 *datap = arc_alloc_buf(os->os_spa, db, type, psize); 4467 } 4468 bcopy(db->db.db_data, (*datap)->b_data, psize); 4469 } 4470 db->db_data_pending = dr; 4471 4472 mutex_exit(&db->db_mtx); 4473 4474 dbuf_write(dr, *datap, tx); 4475 4476 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4477 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 4478 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr); 4479 } else { 4480 zio_nowait(dr->dr_zio); 4481 } 4482 } 4483 4484 void 4485 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 4486 { 4487 dbuf_dirty_record_t *dr; 4488 4489 while ((dr = list_head(list))) { 4490 if (dr->dr_zio != NULL) { 4491 /* 4492 * If we find an already initialized zio then we 4493 * are processing the meta-dnode, and we have finished. 4494 * The dbufs for all dnodes are put back on the list 4495 * during processing, so that we can zio_wait() 4496 * these IOs after initiating all child IOs. 4497 */ 4498 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 4499 DMU_META_DNODE_OBJECT); 4500 break; 4501 } 4502 list_remove(list, dr); 4503 if (dr->dr_dbuf == NULL) { 4504 dbuf_sync_lightweight(dr, tx); 4505 } else { 4506 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 4507 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 4508 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 4509 } 4510 if (dr->dr_dbuf->db_level > 0) 4511 dbuf_sync_indirect(dr, tx); 4512 else 4513 dbuf_sync_leaf(dr, tx); 4514 } 4515 } 4516 } 4517 4518 static void 4519 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4520 { 4521 (void) buf; 4522 dmu_buf_impl_t *db = vdb; 4523 dnode_t *dn; 4524 blkptr_t *bp = zio->io_bp; 4525 blkptr_t *bp_orig = &zio->io_bp_orig; 4526 spa_t *spa = zio->io_spa; 4527 int64_t delta; 4528 uint64_t fill = 0; 4529 int i; 4530 4531 ASSERT3P(db->db_blkptr, !=, NULL); 4532 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 4533 4534 DB_DNODE_ENTER(db); 4535 dn = DB_DNODE(db); 4536 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 4537 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 4538 zio->io_prev_space_delta = delta; 4539 4540 if (bp->blk_birth != 0) { 4541 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 4542 BP_GET_TYPE(bp) == dn->dn_type) || 4543 (db->db_blkid == DMU_SPILL_BLKID && 4544 BP_GET_TYPE(bp) == dn->dn_bonustype) || 4545 BP_IS_EMBEDDED(bp)); 4546 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 4547 } 4548 4549 mutex_enter(&db->db_mtx); 4550 4551 #ifdef ZFS_DEBUG 4552 if (db->db_blkid == DMU_SPILL_BLKID) { 4553 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4554 ASSERT(!(BP_IS_HOLE(bp)) && 4555 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4556 } 4557 #endif 4558 4559 if (db->db_level == 0) { 4560 mutex_enter(&dn->dn_mtx); 4561 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 4562 db->db_blkid != DMU_SPILL_BLKID) { 4563 ASSERT0(db->db_objset->os_raw_receive); 4564 dn->dn_phys->dn_maxblkid = db->db_blkid; 4565 } 4566 mutex_exit(&dn->dn_mtx); 4567 4568 if (dn->dn_type == DMU_OT_DNODE) { 4569 i = 0; 4570 while (i < db->db.db_size) { 4571 dnode_phys_t *dnp = 4572 (void *)(((char *)db->db.db_data) + i); 4573 4574 i += DNODE_MIN_SIZE; 4575 if (dnp->dn_type != DMU_OT_NONE) { 4576 fill++; 4577 i += dnp->dn_extra_slots * 4578 DNODE_MIN_SIZE; 4579 } 4580 } 4581 } else { 4582 if (BP_IS_HOLE(bp)) { 4583 fill = 0; 4584 } else { 4585 fill = 1; 4586 } 4587 } 4588 } else { 4589 blkptr_t *ibp = db->db.db_data; 4590 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4591 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 4592 if (BP_IS_HOLE(ibp)) 4593 continue; 4594 fill += BP_GET_FILL(ibp); 4595 } 4596 } 4597 DB_DNODE_EXIT(db); 4598 4599 if (!BP_IS_EMBEDDED(bp)) 4600 BP_SET_FILL(bp, fill); 4601 4602 mutex_exit(&db->db_mtx); 4603 4604 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG); 4605 *db->db_blkptr = *bp; 4606 dmu_buf_unlock_parent(db, dblt, FTAG); 4607 } 4608 4609 /* 4610 * This function gets called just prior to running through the compression 4611 * stage of the zio pipeline. If we're an indirect block comprised of only 4612 * holes, then we want this indirect to be compressed away to a hole. In 4613 * order to do that we must zero out any information about the holes that 4614 * this indirect points to prior to before we try to compress it. 4615 */ 4616 static void 4617 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4618 { 4619 (void) zio, (void) buf; 4620 dmu_buf_impl_t *db = vdb; 4621 dnode_t *dn; 4622 blkptr_t *bp; 4623 unsigned int epbs, i; 4624 4625 ASSERT3U(db->db_level, >, 0); 4626 DB_DNODE_ENTER(db); 4627 dn = DB_DNODE(db); 4628 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4629 ASSERT3U(epbs, <, 31); 4630 4631 /* Determine if all our children are holes */ 4632 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) { 4633 if (!BP_IS_HOLE(bp)) 4634 break; 4635 } 4636 4637 /* 4638 * If all the children are holes, then zero them all out so that 4639 * we may get compressed away. 4640 */ 4641 if (i == 1ULL << epbs) { 4642 /* 4643 * We only found holes. Grab the rwlock to prevent 4644 * anybody from reading the blocks we're about to 4645 * zero out. 4646 */ 4647 rw_enter(&db->db_rwlock, RW_WRITER); 4648 bzero(db->db.db_data, db->db.db_size); 4649 rw_exit(&db->db_rwlock); 4650 } 4651 DB_DNODE_EXIT(db); 4652 } 4653 4654 /* 4655 * The SPA will call this callback several times for each zio - once 4656 * for every physical child i/o (zio->io_phys_children times). This 4657 * allows the DMU to monitor the progress of each logical i/o. For example, 4658 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z 4659 * block. There may be a long delay before all copies/fragments are completed, 4660 * so this callback allows us to retire dirty space gradually, as the physical 4661 * i/os complete. 4662 */ 4663 static void 4664 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg) 4665 { 4666 (void) buf; 4667 dmu_buf_impl_t *db = arg; 4668 objset_t *os = db->db_objset; 4669 dsl_pool_t *dp = dmu_objset_pool(os); 4670 dbuf_dirty_record_t *dr; 4671 int delta = 0; 4672 4673 dr = db->db_data_pending; 4674 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 4675 4676 /* 4677 * The callback will be called io_phys_children times. Retire one 4678 * portion of our dirty space each time we are called. Any rounding 4679 * error will be cleaned up by dbuf_write_done(). 4680 */ 4681 delta = dr->dr_accounted / zio->io_phys_children; 4682 dsl_pool_undirty_space(dp, delta, zio->io_txg); 4683 } 4684 4685 static void 4686 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 4687 { 4688 (void) buf; 4689 dmu_buf_impl_t *db = vdb; 4690 blkptr_t *bp_orig = &zio->io_bp_orig; 4691 blkptr_t *bp = db->db_blkptr; 4692 objset_t *os = db->db_objset; 4693 dmu_tx_t *tx = os->os_synctx; 4694 4695 ASSERT0(zio->io_error); 4696 ASSERT(db->db_blkptr == bp); 4697 4698 /* 4699 * For nopwrites and rewrites we ensure that the bp matches our 4700 * original and bypass all the accounting. 4701 */ 4702 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4703 ASSERT(BP_EQUAL(bp, bp_orig)); 4704 } else { 4705 dsl_dataset_t *ds = os->os_dsl_dataset; 4706 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 4707 dsl_dataset_block_born(ds, bp, tx); 4708 } 4709 4710 mutex_enter(&db->db_mtx); 4711 4712 DBUF_VERIFY(db); 4713 4714 dbuf_dirty_record_t *dr = db->db_data_pending; 4715 dnode_t *dn = dr->dr_dnode; 4716 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4717 ASSERT(dr->dr_dbuf == db); 4718 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 4719 list_remove(&db->db_dirty_records, dr); 4720 4721 #ifdef ZFS_DEBUG 4722 if (db->db_blkid == DMU_SPILL_BLKID) { 4723 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4724 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 4725 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4726 } 4727 #endif 4728 4729 if (db->db_level == 0) { 4730 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 4731 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 4732 if (db->db_state != DB_NOFILL) { 4733 if (dr->dt.dl.dr_data != db->db_buf) 4734 arc_buf_destroy(dr->dt.dl.dr_data, db); 4735 } 4736 } else { 4737 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4738 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 4739 if (!BP_IS_HOLE(db->db_blkptr)) { 4740 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift - 4741 SPA_BLKPTRSHIFT; 4742 ASSERT3U(db->db_blkid, <=, 4743 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 4744 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 4745 db->db.db_size); 4746 } 4747 mutex_destroy(&dr->dt.di.dr_mtx); 4748 list_destroy(&dr->dt.di.dr_children); 4749 } 4750 4751 cv_broadcast(&db->db_changed); 4752 ASSERT(db->db_dirtycnt > 0); 4753 db->db_dirtycnt -= 1; 4754 db->db_data_pending = NULL; 4755 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 4756 4757 /* 4758 * If we didn't do a physical write in this ZIO and we 4759 * still ended up here, it means that the space of the 4760 * dbuf that we just released (and undirtied) above hasn't 4761 * been marked as undirtied in the pool's accounting. 4762 * 4763 * Thus, we undirty that space in the pool's view of the 4764 * world here. For physical writes this type of update 4765 * happens in dbuf_write_physdone(). 4766 * 4767 * If we did a physical write, cleanup any rounding errors 4768 * that came up due to writing multiple copies of a block 4769 * on disk [see dbuf_write_physdone()]. 4770 */ 4771 if (zio->io_phys_children == 0) { 4772 dsl_pool_undirty_space(dmu_objset_pool(os), 4773 dr->dr_accounted, zio->io_txg); 4774 } else { 4775 dsl_pool_undirty_space(dmu_objset_pool(os), 4776 dr->dr_accounted % zio->io_phys_children, zio->io_txg); 4777 } 4778 4779 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 4780 } 4781 4782 static void 4783 dbuf_write_nofill_ready(zio_t *zio) 4784 { 4785 dbuf_write_ready(zio, NULL, zio->io_private); 4786 } 4787 4788 static void 4789 dbuf_write_nofill_done(zio_t *zio) 4790 { 4791 dbuf_write_done(zio, NULL, zio->io_private); 4792 } 4793 4794 static void 4795 dbuf_write_override_ready(zio_t *zio) 4796 { 4797 dbuf_dirty_record_t *dr = zio->io_private; 4798 dmu_buf_impl_t *db = dr->dr_dbuf; 4799 4800 dbuf_write_ready(zio, NULL, db); 4801 } 4802 4803 static void 4804 dbuf_write_override_done(zio_t *zio) 4805 { 4806 dbuf_dirty_record_t *dr = zio->io_private; 4807 dmu_buf_impl_t *db = dr->dr_dbuf; 4808 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 4809 4810 mutex_enter(&db->db_mtx); 4811 if (!BP_EQUAL(zio->io_bp, obp)) { 4812 if (!BP_IS_HOLE(obp)) 4813 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 4814 arc_release(dr->dt.dl.dr_data, db); 4815 } 4816 mutex_exit(&db->db_mtx); 4817 4818 dbuf_write_done(zio, NULL, db); 4819 4820 if (zio->io_abd != NULL) 4821 abd_free(zio->io_abd); 4822 } 4823 4824 typedef struct dbuf_remap_impl_callback_arg { 4825 objset_t *drica_os; 4826 uint64_t drica_blk_birth; 4827 dmu_tx_t *drica_tx; 4828 } dbuf_remap_impl_callback_arg_t; 4829 4830 static void 4831 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size, 4832 void *arg) 4833 { 4834 dbuf_remap_impl_callback_arg_t *drica = arg; 4835 objset_t *os = drica->drica_os; 4836 spa_t *spa = dmu_objset_spa(os); 4837 dmu_tx_t *tx = drica->drica_tx; 4838 4839 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4840 4841 if (os == spa_meta_objset(spa)) { 4842 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx); 4843 } else { 4844 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset, 4845 size, drica->drica_blk_birth, tx); 4846 } 4847 } 4848 4849 static void 4850 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx) 4851 { 4852 blkptr_t bp_copy = *bp; 4853 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4854 dbuf_remap_impl_callback_arg_t drica; 4855 4856 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4857 4858 drica.drica_os = dn->dn_objset; 4859 drica.drica_blk_birth = bp->blk_birth; 4860 drica.drica_tx = tx; 4861 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback, 4862 &drica)) { 4863 /* 4864 * If the blkptr being remapped is tracked by a livelist, 4865 * then we need to make sure the livelist reflects the update. 4866 * First, cancel out the old blkptr by appending a 'FREE' 4867 * entry. Next, add an 'ALLOC' to track the new version. This 4868 * way we avoid trying to free an inaccurate blkptr at delete. 4869 * Note that embedded blkptrs are not tracked in livelists. 4870 */ 4871 if (dn->dn_objset != spa_meta_objset(spa)) { 4872 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset); 4873 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 4874 bp->blk_birth > ds->ds_dir->dd_origin_txg) { 4875 ASSERT(!BP_IS_EMBEDDED(bp)); 4876 ASSERT(dsl_dir_is_clone(ds->ds_dir)); 4877 ASSERT(spa_feature_is_enabled(spa, 4878 SPA_FEATURE_LIVELIST)); 4879 bplist_append(&ds->ds_dir->dd_pending_frees, 4880 bp); 4881 bplist_append(&ds->ds_dir->dd_pending_allocs, 4882 &bp_copy); 4883 } 4884 } 4885 4886 /* 4887 * The db_rwlock prevents dbuf_read_impl() from 4888 * dereferencing the BP while we are changing it. To 4889 * avoid lock contention, only grab it when we are actually 4890 * changing the BP. 4891 */ 4892 if (rw != NULL) 4893 rw_enter(rw, RW_WRITER); 4894 *bp = bp_copy; 4895 if (rw != NULL) 4896 rw_exit(rw); 4897 } 4898 } 4899 4900 /* 4901 * Remap any existing BP's to concrete vdevs, if possible. 4902 */ 4903 static void 4904 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx) 4905 { 4906 spa_t *spa = dmu_objset_spa(db->db_objset); 4907 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4908 4909 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)) 4910 return; 4911 4912 if (db->db_level > 0) { 4913 blkptr_t *bp = db->db.db_data; 4914 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) { 4915 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx); 4916 } 4917 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) { 4918 dnode_phys_t *dnp = db->db.db_data; 4919 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==, 4920 DMU_OT_DNODE); 4921 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT; 4922 i += dnp[i].dn_extra_slots + 1) { 4923 for (int j = 0; j < dnp[i].dn_nblkptr; j++) { 4924 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL : 4925 &dn->dn_dbuf->db_rwlock); 4926 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock, 4927 tx); 4928 } 4929 } 4930 } 4931 } 4932 4933 4934 /* Issue I/O to commit a dirty buffer to disk. */ 4935 static void 4936 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 4937 { 4938 dmu_buf_impl_t *db = dr->dr_dbuf; 4939 dnode_t *dn = dr->dr_dnode; 4940 objset_t *os; 4941 dmu_buf_impl_t *parent = db->db_parent; 4942 uint64_t txg = tx->tx_txg; 4943 zbookmark_phys_t zb; 4944 zio_prop_t zp; 4945 zio_t *pio; /* parent I/O */ 4946 int wp_flag = 0; 4947 4948 ASSERT(dmu_tx_is_syncing(tx)); 4949 4950 os = dn->dn_objset; 4951 4952 if (db->db_state != DB_NOFILL) { 4953 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 4954 /* 4955 * Private object buffers are released here rather 4956 * than in dbuf_dirty() since they are only modified 4957 * in the syncing context and we don't want the 4958 * overhead of making multiple copies of the data. 4959 */ 4960 if (BP_IS_HOLE(db->db_blkptr)) { 4961 arc_buf_thaw(data); 4962 } else { 4963 dbuf_release_bp(db); 4964 } 4965 dbuf_remap(dn, db, tx); 4966 } 4967 } 4968 4969 if (parent != dn->dn_dbuf) { 4970 /* Our parent is an indirect block. */ 4971 /* We have a dirty parent that has been scheduled for write. */ 4972 ASSERT(parent && parent->db_data_pending); 4973 /* Our parent's buffer is one level closer to the dnode. */ 4974 ASSERT(db->db_level == parent->db_level-1); 4975 /* 4976 * We're about to modify our parent's db_data by modifying 4977 * our block pointer, so the parent must be released. 4978 */ 4979 ASSERT(arc_released(parent->db_buf)); 4980 pio = parent->db_data_pending->dr_zio; 4981 } else { 4982 /* Our parent is the dnode itself. */ 4983 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 4984 db->db_blkid != DMU_SPILL_BLKID) || 4985 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 4986 if (db->db_blkid != DMU_SPILL_BLKID) 4987 ASSERT3P(db->db_blkptr, ==, 4988 &dn->dn_phys->dn_blkptr[db->db_blkid]); 4989 pio = dn->dn_zio; 4990 } 4991 4992 ASSERT(db->db_level == 0 || data == db->db_buf); 4993 ASSERT3U(db->db_blkptr->blk_birth, <=, txg); 4994 ASSERT(pio); 4995 4996 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 4997 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 4998 db->db.db_object, db->db_level, db->db_blkid); 4999 5000 if (db->db_blkid == DMU_SPILL_BLKID) 5001 wp_flag = WP_SPILL; 5002 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; 5003 5004 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 5005 5006 /* 5007 * We copy the blkptr now (rather than when we instantiate the dirty 5008 * record), because its value can change between open context and 5009 * syncing context. We do not need to hold dn_struct_rwlock to read 5010 * db_blkptr because we are in syncing context. 5011 */ 5012 dr->dr_bp_copy = *db->db_blkptr; 5013 5014 if (db->db_level == 0 && 5015 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 5016 /* 5017 * The BP for this block has been provided by open context 5018 * (by dmu_sync() or dmu_buf_write_embedded()). 5019 */ 5020 abd_t *contents = (data != NULL) ? 5021 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL; 5022 5023 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy, 5024 contents, db->db.db_size, db->db.db_size, &zp, 5025 dbuf_write_override_ready, NULL, NULL, 5026 dbuf_write_override_done, 5027 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 5028 mutex_enter(&db->db_mtx); 5029 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 5030 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 5031 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite); 5032 mutex_exit(&db->db_mtx); 5033 } else if (db->db_state == DB_NOFILL) { 5034 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 5035 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 5036 dr->dr_zio = zio_write(pio, os->os_spa, txg, 5037 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp, 5038 dbuf_write_nofill_ready, NULL, NULL, 5039 dbuf_write_nofill_done, db, 5040 ZIO_PRIORITY_ASYNC_WRITE, 5041 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 5042 } else { 5043 ASSERT(arc_released(data)); 5044 5045 /* 5046 * For indirect blocks, we want to setup the children 5047 * ready callback so that we can properly handle an indirect 5048 * block that only contains holes. 5049 */ 5050 arc_write_done_func_t *children_ready_cb = NULL; 5051 if (db->db_level != 0) 5052 children_ready_cb = dbuf_write_children_ready; 5053 5054 dr->dr_zio = arc_write(pio, os->os_spa, txg, 5055 &dr->dr_bp_copy, data, dbuf_is_l2cacheable(db), 5056 &zp, dbuf_write_ready, 5057 children_ready_cb, dbuf_write_physdone, 5058 dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE, 5059 ZIO_FLAG_MUSTSUCCEED, &zb); 5060 } 5061 } 5062 5063 EXPORT_SYMBOL(dbuf_find); 5064 EXPORT_SYMBOL(dbuf_is_metadata); 5065 EXPORT_SYMBOL(dbuf_destroy); 5066 EXPORT_SYMBOL(dbuf_loan_arcbuf); 5067 EXPORT_SYMBOL(dbuf_whichblock); 5068 EXPORT_SYMBOL(dbuf_read); 5069 EXPORT_SYMBOL(dbuf_unoverride); 5070 EXPORT_SYMBOL(dbuf_free_range); 5071 EXPORT_SYMBOL(dbuf_new_size); 5072 EXPORT_SYMBOL(dbuf_release_bp); 5073 EXPORT_SYMBOL(dbuf_dirty); 5074 EXPORT_SYMBOL(dmu_buf_set_crypt_params); 5075 EXPORT_SYMBOL(dmu_buf_will_dirty); 5076 EXPORT_SYMBOL(dmu_buf_is_dirty); 5077 EXPORT_SYMBOL(dmu_buf_will_not_fill); 5078 EXPORT_SYMBOL(dmu_buf_will_fill); 5079 EXPORT_SYMBOL(dmu_buf_fill_done); 5080 EXPORT_SYMBOL(dmu_buf_rele); 5081 EXPORT_SYMBOL(dbuf_assign_arcbuf); 5082 EXPORT_SYMBOL(dbuf_prefetch); 5083 EXPORT_SYMBOL(dbuf_hold_impl); 5084 EXPORT_SYMBOL(dbuf_hold); 5085 EXPORT_SYMBOL(dbuf_hold_level); 5086 EXPORT_SYMBOL(dbuf_create_bonus); 5087 EXPORT_SYMBOL(dbuf_spill_set_blksz); 5088 EXPORT_SYMBOL(dbuf_rm_spill); 5089 EXPORT_SYMBOL(dbuf_add_ref); 5090 EXPORT_SYMBOL(dbuf_rele); 5091 EXPORT_SYMBOL(dbuf_rele_and_unlock); 5092 EXPORT_SYMBOL(dbuf_refcount); 5093 EXPORT_SYMBOL(dbuf_sync_list); 5094 EXPORT_SYMBOL(dmu_buf_set_user); 5095 EXPORT_SYMBOL(dmu_buf_set_user_ie); 5096 EXPORT_SYMBOL(dmu_buf_get_user); 5097 EXPORT_SYMBOL(dmu_buf_get_blkptr); 5098 5099 /* BEGIN CSTYLED */ 5100 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, ULONG, ZMOD_RW, 5101 "Maximum size in bytes of the dbuf cache."); 5102 5103 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW, 5104 "Percentage over dbuf_cache_max_bytes when dbufs must be evicted " 5105 "directly."); 5106 5107 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW, 5108 "Percentage below dbuf_cache_max_bytes when the evict thread stops " 5109 "evicting dbufs."); 5110 5111 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, ULONG, ZMOD_RW, 5112 "Maximum size in bytes of the dbuf metadata cache."); 5113 5114 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, INT, ZMOD_RW, 5115 "Set the size of the dbuf cache to a log2 fraction of arc size."); 5116 5117 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, INT, ZMOD_RW, 5118 "Set the size of the dbuf metadata cache to a log2 fraction of arc " 5119 "size."); 5120 /* END CSTYLED */ 5121