xref: /freebsd/sys/contrib/openzfs/module/zfs/btree.c (revision 7c20397b724a55001c2054fa133a768e9d06eb1c)
1 /*
2  * CDDL HEADER START
3  *
4  * This file and its contents are supplied under the terms of the
5  * Common Development and Distribution License ("CDDL"), version 1.0.
6  * You may only use this file in accordance with the terms of version
7  * 1.0 of the CDDL.
8  *
9  * A full copy of the text of the CDDL should have accompanied this
10  * source.  A copy of the CDDL is also available via the Internet at
11  * http://www.illumos.org/license/CDDL.
12  *
13  * CDDL HEADER END
14  */
15 /*
16  * Copyright (c) 2019 by Delphix. All rights reserved.
17  */
18 
19 #include	<sys/btree.h>
20 #include	<sys/bitops.h>
21 #include	<sys/zfs_context.h>
22 
23 kmem_cache_t *zfs_btree_leaf_cache;
24 
25 /*
26  * Control the extent of the verification that occurs when zfs_btree_verify is
27  * called. Primarily used for debugging when extending the btree logic and
28  * functionality. As the intensity is increased, new verification steps are
29  * added. These steps are cumulative; intensity = 3 includes the intensity = 1
30  * and intensity = 2 steps as well.
31  *
32  * Intensity 1: Verify that the tree's height is consistent throughout.
33  * Intensity 2: Verify that a core node's children's parent pointers point
34  * to the core node.
35  * Intensity 3: Verify that the total number of elements in the tree matches the
36  * sum of the number of elements in each node. Also verifies that each node's
37  * count obeys the invariants (less than or equal to maximum value, greater than
38  * or equal to half the maximum minus one).
39  * Intensity 4: Verify that each element compares less than the element
40  * immediately after it and greater than the one immediately before it using the
41  * comparator function. For core nodes, also checks that each element is greater
42  * than the last element in the first of the two nodes it separates, and less
43  * than the first element in the second of the two nodes.
44  * Intensity 5: Verifies, if ZFS_DEBUG is defined, that all unused memory inside
45  * of each node is poisoned appropriately. Note that poisoning always occurs if
46  * ZFS_DEBUG is set, so it is safe to set the intensity to 5 during normal
47  * operation.
48  *
49  * Intensity 4 and 5 are particularly expensive to perform; the previous levels
50  * are a few memory operations per node, while these levels require multiple
51  * operations per element. In addition, when creating large btrees, these
52  * operations are called at every step, resulting in extremely slow operation
53  * (while the asymptotic complexity of the other steps is the same, the
54  * importance of the constant factors cannot be denied).
55  */
56 int zfs_btree_verify_intensity = 0;
57 
58 /*
59  * Convenience functions to silence warnings from memcpy/memmove's
60  * return values and change argument order to src, dest.
61  */
62 static void
63 bcpy(const void *src, void *dest, size_t size)
64 {
65 	(void) memcpy(dest, src, size);
66 }
67 
68 static void
69 bmov(const void *src, void *dest, size_t size)
70 {
71 	(void) memmove(dest, src, size);
72 }
73 
74 static boolean_t
75 zfs_btree_is_core(struct zfs_btree_hdr *hdr)
76 {
77 	return (hdr->bth_first == -1);
78 }
79 
80 #ifdef _ILP32
81 #define	BTREE_POISON 0xabadb10c
82 #else
83 #define	BTREE_POISON 0xabadb10cdeadbeef
84 #endif
85 
86 static void
87 zfs_btree_poison_node(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
88 {
89 #ifdef ZFS_DEBUG
90 	size_t size = tree->bt_elem_size;
91 	if (zfs_btree_is_core(hdr)) {
92 		zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
93 		for (uint32_t i = hdr->bth_count + 1; i <= BTREE_CORE_ELEMS;
94 		    i++) {
95 			node->btc_children[i] =
96 			    (zfs_btree_hdr_t *)BTREE_POISON;
97 		}
98 		(void) memset(node->btc_elems + hdr->bth_count * size, 0x0f,
99 		    (BTREE_CORE_ELEMS - hdr->bth_count) * size);
100 	} else {
101 		zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
102 		(void) memset(leaf->btl_elems, 0x0f, hdr->bth_first * size);
103 		(void) memset(leaf->btl_elems +
104 		    (hdr->bth_first + hdr->bth_count) * size, 0x0f,
105 		    BTREE_LEAF_ESIZE -
106 		    (hdr->bth_first + hdr->bth_count) * size);
107 	}
108 #endif
109 }
110 
111 static inline void
112 zfs_btree_poison_node_at(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
113     uint32_t idx, uint32_t count)
114 {
115 #ifdef ZFS_DEBUG
116 	size_t size = tree->bt_elem_size;
117 	if (zfs_btree_is_core(hdr)) {
118 		ASSERT3U(idx, >=, hdr->bth_count);
119 		ASSERT3U(idx, <=, BTREE_CORE_ELEMS);
120 		ASSERT3U(idx + count, <=, BTREE_CORE_ELEMS);
121 		zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
122 		for (uint32_t i = 1; i <= count; i++) {
123 			node->btc_children[idx + i] =
124 			    (zfs_btree_hdr_t *)BTREE_POISON;
125 		}
126 		(void) memset(node->btc_elems + idx * size, 0x0f, count * size);
127 	} else {
128 		ASSERT3U(idx, <=, tree->bt_leaf_cap);
129 		ASSERT3U(idx + count, <=, tree->bt_leaf_cap);
130 		zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
131 		(void) memset(leaf->btl_elems +
132 		    (hdr->bth_first + idx) * size, 0x0f, count * size);
133 	}
134 #endif
135 }
136 
137 static inline void
138 zfs_btree_verify_poison_at(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
139     uint32_t idx)
140 {
141 #ifdef ZFS_DEBUG
142 	size_t size = tree->bt_elem_size;
143 	if (zfs_btree_is_core(hdr)) {
144 		ASSERT3U(idx, <, BTREE_CORE_ELEMS);
145 		zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
146 		zfs_btree_hdr_t *cval = (zfs_btree_hdr_t *)BTREE_POISON;
147 		VERIFY3P(node->btc_children[idx + 1], ==, cval);
148 		for (size_t i = 0; i < size; i++)
149 			VERIFY3U(node->btc_elems[idx * size + i], ==, 0x0f);
150 	} else  {
151 		ASSERT3U(idx, <, tree->bt_leaf_cap);
152 		zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
153 		if (idx >= tree->bt_leaf_cap - hdr->bth_first)
154 			return;
155 		for (size_t i = 0; i < size; i++) {
156 			VERIFY3U(leaf->btl_elems[(hdr->bth_first + idx)
157 			    * size + i], ==, 0x0f);
158 		}
159 	}
160 #endif
161 }
162 
163 void
164 zfs_btree_init(void)
165 {
166 	zfs_btree_leaf_cache = kmem_cache_create("zfs_btree_leaf_cache",
167 	    BTREE_LEAF_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0);
168 }
169 
170 void
171 zfs_btree_fini(void)
172 {
173 	kmem_cache_destroy(zfs_btree_leaf_cache);
174 }
175 
176 void
177 zfs_btree_create(zfs_btree_t *tree, int (*compar) (const void *, const void *),
178     size_t size)
179 {
180 	ASSERT3U(size, <=, BTREE_LEAF_ESIZE / 2);
181 
182 	memset(tree, 0, sizeof (*tree));
183 	tree->bt_compar = compar;
184 	tree->bt_elem_size = size;
185 	tree->bt_leaf_cap = P2ALIGN(BTREE_LEAF_ESIZE / size, 2);
186 	tree->bt_height = -1;
187 	tree->bt_bulk = NULL;
188 }
189 
190 /*
191  * Find value in the array of elements provided. Uses a simple binary search.
192  */
193 static void *
194 zfs_btree_find_in_buf(zfs_btree_t *tree, uint8_t *buf, uint32_t nelems,
195     const void *value, zfs_btree_index_t *where)
196 {
197 	uint32_t max = nelems;
198 	uint32_t min = 0;
199 	while (max > min) {
200 		uint32_t idx = (min + max) / 2;
201 		uint8_t *cur = buf + idx * tree->bt_elem_size;
202 		int comp = tree->bt_compar(cur, value);
203 		if (comp < 0) {
204 			min = idx + 1;
205 		} else if (comp > 0) {
206 			max = idx;
207 		} else {
208 			where->bti_offset = idx;
209 			where->bti_before = B_FALSE;
210 			return (cur);
211 		}
212 	}
213 
214 	where->bti_offset = max;
215 	where->bti_before = B_TRUE;
216 	return (NULL);
217 }
218 
219 /*
220  * Find the given value in the tree. where may be passed as null to use as a
221  * membership test or if the btree is being used as a map.
222  */
223 void *
224 zfs_btree_find(zfs_btree_t *tree, const void *value, zfs_btree_index_t *where)
225 {
226 	if (tree->bt_height == -1) {
227 		if (where != NULL) {
228 			where->bti_node = NULL;
229 			where->bti_offset = 0;
230 		}
231 		ASSERT0(tree->bt_num_elems);
232 		return (NULL);
233 	}
234 
235 	/*
236 	 * If we're in bulk-insert mode, we check the last spot in the tree
237 	 * and the last leaf in the tree before doing the normal search,
238 	 * because for most workloads the vast majority of finds in
239 	 * bulk-insert mode are to insert new elements.
240 	 */
241 	zfs_btree_index_t idx;
242 	size_t size = tree->bt_elem_size;
243 	if (tree->bt_bulk != NULL) {
244 		zfs_btree_leaf_t *last_leaf = tree->bt_bulk;
245 		int comp = tree->bt_compar(last_leaf->btl_elems +
246 		    (last_leaf->btl_hdr.bth_first +
247 		    last_leaf->btl_hdr.bth_count - 1) * size, value);
248 		if (comp < 0) {
249 			/*
250 			 * If what they're looking for is after the last
251 			 * element, it's not in the tree.
252 			 */
253 			if (where != NULL) {
254 				where->bti_node = (zfs_btree_hdr_t *)last_leaf;
255 				where->bti_offset =
256 				    last_leaf->btl_hdr.bth_count;
257 				where->bti_before = B_TRUE;
258 			}
259 			return (NULL);
260 		} else if (comp == 0) {
261 			if (where != NULL) {
262 				where->bti_node = (zfs_btree_hdr_t *)last_leaf;
263 				where->bti_offset =
264 				    last_leaf->btl_hdr.bth_count - 1;
265 				where->bti_before = B_FALSE;
266 			}
267 			return (last_leaf->btl_elems +
268 			    (last_leaf->btl_hdr.bth_first +
269 			    last_leaf->btl_hdr.bth_count - 1) * size);
270 		}
271 		if (tree->bt_compar(last_leaf->btl_elems +
272 		    last_leaf->btl_hdr.bth_first * size, value) <= 0) {
273 			/*
274 			 * If what they're looking for is after the first
275 			 * element in the last leaf, it's in the last leaf or
276 			 * it's not in the tree.
277 			 */
278 			void *d = zfs_btree_find_in_buf(tree,
279 			    last_leaf->btl_elems +
280 			    last_leaf->btl_hdr.bth_first * size,
281 			    last_leaf->btl_hdr.bth_count, value, &idx);
282 
283 			if (where != NULL) {
284 				idx.bti_node = (zfs_btree_hdr_t *)last_leaf;
285 				*where = idx;
286 			}
287 			return (d);
288 		}
289 	}
290 
291 	zfs_btree_core_t *node = NULL;
292 	uint32_t child = 0;
293 	uint64_t depth = 0;
294 
295 	/*
296 	 * Iterate down the tree, finding which child the value should be in
297 	 * by comparing with the separators.
298 	 */
299 	for (node = (zfs_btree_core_t *)tree->bt_root; depth < tree->bt_height;
300 	    node = (zfs_btree_core_t *)node->btc_children[child], depth++) {
301 		ASSERT3P(node, !=, NULL);
302 		void *d = zfs_btree_find_in_buf(tree, node->btc_elems,
303 		    node->btc_hdr.bth_count, value, &idx);
304 		EQUIV(d != NULL, !idx.bti_before);
305 		if (d != NULL) {
306 			if (where != NULL) {
307 				idx.bti_node = (zfs_btree_hdr_t *)node;
308 				*where = idx;
309 			}
310 			return (d);
311 		}
312 		ASSERT(idx.bti_before);
313 		child = idx.bti_offset;
314 	}
315 
316 	/*
317 	 * The value is in this leaf, or it would be if it were in the
318 	 * tree. Find its proper location and return it.
319 	 */
320 	zfs_btree_leaf_t *leaf = (depth == 0 ?
321 	    (zfs_btree_leaf_t *)tree->bt_root : (zfs_btree_leaf_t *)node);
322 	void *d = zfs_btree_find_in_buf(tree, leaf->btl_elems +
323 	    leaf->btl_hdr.bth_first * size,
324 	    leaf->btl_hdr.bth_count, value, &idx);
325 
326 	if (where != NULL) {
327 		idx.bti_node = (zfs_btree_hdr_t *)leaf;
328 		*where = idx;
329 	}
330 
331 	return (d);
332 }
333 
334 /*
335  * To explain the following functions, it is useful to understand the four
336  * kinds of shifts used in btree operation. First, a shift is a movement of
337  * elements within a node. It is used to create gaps for inserting new
338  * elements and children, or cover gaps created when things are removed. A
339  * shift has two fundamental properties, each of which can be one of two
340  * values, making four types of shifts.  There is the direction of the shift
341  * (left or right) and the shape of the shift (parallelogram or isoceles
342  * trapezoid (shortened to trapezoid hereafter)). The shape distinction only
343  * applies to shifts of core nodes.
344  *
345  * The names derive from the following imagining of the layout of a node:
346  *
347  *  Elements:       *   *   *   *   *   *   *   ...   *   *   *
348  *  Children:     *   *   *   *   *   *   *   *   ...   *   *   *
349  *
350  * This layout follows from the fact that the elements act as separators
351  * between pairs of children, and that children root subtrees "below" the
352  * current node. A left and right shift are fairly self-explanatory; a left
353  * shift moves things to the left, while a right shift moves things to the
354  * right. A parallelogram shift is a shift with the same number of elements
355  * and children being moved, while a trapezoid shift is a shift that moves one
356  * more children than elements. An example follows:
357  *
358  * A parallelogram shift could contain the following:
359  *      _______________
360  *      \*   *   *   * \ *   *   *   ...   *   *   *
361  *     * \ *   *   *   *\  *   *   *   ...   *   *   *
362  *        ---------------
363  * A trapezoid shift could contain the following:
364  *          ___________
365  *       * / *   *   * \ *   *   *   ...   *   *   *
366  *     *  / *  *   *   *\  *   *   *   ...   *   *   *
367  *        ---------------
368  *
369  * Note that a parallelogram shift is always shaped like a "left-leaning"
370  * parallelogram, where the starting index of the children being moved is
371  * always one higher than the starting index of the elements being moved. No
372  * "right-leaning" parallelogram shifts are needed (shifts where the starting
373  * element index and starting child index being moved are the same) to achieve
374  * any btree operations, so we ignore them.
375  */
376 
377 enum bt_shift_shape {
378 	BSS_TRAPEZOID,
379 	BSS_PARALLELOGRAM
380 };
381 
382 enum bt_shift_direction {
383 	BSD_LEFT,
384 	BSD_RIGHT
385 };
386 
387 /*
388  * Shift elements and children in the provided core node by off spots.  The
389  * first element moved is idx, and count elements are moved. The shape of the
390  * shift is determined by shape. The direction is determined by dir.
391  */
392 static inline void
393 bt_shift_core(zfs_btree_t *tree, zfs_btree_core_t *node, uint32_t idx,
394     uint32_t count, uint32_t off, enum bt_shift_shape shape,
395     enum bt_shift_direction dir)
396 {
397 	size_t size = tree->bt_elem_size;
398 	ASSERT(zfs_btree_is_core(&node->btc_hdr));
399 
400 	uint8_t *e_start = node->btc_elems + idx * size;
401 	uint8_t *e_out = (dir == BSD_LEFT ? e_start - off * size :
402 	    e_start + off * size);
403 	bmov(e_start, e_out, count * size);
404 
405 	zfs_btree_hdr_t **c_start = node->btc_children + idx +
406 	    (shape == BSS_TRAPEZOID ? 0 : 1);
407 	zfs_btree_hdr_t **c_out = (dir == BSD_LEFT ? c_start - off :
408 	    c_start + off);
409 	uint32_t c_count = count + (shape == BSS_TRAPEZOID ? 1 : 0);
410 	bmov(c_start, c_out, c_count * sizeof (*c_start));
411 }
412 
413 /*
414  * Shift elements and children in the provided core node left by one spot.
415  * The first element moved is idx, and count elements are moved. The
416  * shape of the shift is determined by trap; true if the shift is a trapezoid,
417  * false if it is a parallelogram.
418  */
419 static inline void
420 bt_shift_core_left(zfs_btree_t *tree, zfs_btree_core_t *node, uint32_t idx,
421     uint32_t count, enum bt_shift_shape shape)
422 {
423 	bt_shift_core(tree, node, idx, count, 1, shape, BSD_LEFT);
424 }
425 
426 /*
427  * Shift elements and children in the provided core node right by one spot.
428  * Starts with elements[idx] and children[idx] and one more child than element.
429  */
430 static inline void
431 bt_shift_core_right(zfs_btree_t *tree, zfs_btree_core_t *node, uint32_t idx,
432     uint32_t count, enum bt_shift_shape shape)
433 {
434 	bt_shift_core(tree, node, idx, count, 1, shape, BSD_RIGHT);
435 }
436 
437 /*
438  * Shift elements and children in the provided leaf node by off spots.
439  * The first element moved is idx, and count elements are moved. The direction
440  * is determined by left.
441  */
442 static inline void
443 bt_shift_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *node, uint32_t idx,
444     uint32_t count, uint32_t off, enum bt_shift_direction dir)
445 {
446 	size_t size = tree->bt_elem_size;
447 	zfs_btree_hdr_t *hdr = &node->btl_hdr;
448 	ASSERT(!zfs_btree_is_core(hdr));
449 
450 	if (count == 0)
451 		return;
452 	uint8_t *start = node->btl_elems + (hdr->bth_first + idx) * size;
453 	uint8_t *out = (dir == BSD_LEFT ? start - off * size :
454 	    start + off * size);
455 	bmov(start, out, count * size);
456 }
457 
458 /*
459  * Grow leaf for n new elements before idx.
460  */
461 static void
462 bt_grow_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint32_t idx,
463     uint32_t n)
464 {
465 	zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
466 	ASSERT(!zfs_btree_is_core(hdr));
467 	ASSERT3U(idx, <=, hdr->bth_count);
468 	uint32_t capacity = tree->bt_leaf_cap;
469 	ASSERT3U(hdr->bth_count + n, <=, capacity);
470 	boolean_t cl = (hdr->bth_first >= n);
471 	boolean_t cr = (hdr->bth_first + hdr->bth_count + n <= capacity);
472 
473 	if (cl && (!cr || idx <= hdr->bth_count / 2)) {
474 		/* Grow left. */
475 		hdr->bth_first -= n;
476 		bt_shift_leaf(tree, leaf, n, idx, n, BSD_LEFT);
477 	} else if (cr) {
478 		/* Grow right. */
479 		bt_shift_leaf(tree, leaf, idx, hdr->bth_count - idx, n,
480 		    BSD_RIGHT);
481 	} else {
482 		/* Grow both ways. */
483 		uint32_t fn = hdr->bth_first -
484 		    (capacity - (hdr->bth_count + n)) / 2;
485 		hdr->bth_first -= fn;
486 		bt_shift_leaf(tree, leaf, fn, idx, fn, BSD_LEFT);
487 		bt_shift_leaf(tree, leaf, fn + idx, hdr->bth_count - idx,
488 		    n - fn, BSD_RIGHT);
489 	}
490 	hdr->bth_count += n;
491 }
492 
493 /*
494  * Shrink leaf for count elements starting from idx.
495  */
496 static void
497 bt_shrink_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint32_t idx,
498     uint32_t n)
499 {
500 	zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
501 	ASSERT(!zfs_btree_is_core(hdr));
502 	ASSERT3U(idx, <=, hdr->bth_count);
503 	ASSERT3U(idx + n, <=, hdr->bth_count);
504 
505 	if (idx <= (hdr->bth_count - n) / 2) {
506 		bt_shift_leaf(tree, leaf, 0, idx, n, BSD_RIGHT);
507 		zfs_btree_poison_node_at(tree, hdr, 0, n);
508 		hdr->bth_first += n;
509 	} else {
510 		bt_shift_leaf(tree, leaf, idx + n, hdr->bth_count - idx - n, n,
511 		    BSD_LEFT);
512 		zfs_btree_poison_node_at(tree, hdr, hdr->bth_count - n, n);
513 	}
514 	hdr->bth_count -= n;
515 }
516 
517 /*
518  * Move children and elements from one core node to another. The shape
519  * parameter behaves the same as it does in the shift logic.
520  */
521 static inline void
522 bt_transfer_core(zfs_btree_t *tree, zfs_btree_core_t *source, uint32_t sidx,
523     uint32_t count, zfs_btree_core_t *dest, uint32_t didx,
524     enum bt_shift_shape shape)
525 {
526 	size_t size = tree->bt_elem_size;
527 	ASSERT(zfs_btree_is_core(&source->btc_hdr));
528 	ASSERT(zfs_btree_is_core(&dest->btc_hdr));
529 
530 	bcpy(source->btc_elems + sidx * size, dest->btc_elems + didx * size,
531 	    count * size);
532 
533 	uint32_t c_count = count + (shape == BSS_TRAPEZOID ? 1 : 0);
534 	bcpy(source->btc_children + sidx + (shape == BSS_TRAPEZOID ? 0 : 1),
535 	    dest->btc_children + didx + (shape == BSS_TRAPEZOID ? 0 : 1),
536 	    c_count * sizeof (*source->btc_children));
537 }
538 
539 static inline void
540 bt_transfer_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *source, uint32_t sidx,
541     uint32_t count, zfs_btree_leaf_t *dest, uint32_t didx)
542 {
543 	size_t size = tree->bt_elem_size;
544 	ASSERT(!zfs_btree_is_core(&source->btl_hdr));
545 	ASSERT(!zfs_btree_is_core(&dest->btl_hdr));
546 
547 	bcpy(source->btl_elems + (source->btl_hdr.bth_first + sidx) * size,
548 	    dest->btl_elems + (dest->btl_hdr.bth_first + didx) * size,
549 	    count * size);
550 }
551 
552 /*
553  * Find the first element in the subtree rooted at hdr, return its value and
554  * put its location in where if non-null.
555  */
556 static void *
557 zfs_btree_first_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
558     zfs_btree_index_t *where)
559 {
560 	zfs_btree_hdr_t *node;
561 
562 	for (node = hdr; zfs_btree_is_core(node);
563 	    node = ((zfs_btree_core_t *)node)->btc_children[0])
564 		;
565 
566 	ASSERT(!zfs_btree_is_core(node));
567 	zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)node;
568 	if (where != NULL) {
569 		where->bti_node = node;
570 		where->bti_offset = 0;
571 		where->bti_before = B_FALSE;
572 	}
573 	return (&leaf->btl_elems[node->bth_first * tree->bt_elem_size]);
574 }
575 
576 /* Insert an element and a child into a core node at the given offset. */
577 static void
578 zfs_btree_insert_core_impl(zfs_btree_t *tree, zfs_btree_core_t *parent,
579     uint32_t offset, zfs_btree_hdr_t *new_node, void *buf)
580 {
581 	size_t size = tree->bt_elem_size;
582 	zfs_btree_hdr_t *par_hdr = &parent->btc_hdr;
583 	ASSERT3P(par_hdr, ==, new_node->bth_parent);
584 	ASSERT3U(par_hdr->bth_count, <, BTREE_CORE_ELEMS);
585 
586 	if (zfs_btree_verify_intensity >= 5) {
587 		zfs_btree_verify_poison_at(tree, par_hdr,
588 		    par_hdr->bth_count);
589 	}
590 	/* Shift existing elements and children */
591 	uint32_t count = par_hdr->bth_count - offset;
592 	bt_shift_core_right(tree, parent, offset, count,
593 	    BSS_PARALLELOGRAM);
594 
595 	/* Insert new values */
596 	parent->btc_children[offset + 1] = new_node;
597 	bcpy(buf, parent->btc_elems + offset * size, size);
598 	par_hdr->bth_count++;
599 }
600 
601 /*
602  * Insert new_node into the parent of old_node directly after old_node, with
603  * buf as the dividing element between the two.
604  */
605 static void
606 zfs_btree_insert_into_parent(zfs_btree_t *tree, zfs_btree_hdr_t *old_node,
607     zfs_btree_hdr_t *new_node, void *buf)
608 {
609 	ASSERT3P(old_node->bth_parent, ==, new_node->bth_parent);
610 	size_t size = tree->bt_elem_size;
611 	zfs_btree_core_t *parent = old_node->bth_parent;
612 
613 	/*
614 	 * If this is the root node we were splitting, we create a new root
615 	 * and increase the height of the tree.
616 	 */
617 	if (parent == NULL) {
618 		ASSERT3P(old_node, ==, tree->bt_root);
619 		tree->bt_num_nodes++;
620 		zfs_btree_core_t *new_root =
621 		    kmem_alloc(sizeof (zfs_btree_core_t) + BTREE_CORE_ELEMS *
622 		    size, KM_SLEEP);
623 		zfs_btree_hdr_t *new_root_hdr = &new_root->btc_hdr;
624 		new_root_hdr->bth_parent = NULL;
625 		new_root_hdr->bth_first = -1;
626 		new_root_hdr->bth_count = 1;
627 
628 		old_node->bth_parent = new_node->bth_parent = new_root;
629 		new_root->btc_children[0] = old_node;
630 		new_root->btc_children[1] = new_node;
631 		bcpy(buf, new_root->btc_elems, size);
632 
633 		tree->bt_height++;
634 		tree->bt_root = new_root_hdr;
635 		zfs_btree_poison_node(tree, new_root_hdr);
636 		return;
637 	}
638 
639 	/*
640 	 * Since we have the new separator, binary search for where to put
641 	 * new_node.
642 	 */
643 	zfs_btree_hdr_t *par_hdr = &parent->btc_hdr;
644 	zfs_btree_index_t idx;
645 	ASSERT(zfs_btree_is_core(par_hdr));
646 	VERIFY3P(zfs_btree_find_in_buf(tree, parent->btc_elems,
647 	    par_hdr->bth_count, buf, &idx), ==, NULL);
648 	ASSERT(idx.bti_before);
649 	uint32_t offset = idx.bti_offset;
650 	ASSERT3U(offset, <=, par_hdr->bth_count);
651 	ASSERT3P(parent->btc_children[offset], ==, old_node);
652 
653 	/*
654 	 * If the parent isn't full, shift things to accommodate our insertions
655 	 * and return.
656 	 */
657 	if (par_hdr->bth_count != BTREE_CORE_ELEMS) {
658 		zfs_btree_insert_core_impl(tree, parent, offset, new_node, buf);
659 		return;
660 	}
661 
662 	/*
663 	 * We need to split this core node into two. Currently there are
664 	 * BTREE_CORE_ELEMS + 1 child nodes, and we are adding one for
665 	 * BTREE_CORE_ELEMS + 2. Some of the children will be part of the
666 	 * current node, and the others will be moved to the new core node.
667 	 * There are BTREE_CORE_ELEMS + 1 elements including the new one. One
668 	 * will be used as the new separator in our parent, and the others
669 	 * will be split among the two core nodes.
670 	 *
671 	 * Usually we will split the node in half evenly, with
672 	 * BTREE_CORE_ELEMS/2 elements in each node. If we're bulk loading, we
673 	 * instead move only about a quarter of the elements (and children) to
674 	 * the new node. Since the average state after a long time is a 3/4
675 	 * full node, shortcutting directly to that state improves efficiency.
676 	 *
677 	 * We do this in two stages: first we split into two nodes, and then we
678 	 * reuse our existing logic to insert the new element and child.
679 	 */
680 	uint32_t move_count = MAX((BTREE_CORE_ELEMS / (tree->bt_bulk == NULL ?
681 	    2 : 4)) - 1, 2);
682 	uint32_t keep_count = BTREE_CORE_ELEMS - move_count - 1;
683 	ASSERT3U(BTREE_CORE_ELEMS - move_count, >=, 2);
684 	tree->bt_num_nodes++;
685 	zfs_btree_core_t *new_parent = kmem_alloc(sizeof (zfs_btree_core_t) +
686 	    BTREE_CORE_ELEMS * size, KM_SLEEP);
687 	zfs_btree_hdr_t *new_par_hdr = &new_parent->btc_hdr;
688 	new_par_hdr->bth_parent = par_hdr->bth_parent;
689 	new_par_hdr->bth_first = -1;
690 	new_par_hdr->bth_count = move_count;
691 	zfs_btree_poison_node(tree, new_par_hdr);
692 
693 	par_hdr->bth_count = keep_count;
694 
695 	bt_transfer_core(tree, parent, keep_count + 1, move_count, new_parent,
696 	    0, BSS_TRAPEZOID);
697 
698 	/* Store the new separator in a buffer. */
699 	uint8_t *tmp_buf = kmem_alloc(size, KM_SLEEP);
700 	bcpy(parent->btc_elems + keep_count * size, tmp_buf,
701 	    size);
702 	zfs_btree_poison_node(tree, par_hdr);
703 
704 	if (offset < keep_count) {
705 		/* Insert the new node into the left half */
706 		zfs_btree_insert_core_impl(tree, parent, offset, new_node,
707 		    buf);
708 
709 		/*
710 		 * Move the new separator to the existing buffer.
711 		 */
712 		bcpy(tmp_buf, buf, size);
713 	} else if (offset > keep_count) {
714 		/* Insert the new node into the right half */
715 		new_node->bth_parent = new_parent;
716 		zfs_btree_insert_core_impl(tree, new_parent,
717 		    offset - keep_count - 1, new_node, buf);
718 
719 		/*
720 		 * Move the new separator to the existing buffer.
721 		 */
722 		bcpy(tmp_buf, buf, size);
723 	} else {
724 		/*
725 		 * Move the new separator into the right half, and replace it
726 		 * with buf. We also need to shift back the elements in the
727 		 * right half to accommodate new_node.
728 		 */
729 		bt_shift_core_right(tree, new_parent, 0, move_count,
730 		    BSS_TRAPEZOID);
731 		new_parent->btc_children[0] = new_node;
732 		bcpy(tmp_buf, new_parent->btc_elems, size);
733 		new_par_hdr->bth_count++;
734 	}
735 	kmem_free(tmp_buf, size);
736 	zfs_btree_poison_node(tree, par_hdr);
737 
738 	for (uint32_t i = 0; i <= new_parent->btc_hdr.bth_count; i++)
739 		new_parent->btc_children[i]->bth_parent = new_parent;
740 
741 	for (uint32_t i = 0; i <= parent->btc_hdr.bth_count; i++)
742 		ASSERT3P(parent->btc_children[i]->bth_parent, ==, parent);
743 
744 	/*
745 	 * Now that the node is split, we need to insert the new node into its
746 	 * parent. This may cause further splitting.
747 	 */
748 	zfs_btree_insert_into_parent(tree, &parent->btc_hdr,
749 	    &new_parent->btc_hdr, buf);
750 }
751 
752 /* Insert an element into a leaf node at the given offset. */
753 static void
754 zfs_btree_insert_leaf_impl(zfs_btree_t *tree, zfs_btree_leaf_t *leaf,
755     uint32_t idx, const void *value)
756 {
757 	size_t size = tree->bt_elem_size;
758 	zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
759 	ASSERT3U(leaf->btl_hdr.bth_count, <, tree->bt_leaf_cap);
760 
761 	if (zfs_btree_verify_intensity >= 5) {
762 		zfs_btree_verify_poison_at(tree, &leaf->btl_hdr,
763 		    leaf->btl_hdr.bth_count);
764 	}
765 
766 	bt_grow_leaf(tree, leaf, idx, 1);
767 	uint8_t *start = leaf->btl_elems + (hdr->bth_first + idx) * size;
768 	bcpy(value, start, size);
769 }
770 
771 static void
772 zfs_btree_verify_order_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr);
773 
774 /* Helper function for inserting a new value into leaf at the given index. */
775 static void
776 zfs_btree_insert_into_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf,
777     const void *value, uint32_t idx)
778 {
779 	size_t size = tree->bt_elem_size;
780 	uint32_t capacity = tree->bt_leaf_cap;
781 
782 	/*
783 	 * If the leaf isn't full, shift the elements after idx and insert
784 	 * value.
785 	 */
786 	if (leaf->btl_hdr.bth_count != capacity) {
787 		zfs_btree_insert_leaf_impl(tree, leaf, idx, value);
788 		return;
789 	}
790 
791 	/*
792 	 * Otherwise, we split the leaf node into two nodes. If we're not bulk
793 	 * inserting, each is of size (capacity / 2).  If we are bulk
794 	 * inserting, we move a quarter of the elements to the new node so
795 	 * inserts into the old node don't cause immediate splitting but the
796 	 * tree stays relatively dense. Since the average state after a long
797 	 * time is a 3/4 full node, shortcutting directly to that state
798 	 * improves efficiency.  At the end of the bulk insertion process
799 	 * we'll need to go through and fix up any nodes (the last leaf and
800 	 * its ancestors, potentially) that are below the minimum.
801 	 *
802 	 * In either case, we're left with one extra element. The leftover
803 	 * element will become the new dividing element between the two nodes.
804 	 */
805 	uint32_t move_count = MAX(capacity / (tree->bt_bulk ? 4 : 2), 1) - 1;
806 	uint32_t keep_count = capacity - move_count - 1;
807 	ASSERT3U(keep_count, >=, 1);
808 	/* If we insert on left. move one more to keep leaves balanced.  */
809 	if (idx < keep_count) {
810 		keep_count--;
811 		move_count++;
812 	}
813 	tree->bt_num_nodes++;
814 	zfs_btree_leaf_t *new_leaf = kmem_cache_alloc(zfs_btree_leaf_cache,
815 	    KM_SLEEP);
816 	zfs_btree_hdr_t *new_hdr = &new_leaf->btl_hdr;
817 	new_hdr->bth_parent = leaf->btl_hdr.bth_parent;
818 	new_hdr->bth_first = (tree->bt_bulk ? 0 : capacity / 4) +
819 	    (idx >= keep_count && idx <= keep_count + move_count / 2);
820 	new_hdr->bth_count = move_count;
821 	zfs_btree_poison_node(tree, new_hdr);
822 
823 	if (tree->bt_bulk != NULL && leaf == tree->bt_bulk)
824 		tree->bt_bulk = new_leaf;
825 
826 	/* Copy the back part to the new leaf. */
827 	bt_transfer_leaf(tree, leaf, keep_count + 1, move_count, new_leaf, 0);
828 
829 	/* We store the new separator in a buffer we control for simplicity. */
830 	uint8_t *buf = kmem_alloc(size, KM_SLEEP);
831 	bcpy(leaf->btl_elems + (leaf->btl_hdr.bth_first + keep_count) * size,
832 	    buf, size);
833 
834 	bt_shrink_leaf(tree, leaf, keep_count, 1 + move_count);
835 
836 	if (idx < keep_count) {
837 		/* Insert into the existing leaf. */
838 		zfs_btree_insert_leaf_impl(tree, leaf, idx, value);
839 	} else if (idx > keep_count) {
840 		/* Insert into the new leaf. */
841 		zfs_btree_insert_leaf_impl(tree, new_leaf, idx - keep_count -
842 		    1, value);
843 	} else {
844 		/*
845 		 * Insert planned separator into the new leaf, and use
846 		 * the new value as the new separator.
847 		 */
848 		zfs_btree_insert_leaf_impl(tree, new_leaf, 0, buf);
849 		bcpy(value, buf, size);
850 	}
851 
852 	/*
853 	 * Now that the node is split, we need to insert the new node into its
854 	 * parent. This may cause further splitting, bur only of core nodes.
855 	 */
856 	zfs_btree_insert_into_parent(tree, &leaf->btl_hdr, &new_leaf->btl_hdr,
857 	    buf);
858 	kmem_free(buf, size);
859 }
860 
861 static uint32_t
862 zfs_btree_find_parent_idx(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
863 {
864 	void *buf;
865 	if (zfs_btree_is_core(hdr)) {
866 		buf = ((zfs_btree_core_t *)hdr)->btc_elems;
867 	} else {
868 		buf = ((zfs_btree_leaf_t *)hdr)->btl_elems +
869 		    hdr->bth_first * tree->bt_elem_size;
870 	}
871 	zfs_btree_index_t idx;
872 	zfs_btree_core_t *parent = hdr->bth_parent;
873 	VERIFY3P(zfs_btree_find_in_buf(tree, parent->btc_elems,
874 	    parent->btc_hdr.bth_count, buf, &idx), ==, NULL);
875 	ASSERT(idx.bti_before);
876 	ASSERT3U(idx.bti_offset, <=, parent->btc_hdr.bth_count);
877 	ASSERT3P(parent->btc_children[idx.bti_offset], ==, hdr);
878 	return (idx.bti_offset);
879 }
880 
881 /*
882  * Take the b-tree out of bulk insert mode. During bulk-insert mode, some
883  * nodes may violate the invariant that non-root nodes must be at least half
884  * full. All nodes violating this invariant should be the last node in their
885  * particular level. To correct the invariant, we take values from their left
886  * neighbor until they are half full. They must have a left neighbor at their
887  * level because the last node at a level is not the first node unless it's
888  * the root.
889  */
890 static void
891 zfs_btree_bulk_finish(zfs_btree_t *tree)
892 {
893 	ASSERT3P(tree->bt_bulk, !=, NULL);
894 	ASSERT3P(tree->bt_root, !=, NULL);
895 	zfs_btree_leaf_t *leaf = tree->bt_bulk;
896 	zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
897 	zfs_btree_core_t *parent = hdr->bth_parent;
898 	size_t size = tree->bt_elem_size;
899 	uint32_t capacity = tree->bt_leaf_cap;
900 
901 	/*
902 	 * The invariant doesn't apply to the root node, if that's the only
903 	 * node in the tree we're done.
904 	 */
905 	if (parent == NULL) {
906 		tree->bt_bulk = NULL;
907 		return;
908 	}
909 
910 	/* First, take elements to rebalance the leaf node. */
911 	if (hdr->bth_count < capacity / 2) {
912 		/*
913 		 * First, find the left neighbor. The simplest way to do this
914 		 * is to call zfs_btree_prev twice; the first time finds some
915 		 * ancestor of this node, and the second time finds the left
916 		 * neighbor. The ancestor found is the lowest common ancestor
917 		 * of leaf and the neighbor.
918 		 */
919 		zfs_btree_index_t idx = {
920 			.bti_node = hdr,
921 			.bti_offset = 0
922 		};
923 		VERIFY3P(zfs_btree_prev(tree, &idx, &idx), !=, NULL);
924 		ASSERT(zfs_btree_is_core(idx.bti_node));
925 		zfs_btree_core_t *common = (zfs_btree_core_t *)idx.bti_node;
926 		uint32_t common_idx = idx.bti_offset;
927 
928 		VERIFY3P(zfs_btree_prev(tree, &idx, &idx), !=, NULL);
929 		ASSERT(!zfs_btree_is_core(idx.bti_node));
930 		zfs_btree_leaf_t *l_neighbor = (zfs_btree_leaf_t *)idx.bti_node;
931 		zfs_btree_hdr_t *l_hdr = idx.bti_node;
932 		uint32_t move_count = (capacity / 2) - hdr->bth_count;
933 		ASSERT3U(l_neighbor->btl_hdr.bth_count - move_count, >=,
934 		    capacity / 2);
935 
936 		if (zfs_btree_verify_intensity >= 5) {
937 			for (uint32_t i = 0; i < move_count; i++) {
938 				zfs_btree_verify_poison_at(tree, hdr,
939 				    leaf->btl_hdr.bth_count + i);
940 			}
941 		}
942 
943 		/* First, shift elements in leaf back. */
944 		bt_grow_leaf(tree, leaf, 0, move_count);
945 
946 		/* Next, move the separator from the common ancestor to leaf. */
947 		uint8_t *separator = common->btc_elems + common_idx * size;
948 		uint8_t *out = leaf->btl_elems +
949 		    (hdr->bth_first + move_count - 1) * size;
950 		bcpy(separator, out, size);
951 
952 		/*
953 		 * Now we move elements from the tail of the left neighbor to
954 		 * fill the remaining spots in leaf.
955 		 */
956 		bt_transfer_leaf(tree, l_neighbor, l_hdr->bth_count -
957 		    (move_count - 1), move_count - 1, leaf, 0);
958 
959 		/*
960 		 * Finally, move the new last element in the left neighbor to
961 		 * the separator.
962 		 */
963 		bcpy(l_neighbor->btl_elems + (l_hdr->bth_first +
964 		    l_hdr->bth_count - move_count) * size, separator, size);
965 
966 		/* Adjust the node's counts, and we're done. */
967 		bt_shrink_leaf(tree, l_neighbor, l_hdr->bth_count - move_count,
968 		    move_count);
969 
970 		ASSERT3U(l_hdr->bth_count, >=, capacity / 2);
971 		ASSERT3U(hdr->bth_count, >=, capacity / 2);
972 	}
973 
974 	/*
975 	 * Now we have to rebalance any ancestors of leaf that may also
976 	 * violate the invariant.
977 	 */
978 	capacity = BTREE_CORE_ELEMS;
979 	while (parent->btc_hdr.bth_parent != NULL) {
980 		zfs_btree_core_t *cur = parent;
981 		zfs_btree_hdr_t *hdr = &cur->btc_hdr;
982 		parent = hdr->bth_parent;
983 		/*
984 		 * If the invariant isn't violated, move on to the next
985 		 * ancestor.
986 		 */
987 		if (hdr->bth_count >= capacity / 2)
988 			continue;
989 
990 		/*
991 		 * Because the smallest number of nodes we can move when
992 		 * splitting is 2, we never need to worry about not having a
993 		 * left sibling (a sibling is a neighbor with the same parent).
994 		 */
995 		uint32_t parent_idx = zfs_btree_find_parent_idx(tree, hdr);
996 		ASSERT3U(parent_idx, >, 0);
997 		zfs_btree_core_t *l_neighbor =
998 		    (zfs_btree_core_t *)parent->btc_children[parent_idx - 1];
999 		uint32_t move_count = (capacity / 2) - hdr->bth_count;
1000 		ASSERT3U(l_neighbor->btc_hdr.bth_count - move_count, >=,
1001 		    capacity / 2);
1002 
1003 		if (zfs_btree_verify_intensity >= 5) {
1004 			for (uint32_t i = 0; i < move_count; i++) {
1005 				zfs_btree_verify_poison_at(tree, hdr,
1006 				    hdr->bth_count + i);
1007 			}
1008 		}
1009 		/* First, shift things in the right node back. */
1010 		bt_shift_core(tree, cur, 0, hdr->bth_count, move_count,
1011 		    BSS_TRAPEZOID, BSD_RIGHT);
1012 
1013 		/* Next, move the separator to the right node. */
1014 		uint8_t *separator = parent->btc_elems + ((parent_idx - 1) *
1015 		    size);
1016 		uint8_t *e_out = cur->btc_elems + ((move_count - 1) * size);
1017 		bcpy(separator, e_out, size);
1018 
1019 		/*
1020 		 * Now, move elements and children from the left node to the
1021 		 * right.  We move one more child than elements.
1022 		 */
1023 		move_count--;
1024 		uint32_t move_idx = l_neighbor->btc_hdr.bth_count - move_count;
1025 		bt_transfer_core(tree, l_neighbor, move_idx, move_count, cur, 0,
1026 		    BSS_TRAPEZOID);
1027 
1028 		/*
1029 		 * Finally, move the last element in the left node to the
1030 		 * separator's position.
1031 		 */
1032 		move_idx--;
1033 		bcpy(l_neighbor->btc_elems + move_idx * size, separator, size);
1034 
1035 		l_neighbor->btc_hdr.bth_count -= move_count + 1;
1036 		hdr->bth_count += move_count + 1;
1037 
1038 		ASSERT3U(l_neighbor->btc_hdr.bth_count, >=, capacity / 2);
1039 		ASSERT3U(hdr->bth_count, >=, capacity / 2);
1040 
1041 		zfs_btree_poison_node(tree, &l_neighbor->btc_hdr);
1042 
1043 		for (uint32_t i = 0; i <= hdr->bth_count; i++)
1044 			cur->btc_children[i]->bth_parent = cur;
1045 	}
1046 
1047 	tree->bt_bulk = NULL;
1048 	zfs_btree_verify(tree);
1049 }
1050 
1051 /*
1052  * Insert value into tree at the location specified by where.
1053  */
1054 void
1055 zfs_btree_add_idx(zfs_btree_t *tree, const void *value,
1056     const zfs_btree_index_t *where)
1057 {
1058 	zfs_btree_index_t idx = {0};
1059 
1060 	/* If we're not inserting in the last leaf, end bulk insert mode. */
1061 	if (tree->bt_bulk != NULL) {
1062 		if (where->bti_node != &tree->bt_bulk->btl_hdr) {
1063 			zfs_btree_bulk_finish(tree);
1064 			VERIFY3P(zfs_btree_find(tree, value, &idx), ==, NULL);
1065 			where = &idx;
1066 		}
1067 	}
1068 
1069 	tree->bt_num_elems++;
1070 	/*
1071 	 * If this is the first element in the tree, create a leaf root node
1072 	 * and add the value to it.
1073 	 */
1074 	if (where->bti_node == NULL) {
1075 		ASSERT3U(tree->bt_num_elems, ==, 1);
1076 		ASSERT3S(tree->bt_height, ==, -1);
1077 		ASSERT3P(tree->bt_root, ==, NULL);
1078 		ASSERT0(where->bti_offset);
1079 
1080 		tree->bt_num_nodes++;
1081 		zfs_btree_leaf_t *leaf = kmem_cache_alloc(zfs_btree_leaf_cache,
1082 		    KM_SLEEP);
1083 		tree->bt_root = &leaf->btl_hdr;
1084 		tree->bt_height++;
1085 
1086 		zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
1087 		hdr->bth_parent = NULL;
1088 		hdr->bth_first = 0;
1089 		hdr->bth_count = 0;
1090 		zfs_btree_poison_node(tree, hdr);
1091 
1092 		zfs_btree_insert_into_leaf(tree, leaf, value, 0);
1093 		tree->bt_bulk = leaf;
1094 	} else if (!zfs_btree_is_core(where->bti_node)) {
1095 		/*
1096 		 * If we're inserting into a leaf, go directly to the helper
1097 		 * function.
1098 		 */
1099 		zfs_btree_insert_into_leaf(tree,
1100 		    (zfs_btree_leaf_t *)where->bti_node, value,
1101 		    where->bti_offset);
1102 	} else {
1103 		/*
1104 		 * If we're inserting into a core node, we can't just shift
1105 		 * the existing element in that slot in the same node without
1106 		 * breaking our ordering invariants. Instead we place the new
1107 		 * value in the node at that spot and then insert the old
1108 		 * separator into the first slot in the subtree to the right.
1109 		 */
1110 		zfs_btree_core_t *node = (zfs_btree_core_t *)where->bti_node;
1111 
1112 		/*
1113 		 * We can ignore bti_before, because either way the value
1114 		 * should end up in bti_offset.
1115 		 */
1116 		uint32_t off = where->bti_offset;
1117 		zfs_btree_hdr_t *subtree = node->btc_children[off + 1];
1118 		size_t size = tree->bt_elem_size;
1119 		uint8_t *buf = kmem_alloc(size, KM_SLEEP);
1120 		bcpy(node->btc_elems + off * size, buf, size);
1121 		bcpy(value, node->btc_elems + off * size, size);
1122 
1123 		/*
1124 		 * Find the first slot in the subtree to the right, insert
1125 		 * there.
1126 		 */
1127 		zfs_btree_index_t new_idx;
1128 		VERIFY3P(zfs_btree_first_helper(tree, subtree, &new_idx), !=,
1129 		    NULL);
1130 		ASSERT0(new_idx.bti_offset);
1131 		ASSERT(!zfs_btree_is_core(new_idx.bti_node));
1132 		zfs_btree_insert_into_leaf(tree,
1133 		    (zfs_btree_leaf_t *)new_idx.bti_node, buf, 0);
1134 		kmem_free(buf, size);
1135 	}
1136 	zfs_btree_verify(tree);
1137 }
1138 
1139 /*
1140  * Return the first element in the tree, and put its location in where if
1141  * non-null.
1142  */
1143 void *
1144 zfs_btree_first(zfs_btree_t *tree, zfs_btree_index_t *where)
1145 {
1146 	if (tree->bt_height == -1) {
1147 		ASSERT0(tree->bt_num_elems);
1148 		return (NULL);
1149 	}
1150 	return (zfs_btree_first_helper(tree, tree->bt_root, where));
1151 }
1152 
1153 /*
1154  * Find the last element in the subtree rooted at hdr, return its value and
1155  * put its location in where if non-null.
1156  */
1157 static void *
1158 zfs_btree_last_helper(zfs_btree_t *btree, zfs_btree_hdr_t *hdr,
1159     zfs_btree_index_t *where)
1160 {
1161 	zfs_btree_hdr_t *node;
1162 
1163 	for (node = hdr; zfs_btree_is_core(node); node =
1164 	    ((zfs_btree_core_t *)node)->btc_children[node->bth_count])
1165 		;
1166 
1167 	zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)node;
1168 	if (where != NULL) {
1169 		where->bti_node = node;
1170 		where->bti_offset = node->bth_count - 1;
1171 		where->bti_before = B_FALSE;
1172 	}
1173 	return (leaf->btl_elems + (node->bth_first + node->bth_count - 1) *
1174 	    btree->bt_elem_size);
1175 }
1176 
1177 /*
1178  * Return the last element in the tree, and put its location in where if
1179  * non-null.
1180  */
1181 void *
1182 zfs_btree_last(zfs_btree_t *tree, zfs_btree_index_t *where)
1183 {
1184 	if (tree->bt_height == -1) {
1185 		ASSERT0(tree->bt_num_elems);
1186 		return (NULL);
1187 	}
1188 	return (zfs_btree_last_helper(tree, tree->bt_root, where));
1189 }
1190 
1191 /*
1192  * This function contains the logic to find the next node in the tree. A
1193  * helper function is used because there are multiple internal consumemrs of
1194  * this logic. The done_func is used by zfs_btree_destroy_nodes to clean up each
1195  * node after we've finished with it.
1196  */
1197 static void *
1198 zfs_btree_next_helper(zfs_btree_t *tree, const zfs_btree_index_t *idx,
1199     zfs_btree_index_t *out_idx,
1200     void (*done_func)(zfs_btree_t *, zfs_btree_hdr_t *))
1201 {
1202 	if (idx->bti_node == NULL) {
1203 		ASSERT3S(tree->bt_height, ==, -1);
1204 		return (NULL);
1205 	}
1206 
1207 	uint32_t offset = idx->bti_offset;
1208 	if (!zfs_btree_is_core(idx->bti_node)) {
1209 		/*
1210 		 * When finding the next element of an element in a leaf,
1211 		 * there are two cases. If the element isn't the last one in
1212 		 * the leaf, in which case we just return the next element in
1213 		 * the leaf. Otherwise, we need to traverse up our parents
1214 		 * until we find one where our ancestor isn't the last child
1215 		 * of its parent. Once we do, the next element is the
1216 		 * separator after our ancestor in its parent.
1217 		 */
1218 		zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node;
1219 		uint32_t new_off = offset + (idx->bti_before ? 0 : 1);
1220 		if (leaf->btl_hdr.bth_count > new_off) {
1221 			out_idx->bti_node = &leaf->btl_hdr;
1222 			out_idx->bti_offset = new_off;
1223 			out_idx->bti_before = B_FALSE;
1224 			return (leaf->btl_elems + (leaf->btl_hdr.bth_first +
1225 			    new_off) * tree->bt_elem_size);
1226 		}
1227 
1228 		zfs_btree_hdr_t *prev = &leaf->btl_hdr;
1229 		for (zfs_btree_core_t *node = leaf->btl_hdr.bth_parent;
1230 		    node != NULL; node = node->btc_hdr.bth_parent) {
1231 			zfs_btree_hdr_t *hdr = &node->btc_hdr;
1232 			ASSERT(zfs_btree_is_core(hdr));
1233 			uint32_t i = zfs_btree_find_parent_idx(tree, prev);
1234 			if (done_func != NULL)
1235 				done_func(tree, prev);
1236 			if (i == hdr->bth_count) {
1237 				prev = hdr;
1238 				continue;
1239 			}
1240 			out_idx->bti_node = hdr;
1241 			out_idx->bti_offset = i;
1242 			out_idx->bti_before = B_FALSE;
1243 			return (node->btc_elems + i * tree->bt_elem_size);
1244 		}
1245 		if (done_func != NULL)
1246 			done_func(tree, prev);
1247 		/*
1248 		 * We've traversed all the way up and been at the end of the
1249 		 * node every time, so this was the last element in the tree.
1250 		 */
1251 		return (NULL);
1252 	}
1253 
1254 	/* If we were before an element in a core node, return that element. */
1255 	ASSERT(zfs_btree_is_core(idx->bti_node));
1256 	zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node;
1257 	if (idx->bti_before) {
1258 		out_idx->bti_before = B_FALSE;
1259 		return (node->btc_elems + offset * tree->bt_elem_size);
1260 	}
1261 
1262 	/*
1263 	 * The next element from one in a core node is the first element in
1264 	 * the subtree just to the right of the separator.
1265 	 */
1266 	zfs_btree_hdr_t *child = node->btc_children[offset + 1];
1267 	return (zfs_btree_first_helper(tree, child, out_idx));
1268 }
1269 
1270 /*
1271  * Return the next valued node in the tree.  The same address can be safely
1272  * passed for idx and out_idx.
1273  */
1274 void *
1275 zfs_btree_next(zfs_btree_t *tree, const zfs_btree_index_t *idx,
1276     zfs_btree_index_t *out_idx)
1277 {
1278 	return (zfs_btree_next_helper(tree, idx, out_idx, NULL));
1279 }
1280 
1281 /*
1282  * Return the previous valued node in the tree.  The same value can be safely
1283  * passed for idx and out_idx.
1284  */
1285 void *
1286 zfs_btree_prev(zfs_btree_t *tree, const zfs_btree_index_t *idx,
1287     zfs_btree_index_t *out_idx)
1288 {
1289 	if (idx->bti_node == NULL) {
1290 		ASSERT3S(tree->bt_height, ==, -1);
1291 		return (NULL);
1292 	}
1293 
1294 	uint32_t offset = idx->bti_offset;
1295 	if (!zfs_btree_is_core(idx->bti_node)) {
1296 		/*
1297 		 * When finding the previous element of an element in a leaf,
1298 		 * there are two cases. If the element isn't the first one in
1299 		 * the leaf, in which case we just return the previous element
1300 		 * in the leaf. Otherwise, we need to traverse up our parents
1301 		 * until we find one where our previous ancestor isn't the
1302 		 * first child. Once we do, the previous element is the
1303 		 * separator after our previous ancestor.
1304 		 */
1305 		zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node;
1306 		if (offset != 0) {
1307 			out_idx->bti_node = &leaf->btl_hdr;
1308 			out_idx->bti_offset = offset - 1;
1309 			out_idx->bti_before = B_FALSE;
1310 			return (leaf->btl_elems + (leaf->btl_hdr.bth_first +
1311 			    offset - 1) * tree->bt_elem_size);
1312 		}
1313 		zfs_btree_hdr_t *prev = &leaf->btl_hdr;
1314 		for (zfs_btree_core_t *node = leaf->btl_hdr.bth_parent;
1315 		    node != NULL; node = node->btc_hdr.bth_parent) {
1316 			zfs_btree_hdr_t *hdr = &node->btc_hdr;
1317 			ASSERT(zfs_btree_is_core(hdr));
1318 			uint32_t i = zfs_btree_find_parent_idx(tree, prev);
1319 			if (i == 0) {
1320 				prev = hdr;
1321 				continue;
1322 			}
1323 			out_idx->bti_node = hdr;
1324 			out_idx->bti_offset = i - 1;
1325 			out_idx->bti_before = B_FALSE;
1326 			return (node->btc_elems + (i - 1) * tree->bt_elem_size);
1327 		}
1328 		/*
1329 		 * We've traversed all the way up and been at the start of the
1330 		 * node every time, so this was the first node in the tree.
1331 		 */
1332 		return (NULL);
1333 	}
1334 
1335 	/*
1336 	 * The previous element from one in a core node is the last element in
1337 	 * the subtree just to the left of the separator.
1338 	 */
1339 	ASSERT(zfs_btree_is_core(idx->bti_node));
1340 	zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node;
1341 	zfs_btree_hdr_t *child = node->btc_children[offset];
1342 	return (zfs_btree_last_helper(tree, child, out_idx));
1343 }
1344 
1345 /*
1346  * Get the value at the provided index in the tree.
1347  *
1348  * Note that the value returned from this function can be mutated, but only
1349  * if it will not change the ordering of the element with respect to any other
1350  * elements that could be in the tree.
1351  */
1352 void *
1353 zfs_btree_get(zfs_btree_t *tree, zfs_btree_index_t *idx)
1354 {
1355 	ASSERT(!idx->bti_before);
1356 	size_t size = tree->bt_elem_size;
1357 	if (!zfs_btree_is_core(idx->bti_node)) {
1358 		zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node;
1359 		return (leaf->btl_elems + (leaf->btl_hdr.bth_first +
1360 		    idx->bti_offset) * size);
1361 	}
1362 	zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node;
1363 	return (node->btc_elems + idx->bti_offset * size);
1364 }
1365 
1366 /* Add the given value to the tree. Must not already be in the tree. */
1367 void
1368 zfs_btree_add(zfs_btree_t *tree, const void *node)
1369 {
1370 	zfs_btree_index_t where = {0};
1371 	VERIFY3P(zfs_btree_find(tree, node, &where), ==, NULL);
1372 	zfs_btree_add_idx(tree, node, &where);
1373 }
1374 
1375 /* Helper function to free a tree node. */
1376 static void
1377 zfs_btree_node_destroy(zfs_btree_t *tree, zfs_btree_hdr_t *node)
1378 {
1379 	tree->bt_num_nodes--;
1380 	if (!zfs_btree_is_core(node)) {
1381 		kmem_cache_free(zfs_btree_leaf_cache, node);
1382 	} else {
1383 		kmem_free(node, sizeof (zfs_btree_core_t) +
1384 		    BTREE_CORE_ELEMS * tree->bt_elem_size);
1385 	}
1386 }
1387 
1388 /*
1389  * Remove the rm_hdr and the separator to its left from the parent node. The
1390  * buffer that rm_hdr was stored in may already be freed, so its contents
1391  * cannot be accessed.
1392  */
1393 static void
1394 zfs_btree_remove_from_node(zfs_btree_t *tree, zfs_btree_core_t *node,
1395     zfs_btree_hdr_t *rm_hdr)
1396 {
1397 	size_t size = tree->bt_elem_size;
1398 	uint32_t min_count = (BTREE_CORE_ELEMS / 2) - 1;
1399 	zfs_btree_hdr_t *hdr = &node->btc_hdr;
1400 	/*
1401 	 * If the node is the root node and rm_hdr is one of two children,
1402 	 * promote the other child to the root.
1403 	 */
1404 	if (hdr->bth_parent == NULL && hdr->bth_count <= 1) {
1405 		ASSERT3U(hdr->bth_count, ==, 1);
1406 		ASSERT3P(tree->bt_root, ==, node);
1407 		ASSERT3P(node->btc_children[1], ==, rm_hdr);
1408 		tree->bt_root = node->btc_children[0];
1409 		node->btc_children[0]->bth_parent = NULL;
1410 		zfs_btree_node_destroy(tree, hdr);
1411 		tree->bt_height--;
1412 		return;
1413 	}
1414 
1415 	uint32_t idx;
1416 	for (idx = 0; idx <= hdr->bth_count; idx++) {
1417 		if (node->btc_children[idx] == rm_hdr)
1418 			break;
1419 	}
1420 	ASSERT3U(idx, <=, hdr->bth_count);
1421 
1422 	/*
1423 	 * If the node is the root or it has more than the minimum number of
1424 	 * children, just remove the child and separator, and return.
1425 	 */
1426 	if (hdr->bth_parent == NULL ||
1427 	    hdr->bth_count > min_count) {
1428 		/*
1429 		 * Shift the element and children to the right of rm_hdr to
1430 		 * the left by one spot.
1431 		 */
1432 		bt_shift_core_left(tree, node, idx, hdr->bth_count - idx,
1433 		    BSS_PARALLELOGRAM);
1434 		hdr->bth_count--;
1435 		zfs_btree_poison_node_at(tree, hdr, hdr->bth_count, 1);
1436 		return;
1437 	}
1438 
1439 	ASSERT3U(hdr->bth_count, ==, min_count);
1440 
1441 	/*
1442 	 * Now we try to take a node from a neighbor. We check left, then
1443 	 * right. If the neighbor exists and has more than the minimum number
1444 	 * of elements, we move the separator between us and them to our
1445 	 * node, move their closest element (last for left, first for right)
1446 	 * to the separator, and move their closest child to our node. Along
1447 	 * the way we need to collapse the gap made by idx, and (for our right
1448 	 * neighbor) the gap made by removing their first element and child.
1449 	 *
1450 	 * Note: this logic currently doesn't support taking from a neighbor
1451 	 * that isn't a sibling (i.e. a neighbor with a different
1452 	 * parent). This isn't critical functionality, but may be worth
1453 	 * implementing in the future for completeness' sake.
1454 	 */
1455 	zfs_btree_core_t *parent = hdr->bth_parent;
1456 	uint32_t parent_idx = zfs_btree_find_parent_idx(tree, hdr);
1457 
1458 	zfs_btree_hdr_t *l_hdr = (parent_idx == 0 ? NULL :
1459 	    parent->btc_children[parent_idx - 1]);
1460 	if (l_hdr != NULL && l_hdr->bth_count > min_count) {
1461 		/* We can take a node from the left neighbor. */
1462 		ASSERT(zfs_btree_is_core(l_hdr));
1463 		zfs_btree_core_t *neighbor = (zfs_btree_core_t *)l_hdr;
1464 
1465 		/*
1466 		 * Start by shifting the elements and children in the current
1467 		 * node to the right by one spot.
1468 		 */
1469 		bt_shift_core_right(tree, node, 0, idx - 1, BSS_TRAPEZOID);
1470 
1471 		/*
1472 		 * Move the separator between node and neighbor to the first
1473 		 * element slot in the current node.
1474 		 */
1475 		uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
1476 		    size;
1477 		bcpy(separator, node->btc_elems, size);
1478 
1479 		/* Move the last child of neighbor to our first child slot. */
1480 		node->btc_children[0] =
1481 		    neighbor->btc_children[l_hdr->bth_count];
1482 		node->btc_children[0]->bth_parent = node;
1483 
1484 		/* Move the last element of neighbor to the separator spot. */
1485 		uint8_t *take_elem = neighbor->btc_elems +
1486 		    (l_hdr->bth_count - 1) * size;
1487 		bcpy(take_elem, separator, size);
1488 		l_hdr->bth_count--;
1489 		zfs_btree_poison_node_at(tree, l_hdr, l_hdr->bth_count, 1);
1490 		return;
1491 	}
1492 
1493 	zfs_btree_hdr_t *r_hdr = (parent_idx == parent->btc_hdr.bth_count ?
1494 	    NULL : parent->btc_children[parent_idx + 1]);
1495 	if (r_hdr != NULL && r_hdr->bth_count > min_count) {
1496 		/* We can take a node from the right neighbor. */
1497 		ASSERT(zfs_btree_is_core(r_hdr));
1498 		zfs_btree_core_t *neighbor = (zfs_btree_core_t *)r_hdr;
1499 
1500 		/*
1501 		 * Shift elements in node left by one spot to overwrite rm_hdr
1502 		 * and the separator before it.
1503 		 */
1504 		bt_shift_core_left(tree, node, idx, hdr->bth_count - idx,
1505 		    BSS_PARALLELOGRAM);
1506 
1507 		/*
1508 		 * Move the separator between node and neighbor to the last
1509 		 * element spot in node.
1510 		 */
1511 		uint8_t *separator = parent->btc_elems + parent_idx * size;
1512 		bcpy(separator, node->btc_elems + (hdr->bth_count - 1) * size,
1513 		    size);
1514 
1515 		/*
1516 		 * Move the first child of neighbor to the last child spot in
1517 		 * node.
1518 		 */
1519 		node->btc_children[hdr->bth_count] = neighbor->btc_children[0];
1520 		node->btc_children[hdr->bth_count]->bth_parent = node;
1521 
1522 		/* Move the first element of neighbor to the separator spot. */
1523 		uint8_t *take_elem = neighbor->btc_elems;
1524 		bcpy(take_elem, separator, size);
1525 		r_hdr->bth_count--;
1526 
1527 		/*
1528 		 * Shift the elements and children of neighbor to cover the
1529 		 * stolen elements.
1530 		 */
1531 		bt_shift_core_left(tree, neighbor, 1, r_hdr->bth_count,
1532 		    BSS_TRAPEZOID);
1533 		zfs_btree_poison_node_at(tree, r_hdr, r_hdr->bth_count, 1);
1534 		return;
1535 	}
1536 
1537 	/*
1538 	 * In this case, neither of our neighbors can spare an element, so we
1539 	 * need to merge with one of them. We prefer the left one,
1540 	 * arbitrarily. Move the separator into the leftmost merging node
1541 	 * (which may be us or the left neighbor), and then move the right
1542 	 * merging node's elements. Once that's done, we go back and delete
1543 	 * the element we're removing. Finally, go into the parent and delete
1544 	 * the right merging node and the separator. This may cause further
1545 	 * merging.
1546 	 */
1547 	zfs_btree_hdr_t *new_rm_hdr, *keep_hdr;
1548 	uint32_t new_idx = idx;
1549 	if (l_hdr != NULL) {
1550 		keep_hdr = l_hdr;
1551 		new_rm_hdr = hdr;
1552 		new_idx += keep_hdr->bth_count + 1;
1553 	} else {
1554 		ASSERT3P(r_hdr, !=, NULL);
1555 		keep_hdr = hdr;
1556 		new_rm_hdr = r_hdr;
1557 		parent_idx++;
1558 	}
1559 
1560 	ASSERT(zfs_btree_is_core(keep_hdr));
1561 	ASSERT(zfs_btree_is_core(new_rm_hdr));
1562 
1563 	zfs_btree_core_t *keep = (zfs_btree_core_t *)keep_hdr;
1564 	zfs_btree_core_t *rm = (zfs_btree_core_t *)new_rm_hdr;
1565 
1566 	if (zfs_btree_verify_intensity >= 5) {
1567 		for (uint32_t i = 0; i < new_rm_hdr->bth_count + 1; i++) {
1568 			zfs_btree_verify_poison_at(tree, keep_hdr,
1569 			    keep_hdr->bth_count + i);
1570 		}
1571 	}
1572 
1573 	/* Move the separator into the left node. */
1574 	uint8_t *e_out = keep->btc_elems + keep_hdr->bth_count * size;
1575 	uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
1576 	    size;
1577 	bcpy(separator, e_out, size);
1578 	keep_hdr->bth_count++;
1579 
1580 	/* Move all our elements and children into the left node. */
1581 	bt_transfer_core(tree, rm, 0, new_rm_hdr->bth_count, keep,
1582 	    keep_hdr->bth_count, BSS_TRAPEZOID);
1583 
1584 	uint32_t old_count = keep_hdr->bth_count;
1585 
1586 	/* Update bookkeeping */
1587 	keep_hdr->bth_count += new_rm_hdr->bth_count;
1588 	ASSERT3U(keep_hdr->bth_count, ==, (min_count * 2) + 1);
1589 
1590 	/*
1591 	 * Shift the element and children to the right of rm_hdr to
1592 	 * the left by one spot.
1593 	 */
1594 	ASSERT3P(keep->btc_children[new_idx], ==, rm_hdr);
1595 	bt_shift_core_left(tree, keep, new_idx, keep_hdr->bth_count - new_idx,
1596 	    BSS_PARALLELOGRAM);
1597 	keep_hdr->bth_count--;
1598 
1599 	/* Reparent all our children to point to the left node. */
1600 	zfs_btree_hdr_t **new_start = keep->btc_children +
1601 	    old_count - 1;
1602 	for (uint32_t i = 0; i < new_rm_hdr->bth_count + 1; i++)
1603 		new_start[i]->bth_parent = keep;
1604 	for (uint32_t i = 0; i <= keep_hdr->bth_count; i++) {
1605 		ASSERT3P(keep->btc_children[i]->bth_parent, ==, keep);
1606 		ASSERT3P(keep->btc_children[i], !=, rm_hdr);
1607 	}
1608 	zfs_btree_poison_node_at(tree, keep_hdr, keep_hdr->bth_count, 1);
1609 
1610 	new_rm_hdr->bth_count = 0;
1611 	zfs_btree_node_destroy(tree, new_rm_hdr);
1612 	zfs_btree_remove_from_node(tree, parent, new_rm_hdr);
1613 }
1614 
1615 /* Remove the element at the specific location. */
1616 void
1617 zfs_btree_remove_idx(zfs_btree_t *tree, zfs_btree_index_t *where)
1618 {
1619 	size_t size = tree->bt_elem_size;
1620 	zfs_btree_hdr_t *hdr = where->bti_node;
1621 	uint32_t idx = where->bti_offset;
1622 
1623 	ASSERT(!where->bti_before);
1624 	if (tree->bt_bulk != NULL) {
1625 		/*
1626 		 * Leave bulk insert mode. Note that our index would be
1627 		 * invalid after we correct the tree, so we copy the value
1628 		 * we're planning to remove and find it again after
1629 		 * bulk_finish.
1630 		 */
1631 		uint8_t *value = zfs_btree_get(tree, where);
1632 		uint8_t *tmp = kmem_alloc(size, KM_SLEEP);
1633 		bcpy(value, tmp, size);
1634 		zfs_btree_bulk_finish(tree);
1635 		VERIFY3P(zfs_btree_find(tree, tmp, where), !=, NULL);
1636 		kmem_free(tmp, size);
1637 		hdr = where->bti_node;
1638 		idx = where->bti_offset;
1639 	}
1640 
1641 	tree->bt_num_elems--;
1642 	/*
1643 	 * If the element happens to be in a core node, we move a leaf node's
1644 	 * element into its place and then remove the leaf node element. This
1645 	 * makes the rebalance logic not need to be recursive both upwards and
1646 	 * downwards.
1647 	 */
1648 	if (zfs_btree_is_core(hdr)) {
1649 		zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
1650 		zfs_btree_hdr_t *left_subtree = node->btc_children[idx];
1651 		void *new_value = zfs_btree_last_helper(tree, left_subtree,
1652 		    where);
1653 		ASSERT3P(new_value, !=, NULL);
1654 
1655 		bcpy(new_value, node->btc_elems + idx * size, size);
1656 
1657 		hdr = where->bti_node;
1658 		idx = where->bti_offset;
1659 		ASSERT(!where->bti_before);
1660 	}
1661 
1662 	/*
1663 	 * First, we'll update the leaf's metadata. Then, we shift any
1664 	 * elements after the idx to the left. After that, we rebalance if
1665 	 * needed.
1666 	 */
1667 	ASSERT(!zfs_btree_is_core(hdr));
1668 	zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
1669 	ASSERT3U(hdr->bth_count, >, 0);
1670 
1671 	uint32_t min_count = (tree->bt_leaf_cap / 2) - 1;
1672 
1673 	/*
1674 	 * If we're over the minimum size or this is the root, just overwrite
1675 	 * the value and return.
1676 	 */
1677 	if (hdr->bth_count > min_count || hdr->bth_parent == NULL) {
1678 		bt_shrink_leaf(tree, leaf, idx, 1);
1679 		if (hdr->bth_parent == NULL) {
1680 			ASSERT0(tree->bt_height);
1681 			if (hdr->bth_count == 0) {
1682 				tree->bt_root = NULL;
1683 				tree->bt_height--;
1684 				zfs_btree_node_destroy(tree, &leaf->btl_hdr);
1685 			}
1686 		}
1687 		zfs_btree_verify(tree);
1688 		return;
1689 	}
1690 	ASSERT3U(hdr->bth_count, ==, min_count);
1691 
1692 	/*
1693 	 * Now we try to take a node from a sibling. We check left, then
1694 	 * right. If they exist and have more than the minimum number of
1695 	 * elements, we move the separator between us and them to our node
1696 	 * and move their closest element (last for left, first for right) to
1697 	 * the separator. Along the way we need to collapse the gap made by
1698 	 * idx, and (for our right neighbor) the gap made by removing their
1699 	 * first element.
1700 	 *
1701 	 * Note: this logic currently doesn't support taking from a neighbor
1702 	 * that isn't a sibling. This isn't critical functionality, but may be
1703 	 * worth implementing in the future for completeness' sake.
1704 	 */
1705 	zfs_btree_core_t *parent = hdr->bth_parent;
1706 	uint32_t parent_idx = zfs_btree_find_parent_idx(tree, hdr);
1707 
1708 	zfs_btree_hdr_t *l_hdr = (parent_idx == 0 ? NULL :
1709 	    parent->btc_children[parent_idx - 1]);
1710 	if (l_hdr != NULL && l_hdr->bth_count > min_count) {
1711 		/* We can take a node from the left neighbor. */
1712 		ASSERT(!zfs_btree_is_core(l_hdr));
1713 		zfs_btree_leaf_t *neighbor = (zfs_btree_leaf_t *)l_hdr;
1714 
1715 		/*
1716 		 * Move our elements back by one spot to make room for the
1717 		 * stolen element and overwrite the element being removed.
1718 		 */
1719 		bt_shift_leaf(tree, leaf, 0, idx, 1, BSD_RIGHT);
1720 
1721 		/* Move the separator to our first spot. */
1722 		uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
1723 		    size;
1724 		bcpy(separator, leaf->btl_elems + hdr->bth_first * size, size);
1725 
1726 		/* Move our neighbor's last element to the separator. */
1727 		uint8_t *take_elem = neighbor->btl_elems +
1728 		    (l_hdr->bth_first + l_hdr->bth_count - 1) * size;
1729 		bcpy(take_elem, separator, size);
1730 
1731 		/* Delete our neighbor's last element. */
1732 		bt_shrink_leaf(tree, neighbor, l_hdr->bth_count - 1, 1);
1733 		zfs_btree_verify(tree);
1734 		return;
1735 	}
1736 
1737 	zfs_btree_hdr_t *r_hdr = (parent_idx == parent->btc_hdr.bth_count ?
1738 	    NULL : parent->btc_children[parent_idx + 1]);
1739 	if (r_hdr != NULL && r_hdr->bth_count > min_count) {
1740 		/* We can take a node from the right neighbor. */
1741 		ASSERT(!zfs_btree_is_core(r_hdr));
1742 		zfs_btree_leaf_t *neighbor = (zfs_btree_leaf_t *)r_hdr;
1743 
1744 		/*
1745 		 * Move our elements after the element being removed forwards
1746 		 * by one spot to make room for the stolen element and
1747 		 * overwrite the element being removed.
1748 		 */
1749 		bt_shift_leaf(tree, leaf, idx + 1, hdr->bth_count - idx - 1,
1750 		    1, BSD_LEFT);
1751 
1752 		/* Move the separator between us to our last spot. */
1753 		uint8_t *separator = parent->btc_elems + parent_idx * size;
1754 		bcpy(separator, leaf->btl_elems + (hdr->bth_first +
1755 		    hdr->bth_count - 1) * size, size);
1756 
1757 		/* Move our neighbor's first element to the separator. */
1758 		uint8_t *take_elem = neighbor->btl_elems +
1759 		    r_hdr->bth_first * size;
1760 		bcpy(take_elem, separator, size);
1761 
1762 		/* Delete our neighbor's first element. */
1763 		bt_shrink_leaf(tree, neighbor, 0, 1);
1764 		zfs_btree_verify(tree);
1765 		return;
1766 	}
1767 
1768 	/*
1769 	 * In this case, neither of our neighbors can spare an element, so we
1770 	 * need to merge with one of them. We prefer the left one, arbitrarily.
1771 	 * After remove we move the separator into the leftmost merging node
1772 	 * (which may be us or the left neighbor), and then move the right
1773 	 * merging node's elements. Once that's done, we go back and delete
1774 	 * the element we're removing. Finally, go into the parent and delete
1775 	 * the right merging node and the separator. This may cause further
1776 	 * merging.
1777 	 */
1778 	zfs_btree_hdr_t *rm_hdr, *k_hdr;
1779 	if (l_hdr != NULL) {
1780 		k_hdr = l_hdr;
1781 		rm_hdr = hdr;
1782 	} else {
1783 		ASSERT3P(r_hdr, !=, NULL);
1784 		k_hdr = hdr;
1785 		rm_hdr = r_hdr;
1786 		parent_idx++;
1787 	}
1788 	ASSERT(!zfs_btree_is_core(k_hdr));
1789 	ASSERT(!zfs_btree_is_core(rm_hdr));
1790 	ASSERT3U(k_hdr->bth_count, ==, min_count);
1791 	ASSERT3U(rm_hdr->bth_count, ==, min_count);
1792 	zfs_btree_leaf_t *keep = (zfs_btree_leaf_t *)k_hdr;
1793 	zfs_btree_leaf_t *rm = (zfs_btree_leaf_t *)rm_hdr;
1794 
1795 	if (zfs_btree_verify_intensity >= 5) {
1796 		for (uint32_t i = 0; i < rm_hdr->bth_count + 1; i++) {
1797 			zfs_btree_verify_poison_at(tree, k_hdr,
1798 			    k_hdr->bth_count + i);
1799 		}
1800 	}
1801 
1802 	/*
1803 	 * Remove the value from the node.  It will go below the minimum,
1804 	 * but we'll fix it in no time.
1805 	 */
1806 	bt_shrink_leaf(tree, leaf, idx, 1);
1807 
1808 	/* Prepare space for elements to be moved from the right. */
1809 	uint32_t k_count = k_hdr->bth_count;
1810 	bt_grow_leaf(tree, keep, k_count, 1 + rm_hdr->bth_count);
1811 	ASSERT3U(k_hdr->bth_count, ==, min_count * 2);
1812 
1813 	/* Move the separator into the first open spot. */
1814 	uint8_t *out = keep->btl_elems + (k_hdr->bth_first + k_count) * size;
1815 	uint8_t *separator = parent->btc_elems + (parent_idx - 1) * size;
1816 	bcpy(separator, out, size);
1817 
1818 	/* Move our elements to the left neighbor. */
1819 	bt_transfer_leaf(tree, rm, 0, rm_hdr->bth_count, keep, k_count + 1);
1820 	zfs_btree_node_destroy(tree, rm_hdr);
1821 
1822 	/* Remove the emptied node from the parent. */
1823 	zfs_btree_remove_from_node(tree, parent, rm_hdr);
1824 	zfs_btree_verify(tree);
1825 }
1826 
1827 /* Remove the given value from the tree. */
1828 void
1829 zfs_btree_remove(zfs_btree_t *tree, const void *value)
1830 {
1831 	zfs_btree_index_t where = {0};
1832 	VERIFY3P(zfs_btree_find(tree, value, &where), !=, NULL);
1833 	zfs_btree_remove_idx(tree, &where);
1834 }
1835 
1836 /* Return the number of elements in the tree. */
1837 ulong_t
1838 zfs_btree_numnodes(zfs_btree_t *tree)
1839 {
1840 	return (tree->bt_num_elems);
1841 }
1842 
1843 /*
1844  * This function is used to visit all the elements in the tree before
1845  * destroying the tree. This allows the calling code to perform any cleanup it
1846  * needs to do. This is more efficient than just removing the first element
1847  * over and over, because it removes all rebalancing. Once the destroy_nodes()
1848  * function has been called, no other btree operations are valid until it
1849  * returns NULL, which point the only valid operation is zfs_btree_destroy().
1850  *
1851  * example:
1852  *
1853  *      zfs_btree_index_t *cookie = NULL;
1854  *      my_data_t *node;
1855  *
1856  *      while ((node = zfs_btree_destroy_nodes(tree, &cookie)) != NULL)
1857  *              free(node->ptr);
1858  *      zfs_btree_destroy(tree);
1859  *
1860  */
1861 void *
1862 zfs_btree_destroy_nodes(zfs_btree_t *tree, zfs_btree_index_t **cookie)
1863 {
1864 	if (*cookie == NULL) {
1865 		if (tree->bt_height == -1)
1866 			return (NULL);
1867 		*cookie = kmem_alloc(sizeof (**cookie), KM_SLEEP);
1868 		return (zfs_btree_first(tree, *cookie));
1869 	}
1870 
1871 	void *rval = zfs_btree_next_helper(tree, *cookie, *cookie,
1872 	    zfs_btree_node_destroy);
1873 	if (rval == NULL)   {
1874 		tree->bt_root = NULL;
1875 		tree->bt_height = -1;
1876 		tree->bt_num_elems = 0;
1877 		kmem_free(*cookie, sizeof (**cookie));
1878 		tree->bt_bulk = NULL;
1879 	}
1880 	return (rval);
1881 }
1882 
1883 static void
1884 zfs_btree_clear_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
1885 {
1886 	if (zfs_btree_is_core(hdr)) {
1887 		zfs_btree_core_t *btc = (zfs_btree_core_t *)hdr;
1888 		for (uint32_t i = 0; i <= hdr->bth_count; i++)
1889 			zfs_btree_clear_helper(tree, btc->btc_children[i]);
1890 	}
1891 
1892 	zfs_btree_node_destroy(tree, hdr);
1893 }
1894 
1895 void
1896 zfs_btree_clear(zfs_btree_t *tree)
1897 {
1898 	if (tree->bt_root == NULL) {
1899 		ASSERT0(tree->bt_num_elems);
1900 		return;
1901 	}
1902 
1903 	zfs_btree_clear_helper(tree, tree->bt_root);
1904 	tree->bt_num_elems = 0;
1905 	tree->bt_root = NULL;
1906 	tree->bt_num_nodes = 0;
1907 	tree->bt_height = -1;
1908 	tree->bt_bulk = NULL;
1909 }
1910 
1911 void
1912 zfs_btree_destroy(zfs_btree_t *tree)
1913 {
1914 	ASSERT0(tree->bt_num_elems);
1915 	ASSERT3P(tree->bt_root, ==, NULL);
1916 }
1917 
1918 /* Verify that every child of this node has the correct parent pointer. */
1919 static void
1920 zfs_btree_verify_pointers_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
1921 {
1922 	if (!zfs_btree_is_core(hdr))
1923 		return;
1924 
1925 	zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
1926 	for (uint32_t i = 0; i <= hdr->bth_count; i++) {
1927 		VERIFY3P(node->btc_children[i]->bth_parent, ==, hdr);
1928 		zfs_btree_verify_pointers_helper(tree, node->btc_children[i]);
1929 	}
1930 }
1931 
1932 /* Verify that every node has the correct parent pointer. */
1933 static void
1934 zfs_btree_verify_pointers(zfs_btree_t *tree)
1935 {
1936 	if (tree->bt_height == -1) {
1937 		VERIFY3P(tree->bt_root, ==, NULL);
1938 		return;
1939 	}
1940 	VERIFY3P(tree->bt_root->bth_parent, ==, NULL);
1941 	zfs_btree_verify_pointers_helper(tree, tree->bt_root);
1942 }
1943 
1944 /*
1945  * Verify that all the current node and its children satisfy the count
1946  * invariants, and return the total count in the subtree rooted in this node.
1947  */
1948 static uint64_t
1949 zfs_btree_verify_counts_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
1950 {
1951 	if (!zfs_btree_is_core(hdr)) {
1952 		if (tree->bt_root != hdr && tree->bt_bulk &&
1953 		    hdr != &tree->bt_bulk->btl_hdr) {
1954 			VERIFY3U(hdr->bth_count, >=, tree->bt_leaf_cap / 2 - 1);
1955 		}
1956 
1957 		return (hdr->bth_count);
1958 	} else {
1959 
1960 		zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
1961 		uint64_t ret = hdr->bth_count;
1962 		if (tree->bt_root != hdr && tree->bt_bulk == NULL)
1963 			VERIFY3P(hdr->bth_count, >=, BTREE_CORE_ELEMS / 2 - 1);
1964 		for (uint32_t i = 0; i <= hdr->bth_count; i++) {
1965 			ret += zfs_btree_verify_counts_helper(tree,
1966 			    node->btc_children[i]);
1967 		}
1968 
1969 		return (ret);
1970 	}
1971 }
1972 
1973 /*
1974  * Verify that all nodes satisfy the invariants and that the total number of
1975  * elements is correct.
1976  */
1977 static void
1978 zfs_btree_verify_counts(zfs_btree_t *tree)
1979 {
1980 	EQUIV(tree->bt_num_elems == 0, tree->bt_height == -1);
1981 	if (tree->bt_height == -1) {
1982 		return;
1983 	}
1984 	VERIFY3P(zfs_btree_verify_counts_helper(tree, tree->bt_root), ==,
1985 	    tree->bt_num_elems);
1986 }
1987 
1988 /*
1989  * Check that the subtree rooted at this node has a uniform height. Returns
1990  * the number of nodes under this node, to help verify bt_num_nodes.
1991  */
1992 static uint64_t
1993 zfs_btree_verify_height_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
1994     int64_t height)
1995 {
1996 	if (!zfs_btree_is_core(hdr)) {
1997 		VERIFY0(height);
1998 		return (1);
1999 	}
2000 
2001 	zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
2002 	uint64_t ret = 1;
2003 	for (uint32_t i = 0; i <= hdr->bth_count; i++) {
2004 		ret += zfs_btree_verify_height_helper(tree,
2005 		    node->btc_children[i], height - 1);
2006 	}
2007 	return (ret);
2008 }
2009 
2010 /*
2011  * Check that the tree rooted at this node has a uniform height, and that the
2012  * bt_height in the tree is correct.
2013  */
2014 static void
2015 zfs_btree_verify_height(zfs_btree_t *tree)
2016 {
2017 	EQUIV(tree->bt_height == -1, tree->bt_root == NULL);
2018 	if (tree->bt_height == -1) {
2019 		return;
2020 	}
2021 
2022 	VERIFY3U(zfs_btree_verify_height_helper(tree, tree->bt_root,
2023 	    tree->bt_height), ==, tree->bt_num_nodes);
2024 }
2025 
2026 /*
2027  * Check that the elements in this node are sorted, and that if this is a core
2028  * node, the separators are properly between the subtrees they separaate and
2029  * that the children also satisfy this requirement.
2030  */
2031 static void
2032 zfs_btree_verify_order_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
2033 {
2034 	size_t size = tree->bt_elem_size;
2035 	if (!zfs_btree_is_core(hdr)) {
2036 		zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
2037 		for (uint32_t i = 1; i < hdr->bth_count; i++) {
2038 			VERIFY3S(tree->bt_compar(leaf->btl_elems +
2039 			    (hdr->bth_first + i - 1) * size,
2040 			    leaf->btl_elems +
2041 			    (hdr->bth_first + i) * size), ==, -1);
2042 		}
2043 		return;
2044 	}
2045 
2046 	zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
2047 	for (uint32_t i = 1; i < hdr->bth_count; i++) {
2048 		VERIFY3S(tree->bt_compar(node->btc_elems + (i - 1) * size,
2049 		    node->btc_elems + i * size), ==, -1);
2050 	}
2051 	for (uint32_t i = 0; i < hdr->bth_count; i++) {
2052 		uint8_t *left_child_last = NULL;
2053 		zfs_btree_hdr_t *left_child_hdr = node->btc_children[i];
2054 		if (zfs_btree_is_core(left_child_hdr)) {
2055 			zfs_btree_core_t *left_child =
2056 			    (zfs_btree_core_t *)left_child_hdr;
2057 			left_child_last = left_child->btc_elems +
2058 			    (left_child_hdr->bth_count - 1) * size;
2059 		} else {
2060 			zfs_btree_leaf_t *left_child =
2061 			    (zfs_btree_leaf_t *)left_child_hdr;
2062 			left_child_last = left_child->btl_elems +
2063 			    (left_child_hdr->bth_first +
2064 			    left_child_hdr->bth_count - 1) * size;
2065 		}
2066 		int comp = tree->bt_compar(node->btc_elems + i * size,
2067 		    left_child_last);
2068 		if (comp <= 0) {
2069 			panic("btree: compar returned %d (expected 1) at "
2070 			    "%px %d: compar(%px,  %px)", comp, node, i,
2071 			    node->btc_elems + i * size, left_child_last);
2072 		}
2073 
2074 		uint8_t *right_child_first = NULL;
2075 		zfs_btree_hdr_t *right_child_hdr = node->btc_children[i + 1];
2076 		if (zfs_btree_is_core(right_child_hdr)) {
2077 			zfs_btree_core_t *right_child =
2078 			    (zfs_btree_core_t *)right_child_hdr;
2079 			right_child_first = right_child->btc_elems;
2080 		} else {
2081 			zfs_btree_leaf_t *right_child =
2082 			    (zfs_btree_leaf_t *)right_child_hdr;
2083 			right_child_first = right_child->btl_elems +
2084 			    right_child_hdr->bth_first * size;
2085 		}
2086 		comp = tree->bt_compar(node->btc_elems + i * size,
2087 		    right_child_first);
2088 		if (comp >= 0) {
2089 			panic("btree: compar returned %d (expected -1) at "
2090 			    "%px %d: compar(%px,  %px)", comp, node, i,
2091 			    node->btc_elems + i * size, right_child_first);
2092 		}
2093 	}
2094 	for (uint32_t i = 0; i <= hdr->bth_count; i++)
2095 		zfs_btree_verify_order_helper(tree, node->btc_children[i]);
2096 }
2097 
2098 /* Check that all elements in the tree are in sorted order. */
2099 static void
2100 zfs_btree_verify_order(zfs_btree_t *tree)
2101 {
2102 	EQUIV(tree->bt_height == -1, tree->bt_root == NULL);
2103 	if (tree->bt_height == -1) {
2104 		return;
2105 	}
2106 
2107 	zfs_btree_verify_order_helper(tree, tree->bt_root);
2108 }
2109 
2110 #ifdef ZFS_DEBUG
2111 /* Check that all unused memory is poisoned correctly. */
2112 static void
2113 zfs_btree_verify_poison_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
2114 {
2115 	size_t size = tree->bt_elem_size;
2116 	if (!zfs_btree_is_core(hdr)) {
2117 		zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
2118 		for (size_t i = 0; i < hdr->bth_first * size; i++)
2119 			VERIFY3U(leaf->btl_elems[i], ==, 0x0f);
2120 		for (size_t i = (hdr->bth_first + hdr->bth_count) * size;
2121 		    i < BTREE_LEAF_ESIZE; i++)
2122 			VERIFY3U(leaf->btl_elems[i], ==, 0x0f);
2123 	} else {
2124 		zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
2125 		for (size_t i = hdr->bth_count * size;
2126 		    i < BTREE_CORE_ELEMS * size; i++)
2127 			VERIFY3U(node->btc_elems[i], ==, 0x0f);
2128 
2129 		for (uint32_t i = hdr->bth_count + 1; i <= BTREE_CORE_ELEMS;
2130 		    i++) {
2131 			VERIFY3P(node->btc_children[i], ==,
2132 			    (zfs_btree_hdr_t *)BTREE_POISON);
2133 		}
2134 
2135 		for (uint32_t i = 0; i <= hdr->bth_count; i++) {
2136 			zfs_btree_verify_poison_helper(tree,
2137 			    node->btc_children[i]);
2138 		}
2139 	}
2140 }
2141 #endif
2142 
2143 /* Check that unused memory in the tree is still poisoned. */
2144 static void
2145 zfs_btree_verify_poison(zfs_btree_t *tree)
2146 {
2147 #ifdef ZFS_DEBUG
2148 	if (tree->bt_height == -1)
2149 		return;
2150 	zfs_btree_verify_poison_helper(tree, tree->bt_root);
2151 #endif
2152 }
2153 
2154 void
2155 zfs_btree_verify(zfs_btree_t *tree)
2156 {
2157 	if (zfs_btree_verify_intensity == 0)
2158 		return;
2159 	zfs_btree_verify_height(tree);
2160 	if (zfs_btree_verify_intensity == 1)
2161 		return;
2162 	zfs_btree_verify_pointers(tree);
2163 	if (zfs_btree_verify_intensity == 2)
2164 		return;
2165 	zfs_btree_verify_counts(tree);
2166 	if (zfs_btree_verify_intensity == 3)
2167 		return;
2168 	zfs_btree_verify_order(tree);
2169 
2170 	if (zfs_btree_verify_intensity == 4)
2171 		return;
2172 	zfs_btree_verify_poison(tree);
2173 }
2174