1eda14cbcSMatt Macy /* 2eda14cbcSMatt Macy * CDDL HEADER START 3eda14cbcSMatt Macy * 4eda14cbcSMatt Macy * This file and its contents are supplied under the terms of the 5eda14cbcSMatt Macy * Common Development and Distribution License ("CDDL"), version 1.0. 6eda14cbcSMatt Macy * You may only use this file in accordance with the terms of version 7eda14cbcSMatt Macy * 1.0 of the CDDL. 8eda14cbcSMatt Macy * 9eda14cbcSMatt Macy * A full copy of the text of the CDDL should have accompanied this 10eda14cbcSMatt Macy * source. A copy of the CDDL is also available via the Internet at 11eda14cbcSMatt Macy * http://www.illumos.org/license/CDDL. 12eda14cbcSMatt Macy * 13eda14cbcSMatt Macy * CDDL HEADER END 14eda14cbcSMatt Macy */ 15eda14cbcSMatt Macy /* 16eda14cbcSMatt Macy * Copyright (c) 2019 by Delphix. All rights reserved. 17eda14cbcSMatt Macy */ 18eda14cbcSMatt Macy 19eda14cbcSMatt Macy #include <sys/btree.h> 20eda14cbcSMatt Macy #include <sys/bitops.h> 21eda14cbcSMatt Macy #include <sys/zfs_context.h> 22eda14cbcSMatt Macy 23eda14cbcSMatt Macy kmem_cache_t *zfs_btree_leaf_cache; 24eda14cbcSMatt Macy 25eda14cbcSMatt Macy /* 26eda14cbcSMatt Macy * Control the extent of the verification that occurs when zfs_btree_verify is 27eda14cbcSMatt Macy * called. Primarily used for debugging when extending the btree logic and 28eda14cbcSMatt Macy * functionality. As the intensity is increased, new verification steps are 29eda14cbcSMatt Macy * added. These steps are cumulative; intensity = 3 includes the intensity = 1 30eda14cbcSMatt Macy * and intensity = 2 steps as well. 31eda14cbcSMatt Macy * 32eda14cbcSMatt Macy * Intensity 1: Verify that the tree's height is consistent throughout. 33eda14cbcSMatt Macy * Intensity 2: Verify that a core node's children's parent pointers point 34eda14cbcSMatt Macy * to the core node. 35eda14cbcSMatt Macy * Intensity 3: Verify that the total number of elements in the tree matches the 36eda14cbcSMatt Macy * sum of the number of elements in each node. Also verifies that each node's 37eda14cbcSMatt Macy * count obeys the invariants (less than or equal to maximum value, greater than 38eda14cbcSMatt Macy * or equal to half the maximum minus one). 39eda14cbcSMatt Macy * Intensity 4: Verify that each element compares less than the element 40eda14cbcSMatt Macy * immediately after it and greater than the one immediately before it using the 41eda14cbcSMatt Macy * comparator function. For core nodes, also checks that each element is greater 42eda14cbcSMatt Macy * than the last element in the first of the two nodes it separates, and less 43eda14cbcSMatt Macy * than the first element in the second of the two nodes. 44eda14cbcSMatt Macy * Intensity 5: Verifies, if ZFS_DEBUG is defined, that all unused memory inside 45eda14cbcSMatt Macy * of each node is poisoned appropriately. Note that poisoning always occurs if 46eda14cbcSMatt Macy * ZFS_DEBUG is set, so it is safe to set the intensity to 5 during normal 47eda14cbcSMatt Macy * operation. 48eda14cbcSMatt Macy * 49eda14cbcSMatt Macy * Intensity 4 and 5 are particularly expensive to perform; the previous levels 50eda14cbcSMatt Macy * are a few memory operations per node, while these levels require multiple 51eda14cbcSMatt Macy * operations per element. In addition, when creating large btrees, these 52eda14cbcSMatt Macy * operations are called at every step, resulting in extremely slow operation 53eda14cbcSMatt Macy * (while the asymptotic complexity of the other steps is the same, the 54eda14cbcSMatt Macy * importance of the constant factors cannot be denied). 55eda14cbcSMatt Macy */ 56eda14cbcSMatt Macy int zfs_btree_verify_intensity = 0; 57eda14cbcSMatt Macy 58eda14cbcSMatt Macy /* 59eda14cbcSMatt Macy * A convenience function to silence warnings from memmove's return value and 60eda14cbcSMatt Macy * change argument order to src, dest. 61eda14cbcSMatt Macy */ 62eda14cbcSMatt Macy static void 63eda14cbcSMatt Macy bmov(const void *src, void *dest, size_t size) 64eda14cbcSMatt Macy { 65eda14cbcSMatt Macy (void) memmove(dest, src, size); 66eda14cbcSMatt Macy } 67eda14cbcSMatt Macy 68eda14cbcSMatt Macy #ifdef _ILP32 69eda14cbcSMatt Macy #define BTREE_POISON 0xabadb10c 70eda14cbcSMatt Macy #else 71eda14cbcSMatt Macy #define BTREE_POISON 0xabadb10cdeadbeef 72eda14cbcSMatt Macy #endif 73eda14cbcSMatt Macy 74eda14cbcSMatt Macy static void 75eda14cbcSMatt Macy zfs_btree_poison_node(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) 76eda14cbcSMatt Macy { 77eda14cbcSMatt Macy #ifdef ZFS_DEBUG 78eda14cbcSMatt Macy size_t size = tree->bt_elem_size; 79eda14cbcSMatt Macy if (!hdr->bth_core) { 80eda14cbcSMatt Macy zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr; 81eda14cbcSMatt Macy (void) memset(leaf->btl_elems + hdr->bth_count * size, 0x0f, 82eda14cbcSMatt Macy BTREE_LEAF_SIZE - sizeof (zfs_btree_hdr_t) - 83eda14cbcSMatt Macy hdr->bth_count * size); 84eda14cbcSMatt Macy } else { 85eda14cbcSMatt Macy zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; 86eda14cbcSMatt Macy for (int i = hdr->bth_count + 1; i <= BTREE_CORE_ELEMS; i++) { 87eda14cbcSMatt Macy node->btc_children[i] = 88eda14cbcSMatt Macy (zfs_btree_hdr_t *)BTREE_POISON; 89eda14cbcSMatt Macy } 90eda14cbcSMatt Macy (void) memset(node->btc_elems + hdr->bth_count * size, 0x0f, 91eda14cbcSMatt Macy (BTREE_CORE_ELEMS - hdr->bth_count) * size); 92eda14cbcSMatt Macy } 93eda14cbcSMatt Macy #endif 94eda14cbcSMatt Macy } 95eda14cbcSMatt Macy 96eda14cbcSMatt Macy static inline void 97eda14cbcSMatt Macy zfs_btree_poison_node_at(zfs_btree_t *tree, zfs_btree_hdr_t *hdr, 98eda14cbcSMatt Macy uint64_t offset) 99eda14cbcSMatt Macy { 100eda14cbcSMatt Macy #ifdef ZFS_DEBUG 101eda14cbcSMatt Macy size_t size = tree->bt_elem_size; 102eda14cbcSMatt Macy ASSERT3U(offset, >=, hdr->bth_count); 103eda14cbcSMatt Macy if (!hdr->bth_core) { 104eda14cbcSMatt Macy zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr; 105eda14cbcSMatt Macy (void) memset(leaf->btl_elems + offset * size, 0x0f, size); 106eda14cbcSMatt Macy } else { 107eda14cbcSMatt Macy zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; 108eda14cbcSMatt Macy node->btc_children[offset + 1] = 109eda14cbcSMatt Macy (zfs_btree_hdr_t *)BTREE_POISON; 110eda14cbcSMatt Macy (void) memset(node->btc_elems + offset * size, 0x0f, size); 111eda14cbcSMatt Macy } 112eda14cbcSMatt Macy #endif 113eda14cbcSMatt Macy } 114eda14cbcSMatt Macy 115eda14cbcSMatt Macy static inline void 116eda14cbcSMatt Macy zfs_btree_verify_poison_at(zfs_btree_t *tree, zfs_btree_hdr_t *hdr, 117eda14cbcSMatt Macy uint64_t offset) 118eda14cbcSMatt Macy { 119eda14cbcSMatt Macy #ifdef ZFS_DEBUG 120eda14cbcSMatt Macy size_t size = tree->bt_elem_size; 121eda14cbcSMatt Macy uint8_t eval = 0x0f; 122eda14cbcSMatt Macy if (hdr->bth_core) { 123eda14cbcSMatt Macy zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; 124eda14cbcSMatt Macy zfs_btree_hdr_t *cval = (zfs_btree_hdr_t *)BTREE_POISON; 125eda14cbcSMatt Macy VERIFY3P(node->btc_children[offset + 1], ==, cval); 126eda14cbcSMatt Macy for (int i = 0; i < size; i++) 127eda14cbcSMatt Macy VERIFY3U(node->btc_elems[offset * size + i], ==, eval); 128eda14cbcSMatt Macy } else { 129eda14cbcSMatt Macy zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr; 130eda14cbcSMatt Macy for (int i = 0; i < size; i++) 131eda14cbcSMatt Macy VERIFY3U(leaf->btl_elems[offset * size + i], ==, eval); 132eda14cbcSMatt Macy } 133eda14cbcSMatt Macy #endif 134eda14cbcSMatt Macy } 135eda14cbcSMatt Macy 136eda14cbcSMatt Macy void 137eda14cbcSMatt Macy zfs_btree_init(void) 138eda14cbcSMatt Macy { 139eda14cbcSMatt Macy zfs_btree_leaf_cache = kmem_cache_create("zfs_btree_leaf_cache", 140eda14cbcSMatt Macy BTREE_LEAF_SIZE, 0, NULL, NULL, NULL, NULL, 141eda14cbcSMatt Macy NULL, 0); 142eda14cbcSMatt Macy } 143eda14cbcSMatt Macy 144eda14cbcSMatt Macy void 145eda14cbcSMatt Macy zfs_btree_fini(void) 146eda14cbcSMatt Macy { 147eda14cbcSMatt Macy kmem_cache_destroy(zfs_btree_leaf_cache); 148eda14cbcSMatt Macy } 149eda14cbcSMatt Macy 150eda14cbcSMatt Macy void 151eda14cbcSMatt Macy zfs_btree_create(zfs_btree_t *tree, int (*compar) (const void *, const void *), 152eda14cbcSMatt Macy size_t size) 153eda14cbcSMatt Macy { 154eda14cbcSMatt Macy /* 155eda14cbcSMatt Macy * We need a minimmum of 4 elements so that when we split a node we 156eda14cbcSMatt Macy * always have at least two elements in each node. This simplifies the 157eda14cbcSMatt Macy * logic in zfs_btree_bulk_finish, since it means the last leaf will 158eda14cbcSMatt Macy * always have a left sibling to share with (unless it's the root). 159eda14cbcSMatt Macy */ 160eda14cbcSMatt Macy ASSERT3U(size, <=, (BTREE_LEAF_SIZE - sizeof (zfs_btree_hdr_t)) / 4); 161eda14cbcSMatt Macy 162eda14cbcSMatt Macy bzero(tree, sizeof (*tree)); 163eda14cbcSMatt Macy tree->bt_compar = compar; 164eda14cbcSMatt Macy tree->bt_elem_size = size; 165eda14cbcSMatt Macy tree->bt_height = -1; 166eda14cbcSMatt Macy tree->bt_bulk = NULL; 167eda14cbcSMatt Macy } 168eda14cbcSMatt Macy 169eda14cbcSMatt Macy /* 170eda14cbcSMatt Macy * Find value in the array of elements provided. Uses a simple binary search. 171eda14cbcSMatt Macy */ 172eda14cbcSMatt Macy static void * 173eda14cbcSMatt Macy zfs_btree_find_in_buf(zfs_btree_t *tree, uint8_t *buf, uint64_t nelems, 174eda14cbcSMatt Macy const void *value, zfs_btree_index_t *where) 175eda14cbcSMatt Macy { 176eda14cbcSMatt Macy uint64_t max = nelems; 177eda14cbcSMatt Macy uint64_t min = 0; 178eda14cbcSMatt Macy while (max > min) { 179eda14cbcSMatt Macy uint64_t idx = (min + max) / 2; 180eda14cbcSMatt Macy uint8_t *cur = buf + idx * tree->bt_elem_size; 181eda14cbcSMatt Macy int comp = tree->bt_compar(cur, value); 182eda14cbcSMatt Macy if (comp == -1) { 183eda14cbcSMatt Macy min = idx + 1; 184eda14cbcSMatt Macy } else if (comp == 1) { 185eda14cbcSMatt Macy max = idx; 186eda14cbcSMatt Macy } else { 187eda14cbcSMatt Macy ASSERT0(comp); 188eda14cbcSMatt Macy where->bti_offset = idx; 189eda14cbcSMatt Macy where->bti_before = B_FALSE; 190eda14cbcSMatt Macy return (cur); 191eda14cbcSMatt Macy } 192eda14cbcSMatt Macy } 193eda14cbcSMatt Macy 194eda14cbcSMatt Macy where->bti_offset = max; 195eda14cbcSMatt Macy where->bti_before = B_TRUE; 196eda14cbcSMatt Macy return (NULL); 197eda14cbcSMatt Macy } 198eda14cbcSMatt Macy 199eda14cbcSMatt Macy /* 200eda14cbcSMatt Macy * Find the given value in the tree. where may be passed as null to use as a 201eda14cbcSMatt Macy * membership test or if the btree is being used as a map. 202eda14cbcSMatt Macy */ 203eda14cbcSMatt Macy void * 204eda14cbcSMatt Macy zfs_btree_find(zfs_btree_t *tree, const void *value, zfs_btree_index_t *where) 205eda14cbcSMatt Macy { 206eda14cbcSMatt Macy if (tree->bt_height == -1) { 207eda14cbcSMatt Macy if (where != NULL) { 208eda14cbcSMatt Macy where->bti_node = NULL; 209eda14cbcSMatt Macy where->bti_offset = 0; 210eda14cbcSMatt Macy } 211eda14cbcSMatt Macy ASSERT0(tree->bt_num_elems); 212eda14cbcSMatt Macy return (NULL); 213eda14cbcSMatt Macy } 214eda14cbcSMatt Macy 215eda14cbcSMatt Macy /* 216eda14cbcSMatt Macy * If we're in bulk-insert mode, we check the last spot in the tree 217eda14cbcSMatt Macy * and the last leaf in the tree before doing the normal search, 218eda14cbcSMatt Macy * because for most workloads the vast majority of finds in 219eda14cbcSMatt Macy * bulk-insert mode are to insert new elements. 220eda14cbcSMatt Macy */ 221eda14cbcSMatt Macy zfs_btree_index_t idx; 222eda14cbcSMatt Macy if (tree->bt_bulk != NULL) { 223eda14cbcSMatt Macy zfs_btree_leaf_t *last_leaf = tree->bt_bulk; 224eda14cbcSMatt Macy int compar = tree->bt_compar(last_leaf->btl_elems + 225eda14cbcSMatt Macy ((last_leaf->btl_hdr.bth_count - 1) * tree->bt_elem_size), 226eda14cbcSMatt Macy value); 227eda14cbcSMatt Macy if (compar < 0) { 228eda14cbcSMatt Macy /* 229eda14cbcSMatt Macy * If what they're looking for is after the last 230eda14cbcSMatt Macy * element, it's not in the tree. 231eda14cbcSMatt Macy */ 232eda14cbcSMatt Macy if (where != NULL) { 233eda14cbcSMatt Macy where->bti_node = (zfs_btree_hdr_t *)last_leaf; 234eda14cbcSMatt Macy where->bti_offset = 235eda14cbcSMatt Macy last_leaf->btl_hdr.bth_count; 236eda14cbcSMatt Macy where->bti_before = B_TRUE; 237eda14cbcSMatt Macy } 238eda14cbcSMatt Macy return (NULL); 239eda14cbcSMatt Macy } else if (compar == 0) { 240eda14cbcSMatt Macy if (where != NULL) { 241eda14cbcSMatt Macy where->bti_node = (zfs_btree_hdr_t *)last_leaf; 242eda14cbcSMatt Macy where->bti_offset = 243eda14cbcSMatt Macy last_leaf->btl_hdr.bth_count - 1; 244eda14cbcSMatt Macy where->bti_before = B_FALSE; 245eda14cbcSMatt Macy } 246eda14cbcSMatt Macy return (last_leaf->btl_elems + 247eda14cbcSMatt Macy ((last_leaf->btl_hdr.bth_count - 1) * 248eda14cbcSMatt Macy tree->bt_elem_size)); 249eda14cbcSMatt Macy } 250eda14cbcSMatt Macy if (tree->bt_compar(last_leaf->btl_elems, value) <= 0) { 251eda14cbcSMatt Macy /* 252eda14cbcSMatt Macy * If what they're looking for is after the first 253eda14cbcSMatt Macy * element in the last leaf, it's in the last leaf or 254eda14cbcSMatt Macy * it's not in the tree. 255eda14cbcSMatt Macy */ 256eda14cbcSMatt Macy void *d = zfs_btree_find_in_buf(tree, 257eda14cbcSMatt Macy last_leaf->btl_elems, last_leaf->btl_hdr.bth_count, 258eda14cbcSMatt Macy value, &idx); 259eda14cbcSMatt Macy 260eda14cbcSMatt Macy if (where != NULL) { 261eda14cbcSMatt Macy idx.bti_node = (zfs_btree_hdr_t *)last_leaf; 262eda14cbcSMatt Macy *where = idx; 263eda14cbcSMatt Macy } 264eda14cbcSMatt Macy return (d); 265eda14cbcSMatt Macy } 266eda14cbcSMatt Macy } 267eda14cbcSMatt Macy 268eda14cbcSMatt Macy zfs_btree_core_t *node = NULL; 269eda14cbcSMatt Macy uint64_t child = 0; 270eda14cbcSMatt Macy uint64_t depth = 0; 271eda14cbcSMatt Macy 272eda14cbcSMatt Macy /* 273eda14cbcSMatt Macy * Iterate down the tree, finding which child the value should be in 274eda14cbcSMatt Macy * by comparing with the separators. 275eda14cbcSMatt Macy */ 276eda14cbcSMatt Macy for (node = (zfs_btree_core_t *)tree->bt_root; depth < tree->bt_height; 277eda14cbcSMatt Macy node = (zfs_btree_core_t *)node->btc_children[child], depth++) { 278eda14cbcSMatt Macy ASSERT3P(node, !=, NULL); 279eda14cbcSMatt Macy void *d = zfs_btree_find_in_buf(tree, node->btc_elems, 280eda14cbcSMatt Macy node->btc_hdr.bth_count, value, &idx); 281eda14cbcSMatt Macy EQUIV(d != NULL, !idx.bti_before); 282eda14cbcSMatt Macy if (d != NULL) { 283eda14cbcSMatt Macy if (where != NULL) { 284eda14cbcSMatt Macy idx.bti_node = (zfs_btree_hdr_t *)node; 285eda14cbcSMatt Macy *where = idx; 286eda14cbcSMatt Macy } 287eda14cbcSMatt Macy return (d); 288eda14cbcSMatt Macy } 289eda14cbcSMatt Macy ASSERT(idx.bti_before); 290eda14cbcSMatt Macy child = idx.bti_offset; 291eda14cbcSMatt Macy } 292eda14cbcSMatt Macy 293eda14cbcSMatt Macy /* 294eda14cbcSMatt Macy * The value is in this leaf, or it would be if it were in the 295eda14cbcSMatt Macy * tree. Find its proper location and return it. 296eda14cbcSMatt Macy */ 297eda14cbcSMatt Macy zfs_btree_leaf_t *leaf = (depth == 0 ? 298eda14cbcSMatt Macy (zfs_btree_leaf_t *)tree->bt_root : (zfs_btree_leaf_t *)node); 299eda14cbcSMatt Macy void *d = zfs_btree_find_in_buf(tree, leaf->btl_elems, 300eda14cbcSMatt Macy leaf->btl_hdr.bth_count, value, &idx); 301eda14cbcSMatt Macy 302eda14cbcSMatt Macy if (where != NULL) { 303eda14cbcSMatt Macy idx.bti_node = (zfs_btree_hdr_t *)leaf; 304eda14cbcSMatt Macy *where = idx; 305eda14cbcSMatt Macy } 306eda14cbcSMatt Macy 307eda14cbcSMatt Macy return (d); 308eda14cbcSMatt Macy } 309eda14cbcSMatt Macy 310eda14cbcSMatt Macy /* 311eda14cbcSMatt Macy * To explain the following functions, it is useful to understand the four 312eda14cbcSMatt Macy * kinds of shifts used in btree operation. First, a shift is a movement of 313eda14cbcSMatt Macy * elements within a node. It is used to create gaps for inserting new 314eda14cbcSMatt Macy * elements and children, or cover gaps created when things are removed. A 315eda14cbcSMatt Macy * shift has two fundamental properties, each of which can be one of two 316eda14cbcSMatt Macy * values, making four types of shifts. There is the direction of the shift 317eda14cbcSMatt Macy * (left or right) and the shape of the shift (parallelogram or isoceles 318eda14cbcSMatt Macy * trapezoid (shortened to trapezoid hereafter)). The shape distinction only 319eda14cbcSMatt Macy * applies to shifts of core nodes. 320eda14cbcSMatt Macy * 321eda14cbcSMatt Macy * The names derive from the following imagining of the layout of a node: 322eda14cbcSMatt Macy * 323eda14cbcSMatt Macy * Elements: * * * * * * * ... * * * 324eda14cbcSMatt Macy * Children: * * * * * * * * ... * * * 325eda14cbcSMatt Macy * 326eda14cbcSMatt Macy * This layout follows from the fact that the elements act as separators 327eda14cbcSMatt Macy * between pairs of children, and that children root subtrees "below" the 328eda14cbcSMatt Macy * current node. A left and right shift are fairly self-explanatory; a left 329eda14cbcSMatt Macy * shift moves things to the left, while a right shift moves things to the 330eda14cbcSMatt Macy * right. A parallelogram shift is a shift with the same number of elements 331eda14cbcSMatt Macy * and children being moved, while a trapezoid shift is a shift that moves one 332eda14cbcSMatt Macy * more children than elements. An example follows: 333eda14cbcSMatt Macy * 334eda14cbcSMatt Macy * A parallelogram shift could contain the following: 335eda14cbcSMatt Macy * _______________ 336eda14cbcSMatt Macy * \* * * * \ * * * ... * * * 337eda14cbcSMatt Macy * * \ * * * *\ * * * ... * * * 338eda14cbcSMatt Macy * --------------- 339eda14cbcSMatt Macy * A trapezoid shift could contain the following: 340eda14cbcSMatt Macy * ___________ 341eda14cbcSMatt Macy * * / * * * \ * * * ... * * * 342eda14cbcSMatt Macy * * / * * * *\ * * * ... * * * 343eda14cbcSMatt Macy * --------------- 344eda14cbcSMatt Macy * 345eda14cbcSMatt Macy * Note that a parallelogram shift is always shaped like a "left-leaning" 346eda14cbcSMatt Macy * parallelogram, where the starting index of the children being moved is 347eda14cbcSMatt Macy * always one higher than the starting index of the elements being moved. No 348eda14cbcSMatt Macy * "right-leaning" parallelogram shifts are needed (shifts where the starting 349eda14cbcSMatt Macy * element index and starting child index being moved are the same) to achieve 350eda14cbcSMatt Macy * any btree operations, so we ignore them. 351eda14cbcSMatt Macy */ 352eda14cbcSMatt Macy 353eda14cbcSMatt Macy enum bt_shift_shape { 354eda14cbcSMatt Macy BSS_TRAPEZOID, 355eda14cbcSMatt Macy BSS_PARALLELOGRAM 356eda14cbcSMatt Macy }; 357eda14cbcSMatt Macy 358eda14cbcSMatt Macy enum bt_shift_direction { 359eda14cbcSMatt Macy BSD_LEFT, 360eda14cbcSMatt Macy BSD_RIGHT 361eda14cbcSMatt Macy }; 362eda14cbcSMatt Macy 363eda14cbcSMatt Macy /* 364eda14cbcSMatt Macy * Shift elements and children in the provided core node by off spots. The 365eda14cbcSMatt Macy * first element moved is idx, and count elements are moved. The shape of the 366eda14cbcSMatt Macy * shift is determined by shape. The direction is determined by dir. 367eda14cbcSMatt Macy */ 368eda14cbcSMatt Macy static inline void 369eda14cbcSMatt Macy bt_shift_core(zfs_btree_t *tree, zfs_btree_core_t *node, uint64_t idx, 370eda14cbcSMatt Macy uint64_t count, uint64_t off, enum bt_shift_shape shape, 371eda14cbcSMatt Macy enum bt_shift_direction dir) 372eda14cbcSMatt Macy { 373eda14cbcSMatt Macy size_t size = tree->bt_elem_size; 374eda14cbcSMatt Macy ASSERT(node->btc_hdr.bth_core); 375eda14cbcSMatt Macy 376eda14cbcSMatt Macy uint8_t *e_start = node->btc_elems + idx * size; 377eda14cbcSMatt Macy int sign = (dir == BSD_LEFT ? -1 : +1); 378eda14cbcSMatt Macy uint8_t *e_out = e_start + sign * off * size; 379eda14cbcSMatt Macy uint64_t e_count = count; 380eda14cbcSMatt Macy bmov(e_start, e_out, e_count * size); 381eda14cbcSMatt Macy 382eda14cbcSMatt Macy zfs_btree_hdr_t **c_start = node->btc_children + idx + 383eda14cbcSMatt Macy (shape == BSS_TRAPEZOID ? 0 : 1); 384eda14cbcSMatt Macy zfs_btree_hdr_t **c_out = (dir == BSD_LEFT ? c_start - off : 385eda14cbcSMatt Macy c_start + off); 386eda14cbcSMatt Macy uint64_t c_count = count + (shape == BSS_TRAPEZOID ? 1 : 0); 387eda14cbcSMatt Macy bmov(c_start, c_out, c_count * sizeof (*c_start)); 388eda14cbcSMatt Macy } 389eda14cbcSMatt Macy 390eda14cbcSMatt Macy /* 391eda14cbcSMatt Macy * Shift elements and children in the provided core node left by one spot. 392eda14cbcSMatt Macy * The first element moved is idx, and count elements are moved. The 393eda14cbcSMatt Macy * shape of the shift is determined by trap; true if the shift is a trapezoid, 394eda14cbcSMatt Macy * false if it is a parallelogram. 395eda14cbcSMatt Macy */ 396eda14cbcSMatt Macy static inline void 397eda14cbcSMatt Macy bt_shift_core_left(zfs_btree_t *tree, zfs_btree_core_t *node, uint64_t idx, 398eda14cbcSMatt Macy uint64_t count, enum bt_shift_shape shape) 399eda14cbcSMatt Macy { 400eda14cbcSMatt Macy bt_shift_core(tree, node, idx, count, 1, shape, BSD_LEFT); 401eda14cbcSMatt Macy } 402eda14cbcSMatt Macy 403eda14cbcSMatt Macy /* 404eda14cbcSMatt Macy * Shift elements and children in the provided core node right by one spot. 405eda14cbcSMatt Macy * Starts with elements[idx] and children[idx] and one more child than element. 406eda14cbcSMatt Macy */ 407eda14cbcSMatt Macy static inline void 408eda14cbcSMatt Macy bt_shift_core_right(zfs_btree_t *tree, zfs_btree_core_t *node, uint64_t idx, 409eda14cbcSMatt Macy uint64_t count, enum bt_shift_shape shape) 410eda14cbcSMatt Macy { 411eda14cbcSMatt Macy bt_shift_core(tree, node, idx, count, 1, shape, BSD_RIGHT); 412eda14cbcSMatt Macy } 413eda14cbcSMatt Macy 414eda14cbcSMatt Macy /* 415eda14cbcSMatt Macy * Shift elements and children in the provided leaf node by off spots. 416eda14cbcSMatt Macy * The first element moved is idx, and count elements are moved. The direction 417eda14cbcSMatt Macy * is determined by left. 418eda14cbcSMatt Macy */ 419eda14cbcSMatt Macy static inline void 420eda14cbcSMatt Macy bt_shift_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *node, uint64_t idx, 421eda14cbcSMatt Macy uint64_t count, uint64_t off, enum bt_shift_direction dir) 422eda14cbcSMatt Macy { 423eda14cbcSMatt Macy size_t size = tree->bt_elem_size; 424eda14cbcSMatt Macy ASSERT(!node->btl_hdr.bth_core); 425eda14cbcSMatt Macy 426eda14cbcSMatt Macy uint8_t *start = node->btl_elems + idx * size; 427eda14cbcSMatt Macy int sign = (dir == BSD_LEFT ? -1 : +1); 428eda14cbcSMatt Macy uint8_t *out = start + sign * off * size; 429eda14cbcSMatt Macy bmov(start, out, count * size); 430eda14cbcSMatt Macy } 431eda14cbcSMatt Macy 432eda14cbcSMatt Macy static inline void 433eda14cbcSMatt Macy bt_shift_leaf_right(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint64_t idx, 434eda14cbcSMatt Macy uint64_t count) 435eda14cbcSMatt Macy { 436eda14cbcSMatt Macy bt_shift_leaf(tree, leaf, idx, count, 1, BSD_RIGHT); 437eda14cbcSMatt Macy } 438eda14cbcSMatt Macy 439eda14cbcSMatt Macy static inline void 440eda14cbcSMatt Macy bt_shift_leaf_left(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint64_t idx, 441eda14cbcSMatt Macy uint64_t count) 442eda14cbcSMatt Macy { 443eda14cbcSMatt Macy bt_shift_leaf(tree, leaf, idx, count, 1, BSD_LEFT); 444eda14cbcSMatt Macy } 445eda14cbcSMatt Macy 446eda14cbcSMatt Macy /* 447eda14cbcSMatt Macy * Move children and elements from one core node to another. The shape 448eda14cbcSMatt Macy * parameter behaves the same as it does in the shift logic. 449eda14cbcSMatt Macy */ 450eda14cbcSMatt Macy static inline void 451eda14cbcSMatt Macy bt_transfer_core(zfs_btree_t *tree, zfs_btree_core_t *source, uint64_t sidx, 452eda14cbcSMatt Macy uint64_t count, zfs_btree_core_t *dest, uint64_t didx, 453eda14cbcSMatt Macy enum bt_shift_shape shape) 454eda14cbcSMatt Macy { 455eda14cbcSMatt Macy size_t size = tree->bt_elem_size; 456eda14cbcSMatt Macy ASSERT(source->btc_hdr.bth_core); 457eda14cbcSMatt Macy ASSERT(dest->btc_hdr.bth_core); 458eda14cbcSMatt Macy 459eda14cbcSMatt Macy bmov(source->btc_elems + sidx * size, dest->btc_elems + didx * size, 460eda14cbcSMatt Macy count * size); 461eda14cbcSMatt Macy 462eda14cbcSMatt Macy uint64_t c_count = count + (shape == BSS_TRAPEZOID ? 1 : 0); 463eda14cbcSMatt Macy bmov(source->btc_children + sidx + (shape == BSS_TRAPEZOID ? 0 : 1), 464eda14cbcSMatt Macy dest->btc_children + didx + (shape == BSS_TRAPEZOID ? 0 : 1), 465eda14cbcSMatt Macy c_count * sizeof (*source->btc_children)); 466eda14cbcSMatt Macy } 467eda14cbcSMatt Macy 468eda14cbcSMatt Macy static inline void 469eda14cbcSMatt Macy bt_transfer_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *source, uint64_t sidx, 470eda14cbcSMatt Macy uint64_t count, zfs_btree_leaf_t *dest, uint64_t didx) 471eda14cbcSMatt Macy { 472eda14cbcSMatt Macy size_t size = tree->bt_elem_size; 473eda14cbcSMatt Macy ASSERT(!source->btl_hdr.bth_core); 474eda14cbcSMatt Macy ASSERT(!dest->btl_hdr.bth_core); 475eda14cbcSMatt Macy 476eda14cbcSMatt Macy bmov(source->btl_elems + sidx * size, dest->btl_elems + didx * size, 477eda14cbcSMatt Macy count * size); 478eda14cbcSMatt Macy } 479eda14cbcSMatt Macy 480eda14cbcSMatt Macy /* 481eda14cbcSMatt Macy * Find the first element in the subtree rooted at hdr, return its value and 482eda14cbcSMatt Macy * put its location in where if non-null. 483eda14cbcSMatt Macy */ 484eda14cbcSMatt Macy static void * 485eda14cbcSMatt Macy zfs_btree_first_helper(zfs_btree_hdr_t *hdr, zfs_btree_index_t *where) 486eda14cbcSMatt Macy { 487eda14cbcSMatt Macy zfs_btree_hdr_t *node; 488eda14cbcSMatt Macy 489eda14cbcSMatt Macy for (node = hdr; node->bth_core; node = 490eda14cbcSMatt Macy ((zfs_btree_core_t *)node)->btc_children[0]) 491eda14cbcSMatt Macy ; 492eda14cbcSMatt Macy 493eda14cbcSMatt Macy ASSERT(!node->bth_core); 494eda14cbcSMatt Macy zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)node; 495eda14cbcSMatt Macy if (where != NULL) { 496eda14cbcSMatt Macy where->bti_node = node; 497eda14cbcSMatt Macy where->bti_offset = 0; 498eda14cbcSMatt Macy where->bti_before = B_FALSE; 499eda14cbcSMatt Macy } 500eda14cbcSMatt Macy return (&leaf->btl_elems[0]); 501eda14cbcSMatt Macy } 502eda14cbcSMatt Macy 503eda14cbcSMatt Macy /* Insert an element and a child into a core node at the given offset. */ 504eda14cbcSMatt Macy static void 505eda14cbcSMatt Macy zfs_btree_insert_core_impl(zfs_btree_t *tree, zfs_btree_core_t *parent, 506eda14cbcSMatt Macy uint64_t offset, zfs_btree_hdr_t *new_node, void *buf) 507eda14cbcSMatt Macy { 508eda14cbcSMatt Macy uint64_t size = tree->bt_elem_size; 509eda14cbcSMatt Macy zfs_btree_hdr_t *par_hdr = &parent->btc_hdr; 510eda14cbcSMatt Macy ASSERT3P(par_hdr, ==, new_node->bth_parent); 511eda14cbcSMatt Macy ASSERT3U(par_hdr->bth_count, <, BTREE_CORE_ELEMS); 512eda14cbcSMatt Macy 513eda14cbcSMatt Macy if (zfs_btree_verify_intensity >= 5) { 514eda14cbcSMatt Macy zfs_btree_verify_poison_at(tree, par_hdr, 515eda14cbcSMatt Macy par_hdr->bth_count); 516eda14cbcSMatt Macy } 517eda14cbcSMatt Macy /* Shift existing elements and children */ 518eda14cbcSMatt Macy uint64_t count = par_hdr->bth_count - offset; 519eda14cbcSMatt Macy bt_shift_core_right(tree, parent, offset, count, 520eda14cbcSMatt Macy BSS_PARALLELOGRAM); 521eda14cbcSMatt Macy 522eda14cbcSMatt Macy /* Insert new values */ 523eda14cbcSMatt Macy parent->btc_children[offset + 1] = new_node; 524eda14cbcSMatt Macy bmov(buf, parent->btc_elems + offset * size, size); 525eda14cbcSMatt Macy par_hdr->bth_count++; 526eda14cbcSMatt Macy } 527eda14cbcSMatt Macy 528eda14cbcSMatt Macy /* 529eda14cbcSMatt Macy * Insert new_node into the parent of old_node directly after old_node, with 530eda14cbcSMatt Macy * buf as the dividing element between the two. 531eda14cbcSMatt Macy */ 532eda14cbcSMatt Macy static void 533eda14cbcSMatt Macy zfs_btree_insert_into_parent(zfs_btree_t *tree, zfs_btree_hdr_t *old_node, 534eda14cbcSMatt Macy zfs_btree_hdr_t *new_node, void *buf) 535eda14cbcSMatt Macy { 536eda14cbcSMatt Macy ASSERT3P(old_node->bth_parent, ==, new_node->bth_parent); 537eda14cbcSMatt Macy uint64_t size = tree->bt_elem_size; 538eda14cbcSMatt Macy zfs_btree_core_t *parent = old_node->bth_parent; 539eda14cbcSMatt Macy 540eda14cbcSMatt Macy /* 541eda14cbcSMatt Macy * If this is the root node we were splitting, we create a new root 542eda14cbcSMatt Macy * and increase the height of the tree. 543eda14cbcSMatt Macy */ 544eda14cbcSMatt Macy if (parent == NULL) { 545eda14cbcSMatt Macy ASSERT3P(old_node, ==, tree->bt_root); 546eda14cbcSMatt Macy tree->bt_num_nodes++; 547eda14cbcSMatt Macy zfs_btree_core_t *new_root = 548eda14cbcSMatt Macy kmem_alloc(sizeof (zfs_btree_core_t) + BTREE_CORE_ELEMS * 549eda14cbcSMatt Macy size, KM_SLEEP); 550eda14cbcSMatt Macy zfs_btree_hdr_t *new_root_hdr = &new_root->btc_hdr; 551eda14cbcSMatt Macy new_root_hdr->bth_parent = NULL; 552eda14cbcSMatt Macy new_root_hdr->bth_core = B_TRUE; 553eda14cbcSMatt Macy new_root_hdr->bth_count = 1; 554eda14cbcSMatt Macy 555eda14cbcSMatt Macy old_node->bth_parent = new_node->bth_parent = new_root; 556eda14cbcSMatt Macy new_root->btc_children[0] = old_node; 557eda14cbcSMatt Macy new_root->btc_children[1] = new_node; 558eda14cbcSMatt Macy bmov(buf, new_root->btc_elems, size); 559eda14cbcSMatt Macy 560eda14cbcSMatt Macy tree->bt_height++; 561eda14cbcSMatt Macy tree->bt_root = new_root_hdr; 562eda14cbcSMatt Macy zfs_btree_poison_node(tree, new_root_hdr); 563eda14cbcSMatt Macy return; 564eda14cbcSMatt Macy } 565eda14cbcSMatt Macy 566eda14cbcSMatt Macy /* 567eda14cbcSMatt Macy * Since we have the new separator, binary search for where to put 568eda14cbcSMatt Macy * new_node. 569eda14cbcSMatt Macy */ 570*c03c5b1cSMartin Matuska zfs_btree_hdr_t *par_hdr = &parent->btc_hdr; 571eda14cbcSMatt Macy zfs_btree_index_t idx; 572eda14cbcSMatt Macy ASSERT(par_hdr->bth_core); 573eda14cbcSMatt Macy VERIFY3P(zfs_btree_find_in_buf(tree, parent->btc_elems, 574eda14cbcSMatt Macy par_hdr->bth_count, buf, &idx), ==, NULL); 575eda14cbcSMatt Macy ASSERT(idx.bti_before); 576eda14cbcSMatt Macy uint64_t offset = idx.bti_offset; 577eda14cbcSMatt Macy ASSERT3U(offset, <=, par_hdr->bth_count); 578eda14cbcSMatt Macy ASSERT3P(parent->btc_children[offset], ==, old_node); 579eda14cbcSMatt Macy 580eda14cbcSMatt Macy /* 581eda14cbcSMatt Macy * If the parent isn't full, shift things to accommodate our insertions 582eda14cbcSMatt Macy * and return. 583eda14cbcSMatt Macy */ 584eda14cbcSMatt Macy if (par_hdr->bth_count != BTREE_CORE_ELEMS) { 585eda14cbcSMatt Macy zfs_btree_insert_core_impl(tree, parent, offset, new_node, buf); 586eda14cbcSMatt Macy return; 587eda14cbcSMatt Macy } 588eda14cbcSMatt Macy 589eda14cbcSMatt Macy /* 590eda14cbcSMatt Macy * We need to split this core node into two. Currently there are 591eda14cbcSMatt Macy * BTREE_CORE_ELEMS + 1 child nodes, and we are adding one for 592eda14cbcSMatt Macy * BTREE_CORE_ELEMS + 2. Some of the children will be part of the 593eda14cbcSMatt Macy * current node, and the others will be moved to the new core node. 594eda14cbcSMatt Macy * There are BTREE_CORE_ELEMS + 1 elements including the new one. One 595eda14cbcSMatt Macy * will be used as the new separator in our parent, and the others 596eda14cbcSMatt Macy * will be split among the two core nodes. 597eda14cbcSMatt Macy * 598eda14cbcSMatt Macy * Usually we will split the node in half evenly, with 599eda14cbcSMatt Macy * BTREE_CORE_ELEMS/2 elements in each node. If we're bulk loading, we 600eda14cbcSMatt Macy * instead move only about a quarter of the elements (and children) to 601eda14cbcSMatt Macy * the new node. Since the average state after a long time is a 3/4 602eda14cbcSMatt Macy * full node, shortcutting directly to that state improves efficiency. 603eda14cbcSMatt Macy * 604eda14cbcSMatt Macy * We do this in two stages: first we split into two nodes, and then we 605eda14cbcSMatt Macy * reuse our existing logic to insert the new element and child. 606eda14cbcSMatt Macy */ 607eda14cbcSMatt Macy uint64_t move_count = MAX((BTREE_CORE_ELEMS / (tree->bt_bulk == NULL ? 608eda14cbcSMatt Macy 2 : 4)) - 1, 2); 609eda14cbcSMatt Macy uint64_t keep_count = BTREE_CORE_ELEMS - move_count - 1; 610eda14cbcSMatt Macy ASSERT3U(BTREE_CORE_ELEMS - move_count, >=, 2); 611eda14cbcSMatt Macy tree->bt_num_nodes++; 612eda14cbcSMatt Macy zfs_btree_core_t *new_parent = kmem_alloc(sizeof (zfs_btree_core_t) + 613eda14cbcSMatt Macy BTREE_CORE_ELEMS * size, KM_SLEEP); 614eda14cbcSMatt Macy zfs_btree_hdr_t *new_par_hdr = &new_parent->btc_hdr; 615eda14cbcSMatt Macy new_par_hdr->bth_parent = par_hdr->bth_parent; 616eda14cbcSMatt Macy new_par_hdr->bth_core = B_TRUE; 617eda14cbcSMatt Macy new_par_hdr->bth_count = move_count; 618eda14cbcSMatt Macy zfs_btree_poison_node(tree, new_par_hdr); 619eda14cbcSMatt Macy 620eda14cbcSMatt Macy par_hdr->bth_count = keep_count; 621eda14cbcSMatt Macy 622eda14cbcSMatt Macy bt_transfer_core(tree, parent, keep_count + 1, move_count, new_parent, 623eda14cbcSMatt Macy 0, BSS_TRAPEZOID); 624eda14cbcSMatt Macy 625eda14cbcSMatt Macy /* Store the new separator in a buffer. */ 626eda14cbcSMatt Macy uint8_t *tmp_buf = kmem_alloc(size, KM_SLEEP); 627eda14cbcSMatt Macy bmov(parent->btc_elems + keep_count * size, tmp_buf, 628eda14cbcSMatt Macy size); 629eda14cbcSMatt Macy zfs_btree_poison_node(tree, par_hdr); 630eda14cbcSMatt Macy 631eda14cbcSMatt Macy if (offset < keep_count) { 632eda14cbcSMatt Macy /* Insert the new node into the left half */ 633eda14cbcSMatt Macy zfs_btree_insert_core_impl(tree, parent, offset, new_node, 634eda14cbcSMatt Macy buf); 635eda14cbcSMatt Macy 636eda14cbcSMatt Macy /* 637eda14cbcSMatt Macy * Move the new separator to the existing buffer. 638eda14cbcSMatt Macy */ 639eda14cbcSMatt Macy bmov(tmp_buf, buf, size); 640eda14cbcSMatt Macy } else if (offset > keep_count) { 641eda14cbcSMatt Macy /* Insert the new node into the right half */ 642eda14cbcSMatt Macy new_node->bth_parent = new_parent; 643eda14cbcSMatt Macy zfs_btree_insert_core_impl(tree, new_parent, 644eda14cbcSMatt Macy offset - keep_count - 1, new_node, buf); 645eda14cbcSMatt Macy 646eda14cbcSMatt Macy /* 647eda14cbcSMatt Macy * Move the new separator to the existing buffer. 648eda14cbcSMatt Macy */ 649eda14cbcSMatt Macy bmov(tmp_buf, buf, size); 650eda14cbcSMatt Macy } else { 651eda14cbcSMatt Macy /* 652eda14cbcSMatt Macy * Move the new separator into the right half, and replace it 653eda14cbcSMatt Macy * with buf. We also need to shift back the elements in the 654eda14cbcSMatt Macy * right half to accommodate new_node. 655eda14cbcSMatt Macy */ 656eda14cbcSMatt Macy bt_shift_core_right(tree, new_parent, 0, move_count, 657eda14cbcSMatt Macy BSS_TRAPEZOID); 658eda14cbcSMatt Macy new_parent->btc_children[0] = new_node; 659eda14cbcSMatt Macy bmov(tmp_buf, new_parent->btc_elems, size); 660eda14cbcSMatt Macy new_par_hdr->bth_count++; 661eda14cbcSMatt Macy } 662eda14cbcSMatt Macy kmem_free(tmp_buf, size); 663eda14cbcSMatt Macy zfs_btree_poison_node(tree, par_hdr); 664eda14cbcSMatt Macy 665eda14cbcSMatt Macy for (int i = 0; i <= new_parent->btc_hdr.bth_count; i++) 666eda14cbcSMatt Macy new_parent->btc_children[i]->bth_parent = new_parent; 667eda14cbcSMatt Macy 668eda14cbcSMatt Macy for (int i = 0; i <= parent->btc_hdr.bth_count; i++) 669eda14cbcSMatt Macy ASSERT3P(parent->btc_children[i]->bth_parent, ==, parent); 670eda14cbcSMatt Macy 671eda14cbcSMatt Macy /* 672eda14cbcSMatt Macy * Now that the node is split, we need to insert the new node into its 673eda14cbcSMatt Macy * parent. This may cause further splitting. 674eda14cbcSMatt Macy */ 675eda14cbcSMatt Macy zfs_btree_insert_into_parent(tree, &parent->btc_hdr, 676eda14cbcSMatt Macy &new_parent->btc_hdr, buf); 677eda14cbcSMatt Macy } 678eda14cbcSMatt Macy 679eda14cbcSMatt Macy /* Insert an element into a leaf node at the given offset. */ 680eda14cbcSMatt Macy static void 681eda14cbcSMatt Macy zfs_btree_insert_leaf_impl(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, 682eda14cbcSMatt Macy uint64_t idx, const void *value) 683eda14cbcSMatt Macy { 684eda14cbcSMatt Macy uint64_t size = tree->bt_elem_size; 685eda14cbcSMatt Macy uint8_t *start = leaf->btl_elems + (idx * size); 686eda14cbcSMatt Macy zfs_btree_hdr_t *hdr = &leaf->btl_hdr; 687eda14cbcSMatt Macy uint64_t capacity __maybe_unused = P2ALIGN((BTREE_LEAF_SIZE - 688eda14cbcSMatt Macy sizeof (zfs_btree_hdr_t)) / size, 2); 689eda14cbcSMatt Macy uint64_t count = leaf->btl_hdr.bth_count - idx; 690eda14cbcSMatt Macy ASSERT3U(leaf->btl_hdr.bth_count, <, capacity); 691eda14cbcSMatt Macy 692eda14cbcSMatt Macy if (zfs_btree_verify_intensity >= 5) { 693eda14cbcSMatt Macy zfs_btree_verify_poison_at(tree, &leaf->btl_hdr, 694eda14cbcSMatt Macy leaf->btl_hdr.bth_count); 695eda14cbcSMatt Macy } 696eda14cbcSMatt Macy 697eda14cbcSMatt Macy bt_shift_leaf_right(tree, leaf, idx, count); 698eda14cbcSMatt Macy bmov(value, start, size); 699eda14cbcSMatt Macy hdr->bth_count++; 700eda14cbcSMatt Macy } 701eda14cbcSMatt Macy 702eda14cbcSMatt Macy /* Helper function for inserting a new value into leaf at the given index. */ 703eda14cbcSMatt Macy static void 704eda14cbcSMatt Macy zfs_btree_insert_into_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, 705eda14cbcSMatt Macy const void *value, uint64_t idx) 706eda14cbcSMatt Macy { 707eda14cbcSMatt Macy uint64_t size = tree->bt_elem_size; 708eda14cbcSMatt Macy uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE - 709eda14cbcSMatt Macy sizeof (zfs_btree_hdr_t)) / size, 2); 710eda14cbcSMatt Macy 711eda14cbcSMatt Macy /* 712eda14cbcSMatt Macy * If the leaf isn't full, shift the elements after idx and insert 713eda14cbcSMatt Macy * value. 714eda14cbcSMatt Macy */ 715eda14cbcSMatt Macy if (leaf->btl_hdr.bth_count != capacity) { 716eda14cbcSMatt Macy zfs_btree_insert_leaf_impl(tree, leaf, idx, value); 717eda14cbcSMatt Macy return; 718eda14cbcSMatt Macy } 719eda14cbcSMatt Macy 720eda14cbcSMatt Macy /* 721eda14cbcSMatt Macy * Otherwise, we split the leaf node into two nodes. If we're not bulk 722eda14cbcSMatt Macy * inserting, each is of size (capacity / 2). If we are bulk 723eda14cbcSMatt Macy * inserting, we move a quarter of the elements to the new node so 724eda14cbcSMatt Macy * inserts into the old node don't cause immediate splitting but the 725eda14cbcSMatt Macy * tree stays relatively dense. Since the average state after a long 726eda14cbcSMatt Macy * time is a 3/4 full node, shortcutting directly to that state 727eda14cbcSMatt Macy * improves efficiency. At the end of the bulk insertion process 728eda14cbcSMatt Macy * we'll need to go through and fix up any nodes (the last leaf and 729eda14cbcSMatt Macy * its ancestors, potentially) that are below the minimum. 730eda14cbcSMatt Macy * 731eda14cbcSMatt Macy * In either case, we're left with one extra element. The leftover 732eda14cbcSMatt Macy * element will become the new dividing element between the two nodes. 733eda14cbcSMatt Macy */ 734eda14cbcSMatt Macy uint64_t move_count = MAX(capacity / (tree->bt_bulk == NULL ? 2 : 4) - 735eda14cbcSMatt Macy 1, 2); 736eda14cbcSMatt Macy uint64_t keep_count = capacity - move_count - 1; 737eda14cbcSMatt Macy ASSERT3U(capacity - move_count, >=, 2); 738eda14cbcSMatt Macy tree->bt_num_nodes++; 739eda14cbcSMatt Macy zfs_btree_leaf_t *new_leaf = kmem_cache_alloc(zfs_btree_leaf_cache, 740eda14cbcSMatt Macy KM_SLEEP); 741eda14cbcSMatt Macy zfs_btree_hdr_t *new_hdr = &new_leaf->btl_hdr; 742eda14cbcSMatt Macy new_hdr->bth_parent = leaf->btl_hdr.bth_parent; 743eda14cbcSMatt Macy new_hdr->bth_core = B_FALSE; 744eda14cbcSMatt Macy new_hdr->bth_count = move_count; 745eda14cbcSMatt Macy zfs_btree_poison_node(tree, new_hdr); 746eda14cbcSMatt Macy 747eda14cbcSMatt Macy leaf->btl_hdr.bth_count = keep_count; 748eda14cbcSMatt Macy 749eda14cbcSMatt Macy if (tree->bt_bulk != NULL && leaf == tree->bt_bulk) 750eda14cbcSMatt Macy tree->bt_bulk = new_leaf; 751eda14cbcSMatt Macy 752eda14cbcSMatt Macy /* Copy the back part to the new leaf. */ 753eda14cbcSMatt Macy bt_transfer_leaf(tree, leaf, keep_count + 1, move_count, new_leaf, 754eda14cbcSMatt Macy 0); 755eda14cbcSMatt Macy 756eda14cbcSMatt Macy /* We store the new separator in a buffer we control for simplicity. */ 757eda14cbcSMatt Macy uint8_t *buf = kmem_alloc(size, KM_SLEEP); 758eda14cbcSMatt Macy bmov(leaf->btl_elems + (keep_count * size), buf, size); 759eda14cbcSMatt Macy zfs_btree_poison_node(tree, &leaf->btl_hdr); 760eda14cbcSMatt Macy 761eda14cbcSMatt Macy if (idx < keep_count) { 762eda14cbcSMatt Macy /* Insert into the existing leaf. */ 763eda14cbcSMatt Macy zfs_btree_insert_leaf_impl(tree, leaf, idx, value); 764eda14cbcSMatt Macy } else if (idx > keep_count) { 765eda14cbcSMatt Macy /* Insert into the new leaf. */ 766eda14cbcSMatt Macy zfs_btree_insert_leaf_impl(tree, new_leaf, idx - keep_count - 767eda14cbcSMatt Macy 1, value); 768eda14cbcSMatt Macy } else { 769eda14cbcSMatt Macy /* 770eda14cbcSMatt Macy * Shift the elements in the new leaf to make room for the 771eda14cbcSMatt Macy * separator, and use the new value as the new separator. 772eda14cbcSMatt Macy */ 773eda14cbcSMatt Macy bt_shift_leaf_right(tree, new_leaf, 0, move_count); 774eda14cbcSMatt Macy bmov(buf, new_leaf->btl_elems, size); 775eda14cbcSMatt Macy bmov(value, buf, size); 776eda14cbcSMatt Macy new_hdr->bth_count++; 777eda14cbcSMatt Macy } 778eda14cbcSMatt Macy 779eda14cbcSMatt Macy /* 780eda14cbcSMatt Macy * Now that the node is split, we need to insert the new node into its 781eda14cbcSMatt Macy * parent. This may cause further splitting, bur only of core nodes. 782eda14cbcSMatt Macy */ 783eda14cbcSMatt Macy zfs_btree_insert_into_parent(tree, &leaf->btl_hdr, &new_leaf->btl_hdr, 784eda14cbcSMatt Macy buf); 785eda14cbcSMatt Macy kmem_free(buf, size); 786eda14cbcSMatt Macy } 787eda14cbcSMatt Macy 788eda14cbcSMatt Macy static uint64_t 789eda14cbcSMatt Macy zfs_btree_find_parent_idx(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) 790eda14cbcSMatt Macy { 791eda14cbcSMatt Macy void *buf; 792eda14cbcSMatt Macy if (hdr->bth_core) { 793eda14cbcSMatt Macy buf = ((zfs_btree_core_t *)hdr)->btc_elems; 794eda14cbcSMatt Macy } else { 795eda14cbcSMatt Macy buf = ((zfs_btree_leaf_t *)hdr)->btl_elems; 796eda14cbcSMatt Macy } 797eda14cbcSMatt Macy zfs_btree_index_t idx; 798eda14cbcSMatt Macy zfs_btree_core_t *parent = hdr->bth_parent; 799eda14cbcSMatt Macy VERIFY3P(zfs_btree_find_in_buf(tree, parent->btc_elems, 800eda14cbcSMatt Macy parent->btc_hdr.bth_count, buf, &idx), ==, NULL); 801eda14cbcSMatt Macy ASSERT(idx.bti_before); 802eda14cbcSMatt Macy ASSERT3U(idx.bti_offset, <=, parent->btc_hdr.bth_count); 803eda14cbcSMatt Macy ASSERT3P(parent->btc_children[idx.bti_offset], ==, hdr); 804eda14cbcSMatt Macy return (idx.bti_offset); 805eda14cbcSMatt Macy } 806eda14cbcSMatt Macy 807eda14cbcSMatt Macy /* 808eda14cbcSMatt Macy * Take the b-tree out of bulk insert mode. During bulk-insert mode, some 809eda14cbcSMatt Macy * nodes may violate the invariant that non-root nodes must be at least half 810eda14cbcSMatt Macy * full. All nodes violating this invariant should be the last node in their 811eda14cbcSMatt Macy * particular level. To correct the invariant, we take values from their left 812eda14cbcSMatt Macy * neighbor until they are half full. They must have a left neighbor at their 813eda14cbcSMatt Macy * level because the last node at a level is not the first node unless it's 814eda14cbcSMatt Macy * the root. 815eda14cbcSMatt Macy */ 816eda14cbcSMatt Macy static void 817eda14cbcSMatt Macy zfs_btree_bulk_finish(zfs_btree_t *tree) 818eda14cbcSMatt Macy { 819eda14cbcSMatt Macy ASSERT3P(tree->bt_bulk, !=, NULL); 820eda14cbcSMatt Macy ASSERT3P(tree->bt_root, !=, NULL); 821eda14cbcSMatt Macy zfs_btree_leaf_t *leaf = tree->bt_bulk; 822eda14cbcSMatt Macy zfs_btree_hdr_t *hdr = &leaf->btl_hdr; 823eda14cbcSMatt Macy zfs_btree_core_t *parent = hdr->bth_parent; 824eda14cbcSMatt Macy uint64_t size = tree->bt_elem_size; 825eda14cbcSMatt Macy uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE - 826eda14cbcSMatt Macy sizeof (zfs_btree_hdr_t)) / size, 2); 827eda14cbcSMatt Macy 828eda14cbcSMatt Macy /* 829eda14cbcSMatt Macy * The invariant doesn't apply to the root node, if that's the only 830eda14cbcSMatt Macy * node in the tree we're done. 831eda14cbcSMatt Macy */ 832eda14cbcSMatt Macy if (parent == NULL) { 833eda14cbcSMatt Macy tree->bt_bulk = NULL; 834eda14cbcSMatt Macy return; 835eda14cbcSMatt Macy } 836eda14cbcSMatt Macy 837eda14cbcSMatt Macy /* First, take elements to rebalance the leaf node. */ 838eda14cbcSMatt Macy if (hdr->bth_count < capacity / 2) { 839eda14cbcSMatt Macy /* 840eda14cbcSMatt Macy * First, find the left neighbor. The simplest way to do this 841eda14cbcSMatt Macy * is to call zfs_btree_prev twice; the first time finds some 842eda14cbcSMatt Macy * ancestor of this node, and the second time finds the left 843eda14cbcSMatt Macy * neighbor. The ancestor found is the lowest common ancestor 844eda14cbcSMatt Macy * of leaf and the neighbor. 845eda14cbcSMatt Macy */ 846eda14cbcSMatt Macy zfs_btree_index_t idx = { 847eda14cbcSMatt Macy .bti_node = hdr, 848eda14cbcSMatt Macy .bti_offset = 0 849eda14cbcSMatt Macy }; 850eda14cbcSMatt Macy VERIFY3P(zfs_btree_prev(tree, &idx, &idx), !=, NULL); 851eda14cbcSMatt Macy ASSERT(idx.bti_node->bth_core); 852eda14cbcSMatt Macy zfs_btree_core_t *common = (zfs_btree_core_t *)idx.bti_node; 853eda14cbcSMatt Macy uint64_t common_idx = idx.bti_offset; 854eda14cbcSMatt Macy 855eda14cbcSMatt Macy VERIFY3P(zfs_btree_prev(tree, &idx, &idx), !=, NULL); 856eda14cbcSMatt Macy ASSERT(!idx.bti_node->bth_core); 857eda14cbcSMatt Macy zfs_btree_leaf_t *l_neighbor = (zfs_btree_leaf_t *)idx.bti_node; 858eda14cbcSMatt Macy zfs_btree_hdr_t *l_hdr = idx.bti_node; 859eda14cbcSMatt Macy uint64_t move_count = (capacity / 2) - hdr->bth_count; 860eda14cbcSMatt Macy ASSERT3U(l_neighbor->btl_hdr.bth_count - move_count, >=, 861eda14cbcSMatt Macy capacity / 2); 862eda14cbcSMatt Macy 863eda14cbcSMatt Macy if (zfs_btree_verify_intensity >= 5) { 864eda14cbcSMatt Macy for (int i = 0; i < move_count; i++) { 865eda14cbcSMatt Macy zfs_btree_verify_poison_at(tree, hdr, 866eda14cbcSMatt Macy leaf->btl_hdr.bth_count + i); 867eda14cbcSMatt Macy } 868eda14cbcSMatt Macy } 869eda14cbcSMatt Macy 870eda14cbcSMatt Macy /* First, shift elements in leaf back. */ 871eda14cbcSMatt Macy bt_shift_leaf(tree, leaf, 0, hdr->bth_count, move_count, 872eda14cbcSMatt Macy BSD_RIGHT); 873eda14cbcSMatt Macy 874eda14cbcSMatt Macy /* Next, move the separator from the common ancestor to leaf. */ 875eda14cbcSMatt Macy uint8_t *separator = common->btc_elems + (common_idx * size); 876eda14cbcSMatt Macy uint8_t *out = leaf->btl_elems + ((move_count - 1) * size); 877eda14cbcSMatt Macy bmov(separator, out, size); 878eda14cbcSMatt Macy move_count--; 879eda14cbcSMatt Macy 880eda14cbcSMatt Macy /* 881eda14cbcSMatt Macy * Now we move elements from the tail of the left neighbor to 882eda14cbcSMatt Macy * fill the remaining spots in leaf. 883eda14cbcSMatt Macy */ 884eda14cbcSMatt Macy bt_transfer_leaf(tree, l_neighbor, l_hdr->bth_count - 885eda14cbcSMatt Macy move_count, move_count, leaf, 0); 886eda14cbcSMatt Macy 887eda14cbcSMatt Macy /* 888eda14cbcSMatt Macy * Finally, move the new last element in the left neighbor to 889eda14cbcSMatt Macy * the separator. 890eda14cbcSMatt Macy */ 891eda14cbcSMatt Macy bmov(l_neighbor->btl_elems + (l_hdr->bth_count - 892eda14cbcSMatt Macy move_count - 1) * size, separator, size); 893eda14cbcSMatt Macy 894eda14cbcSMatt Macy /* Adjust the node's counts, and we're done. */ 895eda14cbcSMatt Macy l_hdr->bth_count -= move_count + 1; 896eda14cbcSMatt Macy hdr->bth_count += move_count + 1; 897eda14cbcSMatt Macy 898eda14cbcSMatt Macy ASSERT3U(l_hdr->bth_count, >=, capacity / 2); 899eda14cbcSMatt Macy ASSERT3U(hdr->bth_count, >=, capacity / 2); 900eda14cbcSMatt Macy zfs_btree_poison_node(tree, l_hdr); 901eda14cbcSMatt Macy } 902eda14cbcSMatt Macy 903eda14cbcSMatt Macy /* 904eda14cbcSMatt Macy * Now we have to rebalance any ancestors of leaf that may also 905eda14cbcSMatt Macy * violate the invariant. 906eda14cbcSMatt Macy */ 907eda14cbcSMatt Macy capacity = BTREE_CORE_ELEMS; 908eda14cbcSMatt Macy while (parent->btc_hdr.bth_parent != NULL) { 909eda14cbcSMatt Macy zfs_btree_core_t *cur = parent; 910eda14cbcSMatt Macy zfs_btree_hdr_t *hdr = &cur->btc_hdr; 911eda14cbcSMatt Macy parent = hdr->bth_parent; 912eda14cbcSMatt Macy /* 913eda14cbcSMatt Macy * If the invariant isn't violated, move on to the next 914eda14cbcSMatt Macy * ancestor. 915eda14cbcSMatt Macy */ 916eda14cbcSMatt Macy if (hdr->bth_count >= capacity / 2) 917eda14cbcSMatt Macy continue; 918eda14cbcSMatt Macy 919eda14cbcSMatt Macy /* 920eda14cbcSMatt Macy * Because the smallest number of nodes we can move when 921eda14cbcSMatt Macy * splitting is 2, we never need to worry about not having a 922eda14cbcSMatt Macy * left sibling (a sibling is a neighbor with the same parent). 923eda14cbcSMatt Macy */ 924eda14cbcSMatt Macy uint64_t parent_idx = zfs_btree_find_parent_idx(tree, hdr); 925eda14cbcSMatt Macy ASSERT3U(parent_idx, >, 0); 926eda14cbcSMatt Macy zfs_btree_core_t *l_neighbor = 927eda14cbcSMatt Macy (zfs_btree_core_t *)parent->btc_children[parent_idx - 1]; 928eda14cbcSMatt Macy uint64_t move_count = (capacity / 2) - hdr->bth_count; 929eda14cbcSMatt Macy ASSERT3U(l_neighbor->btc_hdr.bth_count - move_count, >=, 930eda14cbcSMatt Macy capacity / 2); 931eda14cbcSMatt Macy 932eda14cbcSMatt Macy if (zfs_btree_verify_intensity >= 5) { 933eda14cbcSMatt Macy for (int i = 0; i < move_count; i++) { 934eda14cbcSMatt Macy zfs_btree_verify_poison_at(tree, hdr, 935eda14cbcSMatt Macy hdr->bth_count + i); 936eda14cbcSMatt Macy } 937eda14cbcSMatt Macy } 938eda14cbcSMatt Macy /* First, shift things in the right node back. */ 939eda14cbcSMatt Macy bt_shift_core(tree, cur, 0, hdr->bth_count, move_count, 940eda14cbcSMatt Macy BSS_TRAPEZOID, BSD_RIGHT); 941eda14cbcSMatt Macy 942eda14cbcSMatt Macy /* Next, move the separator to the right node. */ 943eda14cbcSMatt Macy uint8_t *separator = parent->btc_elems + ((parent_idx - 1) * 944eda14cbcSMatt Macy size); 945eda14cbcSMatt Macy uint8_t *e_out = cur->btc_elems + ((move_count - 1) * size); 946eda14cbcSMatt Macy bmov(separator, e_out, size); 947eda14cbcSMatt Macy 948eda14cbcSMatt Macy /* 949eda14cbcSMatt Macy * Now, move elements and children from the left node to the 950eda14cbcSMatt Macy * right. We move one more child than elements. 951eda14cbcSMatt Macy */ 952eda14cbcSMatt Macy move_count--; 953eda14cbcSMatt Macy uint64_t move_idx = l_neighbor->btc_hdr.bth_count - move_count; 954eda14cbcSMatt Macy bt_transfer_core(tree, l_neighbor, move_idx, move_count, cur, 0, 955eda14cbcSMatt Macy BSS_TRAPEZOID); 956eda14cbcSMatt Macy 957eda14cbcSMatt Macy /* 958eda14cbcSMatt Macy * Finally, move the last element in the left node to the 959eda14cbcSMatt Macy * separator's position. 960eda14cbcSMatt Macy */ 961eda14cbcSMatt Macy move_idx--; 962eda14cbcSMatt Macy bmov(l_neighbor->btc_elems + move_idx * size, separator, size); 963eda14cbcSMatt Macy 964eda14cbcSMatt Macy l_neighbor->btc_hdr.bth_count -= move_count + 1; 965eda14cbcSMatt Macy hdr->bth_count += move_count + 1; 966eda14cbcSMatt Macy 967eda14cbcSMatt Macy ASSERT3U(l_neighbor->btc_hdr.bth_count, >=, capacity / 2); 968eda14cbcSMatt Macy ASSERT3U(hdr->bth_count, >=, capacity / 2); 969eda14cbcSMatt Macy 970eda14cbcSMatt Macy zfs_btree_poison_node(tree, &l_neighbor->btc_hdr); 971eda14cbcSMatt Macy 972eda14cbcSMatt Macy for (int i = 0; i <= hdr->bth_count; i++) 973eda14cbcSMatt Macy cur->btc_children[i]->bth_parent = cur; 974eda14cbcSMatt Macy } 975eda14cbcSMatt Macy 976eda14cbcSMatt Macy tree->bt_bulk = NULL; 977eda14cbcSMatt Macy } 978eda14cbcSMatt Macy 979eda14cbcSMatt Macy /* 980eda14cbcSMatt Macy * Insert value into tree at the location specified by where. 981eda14cbcSMatt Macy */ 982eda14cbcSMatt Macy void 983eda14cbcSMatt Macy zfs_btree_add_idx(zfs_btree_t *tree, const void *value, 984eda14cbcSMatt Macy const zfs_btree_index_t *where) 985eda14cbcSMatt Macy { 986eda14cbcSMatt Macy zfs_btree_index_t idx = {0}; 987eda14cbcSMatt Macy 988eda14cbcSMatt Macy /* If we're not inserting in the last leaf, end bulk insert mode. */ 989eda14cbcSMatt Macy if (tree->bt_bulk != NULL) { 990eda14cbcSMatt Macy if (where->bti_node != &tree->bt_bulk->btl_hdr) { 991eda14cbcSMatt Macy zfs_btree_bulk_finish(tree); 992eda14cbcSMatt Macy VERIFY3P(zfs_btree_find(tree, value, &idx), ==, NULL); 993eda14cbcSMatt Macy where = &idx; 994eda14cbcSMatt Macy } 995eda14cbcSMatt Macy } 996eda14cbcSMatt Macy 997eda14cbcSMatt Macy tree->bt_num_elems++; 998eda14cbcSMatt Macy /* 999eda14cbcSMatt Macy * If this is the first element in the tree, create a leaf root node 1000eda14cbcSMatt Macy * and add the value to it. 1001eda14cbcSMatt Macy */ 1002eda14cbcSMatt Macy if (where->bti_node == NULL) { 1003eda14cbcSMatt Macy ASSERT3U(tree->bt_num_elems, ==, 1); 1004eda14cbcSMatt Macy ASSERT3S(tree->bt_height, ==, -1); 1005eda14cbcSMatt Macy ASSERT3P(tree->bt_root, ==, NULL); 1006eda14cbcSMatt Macy ASSERT0(where->bti_offset); 1007eda14cbcSMatt Macy 1008eda14cbcSMatt Macy tree->bt_num_nodes++; 1009eda14cbcSMatt Macy zfs_btree_leaf_t *leaf = kmem_cache_alloc(zfs_btree_leaf_cache, 1010eda14cbcSMatt Macy KM_SLEEP); 1011eda14cbcSMatt Macy tree->bt_root = &leaf->btl_hdr; 1012eda14cbcSMatt Macy tree->bt_height++; 1013eda14cbcSMatt Macy 1014eda14cbcSMatt Macy zfs_btree_hdr_t *hdr = &leaf->btl_hdr; 1015eda14cbcSMatt Macy hdr->bth_parent = NULL; 1016eda14cbcSMatt Macy hdr->bth_core = B_FALSE; 1017eda14cbcSMatt Macy hdr->bth_count = 0; 1018eda14cbcSMatt Macy zfs_btree_poison_node(tree, hdr); 1019eda14cbcSMatt Macy 1020eda14cbcSMatt Macy zfs_btree_insert_into_leaf(tree, leaf, value, 0); 1021eda14cbcSMatt Macy tree->bt_bulk = leaf; 1022eda14cbcSMatt Macy } else if (!where->bti_node->bth_core) { 1023eda14cbcSMatt Macy /* 1024eda14cbcSMatt Macy * If we're inserting into a leaf, go directly to the helper 1025eda14cbcSMatt Macy * function. 1026eda14cbcSMatt Macy */ 1027eda14cbcSMatt Macy zfs_btree_insert_into_leaf(tree, 1028eda14cbcSMatt Macy (zfs_btree_leaf_t *)where->bti_node, value, 1029eda14cbcSMatt Macy where->bti_offset); 1030eda14cbcSMatt Macy } else { 1031eda14cbcSMatt Macy /* 1032eda14cbcSMatt Macy * If we're inserting into a core node, we can't just shift 1033eda14cbcSMatt Macy * the existing element in that slot in the same node without 1034eda14cbcSMatt Macy * breaking our ordering invariants. Instead we place the new 1035eda14cbcSMatt Macy * value in the node at that spot and then insert the old 1036eda14cbcSMatt Macy * separator into the first slot in the subtree to the right. 1037eda14cbcSMatt Macy */ 1038eda14cbcSMatt Macy ASSERT(where->bti_node->bth_core); 1039eda14cbcSMatt Macy zfs_btree_core_t *node = (zfs_btree_core_t *)where->bti_node; 1040eda14cbcSMatt Macy 1041eda14cbcSMatt Macy /* 1042eda14cbcSMatt Macy * We can ignore bti_before, because either way the value 1043eda14cbcSMatt Macy * should end up in bti_offset. 1044eda14cbcSMatt Macy */ 1045eda14cbcSMatt Macy uint64_t off = where->bti_offset; 1046eda14cbcSMatt Macy zfs_btree_hdr_t *subtree = node->btc_children[off + 1]; 1047eda14cbcSMatt Macy size_t size = tree->bt_elem_size; 1048eda14cbcSMatt Macy uint8_t *buf = kmem_alloc(size, KM_SLEEP); 1049eda14cbcSMatt Macy bmov(node->btc_elems + off * size, buf, size); 1050eda14cbcSMatt Macy bmov(value, node->btc_elems + off * size, size); 1051eda14cbcSMatt Macy 1052eda14cbcSMatt Macy /* 1053eda14cbcSMatt Macy * Find the first slot in the subtree to the right, insert 1054eda14cbcSMatt Macy * there. 1055eda14cbcSMatt Macy */ 1056eda14cbcSMatt Macy zfs_btree_index_t new_idx; 1057eda14cbcSMatt Macy VERIFY3P(zfs_btree_first_helper(subtree, &new_idx), !=, NULL); 1058eda14cbcSMatt Macy ASSERT0(new_idx.bti_offset); 1059eda14cbcSMatt Macy ASSERT(!new_idx.bti_node->bth_core); 1060eda14cbcSMatt Macy zfs_btree_insert_into_leaf(tree, 1061eda14cbcSMatt Macy (zfs_btree_leaf_t *)new_idx.bti_node, buf, 0); 1062eda14cbcSMatt Macy kmem_free(buf, size); 1063eda14cbcSMatt Macy } 1064eda14cbcSMatt Macy zfs_btree_verify(tree); 1065eda14cbcSMatt Macy } 1066eda14cbcSMatt Macy 1067eda14cbcSMatt Macy /* 1068eda14cbcSMatt Macy * Return the first element in the tree, and put its location in where if 1069eda14cbcSMatt Macy * non-null. 1070eda14cbcSMatt Macy */ 1071eda14cbcSMatt Macy void * 1072eda14cbcSMatt Macy zfs_btree_first(zfs_btree_t *tree, zfs_btree_index_t *where) 1073eda14cbcSMatt Macy { 1074eda14cbcSMatt Macy if (tree->bt_height == -1) { 1075eda14cbcSMatt Macy ASSERT0(tree->bt_num_elems); 1076eda14cbcSMatt Macy return (NULL); 1077eda14cbcSMatt Macy } 1078eda14cbcSMatt Macy return (zfs_btree_first_helper(tree->bt_root, where)); 1079eda14cbcSMatt Macy } 1080eda14cbcSMatt Macy 1081eda14cbcSMatt Macy /* 1082eda14cbcSMatt Macy * Find the last element in the subtree rooted at hdr, return its value and 1083eda14cbcSMatt Macy * put its location in where if non-null. 1084eda14cbcSMatt Macy */ 1085eda14cbcSMatt Macy static void * 1086eda14cbcSMatt Macy zfs_btree_last_helper(zfs_btree_t *btree, zfs_btree_hdr_t *hdr, 1087eda14cbcSMatt Macy zfs_btree_index_t *where) 1088eda14cbcSMatt Macy { 1089eda14cbcSMatt Macy zfs_btree_hdr_t *node; 1090eda14cbcSMatt Macy 1091eda14cbcSMatt Macy for (node = hdr; node->bth_core; node = 1092eda14cbcSMatt Macy ((zfs_btree_core_t *)node)->btc_children[node->bth_count]) 1093eda14cbcSMatt Macy ; 1094eda14cbcSMatt Macy 1095eda14cbcSMatt Macy zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)node; 1096eda14cbcSMatt Macy if (where != NULL) { 1097eda14cbcSMatt Macy where->bti_node = node; 1098eda14cbcSMatt Macy where->bti_offset = node->bth_count - 1; 1099eda14cbcSMatt Macy where->bti_before = B_FALSE; 1100eda14cbcSMatt Macy } 1101eda14cbcSMatt Macy return (leaf->btl_elems + (node->bth_count - 1) * btree->bt_elem_size); 1102eda14cbcSMatt Macy } 1103eda14cbcSMatt Macy 1104eda14cbcSMatt Macy /* 1105eda14cbcSMatt Macy * Return the last element in the tree, and put its location in where if 1106eda14cbcSMatt Macy * non-null. 1107eda14cbcSMatt Macy */ 1108eda14cbcSMatt Macy void * 1109eda14cbcSMatt Macy zfs_btree_last(zfs_btree_t *tree, zfs_btree_index_t *where) 1110eda14cbcSMatt Macy { 1111eda14cbcSMatt Macy if (tree->bt_height == -1) { 1112eda14cbcSMatt Macy ASSERT0(tree->bt_num_elems); 1113eda14cbcSMatt Macy return (NULL); 1114eda14cbcSMatt Macy } 1115eda14cbcSMatt Macy return (zfs_btree_last_helper(tree, tree->bt_root, where)); 1116eda14cbcSMatt Macy } 1117eda14cbcSMatt Macy 1118eda14cbcSMatt Macy /* 1119eda14cbcSMatt Macy * This function contains the logic to find the next node in the tree. A 1120eda14cbcSMatt Macy * helper function is used because there are multiple internal consumemrs of 1121eda14cbcSMatt Macy * this logic. The done_func is used by zfs_btree_destroy_nodes to clean up each 1122eda14cbcSMatt Macy * node after we've finished with it. 1123eda14cbcSMatt Macy */ 1124eda14cbcSMatt Macy static void * 1125eda14cbcSMatt Macy zfs_btree_next_helper(zfs_btree_t *tree, const zfs_btree_index_t *idx, 1126eda14cbcSMatt Macy zfs_btree_index_t *out_idx, 1127eda14cbcSMatt Macy void (*done_func)(zfs_btree_t *, zfs_btree_hdr_t *)) 1128eda14cbcSMatt Macy { 1129eda14cbcSMatt Macy if (idx->bti_node == NULL) { 1130eda14cbcSMatt Macy ASSERT3S(tree->bt_height, ==, -1); 1131eda14cbcSMatt Macy return (NULL); 1132eda14cbcSMatt Macy } 1133eda14cbcSMatt Macy 1134eda14cbcSMatt Macy uint64_t offset = idx->bti_offset; 1135eda14cbcSMatt Macy if (!idx->bti_node->bth_core) { 1136eda14cbcSMatt Macy /* 1137eda14cbcSMatt Macy * When finding the next element of an element in a leaf, 1138eda14cbcSMatt Macy * there are two cases. If the element isn't the last one in 1139eda14cbcSMatt Macy * the leaf, in which case we just return the next element in 1140eda14cbcSMatt Macy * the leaf. Otherwise, we need to traverse up our parents 1141eda14cbcSMatt Macy * until we find one where our ancestor isn't the last child 1142eda14cbcSMatt Macy * of its parent. Once we do, the next element is the 1143eda14cbcSMatt Macy * separator after our ancestor in its parent. 1144eda14cbcSMatt Macy */ 1145eda14cbcSMatt Macy zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node; 1146eda14cbcSMatt Macy uint64_t new_off = offset + (idx->bti_before ? 0 : 1); 1147eda14cbcSMatt Macy if (leaf->btl_hdr.bth_count > new_off) { 1148eda14cbcSMatt Macy out_idx->bti_node = &leaf->btl_hdr; 1149eda14cbcSMatt Macy out_idx->bti_offset = new_off; 1150eda14cbcSMatt Macy out_idx->bti_before = B_FALSE; 1151eda14cbcSMatt Macy return (leaf->btl_elems + new_off * tree->bt_elem_size); 1152eda14cbcSMatt Macy } 1153eda14cbcSMatt Macy 1154eda14cbcSMatt Macy zfs_btree_hdr_t *prev = &leaf->btl_hdr; 1155eda14cbcSMatt Macy for (zfs_btree_core_t *node = leaf->btl_hdr.bth_parent; 1156eda14cbcSMatt Macy node != NULL; node = node->btc_hdr.bth_parent) { 1157eda14cbcSMatt Macy zfs_btree_hdr_t *hdr = &node->btc_hdr; 1158eda14cbcSMatt Macy ASSERT(hdr->bth_core); 1159eda14cbcSMatt Macy uint64_t i = zfs_btree_find_parent_idx(tree, prev); 1160eda14cbcSMatt Macy if (done_func != NULL) 1161eda14cbcSMatt Macy done_func(tree, prev); 1162eda14cbcSMatt Macy if (i == hdr->bth_count) { 1163eda14cbcSMatt Macy prev = hdr; 1164eda14cbcSMatt Macy continue; 1165eda14cbcSMatt Macy } 1166eda14cbcSMatt Macy out_idx->bti_node = hdr; 1167eda14cbcSMatt Macy out_idx->bti_offset = i; 1168eda14cbcSMatt Macy out_idx->bti_before = B_FALSE; 1169eda14cbcSMatt Macy return (node->btc_elems + i * tree->bt_elem_size); 1170eda14cbcSMatt Macy } 1171eda14cbcSMatt Macy if (done_func != NULL) 1172eda14cbcSMatt Macy done_func(tree, prev); 1173eda14cbcSMatt Macy /* 1174eda14cbcSMatt Macy * We've traversed all the way up and been at the end of the 1175eda14cbcSMatt Macy * node every time, so this was the last element in the tree. 1176eda14cbcSMatt Macy */ 1177eda14cbcSMatt Macy return (NULL); 1178eda14cbcSMatt Macy } 1179eda14cbcSMatt Macy 1180eda14cbcSMatt Macy /* If we were before an element in a core node, return that element. */ 1181eda14cbcSMatt Macy ASSERT(idx->bti_node->bth_core); 1182eda14cbcSMatt Macy zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node; 1183eda14cbcSMatt Macy if (idx->bti_before) { 1184eda14cbcSMatt Macy out_idx->bti_before = B_FALSE; 1185eda14cbcSMatt Macy return (node->btc_elems + offset * tree->bt_elem_size); 1186eda14cbcSMatt Macy } 1187eda14cbcSMatt Macy 1188eda14cbcSMatt Macy /* 1189eda14cbcSMatt Macy * The next element from one in a core node is the first element in 1190eda14cbcSMatt Macy * the subtree just to the right of the separator. 1191eda14cbcSMatt Macy */ 1192eda14cbcSMatt Macy zfs_btree_hdr_t *child = node->btc_children[offset + 1]; 1193eda14cbcSMatt Macy return (zfs_btree_first_helper(child, out_idx)); 1194eda14cbcSMatt Macy } 1195eda14cbcSMatt Macy 1196eda14cbcSMatt Macy /* 1197eda14cbcSMatt Macy * Return the next valued node in the tree. The same address can be safely 1198eda14cbcSMatt Macy * passed for idx and out_idx. 1199eda14cbcSMatt Macy */ 1200eda14cbcSMatt Macy void * 1201eda14cbcSMatt Macy zfs_btree_next(zfs_btree_t *tree, const zfs_btree_index_t *idx, 1202eda14cbcSMatt Macy zfs_btree_index_t *out_idx) 1203eda14cbcSMatt Macy { 1204eda14cbcSMatt Macy return (zfs_btree_next_helper(tree, idx, out_idx, NULL)); 1205eda14cbcSMatt Macy } 1206eda14cbcSMatt Macy 1207eda14cbcSMatt Macy /* 1208eda14cbcSMatt Macy * Return the previous valued node in the tree. The same value can be safely 1209eda14cbcSMatt Macy * passed for idx and out_idx. 1210eda14cbcSMatt Macy */ 1211eda14cbcSMatt Macy void * 1212eda14cbcSMatt Macy zfs_btree_prev(zfs_btree_t *tree, const zfs_btree_index_t *idx, 1213eda14cbcSMatt Macy zfs_btree_index_t *out_idx) 1214eda14cbcSMatt Macy { 1215eda14cbcSMatt Macy if (idx->bti_node == NULL) { 1216eda14cbcSMatt Macy ASSERT3S(tree->bt_height, ==, -1); 1217eda14cbcSMatt Macy return (NULL); 1218eda14cbcSMatt Macy } 1219eda14cbcSMatt Macy 1220eda14cbcSMatt Macy uint64_t offset = idx->bti_offset; 1221eda14cbcSMatt Macy if (!idx->bti_node->bth_core) { 1222eda14cbcSMatt Macy /* 1223eda14cbcSMatt Macy * When finding the previous element of an element in a leaf, 1224eda14cbcSMatt Macy * there are two cases. If the element isn't the first one in 1225eda14cbcSMatt Macy * the leaf, in which case we just return the previous element 1226eda14cbcSMatt Macy * in the leaf. Otherwise, we need to traverse up our parents 1227eda14cbcSMatt Macy * until we find one where our previous ancestor isn't the 1228eda14cbcSMatt Macy * first child. Once we do, the previous element is the 1229eda14cbcSMatt Macy * separator after our previous ancestor. 1230eda14cbcSMatt Macy */ 1231eda14cbcSMatt Macy zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node; 1232eda14cbcSMatt Macy if (offset != 0) { 1233eda14cbcSMatt Macy out_idx->bti_node = &leaf->btl_hdr; 1234eda14cbcSMatt Macy out_idx->bti_offset = offset - 1; 1235eda14cbcSMatt Macy out_idx->bti_before = B_FALSE; 1236eda14cbcSMatt Macy return (leaf->btl_elems + (offset - 1) * 1237eda14cbcSMatt Macy tree->bt_elem_size); 1238eda14cbcSMatt Macy } 1239eda14cbcSMatt Macy zfs_btree_hdr_t *prev = &leaf->btl_hdr; 1240eda14cbcSMatt Macy for (zfs_btree_core_t *node = leaf->btl_hdr.bth_parent; 1241eda14cbcSMatt Macy node != NULL; node = node->btc_hdr.bth_parent) { 1242eda14cbcSMatt Macy zfs_btree_hdr_t *hdr = &node->btc_hdr; 1243eda14cbcSMatt Macy ASSERT(hdr->bth_core); 1244eda14cbcSMatt Macy uint64_t i = zfs_btree_find_parent_idx(tree, prev); 1245eda14cbcSMatt Macy if (i == 0) { 1246eda14cbcSMatt Macy prev = hdr; 1247eda14cbcSMatt Macy continue; 1248eda14cbcSMatt Macy } 1249eda14cbcSMatt Macy out_idx->bti_node = hdr; 1250eda14cbcSMatt Macy out_idx->bti_offset = i - 1; 1251eda14cbcSMatt Macy out_idx->bti_before = B_FALSE; 1252eda14cbcSMatt Macy return (node->btc_elems + (i - 1) * tree->bt_elem_size); 1253eda14cbcSMatt Macy } 1254eda14cbcSMatt Macy /* 1255eda14cbcSMatt Macy * We've traversed all the way up and been at the start of the 1256eda14cbcSMatt Macy * node every time, so this was the first node in the tree. 1257eda14cbcSMatt Macy */ 1258eda14cbcSMatt Macy return (NULL); 1259eda14cbcSMatt Macy } 1260eda14cbcSMatt Macy 1261eda14cbcSMatt Macy /* 1262eda14cbcSMatt Macy * The previous element from one in a core node is the last element in 1263eda14cbcSMatt Macy * the subtree just to the left of the separator. 1264eda14cbcSMatt Macy */ 1265eda14cbcSMatt Macy ASSERT(idx->bti_node->bth_core); 1266eda14cbcSMatt Macy zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node; 1267eda14cbcSMatt Macy zfs_btree_hdr_t *child = node->btc_children[offset]; 1268eda14cbcSMatt Macy return (zfs_btree_last_helper(tree, child, out_idx)); 1269eda14cbcSMatt Macy } 1270eda14cbcSMatt Macy 1271eda14cbcSMatt Macy /* 1272eda14cbcSMatt Macy * Get the value at the provided index in the tree. 1273eda14cbcSMatt Macy * 1274eda14cbcSMatt Macy * Note that the value returned from this function can be mutated, but only 1275eda14cbcSMatt Macy * if it will not change the ordering of the element with respect to any other 1276eda14cbcSMatt Macy * elements that could be in the tree. 1277eda14cbcSMatt Macy */ 1278eda14cbcSMatt Macy void * 1279eda14cbcSMatt Macy zfs_btree_get(zfs_btree_t *tree, zfs_btree_index_t *idx) 1280eda14cbcSMatt Macy { 1281eda14cbcSMatt Macy ASSERT(!idx->bti_before); 1282eda14cbcSMatt Macy if (!idx->bti_node->bth_core) { 1283eda14cbcSMatt Macy zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node; 1284eda14cbcSMatt Macy return (leaf->btl_elems + idx->bti_offset * tree->bt_elem_size); 1285eda14cbcSMatt Macy } 1286eda14cbcSMatt Macy ASSERT(idx->bti_node->bth_core); 1287eda14cbcSMatt Macy zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node; 1288eda14cbcSMatt Macy return (node->btc_elems + idx->bti_offset * tree->bt_elem_size); 1289eda14cbcSMatt Macy } 1290eda14cbcSMatt Macy 1291eda14cbcSMatt Macy /* Add the given value to the tree. Must not already be in the tree. */ 1292eda14cbcSMatt Macy void 1293eda14cbcSMatt Macy zfs_btree_add(zfs_btree_t *tree, const void *node) 1294eda14cbcSMatt Macy { 1295eda14cbcSMatt Macy zfs_btree_index_t where = {0}; 1296eda14cbcSMatt Macy VERIFY3P(zfs_btree_find(tree, node, &where), ==, NULL); 1297eda14cbcSMatt Macy zfs_btree_add_idx(tree, node, &where); 1298eda14cbcSMatt Macy } 1299eda14cbcSMatt Macy 1300eda14cbcSMatt Macy /* Helper function to free a tree node. */ 1301eda14cbcSMatt Macy static void 1302eda14cbcSMatt Macy zfs_btree_node_destroy(zfs_btree_t *tree, zfs_btree_hdr_t *node) 1303eda14cbcSMatt Macy { 1304eda14cbcSMatt Macy tree->bt_num_nodes--; 1305eda14cbcSMatt Macy if (!node->bth_core) { 1306eda14cbcSMatt Macy kmem_cache_free(zfs_btree_leaf_cache, node); 1307eda14cbcSMatt Macy } else { 1308eda14cbcSMatt Macy kmem_free(node, sizeof (zfs_btree_core_t) + 1309eda14cbcSMatt Macy BTREE_CORE_ELEMS * tree->bt_elem_size); 1310eda14cbcSMatt Macy } 1311eda14cbcSMatt Macy } 1312eda14cbcSMatt Macy 1313eda14cbcSMatt Macy /* 1314eda14cbcSMatt Macy * Remove the rm_hdr and the separator to its left from the parent node. The 1315eda14cbcSMatt Macy * buffer that rm_hdr was stored in may already be freed, so its contents 1316eda14cbcSMatt Macy * cannot be accessed. 1317eda14cbcSMatt Macy */ 1318eda14cbcSMatt Macy static void 1319eda14cbcSMatt Macy zfs_btree_remove_from_node(zfs_btree_t *tree, zfs_btree_core_t *node, 1320eda14cbcSMatt Macy zfs_btree_hdr_t *rm_hdr) 1321eda14cbcSMatt Macy { 1322eda14cbcSMatt Macy size_t size = tree->bt_elem_size; 1323eda14cbcSMatt Macy uint64_t min_count = (BTREE_CORE_ELEMS / 2) - 1; 1324eda14cbcSMatt Macy zfs_btree_hdr_t *hdr = &node->btc_hdr; 1325eda14cbcSMatt Macy /* 1326eda14cbcSMatt Macy * If the node is the root node and rm_hdr is one of two children, 1327eda14cbcSMatt Macy * promote the other child to the root. 1328eda14cbcSMatt Macy */ 1329eda14cbcSMatt Macy if (hdr->bth_parent == NULL && hdr->bth_count <= 1) { 1330eda14cbcSMatt Macy ASSERT3U(hdr->bth_count, ==, 1); 1331eda14cbcSMatt Macy ASSERT3P(tree->bt_root, ==, node); 1332eda14cbcSMatt Macy ASSERT3P(node->btc_children[1], ==, rm_hdr); 1333eda14cbcSMatt Macy tree->bt_root = node->btc_children[0]; 1334eda14cbcSMatt Macy node->btc_children[0]->bth_parent = NULL; 1335eda14cbcSMatt Macy zfs_btree_node_destroy(tree, hdr); 1336eda14cbcSMatt Macy tree->bt_height--; 1337eda14cbcSMatt Macy return; 1338eda14cbcSMatt Macy } 1339eda14cbcSMatt Macy 1340eda14cbcSMatt Macy uint64_t idx; 1341eda14cbcSMatt Macy for (idx = 0; idx <= hdr->bth_count; idx++) { 1342eda14cbcSMatt Macy if (node->btc_children[idx] == rm_hdr) 1343eda14cbcSMatt Macy break; 1344eda14cbcSMatt Macy } 1345eda14cbcSMatt Macy ASSERT3U(idx, <=, hdr->bth_count); 1346eda14cbcSMatt Macy 1347eda14cbcSMatt Macy /* 1348eda14cbcSMatt Macy * If the node is the root or it has more than the minimum number of 1349eda14cbcSMatt Macy * children, just remove the child and separator, and return. 1350eda14cbcSMatt Macy */ 1351eda14cbcSMatt Macy if (hdr->bth_parent == NULL || 1352eda14cbcSMatt Macy hdr->bth_count > min_count) { 1353eda14cbcSMatt Macy /* 1354eda14cbcSMatt Macy * Shift the element and children to the right of rm_hdr to 1355eda14cbcSMatt Macy * the left by one spot. 1356eda14cbcSMatt Macy */ 1357eda14cbcSMatt Macy bt_shift_core_left(tree, node, idx, hdr->bth_count - idx, 1358eda14cbcSMatt Macy BSS_PARALLELOGRAM); 1359eda14cbcSMatt Macy hdr->bth_count--; 1360eda14cbcSMatt Macy zfs_btree_poison_node_at(tree, hdr, hdr->bth_count); 1361eda14cbcSMatt Macy return; 1362eda14cbcSMatt Macy } 1363eda14cbcSMatt Macy 1364eda14cbcSMatt Macy ASSERT3U(hdr->bth_count, ==, min_count); 1365eda14cbcSMatt Macy 1366eda14cbcSMatt Macy /* 1367eda14cbcSMatt Macy * Now we try to take a node from a neighbor. We check left, then 1368eda14cbcSMatt Macy * right. If the neighbor exists and has more than the minimum number 1369eda14cbcSMatt Macy * of elements, we move the separator between us and them to our 1370eda14cbcSMatt Macy * node, move their closest element (last for left, first for right) 1371eda14cbcSMatt Macy * to the separator, and move their closest child to our node. Along 1372eda14cbcSMatt Macy * the way we need to collapse the gap made by idx, and (for our right 1373eda14cbcSMatt Macy * neighbor) the gap made by removing their first element and child. 1374eda14cbcSMatt Macy * 1375eda14cbcSMatt Macy * Note: this logic currently doesn't support taking from a neighbor 1376eda14cbcSMatt Macy * that isn't a sibling (i.e. a neighbor with a different 1377eda14cbcSMatt Macy * parent). This isn't critical functionality, but may be worth 1378eda14cbcSMatt Macy * implementing in the future for completeness' sake. 1379eda14cbcSMatt Macy */ 1380eda14cbcSMatt Macy zfs_btree_core_t *parent = hdr->bth_parent; 1381eda14cbcSMatt Macy uint64_t parent_idx = zfs_btree_find_parent_idx(tree, hdr); 1382eda14cbcSMatt Macy 1383eda14cbcSMatt Macy zfs_btree_hdr_t *l_hdr = (parent_idx == 0 ? NULL : 1384eda14cbcSMatt Macy parent->btc_children[parent_idx - 1]); 1385eda14cbcSMatt Macy if (l_hdr != NULL && l_hdr->bth_count > min_count) { 1386eda14cbcSMatt Macy /* We can take a node from the left neighbor. */ 1387eda14cbcSMatt Macy ASSERT(l_hdr->bth_core); 1388eda14cbcSMatt Macy zfs_btree_core_t *neighbor = (zfs_btree_core_t *)l_hdr; 1389eda14cbcSMatt Macy 1390eda14cbcSMatt Macy /* 1391eda14cbcSMatt Macy * Start by shifting the elements and children in the current 1392eda14cbcSMatt Macy * node to the right by one spot. 1393eda14cbcSMatt Macy */ 1394eda14cbcSMatt Macy bt_shift_core_right(tree, node, 0, idx - 1, BSS_TRAPEZOID); 1395eda14cbcSMatt Macy 1396eda14cbcSMatt Macy /* 1397eda14cbcSMatt Macy * Move the separator between node and neighbor to the first 1398eda14cbcSMatt Macy * element slot in the current node. 1399eda14cbcSMatt Macy */ 1400eda14cbcSMatt Macy uint8_t *separator = parent->btc_elems + (parent_idx - 1) * 1401eda14cbcSMatt Macy size; 1402eda14cbcSMatt Macy bmov(separator, node->btc_elems, size); 1403eda14cbcSMatt Macy 1404eda14cbcSMatt Macy /* Move the last child of neighbor to our first child slot. */ 1405eda14cbcSMatt Macy zfs_btree_hdr_t **take_child = neighbor->btc_children + 1406eda14cbcSMatt Macy l_hdr->bth_count; 1407eda14cbcSMatt Macy bmov(take_child, node->btc_children, sizeof (*take_child)); 1408eda14cbcSMatt Macy node->btc_children[0]->bth_parent = node; 1409eda14cbcSMatt Macy 1410eda14cbcSMatt Macy /* Move the last element of neighbor to the separator spot. */ 1411eda14cbcSMatt Macy uint8_t *take_elem = neighbor->btc_elems + 1412eda14cbcSMatt Macy (l_hdr->bth_count - 1) * size; 1413eda14cbcSMatt Macy bmov(take_elem, separator, size); 1414eda14cbcSMatt Macy l_hdr->bth_count--; 1415eda14cbcSMatt Macy zfs_btree_poison_node_at(tree, l_hdr, l_hdr->bth_count); 1416eda14cbcSMatt Macy return; 1417eda14cbcSMatt Macy } 1418eda14cbcSMatt Macy 1419eda14cbcSMatt Macy zfs_btree_hdr_t *r_hdr = (parent_idx == parent->btc_hdr.bth_count ? 1420eda14cbcSMatt Macy NULL : parent->btc_children[parent_idx + 1]); 1421eda14cbcSMatt Macy if (r_hdr != NULL && r_hdr->bth_count > min_count) { 1422eda14cbcSMatt Macy /* We can take a node from the right neighbor. */ 1423eda14cbcSMatt Macy ASSERT(r_hdr->bth_core); 1424eda14cbcSMatt Macy zfs_btree_core_t *neighbor = (zfs_btree_core_t *)r_hdr; 1425eda14cbcSMatt Macy 1426eda14cbcSMatt Macy /* 1427eda14cbcSMatt Macy * Shift elements in node left by one spot to overwrite rm_hdr 1428eda14cbcSMatt Macy * and the separator before it. 1429eda14cbcSMatt Macy */ 1430eda14cbcSMatt Macy bt_shift_core_left(tree, node, idx, hdr->bth_count - idx, 1431eda14cbcSMatt Macy BSS_PARALLELOGRAM); 1432eda14cbcSMatt Macy 1433eda14cbcSMatt Macy /* 1434eda14cbcSMatt Macy * Move the separator between node and neighbor to the last 1435eda14cbcSMatt Macy * element spot in node. 1436eda14cbcSMatt Macy */ 1437eda14cbcSMatt Macy uint8_t *separator = parent->btc_elems + parent_idx * size; 1438eda14cbcSMatt Macy bmov(separator, node->btc_elems + (hdr->bth_count - 1) * size, 1439eda14cbcSMatt Macy size); 1440eda14cbcSMatt Macy 1441eda14cbcSMatt Macy /* 1442eda14cbcSMatt Macy * Move the first child of neighbor to the last child spot in 1443eda14cbcSMatt Macy * node. 1444eda14cbcSMatt Macy */ 1445eda14cbcSMatt Macy zfs_btree_hdr_t **take_child = neighbor->btc_children; 1446eda14cbcSMatt Macy bmov(take_child, node->btc_children + hdr->bth_count, 1447eda14cbcSMatt Macy sizeof (*take_child)); 1448eda14cbcSMatt Macy node->btc_children[hdr->bth_count]->bth_parent = node; 1449eda14cbcSMatt Macy 1450eda14cbcSMatt Macy /* Move the first element of neighbor to the separator spot. */ 1451eda14cbcSMatt Macy uint8_t *take_elem = neighbor->btc_elems; 1452eda14cbcSMatt Macy bmov(take_elem, separator, size); 1453eda14cbcSMatt Macy r_hdr->bth_count--; 1454eda14cbcSMatt Macy 1455eda14cbcSMatt Macy /* 1456eda14cbcSMatt Macy * Shift the elements and children of neighbor to cover the 1457eda14cbcSMatt Macy * stolen elements. 1458eda14cbcSMatt Macy */ 1459eda14cbcSMatt Macy bt_shift_core_left(tree, neighbor, 1, r_hdr->bth_count, 1460eda14cbcSMatt Macy BSS_TRAPEZOID); 1461eda14cbcSMatt Macy zfs_btree_poison_node_at(tree, r_hdr, r_hdr->bth_count); 1462eda14cbcSMatt Macy return; 1463eda14cbcSMatt Macy } 1464eda14cbcSMatt Macy 1465eda14cbcSMatt Macy /* 1466eda14cbcSMatt Macy * In this case, neither of our neighbors can spare an element, so we 1467eda14cbcSMatt Macy * need to merge with one of them. We prefer the left one, 1468eda14cbcSMatt Macy * arbitrarily. Move the separator into the leftmost merging node 1469eda14cbcSMatt Macy * (which may be us or the left neighbor), and then move the right 1470eda14cbcSMatt Macy * merging node's elements. Once that's done, we go back and delete 1471eda14cbcSMatt Macy * the element we're removing. Finally, go into the parent and delete 1472eda14cbcSMatt Macy * the right merging node and the separator. This may cause further 1473eda14cbcSMatt Macy * merging. 1474eda14cbcSMatt Macy */ 1475eda14cbcSMatt Macy zfs_btree_hdr_t *new_rm_hdr, *keep_hdr; 1476eda14cbcSMatt Macy uint64_t new_idx = idx; 1477eda14cbcSMatt Macy if (l_hdr != NULL) { 1478eda14cbcSMatt Macy keep_hdr = l_hdr; 1479eda14cbcSMatt Macy new_rm_hdr = hdr; 1480eda14cbcSMatt Macy new_idx += keep_hdr->bth_count + 1; 1481eda14cbcSMatt Macy } else { 1482eda14cbcSMatt Macy ASSERT3P(r_hdr, !=, NULL); 1483eda14cbcSMatt Macy keep_hdr = hdr; 1484eda14cbcSMatt Macy new_rm_hdr = r_hdr; 1485eda14cbcSMatt Macy parent_idx++; 1486eda14cbcSMatt Macy } 1487eda14cbcSMatt Macy 1488eda14cbcSMatt Macy ASSERT(keep_hdr->bth_core); 1489eda14cbcSMatt Macy ASSERT(new_rm_hdr->bth_core); 1490eda14cbcSMatt Macy 1491eda14cbcSMatt Macy zfs_btree_core_t *keep = (zfs_btree_core_t *)keep_hdr; 1492eda14cbcSMatt Macy zfs_btree_core_t *rm = (zfs_btree_core_t *)new_rm_hdr; 1493eda14cbcSMatt Macy 1494eda14cbcSMatt Macy if (zfs_btree_verify_intensity >= 5) { 1495eda14cbcSMatt Macy for (int i = 0; i < new_rm_hdr->bth_count + 1; i++) { 1496eda14cbcSMatt Macy zfs_btree_verify_poison_at(tree, keep_hdr, 1497eda14cbcSMatt Macy keep_hdr->bth_count + i); 1498eda14cbcSMatt Macy } 1499eda14cbcSMatt Macy } 1500eda14cbcSMatt Macy 1501eda14cbcSMatt Macy /* Move the separator into the left node. */ 1502eda14cbcSMatt Macy uint8_t *e_out = keep->btc_elems + keep_hdr->bth_count * size; 1503eda14cbcSMatt Macy uint8_t *separator = parent->btc_elems + (parent_idx - 1) * 1504eda14cbcSMatt Macy size; 1505eda14cbcSMatt Macy bmov(separator, e_out, size); 1506eda14cbcSMatt Macy keep_hdr->bth_count++; 1507eda14cbcSMatt Macy 1508eda14cbcSMatt Macy /* Move all our elements and children into the left node. */ 1509eda14cbcSMatt Macy bt_transfer_core(tree, rm, 0, new_rm_hdr->bth_count, keep, 1510eda14cbcSMatt Macy keep_hdr->bth_count, BSS_TRAPEZOID); 1511eda14cbcSMatt Macy 1512eda14cbcSMatt Macy uint64_t old_count = keep_hdr->bth_count; 1513eda14cbcSMatt Macy 1514eda14cbcSMatt Macy /* Update bookkeeping */ 1515eda14cbcSMatt Macy keep_hdr->bth_count += new_rm_hdr->bth_count; 1516eda14cbcSMatt Macy ASSERT3U(keep_hdr->bth_count, ==, (min_count * 2) + 1); 1517eda14cbcSMatt Macy 1518eda14cbcSMatt Macy /* 1519eda14cbcSMatt Macy * Shift the element and children to the right of rm_hdr to 1520eda14cbcSMatt Macy * the left by one spot. 1521eda14cbcSMatt Macy */ 1522eda14cbcSMatt Macy ASSERT3P(keep->btc_children[new_idx], ==, rm_hdr); 1523eda14cbcSMatt Macy bt_shift_core_left(tree, keep, new_idx, keep_hdr->bth_count - new_idx, 1524eda14cbcSMatt Macy BSS_PARALLELOGRAM); 1525eda14cbcSMatt Macy keep_hdr->bth_count--; 1526eda14cbcSMatt Macy 1527eda14cbcSMatt Macy /* Reparent all our children to point to the left node. */ 1528eda14cbcSMatt Macy zfs_btree_hdr_t **new_start = keep->btc_children + 1529eda14cbcSMatt Macy old_count - 1; 1530eda14cbcSMatt Macy for (int i = 0; i < new_rm_hdr->bth_count + 1; i++) 1531eda14cbcSMatt Macy new_start[i]->bth_parent = keep; 1532eda14cbcSMatt Macy for (int i = 0; i <= keep_hdr->bth_count; i++) { 1533eda14cbcSMatt Macy ASSERT3P(keep->btc_children[i]->bth_parent, ==, keep); 1534eda14cbcSMatt Macy ASSERT3P(keep->btc_children[i], !=, rm_hdr); 1535eda14cbcSMatt Macy } 1536eda14cbcSMatt Macy zfs_btree_poison_node_at(tree, keep_hdr, keep_hdr->bth_count); 1537eda14cbcSMatt Macy 1538eda14cbcSMatt Macy new_rm_hdr->bth_count = 0; 1539eda14cbcSMatt Macy zfs_btree_node_destroy(tree, new_rm_hdr); 1540eda14cbcSMatt Macy zfs_btree_remove_from_node(tree, parent, new_rm_hdr); 1541eda14cbcSMatt Macy } 1542eda14cbcSMatt Macy 1543eda14cbcSMatt Macy /* Remove the element at the specific location. */ 1544eda14cbcSMatt Macy void 1545eda14cbcSMatt Macy zfs_btree_remove_idx(zfs_btree_t *tree, zfs_btree_index_t *where) 1546eda14cbcSMatt Macy { 1547eda14cbcSMatt Macy size_t size = tree->bt_elem_size; 1548eda14cbcSMatt Macy zfs_btree_hdr_t *hdr = where->bti_node; 1549eda14cbcSMatt Macy uint64_t idx = where->bti_offset; 1550eda14cbcSMatt Macy uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE - 1551eda14cbcSMatt Macy sizeof (zfs_btree_hdr_t)) / size, 2); 1552eda14cbcSMatt Macy 1553eda14cbcSMatt Macy ASSERT(!where->bti_before); 1554eda14cbcSMatt Macy if (tree->bt_bulk != NULL) { 1555eda14cbcSMatt Macy /* 1556eda14cbcSMatt Macy * Leave bulk insert mode. Note that our index would be 1557eda14cbcSMatt Macy * invalid after we correct the tree, so we copy the value 1558eda14cbcSMatt Macy * we're planning to remove and find it again after 1559eda14cbcSMatt Macy * bulk_finish. 1560eda14cbcSMatt Macy */ 1561eda14cbcSMatt Macy uint8_t *value = zfs_btree_get(tree, where); 1562eda14cbcSMatt Macy uint8_t *tmp = kmem_alloc(size, KM_SLEEP); 1563eda14cbcSMatt Macy bmov(value, tmp, size); 1564eda14cbcSMatt Macy zfs_btree_bulk_finish(tree); 1565eda14cbcSMatt Macy VERIFY3P(zfs_btree_find(tree, tmp, where), !=, NULL); 1566eda14cbcSMatt Macy kmem_free(tmp, size); 1567eda14cbcSMatt Macy hdr = where->bti_node; 1568eda14cbcSMatt Macy idx = where->bti_offset; 1569eda14cbcSMatt Macy } 1570eda14cbcSMatt Macy 1571eda14cbcSMatt Macy tree->bt_num_elems--; 1572eda14cbcSMatt Macy /* 1573eda14cbcSMatt Macy * If the element happens to be in a core node, we move a leaf node's 1574eda14cbcSMatt Macy * element into its place and then remove the leaf node element. This 1575eda14cbcSMatt Macy * makes the rebalance logic not need to be recursive both upwards and 1576eda14cbcSMatt Macy * downwards. 1577eda14cbcSMatt Macy */ 1578eda14cbcSMatt Macy if (hdr->bth_core) { 1579eda14cbcSMatt Macy zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; 1580eda14cbcSMatt Macy zfs_btree_hdr_t *left_subtree = node->btc_children[idx]; 1581eda14cbcSMatt Macy void *new_value = zfs_btree_last_helper(tree, left_subtree, 1582eda14cbcSMatt Macy where); 1583eda14cbcSMatt Macy ASSERT3P(new_value, !=, NULL); 1584eda14cbcSMatt Macy 1585eda14cbcSMatt Macy bmov(new_value, node->btc_elems + idx * size, size); 1586eda14cbcSMatt Macy 1587eda14cbcSMatt Macy hdr = where->bti_node; 1588eda14cbcSMatt Macy idx = where->bti_offset; 1589eda14cbcSMatt Macy ASSERT(!where->bti_before); 1590eda14cbcSMatt Macy } 1591eda14cbcSMatt Macy 1592eda14cbcSMatt Macy /* 1593eda14cbcSMatt Macy * First, we'll update the leaf's metadata. Then, we shift any 1594eda14cbcSMatt Macy * elements after the idx to the left. After that, we rebalance if 1595eda14cbcSMatt Macy * needed. 1596eda14cbcSMatt Macy */ 1597eda14cbcSMatt Macy ASSERT(!hdr->bth_core); 1598eda14cbcSMatt Macy zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr; 1599eda14cbcSMatt Macy ASSERT3U(hdr->bth_count, >, 0); 1600eda14cbcSMatt Macy 1601eda14cbcSMatt Macy uint64_t min_count = (capacity / 2) - 1; 1602eda14cbcSMatt Macy 1603eda14cbcSMatt Macy /* 1604eda14cbcSMatt Macy * If we're over the minimum size or this is the root, just overwrite 1605eda14cbcSMatt Macy * the value and return. 1606eda14cbcSMatt Macy */ 1607eda14cbcSMatt Macy if (hdr->bth_count > min_count || hdr->bth_parent == NULL) { 1608eda14cbcSMatt Macy hdr->bth_count--; 1609eda14cbcSMatt Macy bt_shift_leaf_left(tree, leaf, idx + 1, hdr->bth_count - idx); 1610eda14cbcSMatt Macy if (hdr->bth_parent == NULL) { 1611eda14cbcSMatt Macy ASSERT0(tree->bt_height); 1612eda14cbcSMatt Macy if (hdr->bth_count == 0) { 1613eda14cbcSMatt Macy tree->bt_root = NULL; 1614eda14cbcSMatt Macy tree->bt_height--; 1615eda14cbcSMatt Macy zfs_btree_node_destroy(tree, &leaf->btl_hdr); 1616eda14cbcSMatt Macy } 1617eda14cbcSMatt Macy } 1618eda14cbcSMatt Macy if (tree->bt_root != NULL) 1619eda14cbcSMatt Macy zfs_btree_poison_node_at(tree, hdr, hdr->bth_count); 1620eda14cbcSMatt Macy zfs_btree_verify(tree); 1621eda14cbcSMatt Macy return; 1622eda14cbcSMatt Macy } 1623eda14cbcSMatt Macy ASSERT3U(hdr->bth_count, ==, min_count); 1624eda14cbcSMatt Macy 1625eda14cbcSMatt Macy /* 1626eda14cbcSMatt Macy * Now we try to take a node from a sibling. We check left, then 1627eda14cbcSMatt Macy * right. If they exist and have more than the minimum number of 1628eda14cbcSMatt Macy * elements, we move the separator between us and them to our node 1629eda14cbcSMatt Macy * and move their closest element (last for left, first for right) to 1630eda14cbcSMatt Macy * the separator. Along the way we need to collapse the gap made by 1631eda14cbcSMatt Macy * idx, and (for our right neighbor) the gap made by removing their 1632eda14cbcSMatt Macy * first element. 1633eda14cbcSMatt Macy * 1634eda14cbcSMatt Macy * Note: this logic currently doesn't support taking from a neighbor 1635eda14cbcSMatt Macy * that isn't a sibling. This isn't critical functionality, but may be 1636eda14cbcSMatt Macy * worth implementing in the future for completeness' sake. 1637eda14cbcSMatt Macy */ 1638eda14cbcSMatt Macy zfs_btree_core_t *parent = hdr->bth_parent; 1639eda14cbcSMatt Macy uint64_t parent_idx = zfs_btree_find_parent_idx(tree, hdr); 1640eda14cbcSMatt Macy 1641eda14cbcSMatt Macy zfs_btree_hdr_t *l_hdr = (parent_idx == 0 ? NULL : 1642eda14cbcSMatt Macy parent->btc_children[parent_idx - 1]); 1643eda14cbcSMatt Macy if (l_hdr != NULL && l_hdr->bth_count > min_count) { 1644eda14cbcSMatt Macy /* We can take a node from the left neighbor. */ 1645eda14cbcSMatt Macy ASSERT(!l_hdr->bth_core); 1646eda14cbcSMatt Macy 1647eda14cbcSMatt Macy /* 1648eda14cbcSMatt Macy * Move our elements back by one spot to make room for the 1649eda14cbcSMatt Macy * stolen element and overwrite the element being removed. 1650eda14cbcSMatt Macy */ 1651eda14cbcSMatt Macy bt_shift_leaf_right(tree, leaf, 0, idx); 1652eda14cbcSMatt Macy uint8_t *separator = parent->btc_elems + (parent_idx - 1) * 1653eda14cbcSMatt Macy size; 1654eda14cbcSMatt Macy uint8_t *take_elem = ((zfs_btree_leaf_t *)l_hdr)->btl_elems + 1655eda14cbcSMatt Macy (l_hdr->bth_count - 1) * size; 1656eda14cbcSMatt Macy /* Move the separator to our first spot. */ 1657eda14cbcSMatt Macy bmov(separator, leaf->btl_elems, size); 1658eda14cbcSMatt Macy 1659eda14cbcSMatt Macy /* Move our neighbor's last element to the separator. */ 1660eda14cbcSMatt Macy bmov(take_elem, separator, size); 1661eda14cbcSMatt Macy 1662eda14cbcSMatt Macy /* Update the bookkeeping. */ 1663eda14cbcSMatt Macy l_hdr->bth_count--; 1664eda14cbcSMatt Macy zfs_btree_poison_node_at(tree, l_hdr, l_hdr->bth_count); 1665eda14cbcSMatt Macy 1666eda14cbcSMatt Macy zfs_btree_verify(tree); 1667eda14cbcSMatt Macy return; 1668eda14cbcSMatt Macy } 1669eda14cbcSMatt Macy 1670eda14cbcSMatt Macy zfs_btree_hdr_t *r_hdr = (parent_idx == parent->btc_hdr.bth_count ? 1671eda14cbcSMatt Macy NULL : parent->btc_children[parent_idx + 1]); 1672eda14cbcSMatt Macy if (r_hdr != NULL && r_hdr->bth_count > min_count) { 1673eda14cbcSMatt Macy /* We can take a node from the right neighbor. */ 1674eda14cbcSMatt Macy ASSERT(!r_hdr->bth_core); 1675eda14cbcSMatt Macy zfs_btree_leaf_t *neighbor = (zfs_btree_leaf_t *)r_hdr; 1676eda14cbcSMatt Macy 1677eda14cbcSMatt Macy /* 1678eda14cbcSMatt Macy * Move our elements after the element being removed forwards 1679eda14cbcSMatt Macy * by one spot to make room for the stolen element and 1680eda14cbcSMatt Macy * overwrite the element being removed. 1681eda14cbcSMatt Macy */ 1682eda14cbcSMatt Macy bt_shift_leaf_left(tree, leaf, idx + 1, hdr->bth_count - idx - 1683eda14cbcSMatt Macy 1); 1684eda14cbcSMatt Macy 1685eda14cbcSMatt Macy uint8_t *separator = parent->btc_elems + parent_idx * size; 1686eda14cbcSMatt Macy uint8_t *take_elem = ((zfs_btree_leaf_t *)r_hdr)->btl_elems; 1687eda14cbcSMatt Macy /* Move the separator between us to our last spot. */ 1688eda14cbcSMatt Macy bmov(separator, leaf->btl_elems + (hdr->bth_count - 1) * size, 1689eda14cbcSMatt Macy size); 1690eda14cbcSMatt Macy 1691eda14cbcSMatt Macy /* Move our neighbor's first element to the separator. */ 1692eda14cbcSMatt Macy bmov(take_elem, separator, size); 1693eda14cbcSMatt Macy 1694eda14cbcSMatt Macy /* Update the bookkeeping. */ 1695eda14cbcSMatt Macy r_hdr->bth_count--; 1696eda14cbcSMatt Macy 1697eda14cbcSMatt Macy /* 1698eda14cbcSMatt Macy * Move our neighbors elements forwards to overwrite the 1699eda14cbcSMatt Macy * stolen element. 1700eda14cbcSMatt Macy */ 1701eda14cbcSMatt Macy bt_shift_leaf_left(tree, neighbor, 1, r_hdr->bth_count); 1702eda14cbcSMatt Macy zfs_btree_poison_node_at(tree, r_hdr, r_hdr->bth_count); 1703eda14cbcSMatt Macy zfs_btree_verify(tree); 1704eda14cbcSMatt Macy return; 1705eda14cbcSMatt Macy } 1706eda14cbcSMatt Macy 1707eda14cbcSMatt Macy /* 1708eda14cbcSMatt Macy * In this case, neither of our neighbors can spare an element, so we 1709eda14cbcSMatt Macy * need to merge with one of them. We prefer the left one, 1710eda14cbcSMatt Macy * arbitrarily. Move the separator into the leftmost merging node 1711eda14cbcSMatt Macy * (which may be us or the left neighbor), and then move the right 1712eda14cbcSMatt Macy * merging node's elements. Once that's done, we go back and delete 1713eda14cbcSMatt Macy * the element we're removing. Finally, go into the parent and delete 1714eda14cbcSMatt Macy * the right merging node and the separator. This may cause further 1715eda14cbcSMatt Macy * merging. 1716eda14cbcSMatt Macy */ 1717eda14cbcSMatt Macy zfs_btree_hdr_t *rm_hdr, *keep_hdr; 1718eda14cbcSMatt Macy uint64_t new_idx = idx; 1719eda14cbcSMatt Macy if (l_hdr != NULL) { 1720eda14cbcSMatt Macy keep_hdr = l_hdr; 1721eda14cbcSMatt Macy rm_hdr = hdr; 1722eda14cbcSMatt Macy new_idx += keep_hdr->bth_count + 1; // 449 1723eda14cbcSMatt Macy } else { 1724eda14cbcSMatt Macy ASSERT3P(r_hdr, !=, NULL); 1725eda14cbcSMatt Macy keep_hdr = hdr; 1726eda14cbcSMatt Macy rm_hdr = r_hdr; 1727eda14cbcSMatt Macy parent_idx++; 1728eda14cbcSMatt Macy } 1729eda14cbcSMatt Macy 1730eda14cbcSMatt Macy ASSERT(!keep_hdr->bth_core); 1731eda14cbcSMatt Macy ASSERT(!rm_hdr->bth_core); 1732eda14cbcSMatt Macy ASSERT3U(keep_hdr->bth_count, ==, min_count); 1733eda14cbcSMatt Macy ASSERT3U(rm_hdr->bth_count, ==, min_count); 1734eda14cbcSMatt Macy 1735eda14cbcSMatt Macy zfs_btree_leaf_t *keep = (zfs_btree_leaf_t *)keep_hdr; 1736eda14cbcSMatt Macy zfs_btree_leaf_t *rm = (zfs_btree_leaf_t *)rm_hdr; 1737eda14cbcSMatt Macy 1738eda14cbcSMatt Macy if (zfs_btree_verify_intensity >= 5) { 1739eda14cbcSMatt Macy for (int i = 0; i < rm_hdr->bth_count + 1; i++) { 1740eda14cbcSMatt Macy zfs_btree_verify_poison_at(tree, keep_hdr, 1741eda14cbcSMatt Macy keep_hdr->bth_count + i); 1742eda14cbcSMatt Macy } 1743eda14cbcSMatt Macy } 1744eda14cbcSMatt Macy /* 1745eda14cbcSMatt Macy * Move the separator into the first open spot in the left 1746eda14cbcSMatt Macy * neighbor. 1747eda14cbcSMatt Macy */ 1748eda14cbcSMatt Macy uint8_t *out = keep->btl_elems + keep_hdr->bth_count * size; 1749eda14cbcSMatt Macy uint8_t *separator = parent->btc_elems + (parent_idx - 1) * 1750eda14cbcSMatt Macy size; 1751eda14cbcSMatt Macy bmov(separator, out, size); 1752eda14cbcSMatt Macy keep_hdr->bth_count++; 1753eda14cbcSMatt Macy 1754eda14cbcSMatt Macy /* Move our elements to the left neighbor. */ 1755eda14cbcSMatt Macy bt_transfer_leaf(tree, rm, 0, rm_hdr->bth_count, keep, 1756eda14cbcSMatt Macy keep_hdr->bth_count); 1757eda14cbcSMatt Macy 1758eda14cbcSMatt Macy /* Update the bookkeeping. */ 1759eda14cbcSMatt Macy keep_hdr->bth_count += rm_hdr->bth_count; 1760eda14cbcSMatt Macy ASSERT3U(keep_hdr->bth_count, ==, min_count * 2 + 1); 1761eda14cbcSMatt Macy 1762eda14cbcSMatt Macy /* Remove the value from the node */ 1763eda14cbcSMatt Macy keep_hdr->bth_count--; 1764eda14cbcSMatt Macy bt_shift_leaf_left(tree, keep, new_idx + 1, keep_hdr->bth_count - 1765eda14cbcSMatt Macy new_idx); 1766eda14cbcSMatt Macy zfs_btree_poison_node_at(tree, keep_hdr, keep_hdr->bth_count); 1767eda14cbcSMatt Macy 1768eda14cbcSMatt Macy rm_hdr->bth_count = 0; 1769eda14cbcSMatt Macy zfs_btree_node_destroy(tree, rm_hdr); 1770eda14cbcSMatt Macy /* Remove the emptied node from the parent. */ 1771eda14cbcSMatt Macy zfs_btree_remove_from_node(tree, parent, rm_hdr); 1772eda14cbcSMatt Macy zfs_btree_verify(tree); 1773eda14cbcSMatt Macy } 1774eda14cbcSMatt Macy 1775eda14cbcSMatt Macy /* Remove the given value from the tree. */ 1776eda14cbcSMatt Macy void 1777eda14cbcSMatt Macy zfs_btree_remove(zfs_btree_t *tree, const void *value) 1778eda14cbcSMatt Macy { 1779eda14cbcSMatt Macy zfs_btree_index_t where = {0}; 1780eda14cbcSMatt Macy VERIFY3P(zfs_btree_find(tree, value, &where), !=, NULL); 1781eda14cbcSMatt Macy zfs_btree_remove_idx(tree, &where); 1782eda14cbcSMatt Macy } 1783eda14cbcSMatt Macy 1784eda14cbcSMatt Macy /* Return the number of elements in the tree. */ 1785eda14cbcSMatt Macy ulong_t 1786eda14cbcSMatt Macy zfs_btree_numnodes(zfs_btree_t *tree) 1787eda14cbcSMatt Macy { 1788eda14cbcSMatt Macy return (tree->bt_num_elems); 1789eda14cbcSMatt Macy } 1790eda14cbcSMatt Macy 1791eda14cbcSMatt Macy /* 1792eda14cbcSMatt Macy * This function is used to visit all the elements in the tree before 1793eda14cbcSMatt Macy * destroying the tree. This allows the calling code to perform any cleanup it 1794eda14cbcSMatt Macy * needs to do. This is more efficient than just removing the first element 1795eda14cbcSMatt Macy * over and over, because it removes all rebalancing. Once the destroy_nodes() 1796eda14cbcSMatt Macy * function has been called, no other btree operations are valid until it 1797eda14cbcSMatt Macy * returns NULL, which point the only valid operation is zfs_btree_destroy(). 1798eda14cbcSMatt Macy * 1799eda14cbcSMatt Macy * example: 1800eda14cbcSMatt Macy * 1801eda14cbcSMatt Macy * zfs_btree_index_t *cookie = NULL; 1802eda14cbcSMatt Macy * my_data_t *node; 1803eda14cbcSMatt Macy * 1804eda14cbcSMatt Macy * while ((node = zfs_btree_destroy_nodes(tree, &cookie)) != NULL) 1805eda14cbcSMatt Macy * free(node->ptr); 1806eda14cbcSMatt Macy * zfs_btree_destroy(tree); 1807eda14cbcSMatt Macy * 1808eda14cbcSMatt Macy */ 1809eda14cbcSMatt Macy void * 1810eda14cbcSMatt Macy zfs_btree_destroy_nodes(zfs_btree_t *tree, zfs_btree_index_t **cookie) 1811eda14cbcSMatt Macy { 1812eda14cbcSMatt Macy if (*cookie == NULL) { 1813eda14cbcSMatt Macy if (tree->bt_height == -1) 1814eda14cbcSMatt Macy return (NULL); 1815eda14cbcSMatt Macy *cookie = kmem_alloc(sizeof (**cookie), KM_SLEEP); 1816eda14cbcSMatt Macy return (zfs_btree_first(tree, *cookie)); 1817eda14cbcSMatt Macy } 1818eda14cbcSMatt Macy 1819eda14cbcSMatt Macy void *rval = zfs_btree_next_helper(tree, *cookie, *cookie, 1820eda14cbcSMatt Macy zfs_btree_node_destroy); 1821eda14cbcSMatt Macy if (rval == NULL) { 1822eda14cbcSMatt Macy tree->bt_root = NULL; 1823eda14cbcSMatt Macy tree->bt_height = -1; 1824eda14cbcSMatt Macy tree->bt_num_elems = 0; 1825eda14cbcSMatt Macy kmem_free(*cookie, sizeof (**cookie)); 1826eda14cbcSMatt Macy tree->bt_bulk = NULL; 1827eda14cbcSMatt Macy } 1828eda14cbcSMatt Macy return (rval); 1829eda14cbcSMatt Macy } 1830eda14cbcSMatt Macy 1831eda14cbcSMatt Macy static void 1832eda14cbcSMatt Macy zfs_btree_clear_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) 1833eda14cbcSMatt Macy { 1834eda14cbcSMatt Macy if (hdr->bth_core) { 1835eda14cbcSMatt Macy zfs_btree_core_t *btc = (zfs_btree_core_t *)hdr; 1836eda14cbcSMatt Macy for (int i = 0; i <= hdr->bth_count; i++) { 1837eda14cbcSMatt Macy zfs_btree_clear_helper(tree, btc->btc_children[i]); 1838eda14cbcSMatt Macy } 1839eda14cbcSMatt Macy } 1840eda14cbcSMatt Macy 1841eda14cbcSMatt Macy zfs_btree_node_destroy(tree, hdr); 1842eda14cbcSMatt Macy } 1843eda14cbcSMatt Macy 1844eda14cbcSMatt Macy void 1845eda14cbcSMatt Macy zfs_btree_clear(zfs_btree_t *tree) 1846eda14cbcSMatt Macy { 1847eda14cbcSMatt Macy if (tree->bt_root == NULL) { 1848eda14cbcSMatt Macy ASSERT0(tree->bt_num_elems); 1849eda14cbcSMatt Macy return; 1850eda14cbcSMatt Macy } 1851eda14cbcSMatt Macy 1852eda14cbcSMatt Macy zfs_btree_clear_helper(tree, tree->bt_root); 1853eda14cbcSMatt Macy tree->bt_num_elems = 0; 1854eda14cbcSMatt Macy tree->bt_root = NULL; 1855eda14cbcSMatt Macy tree->bt_num_nodes = 0; 1856eda14cbcSMatt Macy tree->bt_height = -1; 1857eda14cbcSMatt Macy tree->bt_bulk = NULL; 1858eda14cbcSMatt Macy } 1859eda14cbcSMatt Macy 1860eda14cbcSMatt Macy void 1861eda14cbcSMatt Macy zfs_btree_destroy(zfs_btree_t *tree) 1862eda14cbcSMatt Macy { 1863eda14cbcSMatt Macy ASSERT0(tree->bt_num_elems); 1864eda14cbcSMatt Macy ASSERT3P(tree->bt_root, ==, NULL); 1865eda14cbcSMatt Macy } 1866eda14cbcSMatt Macy 1867eda14cbcSMatt Macy /* Verify that every child of this node has the correct parent pointer. */ 1868eda14cbcSMatt Macy static void 1869eda14cbcSMatt Macy zfs_btree_verify_pointers_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) 1870eda14cbcSMatt Macy { 1871eda14cbcSMatt Macy if (!hdr->bth_core) 1872eda14cbcSMatt Macy return; 1873eda14cbcSMatt Macy 1874eda14cbcSMatt Macy zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; 1875eda14cbcSMatt Macy for (int i = 0; i <= hdr->bth_count; i++) { 1876eda14cbcSMatt Macy VERIFY3P(node->btc_children[i]->bth_parent, ==, hdr); 1877eda14cbcSMatt Macy zfs_btree_verify_pointers_helper(tree, node->btc_children[i]); 1878eda14cbcSMatt Macy } 1879eda14cbcSMatt Macy } 1880eda14cbcSMatt Macy 1881eda14cbcSMatt Macy /* Verify that every node has the correct parent pointer. */ 1882eda14cbcSMatt Macy static void 1883eda14cbcSMatt Macy zfs_btree_verify_pointers(zfs_btree_t *tree) 1884eda14cbcSMatt Macy { 1885eda14cbcSMatt Macy if (tree->bt_height == -1) { 1886eda14cbcSMatt Macy VERIFY3P(tree->bt_root, ==, NULL); 1887eda14cbcSMatt Macy return; 1888eda14cbcSMatt Macy } 1889eda14cbcSMatt Macy VERIFY3P(tree->bt_root->bth_parent, ==, NULL); 1890eda14cbcSMatt Macy zfs_btree_verify_pointers_helper(tree, tree->bt_root); 1891eda14cbcSMatt Macy } 1892eda14cbcSMatt Macy 1893eda14cbcSMatt Macy /* 1894eda14cbcSMatt Macy * Verify that all the current node and its children satisfy the count 1895eda14cbcSMatt Macy * invariants, and return the total count in the subtree rooted in this node. 1896eda14cbcSMatt Macy */ 1897eda14cbcSMatt Macy static uint64_t 1898eda14cbcSMatt Macy zfs_btree_verify_counts_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) 1899eda14cbcSMatt Macy { 1900eda14cbcSMatt Macy if (!hdr->bth_core) { 1901*c03c5b1cSMartin Matuska if (tree->bt_root != hdr && tree->bt_bulk && 1902*c03c5b1cSMartin Matuska hdr != &tree->bt_bulk->btl_hdr) { 1903eda14cbcSMatt Macy uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE - 1904eda14cbcSMatt Macy sizeof (zfs_btree_hdr_t)) / tree->bt_elem_size, 2); 1905eda14cbcSMatt Macy VERIFY3U(hdr->bth_count, >=, (capacity / 2) - 1); 1906eda14cbcSMatt Macy } 1907eda14cbcSMatt Macy 1908eda14cbcSMatt Macy return (hdr->bth_count); 1909eda14cbcSMatt Macy } else { 1910eda14cbcSMatt Macy 1911eda14cbcSMatt Macy zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; 1912eda14cbcSMatt Macy uint64_t ret = hdr->bth_count; 1913eda14cbcSMatt Macy if (tree->bt_root != hdr && tree->bt_bulk == NULL) 1914eda14cbcSMatt Macy VERIFY3P(hdr->bth_count, >=, BTREE_CORE_ELEMS / 2 - 1); 1915eda14cbcSMatt Macy for (int i = 0; i <= hdr->bth_count; i++) { 1916eda14cbcSMatt Macy ret += zfs_btree_verify_counts_helper(tree, 1917eda14cbcSMatt Macy node->btc_children[i]); 1918eda14cbcSMatt Macy } 1919eda14cbcSMatt Macy 1920eda14cbcSMatt Macy return (ret); 1921eda14cbcSMatt Macy } 1922eda14cbcSMatt Macy } 1923eda14cbcSMatt Macy 1924eda14cbcSMatt Macy /* 1925eda14cbcSMatt Macy * Verify that all nodes satisfy the invariants and that the total number of 1926eda14cbcSMatt Macy * elements is correct. 1927eda14cbcSMatt Macy */ 1928eda14cbcSMatt Macy static void 1929eda14cbcSMatt Macy zfs_btree_verify_counts(zfs_btree_t *tree) 1930eda14cbcSMatt Macy { 1931eda14cbcSMatt Macy EQUIV(tree->bt_num_elems == 0, tree->bt_height == -1); 1932eda14cbcSMatt Macy if (tree->bt_height == -1) { 1933eda14cbcSMatt Macy return; 1934eda14cbcSMatt Macy } 1935eda14cbcSMatt Macy VERIFY3P(zfs_btree_verify_counts_helper(tree, tree->bt_root), ==, 1936eda14cbcSMatt Macy tree->bt_num_elems); 1937eda14cbcSMatt Macy } 1938eda14cbcSMatt Macy 1939eda14cbcSMatt Macy /* 1940eda14cbcSMatt Macy * Check that the subtree rooted at this node has a uniform height. Returns 1941eda14cbcSMatt Macy * the number of nodes under this node, to help verify bt_num_nodes. 1942eda14cbcSMatt Macy */ 1943eda14cbcSMatt Macy static uint64_t 1944eda14cbcSMatt Macy zfs_btree_verify_height_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr, 1945eda14cbcSMatt Macy int64_t height) 1946eda14cbcSMatt Macy { 1947eda14cbcSMatt Macy if (!hdr->bth_core) { 1948eda14cbcSMatt Macy VERIFY0(height); 1949eda14cbcSMatt Macy return (1); 1950eda14cbcSMatt Macy } 1951eda14cbcSMatt Macy 1952eda14cbcSMatt Macy VERIFY(hdr->bth_core); 1953eda14cbcSMatt Macy zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; 1954eda14cbcSMatt Macy uint64_t ret = 1; 1955eda14cbcSMatt Macy for (int i = 0; i <= hdr->bth_count; i++) { 1956eda14cbcSMatt Macy ret += zfs_btree_verify_height_helper(tree, 1957eda14cbcSMatt Macy node->btc_children[i], height - 1); 1958eda14cbcSMatt Macy } 1959eda14cbcSMatt Macy return (ret); 1960eda14cbcSMatt Macy } 1961eda14cbcSMatt Macy 1962eda14cbcSMatt Macy /* 1963eda14cbcSMatt Macy * Check that the tree rooted at this node has a uniform height, and that the 1964eda14cbcSMatt Macy * bt_height in the tree is correct. 1965eda14cbcSMatt Macy */ 1966eda14cbcSMatt Macy static void 1967eda14cbcSMatt Macy zfs_btree_verify_height(zfs_btree_t *tree) 1968eda14cbcSMatt Macy { 1969eda14cbcSMatt Macy EQUIV(tree->bt_height == -1, tree->bt_root == NULL); 1970eda14cbcSMatt Macy if (tree->bt_height == -1) { 1971eda14cbcSMatt Macy return; 1972eda14cbcSMatt Macy } 1973eda14cbcSMatt Macy 1974eda14cbcSMatt Macy VERIFY3U(zfs_btree_verify_height_helper(tree, tree->bt_root, 1975eda14cbcSMatt Macy tree->bt_height), ==, tree->bt_num_nodes); 1976eda14cbcSMatt Macy } 1977eda14cbcSMatt Macy 1978eda14cbcSMatt Macy /* 1979eda14cbcSMatt Macy * Check that the elements in this node are sorted, and that if this is a core 1980eda14cbcSMatt Macy * node, the separators are properly between the subtrees they separaate and 1981eda14cbcSMatt Macy * that the children also satisfy this requirement. 1982eda14cbcSMatt Macy */ 1983eda14cbcSMatt Macy static void 1984eda14cbcSMatt Macy zfs_btree_verify_order_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) 1985eda14cbcSMatt Macy { 1986eda14cbcSMatt Macy size_t size = tree->bt_elem_size; 1987eda14cbcSMatt Macy if (!hdr->bth_core) { 1988eda14cbcSMatt Macy zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr; 1989eda14cbcSMatt Macy for (int i = 1; i < hdr->bth_count; i++) { 1990eda14cbcSMatt Macy VERIFY3S(tree->bt_compar(leaf->btl_elems + (i - 1) * 1991eda14cbcSMatt Macy size, leaf->btl_elems + i * size), ==, -1); 1992eda14cbcSMatt Macy } 1993eda14cbcSMatt Macy return; 1994eda14cbcSMatt Macy } 1995eda14cbcSMatt Macy 1996eda14cbcSMatt Macy zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; 1997eda14cbcSMatt Macy for (int i = 1; i < hdr->bth_count; i++) { 1998eda14cbcSMatt Macy VERIFY3S(tree->bt_compar(node->btc_elems + (i - 1) * size, 1999eda14cbcSMatt Macy node->btc_elems + i * size), ==, -1); 2000eda14cbcSMatt Macy } 2001eda14cbcSMatt Macy for (int i = 0; i < hdr->bth_count; i++) { 2002eda14cbcSMatt Macy uint8_t *left_child_last = NULL; 2003eda14cbcSMatt Macy zfs_btree_hdr_t *left_child_hdr = node->btc_children[i]; 2004eda14cbcSMatt Macy if (left_child_hdr->bth_core) { 2005eda14cbcSMatt Macy zfs_btree_core_t *left_child = 2006eda14cbcSMatt Macy (zfs_btree_core_t *)left_child_hdr; 2007eda14cbcSMatt Macy left_child_last = left_child->btc_elems + 2008eda14cbcSMatt Macy (left_child_hdr->bth_count - 1) * size; 2009eda14cbcSMatt Macy } else { 2010eda14cbcSMatt Macy zfs_btree_leaf_t *left_child = 2011eda14cbcSMatt Macy (zfs_btree_leaf_t *)left_child_hdr; 2012eda14cbcSMatt Macy left_child_last = left_child->btl_elems + 2013eda14cbcSMatt Macy (left_child_hdr->bth_count - 1) * size; 2014eda14cbcSMatt Macy } 2015eda14cbcSMatt Macy if (tree->bt_compar(node->btc_elems + i * size, 2016eda14cbcSMatt Macy left_child_last) != 1) { 2017eda14cbcSMatt Macy panic("btree: compar returned %d (expected 1) at " 2018eda14cbcSMatt Macy "%px %d: compar(%px, %px)", tree->bt_compar( 2019eda14cbcSMatt Macy node->btc_elems + i * size, left_child_last), 2020eda14cbcSMatt Macy (void *)node, i, (void *)(node->btc_elems + i * 2021eda14cbcSMatt Macy size), (void *)left_child_last); 2022eda14cbcSMatt Macy } 2023eda14cbcSMatt Macy 2024eda14cbcSMatt Macy uint8_t *right_child_first = NULL; 2025eda14cbcSMatt Macy zfs_btree_hdr_t *right_child_hdr = node->btc_children[i + 1]; 2026eda14cbcSMatt Macy if (right_child_hdr->bth_core) { 2027eda14cbcSMatt Macy zfs_btree_core_t *right_child = 2028eda14cbcSMatt Macy (zfs_btree_core_t *)right_child_hdr; 2029eda14cbcSMatt Macy right_child_first = right_child->btc_elems; 2030eda14cbcSMatt Macy } else { 2031eda14cbcSMatt Macy zfs_btree_leaf_t *right_child = 2032eda14cbcSMatt Macy (zfs_btree_leaf_t *)right_child_hdr; 2033eda14cbcSMatt Macy right_child_first = right_child->btl_elems; 2034eda14cbcSMatt Macy } 2035eda14cbcSMatt Macy if (tree->bt_compar(node->btc_elems + i * size, 2036eda14cbcSMatt Macy right_child_first) != -1) { 2037eda14cbcSMatt Macy panic("btree: compar returned %d (expected -1) at " 2038eda14cbcSMatt Macy "%px %d: compar(%px, %px)", tree->bt_compar( 2039eda14cbcSMatt Macy node->btc_elems + i * size, right_child_first), 2040eda14cbcSMatt Macy (void *)node, i, (void *)(node->btc_elems + i * 2041eda14cbcSMatt Macy size), (void *)right_child_first); 2042eda14cbcSMatt Macy } 2043eda14cbcSMatt Macy } 2044eda14cbcSMatt Macy for (int i = 0; i <= hdr->bth_count; i++) { 2045eda14cbcSMatt Macy zfs_btree_verify_order_helper(tree, node->btc_children[i]); 2046eda14cbcSMatt Macy } 2047eda14cbcSMatt Macy } 2048eda14cbcSMatt Macy 2049eda14cbcSMatt Macy /* Check that all elements in the tree are in sorted order. */ 2050eda14cbcSMatt Macy static void 2051eda14cbcSMatt Macy zfs_btree_verify_order(zfs_btree_t *tree) 2052eda14cbcSMatt Macy { 2053eda14cbcSMatt Macy EQUIV(tree->bt_height == -1, tree->bt_root == NULL); 2054eda14cbcSMatt Macy if (tree->bt_height == -1) { 2055eda14cbcSMatt Macy return; 2056eda14cbcSMatt Macy } 2057eda14cbcSMatt Macy 2058eda14cbcSMatt Macy zfs_btree_verify_order_helper(tree, tree->bt_root); 2059eda14cbcSMatt Macy } 2060eda14cbcSMatt Macy 2061eda14cbcSMatt Macy #ifdef ZFS_DEBUG 2062eda14cbcSMatt Macy /* Check that all unused memory is poisoned correctly. */ 2063eda14cbcSMatt Macy static void 2064eda14cbcSMatt Macy zfs_btree_verify_poison_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) 2065eda14cbcSMatt Macy { 2066eda14cbcSMatt Macy size_t size = tree->bt_elem_size; 2067eda14cbcSMatt Macy if (!hdr->bth_core) { 2068eda14cbcSMatt Macy zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr; 2069eda14cbcSMatt Macy uint8_t val = 0x0f; 2070eda14cbcSMatt Macy for (int i = hdr->bth_count * size; i < BTREE_LEAF_SIZE - 2071eda14cbcSMatt Macy sizeof (zfs_btree_hdr_t); i++) { 2072eda14cbcSMatt Macy VERIFY3U(leaf->btl_elems[i], ==, val); 2073eda14cbcSMatt Macy } 2074eda14cbcSMatt Macy } else { 2075eda14cbcSMatt Macy zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; 2076eda14cbcSMatt Macy uint8_t val = 0x0f; 2077eda14cbcSMatt Macy for (int i = hdr->bth_count * size; i < BTREE_CORE_ELEMS * size; 2078eda14cbcSMatt Macy i++) { 2079eda14cbcSMatt Macy VERIFY3U(node->btc_elems[i], ==, val); 2080eda14cbcSMatt Macy } 2081eda14cbcSMatt Macy 2082eda14cbcSMatt Macy for (int i = hdr->bth_count + 1; i <= BTREE_CORE_ELEMS; i++) { 2083eda14cbcSMatt Macy VERIFY3P(node->btc_children[i], ==, 2084eda14cbcSMatt Macy (zfs_btree_hdr_t *)BTREE_POISON); 2085eda14cbcSMatt Macy } 2086eda14cbcSMatt Macy 2087eda14cbcSMatt Macy for (int i = 0; i <= hdr->bth_count; i++) { 2088eda14cbcSMatt Macy zfs_btree_verify_poison_helper(tree, 2089eda14cbcSMatt Macy node->btc_children[i]); 2090eda14cbcSMatt Macy } 2091eda14cbcSMatt Macy } 2092eda14cbcSMatt Macy } 2093eda14cbcSMatt Macy #endif 2094eda14cbcSMatt Macy 2095eda14cbcSMatt Macy /* Check that unused memory in the tree is still poisoned. */ 2096eda14cbcSMatt Macy static void 2097eda14cbcSMatt Macy zfs_btree_verify_poison(zfs_btree_t *tree) 2098eda14cbcSMatt Macy { 2099eda14cbcSMatt Macy #ifdef ZFS_DEBUG 2100eda14cbcSMatt Macy if (tree->bt_height == -1) 2101eda14cbcSMatt Macy return; 2102eda14cbcSMatt Macy zfs_btree_verify_poison_helper(tree, tree->bt_root); 2103eda14cbcSMatt Macy #endif 2104eda14cbcSMatt Macy } 2105eda14cbcSMatt Macy 2106eda14cbcSMatt Macy void 2107eda14cbcSMatt Macy zfs_btree_verify(zfs_btree_t *tree) 2108eda14cbcSMatt Macy { 2109eda14cbcSMatt Macy if (zfs_btree_verify_intensity == 0) 2110eda14cbcSMatt Macy return; 2111eda14cbcSMatt Macy zfs_btree_verify_height(tree); 2112eda14cbcSMatt Macy if (zfs_btree_verify_intensity == 1) 2113eda14cbcSMatt Macy return; 2114eda14cbcSMatt Macy zfs_btree_verify_pointers(tree); 2115eda14cbcSMatt Macy if (zfs_btree_verify_intensity == 2) 2116eda14cbcSMatt Macy return; 2117eda14cbcSMatt Macy zfs_btree_verify_counts(tree); 2118eda14cbcSMatt Macy if (zfs_btree_verify_intensity == 3) 2119eda14cbcSMatt Macy return; 2120eda14cbcSMatt Macy zfs_btree_verify_order(tree); 2121eda14cbcSMatt Macy 2122eda14cbcSMatt Macy if (zfs_btree_verify_intensity == 4) 2123eda14cbcSMatt Macy return; 2124eda14cbcSMatt Macy zfs_btree_verify_poison(tree); 2125eda14cbcSMatt Macy } 2126