1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2018, Joyent, Inc. 25 * Copyright (c) 2011, 2020, Delphix. All rights reserved. 26 * Copyright (c) 2014, Saso Kiselkov. All rights reserved. 27 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved. 28 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 29 * Copyright (c) 2020, George Amanakis. All rights reserved. 30 * Copyright (c) 2019, 2024, Klara Inc. 31 * Copyright (c) 2019, Allan Jude 32 * Copyright (c) 2020, The FreeBSD Foundation [1] 33 * Copyright (c) 2021, 2024 by George Melikov. All rights reserved. 34 * 35 * [1] Portions of this software were developed by Allan Jude 36 * under sponsorship from the FreeBSD Foundation. 37 */ 38 39 /* 40 * DVA-based Adjustable Replacement Cache 41 * 42 * While much of the theory of operation used here is 43 * based on the self-tuning, low overhead replacement cache 44 * presented by Megiddo and Modha at FAST 2003, there are some 45 * significant differences: 46 * 47 * 1. The Megiddo and Modha model assumes any page is evictable. 48 * Pages in its cache cannot be "locked" into memory. This makes 49 * the eviction algorithm simple: evict the last page in the list. 50 * This also make the performance characteristics easy to reason 51 * about. Our cache is not so simple. At any given moment, some 52 * subset of the blocks in the cache are un-evictable because we 53 * have handed out a reference to them. Blocks are only evictable 54 * when there are no external references active. This makes 55 * eviction far more problematic: we choose to evict the evictable 56 * blocks that are the "lowest" in the list. 57 * 58 * There are times when it is not possible to evict the requested 59 * space. In these circumstances we are unable to adjust the cache 60 * size. To prevent the cache growing unbounded at these times we 61 * implement a "cache throttle" that slows the flow of new data 62 * into the cache until we can make space available. 63 * 64 * 2. The Megiddo and Modha model assumes a fixed cache size. 65 * Pages are evicted when the cache is full and there is a cache 66 * miss. Our model has a variable sized cache. It grows with 67 * high use, but also tries to react to memory pressure from the 68 * operating system: decreasing its size when system memory is 69 * tight. 70 * 71 * 3. The Megiddo and Modha model assumes a fixed page size. All 72 * elements of the cache are therefore exactly the same size. So 73 * when adjusting the cache size following a cache miss, its simply 74 * a matter of choosing a single page to evict. In our model, we 75 * have variable sized cache blocks (ranging from 512 bytes to 76 * 128K bytes). We therefore choose a set of blocks to evict to make 77 * space for a cache miss that approximates as closely as possible 78 * the space used by the new block. 79 * 80 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 81 * by N. Megiddo & D. Modha, FAST 2003 82 */ 83 84 /* 85 * The locking model: 86 * 87 * A new reference to a cache buffer can be obtained in two 88 * ways: 1) via a hash table lookup using the DVA as a key, 89 * or 2) via one of the ARC lists. The arc_read() interface 90 * uses method 1, while the internal ARC algorithms for 91 * adjusting the cache use method 2. We therefore provide two 92 * types of locks: 1) the hash table lock array, and 2) the 93 * ARC list locks. 94 * 95 * Buffers do not have their own mutexes, rather they rely on the 96 * hash table mutexes for the bulk of their protection (i.e. most 97 * fields in the arc_buf_hdr_t are protected by these mutexes). 98 * 99 * buf_hash_find() returns the appropriate mutex (held) when it 100 * locates the requested buffer in the hash table. It returns 101 * NULL for the mutex if the buffer was not in the table. 102 * 103 * buf_hash_remove() expects the appropriate hash mutex to be 104 * already held before it is invoked. 105 * 106 * Each ARC state also has a mutex which is used to protect the 107 * buffer list associated with the state. When attempting to 108 * obtain a hash table lock while holding an ARC list lock you 109 * must use: mutex_tryenter() to avoid deadlock. Also note that 110 * the active state mutex must be held before the ghost state mutex. 111 * 112 * It as also possible to register a callback which is run when the 113 * metadata limit is reached and no buffers can be safely evicted. In 114 * this case the arc user should drop a reference on some arc buffers so 115 * they can be reclaimed. For example, when using the ZPL each dentry 116 * holds a references on a znode. These dentries must be pruned before 117 * the arc buffer holding the znode can be safely evicted. 118 * 119 * Note that the majority of the performance stats are manipulated 120 * with atomic operations. 121 * 122 * The L2ARC uses the l2ad_mtx on each vdev for the following: 123 * 124 * - L2ARC buflist creation 125 * - L2ARC buflist eviction 126 * - L2ARC write completion, which walks L2ARC buflists 127 * - ARC header destruction, as it removes from L2ARC buflists 128 * - ARC header release, as it removes from L2ARC buflists 129 */ 130 131 /* 132 * ARC operation: 133 * 134 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. 135 * This structure can point either to a block that is still in the cache or to 136 * one that is only accessible in an L2 ARC device, or it can provide 137 * information about a block that was recently evicted. If a block is 138 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough 139 * information to retrieve it from the L2ARC device. This information is 140 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block 141 * that is in this state cannot access the data directly. 142 * 143 * Blocks that are actively being referenced or have not been evicted 144 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within 145 * the arc_buf_hdr_t that will point to the data block in memory. A block can 146 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC 147 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and 148 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd). 149 * 150 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the 151 * ability to store the physical data (b_pabd) associated with the DVA of the 152 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block, 153 * it will match its on-disk compression characteristics. This behavior can be 154 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the 155 * compressed ARC functionality is disabled, the b_pabd will point to an 156 * uncompressed version of the on-disk data. 157 * 158 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each 159 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it. 160 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC 161 * consumer. The ARC will provide references to this data and will keep it 162 * cached until it is no longer in use. The ARC caches only the L1ARC's physical 163 * data block and will evict any arc_buf_t that is no longer referenced. The 164 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the 165 * "overhead_size" kstat. 166 * 167 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or 168 * compressed form. The typical case is that consumers will want uncompressed 169 * data, and when that happens a new data buffer is allocated where the data is 170 * decompressed for them to use. Currently the only consumer who wants 171 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it 172 * exists on disk. When this happens, the arc_buf_t's data buffer is shared 173 * with the arc_buf_hdr_t. 174 * 175 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The 176 * first one is owned by a compressed send consumer (and therefore references 177 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be 178 * used by any other consumer (and has its own uncompressed copy of the data 179 * buffer). 180 * 181 * arc_buf_hdr_t 182 * +-----------+ 183 * | fields | 184 * | common to | 185 * | L1- and | 186 * | L2ARC | 187 * +-----------+ 188 * | l2arc_buf_hdr_t 189 * | | 190 * +-----------+ 191 * | l1arc_buf_hdr_t 192 * | | arc_buf_t 193 * | b_buf +------------>+-----------+ arc_buf_t 194 * | b_pabd +-+ |b_next +---->+-----------+ 195 * +-----------+ | |-----------| |b_next +-->NULL 196 * | |b_comp = T | +-----------+ 197 * | |b_data +-+ |b_comp = F | 198 * | +-----------+ | |b_data +-+ 199 * +->+------+ | +-----------+ | 200 * compressed | | | | 201 * data | |<--------------+ | uncompressed 202 * +------+ compressed, | data 203 * shared +-->+------+ 204 * data | | 205 * | | 206 * +------+ 207 * 208 * When a consumer reads a block, the ARC must first look to see if the 209 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new 210 * arc_buf_t and either copies uncompressed data into a new data buffer from an 211 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a 212 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the 213 * hdr is compressed and the desired compression characteristics of the 214 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the 215 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be 216 * the last buffer in the hdr's b_buf list, however a shared compressed buf can 217 * be anywhere in the hdr's list. 218 * 219 * The diagram below shows an example of an uncompressed ARC hdr that is 220 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is 221 * the last element in the buf list): 222 * 223 * arc_buf_hdr_t 224 * +-----------+ 225 * | | 226 * | | 227 * | | 228 * +-----------+ 229 * l2arc_buf_hdr_t| | 230 * | | 231 * +-----------+ 232 * l1arc_buf_hdr_t| | 233 * | | arc_buf_t (shared) 234 * | b_buf +------------>+---------+ arc_buf_t 235 * | | |b_next +---->+---------+ 236 * | b_pabd +-+ |---------| |b_next +-->NULL 237 * +-----------+ | | | +---------+ 238 * | |b_data +-+ | | 239 * | +---------+ | |b_data +-+ 240 * +->+------+ | +---------+ | 241 * | | | | 242 * uncompressed | | | | 243 * data +------+ | | 244 * ^ +->+------+ | 245 * | uncompressed | | | 246 * | data | | | 247 * | +------+ | 248 * +---------------------------------+ 249 * 250 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd 251 * since the physical block is about to be rewritten. The new data contents 252 * will be contained in the arc_buf_t. As the I/O pipeline performs the write, 253 * it may compress the data before writing it to disk. The ARC will be called 254 * with the transformed data and will memcpy the transformed on-disk block into 255 * a newly allocated b_pabd. Writes are always done into buffers which have 256 * either been loaned (and hence are new and don't have other readers) or 257 * buffers which have been released (and hence have their own hdr, if there 258 * were originally other readers of the buf's original hdr). This ensures that 259 * the ARC only needs to update a single buf and its hdr after a write occurs. 260 * 261 * When the L2ARC is in use, it will also take advantage of the b_pabd. The 262 * L2ARC will always write the contents of b_pabd to the L2ARC. This means 263 * that when compressed ARC is enabled that the L2ARC blocks are identical 264 * to the on-disk block in the main data pool. This provides a significant 265 * advantage since the ARC can leverage the bp's checksum when reading from the 266 * L2ARC to determine if the contents are valid. However, if the compressed 267 * ARC is disabled, then the L2ARC's block must be transformed to look 268 * like the physical block in the main data pool before comparing the 269 * checksum and determining its validity. 270 * 271 * The L1ARC has a slightly different system for storing encrypted data. 272 * Raw (encrypted + possibly compressed) data has a few subtle differences from 273 * data that is just compressed. The biggest difference is that it is not 274 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded. 275 * The other difference is that encryption cannot be treated as a suggestion. 276 * If a caller would prefer compressed data, but they actually wind up with 277 * uncompressed data the worst thing that could happen is there might be a 278 * performance hit. If the caller requests encrypted data, however, we must be 279 * sure they actually get it or else secret information could be leaked. Raw 280 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore, 281 * may have both an encrypted version and a decrypted version of its data at 282 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is 283 * copied out of this header. To avoid complications with b_pabd, raw buffers 284 * cannot be shared. 285 */ 286 287 #include <sys/spa.h> 288 #include <sys/zio.h> 289 #include <sys/spa_impl.h> 290 #include <sys/zio_compress.h> 291 #include <sys/zio_checksum.h> 292 #include <sys/zfs_context.h> 293 #include <sys/arc.h> 294 #include <sys/zfs_refcount.h> 295 #include <sys/vdev.h> 296 #include <sys/vdev_impl.h> 297 #include <sys/dsl_pool.h> 298 #include <sys/multilist.h> 299 #include <sys/abd.h> 300 #include <sys/zil.h> 301 #include <sys/fm/fs/zfs.h> 302 #include <sys/callb.h> 303 #include <sys/kstat.h> 304 #include <sys/zthr.h> 305 #include <zfs_fletcher.h> 306 #include <sys/arc_impl.h> 307 #include <sys/trace_zfs.h> 308 #include <sys/aggsum.h> 309 #include <sys/wmsum.h> 310 #include <cityhash.h> 311 #include <sys/vdev_trim.h> 312 #include <sys/zfs_racct.h> 313 #include <sys/zstd/zstd.h> 314 315 #ifndef _KERNEL 316 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 317 boolean_t arc_watch = B_FALSE; 318 #endif 319 320 /* 321 * This thread's job is to keep enough free memory in the system, by 322 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves 323 * arc_available_memory(). 324 */ 325 static zthr_t *arc_reap_zthr; 326 327 /* 328 * This thread's job is to keep arc_size under arc_c, by calling 329 * arc_evict(), which improves arc_is_overflowing(). 330 */ 331 static zthr_t *arc_evict_zthr; 332 static arc_buf_hdr_t **arc_state_evict_markers; 333 static int arc_state_evict_marker_count; 334 335 static kmutex_t arc_evict_lock; 336 static boolean_t arc_evict_needed = B_FALSE; 337 static clock_t arc_last_uncached_flush; 338 339 /* 340 * Count of bytes evicted since boot. 341 */ 342 static uint64_t arc_evict_count; 343 344 /* 345 * List of arc_evict_waiter_t's, representing threads waiting for the 346 * arc_evict_count to reach specific values. 347 */ 348 static list_t arc_evict_waiters; 349 350 /* 351 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of 352 * the requested amount of data to be evicted. For example, by default for 353 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation. 354 * Since this is above 100%, it ensures that progress is made towards getting 355 * arc_size under arc_c. Since this is finite, it ensures that allocations 356 * can still happen, even during the potentially long time that arc_size is 357 * more than arc_c. 358 */ 359 static uint_t zfs_arc_eviction_pct = 200; 360 361 /* 362 * The number of headers to evict in arc_evict_state_impl() before 363 * dropping the sublist lock and evicting from another sublist. A lower 364 * value means we're more likely to evict the "correct" header (i.e. the 365 * oldest header in the arc state), but comes with higher overhead 366 * (i.e. more invocations of arc_evict_state_impl()). 367 */ 368 static uint_t zfs_arc_evict_batch_limit = 10; 369 370 /* number of seconds before growing cache again */ 371 uint_t arc_grow_retry = 5; 372 373 /* 374 * Minimum time between calls to arc_kmem_reap_soon(). 375 */ 376 static const int arc_kmem_cache_reap_retry_ms = 1000; 377 378 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */ 379 static int zfs_arc_overflow_shift = 8; 380 381 /* log2(fraction of arc to reclaim) */ 382 uint_t arc_shrink_shift = 7; 383 384 /* percent of pagecache to reclaim arc to */ 385 #ifdef _KERNEL 386 uint_t zfs_arc_pc_percent = 0; 387 #endif 388 389 /* 390 * log2(fraction of ARC which must be free to allow growing). 391 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 392 * when reading a new block into the ARC, we will evict an equal-sized block 393 * from the ARC. 394 * 395 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 396 * we will still not allow it to grow. 397 */ 398 uint_t arc_no_grow_shift = 5; 399 400 401 /* 402 * minimum lifespan of a prefetch block in clock ticks 403 * (initialized in arc_init()) 404 */ 405 static uint_t arc_min_prefetch_ms; 406 static uint_t arc_min_prescient_prefetch_ms; 407 408 /* 409 * If this percent of memory is free, don't throttle. 410 */ 411 uint_t arc_lotsfree_percent = 10; 412 413 /* 414 * The arc has filled available memory and has now warmed up. 415 */ 416 boolean_t arc_warm; 417 418 /* 419 * These tunables are for performance analysis. 420 */ 421 uint64_t zfs_arc_max = 0; 422 uint64_t zfs_arc_min = 0; 423 static uint64_t zfs_arc_dnode_limit = 0; 424 static uint_t zfs_arc_dnode_reduce_percent = 10; 425 static uint_t zfs_arc_grow_retry = 0; 426 static uint_t zfs_arc_shrink_shift = 0; 427 uint_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 428 429 /* 430 * ARC dirty data constraints for arc_tempreserve_space() throttle: 431 * * total dirty data limit 432 * * anon block dirty limit 433 * * each pool's anon allowance 434 */ 435 static const unsigned long zfs_arc_dirty_limit_percent = 50; 436 static const unsigned long zfs_arc_anon_limit_percent = 25; 437 static const unsigned long zfs_arc_pool_dirty_percent = 20; 438 439 /* 440 * Enable or disable compressed arc buffers. 441 */ 442 int zfs_compressed_arc_enabled = B_TRUE; 443 444 /* 445 * Balance between metadata and data on ghost hits. Values above 100 446 * increase metadata caching by proportionally reducing effect of ghost 447 * data hits on target data/metadata rate. 448 */ 449 static uint_t zfs_arc_meta_balance = 500; 450 451 /* 452 * Percentage that can be consumed by dnodes of ARC meta buffers. 453 */ 454 static uint_t zfs_arc_dnode_limit_percent = 10; 455 456 /* 457 * These tunables are Linux-specific 458 */ 459 static uint64_t zfs_arc_sys_free = 0; 460 static uint_t zfs_arc_min_prefetch_ms = 0; 461 static uint_t zfs_arc_min_prescient_prefetch_ms = 0; 462 static uint_t zfs_arc_lotsfree_percent = 10; 463 464 /* 465 * Number of arc_prune threads 466 */ 467 static int zfs_arc_prune_task_threads = 1; 468 469 /* Used by spa_export/spa_destroy to flush the arc asynchronously */ 470 static taskq_t *arc_flush_taskq; 471 472 /* The 7 states: */ 473 arc_state_t ARC_anon; 474 arc_state_t ARC_mru; 475 arc_state_t ARC_mru_ghost; 476 arc_state_t ARC_mfu; 477 arc_state_t ARC_mfu_ghost; 478 arc_state_t ARC_l2c_only; 479 arc_state_t ARC_uncached; 480 481 arc_stats_t arc_stats = { 482 { "hits", KSTAT_DATA_UINT64 }, 483 { "iohits", KSTAT_DATA_UINT64 }, 484 { "misses", KSTAT_DATA_UINT64 }, 485 { "demand_data_hits", KSTAT_DATA_UINT64 }, 486 { "demand_data_iohits", KSTAT_DATA_UINT64 }, 487 { "demand_data_misses", KSTAT_DATA_UINT64 }, 488 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 489 { "demand_metadata_iohits", KSTAT_DATA_UINT64 }, 490 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 491 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 492 { "prefetch_data_iohits", KSTAT_DATA_UINT64 }, 493 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 494 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 495 { "prefetch_metadata_iohits", KSTAT_DATA_UINT64 }, 496 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 497 { "mru_hits", KSTAT_DATA_UINT64 }, 498 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 499 { "mfu_hits", KSTAT_DATA_UINT64 }, 500 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 501 { "uncached_hits", KSTAT_DATA_UINT64 }, 502 { "deleted", KSTAT_DATA_UINT64 }, 503 { "mutex_miss", KSTAT_DATA_UINT64 }, 504 { "access_skip", KSTAT_DATA_UINT64 }, 505 { "evict_skip", KSTAT_DATA_UINT64 }, 506 { "evict_not_enough", KSTAT_DATA_UINT64 }, 507 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 508 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 509 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64 }, 510 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64 }, 511 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 512 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 513 { "hash_elements", KSTAT_DATA_UINT64 }, 514 { "hash_elements_max", KSTAT_DATA_UINT64 }, 515 { "hash_collisions", KSTAT_DATA_UINT64 }, 516 { "hash_chains", KSTAT_DATA_UINT64 }, 517 { "hash_chain_max", KSTAT_DATA_UINT64 }, 518 { "meta", KSTAT_DATA_UINT64 }, 519 { "pd", KSTAT_DATA_UINT64 }, 520 { "pm", KSTAT_DATA_UINT64 }, 521 { "c", KSTAT_DATA_UINT64 }, 522 { "c_min", KSTAT_DATA_UINT64 }, 523 { "c_max", KSTAT_DATA_UINT64 }, 524 { "size", KSTAT_DATA_UINT64 }, 525 { "compressed_size", KSTAT_DATA_UINT64 }, 526 { "uncompressed_size", KSTAT_DATA_UINT64 }, 527 { "overhead_size", KSTAT_DATA_UINT64 }, 528 { "hdr_size", KSTAT_DATA_UINT64 }, 529 { "data_size", KSTAT_DATA_UINT64 }, 530 { "metadata_size", KSTAT_DATA_UINT64 }, 531 { "dbuf_size", KSTAT_DATA_UINT64 }, 532 { "dnode_size", KSTAT_DATA_UINT64 }, 533 { "bonus_size", KSTAT_DATA_UINT64 }, 534 #if defined(COMPAT_FREEBSD11) 535 { "other_size", KSTAT_DATA_UINT64 }, 536 #endif 537 { "anon_size", KSTAT_DATA_UINT64 }, 538 { "anon_data", KSTAT_DATA_UINT64 }, 539 { "anon_metadata", KSTAT_DATA_UINT64 }, 540 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 541 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 542 { "mru_size", KSTAT_DATA_UINT64 }, 543 { "mru_data", KSTAT_DATA_UINT64 }, 544 { "mru_metadata", KSTAT_DATA_UINT64 }, 545 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 546 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 547 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 548 { "mru_ghost_data", KSTAT_DATA_UINT64 }, 549 { "mru_ghost_metadata", KSTAT_DATA_UINT64 }, 550 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 551 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 552 { "mfu_size", KSTAT_DATA_UINT64 }, 553 { "mfu_data", KSTAT_DATA_UINT64 }, 554 { "mfu_metadata", KSTAT_DATA_UINT64 }, 555 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 556 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 557 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 558 { "mfu_ghost_data", KSTAT_DATA_UINT64 }, 559 { "mfu_ghost_metadata", KSTAT_DATA_UINT64 }, 560 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 561 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 562 { "uncached_size", KSTAT_DATA_UINT64 }, 563 { "uncached_data", KSTAT_DATA_UINT64 }, 564 { "uncached_metadata", KSTAT_DATA_UINT64 }, 565 { "uncached_evictable_data", KSTAT_DATA_UINT64 }, 566 { "uncached_evictable_metadata", KSTAT_DATA_UINT64 }, 567 { "l2_hits", KSTAT_DATA_UINT64 }, 568 { "l2_misses", KSTAT_DATA_UINT64 }, 569 { "l2_prefetch_asize", KSTAT_DATA_UINT64 }, 570 { "l2_mru_asize", KSTAT_DATA_UINT64 }, 571 { "l2_mfu_asize", KSTAT_DATA_UINT64 }, 572 { "l2_bufc_data_asize", KSTAT_DATA_UINT64 }, 573 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64 }, 574 { "l2_feeds", KSTAT_DATA_UINT64 }, 575 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 576 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 577 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 578 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 579 { "l2_writes_done", KSTAT_DATA_UINT64 }, 580 { "l2_writes_error", KSTAT_DATA_UINT64 }, 581 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 582 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 583 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 584 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 585 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 586 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 587 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 588 { "l2_io_error", KSTAT_DATA_UINT64 }, 589 { "l2_size", KSTAT_DATA_UINT64 }, 590 { "l2_asize", KSTAT_DATA_UINT64 }, 591 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 592 { "l2_log_blk_writes", KSTAT_DATA_UINT64 }, 593 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 }, 594 { "l2_log_blk_asize", KSTAT_DATA_UINT64 }, 595 { "l2_log_blk_count", KSTAT_DATA_UINT64 }, 596 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 }, 597 { "l2_rebuild_success", KSTAT_DATA_UINT64 }, 598 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 }, 599 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 }, 600 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 }, 601 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 }, 602 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 }, 603 { "l2_rebuild_size", KSTAT_DATA_UINT64 }, 604 { "l2_rebuild_asize", KSTAT_DATA_UINT64 }, 605 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 }, 606 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 }, 607 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 }, 608 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 609 { "memory_direct_count", KSTAT_DATA_UINT64 }, 610 { "memory_indirect_count", KSTAT_DATA_UINT64 }, 611 { "memory_all_bytes", KSTAT_DATA_UINT64 }, 612 { "memory_free_bytes", KSTAT_DATA_UINT64 }, 613 { "memory_available_bytes", KSTAT_DATA_INT64 }, 614 { "arc_no_grow", KSTAT_DATA_UINT64 }, 615 { "arc_tempreserve", KSTAT_DATA_UINT64 }, 616 { "arc_loaned_bytes", KSTAT_DATA_UINT64 }, 617 { "arc_prune", KSTAT_DATA_UINT64 }, 618 { "arc_meta_used", KSTAT_DATA_UINT64 }, 619 { "arc_dnode_limit", KSTAT_DATA_UINT64 }, 620 { "async_upgrade_sync", KSTAT_DATA_UINT64 }, 621 { "predictive_prefetch", KSTAT_DATA_UINT64 }, 622 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 }, 623 { "demand_iohit_predictive_prefetch", KSTAT_DATA_UINT64 }, 624 { "prescient_prefetch", KSTAT_DATA_UINT64 }, 625 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 }, 626 { "demand_iohit_prescient_prefetch", KSTAT_DATA_UINT64 }, 627 { "arc_need_free", KSTAT_DATA_UINT64 }, 628 { "arc_sys_free", KSTAT_DATA_UINT64 }, 629 { "arc_raw_size", KSTAT_DATA_UINT64 }, 630 { "cached_only_in_progress", KSTAT_DATA_UINT64 }, 631 { "abd_chunk_waste_size", KSTAT_DATA_UINT64 }, 632 }; 633 634 arc_sums_t arc_sums; 635 636 #define ARCSTAT_MAX(stat, val) { \ 637 uint64_t m; \ 638 while ((val) > (m = arc_stats.stat.value.ui64) && \ 639 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 640 continue; \ 641 } 642 643 /* 644 * We define a macro to allow ARC hits/misses to be easily broken down by 645 * two separate conditions, giving a total of four different subtypes for 646 * each of hits and misses (so eight statistics total). 647 */ 648 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 649 if (cond1) { \ 650 if (cond2) { \ 651 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 652 } else { \ 653 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 654 } \ 655 } else { \ 656 if (cond2) { \ 657 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 658 } else { \ 659 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 660 } \ 661 } 662 663 /* 664 * This macro allows us to use kstats as floating averages. Each time we 665 * update this kstat, we first factor it and the update value by 666 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall 667 * average. This macro assumes that integer loads and stores are atomic, but 668 * is not safe for multiple writers updating the kstat in parallel (only the 669 * last writer's update will remain). 670 */ 671 #define ARCSTAT_F_AVG_FACTOR 3 672 #define ARCSTAT_F_AVG(stat, value) \ 673 do { \ 674 uint64_t x = ARCSTAT(stat); \ 675 x = x - x / ARCSTAT_F_AVG_FACTOR + \ 676 (value) / ARCSTAT_F_AVG_FACTOR; \ 677 ARCSTAT(stat) = x; \ 678 } while (0) 679 680 static kstat_t *arc_ksp; 681 682 /* 683 * There are several ARC variables that are critical to export as kstats -- 684 * but we don't want to have to grovel around in the kstat whenever we wish to 685 * manipulate them. For these variables, we therefore define them to be in 686 * terms of the statistic variable. This assures that we are not introducing 687 * the possibility of inconsistency by having shadow copies of the variables, 688 * while still allowing the code to be readable. 689 */ 690 #define arc_tempreserve ARCSTAT(arcstat_tempreserve) 691 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes) 692 #define arc_dnode_limit ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */ 693 #define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */ 694 695 hrtime_t arc_growtime; 696 list_t arc_prune_list; 697 kmutex_t arc_prune_mtx; 698 taskq_t *arc_prune_taskq; 699 700 #define GHOST_STATE(state) \ 701 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 702 (state) == arc_l2c_only) 703 704 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 705 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 706 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 707 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 708 #define HDR_PRESCIENT_PREFETCH(hdr) \ 709 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) 710 #define HDR_COMPRESSION_ENABLED(hdr) \ 711 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) 712 713 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 714 #define HDR_UNCACHED(hdr) ((hdr)->b_flags & ARC_FLAG_UNCACHED) 715 #define HDR_L2_READING(hdr) \ 716 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 717 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 718 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 719 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 720 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 721 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED) 722 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH) 723 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) 724 725 #define HDR_ISTYPE_METADATA(hdr) \ 726 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 727 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 728 729 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 730 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 731 #define HDR_HAS_RABD(hdr) \ 732 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \ 733 (hdr)->b_crypt_hdr.b_rabd != NULL) 734 #define HDR_ENCRYPTED(hdr) \ 735 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 736 #define HDR_AUTHENTICATED(hdr) \ 737 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 738 739 /* For storing compression mode in b_flags */ 740 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) 741 742 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ 743 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) 744 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ 745 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); 746 747 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) 748 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED) 749 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED) 750 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED) 751 752 /* 753 * Other sizes 754 */ 755 756 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 757 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 758 759 /* 760 * Hash table routines 761 */ 762 763 #define BUF_LOCKS 2048 764 typedef struct buf_hash_table { 765 uint64_t ht_mask; 766 arc_buf_hdr_t **ht_table; 767 kmutex_t ht_locks[BUF_LOCKS] ____cacheline_aligned; 768 } buf_hash_table_t; 769 770 static buf_hash_table_t buf_hash_table; 771 772 #define BUF_HASH_INDEX(spa, dva, birth) \ 773 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 774 #define BUF_HASH_LOCK(idx) (&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 775 #define HDR_LOCK(hdr) \ 776 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 777 778 uint64_t zfs_crc64_table[256]; 779 780 /* 781 * Asynchronous ARC flush 782 * 783 * We track these in a list for arc_async_flush_guid_inuse(). 784 * Used for both L1 and L2 async teardown. 785 */ 786 static list_t arc_async_flush_list; 787 static kmutex_t arc_async_flush_lock; 788 789 typedef struct arc_async_flush { 790 uint64_t af_spa_guid; 791 taskq_ent_t af_tqent; 792 uint_t af_cache_level; /* 1 or 2 to differentiate node */ 793 list_node_t af_node; 794 } arc_async_flush_t; 795 796 797 /* 798 * Level 2 ARC 799 */ 800 801 #define L2ARC_WRITE_SIZE (32 * 1024 * 1024) /* initial write max */ 802 #define L2ARC_HEADROOM 8 /* num of writes */ 803 804 /* 805 * If we discover during ARC scan any buffers to be compressed, we boost 806 * our headroom for the next scanning cycle by this percentage multiple. 807 */ 808 #define L2ARC_HEADROOM_BOOST 200 809 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 810 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 811 812 /* 813 * We can feed L2ARC from two states of ARC buffers, mru and mfu, 814 * and each of the state has two types: data and metadata. 815 */ 816 #define L2ARC_FEED_TYPES 4 817 818 /* L2ARC Performance Tunables */ 819 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */ 820 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */ 821 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */ 822 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 823 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 824 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */ 825 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 826 int l2arc_feed_again = B_TRUE; /* turbo warmup */ 827 int l2arc_norw = B_FALSE; /* no reads during writes */ 828 static uint_t l2arc_meta_percent = 33; /* limit on headers size */ 829 830 /* 831 * L2ARC Internals 832 */ 833 static list_t L2ARC_dev_list; /* device list */ 834 static list_t *l2arc_dev_list; /* device list pointer */ 835 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 836 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 837 static list_t L2ARC_free_on_write; /* free after write buf list */ 838 static list_t *l2arc_free_on_write; /* free after write list ptr */ 839 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 840 static uint64_t l2arc_ndev; /* number of devices */ 841 842 typedef struct l2arc_read_callback { 843 arc_buf_hdr_t *l2rcb_hdr; /* read header */ 844 blkptr_t l2rcb_bp; /* original blkptr */ 845 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 846 int l2rcb_flags; /* original flags */ 847 abd_t *l2rcb_abd; /* temporary buffer */ 848 } l2arc_read_callback_t; 849 850 typedef struct l2arc_data_free { 851 /* protected by l2arc_free_on_write_mtx */ 852 abd_t *l2df_abd; 853 size_t l2df_size; 854 arc_buf_contents_t l2df_type; 855 list_node_t l2df_list_node; 856 } l2arc_data_free_t; 857 858 typedef enum arc_fill_flags { 859 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */ 860 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */ 861 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */ 862 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */ 863 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */ 864 } arc_fill_flags_t; 865 866 typedef enum arc_ovf_level { 867 ARC_OVF_NONE, /* ARC within target size. */ 868 ARC_OVF_SOME, /* ARC is slightly overflowed. */ 869 ARC_OVF_SEVERE /* ARC is severely overflowed. */ 870 } arc_ovf_level_t; 871 872 static kmutex_t l2arc_feed_thr_lock; 873 static kcondvar_t l2arc_feed_thr_cv; 874 static uint8_t l2arc_thread_exit; 875 876 static kmutex_t l2arc_rebuild_thr_lock; 877 static kcondvar_t l2arc_rebuild_thr_cv; 878 879 enum arc_hdr_alloc_flags { 880 ARC_HDR_ALLOC_RDATA = 0x1, 881 ARC_HDR_USE_RESERVE = 0x4, 882 ARC_HDR_ALLOC_LINEAR = 0x8, 883 }; 884 885 886 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, const void *, int); 887 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, const void *); 888 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, const void *, int); 889 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, const void *); 890 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, const void *); 891 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, 892 const void *tag); 893 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t); 894 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int); 895 static void arc_hdr_destroy(arc_buf_hdr_t *); 896 static void arc_access(arc_buf_hdr_t *, arc_flags_t, boolean_t); 897 static void arc_buf_watch(arc_buf_t *); 898 static void arc_change_state(arc_state_t *, arc_buf_hdr_t *); 899 900 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 901 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 902 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 903 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 904 905 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 906 static void l2arc_read_done(zio_t *); 907 static void l2arc_do_free_on_write(void); 908 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 909 boolean_t state_only); 910 911 static void arc_prune_async(uint64_t adjust); 912 913 #define l2arc_hdr_arcstats_increment(hdr) \ 914 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE) 915 #define l2arc_hdr_arcstats_decrement(hdr) \ 916 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE) 917 #define l2arc_hdr_arcstats_increment_state(hdr) \ 918 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE) 919 #define l2arc_hdr_arcstats_decrement_state(hdr) \ 920 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE) 921 922 /* 923 * l2arc_exclude_special : A zfs module parameter that controls whether buffers 924 * present on special vdevs are eligibile for caching in L2ARC. If 925 * set to 1, exclude dbufs on special vdevs from being cached to 926 * L2ARC. 927 */ 928 int l2arc_exclude_special = 0; 929 930 /* 931 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU 932 * metadata and data are cached from ARC into L2ARC. 933 */ 934 static int l2arc_mfuonly = 0; 935 936 /* 937 * L2ARC TRIM 938 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of 939 * the current write size (l2arc_write_max) we should TRIM if we 940 * have filled the device. It is defined as a percentage of the 941 * write size. If set to 100 we trim twice the space required to 942 * accommodate upcoming writes. A minimum of 64MB will be trimmed. 943 * It also enables TRIM of the whole L2ARC device upon creation or 944 * addition to an existing pool or if the header of the device is 945 * invalid upon importing a pool or onlining a cache device. The 946 * default is 0, which disables TRIM on L2ARC altogether as it can 947 * put significant stress on the underlying storage devices. This 948 * will vary depending of how well the specific device handles 949 * these commands. 950 */ 951 static uint64_t l2arc_trim_ahead = 0; 952 953 /* 954 * Performance tuning of L2ARC persistence: 955 * 956 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding 957 * an L2ARC device (either at pool import or later) will attempt 958 * to rebuild L2ARC buffer contents. 959 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls 960 * whether log blocks are written to the L2ARC device. If the L2ARC 961 * device is less than 1GB, the amount of data l2arc_evict() 962 * evicts is significant compared to the amount of restored L2ARC 963 * data. In this case do not write log blocks in L2ARC in order 964 * not to waste space. 965 */ 966 static int l2arc_rebuild_enabled = B_TRUE; 967 static uint64_t l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024; 968 969 /* L2ARC persistence rebuild control routines. */ 970 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen); 971 static __attribute__((noreturn)) void l2arc_dev_rebuild_thread(void *arg); 972 static int l2arc_rebuild(l2arc_dev_t *dev); 973 974 /* L2ARC persistence read I/O routines. */ 975 static int l2arc_dev_hdr_read(l2arc_dev_t *dev); 976 static int l2arc_log_blk_read(l2arc_dev_t *dev, 977 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp, 978 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 979 zio_t *this_io, zio_t **next_io); 980 static zio_t *l2arc_log_blk_fetch(vdev_t *vd, 981 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb); 982 static void l2arc_log_blk_fetch_abort(zio_t *zio); 983 984 /* L2ARC persistence block restoration routines. */ 985 static void l2arc_log_blk_restore(l2arc_dev_t *dev, 986 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize); 987 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, 988 l2arc_dev_t *dev); 989 990 /* L2ARC persistence write I/O routines. */ 991 static uint64_t l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, 992 l2arc_write_callback_t *cb); 993 994 /* L2ARC persistence auxiliary routines. */ 995 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev, 996 const l2arc_log_blkptr_t *lbp); 997 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev, 998 const arc_buf_hdr_t *ab); 999 boolean_t l2arc_range_check_overlap(uint64_t bottom, 1000 uint64_t top, uint64_t check); 1001 static void l2arc_blk_fetch_done(zio_t *zio); 1002 static inline uint64_t 1003 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev); 1004 1005 /* 1006 * We use Cityhash for this. It's fast, and has good hash properties without 1007 * requiring any large static buffers. 1008 */ 1009 static uint64_t 1010 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 1011 { 1012 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth)); 1013 } 1014 1015 #define HDR_EMPTY(hdr) \ 1016 ((hdr)->b_dva.dva_word[0] == 0 && \ 1017 (hdr)->b_dva.dva_word[1] == 0) 1018 1019 #define HDR_EMPTY_OR_LOCKED(hdr) \ 1020 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr))) 1021 1022 #define HDR_EQUAL(spa, dva, birth, hdr) \ 1023 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 1024 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 1025 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) 1026 1027 static void 1028 buf_discard_identity(arc_buf_hdr_t *hdr) 1029 { 1030 hdr->b_dva.dva_word[0] = 0; 1031 hdr->b_dva.dva_word[1] = 0; 1032 hdr->b_birth = 0; 1033 } 1034 1035 static arc_buf_hdr_t * 1036 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 1037 { 1038 const dva_t *dva = BP_IDENTITY(bp); 1039 uint64_t birth = BP_GET_BIRTH(bp); 1040 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 1041 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1042 arc_buf_hdr_t *hdr; 1043 1044 mutex_enter(hash_lock); 1045 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 1046 hdr = hdr->b_hash_next) { 1047 if (HDR_EQUAL(spa, dva, birth, hdr)) { 1048 *lockp = hash_lock; 1049 return (hdr); 1050 } 1051 } 1052 mutex_exit(hash_lock); 1053 *lockp = NULL; 1054 return (NULL); 1055 } 1056 1057 /* 1058 * Insert an entry into the hash table. If there is already an element 1059 * equal to elem in the hash table, then the already existing element 1060 * will be returned and the new element will not be inserted. 1061 * Otherwise returns NULL. 1062 * If lockp == NULL, the caller is assumed to already hold the hash lock. 1063 */ 1064 static arc_buf_hdr_t * 1065 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 1066 { 1067 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1068 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1069 arc_buf_hdr_t *fhdr; 1070 uint32_t i; 1071 1072 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 1073 ASSERT(hdr->b_birth != 0); 1074 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1075 1076 if (lockp != NULL) { 1077 *lockp = hash_lock; 1078 mutex_enter(hash_lock); 1079 } else { 1080 ASSERT(MUTEX_HELD(hash_lock)); 1081 } 1082 1083 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 1084 fhdr = fhdr->b_hash_next, i++) { 1085 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 1086 return (fhdr); 1087 } 1088 1089 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 1090 buf_hash_table.ht_table[idx] = hdr; 1091 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1092 1093 /* collect some hash table performance data */ 1094 if (i > 0) { 1095 ARCSTAT_BUMP(arcstat_hash_collisions); 1096 if (i == 1) 1097 ARCSTAT_BUMP(arcstat_hash_chains); 1098 ARCSTAT_MAX(arcstat_hash_chain_max, i); 1099 } 1100 ARCSTAT_BUMP(arcstat_hash_elements); 1101 1102 return (NULL); 1103 } 1104 1105 static void 1106 buf_hash_remove(arc_buf_hdr_t *hdr) 1107 { 1108 arc_buf_hdr_t *fhdr, **hdrp; 1109 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1110 1111 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 1112 ASSERT(HDR_IN_HASH_TABLE(hdr)); 1113 1114 hdrp = &buf_hash_table.ht_table[idx]; 1115 while ((fhdr = *hdrp) != hdr) { 1116 ASSERT3P(fhdr, !=, NULL); 1117 hdrp = &fhdr->b_hash_next; 1118 } 1119 *hdrp = hdr->b_hash_next; 1120 hdr->b_hash_next = NULL; 1121 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1122 1123 /* collect some hash table performance data */ 1124 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 1125 if (buf_hash_table.ht_table[idx] && 1126 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 1127 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 1128 } 1129 1130 /* 1131 * Global data structures and functions for the buf kmem cache. 1132 */ 1133 1134 static kmem_cache_t *hdr_full_cache; 1135 static kmem_cache_t *hdr_l2only_cache; 1136 static kmem_cache_t *buf_cache; 1137 1138 static void 1139 buf_fini(void) 1140 { 1141 #if defined(_KERNEL) 1142 /* 1143 * Large allocations which do not require contiguous pages 1144 * should be using vmem_free() in the linux kernel\ 1145 */ 1146 vmem_free(buf_hash_table.ht_table, 1147 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1148 #else 1149 kmem_free(buf_hash_table.ht_table, 1150 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1151 #endif 1152 for (int i = 0; i < BUF_LOCKS; i++) 1153 mutex_destroy(BUF_HASH_LOCK(i)); 1154 kmem_cache_destroy(hdr_full_cache); 1155 kmem_cache_destroy(hdr_l2only_cache); 1156 kmem_cache_destroy(buf_cache); 1157 } 1158 1159 /* 1160 * Constructor callback - called when the cache is empty 1161 * and a new buf is requested. 1162 */ 1163 static int 1164 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1165 { 1166 (void) unused, (void) kmflag; 1167 arc_buf_hdr_t *hdr = vbuf; 1168 1169 memset(hdr, 0, HDR_FULL_SIZE); 1170 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 1171 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt); 1172 #ifdef ZFS_DEBUG 1173 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1174 #endif 1175 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1176 list_link_init(&hdr->b_l2hdr.b_l2node); 1177 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1178 1179 return (0); 1180 } 1181 1182 static int 1183 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1184 { 1185 (void) unused, (void) kmflag; 1186 arc_buf_hdr_t *hdr = vbuf; 1187 1188 memset(hdr, 0, HDR_L2ONLY_SIZE); 1189 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1190 1191 return (0); 1192 } 1193 1194 static int 1195 buf_cons(void *vbuf, void *unused, int kmflag) 1196 { 1197 (void) unused, (void) kmflag; 1198 arc_buf_t *buf = vbuf; 1199 1200 memset(buf, 0, sizeof (arc_buf_t)); 1201 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1202 1203 return (0); 1204 } 1205 1206 /* 1207 * Destructor callback - called when a cached buf is 1208 * no longer required. 1209 */ 1210 static void 1211 hdr_full_dest(void *vbuf, void *unused) 1212 { 1213 (void) unused; 1214 arc_buf_hdr_t *hdr = vbuf; 1215 1216 ASSERT(HDR_EMPTY(hdr)); 1217 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1218 #ifdef ZFS_DEBUG 1219 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1220 #endif 1221 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1222 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1223 } 1224 1225 static void 1226 hdr_l2only_dest(void *vbuf, void *unused) 1227 { 1228 (void) unused; 1229 arc_buf_hdr_t *hdr = vbuf; 1230 1231 ASSERT(HDR_EMPTY(hdr)); 1232 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1233 } 1234 1235 static void 1236 buf_dest(void *vbuf, void *unused) 1237 { 1238 (void) unused; 1239 (void) vbuf; 1240 1241 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1242 } 1243 1244 static void 1245 buf_init(void) 1246 { 1247 uint64_t *ct = NULL; 1248 uint64_t hsize = 1ULL << 12; 1249 int i, j; 1250 1251 /* 1252 * The hash table is big enough to fill all of physical memory 1253 * with an average block size of zfs_arc_average_blocksize (default 8K). 1254 * By default, the table will take up 1255 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1256 */ 1257 while (hsize * zfs_arc_average_blocksize < arc_all_memory()) 1258 hsize <<= 1; 1259 retry: 1260 buf_hash_table.ht_mask = hsize - 1; 1261 #if defined(_KERNEL) 1262 /* 1263 * Large allocations which do not require contiguous pages 1264 * should be using vmem_alloc() in the linux kernel 1265 */ 1266 buf_hash_table.ht_table = 1267 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP); 1268 #else 1269 buf_hash_table.ht_table = 1270 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1271 #endif 1272 if (buf_hash_table.ht_table == NULL) { 1273 ASSERT(hsize > (1ULL << 8)); 1274 hsize >>= 1; 1275 goto retry; 1276 } 1277 1278 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1279 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, KMC_RECLAIMABLE); 1280 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1281 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL, 1282 NULL, NULL, 0); 1283 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1284 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1285 1286 for (i = 0; i < 256; i++) 1287 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1288 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1289 1290 for (i = 0; i < BUF_LOCKS; i++) 1291 mutex_init(BUF_HASH_LOCK(i), NULL, MUTEX_DEFAULT, NULL); 1292 } 1293 1294 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1295 1296 /* 1297 * This is the size that the buf occupies in memory. If the buf is compressed, 1298 * it will correspond to the compressed size. You should use this method of 1299 * getting the buf size unless you explicitly need the logical size. 1300 */ 1301 uint64_t 1302 arc_buf_size(arc_buf_t *buf) 1303 { 1304 return (ARC_BUF_COMPRESSED(buf) ? 1305 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr)); 1306 } 1307 1308 uint64_t 1309 arc_buf_lsize(arc_buf_t *buf) 1310 { 1311 return (HDR_GET_LSIZE(buf->b_hdr)); 1312 } 1313 1314 /* 1315 * This function will return B_TRUE if the buffer is encrypted in memory. 1316 * This buffer can be decrypted by calling arc_untransform(). 1317 */ 1318 boolean_t 1319 arc_is_encrypted(arc_buf_t *buf) 1320 { 1321 return (ARC_BUF_ENCRYPTED(buf) != 0); 1322 } 1323 1324 /* 1325 * Returns B_TRUE if the buffer represents data that has not had its MAC 1326 * verified yet. 1327 */ 1328 boolean_t 1329 arc_is_unauthenticated(arc_buf_t *buf) 1330 { 1331 return (HDR_NOAUTH(buf->b_hdr) != 0); 1332 } 1333 1334 void 1335 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt, 1336 uint8_t *iv, uint8_t *mac) 1337 { 1338 arc_buf_hdr_t *hdr = buf->b_hdr; 1339 1340 ASSERT(HDR_PROTECTED(hdr)); 1341 1342 memcpy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 1343 memcpy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 1344 memcpy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 1345 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 1346 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 1347 } 1348 1349 /* 1350 * Indicates how this buffer is compressed in memory. If it is not compressed 1351 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with 1352 * arc_untransform() as long as it is also unencrypted. 1353 */ 1354 enum zio_compress 1355 arc_get_compression(arc_buf_t *buf) 1356 { 1357 return (ARC_BUF_COMPRESSED(buf) ? 1358 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF); 1359 } 1360 1361 /* 1362 * Return the compression algorithm used to store this data in the ARC. If ARC 1363 * compression is enabled or this is an encrypted block, this will be the same 1364 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF. 1365 */ 1366 static inline enum zio_compress 1367 arc_hdr_get_compress(arc_buf_hdr_t *hdr) 1368 { 1369 return (HDR_COMPRESSION_ENABLED(hdr) ? 1370 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF); 1371 } 1372 1373 uint8_t 1374 arc_get_complevel(arc_buf_t *buf) 1375 { 1376 return (buf->b_hdr->b_complevel); 1377 } 1378 1379 static inline boolean_t 1380 arc_buf_is_shared(arc_buf_t *buf) 1381 { 1382 boolean_t shared = (buf->b_data != NULL && 1383 buf->b_hdr->b_l1hdr.b_pabd != NULL && 1384 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) && 1385 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd)); 1386 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); 1387 EQUIV(shared, ARC_BUF_SHARED(buf)); 1388 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf)); 1389 1390 /* 1391 * It would be nice to assert arc_can_share() too, but the "hdr isn't 1392 * already being shared" requirement prevents us from doing that. 1393 */ 1394 1395 return (shared); 1396 } 1397 1398 /* 1399 * Free the checksum associated with this header. If there is no checksum, this 1400 * is a no-op. 1401 */ 1402 static inline void 1403 arc_cksum_free(arc_buf_hdr_t *hdr) 1404 { 1405 #ifdef ZFS_DEBUG 1406 ASSERT(HDR_HAS_L1HDR(hdr)); 1407 1408 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1409 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1410 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); 1411 hdr->b_l1hdr.b_freeze_cksum = NULL; 1412 } 1413 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1414 #endif 1415 } 1416 1417 /* 1418 * Return true iff at least one of the bufs on hdr is not compressed. 1419 * Encrypted buffers count as compressed. 1420 */ 1421 static boolean_t 1422 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr) 1423 { 1424 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr)); 1425 1426 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) { 1427 if (!ARC_BUF_COMPRESSED(b)) { 1428 return (B_TRUE); 1429 } 1430 } 1431 return (B_FALSE); 1432 } 1433 1434 1435 /* 1436 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data 1437 * matches the checksum that is stored in the hdr. If there is no checksum, 1438 * or if the buf is compressed, this is a no-op. 1439 */ 1440 static void 1441 arc_cksum_verify(arc_buf_t *buf) 1442 { 1443 #ifdef ZFS_DEBUG 1444 arc_buf_hdr_t *hdr = buf->b_hdr; 1445 zio_cksum_t zc; 1446 1447 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1448 return; 1449 1450 if (ARC_BUF_COMPRESSED(buf)) 1451 return; 1452 1453 ASSERT(HDR_HAS_L1HDR(hdr)); 1454 1455 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1456 1457 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { 1458 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1459 return; 1460 } 1461 1462 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc); 1463 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) 1464 panic("buffer modified while frozen!"); 1465 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1466 #endif 1467 } 1468 1469 /* 1470 * This function makes the assumption that data stored in the L2ARC 1471 * will be transformed exactly as it is in the main pool. Because of 1472 * this we can verify the checksum against the reading process's bp. 1473 */ 1474 static boolean_t 1475 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) 1476 { 1477 ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); 1478 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); 1479 1480 /* 1481 * Block pointers always store the checksum for the logical data. 1482 * If the block pointer has the gang bit set, then the checksum 1483 * it represents is for the reconstituted data and not for an 1484 * individual gang member. The zio pipeline, however, must be able to 1485 * determine the checksum of each of the gang constituents so it 1486 * treats the checksum comparison differently than what we need 1487 * for l2arc blocks. This prevents us from using the 1488 * zio_checksum_error() interface directly. Instead we must call the 1489 * zio_checksum_error_impl() so that we can ensure the checksum is 1490 * generated using the correct checksum algorithm and accounts for the 1491 * logical I/O size and not just a gang fragment. 1492 */ 1493 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp, 1494 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size, 1495 zio->io_offset, NULL) == 0); 1496 } 1497 1498 /* 1499 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a 1500 * checksum and attaches it to the buf's hdr so that we can ensure that the buf 1501 * isn't modified later on. If buf is compressed or there is already a checksum 1502 * on the hdr, this is a no-op (we only checksum uncompressed bufs). 1503 */ 1504 static void 1505 arc_cksum_compute(arc_buf_t *buf) 1506 { 1507 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1508 return; 1509 1510 #ifdef ZFS_DEBUG 1511 arc_buf_hdr_t *hdr = buf->b_hdr; 1512 ASSERT(HDR_HAS_L1HDR(hdr)); 1513 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1514 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) { 1515 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1516 return; 1517 } 1518 1519 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 1520 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1521 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), 1522 KM_SLEEP); 1523 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, 1524 hdr->b_l1hdr.b_freeze_cksum); 1525 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1526 #endif 1527 arc_buf_watch(buf); 1528 } 1529 1530 #ifndef _KERNEL 1531 void 1532 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused) 1533 { 1534 (void) sig, (void) unused; 1535 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr); 1536 } 1537 #endif 1538 1539 static void 1540 arc_buf_unwatch(arc_buf_t *buf) 1541 { 1542 #ifndef _KERNEL 1543 if (arc_watch) { 1544 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1545 PROT_READ | PROT_WRITE)); 1546 } 1547 #else 1548 (void) buf; 1549 #endif 1550 } 1551 1552 static void 1553 arc_buf_watch(arc_buf_t *buf) 1554 { 1555 #ifndef _KERNEL 1556 if (arc_watch) 1557 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1558 PROT_READ)); 1559 #else 1560 (void) buf; 1561 #endif 1562 } 1563 1564 static arc_buf_contents_t 1565 arc_buf_type(arc_buf_hdr_t *hdr) 1566 { 1567 arc_buf_contents_t type; 1568 if (HDR_ISTYPE_METADATA(hdr)) { 1569 type = ARC_BUFC_METADATA; 1570 } else { 1571 type = ARC_BUFC_DATA; 1572 } 1573 VERIFY3U(hdr->b_type, ==, type); 1574 return (type); 1575 } 1576 1577 boolean_t 1578 arc_is_metadata(arc_buf_t *buf) 1579 { 1580 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0); 1581 } 1582 1583 static uint32_t 1584 arc_bufc_to_flags(arc_buf_contents_t type) 1585 { 1586 switch (type) { 1587 case ARC_BUFC_DATA: 1588 /* metadata field is 0 if buffer contains normal data */ 1589 return (0); 1590 case ARC_BUFC_METADATA: 1591 return (ARC_FLAG_BUFC_METADATA); 1592 default: 1593 break; 1594 } 1595 panic("undefined ARC buffer type!"); 1596 return ((uint32_t)-1); 1597 } 1598 1599 void 1600 arc_buf_thaw(arc_buf_t *buf) 1601 { 1602 arc_buf_hdr_t *hdr = buf->b_hdr; 1603 1604 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 1605 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1606 1607 arc_cksum_verify(buf); 1608 1609 /* 1610 * Compressed buffers do not manipulate the b_freeze_cksum. 1611 */ 1612 if (ARC_BUF_COMPRESSED(buf)) 1613 return; 1614 1615 ASSERT(HDR_HAS_L1HDR(hdr)); 1616 arc_cksum_free(hdr); 1617 arc_buf_unwatch(buf); 1618 } 1619 1620 void 1621 arc_buf_freeze(arc_buf_t *buf) 1622 { 1623 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1624 return; 1625 1626 if (ARC_BUF_COMPRESSED(buf)) 1627 return; 1628 1629 ASSERT(HDR_HAS_L1HDR(buf->b_hdr)); 1630 arc_cksum_compute(buf); 1631 } 1632 1633 /* 1634 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, 1635 * the following functions should be used to ensure that the flags are 1636 * updated in a thread-safe way. When manipulating the flags either 1637 * the hash_lock must be held or the hdr must be undiscoverable. This 1638 * ensures that we're not racing with any other threads when updating 1639 * the flags. 1640 */ 1641 static inline void 1642 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1643 { 1644 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1645 hdr->b_flags |= flags; 1646 } 1647 1648 static inline void 1649 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1650 { 1651 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1652 hdr->b_flags &= ~flags; 1653 } 1654 1655 /* 1656 * Setting the compression bits in the arc_buf_hdr_t's b_flags is 1657 * done in a special way since we have to clear and set bits 1658 * at the same time. Consumers that wish to set the compression bits 1659 * must use this function to ensure that the flags are updated in 1660 * thread-safe manner. 1661 */ 1662 static void 1663 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) 1664 { 1665 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1666 1667 /* 1668 * Holes and embedded blocks will always have a psize = 0 so 1669 * we ignore the compression of the blkptr and set the 1670 * want to uncompress them. Mark them as uncompressed. 1671 */ 1672 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { 1673 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1674 ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); 1675 } else { 1676 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1677 ASSERT(HDR_COMPRESSION_ENABLED(hdr)); 1678 } 1679 1680 HDR_SET_COMPRESS(hdr, cmp); 1681 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); 1682 } 1683 1684 /* 1685 * Looks for another buf on the same hdr which has the data decompressed, copies 1686 * from it, and returns true. If no such buf exists, returns false. 1687 */ 1688 static boolean_t 1689 arc_buf_try_copy_decompressed_data(arc_buf_t *buf) 1690 { 1691 arc_buf_hdr_t *hdr = buf->b_hdr; 1692 boolean_t copied = B_FALSE; 1693 1694 ASSERT(HDR_HAS_L1HDR(hdr)); 1695 ASSERT3P(buf->b_data, !=, NULL); 1696 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1697 1698 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL; 1699 from = from->b_next) { 1700 /* can't use our own data buffer */ 1701 if (from == buf) { 1702 continue; 1703 } 1704 1705 if (!ARC_BUF_COMPRESSED(from)) { 1706 memcpy(buf->b_data, from->b_data, arc_buf_size(buf)); 1707 copied = B_TRUE; 1708 break; 1709 } 1710 } 1711 1712 #ifdef ZFS_DEBUG 1713 /* 1714 * There were no decompressed bufs, so there should not be a 1715 * checksum on the hdr either. 1716 */ 1717 if (zfs_flags & ZFS_DEBUG_MODIFY) 1718 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL); 1719 #endif 1720 1721 return (copied); 1722 } 1723 1724 /* 1725 * Allocates an ARC buf header that's in an evicted & L2-cached state. 1726 * This is used during l2arc reconstruction to make empty ARC buffers 1727 * which circumvent the regular disk->arc->l2arc path and instead come 1728 * into being in the reverse order, i.e. l2arc->arc. 1729 */ 1730 static arc_buf_hdr_t * 1731 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev, 1732 dva_t dva, uint64_t daddr, int32_t psize, uint64_t asize, uint64_t birth, 1733 enum zio_compress compress, uint8_t complevel, boolean_t protected, 1734 boolean_t prefetch, arc_state_type_t arcs_state) 1735 { 1736 arc_buf_hdr_t *hdr; 1737 1738 ASSERT(size != 0); 1739 ASSERT(dev->l2ad_vdev != NULL); 1740 1741 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP); 1742 hdr->b_birth = birth; 1743 hdr->b_type = type; 1744 hdr->b_flags = 0; 1745 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR); 1746 HDR_SET_LSIZE(hdr, size); 1747 HDR_SET_PSIZE(hdr, psize); 1748 HDR_SET_L2SIZE(hdr, asize); 1749 arc_hdr_set_compress(hdr, compress); 1750 hdr->b_complevel = complevel; 1751 if (protected) 1752 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 1753 if (prefetch) 1754 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 1755 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa); 1756 1757 hdr->b_dva = dva; 1758 1759 hdr->b_l2hdr.b_dev = dev; 1760 hdr->b_l2hdr.b_daddr = daddr; 1761 hdr->b_l2hdr.b_arcs_state = arcs_state; 1762 1763 return (hdr); 1764 } 1765 1766 /* 1767 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t. 1768 */ 1769 static uint64_t 1770 arc_hdr_size(arc_buf_hdr_t *hdr) 1771 { 1772 uint64_t size; 1773 1774 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 1775 HDR_GET_PSIZE(hdr) > 0) { 1776 size = HDR_GET_PSIZE(hdr); 1777 } else { 1778 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); 1779 size = HDR_GET_LSIZE(hdr); 1780 } 1781 return (size); 1782 } 1783 1784 static int 1785 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj) 1786 { 1787 int ret; 1788 uint64_t csize; 1789 uint64_t lsize = HDR_GET_LSIZE(hdr); 1790 uint64_t psize = HDR_GET_PSIZE(hdr); 1791 abd_t *abd = hdr->b_l1hdr.b_pabd; 1792 boolean_t free_abd = B_FALSE; 1793 1794 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1795 ASSERT(HDR_AUTHENTICATED(hdr)); 1796 ASSERT3P(abd, !=, NULL); 1797 1798 /* 1799 * The MAC is calculated on the compressed data that is stored on disk. 1800 * However, if compressed arc is disabled we will only have the 1801 * decompressed data available to us now. Compress it into a temporary 1802 * abd so we can verify the MAC. The performance overhead of this will 1803 * be relatively low, since most objects in an encrypted objset will 1804 * be encrypted (instead of authenticated) anyway. 1805 */ 1806 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1807 !HDR_COMPRESSION_ENABLED(hdr)) { 1808 abd = NULL; 1809 csize = zio_compress_data(HDR_GET_COMPRESS(hdr), 1810 hdr->b_l1hdr.b_pabd, &abd, lsize, MIN(lsize, psize), 1811 hdr->b_complevel); 1812 if (csize >= lsize || csize > psize) { 1813 ret = SET_ERROR(EIO); 1814 return (ret); 1815 } 1816 ASSERT3P(abd, !=, NULL); 1817 abd_zero_off(abd, csize, psize - csize); 1818 free_abd = B_TRUE; 1819 } 1820 1821 /* 1822 * Authentication is best effort. We authenticate whenever the key is 1823 * available. If we succeed we clear ARC_FLAG_NOAUTH. 1824 */ 1825 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) { 1826 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1827 ASSERT3U(lsize, ==, psize); 1828 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd, 1829 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1830 } else { 1831 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize, 1832 hdr->b_crypt_hdr.b_mac); 1833 } 1834 1835 if (ret == 0) 1836 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH); 1837 else if (ret == ENOENT) 1838 ret = 0; 1839 1840 if (free_abd) 1841 abd_free(abd); 1842 1843 return (ret); 1844 } 1845 1846 /* 1847 * This function will take a header that only has raw encrypted data in 1848 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in 1849 * b_l1hdr.b_pabd. If designated in the header flags, this function will 1850 * also decompress the data. 1851 */ 1852 static int 1853 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb) 1854 { 1855 int ret; 1856 abd_t *cabd = NULL; 1857 boolean_t no_crypt = B_FALSE; 1858 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1859 1860 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1861 ASSERT(HDR_ENCRYPTED(hdr)); 1862 1863 arc_hdr_alloc_abd(hdr, 0); 1864 1865 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot, 1866 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv, 1867 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd, 1868 hdr->b_crypt_hdr.b_rabd, &no_crypt); 1869 if (ret != 0) 1870 goto error; 1871 1872 if (no_crypt) { 1873 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd, 1874 HDR_GET_PSIZE(hdr)); 1875 } 1876 1877 /* 1878 * If this header has disabled arc compression but the b_pabd is 1879 * compressed after decrypting it, we need to decompress the newly 1880 * decrypted data. 1881 */ 1882 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1883 !HDR_COMPRESSION_ENABLED(hdr)) { 1884 /* 1885 * We want to make sure that we are correctly honoring the 1886 * zfs_abd_scatter_enabled setting, so we allocate an abd here 1887 * and then loan a buffer from it, rather than allocating a 1888 * linear buffer and wrapping it in an abd later. 1889 */ 1890 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 0); 1891 1892 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 1893 hdr->b_l1hdr.b_pabd, cabd, HDR_GET_PSIZE(hdr), 1894 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 1895 if (ret != 0) { 1896 goto error; 1897 } 1898 1899 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 1900 arc_hdr_size(hdr), hdr); 1901 hdr->b_l1hdr.b_pabd = cabd; 1902 } 1903 1904 return (0); 1905 1906 error: 1907 arc_hdr_free_abd(hdr, B_FALSE); 1908 if (cabd != NULL) 1909 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr); 1910 1911 return (ret); 1912 } 1913 1914 /* 1915 * This function is called during arc_buf_fill() to prepare the header's 1916 * abd plaintext pointer for use. This involves authenticated protected 1917 * data and decrypting encrypted data into the plaintext abd. 1918 */ 1919 static int 1920 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa, 1921 const zbookmark_phys_t *zb, boolean_t noauth) 1922 { 1923 int ret; 1924 1925 ASSERT(HDR_PROTECTED(hdr)); 1926 1927 if (hash_lock != NULL) 1928 mutex_enter(hash_lock); 1929 1930 if (HDR_NOAUTH(hdr) && !noauth) { 1931 /* 1932 * The caller requested authenticated data but our data has 1933 * not been authenticated yet. Verify the MAC now if we can. 1934 */ 1935 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset); 1936 if (ret != 0) 1937 goto error; 1938 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) { 1939 /* 1940 * If we only have the encrypted version of the data, but the 1941 * unencrypted version was requested we take this opportunity 1942 * to store the decrypted version in the header for future use. 1943 */ 1944 ret = arc_hdr_decrypt(hdr, spa, zb); 1945 if (ret != 0) 1946 goto error; 1947 } 1948 1949 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1950 1951 if (hash_lock != NULL) 1952 mutex_exit(hash_lock); 1953 1954 return (0); 1955 1956 error: 1957 if (hash_lock != NULL) 1958 mutex_exit(hash_lock); 1959 1960 return (ret); 1961 } 1962 1963 /* 1964 * This function is used by the dbuf code to decrypt bonus buffers in place. 1965 * The dbuf code itself doesn't have any locking for decrypting a shared dnode 1966 * block, so we use the hash lock here to protect against concurrent calls to 1967 * arc_buf_fill(). 1968 */ 1969 static void 1970 arc_buf_untransform_in_place(arc_buf_t *buf) 1971 { 1972 arc_buf_hdr_t *hdr = buf->b_hdr; 1973 1974 ASSERT(HDR_ENCRYPTED(hdr)); 1975 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 1976 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1977 ASSERT3PF(hdr->b_l1hdr.b_pabd, !=, NULL, "hdr %px buf %px", hdr, buf); 1978 1979 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data, 1980 arc_buf_size(buf)); 1981 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 1982 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 1983 } 1984 1985 /* 1986 * Given a buf that has a data buffer attached to it, this function will 1987 * efficiently fill the buf with data of the specified compression setting from 1988 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr 1989 * are already sharing a data buf, no copy is performed. 1990 * 1991 * If the buf is marked as compressed but uncompressed data was requested, this 1992 * will allocate a new data buffer for the buf, remove that flag, and fill the 1993 * buf with uncompressed data. You can't request a compressed buf on a hdr with 1994 * uncompressed data, and (since we haven't added support for it yet) if you 1995 * want compressed data your buf must already be marked as compressed and have 1996 * the correct-sized data buffer. 1997 */ 1998 static int 1999 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 2000 arc_fill_flags_t flags) 2001 { 2002 int error = 0; 2003 arc_buf_hdr_t *hdr = buf->b_hdr; 2004 boolean_t hdr_compressed = 2005 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 2006 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0; 2007 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0; 2008 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; 2009 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr); 2010 2011 ASSERT3P(buf->b_data, !=, NULL); 2012 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf)); 2013 IMPLY(compressed, ARC_BUF_COMPRESSED(buf)); 2014 IMPLY(encrypted, HDR_ENCRYPTED(hdr)); 2015 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf)); 2016 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf)); 2017 IMPLY(encrypted, !arc_buf_is_shared(buf)); 2018 2019 /* 2020 * If the caller wanted encrypted data we just need to copy it from 2021 * b_rabd and potentially byteswap it. We won't be able to do any 2022 * further transforms on it. 2023 */ 2024 if (encrypted) { 2025 ASSERT(HDR_HAS_RABD(hdr)); 2026 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd, 2027 HDR_GET_PSIZE(hdr)); 2028 goto byteswap; 2029 } 2030 2031 /* 2032 * Adjust encrypted and authenticated headers to accommodate 2033 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are 2034 * allowed to fail decryption due to keys not being loaded 2035 * without being marked as an IO error. 2036 */ 2037 if (HDR_PROTECTED(hdr)) { 2038 error = arc_fill_hdr_crypt(hdr, hash_lock, spa, 2039 zb, !!(flags & ARC_FILL_NOAUTH)); 2040 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) { 2041 return (error); 2042 } else if (error != 0) { 2043 if (hash_lock != NULL) 2044 mutex_enter(hash_lock); 2045 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2046 if (hash_lock != NULL) 2047 mutex_exit(hash_lock); 2048 return (error); 2049 } 2050 } 2051 2052 /* 2053 * There is a special case here for dnode blocks which are 2054 * decrypting their bonus buffers. These blocks may request to 2055 * be decrypted in-place. This is necessary because there may 2056 * be many dnodes pointing into this buffer and there is 2057 * currently no method to synchronize replacing the backing 2058 * b_data buffer and updating all of the pointers. Here we use 2059 * the hash lock to ensure there are no races. If the need 2060 * arises for other types to be decrypted in-place, they must 2061 * add handling here as well. 2062 */ 2063 if ((flags & ARC_FILL_IN_PLACE) != 0) { 2064 ASSERT(!hdr_compressed); 2065 ASSERT(!compressed); 2066 ASSERT(!encrypted); 2067 2068 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) { 2069 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 2070 2071 if (hash_lock != NULL) 2072 mutex_enter(hash_lock); 2073 arc_buf_untransform_in_place(buf); 2074 if (hash_lock != NULL) 2075 mutex_exit(hash_lock); 2076 2077 /* Compute the hdr's checksum if necessary */ 2078 arc_cksum_compute(buf); 2079 } 2080 2081 return (0); 2082 } 2083 2084 if (hdr_compressed == compressed) { 2085 if (ARC_BUF_SHARED(buf)) { 2086 ASSERT(arc_buf_is_shared(buf)); 2087 } else { 2088 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd, 2089 arc_buf_size(buf)); 2090 } 2091 } else { 2092 ASSERT(hdr_compressed); 2093 ASSERT(!compressed); 2094 2095 /* 2096 * If the buf is sharing its data with the hdr, unlink it and 2097 * allocate a new data buffer for the buf. 2098 */ 2099 if (ARC_BUF_SHARED(buf)) { 2100 ASSERTF(ARC_BUF_COMPRESSED(buf), 2101 "buf %p was uncompressed", buf); 2102 2103 /* We need to give the buf its own b_data */ 2104 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 2105 buf->b_data = 2106 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2107 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2108 2109 /* Previously overhead was 0; just add new overhead */ 2110 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 2111 } else if (ARC_BUF_COMPRESSED(buf)) { 2112 ASSERT(!arc_buf_is_shared(buf)); 2113 2114 /* We need to reallocate the buf's b_data */ 2115 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr), 2116 buf); 2117 buf->b_data = 2118 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2119 2120 /* We increased the size of b_data; update overhead */ 2121 ARCSTAT_INCR(arcstat_overhead_size, 2122 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr)); 2123 } 2124 2125 /* 2126 * Regardless of the buf's previous compression settings, it 2127 * should not be compressed at the end of this function. 2128 */ 2129 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 2130 2131 /* 2132 * Try copying the data from another buf which already has a 2133 * decompressed version. If that's not possible, it's time to 2134 * bite the bullet and decompress the data from the hdr. 2135 */ 2136 if (arc_buf_try_copy_decompressed_data(buf)) { 2137 /* Skip byteswapping and checksumming (already done) */ 2138 return (0); 2139 } else { 2140 abd_t dabd; 2141 abd_get_from_buf_struct(&dabd, buf->b_data, 2142 HDR_GET_LSIZE(hdr)); 2143 error = zio_decompress_data(HDR_GET_COMPRESS(hdr), 2144 hdr->b_l1hdr.b_pabd, &dabd, 2145 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr), 2146 &hdr->b_complevel); 2147 abd_free(&dabd); 2148 2149 /* 2150 * Absent hardware errors or software bugs, this should 2151 * be impossible, but log it anyway so we can debug it. 2152 */ 2153 if (error != 0) { 2154 zfs_dbgmsg( 2155 "hdr %px, compress %d, psize %d, lsize %d", 2156 hdr, arc_hdr_get_compress(hdr), 2157 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 2158 if (hash_lock != NULL) 2159 mutex_enter(hash_lock); 2160 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2161 if (hash_lock != NULL) 2162 mutex_exit(hash_lock); 2163 return (SET_ERROR(EIO)); 2164 } 2165 } 2166 } 2167 2168 byteswap: 2169 /* Byteswap the buf's data if necessary */ 2170 if (bswap != DMU_BSWAP_NUMFUNCS) { 2171 ASSERT(!HDR_SHARED_DATA(hdr)); 2172 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); 2173 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); 2174 } 2175 2176 /* Compute the hdr's checksum if necessary */ 2177 arc_cksum_compute(buf); 2178 2179 return (0); 2180 } 2181 2182 /* 2183 * If this function is being called to decrypt an encrypted buffer or verify an 2184 * authenticated one, the key must be loaded and a mapping must be made 2185 * available in the keystore via spa_keystore_create_mapping() or one of its 2186 * callers. 2187 */ 2188 int 2189 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 2190 boolean_t in_place) 2191 { 2192 int ret; 2193 arc_fill_flags_t flags = 0; 2194 2195 if (in_place) 2196 flags |= ARC_FILL_IN_PLACE; 2197 2198 ret = arc_buf_fill(buf, spa, zb, flags); 2199 if (ret == ECKSUM) { 2200 /* 2201 * Convert authentication and decryption errors to EIO 2202 * (and generate an ereport) before leaving the ARC. 2203 */ 2204 ret = SET_ERROR(EIO); 2205 spa_log_error(spa, zb, buf->b_hdr->b_birth); 2206 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 2207 spa, NULL, zb, NULL, 0); 2208 } 2209 2210 return (ret); 2211 } 2212 2213 /* 2214 * Increment the amount of evictable space in the arc_state_t's refcount. 2215 * We account for the space used by the hdr and the arc buf individually 2216 * so that we can add and remove them from the refcount individually. 2217 */ 2218 static void 2219 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) 2220 { 2221 arc_buf_contents_t type = arc_buf_type(hdr); 2222 2223 ASSERT(HDR_HAS_L1HDR(hdr)); 2224 2225 if (GHOST_STATE(state)) { 2226 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2227 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2228 ASSERT(!HDR_HAS_RABD(hdr)); 2229 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2230 HDR_GET_LSIZE(hdr), hdr); 2231 return; 2232 } 2233 2234 if (hdr->b_l1hdr.b_pabd != NULL) { 2235 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2236 arc_hdr_size(hdr), hdr); 2237 } 2238 if (HDR_HAS_RABD(hdr)) { 2239 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2240 HDR_GET_PSIZE(hdr), hdr); 2241 } 2242 2243 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2244 buf = buf->b_next) { 2245 if (ARC_BUF_SHARED(buf)) 2246 continue; 2247 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2248 arc_buf_size(buf), buf); 2249 } 2250 } 2251 2252 /* 2253 * Decrement the amount of evictable space in the arc_state_t's refcount. 2254 * We account for the space used by the hdr and the arc buf individually 2255 * so that we can add and remove them from the refcount individually. 2256 */ 2257 static void 2258 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) 2259 { 2260 arc_buf_contents_t type = arc_buf_type(hdr); 2261 2262 ASSERT(HDR_HAS_L1HDR(hdr)); 2263 2264 if (GHOST_STATE(state)) { 2265 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2266 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2267 ASSERT(!HDR_HAS_RABD(hdr)); 2268 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2269 HDR_GET_LSIZE(hdr), hdr); 2270 return; 2271 } 2272 2273 if (hdr->b_l1hdr.b_pabd != NULL) { 2274 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2275 arc_hdr_size(hdr), hdr); 2276 } 2277 if (HDR_HAS_RABD(hdr)) { 2278 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2279 HDR_GET_PSIZE(hdr), hdr); 2280 } 2281 2282 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2283 buf = buf->b_next) { 2284 if (ARC_BUF_SHARED(buf)) 2285 continue; 2286 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2287 arc_buf_size(buf), buf); 2288 } 2289 } 2290 2291 /* 2292 * Add a reference to this hdr indicating that someone is actively 2293 * referencing that memory. When the refcount transitions from 0 to 1, 2294 * we remove it from the respective arc_state_t list to indicate that 2295 * it is not evictable. 2296 */ 2297 static void 2298 add_reference(arc_buf_hdr_t *hdr, const void *tag) 2299 { 2300 arc_state_t *state = hdr->b_l1hdr.b_state; 2301 2302 ASSERT(HDR_HAS_L1HDR(hdr)); 2303 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) { 2304 ASSERT(state == arc_anon); 2305 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2306 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2307 } 2308 2309 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 2310 state != arc_anon && state != arc_l2c_only) { 2311 /* We don't use the L2-only state list. */ 2312 multilist_remove(&state->arcs_list[arc_buf_type(hdr)], hdr); 2313 arc_evictable_space_decrement(hdr, state); 2314 } 2315 } 2316 2317 /* 2318 * Remove a reference from this hdr. When the reference transitions from 2319 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's 2320 * list making it eligible for eviction. 2321 */ 2322 static int 2323 remove_reference(arc_buf_hdr_t *hdr, const void *tag) 2324 { 2325 int cnt; 2326 arc_state_t *state = hdr->b_l1hdr.b_state; 2327 2328 ASSERT(HDR_HAS_L1HDR(hdr)); 2329 ASSERT(state == arc_anon || MUTEX_HELD(HDR_LOCK(hdr))); 2330 ASSERT(!GHOST_STATE(state)); /* arc_l2c_only counts as a ghost. */ 2331 2332 if ((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) != 0) 2333 return (cnt); 2334 2335 if (state == arc_anon) { 2336 arc_hdr_destroy(hdr); 2337 return (0); 2338 } 2339 if (state == arc_uncached && !HDR_PREFETCH(hdr)) { 2340 arc_change_state(arc_anon, hdr); 2341 arc_hdr_destroy(hdr); 2342 return (0); 2343 } 2344 multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr); 2345 arc_evictable_space_increment(hdr, state); 2346 return (0); 2347 } 2348 2349 /* 2350 * Returns detailed information about a specific arc buffer. When the 2351 * state_index argument is set the function will calculate the arc header 2352 * list position for its arc state. Since this requires a linear traversal 2353 * callers are strongly encourage not to do this. However, it can be helpful 2354 * for targeted analysis so the functionality is provided. 2355 */ 2356 void 2357 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index) 2358 { 2359 (void) state_index; 2360 arc_buf_hdr_t *hdr = ab->b_hdr; 2361 l1arc_buf_hdr_t *l1hdr = NULL; 2362 l2arc_buf_hdr_t *l2hdr = NULL; 2363 arc_state_t *state = NULL; 2364 2365 memset(abi, 0, sizeof (arc_buf_info_t)); 2366 2367 if (hdr == NULL) 2368 return; 2369 2370 abi->abi_flags = hdr->b_flags; 2371 2372 if (HDR_HAS_L1HDR(hdr)) { 2373 l1hdr = &hdr->b_l1hdr; 2374 state = l1hdr->b_state; 2375 } 2376 if (HDR_HAS_L2HDR(hdr)) 2377 l2hdr = &hdr->b_l2hdr; 2378 2379 if (l1hdr) { 2380 abi->abi_bufcnt = 0; 2381 for (arc_buf_t *buf = l1hdr->b_buf; buf; buf = buf->b_next) 2382 abi->abi_bufcnt++; 2383 abi->abi_access = l1hdr->b_arc_access; 2384 abi->abi_mru_hits = l1hdr->b_mru_hits; 2385 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits; 2386 abi->abi_mfu_hits = l1hdr->b_mfu_hits; 2387 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits; 2388 abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt); 2389 } 2390 2391 if (l2hdr) { 2392 abi->abi_l2arc_dattr = l2hdr->b_daddr; 2393 abi->abi_l2arc_hits = l2hdr->b_hits; 2394 } 2395 2396 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON; 2397 abi->abi_state_contents = arc_buf_type(hdr); 2398 abi->abi_size = arc_hdr_size(hdr); 2399 } 2400 2401 /* 2402 * Move the supplied buffer to the indicated state. The hash lock 2403 * for the buffer must be held by the caller. 2404 */ 2405 static void 2406 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr) 2407 { 2408 arc_state_t *old_state; 2409 int64_t refcnt; 2410 boolean_t update_old, update_new; 2411 arc_buf_contents_t type = arc_buf_type(hdr); 2412 2413 /* 2414 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 2415 * in arc_read() when bringing a buffer out of the L2ARC. However, the 2416 * L1 hdr doesn't always exist when we change state to arc_anon before 2417 * destroying a header, in which case reallocating to add the L1 hdr is 2418 * pointless. 2419 */ 2420 if (HDR_HAS_L1HDR(hdr)) { 2421 old_state = hdr->b_l1hdr.b_state; 2422 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt); 2423 update_old = (hdr->b_l1hdr.b_buf != NULL || 2424 hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 2425 2426 IMPLY(GHOST_STATE(old_state), hdr->b_l1hdr.b_buf == NULL); 2427 IMPLY(GHOST_STATE(new_state), hdr->b_l1hdr.b_buf == NULL); 2428 IMPLY(old_state == arc_anon, hdr->b_l1hdr.b_buf == NULL || 2429 ARC_BUF_LAST(hdr->b_l1hdr.b_buf)); 2430 } else { 2431 old_state = arc_l2c_only; 2432 refcnt = 0; 2433 update_old = B_FALSE; 2434 } 2435 update_new = update_old; 2436 if (GHOST_STATE(old_state)) 2437 update_old = B_TRUE; 2438 if (GHOST_STATE(new_state)) 2439 update_new = B_TRUE; 2440 2441 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 2442 ASSERT3P(new_state, !=, old_state); 2443 2444 /* 2445 * If this buffer is evictable, transfer it from the 2446 * old state list to the new state list. 2447 */ 2448 if (refcnt == 0) { 2449 if (old_state != arc_anon && old_state != arc_l2c_only) { 2450 ASSERT(HDR_HAS_L1HDR(hdr)); 2451 /* remove_reference() saves on insert. */ 2452 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2453 multilist_remove(&old_state->arcs_list[type], 2454 hdr); 2455 arc_evictable_space_decrement(hdr, old_state); 2456 } 2457 } 2458 if (new_state != arc_anon && new_state != arc_l2c_only) { 2459 /* 2460 * An L1 header always exists here, since if we're 2461 * moving to some L1-cached state (i.e. not l2c_only or 2462 * anonymous), we realloc the header to add an L1hdr 2463 * beforehand. 2464 */ 2465 ASSERT(HDR_HAS_L1HDR(hdr)); 2466 multilist_insert(&new_state->arcs_list[type], hdr); 2467 arc_evictable_space_increment(hdr, new_state); 2468 } 2469 } 2470 2471 ASSERT(!HDR_EMPTY(hdr)); 2472 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 2473 buf_hash_remove(hdr); 2474 2475 /* adjust state sizes (ignore arc_l2c_only) */ 2476 2477 if (update_new && new_state != arc_l2c_only) { 2478 ASSERT(HDR_HAS_L1HDR(hdr)); 2479 if (GHOST_STATE(new_state)) { 2480 2481 /* 2482 * When moving a header to a ghost state, we first 2483 * remove all arc buffers. Thus, we'll have no arc 2484 * buffer to use for the reference. As a result, we 2485 * use the arc header pointer for the reference. 2486 */ 2487 (void) zfs_refcount_add_many( 2488 &new_state->arcs_size[type], 2489 HDR_GET_LSIZE(hdr), hdr); 2490 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2491 ASSERT(!HDR_HAS_RABD(hdr)); 2492 } else { 2493 2494 /* 2495 * Each individual buffer holds a unique reference, 2496 * thus we must remove each of these references one 2497 * at a time. 2498 */ 2499 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2500 buf = buf->b_next) { 2501 2502 /* 2503 * When the arc_buf_t is sharing the data 2504 * block with the hdr, the owner of the 2505 * reference belongs to the hdr. Only 2506 * add to the refcount if the arc_buf_t is 2507 * not shared. 2508 */ 2509 if (ARC_BUF_SHARED(buf)) 2510 continue; 2511 2512 (void) zfs_refcount_add_many( 2513 &new_state->arcs_size[type], 2514 arc_buf_size(buf), buf); 2515 } 2516 2517 if (hdr->b_l1hdr.b_pabd != NULL) { 2518 (void) zfs_refcount_add_many( 2519 &new_state->arcs_size[type], 2520 arc_hdr_size(hdr), hdr); 2521 } 2522 2523 if (HDR_HAS_RABD(hdr)) { 2524 (void) zfs_refcount_add_many( 2525 &new_state->arcs_size[type], 2526 HDR_GET_PSIZE(hdr), hdr); 2527 } 2528 } 2529 } 2530 2531 if (update_old && old_state != arc_l2c_only) { 2532 ASSERT(HDR_HAS_L1HDR(hdr)); 2533 if (GHOST_STATE(old_state)) { 2534 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2535 ASSERT(!HDR_HAS_RABD(hdr)); 2536 2537 /* 2538 * When moving a header off of a ghost state, 2539 * the header will not contain any arc buffers. 2540 * We use the arc header pointer for the reference 2541 * which is exactly what we did when we put the 2542 * header on the ghost state. 2543 */ 2544 2545 (void) zfs_refcount_remove_many( 2546 &old_state->arcs_size[type], 2547 HDR_GET_LSIZE(hdr), hdr); 2548 } else { 2549 2550 /* 2551 * Each individual buffer holds a unique reference, 2552 * thus we must remove each of these references one 2553 * at a time. 2554 */ 2555 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2556 buf = buf->b_next) { 2557 2558 /* 2559 * When the arc_buf_t is sharing the data 2560 * block with the hdr, the owner of the 2561 * reference belongs to the hdr. Only 2562 * add to the refcount if the arc_buf_t is 2563 * not shared. 2564 */ 2565 if (ARC_BUF_SHARED(buf)) 2566 continue; 2567 2568 (void) zfs_refcount_remove_many( 2569 &old_state->arcs_size[type], 2570 arc_buf_size(buf), buf); 2571 } 2572 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 2573 HDR_HAS_RABD(hdr)); 2574 2575 if (hdr->b_l1hdr.b_pabd != NULL) { 2576 (void) zfs_refcount_remove_many( 2577 &old_state->arcs_size[type], 2578 arc_hdr_size(hdr), hdr); 2579 } 2580 2581 if (HDR_HAS_RABD(hdr)) { 2582 (void) zfs_refcount_remove_many( 2583 &old_state->arcs_size[type], 2584 HDR_GET_PSIZE(hdr), hdr); 2585 } 2586 } 2587 } 2588 2589 if (HDR_HAS_L1HDR(hdr)) { 2590 hdr->b_l1hdr.b_state = new_state; 2591 2592 if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) { 2593 l2arc_hdr_arcstats_decrement_state(hdr); 2594 hdr->b_l2hdr.b_arcs_state = new_state->arcs_state; 2595 l2arc_hdr_arcstats_increment_state(hdr); 2596 } 2597 } 2598 } 2599 2600 void 2601 arc_space_consume(uint64_t space, arc_space_type_t type) 2602 { 2603 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2604 2605 switch (type) { 2606 default: 2607 break; 2608 case ARC_SPACE_DATA: 2609 ARCSTAT_INCR(arcstat_data_size, space); 2610 break; 2611 case ARC_SPACE_META: 2612 ARCSTAT_INCR(arcstat_metadata_size, space); 2613 break; 2614 case ARC_SPACE_BONUS: 2615 ARCSTAT_INCR(arcstat_bonus_size, space); 2616 break; 2617 case ARC_SPACE_DNODE: 2618 ARCSTAT_INCR(arcstat_dnode_size, space); 2619 break; 2620 case ARC_SPACE_DBUF: 2621 ARCSTAT_INCR(arcstat_dbuf_size, space); 2622 break; 2623 case ARC_SPACE_HDRS: 2624 ARCSTAT_INCR(arcstat_hdr_size, space); 2625 break; 2626 case ARC_SPACE_L2HDRS: 2627 aggsum_add(&arc_sums.arcstat_l2_hdr_size, space); 2628 break; 2629 case ARC_SPACE_ABD_CHUNK_WASTE: 2630 /* 2631 * Note: this includes space wasted by all scatter ABD's, not 2632 * just those allocated by the ARC. But the vast majority of 2633 * scatter ABD's come from the ARC, because other users are 2634 * very short-lived. 2635 */ 2636 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, space); 2637 break; 2638 } 2639 2640 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) 2641 ARCSTAT_INCR(arcstat_meta_used, space); 2642 2643 aggsum_add(&arc_sums.arcstat_size, space); 2644 } 2645 2646 void 2647 arc_space_return(uint64_t space, arc_space_type_t type) 2648 { 2649 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2650 2651 switch (type) { 2652 default: 2653 break; 2654 case ARC_SPACE_DATA: 2655 ARCSTAT_INCR(arcstat_data_size, -space); 2656 break; 2657 case ARC_SPACE_META: 2658 ARCSTAT_INCR(arcstat_metadata_size, -space); 2659 break; 2660 case ARC_SPACE_BONUS: 2661 ARCSTAT_INCR(arcstat_bonus_size, -space); 2662 break; 2663 case ARC_SPACE_DNODE: 2664 ARCSTAT_INCR(arcstat_dnode_size, -space); 2665 break; 2666 case ARC_SPACE_DBUF: 2667 ARCSTAT_INCR(arcstat_dbuf_size, -space); 2668 break; 2669 case ARC_SPACE_HDRS: 2670 ARCSTAT_INCR(arcstat_hdr_size, -space); 2671 break; 2672 case ARC_SPACE_L2HDRS: 2673 aggsum_add(&arc_sums.arcstat_l2_hdr_size, -space); 2674 break; 2675 case ARC_SPACE_ABD_CHUNK_WASTE: 2676 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, -space); 2677 break; 2678 } 2679 2680 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) 2681 ARCSTAT_INCR(arcstat_meta_used, -space); 2682 2683 ASSERT(aggsum_compare(&arc_sums.arcstat_size, space) >= 0); 2684 aggsum_add(&arc_sums.arcstat_size, -space); 2685 } 2686 2687 /* 2688 * Given a hdr and a buf, returns whether that buf can share its b_data buffer 2689 * with the hdr's b_pabd. 2690 */ 2691 static boolean_t 2692 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2693 { 2694 /* 2695 * The criteria for sharing a hdr's data are: 2696 * 1. the buffer is not encrypted 2697 * 2. the hdr's compression matches the buf's compression 2698 * 3. the hdr doesn't need to be byteswapped 2699 * 4. the hdr isn't already being shared 2700 * 5. the buf is either compressed or it is the last buf in the hdr list 2701 * 2702 * Criterion #5 maintains the invariant that shared uncompressed 2703 * bufs must be the final buf in the hdr's b_buf list. Reading this, you 2704 * might ask, "if a compressed buf is allocated first, won't that be the 2705 * last thing in the list?", but in that case it's impossible to create 2706 * a shared uncompressed buf anyway (because the hdr must be compressed 2707 * to have the compressed buf). You might also think that #3 is 2708 * sufficient to make this guarantee, however it's possible 2709 * (specifically in the rare L2ARC write race mentioned in 2710 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that 2711 * is shareable, but wasn't at the time of its allocation. Rather than 2712 * allow a new shared uncompressed buf to be created and then shuffle 2713 * the list around to make it the last element, this simply disallows 2714 * sharing if the new buf isn't the first to be added. 2715 */ 2716 ASSERT3P(buf->b_hdr, ==, hdr); 2717 boolean_t hdr_compressed = 2718 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF; 2719 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0; 2720 return (!ARC_BUF_ENCRYPTED(buf) && 2721 buf_compressed == hdr_compressed && 2722 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && 2723 !HDR_SHARED_DATA(hdr) && 2724 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf))); 2725 } 2726 2727 /* 2728 * Allocate a buf for this hdr. If you care about the data that's in the hdr, 2729 * or if you want a compressed buffer, pass those flags in. Returns 0 if the 2730 * copy was made successfully, or an error code otherwise. 2731 */ 2732 static int 2733 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb, 2734 const void *tag, boolean_t encrypted, boolean_t compressed, 2735 boolean_t noauth, boolean_t fill, arc_buf_t **ret) 2736 { 2737 arc_buf_t *buf; 2738 arc_fill_flags_t flags = ARC_FILL_LOCKED; 2739 2740 ASSERT(HDR_HAS_L1HDR(hdr)); 2741 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2742 VERIFY(hdr->b_type == ARC_BUFC_DATA || 2743 hdr->b_type == ARC_BUFC_METADATA); 2744 ASSERT3P(ret, !=, NULL); 2745 ASSERT3P(*ret, ==, NULL); 2746 IMPLY(encrypted, compressed); 2747 2748 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2749 buf->b_hdr = hdr; 2750 buf->b_data = NULL; 2751 buf->b_next = hdr->b_l1hdr.b_buf; 2752 buf->b_flags = 0; 2753 2754 add_reference(hdr, tag); 2755 2756 /* 2757 * We're about to change the hdr's b_flags. We must either 2758 * hold the hash_lock or be undiscoverable. 2759 */ 2760 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2761 2762 /* 2763 * Only honor requests for compressed bufs if the hdr is actually 2764 * compressed. This must be overridden if the buffer is encrypted since 2765 * encrypted buffers cannot be decompressed. 2766 */ 2767 if (encrypted) { 2768 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2769 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED; 2770 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED; 2771 } else if (compressed && 2772 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 2773 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2774 flags |= ARC_FILL_COMPRESSED; 2775 } 2776 2777 if (noauth) { 2778 ASSERT0(encrypted); 2779 flags |= ARC_FILL_NOAUTH; 2780 } 2781 2782 /* 2783 * If the hdr's data can be shared then we share the data buffer and 2784 * set the appropriate bit in the hdr's b_flags to indicate the hdr is 2785 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new 2786 * buffer to store the buf's data. 2787 * 2788 * There are two additional restrictions here because we're sharing 2789 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be 2790 * actively involved in an L2ARC write, because if this buf is used by 2791 * an arc_write() then the hdr's data buffer will be released when the 2792 * write completes, even though the L2ARC write might still be using it. 2793 * Second, the hdr's ABD must be linear so that the buf's user doesn't 2794 * need to be ABD-aware. It must be allocated via 2795 * zio_[data_]buf_alloc(), not as a page, because we need to be able 2796 * to abd_release_ownership_of_buf(), which isn't allowed on "linear 2797 * page" buffers because the ABD code needs to handle freeing them 2798 * specially. 2799 */ 2800 boolean_t can_share = arc_can_share(hdr, buf) && 2801 !HDR_L2_WRITING(hdr) && 2802 hdr->b_l1hdr.b_pabd != NULL && 2803 abd_is_linear(hdr->b_l1hdr.b_pabd) && 2804 !abd_is_linear_page(hdr->b_l1hdr.b_pabd); 2805 2806 /* Set up b_data and sharing */ 2807 if (can_share) { 2808 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd); 2809 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2810 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2811 } else { 2812 buf->b_data = 2813 arc_get_data_buf(hdr, arc_buf_size(buf), buf); 2814 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2815 } 2816 VERIFY3P(buf->b_data, !=, NULL); 2817 2818 hdr->b_l1hdr.b_buf = buf; 2819 2820 /* 2821 * If the user wants the data from the hdr, we need to either copy or 2822 * decompress the data. 2823 */ 2824 if (fill) { 2825 ASSERT3P(zb, !=, NULL); 2826 return (arc_buf_fill(buf, spa, zb, flags)); 2827 } 2828 2829 return (0); 2830 } 2831 2832 static const char *arc_onloan_tag = "onloan"; 2833 2834 static inline void 2835 arc_loaned_bytes_update(int64_t delta) 2836 { 2837 atomic_add_64(&arc_loaned_bytes, delta); 2838 2839 /* assert that it did not wrap around */ 2840 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 2841 } 2842 2843 /* 2844 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 2845 * flight data by arc_tempreserve_space() until they are "returned". Loaned 2846 * buffers must be returned to the arc before they can be used by the DMU or 2847 * freed. 2848 */ 2849 arc_buf_t * 2850 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size) 2851 { 2852 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag, 2853 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size); 2854 2855 arc_loaned_bytes_update(arc_buf_size(buf)); 2856 2857 return (buf); 2858 } 2859 2860 arc_buf_t * 2861 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize, 2862 enum zio_compress compression_type, uint8_t complevel) 2863 { 2864 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag, 2865 psize, lsize, compression_type, complevel); 2866 2867 arc_loaned_bytes_update(arc_buf_size(buf)); 2868 2869 return (buf); 2870 } 2871 2872 arc_buf_t * 2873 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder, 2874 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 2875 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 2876 enum zio_compress compression_type, uint8_t complevel) 2877 { 2878 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj, 2879 byteorder, salt, iv, mac, ot, psize, lsize, compression_type, 2880 complevel); 2881 2882 atomic_add_64(&arc_loaned_bytes, psize); 2883 return (buf); 2884 } 2885 2886 2887 /* 2888 * Return a loaned arc buffer to the arc. 2889 */ 2890 void 2891 arc_return_buf(arc_buf_t *buf, const void *tag) 2892 { 2893 arc_buf_hdr_t *hdr = buf->b_hdr; 2894 2895 ASSERT3P(buf->b_data, !=, NULL); 2896 ASSERT(HDR_HAS_L1HDR(hdr)); 2897 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 2898 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2899 2900 arc_loaned_bytes_update(-arc_buf_size(buf)); 2901 } 2902 2903 /* Detach an arc_buf from a dbuf (tag) */ 2904 void 2905 arc_loan_inuse_buf(arc_buf_t *buf, const void *tag) 2906 { 2907 arc_buf_hdr_t *hdr = buf->b_hdr; 2908 2909 ASSERT3P(buf->b_data, !=, NULL); 2910 ASSERT(HDR_HAS_L1HDR(hdr)); 2911 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2912 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 2913 2914 arc_loaned_bytes_update(arc_buf_size(buf)); 2915 } 2916 2917 static void 2918 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type) 2919 { 2920 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); 2921 2922 df->l2df_abd = abd; 2923 df->l2df_size = size; 2924 df->l2df_type = type; 2925 mutex_enter(&l2arc_free_on_write_mtx); 2926 list_insert_head(l2arc_free_on_write, df); 2927 mutex_exit(&l2arc_free_on_write_mtx); 2928 } 2929 2930 static void 2931 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata) 2932 { 2933 arc_state_t *state = hdr->b_l1hdr.b_state; 2934 arc_buf_contents_t type = arc_buf_type(hdr); 2935 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 2936 2937 /* protected by hash lock, if in the hash table */ 2938 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2939 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2940 ASSERT(state != arc_anon && state != arc_l2c_only); 2941 2942 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2943 size, hdr); 2944 } 2945 (void) zfs_refcount_remove_many(&state->arcs_size[type], size, hdr); 2946 if (type == ARC_BUFC_METADATA) { 2947 arc_space_return(size, ARC_SPACE_META); 2948 } else { 2949 ASSERT(type == ARC_BUFC_DATA); 2950 arc_space_return(size, ARC_SPACE_DATA); 2951 } 2952 2953 if (free_rdata) { 2954 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type); 2955 } else { 2956 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type); 2957 } 2958 } 2959 2960 /* 2961 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the 2962 * data buffer, we transfer the refcount ownership to the hdr and update 2963 * the appropriate kstats. 2964 */ 2965 static void 2966 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2967 { 2968 ASSERT(arc_can_share(hdr, buf)); 2969 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2970 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 2971 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2972 2973 /* 2974 * Start sharing the data buffer. We transfer the 2975 * refcount ownership to the hdr since it always owns 2976 * the refcount whenever an arc_buf_t is shared. 2977 */ 2978 zfs_refcount_transfer_ownership_many( 2979 &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)], 2980 arc_hdr_size(hdr), buf, hdr); 2981 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf)); 2982 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd, 2983 HDR_ISTYPE_METADATA(hdr)); 2984 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2985 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2986 2987 /* 2988 * Since we've transferred ownership to the hdr we need 2989 * to increment its compressed and uncompressed kstats and 2990 * decrement the overhead size. 2991 */ 2992 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 2993 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 2994 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf)); 2995 } 2996 2997 static void 2998 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2999 { 3000 ASSERT(arc_buf_is_shared(buf)); 3001 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3002 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3003 3004 /* 3005 * We are no longer sharing this buffer so we need 3006 * to transfer its ownership to the rightful owner. 3007 */ 3008 zfs_refcount_transfer_ownership_many( 3009 &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)], 3010 arc_hdr_size(hdr), hdr, buf); 3011 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3012 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd); 3013 abd_free(hdr->b_l1hdr.b_pabd); 3014 hdr->b_l1hdr.b_pabd = NULL; 3015 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 3016 3017 /* 3018 * Since the buffer is no longer shared between 3019 * the arc buf and the hdr, count it as overhead. 3020 */ 3021 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 3022 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3023 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 3024 } 3025 3026 /* 3027 * Remove an arc_buf_t from the hdr's buf list and return the last 3028 * arc_buf_t on the list. If no buffers remain on the list then return 3029 * NULL. 3030 */ 3031 static arc_buf_t * 3032 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf) 3033 { 3034 ASSERT(HDR_HAS_L1HDR(hdr)); 3035 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3036 3037 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf; 3038 arc_buf_t *lastbuf = NULL; 3039 3040 /* 3041 * Remove the buf from the hdr list and locate the last 3042 * remaining buffer on the list. 3043 */ 3044 while (*bufp != NULL) { 3045 if (*bufp == buf) 3046 *bufp = buf->b_next; 3047 3048 /* 3049 * If we've removed a buffer in the middle of 3050 * the list then update the lastbuf and update 3051 * bufp. 3052 */ 3053 if (*bufp != NULL) { 3054 lastbuf = *bufp; 3055 bufp = &(*bufp)->b_next; 3056 } 3057 } 3058 buf->b_next = NULL; 3059 ASSERT3P(lastbuf, !=, buf); 3060 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf)); 3061 3062 return (lastbuf); 3063 } 3064 3065 /* 3066 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's 3067 * list and free it. 3068 */ 3069 static void 3070 arc_buf_destroy_impl(arc_buf_t *buf) 3071 { 3072 arc_buf_hdr_t *hdr = buf->b_hdr; 3073 3074 /* 3075 * Free up the data associated with the buf but only if we're not 3076 * sharing this with the hdr. If we are sharing it with the hdr, the 3077 * hdr is responsible for doing the free. 3078 */ 3079 if (buf->b_data != NULL) { 3080 /* 3081 * We're about to change the hdr's b_flags. We must either 3082 * hold the hash_lock or be undiscoverable. 3083 */ 3084 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3085 3086 arc_cksum_verify(buf); 3087 arc_buf_unwatch(buf); 3088 3089 if (ARC_BUF_SHARED(buf)) { 3090 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3091 } else { 3092 ASSERT(!arc_buf_is_shared(buf)); 3093 uint64_t size = arc_buf_size(buf); 3094 arc_free_data_buf(hdr, buf->b_data, size, buf); 3095 ARCSTAT_INCR(arcstat_overhead_size, -size); 3096 } 3097 buf->b_data = NULL; 3098 3099 /* 3100 * If we have no more encrypted buffers and we've already 3101 * gotten a copy of the decrypted data we can free b_rabd 3102 * to save some space. 3103 */ 3104 if (ARC_BUF_ENCRYPTED(buf) && HDR_HAS_RABD(hdr) && 3105 hdr->b_l1hdr.b_pabd != NULL && !HDR_IO_IN_PROGRESS(hdr)) { 3106 arc_buf_t *b; 3107 for (b = hdr->b_l1hdr.b_buf; b; b = b->b_next) { 3108 if (b != buf && ARC_BUF_ENCRYPTED(b)) 3109 break; 3110 } 3111 if (b == NULL) 3112 arc_hdr_free_abd(hdr, B_TRUE); 3113 } 3114 } 3115 3116 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 3117 3118 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 3119 /* 3120 * If the current arc_buf_t is sharing its data buffer with the 3121 * hdr, then reassign the hdr's b_pabd to share it with the new 3122 * buffer at the end of the list. The shared buffer is always 3123 * the last one on the hdr's buffer list. 3124 * 3125 * There is an equivalent case for compressed bufs, but since 3126 * they aren't guaranteed to be the last buf in the list and 3127 * that is an exceedingly rare case, we just allow that space be 3128 * wasted temporarily. We must also be careful not to share 3129 * encrypted buffers, since they cannot be shared. 3130 */ 3131 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) { 3132 /* Only one buf can be shared at once */ 3133 ASSERT(!arc_buf_is_shared(lastbuf)); 3134 /* hdr is uncompressed so can't have compressed buf */ 3135 ASSERT(!ARC_BUF_COMPRESSED(lastbuf)); 3136 3137 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3138 arc_hdr_free_abd(hdr, B_FALSE); 3139 3140 /* 3141 * We must setup a new shared block between the 3142 * last buffer and the hdr. The data would have 3143 * been allocated by the arc buf so we need to transfer 3144 * ownership to the hdr since it's now being shared. 3145 */ 3146 arc_share_buf(hdr, lastbuf); 3147 } 3148 } else if (HDR_SHARED_DATA(hdr)) { 3149 /* 3150 * Uncompressed shared buffers are always at the end 3151 * of the list. Compressed buffers don't have the 3152 * same requirements. This makes it hard to 3153 * simply assert that the lastbuf is shared so 3154 * we rely on the hdr's compression flags to determine 3155 * if we have a compressed, shared buffer. 3156 */ 3157 ASSERT3P(lastbuf, !=, NULL); 3158 ASSERT(arc_buf_is_shared(lastbuf) || 3159 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 3160 } 3161 3162 /* 3163 * Free the checksum if we're removing the last uncompressed buf from 3164 * this hdr. 3165 */ 3166 if (!arc_hdr_has_uncompressed_buf(hdr)) { 3167 arc_cksum_free(hdr); 3168 } 3169 3170 /* clean up the buf */ 3171 buf->b_hdr = NULL; 3172 kmem_cache_free(buf_cache, buf); 3173 } 3174 3175 static void 3176 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags) 3177 { 3178 uint64_t size; 3179 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0); 3180 3181 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 3182 ASSERT(HDR_HAS_L1HDR(hdr)); 3183 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata); 3184 IMPLY(alloc_rdata, HDR_PROTECTED(hdr)); 3185 3186 if (alloc_rdata) { 3187 size = HDR_GET_PSIZE(hdr); 3188 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL); 3189 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr, 3190 alloc_flags); 3191 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL); 3192 ARCSTAT_INCR(arcstat_raw_size, size); 3193 } else { 3194 size = arc_hdr_size(hdr); 3195 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3196 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr, 3197 alloc_flags); 3198 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3199 } 3200 3201 ARCSTAT_INCR(arcstat_compressed_size, size); 3202 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3203 } 3204 3205 static void 3206 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata) 3207 { 3208 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 3209 3210 ASSERT(HDR_HAS_L1HDR(hdr)); 3211 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 3212 IMPLY(free_rdata, HDR_HAS_RABD(hdr)); 3213 3214 /* 3215 * If the hdr is currently being written to the l2arc then 3216 * we defer freeing the data by adding it to the l2arc_free_on_write 3217 * list. The l2arc will free the data once it's finished 3218 * writing it to the l2arc device. 3219 */ 3220 if (HDR_L2_WRITING(hdr)) { 3221 arc_hdr_free_on_write(hdr, free_rdata); 3222 ARCSTAT_BUMP(arcstat_l2_free_on_write); 3223 } else if (free_rdata) { 3224 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr); 3225 } else { 3226 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr); 3227 } 3228 3229 if (free_rdata) { 3230 hdr->b_crypt_hdr.b_rabd = NULL; 3231 ARCSTAT_INCR(arcstat_raw_size, -size); 3232 } else { 3233 hdr->b_l1hdr.b_pabd = NULL; 3234 } 3235 3236 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr)) 3237 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 3238 3239 ARCSTAT_INCR(arcstat_compressed_size, -size); 3240 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3241 } 3242 3243 /* 3244 * Allocate empty anonymous ARC header. The header will get its identity 3245 * assigned and buffers attached later as part of read or write operations. 3246 * 3247 * In case of read arc_read() assigns header its identify (b_dva + b_birth), 3248 * inserts it into ARC hash to become globally visible and allocates physical 3249 * (b_pabd) or raw (b_rabd) ABD buffer to read into from disk. On disk read 3250 * completion arc_read_done() allocates ARC buffer(s) as needed, potentially 3251 * sharing one of them with the physical ABD buffer. 3252 * 3253 * In case of write arc_alloc_buf() allocates ARC buffer to be filled with 3254 * data. Then after compression and/or encryption arc_write_ready() allocates 3255 * and fills (or potentially shares) physical (b_pabd) or raw (b_rabd) ABD 3256 * buffer. On disk write completion arc_write_done() assigns the header its 3257 * new identity (b_dva + b_birth) and inserts into ARC hash. 3258 * 3259 * In case of partial overwrite the old data is read first as described. Then 3260 * arc_release() either allocates new anonymous ARC header and moves the ARC 3261 * buffer to it, or reuses the old ARC header by discarding its identity and 3262 * removing it from ARC hash. After buffer modification normal write process 3263 * follows as described. 3264 */ 3265 static arc_buf_hdr_t * 3266 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, 3267 boolean_t protected, enum zio_compress compression_type, uint8_t complevel, 3268 arc_buf_contents_t type) 3269 { 3270 arc_buf_hdr_t *hdr; 3271 3272 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); 3273 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 3274 3275 ASSERT(HDR_EMPTY(hdr)); 3276 #ifdef ZFS_DEBUG 3277 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3278 #endif 3279 HDR_SET_PSIZE(hdr, psize); 3280 HDR_SET_LSIZE(hdr, lsize); 3281 hdr->b_spa = spa; 3282 hdr->b_type = type; 3283 hdr->b_flags = 0; 3284 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); 3285 arc_hdr_set_compress(hdr, compression_type); 3286 hdr->b_complevel = complevel; 3287 if (protected) 3288 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 3289 3290 hdr->b_l1hdr.b_state = arc_anon; 3291 hdr->b_l1hdr.b_arc_access = 0; 3292 hdr->b_l1hdr.b_mru_hits = 0; 3293 hdr->b_l1hdr.b_mru_ghost_hits = 0; 3294 hdr->b_l1hdr.b_mfu_hits = 0; 3295 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 3296 hdr->b_l1hdr.b_buf = NULL; 3297 3298 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3299 3300 return (hdr); 3301 } 3302 3303 /* 3304 * Transition between the two allocation states for the arc_buf_hdr struct. 3305 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 3306 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 3307 * version is used when a cache buffer is only in the L2ARC in order to reduce 3308 * memory usage. 3309 */ 3310 static arc_buf_hdr_t * 3311 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 3312 { 3313 ASSERT(HDR_HAS_L2HDR(hdr)); 3314 3315 arc_buf_hdr_t *nhdr; 3316 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3317 3318 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 3319 (old == hdr_l2only_cache && new == hdr_full_cache)); 3320 3321 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 3322 3323 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 3324 buf_hash_remove(hdr); 3325 3326 memcpy(nhdr, hdr, HDR_L2ONLY_SIZE); 3327 3328 if (new == hdr_full_cache) { 3329 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3330 /* 3331 * arc_access and arc_change_state need to be aware that a 3332 * header has just come out of L2ARC, so we set its state to 3333 * l2c_only even though it's about to change. 3334 */ 3335 nhdr->b_l1hdr.b_state = arc_l2c_only; 3336 3337 /* Verify previous threads set to NULL before freeing */ 3338 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL); 3339 ASSERT(!HDR_HAS_RABD(hdr)); 3340 } else { 3341 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3342 #ifdef ZFS_DEBUG 3343 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3344 #endif 3345 3346 /* 3347 * If we've reached here, We must have been called from 3348 * arc_evict_hdr(), as such we should have already been 3349 * removed from any ghost list we were previously on 3350 * (which protects us from racing with arc_evict_state), 3351 * thus no locking is needed during this check. 3352 */ 3353 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3354 3355 /* 3356 * A buffer must not be moved into the arc_l2c_only 3357 * state if it's not finished being written out to the 3358 * l2arc device. Otherwise, the b_l1hdr.b_pabd field 3359 * might try to be accessed, even though it was removed. 3360 */ 3361 VERIFY(!HDR_L2_WRITING(hdr)); 3362 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3363 ASSERT(!HDR_HAS_RABD(hdr)); 3364 3365 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3366 } 3367 /* 3368 * The header has been reallocated so we need to re-insert it into any 3369 * lists it was on. 3370 */ 3371 (void) buf_hash_insert(nhdr, NULL); 3372 3373 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 3374 3375 mutex_enter(&dev->l2ad_mtx); 3376 3377 /* 3378 * We must place the realloc'ed header back into the list at 3379 * the same spot. Otherwise, if it's placed earlier in the list, 3380 * l2arc_write_buffers() could find it during the function's 3381 * write phase, and try to write it out to the l2arc. 3382 */ 3383 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 3384 list_remove(&dev->l2ad_buflist, hdr); 3385 3386 mutex_exit(&dev->l2ad_mtx); 3387 3388 /* 3389 * Since we're using the pointer address as the tag when 3390 * incrementing and decrementing the l2ad_alloc refcount, we 3391 * must remove the old pointer (that we're about to destroy) and 3392 * add the new pointer to the refcount. Otherwise we'd remove 3393 * the wrong pointer address when calling arc_hdr_destroy() later. 3394 */ 3395 3396 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 3397 arc_hdr_size(hdr), hdr); 3398 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 3399 arc_hdr_size(nhdr), nhdr); 3400 3401 buf_discard_identity(hdr); 3402 kmem_cache_free(old, hdr); 3403 3404 return (nhdr); 3405 } 3406 3407 /* 3408 * This function is used by the send / receive code to convert a newly 3409 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It 3410 * is also used to allow the root objset block to be updated without altering 3411 * its embedded MACs. Both block types will always be uncompressed so we do not 3412 * have to worry about compression type or psize. 3413 */ 3414 void 3415 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder, 3416 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv, 3417 const uint8_t *mac) 3418 { 3419 arc_buf_hdr_t *hdr = buf->b_hdr; 3420 3421 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET); 3422 ASSERT(HDR_HAS_L1HDR(hdr)); 3423 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3424 3425 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED); 3426 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 3427 hdr->b_crypt_hdr.b_dsobj = dsobj; 3428 hdr->b_crypt_hdr.b_ot = ot; 3429 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3430 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3431 if (!arc_hdr_has_uncompressed_buf(hdr)) 3432 arc_cksum_free(hdr); 3433 3434 if (salt != NULL) 3435 memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN); 3436 if (iv != NULL) 3437 memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN); 3438 if (mac != NULL) 3439 memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN); 3440 } 3441 3442 /* 3443 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. 3444 * The buf is returned thawed since we expect the consumer to modify it. 3445 */ 3446 arc_buf_t * 3447 arc_alloc_buf(spa_t *spa, const void *tag, arc_buf_contents_t type, 3448 int32_t size) 3449 { 3450 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, 3451 B_FALSE, ZIO_COMPRESS_OFF, 0, type); 3452 3453 arc_buf_t *buf = NULL; 3454 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE, 3455 B_FALSE, B_FALSE, &buf)); 3456 arc_buf_thaw(buf); 3457 3458 return (buf); 3459 } 3460 3461 /* 3462 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this 3463 * for bufs containing metadata. 3464 */ 3465 arc_buf_t * 3466 arc_alloc_compressed_buf(spa_t *spa, const void *tag, uint64_t psize, 3467 uint64_t lsize, enum zio_compress compression_type, uint8_t complevel) 3468 { 3469 ASSERT3U(lsize, >, 0); 3470 ASSERT3U(lsize, >=, psize); 3471 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF); 3472 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3473 3474 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 3475 B_FALSE, compression_type, complevel, ARC_BUFC_DATA); 3476 3477 arc_buf_t *buf = NULL; 3478 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, 3479 B_TRUE, B_FALSE, B_FALSE, &buf)); 3480 arc_buf_thaw(buf); 3481 3482 /* 3483 * To ensure that the hdr has the correct data in it if we call 3484 * arc_untransform() on this buf before it's been written to disk, 3485 * it's easiest if we just set up sharing between the buf and the hdr. 3486 */ 3487 arc_share_buf(hdr, buf); 3488 3489 return (buf); 3490 } 3491 3492 arc_buf_t * 3493 arc_alloc_raw_buf(spa_t *spa, const void *tag, uint64_t dsobj, 3494 boolean_t byteorder, const uint8_t *salt, const uint8_t *iv, 3495 const uint8_t *mac, dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 3496 enum zio_compress compression_type, uint8_t complevel) 3497 { 3498 arc_buf_hdr_t *hdr; 3499 arc_buf_t *buf; 3500 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ? 3501 ARC_BUFC_METADATA : ARC_BUFC_DATA; 3502 3503 ASSERT3U(lsize, >, 0); 3504 ASSERT3U(lsize, >=, psize); 3505 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF); 3506 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3507 3508 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE, 3509 compression_type, complevel, type); 3510 3511 hdr->b_crypt_hdr.b_dsobj = dsobj; 3512 hdr->b_crypt_hdr.b_ot = ot; 3513 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3514 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3515 memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN); 3516 memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN); 3517 memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN); 3518 3519 /* 3520 * This buffer will be considered encrypted even if the ot is not an 3521 * encrypted type. It will become authenticated instead in 3522 * arc_write_ready(). 3523 */ 3524 buf = NULL; 3525 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE, 3526 B_FALSE, B_FALSE, &buf)); 3527 arc_buf_thaw(buf); 3528 3529 return (buf); 3530 } 3531 3532 static void 3533 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 3534 boolean_t state_only) 3535 { 3536 uint64_t lsize = HDR_GET_LSIZE(hdr); 3537 uint64_t psize = HDR_GET_PSIZE(hdr); 3538 uint64_t asize = HDR_GET_L2SIZE(hdr); 3539 arc_buf_contents_t type = hdr->b_type; 3540 int64_t lsize_s; 3541 int64_t psize_s; 3542 int64_t asize_s; 3543 3544 /* For L2 we expect the header's b_l2size to be valid */ 3545 ASSERT3U(asize, >=, psize); 3546 3547 if (incr) { 3548 lsize_s = lsize; 3549 psize_s = psize; 3550 asize_s = asize; 3551 } else { 3552 lsize_s = -lsize; 3553 psize_s = -psize; 3554 asize_s = -asize; 3555 } 3556 3557 /* If the buffer is a prefetch, count it as such. */ 3558 if (HDR_PREFETCH(hdr)) { 3559 ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s); 3560 } else { 3561 /* 3562 * We use the value stored in the L2 header upon initial 3563 * caching in L2ARC. This value will be updated in case 3564 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC 3565 * metadata (log entry) cannot currently be updated. Having 3566 * the ARC state in the L2 header solves the problem of a 3567 * possibly absent L1 header (apparent in buffers restored 3568 * from persistent L2ARC). 3569 */ 3570 switch (hdr->b_l2hdr.b_arcs_state) { 3571 case ARC_STATE_MRU_GHOST: 3572 case ARC_STATE_MRU: 3573 ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s); 3574 break; 3575 case ARC_STATE_MFU_GHOST: 3576 case ARC_STATE_MFU: 3577 ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s); 3578 break; 3579 default: 3580 break; 3581 } 3582 } 3583 3584 if (state_only) 3585 return; 3586 3587 ARCSTAT_INCR(arcstat_l2_psize, psize_s); 3588 ARCSTAT_INCR(arcstat_l2_lsize, lsize_s); 3589 3590 switch (type) { 3591 case ARC_BUFC_DATA: 3592 ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s); 3593 break; 3594 case ARC_BUFC_METADATA: 3595 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s); 3596 break; 3597 default: 3598 break; 3599 } 3600 } 3601 3602 3603 static void 3604 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 3605 { 3606 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3607 l2arc_dev_t *dev = l2hdr->b_dev; 3608 3609 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 3610 ASSERT(HDR_HAS_L2HDR(hdr)); 3611 3612 list_remove(&dev->l2ad_buflist, hdr); 3613 3614 l2arc_hdr_arcstats_decrement(hdr); 3615 if (dev->l2ad_vdev != NULL) { 3616 uint64_t asize = HDR_GET_L2SIZE(hdr); 3617 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); 3618 } 3619 3620 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), 3621 hdr); 3622 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 3623 } 3624 3625 static void 3626 arc_hdr_destroy(arc_buf_hdr_t *hdr) 3627 { 3628 if (HDR_HAS_L1HDR(hdr)) { 3629 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3630 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3631 } 3632 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3633 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 3634 3635 if (HDR_HAS_L2HDR(hdr)) { 3636 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3637 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 3638 3639 if (!buflist_held) 3640 mutex_enter(&dev->l2ad_mtx); 3641 3642 /* 3643 * Even though we checked this conditional above, we 3644 * need to check this again now that we have the 3645 * l2ad_mtx. This is because we could be racing with 3646 * another thread calling l2arc_evict() which might have 3647 * destroyed this header's L2 portion as we were waiting 3648 * to acquire the l2ad_mtx. If that happens, we don't 3649 * want to re-destroy the header's L2 portion. 3650 */ 3651 if (HDR_HAS_L2HDR(hdr)) { 3652 3653 if (!HDR_EMPTY(hdr)) 3654 buf_discard_identity(hdr); 3655 3656 arc_hdr_l2hdr_destroy(hdr); 3657 } 3658 3659 if (!buflist_held) 3660 mutex_exit(&dev->l2ad_mtx); 3661 } 3662 3663 /* 3664 * The header's identify can only be safely discarded once it is no 3665 * longer discoverable. This requires removing it from the hash table 3666 * and the l2arc header list. After this point the hash lock can not 3667 * be used to protect the header. 3668 */ 3669 if (!HDR_EMPTY(hdr)) 3670 buf_discard_identity(hdr); 3671 3672 if (HDR_HAS_L1HDR(hdr)) { 3673 arc_cksum_free(hdr); 3674 3675 while (hdr->b_l1hdr.b_buf != NULL) 3676 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf); 3677 3678 if (hdr->b_l1hdr.b_pabd != NULL) 3679 arc_hdr_free_abd(hdr, B_FALSE); 3680 3681 if (HDR_HAS_RABD(hdr)) 3682 arc_hdr_free_abd(hdr, B_TRUE); 3683 } 3684 3685 ASSERT3P(hdr->b_hash_next, ==, NULL); 3686 if (HDR_HAS_L1HDR(hdr)) { 3687 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3688 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 3689 #ifdef ZFS_DEBUG 3690 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3691 #endif 3692 kmem_cache_free(hdr_full_cache, hdr); 3693 } else { 3694 kmem_cache_free(hdr_l2only_cache, hdr); 3695 } 3696 } 3697 3698 void 3699 arc_buf_destroy(arc_buf_t *buf, const void *tag) 3700 { 3701 arc_buf_hdr_t *hdr = buf->b_hdr; 3702 3703 if (hdr->b_l1hdr.b_state == arc_anon) { 3704 ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf); 3705 ASSERT(ARC_BUF_LAST(buf)); 3706 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3707 VERIFY0(remove_reference(hdr, tag)); 3708 return; 3709 } 3710 3711 kmutex_t *hash_lock = HDR_LOCK(hdr); 3712 mutex_enter(hash_lock); 3713 3714 ASSERT3P(hdr, ==, buf->b_hdr); 3715 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL); 3716 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3717 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); 3718 ASSERT3P(buf->b_data, !=, NULL); 3719 3720 arc_buf_destroy_impl(buf); 3721 (void) remove_reference(hdr, tag); 3722 mutex_exit(hash_lock); 3723 } 3724 3725 /* 3726 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 3727 * state of the header is dependent on its state prior to entering this 3728 * function. The following transitions are possible: 3729 * 3730 * - arc_mru -> arc_mru_ghost 3731 * - arc_mfu -> arc_mfu_ghost 3732 * - arc_mru_ghost -> arc_l2c_only 3733 * - arc_mru_ghost -> deleted 3734 * - arc_mfu_ghost -> arc_l2c_only 3735 * - arc_mfu_ghost -> deleted 3736 * - arc_uncached -> deleted 3737 * 3738 * Return total size of evicted data buffers for eviction progress tracking. 3739 * When evicting from ghost states return logical buffer size to make eviction 3740 * progress at the same (or at least comparable) rate as from non-ghost states. 3741 * 3742 * Return *real_evicted for actual ARC size reduction to wake up threads 3743 * waiting for it. For non-ghost states it includes size of evicted data 3744 * buffers (the headers are not freed there). For ghost states it includes 3745 * only the evicted headers size. 3746 */ 3747 static int64_t 3748 arc_evict_hdr(arc_buf_hdr_t *hdr, uint64_t *real_evicted) 3749 { 3750 arc_state_t *evicted_state, *state; 3751 int64_t bytes_evicted = 0; 3752 uint_t min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ? 3753 arc_min_prescient_prefetch_ms : arc_min_prefetch_ms; 3754 3755 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 3756 ASSERT(HDR_HAS_L1HDR(hdr)); 3757 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3758 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3759 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3760 3761 *real_evicted = 0; 3762 state = hdr->b_l1hdr.b_state; 3763 if (GHOST_STATE(state)) { 3764 3765 /* 3766 * l2arc_write_buffers() relies on a header's L1 portion 3767 * (i.e. its b_pabd field) during it's write phase. 3768 * Thus, we cannot push a header onto the arc_l2c_only 3769 * state (removing its L1 piece) until the header is 3770 * done being written to the l2arc. 3771 */ 3772 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 3773 ARCSTAT_BUMP(arcstat_evict_l2_skip); 3774 return (bytes_evicted); 3775 } 3776 3777 ARCSTAT_BUMP(arcstat_deleted); 3778 bytes_evicted += HDR_GET_LSIZE(hdr); 3779 3780 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 3781 3782 if (HDR_HAS_L2HDR(hdr)) { 3783 ASSERT(hdr->b_l1hdr.b_pabd == NULL); 3784 ASSERT(!HDR_HAS_RABD(hdr)); 3785 /* 3786 * This buffer is cached on the 2nd Level ARC; 3787 * don't destroy the header. 3788 */ 3789 arc_change_state(arc_l2c_only, hdr); 3790 /* 3791 * dropping from L1+L2 cached to L2-only, 3792 * realloc to remove the L1 header. 3793 */ 3794 (void) arc_hdr_realloc(hdr, hdr_full_cache, 3795 hdr_l2only_cache); 3796 *real_evicted += HDR_FULL_SIZE - HDR_L2ONLY_SIZE; 3797 } else { 3798 arc_change_state(arc_anon, hdr); 3799 arc_hdr_destroy(hdr); 3800 *real_evicted += HDR_FULL_SIZE; 3801 } 3802 return (bytes_evicted); 3803 } 3804 3805 ASSERT(state == arc_mru || state == arc_mfu || state == arc_uncached); 3806 evicted_state = (state == arc_uncached) ? arc_anon : 3807 ((state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost); 3808 3809 /* prefetch buffers have a minimum lifespan */ 3810 if ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 3811 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < 3812 MSEC_TO_TICK(min_lifetime)) { 3813 ARCSTAT_BUMP(arcstat_evict_skip); 3814 return (bytes_evicted); 3815 } 3816 3817 if (HDR_HAS_L2HDR(hdr)) { 3818 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); 3819 } else { 3820 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 3821 ARCSTAT_INCR(arcstat_evict_l2_eligible, 3822 HDR_GET_LSIZE(hdr)); 3823 3824 switch (state->arcs_state) { 3825 case ARC_STATE_MRU: 3826 ARCSTAT_INCR( 3827 arcstat_evict_l2_eligible_mru, 3828 HDR_GET_LSIZE(hdr)); 3829 break; 3830 case ARC_STATE_MFU: 3831 ARCSTAT_INCR( 3832 arcstat_evict_l2_eligible_mfu, 3833 HDR_GET_LSIZE(hdr)); 3834 break; 3835 default: 3836 break; 3837 } 3838 } else { 3839 ARCSTAT_INCR(arcstat_evict_l2_ineligible, 3840 HDR_GET_LSIZE(hdr)); 3841 } 3842 } 3843 3844 bytes_evicted += arc_hdr_size(hdr); 3845 *real_evicted += arc_hdr_size(hdr); 3846 3847 /* 3848 * If this hdr is being evicted and has a compressed buffer then we 3849 * discard it here before we change states. This ensures that the 3850 * accounting is updated correctly in arc_free_data_impl(). 3851 */ 3852 if (hdr->b_l1hdr.b_pabd != NULL) 3853 arc_hdr_free_abd(hdr, B_FALSE); 3854 3855 if (HDR_HAS_RABD(hdr)) 3856 arc_hdr_free_abd(hdr, B_TRUE); 3857 3858 arc_change_state(evicted_state, hdr); 3859 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 3860 if (evicted_state == arc_anon) { 3861 arc_hdr_destroy(hdr); 3862 *real_evicted += HDR_FULL_SIZE; 3863 } else { 3864 ASSERT(HDR_IN_HASH_TABLE(hdr)); 3865 } 3866 3867 return (bytes_evicted); 3868 } 3869 3870 static void 3871 arc_set_need_free(void) 3872 { 3873 ASSERT(MUTEX_HELD(&arc_evict_lock)); 3874 int64_t remaining = arc_free_memory() - arc_sys_free / 2; 3875 arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters); 3876 if (aw == NULL) { 3877 arc_need_free = MAX(-remaining, 0); 3878 } else { 3879 arc_need_free = 3880 MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count)); 3881 } 3882 } 3883 3884 static uint64_t 3885 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 3886 uint64_t spa, uint64_t bytes) 3887 { 3888 multilist_sublist_t *mls; 3889 uint64_t bytes_evicted = 0, real_evicted = 0; 3890 arc_buf_hdr_t *hdr; 3891 kmutex_t *hash_lock; 3892 uint_t evict_count = zfs_arc_evict_batch_limit; 3893 3894 ASSERT3P(marker, !=, NULL); 3895 3896 mls = multilist_sublist_lock_idx(ml, idx); 3897 3898 for (hdr = multilist_sublist_prev(mls, marker); likely(hdr != NULL); 3899 hdr = multilist_sublist_prev(mls, marker)) { 3900 if ((evict_count == 0) || (bytes_evicted >= bytes)) 3901 break; 3902 3903 /* 3904 * To keep our iteration location, move the marker 3905 * forward. Since we're not holding hdr's hash lock, we 3906 * must be very careful and not remove 'hdr' from the 3907 * sublist. Otherwise, other consumers might mistake the 3908 * 'hdr' as not being on a sublist when they call the 3909 * multilist_link_active() function (they all rely on 3910 * the hash lock protecting concurrent insertions and 3911 * removals). multilist_sublist_move_forward() was 3912 * specifically implemented to ensure this is the case 3913 * (only 'marker' will be removed and re-inserted). 3914 */ 3915 multilist_sublist_move_forward(mls, marker); 3916 3917 /* 3918 * The only case where the b_spa field should ever be 3919 * zero, is the marker headers inserted by 3920 * arc_evict_state(). It's possible for multiple threads 3921 * to be calling arc_evict_state() concurrently (e.g. 3922 * dsl_pool_close() and zio_inject_fault()), so we must 3923 * skip any markers we see from these other threads. 3924 */ 3925 if (hdr->b_spa == 0) 3926 continue; 3927 3928 /* we're only interested in evicting buffers of a certain spa */ 3929 if (spa != 0 && hdr->b_spa != spa) { 3930 ARCSTAT_BUMP(arcstat_evict_skip); 3931 continue; 3932 } 3933 3934 hash_lock = HDR_LOCK(hdr); 3935 3936 /* 3937 * We aren't calling this function from any code path 3938 * that would already be holding a hash lock, so we're 3939 * asserting on this assumption to be defensive in case 3940 * this ever changes. Without this check, it would be 3941 * possible to incorrectly increment arcstat_mutex_miss 3942 * below (e.g. if the code changed such that we called 3943 * this function with a hash lock held). 3944 */ 3945 ASSERT(!MUTEX_HELD(hash_lock)); 3946 3947 if (mutex_tryenter(hash_lock)) { 3948 uint64_t revicted; 3949 uint64_t evicted = arc_evict_hdr(hdr, &revicted); 3950 mutex_exit(hash_lock); 3951 3952 bytes_evicted += evicted; 3953 real_evicted += revicted; 3954 3955 /* 3956 * If evicted is zero, arc_evict_hdr() must have 3957 * decided to skip this header, don't increment 3958 * evict_count in this case. 3959 */ 3960 if (evicted != 0) 3961 evict_count--; 3962 3963 } else { 3964 ARCSTAT_BUMP(arcstat_mutex_miss); 3965 } 3966 } 3967 3968 multilist_sublist_unlock(mls); 3969 3970 /* 3971 * Increment the count of evicted bytes, and wake up any threads that 3972 * are waiting for the count to reach this value. Since the list is 3973 * ordered by ascending aew_count, we pop off the beginning of the 3974 * list until we reach the end, or a waiter that's past the current 3975 * "count". Doing this outside the loop reduces the number of times 3976 * we need to acquire the global arc_evict_lock. 3977 * 3978 * Only wake when there's sufficient free memory in the system 3979 * (specifically, arc_sys_free/2, which by default is a bit more than 3980 * 1/64th of RAM). See the comments in arc_wait_for_eviction(). 3981 */ 3982 mutex_enter(&arc_evict_lock); 3983 arc_evict_count += real_evicted; 3984 3985 if (arc_free_memory() > arc_sys_free / 2) { 3986 arc_evict_waiter_t *aw; 3987 while ((aw = list_head(&arc_evict_waiters)) != NULL && 3988 aw->aew_count <= arc_evict_count) { 3989 list_remove(&arc_evict_waiters, aw); 3990 cv_broadcast(&aw->aew_cv); 3991 } 3992 } 3993 arc_set_need_free(); 3994 mutex_exit(&arc_evict_lock); 3995 3996 /* 3997 * If the ARC size is reduced from arc_c_max to arc_c_min (especially 3998 * if the average cached block is small), eviction can be on-CPU for 3999 * many seconds. To ensure that other threads that may be bound to 4000 * this CPU are able to make progress, make a voluntary preemption 4001 * call here. 4002 */ 4003 kpreempt(KPREEMPT_SYNC); 4004 4005 return (bytes_evicted); 4006 } 4007 4008 static arc_buf_hdr_t * 4009 arc_state_alloc_marker(void) 4010 { 4011 arc_buf_hdr_t *marker = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 4012 4013 /* 4014 * A b_spa of 0 is used to indicate that this header is 4015 * a marker. This fact is used in arc_evict_state_impl(). 4016 */ 4017 marker->b_spa = 0; 4018 4019 return (marker); 4020 } 4021 4022 static void 4023 arc_state_free_marker(arc_buf_hdr_t *marker) 4024 { 4025 kmem_cache_free(hdr_full_cache, marker); 4026 } 4027 4028 /* 4029 * Allocate an array of buffer headers used as placeholders during arc state 4030 * eviction. 4031 */ 4032 static arc_buf_hdr_t ** 4033 arc_state_alloc_markers(int count) 4034 { 4035 arc_buf_hdr_t **markers; 4036 4037 markers = kmem_zalloc(sizeof (*markers) * count, KM_SLEEP); 4038 for (int i = 0; i < count; i++) 4039 markers[i] = arc_state_alloc_marker(); 4040 return (markers); 4041 } 4042 4043 static void 4044 arc_state_free_markers(arc_buf_hdr_t **markers, int count) 4045 { 4046 for (int i = 0; i < count; i++) 4047 arc_state_free_marker(markers[i]); 4048 kmem_free(markers, sizeof (*markers) * count); 4049 } 4050 4051 /* 4052 * Evict buffers from the given arc state, until we've removed the 4053 * specified number of bytes. Move the removed buffers to the 4054 * appropriate evict state. 4055 * 4056 * This function makes a "best effort". It skips over any buffers 4057 * it can't get a hash_lock on, and so, may not catch all candidates. 4058 * It may also return without evicting as much space as requested. 4059 * 4060 * If bytes is specified using the special value ARC_EVICT_ALL, this 4061 * will evict all available (i.e. unlocked and evictable) buffers from 4062 * the given arc state; which is used by arc_flush(). 4063 */ 4064 static uint64_t 4065 arc_evict_state(arc_state_t *state, arc_buf_contents_t type, uint64_t spa, 4066 uint64_t bytes) 4067 { 4068 uint64_t total_evicted = 0; 4069 multilist_t *ml = &state->arcs_list[type]; 4070 int num_sublists; 4071 arc_buf_hdr_t **markers; 4072 4073 num_sublists = multilist_get_num_sublists(ml); 4074 4075 /* 4076 * If we've tried to evict from each sublist, made some 4077 * progress, but still have not hit the target number of bytes 4078 * to evict, we want to keep trying. The markers allow us to 4079 * pick up where we left off for each individual sublist, rather 4080 * than starting from the tail each time. 4081 */ 4082 if (zthr_iscurthread(arc_evict_zthr)) { 4083 markers = arc_state_evict_markers; 4084 ASSERT3S(num_sublists, <=, arc_state_evict_marker_count); 4085 } else { 4086 markers = arc_state_alloc_markers(num_sublists); 4087 } 4088 for (int i = 0; i < num_sublists; i++) { 4089 multilist_sublist_t *mls; 4090 4091 mls = multilist_sublist_lock_idx(ml, i); 4092 multilist_sublist_insert_tail(mls, markers[i]); 4093 multilist_sublist_unlock(mls); 4094 } 4095 4096 /* 4097 * While we haven't hit our target number of bytes to evict, or 4098 * we're evicting all available buffers. 4099 */ 4100 while (total_evicted < bytes) { 4101 int sublist_idx = multilist_get_random_index(ml); 4102 uint64_t scan_evicted = 0; 4103 4104 /* 4105 * Start eviction using a randomly selected sublist, 4106 * this is to try and evenly balance eviction across all 4107 * sublists. Always starting at the same sublist 4108 * (e.g. index 0) would cause evictions to favor certain 4109 * sublists over others. 4110 */ 4111 for (int i = 0; i < num_sublists; i++) { 4112 uint64_t bytes_remaining; 4113 uint64_t bytes_evicted; 4114 4115 if (total_evicted < bytes) 4116 bytes_remaining = bytes - total_evicted; 4117 else 4118 break; 4119 4120 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 4121 markers[sublist_idx], spa, bytes_remaining); 4122 4123 scan_evicted += bytes_evicted; 4124 total_evicted += bytes_evicted; 4125 4126 /* we've reached the end, wrap to the beginning */ 4127 if (++sublist_idx >= num_sublists) 4128 sublist_idx = 0; 4129 } 4130 4131 /* 4132 * If we didn't evict anything during this scan, we have 4133 * no reason to believe we'll evict more during another 4134 * scan, so break the loop. 4135 */ 4136 if (scan_evicted == 0) { 4137 /* This isn't possible, let's make that obvious */ 4138 ASSERT3S(bytes, !=, 0); 4139 4140 /* 4141 * When bytes is ARC_EVICT_ALL, the only way to 4142 * break the loop is when scan_evicted is zero. 4143 * In that case, we actually have evicted enough, 4144 * so we don't want to increment the kstat. 4145 */ 4146 if (bytes != ARC_EVICT_ALL) { 4147 ASSERT3S(total_evicted, <, bytes); 4148 ARCSTAT_BUMP(arcstat_evict_not_enough); 4149 } 4150 4151 break; 4152 } 4153 } 4154 4155 for (int i = 0; i < num_sublists; i++) { 4156 multilist_sublist_t *mls = multilist_sublist_lock_idx(ml, i); 4157 multilist_sublist_remove(mls, markers[i]); 4158 multilist_sublist_unlock(mls); 4159 } 4160 if (markers != arc_state_evict_markers) 4161 arc_state_free_markers(markers, num_sublists); 4162 4163 return (total_evicted); 4164 } 4165 4166 /* 4167 * Flush all "evictable" data of the given type from the arc state 4168 * specified. This will not evict any "active" buffers (i.e. referenced). 4169 * 4170 * When 'retry' is set to B_FALSE, the function will make a single pass 4171 * over the state and evict any buffers that it can. Since it doesn't 4172 * continually retry the eviction, it might end up leaving some buffers 4173 * in the ARC due to lock misses. 4174 * 4175 * When 'retry' is set to B_TRUE, the function will continually retry the 4176 * eviction until *all* evictable buffers have been removed from the 4177 * state. As a result, if concurrent insertions into the state are 4178 * allowed (e.g. if the ARC isn't shutting down), this function might 4179 * wind up in an infinite loop, continually trying to evict buffers. 4180 */ 4181 static uint64_t 4182 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 4183 boolean_t retry) 4184 { 4185 uint64_t evicted = 0; 4186 4187 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) { 4188 evicted += arc_evict_state(state, type, spa, ARC_EVICT_ALL); 4189 4190 if (!retry) 4191 break; 4192 } 4193 4194 return (evicted); 4195 } 4196 4197 /* 4198 * Evict the specified number of bytes from the state specified. This 4199 * function prevents us from trying to evict more from a state's list 4200 * than is "evictable", and to skip evicting altogether when passed a 4201 * negative value for "bytes". In contrast, arc_evict_state() will 4202 * evict everything it can, when passed a negative value for "bytes". 4203 */ 4204 static uint64_t 4205 arc_evict_impl(arc_state_t *state, arc_buf_contents_t type, int64_t bytes) 4206 { 4207 uint64_t delta; 4208 4209 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) { 4210 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]), 4211 bytes); 4212 return (arc_evict_state(state, type, 0, delta)); 4213 } 4214 4215 return (0); 4216 } 4217 4218 /* 4219 * Adjust specified fraction, taking into account initial ghost state(s) size, 4220 * ghost hit bytes towards increasing the fraction, ghost hit bytes towards 4221 * decreasing it, plus a balance factor, controlling the decrease rate, used 4222 * to balance metadata vs data. 4223 */ 4224 static uint64_t 4225 arc_evict_adj(uint64_t frac, uint64_t total, uint64_t up, uint64_t down, 4226 uint_t balance) 4227 { 4228 if (total < 8 || up + down == 0) 4229 return (frac); 4230 4231 /* 4232 * We should not have more ghost hits than ghost size, but they 4233 * may get close. Restrict maximum adjustment in that case. 4234 */ 4235 if (up + down >= total / 4) { 4236 uint64_t scale = (up + down) / (total / 8); 4237 up /= scale; 4238 down /= scale; 4239 } 4240 4241 /* Get maximal dynamic range by choosing optimal shifts. */ 4242 int s = highbit64(total); 4243 s = MIN(64 - s, 32); 4244 4245 uint64_t ofrac = (1ULL << 32) - frac; 4246 4247 if (frac >= 4 * ofrac) 4248 up /= frac / (2 * ofrac + 1); 4249 up = (up << s) / (total >> (32 - s)); 4250 if (ofrac >= 4 * frac) 4251 down /= ofrac / (2 * frac + 1); 4252 down = (down << s) / (total >> (32 - s)); 4253 down = down * 100 / balance; 4254 4255 return (frac + up - down); 4256 } 4257 4258 /* 4259 * Calculate (x * multiplier / divisor) without unnecesary overflows. 4260 */ 4261 static uint64_t 4262 arc_mf(uint64_t x, uint64_t multiplier, uint64_t divisor) 4263 { 4264 uint64_t q = (x / divisor); 4265 uint64_t r = (x % divisor); 4266 4267 return ((q * multiplier) + ((r * multiplier) / divisor)); 4268 } 4269 4270 /* 4271 * Evict buffers from the cache, such that arcstat_size is capped by arc_c. 4272 */ 4273 static uint64_t 4274 arc_evict(void) 4275 { 4276 uint64_t bytes, total_evicted = 0; 4277 int64_t e, mrud, mrum, mfud, mfum, w; 4278 static uint64_t ogrd, ogrm, ogfd, ogfm; 4279 static uint64_t gsrd, gsrm, gsfd, gsfm; 4280 uint64_t ngrd, ngrm, ngfd, ngfm; 4281 4282 /* Get current size of ARC states we can evict from. */ 4283 mrud = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_DATA]) + 4284 zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]); 4285 mrum = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA]) + 4286 zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]); 4287 mfud = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_DATA]); 4288 mfum = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA]); 4289 uint64_t d = mrud + mfud; 4290 uint64_t m = mrum + mfum; 4291 uint64_t t = d + m; 4292 4293 /* Get ARC ghost hits since last eviction. */ 4294 ngrd = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]); 4295 uint64_t grd = ngrd - ogrd; 4296 ogrd = ngrd; 4297 ngrm = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]); 4298 uint64_t grm = ngrm - ogrm; 4299 ogrm = ngrm; 4300 ngfd = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]); 4301 uint64_t gfd = ngfd - ogfd; 4302 ogfd = ngfd; 4303 ngfm = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]); 4304 uint64_t gfm = ngfm - ogfm; 4305 ogfm = ngfm; 4306 4307 /* Adjust ARC states balance based on ghost hits. */ 4308 arc_meta = arc_evict_adj(arc_meta, gsrd + gsrm + gsfd + gsfm, 4309 grm + gfm, grd + gfd, zfs_arc_meta_balance); 4310 arc_pd = arc_evict_adj(arc_pd, gsrd + gsfd, grd, gfd, 100); 4311 arc_pm = arc_evict_adj(arc_pm, gsrm + gsfm, grm, gfm, 100); 4312 4313 uint64_t asize = aggsum_value(&arc_sums.arcstat_size); 4314 uint64_t ac = arc_c; 4315 int64_t wt = t - (asize - ac); 4316 4317 /* 4318 * Try to reduce pinned dnodes if more than 3/4 of wanted metadata 4319 * target is not evictable or if they go over arc_dnode_limit. 4320 */ 4321 int64_t prune = 0; 4322 int64_t dn = wmsum_value(&arc_sums.arcstat_dnode_size); 4323 int64_t nem = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA]) 4324 + zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA]) 4325 - zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA]) 4326 - zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 4327 w = wt * (int64_t)(arc_meta >> 16) >> 16; 4328 if (nem > w * 3 / 4) { 4329 prune = dn / sizeof (dnode_t) * 4330 zfs_arc_dnode_reduce_percent / 100; 4331 if (nem < w && w > 4) 4332 prune = arc_mf(prune, nem - w * 3 / 4, w / 4); 4333 } 4334 if (dn > arc_dnode_limit) { 4335 prune = MAX(prune, (dn - arc_dnode_limit) / sizeof (dnode_t) * 4336 zfs_arc_dnode_reduce_percent / 100); 4337 } 4338 if (prune > 0) 4339 arc_prune_async(prune); 4340 4341 /* Evict MRU metadata. */ 4342 w = wt * (int64_t)(arc_meta * arc_pm >> 48) >> 16; 4343 e = MIN((int64_t)(asize - ac), (int64_t)(mrum - w)); 4344 bytes = arc_evict_impl(arc_mru, ARC_BUFC_METADATA, e); 4345 total_evicted += bytes; 4346 mrum -= bytes; 4347 asize -= bytes; 4348 4349 /* Evict MFU metadata. */ 4350 w = wt * (int64_t)(arc_meta >> 16) >> 16; 4351 e = MIN((int64_t)(asize - ac), (int64_t)(m - bytes - w)); 4352 bytes = arc_evict_impl(arc_mfu, ARC_BUFC_METADATA, e); 4353 total_evicted += bytes; 4354 mfum -= bytes; 4355 asize -= bytes; 4356 4357 /* Evict MRU data. */ 4358 wt -= m - total_evicted; 4359 w = wt * (int64_t)(arc_pd >> 16) >> 16; 4360 e = MIN((int64_t)(asize - ac), (int64_t)(mrud - w)); 4361 bytes = arc_evict_impl(arc_mru, ARC_BUFC_DATA, e); 4362 total_evicted += bytes; 4363 mrud -= bytes; 4364 asize -= bytes; 4365 4366 /* Evict MFU data. */ 4367 e = asize - ac; 4368 bytes = arc_evict_impl(arc_mfu, ARC_BUFC_DATA, e); 4369 mfud -= bytes; 4370 total_evicted += bytes; 4371 4372 /* 4373 * Evict ghost lists 4374 * 4375 * Size of each state's ghost list represents how much that state 4376 * may grow by shrinking the other states. Would it need to shrink 4377 * other states to zero (that is unlikely), its ghost size would be 4378 * equal to sum of other three state sizes. But excessive ghost 4379 * size may result in false ghost hits (too far back), that may 4380 * never result in real cache hits if several states are competing. 4381 * So choose some arbitraty point of 1/2 of other state sizes. 4382 */ 4383 gsrd = (mrum + mfud + mfum) / 2; 4384 e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]) - 4385 gsrd; 4386 (void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_DATA, e); 4387 4388 gsrm = (mrud + mfud + mfum) / 2; 4389 e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]) - 4390 gsrm; 4391 (void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_METADATA, e); 4392 4393 gsfd = (mrud + mrum + mfum) / 2; 4394 e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]) - 4395 gsfd; 4396 (void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_DATA, e); 4397 4398 gsfm = (mrud + mrum + mfud) / 2; 4399 e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]) - 4400 gsfm; 4401 (void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_METADATA, e); 4402 4403 return (total_evicted); 4404 } 4405 4406 static void 4407 arc_flush_impl(uint64_t guid, boolean_t retry) 4408 { 4409 ASSERT(!retry || guid == 0); 4410 4411 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 4412 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 4413 4414 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 4415 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 4416 4417 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 4418 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 4419 4420 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 4421 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 4422 4423 (void) arc_flush_state(arc_uncached, guid, ARC_BUFC_DATA, retry); 4424 (void) arc_flush_state(arc_uncached, guid, ARC_BUFC_METADATA, retry); 4425 } 4426 4427 void 4428 arc_flush(spa_t *spa, boolean_t retry) 4429 { 4430 /* 4431 * If retry is B_TRUE, a spa must not be specified since we have 4432 * no good way to determine if all of a spa's buffers have been 4433 * evicted from an arc state. 4434 */ 4435 ASSERT(!retry || spa == NULL); 4436 4437 arc_flush_impl(spa != NULL ? spa_load_guid(spa) : 0, retry); 4438 } 4439 4440 static arc_async_flush_t * 4441 arc_async_flush_add(uint64_t spa_guid, uint_t level) 4442 { 4443 arc_async_flush_t *af = kmem_alloc(sizeof (*af), KM_SLEEP); 4444 af->af_spa_guid = spa_guid; 4445 af->af_cache_level = level; 4446 taskq_init_ent(&af->af_tqent); 4447 list_link_init(&af->af_node); 4448 4449 mutex_enter(&arc_async_flush_lock); 4450 list_insert_tail(&arc_async_flush_list, af); 4451 mutex_exit(&arc_async_flush_lock); 4452 4453 return (af); 4454 } 4455 4456 static void 4457 arc_async_flush_remove(uint64_t spa_guid, uint_t level) 4458 { 4459 mutex_enter(&arc_async_flush_lock); 4460 for (arc_async_flush_t *af = list_head(&arc_async_flush_list); 4461 af != NULL; af = list_next(&arc_async_flush_list, af)) { 4462 if (af->af_spa_guid == spa_guid && 4463 af->af_cache_level == level) { 4464 list_remove(&arc_async_flush_list, af); 4465 kmem_free(af, sizeof (*af)); 4466 break; 4467 } 4468 } 4469 mutex_exit(&arc_async_flush_lock); 4470 } 4471 4472 static void 4473 arc_flush_task(void *arg) 4474 { 4475 arc_async_flush_t *af = arg; 4476 hrtime_t start_time = gethrtime(); 4477 uint64_t spa_guid = af->af_spa_guid; 4478 4479 arc_flush_impl(spa_guid, B_FALSE); 4480 arc_async_flush_remove(spa_guid, af->af_cache_level); 4481 4482 uint64_t elaspsed = NSEC2MSEC(gethrtime() - start_time); 4483 if (elaspsed > 0) { 4484 zfs_dbgmsg("spa %llu arc flushed in %llu ms", 4485 (u_longlong_t)spa_guid, (u_longlong_t)elaspsed); 4486 } 4487 } 4488 4489 /* 4490 * ARC buffers use the spa's load guid and can continue to exist after 4491 * the spa_t is gone (exported). The blocks are orphaned since each 4492 * spa import has a different load guid. 4493 * 4494 * It's OK if the spa is re-imported while this asynchronous flush is 4495 * still in progress. The new spa_load_guid will be different. 4496 * 4497 * Also, arc_fini will wait for any arc_flush_task to finish. 4498 */ 4499 void 4500 arc_flush_async(spa_t *spa) 4501 { 4502 uint64_t spa_guid = spa_load_guid(spa); 4503 arc_async_flush_t *af = arc_async_flush_add(spa_guid, 1); 4504 4505 taskq_dispatch_ent(arc_flush_taskq, arc_flush_task, 4506 af, TQ_SLEEP, &af->af_tqent); 4507 } 4508 4509 /* 4510 * Check if a guid is still in-use as part of an async teardown task 4511 */ 4512 boolean_t 4513 arc_async_flush_guid_inuse(uint64_t spa_guid) 4514 { 4515 mutex_enter(&arc_async_flush_lock); 4516 for (arc_async_flush_t *af = list_head(&arc_async_flush_list); 4517 af != NULL; af = list_next(&arc_async_flush_list, af)) { 4518 if (af->af_spa_guid == spa_guid) { 4519 mutex_exit(&arc_async_flush_lock); 4520 return (B_TRUE); 4521 } 4522 } 4523 mutex_exit(&arc_async_flush_lock); 4524 return (B_FALSE); 4525 } 4526 4527 uint64_t 4528 arc_reduce_target_size(uint64_t to_free) 4529 { 4530 /* 4531 * Get the actual arc size. Even if we don't need it, this updates 4532 * the aggsum lower bound estimate for arc_is_overflowing(). 4533 */ 4534 uint64_t asize = aggsum_value(&arc_sums.arcstat_size); 4535 4536 /* 4537 * All callers want the ARC to actually evict (at least) this much 4538 * memory. Therefore we reduce from the lower of the current size and 4539 * the target size. This way, even if arc_c is much higher than 4540 * arc_size (as can be the case after many calls to arc_freed(), we will 4541 * immediately have arc_c < arc_size and therefore the arc_evict_zthr 4542 * will evict. 4543 */ 4544 uint64_t c = arc_c; 4545 if (c > arc_c_min) { 4546 c = MIN(c, MAX(asize, arc_c_min)); 4547 to_free = MIN(to_free, c - arc_c_min); 4548 arc_c = c - to_free; 4549 } else { 4550 to_free = 0; 4551 } 4552 4553 /* 4554 * Whether or not we reduced the target size, request eviction if the 4555 * current size is over it now, since caller obviously wants some RAM. 4556 */ 4557 if (asize > arc_c) { 4558 /* See comment in arc_evict_cb_check() on why lock+flag */ 4559 mutex_enter(&arc_evict_lock); 4560 arc_evict_needed = B_TRUE; 4561 mutex_exit(&arc_evict_lock); 4562 zthr_wakeup(arc_evict_zthr); 4563 } 4564 4565 return (to_free); 4566 } 4567 4568 /* 4569 * Determine if the system is under memory pressure and is asking 4570 * to reclaim memory. A return value of B_TRUE indicates that the system 4571 * is under memory pressure and that the arc should adjust accordingly. 4572 */ 4573 boolean_t 4574 arc_reclaim_needed(void) 4575 { 4576 return (arc_available_memory() < 0); 4577 } 4578 4579 void 4580 arc_kmem_reap_soon(void) 4581 { 4582 size_t i; 4583 kmem_cache_t *prev_cache = NULL; 4584 kmem_cache_t *prev_data_cache = NULL; 4585 4586 #ifdef _KERNEL 4587 #if defined(_ILP32) 4588 /* 4589 * Reclaim unused memory from all kmem caches. 4590 */ 4591 kmem_reap(); 4592 #endif 4593 #endif 4594 4595 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 4596 #if defined(_ILP32) 4597 /* reach upper limit of cache size on 32-bit */ 4598 if (zio_buf_cache[i] == NULL) 4599 break; 4600 #endif 4601 if (zio_buf_cache[i] != prev_cache) { 4602 prev_cache = zio_buf_cache[i]; 4603 kmem_cache_reap_now(zio_buf_cache[i]); 4604 } 4605 if (zio_data_buf_cache[i] != prev_data_cache) { 4606 prev_data_cache = zio_data_buf_cache[i]; 4607 kmem_cache_reap_now(zio_data_buf_cache[i]); 4608 } 4609 } 4610 kmem_cache_reap_now(buf_cache); 4611 kmem_cache_reap_now(hdr_full_cache); 4612 kmem_cache_reap_now(hdr_l2only_cache); 4613 kmem_cache_reap_now(zfs_btree_leaf_cache); 4614 abd_cache_reap_now(); 4615 } 4616 4617 static boolean_t 4618 arc_evict_cb_check(void *arg, zthr_t *zthr) 4619 { 4620 (void) arg, (void) zthr; 4621 4622 #ifdef ZFS_DEBUG 4623 /* 4624 * This is necessary in order to keep the kstat information 4625 * up to date for tools that display kstat data such as the 4626 * mdb ::arc dcmd and the Linux crash utility. These tools 4627 * typically do not call kstat's update function, but simply 4628 * dump out stats from the most recent update. Without 4629 * this call, these commands may show stale stats for the 4630 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 4631 * with this call, the data might be out of date if the 4632 * evict thread hasn't been woken recently; but that should 4633 * suffice. The arc_state_t structures can be queried 4634 * directly if more accurate information is needed. 4635 */ 4636 if (arc_ksp != NULL) 4637 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 4638 #endif 4639 4640 /* 4641 * We have to rely on arc_wait_for_eviction() to tell us when to 4642 * evict, rather than checking if we are overflowing here, so that we 4643 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv. 4644 * If we have become "not overflowing" since arc_wait_for_eviction() 4645 * checked, we need to wake it up. We could broadcast the CV here, 4646 * but arc_wait_for_eviction() may have not yet gone to sleep. We 4647 * would need to use a mutex to ensure that this function doesn't 4648 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g. 4649 * the arc_evict_lock). However, the lock ordering of such a lock 4650 * would necessarily be incorrect with respect to the zthr_lock, 4651 * which is held before this function is called, and is held by 4652 * arc_wait_for_eviction() when it calls zthr_wakeup(). 4653 */ 4654 if (arc_evict_needed) 4655 return (B_TRUE); 4656 4657 /* 4658 * If we have buffers in uncached state, evict them periodically. 4659 */ 4660 return ((zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_DATA]) + 4661 zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]) && 4662 ddi_get_lbolt() - arc_last_uncached_flush > 4663 MSEC_TO_TICK(arc_min_prefetch_ms / 2))); 4664 } 4665 4666 /* 4667 * Keep arc_size under arc_c by running arc_evict which evicts data 4668 * from the ARC. 4669 */ 4670 static void 4671 arc_evict_cb(void *arg, zthr_t *zthr) 4672 { 4673 (void) arg; 4674 4675 uint64_t evicted = 0; 4676 fstrans_cookie_t cookie = spl_fstrans_mark(); 4677 4678 /* Always try to evict from uncached state. */ 4679 arc_last_uncached_flush = ddi_get_lbolt(); 4680 evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_DATA, B_FALSE); 4681 evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_METADATA, B_FALSE); 4682 4683 /* Evict from other states only if told to. */ 4684 if (arc_evict_needed) 4685 evicted += arc_evict(); 4686 4687 /* 4688 * If evicted is zero, we couldn't evict anything 4689 * via arc_evict(). This could be due to hash lock 4690 * collisions, but more likely due to the majority of 4691 * arc buffers being unevictable. Therefore, even if 4692 * arc_size is above arc_c, another pass is unlikely to 4693 * be helpful and could potentially cause us to enter an 4694 * infinite loop. Additionally, zthr_iscancelled() is 4695 * checked here so that if the arc is shutting down, the 4696 * broadcast will wake any remaining arc evict waiters. 4697 * 4698 * Note we cancel using zthr instead of arc_evict_zthr 4699 * because the latter may not yet be initializd when the 4700 * callback is first invoked. 4701 */ 4702 mutex_enter(&arc_evict_lock); 4703 arc_evict_needed = !zthr_iscancelled(zthr) && 4704 evicted > 0 && aggsum_compare(&arc_sums.arcstat_size, arc_c) > 0; 4705 if (!arc_evict_needed) { 4706 /* 4707 * We're either no longer overflowing, or we 4708 * can't evict anything more, so we should wake 4709 * arc_get_data_impl() sooner. 4710 */ 4711 arc_evict_waiter_t *aw; 4712 while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) { 4713 cv_broadcast(&aw->aew_cv); 4714 } 4715 arc_set_need_free(); 4716 } 4717 mutex_exit(&arc_evict_lock); 4718 spl_fstrans_unmark(cookie); 4719 } 4720 4721 static boolean_t 4722 arc_reap_cb_check(void *arg, zthr_t *zthr) 4723 { 4724 (void) arg, (void) zthr; 4725 4726 int64_t free_memory = arc_available_memory(); 4727 static int reap_cb_check_counter = 0; 4728 4729 /* 4730 * If a kmem reap is already active, don't schedule more. We must 4731 * check for this because kmem_cache_reap_soon() won't actually 4732 * block on the cache being reaped (this is to prevent callers from 4733 * becoming implicitly blocked by a system-wide kmem reap -- which, 4734 * on a system with many, many full magazines, can take minutes). 4735 */ 4736 if (!kmem_cache_reap_active() && free_memory < 0) { 4737 4738 arc_no_grow = B_TRUE; 4739 arc_warm = B_TRUE; 4740 /* 4741 * Wait at least zfs_grow_retry (default 5) seconds 4742 * before considering growing. 4743 */ 4744 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry); 4745 return (B_TRUE); 4746 } else if (free_memory < arc_c >> arc_no_grow_shift) { 4747 arc_no_grow = B_TRUE; 4748 } else if (gethrtime() >= arc_growtime) { 4749 arc_no_grow = B_FALSE; 4750 } 4751 4752 /* 4753 * Called unconditionally every 60 seconds to reclaim unused 4754 * zstd compression and decompression context. This is done 4755 * here to avoid the need for an independent thread. 4756 */ 4757 if (!((reap_cb_check_counter++) % 60)) 4758 zfs_zstd_cache_reap_now(); 4759 4760 return (B_FALSE); 4761 } 4762 4763 /* 4764 * Keep enough free memory in the system by reaping the ARC's kmem 4765 * caches. To cause more slabs to be reapable, we may reduce the 4766 * target size of the cache (arc_c), causing the arc_evict_cb() 4767 * to free more buffers. 4768 */ 4769 static void 4770 arc_reap_cb(void *arg, zthr_t *zthr) 4771 { 4772 int64_t can_free, free_memory, to_free; 4773 4774 (void) arg, (void) zthr; 4775 fstrans_cookie_t cookie = spl_fstrans_mark(); 4776 4777 /* 4778 * Kick off asynchronous kmem_reap()'s of all our caches. 4779 */ 4780 arc_kmem_reap_soon(); 4781 4782 /* 4783 * Wait at least arc_kmem_cache_reap_retry_ms between 4784 * arc_kmem_reap_soon() calls. Without this check it is possible to 4785 * end up in a situation where we spend lots of time reaping 4786 * caches, while we're near arc_c_min. Waiting here also gives the 4787 * subsequent free memory check a chance of finding that the 4788 * asynchronous reap has already freed enough memory, and we don't 4789 * need to call arc_reduce_target_size(). 4790 */ 4791 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000); 4792 4793 /* 4794 * Reduce the target size as needed to maintain the amount of free 4795 * memory in the system at a fraction of the arc_size (1/128th by 4796 * default). If oversubscribed (free_memory < 0) then reduce the 4797 * target arc_size by the deficit amount plus the fractional 4798 * amount. If free memory is positive but less than the fractional 4799 * amount, reduce by what is needed to hit the fractional amount. 4800 */ 4801 free_memory = arc_available_memory(); 4802 can_free = arc_c - arc_c_min; 4803 to_free = (MAX(can_free, 0) >> arc_shrink_shift) - free_memory; 4804 if (to_free > 0) 4805 arc_reduce_target_size(to_free); 4806 spl_fstrans_unmark(cookie); 4807 } 4808 4809 #ifdef _KERNEL 4810 /* 4811 * Determine the amount of memory eligible for eviction contained in the 4812 * ARC. All clean data reported by the ghost lists can always be safely 4813 * evicted. Due to arc_c_min, the same does not hold for all clean data 4814 * contained by the regular mru and mfu lists. 4815 * 4816 * In the case of the regular mru and mfu lists, we need to report as 4817 * much clean data as possible, such that evicting that same reported 4818 * data will not bring arc_size below arc_c_min. Thus, in certain 4819 * circumstances, the total amount of clean data in the mru and mfu 4820 * lists might not actually be evictable. 4821 * 4822 * The following two distinct cases are accounted for: 4823 * 4824 * 1. The sum of the amount of dirty data contained by both the mru and 4825 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 4826 * is greater than or equal to arc_c_min. 4827 * (i.e. amount of dirty data >= arc_c_min) 4828 * 4829 * This is the easy case; all clean data contained by the mru and mfu 4830 * lists is evictable. Evicting all clean data can only drop arc_size 4831 * to the amount of dirty data, which is greater than arc_c_min. 4832 * 4833 * 2. The sum of the amount of dirty data contained by both the mru and 4834 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 4835 * is less than arc_c_min. 4836 * (i.e. arc_c_min > amount of dirty data) 4837 * 4838 * 2.1. arc_size is greater than or equal arc_c_min. 4839 * (i.e. arc_size >= arc_c_min > amount of dirty data) 4840 * 4841 * In this case, not all clean data from the regular mru and mfu 4842 * lists is actually evictable; we must leave enough clean data 4843 * to keep arc_size above arc_c_min. Thus, the maximum amount of 4844 * evictable data from the two lists combined, is exactly the 4845 * difference between arc_size and arc_c_min. 4846 * 4847 * 2.2. arc_size is less than arc_c_min 4848 * (i.e. arc_c_min > arc_size > amount of dirty data) 4849 * 4850 * In this case, none of the data contained in the mru and mfu 4851 * lists is evictable, even if it's clean. Since arc_size is 4852 * already below arc_c_min, evicting any more would only 4853 * increase this negative difference. 4854 */ 4855 4856 #endif /* _KERNEL */ 4857 4858 /* 4859 * Adapt arc info given the number of bytes we are trying to add and 4860 * the state that we are coming from. This function is only called 4861 * when we are adding new content to the cache. 4862 */ 4863 static void 4864 arc_adapt(uint64_t bytes) 4865 { 4866 /* 4867 * Wake reap thread if we do not have any available memory 4868 */ 4869 if (arc_reclaim_needed()) { 4870 zthr_wakeup(arc_reap_zthr); 4871 return; 4872 } 4873 4874 if (arc_no_grow) 4875 return; 4876 4877 if (arc_c >= arc_c_max) 4878 return; 4879 4880 /* 4881 * If we're within (2 * maxblocksize) bytes of the target 4882 * cache size, increment the target cache size 4883 */ 4884 if (aggsum_upper_bound(&arc_sums.arcstat_size) + 4885 2 * SPA_MAXBLOCKSIZE >= arc_c) { 4886 uint64_t dc = MAX(bytes, SPA_OLD_MAXBLOCKSIZE); 4887 if (atomic_add_64_nv(&arc_c, dc) > arc_c_max) 4888 arc_c = arc_c_max; 4889 } 4890 } 4891 4892 /* 4893 * Check if ARC current size has grown past our upper thresholds. 4894 */ 4895 static arc_ovf_level_t 4896 arc_is_overflowing(boolean_t lax, boolean_t use_reserve) 4897 { 4898 /* 4899 * We just compare the lower bound here for performance reasons. Our 4900 * primary goals are to make sure that the arc never grows without 4901 * bound, and that it can reach its maximum size. This check 4902 * accomplishes both goals. The maximum amount we could run over by is 4903 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block 4904 * in the ARC. In practice, that's in the tens of MB, which is low 4905 * enough to be safe. 4906 */ 4907 int64_t over = aggsum_lower_bound(&arc_sums.arcstat_size) - arc_c - 4908 zfs_max_recordsize; 4909 4910 /* Always allow at least one block of overflow. */ 4911 if (over < 0) 4912 return (ARC_OVF_NONE); 4913 4914 /* If we are under memory pressure, report severe overflow. */ 4915 if (!lax) 4916 return (ARC_OVF_SEVERE); 4917 4918 /* We are not under pressure, so be more or less relaxed. */ 4919 int64_t overflow = (arc_c >> zfs_arc_overflow_shift) / 2; 4920 if (use_reserve) 4921 overflow *= 3; 4922 return (over < overflow ? ARC_OVF_SOME : ARC_OVF_SEVERE); 4923 } 4924 4925 static abd_t * 4926 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, const void *tag, 4927 int alloc_flags) 4928 { 4929 arc_buf_contents_t type = arc_buf_type(hdr); 4930 4931 arc_get_data_impl(hdr, size, tag, alloc_flags); 4932 if (alloc_flags & ARC_HDR_ALLOC_LINEAR) 4933 return (abd_alloc_linear(size, type == ARC_BUFC_METADATA)); 4934 else 4935 return (abd_alloc(size, type == ARC_BUFC_METADATA)); 4936 } 4937 4938 static void * 4939 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, const void *tag) 4940 { 4941 arc_buf_contents_t type = arc_buf_type(hdr); 4942 4943 arc_get_data_impl(hdr, size, tag, 0); 4944 if (type == ARC_BUFC_METADATA) { 4945 return (zio_buf_alloc(size)); 4946 } else { 4947 ASSERT(type == ARC_BUFC_DATA); 4948 return (zio_data_buf_alloc(size)); 4949 } 4950 } 4951 4952 /* 4953 * Wait for the specified amount of data (in bytes) to be evicted from the 4954 * ARC, and for there to be sufficient free memory in the system. 4955 * The lax argument specifies that caller does not have a specific reason 4956 * to wait, not aware of any memory pressure. Low memory handlers though 4957 * should set it to B_FALSE to wait for all required evictions to complete. 4958 * The use_reserve argument allows some callers to wait less than others 4959 * to not block critical code paths, possibly blocking other resources. 4960 */ 4961 void 4962 arc_wait_for_eviction(uint64_t amount, boolean_t lax, boolean_t use_reserve) 4963 { 4964 switch (arc_is_overflowing(lax, use_reserve)) { 4965 case ARC_OVF_NONE: 4966 return; 4967 case ARC_OVF_SOME: 4968 /* 4969 * This is a bit racy without taking arc_evict_lock, but the 4970 * worst that can happen is we either call zthr_wakeup() extra 4971 * time due to race with other thread here, or the set flag 4972 * get cleared by arc_evict_cb(), which is unlikely due to 4973 * big hysteresis, but also not important since at this level 4974 * of overflow the eviction is purely advisory. Same time 4975 * taking the global lock here every time without waiting for 4976 * the actual eviction creates a significant lock contention. 4977 */ 4978 if (!arc_evict_needed) { 4979 arc_evict_needed = B_TRUE; 4980 zthr_wakeup(arc_evict_zthr); 4981 } 4982 return; 4983 case ARC_OVF_SEVERE: 4984 default: 4985 { 4986 arc_evict_waiter_t aw; 4987 list_link_init(&aw.aew_node); 4988 cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL); 4989 4990 uint64_t last_count = 0; 4991 mutex_enter(&arc_evict_lock); 4992 if (!list_is_empty(&arc_evict_waiters)) { 4993 arc_evict_waiter_t *last = 4994 list_tail(&arc_evict_waiters); 4995 last_count = last->aew_count; 4996 } else if (!arc_evict_needed) { 4997 arc_evict_needed = B_TRUE; 4998 zthr_wakeup(arc_evict_zthr); 4999 } 5000 /* 5001 * Note, the last waiter's count may be less than 5002 * arc_evict_count if we are low on memory in which 5003 * case arc_evict_state_impl() may have deferred 5004 * wakeups (but still incremented arc_evict_count). 5005 */ 5006 aw.aew_count = MAX(last_count, arc_evict_count) + amount; 5007 5008 list_insert_tail(&arc_evict_waiters, &aw); 5009 5010 arc_set_need_free(); 5011 5012 DTRACE_PROBE3(arc__wait__for__eviction, 5013 uint64_t, amount, 5014 uint64_t, arc_evict_count, 5015 uint64_t, aw.aew_count); 5016 5017 /* 5018 * We will be woken up either when arc_evict_count reaches 5019 * aew_count, or when the ARC is no longer overflowing and 5020 * eviction completes. 5021 * In case of "false" wakeup, we will still be on the list. 5022 */ 5023 do { 5024 cv_wait(&aw.aew_cv, &arc_evict_lock); 5025 } while (list_link_active(&aw.aew_node)); 5026 mutex_exit(&arc_evict_lock); 5027 5028 cv_destroy(&aw.aew_cv); 5029 } 5030 } 5031 } 5032 5033 /* 5034 * Allocate a block and return it to the caller. If we are hitting the 5035 * hard limit for the cache size, we must sleep, waiting for the eviction 5036 * thread to catch up. If we're past the target size but below the hard 5037 * limit, we'll only signal the reclaim thread and continue on. 5038 */ 5039 static void 5040 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag, 5041 int alloc_flags) 5042 { 5043 arc_adapt(size); 5044 5045 /* 5046 * If arc_size is currently overflowing, we must be adding data 5047 * faster than we are evicting. To ensure we don't compound the 5048 * problem by adding more data and forcing arc_size to grow even 5049 * further past it's target size, we wait for the eviction thread to 5050 * make some progress. We also wait for there to be sufficient free 5051 * memory in the system, as measured by arc_free_memory(). 5052 * 5053 * Specifically, we wait for zfs_arc_eviction_pct percent of the 5054 * requested size to be evicted. This should be more than 100%, to 5055 * ensure that that progress is also made towards getting arc_size 5056 * under arc_c. See the comment above zfs_arc_eviction_pct. 5057 */ 5058 arc_wait_for_eviction(size * zfs_arc_eviction_pct / 100, 5059 B_TRUE, alloc_flags & ARC_HDR_USE_RESERVE); 5060 5061 arc_buf_contents_t type = arc_buf_type(hdr); 5062 if (type == ARC_BUFC_METADATA) { 5063 arc_space_consume(size, ARC_SPACE_META); 5064 } else { 5065 arc_space_consume(size, ARC_SPACE_DATA); 5066 } 5067 5068 /* 5069 * Update the state size. Note that ghost states have a 5070 * "ghost size" and so don't need to be updated. 5071 */ 5072 arc_state_t *state = hdr->b_l1hdr.b_state; 5073 if (!GHOST_STATE(state)) { 5074 5075 (void) zfs_refcount_add_many(&state->arcs_size[type], size, 5076 tag); 5077 5078 /* 5079 * If this is reached via arc_read, the link is 5080 * protected by the hash lock. If reached via 5081 * arc_buf_alloc, the header should not be accessed by 5082 * any other thread. And, if reached via arc_read_done, 5083 * the hash lock will protect it if it's found in the 5084 * hash table; otherwise no other thread should be 5085 * trying to [add|remove]_reference it. 5086 */ 5087 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5088 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5089 (void) zfs_refcount_add_many(&state->arcs_esize[type], 5090 size, tag); 5091 } 5092 } 5093 } 5094 5095 static void 5096 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, 5097 const void *tag) 5098 { 5099 arc_free_data_impl(hdr, size, tag); 5100 abd_free(abd); 5101 } 5102 5103 static void 5104 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, const void *tag) 5105 { 5106 arc_buf_contents_t type = arc_buf_type(hdr); 5107 5108 arc_free_data_impl(hdr, size, tag); 5109 if (type == ARC_BUFC_METADATA) { 5110 zio_buf_free(buf, size); 5111 } else { 5112 ASSERT(type == ARC_BUFC_DATA); 5113 zio_data_buf_free(buf, size); 5114 } 5115 } 5116 5117 /* 5118 * Free the arc data buffer. 5119 */ 5120 static void 5121 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag) 5122 { 5123 arc_state_t *state = hdr->b_l1hdr.b_state; 5124 arc_buf_contents_t type = arc_buf_type(hdr); 5125 5126 /* protected by hash lock, if in the hash table */ 5127 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5128 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5129 ASSERT(state != arc_anon && state != arc_l2c_only); 5130 5131 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 5132 size, tag); 5133 } 5134 (void) zfs_refcount_remove_many(&state->arcs_size[type], size, tag); 5135 5136 VERIFY3U(hdr->b_type, ==, type); 5137 if (type == ARC_BUFC_METADATA) { 5138 arc_space_return(size, ARC_SPACE_META); 5139 } else { 5140 ASSERT(type == ARC_BUFC_DATA); 5141 arc_space_return(size, ARC_SPACE_DATA); 5142 } 5143 } 5144 5145 /* 5146 * This routine is called whenever a buffer is accessed. 5147 */ 5148 static void 5149 arc_access(arc_buf_hdr_t *hdr, arc_flags_t arc_flags, boolean_t hit) 5150 { 5151 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 5152 ASSERT(HDR_HAS_L1HDR(hdr)); 5153 5154 /* 5155 * Update buffer prefetch status. 5156 */ 5157 boolean_t was_prefetch = HDR_PREFETCH(hdr); 5158 boolean_t now_prefetch = arc_flags & ARC_FLAG_PREFETCH; 5159 if (was_prefetch != now_prefetch) { 5160 if (was_prefetch) { 5161 ARCSTAT_CONDSTAT(hit, demand_hit, demand_iohit, 5162 HDR_PRESCIENT_PREFETCH(hdr), prescient, predictive, 5163 prefetch); 5164 } 5165 if (HDR_HAS_L2HDR(hdr)) 5166 l2arc_hdr_arcstats_decrement_state(hdr); 5167 if (was_prefetch) { 5168 arc_hdr_clear_flags(hdr, 5169 ARC_FLAG_PREFETCH | ARC_FLAG_PRESCIENT_PREFETCH); 5170 } else { 5171 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 5172 } 5173 if (HDR_HAS_L2HDR(hdr)) 5174 l2arc_hdr_arcstats_increment_state(hdr); 5175 } 5176 if (now_prefetch) { 5177 if (arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) { 5178 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 5179 ARCSTAT_BUMP(arcstat_prescient_prefetch); 5180 } else { 5181 ARCSTAT_BUMP(arcstat_predictive_prefetch); 5182 } 5183 } 5184 if (arc_flags & ARC_FLAG_L2CACHE) 5185 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 5186 5187 clock_t now = ddi_get_lbolt(); 5188 if (hdr->b_l1hdr.b_state == arc_anon) { 5189 arc_state_t *new_state; 5190 /* 5191 * This buffer is not in the cache, and does not appear in 5192 * our "ghost" lists. Add it to the MRU or uncached state. 5193 */ 5194 ASSERT0(hdr->b_l1hdr.b_arc_access); 5195 hdr->b_l1hdr.b_arc_access = now; 5196 if (HDR_UNCACHED(hdr)) { 5197 new_state = arc_uncached; 5198 DTRACE_PROBE1(new_state__uncached, arc_buf_hdr_t *, 5199 hdr); 5200 } else { 5201 new_state = arc_mru; 5202 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5203 } 5204 arc_change_state(new_state, hdr); 5205 } else if (hdr->b_l1hdr.b_state == arc_mru) { 5206 /* 5207 * This buffer has been accessed once recently and either 5208 * its read is still in progress or it is in the cache. 5209 */ 5210 if (HDR_IO_IN_PROGRESS(hdr)) { 5211 hdr->b_l1hdr.b_arc_access = now; 5212 return; 5213 } 5214 hdr->b_l1hdr.b_mru_hits++; 5215 ARCSTAT_BUMP(arcstat_mru_hits); 5216 5217 /* 5218 * If the previous access was a prefetch, then it already 5219 * handled possible promotion, so nothing more to do for now. 5220 */ 5221 if (was_prefetch) { 5222 hdr->b_l1hdr.b_arc_access = now; 5223 return; 5224 } 5225 5226 /* 5227 * If more than ARC_MINTIME have passed from the previous 5228 * hit, promote the buffer to the MFU state. 5229 */ 5230 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access + 5231 ARC_MINTIME)) { 5232 hdr->b_l1hdr.b_arc_access = now; 5233 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5234 arc_change_state(arc_mfu, hdr); 5235 } 5236 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 5237 arc_state_t *new_state; 5238 /* 5239 * This buffer has been accessed once recently, but was 5240 * evicted from the cache. Would we have bigger MRU, it 5241 * would be an MRU hit, so handle it the same way, except 5242 * we don't need to check the previous access time. 5243 */ 5244 hdr->b_l1hdr.b_mru_ghost_hits++; 5245 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 5246 hdr->b_l1hdr.b_arc_access = now; 5247 wmsum_add(&arc_mru_ghost->arcs_hits[arc_buf_type(hdr)], 5248 arc_hdr_size(hdr)); 5249 if (was_prefetch) { 5250 new_state = arc_mru; 5251 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5252 } else { 5253 new_state = arc_mfu; 5254 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5255 } 5256 arc_change_state(new_state, hdr); 5257 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 5258 /* 5259 * This buffer has been accessed more than once and either 5260 * still in the cache or being restored from one of ghosts. 5261 */ 5262 if (!HDR_IO_IN_PROGRESS(hdr)) { 5263 hdr->b_l1hdr.b_mfu_hits++; 5264 ARCSTAT_BUMP(arcstat_mfu_hits); 5265 } 5266 hdr->b_l1hdr.b_arc_access = now; 5267 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 5268 /* 5269 * This buffer has been accessed more than once recently, but 5270 * has been evicted from the cache. Would we have bigger MFU 5271 * it would stay in cache, so move it back to MFU state. 5272 */ 5273 hdr->b_l1hdr.b_mfu_ghost_hits++; 5274 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 5275 hdr->b_l1hdr.b_arc_access = now; 5276 wmsum_add(&arc_mfu_ghost->arcs_hits[arc_buf_type(hdr)], 5277 arc_hdr_size(hdr)); 5278 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5279 arc_change_state(arc_mfu, hdr); 5280 } else if (hdr->b_l1hdr.b_state == arc_uncached) { 5281 /* 5282 * This buffer is uncacheable, but we got a hit. Probably 5283 * a demand read after prefetch. Nothing more to do here. 5284 */ 5285 if (!HDR_IO_IN_PROGRESS(hdr)) 5286 ARCSTAT_BUMP(arcstat_uncached_hits); 5287 hdr->b_l1hdr.b_arc_access = now; 5288 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 5289 /* 5290 * This buffer is on the 2nd Level ARC and was not accessed 5291 * for a long time, so treat it as new and put into MRU. 5292 */ 5293 hdr->b_l1hdr.b_arc_access = now; 5294 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5295 arc_change_state(arc_mru, hdr); 5296 } else { 5297 cmn_err(CE_PANIC, "invalid arc state 0x%p", 5298 hdr->b_l1hdr.b_state); 5299 } 5300 } 5301 5302 /* 5303 * This routine is called by dbuf_hold() to update the arc_access() state 5304 * which otherwise would be skipped for entries in the dbuf cache. 5305 */ 5306 void 5307 arc_buf_access(arc_buf_t *buf) 5308 { 5309 arc_buf_hdr_t *hdr = buf->b_hdr; 5310 5311 /* 5312 * Avoid taking the hash_lock when possible as an optimization. 5313 * The header must be checked again under the hash_lock in order 5314 * to handle the case where it is concurrently being released. 5315 */ 5316 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) 5317 return; 5318 5319 kmutex_t *hash_lock = HDR_LOCK(hdr); 5320 mutex_enter(hash_lock); 5321 5322 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5323 mutex_exit(hash_lock); 5324 ARCSTAT_BUMP(arcstat_access_skip); 5325 return; 5326 } 5327 5328 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5329 hdr->b_l1hdr.b_state == arc_mfu || 5330 hdr->b_l1hdr.b_state == arc_uncached); 5331 5332 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5333 arc_access(hdr, 0, B_TRUE); 5334 mutex_exit(hash_lock); 5335 5336 ARCSTAT_BUMP(arcstat_hits); 5337 ARCSTAT_CONDSTAT(B_TRUE /* demand */, demand, prefetch, 5338 !HDR_ISTYPE_METADATA(hdr), data, metadata, hits); 5339 } 5340 5341 /* a generic arc_read_done_func_t which you can use */ 5342 void 5343 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5344 arc_buf_t *buf, void *arg) 5345 { 5346 (void) zio, (void) zb, (void) bp; 5347 5348 if (buf == NULL) 5349 return; 5350 5351 memcpy(arg, buf->b_data, arc_buf_size(buf)); 5352 arc_buf_destroy(buf, arg); 5353 } 5354 5355 /* a generic arc_read_done_func_t */ 5356 void 5357 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5358 arc_buf_t *buf, void *arg) 5359 { 5360 (void) zb, (void) bp; 5361 arc_buf_t **bufp = arg; 5362 5363 if (buf == NULL) { 5364 ASSERT(zio == NULL || zio->io_error != 0); 5365 *bufp = NULL; 5366 } else { 5367 ASSERT(zio == NULL || zio->io_error == 0); 5368 *bufp = buf; 5369 ASSERT(buf->b_data != NULL); 5370 } 5371 } 5372 5373 static void 5374 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp) 5375 { 5376 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 5377 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0); 5378 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF); 5379 } else { 5380 if (HDR_COMPRESSION_ENABLED(hdr)) { 5381 ASSERT3U(arc_hdr_get_compress(hdr), ==, 5382 BP_GET_COMPRESS(bp)); 5383 } 5384 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 5385 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); 5386 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp)); 5387 } 5388 } 5389 5390 static void 5391 arc_read_done(zio_t *zio) 5392 { 5393 blkptr_t *bp = zio->io_bp; 5394 arc_buf_hdr_t *hdr = zio->io_private; 5395 kmutex_t *hash_lock = NULL; 5396 arc_callback_t *callback_list; 5397 arc_callback_t *acb; 5398 5399 /* 5400 * The hdr was inserted into hash-table and removed from lists 5401 * prior to starting I/O. We should find this header, since 5402 * it's in the hash table, and it should be legit since it's 5403 * not possible to evict it during the I/O. The only possible 5404 * reason for it not to be found is if we were freed during the 5405 * read. 5406 */ 5407 if (HDR_IN_HASH_TABLE(hdr)) { 5408 arc_buf_hdr_t *found; 5409 5410 ASSERT3U(hdr->b_birth, ==, BP_GET_BIRTH(zio->io_bp)); 5411 ASSERT3U(hdr->b_dva.dva_word[0], ==, 5412 BP_IDENTITY(zio->io_bp)->dva_word[0]); 5413 ASSERT3U(hdr->b_dva.dva_word[1], ==, 5414 BP_IDENTITY(zio->io_bp)->dva_word[1]); 5415 5416 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock); 5417 5418 ASSERT((found == hdr && 5419 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 5420 (found == hdr && HDR_L2_READING(hdr))); 5421 ASSERT3P(hash_lock, !=, NULL); 5422 } 5423 5424 if (BP_IS_PROTECTED(bp)) { 5425 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 5426 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 5427 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 5428 hdr->b_crypt_hdr.b_iv); 5429 5430 if (zio->io_error == 0) { 5431 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) { 5432 void *tmpbuf; 5433 5434 tmpbuf = abd_borrow_buf_copy(zio->io_abd, 5435 sizeof (zil_chain_t)); 5436 zio_crypt_decode_mac_zil(tmpbuf, 5437 hdr->b_crypt_hdr.b_mac); 5438 abd_return_buf(zio->io_abd, tmpbuf, 5439 sizeof (zil_chain_t)); 5440 } else { 5441 zio_crypt_decode_mac_bp(bp, 5442 hdr->b_crypt_hdr.b_mac); 5443 } 5444 } 5445 } 5446 5447 if (zio->io_error == 0) { 5448 /* byteswap if necessary */ 5449 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 5450 if (BP_GET_LEVEL(zio->io_bp) > 0) { 5451 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 5452 } else { 5453 hdr->b_l1hdr.b_byteswap = 5454 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 5455 } 5456 } else { 5457 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 5458 } 5459 if (!HDR_L2_READING(hdr)) { 5460 hdr->b_complevel = zio->io_prop.zp_complevel; 5461 } 5462 } 5463 5464 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); 5465 if (l2arc_noprefetch && HDR_PREFETCH(hdr)) 5466 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE); 5467 5468 callback_list = hdr->b_l1hdr.b_acb; 5469 ASSERT3P(callback_list, !=, NULL); 5470 hdr->b_l1hdr.b_acb = NULL; 5471 5472 /* 5473 * If a read request has a callback (i.e. acb_done is not NULL), then we 5474 * make a buf containing the data according to the parameters which were 5475 * passed in. The implementation of arc_buf_alloc_impl() ensures that we 5476 * aren't needlessly decompressing the data multiple times. 5477 */ 5478 int callback_cnt = 0; 5479 for (acb = callback_list; acb != NULL; acb = acb->acb_next) { 5480 5481 /* We need the last one to call below in original order. */ 5482 callback_list = acb; 5483 5484 if (!acb->acb_done || acb->acb_nobuf) 5485 continue; 5486 5487 callback_cnt++; 5488 5489 if (zio->io_error != 0) 5490 continue; 5491 5492 int error = arc_buf_alloc_impl(hdr, zio->io_spa, 5493 &acb->acb_zb, acb->acb_private, acb->acb_encrypted, 5494 acb->acb_compressed, acb->acb_noauth, B_TRUE, 5495 &acb->acb_buf); 5496 5497 /* 5498 * Assert non-speculative zios didn't fail because an 5499 * encryption key wasn't loaded 5500 */ 5501 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) || 5502 error != EACCES); 5503 5504 /* 5505 * If we failed to decrypt, report an error now (as the zio 5506 * layer would have done if it had done the transforms). 5507 */ 5508 if (error == ECKSUM) { 5509 ASSERT(BP_IS_PROTECTED(bp)); 5510 error = SET_ERROR(EIO); 5511 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5512 spa_log_error(zio->io_spa, &acb->acb_zb, 5513 BP_GET_LOGICAL_BIRTH(zio->io_bp)); 5514 (void) zfs_ereport_post( 5515 FM_EREPORT_ZFS_AUTHENTICATION, 5516 zio->io_spa, NULL, &acb->acb_zb, zio, 0); 5517 } 5518 } 5519 5520 if (error != 0) { 5521 /* 5522 * Decompression or decryption failed. Set 5523 * io_error so that when we call acb_done 5524 * (below), we will indicate that the read 5525 * failed. Note that in the unusual case 5526 * where one callback is compressed and another 5527 * uncompressed, we will mark all of them 5528 * as failed, even though the uncompressed 5529 * one can't actually fail. In this case, 5530 * the hdr will not be anonymous, because 5531 * if there are multiple callbacks, it's 5532 * because multiple threads found the same 5533 * arc buf in the hash table. 5534 */ 5535 zio->io_error = error; 5536 } 5537 } 5538 5539 /* 5540 * If there are multiple callbacks, we must have the hash lock, 5541 * because the only way for multiple threads to find this hdr is 5542 * in the hash table. This ensures that if there are multiple 5543 * callbacks, the hdr is not anonymous. If it were anonymous, 5544 * we couldn't use arc_buf_destroy() in the error case below. 5545 */ 5546 ASSERT(callback_cnt < 2 || hash_lock != NULL); 5547 5548 if (zio->io_error == 0) { 5549 arc_hdr_verify(hdr, zio->io_bp); 5550 } else { 5551 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 5552 if (hdr->b_l1hdr.b_state != arc_anon) 5553 arc_change_state(arc_anon, hdr); 5554 if (HDR_IN_HASH_TABLE(hdr)) 5555 buf_hash_remove(hdr); 5556 } 5557 5558 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5559 (void) remove_reference(hdr, hdr); 5560 5561 if (hash_lock != NULL) 5562 mutex_exit(hash_lock); 5563 5564 /* execute each callback and free its structure */ 5565 while ((acb = callback_list) != NULL) { 5566 if (acb->acb_done != NULL) { 5567 if (zio->io_error != 0 && acb->acb_buf != NULL) { 5568 /* 5569 * If arc_buf_alloc_impl() fails during 5570 * decompression, the buf will still be 5571 * allocated, and needs to be freed here. 5572 */ 5573 arc_buf_destroy(acb->acb_buf, 5574 acb->acb_private); 5575 acb->acb_buf = NULL; 5576 } 5577 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp, 5578 acb->acb_buf, acb->acb_private); 5579 } 5580 5581 if (acb->acb_zio_dummy != NULL) { 5582 acb->acb_zio_dummy->io_error = zio->io_error; 5583 zio_nowait(acb->acb_zio_dummy); 5584 } 5585 5586 callback_list = acb->acb_prev; 5587 if (acb->acb_wait) { 5588 mutex_enter(&acb->acb_wait_lock); 5589 acb->acb_wait_error = zio->io_error; 5590 acb->acb_wait = B_FALSE; 5591 cv_signal(&acb->acb_wait_cv); 5592 mutex_exit(&acb->acb_wait_lock); 5593 /* acb will be freed by the waiting thread. */ 5594 } else { 5595 kmem_free(acb, sizeof (arc_callback_t)); 5596 } 5597 } 5598 } 5599 5600 /* 5601 * Lookup the block at the specified DVA (in bp), and return the manner in 5602 * which the block is cached. A zero return indicates not cached. 5603 */ 5604 int 5605 arc_cached(spa_t *spa, const blkptr_t *bp) 5606 { 5607 arc_buf_hdr_t *hdr = NULL; 5608 kmutex_t *hash_lock = NULL; 5609 uint64_t guid = spa_load_guid(spa); 5610 int flags = 0; 5611 5612 if (BP_IS_EMBEDDED(bp)) 5613 return (ARC_CACHED_EMBEDDED); 5614 5615 hdr = buf_hash_find(guid, bp, &hash_lock); 5616 if (hdr == NULL) 5617 return (0); 5618 5619 if (HDR_HAS_L1HDR(hdr)) { 5620 arc_state_t *state = hdr->b_l1hdr.b_state; 5621 /* 5622 * We switch to ensure that any future arc_state_type_t 5623 * changes are handled. This is just a shift to promote 5624 * more compile-time checking. 5625 */ 5626 switch (state->arcs_state) { 5627 case ARC_STATE_ANON: 5628 break; 5629 case ARC_STATE_MRU: 5630 flags |= ARC_CACHED_IN_MRU | ARC_CACHED_IN_L1; 5631 break; 5632 case ARC_STATE_MFU: 5633 flags |= ARC_CACHED_IN_MFU | ARC_CACHED_IN_L1; 5634 break; 5635 case ARC_STATE_UNCACHED: 5636 /* The header is still in L1, probably not for long */ 5637 flags |= ARC_CACHED_IN_L1; 5638 break; 5639 default: 5640 break; 5641 } 5642 } 5643 if (HDR_HAS_L2HDR(hdr)) 5644 flags |= ARC_CACHED_IN_L2; 5645 5646 mutex_exit(hash_lock); 5647 5648 return (flags); 5649 } 5650 5651 /* 5652 * "Read" the block at the specified DVA (in bp) via the 5653 * cache. If the block is found in the cache, invoke the provided 5654 * callback immediately and return. Note that the `zio' parameter 5655 * in the callback will be NULL in this case, since no IO was 5656 * required. If the block is not in the cache pass the read request 5657 * on to the spa with a substitute callback function, so that the 5658 * requested block will be added to the cache. 5659 * 5660 * If a read request arrives for a block that has a read in-progress, 5661 * either wait for the in-progress read to complete (and return the 5662 * results); or, if this is a read with a "done" func, add a record 5663 * to the read to invoke the "done" func when the read completes, 5664 * and return; or just return. 5665 * 5666 * arc_read_done() will invoke all the requested "done" functions 5667 * for readers of this block. 5668 */ 5669 int 5670 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 5671 arc_read_done_func_t *done, void *private, zio_priority_t priority, 5672 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 5673 { 5674 arc_buf_hdr_t *hdr = NULL; 5675 kmutex_t *hash_lock = NULL; 5676 zio_t *rzio; 5677 uint64_t guid = spa_load_guid(spa); 5678 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0; 5679 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) && 5680 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5681 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) && 5682 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5683 boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp); 5684 boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF; 5685 arc_buf_t *buf = NULL; 5686 int rc = 0; 5687 boolean_t bp_validation = B_FALSE; 5688 5689 ASSERT(!embedded_bp || 5690 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 5691 ASSERT(!BP_IS_HOLE(bp)); 5692 ASSERT(!BP_IS_REDACTED(bp)); 5693 5694 /* 5695 * Normally SPL_FSTRANS will already be set since kernel threads which 5696 * expect to call the DMU interfaces will set it when created. System 5697 * calls are similarly handled by setting/cleaning the bit in the 5698 * registered callback (module/os/.../zfs/zpl_*). 5699 * 5700 * External consumers such as Lustre which call the exported DMU 5701 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock 5702 * on the hash_lock always set and clear the bit. 5703 */ 5704 fstrans_cookie_t cookie = spl_fstrans_mark(); 5705 top: 5706 if (!embedded_bp) { 5707 /* 5708 * Embedded BP's have no DVA and require no I/O to "read". 5709 * Create an anonymous arc buf to back it. 5710 */ 5711 hdr = buf_hash_find(guid, bp, &hash_lock); 5712 } 5713 5714 /* 5715 * Determine if we have an L1 cache hit or a cache miss. For simplicity 5716 * we maintain encrypted data separately from compressed / uncompressed 5717 * data. If the user is requesting raw encrypted data and we don't have 5718 * that in the header we will read from disk to guarantee that we can 5719 * get it even if the encryption keys aren't loaded. 5720 */ 5721 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) || 5722 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) { 5723 boolean_t is_data = !HDR_ISTYPE_METADATA(hdr); 5724 5725 /* 5726 * Verify the block pointer contents are reasonable. This 5727 * should always be the case since the blkptr is protected by 5728 * a checksum. 5729 */ 5730 if (zfs_blkptr_verify(spa, bp, BLK_CONFIG_SKIP, 5731 BLK_VERIFY_LOG)) { 5732 mutex_exit(hash_lock); 5733 rc = SET_ERROR(ECKSUM); 5734 goto done; 5735 } 5736 5737 if (HDR_IO_IN_PROGRESS(hdr)) { 5738 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 5739 mutex_exit(hash_lock); 5740 ARCSTAT_BUMP(arcstat_cached_only_in_progress); 5741 rc = SET_ERROR(ENOENT); 5742 goto done; 5743 } 5744 5745 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head; 5746 ASSERT3P(head_zio, !=, NULL); 5747 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && 5748 priority == ZIO_PRIORITY_SYNC_READ) { 5749 /* 5750 * This is a sync read that needs to wait for 5751 * an in-flight async read. Request that the 5752 * zio have its priority upgraded. 5753 */ 5754 zio_change_priority(head_zio, priority); 5755 DTRACE_PROBE1(arc__async__upgrade__sync, 5756 arc_buf_hdr_t *, hdr); 5757 ARCSTAT_BUMP(arcstat_async_upgrade_sync); 5758 } 5759 5760 DTRACE_PROBE1(arc__iohit, arc_buf_hdr_t *, hdr); 5761 arc_access(hdr, *arc_flags, B_FALSE); 5762 5763 /* 5764 * If there are multiple threads reading the same block 5765 * and that block is not yet in the ARC, then only one 5766 * thread will do the physical I/O and all other 5767 * threads will wait until that I/O completes. 5768 * Synchronous reads use the acb_wait_cv whereas nowait 5769 * reads register a callback. Both are signalled/called 5770 * in arc_read_done. 5771 * 5772 * Errors of the physical I/O may need to be propagated. 5773 * Synchronous read errors are returned here from 5774 * arc_read_done via acb_wait_error. Nowait reads 5775 * attach the acb_zio_dummy zio to pio and 5776 * arc_read_done propagates the physical I/O's io_error 5777 * to acb_zio_dummy, and thereby to pio. 5778 */ 5779 arc_callback_t *acb = NULL; 5780 if (done || pio || *arc_flags & ARC_FLAG_WAIT) { 5781 acb = kmem_zalloc(sizeof (arc_callback_t), 5782 KM_SLEEP); 5783 acb->acb_done = done; 5784 acb->acb_private = private; 5785 acb->acb_compressed = compressed_read; 5786 acb->acb_encrypted = encrypted_read; 5787 acb->acb_noauth = noauth_read; 5788 acb->acb_nobuf = no_buf; 5789 if (*arc_flags & ARC_FLAG_WAIT) { 5790 acb->acb_wait = B_TRUE; 5791 mutex_init(&acb->acb_wait_lock, NULL, 5792 MUTEX_DEFAULT, NULL); 5793 cv_init(&acb->acb_wait_cv, NULL, 5794 CV_DEFAULT, NULL); 5795 } 5796 acb->acb_zb = *zb; 5797 if (pio != NULL) { 5798 acb->acb_zio_dummy = zio_null(pio, 5799 spa, NULL, NULL, NULL, zio_flags); 5800 } 5801 acb->acb_zio_head = head_zio; 5802 acb->acb_next = hdr->b_l1hdr.b_acb; 5803 hdr->b_l1hdr.b_acb->acb_prev = acb; 5804 hdr->b_l1hdr.b_acb = acb; 5805 } 5806 mutex_exit(hash_lock); 5807 5808 ARCSTAT_BUMP(arcstat_iohits); 5809 ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH), 5810 demand, prefetch, is_data, data, metadata, iohits); 5811 5812 if (*arc_flags & ARC_FLAG_WAIT) { 5813 mutex_enter(&acb->acb_wait_lock); 5814 while (acb->acb_wait) { 5815 cv_wait(&acb->acb_wait_cv, 5816 &acb->acb_wait_lock); 5817 } 5818 rc = acb->acb_wait_error; 5819 mutex_exit(&acb->acb_wait_lock); 5820 mutex_destroy(&acb->acb_wait_lock); 5821 cv_destroy(&acb->acb_wait_cv); 5822 kmem_free(acb, sizeof (arc_callback_t)); 5823 } 5824 goto out; 5825 } 5826 5827 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5828 hdr->b_l1hdr.b_state == arc_mfu || 5829 hdr->b_l1hdr.b_state == arc_uncached); 5830 5831 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5832 arc_access(hdr, *arc_flags, B_TRUE); 5833 5834 if (done && !no_buf) { 5835 ASSERT(!embedded_bp || !BP_IS_HOLE(bp)); 5836 5837 /* Get a buf with the desired data in it. */ 5838 rc = arc_buf_alloc_impl(hdr, spa, zb, private, 5839 encrypted_read, compressed_read, noauth_read, 5840 B_TRUE, &buf); 5841 if (rc == ECKSUM) { 5842 /* 5843 * Convert authentication and decryption errors 5844 * to EIO (and generate an ereport if needed) 5845 * before leaving the ARC. 5846 */ 5847 rc = SET_ERROR(EIO); 5848 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5849 spa_log_error(spa, zb, hdr->b_birth); 5850 (void) zfs_ereport_post( 5851 FM_EREPORT_ZFS_AUTHENTICATION, 5852 spa, NULL, zb, NULL, 0); 5853 } 5854 } 5855 if (rc != 0) { 5856 arc_buf_destroy_impl(buf); 5857 buf = NULL; 5858 (void) remove_reference(hdr, private); 5859 } 5860 5861 /* assert any errors weren't due to unloaded keys */ 5862 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) || 5863 rc != EACCES); 5864 } 5865 mutex_exit(hash_lock); 5866 ARCSTAT_BUMP(arcstat_hits); 5867 ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH), 5868 demand, prefetch, is_data, data, metadata, hits); 5869 *arc_flags |= ARC_FLAG_CACHED; 5870 goto done; 5871 } else { 5872 uint64_t lsize = BP_GET_LSIZE(bp); 5873 uint64_t psize = BP_GET_PSIZE(bp); 5874 arc_callback_t *acb; 5875 vdev_t *vd = NULL; 5876 uint64_t addr = 0; 5877 boolean_t devw = B_FALSE; 5878 uint64_t size; 5879 abd_t *hdr_abd; 5880 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0; 5881 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 5882 int config_lock; 5883 int error; 5884 5885 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 5886 if (hash_lock != NULL) 5887 mutex_exit(hash_lock); 5888 rc = SET_ERROR(ENOENT); 5889 goto done; 5890 } 5891 5892 if (zio_flags & ZIO_FLAG_CONFIG_WRITER) { 5893 config_lock = BLK_CONFIG_HELD; 5894 } else if (hash_lock != NULL) { 5895 /* 5896 * Prevent lock order reversal 5897 */ 5898 config_lock = BLK_CONFIG_NEEDED_TRY; 5899 } else { 5900 config_lock = BLK_CONFIG_NEEDED; 5901 } 5902 5903 /* 5904 * Verify the block pointer contents are reasonable. This 5905 * should always be the case since the blkptr is protected by 5906 * a checksum. 5907 */ 5908 if (!bp_validation && (error = zfs_blkptr_verify(spa, bp, 5909 config_lock, BLK_VERIFY_LOG))) { 5910 if (hash_lock != NULL) 5911 mutex_exit(hash_lock); 5912 if (error == EBUSY && !zfs_blkptr_verify(spa, bp, 5913 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) { 5914 bp_validation = B_TRUE; 5915 goto top; 5916 } 5917 rc = SET_ERROR(ECKSUM); 5918 goto done; 5919 } 5920 5921 if (hdr == NULL) { 5922 /* 5923 * This block is not in the cache or it has 5924 * embedded data. 5925 */ 5926 arc_buf_hdr_t *exists = NULL; 5927 hdr = arc_hdr_alloc(guid, psize, lsize, 5928 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type); 5929 5930 if (!embedded_bp) { 5931 hdr->b_dva = *BP_IDENTITY(bp); 5932 hdr->b_birth = BP_GET_BIRTH(bp); 5933 exists = buf_hash_insert(hdr, &hash_lock); 5934 } 5935 if (exists != NULL) { 5936 /* somebody beat us to the hash insert */ 5937 mutex_exit(hash_lock); 5938 buf_discard_identity(hdr); 5939 arc_hdr_destroy(hdr); 5940 goto top; /* restart the IO request */ 5941 } 5942 } else { 5943 /* 5944 * This block is in the ghost cache or encrypted data 5945 * was requested and we didn't have it. If it was 5946 * L2-only (and thus didn't have an L1 hdr), 5947 * we realloc the header to add an L1 hdr. 5948 */ 5949 if (!HDR_HAS_L1HDR(hdr)) { 5950 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 5951 hdr_full_cache); 5952 } 5953 5954 if (GHOST_STATE(hdr->b_l1hdr.b_state)) { 5955 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 5956 ASSERT(!HDR_HAS_RABD(hdr)); 5957 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5958 ASSERT0(zfs_refcount_count( 5959 &hdr->b_l1hdr.b_refcnt)); 5960 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 5961 #ifdef ZFS_DEBUG 5962 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 5963 #endif 5964 } else if (HDR_IO_IN_PROGRESS(hdr)) { 5965 /* 5966 * If this header already had an IO in progress 5967 * and we are performing another IO to fetch 5968 * encrypted data we must wait until the first 5969 * IO completes so as not to confuse 5970 * arc_read_done(). This should be very rare 5971 * and so the performance impact shouldn't 5972 * matter. 5973 */ 5974 arc_callback_t *acb = kmem_zalloc( 5975 sizeof (arc_callback_t), KM_SLEEP); 5976 acb->acb_wait = B_TRUE; 5977 mutex_init(&acb->acb_wait_lock, NULL, 5978 MUTEX_DEFAULT, NULL); 5979 cv_init(&acb->acb_wait_cv, NULL, CV_DEFAULT, 5980 NULL); 5981 acb->acb_zio_head = 5982 hdr->b_l1hdr.b_acb->acb_zio_head; 5983 acb->acb_next = hdr->b_l1hdr.b_acb; 5984 hdr->b_l1hdr.b_acb->acb_prev = acb; 5985 hdr->b_l1hdr.b_acb = acb; 5986 mutex_exit(hash_lock); 5987 mutex_enter(&acb->acb_wait_lock); 5988 while (acb->acb_wait) { 5989 cv_wait(&acb->acb_wait_cv, 5990 &acb->acb_wait_lock); 5991 } 5992 mutex_exit(&acb->acb_wait_lock); 5993 mutex_destroy(&acb->acb_wait_lock); 5994 cv_destroy(&acb->acb_wait_cv); 5995 kmem_free(acb, sizeof (arc_callback_t)); 5996 goto top; 5997 } 5998 } 5999 if (*arc_flags & ARC_FLAG_UNCACHED) { 6000 arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED); 6001 if (!encrypted_read) 6002 alloc_flags |= ARC_HDR_ALLOC_LINEAR; 6003 } 6004 6005 /* 6006 * Take additional reference for IO_IN_PROGRESS. It stops 6007 * arc_access() from putting this header without any buffers 6008 * and so other references but obviously nonevictable onto 6009 * the evictable list of MRU or MFU state. 6010 */ 6011 add_reference(hdr, hdr); 6012 if (!embedded_bp) 6013 arc_access(hdr, *arc_flags, B_FALSE); 6014 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6015 arc_hdr_alloc_abd(hdr, alloc_flags); 6016 if (encrypted_read) { 6017 ASSERT(HDR_HAS_RABD(hdr)); 6018 size = HDR_GET_PSIZE(hdr); 6019 hdr_abd = hdr->b_crypt_hdr.b_rabd; 6020 zio_flags |= ZIO_FLAG_RAW; 6021 } else { 6022 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 6023 size = arc_hdr_size(hdr); 6024 hdr_abd = hdr->b_l1hdr.b_pabd; 6025 6026 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 6027 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 6028 } 6029 6030 /* 6031 * For authenticated bp's, we do not ask the ZIO layer 6032 * to authenticate them since this will cause the entire 6033 * IO to fail if the key isn't loaded. Instead, we 6034 * defer authentication until arc_buf_fill(), which will 6035 * verify the data when the key is available. 6036 */ 6037 if (BP_IS_AUTHENTICATED(bp)) 6038 zio_flags |= ZIO_FLAG_RAW_ENCRYPT; 6039 } 6040 6041 if (BP_IS_AUTHENTICATED(bp)) 6042 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6043 if (BP_GET_LEVEL(bp) > 0) 6044 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); 6045 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 6046 6047 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 6048 acb->acb_done = done; 6049 acb->acb_private = private; 6050 acb->acb_compressed = compressed_read; 6051 acb->acb_encrypted = encrypted_read; 6052 acb->acb_noauth = noauth_read; 6053 acb->acb_nobuf = no_buf; 6054 acb->acb_zb = *zb; 6055 6056 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6057 hdr->b_l1hdr.b_acb = acb; 6058 6059 if (HDR_HAS_L2HDR(hdr) && 6060 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 6061 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 6062 addr = hdr->b_l2hdr.b_daddr; 6063 /* 6064 * Lock out L2ARC device removal. 6065 */ 6066 if (vdev_is_dead(vd) || 6067 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 6068 vd = NULL; 6069 } 6070 6071 /* 6072 * We count both async reads and scrub IOs as asynchronous so 6073 * that both can be upgraded in the event of a cache hit while 6074 * the read IO is still in-flight. 6075 */ 6076 if (priority == ZIO_PRIORITY_ASYNC_READ || 6077 priority == ZIO_PRIORITY_SCRUB) 6078 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6079 else 6080 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6081 6082 /* 6083 * At this point, we have a level 1 cache miss or a blkptr 6084 * with embedded data. Try again in L2ARC if possible. 6085 */ 6086 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); 6087 6088 /* 6089 * Skip ARC stat bump for block pointers with embedded 6090 * data. The data are read from the blkptr itself via 6091 * decode_embedded_bp_compressed(). 6092 */ 6093 if (!embedded_bp) { 6094 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, 6095 blkptr_t *, bp, uint64_t, lsize, 6096 zbookmark_phys_t *, zb); 6097 ARCSTAT_BUMP(arcstat_misses); 6098 ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH), 6099 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, 6100 metadata, misses); 6101 zfs_racct_read(spa, size, 1, 0); 6102 } 6103 6104 /* Check if the spa even has l2 configured */ 6105 const boolean_t spa_has_l2 = l2arc_ndev != 0 && 6106 spa->spa_l2cache.sav_count > 0; 6107 6108 if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) { 6109 /* 6110 * Read from the L2ARC if the following are true: 6111 * 1. The L2ARC vdev was previously cached. 6112 * 2. This buffer still has L2ARC metadata. 6113 * 3. This buffer isn't currently writing to the L2ARC. 6114 * 4. The L2ARC entry wasn't evicted, which may 6115 * also have invalidated the vdev. 6116 */ 6117 if (HDR_HAS_L2HDR(hdr) && 6118 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr)) { 6119 l2arc_read_callback_t *cb; 6120 abd_t *abd; 6121 uint64_t asize; 6122 6123 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 6124 ARCSTAT_BUMP(arcstat_l2_hits); 6125 hdr->b_l2hdr.b_hits++; 6126 6127 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 6128 KM_SLEEP); 6129 cb->l2rcb_hdr = hdr; 6130 cb->l2rcb_bp = *bp; 6131 cb->l2rcb_zb = *zb; 6132 cb->l2rcb_flags = zio_flags; 6133 6134 /* 6135 * When Compressed ARC is disabled, but the 6136 * L2ARC block is compressed, arc_hdr_size() 6137 * will have returned LSIZE rather than PSIZE. 6138 */ 6139 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 6140 !HDR_COMPRESSION_ENABLED(hdr) && 6141 HDR_GET_PSIZE(hdr) != 0) { 6142 size = HDR_GET_PSIZE(hdr); 6143 } 6144 6145 asize = vdev_psize_to_asize(vd, size); 6146 if (asize != size) { 6147 abd = abd_alloc_for_io(asize, 6148 HDR_ISTYPE_METADATA(hdr)); 6149 cb->l2rcb_abd = abd; 6150 } else { 6151 abd = hdr_abd; 6152 } 6153 6154 ASSERT(addr >= VDEV_LABEL_START_SIZE && 6155 addr + asize <= vd->vdev_psize - 6156 VDEV_LABEL_END_SIZE); 6157 6158 /* 6159 * l2arc read. The SCL_L2ARC lock will be 6160 * released by l2arc_read_done(). 6161 * Issue a null zio if the underlying buffer 6162 * was squashed to zero size by compression. 6163 */ 6164 ASSERT3U(arc_hdr_get_compress(hdr), !=, 6165 ZIO_COMPRESS_EMPTY); 6166 rzio = zio_read_phys(pio, vd, addr, 6167 asize, abd, 6168 ZIO_CHECKSUM_OFF, 6169 l2arc_read_done, cb, priority, 6170 zio_flags | ZIO_FLAG_CANFAIL | 6171 ZIO_FLAG_DONT_PROPAGATE | 6172 ZIO_FLAG_DONT_RETRY, B_FALSE); 6173 acb->acb_zio_head = rzio; 6174 6175 if (hash_lock != NULL) 6176 mutex_exit(hash_lock); 6177 6178 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 6179 zio_t *, rzio); 6180 ARCSTAT_INCR(arcstat_l2_read_bytes, 6181 HDR_GET_PSIZE(hdr)); 6182 6183 if (*arc_flags & ARC_FLAG_NOWAIT) { 6184 zio_nowait(rzio); 6185 goto out; 6186 } 6187 6188 ASSERT(*arc_flags & ARC_FLAG_WAIT); 6189 if (zio_wait(rzio) == 0) 6190 goto out; 6191 6192 /* l2arc read error; goto zio_read() */ 6193 if (hash_lock != NULL) 6194 mutex_enter(hash_lock); 6195 } else { 6196 DTRACE_PROBE1(l2arc__miss, 6197 arc_buf_hdr_t *, hdr); 6198 ARCSTAT_BUMP(arcstat_l2_misses); 6199 if (HDR_L2_WRITING(hdr)) 6200 ARCSTAT_BUMP(arcstat_l2_rw_clash); 6201 spa_config_exit(spa, SCL_L2ARC, vd); 6202 } 6203 } else { 6204 if (vd != NULL) 6205 spa_config_exit(spa, SCL_L2ARC, vd); 6206 6207 /* 6208 * Only a spa with l2 should contribute to l2 6209 * miss stats. (Including the case of having a 6210 * faulted cache device - that's also a miss.) 6211 */ 6212 if (spa_has_l2) { 6213 /* 6214 * Skip ARC stat bump for block pointers with 6215 * embedded data. The data are read from the 6216 * blkptr itself via 6217 * decode_embedded_bp_compressed(). 6218 */ 6219 if (!embedded_bp) { 6220 DTRACE_PROBE1(l2arc__miss, 6221 arc_buf_hdr_t *, hdr); 6222 ARCSTAT_BUMP(arcstat_l2_misses); 6223 } 6224 } 6225 } 6226 6227 rzio = zio_read(pio, spa, bp, hdr_abd, size, 6228 arc_read_done, hdr, priority, zio_flags, zb); 6229 acb->acb_zio_head = rzio; 6230 6231 if (hash_lock != NULL) 6232 mutex_exit(hash_lock); 6233 6234 if (*arc_flags & ARC_FLAG_WAIT) { 6235 rc = zio_wait(rzio); 6236 goto out; 6237 } 6238 6239 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 6240 zio_nowait(rzio); 6241 } 6242 6243 out: 6244 /* embedded bps don't actually go to disk */ 6245 if (!embedded_bp) 6246 spa_read_history_add(spa, zb, *arc_flags); 6247 spl_fstrans_unmark(cookie); 6248 return (rc); 6249 6250 done: 6251 if (done) 6252 done(NULL, zb, bp, buf, private); 6253 if (pio && rc != 0) { 6254 zio_t *zio = zio_null(pio, spa, NULL, NULL, NULL, zio_flags); 6255 zio->io_error = rc; 6256 zio_nowait(zio); 6257 } 6258 goto out; 6259 } 6260 6261 arc_prune_t * 6262 arc_add_prune_callback(arc_prune_func_t *func, void *private) 6263 { 6264 arc_prune_t *p; 6265 6266 p = kmem_alloc(sizeof (*p), KM_SLEEP); 6267 p->p_pfunc = func; 6268 p->p_private = private; 6269 list_link_init(&p->p_node); 6270 zfs_refcount_create(&p->p_refcnt); 6271 6272 mutex_enter(&arc_prune_mtx); 6273 zfs_refcount_add(&p->p_refcnt, &arc_prune_list); 6274 list_insert_head(&arc_prune_list, p); 6275 mutex_exit(&arc_prune_mtx); 6276 6277 return (p); 6278 } 6279 6280 void 6281 arc_remove_prune_callback(arc_prune_t *p) 6282 { 6283 boolean_t wait = B_FALSE; 6284 mutex_enter(&arc_prune_mtx); 6285 list_remove(&arc_prune_list, p); 6286 if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0) 6287 wait = B_TRUE; 6288 mutex_exit(&arc_prune_mtx); 6289 6290 /* wait for arc_prune_task to finish */ 6291 if (wait) 6292 taskq_wait_outstanding(arc_prune_taskq, 0); 6293 ASSERT0(zfs_refcount_count(&p->p_refcnt)); 6294 zfs_refcount_destroy(&p->p_refcnt); 6295 kmem_free(p, sizeof (*p)); 6296 } 6297 6298 /* 6299 * Helper function for arc_prune_async() it is responsible for safely 6300 * handling the execution of a registered arc_prune_func_t. 6301 */ 6302 static void 6303 arc_prune_task(void *ptr) 6304 { 6305 arc_prune_t *ap = (arc_prune_t *)ptr; 6306 arc_prune_func_t *func = ap->p_pfunc; 6307 6308 if (func != NULL) 6309 func(ap->p_adjust, ap->p_private); 6310 6311 (void) zfs_refcount_remove(&ap->p_refcnt, func); 6312 } 6313 6314 /* 6315 * Notify registered consumers they must drop holds on a portion of the ARC 6316 * buffers they reference. This provides a mechanism to ensure the ARC can 6317 * honor the metadata limit and reclaim otherwise pinned ARC buffers. 6318 * 6319 * This operation is performed asynchronously so it may be safely called 6320 * in the context of the arc_reclaim_thread(). A reference is taken here 6321 * for each registered arc_prune_t and the arc_prune_task() is responsible 6322 * for releasing it once the registered arc_prune_func_t has completed. 6323 */ 6324 static void 6325 arc_prune_async(uint64_t adjust) 6326 { 6327 arc_prune_t *ap; 6328 6329 mutex_enter(&arc_prune_mtx); 6330 for (ap = list_head(&arc_prune_list); ap != NULL; 6331 ap = list_next(&arc_prune_list, ap)) { 6332 6333 if (zfs_refcount_count(&ap->p_refcnt) >= 2) 6334 continue; 6335 6336 zfs_refcount_add(&ap->p_refcnt, ap->p_pfunc); 6337 ap->p_adjust = adjust; 6338 if (taskq_dispatch(arc_prune_taskq, arc_prune_task, 6339 ap, TQ_SLEEP) == TASKQID_INVALID) { 6340 (void) zfs_refcount_remove(&ap->p_refcnt, ap->p_pfunc); 6341 continue; 6342 } 6343 ARCSTAT_BUMP(arcstat_prune); 6344 } 6345 mutex_exit(&arc_prune_mtx); 6346 } 6347 6348 /* 6349 * Notify the arc that a block was freed, and thus will never be used again. 6350 */ 6351 void 6352 arc_freed(spa_t *spa, const blkptr_t *bp) 6353 { 6354 arc_buf_hdr_t *hdr; 6355 kmutex_t *hash_lock; 6356 uint64_t guid = spa_load_guid(spa); 6357 6358 ASSERT(!BP_IS_EMBEDDED(bp)); 6359 6360 hdr = buf_hash_find(guid, bp, &hash_lock); 6361 if (hdr == NULL) 6362 return; 6363 6364 /* 6365 * We might be trying to free a block that is still doing I/O 6366 * (i.e. prefetch) or has some other reference (i.e. a dedup-ed, 6367 * dmu_sync-ed block). A block may also have a reference if it is 6368 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would 6369 * have written the new block to its final resting place on disk but 6370 * without the dedup flag set. This would have left the hdr in the MRU 6371 * state and discoverable. When the txg finally syncs it detects that 6372 * the block was overridden in open context and issues an override I/O. 6373 * Since this is a dedup block, the override I/O will determine if the 6374 * block is already in the DDT. If so, then it will replace the io_bp 6375 * with the bp from the DDT and allow the I/O to finish. When the I/O 6376 * reaches the done callback, dbuf_write_override_done, it will 6377 * check to see if the io_bp and io_bp_override are identical. 6378 * If they are not, then it indicates that the bp was replaced with 6379 * the bp in the DDT and the override bp is freed. This allows 6380 * us to arrive here with a reference on a block that is being 6381 * freed. So if we have an I/O in progress, or a reference to 6382 * this hdr, then we don't destroy the hdr. 6383 */ 6384 if (!HDR_HAS_L1HDR(hdr) || 6385 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6386 arc_change_state(arc_anon, hdr); 6387 arc_hdr_destroy(hdr); 6388 mutex_exit(hash_lock); 6389 } else { 6390 mutex_exit(hash_lock); 6391 } 6392 6393 } 6394 6395 /* 6396 * Release this buffer from the cache, making it an anonymous buffer. This 6397 * must be done after a read and prior to modifying the buffer contents. 6398 * If the buffer has more than one reference, we must make 6399 * a new hdr for the buffer. 6400 */ 6401 void 6402 arc_release(arc_buf_t *buf, const void *tag) 6403 { 6404 arc_buf_hdr_t *hdr = buf->b_hdr; 6405 6406 /* 6407 * It would be nice to assert that if its DMU metadata (level > 6408 * 0 || it's the dnode file), then it must be syncing context. 6409 * But we don't know that information at this level. 6410 */ 6411 6412 ASSERT(HDR_HAS_L1HDR(hdr)); 6413 6414 /* 6415 * We don't grab the hash lock prior to this check, because if 6416 * the buffer's header is in the arc_anon state, it won't be 6417 * linked into the hash table. 6418 */ 6419 if (hdr->b_l1hdr.b_state == arc_anon) { 6420 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6421 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 6422 ASSERT(!HDR_HAS_L2HDR(hdr)); 6423 6424 ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf); 6425 ASSERT(ARC_BUF_LAST(buf)); 6426 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 6427 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 6428 6429 hdr->b_l1hdr.b_arc_access = 0; 6430 6431 /* 6432 * If the buf is being overridden then it may already 6433 * have a hdr that is not empty. 6434 */ 6435 buf_discard_identity(hdr); 6436 arc_buf_thaw(buf); 6437 6438 return; 6439 } 6440 6441 kmutex_t *hash_lock = HDR_LOCK(hdr); 6442 mutex_enter(hash_lock); 6443 6444 /* 6445 * This assignment is only valid as long as the hash_lock is 6446 * held, we must be careful not to reference state or the 6447 * b_state field after dropping the lock. 6448 */ 6449 arc_state_t *state = hdr->b_l1hdr.b_state; 6450 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 6451 ASSERT3P(state, !=, arc_anon); 6452 ASSERT3P(state, !=, arc_l2c_only); 6453 6454 /* this buffer is not on any list */ 6455 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0); 6456 6457 /* 6458 * Do we have more than one buf? 6459 */ 6460 if (hdr->b_l1hdr.b_buf != buf || !ARC_BUF_LAST(buf)) { 6461 arc_buf_hdr_t *nhdr; 6462 uint64_t spa = hdr->b_spa; 6463 uint64_t psize = HDR_GET_PSIZE(hdr); 6464 uint64_t lsize = HDR_GET_LSIZE(hdr); 6465 boolean_t protected = HDR_PROTECTED(hdr); 6466 enum zio_compress compress = arc_hdr_get_compress(hdr); 6467 arc_buf_contents_t type = arc_buf_type(hdr); 6468 6469 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 6470 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6471 ASSERT(ARC_BUF_LAST(buf)); 6472 } 6473 6474 /* 6475 * Pull the buffer off of this hdr and find the last buffer 6476 * in the hdr's buffer list. 6477 */ 6478 VERIFY3S(remove_reference(hdr, tag), >, 0); 6479 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 6480 ASSERT3P(lastbuf, !=, NULL); 6481 6482 /* 6483 * If the current arc_buf_t and the hdr are sharing their data 6484 * buffer, then we must stop sharing that block. 6485 */ 6486 if (ARC_BUF_SHARED(buf)) { 6487 ASSERT(!arc_buf_is_shared(lastbuf)); 6488 6489 /* 6490 * First, sever the block sharing relationship between 6491 * buf and the arc_buf_hdr_t. 6492 */ 6493 arc_unshare_buf(hdr, buf); 6494 6495 /* 6496 * Now we need to recreate the hdr's b_pabd. Since we 6497 * have lastbuf handy, we try to share with it, but if 6498 * we can't then we allocate a new b_pabd and copy the 6499 * data from buf into it. 6500 */ 6501 if (arc_can_share(hdr, lastbuf)) { 6502 arc_share_buf(hdr, lastbuf); 6503 } else { 6504 arc_hdr_alloc_abd(hdr, 0); 6505 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, 6506 buf->b_data, psize); 6507 } 6508 } else if (HDR_SHARED_DATA(hdr)) { 6509 /* 6510 * Uncompressed shared buffers are always at the end 6511 * of the list. Compressed buffers don't have the 6512 * same requirements. This makes it hard to 6513 * simply assert that the lastbuf is shared so 6514 * we rely on the hdr's compression flags to determine 6515 * if we have a compressed, shared buffer. 6516 */ 6517 ASSERT(arc_buf_is_shared(lastbuf) || 6518 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 6519 ASSERT(!arc_buf_is_shared(buf)); 6520 } 6521 6522 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 6523 6524 (void) zfs_refcount_remove_many(&state->arcs_size[type], 6525 arc_buf_size(buf), buf); 6526 6527 arc_cksum_verify(buf); 6528 arc_buf_unwatch(buf); 6529 6530 /* if this is the last uncompressed buf free the checksum */ 6531 if (!arc_hdr_has_uncompressed_buf(hdr)) 6532 arc_cksum_free(hdr); 6533 6534 mutex_exit(hash_lock); 6535 6536 nhdr = arc_hdr_alloc(spa, psize, lsize, protected, 6537 compress, hdr->b_complevel, type); 6538 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL); 6539 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt)); 6540 VERIFY3U(nhdr->b_type, ==, type); 6541 ASSERT(!HDR_SHARED_DATA(nhdr)); 6542 6543 nhdr->b_l1hdr.b_buf = buf; 6544 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 6545 buf->b_hdr = nhdr; 6546 6547 (void) zfs_refcount_add_many(&arc_anon->arcs_size[type], 6548 arc_buf_size(buf), buf); 6549 } else { 6550 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 6551 /* protected by hash lock, or hdr is on arc_anon */ 6552 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 6553 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6554 6555 if (HDR_HAS_L2HDR(hdr)) { 6556 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6557 /* Recheck to prevent race with l2arc_evict(). */ 6558 if (HDR_HAS_L2HDR(hdr)) 6559 arc_hdr_l2hdr_destroy(hdr); 6560 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6561 } 6562 6563 hdr->b_l1hdr.b_mru_hits = 0; 6564 hdr->b_l1hdr.b_mru_ghost_hits = 0; 6565 hdr->b_l1hdr.b_mfu_hits = 0; 6566 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 6567 arc_change_state(arc_anon, hdr); 6568 hdr->b_l1hdr.b_arc_access = 0; 6569 6570 mutex_exit(hash_lock); 6571 buf_discard_identity(hdr); 6572 arc_buf_thaw(buf); 6573 } 6574 } 6575 6576 int 6577 arc_released(arc_buf_t *buf) 6578 { 6579 return (buf->b_data != NULL && 6580 buf->b_hdr->b_l1hdr.b_state == arc_anon); 6581 } 6582 6583 #ifdef ZFS_DEBUG 6584 int 6585 arc_referenced(arc_buf_t *buf) 6586 { 6587 return (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 6588 } 6589 #endif 6590 6591 static void 6592 arc_write_ready(zio_t *zio) 6593 { 6594 arc_write_callback_t *callback = zio->io_private; 6595 arc_buf_t *buf = callback->awcb_buf; 6596 arc_buf_hdr_t *hdr = buf->b_hdr; 6597 blkptr_t *bp = zio->io_bp; 6598 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp); 6599 fstrans_cookie_t cookie = spl_fstrans_mark(); 6600 6601 ASSERT(HDR_HAS_L1HDR(hdr)); 6602 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 6603 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL); 6604 6605 /* 6606 * If we're reexecuting this zio because the pool suspended, then 6607 * cleanup any state that was previously set the first time the 6608 * callback was invoked. 6609 */ 6610 if (zio->io_flags & ZIO_FLAG_REEXECUTED) { 6611 arc_cksum_free(hdr); 6612 arc_buf_unwatch(buf); 6613 if (hdr->b_l1hdr.b_pabd != NULL) { 6614 if (ARC_BUF_SHARED(buf)) { 6615 arc_unshare_buf(hdr, buf); 6616 } else { 6617 ASSERT(!arc_buf_is_shared(buf)); 6618 arc_hdr_free_abd(hdr, B_FALSE); 6619 } 6620 } 6621 6622 if (HDR_HAS_RABD(hdr)) 6623 arc_hdr_free_abd(hdr, B_TRUE); 6624 } 6625 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6626 ASSERT(!HDR_HAS_RABD(hdr)); 6627 ASSERT(!HDR_SHARED_DATA(hdr)); 6628 ASSERT(!arc_buf_is_shared(buf)); 6629 6630 callback->awcb_ready(zio, buf, callback->awcb_private); 6631 6632 if (HDR_IO_IN_PROGRESS(hdr)) { 6633 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); 6634 } else { 6635 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6636 add_reference(hdr, hdr); /* For IO_IN_PROGRESS. */ 6637 } 6638 6639 if (BP_IS_PROTECTED(bp)) { 6640 /* ZIL blocks are written through zio_rewrite */ 6641 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 6642 6643 if (BP_SHOULD_BYTESWAP(bp)) { 6644 if (BP_GET_LEVEL(bp) > 0) { 6645 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 6646 } else { 6647 hdr->b_l1hdr.b_byteswap = 6648 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 6649 } 6650 } else { 6651 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 6652 } 6653 6654 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 6655 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 6656 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 6657 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 6658 hdr->b_crypt_hdr.b_iv); 6659 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 6660 } else { 6661 arc_hdr_clear_flags(hdr, ARC_FLAG_PROTECTED); 6662 } 6663 6664 /* 6665 * If this block was written for raw encryption but the zio layer 6666 * ended up only authenticating it, adjust the buffer flags now. 6667 */ 6668 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) { 6669 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6670 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6671 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF) 6672 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6673 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) { 6674 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6675 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6676 } 6677 6678 /* this must be done after the buffer flags are adjusted */ 6679 arc_cksum_compute(buf); 6680 6681 enum zio_compress compress; 6682 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 6683 compress = ZIO_COMPRESS_OFF; 6684 } else { 6685 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 6686 compress = BP_GET_COMPRESS(bp); 6687 } 6688 HDR_SET_PSIZE(hdr, psize); 6689 arc_hdr_set_compress(hdr, compress); 6690 hdr->b_complevel = zio->io_prop.zp_complevel; 6691 6692 if (zio->io_error != 0 || psize == 0) 6693 goto out; 6694 6695 /* 6696 * Fill the hdr with data. If the buffer is encrypted we have no choice 6697 * but to copy the data into b_radb. If the hdr is compressed, the data 6698 * we want is available from the zio, otherwise we can take it from 6699 * the buf. 6700 * 6701 * We might be able to share the buf's data with the hdr here. However, 6702 * doing so would cause the ARC to be full of linear ABDs if we write a 6703 * lot of shareable data. As a compromise, we check whether scattered 6704 * ABDs are allowed, and assume that if they are then the user wants 6705 * the ARC to be primarily filled with them regardless of the data being 6706 * written. Therefore, if they're allowed then we allocate one and copy 6707 * the data into it; otherwise, we share the data directly if we can. 6708 */ 6709 if (ARC_BUF_ENCRYPTED(buf)) { 6710 ASSERT3U(psize, >, 0); 6711 ASSERT(ARC_BUF_COMPRESSED(buf)); 6712 arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA | 6713 ARC_HDR_USE_RESERVE); 6714 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6715 } else if (!(HDR_UNCACHED(hdr) || 6716 abd_size_alloc_linear(arc_buf_size(buf))) || 6717 !arc_can_share(hdr, buf)) { 6718 /* 6719 * Ideally, we would always copy the io_abd into b_pabd, but the 6720 * user may have disabled compressed ARC, thus we must check the 6721 * hdr's compression setting rather than the io_bp's. 6722 */ 6723 if (BP_IS_ENCRYPTED(bp)) { 6724 ASSERT3U(psize, >, 0); 6725 arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA | 6726 ARC_HDR_USE_RESERVE); 6727 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6728 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 6729 !ARC_BUF_COMPRESSED(buf)) { 6730 ASSERT3U(psize, >, 0); 6731 arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE); 6732 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize); 6733 } else { 6734 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr)); 6735 arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE); 6736 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data, 6737 arc_buf_size(buf)); 6738 } 6739 } else { 6740 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd)); 6741 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf)); 6742 ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf); 6743 ASSERT(ARC_BUF_LAST(buf)); 6744 6745 arc_share_buf(hdr, buf); 6746 } 6747 6748 out: 6749 arc_hdr_verify(hdr, bp); 6750 spl_fstrans_unmark(cookie); 6751 } 6752 6753 static void 6754 arc_write_children_ready(zio_t *zio) 6755 { 6756 arc_write_callback_t *callback = zio->io_private; 6757 arc_buf_t *buf = callback->awcb_buf; 6758 6759 callback->awcb_children_ready(zio, buf, callback->awcb_private); 6760 } 6761 6762 static void 6763 arc_write_done(zio_t *zio) 6764 { 6765 arc_write_callback_t *callback = zio->io_private; 6766 arc_buf_t *buf = callback->awcb_buf; 6767 arc_buf_hdr_t *hdr = buf->b_hdr; 6768 6769 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6770 6771 if (zio->io_error == 0) { 6772 arc_hdr_verify(hdr, zio->io_bp); 6773 6774 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 6775 buf_discard_identity(hdr); 6776 } else { 6777 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 6778 hdr->b_birth = BP_GET_BIRTH(zio->io_bp); 6779 } 6780 } else { 6781 ASSERT(HDR_EMPTY(hdr)); 6782 } 6783 6784 /* 6785 * If the block to be written was all-zero or compressed enough to be 6786 * embedded in the BP, no write was performed so there will be no 6787 * dva/birth/checksum. The buffer must therefore remain anonymous 6788 * (and uncached). 6789 */ 6790 if (!HDR_EMPTY(hdr)) { 6791 arc_buf_hdr_t *exists; 6792 kmutex_t *hash_lock; 6793 6794 ASSERT3U(zio->io_error, ==, 0); 6795 6796 arc_cksum_verify(buf); 6797 6798 exists = buf_hash_insert(hdr, &hash_lock); 6799 if (exists != NULL) { 6800 /* 6801 * This can only happen if we overwrite for 6802 * sync-to-convergence, because we remove 6803 * buffers from the hash table when we arc_free(). 6804 */ 6805 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 6806 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6807 panic("bad overwrite, hdr=%p exists=%p", 6808 (void *)hdr, (void *)exists); 6809 ASSERT(zfs_refcount_is_zero( 6810 &exists->b_l1hdr.b_refcnt)); 6811 arc_change_state(arc_anon, exists); 6812 arc_hdr_destroy(exists); 6813 mutex_exit(hash_lock); 6814 exists = buf_hash_insert(hdr, &hash_lock); 6815 ASSERT3P(exists, ==, NULL); 6816 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 6817 /* nopwrite */ 6818 ASSERT(zio->io_prop.zp_nopwrite); 6819 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6820 panic("bad nopwrite, hdr=%p exists=%p", 6821 (void *)hdr, (void *)exists); 6822 } else { 6823 /* Dedup */ 6824 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL); 6825 ASSERT(ARC_BUF_LAST(hdr->b_l1hdr.b_buf)); 6826 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 6827 ASSERT(BP_GET_DEDUP(zio->io_bp)); 6828 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 6829 } 6830 } 6831 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6832 VERIFY3S(remove_reference(hdr, hdr), >, 0); 6833 /* if it's not anon, we are doing a scrub */ 6834 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 6835 arc_access(hdr, 0, B_FALSE); 6836 mutex_exit(hash_lock); 6837 } else { 6838 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6839 VERIFY3S(remove_reference(hdr, hdr), >, 0); 6840 } 6841 6842 callback->awcb_done(zio, buf, callback->awcb_private); 6843 6844 abd_free(zio->io_abd); 6845 kmem_free(callback, sizeof (arc_write_callback_t)); 6846 } 6847 6848 zio_t * 6849 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 6850 blkptr_t *bp, arc_buf_t *buf, boolean_t uncached, boolean_t l2arc, 6851 const zio_prop_t *zp, arc_write_done_func_t *ready, 6852 arc_write_done_func_t *children_ready, arc_write_done_func_t *done, 6853 void *private, zio_priority_t priority, int zio_flags, 6854 const zbookmark_phys_t *zb) 6855 { 6856 arc_buf_hdr_t *hdr = buf->b_hdr; 6857 arc_write_callback_t *callback; 6858 zio_t *zio; 6859 zio_prop_t localprop = *zp; 6860 6861 ASSERT3P(ready, !=, NULL); 6862 ASSERT3P(done, !=, NULL); 6863 ASSERT(!HDR_IO_ERROR(hdr)); 6864 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6865 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6866 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL); 6867 if (uncached) 6868 arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED); 6869 else if (l2arc) 6870 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6871 6872 if (ARC_BUF_ENCRYPTED(buf)) { 6873 ASSERT(ARC_BUF_COMPRESSED(buf)); 6874 localprop.zp_encrypt = B_TRUE; 6875 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 6876 localprop.zp_complevel = hdr->b_complevel; 6877 localprop.zp_byteorder = 6878 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 6879 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 6880 memcpy(localprop.zp_salt, hdr->b_crypt_hdr.b_salt, 6881 ZIO_DATA_SALT_LEN); 6882 memcpy(localprop.zp_iv, hdr->b_crypt_hdr.b_iv, 6883 ZIO_DATA_IV_LEN); 6884 memcpy(localprop.zp_mac, hdr->b_crypt_hdr.b_mac, 6885 ZIO_DATA_MAC_LEN); 6886 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) { 6887 localprop.zp_nopwrite = B_FALSE; 6888 localprop.zp_copies = 6889 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1); 6890 localprop.zp_gang_copies = 6891 MIN(localprop.zp_gang_copies, SPA_DVAS_PER_BP - 1); 6892 } 6893 zio_flags |= ZIO_FLAG_RAW; 6894 } else if (ARC_BUF_COMPRESSED(buf)) { 6895 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf)); 6896 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 6897 localprop.zp_complevel = hdr->b_complevel; 6898 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 6899 } 6900 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 6901 callback->awcb_ready = ready; 6902 callback->awcb_children_ready = children_ready; 6903 callback->awcb_done = done; 6904 callback->awcb_private = private; 6905 callback->awcb_buf = buf; 6906 6907 /* 6908 * The hdr's b_pabd is now stale, free it now. A new data block 6909 * will be allocated when the zio pipeline calls arc_write_ready(). 6910 */ 6911 if (hdr->b_l1hdr.b_pabd != NULL) { 6912 /* 6913 * If the buf is currently sharing the data block with 6914 * the hdr then we need to break that relationship here. 6915 * The hdr will remain with a NULL data pointer and the 6916 * buf will take sole ownership of the block. 6917 */ 6918 if (ARC_BUF_SHARED(buf)) { 6919 arc_unshare_buf(hdr, buf); 6920 } else { 6921 ASSERT(!arc_buf_is_shared(buf)); 6922 arc_hdr_free_abd(hdr, B_FALSE); 6923 } 6924 VERIFY3P(buf->b_data, !=, NULL); 6925 } 6926 6927 if (HDR_HAS_RABD(hdr)) 6928 arc_hdr_free_abd(hdr, B_TRUE); 6929 6930 if (!(zio_flags & ZIO_FLAG_RAW)) 6931 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); 6932 6933 ASSERT(!arc_buf_is_shared(buf)); 6934 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6935 6936 zio = zio_write(pio, spa, txg, bp, 6937 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)), 6938 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready, 6939 (children_ready != NULL) ? arc_write_children_ready : NULL, 6940 arc_write_done, callback, priority, zio_flags, zb); 6941 6942 return (zio); 6943 } 6944 6945 void 6946 arc_tempreserve_clear(uint64_t reserve) 6947 { 6948 atomic_add_64(&arc_tempreserve, -reserve); 6949 ASSERT((int64_t)arc_tempreserve >= 0); 6950 } 6951 6952 int 6953 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg) 6954 { 6955 int error; 6956 uint64_t anon_size; 6957 6958 if (!arc_no_grow && 6959 reserve > arc_c/4 && 6960 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT)) 6961 arc_c = MIN(arc_c_max, reserve * 4); 6962 6963 /* 6964 * Throttle when the calculated memory footprint for the TXG 6965 * exceeds the target ARC size. 6966 */ 6967 if (reserve > arc_c) { 6968 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve); 6969 return (SET_ERROR(ERESTART)); 6970 } 6971 6972 /* 6973 * Don't count loaned bufs as in flight dirty data to prevent long 6974 * network delays from blocking transactions that are ready to be 6975 * assigned to a txg. 6976 */ 6977 6978 /* assert that it has not wrapped around */ 6979 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 6980 6981 anon_size = MAX((int64_t) 6982 (zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]) + 6983 zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]) - 6984 arc_loaned_bytes), 0); 6985 6986 /* 6987 * Writes will, almost always, require additional memory allocations 6988 * in order to compress/encrypt/etc the data. We therefore need to 6989 * make sure that there is sufficient available memory for this. 6990 */ 6991 error = arc_memory_throttle(spa, reserve, txg); 6992 if (error != 0) 6993 return (error); 6994 6995 /* 6996 * Throttle writes when the amount of dirty data in the cache 6997 * gets too large. We try to keep the cache less than half full 6998 * of dirty blocks so that our sync times don't grow too large. 6999 * 7000 * In the case of one pool being built on another pool, we want 7001 * to make sure we don't end up throttling the lower (backing) 7002 * pool when the upper pool is the majority contributor to dirty 7003 * data. To insure we make forward progress during throttling, we 7004 * also check the current pool's net dirty data and only throttle 7005 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty 7006 * data in the cache. 7007 * 7008 * Note: if two requests come in concurrently, we might let them 7009 * both succeed, when one of them should fail. Not a huge deal. 7010 */ 7011 uint64_t total_dirty = reserve + arc_tempreserve + anon_size; 7012 uint64_t spa_dirty_anon = spa_dirty_data(spa); 7013 uint64_t rarc_c = arc_warm ? arc_c : arc_c_max; 7014 if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 && 7015 anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 && 7016 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) { 7017 #ifdef ZFS_DEBUG 7018 uint64_t meta_esize = zfs_refcount_count( 7019 &arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7020 uint64_t data_esize = 7021 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7022 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 7023 "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n", 7024 (u_longlong_t)arc_tempreserve >> 10, 7025 (u_longlong_t)meta_esize >> 10, 7026 (u_longlong_t)data_esize >> 10, 7027 (u_longlong_t)reserve >> 10, 7028 (u_longlong_t)rarc_c >> 10); 7029 #endif 7030 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle); 7031 return (SET_ERROR(ERESTART)); 7032 } 7033 atomic_add_64(&arc_tempreserve, reserve); 7034 return (0); 7035 } 7036 7037 static void 7038 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 7039 kstat_named_t *data, kstat_named_t *metadata, 7040 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 7041 { 7042 data->value.ui64 = 7043 zfs_refcount_count(&state->arcs_size[ARC_BUFC_DATA]); 7044 metadata->value.ui64 = 7045 zfs_refcount_count(&state->arcs_size[ARC_BUFC_METADATA]); 7046 size->value.ui64 = data->value.ui64 + metadata->value.ui64; 7047 evict_data->value.ui64 = 7048 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); 7049 evict_metadata->value.ui64 = 7050 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); 7051 } 7052 7053 static int 7054 arc_kstat_update(kstat_t *ksp, int rw) 7055 { 7056 arc_stats_t *as = ksp->ks_data; 7057 7058 if (rw == KSTAT_WRITE) 7059 return (SET_ERROR(EACCES)); 7060 7061 as->arcstat_hits.value.ui64 = 7062 wmsum_value(&arc_sums.arcstat_hits); 7063 as->arcstat_iohits.value.ui64 = 7064 wmsum_value(&arc_sums.arcstat_iohits); 7065 as->arcstat_misses.value.ui64 = 7066 wmsum_value(&arc_sums.arcstat_misses); 7067 as->arcstat_demand_data_hits.value.ui64 = 7068 wmsum_value(&arc_sums.arcstat_demand_data_hits); 7069 as->arcstat_demand_data_iohits.value.ui64 = 7070 wmsum_value(&arc_sums.arcstat_demand_data_iohits); 7071 as->arcstat_demand_data_misses.value.ui64 = 7072 wmsum_value(&arc_sums.arcstat_demand_data_misses); 7073 as->arcstat_demand_metadata_hits.value.ui64 = 7074 wmsum_value(&arc_sums.arcstat_demand_metadata_hits); 7075 as->arcstat_demand_metadata_iohits.value.ui64 = 7076 wmsum_value(&arc_sums.arcstat_demand_metadata_iohits); 7077 as->arcstat_demand_metadata_misses.value.ui64 = 7078 wmsum_value(&arc_sums.arcstat_demand_metadata_misses); 7079 as->arcstat_prefetch_data_hits.value.ui64 = 7080 wmsum_value(&arc_sums.arcstat_prefetch_data_hits); 7081 as->arcstat_prefetch_data_iohits.value.ui64 = 7082 wmsum_value(&arc_sums.arcstat_prefetch_data_iohits); 7083 as->arcstat_prefetch_data_misses.value.ui64 = 7084 wmsum_value(&arc_sums.arcstat_prefetch_data_misses); 7085 as->arcstat_prefetch_metadata_hits.value.ui64 = 7086 wmsum_value(&arc_sums.arcstat_prefetch_metadata_hits); 7087 as->arcstat_prefetch_metadata_iohits.value.ui64 = 7088 wmsum_value(&arc_sums.arcstat_prefetch_metadata_iohits); 7089 as->arcstat_prefetch_metadata_misses.value.ui64 = 7090 wmsum_value(&arc_sums.arcstat_prefetch_metadata_misses); 7091 as->arcstat_mru_hits.value.ui64 = 7092 wmsum_value(&arc_sums.arcstat_mru_hits); 7093 as->arcstat_mru_ghost_hits.value.ui64 = 7094 wmsum_value(&arc_sums.arcstat_mru_ghost_hits); 7095 as->arcstat_mfu_hits.value.ui64 = 7096 wmsum_value(&arc_sums.arcstat_mfu_hits); 7097 as->arcstat_mfu_ghost_hits.value.ui64 = 7098 wmsum_value(&arc_sums.arcstat_mfu_ghost_hits); 7099 as->arcstat_uncached_hits.value.ui64 = 7100 wmsum_value(&arc_sums.arcstat_uncached_hits); 7101 as->arcstat_deleted.value.ui64 = 7102 wmsum_value(&arc_sums.arcstat_deleted); 7103 as->arcstat_mutex_miss.value.ui64 = 7104 wmsum_value(&arc_sums.arcstat_mutex_miss); 7105 as->arcstat_access_skip.value.ui64 = 7106 wmsum_value(&arc_sums.arcstat_access_skip); 7107 as->arcstat_evict_skip.value.ui64 = 7108 wmsum_value(&arc_sums.arcstat_evict_skip); 7109 as->arcstat_evict_not_enough.value.ui64 = 7110 wmsum_value(&arc_sums.arcstat_evict_not_enough); 7111 as->arcstat_evict_l2_cached.value.ui64 = 7112 wmsum_value(&arc_sums.arcstat_evict_l2_cached); 7113 as->arcstat_evict_l2_eligible.value.ui64 = 7114 wmsum_value(&arc_sums.arcstat_evict_l2_eligible); 7115 as->arcstat_evict_l2_eligible_mfu.value.ui64 = 7116 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mfu); 7117 as->arcstat_evict_l2_eligible_mru.value.ui64 = 7118 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mru); 7119 as->arcstat_evict_l2_ineligible.value.ui64 = 7120 wmsum_value(&arc_sums.arcstat_evict_l2_ineligible); 7121 as->arcstat_evict_l2_skip.value.ui64 = 7122 wmsum_value(&arc_sums.arcstat_evict_l2_skip); 7123 as->arcstat_hash_elements.value.ui64 = 7124 as->arcstat_hash_elements_max.value.ui64 = 7125 wmsum_value(&arc_sums.arcstat_hash_elements); 7126 as->arcstat_hash_collisions.value.ui64 = 7127 wmsum_value(&arc_sums.arcstat_hash_collisions); 7128 as->arcstat_hash_chains.value.ui64 = 7129 wmsum_value(&arc_sums.arcstat_hash_chains); 7130 as->arcstat_size.value.ui64 = 7131 aggsum_value(&arc_sums.arcstat_size); 7132 as->arcstat_compressed_size.value.ui64 = 7133 wmsum_value(&arc_sums.arcstat_compressed_size); 7134 as->arcstat_uncompressed_size.value.ui64 = 7135 wmsum_value(&arc_sums.arcstat_uncompressed_size); 7136 as->arcstat_overhead_size.value.ui64 = 7137 wmsum_value(&arc_sums.arcstat_overhead_size); 7138 as->arcstat_hdr_size.value.ui64 = 7139 wmsum_value(&arc_sums.arcstat_hdr_size); 7140 as->arcstat_data_size.value.ui64 = 7141 wmsum_value(&arc_sums.arcstat_data_size); 7142 as->arcstat_metadata_size.value.ui64 = 7143 wmsum_value(&arc_sums.arcstat_metadata_size); 7144 as->arcstat_dbuf_size.value.ui64 = 7145 wmsum_value(&arc_sums.arcstat_dbuf_size); 7146 #if defined(COMPAT_FREEBSD11) 7147 as->arcstat_other_size.value.ui64 = 7148 wmsum_value(&arc_sums.arcstat_bonus_size) + 7149 wmsum_value(&arc_sums.arcstat_dnode_size) + 7150 wmsum_value(&arc_sums.arcstat_dbuf_size); 7151 #endif 7152 7153 arc_kstat_update_state(arc_anon, 7154 &as->arcstat_anon_size, 7155 &as->arcstat_anon_data, 7156 &as->arcstat_anon_metadata, 7157 &as->arcstat_anon_evictable_data, 7158 &as->arcstat_anon_evictable_metadata); 7159 arc_kstat_update_state(arc_mru, 7160 &as->arcstat_mru_size, 7161 &as->arcstat_mru_data, 7162 &as->arcstat_mru_metadata, 7163 &as->arcstat_mru_evictable_data, 7164 &as->arcstat_mru_evictable_metadata); 7165 arc_kstat_update_state(arc_mru_ghost, 7166 &as->arcstat_mru_ghost_size, 7167 &as->arcstat_mru_ghost_data, 7168 &as->arcstat_mru_ghost_metadata, 7169 &as->arcstat_mru_ghost_evictable_data, 7170 &as->arcstat_mru_ghost_evictable_metadata); 7171 arc_kstat_update_state(arc_mfu, 7172 &as->arcstat_mfu_size, 7173 &as->arcstat_mfu_data, 7174 &as->arcstat_mfu_metadata, 7175 &as->arcstat_mfu_evictable_data, 7176 &as->arcstat_mfu_evictable_metadata); 7177 arc_kstat_update_state(arc_mfu_ghost, 7178 &as->arcstat_mfu_ghost_size, 7179 &as->arcstat_mfu_ghost_data, 7180 &as->arcstat_mfu_ghost_metadata, 7181 &as->arcstat_mfu_ghost_evictable_data, 7182 &as->arcstat_mfu_ghost_evictable_metadata); 7183 arc_kstat_update_state(arc_uncached, 7184 &as->arcstat_uncached_size, 7185 &as->arcstat_uncached_data, 7186 &as->arcstat_uncached_metadata, 7187 &as->arcstat_uncached_evictable_data, 7188 &as->arcstat_uncached_evictable_metadata); 7189 7190 as->arcstat_dnode_size.value.ui64 = 7191 wmsum_value(&arc_sums.arcstat_dnode_size); 7192 as->arcstat_bonus_size.value.ui64 = 7193 wmsum_value(&arc_sums.arcstat_bonus_size); 7194 as->arcstat_l2_hits.value.ui64 = 7195 wmsum_value(&arc_sums.arcstat_l2_hits); 7196 as->arcstat_l2_misses.value.ui64 = 7197 wmsum_value(&arc_sums.arcstat_l2_misses); 7198 as->arcstat_l2_prefetch_asize.value.ui64 = 7199 wmsum_value(&arc_sums.arcstat_l2_prefetch_asize); 7200 as->arcstat_l2_mru_asize.value.ui64 = 7201 wmsum_value(&arc_sums.arcstat_l2_mru_asize); 7202 as->arcstat_l2_mfu_asize.value.ui64 = 7203 wmsum_value(&arc_sums.arcstat_l2_mfu_asize); 7204 as->arcstat_l2_bufc_data_asize.value.ui64 = 7205 wmsum_value(&arc_sums.arcstat_l2_bufc_data_asize); 7206 as->arcstat_l2_bufc_metadata_asize.value.ui64 = 7207 wmsum_value(&arc_sums.arcstat_l2_bufc_metadata_asize); 7208 as->arcstat_l2_feeds.value.ui64 = 7209 wmsum_value(&arc_sums.arcstat_l2_feeds); 7210 as->arcstat_l2_rw_clash.value.ui64 = 7211 wmsum_value(&arc_sums.arcstat_l2_rw_clash); 7212 as->arcstat_l2_read_bytes.value.ui64 = 7213 wmsum_value(&arc_sums.arcstat_l2_read_bytes); 7214 as->arcstat_l2_write_bytes.value.ui64 = 7215 wmsum_value(&arc_sums.arcstat_l2_write_bytes); 7216 as->arcstat_l2_writes_sent.value.ui64 = 7217 wmsum_value(&arc_sums.arcstat_l2_writes_sent); 7218 as->arcstat_l2_writes_done.value.ui64 = 7219 wmsum_value(&arc_sums.arcstat_l2_writes_done); 7220 as->arcstat_l2_writes_error.value.ui64 = 7221 wmsum_value(&arc_sums.arcstat_l2_writes_error); 7222 as->arcstat_l2_writes_lock_retry.value.ui64 = 7223 wmsum_value(&arc_sums.arcstat_l2_writes_lock_retry); 7224 as->arcstat_l2_evict_lock_retry.value.ui64 = 7225 wmsum_value(&arc_sums.arcstat_l2_evict_lock_retry); 7226 as->arcstat_l2_evict_reading.value.ui64 = 7227 wmsum_value(&arc_sums.arcstat_l2_evict_reading); 7228 as->arcstat_l2_evict_l1cached.value.ui64 = 7229 wmsum_value(&arc_sums.arcstat_l2_evict_l1cached); 7230 as->arcstat_l2_free_on_write.value.ui64 = 7231 wmsum_value(&arc_sums.arcstat_l2_free_on_write); 7232 as->arcstat_l2_abort_lowmem.value.ui64 = 7233 wmsum_value(&arc_sums.arcstat_l2_abort_lowmem); 7234 as->arcstat_l2_cksum_bad.value.ui64 = 7235 wmsum_value(&arc_sums.arcstat_l2_cksum_bad); 7236 as->arcstat_l2_io_error.value.ui64 = 7237 wmsum_value(&arc_sums.arcstat_l2_io_error); 7238 as->arcstat_l2_lsize.value.ui64 = 7239 wmsum_value(&arc_sums.arcstat_l2_lsize); 7240 as->arcstat_l2_psize.value.ui64 = 7241 wmsum_value(&arc_sums.arcstat_l2_psize); 7242 as->arcstat_l2_hdr_size.value.ui64 = 7243 aggsum_value(&arc_sums.arcstat_l2_hdr_size); 7244 as->arcstat_l2_log_blk_writes.value.ui64 = 7245 wmsum_value(&arc_sums.arcstat_l2_log_blk_writes); 7246 as->arcstat_l2_log_blk_asize.value.ui64 = 7247 wmsum_value(&arc_sums.arcstat_l2_log_blk_asize); 7248 as->arcstat_l2_log_blk_count.value.ui64 = 7249 wmsum_value(&arc_sums.arcstat_l2_log_blk_count); 7250 as->arcstat_l2_rebuild_success.value.ui64 = 7251 wmsum_value(&arc_sums.arcstat_l2_rebuild_success); 7252 as->arcstat_l2_rebuild_abort_unsupported.value.ui64 = 7253 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_unsupported); 7254 as->arcstat_l2_rebuild_abort_io_errors.value.ui64 = 7255 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_io_errors); 7256 as->arcstat_l2_rebuild_abort_dh_errors.value.ui64 = 7257 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_dh_errors); 7258 as->arcstat_l2_rebuild_abort_cksum_lb_errors.value.ui64 = 7259 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors); 7260 as->arcstat_l2_rebuild_abort_lowmem.value.ui64 = 7261 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_lowmem); 7262 as->arcstat_l2_rebuild_size.value.ui64 = 7263 wmsum_value(&arc_sums.arcstat_l2_rebuild_size); 7264 as->arcstat_l2_rebuild_asize.value.ui64 = 7265 wmsum_value(&arc_sums.arcstat_l2_rebuild_asize); 7266 as->arcstat_l2_rebuild_bufs.value.ui64 = 7267 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs); 7268 as->arcstat_l2_rebuild_bufs_precached.value.ui64 = 7269 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs_precached); 7270 as->arcstat_l2_rebuild_log_blks.value.ui64 = 7271 wmsum_value(&arc_sums.arcstat_l2_rebuild_log_blks); 7272 as->arcstat_memory_throttle_count.value.ui64 = 7273 wmsum_value(&arc_sums.arcstat_memory_throttle_count); 7274 as->arcstat_memory_direct_count.value.ui64 = 7275 wmsum_value(&arc_sums.arcstat_memory_direct_count); 7276 as->arcstat_memory_indirect_count.value.ui64 = 7277 wmsum_value(&arc_sums.arcstat_memory_indirect_count); 7278 7279 as->arcstat_memory_all_bytes.value.ui64 = 7280 arc_all_memory(); 7281 as->arcstat_memory_free_bytes.value.ui64 = 7282 arc_free_memory(); 7283 as->arcstat_memory_available_bytes.value.i64 = 7284 arc_available_memory(); 7285 7286 as->arcstat_prune.value.ui64 = 7287 wmsum_value(&arc_sums.arcstat_prune); 7288 as->arcstat_meta_used.value.ui64 = 7289 wmsum_value(&arc_sums.arcstat_meta_used); 7290 as->arcstat_async_upgrade_sync.value.ui64 = 7291 wmsum_value(&arc_sums.arcstat_async_upgrade_sync); 7292 as->arcstat_predictive_prefetch.value.ui64 = 7293 wmsum_value(&arc_sums.arcstat_predictive_prefetch); 7294 as->arcstat_demand_hit_predictive_prefetch.value.ui64 = 7295 wmsum_value(&arc_sums.arcstat_demand_hit_predictive_prefetch); 7296 as->arcstat_demand_iohit_predictive_prefetch.value.ui64 = 7297 wmsum_value(&arc_sums.arcstat_demand_iohit_predictive_prefetch); 7298 as->arcstat_prescient_prefetch.value.ui64 = 7299 wmsum_value(&arc_sums.arcstat_prescient_prefetch); 7300 as->arcstat_demand_hit_prescient_prefetch.value.ui64 = 7301 wmsum_value(&arc_sums.arcstat_demand_hit_prescient_prefetch); 7302 as->arcstat_demand_iohit_prescient_prefetch.value.ui64 = 7303 wmsum_value(&arc_sums.arcstat_demand_iohit_prescient_prefetch); 7304 as->arcstat_raw_size.value.ui64 = 7305 wmsum_value(&arc_sums.arcstat_raw_size); 7306 as->arcstat_cached_only_in_progress.value.ui64 = 7307 wmsum_value(&arc_sums.arcstat_cached_only_in_progress); 7308 as->arcstat_abd_chunk_waste_size.value.ui64 = 7309 wmsum_value(&arc_sums.arcstat_abd_chunk_waste_size); 7310 7311 return (0); 7312 } 7313 7314 /* 7315 * This function *must* return indices evenly distributed between all 7316 * sublists of the multilist. This is needed due to how the ARC eviction 7317 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 7318 * distributed between all sublists and uses this assumption when 7319 * deciding which sublist to evict from and how much to evict from it. 7320 */ 7321 static unsigned int 7322 arc_state_multilist_index_func(multilist_t *ml, void *obj) 7323 { 7324 arc_buf_hdr_t *hdr = obj; 7325 7326 /* 7327 * We rely on b_dva to generate evenly distributed index 7328 * numbers using buf_hash below. So, as an added precaution, 7329 * let's make sure we never add empty buffers to the arc lists. 7330 */ 7331 ASSERT(!HDR_EMPTY(hdr)); 7332 7333 /* 7334 * The assumption here, is the hash value for a given 7335 * arc_buf_hdr_t will remain constant throughout its lifetime 7336 * (i.e. its b_spa, b_dva, and b_birth fields don't change). 7337 * Thus, we don't need to store the header's sublist index 7338 * on insertion, as this index can be recalculated on removal. 7339 * 7340 * Also, the low order bits of the hash value are thought to be 7341 * distributed evenly. Otherwise, in the case that the multilist 7342 * has a power of two number of sublists, each sublists' usage 7343 * would not be evenly distributed. In this context full 64bit 7344 * division would be a waste of time, so limit it to 32 bits. 7345 */ 7346 return ((unsigned int)buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 7347 multilist_get_num_sublists(ml)); 7348 } 7349 7350 static unsigned int 7351 arc_state_l2c_multilist_index_func(multilist_t *ml, void *obj) 7352 { 7353 panic("Header %p insert into arc_l2c_only %p", obj, ml); 7354 } 7355 7356 #define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \ 7357 if ((do_warn) && (tuning) && ((tuning) != (value))) { \ 7358 cmn_err(CE_WARN, \ 7359 "ignoring tunable %s (using %llu instead)", \ 7360 (#tuning), (u_longlong_t)(value)); \ 7361 } \ 7362 } while (0) 7363 7364 /* 7365 * Called during module initialization and periodically thereafter to 7366 * apply reasonable changes to the exposed performance tunings. Can also be 7367 * called explicitly by param_set_arc_*() functions when ARC tunables are 7368 * updated manually. Non-zero zfs_* values which differ from the currently set 7369 * values will be applied. 7370 */ 7371 void 7372 arc_tuning_update(boolean_t verbose) 7373 { 7374 uint64_t allmem = arc_all_memory(); 7375 7376 /* Valid range: 32M - <arc_c_max> */ 7377 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) && 7378 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) && 7379 (zfs_arc_min <= arc_c_max)) { 7380 arc_c_min = zfs_arc_min; 7381 arc_c = MAX(arc_c, arc_c_min); 7382 } 7383 WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose); 7384 7385 /* Valid range: 64M - <all physical memory> */ 7386 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) && 7387 (zfs_arc_max >= MIN_ARC_MAX) && (zfs_arc_max < allmem) && 7388 (zfs_arc_max > arc_c_min)) { 7389 arc_c_max = zfs_arc_max; 7390 arc_c = MIN(arc_c, arc_c_max); 7391 if (arc_dnode_limit > arc_c_max) 7392 arc_dnode_limit = arc_c_max; 7393 } 7394 WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose); 7395 7396 /* Valid range: 0 - <all physical memory> */ 7397 arc_dnode_limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit : 7398 MIN(zfs_arc_dnode_limit_percent, 100) * arc_c_max / 100; 7399 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_limit, verbose); 7400 7401 /* Valid range: 1 - N */ 7402 if (zfs_arc_grow_retry) 7403 arc_grow_retry = zfs_arc_grow_retry; 7404 7405 /* Valid range: 1 - N */ 7406 if (zfs_arc_shrink_shift) { 7407 arc_shrink_shift = zfs_arc_shrink_shift; 7408 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1); 7409 } 7410 7411 /* Valid range: 1 - N ms */ 7412 if (zfs_arc_min_prefetch_ms) 7413 arc_min_prefetch_ms = zfs_arc_min_prefetch_ms; 7414 7415 /* Valid range: 1 - N ms */ 7416 if (zfs_arc_min_prescient_prefetch_ms) { 7417 arc_min_prescient_prefetch_ms = 7418 zfs_arc_min_prescient_prefetch_ms; 7419 } 7420 7421 /* Valid range: 0 - 100 */ 7422 if (zfs_arc_lotsfree_percent <= 100) 7423 arc_lotsfree_percent = zfs_arc_lotsfree_percent; 7424 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent, 7425 verbose); 7426 7427 /* Valid range: 0 - <all physical memory> */ 7428 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free)) 7429 arc_sys_free = MIN(zfs_arc_sys_free, allmem); 7430 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose); 7431 } 7432 7433 static void 7434 arc_state_multilist_init(multilist_t *ml, 7435 multilist_sublist_index_func_t *index_func, int *maxcountp) 7436 { 7437 multilist_create(ml, sizeof (arc_buf_hdr_t), 7438 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), index_func); 7439 *maxcountp = MAX(*maxcountp, multilist_get_num_sublists(ml)); 7440 } 7441 7442 static void 7443 arc_state_init(void) 7444 { 7445 int num_sublists = 0; 7446 7447 arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_METADATA], 7448 arc_state_multilist_index_func, &num_sublists); 7449 arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_DATA], 7450 arc_state_multilist_index_func, &num_sublists); 7451 arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 7452 arc_state_multilist_index_func, &num_sublists); 7453 arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 7454 arc_state_multilist_index_func, &num_sublists); 7455 arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 7456 arc_state_multilist_index_func, &num_sublists); 7457 arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_DATA], 7458 arc_state_multilist_index_func, &num_sublists); 7459 arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 7460 arc_state_multilist_index_func, &num_sublists); 7461 arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 7462 arc_state_multilist_index_func, &num_sublists); 7463 arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_METADATA], 7464 arc_state_multilist_index_func, &num_sublists); 7465 arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_DATA], 7466 arc_state_multilist_index_func, &num_sublists); 7467 7468 /* 7469 * L2 headers should never be on the L2 state list since they don't 7470 * have L1 headers allocated. Special index function asserts that. 7471 */ 7472 arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 7473 arc_state_l2c_multilist_index_func, &num_sublists); 7474 arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 7475 arc_state_l2c_multilist_index_func, &num_sublists); 7476 7477 /* 7478 * Keep track of the number of markers needed to reclaim buffers from 7479 * any ARC state. The markers will be pre-allocated so as to minimize 7480 * the number of memory allocations performed by the eviction thread. 7481 */ 7482 arc_state_evict_marker_count = num_sublists; 7483 7484 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7485 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7486 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7487 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7488 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7489 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7490 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7491 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7492 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7493 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7494 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7495 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7496 zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]); 7497 zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_DATA]); 7498 7499 zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_DATA]); 7500 zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_METADATA]); 7501 zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_DATA]); 7502 zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_METADATA]); 7503 zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]); 7504 zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]); 7505 zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_DATA]); 7506 zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_METADATA]); 7507 zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]); 7508 zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]); 7509 zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]); 7510 zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]); 7511 zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_DATA]); 7512 zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_METADATA]); 7513 7514 wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA], 0); 7515 wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA], 0); 7516 wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA], 0); 7517 wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA], 0); 7518 7519 wmsum_init(&arc_sums.arcstat_hits, 0); 7520 wmsum_init(&arc_sums.arcstat_iohits, 0); 7521 wmsum_init(&arc_sums.arcstat_misses, 0); 7522 wmsum_init(&arc_sums.arcstat_demand_data_hits, 0); 7523 wmsum_init(&arc_sums.arcstat_demand_data_iohits, 0); 7524 wmsum_init(&arc_sums.arcstat_demand_data_misses, 0); 7525 wmsum_init(&arc_sums.arcstat_demand_metadata_hits, 0); 7526 wmsum_init(&arc_sums.arcstat_demand_metadata_iohits, 0); 7527 wmsum_init(&arc_sums.arcstat_demand_metadata_misses, 0); 7528 wmsum_init(&arc_sums.arcstat_prefetch_data_hits, 0); 7529 wmsum_init(&arc_sums.arcstat_prefetch_data_iohits, 0); 7530 wmsum_init(&arc_sums.arcstat_prefetch_data_misses, 0); 7531 wmsum_init(&arc_sums.arcstat_prefetch_metadata_hits, 0); 7532 wmsum_init(&arc_sums.arcstat_prefetch_metadata_iohits, 0); 7533 wmsum_init(&arc_sums.arcstat_prefetch_metadata_misses, 0); 7534 wmsum_init(&arc_sums.arcstat_mru_hits, 0); 7535 wmsum_init(&arc_sums.arcstat_mru_ghost_hits, 0); 7536 wmsum_init(&arc_sums.arcstat_mfu_hits, 0); 7537 wmsum_init(&arc_sums.arcstat_mfu_ghost_hits, 0); 7538 wmsum_init(&arc_sums.arcstat_uncached_hits, 0); 7539 wmsum_init(&arc_sums.arcstat_deleted, 0); 7540 wmsum_init(&arc_sums.arcstat_mutex_miss, 0); 7541 wmsum_init(&arc_sums.arcstat_access_skip, 0); 7542 wmsum_init(&arc_sums.arcstat_evict_skip, 0); 7543 wmsum_init(&arc_sums.arcstat_evict_not_enough, 0); 7544 wmsum_init(&arc_sums.arcstat_evict_l2_cached, 0); 7545 wmsum_init(&arc_sums.arcstat_evict_l2_eligible, 0); 7546 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mfu, 0); 7547 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mru, 0); 7548 wmsum_init(&arc_sums.arcstat_evict_l2_ineligible, 0); 7549 wmsum_init(&arc_sums.arcstat_evict_l2_skip, 0); 7550 wmsum_init(&arc_sums.arcstat_hash_elements, 0); 7551 wmsum_init(&arc_sums.arcstat_hash_collisions, 0); 7552 wmsum_init(&arc_sums.arcstat_hash_chains, 0); 7553 aggsum_init(&arc_sums.arcstat_size, 0); 7554 wmsum_init(&arc_sums.arcstat_compressed_size, 0); 7555 wmsum_init(&arc_sums.arcstat_uncompressed_size, 0); 7556 wmsum_init(&arc_sums.arcstat_overhead_size, 0); 7557 wmsum_init(&arc_sums.arcstat_hdr_size, 0); 7558 wmsum_init(&arc_sums.arcstat_data_size, 0); 7559 wmsum_init(&arc_sums.arcstat_metadata_size, 0); 7560 wmsum_init(&arc_sums.arcstat_dbuf_size, 0); 7561 wmsum_init(&arc_sums.arcstat_dnode_size, 0); 7562 wmsum_init(&arc_sums.arcstat_bonus_size, 0); 7563 wmsum_init(&arc_sums.arcstat_l2_hits, 0); 7564 wmsum_init(&arc_sums.arcstat_l2_misses, 0); 7565 wmsum_init(&arc_sums.arcstat_l2_prefetch_asize, 0); 7566 wmsum_init(&arc_sums.arcstat_l2_mru_asize, 0); 7567 wmsum_init(&arc_sums.arcstat_l2_mfu_asize, 0); 7568 wmsum_init(&arc_sums.arcstat_l2_bufc_data_asize, 0); 7569 wmsum_init(&arc_sums.arcstat_l2_bufc_metadata_asize, 0); 7570 wmsum_init(&arc_sums.arcstat_l2_feeds, 0); 7571 wmsum_init(&arc_sums.arcstat_l2_rw_clash, 0); 7572 wmsum_init(&arc_sums.arcstat_l2_read_bytes, 0); 7573 wmsum_init(&arc_sums.arcstat_l2_write_bytes, 0); 7574 wmsum_init(&arc_sums.arcstat_l2_writes_sent, 0); 7575 wmsum_init(&arc_sums.arcstat_l2_writes_done, 0); 7576 wmsum_init(&arc_sums.arcstat_l2_writes_error, 0); 7577 wmsum_init(&arc_sums.arcstat_l2_writes_lock_retry, 0); 7578 wmsum_init(&arc_sums.arcstat_l2_evict_lock_retry, 0); 7579 wmsum_init(&arc_sums.arcstat_l2_evict_reading, 0); 7580 wmsum_init(&arc_sums.arcstat_l2_evict_l1cached, 0); 7581 wmsum_init(&arc_sums.arcstat_l2_free_on_write, 0); 7582 wmsum_init(&arc_sums.arcstat_l2_abort_lowmem, 0); 7583 wmsum_init(&arc_sums.arcstat_l2_cksum_bad, 0); 7584 wmsum_init(&arc_sums.arcstat_l2_io_error, 0); 7585 wmsum_init(&arc_sums.arcstat_l2_lsize, 0); 7586 wmsum_init(&arc_sums.arcstat_l2_psize, 0); 7587 aggsum_init(&arc_sums.arcstat_l2_hdr_size, 0); 7588 wmsum_init(&arc_sums.arcstat_l2_log_blk_writes, 0); 7589 wmsum_init(&arc_sums.arcstat_l2_log_blk_asize, 0); 7590 wmsum_init(&arc_sums.arcstat_l2_log_blk_count, 0); 7591 wmsum_init(&arc_sums.arcstat_l2_rebuild_success, 0); 7592 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_unsupported, 0); 7593 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_io_errors, 0); 7594 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_dh_errors, 0); 7595 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors, 0); 7596 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_lowmem, 0); 7597 wmsum_init(&arc_sums.arcstat_l2_rebuild_size, 0); 7598 wmsum_init(&arc_sums.arcstat_l2_rebuild_asize, 0); 7599 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs, 0); 7600 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs_precached, 0); 7601 wmsum_init(&arc_sums.arcstat_l2_rebuild_log_blks, 0); 7602 wmsum_init(&arc_sums.arcstat_memory_throttle_count, 0); 7603 wmsum_init(&arc_sums.arcstat_memory_direct_count, 0); 7604 wmsum_init(&arc_sums.arcstat_memory_indirect_count, 0); 7605 wmsum_init(&arc_sums.arcstat_prune, 0); 7606 wmsum_init(&arc_sums.arcstat_meta_used, 0); 7607 wmsum_init(&arc_sums.arcstat_async_upgrade_sync, 0); 7608 wmsum_init(&arc_sums.arcstat_predictive_prefetch, 0); 7609 wmsum_init(&arc_sums.arcstat_demand_hit_predictive_prefetch, 0); 7610 wmsum_init(&arc_sums.arcstat_demand_iohit_predictive_prefetch, 0); 7611 wmsum_init(&arc_sums.arcstat_prescient_prefetch, 0); 7612 wmsum_init(&arc_sums.arcstat_demand_hit_prescient_prefetch, 0); 7613 wmsum_init(&arc_sums.arcstat_demand_iohit_prescient_prefetch, 0); 7614 wmsum_init(&arc_sums.arcstat_raw_size, 0); 7615 wmsum_init(&arc_sums.arcstat_cached_only_in_progress, 0); 7616 wmsum_init(&arc_sums.arcstat_abd_chunk_waste_size, 0); 7617 7618 arc_anon->arcs_state = ARC_STATE_ANON; 7619 arc_mru->arcs_state = ARC_STATE_MRU; 7620 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST; 7621 arc_mfu->arcs_state = ARC_STATE_MFU; 7622 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST; 7623 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY; 7624 arc_uncached->arcs_state = ARC_STATE_UNCACHED; 7625 } 7626 7627 static void 7628 arc_state_fini(void) 7629 { 7630 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7631 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7632 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7633 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7634 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7635 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7636 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7637 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7638 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7639 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7640 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7641 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7642 zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]); 7643 zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_DATA]); 7644 7645 zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_DATA]); 7646 zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_METADATA]); 7647 zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_DATA]); 7648 zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_METADATA]); 7649 zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]); 7650 zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]); 7651 zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_DATA]); 7652 zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_METADATA]); 7653 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]); 7654 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]); 7655 zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]); 7656 zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]); 7657 zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_DATA]); 7658 zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_METADATA]); 7659 7660 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 7661 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 7662 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 7663 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 7664 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 7665 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 7666 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 7667 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 7668 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]); 7669 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]); 7670 multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_METADATA]); 7671 multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_DATA]); 7672 7673 wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]); 7674 wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]); 7675 wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]); 7676 wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]); 7677 7678 wmsum_fini(&arc_sums.arcstat_hits); 7679 wmsum_fini(&arc_sums.arcstat_iohits); 7680 wmsum_fini(&arc_sums.arcstat_misses); 7681 wmsum_fini(&arc_sums.arcstat_demand_data_hits); 7682 wmsum_fini(&arc_sums.arcstat_demand_data_iohits); 7683 wmsum_fini(&arc_sums.arcstat_demand_data_misses); 7684 wmsum_fini(&arc_sums.arcstat_demand_metadata_hits); 7685 wmsum_fini(&arc_sums.arcstat_demand_metadata_iohits); 7686 wmsum_fini(&arc_sums.arcstat_demand_metadata_misses); 7687 wmsum_fini(&arc_sums.arcstat_prefetch_data_hits); 7688 wmsum_fini(&arc_sums.arcstat_prefetch_data_iohits); 7689 wmsum_fini(&arc_sums.arcstat_prefetch_data_misses); 7690 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_hits); 7691 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_iohits); 7692 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_misses); 7693 wmsum_fini(&arc_sums.arcstat_mru_hits); 7694 wmsum_fini(&arc_sums.arcstat_mru_ghost_hits); 7695 wmsum_fini(&arc_sums.arcstat_mfu_hits); 7696 wmsum_fini(&arc_sums.arcstat_mfu_ghost_hits); 7697 wmsum_fini(&arc_sums.arcstat_uncached_hits); 7698 wmsum_fini(&arc_sums.arcstat_deleted); 7699 wmsum_fini(&arc_sums.arcstat_mutex_miss); 7700 wmsum_fini(&arc_sums.arcstat_access_skip); 7701 wmsum_fini(&arc_sums.arcstat_evict_skip); 7702 wmsum_fini(&arc_sums.arcstat_evict_not_enough); 7703 wmsum_fini(&arc_sums.arcstat_evict_l2_cached); 7704 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible); 7705 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mfu); 7706 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mru); 7707 wmsum_fini(&arc_sums.arcstat_evict_l2_ineligible); 7708 wmsum_fini(&arc_sums.arcstat_evict_l2_skip); 7709 wmsum_fini(&arc_sums.arcstat_hash_elements); 7710 wmsum_fini(&arc_sums.arcstat_hash_collisions); 7711 wmsum_fini(&arc_sums.arcstat_hash_chains); 7712 aggsum_fini(&arc_sums.arcstat_size); 7713 wmsum_fini(&arc_sums.arcstat_compressed_size); 7714 wmsum_fini(&arc_sums.arcstat_uncompressed_size); 7715 wmsum_fini(&arc_sums.arcstat_overhead_size); 7716 wmsum_fini(&arc_sums.arcstat_hdr_size); 7717 wmsum_fini(&arc_sums.arcstat_data_size); 7718 wmsum_fini(&arc_sums.arcstat_metadata_size); 7719 wmsum_fini(&arc_sums.arcstat_dbuf_size); 7720 wmsum_fini(&arc_sums.arcstat_dnode_size); 7721 wmsum_fini(&arc_sums.arcstat_bonus_size); 7722 wmsum_fini(&arc_sums.arcstat_l2_hits); 7723 wmsum_fini(&arc_sums.arcstat_l2_misses); 7724 wmsum_fini(&arc_sums.arcstat_l2_prefetch_asize); 7725 wmsum_fini(&arc_sums.arcstat_l2_mru_asize); 7726 wmsum_fini(&arc_sums.arcstat_l2_mfu_asize); 7727 wmsum_fini(&arc_sums.arcstat_l2_bufc_data_asize); 7728 wmsum_fini(&arc_sums.arcstat_l2_bufc_metadata_asize); 7729 wmsum_fini(&arc_sums.arcstat_l2_feeds); 7730 wmsum_fini(&arc_sums.arcstat_l2_rw_clash); 7731 wmsum_fini(&arc_sums.arcstat_l2_read_bytes); 7732 wmsum_fini(&arc_sums.arcstat_l2_write_bytes); 7733 wmsum_fini(&arc_sums.arcstat_l2_writes_sent); 7734 wmsum_fini(&arc_sums.arcstat_l2_writes_done); 7735 wmsum_fini(&arc_sums.arcstat_l2_writes_error); 7736 wmsum_fini(&arc_sums.arcstat_l2_writes_lock_retry); 7737 wmsum_fini(&arc_sums.arcstat_l2_evict_lock_retry); 7738 wmsum_fini(&arc_sums.arcstat_l2_evict_reading); 7739 wmsum_fini(&arc_sums.arcstat_l2_evict_l1cached); 7740 wmsum_fini(&arc_sums.arcstat_l2_free_on_write); 7741 wmsum_fini(&arc_sums.arcstat_l2_abort_lowmem); 7742 wmsum_fini(&arc_sums.arcstat_l2_cksum_bad); 7743 wmsum_fini(&arc_sums.arcstat_l2_io_error); 7744 wmsum_fini(&arc_sums.arcstat_l2_lsize); 7745 wmsum_fini(&arc_sums.arcstat_l2_psize); 7746 aggsum_fini(&arc_sums.arcstat_l2_hdr_size); 7747 wmsum_fini(&arc_sums.arcstat_l2_log_blk_writes); 7748 wmsum_fini(&arc_sums.arcstat_l2_log_blk_asize); 7749 wmsum_fini(&arc_sums.arcstat_l2_log_blk_count); 7750 wmsum_fini(&arc_sums.arcstat_l2_rebuild_success); 7751 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_unsupported); 7752 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_io_errors); 7753 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_dh_errors); 7754 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors); 7755 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_lowmem); 7756 wmsum_fini(&arc_sums.arcstat_l2_rebuild_size); 7757 wmsum_fini(&arc_sums.arcstat_l2_rebuild_asize); 7758 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs); 7759 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs_precached); 7760 wmsum_fini(&arc_sums.arcstat_l2_rebuild_log_blks); 7761 wmsum_fini(&arc_sums.arcstat_memory_throttle_count); 7762 wmsum_fini(&arc_sums.arcstat_memory_direct_count); 7763 wmsum_fini(&arc_sums.arcstat_memory_indirect_count); 7764 wmsum_fini(&arc_sums.arcstat_prune); 7765 wmsum_fini(&arc_sums.arcstat_meta_used); 7766 wmsum_fini(&arc_sums.arcstat_async_upgrade_sync); 7767 wmsum_fini(&arc_sums.arcstat_predictive_prefetch); 7768 wmsum_fini(&arc_sums.arcstat_demand_hit_predictive_prefetch); 7769 wmsum_fini(&arc_sums.arcstat_demand_iohit_predictive_prefetch); 7770 wmsum_fini(&arc_sums.arcstat_prescient_prefetch); 7771 wmsum_fini(&arc_sums.arcstat_demand_hit_prescient_prefetch); 7772 wmsum_fini(&arc_sums.arcstat_demand_iohit_prescient_prefetch); 7773 wmsum_fini(&arc_sums.arcstat_raw_size); 7774 wmsum_fini(&arc_sums.arcstat_cached_only_in_progress); 7775 wmsum_fini(&arc_sums.arcstat_abd_chunk_waste_size); 7776 } 7777 7778 uint64_t 7779 arc_target_bytes(void) 7780 { 7781 return (arc_c); 7782 } 7783 7784 void 7785 arc_set_limits(uint64_t allmem) 7786 { 7787 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */ 7788 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT); 7789 7790 /* How to set default max varies by platform. */ 7791 arc_c_max = arc_default_max(arc_c_min, allmem); 7792 } 7793 void 7794 arc_init(void) 7795 { 7796 uint64_t percent, allmem = arc_all_memory(); 7797 mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL); 7798 list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t), 7799 offsetof(arc_evict_waiter_t, aew_node)); 7800 7801 arc_min_prefetch_ms = 1000; 7802 arc_min_prescient_prefetch_ms = 6000; 7803 7804 #if defined(_KERNEL) 7805 arc_lowmem_init(); 7806 #endif 7807 7808 arc_set_limits(allmem); 7809 7810 #ifdef _KERNEL 7811 /* 7812 * If zfs_arc_max is non-zero at init, meaning it was set in the kernel 7813 * environment before the module was loaded, don't block setting the 7814 * maximum because it is less than arc_c_min, instead, reset arc_c_min 7815 * to a lower value. 7816 * zfs_arc_min will be handled by arc_tuning_update(). 7817 */ 7818 if (zfs_arc_max != 0 && zfs_arc_max >= MIN_ARC_MAX && 7819 zfs_arc_max < allmem) { 7820 arc_c_max = zfs_arc_max; 7821 if (arc_c_min >= arc_c_max) { 7822 arc_c_min = MAX(zfs_arc_max / 2, 7823 2ULL << SPA_MAXBLOCKSHIFT); 7824 } 7825 } 7826 #else 7827 /* 7828 * In userland, there's only the memory pressure that we artificially 7829 * create (see arc_available_memory()). Don't let arc_c get too 7830 * small, because it can cause transactions to be larger than 7831 * arc_c, causing arc_tempreserve_space() to fail. 7832 */ 7833 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT); 7834 #endif 7835 7836 arc_c = arc_c_min; 7837 /* 7838 * 32-bit fixed point fractions of metadata from total ARC size, 7839 * MRU data from all data and MRU metadata from all metadata. 7840 */ 7841 arc_meta = (1ULL << 32) / 4; /* Metadata is 25% of arc_c. */ 7842 arc_pd = (1ULL << 32) / 2; /* Data MRU is 50% of data. */ 7843 arc_pm = (1ULL << 32) / 2; /* Metadata MRU is 50% of metadata. */ 7844 7845 percent = MIN(zfs_arc_dnode_limit_percent, 100); 7846 arc_dnode_limit = arc_c_max * percent / 100; 7847 7848 /* Apply user specified tunings */ 7849 arc_tuning_update(B_TRUE); 7850 7851 /* if kmem_flags are set, lets try to use less memory */ 7852 if (kmem_debugging()) 7853 arc_c = arc_c / 2; 7854 if (arc_c < arc_c_min) 7855 arc_c = arc_c_min; 7856 7857 arc_register_hotplug(); 7858 7859 arc_state_init(); 7860 7861 buf_init(); 7862 7863 list_create(&arc_prune_list, sizeof (arc_prune_t), 7864 offsetof(arc_prune_t, p_node)); 7865 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL); 7866 7867 arc_prune_taskq = taskq_create("arc_prune", zfs_arc_prune_task_threads, 7868 defclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC); 7869 7870 list_create(&arc_async_flush_list, sizeof (arc_async_flush_t), 7871 offsetof(arc_async_flush_t, af_node)); 7872 mutex_init(&arc_async_flush_lock, NULL, MUTEX_DEFAULT, NULL); 7873 arc_flush_taskq = taskq_create("arc_flush", MIN(boot_ncpus, 4), 7874 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC); 7875 7876 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 7877 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 7878 7879 if (arc_ksp != NULL) { 7880 arc_ksp->ks_data = &arc_stats; 7881 arc_ksp->ks_update = arc_kstat_update; 7882 kstat_install(arc_ksp); 7883 } 7884 7885 arc_state_evict_markers = 7886 arc_state_alloc_markers(arc_state_evict_marker_count); 7887 arc_evict_zthr = zthr_create_timer("arc_evict", 7888 arc_evict_cb_check, arc_evict_cb, NULL, SEC2NSEC(1), defclsyspri); 7889 arc_reap_zthr = zthr_create_timer("arc_reap", 7890 arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1), minclsyspri); 7891 7892 arc_warm = B_FALSE; 7893 7894 /* 7895 * Calculate maximum amount of dirty data per pool. 7896 * 7897 * If it has been set by a module parameter, take that. 7898 * Otherwise, use a percentage of physical memory defined by 7899 * zfs_dirty_data_max_percent (default 10%) with a cap at 7900 * zfs_dirty_data_max_max (default 4G or 25% of physical memory). 7901 */ 7902 #ifdef __LP64__ 7903 if (zfs_dirty_data_max_max == 0) 7904 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024, 7905 allmem * zfs_dirty_data_max_max_percent / 100); 7906 #else 7907 if (zfs_dirty_data_max_max == 0) 7908 zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024, 7909 allmem * zfs_dirty_data_max_max_percent / 100); 7910 #endif 7911 7912 if (zfs_dirty_data_max == 0) { 7913 zfs_dirty_data_max = allmem * 7914 zfs_dirty_data_max_percent / 100; 7915 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 7916 zfs_dirty_data_max_max); 7917 } 7918 7919 if (zfs_wrlog_data_max == 0) { 7920 7921 /* 7922 * dp_wrlog_total is reduced for each txg at the end of 7923 * spa_sync(). However, dp_dirty_total is reduced every time 7924 * a block is written out. Thus under normal operation, 7925 * dp_wrlog_total could grow 2 times as big as 7926 * zfs_dirty_data_max. 7927 */ 7928 zfs_wrlog_data_max = zfs_dirty_data_max * 2; 7929 } 7930 } 7931 7932 void 7933 arc_fini(void) 7934 { 7935 arc_prune_t *p; 7936 7937 #ifdef _KERNEL 7938 arc_lowmem_fini(); 7939 #endif /* _KERNEL */ 7940 7941 /* Wait for any background flushes */ 7942 taskq_wait(arc_flush_taskq); 7943 taskq_destroy(arc_flush_taskq); 7944 7945 /* Use B_TRUE to ensure *all* buffers are evicted */ 7946 arc_flush(NULL, B_TRUE); 7947 7948 if (arc_ksp != NULL) { 7949 kstat_delete(arc_ksp); 7950 arc_ksp = NULL; 7951 } 7952 7953 taskq_wait(arc_prune_taskq); 7954 taskq_destroy(arc_prune_taskq); 7955 7956 list_destroy(&arc_async_flush_list); 7957 mutex_destroy(&arc_async_flush_lock); 7958 7959 mutex_enter(&arc_prune_mtx); 7960 while ((p = list_remove_head(&arc_prune_list)) != NULL) { 7961 (void) zfs_refcount_remove(&p->p_refcnt, &arc_prune_list); 7962 zfs_refcount_destroy(&p->p_refcnt); 7963 kmem_free(p, sizeof (*p)); 7964 } 7965 mutex_exit(&arc_prune_mtx); 7966 7967 list_destroy(&arc_prune_list); 7968 mutex_destroy(&arc_prune_mtx); 7969 7970 (void) zthr_cancel(arc_evict_zthr); 7971 (void) zthr_cancel(arc_reap_zthr); 7972 arc_state_free_markers(arc_state_evict_markers, 7973 arc_state_evict_marker_count); 7974 7975 mutex_destroy(&arc_evict_lock); 7976 list_destroy(&arc_evict_waiters); 7977 7978 /* 7979 * Free any buffers that were tagged for destruction. This needs 7980 * to occur before arc_state_fini() runs and destroys the aggsum 7981 * values which are updated when freeing scatter ABDs. 7982 */ 7983 l2arc_do_free_on_write(); 7984 7985 /* 7986 * buf_fini() must proceed arc_state_fini() because buf_fin() may 7987 * trigger the release of kmem magazines, which can callback to 7988 * arc_space_return() which accesses aggsums freed in act_state_fini(). 7989 */ 7990 buf_fini(); 7991 arc_state_fini(); 7992 7993 arc_unregister_hotplug(); 7994 7995 /* 7996 * We destroy the zthrs after all the ARC state has been 7997 * torn down to avoid the case of them receiving any 7998 * wakeup() signals after they are destroyed. 7999 */ 8000 zthr_destroy(arc_evict_zthr); 8001 zthr_destroy(arc_reap_zthr); 8002 8003 ASSERT0(arc_loaned_bytes); 8004 } 8005 8006 /* 8007 * Level 2 ARC 8008 * 8009 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 8010 * It uses dedicated storage devices to hold cached data, which are populated 8011 * using large infrequent writes. The main role of this cache is to boost 8012 * the performance of random read workloads. The intended L2ARC devices 8013 * include short-stroked disks, solid state disks, and other media with 8014 * substantially faster read latency than disk. 8015 * 8016 * +-----------------------+ 8017 * | ARC | 8018 * +-----------------------+ 8019 * | ^ ^ 8020 * | | | 8021 * l2arc_feed_thread() arc_read() 8022 * | | | 8023 * | l2arc read | 8024 * V | | 8025 * +---------------+ | 8026 * | L2ARC | | 8027 * +---------------+ | 8028 * | ^ | 8029 * l2arc_write() | | 8030 * | | | 8031 * V | | 8032 * +-------+ +-------+ 8033 * | vdev | | vdev | 8034 * | cache | | cache | 8035 * +-------+ +-------+ 8036 * +=========+ .-----. 8037 * : L2ARC : |-_____-| 8038 * : devices : | Disks | 8039 * +=========+ `-_____-' 8040 * 8041 * Read requests are satisfied from the following sources, in order: 8042 * 8043 * 1) ARC 8044 * 2) vdev cache of L2ARC devices 8045 * 3) L2ARC devices 8046 * 4) vdev cache of disks 8047 * 5) disks 8048 * 8049 * Some L2ARC device types exhibit extremely slow write performance. 8050 * To accommodate for this there are some significant differences between 8051 * the L2ARC and traditional cache design: 8052 * 8053 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 8054 * the ARC behave as usual, freeing buffers and placing headers on ghost 8055 * lists. The ARC does not send buffers to the L2ARC during eviction as 8056 * this would add inflated write latencies for all ARC memory pressure. 8057 * 8058 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 8059 * It does this by periodically scanning buffers from the eviction-end of 8060 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 8061 * not already there. It scans until a headroom of buffers is satisfied, 8062 * which itself is a buffer for ARC eviction. If a compressible buffer is 8063 * found during scanning and selected for writing to an L2ARC device, we 8064 * temporarily boost scanning headroom during the next scan cycle to make 8065 * sure we adapt to compression effects (which might significantly reduce 8066 * the data volume we write to L2ARC). The thread that does this is 8067 * l2arc_feed_thread(), illustrated below; example sizes are included to 8068 * provide a better sense of ratio than this diagram: 8069 * 8070 * head --> tail 8071 * +---------------------+----------+ 8072 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 8073 * +---------------------+----------+ | o L2ARC eligible 8074 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 8075 * +---------------------+----------+ | 8076 * 15.9 Gbytes ^ 32 Mbytes | 8077 * headroom | 8078 * l2arc_feed_thread() 8079 * | 8080 * l2arc write hand <--[oooo]--' 8081 * | 8 Mbyte 8082 * | write max 8083 * V 8084 * +==============================+ 8085 * L2ARC dev |####|#|###|###| |####| ... | 8086 * +==============================+ 8087 * 32 Gbytes 8088 * 8089 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 8090 * evicted, then the L2ARC has cached a buffer much sooner than it probably 8091 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 8092 * safe to say that this is an uncommon case, since buffers at the end of 8093 * the ARC lists have moved there due to inactivity. 8094 * 8095 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 8096 * then the L2ARC simply misses copying some buffers. This serves as a 8097 * pressure valve to prevent heavy read workloads from both stalling the ARC 8098 * with waits and clogging the L2ARC with writes. This also helps prevent 8099 * the potential for the L2ARC to churn if it attempts to cache content too 8100 * quickly, such as during backups of the entire pool. 8101 * 8102 * 5. After system boot and before the ARC has filled main memory, there are 8103 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 8104 * lists can remain mostly static. Instead of searching from tail of these 8105 * lists as pictured, the l2arc_feed_thread() will search from the list heads 8106 * for eligible buffers, greatly increasing its chance of finding them. 8107 * 8108 * The L2ARC device write speed is also boosted during this time so that 8109 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 8110 * there are no L2ARC reads, and no fear of degrading read performance 8111 * through increased writes. 8112 * 8113 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 8114 * the vdev queue can aggregate them into larger and fewer writes. Each 8115 * device is written to in a rotor fashion, sweeping writes through 8116 * available space then repeating. 8117 * 8118 * 7. The L2ARC does not store dirty content. It never needs to flush 8119 * write buffers back to disk based storage. 8120 * 8121 * 8. If an ARC buffer is written (and dirtied) which also exists in the 8122 * L2ARC, the now stale L2ARC buffer is immediately dropped. 8123 * 8124 * The performance of the L2ARC can be tweaked by a number of tunables, which 8125 * may be necessary for different workloads: 8126 * 8127 * l2arc_write_max max write bytes per interval 8128 * l2arc_write_boost extra write bytes during device warmup 8129 * l2arc_noprefetch skip caching prefetched buffers 8130 * l2arc_headroom number of max device writes to precache 8131 * l2arc_headroom_boost when we find compressed buffers during ARC 8132 * scanning, we multiply headroom by this 8133 * percentage factor for the next scan cycle, 8134 * since more compressed buffers are likely to 8135 * be present 8136 * l2arc_feed_secs seconds between L2ARC writing 8137 * 8138 * Tunables may be removed or added as future performance improvements are 8139 * integrated, and also may become zpool properties. 8140 * 8141 * There are three key functions that control how the L2ARC warms up: 8142 * 8143 * l2arc_write_eligible() check if a buffer is eligible to cache 8144 * l2arc_write_size() calculate how much to write 8145 * l2arc_write_interval() calculate sleep delay between writes 8146 * 8147 * These three functions determine what to write, how much, and how quickly 8148 * to send writes. 8149 * 8150 * L2ARC persistence: 8151 * 8152 * When writing buffers to L2ARC, we periodically add some metadata to 8153 * make sure we can pick them up after reboot, thus dramatically reducing 8154 * the impact that any downtime has on the performance of storage systems 8155 * with large caches. 8156 * 8157 * The implementation works fairly simply by integrating the following two 8158 * modifications: 8159 * 8160 * *) When writing to the L2ARC, we occasionally write a "l2arc log block", 8161 * which is an additional piece of metadata which describes what's been 8162 * written. This allows us to rebuild the arc_buf_hdr_t structures of the 8163 * main ARC buffers. There are 2 linked-lists of log blocks headed by 8164 * dh_start_lbps[2]. We alternate which chain we append to, so they are 8165 * time-wise and offset-wise interleaved, but that is an optimization rather 8166 * than for correctness. The log block also includes a pointer to the 8167 * previous block in its chain. 8168 * 8169 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device 8170 * for our header bookkeeping purposes. This contains a device header, 8171 * which contains our top-level reference structures. We update it each 8172 * time we write a new log block, so that we're able to locate it in the 8173 * L2ARC device. If this write results in an inconsistent device header 8174 * (e.g. due to power failure), we detect this by verifying the header's 8175 * checksum and simply fail to reconstruct the L2ARC after reboot. 8176 * 8177 * Implementation diagram: 8178 * 8179 * +=== L2ARC device (not to scale) ======================================+ 8180 * | ___two newest log block pointers__.__________ | 8181 * | / \dh_start_lbps[1] | 8182 * | / \ \dh_start_lbps[0]| 8183 * |.___/__. V V | 8184 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---| 8185 * || hdr| ^ /^ /^ / / | 8186 * |+------+ ...--\-------/ \-----/--\------/ / | 8187 * | \--------------/ \--------------/ | 8188 * +======================================================================+ 8189 * 8190 * As can be seen on the diagram, rather than using a simple linked list, 8191 * we use a pair of linked lists with alternating elements. This is a 8192 * performance enhancement due to the fact that we only find out the 8193 * address of the next log block access once the current block has been 8194 * completely read in. Obviously, this hurts performance, because we'd be 8195 * keeping the device's I/O queue at only a 1 operation deep, thus 8196 * incurring a large amount of I/O round-trip latency. Having two lists 8197 * allows us to fetch two log blocks ahead of where we are currently 8198 * rebuilding L2ARC buffers. 8199 * 8200 * On-device data structures: 8201 * 8202 * L2ARC device header: l2arc_dev_hdr_phys_t 8203 * L2ARC log block: l2arc_log_blk_phys_t 8204 * 8205 * L2ARC reconstruction: 8206 * 8207 * When writing data, we simply write in the standard rotary fashion, 8208 * evicting buffers as we go and simply writing new data over them (writing 8209 * a new log block every now and then). This obviously means that once we 8210 * loop around the end of the device, we will start cutting into an already 8211 * committed log block (and its referenced data buffers), like so: 8212 * 8213 * current write head__ __old tail 8214 * \ / 8215 * V V 8216 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |--> 8217 * ^ ^^^^^^^^^___________________________________ 8218 * | \ 8219 * <<nextwrite>> may overwrite this blk and/or its bufs --' 8220 * 8221 * When importing the pool, we detect this situation and use it to stop 8222 * our scanning process (see l2arc_rebuild). 8223 * 8224 * There is one significant caveat to consider when rebuilding ARC contents 8225 * from an L2ARC device: what about invalidated buffers? Given the above 8226 * construction, we cannot update blocks which we've already written to amend 8227 * them to remove buffers which were invalidated. Thus, during reconstruction, 8228 * we might be populating the cache with buffers for data that's not on the 8229 * main pool anymore, or may have been overwritten! 8230 * 8231 * As it turns out, this isn't a problem. Every arc_read request includes 8232 * both the DVA and, crucially, the birth TXG of the BP the caller is 8233 * looking for. So even if the cache were populated by completely rotten 8234 * blocks for data that had been long deleted and/or overwritten, we'll 8235 * never actually return bad data from the cache, since the DVA with the 8236 * birth TXG uniquely identify a block in space and time - once created, 8237 * a block is immutable on disk. The worst thing we have done is wasted 8238 * some time and memory at l2arc rebuild to reconstruct outdated ARC 8239 * entries that will get dropped from the l2arc as it is being updated 8240 * with new blocks. 8241 * 8242 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write 8243 * hand are not restored. This is done by saving the offset (in bytes) 8244 * l2arc_evict() has evicted to in the L2ARC device header and taking it 8245 * into account when restoring buffers. 8246 */ 8247 8248 static boolean_t 8249 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 8250 { 8251 /* 8252 * A buffer is *not* eligible for the L2ARC if it: 8253 * 1. belongs to a different spa. 8254 * 2. is already cached on the L2ARC. 8255 * 3. has an I/O in progress (it may be an incomplete read). 8256 * 4. is flagged not eligible (zfs property). 8257 */ 8258 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || 8259 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr)) 8260 return (B_FALSE); 8261 8262 return (B_TRUE); 8263 } 8264 8265 static uint64_t 8266 l2arc_write_size(l2arc_dev_t *dev) 8267 { 8268 uint64_t size; 8269 8270 /* 8271 * Make sure our globals have meaningful values in case the user 8272 * altered them. 8273 */ 8274 size = l2arc_write_max; 8275 if (size == 0) { 8276 cmn_err(CE_NOTE, "l2arc_write_max must be greater than zero, " 8277 "resetting it to the default (%d)", L2ARC_WRITE_SIZE); 8278 size = l2arc_write_max = L2ARC_WRITE_SIZE; 8279 } 8280 8281 if (arc_warm == B_FALSE) 8282 size += l2arc_write_boost; 8283 8284 /* We need to add in the worst case scenario of log block overhead. */ 8285 size += l2arc_log_blk_overhead(size, dev); 8286 if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) { 8287 /* 8288 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100) 8289 * times the writesize, whichever is greater. 8290 */ 8291 size += MAX(64 * 1024 * 1024, 8292 (size * l2arc_trim_ahead) / 100); 8293 } 8294 8295 /* 8296 * Make sure the write size does not exceed the size of the cache 8297 * device. This is important in l2arc_evict(), otherwise infinite 8298 * iteration can occur. 8299 */ 8300 size = MIN(size, (dev->l2ad_end - dev->l2ad_start) / 4); 8301 8302 size = P2ROUNDUP(size, 1ULL << dev->l2ad_vdev->vdev_ashift); 8303 8304 return (size); 8305 8306 } 8307 8308 static clock_t 8309 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 8310 { 8311 clock_t interval, next, now; 8312 8313 /* 8314 * If the ARC lists are busy, increase our write rate; if the 8315 * lists are stale, idle back. This is achieved by checking 8316 * how much we previously wrote - if it was more than half of 8317 * what we wanted, schedule the next write much sooner. 8318 */ 8319 if (l2arc_feed_again && wrote > (wanted / 2)) 8320 interval = (hz * l2arc_feed_min_ms) / 1000; 8321 else 8322 interval = hz * l2arc_feed_secs; 8323 8324 now = ddi_get_lbolt(); 8325 next = MAX(now, MIN(now + interval, began + interval)); 8326 8327 return (next); 8328 } 8329 8330 static boolean_t 8331 l2arc_dev_invalid(const l2arc_dev_t *dev) 8332 { 8333 /* 8334 * We want to skip devices that are being rebuilt, trimmed, 8335 * removed, or belong to a spa that is being exported. 8336 */ 8337 return (dev->l2ad_vdev == NULL || vdev_is_dead(dev->l2ad_vdev) || 8338 dev->l2ad_rebuild || dev->l2ad_trim_all || 8339 dev->l2ad_spa == NULL || dev->l2ad_spa->spa_is_exporting); 8340 } 8341 8342 /* 8343 * Cycle through L2ARC devices. This is how L2ARC load balances. 8344 * If a device is returned, this also returns holding the spa config lock. 8345 */ 8346 static l2arc_dev_t * 8347 l2arc_dev_get_next(void) 8348 { 8349 l2arc_dev_t *first, *next = NULL; 8350 8351 /* 8352 * Lock out the removal of spas (spa_namespace_lock), then removal 8353 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 8354 * both locks will be dropped and a spa config lock held instead. 8355 */ 8356 mutex_enter(&spa_namespace_lock); 8357 mutex_enter(&l2arc_dev_mtx); 8358 8359 /* if there are no vdevs, there is nothing to do */ 8360 if (l2arc_ndev == 0) 8361 goto out; 8362 8363 first = NULL; 8364 next = l2arc_dev_last; 8365 do { 8366 /* loop around the list looking for a non-faulted vdev */ 8367 if (next == NULL) { 8368 next = list_head(l2arc_dev_list); 8369 } else { 8370 next = list_next(l2arc_dev_list, next); 8371 if (next == NULL) 8372 next = list_head(l2arc_dev_list); 8373 } 8374 8375 /* if we have come back to the start, bail out */ 8376 if (first == NULL) 8377 first = next; 8378 else if (next == first) 8379 break; 8380 8381 ASSERT3P(next, !=, NULL); 8382 } while (l2arc_dev_invalid(next)); 8383 8384 /* if we were unable to find any usable vdevs, return NULL */ 8385 if (l2arc_dev_invalid(next)) 8386 next = NULL; 8387 8388 l2arc_dev_last = next; 8389 8390 out: 8391 mutex_exit(&l2arc_dev_mtx); 8392 8393 /* 8394 * Grab the config lock to prevent the 'next' device from being 8395 * removed while we are writing to it. 8396 */ 8397 if (next != NULL) 8398 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 8399 mutex_exit(&spa_namespace_lock); 8400 8401 return (next); 8402 } 8403 8404 /* 8405 * Free buffers that were tagged for destruction. 8406 */ 8407 static void 8408 l2arc_do_free_on_write(void) 8409 { 8410 l2arc_data_free_t *df; 8411 8412 mutex_enter(&l2arc_free_on_write_mtx); 8413 while ((df = list_remove_head(l2arc_free_on_write)) != NULL) { 8414 ASSERT3P(df->l2df_abd, !=, NULL); 8415 abd_free(df->l2df_abd); 8416 kmem_free(df, sizeof (l2arc_data_free_t)); 8417 } 8418 mutex_exit(&l2arc_free_on_write_mtx); 8419 } 8420 8421 /* 8422 * A write to a cache device has completed. Update all headers to allow 8423 * reads from these buffers to begin. 8424 */ 8425 static void 8426 l2arc_write_done(zio_t *zio) 8427 { 8428 l2arc_write_callback_t *cb; 8429 l2arc_lb_abd_buf_t *abd_buf; 8430 l2arc_lb_ptr_buf_t *lb_ptr_buf; 8431 l2arc_dev_t *dev; 8432 l2arc_dev_hdr_phys_t *l2dhdr; 8433 list_t *buflist; 8434 arc_buf_hdr_t *head, *hdr, *hdr_prev; 8435 kmutex_t *hash_lock; 8436 int64_t bytes_dropped = 0; 8437 8438 cb = zio->io_private; 8439 ASSERT3P(cb, !=, NULL); 8440 dev = cb->l2wcb_dev; 8441 l2dhdr = dev->l2ad_dev_hdr; 8442 ASSERT3P(dev, !=, NULL); 8443 head = cb->l2wcb_head; 8444 ASSERT3P(head, !=, NULL); 8445 buflist = &dev->l2ad_buflist; 8446 ASSERT3P(buflist, !=, NULL); 8447 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 8448 l2arc_write_callback_t *, cb); 8449 8450 /* 8451 * All writes completed, or an error was hit. 8452 */ 8453 top: 8454 mutex_enter(&dev->l2ad_mtx); 8455 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 8456 hdr_prev = list_prev(buflist, hdr); 8457 8458 hash_lock = HDR_LOCK(hdr); 8459 8460 /* 8461 * We cannot use mutex_enter or else we can deadlock 8462 * with l2arc_write_buffers (due to swapping the order 8463 * the hash lock and l2ad_mtx are taken). 8464 */ 8465 if (!mutex_tryenter(hash_lock)) { 8466 /* 8467 * Missed the hash lock. We must retry so we 8468 * don't leave the ARC_FLAG_L2_WRITING bit set. 8469 */ 8470 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 8471 8472 /* 8473 * We don't want to rescan the headers we've 8474 * already marked as having been written out, so 8475 * we reinsert the head node so we can pick up 8476 * where we left off. 8477 */ 8478 list_remove(buflist, head); 8479 list_insert_after(buflist, hdr, head); 8480 8481 mutex_exit(&dev->l2ad_mtx); 8482 8483 /* 8484 * We wait for the hash lock to become available 8485 * to try and prevent busy waiting, and increase 8486 * the chance we'll be able to acquire the lock 8487 * the next time around. 8488 */ 8489 mutex_enter(hash_lock); 8490 mutex_exit(hash_lock); 8491 goto top; 8492 } 8493 8494 /* 8495 * We could not have been moved into the arc_l2c_only 8496 * state while in-flight due to our ARC_FLAG_L2_WRITING 8497 * bit being set. Let's just ensure that's being enforced. 8498 */ 8499 ASSERT(HDR_HAS_L1HDR(hdr)); 8500 8501 /* 8502 * Skipped - drop L2ARC entry and mark the header as no 8503 * longer L2 eligibile. 8504 */ 8505 if (zio->io_error != 0) { 8506 /* 8507 * Error - drop L2ARC entry. 8508 */ 8509 list_remove(buflist, hdr); 8510 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 8511 8512 uint64_t psize = HDR_GET_PSIZE(hdr); 8513 l2arc_hdr_arcstats_decrement(hdr); 8514 8515 ASSERT(dev->l2ad_vdev != NULL); 8516 8517 bytes_dropped += 8518 vdev_psize_to_asize(dev->l2ad_vdev, psize); 8519 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 8520 arc_hdr_size(hdr), hdr); 8521 } 8522 8523 /* 8524 * Allow ARC to begin reads and ghost list evictions to 8525 * this L2ARC entry. 8526 */ 8527 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); 8528 8529 mutex_exit(hash_lock); 8530 } 8531 8532 /* 8533 * Free the allocated abd buffers for writing the log blocks. 8534 * If the zio failed reclaim the allocated space and remove the 8535 * pointers to these log blocks from the log block pointer list 8536 * of the L2ARC device. 8537 */ 8538 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) { 8539 abd_free(abd_buf->abd); 8540 zio_buf_free(abd_buf, sizeof (*abd_buf)); 8541 if (zio->io_error != 0) { 8542 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list); 8543 /* 8544 * L2BLK_GET_PSIZE returns aligned size for log 8545 * blocks. 8546 */ 8547 uint64_t asize = 8548 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop); 8549 bytes_dropped += asize; 8550 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 8551 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 8552 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 8553 lb_ptr_buf); 8554 (void) zfs_refcount_remove(&dev->l2ad_lb_count, 8555 lb_ptr_buf); 8556 kmem_free(lb_ptr_buf->lb_ptr, 8557 sizeof (l2arc_log_blkptr_t)); 8558 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 8559 } 8560 } 8561 list_destroy(&cb->l2wcb_abd_list); 8562 8563 if (zio->io_error != 0) { 8564 ARCSTAT_BUMP(arcstat_l2_writes_error); 8565 8566 /* 8567 * Restore the lbps array in the header to its previous state. 8568 * If the list of log block pointers is empty, zero out the 8569 * log block pointers in the device header. 8570 */ 8571 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list); 8572 for (int i = 0; i < 2; i++) { 8573 if (lb_ptr_buf == NULL) { 8574 /* 8575 * If the list is empty zero out the device 8576 * header. Otherwise zero out the second log 8577 * block pointer in the header. 8578 */ 8579 if (i == 0) { 8580 memset(l2dhdr, 0, 8581 dev->l2ad_dev_hdr_asize); 8582 } else { 8583 memset(&l2dhdr->dh_start_lbps[i], 0, 8584 sizeof (l2arc_log_blkptr_t)); 8585 } 8586 break; 8587 } 8588 memcpy(&l2dhdr->dh_start_lbps[i], lb_ptr_buf->lb_ptr, 8589 sizeof (l2arc_log_blkptr_t)); 8590 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list, 8591 lb_ptr_buf); 8592 } 8593 } 8594 8595 ARCSTAT_BUMP(arcstat_l2_writes_done); 8596 list_remove(buflist, head); 8597 ASSERT(!HDR_HAS_L1HDR(head)); 8598 kmem_cache_free(hdr_l2only_cache, head); 8599 mutex_exit(&dev->l2ad_mtx); 8600 8601 ASSERT(dev->l2ad_vdev != NULL); 8602 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 8603 8604 l2arc_do_free_on_write(); 8605 8606 kmem_free(cb, sizeof (l2arc_write_callback_t)); 8607 } 8608 8609 static int 8610 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb) 8611 { 8612 int ret; 8613 spa_t *spa = zio->io_spa; 8614 arc_buf_hdr_t *hdr = cb->l2rcb_hdr; 8615 blkptr_t *bp = zio->io_bp; 8616 uint8_t salt[ZIO_DATA_SALT_LEN]; 8617 uint8_t iv[ZIO_DATA_IV_LEN]; 8618 uint8_t mac[ZIO_DATA_MAC_LEN]; 8619 boolean_t no_crypt = B_FALSE; 8620 8621 /* 8622 * ZIL data is never be written to the L2ARC, so we don't need 8623 * special handling for its unique MAC storage. 8624 */ 8625 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 8626 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 8627 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8628 8629 /* 8630 * If the data was encrypted, decrypt it now. Note that 8631 * we must check the bp here and not the hdr, since the 8632 * hdr does not have its encryption parameters updated 8633 * until arc_read_done(). 8634 */ 8635 if (BP_IS_ENCRYPTED(bp)) { 8636 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8637 ARC_HDR_USE_RESERVE); 8638 8639 zio_crypt_decode_params_bp(bp, salt, iv); 8640 zio_crypt_decode_mac_bp(bp, mac); 8641 8642 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb, 8643 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 8644 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd, 8645 hdr->b_l1hdr.b_pabd, &no_crypt); 8646 if (ret != 0) { 8647 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8648 goto error; 8649 } 8650 8651 /* 8652 * If we actually performed decryption, replace b_pabd 8653 * with the decrypted data. Otherwise we can just throw 8654 * our decryption buffer away. 8655 */ 8656 if (!no_crypt) { 8657 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8658 arc_hdr_size(hdr), hdr); 8659 hdr->b_l1hdr.b_pabd = eabd; 8660 zio->io_abd = eabd; 8661 } else { 8662 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8663 } 8664 } 8665 8666 /* 8667 * If the L2ARC block was compressed, but ARC compression 8668 * is disabled we decompress the data into a new buffer and 8669 * replace the existing data. 8670 */ 8671 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 8672 !HDR_COMPRESSION_ENABLED(hdr)) { 8673 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8674 ARC_HDR_USE_RESERVE); 8675 8676 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 8677 hdr->b_l1hdr.b_pabd, cabd, HDR_GET_PSIZE(hdr), 8678 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 8679 if (ret != 0) { 8680 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr); 8681 goto error; 8682 } 8683 8684 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8685 arc_hdr_size(hdr), hdr); 8686 hdr->b_l1hdr.b_pabd = cabd; 8687 zio->io_abd = cabd; 8688 zio->io_size = HDR_GET_LSIZE(hdr); 8689 } 8690 8691 return (0); 8692 8693 error: 8694 return (ret); 8695 } 8696 8697 8698 /* 8699 * A read to a cache device completed. Validate buffer contents before 8700 * handing over to the regular ARC routines. 8701 */ 8702 static void 8703 l2arc_read_done(zio_t *zio) 8704 { 8705 int tfm_error = 0; 8706 l2arc_read_callback_t *cb = zio->io_private; 8707 arc_buf_hdr_t *hdr; 8708 kmutex_t *hash_lock; 8709 boolean_t valid_cksum; 8710 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) && 8711 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT)); 8712 8713 ASSERT3P(zio->io_vd, !=, NULL); 8714 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 8715 8716 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 8717 8718 ASSERT3P(cb, !=, NULL); 8719 hdr = cb->l2rcb_hdr; 8720 ASSERT3P(hdr, !=, NULL); 8721 8722 hash_lock = HDR_LOCK(hdr); 8723 mutex_enter(hash_lock); 8724 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 8725 8726 /* 8727 * If the data was read into a temporary buffer, 8728 * move it and free the buffer. 8729 */ 8730 if (cb->l2rcb_abd != NULL) { 8731 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size); 8732 if (zio->io_error == 0) { 8733 if (using_rdata) { 8734 abd_copy(hdr->b_crypt_hdr.b_rabd, 8735 cb->l2rcb_abd, arc_hdr_size(hdr)); 8736 } else { 8737 abd_copy(hdr->b_l1hdr.b_pabd, 8738 cb->l2rcb_abd, arc_hdr_size(hdr)); 8739 } 8740 } 8741 8742 /* 8743 * The following must be done regardless of whether 8744 * there was an error: 8745 * - free the temporary buffer 8746 * - point zio to the real ARC buffer 8747 * - set zio size accordingly 8748 * These are required because zio is either re-used for 8749 * an I/O of the block in the case of the error 8750 * or the zio is passed to arc_read_done() and it 8751 * needs real data. 8752 */ 8753 abd_free(cb->l2rcb_abd); 8754 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr); 8755 8756 if (using_rdata) { 8757 ASSERT(HDR_HAS_RABD(hdr)); 8758 zio->io_abd = zio->io_orig_abd = 8759 hdr->b_crypt_hdr.b_rabd; 8760 } else { 8761 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8762 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd; 8763 } 8764 } 8765 8766 ASSERT3P(zio->io_abd, !=, NULL); 8767 8768 /* 8769 * Check this survived the L2ARC journey. 8770 */ 8771 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd || 8772 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd)); 8773 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 8774 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 8775 zio->io_prop.zp_complevel = hdr->b_complevel; 8776 8777 valid_cksum = arc_cksum_is_equal(hdr, zio); 8778 8779 /* 8780 * b_rabd will always match the data as it exists on disk if it is 8781 * being used. Therefore if we are reading into b_rabd we do not 8782 * attempt to untransform the data. 8783 */ 8784 if (valid_cksum && !using_rdata) 8785 tfm_error = l2arc_untransform(zio, cb); 8786 8787 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 && 8788 !HDR_L2_EVICTED(hdr)) { 8789 mutex_exit(hash_lock); 8790 zio->io_private = hdr; 8791 arc_read_done(zio); 8792 } else { 8793 /* 8794 * Buffer didn't survive caching. Increment stats and 8795 * reissue to the original storage device. 8796 */ 8797 if (zio->io_error != 0) { 8798 ARCSTAT_BUMP(arcstat_l2_io_error); 8799 } else { 8800 zio->io_error = SET_ERROR(EIO); 8801 } 8802 if (!valid_cksum || tfm_error != 0) 8803 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 8804 8805 /* 8806 * If there's no waiter, issue an async i/o to the primary 8807 * storage now. If there *is* a waiter, the caller must 8808 * issue the i/o in a context where it's OK to block. 8809 */ 8810 if (zio->io_waiter == NULL) { 8811 zio_t *pio = zio_unique_parent(zio); 8812 void *abd = (using_rdata) ? 8813 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd; 8814 8815 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 8816 8817 zio = zio_read(pio, zio->io_spa, zio->io_bp, 8818 abd, zio->io_size, arc_read_done, 8819 hdr, zio->io_priority, cb->l2rcb_flags, 8820 &cb->l2rcb_zb); 8821 8822 /* 8823 * Original ZIO will be freed, so we need to update 8824 * ARC header with the new ZIO pointer to be used 8825 * by zio_change_priority() in arc_read(). 8826 */ 8827 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb; 8828 acb != NULL; acb = acb->acb_next) 8829 acb->acb_zio_head = zio; 8830 8831 mutex_exit(hash_lock); 8832 zio_nowait(zio); 8833 } else { 8834 mutex_exit(hash_lock); 8835 } 8836 } 8837 8838 kmem_free(cb, sizeof (l2arc_read_callback_t)); 8839 } 8840 8841 /* 8842 * This is the list priority from which the L2ARC will search for pages to 8843 * cache. This is used within loops (0..3) to cycle through lists in the 8844 * desired order. This order can have a significant effect on cache 8845 * performance. 8846 * 8847 * Currently the metadata lists are hit first, MFU then MRU, followed by 8848 * the data lists. This function returns a locked list, and also returns 8849 * the lock pointer. 8850 */ 8851 static multilist_sublist_t * 8852 l2arc_sublist_lock(int list_num) 8853 { 8854 multilist_t *ml = NULL; 8855 unsigned int idx; 8856 8857 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES); 8858 8859 switch (list_num) { 8860 case 0: 8861 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 8862 break; 8863 case 1: 8864 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 8865 break; 8866 case 2: 8867 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 8868 break; 8869 case 3: 8870 ml = &arc_mru->arcs_list[ARC_BUFC_DATA]; 8871 break; 8872 default: 8873 return (NULL); 8874 } 8875 8876 /* 8877 * Return a randomly-selected sublist. This is acceptable 8878 * because the caller feeds only a little bit of data for each 8879 * call (8MB). Subsequent calls will result in different 8880 * sublists being selected. 8881 */ 8882 idx = multilist_get_random_index(ml); 8883 return (multilist_sublist_lock_idx(ml, idx)); 8884 } 8885 8886 /* 8887 * Calculates the maximum overhead of L2ARC metadata log blocks for a given 8888 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this 8889 * overhead in processing to make sure there is enough headroom available 8890 * when writing buffers. 8891 */ 8892 static inline uint64_t 8893 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev) 8894 { 8895 if (dev->l2ad_log_entries == 0) { 8896 return (0); 8897 } else { 8898 ASSERT(dev->l2ad_vdev != NULL); 8899 8900 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT; 8901 8902 uint64_t log_blocks = (log_entries + 8903 dev->l2ad_log_entries - 1) / 8904 dev->l2ad_log_entries; 8905 8906 return (vdev_psize_to_asize(dev->l2ad_vdev, 8907 sizeof (l2arc_log_blk_phys_t)) * log_blocks); 8908 } 8909 } 8910 8911 /* 8912 * Evict buffers from the device write hand to the distance specified in 8913 * bytes. This distance may span populated buffers, it may span nothing. 8914 * This is clearing a region on the L2ARC device ready for writing. 8915 * If the 'all' boolean is set, every buffer is evicted. 8916 */ 8917 static void 8918 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 8919 { 8920 list_t *buflist; 8921 arc_buf_hdr_t *hdr, *hdr_prev; 8922 kmutex_t *hash_lock; 8923 uint64_t taddr; 8924 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev; 8925 vdev_t *vd = dev->l2ad_vdev; 8926 boolean_t rerun; 8927 8928 ASSERT(vd != NULL || all); 8929 ASSERT(dev->l2ad_spa != NULL || all); 8930 8931 buflist = &dev->l2ad_buflist; 8932 8933 top: 8934 rerun = B_FALSE; 8935 if (dev->l2ad_hand + distance > dev->l2ad_end) { 8936 /* 8937 * When there is no space to accommodate upcoming writes, 8938 * evict to the end. Then bump the write and evict hands 8939 * to the start and iterate. This iteration does not 8940 * happen indefinitely as we make sure in 8941 * l2arc_write_size() that when the write hand is reset, 8942 * the write size does not exceed the end of the device. 8943 */ 8944 rerun = B_TRUE; 8945 taddr = dev->l2ad_end; 8946 } else { 8947 taddr = dev->l2ad_hand + distance; 8948 } 8949 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 8950 uint64_t, taddr, boolean_t, all); 8951 8952 if (!all) { 8953 /* 8954 * This check has to be placed after deciding whether to 8955 * iterate (rerun). 8956 */ 8957 if (dev->l2ad_first) { 8958 /* 8959 * This is the first sweep through the device. There is 8960 * nothing to evict. We have already trimmmed the 8961 * whole device. 8962 */ 8963 goto out; 8964 } else { 8965 /* 8966 * Trim the space to be evicted. 8967 */ 8968 if (vd->vdev_has_trim && dev->l2ad_evict < taddr && 8969 l2arc_trim_ahead > 0) { 8970 /* 8971 * We have to drop the spa_config lock because 8972 * vdev_trim_range() will acquire it. 8973 * l2ad_evict already accounts for the label 8974 * size. To prevent vdev_trim_ranges() from 8975 * adding it again, we subtract it from 8976 * l2ad_evict. 8977 */ 8978 spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev); 8979 vdev_trim_simple(vd, 8980 dev->l2ad_evict - VDEV_LABEL_START_SIZE, 8981 taddr - dev->l2ad_evict); 8982 spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev, 8983 RW_READER); 8984 } 8985 8986 /* 8987 * When rebuilding L2ARC we retrieve the evict hand 8988 * from the header of the device. Of note, l2arc_evict() 8989 * does not actually delete buffers from the cache 8990 * device, but trimming may do so depending on the 8991 * hardware implementation. Thus keeping track of the 8992 * evict hand is useful. 8993 */ 8994 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr); 8995 } 8996 } 8997 8998 retry: 8999 mutex_enter(&dev->l2ad_mtx); 9000 /* 9001 * We have to account for evicted log blocks. Run vdev_space_update() 9002 * on log blocks whose offset (in bytes) is before the evicted offset 9003 * (in bytes) by searching in the list of pointers to log blocks 9004 * present in the L2ARC device. 9005 */ 9006 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf; 9007 lb_ptr_buf = lb_ptr_buf_prev) { 9008 9009 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf); 9010 9011 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 9012 uint64_t asize = L2BLK_GET_PSIZE( 9013 (lb_ptr_buf->lb_ptr)->lbp_prop); 9014 9015 /* 9016 * We don't worry about log blocks left behind (ie 9017 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers() 9018 * will never write more than l2arc_evict() evicts. 9019 */ 9020 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) { 9021 break; 9022 } else { 9023 if (vd != NULL) 9024 vdev_space_update(vd, -asize, 0, 0); 9025 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 9026 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 9027 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 9028 lb_ptr_buf); 9029 (void) zfs_refcount_remove(&dev->l2ad_lb_count, 9030 lb_ptr_buf); 9031 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf); 9032 kmem_free(lb_ptr_buf->lb_ptr, 9033 sizeof (l2arc_log_blkptr_t)); 9034 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 9035 } 9036 } 9037 9038 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 9039 hdr_prev = list_prev(buflist, hdr); 9040 9041 ASSERT(!HDR_EMPTY(hdr)); 9042 hash_lock = HDR_LOCK(hdr); 9043 9044 /* 9045 * We cannot use mutex_enter or else we can deadlock 9046 * with l2arc_write_buffers (due to swapping the order 9047 * the hash lock and l2ad_mtx are taken). 9048 */ 9049 if (!mutex_tryenter(hash_lock)) { 9050 /* 9051 * Missed the hash lock. Retry. 9052 */ 9053 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 9054 mutex_exit(&dev->l2ad_mtx); 9055 mutex_enter(hash_lock); 9056 mutex_exit(hash_lock); 9057 goto retry; 9058 } 9059 9060 /* 9061 * A header can't be on this list if it doesn't have L2 header. 9062 */ 9063 ASSERT(HDR_HAS_L2HDR(hdr)); 9064 9065 /* Ensure this header has finished being written. */ 9066 ASSERT(!HDR_L2_WRITING(hdr)); 9067 ASSERT(!HDR_L2_WRITE_HEAD(hdr)); 9068 9069 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict || 9070 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 9071 /* 9072 * We've evicted to the target address, 9073 * or the end of the device. 9074 */ 9075 mutex_exit(hash_lock); 9076 break; 9077 } 9078 9079 if (!HDR_HAS_L1HDR(hdr)) { 9080 ASSERT(!HDR_L2_READING(hdr)); 9081 /* 9082 * This doesn't exist in the ARC. Destroy. 9083 * arc_hdr_destroy() will call list_remove() 9084 * and decrement arcstat_l2_lsize. 9085 */ 9086 arc_change_state(arc_anon, hdr); 9087 arc_hdr_destroy(hdr); 9088 } else { 9089 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 9090 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 9091 /* 9092 * Invalidate issued or about to be issued 9093 * reads, since we may be about to write 9094 * over this location. 9095 */ 9096 if (HDR_L2_READING(hdr)) { 9097 ARCSTAT_BUMP(arcstat_l2_evict_reading); 9098 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); 9099 } 9100 9101 arc_hdr_l2hdr_destroy(hdr); 9102 } 9103 mutex_exit(hash_lock); 9104 } 9105 mutex_exit(&dev->l2ad_mtx); 9106 9107 out: 9108 /* 9109 * We need to check if we evict all buffers, otherwise we may iterate 9110 * unnecessarily. 9111 */ 9112 if (!all && rerun) { 9113 /* 9114 * Bump device hand to the device start if it is approaching the 9115 * end. l2arc_evict() has already evicted ahead for this case. 9116 */ 9117 dev->l2ad_hand = dev->l2ad_start; 9118 dev->l2ad_evict = dev->l2ad_start; 9119 dev->l2ad_first = B_FALSE; 9120 goto top; 9121 } 9122 9123 if (!all) { 9124 /* 9125 * In case of cache device removal (all) the following 9126 * assertions may be violated without functional consequences 9127 * as the device is about to be removed. 9128 */ 9129 ASSERT3U(dev->l2ad_hand + distance, <=, dev->l2ad_end); 9130 if (!dev->l2ad_first) 9131 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict); 9132 } 9133 } 9134 9135 /* 9136 * Handle any abd transforms that might be required for writing to the L2ARC. 9137 * If successful, this function will always return an abd with the data 9138 * transformed as it is on disk in a new abd of asize bytes. 9139 */ 9140 static int 9141 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize, 9142 abd_t **abd_out) 9143 { 9144 int ret; 9145 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd; 9146 enum zio_compress compress = HDR_GET_COMPRESS(hdr); 9147 uint64_t psize = HDR_GET_PSIZE(hdr); 9148 uint64_t size = arc_hdr_size(hdr); 9149 boolean_t ismd = HDR_ISTYPE_METADATA(hdr); 9150 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 9151 dsl_crypto_key_t *dck = NULL; 9152 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 }; 9153 boolean_t no_crypt = B_FALSE; 9154 9155 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 9156 !HDR_COMPRESSION_ENABLED(hdr)) || 9157 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize); 9158 ASSERT3U(psize, <=, asize); 9159 9160 /* 9161 * If this data simply needs its own buffer, we simply allocate it 9162 * and copy the data. This may be done to eliminate a dependency on a 9163 * shared buffer or to reallocate the buffer to match asize. 9164 */ 9165 if (HDR_HAS_RABD(hdr)) { 9166 ASSERT3U(asize, >, psize); 9167 to_write = abd_alloc_for_io(asize, ismd); 9168 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize); 9169 abd_zero_off(to_write, psize, asize - psize); 9170 goto out; 9171 } 9172 9173 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) && 9174 !HDR_ENCRYPTED(hdr)) { 9175 ASSERT3U(size, ==, psize); 9176 to_write = abd_alloc_for_io(asize, ismd); 9177 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 9178 if (asize > size) 9179 abd_zero_off(to_write, size, asize - size); 9180 goto out; 9181 } 9182 9183 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) { 9184 cabd = abd_alloc_for_io(MAX(size, asize), ismd); 9185 uint64_t csize = zio_compress_data(compress, to_write, &cabd, 9186 size, MIN(size, psize), hdr->b_complevel); 9187 if (csize >= size || csize > psize) { 9188 /* 9189 * We can't re-compress the block into the original 9190 * psize. Even if it fits into asize, it does not 9191 * matter, since checksum will never match on read. 9192 */ 9193 abd_free(cabd); 9194 return (SET_ERROR(EIO)); 9195 } 9196 if (asize > csize) 9197 abd_zero_off(cabd, csize, asize - csize); 9198 to_write = cabd; 9199 } 9200 9201 if (HDR_ENCRYPTED(hdr)) { 9202 eabd = abd_alloc_for_io(asize, ismd); 9203 9204 /* 9205 * If the dataset was disowned before the buffer 9206 * made it to this point, the key to re-encrypt 9207 * it won't be available. In this case we simply 9208 * won't write the buffer to the L2ARC. 9209 */ 9210 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj, 9211 FTAG, &dck); 9212 if (ret != 0) 9213 goto error; 9214 9215 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key, 9216 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt, 9217 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd, 9218 &no_crypt); 9219 if (ret != 0) 9220 goto error; 9221 9222 if (no_crypt) 9223 abd_copy(eabd, to_write, psize); 9224 9225 if (psize != asize) 9226 abd_zero_off(eabd, psize, asize - psize); 9227 9228 /* assert that the MAC we got here matches the one we saved */ 9229 ASSERT0(memcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN)); 9230 spa_keystore_dsl_key_rele(spa, dck, FTAG); 9231 9232 if (to_write == cabd) 9233 abd_free(cabd); 9234 9235 to_write = eabd; 9236 } 9237 9238 out: 9239 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd); 9240 *abd_out = to_write; 9241 return (0); 9242 9243 error: 9244 if (dck != NULL) 9245 spa_keystore_dsl_key_rele(spa, dck, FTAG); 9246 if (cabd != NULL) 9247 abd_free(cabd); 9248 if (eabd != NULL) 9249 abd_free(eabd); 9250 9251 *abd_out = NULL; 9252 return (ret); 9253 } 9254 9255 static void 9256 l2arc_blk_fetch_done(zio_t *zio) 9257 { 9258 l2arc_read_callback_t *cb; 9259 9260 cb = zio->io_private; 9261 if (cb->l2rcb_abd != NULL) 9262 abd_free(cb->l2rcb_abd); 9263 kmem_free(cb, sizeof (l2arc_read_callback_t)); 9264 } 9265 9266 /* 9267 * Find and write ARC buffers to the L2ARC device. 9268 * 9269 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 9270 * for reading until they have completed writing. 9271 * The headroom_boost is an in-out parameter used to maintain headroom boost 9272 * state between calls to this function. 9273 * 9274 * Returns the number of bytes actually written (which may be smaller than 9275 * the delta by which the device hand has changed due to alignment and the 9276 * writing of log blocks). 9277 */ 9278 static uint64_t 9279 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 9280 { 9281 arc_buf_hdr_t *hdr, *head, *marker; 9282 uint64_t write_asize, write_psize, headroom; 9283 boolean_t full, from_head = !arc_warm; 9284 l2arc_write_callback_t *cb = NULL; 9285 zio_t *pio, *wzio; 9286 uint64_t guid = spa_load_guid(spa); 9287 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9288 9289 ASSERT3P(dev->l2ad_vdev, !=, NULL); 9290 9291 pio = NULL; 9292 write_asize = write_psize = 0; 9293 full = B_FALSE; 9294 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 9295 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); 9296 marker = arc_state_alloc_marker(); 9297 9298 /* 9299 * Copy buffers for L2ARC writing. 9300 */ 9301 for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) { 9302 /* 9303 * pass == 0: MFU meta 9304 * pass == 1: MRU meta 9305 * pass == 2: MFU data 9306 * pass == 3: MRU data 9307 */ 9308 if (l2arc_mfuonly == 1) { 9309 if (pass == 1 || pass == 3) 9310 continue; 9311 } else if (l2arc_mfuonly > 1) { 9312 if (pass == 3) 9313 continue; 9314 } 9315 9316 uint64_t passed_sz = 0; 9317 headroom = target_sz * l2arc_headroom; 9318 if (zfs_compressed_arc_enabled) 9319 headroom = (headroom * l2arc_headroom_boost) / 100; 9320 9321 /* 9322 * Until the ARC is warm and starts to evict, read from the 9323 * head of the ARC lists rather than the tail. 9324 */ 9325 multilist_sublist_t *mls = l2arc_sublist_lock(pass); 9326 ASSERT3P(mls, !=, NULL); 9327 if (from_head) 9328 hdr = multilist_sublist_head(mls); 9329 else 9330 hdr = multilist_sublist_tail(mls); 9331 9332 while (hdr != NULL) { 9333 kmutex_t *hash_lock; 9334 abd_t *to_write = NULL; 9335 9336 hash_lock = HDR_LOCK(hdr); 9337 if (!mutex_tryenter(hash_lock)) { 9338 skip: 9339 /* Skip this buffer rather than waiting. */ 9340 if (from_head) 9341 hdr = multilist_sublist_next(mls, hdr); 9342 else 9343 hdr = multilist_sublist_prev(mls, hdr); 9344 continue; 9345 } 9346 9347 passed_sz += HDR_GET_LSIZE(hdr); 9348 if (l2arc_headroom != 0 && passed_sz > headroom) { 9349 /* 9350 * Searched too far. 9351 */ 9352 mutex_exit(hash_lock); 9353 break; 9354 } 9355 9356 if (!l2arc_write_eligible(guid, hdr)) { 9357 mutex_exit(hash_lock); 9358 goto skip; 9359 } 9360 9361 ASSERT(HDR_HAS_L1HDR(hdr)); 9362 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 9363 ASSERT3U(arc_hdr_size(hdr), >, 0); 9364 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 9365 HDR_HAS_RABD(hdr)); 9366 uint64_t psize = HDR_GET_PSIZE(hdr); 9367 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 9368 psize); 9369 9370 /* 9371 * If the allocated size of this buffer plus the max 9372 * size for the pending log block exceeds the evicted 9373 * target size, terminate writing buffers for this run. 9374 */ 9375 if (write_asize + asize + 9376 sizeof (l2arc_log_blk_phys_t) > target_sz) { 9377 full = B_TRUE; 9378 mutex_exit(hash_lock); 9379 break; 9380 } 9381 9382 /* 9383 * We should not sleep with sublist lock held or it 9384 * may block ARC eviction. Insert a marker to save 9385 * the position and drop the lock. 9386 */ 9387 if (from_head) { 9388 multilist_sublist_insert_after(mls, hdr, 9389 marker); 9390 } else { 9391 multilist_sublist_insert_before(mls, hdr, 9392 marker); 9393 } 9394 multilist_sublist_unlock(mls); 9395 9396 /* 9397 * If this header has b_rabd, we can use this since it 9398 * must always match the data exactly as it exists on 9399 * disk. Otherwise, the L2ARC can normally use the 9400 * hdr's data, but if we're sharing data between the 9401 * hdr and one of its bufs, L2ARC needs its own copy of 9402 * the data so that the ZIO below can't race with the 9403 * buf consumer. To ensure that this copy will be 9404 * available for the lifetime of the ZIO and be cleaned 9405 * up afterwards, we add it to the l2arc_free_on_write 9406 * queue. If we need to apply any transforms to the 9407 * data (compression, encryption) we will also need the 9408 * extra buffer. 9409 */ 9410 if (HDR_HAS_RABD(hdr) && psize == asize) { 9411 to_write = hdr->b_crypt_hdr.b_rabd; 9412 } else if ((HDR_COMPRESSION_ENABLED(hdr) || 9413 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) && 9414 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) && 9415 psize == asize) { 9416 to_write = hdr->b_l1hdr.b_pabd; 9417 } else { 9418 int ret; 9419 arc_buf_contents_t type = arc_buf_type(hdr); 9420 9421 ret = l2arc_apply_transforms(spa, hdr, asize, 9422 &to_write); 9423 if (ret != 0) { 9424 arc_hdr_clear_flags(hdr, 9425 ARC_FLAG_L2CACHE); 9426 mutex_exit(hash_lock); 9427 goto next; 9428 } 9429 9430 l2arc_free_abd_on_write(to_write, asize, type); 9431 } 9432 9433 hdr->b_l2hdr.b_dev = dev; 9434 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 9435 hdr->b_l2hdr.b_hits = 0; 9436 hdr->b_l2hdr.b_arcs_state = 9437 hdr->b_l1hdr.b_state->arcs_state; 9438 /* l2arc_hdr_arcstats_update() expects a valid asize */ 9439 HDR_SET_L2SIZE(hdr, asize); 9440 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR | 9441 ARC_FLAG_L2_WRITING); 9442 9443 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 9444 arc_hdr_size(hdr), hdr); 9445 l2arc_hdr_arcstats_increment(hdr); 9446 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 9447 9448 mutex_enter(&dev->l2ad_mtx); 9449 if (pio == NULL) { 9450 /* 9451 * Insert a dummy header on the buflist so 9452 * l2arc_write_done() can find where the 9453 * write buffers begin without searching. 9454 */ 9455 list_insert_head(&dev->l2ad_buflist, head); 9456 } 9457 list_insert_head(&dev->l2ad_buflist, hdr); 9458 mutex_exit(&dev->l2ad_mtx); 9459 9460 boolean_t commit = l2arc_log_blk_insert(dev, hdr); 9461 mutex_exit(hash_lock); 9462 9463 if (pio == NULL) { 9464 cb = kmem_alloc( 9465 sizeof (l2arc_write_callback_t), KM_SLEEP); 9466 cb->l2wcb_dev = dev; 9467 cb->l2wcb_head = head; 9468 list_create(&cb->l2wcb_abd_list, 9469 sizeof (l2arc_lb_abd_buf_t), 9470 offsetof(l2arc_lb_abd_buf_t, node)); 9471 pio = zio_root(spa, l2arc_write_done, cb, 9472 ZIO_FLAG_CANFAIL); 9473 } 9474 9475 wzio = zio_write_phys(pio, dev->l2ad_vdev, 9476 dev->l2ad_hand, asize, to_write, 9477 ZIO_CHECKSUM_OFF, NULL, hdr, 9478 ZIO_PRIORITY_ASYNC_WRITE, 9479 ZIO_FLAG_CANFAIL, B_FALSE); 9480 9481 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 9482 zio_t *, wzio); 9483 zio_nowait(wzio); 9484 9485 write_psize += psize; 9486 write_asize += asize; 9487 dev->l2ad_hand += asize; 9488 9489 if (commit) { 9490 /* l2ad_hand will be adjusted inside. */ 9491 write_asize += 9492 l2arc_log_blk_commit(dev, pio, cb); 9493 } 9494 9495 next: 9496 multilist_sublist_lock(mls); 9497 if (from_head) 9498 hdr = multilist_sublist_next(mls, marker); 9499 else 9500 hdr = multilist_sublist_prev(mls, marker); 9501 multilist_sublist_remove(mls, marker); 9502 } 9503 9504 multilist_sublist_unlock(mls); 9505 9506 if (full == B_TRUE) 9507 break; 9508 } 9509 9510 arc_state_free_marker(marker); 9511 9512 /* No buffers selected for writing? */ 9513 if (pio == NULL) { 9514 ASSERT0(write_psize); 9515 ASSERT(!HDR_HAS_L1HDR(head)); 9516 kmem_cache_free(hdr_l2only_cache, head); 9517 9518 /* 9519 * Although we did not write any buffers l2ad_evict may 9520 * have advanced. 9521 */ 9522 if (dev->l2ad_evict != l2dhdr->dh_evict) 9523 l2arc_dev_hdr_update(dev); 9524 9525 return (0); 9526 } 9527 9528 if (!dev->l2ad_first) 9529 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict); 9530 9531 ASSERT3U(write_asize, <=, target_sz); 9532 ARCSTAT_BUMP(arcstat_l2_writes_sent); 9533 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize); 9534 9535 dev->l2ad_writing = B_TRUE; 9536 (void) zio_wait(pio); 9537 dev->l2ad_writing = B_FALSE; 9538 9539 /* 9540 * Update the device header after the zio completes as 9541 * l2arc_write_done() may have updated the memory holding the log block 9542 * pointers in the device header. 9543 */ 9544 l2arc_dev_hdr_update(dev); 9545 9546 return (write_asize); 9547 } 9548 9549 static boolean_t 9550 l2arc_hdr_limit_reached(void) 9551 { 9552 int64_t s = aggsum_upper_bound(&arc_sums.arcstat_l2_hdr_size); 9553 9554 return (arc_reclaim_needed() || 9555 (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100)); 9556 } 9557 9558 /* 9559 * This thread feeds the L2ARC at regular intervals. This is the beating 9560 * heart of the L2ARC. 9561 */ 9562 static __attribute__((noreturn)) void 9563 l2arc_feed_thread(void *unused) 9564 { 9565 (void) unused; 9566 callb_cpr_t cpr; 9567 l2arc_dev_t *dev; 9568 spa_t *spa; 9569 uint64_t size, wrote; 9570 clock_t begin, next = ddi_get_lbolt(); 9571 fstrans_cookie_t cookie; 9572 9573 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 9574 9575 mutex_enter(&l2arc_feed_thr_lock); 9576 9577 cookie = spl_fstrans_mark(); 9578 while (l2arc_thread_exit == 0) { 9579 CALLB_CPR_SAFE_BEGIN(&cpr); 9580 (void) cv_timedwait_idle(&l2arc_feed_thr_cv, 9581 &l2arc_feed_thr_lock, next); 9582 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 9583 next = ddi_get_lbolt() + hz; 9584 9585 /* 9586 * Quick check for L2ARC devices. 9587 */ 9588 mutex_enter(&l2arc_dev_mtx); 9589 if (l2arc_ndev == 0) { 9590 mutex_exit(&l2arc_dev_mtx); 9591 continue; 9592 } 9593 mutex_exit(&l2arc_dev_mtx); 9594 begin = ddi_get_lbolt(); 9595 9596 /* 9597 * This selects the next l2arc device to write to, and in 9598 * doing so the next spa to feed from: dev->l2ad_spa. This 9599 * will return NULL if there are now no l2arc devices or if 9600 * they are all faulted. 9601 * 9602 * If a device is returned, its spa's config lock is also 9603 * held to prevent device removal. l2arc_dev_get_next() 9604 * will grab and release l2arc_dev_mtx. 9605 */ 9606 if ((dev = l2arc_dev_get_next()) == NULL) 9607 continue; 9608 9609 spa = dev->l2ad_spa; 9610 ASSERT3P(spa, !=, NULL); 9611 9612 /* 9613 * If the pool is read-only then force the feed thread to 9614 * sleep a little longer. 9615 */ 9616 if (!spa_writeable(spa)) { 9617 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 9618 spa_config_exit(spa, SCL_L2ARC, dev); 9619 continue; 9620 } 9621 9622 /* 9623 * Avoid contributing to memory pressure. 9624 */ 9625 if (l2arc_hdr_limit_reached()) { 9626 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 9627 spa_config_exit(spa, SCL_L2ARC, dev); 9628 continue; 9629 } 9630 9631 ARCSTAT_BUMP(arcstat_l2_feeds); 9632 9633 size = l2arc_write_size(dev); 9634 9635 /* 9636 * Evict L2ARC buffers that will be overwritten. 9637 */ 9638 l2arc_evict(dev, size, B_FALSE); 9639 9640 /* 9641 * Write ARC buffers. 9642 */ 9643 wrote = l2arc_write_buffers(spa, dev, size); 9644 9645 /* 9646 * Calculate interval between writes. 9647 */ 9648 next = l2arc_write_interval(begin, size, wrote); 9649 spa_config_exit(spa, SCL_L2ARC, dev); 9650 } 9651 spl_fstrans_unmark(cookie); 9652 9653 l2arc_thread_exit = 0; 9654 cv_broadcast(&l2arc_feed_thr_cv); 9655 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 9656 thread_exit(); 9657 } 9658 9659 boolean_t 9660 l2arc_vdev_present(vdev_t *vd) 9661 { 9662 return (l2arc_vdev_get(vd) != NULL); 9663 } 9664 9665 /* 9666 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if 9667 * the vdev_t isn't an L2ARC device. 9668 */ 9669 l2arc_dev_t * 9670 l2arc_vdev_get(vdev_t *vd) 9671 { 9672 l2arc_dev_t *dev; 9673 9674 mutex_enter(&l2arc_dev_mtx); 9675 for (dev = list_head(l2arc_dev_list); dev != NULL; 9676 dev = list_next(l2arc_dev_list, dev)) { 9677 if (dev->l2ad_vdev == vd) 9678 break; 9679 } 9680 mutex_exit(&l2arc_dev_mtx); 9681 9682 return (dev); 9683 } 9684 9685 static void 9686 l2arc_rebuild_dev(l2arc_dev_t *dev, boolean_t reopen) 9687 { 9688 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9689 uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 9690 spa_t *spa = dev->l2ad_spa; 9691 9692 /* 9693 * After a l2arc_remove_vdev(), the spa_t will no longer be valid 9694 */ 9695 if (spa == NULL) 9696 return; 9697 9698 /* 9699 * The L2ARC has to hold at least the payload of one log block for 9700 * them to be restored (persistent L2ARC). The payload of a log block 9701 * depends on the amount of its log entries. We always write log blocks 9702 * with 1022 entries. How many of them are committed or restored depends 9703 * on the size of the L2ARC device. Thus the maximum payload of 9704 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device 9705 * is less than that, we reduce the amount of committed and restored 9706 * log entries per block so as to enable persistence. 9707 */ 9708 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) { 9709 dev->l2ad_log_entries = 0; 9710 } else { 9711 dev->l2ad_log_entries = MIN((dev->l2ad_end - 9712 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT, 9713 L2ARC_LOG_BLK_MAX_ENTRIES); 9714 } 9715 9716 /* 9717 * Read the device header, if an error is returned do not rebuild L2ARC. 9718 */ 9719 if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) { 9720 /* 9721 * If we are onlining a cache device (vdev_reopen) that was 9722 * still present (l2arc_vdev_present()) and rebuild is enabled, 9723 * we should evict all ARC buffers and pointers to log blocks 9724 * and reclaim their space before restoring its contents to 9725 * L2ARC. 9726 */ 9727 if (reopen) { 9728 if (!l2arc_rebuild_enabled) { 9729 return; 9730 } else { 9731 l2arc_evict(dev, 0, B_TRUE); 9732 /* start a new log block */ 9733 dev->l2ad_log_ent_idx = 0; 9734 dev->l2ad_log_blk_payload_asize = 0; 9735 dev->l2ad_log_blk_payload_start = 0; 9736 } 9737 } 9738 /* 9739 * Just mark the device as pending for a rebuild. We won't 9740 * be starting a rebuild in line here as it would block pool 9741 * import. Instead spa_load_impl will hand that off to an 9742 * async task which will call l2arc_spa_rebuild_start. 9743 */ 9744 dev->l2ad_rebuild = B_TRUE; 9745 } else if (spa_writeable(spa)) { 9746 /* 9747 * In this case TRIM the whole device if l2arc_trim_ahead > 0, 9748 * otherwise create a new header. We zero out the memory holding 9749 * the header to reset dh_start_lbps. If we TRIM the whole 9750 * device the new header will be written by 9751 * vdev_trim_l2arc_thread() at the end of the TRIM to update the 9752 * trim_state in the header too. When reading the header, if 9753 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0 9754 * we opt to TRIM the whole device again. 9755 */ 9756 if (l2arc_trim_ahead > 0) { 9757 dev->l2ad_trim_all = B_TRUE; 9758 } else { 9759 memset(l2dhdr, 0, l2dhdr_asize); 9760 l2arc_dev_hdr_update(dev); 9761 } 9762 } 9763 } 9764 9765 /* 9766 * Add a vdev for use by the L2ARC. By this point the spa has already 9767 * validated the vdev and opened it. 9768 */ 9769 void 9770 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 9771 { 9772 l2arc_dev_t *adddev; 9773 uint64_t l2dhdr_asize; 9774 9775 ASSERT(!l2arc_vdev_present(vd)); 9776 9777 /* 9778 * Create a new l2arc device entry. 9779 */ 9780 adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 9781 adddev->l2ad_spa = spa; 9782 adddev->l2ad_vdev = vd; 9783 /* leave extra size for an l2arc device header */ 9784 l2dhdr_asize = adddev->l2ad_dev_hdr_asize = 9785 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift); 9786 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize; 9787 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 9788 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end); 9789 adddev->l2ad_hand = adddev->l2ad_start; 9790 adddev->l2ad_evict = adddev->l2ad_start; 9791 adddev->l2ad_first = B_TRUE; 9792 adddev->l2ad_writing = B_FALSE; 9793 adddev->l2ad_trim_all = B_FALSE; 9794 list_link_init(&adddev->l2ad_node); 9795 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP); 9796 9797 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 9798 /* 9799 * This is a list of all ARC buffers that are still valid on the 9800 * device. 9801 */ 9802 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 9803 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 9804 9805 /* 9806 * This is a list of pointers to log blocks that are still present 9807 * on the device. 9808 */ 9809 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t), 9810 offsetof(l2arc_lb_ptr_buf_t, node)); 9811 9812 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 9813 zfs_refcount_create(&adddev->l2ad_alloc); 9814 zfs_refcount_create(&adddev->l2ad_lb_asize); 9815 zfs_refcount_create(&adddev->l2ad_lb_count); 9816 9817 /* 9818 * Decide if dev is eligible for L2ARC rebuild or whole device 9819 * trimming. This has to happen before the device is added in the 9820 * cache device list and l2arc_dev_mtx is released. Otherwise 9821 * l2arc_feed_thread() might already start writing on the 9822 * device. 9823 */ 9824 l2arc_rebuild_dev(adddev, B_FALSE); 9825 9826 /* 9827 * Add device to global list 9828 */ 9829 mutex_enter(&l2arc_dev_mtx); 9830 list_insert_head(l2arc_dev_list, adddev); 9831 atomic_inc_64(&l2arc_ndev); 9832 mutex_exit(&l2arc_dev_mtx); 9833 } 9834 9835 /* 9836 * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen() 9837 * in case of onlining a cache device. 9838 */ 9839 void 9840 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen) 9841 { 9842 l2arc_dev_t *dev = NULL; 9843 9844 dev = l2arc_vdev_get(vd); 9845 ASSERT3P(dev, !=, NULL); 9846 9847 /* 9848 * In contrast to l2arc_add_vdev() we do not have to worry about 9849 * l2arc_feed_thread() invalidating previous content when onlining a 9850 * cache device. The device parameters (l2ad*) are not cleared when 9851 * offlining the device and writing new buffers will not invalidate 9852 * all previous content. In worst case only buffers that have not had 9853 * their log block written to the device will be lost. 9854 * When onlining the cache device (ie offline->online without exporting 9855 * the pool in between) this happens: 9856 * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev() 9857 * | | 9858 * vdev_is_dead() = B_FALSE l2ad_rebuild = B_TRUE 9859 * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild 9860 * is set to B_TRUE we might write additional buffers to the device. 9861 */ 9862 l2arc_rebuild_dev(dev, reopen); 9863 } 9864 9865 typedef struct { 9866 l2arc_dev_t *rva_l2arc_dev; 9867 uint64_t rva_spa_gid; 9868 uint64_t rva_vdev_gid; 9869 boolean_t rva_async; 9870 9871 } remove_vdev_args_t; 9872 9873 static void 9874 l2arc_device_teardown(void *arg) 9875 { 9876 remove_vdev_args_t *rva = arg; 9877 l2arc_dev_t *remdev = rva->rva_l2arc_dev; 9878 hrtime_t start_time = gethrtime(); 9879 9880 /* 9881 * Clear all buflists and ARC references. L2ARC device flush. 9882 */ 9883 l2arc_evict(remdev, 0, B_TRUE); 9884 list_destroy(&remdev->l2ad_buflist); 9885 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list)); 9886 list_destroy(&remdev->l2ad_lbptr_list); 9887 mutex_destroy(&remdev->l2ad_mtx); 9888 zfs_refcount_destroy(&remdev->l2ad_alloc); 9889 zfs_refcount_destroy(&remdev->l2ad_lb_asize); 9890 zfs_refcount_destroy(&remdev->l2ad_lb_count); 9891 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize); 9892 vmem_free(remdev, sizeof (l2arc_dev_t)); 9893 9894 uint64_t elaspsed = NSEC2MSEC(gethrtime() - start_time); 9895 if (elaspsed > 0) { 9896 zfs_dbgmsg("spa %llu, vdev %llu removed in %llu ms", 9897 (u_longlong_t)rva->rva_spa_gid, 9898 (u_longlong_t)rva->rva_vdev_gid, 9899 (u_longlong_t)elaspsed); 9900 } 9901 9902 if (rva->rva_async) 9903 arc_async_flush_remove(rva->rva_spa_gid, 2); 9904 kmem_free(rva, sizeof (remove_vdev_args_t)); 9905 } 9906 9907 /* 9908 * Remove a vdev from the L2ARC. 9909 */ 9910 void 9911 l2arc_remove_vdev(vdev_t *vd) 9912 { 9913 spa_t *spa = vd->vdev_spa; 9914 boolean_t asynchronous = spa->spa_state == POOL_STATE_EXPORTED || 9915 spa->spa_state == POOL_STATE_DESTROYED; 9916 9917 /* 9918 * Find the device by vdev 9919 */ 9920 l2arc_dev_t *remdev = l2arc_vdev_get(vd); 9921 ASSERT3P(remdev, !=, NULL); 9922 9923 /* 9924 * Save info for final teardown 9925 */ 9926 remove_vdev_args_t *rva = kmem_alloc(sizeof (remove_vdev_args_t), 9927 KM_SLEEP); 9928 rva->rva_l2arc_dev = remdev; 9929 rva->rva_spa_gid = spa_load_guid(spa); 9930 rva->rva_vdev_gid = remdev->l2ad_vdev->vdev_guid; 9931 9932 /* 9933 * Cancel any ongoing or scheduled rebuild. 9934 */ 9935 mutex_enter(&l2arc_rebuild_thr_lock); 9936 remdev->l2ad_rebuild_cancel = B_TRUE; 9937 if (remdev->l2ad_rebuild_began == B_TRUE) { 9938 while (remdev->l2ad_rebuild == B_TRUE) 9939 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock); 9940 } 9941 mutex_exit(&l2arc_rebuild_thr_lock); 9942 rva->rva_async = asynchronous; 9943 9944 /* 9945 * Remove device from global list 9946 */ 9947 ASSERT(spa_config_held(spa, SCL_L2ARC, RW_WRITER) & SCL_L2ARC); 9948 mutex_enter(&l2arc_dev_mtx); 9949 list_remove(l2arc_dev_list, remdev); 9950 l2arc_dev_last = NULL; /* may have been invalidated */ 9951 atomic_dec_64(&l2arc_ndev); 9952 9953 /* During a pool export spa & vdev will no longer be valid */ 9954 if (asynchronous) { 9955 remdev->l2ad_spa = NULL; 9956 remdev->l2ad_vdev = NULL; 9957 } 9958 mutex_exit(&l2arc_dev_mtx); 9959 9960 if (!asynchronous) { 9961 l2arc_device_teardown(rva); 9962 return; 9963 } 9964 9965 arc_async_flush_t *af = arc_async_flush_add(rva->rva_spa_gid, 2); 9966 9967 taskq_dispatch_ent(arc_flush_taskq, l2arc_device_teardown, rva, 9968 TQ_SLEEP, &af->af_tqent); 9969 } 9970 9971 void 9972 l2arc_init(void) 9973 { 9974 l2arc_thread_exit = 0; 9975 l2arc_ndev = 0; 9976 9977 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 9978 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 9979 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL); 9980 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL); 9981 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 9982 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 9983 9984 l2arc_dev_list = &L2ARC_dev_list; 9985 l2arc_free_on_write = &L2ARC_free_on_write; 9986 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 9987 offsetof(l2arc_dev_t, l2ad_node)); 9988 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 9989 offsetof(l2arc_data_free_t, l2df_list_node)); 9990 } 9991 9992 void 9993 l2arc_fini(void) 9994 { 9995 mutex_destroy(&l2arc_feed_thr_lock); 9996 cv_destroy(&l2arc_feed_thr_cv); 9997 mutex_destroy(&l2arc_rebuild_thr_lock); 9998 cv_destroy(&l2arc_rebuild_thr_cv); 9999 mutex_destroy(&l2arc_dev_mtx); 10000 mutex_destroy(&l2arc_free_on_write_mtx); 10001 10002 list_destroy(l2arc_dev_list); 10003 list_destroy(l2arc_free_on_write); 10004 } 10005 10006 void 10007 l2arc_start(void) 10008 { 10009 if (!(spa_mode_global & SPA_MODE_WRITE)) 10010 return; 10011 10012 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 10013 TS_RUN, defclsyspri); 10014 } 10015 10016 void 10017 l2arc_stop(void) 10018 { 10019 if (!(spa_mode_global & SPA_MODE_WRITE)) 10020 return; 10021 10022 mutex_enter(&l2arc_feed_thr_lock); 10023 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 10024 l2arc_thread_exit = 1; 10025 while (l2arc_thread_exit != 0) 10026 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 10027 mutex_exit(&l2arc_feed_thr_lock); 10028 } 10029 10030 /* 10031 * Punches out rebuild threads for the L2ARC devices in a spa. This should 10032 * be called after pool import from the spa async thread, since starting 10033 * these threads directly from spa_import() will make them part of the 10034 * "zpool import" context and delay process exit (and thus pool import). 10035 */ 10036 void 10037 l2arc_spa_rebuild_start(spa_t *spa) 10038 { 10039 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 10040 10041 /* 10042 * Locate the spa's l2arc devices and kick off rebuild threads. 10043 */ 10044 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 10045 l2arc_dev_t *dev = 10046 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]); 10047 if (dev == NULL) { 10048 /* Don't attempt a rebuild if the vdev is UNAVAIL */ 10049 continue; 10050 } 10051 mutex_enter(&l2arc_rebuild_thr_lock); 10052 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) { 10053 dev->l2ad_rebuild_began = B_TRUE; 10054 (void) thread_create(NULL, 0, l2arc_dev_rebuild_thread, 10055 dev, 0, &p0, TS_RUN, minclsyspri); 10056 } 10057 mutex_exit(&l2arc_rebuild_thr_lock); 10058 } 10059 } 10060 10061 void 10062 l2arc_spa_rebuild_stop(spa_t *spa) 10063 { 10064 ASSERT(MUTEX_HELD(&spa_namespace_lock) || 10065 spa->spa_export_thread == curthread); 10066 10067 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 10068 l2arc_dev_t *dev = 10069 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]); 10070 if (dev == NULL) 10071 continue; 10072 mutex_enter(&l2arc_rebuild_thr_lock); 10073 dev->l2ad_rebuild_cancel = B_TRUE; 10074 mutex_exit(&l2arc_rebuild_thr_lock); 10075 } 10076 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 10077 l2arc_dev_t *dev = 10078 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]); 10079 if (dev == NULL) 10080 continue; 10081 mutex_enter(&l2arc_rebuild_thr_lock); 10082 if (dev->l2ad_rebuild_began == B_TRUE) { 10083 while (dev->l2ad_rebuild == B_TRUE) { 10084 cv_wait(&l2arc_rebuild_thr_cv, 10085 &l2arc_rebuild_thr_lock); 10086 } 10087 } 10088 mutex_exit(&l2arc_rebuild_thr_lock); 10089 } 10090 } 10091 10092 /* 10093 * Main entry point for L2ARC rebuilding. 10094 */ 10095 static __attribute__((noreturn)) void 10096 l2arc_dev_rebuild_thread(void *arg) 10097 { 10098 l2arc_dev_t *dev = arg; 10099 10100 VERIFY(dev->l2ad_rebuild); 10101 (void) l2arc_rebuild(dev); 10102 mutex_enter(&l2arc_rebuild_thr_lock); 10103 dev->l2ad_rebuild_began = B_FALSE; 10104 dev->l2ad_rebuild = B_FALSE; 10105 cv_signal(&l2arc_rebuild_thr_cv); 10106 mutex_exit(&l2arc_rebuild_thr_lock); 10107 10108 thread_exit(); 10109 } 10110 10111 /* 10112 * This function implements the actual L2ARC metadata rebuild. It: 10113 * starts reading the log block chain and restores each block's contents 10114 * to memory (reconstructing arc_buf_hdr_t's). 10115 * 10116 * Operation stops under any of the following conditions: 10117 * 10118 * 1) We reach the end of the log block chain. 10119 * 2) We encounter *any* error condition (cksum errors, io errors) 10120 */ 10121 static int 10122 l2arc_rebuild(l2arc_dev_t *dev) 10123 { 10124 vdev_t *vd = dev->l2ad_vdev; 10125 spa_t *spa = vd->vdev_spa; 10126 int err = 0; 10127 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10128 l2arc_log_blk_phys_t *this_lb, *next_lb; 10129 zio_t *this_io = NULL, *next_io = NULL; 10130 l2arc_log_blkptr_t lbps[2]; 10131 l2arc_lb_ptr_buf_t *lb_ptr_buf; 10132 boolean_t lock_held; 10133 10134 this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP); 10135 next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP); 10136 10137 /* 10138 * We prevent device removal while issuing reads to the device, 10139 * then during the rebuilding phases we drop this lock again so 10140 * that a spa_unload or device remove can be initiated - this is 10141 * safe, because the spa will signal us to stop before removing 10142 * our device and wait for us to stop. 10143 */ 10144 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER); 10145 lock_held = B_TRUE; 10146 10147 /* 10148 * Retrieve the persistent L2ARC device state. 10149 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10150 */ 10151 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start); 10152 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr + 10153 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop), 10154 dev->l2ad_start); 10155 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 10156 10157 vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time; 10158 vd->vdev_trim_state = l2dhdr->dh_trim_state; 10159 10160 /* 10161 * In case the zfs module parameter l2arc_rebuild_enabled is false 10162 * we do not start the rebuild process. 10163 */ 10164 if (!l2arc_rebuild_enabled) 10165 goto out; 10166 10167 /* Prepare the rebuild process */ 10168 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps)); 10169 10170 /* Start the rebuild process */ 10171 for (;;) { 10172 if (!l2arc_log_blkptr_valid(dev, &lbps[0])) 10173 break; 10174 10175 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1], 10176 this_lb, next_lb, this_io, &next_io)) != 0) 10177 goto out; 10178 10179 /* 10180 * Our memory pressure valve. If the system is running low 10181 * on memory, rather than swamping memory with new ARC buf 10182 * hdrs, we opt not to rebuild the L2ARC. At this point, 10183 * however, we have already set up our L2ARC dev to chain in 10184 * new metadata log blocks, so the user may choose to offline/ 10185 * online the L2ARC dev at a later time (or re-import the pool) 10186 * to reconstruct it (when there's less memory pressure). 10187 */ 10188 if (l2arc_hdr_limit_reached()) { 10189 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem); 10190 cmn_err(CE_NOTE, "System running low on memory, " 10191 "aborting L2ARC rebuild."); 10192 err = SET_ERROR(ENOMEM); 10193 goto out; 10194 } 10195 10196 spa_config_exit(spa, SCL_L2ARC, vd); 10197 lock_held = B_FALSE; 10198 10199 /* 10200 * Now that we know that the next_lb checks out alright, we 10201 * can start reconstruction from this log block. 10202 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10203 */ 10204 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 10205 l2arc_log_blk_restore(dev, this_lb, asize); 10206 10207 /* 10208 * log block restored, include its pointer in the list of 10209 * pointers to log blocks present in the L2ARC device. 10210 */ 10211 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 10212 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), 10213 KM_SLEEP); 10214 memcpy(lb_ptr_buf->lb_ptr, &lbps[0], 10215 sizeof (l2arc_log_blkptr_t)); 10216 mutex_enter(&dev->l2ad_mtx); 10217 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf); 10218 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 10219 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 10220 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 10221 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 10222 mutex_exit(&dev->l2ad_mtx); 10223 vdev_space_update(vd, asize, 0, 0); 10224 10225 /* 10226 * Protection against loops of log blocks: 10227 * 10228 * l2ad_hand l2ad_evict 10229 * V V 10230 * l2ad_start |=======================================| l2ad_end 10231 * -----|||----|||---|||----||| 10232 * (3) (2) (1) (0) 10233 * ---|||---|||----|||---||| 10234 * (7) (6) (5) (4) 10235 * 10236 * In this situation the pointer of log block (4) passes 10237 * l2arc_log_blkptr_valid() but the log block should not be 10238 * restored as it is overwritten by the payload of log block 10239 * (0). Only log blocks (0)-(3) should be restored. We check 10240 * whether l2ad_evict lies in between the payload starting 10241 * offset of the next log block (lbps[1].lbp_payload_start) 10242 * and the payload starting offset of the present log block 10243 * (lbps[0].lbp_payload_start). If true and this isn't the 10244 * first pass, we are looping from the beginning and we should 10245 * stop. 10246 */ 10247 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 10248 lbps[0].lbp_payload_start, dev->l2ad_evict) && 10249 !dev->l2ad_first) 10250 goto out; 10251 10252 kpreempt(KPREEMPT_SYNC); 10253 for (;;) { 10254 mutex_enter(&l2arc_rebuild_thr_lock); 10255 if (dev->l2ad_rebuild_cancel) { 10256 mutex_exit(&l2arc_rebuild_thr_lock); 10257 err = SET_ERROR(ECANCELED); 10258 goto out; 10259 } 10260 mutex_exit(&l2arc_rebuild_thr_lock); 10261 if (spa_config_tryenter(spa, SCL_L2ARC, vd, 10262 RW_READER)) { 10263 lock_held = B_TRUE; 10264 break; 10265 } 10266 /* 10267 * L2ARC config lock held by somebody in writer, 10268 * possibly due to them trying to remove us. They'll 10269 * likely to want us to shut down, so after a little 10270 * delay, we check l2ad_rebuild_cancel and retry 10271 * the lock again. 10272 */ 10273 delay(1); 10274 } 10275 10276 /* 10277 * Continue with the next log block. 10278 */ 10279 lbps[0] = lbps[1]; 10280 lbps[1] = this_lb->lb_prev_lbp; 10281 PTR_SWAP(this_lb, next_lb); 10282 this_io = next_io; 10283 next_io = NULL; 10284 } 10285 10286 if (this_io != NULL) 10287 l2arc_log_blk_fetch_abort(this_io); 10288 out: 10289 if (next_io != NULL) 10290 l2arc_log_blk_fetch_abort(next_io); 10291 vmem_free(this_lb, sizeof (*this_lb)); 10292 vmem_free(next_lb, sizeof (*next_lb)); 10293 10294 if (err == ECANCELED) { 10295 /* 10296 * In case the rebuild was canceled do not log to spa history 10297 * log as the pool may be in the process of being removed. 10298 */ 10299 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks", 10300 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10301 return (err); 10302 } else if (!l2arc_rebuild_enabled) { 10303 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10304 "disabled"); 10305 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) { 10306 ARCSTAT_BUMP(arcstat_l2_rebuild_success); 10307 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10308 "successful, restored %llu blocks", 10309 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10310 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) { 10311 /* 10312 * No error but also nothing restored, meaning the lbps array 10313 * in the device header points to invalid/non-present log 10314 * blocks. Reset the header. 10315 */ 10316 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10317 "no valid log blocks"); 10318 memset(l2dhdr, 0, dev->l2ad_dev_hdr_asize); 10319 l2arc_dev_hdr_update(dev); 10320 } else if (err != 0) { 10321 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10322 "aborted, restored %llu blocks", 10323 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10324 } 10325 10326 if (lock_held) 10327 spa_config_exit(spa, SCL_L2ARC, vd); 10328 10329 return (err); 10330 } 10331 10332 /* 10333 * Attempts to read the device header on the provided L2ARC device and writes 10334 * it to `hdr'. On success, this function returns 0, otherwise the appropriate 10335 * error code is returned. 10336 */ 10337 static int 10338 l2arc_dev_hdr_read(l2arc_dev_t *dev) 10339 { 10340 int err; 10341 uint64_t guid; 10342 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10343 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10344 abd_t *abd; 10345 10346 guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10347 10348 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10349 10350 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev, 10351 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, 10352 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 10353 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 10354 ZIO_FLAG_SPECULATIVE, B_FALSE)); 10355 10356 abd_free(abd); 10357 10358 if (err != 0) { 10359 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors); 10360 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, " 10361 "vdev guid: %llu", err, 10362 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10363 return (err); 10364 } 10365 10366 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 10367 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr)); 10368 10369 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC || 10370 l2dhdr->dh_spa_guid != guid || 10371 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid || 10372 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION || 10373 l2dhdr->dh_log_entries != dev->l2ad_log_entries || 10374 l2dhdr->dh_end != dev->l2ad_end || 10375 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end, 10376 l2dhdr->dh_evict) || 10377 (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE && 10378 l2arc_trim_ahead > 0)) { 10379 /* 10380 * Attempt to rebuild a device containing no actual dev hdr 10381 * or containing a header from some other pool or from another 10382 * version of persistent L2ARC. 10383 */ 10384 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported); 10385 return (SET_ERROR(ENOTSUP)); 10386 } 10387 10388 return (0); 10389 } 10390 10391 /* 10392 * Reads L2ARC log blocks from storage and validates their contents. 10393 * 10394 * This function implements a simple fetcher to make sure that while 10395 * we're processing one buffer the L2ARC is already fetching the next 10396 * one in the chain. 10397 * 10398 * The arguments this_lp and next_lp point to the current and next log block 10399 * address in the block chain. Similarly, this_lb and next_lb hold the 10400 * l2arc_log_blk_phys_t's of the current and next L2ARC blk. 10401 * 10402 * The `this_io' and `next_io' arguments are used for block fetching. 10403 * When issuing the first blk IO during rebuild, you should pass NULL for 10404 * `this_io'. This function will then issue a sync IO to read the block and 10405 * also issue an async IO to fetch the next block in the block chain. The 10406 * fetched IO is returned in `next_io'. On subsequent calls to this 10407 * function, pass the value returned in `next_io' from the previous call 10408 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO. 10409 * Prior to the call, you should initialize your `next_io' pointer to be 10410 * NULL. If no fetch IO was issued, the pointer is left set at NULL. 10411 * 10412 * On success, this function returns 0, otherwise it returns an appropriate 10413 * error code. On error the fetching IO is aborted and cleared before 10414 * returning from this function. Therefore, if we return `success', the 10415 * caller can assume that we have taken care of cleanup of fetch IOs. 10416 */ 10417 static int 10418 l2arc_log_blk_read(l2arc_dev_t *dev, 10419 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp, 10420 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 10421 zio_t *this_io, zio_t **next_io) 10422 { 10423 int err = 0; 10424 zio_cksum_t cksum; 10425 uint64_t asize; 10426 10427 ASSERT(this_lbp != NULL && next_lbp != NULL); 10428 ASSERT(this_lb != NULL && next_lb != NULL); 10429 ASSERT(next_io != NULL && *next_io == NULL); 10430 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp)); 10431 10432 /* 10433 * Check to see if we have issued the IO for this log block in a 10434 * previous run. If not, this is the first call, so issue it now. 10435 */ 10436 if (this_io == NULL) { 10437 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp, 10438 this_lb); 10439 } 10440 10441 /* 10442 * Peek to see if we can start issuing the next IO immediately. 10443 */ 10444 if (l2arc_log_blkptr_valid(dev, next_lbp)) { 10445 /* 10446 * Start issuing IO for the next log block early - this 10447 * should help keep the L2ARC device busy while we 10448 * decompress and restore this log block. 10449 */ 10450 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp, 10451 next_lb); 10452 } 10453 10454 /* Wait for the IO to read this log block to complete */ 10455 if ((err = zio_wait(this_io)) != 0) { 10456 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors); 10457 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, " 10458 "offset: %llu, vdev guid: %llu", err, 10459 (u_longlong_t)this_lbp->lbp_daddr, 10460 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10461 goto cleanup; 10462 } 10463 10464 /* 10465 * Make sure the buffer checks out. 10466 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10467 */ 10468 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop); 10469 fletcher_4_native(this_lb, asize, NULL, &cksum); 10470 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) { 10471 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors); 10472 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, " 10473 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu", 10474 (u_longlong_t)this_lbp->lbp_daddr, 10475 (u_longlong_t)dev->l2ad_vdev->vdev_guid, 10476 (u_longlong_t)dev->l2ad_hand, 10477 (u_longlong_t)dev->l2ad_evict); 10478 err = SET_ERROR(ECKSUM); 10479 goto cleanup; 10480 } 10481 10482 /* Now we can take our time decoding this buffer */ 10483 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) { 10484 case ZIO_COMPRESS_OFF: 10485 break; 10486 case ZIO_COMPRESS_LZ4: { 10487 abd_t *abd = abd_alloc_linear(asize, B_TRUE); 10488 abd_copy_from_buf_off(abd, this_lb, 0, asize); 10489 abd_t dabd; 10490 abd_get_from_buf_struct(&dabd, this_lb, sizeof (*this_lb)); 10491 err = zio_decompress_data( 10492 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop), 10493 abd, &dabd, asize, sizeof (*this_lb), NULL); 10494 abd_free(&dabd); 10495 abd_free(abd); 10496 if (err != 0) { 10497 err = SET_ERROR(EINVAL); 10498 goto cleanup; 10499 } 10500 break; 10501 } 10502 default: 10503 err = SET_ERROR(EINVAL); 10504 goto cleanup; 10505 } 10506 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 10507 byteswap_uint64_array(this_lb, sizeof (*this_lb)); 10508 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) { 10509 err = SET_ERROR(EINVAL); 10510 goto cleanup; 10511 } 10512 cleanup: 10513 /* Abort an in-flight fetch I/O in case of error */ 10514 if (err != 0 && *next_io != NULL) { 10515 l2arc_log_blk_fetch_abort(*next_io); 10516 *next_io = NULL; 10517 } 10518 return (err); 10519 } 10520 10521 /* 10522 * Restores the payload of a log block to ARC. This creates empty ARC hdr 10523 * entries which only contain an l2arc hdr, essentially restoring the 10524 * buffers to their L2ARC evicted state. This function also updates space 10525 * usage on the L2ARC vdev to make sure it tracks restored buffers. 10526 */ 10527 static void 10528 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb, 10529 uint64_t lb_asize) 10530 { 10531 uint64_t size = 0, asize = 0; 10532 uint64_t log_entries = dev->l2ad_log_entries; 10533 10534 /* 10535 * Usually arc_adapt() is called only for data, not headers, but 10536 * since we may allocate significant amount of memory here, let ARC 10537 * grow its arc_c. 10538 */ 10539 arc_adapt(log_entries * HDR_L2ONLY_SIZE); 10540 10541 for (int i = log_entries - 1; i >= 0; i--) { 10542 /* 10543 * Restore goes in the reverse temporal direction to preserve 10544 * correct temporal ordering of buffers in the l2ad_buflist. 10545 * l2arc_hdr_restore also does a list_insert_tail instead of 10546 * list_insert_head on the l2ad_buflist: 10547 * 10548 * LIST l2ad_buflist LIST 10549 * HEAD <------ (time) ------ TAIL 10550 * direction +-----+-----+-----+-----+-----+ direction 10551 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild 10552 * fill +-----+-----+-----+-----+-----+ 10553 * ^ ^ 10554 * | | 10555 * | | 10556 * l2arc_feed_thread l2arc_rebuild 10557 * will place new bufs here restores bufs here 10558 * 10559 * During l2arc_rebuild() the device is not used by 10560 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true. 10561 */ 10562 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop); 10563 asize += vdev_psize_to_asize(dev->l2ad_vdev, 10564 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop)); 10565 l2arc_hdr_restore(&lb->lb_entries[i], dev); 10566 } 10567 10568 /* 10569 * Record rebuild stats: 10570 * size Logical size of restored buffers in the L2ARC 10571 * asize Aligned size of restored buffers in the L2ARC 10572 */ 10573 ARCSTAT_INCR(arcstat_l2_rebuild_size, size); 10574 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize); 10575 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries); 10576 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize); 10577 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize); 10578 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks); 10579 } 10580 10581 /* 10582 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put 10583 * into a state indicating that it has been evicted to L2ARC. 10584 */ 10585 static void 10586 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev) 10587 { 10588 arc_buf_hdr_t *hdr, *exists; 10589 kmutex_t *hash_lock; 10590 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop); 10591 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 10592 L2BLK_GET_PSIZE((le)->le_prop)); 10593 10594 /* 10595 * Do all the allocation before grabbing any locks, this lets us 10596 * sleep if memory is full and we don't have to deal with failed 10597 * allocations. 10598 */ 10599 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type, 10600 dev, le->le_dva, le->le_daddr, 10601 L2BLK_GET_PSIZE((le)->le_prop), asize, le->le_birth, 10602 L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel, 10603 L2BLK_GET_PROTECTED((le)->le_prop), 10604 L2BLK_GET_PREFETCH((le)->le_prop), 10605 L2BLK_GET_STATE((le)->le_prop)); 10606 10607 /* 10608 * vdev_space_update() has to be called before arc_hdr_destroy() to 10609 * avoid underflow since the latter also calls vdev_space_update(). 10610 */ 10611 l2arc_hdr_arcstats_increment(hdr); 10612 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10613 10614 mutex_enter(&dev->l2ad_mtx); 10615 list_insert_tail(&dev->l2ad_buflist, hdr); 10616 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); 10617 mutex_exit(&dev->l2ad_mtx); 10618 10619 exists = buf_hash_insert(hdr, &hash_lock); 10620 if (exists) { 10621 /* Buffer was already cached, no need to restore it. */ 10622 arc_hdr_destroy(hdr); 10623 /* 10624 * If the buffer is already cached, check whether it has 10625 * L2ARC metadata. If not, enter them and update the flag. 10626 * This is important is case of onlining a cache device, since 10627 * we previously evicted all L2ARC metadata from ARC. 10628 */ 10629 if (!HDR_HAS_L2HDR(exists)) { 10630 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR); 10631 exists->b_l2hdr.b_dev = dev; 10632 exists->b_l2hdr.b_daddr = le->le_daddr; 10633 exists->b_l2hdr.b_arcs_state = 10634 L2BLK_GET_STATE((le)->le_prop); 10635 /* l2arc_hdr_arcstats_update() expects a valid asize */ 10636 HDR_SET_L2SIZE(exists, asize); 10637 mutex_enter(&dev->l2ad_mtx); 10638 list_insert_tail(&dev->l2ad_buflist, exists); 10639 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 10640 arc_hdr_size(exists), exists); 10641 mutex_exit(&dev->l2ad_mtx); 10642 l2arc_hdr_arcstats_increment(exists); 10643 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10644 } 10645 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached); 10646 } 10647 10648 mutex_exit(hash_lock); 10649 } 10650 10651 /* 10652 * Starts an asynchronous read IO to read a log block. This is used in log 10653 * block reconstruction to start reading the next block before we are done 10654 * decoding and reconstructing the current block, to keep the l2arc device 10655 * nice and hot with read IO to process. 10656 * The returned zio will contain a newly allocated memory buffers for the IO 10657 * data which should then be freed by the caller once the zio is no longer 10658 * needed (i.e. due to it having completed). If you wish to abort this 10659 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes 10660 * care of disposing of the allocated buffers correctly. 10661 */ 10662 static zio_t * 10663 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp, 10664 l2arc_log_blk_phys_t *lb) 10665 { 10666 uint32_t asize; 10667 zio_t *pio; 10668 l2arc_read_callback_t *cb; 10669 10670 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10671 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10672 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t)); 10673 10674 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP); 10675 cb->l2rcb_abd = abd_get_from_buf(lb, asize); 10676 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb, 10677 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY); 10678 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize, 10679 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10680 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL | 10681 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE)); 10682 10683 return (pio); 10684 } 10685 10686 /* 10687 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data 10688 * buffers allocated for it. 10689 */ 10690 static void 10691 l2arc_log_blk_fetch_abort(zio_t *zio) 10692 { 10693 (void) zio_wait(zio); 10694 } 10695 10696 /* 10697 * Creates a zio to update the device header on an l2arc device. 10698 */ 10699 void 10700 l2arc_dev_hdr_update(l2arc_dev_t *dev) 10701 { 10702 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10703 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10704 abd_t *abd; 10705 int err; 10706 10707 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER)); 10708 10709 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC; 10710 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION; 10711 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10712 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid; 10713 l2dhdr->dh_log_entries = dev->l2ad_log_entries; 10714 l2dhdr->dh_evict = dev->l2ad_evict; 10715 l2dhdr->dh_start = dev->l2ad_start; 10716 l2dhdr->dh_end = dev->l2ad_end; 10717 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize); 10718 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count); 10719 l2dhdr->dh_flags = 0; 10720 l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time; 10721 l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state; 10722 if (dev->l2ad_first) 10723 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST; 10724 10725 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10726 10727 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev, 10728 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL, 10729 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE)); 10730 10731 abd_free(abd); 10732 10733 if (err != 0) { 10734 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, " 10735 "vdev guid: %llu", err, 10736 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10737 } 10738 } 10739 10740 /* 10741 * Commits a log block to the L2ARC device. This routine is invoked from 10742 * l2arc_write_buffers when the log block fills up. 10743 * This function allocates some memory to temporarily hold the serialized 10744 * buffer to be written. This is then released in l2arc_write_done. 10745 */ 10746 static uint64_t 10747 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb) 10748 { 10749 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10750 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10751 uint64_t psize, asize; 10752 zio_t *wzio; 10753 l2arc_lb_abd_buf_t *abd_buf; 10754 abd_t *abd = NULL; 10755 l2arc_lb_ptr_buf_t *lb_ptr_buf; 10756 10757 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries); 10758 10759 abd_buf = zio_buf_alloc(sizeof (*abd_buf)); 10760 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb)); 10761 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 10762 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP); 10763 10764 /* link the buffer into the block chain */ 10765 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1]; 10766 lb->lb_magic = L2ARC_LOG_BLK_MAGIC; 10767 10768 /* 10769 * l2arc_log_blk_commit() may be called multiple times during a single 10770 * l2arc_write_buffers() call. Save the allocated abd buffers in a list 10771 * so we can free them in l2arc_write_done() later on. 10772 */ 10773 list_insert_tail(&cb->l2wcb_abd_list, abd_buf); 10774 10775 /* try to compress the buffer, at least one sector to save */ 10776 psize = zio_compress_data(ZIO_COMPRESS_LZ4, 10777 abd_buf->abd, &abd, sizeof (*lb), 10778 zio_get_compression_max_size(ZIO_COMPRESS_LZ4, 10779 dev->l2ad_vdev->vdev_ashift, 10780 dev->l2ad_vdev->vdev_ashift, sizeof (*lb)), 0); 10781 10782 /* a log block is never entirely zero */ 10783 ASSERT(psize != 0); 10784 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 10785 ASSERT(asize <= sizeof (*lb)); 10786 10787 /* 10788 * Update the start log block pointer in the device header to point 10789 * to the log block we're about to write. 10790 */ 10791 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0]; 10792 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand; 10793 l2dhdr->dh_start_lbps[0].lbp_payload_asize = 10794 dev->l2ad_log_blk_payload_asize; 10795 l2dhdr->dh_start_lbps[0].lbp_payload_start = 10796 dev->l2ad_log_blk_payload_start; 10797 L2BLK_SET_LSIZE( 10798 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb)); 10799 L2BLK_SET_PSIZE( 10800 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize); 10801 L2BLK_SET_CHECKSUM( 10802 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10803 ZIO_CHECKSUM_FLETCHER_4); 10804 if (asize < sizeof (*lb)) { 10805 /* compression succeeded */ 10806 abd_zero_off(abd, psize, asize - psize); 10807 L2BLK_SET_COMPRESS( 10808 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10809 ZIO_COMPRESS_LZ4); 10810 } else { 10811 /* compression failed */ 10812 abd_copy_from_buf_off(abd, lb, 0, sizeof (*lb)); 10813 L2BLK_SET_COMPRESS( 10814 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10815 ZIO_COMPRESS_OFF); 10816 } 10817 10818 /* checksum what we're about to write */ 10819 abd_fletcher_4_native(abd, asize, NULL, 10820 &l2dhdr->dh_start_lbps[0].lbp_cksum); 10821 10822 abd_free(abd_buf->abd); 10823 10824 /* perform the write itself */ 10825 abd_buf->abd = abd; 10826 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand, 10827 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10828 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE); 10829 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio); 10830 (void) zio_nowait(wzio); 10831 10832 dev->l2ad_hand += asize; 10833 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10834 10835 /* 10836 * Include the committed log block's pointer in the list of pointers 10837 * to log blocks present in the L2ARC device. 10838 */ 10839 memcpy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[0], 10840 sizeof (l2arc_log_blkptr_t)); 10841 mutex_enter(&dev->l2ad_mtx); 10842 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf); 10843 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 10844 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 10845 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 10846 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 10847 mutex_exit(&dev->l2ad_mtx); 10848 10849 /* bump the kstats */ 10850 ARCSTAT_INCR(arcstat_l2_write_bytes, asize); 10851 ARCSTAT_BUMP(arcstat_l2_log_blk_writes); 10852 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize); 10853 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, 10854 dev->l2ad_log_blk_payload_asize / asize); 10855 10856 /* start a new log block */ 10857 dev->l2ad_log_ent_idx = 0; 10858 dev->l2ad_log_blk_payload_asize = 0; 10859 dev->l2ad_log_blk_payload_start = 0; 10860 10861 return (asize); 10862 } 10863 10864 /* 10865 * Validates an L2ARC log block address to make sure that it can be read 10866 * from the provided L2ARC device. 10867 */ 10868 boolean_t 10869 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp) 10870 { 10871 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10872 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10873 uint64_t end = lbp->lbp_daddr + asize - 1; 10874 uint64_t start = lbp->lbp_payload_start; 10875 boolean_t evicted = B_FALSE; 10876 10877 /* 10878 * A log block is valid if all of the following conditions are true: 10879 * - it fits entirely (including its payload) between l2ad_start and 10880 * l2ad_end 10881 * - it has a valid size 10882 * - neither the log block itself nor part of its payload was evicted 10883 * by l2arc_evict(): 10884 * 10885 * l2ad_hand l2ad_evict 10886 * | | lbp_daddr 10887 * | start | | end 10888 * | | | | | 10889 * V V V V V 10890 * l2ad_start ============================================ l2ad_end 10891 * --------------------------|||| 10892 * ^ ^ 10893 * | log block 10894 * payload 10895 */ 10896 10897 evicted = 10898 l2arc_range_check_overlap(start, end, dev->l2ad_hand) || 10899 l2arc_range_check_overlap(start, end, dev->l2ad_evict) || 10900 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) || 10901 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end); 10902 10903 return (start >= dev->l2ad_start && end <= dev->l2ad_end && 10904 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) && 10905 (!evicted || dev->l2ad_first)); 10906 } 10907 10908 /* 10909 * Inserts ARC buffer header `hdr' into the current L2ARC log block on 10910 * the device. The buffer being inserted must be present in L2ARC. 10911 * Returns B_TRUE if the L2ARC log block is full and needs to be committed 10912 * to L2ARC, or B_FALSE if it still has room for more ARC buffers. 10913 */ 10914 static boolean_t 10915 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr) 10916 { 10917 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10918 l2arc_log_ent_phys_t *le; 10919 10920 if (dev->l2ad_log_entries == 0) 10921 return (B_FALSE); 10922 10923 int index = dev->l2ad_log_ent_idx++; 10924 10925 ASSERT3S(index, <, dev->l2ad_log_entries); 10926 ASSERT(HDR_HAS_L2HDR(hdr)); 10927 10928 le = &lb->lb_entries[index]; 10929 memset(le, 0, sizeof (*le)); 10930 le->le_dva = hdr->b_dva; 10931 le->le_birth = hdr->b_birth; 10932 le->le_daddr = hdr->b_l2hdr.b_daddr; 10933 if (index == 0) 10934 dev->l2ad_log_blk_payload_start = le->le_daddr; 10935 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr)); 10936 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr)); 10937 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr)); 10938 le->le_complevel = hdr->b_complevel; 10939 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type); 10940 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr))); 10941 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr))); 10942 L2BLK_SET_STATE((le)->le_prop, hdr->b_l2hdr.b_arcs_state); 10943 10944 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev, 10945 HDR_GET_PSIZE(hdr)); 10946 10947 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries); 10948 } 10949 10950 /* 10951 * Checks whether a given L2ARC device address sits in a time-sequential 10952 * range. The trick here is that the L2ARC is a rotary buffer, so we can't 10953 * just do a range comparison, we need to handle the situation in which the 10954 * range wraps around the end of the L2ARC device. Arguments: 10955 * bottom -- Lower end of the range to check (written to earlier). 10956 * top -- Upper end of the range to check (written to later). 10957 * check -- The address for which we want to determine if it sits in 10958 * between the top and bottom. 10959 * 10960 * The 3-way conditional below represents the following cases: 10961 * 10962 * bottom < top : Sequentially ordered case: 10963 * <check>--------+-------------------+ 10964 * | (overlap here?) | 10965 * L2ARC dev V V 10966 * |---------------<bottom>============<top>--------------| 10967 * 10968 * bottom > top: Looped-around case: 10969 * <check>--------+------------------+ 10970 * | (overlap here?) | 10971 * L2ARC dev V V 10972 * |===============<top>---------------<bottom>===========| 10973 * ^ ^ 10974 * | (or here?) | 10975 * +---------------+---------<check> 10976 * 10977 * top == bottom : Just a single address comparison. 10978 */ 10979 boolean_t 10980 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check) 10981 { 10982 if (bottom < top) 10983 return (bottom <= check && check <= top); 10984 else if (bottom > top) 10985 return (check <= top || bottom <= check); 10986 else 10987 return (check == top); 10988 } 10989 10990 EXPORT_SYMBOL(arc_buf_size); 10991 EXPORT_SYMBOL(arc_write); 10992 EXPORT_SYMBOL(arc_read); 10993 EXPORT_SYMBOL(arc_buf_info); 10994 EXPORT_SYMBOL(arc_getbuf_func); 10995 EXPORT_SYMBOL(arc_add_prune_callback); 10996 EXPORT_SYMBOL(arc_remove_prune_callback); 10997 10998 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_min, 10999 spl_param_get_u64, ZMOD_RW, "Minimum ARC size in bytes"); 11000 11001 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_max, 11002 spl_param_get_u64, ZMOD_RW, "Maximum ARC size in bytes"); 11003 11004 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_balance, UINT, ZMOD_RW, 11005 "Balance between metadata and data on ghost hits."); 11006 11007 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int, 11008 param_get_uint, ZMOD_RW, "Seconds before growing ARC size"); 11009 11010 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int, 11011 param_get_uint, ZMOD_RW, "log2(fraction of ARC to reclaim)"); 11012 11013 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW, 11014 "Percent of pagecache to reclaim ARC to"); 11015 11016 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, UINT, ZMOD_RD, 11017 "Target average block size"); 11018 11019 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW, 11020 "Disable compressed ARC buffers"); 11021 11022 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int, 11023 param_get_uint, ZMOD_RW, "Min life of prefetch block in ms"); 11024 11025 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms, 11026 param_set_arc_int, param_get_uint, ZMOD_RW, 11027 "Min life of prescient prefetched block in ms"); 11028 11029 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, U64, ZMOD_RW, 11030 "Max write bytes per interval"); 11031 11032 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, U64, ZMOD_RW, 11033 "Extra write bytes during device warmup"); 11034 11035 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, U64, ZMOD_RW, 11036 "Number of max device writes to precache"); 11037 11038 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, U64, ZMOD_RW, 11039 "Compressed l2arc_headroom multiplier"); 11040 11041 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, U64, ZMOD_RW, 11042 "TRIM ahead L2ARC write size multiplier"); 11043 11044 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, U64, ZMOD_RW, 11045 "Seconds between L2ARC writing"); 11046 11047 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, U64, ZMOD_RW, 11048 "Min feed interval in milliseconds"); 11049 11050 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW, 11051 "Skip caching prefetched buffers"); 11052 11053 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW, 11054 "Turbo L2ARC warmup"); 11055 11056 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW, 11057 "No reads during writes"); 11058 11059 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, UINT, ZMOD_RW, 11060 "Percent of ARC size allowed for L2ARC-only headers"); 11061 11062 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW, 11063 "Rebuild the L2ARC when importing a pool"); 11064 11065 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, U64, ZMOD_RW, 11066 "Min size in bytes to write rebuild log blocks in L2ARC"); 11067 11068 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW, 11069 "Cache only MFU data from ARC into L2ARC"); 11070 11071 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, exclude_special, INT, ZMOD_RW, 11072 "Exclude dbufs on special vdevs from being cached to L2ARC if set."); 11073 11074 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int, 11075 param_get_uint, ZMOD_RW, "System free memory I/O throttle in bytes"); 11076 11077 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_u64, 11078 spl_param_get_u64, ZMOD_RW, "System free memory target size in bytes"); 11079 11080 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_u64, 11081 spl_param_get_u64, ZMOD_RW, "Minimum bytes of dnodes in ARC"); 11082 11083 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent, 11084 param_set_arc_int, param_get_uint, ZMOD_RW, 11085 "Percent of ARC meta buffers for dnodes"); 11086 11087 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, UINT, ZMOD_RW, 11088 "Percentage of excess dnodes to try to unpin"); 11089 11090 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, UINT, ZMOD_RW, 11091 "When full, ARC allocation waits for eviction of this % of alloc size"); 11092 11093 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, UINT, ZMOD_RW, 11094 "The number of headers to evict per sublist before moving to the next"); 11095 11096 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, prune_task_threads, INT, ZMOD_RW, 11097 "Number of arc_prune threads"); 11098