1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2018, Joyent, Inc. 24 * Copyright (c) 2011, 2019, Delphix. All rights reserved. 25 * Copyright (c) 2014, Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 28 * Copyright (c) 2020, George Amanakis. All rights reserved. 29 * Copyright (c) 2019, Klara Inc. 30 * Copyright (c) 2019, Allan Jude 31 * Copyright (c) 2020, The FreeBSD Foundation [1] 32 * 33 * [1] Portions of this software were developed by Allan Jude 34 * under sponsorship from the FreeBSD Foundation. 35 */ 36 37 /* 38 * DVA-based Adjustable Replacement Cache 39 * 40 * While much of the theory of operation used here is 41 * based on the self-tuning, low overhead replacement cache 42 * presented by Megiddo and Modha at FAST 2003, there are some 43 * significant differences: 44 * 45 * 1. The Megiddo and Modha model assumes any page is evictable. 46 * Pages in its cache cannot be "locked" into memory. This makes 47 * the eviction algorithm simple: evict the last page in the list. 48 * This also make the performance characteristics easy to reason 49 * about. Our cache is not so simple. At any given moment, some 50 * subset of the blocks in the cache are un-evictable because we 51 * have handed out a reference to them. Blocks are only evictable 52 * when there are no external references active. This makes 53 * eviction far more problematic: we choose to evict the evictable 54 * blocks that are the "lowest" in the list. 55 * 56 * There are times when it is not possible to evict the requested 57 * space. In these circumstances we are unable to adjust the cache 58 * size. To prevent the cache growing unbounded at these times we 59 * implement a "cache throttle" that slows the flow of new data 60 * into the cache until we can make space available. 61 * 62 * 2. The Megiddo and Modha model assumes a fixed cache size. 63 * Pages are evicted when the cache is full and there is a cache 64 * miss. Our model has a variable sized cache. It grows with 65 * high use, but also tries to react to memory pressure from the 66 * operating system: decreasing its size when system memory is 67 * tight. 68 * 69 * 3. The Megiddo and Modha model assumes a fixed page size. All 70 * elements of the cache are therefore exactly the same size. So 71 * when adjusting the cache size following a cache miss, its simply 72 * a matter of choosing a single page to evict. In our model, we 73 * have variable sized cache blocks (ranging from 512 bytes to 74 * 128K bytes). We therefore choose a set of blocks to evict to make 75 * space for a cache miss that approximates as closely as possible 76 * the space used by the new block. 77 * 78 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 79 * by N. Megiddo & D. Modha, FAST 2003 80 */ 81 82 /* 83 * The locking model: 84 * 85 * A new reference to a cache buffer can be obtained in two 86 * ways: 1) via a hash table lookup using the DVA as a key, 87 * or 2) via one of the ARC lists. The arc_read() interface 88 * uses method 1, while the internal ARC algorithms for 89 * adjusting the cache use method 2. We therefore provide two 90 * types of locks: 1) the hash table lock array, and 2) the 91 * ARC list locks. 92 * 93 * Buffers do not have their own mutexes, rather they rely on the 94 * hash table mutexes for the bulk of their protection (i.e. most 95 * fields in the arc_buf_hdr_t are protected by these mutexes). 96 * 97 * buf_hash_find() returns the appropriate mutex (held) when it 98 * locates the requested buffer in the hash table. It returns 99 * NULL for the mutex if the buffer was not in the table. 100 * 101 * buf_hash_remove() expects the appropriate hash mutex to be 102 * already held before it is invoked. 103 * 104 * Each ARC state also has a mutex which is used to protect the 105 * buffer list associated with the state. When attempting to 106 * obtain a hash table lock while holding an ARC list lock you 107 * must use: mutex_tryenter() to avoid deadlock. Also note that 108 * the active state mutex must be held before the ghost state mutex. 109 * 110 * It as also possible to register a callback which is run when the 111 * arc_meta_limit is reached and no buffers can be safely evicted. In 112 * this case the arc user should drop a reference on some arc buffers so 113 * they can be reclaimed and the arc_meta_limit honored. For example, 114 * when using the ZPL each dentry holds a references on a znode. These 115 * dentries must be pruned before the arc buffer holding the znode can 116 * be safely evicted. 117 * 118 * Note that the majority of the performance stats are manipulated 119 * with atomic operations. 120 * 121 * The L2ARC uses the l2ad_mtx on each vdev for the following: 122 * 123 * - L2ARC buflist creation 124 * - L2ARC buflist eviction 125 * - L2ARC write completion, which walks L2ARC buflists 126 * - ARC header destruction, as it removes from L2ARC buflists 127 * - ARC header release, as it removes from L2ARC buflists 128 */ 129 130 /* 131 * ARC operation: 132 * 133 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. 134 * This structure can point either to a block that is still in the cache or to 135 * one that is only accessible in an L2 ARC device, or it can provide 136 * information about a block that was recently evicted. If a block is 137 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough 138 * information to retrieve it from the L2ARC device. This information is 139 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block 140 * that is in this state cannot access the data directly. 141 * 142 * Blocks that are actively being referenced or have not been evicted 143 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within 144 * the arc_buf_hdr_t that will point to the data block in memory. A block can 145 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC 146 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and 147 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd). 148 * 149 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the 150 * ability to store the physical data (b_pabd) associated with the DVA of the 151 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block, 152 * it will match its on-disk compression characteristics. This behavior can be 153 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the 154 * compressed ARC functionality is disabled, the b_pabd will point to an 155 * uncompressed version of the on-disk data. 156 * 157 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each 158 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it. 159 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC 160 * consumer. The ARC will provide references to this data and will keep it 161 * cached until it is no longer in use. The ARC caches only the L1ARC's physical 162 * data block and will evict any arc_buf_t that is no longer referenced. The 163 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the 164 * "overhead_size" kstat. 165 * 166 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or 167 * compressed form. The typical case is that consumers will want uncompressed 168 * data, and when that happens a new data buffer is allocated where the data is 169 * decompressed for them to use. Currently the only consumer who wants 170 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it 171 * exists on disk. When this happens, the arc_buf_t's data buffer is shared 172 * with the arc_buf_hdr_t. 173 * 174 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The 175 * first one is owned by a compressed send consumer (and therefore references 176 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be 177 * used by any other consumer (and has its own uncompressed copy of the data 178 * buffer). 179 * 180 * arc_buf_hdr_t 181 * +-----------+ 182 * | fields | 183 * | common to | 184 * | L1- and | 185 * | L2ARC | 186 * +-----------+ 187 * | l2arc_buf_hdr_t 188 * | | 189 * +-----------+ 190 * | l1arc_buf_hdr_t 191 * | | arc_buf_t 192 * | b_buf +------------>+-----------+ arc_buf_t 193 * | b_pabd +-+ |b_next +---->+-----------+ 194 * +-----------+ | |-----------| |b_next +-->NULL 195 * | |b_comp = T | +-----------+ 196 * | |b_data +-+ |b_comp = F | 197 * | +-----------+ | |b_data +-+ 198 * +->+------+ | +-----------+ | 199 * compressed | | | | 200 * data | |<--------------+ | uncompressed 201 * +------+ compressed, | data 202 * shared +-->+------+ 203 * data | | 204 * | | 205 * +------+ 206 * 207 * When a consumer reads a block, the ARC must first look to see if the 208 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new 209 * arc_buf_t and either copies uncompressed data into a new data buffer from an 210 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a 211 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the 212 * hdr is compressed and the desired compression characteristics of the 213 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the 214 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be 215 * the last buffer in the hdr's b_buf list, however a shared compressed buf can 216 * be anywhere in the hdr's list. 217 * 218 * The diagram below shows an example of an uncompressed ARC hdr that is 219 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is 220 * the last element in the buf list): 221 * 222 * arc_buf_hdr_t 223 * +-----------+ 224 * | | 225 * | | 226 * | | 227 * +-----------+ 228 * l2arc_buf_hdr_t| | 229 * | | 230 * +-----------+ 231 * l1arc_buf_hdr_t| | 232 * | | arc_buf_t (shared) 233 * | b_buf +------------>+---------+ arc_buf_t 234 * | | |b_next +---->+---------+ 235 * | b_pabd +-+ |---------| |b_next +-->NULL 236 * +-----------+ | | | +---------+ 237 * | |b_data +-+ | | 238 * | +---------+ | |b_data +-+ 239 * +->+------+ | +---------+ | 240 * | | | | 241 * uncompressed | | | | 242 * data +------+ | | 243 * ^ +->+------+ | 244 * | uncompressed | | | 245 * | data | | | 246 * | +------+ | 247 * +---------------------------------+ 248 * 249 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd 250 * since the physical block is about to be rewritten. The new data contents 251 * will be contained in the arc_buf_t. As the I/O pipeline performs the write, 252 * it may compress the data before writing it to disk. The ARC will be called 253 * with the transformed data and will bcopy the transformed on-disk block into 254 * a newly allocated b_pabd. Writes are always done into buffers which have 255 * either been loaned (and hence are new and don't have other readers) or 256 * buffers which have been released (and hence have their own hdr, if there 257 * were originally other readers of the buf's original hdr). This ensures that 258 * the ARC only needs to update a single buf and its hdr after a write occurs. 259 * 260 * When the L2ARC is in use, it will also take advantage of the b_pabd. The 261 * L2ARC will always write the contents of b_pabd to the L2ARC. This means 262 * that when compressed ARC is enabled that the L2ARC blocks are identical 263 * to the on-disk block in the main data pool. This provides a significant 264 * advantage since the ARC can leverage the bp's checksum when reading from the 265 * L2ARC to determine if the contents are valid. However, if the compressed 266 * ARC is disabled, then the L2ARC's block must be transformed to look 267 * like the physical block in the main data pool before comparing the 268 * checksum and determining its validity. 269 * 270 * The L1ARC has a slightly different system for storing encrypted data. 271 * Raw (encrypted + possibly compressed) data has a few subtle differences from 272 * data that is just compressed. The biggest difference is that it is not 273 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded. 274 * The other difference is that encryption cannot be treated as a suggestion. 275 * If a caller would prefer compressed data, but they actually wind up with 276 * uncompressed data the worst thing that could happen is there might be a 277 * performance hit. If the caller requests encrypted data, however, we must be 278 * sure they actually get it or else secret information could be leaked. Raw 279 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore, 280 * may have both an encrypted version and a decrypted version of its data at 281 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is 282 * copied out of this header. To avoid complications with b_pabd, raw buffers 283 * cannot be shared. 284 */ 285 286 #include <sys/spa.h> 287 #include <sys/zio.h> 288 #include <sys/spa_impl.h> 289 #include <sys/zio_compress.h> 290 #include <sys/zio_checksum.h> 291 #include <sys/zfs_context.h> 292 #include <sys/arc.h> 293 #include <sys/zfs_refcount.h> 294 #include <sys/vdev.h> 295 #include <sys/vdev_impl.h> 296 #include <sys/dsl_pool.h> 297 #include <sys/zio_checksum.h> 298 #include <sys/multilist.h> 299 #include <sys/abd.h> 300 #include <sys/zil.h> 301 #include <sys/fm/fs/zfs.h> 302 #include <sys/callb.h> 303 #include <sys/kstat.h> 304 #include <sys/zthr.h> 305 #include <zfs_fletcher.h> 306 #include <sys/arc_impl.h> 307 #include <sys/trace_zfs.h> 308 #include <sys/aggsum.h> 309 #include <cityhash.h> 310 #include <sys/vdev_trim.h> 311 312 #ifndef _KERNEL 313 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 314 boolean_t arc_watch = B_FALSE; 315 #endif 316 317 /* 318 * This thread's job is to keep enough free memory in the system, by 319 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves 320 * arc_available_memory(). 321 */ 322 static zthr_t *arc_reap_zthr; 323 324 /* 325 * This thread's job is to keep arc_size under arc_c, by calling 326 * arc_evict(), which improves arc_is_overflowing(). 327 */ 328 static zthr_t *arc_evict_zthr; 329 330 static kmutex_t arc_evict_lock; 331 static boolean_t arc_evict_needed = B_FALSE; 332 333 /* 334 * Count of bytes evicted since boot. 335 */ 336 static uint64_t arc_evict_count; 337 338 /* 339 * List of arc_evict_waiter_t's, representing threads waiting for the 340 * arc_evict_count to reach specific values. 341 */ 342 static list_t arc_evict_waiters; 343 344 /* 345 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of 346 * the requested amount of data to be evicted. For example, by default for 347 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation. 348 * Since this is above 100%, it ensures that progress is made towards getting 349 * arc_size under arc_c. Since this is finite, it ensures that allocations 350 * can still happen, even during the potentially long time that arc_size is 351 * more than arc_c. 352 */ 353 int zfs_arc_eviction_pct = 200; 354 355 /* 356 * The number of headers to evict in arc_evict_state_impl() before 357 * dropping the sublist lock and evicting from another sublist. A lower 358 * value means we're more likely to evict the "correct" header (i.e. the 359 * oldest header in the arc state), but comes with higher overhead 360 * (i.e. more invocations of arc_evict_state_impl()). 361 */ 362 int zfs_arc_evict_batch_limit = 10; 363 364 /* number of seconds before growing cache again */ 365 int arc_grow_retry = 5; 366 367 /* 368 * Minimum time between calls to arc_kmem_reap_soon(). 369 */ 370 int arc_kmem_cache_reap_retry_ms = 1000; 371 372 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */ 373 int zfs_arc_overflow_shift = 8; 374 375 /* shift of arc_c for calculating both min and max arc_p */ 376 int arc_p_min_shift = 4; 377 378 /* log2(fraction of arc to reclaim) */ 379 int arc_shrink_shift = 7; 380 381 /* percent of pagecache to reclaim arc to */ 382 #ifdef _KERNEL 383 uint_t zfs_arc_pc_percent = 0; 384 #endif 385 386 /* 387 * log2(fraction of ARC which must be free to allow growing). 388 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 389 * when reading a new block into the ARC, we will evict an equal-sized block 390 * from the ARC. 391 * 392 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 393 * we will still not allow it to grow. 394 */ 395 int arc_no_grow_shift = 5; 396 397 398 /* 399 * minimum lifespan of a prefetch block in clock ticks 400 * (initialized in arc_init()) 401 */ 402 static int arc_min_prefetch_ms; 403 static int arc_min_prescient_prefetch_ms; 404 405 /* 406 * If this percent of memory is free, don't throttle. 407 */ 408 int arc_lotsfree_percent = 10; 409 410 /* 411 * The arc has filled available memory and has now warmed up. 412 */ 413 boolean_t arc_warm; 414 415 /* 416 * These tunables are for performance analysis. 417 */ 418 unsigned long zfs_arc_max = 0; 419 unsigned long zfs_arc_min = 0; 420 unsigned long zfs_arc_meta_limit = 0; 421 unsigned long zfs_arc_meta_min = 0; 422 unsigned long zfs_arc_dnode_limit = 0; 423 unsigned long zfs_arc_dnode_reduce_percent = 10; 424 int zfs_arc_grow_retry = 0; 425 int zfs_arc_shrink_shift = 0; 426 int zfs_arc_p_min_shift = 0; 427 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 428 429 /* 430 * ARC dirty data constraints for arc_tempreserve_space() throttle. 431 */ 432 unsigned long zfs_arc_dirty_limit_percent = 50; /* total dirty data limit */ 433 unsigned long zfs_arc_anon_limit_percent = 25; /* anon block dirty limit */ 434 unsigned long zfs_arc_pool_dirty_percent = 20; /* each pool's anon allowance */ 435 436 /* 437 * Enable or disable compressed arc buffers. 438 */ 439 int zfs_compressed_arc_enabled = B_TRUE; 440 441 /* 442 * ARC will evict meta buffers that exceed arc_meta_limit. This 443 * tunable make arc_meta_limit adjustable for different workloads. 444 */ 445 unsigned long zfs_arc_meta_limit_percent = 75; 446 447 /* 448 * Percentage that can be consumed by dnodes of ARC meta buffers. 449 */ 450 unsigned long zfs_arc_dnode_limit_percent = 10; 451 452 /* 453 * These tunables are Linux specific 454 */ 455 unsigned long zfs_arc_sys_free = 0; 456 int zfs_arc_min_prefetch_ms = 0; 457 int zfs_arc_min_prescient_prefetch_ms = 0; 458 int zfs_arc_p_dampener_disable = 1; 459 int zfs_arc_meta_prune = 10000; 460 int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED; 461 int zfs_arc_meta_adjust_restarts = 4096; 462 int zfs_arc_lotsfree_percent = 10; 463 464 /* The 6 states: */ 465 arc_state_t ARC_anon; 466 arc_state_t ARC_mru; 467 arc_state_t ARC_mru_ghost; 468 arc_state_t ARC_mfu; 469 arc_state_t ARC_mfu_ghost; 470 arc_state_t ARC_l2c_only; 471 472 arc_stats_t arc_stats = { 473 { "hits", KSTAT_DATA_UINT64 }, 474 { "misses", KSTAT_DATA_UINT64 }, 475 { "demand_data_hits", KSTAT_DATA_UINT64 }, 476 { "demand_data_misses", KSTAT_DATA_UINT64 }, 477 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 478 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 479 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 480 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 481 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 482 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 483 { "mru_hits", KSTAT_DATA_UINT64 }, 484 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 485 { "mfu_hits", KSTAT_DATA_UINT64 }, 486 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 487 { "deleted", KSTAT_DATA_UINT64 }, 488 { "mutex_miss", KSTAT_DATA_UINT64 }, 489 { "access_skip", KSTAT_DATA_UINT64 }, 490 { "evict_skip", KSTAT_DATA_UINT64 }, 491 { "evict_not_enough", KSTAT_DATA_UINT64 }, 492 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 493 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 494 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 495 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 496 { "hash_elements", KSTAT_DATA_UINT64 }, 497 { "hash_elements_max", KSTAT_DATA_UINT64 }, 498 { "hash_collisions", KSTAT_DATA_UINT64 }, 499 { "hash_chains", KSTAT_DATA_UINT64 }, 500 { "hash_chain_max", KSTAT_DATA_UINT64 }, 501 { "p", KSTAT_DATA_UINT64 }, 502 { "c", KSTAT_DATA_UINT64 }, 503 { "c_min", KSTAT_DATA_UINT64 }, 504 { "c_max", KSTAT_DATA_UINT64 }, 505 { "size", KSTAT_DATA_UINT64 }, 506 { "compressed_size", KSTAT_DATA_UINT64 }, 507 { "uncompressed_size", KSTAT_DATA_UINT64 }, 508 { "overhead_size", KSTAT_DATA_UINT64 }, 509 { "hdr_size", KSTAT_DATA_UINT64 }, 510 { "data_size", KSTAT_DATA_UINT64 }, 511 { "metadata_size", KSTAT_DATA_UINT64 }, 512 { "dbuf_size", KSTAT_DATA_UINT64 }, 513 { "dnode_size", KSTAT_DATA_UINT64 }, 514 { "bonus_size", KSTAT_DATA_UINT64 }, 515 #if defined(COMPAT_FREEBSD11) 516 { "other_size", KSTAT_DATA_UINT64 }, 517 #endif 518 { "anon_size", KSTAT_DATA_UINT64 }, 519 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 520 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 521 { "mru_size", KSTAT_DATA_UINT64 }, 522 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 523 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 524 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 525 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 526 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 527 { "mfu_size", KSTAT_DATA_UINT64 }, 528 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 529 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 530 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 531 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 532 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 533 { "l2_hits", KSTAT_DATA_UINT64 }, 534 { "l2_misses", KSTAT_DATA_UINT64 }, 535 { "l2_feeds", KSTAT_DATA_UINT64 }, 536 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 537 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 538 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 539 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 540 { "l2_writes_done", KSTAT_DATA_UINT64 }, 541 { "l2_writes_error", KSTAT_DATA_UINT64 }, 542 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 543 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 544 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 545 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 546 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 547 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 548 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 549 { "l2_io_error", KSTAT_DATA_UINT64 }, 550 { "l2_size", KSTAT_DATA_UINT64 }, 551 { "l2_asize", KSTAT_DATA_UINT64 }, 552 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 553 { "l2_log_blk_writes", KSTAT_DATA_UINT64 }, 554 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 }, 555 { "l2_log_blk_asize", KSTAT_DATA_UINT64 }, 556 { "l2_log_blk_count", KSTAT_DATA_UINT64 }, 557 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 }, 558 { "l2_rebuild_success", KSTAT_DATA_UINT64 }, 559 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 }, 560 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 }, 561 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 }, 562 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 }, 563 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 }, 564 { "l2_rebuild_size", KSTAT_DATA_UINT64 }, 565 { "l2_rebuild_asize", KSTAT_DATA_UINT64 }, 566 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 }, 567 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 }, 568 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 }, 569 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 570 { "memory_direct_count", KSTAT_DATA_UINT64 }, 571 { "memory_indirect_count", KSTAT_DATA_UINT64 }, 572 { "memory_all_bytes", KSTAT_DATA_UINT64 }, 573 { "memory_free_bytes", KSTAT_DATA_UINT64 }, 574 { "memory_available_bytes", KSTAT_DATA_INT64 }, 575 { "arc_no_grow", KSTAT_DATA_UINT64 }, 576 { "arc_tempreserve", KSTAT_DATA_UINT64 }, 577 { "arc_loaned_bytes", KSTAT_DATA_UINT64 }, 578 { "arc_prune", KSTAT_DATA_UINT64 }, 579 { "arc_meta_used", KSTAT_DATA_UINT64 }, 580 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 581 { "arc_dnode_limit", KSTAT_DATA_UINT64 }, 582 { "arc_meta_max", KSTAT_DATA_UINT64 }, 583 { "arc_meta_min", KSTAT_DATA_UINT64 }, 584 { "async_upgrade_sync", KSTAT_DATA_UINT64 }, 585 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 }, 586 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 }, 587 { "arc_need_free", KSTAT_DATA_UINT64 }, 588 { "arc_sys_free", KSTAT_DATA_UINT64 }, 589 { "arc_raw_size", KSTAT_DATA_UINT64 }, 590 { "cached_only_in_progress", KSTAT_DATA_UINT64 }, 591 { "abd_chunk_waste_size", KSTAT_DATA_UINT64 }, 592 }; 593 594 #define ARCSTAT_MAX(stat, val) { \ 595 uint64_t m; \ 596 while ((val) > (m = arc_stats.stat.value.ui64) && \ 597 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 598 continue; \ 599 } 600 601 #define ARCSTAT_MAXSTAT(stat) \ 602 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 603 604 /* 605 * We define a macro to allow ARC hits/misses to be easily broken down by 606 * two separate conditions, giving a total of four different subtypes for 607 * each of hits and misses (so eight statistics total). 608 */ 609 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 610 if (cond1) { \ 611 if (cond2) { \ 612 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 613 } else { \ 614 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 615 } \ 616 } else { \ 617 if (cond2) { \ 618 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 619 } else { \ 620 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 621 } \ 622 } 623 624 /* 625 * This macro allows us to use kstats as floating averages. Each time we 626 * update this kstat, we first factor it and the update value by 627 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall 628 * average. This macro assumes that integer loads and stores are atomic, but 629 * is not safe for multiple writers updating the kstat in parallel (only the 630 * last writer's update will remain). 631 */ 632 #define ARCSTAT_F_AVG_FACTOR 3 633 #define ARCSTAT_F_AVG(stat, value) \ 634 do { \ 635 uint64_t x = ARCSTAT(stat); \ 636 x = x - x / ARCSTAT_F_AVG_FACTOR + \ 637 (value) / ARCSTAT_F_AVG_FACTOR; \ 638 ARCSTAT(stat) = x; \ 639 _NOTE(CONSTCOND) \ 640 } while (0) 641 642 kstat_t *arc_ksp; 643 static arc_state_t *arc_anon; 644 static arc_state_t *arc_mru_ghost; 645 static arc_state_t *arc_mfu_ghost; 646 static arc_state_t *arc_l2c_only; 647 648 arc_state_t *arc_mru; 649 arc_state_t *arc_mfu; 650 651 /* 652 * There are several ARC variables that are critical to export as kstats -- 653 * but we don't want to have to grovel around in the kstat whenever we wish to 654 * manipulate them. For these variables, we therefore define them to be in 655 * terms of the statistic variable. This assures that we are not introducing 656 * the possibility of inconsistency by having shadow copies of the variables, 657 * while still allowing the code to be readable. 658 */ 659 #define arc_tempreserve ARCSTAT(arcstat_tempreserve) 660 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes) 661 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 662 /* max size for dnodes */ 663 #define arc_dnode_size_limit ARCSTAT(arcstat_dnode_limit) 664 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */ 665 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */ 666 #define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */ 667 668 /* size of all b_rabd's in entire arc */ 669 #define arc_raw_size ARCSTAT(arcstat_raw_size) 670 /* compressed size of entire arc */ 671 #define arc_compressed_size ARCSTAT(arcstat_compressed_size) 672 /* uncompressed size of entire arc */ 673 #define arc_uncompressed_size ARCSTAT(arcstat_uncompressed_size) 674 /* number of bytes in the arc from arc_buf_t's */ 675 #define arc_overhead_size ARCSTAT(arcstat_overhead_size) 676 677 /* 678 * There are also some ARC variables that we want to export, but that are 679 * updated so often that having the canonical representation be the statistic 680 * variable causes a performance bottleneck. We want to use aggsum_t's for these 681 * instead, but still be able to export the kstat in the same way as before. 682 * The solution is to always use the aggsum version, except in the kstat update 683 * callback. 684 */ 685 aggsum_t arc_size; 686 aggsum_t arc_meta_used; 687 aggsum_t astat_data_size; 688 aggsum_t astat_metadata_size; 689 aggsum_t astat_dbuf_size; 690 aggsum_t astat_dnode_size; 691 aggsum_t astat_bonus_size; 692 aggsum_t astat_hdr_size; 693 aggsum_t astat_l2_hdr_size; 694 aggsum_t astat_abd_chunk_waste_size; 695 696 hrtime_t arc_growtime; 697 list_t arc_prune_list; 698 kmutex_t arc_prune_mtx; 699 taskq_t *arc_prune_taskq; 700 701 #define GHOST_STATE(state) \ 702 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 703 (state) == arc_l2c_only) 704 705 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 706 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 707 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 708 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 709 #define HDR_PRESCIENT_PREFETCH(hdr) \ 710 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) 711 #define HDR_COMPRESSION_ENABLED(hdr) \ 712 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) 713 714 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 715 #define HDR_L2_READING(hdr) \ 716 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 717 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 718 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 719 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 720 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 721 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED) 722 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH) 723 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) 724 725 #define HDR_ISTYPE_METADATA(hdr) \ 726 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 727 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 728 729 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 730 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 731 #define HDR_HAS_RABD(hdr) \ 732 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \ 733 (hdr)->b_crypt_hdr.b_rabd != NULL) 734 #define HDR_ENCRYPTED(hdr) \ 735 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 736 #define HDR_AUTHENTICATED(hdr) \ 737 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 738 739 /* For storing compression mode in b_flags */ 740 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) 741 742 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ 743 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) 744 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ 745 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); 746 747 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) 748 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED) 749 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED) 750 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED) 751 752 /* 753 * Other sizes 754 */ 755 756 #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 757 #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr)) 758 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 759 760 /* 761 * Hash table routines 762 */ 763 764 #define HT_LOCK_ALIGN 64 765 #define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN))) 766 767 struct ht_lock { 768 kmutex_t ht_lock; 769 #ifdef _KERNEL 770 unsigned char pad[HT_LOCK_PAD]; 771 #endif 772 }; 773 774 #define BUF_LOCKS 8192 775 typedef struct buf_hash_table { 776 uint64_t ht_mask; 777 arc_buf_hdr_t **ht_table; 778 struct ht_lock ht_locks[BUF_LOCKS]; 779 } buf_hash_table_t; 780 781 static buf_hash_table_t buf_hash_table; 782 783 #define BUF_HASH_INDEX(spa, dva, birth) \ 784 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 785 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 786 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 787 #define HDR_LOCK(hdr) \ 788 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 789 790 uint64_t zfs_crc64_table[256]; 791 792 /* 793 * Level 2 ARC 794 */ 795 796 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 797 #define L2ARC_HEADROOM 2 /* num of writes */ 798 799 /* 800 * If we discover during ARC scan any buffers to be compressed, we boost 801 * our headroom for the next scanning cycle by this percentage multiple. 802 */ 803 #define L2ARC_HEADROOM_BOOST 200 804 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 805 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 806 807 /* 808 * We can feed L2ARC from two states of ARC buffers, mru and mfu, 809 * and each of the state has two types: data and metadata. 810 */ 811 #define L2ARC_FEED_TYPES 4 812 813 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 814 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 815 816 /* L2ARC Performance Tunables */ 817 unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */ 818 unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */ 819 unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */ 820 unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 821 unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 822 unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */ 823 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 824 int l2arc_feed_again = B_TRUE; /* turbo warmup */ 825 int l2arc_norw = B_FALSE; /* no reads during writes */ 826 int l2arc_meta_percent = 33; /* limit on headers size */ 827 828 /* 829 * L2ARC Internals 830 */ 831 static list_t L2ARC_dev_list; /* device list */ 832 static list_t *l2arc_dev_list; /* device list pointer */ 833 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 834 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 835 static list_t L2ARC_free_on_write; /* free after write buf list */ 836 static list_t *l2arc_free_on_write; /* free after write list ptr */ 837 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 838 static uint64_t l2arc_ndev; /* number of devices */ 839 840 typedef struct l2arc_read_callback { 841 arc_buf_hdr_t *l2rcb_hdr; /* read header */ 842 blkptr_t l2rcb_bp; /* original blkptr */ 843 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 844 int l2rcb_flags; /* original flags */ 845 abd_t *l2rcb_abd; /* temporary buffer */ 846 } l2arc_read_callback_t; 847 848 typedef struct l2arc_data_free { 849 /* protected by l2arc_free_on_write_mtx */ 850 abd_t *l2df_abd; 851 size_t l2df_size; 852 arc_buf_contents_t l2df_type; 853 list_node_t l2df_list_node; 854 } l2arc_data_free_t; 855 856 typedef enum arc_fill_flags { 857 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */ 858 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */ 859 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */ 860 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */ 861 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */ 862 } arc_fill_flags_t; 863 864 static kmutex_t l2arc_feed_thr_lock; 865 static kcondvar_t l2arc_feed_thr_cv; 866 static uint8_t l2arc_thread_exit; 867 868 static kmutex_t l2arc_rebuild_thr_lock; 869 static kcondvar_t l2arc_rebuild_thr_cv; 870 871 enum arc_hdr_alloc_flags { 872 ARC_HDR_ALLOC_RDATA = 0x1, 873 ARC_HDR_DO_ADAPT = 0x2, 874 }; 875 876 877 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *, boolean_t); 878 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *); 879 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *, boolean_t); 880 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *); 881 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *); 882 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag); 883 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t); 884 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int); 885 static void arc_access(arc_buf_hdr_t *, kmutex_t *); 886 static void arc_buf_watch(arc_buf_t *); 887 888 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 889 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 890 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 891 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 892 893 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 894 static void l2arc_read_done(zio_t *); 895 static void l2arc_do_free_on_write(void); 896 897 /* 898 * L2ARC TRIM 899 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of 900 * the current write size (l2arc_write_max) we should TRIM if we 901 * have filled the device. It is defined as a percentage of the 902 * write size. If set to 100 we trim twice the space required to 903 * accommodate upcoming writes. A minimum of 64MB will be trimmed. 904 * It also enables TRIM of the whole L2ARC device upon creation or 905 * addition to an existing pool or if the header of the device is 906 * invalid upon importing a pool or onlining a cache device. The 907 * default is 0, which disables TRIM on L2ARC altogether as it can 908 * put significant stress on the underlying storage devices. This 909 * will vary depending of how well the specific device handles 910 * these commands. 911 */ 912 unsigned long l2arc_trim_ahead = 0; 913 914 /* 915 * Performance tuning of L2ARC persistence: 916 * 917 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding 918 * an L2ARC device (either at pool import or later) will attempt 919 * to rebuild L2ARC buffer contents. 920 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls 921 * whether log blocks are written to the L2ARC device. If the L2ARC 922 * device is less than 1GB, the amount of data l2arc_evict() 923 * evicts is significant compared to the amount of restored L2ARC 924 * data. In this case do not write log blocks in L2ARC in order 925 * not to waste space. 926 */ 927 int l2arc_rebuild_enabled = B_TRUE; 928 unsigned long l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024; 929 930 /* L2ARC persistence rebuild control routines. */ 931 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen); 932 static void l2arc_dev_rebuild_thread(void *arg); 933 static int l2arc_rebuild(l2arc_dev_t *dev); 934 935 /* L2ARC persistence read I/O routines. */ 936 static int l2arc_dev_hdr_read(l2arc_dev_t *dev); 937 static int l2arc_log_blk_read(l2arc_dev_t *dev, 938 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp, 939 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 940 zio_t *this_io, zio_t **next_io); 941 static zio_t *l2arc_log_blk_fetch(vdev_t *vd, 942 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb); 943 static void l2arc_log_blk_fetch_abort(zio_t *zio); 944 945 /* L2ARC persistence block restoration routines. */ 946 static void l2arc_log_blk_restore(l2arc_dev_t *dev, 947 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize, uint64_t lb_daddr); 948 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, 949 l2arc_dev_t *dev); 950 951 /* L2ARC persistence write I/O routines. */ 952 static void l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, 953 l2arc_write_callback_t *cb); 954 955 /* L2ARC persistence auxiliary routines. */ 956 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev, 957 const l2arc_log_blkptr_t *lbp); 958 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev, 959 const arc_buf_hdr_t *ab); 960 boolean_t l2arc_range_check_overlap(uint64_t bottom, 961 uint64_t top, uint64_t check); 962 static void l2arc_blk_fetch_done(zio_t *zio); 963 static inline uint64_t 964 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev); 965 966 /* 967 * We use Cityhash for this. It's fast, and has good hash properties without 968 * requiring any large static buffers. 969 */ 970 static uint64_t 971 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 972 { 973 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth)); 974 } 975 976 #define HDR_EMPTY(hdr) \ 977 ((hdr)->b_dva.dva_word[0] == 0 && \ 978 (hdr)->b_dva.dva_word[1] == 0) 979 980 #define HDR_EMPTY_OR_LOCKED(hdr) \ 981 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr))) 982 983 #define HDR_EQUAL(spa, dva, birth, hdr) \ 984 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 985 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 986 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) 987 988 static void 989 buf_discard_identity(arc_buf_hdr_t *hdr) 990 { 991 hdr->b_dva.dva_word[0] = 0; 992 hdr->b_dva.dva_word[1] = 0; 993 hdr->b_birth = 0; 994 } 995 996 static arc_buf_hdr_t * 997 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 998 { 999 const dva_t *dva = BP_IDENTITY(bp); 1000 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 1001 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 1002 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1003 arc_buf_hdr_t *hdr; 1004 1005 mutex_enter(hash_lock); 1006 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 1007 hdr = hdr->b_hash_next) { 1008 if (HDR_EQUAL(spa, dva, birth, hdr)) { 1009 *lockp = hash_lock; 1010 return (hdr); 1011 } 1012 } 1013 mutex_exit(hash_lock); 1014 *lockp = NULL; 1015 return (NULL); 1016 } 1017 1018 /* 1019 * Insert an entry into the hash table. If there is already an element 1020 * equal to elem in the hash table, then the already existing element 1021 * will be returned and the new element will not be inserted. 1022 * Otherwise returns NULL. 1023 * If lockp == NULL, the caller is assumed to already hold the hash lock. 1024 */ 1025 static arc_buf_hdr_t * 1026 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 1027 { 1028 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1029 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1030 arc_buf_hdr_t *fhdr; 1031 uint32_t i; 1032 1033 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 1034 ASSERT(hdr->b_birth != 0); 1035 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1036 1037 if (lockp != NULL) { 1038 *lockp = hash_lock; 1039 mutex_enter(hash_lock); 1040 } else { 1041 ASSERT(MUTEX_HELD(hash_lock)); 1042 } 1043 1044 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 1045 fhdr = fhdr->b_hash_next, i++) { 1046 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 1047 return (fhdr); 1048 } 1049 1050 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 1051 buf_hash_table.ht_table[idx] = hdr; 1052 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1053 1054 /* collect some hash table performance data */ 1055 if (i > 0) { 1056 ARCSTAT_BUMP(arcstat_hash_collisions); 1057 if (i == 1) 1058 ARCSTAT_BUMP(arcstat_hash_chains); 1059 1060 ARCSTAT_MAX(arcstat_hash_chain_max, i); 1061 } 1062 1063 ARCSTAT_BUMP(arcstat_hash_elements); 1064 ARCSTAT_MAXSTAT(arcstat_hash_elements); 1065 1066 return (NULL); 1067 } 1068 1069 static void 1070 buf_hash_remove(arc_buf_hdr_t *hdr) 1071 { 1072 arc_buf_hdr_t *fhdr, **hdrp; 1073 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1074 1075 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 1076 ASSERT(HDR_IN_HASH_TABLE(hdr)); 1077 1078 hdrp = &buf_hash_table.ht_table[idx]; 1079 while ((fhdr = *hdrp) != hdr) { 1080 ASSERT3P(fhdr, !=, NULL); 1081 hdrp = &fhdr->b_hash_next; 1082 } 1083 *hdrp = hdr->b_hash_next; 1084 hdr->b_hash_next = NULL; 1085 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1086 1087 /* collect some hash table performance data */ 1088 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 1089 1090 if (buf_hash_table.ht_table[idx] && 1091 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 1092 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 1093 } 1094 1095 /* 1096 * Global data structures and functions for the buf kmem cache. 1097 */ 1098 1099 static kmem_cache_t *hdr_full_cache; 1100 static kmem_cache_t *hdr_full_crypt_cache; 1101 static kmem_cache_t *hdr_l2only_cache; 1102 static kmem_cache_t *buf_cache; 1103 1104 static void 1105 buf_fini(void) 1106 { 1107 int i; 1108 1109 #if defined(_KERNEL) 1110 /* 1111 * Large allocations which do not require contiguous pages 1112 * should be using vmem_free() in the linux kernel\ 1113 */ 1114 vmem_free(buf_hash_table.ht_table, 1115 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1116 #else 1117 kmem_free(buf_hash_table.ht_table, 1118 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1119 #endif 1120 for (i = 0; i < BUF_LOCKS; i++) 1121 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 1122 kmem_cache_destroy(hdr_full_cache); 1123 kmem_cache_destroy(hdr_full_crypt_cache); 1124 kmem_cache_destroy(hdr_l2only_cache); 1125 kmem_cache_destroy(buf_cache); 1126 } 1127 1128 /* 1129 * Constructor callback - called when the cache is empty 1130 * and a new buf is requested. 1131 */ 1132 /* ARGSUSED */ 1133 static int 1134 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1135 { 1136 arc_buf_hdr_t *hdr = vbuf; 1137 1138 bzero(hdr, HDR_FULL_SIZE); 1139 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 1140 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL); 1141 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt); 1142 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1143 list_link_init(&hdr->b_l1hdr.b_arc_node); 1144 list_link_init(&hdr->b_l2hdr.b_l2node); 1145 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1146 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1147 1148 return (0); 1149 } 1150 1151 /* ARGSUSED */ 1152 static int 1153 hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag) 1154 { 1155 arc_buf_hdr_t *hdr = vbuf; 1156 1157 hdr_full_cons(vbuf, unused, kmflag); 1158 bzero(&hdr->b_crypt_hdr, sizeof (hdr->b_crypt_hdr)); 1159 arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1160 1161 return (0); 1162 } 1163 1164 /* ARGSUSED */ 1165 static int 1166 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1167 { 1168 arc_buf_hdr_t *hdr = vbuf; 1169 1170 bzero(hdr, HDR_L2ONLY_SIZE); 1171 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1172 1173 return (0); 1174 } 1175 1176 /* ARGSUSED */ 1177 static int 1178 buf_cons(void *vbuf, void *unused, int kmflag) 1179 { 1180 arc_buf_t *buf = vbuf; 1181 1182 bzero(buf, sizeof (arc_buf_t)); 1183 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 1184 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1185 1186 return (0); 1187 } 1188 1189 /* 1190 * Destructor callback - called when a cached buf is 1191 * no longer required. 1192 */ 1193 /* ARGSUSED */ 1194 static void 1195 hdr_full_dest(void *vbuf, void *unused) 1196 { 1197 arc_buf_hdr_t *hdr = vbuf; 1198 1199 ASSERT(HDR_EMPTY(hdr)); 1200 cv_destroy(&hdr->b_l1hdr.b_cv); 1201 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1202 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1203 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1204 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1205 } 1206 1207 /* ARGSUSED */ 1208 static void 1209 hdr_full_crypt_dest(void *vbuf, void *unused) 1210 { 1211 arc_buf_hdr_t *hdr = vbuf; 1212 1213 hdr_full_dest(vbuf, unused); 1214 arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1215 } 1216 1217 /* ARGSUSED */ 1218 static void 1219 hdr_l2only_dest(void *vbuf, void *unused) 1220 { 1221 arc_buf_hdr_t *hdr __maybe_unused = vbuf; 1222 1223 ASSERT(HDR_EMPTY(hdr)); 1224 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1225 } 1226 1227 /* ARGSUSED */ 1228 static void 1229 buf_dest(void *vbuf, void *unused) 1230 { 1231 arc_buf_t *buf = vbuf; 1232 1233 mutex_destroy(&buf->b_evict_lock); 1234 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1235 } 1236 1237 static void 1238 buf_init(void) 1239 { 1240 uint64_t *ct = NULL; 1241 uint64_t hsize = 1ULL << 12; 1242 int i, j; 1243 1244 /* 1245 * The hash table is big enough to fill all of physical memory 1246 * with an average block size of zfs_arc_average_blocksize (default 8K). 1247 * By default, the table will take up 1248 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1249 */ 1250 while (hsize * zfs_arc_average_blocksize < arc_all_memory()) 1251 hsize <<= 1; 1252 retry: 1253 buf_hash_table.ht_mask = hsize - 1; 1254 #if defined(_KERNEL) 1255 /* 1256 * Large allocations which do not require contiguous pages 1257 * should be using vmem_alloc() in the linux kernel 1258 */ 1259 buf_hash_table.ht_table = 1260 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP); 1261 #else 1262 buf_hash_table.ht_table = 1263 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1264 #endif 1265 if (buf_hash_table.ht_table == NULL) { 1266 ASSERT(hsize > (1ULL << 8)); 1267 hsize >>= 1; 1268 goto retry; 1269 } 1270 1271 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1272 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, 0); 1273 hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt", 1274 HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest, 1275 NULL, NULL, NULL, 0); 1276 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1277 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL, 1278 NULL, NULL, 0); 1279 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1280 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1281 1282 for (i = 0; i < 256; i++) 1283 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1284 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1285 1286 for (i = 0; i < BUF_LOCKS; i++) { 1287 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 1288 NULL, MUTEX_DEFAULT, NULL); 1289 } 1290 } 1291 1292 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1293 1294 /* 1295 * This is the size that the buf occupies in memory. If the buf is compressed, 1296 * it will correspond to the compressed size. You should use this method of 1297 * getting the buf size unless you explicitly need the logical size. 1298 */ 1299 uint64_t 1300 arc_buf_size(arc_buf_t *buf) 1301 { 1302 return (ARC_BUF_COMPRESSED(buf) ? 1303 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr)); 1304 } 1305 1306 uint64_t 1307 arc_buf_lsize(arc_buf_t *buf) 1308 { 1309 return (HDR_GET_LSIZE(buf->b_hdr)); 1310 } 1311 1312 /* 1313 * This function will return B_TRUE if the buffer is encrypted in memory. 1314 * This buffer can be decrypted by calling arc_untransform(). 1315 */ 1316 boolean_t 1317 arc_is_encrypted(arc_buf_t *buf) 1318 { 1319 return (ARC_BUF_ENCRYPTED(buf) != 0); 1320 } 1321 1322 /* 1323 * Returns B_TRUE if the buffer represents data that has not had its MAC 1324 * verified yet. 1325 */ 1326 boolean_t 1327 arc_is_unauthenticated(arc_buf_t *buf) 1328 { 1329 return (HDR_NOAUTH(buf->b_hdr) != 0); 1330 } 1331 1332 void 1333 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt, 1334 uint8_t *iv, uint8_t *mac) 1335 { 1336 arc_buf_hdr_t *hdr = buf->b_hdr; 1337 1338 ASSERT(HDR_PROTECTED(hdr)); 1339 1340 bcopy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN); 1341 bcopy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN); 1342 bcopy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN); 1343 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 1344 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 1345 } 1346 1347 /* 1348 * Indicates how this buffer is compressed in memory. If it is not compressed 1349 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with 1350 * arc_untransform() as long as it is also unencrypted. 1351 */ 1352 enum zio_compress 1353 arc_get_compression(arc_buf_t *buf) 1354 { 1355 return (ARC_BUF_COMPRESSED(buf) ? 1356 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF); 1357 } 1358 1359 /* 1360 * Return the compression algorithm used to store this data in the ARC. If ARC 1361 * compression is enabled or this is an encrypted block, this will be the same 1362 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF. 1363 */ 1364 static inline enum zio_compress 1365 arc_hdr_get_compress(arc_buf_hdr_t *hdr) 1366 { 1367 return (HDR_COMPRESSION_ENABLED(hdr) ? 1368 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF); 1369 } 1370 1371 uint8_t 1372 arc_get_complevel(arc_buf_t *buf) 1373 { 1374 return (buf->b_hdr->b_complevel); 1375 } 1376 1377 static inline boolean_t 1378 arc_buf_is_shared(arc_buf_t *buf) 1379 { 1380 boolean_t shared = (buf->b_data != NULL && 1381 buf->b_hdr->b_l1hdr.b_pabd != NULL && 1382 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) && 1383 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd)); 1384 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); 1385 IMPLY(shared, ARC_BUF_SHARED(buf)); 1386 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf)); 1387 1388 /* 1389 * It would be nice to assert arc_can_share() too, but the "hdr isn't 1390 * already being shared" requirement prevents us from doing that. 1391 */ 1392 1393 return (shared); 1394 } 1395 1396 /* 1397 * Free the checksum associated with this header. If there is no checksum, this 1398 * is a no-op. 1399 */ 1400 static inline void 1401 arc_cksum_free(arc_buf_hdr_t *hdr) 1402 { 1403 ASSERT(HDR_HAS_L1HDR(hdr)); 1404 1405 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1406 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1407 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); 1408 hdr->b_l1hdr.b_freeze_cksum = NULL; 1409 } 1410 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1411 } 1412 1413 /* 1414 * Return true iff at least one of the bufs on hdr is not compressed. 1415 * Encrypted buffers count as compressed. 1416 */ 1417 static boolean_t 1418 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr) 1419 { 1420 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr)); 1421 1422 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) { 1423 if (!ARC_BUF_COMPRESSED(b)) { 1424 return (B_TRUE); 1425 } 1426 } 1427 return (B_FALSE); 1428 } 1429 1430 1431 /* 1432 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data 1433 * matches the checksum that is stored in the hdr. If there is no checksum, 1434 * or if the buf is compressed, this is a no-op. 1435 */ 1436 static void 1437 arc_cksum_verify(arc_buf_t *buf) 1438 { 1439 arc_buf_hdr_t *hdr = buf->b_hdr; 1440 zio_cksum_t zc; 1441 1442 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1443 return; 1444 1445 if (ARC_BUF_COMPRESSED(buf)) 1446 return; 1447 1448 ASSERT(HDR_HAS_L1HDR(hdr)); 1449 1450 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1451 1452 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { 1453 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1454 return; 1455 } 1456 1457 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc); 1458 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) 1459 panic("buffer modified while frozen!"); 1460 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1461 } 1462 1463 /* 1464 * This function makes the assumption that data stored in the L2ARC 1465 * will be transformed exactly as it is in the main pool. Because of 1466 * this we can verify the checksum against the reading process's bp. 1467 */ 1468 static boolean_t 1469 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) 1470 { 1471 ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); 1472 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); 1473 1474 /* 1475 * Block pointers always store the checksum for the logical data. 1476 * If the block pointer has the gang bit set, then the checksum 1477 * it represents is for the reconstituted data and not for an 1478 * individual gang member. The zio pipeline, however, must be able to 1479 * determine the checksum of each of the gang constituents so it 1480 * treats the checksum comparison differently than what we need 1481 * for l2arc blocks. This prevents us from using the 1482 * zio_checksum_error() interface directly. Instead we must call the 1483 * zio_checksum_error_impl() so that we can ensure the checksum is 1484 * generated using the correct checksum algorithm and accounts for the 1485 * logical I/O size and not just a gang fragment. 1486 */ 1487 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp, 1488 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size, 1489 zio->io_offset, NULL) == 0); 1490 } 1491 1492 /* 1493 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a 1494 * checksum and attaches it to the buf's hdr so that we can ensure that the buf 1495 * isn't modified later on. If buf is compressed or there is already a checksum 1496 * on the hdr, this is a no-op (we only checksum uncompressed bufs). 1497 */ 1498 static void 1499 arc_cksum_compute(arc_buf_t *buf) 1500 { 1501 arc_buf_hdr_t *hdr = buf->b_hdr; 1502 1503 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1504 return; 1505 1506 ASSERT(HDR_HAS_L1HDR(hdr)); 1507 1508 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1509 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) { 1510 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1511 return; 1512 } 1513 1514 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 1515 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1516 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), 1517 KM_SLEEP); 1518 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, 1519 hdr->b_l1hdr.b_freeze_cksum); 1520 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1521 arc_buf_watch(buf); 1522 } 1523 1524 #ifndef _KERNEL 1525 void 1526 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused) 1527 { 1528 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr); 1529 } 1530 #endif 1531 1532 /* ARGSUSED */ 1533 static void 1534 arc_buf_unwatch(arc_buf_t *buf) 1535 { 1536 #ifndef _KERNEL 1537 if (arc_watch) { 1538 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1539 PROT_READ | PROT_WRITE)); 1540 } 1541 #endif 1542 } 1543 1544 /* ARGSUSED */ 1545 static void 1546 arc_buf_watch(arc_buf_t *buf) 1547 { 1548 #ifndef _KERNEL 1549 if (arc_watch) 1550 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1551 PROT_READ)); 1552 #endif 1553 } 1554 1555 static arc_buf_contents_t 1556 arc_buf_type(arc_buf_hdr_t *hdr) 1557 { 1558 arc_buf_contents_t type; 1559 if (HDR_ISTYPE_METADATA(hdr)) { 1560 type = ARC_BUFC_METADATA; 1561 } else { 1562 type = ARC_BUFC_DATA; 1563 } 1564 VERIFY3U(hdr->b_type, ==, type); 1565 return (type); 1566 } 1567 1568 boolean_t 1569 arc_is_metadata(arc_buf_t *buf) 1570 { 1571 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0); 1572 } 1573 1574 static uint32_t 1575 arc_bufc_to_flags(arc_buf_contents_t type) 1576 { 1577 switch (type) { 1578 case ARC_BUFC_DATA: 1579 /* metadata field is 0 if buffer contains normal data */ 1580 return (0); 1581 case ARC_BUFC_METADATA: 1582 return (ARC_FLAG_BUFC_METADATA); 1583 default: 1584 break; 1585 } 1586 panic("undefined ARC buffer type!"); 1587 return ((uint32_t)-1); 1588 } 1589 1590 void 1591 arc_buf_thaw(arc_buf_t *buf) 1592 { 1593 arc_buf_hdr_t *hdr = buf->b_hdr; 1594 1595 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 1596 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1597 1598 arc_cksum_verify(buf); 1599 1600 /* 1601 * Compressed buffers do not manipulate the b_freeze_cksum. 1602 */ 1603 if (ARC_BUF_COMPRESSED(buf)) 1604 return; 1605 1606 ASSERT(HDR_HAS_L1HDR(hdr)); 1607 arc_cksum_free(hdr); 1608 arc_buf_unwatch(buf); 1609 } 1610 1611 void 1612 arc_buf_freeze(arc_buf_t *buf) 1613 { 1614 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1615 return; 1616 1617 if (ARC_BUF_COMPRESSED(buf)) 1618 return; 1619 1620 ASSERT(HDR_HAS_L1HDR(buf->b_hdr)); 1621 arc_cksum_compute(buf); 1622 } 1623 1624 /* 1625 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, 1626 * the following functions should be used to ensure that the flags are 1627 * updated in a thread-safe way. When manipulating the flags either 1628 * the hash_lock must be held or the hdr must be undiscoverable. This 1629 * ensures that we're not racing with any other threads when updating 1630 * the flags. 1631 */ 1632 static inline void 1633 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1634 { 1635 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1636 hdr->b_flags |= flags; 1637 } 1638 1639 static inline void 1640 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1641 { 1642 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1643 hdr->b_flags &= ~flags; 1644 } 1645 1646 /* 1647 * Setting the compression bits in the arc_buf_hdr_t's b_flags is 1648 * done in a special way since we have to clear and set bits 1649 * at the same time. Consumers that wish to set the compression bits 1650 * must use this function to ensure that the flags are updated in 1651 * thread-safe manner. 1652 */ 1653 static void 1654 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) 1655 { 1656 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1657 1658 /* 1659 * Holes and embedded blocks will always have a psize = 0 so 1660 * we ignore the compression of the blkptr and set the 1661 * want to uncompress them. Mark them as uncompressed. 1662 */ 1663 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { 1664 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1665 ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); 1666 } else { 1667 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1668 ASSERT(HDR_COMPRESSION_ENABLED(hdr)); 1669 } 1670 1671 HDR_SET_COMPRESS(hdr, cmp); 1672 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); 1673 } 1674 1675 /* 1676 * Looks for another buf on the same hdr which has the data decompressed, copies 1677 * from it, and returns true. If no such buf exists, returns false. 1678 */ 1679 static boolean_t 1680 arc_buf_try_copy_decompressed_data(arc_buf_t *buf) 1681 { 1682 arc_buf_hdr_t *hdr = buf->b_hdr; 1683 boolean_t copied = B_FALSE; 1684 1685 ASSERT(HDR_HAS_L1HDR(hdr)); 1686 ASSERT3P(buf->b_data, !=, NULL); 1687 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1688 1689 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL; 1690 from = from->b_next) { 1691 /* can't use our own data buffer */ 1692 if (from == buf) { 1693 continue; 1694 } 1695 1696 if (!ARC_BUF_COMPRESSED(from)) { 1697 bcopy(from->b_data, buf->b_data, arc_buf_size(buf)); 1698 copied = B_TRUE; 1699 break; 1700 } 1701 } 1702 1703 /* 1704 * There were no decompressed bufs, so there should not be a 1705 * checksum on the hdr either. 1706 */ 1707 if (zfs_flags & ZFS_DEBUG_MODIFY) 1708 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL); 1709 1710 return (copied); 1711 } 1712 1713 /* 1714 * Allocates an ARC buf header that's in an evicted & L2-cached state. 1715 * This is used during l2arc reconstruction to make empty ARC buffers 1716 * which circumvent the regular disk->arc->l2arc path and instead come 1717 * into being in the reverse order, i.e. l2arc->arc. 1718 */ 1719 static arc_buf_hdr_t * 1720 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev, 1721 dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth, 1722 enum zio_compress compress, uint8_t complevel, boolean_t protected, 1723 boolean_t prefetch) 1724 { 1725 arc_buf_hdr_t *hdr; 1726 1727 ASSERT(size != 0); 1728 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP); 1729 hdr->b_birth = birth; 1730 hdr->b_type = type; 1731 hdr->b_flags = 0; 1732 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR); 1733 HDR_SET_LSIZE(hdr, size); 1734 HDR_SET_PSIZE(hdr, psize); 1735 arc_hdr_set_compress(hdr, compress); 1736 hdr->b_complevel = complevel; 1737 if (protected) 1738 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 1739 if (prefetch) 1740 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 1741 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa); 1742 1743 hdr->b_dva = dva; 1744 1745 hdr->b_l2hdr.b_dev = dev; 1746 hdr->b_l2hdr.b_daddr = daddr; 1747 1748 return (hdr); 1749 } 1750 1751 /* 1752 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t. 1753 */ 1754 static uint64_t 1755 arc_hdr_size(arc_buf_hdr_t *hdr) 1756 { 1757 uint64_t size; 1758 1759 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 1760 HDR_GET_PSIZE(hdr) > 0) { 1761 size = HDR_GET_PSIZE(hdr); 1762 } else { 1763 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); 1764 size = HDR_GET_LSIZE(hdr); 1765 } 1766 return (size); 1767 } 1768 1769 static int 1770 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj) 1771 { 1772 int ret; 1773 uint64_t csize; 1774 uint64_t lsize = HDR_GET_LSIZE(hdr); 1775 uint64_t psize = HDR_GET_PSIZE(hdr); 1776 void *tmpbuf = NULL; 1777 abd_t *abd = hdr->b_l1hdr.b_pabd; 1778 1779 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1780 ASSERT(HDR_AUTHENTICATED(hdr)); 1781 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1782 1783 /* 1784 * The MAC is calculated on the compressed data that is stored on disk. 1785 * However, if compressed arc is disabled we will only have the 1786 * decompressed data available to us now. Compress it into a temporary 1787 * abd so we can verify the MAC. The performance overhead of this will 1788 * be relatively low, since most objects in an encrypted objset will 1789 * be encrypted (instead of authenticated) anyway. 1790 */ 1791 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1792 !HDR_COMPRESSION_ENABLED(hdr)) { 1793 tmpbuf = zio_buf_alloc(lsize); 1794 abd = abd_get_from_buf(tmpbuf, lsize); 1795 abd_take_ownership_of_buf(abd, B_TRUE); 1796 csize = zio_compress_data(HDR_GET_COMPRESS(hdr), 1797 hdr->b_l1hdr.b_pabd, tmpbuf, lsize, hdr->b_complevel); 1798 ASSERT3U(csize, <=, psize); 1799 abd_zero_off(abd, csize, psize - csize); 1800 } 1801 1802 /* 1803 * Authentication is best effort. We authenticate whenever the key is 1804 * available. If we succeed we clear ARC_FLAG_NOAUTH. 1805 */ 1806 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) { 1807 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1808 ASSERT3U(lsize, ==, psize); 1809 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd, 1810 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1811 } else { 1812 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize, 1813 hdr->b_crypt_hdr.b_mac); 1814 } 1815 1816 if (ret == 0) 1817 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH); 1818 else if (ret != ENOENT) 1819 goto error; 1820 1821 if (tmpbuf != NULL) 1822 abd_free(abd); 1823 1824 return (0); 1825 1826 error: 1827 if (tmpbuf != NULL) 1828 abd_free(abd); 1829 1830 return (ret); 1831 } 1832 1833 /* 1834 * This function will take a header that only has raw encrypted data in 1835 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in 1836 * b_l1hdr.b_pabd. If designated in the header flags, this function will 1837 * also decompress the data. 1838 */ 1839 static int 1840 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb) 1841 { 1842 int ret; 1843 abd_t *cabd = NULL; 1844 void *tmp = NULL; 1845 boolean_t no_crypt = B_FALSE; 1846 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1847 1848 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1849 ASSERT(HDR_ENCRYPTED(hdr)); 1850 1851 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 1852 1853 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot, 1854 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv, 1855 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd, 1856 hdr->b_crypt_hdr.b_rabd, &no_crypt); 1857 if (ret != 0) 1858 goto error; 1859 1860 if (no_crypt) { 1861 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd, 1862 HDR_GET_PSIZE(hdr)); 1863 } 1864 1865 /* 1866 * If this header has disabled arc compression but the b_pabd is 1867 * compressed after decrypting it, we need to decompress the newly 1868 * decrypted data. 1869 */ 1870 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1871 !HDR_COMPRESSION_ENABLED(hdr)) { 1872 /* 1873 * We want to make sure that we are correctly honoring the 1874 * zfs_abd_scatter_enabled setting, so we allocate an abd here 1875 * and then loan a buffer from it, rather than allocating a 1876 * linear buffer and wrapping it in an abd later. 1877 */ 1878 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, B_TRUE); 1879 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 1880 1881 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 1882 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 1883 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 1884 if (ret != 0) { 1885 abd_return_buf(cabd, tmp, arc_hdr_size(hdr)); 1886 goto error; 1887 } 1888 1889 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 1890 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 1891 arc_hdr_size(hdr), hdr); 1892 hdr->b_l1hdr.b_pabd = cabd; 1893 } 1894 1895 return (0); 1896 1897 error: 1898 arc_hdr_free_abd(hdr, B_FALSE); 1899 if (cabd != NULL) 1900 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr); 1901 1902 return (ret); 1903 } 1904 1905 /* 1906 * This function is called during arc_buf_fill() to prepare the header's 1907 * abd plaintext pointer for use. This involves authenticated protected 1908 * data and decrypting encrypted data into the plaintext abd. 1909 */ 1910 static int 1911 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa, 1912 const zbookmark_phys_t *zb, boolean_t noauth) 1913 { 1914 int ret; 1915 1916 ASSERT(HDR_PROTECTED(hdr)); 1917 1918 if (hash_lock != NULL) 1919 mutex_enter(hash_lock); 1920 1921 if (HDR_NOAUTH(hdr) && !noauth) { 1922 /* 1923 * The caller requested authenticated data but our data has 1924 * not been authenticated yet. Verify the MAC now if we can. 1925 */ 1926 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset); 1927 if (ret != 0) 1928 goto error; 1929 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) { 1930 /* 1931 * If we only have the encrypted version of the data, but the 1932 * unencrypted version was requested we take this opportunity 1933 * to store the decrypted version in the header for future use. 1934 */ 1935 ret = arc_hdr_decrypt(hdr, spa, zb); 1936 if (ret != 0) 1937 goto error; 1938 } 1939 1940 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1941 1942 if (hash_lock != NULL) 1943 mutex_exit(hash_lock); 1944 1945 return (0); 1946 1947 error: 1948 if (hash_lock != NULL) 1949 mutex_exit(hash_lock); 1950 1951 return (ret); 1952 } 1953 1954 /* 1955 * This function is used by the dbuf code to decrypt bonus buffers in place. 1956 * The dbuf code itself doesn't have any locking for decrypting a shared dnode 1957 * block, so we use the hash lock here to protect against concurrent calls to 1958 * arc_buf_fill(). 1959 */ 1960 static void 1961 arc_buf_untransform_in_place(arc_buf_t *buf, kmutex_t *hash_lock) 1962 { 1963 arc_buf_hdr_t *hdr = buf->b_hdr; 1964 1965 ASSERT(HDR_ENCRYPTED(hdr)); 1966 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 1967 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1968 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1969 1970 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data, 1971 arc_buf_size(buf)); 1972 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 1973 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 1974 hdr->b_crypt_hdr.b_ebufcnt -= 1; 1975 } 1976 1977 /* 1978 * Given a buf that has a data buffer attached to it, this function will 1979 * efficiently fill the buf with data of the specified compression setting from 1980 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr 1981 * are already sharing a data buf, no copy is performed. 1982 * 1983 * If the buf is marked as compressed but uncompressed data was requested, this 1984 * will allocate a new data buffer for the buf, remove that flag, and fill the 1985 * buf with uncompressed data. You can't request a compressed buf on a hdr with 1986 * uncompressed data, and (since we haven't added support for it yet) if you 1987 * want compressed data your buf must already be marked as compressed and have 1988 * the correct-sized data buffer. 1989 */ 1990 static int 1991 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 1992 arc_fill_flags_t flags) 1993 { 1994 int error = 0; 1995 arc_buf_hdr_t *hdr = buf->b_hdr; 1996 boolean_t hdr_compressed = 1997 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 1998 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0; 1999 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0; 2000 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; 2001 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr); 2002 2003 ASSERT3P(buf->b_data, !=, NULL); 2004 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf)); 2005 IMPLY(compressed, ARC_BUF_COMPRESSED(buf)); 2006 IMPLY(encrypted, HDR_ENCRYPTED(hdr)); 2007 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf)); 2008 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf)); 2009 IMPLY(encrypted, !ARC_BUF_SHARED(buf)); 2010 2011 /* 2012 * If the caller wanted encrypted data we just need to copy it from 2013 * b_rabd and potentially byteswap it. We won't be able to do any 2014 * further transforms on it. 2015 */ 2016 if (encrypted) { 2017 ASSERT(HDR_HAS_RABD(hdr)); 2018 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd, 2019 HDR_GET_PSIZE(hdr)); 2020 goto byteswap; 2021 } 2022 2023 /* 2024 * Adjust encrypted and authenticated headers to accommodate 2025 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are 2026 * allowed to fail decryption due to keys not being loaded 2027 * without being marked as an IO error. 2028 */ 2029 if (HDR_PROTECTED(hdr)) { 2030 error = arc_fill_hdr_crypt(hdr, hash_lock, spa, 2031 zb, !!(flags & ARC_FILL_NOAUTH)); 2032 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) { 2033 return (error); 2034 } else if (error != 0) { 2035 if (hash_lock != NULL) 2036 mutex_enter(hash_lock); 2037 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2038 if (hash_lock != NULL) 2039 mutex_exit(hash_lock); 2040 return (error); 2041 } 2042 } 2043 2044 /* 2045 * There is a special case here for dnode blocks which are 2046 * decrypting their bonus buffers. These blocks may request to 2047 * be decrypted in-place. This is necessary because there may 2048 * be many dnodes pointing into this buffer and there is 2049 * currently no method to synchronize replacing the backing 2050 * b_data buffer and updating all of the pointers. Here we use 2051 * the hash lock to ensure there are no races. If the need 2052 * arises for other types to be decrypted in-place, they must 2053 * add handling here as well. 2054 */ 2055 if ((flags & ARC_FILL_IN_PLACE) != 0) { 2056 ASSERT(!hdr_compressed); 2057 ASSERT(!compressed); 2058 ASSERT(!encrypted); 2059 2060 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) { 2061 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 2062 2063 if (hash_lock != NULL) 2064 mutex_enter(hash_lock); 2065 arc_buf_untransform_in_place(buf, hash_lock); 2066 if (hash_lock != NULL) 2067 mutex_exit(hash_lock); 2068 2069 /* Compute the hdr's checksum if necessary */ 2070 arc_cksum_compute(buf); 2071 } 2072 2073 return (0); 2074 } 2075 2076 if (hdr_compressed == compressed) { 2077 if (!arc_buf_is_shared(buf)) { 2078 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd, 2079 arc_buf_size(buf)); 2080 } 2081 } else { 2082 ASSERT(hdr_compressed); 2083 ASSERT(!compressed); 2084 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr)); 2085 2086 /* 2087 * If the buf is sharing its data with the hdr, unlink it and 2088 * allocate a new data buffer for the buf. 2089 */ 2090 if (arc_buf_is_shared(buf)) { 2091 ASSERT(ARC_BUF_COMPRESSED(buf)); 2092 2093 /* We need to give the buf its own b_data */ 2094 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 2095 buf->b_data = 2096 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2097 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2098 2099 /* Previously overhead was 0; just add new overhead */ 2100 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 2101 } else if (ARC_BUF_COMPRESSED(buf)) { 2102 /* We need to reallocate the buf's b_data */ 2103 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr), 2104 buf); 2105 buf->b_data = 2106 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2107 2108 /* We increased the size of b_data; update overhead */ 2109 ARCSTAT_INCR(arcstat_overhead_size, 2110 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr)); 2111 } 2112 2113 /* 2114 * Regardless of the buf's previous compression settings, it 2115 * should not be compressed at the end of this function. 2116 */ 2117 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 2118 2119 /* 2120 * Try copying the data from another buf which already has a 2121 * decompressed version. If that's not possible, it's time to 2122 * bite the bullet and decompress the data from the hdr. 2123 */ 2124 if (arc_buf_try_copy_decompressed_data(buf)) { 2125 /* Skip byteswapping and checksumming (already done) */ 2126 return (0); 2127 } else { 2128 error = zio_decompress_data(HDR_GET_COMPRESS(hdr), 2129 hdr->b_l1hdr.b_pabd, buf->b_data, 2130 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr), 2131 &hdr->b_complevel); 2132 2133 /* 2134 * Absent hardware errors or software bugs, this should 2135 * be impossible, but log it anyway so we can debug it. 2136 */ 2137 if (error != 0) { 2138 zfs_dbgmsg( 2139 "hdr %px, compress %d, psize %d, lsize %d", 2140 hdr, arc_hdr_get_compress(hdr), 2141 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 2142 if (hash_lock != NULL) 2143 mutex_enter(hash_lock); 2144 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2145 if (hash_lock != NULL) 2146 mutex_exit(hash_lock); 2147 return (SET_ERROR(EIO)); 2148 } 2149 } 2150 } 2151 2152 byteswap: 2153 /* Byteswap the buf's data if necessary */ 2154 if (bswap != DMU_BSWAP_NUMFUNCS) { 2155 ASSERT(!HDR_SHARED_DATA(hdr)); 2156 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); 2157 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); 2158 } 2159 2160 /* Compute the hdr's checksum if necessary */ 2161 arc_cksum_compute(buf); 2162 2163 return (0); 2164 } 2165 2166 /* 2167 * If this function is being called to decrypt an encrypted buffer or verify an 2168 * authenticated one, the key must be loaded and a mapping must be made 2169 * available in the keystore via spa_keystore_create_mapping() or one of its 2170 * callers. 2171 */ 2172 int 2173 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 2174 boolean_t in_place) 2175 { 2176 int ret; 2177 arc_fill_flags_t flags = 0; 2178 2179 if (in_place) 2180 flags |= ARC_FILL_IN_PLACE; 2181 2182 ret = arc_buf_fill(buf, spa, zb, flags); 2183 if (ret == ECKSUM) { 2184 /* 2185 * Convert authentication and decryption errors to EIO 2186 * (and generate an ereport) before leaving the ARC. 2187 */ 2188 ret = SET_ERROR(EIO); 2189 spa_log_error(spa, zb); 2190 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 2191 spa, NULL, zb, NULL, 0, 0); 2192 } 2193 2194 return (ret); 2195 } 2196 2197 /* 2198 * Increment the amount of evictable space in the arc_state_t's refcount. 2199 * We account for the space used by the hdr and the arc buf individually 2200 * so that we can add and remove them from the refcount individually. 2201 */ 2202 static void 2203 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) 2204 { 2205 arc_buf_contents_t type = arc_buf_type(hdr); 2206 2207 ASSERT(HDR_HAS_L1HDR(hdr)); 2208 2209 if (GHOST_STATE(state)) { 2210 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2211 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2212 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2213 ASSERT(!HDR_HAS_RABD(hdr)); 2214 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2215 HDR_GET_LSIZE(hdr), hdr); 2216 return; 2217 } 2218 2219 ASSERT(!GHOST_STATE(state)); 2220 if (hdr->b_l1hdr.b_pabd != NULL) { 2221 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2222 arc_hdr_size(hdr), hdr); 2223 } 2224 if (HDR_HAS_RABD(hdr)) { 2225 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2226 HDR_GET_PSIZE(hdr), hdr); 2227 } 2228 2229 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2230 buf = buf->b_next) { 2231 if (arc_buf_is_shared(buf)) 2232 continue; 2233 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2234 arc_buf_size(buf), buf); 2235 } 2236 } 2237 2238 /* 2239 * Decrement the amount of evictable space in the arc_state_t's refcount. 2240 * We account for the space used by the hdr and the arc buf individually 2241 * so that we can add and remove them from the refcount individually. 2242 */ 2243 static void 2244 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) 2245 { 2246 arc_buf_contents_t type = arc_buf_type(hdr); 2247 2248 ASSERT(HDR_HAS_L1HDR(hdr)); 2249 2250 if (GHOST_STATE(state)) { 2251 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2252 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2253 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2254 ASSERT(!HDR_HAS_RABD(hdr)); 2255 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2256 HDR_GET_LSIZE(hdr), hdr); 2257 return; 2258 } 2259 2260 ASSERT(!GHOST_STATE(state)); 2261 if (hdr->b_l1hdr.b_pabd != NULL) { 2262 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2263 arc_hdr_size(hdr), hdr); 2264 } 2265 if (HDR_HAS_RABD(hdr)) { 2266 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2267 HDR_GET_PSIZE(hdr), hdr); 2268 } 2269 2270 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2271 buf = buf->b_next) { 2272 if (arc_buf_is_shared(buf)) 2273 continue; 2274 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2275 arc_buf_size(buf), buf); 2276 } 2277 } 2278 2279 /* 2280 * Add a reference to this hdr indicating that someone is actively 2281 * referencing that memory. When the refcount transitions from 0 to 1, 2282 * we remove it from the respective arc_state_t list to indicate that 2283 * it is not evictable. 2284 */ 2285 static void 2286 add_reference(arc_buf_hdr_t *hdr, void *tag) 2287 { 2288 arc_state_t *state; 2289 2290 ASSERT(HDR_HAS_L1HDR(hdr)); 2291 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) { 2292 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 2293 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2294 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2295 } 2296 2297 state = hdr->b_l1hdr.b_state; 2298 2299 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 2300 (state != arc_anon)) { 2301 /* We don't use the L2-only state list. */ 2302 if (state != arc_l2c_only) { 2303 multilist_remove(state->arcs_list[arc_buf_type(hdr)], 2304 hdr); 2305 arc_evictable_space_decrement(hdr, state); 2306 } 2307 /* remove the prefetch flag if we get a reference */ 2308 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 2309 } 2310 } 2311 2312 /* 2313 * Remove a reference from this hdr. When the reference transitions from 2314 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's 2315 * list making it eligible for eviction. 2316 */ 2317 static int 2318 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 2319 { 2320 int cnt; 2321 arc_state_t *state = hdr->b_l1hdr.b_state; 2322 2323 ASSERT(HDR_HAS_L1HDR(hdr)); 2324 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 2325 ASSERT(!GHOST_STATE(state)); 2326 2327 /* 2328 * arc_l2c_only counts as a ghost state so we don't need to explicitly 2329 * check to prevent usage of the arc_l2c_only list. 2330 */ 2331 if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) && 2332 (state != arc_anon)) { 2333 multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr); 2334 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 2335 arc_evictable_space_increment(hdr, state); 2336 } 2337 return (cnt); 2338 } 2339 2340 /* 2341 * Returns detailed information about a specific arc buffer. When the 2342 * state_index argument is set the function will calculate the arc header 2343 * list position for its arc state. Since this requires a linear traversal 2344 * callers are strongly encourage not to do this. However, it can be helpful 2345 * for targeted analysis so the functionality is provided. 2346 */ 2347 void 2348 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index) 2349 { 2350 arc_buf_hdr_t *hdr = ab->b_hdr; 2351 l1arc_buf_hdr_t *l1hdr = NULL; 2352 l2arc_buf_hdr_t *l2hdr = NULL; 2353 arc_state_t *state = NULL; 2354 2355 memset(abi, 0, sizeof (arc_buf_info_t)); 2356 2357 if (hdr == NULL) 2358 return; 2359 2360 abi->abi_flags = hdr->b_flags; 2361 2362 if (HDR_HAS_L1HDR(hdr)) { 2363 l1hdr = &hdr->b_l1hdr; 2364 state = l1hdr->b_state; 2365 } 2366 if (HDR_HAS_L2HDR(hdr)) 2367 l2hdr = &hdr->b_l2hdr; 2368 2369 if (l1hdr) { 2370 abi->abi_bufcnt = l1hdr->b_bufcnt; 2371 abi->abi_access = l1hdr->b_arc_access; 2372 abi->abi_mru_hits = l1hdr->b_mru_hits; 2373 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits; 2374 abi->abi_mfu_hits = l1hdr->b_mfu_hits; 2375 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits; 2376 abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt); 2377 } 2378 2379 if (l2hdr) { 2380 abi->abi_l2arc_dattr = l2hdr->b_daddr; 2381 abi->abi_l2arc_hits = l2hdr->b_hits; 2382 } 2383 2384 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON; 2385 abi->abi_state_contents = arc_buf_type(hdr); 2386 abi->abi_size = arc_hdr_size(hdr); 2387 } 2388 2389 /* 2390 * Move the supplied buffer to the indicated state. The hash lock 2391 * for the buffer must be held by the caller. 2392 */ 2393 static void 2394 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr, 2395 kmutex_t *hash_lock) 2396 { 2397 arc_state_t *old_state; 2398 int64_t refcnt; 2399 uint32_t bufcnt; 2400 boolean_t update_old, update_new; 2401 arc_buf_contents_t buftype = arc_buf_type(hdr); 2402 2403 /* 2404 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 2405 * in arc_read() when bringing a buffer out of the L2ARC. However, the 2406 * L1 hdr doesn't always exist when we change state to arc_anon before 2407 * destroying a header, in which case reallocating to add the L1 hdr is 2408 * pointless. 2409 */ 2410 if (HDR_HAS_L1HDR(hdr)) { 2411 old_state = hdr->b_l1hdr.b_state; 2412 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt); 2413 bufcnt = hdr->b_l1hdr.b_bufcnt; 2414 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL || 2415 HDR_HAS_RABD(hdr)); 2416 } else { 2417 old_state = arc_l2c_only; 2418 refcnt = 0; 2419 bufcnt = 0; 2420 update_old = B_FALSE; 2421 } 2422 update_new = update_old; 2423 2424 ASSERT(MUTEX_HELD(hash_lock)); 2425 ASSERT3P(new_state, !=, old_state); 2426 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0); 2427 ASSERT(old_state != arc_anon || bufcnt <= 1); 2428 2429 /* 2430 * If this buffer is evictable, transfer it from the 2431 * old state list to the new state list. 2432 */ 2433 if (refcnt == 0) { 2434 if (old_state != arc_anon && old_state != arc_l2c_only) { 2435 ASSERT(HDR_HAS_L1HDR(hdr)); 2436 multilist_remove(old_state->arcs_list[buftype], hdr); 2437 2438 if (GHOST_STATE(old_state)) { 2439 ASSERT0(bufcnt); 2440 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2441 update_old = B_TRUE; 2442 } 2443 arc_evictable_space_decrement(hdr, old_state); 2444 } 2445 if (new_state != arc_anon && new_state != arc_l2c_only) { 2446 /* 2447 * An L1 header always exists here, since if we're 2448 * moving to some L1-cached state (i.e. not l2c_only or 2449 * anonymous), we realloc the header to add an L1hdr 2450 * beforehand. 2451 */ 2452 ASSERT(HDR_HAS_L1HDR(hdr)); 2453 multilist_insert(new_state->arcs_list[buftype], hdr); 2454 2455 if (GHOST_STATE(new_state)) { 2456 ASSERT0(bufcnt); 2457 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2458 update_new = B_TRUE; 2459 } 2460 arc_evictable_space_increment(hdr, new_state); 2461 } 2462 } 2463 2464 ASSERT(!HDR_EMPTY(hdr)); 2465 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 2466 buf_hash_remove(hdr); 2467 2468 /* adjust state sizes (ignore arc_l2c_only) */ 2469 2470 if (update_new && new_state != arc_l2c_only) { 2471 ASSERT(HDR_HAS_L1HDR(hdr)); 2472 if (GHOST_STATE(new_state)) { 2473 ASSERT0(bufcnt); 2474 2475 /* 2476 * When moving a header to a ghost state, we first 2477 * remove all arc buffers. Thus, we'll have a 2478 * bufcnt of zero, and no arc buffer to use for 2479 * the reference. As a result, we use the arc 2480 * header pointer for the reference. 2481 */ 2482 (void) zfs_refcount_add_many(&new_state->arcs_size, 2483 HDR_GET_LSIZE(hdr), hdr); 2484 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2485 ASSERT(!HDR_HAS_RABD(hdr)); 2486 } else { 2487 uint32_t buffers = 0; 2488 2489 /* 2490 * Each individual buffer holds a unique reference, 2491 * thus we must remove each of these references one 2492 * at a time. 2493 */ 2494 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2495 buf = buf->b_next) { 2496 ASSERT3U(bufcnt, !=, 0); 2497 buffers++; 2498 2499 /* 2500 * When the arc_buf_t is sharing the data 2501 * block with the hdr, the owner of the 2502 * reference belongs to the hdr. Only 2503 * add to the refcount if the arc_buf_t is 2504 * not shared. 2505 */ 2506 if (arc_buf_is_shared(buf)) 2507 continue; 2508 2509 (void) zfs_refcount_add_many( 2510 &new_state->arcs_size, 2511 arc_buf_size(buf), buf); 2512 } 2513 ASSERT3U(bufcnt, ==, buffers); 2514 2515 if (hdr->b_l1hdr.b_pabd != NULL) { 2516 (void) zfs_refcount_add_many( 2517 &new_state->arcs_size, 2518 arc_hdr_size(hdr), hdr); 2519 } 2520 2521 if (HDR_HAS_RABD(hdr)) { 2522 (void) zfs_refcount_add_many( 2523 &new_state->arcs_size, 2524 HDR_GET_PSIZE(hdr), hdr); 2525 } 2526 } 2527 } 2528 2529 if (update_old && old_state != arc_l2c_only) { 2530 ASSERT(HDR_HAS_L1HDR(hdr)); 2531 if (GHOST_STATE(old_state)) { 2532 ASSERT0(bufcnt); 2533 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2534 ASSERT(!HDR_HAS_RABD(hdr)); 2535 2536 /* 2537 * When moving a header off of a ghost state, 2538 * the header will not contain any arc buffers. 2539 * We use the arc header pointer for the reference 2540 * which is exactly what we did when we put the 2541 * header on the ghost state. 2542 */ 2543 2544 (void) zfs_refcount_remove_many(&old_state->arcs_size, 2545 HDR_GET_LSIZE(hdr), hdr); 2546 } else { 2547 uint32_t buffers = 0; 2548 2549 /* 2550 * Each individual buffer holds a unique reference, 2551 * thus we must remove each of these references one 2552 * at a time. 2553 */ 2554 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2555 buf = buf->b_next) { 2556 ASSERT3U(bufcnt, !=, 0); 2557 buffers++; 2558 2559 /* 2560 * When the arc_buf_t is sharing the data 2561 * block with the hdr, the owner of the 2562 * reference belongs to the hdr. Only 2563 * add to the refcount if the arc_buf_t is 2564 * not shared. 2565 */ 2566 if (arc_buf_is_shared(buf)) 2567 continue; 2568 2569 (void) zfs_refcount_remove_many( 2570 &old_state->arcs_size, arc_buf_size(buf), 2571 buf); 2572 } 2573 ASSERT3U(bufcnt, ==, buffers); 2574 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 2575 HDR_HAS_RABD(hdr)); 2576 2577 if (hdr->b_l1hdr.b_pabd != NULL) { 2578 (void) zfs_refcount_remove_many( 2579 &old_state->arcs_size, arc_hdr_size(hdr), 2580 hdr); 2581 } 2582 2583 if (HDR_HAS_RABD(hdr)) { 2584 (void) zfs_refcount_remove_many( 2585 &old_state->arcs_size, HDR_GET_PSIZE(hdr), 2586 hdr); 2587 } 2588 } 2589 } 2590 2591 if (HDR_HAS_L1HDR(hdr)) 2592 hdr->b_l1hdr.b_state = new_state; 2593 2594 /* 2595 * L2 headers should never be on the L2 state list since they don't 2596 * have L1 headers allocated. 2597 */ 2598 ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) && 2599 multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA])); 2600 } 2601 2602 void 2603 arc_space_consume(uint64_t space, arc_space_type_t type) 2604 { 2605 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2606 2607 switch (type) { 2608 default: 2609 break; 2610 case ARC_SPACE_DATA: 2611 aggsum_add(&astat_data_size, space); 2612 break; 2613 case ARC_SPACE_META: 2614 aggsum_add(&astat_metadata_size, space); 2615 break; 2616 case ARC_SPACE_BONUS: 2617 aggsum_add(&astat_bonus_size, space); 2618 break; 2619 case ARC_SPACE_DNODE: 2620 aggsum_add(&astat_dnode_size, space); 2621 break; 2622 case ARC_SPACE_DBUF: 2623 aggsum_add(&astat_dbuf_size, space); 2624 break; 2625 case ARC_SPACE_HDRS: 2626 aggsum_add(&astat_hdr_size, space); 2627 break; 2628 case ARC_SPACE_L2HDRS: 2629 aggsum_add(&astat_l2_hdr_size, space); 2630 break; 2631 case ARC_SPACE_ABD_CHUNK_WASTE: 2632 /* 2633 * Note: this includes space wasted by all scatter ABD's, not 2634 * just those allocated by the ARC. But the vast majority of 2635 * scatter ABD's come from the ARC, because other users are 2636 * very short-lived. 2637 */ 2638 aggsum_add(&astat_abd_chunk_waste_size, space); 2639 break; 2640 } 2641 2642 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) 2643 aggsum_add(&arc_meta_used, space); 2644 2645 aggsum_add(&arc_size, space); 2646 } 2647 2648 void 2649 arc_space_return(uint64_t space, arc_space_type_t type) 2650 { 2651 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2652 2653 switch (type) { 2654 default: 2655 break; 2656 case ARC_SPACE_DATA: 2657 aggsum_add(&astat_data_size, -space); 2658 break; 2659 case ARC_SPACE_META: 2660 aggsum_add(&astat_metadata_size, -space); 2661 break; 2662 case ARC_SPACE_BONUS: 2663 aggsum_add(&astat_bonus_size, -space); 2664 break; 2665 case ARC_SPACE_DNODE: 2666 aggsum_add(&astat_dnode_size, -space); 2667 break; 2668 case ARC_SPACE_DBUF: 2669 aggsum_add(&astat_dbuf_size, -space); 2670 break; 2671 case ARC_SPACE_HDRS: 2672 aggsum_add(&astat_hdr_size, -space); 2673 break; 2674 case ARC_SPACE_L2HDRS: 2675 aggsum_add(&astat_l2_hdr_size, -space); 2676 break; 2677 case ARC_SPACE_ABD_CHUNK_WASTE: 2678 aggsum_add(&astat_abd_chunk_waste_size, -space); 2679 break; 2680 } 2681 2682 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) { 2683 ASSERT(aggsum_compare(&arc_meta_used, space) >= 0); 2684 /* 2685 * We use the upper bound here rather than the precise value 2686 * because the arc_meta_max value doesn't need to be 2687 * precise. It's only consumed by humans via arcstats. 2688 */ 2689 if (arc_meta_max < aggsum_upper_bound(&arc_meta_used)) 2690 arc_meta_max = aggsum_upper_bound(&arc_meta_used); 2691 aggsum_add(&arc_meta_used, -space); 2692 } 2693 2694 ASSERT(aggsum_compare(&arc_size, space) >= 0); 2695 aggsum_add(&arc_size, -space); 2696 } 2697 2698 /* 2699 * Given a hdr and a buf, returns whether that buf can share its b_data buffer 2700 * with the hdr's b_pabd. 2701 */ 2702 static boolean_t 2703 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2704 { 2705 /* 2706 * The criteria for sharing a hdr's data are: 2707 * 1. the buffer is not encrypted 2708 * 2. the hdr's compression matches the buf's compression 2709 * 3. the hdr doesn't need to be byteswapped 2710 * 4. the hdr isn't already being shared 2711 * 5. the buf is either compressed or it is the last buf in the hdr list 2712 * 2713 * Criterion #5 maintains the invariant that shared uncompressed 2714 * bufs must be the final buf in the hdr's b_buf list. Reading this, you 2715 * might ask, "if a compressed buf is allocated first, won't that be the 2716 * last thing in the list?", but in that case it's impossible to create 2717 * a shared uncompressed buf anyway (because the hdr must be compressed 2718 * to have the compressed buf). You might also think that #3 is 2719 * sufficient to make this guarantee, however it's possible 2720 * (specifically in the rare L2ARC write race mentioned in 2721 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that 2722 * is shareable, but wasn't at the time of its allocation. Rather than 2723 * allow a new shared uncompressed buf to be created and then shuffle 2724 * the list around to make it the last element, this simply disallows 2725 * sharing if the new buf isn't the first to be added. 2726 */ 2727 ASSERT3P(buf->b_hdr, ==, hdr); 2728 boolean_t hdr_compressed = 2729 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF; 2730 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0; 2731 return (!ARC_BUF_ENCRYPTED(buf) && 2732 buf_compressed == hdr_compressed && 2733 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && 2734 !HDR_SHARED_DATA(hdr) && 2735 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf))); 2736 } 2737 2738 /* 2739 * Allocate a buf for this hdr. If you care about the data that's in the hdr, 2740 * or if you want a compressed buffer, pass those flags in. Returns 0 if the 2741 * copy was made successfully, or an error code otherwise. 2742 */ 2743 static int 2744 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb, 2745 void *tag, boolean_t encrypted, boolean_t compressed, boolean_t noauth, 2746 boolean_t fill, arc_buf_t **ret) 2747 { 2748 arc_buf_t *buf; 2749 arc_fill_flags_t flags = ARC_FILL_LOCKED; 2750 2751 ASSERT(HDR_HAS_L1HDR(hdr)); 2752 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2753 VERIFY(hdr->b_type == ARC_BUFC_DATA || 2754 hdr->b_type == ARC_BUFC_METADATA); 2755 ASSERT3P(ret, !=, NULL); 2756 ASSERT3P(*ret, ==, NULL); 2757 IMPLY(encrypted, compressed); 2758 2759 hdr->b_l1hdr.b_mru_hits = 0; 2760 hdr->b_l1hdr.b_mru_ghost_hits = 0; 2761 hdr->b_l1hdr.b_mfu_hits = 0; 2762 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 2763 hdr->b_l1hdr.b_l2_hits = 0; 2764 2765 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2766 buf->b_hdr = hdr; 2767 buf->b_data = NULL; 2768 buf->b_next = hdr->b_l1hdr.b_buf; 2769 buf->b_flags = 0; 2770 2771 add_reference(hdr, tag); 2772 2773 /* 2774 * We're about to change the hdr's b_flags. We must either 2775 * hold the hash_lock or be undiscoverable. 2776 */ 2777 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2778 2779 /* 2780 * Only honor requests for compressed bufs if the hdr is actually 2781 * compressed. This must be overridden if the buffer is encrypted since 2782 * encrypted buffers cannot be decompressed. 2783 */ 2784 if (encrypted) { 2785 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2786 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED; 2787 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED; 2788 } else if (compressed && 2789 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 2790 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2791 flags |= ARC_FILL_COMPRESSED; 2792 } 2793 2794 if (noauth) { 2795 ASSERT0(encrypted); 2796 flags |= ARC_FILL_NOAUTH; 2797 } 2798 2799 /* 2800 * If the hdr's data can be shared then we share the data buffer and 2801 * set the appropriate bit in the hdr's b_flags to indicate the hdr is 2802 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new 2803 * buffer to store the buf's data. 2804 * 2805 * There are two additional restrictions here because we're sharing 2806 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be 2807 * actively involved in an L2ARC write, because if this buf is used by 2808 * an arc_write() then the hdr's data buffer will be released when the 2809 * write completes, even though the L2ARC write might still be using it. 2810 * Second, the hdr's ABD must be linear so that the buf's user doesn't 2811 * need to be ABD-aware. It must be allocated via 2812 * zio_[data_]buf_alloc(), not as a page, because we need to be able 2813 * to abd_release_ownership_of_buf(), which isn't allowed on "linear 2814 * page" buffers because the ABD code needs to handle freeing them 2815 * specially. 2816 */ 2817 boolean_t can_share = arc_can_share(hdr, buf) && 2818 !HDR_L2_WRITING(hdr) && 2819 hdr->b_l1hdr.b_pabd != NULL && 2820 abd_is_linear(hdr->b_l1hdr.b_pabd) && 2821 !abd_is_linear_page(hdr->b_l1hdr.b_pabd); 2822 2823 /* Set up b_data and sharing */ 2824 if (can_share) { 2825 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd); 2826 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2827 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2828 } else { 2829 buf->b_data = 2830 arc_get_data_buf(hdr, arc_buf_size(buf), buf); 2831 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2832 } 2833 VERIFY3P(buf->b_data, !=, NULL); 2834 2835 hdr->b_l1hdr.b_buf = buf; 2836 hdr->b_l1hdr.b_bufcnt += 1; 2837 if (encrypted) 2838 hdr->b_crypt_hdr.b_ebufcnt += 1; 2839 2840 /* 2841 * If the user wants the data from the hdr, we need to either copy or 2842 * decompress the data. 2843 */ 2844 if (fill) { 2845 ASSERT3P(zb, !=, NULL); 2846 return (arc_buf_fill(buf, spa, zb, flags)); 2847 } 2848 2849 return (0); 2850 } 2851 2852 static char *arc_onloan_tag = "onloan"; 2853 2854 static inline void 2855 arc_loaned_bytes_update(int64_t delta) 2856 { 2857 atomic_add_64(&arc_loaned_bytes, delta); 2858 2859 /* assert that it did not wrap around */ 2860 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 2861 } 2862 2863 /* 2864 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 2865 * flight data by arc_tempreserve_space() until they are "returned". Loaned 2866 * buffers must be returned to the arc before they can be used by the DMU or 2867 * freed. 2868 */ 2869 arc_buf_t * 2870 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size) 2871 { 2872 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag, 2873 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size); 2874 2875 arc_loaned_bytes_update(arc_buf_size(buf)); 2876 2877 return (buf); 2878 } 2879 2880 arc_buf_t * 2881 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize, 2882 enum zio_compress compression_type, uint8_t complevel) 2883 { 2884 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag, 2885 psize, lsize, compression_type, complevel); 2886 2887 arc_loaned_bytes_update(arc_buf_size(buf)); 2888 2889 return (buf); 2890 } 2891 2892 arc_buf_t * 2893 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder, 2894 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 2895 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 2896 enum zio_compress compression_type, uint8_t complevel) 2897 { 2898 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj, 2899 byteorder, salt, iv, mac, ot, psize, lsize, compression_type, 2900 complevel); 2901 2902 atomic_add_64(&arc_loaned_bytes, psize); 2903 return (buf); 2904 } 2905 2906 2907 /* 2908 * Return a loaned arc buffer to the arc. 2909 */ 2910 void 2911 arc_return_buf(arc_buf_t *buf, void *tag) 2912 { 2913 arc_buf_hdr_t *hdr = buf->b_hdr; 2914 2915 ASSERT3P(buf->b_data, !=, NULL); 2916 ASSERT(HDR_HAS_L1HDR(hdr)); 2917 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 2918 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2919 2920 arc_loaned_bytes_update(-arc_buf_size(buf)); 2921 } 2922 2923 /* Detach an arc_buf from a dbuf (tag) */ 2924 void 2925 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 2926 { 2927 arc_buf_hdr_t *hdr = buf->b_hdr; 2928 2929 ASSERT3P(buf->b_data, !=, NULL); 2930 ASSERT(HDR_HAS_L1HDR(hdr)); 2931 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2932 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 2933 2934 arc_loaned_bytes_update(arc_buf_size(buf)); 2935 } 2936 2937 static void 2938 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type) 2939 { 2940 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); 2941 2942 df->l2df_abd = abd; 2943 df->l2df_size = size; 2944 df->l2df_type = type; 2945 mutex_enter(&l2arc_free_on_write_mtx); 2946 list_insert_head(l2arc_free_on_write, df); 2947 mutex_exit(&l2arc_free_on_write_mtx); 2948 } 2949 2950 static void 2951 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata) 2952 { 2953 arc_state_t *state = hdr->b_l1hdr.b_state; 2954 arc_buf_contents_t type = arc_buf_type(hdr); 2955 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 2956 2957 /* protected by hash lock, if in the hash table */ 2958 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2959 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2960 ASSERT(state != arc_anon && state != arc_l2c_only); 2961 2962 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2963 size, hdr); 2964 } 2965 (void) zfs_refcount_remove_many(&state->arcs_size, size, hdr); 2966 if (type == ARC_BUFC_METADATA) { 2967 arc_space_return(size, ARC_SPACE_META); 2968 } else { 2969 ASSERT(type == ARC_BUFC_DATA); 2970 arc_space_return(size, ARC_SPACE_DATA); 2971 } 2972 2973 if (free_rdata) { 2974 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type); 2975 } else { 2976 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type); 2977 } 2978 } 2979 2980 /* 2981 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the 2982 * data buffer, we transfer the refcount ownership to the hdr and update 2983 * the appropriate kstats. 2984 */ 2985 static void 2986 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2987 { 2988 ASSERT(arc_can_share(hdr, buf)); 2989 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2990 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 2991 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2992 2993 /* 2994 * Start sharing the data buffer. We transfer the 2995 * refcount ownership to the hdr since it always owns 2996 * the refcount whenever an arc_buf_t is shared. 2997 */ 2998 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 2999 arc_hdr_size(hdr), buf, hdr); 3000 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf)); 3001 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd, 3002 HDR_ISTYPE_METADATA(hdr)); 3003 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 3004 buf->b_flags |= ARC_BUF_FLAG_SHARED; 3005 3006 /* 3007 * Since we've transferred ownership to the hdr we need 3008 * to increment its compressed and uncompressed kstats and 3009 * decrement the overhead size. 3010 */ 3011 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 3012 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3013 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf)); 3014 } 3015 3016 static void 3017 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 3018 { 3019 ASSERT(arc_buf_is_shared(buf)); 3020 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3021 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3022 3023 /* 3024 * We are no longer sharing this buffer so we need 3025 * to transfer its ownership to the rightful owner. 3026 */ 3027 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 3028 arc_hdr_size(hdr), hdr, buf); 3029 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3030 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd); 3031 abd_put(hdr->b_l1hdr.b_pabd); 3032 hdr->b_l1hdr.b_pabd = NULL; 3033 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 3034 3035 /* 3036 * Since the buffer is no longer shared between 3037 * the arc buf and the hdr, count it as overhead. 3038 */ 3039 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 3040 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3041 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 3042 } 3043 3044 /* 3045 * Remove an arc_buf_t from the hdr's buf list and return the last 3046 * arc_buf_t on the list. If no buffers remain on the list then return 3047 * NULL. 3048 */ 3049 static arc_buf_t * 3050 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf) 3051 { 3052 ASSERT(HDR_HAS_L1HDR(hdr)); 3053 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3054 3055 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf; 3056 arc_buf_t *lastbuf = NULL; 3057 3058 /* 3059 * Remove the buf from the hdr list and locate the last 3060 * remaining buffer on the list. 3061 */ 3062 while (*bufp != NULL) { 3063 if (*bufp == buf) 3064 *bufp = buf->b_next; 3065 3066 /* 3067 * If we've removed a buffer in the middle of 3068 * the list then update the lastbuf and update 3069 * bufp. 3070 */ 3071 if (*bufp != NULL) { 3072 lastbuf = *bufp; 3073 bufp = &(*bufp)->b_next; 3074 } 3075 } 3076 buf->b_next = NULL; 3077 ASSERT3P(lastbuf, !=, buf); 3078 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL); 3079 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL); 3080 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf)); 3081 3082 return (lastbuf); 3083 } 3084 3085 /* 3086 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's 3087 * list and free it. 3088 */ 3089 static void 3090 arc_buf_destroy_impl(arc_buf_t *buf) 3091 { 3092 arc_buf_hdr_t *hdr = buf->b_hdr; 3093 3094 /* 3095 * Free up the data associated with the buf but only if we're not 3096 * sharing this with the hdr. If we are sharing it with the hdr, the 3097 * hdr is responsible for doing the free. 3098 */ 3099 if (buf->b_data != NULL) { 3100 /* 3101 * We're about to change the hdr's b_flags. We must either 3102 * hold the hash_lock or be undiscoverable. 3103 */ 3104 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3105 3106 arc_cksum_verify(buf); 3107 arc_buf_unwatch(buf); 3108 3109 if (arc_buf_is_shared(buf)) { 3110 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3111 } else { 3112 uint64_t size = arc_buf_size(buf); 3113 arc_free_data_buf(hdr, buf->b_data, size, buf); 3114 ARCSTAT_INCR(arcstat_overhead_size, -size); 3115 } 3116 buf->b_data = NULL; 3117 3118 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3119 hdr->b_l1hdr.b_bufcnt -= 1; 3120 3121 if (ARC_BUF_ENCRYPTED(buf)) { 3122 hdr->b_crypt_hdr.b_ebufcnt -= 1; 3123 3124 /* 3125 * If we have no more encrypted buffers and we've 3126 * already gotten a copy of the decrypted data we can 3127 * free b_rabd to save some space. 3128 */ 3129 if (hdr->b_crypt_hdr.b_ebufcnt == 0 && 3130 HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL && 3131 !HDR_IO_IN_PROGRESS(hdr)) { 3132 arc_hdr_free_abd(hdr, B_TRUE); 3133 } 3134 } 3135 } 3136 3137 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 3138 3139 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 3140 /* 3141 * If the current arc_buf_t is sharing its data buffer with the 3142 * hdr, then reassign the hdr's b_pabd to share it with the new 3143 * buffer at the end of the list. The shared buffer is always 3144 * the last one on the hdr's buffer list. 3145 * 3146 * There is an equivalent case for compressed bufs, but since 3147 * they aren't guaranteed to be the last buf in the list and 3148 * that is an exceedingly rare case, we just allow that space be 3149 * wasted temporarily. We must also be careful not to share 3150 * encrypted buffers, since they cannot be shared. 3151 */ 3152 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) { 3153 /* Only one buf can be shared at once */ 3154 VERIFY(!arc_buf_is_shared(lastbuf)); 3155 /* hdr is uncompressed so can't have compressed buf */ 3156 VERIFY(!ARC_BUF_COMPRESSED(lastbuf)); 3157 3158 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3159 arc_hdr_free_abd(hdr, B_FALSE); 3160 3161 /* 3162 * We must setup a new shared block between the 3163 * last buffer and the hdr. The data would have 3164 * been allocated by the arc buf so we need to transfer 3165 * ownership to the hdr since it's now being shared. 3166 */ 3167 arc_share_buf(hdr, lastbuf); 3168 } 3169 } else if (HDR_SHARED_DATA(hdr)) { 3170 /* 3171 * Uncompressed shared buffers are always at the end 3172 * of the list. Compressed buffers don't have the 3173 * same requirements. This makes it hard to 3174 * simply assert that the lastbuf is shared so 3175 * we rely on the hdr's compression flags to determine 3176 * if we have a compressed, shared buffer. 3177 */ 3178 ASSERT3P(lastbuf, !=, NULL); 3179 ASSERT(arc_buf_is_shared(lastbuf) || 3180 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 3181 } 3182 3183 /* 3184 * Free the checksum if we're removing the last uncompressed buf from 3185 * this hdr. 3186 */ 3187 if (!arc_hdr_has_uncompressed_buf(hdr)) { 3188 arc_cksum_free(hdr); 3189 } 3190 3191 /* clean up the buf */ 3192 buf->b_hdr = NULL; 3193 kmem_cache_free(buf_cache, buf); 3194 } 3195 3196 static void 3197 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags) 3198 { 3199 uint64_t size; 3200 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0); 3201 boolean_t do_adapt = ((alloc_flags & ARC_HDR_DO_ADAPT) != 0); 3202 3203 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 3204 ASSERT(HDR_HAS_L1HDR(hdr)); 3205 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata); 3206 IMPLY(alloc_rdata, HDR_PROTECTED(hdr)); 3207 3208 if (alloc_rdata) { 3209 size = HDR_GET_PSIZE(hdr); 3210 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL); 3211 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr, 3212 do_adapt); 3213 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL); 3214 ARCSTAT_INCR(arcstat_raw_size, size); 3215 } else { 3216 size = arc_hdr_size(hdr); 3217 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3218 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr, 3219 do_adapt); 3220 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3221 } 3222 3223 ARCSTAT_INCR(arcstat_compressed_size, size); 3224 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3225 } 3226 3227 static void 3228 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata) 3229 { 3230 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 3231 3232 ASSERT(HDR_HAS_L1HDR(hdr)); 3233 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 3234 IMPLY(free_rdata, HDR_HAS_RABD(hdr)); 3235 3236 /* 3237 * If the hdr is currently being written to the l2arc then 3238 * we defer freeing the data by adding it to the l2arc_free_on_write 3239 * list. The l2arc will free the data once it's finished 3240 * writing it to the l2arc device. 3241 */ 3242 if (HDR_L2_WRITING(hdr)) { 3243 arc_hdr_free_on_write(hdr, free_rdata); 3244 ARCSTAT_BUMP(arcstat_l2_free_on_write); 3245 } else if (free_rdata) { 3246 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr); 3247 } else { 3248 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr); 3249 } 3250 3251 if (free_rdata) { 3252 hdr->b_crypt_hdr.b_rabd = NULL; 3253 ARCSTAT_INCR(arcstat_raw_size, -size); 3254 } else { 3255 hdr->b_l1hdr.b_pabd = NULL; 3256 } 3257 3258 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr)) 3259 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 3260 3261 ARCSTAT_INCR(arcstat_compressed_size, -size); 3262 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3263 } 3264 3265 static arc_buf_hdr_t * 3266 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, 3267 boolean_t protected, enum zio_compress compression_type, uint8_t complevel, 3268 arc_buf_contents_t type, boolean_t alloc_rdata) 3269 { 3270 arc_buf_hdr_t *hdr; 3271 int flags = ARC_HDR_DO_ADAPT; 3272 3273 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); 3274 if (protected) { 3275 hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE); 3276 } else { 3277 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 3278 } 3279 flags |= alloc_rdata ? ARC_HDR_ALLOC_RDATA : 0; 3280 3281 ASSERT(HDR_EMPTY(hdr)); 3282 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3283 HDR_SET_PSIZE(hdr, psize); 3284 HDR_SET_LSIZE(hdr, lsize); 3285 hdr->b_spa = spa; 3286 hdr->b_type = type; 3287 hdr->b_flags = 0; 3288 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); 3289 arc_hdr_set_compress(hdr, compression_type); 3290 hdr->b_complevel = complevel; 3291 if (protected) 3292 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 3293 3294 hdr->b_l1hdr.b_state = arc_anon; 3295 hdr->b_l1hdr.b_arc_access = 0; 3296 hdr->b_l1hdr.b_bufcnt = 0; 3297 hdr->b_l1hdr.b_buf = NULL; 3298 3299 /* 3300 * Allocate the hdr's buffer. This will contain either 3301 * the compressed or uncompressed data depending on the block 3302 * it references and compressed arc enablement. 3303 */ 3304 arc_hdr_alloc_abd(hdr, flags); 3305 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3306 3307 return (hdr); 3308 } 3309 3310 /* 3311 * Transition between the two allocation states for the arc_buf_hdr struct. 3312 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 3313 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 3314 * version is used when a cache buffer is only in the L2ARC in order to reduce 3315 * memory usage. 3316 */ 3317 static arc_buf_hdr_t * 3318 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 3319 { 3320 ASSERT(HDR_HAS_L2HDR(hdr)); 3321 3322 arc_buf_hdr_t *nhdr; 3323 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3324 3325 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 3326 (old == hdr_l2only_cache && new == hdr_full_cache)); 3327 3328 /* 3329 * if the caller wanted a new full header and the header is to be 3330 * encrypted we will actually allocate the header from the full crypt 3331 * cache instead. The same applies to freeing from the old cache. 3332 */ 3333 if (HDR_PROTECTED(hdr) && new == hdr_full_cache) 3334 new = hdr_full_crypt_cache; 3335 if (HDR_PROTECTED(hdr) && old == hdr_full_cache) 3336 old = hdr_full_crypt_cache; 3337 3338 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 3339 3340 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 3341 buf_hash_remove(hdr); 3342 3343 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE); 3344 3345 if (new == hdr_full_cache || new == hdr_full_crypt_cache) { 3346 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3347 /* 3348 * arc_access and arc_change_state need to be aware that a 3349 * header has just come out of L2ARC, so we set its state to 3350 * l2c_only even though it's about to change. 3351 */ 3352 nhdr->b_l1hdr.b_state = arc_l2c_only; 3353 3354 /* Verify previous threads set to NULL before freeing */ 3355 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL); 3356 ASSERT(!HDR_HAS_RABD(hdr)); 3357 } else { 3358 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3359 ASSERT0(hdr->b_l1hdr.b_bufcnt); 3360 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3361 3362 /* 3363 * If we've reached here, We must have been called from 3364 * arc_evict_hdr(), as such we should have already been 3365 * removed from any ghost list we were previously on 3366 * (which protects us from racing with arc_evict_state), 3367 * thus no locking is needed during this check. 3368 */ 3369 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3370 3371 /* 3372 * A buffer must not be moved into the arc_l2c_only 3373 * state if it's not finished being written out to the 3374 * l2arc device. Otherwise, the b_l1hdr.b_pabd field 3375 * might try to be accessed, even though it was removed. 3376 */ 3377 VERIFY(!HDR_L2_WRITING(hdr)); 3378 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3379 ASSERT(!HDR_HAS_RABD(hdr)); 3380 3381 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3382 } 3383 /* 3384 * The header has been reallocated so we need to re-insert it into any 3385 * lists it was on. 3386 */ 3387 (void) buf_hash_insert(nhdr, NULL); 3388 3389 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 3390 3391 mutex_enter(&dev->l2ad_mtx); 3392 3393 /* 3394 * We must place the realloc'ed header back into the list at 3395 * the same spot. Otherwise, if it's placed earlier in the list, 3396 * l2arc_write_buffers() could find it during the function's 3397 * write phase, and try to write it out to the l2arc. 3398 */ 3399 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 3400 list_remove(&dev->l2ad_buflist, hdr); 3401 3402 mutex_exit(&dev->l2ad_mtx); 3403 3404 /* 3405 * Since we're using the pointer address as the tag when 3406 * incrementing and decrementing the l2ad_alloc refcount, we 3407 * must remove the old pointer (that we're about to destroy) and 3408 * add the new pointer to the refcount. Otherwise we'd remove 3409 * the wrong pointer address when calling arc_hdr_destroy() later. 3410 */ 3411 3412 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 3413 arc_hdr_size(hdr), hdr); 3414 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 3415 arc_hdr_size(nhdr), nhdr); 3416 3417 buf_discard_identity(hdr); 3418 kmem_cache_free(old, hdr); 3419 3420 return (nhdr); 3421 } 3422 3423 /* 3424 * This function allows an L1 header to be reallocated as a crypt 3425 * header and vice versa. If we are going to a crypt header, the 3426 * new fields will be zeroed out. 3427 */ 3428 static arc_buf_hdr_t * 3429 arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt) 3430 { 3431 arc_buf_hdr_t *nhdr; 3432 arc_buf_t *buf; 3433 kmem_cache_t *ncache, *ocache; 3434 unsigned nsize, osize; 3435 3436 /* 3437 * This function requires that hdr is in the arc_anon state. 3438 * Therefore it won't have any L2ARC data for us to worry 3439 * about copying. 3440 */ 3441 ASSERT(HDR_HAS_L1HDR(hdr)); 3442 ASSERT(!HDR_HAS_L2HDR(hdr)); 3443 ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt); 3444 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3445 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3446 ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node)); 3447 ASSERT3P(hdr->b_hash_next, ==, NULL); 3448 3449 if (need_crypt) { 3450 ncache = hdr_full_crypt_cache; 3451 nsize = sizeof (hdr->b_crypt_hdr); 3452 ocache = hdr_full_cache; 3453 osize = HDR_FULL_SIZE; 3454 } else { 3455 ncache = hdr_full_cache; 3456 nsize = HDR_FULL_SIZE; 3457 ocache = hdr_full_crypt_cache; 3458 osize = sizeof (hdr->b_crypt_hdr); 3459 } 3460 3461 nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE); 3462 3463 /* 3464 * Copy all members that aren't locks or condvars to the new header. 3465 * No lists are pointing to us (as we asserted above), so we don't 3466 * need to worry about the list nodes. 3467 */ 3468 nhdr->b_dva = hdr->b_dva; 3469 nhdr->b_birth = hdr->b_birth; 3470 nhdr->b_type = hdr->b_type; 3471 nhdr->b_flags = hdr->b_flags; 3472 nhdr->b_psize = hdr->b_psize; 3473 nhdr->b_lsize = hdr->b_lsize; 3474 nhdr->b_spa = hdr->b_spa; 3475 nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum; 3476 nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt; 3477 nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap; 3478 nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state; 3479 nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access; 3480 nhdr->b_l1hdr.b_mru_hits = hdr->b_l1hdr.b_mru_hits; 3481 nhdr->b_l1hdr.b_mru_ghost_hits = hdr->b_l1hdr.b_mru_ghost_hits; 3482 nhdr->b_l1hdr.b_mfu_hits = hdr->b_l1hdr.b_mfu_hits; 3483 nhdr->b_l1hdr.b_mfu_ghost_hits = hdr->b_l1hdr.b_mfu_ghost_hits; 3484 nhdr->b_l1hdr.b_l2_hits = hdr->b_l1hdr.b_l2_hits; 3485 nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb; 3486 nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd; 3487 3488 /* 3489 * This zfs_refcount_add() exists only to ensure that the individual 3490 * arc buffers always point to a header that is referenced, avoiding 3491 * a small race condition that could trigger ASSERTs. 3492 */ 3493 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG); 3494 nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf; 3495 for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) { 3496 mutex_enter(&buf->b_evict_lock); 3497 buf->b_hdr = nhdr; 3498 mutex_exit(&buf->b_evict_lock); 3499 } 3500 3501 zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt); 3502 (void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG); 3503 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3504 3505 if (need_crypt) { 3506 arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED); 3507 } else { 3508 arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED); 3509 } 3510 3511 /* unset all members of the original hdr */ 3512 bzero(&hdr->b_dva, sizeof (dva_t)); 3513 hdr->b_birth = 0; 3514 hdr->b_type = ARC_BUFC_INVALID; 3515 hdr->b_flags = 0; 3516 hdr->b_psize = 0; 3517 hdr->b_lsize = 0; 3518 hdr->b_spa = 0; 3519 hdr->b_l1hdr.b_freeze_cksum = NULL; 3520 hdr->b_l1hdr.b_buf = NULL; 3521 hdr->b_l1hdr.b_bufcnt = 0; 3522 hdr->b_l1hdr.b_byteswap = 0; 3523 hdr->b_l1hdr.b_state = NULL; 3524 hdr->b_l1hdr.b_arc_access = 0; 3525 hdr->b_l1hdr.b_mru_hits = 0; 3526 hdr->b_l1hdr.b_mru_ghost_hits = 0; 3527 hdr->b_l1hdr.b_mfu_hits = 0; 3528 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 3529 hdr->b_l1hdr.b_l2_hits = 0; 3530 hdr->b_l1hdr.b_acb = NULL; 3531 hdr->b_l1hdr.b_pabd = NULL; 3532 3533 if (ocache == hdr_full_crypt_cache) { 3534 ASSERT(!HDR_HAS_RABD(hdr)); 3535 hdr->b_crypt_hdr.b_ot = DMU_OT_NONE; 3536 hdr->b_crypt_hdr.b_ebufcnt = 0; 3537 hdr->b_crypt_hdr.b_dsobj = 0; 3538 bzero(hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3539 bzero(hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3540 bzero(hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3541 } 3542 3543 buf_discard_identity(hdr); 3544 kmem_cache_free(ocache, hdr); 3545 3546 return (nhdr); 3547 } 3548 3549 /* 3550 * This function is used by the send / receive code to convert a newly 3551 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It 3552 * is also used to allow the root objset block to be updated without altering 3553 * its embedded MACs. Both block types will always be uncompressed so we do not 3554 * have to worry about compression type or psize. 3555 */ 3556 void 3557 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder, 3558 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv, 3559 const uint8_t *mac) 3560 { 3561 arc_buf_hdr_t *hdr = buf->b_hdr; 3562 3563 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET); 3564 ASSERT(HDR_HAS_L1HDR(hdr)); 3565 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3566 3567 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED); 3568 if (!HDR_PROTECTED(hdr)) 3569 hdr = arc_hdr_realloc_crypt(hdr, B_TRUE); 3570 hdr->b_crypt_hdr.b_dsobj = dsobj; 3571 hdr->b_crypt_hdr.b_ot = ot; 3572 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3573 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3574 if (!arc_hdr_has_uncompressed_buf(hdr)) 3575 arc_cksum_free(hdr); 3576 3577 if (salt != NULL) 3578 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3579 if (iv != NULL) 3580 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3581 if (mac != NULL) 3582 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3583 } 3584 3585 /* 3586 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. 3587 * The buf is returned thawed since we expect the consumer to modify it. 3588 */ 3589 arc_buf_t * 3590 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size) 3591 { 3592 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, 3593 B_FALSE, ZIO_COMPRESS_OFF, 0, type, B_FALSE); 3594 3595 arc_buf_t *buf = NULL; 3596 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE, 3597 B_FALSE, B_FALSE, &buf)); 3598 arc_buf_thaw(buf); 3599 3600 return (buf); 3601 } 3602 3603 /* 3604 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this 3605 * for bufs containing metadata. 3606 */ 3607 arc_buf_t * 3608 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize, 3609 enum zio_compress compression_type, uint8_t complevel) 3610 { 3611 ASSERT3U(lsize, >, 0); 3612 ASSERT3U(lsize, >=, psize); 3613 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF); 3614 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3615 3616 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 3617 B_FALSE, compression_type, complevel, ARC_BUFC_DATA, B_FALSE); 3618 3619 arc_buf_t *buf = NULL; 3620 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, 3621 B_TRUE, B_FALSE, B_FALSE, &buf)); 3622 arc_buf_thaw(buf); 3623 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3624 3625 if (!arc_buf_is_shared(buf)) { 3626 /* 3627 * To ensure that the hdr has the correct data in it if we call 3628 * arc_untransform() on this buf before it's been written to 3629 * disk, it's easiest if we just set up sharing between the 3630 * buf and the hdr. 3631 */ 3632 arc_hdr_free_abd(hdr, B_FALSE); 3633 arc_share_buf(hdr, buf); 3634 } 3635 3636 return (buf); 3637 } 3638 3639 arc_buf_t * 3640 arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder, 3641 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 3642 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 3643 enum zio_compress compression_type, uint8_t complevel) 3644 { 3645 arc_buf_hdr_t *hdr; 3646 arc_buf_t *buf; 3647 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ? 3648 ARC_BUFC_METADATA : ARC_BUFC_DATA; 3649 3650 ASSERT3U(lsize, >, 0); 3651 ASSERT3U(lsize, >=, psize); 3652 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF); 3653 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3654 3655 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE, 3656 compression_type, complevel, type, B_TRUE); 3657 3658 hdr->b_crypt_hdr.b_dsobj = dsobj; 3659 hdr->b_crypt_hdr.b_ot = ot; 3660 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3661 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3662 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3663 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3664 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3665 3666 /* 3667 * This buffer will be considered encrypted even if the ot is not an 3668 * encrypted type. It will become authenticated instead in 3669 * arc_write_ready(). 3670 */ 3671 buf = NULL; 3672 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE, 3673 B_FALSE, B_FALSE, &buf)); 3674 arc_buf_thaw(buf); 3675 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3676 3677 return (buf); 3678 } 3679 3680 static void 3681 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 3682 { 3683 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3684 l2arc_dev_t *dev = l2hdr->b_dev; 3685 uint64_t psize = HDR_GET_PSIZE(hdr); 3686 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3687 3688 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 3689 ASSERT(HDR_HAS_L2HDR(hdr)); 3690 3691 list_remove(&dev->l2ad_buflist, hdr); 3692 3693 ARCSTAT_INCR(arcstat_l2_psize, -psize); 3694 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr)); 3695 3696 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); 3697 3698 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), 3699 hdr); 3700 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 3701 } 3702 3703 static void 3704 arc_hdr_destroy(arc_buf_hdr_t *hdr) 3705 { 3706 if (HDR_HAS_L1HDR(hdr)) { 3707 ASSERT(hdr->b_l1hdr.b_buf == NULL || 3708 hdr->b_l1hdr.b_bufcnt > 0); 3709 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3710 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3711 } 3712 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3713 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 3714 3715 if (HDR_HAS_L2HDR(hdr)) { 3716 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3717 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 3718 3719 if (!buflist_held) 3720 mutex_enter(&dev->l2ad_mtx); 3721 3722 /* 3723 * Even though we checked this conditional above, we 3724 * need to check this again now that we have the 3725 * l2ad_mtx. This is because we could be racing with 3726 * another thread calling l2arc_evict() which might have 3727 * destroyed this header's L2 portion as we were waiting 3728 * to acquire the l2ad_mtx. If that happens, we don't 3729 * want to re-destroy the header's L2 portion. 3730 */ 3731 if (HDR_HAS_L2HDR(hdr)) 3732 arc_hdr_l2hdr_destroy(hdr); 3733 3734 if (!buflist_held) 3735 mutex_exit(&dev->l2ad_mtx); 3736 } 3737 3738 /* 3739 * The header's identify can only be safely discarded once it is no 3740 * longer discoverable. This requires removing it from the hash table 3741 * and the l2arc header list. After this point the hash lock can not 3742 * be used to protect the header. 3743 */ 3744 if (!HDR_EMPTY(hdr)) 3745 buf_discard_identity(hdr); 3746 3747 if (HDR_HAS_L1HDR(hdr)) { 3748 arc_cksum_free(hdr); 3749 3750 while (hdr->b_l1hdr.b_buf != NULL) 3751 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf); 3752 3753 if (hdr->b_l1hdr.b_pabd != NULL) 3754 arc_hdr_free_abd(hdr, B_FALSE); 3755 3756 if (HDR_HAS_RABD(hdr)) 3757 arc_hdr_free_abd(hdr, B_TRUE); 3758 } 3759 3760 ASSERT3P(hdr->b_hash_next, ==, NULL); 3761 if (HDR_HAS_L1HDR(hdr)) { 3762 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3763 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 3764 3765 if (!HDR_PROTECTED(hdr)) { 3766 kmem_cache_free(hdr_full_cache, hdr); 3767 } else { 3768 kmem_cache_free(hdr_full_crypt_cache, hdr); 3769 } 3770 } else { 3771 kmem_cache_free(hdr_l2only_cache, hdr); 3772 } 3773 } 3774 3775 void 3776 arc_buf_destroy(arc_buf_t *buf, void* tag) 3777 { 3778 arc_buf_hdr_t *hdr = buf->b_hdr; 3779 3780 if (hdr->b_l1hdr.b_state == arc_anon) { 3781 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 3782 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3783 VERIFY0(remove_reference(hdr, NULL, tag)); 3784 arc_hdr_destroy(hdr); 3785 return; 3786 } 3787 3788 kmutex_t *hash_lock = HDR_LOCK(hdr); 3789 mutex_enter(hash_lock); 3790 3791 ASSERT3P(hdr, ==, buf->b_hdr); 3792 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3793 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3794 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); 3795 ASSERT3P(buf->b_data, !=, NULL); 3796 3797 (void) remove_reference(hdr, hash_lock, tag); 3798 arc_buf_destroy_impl(buf); 3799 mutex_exit(hash_lock); 3800 } 3801 3802 /* 3803 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 3804 * state of the header is dependent on its state prior to entering this 3805 * function. The following transitions are possible: 3806 * 3807 * - arc_mru -> arc_mru_ghost 3808 * - arc_mfu -> arc_mfu_ghost 3809 * - arc_mru_ghost -> arc_l2c_only 3810 * - arc_mru_ghost -> deleted 3811 * - arc_mfu_ghost -> arc_l2c_only 3812 * - arc_mfu_ghost -> deleted 3813 */ 3814 static int64_t 3815 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 3816 { 3817 arc_state_t *evicted_state, *state; 3818 int64_t bytes_evicted = 0; 3819 int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ? 3820 arc_min_prescient_prefetch_ms : arc_min_prefetch_ms; 3821 3822 ASSERT(MUTEX_HELD(hash_lock)); 3823 ASSERT(HDR_HAS_L1HDR(hdr)); 3824 3825 state = hdr->b_l1hdr.b_state; 3826 if (GHOST_STATE(state)) { 3827 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3828 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3829 3830 /* 3831 * l2arc_write_buffers() relies on a header's L1 portion 3832 * (i.e. its b_pabd field) during it's write phase. 3833 * Thus, we cannot push a header onto the arc_l2c_only 3834 * state (removing its L1 piece) until the header is 3835 * done being written to the l2arc. 3836 */ 3837 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 3838 ARCSTAT_BUMP(arcstat_evict_l2_skip); 3839 return (bytes_evicted); 3840 } 3841 3842 ARCSTAT_BUMP(arcstat_deleted); 3843 bytes_evicted += HDR_GET_LSIZE(hdr); 3844 3845 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 3846 3847 if (HDR_HAS_L2HDR(hdr)) { 3848 ASSERT(hdr->b_l1hdr.b_pabd == NULL); 3849 ASSERT(!HDR_HAS_RABD(hdr)); 3850 /* 3851 * This buffer is cached on the 2nd Level ARC; 3852 * don't destroy the header. 3853 */ 3854 arc_change_state(arc_l2c_only, hdr, hash_lock); 3855 /* 3856 * dropping from L1+L2 cached to L2-only, 3857 * realloc to remove the L1 header. 3858 */ 3859 hdr = arc_hdr_realloc(hdr, hdr_full_cache, 3860 hdr_l2only_cache); 3861 } else { 3862 arc_change_state(arc_anon, hdr, hash_lock); 3863 arc_hdr_destroy(hdr); 3864 } 3865 return (bytes_evicted); 3866 } 3867 3868 ASSERT(state == arc_mru || state == arc_mfu); 3869 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3870 3871 /* prefetch buffers have a minimum lifespan */ 3872 if (HDR_IO_IN_PROGRESS(hdr) || 3873 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 3874 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < 3875 MSEC_TO_TICK(min_lifetime))) { 3876 ARCSTAT_BUMP(arcstat_evict_skip); 3877 return (bytes_evicted); 3878 } 3879 3880 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3881 while (hdr->b_l1hdr.b_buf) { 3882 arc_buf_t *buf = hdr->b_l1hdr.b_buf; 3883 if (!mutex_tryenter(&buf->b_evict_lock)) { 3884 ARCSTAT_BUMP(arcstat_mutex_miss); 3885 break; 3886 } 3887 if (buf->b_data != NULL) 3888 bytes_evicted += HDR_GET_LSIZE(hdr); 3889 mutex_exit(&buf->b_evict_lock); 3890 arc_buf_destroy_impl(buf); 3891 } 3892 3893 if (HDR_HAS_L2HDR(hdr)) { 3894 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); 3895 } else { 3896 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 3897 ARCSTAT_INCR(arcstat_evict_l2_eligible, 3898 HDR_GET_LSIZE(hdr)); 3899 } else { 3900 ARCSTAT_INCR(arcstat_evict_l2_ineligible, 3901 HDR_GET_LSIZE(hdr)); 3902 } 3903 } 3904 3905 if (hdr->b_l1hdr.b_bufcnt == 0) { 3906 arc_cksum_free(hdr); 3907 3908 bytes_evicted += arc_hdr_size(hdr); 3909 3910 /* 3911 * If this hdr is being evicted and has a compressed 3912 * buffer then we discard it here before we change states. 3913 * This ensures that the accounting is updated correctly 3914 * in arc_free_data_impl(). 3915 */ 3916 if (hdr->b_l1hdr.b_pabd != NULL) 3917 arc_hdr_free_abd(hdr, B_FALSE); 3918 3919 if (HDR_HAS_RABD(hdr)) 3920 arc_hdr_free_abd(hdr, B_TRUE); 3921 3922 arc_change_state(evicted_state, hdr, hash_lock); 3923 ASSERT(HDR_IN_HASH_TABLE(hdr)); 3924 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 3925 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 3926 } 3927 3928 return (bytes_evicted); 3929 } 3930 3931 static void 3932 arc_set_need_free(void) 3933 { 3934 ASSERT(MUTEX_HELD(&arc_evict_lock)); 3935 int64_t remaining = arc_free_memory() - arc_sys_free / 2; 3936 arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters); 3937 if (aw == NULL) { 3938 arc_need_free = MAX(-remaining, 0); 3939 } else { 3940 arc_need_free = 3941 MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count)); 3942 } 3943 } 3944 3945 static uint64_t 3946 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 3947 uint64_t spa, int64_t bytes) 3948 { 3949 multilist_sublist_t *mls; 3950 uint64_t bytes_evicted = 0; 3951 arc_buf_hdr_t *hdr; 3952 kmutex_t *hash_lock; 3953 int evict_count = 0; 3954 3955 ASSERT3P(marker, !=, NULL); 3956 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 3957 3958 mls = multilist_sublist_lock(ml, idx); 3959 3960 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL; 3961 hdr = multilist_sublist_prev(mls, marker)) { 3962 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) || 3963 (evict_count >= zfs_arc_evict_batch_limit)) 3964 break; 3965 3966 /* 3967 * To keep our iteration location, move the marker 3968 * forward. Since we're not holding hdr's hash lock, we 3969 * must be very careful and not remove 'hdr' from the 3970 * sublist. Otherwise, other consumers might mistake the 3971 * 'hdr' as not being on a sublist when they call the 3972 * multilist_link_active() function (they all rely on 3973 * the hash lock protecting concurrent insertions and 3974 * removals). multilist_sublist_move_forward() was 3975 * specifically implemented to ensure this is the case 3976 * (only 'marker' will be removed and re-inserted). 3977 */ 3978 multilist_sublist_move_forward(mls, marker); 3979 3980 /* 3981 * The only case where the b_spa field should ever be 3982 * zero, is the marker headers inserted by 3983 * arc_evict_state(). It's possible for multiple threads 3984 * to be calling arc_evict_state() concurrently (e.g. 3985 * dsl_pool_close() and zio_inject_fault()), so we must 3986 * skip any markers we see from these other threads. 3987 */ 3988 if (hdr->b_spa == 0) 3989 continue; 3990 3991 /* we're only interested in evicting buffers of a certain spa */ 3992 if (spa != 0 && hdr->b_spa != spa) { 3993 ARCSTAT_BUMP(arcstat_evict_skip); 3994 continue; 3995 } 3996 3997 hash_lock = HDR_LOCK(hdr); 3998 3999 /* 4000 * We aren't calling this function from any code path 4001 * that would already be holding a hash lock, so we're 4002 * asserting on this assumption to be defensive in case 4003 * this ever changes. Without this check, it would be 4004 * possible to incorrectly increment arcstat_mutex_miss 4005 * below (e.g. if the code changed such that we called 4006 * this function with a hash lock held). 4007 */ 4008 ASSERT(!MUTEX_HELD(hash_lock)); 4009 4010 if (mutex_tryenter(hash_lock)) { 4011 uint64_t evicted = arc_evict_hdr(hdr, hash_lock); 4012 mutex_exit(hash_lock); 4013 4014 bytes_evicted += evicted; 4015 4016 /* 4017 * If evicted is zero, arc_evict_hdr() must have 4018 * decided to skip this header, don't increment 4019 * evict_count in this case. 4020 */ 4021 if (evicted != 0) 4022 evict_count++; 4023 4024 } else { 4025 ARCSTAT_BUMP(arcstat_mutex_miss); 4026 } 4027 } 4028 4029 multilist_sublist_unlock(mls); 4030 4031 /* 4032 * Increment the count of evicted bytes, and wake up any threads that 4033 * are waiting for the count to reach this value. Since the list is 4034 * ordered by ascending aew_count, we pop off the beginning of the 4035 * list until we reach the end, or a waiter that's past the current 4036 * "count". Doing this outside the loop reduces the number of times 4037 * we need to acquire the global arc_evict_lock. 4038 * 4039 * Only wake when there's sufficient free memory in the system 4040 * (specifically, arc_sys_free/2, which by default is a bit more than 4041 * 1/64th of RAM). See the comments in arc_wait_for_eviction(). 4042 */ 4043 mutex_enter(&arc_evict_lock); 4044 arc_evict_count += bytes_evicted; 4045 4046 if ((int64_t)(arc_free_memory() - arc_sys_free / 2) > 0) { 4047 arc_evict_waiter_t *aw; 4048 while ((aw = list_head(&arc_evict_waiters)) != NULL && 4049 aw->aew_count <= arc_evict_count) { 4050 list_remove(&arc_evict_waiters, aw); 4051 cv_broadcast(&aw->aew_cv); 4052 } 4053 } 4054 arc_set_need_free(); 4055 mutex_exit(&arc_evict_lock); 4056 4057 /* 4058 * If the ARC size is reduced from arc_c_max to arc_c_min (especially 4059 * if the average cached block is small), eviction can be on-CPU for 4060 * many seconds. To ensure that other threads that may be bound to 4061 * this CPU are able to make progress, make a voluntary preemption 4062 * call here. 4063 */ 4064 cond_resched(); 4065 4066 return (bytes_evicted); 4067 } 4068 4069 /* 4070 * Evict buffers from the given arc state, until we've removed the 4071 * specified number of bytes. Move the removed buffers to the 4072 * appropriate evict state. 4073 * 4074 * This function makes a "best effort". It skips over any buffers 4075 * it can't get a hash_lock on, and so, may not catch all candidates. 4076 * It may also return without evicting as much space as requested. 4077 * 4078 * If bytes is specified using the special value ARC_EVICT_ALL, this 4079 * will evict all available (i.e. unlocked and evictable) buffers from 4080 * the given arc state; which is used by arc_flush(). 4081 */ 4082 static uint64_t 4083 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes, 4084 arc_buf_contents_t type) 4085 { 4086 uint64_t total_evicted = 0; 4087 multilist_t *ml = state->arcs_list[type]; 4088 int num_sublists; 4089 arc_buf_hdr_t **markers; 4090 4091 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 4092 4093 num_sublists = multilist_get_num_sublists(ml); 4094 4095 /* 4096 * If we've tried to evict from each sublist, made some 4097 * progress, but still have not hit the target number of bytes 4098 * to evict, we want to keep trying. The markers allow us to 4099 * pick up where we left off for each individual sublist, rather 4100 * than starting from the tail each time. 4101 */ 4102 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP); 4103 for (int i = 0; i < num_sublists; i++) { 4104 multilist_sublist_t *mls; 4105 4106 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 4107 4108 /* 4109 * A b_spa of 0 is used to indicate that this header is 4110 * a marker. This fact is used in arc_evict_type() and 4111 * arc_evict_state_impl(). 4112 */ 4113 markers[i]->b_spa = 0; 4114 4115 mls = multilist_sublist_lock(ml, i); 4116 multilist_sublist_insert_tail(mls, markers[i]); 4117 multilist_sublist_unlock(mls); 4118 } 4119 4120 /* 4121 * While we haven't hit our target number of bytes to evict, or 4122 * we're evicting all available buffers. 4123 */ 4124 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) { 4125 int sublist_idx = multilist_get_random_index(ml); 4126 uint64_t scan_evicted = 0; 4127 4128 /* 4129 * Try to reduce pinned dnodes with a floor of arc_dnode_limit. 4130 * Request that 10% of the LRUs be scanned by the superblock 4131 * shrinker. 4132 */ 4133 if (type == ARC_BUFC_DATA && aggsum_compare(&astat_dnode_size, 4134 arc_dnode_size_limit) > 0) { 4135 arc_prune_async((aggsum_upper_bound(&astat_dnode_size) - 4136 arc_dnode_size_limit) / sizeof (dnode_t) / 4137 zfs_arc_dnode_reduce_percent); 4138 } 4139 4140 /* 4141 * Start eviction using a randomly selected sublist, 4142 * this is to try and evenly balance eviction across all 4143 * sublists. Always starting at the same sublist 4144 * (e.g. index 0) would cause evictions to favor certain 4145 * sublists over others. 4146 */ 4147 for (int i = 0; i < num_sublists; i++) { 4148 uint64_t bytes_remaining; 4149 uint64_t bytes_evicted; 4150 4151 if (bytes == ARC_EVICT_ALL) 4152 bytes_remaining = ARC_EVICT_ALL; 4153 else if (total_evicted < bytes) 4154 bytes_remaining = bytes - total_evicted; 4155 else 4156 break; 4157 4158 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 4159 markers[sublist_idx], spa, bytes_remaining); 4160 4161 scan_evicted += bytes_evicted; 4162 total_evicted += bytes_evicted; 4163 4164 /* we've reached the end, wrap to the beginning */ 4165 if (++sublist_idx >= num_sublists) 4166 sublist_idx = 0; 4167 } 4168 4169 /* 4170 * If we didn't evict anything during this scan, we have 4171 * no reason to believe we'll evict more during another 4172 * scan, so break the loop. 4173 */ 4174 if (scan_evicted == 0) { 4175 /* This isn't possible, let's make that obvious */ 4176 ASSERT3S(bytes, !=, 0); 4177 4178 /* 4179 * When bytes is ARC_EVICT_ALL, the only way to 4180 * break the loop is when scan_evicted is zero. 4181 * In that case, we actually have evicted enough, 4182 * so we don't want to increment the kstat. 4183 */ 4184 if (bytes != ARC_EVICT_ALL) { 4185 ASSERT3S(total_evicted, <, bytes); 4186 ARCSTAT_BUMP(arcstat_evict_not_enough); 4187 } 4188 4189 break; 4190 } 4191 } 4192 4193 for (int i = 0; i < num_sublists; i++) { 4194 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 4195 multilist_sublist_remove(mls, markers[i]); 4196 multilist_sublist_unlock(mls); 4197 4198 kmem_cache_free(hdr_full_cache, markers[i]); 4199 } 4200 kmem_free(markers, sizeof (*markers) * num_sublists); 4201 4202 return (total_evicted); 4203 } 4204 4205 /* 4206 * Flush all "evictable" data of the given type from the arc state 4207 * specified. This will not evict any "active" buffers (i.e. referenced). 4208 * 4209 * When 'retry' is set to B_FALSE, the function will make a single pass 4210 * over the state and evict any buffers that it can. Since it doesn't 4211 * continually retry the eviction, it might end up leaving some buffers 4212 * in the ARC due to lock misses. 4213 * 4214 * When 'retry' is set to B_TRUE, the function will continually retry the 4215 * eviction until *all* evictable buffers have been removed from the 4216 * state. As a result, if concurrent insertions into the state are 4217 * allowed (e.g. if the ARC isn't shutting down), this function might 4218 * wind up in an infinite loop, continually trying to evict buffers. 4219 */ 4220 static uint64_t 4221 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 4222 boolean_t retry) 4223 { 4224 uint64_t evicted = 0; 4225 4226 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) { 4227 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type); 4228 4229 if (!retry) 4230 break; 4231 } 4232 4233 return (evicted); 4234 } 4235 4236 /* 4237 * Evict the specified number of bytes from the state specified, 4238 * restricting eviction to the spa and type given. This function 4239 * prevents us from trying to evict more from a state's list than 4240 * is "evictable", and to skip evicting altogether when passed a 4241 * negative value for "bytes". In contrast, arc_evict_state() will 4242 * evict everything it can, when passed a negative value for "bytes". 4243 */ 4244 static uint64_t 4245 arc_evict_impl(arc_state_t *state, uint64_t spa, int64_t bytes, 4246 arc_buf_contents_t type) 4247 { 4248 int64_t delta; 4249 4250 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) { 4251 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]), 4252 bytes); 4253 return (arc_evict_state(state, spa, delta, type)); 4254 } 4255 4256 return (0); 4257 } 4258 4259 /* 4260 * The goal of this function is to evict enough meta data buffers from the 4261 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly 4262 * more complicated than it appears because it is common for data buffers 4263 * to have holds on meta data buffers. In addition, dnode meta data buffers 4264 * will be held by the dnodes in the block preventing them from being freed. 4265 * This means we can't simply traverse the ARC and expect to always find 4266 * enough unheld meta data buffer to release. 4267 * 4268 * Therefore, this function has been updated to make alternating passes 4269 * over the ARC releasing data buffers and then newly unheld meta data 4270 * buffers. This ensures forward progress is maintained and meta_used 4271 * will decrease. Normally this is sufficient, but if required the ARC 4272 * will call the registered prune callbacks causing dentry and inodes to 4273 * be dropped from the VFS cache. This will make dnode meta data buffers 4274 * available for reclaim. 4275 */ 4276 static uint64_t 4277 arc_evict_meta_balanced(uint64_t meta_used) 4278 { 4279 int64_t delta, prune = 0, adjustmnt; 4280 uint64_t total_evicted = 0; 4281 arc_buf_contents_t type = ARC_BUFC_DATA; 4282 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0); 4283 4284 restart: 4285 /* 4286 * This slightly differs than the way we evict from the mru in 4287 * arc_evict because we don't have a "target" value (i.e. no 4288 * "meta" arc_p). As a result, I think we can completely 4289 * cannibalize the metadata in the MRU before we evict the 4290 * metadata from the MFU. I think we probably need to implement a 4291 * "metadata arc_p" value to do this properly. 4292 */ 4293 adjustmnt = meta_used - arc_meta_limit; 4294 4295 if (adjustmnt > 0 && 4296 zfs_refcount_count(&arc_mru->arcs_esize[type]) > 0) { 4297 delta = MIN(zfs_refcount_count(&arc_mru->arcs_esize[type]), 4298 adjustmnt); 4299 total_evicted += arc_evict_impl(arc_mru, 0, delta, type); 4300 adjustmnt -= delta; 4301 } 4302 4303 /* 4304 * We can't afford to recalculate adjustmnt here. If we do, 4305 * new metadata buffers can sneak into the MRU or ANON lists, 4306 * thus penalize the MFU metadata. Although the fudge factor is 4307 * small, it has been empirically shown to be significant for 4308 * certain workloads (e.g. creating many empty directories). As 4309 * such, we use the original calculation for adjustmnt, and 4310 * simply decrement the amount of data evicted from the MRU. 4311 */ 4312 4313 if (adjustmnt > 0 && 4314 zfs_refcount_count(&arc_mfu->arcs_esize[type]) > 0) { 4315 delta = MIN(zfs_refcount_count(&arc_mfu->arcs_esize[type]), 4316 adjustmnt); 4317 total_evicted += arc_evict_impl(arc_mfu, 0, delta, type); 4318 } 4319 4320 adjustmnt = meta_used - arc_meta_limit; 4321 4322 if (adjustmnt > 0 && 4323 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) { 4324 delta = MIN(adjustmnt, 4325 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type])); 4326 total_evicted += arc_evict_impl(arc_mru_ghost, 0, delta, type); 4327 adjustmnt -= delta; 4328 } 4329 4330 if (adjustmnt > 0 && 4331 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) { 4332 delta = MIN(adjustmnt, 4333 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type])); 4334 total_evicted += arc_evict_impl(arc_mfu_ghost, 0, delta, type); 4335 } 4336 4337 /* 4338 * If after attempting to make the requested adjustment to the ARC 4339 * the meta limit is still being exceeded then request that the 4340 * higher layers drop some cached objects which have holds on ARC 4341 * meta buffers. Requests to the upper layers will be made with 4342 * increasingly large scan sizes until the ARC is below the limit. 4343 */ 4344 if (meta_used > arc_meta_limit) { 4345 if (type == ARC_BUFC_DATA) { 4346 type = ARC_BUFC_METADATA; 4347 } else { 4348 type = ARC_BUFC_DATA; 4349 4350 if (zfs_arc_meta_prune) { 4351 prune += zfs_arc_meta_prune; 4352 arc_prune_async(prune); 4353 } 4354 } 4355 4356 if (restarts > 0) { 4357 restarts--; 4358 goto restart; 4359 } 4360 } 4361 return (total_evicted); 4362 } 4363 4364 /* 4365 * Evict metadata buffers from the cache, such that arc_meta_used is 4366 * capped by the arc_meta_limit tunable. 4367 */ 4368 static uint64_t 4369 arc_evict_meta_only(uint64_t meta_used) 4370 { 4371 uint64_t total_evicted = 0; 4372 int64_t target; 4373 4374 /* 4375 * If we're over the meta limit, we want to evict enough 4376 * metadata to get back under the meta limit. We don't want to 4377 * evict so much that we drop the MRU below arc_p, though. If 4378 * we're over the meta limit more than we're over arc_p, we 4379 * evict some from the MRU here, and some from the MFU below. 4380 */ 4381 target = MIN((int64_t)(meta_used - arc_meta_limit), 4382 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4383 zfs_refcount_count(&arc_mru->arcs_size) - arc_p)); 4384 4385 total_evicted += arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4386 4387 /* 4388 * Similar to the above, we want to evict enough bytes to get us 4389 * below the meta limit, but not so much as to drop us below the 4390 * space allotted to the MFU (which is defined as arc_c - arc_p). 4391 */ 4392 target = MIN((int64_t)(meta_used - arc_meta_limit), 4393 (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) - 4394 (arc_c - arc_p))); 4395 4396 total_evicted += arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4397 4398 return (total_evicted); 4399 } 4400 4401 static uint64_t 4402 arc_evict_meta(uint64_t meta_used) 4403 { 4404 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY) 4405 return (arc_evict_meta_only(meta_used)); 4406 else 4407 return (arc_evict_meta_balanced(meta_used)); 4408 } 4409 4410 /* 4411 * Return the type of the oldest buffer in the given arc state 4412 * 4413 * This function will select a random sublist of type ARC_BUFC_DATA and 4414 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist 4415 * is compared, and the type which contains the "older" buffer will be 4416 * returned. 4417 */ 4418 static arc_buf_contents_t 4419 arc_evict_type(arc_state_t *state) 4420 { 4421 multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA]; 4422 multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA]; 4423 int data_idx = multilist_get_random_index(data_ml); 4424 int meta_idx = multilist_get_random_index(meta_ml); 4425 multilist_sublist_t *data_mls; 4426 multilist_sublist_t *meta_mls; 4427 arc_buf_contents_t type; 4428 arc_buf_hdr_t *data_hdr; 4429 arc_buf_hdr_t *meta_hdr; 4430 4431 /* 4432 * We keep the sublist lock until we're finished, to prevent 4433 * the headers from being destroyed via arc_evict_state(). 4434 */ 4435 data_mls = multilist_sublist_lock(data_ml, data_idx); 4436 meta_mls = multilist_sublist_lock(meta_ml, meta_idx); 4437 4438 /* 4439 * These two loops are to ensure we skip any markers that 4440 * might be at the tail of the lists due to arc_evict_state(). 4441 */ 4442 4443 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL; 4444 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) { 4445 if (data_hdr->b_spa != 0) 4446 break; 4447 } 4448 4449 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL; 4450 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) { 4451 if (meta_hdr->b_spa != 0) 4452 break; 4453 } 4454 4455 if (data_hdr == NULL && meta_hdr == NULL) { 4456 type = ARC_BUFC_DATA; 4457 } else if (data_hdr == NULL) { 4458 ASSERT3P(meta_hdr, !=, NULL); 4459 type = ARC_BUFC_METADATA; 4460 } else if (meta_hdr == NULL) { 4461 ASSERT3P(data_hdr, !=, NULL); 4462 type = ARC_BUFC_DATA; 4463 } else { 4464 ASSERT3P(data_hdr, !=, NULL); 4465 ASSERT3P(meta_hdr, !=, NULL); 4466 4467 /* The headers can't be on the sublist without an L1 header */ 4468 ASSERT(HDR_HAS_L1HDR(data_hdr)); 4469 ASSERT(HDR_HAS_L1HDR(meta_hdr)); 4470 4471 if (data_hdr->b_l1hdr.b_arc_access < 4472 meta_hdr->b_l1hdr.b_arc_access) { 4473 type = ARC_BUFC_DATA; 4474 } else { 4475 type = ARC_BUFC_METADATA; 4476 } 4477 } 4478 4479 multilist_sublist_unlock(meta_mls); 4480 multilist_sublist_unlock(data_mls); 4481 4482 return (type); 4483 } 4484 4485 /* 4486 * Evict buffers from the cache, such that arc_size is capped by arc_c. 4487 */ 4488 static uint64_t 4489 arc_evict(void) 4490 { 4491 uint64_t total_evicted = 0; 4492 uint64_t bytes; 4493 int64_t target; 4494 uint64_t asize = aggsum_value(&arc_size); 4495 uint64_t ameta = aggsum_value(&arc_meta_used); 4496 4497 /* 4498 * If we're over arc_meta_limit, we want to correct that before 4499 * potentially evicting data buffers below. 4500 */ 4501 total_evicted += arc_evict_meta(ameta); 4502 4503 /* 4504 * Adjust MRU size 4505 * 4506 * If we're over the target cache size, we want to evict enough 4507 * from the list to get back to our target size. We don't want 4508 * to evict too much from the MRU, such that it drops below 4509 * arc_p. So, if we're over our target cache size more than 4510 * the MRU is over arc_p, we'll evict enough to get back to 4511 * arc_p here, and then evict more from the MFU below. 4512 */ 4513 target = MIN((int64_t)(asize - arc_c), 4514 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4515 zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p)); 4516 4517 /* 4518 * If we're below arc_meta_min, always prefer to evict data. 4519 * Otherwise, try to satisfy the requested number of bytes to 4520 * evict from the type which contains older buffers; in an 4521 * effort to keep newer buffers in the cache regardless of their 4522 * type. If we cannot satisfy the number of bytes from this 4523 * type, spill over into the next type. 4524 */ 4525 if (arc_evict_type(arc_mru) == ARC_BUFC_METADATA && 4526 ameta > arc_meta_min) { 4527 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4528 total_evicted += bytes; 4529 4530 /* 4531 * If we couldn't evict our target number of bytes from 4532 * metadata, we try to get the rest from data. 4533 */ 4534 target -= bytes; 4535 4536 total_evicted += 4537 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4538 } else { 4539 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4540 total_evicted += bytes; 4541 4542 /* 4543 * If we couldn't evict our target number of bytes from 4544 * data, we try to get the rest from metadata. 4545 */ 4546 target -= bytes; 4547 4548 total_evicted += 4549 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4550 } 4551 4552 /* 4553 * Re-sum ARC stats after the first round of evictions. 4554 */ 4555 asize = aggsum_value(&arc_size); 4556 ameta = aggsum_value(&arc_meta_used); 4557 4558 4559 /* 4560 * Adjust MFU size 4561 * 4562 * Now that we've tried to evict enough from the MRU to get its 4563 * size back to arc_p, if we're still above the target cache 4564 * size, we evict the rest from the MFU. 4565 */ 4566 target = asize - arc_c; 4567 4568 if (arc_evict_type(arc_mfu) == ARC_BUFC_METADATA && 4569 ameta > arc_meta_min) { 4570 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4571 total_evicted += bytes; 4572 4573 /* 4574 * If we couldn't evict our target number of bytes from 4575 * metadata, we try to get the rest from data. 4576 */ 4577 target -= bytes; 4578 4579 total_evicted += 4580 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4581 } else { 4582 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4583 total_evicted += bytes; 4584 4585 /* 4586 * If we couldn't evict our target number of bytes from 4587 * data, we try to get the rest from data. 4588 */ 4589 target -= bytes; 4590 4591 total_evicted += 4592 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4593 } 4594 4595 /* 4596 * Adjust ghost lists 4597 * 4598 * In addition to the above, the ARC also defines target values 4599 * for the ghost lists. The sum of the mru list and mru ghost 4600 * list should never exceed the target size of the cache, and 4601 * the sum of the mru list, mfu list, mru ghost list, and mfu 4602 * ghost list should never exceed twice the target size of the 4603 * cache. The following logic enforces these limits on the ghost 4604 * caches, and evicts from them as needed. 4605 */ 4606 target = zfs_refcount_count(&arc_mru->arcs_size) + 4607 zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c; 4608 4609 bytes = arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA); 4610 total_evicted += bytes; 4611 4612 target -= bytes; 4613 4614 total_evicted += 4615 arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA); 4616 4617 /* 4618 * We assume the sum of the mru list and mfu list is less than 4619 * or equal to arc_c (we enforced this above), which means we 4620 * can use the simpler of the two equations below: 4621 * 4622 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c 4623 * mru ghost + mfu ghost <= arc_c 4624 */ 4625 target = zfs_refcount_count(&arc_mru_ghost->arcs_size) + 4626 zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c; 4627 4628 bytes = arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA); 4629 total_evicted += bytes; 4630 4631 target -= bytes; 4632 4633 total_evicted += 4634 arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA); 4635 4636 return (total_evicted); 4637 } 4638 4639 void 4640 arc_flush(spa_t *spa, boolean_t retry) 4641 { 4642 uint64_t guid = 0; 4643 4644 /* 4645 * If retry is B_TRUE, a spa must not be specified since we have 4646 * no good way to determine if all of a spa's buffers have been 4647 * evicted from an arc state. 4648 */ 4649 ASSERT(!retry || spa == 0); 4650 4651 if (spa != NULL) 4652 guid = spa_load_guid(spa); 4653 4654 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 4655 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 4656 4657 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 4658 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 4659 4660 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 4661 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 4662 4663 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 4664 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 4665 } 4666 4667 void 4668 arc_reduce_target_size(int64_t to_free) 4669 { 4670 uint64_t asize = aggsum_value(&arc_size); 4671 4672 /* 4673 * All callers want the ARC to actually evict (at least) this much 4674 * memory. Therefore we reduce from the lower of the current size and 4675 * the target size. This way, even if arc_c is much higher than 4676 * arc_size (as can be the case after many calls to arc_freed(), we will 4677 * immediately have arc_c < arc_size and therefore the arc_evict_zthr 4678 * will evict. 4679 */ 4680 uint64_t c = MIN(arc_c, asize); 4681 4682 if (c > to_free && c - to_free > arc_c_min) { 4683 arc_c = c - to_free; 4684 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 4685 if (arc_p > arc_c) 4686 arc_p = (arc_c >> 1); 4687 ASSERT(arc_c >= arc_c_min); 4688 ASSERT((int64_t)arc_p >= 0); 4689 } else { 4690 arc_c = arc_c_min; 4691 } 4692 4693 if (asize > arc_c) { 4694 /* See comment in arc_evict_cb_check() on why lock+flag */ 4695 mutex_enter(&arc_evict_lock); 4696 arc_evict_needed = B_TRUE; 4697 mutex_exit(&arc_evict_lock); 4698 zthr_wakeup(arc_evict_zthr); 4699 } 4700 } 4701 4702 /* 4703 * Determine if the system is under memory pressure and is asking 4704 * to reclaim memory. A return value of B_TRUE indicates that the system 4705 * is under memory pressure and that the arc should adjust accordingly. 4706 */ 4707 boolean_t 4708 arc_reclaim_needed(void) 4709 { 4710 return (arc_available_memory() < 0); 4711 } 4712 4713 void 4714 arc_kmem_reap_soon(void) 4715 { 4716 size_t i; 4717 kmem_cache_t *prev_cache = NULL; 4718 kmem_cache_t *prev_data_cache = NULL; 4719 extern kmem_cache_t *zio_buf_cache[]; 4720 extern kmem_cache_t *zio_data_buf_cache[]; 4721 4722 #ifdef _KERNEL 4723 if ((aggsum_compare(&arc_meta_used, arc_meta_limit) >= 0) && 4724 zfs_arc_meta_prune) { 4725 /* 4726 * We are exceeding our meta-data cache limit. 4727 * Prune some entries to release holds on meta-data. 4728 */ 4729 arc_prune_async(zfs_arc_meta_prune); 4730 } 4731 #if defined(_ILP32) 4732 /* 4733 * Reclaim unused memory from all kmem caches. 4734 */ 4735 kmem_reap(); 4736 #endif 4737 #endif 4738 4739 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 4740 #if defined(_ILP32) 4741 /* reach upper limit of cache size on 32-bit */ 4742 if (zio_buf_cache[i] == NULL) 4743 break; 4744 #endif 4745 if (zio_buf_cache[i] != prev_cache) { 4746 prev_cache = zio_buf_cache[i]; 4747 kmem_cache_reap_now(zio_buf_cache[i]); 4748 } 4749 if (zio_data_buf_cache[i] != prev_data_cache) { 4750 prev_data_cache = zio_data_buf_cache[i]; 4751 kmem_cache_reap_now(zio_data_buf_cache[i]); 4752 } 4753 } 4754 kmem_cache_reap_now(buf_cache); 4755 kmem_cache_reap_now(hdr_full_cache); 4756 kmem_cache_reap_now(hdr_l2only_cache); 4757 kmem_cache_reap_now(zfs_btree_leaf_cache); 4758 abd_cache_reap_now(); 4759 } 4760 4761 /* ARGSUSED */ 4762 static boolean_t 4763 arc_evict_cb_check(void *arg, zthr_t *zthr) 4764 { 4765 /* 4766 * This is necessary so that any changes which may have been made to 4767 * many of the zfs_arc_* module parameters will be propagated to 4768 * their actual internal variable counterparts. Without this, 4769 * changing those module params at runtime would have no effect. 4770 */ 4771 arc_tuning_update(B_FALSE); 4772 4773 /* 4774 * This is necessary in order to keep the kstat information 4775 * up to date for tools that display kstat data such as the 4776 * mdb ::arc dcmd and the Linux crash utility. These tools 4777 * typically do not call kstat's update function, but simply 4778 * dump out stats from the most recent update. Without 4779 * this call, these commands may show stale stats for the 4780 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 4781 * with this change, the data might be up to 1 second 4782 * out of date(the arc_evict_zthr has a maximum sleep 4783 * time of 1 second); but that should suffice. The 4784 * arc_state_t structures can be queried directly if more 4785 * accurate information is needed. 4786 */ 4787 if (arc_ksp != NULL) 4788 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 4789 4790 /* 4791 * We have to rely on arc_wait_for_eviction() to tell us when to 4792 * evict, rather than checking if we are overflowing here, so that we 4793 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv. 4794 * If we have become "not overflowing" since arc_wait_for_eviction() 4795 * checked, we need to wake it up. We could broadcast the CV here, 4796 * but arc_wait_for_eviction() may have not yet gone to sleep. We 4797 * would need to use a mutex to ensure that this function doesn't 4798 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g. 4799 * the arc_evict_lock). However, the lock ordering of such a lock 4800 * would necessarily be incorrect with respect to the zthr_lock, 4801 * which is held before this function is called, and is held by 4802 * arc_wait_for_eviction() when it calls zthr_wakeup(). 4803 */ 4804 return (arc_evict_needed); 4805 } 4806 4807 /* 4808 * Keep arc_size under arc_c by running arc_evict which evicts data 4809 * from the ARC. 4810 */ 4811 /* ARGSUSED */ 4812 static void 4813 arc_evict_cb(void *arg, zthr_t *zthr) 4814 { 4815 uint64_t evicted = 0; 4816 fstrans_cookie_t cookie = spl_fstrans_mark(); 4817 4818 /* Evict from cache */ 4819 evicted = arc_evict(); 4820 4821 /* 4822 * If evicted is zero, we couldn't evict anything 4823 * via arc_evict(). This could be due to hash lock 4824 * collisions, but more likely due to the majority of 4825 * arc buffers being unevictable. Therefore, even if 4826 * arc_size is above arc_c, another pass is unlikely to 4827 * be helpful and could potentially cause us to enter an 4828 * infinite loop. Additionally, zthr_iscancelled() is 4829 * checked here so that if the arc is shutting down, the 4830 * broadcast will wake any remaining arc evict waiters. 4831 */ 4832 mutex_enter(&arc_evict_lock); 4833 arc_evict_needed = !zthr_iscancelled(arc_evict_zthr) && 4834 evicted > 0 && aggsum_compare(&arc_size, arc_c) > 0; 4835 if (!arc_evict_needed) { 4836 /* 4837 * We're either no longer overflowing, or we 4838 * can't evict anything more, so we should wake 4839 * arc_get_data_impl() sooner. 4840 */ 4841 arc_evict_waiter_t *aw; 4842 while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) { 4843 cv_broadcast(&aw->aew_cv); 4844 } 4845 arc_set_need_free(); 4846 } 4847 mutex_exit(&arc_evict_lock); 4848 spl_fstrans_unmark(cookie); 4849 } 4850 4851 /* ARGSUSED */ 4852 static boolean_t 4853 arc_reap_cb_check(void *arg, zthr_t *zthr) 4854 { 4855 int64_t free_memory = arc_available_memory(); 4856 4857 /* 4858 * If a kmem reap is already active, don't schedule more. We must 4859 * check for this because kmem_cache_reap_soon() won't actually 4860 * block on the cache being reaped (this is to prevent callers from 4861 * becoming implicitly blocked by a system-wide kmem reap -- which, 4862 * on a system with many, many full magazines, can take minutes). 4863 */ 4864 if (!kmem_cache_reap_active() && free_memory < 0) { 4865 4866 arc_no_grow = B_TRUE; 4867 arc_warm = B_TRUE; 4868 /* 4869 * Wait at least zfs_grow_retry (default 5) seconds 4870 * before considering growing. 4871 */ 4872 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry); 4873 return (B_TRUE); 4874 } else if (free_memory < arc_c >> arc_no_grow_shift) { 4875 arc_no_grow = B_TRUE; 4876 } else if (gethrtime() >= arc_growtime) { 4877 arc_no_grow = B_FALSE; 4878 } 4879 4880 return (B_FALSE); 4881 } 4882 4883 /* 4884 * Keep enough free memory in the system by reaping the ARC's kmem 4885 * caches. To cause more slabs to be reapable, we may reduce the 4886 * target size of the cache (arc_c), causing the arc_evict_cb() 4887 * to free more buffers. 4888 */ 4889 /* ARGSUSED */ 4890 static void 4891 arc_reap_cb(void *arg, zthr_t *zthr) 4892 { 4893 int64_t free_memory; 4894 fstrans_cookie_t cookie = spl_fstrans_mark(); 4895 4896 /* 4897 * Kick off asynchronous kmem_reap()'s of all our caches. 4898 */ 4899 arc_kmem_reap_soon(); 4900 4901 /* 4902 * Wait at least arc_kmem_cache_reap_retry_ms between 4903 * arc_kmem_reap_soon() calls. Without this check it is possible to 4904 * end up in a situation where we spend lots of time reaping 4905 * caches, while we're near arc_c_min. Waiting here also gives the 4906 * subsequent free memory check a chance of finding that the 4907 * asynchronous reap has already freed enough memory, and we don't 4908 * need to call arc_reduce_target_size(). 4909 */ 4910 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000); 4911 4912 /* 4913 * Reduce the target size as needed to maintain the amount of free 4914 * memory in the system at a fraction of the arc_size (1/128th by 4915 * default). If oversubscribed (free_memory < 0) then reduce the 4916 * target arc_size by the deficit amount plus the fractional 4917 * amount. If free memory is positive but less then the fractional 4918 * amount, reduce by what is needed to hit the fractional amount. 4919 */ 4920 free_memory = arc_available_memory(); 4921 4922 int64_t to_free = 4923 (arc_c >> arc_shrink_shift) - free_memory; 4924 if (to_free > 0) { 4925 arc_reduce_target_size(to_free); 4926 } 4927 spl_fstrans_unmark(cookie); 4928 } 4929 4930 #ifdef _KERNEL 4931 /* 4932 * Determine the amount of memory eligible for eviction contained in the 4933 * ARC. All clean data reported by the ghost lists can always be safely 4934 * evicted. Due to arc_c_min, the same does not hold for all clean data 4935 * contained by the regular mru and mfu lists. 4936 * 4937 * In the case of the regular mru and mfu lists, we need to report as 4938 * much clean data as possible, such that evicting that same reported 4939 * data will not bring arc_size below arc_c_min. Thus, in certain 4940 * circumstances, the total amount of clean data in the mru and mfu 4941 * lists might not actually be evictable. 4942 * 4943 * The following two distinct cases are accounted for: 4944 * 4945 * 1. The sum of the amount of dirty data contained by both the mru and 4946 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 4947 * is greater than or equal to arc_c_min. 4948 * (i.e. amount of dirty data >= arc_c_min) 4949 * 4950 * This is the easy case; all clean data contained by the mru and mfu 4951 * lists is evictable. Evicting all clean data can only drop arc_size 4952 * to the amount of dirty data, which is greater than arc_c_min. 4953 * 4954 * 2. The sum of the amount of dirty data contained by both the mru and 4955 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 4956 * is less than arc_c_min. 4957 * (i.e. arc_c_min > amount of dirty data) 4958 * 4959 * 2.1. arc_size is greater than or equal arc_c_min. 4960 * (i.e. arc_size >= arc_c_min > amount of dirty data) 4961 * 4962 * In this case, not all clean data from the regular mru and mfu 4963 * lists is actually evictable; we must leave enough clean data 4964 * to keep arc_size above arc_c_min. Thus, the maximum amount of 4965 * evictable data from the two lists combined, is exactly the 4966 * difference between arc_size and arc_c_min. 4967 * 4968 * 2.2. arc_size is less than arc_c_min 4969 * (i.e. arc_c_min > arc_size > amount of dirty data) 4970 * 4971 * In this case, none of the data contained in the mru and mfu 4972 * lists is evictable, even if it's clean. Since arc_size is 4973 * already below arc_c_min, evicting any more would only 4974 * increase this negative difference. 4975 */ 4976 4977 #endif /* _KERNEL */ 4978 4979 /* 4980 * Adapt arc info given the number of bytes we are trying to add and 4981 * the state that we are coming from. This function is only called 4982 * when we are adding new content to the cache. 4983 */ 4984 static void 4985 arc_adapt(int bytes, arc_state_t *state) 4986 { 4987 int mult; 4988 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 4989 int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size); 4990 int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size); 4991 4992 ASSERT(bytes > 0); 4993 /* 4994 * Adapt the target size of the MRU list: 4995 * - if we just hit in the MRU ghost list, then increase 4996 * the target size of the MRU list. 4997 * - if we just hit in the MFU ghost list, then increase 4998 * the target size of the MFU list by decreasing the 4999 * target size of the MRU list. 5000 */ 5001 if (state == arc_mru_ghost) { 5002 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size); 5003 if (!zfs_arc_p_dampener_disable) 5004 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 5005 5006 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 5007 } else if (state == arc_mfu_ghost) { 5008 uint64_t delta; 5009 5010 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size); 5011 if (!zfs_arc_p_dampener_disable) 5012 mult = MIN(mult, 10); 5013 5014 delta = MIN(bytes * mult, arc_p); 5015 arc_p = MAX(arc_p_min, arc_p - delta); 5016 } 5017 ASSERT((int64_t)arc_p >= 0); 5018 5019 /* 5020 * Wake reap thread if we do not have any available memory 5021 */ 5022 if (arc_reclaim_needed()) { 5023 zthr_wakeup(arc_reap_zthr); 5024 return; 5025 } 5026 5027 if (arc_no_grow) 5028 return; 5029 5030 if (arc_c >= arc_c_max) 5031 return; 5032 5033 /* 5034 * If we're within (2 * maxblocksize) bytes of the target 5035 * cache size, increment the target cache size 5036 */ 5037 ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT); 5038 if (aggsum_upper_bound(&arc_size) >= 5039 arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 5040 atomic_add_64(&arc_c, (int64_t)bytes); 5041 if (arc_c > arc_c_max) 5042 arc_c = arc_c_max; 5043 else if (state == arc_anon) 5044 atomic_add_64(&arc_p, (int64_t)bytes); 5045 if (arc_p > arc_c) 5046 arc_p = arc_c; 5047 } 5048 ASSERT((int64_t)arc_p >= 0); 5049 } 5050 5051 /* 5052 * Check if arc_size has grown past our upper threshold, determined by 5053 * zfs_arc_overflow_shift. 5054 */ 5055 boolean_t 5056 arc_is_overflowing(void) 5057 { 5058 /* Always allow at least one block of overflow */ 5059 int64_t overflow = MAX(SPA_MAXBLOCKSIZE, 5060 arc_c >> zfs_arc_overflow_shift); 5061 5062 /* 5063 * We just compare the lower bound here for performance reasons. Our 5064 * primary goals are to make sure that the arc never grows without 5065 * bound, and that it can reach its maximum size. This check 5066 * accomplishes both goals. The maximum amount we could run over by is 5067 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block 5068 * in the ARC. In practice, that's in the tens of MB, which is low 5069 * enough to be safe. 5070 */ 5071 return (aggsum_lower_bound(&arc_size) >= (int64_t)arc_c + overflow); 5072 } 5073 5074 static abd_t * 5075 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 5076 boolean_t do_adapt) 5077 { 5078 arc_buf_contents_t type = arc_buf_type(hdr); 5079 5080 arc_get_data_impl(hdr, size, tag, do_adapt); 5081 if (type == ARC_BUFC_METADATA) { 5082 return (abd_alloc(size, B_TRUE)); 5083 } else { 5084 ASSERT(type == ARC_BUFC_DATA); 5085 return (abd_alloc(size, B_FALSE)); 5086 } 5087 } 5088 5089 static void * 5090 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 5091 { 5092 arc_buf_contents_t type = arc_buf_type(hdr); 5093 5094 arc_get_data_impl(hdr, size, tag, B_TRUE); 5095 if (type == ARC_BUFC_METADATA) { 5096 return (zio_buf_alloc(size)); 5097 } else { 5098 ASSERT(type == ARC_BUFC_DATA); 5099 return (zio_data_buf_alloc(size)); 5100 } 5101 } 5102 5103 /* 5104 * Wait for the specified amount of data (in bytes) to be evicted from the 5105 * ARC, and for there to be sufficient free memory in the system. Waiting for 5106 * eviction ensures that the memory used by the ARC decreases. Waiting for 5107 * free memory ensures that the system won't run out of free pages, regardless 5108 * of ARC behavior and settings. See arc_lowmem_init(). 5109 */ 5110 void 5111 arc_wait_for_eviction(uint64_t amount) 5112 { 5113 mutex_enter(&arc_evict_lock); 5114 if (arc_is_overflowing()) { 5115 arc_evict_needed = B_TRUE; 5116 zthr_wakeup(arc_evict_zthr); 5117 5118 if (amount != 0) { 5119 arc_evict_waiter_t aw; 5120 list_link_init(&aw.aew_node); 5121 cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL); 5122 5123 arc_evict_waiter_t *last = 5124 list_tail(&arc_evict_waiters); 5125 if (last != NULL) { 5126 ASSERT3U(last->aew_count, >, arc_evict_count); 5127 aw.aew_count = last->aew_count + amount; 5128 } else { 5129 aw.aew_count = arc_evict_count + amount; 5130 } 5131 5132 list_insert_tail(&arc_evict_waiters, &aw); 5133 5134 arc_set_need_free(); 5135 5136 DTRACE_PROBE3(arc__wait__for__eviction, 5137 uint64_t, amount, 5138 uint64_t, arc_evict_count, 5139 uint64_t, aw.aew_count); 5140 5141 /* 5142 * We will be woken up either when arc_evict_count 5143 * reaches aew_count, or when the ARC is no longer 5144 * overflowing and eviction completes. 5145 */ 5146 cv_wait(&aw.aew_cv, &arc_evict_lock); 5147 5148 /* 5149 * In case of "false" wakeup, we will still be on the 5150 * list. 5151 */ 5152 if (list_link_active(&aw.aew_node)) 5153 list_remove(&arc_evict_waiters, &aw); 5154 5155 cv_destroy(&aw.aew_cv); 5156 } 5157 } 5158 mutex_exit(&arc_evict_lock); 5159 } 5160 5161 /* 5162 * Allocate a block and return it to the caller. If we are hitting the 5163 * hard limit for the cache size, we must sleep, waiting for the eviction 5164 * thread to catch up. If we're past the target size but below the hard 5165 * limit, we'll only signal the reclaim thread and continue on. 5166 */ 5167 static void 5168 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 5169 boolean_t do_adapt) 5170 { 5171 arc_state_t *state = hdr->b_l1hdr.b_state; 5172 arc_buf_contents_t type = arc_buf_type(hdr); 5173 5174 if (do_adapt) 5175 arc_adapt(size, state); 5176 5177 /* 5178 * If arc_size is currently overflowing, we must be adding data 5179 * faster than we are evicting. To ensure we don't compound the 5180 * problem by adding more data and forcing arc_size to grow even 5181 * further past it's target size, we wait for the eviction thread to 5182 * make some progress. We also wait for there to be sufficient free 5183 * memory in the system, as measured by arc_free_memory(). 5184 * 5185 * Specifically, we wait for zfs_arc_eviction_pct percent of the 5186 * requested size to be evicted. This should be more than 100%, to 5187 * ensure that that progress is also made towards getting arc_size 5188 * under arc_c. See the comment above zfs_arc_eviction_pct. 5189 * 5190 * We do the overflowing check without holding the arc_evict_lock to 5191 * reduce lock contention in this hot path. Note that 5192 * arc_wait_for_eviction() will acquire the lock and check again to 5193 * ensure we are truly overflowing before blocking. 5194 */ 5195 if (arc_is_overflowing()) { 5196 arc_wait_for_eviction(size * 5197 zfs_arc_eviction_pct / 100); 5198 } 5199 5200 VERIFY3U(hdr->b_type, ==, type); 5201 if (type == ARC_BUFC_METADATA) { 5202 arc_space_consume(size, ARC_SPACE_META); 5203 } else { 5204 arc_space_consume(size, ARC_SPACE_DATA); 5205 } 5206 5207 /* 5208 * Update the state size. Note that ghost states have a 5209 * "ghost size" and so don't need to be updated. 5210 */ 5211 if (!GHOST_STATE(state)) { 5212 5213 (void) zfs_refcount_add_many(&state->arcs_size, size, tag); 5214 5215 /* 5216 * If this is reached via arc_read, the link is 5217 * protected by the hash lock. If reached via 5218 * arc_buf_alloc, the header should not be accessed by 5219 * any other thread. And, if reached via arc_read_done, 5220 * the hash lock will protect it if it's found in the 5221 * hash table; otherwise no other thread should be 5222 * trying to [add|remove]_reference it. 5223 */ 5224 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5225 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5226 (void) zfs_refcount_add_many(&state->arcs_esize[type], 5227 size, tag); 5228 } 5229 5230 /* 5231 * If we are growing the cache, and we are adding anonymous 5232 * data, and we have outgrown arc_p, update arc_p 5233 */ 5234 if (aggsum_upper_bound(&arc_size) < arc_c && 5235 hdr->b_l1hdr.b_state == arc_anon && 5236 (zfs_refcount_count(&arc_anon->arcs_size) + 5237 zfs_refcount_count(&arc_mru->arcs_size) > arc_p)) 5238 arc_p = MIN(arc_c, arc_p + size); 5239 } 5240 } 5241 5242 static void 5243 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag) 5244 { 5245 arc_free_data_impl(hdr, size, tag); 5246 abd_free(abd); 5247 } 5248 5249 static void 5250 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag) 5251 { 5252 arc_buf_contents_t type = arc_buf_type(hdr); 5253 5254 arc_free_data_impl(hdr, size, tag); 5255 if (type == ARC_BUFC_METADATA) { 5256 zio_buf_free(buf, size); 5257 } else { 5258 ASSERT(type == ARC_BUFC_DATA); 5259 zio_data_buf_free(buf, size); 5260 } 5261 } 5262 5263 /* 5264 * Free the arc data buffer. 5265 */ 5266 static void 5267 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 5268 { 5269 arc_state_t *state = hdr->b_l1hdr.b_state; 5270 arc_buf_contents_t type = arc_buf_type(hdr); 5271 5272 /* protected by hash lock, if in the hash table */ 5273 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5274 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5275 ASSERT(state != arc_anon && state != arc_l2c_only); 5276 5277 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 5278 size, tag); 5279 } 5280 (void) zfs_refcount_remove_many(&state->arcs_size, size, tag); 5281 5282 VERIFY3U(hdr->b_type, ==, type); 5283 if (type == ARC_BUFC_METADATA) { 5284 arc_space_return(size, ARC_SPACE_META); 5285 } else { 5286 ASSERT(type == ARC_BUFC_DATA); 5287 arc_space_return(size, ARC_SPACE_DATA); 5288 } 5289 } 5290 5291 /* 5292 * This routine is called whenever a buffer is accessed. 5293 * NOTE: the hash lock is dropped in this function. 5294 */ 5295 static void 5296 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 5297 { 5298 clock_t now; 5299 5300 ASSERT(MUTEX_HELD(hash_lock)); 5301 ASSERT(HDR_HAS_L1HDR(hdr)); 5302 5303 if (hdr->b_l1hdr.b_state == arc_anon) { 5304 /* 5305 * This buffer is not in the cache, and does not 5306 * appear in our "ghost" list. Add the new buffer 5307 * to the MRU state. 5308 */ 5309 5310 ASSERT0(hdr->b_l1hdr.b_arc_access); 5311 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5312 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5313 arc_change_state(arc_mru, hdr, hash_lock); 5314 5315 } else if (hdr->b_l1hdr.b_state == arc_mru) { 5316 now = ddi_get_lbolt(); 5317 5318 /* 5319 * If this buffer is here because of a prefetch, then either: 5320 * - clear the flag if this is a "referencing" read 5321 * (any subsequent access will bump this into the MFU state). 5322 * or 5323 * - move the buffer to the head of the list if this is 5324 * another prefetch (to make it less likely to be evicted). 5325 */ 5326 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5327 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 5328 /* link protected by hash lock */ 5329 ASSERT(multilist_link_active( 5330 &hdr->b_l1hdr.b_arc_node)); 5331 } else { 5332 arc_hdr_clear_flags(hdr, 5333 ARC_FLAG_PREFETCH | 5334 ARC_FLAG_PRESCIENT_PREFETCH); 5335 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits); 5336 ARCSTAT_BUMP(arcstat_mru_hits); 5337 } 5338 hdr->b_l1hdr.b_arc_access = now; 5339 return; 5340 } 5341 5342 /* 5343 * This buffer has been "accessed" only once so far, 5344 * but it is still in the cache. Move it to the MFU 5345 * state. 5346 */ 5347 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access + 5348 ARC_MINTIME)) { 5349 /* 5350 * More than 125ms have passed since we 5351 * instantiated this buffer. Move it to the 5352 * most frequently used state. 5353 */ 5354 hdr->b_l1hdr.b_arc_access = now; 5355 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5356 arc_change_state(arc_mfu, hdr, hash_lock); 5357 } 5358 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits); 5359 ARCSTAT_BUMP(arcstat_mru_hits); 5360 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 5361 arc_state_t *new_state; 5362 /* 5363 * This buffer has been "accessed" recently, but 5364 * was evicted from the cache. Move it to the 5365 * MFU state. 5366 */ 5367 5368 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5369 new_state = arc_mru; 5370 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) { 5371 arc_hdr_clear_flags(hdr, 5372 ARC_FLAG_PREFETCH | 5373 ARC_FLAG_PRESCIENT_PREFETCH); 5374 } 5375 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5376 } else { 5377 new_state = arc_mfu; 5378 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5379 } 5380 5381 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5382 arc_change_state(new_state, hdr, hash_lock); 5383 5384 atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits); 5385 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 5386 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 5387 /* 5388 * This buffer has been accessed more than once and is 5389 * still in the cache. Keep it in the MFU state. 5390 * 5391 * NOTE: an add_reference() that occurred when we did 5392 * the arc_read() will have kicked this off the list. 5393 * If it was a prefetch, we will explicitly move it to 5394 * the head of the list now. 5395 */ 5396 5397 atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits); 5398 ARCSTAT_BUMP(arcstat_mfu_hits); 5399 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5400 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 5401 arc_state_t *new_state = arc_mfu; 5402 /* 5403 * This buffer has been accessed more than once but has 5404 * been evicted from the cache. Move it back to the 5405 * MFU state. 5406 */ 5407 5408 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5409 /* 5410 * This is a prefetch access... 5411 * move this block back to the MRU state. 5412 */ 5413 new_state = arc_mru; 5414 } 5415 5416 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5417 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5418 arc_change_state(new_state, hdr, hash_lock); 5419 5420 atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits); 5421 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 5422 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 5423 /* 5424 * This buffer is on the 2nd Level ARC. 5425 */ 5426 5427 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5428 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5429 arc_change_state(arc_mfu, hdr, hash_lock); 5430 } else { 5431 cmn_err(CE_PANIC, "invalid arc state 0x%p", 5432 hdr->b_l1hdr.b_state); 5433 } 5434 } 5435 5436 /* 5437 * This routine is called by dbuf_hold() to update the arc_access() state 5438 * which otherwise would be skipped for entries in the dbuf cache. 5439 */ 5440 void 5441 arc_buf_access(arc_buf_t *buf) 5442 { 5443 mutex_enter(&buf->b_evict_lock); 5444 arc_buf_hdr_t *hdr = buf->b_hdr; 5445 5446 /* 5447 * Avoid taking the hash_lock when possible as an optimization. 5448 * The header must be checked again under the hash_lock in order 5449 * to handle the case where it is concurrently being released. 5450 */ 5451 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5452 mutex_exit(&buf->b_evict_lock); 5453 return; 5454 } 5455 5456 kmutex_t *hash_lock = HDR_LOCK(hdr); 5457 mutex_enter(hash_lock); 5458 5459 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5460 mutex_exit(hash_lock); 5461 mutex_exit(&buf->b_evict_lock); 5462 ARCSTAT_BUMP(arcstat_access_skip); 5463 return; 5464 } 5465 5466 mutex_exit(&buf->b_evict_lock); 5467 5468 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5469 hdr->b_l1hdr.b_state == arc_mfu); 5470 5471 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5472 arc_access(hdr, hash_lock); 5473 mutex_exit(hash_lock); 5474 5475 ARCSTAT_BUMP(arcstat_hits); 5476 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr) && !HDR_PRESCIENT_PREFETCH(hdr), 5477 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits); 5478 } 5479 5480 /* a generic arc_read_done_func_t which you can use */ 5481 /* ARGSUSED */ 5482 void 5483 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5484 arc_buf_t *buf, void *arg) 5485 { 5486 if (buf == NULL) 5487 return; 5488 5489 bcopy(buf->b_data, arg, arc_buf_size(buf)); 5490 arc_buf_destroy(buf, arg); 5491 } 5492 5493 /* a generic arc_read_done_func_t */ 5494 /* ARGSUSED */ 5495 void 5496 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5497 arc_buf_t *buf, void *arg) 5498 { 5499 arc_buf_t **bufp = arg; 5500 5501 if (buf == NULL) { 5502 ASSERT(zio == NULL || zio->io_error != 0); 5503 *bufp = NULL; 5504 } else { 5505 ASSERT(zio == NULL || zio->io_error == 0); 5506 *bufp = buf; 5507 ASSERT(buf->b_data != NULL); 5508 } 5509 } 5510 5511 static void 5512 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp) 5513 { 5514 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 5515 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0); 5516 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF); 5517 } else { 5518 if (HDR_COMPRESSION_ENABLED(hdr)) { 5519 ASSERT3U(arc_hdr_get_compress(hdr), ==, 5520 BP_GET_COMPRESS(bp)); 5521 } 5522 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 5523 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); 5524 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp)); 5525 } 5526 } 5527 5528 static void 5529 arc_read_done(zio_t *zio) 5530 { 5531 blkptr_t *bp = zio->io_bp; 5532 arc_buf_hdr_t *hdr = zio->io_private; 5533 kmutex_t *hash_lock = NULL; 5534 arc_callback_t *callback_list; 5535 arc_callback_t *acb; 5536 boolean_t freeable = B_FALSE; 5537 5538 /* 5539 * The hdr was inserted into hash-table and removed from lists 5540 * prior to starting I/O. We should find this header, since 5541 * it's in the hash table, and it should be legit since it's 5542 * not possible to evict it during the I/O. The only possible 5543 * reason for it not to be found is if we were freed during the 5544 * read. 5545 */ 5546 if (HDR_IN_HASH_TABLE(hdr)) { 5547 arc_buf_hdr_t *found; 5548 5549 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 5550 ASSERT3U(hdr->b_dva.dva_word[0], ==, 5551 BP_IDENTITY(zio->io_bp)->dva_word[0]); 5552 ASSERT3U(hdr->b_dva.dva_word[1], ==, 5553 BP_IDENTITY(zio->io_bp)->dva_word[1]); 5554 5555 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock); 5556 5557 ASSERT((found == hdr && 5558 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 5559 (found == hdr && HDR_L2_READING(hdr))); 5560 ASSERT3P(hash_lock, !=, NULL); 5561 } 5562 5563 if (BP_IS_PROTECTED(bp)) { 5564 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 5565 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 5566 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 5567 hdr->b_crypt_hdr.b_iv); 5568 5569 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) { 5570 void *tmpbuf; 5571 5572 tmpbuf = abd_borrow_buf_copy(zio->io_abd, 5573 sizeof (zil_chain_t)); 5574 zio_crypt_decode_mac_zil(tmpbuf, 5575 hdr->b_crypt_hdr.b_mac); 5576 abd_return_buf(zio->io_abd, tmpbuf, 5577 sizeof (zil_chain_t)); 5578 } else { 5579 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 5580 } 5581 } 5582 5583 if (zio->io_error == 0) { 5584 /* byteswap if necessary */ 5585 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 5586 if (BP_GET_LEVEL(zio->io_bp) > 0) { 5587 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 5588 } else { 5589 hdr->b_l1hdr.b_byteswap = 5590 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 5591 } 5592 } else { 5593 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 5594 } 5595 if (!HDR_L2_READING(hdr)) { 5596 hdr->b_complevel = zio->io_prop.zp_complevel; 5597 } 5598 } 5599 5600 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); 5601 if (l2arc_noprefetch && HDR_PREFETCH(hdr)) 5602 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE); 5603 5604 callback_list = hdr->b_l1hdr.b_acb; 5605 ASSERT3P(callback_list, !=, NULL); 5606 5607 if (hash_lock && zio->io_error == 0 && 5608 hdr->b_l1hdr.b_state == arc_anon) { 5609 /* 5610 * Only call arc_access on anonymous buffers. This is because 5611 * if we've issued an I/O for an evicted buffer, we've already 5612 * called arc_access (to prevent any simultaneous readers from 5613 * getting confused). 5614 */ 5615 arc_access(hdr, hash_lock); 5616 } 5617 5618 /* 5619 * If a read request has a callback (i.e. acb_done is not NULL), then we 5620 * make a buf containing the data according to the parameters which were 5621 * passed in. The implementation of arc_buf_alloc_impl() ensures that we 5622 * aren't needlessly decompressing the data multiple times. 5623 */ 5624 int callback_cnt = 0; 5625 for (acb = callback_list; acb != NULL; acb = acb->acb_next) { 5626 if (!acb->acb_done) 5627 continue; 5628 5629 callback_cnt++; 5630 5631 if (zio->io_error != 0) 5632 continue; 5633 5634 int error = arc_buf_alloc_impl(hdr, zio->io_spa, 5635 &acb->acb_zb, acb->acb_private, acb->acb_encrypted, 5636 acb->acb_compressed, acb->acb_noauth, B_TRUE, 5637 &acb->acb_buf); 5638 5639 /* 5640 * Assert non-speculative zios didn't fail because an 5641 * encryption key wasn't loaded 5642 */ 5643 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) || 5644 error != EACCES); 5645 5646 /* 5647 * If we failed to decrypt, report an error now (as the zio 5648 * layer would have done if it had done the transforms). 5649 */ 5650 if (error == ECKSUM) { 5651 ASSERT(BP_IS_PROTECTED(bp)); 5652 error = SET_ERROR(EIO); 5653 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5654 spa_log_error(zio->io_spa, &acb->acb_zb); 5655 (void) zfs_ereport_post( 5656 FM_EREPORT_ZFS_AUTHENTICATION, 5657 zio->io_spa, NULL, &acb->acb_zb, zio, 0, 0); 5658 } 5659 } 5660 5661 if (error != 0) { 5662 /* 5663 * Decompression or decryption failed. Set 5664 * io_error so that when we call acb_done 5665 * (below), we will indicate that the read 5666 * failed. Note that in the unusual case 5667 * where one callback is compressed and another 5668 * uncompressed, we will mark all of them 5669 * as failed, even though the uncompressed 5670 * one can't actually fail. In this case, 5671 * the hdr will not be anonymous, because 5672 * if there are multiple callbacks, it's 5673 * because multiple threads found the same 5674 * arc buf in the hash table. 5675 */ 5676 zio->io_error = error; 5677 } 5678 } 5679 5680 /* 5681 * If there are multiple callbacks, we must have the hash lock, 5682 * because the only way for multiple threads to find this hdr is 5683 * in the hash table. This ensures that if there are multiple 5684 * callbacks, the hdr is not anonymous. If it were anonymous, 5685 * we couldn't use arc_buf_destroy() in the error case below. 5686 */ 5687 ASSERT(callback_cnt < 2 || hash_lock != NULL); 5688 5689 hdr->b_l1hdr.b_acb = NULL; 5690 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5691 if (callback_cnt == 0) 5692 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 5693 5694 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) || 5695 callback_list != NULL); 5696 5697 if (zio->io_error == 0) { 5698 arc_hdr_verify(hdr, zio->io_bp); 5699 } else { 5700 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 5701 if (hdr->b_l1hdr.b_state != arc_anon) 5702 arc_change_state(arc_anon, hdr, hash_lock); 5703 if (HDR_IN_HASH_TABLE(hdr)) 5704 buf_hash_remove(hdr); 5705 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5706 } 5707 5708 /* 5709 * Broadcast before we drop the hash_lock to avoid the possibility 5710 * that the hdr (and hence the cv) might be freed before we get to 5711 * the cv_broadcast(). 5712 */ 5713 cv_broadcast(&hdr->b_l1hdr.b_cv); 5714 5715 if (hash_lock != NULL) { 5716 mutex_exit(hash_lock); 5717 } else { 5718 /* 5719 * This block was freed while we waited for the read to 5720 * complete. It has been removed from the hash table and 5721 * moved to the anonymous state (so that it won't show up 5722 * in the cache). 5723 */ 5724 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 5725 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5726 } 5727 5728 /* execute each callback and free its structure */ 5729 while ((acb = callback_list) != NULL) { 5730 if (acb->acb_done != NULL) { 5731 if (zio->io_error != 0 && acb->acb_buf != NULL) { 5732 /* 5733 * If arc_buf_alloc_impl() fails during 5734 * decompression, the buf will still be 5735 * allocated, and needs to be freed here. 5736 */ 5737 arc_buf_destroy(acb->acb_buf, 5738 acb->acb_private); 5739 acb->acb_buf = NULL; 5740 } 5741 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp, 5742 acb->acb_buf, acb->acb_private); 5743 } 5744 5745 if (acb->acb_zio_dummy != NULL) { 5746 acb->acb_zio_dummy->io_error = zio->io_error; 5747 zio_nowait(acb->acb_zio_dummy); 5748 } 5749 5750 callback_list = acb->acb_next; 5751 kmem_free(acb, sizeof (arc_callback_t)); 5752 } 5753 5754 if (freeable) 5755 arc_hdr_destroy(hdr); 5756 } 5757 5758 /* 5759 * "Read" the block at the specified DVA (in bp) via the 5760 * cache. If the block is found in the cache, invoke the provided 5761 * callback immediately and return. Note that the `zio' parameter 5762 * in the callback will be NULL in this case, since no IO was 5763 * required. If the block is not in the cache pass the read request 5764 * on to the spa with a substitute callback function, so that the 5765 * requested block will be added to the cache. 5766 * 5767 * If a read request arrives for a block that has a read in-progress, 5768 * either wait for the in-progress read to complete (and return the 5769 * results); or, if this is a read with a "done" func, add a record 5770 * to the read to invoke the "done" func when the read completes, 5771 * and return; or just return. 5772 * 5773 * arc_read_done() will invoke all the requested "done" functions 5774 * for readers of this block. 5775 */ 5776 int 5777 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 5778 arc_read_done_func_t *done, void *private, zio_priority_t priority, 5779 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 5780 { 5781 arc_buf_hdr_t *hdr = NULL; 5782 kmutex_t *hash_lock = NULL; 5783 zio_t *rzio; 5784 uint64_t guid = spa_load_guid(spa); 5785 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0; 5786 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) && 5787 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5788 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) && 5789 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5790 boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp); 5791 int rc = 0; 5792 5793 ASSERT(!embedded_bp || 5794 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 5795 ASSERT(!BP_IS_HOLE(bp)); 5796 ASSERT(!BP_IS_REDACTED(bp)); 5797 5798 /* 5799 * Normally SPL_FSTRANS will already be set since kernel threads which 5800 * expect to call the DMU interfaces will set it when created. System 5801 * calls are similarly handled by setting/cleaning the bit in the 5802 * registered callback (module/os/.../zfs/zpl_*). 5803 * 5804 * External consumers such as Lustre which call the exported DMU 5805 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock 5806 * on the hash_lock always set and clear the bit. 5807 */ 5808 fstrans_cookie_t cookie = spl_fstrans_mark(); 5809 top: 5810 if (!embedded_bp) { 5811 /* 5812 * Embedded BP's have no DVA and require no I/O to "read". 5813 * Create an anonymous arc buf to back it. 5814 */ 5815 hdr = buf_hash_find(guid, bp, &hash_lock); 5816 } 5817 5818 /* 5819 * Determine if we have an L1 cache hit or a cache miss. For simplicity 5820 * we maintain encrypted data separately from compressed / uncompressed 5821 * data. If the user is requesting raw encrypted data and we don't have 5822 * that in the header we will read from disk to guarantee that we can 5823 * get it even if the encryption keys aren't loaded. 5824 */ 5825 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) || 5826 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) { 5827 arc_buf_t *buf = NULL; 5828 *arc_flags |= ARC_FLAG_CACHED; 5829 5830 if (HDR_IO_IN_PROGRESS(hdr)) { 5831 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head; 5832 5833 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 5834 mutex_exit(hash_lock); 5835 ARCSTAT_BUMP(arcstat_cached_only_in_progress); 5836 rc = SET_ERROR(ENOENT); 5837 goto out; 5838 } 5839 5840 ASSERT3P(head_zio, !=, NULL); 5841 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && 5842 priority == ZIO_PRIORITY_SYNC_READ) { 5843 /* 5844 * This is a sync read that needs to wait for 5845 * an in-flight async read. Request that the 5846 * zio have its priority upgraded. 5847 */ 5848 zio_change_priority(head_zio, priority); 5849 DTRACE_PROBE1(arc__async__upgrade__sync, 5850 arc_buf_hdr_t *, hdr); 5851 ARCSTAT_BUMP(arcstat_async_upgrade_sync); 5852 } 5853 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 5854 arc_hdr_clear_flags(hdr, 5855 ARC_FLAG_PREDICTIVE_PREFETCH); 5856 } 5857 5858 if (*arc_flags & ARC_FLAG_WAIT) { 5859 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 5860 mutex_exit(hash_lock); 5861 goto top; 5862 } 5863 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 5864 5865 if (done) { 5866 arc_callback_t *acb = NULL; 5867 5868 acb = kmem_zalloc(sizeof (arc_callback_t), 5869 KM_SLEEP); 5870 acb->acb_done = done; 5871 acb->acb_private = private; 5872 acb->acb_compressed = compressed_read; 5873 acb->acb_encrypted = encrypted_read; 5874 acb->acb_noauth = noauth_read; 5875 acb->acb_zb = *zb; 5876 if (pio != NULL) 5877 acb->acb_zio_dummy = zio_null(pio, 5878 spa, NULL, NULL, NULL, zio_flags); 5879 5880 ASSERT3P(acb->acb_done, !=, NULL); 5881 acb->acb_zio_head = head_zio; 5882 acb->acb_next = hdr->b_l1hdr.b_acb; 5883 hdr->b_l1hdr.b_acb = acb; 5884 mutex_exit(hash_lock); 5885 goto out; 5886 } 5887 mutex_exit(hash_lock); 5888 goto out; 5889 } 5890 5891 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5892 hdr->b_l1hdr.b_state == arc_mfu); 5893 5894 if (done) { 5895 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 5896 /* 5897 * This is a demand read which does not have to 5898 * wait for i/o because we did a predictive 5899 * prefetch i/o for it, which has completed. 5900 */ 5901 DTRACE_PROBE1( 5902 arc__demand__hit__predictive__prefetch, 5903 arc_buf_hdr_t *, hdr); 5904 ARCSTAT_BUMP( 5905 arcstat_demand_hit_predictive_prefetch); 5906 arc_hdr_clear_flags(hdr, 5907 ARC_FLAG_PREDICTIVE_PREFETCH); 5908 } 5909 5910 if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) { 5911 ARCSTAT_BUMP( 5912 arcstat_demand_hit_prescient_prefetch); 5913 arc_hdr_clear_flags(hdr, 5914 ARC_FLAG_PRESCIENT_PREFETCH); 5915 } 5916 5917 ASSERT(!embedded_bp || !BP_IS_HOLE(bp)); 5918 5919 /* Get a buf with the desired data in it. */ 5920 rc = arc_buf_alloc_impl(hdr, spa, zb, private, 5921 encrypted_read, compressed_read, noauth_read, 5922 B_TRUE, &buf); 5923 if (rc == ECKSUM) { 5924 /* 5925 * Convert authentication and decryption errors 5926 * to EIO (and generate an ereport if needed) 5927 * before leaving the ARC. 5928 */ 5929 rc = SET_ERROR(EIO); 5930 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5931 spa_log_error(spa, zb); 5932 (void) zfs_ereport_post( 5933 FM_EREPORT_ZFS_AUTHENTICATION, 5934 spa, NULL, zb, NULL, 0, 0); 5935 } 5936 } 5937 if (rc != 0) { 5938 (void) remove_reference(hdr, hash_lock, 5939 private); 5940 arc_buf_destroy_impl(buf); 5941 buf = NULL; 5942 } 5943 5944 /* assert any errors weren't due to unloaded keys */ 5945 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) || 5946 rc != EACCES); 5947 } else if (*arc_flags & ARC_FLAG_PREFETCH && 5948 zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 5949 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 5950 } 5951 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5952 arc_access(hdr, hash_lock); 5953 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 5954 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 5955 if (*arc_flags & ARC_FLAG_L2CACHE) 5956 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 5957 mutex_exit(hash_lock); 5958 ARCSTAT_BUMP(arcstat_hits); 5959 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 5960 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 5961 data, metadata, hits); 5962 5963 if (done) 5964 done(NULL, zb, bp, buf, private); 5965 } else { 5966 uint64_t lsize = BP_GET_LSIZE(bp); 5967 uint64_t psize = BP_GET_PSIZE(bp); 5968 arc_callback_t *acb; 5969 vdev_t *vd = NULL; 5970 uint64_t addr = 0; 5971 boolean_t devw = B_FALSE; 5972 uint64_t size; 5973 abd_t *hdr_abd; 5974 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0; 5975 5976 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 5977 rc = SET_ERROR(ENOENT); 5978 if (hash_lock != NULL) 5979 mutex_exit(hash_lock); 5980 goto out; 5981 } 5982 5983 /* 5984 * Gracefully handle a damaged logical block size as a 5985 * checksum error. 5986 */ 5987 if (lsize > spa_maxblocksize(spa)) { 5988 rc = SET_ERROR(ECKSUM); 5989 if (hash_lock != NULL) 5990 mutex_exit(hash_lock); 5991 goto out; 5992 } 5993 5994 if (hdr == NULL) { 5995 /* 5996 * This block is not in the cache or it has 5997 * embedded data. 5998 */ 5999 arc_buf_hdr_t *exists = NULL; 6000 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 6001 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 6002 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type, 6003 encrypted_read); 6004 6005 if (!embedded_bp) { 6006 hdr->b_dva = *BP_IDENTITY(bp); 6007 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 6008 exists = buf_hash_insert(hdr, &hash_lock); 6009 } 6010 if (exists != NULL) { 6011 /* somebody beat us to the hash insert */ 6012 mutex_exit(hash_lock); 6013 buf_discard_identity(hdr); 6014 arc_hdr_destroy(hdr); 6015 goto top; /* restart the IO request */ 6016 } 6017 } else { 6018 /* 6019 * This block is in the ghost cache or encrypted data 6020 * was requested and we didn't have it. If it was 6021 * L2-only (and thus didn't have an L1 hdr), 6022 * we realloc the header to add an L1 hdr. 6023 */ 6024 if (!HDR_HAS_L1HDR(hdr)) { 6025 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 6026 hdr_full_cache); 6027 } 6028 6029 if (GHOST_STATE(hdr->b_l1hdr.b_state)) { 6030 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6031 ASSERT(!HDR_HAS_RABD(hdr)); 6032 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6033 ASSERT0(zfs_refcount_count( 6034 &hdr->b_l1hdr.b_refcnt)); 6035 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 6036 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 6037 } else if (HDR_IO_IN_PROGRESS(hdr)) { 6038 /* 6039 * If this header already had an IO in progress 6040 * and we are performing another IO to fetch 6041 * encrypted data we must wait until the first 6042 * IO completes so as not to confuse 6043 * arc_read_done(). This should be very rare 6044 * and so the performance impact shouldn't 6045 * matter. 6046 */ 6047 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 6048 mutex_exit(hash_lock); 6049 goto top; 6050 } 6051 6052 /* 6053 * This is a delicate dance that we play here. 6054 * This hdr might be in the ghost list so we access 6055 * it to move it out of the ghost list before we 6056 * initiate the read. If it's a prefetch then 6057 * it won't have a callback so we'll remove the 6058 * reference that arc_buf_alloc_impl() created. We 6059 * do this after we've called arc_access() to 6060 * avoid hitting an assert in remove_reference(). 6061 */ 6062 arc_adapt(arc_hdr_size(hdr), hdr->b_l1hdr.b_state); 6063 arc_access(hdr, hash_lock); 6064 arc_hdr_alloc_abd(hdr, alloc_flags); 6065 } 6066 6067 if (encrypted_read) { 6068 ASSERT(HDR_HAS_RABD(hdr)); 6069 size = HDR_GET_PSIZE(hdr); 6070 hdr_abd = hdr->b_crypt_hdr.b_rabd; 6071 zio_flags |= ZIO_FLAG_RAW; 6072 } else { 6073 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 6074 size = arc_hdr_size(hdr); 6075 hdr_abd = hdr->b_l1hdr.b_pabd; 6076 6077 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 6078 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 6079 } 6080 6081 /* 6082 * For authenticated bp's, we do not ask the ZIO layer 6083 * to authenticate them since this will cause the entire 6084 * IO to fail if the key isn't loaded. Instead, we 6085 * defer authentication until arc_buf_fill(), which will 6086 * verify the data when the key is available. 6087 */ 6088 if (BP_IS_AUTHENTICATED(bp)) 6089 zio_flags |= ZIO_FLAG_RAW_ENCRYPT; 6090 } 6091 6092 if (*arc_flags & ARC_FLAG_PREFETCH && 6093 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) 6094 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 6095 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 6096 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 6097 if (*arc_flags & ARC_FLAG_L2CACHE) 6098 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6099 if (BP_IS_AUTHENTICATED(bp)) 6100 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6101 if (BP_GET_LEVEL(bp) > 0) 6102 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); 6103 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH) 6104 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH); 6105 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 6106 6107 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 6108 acb->acb_done = done; 6109 acb->acb_private = private; 6110 acb->acb_compressed = compressed_read; 6111 acb->acb_encrypted = encrypted_read; 6112 acb->acb_noauth = noauth_read; 6113 acb->acb_zb = *zb; 6114 6115 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6116 hdr->b_l1hdr.b_acb = acb; 6117 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6118 6119 if (HDR_HAS_L2HDR(hdr) && 6120 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 6121 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 6122 addr = hdr->b_l2hdr.b_daddr; 6123 /* 6124 * Lock out L2ARC device removal. 6125 */ 6126 if (vdev_is_dead(vd) || 6127 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 6128 vd = NULL; 6129 } 6130 6131 /* 6132 * We count both async reads and scrub IOs as asynchronous so 6133 * that both can be upgraded in the event of a cache hit while 6134 * the read IO is still in-flight. 6135 */ 6136 if (priority == ZIO_PRIORITY_ASYNC_READ || 6137 priority == ZIO_PRIORITY_SCRUB) 6138 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6139 else 6140 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6141 6142 /* 6143 * At this point, we have a level 1 cache miss or a blkptr 6144 * with embedded data. Try again in L2ARC if possible. 6145 */ 6146 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); 6147 6148 /* 6149 * Skip ARC stat bump for block pointers with embedded 6150 * data. The data are read from the blkptr itself via 6151 * decode_embedded_bp_compressed(). 6152 */ 6153 if (!embedded_bp) { 6154 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, 6155 blkptr_t *, bp, uint64_t, lsize, 6156 zbookmark_phys_t *, zb); 6157 ARCSTAT_BUMP(arcstat_misses); 6158 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 6159 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, 6160 metadata, misses); 6161 } 6162 6163 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 6164 /* 6165 * Read from the L2ARC if the following are true: 6166 * 1. The L2ARC vdev was previously cached. 6167 * 2. This buffer still has L2ARC metadata. 6168 * 3. This buffer isn't currently writing to the L2ARC. 6169 * 4. The L2ARC entry wasn't evicted, which may 6170 * also have invalidated the vdev. 6171 * 5. This isn't prefetch and l2arc_noprefetch is set. 6172 */ 6173 if (HDR_HAS_L2HDR(hdr) && 6174 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 6175 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 6176 l2arc_read_callback_t *cb; 6177 abd_t *abd; 6178 uint64_t asize; 6179 6180 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 6181 ARCSTAT_BUMP(arcstat_l2_hits); 6182 atomic_inc_32(&hdr->b_l2hdr.b_hits); 6183 6184 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 6185 KM_SLEEP); 6186 cb->l2rcb_hdr = hdr; 6187 cb->l2rcb_bp = *bp; 6188 cb->l2rcb_zb = *zb; 6189 cb->l2rcb_flags = zio_flags; 6190 6191 /* 6192 * When Compressed ARC is disabled, but the 6193 * L2ARC block is compressed, arc_hdr_size() 6194 * will have returned LSIZE rather than PSIZE. 6195 */ 6196 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 6197 !HDR_COMPRESSION_ENABLED(hdr) && 6198 HDR_GET_PSIZE(hdr) != 0) { 6199 size = HDR_GET_PSIZE(hdr); 6200 } 6201 6202 asize = vdev_psize_to_asize(vd, size); 6203 if (asize != size) { 6204 abd = abd_alloc_for_io(asize, 6205 HDR_ISTYPE_METADATA(hdr)); 6206 cb->l2rcb_abd = abd; 6207 } else { 6208 abd = hdr_abd; 6209 } 6210 6211 ASSERT(addr >= VDEV_LABEL_START_SIZE && 6212 addr + asize <= vd->vdev_psize - 6213 VDEV_LABEL_END_SIZE); 6214 6215 /* 6216 * l2arc read. The SCL_L2ARC lock will be 6217 * released by l2arc_read_done(). 6218 * Issue a null zio if the underlying buffer 6219 * was squashed to zero size by compression. 6220 */ 6221 ASSERT3U(arc_hdr_get_compress(hdr), !=, 6222 ZIO_COMPRESS_EMPTY); 6223 rzio = zio_read_phys(pio, vd, addr, 6224 asize, abd, 6225 ZIO_CHECKSUM_OFF, 6226 l2arc_read_done, cb, priority, 6227 zio_flags | ZIO_FLAG_DONT_CACHE | 6228 ZIO_FLAG_CANFAIL | 6229 ZIO_FLAG_DONT_PROPAGATE | 6230 ZIO_FLAG_DONT_RETRY, B_FALSE); 6231 acb->acb_zio_head = rzio; 6232 6233 if (hash_lock != NULL) 6234 mutex_exit(hash_lock); 6235 6236 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 6237 zio_t *, rzio); 6238 ARCSTAT_INCR(arcstat_l2_read_bytes, 6239 HDR_GET_PSIZE(hdr)); 6240 6241 if (*arc_flags & ARC_FLAG_NOWAIT) { 6242 zio_nowait(rzio); 6243 goto out; 6244 } 6245 6246 ASSERT(*arc_flags & ARC_FLAG_WAIT); 6247 if (zio_wait(rzio) == 0) 6248 goto out; 6249 6250 /* l2arc read error; goto zio_read() */ 6251 if (hash_lock != NULL) 6252 mutex_enter(hash_lock); 6253 } else { 6254 DTRACE_PROBE1(l2arc__miss, 6255 arc_buf_hdr_t *, hdr); 6256 ARCSTAT_BUMP(arcstat_l2_misses); 6257 if (HDR_L2_WRITING(hdr)) 6258 ARCSTAT_BUMP(arcstat_l2_rw_clash); 6259 spa_config_exit(spa, SCL_L2ARC, vd); 6260 } 6261 } else { 6262 if (vd != NULL) 6263 spa_config_exit(spa, SCL_L2ARC, vd); 6264 /* 6265 * Skip ARC stat bump for block pointers with 6266 * embedded data. The data are read from the blkptr 6267 * itself via decode_embedded_bp_compressed(). 6268 */ 6269 if (l2arc_ndev != 0 && !embedded_bp) { 6270 DTRACE_PROBE1(l2arc__miss, 6271 arc_buf_hdr_t *, hdr); 6272 ARCSTAT_BUMP(arcstat_l2_misses); 6273 } 6274 } 6275 6276 rzio = zio_read(pio, spa, bp, hdr_abd, size, 6277 arc_read_done, hdr, priority, zio_flags, zb); 6278 acb->acb_zio_head = rzio; 6279 6280 if (hash_lock != NULL) 6281 mutex_exit(hash_lock); 6282 6283 if (*arc_flags & ARC_FLAG_WAIT) { 6284 rc = zio_wait(rzio); 6285 goto out; 6286 } 6287 6288 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 6289 zio_nowait(rzio); 6290 } 6291 6292 out: 6293 /* embedded bps don't actually go to disk */ 6294 if (!embedded_bp) 6295 spa_read_history_add(spa, zb, *arc_flags); 6296 spl_fstrans_unmark(cookie); 6297 return (rc); 6298 } 6299 6300 arc_prune_t * 6301 arc_add_prune_callback(arc_prune_func_t *func, void *private) 6302 { 6303 arc_prune_t *p; 6304 6305 p = kmem_alloc(sizeof (*p), KM_SLEEP); 6306 p->p_pfunc = func; 6307 p->p_private = private; 6308 list_link_init(&p->p_node); 6309 zfs_refcount_create(&p->p_refcnt); 6310 6311 mutex_enter(&arc_prune_mtx); 6312 zfs_refcount_add(&p->p_refcnt, &arc_prune_list); 6313 list_insert_head(&arc_prune_list, p); 6314 mutex_exit(&arc_prune_mtx); 6315 6316 return (p); 6317 } 6318 6319 void 6320 arc_remove_prune_callback(arc_prune_t *p) 6321 { 6322 boolean_t wait = B_FALSE; 6323 mutex_enter(&arc_prune_mtx); 6324 list_remove(&arc_prune_list, p); 6325 if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0) 6326 wait = B_TRUE; 6327 mutex_exit(&arc_prune_mtx); 6328 6329 /* wait for arc_prune_task to finish */ 6330 if (wait) 6331 taskq_wait_outstanding(arc_prune_taskq, 0); 6332 ASSERT0(zfs_refcount_count(&p->p_refcnt)); 6333 zfs_refcount_destroy(&p->p_refcnt); 6334 kmem_free(p, sizeof (*p)); 6335 } 6336 6337 /* 6338 * Notify the arc that a block was freed, and thus will never be used again. 6339 */ 6340 void 6341 arc_freed(spa_t *spa, const blkptr_t *bp) 6342 { 6343 arc_buf_hdr_t *hdr; 6344 kmutex_t *hash_lock; 6345 uint64_t guid = spa_load_guid(spa); 6346 6347 ASSERT(!BP_IS_EMBEDDED(bp)); 6348 6349 hdr = buf_hash_find(guid, bp, &hash_lock); 6350 if (hdr == NULL) 6351 return; 6352 6353 /* 6354 * We might be trying to free a block that is still doing I/O 6355 * (i.e. prefetch) or has a reference (i.e. a dedup-ed, 6356 * dmu_sync-ed block). If this block is being prefetched, then it 6357 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr 6358 * until the I/O completes. A block may also have a reference if it is 6359 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would 6360 * have written the new block to its final resting place on disk but 6361 * without the dedup flag set. This would have left the hdr in the MRU 6362 * state and discoverable. When the txg finally syncs it detects that 6363 * the block was overridden in open context and issues an override I/O. 6364 * Since this is a dedup block, the override I/O will determine if the 6365 * block is already in the DDT. If so, then it will replace the io_bp 6366 * with the bp from the DDT and allow the I/O to finish. When the I/O 6367 * reaches the done callback, dbuf_write_override_done, it will 6368 * check to see if the io_bp and io_bp_override are identical. 6369 * If they are not, then it indicates that the bp was replaced with 6370 * the bp in the DDT and the override bp is freed. This allows 6371 * us to arrive here with a reference on a block that is being 6372 * freed. So if we have an I/O in progress, or a reference to 6373 * this hdr, then we don't destroy the hdr. 6374 */ 6375 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) && 6376 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) { 6377 arc_change_state(arc_anon, hdr, hash_lock); 6378 arc_hdr_destroy(hdr); 6379 mutex_exit(hash_lock); 6380 } else { 6381 mutex_exit(hash_lock); 6382 } 6383 6384 } 6385 6386 /* 6387 * Release this buffer from the cache, making it an anonymous buffer. This 6388 * must be done after a read and prior to modifying the buffer contents. 6389 * If the buffer has more than one reference, we must make 6390 * a new hdr for the buffer. 6391 */ 6392 void 6393 arc_release(arc_buf_t *buf, void *tag) 6394 { 6395 arc_buf_hdr_t *hdr = buf->b_hdr; 6396 6397 /* 6398 * It would be nice to assert that if its DMU metadata (level > 6399 * 0 || it's the dnode file), then it must be syncing context. 6400 * But we don't know that information at this level. 6401 */ 6402 6403 mutex_enter(&buf->b_evict_lock); 6404 6405 ASSERT(HDR_HAS_L1HDR(hdr)); 6406 6407 /* 6408 * We don't grab the hash lock prior to this check, because if 6409 * the buffer's header is in the arc_anon state, it won't be 6410 * linked into the hash table. 6411 */ 6412 if (hdr->b_l1hdr.b_state == arc_anon) { 6413 mutex_exit(&buf->b_evict_lock); 6414 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6415 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 6416 ASSERT(!HDR_HAS_L2HDR(hdr)); 6417 ASSERT(HDR_EMPTY(hdr)); 6418 6419 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6420 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 6421 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node)); 6422 6423 hdr->b_l1hdr.b_arc_access = 0; 6424 6425 /* 6426 * If the buf is being overridden then it may already 6427 * have a hdr that is not empty. 6428 */ 6429 buf_discard_identity(hdr); 6430 arc_buf_thaw(buf); 6431 6432 return; 6433 } 6434 6435 kmutex_t *hash_lock = HDR_LOCK(hdr); 6436 mutex_enter(hash_lock); 6437 6438 /* 6439 * This assignment is only valid as long as the hash_lock is 6440 * held, we must be careful not to reference state or the 6441 * b_state field after dropping the lock. 6442 */ 6443 arc_state_t *state = hdr->b_l1hdr.b_state; 6444 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 6445 ASSERT3P(state, !=, arc_anon); 6446 6447 /* this buffer is not on any list */ 6448 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0); 6449 6450 if (HDR_HAS_L2HDR(hdr)) { 6451 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6452 6453 /* 6454 * We have to recheck this conditional again now that 6455 * we're holding the l2ad_mtx to prevent a race with 6456 * another thread which might be concurrently calling 6457 * l2arc_evict(). In that case, l2arc_evict() might have 6458 * destroyed the header's L2 portion as we were waiting 6459 * to acquire the l2ad_mtx. 6460 */ 6461 if (HDR_HAS_L2HDR(hdr)) 6462 arc_hdr_l2hdr_destroy(hdr); 6463 6464 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6465 } 6466 6467 /* 6468 * Do we have more than one buf? 6469 */ 6470 if (hdr->b_l1hdr.b_bufcnt > 1) { 6471 arc_buf_hdr_t *nhdr; 6472 uint64_t spa = hdr->b_spa; 6473 uint64_t psize = HDR_GET_PSIZE(hdr); 6474 uint64_t lsize = HDR_GET_LSIZE(hdr); 6475 boolean_t protected = HDR_PROTECTED(hdr); 6476 enum zio_compress compress = arc_hdr_get_compress(hdr); 6477 arc_buf_contents_t type = arc_buf_type(hdr); 6478 VERIFY3U(hdr->b_type, ==, type); 6479 6480 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); 6481 (void) remove_reference(hdr, hash_lock, tag); 6482 6483 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) { 6484 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6485 ASSERT(ARC_BUF_LAST(buf)); 6486 } 6487 6488 /* 6489 * Pull the data off of this hdr and attach it to 6490 * a new anonymous hdr. Also find the last buffer 6491 * in the hdr's buffer list. 6492 */ 6493 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 6494 ASSERT3P(lastbuf, !=, NULL); 6495 6496 /* 6497 * If the current arc_buf_t and the hdr are sharing their data 6498 * buffer, then we must stop sharing that block. 6499 */ 6500 if (arc_buf_is_shared(buf)) { 6501 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6502 VERIFY(!arc_buf_is_shared(lastbuf)); 6503 6504 /* 6505 * First, sever the block sharing relationship between 6506 * buf and the arc_buf_hdr_t. 6507 */ 6508 arc_unshare_buf(hdr, buf); 6509 6510 /* 6511 * Now we need to recreate the hdr's b_pabd. Since we 6512 * have lastbuf handy, we try to share with it, but if 6513 * we can't then we allocate a new b_pabd and copy the 6514 * data from buf into it. 6515 */ 6516 if (arc_can_share(hdr, lastbuf)) { 6517 arc_share_buf(hdr, lastbuf); 6518 } else { 6519 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 6520 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, 6521 buf->b_data, psize); 6522 } 6523 VERIFY3P(lastbuf->b_data, !=, NULL); 6524 } else if (HDR_SHARED_DATA(hdr)) { 6525 /* 6526 * Uncompressed shared buffers are always at the end 6527 * of the list. Compressed buffers don't have the 6528 * same requirements. This makes it hard to 6529 * simply assert that the lastbuf is shared so 6530 * we rely on the hdr's compression flags to determine 6531 * if we have a compressed, shared buffer. 6532 */ 6533 ASSERT(arc_buf_is_shared(lastbuf) || 6534 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 6535 ASSERT(!ARC_BUF_SHARED(buf)); 6536 } 6537 6538 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 6539 ASSERT3P(state, !=, arc_l2c_only); 6540 6541 (void) zfs_refcount_remove_many(&state->arcs_size, 6542 arc_buf_size(buf), buf); 6543 6544 if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6545 ASSERT3P(state, !=, arc_l2c_only); 6546 (void) zfs_refcount_remove_many( 6547 &state->arcs_esize[type], 6548 arc_buf_size(buf), buf); 6549 } 6550 6551 hdr->b_l1hdr.b_bufcnt -= 1; 6552 if (ARC_BUF_ENCRYPTED(buf)) 6553 hdr->b_crypt_hdr.b_ebufcnt -= 1; 6554 6555 arc_cksum_verify(buf); 6556 arc_buf_unwatch(buf); 6557 6558 /* if this is the last uncompressed buf free the checksum */ 6559 if (!arc_hdr_has_uncompressed_buf(hdr)) 6560 arc_cksum_free(hdr); 6561 6562 mutex_exit(hash_lock); 6563 6564 /* 6565 * Allocate a new hdr. The new hdr will contain a b_pabd 6566 * buffer which will be freed in arc_write(). 6567 */ 6568 nhdr = arc_hdr_alloc(spa, psize, lsize, protected, 6569 compress, hdr->b_complevel, type, HDR_HAS_RABD(hdr)); 6570 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL); 6571 ASSERT0(nhdr->b_l1hdr.b_bufcnt); 6572 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt)); 6573 VERIFY3U(nhdr->b_type, ==, type); 6574 ASSERT(!HDR_SHARED_DATA(nhdr)); 6575 6576 nhdr->b_l1hdr.b_buf = buf; 6577 nhdr->b_l1hdr.b_bufcnt = 1; 6578 if (ARC_BUF_ENCRYPTED(buf)) 6579 nhdr->b_crypt_hdr.b_ebufcnt = 1; 6580 nhdr->b_l1hdr.b_mru_hits = 0; 6581 nhdr->b_l1hdr.b_mru_ghost_hits = 0; 6582 nhdr->b_l1hdr.b_mfu_hits = 0; 6583 nhdr->b_l1hdr.b_mfu_ghost_hits = 0; 6584 nhdr->b_l1hdr.b_l2_hits = 0; 6585 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 6586 buf->b_hdr = nhdr; 6587 6588 mutex_exit(&buf->b_evict_lock); 6589 (void) zfs_refcount_add_many(&arc_anon->arcs_size, 6590 arc_buf_size(buf), buf); 6591 } else { 6592 mutex_exit(&buf->b_evict_lock); 6593 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 6594 /* protected by hash lock, or hdr is on arc_anon */ 6595 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 6596 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6597 hdr->b_l1hdr.b_mru_hits = 0; 6598 hdr->b_l1hdr.b_mru_ghost_hits = 0; 6599 hdr->b_l1hdr.b_mfu_hits = 0; 6600 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 6601 hdr->b_l1hdr.b_l2_hits = 0; 6602 arc_change_state(arc_anon, hdr, hash_lock); 6603 hdr->b_l1hdr.b_arc_access = 0; 6604 6605 mutex_exit(hash_lock); 6606 buf_discard_identity(hdr); 6607 arc_buf_thaw(buf); 6608 } 6609 } 6610 6611 int 6612 arc_released(arc_buf_t *buf) 6613 { 6614 int released; 6615 6616 mutex_enter(&buf->b_evict_lock); 6617 released = (buf->b_data != NULL && 6618 buf->b_hdr->b_l1hdr.b_state == arc_anon); 6619 mutex_exit(&buf->b_evict_lock); 6620 return (released); 6621 } 6622 6623 #ifdef ZFS_DEBUG 6624 int 6625 arc_referenced(arc_buf_t *buf) 6626 { 6627 int referenced; 6628 6629 mutex_enter(&buf->b_evict_lock); 6630 referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 6631 mutex_exit(&buf->b_evict_lock); 6632 return (referenced); 6633 } 6634 #endif 6635 6636 static void 6637 arc_write_ready(zio_t *zio) 6638 { 6639 arc_write_callback_t *callback = zio->io_private; 6640 arc_buf_t *buf = callback->awcb_buf; 6641 arc_buf_hdr_t *hdr = buf->b_hdr; 6642 blkptr_t *bp = zio->io_bp; 6643 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp); 6644 fstrans_cookie_t cookie = spl_fstrans_mark(); 6645 6646 ASSERT(HDR_HAS_L1HDR(hdr)); 6647 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 6648 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 6649 6650 /* 6651 * If we're reexecuting this zio because the pool suspended, then 6652 * cleanup any state that was previously set the first time the 6653 * callback was invoked. 6654 */ 6655 if (zio->io_flags & ZIO_FLAG_REEXECUTED) { 6656 arc_cksum_free(hdr); 6657 arc_buf_unwatch(buf); 6658 if (hdr->b_l1hdr.b_pabd != NULL) { 6659 if (arc_buf_is_shared(buf)) { 6660 arc_unshare_buf(hdr, buf); 6661 } else { 6662 arc_hdr_free_abd(hdr, B_FALSE); 6663 } 6664 } 6665 6666 if (HDR_HAS_RABD(hdr)) 6667 arc_hdr_free_abd(hdr, B_TRUE); 6668 } 6669 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6670 ASSERT(!HDR_HAS_RABD(hdr)); 6671 ASSERT(!HDR_SHARED_DATA(hdr)); 6672 ASSERT(!arc_buf_is_shared(buf)); 6673 6674 callback->awcb_ready(zio, buf, callback->awcb_private); 6675 6676 if (HDR_IO_IN_PROGRESS(hdr)) 6677 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); 6678 6679 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6680 6681 if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr)) 6682 hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp)); 6683 6684 if (BP_IS_PROTECTED(bp)) { 6685 /* ZIL blocks are written through zio_rewrite */ 6686 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 6687 ASSERT(HDR_PROTECTED(hdr)); 6688 6689 if (BP_SHOULD_BYTESWAP(bp)) { 6690 if (BP_GET_LEVEL(bp) > 0) { 6691 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 6692 } else { 6693 hdr->b_l1hdr.b_byteswap = 6694 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 6695 } 6696 } else { 6697 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 6698 } 6699 6700 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 6701 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 6702 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 6703 hdr->b_crypt_hdr.b_iv); 6704 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 6705 } 6706 6707 /* 6708 * If this block was written for raw encryption but the zio layer 6709 * ended up only authenticating it, adjust the buffer flags now. 6710 */ 6711 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) { 6712 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6713 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6714 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF) 6715 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6716 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) { 6717 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6718 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6719 } 6720 6721 /* this must be done after the buffer flags are adjusted */ 6722 arc_cksum_compute(buf); 6723 6724 enum zio_compress compress; 6725 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 6726 compress = ZIO_COMPRESS_OFF; 6727 } else { 6728 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 6729 compress = BP_GET_COMPRESS(bp); 6730 } 6731 HDR_SET_PSIZE(hdr, psize); 6732 arc_hdr_set_compress(hdr, compress); 6733 hdr->b_complevel = zio->io_prop.zp_complevel; 6734 6735 if (zio->io_error != 0 || psize == 0) 6736 goto out; 6737 6738 /* 6739 * Fill the hdr with data. If the buffer is encrypted we have no choice 6740 * but to copy the data into b_radb. If the hdr is compressed, the data 6741 * we want is available from the zio, otherwise we can take it from 6742 * the buf. 6743 * 6744 * We might be able to share the buf's data with the hdr here. However, 6745 * doing so would cause the ARC to be full of linear ABDs if we write a 6746 * lot of shareable data. As a compromise, we check whether scattered 6747 * ABDs are allowed, and assume that if they are then the user wants 6748 * the ARC to be primarily filled with them regardless of the data being 6749 * written. Therefore, if they're allowed then we allocate one and copy 6750 * the data into it; otherwise, we share the data directly if we can. 6751 */ 6752 if (ARC_BUF_ENCRYPTED(buf)) { 6753 ASSERT3U(psize, >, 0); 6754 ASSERT(ARC_BUF_COMPRESSED(buf)); 6755 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA); 6756 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6757 } else if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) { 6758 /* 6759 * Ideally, we would always copy the io_abd into b_pabd, but the 6760 * user may have disabled compressed ARC, thus we must check the 6761 * hdr's compression setting rather than the io_bp's. 6762 */ 6763 if (BP_IS_ENCRYPTED(bp)) { 6764 ASSERT3U(psize, >, 0); 6765 arc_hdr_alloc_abd(hdr, 6766 ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA); 6767 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6768 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 6769 !ARC_BUF_COMPRESSED(buf)) { 6770 ASSERT3U(psize, >, 0); 6771 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 6772 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize); 6773 } else { 6774 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr)); 6775 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 6776 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data, 6777 arc_buf_size(buf)); 6778 } 6779 } else { 6780 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd)); 6781 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf)); 6782 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6783 6784 arc_share_buf(hdr, buf); 6785 } 6786 6787 out: 6788 arc_hdr_verify(hdr, bp); 6789 spl_fstrans_unmark(cookie); 6790 } 6791 6792 static void 6793 arc_write_children_ready(zio_t *zio) 6794 { 6795 arc_write_callback_t *callback = zio->io_private; 6796 arc_buf_t *buf = callback->awcb_buf; 6797 6798 callback->awcb_children_ready(zio, buf, callback->awcb_private); 6799 } 6800 6801 /* 6802 * The SPA calls this callback for each physical write that happens on behalf 6803 * of a logical write. See the comment in dbuf_write_physdone() for details. 6804 */ 6805 static void 6806 arc_write_physdone(zio_t *zio) 6807 { 6808 arc_write_callback_t *cb = zio->io_private; 6809 if (cb->awcb_physdone != NULL) 6810 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 6811 } 6812 6813 static void 6814 arc_write_done(zio_t *zio) 6815 { 6816 arc_write_callback_t *callback = zio->io_private; 6817 arc_buf_t *buf = callback->awcb_buf; 6818 arc_buf_hdr_t *hdr = buf->b_hdr; 6819 6820 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6821 6822 if (zio->io_error == 0) { 6823 arc_hdr_verify(hdr, zio->io_bp); 6824 6825 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 6826 buf_discard_identity(hdr); 6827 } else { 6828 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 6829 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 6830 } 6831 } else { 6832 ASSERT(HDR_EMPTY(hdr)); 6833 } 6834 6835 /* 6836 * If the block to be written was all-zero or compressed enough to be 6837 * embedded in the BP, no write was performed so there will be no 6838 * dva/birth/checksum. The buffer must therefore remain anonymous 6839 * (and uncached). 6840 */ 6841 if (!HDR_EMPTY(hdr)) { 6842 arc_buf_hdr_t *exists; 6843 kmutex_t *hash_lock; 6844 6845 ASSERT3U(zio->io_error, ==, 0); 6846 6847 arc_cksum_verify(buf); 6848 6849 exists = buf_hash_insert(hdr, &hash_lock); 6850 if (exists != NULL) { 6851 /* 6852 * This can only happen if we overwrite for 6853 * sync-to-convergence, because we remove 6854 * buffers from the hash table when we arc_free(). 6855 */ 6856 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 6857 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6858 panic("bad overwrite, hdr=%p exists=%p", 6859 (void *)hdr, (void *)exists); 6860 ASSERT(zfs_refcount_is_zero( 6861 &exists->b_l1hdr.b_refcnt)); 6862 arc_change_state(arc_anon, exists, hash_lock); 6863 arc_hdr_destroy(exists); 6864 mutex_exit(hash_lock); 6865 exists = buf_hash_insert(hdr, &hash_lock); 6866 ASSERT3P(exists, ==, NULL); 6867 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 6868 /* nopwrite */ 6869 ASSERT(zio->io_prop.zp_nopwrite); 6870 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6871 panic("bad nopwrite, hdr=%p exists=%p", 6872 (void *)hdr, (void *)exists); 6873 } else { 6874 /* Dedup */ 6875 ASSERT(hdr->b_l1hdr.b_bufcnt == 1); 6876 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 6877 ASSERT(BP_GET_DEDUP(zio->io_bp)); 6878 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 6879 } 6880 } 6881 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6882 /* if it's not anon, we are doing a scrub */ 6883 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 6884 arc_access(hdr, hash_lock); 6885 mutex_exit(hash_lock); 6886 } else { 6887 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6888 } 6889 6890 ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 6891 callback->awcb_done(zio, buf, callback->awcb_private); 6892 6893 abd_put(zio->io_abd); 6894 kmem_free(callback, sizeof (arc_write_callback_t)); 6895 } 6896 6897 zio_t * 6898 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 6899 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, 6900 const zio_prop_t *zp, arc_write_done_func_t *ready, 6901 arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone, 6902 arc_write_done_func_t *done, void *private, zio_priority_t priority, 6903 int zio_flags, const zbookmark_phys_t *zb) 6904 { 6905 arc_buf_hdr_t *hdr = buf->b_hdr; 6906 arc_write_callback_t *callback; 6907 zio_t *zio; 6908 zio_prop_t localprop = *zp; 6909 6910 ASSERT3P(ready, !=, NULL); 6911 ASSERT3P(done, !=, NULL); 6912 ASSERT(!HDR_IO_ERROR(hdr)); 6913 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6914 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6915 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 6916 if (l2arc) 6917 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6918 6919 if (ARC_BUF_ENCRYPTED(buf)) { 6920 ASSERT(ARC_BUF_COMPRESSED(buf)); 6921 localprop.zp_encrypt = B_TRUE; 6922 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 6923 localprop.zp_complevel = hdr->b_complevel; 6924 localprop.zp_byteorder = 6925 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 6926 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 6927 bcopy(hdr->b_crypt_hdr.b_salt, localprop.zp_salt, 6928 ZIO_DATA_SALT_LEN); 6929 bcopy(hdr->b_crypt_hdr.b_iv, localprop.zp_iv, 6930 ZIO_DATA_IV_LEN); 6931 bcopy(hdr->b_crypt_hdr.b_mac, localprop.zp_mac, 6932 ZIO_DATA_MAC_LEN); 6933 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) { 6934 localprop.zp_nopwrite = B_FALSE; 6935 localprop.zp_copies = 6936 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1); 6937 } 6938 zio_flags |= ZIO_FLAG_RAW; 6939 } else if (ARC_BUF_COMPRESSED(buf)) { 6940 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf)); 6941 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 6942 localprop.zp_complevel = hdr->b_complevel; 6943 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 6944 } 6945 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 6946 callback->awcb_ready = ready; 6947 callback->awcb_children_ready = children_ready; 6948 callback->awcb_physdone = physdone; 6949 callback->awcb_done = done; 6950 callback->awcb_private = private; 6951 callback->awcb_buf = buf; 6952 6953 /* 6954 * The hdr's b_pabd is now stale, free it now. A new data block 6955 * will be allocated when the zio pipeline calls arc_write_ready(). 6956 */ 6957 if (hdr->b_l1hdr.b_pabd != NULL) { 6958 /* 6959 * If the buf is currently sharing the data block with 6960 * the hdr then we need to break that relationship here. 6961 * The hdr will remain with a NULL data pointer and the 6962 * buf will take sole ownership of the block. 6963 */ 6964 if (arc_buf_is_shared(buf)) { 6965 arc_unshare_buf(hdr, buf); 6966 } else { 6967 arc_hdr_free_abd(hdr, B_FALSE); 6968 } 6969 VERIFY3P(buf->b_data, !=, NULL); 6970 } 6971 6972 if (HDR_HAS_RABD(hdr)) 6973 arc_hdr_free_abd(hdr, B_TRUE); 6974 6975 if (!(zio_flags & ZIO_FLAG_RAW)) 6976 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); 6977 6978 ASSERT(!arc_buf_is_shared(buf)); 6979 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6980 6981 zio = zio_write(pio, spa, txg, bp, 6982 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)), 6983 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready, 6984 (children_ready != NULL) ? arc_write_children_ready : NULL, 6985 arc_write_physdone, arc_write_done, callback, 6986 priority, zio_flags, zb); 6987 6988 return (zio); 6989 } 6990 6991 void 6992 arc_tempreserve_clear(uint64_t reserve) 6993 { 6994 atomic_add_64(&arc_tempreserve, -reserve); 6995 ASSERT((int64_t)arc_tempreserve >= 0); 6996 } 6997 6998 int 6999 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg) 7000 { 7001 int error; 7002 uint64_t anon_size; 7003 7004 if (!arc_no_grow && 7005 reserve > arc_c/4 && 7006 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT)) 7007 arc_c = MIN(arc_c_max, reserve * 4); 7008 7009 /* 7010 * Throttle when the calculated memory footprint for the TXG 7011 * exceeds the target ARC size. 7012 */ 7013 if (reserve > arc_c) { 7014 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve); 7015 return (SET_ERROR(ERESTART)); 7016 } 7017 7018 /* 7019 * Don't count loaned bufs as in flight dirty data to prevent long 7020 * network delays from blocking transactions that are ready to be 7021 * assigned to a txg. 7022 */ 7023 7024 /* assert that it has not wrapped around */ 7025 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 7026 7027 anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) - 7028 arc_loaned_bytes), 0); 7029 7030 /* 7031 * Writes will, almost always, require additional memory allocations 7032 * in order to compress/encrypt/etc the data. We therefore need to 7033 * make sure that there is sufficient available memory for this. 7034 */ 7035 error = arc_memory_throttle(spa, reserve, txg); 7036 if (error != 0) 7037 return (error); 7038 7039 /* 7040 * Throttle writes when the amount of dirty data in the cache 7041 * gets too large. We try to keep the cache less than half full 7042 * of dirty blocks so that our sync times don't grow too large. 7043 * 7044 * In the case of one pool being built on another pool, we want 7045 * to make sure we don't end up throttling the lower (backing) 7046 * pool when the upper pool is the majority contributor to dirty 7047 * data. To insure we make forward progress during throttling, we 7048 * also check the current pool's net dirty data and only throttle 7049 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty 7050 * data in the cache. 7051 * 7052 * Note: if two requests come in concurrently, we might let them 7053 * both succeed, when one of them should fail. Not a huge deal. 7054 */ 7055 uint64_t total_dirty = reserve + arc_tempreserve + anon_size; 7056 uint64_t spa_dirty_anon = spa_dirty_data(spa); 7057 7058 if (total_dirty > arc_c * zfs_arc_dirty_limit_percent / 100 && 7059 anon_size > arc_c * zfs_arc_anon_limit_percent / 100 && 7060 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) { 7061 #ifdef ZFS_DEBUG 7062 uint64_t meta_esize = zfs_refcount_count( 7063 &arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7064 uint64_t data_esize = 7065 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7066 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 7067 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 7068 arc_tempreserve >> 10, meta_esize >> 10, 7069 data_esize >> 10, reserve >> 10, arc_c >> 10); 7070 #endif 7071 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle); 7072 return (SET_ERROR(ERESTART)); 7073 } 7074 atomic_add_64(&arc_tempreserve, reserve); 7075 return (0); 7076 } 7077 7078 static void 7079 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 7080 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 7081 { 7082 size->value.ui64 = zfs_refcount_count(&state->arcs_size); 7083 evict_data->value.ui64 = 7084 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); 7085 evict_metadata->value.ui64 = 7086 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); 7087 } 7088 7089 static int 7090 arc_kstat_update(kstat_t *ksp, int rw) 7091 { 7092 arc_stats_t *as = ksp->ks_data; 7093 7094 if (rw == KSTAT_WRITE) { 7095 return (SET_ERROR(EACCES)); 7096 } else { 7097 arc_kstat_update_state(arc_anon, 7098 &as->arcstat_anon_size, 7099 &as->arcstat_anon_evictable_data, 7100 &as->arcstat_anon_evictable_metadata); 7101 arc_kstat_update_state(arc_mru, 7102 &as->arcstat_mru_size, 7103 &as->arcstat_mru_evictable_data, 7104 &as->arcstat_mru_evictable_metadata); 7105 arc_kstat_update_state(arc_mru_ghost, 7106 &as->arcstat_mru_ghost_size, 7107 &as->arcstat_mru_ghost_evictable_data, 7108 &as->arcstat_mru_ghost_evictable_metadata); 7109 arc_kstat_update_state(arc_mfu, 7110 &as->arcstat_mfu_size, 7111 &as->arcstat_mfu_evictable_data, 7112 &as->arcstat_mfu_evictable_metadata); 7113 arc_kstat_update_state(arc_mfu_ghost, 7114 &as->arcstat_mfu_ghost_size, 7115 &as->arcstat_mfu_ghost_evictable_data, 7116 &as->arcstat_mfu_ghost_evictable_metadata); 7117 7118 ARCSTAT(arcstat_size) = aggsum_value(&arc_size); 7119 ARCSTAT(arcstat_meta_used) = aggsum_value(&arc_meta_used); 7120 ARCSTAT(arcstat_data_size) = aggsum_value(&astat_data_size); 7121 ARCSTAT(arcstat_metadata_size) = 7122 aggsum_value(&astat_metadata_size); 7123 ARCSTAT(arcstat_hdr_size) = aggsum_value(&astat_hdr_size); 7124 ARCSTAT(arcstat_l2_hdr_size) = aggsum_value(&astat_l2_hdr_size); 7125 ARCSTAT(arcstat_dbuf_size) = aggsum_value(&astat_dbuf_size); 7126 #if defined(COMPAT_FREEBSD11) 7127 ARCSTAT(arcstat_other_size) = aggsum_value(&astat_bonus_size) + 7128 aggsum_value(&astat_dnode_size) + 7129 aggsum_value(&astat_dbuf_size); 7130 #endif 7131 ARCSTAT(arcstat_dnode_size) = aggsum_value(&astat_dnode_size); 7132 ARCSTAT(arcstat_bonus_size) = aggsum_value(&astat_bonus_size); 7133 ARCSTAT(arcstat_abd_chunk_waste_size) = 7134 aggsum_value(&astat_abd_chunk_waste_size); 7135 7136 as->arcstat_memory_all_bytes.value.ui64 = 7137 arc_all_memory(); 7138 as->arcstat_memory_free_bytes.value.ui64 = 7139 arc_free_memory(); 7140 as->arcstat_memory_available_bytes.value.i64 = 7141 arc_available_memory(); 7142 } 7143 7144 return (0); 7145 } 7146 7147 /* 7148 * This function *must* return indices evenly distributed between all 7149 * sublists of the multilist. This is needed due to how the ARC eviction 7150 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 7151 * distributed between all sublists and uses this assumption when 7152 * deciding which sublist to evict from and how much to evict from it. 7153 */ 7154 static unsigned int 7155 arc_state_multilist_index_func(multilist_t *ml, void *obj) 7156 { 7157 arc_buf_hdr_t *hdr = obj; 7158 7159 /* 7160 * We rely on b_dva to generate evenly distributed index 7161 * numbers using buf_hash below. So, as an added precaution, 7162 * let's make sure we never add empty buffers to the arc lists. 7163 */ 7164 ASSERT(!HDR_EMPTY(hdr)); 7165 7166 /* 7167 * The assumption here, is the hash value for a given 7168 * arc_buf_hdr_t will remain constant throughout its lifetime 7169 * (i.e. its b_spa, b_dva, and b_birth fields don't change). 7170 * Thus, we don't need to store the header's sublist index 7171 * on insertion, as this index can be recalculated on removal. 7172 * 7173 * Also, the low order bits of the hash value are thought to be 7174 * distributed evenly. Otherwise, in the case that the multilist 7175 * has a power of two number of sublists, each sublists' usage 7176 * would not be evenly distributed. 7177 */ 7178 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 7179 multilist_get_num_sublists(ml)); 7180 } 7181 7182 #define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \ 7183 if ((do_warn) && (tuning) && ((tuning) != (value))) { \ 7184 cmn_err(CE_WARN, \ 7185 "ignoring tunable %s (using %llu instead)", \ 7186 (#tuning), (value)); \ 7187 } \ 7188 } while (0) 7189 7190 /* 7191 * Called during module initialization and periodically thereafter to 7192 * apply reasonable changes to the exposed performance tunings. Can also be 7193 * called explicitly by param_set_arc_*() functions when ARC tunables are 7194 * updated manually. Non-zero zfs_* values which differ from the currently set 7195 * values will be applied. 7196 */ 7197 void 7198 arc_tuning_update(boolean_t verbose) 7199 { 7200 uint64_t allmem = arc_all_memory(); 7201 unsigned long limit; 7202 7203 /* Valid range: 32M - <arc_c_max> */ 7204 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) && 7205 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) && 7206 (zfs_arc_min <= arc_c_max)) { 7207 arc_c_min = zfs_arc_min; 7208 arc_c = MAX(arc_c, arc_c_min); 7209 } 7210 WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose); 7211 7212 /* Valid range: 64M - <all physical memory> */ 7213 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) && 7214 (zfs_arc_max >= 64 << 20) && (zfs_arc_max < allmem) && 7215 (zfs_arc_max > arc_c_min)) { 7216 arc_c_max = zfs_arc_max; 7217 arc_c = MIN(arc_c, arc_c_max); 7218 arc_p = (arc_c >> 1); 7219 if (arc_meta_limit > arc_c_max) 7220 arc_meta_limit = arc_c_max; 7221 if (arc_dnode_size_limit > arc_meta_limit) 7222 arc_dnode_size_limit = arc_meta_limit; 7223 } 7224 WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose); 7225 7226 /* Valid range: 16M - <arc_c_max> */ 7227 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) && 7228 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) && 7229 (zfs_arc_meta_min <= arc_c_max)) { 7230 arc_meta_min = zfs_arc_meta_min; 7231 if (arc_meta_limit < arc_meta_min) 7232 arc_meta_limit = arc_meta_min; 7233 if (arc_dnode_size_limit < arc_meta_min) 7234 arc_dnode_size_limit = arc_meta_min; 7235 } 7236 WARN_IF_TUNING_IGNORED(zfs_arc_meta_min, arc_meta_min, verbose); 7237 7238 /* Valid range: <arc_meta_min> - <arc_c_max> */ 7239 limit = zfs_arc_meta_limit ? zfs_arc_meta_limit : 7240 MIN(zfs_arc_meta_limit_percent, 100) * arc_c_max / 100; 7241 if ((limit != arc_meta_limit) && 7242 (limit >= arc_meta_min) && 7243 (limit <= arc_c_max)) 7244 arc_meta_limit = limit; 7245 WARN_IF_TUNING_IGNORED(zfs_arc_meta_limit, arc_meta_limit, verbose); 7246 7247 /* Valid range: <arc_meta_min> - <arc_meta_limit> */ 7248 limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit : 7249 MIN(zfs_arc_dnode_limit_percent, 100) * arc_meta_limit / 100; 7250 if ((limit != arc_dnode_size_limit) && 7251 (limit >= arc_meta_min) && 7252 (limit <= arc_meta_limit)) 7253 arc_dnode_size_limit = limit; 7254 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_size_limit, 7255 verbose); 7256 7257 /* Valid range: 1 - N */ 7258 if (zfs_arc_grow_retry) 7259 arc_grow_retry = zfs_arc_grow_retry; 7260 7261 /* Valid range: 1 - N */ 7262 if (zfs_arc_shrink_shift) { 7263 arc_shrink_shift = zfs_arc_shrink_shift; 7264 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1); 7265 } 7266 7267 /* Valid range: 1 - N */ 7268 if (zfs_arc_p_min_shift) 7269 arc_p_min_shift = zfs_arc_p_min_shift; 7270 7271 /* Valid range: 1 - N ms */ 7272 if (zfs_arc_min_prefetch_ms) 7273 arc_min_prefetch_ms = zfs_arc_min_prefetch_ms; 7274 7275 /* Valid range: 1 - N ms */ 7276 if (zfs_arc_min_prescient_prefetch_ms) { 7277 arc_min_prescient_prefetch_ms = 7278 zfs_arc_min_prescient_prefetch_ms; 7279 } 7280 7281 /* Valid range: 0 - 100 */ 7282 if ((zfs_arc_lotsfree_percent >= 0) && 7283 (zfs_arc_lotsfree_percent <= 100)) 7284 arc_lotsfree_percent = zfs_arc_lotsfree_percent; 7285 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent, 7286 verbose); 7287 7288 /* Valid range: 0 - <all physical memory> */ 7289 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free)) 7290 arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), allmem); 7291 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose); 7292 } 7293 7294 static void 7295 arc_state_init(void) 7296 { 7297 arc_anon = &ARC_anon; 7298 arc_mru = &ARC_mru; 7299 arc_mru_ghost = &ARC_mru_ghost; 7300 arc_mfu = &ARC_mfu; 7301 arc_mfu_ghost = &ARC_mfu_ghost; 7302 arc_l2c_only = &ARC_l2c_only; 7303 7304 arc_mru->arcs_list[ARC_BUFC_METADATA] = 7305 multilist_create(sizeof (arc_buf_hdr_t), 7306 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7307 arc_state_multilist_index_func); 7308 arc_mru->arcs_list[ARC_BUFC_DATA] = 7309 multilist_create(sizeof (arc_buf_hdr_t), 7310 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7311 arc_state_multilist_index_func); 7312 arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] = 7313 multilist_create(sizeof (arc_buf_hdr_t), 7314 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7315 arc_state_multilist_index_func); 7316 arc_mru_ghost->arcs_list[ARC_BUFC_DATA] = 7317 multilist_create(sizeof (arc_buf_hdr_t), 7318 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7319 arc_state_multilist_index_func); 7320 arc_mfu->arcs_list[ARC_BUFC_METADATA] = 7321 multilist_create(sizeof (arc_buf_hdr_t), 7322 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7323 arc_state_multilist_index_func); 7324 arc_mfu->arcs_list[ARC_BUFC_DATA] = 7325 multilist_create(sizeof (arc_buf_hdr_t), 7326 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7327 arc_state_multilist_index_func); 7328 arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] = 7329 multilist_create(sizeof (arc_buf_hdr_t), 7330 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7331 arc_state_multilist_index_func); 7332 arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] = 7333 multilist_create(sizeof (arc_buf_hdr_t), 7334 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7335 arc_state_multilist_index_func); 7336 arc_l2c_only->arcs_list[ARC_BUFC_METADATA] = 7337 multilist_create(sizeof (arc_buf_hdr_t), 7338 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7339 arc_state_multilist_index_func); 7340 arc_l2c_only->arcs_list[ARC_BUFC_DATA] = 7341 multilist_create(sizeof (arc_buf_hdr_t), 7342 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7343 arc_state_multilist_index_func); 7344 7345 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7346 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7347 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7348 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7349 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7350 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7351 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7352 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7353 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7354 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7355 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7356 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7357 7358 zfs_refcount_create(&arc_anon->arcs_size); 7359 zfs_refcount_create(&arc_mru->arcs_size); 7360 zfs_refcount_create(&arc_mru_ghost->arcs_size); 7361 zfs_refcount_create(&arc_mfu->arcs_size); 7362 zfs_refcount_create(&arc_mfu_ghost->arcs_size); 7363 zfs_refcount_create(&arc_l2c_only->arcs_size); 7364 7365 aggsum_init(&arc_meta_used, 0); 7366 aggsum_init(&arc_size, 0); 7367 aggsum_init(&astat_data_size, 0); 7368 aggsum_init(&astat_metadata_size, 0); 7369 aggsum_init(&astat_hdr_size, 0); 7370 aggsum_init(&astat_l2_hdr_size, 0); 7371 aggsum_init(&astat_bonus_size, 0); 7372 aggsum_init(&astat_dnode_size, 0); 7373 aggsum_init(&astat_dbuf_size, 0); 7374 aggsum_init(&astat_abd_chunk_waste_size, 0); 7375 7376 arc_anon->arcs_state = ARC_STATE_ANON; 7377 arc_mru->arcs_state = ARC_STATE_MRU; 7378 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST; 7379 arc_mfu->arcs_state = ARC_STATE_MFU; 7380 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST; 7381 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY; 7382 } 7383 7384 static void 7385 arc_state_fini(void) 7386 { 7387 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7388 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7389 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7390 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7391 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7392 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7393 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7394 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7395 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7396 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7397 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7398 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7399 7400 zfs_refcount_destroy(&arc_anon->arcs_size); 7401 zfs_refcount_destroy(&arc_mru->arcs_size); 7402 zfs_refcount_destroy(&arc_mru_ghost->arcs_size); 7403 zfs_refcount_destroy(&arc_mfu->arcs_size); 7404 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size); 7405 zfs_refcount_destroy(&arc_l2c_only->arcs_size); 7406 7407 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]); 7408 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 7409 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]); 7410 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 7411 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]); 7412 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 7413 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]); 7414 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 7415 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]); 7416 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_DATA]); 7417 7418 aggsum_fini(&arc_meta_used); 7419 aggsum_fini(&arc_size); 7420 aggsum_fini(&astat_data_size); 7421 aggsum_fini(&astat_metadata_size); 7422 aggsum_fini(&astat_hdr_size); 7423 aggsum_fini(&astat_l2_hdr_size); 7424 aggsum_fini(&astat_bonus_size); 7425 aggsum_fini(&astat_dnode_size); 7426 aggsum_fini(&astat_dbuf_size); 7427 aggsum_fini(&astat_abd_chunk_waste_size); 7428 } 7429 7430 uint64_t 7431 arc_target_bytes(void) 7432 { 7433 return (arc_c); 7434 } 7435 7436 void 7437 arc_init(void) 7438 { 7439 uint64_t percent, allmem = arc_all_memory(); 7440 mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL); 7441 list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t), 7442 offsetof(arc_evict_waiter_t, aew_node)); 7443 7444 arc_min_prefetch_ms = 1000; 7445 arc_min_prescient_prefetch_ms = 6000; 7446 7447 #if defined(_KERNEL) 7448 arc_lowmem_init(); 7449 #endif 7450 7451 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */ 7452 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT); 7453 7454 /* How to set default max varies by platform. */ 7455 arc_c_max = arc_default_max(arc_c_min, allmem); 7456 7457 #ifndef _KERNEL 7458 /* 7459 * In userland, there's only the memory pressure that we artificially 7460 * create (see arc_available_memory()). Don't let arc_c get too 7461 * small, because it can cause transactions to be larger than 7462 * arc_c, causing arc_tempreserve_space() to fail. 7463 */ 7464 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT); 7465 #endif 7466 7467 arc_c = arc_c_min; 7468 arc_p = (arc_c >> 1); 7469 7470 /* Set min to 1/2 of arc_c_min */ 7471 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT; 7472 /* Initialize maximum observed usage to zero */ 7473 arc_meta_max = 0; 7474 /* 7475 * Set arc_meta_limit to a percent of arc_c_max with a floor of 7476 * arc_meta_min, and a ceiling of arc_c_max. 7477 */ 7478 percent = MIN(zfs_arc_meta_limit_percent, 100); 7479 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100); 7480 percent = MIN(zfs_arc_dnode_limit_percent, 100); 7481 arc_dnode_size_limit = (percent * arc_meta_limit) / 100; 7482 7483 /* Apply user specified tunings */ 7484 arc_tuning_update(B_TRUE); 7485 7486 /* if kmem_flags are set, lets try to use less memory */ 7487 if (kmem_debugging()) 7488 arc_c = arc_c / 2; 7489 if (arc_c < arc_c_min) 7490 arc_c = arc_c_min; 7491 7492 arc_state_init(); 7493 7494 buf_init(); 7495 7496 list_create(&arc_prune_list, sizeof (arc_prune_t), 7497 offsetof(arc_prune_t, p_node)); 7498 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL); 7499 7500 arc_prune_taskq = taskq_create("arc_prune", boot_ncpus, defclsyspri, 7501 boot_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC); 7502 7503 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 7504 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 7505 7506 if (arc_ksp != NULL) { 7507 arc_ksp->ks_data = &arc_stats; 7508 arc_ksp->ks_update = arc_kstat_update; 7509 kstat_install(arc_ksp); 7510 } 7511 7512 arc_evict_zthr = zthr_create_timer("arc_evict", 7513 arc_evict_cb_check, arc_evict_cb, NULL, SEC2NSEC(1)); 7514 arc_reap_zthr = zthr_create_timer("arc_reap", 7515 arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1)); 7516 7517 arc_warm = B_FALSE; 7518 7519 /* 7520 * Calculate maximum amount of dirty data per pool. 7521 * 7522 * If it has been set by a module parameter, take that. 7523 * Otherwise, use a percentage of physical memory defined by 7524 * zfs_dirty_data_max_percent (default 10%) with a cap at 7525 * zfs_dirty_data_max_max (default 4G or 25% of physical memory). 7526 */ 7527 #ifdef __LP64__ 7528 if (zfs_dirty_data_max_max == 0) 7529 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024, 7530 allmem * zfs_dirty_data_max_max_percent / 100); 7531 #else 7532 if (zfs_dirty_data_max_max == 0) 7533 zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024, 7534 allmem * zfs_dirty_data_max_max_percent / 100); 7535 #endif 7536 7537 if (zfs_dirty_data_max == 0) { 7538 zfs_dirty_data_max = allmem * 7539 zfs_dirty_data_max_percent / 100; 7540 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 7541 zfs_dirty_data_max_max); 7542 } 7543 } 7544 7545 void 7546 arc_fini(void) 7547 { 7548 arc_prune_t *p; 7549 7550 #ifdef _KERNEL 7551 arc_lowmem_fini(); 7552 #endif /* _KERNEL */ 7553 7554 /* Use B_TRUE to ensure *all* buffers are evicted */ 7555 arc_flush(NULL, B_TRUE); 7556 7557 if (arc_ksp != NULL) { 7558 kstat_delete(arc_ksp); 7559 arc_ksp = NULL; 7560 } 7561 7562 taskq_wait(arc_prune_taskq); 7563 taskq_destroy(arc_prune_taskq); 7564 7565 mutex_enter(&arc_prune_mtx); 7566 while ((p = list_head(&arc_prune_list)) != NULL) { 7567 list_remove(&arc_prune_list, p); 7568 zfs_refcount_remove(&p->p_refcnt, &arc_prune_list); 7569 zfs_refcount_destroy(&p->p_refcnt); 7570 kmem_free(p, sizeof (*p)); 7571 } 7572 mutex_exit(&arc_prune_mtx); 7573 7574 list_destroy(&arc_prune_list); 7575 mutex_destroy(&arc_prune_mtx); 7576 7577 (void) zthr_cancel(arc_evict_zthr); 7578 (void) zthr_cancel(arc_reap_zthr); 7579 7580 mutex_destroy(&arc_evict_lock); 7581 list_destroy(&arc_evict_waiters); 7582 7583 /* 7584 * Free any buffers that were tagged for destruction. This needs 7585 * to occur before arc_state_fini() runs and destroys the aggsum 7586 * values which are updated when freeing scatter ABDs. 7587 */ 7588 l2arc_do_free_on_write(); 7589 7590 /* 7591 * buf_fini() must proceed arc_state_fini() because buf_fin() may 7592 * trigger the release of kmem magazines, which can callback to 7593 * arc_space_return() which accesses aggsums freed in act_state_fini(). 7594 */ 7595 buf_fini(); 7596 arc_state_fini(); 7597 7598 /* 7599 * We destroy the zthrs after all the ARC state has been 7600 * torn down to avoid the case of them receiving any 7601 * wakeup() signals after they are destroyed. 7602 */ 7603 zthr_destroy(arc_evict_zthr); 7604 zthr_destroy(arc_reap_zthr); 7605 7606 ASSERT0(arc_loaned_bytes); 7607 } 7608 7609 /* 7610 * Level 2 ARC 7611 * 7612 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 7613 * It uses dedicated storage devices to hold cached data, which are populated 7614 * using large infrequent writes. The main role of this cache is to boost 7615 * the performance of random read workloads. The intended L2ARC devices 7616 * include short-stroked disks, solid state disks, and other media with 7617 * substantially faster read latency than disk. 7618 * 7619 * +-----------------------+ 7620 * | ARC | 7621 * +-----------------------+ 7622 * | ^ ^ 7623 * | | | 7624 * l2arc_feed_thread() arc_read() 7625 * | | | 7626 * | l2arc read | 7627 * V | | 7628 * +---------------+ | 7629 * | L2ARC | | 7630 * +---------------+ | 7631 * | ^ | 7632 * l2arc_write() | | 7633 * | | | 7634 * V | | 7635 * +-------+ +-------+ 7636 * | vdev | | vdev | 7637 * | cache | | cache | 7638 * +-------+ +-------+ 7639 * +=========+ .-----. 7640 * : L2ARC : |-_____-| 7641 * : devices : | Disks | 7642 * +=========+ `-_____-' 7643 * 7644 * Read requests are satisfied from the following sources, in order: 7645 * 7646 * 1) ARC 7647 * 2) vdev cache of L2ARC devices 7648 * 3) L2ARC devices 7649 * 4) vdev cache of disks 7650 * 5) disks 7651 * 7652 * Some L2ARC device types exhibit extremely slow write performance. 7653 * To accommodate for this there are some significant differences between 7654 * the L2ARC and traditional cache design: 7655 * 7656 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 7657 * the ARC behave as usual, freeing buffers and placing headers on ghost 7658 * lists. The ARC does not send buffers to the L2ARC during eviction as 7659 * this would add inflated write latencies for all ARC memory pressure. 7660 * 7661 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 7662 * It does this by periodically scanning buffers from the eviction-end of 7663 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 7664 * not already there. It scans until a headroom of buffers is satisfied, 7665 * which itself is a buffer for ARC eviction. If a compressible buffer is 7666 * found during scanning and selected for writing to an L2ARC device, we 7667 * temporarily boost scanning headroom during the next scan cycle to make 7668 * sure we adapt to compression effects (which might significantly reduce 7669 * the data volume we write to L2ARC). The thread that does this is 7670 * l2arc_feed_thread(), illustrated below; example sizes are included to 7671 * provide a better sense of ratio than this diagram: 7672 * 7673 * head --> tail 7674 * +---------------------+----------+ 7675 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 7676 * +---------------------+----------+ | o L2ARC eligible 7677 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 7678 * +---------------------+----------+ | 7679 * 15.9 Gbytes ^ 32 Mbytes | 7680 * headroom | 7681 * l2arc_feed_thread() 7682 * | 7683 * l2arc write hand <--[oooo]--' 7684 * | 8 Mbyte 7685 * | write max 7686 * V 7687 * +==============================+ 7688 * L2ARC dev |####|#|###|###| |####| ... | 7689 * +==============================+ 7690 * 32 Gbytes 7691 * 7692 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 7693 * evicted, then the L2ARC has cached a buffer much sooner than it probably 7694 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 7695 * safe to say that this is an uncommon case, since buffers at the end of 7696 * the ARC lists have moved there due to inactivity. 7697 * 7698 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 7699 * then the L2ARC simply misses copying some buffers. This serves as a 7700 * pressure valve to prevent heavy read workloads from both stalling the ARC 7701 * with waits and clogging the L2ARC with writes. This also helps prevent 7702 * the potential for the L2ARC to churn if it attempts to cache content too 7703 * quickly, such as during backups of the entire pool. 7704 * 7705 * 5. After system boot and before the ARC has filled main memory, there are 7706 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 7707 * lists can remain mostly static. Instead of searching from tail of these 7708 * lists as pictured, the l2arc_feed_thread() will search from the list heads 7709 * for eligible buffers, greatly increasing its chance of finding them. 7710 * 7711 * The L2ARC device write speed is also boosted during this time so that 7712 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 7713 * there are no L2ARC reads, and no fear of degrading read performance 7714 * through increased writes. 7715 * 7716 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 7717 * the vdev queue can aggregate them into larger and fewer writes. Each 7718 * device is written to in a rotor fashion, sweeping writes through 7719 * available space then repeating. 7720 * 7721 * 7. The L2ARC does not store dirty content. It never needs to flush 7722 * write buffers back to disk based storage. 7723 * 7724 * 8. If an ARC buffer is written (and dirtied) which also exists in the 7725 * L2ARC, the now stale L2ARC buffer is immediately dropped. 7726 * 7727 * The performance of the L2ARC can be tweaked by a number of tunables, which 7728 * may be necessary for different workloads: 7729 * 7730 * l2arc_write_max max write bytes per interval 7731 * l2arc_write_boost extra write bytes during device warmup 7732 * l2arc_noprefetch skip caching prefetched buffers 7733 * l2arc_headroom number of max device writes to precache 7734 * l2arc_headroom_boost when we find compressed buffers during ARC 7735 * scanning, we multiply headroom by this 7736 * percentage factor for the next scan cycle, 7737 * since more compressed buffers are likely to 7738 * be present 7739 * l2arc_feed_secs seconds between L2ARC writing 7740 * 7741 * Tunables may be removed or added as future performance improvements are 7742 * integrated, and also may become zpool properties. 7743 * 7744 * There are three key functions that control how the L2ARC warms up: 7745 * 7746 * l2arc_write_eligible() check if a buffer is eligible to cache 7747 * l2arc_write_size() calculate how much to write 7748 * l2arc_write_interval() calculate sleep delay between writes 7749 * 7750 * These three functions determine what to write, how much, and how quickly 7751 * to send writes. 7752 * 7753 * L2ARC persistence: 7754 * 7755 * When writing buffers to L2ARC, we periodically add some metadata to 7756 * make sure we can pick them up after reboot, thus dramatically reducing 7757 * the impact that any downtime has on the performance of storage systems 7758 * with large caches. 7759 * 7760 * The implementation works fairly simply by integrating the following two 7761 * modifications: 7762 * 7763 * *) When writing to the L2ARC, we occasionally write a "l2arc log block", 7764 * which is an additional piece of metadata which describes what's been 7765 * written. This allows us to rebuild the arc_buf_hdr_t structures of the 7766 * main ARC buffers. There are 2 linked-lists of log blocks headed by 7767 * dh_start_lbps[2]. We alternate which chain we append to, so they are 7768 * time-wise and offset-wise interleaved, but that is an optimization rather 7769 * than for correctness. The log block also includes a pointer to the 7770 * previous block in its chain. 7771 * 7772 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device 7773 * for our header bookkeeping purposes. This contains a device header, 7774 * which contains our top-level reference structures. We update it each 7775 * time we write a new log block, so that we're able to locate it in the 7776 * L2ARC device. If this write results in an inconsistent device header 7777 * (e.g. due to power failure), we detect this by verifying the header's 7778 * checksum and simply fail to reconstruct the L2ARC after reboot. 7779 * 7780 * Implementation diagram: 7781 * 7782 * +=== L2ARC device (not to scale) ======================================+ 7783 * | ___two newest log block pointers__.__________ | 7784 * | / \dh_start_lbps[1] | 7785 * | / \ \dh_start_lbps[0]| 7786 * |.___/__. V V | 7787 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---| 7788 * || hdr| ^ /^ /^ / / | 7789 * |+------+ ...--\-------/ \-----/--\------/ / | 7790 * | \--------------/ \--------------/ | 7791 * +======================================================================+ 7792 * 7793 * As can be seen on the diagram, rather than using a simple linked list, 7794 * we use a pair of linked lists with alternating elements. This is a 7795 * performance enhancement due to the fact that we only find out the 7796 * address of the next log block access once the current block has been 7797 * completely read in. Obviously, this hurts performance, because we'd be 7798 * keeping the device's I/O queue at only a 1 operation deep, thus 7799 * incurring a large amount of I/O round-trip latency. Having two lists 7800 * allows us to fetch two log blocks ahead of where we are currently 7801 * rebuilding L2ARC buffers. 7802 * 7803 * On-device data structures: 7804 * 7805 * L2ARC device header: l2arc_dev_hdr_phys_t 7806 * L2ARC log block: l2arc_log_blk_phys_t 7807 * 7808 * L2ARC reconstruction: 7809 * 7810 * When writing data, we simply write in the standard rotary fashion, 7811 * evicting buffers as we go and simply writing new data over them (writing 7812 * a new log block every now and then). This obviously means that once we 7813 * loop around the end of the device, we will start cutting into an already 7814 * committed log block (and its referenced data buffers), like so: 7815 * 7816 * current write head__ __old tail 7817 * \ / 7818 * V V 7819 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |--> 7820 * ^ ^^^^^^^^^___________________________________ 7821 * | \ 7822 * <<nextwrite>> may overwrite this blk and/or its bufs --' 7823 * 7824 * When importing the pool, we detect this situation and use it to stop 7825 * our scanning process (see l2arc_rebuild). 7826 * 7827 * There is one significant caveat to consider when rebuilding ARC contents 7828 * from an L2ARC device: what about invalidated buffers? Given the above 7829 * construction, we cannot update blocks which we've already written to amend 7830 * them to remove buffers which were invalidated. Thus, during reconstruction, 7831 * we might be populating the cache with buffers for data that's not on the 7832 * main pool anymore, or may have been overwritten! 7833 * 7834 * As it turns out, this isn't a problem. Every arc_read request includes 7835 * both the DVA and, crucially, the birth TXG of the BP the caller is 7836 * looking for. So even if the cache were populated by completely rotten 7837 * blocks for data that had been long deleted and/or overwritten, we'll 7838 * never actually return bad data from the cache, since the DVA with the 7839 * birth TXG uniquely identify a block in space and time - once created, 7840 * a block is immutable on disk. The worst thing we have done is wasted 7841 * some time and memory at l2arc rebuild to reconstruct outdated ARC 7842 * entries that will get dropped from the l2arc as it is being updated 7843 * with new blocks. 7844 * 7845 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write 7846 * hand are not restored. This is done by saving the offset (in bytes) 7847 * l2arc_evict() has evicted to in the L2ARC device header and taking it 7848 * into account when restoring buffers. 7849 */ 7850 7851 static boolean_t 7852 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 7853 { 7854 /* 7855 * A buffer is *not* eligible for the L2ARC if it: 7856 * 1. belongs to a different spa. 7857 * 2. is already cached on the L2ARC. 7858 * 3. has an I/O in progress (it may be an incomplete read). 7859 * 4. is flagged not eligible (zfs property). 7860 */ 7861 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || 7862 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr)) 7863 return (B_FALSE); 7864 7865 return (B_TRUE); 7866 } 7867 7868 static uint64_t 7869 l2arc_write_size(l2arc_dev_t *dev) 7870 { 7871 uint64_t size, dev_size, tsize; 7872 7873 /* 7874 * Make sure our globals have meaningful values in case the user 7875 * altered them. 7876 */ 7877 size = l2arc_write_max; 7878 if (size == 0) { 7879 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 7880 "be greater than zero, resetting it to the default (%d)", 7881 L2ARC_WRITE_SIZE); 7882 size = l2arc_write_max = L2ARC_WRITE_SIZE; 7883 } 7884 7885 if (arc_warm == B_FALSE) 7886 size += l2arc_write_boost; 7887 7888 /* 7889 * Make sure the write size does not exceed the size of the cache 7890 * device. This is important in l2arc_evict(), otherwise infinite 7891 * iteration can occur. 7892 */ 7893 dev_size = dev->l2ad_end - dev->l2ad_start; 7894 tsize = size + l2arc_log_blk_overhead(size, dev); 7895 if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) 7896 tsize += MAX(64 * 1024 * 1024, 7897 (tsize * l2arc_trim_ahead) / 100); 7898 7899 if (tsize >= dev_size) { 7900 cmn_err(CE_NOTE, "l2arc_write_max or l2arc_write_boost " 7901 "plus the overhead of log blocks (persistent L2ARC, " 7902 "%llu bytes) exceeds the size of the cache device " 7903 "(guid %llu), resetting them to the default (%d)", 7904 l2arc_log_blk_overhead(size, dev), 7905 dev->l2ad_vdev->vdev_guid, L2ARC_WRITE_SIZE); 7906 size = l2arc_write_max = l2arc_write_boost = L2ARC_WRITE_SIZE; 7907 7908 if (arc_warm == B_FALSE) 7909 size += l2arc_write_boost; 7910 } 7911 7912 return (size); 7913 7914 } 7915 7916 static clock_t 7917 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 7918 { 7919 clock_t interval, next, now; 7920 7921 /* 7922 * If the ARC lists are busy, increase our write rate; if the 7923 * lists are stale, idle back. This is achieved by checking 7924 * how much we previously wrote - if it was more than half of 7925 * what we wanted, schedule the next write much sooner. 7926 */ 7927 if (l2arc_feed_again && wrote > (wanted / 2)) 7928 interval = (hz * l2arc_feed_min_ms) / 1000; 7929 else 7930 interval = hz * l2arc_feed_secs; 7931 7932 now = ddi_get_lbolt(); 7933 next = MAX(now, MIN(now + interval, began + interval)); 7934 7935 return (next); 7936 } 7937 7938 /* 7939 * Cycle through L2ARC devices. This is how L2ARC load balances. 7940 * If a device is returned, this also returns holding the spa config lock. 7941 */ 7942 static l2arc_dev_t * 7943 l2arc_dev_get_next(void) 7944 { 7945 l2arc_dev_t *first, *next = NULL; 7946 7947 /* 7948 * Lock out the removal of spas (spa_namespace_lock), then removal 7949 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 7950 * both locks will be dropped and a spa config lock held instead. 7951 */ 7952 mutex_enter(&spa_namespace_lock); 7953 mutex_enter(&l2arc_dev_mtx); 7954 7955 /* if there are no vdevs, there is nothing to do */ 7956 if (l2arc_ndev == 0) 7957 goto out; 7958 7959 first = NULL; 7960 next = l2arc_dev_last; 7961 do { 7962 /* loop around the list looking for a non-faulted vdev */ 7963 if (next == NULL) { 7964 next = list_head(l2arc_dev_list); 7965 } else { 7966 next = list_next(l2arc_dev_list, next); 7967 if (next == NULL) 7968 next = list_head(l2arc_dev_list); 7969 } 7970 7971 /* if we have come back to the start, bail out */ 7972 if (first == NULL) 7973 first = next; 7974 else if (next == first) 7975 break; 7976 7977 } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || 7978 next->l2ad_trim_all); 7979 7980 /* if we were unable to find any usable vdevs, return NULL */ 7981 if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || 7982 next->l2ad_trim_all) 7983 next = NULL; 7984 7985 l2arc_dev_last = next; 7986 7987 out: 7988 mutex_exit(&l2arc_dev_mtx); 7989 7990 /* 7991 * Grab the config lock to prevent the 'next' device from being 7992 * removed while we are writing to it. 7993 */ 7994 if (next != NULL) 7995 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 7996 mutex_exit(&spa_namespace_lock); 7997 7998 return (next); 7999 } 8000 8001 /* 8002 * Free buffers that were tagged for destruction. 8003 */ 8004 static void 8005 l2arc_do_free_on_write(void) 8006 { 8007 list_t *buflist; 8008 l2arc_data_free_t *df, *df_prev; 8009 8010 mutex_enter(&l2arc_free_on_write_mtx); 8011 buflist = l2arc_free_on_write; 8012 8013 for (df = list_tail(buflist); df; df = df_prev) { 8014 df_prev = list_prev(buflist, df); 8015 ASSERT3P(df->l2df_abd, !=, NULL); 8016 abd_free(df->l2df_abd); 8017 list_remove(buflist, df); 8018 kmem_free(df, sizeof (l2arc_data_free_t)); 8019 } 8020 8021 mutex_exit(&l2arc_free_on_write_mtx); 8022 } 8023 8024 /* 8025 * A write to a cache device has completed. Update all headers to allow 8026 * reads from these buffers to begin. 8027 */ 8028 static void 8029 l2arc_write_done(zio_t *zio) 8030 { 8031 l2arc_write_callback_t *cb; 8032 l2arc_lb_abd_buf_t *abd_buf; 8033 l2arc_lb_ptr_buf_t *lb_ptr_buf; 8034 l2arc_dev_t *dev; 8035 l2arc_dev_hdr_phys_t *l2dhdr; 8036 list_t *buflist; 8037 arc_buf_hdr_t *head, *hdr, *hdr_prev; 8038 kmutex_t *hash_lock; 8039 int64_t bytes_dropped = 0; 8040 8041 cb = zio->io_private; 8042 ASSERT3P(cb, !=, NULL); 8043 dev = cb->l2wcb_dev; 8044 l2dhdr = dev->l2ad_dev_hdr; 8045 ASSERT3P(dev, !=, NULL); 8046 head = cb->l2wcb_head; 8047 ASSERT3P(head, !=, NULL); 8048 buflist = &dev->l2ad_buflist; 8049 ASSERT3P(buflist, !=, NULL); 8050 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 8051 l2arc_write_callback_t *, cb); 8052 8053 if (zio->io_error != 0) 8054 ARCSTAT_BUMP(arcstat_l2_writes_error); 8055 8056 /* 8057 * All writes completed, or an error was hit. 8058 */ 8059 top: 8060 mutex_enter(&dev->l2ad_mtx); 8061 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 8062 hdr_prev = list_prev(buflist, hdr); 8063 8064 hash_lock = HDR_LOCK(hdr); 8065 8066 /* 8067 * We cannot use mutex_enter or else we can deadlock 8068 * with l2arc_write_buffers (due to swapping the order 8069 * the hash lock and l2ad_mtx are taken). 8070 */ 8071 if (!mutex_tryenter(hash_lock)) { 8072 /* 8073 * Missed the hash lock. We must retry so we 8074 * don't leave the ARC_FLAG_L2_WRITING bit set. 8075 */ 8076 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 8077 8078 /* 8079 * We don't want to rescan the headers we've 8080 * already marked as having been written out, so 8081 * we reinsert the head node so we can pick up 8082 * where we left off. 8083 */ 8084 list_remove(buflist, head); 8085 list_insert_after(buflist, hdr, head); 8086 8087 mutex_exit(&dev->l2ad_mtx); 8088 8089 /* 8090 * We wait for the hash lock to become available 8091 * to try and prevent busy waiting, and increase 8092 * the chance we'll be able to acquire the lock 8093 * the next time around. 8094 */ 8095 mutex_enter(hash_lock); 8096 mutex_exit(hash_lock); 8097 goto top; 8098 } 8099 8100 /* 8101 * We could not have been moved into the arc_l2c_only 8102 * state while in-flight due to our ARC_FLAG_L2_WRITING 8103 * bit being set. Let's just ensure that's being enforced. 8104 */ 8105 ASSERT(HDR_HAS_L1HDR(hdr)); 8106 8107 /* 8108 * Skipped - drop L2ARC entry and mark the header as no 8109 * longer L2 eligibile. 8110 */ 8111 if (zio->io_error != 0) { 8112 /* 8113 * Error - drop L2ARC entry. 8114 */ 8115 list_remove(buflist, hdr); 8116 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 8117 8118 uint64_t psize = HDR_GET_PSIZE(hdr); 8119 ARCSTAT_INCR(arcstat_l2_psize, -psize); 8120 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr)); 8121 8122 bytes_dropped += 8123 vdev_psize_to_asize(dev->l2ad_vdev, psize); 8124 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 8125 arc_hdr_size(hdr), hdr); 8126 } 8127 8128 /* 8129 * Allow ARC to begin reads and ghost list evictions to 8130 * this L2ARC entry. 8131 */ 8132 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); 8133 8134 mutex_exit(hash_lock); 8135 } 8136 8137 /* 8138 * Free the allocated abd buffers for writing the log blocks. 8139 * If the zio failed reclaim the allocated space and remove the 8140 * pointers to these log blocks from the log block pointer list 8141 * of the L2ARC device. 8142 */ 8143 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) { 8144 abd_free(abd_buf->abd); 8145 zio_buf_free(abd_buf, sizeof (*abd_buf)); 8146 if (zio->io_error != 0) { 8147 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list); 8148 /* 8149 * L2BLK_GET_PSIZE returns aligned size for log 8150 * blocks. 8151 */ 8152 uint64_t asize = 8153 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop); 8154 bytes_dropped += asize; 8155 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 8156 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 8157 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 8158 lb_ptr_buf); 8159 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 8160 kmem_free(lb_ptr_buf->lb_ptr, 8161 sizeof (l2arc_log_blkptr_t)); 8162 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 8163 } 8164 } 8165 list_destroy(&cb->l2wcb_abd_list); 8166 8167 if (zio->io_error != 0) { 8168 /* 8169 * Restore the lbps array in the header to its previous state. 8170 * If the list of log block pointers is empty, zero out the 8171 * log block pointers in the device header. 8172 */ 8173 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list); 8174 for (int i = 0; i < 2; i++) { 8175 if (lb_ptr_buf == NULL) { 8176 /* 8177 * If the list is empty zero out the device 8178 * header. Otherwise zero out the second log 8179 * block pointer in the header. 8180 */ 8181 if (i == 0) { 8182 bzero(l2dhdr, dev->l2ad_dev_hdr_asize); 8183 } else { 8184 bzero(&l2dhdr->dh_start_lbps[i], 8185 sizeof (l2arc_log_blkptr_t)); 8186 } 8187 break; 8188 } 8189 bcopy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[i], 8190 sizeof (l2arc_log_blkptr_t)); 8191 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list, 8192 lb_ptr_buf); 8193 } 8194 } 8195 8196 atomic_inc_64(&l2arc_writes_done); 8197 list_remove(buflist, head); 8198 ASSERT(!HDR_HAS_L1HDR(head)); 8199 kmem_cache_free(hdr_l2only_cache, head); 8200 mutex_exit(&dev->l2ad_mtx); 8201 8202 ASSERT(dev->l2ad_vdev != NULL); 8203 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 8204 8205 l2arc_do_free_on_write(); 8206 8207 kmem_free(cb, sizeof (l2arc_write_callback_t)); 8208 } 8209 8210 static int 8211 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb) 8212 { 8213 int ret; 8214 spa_t *spa = zio->io_spa; 8215 arc_buf_hdr_t *hdr = cb->l2rcb_hdr; 8216 blkptr_t *bp = zio->io_bp; 8217 uint8_t salt[ZIO_DATA_SALT_LEN]; 8218 uint8_t iv[ZIO_DATA_IV_LEN]; 8219 uint8_t mac[ZIO_DATA_MAC_LEN]; 8220 boolean_t no_crypt = B_FALSE; 8221 8222 /* 8223 * ZIL data is never be written to the L2ARC, so we don't need 8224 * special handling for its unique MAC storage. 8225 */ 8226 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 8227 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 8228 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8229 8230 /* 8231 * If the data was encrypted, decrypt it now. Note that 8232 * we must check the bp here and not the hdr, since the 8233 * hdr does not have its encryption parameters updated 8234 * until arc_read_done(). 8235 */ 8236 if (BP_IS_ENCRYPTED(bp)) { 8237 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8238 B_TRUE); 8239 8240 zio_crypt_decode_params_bp(bp, salt, iv); 8241 zio_crypt_decode_mac_bp(bp, mac); 8242 8243 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb, 8244 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 8245 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd, 8246 hdr->b_l1hdr.b_pabd, &no_crypt); 8247 if (ret != 0) { 8248 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8249 goto error; 8250 } 8251 8252 /* 8253 * If we actually performed decryption, replace b_pabd 8254 * with the decrypted data. Otherwise we can just throw 8255 * our decryption buffer away. 8256 */ 8257 if (!no_crypt) { 8258 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8259 arc_hdr_size(hdr), hdr); 8260 hdr->b_l1hdr.b_pabd = eabd; 8261 zio->io_abd = eabd; 8262 } else { 8263 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8264 } 8265 } 8266 8267 /* 8268 * If the L2ARC block was compressed, but ARC compression 8269 * is disabled we decompress the data into a new buffer and 8270 * replace the existing data. 8271 */ 8272 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 8273 !HDR_COMPRESSION_ENABLED(hdr)) { 8274 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8275 B_TRUE); 8276 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 8277 8278 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 8279 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 8280 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 8281 if (ret != 0) { 8282 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 8283 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr); 8284 goto error; 8285 } 8286 8287 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 8288 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8289 arc_hdr_size(hdr), hdr); 8290 hdr->b_l1hdr.b_pabd = cabd; 8291 zio->io_abd = cabd; 8292 zio->io_size = HDR_GET_LSIZE(hdr); 8293 } 8294 8295 return (0); 8296 8297 error: 8298 return (ret); 8299 } 8300 8301 8302 /* 8303 * A read to a cache device completed. Validate buffer contents before 8304 * handing over to the regular ARC routines. 8305 */ 8306 static void 8307 l2arc_read_done(zio_t *zio) 8308 { 8309 int tfm_error = 0; 8310 l2arc_read_callback_t *cb = zio->io_private; 8311 arc_buf_hdr_t *hdr; 8312 kmutex_t *hash_lock; 8313 boolean_t valid_cksum; 8314 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) && 8315 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT)); 8316 8317 ASSERT3P(zio->io_vd, !=, NULL); 8318 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 8319 8320 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 8321 8322 ASSERT3P(cb, !=, NULL); 8323 hdr = cb->l2rcb_hdr; 8324 ASSERT3P(hdr, !=, NULL); 8325 8326 hash_lock = HDR_LOCK(hdr); 8327 mutex_enter(hash_lock); 8328 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 8329 8330 /* 8331 * If the data was read into a temporary buffer, 8332 * move it and free the buffer. 8333 */ 8334 if (cb->l2rcb_abd != NULL) { 8335 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size); 8336 if (zio->io_error == 0) { 8337 if (using_rdata) { 8338 abd_copy(hdr->b_crypt_hdr.b_rabd, 8339 cb->l2rcb_abd, arc_hdr_size(hdr)); 8340 } else { 8341 abd_copy(hdr->b_l1hdr.b_pabd, 8342 cb->l2rcb_abd, arc_hdr_size(hdr)); 8343 } 8344 } 8345 8346 /* 8347 * The following must be done regardless of whether 8348 * there was an error: 8349 * - free the temporary buffer 8350 * - point zio to the real ARC buffer 8351 * - set zio size accordingly 8352 * These are required because zio is either re-used for 8353 * an I/O of the block in the case of the error 8354 * or the zio is passed to arc_read_done() and it 8355 * needs real data. 8356 */ 8357 abd_free(cb->l2rcb_abd); 8358 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr); 8359 8360 if (using_rdata) { 8361 ASSERT(HDR_HAS_RABD(hdr)); 8362 zio->io_abd = zio->io_orig_abd = 8363 hdr->b_crypt_hdr.b_rabd; 8364 } else { 8365 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8366 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd; 8367 } 8368 } 8369 8370 ASSERT3P(zio->io_abd, !=, NULL); 8371 8372 /* 8373 * Check this survived the L2ARC journey. 8374 */ 8375 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd || 8376 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd)); 8377 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 8378 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 8379 zio->io_prop.zp_complevel = hdr->b_complevel; 8380 8381 valid_cksum = arc_cksum_is_equal(hdr, zio); 8382 8383 /* 8384 * b_rabd will always match the data as it exists on disk if it is 8385 * being used. Therefore if we are reading into b_rabd we do not 8386 * attempt to untransform the data. 8387 */ 8388 if (valid_cksum && !using_rdata) 8389 tfm_error = l2arc_untransform(zio, cb); 8390 8391 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 && 8392 !HDR_L2_EVICTED(hdr)) { 8393 mutex_exit(hash_lock); 8394 zio->io_private = hdr; 8395 arc_read_done(zio); 8396 } else { 8397 /* 8398 * Buffer didn't survive caching. Increment stats and 8399 * reissue to the original storage device. 8400 */ 8401 if (zio->io_error != 0) { 8402 ARCSTAT_BUMP(arcstat_l2_io_error); 8403 } else { 8404 zio->io_error = SET_ERROR(EIO); 8405 } 8406 if (!valid_cksum || tfm_error != 0) 8407 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 8408 8409 /* 8410 * If there's no waiter, issue an async i/o to the primary 8411 * storage now. If there *is* a waiter, the caller must 8412 * issue the i/o in a context where it's OK to block. 8413 */ 8414 if (zio->io_waiter == NULL) { 8415 zio_t *pio = zio_unique_parent(zio); 8416 void *abd = (using_rdata) ? 8417 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd; 8418 8419 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 8420 8421 zio = zio_read(pio, zio->io_spa, zio->io_bp, 8422 abd, zio->io_size, arc_read_done, 8423 hdr, zio->io_priority, cb->l2rcb_flags, 8424 &cb->l2rcb_zb); 8425 8426 /* 8427 * Original ZIO will be freed, so we need to update 8428 * ARC header with the new ZIO pointer to be used 8429 * by zio_change_priority() in arc_read(). 8430 */ 8431 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb; 8432 acb != NULL; acb = acb->acb_next) 8433 acb->acb_zio_head = zio; 8434 8435 mutex_exit(hash_lock); 8436 zio_nowait(zio); 8437 } else { 8438 mutex_exit(hash_lock); 8439 } 8440 } 8441 8442 kmem_free(cb, sizeof (l2arc_read_callback_t)); 8443 } 8444 8445 /* 8446 * This is the list priority from which the L2ARC will search for pages to 8447 * cache. This is used within loops (0..3) to cycle through lists in the 8448 * desired order. This order can have a significant effect on cache 8449 * performance. 8450 * 8451 * Currently the metadata lists are hit first, MFU then MRU, followed by 8452 * the data lists. This function returns a locked list, and also returns 8453 * the lock pointer. 8454 */ 8455 static multilist_sublist_t * 8456 l2arc_sublist_lock(int list_num) 8457 { 8458 multilist_t *ml = NULL; 8459 unsigned int idx; 8460 8461 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES); 8462 8463 switch (list_num) { 8464 case 0: 8465 ml = arc_mfu->arcs_list[ARC_BUFC_METADATA]; 8466 break; 8467 case 1: 8468 ml = arc_mru->arcs_list[ARC_BUFC_METADATA]; 8469 break; 8470 case 2: 8471 ml = arc_mfu->arcs_list[ARC_BUFC_DATA]; 8472 break; 8473 case 3: 8474 ml = arc_mru->arcs_list[ARC_BUFC_DATA]; 8475 break; 8476 default: 8477 return (NULL); 8478 } 8479 8480 /* 8481 * Return a randomly-selected sublist. This is acceptable 8482 * because the caller feeds only a little bit of data for each 8483 * call (8MB). Subsequent calls will result in different 8484 * sublists being selected. 8485 */ 8486 idx = multilist_get_random_index(ml); 8487 return (multilist_sublist_lock(ml, idx)); 8488 } 8489 8490 /* 8491 * Calculates the maximum overhead of L2ARC metadata log blocks for a given 8492 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this 8493 * overhead in processing to make sure there is enough headroom available 8494 * when writing buffers. 8495 */ 8496 static inline uint64_t 8497 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev) 8498 { 8499 if (dev->l2ad_log_entries == 0) { 8500 return (0); 8501 } else { 8502 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT; 8503 8504 uint64_t log_blocks = (log_entries + 8505 dev->l2ad_log_entries - 1) / 8506 dev->l2ad_log_entries; 8507 8508 return (vdev_psize_to_asize(dev->l2ad_vdev, 8509 sizeof (l2arc_log_blk_phys_t)) * log_blocks); 8510 } 8511 } 8512 8513 /* 8514 * Evict buffers from the device write hand to the distance specified in 8515 * bytes. This distance may span populated buffers, it may span nothing. 8516 * This is clearing a region on the L2ARC device ready for writing. 8517 * If the 'all' boolean is set, every buffer is evicted. 8518 */ 8519 static void 8520 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 8521 { 8522 list_t *buflist; 8523 arc_buf_hdr_t *hdr, *hdr_prev; 8524 kmutex_t *hash_lock; 8525 uint64_t taddr; 8526 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev; 8527 vdev_t *vd = dev->l2ad_vdev; 8528 boolean_t rerun; 8529 8530 buflist = &dev->l2ad_buflist; 8531 8532 /* 8533 * We need to add in the worst case scenario of log block overhead. 8534 */ 8535 distance += l2arc_log_blk_overhead(distance, dev); 8536 if (vd->vdev_has_trim && l2arc_trim_ahead > 0) { 8537 /* 8538 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100) 8539 * times the write size, whichever is greater. 8540 */ 8541 distance += MAX(64 * 1024 * 1024, 8542 (distance * l2arc_trim_ahead) / 100); 8543 } 8544 8545 top: 8546 rerun = B_FALSE; 8547 if (dev->l2ad_hand >= (dev->l2ad_end - distance)) { 8548 /* 8549 * When there is no space to accommodate upcoming writes, 8550 * evict to the end. Then bump the write and evict hands 8551 * to the start and iterate. This iteration does not 8552 * happen indefinitely as we make sure in 8553 * l2arc_write_size() that when the write hand is reset, 8554 * the write size does not exceed the end of the device. 8555 */ 8556 rerun = B_TRUE; 8557 taddr = dev->l2ad_end; 8558 } else { 8559 taddr = dev->l2ad_hand + distance; 8560 } 8561 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 8562 uint64_t, taddr, boolean_t, all); 8563 8564 if (!all) { 8565 /* 8566 * This check has to be placed after deciding whether to 8567 * iterate (rerun). 8568 */ 8569 if (dev->l2ad_first) { 8570 /* 8571 * This is the first sweep through the device. There is 8572 * nothing to evict. We have already trimmmed the 8573 * whole device. 8574 */ 8575 goto out; 8576 } else { 8577 /* 8578 * Trim the space to be evicted. 8579 */ 8580 if (vd->vdev_has_trim && dev->l2ad_evict < taddr && 8581 l2arc_trim_ahead > 0) { 8582 /* 8583 * We have to drop the spa_config lock because 8584 * vdev_trim_range() will acquire it. 8585 * l2ad_evict already accounts for the label 8586 * size. To prevent vdev_trim_ranges() from 8587 * adding it again, we subtract it from 8588 * l2ad_evict. 8589 */ 8590 spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev); 8591 vdev_trim_simple(vd, 8592 dev->l2ad_evict - VDEV_LABEL_START_SIZE, 8593 taddr - dev->l2ad_evict); 8594 spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev, 8595 RW_READER); 8596 } 8597 8598 /* 8599 * When rebuilding L2ARC we retrieve the evict hand 8600 * from the header of the device. Of note, l2arc_evict() 8601 * does not actually delete buffers from the cache 8602 * device, but trimming may do so depending on the 8603 * hardware implementation. Thus keeping track of the 8604 * evict hand is useful. 8605 */ 8606 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr); 8607 } 8608 } 8609 8610 retry: 8611 mutex_enter(&dev->l2ad_mtx); 8612 /* 8613 * We have to account for evicted log blocks. Run vdev_space_update() 8614 * on log blocks whose offset (in bytes) is before the evicted offset 8615 * (in bytes) by searching in the list of pointers to log blocks 8616 * present in the L2ARC device. 8617 */ 8618 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf; 8619 lb_ptr_buf = lb_ptr_buf_prev) { 8620 8621 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf); 8622 8623 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 8624 uint64_t asize = L2BLK_GET_PSIZE( 8625 (lb_ptr_buf->lb_ptr)->lbp_prop); 8626 8627 /* 8628 * We don't worry about log blocks left behind (ie 8629 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers() 8630 * will never write more than l2arc_evict() evicts. 8631 */ 8632 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) { 8633 break; 8634 } else { 8635 vdev_space_update(vd, -asize, 0, 0); 8636 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 8637 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 8638 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 8639 lb_ptr_buf); 8640 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 8641 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf); 8642 kmem_free(lb_ptr_buf->lb_ptr, 8643 sizeof (l2arc_log_blkptr_t)); 8644 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 8645 } 8646 } 8647 8648 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 8649 hdr_prev = list_prev(buflist, hdr); 8650 8651 ASSERT(!HDR_EMPTY(hdr)); 8652 hash_lock = HDR_LOCK(hdr); 8653 8654 /* 8655 * We cannot use mutex_enter or else we can deadlock 8656 * with l2arc_write_buffers (due to swapping the order 8657 * the hash lock and l2ad_mtx are taken). 8658 */ 8659 if (!mutex_tryenter(hash_lock)) { 8660 /* 8661 * Missed the hash lock. Retry. 8662 */ 8663 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 8664 mutex_exit(&dev->l2ad_mtx); 8665 mutex_enter(hash_lock); 8666 mutex_exit(hash_lock); 8667 goto retry; 8668 } 8669 8670 /* 8671 * A header can't be on this list if it doesn't have L2 header. 8672 */ 8673 ASSERT(HDR_HAS_L2HDR(hdr)); 8674 8675 /* Ensure this header has finished being written. */ 8676 ASSERT(!HDR_L2_WRITING(hdr)); 8677 ASSERT(!HDR_L2_WRITE_HEAD(hdr)); 8678 8679 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict || 8680 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 8681 /* 8682 * We've evicted to the target address, 8683 * or the end of the device. 8684 */ 8685 mutex_exit(hash_lock); 8686 break; 8687 } 8688 8689 if (!HDR_HAS_L1HDR(hdr)) { 8690 ASSERT(!HDR_L2_READING(hdr)); 8691 /* 8692 * This doesn't exist in the ARC. Destroy. 8693 * arc_hdr_destroy() will call list_remove() 8694 * and decrement arcstat_l2_lsize. 8695 */ 8696 arc_change_state(arc_anon, hdr, hash_lock); 8697 arc_hdr_destroy(hdr); 8698 } else { 8699 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 8700 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 8701 /* 8702 * Invalidate issued or about to be issued 8703 * reads, since we may be about to write 8704 * over this location. 8705 */ 8706 if (HDR_L2_READING(hdr)) { 8707 ARCSTAT_BUMP(arcstat_l2_evict_reading); 8708 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); 8709 } 8710 8711 arc_hdr_l2hdr_destroy(hdr); 8712 } 8713 mutex_exit(hash_lock); 8714 } 8715 mutex_exit(&dev->l2ad_mtx); 8716 8717 out: 8718 /* 8719 * We need to check if we evict all buffers, otherwise we may iterate 8720 * unnecessarily. 8721 */ 8722 if (!all && rerun) { 8723 /* 8724 * Bump device hand to the device start if it is approaching the 8725 * end. l2arc_evict() has already evicted ahead for this case. 8726 */ 8727 dev->l2ad_hand = dev->l2ad_start; 8728 dev->l2ad_evict = dev->l2ad_start; 8729 dev->l2ad_first = B_FALSE; 8730 goto top; 8731 } 8732 8733 ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end); 8734 if (!dev->l2ad_first) 8735 ASSERT3U(dev->l2ad_hand, <, dev->l2ad_evict); 8736 } 8737 8738 /* 8739 * Handle any abd transforms that might be required for writing to the L2ARC. 8740 * If successful, this function will always return an abd with the data 8741 * transformed as it is on disk in a new abd of asize bytes. 8742 */ 8743 static int 8744 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize, 8745 abd_t **abd_out) 8746 { 8747 int ret; 8748 void *tmp = NULL; 8749 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd; 8750 enum zio_compress compress = HDR_GET_COMPRESS(hdr); 8751 uint64_t psize = HDR_GET_PSIZE(hdr); 8752 uint64_t size = arc_hdr_size(hdr); 8753 boolean_t ismd = HDR_ISTYPE_METADATA(hdr); 8754 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 8755 dsl_crypto_key_t *dck = NULL; 8756 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 }; 8757 boolean_t no_crypt = B_FALSE; 8758 8759 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 8760 !HDR_COMPRESSION_ENABLED(hdr)) || 8761 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize); 8762 ASSERT3U(psize, <=, asize); 8763 8764 /* 8765 * If this data simply needs its own buffer, we simply allocate it 8766 * and copy the data. This may be done to eliminate a dependency on a 8767 * shared buffer or to reallocate the buffer to match asize. 8768 */ 8769 if (HDR_HAS_RABD(hdr) && asize != psize) { 8770 ASSERT3U(asize, >=, psize); 8771 to_write = abd_alloc_for_io(asize, ismd); 8772 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize); 8773 if (psize != asize) 8774 abd_zero_off(to_write, psize, asize - psize); 8775 goto out; 8776 } 8777 8778 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) && 8779 !HDR_ENCRYPTED(hdr)) { 8780 ASSERT3U(size, ==, psize); 8781 to_write = abd_alloc_for_io(asize, ismd); 8782 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 8783 if (size != asize) 8784 abd_zero_off(to_write, size, asize - size); 8785 goto out; 8786 } 8787 8788 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) { 8789 cabd = abd_alloc_for_io(asize, ismd); 8790 tmp = abd_borrow_buf(cabd, asize); 8791 8792 psize = zio_compress_data(compress, to_write, tmp, size, 8793 hdr->b_complevel); 8794 8795 if (psize >= size) { 8796 abd_return_buf(cabd, tmp, asize); 8797 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF); 8798 to_write = cabd; 8799 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 8800 if (size != asize) 8801 abd_zero_off(to_write, size, asize - size); 8802 goto encrypt; 8803 } 8804 ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr)); 8805 if (psize < asize) 8806 bzero((char *)tmp + psize, asize - psize); 8807 psize = HDR_GET_PSIZE(hdr); 8808 abd_return_buf_copy(cabd, tmp, asize); 8809 to_write = cabd; 8810 } 8811 8812 encrypt: 8813 if (HDR_ENCRYPTED(hdr)) { 8814 eabd = abd_alloc_for_io(asize, ismd); 8815 8816 /* 8817 * If the dataset was disowned before the buffer 8818 * made it to this point, the key to re-encrypt 8819 * it won't be available. In this case we simply 8820 * won't write the buffer to the L2ARC. 8821 */ 8822 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj, 8823 FTAG, &dck); 8824 if (ret != 0) 8825 goto error; 8826 8827 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key, 8828 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt, 8829 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd, 8830 &no_crypt); 8831 if (ret != 0) 8832 goto error; 8833 8834 if (no_crypt) 8835 abd_copy(eabd, to_write, psize); 8836 8837 if (psize != asize) 8838 abd_zero_off(eabd, psize, asize - psize); 8839 8840 /* assert that the MAC we got here matches the one we saved */ 8841 ASSERT0(bcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN)); 8842 spa_keystore_dsl_key_rele(spa, dck, FTAG); 8843 8844 if (to_write == cabd) 8845 abd_free(cabd); 8846 8847 to_write = eabd; 8848 } 8849 8850 out: 8851 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd); 8852 *abd_out = to_write; 8853 return (0); 8854 8855 error: 8856 if (dck != NULL) 8857 spa_keystore_dsl_key_rele(spa, dck, FTAG); 8858 if (cabd != NULL) 8859 abd_free(cabd); 8860 if (eabd != NULL) 8861 abd_free(eabd); 8862 8863 *abd_out = NULL; 8864 return (ret); 8865 } 8866 8867 static void 8868 l2arc_blk_fetch_done(zio_t *zio) 8869 { 8870 l2arc_read_callback_t *cb; 8871 8872 cb = zio->io_private; 8873 if (cb->l2rcb_abd != NULL) 8874 abd_put(cb->l2rcb_abd); 8875 kmem_free(cb, sizeof (l2arc_read_callback_t)); 8876 } 8877 8878 /* 8879 * Find and write ARC buffers to the L2ARC device. 8880 * 8881 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 8882 * for reading until they have completed writing. 8883 * The headroom_boost is an in-out parameter used to maintain headroom boost 8884 * state between calls to this function. 8885 * 8886 * Returns the number of bytes actually written (which may be smaller than 8887 * the delta by which the device hand has changed due to alignment and the 8888 * writing of log blocks). 8889 */ 8890 static uint64_t 8891 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 8892 { 8893 arc_buf_hdr_t *hdr, *hdr_prev, *head; 8894 uint64_t write_asize, write_psize, write_lsize, headroom; 8895 boolean_t full; 8896 l2arc_write_callback_t *cb = NULL; 8897 zio_t *pio, *wzio; 8898 uint64_t guid = spa_load_guid(spa); 8899 8900 ASSERT3P(dev->l2ad_vdev, !=, NULL); 8901 8902 pio = NULL; 8903 write_lsize = write_asize = write_psize = 0; 8904 full = B_FALSE; 8905 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 8906 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); 8907 8908 /* 8909 * Copy buffers for L2ARC writing. 8910 */ 8911 for (int try = 0; try < L2ARC_FEED_TYPES; try++) { 8912 multilist_sublist_t *mls = l2arc_sublist_lock(try); 8913 uint64_t passed_sz = 0; 8914 8915 VERIFY3P(mls, !=, NULL); 8916 8917 /* 8918 * L2ARC fast warmup. 8919 * 8920 * Until the ARC is warm and starts to evict, read from the 8921 * head of the ARC lists rather than the tail. 8922 */ 8923 if (arc_warm == B_FALSE) 8924 hdr = multilist_sublist_head(mls); 8925 else 8926 hdr = multilist_sublist_tail(mls); 8927 8928 headroom = target_sz * l2arc_headroom; 8929 if (zfs_compressed_arc_enabled) 8930 headroom = (headroom * l2arc_headroom_boost) / 100; 8931 8932 for (; hdr; hdr = hdr_prev) { 8933 kmutex_t *hash_lock; 8934 abd_t *to_write = NULL; 8935 8936 if (arc_warm == B_FALSE) 8937 hdr_prev = multilist_sublist_next(mls, hdr); 8938 else 8939 hdr_prev = multilist_sublist_prev(mls, hdr); 8940 8941 hash_lock = HDR_LOCK(hdr); 8942 if (!mutex_tryenter(hash_lock)) { 8943 /* 8944 * Skip this buffer rather than waiting. 8945 */ 8946 continue; 8947 } 8948 8949 passed_sz += HDR_GET_LSIZE(hdr); 8950 if (l2arc_headroom != 0 && passed_sz > headroom) { 8951 /* 8952 * Searched too far. 8953 */ 8954 mutex_exit(hash_lock); 8955 break; 8956 } 8957 8958 if (!l2arc_write_eligible(guid, hdr)) { 8959 mutex_exit(hash_lock); 8960 continue; 8961 } 8962 8963 /* 8964 * We rely on the L1 portion of the header below, so 8965 * it's invalid for this header to have been evicted out 8966 * of the ghost cache, prior to being written out. The 8967 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 8968 */ 8969 ASSERT(HDR_HAS_L1HDR(hdr)); 8970 8971 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 8972 ASSERT3U(arc_hdr_size(hdr), >, 0); 8973 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 8974 HDR_HAS_RABD(hdr)); 8975 uint64_t psize = HDR_GET_PSIZE(hdr); 8976 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 8977 psize); 8978 8979 if ((write_asize + asize) > target_sz) { 8980 full = B_TRUE; 8981 mutex_exit(hash_lock); 8982 break; 8983 } 8984 8985 /* 8986 * We rely on the L1 portion of the header below, so 8987 * it's invalid for this header to have been evicted out 8988 * of the ghost cache, prior to being written out. The 8989 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 8990 */ 8991 arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING); 8992 ASSERT(HDR_HAS_L1HDR(hdr)); 8993 8994 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 8995 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 8996 HDR_HAS_RABD(hdr)); 8997 ASSERT3U(arc_hdr_size(hdr), >, 0); 8998 8999 /* 9000 * If this header has b_rabd, we can use this since it 9001 * must always match the data exactly as it exists on 9002 * disk. Otherwise, the L2ARC can normally use the 9003 * hdr's data, but if we're sharing data between the 9004 * hdr and one of its bufs, L2ARC needs its own copy of 9005 * the data so that the ZIO below can't race with the 9006 * buf consumer. To ensure that this copy will be 9007 * available for the lifetime of the ZIO and be cleaned 9008 * up afterwards, we add it to the l2arc_free_on_write 9009 * queue. If we need to apply any transforms to the 9010 * data (compression, encryption) we will also need the 9011 * extra buffer. 9012 */ 9013 if (HDR_HAS_RABD(hdr) && psize == asize) { 9014 to_write = hdr->b_crypt_hdr.b_rabd; 9015 } else if ((HDR_COMPRESSION_ENABLED(hdr) || 9016 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) && 9017 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) && 9018 psize == asize) { 9019 to_write = hdr->b_l1hdr.b_pabd; 9020 } else { 9021 int ret; 9022 arc_buf_contents_t type = arc_buf_type(hdr); 9023 9024 ret = l2arc_apply_transforms(spa, hdr, asize, 9025 &to_write); 9026 if (ret != 0) { 9027 arc_hdr_clear_flags(hdr, 9028 ARC_FLAG_L2_WRITING); 9029 mutex_exit(hash_lock); 9030 continue; 9031 } 9032 9033 l2arc_free_abd_on_write(to_write, asize, type); 9034 } 9035 9036 if (pio == NULL) { 9037 /* 9038 * Insert a dummy header on the buflist so 9039 * l2arc_write_done() can find where the 9040 * write buffers begin without searching. 9041 */ 9042 mutex_enter(&dev->l2ad_mtx); 9043 list_insert_head(&dev->l2ad_buflist, head); 9044 mutex_exit(&dev->l2ad_mtx); 9045 9046 cb = kmem_alloc( 9047 sizeof (l2arc_write_callback_t), KM_SLEEP); 9048 cb->l2wcb_dev = dev; 9049 cb->l2wcb_head = head; 9050 /* 9051 * Create a list to save allocated abd buffers 9052 * for l2arc_log_blk_commit(). 9053 */ 9054 list_create(&cb->l2wcb_abd_list, 9055 sizeof (l2arc_lb_abd_buf_t), 9056 offsetof(l2arc_lb_abd_buf_t, node)); 9057 pio = zio_root(spa, l2arc_write_done, cb, 9058 ZIO_FLAG_CANFAIL); 9059 } 9060 9061 hdr->b_l2hdr.b_dev = dev; 9062 hdr->b_l2hdr.b_hits = 0; 9063 9064 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 9065 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR); 9066 9067 mutex_enter(&dev->l2ad_mtx); 9068 list_insert_head(&dev->l2ad_buflist, hdr); 9069 mutex_exit(&dev->l2ad_mtx); 9070 9071 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 9072 arc_hdr_size(hdr), hdr); 9073 9074 wzio = zio_write_phys(pio, dev->l2ad_vdev, 9075 hdr->b_l2hdr.b_daddr, asize, to_write, 9076 ZIO_CHECKSUM_OFF, NULL, hdr, 9077 ZIO_PRIORITY_ASYNC_WRITE, 9078 ZIO_FLAG_CANFAIL, B_FALSE); 9079 9080 write_lsize += HDR_GET_LSIZE(hdr); 9081 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 9082 zio_t *, wzio); 9083 9084 write_psize += psize; 9085 write_asize += asize; 9086 dev->l2ad_hand += asize; 9087 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 9088 9089 mutex_exit(hash_lock); 9090 9091 /* 9092 * Append buf info to current log and commit if full. 9093 * arcstat_l2_{size,asize} kstats are updated 9094 * internally. 9095 */ 9096 if (l2arc_log_blk_insert(dev, hdr)) 9097 l2arc_log_blk_commit(dev, pio, cb); 9098 9099 zio_nowait(wzio); 9100 } 9101 9102 multilist_sublist_unlock(mls); 9103 9104 if (full == B_TRUE) 9105 break; 9106 } 9107 9108 /* No buffers selected for writing? */ 9109 if (pio == NULL) { 9110 ASSERT0(write_lsize); 9111 ASSERT(!HDR_HAS_L1HDR(head)); 9112 kmem_cache_free(hdr_l2only_cache, head); 9113 9114 /* 9115 * Although we did not write any buffers l2ad_evict may 9116 * have advanced. 9117 */ 9118 l2arc_dev_hdr_update(dev); 9119 9120 return (0); 9121 } 9122 9123 if (!dev->l2ad_first) 9124 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict); 9125 9126 ASSERT3U(write_asize, <=, target_sz); 9127 ARCSTAT_BUMP(arcstat_l2_writes_sent); 9128 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize); 9129 ARCSTAT_INCR(arcstat_l2_lsize, write_lsize); 9130 ARCSTAT_INCR(arcstat_l2_psize, write_psize); 9131 9132 dev->l2ad_writing = B_TRUE; 9133 (void) zio_wait(pio); 9134 dev->l2ad_writing = B_FALSE; 9135 9136 /* 9137 * Update the device header after the zio completes as 9138 * l2arc_write_done() may have updated the memory holding the log block 9139 * pointers in the device header. 9140 */ 9141 l2arc_dev_hdr_update(dev); 9142 9143 return (write_asize); 9144 } 9145 9146 static boolean_t 9147 l2arc_hdr_limit_reached(void) 9148 { 9149 int64_t s = aggsum_upper_bound(&astat_l2_hdr_size); 9150 9151 return (arc_reclaim_needed() || (s > arc_meta_limit * 3 / 4) || 9152 (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100)); 9153 } 9154 9155 /* 9156 * This thread feeds the L2ARC at regular intervals. This is the beating 9157 * heart of the L2ARC. 9158 */ 9159 /* ARGSUSED */ 9160 static void 9161 l2arc_feed_thread(void *unused) 9162 { 9163 callb_cpr_t cpr; 9164 l2arc_dev_t *dev; 9165 spa_t *spa; 9166 uint64_t size, wrote; 9167 clock_t begin, next = ddi_get_lbolt(); 9168 fstrans_cookie_t cookie; 9169 9170 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 9171 9172 mutex_enter(&l2arc_feed_thr_lock); 9173 9174 cookie = spl_fstrans_mark(); 9175 while (l2arc_thread_exit == 0) { 9176 CALLB_CPR_SAFE_BEGIN(&cpr); 9177 (void) cv_timedwait_sig(&l2arc_feed_thr_cv, 9178 &l2arc_feed_thr_lock, next); 9179 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 9180 next = ddi_get_lbolt() + hz; 9181 9182 /* 9183 * Quick check for L2ARC devices. 9184 */ 9185 mutex_enter(&l2arc_dev_mtx); 9186 if (l2arc_ndev == 0) { 9187 mutex_exit(&l2arc_dev_mtx); 9188 continue; 9189 } 9190 mutex_exit(&l2arc_dev_mtx); 9191 begin = ddi_get_lbolt(); 9192 9193 /* 9194 * This selects the next l2arc device to write to, and in 9195 * doing so the next spa to feed from: dev->l2ad_spa. This 9196 * will return NULL if there are now no l2arc devices or if 9197 * they are all faulted. 9198 * 9199 * If a device is returned, its spa's config lock is also 9200 * held to prevent device removal. l2arc_dev_get_next() 9201 * will grab and release l2arc_dev_mtx. 9202 */ 9203 if ((dev = l2arc_dev_get_next()) == NULL) 9204 continue; 9205 9206 spa = dev->l2ad_spa; 9207 ASSERT3P(spa, !=, NULL); 9208 9209 /* 9210 * If the pool is read-only then force the feed thread to 9211 * sleep a little longer. 9212 */ 9213 if (!spa_writeable(spa)) { 9214 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 9215 spa_config_exit(spa, SCL_L2ARC, dev); 9216 continue; 9217 } 9218 9219 /* 9220 * Avoid contributing to memory pressure. 9221 */ 9222 if (l2arc_hdr_limit_reached()) { 9223 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 9224 spa_config_exit(spa, SCL_L2ARC, dev); 9225 continue; 9226 } 9227 9228 ARCSTAT_BUMP(arcstat_l2_feeds); 9229 9230 size = l2arc_write_size(dev); 9231 9232 /* 9233 * Evict L2ARC buffers that will be overwritten. 9234 */ 9235 l2arc_evict(dev, size, B_FALSE); 9236 9237 /* 9238 * Write ARC buffers. 9239 */ 9240 wrote = l2arc_write_buffers(spa, dev, size); 9241 9242 /* 9243 * Calculate interval between writes. 9244 */ 9245 next = l2arc_write_interval(begin, size, wrote); 9246 spa_config_exit(spa, SCL_L2ARC, dev); 9247 } 9248 spl_fstrans_unmark(cookie); 9249 9250 l2arc_thread_exit = 0; 9251 cv_broadcast(&l2arc_feed_thr_cv); 9252 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 9253 thread_exit(); 9254 } 9255 9256 boolean_t 9257 l2arc_vdev_present(vdev_t *vd) 9258 { 9259 return (l2arc_vdev_get(vd) != NULL); 9260 } 9261 9262 /* 9263 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if 9264 * the vdev_t isn't an L2ARC device. 9265 */ 9266 l2arc_dev_t * 9267 l2arc_vdev_get(vdev_t *vd) 9268 { 9269 l2arc_dev_t *dev; 9270 9271 mutex_enter(&l2arc_dev_mtx); 9272 for (dev = list_head(l2arc_dev_list); dev != NULL; 9273 dev = list_next(l2arc_dev_list, dev)) { 9274 if (dev->l2ad_vdev == vd) 9275 break; 9276 } 9277 mutex_exit(&l2arc_dev_mtx); 9278 9279 return (dev); 9280 } 9281 9282 /* 9283 * Add a vdev for use by the L2ARC. By this point the spa has already 9284 * validated the vdev and opened it. 9285 */ 9286 void 9287 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 9288 { 9289 l2arc_dev_t *adddev; 9290 uint64_t l2dhdr_asize; 9291 9292 ASSERT(!l2arc_vdev_present(vd)); 9293 9294 vdev_ashift_optimize(vd); 9295 9296 /* 9297 * Create a new l2arc device entry. 9298 */ 9299 adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 9300 adddev->l2ad_spa = spa; 9301 adddev->l2ad_vdev = vd; 9302 /* leave extra size for an l2arc device header */ 9303 l2dhdr_asize = adddev->l2ad_dev_hdr_asize = 9304 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift); 9305 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize; 9306 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 9307 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end); 9308 adddev->l2ad_hand = adddev->l2ad_start; 9309 adddev->l2ad_evict = adddev->l2ad_start; 9310 adddev->l2ad_first = B_TRUE; 9311 adddev->l2ad_writing = B_FALSE; 9312 adddev->l2ad_trim_all = B_FALSE; 9313 list_link_init(&adddev->l2ad_node); 9314 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP); 9315 9316 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 9317 /* 9318 * This is a list of all ARC buffers that are still valid on the 9319 * device. 9320 */ 9321 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 9322 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 9323 9324 /* 9325 * This is a list of pointers to log blocks that are still present 9326 * on the device. 9327 */ 9328 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t), 9329 offsetof(l2arc_lb_ptr_buf_t, node)); 9330 9331 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 9332 zfs_refcount_create(&adddev->l2ad_alloc); 9333 zfs_refcount_create(&adddev->l2ad_lb_asize); 9334 zfs_refcount_create(&adddev->l2ad_lb_count); 9335 9336 /* 9337 * Add device to global list 9338 */ 9339 mutex_enter(&l2arc_dev_mtx); 9340 list_insert_head(l2arc_dev_list, adddev); 9341 atomic_inc_64(&l2arc_ndev); 9342 mutex_exit(&l2arc_dev_mtx); 9343 9344 /* 9345 * Decide if vdev is eligible for L2ARC rebuild 9346 */ 9347 l2arc_rebuild_vdev(adddev->l2ad_vdev, B_FALSE); 9348 } 9349 9350 void 9351 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen) 9352 { 9353 l2arc_dev_t *dev = NULL; 9354 l2arc_dev_hdr_phys_t *l2dhdr; 9355 uint64_t l2dhdr_asize; 9356 spa_t *spa; 9357 int err; 9358 boolean_t l2dhdr_valid = B_TRUE; 9359 9360 dev = l2arc_vdev_get(vd); 9361 ASSERT3P(dev, !=, NULL); 9362 spa = dev->l2ad_spa; 9363 l2dhdr = dev->l2ad_dev_hdr; 9364 l2dhdr_asize = dev->l2ad_dev_hdr_asize; 9365 9366 /* 9367 * The L2ARC has to hold at least the payload of one log block for 9368 * them to be restored (persistent L2ARC). The payload of a log block 9369 * depends on the amount of its log entries. We always write log blocks 9370 * with 1022 entries. How many of them are committed or restored depends 9371 * on the size of the L2ARC device. Thus the maximum payload of 9372 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device 9373 * is less than that, we reduce the amount of committed and restored 9374 * log entries per block so as to enable persistence. 9375 */ 9376 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) { 9377 dev->l2ad_log_entries = 0; 9378 } else { 9379 dev->l2ad_log_entries = MIN((dev->l2ad_end - 9380 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT, 9381 L2ARC_LOG_BLK_MAX_ENTRIES); 9382 } 9383 9384 /* 9385 * Read the device header, if an error is returned do not rebuild L2ARC. 9386 */ 9387 if ((err = l2arc_dev_hdr_read(dev)) != 0) 9388 l2dhdr_valid = B_FALSE; 9389 9390 if (l2dhdr_valid && dev->l2ad_log_entries > 0) { 9391 /* 9392 * If we are onlining a cache device (vdev_reopen) that was 9393 * still present (l2arc_vdev_present()) and rebuild is enabled, 9394 * we should evict all ARC buffers and pointers to log blocks 9395 * and reclaim their space before restoring its contents to 9396 * L2ARC. 9397 */ 9398 if (reopen) { 9399 if (!l2arc_rebuild_enabled) { 9400 return; 9401 } else { 9402 l2arc_evict(dev, 0, B_TRUE); 9403 /* start a new log block */ 9404 dev->l2ad_log_ent_idx = 0; 9405 dev->l2ad_log_blk_payload_asize = 0; 9406 dev->l2ad_log_blk_payload_start = 0; 9407 } 9408 } 9409 /* 9410 * Just mark the device as pending for a rebuild. We won't 9411 * be starting a rebuild in line here as it would block pool 9412 * import. Instead spa_load_impl will hand that off to an 9413 * async task which will call l2arc_spa_rebuild_start. 9414 */ 9415 dev->l2ad_rebuild = B_TRUE; 9416 } else if (spa_writeable(spa)) { 9417 /* 9418 * In this case TRIM the whole device if l2arc_trim_ahead > 0, 9419 * otherwise create a new header. We zero out the memory holding 9420 * the header to reset dh_start_lbps. If we TRIM the whole 9421 * device the new header will be written by 9422 * vdev_trim_l2arc_thread() at the end of the TRIM to update the 9423 * trim_state in the header too. When reading the header, if 9424 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0 9425 * we opt to TRIM the whole device again. 9426 */ 9427 if (l2arc_trim_ahead > 0) { 9428 dev->l2ad_trim_all = B_TRUE; 9429 } else { 9430 bzero(l2dhdr, l2dhdr_asize); 9431 l2arc_dev_hdr_update(dev); 9432 } 9433 } 9434 } 9435 9436 /* 9437 * Remove a vdev from the L2ARC. 9438 */ 9439 void 9440 l2arc_remove_vdev(vdev_t *vd) 9441 { 9442 l2arc_dev_t *remdev = NULL; 9443 9444 /* 9445 * Find the device by vdev 9446 */ 9447 remdev = l2arc_vdev_get(vd); 9448 ASSERT3P(remdev, !=, NULL); 9449 9450 /* 9451 * Cancel any ongoing or scheduled rebuild. 9452 */ 9453 mutex_enter(&l2arc_rebuild_thr_lock); 9454 if (remdev->l2ad_rebuild_began == B_TRUE) { 9455 remdev->l2ad_rebuild_cancel = B_TRUE; 9456 while (remdev->l2ad_rebuild == B_TRUE) 9457 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock); 9458 } 9459 mutex_exit(&l2arc_rebuild_thr_lock); 9460 9461 /* 9462 * Remove device from global list 9463 */ 9464 mutex_enter(&l2arc_dev_mtx); 9465 list_remove(l2arc_dev_list, remdev); 9466 l2arc_dev_last = NULL; /* may have been invalidated */ 9467 atomic_dec_64(&l2arc_ndev); 9468 mutex_exit(&l2arc_dev_mtx); 9469 9470 /* 9471 * Clear all buflists and ARC references. L2ARC device flush. 9472 */ 9473 l2arc_evict(remdev, 0, B_TRUE); 9474 list_destroy(&remdev->l2ad_buflist); 9475 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list)); 9476 list_destroy(&remdev->l2ad_lbptr_list); 9477 mutex_destroy(&remdev->l2ad_mtx); 9478 zfs_refcount_destroy(&remdev->l2ad_alloc); 9479 zfs_refcount_destroy(&remdev->l2ad_lb_asize); 9480 zfs_refcount_destroy(&remdev->l2ad_lb_count); 9481 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize); 9482 vmem_free(remdev, sizeof (l2arc_dev_t)); 9483 } 9484 9485 void 9486 l2arc_init(void) 9487 { 9488 l2arc_thread_exit = 0; 9489 l2arc_ndev = 0; 9490 l2arc_writes_sent = 0; 9491 l2arc_writes_done = 0; 9492 9493 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 9494 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 9495 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL); 9496 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL); 9497 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 9498 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 9499 9500 l2arc_dev_list = &L2ARC_dev_list; 9501 l2arc_free_on_write = &L2ARC_free_on_write; 9502 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 9503 offsetof(l2arc_dev_t, l2ad_node)); 9504 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 9505 offsetof(l2arc_data_free_t, l2df_list_node)); 9506 } 9507 9508 void 9509 l2arc_fini(void) 9510 { 9511 mutex_destroy(&l2arc_feed_thr_lock); 9512 cv_destroy(&l2arc_feed_thr_cv); 9513 mutex_destroy(&l2arc_rebuild_thr_lock); 9514 cv_destroy(&l2arc_rebuild_thr_cv); 9515 mutex_destroy(&l2arc_dev_mtx); 9516 mutex_destroy(&l2arc_free_on_write_mtx); 9517 9518 list_destroy(l2arc_dev_list); 9519 list_destroy(l2arc_free_on_write); 9520 } 9521 9522 void 9523 l2arc_start(void) 9524 { 9525 if (!(spa_mode_global & SPA_MODE_WRITE)) 9526 return; 9527 9528 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 9529 TS_RUN, defclsyspri); 9530 } 9531 9532 void 9533 l2arc_stop(void) 9534 { 9535 if (!(spa_mode_global & SPA_MODE_WRITE)) 9536 return; 9537 9538 mutex_enter(&l2arc_feed_thr_lock); 9539 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 9540 l2arc_thread_exit = 1; 9541 while (l2arc_thread_exit != 0) 9542 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 9543 mutex_exit(&l2arc_feed_thr_lock); 9544 } 9545 9546 /* 9547 * Punches out rebuild threads for the L2ARC devices in a spa. This should 9548 * be called after pool import from the spa async thread, since starting 9549 * these threads directly from spa_import() will make them part of the 9550 * "zpool import" context and delay process exit (and thus pool import). 9551 */ 9552 void 9553 l2arc_spa_rebuild_start(spa_t *spa) 9554 { 9555 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 9556 9557 /* 9558 * Locate the spa's l2arc devices and kick off rebuild threads. 9559 */ 9560 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 9561 l2arc_dev_t *dev = 9562 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]); 9563 if (dev == NULL) { 9564 /* Don't attempt a rebuild if the vdev is UNAVAIL */ 9565 continue; 9566 } 9567 mutex_enter(&l2arc_rebuild_thr_lock); 9568 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) { 9569 dev->l2ad_rebuild_began = B_TRUE; 9570 (void) thread_create(NULL, 0, l2arc_dev_rebuild_thread, 9571 dev, 0, &p0, TS_RUN, minclsyspri); 9572 } 9573 mutex_exit(&l2arc_rebuild_thr_lock); 9574 } 9575 } 9576 9577 /* 9578 * Main entry point for L2ARC rebuilding. 9579 */ 9580 static void 9581 l2arc_dev_rebuild_thread(void *arg) 9582 { 9583 l2arc_dev_t *dev = arg; 9584 9585 VERIFY(!dev->l2ad_rebuild_cancel); 9586 VERIFY(dev->l2ad_rebuild); 9587 (void) l2arc_rebuild(dev); 9588 mutex_enter(&l2arc_rebuild_thr_lock); 9589 dev->l2ad_rebuild_began = B_FALSE; 9590 dev->l2ad_rebuild = B_FALSE; 9591 mutex_exit(&l2arc_rebuild_thr_lock); 9592 9593 thread_exit(); 9594 } 9595 9596 /* 9597 * This function implements the actual L2ARC metadata rebuild. It: 9598 * starts reading the log block chain and restores each block's contents 9599 * to memory (reconstructing arc_buf_hdr_t's). 9600 * 9601 * Operation stops under any of the following conditions: 9602 * 9603 * 1) We reach the end of the log block chain. 9604 * 2) We encounter *any* error condition (cksum errors, io errors) 9605 */ 9606 static int 9607 l2arc_rebuild(l2arc_dev_t *dev) 9608 { 9609 vdev_t *vd = dev->l2ad_vdev; 9610 spa_t *spa = vd->vdev_spa; 9611 int err = 0; 9612 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9613 l2arc_log_blk_phys_t *this_lb, *next_lb; 9614 zio_t *this_io = NULL, *next_io = NULL; 9615 l2arc_log_blkptr_t lbps[2]; 9616 l2arc_lb_ptr_buf_t *lb_ptr_buf; 9617 boolean_t lock_held; 9618 9619 this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP); 9620 next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP); 9621 9622 /* 9623 * We prevent device removal while issuing reads to the device, 9624 * then during the rebuilding phases we drop this lock again so 9625 * that a spa_unload or device remove can be initiated - this is 9626 * safe, because the spa will signal us to stop before removing 9627 * our device and wait for us to stop. 9628 */ 9629 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER); 9630 lock_held = B_TRUE; 9631 9632 /* 9633 * Retrieve the persistent L2ARC device state. 9634 * L2BLK_GET_PSIZE returns aligned size for log blocks. 9635 */ 9636 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start); 9637 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr + 9638 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop), 9639 dev->l2ad_start); 9640 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 9641 9642 vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time; 9643 vd->vdev_trim_state = l2dhdr->dh_trim_state; 9644 9645 /* 9646 * In case the zfs module parameter l2arc_rebuild_enabled is false 9647 * we do not start the rebuild process. 9648 */ 9649 if (!l2arc_rebuild_enabled) 9650 goto out; 9651 9652 /* Prepare the rebuild process */ 9653 bcopy(l2dhdr->dh_start_lbps, lbps, sizeof (lbps)); 9654 9655 /* Start the rebuild process */ 9656 for (;;) { 9657 if (!l2arc_log_blkptr_valid(dev, &lbps[0])) 9658 break; 9659 9660 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1], 9661 this_lb, next_lb, this_io, &next_io)) != 0) 9662 goto out; 9663 9664 /* 9665 * Our memory pressure valve. If the system is running low 9666 * on memory, rather than swamping memory with new ARC buf 9667 * hdrs, we opt not to rebuild the L2ARC. At this point, 9668 * however, we have already set up our L2ARC dev to chain in 9669 * new metadata log blocks, so the user may choose to offline/ 9670 * online the L2ARC dev at a later time (or re-import the pool) 9671 * to reconstruct it (when there's less memory pressure). 9672 */ 9673 if (l2arc_hdr_limit_reached()) { 9674 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem); 9675 cmn_err(CE_NOTE, "System running low on memory, " 9676 "aborting L2ARC rebuild."); 9677 err = SET_ERROR(ENOMEM); 9678 goto out; 9679 } 9680 9681 spa_config_exit(spa, SCL_L2ARC, vd); 9682 lock_held = B_FALSE; 9683 9684 /* 9685 * Now that we know that the next_lb checks out alright, we 9686 * can start reconstruction from this log block. 9687 * L2BLK_GET_PSIZE returns aligned size for log blocks. 9688 */ 9689 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 9690 l2arc_log_blk_restore(dev, this_lb, asize, lbps[0].lbp_daddr); 9691 9692 /* 9693 * log block restored, include its pointer in the list of 9694 * pointers to log blocks present in the L2ARC device. 9695 */ 9696 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 9697 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), 9698 KM_SLEEP); 9699 bcopy(&lbps[0], lb_ptr_buf->lb_ptr, 9700 sizeof (l2arc_log_blkptr_t)); 9701 mutex_enter(&dev->l2ad_mtx); 9702 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf); 9703 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 9704 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 9705 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 9706 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 9707 mutex_exit(&dev->l2ad_mtx); 9708 vdev_space_update(vd, asize, 0, 0); 9709 9710 /* 9711 * Protection against loops of log blocks: 9712 * 9713 * l2ad_hand l2ad_evict 9714 * V V 9715 * l2ad_start |=======================================| l2ad_end 9716 * -----|||----|||---|||----||| 9717 * (3) (2) (1) (0) 9718 * ---|||---|||----|||---||| 9719 * (7) (6) (5) (4) 9720 * 9721 * In this situation the pointer of log block (4) passes 9722 * l2arc_log_blkptr_valid() but the log block should not be 9723 * restored as it is overwritten by the payload of log block 9724 * (0). Only log blocks (0)-(3) should be restored. We check 9725 * whether l2ad_evict lies in between the payload starting 9726 * offset of the next log block (lbps[1].lbp_payload_start) 9727 * and the payload starting offset of the present log block 9728 * (lbps[0].lbp_payload_start). If true and this isn't the 9729 * first pass, we are looping from the beginning and we should 9730 * stop. 9731 */ 9732 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 9733 lbps[0].lbp_payload_start, dev->l2ad_evict) && 9734 !dev->l2ad_first) 9735 goto out; 9736 9737 for (;;) { 9738 mutex_enter(&l2arc_rebuild_thr_lock); 9739 if (dev->l2ad_rebuild_cancel) { 9740 dev->l2ad_rebuild = B_FALSE; 9741 cv_signal(&l2arc_rebuild_thr_cv); 9742 mutex_exit(&l2arc_rebuild_thr_lock); 9743 err = SET_ERROR(ECANCELED); 9744 goto out; 9745 } 9746 mutex_exit(&l2arc_rebuild_thr_lock); 9747 if (spa_config_tryenter(spa, SCL_L2ARC, vd, 9748 RW_READER)) { 9749 lock_held = B_TRUE; 9750 break; 9751 } 9752 /* 9753 * L2ARC config lock held by somebody in writer, 9754 * possibly due to them trying to remove us. They'll 9755 * likely to want us to shut down, so after a little 9756 * delay, we check l2ad_rebuild_cancel and retry 9757 * the lock again. 9758 */ 9759 delay(1); 9760 } 9761 9762 /* 9763 * Continue with the next log block. 9764 */ 9765 lbps[0] = lbps[1]; 9766 lbps[1] = this_lb->lb_prev_lbp; 9767 PTR_SWAP(this_lb, next_lb); 9768 this_io = next_io; 9769 next_io = NULL; 9770 } 9771 9772 if (this_io != NULL) 9773 l2arc_log_blk_fetch_abort(this_io); 9774 out: 9775 if (next_io != NULL) 9776 l2arc_log_blk_fetch_abort(next_io); 9777 vmem_free(this_lb, sizeof (*this_lb)); 9778 vmem_free(next_lb, sizeof (*next_lb)); 9779 9780 if (!l2arc_rebuild_enabled) { 9781 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9782 "disabled"); 9783 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) { 9784 ARCSTAT_BUMP(arcstat_l2_rebuild_success); 9785 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9786 "successful, restored %llu blocks", 9787 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 9788 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) { 9789 /* 9790 * No error but also nothing restored, meaning the lbps array 9791 * in the device header points to invalid/non-present log 9792 * blocks. Reset the header. 9793 */ 9794 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9795 "no valid log blocks"); 9796 bzero(l2dhdr, dev->l2ad_dev_hdr_asize); 9797 l2arc_dev_hdr_update(dev); 9798 } else if (err == ECANCELED) { 9799 /* 9800 * In case the rebuild was canceled do not log to spa history 9801 * log as the pool may be in the process of being removed. 9802 */ 9803 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks", 9804 zfs_refcount_count(&dev->l2ad_lb_count)); 9805 } else if (err != 0) { 9806 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9807 "aborted, restored %llu blocks", 9808 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 9809 } 9810 9811 if (lock_held) 9812 spa_config_exit(spa, SCL_L2ARC, vd); 9813 9814 return (err); 9815 } 9816 9817 /* 9818 * Attempts to read the device header on the provided L2ARC device and writes 9819 * it to `hdr'. On success, this function returns 0, otherwise the appropriate 9820 * error code is returned. 9821 */ 9822 static int 9823 l2arc_dev_hdr_read(l2arc_dev_t *dev) 9824 { 9825 int err; 9826 uint64_t guid; 9827 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9828 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 9829 abd_t *abd; 9830 9831 guid = spa_guid(dev->l2ad_vdev->vdev_spa); 9832 9833 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 9834 9835 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev, 9836 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, 9837 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_ASYNC_READ, 9838 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 9839 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 9840 ZIO_FLAG_SPECULATIVE, B_FALSE)); 9841 9842 abd_put(abd); 9843 9844 if (err != 0) { 9845 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors); 9846 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, " 9847 "vdev guid: %llu", err, dev->l2ad_vdev->vdev_guid); 9848 return (err); 9849 } 9850 9851 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 9852 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr)); 9853 9854 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC || 9855 l2dhdr->dh_spa_guid != guid || 9856 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid || 9857 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION || 9858 l2dhdr->dh_log_entries != dev->l2ad_log_entries || 9859 l2dhdr->dh_end != dev->l2ad_end || 9860 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end, 9861 l2dhdr->dh_evict) || 9862 (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE && 9863 l2arc_trim_ahead > 0)) { 9864 /* 9865 * Attempt to rebuild a device containing no actual dev hdr 9866 * or containing a header from some other pool or from another 9867 * version of persistent L2ARC. 9868 */ 9869 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported); 9870 return (SET_ERROR(ENOTSUP)); 9871 } 9872 9873 return (0); 9874 } 9875 9876 /* 9877 * Reads L2ARC log blocks from storage and validates their contents. 9878 * 9879 * This function implements a simple fetcher to make sure that while 9880 * we're processing one buffer the L2ARC is already fetching the next 9881 * one in the chain. 9882 * 9883 * The arguments this_lp and next_lp point to the current and next log block 9884 * address in the block chain. Similarly, this_lb and next_lb hold the 9885 * l2arc_log_blk_phys_t's of the current and next L2ARC blk. 9886 * 9887 * The `this_io' and `next_io' arguments are used for block fetching. 9888 * When issuing the first blk IO during rebuild, you should pass NULL for 9889 * `this_io'. This function will then issue a sync IO to read the block and 9890 * also issue an async IO to fetch the next block in the block chain. The 9891 * fetched IO is returned in `next_io'. On subsequent calls to this 9892 * function, pass the value returned in `next_io' from the previous call 9893 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO. 9894 * Prior to the call, you should initialize your `next_io' pointer to be 9895 * NULL. If no fetch IO was issued, the pointer is left set at NULL. 9896 * 9897 * On success, this function returns 0, otherwise it returns an appropriate 9898 * error code. On error the fetching IO is aborted and cleared before 9899 * returning from this function. Therefore, if we return `success', the 9900 * caller can assume that we have taken care of cleanup of fetch IOs. 9901 */ 9902 static int 9903 l2arc_log_blk_read(l2arc_dev_t *dev, 9904 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp, 9905 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 9906 zio_t *this_io, zio_t **next_io) 9907 { 9908 int err = 0; 9909 zio_cksum_t cksum; 9910 abd_t *abd = NULL; 9911 uint64_t asize; 9912 9913 ASSERT(this_lbp != NULL && next_lbp != NULL); 9914 ASSERT(this_lb != NULL && next_lb != NULL); 9915 ASSERT(next_io != NULL && *next_io == NULL); 9916 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp)); 9917 9918 /* 9919 * Check to see if we have issued the IO for this log block in a 9920 * previous run. If not, this is the first call, so issue it now. 9921 */ 9922 if (this_io == NULL) { 9923 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp, 9924 this_lb); 9925 } 9926 9927 /* 9928 * Peek to see if we can start issuing the next IO immediately. 9929 */ 9930 if (l2arc_log_blkptr_valid(dev, next_lbp)) { 9931 /* 9932 * Start issuing IO for the next log block early - this 9933 * should help keep the L2ARC device busy while we 9934 * decompress and restore this log block. 9935 */ 9936 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp, 9937 next_lb); 9938 } 9939 9940 /* Wait for the IO to read this log block to complete */ 9941 if ((err = zio_wait(this_io)) != 0) { 9942 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors); 9943 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, " 9944 "offset: %llu, vdev guid: %llu", err, this_lbp->lbp_daddr, 9945 dev->l2ad_vdev->vdev_guid); 9946 goto cleanup; 9947 } 9948 9949 /* 9950 * Make sure the buffer checks out. 9951 * L2BLK_GET_PSIZE returns aligned size for log blocks. 9952 */ 9953 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop); 9954 fletcher_4_native(this_lb, asize, NULL, &cksum); 9955 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) { 9956 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors); 9957 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, " 9958 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu", 9959 this_lbp->lbp_daddr, dev->l2ad_vdev->vdev_guid, 9960 dev->l2ad_hand, dev->l2ad_evict); 9961 err = SET_ERROR(ECKSUM); 9962 goto cleanup; 9963 } 9964 9965 /* Now we can take our time decoding this buffer */ 9966 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) { 9967 case ZIO_COMPRESS_OFF: 9968 break; 9969 case ZIO_COMPRESS_LZ4: 9970 abd = abd_alloc_for_io(asize, B_TRUE); 9971 abd_copy_from_buf_off(abd, this_lb, 0, asize); 9972 if ((err = zio_decompress_data( 9973 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop), 9974 abd, this_lb, asize, sizeof (*this_lb), NULL)) != 0) { 9975 err = SET_ERROR(EINVAL); 9976 goto cleanup; 9977 } 9978 break; 9979 default: 9980 err = SET_ERROR(EINVAL); 9981 goto cleanup; 9982 } 9983 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 9984 byteswap_uint64_array(this_lb, sizeof (*this_lb)); 9985 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) { 9986 err = SET_ERROR(EINVAL); 9987 goto cleanup; 9988 } 9989 cleanup: 9990 /* Abort an in-flight fetch I/O in case of error */ 9991 if (err != 0 && *next_io != NULL) { 9992 l2arc_log_blk_fetch_abort(*next_io); 9993 *next_io = NULL; 9994 } 9995 if (abd != NULL) 9996 abd_free(abd); 9997 return (err); 9998 } 9999 10000 /* 10001 * Restores the payload of a log block to ARC. This creates empty ARC hdr 10002 * entries which only contain an l2arc hdr, essentially restoring the 10003 * buffers to their L2ARC evicted state. This function also updates space 10004 * usage on the L2ARC vdev to make sure it tracks restored buffers. 10005 */ 10006 static void 10007 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb, 10008 uint64_t lb_asize, uint64_t lb_daddr) 10009 { 10010 uint64_t size = 0, asize = 0; 10011 uint64_t log_entries = dev->l2ad_log_entries; 10012 10013 /* 10014 * Usually arc_adapt() is called only for data, not headers, but 10015 * since we may allocate significant amount of memory here, let ARC 10016 * grow its arc_c. 10017 */ 10018 arc_adapt(log_entries * HDR_L2ONLY_SIZE, arc_l2c_only); 10019 10020 for (int i = log_entries - 1; i >= 0; i--) { 10021 /* 10022 * Restore goes in the reverse temporal direction to preserve 10023 * correct temporal ordering of buffers in the l2ad_buflist. 10024 * l2arc_hdr_restore also does a list_insert_tail instead of 10025 * list_insert_head on the l2ad_buflist: 10026 * 10027 * LIST l2ad_buflist LIST 10028 * HEAD <------ (time) ------ TAIL 10029 * direction +-----+-----+-----+-----+-----+ direction 10030 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild 10031 * fill +-----+-----+-----+-----+-----+ 10032 * ^ ^ 10033 * | | 10034 * | | 10035 * l2arc_feed_thread l2arc_rebuild 10036 * will place new bufs here restores bufs here 10037 * 10038 * During l2arc_rebuild() the device is not used by 10039 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true. 10040 */ 10041 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop); 10042 asize += vdev_psize_to_asize(dev->l2ad_vdev, 10043 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop)); 10044 l2arc_hdr_restore(&lb->lb_entries[i], dev); 10045 } 10046 10047 /* 10048 * Record rebuild stats: 10049 * size Logical size of restored buffers in the L2ARC 10050 * asize Aligned size of restored buffers in the L2ARC 10051 */ 10052 ARCSTAT_INCR(arcstat_l2_rebuild_size, size); 10053 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize); 10054 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries); 10055 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize); 10056 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize); 10057 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks); 10058 } 10059 10060 /* 10061 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put 10062 * into a state indicating that it has been evicted to L2ARC. 10063 */ 10064 static void 10065 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev) 10066 { 10067 arc_buf_hdr_t *hdr, *exists; 10068 kmutex_t *hash_lock; 10069 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop); 10070 uint64_t asize; 10071 10072 /* 10073 * Do all the allocation before grabbing any locks, this lets us 10074 * sleep if memory is full and we don't have to deal with failed 10075 * allocations. 10076 */ 10077 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type, 10078 dev, le->le_dva, le->le_daddr, 10079 L2BLK_GET_PSIZE((le)->le_prop), le->le_birth, 10080 L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel, 10081 L2BLK_GET_PROTECTED((le)->le_prop), 10082 L2BLK_GET_PREFETCH((le)->le_prop)); 10083 asize = vdev_psize_to_asize(dev->l2ad_vdev, 10084 L2BLK_GET_PSIZE((le)->le_prop)); 10085 10086 /* 10087 * vdev_space_update() has to be called before arc_hdr_destroy() to 10088 * avoid underflow since the latter also calls the former. 10089 */ 10090 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10091 10092 ARCSTAT_INCR(arcstat_l2_lsize, HDR_GET_LSIZE(hdr)); 10093 ARCSTAT_INCR(arcstat_l2_psize, HDR_GET_PSIZE(hdr)); 10094 10095 mutex_enter(&dev->l2ad_mtx); 10096 list_insert_tail(&dev->l2ad_buflist, hdr); 10097 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); 10098 mutex_exit(&dev->l2ad_mtx); 10099 10100 exists = buf_hash_insert(hdr, &hash_lock); 10101 if (exists) { 10102 /* Buffer was already cached, no need to restore it. */ 10103 arc_hdr_destroy(hdr); 10104 /* 10105 * If the buffer is already cached, check whether it has 10106 * L2ARC metadata. If not, enter them and update the flag. 10107 * This is important is case of onlining a cache device, since 10108 * we previously evicted all L2ARC metadata from ARC. 10109 */ 10110 if (!HDR_HAS_L2HDR(exists)) { 10111 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR); 10112 exists->b_l2hdr.b_dev = dev; 10113 exists->b_l2hdr.b_daddr = le->le_daddr; 10114 mutex_enter(&dev->l2ad_mtx); 10115 list_insert_tail(&dev->l2ad_buflist, exists); 10116 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 10117 arc_hdr_size(exists), exists); 10118 mutex_exit(&dev->l2ad_mtx); 10119 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10120 ARCSTAT_INCR(arcstat_l2_lsize, HDR_GET_LSIZE(exists)); 10121 ARCSTAT_INCR(arcstat_l2_psize, HDR_GET_PSIZE(exists)); 10122 } 10123 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached); 10124 } 10125 10126 mutex_exit(hash_lock); 10127 } 10128 10129 /* 10130 * Starts an asynchronous read IO to read a log block. This is used in log 10131 * block reconstruction to start reading the next block before we are done 10132 * decoding and reconstructing the current block, to keep the l2arc device 10133 * nice and hot with read IO to process. 10134 * The returned zio will contain a newly allocated memory buffers for the IO 10135 * data which should then be freed by the caller once the zio is no longer 10136 * needed (i.e. due to it having completed). If you wish to abort this 10137 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes 10138 * care of disposing of the allocated buffers correctly. 10139 */ 10140 static zio_t * 10141 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp, 10142 l2arc_log_blk_phys_t *lb) 10143 { 10144 uint32_t asize; 10145 zio_t *pio; 10146 l2arc_read_callback_t *cb; 10147 10148 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10149 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10150 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t)); 10151 10152 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP); 10153 cb->l2rcb_abd = abd_get_from_buf(lb, asize); 10154 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb, 10155 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | 10156 ZIO_FLAG_DONT_RETRY); 10157 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize, 10158 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10159 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 10160 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE)); 10161 10162 return (pio); 10163 } 10164 10165 /* 10166 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data 10167 * buffers allocated for it. 10168 */ 10169 static void 10170 l2arc_log_blk_fetch_abort(zio_t *zio) 10171 { 10172 (void) zio_wait(zio); 10173 } 10174 10175 /* 10176 * Creates a zio to update the device header on an l2arc device. 10177 */ 10178 void 10179 l2arc_dev_hdr_update(l2arc_dev_t *dev) 10180 { 10181 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10182 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10183 abd_t *abd; 10184 int err; 10185 10186 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER)); 10187 10188 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC; 10189 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION; 10190 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10191 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid; 10192 l2dhdr->dh_log_entries = dev->l2ad_log_entries; 10193 l2dhdr->dh_evict = dev->l2ad_evict; 10194 l2dhdr->dh_start = dev->l2ad_start; 10195 l2dhdr->dh_end = dev->l2ad_end; 10196 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize); 10197 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count); 10198 l2dhdr->dh_flags = 0; 10199 l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time; 10200 l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state; 10201 if (dev->l2ad_first) 10202 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST; 10203 10204 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10205 10206 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev, 10207 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL, 10208 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE)); 10209 10210 abd_put(abd); 10211 10212 if (err != 0) { 10213 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, " 10214 "vdev guid: %llu", err, dev->l2ad_vdev->vdev_guid); 10215 } 10216 } 10217 10218 /* 10219 * Commits a log block to the L2ARC device. This routine is invoked from 10220 * l2arc_write_buffers when the log block fills up. 10221 * This function allocates some memory to temporarily hold the serialized 10222 * buffer to be written. This is then released in l2arc_write_done. 10223 */ 10224 static void 10225 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb) 10226 { 10227 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10228 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10229 uint64_t psize, asize; 10230 zio_t *wzio; 10231 l2arc_lb_abd_buf_t *abd_buf; 10232 uint8_t *tmpbuf; 10233 l2arc_lb_ptr_buf_t *lb_ptr_buf; 10234 10235 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries); 10236 10237 tmpbuf = zio_buf_alloc(sizeof (*lb)); 10238 abd_buf = zio_buf_alloc(sizeof (*abd_buf)); 10239 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb)); 10240 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 10241 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP); 10242 10243 /* link the buffer into the block chain */ 10244 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1]; 10245 lb->lb_magic = L2ARC_LOG_BLK_MAGIC; 10246 10247 /* 10248 * l2arc_log_blk_commit() may be called multiple times during a single 10249 * l2arc_write_buffers() call. Save the allocated abd buffers in a list 10250 * so we can free them in l2arc_write_done() later on. 10251 */ 10252 list_insert_tail(&cb->l2wcb_abd_list, abd_buf); 10253 10254 /* try to compress the buffer */ 10255 psize = zio_compress_data(ZIO_COMPRESS_LZ4, 10256 abd_buf->abd, tmpbuf, sizeof (*lb), 0); 10257 10258 /* a log block is never entirely zero */ 10259 ASSERT(psize != 0); 10260 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 10261 ASSERT(asize <= sizeof (*lb)); 10262 10263 /* 10264 * Update the start log block pointer in the device header to point 10265 * to the log block we're about to write. 10266 */ 10267 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0]; 10268 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand; 10269 l2dhdr->dh_start_lbps[0].lbp_payload_asize = 10270 dev->l2ad_log_blk_payload_asize; 10271 l2dhdr->dh_start_lbps[0].lbp_payload_start = 10272 dev->l2ad_log_blk_payload_start; 10273 _NOTE(CONSTCOND) 10274 L2BLK_SET_LSIZE( 10275 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb)); 10276 L2BLK_SET_PSIZE( 10277 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize); 10278 L2BLK_SET_CHECKSUM( 10279 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10280 ZIO_CHECKSUM_FLETCHER_4); 10281 if (asize < sizeof (*lb)) { 10282 /* compression succeeded */ 10283 bzero(tmpbuf + psize, asize - psize); 10284 L2BLK_SET_COMPRESS( 10285 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10286 ZIO_COMPRESS_LZ4); 10287 } else { 10288 /* compression failed */ 10289 bcopy(lb, tmpbuf, sizeof (*lb)); 10290 L2BLK_SET_COMPRESS( 10291 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10292 ZIO_COMPRESS_OFF); 10293 } 10294 10295 /* checksum what we're about to write */ 10296 fletcher_4_native(tmpbuf, asize, NULL, 10297 &l2dhdr->dh_start_lbps[0].lbp_cksum); 10298 10299 abd_put(abd_buf->abd); 10300 10301 /* perform the write itself */ 10302 abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb)); 10303 abd_take_ownership_of_buf(abd_buf->abd, B_TRUE); 10304 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand, 10305 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10306 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE); 10307 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio); 10308 (void) zio_nowait(wzio); 10309 10310 dev->l2ad_hand += asize; 10311 /* 10312 * Include the committed log block's pointer in the list of pointers 10313 * to log blocks present in the L2ARC device. 10314 */ 10315 bcopy(&l2dhdr->dh_start_lbps[0], lb_ptr_buf->lb_ptr, 10316 sizeof (l2arc_log_blkptr_t)); 10317 mutex_enter(&dev->l2ad_mtx); 10318 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf); 10319 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 10320 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 10321 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 10322 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 10323 mutex_exit(&dev->l2ad_mtx); 10324 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10325 10326 /* bump the kstats */ 10327 ARCSTAT_INCR(arcstat_l2_write_bytes, asize); 10328 ARCSTAT_BUMP(arcstat_l2_log_blk_writes); 10329 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize); 10330 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, 10331 dev->l2ad_log_blk_payload_asize / asize); 10332 10333 /* start a new log block */ 10334 dev->l2ad_log_ent_idx = 0; 10335 dev->l2ad_log_blk_payload_asize = 0; 10336 dev->l2ad_log_blk_payload_start = 0; 10337 } 10338 10339 /* 10340 * Validates an L2ARC log block address to make sure that it can be read 10341 * from the provided L2ARC device. 10342 */ 10343 boolean_t 10344 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp) 10345 { 10346 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10347 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10348 uint64_t end = lbp->lbp_daddr + asize - 1; 10349 uint64_t start = lbp->lbp_payload_start; 10350 boolean_t evicted = B_FALSE; 10351 10352 /* 10353 * A log block is valid if all of the following conditions are true: 10354 * - it fits entirely (including its payload) between l2ad_start and 10355 * l2ad_end 10356 * - it has a valid size 10357 * - neither the log block itself nor part of its payload was evicted 10358 * by l2arc_evict(): 10359 * 10360 * l2ad_hand l2ad_evict 10361 * | | lbp_daddr 10362 * | start | | end 10363 * | | | | | 10364 * V V V V V 10365 * l2ad_start ============================================ l2ad_end 10366 * --------------------------|||| 10367 * ^ ^ 10368 * | log block 10369 * payload 10370 */ 10371 10372 evicted = 10373 l2arc_range_check_overlap(start, end, dev->l2ad_hand) || 10374 l2arc_range_check_overlap(start, end, dev->l2ad_evict) || 10375 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) || 10376 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end); 10377 10378 return (start >= dev->l2ad_start && end <= dev->l2ad_end && 10379 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) && 10380 (!evicted || dev->l2ad_first)); 10381 } 10382 10383 /* 10384 * Inserts ARC buffer header `hdr' into the current L2ARC log block on 10385 * the device. The buffer being inserted must be present in L2ARC. 10386 * Returns B_TRUE if the L2ARC log block is full and needs to be committed 10387 * to L2ARC, or B_FALSE if it still has room for more ARC buffers. 10388 */ 10389 static boolean_t 10390 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr) 10391 { 10392 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10393 l2arc_log_ent_phys_t *le; 10394 10395 if (dev->l2ad_log_entries == 0) 10396 return (B_FALSE); 10397 10398 int index = dev->l2ad_log_ent_idx++; 10399 10400 ASSERT3S(index, <, dev->l2ad_log_entries); 10401 ASSERT(HDR_HAS_L2HDR(hdr)); 10402 10403 le = &lb->lb_entries[index]; 10404 bzero(le, sizeof (*le)); 10405 le->le_dva = hdr->b_dva; 10406 le->le_birth = hdr->b_birth; 10407 le->le_daddr = hdr->b_l2hdr.b_daddr; 10408 if (index == 0) 10409 dev->l2ad_log_blk_payload_start = le->le_daddr; 10410 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr)); 10411 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr)); 10412 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr)); 10413 le->le_complevel = hdr->b_complevel; 10414 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type); 10415 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr))); 10416 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr))); 10417 10418 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev, 10419 HDR_GET_PSIZE(hdr)); 10420 10421 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries); 10422 } 10423 10424 /* 10425 * Checks whether a given L2ARC device address sits in a time-sequential 10426 * range. The trick here is that the L2ARC is a rotary buffer, so we can't 10427 * just do a range comparison, we need to handle the situation in which the 10428 * range wraps around the end of the L2ARC device. Arguments: 10429 * bottom -- Lower end of the range to check (written to earlier). 10430 * top -- Upper end of the range to check (written to later). 10431 * check -- The address for which we want to determine if it sits in 10432 * between the top and bottom. 10433 * 10434 * The 3-way conditional below represents the following cases: 10435 * 10436 * bottom < top : Sequentially ordered case: 10437 * <check>--------+-------------------+ 10438 * | (overlap here?) | 10439 * L2ARC dev V V 10440 * |---------------<bottom>============<top>--------------| 10441 * 10442 * bottom > top: Looped-around case: 10443 * <check>--------+------------------+ 10444 * | (overlap here?) | 10445 * L2ARC dev V V 10446 * |===============<top>---------------<bottom>===========| 10447 * ^ ^ 10448 * | (or here?) | 10449 * +---------------+---------<check> 10450 * 10451 * top == bottom : Just a single address comparison. 10452 */ 10453 boolean_t 10454 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check) 10455 { 10456 if (bottom < top) 10457 return (bottom <= check && check <= top); 10458 else if (bottom > top) 10459 return (check <= top || bottom <= check); 10460 else 10461 return (check == top); 10462 } 10463 10464 EXPORT_SYMBOL(arc_buf_size); 10465 EXPORT_SYMBOL(arc_write); 10466 EXPORT_SYMBOL(arc_read); 10467 EXPORT_SYMBOL(arc_buf_info); 10468 EXPORT_SYMBOL(arc_getbuf_func); 10469 EXPORT_SYMBOL(arc_add_prune_callback); 10470 EXPORT_SYMBOL(arc_remove_prune_callback); 10471 10472 /* BEGIN CSTYLED */ 10473 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_long, 10474 param_get_long, ZMOD_RW, "Min arc size"); 10475 10476 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_long, 10477 param_get_long, ZMOD_RW, "Max arc size"); 10478 10479 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit, param_set_arc_long, 10480 param_get_long, ZMOD_RW, "Metadata limit for arc size"); 10481 10482 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit_percent, 10483 param_set_arc_long, param_get_long, ZMOD_RW, 10484 "Percent of arc size for arc meta limit"); 10485 10486 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_min, param_set_arc_long, 10487 param_get_long, ZMOD_RW, "Min arc metadata"); 10488 10489 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_prune, INT, ZMOD_RW, 10490 "Meta objects to scan for prune"); 10491 10492 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_adjust_restarts, INT, ZMOD_RW, 10493 "Limit number of restarts in arc_evict_meta"); 10494 10495 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_strategy, INT, ZMOD_RW, 10496 "Meta reclaim strategy"); 10497 10498 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int, 10499 param_get_int, ZMOD_RW, "Seconds before growing arc size"); 10500 10501 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, p_dampener_disable, INT, ZMOD_RW, 10502 "Disable arc_p adapt dampener"); 10503 10504 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int, 10505 param_get_int, ZMOD_RW, "log2(fraction of arc to reclaim)"); 10506 10507 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW, 10508 "Percent of pagecache to reclaim arc to"); 10509 10510 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, p_min_shift, param_set_arc_int, 10511 param_get_int, ZMOD_RW, "arc_c shift to calc min/max arc_p"); 10512 10513 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, INT, ZMOD_RD, 10514 "Target average block size"); 10515 10516 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW, 10517 "Disable compressed arc buffers"); 10518 10519 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int, 10520 param_get_int, ZMOD_RW, "Min life of prefetch block in ms"); 10521 10522 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms, 10523 param_set_arc_int, param_get_int, ZMOD_RW, 10524 "Min life of prescient prefetched block in ms"); 10525 10526 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, ULONG, ZMOD_RW, 10527 "Max write bytes per interval"); 10528 10529 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, ULONG, ZMOD_RW, 10530 "Extra write bytes during device warmup"); 10531 10532 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, ULONG, ZMOD_RW, 10533 "Number of max device writes to precache"); 10534 10535 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, ULONG, ZMOD_RW, 10536 "Compressed l2arc_headroom multiplier"); 10537 10538 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, ULONG, ZMOD_RW, 10539 "TRIM ahead L2ARC write size multiplier"); 10540 10541 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, ULONG, ZMOD_RW, 10542 "Seconds between L2ARC writing"); 10543 10544 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, ULONG, ZMOD_RW, 10545 "Min feed interval in milliseconds"); 10546 10547 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW, 10548 "Skip caching prefetched buffers"); 10549 10550 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW, 10551 "Turbo L2ARC warmup"); 10552 10553 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW, 10554 "No reads during writes"); 10555 10556 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, INT, ZMOD_RW, 10557 "Percent of ARC size allowed for L2ARC-only headers"); 10558 10559 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW, 10560 "Rebuild the L2ARC when importing a pool"); 10561 10562 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, ULONG, ZMOD_RW, 10563 "Min size in bytes to write rebuild log blocks in L2ARC"); 10564 10565 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int, 10566 param_get_int, ZMOD_RW, "System free memory I/O throttle in bytes"); 10567 10568 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_long, 10569 param_get_long, ZMOD_RW, "System free memory target size in bytes"); 10570 10571 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_long, 10572 param_get_long, ZMOD_RW, "Minimum bytes of dnodes in arc"); 10573 10574 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent, 10575 param_set_arc_long, param_get_long, ZMOD_RW, 10576 "Percent of ARC meta buffers for dnodes"); 10577 10578 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, ULONG, ZMOD_RW, 10579 "Percentage of excess dnodes to try to unpin"); 10580 10581 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, INT, ZMOD_RW, 10582 "When full, ARC allocation waits for eviction of this % of alloc size"); 10583 /* END CSTYLED */ 10584