1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2018, Joyent, Inc. 24 * Copyright (c) 2011, 2020, Delphix. All rights reserved. 25 * Copyright (c) 2014, Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 28 * Copyright (c) 2020, George Amanakis. All rights reserved. 29 * Copyright (c) 2019, Klara Inc. 30 * Copyright (c) 2019, Allan Jude 31 * Copyright (c) 2020, The FreeBSD Foundation [1] 32 * 33 * [1] Portions of this software were developed by Allan Jude 34 * under sponsorship from the FreeBSD Foundation. 35 */ 36 37 /* 38 * DVA-based Adjustable Replacement Cache 39 * 40 * While much of the theory of operation used here is 41 * based on the self-tuning, low overhead replacement cache 42 * presented by Megiddo and Modha at FAST 2003, there are some 43 * significant differences: 44 * 45 * 1. The Megiddo and Modha model assumes any page is evictable. 46 * Pages in its cache cannot be "locked" into memory. This makes 47 * the eviction algorithm simple: evict the last page in the list. 48 * This also make the performance characteristics easy to reason 49 * about. Our cache is not so simple. At any given moment, some 50 * subset of the blocks in the cache are un-evictable because we 51 * have handed out a reference to them. Blocks are only evictable 52 * when there are no external references active. This makes 53 * eviction far more problematic: we choose to evict the evictable 54 * blocks that are the "lowest" in the list. 55 * 56 * There are times when it is not possible to evict the requested 57 * space. In these circumstances we are unable to adjust the cache 58 * size. To prevent the cache growing unbounded at these times we 59 * implement a "cache throttle" that slows the flow of new data 60 * into the cache until we can make space available. 61 * 62 * 2. The Megiddo and Modha model assumes a fixed cache size. 63 * Pages are evicted when the cache is full and there is a cache 64 * miss. Our model has a variable sized cache. It grows with 65 * high use, but also tries to react to memory pressure from the 66 * operating system: decreasing its size when system memory is 67 * tight. 68 * 69 * 3. The Megiddo and Modha model assumes a fixed page size. All 70 * elements of the cache are therefore exactly the same size. So 71 * when adjusting the cache size following a cache miss, its simply 72 * a matter of choosing a single page to evict. In our model, we 73 * have variable sized cache blocks (ranging from 512 bytes to 74 * 128K bytes). We therefore choose a set of blocks to evict to make 75 * space for a cache miss that approximates as closely as possible 76 * the space used by the new block. 77 * 78 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 79 * by N. Megiddo & D. Modha, FAST 2003 80 */ 81 82 /* 83 * The locking model: 84 * 85 * A new reference to a cache buffer can be obtained in two 86 * ways: 1) via a hash table lookup using the DVA as a key, 87 * or 2) via one of the ARC lists. The arc_read() interface 88 * uses method 1, while the internal ARC algorithms for 89 * adjusting the cache use method 2. We therefore provide two 90 * types of locks: 1) the hash table lock array, and 2) the 91 * ARC list locks. 92 * 93 * Buffers do not have their own mutexes, rather they rely on the 94 * hash table mutexes for the bulk of their protection (i.e. most 95 * fields in the arc_buf_hdr_t are protected by these mutexes). 96 * 97 * buf_hash_find() returns the appropriate mutex (held) when it 98 * locates the requested buffer in the hash table. It returns 99 * NULL for the mutex if the buffer was not in the table. 100 * 101 * buf_hash_remove() expects the appropriate hash mutex to be 102 * already held before it is invoked. 103 * 104 * Each ARC state also has a mutex which is used to protect the 105 * buffer list associated with the state. When attempting to 106 * obtain a hash table lock while holding an ARC list lock you 107 * must use: mutex_tryenter() to avoid deadlock. Also note that 108 * the active state mutex must be held before the ghost state mutex. 109 * 110 * It as also possible to register a callback which is run when the 111 * arc_meta_limit is reached and no buffers can be safely evicted. In 112 * this case the arc user should drop a reference on some arc buffers so 113 * they can be reclaimed and the arc_meta_limit honored. For example, 114 * when using the ZPL each dentry holds a references on a znode. These 115 * dentries must be pruned before the arc buffer holding the znode can 116 * be safely evicted. 117 * 118 * Note that the majority of the performance stats are manipulated 119 * with atomic operations. 120 * 121 * The L2ARC uses the l2ad_mtx on each vdev for the following: 122 * 123 * - L2ARC buflist creation 124 * - L2ARC buflist eviction 125 * - L2ARC write completion, which walks L2ARC buflists 126 * - ARC header destruction, as it removes from L2ARC buflists 127 * - ARC header release, as it removes from L2ARC buflists 128 */ 129 130 /* 131 * ARC operation: 132 * 133 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. 134 * This structure can point either to a block that is still in the cache or to 135 * one that is only accessible in an L2 ARC device, or it can provide 136 * information about a block that was recently evicted. If a block is 137 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough 138 * information to retrieve it from the L2ARC device. This information is 139 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block 140 * that is in this state cannot access the data directly. 141 * 142 * Blocks that are actively being referenced or have not been evicted 143 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within 144 * the arc_buf_hdr_t that will point to the data block in memory. A block can 145 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC 146 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and 147 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd). 148 * 149 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the 150 * ability to store the physical data (b_pabd) associated with the DVA of the 151 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block, 152 * it will match its on-disk compression characteristics. This behavior can be 153 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the 154 * compressed ARC functionality is disabled, the b_pabd will point to an 155 * uncompressed version of the on-disk data. 156 * 157 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each 158 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it. 159 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC 160 * consumer. The ARC will provide references to this data and will keep it 161 * cached until it is no longer in use. The ARC caches only the L1ARC's physical 162 * data block and will evict any arc_buf_t that is no longer referenced. The 163 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the 164 * "overhead_size" kstat. 165 * 166 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or 167 * compressed form. The typical case is that consumers will want uncompressed 168 * data, and when that happens a new data buffer is allocated where the data is 169 * decompressed for them to use. Currently the only consumer who wants 170 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it 171 * exists on disk. When this happens, the arc_buf_t's data buffer is shared 172 * with the arc_buf_hdr_t. 173 * 174 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The 175 * first one is owned by a compressed send consumer (and therefore references 176 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be 177 * used by any other consumer (and has its own uncompressed copy of the data 178 * buffer). 179 * 180 * arc_buf_hdr_t 181 * +-----------+ 182 * | fields | 183 * | common to | 184 * | L1- and | 185 * | L2ARC | 186 * +-----------+ 187 * | l2arc_buf_hdr_t 188 * | | 189 * +-----------+ 190 * | l1arc_buf_hdr_t 191 * | | arc_buf_t 192 * | b_buf +------------>+-----------+ arc_buf_t 193 * | b_pabd +-+ |b_next +---->+-----------+ 194 * +-----------+ | |-----------| |b_next +-->NULL 195 * | |b_comp = T | +-----------+ 196 * | |b_data +-+ |b_comp = F | 197 * | +-----------+ | |b_data +-+ 198 * +->+------+ | +-----------+ | 199 * compressed | | | | 200 * data | |<--------------+ | uncompressed 201 * +------+ compressed, | data 202 * shared +-->+------+ 203 * data | | 204 * | | 205 * +------+ 206 * 207 * When a consumer reads a block, the ARC must first look to see if the 208 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new 209 * arc_buf_t and either copies uncompressed data into a new data buffer from an 210 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a 211 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the 212 * hdr is compressed and the desired compression characteristics of the 213 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the 214 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be 215 * the last buffer in the hdr's b_buf list, however a shared compressed buf can 216 * be anywhere in the hdr's list. 217 * 218 * The diagram below shows an example of an uncompressed ARC hdr that is 219 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is 220 * the last element in the buf list): 221 * 222 * arc_buf_hdr_t 223 * +-----------+ 224 * | | 225 * | | 226 * | | 227 * +-----------+ 228 * l2arc_buf_hdr_t| | 229 * | | 230 * +-----------+ 231 * l1arc_buf_hdr_t| | 232 * | | arc_buf_t (shared) 233 * | b_buf +------------>+---------+ arc_buf_t 234 * | | |b_next +---->+---------+ 235 * | b_pabd +-+ |---------| |b_next +-->NULL 236 * +-----------+ | | | +---------+ 237 * | |b_data +-+ | | 238 * | +---------+ | |b_data +-+ 239 * +->+------+ | +---------+ | 240 * | | | | 241 * uncompressed | | | | 242 * data +------+ | | 243 * ^ +->+------+ | 244 * | uncompressed | | | 245 * | data | | | 246 * | +------+ | 247 * +---------------------------------+ 248 * 249 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd 250 * since the physical block is about to be rewritten. The new data contents 251 * will be contained in the arc_buf_t. As the I/O pipeline performs the write, 252 * it may compress the data before writing it to disk. The ARC will be called 253 * with the transformed data and will bcopy the transformed on-disk block into 254 * a newly allocated b_pabd. Writes are always done into buffers which have 255 * either been loaned (and hence are new and don't have other readers) or 256 * buffers which have been released (and hence have their own hdr, if there 257 * were originally other readers of the buf's original hdr). This ensures that 258 * the ARC only needs to update a single buf and its hdr after a write occurs. 259 * 260 * When the L2ARC is in use, it will also take advantage of the b_pabd. The 261 * L2ARC will always write the contents of b_pabd to the L2ARC. This means 262 * that when compressed ARC is enabled that the L2ARC blocks are identical 263 * to the on-disk block in the main data pool. This provides a significant 264 * advantage since the ARC can leverage the bp's checksum when reading from the 265 * L2ARC to determine if the contents are valid. However, if the compressed 266 * ARC is disabled, then the L2ARC's block must be transformed to look 267 * like the physical block in the main data pool before comparing the 268 * checksum and determining its validity. 269 * 270 * The L1ARC has a slightly different system for storing encrypted data. 271 * Raw (encrypted + possibly compressed) data has a few subtle differences from 272 * data that is just compressed. The biggest difference is that it is not 273 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded. 274 * The other difference is that encryption cannot be treated as a suggestion. 275 * If a caller would prefer compressed data, but they actually wind up with 276 * uncompressed data the worst thing that could happen is there might be a 277 * performance hit. If the caller requests encrypted data, however, we must be 278 * sure they actually get it or else secret information could be leaked. Raw 279 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore, 280 * may have both an encrypted version and a decrypted version of its data at 281 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is 282 * copied out of this header. To avoid complications with b_pabd, raw buffers 283 * cannot be shared. 284 */ 285 286 #include <sys/spa.h> 287 #include <sys/zio.h> 288 #include <sys/spa_impl.h> 289 #include <sys/zio_compress.h> 290 #include <sys/zio_checksum.h> 291 #include <sys/zfs_context.h> 292 #include <sys/arc.h> 293 #include <sys/zfs_refcount.h> 294 #include <sys/vdev.h> 295 #include <sys/vdev_impl.h> 296 #include <sys/dsl_pool.h> 297 #include <sys/multilist.h> 298 #include <sys/abd.h> 299 #include <sys/zil.h> 300 #include <sys/fm/fs/zfs.h> 301 #include <sys/callb.h> 302 #include <sys/kstat.h> 303 #include <sys/zthr.h> 304 #include <zfs_fletcher.h> 305 #include <sys/arc_impl.h> 306 #include <sys/trace_zfs.h> 307 #include <sys/aggsum.h> 308 #include <sys/wmsum.h> 309 #include <cityhash.h> 310 #include <sys/vdev_trim.h> 311 #include <sys/zfs_racct.h> 312 #include <sys/zstd/zstd.h> 313 314 #ifndef _KERNEL 315 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 316 boolean_t arc_watch = B_FALSE; 317 #endif 318 319 /* 320 * This thread's job is to keep enough free memory in the system, by 321 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves 322 * arc_available_memory(). 323 */ 324 static zthr_t *arc_reap_zthr; 325 326 /* 327 * This thread's job is to keep arc_size under arc_c, by calling 328 * arc_evict(), which improves arc_is_overflowing(). 329 */ 330 static zthr_t *arc_evict_zthr; 331 332 static kmutex_t arc_evict_lock; 333 static boolean_t arc_evict_needed = B_FALSE; 334 335 /* 336 * Count of bytes evicted since boot. 337 */ 338 static uint64_t arc_evict_count; 339 340 /* 341 * List of arc_evict_waiter_t's, representing threads waiting for the 342 * arc_evict_count to reach specific values. 343 */ 344 static list_t arc_evict_waiters; 345 346 /* 347 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of 348 * the requested amount of data to be evicted. For example, by default for 349 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation. 350 * Since this is above 100%, it ensures that progress is made towards getting 351 * arc_size under arc_c. Since this is finite, it ensures that allocations 352 * can still happen, even during the potentially long time that arc_size is 353 * more than arc_c. 354 */ 355 int zfs_arc_eviction_pct = 200; 356 357 /* 358 * The number of headers to evict in arc_evict_state_impl() before 359 * dropping the sublist lock and evicting from another sublist. A lower 360 * value means we're more likely to evict the "correct" header (i.e. the 361 * oldest header in the arc state), but comes with higher overhead 362 * (i.e. more invocations of arc_evict_state_impl()). 363 */ 364 int zfs_arc_evict_batch_limit = 10; 365 366 /* number of seconds before growing cache again */ 367 int arc_grow_retry = 5; 368 369 /* 370 * Minimum time between calls to arc_kmem_reap_soon(). 371 */ 372 int arc_kmem_cache_reap_retry_ms = 1000; 373 374 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */ 375 int zfs_arc_overflow_shift = 8; 376 377 /* shift of arc_c for calculating both min and max arc_p */ 378 int arc_p_min_shift = 4; 379 380 /* log2(fraction of arc to reclaim) */ 381 int arc_shrink_shift = 7; 382 383 /* percent of pagecache to reclaim arc to */ 384 #ifdef _KERNEL 385 uint_t zfs_arc_pc_percent = 0; 386 #endif 387 388 /* 389 * log2(fraction of ARC which must be free to allow growing). 390 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 391 * when reading a new block into the ARC, we will evict an equal-sized block 392 * from the ARC. 393 * 394 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 395 * we will still not allow it to grow. 396 */ 397 int arc_no_grow_shift = 5; 398 399 400 /* 401 * minimum lifespan of a prefetch block in clock ticks 402 * (initialized in arc_init()) 403 */ 404 static int arc_min_prefetch_ms; 405 static int arc_min_prescient_prefetch_ms; 406 407 /* 408 * If this percent of memory is free, don't throttle. 409 */ 410 int arc_lotsfree_percent = 10; 411 412 /* 413 * The arc has filled available memory and has now warmed up. 414 */ 415 boolean_t arc_warm; 416 417 /* 418 * These tunables are for performance analysis. 419 */ 420 unsigned long zfs_arc_max = 0; 421 unsigned long zfs_arc_min = 0; 422 unsigned long zfs_arc_meta_limit = 0; 423 unsigned long zfs_arc_meta_min = 0; 424 unsigned long zfs_arc_dnode_limit = 0; 425 unsigned long zfs_arc_dnode_reduce_percent = 10; 426 int zfs_arc_grow_retry = 0; 427 int zfs_arc_shrink_shift = 0; 428 int zfs_arc_p_min_shift = 0; 429 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 430 431 /* 432 * ARC dirty data constraints for arc_tempreserve_space() throttle. 433 */ 434 unsigned long zfs_arc_dirty_limit_percent = 50; /* total dirty data limit */ 435 unsigned long zfs_arc_anon_limit_percent = 25; /* anon block dirty limit */ 436 unsigned long zfs_arc_pool_dirty_percent = 20; /* each pool's anon allowance */ 437 438 /* 439 * Enable or disable compressed arc buffers. 440 */ 441 int zfs_compressed_arc_enabled = B_TRUE; 442 443 /* 444 * ARC will evict meta buffers that exceed arc_meta_limit. This 445 * tunable make arc_meta_limit adjustable for different workloads. 446 */ 447 unsigned long zfs_arc_meta_limit_percent = 75; 448 449 /* 450 * Percentage that can be consumed by dnodes of ARC meta buffers. 451 */ 452 unsigned long zfs_arc_dnode_limit_percent = 10; 453 454 /* 455 * These tunables are Linux specific 456 */ 457 unsigned long zfs_arc_sys_free = 0; 458 int zfs_arc_min_prefetch_ms = 0; 459 int zfs_arc_min_prescient_prefetch_ms = 0; 460 int zfs_arc_p_dampener_disable = 1; 461 int zfs_arc_meta_prune = 10000; 462 int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED; 463 int zfs_arc_meta_adjust_restarts = 4096; 464 int zfs_arc_lotsfree_percent = 10; 465 466 /* The 6 states: */ 467 arc_state_t ARC_anon; 468 arc_state_t ARC_mru; 469 arc_state_t ARC_mru_ghost; 470 arc_state_t ARC_mfu; 471 arc_state_t ARC_mfu_ghost; 472 arc_state_t ARC_l2c_only; 473 474 arc_stats_t arc_stats = { 475 { "hits", KSTAT_DATA_UINT64 }, 476 { "misses", KSTAT_DATA_UINT64 }, 477 { "demand_data_hits", KSTAT_DATA_UINT64 }, 478 { "demand_data_misses", KSTAT_DATA_UINT64 }, 479 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 480 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 481 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 482 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 483 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 484 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 485 { "mru_hits", KSTAT_DATA_UINT64 }, 486 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 487 { "mfu_hits", KSTAT_DATA_UINT64 }, 488 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 489 { "deleted", KSTAT_DATA_UINT64 }, 490 { "mutex_miss", KSTAT_DATA_UINT64 }, 491 { "access_skip", KSTAT_DATA_UINT64 }, 492 { "evict_skip", KSTAT_DATA_UINT64 }, 493 { "evict_not_enough", KSTAT_DATA_UINT64 }, 494 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 495 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 496 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64 }, 497 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64 }, 498 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 499 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 500 { "hash_elements", KSTAT_DATA_UINT64 }, 501 { "hash_elements_max", KSTAT_DATA_UINT64 }, 502 { "hash_collisions", KSTAT_DATA_UINT64 }, 503 { "hash_chains", KSTAT_DATA_UINT64 }, 504 { "hash_chain_max", KSTAT_DATA_UINT64 }, 505 { "p", KSTAT_DATA_UINT64 }, 506 { "c", KSTAT_DATA_UINT64 }, 507 { "c_min", KSTAT_DATA_UINT64 }, 508 { "c_max", KSTAT_DATA_UINT64 }, 509 { "size", KSTAT_DATA_UINT64 }, 510 { "compressed_size", KSTAT_DATA_UINT64 }, 511 { "uncompressed_size", KSTAT_DATA_UINT64 }, 512 { "overhead_size", KSTAT_DATA_UINT64 }, 513 { "hdr_size", KSTAT_DATA_UINT64 }, 514 { "data_size", KSTAT_DATA_UINT64 }, 515 { "metadata_size", KSTAT_DATA_UINT64 }, 516 { "dbuf_size", KSTAT_DATA_UINT64 }, 517 { "dnode_size", KSTAT_DATA_UINT64 }, 518 { "bonus_size", KSTAT_DATA_UINT64 }, 519 #if defined(COMPAT_FREEBSD11) 520 { "other_size", KSTAT_DATA_UINT64 }, 521 #endif 522 { "anon_size", KSTAT_DATA_UINT64 }, 523 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 524 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 525 { "mru_size", KSTAT_DATA_UINT64 }, 526 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 527 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 528 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 529 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 530 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 531 { "mfu_size", KSTAT_DATA_UINT64 }, 532 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 533 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 534 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 535 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 536 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 537 { "l2_hits", KSTAT_DATA_UINT64 }, 538 { "l2_misses", KSTAT_DATA_UINT64 }, 539 { "l2_prefetch_asize", KSTAT_DATA_UINT64 }, 540 { "l2_mru_asize", KSTAT_DATA_UINT64 }, 541 { "l2_mfu_asize", KSTAT_DATA_UINT64 }, 542 { "l2_bufc_data_asize", KSTAT_DATA_UINT64 }, 543 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64 }, 544 { "l2_feeds", KSTAT_DATA_UINT64 }, 545 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 546 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 547 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 548 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 549 { "l2_writes_done", KSTAT_DATA_UINT64 }, 550 { "l2_writes_error", KSTAT_DATA_UINT64 }, 551 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 552 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 553 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 554 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 555 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 556 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 557 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 558 { "l2_io_error", KSTAT_DATA_UINT64 }, 559 { "l2_size", KSTAT_DATA_UINT64 }, 560 { "l2_asize", KSTAT_DATA_UINT64 }, 561 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 562 { "l2_log_blk_writes", KSTAT_DATA_UINT64 }, 563 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 }, 564 { "l2_log_blk_asize", KSTAT_DATA_UINT64 }, 565 { "l2_log_blk_count", KSTAT_DATA_UINT64 }, 566 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 }, 567 { "l2_rebuild_success", KSTAT_DATA_UINT64 }, 568 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 }, 569 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 }, 570 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 }, 571 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 }, 572 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 }, 573 { "l2_rebuild_size", KSTAT_DATA_UINT64 }, 574 { "l2_rebuild_asize", KSTAT_DATA_UINT64 }, 575 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 }, 576 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 }, 577 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 }, 578 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 579 { "memory_direct_count", KSTAT_DATA_UINT64 }, 580 { "memory_indirect_count", KSTAT_DATA_UINT64 }, 581 { "memory_all_bytes", KSTAT_DATA_UINT64 }, 582 { "memory_free_bytes", KSTAT_DATA_UINT64 }, 583 { "memory_available_bytes", KSTAT_DATA_INT64 }, 584 { "arc_no_grow", KSTAT_DATA_UINT64 }, 585 { "arc_tempreserve", KSTAT_DATA_UINT64 }, 586 { "arc_loaned_bytes", KSTAT_DATA_UINT64 }, 587 { "arc_prune", KSTAT_DATA_UINT64 }, 588 { "arc_meta_used", KSTAT_DATA_UINT64 }, 589 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 590 { "arc_dnode_limit", KSTAT_DATA_UINT64 }, 591 { "arc_meta_max", KSTAT_DATA_UINT64 }, 592 { "arc_meta_min", KSTAT_DATA_UINT64 }, 593 { "async_upgrade_sync", KSTAT_DATA_UINT64 }, 594 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 }, 595 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 }, 596 { "arc_need_free", KSTAT_DATA_UINT64 }, 597 { "arc_sys_free", KSTAT_DATA_UINT64 }, 598 { "arc_raw_size", KSTAT_DATA_UINT64 }, 599 { "cached_only_in_progress", KSTAT_DATA_UINT64 }, 600 { "abd_chunk_waste_size", KSTAT_DATA_UINT64 }, 601 }; 602 603 arc_sums_t arc_sums; 604 605 #define ARCSTAT_MAX(stat, val) { \ 606 uint64_t m; \ 607 while ((val) > (m = arc_stats.stat.value.ui64) && \ 608 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 609 continue; \ 610 } 611 612 /* 613 * We define a macro to allow ARC hits/misses to be easily broken down by 614 * two separate conditions, giving a total of four different subtypes for 615 * each of hits and misses (so eight statistics total). 616 */ 617 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 618 if (cond1) { \ 619 if (cond2) { \ 620 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 621 } else { \ 622 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 623 } \ 624 } else { \ 625 if (cond2) { \ 626 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 627 } else { \ 628 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 629 } \ 630 } 631 632 /* 633 * This macro allows us to use kstats as floating averages. Each time we 634 * update this kstat, we first factor it and the update value by 635 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall 636 * average. This macro assumes that integer loads and stores are atomic, but 637 * is not safe for multiple writers updating the kstat in parallel (only the 638 * last writer's update will remain). 639 */ 640 #define ARCSTAT_F_AVG_FACTOR 3 641 #define ARCSTAT_F_AVG(stat, value) \ 642 do { \ 643 uint64_t x = ARCSTAT(stat); \ 644 x = x - x / ARCSTAT_F_AVG_FACTOR + \ 645 (value) / ARCSTAT_F_AVG_FACTOR; \ 646 ARCSTAT(stat) = x; \ 647 } while (0) 648 649 kstat_t *arc_ksp; 650 651 /* 652 * There are several ARC variables that are critical to export as kstats -- 653 * but we don't want to have to grovel around in the kstat whenever we wish to 654 * manipulate them. For these variables, we therefore define them to be in 655 * terms of the statistic variable. This assures that we are not introducing 656 * the possibility of inconsistency by having shadow copies of the variables, 657 * while still allowing the code to be readable. 658 */ 659 #define arc_tempreserve ARCSTAT(arcstat_tempreserve) 660 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes) 661 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 662 /* max size for dnodes */ 663 #define arc_dnode_size_limit ARCSTAT(arcstat_dnode_limit) 664 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */ 665 #define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */ 666 667 hrtime_t arc_growtime; 668 list_t arc_prune_list; 669 kmutex_t arc_prune_mtx; 670 taskq_t *arc_prune_taskq; 671 672 #define GHOST_STATE(state) \ 673 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 674 (state) == arc_l2c_only) 675 676 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 677 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 678 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 679 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 680 #define HDR_PRESCIENT_PREFETCH(hdr) \ 681 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) 682 #define HDR_COMPRESSION_ENABLED(hdr) \ 683 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) 684 685 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 686 #define HDR_L2_READING(hdr) \ 687 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 688 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 689 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 690 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 691 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 692 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED) 693 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH) 694 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) 695 696 #define HDR_ISTYPE_METADATA(hdr) \ 697 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 698 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 699 700 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 701 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 702 #define HDR_HAS_RABD(hdr) \ 703 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \ 704 (hdr)->b_crypt_hdr.b_rabd != NULL) 705 #define HDR_ENCRYPTED(hdr) \ 706 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 707 #define HDR_AUTHENTICATED(hdr) \ 708 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 709 710 /* For storing compression mode in b_flags */ 711 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) 712 713 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ 714 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) 715 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ 716 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); 717 718 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) 719 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED) 720 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED) 721 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED) 722 723 /* 724 * Other sizes 725 */ 726 727 #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 728 #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr)) 729 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 730 731 /* 732 * Hash table routines 733 */ 734 735 #define BUF_LOCKS 2048 736 typedef struct buf_hash_table { 737 uint64_t ht_mask; 738 arc_buf_hdr_t **ht_table; 739 kmutex_t ht_locks[BUF_LOCKS] ____cacheline_aligned; 740 } buf_hash_table_t; 741 742 static buf_hash_table_t buf_hash_table; 743 744 #define BUF_HASH_INDEX(spa, dva, birth) \ 745 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 746 #define BUF_HASH_LOCK(idx) (&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 747 #define HDR_LOCK(hdr) \ 748 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 749 750 uint64_t zfs_crc64_table[256]; 751 752 /* 753 * Level 2 ARC 754 */ 755 756 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 757 #define L2ARC_HEADROOM 2 /* num of writes */ 758 759 /* 760 * If we discover during ARC scan any buffers to be compressed, we boost 761 * our headroom for the next scanning cycle by this percentage multiple. 762 */ 763 #define L2ARC_HEADROOM_BOOST 200 764 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 765 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 766 767 /* 768 * We can feed L2ARC from two states of ARC buffers, mru and mfu, 769 * and each of the state has two types: data and metadata. 770 */ 771 #define L2ARC_FEED_TYPES 4 772 773 /* L2ARC Performance Tunables */ 774 unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */ 775 unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */ 776 unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */ 777 unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 778 unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 779 unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */ 780 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 781 int l2arc_feed_again = B_TRUE; /* turbo warmup */ 782 int l2arc_norw = B_FALSE; /* no reads during writes */ 783 int l2arc_meta_percent = 33; /* limit on headers size */ 784 785 /* 786 * L2ARC Internals 787 */ 788 static list_t L2ARC_dev_list; /* device list */ 789 static list_t *l2arc_dev_list; /* device list pointer */ 790 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 791 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 792 static list_t L2ARC_free_on_write; /* free after write buf list */ 793 static list_t *l2arc_free_on_write; /* free after write list ptr */ 794 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 795 static uint64_t l2arc_ndev; /* number of devices */ 796 797 typedef struct l2arc_read_callback { 798 arc_buf_hdr_t *l2rcb_hdr; /* read header */ 799 blkptr_t l2rcb_bp; /* original blkptr */ 800 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 801 int l2rcb_flags; /* original flags */ 802 abd_t *l2rcb_abd; /* temporary buffer */ 803 } l2arc_read_callback_t; 804 805 typedef struct l2arc_data_free { 806 /* protected by l2arc_free_on_write_mtx */ 807 abd_t *l2df_abd; 808 size_t l2df_size; 809 arc_buf_contents_t l2df_type; 810 list_node_t l2df_list_node; 811 } l2arc_data_free_t; 812 813 typedef enum arc_fill_flags { 814 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */ 815 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */ 816 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */ 817 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */ 818 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */ 819 } arc_fill_flags_t; 820 821 typedef enum arc_ovf_level { 822 ARC_OVF_NONE, /* ARC within target size. */ 823 ARC_OVF_SOME, /* ARC is slightly overflowed. */ 824 ARC_OVF_SEVERE /* ARC is severely overflowed. */ 825 } arc_ovf_level_t; 826 827 static kmutex_t l2arc_feed_thr_lock; 828 static kcondvar_t l2arc_feed_thr_cv; 829 static uint8_t l2arc_thread_exit; 830 831 static kmutex_t l2arc_rebuild_thr_lock; 832 static kcondvar_t l2arc_rebuild_thr_cv; 833 834 enum arc_hdr_alloc_flags { 835 ARC_HDR_ALLOC_RDATA = 0x1, 836 ARC_HDR_DO_ADAPT = 0x2, 837 ARC_HDR_USE_RESERVE = 0x4, 838 }; 839 840 841 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *, int); 842 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *); 843 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *, int); 844 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *); 845 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *); 846 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag); 847 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t); 848 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int); 849 static void arc_access(arc_buf_hdr_t *, kmutex_t *); 850 static void arc_buf_watch(arc_buf_t *); 851 852 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 853 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 854 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 855 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 856 857 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 858 static void l2arc_read_done(zio_t *); 859 static void l2arc_do_free_on_write(void); 860 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 861 boolean_t state_only); 862 863 #define l2arc_hdr_arcstats_increment(hdr) \ 864 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE) 865 #define l2arc_hdr_arcstats_decrement(hdr) \ 866 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE) 867 #define l2arc_hdr_arcstats_increment_state(hdr) \ 868 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE) 869 #define l2arc_hdr_arcstats_decrement_state(hdr) \ 870 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE) 871 872 /* 873 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU 874 * metadata and data are cached from ARC into L2ARC. 875 */ 876 int l2arc_mfuonly = 0; 877 878 /* 879 * L2ARC TRIM 880 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of 881 * the current write size (l2arc_write_max) we should TRIM if we 882 * have filled the device. It is defined as a percentage of the 883 * write size. If set to 100 we trim twice the space required to 884 * accommodate upcoming writes. A minimum of 64MB will be trimmed. 885 * It also enables TRIM of the whole L2ARC device upon creation or 886 * addition to an existing pool or if the header of the device is 887 * invalid upon importing a pool or onlining a cache device. The 888 * default is 0, which disables TRIM on L2ARC altogether as it can 889 * put significant stress on the underlying storage devices. This 890 * will vary depending of how well the specific device handles 891 * these commands. 892 */ 893 unsigned long l2arc_trim_ahead = 0; 894 895 /* 896 * Performance tuning of L2ARC persistence: 897 * 898 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding 899 * an L2ARC device (either at pool import or later) will attempt 900 * to rebuild L2ARC buffer contents. 901 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls 902 * whether log blocks are written to the L2ARC device. If the L2ARC 903 * device is less than 1GB, the amount of data l2arc_evict() 904 * evicts is significant compared to the amount of restored L2ARC 905 * data. In this case do not write log blocks in L2ARC in order 906 * not to waste space. 907 */ 908 int l2arc_rebuild_enabled = B_TRUE; 909 unsigned long l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024; 910 911 /* L2ARC persistence rebuild control routines. */ 912 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen); 913 static void l2arc_dev_rebuild_thread(void *arg); 914 static int l2arc_rebuild(l2arc_dev_t *dev); 915 916 /* L2ARC persistence read I/O routines. */ 917 static int l2arc_dev_hdr_read(l2arc_dev_t *dev); 918 static int l2arc_log_blk_read(l2arc_dev_t *dev, 919 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp, 920 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 921 zio_t *this_io, zio_t **next_io); 922 static zio_t *l2arc_log_blk_fetch(vdev_t *vd, 923 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb); 924 static void l2arc_log_blk_fetch_abort(zio_t *zio); 925 926 /* L2ARC persistence block restoration routines. */ 927 static void l2arc_log_blk_restore(l2arc_dev_t *dev, 928 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize); 929 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, 930 l2arc_dev_t *dev); 931 932 /* L2ARC persistence write I/O routines. */ 933 static void l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, 934 l2arc_write_callback_t *cb); 935 936 /* L2ARC persistence auxiliary routines. */ 937 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev, 938 const l2arc_log_blkptr_t *lbp); 939 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev, 940 const arc_buf_hdr_t *ab); 941 boolean_t l2arc_range_check_overlap(uint64_t bottom, 942 uint64_t top, uint64_t check); 943 static void l2arc_blk_fetch_done(zio_t *zio); 944 static inline uint64_t 945 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev); 946 947 /* 948 * We use Cityhash for this. It's fast, and has good hash properties without 949 * requiring any large static buffers. 950 */ 951 static uint64_t 952 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 953 { 954 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth)); 955 } 956 957 #define HDR_EMPTY(hdr) \ 958 ((hdr)->b_dva.dva_word[0] == 0 && \ 959 (hdr)->b_dva.dva_word[1] == 0) 960 961 #define HDR_EMPTY_OR_LOCKED(hdr) \ 962 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr))) 963 964 #define HDR_EQUAL(spa, dva, birth, hdr) \ 965 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 966 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 967 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) 968 969 static void 970 buf_discard_identity(arc_buf_hdr_t *hdr) 971 { 972 hdr->b_dva.dva_word[0] = 0; 973 hdr->b_dva.dva_word[1] = 0; 974 hdr->b_birth = 0; 975 } 976 977 static arc_buf_hdr_t * 978 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 979 { 980 const dva_t *dva = BP_IDENTITY(bp); 981 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 982 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 983 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 984 arc_buf_hdr_t *hdr; 985 986 mutex_enter(hash_lock); 987 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 988 hdr = hdr->b_hash_next) { 989 if (HDR_EQUAL(spa, dva, birth, hdr)) { 990 *lockp = hash_lock; 991 return (hdr); 992 } 993 } 994 mutex_exit(hash_lock); 995 *lockp = NULL; 996 return (NULL); 997 } 998 999 /* 1000 * Insert an entry into the hash table. If there is already an element 1001 * equal to elem in the hash table, then the already existing element 1002 * will be returned and the new element will not be inserted. 1003 * Otherwise returns NULL. 1004 * If lockp == NULL, the caller is assumed to already hold the hash lock. 1005 */ 1006 static arc_buf_hdr_t * 1007 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 1008 { 1009 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1010 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1011 arc_buf_hdr_t *fhdr; 1012 uint32_t i; 1013 1014 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 1015 ASSERT(hdr->b_birth != 0); 1016 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1017 1018 if (lockp != NULL) { 1019 *lockp = hash_lock; 1020 mutex_enter(hash_lock); 1021 } else { 1022 ASSERT(MUTEX_HELD(hash_lock)); 1023 } 1024 1025 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 1026 fhdr = fhdr->b_hash_next, i++) { 1027 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 1028 return (fhdr); 1029 } 1030 1031 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 1032 buf_hash_table.ht_table[idx] = hdr; 1033 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1034 1035 /* collect some hash table performance data */ 1036 if (i > 0) { 1037 ARCSTAT_BUMP(arcstat_hash_collisions); 1038 if (i == 1) 1039 ARCSTAT_BUMP(arcstat_hash_chains); 1040 1041 ARCSTAT_MAX(arcstat_hash_chain_max, i); 1042 } 1043 uint64_t he = atomic_inc_64_nv( 1044 &arc_stats.arcstat_hash_elements.value.ui64); 1045 ARCSTAT_MAX(arcstat_hash_elements_max, he); 1046 1047 return (NULL); 1048 } 1049 1050 static void 1051 buf_hash_remove(arc_buf_hdr_t *hdr) 1052 { 1053 arc_buf_hdr_t *fhdr, **hdrp; 1054 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1055 1056 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 1057 ASSERT(HDR_IN_HASH_TABLE(hdr)); 1058 1059 hdrp = &buf_hash_table.ht_table[idx]; 1060 while ((fhdr = *hdrp) != hdr) { 1061 ASSERT3P(fhdr, !=, NULL); 1062 hdrp = &fhdr->b_hash_next; 1063 } 1064 *hdrp = hdr->b_hash_next; 1065 hdr->b_hash_next = NULL; 1066 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1067 1068 /* collect some hash table performance data */ 1069 atomic_dec_64(&arc_stats.arcstat_hash_elements.value.ui64); 1070 1071 if (buf_hash_table.ht_table[idx] && 1072 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 1073 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 1074 } 1075 1076 /* 1077 * Global data structures and functions for the buf kmem cache. 1078 */ 1079 1080 static kmem_cache_t *hdr_full_cache; 1081 static kmem_cache_t *hdr_full_crypt_cache; 1082 static kmem_cache_t *hdr_l2only_cache; 1083 static kmem_cache_t *buf_cache; 1084 1085 static void 1086 buf_fini(void) 1087 { 1088 int i; 1089 1090 #if defined(_KERNEL) 1091 /* 1092 * Large allocations which do not require contiguous pages 1093 * should be using vmem_free() in the linux kernel\ 1094 */ 1095 vmem_free(buf_hash_table.ht_table, 1096 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1097 #else 1098 kmem_free(buf_hash_table.ht_table, 1099 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1100 #endif 1101 for (i = 0; i < BUF_LOCKS; i++) 1102 mutex_destroy(BUF_HASH_LOCK(i)); 1103 kmem_cache_destroy(hdr_full_cache); 1104 kmem_cache_destroy(hdr_full_crypt_cache); 1105 kmem_cache_destroy(hdr_l2only_cache); 1106 kmem_cache_destroy(buf_cache); 1107 } 1108 1109 /* 1110 * Constructor callback - called when the cache is empty 1111 * and a new buf is requested. 1112 */ 1113 /* ARGSUSED */ 1114 static int 1115 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1116 { 1117 arc_buf_hdr_t *hdr = vbuf; 1118 1119 bzero(hdr, HDR_FULL_SIZE); 1120 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 1121 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL); 1122 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt); 1123 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1124 list_link_init(&hdr->b_l1hdr.b_arc_node); 1125 list_link_init(&hdr->b_l2hdr.b_l2node); 1126 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1127 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1128 1129 return (0); 1130 } 1131 1132 /* ARGSUSED */ 1133 static int 1134 hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag) 1135 { 1136 arc_buf_hdr_t *hdr = vbuf; 1137 1138 hdr_full_cons(vbuf, unused, kmflag); 1139 bzero(&hdr->b_crypt_hdr, sizeof (hdr->b_crypt_hdr)); 1140 arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1141 1142 return (0); 1143 } 1144 1145 /* ARGSUSED */ 1146 static int 1147 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1148 { 1149 arc_buf_hdr_t *hdr = vbuf; 1150 1151 bzero(hdr, HDR_L2ONLY_SIZE); 1152 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1153 1154 return (0); 1155 } 1156 1157 /* ARGSUSED */ 1158 static int 1159 buf_cons(void *vbuf, void *unused, int kmflag) 1160 { 1161 arc_buf_t *buf = vbuf; 1162 1163 bzero(buf, sizeof (arc_buf_t)); 1164 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 1165 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1166 1167 return (0); 1168 } 1169 1170 /* 1171 * Destructor callback - called when a cached buf is 1172 * no longer required. 1173 */ 1174 /* ARGSUSED */ 1175 static void 1176 hdr_full_dest(void *vbuf, void *unused) 1177 { 1178 arc_buf_hdr_t *hdr = vbuf; 1179 1180 ASSERT(HDR_EMPTY(hdr)); 1181 cv_destroy(&hdr->b_l1hdr.b_cv); 1182 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1183 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1184 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1185 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1186 } 1187 1188 /* ARGSUSED */ 1189 static void 1190 hdr_full_crypt_dest(void *vbuf, void *unused) 1191 { 1192 arc_buf_hdr_t *hdr = vbuf; 1193 1194 hdr_full_dest(vbuf, unused); 1195 arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1196 } 1197 1198 /* ARGSUSED */ 1199 static void 1200 hdr_l2only_dest(void *vbuf, void *unused) 1201 { 1202 arc_buf_hdr_t *hdr __maybe_unused = vbuf; 1203 1204 ASSERT(HDR_EMPTY(hdr)); 1205 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1206 } 1207 1208 /* ARGSUSED */ 1209 static void 1210 buf_dest(void *vbuf, void *unused) 1211 { 1212 arc_buf_t *buf = vbuf; 1213 1214 mutex_destroy(&buf->b_evict_lock); 1215 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1216 } 1217 1218 static void 1219 buf_init(void) 1220 { 1221 uint64_t *ct = NULL; 1222 uint64_t hsize = 1ULL << 12; 1223 int i, j; 1224 1225 /* 1226 * The hash table is big enough to fill all of physical memory 1227 * with an average block size of zfs_arc_average_blocksize (default 8K). 1228 * By default, the table will take up 1229 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1230 */ 1231 while (hsize * zfs_arc_average_blocksize < arc_all_memory()) 1232 hsize <<= 1; 1233 retry: 1234 buf_hash_table.ht_mask = hsize - 1; 1235 #if defined(_KERNEL) 1236 /* 1237 * Large allocations which do not require contiguous pages 1238 * should be using vmem_alloc() in the linux kernel 1239 */ 1240 buf_hash_table.ht_table = 1241 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP); 1242 #else 1243 buf_hash_table.ht_table = 1244 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1245 #endif 1246 if (buf_hash_table.ht_table == NULL) { 1247 ASSERT(hsize > (1ULL << 8)); 1248 hsize >>= 1; 1249 goto retry; 1250 } 1251 1252 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1253 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, 0); 1254 hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt", 1255 HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest, 1256 NULL, NULL, NULL, 0); 1257 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1258 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL, 1259 NULL, NULL, 0); 1260 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1261 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1262 1263 for (i = 0; i < 256; i++) 1264 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1265 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1266 1267 for (i = 0; i < BUF_LOCKS; i++) 1268 mutex_init(BUF_HASH_LOCK(i), NULL, MUTEX_DEFAULT, NULL); 1269 } 1270 1271 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1272 1273 /* 1274 * This is the size that the buf occupies in memory. If the buf is compressed, 1275 * it will correspond to the compressed size. You should use this method of 1276 * getting the buf size unless you explicitly need the logical size. 1277 */ 1278 uint64_t 1279 arc_buf_size(arc_buf_t *buf) 1280 { 1281 return (ARC_BUF_COMPRESSED(buf) ? 1282 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr)); 1283 } 1284 1285 uint64_t 1286 arc_buf_lsize(arc_buf_t *buf) 1287 { 1288 return (HDR_GET_LSIZE(buf->b_hdr)); 1289 } 1290 1291 /* 1292 * This function will return B_TRUE if the buffer is encrypted in memory. 1293 * This buffer can be decrypted by calling arc_untransform(). 1294 */ 1295 boolean_t 1296 arc_is_encrypted(arc_buf_t *buf) 1297 { 1298 return (ARC_BUF_ENCRYPTED(buf) != 0); 1299 } 1300 1301 /* 1302 * Returns B_TRUE if the buffer represents data that has not had its MAC 1303 * verified yet. 1304 */ 1305 boolean_t 1306 arc_is_unauthenticated(arc_buf_t *buf) 1307 { 1308 return (HDR_NOAUTH(buf->b_hdr) != 0); 1309 } 1310 1311 void 1312 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt, 1313 uint8_t *iv, uint8_t *mac) 1314 { 1315 arc_buf_hdr_t *hdr = buf->b_hdr; 1316 1317 ASSERT(HDR_PROTECTED(hdr)); 1318 1319 bcopy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN); 1320 bcopy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN); 1321 bcopy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN); 1322 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 1323 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 1324 } 1325 1326 /* 1327 * Indicates how this buffer is compressed in memory. If it is not compressed 1328 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with 1329 * arc_untransform() as long as it is also unencrypted. 1330 */ 1331 enum zio_compress 1332 arc_get_compression(arc_buf_t *buf) 1333 { 1334 return (ARC_BUF_COMPRESSED(buf) ? 1335 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF); 1336 } 1337 1338 /* 1339 * Return the compression algorithm used to store this data in the ARC. If ARC 1340 * compression is enabled or this is an encrypted block, this will be the same 1341 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF. 1342 */ 1343 static inline enum zio_compress 1344 arc_hdr_get_compress(arc_buf_hdr_t *hdr) 1345 { 1346 return (HDR_COMPRESSION_ENABLED(hdr) ? 1347 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF); 1348 } 1349 1350 uint8_t 1351 arc_get_complevel(arc_buf_t *buf) 1352 { 1353 return (buf->b_hdr->b_complevel); 1354 } 1355 1356 static inline boolean_t 1357 arc_buf_is_shared(arc_buf_t *buf) 1358 { 1359 boolean_t shared = (buf->b_data != NULL && 1360 buf->b_hdr->b_l1hdr.b_pabd != NULL && 1361 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) && 1362 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd)); 1363 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); 1364 IMPLY(shared, ARC_BUF_SHARED(buf)); 1365 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf)); 1366 1367 /* 1368 * It would be nice to assert arc_can_share() too, but the "hdr isn't 1369 * already being shared" requirement prevents us from doing that. 1370 */ 1371 1372 return (shared); 1373 } 1374 1375 /* 1376 * Free the checksum associated with this header. If there is no checksum, this 1377 * is a no-op. 1378 */ 1379 static inline void 1380 arc_cksum_free(arc_buf_hdr_t *hdr) 1381 { 1382 ASSERT(HDR_HAS_L1HDR(hdr)); 1383 1384 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1385 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1386 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); 1387 hdr->b_l1hdr.b_freeze_cksum = NULL; 1388 } 1389 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1390 } 1391 1392 /* 1393 * Return true iff at least one of the bufs on hdr is not compressed. 1394 * Encrypted buffers count as compressed. 1395 */ 1396 static boolean_t 1397 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr) 1398 { 1399 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr)); 1400 1401 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) { 1402 if (!ARC_BUF_COMPRESSED(b)) { 1403 return (B_TRUE); 1404 } 1405 } 1406 return (B_FALSE); 1407 } 1408 1409 1410 /* 1411 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data 1412 * matches the checksum that is stored in the hdr. If there is no checksum, 1413 * or if the buf is compressed, this is a no-op. 1414 */ 1415 static void 1416 arc_cksum_verify(arc_buf_t *buf) 1417 { 1418 arc_buf_hdr_t *hdr = buf->b_hdr; 1419 zio_cksum_t zc; 1420 1421 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1422 return; 1423 1424 if (ARC_BUF_COMPRESSED(buf)) 1425 return; 1426 1427 ASSERT(HDR_HAS_L1HDR(hdr)); 1428 1429 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1430 1431 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { 1432 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1433 return; 1434 } 1435 1436 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc); 1437 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) 1438 panic("buffer modified while frozen!"); 1439 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1440 } 1441 1442 /* 1443 * This function makes the assumption that data stored in the L2ARC 1444 * will be transformed exactly as it is in the main pool. Because of 1445 * this we can verify the checksum against the reading process's bp. 1446 */ 1447 static boolean_t 1448 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) 1449 { 1450 ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); 1451 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); 1452 1453 /* 1454 * Block pointers always store the checksum for the logical data. 1455 * If the block pointer has the gang bit set, then the checksum 1456 * it represents is for the reconstituted data and not for an 1457 * individual gang member. The zio pipeline, however, must be able to 1458 * determine the checksum of each of the gang constituents so it 1459 * treats the checksum comparison differently than what we need 1460 * for l2arc blocks. This prevents us from using the 1461 * zio_checksum_error() interface directly. Instead we must call the 1462 * zio_checksum_error_impl() so that we can ensure the checksum is 1463 * generated using the correct checksum algorithm and accounts for the 1464 * logical I/O size and not just a gang fragment. 1465 */ 1466 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp, 1467 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size, 1468 zio->io_offset, NULL) == 0); 1469 } 1470 1471 /* 1472 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a 1473 * checksum and attaches it to the buf's hdr so that we can ensure that the buf 1474 * isn't modified later on. If buf is compressed or there is already a checksum 1475 * on the hdr, this is a no-op (we only checksum uncompressed bufs). 1476 */ 1477 static void 1478 arc_cksum_compute(arc_buf_t *buf) 1479 { 1480 arc_buf_hdr_t *hdr = buf->b_hdr; 1481 1482 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1483 return; 1484 1485 ASSERT(HDR_HAS_L1HDR(hdr)); 1486 1487 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1488 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) { 1489 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1490 return; 1491 } 1492 1493 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 1494 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1495 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), 1496 KM_SLEEP); 1497 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, 1498 hdr->b_l1hdr.b_freeze_cksum); 1499 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1500 arc_buf_watch(buf); 1501 } 1502 1503 #ifndef _KERNEL 1504 void 1505 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused) 1506 { 1507 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr); 1508 } 1509 #endif 1510 1511 /* ARGSUSED */ 1512 static void 1513 arc_buf_unwatch(arc_buf_t *buf) 1514 { 1515 #ifndef _KERNEL 1516 if (arc_watch) { 1517 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1518 PROT_READ | PROT_WRITE)); 1519 } 1520 #endif 1521 } 1522 1523 /* ARGSUSED */ 1524 static void 1525 arc_buf_watch(arc_buf_t *buf) 1526 { 1527 #ifndef _KERNEL 1528 if (arc_watch) 1529 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1530 PROT_READ)); 1531 #endif 1532 } 1533 1534 static arc_buf_contents_t 1535 arc_buf_type(arc_buf_hdr_t *hdr) 1536 { 1537 arc_buf_contents_t type; 1538 if (HDR_ISTYPE_METADATA(hdr)) { 1539 type = ARC_BUFC_METADATA; 1540 } else { 1541 type = ARC_BUFC_DATA; 1542 } 1543 VERIFY3U(hdr->b_type, ==, type); 1544 return (type); 1545 } 1546 1547 boolean_t 1548 arc_is_metadata(arc_buf_t *buf) 1549 { 1550 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0); 1551 } 1552 1553 static uint32_t 1554 arc_bufc_to_flags(arc_buf_contents_t type) 1555 { 1556 switch (type) { 1557 case ARC_BUFC_DATA: 1558 /* metadata field is 0 if buffer contains normal data */ 1559 return (0); 1560 case ARC_BUFC_METADATA: 1561 return (ARC_FLAG_BUFC_METADATA); 1562 default: 1563 break; 1564 } 1565 panic("undefined ARC buffer type!"); 1566 return ((uint32_t)-1); 1567 } 1568 1569 void 1570 arc_buf_thaw(arc_buf_t *buf) 1571 { 1572 arc_buf_hdr_t *hdr = buf->b_hdr; 1573 1574 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 1575 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1576 1577 arc_cksum_verify(buf); 1578 1579 /* 1580 * Compressed buffers do not manipulate the b_freeze_cksum. 1581 */ 1582 if (ARC_BUF_COMPRESSED(buf)) 1583 return; 1584 1585 ASSERT(HDR_HAS_L1HDR(hdr)); 1586 arc_cksum_free(hdr); 1587 arc_buf_unwatch(buf); 1588 } 1589 1590 void 1591 arc_buf_freeze(arc_buf_t *buf) 1592 { 1593 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1594 return; 1595 1596 if (ARC_BUF_COMPRESSED(buf)) 1597 return; 1598 1599 ASSERT(HDR_HAS_L1HDR(buf->b_hdr)); 1600 arc_cksum_compute(buf); 1601 } 1602 1603 /* 1604 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, 1605 * the following functions should be used to ensure that the flags are 1606 * updated in a thread-safe way. When manipulating the flags either 1607 * the hash_lock must be held or the hdr must be undiscoverable. This 1608 * ensures that we're not racing with any other threads when updating 1609 * the flags. 1610 */ 1611 static inline void 1612 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1613 { 1614 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1615 hdr->b_flags |= flags; 1616 } 1617 1618 static inline void 1619 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1620 { 1621 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1622 hdr->b_flags &= ~flags; 1623 } 1624 1625 /* 1626 * Setting the compression bits in the arc_buf_hdr_t's b_flags is 1627 * done in a special way since we have to clear and set bits 1628 * at the same time. Consumers that wish to set the compression bits 1629 * must use this function to ensure that the flags are updated in 1630 * thread-safe manner. 1631 */ 1632 static void 1633 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) 1634 { 1635 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1636 1637 /* 1638 * Holes and embedded blocks will always have a psize = 0 so 1639 * we ignore the compression of the blkptr and set the 1640 * want to uncompress them. Mark them as uncompressed. 1641 */ 1642 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { 1643 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1644 ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); 1645 } else { 1646 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1647 ASSERT(HDR_COMPRESSION_ENABLED(hdr)); 1648 } 1649 1650 HDR_SET_COMPRESS(hdr, cmp); 1651 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); 1652 } 1653 1654 /* 1655 * Looks for another buf on the same hdr which has the data decompressed, copies 1656 * from it, and returns true. If no such buf exists, returns false. 1657 */ 1658 static boolean_t 1659 arc_buf_try_copy_decompressed_data(arc_buf_t *buf) 1660 { 1661 arc_buf_hdr_t *hdr = buf->b_hdr; 1662 boolean_t copied = B_FALSE; 1663 1664 ASSERT(HDR_HAS_L1HDR(hdr)); 1665 ASSERT3P(buf->b_data, !=, NULL); 1666 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1667 1668 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL; 1669 from = from->b_next) { 1670 /* can't use our own data buffer */ 1671 if (from == buf) { 1672 continue; 1673 } 1674 1675 if (!ARC_BUF_COMPRESSED(from)) { 1676 bcopy(from->b_data, buf->b_data, arc_buf_size(buf)); 1677 copied = B_TRUE; 1678 break; 1679 } 1680 } 1681 1682 /* 1683 * There were no decompressed bufs, so there should not be a 1684 * checksum on the hdr either. 1685 */ 1686 if (zfs_flags & ZFS_DEBUG_MODIFY) 1687 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL); 1688 1689 return (copied); 1690 } 1691 1692 /* 1693 * Allocates an ARC buf header that's in an evicted & L2-cached state. 1694 * This is used during l2arc reconstruction to make empty ARC buffers 1695 * which circumvent the regular disk->arc->l2arc path and instead come 1696 * into being in the reverse order, i.e. l2arc->arc. 1697 */ 1698 static arc_buf_hdr_t * 1699 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev, 1700 dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth, 1701 enum zio_compress compress, uint8_t complevel, boolean_t protected, 1702 boolean_t prefetch, arc_state_type_t arcs_state) 1703 { 1704 arc_buf_hdr_t *hdr; 1705 1706 ASSERT(size != 0); 1707 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP); 1708 hdr->b_birth = birth; 1709 hdr->b_type = type; 1710 hdr->b_flags = 0; 1711 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR); 1712 HDR_SET_LSIZE(hdr, size); 1713 HDR_SET_PSIZE(hdr, psize); 1714 arc_hdr_set_compress(hdr, compress); 1715 hdr->b_complevel = complevel; 1716 if (protected) 1717 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 1718 if (prefetch) 1719 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 1720 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa); 1721 1722 hdr->b_dva = dva; 1723 1724 hdr->b_l2hdr.b_dev = dev; 1725 hdr->b_l2hdr.b_daddr = daddr; 1726 hdr->b_l2hdr.b_arcs_state = arcs_state; 1727 1728 return (hdr); 1729 } 1730 1731 /* 1732 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t. 1733 */ 1734 static uint64_t 1735 arc_hdr_size(arc_buf_hdr_t *hdr) 1736 { 1737 uint64_t size; 1738 1739 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 1740 HDR_GET_PSIZE(hdr) > 0) { 1741 size = HDR_GET_PSIZE(hdr); 1742 } else { 1743 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); 1744 size = HDR_GET_LSIZE(hdr); 1745 } 1746 return (size); 1747 } 1748 1749 static int 1750 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj) 1751 { 1752 int ret; 1753 uint64_t csize; 1754 uint64_t lsize = HDR_GET_LSIZE(hdr); 1755 uint64_t psize = HDR_GET_PSIZE(hdr); 1756 void *tmpbuf = NULL; 1757 abd_t *abd = hdr->b_l1hdr.b_pabd; 1758 1759 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1760 ASSERT(HDR_AUTHENTICATED(hdr)); 1761 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1762 1763 /* 1764 * The MAC is calculated on the compressed data that is stored on disk. 1765 * However, if compressed arc is disabled we will only have the 1766 * decompressed data available to us now. Compress it into a temporary 1767 * abd so we can verify the MAC. The performance overhead of this will 1768 * be relatively low, since most objects in an encrypted objset will 1769 * be encrypted (instead of authenticated) anyway. 1770 */ 1771 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1772 !HDR_COMPRESSION_ENABLED(hdr)) { 1773 tmpbuf = zio_buf_alloc(lsize); 1774 abd = abd_get_from_buf(tmpbuf, lsize); 1775 abd_take_ownership_of_buf(abd, B_TRUE); 1776 csize = zio_compress_data(HDR_GET_COMPRESS(hdr), 1777 hdr->b_l1hdr.b_pabd, tmpbuf, lsize, hdr->b_complevel); 1778 ASSERT3U(csize, <=, psize); 1779 abd_zero_off(abd, csize, psize - csize); 1780 } 1781 1782 /* 1783 * Authentication is best effort. We authenticate whenever the key is 1784 * available. If we succeed we clear ARC_FLAG_NOAUTH. 1785 */ 1786 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) { 1787 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1788 ASSERT3U(lsize, ==, psize); 1789 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd, 1790 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1791 } else { 1792 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize, 1793 hdr->b_crypt_hdr.b_mac); 1794 } 1795 1796 if (ret == 0) 1797 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH); 1798 else if (ret != ENOENT) 1799 goto error; 1800 1801 if (tmpbuf != NULL) 1802 abd_free(abd); 1803 1804 return (0); 1805 1806 error: 1807 if (tmpbuf != NULL) 1808 abd_free(abd); 1809 1810 return (ret); 1811 } 1812 1813 /* 1814 * This function will take a header that only has raw encrypted data in 1815 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in 1816 * b_l1hdr.b_pabd. If designated in the header flags, this function will 1817 * also decompress the data. 1818 */ 1819 static int 1820 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb) 1821 { 1822 int ret; 1823 abd_t *cabd = NULL; 1824 void *tmp = NULL; 1825 boolean_t no_crypt = B_FALSE; 1826 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1827 1828 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1829 ASSERT(HDR_ENCRYPTED(hdr)); 1830 1831 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 1832 1833 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot, 1834 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv, 1835 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd, 1836 hdr->b_crypt_hdr.b_rabd, &no_crypt); 1837 if (ret != 0) 1838 goto error; 1839 1840 if (no_crypt) { 1841 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd, 1842 HDR_GET_PSIZE(hdr)); 1843 } 1844 1845 /* 1846 * If this header has disabled arc compression but the b_pabd is 1847 * compressed after decrypting it, we need to decompress the newly 1848 * decrypted data. 1849 */ 1850 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1851 !HDR_COMPRESSION_ENABLED(hdr)) { 1852 /* 1853 * We want to make sure that we are correctly honoring the 1854 * zfs_abd_scatter_enabled setting, so we allocate an abd here 1855 * and then loan a buffer from it, rather than allocating a 1856 * linear buffer and wrapping it in an abd later. 1857 */ 1858 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 1859 ARC_HDR_DO_ADAPT); 1860 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 1861 1862 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 1863 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 1864 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 1865 if (ret != 0) { 1866 abd_return_buf(cabd, tmp, arc_hdr_size(hdr)); 1867 goto error; 1868 } 1869 1870 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 1871 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 1872 arc_hdr_size(hdr), hdr); 1873 hdr->b_l1hdr.b_pabd = cabd; 1874 } 1875 1876 return (0); 1877 1878 error: 1879 arc_hdr_free_abd(hdr, B_FALSE); 1880 if (cabd != NULL) 1881 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr); 1882 1883 return (ret); 1884 } 1885 1886 /* 1887 * This function is called during arc_buf_fill() to prepare the header's 1888 * abd plaintext pointer for use. This involves authenticated protected 1889 * data and decrypting encrypted data into the plaintext abd. 1890 */ 1891 static int 1892 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa, 1893 const zbookmark_phys_t *zb, boolean_t noauth) 1894 { 1895 int ret; 1896 1897 ASSERT(HDR_PROTECTED(hdr)); 1898 1899 if (hash_lock != NULL) 1900 mutex_enter(hash_lock); 1901 1902 if (HDR_NOAUTH(hdr) && !noauth) { 1903 /* 1904 * The caller requested authenticated data but our data has 1905 * not been authenticated yet. Verify the MAC now if we can. 1906 */ 1907 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset); 1908 if (ret != 0) 1909 goto error; 1910 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) { 1911 /* 1912 * If we only have the encrypted version of the data, but the 1913 * unencrypted version was requested we take this opportunity 1914 * to store the decrypted version in the header for future use. 1915 */ 1916 ret = arc_hdr_decrypt(hdr, spa, zb); 1917 if (ret != 0) 1918 goto error; 1919 } 1920 1921 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1922 1923 if (hash_lock != NULL) 1924 mutex_exit(hash_lock); 1925 1926 return (0); 1927 1928 error: 1929 if (hash_lock != NULL) 1930 mutex_exit(hash_lock); 1931 1932 return (ret); 1933 } 1934 1935 /* 1936 * This function is used by the dbuf code to decrypt bonus buffers in place. 1937 * The dbuf code itself doesn't have any locking for decrypting a shared dnode 1938 * block, so we use the hash lock here to protect against concurrent calls to 1939 * arc_buf_fill(). 1940 */ 1941 static void 1942 arc_buf_untransform_in_place(arc_buf_t *buf, kmutex_t *hash_lock) 1943 { 1944 arc_buf_hdr_t *hdr = buf->b_hdr; 1945 1946 ASSERT(HDR_ENCRYPTED(hdr)); 1947 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 1948 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1949 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1950 1951 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data, 1952 arc_buf_size(buf)); 1953 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 1954 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 1955 hdr->b_crypt_hdr.b_ebufcnt -= 1; 1956 } 1957 1958 /* 1959 * Given a buf that has a data buffer attached to it, this function will 1960 * efficiently fill the buf with data of the specified compression setting from 1961 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr 1962 * are already sharing a data buf, no copy is performed. 1963 * 1964 * If the buf is marked as compressed but uncompressed data was requested, this 1965 * will allocate a new data buffer for the buf, remove that flag, and fill the 1966 * buf with uncompressed data. You can't request a compressed buf on a hdr with 1967 * uncompressed data, and (since we haven't added support for it yet) if you 1968 * want compressed data your buf must already be marked as compressed and have 1969 * the correct-sized data buffer. 1970 */ 1971 static int 1972 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 1973 arc_fill_flags_t flags) 1974 { 1975 int error = 0; 1976 arc_buf_hdr_t *hdr = buf->b_hdr; 1977 boolean_t hdr_compressed = 1978 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 1979 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0; 1980 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0; 1981 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; 1982 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr); 1983 1984 ASSERT3P(buf->b_data, !=, NULL); 1985 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf)); 1986 IMPLY(compressed, ARC_BUF_COMPRESSED(buf)); 1987 IMPLY(encrypted, HDR_ENCRYPTED(hdr)); 1988 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf)); 1989 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf)); 1990 IMPLY(encrypted, !ARC_BUF_SHARED(buf)); 1991 1992 /* 1993 * If the caller wanted encrypted data we just need to copy it from 1994 * b_rabd and potentially byteswap it. We won't be able to do any 1995 * further transforms on it. 1996 */ 1997 if (encrypted) { 1998 ASSERT(HDR_HAS_RABD(hdr)); 1999 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd, 2000 HDR_GET_PSIZE(hdr)); 2001 goto byteswap; 2002 } 2003 2004 /* 2005 * Adjust encrypted and authenticated headers to accommodate 2006 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are 2007 * allowed to fail decryption due to keys not being loaded 2008 * without being marked as an IO error. 2009 */ 2010 if (HDR_PROTECTED(hdr)) { 2011 error = arc_fill_hdr_crypt(hdr, hash_lock, spa, 2012 zb, !!(flags & ARC_FILL_NOAUTH)); 2013 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) { 2014 return (error); 2015 } else if (error != 0) { 2016 if (hash_lock != NULL) 2017 mutex_enter(hash_lock); 2018 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2019 if (hash_lock != NULL) 2020 mutex_exit(hash_lock); 2021 return (error); 2022 } 2023 } 2024 2025 /* 2026 * There is a special case here for dnode blocks which are 2027 * decrypting their bonus buffers. These blocks may request to 2028 * be decrypted in-place. This is necessary because there may 2029 * be many dnodes pointing into this buffer and there is 2030 * currently no method to synchronize replacing the backing 2031 * b_data buffer and updating all of the pointers. Here we use 2032 * the hash lock to ensure there are no races. If the need 2033 * arises for other types to be decrypted in-place, they must 2034 * add handling here as well. 2035 */ 2036 if ((flags & ARC_FILL_IN_PLACE) != 0) { 2037 ASSERT(!hdr_compressed); 2038 ASSERT(!compressed); 2039 ASSERT(!encrypted); 2040 2041 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) { 2042 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 2043 2044 if (hash_lock != NULL) 2045 mutex_enter(hash_lock); 2046 arc_buf_untransform_in_place(buf, hash_lock); 2047 if (hash_lock != NULL) 2048 mutex_exit(hash_lock); 2049 2050 /* Compute the hdr's checksum if necessary */ 2051 arc_cksum_compute(buf); 2052 } 2053 2054 return (0); 2055 } 2056 2057 if (hdr_compressed == compressed) { 2058 if (!arc_buf_is_shared(buf)) { 2059 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd, 2060 arc_buf_size(buf)); 2061 } 2062 } else { 2063 ASSERT(hdr_compressed); 2064 ASSERT(!compressed); 2065 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr)); 2066 2067 /* 2068 * If the buf is sharing its data with the hdr, unlink it and 2069 * allocate a new data buffer for the buf. 2070 */ 2071 if (arc_buf_is_shared(buf)) { 2072 ASSERT(ARC_BUF_COMPRESSED(buf)); 2073 2074 /* We need to give the buf its own b_data */ 2075 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 2076 buf->b_data = 2077 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2078 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2079 2080 /* Previously overhead was 0; just add new overhead */ 2081 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 2082 } else if (ARC_BUF_COMPRESSED(buf)) { 2083 /* We need to reallocate the buf's b_data */ 2084 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr), 2085 buf); 2086 buf->b_data = 2087 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2088 2089 /* We increased the size of b_data; update overhead */ 2090 ARCSTAT_INCR(arcstat_overhead_size, 2091 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr)); 2092 } 2093 2094 /* 2095 * Regardless of the buf's previous compression settings, it 2096 * should not be compressed at the end of this function. 2097 */ 2098 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 2099 2100 /* 2101 * Try copying the data from another buf which already has a 2102 * decompressed version. If that's not possible, it's time to 2103 * bite the bullet and decompress the data from the hdr. 2104 */ 2105 if (arc_buf_try_copy_decompressed_data(buf)) { 2106 /* Skip byteswapping and checksumming (already done) */ 2107 return (0); 2108 } else { 2109 error = zio_decompress_data(HDR_GET_COMPRESS(hdr), 2110 hdr->b_l1hdr.b_pabd, buf->b_data, 2111 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr), 2112 &hdr->b_complevel); 2113 2114 /* 2115 * Absent hardware errors or software bugs, this should 2116 * be impossible, but log it anyway so we can debug it. 2117 */ 2118 if (error != 0) { 2119 zfs_dbgmsg( 2120 "hdr %px, compress %d, psize %d, lsize %d", 2121 hdr, arc_hdr_get_compress(hdr), 2122 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 2123 if (hash_lock != NULL) 2124 mutex_enter(hash_lock); 2125 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2126 if (hash_lock != NULL) 2127 mutex_exit(hash_lock); 2128 return (SET_ERROR(EIO)); 2129 } 2130 } 2131 } 2132 2133 byteswap: 2134 /* Byteswap the buf's data if necessary */ 2135 if (bswap != DMU_BSWAP_NUMFUNCS) { 2136 ASSERT(!HDR_SHARED_DATA(hdr)); 2137 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); 2138 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); 2139 } 2140 2141 /* Compute the hdr's checksum if necessary */ 2142 arc_cksum_compute(buf); 2143 2144 return (0); 2145 } 2146 2147 /* 2148 * If this function is being called to decrypt an encrypted buffer or verify an 2149 * authenticated one, the key must be loaded and a mapping must be made 2150 * available in the keystore via spa_keystore_create_mapping() or one of its 2151 * callers. 2152 */ 2153 int 2154 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 2155 boolean_t in_place) 2156 { 2157 int ret; 2158 arc_fill_flags_t flags = 0; 2159 2160 if (in_place) 2161 flags |= ARC_FILL_IN_PLACE; 2162 2163 ret = arc_buf_fill(buf, spa, zb, flags); 2164 if (ret == ECKSUM) { 2165 /* 2166 * Convert authentication and decryption errors to EIO 2167 * (and generate an ereport) before leaving the ARC. 2168 */ 2169 ret = SET_ERROR(EIO); 2170 spa_log_error(spa, zb); 2171 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 2172 spa, NULL, zb, NULL, 0); 2173 } 2174 2175 return (ret); 2176 } 2177 2178 /* 2179 * Increment the amount of evictable space in the arc_state_t's refcount. 2180 * We account for the space used by the hdr and the arc buf individually 2181 * so that we can add and remove them from the refcount individually. 2182 */ 2183 static void 2184 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) 2185 { 2186 arc_buf_contents_t type = arc_buf_type(hdr); 2187 2188 ASSERT(HDR_HAS_L1HDR(hdr)); 2189 2190 if (GHOST_STATE(state)) { 2191 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2192 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2193 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2194 ASSERT(!HDR_HAS_RABD(hdr)); 2195 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2196 HDR_GET_LSIZE(hdr), hdr); 2197 return; 2198 } 2199 2200 if (hdr->b_l1hdr.b_pabd != NULL) { 2201 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2202 arc_hdr_size(hdr), hdr); 2203 } 2204 if (HDR_HAS_RABD(hdr)) { 2205 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2206 HDR_GET_PSIZE(hdr), hdr); 2207 } 2208 2209 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2210 buf = buf->b_next) { 2211 if (arc_buf_is_shared(buf)) 2212 continue; 2213 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2214 arc_buf_size(buf), buf); 2215 } 2216 } 2217 2218 /* 2219 * Decrement the amount of evictable space in the arc_state_t's refcount. 2220 * We account for the space used by the hdr and the arc buf individually 2221 * so that we can add and remove them from the refcount individually. 2222 */ 2223 static void 2224 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) 2225 { 2226 arc_buf_contents_t type = arc_buf_type(hdr); 2227 2228 ASSERT(HDR_HAS_L1HDR(hdr)); 2229 2230 if (GHOST_STATE(state)) { 2231 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2232 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2233 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2234 ASSERT(!HDR_HAS_RABD(hdr)); 2235 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2236 HDR_GET_LSIZE(hdr), hdr); 2237 return; 2238 } 2239 2240 if (hdr->b_l1hdr.b_pabd != NULL) { 2241 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2242 arc_hdr_size(hdr), hdr); 2243 } 2244 if (HDR_HAS_RABD(hdr)) { 2245 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2246 HDR_GET_PSIZE(hdr), hdr); 2247 } 2248 2249 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2250 buf = buf->b_next) { 2251 if (arc_buf_is_shared(buf)) 2252 continue; 2253 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2254 arc_buf_size(buf), buf); 2255 } 2256 } 2257 2258 /* 2259 * Add a reference to this hdr indicating that someone is actively 2260 * referencing that memory. When the refcount transitions from 0 to 1, 2261 * we remove it from the respective arc_state_t list to indicate that 2262 * it is not evictable. 2263 */ 2264 static void 2265 add_reference(arc_buf_hdr_t *hdr, void *tag) 2266 { 2267 arc_state_t *state; 2268 2269 ASSERT(HDR_HAS_L1HDR(hdr)); 2270 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) { 2271 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 2272 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2273 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2274 } 2275 2276 state = hdr->b_l1hdr.b_state; 2277 2278 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 2279 (state != arc_anon)) { 2280 /* We don't use the L2-only state list. */ 2281 if (state != arc_l2c_only) { 2282 multilist_remove(&state->arcs_list[arc_buf_type(hdr)], 2283 hdr); 2284 arc_evictable_space_decrement(hdr, state); 2285 } 2286 /* remove the prefetch flag if we get a reference */ 2287 if (HDR_HAS_L2HDR(hdr)) 2288 l2arc_hdr_arcstats_decrement_state(hdr); 2289 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 2290 if (HDR_HAS_L2HDR(hdr)) 2291 l2arc_hdr_arcstats_increment_state(hdr); 2292 } 2293 } 2294 2295 /* 2296 * Remove a reference from this hdr. When the reference transitions from 2297 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's 2298 * list making it eligible for eviction. 2299 */ 2300 static int 2301 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 2302 { 2303 int cnt; 2304 arc_state_t *state = hdr->b_l1hdr.b_state; 2305 2306 ASSERT(HDR_HAS_L1HDR(hdr)); 2307 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 2308 ASSERT(!GHOST_STATE(state)); 2309 2310 /* 2311 * arc_l2c_only counts as a ghost state so we don't need to explicitly 2312 * check to prevent usage of the arc_l2c_only list. 2313 */ 2314 if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) && 2315 (state != arc_anon)) { 2316 multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr); 2317 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 2318 arc_evictable_space_increment(hdr, state); 2319 } 2320 return (cnt); 2321 } 2322 2323 /* 2324 * Returns detailed information about a specific arc buffer. When the 2325 * state_index argument is set the function will calculate the arc header 2326 * list position for its arc state. Since this requires a linear traversal 2327 * callers are strongly encourage not to do this. However, it can be helpful 2328 * for targeted analysis so the functionality is provided. 2329 */ 2330 void 2331 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index) 2332 { 2333 arc_buf_hdr_t *hdr = ab->b_hdr; 2334 l1arc_buf_hdr_t *l1hdr = NULL; 2335 l2arc_buf_hdr_t *l2hdr = NULL; 2336 arc_state_t *state = NULL; 2337 2338 memset(abi, 0, sizeof (arc_buf_info_t)); 2339 2340 if (hdr == NULL) 2341 return; 2342 2343 abi->abi_flags = hdr->b_flags; 2344 2345 if (HDR_HAS_L1HDR(hdr)) { 2346 l1hdr = &hdr->b_l1hdr; 2347 state = l1hdr->b_state; 2348 } 2349 if (HDR_HAS_L2HDR(hdr)) 2350 l2hdr = &hdr->b_l2hdr; 2351 2352 if (l1hdr) { 2353 abi->abi_bufcnt = l1hdr->b_bufcnt; 2354 abi->abi_access = l1hdr->b_arc_access; 2355 abi->abi_mru_hits = l1hdr->b_mru_hits; 2356 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits; 2357 abi->abi_mfu_hits = l1hdr->b_mfu_hits; 2358 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits; 2359 abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt); 2360 } 2361 2362 if (l2hdr) { 2363 abi->abi_l2arc_dattr = l2hdr->b_daddr; 2364 abi->abi_l2arc_hits = l2hdr->b_hits; 2365 } 2366 2367 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON; 2368 abi->abi_state_contents = arc_buf_type(hdr); 2369 abi->abi_size = arc_hdr_size(hdr); 2370 } 2371 2372 /* 2373 * Move the supplied buffer to the indicated state. The hash lock 2374 * for the buffer must be held by the caller. 2375 */ 2376 static void 2377 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr, 2378 kmutex_t *hash_lock) 2379 { 2380 arc_state_t *old_state; 2381 int64_t refcnt; 2382 uint32_t bufcnt; 2383 boolean_t update_old, update_new; 2384 arc_buf_contents_t buftype = arc_buf_type(hdr); 2385 2386 /* 2387 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 2388 * in arc_read() when bringing a buffer out of the L2ARC. However, the 2389 * L1 hdr doesn't always exist when we change state to arc_anon before 2390 * destroying a header, in which case reallocating to add the L1 hdr is 2391 * pointless. 2392 */ 2393 if (HDR_HAS_L1HDR(hdr)) { 2394 old_state = hdr->b_l1hdr.b_state; 2395 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt); 2396 bufcnt = hdr->b_l1hdr.b_bufcnt; 2397 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL || 2398 HDR_HAS_RABD(hdr)); 2399 } else { 2400 old_state = arc_l2c_only; 2401 refcnt = 0; 2402 bufcnt = 0; 2403 update_old = B_FALSE; 2404 } 2405 update_new = update_old; 2406 2407 ASSERT(MUTEX_HELD(hash_lock)); 2408 ASSERT3P(new_state, !=, old_state); 2409 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0); 2410 ASSERT(old_state != arc_anon || bufcnt <= 1); 2411 2412 /* 2413 * If this buffer is evictable, transfer it from the 2414 * old state list to the new state list. 2415 */ 2416 if (refcnt == 0) { 2417 if (old_state != arc_anon && old_state != arc_l2c_only) { 2418 ASSERT(HDR_HAS_L1HDR(hdr)); 2419 multilist_remove(&old_state->arcs_list[buftype], hdr); 2420 2421 if (GHOST_STATE(old_state)) { 2422 ASSERT0(bufcnt); 2423 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2424 update_old = B_TRUE; 2425 } 2426 arc_evictable_space_decrement(hdr, old_state); 2427 } 2428 if (new_state != arc_anon && new_state != arc_l2c_only) { 2429 /* 2430 * An L1 header always exists here, since if we're 2431 * moving to some L1-cached state (i.e. not l2c_only or 2432 * anonymous), we realloc the header to add an L1hdr 2433 * beforehand. 2434 */ 2435 ASSERT(HDR_HAS_L1HDR(hdr)); 2436 multilist_insert(&new_state->arcs_list[buftype], hdr); 2437 2438 if (GHOST_STATE(new_state)) { 2439 ASSERT0(bufcnt); 2440 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2441 update_new = B_TRUE; 2442 } 2443 arc_evictable_space_increment(hdr, new_state); 2444 } 2445 } 2446 2447 ASSERT(!HDR_EMPTY(hdr)); 2448 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 2449 buf_hash_remove(hdr); 2450 2451 /* adjust state sizes (ignore arc_l2c_only) */ 2452 2453 if (update_new && new_state != arc_l2c_only) { 2454 ASSERT(HDR_HAS_L1HDR(hdr)); 2455 if (GHOST_STATE(new_state)) { 2456 ASSERT0(bufcnt); 2457 2458 /* 2459 * When moving a header to a ghost state, we first 2460 * remove all arc buffers. Thus, we'll have a 2461 * bufcnt of zero, and no arc buffer to use for 2462 * the reference. As a result, we use the arc 2463 * header pointer for the reference. 2464 */ 2465 (void) zfs_refcount_add_many(&new_state->arcs_size, 2466 HDR_GET_LSIZE(hdr), hdr); 2467 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2468 ASSERT(!HDR_HAS_RABD(hdr)); 2469 } else { 2470 uint32_t buffers = 0; 2471 2472 /* 2473 * Each individual buffer holds a unique reference, 2474 * thus we must remove each of these references one 2475 * at a time. 2476 */ 2477 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2478 buf = buf->b_next) { 2479 ASSERT3U(bufcnt, !=, 0); 2480 buffers++; 2481 2482 /* 2483 * When the arc_buf_t is sharing the data 2484 * block with the hdr, the owner of the 2485 * reference belongs to the hdr. Only 2486 * add to the refcount if the arc_buf_t is 2487 * not shared. 2488 */ 2489 if (arc_buf_is_shared(buf)) 2490 continue; 2491 2492 (void) zfs_refcount_add_many( 2493 &new_state->arcs_size, 2494 arc_buf_size(buf), buf); 2495 } 2496 ASSERT3U(bufcnt, ==, buffers); 2497 2498 if (hdr->b_l1hdr.b_pabd != NULL) { 2499 (void) zfs_refcount_add_many( 2500 &new_state->arcs_size, 2501 arc_hdr_size(hdr), hdr); 2502 } 2503 2504 if (HDR_HAS_RABD(hdr)) { 2505 (void) zfs_refcount_add_many( 2506 &new_state->arcs_size, 2507 HDR_GET_PSIZE(hdr), hdr); 2508 } 2509 } 2510 } 2511 2512 if (update_old && old_state != arc_l2c_only) { 2513 ASSERT(HDR_HAS_L1HDR(hdr)); 2514 if (GHOST_STATE(old_state)) { 2515 ASSERT0(bufcnt); 2516 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2517 ASSERT(!HDR_HAS_RABD(hdr)); 2518 2519 /* 2520 * When moving a header off of a ghost state, 2521 * the header will not contain any arc buffers. 2522 * We use the arc header pointer for the reference 2523 * which is exactly what we did when we put the 2524 * header on the ghost state. 2525 */ 2526 2527 (void) zfs_refcount_remove_many(&old_state->arcs_size, 2528 HDR_GET_LSIZE(hdr), hdr); 2529 } else { 2530 uint32_t buffers = 0; 2531 2532 /* 2533 * Each individual buffer holds a unique reference, 2534 * thus we must remove each of these references one 2535 * at a time. 2536 */ 2537 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2538 buf = buf->b_next) { 2539 ASSERT3U(bufcnt, !=, 0); 2540 buffers++; 2541 2542 /* 2543 * When the arc_buf_t is sharing the data 2544 * block with the hdr, the owner of the 2545 * reference belongs to the hdr. Only 2546 * add to the refcount if the arc_buf_t is 2547 * not shared. 2548 */ 2549 if (arc_buf_is_shared(buf)) 2550 continue; 2551 2552 (void) zfs_refcount_remove_many( 2553 &old_state->arcs_size, arc_buf_size(buf), 2554 buf); 2555 } 2556 ASSERT3U(bufcnt, ==, buffers); 2557 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 2558 HDR_HAS_RABD(hdr)); 2559 2560 if (hdr->b_l1hdr.b_pabd != NULL) { 2561 (void) zfs_refcount_remove_many( 2562 &old_state->arcs_size, arc_hdr_size(hdr), 2563 hdr); 2564 } 2565 2566 if (HDR_HAS_RABD(hdr)) { 2567 (void) zfs_refcount_remove_many( 2568 &old_state->arcs_size, HDR_GET_PSIZE(hdr), 2569 hdr); 2570 } 2571 } 2572 } 2573 2574 if (HDR_HAS_L1HDR(hdr)) { 2575 hdr->b_l1hdr.b_state = new_state; 2576 2577 if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) { 2578 l2arc_hdr_arcstats_decrement_state(hdr); 2579 hdr->b_l2hdr.b_arcs_state = new_state->arcs_state; 2580 l2arc_hdr_arcstats_increment_state(hdr); 2581 } 2582 } 2583 } 2584 2585 void 2586 arc_space_consume(uint64_t space, arc_space_type_t type) 2587 { 2588 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2589 2590 switch (type) { 2591 default: 2592 break; 2593 case ARC_SPACE_DATA: 2594 ARCSTAT_INCR(arcstat_data_size, space); 2595 break; 2596 case ARC_SPACE_META: 2597 ARCSTAT_INCR(arcstat_metadata_size, space); 2598 break; 2599 case ARC_SPACE_BONUS: 2600 ARCSTAT_INCR(arcstat_bonus_size, space); 2601 break; 2602 case ARC_SPACE_DNODE: 2603 aggsum_add(&arc_sums.arcstat_dnode_size, space); 2604 break; 2605 case ARC_SPACE_DBUF: 2606 ARCSTAT_INCR(arcstat_dbuf_size, space); 2607 break; 2608 case ARC_SPACE_HDRS: 2609 ARCSTAT_INCR(arcstat_hdr_size, space); 2610 break; 2611 case ARC_SPACE_L2HDRS: 2612 aggsum_add(&arc_sums.arcstat_l2_hdr_size, space); 2613 break; 2614 case ARC_SPACE_ABD_CHUNK_WASTE: 2615 /* 2616 * Note: this includes space wasted by all scatter ABD's, not 2617 * just those allocated by the ARC. But the vast majority of 2618 * scatter ABD's come from the ARC, because other users are 2619 * very short-lived. 2620 */ 2621 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, space); 2622 break; 2623 } 2624 2625 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) 2626 aggsum_add(&arc_sums.arcstat_meta_used, space); 2627 2628 aggsum_add(&arc_sums.arcstat_size, space); 2629 } 2630 2631 void 2632 arc_space_return(uint64_t space, arc_space_type_t type) 2633 { 2634 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2635 2636 switch (type) { 2637 default: 2638 break; 2639 case ARC_SPACE_DATA: 2640 ARCSTAT_INCR(arcstat_data_size, -space); 2641 break; 2642 case ARC_SPACE_META: 2643 ARCSTAT_INCR(arcstat_metadata_size, -space); 2644 break; 2645 case ARC_SPACE_BONUS: 2646 ARCSTAT_INCR(arcstat_bonus_size, -space); 2647 break; 2648 case ARC_SPACE_DNODE: 2649 aggsum_add(&arc_sums.arcstat_dnode_size, -space); 2650 break; 2651 case ARC_SPACE_DBUF: 2652 ARCSTAT_INCR(arcstat_dbuf_size, -space); 2653 break; 2654 case ARC_SPACE_HDRS: 2655 ARCSTAT_INCR(arcstat_hdr_size, -space); 2656 break; 2657 case ARC_SPACE_L2HDRS: 2658 aggsum_add(&arc_sums.arcstat_l2_hdr_size, -space); 2659 break; 2660 case ARC_SPACE_ABD_CHUNK_WASTE: 2661 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, -space); 2662 break; 2663 } 2664 2665 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) { 2666 ASSERT(aggsum_compare(&arc_sums.arcstat_meta_used, 2667 space) >= 0); 2668 ARCSTAT_MAX(arcstat_meta_max, 2669 aggsum_upper_bound(&arc_sums.arcstat_meta_used)); 2670 aggsum_add(&arc_sums.arcstat_meta_used, -space); 2671 } 2672 2673 ASSERT(aggsum_compare(&arc_sums.arcstat_size, space) >= 0); 2674 aggsum_add(&arc_sums.arcstat_size, -space); 2675 } 2676 2677 /* 2678 * Given a hdr and a buf, returns whether that buf can share its b_data buffer 2679 * with the hdr's b_pabd. 2680 */ 2681 static boolean_t 2682 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2683 { 2684 /* 2685 * The criteria for sharing a hdr's data are: 2686 * 1. the buffer is not encrypted 2687 * 2. the hdr's compression matches the buf's compression 2688 * 3. the hdr doesn't need to be byteswapped 2689 * 4. the hdr isn't already being shared 2690 * 5. the buf is either compressed or it is the last buf in the hdr list 2691 * 2692 * Criterion #5 maintains the invariant that shared uncompressed 2693 * bufs must be the final buf in the hdr's b_buf list. Reading this, you 2694 * might ask, "if a compressed buf is allocated first, won't that be the 2695 * last thing in the list?", but in that case it's impossible to create 2696 * a shared uncompressed buf anyway (because the hdr must be compressed 2697 * to have the compressed buf). You might also think that #3 is 2698 * sufficient to make this guarantee, however it's possible 2699 * (specifically in the rare L2ARC write race mentioned in 2700 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that 2701 * is shareable, but wasn't at the time of its allocation. Rather than 2702 * allow a new shared uncompressed buf to be created and then shuffle 2703 * the list around to make it the last element, this simply disallows 2704 * sharing if the new buf isn't the first to be added. 2705 */ 2706 ASSERT3P(buf->b_hdr, ==, hdr); 2707 boolean_t hdr_compressed = 2708 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF; 2709 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0; 2710 return (!ARC_BUF_ENCRYPTED(buf) && 2711 buf_compressed == hdr_compressed && 2712 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && 2713 !HDR_SHARED_DATA(hdr) && 2714 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf))); 2715 } 2716 2717 /* 2718 * Allocate a buf for this hdr. If you care about the data that's in the hdr, 2719 * or if you want a compressed buffer, pass those flags in. Returns 0 if the 2720 * copy was made successfully, or an error code otherwise. 2721 */ 2722 static int 2723 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb, 2724 void *tag, boolean_t encrypted, boolean_t compressed, boolean_t noauth, 2725 boolean_t fill, arc_buf_t **ret) 2726 { 2727 arc_buf_t *buf; 2728 arc_fill_flags_t flags = ARC_FILL_LOCKED; 2729 2730 ASSERT(HDR_HAS_L1HDR(hdr)); 2731 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2732 VERIFY(hdr->b_type == ARC_BUFC_DATA || 2733 hdr->b_type == ARC_BUFC_METADATA); 2734 ASSERT3P(ret, !=, NULL); 2735 ASSERT3P(*ret, ==, NULL); 2736 IMPLY(encrypted, compressed); 2737 2738 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2739 buf->b_hdr = hdr; 2740 buf->b_data = NULL; 2741 buf->b_next = hdr->b_l1hdr.b_buf; 2742 buf->b_flags = 0; 2743 2744 add_reference(hdr, tag); 2745 2746 /* 2747 * We're about to change the hdr's b_flags. We must either 2748 * hold the hash_lock or be undiscoverable. 2749 */ 2750 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2751 2752 /* 2753 * Only honor requests for compressed bufs if the hdr is actually 2754 * compressed. This must be overridden if the buffer is encrypted since 2755 * encrypted buffers cannot be decompressed. 2756 */ 2757 if (encrypted) { 2758 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2759 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED; 2760 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED; 2761 } else if (compressed && 2762 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 2763 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2764 flags |= ARC_FILL_COMPRESSED; 2765 } 2766 2767 if (noauth) { 2768 ASSERT0(encrypted); 2769 flags |= ARC_FILL_NOAUTH; 2770 } 2771 2772 /* 2773 * If the hdr's data can be shared then we share the data buffer and 2774 * set the appropriate bit in the hdr's b_flags to indicate the hdr is 2775 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new 2776 * buffer to store the buf's data. 2777 * 2778 * There are two additional restrictions here because we're sharing 2779 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be 2780 * actively involved in an L2ARC write, because if this buf is used by 2781 * an arc_write() then the hdr's data buffer will be released when the 2782 * write completes, even though the L2ARC write might still be using it. 2783 * Second, the hdr's ABD must be linear so that the buf's user doesn't 2784 * need to be ABD-aware. It must be allocated via 2785 * zio_[data_]buf_alloc(), not as a page, because we need to be able 2786 * to abd_release_ownership_of_buf(), which isn't allowed on "linear 2787 * page" buffers because the ABD code needs to handle freeing them 2788 * specially. 2789 */ 2790 boolean_t can_share = arc_can_share(hdr, buf) && 2791 !HDR_L2_WRITING(hdr) && 2792 hdr->b_l1hdr.b_pabd != NULL && 2793 abd_is_linear(hdr->b_l1hdr.b_pabd) && 2794 !abd_is_linear_page(hdr->b_l1hdr.b_pabd); 2795 2796 /* Set up b_data and sharing */ 2797 if (can_share) { 2798 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd); 2799 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2800 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2801 } else { 2802 buf->b_data = 2803 arc_get_data_buf(hdr, arc_buf_size(buf), buf); 2804 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2805 } 2806 VERIFY3P(buf->b_data, !=, NULL); 2807 2808 hdr->b_l1hdr.b_buf = buf; 2809 hdr->b_l1hdr.b_bufcnt += 1; 2810 if (encrypted) 2811 hdr->b_crypt_hdr.b_ebufcnt += 1; 2812 2813 /* 2814 * If the user wants the data from the hdr, we need to either copy or 2815 * decompress the data. 2816 */ 2817 if (fill) { 2818 ASSERT3P(zb, !=, NULL); 2819 return (arc_buf_fill(buf, spa, zb, flags)); 2820 } 2821 2822 return (0); 2823 } 2824 2825 static char *arc_onloan_tag = "onloan"; 2826 2827 static inline void 2828 arc_loaned_bytes_update(int64_t delta) 2829 { 2830 atomic_add_64(&arc_loaned_bytes, delta); 2831 2832 /* assert that it did not wrap around */ 2833 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 2834 } 2835 2836 /* 2837 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 2838 * flight data by arc_tempreserve_space() until they are "returned". Loaned 2839 * buffers must be returned to the arc before they can be used by the DMU or 2840 * freed. 2841 */ 2842 arc_buf_t * 2843 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size) 2844 { 2845 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag, 2846 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size); 2847 2848 arc_loaned_bytes_update(arc_buf_size(buf)); 2849 2850 return (buf); 2851 } 2852 2853 arc_buf_t * 2854 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize, 2855 enum zio_compress compression_type, uint8_t complevel) 2856 { 2857 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag, 2858 psize, lsize, compression_type, complevel); 2859 2860 arc_loaned_bytes_update(arc_buf_size(buf)); 2861 2862 return (buf); 2863 } 2864 2865 arc_buf_t * 2866 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder, 2867 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 2868 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 2869 enum zio_compress compression_type, uint8_t complevel) 2870 { 2871 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj, 2872 byteorder, salt, iv, mac, ot, psize, lsize, compression_type, 2873 complevel); 2874 2875 atomic_add_64(&arc_loaned_bytes, psize); 2876 return (buf); 2877 } 2878 2879 2880 /* 2881 * Return a loaned arc buffer to the arc. 2882 */ 2883 void 2884 arc_return_buf(arc_buf_t *buf, void *tag) 2885 { 2886 arc_buf_hdr_t *hdr = buf->b_hdr; 2887 2888 ASSERT3P(buf->b_data, !=, NULL); 2889 ASSERT(HDR_HAS_L1HDR(hdr)); 2890 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 2891 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2892 2893 arc_loaned_bytes_update(-arc_buf_size(buf)); 2894 } 2895 2896 /* Detach an arc_buf from a dbuf (tag) */ 2897 void 2898 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 2899 { 2900 arc_buf_hdr_t *hdr = buf->b_hdr; 2901 2902 ASSERT3P(buf->b_data, !=, NULL); 2903 ASSERT(HDR_HAS_L1HDR(hdr)); 2904 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2905 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 2906 2907 arc_loaned_bytes_update(arc_buf_size(buf)); 2908 } 2909 2910 static void 2911 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type) 2912 { 2913 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); 2914 2915 df->l2df_abd = abd; 2916 df->l2df_size = size; 2917 df->l2df_type = type; 2918 mutex_enter(&l2arc_free_on_write_mtx); 2919 list_insert_head(l2arc_free_on_write, df); 2920 mutex_exit(&l2arc_free_on_write_mtx); 2921 } 2922 2923 static void 2924 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata) 2925 { 2926 arc_state_t *state = hdr->b_l1hdr.b_state; 2927 arc_buf_contents_t type = arc_buf_type(hdr); 2928 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 2929 2930 /* protected by hash lock, if in the hash table */ 2931 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2932 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2933 ASSERT(state != arc_anon && state != arc_l2c_only); 2934 2935 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2936 size, hdr); 2937 } 2938 (void) zfs_refcount_remove_many(&state->arcs_size, size, hdr); 2939 if (type == ARC_BUFC_METADATA) { 2940 arc_space_return(size, ARC_SPACE_META); 2941 } else { 2942 ASSERT(type == ARC_BUFC_DATA); 2943 arc_space_return(size, ARC_SPACE_DATA); 2944 } 2945 2946 if (free_rdata) { 2947 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type); 2948 } else { 2949 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type); 2950 } 2951 } 2952 2953 /* 2954 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the 2955 * data buffer, we transfer the refcount ownership to the hdr and update 2956 * the appropriate kstats. 2957 */ 2958 static void 2959 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2960 { 2961 ASSERT(arc_can_share(hdr, buf)); 2962 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2963 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 2964 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2965 2966 /* 2967 * Start sharing the data buffer. We transfer the 2968 * refcount ownership to the hdr since it always owns 2969 * the refcount whenever an arc_buf_t is shared. 2970 */ 2971 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 2972 arc_hdr_size(hdr), buf, hdr); 2973 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf)); 2974 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd, 2975 HDR_ISTYPE_METADATA(hdr)); 2976 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2977 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2978 2979 /* 2980 * Since we've transferred ownership to the hdr we need 2981 * to increment its compressed and uncompressed kstats and 2982 * decrement the overhead size. 2983 */ 2984 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 2985 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 2986 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf)); 2987 } 2988 2989 static void 2990 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2991 { 2992 ASSERT(arc_buf_is_shared(buf)); 2993 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2994 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2995 2996 /* 2997 * We are no longer sharing this buffer so we need 2998 * to transfer its ownership to the rightful owner. 2999 */ 3000 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 3001 arc_hdr_size(hdr), hdr, buf); 3002 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3003 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd); 3004 abd_free(hdr->b_l1hdr.b_pabd); 3005 hdr->b_l1hdr.b_pabd = NULL; 3006 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 3007 3008 /* 3009 * Since the buffer is no longer shared between 3010 * the arc buf and the hdr, count it as overhead. 3011 */ 3012 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 3013 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3014 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 3015 } 3016 3017 /* 3018 * Remove an arc_buf_t from the hdr's buf list and return the last 3019 * arc_buf_t on the list. If no buffers remain on the list then return 3020 * NULL. 3021 */ 3022 static arc_buf_t * 3023 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf) 3024 { 3025 ASSERT(HDR_HAS_L1HDR(hdr)); 3026 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3027 3028 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf; 3029 arc_buf_t *lastbuf = NULL; 3030 3031 /* 3032 * Remove the buf from the hdr list and locate the last 3033 * remaining buffer on the list. 3034 */ 3035 while (*bufp != NULL) { 3036 if (*bufp == buf) 3037 *bufp = buf->b_next; 3038 3039 /* 3040 * If we've removed a buffer in the middle of 3041 * the list then update the lastbuf and update 3042 * bufp. 3043 */ 3044 if (*bufp != NULL) { 3045 lastbuf = *bufp; 3046 bufp = &(*bufp)->b_next; 3047 } 3048 } 3049 buf->b_next = NULL; 3050 ASSERT3P(lastbuf, !=, buf); 3051 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL); 3052 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL); 3053 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf)); 3054 3055 return (lastbuf); 3056 } 3057 3058 /* 3059 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's 3060 * list and free it. 3061 */ 3062 static void 3063 arc_buf_destroy_impl(arc_buf_t *buf) 3064 { 3065 arc_buf_hdr_t *hdr = buf->b_hdr; 3066 3067 /* 3068 * Free up the data associated with the buf but only if we're not 3069 * sharing this with the hdr. If we are sharing it with the hdr, the 3070 * hdr is responsible for doing the free. 3071 */ 3072 if (buf->b_data != NULL) { 3073 /* 3074 * We're about to change the hdr's b_flags. We must either 3075 * hold the hash_lock or be undiscoverable. 3076 */ 3077 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3078 3079 arc_cksum_verify(buf); 3080 arc_buf_unwatch(buf); 3081 3082 if (arc_buf_is_shared(buf)) { 3083 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3084 } else { 3085 uint64_t size = arc_buf_size(buf); 3086 arc_free_data_buf(hdr, buf->b_data, size, buf); 3087 ARCSTAT_INCR(arcstat_overhead_size, -size); 3088 } 3089 buf->b_data = NULL; 3090 3091 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3092 hdr->b_l1hdr.b_bufcnt -= 1; 3093 3094 if (ARC_BUF_ENCRYPTED(buf)) { 3095 hdr->b_crypt_hdr.b_ebufcnt -= 1; 3096 3097 /* 3098 * If we have no more encrypted buffers and we've 3099 * already gotten a copy of the decrypted data we can 3100 * free b_rabd to save some space. 3101 */ 3102 if (hdr->b_crypt_hdr.b_ebufcnt == 0 && 3103 HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL && 3104 !HDR_IO_IN_PROGRESS(hdr)) { 3105 arc_hdr_free_abd(hdr, B_TRUE); 3106 } 3107 } 3108 } 3109 3110 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 3111 3112 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 3113 /* 3114 * If the current arc_buf_t is sharing its data buffer with the 3115 * hdr, then reassign the hdr's b_pabd to share it with the new 3116 * buffer at the end of the list. The shared buffer is always 3117 * the last one on the hdr's buffer list. 3118 * 3119 * There is an equivalent case for compressed bufs, but since 3120 * they aren't guaranteed to be the last buf in the list and 3121 * that is an exceedingly rare case, we just allow that space be 3122 * wasted temporarily. We must also be careful not to share 3123 * encrypted buffers, since they cannot be shared. 3124 */ 3125 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) { 3126 /* Only one buf can be shared at once */ 3127 VERIFY(!arc_buf_is_shared(lastbuf)); 3128 /* hdr is uncompressed so can't have compressed buf */ 3129 VERIFY(!ARC_BUF_COMPRESSED(lastbuf)); 3130 3131 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3132 arc_hdr_free_abd(hdr, B_FALSE); 3133 3134 /* 3135 * We must setup a new shared block between the 3136 * last buffer and the hdr. The data would have 3137 * been allocated by the arc buf so we need to transfer 3138 * ownership to the hdr since it's now being shared. 3139 */ 3140 arc_share_buf(hdr, lastbuf); 3141 } 3142 } else if (HDR_SHARED_DATA(hdr)) { 3143 /* 3144 * Uncompressed shared buffers are always at the end 3145 * of the list. Compressed buffers don't have the 3146 * same requirements. This makes it hard to 3147 * simply assert that the lastbuf is shared so 3148 * we rely on the hdr's compression flags to determine 3149 * if we have a compressed, shared buffer. 3150 */ 3151 ASSERT3P(lastbuf, !=, NULL); 3152 ASSERT(arc_buf_is_shared(lastbuf) || 3153 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 3154 } 3155 3156 /* 3157 * Free the checksum if we're removing the last uncompressed buf from 3158 * this hdr. 3159 */ 3160 if (!arc_hdr_has_uncompressed_buf(hdr)) { 3161 arc_cksum_free(hdr); 3162 } 3163 3164 /* clean up the buf */ 3165 buf->b_hdr = NULL; 3166 kmem_cache_free(buf_cache, buf); 3167 } 3168 3169 static void 3170 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags) 3171 { 3172 uint64_t size; 3173 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0); 3174 3175 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 3176 ASSERT(HDR_HAS_L1HDR(hdr)); 3177 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata); 3178 IMPLY(alloc_rdata, HDR_PROTECTED(hdr)); 3179 3180 if (alloc_rdata) { 3181 size = HDR_GET_PSIZE(hdr); 3182 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL); 3183 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr, 3184 alloc_flags); 3185 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL); 3186 ARCSTAT_INCR(arcstat_raw_size, size); 3187 } else { 3188 size = arc_hdr_size(hdr); 3189 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3190 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr, 3191 alloc_flags); 3192 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3193 } 3194 3195 ARCSTAT_INCR(arcstat_compressed_size, size); 3196 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3197 } 3198 3199 static void 3200 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata) 3201 { 3202 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 3203 3204 ASSERT(HDR_HAS_L1HDR(hdr)); 3205 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 3206 IMPLY(free_rdata, HDR_HAS_RABD(hdr)); 3207 3208 /* 3209 * If the hdr is currently being written to the l2arc then 3210 * we defer freeing the data by adding it to the l2arc_free_on_write 3211 * list. The l2arc will free the data once it's finished 3212 * writing it to the l2arc device. 3213 */ 3214 if (HDR_L2_WRITING(hdr)) { 3215 arc_hdr_free_on_write(hdr, free_rdata); 3216 ARCSTAT_BUMP(arcstat_l2_free_on_write); 3217 } else if (free_rdata) { 3218 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr); 3219 } else { 3220 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr); 3221 } 3222 3223 if (free_rdata) { 3224 hdr->b_crypt_hdr.b_rabd = NULL; 3225 ARCSTAT_INCR(arcstat_raw_size, -size); 3226 } else { 3227 hdr->b_l1hdr.b_pabd = NULL; 3228 } 3229 3230 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr)) 3231 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 3232 3233 ARCSTAT_INCR(arcstat_compressed_size, -size); 3234 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3235 } 3236 3237 /* 3238 * Allocate empty anonymous ARC header. The header will get its identity 3239 * assigned and buffers attached later as part of read or write operations. 3240 * 3241 * In case of read arc_read() assigns header its identify (b_dva + b_birth), 3242 * inserts it into ARC hash to become globally visible and allocates physical 3243 * (b_pabd) or raw (b_rabd) ABD buffer to read into from disk. On disk read 3244 * completion arc_read_done() allocates ARC buffer(s) as needed, potentially 3245 * sharing one of them with the physical ABD buffer. 3246 * 3247 * In case of write arc_alloc_buf() allocates ARC buffer to be filled with 3248 * data. Then after compression and/or encryption arc_write_ready() allocates 3249 * and fills (or potentially shares) physical (b_pabd) or raw (b_rabd) ABD 3250 * buffer. On disk write completion arc_write_done() assigns the header its 3251 * new identity (b_dva + b_birth) and inserts into ARC hash. 3252 * 3253 * In case of partial overwrite the old data is read first as described. Then 3254 * arc_release() either allocates new anonymous ARC header and moves the ARC 3255 * buffer to it, or reuses the old ARC header by discarding its identity and 3256 * removing it from ARC hash. After buffer modification normal write process 3257 * follows as described. 3258 */ 3259 static arc_buf_hdr_t * 3260 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, 3261 boolean_t protected, enum zio_compress compression_type, uint8_t complevel, 3262 arc_buf_contents_t type) 3263 { 3264 arc_buf_hdr_t *hdr; 3265 3266 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); 3267 if (protected) { 3268 hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE); 3269 } else { 3270 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 3271 } 3272 3273 ASSERT(HDR_EMPTY(hdr)); 3274 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3275 HDR_SET_PSIZE(hdr, psize); 3276 HDR_SET_LSIZE(hdr, lsize); 3277 hdr->b_spa = spa; 3278 hdr->b_type = type; 3279 hdr->b_flags = 0; 3280 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); 3281 arc_hdr_set_compress(hdr, compression_type); 3282 hdr->b_complevel = complevel; 3283 if (protected) 3284 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 3285 3286 hdr->b_l1hdr.b_state = arc_anon; 3287 hdr->b_l1hdr.b_arc_access = 0; 3288 hdr->b_l1hdr.b_mru_hits = 0; 3289 hdr->b_l1hdr.b_mru_ghost_hits = 0; 3290 hdr->b_l1hdr.b_mfu_hits = 0; 3291 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 3292 hdr->b_l1hdr.b_bufcnt = 0; 3293 hdr->b_l1hdr.b_buf = NULL; 3294 3295 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3296 3297 return (hdr); 3298 } 3299 3300 /* 3301 * Transition between the two allocation states for the arc_buf_hdr struct. 3302 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 3303 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 3304 * version is used when a cache buffer is only in the L2ARC in order to reduce 3305 * memory usage. 3306 */ 3307 static arc_buf_hdr_t * 3308 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 3309 { 3310 ASSERT(HDR_HAS_L2HDR(hdr)); 3311 3312 arc_buf_hdr_t *nhdr; 3313 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3314 3315 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 3316 (old == hdr_l2only_cache && new == hdr_full_cache)); 3317 3318 /* 3319 * if the caller wanted a new full header and the header is to be 3320 * encrypted we will actually allocate the header from the full crypt 3321 * cache instead. The same applies to freeing from the old cache. 3322 */ 3323 if (HDR_PROTECTED(hdr) && new == hdr_full_cache) 3324 new = hdr_full_crypt_cache; 3325 if (HDR_PROTECTED(hdr) && old == hdr_full_cache) 3326 old = hdr_full_crypt_cache; 3327 3328 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 3329 3330 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 3331 buf_hash_remove(hdr); 3332 3333 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE); 3334 3335 if (new == hdr_full_cache || new == hdr_full_crypt_cache) { 3336 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3337 /* 3338 * arc_access and arc_change_state need to be aware that a 3339 * header has just come out of L2ARC, so we set its state to 3340 * l2c_only even though it's about to change. 3341 */ 3342 nhdr->b_l1hdr.b_state = arc_l2c_only; 3343 3344 /* Verify previous threads set to NULL before freeing */ 3345 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL); 3346 ASSERT(!HDR_HAS_RABD(hdr)); 3347 } else { 3348 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3349 ASSERT0(hdr->b_l1hdr.b_bufcnt); 3350 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3351 3352 /* 3353 * If we've reached here, We must have been called from 3354 * arc_evict_hdr(), as such we should have already been 3355 * removed from any ghost list we were previously on 3356 * (which protects us from racing with arc_evict_state), 3357 * thus no locking is needed during this check. 3358 */ 3359 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3360 3361 /* 3362 * A buffer must not be moved into the arc_l2c_only 3363 * state if it's not finished being written out to the 3364 * l2arc device. Otherwise, the b_l1hdr.b_pabd field 3365 * might try to be accessed, even though it was removed. 3366 */ 3367 VERIFY(!HDR_L2_WRITING(hdr)); 3368 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3369 ASSERT(!HDR_HAS_RABD(hdr)); 3370 3371 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3372 } 3373 /* 3374 * The header has been reallocated so we need to re-insert it into any 3375 * lists it was on. 3376 */ 3377 (void) buf_hash_insert(nhdr, NULL); 3378 3379 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 3380 3381 mutex_enter(&dev->l2ad_mtx); 3382 3383 /* 3384 * We must place the realloc'ed header back into the list at 3385 * the same spot. Otherwise, if it's placed earlier in the list, 3386 * l2arc_write_buffers() could find it during the function's 3387 * write phase, and try to write it out to the l2arc. 3388 */ 3389 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 3390 list_remove(&dev->l2ad_buflist, hdr); 3391 3392 mutex_exit(&dev->l2ad_mtx); 3393 3394 /* 3395 * Since we're using the pointer address as the tag when 3396 * incrementing and decrementing the l2ad_alloc refcount, we 3397 * must remove the old pointer (that we're about to destroy) and 3398 * add the new pointer to the refcount. Otherwise we'd remove 3399 * the wrong pointer address when calling arc_hdr_destroy() later. 3400 */ 3401 3402 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 3403 arc_hdr_size(hdr), hdr); 3404 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 3405 arc_hdr_size(nhdr), nhdr); 3406 3407 buf_discard_identity(hdr); 3408 kmem_cache_free(old, hdr); 3409 3410 return (nhdr); 3411 } 3412 3413 /* 3414 * This function allows an L1 header to be reallocated as a crypt 3415 * header and vice versa. If we are going to a crypt header, the 3416 * new fields will be zeroed out. 3417 */ 3418 static arc_buf_hdr_t * 3419 arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt) 3420 { 3421 arc_buf_hdr_t *nhdr; 3422 arc_buf_t *buf; 3423 kmem_cache_t *ncache, *ocache; 3424 3425 /* 3426 * This function requires that hdr is in the arc_anon state. 3427 * Therefore it won't have any L2ARC data for us to worry 3428 * about copying. 3429 */ 3430 ASSERT(HDR_HAS_L1HDR(hdr)); 3431 ASSERT(!HDR_HAS_L2HDR(hdr)); 3432 ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt); 3433 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3434 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3435 ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node)); 3436 ASSERT3P(hdr->b_hash_next, ==, NULL); 3437 3438 if (need_crypt) { 3439 ncache = hdr_full_crypt_cache; 3440 ocache = hdr_full_cache; 3441 } else { 3442 ncache = hdr_full_cache; 3443 ocache = hdr_full_crypt_cache; 3444 } 3445 3446 nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE); 3447 3448 /* 3449 * Copy all members that aren't locks or condvars to the new header. 3450 * No lists are pointing to us (as we asserted above), so we don't 3451 * need to worry about the list nodes. 3452 */ 3453 nhdr->b_dva = hdr->b_dva; 3454 nhdr->b_birth = hdr->b_birth; 3455 nhdr->b_type = hdr->b_type; 3456 nhdr->b_flags = hdr->b_flags; 3457 nhdr->b_psize = hdr->b_psize; 3458 nhdr->b_lsize = hdr->b_lsize; 3459 nhdr->b_spa = hdr->b_spa; 3460 nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum; 3461 nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt; 3462 nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap; 3463 nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state; 3464 nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access; 3465 nhdr->b_l1hdr.b_mru_hits = hdr->b_l1hdr.b_mru_hits; 3466 nhdr->b_l1hdr.b_mru_ghost_hits = hdr->b_l1hdr.b_mru_ghost_hits; 3467 nhdr->b_l1hdr.b_mfu_hits = hdr->b_l1hdr.b_mfu_hits; 3468 nhdr->b_l1hdr.b_mfu_ghost_hits = hdr->b_l1hdr.b_mfu_ghost_hits; 3469 nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb; 3470 nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd; 3471 3472 /* 3473 * This zfs_refcount_add() exists only to ensure that the individual 3474 * arc buffers always point to a header that is referenced, avoiding 3475 * a small race condition that could trigger ASSERTs. 3476 */ 3477 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG); 3478 nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf; 3479 for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) { 3480 mutex_enter(&buf->b_evict_lock); 3481 buf->b_hdr = nhdr; 3482 mutex_exit(&buf->b_evict_lock); 3483 } 3484 3485 zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt); 3486 (void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG); 3487 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3488 3489 if (need_crypt) { 3490 arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED); 3491 } else { 3492 arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED); 3493 } 3494 3495 /* unset all members of the original hdr */ 3496 bzero(&hdr->b_dva, sizeof (dva_t)); 3497 hdr->b_birth = 0; 3498 hdr->b_type = ARC_BUFC_INVALID; 3499 hdr->b_flags = 0; 3500 hdr->b_psize = 0; 3501 hdr->b_lsize = 0; 3502 hdr->b_spa = 0; 3503 hdr->b_l1hdr.b_freeze_cksum = NULL; 3504 hdr->b_l1hdr.b_buf = NULL; 3505 hdr->b_l1hdr.b_bufcnt = 0; 3506 hdr->b_l1hdr.b_byteswap = 0; 3507 hdr->b_l1hdr.b_state = NULL; 3508 hdr->b_l1hdr.b_arc_access = 0; 3509 hdr->b_l1hdr.b_mru_hits = 0; 3510 hdr->b_l1hdr.b_mru_ghost_hits = 0; 3511 hdr->b_l1hdr.b_mfu_hits = 0; 3512 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 3513 hdr->b_l1hdr.b_acb = NULL; 3514 hdr->b_l1hdr.b_pabd = NULL; 3515 3516 if (ocache == hdr_full_crypt_cache) { 3517 ASSERT(!HDR_HAS_RABD(hdr)); 3518 hdr->b_crypt_hdr.b_ot = DMU_OT_NONE; 3519 hdr->b_crypt_hdr.b_ebufcnt = 0; 3520 hdr->b_crypt_hdr.b_dsobj = 0; 3521 bzero(hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3522 bzero(hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3523 bzero(hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3524 } 3525 3526 buf_discard_identity(hdr); 3527 kmem_cache_free(ocache, hdr); 3528 3529 return (nhdr); 3530 } 3531 3532 /* 3533 * This function is used by the send / receive code to convert a newly 3534 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It 3535 * is also used to allow the root objset block to be updated without altering 3536 * its embedded MACs. Both block types will always be uncompressed so we do not 3537 * have to worry about compression type or psize. 3538 */ 3539 void 3540 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder, 3541 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv, 3542 const uint8_t *mac) 3543 { 3544 arc_buf_hdr_t *hdr = buf->b_hdr; 3545 3546 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET); 3547 ASSERT(HDR_HAS_L1HDR(hdr)); 3548 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3549 3550 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED); 3551 if (!HDR_PROTECTED(hdr)) 3552 hdr = arc_hdr_realloc_crypt(hdr, B_TRUE); 3553 hdr->b_crypt_hdr.b_dsobj = dsobj; 3554 hdr->b_crypt_hdr.b_ot = ot; 3555 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3556 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3557 if (!arc_hdr_has_uncompressed_buf(hdr)) 3558 arc_cksum_free(hdr); 3559 3560 if (salt != NULL) 3561 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3562 if (iv != NULL) 3563 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3564 if (mac != NULL) 3565 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3566 } 3567 3568 /* 3569 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. 3570 * The buf is returned thawed since we expect the consumer to modify it. 3571 */ 3572 arc_buf_t * 3573 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size) 3574 { 3575 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, 3576 B_FALSE, ZIO_COMPRESS_OFF, 0, type); 3577 3578 arc_buf_t *buf = NULL; 3579 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE, 3580 B_FALSE, B_FALSE, &buf)); 3581 arc_buf_thaw(buf); 3582 3583 return (buf); 3584 } 3585 3586 /* 3587 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this 3588 * for bufs containing metadata. 3589 */ 3590 arc_buf_t * 3591 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize, 3592 enum zio_compress compression_type, uint8_t complevel) 3593 { 3594 ASSERT3U(lsize, >, 0); 3595 ASSERT3U(lsize, >=, psize); 3596 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF); 3597 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3598 3599 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 3600 B_FALSE, compression_type, complevel, ARC_BUFC_DATA); 3601 3602 arc_buf_t *buf = NULL; 3603 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, 3604 B_TRUE, B_FALSE, B_FALSE, &buf)); 3605 arc_buf_thaw(buf); 3606 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3607 3608 /* 3609 * To ensure that the hdr has the correct data in it if we call 3610 * arc_untransform() on this buf before it's been written to disk, 3611 * it's easiest if we just set up sharing between the buf and the hdr. 3612 */ 3613 arc_share_buf(hdr, buf); 3614 3615 return (buf); 3616 } 3617 3618 arc_buf_t * 3619 arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder, 3620 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 3621 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 3622 enum zio_compress compression_type, uint8_t complevel) 3623 { 3624 arc_buf_hdr_t *hdr; 3625 arc_buf_t *buf; 3626 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ? 3627 ARC_BUFC_METADATA : ARC_BUFC_DATA; 3628 3629 ASSERT3U(lsize, >, 0); 3630 ASSERT3U(lsize, >=, psize); 3631 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF); 3632 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3633 3634 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE, 3635 compression_type, complevel, type); 3636 3637 hdr->b_crypt_hdr.b_dsobj = dsobj; 3638 hdr->b_crypt_hdr.b_ot = ot; 3639 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3640 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3641 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3642 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3643 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3644 3645 /* 3646 * This buffer will be considered encrypted even if the ot is not an 3647 * encrypted type. It will become authenticated instead in 3648 * arc_write_ready(). 3649 */ 3650 buf = NULL; 3651 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE, 3652 B_FALSE, B_FALSE, &buf)); 3653 arc_buf_thaw(buf); 3654 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3655 3656 return (buf); 3657 } 3658 3659 static void 3660 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 3661 boolean_t state_only) 3662 { 3663 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3664 l2arc_dev_t *dev = l2hdr->b_dev; 3665 uint64_t lsize = HDR_GET_LSIZE(hdr); 3666 uint64_t psize = HDR_GET_PSIZE(hdr); 3667 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3668 arc_buf_contents_t type = hdr->b_type; 3669 int64_t lsize_s; 3670 int64_t psize_s; 3671 int64_t asize_s; 3672 3673 if (incr) { 3674 lsize_s = lsize; 3675 psize_s = psize; 3676 asize_s = asize; 3677 } else { 3678 lsize_s = -lsize; 3679 psize_s = -psize; 3680 asize_s = -asize; 3681 } 3682 3683 /* If the buffer is a prefetch, count it as such. */ 3684 if (HDR_PREFETCH(hdr)) { 3685 ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s); 3686 } else { 3687 /* 3688 * We use the value stored in the L2 header upon initial 3689 * caching in L2ARC. This value will be updated in case 3690 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC 3691 * metadata (log entry) cannot currently be updated. Having 3692 * the ARC state in the L2 header solves the problem of a 3693 * possibly absent L1 header (apparent in buffers restored 3694 * from persistent L2ARC). 3695 */ 3696 switch (hdr->b_l2hdr.b_arcs_state) { 3697 case ARC_STATE_MRU_GHOST: 3698 case ARC_STATE_MRU: 3699 ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s); 3700 break; 3701 case ARC_STATE_MFU_GHOST: 3702 case ARC_STATE_MFU: 3703 ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s); 3704 break; 3705 default: 3706 break; 3707 } 3708 } 3709 3710 if (state_only) 3711 return; 3712 3713 ARCSTAT_INCR(arcstat_l2_psize, psize_s); 3714 ARCSTAT_INCR(arcstat_l2_lsize, lsize_s); 3715 3716 switch (type) { 3717 case ARC_BUFC_DATA: 3718 ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s); 3719 break; 3720 case ARC_BUFC_METADATA: 3721 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s); 3722 break; 3723 default: 3724 break; 3725 } 3726 } 3727 3728 3729 static void 3730 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 3731 { 3732 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3733 l2arc_dev_t *dev = l2hdr->b_dev; 3734 uint64_t psize = HDR_GET_PSIZE(hdr); 3735 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3736 3737 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 3738 ASSERT(HDR_HAS_L2HDR(hdr)); 3739 3740 list_remove(&dev->l2ad_buflist, hdr); 3741 3742 l2arc_hdr_arcstats_decrement(hdr); 3743 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); 3744 3745 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), 3746 hdr); 3747 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 3748 } 3749 3750 static void 3751 arc_hdr_destroy(arc_buf_hdr_t *hdr) 3752 { 3753 if (HDR_HAS_L1HDR(hdr)) { 3754 ASSERT(hdr->b_l1hdr.b_buf == NULL || 3755 hdr->b_l1hdr.b_bufcnt > 0); 3756 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3757 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3758 } 3759 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3760 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 3761 3762 if (HDR_HAS_L2HDR(hdr)) { 3763 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3764 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 3765 3766 if (!buflist_held) 3767 mutex_enter(&dev->l2ad_mtx); 3768 3769 /* 3770 * Even though we checked this conditional above, we 3771 * need to check this again now that we have the 3772 * l2ad_mtx. This is because we could be racing with 3773 * another thread calling l2arc_evict() which might have 3774 * destroyed this header's L2 portion as we were waiting 3775 * to acquire the l2ad_mtx. If that happens, we don't 3776 * want to re-destroy the header's L2 portion. 3777 */ 3778 if (HDR_HAS_L2HDR(hdr)) { 3779 3780 if (!HDR_EMPTY(hdr)) 3781 buf_discard_identity(hdr); 3782 3783 arc_hdr_l2hdr_destroy(hdr); 3784 } 3785 3786 if (!buflist_held) 3787 mutex_exit(&dev->l2ad_mtx); 3788 } 3789 3790 /* 3791 * The header's identify can only be safely discarded once it is no 3792 * longer discoverable. This requires removing it from the hash table 3793 * and the l2arc header list. After this point the hash lock can not 3794 * be used to protect the header. 3795 */ 3796 if (!HDR_EMPTY(hdr)) 3797 buf_discard_identity(hdr); 3798 3799 if (HDR_HAS_L1HDR(hdr)) { 3800 arc_cksum_free(hdr); 3801 3802 while (hdr->b_l1hdr.b_buf != NULL) 3803 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf); 3804 3805 if (hdr->b_l1hdr.b_pabd != NULL) 3806 arc_hdr_free_abd(hdr, B_FALSE); 3807 3808 if (HDR_HAS_RABD(hdr)) 3809 arc_hdr_free_abd(hdr, B_TRUE); 3810 } 3811 3812 ASSERT3P(hdr->b_hash_next, ==, NULL); 3813 if (HDR_HAS_L1HDR(hdr)) { 3814 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3815 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 3816 3817 if (!HDR_PROTECTED(hdr)) { 3818 kmem_cache_free(hdr_full_cache, hdr); 3819 } else { 3820 kmem_cache_free(hdr_full_crypt_cache, hdr); 3821 } 3822 } else { 3823 kmem_cache_free(hdr_l2only_cache, hdr); 3824 } 3825 } 3826 3827 void 3828 arc_buf_destroy(arc_buf_t *buf, void* tag) 3829 { 3830 arc_buf_hdr_t *hdr = buf->b_hdr; 3831 3832 if (hdr->b_l1hdr.b_state == arc_anon) { 3833 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 3834 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3835 VERIFY0(remove_reference(hdr, NULL, tag)); 3836 arc_hdr_destroy(hdr); 3837 return; 3838 } 3839 3840 kmutex_t *hash_lock = HDR_LOCK(hdr); 3841 mutex_enter(hash_lock); 3842 3843 ASSERT3P(hdr, ==, buf->b_hdr); 3844 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3845 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3846 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); 3847 ASSERT3P(buf->b_data, !=, NULL); 3848 3849 (void) remove_reference(hdr, hash_lock, tag); 3850 arc_buf_destroy_impl(buf); 3851 mutex_exit(hash_lock); 3852 } 3853 3854 /* 3855 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 3856 * state of the header is dependent on its state prior to entering this 3857 * function. The following transitions are possible: 3858 * 3859 * - arc_mru -> arc_mru_ghost 3860 * - arc_mfu -> arc_mfu_ghost 3861 * - arc_mru_ghost -> arc_l2c_only 3862 * - arc_mru_ghost -> deleted 3863 * - arc_mfu_ghost -> arc_l2c_only 3864 * - arc_mfu_ghost -> deleted 3865 * 3866 * Return total size of evicted data buffers for eviction progress tracking. 3867 * When evicting from ghost states return logical buffer size to make eviction 3868 * progress at the same (or at least comparable) rate as from non-ghost states. 3869 * 3870 * Return *real_evicted for actual ARC size reduction to wake up threads 3871 * waiting for it. For non-ghost states it includes size of evicted data 3872 * buffers (the headers are not freed there). For ghost states it includes 3873 * only the evicted headers size. 3874 */ 3875 static int64_t 3876 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, uint64_t *real_evicted) 3877 { 3878 arc_state_t *evicted_state, *state; 3879 int64_t bytes_evicted = 0; 3880 int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ? 3881 arc_min_prescient_prefetch_ms : arc_min_prefetch_ms; 3882 3883 ASSERT(MUTEX_HELD(hash_lock)); 3884 ASSERT(HDR_HAS_L1HDR(hdr)); 3885 3886 *real_evicted = 0; 3887 state = hdr->b_l1hdr.b_state; 3888 if (GHOST_STATE(state)) { 3889 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3890 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3891 3892 /* 3893 * l2arc_write_buffers() relies on a header's L1 portion 3894 * (i.e. its b_pabd field) during it's write phase. 3895 * Thus, we cannot push a header onto the arc_l2c_only 3896 * state (removing its L1 piece) until the header is 3897 * done being written to the l2arc. 3898 */ 3899 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 3900 ARCSTAT_BUMP(arcstat_evict_l2_skip); 3901 return (bytes_evicted); 3902 } 3903 3904 ARCSTAT_BUMP(arcstat_deleted); 3905 bytes_evicted += HDR_GET_LSIZE(hdr); 3906 3907 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 3908 3909 if (HDR_HAS_L2HDR(hdr)) { 3910 ASSERT(hdr->b_l1hdr.b_pabd == NULL); 3911 ASSERT(!HDR_HAS_RABD(hdr)); 3912 /* 3913 * This buffer is cached on the 2nd Level ARC; 3914 * don't destroy the header. 3915 */ 3916 arc_change_state(arc_l2c_only, hdr, hash_lock); 3917 /* 3918 * dropping from L1+L2 cached to L2-only, 3919 * realloc to remove the L1 header. 3920 */ 3921 hdr = arc_hdr_realloc(hdr, hdr_full_cache, 3922 hdr_l2only_cache); 3923 *real_evicted += HDR_FULL_SIZE - HDR_L2ONLY_SIZE; 3924 } else { 3925 arc_change_state(arc_anon, hdr, hash_lock); 3926 arc_hdr_destroy(hdr); 3927 *real_evicted += HDR_FULL_SIZE; 3928 } 3929 return (bytes_evicted); 3930 } 3931 3932 ASSERT(state == arc_mru || state == arc_mfu); 3933 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3934 3935 /* prefetch buffers have a minimum lifespan */ 3936 if (HDR_IO_IN_PROGRESS(hdr) || 3937 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 3938 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < 3939 MSEC_TO_TICK(min_lifetime))) { 3940 ARCSTAT_BUMP(arcstat_evict_skip); 3941 return (bytes_evicted); 3942 } 3943 3944 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3945 while (hdr->b_l1hdr.b_buf) { 3946 arc_buf_t *buf = hdr->b_l1hdr.b_buf; 3947 if (!mutex_tryenter(&buf->b_evict_lock)) { 3948 ARCSTAT_BUMP(arcstat_mutex_miss); 3949 break; 3950 } 3951 if (buf->b_data != NULL) { 3952 bytes_evicted += HDR_GET_LSIZE(hdr); 3953 *real_evicted += HDR_GET_LSIZE(hdr); 3954 } 3955 mutex_exit(&buf->b_evict_lock); 3956 arc_buf_destroy_impl(buf); 3957 } 3958 3959 if (HDR_HAS_L2HDR(hdr)) { 3960 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); 3961 } else { 3962 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 3963 ARCSTAT_INCR(arcstat_evict_l2_eligible, 3964 HDR_GET_LSIZE(hdr)); 3965 3966 switch (state->arcs_state) { 3967 case ARC_STATE_MRU: 3968 ARCSTAT_INCR( 3969 arcstat_evict_l2_eligible_mru, 3970 HDR_GET_LSIZE(hdr)); 3971 break; 3972 case ARC_STATE_MFU: 3973 ARCSTAT_INCR( 3974 arcstat_evict_l2_eligible_mfu, 3975 HDR_GET_LSIZE(hdr)); 3976 break; 3977 default: 3978 break; 3979 } 3980 } else { 3981 ARCSTAT_INCR(arcstat_evict_l2_ineligible, 3982 HDR_GET_LSIZE(hdr)); 3983 } 3984 } 3985 3986 if (hdr->b_l1hdr.b_bufcnt == 0) { 3987 arc_cksum_free(hdr); 3988 3989 bytes_evicted += arc_hdr_size(hdr); 3990 *real_evicted += arc_hdr_size(hdr); 3991 3992 /* 3993 * If this hdr is being evicted and has a compressed 3994 * buffer then we discard it here before we change states. 3995 * This ensures that the accounting is updated correctly 3996 * in arc_free_data_impl(). 3997 */ 3998 if (hdr->b_l1hdr.b_pabd != NULL) 3999 arc_hdr_free_abd(hdr, B_FALSE); 4000 4001 if (HDR_HAS_RABD(hdr)) 4002 arc_hdr_free_abd(hdr, B_TRUE); 4003 4004 arc_change_state(evicted_state, hdr, hash_lock); 4005 ASSERT(HDR_IN_HASH_TABLE(hdr)); 4006 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 4007 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 4008 } 4009 4010 return (bytes_evicted); 4011 } 4012 4013 static void 4014 arc_set_need_free(void) 4015 { 4016 ASSERT(MUTEX_HELD(&arc_evict_lock)); 4017 int64_t remaining = arc_free_memory() - arc_sys_free / 2; 4018 arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters); 4019 if (aw == NULL) { 4020 arc_need_free = MAX(-remaining, 0); 4021 } else { 4022 arc_need_free = 4023 MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count)); 4024 } 4025 } 4026 4027 static uint64_t 4028 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 4029 uint64_t spa, uint64_t bytes) 4030 { 4031 multilist_sublist_t *mls; 4032 uint64_t bytes_evicted = 0, real_evicted = 0; 4033 arc_buf_hdr_t *hdr; 4034 kmutex_t *hash_lock; 4035 int evict_count = zfs_arc_evict_batch_limit; 4036 4037 ASSERT3P(marker, !=, NULL); 4038 4039 mls = multilist_sublist_lock(ml, idx); 4040 4041 for (hdr = multilist_sublist_prev(mls, marker); likely(hdr != NULL); 4042 hdr = multilist_sublist_prev(mls, marker)) { 4043 if ((evict_count <= 0) || (bytes_evicted >= bytes)) 4044 break; 4045 4046 /* 4047 * To keep our iteration location, move the marker 4048 * forward. Since we're not holding hdr's hash lock, we 4049 * must be very careful and not remove 'hdr' from the 4050 * sublist. Otherwise, other consumers might mistake the 4051 * 'hdr' as not being on a sublist when they call the 4052 * multilist_link_active() function (they all rely on 4053 * the hash lock protecting concurrent insertions and 4054 * removals). multilist_sublist_move_forward() was 4055 * specifically implemented to ensure this is the case 4056 * (only 'marker' will be removed and re-inserted). 4057 */ 4058 multilist_sublist_move_forward(mls, marker); 4059 4060 /* 4061 * The only case where the b_spa field should ever be 4062 * zero, is the marker headers inserted by 4063 * arc_evict_state(). It's possible for multiple threads 4064 * to be calling arc_evict_state() concurrently (e.g. 4065 * dsl_pool_close() and zio_inject_fault()), so we must 4066 * skip any markers we see from these other threads. 4067 */ 4068 if (hdr->b_spa == 0) 4069 continue; 4070 4071 /* we're only interested in evicting buffers of a certain spa */ 4072 if (spa != 0 && hdr->b_spa != spa) { 4073 ARCSTAT_BUMP(arcstat_evict_skip); 4074 continue; 4075 } 4076 4077 hash_lock = HDR_LOCK(hdr); 4078 4079 /* 4080 * We aren't calling this function from any code path 4081 * that would already be holding a hash lock, so we're 4082 * asserting on this assumption to be defensive in case 4083 * this ever changes. Without this check, it would be 4084 * possible to incorrectly increment arcstat_mutex_miss 4085 * below (e.g. if the code changed such that we called 4086 * this function with a hash lock held). 4087 */ 4088 ASSERT(!MUTEX_HELD(hash_lock)); 4089 4090 if (mutex_tryenter(hash_lock)) { 4091 uint64_t revicted; 4092 uint64_t evicted = arc_evict_hdr(hdr, hash_lock, 4093 &revicted); 4094 mutex_exit(hash_lock); 4095 4096 bytes_evicted += evicted; 4097 real_evicted += revicted; 4098 4099 /* 4100 * If evicted is zero, arc_evict_hdr() must have 4101 * decided to skip this header, don't increment 4102 * evict_count in this case. 4103 */ 4104 if (evicted != 0) 4105 evict_count--; 4106 4107 } else { 4108 ARCSTAT_BUMP(arcstat_mutex_miss); 4109 } 4110 } 4111 4112 multilist_sublist_unlock(mls); 4113 4114 /* 4115 * Increment the count of evicted bytes, and wake up any threads that 4116 * are waiting for the count to reach this value. Since the list is 4117 * ordered by ascending aew_count, we pop off the beginning of the 4118 * list until we reach the end, or a waiter that's past the current 4119 * "count". Doing this outside the loop reduces the number of times 4120 * we need to acquire the global arc_evict_lock. 4121 * 4122 * Only wake when there's sufficient free memory in the system 4123 * (specifically, arc_sys_free/2, which by default is a bit more than 4124 * 1/64th of RAM). See the comments in arc_wait_for_eviction(). 4125 */ 4126 mutex_enter(&arc_evict_lock); 4127 arc_evict_count += real_evicted; 4128 4129 if (arc_free_memory() > arc_sys_free / 2) { 4130 arc_evict_waiter_t *aw; 4131 while ((aw = list_head(&arc_evict_waiters)) != NULL && 4132 aw->aew_count <= arc_evict_count) { 4133 list_remove(&arc_evict_waiters, aw); 4134 cv_broadcast(&aw->aew_cv); 4135 } 4136 } 4137 arc_set_need_free(); 4138 mutex_exit(&arc_evict_lock); 4139 4140 /* 4141 * If the ARC size is reduced from arc_c_max to arc_c_min (especially 4142 * if the average cached block is small), eviction can be on-CPU for 4143 * many seconds. To ensure that other threads that may be bound to 4144 * this CPU are able to make progress, make a voluntary preemption 4145 * call here. 4146 */ 4147 cond_resched(); 4148 4149 return (bytes_evicted); 4150 } 4151 4152 /* 4153 * Evict buffers from the given arc state, until we've removed the 4154 * specified number of bytes. Move the removed buffers to the 4155 * appropriate evict state. 4156 * 4157 * This function makes a "best effort". It skips over any buffers 4158 * it can't get a hash_lock on, and so, may not catch all candidates. 4159 * It may also return without evicting as much space as requested. 4160 * 4161 * If bytes is specified using the special value ARC_EVICT_ALL, this 4162 * will evict all available (i.e. unlocked and evictable) buffers from 4163 * the given arc state; which is used by arc_flush(). 4164 */ 4165 static uint64_t 4166 arc_evict_state(arc_state_t *state, uint64_t spa, uint64_t bytes, 4167 arc_buf_contents_t type) 4168 { 4169 uint64_t total_evicted = 0; 4170 multilist_t *ml = &state->arcs_list[type]; 4171 int num_sublists; 4172 arc_buf_hdr_t **markers; 4173 4174 num_sublists = multilist_get_num_sublists(ml); 4175 4176 /* 4177 * If we've tried to evict from each sublist, made some 4178 * progress, but still have not hit the target number of bytes 4179 * to evict, we want to keep trying. The markers allow us to 4180 * pick up where we left off for each individual sublist, rather 4181 * than starting from the tail each time. 4182 */ 4183 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP); 4184 for (int i = 0; i < num_sublists; i++) { 4185 multilist_sublist_t *mls; 4186 4187 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 4188 4189 /* 4190 * A b_spa of 0 is used to indicate that this header is 4191 * a marker. This fact is used in arc_evict_type() and 4192 * arc_evict_state_impl(). 4193 */ 4194 markers[i]->b_spa = 0; 4195 4196 mls = multilist_sublist_lock(ml, i); 4197 multilist_sublist_insert_tail(mls, markers[i]); 4198 multilist_sublist_unlock(mls); 4199 } 4200 4201 /* 4202 * While we haven't hit our target number of bytes to evict, or 4203 * we're evicting all available buffers. 4204 */ 4205 while (total_evicted < bytes) { 4206 int sublist_idx = multilist_get_random_index(ml); 4207 uint64_t scan_evicted = 0; 4208 4209 /* 4210 * Try to reduce pinned dnodes with a floor of arc_dnode_limit. 4211 * Request that 10% of the LRUs be scanned by the superblock 4212 * shrinker. 4213 */ 4214 if (type == ARC_BUFC_DATA && aggsum_compare( 4215 &arc_sums.arcstat_dnode_size, arc_dnode_size_limit) > 0) { 4216 arc_prune_async((aggsum_upper_bound( 4217 &arc_sums.arcstat_dnode_size) - 4218 arc_dnode_size_limit) / sizeof (dnode_t) / 4219 zfs_arc_dnode_reduce_percent); 4220 } 4221 4222 /* 4223 * Start eviction using a randomly selected sublist, 4224 * this is to try and evenly balance eviction across all 4225 * sublists. Always starting at the same sublist 4226 * (e.g. index 0) would cause evictions to favor certain 4227 * sublists over others. 4228 */ 4229 for (int i = 0; i < num_sublists; i++) { 4230 uint64_t bytes_remaining; 4231 uint64_t bytes_evicted; 4232 4233 if (total_evicted < bytes) 4234 bytes_remaining = bytes - total_evicted; 4235 else 4236 break; 4237 4238 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 4239 markers[sublist_idx], spa, bytes_remaining); 4240 4241 scan_evicted += bytes_evicted; 4242 total_evicted += bytes_evicted; 4243 4244 /* we've reached the end, wrap to the beginning */ 4245 if (++sublist_idx >= num_sublists) 4246 sublist_idx = 0; 4247 } 4248 4249 /* 4250 * If we didn't evict anything during this scan, we have 4251 * no reason to believe we'll evict more during another 4252 * scan, so break the loop. 4253 */ 4254 if (scan_evicted == 0) { 4255 /* This isn't possible, let's make that obvious */ 4256 ASSERT3S(bytes, !=, 0); 4257 4258 /* 4259 * When bytes is ARC_EVICT_ALL, the only way to 4260 * break the loop is when scan_evicted is zero. 4261 * In that case, we actually have evicted enough, 4262 * so we don't want to increment the kstat. 4263 */ 4264 if (bytes != ARC_EVICT_ALL) { 4265 ASSERT3S(total_evicted, <, bytes); 4266 ARCSTAT_BUMP(arcstat_evict_not_enough); 4267 } 4268 4269 break; 4270 } 4271 } 4272 4273 for (int i = 0; i < num_sublists; i++) { 4274 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 4275 multilist_sublist_remove(mls, markers[i]); 4276 multilist_sublist_unlock(mls); 4277 4278 kmem_cache_free(hdr_full_cache, markers[i]); 4279 } 4280 kmem_free(markers, sizeof (*markers) * num_sublists); 4281 4282 return (total_evicted); 4283 } 4284 4285 /* 4286 * Flush all "evictable" data of the given type from the arc state 4287 * specified. This will not evict any "active" buffers (i.e. referenced). 4288 * 4289 * When 'retry' is set to B_FALSE, the function will make a single pass 4290 * over the state and evict any buffers that it can. Since it doesn't 4291 * continually retry the eviction, it might end up leaving some buffers 4292 * in the ARC due to lock misses. 4293 * 4294 * When 'retry' is set to B_TRUE, the function will continually retry the 4295 * eviction until *all* evictable buffers have been removed from the 4296 * state. As a result, if concurrent insertions into the state are 4297 * allowed (e.g. if the ARC isn't shutting down), this function might 4298 * wind up in an infinite loop, continually trying to evict buffers. 4299 */ 4300 static uint64_t 4301 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 4302 boolean_t retry) 4303 { 4304 uint64_t evicted = 0; 4305 4306 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) { 4307 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type); 4308 4309 if (!retry) 4310 break; 4311 } 4312 4313 return (evicted); 4314 } 4315 4316 /* 4317 * Evict the specified number of bytes from the state specified, 4318 * restricting eviction to the spa and type given. This function 4319 * prevents us from trying to evict more from a state's list than 4320 * is "evictable", and to skip evicting altogether when passed a 4321 * negative value for "bytes". In contrast, arc_evict_state() will 4322 * evict everything it can, when passed a negative value for "bytes". 4323 */ 4324 static uint64_t 4325 arc_evict_impl(arc_state_t *state, uint64_t spa, int64_t bytes, 4326 arc_buf_contents_t type) 4327 { 4328 uint64_t delta; 4329 4330 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) { 4331 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]), 4332 bytes); 4333 return (arc_evict_state(state, spa, delta, type)); 4334 } 4335 4336 return (0); 4337 } 4338 4339 /* 4340 * The goal of this function is to evict enough meta data buffers from the 4341 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly 4342 * more complicated than it appears because it is common for data buffers 4343 * to have holds on meta data buffers. In addition, dnode meta data buffers 4344 * will be held by the dnodes in the block preventing them from being freed. 4345 * This means we can't simply traverse the ARC and expect to always find 4346 * enough unheld meta data buffer to release. 4347 * 4348 * Therefore, this function has been updated to make alternating passes 4349 * over the ARC releasing data buffers and then newly unheld meta data 4350 * buffers. This ensures forward progress is maintained and meta_used 4351 * will decrease. Normally this is sufficient, but if required the ARC 4352 * will call the registered prune callbacks causing dentry and inodes to 4353 * be dropped from the VFS cache. This will make dnode meta data buffers 4354 * available for reclaim. 4355 */ 4356 static uint64_t 4357 arc_evict_meta_balanced(uint64_t meta_used) 4358 { 4359 int64_t delta, prune = 0, adjustmnt; 4360 uint64_t total_evicted = 0; 4361 arc_buf_contents_t type = ARC_BUFC_DATA; 4362 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0); 4363 4364 restart: 4365 /* 4366 * This slightly differs than the way we evict from the mru in 4367 * arc_evict because we don't have a "target" value (i.e. no 4368 * "meta" arc_p). As a result, I think we can completely 4369 * cannibalize the metadata in the MRU before we evict the 4370 * metadata from the MFU. I think we probably need to implement a 4371 * "metadata arc_p" value to do this properly. 4372 */ 4373 adjustmnt = meta_used - arc_meta_limit; 4374 4375 if (adjustmnt > 0 && 4376 zfs_refcount_count(&arc_mru->arcs_esize[type]) > 0) { 4377 delta = MIN(zfs_refcount_count(&arc_mru->arcs_esize[type]), 4378 adjustmnt); 4379 total_evicted += arc_evict_impl(arc_mru, 0, delta, type); 4380 adjustmnt -= delta; 4381 } 4382 4383 /* 4384 * We can't afford to recalculate adjustmnt here. If we do, 4385 * new metadata buffers can sneak into the MRU or ANON lists, 4386 * thus penalize the MFU metadata. Although the fudge factor is 4387 * small, it has been empirically shown to be significant for 4388 * certain workloads (e.g. creating many empty directories). As 4389 * such, we use the original calculation for adjustmnt, and 4390 * simply decrement the amount of data evicted from the MRU. 4391 */ 4392 4393 if (adjustmnt > 0 && 4394 zfs_refcount_count(&arc_mfu->arcs_esize[type]) > 0) { 4395 delta = MIN(zfs_refcount_count(&arc_mfu->arcs_esize[type]), 4396 adjustmnt); 4397 total_evicted += arc_evict_impl(arc_mfu, 0, delta, type); 4398 } 4399 4400 adjustmnt = meta_used - arc_meta_limit; 4401 4402 if (adjustmnt > 0 && 4403 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) { 4404 delta = MIN(adjustmnt, 4405 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type])); 4406 total_evicted += arc_evict_impl(arc_mru_ghost, 0, delta, type); 4407 adjustmnt -= delta; 4408 } 4409 4410 if (adjustmnt > 0 && 4411 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) { 4412 delta = MIN(adjustmnt, 4413 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type])); 4414 total_evicted += arc_evict_impl(arc_mfu_ghost, 0, delta, type); 4415 } 4416 4417 /* 4418 * If after attempting to make the requested adjustment to the ARC 4419 * the meta limit is still being exceeded then request that the 4420 * higher layers drop some cached objects which have holds on ARC 4421 * meta buffers. Requests to the upper layers will be made with 4422 * increasingly large scan sizes until the ARC is below the limit. 4423 */ 4424 if (meta_used > arc_meta_limit) { 4425 if (type == ARC_BUFC_DATA) { 4426 type = ARC_BUFC_METADATA; 4427 } else { 4428 type = ARC_BUFC_DATA; 4429 4430 if (zfs_arc_meta_prune) { 4431 prune += zfs_arc_meta_prune; 4432 arc_prune_async(prune); 4433 } 4434 } 4435 4436 if (restarts > 0) { 4437 restarts--; 4438 goto restart; 4439 } 4440 } 4441 return (total_evicted); 4442 } 4443 4444 /* 4445 * Evict metadata buffers from the cache, such that arcstat_meta_used is 4446 * capped by the arc_meta_limit tunable. 4447 */ 4448 static uint64_t 4449 arc_evict_meta_only(uint64_t meta_used) 4450 { 4451 uint64_t total_evicted = 0; 4452 int64_t target; 4453 4454 /* 4455 * If we're over the meta limit, we want to evict enough 4456 * metadata to get back under the meta limit. We don't want to 4457 * evict so much that we drop the MRU below arc_p, though. If 4458 * we're over the meta limit more than we're over arc_p, we 4459 * evict some from the MRU here, and some from the MFU below. 4460 */ 4461 target = MIN((int64_t)(meta_used - arc_meta_limit), 4462 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4463 zfs_refcount_count(&arc_mru->arcs_size) - arc_p)); 4464 4465 total_evicted += arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4466 4467 /* 4468 * Similar to the above, we want to evict enough bytes to get us 4469 * below the meta limit, but not so much as to drop us below the 4470 * space allotted to the MFU (which is defined as arc_c - arc_p). 4471 */ 4472 target = MIN((int64_t)(meta_used - arc_meta_limit), 4473 (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) - 4474 (arc_c - arc_p))); 4475 4476 total_evicted += arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4477 4478 return (total_evicted); 4479 } 4480 4481 static uint64_t 4482 arc_evict_meta(uint64_t meta_used) 4483 { 4484 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY) 4485 return (arc_evict_meta_only(meta_used)); 4486 else 4487 return (arc_evict_meta_balanced(meta_used)); 4488 } 4489 4490 /* 4491 * Return the type of the oldest buffer in the given arc state 4492 * 4493 * This function will select a random sublist of type ARC_BUFC_DATA and 4494 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist 4495 * is compared, and the type which contains the "older" buffer will be 4496 * returned. 4497 */ 4498 static arc_buf_contents_t 4499 arc_evict_type(arc_state_t *state) 4500 { 4501 multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA]; 4502 multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA]; 4503 int data_idx = multilist_get_random_index(data_ml); 4504 int meta_idx = multilist_get_random_index(meta_ml); 4505 multilist_sublist_t *data_mls; 4506 multilist_sublist_t *meta_mls; 4507 arc_buf_contents_t type; 4508 arc_buf_hdr_t *data_hdr; 4509 arc_buf_hdr_t *meta_hdr; 4510 4511 /* 4512 * We keep the sublist lock until we're finished, to prevent 4513 * the headers from being destroyed via arc_evict_state(). 4514 */ 4515 data_mls = multilist_sublist_lock(data_ml, data_idx); 4516 meta_mls = multilist_sublist_lock(meta_ml, meta_idx); 4517 4518 /* 4519 * These two loops are to ensure we skip any markers that 4520 * might be at the tail of the lists due to arc_evict_state(). 4521 */ 4522 4523 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL; 4524 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) { 4525 if (data_hdr->b_spa != 0) 4526 break; 4527 } 4528 4529 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL; 4530 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) { 4531 if (meta_hdr->b_spa != 0) 4532 break; 4533 } 4534 4535 if (data_hdr == NULL && meta_hdr == NULL) { 4536 type = ARC_BUFC_DATA; 4537 } else if (data_hdr == NULL) { 4538 ASSERT3P(meta_hdr, !=, NULL); 4539 type = ARC_BUFC_METADATA; 4540 } else if (meta_hdr == NULL) { 4541 ASSERT3P(data_hdr, !=, NULL); 4542 type = ARC_BUFC_DATA; 4543 } else { 4544 ASSERT3P(data_hdr, !=, NULL); 4545 ASSERT3P(meta_hdr, !=, NULL); 4546 4547 /* The headers can't be on the sublist without an L1 header */ 4548 ASSERT(HDR_HAS_L1HDR(data_hdr)); 4549 ASSERT(HDR_HAS_L1HDR(meta_hdr)); 4550 4551 if (data_hdr->b_l1hdr.b_arc_access < 4552 meta_hdr->b_l1hdr.b_arc_access) { 4553 type = ARC_BUFC_DATA; 4554 } else { 4555 type = ARC_BUFC_METADATA; 4556 } 4557 } 4558 4559 multilist_sublist_unlock(meta_mls); 4560 multilist_sublist_unlock(data_mls); 4561 4562 return (type); 4563 } 4564 4565 /* 4566 * Evict buffers from the cache, such that arcstat_size is capped by arc_c. 4567 */ 4568 static uint64_t 4569 arc_evict(void) 4570 { 4571 uint64_t total_evicted = 0; 4572 uint64_t bytes; 4573 int64_t target; 4574 uint64_t asize = aggsum_value(&arc_sums.arcstat_size); 4575 uint64_t ameta = aggsum_value(&arc_sums.arcstat_meta_used); 4576 4577 /* 4578 * If we're over arc_meta_limit, we want to correct that before 4579 * potentially evicting data buffers below. 4580 */ 4581 total_evicted += arc_evict_meta(ameta); 4582 4583 /* 4584 * Adjust MRU size 4585 * 4586 * If we're over the target cache size, we want to evict enough 4587 * from the list to get back to our target size. We don't want 4588 * to evict too much from the MRU, such that it drops below 4589 * arc_p. So, if we're over our target cache size more than 4590 * the MRU is over arc_p, we'll evict enough to get back to 4591 * arc_p here, and then evict more from the MFU below. 4592 */ 4593 target = MIN((int64_t)(asize - arc_c), 4594 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4595 zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p)); 4596 4597 /* 4598 * If we're below arc_meta_min, always prefer to evict data. 4599 * Otherwise, try to satisfy the requested number of bytes to 4600 * evict from the type which contains older buffers; in an 4601 * effort to keep newer buffers in the cache regardless of their 4602 * type. If we cannot satisfy the number of bytes from this 4603 * type, spill over into the next type. 4604 */ 4605 if (arc_evict_type(arc_mru) == ARC_BUFC_METADATA && 4606 ameta > arc_meta_min) { 4607 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4608 total_evicted += bytes; 4609 4610 /* 4611 * If we couldn't evict our target number of bytes from 4612 * metadata, we try to get the rest from data. 4613 */ 4614 target -= bytes; 4615 4616 total_evicted += 4617 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4618 } else { 4619 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4620 total_evicted += bytes; 4621 4622 /* 4623 * If we couldn't evict our target number of bytes from 4624 * data, we try to get the rest from metadata. 4625 */ 4626 target -= bytes; 4627 4628 total_evicted += 4629 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4630 } 4631 4632 /* 4633 * Re-sum ARC stats after the first round of evictions. 4634 */ 4635 asize = aggsum_value(&arc_sums.arcstat_size); 4636 ameta = aggsum_value(&arc_sums.arcstat_meta_used); 4637 4638 4639 /* 4640 * Adjust MFU size 4641 * 4642 * Now that we've tried to evict enough from the MRU to get its 4643 * size back to arc_p, if we're still above the target cache 4644 * size, we evict the rest from the MFU. 4645 */ 4646 target = asize - arc_c; 4647 4648 if (arc_evict_type(arc_mfu) == ARC_BUFC_METADATA && 4649 ameta > arc_meta_min) { 4650 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4651 total_evicted += bytes; 4652 4653 /* 4654 * If we couldn't evict our target number of bytes from 4655 * metadata, we try to get the rest from data. 4656 */ 4657 target -= bytes; 4658 4659 total_evicted += 4660 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4661 } else { 4662 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4663 total_evicted += bytes; 4664 4665 /* 4666 * If we couldn't evict our target number of bytes from 4667 * data, we try to get the rest from data. 4668 */ 4669 target -= bytes; 4670 4671 total_evicted += 4672 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4673 } 4674 4675 /* 4676 * Adjust ghost lists 4677 * 4678 * In addition to the above, the ARC also defines target values 4679 * for the ghost lists. The sum of the mru list and mru ghost 4680 * list should never exceed the target size of the cache, and 4681 * the sum of the mru list, mfu list, mru ghost list, and mfu 4682 * ghost list should never exceed twice the target size of the 4683 * cache. The following logic enforces these limits on the ghost 4684 * caches, and evicts from them as needed. 4685 */ 4686 target = zfs_refcount_count(&arc_mru->arcs_size) + 4687 zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c; 4688 4689 bytes = arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA); 4690 total_evicted += bytes; 4691 4692 target -= bytes; 4693 4694 total_evicted += 4695 arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA); 4696 4697 /* 4698 * We assume the sum of the mru list and mfu list is less than 4699 * or equal to arc_c (we enforced this above), which means we 4700 * can use the simpler of the two equations below: 4701 * 4702 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c 4703 * mru ghost + mfu ghost <= arc_c 4704 */ 4705 target = zfs_refcount_count(&arc_mru_ghost->arcs_size) + 4706 zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c; 4707 4708 bytes = arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA); 4709 total_evicted += bytes; 4710 4711 target -= bytes; 4712 4713 total_evicted += 4714 arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA); 4715 4716 return (total_evicted); 4717 } 4718 4719 void 4720 arc_flush(spa_t *spa, boolean_t retry) 4721 { 4722 uint64_t guid = 0; 4723 4724 /* 4725 * If retry is B_TRUE, a spa must not be specified since we have 4726 * no good way to determine if all of a spa's buffers have been 4727 * evicted from an arc state. 4728 */ 4729 ASSERT(!retry || spa == 0); 4730 4731 if (spa != NULL) 4732 guid = spa_load_guid(spa); 4733 4734 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 4735 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 4736 4737 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 4738 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 4739 4740 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 4741 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 4742 4743 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 4744 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 4745 } 4746 4747 void 4748 arc_reduce_target_size(int64_t to_free) 4749 { 4750 uint64_t asize = aggsum_value(&arc_sums.arcstat_size); 4751 4752 /* 4753 * All callers want the ARC to actually evict (at least) this much 4754 * memory. Therefore we reduce from the lower of the current size and 4755 * the target size. This way, even if arc_c is much higher than 4756 * arc_size (as can be the case after many calls to arc_freed(), we will 4757 * immediately have arc_c < arc_size and therefore the arc_evict_zthr 4758 * will evict. 4759 */ 4760 uint64_t c = MIN(arc_c, asize); 4761 4762 if (c > to_free && c - to_free > arc_c_min) { 4763 arc_c = c - to_free; 4764 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 4765 if (arc_p > arc_c) 4766 arc_p = (arc_c >> 1); 4767 ASSERT(arc_c >= arc_c_min); 4768 ASSERT((int64_t)arc_p >= 0); 4769 } else { 4770 arc_c = arc_c_min; 4771 } 4772 4773 if (asize > arc_c) { 4774 /* See comment in arc_evict_cb_check() on why lock+flag */ 4775 mutex_enter(&arc_evict_lock); 4776 arc_evict_needed = B_TRUE; 4777 mutex_exit(&arc_evict_lock); 4778 zthr_wakeup(arc_evict_zthr); 4779 } 4780 } 4781 4782 /* 4783 * Determine if the system is under memory pressure and is asking 4784 * to reclaim memory. A return value of B_TRUE indicates that the system 4785 * is under memory pressure and that the arc should adjust accordingly. 4786 */ 4787 boolean_t 4788 arc_reclaim_needed(void) 4789 { 4790 return (arc_available_memory() < 0); 4791 } 4792 4793 void 4794 arc_kmem_reap_soon(void) 4795 { 4796 size_t i; 4797 kmem_cache_t *prev_cache = NULL; 4798 kmem_cache_t *prev_data_cache = NULL; 4799 extern kmem_cache_t *zio_buf_cache[]; 4800 extern kmem_cache_t *zio_data_buf_cache[]; 4801 4802 #ifdef _KERNEL 4803 if ((aggsum_compare(&arc_sums.arcstat_meta_used, 4804 arc_meta_limit) >= 0) && zfs_arc_meta_prune) { 4805 /* 4806 * We are exceeding our meta-data cache limit. 4807 * Prune some entries to release holds on meta-data. 4808 */ 4809 arc_prune_async(zfs_arc_meta_prune); 4810 } 4811 #if defined(_ILP32) 4812 /* 4813 * Reclaim unused memory from all kmem caches. 4814 */ 4815 kmem_reap(); 4816 #endif 4817 #endif 4818 4819 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 4820 #if defined(_ILP32) 4821 /* reach upper limit of cache size on 32-bit */ 4822 if (zio_buf_cache[i] == NULL) 4823 break; 4824 #endif 4825 if (zio_buf_cache[i] != prev_cache) { 4826 prev_cache = zio_buf_cache[i]; 4827 kmem_cache_reap_now(zio_buf_cache[i]); 4828 } 4829 if (zio_data_buf_cache[i] != prev_data_cache) { 4830 prev_data_cache = zio_data_buf_cache[i]; 4831 kmem_cache_reap_now(zio_data_buf_cache[i]); 4832 } 4833 } 4834 kmem_cache_reap_now(buf_cache); 4835 kmem_cache_reap_now(hdr_full_cache); 4836 kmem_cache_reap_now(hdr_l2only_cache); 4837 kmem_cache_reap_now(zfs_btree_leaf_cache); 4838 abd_cache_reap_now(); 4839 } 4840 4841 /* ARGSUSED */ 4842 static boolean_t 4843 arc_evict_cb_check(void *arg, zthr_t *zthr) 4844 { 4845 #ifdef ZFS_DEBUG 4846 /* 4847 * This is necessary in order to keep the kstat information 4848 * up to date for tools that display kstat data such as the 4849 * mdb ::arc dcmd and the Linux crash utility. These tools 4850 * typically do not call kstat's update function, but simply 4851 * dump out stats from the most recent update. Without 4852 * this call, these commands may show stale stats for the 4853 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 4854 * with this call, the data might be out of date if the 4855 * evict thread hasn't been woken recently; but that should 4856 * suffice. The arc_state_t structures can be queried 4857 * directly if more accurate information is needed. 4858 */ 4859 if (arc_ksp != NULL) 4860 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 4861 #endif 4862 4863 /* 4864 * We have to rely on arc_wait_for_eviction() to tell us when to 4865 * evict, rather than checking if we are overflowing here, so that we 4866 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv. 4867 * If we have become "not overflowing" since arc_wait_for_eviction() 4868 * checked, we need to wake it up. We could broadcast the CV here, 4869 * but arc_wait_for_eviction() may have not yet gone to sleep. We 4870 * would need to use a mutex to ensure that this function doesn't 4871 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g. 4872 * the arc_evict_lock). However, the lock ordering of such a lock 4873 * would necessarily be incorrect with respect to the zthr_lock, 4874 * which is held before this function is called, and is held by 4875 * arc_wait_for_eviction() when it calls zthr_wakeup(). 4876 */ 4877 return (arc_evict_needed); 4878 } 4879 4880 /* 4881 * Keep arc_size under arc_c by running arc_evict which evicts data 4882 * from the ARC. 4883 */ 4884 /* ARGSUSED */ 4885 static void 4886 arc_evict_cb(void *arg, zthr_t *zthr) 4887 { 4888 uint64_t evicted = 0; 4889 fstrans_cookie_t cookie = spl_fstrans_mark(); 4890 4891 /* Evict from cache */ 4892 evicted = arc_evict(); 4893 4894 /* 4895 * If evicted is zero, we couldn't evict anything 4896 * via arc_evict(). This could be due to hash lock 4897 * collisions, but more likely due to the majority of 4898 * arc buffers being unevictable. Therefore, even if 4899 * arc_size is above arc_c, another pass is unlikely to 4900 * be helpful and could potentially cause us to enter an 4901 * infinite loop. Additionally, zthr_iscancelled() is 4902 * checked here so that if the arc is shutting down, the 4903 * broadcast will wake any remaining arc evict waiters. 4904 */ 4905 mutex_enter(&arc_evict_lock); 4906 arc_evict_needed = !zthr_iscancelled(arc_evict_zthr) && 4907 evicted > 0 && aggsum_compare(&arc_sums.arcstat_size, arc_c) > 0; 4908 if (!arc_evict_needed) { 4909 /* 4910 * We're either no longer overflowing, or we 4911 * can't evict anything more, so we should wake 4912 * arc_get_data_impl() sooner. 4913 */ 4914 arc_evict_waiter_t *aw; 4915 while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) { 4916 cv_broadcast(&aw->aew_cv); 4917 } 4918 arc_set_need_free(); 4919 } 4920 mutex_exit(&arc_evict_lock); 4921 spl_fstrans_unmark(cookie); 4922 } 4923 4924 /* ARGSUSED */ 4925 static boolean_t 4926 arc_reap_cb_check(void *arg, zthr_t *zthr) 4927 { 4928 int64_t free_memory = arc_available_memory(); 4929 static int reap_cb_check_counter = 0; 4930 4931 /* 4932 * If a kmem reap is already active, don't schedule more. We must 4933 * check for this because kmem_cache_reap_soon() won't actually 4934 * block on the cache being reaped (this is to prevent callers from 4935 * becoming implicitly blocked by a system-wide kmem reap -- which, 4936 * on a system with many, many full magazines, can take minutes). 4937 */ 4938 if (!kmem_cache_reap_active() && free_memory < 0) { 4939 4940 arc_no_grow = B_TRUE; 4941 arc_warm = B_TRUE; 4942 /* 4943 * Wait at least zfs_grow_retry (default 5) seconds 4944 * before considering growing. 4945 */ 4946 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry); 4947 return (B_TRUE); 4948 } else if (free_memory < arc_c >> arc_no_grow_shift) { 4949 arc_no_grow = B_TRUE; 4950 } else if (gethrtime() >= arc_growtime) { 4951 arc_no_grow = B_FALSE; 4952 } 4953 4954 /* 4955 * Called unconditionally every 60 seconds to reclaim unused 4956 * zstd compression and decompression context. This is done 4957 * here to avoid the need for an independent thread. 4958 */ 4959 if (!((reap_cb_check_counter++) % 60)) 4960 zfs_zstd_cache_reap_now(); 4961 4962 return (B_FALSE); 4963 } 4964 4965 /* 4966 * Keep enough free memory in the system by reaping the ARC's kmem 4967 * caches. To cause more slabs to be reapable, we may reduce the 4968 * target size of the cache (arc_c), causing the arc_evict_cb() 4969 * to free more buffers. 4970 */ 4971 /* ARGSUSED */ 4972 static void 4973 arc_reap_cb(void *arg, zthr_t *zthr) 4974 { 4975 int64_t free_memory; 4976 fstrans_cookie_t cookie = spl_fstrans_mark(); 4977 4978 /* 4979 * Kick off asynchronous kmem_reap()'s of all our caches. 4980 */ 4981 arc_kmem_reap_soon(); 4982 4983 /* 4984 * Wait at least arc_kmem_cache_reap_retry_ms between 4985 * arc_kmem_reap_soon() calls. Without this check it is possible to 4986 * end up in a situation where we spend lots of time reaping 4987 * caches, while we're near arc_c_min. Waiting here also gives the 4988 * subsequent free memory check a chance of finding that the 4989 * asynchronous reap has already freed enough memory, and we don't 4990 * need to call arc_reduce_target_size(). 4991 */ 4992 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000); 4993 4994 /* 4995 * Reduce the target size as needed to maintain the amount of free 4996 * memory in the system at a fraction of the arc_size (1/128th by 4997 * default). If oversubscribed (free_memory < 0) then reduce the 4998 * target arc_size by the deficit amount plus the fractional 4999 * amount. If free memory is positive but less than the fractional 5000 * amount, reduce by what is needed to hit the fractional amount. 5001 */ 5002 free_memory = arc_available_memory(); 5003 5004 int64_t to_free = 5005 (arc_c >> arc_shrink_shift) - free_memory; 5006 if (to_free > 0) { 5007 arc_reduce_target_size(to_free); 5008 } 5009 spl_fstrans_unmark(cookie); 5010 } 5011 5012 #ifdef _KERNEL 5013 /* 5014 * Determine the amount of memory eligible for eviction contained in the 5015 * ARC. All clean data reported by the ghost lists can always be safely 5016 * evicted. Due to arc_c_min, the same does not hold for all clean data 5017 * contained by the regular mru and mfu lists. 5018 * 5019 * In the case of the regular mru and mfu lists, we need to report as 5020 * much clean data as possible, such that evicting that same reported 5021 * data will not bring arc_size below arc_c_min. Thus, in certain 5022 * circumstances, the total amount of clean data in the mru and mfu 5023 * lists might not actually be evictable. 5024 * 5025 * The following two distinct cases are accounted for: 5026 * 5027 * 1. The sum of the amount of dirty data contained by both the mru and 5028 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 5029 * is greater than or equal to arc_c_min. 5030 * (i.e. amount of dirty data >= arc_c_min) 5031 * 5032 * This is the easy case; all clean data contained by the mru and mfu 5033 * lists is evictable. Evicting all clean data can only drop arc_size 5034 * to the amount of dirty data, which is greater than arc_c_min. 5035 * 5036 * 2. The sum of the amount of dirty data contained by both the mru and 5037 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 5038 * is less than arc_c_min. 5039 * (i.e. arc_c_min > amount of dirty data) 5040 * 5041 * 2.1. arc_size is greater than or equal arc_c_min. 5042 * (i.e. arc_size >= arc_c_min > amount of dirty data) 5043 * 5044 * In this case, not all clean data from the regular mru and mfu 5045 * lists is actually evictable; we must leave enough clean data 5046 * to keep arc_size above arc_c_min. Thus, the maximum amount of 5047 * evictable data from the two lists combined, is exactly the 5048 * difference between arc_size and arc_c_min. 5049 * 5050 * 2.2. arc_size is less than arc_c_min 5051 * (i.e. arc_c_min > arc_size > amount of dirty data) 5052 * 5053 * In this case, none of the data contained in the mru and mfu 5054 * lists is evictable, even if it's clean. Since arc_size is 5055 * already below arc_c_min, evicting any more would only 5056 * increase this negative difference. 5057 */ 5058 5059 #endif /* _KERNEL */ 5060 5061 /* 5062 * Adapt arc info given the number of bytes we are trying to add and 5063 * the state that we are coming from. This function is only called 5064 * when we are adding new content to the cache. 5065 */ 5066 static void 5067 arc_adapt(int bytes, arc_state_t *state) 5068 { 5069 int mult; 5070 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 5071 int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size); 5072 int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size); 5073 5074 ASSERT(bytes > 0); 5075 /* 5076 * Adapt the target size of the MRU list: 5077 * - if we just hit in the MRU ghost list, then increase 5078 * the target size of the MRU list. 5079 * - if we just hit in the MFU ghost list, then increase 5080 * the target size of the MFU list by decreasing the 5081 * target size of the MRU list. 5082 */ 5083 if (state == arc_mru_ghost) { 5084 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size); 5085 if (!zfs_arc_p_dampener_disable) 5086 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 5087 5088 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 5089 } else if (state == arc_mfu_ghost) { 5090 uint64_t delta; 5091 5092 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size); 5093 if (!zfs_arc_p_dampener_disable) 5094 mult = MIN(mult, 10); 5095 5096 delta = MIN(bytes * mult, arc_p); 5097 arc_p = MAX(arc_p_min, arc_p - delta); 5098 } 5099 ASSERT((int64_t)arc_p >= 0); 5100 5101 /* 5102 * Wake reap thread if we do not have any available memory 5103 */ 5104 if (arc_reclaim_needed()) { 5105 zthr_wakeup(arc_reap_zthr); 5106 return; 5107 } 5108 5109 if (arc_no_grow) 5110 return; 5111 5112 if (arc_c >= arc_c_max) 5113 return; 5114 5115 /* 5116 * If we're within (2 * maxblocksize) bytes of the target 5117 * cache size, increment the target cache size 5118 */ 5119 ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT); 5120 if (aggsum_upper_bound(&arc_sums.arcstat_size) >= 5121 arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 5122 atomic_add_64(&arc_c, (int64_t)bytes); 5123 if (arc_c > arc_c_max) 5124 arc_c = arc_c_max; 5125 else if (state == arc_anon) 5126 atomic_add_64(&arc_p, (int64_t)bytes); 5127 if (arc_p > arc_c) 5128 arc_p = arc_c; 5129 } 5130 ASSERT((int64_t)arc_p >= 0); 5131 } 5132 5133 /* 5134 * Check if arc_size has grown past our upper threshold, determined by 5135 * zfs_arc_overflow_shift. 5136 */ 5137 static arc_ovf_level_t 5138 arc_is_overflowing(boolean_t use_reserve) 5139 { 5140 /* Always allow at least one block of overflow */ 5141 int64_t overflow = MAX(SPA_MAXBLOCKSIZE, 5142 arc_c >> zfs_arc_overflow_shift); 5143 5144 /* 5145 * We just compare the lower bound here for performance reasons. Our 5146 * primary goals are to make sure that the arc never grows without 5147 * bound, and that it can reach its maximum size. This check 5148 * accomplishes both goals. The maximum amount we could run over by is 5149 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block 5150 * in the ARC. In practice, that's in the tens of MB, which is low 5151 * enough to be safe. 5152 */ 5153 int64_t over = aggsum_lower_bound(&arc_sums.arcstat_size) - 5154 arc_c - overflow / 2; 5155 if (!use_reserve) 5156 overflow /= 2; 5157 return (over < 0 ? ARC_OVF_NONE : 5158 over < overflow ? ARC_OVF_SOME : ARC_OVF_SEVERE); 5159 } 5160 5161 static abd_t * 5162 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 5163 int alloc_flags) 5164 { 5165 arc_buf_contents_t type = arc_buf_type(hdr); 5166 5167 arc_get_data_impl(hdr, size, tag, alloc_flags); 5168 if (type == ARC_BUFC_METADATA) { 5169 return (abd_alloc(size, B_TRUE)); 5170 } else { 5171 ASSERT(type == ARC_BUFC_DATA); 5172 return (abd_alloc(size, B_FALSE)); 5173 } 5174 } 5175 5176 static void * 5177 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 5178 { 5179 arc_buf_contents_t type = arc_buf_type(hdr); 5180 5181 arc_get_data_impl(hdr, size, tag, ARC_HDR_DO_ADAPT); 5182 if (type == ARC_BUFC_METADATA) { 5183 return (zio_buf_alloc(size)); 5184 } else { 5185 ASSERT(type == ARC_BUFC_DATA); 5186 return (zio_data_buf_alloc(size)); 5187 } 5188 } 5189 5190 /* 5191 * Wait for the specified amount of data (in bytes) to be evicted from the 5192 * ARC, and for there to be sufficient free memory in the system. Waiting for 5193 * eviction ensures that the memory used by the ARC decreases. Waiting for 5194 * free memory ensures that the system won't run out of free pages, regardless 5195 * of ARC behavior and settings. See arc_lowmem_init(). 5196 */ 5197 void 5198 arc_wait_for_eviction(uint64_t amount, boolean_t use_reserve) 5199 { 5200 switch (arc_is_overflowing(use_reserve)) { 5201 case ARC_OVF_NONE: 5202 return; 5203 case ARC_OVF_SOME: 5204 /* 5205 * This is a bit racy without taking arc_evict_lock, but the 5206 * worst that can happen is we either call zthr_wakeup() extra 5207 * time due to race with other thread here, or the set flag 5208 * get cleared by arc_evict_cb(), which is unlikely due to 5209 * big hysteresis, but also not important since at this level 5210 * of overflow the eviction is purely advisory. Same time 5211 * taking the global lock here every time without waiting for 5212 * the actual eviction creates a significant lock contention. 5213 */ 5214 if (!arc_evict_needed) { 5215 arc_evict_needed = B_TRUE; 5216 zthr_wakeup(arc_evict_zthr); 5217 } 5218 return; 5219 case ARC_OVF_SEVERE: 5220 default: 5221 { 5222 arc_evict_waiter_t aw; 5223 list_link_init(&aw.aew_node); 5224 cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL); 5225 5226 uint64_t last_count = 0; 5227 mutex_enter(&arc_evict_lock); 5228 if (!list_is_empty(&arc_evict_waiters)) { 5229 arc_evict_waiter_t *last = 5230 list_tail(&arc_evict_waiters); 5231 last_count = last->aew_count; 5232 } else if (!arc_evict_needed) { 5233 arc_evict_needed = B_TRUE; 5234 zthr_wakeup(arc_evict_zthr); 5235 } 5236 /* 5237 * Note, the last waiter's count may be less than 5238 * arc_evict_count if we are low on memory in which 5239 * case arc_evict_state_impl() may have deferred 5240 * wakeups (but still incremented arc_evict_count). 5241 */ 5242 aw.aew_count = MAX(last_count, arc_evict_count) + amount; 5243 5244 list_insert_tail(&arc_evict_waiters, &aw); 5245 5246 arc_set_need_free(); 5247 5248 DTRACE_PROBE3(arc__wait__for__eviction, 5249 uint64_t, amount, 5250 uint64_t, arc_evict_count, 5251 uint64_t, aw.aew_count); 5252 5253 /* 5254 * We will be woken up either when arc_evict_count reaches 5255 * aew_count, or when the ARC is no longer overflowing and 5256 * eviction completes. 5257 * In case of "false" wakeup, we will still be on the list. 5258 */ 5259 do { 5260 cv_wait(&aw.aew_cv, &arc_evict_lock); 5261 } while (list_link_active(&aw.aew_node)); 5262 mutex_exit(&arc_evict_lock); 5263 5264 cv_destroy(&aw.aew_cv); 5265 } 5266 } 5267 } 5268 5269 /* 5270 * Allocate a block and return it to the caller. If we are hitting the 5271 * hard limit for the cache size, we must sleep, waiting for the eviction 5272 * thread to catch up. If we're past the target size but below the hard 5273 * limit, we'll only signal the reclaim thread and continue on. 5274 */ 5275 static void 5276 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 5277 int alloc_flags) 5278 { 5279 arc_state_t *state = hdr->b_l1hdr.b_state; 5280 arc_buf_contents_t type = arc_buf_type(hdr); 5281 5282 if (alloc_flags & ARC_HDR_DO_ADAPT) 5283 arc_adapt(size, state); 5284 5285 /* 5286 * If arc_size is currently overflowing, we must be adding data 5287 * faster than we are evicting. To ensure we don't compound the 5288 * problem by adding more data and forcing arc_size to grow even 5289 * further past it's target size, we wait for the eviction thread to 5290 * make some progress. We also wait for there to be sufficient free 5291 * memory in the system, as measured by arc_free_memory(). 5292 * 5293 * Specifically, we wait for zfs_arc_eviction_pct percent of the 5294 * requested size to be evicted. This should be more than 100%, to 5295 * ensure that that progress is also made towards getting arc_size 5296 * under arc_c. See the comment above zfs_arc_eviction_pct. 5297 */ 5298 arc_wait_for_eviction(size * zfs_arc_eviction_pct / 100, 5299 alloc_flags & ARC_HDR_USE_RESERVE); 5300 5301 VERIFY3U(hdr->b_type, ==, type); 5302 if (type == ARC_BUFC_METADATA) { 5303 arc_space_consume(size, ARC_SPACE_META); 5304 } else { 5305 arc_space_consume(size, ARC_SPACE_DATA); 5306 } 5307 5308 /* 5309 * Update the state size. Note that ghost states have a 5310 * "ghost size" and so don't need to be updated. 5311 */ 5312 if (!GHOST_STATE(state)) { 5313 5314 (void) zfs_refcount_add_many(&state->arcs_size, size, tag); 5315 5316 /* 5317 * If this is reached via arc_read, the link is 5318 * protected by the hash lock. If reached via 5319 * arc_buf_alloc, the header should not be accessed by 5320 * any other thread. And, if reached via arc_read_done, 5321 * the hash lock will protect it if it's found in the 5322 * hash table; otherwise no other thread should be 5323 * trying to [add|remove]_reference it. 5324 */ 5325 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5326 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5327 (void) zfs_refcount_add_many(&state->arcs_esize[type], 5328 size, tag); 5329 } 5330 5331 /* 5332 * If we are growing the cache, and we are adding anonymous 5333 * data, and we have outgrown arc_p, update arc_p 5334 */ 5335 if (aggsum_upper_bound(&arc_sums.arcstat_size) < arc_c && 5336 hdr->b_l1hdr.b_state == arc_anon && 5337 (zfs_refcount_count(&arc_anon->arcs_size) + 5338 zfs_refcount_count(&arc_mru->arcs_size) > arc_p)) 5339 arc_p = MIN(arc_c, arc_p + size); 5340 } 5341 } 5342 5343 static void 5344 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag) 5345 { 5346 arc_free_data_impl(hdr, size, tag); 5347 abd_free(abd); 5348 } 5349 5350 static void 5351 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag) 5352 { 5353 arc_buf_contents_t type = arc_buf_type(hdr); 5354 5355 arc_free_data_impl(hdr, size, tag); 5356 if (type == ARC_BUFC_METADATA) { 5357 zio_buf_free(buf, size); 5358 } else { 5359 ASSERT(type == ARC_BUFC_DATA); 5360 zio_data_buf_free(buf, size); 5361 } 5362 } 5363 5364 /* 5365 * Free the arc data buffer. 5366 */ 5367 static void 5368 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 5369 { 5370 arc_state_t *state = hdr->b_l1hdr.b_state; 5371 arc_buf_contents_t type = arc_buf_type(hdr); 5372 5373 /* protected by hash lock, if in the hash table */ 5374 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5375 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5376 ASSERT(state != arc_anon && state != arc_l2c_only); 5377 5378 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 5379 size, tag); 5380 } 5381 (void) zfs_refcount_remove_many(&state->arcs_size, size, tag); 5382 5383 VERIFY3U(hdr->b_type, ==, type); 5384 if (type == ARC_BUFC_METADATA) { 5385 arc_space_return(size, ARC_SPACE_META); 5386 } else { 5387 ASSERT(type == ARC_BUFC_DATA); 5388 arc_space_return(size, ARC_SPACE_DATA); 5389 } 5390 } 5391 5392 /* 5393 * This routine is called whenever a buffer is accessed. 5394 * NOTE: the hash lock is dropped in this function. 5395 */ 5396 static void 5397 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 5398 { 5399 clock_t now; 5400 5401 ASSERT(MUTEX_HELD(hash_lock)); 5402 ASSERT(HDR_HAS_L1HDR(hdr)); 5403 5404 if (hdr->b_l1hdr.b_state == arc_anon) { 5405 /* 5406 * This buffer is not in the cache, and does not 5407 * appear in our "ghost" list. Add the new buffer 5408 * to the MRU state. 5409 */ 5410 5411 ASSERT0(hdr->b_l1hdr.b_arc_access); 5412 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5413 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5414 arc_change_state(arc_mru, hdr, hash_lock); 5415 5416 } else if (hdr->b_l1hdr.b_state == arc_mru) { 5417 now = ddi_get_lbolt(); 5418 5419 /* 5420 * If this buffer is here because of a prefetch, then either: 5421 * - clear the flag if this is a "referencing" read 5422 * (any subsequent access will bump this into the MFU state). 5423 * or 5424 * - move the buffer to the head of the list if this is 5425 * another prefetch (to make it less likely to be evicted). 5426 */ 5427 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5428 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 5429 /* link protected by hash lock */ 5430 ASSERT(multilist_link_active( 5431 &hdr->b_l1hdr.b_arc_node)); 5432 } else { 5433 if (HDR_HAS_L2HDR(hdr)) 5434 l2arc_hdr_arcstats_decrement_state(hdr); 5435 arc_hdr_clear_flags(hdr, 5436 ARC_FLAG_PREFETCH | 5437 ARC_FLAG_PRESCIENT_PREFETCH); 5438 hdr->b_l1hdr.b_mru_hits++; 5439 ARCSTAT_BUMP(arcstat_mru_hits); 5440 if (HDR_HAS_L2HDR(hdr)) 5441 l2arc_hdr_arcstats_increment_state(hdr); 5442 } 5443 hdr->b_l1hdr.b_arc_access = now; 5444 return; 5445 } 5446 5447 /* 5448 * This buffer has been "accessed" only once so far, 5449 * but it is still in the cache. Move it to the MFU 5450 * state. 5451 */ 5452 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access + 5453 ARC_MINTIME)) { 5454 /* 5455 * More than 125ms have passed since we 5456 * instantiated this buffer. Move it to the 5457 * most frequently used state. 5458 */ 5459 hdr->b_l1hdr.b_arc_access = now; 5460 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5461 arc_change_state(arc_mfu, hdr, hash_lock); 5462 } 5463 hdr->b_l1hdr.b_mru_hits++; 5464 ARCSTAT_BUMP(arcstat_mru_hits); 5465 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 5466 arc_state_t *new_state; 5467 /* 5468 * This buffer has been "accessed" recently, but 5469 * was evicted from the cache. Move it to the 5470 * MFU state. 5471 */ 5472 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5473 new_state = arc_mru; 5474 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) { 5475 if (HDR_HAS_L2HDR(hdr)) 5476 l2arc_hdr_arcstats_decrement_state(hdr); 5477 arc_hdr_clear_flags(hdr, 5478 ARC_FLAG_PREFETCH | 5479 ARC_FLAG_PRESCIENT_PREFETCH); 5480 if (HDR_HAS_L2HDR(hdr)) 5481 l2arc_hdr_arcstats_increment_state(hdr); 5482 } 5483 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5484 } else { 5485 new_state = arc_mfu; 5486 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5487 } 5488 5489 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5490 arc_change_state(new_state, hdr, hash_lock); 5491 5492 hdr->b_l1hdr.b_mru_ghost_hits++; 5493 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 5494 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 5495 /* 5496 * This buffer has been accessed more than once and is 5497 * still in the cache. Keep it in the MFU state. 5498 * 5499 * NOTE: an add_reference() that occurred when we did 5500 * the arc_read() will have kicked this off the list. 5501 * If it was a prefetch, we will explicitly move it to 5502 * the head of the list now. 5503 */ 5504 5505 hdr->b_l1hdr.b_mfu_hits++; 5506 ARCSTAT_BUMP(arcstat_mfu_hits); 5507 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5508 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 5509 arc_state_t *new_state = arc_mfu; 5510 /* 5511 * This buffer has been accessed more than once but has 5512 * been evicted from the cache. Move it back to the 5513 * MFU state. 5514 */ 5515 5516 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5517 /* 5518 * This is a prefetch access... 5519 * move this block back to the MRU state. 5520 */ 5521 new_state = arc_mru; 5522 } 5523 5524 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5525 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5526 arc_change_state(new_state, hdr, hash_lock); 5527 5528 hdr->b_l1hdr.b_mfu_ghost_hits++; 5529 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 5530 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 5531 /* 5532 * This buffer is on the 2nd Level ARC. 5533 */ 5534 5535 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5536 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5537 arc_change_state(arc_mfu, hdr, hash_lock); 5538 } else { 5539 cmn_err(CE_PANIC, "invalid arc state 0x%p", 5540 hdr->b_l1hdr.b_state); 5541 } 5542 } 5543 5544 /* 5545 * This routine is called by dbuf_hold() to update the arc_access() state 5546 * which otherwise would be skipped for entries in the dbuf cache. 5547 */ 5548 void 5549 arc_buf_access(arc_buf_t *buf) 5550 { 5551 mutex_enter(&buf->b_evict_lock); 5552 arc_buf_hdr_t *hdr = buf->b_hdr; 5553 5554 /* 5555 * Avoid taking the hash_lock when possible as an optimization. 5556 * The header must be checked again under the hash_lock in order 5557 * to handle the case where it is concurrently being released. 5558 */ 5559 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5560 mutex_exit(&buf->b_evict_lock); 5561 return; 5562 } 5563 5564 kmutex_t *hash_lock = HDR_LOCK(hdr); 5565 mutex_enter(hash_lock); 5566 5567 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5568 mutex_exit(hash_lock); 5569 mutex_exit(&buf->b_evict_lock); 5570 ARCSTAT_BUMP(arcstat_access_skip); 5571 return; 5572 } 5573 5574 mutex_exit(&buf->b_evict_lock); 5575 5576 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5577 hdr->b_l1hdr.b_state == arc_mfu); 5578 5579 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5580 arc_access(hdr, hash_lock); 5581 mutex_exit(hash_lock); 5582 5583 ARCSTAT_BUMP(arcstat_hits); 5584 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr) && !HDR_PRESCIENT_PREFETCH(hdr), 5585 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits); 5586 } 5587 5588 /* a generic arc_read_done_func_t which you can use */ 5589 /* ARGSUSED */ 5590 void 5591 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5592 arc_buf_t *buf, void *arg) 5593 { 5594 if (buf == NULL) 5595 return; 5596 5597 bcopy(buf->b_data, arg, arc_buf_size(buf)); 5598 arc_buf_destroy(buf, arg); 5599 } 5600 5601 /* a generic arc_read_done_func_t */ 5602 /* ARGSUSED */ 5603 void 5604 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5605 arc_buf_t *buf, void *arg) 5606 { 5607 arc_buf_t **bufp = arg; 5608 5609 if (buf == NULL) { 5610 ASSERT(zio == NULL || zio->io_error != 0); 5611 *bufp = NULL; 5612 } else { 5613 ASSERT(zio == NULL || zio->io_error == 0); 5614 *bufp = buf; 5615 ASSERT(buf->b_data != NULL); 5616 } 5617 } 5618 5619 static void 5620 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp) 5621 { 5622 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 5623 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0); 5624 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF); 5625 } else { 5626 if (HDR_COMPRESSION_ENABLED(hdr)) { 5627 ASSERT3U(arc_hdr_get_compress(hdr), ==, 5628 BP_GET_COMPRESS(bp)); 5629 } 5630 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 5631 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); 5632 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp)); 5633 } 5634 } 5635 5636 static void 5637 arc_read_done(zio_t *zio) 5638 { 5639 blkptr_t *bp = zio->io_bp; 5640 arc_buf_hdr_t *hdr = zio->io_private; 5641 kmutex_t *hash_lock = NULL; 5642 arc_callback_t *callback_list; 5643 arc_callback_t *acb; 5644 boolean_t freeable = B_FALSE; 5645 5646 /* 5647 * The hdr was inserted into hash-table and removed from lists 5648 * prior to starting I/O. We should find this header, since 5649 * it's in the hash table, and it should be legit since it's 5650 * not possible to evict it during the I/O. The only possible 5651 * reason for it not to be found is if we were freed during the 5652 * read. 5653 */ 5654 if (HDR_IN_HASH_TABLE(hdr)) { 5655 arc_buf_hdr_t *found; 5656 5657 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 5658 ASSERT3U(hdr->b_dva.dva_word[0], ==, 5659 BP_IDENTITY(zio->io_bp)->dva_word[0]); 5660 ASSERT3U(hdr->b_dva.dva_word[1], ==, 5661 BP_IDENTITY(zio->io_bp)->dva_word[1]); 5662 5663 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock); 5664 5665 ASSERT((found == hdr && 5666 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 5667 (found == hdr && HDR_L2_READING(hdr))); 5668 ASSERT3P(hash_lock, !=, NULL); 5669 } 5670 5671 if (BP_IS_PROTECTED(bp)) { 5672 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 5673 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 5674 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 5675 hdr->b_crypt_hdr.b_iv); 5676 5677 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) { 5678 void *tmpbuf; 5679 5680 tmpbuf = abd_borrow_buf_copy(zio->io_abd, 5681 sizeof (zil_chain_t)); 5682 zio_crypt_decode_mac_zil(tmpbuf, 5683 hdr->b_crypt_hdr.b_mac); 5684 abd_return_buf(zio->io_abd, tmpbuf, 5685 sizeof (zil_chain_t)); 5686 } else { 5687 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 5688 } 5689 } 5690 5691 if (zio->io_error == 0) { 5692 /* byteswap if necessary */ 5693 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 5694 if (BP_GET_LEVEL(zio->io_bp) > 0) { 5695 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 5696 } else { 5697 hdr->b_l1hdr.b_byteswap = 5698 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 5699 } 5700 } else { 5701 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 5702 } 5703 if (!HDR_L2_READING(hdr)) { 5704 hdr->b_complevel = zio->io_prop.zp_complevel; 5705 } 5706 } 5707 5708 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); 5709 if (l2arc_noprefetch && HDR_PREFETCH(hdr)) 5710 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE); 5711 5712 callback_list = hdr->b_l1hdr.b_acb; 5713 ASSERT3P(callback_list, !=, NULL); 5714 5715 if (hash_lock && zio->io_error == 0 && 5716 hdr->b_l1hdr.b_state == arc_anon) { 5717 /* 5718 * Only call arc_access on anonymous buffers. This is because 5719 * if we've issued an I/O for an evicted buffer, we've already 5720 * called arc_access (to prevent any simultaneous readers from 5721 * getting confused). 5722 */ 5723 arc_access(hdr, hash_lock); 5724 } 5725 5726 /* 5727 * If a read request has a callback (i.e. acb_done is not NULL), then we 5728 * make a buf containing the data according to the parameters which were 5729 * passed in. The implementation of arc_buf_alloc_impl() ensures that we 5730 * aren't needlessly decompressing the data multiple times. 5731 */ 5732 int callback_cnt = 0; 5733 for (acb = callback_list; acb != NULL; acb = acb->acb_next) { 5734 if (!acb->acb_done || acb->acb_nobuf) 5735 continue; 5736 5737 callback_cnt++; 5738 5739 if (zio->io_error != 0) 5740 continue; 5741 5742 int error = arc_buf_alloc_impl(hdr, zio->io_spa, 5743 &acb->acb_zb, acb->acb_private, acb->acb_encrypted, 5744 acb->acb_compressed, acb->acb_noauth, B_TRUE, 5745 &acb->acb_buf); 5746 5747 /* 5748 * Assert non-speculative zios didn't fail because an 5749 * encryption key wasn't loaded 5750 */ 5751 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) || 5752 error != EACCES); 5753 5754 /* 5755 * If we failed to decrypt, report an error now (as the zio 5756 * layer would have done if it had done the transforms). 5757 */ 5758 if (error == ECKSUM) { 5759 ASSERT(BP_IS_PROTECTED(bp)); 5760 error = SET_ERROR(EIO); 5761 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5762 spa_log_error(zio->io_spa, &acb->acb_zb); 5763 (void) zfs_ereport_post( 5764 FM_EREPORT_ZFS_AUTHENTICATION, 5765 zio->io_spa, NULL, &acb->acb_zb, zio, 0); 5766 } 5767 } 5768 5769 if (error != 0) { 5770 /* 5771 * Decompression or decryption failed. Set 5772 * io_error so that when we call acb_done 5773 * (below), we will indicate that the read 5774 * failed. Note that in the unusual case 5775 * where one callback is compressed and another 5776 * uncompressed, we will mark all of them 5777 * as failed, even though the uncompressed 5778 * one can't actually fail. In this case, 5779 * the hdr will not be anonymous, because 5780 * if there are multiple callbacks, it's 5781 * because multiple threads found the same 5782 * arc buf in the hash table. 5783 */ 5784 zio->io_error = error; 5785 } 5786 } 5787 5788 /* 5789 * If there are multiple callbacks, we must have the hash lock, 5790 * because the only way for multiple threads to find this hdr is 5791 * in the hash table. This ensures that if there are multiple 5792 * callbacks, the hdr is not anonymous. If it were anonymous, 5793 * we couldn't use arc_buf_destroy() in the error case below. 5794 */ 5795 ASSERT(callback_cnt < 2 || hash_lock != NULL); 5796 5797 hdr->b_l1hdr.b_acb = NULL; 5798 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5799 if (callback_cnt == 0) 5800 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 5801 5802 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) || 5803 callback_list != NULL); 5804 5805 if (zio->io_error == 0) { 5806 arc_hdr_verify(hdr, zio->io_bp); 5807 } else { 5808 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 5809 if (hdr->b_l1hdr.b_state != arc_anon) 5810 arc_change_state(arc_anon, hdr, hash_lock); 5811 if (HDR_IN_HASH_TABLE(hdr)) 5812 buf_hash_remove(hdr); 5813 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5814 } 5815 5816 /* 5817 * Broadcast before we drop the hash_lock to avoid the possibility 5818 * that the hdr (and hence the cv) might be freed before we get to 5819 * the cv_broadcast(). 5820 */ 5821 cv_broadcast(&hdr->b_l1hdr.b_cv); 5822 5823 if (hash_lock != NULL) { 5824 mutex_exit(hash_lock); 5825 } else { 5826 /* 5827 * This block was freed while we waited for the read to 5828 * complete. It has been removed from the hash table and 5829 * moved to the anonymous state (so that it won't show up 5830 * in the cache). 5831 */ 5832 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 5833 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5834 } 5835 5836 /* execute each callback and free its structure */ 5837 while ((acb = callback_list) != NULL) { 5838 if (acb->acb_done != NULL) { 5839 if (zio->io_error != 0 && acb->acb_buf != NULL) { 5840 /* 5841 * If arc_buf_alloc_impl() fails during 5842 * decompression, the buf will still be 5843 * allocated, and needs to be freed here. 5844 */ 5845 arc_buf_destroy(acb->acb_buf, 5846 acb->acb_private); 5847 acb->acb_buf = NULL; 5848 } 5849 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp, 5850 acb->acb_buf, acb->acb_private); 5851 } 5852 5853 if (acb->acb_zio_dummy != NULL) { 5854 acb->acb_zio_dummy->io_error = zio->io_error; 5855 zio_nowait(acb->acb_zio_dummy); 5856 } 5857 5858 callback_list = acb->acb_next; 5859 kmem_free(acb, sizeof (arc_callback_t)); 5860 } 5861 5862 if (freeable) 5863 arc_hdr_destroy(hdr); 5864 } 5865 5866 /* 5867 * "Read" the block at the specified DVA (in bp) via the 5868 * cache. If the block is found in the cache, invoke the provided 5869 * callback immediately and return. Note that the `zio' parameter 5870 * in the callback will be NULL in this case, since no IO was 5871 * required. If the block is not in the cache pass the read request 5872 * on to the spa with a substitute callback function, so that the 5873 * requested block will be added to the cache. 5874 * 5875 * If a read request arrives for a block that has a read in-progress, 5876 * either wait for the in-progress read to complete (and return the 5877 * results); or, if this is a read with a "done" func, add a record 5878 * to the read to invoke the "done" func when the read completes, 5879 * and return; or just return. 5880 * 5881 * arc_read_done() will invoke all the requested "done" functions 5882 * for readers of this block. 5883 */ 5884 int 5885 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 5886 arc_read_done_func_t *done, void *private, zio_priority_t priority, 5887 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 5888 { 5889 arc_buf_hdr_t *hdr = NULL; 5890 kmutex_t *hash_lock = NULL; 5891 zio_t *rzio; 5892 uint64_t guid = spa_load_guid(spa); 5893 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0; 5894 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) && 5895 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5896 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) && 5897 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5898 boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp); 5899 boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF; 5900 int rc = 0; 5901 5902 ASSERT(!embedded_bp || 5903 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 5904 ASSERT(!BP_IS_HOLE(bp)); 5905 ASSERT(!BP_IS_REDACTED(bp)); 5906 5907 /* 5908 * Normally SPL_FSTRANS will already be set since kernel threads which 5909 * expect to call the DMU interfaces will set it when created. System 5910 * calls are similarly handled by setting/cleaning the bit in the 5911 * registered callback (module/os/.../zfs/zpl_*). 5912 * 5913 * External consumers such as Lustre which call the exported DMU 5914 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock 5915 * on the hash_lock always set and clear the bit. 5916 */ 5917 fstrans_cookie_t cookie = spl_fstrans_mark(); 5918 top: 5919 /* 5920 * Verify the block pointer contents are reasonable. This should 5921 * always be the case since the blkptr is protected by a checksum. 5922 * However, if there is damage it's desirable to detect this early 5923 * and treat it as a checksum error. This allows an alternate blkptr 5924 * to be tried when one is available (e.g. ditto blocks). 5925 */ 5926 if (!zfs_blkptr_verify(spa, bp, zio_flags & ZIO_FLAG_CONFIG_WRITER, 5927 BLK_VERIFY_LOG)) { 5928 rc = SET_ERROR(ECKSUM); 5929 goto out; 5930 } 5931 5932 if (!embedded_bp) { 5933 /* 5934 * Embedded BP's have no DVA and require no I/O to "read". 5935 * Create an anonymous arc buf to back it. 5936 */ 5937 hdr = buf_hash_find(guid, bp, &hash_lock); 5938 } 5939 5940 /* 5941 * Determine if we have an L1 cache hit or a cache miss. For simplicity 5942 * we maintain encrypted data separately from compressed / uncompressed 5943 * data. If the user is requesting raw encrypted data and we don't have 5944 * that in the header we will read from disk to guarantee that we can 5945 * get it even if the encryption keys aren't loaded. 5946 */ 5947 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) || 5948 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) { 5949 arc_buf_t *buf = NULL; 5950 *arc_flags |= ARC_FLAG_CACHED; 5951 5952 if (HDR_IO_IN_PROGRESS(hdr)) { 5953 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head; 5954 5955 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 5956 mutex_exit(hash_lock); 5957 ARCSTAT_BUMP(arcstat_cached_only_in_progress); 5958 rc = SET_ERROR(ENOENT); 5959 goto out; 5960 } 5961 5962 ASSERT3P(head_zio, !=, NULL); 5963 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && 5964 priority == ZIO_PRIORITY_SYNC_READ) { 5965 /* 5966 * This is a sync read that needs to wait for 5967 * an in-flight async read. Request that the 5968 * zio have its priority upgraded. 5969 */ 5970 zio_change_priority(head_zio, priority); 5971 DTRACE_PROBE1(arc__async__upgrade__sync, 5972 arc_buf_hdr_t *, hdr); 5973 ARCSTAT_BUMP(arcstat_async_upgrade_sync); 5974 } 5975 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 5976 arc_hdr_clear_flags(hdr, 5977 ARC_FLAG_PREDICTIVE_PREFETCH); 5978 } 5979 5980 if (*arc_flags & ARC_FLAG_WAIT) { 5981 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 5982 mutex_exit(hash_lock); 5983 goto top; 5984 } 5985 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 5986 5987 if (done) { 5988 arc_callback_t *acb = NULL; 5989 5990 acb = kmem_zalloc(sizeof (arc_callback_t), 5991 KM_SLEEP); 5992 acb->acb_done = done; 5993 acb->acb_private = private; 5994 acb->acb_compressed = compressed_read; 5995 acb->acb_encrypted = encrypted_read; 5996 acb->acb_noauth = noauth_read; 5997 acb->acb_nobuf = no_buf; 5998 acb->acb_zb = *zb; 5999 if (pio != NULL) 6000 acb->acb_zio_dummy = zio_null(pio, 6001 spa, NULL, NULL, NULL, zio_flags); 6002 6003 ASSERT3P(acb->acb_done, !=, NULL); 6004 acb->acb_zio_head = head_zio; 6005 acb->acb_next = hdr->b_l1hdr.b_acb; 6006 hdr->b_l1hdr.b_acb = acb; 6007 } 6008 mutex_exit(hash_lock); 6009 goto out; 6010 } 6011 6012 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 6013 hdr->b_l1hdr.b_state == arc_mfu); 6014 6015 if (done && !no_buf) { 6016 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 6017 /* 6018 * This is a demand read which does not have to 6019 * wait for i/o because we did a predictive 6020 * prefetch i/o for it, which has completed. 6021 */ 6022 DTRACE_PROBE1( 6023 arc__demand__hit__predictive__prefetch, 6024 arc_buf_hdr_t *, hdr); 6025 ARCSTAT_BUMP( 6026 arcstat_demand_hit_predictive_prefetch); 6027 arc_hdr_clear_flags(hdr, 6028 ARC_FLAG_PREDICTIVE_PREFETCH); 6029 } 6030 6031 if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) { 6032 ARCSTAT_BUMP( 6033 arcstat_demand_hit_prescient_prefetch); 6034 arc_hdr_clear_flags(hdr, 6035 ARC_FLAG_PRESCIENT_PREFETCH); 6036 } 6037 6038 ASSERT(!embedded_bp || !BP_IS_HOLE(bp)); 6039 6040 /* Get a buf with the desired data in it. */ 6041 rc = arc_buf_alloc_impl(hdr, spa, zb, private, 6042 encrypted_read, compressed_read, noauth_read, 6043 B_TRUE, &buf); 6044 if (rc == ECKSUM) { 6045 /* 6046 * Convert authentication and decryption errors 6047 * to EIO (and generate an ereport if needed) 6048 * before leaving the ARC. 6049 */ 6050 rc = SET_ERROR(EIO); 6051 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) { 6052 spa_log_error(spa, zb); 6053 (void) zfs_ereport_post( 6054 FM_EREPORT_ZFS_AUTHENTICATION, 6055 spa, NULL, zb, NULL, 0); 6056 } 6057 } 6058 if (rc != 0) { 6059 (void) remove_reference(hdr, hash_lock, 6060 private); 6061 arc_buf_destroy_impl(buf); 6062 buf = NULL; 6063 } 6064 6065 /* assert any errors weren't due to unloaded keys */ 6066 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) || 6067 rc != EACCES); 6068 } else if (*arc_flags & ARC_FLAG_PREFETCH && 6069 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6070 if (HDR_HAS_L2HDR(hdr)) 6071 l2arc_hdr_arcstats_decrement_state(hdr); 6072 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 6073 if (HDR_HAS_L2HDR(hdr)) 6074 l2arc_hdr_arcstats_increment_state(hdr); 6075 } 6076 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 6077 arc_access(hdr, hash_lock); 6078 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 6079 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 6080 if (*arc_flags & ARC_FLAG_L2CACHE) 6081 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6082 mutex_exit(hash_lock); 6083 ARCSTAT_BUMP(arcstat_hits); 6084 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 6085 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 6086 data, metadata, hits); 6087 6088 if (done) 6089 done(NULL, zb, bp, buf, private); 6090 } else { 6091 uint64_t lsize = BP_GET_LSIZE(bp); 6092 uint64_t psize = BP_GET_PSIZE(bp); 6093 arc_callback_t *acb; 6094 vdev_t *vd = NULL; 6095 uint64_t addr = 0; 6096 boolean_t devw = B_FALSE; 6097 uint64_t size; 6098 abd_t *hdr_abd; 6099 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0; 6100 6101 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 6102 rc = SET_ERROR(ENOENT); 6103 if (hash_lock != NULL) 6104 mutex_exit(hash_lock); 6105 goto out; 6106 } 6107 6108 if (hdr == NULL) { 6109 /* 6110 * This block is not in the cache or it has 6111 * embedded data. 6112 */ 6113 arc_buf_hdr_t *exists = NULL; 6114 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 6115 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 6116 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type); 6117 6118 if (!embedded_bp) { 6119 hdr->b_dva = *BP_IDENTITY(bp); 6120 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 6121 exists = buf_hash_insert(hdr, &hash_lock); 6122 } 6123 if (exists != NULL) { 6124 /* somebody beat us to the hash insert */ 6125 mutex_exit(hash_lock); 6126 buf_discard_identity(hdr); 6127 arc_hdr_destroy(hdr); 6128 goto top; /* restart the IO request */ 6129 } 6130 alloc_flags |= ARC_HDR_DO_ADAPT; 6131 } else { 6132 /* 6133 * This block is in the ghost cache or encrypted data 6134 * was requested and we didn't have it. If it was 6135 * L2-only (and thus didn't have an L1 hdr), 6136 * we realloc the header to add an L1 hdr. 6137 */ 6138 if (!HDR_HAS_L1HDR(hdr)) { 6139 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 6140 hdr_full_cache); 6141 } 6142 6143 if (GHOST_STATE(hdr->b_l1hdr.b_state)) { 6144 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6145 ASSERT(!HDR_HAS_RABD(hdr)); 6146 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6147 ASSERT0(zfs_refcount_count( 6148 &hdr->b_l1hdr.b_refcnt)); 6149 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 6150 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 6151 } else if (HDR_IO_IN_PROGRESS(hdr)) { 6152 /* 6153 * If this header already had an IO in progress 6154 * and we are performing another IO to fetch 6155 * encrypted data we must wait until the first 6156 * IO completes so as not to confuse 6157 * arc_read_done(). This should be very rare 6158 * and so the performance impact shouldn't 6159 * matter. 6160 */ 6161 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 6162 mutex_exit(hash_lock); 6163 goto top; 6164 } 6165 6166 /* 6167 * This is a delicate dance that we play here. 6168 * This hdr might be in the ghost list so we access 6169 * it to move it out of the ghost list before we 6170 * initiate the read. If it's a prefetch then 6171 * it won't have a callback so we'll remove the 6172 * reference that arc_buf_alloc_impl() created. We 6173 * do this after we've called arc_access() to 6174 * avoid hitting an assert in remove_reference(). 6175 */ 6176 arc_adapt(arc_hdr_size(hdr), hdr->b_l1hdr.b_state); 6177 arc_access(hdr, hash_lock); 6178 } 6179 6180 arc_hdr_alloc_abd(hdr, alloc_flags); 6181 if (encrypted_read) { 6182 ASSERT(HDR_HAS_RABD(hdr)); 6183 size = HDR_GET_PSIZE(hdr); 6184 hdr_abd = hdr->b_crypt_hdr.b_rabd; 6185 zio_flags |= ZIO_FLAG_RAW; 6186 } else { 6187 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 6188 size = arc_hdr_size(hdr); 6189 hdr_abd = hdr->b_l1hdr.b_pabd; 6190 6191 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 6192 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 6193 } 6194 6195 /* 6196 * For authenticated bp's, we do not ask the ZIO layer 6197 * to authenticate them since this will cause the entire 6198 * IO to fail if the key isn't loaded. Instead, we 6199 * defer authentication until arc_buf_fill(), which will 6200 * verify the data when the key is available. 6201 */ 6202 if (BP_IS_AUTHENTICATED(bp)) 6203 zio_flags |= ZIO_FLAG_RAW_ENCRYPT; 6204 } 6205 6206 if (*arc_flags & ARC_FLAG_PREFETCH && 6207 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6208 if (HDR_HAS_L2HDR(hdr)) 6209 l2arc_hdr_arcstats_decrement_state(hdr); 6210 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 6211 if (HDR_HAS_L2HDR(hdr)) 6212 l2arc_hdr_arcstats_increment_state(hdr); 6213 } 6214 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 6215 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 6216 if (*arc_flags & ARC_FLAG_L2CACHE) 6217 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6218 if (BP_IS_AUTHENTICATED(bp)) 6219 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6220 if (BP_GET_LEVEL(bp) > 0) 6221 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); 6222 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH) 6223 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH); 6224 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 6225 6226 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 6227 acb->acb_done = done; 6228 acb->acb_private = private; 6229 acb->acb_compressed = compressed_read; 6230 acb->acb_encrypted = encrypted_read; 6231 acb->acb_noauth = noauth_read; 6232 acb->acb_zb = *zb; 6233 6234 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6235 hdr->b_l1hdr.b_acb = acb; 6236 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6237 6238 if (HDR_HAS_L2HDR(hdr) && 6239 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 6240 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 6241 addr = hdr->b_l2hdr.b_daddr; 6242 /* 6243 * Lock out L2ARC device removal. 6244 */ 6245 if (vdev_is_dead(vd) || 6246 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 6247 vd = NULL; 6248 } 6249 6250 /* 6251 * We count both async reads and scrub IOs as asynchronous so 6252 * that both can be upgraded in the event of a cache hit while 6253 * the read IO is still in-flight. 6254 */ 6255 if (priority == ZIO_PRIORITY_ASYNC_READ || 6256 priority == ZIO_PRIORITY_SCRUB) 6257 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6258 else 6259 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6260 6261 /* 6262 * At this point, we have a level 1 cache miss or a blkptr 6263 * with embedded data. Try again in L2ARC if possible. 6264 */ 6265 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); 6266 6267 /* 6268 * Skip ARC stat bump for block pointers with embedded 6269 * data. The data are read from the blkptr itself via 6270 * decode_embedded_bp_compressed(). 6271 */ 6272 if (!embedded_bp) { 6273 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, 6274 blkptr_t *, bp, uint64_t, lsize, 6275 zbookmark_phys_t *, zb); 6276 ARCSTAT_BUMP(arcstat_misses); 6277 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 6278 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, 6279 metadata, misses); 6280 zfs_racct_read(size, 1); 6281 } 6282 6283 /* Check if the spa even has l2 configured */ 6284 const boolean_t spa_has_l2 = l2arc_ndev != 0 && 6285 spa->spa_l2cache.sav_count > 0; 6286 6287 if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) { 6288 /* 6289 * Read from the L2ARC if the following are true: 6290 * 1. The L2ARC vdev was previously cached. 6291 * 2. This buffer still has L2ARC metadata. 6292 * 3. This buffer isn't currently writing to the L2ARC. 6293 * 4. The L2ARC entry wasn't evicted, which may 6294 * also have invalidated the vdev. 6295 * 5. This isn't prefetch or l2arc_noprefetch is 0. 6296 */ 6297 if (HDR_HAS_L2HDR(hdr) && 6298 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 6299 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 6300 l2arc_read_callback_t *cb; 6301 abd_t *abd; 6302 uint64_t asize; 6303 6304 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 6305 ARCSTAT_BUMP(arcstat_l2_hits); 6306 hdr->b_l2hdr.b_hits++; 6307 6308 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 6309 KM_SLEEP); 6310 cb->l2rcb_hdr = hdr; 6311 cb->l2rcb_bp = *bp; 6312 cb->l2rcb_zb = *zb; 6313 cb->l2rcb_flags = zio_flags; 6314 6315 /* 6316 * When Compressed ARC is disabled, but the 6317 * L2ARC block is compressed, arc_hdr_size() 6318 * will have returned LSIZE rather than PSIZE. 6319 */ 6320 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 6321 !HDR_COMPRESSION_ENABLED(hdr) && 6322 HDR_GET_PSIZE(hdr) != 0) { 6323 size = HDR_GET_PSIZE(hdr); 6324 } 6325 6326 asize = vdev_psize_to_asize(vd, size); 6327 if (asize != size) { 6328 abd = abd_alloc_for_io(asize, 6329 HDR_ISTYPE_METADATA(hdr)); 6330 cb->l2rcb_abd = abd; 6331 } else { 6332 abd = hdr_abd; 6333 } 6334 6335 ASSERT(addr >= VDEV_LABEL_START_SIZE && 6336 addr + asize <= vd->vdev_psize - 6337 VDEV_LABEL_END_SIZE); 6338 6339 /* 6340 * l2arc read. The SCL_L2ARC lock will be 6341 * released by l2arc_read_done(). 6342 * Issue a null zio if the underlying buffer 6343 * was squashed to zero size by compression. 6344 */ 6345 ASSERT3U(arc_hdr_get_compress(hdr), !=, 6346 ZIO_COMPRESS_EMPTY); 6347 rzio = zio_read_phys(pio, vd, addr, 6348 asize, abd, 6349 ZIO_CHECKSUM_OFF, 6350 l2arc_read_done, cb, priority, 6351 zio_flags | ZIO_FLAG_DONT_CACHE | 6352 ZIO_FLAG_CANFAIL | 6353 ZIO_FLAG_DONT_PROPAGATE | 6354 ZIO_FLAG_DONT_RETRY, B_FALSE); 6355 acb->acb_zio_head = rzio; 6356 6357 if (hash_lock != NULL) 6358 mutex_exit(hash_lock); 6359 6360 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 6361 zio_t *, rzio); 6362 ARCSTAT_INCR(arcstat_l2_read_bytes, 6363 HDR_GET_PSIZE(hdr)); 6364 6365 if (*arc_flags & ARC_FLAG_NOWAIT) { 6366 zio_nowait(rzio); 6367 goto out; 6368 } 6369 6370 ASSERT(*arc_flags & ARC_FLAG_WAIT); 6371 if (zio_wait(rzio) == 0) 6372 goto out; 6373 6374 /* l2arc read error; goto zio_read() */ 6375 if (hash_lock != NULL) 6376 mutex_enter(hash_lock); 6377 } else { 6378 DTRACE_PROBE1(l2arc__miss, 6379 arc_buf_hdr_t *, hdr); 6380 ARCSTAT_BUMP(arcstat_l2_misses); 6381 if (HDR_L2_WRITING(hdr)) 6382 ARCSTAT_BUMP(arcstat_l2_rw_clash); 6383 spa_config_exit(spa, SCL_L2ARC, vd); 6384 } 6385 } else { 6386 if (vd != NULL) 6387 spa_config_exit(spa, SCL_L2ARC, vd); 6388 6389 /* 6390 * Only a spa with l2 should contribute to l2 6391 * miss stats. (Including the case of having a 6392 * faulted cache device - that's also a miss.) 6393 */ 6394 if (spa_has_l2) { 6395 /* 6396 * Skip ARC stat bump for block pointers with 6397 * embedded data. The data are read from the 6398 * blkptr itself via 6399 * decode_embedded_bp_compressed(). 6400 */ 6401 if (!embedded_bp) { 6402 DTRACE_PROBE1(l2arc__miss, 6403 arc_buf_hdr_t *, hdr); 6404 ARCSTAT_BUMP(arcstat_l2_misses); 6405 } 6406 } 6407 } 6408 6409 rzio = zio_read(pio, spa, bp, hdr_abd, size, 6410 arc_read_done, hdr, priority, zio_flags, zb); 6411 acb->acb_zio_head = rzio; 6412 6413 if (hash_lock != NULL) 6414 mutex_exit(hash_lock); 6415 6416 if (*arc_flags & ARC_FLAG_WAIT) { 6417 rc = zio_wait(rzio); 6418 goto out; 6419 } 6420 6421 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 6422 zio_nowait(rzio); 6423 } 6424 6425 out: 6426 /* embedded bps don't actually go to disk */ 6427 if (!embedded_bp) 6428 spa_read_history_add(spa, zb, *arc_flags); 6429 spl_fstrans_unmark(cookie); 6430 return (rc); 6431 } 6432 6433 arc_prune_t * 6434 arc_add_prune_callback(arc_prune_func_t *func, void *private) 6435 { 6436 arc_prune_t *p; 6437 6438 p = kmem_alloc(sizeof (*p), KM_SLEEP); 6439 p->p_pfunc = func; 6440 p->p_private = private; 6441 list_link_init(&p->p_node); 6442 zfs_refcount_create(&p->p_refcnt); 6443 6444 mutex_enter(&arc_prune_mtx); 6445 zfs_refcount_add(&p->p_refcnt, &arc_prune_list); 6446 list_insert_head(&arc_prune_list, p); 6447 mutex_exit(&arc_prune_mtx); 6448 6449 return (p); 6450 } 6451 6452 void 6453 arc_remove_prune_callback(arc_prune_t *p) 6454 { 6455 boolean_t wait = B_FALSE; 6456 mutex_enter(&arc_prune_mtx); 6457 list_remove(&arc_prune_list, p); 6458 if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0) 6459 wait = B_TRUE; 6460 mutex_exit(&arc_prune_mtx); 6461 6462 /* wait for arc_prune_task to finish */ 6463 if (wait) 6464 taskq_wait_outstanding(arc_prune_taskq, 0); 6465 ASSERT0(zfs_refcount_count(&p->p_refcnt)); 6466 zfs_refcount_destroy(&p->p_refcnt); 6467 kmem_free(p, sizeof (*p)); 6468 } 6469 6470 /* 6471 * Notify the arc that a block was freed, and thus will never be used again. 6472 */ 6473 void 6474 arc_freed(spa_t *spa, const blkptr_t *bp) 6475 { 6476 arc_buf_hdr_t *hdr; 6477 kmutex_t *hash_lock; 6478 uint64_t guid = spa_load_guid(spa); 6479 6480 ASSERT(!BP_IS_EMBEDDED(bp)); 6481 6482 hdr = buf_hash_find(guid, bp, &hash_lock); 6483 if (hdr == NULL) 6484 return; 6485 6486 /* 6487 * We might be trying to free a block that is still doing I/O 6488 * (i.e. prefetch) or has a reference (i.e. a dedup-ed, 6489 * dmu_sync-ed block). If this block is being prefetched, then it 6490 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr 6491 * until the I/O completes. A block may also have a reference if it is 6492 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would 6493 * have written the new block to its final resting place on disk but 6494 * without the dedup flag set. This would have left the hdr in the MRU 6495 * state and discoverable. When the txg finally syncs it detects that 6496 * the block was overridden in open context and issues an override I/O. 6497 * Since this is a dedup block, the override I/O will determine if the 6498 * block is already in the DDT. If so, then it will replace the io_bp 6499 * with the bp from the DDT and allow the I/O to finish. When the I/O 6500 * reaches the done callback, dbuf_write_override_done, it will 6501 * check to see if the io_bp and io_bp_override are identical. 6502 * If they are not, then it indicates that the bp was replaced with 6503 * the bp in the DDT and the override bp is freed. This allows 6504 * us to arrive here with a reference on a block that is being 6505 * freed. So if we have an I/O in progress, or a reference to 6506 * this hdr, then we don't destroy the hdr. 6507 */ 6508 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) && 6509 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) { 6510 arc_change_state(arc_anon, hdr, hash_lock); 6511 arc_hdr_destroy(hdr); 6512 mutex_exit(hash_lock); 6513 } else { 6514 mutex_exit(hash_lock); 6515 } 6516 6517 } 6518 6519 /* 6520 * Release this buffer from the cache, making it an anonymous buffer. This 6521 * must be done after a read and prior to modifying the buffer contents. 6522 * If the buffer has more than one reference, we must make 6523 * a new hdr for the buffer. 6524 */ 6525 void 6526 arc_release(arc_buf_t *buf, void *tag) 6527 { 6528 arc_buf_hdr_t *hdr = buf->b_hdr; 6529 6530 /* 6531 * It would be nice to assert that if its DMU metadata (level > 6532 * 0 || it's the dnode file), then it must be syncing context. 6533 * But we don't know that information at this level. 6534 */ 6535 6536 mutex_enter(&buf->b_evict_lock); 6537 6538 ASSERT(HDR_HAS_L1HDR(hdr)); 6539 6540 /* 6541 * We don't grab the hash lock prior to this check, because if 6542 * the buffer's header is in the arc_anon state, it won't be 6543 * linked into the hash table. 6544 */ 6545 if (hdr->b_l1hdr.b_state == arc_anon) { 6546 mutex_exit(&buf->b_evict_lock); 6547 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6548 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 6549 ASSERT(!HDR_HAS_L2HDR(hdr)); 6550 6551 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6552 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 6553 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node)); 6554 6555 hdr->b_l1hdr.b_arc_access = 0; 6556 6557 /* 6558 * If the buf is being overridden then it may already 6559 * have a hdr that is not empty. 6560 */ 6561 buf_discard_identity(hdr); 6562 arc_buf_thaw(buf); 6563 6564 return; 6565 } 6566 6567 kmutex_t *hash_lock = HDR_LOCK(hdr); 6568 mutex_enter(hash_lock); 6569 6570 /* 6571 * This assignment is only valid as long as the hash_lock is 6572 * held, we must be careful not to reference state or the 6573 * b_state field after dropping the lock. 6574 */ 6575 arc_state_t *state = hdr->b_l1hdr.b_state; 6576 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 6577 ASSERT3P(state, !=, arc_anon); 6578 6579 /* this buffer is not on any list */ 6580 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0); 6581 6582 if (HDR_HAS_L2HDR(hdr)) { 6583 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6584 6585 /* 6586 * We have to recheck this conditional again now that 6587 * we're holding the l2ad_mtx to prevent a race with 6588 * another thread which might be concurrently calling 6589 * l2arc_evict(). In that case, l2arc_evict() might have 6590 * destroyed the header's L2 portion as we were waiting 6591 * to acquire the l2ad_mtx. 6592 */ 6593 if (HDR_HAS_L2HDR(hdr)) 6594 arc_hdr_l2hdr_destroy(hdr); 6595 6596 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6597 } 6598 6599 /* 6600 * Do we have more than one buf? 6601 */ 6602 if (hdr->b_l1hdr.b_bufcnt > 1) { 6603 arc_buf_hdr_t *nhdr; 6604 uint64_t spa = hdr->b_spa; 6605 uint64_t psize = HDR_GET_PSIZE(hdr); 6606 uint64_t lsize = HDR_GET_LSIZE(hdr); 6607 boolean_t protected = HDR_PROTECTED(hdr); 6608 enum zio_compress compress = arc_hdr_get_compress(hdr); 6609 arc_buf_contents_t type = arc_buf_type(hdr); 6610 VERIFY3U(hdr->b_type, ==, type); 6611 6612 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); 6613 (void) remove_reference(hdr, hash_lock, tag); 6614 6615 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) { 6616 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6617 ASSERT(ARC_BUF_LAST(buf)); 6618 } 6619 6620 /* 6621 * Pull the data off of this hdr and attach it to 6622 * a new anonymous hdr. Also find the last buffer 6623 * in the hdr's buffer list. 6624 */ 6625 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 6626 ASSERT3P(lastbuf, !=, NULL); 6627 6628 /* 6629 * If the current arc_buf_t and the hdr are sharing their data 6630 * buffer, then we must stop sharing that block. 6631 */ 6632 if (arc_buf_is_shared(buf)) { 6633 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6634 VERIFY(!arc_buf_is_shared(lastbuf)); 6635 6636 /* 6637 * First, sever the block sharing relationship between 6638 * buf and the arc_buf_hdr_t. 6639 */ 6640 arc_unshare_buf(hdr, buf); 6641 6642 /* 6643 * Now we need to recreate the hdr's b_pabd. Since we 6644 * have lastbuf handy, we try to share with it, but if 6645 * we can't then we allocate a new b_pabd and copy the 6646 * data from buf into it. 6647 */ 6648 if (arc_can_share(hdr, lastbuf)) { 6649 arc_share_buf(hdr, lastbuf); 6650 } else { 6651 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 6652 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, 6653 buf->b_data, psize); 6654 } 6655 VERIFY3P(lastbuf->b_data, !=, NULL); 6656 } else if (HDR_SHARED_DATA(hdr)) { 6657 /* 6658 * Uncompressed shared buffers are always at the end 6659 * of the list. Compressed buffers don't have the 6660 * same requirements. This makes it hard to 6661 * simply assert that the lastbuf is shared so 6662 * we rely on the hdr's compression flags to determine 6663 * if we have a compressed, shared buffer. 6664 */ 6665 ASSERT(arc_buf_is_shared(lastbuf) || 6666 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 6667 ASSERT(!ARC_BUF_SHARED(buf)); 6668 } 6669 6670 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 6671 ASSERT3P(state, !=, arc_l2c_only); 6672 6673 (void) zfs_refcount_remove_many(&state->arcs_size, 6674 arc_buf_size(buf), buf); 6675 6676 if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6677 ASSERT3P(state, !=, arc_l2c_only); 6678 (void) zfs_refcount_remove_many( 6679 &state->arcs_esize[type], 6680 arc_buf_size(buf), buf); 6681 } 6682 6683 hdr->b_l1hdr.b_bufcnt -= 1; 6684 if (ARC_BUF_ENCRYPTED(buf)) 6685 hdr->b_crypt_hdr.b_ebufcnt -= 1; 6686 6687 arc_cksum_verify(buf); 6688 arc_buf_unwatch(buf); 6689 6690 /* if this is the last uncompressed buf free the checksum */ 6691 if (!arc_hdr_has_uncompressed_buf(hdr)) 6692 arc_cksum_free(hdr); 6693 6694 mutex_exit(hash_lock); 6695 6696 /* 6697 * Allocate a new hdr. The new hdr will contain a b_pabd 6698 * buffer which will be freed in arc_write(). 6699 */ 6700 nhdr = arc_hdr_alloc(spa, psize, lsize, protected, 6701 compress, hdr->b_complevel, type); 6702 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL); 6703 ASSERT0(nhdr->b_l1hdr.b_bufcnt); 6704 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt)); 6705 VERIFY3U(nhdr->b_type, ==, type); 6706 ASSERT(!HDR_SHARED_DATA(nhdr)); 6707 6708 nhdr->b_l1hdr.b_buf = buf; 6709 nhdr->b_l1hdr.b_bufcnt = 1; 6710 if (ARC_BUF_ENCRYPTED(buf)) 6711 nhdr->b_crypt_hdr.b_ebufcnt = 1; 6712 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 6713 buf->b_hdr = nhdr; 6714 6715 mutex_exit(&buf->b_evict_lock); 6716 (void) zfs_refcount_add_many(&arc_anon->arcs_size, 6717 arc_buf_size(buf), buf); 6718 } else { 6719 mutex_exit(&buf->b_evict_lock); 6720 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 6721 /* protected by hash lock, or hdr is on arc_anon */ 6722 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 6723 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6724 hdr->b_l1hdr.b_mru_hits = 0; 6725 hdr->b_l1hdr.b_mru_ghost_hits = 0; 6726 hdr->b_l1hdr.b_mfu_hits = 0; 6727 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 6728 arc_change_state(arc_anon, hdr, hash_lock); 6729 hdr->b_l1hdr.b_arc_access = 0; 6730 6731 mutex_exit(hash_lock); 6732 buf_discard_identity(hdr); 6733 arc_buf_thaw(buf); 6734 } 6735 } 6736 6737 int 6738 arc_released(arc_buf_t *buf) 6739 { 6740 int released; 6741 6742 mutex_enter(&buf->b_evict_lock); 6743 released = (buf->b_data != NULL && 6744 buf->b_hdr->b_l1hdr.b_state == arc_anon); 6745 mutex_exit(&buf->b_evict_lock); 6746 return (released); 6747 } 6748 6749 #ifdef ZFS_DEBUG 6750 int 6751 arc_referenced(arc_buf_t *buf) 6752 { 6753 int referenced; 6754 6755 mutex_enter(&buf->b_evict_lock); 6756 referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 6757 mutex_exit(&buf->b_evict_lock); 6758 return (referenced); 6759 } 6760 #endif 6761 6762 static void 6763 arc_write_ready(zio_t *zio) 6764 { 6765 arc_write_callback_t *callback = zio->io_private; 6766 arc_buf_t *buf = callback->awcb_buf; 6767 arc_buf_hdr_t *hdr = buf->b_hdr; 6768 blkptr_t *bp = zio->io_bp; 6769 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp); 6770 fstrans_cookie_t cookie = spl_fstrans_mark(); 6771 6772 ASSERT(HDR_HAS_L1HDR(hdr)); 6773 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 6774 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 6775 6776 /* 6777 * If we're reexecuting this zio because the pool suspended, then 6778 * cleanup any state that was previously set the first time the 6779 * callback was invoked. 6780 */ 6781 if (zio->io_flags & ZIO_FLAG_REEXECUTED) { 6782 arc_cksum_free(hdr); 6783 arc_buf_unwatch(buf); 6784 if (hdr->b_l1hdr.b_pabd != NULL) { 6785 if (arc_buf_is_shared(buf)) { 6786 arc_unshare_buf(hdr, buf); 6787 } else { 6788 arc_hdr_free_abd(hdr, B_FALSE); 6789 } 6790 } 6791 6792 if (HDR_HAS_RABD(hdr)) 6793 arc_hdr_free_abd(hdr, B_TRUE); 6794 } 6795 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6796 ASSERT(!HDR_HAS_RABD(hdr)); 6797 ASSERT(!HDR_SHARED_DATA(hdr)); 6798 ASSERT(!arc_buf_is_shared(buf)); 6799 6800 callback->awcb_ready(zio, buf, callback->awcb_private); 6801 6802 if (HDR_IO_IN_PROGRESS(hdr)) 6803 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); 6804 6805 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6806 6807 if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr)) 6808 hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp)); 6809 6810 if (BP_IS_PROTECTED(bp)) { 6811 /* ZIL blocks are written through zio_rewrite */ 6812 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 6813 ASSERT(HDR_PROTECTED(hdr)); 6814 6815 if (BP_SHOULD_BYTESWAP(bp)) { 6816 if (BP_GET_LEVEL(bp) > 0) { 6817 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 6818 } else { 6819 hdr->b_l1hdr.b_byteswap = 6820 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 6821 } 6822 } else { 6823 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 6824 } 6825 6826 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 6827 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 6828 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 6829 hdr->b_crypt_hdr.b_iv); 6830 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 6831 } 6832 6833 /* 6834 * If this block was written for raw encryption but the zio layer 6835 * ended up only authenticating it, adjust the buffer flags now. 6836 */ 6837 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) { 6838 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6839 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6840 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF) 6841 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6842 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) { 6843 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6844 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6845 } 6846 6847 /* this must be done after the buffer flags are adjusted */ 6848 arc_cksum_compute(buf); 6849 6850 enum zio_compress compress; 6851 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 6852 compress = ZIO_COMPRESS_OFF; 6853 } else { 6854 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 6855 compress = BP_GET_COMPRESS(bp); 6856 } 6857 HDR_SET_PSIZE(hdr, psize); 6858 arc_hdr_set_compress(hdr, compress); 6859 hdr->b_complevel = zio->io_prop.zp_complevel; 6860 6861 if (zio->io_error != 0 || psize == 0) 6862 goto out; 6863 6864 /* 6865 * Fill the hdr with data. If the buffer is encrypted we have no choice 6866 * but to copy the data into b_radb. If the hdr is compressed, the data 6867 * we want is available from the zio, otherwise we can take it from 6868 * the buf. 6869 * 6870 * We might be able to share the buf's data with the hdr here. However, 6871 * doing so would cause the ARC to be full of linear ABDs if we write a 6872 * lot of shareable data. As a compromise, we check whether scattered 6873 * ABDs are allowed, and assume that if they are then the user wants 6874 * the ARC to be primarily filled with them regardless of the data being 6875 * written. Therefore, if they're allowed then we allocate one and copy 6876 * the data into it; otherwise, we share the data directly if we can. 6877 */ 6878 if (ARC_BUF_ENCRYPTED(buf)) { 6879 ASSERT3U(psize, >, 0); 6880 ASSERT(ARC_BUF_COMPRESSED(buf)); 6881 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT | ARC_HDR_ALLOC_RDATA | 6882 ARC_HDR_USE_RESERVE); 6883 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6884 } else if (!abd_size_alloc_linear(arc_buf_size(buf)) || 6885 !arc_can_share(hdr, buf)) { 6886 /* 6887 * Ideally, we would always copy the io_abd into b_pabd, but the 6888 * user may have disabled compressed ARC, thus we must check the 6889 * hdr's compression setting rather than the io_bp's. 6890 */ 6891 if (BP_IS_ENCRYPTED(bp)) { 6892 ASSERT3U(psize, >, 0); 6893 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT | 6894 ARC_HDR_ALLOC_RDATA | ARC_HDR_USE_RESERVE); 6895 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6896 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 6897 !ARC_BUF_COMPRESSED(buf)) { 6898 ASSERT3U(psize, >, 0); 6899 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT | 6900 ARC_HDR_USE_RESERVE); 6901 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize); 6902 } else { 6903 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr)); 6904 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT | 6905 ARC_HDR_USE_RESERVE); 6906 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data, 6907 arc_buf_size(buf)); 6908 } 6909 } else { 6910 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd)); 6911 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf)); 6912 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6913 6914 arc_share_buf(hdr, buf); 6915 } 6916 6917 out: 6918 arc_hdr_verify(hdr, bp); 6919 spl_fstrans_unmark(cookie); 6920 } 6921 6922 static void 6923 arc_write_children_ready(zio_t *zio) 6924 { 6925 arc_write_callback_t *callback = zio->io_private; 6926 arc_buf_t *buf = callback->awcb_buf; 6927 6928 callback->awcb_children_ready(zio, buf, callback->awcb_private); 6929 } 6930 6931 /* 6932 * The SPA calls this callback for each physical write that happens on behalf 6933 * of a logical write. See the comment in dbuf_write_physdone() for details. 6934 */ 6935 static void 6936 arc_write_physdone(zio_t *zio) 6937 { 6938 arc_write_callback_t *cb = zio->io_private; 6939 if (cb->awcb_physdone != NULL) 6940 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 6941 } 6942 6943 static void 6944 arc_write_done(zio_t *zio) 6945 { 6946 arc_write_callback_t *callback = zio->io_private; 6947 arc_buf_t *buf = callback->awcb_buf; 6948 arc_buf_hdr_t *hdr = buf->b_hdr; 6949 6950 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6951 6952 if (zio->io_error == 0) { 6953 arc_hdr_verify(hdr, zio->io_bp); 6954 6955 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 6956 buf_discard_identity(hdr); 6957 } else { 6958 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 6959 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 6960 } 6961 } else { 6962 ASSERT(HDR_EMPTY(hdr)); 6963 } 6964 6965 /* 6966 * If the block to be written was all-zero or compressed enough to be 6967 * embedded in the BP, no write was performed so there will be no 6968 * dva/birth/checksum. The buffer must therefore remain anonymous 6969 * (and uncached). 6970 */ 6971 if (!HDR_EMPTY(hdr)) { 6972 arc_buf_hdr_t *exists; 6973 kmutex_t *hash_lock; 6974 6975 ASSERT3U(zio->io_error, ==, 0); 6976 6977 arc_cksum_verify(buf); 6978 6979 exists = buf_hash_insert(hdr, &hash_lock); 6980 if (exists != NULL) { 6981 /* 6982 * This can only happen if we overwrite for 6983 * sync-to-convergence, because we remove 6984 * buffers from the hash table when we arc_free(). 6985 */ 6986 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 6987 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6988 panic("bad overwrite, hdr=%p exists=%p", 6989 (void *)hdr, (void *)exists); 6990 ASSERT(zfs_refcount_is_zero( 6991 &exists->b_l1hdr.b_refcnt)); 6992 arc_change_state(arc_anon, exists, hash_lock); 6993 arc_hdr_destroy(exists); 6994 mutex_exit(hash_lock); 6995 exists = buf_hash_insert(hdr, &hash_lock); 6996 ASSERT3P(exists, ==, NULL); 6997 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 6998 /* nopwrite */ 6999 ASSERT(zio->io_prop.zp_nopwrite); 7000 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 7001 panic("bad nopwrite, hdr=%p exists=%p", 7002 (void *)hdr, (void *)exists); 7003 } else { 7004 /* Dedup */ 7005 ASSERT(hdr->b_l1hdr.b_bufcnt == 1); 7006 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 7007 ASSERT(BP_GET_DEDUP(zio->io_bp)); 7008 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 7009 } 7010 } 7011 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 7012 /* if it's not anon, we are doing a scrub */ 7013 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 7014 arc_access(hdr, hash_lock); 7015 mutex_exit(hash_lock); 7016 } else { 7017 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 7018 } 7019 7020 ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 7021 callback->awcb_done(zio, buf, callback->awcb_private); 7022 7023 abd_free(zio->io_abd); 7024 kmem_free(callback, sizeof (arc_write_callback_t)); 7025 } 7026 7027 zio_t * 7028 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 7029 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, 7030 const zio_prop_t *zp, arc_write_done_func_t *ready, 7031 arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone, 7032 arc_write_done_func_t *done, void *private, zio_priority_t priority, 7033 int zio_flags, const zbookmark_phys_t *zb) 7034 { 7035 arc_buf_hdr_t *hdr = buf->b_hdr; 7036 arc_write_callback_t *callback; 7037 zio_t *zio; 7038 zio_prop_t localprop = *zp; 7039 7040 ASSERT3P(ready, !=, NULL); 7041 ASSERT3P(done, !=, NULL); 7042 ASSERT(!HDR_IO_ERROR(hdr)); 7043 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 7044 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 7045 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 7046 if (l2arc) 7047 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 7048 7049 if (ARC_BUF_ENCRYPTED(buf)) { 7050 ASSERT(ARC_BUF_COMPRESSED(buf)); 7051 localprop.zp_encrypt = B_TRUE; 7052 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 7053 localprop.zp_complevel = hdr->b_complevel; 7054 localprop.zp_byteorder = 7055 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 7056 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 7057 bcopy(hdr->b_crypt_hdr.b_salt, localprop.zp_salt, 7058 ZIO_DATA_SALT_LEN); 7059 bcopy(hdr->b_crypt_hdr.b_iv, localprop.zp_iv, 7060 ZIO_DATA_IV_LEN); 7061 bcopy(hdr->b_crypt_hdr.b_mac, localprop.zp_mac, 7062 ZIO_DATA_MAC_LEN); 7063 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) { 7064 localprop.zp_nopwrite = B_FALSE; 7065 localprop.zp_copies = 7066 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1); 7067 } 7068 zio_flags |= ZIO_FLAG_RAW; 7069 } else if (ARC_BUF_COMPRESSED(buf)) { 7070 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf)); 7071 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 7072 localprop.zp_complevel = hdr->b_complevel; 7073 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 7074 } 7075 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 7076 callback->awcb_ready = ready; 7077 callback->awcb_children_ready = children_ready; 7078 callback->awcb_physdone = physdone; 7079 callback->awcb_done = done; 7080 callback->awcb_private = private; 7081 callback->awcb_buf = buf; 7082 7083 /* 7084 * The hdr's b_pabd is now stale, free it now. A new data block 7085 * will be allocated when the zio pipeline calls arc_write_ready(). 7086 */ 7087 if (hdr->b_l1hdr.b_pabd != NULL) { 7088 /* 7089 * If the buf is currently sharing the data block with 7090 * the hdr then we need to break that relationship here. 7091 * The hdr will remain with a NULL data pointer and the 7092 * buf will take sole ownership of the block. 7093 */ 7094 if (arc_buf_is_shared(buf)) { 7095 arc_unshare_buf(hdr, buf); 7096 } else { 7097 arc_hdr_free_abd(hdr, B_FALSE); 7098 } 7099 VERIFY3P(buf->b_data, !=, NULL); 7100 } 7101 7102 if (HDR_HAS_RABD(hdr)) 7103 arc_hdr_free_abd(hdr, B_TRUE); 7104 7105 if (!(zio_flags & ZIO_FLAG_RAW)) 7106 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); 7107 7108 ASSERT(!arc_buf_is_shared(buf)); 7109 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 7110 7111 zio = zio_write(pio, spa, txg, bp, 7112 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)), 7113 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready, 7114 (children_ready != NULL) ? arc_write_children_ready : NULL, 7115 arc_write_physdone, arc_write_done, callback, 7116 priority, zio_flags, zb); 7117 7118 return (zio); 7119 } 7120 7121 void 7122 arc_tempreserve_clear(uint64_t reserve) 7123 { 7124 atomic_add_64(&arc_tempreserve, -reserve); 7125 ASSERT((int64_t)arc_tempreserve >= 0); 7126 } 7127 7128 int 7129 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg) 7130 { 7131 int error; 7132 uint64_t anon_size; 7133 7134 if (!arc_no_grow && 7135 reserve > arc_c/4 && 7136 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT)) 7137 arc_c = MIN(arc_c_max, reserve * 4); 7138 7139 /* 7140 * Throttle when the calculated memory footprint for the TXG 7141 * exceeds the target ARC size. 7142 */ 7143 if (reserve > arc_c) { 7144 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve); 7145 return (SET_ERROR(ERESTART)); 7146 } 7147 7148 /* 7149 * Don't count loaned bufs as in flight dirty data to prevent long 7150 * network delays from blocking transactions that are ready to be 7151 * assigned to a txg. 7152 */ 7153 7154 /* assert that it has not wrapped around */ 7155 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 7156 7157 anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) - 7158 arc_loaned_bytes), 0); 7159 7160 /* 7161 * Writes will, almost always, require additional memory allocations 7162 * in order to compress/encrypt/etc the data. We therefore need to 7163 * make sure that there is sufficient available memory for this. 7164 */ 7165 error = arc_memory_throttle(spa, reserve, txg); 7166 if (error != 0) 7167 return (error); 7168 7169 /* 7170 * Throttle writes when the amount of dirty data in the cache 7171 * gets too large. We try to keep the cache less than half full 7172 * of dirty blocks so that our sync times don't grow too large. 7173 * 7174 * In the case of one pool being built on another pool, we want 7175 * to make sure we don't end up throttling the lower (backing) 7176 * pool when the upper pool is the majority contributor to dirty 7177 * data. To insure we make forward progress during throttling, we 7178 * also check the current pool's net dirty data and only throttle 7179 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty 7180 * data in the cache. 7181 * 7182 * Note: if two requests come in concurrently, we might let them 7183 * both succeed, when one of them should fail. Not a huge deal. 7184 */ 7185 uint64_t total_dirty = reserve + arc_tempreserve + anon_size; 7186 uint64_t spa_dirty_anon = spa_dirty_data(spa); 7187 uint64_t rarc_c = arc_warm ? arc_c : arc_c_max; 7188 if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 && 7189 anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 && 7190 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) { 7191 #ifdef ZFS_DEBUG 7192 uint64_t meta_esize = zfs_refcount_count( 7193 &arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7194 uint64_t data_esize = 7195 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7196 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 7197 "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n", 7198 (u_longlong_t)arc_tempreserve >> 10, 7199 (u_longlong_t)meta_esize >> 10, 7200 (u_longlong_t)data_esize >> 10, 7201 (u_longlong_t)reserve >> 10, 7202 (u_longlong_t)rarc_c >> 10); 7203 #endif 7204 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle); 7205 return (SET_ERROR(ERESTART)); 7206 } 7207 atomic_add_64(&arc_tempreserve, reserve); 7208 return (0); 7209 } 7210 7211 static void 7212 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 7213 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 7214 { 7215 size->value.ui64 = zfs_refcount_count(&state->arcs_size); 7216 evict_data->value.ui64 = 7217 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); 7218 evict_metadata->value.ui64 = 7219 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); 7220 } 7221 7222 static int 7223 arc_kstat_update(kstat_t *ksp, int rw) 7224 { 7225 arc_stats_t *as = ksp->ks_data; 7226 7227 if (rw == KSTAT_WRITE) 7228 return (SET_ERROR(EACCES)); 7229 7230 as->arcstat_hits.value.ui64 = 7231 wmsum_value(&arc_sums.arcstat_hits); 7232 as->arcstat_misses.value.ui64 = 7233 wmsum_value(&arc_sums.arcstat_misses); 7234 as->arcstat_demand_data_hits.value.ui64 = 7235 wmsum_value(&arc_sums.arcstat_demand_data_hits); 7236 as->arcstat_demand_data_misses.value.ui64 = 7237 wmsum_value(&arc_sums.arcstat_demand_data_misses); 7238 as->arcstat_demand_metadata_hits.value.ui64 = 7239 wmsum_value(&arc_sums.arcstat_demand_metadata_hits); 7240 as->arcstat_demand_metadata_misses.value.ui64 = 7241 wmsum_value(&arc_sums.arcstat_demand_metadata_misses); 7242 as->arcstat_prefetch_data_hits.value.ui64 = 7243 wmsum_value(&arc_sums.arcstat_prefetch_data_hits); 7244 as->arcstat_prefetch_data_misses.value.ui64 = 7245 wmsum_value(&arc_sums.arcstat_prefetch_data_misses); 7246 as->arcstat_prefetch_metadata_hits.value.ui64 = 7247 wmsum_value(&arc_sums.arcstat_prefetch_metadata_hits); 7248 as->arcstat_prefetch_metadata_misses.value.ui64 = 7249 wmsum_value(&arc_sums.arcstat_prefetch_metadata_misses); 7250 as->arcstat_mru_hits.value.ui64 = 7251 wmsum_value(&arc_sums.arcstat_mru_hits); 7252 as->arcstat_mru_ghost_hits.value.ui64 = 7253 wmsum_value(&arc_sums.arcstat_mru_ghost_hits); 7254 as->arcstat_mfu_hits.value.ui64 = 7255 wmsum_value(&arc_sums.arcstat_mfu_hits); 7256 as->arcstat_mfu_ghost_hits.value.ui64 = 7257 wmsum_value(&arc_sums.arcstat_mfu_ghost_hits); 7258 as->arcstat_deleted.value.ui64 = 7259 wmsum_value(&arc_sums.arcstat_deleted); 7260 as->arcstat_mutex_miss.value.ui64 = 7261 wmsum_value(&arc_sums.arcstat_mutex_miss); 7262 as->arcstat_access_skip.value.ui64 = 7263 wmsum_value(&arc_sums.arcstat_access_skip); 7264 as->arcstat_evict_skip.value.ui64 = 7265 wmsum_value(&arc_sums.arcstat_evict_skip); 7266 as->arcstat_evict_not_enough.value.ui64 = 7267 wmsum_value(&arc_sums.arcstat_evict_not_enough); 7268 as->arcstat_evict_l2_cached.value.ui64 = 7269 wmsum_value(&arc_sums.arcstat_evict_l2_cached); 7270 as->arcstat_evict_l2_eligible.value.ui64 = 7271 wmsum_value(&arc_sums.arcstat_evict_l2_eligible); 7272 as->arcstat_evict_l2_eligible_mfu.value.ui64 = 7273 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mfu); 7274 as->arcstat_evict_l2_eligible_mru.value.ui64 = 7275 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mru); 7276 as->arcstat_evict_l2_ineligible.value.ui64 = 7277 wmsum_value(&arc_sums.arcstat_evict_l2_ineligible); 7278 as->arcstat_evict_l2_skip.value.ui64 = 7279 wmsum_value(&arc_sums.arcstat_evict_l2_skip); 7280 as->arcstat_hash_collisions.value.ui64 = 7281 wmsum_value(&arc_sums.arcstat_hash_collisions); 7282 as->arcstat_hash_chains.value.ui64 = 7283 wmsum_value(&arc_sums.arcstat_hash_chains); 7284 as->arcstat_size.value.ui64 = 7285 aggsum_value(&arc_sums.arcstat_size); 7286 as->arcstat_compressed_size.value.ui64 = 7287 wmsum_value(&arc_sums.arcstat_compressed_size); 7288 as->arcstat_uncompressed_size.value.ui64 = 7289 wmsum_value(&arc_sums.arcstat_uncompressed_size); 7290 as->arcstat_overhead_size.value.ui64 = 7291 wmsum_value(&arc_sums.arcstat_overhead_size); 7292 as->arcstat_hdr_size.value.ui64 = 7293 wmsum_value(&arc_sums.arcstat_hdr_size); 7294 as->arcstat_data_size.value.ui64 = 7295 wmsum_value(&arc_sums.arcstat_data_size); 7296 as->arcstat_metadata_size.value.ui64 = 7297 wmsum_value(&arc_sums.arcstat_metadata_size); 7298 as->arcstat_dbuf_size.value.ui64 = 7299 wmsum_value(&arc_sums.arcstat_dbuf_size); 7300 #if defined(COMPAT_FREEBSD11) 7301 as->arcstat_other_size.value.ui64 = 7302 wmsum_value(&arc_sums.arcstat_bonus_size) + 7303 aggsum_value(&arc_sums.arcstat_dnode_size) + 7304 wmsum_value(&arc_sums.arcstat_dbuf_size); 7305 #endif 7306 7307 arc_kstat_update_state(arc_anon, 7308 &as->arcstat_anon_size, 7309 &as->arcstat_anon_evictable_data, 7310 &as->arcstat_anon_evictable_metadata); 7311 arc_kstat_update_state(arc_mru, 7312 &as->arcstat_mru_size, 7313 &as->arcstat_mru_evictable_data, 7314 &as->arcstat_mru_evictable_metadata); 7315 arc_kstat_update_state(arc_mru_ghost, 7316 &as->arcstat_mru_ghost_size, 7317 &as->arcstat_mru_ghost_evictable_data, 7318 &as->arcstat_mru_ghost_evictable_metadata); 7319 arc_kstat_update_state(arc_mfu, 7320 &as->arcstat_mfu_size, 7321 &as->arcstat_mfu_evictable_data, 7322 &as->arcstat_mfu_evictable_metadata); 7323 arc_kstat_update_state(arc_mfu_ghost, 7324 &as->arcstat_mfu_ghost_size, 7325 &as->arcstat_mfu_ghost_evictable_data, 7326 &as->arcstat_mfu_ghost_evictable_metadata); 7327 7328 as->arcstat_dnode_size.value.ui64 = 7329 aggsum_value(&arc_sums.arcstat_dnode_size); 7330 as->arcstat_bonus_size.value.ui64 = 7331 wmsum_value(&arc_sums.arcstat_bonus_size); 7332 as->arcstat_l2_hits.value.ui64 = 7333 wmsum_value(&arc_sums.arcstat_l2_hits); 7334 as->arcstat_l2_misses.value.ui64 = 7335 wmsum_value(&arc_sums.arcstat_l2_misses); 7336 as->arcstat_l2_prefetch_asize.value.ui64 = 7337 wmsum_value(&arc_sums.arcstat_l2_prefetch_asize); 7338 as->arcstat_l2_mru_asize.value.ui64 = 7339 wmsum_value(&arc_sums.arcstat_l2_mru_asize); 7340 as->arcstat_l2_mfu_asize.value.ui64 = 7341 wmsum_value(&arc_sums.arcstat_l2_mfu_asize); 7342 as->arcstat_l2_bufc_data_asize.value.ui64 = 7343 wmsum_value(&arc_sums.arcstat_l2_bufc_data_asize); 7344 as->arcstat_l2_bufc_metadata_asize.value.ui64 = 7345 wmsum_value(&arc_sums.arcstat_l2_bufc_metadata_asize); 7346 as->arcstat_l2_feeds.value.ui64 = 7347 wmsum_value(&arc_sums.arcstat_l2_feeds); 7348 as->arcstat_l2_rw_clash.value.ui64 = 7349 wmsum_value(&arc_sums.arcstat_l2_rw_clash); 7350 as->arcstat_l2_read_bytes.value.ui64 = 7351 wmsum_value(&arc_sums.arcstat_l2_read_bytes); 7352 as->arcstat_l2_write_bytes.value.ui64 = 7353 wmsum_value(&arc_sums.arcstat_l2_write_bytes); 7354 as->arcstat_l2_writes_sent.value.ui64 = 7355 wmsum_value(&arc_sums.arcstat_l2_writes_sent); 7356 as->arcstat_l2_writes_done.value.ui64 = 7357 wmsum_value(&arc_sums.arcstat_l2_writes_done); 7358 as->arcstat_l2_writes_error.value.ui64 = 7359 wmsum_value(&arc_sums.arcstat_l2_writes_error); 7360 as->arcstat_l2_writes_lock_retry.value.ui64 = 7361 wmsum_value(&arc_sums.arcstat_l2_writes_lock_retry); 7362 as->arcstat_l2_evict_lock_retry.value.ui64 = 7363 wmsum_value(&arc_sums.arcstat_l2_evict_lock_retry); 7364 as->arcstat_l2_evict_reading.value.ui64 = 7365 wmsum_value(&arc_sums.arcstat_l2_evict_reading); 7366 as->arcstat_l2_evict_l1cached.value.ui64 = 7367 wmsum_value(&arc_sums.arcstat_l2_evict_l1cached); 7368 as->arcstat_l2_free_on_write.value.ui64 = 7369 wmsum_value(&arc_sums.arcstat_l2_free_on_write); 7370 as->arcstat_l2_abort_lowmem.value.ui64 = 7371 wmsum_value(&arc_sums.arcstat_l2_abort_lowmem); 7372 as->arcstat_l2_cksum_bad.value.ui64 = 7373 wmsum_value(&arc_sums.arcstat_l2_cksum_bad); 7374 as->arcstat_l2_io_error.value.ui64 = 7375 wmsum_value(&arc_sums.arcstat_l2_io_error); 7376 as->arcstat_l2_lsize.value.ui64 = 7377 wmsum_value(&arc_sums.arcstat_l2_lsize); 7378 as->arcstat_l2_psize.value.ui64 = 7379 wmsum_value(&arc_sums.arcstat_l2_psize); 7380 as->arcstat_l2_hdr_size.value.ui64 = 7381 aggsum_value(&arc_sums.arcstat_l2_hdr_size); 7382 as->arcstat_l2_log_blk_writes.value.ui64 = 7383 wmsum_value(&arc_sums.arcstat_l2_log_blk_writes); 7384 as->arcstat_l2_log_blk_asize.value.ui64 = 7385 wmsum_value(&arc_sums.arcstat_l2_log_blk_asize); 7386 as->arcstat_l2_log_blk_count.value.ui64 = 7387 wmsum_value(&arc_sums.arcstat_l2_log_blk_count); 7388 as->arcstat_l2_rebuild_success.value.ui64 = 7389 wmsum_value(&arc_sums.arcstat_l2_rebuild_success); 7390 as->arcstat_l2_rebuild_abort_unsupported.value.ui64 = 7391 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_unsupported); 7392 as->arcstat_l2_rebuild_abort_io_errors.value.ui64 = 7393 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_io_errors); 7394 as->arcstat_l2_rebuild_abort_dh_errors.value.ui64 = 7395 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_dh_errors); 7396 as->arcstat_l2_rebuild_abort_cksum_lb_errors.value.ui64 = 7397 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors); 7398 as->arcstat_l2_rebuild_abort_lowmem.value.ui64 = 7399 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_lowmem); 7400 as->arcstat_l2_rebuild_size.value.ui64 = 7401 wmsum_value(&arc_sums.arcstat_l2_rebuild_size); 7402 as->arcstat_l2_rebuild_asize.value.ui64 = 7403 wmsum_value(&arc_sums.arcstat_l2_rebuild_asize); 7404 as->arcstat_l2_rebuild_bufs.value.ui64 = 7405 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs); 7406 as->arcstat_l2_rebuild_bufs_precached.value.ui64 = 7407 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs_precached); 7408 as->arcstat_l2_rebuild_log_blks.value.ui64 = 7409 wmsum_value(&arc_sums.arcstat_l2_rebuild_log_blks); 7410 as->arcstat_memory_throttle_count.value.ui64 = 7411 wmsum_value(&arc_sums.arcstat_memory_throttle_count); 7412 as->arcstat_memory_direct_count.value.ui64 = 7413 wmsum_value(&arc_sums.arcstat_memory_direct_count); 7414 as->arcstat_memory_indirect_count.value.ui64 = 7415 wmsum_value(&arc_sums.arcstat_memory_indirect_count); 7416 7417 as->arcstat_memory_all_bytes.value.ui64 = 7418 arc_all_memory(); 7419 as->arcstat_memory_free_bytes.value.ui64 = 7420 arc_free_memory(); 7421 as->arcstat_memory_available_bytes.value.i64 = 7422 arc_available_memory(); 7423 7424 as->arcstat_prune.value.ui64 = 7425 wmsum_value(&arc_sums.arcstat_prune); 7426 as->arcstat_meta_used.value.ui64 = 7427 aggsum_value(&arc_sums.arcstat_meta_used); 7428 as->arcstat_async_upgrade_sync.value.ui64 = 7429 wmsum_value(&arc_sums.arcstat_async_upgrade_sync); 7430 as->arcstat_demand_hit_predictive_prefetch.value.ui64 = 7431 wmsum_value(&arc_sums.arcstat_demand_hit_predictive_prefetch); 7432 as->arcstat_demand_hit_prescient_prefetch.value.ui64 = 7433 wmsum_value(&arc_sums.arcstat_demand_hit_prescient_prefetch); 7434 as->arcstat_raw_size.value.ui64 = 7435 wmsum_value(&arc_sums.arcstat_raw_size); 7436 as->arcstat_cached_only_in_progress.value.ui64 = 7437 wmsum_value(&arc_sums.arcstat_cached_only_in_progress); 7438 as->arcstat_abd_chunk_waste_size.value.ui64 = 7439 wmsum_value(&arc_sums.arcstat_abd_chunk_waste_size); 7440 7441 return (0); 7442 } 7443 7444 /* 7445 * This function *must* return indices evenly distributed between all 7446 * sublists of the multilist. This is needed due to how the ARC eviction 7447 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 7448 * distributed between all sublists and uses this assumption when 7449 * deciding which sublist to evict from and how much to evict from it. 7450 */ 7451 static unsigned int 7452 arc_state_multilist_index_func(multilist_t *ml, void *obj) 7453 { 7454 arc_buf_hdr_t *hdr = obj; 7455 7456 /* 7457 * We rely on b_dva to generate evenly distributed index 7458 * numbers using buf_hash below. So, as an added precaution, 7459 * let's make sure we never add empty buffers to the arc lists. 7460 */ 7461 ASSERT(!HDR_EMPTY(hdr)); 7462 7463 /* 7464 * The assumption here, is the hash value for a given 7465 * arc_buf_hdr_t will remain constant throughout its lifetime 7466 * (i.e. its b_spa, b_dva, and b_birth fields don't change). 7467 * Thus, we don't need to store the header's sublist index 7468 * on insertion, as this index can be recalculated on removal. 7469 * 7470 * Also, the low order bits of the hash value are thought to be 7471 * distributed evenly. Otherwise, in the case that the multilist 7472 * has a power of two number of sublists, each sublists' usage 7473 * would not be evenly distributed. In this context full 64bit 7474 * division would be a waste of time, so limit it to 32 bits. 7475 */ 7476 return ((unsigned int)buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 7477 multilist_get_num_sublists(ml)); 7478 } 7479 7480 static unsigned int 7481 arc_state_l2c_multilist_index_func(multilist_t *ml, void *obj) 7482 { 7483 panic("Header %p insert into arc_l2c_only %p", obj, ml); 7484 } 7485 7486 #define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \ 7487 if ((do_warn) && (tuning) && ((tuning) != (value))) { \ 7488 cmn_err(CE_WARN, \ 7489 "ignoring tunable %s (using %llu instead)", \ 7490 (#tuning), (u_longlong_t)(value)); \ 7491 } \ 7492 } while (0) 7493 7494 /* 7495 * Called during module initialization and periodically thereafter to 7496 * apply reasonable changes to the exposed performance tunings. Can also be 7497 * called explicitly by param_set_arc_*() functions when ARC tunables are 7498 * updated manually. Non-zero zfs_* values which differ from the currently set 7499 * values will be applied. 7500 */ 7501 void 7502 arc_tuning_update(boolean_t verbose) 7503 { 7504 uint64_t allmem = arc_all_memory(); 7505 unsigned long limit; 7506 7507 /* Valid range: 32M - <arc_c_max> */ 7508 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) && 7509 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) && 7510 (zfs_arc_min <= arc_c_max)) { 7511 arc_c_min = zfs_arc_min; 7512 arc_c = MAX(arc_c, arc_c_min); 7513 } 7514 WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose); 7515 7516 /* Valid range: 64M - <all physical memory> */ 7517 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) && 7518 (zfs_arc_max >= MIN_ARC_MAX) && (zfs_arc_max < allmem) && 7519 (zfs_arc_max > arc_c_min)) { 7520 arc_c_max = zfs_arc_max; 7521 arc_c = MIN(arc_c, arc_c_max); 7522 arc_p = (arc_c >> 1); 7523 if (arc_meta_limit > arc_c_max) 7524 arc_meta_limit = arc_c_max; 7525 if (arc_dnode_size_limit > arc_meta_limit) 7526 arc_dnode_size_limit = arc_meta_limit; 7527 } 7528 WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose); 7529 7530 /* Valid range: 16M - <arc_c_max> */ 7531 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) && 7532 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) && 7533 (zfs_arc_meta_min <= arc_c_max)) { 7534 arc_meta_min = zfs_arc_meta_min; 7535 if (arc_meta_limit < arc_meta_min) 7536 arc_meta_limit = arc_meta_min; 7537 if (arc_dnode_size_limit < arc_meta_min) 7538 arc_dnode_size_limit = arc_meta_min; 7539 } 7540 WARN_IF_TUNING_IGNORED(zfs_arc_meta_min, arc_meta_min, verbose); 7541 7542 /* Valid range: <arc_meta_min> - <arc_c_max> */ 7543 limit = zfs_arc_meta_limit ? zfs_arc_meta_limit : 7544 MIN(zfs_arc_meta_limit_percent, 100) * arc_c_max / 100; 7545 if ((limit != arc_meta_limit) && 7546 (limit >= arc_meta_min) && 7547 (limit <= arc_c_max)) 7548 arc_meta_limit = limit; 7549 WARN_IF_TUNING_IGNORED(zfs_arc_meta_limit, arc_meta_limit, verbose); 7550 7551 /* Valid range: <arc_meta_min> - <arc_meta_limit> */ 7552 limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit : 7553 MIN(zfs_arc_dnode_limit_percent, 100) * arc_meta_limit / 100; 7554 if ((limit != arc_dnode_size_limit) && 7555 (limit >= arc_meta_min) && 7556 (limit <= arc_meta_limit)) 7557 arc_dnode_size_limit = limit; 7558 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_size_limit, 7559 verbose); 7560 7561 /* Valid range: 1 - N */ 7562 if (zfs_arc_grow_retry) 7563 arc_grow_retry = zfs_arc_grow_retry; 7564 7565 /* Valid range: 1 - N */ 7566 if (zfs_arc_shrink_shift) { 7567 arc_shrink_shift = zfs_arc_shrink_shift; 7568 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1); 7569 } 7570 7571 /* Valid range: 1 - N */ 7572 if (zfs_arc_p_min_shift) 7573 arc_p_min_shift = zfs_arc_p_min_shift; 7574 7575 /* Valid range: 1 - N ms */ 7576 if (zfs_arc_min_prefetch_ms) 7577 arc_min_prefetch_ms = zfs_arc_min_prefetch_ms; 7578 7579 /* Valid range: 1 - N ms */ 7580 if (zfs_arc_min_prescient_prefetch_ms) { 7581 arc_min_prescient_prefetch_ms = 7582 zfs_arc_min_prescient_prefetch_ms; 7583 } 7584 7585 /* Valid range: 0 - 100 */ 7586 if ((zfs_arc_lotsfree_percent >= 0) && 7587 (zfs_arc_lotsfree_percent <= 100)) 7588 arc_lotsfree_percent = zfs_arc_lotsfree_percent; 7589 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent, 7590 verbose); 7591 7592 /* Valid range: 0 - <all physical memory> */ 7593 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free)) 7594 arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), allmem); 7595 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose); 7596 } 7597 7598 static void 7599 arc_state_init(void) 7600 { 7601 multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 7602 sizeof (arc_buf_hdr_t), 7603 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7604 arc_state_multilist_index_func); 7605 multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 7606 sizeof (arc_buf_hdr_t), 7607 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7608 arc_state_multilist_index_func); 7609 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 7610 sizeof (arc_buf_hdr_t), 7611 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7612 arc_state_multilist_index_func); 7613 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 7614 sizeof (arc_buf_hdr_t), 7615 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7616 arc_state_multilist_index_func); 7617 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 7618 sizeof (arc_buf_hdr_t), 7619 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7620 arc_state_multilist_index_func); 7621 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 7622 sizeof (arc_buf_hdr_t), 7623 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7624 arc_state_multilist_index_func); 7625 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 7626 sizeof (arc_buf_hdr_t), 7627 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7628 arc_state_multilist_index_func); 7629 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 7630 sizeof (arc_buf_hdr_t), 7631 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7632 arc_state_multilist_index_func); 7633 /* 7634 * L2 headers should never be on the L2 state list since they don't 7635 * have L1 headers allocated. Special index function asserts that. 7636 */ 7637 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 7638 sizeof (arc_buf_hdr_t), 7639 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7640 arc_state_l2c_multilist_index_func); 7641 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 7642 sizeof (arc_buf_hdr_t), 7643 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7644 arc_state_l2c_multilist_index_func); 7645 7646 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7647 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7648 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7649 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7650 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7651 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7652 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7653 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7654 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7655 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7656 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7657 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7658 7659 zfs_refcount_create(&arc_anon->arcs_size); 7660 zfs_refcount_create(&arc_mru->arcs_size); 7661 zfs_refcount_create(&arc_mru_ghost->arcs_size); 7662 zfs_refcount_create(&arc_mfu->arcs_size); 7663 zfs_refcount_create(&arc_mfu_ghost->arcs_size); 7664 zfs_refcount_create(&arc_l2c_only->arcs_size); 7665 7666 wmsum_init(&arc_sums.arcstat_hits, 0); 7667 wmsum_init(&arc_sums.arcstat_misses, 0); 7668 wmsum_init(&arc_sums.arcstat_demand_data_hits, 0); 7669 wmsum_init(&arc_sums.arcstat_demand_data_misses, 0); 7670 wmsum_init(&arc_sums.arcstat_demand_metadata_hits, 0); 7671 wmsum_init(&arc_sums.arcstat_demand_metadata_misses, 0); 7672 wmsum_init(&arc_sums.arcstat_prefetch_data_hits, 0); 7673 wmsum_init(&arc_sums.arcstat_prefetch_data_misses, 0); 7674 wmsum_init(&arc_sums.arcstat_prefetch_metadata_hits, 0); 7675 wmsum_init(&arc_sums.arcstat_prefetch_metadata_misses, 0); 7676 wmsum_init(&arc_sums.arcstat_mru_hits, 0); 7677 wmsum_init(&arc_sums.arcstat_mru_ghost_hits, 0); 7678 wmsum_init(&arc_sums.arcstat_mfu_hits, 0); 7679 wmsum_init(&arc_sums.arcstat_mfu_ghost_hits, 0); 7680 wmsum_init(&arc_sums.arcstat_deleted, 0); 7681 wmsum_init(&arc_sums.arcstat_mutex_miss, 0); 7682 wmsum_init(&arc_sums.arcstat_access_skip, 0); 7683 wmsum_init(&arc_sums.arcstat_evict_skip, 0); 7684 wmsum_init(&arc_sums.arcstat_evict_not_enough, 0); 7685 wmsum_init(&arc_sums.arcstat_evict_l2_cached, 0); 7686 wmsum_init(&arc_sums.arcstat_evict_l2_eligible, 0); 7687 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mfu, 0); 7688 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mru, 0); 7689 wmsum_init(&arc_sums.arcstat_evict_l2_ineligible, 0); 7690 wmsum_init(&arc_sums.arcstat_evict_l2_skip, 0); 7691 wmsum_init(&arc_sums.arcstat_hash_collisions, 0); 7692 wmsum_init(&arc_sums.arcstat_hash_chains, 0); 7693 aggsum_init(&arc_sums.arcstat_size, 0); 7694 wmsum_init(&arc_sums.arcstat_compressed_size, 0); 7695 wmsum_init(&arc_sums.arcstat_uncompressed_size, 0); 7696 wmsum_init(&arc_sums.arcstat_overhead_size, 0); 7697 wmsum_init(&arc_sums.arcstat_hdr_size, 0); 7698 wmsum_init(&arc_sums.arcstat_data_size, 0); 7699 wmsum_init(&arc_sums.arcstat_metadata_size, 0); 7700 wmsum_init(&arc_sums.arcstat_dbuf_size, 0); 7701 aggsum_init(&arc_sums.arcstat_dnode_size, 0); 7702 wmsum_init(&arc_sums.arcstat_bonus_size, 0); 7703 wmsum_init(&arc_sums.arcstat_l2_hits, 0); 7704 wmsum_init(&arc_sums.arcstat_l2_misses, 0); 7705 wmsum_init(&arc_sums.arcstat_l2_prefetch_asize, 0); 7706 wmsum_init(&arc_sums.arcstat_l2_mru_asize, 0); 7707 wmsum_init(&arc_sums.arcstat_l2_mfu_asize, 0); 7708 wmsum_init(&arc_sums.arcstat_l2_bufc_data_asize, 0); 7709 wmsum_init(&arc_sums.arcstat_l2_bufc_metadata_asize, 0); 7710 wmsum_init(&arc_sums.arcstat_l2_feeds, 0); 7711 wmsum_init(&arc_sums.arcstat_l2_rw_clash, 0); 7712 wmsum_init(&arc_sums.arcstat_l2_read_bytes, 0); 7713 wmsum_init(&arc_sums.arcstat_l2_write_bytes, 0); 7714 wmsum_init(&arc_sums.arcstat_l2_writes_sent, 0); 7715 wmsum_init(&arc_sums.arcstat_l2_writes_done, 0); 7716 wmsum_init(&arc_sums.arcstat_l2_writes_error, 0); 7717 wmsum_init(&arc_sums.arcstat_l2_writes_lock_retry, 0); 7718 wmsum_init(&arc_sums.arcstat_l2_evict_lock_retry, 0); 7719 wmsum_init(&arc_sums.arcstat_l2_evict_reading, 0); 7720 wmsum_init(&arc_sums.arcstat_l2_evict_l1cached, 0); 7721 wmsum_init(&arc_sums.arcstat_l2_free_on_write, 0); 7722 wmsum_init(&arc_sums.arcstat_l2_abort_lowmem, 0); 7723 wmsum_init(&arc_sums.arcstat_l2_cksum_bad, 0); 7724 wmsum_init(&arc_sums.arcstat_l2_io_error, 0); 7725 wmsum_init(&arc_sums.arcstat_l2_lsize, 0); 7726 wmsum_init(&arc_sums.arcstat_l2_psize, 0); 7727 aggsum_init(&arc_sums.arcstat_l2_hdr_size, 0); 7728 wmsum_init(&arc_sums.arcstat_l2_log_blk_writes, 0); 7729 wmsum_init(&arc_sums.arcstat_l2_log_blk_asize, 0); 7730 wmsum_init(&arc_sums.arcstat_l2_log_blk_count, 0); 7731 wmsum_init(&arc_sums.arcstat_l2_rebuild_success, 0); 7732 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_unsupported, 0); 7733 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_io_errors, 0); 7734 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_dh_errors, 0); 7735 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors, 0); 7736 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_lowmem, 0); 7737 wmsum_init(&arc_sums.arcstat_l2_rebuild_size, 0); 7738 wmsum_init(&arc_sums.arcstat_l2_rebuild_asize, 0); 7739 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs, 0); 7740 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs_precached, 0); 7741 wmsum_init(&arc_sums.arcstat_l2_rebuild_log_blks, 0); 7742 wmsum_init(&arc_sums.arcstat_memory_throttle_count, 0); 7743 wmsum_init(&arc_sums.arcstat_memory_direct_count, 0); 7744 wmsum_init(&arc_sums.arcstat_memory_indirect_count, 0); 7745 wmsum_init(&arc_sums.arcstat_prune, 0); 7746 aggsum_init(&arc_sums.arcstat_meta_used, 0); 7747 wmsum_init(&arc_sums.arcstat_async_upgrade_sync, 0); 7748 wmsum_init(&arc_sums.arcstat_demand_hit_predictive_prefetch, 0); 7749 wmsum_init(&arc_sums.arcstat_demand_hit_prescient_prefetch, 0); 7750 wmsum_init(&arc_sums.arcstat_raw_size, 0); 7751 wmsum_init(&arc_sums.arcstat_cached_only_in_progress, 0); 7752 wmsum_init(&arc_sums.arcstat_abd_chunk_waste_size, 0); 7753 7754 arc_anon->arcs_state = ARC_STATE_ANON; 7755 arc_mru->arcs_state = ARC_STATE_MRU; 7756 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST; 7757 arc_mfu->arcs_state = ARC_STATE_MFU; 7758 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST; 7759 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY; 7760 } 7761 7762 static void 7763 arc_state_fini(void) 7764 { 7765 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7766 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7767 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7768 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7769 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7770 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7771 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7772 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7773 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7774 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7775 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7776 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7777 7778 zfs_refcount_destroy(&arc_anon->arcs_size); 7779 zfs_refcount_destroy(&arc_mru->arcs_size); 7780 zfs_refcount_destroy(&arc_mru_ghost->arcs_size); 7781 zfs_refcount_destroy(&arc_mfu->arcs_size); 7782 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size); 7783 zfs_refcount_destroy(&arc_l2c_only->arcs_size); 7784 7785 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 7786 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 7787 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 7788 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 7789 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 7790 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 7791 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 7792 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 7793 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]); 7794 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]); 7795 7796 wmsum_fini(&arc_sums.arcstat_hits); 7797 wmsum_fini(&arc_sums.arcstat_misses); 7798 wmsum_fini(&arc_sums.arcstat_demand_data_hits); 7799 wmsum_fini(&arc_sums.arcstat_demand_data_misses); 7800 wmsum_fini(&arc_sums.arcstat_demand_metadata_hits); 7801 wmsum_fini(&arc_sums.arcstat_demand_metadata_misses); 7802 wmsum_fini(&arc_sums.arcstat_prefetch_data_hits); 7803 wmsum_fini(&arc_sums.arcstat_prefetch_data_misses); 7804 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_hits); 7805 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_misses); 7806 wmsum_fini(&arc_sums.arcstat_mru_hits); 7807 wmsum_fini(&arc_sums.arcstat_mru_ghost_hits); 7808 wmsum_fini(&arc_sums.arcstat_mfu_hits); 7809 wmsum_fini(&arc_sums.arcstat_mfu_ghost_hits); 7810 wmsum_fini(&arc_sums.arcstat_deleted); 7811 wmsum_fini(&arc_sums.arcstat_mutex_miss); 7812 wmsum_fini(&arc_sums.arcstat_access_skip); 7813 wmsum_fini(&arc_sums.arcstat_evict_skip); 7814 wmsum_fini(&arc_sums.arcstat_evict_not_enough); 7815 wmsum_fini(&arc_sums.arcstat_evict_l2_cached); 7816 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible); 7817 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mfu); 7818 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mru); 7819 wmsum_fini(&arc_sums.arcstat_evict_l2_ineligible); 7820 wmsum_fini(&arc_sums.arcstat_evict_l2_skip); 7821 wmsum_fini(&arc_sums.arcstat_hash_collisions); 7822 wmsum_fini(&arc_sums.arcstat_hash_chains); 7823 aggsum_fini(&arc_sums.arcstat_size); 7824 wmsum_fini(&arc_sums.arcstat_compressed_size); 7825 wmsum_fini(&arc_sums.arcstat_uncompressed_size); 7826 wmsum_fini(&arc_sums.arcstat_overhead_size); 7827 wmsum_fini(&arc_sums.arcstat_hdr_size); 7828 wmsum_fini(&arc_sums.arcstat_data_size); 7829 wmsum_fini(&arc_sums.arcstat_metadata_size); 7830 wmsum_fini(&arc_sums.arcstat_dbuf_size); 7831 aggsum_fini(&arc_sums.arcstat_dnode_size); 7832 wmsum_fini(&arc_sums.arcstat_bonus_size); 7833 wmsum_fini(&arc_sums.arcstat_l2_hits); 7834 wmsum_fini(&arc_sums.arcstat_l2_misses); 7835 wmsum_fini(&arc_sums.arcstat_l2_prefetch_asize); 7836 wmsum_fini(&arc_sums.arcstat_l2_mru_asize); 7837 wmsum_fini(&arc_sums.arcstat_l2_mfu_asize); 7838 wmsum_fini(&arc_sums.arcstat_l2_bufc_data_asize); 7839 wmsum_fini(&arc_sums.arcstat_l2_bufc_metadata_asize); 7840 wmsum_fini(&arc_sums.arcstat_l2_feeds); 7841 wmsum_fini(&arc_sums.arcstat_l2_rw_clash); 7842 wmsum_fini(&arc_sums.arcstat_l2_read_bytes); 7843 wmsum_fini(&arc_sums.arcstat_l2_write_bytes); 7844 wmsum_fini(&arc_sums.arcstat_l2_writes_sent); 7845 wmsum_fini(&arc_sums.arcstat_l2_writes_done); 7846 wmsum_fini(&arc_sums.arcstat_l2_writes_error); 7847 wmsum_fini(&arc_sums.arcstat_l2_writes_lock_retry); 7848 wmsum_fini(&arc_sums.arcstat_l2_evict_lock_retry); 7849 wmsum_fini(&arc_sums.arcstat_l2_evict_reading); 7850 wmsum_fini(&arc_sums.arcstat_l2_evict_l1cached); 7851 wmsum_fini(&arc_sums.arcstat_l2_free_on_write); 7852 wmsum_fini(&arc_sums.arcstat_l2_abort_lowmem); 7853 wmsum_fini(&arc_sums.arcstat_l2_cksum_bad); 7854 wmsum_fini(&arc_sums.arcstat_l2_io_error); 7855 wmsum_fini(&arc_sums.arcstat_l2_lsize); 7856 wmsum_fini(&arc_sums.arcstat_l2_psize); 7857 aggsum_fini(&arc_sums.arcstat_l2_hdr_size); 7858 wmsum_fini(&arc_sums.arcstat_l2_log_blk_writes); 7859 wmsum_fini(&arc_sums.arcstat_l2_log_blk_asize); 7860 wmsum_fini(&arc_sums.arcstat_l2_log_blk_count); 7861 wmsum_fini(&arc_sums.arcstat_l2_rebuild_success); 7862 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_unsupported); 7863 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_io_errors); 7864 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_dh_errors); 7865 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors); 7866 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_lowmem); 7867 wmsum_fini(&arc_sums.arcstat_l2_rebuild_size); 7868 wmsum_fini(&arc_sums.arcstat_l2_rebuild_asize); 7869 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs); 7870 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs_precached); 7871 wmsum_fini(&arc_sums.arcstat_l2_rebuild_log_blks); 7872 wmsum_fini(&arc_sums.arcstat_memory_throttle_count); 7873 wmsum_fini(&arc_sums.arcstat_memory_direct_count); 7874 wmsum_fini(&arc_sums.arcstat_memory_indirect_count); 7875 wmsum_fini(&arc_sums.arcstat_prune); 7876 aggsum_fini(&arc_sums.arcstat_meta_used); 7877 wmsum_fini(&arc_sums.arcstat_async_upgrade_sync); 7878 wmsum_fini(&arc_sums.arcstat_demand_hit_predictive_prefetch); 7879 wmsum_fini(&arc_sums.arcstat_demand_hit_prescient_prefetch); 7880 wmsum_fini(&arc_sums.arcstat_raw_size); 7881 wmsum_fini(&arc_sums.arcstat_cached_only_in_progress); 7882 wmsum_fini(&arc_sums.arcstat_abd_chunk_waste_size); 7883 } 7884 7885 uint64_t 7886 arc_target_bytes(void) 7887 { 7888 return (arc_c); 7889 } 7890 7891 void 7892 arc_set_limits(uint64_t allmem) 7893 { 7894 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */ 7895 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT); 7896 7897 /* How to set default max varies by platform. */ 7898 arc_c_max = arc_default_max(arc_c_min, allmem); 7899 } 7900 void 7901 arc_init(void) 7902 { 7903 uint64_t percent, allmem = arc_all_memory(); 7904 mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL); 7905 list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t), 7906 offsetof(arc_evict_waiter_t, aew_node)); 7907 7908 arc_min_prefetch_ms = 1000; 7909 arc_min_prescient_prefetch_ms = 6000; 7910 7911 #if defined(_KERNEL) 7912 arc_lowmem_init(); 7913 #endif 7914 7915 arc_set_limits(allmem); 7916 7917 #ifdef _KERNEL 7918 /* 7919 * If zfs_arc_max is non-zero at init, meaning it was set in the kernel 7920 * environment before the module was loaded, don't block setting the 7921 * maximum because it is less than arc_c_min, instead, reset arc_c_min 7922 * to a lower value. 7923 * zfs_arc_min will be handled by arc_tuning_update(). 7924 */ 7925 if (zfs_arc_max != 0 && zfs_arc_max >= MIN_ARC_MAX && 7926 zfs_arc_max < allmem) { 7927 arc_c_max = zfs_arc_max; 7928 if (arc_c_min >= arc_c_max) { 7929 arc_c_min = MAX(zfs_arc_max / 2, 7930 2ULL << SPA_MAXBLOCKSHIFT); 7931 } 7932 } 7933 #else 7934 /* 7935 * In userland, there's only the memory pressure that we artificially 7936 * create (see arc_available_memory()). Don't let arc_c get too 7937 * small, because it can cause transactions to be larger than 7938 * arc_c, causing arc_tempreserve_space() to fail. 7939 */ 7940 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT); 7941 #endif 7942 7943 arc_c = arc_c_min; 7944 arc_p = (arc_c >> 1); 7945 7946 /* Set min to 1/2 of arc_c_min */ 7947 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT; 7948 /* 7949 * Set arc_meta_limit to a percent of arc_c_max with a floor of 7950 * arc_meta_min, and a ceiling of arc_c_max. 7951 */ 7952 percent = MIN(zfs_arc_meta_limit_percent, 100); 7953 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100); 7954 percent = MIN(zfs_arc_dnode_limit_percent, 100); 7955 arc_dnode_size_limit = (percent * arc_meta_limit) / 100; 7956 7957 /* Apply user specified tunings */ 7958 arc_tuning_update(B_TRUE); 7959 7960 /* if kmem_flags are set, lets try to use less memory */ 7961 if (kmem_debugging()) 7962 arc_c = arc_c / 2; 7963 if (arc_c < arc_c_min) 7964 arc_c = arc_c_min; 7965 7966 arc_register_hotplug(); 7967 7968 arc_state_init(); 7969 7970 buf_init(); 7971 7972 list_create(&arc_prune_list, sizeof (arc_prune_t), 7973 offsetof(arc_prune_t, p_node)); 7974 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL); 7975 7976 arc_prune_taskq = taskq_create("arc_prune", 100, defclsyspri, 7977 boot_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC | 7978 TASKQ_THREADS_CPU_PCT); 7979 7980 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 7981 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 7982 7983 if (arc_ksp != NULL) { 7984 arc_ksp->ks_data = &arc_stats; 7985 arc_ksp->ks_update = arc_kstat_update; 7986 kstat_install(arc_ksp); 7987 } 7988 7989 arc_evict_zthr = zthr_create("arc_evict", 7990 arc_evict_cb_check, arc_evict_cb, NULL, defclsyspri); 7991 arc_reap_zthr = zthr_create_timer("arc_reap", 7992 arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1), minclsyspri); 7993 7994 arc_warm = B_FALSE; 7995 7996 /* 7997 * Calculate maximum amount of dirty data per pool. 7998 * 7999 * If it has been set by a module parameter, take that. 8000 * Otherwise, use a percentage of physical memory defined by 8001 * zfs_dirty_data_max_percent (default 10%) with a cap at 8002 * zfs_dirty_data_max_max (default 4G or 25% of physical memory). 8003 */ 8004 #ifdef __LP64__ 8005 if (zfs_dirty_data_max_max == 0) 8006 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024, 8007 allmem * zfs_dirty_data_max_max_percent / 100); 8008 #else 8009 if (zfs_dirty_data_max_max == 0) 8010 zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024, 8011 allmem * zfs_dirty_data_max_max_percent / 100); 8012 #endif 8013 8014 if (zfs_dirty_data_max == 0) { 8015 zfs_dirty_data_max = allmem * 8016 zfs_dirty_data_max_percent / 100; 8017 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 8018 zfs_dirty_data_max_max); 8019 } 8020 8021 if (zfs_wrlog_data_max == 0) { 8022 8023 /* 8024 * dp_wrlog_total is reduced for each txg at the end of 8025 * spa_sync(). However, dp_dirty_total is reduced every time 8026 * a block is written out. Thus under normal operation, 8027 * dp_wrlog_total could grow 2 times as big as 8028 * zfs_dirty_data_max. 8029 */ 8030 zfs_wrlog_data_max = zfs_dirty_data_max * 2; 8031 } 8032 } 8033 8034 void 8035 arc_fini(void) 8036 { 8037 arc_prune_t *p; 8038 8039 #ifdef _KERNEL 8040 arc_lowmem_fini(); 8041 #endif /* _KERNEL */ 8042 8043 /* Use B_TRUE to ensure *all* buffers are evicted */ 8044 arc_flush(NULL, B_TRUE); 8045 8046 if (arc_ksp != NULL) { 8047 kstat_delete(arc_ksp); 8048 arc_ksp = NULL; 8049 } 8050 8051 taskq_wait(arc_prune_taskq); 8052 taskq_destroy(arc_prune_taskq); 8053 8054 mutex_enter(&arc_prune_mtx); 8055 while ((p = list_head(&arc_prune_list)) != NULL) { 8056 list_remove(&arc_prune_list, p); 8057 zfs_refcount_remove(&p->p_refcnt, &arc_prune_list); 8058 zfs_refcount_destroy(&p->p_refcnt); 8059 kmem_free(p, sizeof (*p)); 8060 } 8061 mutex_exit(&arc_prune_mtx); 8062 8063 list_destroy(&arc_prune_list); 8064 mutex_destroy(&arc_prune_mtx); 8065 8066 (void) zthr_cancel(arc_evict_zthr); 8067 (void) zthr_cancel(arc_reap_zthr); 8068 8069 mutex_destroy(&arc_evict_lock); 8070 list_destroy(&arc_evict_waiters); 8071 8072 /* 8073 * Free any buffers that were tagged for destruction. This needs 8074 * to occur before arc_state_fini() runs and destroys the aggsum 8075 * values which are updated when freeing scatter ABDs. 8076 */ 8077 l2arc_do_free_on_write(); 8078 8079 /* 8080 * buf_fini() must proceed arc_state_fini() because buf_fin() may 8081 * trigger the release of kmem magazines, which can callback to 8082 * arc_space_return() which accesses aggsums freed in act_state_fini(). 8083 */ 8084 buf_fini(); 8085 arc_state_fini(); 8086 8087 arc_unregister_hotplug(); 8088 8089 /* 8090 * We destroy the zthrs after all the ARC state has been 8091 * torn down to avoid the case of them receiving any 8092 * wakeup() signals after they are destroyed. 8093 */ 8094 zthr_destroy(arc_evict_zthr); 8095 zthr_destroy(arc_reap_zthr); 8096 8097 ASSERT0(arc_loaned_bytes); 8098 } 8099 8100 /* 8101 * Level 2 ARC 8102 * 8103 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 8104 * It uses dedicated storage devices to hold cached data, which are populated 8105 * using large infrequent writes. The main role of this cache is to boost 8106 * the performance of random read workloads. The intended L2ARC devices 8107 * include short-stroked disks, solid state disks, and other media with 8108 * substantially faster read latency than disk. 8109 * 8110 * +-----------------------+ 8111 * | ARC | 8112 * +-----------------------+ 8113 * | ^ ^ 8114 * | | | 8115 * l2arc_feed_thread() arc_read() 8116 * | | | 8117 * | l2arc read | 8118 * V | | 8119 * +---------------+ | 8120 * | L2ARC | | 8121 * +---------------+ | 8122 * | ^ | 8123 * l2arc_write() | | 8124 * | | | 8125 * V | | 8126 * +-------+ +-------+ 8127 * | vdev | | vdev | 8128 * | cache | | cache | 8129 * +-------+ +-------+ 8130 * +=========+ .-----. 8131 * : L2ARC : |-_____-| 8132 * : devices : | Disks | 8133 * +=========+ `-_____-' 8134 * 8135 * Read requests are satisfied from the following sources, in order: 8136 * 8137 * 1) ARC 8138 * 2) vdev cache of L2ARC devices 8139 * 3) L2ARC devices 8140 * 4) vdev cache of disks 8141 * 5) disks 8142 * 8143 * Some L2ARC device types exhibit extremely slow write performance. 8144 * To accommodate for this there are some significant differences between 8145 * the L2ARC and traditional cache design: 8146 * 8147 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 8148 * the ARC behave as usual, freeing buffers and placing headers on ghost 8149 * lists. The ARC does not send buffers to the L2ARC during eviction as 8150 * this would add inflated write latencies for all ARC memory pressure. 8151 * 8152 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 8153 * It does this by periodically scanning buffers from the eviction-end of 8154 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 8155 * not already there. It scans until a headroom of buffers is satisfied, 8156 * which itself is a buffer for ARC eviction. If a compressible buffer is 8157 * found during scanning and selected for writing to an L2ARC device, we 8158 * temporarily boost scanning headroom during the next scan cycle to make 8159 * sure we adapt to compression effects (which might significantly reduce 8160 * the data volume we write to L2ARC). The thread that does this is 8161 * l2arc_feed_thread(), illustrated below; example sizes are included to 8162 * provide a better sense of ratio than this diagram: 8163 * 8164 * head --> tail 8165 * +---------------------+----------+ 8166 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 8167 * +---------------------+----------+ | o L2ARC eligible 8168 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 8169 * +---------------------+----------+ | 8170 * 15.9 Gbytes ^ 32 Mbytes | 8171 * headroom | 8172 * l2arc_feed_thread() 8173 * | 8174 * l2arc write hand <--[oooo]--' 8175 * | 8 Mbyte 8176 * | write max 8177 * V 8178 * +==============================+ 8179 * L2ARC dev |####|#|###|###| |####| ... | 8180 * +==============================+ 8181 * 32 Gbytes 8182 * 8183 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 8184 * evicted, then the L2ARC has cached a buffer much sooner than it probably 8185 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 8186 * safe to say that this is an uncommon case, since buffers at the end of 8187 * the ARC lists have moved there due to inactivity. 8188 * 8189 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 8190 * then the L2ARC simply misses copying some buffers. This serves as a 8191 * pressure valve to prevent heavy read workloads from both stalling the ARC 8192 * with waits and clogging the L2ARC with writes. This also helps prevent 8193 * the potential for the L2ARC to churn if it attempts to cache content too 8194 * quickly, such as during backups of the entire pool. 8195 * 8196 * 5. After system boot and before the ARC has filled main memory, there are 8197 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 8198 * lists can remain mostly static. Instead of searching from tail of these 8199 * lists as pictured, the l2arc_feed_thread() will search from the list heads 8200 * for eligible buffers, greatly increasing its chance of finding them. 8201 * 8202 * The L2ARC device write speed is also boosted during this time so that 8203 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 8204 * there are no L2ARC reads, and no fear of degrading read performance 8205 * through increased writes. 8206 * 8207 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 8208 * the vdev queue can aggregate them into larger and fewer writes. Each 8209 * device is written to in a rotor fashion, sweeping writes through 8210 * available space then repeating. 8211 * 8212 * 7. The L2ARC does not store dirty content. It never needs to flush 8213 * write buffers back to disk based storage. 8214 * 8215 * 8. If an ARC buffer is written (and dirtied) which also exists in the 8216 * L2ARC, the now stale L2ARC buffer is immediately dropped. 8217 * 8218 * The performance of the L2ARC can be tweaked by a number of tunables, which 8219 * may be necessary for different workloads: 8220 * 8221 * l2arc_write_max max write bytes per interval 8222 * l2arc_write_boost extra write bytes during device warmup 8223 * l2arc_noprefetch skip caching prefetched buffers 8224 * l2arc_headroom number of max device writes to precache 8225 * l2arc_headroom_boost when we find compressed buffers during ARC 8226 * scanning, we multiply headroom by this 8227 * percentage factor for the next scan cycle, 8228 * since more compressed buffers are likely to 8229 * be present 8230 * l2arc_feed_secs seconds between L2ARC writing 8231 * 8232 * Tunables may be removed or added as future performance improvements are 8233 * integrated, and also may become zpool properties. 8234 * 8235 * There are three key functions that control how the L2ARC warms up: 8236 * 8237 * l2arc_write_eligible() check if a buffer is eligible to cache 8238 * l2arc_write_size() calculate how much to write 8239 * l2arc_write_interval() calculate sleep delay between writes 8240 * 8241 * These three functions determine what to write, how much, and how quickly 8242 * to send writes. 8243 * 8244 * L2ARC persistence: 8245 * 8246 * When writing buffers to L2ARC, we periodically add some metadata to 8247 * make sure we can pick them up after reboot, thus dramatically reducing 8248 * the impact that any downtime has on the performance of storage systems 8249 * with large caches. 8250 * 8251 * The implementation works fairly simply by integrating the following two 8252 * modifications: 8253 * 8254 * *) When writing to the L2ARC, we occasionally write a "l2arc log block", 8255 * which is an additional piece of metadata which describes what's been 8256 * written. This allows us to rebuild the arc_buf_hdr_t structures of the 8257 * main ARC buffers. There are 2 linked-lists of log blocks headed by 8258 * dh_start_lbps[2]. We alternate which chain we append to, so they are 8259 * time-wise and offset-wise interleaved, but that is an optimization rather 8260 * than for correctness. The log block also includes a pointer to the 8261 * previous block in its chain. 8262 * 8263 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device 8264 * for our header bookkeeping purposes. This contains a device header, 8265 * which contains our top-level reference structures. We update it each 8266 * time we write a new log block, so that we're able to locate it in the 8267 * L2ARC device. If this write results in an inconsistent device header 8268 * (e.g. due to power failure), we detect this by verifying the header's 8269 * checksum and simply fail to reconstruct the L2ARC after reboot. 8270 * 8271 * Implementation diagram: 8272 * 8273 * +=== L2ARC device (not to scale) ======================================+ 8274 * | ___two newest log block pointers__.__________ | 8275 * | / \dh_start_lbps[1] | 8276 * | / \ \dh_start_lbps[0]| 8277 * |.___/__. V V | 8278 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---| 8279 * || hdr| ^ /^ /^ / / | 8280 * |+------+ ...--\-------/ \-----/--\------/ / | 8281 * | \--------------/ \--------------/ | 8282 * +======================================================================+ 8283 * 8284 * As can be seen on the diagram, rather than using a simple linked list, 8285 * we use a pair of linked lists with alternating elements. This is a 8286 * performance enhancement due to the fact that we only find out the 8287 * address of the next log block access once the current block has been 8288 * completely read in. Obviously, this hurts performance, because we'd be 8289 * keeping the device's I/O queue at only a 1 operation deep, thus 8290 * incurring a large amount of I/O round-trip latency. Having two lists 8291 * allows us to fetch two log blocks ahead of where we are currently 8292 * rebuilding L2ARC buffers. 8293 * 8294 * On-device data structures: 8295 * 8296 * L2ARC device header: l2arc_dev_hdr_phys_t 8297 * L2ARC log block: l2arc_log_blk_phys_t 8298 * 8299 * L2ARC reconstruction: 8300 * 8301 * When writing data, we simply write in the standard rotary fashion, 8302 * evicting buffers as we go and simply writing new data over them (writing 8303 * a new log block every now and then). This obviously means that once we 8304 * loop around the end of the device, we will start cutting into an already 8305 * committed log block (and its referenced data buffers), like so: 8306 * 8307 * current write head__ __old tail 8308 * \ / 8309 * V V 8310 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |--> 8311 * ^ ^^^^^^^^^___________________________________ 8312 * | \ 8313 * <<nextwrite>> may overwrite this blk and/or its bufs --' 8314 * 8315 * When importing the pool, we detect this situation and use it to stop 8316 * our scanning process (see l2arc_rebuild). 8317 * 8318 * There is one significant caveat to consider when rebuilding ARC contents 8319 * from an L2ARC device: what about invalidated buffers? Given the above 8320 * construction, we cannot update blocks which we've already written to amend 8321 * them to remove buffers which were invalidated. Thus, during reconstruction, 8322 * we might be populating the cache with buffers for data that's not on the 8323 * main pool anymore, or may have been overwritten! 8324 * 8325 * As it turns out, this isn't a problem. Every arc_read request includes 8326 * both the DVA and, crucially, the birth TXG of the BP the caller is 8327 * looking for. So even if the cache were populated by completely rotten 8328 * blocks for data that had been long deleted and/or overwritten, we'll 8329 * never actually return bad data from the cache, since the DVA with the 8330 * birth TXG uniquely identify a block in space and time - once created, 8331 * a block is immutable on disk. The worst thing we have done is wasted 8332 * some time and memory at l2arc rebuild to reconstruct outdated ARC 8333 * entries that will get dropped from the l2arc as it is being updated 8334 * with new blocks. 8335 * 8336 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write 8337 * hand are not restored. This is done by saving the offset (in bytes) 8338 * l2arc_evict() has evicted to in the L2ARC device header and taking it 8339 * into account when restoring buffers. 8340 */ 8341 8342 static boolean_t 8343 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 8344 { 8345 /* 8346 * A buffer is *not* eligible for the L2ARC if it: 8347 * 1. belongs to a different spa. 8348 * 2. is already cached on the L2ARC. 8349 * 3. has an I/O in progress (it may be an incomplete read). 8350 * 4. is flagged not eligible (zfs property). 8351 */ 8352 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || 8353 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr)) 8354 return (B_FALSE); 8355 8356 return (B_TRUE); 8357 } 8358 8359 static uint64_t 8360 l2arc_write_size(l2arc_dev_t *dev) 8361 { 8362 uint64_t size, dev_size, tsize; 8363 8364 /* 8365 * Make sure our globals have meaningful values in case the user 8366 * altered them. 8367 */ 8368 size = l2arc_write_max; 8369 if (size == 0) { 8370 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 8371 "be greater than zero, resetting it to the default (%d)", 8372 L2ARC_WRITE_SIZE); 8373 size = l2arc_write_max = L2ARC_WRITE_SIZE; 8374 } 8375 8376 if (arc_warm == B_FALSE) 8377 size += l2arc_write_boost; 8378 8379 /* 8380 * Make sure the write size does not exceed the size of the cache 8381 * device. This is important in l2arc_evict(), otherwise infinite 8382 * iteration can occur. 8383 */ 8384 dev_size = dev->l2ad_end - dev->l2ad_start; 8385 tsize = size + l2arc_log_blk_overhead(size, dev); 8386 if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) 8387 tsize += MAX(64 * 1024 * 1024, 8388 (tsize * l2arc_trim_ahead) / 100); 8389 8390 if (tsize >= dev_size) { 8391 cmn_err(CE_NOTE, "l2arc_write_max or l2arc_write_boost " 8392 "plus the overhead of log blocks (persistent L2ARC, " 8393 "%llu bytes) exceeds the size of the cache device " 8394 "(guid %llu), resetting them to the default (%d)", 8395 (u_longlong_t)l2arc_log_blk_overhead(size, dev), 8396 (u_longlong_t)dev->l2ad_vdev->vdev_guid, L2ARC_WRITE_SIZE); 8397 size = l2arc_write_max = l2arc_write_boost = L2ARC_WRITE_SIZE; 8398 8399 if (arc_warm == B_FALSE) 8400 size += l2arc_write_boost; 8401 } 8402 8403 return (size); 8404 8405 } 8406 8407 static clock_t 8408 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 8409 { 8410 clock_t interval, next, now; 8411 8412 /* 8413 * If the ARC lists are busy, increase our write rate; if the 8414 * lists are stale, idle back. This is achieved by checking 8415 * how much we previously wrote - if it was more than half of 8416 * what we wanted, schedule the next write much sooner. 8417 */ 8418 if (l2arc_feed_again && wrote > (wanted / 2)) 8419 interval = (hz * l2arc_feed_min_ms) / 1000; 8420 else 8421 interval = hz * l2arc_feed_secs; 8422 8423 now = ddi_get_lbolt(); 8424 next = MAX(now, MIN(now + interval, began + interval)); 8425 8426 return (next); 8427 } 8428 8429 /* 8430 * Cycle through L2ARC devices. This is how L2ARC load balances. 8431 * If a device is returned, this also returns holding the spa config lock. 8432 */ 8433 static l2arc_dev_t * 8434 l2arc_dev_get_next(void) 8435 { 8436 l2arc_dev_t *first, *next = NULL; 8437 8438 /* 8439 * Lock out the removal of spas (spa_namespace_lock), then removal 8440 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 8441 * both locks will be dropped and a spa config lock held instead. 8442 */ 8443 mutex_enter(&spa_namespace_lock); 8444 mutex_enter(&l2arc_dev_mtx); 8445 8446 /* if there are no vdevs, there is nothing to do */ 8447 if (l2arc_ndev == 0) 8448 goto out; 8449 8450 first = NULL; 8451 next = l2arc_dev_last; 8452 do { 8453 /* loop around the list looking for a non-faulted vdev */ 8454 if (next == NULL) { 8455 next = list_head(l2arc_dev_list); 8456 } else { 8457 next = list_next(l2arc_dev_list, next); 8458 if (next == NULL) 8459 next = list_head(l2arc_dev_list); 8460 } 8461 8462 /* if we have come back to the start, bail out */ 8463 if (first == NULL) 8464 first = next; 8465 else if (next == first) 8466 break; 8467 8468 } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || 8469 next->l2ad_trim_all); 8470 8471 /* if we were unable to find any usable vdevs, return NULL */ 8472 if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || 8473 next->l2ad_trim_all) 8474 next = NULL; 8475 8476 l2arc_dev_last = next; 8477 8478 out: 8479 mutex_exit(&l2arc_dev_mtx); 8480 8481 /* 8482 * Grab the config lock to prevent the 'next' device from being 8483 * removed while we are writing to it. 8484 */ 8485 if (next != NULL) 8486 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 8487 mutex_exit(&spa_namespace_lock); 8488 8489 return (next); 8490 } 8491 8492 /* 8493 * Free buffers that were tagged for destruction. 8494 */ 8495 static void 8496 l2arc_do_free_on_write(void) 8497 { 8498 list_t *buflist; 8499 l2arc_data_free_t *df, *df_prev; 8500 8501 mutex_enter(&l2arc_free_on_write_mtx); 8502 buflist = l2arc_free_on_write; 8503 8504 for (df = list_tail(buflist); df; df = df_prev) { 8505 df_prev = list_prev(buflist, df); 8506 ASSERT3P(df->l2df_abd, !=, NULL); 8507 abd_free(df->l2df_abd); 8508 list_remove(buflist, df); 8509 kmem_free(df, sizeof (l2arc_data_free_t)); 8510 } 8511 8512 mutex_exit(&l2arc_free_on_write_mtx); 8513 } 8514 8515 /* 8516 * A write to a cache device has completed. Update all headers to allow 8517 * reads from these buffers to begin. 8518 */ 8519 static void 8520 l2arc_write_done(zio_t *zio) 8521 { 8522 l2arc_write_callback_t *cb; 8523 l2arc_lb_abd_buf_t *abd_buf; 8524 l2arc_lb_ptr_buf_t *lb_ptr_buf; 8525 l2arc_dev_t *dev; 8526 l2arc_dev_hdr_phys_t *l2dhdr; 8527 list_t *buflist; 8528 arc_buf_hdr_t *head, *hdr, *hdr_prev; 8529 kmutex_t *hash_lock; 8530 int64_t bytes_dropped = 0; 8531 8532 cb = zio->io_private; 8533 ASSERT3P(cb, !=, NULL); 8534 dev = cb->l2wcb_dev; 8535 l2dhdr = dev->l2ad_dev_hdr; 8536 ASSERT3P(dev, !=, NULL); 8537 head = cb->l2wcb_head; 8538 ASSERT3P(head, !=, NULL); 8539 buflist = &dev->l2ad_buflist; 8540 ASSERT3P(buflist, !=, NULL); 8541 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 8542 l2arc_write_callback_t *, cb); 8543 8544 /* 8545 * All writes completed, or an error was hit. 8546 */ 8547 top: 8548 mutex_enter(&dev->l2ad_mtx); 8549 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 8550 hdr_prev = list_prev(buflist, hdr); 8551 8552 hash_lock = HDR_LOCK(hdr); 8553 8554 /* 8555 * We cannot use mutex_enter or else we can deadlock 8556 * with l2arc_write_buffers (due to swapping the order 8557 * the hash lock and l2ad_mtx are taken). 8558 */ 8559 if (!mutex_tryenter(hash_lock)) { 8560 /* 8561 * Missed the hash lock. We must retry so we 8562 * don't leave the ARC_FLAG_L2_WRITING bit set. 8563 */ 8564 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 8565 8566 /* 8567 * We don't want to rescan the headers we've 8568 * already marked as having been written out, so 8569 * we reinsert the head node so we can pick up 8570 * where we left off. 8571 */ 8572 list_remove(buflist, head); 8573 list_insert_after(buflist, hdr, head); 8574 8575 mutex_exit(&dev->l2ad_mtx); 8576 8577 /* 8578 * We wait for the hash lock to become available 8579 * to try and prevent busy waiting, and increase 8580 * the chance we'll be able to acquire the lock 8581 * the next time around. 8582 */ 8583 mutex_enter(hash_lock); 8584 mutex_exit(hash_lock); 8585 goto top; 8586 } 8587 8588 /* 8589 * We could not have been moved into the arc_l2c_only 8590 * state while in-flight due to our ARC_FLAG_L2_WRITING 8591 * bit being set. Let's just ensure that's being enforced. 8592 */ 8593 ASSERT(HDR_HAS_L1HDR(hdr)); 8594 8595 /* 8596 * Skipped - drop L2ARC entry and mark the header as no 8597 * longer L2 eligibile. 8598 */ 8599 if (zio->io_error != 0) { 8600 /* 8601 * Error - drop L2ARC entry. 8602 */ 8603 list_remove(buflist, hdr); 8604 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 8605 8606 uint64_t psize = HDR_GET_PSIZE(hdr); 8607 l2arc_hdr_arcstats_decrement(hdr); 8608 8609 bytes_dropped += 8610 vdev_psize_to_asize(dev->l2ad_vdev, psize); 8611 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 8612 arc_hdr_size(hdr), hdr); 8613 } 8614 8615 /* 8616 * Allow ARC to begin reads and ghost list evictions to 8617 * this L2ARC entry. 8618 */ 8619 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); 8620 8621 mutex_exit(hash_lock); 8622 } 8623 8624 /* 8625 * Free the allocated abd buffers for writing the log blocks. 8626 * If the zio failed reclaim the allocated space and remove the 8627 * pointers to these log blocks from the log block pointer list 8628 * of the L2ARC device. 8629 */ 8630 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) { 8631 abd_free(abd_buf->abd); 8632 zio_buf_free(abd_buf, sizeof (*abd_buf)); 8633 if (zio->io_error != 0) { 8634 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list); 8635 /* 8636 * L2BLK_GET_PSIZE returns aligned size for log 8637 * blocks. 8638 */ 8639 uint64_t asize = 8640 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop); 8641 bytes_dropped += asize; 8642 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 8643 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 8644 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 8645 lb_ptr_buf); 8646 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 8647 kmem_free(lb_ptr_buf->lb_ptr, 8648 sizeof (l2arc_log_blkptr_t)); 8649 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 8650 } 8651 } 8652 list_destroy(&cb->l2wcb_abd_list); 8653 8654 if (zio->io_error != 0) { 8655 ARCSTAT_BUMP(arcstat_l2_writes_error); 8656 8657 /* 8658 * Restore the lbps array in the header to its previous state. 8659 * If the list of log block pointers is empty, zero out the 8660 * log block pointers in the device header. 8661 */ 8662 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list); 8663 for (int i = 0; i < 2; i++) { 8664 if (lb_ptr_buf == NULL) { 8665 /* 8666 * If the list is empty zero out the device 8667 * header. Otherwise zero out the second log 8668 * block pointer in the header. 8669 */ 8670 if (i == 0) { 8671 bzero(l2dhdr, dev->l2ad_dev_hdr_asize); 8672 } else { 8673 bzero(&l2dhdr->dh_start_lbps[i], 8674 sizeof (l2arc_log_blkptr_t)); 8675 } 8676 break; 8677 } 8678 bcopy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[i], 8679 sizeof (l2arc_log_blkptr_t)); 8680 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list, 8681 lb_ptr_buf); 8682 } 8683 } 8684 8685 ARCSTAT_BUMP(arcstat_l2_writes_done); 8686 list_remove(buflist, head); 8687 ASSERT(!HDR_HAS_L1HDR(head)); 8688 kmem_cache_free(hdr_l2only_cache, head); 8689 mutex_exit(&dev->l2ad_mtx); 8690 8691 ASSERT(dev->l2ad_vdev != NULL); 8692 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 8693 8694 l2arc_do_free_on_write(); 8695 8696 kmem_free(cb, sizeof (l2arc_write_callback_t)); 8697 } 8698 8699 static int 8700 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb) 8701 { 8702 int ret; 8703 spa_t *spa = zio->io_spa; 8704 arc_buf_hdr_t *hdr = cb->l2rcb_hdr; 8705 blkptr_t *bp = zio->io_bp; 8706 uint8_t salt[ZIO_DATA_SALT_LEN]; 8707 uint8_t iv[ZIO_DATA_IV_LEN]; 8708 uint8_t mac[ZIO_DATA_MAC_LEN]; 8709 boolean_t no_crypt = B_FALSE; 8710 8711 /* 8712 * ZIL data is never be written to the L2ARC, so we don't need 8713 * special handling for its unique MAC storage. 8714 */ 8715 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 8716 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 8717 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8718 8719 /* 8720 * If the data was encrypted, decrypt it now. Note that 8721 * we must check the bp here and not the hdr, since the 8722 * hdr does not have its encryption parameters updated 8723 * until arc_read_done(). 8724 */ 8725 if (BP_IS_ENCRYPTED(bp)) { 8726 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8727 ARC_HDR_DO_ADAPT | ARC_HDR_USE_RESERVE); 8728 8729 zio_crypt_decode_params_bp(bp, salt, iv); 8730 zio_crypt_decode_mac_bp(bp, mac); 8731 8732 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb, 8733 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 8734 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd, 8735 hdr->b_l1hdr.b_pabd, &no_crypt); 8736 if (ret != 0) { 8737 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8738 goto error; 8739 } 8740 8741 /* 8742 * If we actually performed decryption, replace b_pabd 8743 * with the decrypted data. Otherwise we can just throw 8744 * our decryption buffer away. 8745 */ 8746 if (!no_crypt) { 8747 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8748 arc_hdr_size(hdr), hdr); 8749 hdr->b_l1hdr.b_pabd = eabd; 8750 zio->io_abd = eabd; 8751 } else { 8752 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8753 } 8754 } 8755 8756 /* 8757 * If the L2ARC block was compressed, but ARC compression 8758 * is disabled we decompress the data into a new buffer and 8759 * replace the existing data. 8760 */ 8761 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 8762 !HDR_COMPRESSION_ENABLED(hdr)) { 8763 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8764 ARC_HDR_DO_ADAPT | ARC_HDR_USE_RESERVE); 8765 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 8766 8767 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 8768 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 8769 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 8770 if (ret != 0) { 8771 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 8772 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr); 8773 goto error; 8774 } 8775 8776 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 8777 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8778 arc_hdr_size(hdr), hdr); 8779 hdr->b_l1hdr.b_pabd = cabd; 8780 zio->io_abd = cabd; 8781 zio->io_size = HDR_GET_LSIZE(hdr); 8782 } 8783 8784 return (0); 8785 8786 error: 8787 return (ret); 8788 } 8789 8790 8791 /* 8792 * A read to a cache device completed. Validate buffer contents before 8793 * handing over to the regular ARC routines. 8794 */ 8795 static void 8796 l2arc_read_done(zio_t *zio) 8797 { 8798 int tfm_error = 0; 8799 l2arc_read_callback_t *cb = zio->io_private; 8800 arc_buf_hdr_t *hdr; 8801 kmutex_t *hash_lock; 8802 boolean_t valid_cksum; 8803 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) && 8804 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT)); 8805 8806 ASSERT3P(zio->io_vd, !=, NULL); 8807 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 8808 8809 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 8810 8811 ASSERT3P(cb, !=, NULL); 8812 hdr = cb->l2rcb_hdr; 8813 ASSERT3P(hdr, !=, NULL); 8814 8815 hash_lock = HDR_LOCK(hdr); 8816 mutex_enter(hash_lock); 8817 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 8818 8819 /* 8820 * If the data was read into a temporary buffer, 8821 * move it and free the buffer. 8822 */ 8823 if (cb->l2rcb_abd != NULL) { 8824 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size); 8825 if (zio->io_error == 0) { 8826 if (using_rdata) { 8827 abd_copy(hdr->b_crypt_hdr.b_rabd, 8828 cb->l2rcb_abd, arc_hdr_size(hdr)); 8829 } else { 8830 abd_copy(hdr->b_l1hdr.b_pabd, 8831 cb->l2rcb_abd, arc_hdr_size(hdr)); 8832 } 8833 } 8834 8835 /* 8836 * The following must be done regardless of whether 8837 * there was an error: 8838 * - free the temporary buffer 8839 * - point zio to the real ARC buffer 8840 * - set zio size accordingly 8841 * These are required because zio is either re-used for 8842 * an I/O of the block in the case of the error 8843 * or the zio is passed to arc_read_done() and it 8844 * needs real data. 8845 */ 8846 abd_free(cb->l2rcb_abd); 8847 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr); 8848 8849 if (using_rdata) { 8850 ASSERT(HDR_HAS_RABD(hdr)); 8851 zio->io_abd = zio->io_orig_abd = 8852 hdr->b_crypt_hdr.b_rabd; 8853 } else { 8854 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8855 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd; 8856 } 8857 } 8858 8859 ASSERT3P(zio->io_abd, !=, NULL); 8860 8861 /* 8862 * Check this survived the L2ARC journey. 8863 */ 8864 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd || 8865 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd)); 8866 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 8867 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 8868 zio->io_prop.zp_complevel = hdr->b_complevel; 8869 8870 valid_cksum = arc_cksum_is_equal(hdr, zio); 8871 8872 /* 8873 * b_rabd will always match the data as it exists on disk if it is 8874 * being used. Therefore if we are reading into b_rabd we do not 8875 * attempt to untransform the data. 8876 */ 8877 if (valid_cksum && !using_rdata) 8878 tfm_error = l2arc_untransform(zio, cb); 8879 8880 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 && 8881 !HDR_L2_EVICTED(hdr)) { 8882 mutex_exit(hash_lock); 8883 zio->io_private = hdr; 8884 arc_read_done(zio); 8885 } else { 8886 /* 8887 * Buffer didn't survive caching. Increment stats and 8888 * reissue to the original storage device. 8889 */ 8890 if (zio->io_error != 0) { 8891 ARCSTAT_BUMP(arcstat_l2_io_error); 8892 } else { 8893 zio->io_error = SET_ERROR(EIO); 8894 } 8895 if (!valid_cksum || tfm_error != 0) 8896 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 8897 8898 /* 8899 * If there's no waiter, issue an async i/o to the primary 8900 * storage now. If there *is* a waiter, the caller must 8901 * issue the i/o in a context where it's OK to block. 8902 */ 8903 if (zio->io_waiter == NULL) { 8904 zio_t *pio = zio_unique_parent(zio); 8905 void *abd = (using_rdata) ? 8906 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd; 8907 8908 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 8909 8910 zio = zio_read(pio, zio->io_spa, zio->io_bp, 8911 abd, zio->io_size, arc_read_done, 8912 hdr, zio->io_priority, cb->l2rcb_flags, 8913 &cb->l2rcb_zb); 8914 8915 /* 8916 * Original ZIO will be freed, so we need to update 8917 * ARC header with the new ZIO pointer to be used 8918 * by zio_change_priority() in arc_read(). 8919 */ 8920 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb; 8921 acb != NULL; acb = acb->acb_next) 8922 acb->acb_zio_head = zio; 8923 8924 mutex_exit(hash_lock); 8925 zio_nowait(zio); 8926 } else { 8927 mutex_exit(hash_lock); 8928 } 8929 } 8930 8931 kmem_free(cb, sizeof (l2arc_read_callback_t)); 8932 } 8933 8934 /* 8935 * This is the list priority from which the L2ARC will search for pages to 8936 * cache. This is used within loops (0..3) to cycle through lists in the 8937 * desired order. This order can have a significant effect on cache 8938 * performance. 8939 * 8940 * Currently the metadata lists are hit first, MFU then MRU, followed by 8941 * the data lists. This function returns a locked list, and also returns 8942 * the lock pointer. 8943 */ 8944 static multilist_sublist_t * 8945 l2arc_sublist_lock(int list_num) 8946 { 8947 multilist_t *ml = NULL; 8948 unsigned int idx; 8949 8950 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES); 8951 8952 switch (list_num) { 8953 case 0: 8954 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 8955 break; 8956 case 1: 8957 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 8958 break; 8959 case 2: 8960 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 8961 break; 8962 case 3: 8963 ml = &arc_mru->arcs_list[ARC_BUFC_DATA]; 8964 break; 8965 default: 8966 return (NULL); 8967 } 8968 8969 /* 8970 * Return a randomly-selected sublist. This is acceptable 8971 * because the caller feeds only a little bit of data for each 8972 * call (8MB). Subsequent calls will result in different 8973 * sublists being selected. 8974 */ 8975 idx = multilist_get_random_index(ml); 8976 return (multilist_sublist_lock(ml, idx)); 8977 } 8978 8979 /* 8980 * Calculates the maximum overhead of L2ARC metadata log blocks for a given 8981 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this 8982 * overhead in processing to make sure there is enough headroom available 8983 * when writing buffers. 8984 */ 8985 static inline uint64_t 8986 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev) 8987 { 8988 if (dev->l2ad_log_entries == 0) { 8989 return (0); 8990 } else { 8991 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT; 8992 8993 uint64_t log_blocks = (log_entries + 8994 dev->l2ad_log_entries - 1) / 8995 dev->l2ad_log_entries; 8996 8997 return (vdev_psize_to_asize(dev->l2ad_vdev, 8998 sizeof (l2arc_log_blk_phys_t)) * log_blocks); 8999 } 9000 } 9001 9002 /* 9003 * Evict buffers from the device write hand to the distance specified in 9004 * bytes. This distance may span populated buffers, it may span nothing. 9005 * This is clearing a region on the L2ARC device ready for writing. 9006 * If the 'all' boolean is set, every buffer is evicted. 9007 */ 9008 static void 9009 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 9010 { 9011 list_t *buflist; 9012 arc_buf_hdr_t *hdr, *hdr_prev; 9013 kmutex_t *hash_lock; 9014 uint64_t taddr; 9015 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev; 9016 vdev_t *vd = dev->l2ad_vdev; 9017 boolean_t rerun; 9018 9019 buflist = &dev->l2ad_buflist; 9020 9021 /* 9022 * We need to add in the worst case scenario of log block overhead. 9023 */ 9024 distance += l2arc_log_blk_overhead(distance, dev); 9025 if (vd->vdev_has_trim && l2arc_trim_ahead > 0) { 9026 /* 9027 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100) 9028 * times the write size, whichever is greater. 9029 */ 9030 distance += MAX(64 * 1024 * 1024, 9031 (distance * l2arc_trim_ahead) / 100); 9032 } 9033 9034 top: 9035 rerun = B_FALSE; 9036 if (dev->l2ad_hand >= (dev->l2ad_end - distance)) { 9037 /* 9038 * When there is no space to accommodate upcoming writes, 9039 * evict to the end. Then bump the write and evict hands 9040 * to the start and iterate. This iteration does not 9041 * happen indefinitely as we make sure in 9042 * l2arc_write_size() that when the write hand is reset, 9043 * the write size does not exceed the end of the device. 9044 */ 9045 rerun = B_TRUE; 9046 taddr = dev->l2ad_end; 9047 } else { 9048 taddr = dev->l2ad_hand + distance; 9049 } 9050 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 9051 uint64_t, taddr, boolean_t, all); 9052 9053 if (!all) { 9054 /* 9055 * This check has to be placed after deciding whether to 9056 * iterate (rerun). 9057 */ 9058 if (dev->l2ad_first) { 9059 /* 9060 * This is the first sweep through the device. There is 9061 * nothing to evict. We have already trimmmed the 9062 * whole device. 9063 */ 9064 goto out; 9065 } else { 9066 /* 9067 * Trim the space to be evicted. 9068 */ 9069 if (vd->vdev_has_trim && dev->l2ad_evict < taddr && 9070 l2arc_trim_ahead > 0) { 9071 /* 9072 * We have to drop the spa_config lock because 9073 * vdev_trim_range() will acquire it. 9074 * l2ad_evict already accounts for the label 9075 * size. To prevent vdev_trim_ranges() from 9076 * adding it again, we subtract it from 9077 * l2ad_evict. 9078 */ 9079 spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev); 9080 vdev_trim_simple(vd, 9081 dev->l2ad_evict - VDEV_LABEL_START_SIZE, 9082 taddr - dev->l2ad_evict); 9083 spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev, 9084 RW_READER); 9085 } 9086 9087 /* 9088 * When rebuilding L2ARC we retrieve the evict hand 9089 * from the header of the device. Of note, l2arc_evict() 9090 * does not actually delete buffers from the cache 9091 * device, but trimming may do so depending on the 9092 * hardware implementation. Thus keeping track of the 9093 * evict hand is useful. 9094 */ 9095 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr); 9096 } 9097 } 9098 9099 retry: 9100 mutex_enter(&dev->l2ad_mtx); 9101 /* 9102 * We have to account for evicted log blocks. Run vdev_space_update() 9103 * on log blocks whose offset (in bytes) is before the evicted offset 9104 * (in bytes) by searching in the list of pointers to log blocks 9105 * present in the L2ARC device. 9106 */ 9107 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf; 9108 lb_ptr_buf = lb_ptr_buf_prev) { 9109 9110 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf); 9111 9112 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 9113 uint64_t asize = L2BLK_GET_PSIZE( 9114 (lb_ptr_buf->lb_ptr)->lbp_prop); 9115 9116 /* 9117 * We don't worry about log blocks left behind (ie 9118 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers() 9119 * will never write more than l2arc_evict() evicts. 9120 */ 9121 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) { 9122 break; 9123 } else { 9124 vdev_space_update(vd, -asize, 0, 0); 9125 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 9126 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 9127 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 9128 lb_ptr_buf); 9129 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 9130 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf); 9131 kmem_free(lb_ptr_buf->lb_ptr, 9132 sizeof (l2arc_log_blkptr_t)); 9133 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 9134 } 9135 } 9136 9137 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 9138 hdr_prev = list_prev(buflist, hdr); 9139 9140 ASSERT(!HDR_EMPTY(hdr)); 9141 hash_lock = HDR_LOCK(hdr); 9142 9143 /* 9144 * We cannot use mutex_enter or else we can deadlock 9145 * with l2arc_write_buffers (due to swapping the order 9146 * the hash lock and l2ad_mtx are taken). 9147 */ 9148 if (!mutex_tryenter(hash_lock)) { 9149 /* 9150 * Missed the hash lock. Retry. 9151 */ 9152 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 9153 mutex_exit(&dev->l2ad_mtx); 9154 mutex_enter(hash_lock); 9155 mutex_exit(hash_lock); 9156 goto retry; 9157 } 9158 9159 /* 9160 * A header can't be on this list if it doesn't have L2 header. 9161 */ 9162 ASSERT(HDR_HAS_L2HDR(hdr)); 9163 9164 /* Ensure this header has finished being written. */ 9165 ASSERT(!HDR_L2_WRITING(hdr)); 9166 ASSERT(!HDR_L2_WRITE_HEAD(hdr)); 9167 9168 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict || 9169 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 9170 /* 9171 * We've evicted to the target address, 9172 * or the end of the device. 9173 */ 9174 mutex_exit(hash_lock); 9175 break; 9176 } 9177 9178 if (!HDR_HAS_L1HDR(hdr)) { 9179 ASSERT(!HDR_L2_READING(hdr)); 9180 /* 9181 * This doesn't exist in the ARC. Destroy. 9182 * arc_hdr_destroy() will call list_remove() 9183 * and decrement arcstat_l2_lsize. 9184 */ 9185 arc_change_state(arc_anon, hdr, hash_lock); 9186 arc_hdr_destroy(hdr); 9187 } else { 9188 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 9189 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 9190 /* 9191 * Invalidate issued or about to be issued 9192 * reads, since we may be about to write 9193 * over this location. 9194 */ 9195 if (HDR_L2_READING(hdr)) { 9196 ARCSTAT_BUMP(arcstat_l2_evict_reading); 9197 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); 9198 } 9199 9200 arc_hdr_l2hdr_destroy(hdr); 9201 } 9202 mutex_exit(hash_lock); 9203 } 9204 mutex_exit(&dev->l2ad_mtx); 9205 9206 out: 9207 /* 9208 * We need to check if we evict all buffers, otherwise we may iterate 9209 * unnecessarily. 9210 */ 9211 if (!all && rerun) { 9212 /* 9213 * Bump device hand to the device start if it is approaching the 9214 * end. l2arc_evict() has already evicted ahead for this case. 9215 */ 9216 dev->l2ad_hand = dev->l2ad_start; 9217 dev->l2ad_evict = dev->l2ad_start; 9218 dev->l2ad_first = B_FALSE; 9219 goto top; 9220 } 9221 9222 if (!all) { 9223 /* 9224 * In case of cache device removal (all) the following 9225 * assertions may be violated without functional consequences 9226 * as the device is about to be removed. 9227 */ 9228 ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end); 9229 if (!dev->l2ad_first) 9230 ASSERT3U(dev->l2ad_hand, <, dev->l2ad_evict); 9231 } 9232 } 9233 9234 /* 9235 * Handle any abd transforms that might be required for writing to the L2ARC. 9236 * If successful, this function will always return an abd with the data 9237 * transformed as it is on disk in a new abd of asize bytes. 9238 */ 9239 static int 9240 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize, 9241 abd_t **abd_out) 9242 { 9243 int ret; 9244 void *tmp = NULL; 9245 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd; 9246 enum zio_compress compress = HDR_GET_COMPRESS(hdr); 9247 uint64_t psize = HDR_GET_PSIZE(hdr); 9248 uint64_t size = arc_hdr_size(hdr); 9249 boolean_t ismd = HDR_ISTYPE_METADATA(hdr); 9250 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 9251 dsl_crypto_key_t *dck = NULL; 9252 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 }; 9253 boolean_t no_crypt = B_FALSE; 9254 9255 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 9256 !HDR_COMPRESSION_ENABLED(hdr)) || 9257 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize); 9258 ASSERT3U(psize, <=, asize); 9259 9260 /* 9261 * If this data simply needs its own buffer, we simply allocate it 9262 * and copy the data. This may be done to eliminate a dependency on a 9263 * shared buffer or to reallocate the buffer to match asize. 9264 */ 9265 if (HDR_HAS_RABD(hdr) && asize != psize) { 9266 ASSERT3U(asize, >=, psize); 9267 to_write = abd_alloc_for_io(asize, ismd); 9268 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize); 9269 if (psize != asize) 9270 abd_zero_off(to_write, psize, asize - psize); 9271 goto out; 9272 } 9273 9274 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) && 9275 !HDR_ENCRYPTED(hdr)) { 9276 ASSERT3U(size, ==, psize); 9277 to_write = abd_alloc_for_io(asize, ismd); 9278 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 9279 if (size != asize) 9280 abd_zero_off(to_write, size, asize - size); 9281 goto out; 9282 } 9283 9284 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) { 9285 cabd = abd_alloc_for_io(asize, ismd); 9286 tmp = abd_borrow_buf(cabd, asize); 9287 9288 psize = zio_compress_data(compress, to_write, tmp, size, 9289 hdr->b_complevel); 9290 9291 if (psize >= size) { 9292 abd_return_buf(cabd, tmp, asize); 9293 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF); 9294 to_write = cabd; 9295 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 9296 if (size != asize) 9297 abd_zero_off(to_write, size, asize - size); 9298 goto encrypt; 9299 } 9300 ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr)); 9301 if (psize < asize) 9302 bzero((char *)tmp + psize, asize - psize); 9303 psize = HDR_GET_PSIZE(hdr); 9304 abd_return_buf_copy(cabd, tmp, asize); 9305 to_write = cabd; 9306 } 9307 9308 encrypt: 9309 if (HDR_ENCRYPTED(hdr)) { 9310 eabd = abd_alloc_for_io(asize, ismd); 9311 9312 /* 9313 * If the dataset was disowned before the buffer 9314 * made it to this point, the key to re-encrypt 9315 * it won't be available. In this case we simply 9316 * won't write the buffer to the L2ARC. 9317 */ 9318 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj, 9319 FTAG, &dck); 9320 if (ret != 0) 9321 goto error; 9322 9323 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key, 9324 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt, 9325 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd, 9326 &no_crypt); 9327 if (ret != 0) 9328 goto error; 9329 9330 if (no_crypt) 9331 abd_copy(eabd, to_write, psize); 9332 9333 if (psize != asize) 9334 abd_zero_off(eabd, psize, asize - psize); 9335 9336 /* assert that the MAC we got here matches the one we saved */ 9337 ASSERT0(bcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN)); 9338 spa_keystore_dsl_key_rele(spa, dck, FTAG); 9339 9340 if (to_write == cabd) 9341 abd_free(cabd); 9342 9343 to_write = eabd; 9344 } 9345 9346 out: 9347 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd); 9348 *abd_out = to_write; 9349 return (0); 9350 9351 error: 9352 if (dck != NULL) 9353 spa_keystore_dsl_key_rele(spa, dck, FTAG); 9354 if (cabd != NULL) 9355 abd_free(cabd); 9356 if (eabd != NULL) 9357 abd_free(eabd); 9358 9359 *abd_out = NULL; 9360 return (ret); 9361 } 9362 9363 static void 9364 l2arc_blk_fetch_done(zio_t *zio) 9365 { 9366 l2arc_read_callback_t *cb; 9367 9368 cb = zio->io_private; 9369 if (cb->l2rcb_abd != NULL) 9370 abd_free(cb->l2rcb_abd); 9371 kmem_free(cb, sizeof (l2arc_read_callback_t)); 9372 } 9373 9374 /* 9375 * Find and write ARC buffers to the L2ARC device. 9376 * 9377 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 9378 * for reading until they have completed writing. 9379 * The headroom_boost is an in-out parameter used to maintain headroom boost 9380 * state between calls to this function. 9381 * 9382 * Returns the number of bytes actually written (which may be smaller than 9383 * the delta by which the device hand has changed due to alignment and the 9384 * writing of log blocks). 9385 */ 9386 static uint64_t 9387 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 9388 { 9389 arc_buf_hdr_t *hdr, *hdr_prev, *head; 9390 uint64_t write_asize, write_psize, write_lsize, headroom; 9391 boolean_t full; 9392 l2arc_write_callback_t *cb = NULL; 9393 zio_t *pio, *wzio; 9394 uint64_t guid = spa_load_guid(spa); 9395 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9396 9397 ASSERT3P(dev->l2ad_vdev, !=, NULL); 9398 9399 pio = NULL; 9400 write_lsize = write_asize = write_psize = 0; 9401 full = B_FALSE; 9402 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 9403 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); 9404 9405 /* 9406 * Copy buffers for L2ARC writing. 9407 */ 9408 for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) { 9409 /* 9410 * If pass == 1 or 3, we cache MRU metadata and data 9411 * respectively. 9412 */ 9413 if (l2arc_mfuonly) { 9414 if (pass == 1 || pass == 3) 9415 continue; 9416 } 9417 9418 multilist_sublist_t *mls = l2arc_sublist_lock(pass); 9419 uint64_t passed_sz = 0; 9420 9421 VERIFY3P(mls, !=, NULL); 9422 9423 /* 9424 * L2ARC fast warmup. 9425 * 9426 * Until the ARC is warm and starts to evict, read from the 9427 * head of the ARC lists rather than the tail. 9428 */ 9429 if (arc_warm == B_FALSE) 9430 hdr = multilist_sublist_head(mls); 9431 else 9432 hdr = multilist_sublist_tail(mls); 9433 9434 headroom = target_sz * l2arc_headroom; 9435 if (zfs_compressed_arc_enabled) 9436 headroom = (headroom * l2arc_headroom_boost) / 100; 9437 9438 for (; hdr; hdr = hdr_prev) { 9439 kmutex_t *hash_lock; 9440 abd_t *to_write = NULL; 9441 9442 if (arc_warm == B_FALSE) 9443 hdr_prev = multilist_sublist_next(mls, hdr); 9444 else 9445 hdr_prev = multilist_sublist_prev(mls, hdr); 9446 9447 hash_lock = HDR_LOCK(hdr); 9448 if (!mutex_tryenter(hash_lock)) { 9449 /* 9450 * Skip this buffer rather than waiting. 9451 */ 9452 continue; 9453 } 9454 9455 passed_sz += HDR_GET_LSIZE(hdr); 9456 if (l2arc_headroom != 0 && passed_sz > headroom) { 9457 /* 9458 * Searched too far. 9459 */ 9460 mutex_exit(hash_lock); 9461 break; 9462 } 9463 9464 if (!l2arc_write_eligible(guid, hdr)) { 9465 mutex_exit(hash_lock); 9466 continue; 9467 } 9468 9469 /* 9470 * We rely on the L1 portion of the header below, so 9471 * it's invalid for this header to have been evicted out 9472 * of the ghost cache, prior to being written out. The 9473 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 9474 */ 9475 ASSERT(HDR_HAS_L1HDR(hdr)); 9476 9477 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 9478 ASSERT3U(arc_hdr_size(hdr), >, 0); 9479 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 9480 HDR_HAS_RABD(hdr)); 9481 uint64_t psize = HDR_GET_PSIZE(hdr); 9482 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 9483 psize); 9484 9485 if ((write_asize + asize) > target_sz) { 9486 full = B_TRUE; 9487 mutex_exit(hash_lock); 9488 break; 9489 } 9490 9491 /* 9492 * We rely on the L1 portion of the header below, so 9493 * it's invalid for this header to have been evicted out 9494 * of the ghost cache, prior to being written out. The 9495 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 9496 */ 9497 arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING); 9498 ASSERT(HDR_HAS_L1HDR(hdr)); 9499 9500 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 9501 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 9502 HDR_HAS_RABD(hdr)); 9503 ASSERT3U(arc_hdr_size(hdr), >, 0); 9504 9505 /* 9506 * If this header has b_rabd, we can use this since it 9507 * must always match the data exactly as it exists on 9508 * disk. Otherwise, the L2ARC can normally use the 9509 * hdr's data, but if we're sharing data between the 9510 * hdr and one of its bufs, L2ARC needs its own copy of 9511 * the data so that the ZIO below can't race with the 9512 * buf consumer. To ensure that this copy will be 9513 * available for the lifetime of the ZIO and be cleaned 9514 * up afterwards, we add it to the l2arc_free_on_write 9515 * queue. If we need to apply any transforms to the 9516 * data (compression, encryption) we will also need the 9517 * extra buffer. 9518 */ 9519 if (HDR_HAS_RABD(hdr) && psize == asize) { 9520 to_write = hdr->b_crypt_hdr.b_rabd; 9521 } else if ((HDR_COMPRESSION_ENABLED(hdr) || 9522 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) && 9523 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) && 9524 psize == asize) { 9525 to_write = hdr->b_l1hdr.b_pabd; 9526 } else { 9527 int ret; 9528 arc_buf_contents_t type = arc_buf_type(hdr); 9529 9530 ret = l2arc_apply_transforms(spa, hdr, asize, 9531 &to_write); 9532 if (ret != 0) { 9533 arc_hdr_clear_flags(hdr, 9534 ARC_FLAG_L2_WRITING); 9535 mutex_exit(hash_lock); 9536 continue; 9537 } 9538 9539 l2arc_free_abd_on_write(to_write, asize, type); 9540 } 9541 9542 if (pio == NULL) { 9543 /* 9544 * Insert a dummy header on the buflist so 9545 * l2arc_write_done() can find where the 9546 * write buffers begin without searching. 9547 */ 9548 mutex_enter(&dev->l2ad_mtx); 9549 list_insert_head(&dev->l2ad_buflist, head); 9550 mutex_exit(&dev->l2ad_mtx); 9551 9552 cb = kmem_alloc( 9553 sizeof (l2arc_write_callback_t), KM_SLEEP); 9554 cb->l2wcb_dev = dev; 9555 cb->l2wcb_head = head; 9556 /* 9557 * Create a list to save allocated abd buffers 9558 * for l2arc_log_blk_commit(). 9559 */ 9560 list_create(&cb->l2wcb_abd_list, 9561 sizeof (l2arc_lb_abd_buf_t), 9562 offsetof(l2arc_lb_abd_buf_t, node)); 9563 pio = zio_root(spa, l2arc_write_done, cb, 9564 ZIO_FLAG_CANFAIL); 9565 } 9566 9567 hdr->b_l2hdr.b_dev = dev; 9568 hdr->b_l2hdr.b_hits = 0; 9569 9570 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 9571 hdr->b_l2hdr.b_arcs_state = 9572 hdr->b_l1hdr.b_state->arcs_state; 9573 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR); 9574 9575 mutex_enter(&dev->l2ad_mtx); 9576 list_insert_head(&dev->l2ad_buflist, hdr); 9577 mutex_exit(&dev->l2ad_mtx); 9578 9579 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 9580 arc_hdr_size(hdr), hdr); 9581 9582 wzio = zio_write_phys(pio, dev->l2ad_vdev, 9583 hdr->b_l2hdr.b_daddr, asize, to_write, 9584 ZIO_CHECKSUM_OFF, NULL, hdr, 9585 ZIO_PRIORITY_ASYNC_WRITE, 9586 ZIO_FLAG_CANFAIL, B_FALSE); 9587 9588 write_lsize += HDR_GET_LSIZE(hdr); 9589 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 9590 zio_t *, wzio); 9591 9592 write_psize += psize; 9593 write_asize += asize; 9594 dev->l2ad_hand += asize; 9595 l2arc_hdr_arcstats_increment(hdr); 9596 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 9597 9598 mutex_exit(hash_lock); 9599 9600 /* 9601 * Append buf info to current log and commit if full. 9602 * arcstat_l2_{size,asize} kstats are updated 9603 * internally. 9604 */ 9605 if (l2arc_log_blk_insert(dev, hdr)) 9606 l2arc_log_blk_commit(dev, pio, cb); 9607 9608 zio_nowait(wzio); 9609 } 9610 9611 multilist_sublist_unlock(mls); 9612 9613 if (full == B_TRUE) 9614 break; 9615 } 9616 9617 /* No buffers selected for writing? */ 9618 if (pio == NULL) { 9619 ASSERT0(write_lsize); 9620 ASSERT(!HDR_HAS_L1HDR(head)); 9621 kmem_cache_free(hdr_l2only_cache, head); 9622 9623 /* 9624 * Although we did not write any buffers l2ad_evict may 9625 * have advanced. 9626 */ 9627 if (dev->l2ad_evict != l2dhdr->dh_evict) 9628 l2arc_dev_hdr_update(dev); 9629 9630 return (0); 9631 } 9632 9633 if (!dev->l2ad_first) 9634 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict); 9635 9636 ASSERT3U(write_asize, <=, target_sz); 9637 ARCSTAT_BUMP(arcstat_l2_writes_sent); 9638 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize); 9639 9640 dev->l2ad_writing = B_TRUE; 9641 (void) zio_wait(pio); 9642 dev->l2ad_writing = B_FALSE; 9643 9644 /* 9645 * Update the device header after the zio completes as 9646 * l2arc_write_done() may have updated the memory holding the log block 9647 * pointers in the device header. 9648 */ 9649 l2arc_dev_hdr_update(dev); 9650 9651 return (write_asize); 9652 } 9653 9654 static boolean_t 9655 l2arc_hdr_limit_reached(void) 9656 { 9657 int64_t s = aggsum_upper_bound(&arc_sums.arcstat_l2_hdr_size); 9658 9659 return (arc_reclaim_needed() || (s > arc_meta_limit * 3 / 4) || 9660 (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100)); 9661 } 9662 9663 /* 9664 * This thread feeds the L2ARC at regular intervals. This is the beating 9665 * heart of the L2ARC. 9666 */ 9667 /* ARGSUSED */ 9668 static void 9669 l2arc_feed_thread(void *unused) 9670 { 9671 callb_cpr_t cpr; 9672 l2arc_dev_t *dev; 9673 spa_t *spa; 9674 uint64_t size, wrote; 9675 clock_t begin, next = ddi_get_lbolt(); 9676 fstrans_cookie_t cookie; 9677 9678 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 9679 9680 mutex_enter(&l2arc_feed_thr_lock); 9681 9682 cookie = spl_fstrans_mark(); 9683 while (l2arc_thread_exit == 0) { 9684 CALLB_CPR_SAFE_BEGIN(&cpr); 9685 (void) cv_timedwait_idle(&l2arc_feed_thr_cv, 9686 &l2arc_feed_thr_lock, next); 9687 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 9688 next = ddi_get_lbolt() + hz; 9689 9690 /* 9691 * Quick check for L2ARC devices. 9692 */ 9693 mutex_enter(&l2arc_dev_mtx); 9694 if (l2arc_ndev == 0) { 9695 mutex_exit(&l2arc_dev_mtx); 9696 continue; 9697 } 9698 mutex_exit(&l2arc_dev_mtx); 9699 begin = ddi_get_lbolt(); 9700 9701 /* 9702 * This selects the next l2arc device to write to, and in 9703 * doing so the next spa to feed from: dev->l2ad_spa. This 9704 * will return NULL if there are now no l2arc devices or if 9705 * they are all faulted. 9706 * 9707 * If a device is returned, its spa's config lock is also 9708 * held to prevent device removal. l2arc_dev_get_next() 9709 * will grab and release l2arc_dev_mtx. 9710 */ 9711 if ((dev = l2arc_dev_get_next()) == NULL) 9712 continue; 9713 9714 spa = dev->l2ad_spa; 9715 ASSERT3P(spa, !=, NULL); 9716 9717 /* 9718 * If the pool is read-only then force the feed thread to 9719 * sleep a little longer. 9720 */ 9721 if (!spa_writeable(spa)) { 9722 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 9723 spa_config_exit(spa, SCL_L2ARC, dev); 9724 continue; 9725 } 9726 9727 /* 9728 * Avoid contributing to memory pressure. 9729 */ 9730 if (l2arc_hdr_limit_reached()) { 9731 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 9732 spa_config_exit(spa, SCL_L2ARC, dev); 9733 continue; 9734 } 9735 9736 ARCSTAT_BUMP(arcstat_l2_feeds); 9737 9738 size = l2arc_write_size(dev); 9739 9740 /* 9741 * Evict L2ARC buffers that will be overwritten. 9742 */ 9743 l2arc_evict(dev, size, B_FALSE); 9744 9745 /* 9746 * Write ARC buffers. 9747 */ 9748 wrote = l2arc_write_buffers(spa, dev, size); 9749 9750 /* 9751 * Calculate interval between writes. 9752 */ 9753 next = l2arc_write_interval(begin, size, wrote); 9754 spa_config_exit(spa, SCL_L2ARC, dev); 9755 } 9756 spl_fstrans_unmark(cookie); 9757 9758 l2arc_thread_exit = 0; 9759 cv_broadcast(&l2arc_feed_thr_cv); 9760 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 9761 thread_exit(); 9762 } 9763 9764 boolean_t 9765 l2arc_vdev_present(vdev_t *vd) 9766 { 9767 return (l2arc_vdev_get(vd) != NULL); 9768 } 9769 9770 /* 9771 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if 9772 * the vdev_t isn't an L2ARC device. 9773 */ 9774 l2arc_dev_t * 9775 l2arc_vdev_get(vdev_t *vd) 9776 { 9777 l2arc_dev_t *dev; 9778 9779 mutex_enter(&l2arc_dev_mtx); 9780 for (dev = list_head(l2arc_dev_list); dev != NULL; 9781 dev = list_next(l2arc_dev_list, dev)) { 9782 if (dev->l2ad_vdev == vd) 9783 break; 9784 } 9785 mutex_exit(&l2arc_dev_mtx); 9786 9787 return (dev); 9788 } 9789 9790 static void 9791 l2arc_rebuild_dev(l2arc_dev_t *dev, boolean_t reopen) 9792 { 9793 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9794 uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 9795 spa_t *spa = dev->l2ad_spa; 9796 9797 /* 9798 * The L2ARC has to hold at least the payload of one log block for 9799 * them to be restored (persistent L2ARC). The payload of a log block 9800 * depends on the amount of its log entries. We always write log blocks 9801 * with 1022 entries. How many of them are committed or restored depends 9802 * on the size of the L2ARC device. Thus the maximum payload of 9803 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device 9804 * is less than that, we reduce the amount of committed and restored 9805 * log entries per block so as to enable persistence. 9806 */ 9807 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) { 9808 dev->l2ad_log_entries = 0; 9809 } else { 9810 dev->l2ad_log_entries = MIN((dev->l2ad_end - 9811 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT, 9812 L2ARC_LOG_BLK_MAX_ENTRIES); 9813 } 9814 9815 /* 9816 * Read the device header, if an error is returned do not rebuild L2ARC. 9817 */ 9818 if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) { 9819 /* 9820 * If we are onlining a cache device (vdev_reopen) that was 9821 * still present (l2arc_vdev_present()) and rebuild is enabled, 9822 * we should evict all ARC buffers and pointers to log blocks 9823 * and reclaim their space before restoring its contents to 9824 * L2ARC. 9825 */ 9826 if (reopen) { 9827 if (!l2arc_rebuild_enabled) { 9828 return; 9829 } else { 9830 l2arc_evict(dev, 0, B_TRUE); 9831 /* start a new log block */ 9832 dev->l2ad_log_ent_idx = 0; 9833 dev->l2ad_log_blk_payload_asize = 0; 9834 dev->l2ad_log_blk_payload_start = 0; 9835 } 9836 } 9837 /* 9838 * Just mark the device as pending for a rebuild. We won't 9839 * be starting a rebuild in line here as it would block pool 9840 * import. Instead spa_load_impl will hand that off to an 9841 * async task which will call l2arc_spa_rebuild_start. 9842 */ 9843 dev->l2ad_rebuild = B_TRUE; 9844 } else if (spa_writeable(spa)) { 9845 /* 9846 * In this case TRIM the whole device if l2arc_trim_ahead > 0, 9847 * otherwise create a new header. We zero out the memory holding 9848 * the header to reset dh_start_lbps. If we TRIM the whole 9849 * device the new header will be written by 9850 * vdev_trim_l2arc_thread() at the end of the TRIM to update the 9851 * trim_state in the header too. When reading the header, if 9852 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0 9853 * we opt to TRIM the whole device again. 9854 */ 9855 if (l2arc_trim_ahead > 0) { 9856 dev->l2ad_trim_all = B_TRUE; 9857 } else { 9858 bzero(l2dhdr, l2dhdr_asize); 9859 l2arc_dev_hdr_update(dev); 9860 } 9861 } 9862 } 9863 9864 /* 9865 * Add a vdev for use by the L2ARC. By this point the spa has already 9866 * validated the vdev and opened it. 9867 */ 9868 void 9869 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 9870 { 9871 l2arc_dev_t *adddev; 9872 uint64_t l2dhdr_asize; 9873 9874 ASSERT(!l2arc_vdev_present(vd)); 9875 9876 /* 9877 * Create a new l2arc device entry. 9878 */ 9879 adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 9880 adddev->l2ad_spa = spa; 9881 adddev->l2ad_vdev = vd; 9882 /* leave extra size for an l2arc device header */ 9883 l2dhdr_asize = adddev->l2ad_dev_hdr_asize = 9884 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift); 9885 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize; 9886 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 9887 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end); 9888 adddev->l2ad_hand = adddev->l2ad_start; 9889 adddev->l2ad_evict = adddev->l2ad_start; 9890 adddev->l2ad_first = B_TRUE; 9891 adddev->l2ad_writing = B_FALSE; 9892 adddev->l2ad_trim_all = B_FALSE; 9893 list_link_init(&adddev->l2ad_node); 9894 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP); 9895 9896 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 9897 /* 9898 * This is a list of all ARC buffers that are still valid on the 9899 * device. 9900 */ 9901 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 9902 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 9903 9904 /* 9905 * This is a list of pointers to log blocks that are still present 9906 * on the device. 9907 */ 9908 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t), 9909 offsetof(l2arc_lb_ptr_buf_t, node)); 9910 9911 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 9912 zfs_refcount_create(&adddev->l2ad_alloc); 9913 zfs_refcount_create(&adddev->l2ad_lb_asize); 9914 zfs_refcount_create(&adddev->l2ad_lb_count); 9915 9916 /* 9917 * Decide if dev is eligible for L2ARC rebuild or whole device 9918 * trimming. This has to happen before the device is added in the 9919 * cache device list and l2arc_dev_mtx is released. Otherwise 9920 * l2arc_feed_thread() might already start writing on the 9921 * device. 9922 */ 9923 l2arc_rebuild_dev(adddev, B_FALSE); 9924 9925 /* 9926 * Add device to global list 9927 */ 9928 mutex_enter(&l2arc_dev_mtx); 9929 list_insert_head(l2arc_dev_list, adddev); 9930 atomic_inc_64(&l2arc_ndev); 9931 mutex_exit(&l2arc_dev_mtx); 9932 } 9933 9934 /* 9935 * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen() 9936 * in case of onlining a cache device. 9937 */ 9938 void 9939 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen) 9940 { 9941 l2arc_dev_t *dev = NULL; 9942 9943 dev = l2arc_vdev_get(vd); 9944 ASSERT3P(dev, !=, NULL); 9945 9946 /* 9947 * In contrast to l2arc_add_vdev() we do not have to worry about 9948 * l2arc_feed_thread() invalidating previous content when onlining a 9949 * cache device. The device parameters (l2ad*) are not cleared when 9950 * offlining the device and writing new buffers will not invalidate 9951 * all previous content. In worst case only buffers that have not had 9952 * their log block written to the device will be lost. 9953 * When onlining the cache device (ie offline->online without exporting 9954 * the pool in between) this happens: 9955 * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev() 9956 * | | 9957 * vdev_is_dead() = B_FALSE l2ad_rebuild = B_TRUE 9958 * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild 9959 * is set to B_TRUE we might write additional buffers to the device. 9960 */ 9961 l2arc_rebuild_dev(dev, reopen); 9962 } 9963 9964 /* 9965 * Remove a vdev from the L2ARC. 9966 */ 9967 void 9968 l2arc_remove_vdev(vdev_t *vd) 9969 { 9970 l2arc_dev_t *remdev = NULL; 9971 9972 /* 9973 * Find the device by vdev 9974 */ 9975 remdev = l2arc_vdev_get(vd); 9976 ASSERT3P(remdev, !=, NULL); 9977 9978 /* 9979 * Cancel any ongoing or scheduled rebuild. 9980 */ 9981 mutex_enter(&l2arc_rebuild_thr_lock); 9982 if (remdev->l2ad_rebuild_began == B_TRUE) { 9983 remdev->l2ad_rebuild_cancel = B_TRUE; 9984 while (remdev->l2ad_rebuild == B_TRUE) 9985 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock); 9986 } 9987 mutex_exit(&l2arc_rebuild_thr_lock); 9988 9989 /* 9990 * Remove device from global list 9991 */ 9992 mutex_enter(&l2arc_dev_mtx); 9993 list_remove(l2arc_dev_list, remdev); 9994 l2arc_dev_last = NULL; /* may have been invalidated */ 9995 atomic_dec_64(&l2arc_ndev); 9996 mutex_exit(&l2arc_dev_mtx); 9997 9998 /* 9999 * Clear all buflists and ARC references. L2ARC device flush. 10000 */ 10001 l2arc_evict(remdev, 0, B_TRUE); 10002 list_destroy(&remdev->l2ad_buflist); 10003 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list)); 10004 list_destroy(&remdev->l2ad_lbptr_list); 10005 mutex_destroy(&remdev->l2ad_mtx); 10006 zfs_refcount_destroy(&remdev->l2ad_alloc); 10007 zfs_refcount_destroy(&remdev->l2ad_lb_asize); 10008 zfs_refcount_destroy(&remdev->l2ad_lb_count); 10009 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize); 10010 vmem_free(remdev, sizeof (l2arc_dev_t)); 10011 } 10012 10013 void 10014 l2arc_init(void) 10015 { 10016 l2arc_thread_exit = 0; 10017 l2arc_ndev = 0; 10018 10019 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 10020 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 10021 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL); 10022 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL); 10023 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 10024 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 10025 10026 l2arc_dev_list = &L2ARC_dev_list; 10027 l2arc_free_on_write = &L2ARC_free_on_write; 10028 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 10029 offsetof(l2arc_dev_t, l2ad_node)); 10030 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 10031 offsetof(l2arc_data_free_t, l2df_list_node)); 10032 } 10033 10034 void 10035 l2arc_fini(void) 10036 { 10037 mutex_destroy(&l2arc_feed_thr_lock); 10038 cv_destroy(&l2arc_feed_thr_cv); 10039 mutex_destroy(&l2arc_rebuild_thr_lock); 10040 cv_destroy(&l2arc_rebuild_thr_cv); 10041 mutex_destroy(&l2arc_dev_mtx); 10042 mutex_destroy(&l2arc_free_on_write_mtx); 10043 10044 list_destroy(l2arc_dev_list); 10045 list_destroy(l2arc_free_on_write); 10046 } 10047 10048 void 10049 l2arc_start(void) 10050 { 10051 if (!(spa_mode_global & SPA_MODE_WRITE)) 10052 return; 10053 10054 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 10055 TS_RUN, defclsyspri); 10056 } 10057 10058 void 10059 l2arc_stop(void) 10060 { 10061 if (!(spa_mode_global & SPA_MODE_WRITE)) 10062 return; 10063 10064 mutex_enter(&l2arc_feed_thr_lock); 10065 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 10066 l2arc_thread_exit = 1; 10067 while (l2arc_thread_exit != 0) 10068 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 10069 mutex_exit(&l2arc_feed_thr_lock); 10070 } 10071 10072 /* 10073 * Punches out rebuild threads for the L2ARC devices in a spa. This should 10074 * be called after pool import from the spa async thread, since starting 10075 * these threads directly from spa_import() will make them part of the 10076 * "zpool import" context and delay process exit (and thus pool import). 10077 */ 10078 void 10079 l2arc_spa_rebuild_start(spa_t *spa) 10080 { 10081 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 10082 10083 /* 10084 * Locate the spa's l2arc devices and kick off rebuild threads. 10085 */ 10086 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 10087 l2arc_dev_t *dev = 10088 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]); 10089 if (dev == NULL) { 10090 /* Don't attempt a rebuild if the vdev is UNAVAIL */ 10091 continue; 10092 } 10093 mutex_enter(&l2arc_rebuild_thr_lock); 10094 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) { 10095 dev->l2ad_rebuild_began = B_TRUE; 10096 (void) thread_create(NULL, 0, l2arc_dev_rebuild_thread, 10097 dev, 0, &p0, TS_RUN, minclsyspri); 10098 } 10099 mutex_exit(&l2arc_rebuild_thr_lock); 10100 } 10101 } 10102 10103 /* 10104 * Main entry point for L2ARC rebuilding. 10105 */ 10106 static void 10107 l2arc_dev_rebuild_thread(void *arg) 10108 { 10109 l2arc_dev_t *dev = arg; 10110 10111 VERIFY(!dev->l2ad_rebuild_cancel); 10112 VERIFY(dev->l2ad_rebuild); 10113 (void) l2arc_rebuild(dev); 10114 mutex_enter(&l2arc_rebuild_thr_lock); 10115 dev->l2ad_rebuild_began = B_FALSE; 10116 dev->l2ad_rebuild = B_FALSE; 10117 mutex_exit(&l2arc_rebuild_thr_lock); 10118 10119 thread_exit(); 10120 } 10121 10122 /* 10123 * This function implements the actual L2ARC metadata rebuild. It: 10124 * starts reading the log block chain and restores each block's contents 10125 * to memory (reconstructing arc_buf_hdr_t's). 10126 * 10127 * Operation stops under any of the following conditions: 10128 * 10129 * 1) We reach the end of the log block chain. 10130 * 2) We encounter *any* error condition (cksum errors, io errors) 10131 */ 10132 static int 10133 l2arc_rebuild(l2arc_dev_t *dev) 10134 { 10135 vdev_t *vd = dev->l2ad_vdev; 10136 spa_t *spa = vd->vdev_spa; 10137 int err = 0; 10138 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10139 l2arc_log_blk_phys_t *this_lb, *next_lb; 10140 zio_t *this_io = NULL, *next_io = NULL; 10141 l2arc_log_blkptr_t lbps[2]; 10142 l2arc_lb_ptr_buf_t *lb_ptr_buf; 10143 boolean_t lock_held; 10144 10145 this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP); 10146 next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP); 10147 10148 /* 10149 * We prevent device removal while issuing reads to the device, 10150 * then during the rebuilding phases we drop this lock again so 10151 * that a spa_unload or device remove can be initiated - this is 10152 * safe, because the spa will signal us to stop before removing 10153 * our device and wait for us to stop. 10154 */ 10155 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER); 10156 lock_held = B_TRUE; 10157 10158 /* 10159 * Retrieve the persistent L2ARC device state. 10160 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10161 */ 10162 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start); 10163 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr + 10164 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop), 10165 dev->l2ad_start); 10166 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 10167 10168 vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time; 10169 vd->vdev_trim_state = l2dhdr->dh_trim_state; 10170 10171 /* 10172 * In case the zfs module parameter l2arc_rebuild_enabled is false 10173 * we do not start the rebuild process. 10174 */ 10175 if (!l2arc_rebuild_enabled) 10176 goto out; 10177 10178 /* Prepare the rebuild process */ 10179 bcopy(l2dhdr->dh_start_lbps, lbps, sizeof (lbps)); 10180 10181 /* Start the rebuild process */ 10182 for (;;) { 10183 if (!l2arc_log_blkptr_valid(dev, &lbps[0])) 10184 break; 10185 10186 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1], 10187 this_lb, next_lb, this_io, &next_io)) != 0) 10188 goto out; 10189 10190 /* 10191 * Our memory pressure valve. If the system is running low 10192 * on memory, rather than swamping memory with new ARC buf 10193 * hdrs, we opt not to rebuild the L2ARC. At this point, 10194 * however, we have already set up our L2ARC dev to chain in 10195 * new metadata log blocks, so the user may choose to offline/ 10196 * online the L2ARC dev at a later time (or re-import the pool) 10197 * to reconstruct it (when there's less memory pressure). 10198 */ 10199 if (l2arc_hdr_limit_reached()) { 10200 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem); 10201 cmn_err(CE_NOTE, "System running low on memory, " 10202 "aborting L2ARC rebuild."); 10203 err = SET_ERROR(ENOMEM); 10204 goto out; 10205 } 10206 10207 spa_config_exit(spa, SCL_L2ARC, vd); 10208 lock_held = B_FALSE; 10209 10210 /* 10211 * Now that we know that the next_lb checks out alright, we 10212 * can start reconstruction from this log block. 10213 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10214 */ 10215 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 10216 l2arc_log_blk_restore(dev, this_lb, asize); 10217 10218 /* 10219 * log block restored, include its pointer in the list of 10220 * pointers to log blocks present in the L2ARC device. 10221 */ 10222 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 10223 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), 10224 KM_SLEEP); 10225 bcopy(&lbps[0], lb_ptr_buf->lb_ptr, 10226 sizeof (l2arc_log_blkptr_t)); 10227 mutex_enter(&dev->l2ad_mtx); 10228 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf); 10229 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 10230 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 10231 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 10232 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 10233 mutex_exit(&dev->l2ad_mtx); 10234 vdev_space_update(vd, asize, 0, 0); 10235 10236 /* 10237 * Protection against loops of log blocks: 10238 * 10239 * l2ad_hand l2ad_evict 10240 * V V 10241 * l2ad_start |=======================================| l2ad_end 10242 * -----|||----|||---|||----||| 10243 * (3) (2) (1) (0) 10244 * ---|||---|||----|||---||| 10245 * (7) (6) (5) (4) 10246 * 10247 * In this situation the pointer of log block (4) passes 10248 * l2arc_log_blkptr_valid() but the log block should not be 10249 * restored as it is overwritten by the payload of log block 10250 * (0). Only log blocks (0)-(3) should be restored. We check 10251 * whether l2ad_evict lies in between the payload starting 10252 * offset of the next log block (lbps[1].lbp_payload_start) 10253 * and the payload starting offset of the present log block 10254 * (lbps[0].lbp_payload_start). If true and this isn't the 10255 * first pass, we are looping from the beginning and we should 10256 * stop. 10257 */ 10258 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 10259 lbps[0].lbp_payload_start, dev->l2ad_evict) && 10260 !dev->l2ad_first) 10261 goto out; 10262 10263 cond_resched(); 10264 for (;;) { 10265 mutex_enter(&l2arc_rebuild_thr_lock); 10266 if (dev->l2ad_rebuild_cancel) { 10267 dev->l2ad_rebuild = B_FALSE; 10268 cv_signal(&l2arc_rebuild_thr_cv); 10269 mutex_exit(&l2arc_rebuild_thr_lock); 10270 err = SET_ERROR(ECANCELED); 10271 goto out; 10272 } 10273 mutex_exit(&l2arc_rebuild_thr_lock); 10274 if (spa_config_tryenter(spa, SCL_L2ARC, vd, 10275 RW_READER)) { 10276 lock_held = B_TRUE; 10277 break; 10278 } 10279 /* 10280 * L2ARC config lock held by somebody in writer, 10281 * possibly due to them trying to remove us. They'll 10282 * likely to want us to shut down, so after a little 10283 * delay, we check l2ad_rebuild_cancel and retry 10284 * the lock again. 10285 */ 10286 delay(1); 10287 } 10288 10289 /* 10290 * Continue with the next log block. 10291 */ 10292 lbps[0] = lbps[1]; 10293 lbps[1] = this_lb->lb_prev_lbp; 10294 PTR_SWAP(this_lb, next_lb); 10295 this_io = next_io; 10296 next_io = NULL; 10297 } 10298 10299 if (this_io != NULL) 10300 l2arc_log_blk_fetch_abort(this_io); 10301 out: 10302 if (next_io != NULL) 10303 l2arc_log_blk_fetch_abort(next_io); 10304 vmem_free(this_lb, sizeof (*this_lb)); 10305 vmem_free(next_lb, sizeof (*next_lb)); 10306 10307 if (!l2arc_rebuild_enabled) { 10308 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10309 "disabled"); 10310 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) { 10311 ARCSTAT_BUMP(arcstat_l2_rebuild_success); 10312 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10313 "successful, restored %llu blocks", 10314 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10315 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) { 10316 /* 10317 * No error but also nothing restored, meaning the lbps array 10318 * in the device header points to invalid/non-present log 10319 * blocks. Reset the header. 10320 */ 10321 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10322 "no valid log blocks"); 10323 bzero(l2dhdr, dev->l2ad_dev_hdr_asize); 10324 l2arc_dev_hdr_update(dev); 10325 } else if (err == ECANCELED) { 10326 /* 10327 * In case the rebuild was canceled do not log to spa history 10328 * log as the pool may be in the process of being removed. 10329 */ 10330 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks", 10331 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10332 } else if (err != 0) { 10333 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10334 "aborted, restored %llu blocks", 10335 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10336 } 10337 10338 if (lock_held) 10339 spa_config_exit(spa, SCL_L2ARC, vd); 10340 10341 return (err); 10342 } 10343 10344 /* 10345 * Attempts to read the device header on the provided L2ARC device and writes 10346 * it to `hdr'. On success, this function returns 0, otherwise the appropriate 10347 * error code is returned. 10348 */ 10349 static int 10350 l2arc_dev_hdr_read(l2arc_dev_t *dev) 10351 { 10352 int err; 10353 uint64_t guid; 10354 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10355 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10356 abd_t *abd; 10357 10358 guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10359 10360 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10361 10362 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev, 10363 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, 10364 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 10365 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 10366 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 10367 ZIO_FLAG_SPECULATIVE, B_FALSE)); 10368 10369 abd_free(abd); 10370 10371 if (err != 0) { 10372 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors); 10373 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, " 10374 "vdev guid: %llu", err, 10375 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10376 return (err); 10377 } 10378 10379 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 10380 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr)); 10381 10382 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC || 10383 l2dhdr->dh_spa_guid != guid || 10384 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid || 10385 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION || 10386 l2dhdr->dh_log_entries != dev->l2ad_log_entries || 10387 l2dhdr->dh_end != dev->l2ad_end || 10388 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end, 10389 l2dhdr->dh_evict) || 10390 (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE && 10391 l2arc_trim_ahead > 0)) { 10392 /* 10393 * Attempt to rebuild a device containing no actual dev hdr 10394 * or containing a header from some other pool or from another 10395 * version of persistent L2ARC. 10396 */ 10397 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported); 10398 return (SET_ERROR(ENOTSUP)); 10399 } 10400 10401 return (0); 10402 } 10403 10404 /* 10405 * Reads L2ARC log blocks from storage and validates their contents. 10406 * 10407 * This function implements a simple fetcher to make sure that while 10408 * we're processing one buffer the L2ARC is already fetching the next 10409 * one in the chain. 10410 * 10411 * The arguments this_lp and next_lp point to the current and next log block 10412 * address in the block chain. Similarly, this_lb and next_lb hold the 10413 * l2arc_log_blk_phys_t's of the current and next L2ARC blk. 10414 * 10415 * The `this_io' and `next_io' arguments are used for block fetching. 10416 * When issuing the first blk IO during rebuild, you should pass NULL for 10417 * `this_io'. This function will then issue a sync IO to read the block and 10418 * also issue an async IO to fetch the next block in the block chain. The 10419 * fetched IO is returned in `next_io'. On subsequent calls to this 10420 * function, pass the value returned in `next_io' from the previous call 10421 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO. 10422 * Prior to the call, you should initialize your `next_io' pointer to be 10423 * NULL. If no fetch IO was issued, the pointer is left set at NULL. 10424 * 10425 * On success, this function returns 0, otherwise it returns an appropriate 10426 * error code. On error the fetching IO is aborted and cleared before 10427 * returning from this function. Therefore, if we return `success', the 10428 * caller can assume that we have taken care of cleanup of fetch IOs. 10429 */ 10430 static int 10431 l2arc_log_blk_read(l2arc_dev_t *dev, 10432 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp, 10433 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 10434 zio_t *this_io, zio_t **next_io) 10435 { 10436 int err = 0; 10437 zio_cksum_t cksum; 10438 abd_t *abd = NULL; 10439 uint64_t asize; 10440 10441 ASSERT(this_lbp != NULL && next_lbp != NULL); 10442 ASSERT(this_lb != NULL && next_lb != NULL); 10443 ASSERT(next_io != NULL && *next_io == NULL); 10444 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp)); 10445 10446 /* 10447 * Check to see if we have issued the IO for this log block in a 10448 * previous run. If not, this is the first call, so issue it now. 10449 */ 10450 if (this_io == NULL) { 10451 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp, 10452 this_lb); 10453 } 10454 10455 /* 10456 * Peek to see if we can start issuing the next IO immediately. 10457 */ 10458 if (l2arc_log_blkptr_valid(dev, next_lbp)) { 10459 /* 10460 * Start issuing IO for the next log block early - this 10461 * should help keep the L2ARC device busy while we 10462 * decompress and restore this log block. 10463 */ 10464 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp, 10465 next_lb); 10466 } 10467 10468 /* Wait for the IO to read this log block to complete */ 10469 if ((err = zio_wait(this_io)) != 0) { 10470 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors); 10471 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, " 10472 "offset: %llu, vdev guid: %llu", err, 10473 (u_longlong_t)this_lbp->lbp_daddr, 10474 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10475 goto cleanup; 10476 } 10477 10478 /* 10479 * Make sure the buffer checks out. 10480 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10481 */ 10482 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop); 10483 fletcher_4_native(this_lb, asize, NULL, &cksum); 10484 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) { 10485 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors); 10486 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, " 10487 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu", 10488 (u_longlong_t)this_lbp->lbp_daddr, 10489 (u_longlong_t)dev->l2ad_vdev->vdev_guid, 10490 (u_longlong_t)dev->l2ad_hand, 10491 (u_longlong_t)dev->l2ad_evict); 10492 err = SET_ERROR(ECKSUM); 10493 goto cleanup; 10494 } 10495 10496 /* Now we can take our time decoding this buffer */ 10497 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) { 10498 case ZIO_COMPRESS_OFF: 10499 break; 10500 case ZIO_COMPRESS_LZ4: 10501 abd = abd_alloc_for_io(asize, B_TRUE); 10502 abd_copy_from_buf_off(abd, this_lb, 0, asize); 10503 if ((err = zio_decompress_data( 10504 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop), 10505 abd, this_lb, asize, sizeof (*this_lb), NULL)) != 0) { 10506 err = SET_ERROR(EINVAL); 10507 goto cleanup; 10508 } 10509 break; 10510 default: 10511 err = SET_ERROR(EINVAL); 10512 goto cleanup; 10513 } 10514 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 10515 byteswap_uint64_array(this_lb, sizeof (*this_lb)); 10516 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) { 10517 err = SET_ERROR(EINVAL); 10518 goto cleanup; 10519 } 10520 cleanup: 10521 /* Abort an in-flight fetch I/O in case of error */ 10522 if (err != 0 && *next_io != NULL) { 10523 l2arc_log_blk_fetch_abort(*next_io); 10524 *next_io = NULL; 10525 } 10526 if (abd != NULL) 10527 abd_free(abd); 10528 return (err); 10529 } 10530 10531 /* 10532 * Restores the payload of a log block to ARC. This creates empty ARC hdr 10533 * entries which only contain an l2arc hdr, essentially restoring the 10534 * buffers to their L2ARC evicted state. This function also updates space 10535 * usage on the L2ARC vdev to make sure it tracks restored buffers. 10536 */ 10537 static void 10538 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb, 10539 uint64_t lb_asize) 10540 { 10541 uint64_t size = 0, asize = 0; 10542 uint64_t log_entries = dev->l2ad_log_entries; 10543 10544 /* 10545 * Usually arc_adapt() is called only for data, not headers, but 10546 * since we may allocate significant amount of memory here, let ARC 10547 * grow its arc_c. 10548 */ 10549 arc_adapt(log_entries * HDR_L2ONLY_SIZE, arc_l2c_only); 10550 10551 for (int i = log_entries - 1; i >= 0; i--) { 10552 /* 10553 * Restore goes in the reverse temporal direction to preserve 10554 * correct temporal ordering of buffers in the l2ad_buflist. 10555 * l2arc_hdr_restore also does a list_insert_tail instead of 10556 * list_insert_head on the l2ad_buflist: 10557 * 10558 * LIST l2ad_buflist LIST 10559 * HEAD <------ (time) ------ TAIL 10560 * direction +-----+-----+-----+-----+-----+ direction 10561 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild 10562 * fill +-----+-----+-----+-----+-----+ 10563 * ^ ^ 10564 * | | 10565 * | | 10566 * l2arc_feed_thread l2arc_rebuild 10567 * will place new bufs here restores bufs here 10568 * 10569 * During l2arc_rebuild() the device is not used by 10570 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true. 10571 */ 10572 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop); 10573 asize += vdev_psize_to_asize(dev->l2ad_vdev, 10574 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop)); 10575 l2arc_hdr_restore(&lb->lb_entries[i], dev); 10576 } 10577 10578 /* 10579 * Record rebuild stats: 10580 * size Logical size of restored buffers in the L2ARC 10581 * asize Aligned size of restored buffers in the L2ARC 10582 */ 10583 ARCSTAT_INCR(arcstat_l2_rebuild_size, size); 10584 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize); 10585 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries); 10586 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize); 10587 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize); 10588 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks); 10589 } 10590 10591 /* 10592 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put 10593 * into a state indicating that it has been evicted to L2ARC. 10594 */ 10595 static void 10596 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev) 10597 { 10598 arc_buf_hdr_t *hdr, *exists; 10599 kmutex_t *hash_lock; 10600 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop); 10601 uint64_t asize; 10602 10603 /* 10604 * Do all the allocation before grabbing any locks, this lets us 10605 * sleep if memory is full and we don't have to deal with failed 10606 * allocations. 10607 */ 10608 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type, 10609 dev, le->le_dva, le->le_daddr, 10610 L2BLK_GET_PSIZE((le)->le_prop), le->le_birth, 10611 L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel, 10612 L2BLK_GET_PROTECTED((le)->le_prop), 10613 L2BLK_GET_PREFETCH((le)->le_prop), 10614 L2BLK_GET_STATE((le)->le_prop)); 10615 asize = vdev_psize_to_asize(dev->l2ad_vdev, 10616 L2BLK_GET_PSIZE((le)->le_prop)); 10617 10618 /* 10619 * vdev_space_update() has to be called before arc_hdr_destroy() to 10620 * avoid underflow since the latter also calls vdev_space_update(). 10621 */ 10622 l2arc_hdr_arcstats_increment(hdr); 10623 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10624 10625 mutex_enter(&dev->l2ad_mtx); 10626 list_insert_tail(&dev->l2ad_buflist, hdr); 10627 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); 10628 mutex_exit(&dev->l2ad_mtx); 10629 10630 exists = buf_hash_insert(hdr, &hash_lock); 10631 if (exists) { 10632 /* Buffer was already cached, no need to restore it. */ 10633 arc_hdr_destroy(hdr); 10634 /* 10635 * If the buffer is already cached, check whether it has 10636 * L2ARC metadata. If not, enter them and update the flag. 10637 * This is important is case of onlining a cache device, since 10638 * we previously evicted all L2ARC metadata from ARC. 10639 */ 10640 if (!HDR_HAS_L2HDR(exists)) { 10641 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR); 10642 exists->b_l2hdr.b_dev = dev; 10643 exists->b_l2hdr.b_daddr = le->le_daddr; 10644 exists->b_l2hdr.b_arcs_state = 10645 L2BLK_GET_STATE((le)->le_prop); 10646 mutex_enter(&dev->l2ad_mtx); 10647 list_insert_tail(&dev->l2ad_buflist, exists); 10648 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 10649 arc_hdr_size(exists), exists); 10650 mutex_exit(&dev->l2ad_mtx); 10651 l2arc_hdr_arcstats_increment(exists); 10652 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10653 } 10654 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached); 10655 } 10656 10657 mutex_exit(hash_lock); 10658 } 10659 10660 /* 10661 * Starts an asynchronous read IO to read a log block. This is used in log 10662 * block reconstruction to start reading the next block before we are done 10663 * decoding and reconstructing the current block, to keep the l2arc device 10664 * nice and hot with read IO to process. 10665 * The returned zio will contain a newly allocated memory buffers for the IO 10666 * data which should then be freed by the caller once the zio is no longer 10667 * needed (i.e. due to it having completed). If you wish to abort this 10668 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes 10669 * care of disposing of the allocated buffers correctly. 10670 */ 10671 static zio_t * 10672 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp, 10673 l2arc_log_blk_phys_t *lb) 10674 { 10675 uint32_t asize; 10676 zio_t *pio; 10677 l2arc_read_callback_t *cb; 10678 10679 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10680 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10681 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t)); 10682 10683 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP); 10684 cb->l2rcb_abd = abd_get_from_buf(lb, asize); 10685 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb, 10686 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | 10687 ZIO_FLAG_DONT_RETRY); 10688 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize, 10689 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10690 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 10691 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE)); 10692 10693 return (pio); 10694 } 10695 10696 /* 10697 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data 10698 * buffers allocated for it. 10699 */ 10700 static void 10701 l2arc_log_blk_fetch_abort(zio_t *zio) 10702 { 10703 (void) zio_wait(zio); 10704 } 10705 10706 /* 10707 * Creates a zio to update the device header on an l2arc device. 10708 */ 10709 void 10710 l2arc_dev_hdr_update(l2arc_dev_t *dev) 10711 { 10712 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10713 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10714 abd_t *abd; 10715 int err; 10716 10717 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER)); 10718 10719 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC; 10720 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION; 10721 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10722 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid; 10723 l2dhdr->dh_log_entries = dev->l2ad_log_entries; 10724 l2dhdr->dh_evict = dev->l2ad_evict; 10725 l2dhdr->dh_start = dev->l2ad_start; 10726 l2dhdr->dh_end = dev->l2ad_end; 10727 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize); 10728 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count); 10729 l2dhdr->dh_flags = 0; 10730 l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time; 10731 l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state; 10732 if (dev->l2ad_first) 10733 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST; 10734 10735 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10736 10737 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev, 10738 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL, 10739 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE)); 10740 10741 abd_free(abd); 10742 10743 if (err != 0) { 10744 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, " 10745 "vdev guid: %llu", err, 10746 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10747 } 10748 } 10749 10750 /* 10751 * Commits a log block to the L2ARC device. This routine is invoked from 10752 * l2arc_write_buffers when the log block fills up. 10753 * This function allocates some memory to temporarily hold the serialized 10754 * buffer to be written. This is then released in l2arc_write_done. 10755 */ 10756 static void 10757 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb) 10758 { 10759 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10760 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10761 uint64_t psize, asize; 10762 zio_t *wzio; 10763 l2arc_lb_abd_buf_t *abd_buf; 10764 uint8_t *tmpbuf; 10765 l2arc_lb_ptr_buf_t *lb_ptr_buf; 10766 10767 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries); 10768 10769 tmpbuf = zio_buf_alloc(sizeof (*lb)); 10770 abd_buf = zio_buf_alloc(sizeof (*abd_buf)); 10771 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb)); 10772 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 10773 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP); 10774 10775 /* link the buffer into the block chain */ 10776 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1]; 10777 lb->lb_magic = L2ARC_LOG_BLK_MAGIC; 10778 10779 /* 10780 * l2arc_log_blk_commit() may be called multiple times during a single 10781 * l2arc_write_buffers() call. Save the allocated abd buffers in a list 10782 * so we can free them in l2arc_write_done() later on. 10783 */ 10784 list_insert_tail(&cb->l2wcb_abd_list, abd_buf); 10785 10786 /* try to compress the buffer */ 10787 psize = zio_compress_data(ZIO_COMPRESS_LZ4, 10788 abd_buf->abd, tmpbuf, sizeof (*lb), 0); 10789 10790 /* a log block is never entirely zero */ 10791 ASSERT(psize != 0); 10792 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 10793 ASSERT(asize <= sizeof (*lb)); 10794 10795 /* 10796 * Update the start log block pointer in the device header to point 10797 * to the log block we're about to write. 10798 */ 10799 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0]; 10800 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand; 10801 l2dhdr->dh_start_lbps[0].lbp_payload_asize = 10802 dev->l2ad_log_blk_payload_asize; 10803 l2dhdr->dh_start_lbps[0].lbp_payload_start = 10804 dev->l2ad_log_blk_payload_start; 10805 L2BLK_SET_LSIZE( 10806 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb)); 10807 L2BLK_SET_PSIZE( 10808 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize); 10809 L2BLK_SET_CHECKSUM( 10810 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10811 ZIO_CHECKSUM_FLETCHER_4); 10812 if (asize < sizeof (*lb)) { 10813 /* compression succeeded */ 10814 bzero(tmpbuf + psize, asize - psize); 10815 L2BLK_SET_COMPRESS( 10816 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10817 ZIO_COMPRESS_LZ4); 10818 } else { 10819 /* compression failed */ 10820 bcopy(lb, tmpbuf, sizeof (*lb)); 10821 L2BLK_SET_COMPRESS( 10822 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10823 ZIO_COMPRESS_OFF); 10824 } 10825 10826 /* checksum what we're about to write */ 10827 fletcher_4_native(tmpbuf, asize, NULL, 10828 &l2dhdr->dh_start_lbps[0].lbp_cksum); 10829 10830 abd_free(abd_buf->abd); 10831 10832 /* perform the write itself */ 10833 abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb)); 10834 abd_take_ownership_of_buf(abd_buf->abd, B_TRUE); 10835 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand, 10836 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10837 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE); 10838 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio); 10839 (void) zio_nowait(wzio); 10840 10841 dev->l2ad_hand += asize; 10842 /* 10843 * Include the committed log block's pointer in the list of pointers 10844 * to log blocks present in the L2ARC device. 10845 */ 10846 bcopy(&l2dhdr->dh_start_lbps[0], lb_ptr_buf->lb_ptr, 10847 sizeof (l2arc_log_blkptr_t)); 10848 mutex_enter(&dev->l2ad_mtx); 10849 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf); 10850 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 10851 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 10852 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 10853 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 10854 mutex_exit(&dev->l2ad_mtx); 10855 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10856 10857 /* bump the kstats */ 10858 ARCSTAT_INCR(arcstat_l2_write_bytes, asize); 10859 ARCSTAT_BUMP(arcstat_l2_log_blk_writes); 10860 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize); 10861 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, 10862 dev->l2ad_log_blk_payload_asize / asize); 10863 10864 /* start a new log block */ 10865 dev->l2ad_log_ent_idx = 0; 10866 dev->l2ad_log_blk_payload_asize = 0; 10867 dev->l2ad_log_blk_payload_start = 0; 10868 } 10869 10870 /* 10871 * Validates an L2ARC log block address to make sure that it can be read 10872 * from the provided L2ARC device. 10873 */ 10874 boolean_t 10875 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp) 10876 { 10877 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10878 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10879 uint64_t end = lbp->lbp_daddr + asize - 1; 10880 uint64_t start = lbp->lbp_payload_start; 10881 boolean_t evicted = B_FALSE; 10882 10883 /* 10884 * A log block is valid if all of the following conditions are true: 10885 * - it fits entirely (including its payload) between l2ad_start and 10886 * l2ad_end 10887 * - it has a valid size 10888 * - neither the log block itself nor part of its payload was evicted 10889 * by l2arc_evict(): 10890 * 10891 * l2ad_hand l2ad_evict 10892 * | | lbp_daddr 10893 * | start | | end 10894 * | | | | | 10895 * V V V V V 10896 * l2ad_start ============================================ l2ad_end 10897 * --------------------------|||| 10898 * ^ ^ 10899 * | log block 10900 * payload 10901 */ 10902 10903 evicted = 10904 l2arc_range_check_overlap(start, end, dev->l2ad_hand) || 10905 l2arc_range_check_overlap(start, end, dev->l2ad_evict) || 10906 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) || 10907 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end); 10908 10909 return (start >= dev->l2ad_start && end <= dev->l2ad_end && 10910 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) && 10911 (!evicted || dev->l2ad_first)); 10912 } 10913 10914 /* 10915 * Inserts ARC buffer header `hdr' into the current L2ARC log block on 10916 * the device. The buffer being inserted must be present in L2ARC. 10917 * Returns B_TRUE if the L2ARC log block is full and needs to be committed 10918 * to L2ARC, or B_FALSE if it still has room for more ARC buffers. 10919 */ 10920 static boolean_t 10921 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr) 10922 { 10923 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10924 l2arc_log_ent_phys_t *le; 10925 10926 if (dev->l2ad_log_entries == 0) 10927 return (B_FALSE); 10928 10929 int index = dev->l2ad_log_ent_idx++; 10930 10931 ASSERT3S(index, <, dev->l2ad_log_entries); 10932 ASSERT(HDR_HAS_L2HDR(hdr)); 10933 10934 le = &lb->lb_entries[index]; 10935 bzero(le, sizeof (*le)); 10936 le->le_dva = hdr->b_dva; 10937 le->le_birth = hdr->b_birth; 10938 le->le_daddr = hdr->b_l2hdr.b_daddr; 10939 if (index == 0) 10940 dev->l2ad_log_blk_payload_start = le->le_daddr; 10941 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr)); 10942 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr)); 10943 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr)); 10944 le->le_complevel = hdr->b_complevel; 10945 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type); 10946 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr))); 10947 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr))); 10948 L2BLK_SET_STATE((le)->le_prop, hdr->b_l1hdr.b_state->arcs_state); 10949 10950 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev, 10951 HDR_GET_PSIZE(hdr)); 10952 10953 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries); 10954 } 10955 10956 /* 10957 * Checks whether a given L2ARC device address sits in a time-sequential 10958 * range. The trick here is that the L2ARC is a rotary buffer, so we can't 10959 * just do a range comparison, we need to handle the situation in which the 10960 * range wraps around the end of the L2ARC device. Arguments: 10961 * bottom -- Lower end of the range to check (written to earlier). 10962 * top -- Upper end of the range to check (written to later). 10963 * check -- The address for which we want to determine if it sits in 10964 * between the top and bottom. 10965 * 10966 * The 3-way conditional below represents the following cases: 10967 * 10968 * bottom < top : Sequentially ordered case: 10969 * <check>--------+-------------------+ 10970 * | (overlap here?) | 10971 * L2ARC dev V V 10972 * |---------------<bottom>============<top>--------------| 10973 * 10974 * bottom > top: Looped-around case: 10975 * <check>--------+------------------+ 10976 * | (overlap here?) | 10977 * L2ARC dev V V 10978 * |===============<top>---------------<bottom>===========| 10979 * ^ ^ 10980 * | (or here?) | 10981 * +---------------+---------<check> 10982 * 10983 * top == bottom : Just a single address comparison. 10984 */ 10985 boolean_t 10986 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check) 10987 { 10988 if (bottom < top) 10989 return (bottom <= check && check <= top); 10990 else if (bottom > top) 10991 return (check <= top || bottom <= check); 10992 else 10993 return (check == top); 10994 } 10995 10996 EXPORT_SYMBOL(arc_buf_size); 10997 EXPORT_SYMBOL(arc_write); 10998 EXPORT_SYMBOL(arc_read); 10999 EXPORT_SYMBOL(arc_buf_info); 11000 EXPORT_SYMBOL(arc_getbuf_func); 11001 EXPORT_SYMBOL(arc_add_prune_callback); 11002 EXPORT_SYMBOL(arc_remove_prune_callback); 11003 11004 /* BEGIN CSTYLED */ 11005 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_min, 11006 param_get_long, ZMOD_RW, "Min arc size"); 11007 11008 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_max, 11009 param_get_long, ZMOD_RW, "Max arc size"); 11010 11011 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit, param_set_arc_long, 11012 param_get_long, ZMOD_RW, "Metadata limit for arc size"); 11013 11014 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit_percent, 11015 param_set_arc_long, param_get_long, ZMOD_RW, 11016 "Percent of arc size for arc meta limit"); 11017 11018 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_min, param_set_arc_long, 11019 param_get_long, ZMOD_RW, "Min arc metadata"); 11020 11021 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_prune, INT, ZMOD_RW, 11022 "Meta objects to scan for prune"); 11023 11024 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_adjust_restarts, INT, ZMOD_RW, 11025 "Limit number of restarts in arc_evict_meta"); 11026 11027 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_strategy, INT, ZMOD_RW, 11028 "Meta reclaim strategy"); 11029 11030 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int, 11031 param_get_int, ZMOD_RW, "Seconds before growing arc size"); 11032 11033 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, p_dampener_disable, INT, ZMOD_RW, 11034 "Disable arc_p adapt dampener"); 11035 11036 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int, 11037 param_get_int, ZMOD_RW, "log2(fraction of arc to reclaim)"); 11038 11039 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW, 11040 "Percent of pagecache to reclaim arc to"); 11041 11042 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, p_min_shift, param_set_arc_int, 11043 param_get_int, ZMOD_RW, "arc_c shift to calc min/max arc_p"); 11044 11045 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, INT, ZMOD_RD, 11046 "Target average block size"); 11047 11048 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW, 11049 "Disable compressed arc buffers"); 11050 11051 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int, 11052 param_get_int, ZMOD_RW, "Min life of prefetch block in ms"); 11053 11054 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms, 11055 param_set_arc_int, param_get_int, ZMOD_RW, 11056 "Min life of prescient prefetched block in ms"); 11057 11058 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, ULONG, ZMOD_RW, 11059 "Max write bytes per interval"); 11060 11061 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, ULONG, ZMOD_RW, 11062 "Extra write bytes during device warmup"); 11063 11064 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, ULONG, ZMOD_RW, 11065 "Number of max device writes to precache"); 11066 11067 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, ULONG, ZMOD_RW, 11068 "Compressed l2arc_headroom multiplier"); 11069 11070 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, ULONG, ZMOD_RW, 11071 "TRIM ahead L2ARC write size multiplier"); 11072 11073 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, ULONG, ZMOD_RW, 11074 "Seconds between L2ARC writing"); 11075 11076 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, ULONG, ZMOD_RW, 11077 "Min feed interval in milliseconds"); 11078 11079 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW, 11080 "Skip caching prefetched buffers"); 11081 11082 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW, 11083 "Turbo L2ARC warmup"); 11084 11085 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW, 11086 "No reads during writes"); 11087 11088 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, INT, ZMOD_RW, 11089 "Percent of ARC size allowed for L2ARC-only headers"); 11090 11091 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW, 11092 "Rebuild the L2ARC when importing a pool"); 11093 11094 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, ULONG, ZMOD_RW, 11095 "Min size in bytes to write rebuild log blocks in L2ARC"); 11096 11097 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW, 11098 "Cache only MFU data from ARC into L2ARC"); 11099 11100 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int, 11101 param_get_int, ZMOD_RW, "System free memory I/O throttle in bytes"); 11102 11103 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_long, 11104 param_get_long, ZMOD_RW, "System free memory target size in bytes"); 11105 11106 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_long, 11107 param_get_long, ZMOD_RW, "Minimum bytes of dnodes in arc"); 11108 11109 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent, 11110 param_set_arc_long, param_get_long, ZMOD_RW, 11111 "Percent of ARC meta buffers for dnodes"); 11112 11113 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, ULONG, ZMOD_RW, 11114 "Percentage of excess dnodes to try to unpin"); 11115 11116 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, INT, ZMOD_RW, 11117 "When full, ARC allocation waits for eviction of this % of alloc size"); 11118 11119 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, INT, ZMOD_RW, 11120 "The number of headers to evict per sublist before moving to the next"); 11121 /* END CSTYLED */ 11122