1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2018, Joyent, Inc. 24 * Copyright (c) 2011, 2020, Delphix. All rights reserved. 25 * Copyright (c) 2014, Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 28 * Copyright (c) 2020, George Amanakis. All rights reserved. 29 * Copyright (c) 2019, Klara Inc. 30 * Copyright (c) 2019, Allan Jude 31 * Copyright (c) 2020, The FreeBSD Foundation [1] 32 * 33 * [1] Portions of this software were developed by Allan Jude 34 * under sponsorship from the FreeBSD Foundation. 35 */ 36 37 /* 38 * DVA-based Adjustable Replacement Cache 39 * 40 * While much of the theory of operation used here is 41 * based on the self-tuning, low overhead replacement cache 42 * presented by Megiddo and Modha at FAST 2003, there are some 43 * significant differences: 44 * 45 * 1. The Megiddo and Modha model assumes any page is evictable. 46 * Pages in its cache cannot be "locked" into memory. This makes 47 * the eviction algorithm simple: evict the last page in the list. 48 * This also make the performance characteristics easy to reason 49 * about. Our cache is not so simple. At any given moment, some 50 * subset of the blocks in the cache are un-evictable because we 51 * have handed out a reference to them. Blocks are only evictable 52 * when there are no external references active. This makes 53 * eviction far more problematic: we choose to evict the evictable 54 * blocks that are the "lowest" in the list. 55 * 56 * There are times when it is not possible to evict the requested 57 * space. In these circumstances we are unable to adjust the cache 58 * size. To prevent the cache growing unbounded at these times we 59 * implement a "cache throttle" that slows the flow of new data 60 * into the cache until we can make space available. 61 * 62 * 2. The Megiddo and Modha model assumes a fixed cache size. 63 * Pages are evicted when the cache is full and there is a cache 64 * miss. Our model has a variable sized cache. It grows with 65 * high use, but also tries to react to memory pressure from the 66 * operating system: decreasing its size when system memory is 67 * tight. 68 * 69 * 3. The Megiddo and Modha model assumes a fixed page size. All 70 * elements of the cache are therefore exactly the same size. So 71 * when adjusting the cache size following a cache miss, its simply 72 * a matter of choosing a single page to evict. In our model, we 73 * have variable sized cache blocks (ranging from 512 bytes to 74 * 128K bytes). We therefore choose a set of blocks to evict to make 75 * space for a cache miss that approximates as closely as possible 76 * the space used by the new block. 77 * 78 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 79 * by N. Megiddo & D. Modha, FAST 2003 80 */ 81 82 /* 83 * The locking model: 84 * 85 * A new reference to a cache buffer can be obtained in two 86 * ways: 1) via a hash table lookup using the DVA as a key, 87 * or 2) via one of the ARC lists. The arc_read() interface 88 * uses method 1, while the internal ARC algorithms for 89 * adjusting the cache use method 2. We therefore provide two 90 * types of locks: 1) the hash table lock array, and 2) the 91 * ARC list locks. 92 * 93 * Buffers do not have their own mutexes, rather they rely on the 94 * hash table mutexes for the bulk of their protection (i.e. most 95 * fields in the arc_buf_hdr_t are protected by these mutexes). 96 * 97 * buf_hash_find() returns the appropriate mutex (held) when it 98 * locates the requested buffer in the hash table. It returns 99 * NULL for the mutex if the buffer was not in the table. 100 * 101 * buf_hash_remove() expects the appropriate hash mutex to be 102 * already held before it is invoked. 103 * 104 * Each ARC state also has a mutex which is used to protect the 105 * buffer list associated with the state. When attempting to 106 * obtain a hash table lock while holding an ARC list lock you 107 * must use: mutex_tryenter() to avoid deadlock. Also note that 108 * the active state mutex must be held before the ghost state mutex. 109 * 110 * It as also possible to register a callback which is run when the 111 * arc_meta_limit is reached and no buffers can be safely evicted. In 112 * this case the arc user should drop a reference on some arc buffers so 113 * they can be reclaimed and the arc_meta_limit honored. For example, 114 * when using the ZPL each dentry holds a references on a znode. These 115 * dentries must be pruned before the arc buffer holding the znode can 116 * be safely evicted. 117 * 118 * Note that the majority of the performance stats are manipulated 119 * with atomic operations. 120 * 121 * The L2ARC uses the l2ad_mtx on each vdev for the following: 122 * 123 * - L2ARC buflist creation 124 * - L2ARC buflist eviction 125 * - L2ARC write completion, which walks L2ARC buflists 126 * - ARC header destruction, as it removes from L2ARC buflists 127 * - ARC header release, as it removes from L2ARC buflists 128 */ 129 130 /* 131 * ARC operation: 132 * 133 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. 134 * This structure can point either to a block that is still in the cache or to 135 * one that is only accessible in an L2 ARC device, or it can provide 136 * information about a block that was recently evicted. If a block is 137 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough 138 * information to retrieve it from the L2ARC device. This information is 139 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block 140 * that is in this state cannot access the data directly. 141 * 142 * Blocks that are actively being referenced or have not been evicted 143 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within 144 * the arc_buf_hdr_t that will point to the data block in memory. A block can 145 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC 146 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and 147 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd). 148 * 149 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the 150 * ability to store the physical data (b_pabd) associated with the DVA of the 151 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block, 152 * it will match its on-disk compression characteristics. This behavior can be 153 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the 154 * compressed ARC functionality is disabled, the b_pabd will point to an 155 * uncompressed version of the on-disk data. 156 * 157 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each 158 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it. 159 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC 160 * consumer. The ARC will provide references to this data and will keep it 161 * cached until it is no longer in use. The ARC caches only the L1ARC's physical 162 * data block and will evict any arc_buf_t that is no longer referenced. The 163 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the 164 * "overhead_size" kstat. 165 * 166 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or 167 * compressed form. The typical case is that consumers will want uncompressed 168 * data, and when that happens a new data buffer is allocated where the data is 169 * decompressed for them to use. Currently the only consumer who wants 170 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it 171 * exists on disk. When this happens, the arc_buf_t's data buffer is shared 172 * with the arc_buf_hdr_t. 173 * 174 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The 175 * first one is owned by a compressed send consumer (and therefore references 176 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be 177 * used by any other consumer (and has its own uncompressed copy of the data 178 * buffer). 179 * 180 * arc_buf_hdr_t 181 * +-----------+ 182 * | fields | 183 * | common to | 184 * | L1- and | 185 * | L2ARC | 186 * +-----------+ 187 * | l2arc_buf_hdr_t 188 * | | 189 * +-----------+ 190 * | l1arc_buf_hdr_t 191 * | | arc_buf_t 192 * | b_buf +------------>+-----------+ arc_buf_t 193 * | b_pabd +-+ |b_next +---->+-----------+ 194 * +-----------+ | |-----------| |b_next +-->NULL 195 * | |b_comp = T | +-----------+ 196 * | |b_data +-+ |b_comp = F | 197 * | +-----------+ | |b_data +-+ 198 * +->+------+ | +-----------+ | 199 * compressed | | | | 200 * data | |<--------------+ | uncompressed 201 * +------+ compressed, | data 202 * shared +-->+------+ 203 * data | | 204 * | | 205 * +------+ 206 * 207 * When a consumer reads a block, the ARC must first look to see if the 208 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new 209 * arc_buf_t and either copies uncompressed data into a new data buffer from an 210 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a 211 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the 212 * hdr is compressed and the desired compression characteristics of the 213 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the 214 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be 215 * the last buffer in the hdr's b_buf list, however a shared compressed buf can 216 * be anywhere in the hdr's list. 217 * 218 * The diagram below shows an example of an uncompressed ARC hdr that is 219 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is 220 * the last element in the buf list): 221 * 222 * arc_buf_hdr_t 223 * +-----------+ 224 * | | 225 * | | 226 * | | 227 * +-----------+ 228 * l2arc_buf_hdr_t| | 229 * | | 230 * +-----------+ 231 * l1arc_buf_hdr_t| | 232 * | | arc_buf_t (shared) 233 * | b_buf +------------>+---------+ arc_buf_t 234 * | | |b_next +---->+---------+ 235 * | b_pabd +-+ |---------| |b_next +-->NULL 236 * +-----------+ | | | +---------+ 237 * | |b_data +-+ | | 238 * | +---------+ | |b_data +-+ 239 * +->+------+ | +---------+ | 240 * | | | | 241 * uncompressed | | | | 242 * data +------+ | | 243 * ^ +->+------+ | 244 * | uncompressed | | | 245 * | data | | | 246 * | +------+ | 247 * +---------------------------------+ 248 * 249 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd 250 * since the physical block is about to be rewritten. The new data contents 251 * will be contained in the arc_buf_t. As the I/O pipeline performs the write, 252 * it may compress the data before writing it to disk. The ARC will be called 253 * with the transformed data and will bcopy the transformed on-disk block into 254 * a newly allocated b_pabd. Writes are always done into buffers which have 255 * either been loaned (and hence are new and don't have other readers) or 256 * buffers which have been released (and hence have their own hdr, if there 257 * were originally other readers of the buf's original hdr). This ensures that 258 * the ARC only needs to update a single buf and its hdr after a write occurs. 259 * 260 * When the L2ARC is in use, it will also take advantage of the b_pabd. The 261 * L2ARC will always write the contents of b_pabd to the L2ARC. This means 262 * that when compressed ARC is enabled that the L2ARC blocks are identical 263 * to the on-disk block in the main data pool. This provides a significant 264 * advantage since the ARC can leverage the bp's checksum when reading from the 265 * L2ARC to determine if the contents are valid. However, if the compressed 266 * ARC is disabled, then the L2ARC's block must be transformed to look 267 * like the physical block in the main data pool before comparing the 268 * checksum and determining its validity. 269 * 270 * The L1ARC has a slightly different system for storing encrypted data. 271 * Raw (encrypted + possibly compressed) data has a few subtle differences from 272 * data that is just compressed. The biggest difference is that it is not 273 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded. 274 * The other difference is that encryption cannot be treated as a suggestion. 275 * If a caller would prefer compressed data, but they actually wind up with 276 * uncompressed data the worst thing that could happen is there might be a 277 * performance hit. If the caller requests encrypted data, however, we must be 278 * sure they actually get it or else secret information could be leaked. Raw 279 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore, 280 * may have both an encrypted version and a decrypted version of its data at 281 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is 282 * copied out of this header. To avoid complications with b_pabd, raw buffers 283 * cannot be shared. 284 */ 285 286 #include <sys/spa.h> 287 #include <sys/zio.h> 288 #include <sys/spa_impl.h> 289 #include <sys/zio_compress.h> 290 #include <sys/zio_checksum.h> 291 #include <sys/zfs_context.h> 292 #include <sys/arc.h> 293 #include <sys/zfs_refcount.h> 294 #include <sys/vdev.h> 295 #include <sys/vdev_impl.h> 296 #include <sys/dsl_pool.h> 297 #include <sys/multilist.h> 298 #include <sys/abd.h> 299 #include <sys/zil.h> 300 #include <sys/fm/fs/zfs.h> 301 #include <sys/callb.h> 302 #include <sys/kstat.h> 303 #include <sys/zthr.h> 304 #include <zfs_fletcher.h> 305 #include <sys/arc_impl.h> 306 #include <sys/trace_zfs.h> 307 #include <sys/aggsum.h> 308 #include <sys/wmsum.h> 309 #include <cityhash.h> 310 #include <sys/vdev_trim.h> 311 #include <sys/zfs_racct.h> 312 #include <sys/zstd/zstd.h> 313 314 #ifndef _KERNEL 315 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 316 boolean_t arc_watch = B_FALSE; 317 #endif 318 319 /* 320 * This thread's job is to keep enough free memory in the system, by 321 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves 322 * arc_available_memory(). 323 */ 324 static zthr_t *arc_reap_zthr; 325 326 /* 327 * This thread's job is to keep arc_size under arc_c, by calling 328 * arc_evict(), which improves arc_is_overflowing(). 329 */ 330 static zthr_t *arc_evict_zthr; 331 332 static kmutex_t arc_evict_lock; 333 static boolean_t arc_evict_needed = B_FALSE; 334 335 /* 336 * Count of bytes evicted since boot. 337 */ 338 static uint64_t arc_evict_count; 339 340 /* 341 * List of arc_evict_waiter_t's, representing threads waiting for the 342 * arc_evict_count to reach specific values. 343 */ 344 static list_t arc_evict_waiters; 345 346 /* 347 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of 348 * the requested amount of data to be evicted. For example, by default for 349 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation. 350 * Since this is above 100%, it ensures that progress is made towards getting 351 * arc_size under arc_c. Since this is finite, it ensures that allocations 352 * can still happen, even during the potentially long time that arc_size is 353 * more than arc_c. 354 */ 355 int zfs_arc_eviction_pct = 200; 356 357 /* 358 * The number of headers to evict in arc_evict_state_impl() before 359 * dropping the sublist lock and evicting from another sublist. A lower 360 * value means we're more likely to evict the "correct" header (i.e. the 361 * oldest header in the arc state), but comes with higher overhead 362 * (i.e. more invocations of arc_evict_state_impl()). 363 */ 364 int zfs_arc_evict_batch_limit = 10; 365 366 /* number of seconds before growing cache again */ 367 int arc_grow_retry = 5; 368 369 /* 370 * Minimum time between calls to arc_kmem_reap_soon(). 371 */ 372 int arc_kmem_cache_reap_retry_ms = 1000; 373 374 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */ 375 int zfs_arc_overflow_shift = 8; 376 377 /* shift of arc_c for calculating both min and max arc_p */ 378 int arc_p_min_shift = 4; 379 380 /* log2(fraction of arc to reclaim) */ 381 int arc_shrink_shift = 7; 382 383 /* percent of pagecache to reclaim arc to */ 384 #ifdef _KERNEL 385 uint_t zfs_arc_pc_percent = 0; 386 #endif 387 388 /* 389 * log2(fraction of ARC which must be free to allow growing). 390 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 391 * when reading a new block into the ARC, we will evict an equal-sized block 392 * from the ARC. 393 * 394 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 395 * we will still not allow it to grow. 396 */ 397 int arc_no_grow_shift = 5; 398 399 400 /* 401 * minimum lifespan of a prefetch block in clock ticks 402 * (initialized in arc_init()) 403 */ 404 static int arc_min_prefetch_ms; 405 static int arc_min_prescient_prefetch_ms; 406 407 /* 408 * If this percent of memory is free, don't throttle. 409 */ 410 int arc_lotsfree_percent = 10; 411 412 /* 413 * The arc has filled available memory and has now warmed up. 414 */ 415 boolean_t arc_warm; 416 417 /* 418 * These tunables are for performance analysis. 419 */ 420 unsigned long zfs_arc_max = 0; 421 unsigned long zfs_arc_min = 0; 422 unsigned long zfs_arc_meta_limit = 0; 423 unsigned long zfs_arc_meta_min = 0; 424 unsigned long zfs_arc_dnode_limit = 0; 425 unsigned long zfs_arc_dnode_reduce_percent = 10; 426 int zfs_arc_grow_retry = 0; 427 int zfs_arc_shrink_shift = 0; 428 int zfs_arc_p_min_shift = 0; 429 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 430 431 /* 432 * ARC dirty data constraints for arc_tempreserve_space() throttle. 433 */ 434 unsigned long zfs_arc_dirty_limit_percent = 50; /* total dirty data limit */ 435 unsigned long zfs_arc_anon_limit_percent = 25; /* anon block dirty limit */ 436 unsigned long zfs_arc_pool_dirty_percent = 20; /* each pool's anon allowance */ 437 438 /* 439 * Enable or disable compressed arc buffers. 440 */ 441 int zfs_compressed_arc_enabled = B_TRUE; 442 443 /* 444 * ARC will evict meta buffers that exceed arc_meta_limit. This 445 * tunable make arc_meta_limit adjustable for different workloads. 446 */ 447 unsigned long zfs_arc_meta_limit_percent = 75; 448 449 /* 450 * Percentage that can be consumed by dnodes of ARC meta buffers. 451 */ 452 unsigned long zfs_arc_dnode_limit_percent = 10; 453 454 /* 455 * These tunables are Linux specific 456 */ 457 unsigned long zfs_arc_sys_free = 0; 458 int zfs_arc_min_prefetch_ms = 0; 459 int zfs_arc_min_prescient_prefetch_ms = 0; 460 int zfs_arc_p_dampener_disable = 1; 461 int zfs_arc_meta_prune = 10000; 462 int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED; 463 int zfs_arc_meta_adjust_restarts = 4096; 464 int zfs_arc_lotsfree_percent = 10; 465 466 /* The 6 states: */ 467 arc_state_t ARC_anon; 468 arc_state_t ARC_mru; 469 arc_state_t ARC_mru_ghost; 470 arc_state_t ARC_mfu; 471 arc_state_t ARC_mfu_ghost; 472 arc_state_t ARC_l2c_only; 473 474 arc_stats_t arc_stats = { 475 { "hits", KSTAT_DATA_UINT64 }, 476 { "misses", KSTAT_DATA_UINT64 }, 477 { "demand_data_hits", KSTAT_DATA_UINT64 }, 478 { "demand_data_misses", KSTAT_DATA_UINT64 }, 479 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 480 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 481 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 482 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 483 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 484 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 485 { "mru_hits", KSTAT_DATA_UINT64 }, 486 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 487 { "mfu_hits", KSTAT_DATA_UINT64 }, 488 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 489 { "deleted", KSTAT_DATA_UINT64 }, 490 { "mutex_miss", KSTAT_DATA_UINT64 }, 491 { "access_skip", KSTAT_DATA_UINT64 }, 492 { "evict_skip", KSTAT_DATA_UINT64 }, 493 { "evict_not_enough", KSTAT_DATA_UINT64 }, 494 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 495 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 496 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64 }, 497 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64 }, 498 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 499 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 500 { "hash_elements", KSTAT_DATA_UINT64 }, 501 { "hash_elements_max", KSTAT_DATA_UINT64 }, 502 { "hash_collisions", KSTAT_DATA_UINT64 }, 503 { "hash_chains", KSTAT_DATA_UINT64 }, 504 { "hash_chain_max", KSTAT_DATA_UINT64 }, 505 { "p", KSTAT_DATA_UINT64 }, 506 { "c", KSTAT_DATA_UINT64 }, 507 { "c_min", KSTAT_DATA_UINT64 }, 508 { "c_max", KSTAT_DATA_UINT64 }, 509 { "size", KSTAT_DATA_UINT64 }, 510 { "compressed_size", KSTAT_DATA_UINT64 }, 511 { "uncompressed_size", KSTAT_DATA_UINT64 }, 512 { "overhead_size", KSTAT_DATA_UINT64 }, 513 { "hdr_size", KSTAT_DATA_UINT64 }, 514 { "data_size", KSTAT_DATA_UINT64 }, 515 { "metadata_size", KSTAT_DATA_UINT64 }, 516 { "dbuf_size", KSTAT_DATA_UINT64 }, 517 { "dnode_size", KSTAT_DATA_UINT64 }, 518 { "bonus_size", KSTAT_DATA_UINT64 }, 519 #if defined(COMPAT_FREEBSD11) 520 { "other_size", KSTAT_DATA_UINT64 }, 521 #endif 522 { "anon_size", KSTAT_DATA_UINT64 }, 523 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 524 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 525 { "mru_size", KSTAT_DATA_UINT64 }, 526 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 527 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 528 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 529 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 530 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 531 { "mfu_size", KSTAT_DATA_UINT64 }, 532 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 533 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 534 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 535 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 536 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 537 { "l2_hits", KSTAT_DATA_UINT64 }, 538 { "l2_misses", KSTAT_DATA_UINT64 }, 539 { "l2_prefetch_asize", KSTAT_DATA_UINT64 }, 540 { "l2_mru_asize", KSTAT_DATA_UINT64 }, 541 { "l2_mfu_asize", KSTAT_DATA_UINT64 }, 542 { "l2_bufc_data_asize", KSTAT_DATA_UINT64 }, 543 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64 }, 544 { "l2_feeds", KSTAT_DATA_UINT64 }, 545 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 546 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 547 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 548 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 549 { "l2_writes_done", KSTAT_DATA_UINT64 }, 550 { "l2_writes_error", KSTAT_DATA_UINT64 }, 551 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 552 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 553 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 554 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 555 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 556 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 557 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 558 { "l2_io_error", KSTAT_DATA_UINT64 }, 559 { "l2_size", KSTAT_DATA_UINT64 }, 560 { "l2_asize", KSTAT_DATA_UINT64 }, 561 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 562 { "l2_log_blk_writes", KSTAT_DATA_UINT64 }, 563 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 }, 564 { "l2_log_blk_asize", KSTAT_DATA_UINT64 }, 565 { "l2_log_blk_count", KSTAT_DATA_UINT64 }, 566 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 }, 567 { "l2_rebuild_success", KSTAT_DATA_UINT64 }, 568 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 }, 569 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 }, 570 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 }, 571 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 }, 572 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 }, 573 { "l2_rebuild_size", KSTAT_DATA_UINT64 }, 574 { "l2_rebuild_asize", KSTAT_DATA_UINT64 }, 575 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 }, 576 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 }, 577 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 }, 578 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 579 { "memory_direct_count", KSTAT_DATA_UINT64 }, 580 { "memory_indirect_count", KSTAT_DATA_UINT64 }, 581 { "memory_all_bytes", KSTAT_DATA_UINT64 }, 582 { "memory_free_bytes", KSTAT_DATA_UINT64 }, 583 { "memory_available_bytes", KSTAT_DATA_INT64 }, 584 { "arc_no_grow", KSTAT_DATA_UINT64 }, 585 { "arc_tempreserve", KSTAT_DATA_UINT64 }, 586 { "arc_loaned_bytes", KSTAT_DATA_UINT64 }, 587 { "arc_prune", KSTAT_DATA_UINT64 }, 588 { "arc_meta_used", KSTAT_DATA_UINT64 }, 589 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 590 { "arc_dnode_limit", KSTAT_DATA_UINT64 }, 591 { "arc_meta_max", KSTAT_DATA_UINT64 }, 592 { "arc_meta_min", KSTAT_DATA_UINT64 }, 593 { "async_upgrade_sync", KSTAT_DATA_UINT64 }, 594 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 }, 595 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 }, 596 { "arc_need_free", KSTAT_DATA_UINT64 }, 597 { "arc_sys_free", KSTAT_DATA_UINT64 }, 598 { "arc_raw_size", KSTAT_DATA_UINT64 }, 599 { "cached_only_in_progress", KSTAT_DATA_UINT64 }, 600 { "abd_chunk_waste_size", KSTAT_DATA_UINT64 }, 601 }; 602 603 arc_sums_t arc_sums; 604 605 #define ARCSTAT_MAX(stat, val) { \ 606 uint64_t m; \ 607 while ((val) > (m = arc_stats.stat.value.ui64) && \ 608 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 609 continue; \ 610 } 611 612 /* 613 * We define a macro to allow ARC hits/misses to be easily broken down by 614 * two separate conditions, giving a total of four different subtypes for 615 * each of hits and misses (so eight statistics total). 616 */ 617 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 618 if (cond1) { \ 619 if (cond2) { \ 620 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 621 } else { \ 622 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 623 } \ 624 } else { \ 625 if (cond2) { \ 626 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 627 } else { \ 628 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 629 } \ 630 } 631 632 /* 633 * This macro allows us to use kstats as floating averages. Each time we 634 * update this kstat, we first factor it and the update value by 635 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall 636 * average. This macro assumes that integer loads and stores are atomic, but 637 * is not safe for multiple writers updating the kstat in parallel (only the 638 * last writer's update will remain). 639 */ 640 #define ARCSTAT_F_AVG_FACTOR 3 641 #define ARCSTAT_F_AVG(stat, value) \ 642 do { \ 643 uint64_t x = ARCSTAT(stat); \ 644 x = x - x / ARCSTAT_F_AVG_FACTOR + \ 645 (value) / ARCSTAT_F_AVG_FACTOR; \ 646 ARCSTAT(stat) = x; \ 647 } while (0) 648 649 kstat_t *arc_ksp; 650 651 /* 652 * There are several ARC variables that are critical to export as kstats -- 653 * but we don't want to have to grovel around in the kstat whenever we wish to 654 * manipulate them. For these variables, we therefore define them to be in 655 * terms of the statistic variable. This assures that we are not introducing 656 * the possibility of inconsistency by having shadow copies of the variables, 657 * while still allowing the code to be readable. 658 */ 659 #define arc_tempreserve ARCSTAT(arcstat_tempreserve) 660 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes) 661 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 662 /* max size for dnodes */ 663 #define arc_dnode_size_limit ARCSTAT(arcstat_dnode_limit) 664 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */ 665 #define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */ 666 667 hrtime_t arc_growtime; 668 list_t arc_prune_list; 669 kmutex_t arc_prune_mtx; 670 taskq_t *arc_prune_taskq; 671 672 #define GHOST_STATE(state) \ 673 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 674 (state) == arc_l2c_only) 675 676 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 677 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 678 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 679 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 680 #define HDR_PRESCIENT_PREFETCH(hdr) \ 681 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) 682 #define HDR_COMPRESSION_ENABLED(hdr) \ 683 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) 684 685 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 686 #define HDR_L2_READING(hdr) \ 687 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 688 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 689 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 690 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 691 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 692 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED) 693 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH) 694 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) 695 696 #define HDR_ISTYPE_METADATA(hdr) \ 697 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 698 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 699 700 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 701 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 702 #define HDR_HAS_RABD(hdr) \ 703 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \ 704 (hdr)->b_crypt_hdr.b_rabd != NULL) 705 #define HDR_ENCRYPTED(hdr) \ 706 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 707 #define HDR_AUTHENTICATED(hdr) \ 708 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 709 710 /* For storing compression mode in b_flags */ 711 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) 712 713 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ 714 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) 715 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ 716 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); 717 718 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) 719 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED) 720 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED) 721 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED) 722 723 /* 724 * Other sizes 725 */ 726 727 #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 728 #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr)) 729 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 730 731 /* 732 * Hash table routines 733 */ 734 735 #define BUF_LOCKS 2048 736 typedef struct buf_hash_table { 737 uint64_t ht_mask; 738 arc_buf_hdr_t **ht_table; 739 kmutex_t ht_locks[BUF_LOCKS] ____cacheline_aligned; 740 } buf_hash_table_t; 741 742 static buf_hash_table_t buf_hash_table; 743 744 #define BUF_HASH_INDEX(spa, dva, birth) \ 745 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 746 #define BUF_HASH_LOCK(idx) (&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 747 #define HDR_LOCK(hdr) \ 748 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 749 750 uint64_t zfs_crc64_table[256]; 751 752 /* 753 * Level 2 ARC 754 */ 755 756 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 757 #define L2ARC_HEADROOM 2 /* num of writes */ 758 759 /* 760 * If we discover during ARC scan any buffers to be compressed, we boost 761 * our headroom for the next scanning cycle by this percentage multiple. 762 */ 763 #define L2ARC_HEADROOM_BOOST 200 764 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 765 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 766 767 /* 768 * We can feed L2ARC from two states of ARC buffers, mru and mfu, 769 * and each of the state has two types: data and metadata. 770 */ 771 #define L2ARC_FEED_TYPES 4 772 773 /* L2ARC Performance Tunables */ 774 unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */ 775 unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */ 776 unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */ 777 unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 778 unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 779 unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */ 780 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 781 int l2arc_feed_again = B_TRUE; /* turbo warmup */ 782 int l2arc_norw = B_FALSE; /* no reads during writes */ 783 int l2arc_meta_percent = 33; /* limit on headers size */ 784 785 /* 786 * L2ARC Internals 787 */ 788 static list_t L2ARC_dev_list; /* device list */ 789 static list_t *l2arc_dev_list; /* device list pointer */ 790 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 791 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 792 static list_t L2ARC_free_on_write; /* free after write buf list */ 793 static list_t *l2arc_free_on_write; /* free after write list ptr */ 794 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 795 static uint64_t l2arc_ndev; /* number of devices */ 796 797 typedef struct l2arc_read_callback { 798 arc_buf_hdr_t *l2rcb_hdr; /* read header */ 799 blkptr_t l2rcb_bp; /* original blkptr */ 800 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 801 int l2rcb_flags; /* original flags */ 802 abd_t *l2rcb_abd; /* temporary buffer */ 803 } l2arc_read_callback_t; 804 805 typedef struct l2arc_data_free { 806 /* protected by l2arc_free_on_write_mtx */ 807 abd_t *l2df_abd; 808 size_t l2df_size; 809 arc_buf_contents_t l2df_type; 810 list_node_t l2df_list_node; 811 } l2arc_data_free_t; 812 813 typedef enum arc_fill_flags { 814 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */ 815 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */ 816 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */ 817 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */ 818 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */ 819 } arc_fill_flags_t; 820 821 typedef enum arc_ovf_level { 822 ARC_OVF_NONE, /* ARC within target size. */ 823 ARC_OVF_SOME, /* ARC is slightly overflowed. */ 824 ARC_OVF_SEVERE /* ARC is severely overflowed. */ 825 } arc_ovf_level_t; 826 827 static kmutex_t l2arc_feed_thr_lock; 828 static kcondvar_t l2arc_feed_thr_cv; 829 static uint8_t l2arc_thread_exit; 830 831 static kmutex_t l2arc_rebuild_thr_lock; 832 static kcondvar_t l2arc_rebuild_thr_cv; 833 834 enum arc_hdr_alloc_flags { 835 ARC_HDR_ALLOC_RDATA = 0x1, 836 ARC_HDR_DO_ADAPT = 0x2, 837 ARC_HDR_USE_RESERVE = 0x4, 838 }; 839 840 841 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *, int); 842 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *); 843 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *, int); 844 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *); 845 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *); 846 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag); 847 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t); 848 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int); 849 static void arc_access(arc_buf_hdr_t *, kmutex_t *); 850 static void arc_buf_watch(arc_buf_t *); 851 852 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 853 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 854 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 855 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 856 857 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 858 static void l2arc_read_done(zio_t *); 859 static void l2arc_do_free_on_write(void); 860 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 861 boolean_t state_only); 862 863 #define l2arc_hdr_arcstats_increment(hdr) \ 864 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE) 865 #define l2arc_hdr_arcstats_decrement(hdr) \ 866 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE) 867 #define l2arc_hdr_arcstats_increment_state(hdr) \ 868 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE) 869 #define l2arc_hdr_arcstats_decrement_state(hdr) \ 870 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE) 871 872 /* 873 * l2arc_exclude_special : A zfs module parameter that controls whether buffers 874 * present on special vdevs are eligibile for caching in L2ARC. If 875 * set to 1, exclude dbufs on special vdevs from being cached to 876 * L2ARC. 877 */ 878 int l2arc_exclude_special = 0; 879 880 /* 881 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU 882 * metadata and data are cached from ARC into L2ARC. 883 */ 884 int l2arc_mfuonly = 0; 885 886 /* 887 * L2ARC TRIM 888 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of 889 * the current write size (l2arc_write_max) we should TRIM if we 890 * have filled the device. It is defined as a percentage of the 891 * write size. If set to 100 we trim twice the space required to 892 * accommodate upcoming writes. A minimum of 64MB will be trimmed. 893 * It also enables TRIM of the whole L2ARC device upon creation or 894 * addition to an existing pool or if the header of the device is 895 * invalid upon importing a pool or onlining a cache device. The 896 * default is 0, which disables TRIM on L2ARC altogether as it can 897 * put significant stress on the underlying storage devices. This 898 * will vary depending of how well the specific device handles 899 * these commands. 900 */ 901 unsigned long l2arc_trim_ahead = 0; 902 903 /* 904 * Performance tuning of L2ARC persistence: 905 * 906 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding 907 * an L2ARC device (either at pool import or later) will attempt 908 * to rebuild L2ARC buffer contents. 909 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls 910 * whether log blocks are written to the L2ARC device. If the L2ARC 911 * device is less than 1GB, the amount of data l2arc_evict() 912 * evicts is significant compared to the amount of restored L2ARC 913 * data. In this case do not write log blocks in L2ARC in order 914 * not to waste space. 915 */ 916 int l2arc_rebuild_enabled = B_TRUE; 917 unsigned long l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024; 918 919 /* L2ARC persistence rebuild control routines. */ 920 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen); 921 static void l2arc_dev_rebuild_thread(void *arg); 922 static int l2arc_rebuild(l2arc_dev_t *dev); 923 924 /* L2ARC persistence read I/O routines. */ 925 static int l2arc_dev_hdr_read(l2arc_dev_t *dev); 926 static int l2arc_log_blk_read(l2arc_dev_t *dev, 927 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp, 928 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 929 zio_t *this_io, zio_t **next_io); 930 static zio_t *l2arc_log_blk_fetch(vdev_t *vd, 931 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb); 932 static void l2arc_log_blk_fetch_abort(zio_t *zio); 933 934 /* L2ARC persistence block restoration routines. */ 935 static void l2arc_log_blk_restore(l2arc_dev_t *dev, 936 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize); 937 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, 938 l2arc_dev_t *dev); 939 940 /* L2ARC persistence write I/O routines. */ 941 static void l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, 942 l2arc_write_callback_t *cb); 943 944 /* L2ARC persistence auxiliary routines. */ 945 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev, 946 const l2arc_log_blkptr_t *lbp); 947 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev, 948 const arc_buf_hdr_t *ab); 949 boolean_t l2arc_range_check_overlap(uint64_t bottom, 950 uint64_t top, uint64_t check); 951 static void l2arc_blk_fetch_done(zio_t *zio); 952 static inline uint64_t 953 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev); 954 955 /* 956 * We use Cityhash for this. It's fast, and has good hash properties without 957 * requiring any large static buffers. 958 */ 959 static uint64_t 960 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 961 { 962 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth)); 963 } 964 965 #define HDR_EMPTY(hdr) \ 966 ((hdr)->b_dva.dva_word[0] == 0 && \ 967 (hdr)->b_dva.dva_word[1] == 0) 968 969 #define HDR_EMPTY_OR_LOCKED(hdr) \ 970 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr))) 971 972 #define HDR_EQUAL(spa, dva, birth, hdr) \ 973 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 974 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 975 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) 976 977 static void 978 buf_discard_identity(arc_buf_hdr_t *hdr) 979 { 980 hdr->b_dva.dva_word[0] = 0; 981 hdr->b_dva.dva_word[1] = 0; 982 hdr->b_birth = 0; 983 } 984 985 static arc_buf_hdr_t * 986 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 987 { 988 const dva_t *dva = BP_IDENTITY(bp); 989 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 990 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 991 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 992 arc_buf_hdr_t *hdr; 993 994 mutex_enter(hash_lock); 995 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 996 hdr = hdr->b_hash_next) { 997 if (HDR_EQUAL(spa, dva, birth, hdr)) { 998 *lockp = hash_lock; 999 return (hdr); 1000 } 1001 } 1002 mutex_exit(hash_lock); 1003 *lockp = NULL; 1004 return (NULL); 1005 } 1006 1007 /* 1008 * Insert an entry into the hash table. If there is already an element 1009 * equal to elem in the hash table, then the already existing element 1010 * will be returned and the new element will not be inserted. 1011 * Otherwise returns NULL. 1012 * If lockp == NULL, the caller is assumed to already hold the hash lock. 1013 */ 1014 static arc_buf_hdr_t * 1015 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 1016 { 1017 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1018 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1019 arc_buf_hdr_t *fhdr; 1020 uint32_t i; 1021 1022 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 1023 ASSERT(hdr->b_birth != 0); 1024 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1025 1026 if (lockp != NULL) { 1027 *lockp = hash_lock; 1028 mutex_enter(hash_lock); 1029 } else { 1030 ASSERT(MUTEX_HELD(hash_lock)); 1031 } 1032 1033 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 1034 fhdr = fhdr->b_hash_next, i++) { 1035 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 1036 return (fhdr); 1037 } 1038 1039 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 1040 buf_hash_table.ht_table[idx] = hdr; 1041 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1042 1043 /* collect some hash table performance data */ 1044 if (i > 0) { 1045 ARCSTAT_BUMP(arcstat_hash_collisions); 1046 if (i == 1) 1047 ARCSTAT_BUMP(arcstat_hash_chains); 1048 1049 ARCSTAT_MAX(arcstat_hash_chain_max, i); 1050 } 1051 uint64_t he = atomic_inc_64_nv( 1052 &arc_stats.arcstat_hash_elements.value.ui64); 1053 ARCSTAT_MAX(arcstat_hash_elements_max, he); 1054 1055 return (NULL); 1056 } 1057 1058 static void 1059 buf_hash_remove(arc_buf_hdr_t *hdr) 1060 { 1061 arc_buf_hdr_t *fhdr, **hdrp; 1062 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1063 1064 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 1065 ASSERT(HDR_IN_HASH_TABLE(hdr)); 1066 1067 hdrp = &buf_hash_table.ht_table[idx]; 1068 while ((fhdr = *hdrp) != hdr) { 1069 ASSERT3P(fhdr, !=, NULL); 1070 hdrp = &fhdr->b_hash_next; 1071 } 1072 *hdrp = hdr->b_hash_next; 1073 hdr->b_hash_next = NULL; 1074 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1075 1076 /* collect some hash table performance data */ 1077 atomic_dec_64(&arc_stats.arcstat_hash_elements.value.ui64); 1078 1079 if (buf_hash_table.ht_table[idx] && 1080 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 1081 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 1082 } 1083 1084 /* 1085 * Global data structures and functions for the buf kmem cache. 1086 */ 1087 1088 static kmem_cache_t *hdr_full_cache; 1089 static kmem_cache_t *hdr_full_crypt_cache; 1090 static kmem_cache_t *hdr_l2only_cache; 1091 static kmem_cache_t *buf_cache; 1092 1093 static void 1094 buf_fini(void) 1095 { 1096 int i; 1097 1098 #if defined(_KERNEL) 1099 /* 1100 * Large allocations which do not require contiguous pages 1101 * should be using vmem_free() in the linux kernel\ 1102 */ 1103 vmem_free(buf_hash_table.ht_table, 1104 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1105 #else 1106 kmem_free(buf_hash_table.ht_table, 1107 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1108 #endif 1109 for (i = 0; i < BUF_LOCKS; i++) 1110 mutex_destroy(BUF_HASH_LOCK(i)); 1111 kmem_cache_destroy(hdr_full_cache); 1112 kmem_cache_destroy(hdr_full_crypt_cache); 1113 kmem_cache_destroy(hdr_l2only_cache); 1114 kmem_cache_destroy(buf_cache); 1115 } 1116 1117 /* 1118 * Constructor callback - called when the cache is empty 1119 * and a new buf is requested. 1120 */ 1121 /* ARGSUSED */ 1122 static int 1123 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1124 { 1125 arc_buf_hdr_t *hdr = vbuf; 1126 1127 bzero(hdr, HDR_FULL_SIZE); 1128 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 1129 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL); 1130 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt); 1131 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1132 list_link_init(&hdr->b_l1hdr.b_arc_node); 1133 list_link_init(&hdr->b_l2hdr.b_l2node); 1134 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1135 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1136 1137 return (0); 1138 } 1139 1140 /* ARGSUSED */ 1141 static int 1142 hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag) 1143 { 1144 arc_buf_hdr_t *hdr = vbuf; 1145 1146 hdr_full_cons(vbuf, unused, kmflag); 1147 bzero(&hdr->b_crypt_hdr, sizeof (hdr->b_crypt_hdr)); 1148 arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1149 1150 return (0); 1151 } 1152 1153 /* ARGSUSED */ 1154 static int 1155 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1156 { 1157 arc_buf_hdr_t *hdr = vbuf; 1158 1159 bzero(hdr, HDR_L2ONLY_SIZE); 1160 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1161 1162 return (0); 1163 } 1164 1165 /* ARGSUSED */ 1166 static int 1167 buf_cons(void *vbuf, void *unused, int kmflag) 1168 { 1169 arc_buf_t *buf = vbuf; 1170 1171 bzero(buf, sizeof (arc_buf_t)); 1172 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 1173 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1174 1175 return (0); 1176 } 1177 1178 /* 1179 * Destructor callback - called when a cached buf is 1180 * no longer required. 1181 */ 1182 /* ARGSUSED */ 1183 static void 1184 hdr_full_dest(void *vbuf, void *unused) 1185 { 1186 arc_buf_hdr_t *hdr = vbuf; 1187 1188 ASSERT(HDR_EMPTY(hdr)); 1189 cv_destroy(&hdr->b_l1hdr.b_cv); 1190 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1191 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1192 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1193 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1194 } 1195 1196 /* ARGSUSED */ 1197 static void 1198 hdr_full_crypt_dest(void *vbuf, void *unused) 1199 { 1200 arc_buf_hdr_t *hdr = vbuf; 1201 1202 hdr_full_dest(vbuf, unused); 1203 arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1204 } 1205 1206 /* ARGSUSED */ 1207 static void 1208 hdr_l2only_dest(void *vbuf, void *unused) 1209 { 1210 arc_buf_hdr_t *hdr __maybe_unused = vbuf; 1211 1212 ASSERT(HDR_EMPTY(hdr)); 1213 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1214 } 1215 1216 /* ARGSUSED */ 1217 static void 1218 buf_dest(void *vbuf, void *unused) 1219 { 1220 arc_buf_t *buf = vbuf; 1221 1222 mutex_destroy(&buf->b_evict_lock); 1223 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1224 } 1225 1226 static void 1227 buf_init(void) 1228 { 1229 uint64_t *ct = NULL; 1230 uint64_t hsize = 1ULL << 12; 1231 int i, j; 1232 1233 /* 1234 * The hash table is big enough to fill all of physical memory 1235 * with an average block size of zfs_arc_average_blocksize (default 8K). 1236 * By default, the table will take up 1237 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1238 */ 1239 while (hsize * zfs_arc_average_blocksize < arc_all_memory()) 1240 hsize <<= 1; 1241 retry: 1242 buf_hash_table.ht_mask = hsize - 1; 1243 #if defined(_KERNEL) 1244 /* 1245 * Large allocations which do not require contiguous pages 1246 * should be using vmem_alloc() in the linux kernel 1247 */ 1248 buf_hash_table.ht_table = 1249 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP); 1250 #else 1251 buf_hash_table.ht_table = 1252 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1253 #endif 1254 if (buf_hash_table.ht_table == NULL) { 1255 ASSERT(hsize > (1ULL << 8)); 1256 hsize >>= 1; 1257 goto retry; 1258 } 1259 1260 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1261 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, 0); 1262 hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt", 1263 HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest, 1264 NULL, NULL, NULL, 0); 1265 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1266 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL, 1267 NULL, NULL, 0); 1268 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1269 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1270 1271 for (i = 0; i < 256; i++) 1272 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1273 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1274 1275 for (i = 0; i < BUF_LOCKS; i++) 1276 mutex_init(BUF_HASH_LOCK(i), NULL, MUTEX_DEFAULT, NULL); 1277 } 1278 1279 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1280 1281 /* 1282 * This is the size that the buf occupies in memory. If the buf is compressed, 1283 * it will correspond to the compressed size. You should use this method of 1284 * getting the buf size unless you explicitly need the logical size. 1285 */ 1286 uint64_t 1287 arc_buf_size(arc_buf_t *buf) 1288 { 1289 return (ARC_BUF_COMPRESSED(buf) ? 1290 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr)); 1291 } 1292 1293 uint64_t 1294 arc_buf_lsize(arc_buf_t *buf) 1295 { 1296 return (HDR_GET_LSIZE(buf->b_hdr)); 1297 } 1298 1299 /* 1300 * This function will return B_TRUE if the buffer is encrypted in memory. 1301 * This buffer can be decrypted by calling arc_untransform(). 1302 */ 1303 boolean_t 1304 arc_is_encrypted(arc_buf_t *buf) 1305 { 1306 return (ARC_BUF_ENCRYPTED(buf) != 0); 1307 } 1308 1309 /* 1310 * Returns B_TRUE if the buffer represents data that has not had its MAC 1311 * verified yet. 1312 */ 1313 boolean_t 1314 arc_is_unauthenticated(arc_buf_t *buf) 1315 { 1316 return (HDR_NOAUTH(buf->b_hdr) != 0); 1317 } 1318 1319 void 1320 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt, 1321 uint8_t *iv, uint8_t *mac) 1322 { 1323 arc_buf_hdr_t *hdr = buf->b_hdr; 1324 1325 ASSERT(HDR_PROTECTED(hdr)); 1326 1327 bcopy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN); 1328 bcopy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN); 1329 bcopy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN); 1330 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 1331 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 1332 } 1333 1334 /* 1335 * Indicates how this buffer is compressed in memory. If it is not compressed 1336 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with 1337 * arc_untransform() as long as it is also unencrypted. 1338 */ 1339 enum zio_compress 1340 arc_get_compression(arc_buf_t *buf) 1341 { 1342 return (ARC_BUF_COMPRESSED(buf) ? 1343 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF); 1344 } 1345 1346 /* 1347 * Return the compression algorithm used to store this data in the ARC. If ARC 1348 * compression is enabled or this is an encrypted block, this will be the same 1349 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF. 1350 */ 1351 static inline enum zio_compress 1352 arc_hdr_get_compress(arc_buf_hdr_t *hdr) 1353 { 1354 return (HDR_COMPRESSION_ENABLED(hdr) ? 1355 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF); 1356 } 1357 1358 uint8_t 1359 arc_get_complevel(arc_buf_t *buf) 1360 { 1361 return (buf->b_hdr->b_complevel); 1362 } 1363 1364 static inline boolean_t 1365 arc_buf_is_shared(arc_buf_t *buf) 1366 { 1367 boolean_t shared = (buf->b_data != NULL && 1368 buf->b_hdr->b_l1hdr.b_pabd != NULL && 1369 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) && 1370 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd)); 1371 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); 1372 IMPLY(shared, ARC_BUF_SHARED(buf)); 1373 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf)); 1374 1375 /* 1376 * It would be nice to assert arc_can_share() too, but the "hdr isn't 1377 * already being shared" requirement prevents us from doing that. 1378 */ 1379 1380 return (shared); 1381 } 1382 1383 /* 1384 * Free the checksum associated with this header. If there is no checksum, this 1385 * is a no-op. 1386 */ 1387 static inline void 1388 arc_cksum_free(arc_buf_hdr_t *hdr) 1389 { 1390 ASSERT(HDR_HAS_L1HDR(hdr)); 1391 1392 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1393 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1394 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); 1395 hdr->b_l1hdr.b_freeze_cksum = NULL; 1396 } 1397 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1398 } 1399 1400 /* 1401 * Return true iff at least one of the bufs on hdr is not compressed. 1402 * Encrypted buffers count as compressed. 1403 */ 1404 static boolean_t 1405 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr) 1406 { 1407 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr)); 1408 1409 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) { 1410 if (!ARC_BUF_COMPRESSED(b)) { 1411 return (B_TRUE); 1412 } 1413 } 1414 return (B_FALSE); 1415 } 1416 1417 1418 /* 1419 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data 1420 * matches the checksum that is stored in the hdr. If there is no checksum, 1421 * or if the buf is compressed, this is a no-op. 1422 */ 1423 static void 1424 arc_cksum_verify(arc_buf_t *buf) 1425 { 1426 arc_buf_hdr_t *hdr = buf->b_hdr; 1427 zio_cksum_t zc; 1428 1429 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1430 return; 1431 1432 if (ARC_BUF_COMPRESSED(buf)) 1433 return; 1434 1435 ASSERT(HDR_HAS_L1HDR(hdr)); 1436 1437 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1438 1439 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { 1440 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1441 return; 1442 } 1443 1444 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc); 1445 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) 1446 panic("buffer modified while frozen!"); 1447 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1448 } 1449 1450 /* 1451 * This function makes the assumption that data stored in the L2ARC 1452 * will be transformed exactly as it is in the main pool. Because of 1453 * this we can verify the checksum against the reading process's bp. 1454 */ 1455 static boolean_t 1456 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) 1457 { 1458 ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); 1459 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); 1460 1461 /* 1462 * Block pointers always store the checksum for the logical data. 1463 * If the block pointer has the gang bit set, then the checksum 1464 * it represents is for the reconstituted data and not for an 1465 * individual gang member. The zio pipeline, however, must be able to 1466 * determine the checksum of each of the gang constituents so it 1467 * treats the checksum comparison differently than what we need 1468 * for l2arc blocks. This prevents us from using the 1469 * zio_checksum_error() interface directly. Instead we must call the 1470 * zio_checksum_error_impl() so that we can ensure the checksum is 1471 * generated using the correct checksum algorithm and accounts for the 1472 * logical I/O size and not just a gang fragment. 1473 */ 1474 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp, 1475 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size, 1476 zio->io_offset, NULL) == 0); 1477 } 1478 1479 /* 1480 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a 1481 * checksum and attaches it to the buf's hdr so that we can ensure that the buf 1482 * isn't modified later on. If buf is compressed or there is already a checksum 1483 * on the hdr, this is a no-op (we only checksum uncompressed bufs). 1484 */ 1485 static void 1486 arc_cksum_compute(arc_buf_t *buf) 1487 { 1488 arc_buf_hdr_t *hdr = buf->b_hdr; 1489 1490 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1491 return; 1492 1493 ASSERT(HDR_HAS_L1HDR(hdr)); 1494 1495 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1496 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) { 1497 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1498 return; 1499 } 1500 1501 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 1502 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1503 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), 1504 KM_SLEEP); 1505 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, 1506 hdr->b_l1hdr.b_freeze_cksum); 1507 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1508 arc_buf_watch(buf); 1509 } 1510 1511 #ifndef _KERNEL 1512 void 1513 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused) 1514 { 1515 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr); 1516 } 1517 #endif 1518 1519 /* ARGSUSED */ 1520 static void 1521 arc_buf_unwatch(arc_buf_t *buf) 1522 { 1523 #ifndef _KERNEL 1524 if (arc_watch) { 1525 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1526 PROT_READ | PROT_WRITE)); 1527 } 1528 #endif 1529 } 1530 1531 /* ARGSUSED */ 1532 static void 1533 arc_buf_watch(arc_buf_t *buf) 1534 { 1535 #ifndef _KERNEL 1536 if (arc_watch) 1537 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1538 PROT_READ)); 1539 #endif 1540 } 1541 1542 static arc_buf_contents_t 1543 arc_buf_type(arc_buf_hdr_t *hdr) 1544 { 1545 arc_buf_contents_t type; 1546 if (HDR_ISTYPE_METADATA(hdr)) { 1547 type = ARC_BUFC_METADATA; 1548 } else { 1549 type = ARC_BUFC_DATA; 1550 } 1551 VERIFY3U(hdr->b_type, ==, type); 1552 return (type); 1553 } 1554 1555 boolean_t 1556 arc_is_metadata(arc_buf_t *buf) 1557 { 1558 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0); 1559 } 1560 1561 static uint32_t 1562 arc_bufc_to_flags(arc_buf_contents_t type) 1563 { 1564 switch (type) { 1565 case ARC_BUFC_DATA: 1566 /* metadata field is 0 if buffer contains normal data */ 1567 return (0); 1568 case ARC_BUFC_METADATA: 1569 return (ARC_FLAG_BUFC_METADATA); 1570 default: 1571 break; 1572 } 1573 panic("undefined ARC buffer type!"); 1574 return ((uint32_t)-1); 1575 } 1576 1577 void 1578 arc_buf_thaw(arc_buf_t *buf) 1579 { 1580 arc_buf_hdr_t *hdr = buf->b_hdr; 1581 1582 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 1583 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1584 1585 arc_cksum_verify(buf); 1586 1587 /* 1588 * Compressed buffers do not manipulate the b_freeze_cksum. 1589 */ 1590 if (ARC_BUF_COMPRESSED(buf)) 1591 return; 1592 1593 ASSERT(HDR_HAS_L1HDR(hdr)); 1594 arc_cksum_free(hdr); 1595 arc_buf_unwatch(buf); 1596 } 1597 1598 void 1599 arc_buf_freeze(arc_buf_t *buf) 1600 { 1601 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1602 return; 1603 1604 if (ARC_BUF_COMPRESSED(buf)) 1605 return; 1606 1607 ASSERT(HDR_HAS_L1HDR(buf->b_hdr)); 1608 arc_cksum_compute(buf); 1609 } 1610 1611 /* 1612 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, 1613 * the following functions should be used to ensure that the flags are 1614 * updated in a thread-safe way. When manipulating the flags either 1615 * the hash_lock must be held or the hdr must be undiscoverable. This 1616 * ensures that we're not racing with any other threads when updating 1617 * the flags. 1618 */ 1619 static inline void 1620 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1621 { 1622 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1623 hdr->b_flags |= flags; 1624 } 1625 1626 static inline void 1627 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1628 { 1629 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1630 hdr->b_flags &= ~flags; 1631 } 1632 1633 /* 1634 * Setting the compression bits in the arc_buf_hdr_t's b_flags is 1635 * done in a special way since we have to clear and set bits 1636 * at the same time. Consumers that wish to set the compression bits 1637 * must use this function to ensure that the flags are updated in 1638 * thread-safe manner. 1639 */ 1640 static void 1641 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) 1642 { 1643 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1644 1645 /* 1646 * Holes and embedded blocks will always have a psize = 0 so 1647 * we ignore the compression of the blkptr and set the 1648 * want to uncompress them. Mark them as uncompressed. 1649 */ 1650 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { 1651 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1652 ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); 1653 } else { 1654 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1655 ASSERT(HDR_COMPRESSION_ENABLED(hdr)); 1656 } 1657 1658 HDR_SET_COMPRESS(hdr, cmp); 1659 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); 1660 } 1661 1662 /* 1663 * Looks for another buf on the same hdr which has the data decompressed, copies 1664 * from it, and returns true. If no such buf exists, returns false. 1665 */ 1666 static boolean_t 1667 arc_buf_try_copy_decompressed_data(arc_buf_t *buf) 1668 { 1669 arc_buf_hdr_t *hdr = buf->b_hdr; 1670 boolean_t copied = B_FALSE; 1671 1672 ASSERT(HDR_HAS_L1HDR(hdr)); 1673 ASSERT3P(buf->b_data, !=, NULL); 1674 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1675 1676 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL; 1677 from = from->b_next) { 1678 /* can't use our own data buffer */ 1679 if (from == buf) { 1680 continue; 1681 } 1682 1683 if (!ARC_BUF_COMPRESSED(from)) { 1684 bcopy(from->b_data, buf->b_data, arc_buf_size(buf)); 1685 copied = B_TRUE; 1686 break; 1687 } 1688 } 1689 1690 /* 1691 * There were no decompressed bufs, so there should not be a 1692 * checksum on the hdr either. 1693 */ 1694 if (zfs_flags & ZFS_DEBUG_MODIFY) 1695 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL); 1696 1697 return (copied); 1698 } 1699 1700 /* 1701 * Allocates an ARC buf header that's in an evicted & L2-cached state. 1702 * This is used during l2arc reconstruction to make empty ARC buffers 1703 * which circumvent the regular disk->arc->l2arc path and instead come 1704 * into being in the reverse order, i.e. l2arc->arc. 1705 */ 1706 static arc_buf_hdr_t * 1707 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev, 1708 dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth, 1709 enum zio_compress compress, uint8_t complevel, boolean_t protected, 1710 boolean_t prefetch, arc_state_type_t arcs_state) 1711 { 1712 arc_buf_hdr_t *hdr; 1713 1714 ASSERT(size != 0); 1715 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP); 1716 hdr->b_birth = birth; 1717 hdr->b_type = type; 1718 hdr->b_flags = 0; 1719 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR); 1720 HDR_SET_LSIZE(hdr, size); 1721 HDR_SET_PSIZE(hdr, psize); 1722 arc_hdr_set_compress(hdr, compress); 1723 hdr->b_complevel = complevel; 1724 if (protected) 1725 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 1726 if (prefetch) 1727 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 1728 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa); 1729 1730 hdr->b_dva = dva; 1731 1732 hdr->b_l2hdr.b_dev = dev; 1733 hdr->b_l2hdr.b_daddr = daddr; 1734 hdr->b_l2hdr.b_arcs_state = arcs_state; 1735 1736 return (hdr); 1737 } 1738 1739 /* 1740 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t. 1741 */ 1742 static uint64_t 1743 arc_hdr_size(arc_buf_hdr_t *hdr) 1744 { 1745 uint64_t size; 1746 1747 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 1748 HDR_GET_PSIZE(hdr) > 0) { 1749 size = HDR_GET_PSIZE(hdr); 1750 } else { 1751 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); 1752 size = HDR_GET_LSIZE(hdr); 1753 } 1754 return (size); 1755 } 1756 1757 static int 1758 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj) 1759 { 1760 int ret; 1761 uint64_t csize; 1762 uint64_t lsize = HDR_GET_LSIZE(hdr); 1763 uint64_t psize = HDR_GET_PSIZE(hdr); 1764 void *tmpbuf = NULL; 1765 abd_t *abd = hdr->b_l1hdr.b_pabd; 1766 1767 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1768 ASSERT(HDR_AUTHENTICATED(hdr)); 1769 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1770 1771 /* 1772 * The MAC is calculated on the compressed data that is stored on disk. 1773 * However, if compressed arc is disabled we will only have the 1774 * decompressed data available to us now. Compress it into a temporary 1775 * abd so we can verify the MAC. The performance overhead of this will 1776 * be relatively low, since most objects in an encrypted objset will 1777 * be encrypted (instead of authenticated) anyway. 1778 */ 1779 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1780 !HDR_COMPRESSION_ENABLED(hdr)) { 1781 tmpbuf = zio_buf_alloc(lsize); 1782 abd = abd_get_from_buf(tmpbuf, lsize); 1783 abd_take_ownership_of_buf(abd, B_TRUE); 1784 csize = zio_compress_data(HDR_GET_COMPRESS(hdr), 1785 hdr->b_l1hdr.b_pabd, tmpbuf, lsize, hdr->b_complevel); 1786 ASSERT3U(csize, <=, psize); 1787 abd_zero_off(abd, csize, psize - csize); 1788 } 1789 1790 /* 1791 * Authentication is best effort. We authenticate whenever the key is 1792 * available. If we succeed we clear ARC_FLAG_NOAUTH. 1793 */ 1794 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) { 1795 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1796 ASSERT3U(lsize, ==, psize); 1797 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd, 1798 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1799 } else { 1800 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize, 1801 hdr->b_crypt_hdr.b_mac); 1802 } 1803 1804 if (ret == 0) 1805 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH); 1806 else if (ret != ENOENT) 1807 goto error; 1808 1809 if (tmpbuf != NULL) 1810 abd_free(abd); 1811 1812 return (0); 1813 1814 error: 1815 if (tmpbuf != NULL) 1816 abd_free(abd); 1817 1818 return (ret); 1819 } 1820 1821 /* 1822 * This function will take a header that only has raw encrypted data in 1823 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in 1824 * b_l1hdr.b_pabd. If designated in the header flags, this function will 1825 * also decompress the data. 1826 */ 1827 static int 1828 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb) 1829 { 1830 int ret; 1831 abd_t *cabd = NULL; 1832 void *tmp = NULL; 1833 boolean_t no_crypt = B_FALSE; 1834 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1835 1836 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1837 ASSERT(HDR_ENCRYPTED(hdr)); 1838 1839 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 1840 1841 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot, 1842 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv, 1843 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd, 1844 hdr->b_crypt_hdr.b_rabd, &no_crypt); 1845 if (ret != 0) 1846 goto error; 1847 1848 if (no_crypt) { 1849 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd, 1850 HDR_GET_PSIZE(hdr)); 1851 } 1852 1853 /* 1854 * If this header has disabled arc compression but the b_pabd is 1855 * compressed after decrypting it, we need to decompress the newly 1856 * decrypted data. 1857 */ 1858 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1859 !HDR_COMPRESSION_ENABLED(hdr)) { 1860 /* 1861 * We want to make sure that we are correctly honoring the 1862 * zfs_abd_scatter_enabled setting, so we allocate an abd here 1863 * and then loan a buffer from it, rather than allocating a 1864 * linear buffer and wrapping it in an abd later. 1865 */ 1866 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 1867 ARC_HDR_DO_ADAPT); 1868 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 1869 1870 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 1871 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 1872 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 1873 if (ret != 0) { 1874 abd_return_buf(cabd, tmp, arc_hdr_size(hdr)); 1875 goto error; 1876 } 1877 1878 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 1879 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 1880 arc_hdr_size(hdr), hdr); 1881 hdr->b_l1hdr.b_pabd = cabd; 1882 } 1883 1884 return (0); 1885 1886 error: 1887 arc_hdr_free_abd(hdr, B_FALSE); 1888 if (cabd != NULL) 1889 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr); 1890 1891 return (ret); 1892 } 1893 1894 /* 1895 * This function is called during arc_buf_fill() to prepare the header's 1896 * abd plaintext pointer for use. This involves authenticated protected 1897 * data and decrypting encrypted data into the plaintext abd. 1898 */ 1899 static int 1900 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa, 1901 const zbookmark_phys_t *zb, boolean_t noauth) 1902 { 1903 int ret; 1904 1905 ASSERT(HDR_PROTECTED(hdr)); 1906 1907 if (hash_lock != NULL) 1908 mutex_enter(hash_lock); 1909 1910 if (HDR_NOAUTH(hdr) && !noauth) { 1911 /* 1912 * The caller requested authenticated data but our data has 1913 * not been authenticated yet. Verify the MAC now if we can. 1914 */ 1915 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset); 1916 if (ret != 0) 1917 goto error; 1918 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) { 1919 /* 1920 * If we only have the encrypted version of the data, but the 1921 * unencrypted version was requested we take this opportunity 1922 * to store the decrypted version in the header for future use. 1923 */ 1924 ret = arc_hdr_decrypt(hdr, spa, zb); 1925 if (ret != 0) 1926 goto error; 1927 } 1928 1929 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1930 1931 if (hash_lock != NULL) 1932 mutex_exit(hash_lock); 1933 1934 return (0); 1935 1936 error: 1937 if (hash_lock != NULL) 1938 mutex_exit(hash_lock); 1939 1940 return (ret); 1941 } 1942 1943 /* 1944 * This function is used by the dbuf code to decrypt bonus buffers in place. 1945 * The dbuf code itself doesn't have any locking for decrypting a shared dnode 1946 * block, so we use the hash lock here to protect against concurrent calls to 1947 * arc_buf_fill(). 1948 */ 1949 static void 1950 arc_buf_untransform_in_place(arc_buf_t *buf, kmutex_t *hash_lock) 1951 { 1952 arc_buf_hdr_t *hdr = buf->b_hdr; 1953 1954 ASSERT(HDR_ENCRYPTED(hdr)); 1955 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 1956 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1957 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1958 1959 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data, 1960 arc_buf_size(buf)); 1961 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 1962 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 1963 hdr->b_crypt_hdr.b_ebufcnt -= 1; 1964 } 1965 1966 /* 1967 * Given a buf that has a data buffer attached to it, this function will 1968 * efficiently fill the buf with data of the specified compression setting from 1969 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr 1970 * are already sharing a data buf, no copy is performed. 1971 * 1972 * If the buf is marked as compressed but uncompressed data was requested, this 1973 * will allocate a new data buffer for the buf, remove that flag, and fill the 1974 * buf with uncompressed data. You can't request a compressed buf on a hdr with 1975 * uncompressed data, and (since we haven't added support for it yet) if you 1976 * want compressed data your buf must already be marked as compressed and have 1977 * the correct-sized data buffer. 1978 */ 1979 static int 1980 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 1981 arc_fill_flags_t flags) 1982 { 1983 int error = 0; 1984 arc_buf_hdr_t *hdr = buf->b_hdr; 1985 boolean_t hdr_compressed = 1986 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 1987 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0; 1988 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0; 1989 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; 1990 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr); 1991 1992 ASSERT3P(buf->b_data, !=, NULL); 1993 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf)); 1994 IMPLY(compressed, ARC_BUF_COMPRESSED(buf)); 1995 IMPLY(encrypted, HDR_ENCRYPTED(hdr)); 1996 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf)); 1997 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf)); 1998 IMPLY(encrypted, !ARC_BUF_SHARED(buf)); 1999 2000 /* 2001 * If the caller wanted encrypted data we just need to copy it from 2002 * b_rabd and potentially byteswap it. We won't be able to do any 2003 * further transforms on it. 2004 */ 2005 if (encrypted) { 2006 ASSERT(HDR_HAS_RABD(hdr)); 2007 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd, 2008 HDR_GET_PSIZE(hdr)); 2009 goto byteswap; 2010 } 2011 2012 /* 2013 * Adjust encrypted and authenticated headers to accommodate 2014 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are 2015 * allowed to fail decryption due to keys not being loaded 2016 * without being marked as an IO error. 2017 */ 2018 if (HDR_PROTECTED(hdr)) { 2019 error = arc_fill_hdr_crypt(hdr, hash_lock, spa, 2020 zb, !!(flags & ARC_FILL_NOAUTH)); 2021 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) { 2022 return (error); 2023 } else if (error != 0) { 2024 if (hash_lock != NULL) 2025 mutex_enter(hash_lock); 2026 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2027 if (hash_lock != NULL) 2028 mutex_exit(hash_lock); 2029 return (error); 2030 } 2031 } 2032 2033 /* 2034 * There is a special case here for dnode blocks which are 2035 * decrypting their bonus buffers. These blocks may request to 2036 * be decrypted in-place. This is necessary because there may 2037 * be many dnodes pointing into this buffer and there is 2038 * currently no method to synchronize replacing the backing 2039 * b_data buffer and updating all of the pointers. Here we use 2040 * the hash lock to ensure there are no races. If the need 2041 * arises for other types to be decrypted in-place, they must 2042 * add handling here as well. 2043 */ 2044 if ((flags & ARC_FILL_IN_PLACE) != 0) { 2045 ASSERT(!hdr_compressed); 2046 ASSERT(!compressed); 2047 ASSERT(!encrypted); 2048 2049 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) { 2050 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 2051 2052 if (hash_lock != NULL) 2053 mutex_enter(hash_lock); 2054 arc_buf_untransform_in_place(buf, hash_lock); 2055 if (hash_lock != NULL) 2056 mutex_exit(hash_lock); 2057 2058 /* Compute the hdr's checksum if necessary */ 2059 arc_cksum_compute(buf); 2060 } 2061 2062 return (0); 2063 } 2064 2065 if (hdr_compressed == compressed) { 2066 if (!arc_buf_is_shared(buf)) { 2067 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd, 2068 arc_buf_size(buf)); 2069 } 2070 } else { 2071 ASSERT(hdr_compressed); 2072 ASSERT(!compressed); 2073 2074 /* 2075 * If the buf is sharing its data with the hdr, unlink it and 2076 * allocate a new data buffer for the buf. 2077 */ 2078 if (arc_buf_is_shared(buf)) { 2079 ASSERT(ARC_BUF_COMPRESSED(buf)); 2080 2081 /* We need to give the buf its own b_data */ 2082 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 2083 buf->b_data = 2084 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2085 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2086 2087 /* Previously overhead was 0; just add new overhead */ 2088 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 2089 } else if (ARC_BUF_COMPRESSED(buf)) { 2090 /* We need to reallocate the buf's b_data */ 2091 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr), 2092 buf); 2093 buf->b_data = 2094 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2095 2096 /* We increased the size of b_data; update overhead */ 2097 ARCSTAT_INCR(arcstat_overhead_size, 2098 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr)); 2099 } 2100 2101 /* 2102 * Regardless of the buf's previous compression settings, it 2103 * should not be compressed at the end of this function. 2104 */ 2105 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 2106 2107 /* 2108 * Try copying the data from another buf which already has a 2109 * decompressed version. If that's not possible, it's time to 2110 * bite the bullet and decompress the data from the hdr. 2111 */ 2112 if (arc_buf_try_copy_decompressed_data(buf)) { 2113 /* Skip byteswapping and checksumming (already done) */ 2114 return (0); 2115 } else { 2116 error = zio_decompress_data(HDR_GET_COMPRESS(hdr), 2117 hdr->b_l1hdr.b_pabd, buf->b_data, 2118 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr), 2119 &hdr->b_complevel); 2120 2121 /* 2122 * Absent hardware errors or software bugs, this should 2123 * be impossible, but log it anyway so we can debug it. 2124 */ 2125 if (error != 0) { 2126 zfs_dbgmsg( 2127 "hdr %px, compress %d, psize %d, lsize %d", 2128 hdr, arc_hdr_get_compress(hdr), 2129 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 2130 if (hash_lock != NULL) 2131 mutex_enter(hash_lock); 2132 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2133 if (hash_lock != NULL) 2134 mutex_exit(hash_lock); 2135 return (SET_ERROR(EIO)); 2136 } 2137 } 2138 } 2139 2140 byteswap: 2141 /* Byteswap the buf's data if necessary */ 2142 if (bswap != DMU_BSWAP_NUMFUNCS) { 2143 ASSERT(!HDR_SHARED_DATA(hdr)); 2144 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); 2145 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); 2146 } 2147 2148 /* Compute the hdr's checksum if necessary */ 2149 arc_cksum_compute(buf); 2150 2151 return (0); 2152 } 2153 2154 /* 2155 * If this function is being called to decrypt an encrypted buffer or verify an 2156 * authenticated one, the key must be loaded and a mapping must be made 2157 * available in the keystore via spa_keystore_create_mapping() or one of its 2158 * callers. 2159 */ 2160 int 2161 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 2162 boolean_t in_place) 2163 { 2164 int ret; 2165 arc_fill_flags_t flags = 0; 2166 2167 if (in_place) 2168 flags |= ARC_FILL_IN_PLACE; 2169 2170 ret = arc_buf_fill(buf, spa, zb, flags); 2171 if (ret == ECKSUM) { 2172 /* 2173 * Convert authentication and decryption errors to EIO 2174 * (and generate an ereport) before leaving the ARC. 2175 */ 2176 ret = SET_ERROR(EIO); 2177 spa_log_error(spa, zb); 2178 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 2179 spa, NULL, zb, NULL, 0); 2180 } 2181 2182 return (ret); 2183 } 2184 2185 /* 2186 * Increment the amount of evictable space in the arc_state_t's refcount. 2187 * We account for the space used by the hdr and the arc buf individually 2188 * so that we can add and remove them from the refcount individually. 2189 */ 2190 static void 2191 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) 2192 { 2193 arc_buf_contents_t type = arc_buf_type(hdr); 2194 2195 ASSERT(HDR_HAS_L1HDR(hdr)); 2196 2197 if (GHOST_STATE(state)) { 2198 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2199 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2200 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2201 ASSERT(!HDR_HAS_RABD(hdr)); 2202 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2203 HDR_GET_LSIZE(hdr), hdr); 2204 return; 2205 } 2206 2207 if (hdr->b_l1hdr.b_pabd != NULL) { 2208 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2209 arc_hdr_size(hdr), hdr); 2210 } 2211 if (HDR_HAS_RABD(hdr)) { 2212 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2213 HDR_GET_PSIZE(hdr), hdr); 2214 } 2215 2216 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2217 buf = buf->b_next) { 2218 if (arc_buf_is_shared(buf)) 2219 continue; 2220 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2221 arc_buf_size(buf), buf); 2222 } 2223 } 2224 2225 /* 2226 * Decrement the amount of evictable space in the arc_state_t's refcount. 2227 * We account for the space used by the hdr and the arc buf individually 2228 * so that we can add and remove them from the refcount individually. 2229 */ 2230 static void 2231 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) 2232 { 2233 arc_buf_contents_t type = arc_buf_type(hdr); 2234 2235 ASSERT(HDR_HAS_L1HDR(hdr)); 2236 2237 if (GHOST_STATE(state)) { 2238 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2239 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2240 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2241 ASSERT(!HDR_HAS_RABD(hdr)); 2242 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2243 HDR_GET_LSIZE(hdr), hdr); 2244 return; 2245 } 2246 2247 if (hdr->b_l1hdr.b_pabd != NULL) { 2248 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2249 arc_hdr_size(hdr), hdr); 2250 } 2251 if (HDR_HAS_RABD(hdr)) { 2252 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2253 HDR_GET_PSIZE(hdr), hdr); 2254 } 2255 2256 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2257 buf = buf->b_next) { 2258 if (arc_buf_is_shared(buf)) 2259 continue; 2260 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2261 arc_buf_size(buf), buf); 2262 } 2263 } 2264 2265 /* 2266 * Add a reference to this hdr indicating that someone is actively 2267 * referencing that memory. When the refcount transitions from 0 to 1, 2268 * we remove it from the respective arc_state_t list to indicate that 2269 * it is not evictable. 2270 */ 2271 static void 2272 add_reference(arc_buf_hdr_t *hdr, void *tag) 2273 { 2274 arc_state_t *state; 2275 2276 ASSERT(HDR_HAS_L1HDR(hdr)); 2277 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) { 2278 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 2279 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2280 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2281 } 2282 2283 state = hdr->b_l1hdr.b_state; 2284 2285 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 2286 (state != arc_anon)) { 2287 /* We don't use the L2-only state list. */ 2288 if (state != arc_l2c_only) { 2289 multilist_remove(&state->arcs_list[arc_buf_type(hdr)], 2290 hdr); 2291 arc_evictable_space_decrement(hdr, state); 2292 } 2293 /* remove the prefetch flag if we get a reference */ 2294 if (HDR_HAS_L2HDR(hdr)) 2295 l2arc_hdr_arcstats_decrement_state(hdr); 2296 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 2297 if (HDR_HAS_L2HDR(hdr)) 2298 l2arc_hdr_arcstats_increment_state(hdr); 2299 } 2300 } 2301 2302 /* 2303 * Remove a reference from this hdr. When the reference transitions from 2304 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's 2305 * list making it eligible for eviction. 2306 */ 2307 static int 2308 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 2309 { 2310 int cnt; 2311 arc_state_t *state = hdr->b_l1hdr.b_state; 2312 2313 ASSERT(HDR_HAS_L1HDR(hdr)); 2314 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 2315 ASSERT(!GHOST_STATE(state)); 2316 2317 /* 2318 * arc_l2c_only counts as a ghost state so we don't need to explicitly 2319 * check to prevent usage of the arc_l2c_only list. 2320 */ 2321 if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) && 2322 (state != arc_anon)) { 2323 multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr); 2324 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 2325 arc_evictable_space_increment(hdr, state); 2326 } 2327 return (cnt); 2328 } 2329 2330 /* 2331 * Returns detailed information about a specific arc buffer. When the 2332 * state_index argument is set the function will calculate the arc header 2333 * list position for its arc state. Since this requires a linear traversal 2334 * callers are strongly encourage not to do this. However, it can be helpful 2335 * for targeted analysis so the functionality is provided. 2336 */ 2337 void 2338 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index) 2339 { 2340 arc_buf_hdr_t *hdr = ab->b_hdr; 2341 l1arc_buf_hdr_t *l1hdr = NULL; 2342 l2arc_buf_hdr_t *l2hdr = NULL; 2343 arc_state_t *state = NULL; 2344 2345 memset(abi, 0, sizeof (arc_buf_info_t)); 2346 2347 if (hdr == NULL) 2348 return; 2349 2350 abi->abi_flags = hdr->b_flags; 2351 2352 if (HDR_HAS_L1HDR(hdr)) { 2353 l1hdr = &hdr->b_l1hdr; 2354 state = l1hdr->b_state; 2355 } 2356 if (HDR_HAS_L2HDR(hdr)) 2357 l2hdr = &hdr->b_l2hdr; 2358 2359 if (l1hdr) { 2360 abi->abi_bufcnt = l1hdr->b_bufcnt; 2361 abi->abi_access = l1hdr->b_arc_access; 2362 abi->abi_mru_hits = l1hdr->b_mru_hits; 2363 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits; 2364 abi->abi_mfu_hits = l1hdr->b_mfu_hits; 2365 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits; 2366 abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt); 2367 } 2368 2369 if (l2hdr) { 2370 abi->abi_l2arc_dattr = l2hdr->b_daddr; 2371 abi->abi_l2arc_hits = l2hdr->b_hits; 2372 } 2373 2374 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON; 2375 abi->abi_state_contents = arc_buf_type(hdr); 2376 abi->abi_size = arc_hdr_size(hdr); 2377 } 2378 2379 /* 2380 * Move the supplied buffer to the indicated state. The hash lock 2381 * for the buffer must be held by the caller. 2382 */ 2383 static void 2384 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr, 2385 kmutex_t *hash_lock) 2386 { 2387 arc_state_t *old_state; 2388 int64_t refcnt; 2389 uint32_t bufcnt; 2390 boolean_t update_old, update_new; 2391 arc_buf_contents_t buftype = arc_buf_type(hdr); 2392 2393 /* 2394 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 2395 * in arc_read() when bringing a buffer out of the L2ARC. However, the 2396 * L1 hdr doesn't always exist when we change state to arc_anon before 2397 * destroying a header, in which case reallocating to add the L1 hdr is 2398 * pointless. 2399 */ 2400 if (HDR_HAS_L1HDR(hdr)) { 2401 old_state = hdr->b_l1hdr.b_state; 2402 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt); 2403 bufcnt = hdr->b_l1hdr.b_bufcnt; 2404 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL || 2405 HDR_HAS_RABD(hdr)); 2406 } else { 2407 old_state = arc_l2c_only; 2408 refcnt = 0; 2409 bufcnt = 0; 2410 update_old = B_FALSE; 2411 } 2412 update_new = update_old; 2413 2414 ASSERT(MUTEX_HELD(hash_lock)); 2415 ASSERT3P(new_state, !=, old_state); 2416 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0); 2417 ASSERT(old_state != arc_anon || bufcnt <= 1); 2418 2419 /* 2420 * If this buffer is evictable, transfer it from the 2421 * old state list to the new state list. 2422 */ 2423 if (refcnt == 0) { 2424 if (old_state != arc_anon && old_state != arc_l2c_only) { 2425 ASSERT(HDR_HAS_L1HDR(hdr)); 2426 multilist_remove(&old_state->arcs_list[buftype], hdr); 2427 2428 if (GHOST_STATE(old_state)) { 2429 ASSERT0(bufcnt); 2430 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2431 update_old = B_TRUE; 2432 } 2433 arc_evictable_space_decrement(hdr, old_state); 2434 } 2435 if (new_state != arc_anon && new_state != arc_l2c_only) { 2436 /* 2437 * An L1 header always exists here, since if we're 2438 * moving to some L1-cached state (i.e. not l2c_only or 2439 * anonymous), we realloc the header to add an L1hdr 2440 * beforehand. 2441 */ 2442 ASSERT(HDR_HAS_L1HDR(hdr)); 2443 multilist_insert(&new_state->arcs_list[buftype], hdr); 2444 2445 if (GHOST_STATE(new_state)) { 2446 ASSERT0(bufcnt); 2447 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2448 update_new = B_TRUE; 2449 } 2450 arc_evictable_space_increment(hdr, new_state); 2451 } 2452 } 2453 2454 ASSERT(!HDR_EMPTY(hdr)); 2455 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 2456 buf_hash_remove(hdr); 2457 2458 /* adjust state sizes (ignore arc_l2c_only) */ 2459 2460 if (update_new && new_state != arc_l2c_only) { 2461 ASSERT(HDR_HAS_L1HDR(hdr)); 2462 if (GHOST_STATE(new_state)) { 2463 ASSERT0(bufcnt); 2464 2465 /* 2466 * When moving a header to a ghost state, we first 2467 * remove all arc buffers. Thus, we'll have a 2468 * bufcnt of zero, and no arc buffer to use for 2469 * the reference. As a result, we use the arc 2470 * header pointer for the reference. 2471 */ 2472 (void) zfs_refcount_add_many(&new_state->arcs_size, 2473 HDR_GET_LSIZE(hdr), hdr); 2474 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2475 ASSERT(!HDR_HAS_RABD(hdr)); 2476 } else { 2477 uint32_t buffers = 0; 2478 2479 /* 2480 * Each individual buffer holds a unique reference, 2481 * thus we must remove each of these references one 2482 * at a time. 2483 */ 2484 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2485 buf = buf->b_next) { 2486 ASSERT3U(bufcnt, !=, 0); 2487 buffers++; 2488 2489 /* 2490 * When the arc_buf_t is sharing the data 2491 * block with the hdr, the owner of the 2492 * reference belongs to the hdr. Only 2493 * add to the refcount if the arc_buf_t is 2494 * not shared. 2495 */ 2496 if (arc_buf_is_shared(buf)) 2497 continue; 2498 2499 (void) zfs_refcount_add_many( 2500 &new_state->arcs_size, 2501 arc_buf_size(buf), buf); 2502 } 2503 ASSERT3U(bufcnt, ==, buffers); 2504 2505 if (hdr->b_l1hdr.b_pabd != NULL) { 2506 (void) zfs_refcount_add_many( 2507 &new_state->arcs_size, 2508 arc_hdr_size(hdr), hdr); 2509 } 2510 2511 if (HDR_HAS_RABD(hdr)) { 2512 (void) zfs_refcount_add_many( 2513 &new_state->arcs_size, 2514 HDR_GET_PSIZE(hdr), hdr); 2515 } 2516 } 2517 } 2518 2519 if (update_old && old_state != arc_l2c_only) { 2520 ASSERT(HDR_HAS_L1HDR(hdr)); 2521 if (GHOST_STATE(old_state)) { 2522 ASSERT0(bufcnt); 2523 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2524 ASSERT(!HDR_HAS_RABD(hdr)); 2525 2526 /* 2527 * When moving a header off of a ghost state, 2528 * the header will not contain any arc buffers. 2529 * We use the arc header pointer for the reference 2530 * which is exactly what we did when we put the 2531 * header on the ghost state. 2532 */ 2533 2534 (void) zfs_refcount_remove_many(&old_state->arcs_size, 2535 HDR_GET_LSIZE(hdr), hdr); 2536 } else { 2537 uint32_t buffers = 0; 2538 2539 /* 2540 * Each individual buffer holds a unique reference, 2541 * thus we must remove each of these references one 2542 * at a time. 2543 */ 2544 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2545 buf = buf->b_next) { 2546 ASSERT3U(bufcnt, !=, 0); 2547 buffers++; 2548 2549 /* 2550 * When the arc_buf_t is sharing the data 2551 * block with the hdr, the owner of the 2552 * reference belongs to the hdr. Only 2553 * add to the refcount if the arc_buf_t is 2554 * not shared. 2555 */ 2556 if (arc_buf_is_shared(buf)) 2557 continue; 2558 2559 (void) zfs_refcount_remove_many( 2560 &old_state->arcs_size, arc_buf_size(buf), 2561 buf); 2562 } 2563 ASSERT3U(bufcnt, ==, buffers); 2564 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 2565 HDR_HAS_RABD(hdr)); 2566 2567 if (hdr->b_l1hdr.b_pabd != NULL) { 2568 (void) zfs_refcount_remove_many( 2569 &old_state->arcs_size, arc_hdr_size(hdr), 2570 hdr); 2571 } 2572 2573 if (HDR_HAS_RABD(hdr)) { 2574 (void) zfs_refcount_remove_many( 2575 &old_state->arcs_size, HDR_GET_PSIZE(hdr), 2576 hdr); 2577 } 2578 } 2579 } 2580 2581 if (HDR_HAS_L1HDR(hdr)) { 2582 hdr->b_l1hdr.b_state = new_state; 2583 2584 if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) { 2585 l2arc_hdr_arcstats_decrement_state(hdr); 2586 hdr->b_l2hdr.b_arcs_state = new_state->arcs_state; 2587 l2arc_hdr_arcstats_increment_state(hdr); 2588 } 2589 } 2590 } 2591 2592 void 2593 arc_space_consume(uint64_t space, arc_space_type_t type) 2594 { 2595 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2596 2597 switch (type) { 2598 default: 2599 break; 2600 case ARC_SPACE_DATA: 2601 ARCSTAT_INCR(arcstat_data_size, space); 2602 break; 2603 case ARC_SPACE_META: 2604 ARCSTAT_INCR(arcstat_metadata_size, space); 2605 break; 2606 case ARC_SPACE_BONUS: 2607 ARCSTAT_INCR(arcstat_bonus_size, space); 2608 break; 2609 case ARC_SPACE_DNODE: 2610 aggsum_add(&arc_sums.arcstat_dnode_size, space); 2611 break; 2612 case ARC_SPACE_DBUF: 2613 ARCSTAT_INCR(arcstat_dbuf_size, space); 2614 break; 2615 case ARC_SPACE_HDRS: 2616 ARCSTAT_INCR(arcstat_hdr_size, space); 2617 break; 2618 case ARC_SPACE_L2HDRS: 2619 aggsum_add(&arc_sums.arcstat_l2_hdr_size, space); 2620 break; 2621 case ARC_SPACE_ABD_CHUNK_WASTE: 2622 /* 2623 * Note: this includes space wasted by all scatter ABD's, not 2624 * just those allocated by the ARC. But the vast majority of 2625 * scatter ABD's come from the ARC, because other users are 2626 * very short-lived. 2627 */ 2628 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, space); 2629 break; 2630 } 2631 2632 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) 2633 aggsum_add(&arc_sums.arcstat_meta_used, space); 2634 2635 aggsum_add(&arc_sums.arcstat_size, space); 2636 } 2637 2638 void 2639 arc_space_return(uint64_t space, arc_space_type_t type) 2640 { 2641 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2642 2643 switch (type) { 2644 default: 2645 break; 2646 case ARC_SPACE_DATA: 2647 ARCSTAT_INCR(arcstat_data_size, -space); 2648 break; 2649 case ARC_SPACE_META: 2650 ARCSTAT_INCR(arcstat_metadata_size, -space); 2651 break; 2652 case ARC_SPACE_BONUS: 2653 ARCSTAT_INCR(arcstat_bonus_size, -space); 2654 break; 2655 case ARC_SPACE_DNODE: 2656 aggsum_add(&arc_sums.arcstat_dnode_size, -space); 2657 break; 2658 case ARC_SPACE_DBUF: 2659 ARCSTAT_INCR(arcstat_dbuf_size, -space); 2660 break; 2661 case ARC_SPACE_HDRS: 2662 ARCSTAT_INCR(arcstat_hdr_size, -space); 2663 break; 2664 case ARC_SPACE_L2HDRS: 2665 aggsum_add(&arc_sums.arcstat_l2_hdr_size, -space); 2666 break; 2667 case ARC_SPACE_ABD_CHUNK_WASTE: 2668 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, -space); 2669 break; 2670 } 2671 2672 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) { 2673 ASSERT(aggsum_compare(&arc_sums.arcstat_meta_used, 2674 space) >= 0); 2675 ARCSTAT_MAX(arcstat_meta_max, 2676 aggsum_upper_bound(&arc_sums.arcstat_meta_used)); 2677 aggsum_add(&arc_sums.arcstat_meta_used, -space); 2678 } 2679 2680 ASSERT(aggsum_compare(&arc_sums.arcstat_size, space) >= 0); 2681 aggsum_add(&arc_sums.arcstat_size, -space); 2682 } 2683 2684 /* 2685 * Given a hdr and a buf, returns whether that buf can share its b_data buffer 2686 * with the hdr's b_pabd. 2687 */ 2688 static boolean_t 2689 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2690 { 2691 /* 2692 * The criteria for sharing a hdr's data are: 2693 * 1. the buffer is not encrypted 2694 * 2. the hdr's compression matches the buf's compression 2695 * 3. the hdr doesn't need to be byteswapped 2696 * 4. the hdr isn't already being shared 2697 * 5. the buf is either compressed or it is the last buf in the hdr list 2698 * 2699 * Criterion #5 maintains the invariant that shared uncompressed 2700 * bufs must be the final buf in the hdr's b_buf list. Reading this, you 2701 * might ask, "if a compressed buf is allocated first, won't that be the 2702 * last thing in the list?", but in that case it's impossible to create 2703 * a shared uncompressed buf anyway (because the hdr must be compressed 2704 * to have the compressed buf). You might also think that #3 is 2705 * sufficient to make this guarantee, however it's possible 2706 * (specifically in the rare L2ARC write race mentioned in 2707 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that 2708 * is shareable, but wasn't at the time of its allocation. Rather than 2709 * allow a new shared uncompressed buf to be created and then shuffle 2710 * the list around to make it the last element, this simply disallows 2711 * sharing if the new buf isn't the first to be added. 2712 */ 2713 ASSERT3P(buf->b_hdr, ==, hdr); 2714 boolean_t hdr_compressed = 2715 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF; 2716 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0; 2717 return (!ARC_BUF_ENCRYPTED(buf) && 2718 buf_compressed == hdr_compressed && 2719 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && 2720 !HDR_SHARED_DATA(hdr) && 2721 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf))); 2722 } 2723 2724 /* 2725 * Allocate a buf for this hdr. If you care about the data that's in the hdr, 2726 * or if you want a compressed buffer, pass those flags in. Returns 0 if the 2727 * copy was made successfully, or an error code otherwise. 2728 */ 2729 static int 2730 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb, 2731 void *tag, boolean_t encrypted, boolean_t compressed, boolean_t noauth, 2732 boolean_t fill, arc_buf_t **ret) 2733 { 2734 arc_buf_t *buf; 2735 arc_fill_flags_t flags = ARC_FILL_LOCKED; 2736 2737 ASSERT(HDR_HAS_L1HDR(hdr)); 2738 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2739 VERIFY(hdr->b_type == ARC_BUFC_DATA || 2740 hdr->b_type == ARC_BUFC_METADATA); 2741 ASSERT3P(ret, !=, NULL); 2742 ASSERT3P(*ret, ==, NULL); 2743 IMPLY(encrypted, compressed); 2744 2745 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2746 buf->b_hdr = hdr; 2747 buf->b_data = NULL; 2748 buf->b_next = hdr->b_l1hdr.b_buf; 2749 buf->b_flags = 0; 2750 2751 add_reference(hdr, tag); 2752 2753 /* 2754 * We're about to change the hdr's b_flags. We must either 2755 * hold the hash_lock or be undiscoverable. 2756 */ 2757 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2758 2759 /* 2760 * Only honor requests for compressed bufs if the hdr is actually 2761 * compressed. This must be overridden if the buffer is encrypted since 2762 * encrypted buffers cannot be decompressed. 2763 */ 2764 if (encrypted) { 2765 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2766 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED; 2767 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED; 2768 } else if (compressed && 2769 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 2770 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2771 flags |= ARC_FILL_COMPRESSED; 2772 } 2773 2774 if (noauth) { 2775 ASSERT0(encrypted); 2776 flags |= ARC_FILL_NOAUTH; 2777 } 2778 2779 /* 2780 * If the hdr's data can be shared then we share the data buffer and 2781 * set the appropriate bit in the hdr's b_flags to indicate the hdr is 2782 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new 2783 * buffer to store the buf's data. 2784 * 2785 * There are two additional restrictions here because we're sharing 2786 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be 2787 * actively involved in an L2ARC write, because if this buf is used by 2788 * an arc_write() then the hdr's data buffer will be released when the 2789 * write completes, even though the L2ARC write might still be using it. 2790 * Second, the hdr's ABD must be linear so that the buf's user doesn't 2791 * need to be ABD-aware. It must be allocated via 2792 * zio_[data_]buf_alloc(), not as a page, because we need to be able 2793 * to abd_release_ownership_of_buf(), which isn't allowed on "linear 2794 * page" buffers because the ABD code needs to handle freeing them 2795 * specially. 2796 */ 2797 boolean_t can_share = arc_can_share(hdr, buf) && 2798 !HDR_L2_WRITING(hdr) && 2799 hdr->b_l1hdr.b_pabd != NULL && 2800 abd_is_linear(hdr->b_l1hdr.b_pabd) && 2801 !abd_is_linear_page(hdr->b_l1hdr.b_pabd); 2802 2803 /* Set up b_data and sharing */ 2804 if (can_share) { 2805 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd); 2806 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2807 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2808 } else { 2809 buf->b_data = 2810 arc_get_data_buf(hdr, arc_buf_size(buf), buf); 2811 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2812 } 2813 VERIFY3P(buf->b_data, !=, NULL); 2814 2815 hdr->b_l1hdr.b_buf = buf; 2816 hdr->b_l1hdr.b_bufcnt += 1; 2817 if (encrypted) 2818 hdr->b_crypt_hdr.b_ebufcnt += 1; 2819 2820 /* 2821 * If the user wants the data from the hdr, we need to either copy or 2822 * decompress the data. 2823 */ 2824 if (fill) { 2825 ASSERT3P(zb, !=, NULL); 2826 return (arc_buf_fill(buf, spa, zb, flags)); 2827 } 2828 2829 return (0); 2830 } 2831 2832 static char *arc_onloan_tag = "onloan"; 2833 2834 static inline void 2835 arc_loaned_bytes_update(int64_t delta) 2836 { 2837 atomic_add_64(&arc_loaned_bytes, delta); 2838 2839 /* assert that it did not wrap around */ 2840 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 2841 } 2842 2843 /* 2844 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 2845 * flight data by arc_tempreserve_space() until they are "returned". Loaned 2846 * buffers must be returned to the arc before they can be used by the DMU or 2847 * freed. 2848 */ 2849 arc_buf_t * 2850 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size) 2851 { 2852 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag, 2853 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size); 2854 2855 arc_loaned_bytes_update(arc_buf_size(buf)); 2856 2857 return (buf); 2858 } 2859 2860 arc_buf_t * 2861 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize, 2862 enum zio_compress compression_type, uint8_t complevel) 2863 { 2864 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag, 2865 psize, lsize, compression_type, complevel); 2866 2867 arc_loaned_bytes_update(arc_buf_size(buf)); 2868 2869 return (buf); 2870 } 2871 2872 arc_buf_t * 2873 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder, 2874 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 2875 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 2876 enum zio_compress compression_type, uint8_t complevel) 2877 { 2878 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj, 2879 byteorder, salt, iv, mac, ot, psize, lsize, compression_type, 2880 complevel); 2881 2882 atomic_add_64(&arc_loaned_bytes, psize); 2883 return (buf); 2884 } 2885 2886 2887 /* 2888 * Return a loaned arc buffer to the arc. 2889 */ 2890 void 2891 arc_return_buf(arc_buf_t *buf, void *tag) 2892 { 2893 arc_buf_hdr_t *hdr = buf->b_hdr; 2894 2895 ASSERT3P(buf->b_data, !=, NULL); 2896 ASSERT(HDR_HAS_L1HDR(hdr)); 2897 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 2898 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2899 2900 arc_loaned_bytes_update(-arc_buf_size(buf)); 2901 } 2902 2903 /* Detach an arc_buf from a dbuf (tag) */ 2904 void 2905 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 2906 { 2907 arc_buf_hdr_t *hdr = buf->b_hdr; 2908 2909 ASSERT3P(buf->b_data, !=, NULL); 2910 ASSERT(HDR_HAS_L1HDR(hdr)); 2911 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2912 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 2913 2914 arc_loaned_bytes_update(arc_buf_size(buf)); 2915 } 2916 2917 static void 2918 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type) 2919 { 2920 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); 2921 2922 df->l2df_abd = abd; 2923 df->l2df_size = size; 2924 df->l2df_type = type; 2925 mutex_enter(&l2arc_free_on_write_mtx); 2926 list_insert_head(l2arc_free_on_write, df); 2927 mutex_exit(&l2arc_free_on_write_mtx); 2928 } 2929 2930 static void 2931 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata) 2932 { 2933 arc_state_t *state = hdr->b_l1hdr.b_state; 2934 arc_buf_contents_t type = arc_buf_type(hdr); 2935 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 2936 2937 /* protected by hash lock, if in the hash table */ 2938 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2939 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2940 ASSERT(state != arc_anon && state != arc_l2c_only); 2941 2942 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2943 size, hdr); 2944 } 2945 (void) zfs_refcount_remove_many(&state->arcs_size, size, hdr); 2946 if (type == ARC_BUFC_METADATA) { 2947 arc_space_return(size, ARC_SPACE_META); 2948 } else { 2949 ASSERT(type == ARC_BUFC_DATA); 2950 arc_space_return(size, ARC_SPACE_DATA); 2951 } 2952 2953 if (free_rdata) { 2954 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type); 2955 } else { 2956 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type); 2957 } 2958 } 2959 2960 /* 2961 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the 2962 * data buffer, we transfer the refcount ownership to the hdr and update 2963 * the appropriate kstats. 2964 */ 2965 static void 2966 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2967 { 2968 ASSERT(arc_can_share(hdr, buf)); 2969 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2970 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 2971 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2972 2973 /* 2974 * Start sharing the data buffer. We transfer the 2975 * refcount ownership to the hdr since it always owns 2976 * the refcount whenever an arc_buf_t is shared. 2977 */ 2978 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 2979 arc_hdr_size(hdr), buf, hdr); 2980 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf)); 2981 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd, 2982 HDR_ISTYPE_METADATA(hdr)); 2983 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2984 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2985 2986 /* 2987 * Since we've transferred ownership to the hdr we need 2988 * to increment its compressed and uncompressed kstats and 2989 * decrement the overhead size. 2990 */ 2991 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 2992 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 2993 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf)); 2994 } 2995 2996 static void 2997 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2998 { 2999 ASSERT(arc_buf_is_shared(buf)); 3000 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3001 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3002 3003 /* 3004 * We are no longer sharing this buffer so we need 3005 * to transfer its ownership to the rightful owner. 3006 */ 3007 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 3008 arc_hdr_size(hdr), hdr, buf); 3009 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3010 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd); 3011 abd_free(hdr->b_l1hdr.b_pabd); 3012 hdr->b_l1hdr.b_pabd = NULL; 3013 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 3014 3015 /* 3016 * Since the buffer is no longer shared between 3017 * the arc buf and the hdr, count it as overhead. 3018 */ 3019 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 3020 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3021 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 3022 } 3023 3024 /* 3025 * Remove an arc_buf_t from the hdr's buf list and return the last 3026 * arc_buf_t on the list. If no buffers remain on the list then return 3027 * NULL. 3028 */ 3029 static arc_buf_t * 3030 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf) 3031 { 3032 ASSERT(HDR_HAS_L1HDR(hdr)); 3033 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3034 3035 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf; 3036 arc_buf_t *lastbuf = NULL; 3037 3038 /* 3039 * Remove the buf from the hdr list and locate the last 3040 * remaining buffer on the list. 3041 */ 3042 while (*bufp != NULL) { 3043 if (*bufp == buf) 3044 *bufp = buf->b_next; 3045 3046 /* 3047 * If we've removed a buffer in the middle of 3048 * the list then update the lastbuf and update 3049 * bufp. 3050 */ 3051 if (*bufp != NULL) { 3052 lastbuf = *bufp; 3053 bufp = &(*bufp)->b_next; 3054 } 3055 } 3056 buf->b_next = NULL; 3057 ASSERT3P(lastbuf, !=, buf); 3058 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL); 3059 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL); 3060 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf)); 3061 3062 return (lastbuf); 3063 } 3064 3065 /* 3066 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's 3067 * list and free it. 3068 */ 3069 static void 3070 arc_buf_destroy_impl(arc_buf_t *buf) 3071 { 3072 arc_buf_hdr_t *hdr = buf->b_hdr; 3073 3074 /* 3075 * Free up the data associated with the buf but only if we're not 3076 * sharing this with the hdr. If we are sharing it with the hdr, the 3077 * hdr is responsible for doing the free. 3078 */ 3079 if (buf->b_data != NULL) { 3080 /* 3081 * We're about to change the hdr's b_flags. We must either 3082 * hold the hash_lock or be undiscoverable. 3083 */ 3084 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3085 3086 arc_cksum_verify(buf); 3087 arc_buf_unwatch(buf); 3088 3089 if (arc_buf_is_shared(buf)) { 3090 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3091 } else { 3092 uint64_t size = arc_buf_size(buf); 3093 arc_free_data_buf(hdr, buf->b_data, size, buf); 3094 ARCSTAT_INCR(arcstat_overhead_size, -size); 3095 } 3096 buf->b_data = NULL; 3097 3098 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3099 hdr->b_l1hdr.b_bufcnt -= 1; 3100 3101 if (ARC_BUF_ENCRYPTED(buf)) { 3102 hdr->b_crypt_hdr.b_ebufcnt -= 1; 3103 3104 /* 3105 * If we have no more encrypted buffers and we've 3106 * already gotten a copy of the decrypted data we can 3107 * free b_rabd to save some space. 3108 */ 3109 if (hdr->b_crypt_hdr.b_ebufcnt == 0 && 3110 HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL && 3111 !HDR_IO_IN_PROGRESS(hdr)) { 3112 arc_hdr_free_abd(hdr, B_TRUE); 3113 } 3114 } 3115 } 3116 3117 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 3118 3119 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 3120 /* 3121 * If the current arc_buf_t is sharing its data buffer with the 3122 * hdr, then reassign the hdr's b_pabd to share it with the new 3123 * buffer at the end of the list. The shared buffer is always 3124 * the last one on the hdr's buffer list. 3125 * 3126 * There is an equivalent case for compressed bufs, but since 3127 * they aren't guaranteed to be the last buf in the list and 3128 * that is an exceedingly rare case, we just allow that space be 3129 * wasted temporarily. We must also be careful not to share 3130 * encrypted buffers, since they cannot be shared. 3131 */ 3132 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) { 3133 /* Only one buf can be shared at once */ 3134 VERIFY(!arc_buf_is_shared(lastbuf)); 3135 /* hdr is uncompressed so can't have compressed buf */ 3136 VERIFY(!ARC_BUF_COMPRESSED(lastbuf)); 3137 3138 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3139 arc_hdr_free_abd(hdr, B_FALSE); 3140 3141 /* 3142 * We must setup a new shared block between the 3143 * last buffer and the hdr. The data would have 3144 * been allocated by the arc buf so we need to transfer 3145 * ownership to the hdr since it's now being shared. 3146 */ 3147 arc_share_buf(hdr, lastbuf); 3148 } 3149 } else if (HDR_SHARED_DATA(hdr)) { 3150 /* 3151 * Uncompressed shared buffers are always at the end 3152 * of the list. Compressed buffers don't have the 3153 * same requirements. This makes it hard to 3154 * simply assert that the lastbuf is shared so 3155 * we rely on the hdr's compression flags to determine 3156 * if we have a compressed, shared buffer. 3157 */ 3158 ASSERT3P(lastbuf, !=, NULL); 3159 ASSERT(arc_buf_is_shared(lastbuf) || 3160 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 3161 } 3162 3163 /* 3164 * Free the checksum if we're removing the last uncompressed buf from 3165 * this hdr. 3166 */ 3167 if (!arc_hdr_has_uncompressed_buf(hdr)) { 3168 arc_cksum_free(hdr); 3169 } 3170 3171 /* clean up the buf */ 3172 buf->b_hdr = NULL; 3173 kmem_cache_free(buf_cache, buf); 3174 } 3175 3176 static void 3177 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags) 3178 { 3179 uint64_t size; 3180 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0); 3181 3182 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 3183 ASSERT(HDR_HAS_L1HDR(hdr)); 3184 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata); 3185 IMPLY(alloc_rdata, HDR_PROTECTED(hdr)); 3186 3187 if (alloc_rdata) { 3188 size = HDR_GET_PSIZE(hdr); 3189 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL); 3190 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr, 3191 alloc_flags); 3192 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL); 3193 ARCSTAT_INCR(arcstat_raw_size, size); 3194 } else { 3195 size = arc_hdr_size(hdr); 3196 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3197 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr, 3198 alloc_flags); 3199 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3200 } 3201 3202 ARCSTAT_INCR(arcstat_compressed_size, size); 3203 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3204 } 3205 3206 static void 3207 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata) 3208 { 3209 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 3210 3211 ASSERT(HDR_HAS_L1HDR(hdr)); 3212 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 3213 IMPLY(free_rdata, HDR_HAS_RABD(hdr)); 3214 3215 /* 3216 * If the hdr is currently being written to the l2arc then 3217 * we defer freeing the data by adding it to the l2arc_free_on_write 3218 * list. The l2arc will free the data once it's finished 3219 * writing it to the l2arc device. 3220 */ 3221 if (HDR_L2_WRITING(hdr)) { 3222 arc_hdr_free_on_write(hdr, free_rdata); 3223 ARCSTAT_BUMP(arcstat_l2_free_on_write); 3224 } else if (free_rdata) { 3225 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr); 3226 } else { 3227 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr); 3228 } 3229 3230 if (free_rdata) { 3231 hdr->b_crypt_hdr.b_rabd = NULL; 3232 ARCSTAT_INCR(arcstat_raw_size, -size); 3233 } else { 3234 hdr->b_l1hdr.b_pabd = NULL; 3235 } 3236 3237 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr)) 3238 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 3239 3240 ARCSTAT_INCR(arcstat_compressed_size, -size); 3241 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3242 } 3243 3244 /* 3245 * Allocate empty anonymous ARC header. The header will get its identity 3246 * assigned and buffers attached later as part of read or write operations. 3247 * 3248 * In case of read arc_read() assigns header its identify (b_dva + b_birth), 3249 * inserts it into ARC hash to become globally visible and allocates physical 3250 * (b_pabd) or raw (b_rabd) ABD buffer to read into from disk. On disk read 3251 * completion arc_read_done() allocates ARC buffer(s) as needed, potentially 3252 * sharing one of them with the physical ABD buffer. 3253 * 3254 * In case of write arc_alloc_buf() allocates ARC buffer to be filled with 3255 * data. Then after compression and/or encryption arc_write_ready() allocates 3256 * and fills (or potentially shares) physical (b_pabd) or raw (b_rabd) ABD 3257 * buffer. On disk write completion arc_write_done() assigns the header its 3258 * new identity (b_dva + b_birth) and inserts into ARC hash. 3259 * 3260 * In case of partial overwrite the old data is read first as described. Then 3261 * arc_release() either allocates new anonymous ARC header and moves the ARC 3262 * buffer to it, or reuses the old ARC header by discarding its identity and 3263 * removing it from ARC hash. After buffer modification normal write process 3264 * follows as described. 3265 */ 3266 static arc_buf_hdr_t * 3267 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, 3268 boolean_t protected, enum zio_compress compression_type, uint8_t complevel, 3269 arc_buf_contents_t type) 3270 { 3271 arc_buf_hdr_t *hdr; 3272 3273 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); 3274 if (protected) { 3275 hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE); 3276 } else { 3277 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 3278 } 3279 3280 ASSERT(HDR_EMPTY(hdr)); 3281 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3282 HDR_SET_PSIZE(hdr, psize); 3283 HDR_SET_LSIZE(hdr, lsize); 3284 hdr->b_spa = spa; 3285 hdr->b_type = type; 3286 hdr->b_flags = 0; 3287 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); 3288 arc_hdr_set_compress(hdr, compression_type); 3289 hdr->b_complevel = complevel; 3290 if (protected) 3291 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 3292 3293 hdr->b_l1hdr.b_state = arc_anon; 3294 hdr->b_l1hdr.b_arc_access = 0; 3295 hdr->b_l1hdr.b_mru_hits = 0; 3296 hdr->b_l1hdr.b_mru_ghost_hits = 0; 3297 hdr->b_l1hdr.b_mfu_hits = 0; 3298 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 3299 hdr->b_l1hdr.b_bufcnt = 0; 3300 hdr->b_l1hdr.b_buf = NULL; 3301 3302 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3303 3304 return (hdr); 3305 } 3306 3307 /* 3308 * Transition between the two allocation states for the arc_buf_hdr struct. 3309 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 3310 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 3311 * version is used when a cache buffer is only in the L2ARC in order to reduce 3312 * memory usage. 3313 */ 3314 static arc_buf_hdr_t * 3315 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 3316 { 3317 ASSERT(HDR_HAS_L2HDR(hdr)); 3318 3319 arc_buf_hdr_t *nhdr; 3320 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3321 3322 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 3323 (old == hdr_l2only_cache && new == hdr_full_cache)); 3324 3325 /* 3326 * if the caller wanted a new full header and the header is to be 3327 * encrypted we will actually allocate the header from the full crypt 3328 * cache instead. The same applies to freeing from the old cache. 3329 */ 3330 if (HDR_PROTECTED(hdr) && new == hdr_full_cache) 3331 new = hdr_full_crypt_cache; 3332 if (HDR_PROTECTED(hdr) && old == hdr_full_cache) 3333 old = hdr_full_crypt_cache; 3334 3335 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 3336 3337 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 3338 buf_hash_remove(hdr); 3339 3340 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE); 3341 3342 if (new == hdr_full_cache || new == hdr_full_crypt_cache) { 3343 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3344 /* 3345 * arc_access and arc_change_state need to be aware that a 3346 * header has just come out of L2ARC, so we set its state to 3347 * l2c_only even though it's about to change. 3348 */ 3349 nhdr->b_l1hdr.b_state = arc_l2c_only; 3350 3351 /* Verify previous threads set to NULL before freeing */ 3352 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL); 3353 ASSERT(!HDR_HAS_RABD(hdr)); 3354 } else { 3355 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3356 ASSERT0(hdr->b_l1hdr.b_bufcnt); 3357 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3358 3359 /* 3360 * If we've reached here, We must have been called from 3361 * arc_evict_hdr(), as such we should have already been 3362 * removed from any ghost list we were previously on 3363 * (which protects us from racing with arc_evict_state), 3364 * thus no locking is needed during this check. 3365 */ 3366 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3367 3368 /* 3369 * A buffer must not be moved into the arc_l2c_only 3370 * state if it's not finished being written out to the 3371 * l2arc device. Otherwise, the b_l1hdr.b_pabd field 3372 * might try to be accessed, even though it was removed. 3373 */ 3374 VERIFY(!HDR_L2_WRITING(hdr)); 3375 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3376 ASSERT(!HDR_HAS_RABD(hdr)); 3377 3378 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3379 } 3380 /* 3381 * The header has been reallocated so we need to re-insert it into any 3382 * lists it was on. 3383 */ 3384 (void) buf_hash_insert(nhdr, NULL); 3385 3386 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 3387 3388 mutex_enter(&dev->l2ad_mtx); 3389 3390 /* 3391 * We must place the realloc'ed header back into the list at 3392 * the same spot. Otherwise, if it's placed earlier in the list, 3393 * l2arc_write_buffers() could find it during the function's 3394 * write phase, and try to write it out to the l2arc. 3395 */ 3396 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 3397 list_remove(&dev->l2ad_buflist, hdr); 3398 3399 mutex_exit(&dev->l2ad_mtx); 3400 3401 /* 3402 * Since we're using the pointer address as the tag when 3403 * incrementing and decrementing the l2ad_alloc refcount, we 3404 * must remove the old pointer (that we're about to destroy) and 3405 * add the new pointer to the refcount. Otherwise we'd remove 3406 * the wrong pointer address when calling arc_hdr_destroy() later. 3407 */ 3408 3409 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 3410 arc_hdr_size(hdr), hdr); 3411 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 3412 arc_hdr_size(nhdr), nhdr); 3413 3414 buf_discard_identity(hdr); 3415 kmem_cache_free(old, hdr); 3416 3417 return (nhdr); 3418 } 3419 3420 /* 3421 * This function allows an L1 header to be reallocated as a crypt 3422 * header and vice versa. If we are going to a crypt header, the 3423 * new fields will be zeroed out. 3424 */ 3425 static arc_buf_hdr_t * 3426 arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt) 3427 { 3428 arc_buf_hdr_t *nhdr; 3429 arc_buf_t *buf; 3430 kmem_cache_t *ncache, *ocache; 3431 3432 /* 3433 * This function requires that hdr is in the arc_anon state. 3434 * Therefore it won't have any L2ARC data for us to worry 3435 * about copying. 3436 */ 3437 ASSERT(HDR_HAS_L1HDR(hdr)); 3438 ASSERT(!HDR_HAS_L2HDR(hdr)); 3439 ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt); 3440 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3441 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3442 ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node)); 3443 ASSERT3P(hdr->b_hash_next, ==, NULL); 3444 3445 if (need_crypt) { 3446 ncache = hdr_full_crypt_cache; 3447 ocache = hdr_full_cache; 3448 } else { 3449 ncache = hdr_full_cache; 3450 ocache = hdr_full_crypt_cache; 3451 } 3452 3453 nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE); 3454 3455 /* 3456 * Copy all members that aren't locks or condvars to the new header. 3457 * No lists are pointing to us (as we asserted above), so we don't 3458 * need to worry about the list nodes. 3459 */ 3460 nhdr->b_dva = hdr->b_dva; 3461 nhdr->b_birth = hdr->b_birth; 3462 nhdr->b_type = hdr->b_type; 3463 nhdr->b_flags = hdr->b_flags; 3464 nhdr->b_psize = hdr->b_psize; 3465 nhdr->b_lsize = hdr->b_lsize; 3466 nhdr->b_spa = hdr->b_spa; 3467 nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum; 3468 nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt; 3469 nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap; 3470 nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state; 3471 nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access; 3472 nhdr->b_l1hdr.b_mru_hits = hdr->b_l1hdr.b_mru_hits; 3473 nhdr->b_l1hdr.b_mru_ghost_hits = hdr->b_l1hdr.b_mru_ghost_hits; 3474 nhdr->b_l1hdr.b_mfu_hits = hdr->b_l1hdr.b_mfu_hits; 3475 nhdr->b_l1hdr.b_mfu_ghost_hits = hdr->b_l1hdr.b_mfu_ghost_hits; 3476 nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb; 3477 nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd; 3478 3479 /* 3480 * This zfs_refcount_add() exists only to ensure that the individual 3481 * arc buffers always point to a header that is referenced, avoiding 3482 * a small race condition that could trigger ASSERTs. 3483 */ 3484 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG); 3485 nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf; 3486 for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) { 3487 mutex_enter(&buf->b_evict_lock); 3488 buf->b_hdr = nhdr; 3489 mutex_exit(&buf->b_evict_lock); 3490 } 3491 3492 zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt); 3493 (void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG); 3494 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3495 3496 if (need_crypt) { 3497 arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED); 3498 } else { 3499 arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED); 3500 } 3501 3502 /* unset all members of the original hdr */ 3503 bzero(&hdr->b_dva, sizeof (dva_t)); 3504 hdr->b_birth = 0; 3505 hdr->b_type = ARC_BUFC_INVALID; 3506 hdr->b_flags = 0; 3507 hdr->b_psize = 0; 3508 hdr->b_lsize = 0; 3509 hdr->b_spa = 0; 3510 hdr->b_l1hdr.b_freeze_cksum = NULL; 3511 hdr->b_l1hdr.b_buf = NULL; 3512 hdr->b_l1hdr.b_bufcnt = 0; 3513 hdr->b_l1hdr.b_byteswap = 0; 3514 hdr->b_l1hdr.b_state = NULL; 3515 hdr->b_l1hdr.b_arc_access = 0; 3516 hdr->b_l1hdr.b_mru_hits = 0; 3517 hdr->b_l1hdr.b_mru_ghost_hits = 0; 3518 hdr->b_l1hdr.b_mfu_hits = 0; 3519 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 3520 hdr->b_l1hdr.b_acb = NULL; 3521 hdr->b_l1hdr.b_pabd = NULL; 3522 3523 if (ocache == hdr_full_crypt_cache) { 3524 ASSERT(!HDR_HAS_RABD(hdr)); 3525 hdr->b_crypt_hdr.b_ot = DMU_OT_NONE; 3526 hdr->b_crypt_hdr.b_ebufcnt = 0; 3527 hdr->b_crypt_hdr.b_dsobj = 0; 3528 bzero(hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3529 bzero(hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3530 bzero(hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3531 } 3532 3533 buf_discard_identity(hdr); 3534 kmem_cache_free(ocache, hdr); 3535 3536 return (nhdr); 3537 } 3538 3539 /* 3540 * This function is used by the send / receive code to convert a newly 3541 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It 3542 * is also used to allow the root objset block to be updated without altering 3543 * its embedded MACs. Both block types will always be uncompressed so we do not 3544 * have to worry about compression type or psize. 3545 */ 3546 void 3547 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder, 3548 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv, 3549 const uint8_t *mac) 3550 { 3551 arc_buf_hdr_t *hdr = buf->b_hdr; 3552 3553 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET); 3554 ASSERT(HDR_HAS_L1HDR(hdr)); 3555 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3556 3557 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED); 3558 if (!HDR_PROTECTED(hdr)) 3559 hdr = arc_hdr_realloc_crypt(hdr, B_TRUE); 3560 hdr->b_crypt_hdr.b_dsobj = dsobj; 3561 hdr->b_crypt_hdr.b_ot = ot; 3562 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3563 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3564 if (!arc_hdr_has_uncompressed_buf(hdr)) 3565 arc_cksum_free(hdr); 3566 3567 if (salt != NULL) 3568 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3569 if (iv != NULL) 3570 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3571 if (mac != NULL) 3572 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3573 } 3574 3575 /* 3576 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. 3577 * The buf is returned thawed since we expect the consumer to modify it. 3578 */ 3579 arc_buf_t * 3580 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size) 3581 { 3582 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, 3583 B_FALSE, ZIO_COMPRESS_OFF, 0, type); 3584 3585 arc_buf_t *buf = NULL; 3586 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE, 3587 B_FALSE, B_FALSE, &buf)); 3588 arc_buf_thaw(buf); 3589 3590 return (buf); 3591 } 3592 3593 /* 3594 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this 3595 * for bufs containing metadata. 3596 */ 3597 arc_buf_t * 3598 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize, 3599 enum zio_compress compression_type, uint8_t complevel) 3600 { 3601 ASSERT3U(lsize, >, 0); 3602 ASSERT3U(lsize, >=, psize); 3603 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF); 3604 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3605 3606 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 3607 B_FALSE, compression_type, complevel, ARC_BUFC_DATA); 3608 3609 arc_buf_t *buf = NULL; 3610 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, 3611 B_TRUE, B_FALSE, B_FALSE, &buf)); 3612 arc_buf_thaw(buf); 3613 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3614 3615 /* 3616 * To ensure that the hdr has the correct data in it if we call 3617 * arc_untransform() on this buf before it's been written to disk, 3618 * it's easiest if we just set up sharing between the buf and the hdr. 3619 */ 3620 arc_share_buf(hdr, buf); 3621 3622 return (buf); 3623 } 3624 3625 arc_buf_t * 3626 arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder, 3627 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 3628 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 3629 enum zio_compress compression_type, uint8_t complevel) 3630 { 3631 arc_buf_hdr_t *hdr; 3632 arc_buf_t *buf; 3633 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ? 3634 ARC_BUFC_METADATA : ARC_BUFC_DATA; 3635 3636 ASSERT3U(lsize, >, 0); 3637 ASSERT3U(lsize, >=, psize); 3638 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF); 3639 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3640 3641 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE, 3642 compression_type, complevel, type); 3643 3644 hdr->b_crypt_hdr.b_dsobj = dsobj; 3645 hdr->b_crypt_hdr.b_ot = ot; 3646 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3647 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3648 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3649 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3650 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3651 3652 /* 3653 * This buffer will be considered encrypted even if the ot is not an 3654 * encrypted type. It will become authenticated instead in 3655 * arc_write_ready(). 3656 */ 3657 buf = NULL; 3658 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE, 3659 B_FALSE, B_FALSE, &buf)); 3660 arc_buf_thaw(buf); 3661 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3662 3663 return (buf); 3664 } 3665 3666 static void 3667 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 3668 boolean_t state_only) 3669 { 3670 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3671 l2arc_dev_t *dev = l2hdr->b_dev; 3672 uint64_t lsize = HDR_GET_LSIZE(hdr); 3673 uint64_t psize = HDR_GET_PSIZE(hdr); 3674 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3675 arc_buf_contents_t type = hdr->b_type; 3676 int64_t lsize_s; 3677 int64_t psize_s; 3678 int64_t asize_s; 3679 3680 if (incr) { 3681 lsize_s = lsize; 3682 psize_s = psize; 3683 asize_s = asize; 3684 } else { 3685 lsize_s = -lsize; 3686 psize_s = -psize; 3687 asize_s = -asize; 3688 } 3689 3690 /* If the buffer is a prefetch, count it as such. */ 3691 if (HDR_PREFETCH(hdr)) { 3692 ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s); 3693 } else { 3694 /* 3695 * We use the value stored in the L2 header upon initial 3696 * caching in L2ARC. This value will be updated in case 3697 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC 3698 * metadata (log entry) cannot currently be updated. Having 3699 * the ARC state in the L2 header solves the problem of a 3700 * possibly absent L1 header (apparent in buffers restored 3701 * from persistent L2ARC). 3702 */ 3703 switch (hdr->b_l2hdr.b_arcs_state) { 3704 case ARC_STATE_MRU_GHOST: 3705 case ARC_STATE_MRU: 3706 ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s); 3707 break; 3708 case ARC_STATE_MFU_GHOST: 3709 case ARC_STATE_MFU: 3710 ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s); 3711 break; 3712 default: 3713 break; 3714 } 3715 } 3716 3717 if (state_only) 3718 return; 3719 3720 ARCSTAT_INCR(arcstat_l2_psize, psize_s); 3721 ARCSTAT_INCR(arcstat_l2_lsize, lsize_s); 3722 3723 switch (type) { 3724 case ARC_BUFC_DATA: 3725 ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s); 3726 break; 3727 case ARC_BUFC_METADATA: 3728 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s); 3729 break; 3730 default: 3731 break; 3732 } 3733 } 3734 3735 3736 static void 3737 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 3738 { 3739 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3740 l2arc_dev_t *dev = l2hdr->b_dev; 3741 uint64_t psize = HDR_GET_PSIZE(hdr); 3742 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3743 3744 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 3745 ASSERT(HDR_HAS_L2HDR(hdr)); 3746 3747 list_remove(&dev->l2ad_buflist, hdr); 3748 3749 l2arc_hdr_arcstats_decrement(hdr); 3750 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); 3751 3752 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), 3753 hdr); 3754 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 3755 } 3756 3757 static void 3758 arc_hdr_destroy(arc_buf_hdr_t *hdr) 3759 { 3760 if (HDR_HAS_L1HDR(hdr)) { 3761 ASSERT(hdr->b_l1hdr.b_buf == NULL || 3762 hdr->b_l1hdr.b_bufcnt > 0); 3763 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3764 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3765 } 3766 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3767 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 3768 3769 if (HDR_HAS_L2HDR(hdr)) { 3770 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3771 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 3772 3773 if (!buflist_held) 3774 mutex_enter(&dev->l2ad_mtx); 3775 3776 /* 3777 * Even though we checked this conditional above, we 3778 * need to check this again now that we have the 3779 * l2ad_mtx. This is because we could be racing with 3780 * another thread calling l2arc_evict() which might have 3781 * destroyed this header's L2 portion as we were waiting 3782 * to acquire the l2ad_mtx. If that happens, we don't 3783 * want to re-destroy the header's L2 portion. 3784 */ 3785 if (HDR_HAS_L2HDR(hdr)) { 3786 3787 if (!HDR_EMPTY(hdr)) 3788 buf_discard_identity(hdr); 3789 3790 arc_hdr_l2hdr_destroy(hdr); 3791 } 3792 3793 if (!buflist_held) 3794 mutex_exit(&dev->l2ad_mtx); 3795 } 3796 3797 /* 3798 * The header's identify can only be safely discarded once it is no 3799 * longer discoverable. This requires removing it from the hash table 3800 * and the l2arc header list. After this point the hash lock can not 3801 * be used to protect the header. 3802 */ 3803 if (!HDR_EMPTY(hdr)) 3804 buf_discard_identity(hdr); 3805 3806 if (HDR_HAS_L1HDR(hdr)) { 3807 arc_cksum_free(hdr); 3808 3809 while (hdr->b_l1hdr.b_buf != NULL) 3810 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf); 3811 3812 if (hdr->b_l1hdr.b_pabd != NULL) 3813 arc_hdr_free_abd(hdr, B_FALSE); 3814 3815 if (HDR_HAS_RABD(hdr)) 3816 arc_hdr_free_abd(hdr, B_TRUE); 3817 } 3818 3819 ASSERT3P(hdr->b_hash_next, ==, NULL); 3820 if (HDR_HAS_L1HDR(hdr)) { 3821 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3822 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 3823 3824 if (!HDR_PROTECTED(hdr)) { 3825 kmem_cache_free(hdr_full_cache, hdr); 3826 } else { 3827 kmem_cache_free(hdr_full_crypt_cache, hdr); 3828 } 3829 } else { 3830 kmem_cache_free(hdr_l2only_cache, hdr); 3831 } 3832 } 3833 3834 void 3835 arc_buf_destroy(arc_buf_t *buf, void* tag) 3836 { 3837 arc_buf_hdr_t *hdr = buf->b_hdr; 3838 3839 if (hdr->b_l1hdr.b_state == arc_anon) { 3840 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 3841 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3842 VERIFY0(remove_reference(hdr, NULL, tag)); 3843 arc_hdr_destroy(hdr); 3844 return; 3845 } 3846 3847 kmutex_t *hash_lock = HDR_LOCK(hdr); 3848 mutex_enter(hash_lock); 3849 3850 ASSERT3P(hdr, ==, buf->b_hdr); 3851 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3852 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3853 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); 3854 ASSERT3P(buf->b_data, !=, NULL); 3855 3856 (void) remove_reference(hdr, hash_lock, tag); 3857 arc_buf_destroy_impl(buf); 3858 mutex_exit(hash_lock); 3859 } 3860 3861 /* 3862 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 3863 * state of the header is dependent on its state prior to entering this 3864 * function. The following transitions are possible: 3865 * 3866 * - arc_mru -> arc_mru_ghost 3867 * - arc_mfu -> arc_mfu_ghost 3868 * - arc_mru_ghost -> arc_l2c_only 3869 * - arc_mru_ghost -> deleted 3870 * - arc_mfu_ghost -> arc_l2c_only 3871 * - arc_mfu_ghost -> deleted 3872 * 3873 * Return total size of evicted data buffers for eviction progress tracking. 3874 * When evicting from ghost states return logical buffer size to make eviction 3875 * progress at the same (or at least comparable) rate as from non-ghost states. 3876 * 3877 * Return *real_evicted for actual ARC size reduction to wake up threads 3878 * waiting for it. For non-ghost states it includes size of evicted data 3879 * buffers (the headers are not freed there). For ghost states it includes 3880 * only the evicted headers size. 3881 */ 3882 static int64_t 3883 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, uint64_t *real_evicted) 3884 { 3885 arc_state_t *evicted_state, *state; 3886 int64_t bytes_evicted = 0; 3887 int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ? 3888 arc_min_prescient_prefetch_ms : arc_min_prefetch_ms; 3889 3890 ASSERT(MUTEX_HELD(hash_lock)); 3891 ASSERT(HDR_HAS_L1HDR(hdr)); 3892 3893 *real_evicted = 0; 3894 state = hdr->b_l1hdr.b_state; 3895 if (GHOST_STATE(state)) { 3896 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3897 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3898 3899 /* 3900 * l2arc_write_buffers() relies on a header's L1 portion 3901 * (i.e. its b_pabd field) during it's write phase. 3902 * Thus, we cannot push a header onto the arc_l2c_only 3903 * state (removing its L1 piece) until the header is 3904 * done being written to the l2arc. 3905 */ 3906 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 3907 ARCSTAT_BUMP(arcstat_evict_l2_skip); 3908 return (bytes_evicted); 3909 } 3910 3911 ARCSTAT_BUMP(arcstat_deleted); 3912 bytes_evicted += HDR_GET_LSIZE(hdr); 3913 3914 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 3915 3916 if (HDR_HAS_L2HDR(hdr)) { 3917 ASSERT(hdr->b_l1hdr.b_pabd == NULL); 3918 ASSERT(!HDR_HAS_RABD(hdr)); 3919 /* 3920 * This buffer is cached on the 2nd Level ARC; 3921 * don't destroy the header. 3922 */ 3923 arc_change_state(arc_l2c_only, hdr, hash_lock); 3924 /* 3925 * dropping from L1+L2 cached to L2-only, 3926 * realloc to remove the L1 header. 3927 */ 3928 hdr = arc_hdr_realloc(hdr, hdr_full_cache, 3929 hdr_l2only_cache); 3930 *real_evicted += HDR_FULL_SIZE - HDR_L2ONLY_SIZE; 3931 } else { 3932 arc_change_state(arc_anon, hdr, hash_lock); 3933 arc_hdr_destroy(hdr); 3934 *real_evicted += HDR_FULL_SIZE; 3935 } 3936 return (bytes_evicted); 3937 } 3938 3939 ASSERT(state == arc_mru || state == arc_mfu); 3940 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3941 3942 /* prefetch buffers have a minimum lifespan */ 3943 if (HDR_IO_IN_PROGRESS(hdr) || 3944 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 3945 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < 3946 MSEC_TO_TICK(min_lifetime))) { 3947 ARCSTAT_BUMP(arcstat_evict_skip); 3948 return (bytes_evicted); 3949 } 3950 3951 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3952 while (hdr->b_l1hdr.b_buf) { 3953 arc_buf_t *buf = hdr->b_l1hdr.b_buf; 3954 if (!mutex_tryenter(&buf->b_evict_lock)) { 3955 ARCSTAT_BUMP(arcstat_mutex_miss); 3956 break; 3957 } 3958 if (buf->b_data != NULL) { 3959 bytes_evicted += HDR_GET_LSIZE(hdr); 3960 *real_evicted += HDR_GET_LSIZE(hdr); 3961 } 3962 mutex_exit(&buf->b_evict_lock); 3963 arc_buf_destroy_impl(buf); 3964 } 3965 3966 if (HDR_HAS_L2HDR(hdr)) { 3967 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); 3968 } else { 3969 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 3970 ARCSTAT_INCR(arcstat_evict_l2_eligible, 3971 HDR_GET_LSIZE(hdr)); 3972 3973 switch (state->arcs_state) { 3974 case ARC_STATE_MRU: 3975 ARCSTAT_INCR( 3976 arcstat_evict_l2_eligible_mru, 3977 HDR_GET_LSIZE(hdr)); 3978 break; 3979 case ARC_STATE_MFU: 3980 ARCSTAT_INCR( 3981 arcstat_evict_l2_eligible_mfu, 3982 HDR_GET_LSIZE(hdr)); 3983 break; 3984 default: 3985 break; 3986 } 3987 } else { 3988 ARCSTAT_INCR(arcstat_evict_l2_ineligible, 3989 HDR_GET_LSIZE(hdr)); 3990 } 3991 } 3992 3993 if (hdr->b_l1hdr.b_bufcnt == 0) { 3994 arc_cksum_free(hdr); 3995 3996 bytes_evicted += arc_hdr_size(hdr); 3997 *real_evicted += arc_hdr_size(hdr); 3998 3999 /* 4000 * If this hdr is being evicted and has a compressed 4001 * buffer then we discard it here before we change states. 4002 * This ensures that the accounting is updated correctly 4003 * in arc_free_data_impl(). 4004 */ 4005 if (hdr->b_l1hdr.b_pabd != NULL) 4006 arc_hdr_free_abd(hdr, B_FALSE); 4007 4008 if (HDR_HAS_RABD(hdr)) 4009 arc_hdr_free_abd(hdr, B_TRUE); 4010 4011 arc_change_state(evicted_state, hdr, hash_lock); 4012 ASSERT(HDR_IN_HASH_TABLE(hdr)); 4013 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 4014 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 4015 } 4016 4017 return (bytes_evicted); 4018 } 4019 4020 static void 4021 arc_set_need_free(void) 4022 { 4023 ASSERT(MUTEX_HELD(&arc_evict_lock)); 4024 int64_t remaining = arc_free_memory() - arc_sys_free / 2; 4025 arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters); 4026 if (aw == NULL) { 4027 arc_need_free = MAX(-remaining, 0); 4028 } else { 4029 arc_need_free = 4030 MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count)); 4031 } 4032 } 4033 4034 static uint64_t 4035 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 4036 uint64_t spa, uint64_t bytes) 4037 { 4038 multilist_sublist_t *mls; 4039 uint64_t bytes_evicted = 0, real_evicted = 0; 4040 arc_buf_hdr_t *hdr; 4041 kmutex_t *hash_lock; 4042 int evict_count = zfs_arc_evict_batch_limit; 4043 4044 ASSERT3P(marker, !=, NULL); 4045 4046 mls = multilist_sublist_lock(ml, idx); 4047 4048 for (hdr = multilist_sublist_prev(mls, marker); likely(hdr != NULL); 4049 hdr = multilist_sublist_prev(mls, marker)) { 4050 if ((evict_count <= 0) || (bytes_evicted >= bytes)) 4051 break; 4052 4053 /* 4054 * To keep our iteration location, move the marker 4055 * forward. Since we're not holding hdr's hash lock, we 4056 * must be very careful and not remove 'hdr' from the 4057 * sublist. Otherwise, other consumers might mistake the 4058 * 'hdr' as not being on a sublist when they call the 4059 * multilist_link_active() function (they all rely on 4060 * the hash lock protecting concurrent insertions and 4061 * removals). multilist_sublist_move_forward() was 4062 * specifically implemented to ensure this is the case 4063 * (only 'marker' will be removed and re-inserted). 4064 */ 4065 multilist_sublist_move_forward(mls, marker); 4066 4067 /* 4068 * The only case where the b_spa field should ever be 4069 * zero, is the marker headers inserted by 4070 * arc_evict_state(). It's possible for multiple threads 4071 * to be calling arc_evict_state() concurrently (e.g. 4072 * dsl_pool_close() and zio_inject_fault()), so we must 4073 * skip any markers we see from these other threads. 4074 */ 4075 if (hdr->b_spa == 0) 4076 continue; 4077 4078 /* we're only interested in evicting buffers of a certain spa */ 4079 if (spa != 0 && hdr->b_spa != spa) { 4080 ARCSTAT_BUMP(arcstat_evict_skip); 4081 continue; 4082 } 4083 4084 hash_lock = HDR_LOCK(hdr); 4085 4086 /* 4087 * We aren't calling this function from any code path 4088 * that would already be holding a hash lock, so we're 4089 * asserting on this assumption to be defensive in case 4090 * this ever changes. Without this check, it would be 4091 * possible to incorrectly increment arcstat_mutex_miss 4092 * below (e.g. if the code changed such that we called 4093 * this function with a hash lock held). 4094 */ 4095 ASSERT(!MUTEX_HELD(hash_lock)); 4096 4097 if (mutex_tryenter(hash_lock)) { 4098 uint64_t revicted; 4099 uint64_t evicted = arc_evict_hdr(hdr, hash_lock, 4100 &revicted); 4101 mutex_exit(hash_lock); 4102 4103 bytes_evicted += evicted; 4104 real_evicted += revicted; 4105 4106 /* 4107 * If evicted is zero, arc_evict_hdr() must have 4108 * decided to skip this header, don't increment 4109 * evict_count in this case. 4110 */ 4111 if (evicted != 0) 4112 evict_count--; 4113 4114 } else { 4115 ARCSTAT_BUMP(arcstat_mutex_miss); 4116 } 4117 } 4118 4119 multilist_sublist_unlock(mls); 4120 4121 /* 4122 * Increment the count of evicted bytes, and wake up any threads that 4123 * are waiting for the count to reach this value. Since the list is 4124 * ordered by ascending aew_count, we pop off the beginning of the 4125 * list until we reach the end, or a waiter that's past the current 4126 * "count". Doing this outside the loop reduces the number of times 4127 * we need to acquire the global arc_evict_lock. 4128 * 4129 * Only wake when there's sufficient free memory in the system 4130 * (specifically, arc_sys_free/2, which by default is a bit more than 4131 * 1/64th of RAM). See the comments in arc_wait_for_eviction(). 4132 */ 4133 mutex_enter(&arc_evict_lock); 4134 arc_evict_count += real_evicted; 4135 4136 if (arc_free_memory() > arc_sys_free / 2) { 4137 arc_evict_waiter_t *aw; 4138 while ((aw = list_head(&arc_evict_waiters)) != NULL && 4139 aw->aew_count <= arc_evict_count) { 4140 list_remove(&arc_evict_waiters, aw); 4141 cv_broadcast(&aw->aew_cv); 4142 } 4143 } 4144 arc_set_need_free(); 4145 mutex_exit(&arc_evict_lock); 4146 4147 /* 4148 * If the ARC size is reduced from arc_c_max to arc_c_min (especially 4149 * if the average cached block is small), eviction can be on-CPU for 4150 * many seconds. To ensure that other threads that may be bound to 4151 * this CPU are able to make progress, make a voluntary preemption 4152 * call here. 4153 */ 4154 cond_resched(); 4155 4156 return (bytes_evicted); 4157 } 4158 4159 /* 4160 * Evict buffers from the given arc state, until we've removed the 4161 * specified number of bytes. Move the removed buffers to the 4162 * appropriate evict state. 4163 * 4164 * This function makes a "best effort". It skips over any buffers 4165 * it can't get a hash_lock on, and so, may not catch all candidates. 4166 * It may also return without evicting as much space as requested. 4167 * 4168 * If bytes is specified using the special value ARC_EVICT_ALL, this 4169 * will evict all available (i.e. unlocked and evictable) buffers from 4170 * the given arc state; which is used by arc_flush(). 4171 */ 4172 static uint64_t 4173 arc_evict_state(arc_state_t *state, uint64_t spa, uint64_t bytes, 4174 arc_buf_contents_t type) 4175 { 4176 uint64_t total_evicted = 0; 4177 multilist_t *ml = &state->arcs_list[type]; 4178 int num_sublists; 4179 arc_buf_hdr_t **markers; 4180 4181 num_sublists = multilist_get_num_sublists(ml); 4182 4183 /* 4184 * If we've tried to evict from each sublist, made some 4185 * progress, but still have not hit the target number of bytes 4186 * to evict, we want to keep trying. The markers allow us to 4187 * pick up where we left off for each individual sublist, rather 4188 * than starting from the tail each time. 4189 */ 4190 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP); 4191 for (int i = 0; i < num_sublists; i++) { 4192 multilist_sublist_t *mls; 4193 4194 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 4195 4196 /* 4197 * A b_spa of 0 is used to indicate that this header is 4198 * a marker. This fact is used in arc_evict_type() and 4199 * arc_evict_state_impl(). 4200 */ 4201 markers[i]->b_spa = 0; 4202 4203 mls = multilist_sublist_lock(ml, i); 4204 multilist_sublist_insert_tail(mls, markers[i]); 4205 multilist_sublist_unlock(mls); 4206 } 4207 4208 /* 4209 * While we haven't hit our target number of bytes to evict, or 4210 * we're evicting all available buffers. 4211 */ 4212 while (total_evicted < bytes) { 4213 int sublist_idx = multilist_get_random_index(ml); 4214 uint64_t scan_evicted = 0; 4215 4216 /* 4217 * Try to reduce pinned dnodes with a floor of arc_dnode_limit. 4218 * Request that 10% of the LRUs be scanned by the superblock 4219 * shrinker. 4220 */ 4221 if (type == ARC_BUFC_DATA && aggsum_compare( 4222 &arc_sums.arcstat_dnode_size, arc_dnode_size_limit) > 0) { 4223 arc_prune_async((aggsum_upper_bound( 4224 &arc_sums.arcstat_dnode_size) - 4225 arc_dnode_size_limit) / sizeof (dnode_t) / 4226 zfs_arc_dnode_reduce_percent); 4227 } 4228 4229 /* 4230 * Start eviction using a randomly selected sublist, 4231 * this is to try and evenly balance eviction across all 4232 * sublists. Always starting at the same sublist 4233 * (e.g. index 0) would cause evictions to favor certain 4234 * sublists over others. 4235 */ 4236 for (int i = 0; i < num_sublists; i++) { 4237 uint64_t bytes_remaining; 4238 uint64_t bytes_evicted; 4239 4240 if (total_evicted < bytes) 4241 bytes_remaining = bytes - total_evicted; 4242 else 4243 break; 4244 4245 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 4246 markers[sublist_idx], spa, bytes_remaining); 4247 4248 scan_evicted += bytes_evicted; 4249 total_evicted += bytes_evicted; 4250 4251 /* we've reached the end, wrap to the beginning */ 4252 if (++sublist_idx >= num_sublists) 4253 sublist_idx = 0; 4254 } 4255 4256 /* 4257 * If we didn't evict anything during this scan, we have 4258 * no reason to believe we'll evict more during another 4259 * scan, so break the loop. 4260 */ 4261 if (scan_evicted == 0) { 4262 /* This isn't possible, let's make that obvious */ 4263 ASSERT3S(bytes, !=, 0); 4264 4265 /* 4266 * When bytes is ARC_EVICT_ALL, the only way to 4267 * break the loop is when scan_evicted is zero. 4268 * In that case, we actually have evicted enough, 4269 * so we don't want to increment the kstat. 4270 */ 4271 if (bytes != ARC_EVICT_ALL) { 4272 ASSERT3S(total_evicted, <, bytes); 4273 ARCSTAT_BUMP(arcstat_evict_not_enough); 4274 } 4275 4276 break; 4277 } 4278 } 4279 4280 for (int i = 0; i < num_sublists; i++) { 4281 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 4282 multilist_sublist_remove(mls, markers[i]); 4283 multilist_sublist_unlock(mls); 4284 4285 kmem_cache_free(hdr_full_cache, markers[i]); 4286 } 4287 kmem_free(markers, sizeof (*markers) * num_sublists); 4288 4289 return (total_evicted); 4290 } 4291 4292 /* 4293 * Flush all "evictable" data of the given type from the arc state 4294 * specified. This will not evict any "active" buffers (i.e. referenced). 4295 * 4296 * When 'retry' is set to B_FALSE, the function will make a single pass 4297 * over the state and evict any buffers that it can. Since it doesn't 4298 * continually retry the eviction, it might end up leaving some buffers 4299 * in the ARC due to lock misses. 4300 * 4301 * When 'retry' is set to B_TRUE, the function will continually retry the 4302 * eviction until *all* evictable buffers have been removed from the 4303 * state. As a result, if concurrent insertions into the state are 4304 * allowed (e.g. if the ARC isn't shutting down), this function might 4305 * wind up in an infinite loop, continually trying to evict buffers. 4306 */ 4307 static uint64_t 4308 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 4309 boolean_t retry) 4310 { 4311 uint64_t evicted = 0; 4312 4313 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) { 4314 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type); 4315 4316 if (!retry) 4317 break; 4318 } 4319 4320 return (evicted); 4321 } 4322 4323 /* 4324 * Evict the specified number of bytes from the state specified, 4325 * restricting eviction to the spa and type given. This function 4326 * prevents us from trying to evict more from a state's list than 4327 * is "evictable", and to skip evicting altogether when passed a 4328 * negative value for "bytes". In contrast, arc_evict_state() will 4329 * evict everything it can, when passed a negative value for "bytes". 4330 */ 4331 static uint64_t 4332 arc_evict_impl(arc_state_t *state, uint64_t spa, int64_t bytes, 4333 arc_buf_contents_t type) 4334 { 4335 uint64_t delta; 4336 4337 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) { 4338 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]), 4339 bytes); 4340 return (arc_evict_state(state, spa, delta, type)); 4341 } 4342 4343 return (0); 4344 } 4345 4346 /* 4347 * The goal of this function is to evict enough meta data buffers from the 4348 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly 4349 * more complicated than it appears because it is common for data buffers 4350 * to have holds on meta data buffers. In addition, dnode meta data buffers 4351 * will be held by the dnodes in the block preventing them from being freed. 4352 * This means we can't simply traverse the ARC and expect to always find 4353 * enough unheld meta data buffer to release. 4354 * 4355 * Therefore, this function has been updated to make alternating passes 4356 * over the ARC releasing data buffers and then newly unheld meta data 4357 * buffers. This ensures forward progress is maintained and meta_used 4358 * will decrease. Normally this is sufficient, but if required the ARC 4359 * will call the registered prune callbacks causing dentry and inodes to 4360 * be dropped from the VFS cache. This will make dnode meta data buffers 4361 * available for reclaim. 4362 */ 4363 static uint64_t 4364 arc_evict_meta_balanced(uint64_t meta_used) 4365 { 4366 int64_t delta, prune = 0, adjustmnt; 4367 uint64_t total_evicted = 0; 4368 arc_buf_contents_t type = ARC_BUFC_DATA; 4369 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0); 4370 4371 restart: 4372 /* 4373 * This slightly differs than the way we evict from the mru in 4374 * arc_evict because we don't have a "target" value (i.e. no 4375 * "meta" arc_p). As a result, I think we can completely 4376 * cannibalize the metadata in the MRU before we evict the 4377 * metadata from the MFU. I think we probably need to implement a 4378 * "metadata arc_p" value to do this properly. 4379 */ 4380 adjustmnt = meta_used - arc_meta_limit; 4381 4382 if (adjustmnt > 0 && 4383 zfs_refcount_count(&arc_mru->arcs_esize[type]) > 0) { 4384 delta = MIN(zfs_refcount_count(&arc_mru->arcs_esize[type]), 4385 adjustmnt); 4386 total_evicted += arc_evict_impl(arc_mru, 0, delta, type); 4387 adjustmnt -= delta; 4388 } 4389 4390 /* 4391 * We can't afford to recalculate adjustmnt here. If we do, 4392 * new metadata buffers can sneak into the MRU or ANON lists, 4393 * thus penalize the MFU metadata. Although the fudge factor is 4394 * small, it has been empirically shown to be significant for 4395 * certain workloads (e.g. creating many empty directories). As 4396 * such, we use the original calculation for adjustmnt, and 4397 * simply decrement the amount of data evicted from the MRU. 4398 */ 4399 4400 if (adjustmnt > 0 && 4401 zfs_refcount_count(&arc_mfu->arcs_esize[type]) > 0) { 4402 delta = MIN(zfs_refcount_count(&arc_mfu->arcs_esize[type]), 4403 adjustmnt); 4404 total_evicted += arc_evict_impl(arc_mfu, 0, delta, type); 4405 } 4406 4407 adjustmnt = meta_used - arc_meta_limit; 4408 4409 if (adjustmnt > 0 && 4410 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) { 4411 delta = MIN(adjustmnt, 4412 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type])); 4413 total_evicted += arc_evict_impl(arc_mru_ghost, 0, delta, type); 4414 adjustmnt -= delta; 4415 } 4416 4417 if (adjustmnt > 0 && 4418 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) { 4419 delta = MIN(adjustmnt, 4420 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type])); 4421 total_evicted += arc_evict_impl(arc_mfu_ghost, 0, delta, type); 4422 } 4423 4424 /* 4425 * If after attempting to make the requested adjustment to the ARC 4426 * the meta limit is still being exceeded then request that the 4427 * higher layers drop some cached objects which have holds on ARC 4428 * meta buffers. Requests to the upper layers will be made with 4429 * increasingly large scan sizes until the ARC is below the limit. 4430 */ 4431 if (meta_used > arc_meta_limit) { 4432 if (type == ARC_BUFC_DATA) { 4433 type = ARC_BUFC_METADATA; 4434 } else { 4435 type = ARC_BUFC_DATA; 4436 4437 if (zfs_arc_meta_prune) { 4438 prune += zfs_arc_meta_prune; 4439 arc_prune_async(prune); 4440 } 4441 } 4442 4443 if (restarts > 0) { 4444 restarts--; 4445 goto restart; 4446 } 4447 } 4448 return (total_evicted); 4449 } 4450 4451 /* 4452 * Evict metadata buffers from the cache, such that arcstat_meta_used is 4453 * capped by the arc_meta_limit tunable. 4454 */ 4455 static uint64_t 4456 arc_evict_meta_only(uint64_t meta_used) 4457 { 4458 uint64_t total_evicted = 0; 4459 int64_t target; 4460 4461 /* 4462 * If we're over the meta limit, we want to evict enough 4463 * metadata to get back under the meta limit. We don't want to 4464 * evict so much that we drop the MRU below arc_p, though. If 4465 * we're over the meta limit more than we're over arc_p, we 4466 * evict some from the MRU here, and some from the MFU below. 4467 */ 4468 target = MIN((int64_t)(meta_used - arc_meta_limit), 4469 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4470 zfs_refcount_count(&arc_mru->arcs_size) - arc_p)); 4471 4472 total_evicted += arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4473 4474 /* 4475 * Similar to the above, we want to evict enough bytes to get us 4476 * below the meta limit, but not so much as to drop us below the 4477 * space allotted to the MFU (which is defined as arc_c - arc_p). 4478 */ 4479 target = MIN((int64_t)(meta_used - arc_meta_limit), 4480 (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) - 4481 (arc_c - arc_p))); 4482 4483 total_evicted += arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4484 4485 return (total_evicted); 4486 } 4487 4488 static uint64_t 4489 arc_evict_meta(uint64_t meta_used) 4490 { 4491 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY) 4492 return (arc_evict_meta_only(meta_used)); 4493 else 4494 return (arc_evict_meta_balanced(meta_used)); 4495 } 4496 4497 /* 4498 * Return the type of the oldest buffer in the given arc state 4499 * 4500 * This function will select a random sublist of type ARC_BUFC_DATA and 4501 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist 4502 * is compared, and the type which contains the "older" buffer will be 4503 * returned. 4504 */ 4505 static arc_buf_contents_t 4506 arc_evict_type(arc_state_t *state) 4507 { 4508 multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA]; 4509 multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA]; 4510 int data_idx = multilist_get_random_index(data_ml); 4511 int meta_idx = multilist_get_random_index(meta_ml); 4512 multilist_sublist_t *data_mls; 4513 multilist_sublist_t *meta_mls; 4514 arc_buf_contents_t type; 4515 arc_buf_hdr_t *data_hdr; 4516 arc_buf_hdr_t *meta_hdr; 4517 4518 /* 4519 * We keep the sublist lock until we're finished, to prevent 4520 * the headers from being destroyed via arc_evict_state(). 4521 */ 4522 data_mls = multilist_sublist_lock(data_ml, data_idx); 4523 meta_mls = multilist_sublist_lock(meta_ml, meta_idx); 4524 4525 /* 4526 * These two loops are to ensure we skip any markers that 4527 * might be at the tail of the lists due to arc_evict_state(). 4528 */ 4529 4530 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL; 4531 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) { 4532 if (data_hdr->b_spa != 0) 4533 break; 4534 } 4535 4536 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL; 4537 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) { 4538 if (meta_hdr->b_spa != 0) 4539 break; 4540 } 4541 4542 if (data_hdr == NULL && meta_hdr == NULL) { 4543 type = ARC_BUFC_DATA; 4544 } else if (data_hdr == NULL) { 4545 ASSERT3P(meta_hdr, !=, NULL); 4546 type = ARC_BUFC_METADATA; 4547 } else if (meta_hdr == NULL) { 4548 ASSERT3P(data_hdr, !=, NULL); 4549 type = ARC_BUFC_DATA; 4550 } else { 4551 ASSERT3P(data_hdr, !=, NULL); 4552 ASSERT3P(meta_hdr, !=, NULL); 4553 4554 /* The headers can't be on the sublist without an L1 header */ 4555 ASSERT(HDR_HAS_L1HDR(data_hdr)); 4556 ASSERT(HDR_HAS_L1HDR(meta_hdr)); 4557 4558 if (data_hdr->b_l1hdr.b_arc_access < 4559 meta_hdr->b_l1hdr.b_arc_access) { 4560 type = ARC_BUFC_DATA; 4561 } else { 4562 type = ARC_BUFC_METADATA; 4563 } 4564 } 4565 4566 multilist_sublist_unlock(meta_mls); 4567 multilist_sublist_unlock(data_mls); 4568 4569 return (type); 4570 } 4571 4572 /* 4573 * Evict buffers from the cache, such that arcstat_size is capped by arc_c. 4574 */ 4575 static uint64_t 4576 arc_evict(void) 4577 { 4578 uint64_t total_evicted = 0; 4579 uint64_t bytes; 4580 int64_t target; 4581 uint64_t asize = aggsum_value(&arc_sums.arcstat_size); 4582 uint64_t ameta = aggsum_value(&arc_sums.arcstat_meta_used); 4583 4584 /* 4585 * If we're over arc_meta_limit, we want to correct that before 4586 * potentially evicting data buffers below. 4587 */ 4588 total_evicted += arc_evict_meta(ameta); 4589 4590 /* 4591 * Adjust MRU size 4592 * 4593 * If we're over the target cache size, we want to evict enough 4594 * from the list to get back to our target size. We don't want 4595 * to evict too much from the MRU, such that it drops below 4596 * arc_p. So, if we're over our target cache size more than 4597 * the MRU is over arc_p, we'll evict enough to get back to 4598 * arc_p here, and then evict more from the MFU below. 4599 */ 4600 target = MIN((int64_t)(asize - arc_c), 4601 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4602 zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p)); 4603 4604 /* 4605 * If we're below arc_meta_min, always prefer to evict data. 4606 * Otherwise, try to satisfy the requested number of bytes to 4607 * evict from the type which contains older buffers; in an 4608 * effort to keep newer buffers in the cache regardless of their 4609 * type. If we cannot satisfy the number of bytes from this 4610 * type, spill over into the next type. 4611 */ 4612 if (arc_evict_type(arc_mru) == ARC_BUFC_METADATA && 4613 ameta > arc_meta_min) { 4614 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4615 total_evicted += bytes; 4616 4617 /* 4618 * If we couldn't evict our target number of bytes from 4619 * metadata, we try to get the rest from data. 4620 */ 4621 target -= bytes; 4622 4623 total_evicted += 4624 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4625 } else { 4626 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4627 total_evicted += bytes; 4628 4629 /* 4630 * If we couldn't evict our target number of bytes from 4631 * data, we try to get the rest from metadata. 4632 */ 4633 target -= bytes; 4634 4635 total_evicted += 4636 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4637 } 4638 4639 /* 4640 * Re-sum ARC stats after the first round of evictions. 4641 */ 4642 asize = aggsum_value(&arc_sums.arcstat_size); 4643 ameta = aggsum_value(&arc_sums.arcstat_meta_used); 4644 4645 4646 /* 4647 * Adjust MFU size 4648 * 4649 * Now that we've tried to evict enough from the MRU to get its 4650 * size back to arc_p, if we're still above the target cache 4651 * size, we evict the rest from the MFU. 4652 */ 4653 target = asize - arc_c; 4654 4655 if (arc_evict_type(arc_mfu) == ARC_BUFC_METADATA && 4656 ameta > arc_meta_min) { 4657 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4658 total_evicted += bytes; 4659 4660 /* 4661 * If we couldn't evict our target number of bytes from 4662 * metadata, we try to get the rest from data. 4663 */ 4664 target -= bytes; 4665 4666 total_evicted += 4667 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4668 } else { 4669 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4670 total_evicted += bytes; 4671 4672 /* 4673 * If we couldn't evict our target number of bytes from 4674 * data, we try to get the rest from data. 4675 */ 4676 target -= bytes; 4677 4678 total_evicted += 4679 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4680 } 4681 4682 /* 4683 * Adjust ghost lists 4684 * 4685 * In addition to the above, the ARC also defines target values 4686 * for the ghost lists. The sum of the mru list and mru ghost 4687 * list should never exceed the target size of the cache, and 4688 * the sum of the mru list, mfu list, mru ghost list, and mfu 4689 * ghost list should never exceed twice the target size of the 4690 * cache. The following logic enforces these limits on the ghost 4691 * caches, and evicts from them as needed. 4692 */ 4693 target = zfs_refcount_count(&arc_mru->arcs_size) + 4694 zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c; 4695 4696 bytes = arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA); 4697 total_evicted += bytes; 4698 4699 target -= bytes; 4700 4701 total_evicted += 4702 arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA); 4703 4704 /* 4705 * We assume the sum of the mru list and mfu list is less than 4706 * or equal to arc_c (we enforced this above), which means we 4707 * can use the simpler of the two equations below: 4708 * 4709 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c 4710 * mru ghost + mfu ghost <= arc_c 4711 */ 4712 target = zfs_refcount_count(&arc_mru_ghost->arcs_size) + 4713 zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c; 4714 4715 bytes = arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA); 4716 total_evicted += bytes; 4717 4718 target -= bytes; 4719 4720 total_evicted += 4721 arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA); 4722 4723 return (total_evicted); 4724 } 4725 4726 void 4727 arc_flush(spa_t *spa, boolean_t retry) 4728 { 4729 uint64_t guid = 0; 4730 4731 /* 4732 * If retry is B_TRUE, a spa must not be specified since we have 4733 * no good way to determine if all of a spa's buffers have been 4734 * evicted from an arc state. 4735 */ 4736 ASSERT(!retry || spa == 0); 4737 4738 if (spa != NULL) 4739 guid = spa_load_guid(spa); 4740 4741 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 4742 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 4743 4744 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 4745 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 4746 4747 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 4748 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 4749 4750 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 4751 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 4752 } 4753 4754 void 4755 arc_reduce_target_size(int64_t to_free) 4756 { 4757 uint64_t asize = aggsum_value(&arc_sums.arcstat_size); 4758 4759 /* 4760 * All callers want the ARC to actually evict (at least) this much 4761 * memory. Therefore we reduce from the lower of the current size and 4762 * the target size. This way, even if arc_c is much higher than 4763 * arc_size (as can be the case after many calls to arc_freed(), we will 4764 * immediately have arc_c < arc_size and therefore the arc_evict_zthr 4765 * will evict. 4766 */ 4767 uint64_t c = MIN(arc_c, asize); 4768 4769 if (c > to_free && c - to_free > arc_c_min) { 4770 arc_c = c - to_free; 4771 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 4772 if (arc_p > arc_c) 4773 arc_p = (arc_c >> 1); 4774 ASSERT(arc_c >= arc_c_min); 4775 ASSERT((int64_t)arc_p >= 0); 4776 } else { 4777 arc_c = arc_c_min; 4778 } 4779 4780 if (asize > arc_c) { 4781 /* See comment in arc_evict_cb_check() on why lock+flag */ 4782 mutex_enter(&arc_evict_lock); 4783 arc_evict_needed = B_TRUE; 4784 mutex_exit(&arc_evict_lock); 4785 zthr_wakeup(arc_evict_zthr); 4786 } 4787 } 4788 4789 /* 4790 * Determine if the system is under memory pressure and is asking 4791 * to reclaim memory. A return value of B_TRUE indicates that the system 4792 * is under memory pressure and that the arc should adjust accordingly. 4793 */ 4794 boolean_t 4795 arc_reclaim_needed(void) 4796 { 4797 return (arc_available_memory() < 0); 4798 } 4799 4800 void 4801 arc_kmem_reap_soon(void) 4802 { 4803 size_t i; 4804 kmem_cache_t *prev_cache = NULL; 4805 kmem_cache_t *prev_data_cache = NULL; 4806 extern kmem_cache_t *zio_buf_cache[]; 4807 extern kmem_cache_t *zio_data_buf_cache[]; 4808 4809 #ifdef _KERNEL 4810 if ((aggsum_compare(&arc_sums.arcstat_meta_used, 4811 arc_meta_limit) >= 0) && zfs_arc_meta_prune) { 4812 /* 4813 * We are exceeding our meta-data cache limit. 4814 * Prune some entries to release holds on meta-data. 4815 */ 4816 arc_prune_async(zfs_arc_meta_prune); 4817 } 4818 #if defined(_ILP32) 4819 /* 4820 * Reclaim unused memory from all kmem caches. 4821 */ 4822 kmem_reap(); 4823 #endif 4824 #endif 4825 4826 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 4827 #if defined(_ILP32) 4828 /* reach upper limit of cache size on 32-bit */ 4829 if (zio_buf_cache[i] == NULL) 4830 break; 4831 #endif 4832 if (zio_buf_cache[i] != prev_cache) { 4833 prev_cache = zio_buf_cache[i]; 4834 kmem_cache_reap_now(zio_buf_cache[i]); 4835 } 4836 if (zio_data_buf_cache[i] != prev_data_cache) { 4837 prev_data_cache = zio_data_buf_cache[i]; 4838 kmem_cache_reap_now(zio_data_buf_cache[i]); 4839 } 4840 } 4841 kmem_cache_reap_now(buf_cache); 4842 kmem_cache_reap_now(hdr_full_cache); 4843 kmem_cache_reap_now(hdr_l2only_cache); 4844 kmem_cache_reap_now(zfs_btree_leaf_cache); 4845 abd_cache_reap_now(); 4846 } 4847 4848 /* ARGSUSED */ 4849 static boolean_t 4850 arc_evict_cb_check(void *arg, zthr_t *zthr) 4851 { 4852 #ifdef ZFS_DEBUG 4853 /* 4854 * This is necessary in order to keep the kstat information 4855 * up to date for tools that display kstat data such as the 4856 * mdb ::arc dcmd and the Linux crash utility. These tools 4857 * typically do not call kstat's update function, but simply 4858 * dump out stats from the most recent update. Without 4859 * this call, these commands may show stale stats for the 4860 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 4861 * with this call, the data might be out of date if the 4862 * evict thread hasn't been woken recently; but that should 4863 * suffice. The arc_state_t structures can be queried 4864 * directly if more accurate information is needed. 4865 */ 4866 if (arc_ksp != NULL) 4867 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 4868 #endif 4869 4870 /* 4871 * We have to rely on arc_wait_for_eviction() to tell us when to 4872 * evict, rather than checking if we are overflowing here, so that we 4873 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv. 4874 * If we have become "not overflowing" since arc_wait_for_eviction() 4875 * checked, we need to wake it up. We could broadcast the CV here, 4876 * but arc_wait_for_eviction() may have not yet gone to sleep. We 4877 * would need to use a mutex to ensure that this function doesn't 4878 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g. 4879 * the arc_evict_lock). However, the lock ordering of such a lock 4880 * would necessarily be incorrect with respect to the zthr_lock, 4881 * which is held before this function is called, and is held by 4882 * arc_wait_for_eviction() when it calls zthr_wakeup(). 4883 */ 4884 return (arc_evict_needed); 4885 } 4886 4887 /* 4888 * Keep arc_size under arc_c by running arc_evict which evicts data 4889 * from the ARC. 4890 */ 4891 /* ARGSUSED */ 4892 static void 4893 arc_evict_cb(void *arg, zthr_t *zthr) 4894 { 4895 uint64_t evicted = 0; 4896 fstrans_cookie_t cookie = spl_fstrans_mark(); 4897 4898 /* Evict from cache */ 4899 evicted = arc_evict(); 4900 4901 /* 4902 * If evicted is zero, we couldn't evict anything 4903 * via arc_evict(). This could be due to hash lock 4904 * collisions, but more likely due to the majority of 4905 * arc buffers being unevictable. Therefore, even if 4906 * arc_size is above arc_c, another pass is unlikely to 4907 * be helpful and could potentially cause us to enter an 4908 * infinite loop. Additionally, zthr_iscancelled() is 4909 * checked here so that if the arc is shutting down, the 4910 * broadcast will wake any remaining arc evict waiters. 4911 */ 4912 mutex_enter(&arc_evict_lock); 4913 arc_evict_needed = !zthr_iscancelled(arc_evict_zthr) && 4914 evicted > 0 && aggsum_compare(&arc_sums.arcstat_size, arc_c) > 0; 4915 if (!arc_evict_needed) { 4916 /* 4917 * We're either no longer overflowing, or we 4918 * can't evict anything more, so we should wake 4919 * arc_get_data_impl() sooner. 4920 */ 4921 arc_evict_waiter_t *aw; 4922 while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) { 4923 cv_broadcast(&aw->aew_cv); 4924 } 4925 arc_set_need_free(); 4926 } 4927 mutex_exit(&arc_evict_lock); 4928 spl_fstrans_unmark(cookie); 4929 } 4930 4931 /* ARGSUSED */ 4932 static boolean_t 4933 arc_reap_cb_check(void *arg, zthr_t *zthr) 4934 { 4935 int64_t free_memory = arc_available_memory(); 4936 static int reap_cb_check_counter = 0; 4937 4938 /* 4939 * If a kmem reap is already active, don't schedule more. We must 4940 * check for this because kmem_cache_reap_soon() won't actually 4941 * block on the cache being reaped (this is to prevent callers from 4942 * becoming implicitly blocked by a system-wide kmem reap -- which, 4943 * on a system with many, many full magazines, can take minutes). 4944 */ 4945 if (!kmem_cache_reap_active() && free_memory < 0) { 4946 4947 arc_no_grow = B_TRUE; 4948 arc_warm = B_TRUE; 4949 /* 4950 * Wait at least zfs_grow_retry (default 5) seconds 4951 * before considering growing. 4952 */ 4953 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry); 4954 return (B_TRUE); 4955 } else if (free_memory < arc_c >> arc_no_grow_shift) { 4956 arc_no_grow = B_TRUE; 4957 } else if (gethrtime() >= arc_growtime) { 4958 arc_no_grow = B_FALSE; 4959 } 4960 4961 /* 4962 * Called unconditionally every 60 seconds to reclaim unused 4963 * zstd compression and decompression context. This is done 4964 * here to avoid the need for an independent thread. 4965 */ 4966 if (!((reap_cb_check_counter++) % 60)) 4967 zfs_zstd_cache_reap_now(); 4968 4969 return (B_FALSE); 4970 } 4971 4972 /* 4973 * Keep enough free memory in the system by reaping the ARC's kmem 4974 * caches. To cause more slabs to be reapable, we may reduce the 4975 * target size of the cache (arc_c), causing the arc_evict_cb() 4976 * to free more buffers. 4977 */ 4978 /* ARGSUSED */ 4979 static void 4980 arc_reap_cb(void *arg, zthr_t *zthr) 4981 { 4982 int64_t free_memory; 4983 fstrans_cookie_t cookie = spl_fstrans_mark(); 4984 4985 /* 4986 * Kick off asynchronous kmem_reap()'s of all our caches. 4987 */ 4988 arc_kmem_reap_soon(); 4989 4990 /* 4991 * Wait at least arc_kmem_cache_reap_retry_ms between 4992 * arc_kmem_reap_soon() calls. Without this check it is possible to 4993 * end up in a situation where we spend lots of time reaping 4994 * caches, while we're near arc_c_min. Waiting here also gives the 4995 * subsequent free memory check a chance of finding that the 4996 * asynchronous reap has already freed enough memory, and we don't 4997 * need to call arc_reduce_target_size(). 4998 */ 4999 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000); 5000 5001 /* 5002 * Reduce the target size as needed to maintain the amount of free 5003 * memory in the system at a fraction of the arc_size (1/128th by 5004 * default). If oversubscribed (free_memory < 0) then reduce the 5005 * target arc_size by the deficit amount plus the fractional 5006 * amount. If free memory is positive but less than the fractional 5007 * amount, reduce by what is needed to hit the fractional amount. 5008 */ 5009 free_memory = arc_available_memory(); 5010 5011 int64_t to_free = 5012 (arc_c >> arc_shrink_shift) - free_memory; 5013 if (to_free > 0) { 5014 arc_reduce_target_size(to_free); 5015 } 5016 spl_fstrans_unmark(cookie); 5017 } 5018 5019 #ifdef _KERNEL 5020 /* 5021 * Determine the amount of memory eligible for eviction contained in the 5022 * ARC. All clean data reported by the ghost lists can always be safely 5023 * evicted. Due to arc_c_min, the same does not hold for all clean data 5024 * contained by the regular mru and mfu lists. 5025 * 5026 * In the case of the regular mru and mfu lists, we need to report as 5027 * much clean data as possible, such that evicting that same reported 5028 * data will not bring arc_size below arc_c_min. Thus, in certain 5029 * circumstances, the total amount of clean data in the mru and mfu 5030 * lists might not actually be evictable. 5031 * 5032 * The following two distinct cases are accounted for: 5033 * 5034 * 1. The sum of the amount of dirty data contained by both the mru and 5035 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 5036 * is greater than or equal to arc_c_min. 5037 * (i.e. amount of dirty data >= arc_c_min) 5038 * 5039 * This is the easy case; all clean data contained by the mru and mfu 5040 * lists is evictable. Evicting all clean data can only drop arc_size 5041 * to the amount of dirty data, which is greater than arc_c_min. 5042 * 5043 * 2. The sum of the amount of dirty data contained by both the mru and 5044 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 5045 * is less than arc_c_min. 5046 * (i.e. arc_c_min > amount of dirty data) 5047 * 5048 * 2.1. arc_size is greater than or equal arc_c_min. 5049 * (i.e. arc_size >= arc_c_min > amount of dirty data) 5050 * 5051 * In this case, not all clean data from the regular mru and mfu 5052 * lists is actually evictable; we must leave enough clean data 5053 * to keep arc_size above arc_c_min. Thus, the maximum amount of 5054 * evictable data from the two lists combined, is exactly the 5055 * difference between arc_size and arc_c_min. 5056 * 5057 * 2.2. arc_size is less than arc_c_min 5058 * (i.e. arc_c_min > arc_size > amount of dirty data) 5059 * 5060 * In this case, none of the data contained in the mru and mfu 5061 * lists is evictable, even if it's clean. Since arc_size is 5062 * already below arc_c_min, evicting any more would only 5063 * increase this negative difference. 5064 */ 5065 5066 #endif /* _KERNEL */ 5067 5068 /* 5069 * Adapt arc info given the number of bytes we are trying to add and 5070 * the state that we are coming from. This function is only called 5071 * when we are adding new content to the cache. 5072 */ 5073 static void 5074 arc_adapt(int bytes, arc_state_t *state) 5075 { 5076 int mult; 5077 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 5078 int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size); 5079 int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size); 5080 5081 ASSERT(bytes > 0); 5082 /* 5083 * Adapt the target size of the MRU list: 5084 * - if we just hit in the MRU ghost list, then increase 5085 * the target size of the MRU list. 5086 * - if we just hit in the MFU ghost list, then increase 5087 * the target size of the MFU list by decreasing the 5088 * target size of the MRU list. 5089 */ 5090 if (state == arc_mru_ghost) { 5091 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size); 5092 if (!zfs_arc_p_dampener_disable) 5093 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 5094 5095 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 5096 } else if (state == arc_mfu_ghost) { 5097 uint64_t delta; 5098 5099 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size); 5100 if (!zfs_arc_p_dampener_disable) 5101 mult = MIN(mult, 10); 5102 5103 delta = MIN(bytes * mult, arc_p); 5104 arc_p = MAX(arc_p_min, arc_p - delta); 5105 } 5106 ASSERT((int64_t)arc_p >= 0); 5107 5108 /* 5109 * Wake reap thread if we do not have any available memory 5110 */ 5111 if (arc_reclaim_needed()) { 5112 zthr_wakeup(arc_reap_zthr); 5113 return; 5114 } 5115 5116 if (arc_no_grow) 5117 return; 5118 5119 if (arc_c >= arc_c_max) 5120 return; 5121 5122 /* 5123 * If we're within (2 * maxblocksize) bytes of the target 5124 * cache size, increment the target cache size 5125 */ 5126 ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT); 5127 if (aggsum_upper_bound(&arc_sums.arcstat_size) >= 5128 arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 5129 atomic_add_64(&arc_c, (int64_t)bytes); 5130 if (arc_c > arc_c_max) 5131 arc_c = arc_c_max; 5132 else if (state == arc_anon) 5133 atomic_add_64(&arc_p, (int64_t)bytes); 5134 if (arc_p > arc_c) 5135 arc_p = arc_c; 5136 } 5137 ASSERT((int64_t)arc_p >= 0); 5138 } 5139 5140 /* 5141 * Check if arc_size has grown past our upper threshold, determined by 5142 * zfs_arc_overflow_shift. 5143 */ 5144 static arc_ovf_level_t 5145 arc_is_overflowing(boolean_t use_reserve) 5146 { 5147 /* Always allow at least one block of overflow */ 5148 int64_t overflow = MAX(SPA_MAXBLOCKSIZE, 5149 arc_c >> zfs_arc_overflow_shift); 5150 5151 /* 5152 * We just compare the lower bound here for performance reasons. Our 5153 * primary goals are to make sure that the arc never grows without 5154 * bound, and that it can reach its maximum size. This check 5155 * accomplishes both goals. The maximum amount we could run over by is 5156 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block 5157 * in the ARC. In practice, that's in the tens of MB, which is low 5158 * enough to be safe. 5159 */ 5160 int64_t over = aggsum_lower_bound(&arc_sums.arcstat_size) - 5161 arc_c - overflow / 2; 5162 if (!use_reserve) 5163 overflow /= 2; 5164 return (over < 0 ? ARC_OVF_NONE : 5165 over < overflow ? ARC_OVF_SOME : ARC_OVF_SEVERE); 5166 } 5167 5168 static abd_t * 5169 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 5170 int alloc_flags) 5171 { 5172 arc_buf_contents_t type = arc_buf_type(hdr); 5173 5174 arc_get_data_impl(hdr, size, tag, alloc_flags); 5175 if (type == ARC_BUFC_METADATA) { 5176 return (abd_alloc(size, B_TRUE)); 5177 } else { 5178 ASSERT(type == ARC_BUFC_DATA); 5179 return (abd_alloc(size, B_FALSE)); 5180 } 5181 } 5182 5183 static void * 5184 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 5185 { 5186 arc_buf_contents_t type = arc_buf_type(hdr); 5187 5188 arc_get_data_impl(hdr, size, tag, ARC_HDR_DO_ADAPT); 5189 if (type == ARC_BUFC_METADATA) { 5190 return (zio_buf_alloc(size)); 5191 } else { 5192 ASSERT(type == ARC_BUFC_DATA); 5193 return (zio_data_buf_alloc(size)); 5194 } 5195 } 5196 5197 /* 5198 * Wait for the specified amount of data (in bytes) to be evicted from the 5199 * ARC, and for there to be sufficient free memory in the system. Waiting for 5200 * eviction ensures that the memory used by the ARC decreases. Waiting for 5201 * free memory ensures that the system won't run out of free pages, regardless 5202 * of ARC behavior and settings. See arc_lowmem_init(). 5203 */ 5204 void 5205 arc_wait_for_eviction(uint64_t amount, boolean_t use_reserve) 5206 { 5207 switch (arc_is_overflowing(use_reserve)) { 5208 case ARC_OVF_NONE: 5209 return; 5210 case ARC_OVF_SOME: 5211 /* 5212 * This is a bit racy without taking arc_evict_lock, but the 5213 * worst that can happen is we either call zthr_wakeup() extra 5214 * time due to race with other thread here, or the set flag 5215 * get cleared by arc_evict_cb(), which is unlikely due to 5216 * big hysteresis, but also not important since at this level 5217 * of overflow the eviction is purely advisory. Same time 5218 * taking the global lock here every time without waiting for 5219 * the actual eviction creates a significant lock contention. 5220 */ 5221 if (!arc_evict_needed) { 5222 arc_evict_needed = B_TRUE; 5223 zthr_wakeup(arc_evict_zthr); 5224 } 5225 return; 5226 case ARC_OVF_SEVERE: 5227 default: 5228 { 5229 arc_evict_waiter_t aw; 5230 list_link_init(&aw.aew_node); 5231 cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL); 5232 5233 uint64_t last_count = 0; 5234 mutex_enter(&arc_evict_lock); 5235 if (!list_is_empty(&arc_evict_waiters)) { 5236 arc_evict_waiter_t *last = 5237 list_tail(&arc_evict_waiters); 5238 last_count = last->aew_count; 5239 } else if (!arc_evict_needed) { 5240 arc_evict_needed = B_TRUE; 5241 zthr_wakeup(arc_evict_zthr); 5242 } 5243 /* 5244 * Note, the last waiter's count may be less than 5245 * arc_evict_count if we are low on memory in which 5246 * case arc_evict_state_impl() may have deferred 5247 * wakeups (but still incremented arc_evict_count). 5248 */ 5249 aw.aew_count = MAX(last_count, arc_evict_count) + amount; 5250 5251 list_insert_tail(&arc_evict_waiters, &aw); 5252 5253 arc_set_need_free(); 5254 5255 DTRACE_PROBE3(arc__wait__for__eviction, 5256 uint64_t, amount, 5257 uint64_t, arc_evict_count, 5258 uint64_t, aw.aew_count); 5259 5260 /* 5261 * We will be woken up either when arc_evict_count reaches 5262 * aew_count, or when the ARC is no longer overflowing and 5263 * eviction completes. 5264 * In case of "false" wakeup, we will still be on the list. 5265 */ 5266 do { 5267 cv_wait(&aw.aew_cv, &arc_evict_lock); 5268 } while (list_link_active(&aw.aew_node)); 5269 mutex_exit(&arc_evict_lock); 5270 5271 cv_destroy(&aw.aew_cv); 5272 } 5273 } 5274 } 5275 5276 /* 5277 * Allocate a block and return it to the caller. If we are hitting the 5278 * hard limit for the cache size, we must sleep, waiting for the eviction 5279 * thread to catch up. If we're past the target size but below the hard 5280 * limit, we'll only signal the reclaim thread and continue on. 5281 */ 5282 static void 5283 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 5284 int alloc_flags) 5285 { 5286 arc_state_t *state = hdr->b_l1hdr.b_state; 5287 arc_buf_contents_t type = arc_buf_type(hdr); 5288 5289 if (alloc_flags & ARC_HDR_DO_ADAPT) 5290 arc_adapt(size, state); 5291 5292 /* 5293 * If arc_size is currently overflowing, we must be adding data 5294 * faster than we are evicting. To ensure we don't compound the 5295 * problem by adding more data and forcing arc_size to grow even 5296 * further past it's target size, we wait for the eviction thread to 5297 * make some progress. We also wait for there to be sufficient free 5298 * memory in the system, as measured by arc_free_memory(). 5299 * 5300 * Specifically, we wait for zfs_arc_eviction_pct percent of the 5301 * requested size to be evicted. This should be more than 100%, to 5302 * ensure that that progress is also made towards getting arc_size 5303 * under arc_c. See the comment above zfs_arc_eviction_pct. 5304 */ 5305 arc_wait_for_eviction(size * zfs_arc_eviction_pct / 100, 5306 alloc_flags & ARC_HDR_USE_RESERVE); 5307 5308 VERIFY3U(hdr->b_type, ==, type); 5309 if (type == ARC_BUFC_METADATA) { 5310 arc_space_consume(size, ARC_SPACE_META); 5311 } else { 5312 arc_space_consume(size, ARC_SPACE_DATA); 5313 } 5314 5315 /* 5316 * Update the state size. Note that ghost states have a 5317 * "ghost size" and so don't need to be updated. 5318 */ 5319 if (!GHOST_STATE(state)) { 5320 5321 (void) zfs_refcount_add_many(&state->arcs_size, size, tag); 5322 5323 /* 5324 * If this is reached via arc_read, the link is 5325 * protected by the hash lock. If reached via 5326 * arc_buf_alloc, the header should not be accessed by 5327 * any other thread. And, if reached via arc_read_done, 5328 * the hash lock will protect it if it's found in the 5329 * hash table; otherwise no other thread should be 5330 * trying to [add|remove]_reference it. 5331 */ 5332 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5333 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5334 (void) zfs_refcount_add_many(&state->arcs_esize[type], 5335 size, tag); 5336 } 5337 5338 /* 5339 * If we are growing the cache, and we are adding anonymous 5340 * data, and we have outgrown arc_p, update arc_p 5341 */ 5342 if (aggsum_upper_bound(&arc_sums.arcstat_size) < arc_c && 5343 hdr->b_l1hdr.b_state == arc_anon && 5344 (zfs_refcount_count(&arc_anon->arcs_size) + 5345 zfs_refcount_count(&arc_mru->arcs_size) > arc_p)) 5346 arc_p = MIN(arc_c, arc_p + size); 5347 } 5348 } 5349 5350 static void 5351 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag) 5352 { 5353 arc_free_data_impl(hdr, size, tag); 5354 abd_free(abd); 5355 } 5356 5357 static void 5358 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag) 5359 { 5360 arc_buf_contents_t type = arc_buf_type(hdr); 5361 5362 arc_free_data_impl(hdr, size, tag); 5363 if (type == ARC_BUFC_METADATA) { 5364 zio_buf_free(buf, size); 5365 } else { 5366 ASSERT(type == ARC_BUFC_DATA); 5367 zio_data_buf_free(buf, size); 5368 } 5369 } 5370 5371 /* 5372 * Free the arc data buffer. 5373 */ 5374 static void 5375 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 5376 { 5377 arc_state_t *state = hdr->b_l1hdr.b_state; 5378 arc_buf_contents_t type = arc_buf_type(hdr); 5379 5380 /* protected by hash lock, if in the hash table */ 5381 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5382 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5383 ASSERT(state != arc_anon && state != arc_l2c_only); 5384 5385 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 5386 size, tag); 5387 } 5388 (void) zfs_refcount_remove_many(&state->arcs_size, size, tag); 5389 5390 VERIFY3U(hdr->b_type, ==, type); 5391 if (type == ARC_BUFC_METADATA) { 5392 arc_space_return(size, ARC_SPACE_META); 5393 } else { 5394 ASSERT(type == ARC_BUFC_DATA); 5395 arc_space_return(size, ARC_SPACE_DATA); 5396 } 5397 } 5398 5399 /* 5400 * This routine is called whenever a buffer is accessed. 5401 * NOTE: the hash lock is dropped in this function. 5402 */ 5403 static void 5404 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 5405 { 5406 clock_t now; 5407 5408 ASSERT(MUTEX_HELD(hash_lock)); 5409 ASSERT(HDR_HAS_L1HDR(hdr)); 5410 5411 if (hdr->b_l1hdr.b_state == arc_anon) { 5412 /* 5413 * This buffer is not in the cache, and does not 5414 * appear in our "ghost" list. Add the new buffer 5415 * to the MRU state. 5416 */ 5417 5418 ASSERT0(hdr->b_l1hdr.b_arc_access); 5419 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5420 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5421 arc_change_state(arc_mru, hdr, hash_lock); 5422 5423 } else if (hdr->b_l1hdr.b_state == arc_mru) { 5424 now = ddi_get_lbolt(); 5425 5426 /* 5427 * If this buffer is here because of a prefetch, then either: 5428 * - clear the flag if this is a "referencing" read 5429 * (any subsequent access will bump this into the MFU state). 5430 * or 5431 * - move the buffer to the head of the list if this is 5432 * another prefetch (to make it less likely to be evicted). 5433 */ 5434 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5435 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 5436 /* link protected by hash lock */ 5437 ASSERT(multilist_link_active( 5438 &hdr->b_l1hdr.b_arc_node)); 5439 } else { 5440 if (HDR_HAS_L2HDR(hdr)) 5441 l2arc_hdr_arcstats_decrement_state(hdr); 5442 arc_hdr_clear_flags(hdr, 5443 ARC_FLAG_PREFETCH | 5444 ARC_FLAG_PRESCIENT_PREFETCH); 5445 hdr->b_l1hdr.b_mru_hits++; 5446 ARCSTAT_BUMP(arcstat_mru_hits); 5447 if (HDR_HAS_L2HDR(hdr)) 5448 l2arc_hdr_arcstats_increment_state(hdr); 5449 } 5450 hdr->b_l1hdr.b_arc_access = now; 5451 return; 5452 } 5453 5454 /* 5455 * This buffer has been "accessed" only once so far, 5456 * but it is still in the cache. Move it to the MFU 5457 * state. 5458 */ 5459 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access + 5460 ARC_MINTIME)) { 5461 /* 5462 * More than 125ms have passed since we 5463 * instantiated this buffer. Move it to the 5464 * most frequently used state. 5465 */ 5466 hdr->b_l1hdr.b_arc_access = now; 5467 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5468 arc_change_state(arc_mfu, hdr, hash_lock); 5469 } 5470 hdr->b_l1hdr.b_mru_hits++; 5471 ARCSTAT_BUMP(arcstat_mru_hits); 5472 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 5473 arc_state_t *new_state; 5474 /* 5475 * This buffer has been "accessed" recently, but 5476 * was evicted from the cache. Move it to the 5477 * MFU state. 5478 */ 5479 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5480 new_state = arc_mru; 5481 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) { 5482 if (HDR_HAS_L2HDR(hdr)) 5483 l2arc_hdr_arcstats_decrement_state(hdr); 5484 arc_hdr_clear_flags(hdr, 5485 ARC_FLAG_PREFETCH | 5486 ARC_FLAG_PRESCIENT_PREFETCH); 5487 if (HDR_HAS_L2HDR(hdr)) 5488 l2arc_hdr_arcstats_increment_state(hdr); 5489 } 5490 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5491 } else { 5492 new_state = arc_mfu; 5493 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5494 } 5495 5496 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5497 arc_change_state(new_state, hdr, hash_lock); 5498 5499 hdr->b_l1hdr.b_mru_ghost_hits++; 5500 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 5501 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 5502 /* 5503 * This buffer has been accessed more than once and is 5504 * still in the cache. Keep it in the MFU state. 5505 * 5506 * NOTE: an add_reference() that occurred when we did 5507 * the arc_read() will have kicked this off the list. 5508 * If it was a prefetch, we will explicitly move it to 5509 * the head of the list now. 5510 */ 5511 5512 hdr->b_l1hdr.b_mfu_hits++; 5513 ARCSTAT_BUMP(arcstat_mfu_hits); 5514 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5515 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 5516 arc_state_t *new_state = arc_mfu; 5517 /* 5518 * This buffer has been accessed more than once but has 5519 * been evicted from the cache. Move it back to the 5520 * MFU state. 5521 */ 5522 5523 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5524 /* 5525 * This is a prefetch access... 5526 * move this block back to the MRU state. 5527 */ 5528 new_state = arc_mru; 5529 } 5530 5531 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5532 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5533 arc_change_state(new_state, hdr, hash_lock); 5534 5535 hdr->b_l1hdr.b_mfu_ghost_hits++; 5536 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 5537 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 5538 /* 5539 * This buffer is on the 2nd Level ARC. 5540 */ 5541 5542 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5543 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5544 arc_change_state(arc_mfu, hdr, hash_lock); 5545 } else { 5546 cmn_err(CE_PANIC, "invalid arc state 0x%p", 5547 hdr->b_l1hdr.b_state); 5548 } 5549 } 5550 5551 /* 5552 * This routine is called by dbuf_hold() to update the arc_access() state 5553 * which otherwise would be skipped for entries in the dbuf cache. 5554 */ 5555 void 5556 arc_buf_access(arc_buf_t *buf) 5557 { 5558 mutex_enter(&buf->b_evict_lock); 5559 arc_buf_hdr_t *hdr = buf->b_hdr; 5560 5561 /* 5562 * Avoid taking the hash_lock when possible as an optimization. 5563 * The header must be checked again under the hash_lock in order 5564 * to handle the case where it is concurrently being released. 5565 */ 5566 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5567 mutex_exit(&buf->b_evict_lock); 5568 return; 5569 } 5570 5571 kmutex_t *hash_lock = HDR_LOCK(hdr); 5572 mutex_enter(hash_lock); 5573 5574 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5575 mutex_exit(hash_lock); 5576 mutex_exit(&buf->b_evict_lock); 5577 ARCSTAT_BUMP(arcstat_access_skip); 5578 return; 5579 } 5580 5581 mutex_exit(&buf->b_evict_lock); 5582 5583 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5584 hdr->b_l1hdr.b_state == arc_mfu); 5585 5586 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5587 arc_access(hdr, hash_lock); 5588 mutex_exit(hash_lock); 5589 5590 ARCSTAT_BUMP(arcstat_hits); 5591 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr) && !HDR_PRESCIENT_PREFETCH(hdr), 5592 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits); 5593 } 5594 5595 /* a generic arc_read_done_func_t which you can use */ 5596 /* ARGSUSED */ 5597 void 5598 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5599 arc_buf_t *buf, void *arg) 5600 { 5601 if (buf == NULL) 5602 return; 5603 5604 bcopy(buf->b_data, arg, arc_buf_size(buf)); 5605 arc_buf_destroy(buf, arg); 5606 } 5607 5608 /* a generic arc_read_done_func_t */ 5609 /* ARGSUSED */ 5610 void 5611 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5612 arc_buf_t *buf, void *arg) 5613 { 5614 arc_buf_t **bufp = arg; 5615 5616 if (buf == NULL) { 5617 ASSERT(zio == NULL || zio->io_error != 0); 5618 *bufp = NULL; 5619 } else { 5620 ASSERT(zio == NULL || zio->io_error == 0); 5621 *bufp = buf; 5622 ASSERT(buf->b_data != NULL); 5623 } 5624 } 5625 5626 static void 5627 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp) 5628 { 5629 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 5630 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0); 5631 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF); 5632 } else { 5633 if (HDR_COMPRESSION_ENABLED(hdr)) { 5634 ASSERT3U(arc_hdr_get_compress(hdr), ==, 5635 BP_GET_COMPRESS(bp)); 5636 } 5637 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 5638 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); 5639 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp)); 5640 } 5641 } 5642 5643 static void 5644 arc_read_done(zio_t *zio) 5645 { 5646 blkptr_t *bp = zio->io_bp; 5647 arc_buf_hdr_t *hdr = zio->io_private; 5648 kmutex_t *hash_lock = NULL; 5649 arc_callback_t *callback_list; 5650 arc_callback_t *acb; 5651 boolean_t freeable = B_FALSE; 5652 5653 /* 5654 * The hdr was inserted into hash-table and removed from lists 5655 * prior to starting I/O. We should find this header, since 5656 * it's in the hash table, and it should be legit since it's 5657 * not possible to evict it during the I/O. The only possible 5658 * reason for it not to be found is if we were freed during the 5659 * read. 5660 */ 5661 if (HDR_IN_HASH_TABLE(hdr)) { 5662 arc_buf_hdr_t *found; 5663 5664 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 5665 ASSERT3U(hdr->b_dva.dva_word[0], ==, 5666 BP_IDENTITY(zio->io_bp)->dva_word[0]); 5667 ASSERT3U(hdr->b_dva.dva_word[1], ==, 5668 BP_IDENTITY(zio->io_bp)->dva_word[1]); 5669 5670 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock); 5671 5672 ASSERT((found == hdr && 5673 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 5674 (found == hdr && HDR_L2_READING(hdr))); 5675 ASSERT3P(hash_lock, !=, NULL); 5676 } 5677 5678 if (BP_IS_PROTECTED(bp)) { 5679 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 5680 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 5681 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 5682 hdr->b_crypt_hdr.b_iv); 5683 5684 if (zio->io_error == 0) { 5685 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) { 5686 void *tmpbuf; 5687 5688 tmpbuf = abd_borrow_buf_copy(zio->io_abd, 5689 sizeof (zil_chain_t)); 5690 zio_crypt_decode_mac_zil(tmpbuf, 5691 hdr->b_crypt_hdr.b_mac); 5692 abd_return_buf(zio->io_abd, tmpbuf, 5693 sizeof (zil_chain_t)); 5694 } else { 5695 zio_crypt_decode_mac_bp(bp, 5696 hdr->b_crypt_hdr.b_mac); 5697 } 5698 } 5699 } 5700 5701 if (zio->io_error == 0) { 5702 /* byteswap if necessary */ 5703 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 5704 if (BP_GET_LEVEL(zio->io_bp) > 0) { 5705 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 5706 } else { 5707 hdr->b_l1hdr.b_byteswap = 5708 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 5709 } 5710 } else { 5711 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 5712 } 5713 if (!HDR_L2_READING(hdr)) { 5714 hdr->b_complevel = zio->io_prop.zp_complevel; 5715 } 5716 } 5717 5718 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); 5719 if (l2arc_noprefetch && HDR_PREFETCH(hdr)) 5720 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE); 5721 5722 callback_list = hdr->b_l1hdr.b_acb; 5723 ASSERT3P(callback_list, !=, NULL); 5724 5725 if (hash_lock && zio->io_error == 0 && 5726 hdr->b_l1hdr.b_state == arc_anon) { 5727 /* 5728 * Only call arc_access on anonymous buffers. This is because 5729 * if we've issued an I/O for an evicted buffer, we've already 5730 * called arc_access (to prevent any simultaneous readers from 5731 * getting confused). 5732 */ 5733 arc_access(hdr, hash_lock); 5734 } 5735 5736 /* 5737 * If a read request has a callback (i.e. acb_done is not NULL), then we 5738 * make a buf containing the data according to the parameters which were 5739 * passed in. The implementation of arc_buf_alloc_impl() ensures that we 5740 * aren't needlessly decompressing the data multiple times. 5741 */ 5742 int callback_cnt = 0; 5743 for (acb = callback_list; acb != NULL; acb = acb->acb_next) { 5744 if (!acb->acb_done || acb->acb_nobuf) 5745 continue; 5746 5747 callback_cnt++; 5748 5749 if (zio->io_error != 0) 5750 continue; 5751 5752 int error = arc_buf_alloc_impl(hdr, zio->io_spa, 5753 &acb->acb_zb, acb->acb_private, acb->acb_encrypted, 5754 acb->acb_compressed, acb->acb_noauth, B_TRUE, 5755 &acb->acb_buf); 5756 5757 /* 5758 * Assert non-speculative zios didn't fail because an 5759 * encryption key wasn't loaded 5760 */ 5761 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) || 5762 error != EACCES); 5763 5764 /* 5765 * If we failed to decrypt, report an error now (as the zio 5766 * layer would have done if it had done the transforms). 5767 */ 5768 if (error == ECKSUM) { 5769 ASSERT(BP_IS_PROTECTED(bp)); 5770 error = SET_ERROR(EIO); 5771 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5772 spa_log_error(zio->io_spa, &acb->acb_zb); 5773 (void) zfs_ereport_post( 5774 FM_EREPORT_ZFS_AUTHENTICATION, 5775 zio->io_spa, NULL, &acb->acb_zb, zio, 0); 5776 } 5777 } 5778 5779 if (error != 0) { 5780 /* 5781 * Decompression or decryption failed. Set 5782 * io_error so that when we call acb_done 5783 * (below), we will indicate that the read 5784 * failed. Note that in the unusual case 5785 * where one callback is compressed and another 5786 * uncompressed, we will mark all of them 5787 * as failed, even though the uncompressed 5788 * one can't actually fail. In this case, 5789 * the hdr will not be anonymous, because 5790 * if there are multiple callbacks, it's 5791 * because multiple threads found the same 5792 * arc buf in the hash table. 5793 */ 5794 zio->io_error = error; 5795 } 5796 } 5797 5798 /* 5799 * If there are multiple callbacks, we must have the hash lock, 5800 * because the only way for multiple threads to find this hdr is 5801 * in the hash table. This ensures that if there are multiple 5802 * callbacks, the hdr is not anonymous. If it were anonymous, 5803 * we couldn't use arc_buf_destroy() in the error case below. 5804 */ 5805 ASSERT(callback_cnt < 2 || hash_lock != NULL); 5806 5807 hdr->b_l1hdr.b_acb = NULL; 5808 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5809 if (callback_cnt == 0) 5810 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 5811 5812 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) || 5813 callback_list != NULL); 5814 5815 if (zio->io_error == 0) { 5816 arc_hdr_verify(hdr, zio->io_bp); 5817 } else { 5818 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 5819 if (hdr->b_l1hdr.b_state != arc_anon) 5820 arc_change_state(arc_anon, hdr, hash_lock); 5821 if (HDR_IN_HASH_TABLE(hdr)) 5822 buf_hash_remove(hdr); 5823 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5824 } 5825 5826 /* 5827 * Broadcast before we drop the hash_lock to avoid the possibility 5828 * that the hdr (and hence the cv) might be freed before we get to 5829 * the cv_broadcast(). 5830 */ 5831 cv_broadcast(&hdr->b_l1hdr.b_cv); 5832 5833 if (hash_lock != NULL) { 5834 mutex_exit(hash_lock); 5835 } else { 5836 /* 5837 * This block was freed while we waited for the read to 5838 * complete. It has been removed from the hash table and 5839 * moved to the anonymous state (so that it won't show up 5840 * in the cache). 5841 */ 5842 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 5843 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5844 } 5845 5846 /* execute each callback and free its structure */ 5847 while ((acb = callback_list) != NULL) { 5848 if (acb->acb_done != NULL) { 5849 if (zio->io_error != 0 && acb->acb_buf != NULL) { 5850 /* 5851 * If arc_buf_alloc_impl() fails during 5852 * decompression, the buf will still be 5853 * allocated, and needs to be freed here. 5854 */ 5855 arc_buf_destroy(acb->acb_buf, 5856 acb->acb_private); 5857 acb->acb_buf = NULL; 5858 } 5859 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp, 5860 acb->acb_buf, acb->acb_private); 5861 } 5862 5863 if (acb->acb_zio_dummy != NULL) { 5864 acb->acb_zio_dummy->io_error = zio->io_error; 5865 zio_nowait(acb->acb_zio_dummy); 5866 } 5867 5868 callback_list = acb->acb_next; 5869 kmem_free(acb, sizeof (arc_callback_t)); 5870 } 5871 5872 if (freeable) 5873 arc_hdr_destroy(hdr); 5874 } 5875 5876 /* 5877 * "Read" the block at the specified DVA (in bp) via the 5878 * cache. If the block is found in the cache, invoke the provided 5879 * callback immediately and return. Note that the `zio' parameter 5880 * in the callback will be NULL in this case, since no IO was 5881 * required. If the block is not in the cache pass the read request 5882 * on to the spa with a substitute callback function, so that the 5883 * requested block will be added to the cache. 5884 * 5885 * If a read request arrives for a block that has a read in-progress, 5886 * either wait for the in-progress read to complete (and return the 5887 * results); or, if this is a read with a "done" func, add a record 5888 * to the read to invoke the "done" func when the read completes, 5889 * and return; or just return. 5890 * 5891 * arc_read_done() will invoke all the requested "done" functions 5892 * for readers of this block. 5893 */ 5894 int 5895 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 5896 arc_read_done_func_t *done, void *private, zio_priority_t priority, 5897 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 5898 { 5899 arc_buf_hdr_t *hdr = NULL; 5900 kmutex_t *hash_lock = NULL; 5901 zio_t *rzio; 5902 uint64_t guid = spa_load_guid(spa); 5903 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0; 5904 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) && 5905 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5906 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) && 5907 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5908 boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp); 5909 boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF; 5910 int rc = 0; 5911 5912 ASSERT(!embedded_bp || 5913 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 5914 ASSERT(!BP_IS_HOLE(bp)); 5915 ASSERT(!BP_IS_REDACTED(bp)); 5916 5917 /* 5918 * Normally SPL_FSTRANS will already be set since kernel threads which 5919 * expect to call the DMU interfaces will set it when created. System 5920 * calls are similarly handled by setting/cleaning the bit in the 5921 * registered callback (module/os/.../zfs/zpl_*). 5922 * 5923 * External consumers such as Lustre which call the exported DMU 5924 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock 5925 * on the hash_lock always set and clear the bit. 5926 */ 5927 fstrans_cookie_t cookie = spl_fstrans_mark(); 5928 top: 5929 /* 5930 * Verify the block pointer contents are reasonable. This should 5931 * always be the case since the blkptr is protected by a checksum. 5932 * However, if there is damage it's desirable to detect this early 5933 * and treat it as a checksum error. This allows an alternate blkptr 5934 * to be tried when one is available (e.g. ditto blocks). 5935 */ 5936 if (!zfs_blkptr_verify(spa, bp, zio_flags & ZIO_FLAG_CONFIG_WRITER, 5937 BLK_VERIFY_LOG)) { 5938 rc = SET_ERROR(ECKSUM); 5939 goto out; 5940 } 5941 5942 if (!embedded_bp) { 5943 /* 5944 * Embedded BP's have no DVA and require no I/O to "read". 5945 * Create an anonymous arc buf to back it. 5946 */ 5947 hdr = buf_hash_find(guid, bp, &hash_lock); 5948 } 5949 5950 /* 5951 * Determine if we have an L1 cache hit or a cache miss. For simplicity 5952 * we maintain encrypted data separately from compressed / uncompressed 5953 * data. If the user is requesting raw encrypted data and we don't have 5954 * that in the header we will read from disk to guarantee that we can 5955 * get it even if the encryption keys aren't loaded. 5956 */ 5957 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) || 5958 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) { 5959 arc_buf_t *buf = NULL; 5960 *arc_flags |= ARC_FLAG_CACHED; 5961 5962 if (HDR_IO_IN_PROGRESS(hdr)) { 5963 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head; 5964 5965 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 5966 mutex_exit(hash_lock); 5967 ARCSTAT_BUMP(arcstat_cached_only_in_progress); 5968 rc = SET_ERROR(ENOENT); 5969 goto out; 5970 } 5971 5972 ASSERT3P(head_zio, !=, NULL); 5973 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && 5974 priority == ZIO_PRIORITY_SYNC_READ) { 5975 /* 5976 * This is a sync read that needs to wait for 5977 * an in-flight async read. Request that the 5978 * zio have its priority upgraded. 5979 */ 5980 zio_change_priority(head_zio, priority); 5981 DTRACE_PROBE1(arc__async__upgrade__sync, 5982 arc_buf_hdr_t *, hdr); 5983 ARCSTAT_BUMP(arcstat_async_upgrade_sync); 5984 } 5985 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 5986 arc_hdr_clear_flags(hdr, 5987 ARC_FLAG_PREDICTIVE_PREFETCH); 5988 } 5989 5990 if (*arc_flags & ARC_FLAG_WAIT) { 5991 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 5992 mutex_exit(hash_lock); 5993 goto top; 5994 } 5995 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 5996 5997 if (done) { 5998 arc_callback_t *acb = NULL; 5999 6000 acb = kmem_zalloc(sizeof (arc_callback_t), 6001 KM_SLEEP); 6002 acb->acb_done = done; 6003 acb->acb_private = private; 6004 acb->acb_compressed = compressed_read; 6005 acb->acb_encrypted = encrypted_read; 6006 acb->acb_noauth = noauth_read; 6007 acb->acb_nobuf = no_buf; 6008 acb->acb_zb = *zb; 6009 if (pio != NULL) 6010 acb->acb_zio_dummy = zio_null(pio, 6011 spa, NULL, NULL, NULL, zio_flags); 6012 6013 ASSERT3P(acb->acb_done, !=, NULL); 6014 acb->acb_zio_head = head_zio; 6015 acb->acb_next = hdr->b_l1hdr.b_acb; 6016 hdr->b_l1hdr.b_acb = acb; 6017 } 6018 mutex_exit(hash_lock); 6019 goto out; 6020 } 6021 6022 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 6023 hdr->b_l1hdr.b_state == arc_mfu); 6024 6025 if (done && !no_buf) { 6026 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 6027 /* 6028 * This is a demand read which does not have to 6029 * wait for i/o because we did a predictive 6030 * prefetch i/o for it, which has completed. 6031 */ 6032 DTRACE_PROBE1( 6033 arc__demand__hit__predictive__prefetch, 6034 arc_buf_hdr_t *, hdr); 6035 ARCSTAT_BUMP( 6036 arcstat_demand_hit_predictive_prefetch); 6037 arc_hdr_clear_flags(hdr, 6038 ARC_FLAG_PREDICTIVE_PREFETCH); 6039 } 6040 6041 if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) { 6042 ARCSTAT_BUMP( 6043 arcstat_demand_hit_prescient_prefetch); 6044 arc_hdr_clear_flags(hdr, 6045 ARC_FLAG_PRESCIENT_PREFETCH); 6046 } 6047 6048 ASSERT(!embedded_bp || !BP_IS_HOLE(bp)); 6049 6050 /* Get a buf with the desired data in it. */ 6051 rc = arc_buf_alloc_impl(hdr, spa, zb, private, 6052 encrypted_read, compressed_read, noauth_read, 6053 B_TRUE, &buf); 6054 if (rc == ECKSUM) { 6055 /* 6056 * Convert authentication and decryption errors 6057 * to EIO (and generate an ereport if needed) 6058 * before leaving the ARC. 6059 */ 6060 rc = SET_ERROR(EIO); 6061 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) { 6062 spa_log_error(spa, zb); 6063 (void) zfs_ereport_post( 6064 FM_EREPORT_ZFS_AUTHENTICATION, 6065 spa, NULL, zb, NULL, 0); 6066 } 6067 } 6068 if (rc != 0) { 6069 (void) remove_reference(hdr, hash_lock, 6070 private); 6071 arc_buf_destroy_impl(buf); 6072 buf = NULL; 6073 } 6074 6075 /* assert any errors weren't due to unloaded keys */ 6076 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) || 6077 rc != EACCES); 6078 } else if (*arc_flags & ARC_FLAG_PREFETCH && 6079 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6080 if (HDR_HAS_L2HDR(hdr)) 6081 l2arc_hdr_arcstats_decrement_state(hdr); 6082 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 6083 if (HDR_HAS_L2HDR(hdr)) 6084 l2arc_hdr_arcstats_increment_state(hdr); 6085 } 6086 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 6087 arc_access(hdr, hash_lock); 6088 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 6089 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 6090 if (*arc_flags & ARC_FLAG_L2CACHE) 6091 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6092 mutex_exit(hash_lock); 6093 ARCSTAT_BUMP(arcstat_hits); 6094 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 6095 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 6096 data, metadata, hits); 6097 6098 if (done) 6099 done(NULL, zb, bp, buf, private); 6100 } else { 6101 uint64_t lsize = BP_GET_LSIZE(bp); 6102 uint64_t psize = BP_GET_PSIZE(bp); 6103 arc_callback_t *acb; 6104 vdev_t *vd = NULL; 6105 uint64_t addr = 0; 6106 boolean_t devw = B_FALSE; 6107 uint64_t size; 6108 abd_t *hdr_abd; 6109 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0; 6110 6111 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 6112 rc = SET_ERROR(ENOENT); 6113 if (hash_lock != NULL) 6114 mutex_exit(hash_lock); 6115 goto out; 6116 } 6117 6118 if (hdr == NULL) { 6119 /* 6120 * This block is not in the cache or it has 6121 * embedded data. 6122 */ 6123 arc_buf_hdr_t *exists = NULL; 6124 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 6125 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 6126 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type); 6127 6128 if (!embedded_bp) { 6129 hdr->b_dva = *BP_IDENTITY(bp); 6130 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 6131 exists = buf_hash_insert(hdr, &hash_lock); 6132 } 6133 if (exists != NULL) { 6134 /* somebody beat us to the hash insert */ 6135 mutex_exit(hash_lock); 6136 buf_discard_identity(hdr); 6137 arc_hdr_destroy(hdr); 6138 goto top; /* restart the IO request */ 6139 } 6140 alloc_flags |= ARC_HDR_DO_ADAPT; 6141 } else { 6142 /* 6143 * This block is in the ghost cache or encrypted data 6144 * was requested and we didn't have it. If it was 6145 * L2-only (and thus didn't have an L1 hdr), 6146 * we realloc the header to add an L1 hdr. 6147 */ 6148 if (!HDR_HAS_L1HDR(hdr)) { 6149 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 6150 hdr_full_cache); 6151 } 6152 6153 if (GHOST_STATE(hdr->b_l1hdr.b_state)) { 6154 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6155 ASSERT(!HDR_HAS_RABD(hdr)); 6156 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6157 ASSERT0(zfs_refcount_count( 6158 &hdr->b_l1hdr.b_refcnt)); 6159 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 6160 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 6161 } else if (HDR_IO_IN_PROGRESS(hdr)) { 6162 /* 6163 * If this header already had an IO in progress 6164 * and we are performing another IO to fetch 6165 * encrypted data we must wait until the first 6166 * IO completes so as not to confuse 6167 * arc_read_done(). This should be very rare 6168 * and so the performance impact shouldn't 6169 * matter. 6170 */ 6171 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 6172 mutex_exit(hash_lock); 6173 goto top; 6174 } 6175 6176 /* 6177 * This is a delicate dance that we play here. 6178 * This hdr might be in the ghost list so we access 6179 * it to move it out of the ghost list before we 6180 * initiate the read. If it's a prefetch then 6181 * it won't have a callback so we'll remove the 6182 * reference that arc_buf_alloc_impl() created. We 6183 * do this after we've called arc_access() to 6184 * avoid hitting an assert in remove_reference(). 6185 */ 6186 arc_adapt(arc_hdr_size(hdr), hdr->b_l1hdr.b_state); 6187 arc_access(hdr, hash_lock); 6188 } 6189 6190 arc_hdr_alloc_abd(hdr, alloc_flags); 6191 if (encrypted_read) { 6192 ASSERT(HDR_HAS_RABD(hdr)); 6193 size = HDR_GET_PSIZE(hdr); 6194 hdr_abd = hdr->b_crypt_hdr.b_rabd; 6195 zio_flags |= ZIO_FLAG_RAW; 6196 } else { 6197 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 6198 size = arc_hdr_size(hdr); 6199 hdr_abd = hdr->b_l1hdr.b_pabd; 6200 6201 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 6202 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 6203 } 6204 6205 /* 6206 * For authenticated bp's, we do not ask the ZIO layer 6207 * to authenticate them since this will cause the entire 6208 * IO to fail if the key isn't loaded. Instead, we 6209 * defer authentication until arc_buf_fill(), which will 6210 * verify the data when the key is available. 6211 */ 6212 if (BP_IS_AUTHENTICATED(bp)) 6213 zio_flags |= ZIO_FLAG_RAW_ENCRYPT; 6214 } 6215 6216 if (*arc_flags & ARC_FLAG_PREFETCH && 6217 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6218 if (HDR_HAS_L2HDR(hdr)) 6219 l2arc_hdr_arcstats_decrement_state(hdr); 6220 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 6221 if (HDR_HAS_L2HDR(hdr)) 6222 l2arc_hdr_arcstats_increment_state(hdr); 6223 } 6224 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 6225 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 6226 if (*arc_flags & ARC_FLAG_L2CACHE) 6227 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6228 if (BP_IS_AUTHENTICATED(bp)) 6229 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6230 if (BP_GET_LEVEL(bp) > 0) 6231 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); 6232 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH) 6233 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH); 6234 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 6235 6236 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 6237 acb->acb_done = done; 6238 acb->acb_private = private; 6239 acb->acb_compressed = compressed_read; 6240 acb->acb_encrypted = encrypted_read; 6241 acb->acb_noauth = noauth_read; 6242 acb->acb_zb = *zb; 6243 6244 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6245 hdr->b_l1hdr.b_acb = acb; 6246 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6247 6248 if (HDR_HAS_L2HDR(hdr) && 6249 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 6250 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 6251 addr = hdr->b_l2hdr.b_daddr; 6252 /* 6253 * Lock out L2ARC device removal. 6254 */ 6255 if (vdev_is_dead(vd) || 6256 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 6257 vd = NULL; 6258 } 6259 6260 /* 6261 * We count both async reads and scrub IOs as asynchronous so 6262 * that both can be upgraded in the event of a cache hit while 6263 * the read IO is still in-flight. 6264 */ 6265 if (priority == ZIO_PRIORITY_ASYNC_READ || 6266 priority == ZIO_PRIORITY_SCRUB) 6267 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6268 else 6269 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6270 6271 /* 6272 * At this point, we have a level 1 cache miss or a blkptr 6273 * with embedded data. Try again in L2ARC if possible. 6274 */ 6275 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); 6276 6277 /* 6278 * Skip ARC stat bump for block pointers with embedded 6279 * data. The data are read from the blkptr itself via 6280 * decode_embedded_bp_compressed(). 6281 */ 6282 if (!embedded_bp) { 6283 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, 6284 blkptr_t *, bp, uint64_t, lsize, 6285 zbookmark_phys_t *, zb); 6286 ARCSTAT_BUMP(arcstat_misses); 6287 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 6288 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, 6289 metadata, misses); 6290 zfs_racct_read(size, 1); 6291 } 6292 6293 /* Check if the spa even has l2 configured */ 6294 const boolean_t spa_has_l2 = l2arc_ndev != 0 && 6295 spa->spa_l2cache.sav_count > 0; 6296 6297 if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) { 6298 /* 6299 * Read from the L2ARC if the following are true: 6300 * 1. The L2ARC vdev was previously cached. 6301 * 2. This buffer still has L2ARC metadata. 6302 * 3. This buffer isn't currently writing to the L2ARC. 6303 * 4. The L2ARC entry wasn't evicted, which may 6304 * also have invalidated the vdev. 6305 * 5. This isn't prefetch or l2arc_noprefetch is 0. 6306 */ 6307 if (HDR_HAS_L2HDR(hdr) && 6308 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 6309 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 6310 l2arc_read_callback_t *cb; 6311 abd_t *abd; 6312 uint64_t asize; 6313 6314 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 6315 ARCSTAT_BUMP(arcstat_l2_hits); 6316 hdr->b_l2hdr.b_hits++; 6317 6318 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 6319 KM_SLEEP); 6320 cb->l2rcb_hdr = hdr; 6321 cb->l2rcb_bp = *bp; 6322 cb->l2rcb_zb = *zb; 6323 cb->l2rcb_flags = zio_flags; 6324 6325 /* 6326 * When Compressed ARC is disabled, but the 6327 * L2ARC block is compressed, arc_hdr_size() 6328 * will have returned LSIZE rather than PSIZE. 6329 */ 6330 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 6331 !HDR_COMPRESSION_ENABLED(hdr) && 6332 HDR_GET_PSIZE(hdr) != 0) { 6333 size = HDR_GET_PSIZE(hdr); 6334 } 6335 6336 asize = vdev_psize_to_asize(vd, size); 6337 if (asize != size) { 6338 abd = abd_alloc_for_io(asize, 6339 HDR_ISTYPE_METADATA(hdr)); 6340 cb->l2rcb_abd = abd; 6341 } else { 6342 abd = hdr_abd; 6343 } 6344 6345 ASSERT(addr >= VDEV_LABEL_START_SIZE && 6346 addr + asize <= vd->vdev_psize - 6347 VDEV_LABEL_END_SIZE); 6348 6349 /* 6350 * l2arc read. The SCL_L2ARC lock will be 6351 * released by l2arc_read_done(). 6352 * Issue a null zio if the underlying buffer 6353 * was squashed to zero size by compression. 6354 */ 6355 ASSERT3U(arc_hdr_get_compress(hdr), !=, 6356 ZIO_COMPRESS_EMPTY); 6357 rzio = zio_read_phys(pio, vd, addr, 6358 asize, abd, 6359 ZIO_CHECKSUM_OFF, 6360 l2arc_read_done, cb, priority, 6361 zio_flags | ZIO_FLAG_DONT_CACHE | 6362 ZIO_FLAG_CANFAIL | 6363 ZIO_FLAG_DONT_PROPAGATE | 6364 ZIO_FLAG_DONT_RETRY, B_FALSE); 6365 acb->acb_zio_head = rzio; 6366 6367 if (hash_lock != NULL) 6368 mutex_exit(hash_lock); 6369 6370 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 6371 zio_t *, rzio); 6372 ARCSTAT_INCR(arcstat_l2_read_bytes, 6373 HDR_GET_PSIZE(hdr)); 6374 6375 if (*arc_flags & ARC_FLAG_NOWAIT) { 6376 zio_nowait(rzio); 6377 goto out; 6378 } 6379 6380 ASSERT(*arc_flags & ARC_FLAG_WAIT); 6381 if (zio_wait(rzio) == 0) 6382 goto out; 6383 6384 /* l2arc read error; goto zio_read() */ 6385 if (hash_lock != NULL) 6386 mutex_enter(hash_lock); 6387 } else { 6388 DTRACE_PROBE1(l2arc__miss, 6389 arc_buf_hdr_t *, hdr); 6390 ARCSTAT_BUMP(arcstat_l2_misses); 6391 if (HDR_L2_WRITING(hdr)) 6392 ARCSTAT_BUMP(arcstat_l2_rw_clash); 6393 spa_config_exit(spa, SCL_L2ARC, vd); 6394 } 6395 } else { 6396 if (vd != NULL) 6397 spa_config_exit(spa, SCL_L2ARC, vd); 6398 6399 /* 6400 * Only a spa with l2 should contribute to l2 6401 * miss stats. (Including the case of having a 6402 * faulted cache device - that's also a miss.) 6403 */ 6404 if (spa_has_l2) { 6405 /* 6406 * Skip ARC stat bump for block pointers with 6407 * embedded data. The data are read from the 6408 * blkptr itself via 6409 * decode_embedded_bp_compressed(). 6410 */ 6411 if (!embedded_bp) { 6412 DTRACE_PROBE1(l2arc__miss, 6413 arc_buf_hdr_t *, hdr); 6414 ARCSTAT_BUMP(arcstat_l2_misses); 6415 } 6416 } 6417 } 6418 6419 rzio = zio_read(pio, spa, bp, hdr_abd, size, 6420 arc_read_done, hdr, priority, zio_flags, zb); 6421 acb->acb_zio_head = rzio; 6422 6423 if (hash_lock != NULL) 6424 mutex_exit(hash_lock); 6425 6426 if (*arc_flags & ARC_FLAG_WAIT) { 6427 rc = zio_wait(rzio); 6428 goto out; 6429 } 6430 6431 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 6432 zio_nowait(rzio); 6433 } 6434 6435 out: 6436 /* embedded bps don't actually go to disk */ 6437 if (!embedded_bp) 6438 spa_read_history_add(spa, zb, *arc_flags); 6439 spl_fstrans_unmark(cookie); 6440 return (rc); 6441 } 6442 6443 arc_prune_t * 6444 arc_add_prune_callback(arc_prune_func_t *func, void *private) 6445 { 6446 arc_prune_t *p; 6447 6448 p = kmem_alloc(sizeof (*p), KM_SLEEP); 6449 p->p_pfunc = func; 6450 p->p_private = private; 6451 list_link_init(&p->p_node); 6452 zfs_refcount_create(&p->p_refcnt); 6453 6454 mutex_enter(&arc_prune_mtx); 6455 zfs_refcount_add(&p->p_refcnt, &arc_prune_list); 6456 list_insert_head(&arc_prune_list, p); 6457 mutex_exit(&arc_prune_mtx); 6458 6459 return (p); 6460 } 6461 6462 void 6463 arc_remove_prune_callback(arc_prune_t *p) 6464 { 6465 boolean_t wait = B_FALSE; 6466 mutex_enter(&arc_prune_mtx); 6467 list_remove(&arc_prune_list, p); 6468 if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0) 6469 wait = B_TRUE; 6470 mutex_exit(&arc_prune_mtx); 6471 6472 /* wait for arc_prune_task to finish */ 6473 if (wait) 6474 taskq_wait_outstanding(arc_prune_taskq, 0); 6475 ASSERT0(zfs_refcount_count(&p->p_refcnt)); 6476 zfs_refcount_destroy(&p->p_refcnt); 6477 kmem_free(p, sizeof (*p)); 6478 } 6479 6480 /* 6481 * Notify the arc that a block was freed, and thus will never be used again. 6482 */ 6483 void 6484 arc_freed(spa_t *spa, const blkptr_t *bp) 6485 { 6486 arc_buf_hdr_t *hdr; 6487 kmutex_t *hash_lock; 6488 uint64_t guid = spa_load_guid(spa); 6489 6490 ASSERT(!BP_IS_EMBEDDED(bp)); 6491 6492 hdr = buf_hash_find(guid, bp, &hash_lock); 6493 if (hdr == NULL) 6494 return; 6495 6496 /* 6497 * We might be trying to free a block that is still doing I/O 6498 * (i.e. prefetch) or has a reference (i.e. a dedup-ed, 6499 * dmu_sync-ed block). If this block is being prefetched, then it 6500 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr 6501 * until the I/O completes. A block may also have a reference if it is 6502 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would 6503 * have written the new block to its final resting place on disk but 6504 * without the dedup flag set. This would have left the hdr in the MRU 6505 * state and discoverable. When the txg finally syncs it detects that 6506 * the block was overridden in open context and issues an override I/O. 6507 * Since this is a dedup block, the override I/O will determine if the 6508 * block is already in the DDT. If so, then it will replace the io_bp 6509 * with the bp from the DDT and allow the I/O to finish. When the I/O 6510 * reaches the done callback, dbuf_write_override_done, it will 6511 * check to see if the io_bp and io_bp_override are identical. 6512 * If they are not, then it indicates that the bp was replaced with 6513 * the bp in the DDT and the override bp is freed. This allows 6514 * us to arrive here with a reference on a block that is being 6515 * freed. So if we have an I/O in progress, or a reference to 6516 * this hdr, then we don't destroy the hdr. 6517 */ 6518 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) && 6519 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) { 6520 arc_change_state(arc_anon, hdr, hash_lock); 6521 arc_hdr_destroy(hdr); 6522 mutex_exit(hash_lock); 6523 } else { 6524 mutex_exit(hash_lock); 6525 } 6526 6527 } 6528 6529 /* 6530 * Release this buffer from the cache, making it an anonymous buffer. This 6531 * must be done after a read and prior to modifying the buffer contents. 6532 * If the buffer has more than one reference, we must make 6533 * a new hdr for the buffer. 6534 */ 6535 void 6536 arc_release(arc_buf_t *buf, void *tag) 6537 { 6538 arc_buf_hdr_t *hdr = buf->b_hdr; 6539 6540 /* 6541 * It would be nice to assert that if its DMU metadata (level > 6542 * 0 || it's the dnode file), then it must be syncing context. 6543 * But we don't know that information at this level. 6544 */ 6545 6546 mutex_enter(&buf->b_evict_lock); 6547 6548 ASSERT(HDR_HAS_L1HDR(hdr)); 6549 6550 /* 6551 * We don't grab the hash lock prior to this check, because if 6552 * the buffer's header is in the arc_anon state, it won't be 6553 * linked into the hash table. 6554 */ 6555 if (hdr->b_l1hdr.b_state == arc_anon) { 6556 mutex_exit(&buf->b_evict_lock); 6557 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6558 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 6559 ASSERT(!HDR_HAS_L2HDR(hdr)); 6560 6561 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6562 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 6563 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node)); 6564 6565 hdr->b_l1hdr.b_arc_access = 0; 6566 6567 /* 6568 * If the buf is being overridden then it may already 6569 * have a hdr that is not empty. 6570 */ 6571 buf_discard_identity(hdr); 6572 arc_buf_thaw(buf); 6573 6574 return; 6575 } 6576 6577 kmutex_t *hash_lock = HDR_LOCK(hdr); 6578 mutex_enter(hash_lock); 6579 6580 /* 6581 * This assignment is only valid as long as the hash_lock is 6582 * held, we must be careful not to reference state or the 6583 * b_state field after dropping the lock. 6584 */ 6585 arc_state_t *state = hdr->b_l1hdr.b_state; 6586 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 6587 ASSERT3P(state, !=, arc_anon); 6588 6589 /* this buffer is not on any list */ 6590 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0); 6591 6592 if (HDR_HAS_L2HDR(hdr)) { 6593 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6594 6595 /* 6596 * We have to recheck this conditional again now that 6597 * we're holding the l2ad_mtx to prevent a race with 6598 * another thread which might be concurrently calling 6599 * l2arc_evict(). In that case, l2arc_evict() might have 6600 * destroyed the header's L2 portion as we were waiting 6601 * to acquire the l2ad_mtx. 6602 */ 6603 if (HDR_HAS_L2HDR(hdr)) 6604 arc_hdr_l2hdr_destroy(hdr); 6605 6606 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6607 } 6608 6609 /* 6610 * Do we have more than one buf? 6611 */ 6612 if (hdr->b_l1hdr.b_bufcnt > 1) { 6613 arc_buf_hdr_t *nhdr; 6614 uint64_t spa = hdr->b_spa; 6615 uint64_t psize = HDR_GET_PSIZE(hdr); 6616 uint64_t lsize = HDR_GET_LSIZE(hdr); 6617 boolean_t protected = HDR_PROTECTED(hdr); 6618 enum zio_compress compress = arc_hdr_get_compress(hdr); 6619 arc_buf_contents_t type = arc_buf_type(hdr); 6620 VERIFY3U(hdr->b_type, ==, type); 6621 6622 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); 6623 (void) remove_reference(hdr, hash_lock, tag); 6624 6625 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) { 6626 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6627 ASSERT(ARC_BUF_LAST(buf)); 6628 } 6629 6630 /* 6631 * Pull the data off of this hdr and attach it to 6632 * a new anonymous hdr. Also find the last buffer 6633 * in the hdr's buffer list. 6634 */ 6635 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 6636 ASSERT3P(lastbuf, !=, NULL); 6637 6638 /* 6639 * If the current arc_buf_t and the hdr are sharing their data 6640 * buffer, then we must stop sharing that block. 6641 */ 6642 if (arc_buf_is_shared(buf)) { 6643 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6644 VERIFY(!arc_buf_is_shared(lastbuf)); 6645 6646 /* 6647 * First, sever the block sharing relationship between 6648 * buf and the arc_buf_hdr_t. 6649 */ 6650 arc_unshare_buf(hdr, buf); 6651 6652 /* 6653 * Now we need to recreate the hdr's b_pabd. Since we 6654 * have lastbuf handy, we try to share with it, but if 6655 * we can't then we allocate a new b_pabd and copy the 6656 * data from buf into it. 6657 */ 6658 if (arc_can_share(hdr, lastbuf)) { 6659 arc_share_buf(hdr, lastbuf); 6660 } else { 6661 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 6662 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, 6663 buf->b_data, psize); 6664 } 6665 VERIFY3P(lastbuf->b_data, !=, NULL); 6666 } else if (HDR_SHARED_DATA(hdr)) { 6667 /* 6668 * Uncompressed shared buffers are always at the end 6669 * of the list. Compressed buffers don't have the 6670 * same requirements. This makes it hard to 6671 * simply assert that the lastbuf is shared so 6672 * we rely on the hdr's compression flags to determine 6673 * if we have a compressed, shared buffer. 6674 */ 6675 ASSERT(arc_buf_is_shared(lastbuf) || 6676 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 6677 ASSERT(!ARC_BUF_SHARED(buf)); 6678 } 6679 6680 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 6681 ASSERT3P(state, !=, arc_l2c_only); 6682 6683 (void) zfs_refcount_remove_many(&state->arcs_size, 6684 arc_buf_size(buf), buf); 6685 6686 if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6687 ASSERT3P(state, !=, arc_l2c_only); 6688 (void) zfs_refcount_remove_many( 6689 &state->arcs_esize[type], 6690 arc_buf_size(buf), buf); 6691 } 6692 6693 hdr->b_l1hdr.b_bufcnt -= 1; 6694 if (ARC_BUF_ENCRYPTED(buf)) 6695 hdr->b_crypt_hdr.b_ebufcnt -= 1; 6696 6697 arc_cksum_verify(buf); 6698 arc_buf_unwatch(buf); 6699 6700 /* if this is the last uncompressed buf free the checksum */ 6701 if (!arc_hdr_has_uncompressed_buf(hdr)) 6702 arc_cksum_free(hdr); 6703 6704 mutex_exit(hash_lock); 6705 6706 /* 6707 * Allocate a new hdr. The new hdr will contain a b_pabd 6708 * buffer which will be freed in arc_write(). 6709 */ 6710 nhdr = arc_hdr_alloc(spa, psize, lsize, protected, 6711 compress, hdr->b_complevel, type); 6712 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL); 6713 ASSERT0(nhdr->b_l1hdr.b_bufcnt); 6714 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt)); 6715 VERIFY3U(nhdr->b_type, ==, type); 6716 ASSERT(!HDR_SHARED_DATA(nhdr)); 6717 6718 nhdr->b_l1hdr.b_buf = buf; 6719 nhdr->b_l1hdr.b_bufcnt = 1; 6720 if (ARC_BUF_ENCRYPTED(buf)) 6721 nhdr->b_crypt_hdr.b_ebufcnt = 1; 6722 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 6723 buf->b_hdr = nhdr; 6724 6725 mutex_exit(&buf->b_evict_lock); 6726 (void) zfs_refcount_add_many(&arc_anon->arcs_size, 6727 arc_buf_size(buf), buf); 6728 } else { 6729 mutex_exit(&buf->b_evict_lock); 6730 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 6731 /* protected by hash lock, or hdr is on arc_anon */ 6732 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 6733 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6734 hdr->b_l1hdr.b_mru_hits = 0; 6735 hdr->b_l1hdr.b_mru_ghost_hits = 0; 6736 hdr->b_l1hdr.b_mfu_hits = 0; 6737 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 6738 arc_change_state(arc_anon, hdr, hash_lock); 6739 hdr->b_l1hdr.b_arc_access = 0; 6740 6741 mutex_exit(hash_lock); 6742 buf_discard_identity(hdr); 6743 arc_buf_thaw(buf); 6744 } 6745 } 6746 6747 int 6748 arc_released(arc_buf_t *buf) 6749 { 6750 int released; 6751 6752 mutex_enter(&buf->b_evict_lock); 6753 released = (buf->b_data != NULL && 6754 buf->b_hdr->b_l1hdr.b_state == arc_anon); 6755 mutex_exit(&buf->b_evict_lock); 6756 return (released); 6757 } 6758 6759 #ifdef ZFS_DEBUG 6760 int 6761 arc_referenced(arc_buf_t *buf) 6762 { 6763 int referenced; 6764 6765 mutex_enter(&buf->b_evict_lock); 6766 referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 6767 mutex_exit(&buf->b_evict_lock); 6768 return (referenced); 6769 } 6770 #endif 6771 6772 static void 6773 arc_write_ready(zio_t *zio) 6774 { 6775 arc_write_callback_t *callback = zio->io_private; 6776 arc_buf_t *buf = callback->awcb_buf; 6777 arc_buf_hdr_t *hdr = buf->b_hdr; 6778 blkptr_t *bp = zio->io_bp; 6779 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp); 6780 fstrans_cookie_t cookie = spl_fstrans_mark(); 6781 6782 ASSERT(HDR_HAS_L1HDR(hdr)); 6783 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 6784 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 6785 6786 /* 6787 * If we're reexecuting this zio because the pool suspended, then 6788 * cleanup any state that was previously set the first time the 6789 * callback was invoked. 6790 */ 6791 if (zio->io_flags & ZIO_FLAG_REEXECUTED) { 6792 arc_cksum_free(hdr); 6793 arc_buf_unwatch(buf); 6794 if (hdr->b_l1hdr.b_pabd != NULL) { 6795 if (arc_buf_is_shared(buf)) { 6796 arc_unshare_buf(hdr, buf); 6797 } else { 6798 arc_hdr_free_abd(hdr, B_FALSE); 6799 } 6800 } 6801 6802 if (HDR_HAS_RABD(hdr)) 6803 arc_hdr_free_abd(hdr, B_TRUE); 6804 } 6805 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6806 ASSERT(!HDR_HAS_RABD(hdr)); 6807 ASSERT(!HDR_SHARED_DATA(hdr)); 6808 ASSERT(!arc_buf_is_shared(buf)); 6809 6810 callback->awcb_ready(zio, buf, callback->awcb_private); 6811 6812 if (HDR_IO_IN_PROGRESS(hdr)) 6813 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); 6814 6815 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6816 6817 if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr)) 6818 hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp)); 6819 6820 if (BP_IS_PROTECTED(bp)) { 6821 /* ZIL blocks are written through zio_rewrite */ 6822 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 6823 ASSERT(HDR_PROTECTED(hdr)); 6824 6825 if (BP_SHOULD_BYTESWAP(bp)) { 6826 if (BP_GET_LEVEL(bp) > 0) { 6827 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 6828 } else { 6829 hdr->b_l1hdr.b_byteswap = 6830 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 6831 } 6832 } else { 6833 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 6834 } 6835 6836 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 6837 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 6838 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 6839 hdr->b_crypt_hdr.b_iv); 6840 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 6841 } 6842 6843 /* 6844 * If this block was written for raw encryption but the zio layer 6845 * ended up only authenticating it, adjust the buffer flags now. 6846 */ 6847 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) { 6848 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6849 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6850 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF) 6851 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6852 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) { 6853 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6854 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6855 } 6856 6857 /* this must be done after the buffer flags are adjusted */ 6858 arc_cksum_compute(buf); 6859 6860 enum zio_compress compress; 6861 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 6862 compress = ZIO_COMPRESS_OFF; 6863 } else { 6864 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 6865 compress = BP_GET_COMPRESS(bp); 6866 } 6867 HDR_SET_PSIZE(hdr, psize); 6868 arc_hdr_set_compress(hdr, compress); 6869 hdr->b_complevel = zio->io_prop.zp_complevel; 6870 6871 if (zio->io_error != 0 || psize == 0) 6872 goto out; 6873 6874 /* 6875 * Fill the hdr with data. If the buffer is encrypted we have no choice 6876 * but to copy the data into b_radb. If the hdr is compressed, the data 6877 * we want is available from the zio, otherwise we can take it from 6878 * the buf. 6879 * 6880 * We might be able to share the buf's data with the hdr here. However, 6881 * doing so would cause the ARC to be full of linear ABDs if we write a 6882 * lot of shareable data. As a compromise, we check whether scattered 6883 * ABDs are allowed, and assume that if they are then the user wants 6884 * the ARC to be primarily filled with them regardless of the data being 6885 * written. Therefore, if they're allowed then we allocate one and copy 6886 * the data into it; otherwise, we share the data directly if we can. 6887 */ 6888 if (ARC_BUF_ENCRYPTED(buf)) { 6889 ASSERT3U(psize, >, 0); 6890 ASSERT(ARC_BUF_COMPRESSED(buf)); 6891 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT | ARC_HDR_ALLOC_RDATA | 6892 ARC_HDR_USE_RESERVE); 6893 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6894 } else if (!abd_size_alloc_linear(arc_buf_size(buf)) || 6895 !arc_can_share(hdr, buf)) { 6896 /* 6897 * Ideally, we would always copy the io_abd into b_pabd, but the 6898 * user may have disabled compressed ARC, thus we must check the 6899 * hdr's compression setting rather than the io_bp's. 6900 */ 6901 if (BP_IS_ENCRYPTED(bp)) { 6902 ASSERT3U(psize, >, 0); 6903 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT | 6904 ARC_HDR_ALLOC_RDATA | ARC_HDR_USE_RESERVE); 6905 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6906 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 6907 !ARC_BUF_COMPRESSED(buf)) { 6908 ASSERT3U(psize, >, 0); 6909 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT | 6910 ARC_HDR_USE_RESERVE); 6911 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize); 6912 } else { 6913 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr)); 6914 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT | 6915 ARC_HDR_USE_RESERVE); 6916 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data, 6917 arc_buf_size(buf)); 6918 } 6919 } else { 6920 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd)); 6921 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf)); 6922 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6923 6924 arc_share_buf(hdr, buf); 6925 } 6926 6927 out: 6928 arc_hdr_verify(hdr, bp); 6929 spl_fstrans_unmark(cookie); 6930 } 6931 6932 static void 6933 arc_write_children_ready(zio_t *zio) 6934 { 6935 arc_write_callback_t *callback = zio->io_private; 6936 arc_buf_t *buf = callback->awcb_buf; 6937 6938 callback->awcb_children_ready(zio, buf, callback->awcb_private); 6939 } 6940 6941 /* 6942 * The SPA calls this callback for each physical write that happens on behalf 6943 * of a logical write. See the comment in dbuf_write_physdone() for details. 6944 */ 6945 static void 6946 arc_write_physdone(zio_t *zio) 6947 { 6948 arc_write_callback_t *cb = zio->io_private; 6949 if (cb->awcb_physdone != NULL) 6950 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 6951 } 6952 6953 static void 6954 arc_write_done(zio_t *zio) 6955 { 6956 arc_write_callback_t *callback = zio->io_private; 6957 arc_buf_t *buf = callback->awcb_buf; 6958 arc_buf_hdr_t *hdr = buf->b_hdr; 6959 6960 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6961 6962 if (zio->io_error == 0) { 6963 arc_hdr_verify(hdr, zio->io_bp); 6964 6965 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 6966 buf_discard_identity(hdr); 6967 } else { 6968 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 6969 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 6970 } 6971 } else { 6972 ASSERT(HDR_EMPTY(hdr)); 6973 } 6974 6975 /* 6976 * If the block to be written was all-zero or compressed enough to be 6977 * embedded in the BP, no write was performed so there will be no 6978 * dva/birth/checksum. The buffer must therefore remain anonymous 6979 * (and uncached). 6980 */ 6981 if (!HDR_EMPTY(hdr)) { 6982 arc_buf_hdr_t *exists; 6983 kmutex_t *hash_lock; 6984 6985 ASSERT3U(zio->io_error, ==, 0); 6986 6987 arc_cksum_verify(buf); 6988 6989 exists = buf_hash_insert(hdr, &hash_lock); 6990 if (exists != NULL) { 6991 /* 6992 * This can only happen if we overwrite for 6993 * sync-to-convergence, because we remove 6994 * buffers from the hash table when we arc_free(). 6995 */ 6996 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 6997 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6998 panic("bad overwrite, hdr=%p exists=%p", 6999 (void *)hdr, (void *)exists); 7000 ASSERT(zfs_refcount_is_zero( 7001 &exists->b_l1hdr.b_refcnt)); 7002 arc_change_state(arc_anon, exists, hash_lock); 7003 arc_hdr_destroy(exists); 7004 mutex_exit(hash_lock); 7005 exists = buf_hash_insert(hdr, &hash_lock); 7006 ASSERT3P(exists, ==, NULL); 7007 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 7008 /* nopwrite */ 7009 ASSERT(zio->io_prop.zp_nopwrite); 7010 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 7011 panic("bad nopwrite, hdr=%p exists=%p", 7012 (void *)hdr, (void *)exists); 7013 } else { 7014 /* Dedup */ 7015 ASSERT(hdr->b_l1hdr.b_bufcnt == 1); 7016 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 7017 ASSERT(BP_GET_DEDUP(zio->io_bp)); 7018 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 7019 } 7020 } 7021 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 7022 /* if it's not anon, we are doing a scrub */ 7023 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 7024 arc_access(hdr, hash_lock); 7025 mutex_exit(hash_lock); 7026 } else { 7027 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 7028 } 7029 7030 ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 7031 callback->awcb_done(zio, buf, callback->awcb_private); 7032 7033 abd_free(zio->io_abd); 7034 kmem_free(callback, sizeof (arc_write_callback_t)); 7035 } 7036 7037 zio_t * 7038 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 7039 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, 7040 const zio_prop_t *zp, arc_write_done_func_t *ready, 7041 arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone, 7042 arc_write_done_func_t *done, void *private, zio_priority_t priority, 7043 int zio_flags, const zbookmark_phys_t *zb) 7044 { 7045 arc_buf_hdr_t *hdr = buf->b_hdr; 7046 arc_write_callback_t *callback; 7047 zio_t *zio; 7048 zio_prop_t localprop = *zp; 7049 7050 ASSERT3P(ready, !=, NULL); 7051 ASSERT3P(done, !=, NULL); 7052 ASSERT(!HDR_IO_ERROR(hdr)); 7053 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 7054 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 7055 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 7056 if (l2arc) 7057 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 7058 7059 if (ARC_BUF_ENCRYPTED(buf)) { 7060 ASSERT(ARC_BUF_COMPRESSED(buf)); 7061 localprop.zp_encrypt = B_TRUE; 7062 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 7063 localprop.zp_complevel = hdr->b_complevel; 7064 localprop.zp_byteorder = 7065 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 7066 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 7067 bcopy(hdr->b_crypt_hdr.b_salt, localprop.zp_salt, 7068 ZIO_DATA_SALT_LEN); 7069 bcopy(hdr->b_crypt_hdr.b_iv, localprop.zp_iv, 7070 ZIO_DATA_IV_LEN); 7071 bcopy(hdr->b_crypt_hdr.b_mac, localprop.zp_mac, 7072 ZIO_DATA_MAC_LEN); 7073 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) { 7074 localprop.zp_nopwrite = B_FALSE; 7075 localprop.zp_copies = 7076 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1); 7077 } 7078 zio_flags |= ZIO_FLAG_RAW; 7079 } else if (ARC_BUF_COMPRESSED(buf)) { 7080 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf)); 7081 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 7082 localprop.zp_complevel = hdr->b_complevel; 7083 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 7084 } 7085 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 7086 callback->awcb_ready = ready; 7087 callback->awcb_children_ready = children_ready; 7088 callback->awcb_physdone = physdone; 7089 callback->awcb_done = done; 7090 callback->awcb_private = private; 7091 callback->awcb_buf = buf; 7092 7093 /* 7094 * The hdr's b_pabd is now stale, free it now. A new data block 7095 * will be allocated when the zio pipeline calls arc_write_ready(). 7096 */ 7097 if (hdr->b_l1hdr.b_pabd != NULL) { 7098 /* 7099 * If the buf is currently sharing the data block with 7100 * the hdr then we need to break that relationship here. 7101 * The hdr will remain with a NULL data pointer and the 7102 * buf will take sole ownership of the block. 7103 */ 7104 if (arc_buf_is_shared(buf)) { 7105 arc_unshare_buf(hdr, buf); 7106 } else { 7107 arc_hdr_free_abd(hdr, B_FALSE); 7108 } 7109 VERIFY3P(buf->b_data, !=, NULL); 7110 } 7111 7112 if (HDR_HAS_RABD(hdr)) 7113 arc_hdr_free_abd(hdr, B_TRUE); 7114 7115 if (!(zio_flags & ZIO_FLAG_RAW)) 7116 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); 7117 7118 ASSERT(!arc_buf_is_shared(buf)); 7119 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 7120 7121 zio = zio_write(pio, spa, txg, bp, 7122 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)), 7123 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready, 7124 (children_ready != NULL) ? arc_write_children_ready : NULL, 7125 arc_write_physdone, arc_write_done, callback, 7126 priority, zio_flags, zb); 7127 7128 return (zio); 7129 } 7130 7131 void 7132 arc_tempreserve_clear(uint64_t reserve) 7133 { 7134 atomic_add_64(&arc_tempreserve, -reserve); 7135 ASSERT((int64_t)arc_tempreserve >= 0); 7136 } 7137 7138 int 7139 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg) 7140 { 7141 int error; 7142 uint64_t anon_size; 7143 7144 if (!arc_no_grow && 7145 reserve > arc_c/4 && 7146 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT)) 7147 arc_c = MIN(arc_c_max, reserve * 4); 7148 7149 /* 7150 * Throttle when the calculated memory footprint for the TXG 7151 * exceeds the target ARC size. 7152 */ 7153 if (reserve > arc_c) { 7154 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve); 7155 return (SET_ERROR(ERESTART)); 7156 } 7157 7158 /* 7159 * Don't count loaned bufs as in flight dirty data to prevent long 7160 * network delays from blocking transactions that are ready to be 7161 * assigned to a txg. 7162 */ 7163 7164 /* assert that it has not wrapped around */ 7165 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 7166 7167 anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) - 7168 arc_loaned_bytes), 0); 7169 7170 /* 7171 * Writes will, almost always, require additional memory allocations 7172 * in order to compress/encrypt/etc the data. We therefore need to 7173 * make sure that there is sufficient available memory for this. 7174 */ 7175 error = arc_memory_throttle(spa, reserve, txg); 7176 if (error != 0) 7177 return (error); 7178 7179 /* 7180 * Throttle writes when the amount of dirty data in the cache 7181 * gets too large. We try to keep the cache less than half full 7182 * of dirty blocks so that our sync times don't grow too large. 7183 * 7184 * In the case of one pool being built on another pool, we want 7185 * to make sure we don't end up throttling the lower (backing) 7186 * pool when the upper pool is the majority contributor to dirty 7187 * data. To insure we make forward progress during throttling, we 7188 * also check the current pool's net dirty data and only throttle 7189 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty 7190 * data in the cache. 7191 * 7192 * Note: if two requests come in concurrently, we might let them 7193 * both succeed, when one of them should fail. Not a huge deal. 7194 */ 7195 uint64_t total_dirty = reserve + arc_tempreserve + anon_size; 7196 uint64_t spa_dirty_anon = spa_dirty_data(spa); 7197 uint64_t rarc_c = arc_warm ? arc_c : arc_c_max; 7198 if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 && 7199 anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 && 7200 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) { 7201 #ifdef ZFS_DEBUG 7202 uint64_t meta_esize = zfs_refcount_count( 7203 &arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7204 uint64_t data_esize = 7205 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7206 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 7207 "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n", 7208 (u_longlong_t)arc_tempreserve >> 10, 7209 (u_longlong_t)meta_esize >> 10, 7210 (u_longlong_t)data_esize >> 10, 7211 (u_longlong_t)reserve >> 10, 7212 (u_longlong_t)rarc_c >> 10); 7213 #endif 7214 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle); 7215 return (SET_ERROR(ERESTART)); 7216 } 7217 atomic_add_64(&arc_tempreserve, reserve); 7218 return (0); 7219 } 7220 7221 static void 7222 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 7223 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 7224 { 7225 size->value.ui64 = zfs_refcount_count(&state->arcs_size); 7226 evict_data->value.ui64 = 7227 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); 7228 evict_metadata->value.ui64 = 7229 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); 7230 } 7231 7232 static int 7233 arc_kstat_update(kstat_t *ksp, int rw) 7234 { 7235 arc_stats_t *as = ksp->ks_data; 7236 7237 if (rw == KSTAT_WRITE) 7238 return (SET_ERROR(EACCES)); 7239 7240 as->arcstat_hits.value.ui64 = 7241 wmsum_value(&arc_sums.arcstat_hits); 7242 as->arcstat_misses.value.ui64 = 7243 wmsum_value(&arc_sums.arcstat_misses); 7244 as->arcstat_demand_data_hits.value.ui64 = 7245 wmsum_value(&arc_sums.arcstat_demand_data_hits); 7246 as->arcstat_demand_data_misses.value.ui64 = 7247 wmsum_value(&arc_sums.arcstat_demand_data_misses); 7248 as->arcstat_demand_metadata_hits.value.ui64 = 7249 wmsum_value(&arc_sums.arcstat_demand_metadata_hits); 7250 as->arcstat_demand_metadata_misses.value.ui64 = 7251 wmsum_value(&arc_sums.arcstat_demand_metadata_misses); 7252 as->arcstat_prefetch_data_hits.value.ui64 = 7253 wmsum_value(&arc_sums.arcstat_prefetch_data_hits); 7254 as->arcstat_prefetch_data_misses.value.ui64 = 7255 wmsum_value(&arc_sums.arcstat_prefetch_data_misses); 7256 as->arcstat_prefetch_metadata_hits.value.ui64 = 7257 wmsum_value(&arc_sums.arcstat_prefetch_metadata_hits); 7258 as->arcstat_prefetch_metadata_misses.value.ui64 = 7259 wmsum_value(&arc_sums.arcstat_prefetch_metadata_misses); 7260 as->arcstat_mru_hits.value.ui64 = 7261 wmsum_value(&arc_sums.arcstat_mru_hits); 7262 as->arcstat_mru_ghost_hits.value.ui64 = 7263 wmsum_value(&arc_sums.arcstat_mru_ghost_hits); 7264 as->arcstat_mfu_hits.value.ui64 = 7265 wmsum_value(&arc_sums.arcstat_mfu_hits); 7266 as->arcstat_mfu_ghost_hits.value.ui64 = 7267 wmsum_value(&arc_sums.arcstat_mfu_ghost_hits); 7268 as->arcstat_deleted.value.ui64 = 7269 wmsum_value(&arc_sums.arcstat_deleted); 7270 as->arcstat_mutex_miss.value.ui64 = 7271 wmsum_value(&arc_sums.arcstat_mutex_miss); 7272 as->arcstat_access_skip.value.ui64 = 7273 wmsum_value(&arc_sums.arcstat_access_skip); 7274 as->arcstat_evict_skip.value.ui64 = 7275 wmsum_value(&arc_sums.arcstat_evict_skip); 7276 as->arcstat_evict_not_enough.value.ui64 = 7277 wmsum_value(&arc_sums.arcstat_evict_not_enough); 7278 as->arcstat_evict_l2_cached.value.ui64 = 7279 wmsum_value(&arc_sums.arcstat_evict_l2_cached); 7280 as->arcstat_evict_l2_eligible.value.ui64 = 7281 wmsum_value(&arc_sums.arcstat_evict_l2_eligible); 7282 as->arcstat_evict_l2_eligible_mfu.value.ui64 = 7283 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mfu); 7284 as->arcstat_evict_l2_eligible_mru.value.ui64 = 7285 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mru); 7286 as->arcstat_evict_l2_ineligible.value.ui64 = 7287 wmsum_value(&arc_sums.arcstat_evict_l2_ineligible); 7288 as->arcstat_evict_l2_skip.value.ui64 = 7289 wmsum_value(&arc_sums.arcstat_evict_l2_skip); 7290 as->arcstat_hash_collisions.value.ui64 = 7291 wmsum_value(&arc_sums.arcstat_hash_collisions); 7292 as->arcstat_hash_chains.value.ui64 = 7293 wmsum_value(&arc_sums.arcstat_hash_chains); 7294 as->arcstat_size.value.ui64 = 7295 aggsum_value(&arc_sums.arcstat_size); 7296 as->arcstat_compressed_size.value.ui64 = 7297 wmsum_value(&arc_sums.arcstat_compressed_size); 7298 as->arcstat_uncompressed_size.value.ui64 = 7299 wmsum_value(&arc_sums.arcstat_uncompressed_size); 7300 as->arcstat_overhead_size.value.ui64 = 7301 wmsum_value(&arc_sums.arcstat_overhead_size); 7302 as->arcstat_hdr_size.value.ui64 = 7303 wmsum_value(&arc_sums.arcstat_hdr_size); 7304 as->arcstat_data_size.value.ui64 = 7305 wmsum_value(&arc_sums.arcstat_data_size); 7306 as->arcstat_metadata_size.value.ui64 = 7307 wmsum_value(&arc_sums.arcstat_metadata_size); 7308 as->arcstat_dbuf_size.value.ui64 = 7309 wmsum_value(&arc_sums.arcstat_dbuf_size); 7310 #if defined(COMPAT_FREEBSD11) 7311 as->arcstat_other_size.value.ui64 = 7312 wmsum_value(&arc_sums.arcstat_bonus_size) + 7313 aggsum_value(&arc_sums.arcstat_dnode_size) + 7314 wmsum_value(&arc_sums.arcstat_dbuf_size); 7315 #endif 7316 7317 arc_kstat_update_state(arc_anon, 7318 &as->arcstat_anon_size, 7319 &as->arcstat_anon_evictable_data, 7320 &as->arcstat_anon_evictable_metadata); 7321 arc_kstat_update_state(arc_mru, 7322 &as->arcstat_mru_size, 7323 &as->arcstat_mru_evictable_data, 7324 &as->arcstat_mru_evictable_metadata); 7325 arc_kstat_update_state(arc_mru_ghost, 7326 &as->arcstat_mru_ghost_size, 7327 &as->arcstat_mru_ghost_evictable_data, 7328 &as->arcstat_mru_ghost_evictable_metadata); 7329 arc_kstat_update_state(arc_mfu, 7330 &as->arcstat_mfu_size, 7331 &as->arcstat_mfu_evictable_data, 7332 &as->arcstat_mfu_evictable_metadata); 7333 arc_kstat_update_state(arc_mfu_ghost, 7334 &as->arcstat_mfu_ghost_size, 7335 &as->arcstat_mfu_ghost_evictable_data, 7336 &as->arcstat_mfu_ghost_evictable_metadata); 7337 7338 as->arcstat_dnode_size.value.ui64 = 7339 aggsum_value(&arc_sums.arcstat_dnode_size); 7340 as->arcstat_bonus_size.value.ui64 = 7341 wmsum_value(&arc_sums.arcstat_bonus_size); 7342 as->arcstat_l2_hits.value.ui64 = 7343 wmsum_value(&arc_sums.arcstat_l2_hits); 7344 as->arcstat_l2_misses.value.ui64 = 7345 wmsum_value(&arc_sums.arcstat_l2_misses); 7346 as->arcstat_l2_prefetch_asize.value.ui64 = 7347 wmsum_value(&arc_sums.arcstat_l2_prefetch_asize); 7348 as->arcstat_l2_mru_asize.value.ui64 = 7349 wmsum_value(&arc_sums.arcstat_l2_mru_asize); 7350 as->arcstat_l2_mfu_asize.value.ui64 = 7351 wmsum_value(&arc_sums.arcstat_l2_mfu_asize); 7352 as->arcstat_l2_bufc_data_asize.value.ui64 = 7353 wmsum_value(&arc_sums.arcstat_l2_bufc_data_asize); 7354 as->arcstat_l2_bufc_metadata_asize.value.ui64 = 7355 wmsum_value(&arc_sums.arcstat_l2_bufc_metadata_asize); 7356 as->arcstat_l2_feeds.value.ui64 = 7357 wmsum_value(&arc_sums.arcstat_l2_feeds); 7358 as->arcstat_l2_rw_clash.value.ui64 = 7359 wmsum_value(&arc_sums.arcstat_l2_rw_clash); 7360 as->arcstat_l2_read_bytes.value.ui64 = 7361 wmsum_value(&arc_sums.arcstat_l2_read_bytes); 7362 as->arcstat_l2_write_bytes.value.ui64 = 7363 wmsum_value(&arc_sums.arcstat_l2_write_bytes); 7364 as->arcstat_l2_writes_sent.value.ui64 = 7365 wmsum_value(&arc_sums.arcstat_l2_writes_sent); 7366 as->arcstat_l2_writes_done.value.ui64 = 7367 wmsum_value(&arc_sums.arcstat_l2_writes_done); 7368 as->arcstat_l2_writes_error.value.ui64 = 7369 wmsum_value(&arc_sums.arcstat_l2_writes_error); 7370 as->arcstat_l2_writes_lock_retry.value.ui64 = 7371 wmsum_value(&arc_sums.arcstat_l2_writes_lock_retry); 7372 as->arcstat_l2_evict_lock_retry.value.ui64 = 7373 wmsum_value(&arc_sums.arcstat_l2_evict_lock_retry); 7374 as->arcstat_l2_evict_reading.value.ui64 = 7375 wmsum_value(&arc_sums.arcstat_l2_evict_reading); 7376 as->arcstat_l2_evict_l1cached.value.ui64 = 7377 wmsum_value(&arc_sums.arcstat_l2_evict_l1cached); 7378 as->arcstat_l2_free_on_write.value.ui64 = 7379 wmsum_value(&arc_sums.arcstat_l2_free_on_write); 7380 as->arcstat_l2_abort_lowmem.value.ui64 = 7381 wmsum_value(&arc_sums.arcstat_l2_abort_lowmem); 7382 as->arcstat_l2_cksum_bad.value.ui64 = 7383 wmsum_value(&arc_sums.arcstat_l2_cksum_bad); 7384 as->arcstat_l2_io_error.value.ui64 = 7385 wmsum_value(&arc_sums.arcstat_l2_io_error); 7386 as->arcstat_l2_lsize.value.ui64 = 7387 wmsum_value(&arc_sums.arcstat_l2_lsize); 7388 as->arcstat_l2_psize.value.ui64 = 7389 wmsum_value(&arc_sums.arcstat_l2_psize); 7390 as->arcstat_l2_hdr_size.value.ui64 = 7391 aggsum_value(&arc_sums.arcstat_l2_hdr_size); 7392 as->arcstat_l2_log_blk_writes.value.ui64 = 7393 wmsum_value(&arc_sums.arcstat_l2_log_blk_writes); 7394 as->arcstat_l2_log_blk_asize.value.ui64 = 7395 wmsum_value(&arc_sums.arcstat_l2_log_blk_asize); 7396 as->arcstat_l2_log_blk_count.value.ui64 = 7397 wmsum_value(&arc_sums.arcstat_l2_log_blk_count); 7398 as->arcstat_l2_rebuild_success.value.ui64 = 7399 wmsum_value(&arc_sums.arcstat_l2_rebuild_success); 7400 as->arcstat_l2_rebuild_abort_unsupported.value.ui64 = 7401 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_unsupported); 7402 as->arcstat_l2_rebuild_abort_io_errors.value.ui64 = 7403 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_io_errors); 7404 as->arcstat_l2_rebuild_abort_dh_errors.value.ui64 = 7405 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_dh_errors); 7406 as->arcstat_l2_rebuild_abort_cksum_lb_errors.value.ui64 = 7407 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors); 7408 as->arcstat_l2_rebuild_abort_lowmem.value.ui64 = 7409 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_lowmem); 7410 as->arcstat_l2_rebuild_size.value.ui64 = 7411 wmsum_value(&arc_sums.arcstat_l2_rebuild_size); 7412 as->arcstat_l2_rebuild_asize.value.ui64 = 7413 wmsum_value(&arc_sums.arcstat_l2_rebuild_asize); 7414 as->arcstat_l2_rebuild_bufs.value.ui64 = 7415 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs); 7416 as->arcstat_l2_rebuild_bufs_precached.value.ui64 = 7417 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs_precached); 7418 as->arcstat_l2_rebuild_log_blks.value.ui64 = 7419 wmsum_value(&arc_sums.arcstat_l2_rebuild_log_blks); 7420 as->arcstat_memory_throttle_count.value.ui64 = 7421 wmsum_value(&arc_sums.arcstat_memory_throttle_count); 7422 as->arcstat_memory_direct_count.value.ui64 = 7423 wmsum_value(&arc_sums.arcstat_memory_direct_count); 7424 as->arcstat_memory_indirect_count.value.ui64 = 7425 wmsum_value(&arc_sums.arcstat_memory_indirect_count); 7426 7427 as->arcstat_memory_all_bytes.value.ui64 = 7428 arc_all_memory(); 7429 as->arcstat_memory_free_bytes.value.ui64 = 7430 arc_free_memory(); 7431 as->arcstat_memory_available_bytes.value.i64 = 7432 arc_available_memory(); 7433 7434 as->arcstat_prune.value.ui64 = 7435 wmsum_value(&arc_sums.arcstat_prune); 7436 as->arcstat_meta_used.value.ui64 = 7437 aggsum_value(&arc_sums.arcstat_meta_used); 7438 as->arcstat_async_upgrade_sync.value.ui64 = 7439 wmsum_value(&arc_sums.arcstat_async_upgrade_sync); 7440 as->arcstat_demand_hit_predictive_prefetch.value.ui64 = 7441 wmsum_value(&arc_sums.arcstat_demand_hit_predictive_prefetch); 7442 as->arcstat_demand_hit_prescient_prefetch.value.ui64 = 7443 wmsum_value(&arc_sums.arcstat_demand_hit_prescient_prefetch); 7444 as->arcstat_raw_size.value.ui64 = 7445 wmsum_value(&arc_sums.arcstat_raw_size); 7446 as->arcstat_cached_only_in_progress.value.ui64 = 7447 wmsum_value(&arc_sums.arcstat_cached_only_in_progress); 7448 as->arcstat_abd_chunk_waste_size.value.ui64 = 7449 wmsum_value(&arc_sums.arcstat_abd_chunk_waste_size); 7450 7451 return (0); 7452 } 7453 7454 /* 7455 * This function *must* return indices evenly distributed between all 7456 * sublists of the multilist. This is needed due to how the ARC eviction 7457 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 7458 * distributed between all sublists and uses this assumption when 7459 * deciding which sublist to evict from and how much to evict from it. 7460 */ 7461 static unsigned int 7462 arc_state_multilist_index_func(multilist_t *ml, void *obj) 7463 { 7464 arc_buf_hdr_t *hdr = obj; 7465 7466 /* 7467 * We rely on b_dva to generate evenly distributed index 7468 * numbers using buf_hash below. So, as an added precaution, 7469 * let's make sure we never add empty buffers to the arc lists. 7470 */ 7471 ASSERT(!HDR_EMPTY(hdr)); 7472 7473 /* 7474 * The assumption here, is the hash value for a given 7475 * arc_buf_hdr_t will remain constant throughout its lifetime 7476 * (i.e. its b_spa, b_dva, and b_birth fields don't change). 7477 * Thus, we don't need to store the header's sublist index 7478 * on insertion, as this index can be recalculated on removal. 7479 * 7480 * Also, the low order bits of the hash value are thought to be 7481 * distributed evenly. Otherwise, in the case that the multilist 7482 * has a power of two number of sublists, each sublists' usage 7483 * would not be evenly distributed. In this context full 64bit 7484 * division would be a waste of time, so limit it to 32 bits. 7485 */ 7486 return ((unsigned int)buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 7487 multilist_get_num_sublists(ml)); 7488 } 7489 7490 static unsigned int 7491 arc_state_l2c_multilist_index_func(multilist_t *ml, void *obj) 7492 { 7493 panic("Header %p insert into arc_l2c_only %p", obj, ml); 7494 } 7495 7496 #define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \ 7497 if ((do_warn) && (tuning) && ((tuning) != (value))) { \ 7498 cmn_err(CE_WARN, \ 7499 "ignoring tunable %s (using %llu instead)", \ 7500 (#tuning), (u_longlong_t)(value)); \ 7501 } \ 7502 } while (0) 7503 7504 /* 7505 * Called during module initialization and periodically thereafter to 7506 * apply reasonable changes to the exposed performance tunings. Can also be 7507 * called explicitly by param_set_arc_*() functions when ARC tunables are 7508 * updated manually. Non-zero zfs_* values which differ from the currently set 7509 * values will be applied. 7510 */ 7511 void 7512 arc_tuning_update(boolean_t verbose) 7513 { 7514 uint64_t allmem = arc_all_memory(); 7515 unsigned long limit; 7516 7517 /* Valid range: 32M - <arc_c_max> */ 7518 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) && 7519 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) && 7520 (zfs_arc_min <= arc_c_max)) { 7521 arc_c_min = zfs_arc_min; 7522 arc_c = MAX(arc_c, arc_c_min); 7523 } 7524 WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose); 7525 7526 /* Valid range: 64M - <all physical memory> */ 7527 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) && 7528 (zfs_arc_max >= MIN_ARC_MAX) && (zfs_arc_max < allmem) && 7529 (zfs_arc_max > arc_c_min)) { 7530 arc_c_max = zfs_arc_max; 7531 arc_c = MIN(arc_c, arc_c_max); 7532 arc_p = (arc_c >> 1); 7533 if (arc_meta_limit > arc_c_max) 7534 arc_meta_limit = arc_c_max; 7535 if (arc_dnode_size_limit > arc_meta_limit) 7536 arc_dnode_size_limit = arc_meta_limit; 7537 } 7538 WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose); 7539 7540 /* Valid range: 16M - <arc_c_max> */ 7541 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) && 7542 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) && 7543 (zfs_arc_meta_min <= arc_c_max)) { 7544 arc_meta_min = zfs_arc_meta_min; 7545 if (arc_meta_limit < arc_meta_min) 7546 arc_meta_limit = arc_meta_min; 7547 if (arc_dnode_size_limit < arc_meta_min) 7548 arc_dnode_size_limit = arc_meta_min; 7549 } 7550 WARN_IF_TUNING_IGNORED(zfs_arc_meta_min, arc_meta_min, verbose); 7551 7552 /* Valid range: <arc_meta_min> - <arc_c_max> */ 7553 limit = zfs_arc_meta_limit ? zfs_arc_meta_limit : 7554 MIN(zfs_arc_meta_limit_percent, 100) * arc_c_max / 100; 7555 if ((limit != arc_meta_limit) && 7556 (limit >= arc_meta_min) && 7557 (limit <= arc_c_max)) 7558 arc_meta_limit = limit; 7559 WARN_IF_TUNING_IGNORED(zfs_arc_meta_limit, arc_meta_limit, verbose); 7560 7561 /* Valid range: <arc_meta_min> - <arc_meta_limit> */ 7562 limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit : 7563 MIN(zfs_arc_dnode_limit_percent, 100) * arc_meta_limit / 100; 7564 if ((limit != arc_dnode_size_limit) && 7565 (limit >= arc_meta_min) && 7566 (limit <= arc_meta_limit)) 7567 arc_dnode_size_limit = limit; 7568 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_size_limit, 7569 verbose); 7570 7571 /* Valid range: 1 - N */ 7572 if (zfs_arc_grow_retry) 7573 arc_grow_retry = zfs_arc_grow_retry; 7574 7575 /* Valid range: 1 - N */ 7576 if (zfs_arc_shrink_shift) { 7577 arc_shrink_shift = zfs_arc_shrink_shift; 7578 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1); 7579 } 7580 7581 /* Valid range: 1 - N */ 7582 if (zfs_arc_p_min_shift) 7583 arc_p_min_shift = zfs_arc_p_min_shift; 7584 7585 /* Valid range: 1 - N ms */ 7586 if (zfs_arc_min_prefetch_ms) 7587 arc_min_prefetch_ms = zfs_arc_min_prefetch_ms; 7588 7589 /* Valid range: 1 - N ms */ 7590 if (zfs_arc_min_prescient_prefetch_ms) { 7591 arc_min_prescient_prefetch_ms = 7592 zfs_arc_min_prescient_prefetch_ms; 7593 } 7594 7595 /* Valid range: 0 - 100 */ 7596 if ((zfs_arc_lotsfree_percent >= 0) && 7597 (zfs_arc_lotsfree_percent <= 100)) 7598 arc_lotsfree_percent = zfs_arc_lotsfree_percent; 7599 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent, 7600 verbose); 7601 7602 /* Valid range: 0 - <all physical memory> */ 7603 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free)) 7604 arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), allmem); 7605 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose); 7606 } 7607 7608 static void 7609 arc_state_init(void) 7610 { 7611 multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 7612 sizeof (arc_buf_hdr_t), 7613 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7614 arc_state_multilist_index_func); 7615 multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 7616 sizeof (arc_buf_hdr_t), 7617 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7618 arc_state_multilist_index_func); 7619 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 7620 sizeof (arc_buf_hdr_t), 7621 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7622 arc_state_multilist_index_func); 7623 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 7624 sizeof (arc_buf_hdr_t), 7625 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7626 arc_state_multilist_index_func); 7627 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 7628 sizeof (arc_buf_hdr_t), 7629 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7630 arc_state_multilist_index_func); 7631 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 7632 sizeof (arc_buf_hdr_t), 7633 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7634 arc_state_multilist_index_func); 7635 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 7636 sizeof (arc_buf_hdr_t), 7637 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7638 arc_state_multilist_index_func); 7639 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 7640 sizeof (arc_buf_hdr_t), 7641 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7642 arc_state_multilist_index_func); 7643 /* 7644 * L2 headers should never be on the L2 state list since they don't 7645 * have L1 headers allocated. Special index function asserts that. 7646 */ 7647 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 7648 sizeof (arc_buf_hdr_t), 7649 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7650 arc_state_l2c_multilist_index_func); 7651 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 7652 sizeof (arc_buf_hdr_t), 7653 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7654 arc_state_l2c_multilist_index_func); 7655 7656 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7657 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7658 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7659 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7660 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7661 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7662 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7663 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7664 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7665 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7666 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7667 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7668 7669 zfs_refcount_create(&arc_anon->arcs_size); 7670 zfs_refcount_create(&arc_mru->arcs_size); 7671 zfs_refcount_create(&arc_mru_ghost->arcs_size); 7672 zfs_refcount_create(&arc_mfu->arcs_size); 7673 zfs_refcount_create(&arc_mfu_ghost->arcs_size); 7674 zfs_refcount_create(&arc_l2c_only->arcs_size); 7675 7676 wmsum_init(&arc_sums.arcstat_hits, 0); 7677 wmsum_init(&arc_sums.arcstat_misses, 0); 7678 wmsum_init(&arc_sums.arcstat_demand_data_hits, 0); 7679 wmsum_init(&arc_sums.arcstat_demand_data_misses, 0); 7680 wmsum_init(&arc_sums.arcstat_demand_metadata_hits, 0); 7681 wmsum_init(&arc_sums.arcstat_demand_metadata_misses, 0); 7682 wmsum_init(&arc_sums.arcstat_prefetch_data_hits, 0); 7683 wmsum_init(&arc_sums.arcstat_prefetch_data_misses, 0); 7684 wmsum_init(&arc_sums.arcstat_prefetch_metadata_hits, 0); 7685 wmsum_init(&arc_sums.arcstat_prefetch_metadata_misses, 0); 7686 wmsum_init(&arc_sums.arcstat_mru_hits, 0); 7687 wmsum_init(&arc_sums.arcstat_mru_ghost_hits, 0); 7688 wmsum_init(&arc_sums.arcstat_mfu_hits, 0); 7689 wmsum_init(&arc_sums.arcstat_mfu_ghost_hits, 0); 7690 wmsum_init(&arc_sums.arcstat_deleted, 0); 7691 wmsum_init(&arc_sums.arcstat_mutex_miss, 0); 7692 wmsum_init(&arc_sums.arcstat_access_skip, 0); 7693 wmsum_init(&arc_sums.arcstat_evict_skip, 0); 7694 wmsum_init(&arc_sums.arcstat_evict_not_enough, 0); 7695 wmsum_init(&arc_sums.arcstat_evict_l2_cached, 0); 7696 wmsum_init(&arc_sums.arcstat_evict_l2_eligible, 0); 7697 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mfu, 0); 7698 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mru, 0); 7699 wmsum_init(&arc_sums.arcstat_evict_l2_ineligible, 0); 7700 wmsum_init(&arc_sums.arcstat_evict_l2_skip, 0); 7701 wmsum_init(&arc_sums.arcstat_hash_collisions, 0); 7702 wmsum_init(&arc_sums.arcstat_hash_chains, 0); 7703 aggsum_init(&arc_sums.arcstat_size, 0); 7704 wmsum_init(&arc_sums.arcstat_compressed_size, 0); 7705 wmsum_init(&arc_sums.arcstat_uncompressed_size, 0); 7706 wmsum_init(&arc_sums.arcstat_overhead_size, 0); 7707 wmsum_init(&arc_sums.arcstat_hdr_size, 0); 7708 wmsum_init(&arc_sums.arcstat_data_size, 0); 7709 wmsum_init(&arc_sums.arcstat_metadata_size, 0); 7710 wmsum_init(&arc_sums.arcstat_dbuf_size, 0); 7711 aggsum_init(&arc_sums.arcstat_dnode_size, 0); 7712 wmsum_init(&arc_sums.arcstat_bonus_size, 0); 7713 wmsum_init(&arc_sums.arcstat_l2_hits, 0); 7714 wmsum_init(&arc_sums.arcstat_l2_misses, 0); 7715 wmsum_init(&arc_sums.arcstat_l2_prefetch_asize, 0); 7716 wmsum_init(&arc_sums.arcstat_l2_mru_asize, 0); 7717 wmsum_init(&arc_sums.arcstat_l2_mfu_asize, 0); 7718 wmsum_init(&arc_sums.arcstat_l2_bufc_data_asize, 0); 7719 wmsum_init(&arc_sums.arcstat_l2_bufc_metadata_asize, 0); 7720 wmsum_init(&arc_sums.arcstat_l2_feeds, 0); 7721 wmsum_init(&arc_sums.arcstat_l2_rw_clash, 0); 7722 wmsum_init(&arc_sums.arcstat_l2_read_bytes, 0); 7723 wmsum_init(&arc_sums.arcstat_l2_write_bytes, 0); 7724 wmsum_init(&arc_sums.arcstat_l2_writes_sent, 0); 7725 wmsum_init(&arc_sums.arcstat_l2_writes_done, 0); 7726 wmsum_init(&arc_sums.arcstat_l2_writes_error, 0); 7727 wmsum_init(&arc_sums.arcstat_l2_writes_lock_retry, 0); 7728 wmsum_init(&arc_sums.arcstat_l2_evict_lock_retry, 0); 7729 wmsum_init(&arc_sums.arcstat_l2_evict_reading, 0); 7730 wmsum_init(&arc_sums.arcstat_l2_evict_l1cached, 0); 7731 wmsum_init(&arc_sums.arcstat_l2_free_on_write, 0); 7732 wmsum_init(&arc_sums.arcstat_l2_abort_lowmem, 0); 7733 wmsum_init(&arc_sums.arcstat_l2_cksum_bad, 0); 7734 wmsum_init(&arc_sums.arcstat_l2_io_error, 0); 7735 wmsum_init(&arc_sums.arcstat_l2_lsize, 0); 7736 wmsum_init(&arc_sums.arcstat_l2_psize, 0); 7737 aggsum_init(&arc_sums.arcstat_l2_hdr_size, 0); 7738 wmsum_init(&arc_sums.arcstat_l2_log_blk_writes, 0); 7739 wmsum_init(&arc_sums.arcstat_l2_log_blk_asize, 0); 7740 wmsum_init(&arc_sums.arcstat_l2_log_blk_count, 0); 7741 wmsum_init(&arc_sums.arcstat_l2_rebuild_success, 0); 7742 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_unsupported, 0); 7743 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_io_errors, 0); 7744 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_dh_errors, 0); 7745 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors, 0); 7746 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_lowmem, 0); 7747 wmsum_init(&arc_sums.arcstat_l2_rebuild_size, 0); 7748 wmsum_init(&arc_sums.arcstat_l2_rebuild_asize, 0); 7749 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs, 0); 7750 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs_precached, 0); 7751 wmsum_init(&arc_sums.arcstat_l2_rebuild_log_blks, 0); 7752 wmsum_init(&arc_sums.arcstat_memory_throttle_count, 0); 7753 wmsum_init(&arc_sums.arcstat_memory_direct_count, 0); 7754 wmsum_init(&arc_sums.arcstat_memory_indirect_count, 0); 7755 wmsum_init(&arc_sums.arcstat_prune, 0); 7756 aggsum_init(&arc_sums.arcstat_meta_used, 0); 7757 wmsum_init(&arc_sums.arcstat_async_upgrade_sync, 0); 7758 wmsum_init(&arc_sums.arcstat_demand_hit_predictive_prefetch, 0); 7759 wmsum_init(&arc_sums.arcstat_demand_hit_prescient_prefetch, 0); 7760 wmsum_init(&arc_sums.arcstat_raw_size, 0); 7761 wmsum_init(&arc_sums.arcstat_cached_only_in_progress, 0); 7762 wmsum_init(&arc_sums.arcstat_abd_chunk_waste_size, 0); 7763 7764 arc_anon->arcs_state = ARC_STATE_ANON; 7765 arc_mru->arcs_state = ARC_STATE_MRU; 7766 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST; 7767 arc_mfu->arcs_state = ARC_STATE_MFU; 7768 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST; 7769 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY; 7770 } 7771 7772 static void 7773 arc_state_fini(void) 7774 { 7775 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7776 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7777 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7778 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7779 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7780 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7781 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7782 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7783 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7784 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7785 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7786 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7787 7788 zfs_refcount_destroy(&arc_anon->arcs_size); 7789 zfs_refcount_destroy(&arc_mru->arcs_size); 7790 zfs_refcount_destroy(&arc_mru_ghost->arcs_size); 7791 zfs_refcount_destroy(&arc_mfu->arcs_size); 7792 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size); 7793 zfs_refcount_destroy(&arc_l2c_only->arcs_size); 7794 7795 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 7796 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 7797 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 7798 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 7799 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 7800 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 7801 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 7802 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 7803 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]); 7804 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]); 7805 7806 wmsum_fini(&arc_sums.arcstat_hits); 7807 wmsum_fini(&arc_sums.arcstat_misses); 7808 wmsum_fini(&arc_sums.arcstat_demand_data_hits); 7809 wmsum_fini(&arc_sums.arcstat_demand_data_misses); 7810 wmsum_fini(&arc_sums.arcstat_demand_metadata_hits); 7811 wmsum_fini(&arc_sums.arcstat_demand_metadata_misses); 7812 wmsum_fini(&arc_sums.arcstat_prefetch_data_hits); 7813 wmsum_fini(&arc_sums.arcstat_prefetch_data_misses); 7814 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_hits); 7815 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_misses); 7816 wmsum_fini(&arc_sums.arcstat_mru_hits); 7817 wmsum_fini(&arc_sums.arcstat_mru_ghost_hits); 7818 wmsum_fini(&arc_sums.arcstat_mfu_hits); 7819 wmsum_fini(&arc_sums.arcstat_mfu_ghost_hits); 7820 wmsum_fini(&arc_sums.arcstat_deleted); 7821 wmsum_fini(&arc_sums.arcstat_mutex_miss); 7822 wmsum_fini(&arc_sums.arcstat_access_skip); 7823 wmsum_fini(&arc_sums.arcstat_evict_skip); 7824 wmsum_fini(&arc_sums.arcstat_evict_not_enough); 7825 wmsum_fini(&arc_sums.arcstat_evict_l2_cached); 7826 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible); 7827 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mfu); 7828 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mru); 7829 wmsum_fini(&arc_sums.arcstat_evict_l2_ineligible); 7830 wmsum_fini(&arc_sums.arcstat_evict_l2_skip); 7831 wmsum_fini(&arc_sums.arcstat_hash_collisions); 7832 wmsum_fini(&arc_sums.arcstat_hash_chains); 7833 aggsum_fini(&arc_sums.arcstat_size); 7834 wmsum_fini(&arc_sums.arcstat_compressed_size); 7835 wmsum_fini(&arc_sums.arcstat_uncompressed_size); 7836 wmsum_fini(&arc_sums.arcstat_overhead_size); 7837 wmsum_fini(&arc_sums.arcstat_hdr_size); 7838 wmsum_fini(&arc_sums.arcstat_data_size); 7839 wmsum_fini(&arc_sums.arcstat_metadata_size); 7840 wmsum_fini(&arc_sums.arcstat_dbuf_size); 7841 aggsum_fini(&arc_sums.arcstat_dnode_size); 7842 wmsum_fini(&arc_sums.arcstat_bonus_size); 7843 wmsum_fini(&arc_sums.arcstat_l2_hits); 7844 wmsum_fini(&arc_sums.arcstat_l2_misses); 7845 wmsum_fini(&arc_sums.arcstat_l2_prefetch_asize); 7846 wmsum_fini(&arc_sums.arcstat_l2_mru_asize); 7847 wmsum_fini(&arc_sums.arcstat_l2_mfu_asize); 7848 wmsum_fini(&arc_sums.arcstat_l2_bufc_data_asize); 7849 wmsum_fini(&arc_sums.arcstat_l2_bufc_metadata_asize); 7850 wmsum_fini(&arc_sums.arcstat_l2_feeds); 7851 wmsum_fini(&arc_sums.arcstat_l2_rw_clash); 7852 wmsum_fini(&arc_sums.arcstat_l2_read_bytes); 7853 wmsum_fini(&arc_sums.arcstat_l2_write_bytes); 7854 wmsum_fini(&arc_sums.arcstat_l2_writes_sent); 7855 wmsum_fini(&arc_sums.arcstat_l2_writes_done); 7856 wmsum_fini(&arc_sums.arcstat_l2_writes_error); 7857 wmsum_fini(&arc_sums.arcstat_l2_writes_lock_retry); 7858 wmsum_fini(&arc_sums.arcstat_l2_evict_lock_retry); 7859 wmsum_fini(&arc_sums.arcstat_l2_evict_reading); 7860 wmsum_fini(&arc_sums.arcstat_l2_evict_l1cached); 7861 wmsum_fini(&arc_sums.arcstat_l2_free_on_write); 7862 wmsum_fini(&arc_sums.arcstat_l2_abort_lowmem); 7863 wmsum_fini(&arc_sums.arcstat_l2_cksum_bad); 7864 wmsum_fini(&arc_sums.arcstat_l2_io_error); 7865 wmsum_fini(&arc_sums.arcstat_l2_lsize); 7866 wmsum_fini(&arc_sums.arcstat_l2_psize); 7867 aggsum_fini(&arc_sums.arcstat_l2_hdr_size); 7868 wmsum_fini(&arc_sums.arcstat_l2_log_blk_writes); 7869 wmsum_fini(&arc_sums.arcstat_l2_log_blk_asize); 7870 wmsum_fini(&arc_sums.arcstat_l2_log_blk_count); 7871 wmsum_fini(&arc_sums.arcstat_l2_rebuild_success); 7872 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_unsupported); 7873 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_io_errors); 7874 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_dh_errors); 7875 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors); 7876 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_lowmem); 7877 wmsum_fini(&arc_sums.arcstat_l2_rebuild_size); 7878 wmsum_fini(&arc_sums.arcstat_l2_rebuild_asize); 7879 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs); 7880 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs_precached); 7881 wmsum_fini(&arc_sums.arcstat_l2_rebuild_log_blks); 7882 wmsum_fini(&arc_sums.arcstat_memory_throttle_count); 7883 wmsum_fini(&arc_sums.arcstat_memory_direct_count); 7884 wmsum_fini(&arc_sums.arcstat_memory_indirect_count); 7885 wmsum_fini(&arc_sums.arcstat_prune); 7886 aggsum_fini(&arc_sums.arcstat_meta_used); 7887 wmsum_fini(&arc_sums.arcstat_async_upgrade_sync); 7888 wmsum_fini(&arc_sums.arcstat_demand_hit_predictive_prefetch); 7889 wmsum_fini(&arc_sums.arcstat_demand_hit_prescient_prefetch); 7890 wmsum_fini(&arc_sums.arcstat_raw_size); 7891 wmsum_fini(&arc_sums.arcstat_cached_only_in_progress); 7892 wmsum_fini(&arc_sums.arcstat_abd_chunk_waste_size); 7893 } 7894 7895 uint64_t 7896 arc_target_bytes(void) 7897 { 7898 return (arc_c); 7899 } 7900 7901 void 7902 arc_set_limits(uint64_t allmem) 7903 { 7904 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */ 7905 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT); 7906 7907 /* How to set default max varies by platform. */ 7908 arc_c_max = arc_default_max(arc_c_min, allmem); 7909 } 7910 void 7911 arc_init(void) 7912 { 7913 uint64_t percent, allmem = arc_all_memory(); 7914 mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL); 7915 list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t), 7916 offsetof(arc_evict_waiter_t, aew_node)); 7917 7918 arc_min_prefetch_ms = 1000; 7919 arc_min_prescient_prefetch_ms = 6000; 7920 7921 #if defined(_KERNEL) 7922 arc_lowmem_init(); 7923 #endif 7924 7925 arc_set_limits(allmem); 7926 7927 #ifdef _KERNEL 7928 /* 7929 * If zfs_arc_max is non-zero at init, meaning it was set in the kernel 7930 * environment before the module was loaded, don't block setting the 7931 * maximum because it is less than arc_c_min, instead, reset arc_c_min 7932 * to a lower value. 7933 * zfs_arc_min will be handled by arc_tuning_update(). 7934 */ 7935 if (zfs_arc_max != 0 && zfs_arc_max >= MIN_ARC_MAX && 7936 zfs_arc_max < allmem) { 7937 arc_c_max = zfs_arc_max; 7938 if (arc_c_min >= arc_c_max) { 7939 arc_c_min = MAX(zfs_arc_max / 2, 7940 2ULL << SPA_MAXBLOCKSHIFT); 7941 } 7942 } 7943 #else 7944 /* 7945 * In userland, there's only the memory pressure that we artificially 7946 * create (see arc_available_memory()). Don't let arc_c get too 7947 * small, because it can cause transactions to be larger than 7948 * arc_c, causing arc_tempreserve_space() to fail. 7949 */ 7950 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT); 7951 #endif 7952 7953 arc_c = arc_c_min; 7954 arc_p = (arc_c >> 1); 7955 7956 /* Set min to 1/2 of arc_c_min */ 7957 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT; 7958 /* 7959 * Set arc_meta_limit to a percent of arc_c_max with a floor of 7960 * arc_meta_min, and a ceiling of arc_c_max. 7961 */ 7962 percent = MIN(zfs_arc_meta_limit_percent, 100); 7963 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100); 7964 percent = MIN(zfs_arc_dnode_limit_percent, 100); 7965 arc_dnode_size_limit = (percent * arc_meta_limit) / 100; 7966 7967 /* Apply user specified tunings */ 7968 arc_tuning_update(B_TRUE); 7969 7970 /* if kmem_flags are set, lets try to use less memory */ 7971 if (kmem_debugging()) 7972 arc_c = arc_c / 2; 7973 if (arc_c < arc_c_min) 7974 arc_c = arc_c_min; 7975 7976 arc_register_hotplug(); 7977 7978 arc_state_init(); 7979 7980 buf_init(); 7981 7982 list_create(&arc_prune_list, sizeof (arc_prune_t), 7983 offsetof(arc_prune_t, p_node)); 7984 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL); 7985 7986 arc_prune_taskq = taskq_create("arc_prune", 100, defclsyspri, 7987 boot_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC | 7988 TASKQ_THREADS_CPU_PCT); 7989 7990 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 7991 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 7992 7993 if (arc_ksp != NULL) { 7994 arc_ksp->ks_data = &arc_stats; 7995 arc_ksp->ks_update = arc_kstat_update; 7996 kstat_install(arc_ksp); 7997 } 7998 7999 arc_evict_zthr = zthr_create("arc_evict", 8000 arc_evict_cb_check, arc_evict_cb, NULL, defclsyspri); 8001 arc_reap_zthr = zthr_create_timer("arc_reap", 8002 arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1), minclsyspri); 8003 8004 arc_warm = B_FALSE; 8005 8006 /* 8007 * Calculate maximum amount of dirty data per pool. 8008 * 8009 * If it has been set by a module parameter, take that. 8010 * Otherwise, use a percentage of physical memory defined by 8011 * zfs_dirty_data_max_percent (default 10%) with a cap at 8012 * zfs_dirty_data_max_max (default 4G or 25% of physical memory). 8013 */ 8014 #ifdef __LP64__ 8015 if (zfs_dirty_data_max_max == 0) 8016 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024, 8017 allmem * zfs_dirty_data_max_max_percent / 100); 8018 #else 8019 if (zfs_dirty_data_max_max == 0) 8020 zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024, 8021 allmem * zfs_dirty_data_max_max_percent / 100); 8022 #endif 8023 8024 if (zfs_dirty_data_max == 0) { 8025 zfs_dirty_data_max = allmem * 8026 zfs_dirty_data_max_percent / 100; 8027 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 8028 zfs_dirty_data_max_max); 8029 } 8030 8031 if (zfs_wrlog_data_max == 0) { 8032 8033 /* 8034 * dp_wrlog_total is reduced for each txg at the end of 8035 * spa_sync(). However, dp_dirty_total is reduced every time 8036 * a block is written out. Thus under normal operation, 8037 * dp_wrlog_total could grow 2 times as big as 8038 * zfs_dirty_data_max. 8039 */ 8040 zfs_wrlog_data_max = zfs_dirty_data_max * 2; 8041 } 8042 } 8043 8044 void 8045 arc_fini(void) 8046 { 8047 arc_prune_t *p; 8048 8049 #ifdef _KERNEL 8050 arc_lowmem_fini(); 8051 #endif /* _KERNEL */ 8052 8053 /* Use B_TRUE to ensure *all* buffers are evicted */ 8054 arc_flush(NULL, B_TRUE); 8055 8056 if (arc_ksp != NULL) { 8057 kstat_delete(arc_ksp); 8058 arc_ksp = NULL; 8059 } 8060 8061 taskq_wait(arc_prune_taskq); 8062 taskq_destroy(arc_prune_taskq); 8063 8064 mutex_enter(&arc_prune_mtx); 8065 while ((p = list_head(&arc_prune_list)) != NULL) { 8066 list_remove(&arc_prune_list, p); 8067 zfs_refcount_remove(&p->p_refcnt, &arc_prune_list); 8068 zfs_refcount_destroy(&p->p_refcnt); 8069 kmem_free(p, sizeof (*p)); 8070 } 8071 mutex_exit(&arc_prune_mtx); 8072 8073 list_destroy(&arc_prune_list); 8074 mutex_destroy(&arc_prune_mtx); 8075 8076 (void) zthr_cancel(arc_evict_zthr); 8077 (void) zthr_cancel(arc_reap_zthr); 8078 8079 mutex_destroy(&arc_evict_lock); 8080 list_destroy(&arc_evict_waiters); 8081 8082 /* 8083 * Free any buffers that were tagged for destruction. This needs 8084 * to occur before arc_state_fini() runs and destroys the aggsum 8085 * values which are updated when freeing scatter ABDs. 8086 */ 8087 l2arc_do_free_on_write(); 8088 8089 /* 8090 * buf_fini() must proceed arc_state_fini() because buf_fin() may 8091 * trigger the release of kmem magazines, which can callback to 8092 * arc_space_return() which accesses aggsums freed in act_state_fini(). 8093 */ 8094 buf_fini(); 8095 arc_state_fini(); 8096 8097 arc_unregister_hotplug(); 8098 8099 /* 8100 * We destroy the zthrs after all the ARC state has been 8101 * torn down to avoid the case of them receiving any 8102 * wakeup() signals after they are destroyed. 8103 */ 8104 zthr_destroy(arc_evict_zthr); 8105 zthr_destroy(arc_reap_zthr); 8106 8107 ASSERT0(arc_loaned_bytes); 8108 } 8109 8110 /* 8111 * Level 2 ARC 8112 * 8113 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 8114 * It uses dedicated storage devices to hold cached data, which are populated 8115 * using large infrequent writes. The main role of this cache is to boost 8116 * the performance of random read workloads. The intended L2ARC devices 8117 * include short-stroked disks, solid state disks, and other media with 8118 * substantially faster read latency than disk. 8119 * 8120 * +-----------------------+ 8121 * | ARC | 8122 * +-----------------------+ 8123 * | ^ ^ 8124 * | | | 8125 * l2arc_feed_thread() arc_read() 8126 * | | | 8127 * | l2arc read | 8128 * V | | 8129 * +---------------+ | 8130 * | L2ARC | | 8131 * +---------------+ | 8132 * | ^ | 8133 * l2arc_write() | | 8134 * | | | 8135 * V | | 8136 * +-------+ +-------+ 8137 * | vdev | | vdev | 8138 * | cache | | cache | 8139 * +-------+ +-------+ 8140 * +=========+ .-----. 8141 * : L2ARC : |-_____-| 8142 * : devices : | Disks | 8143 * +=========+ `-_____-' 8144 * 8145 * Read requests are satisfied from the following sources, in order: 8146 * 8147 * 1) ARC 8148 * 2) vdev cache of L2ARC devices 8149 * 3) L2ARC devices 8150 * 4) vdev cache of disks 8151 * 5) disks 8152 * 8153 * Some L2ARC device types exhibit extremely slow write performance. 8154 * To accommodate for this there are some significant differences between 8155 * the L2ARC and traditional cache design: 8156 * 8157 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 8158 * the ARC behave as usual, freeing buffers and placing headers on ghost 8159 * lists. The ARC does not send buffers to the L2ARC during eviction as 8160 * this would add inflated write latencies for all ARC memory pressure. 8161 * 8162 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 8163 * It does this by periodically scanning buffers from the eviction-end of 8164 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 8165 * not already there. It scans until a headroom of buffers is satisfied, 8166 * which itself is a buffer for ARC eviction. If a compressible buffer is 8167 * found during scanning and selected for writing to an L2ARC device, we 8168 * temporarily boost scanning headroom during the next scan cycle to make 8169 * sure we adapt to compression effects (which might significantly reduce 8170 * the data volume we write to L2ARC). The thread that does this is 8171 * l2arc_feed_thread(), illustrated below; example sizes are included to 8172 * provide a better sense of ratio than this diagram: 8173 * 8174 * head --> tail 8175 * +---------------------+----------+ 8176 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 8177 * +---------------------+----------+ | o L2ARC eligible 8178 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 8179 * +---------------------+----------+ | 8180 * 15.9 Gbytes ^ 32 Mbytes | 8181 * headroom | 8182 * l2arc_feed_thread() 8183 * | 8184 * l2arc write hand <--[oooo]--' 8185 * | 8 Mbyte 8186 * | write max 8187 * V 8188 * +==============================+ 8189 * L2ARC dev |####|#|###|###| |####| ... | 8190 * +==============================+ 8191 * 32 Gbytes 8192 * 8193 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 8194 * evicted, then the L2ARC has cached a buffer much sooner than it probably 8195 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 8196 * safe to say that this is an uncommon case, since buffers at the end of 8197 * the ARC lists have moved there due to inactivity. 8198 * 8199 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 8200 * then the L2ARC simply misses copying some buffers. This serves as a 8201 * pressure valve to prevent heavy read workloads from both stalling the ARC 8202 * with waits and clogging the L2ARC with writes. This also helps prevent 8203 * the potential for the L2ARC to churn if it attempts to cache content too 8204 * quickly, such as during backups of the entire pool. 8205 * 8206 * 5. After system boot and before the ARC has filled main memory, there are 8207 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 8208 * lists can remain mostly static. Instead of searching from tail of these 8209 * lists as pictured, the l2arc_feed_thread() will search from the list heads 8210 * for eligible buffers, greatly increasing its chance of finding them. 8211 * 8212 * The L2ARC device write speed is also boosted during this time so that 8213 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 8214 * there are no L2ARC reads, and no fear of degrading read performance 8215 * through increased writes. 8216 * 8217 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 8218 * the vdev queue can aggregate them into larger and fewer writes. Each 8219 * device is written to in a rotor fashion, sweeping writes through 8220 * available space then repeating. 8221 * 8222 * 7. The L2ARC does not store dirty content. It never needs to flush 8223 * write buffers back to disk based storage. 8224 * 8225 * 8. If an ARC buffer is written (and dirtied) which also exists in the 8226 * L2ARC, the now stale L2ARC buffer is immediately dropped. 8227 * 8228 * The performance of the L2ARC can be tweaked by a number of tunables, which 8229 * may be necessary for different workloads: 8230 * 8231 * l2arc_write_max max write bytes per interval 8232 * l2arc_write_boost extra write bytes during device warmup 8233 * l2arc_noprefetch skip caching prefetched buffers 8234 * l2arc_headroom number of max device writes to precache 8235 * l2arc_headroom_boost when we find compressed buffers during ARC 8236 * scanning, we multiply headroom by this 8237 * percentage factor for the next scan cycle, 8238 * since more compressed buffers are likely to 8239 * be present 8240 * l2arc_feed_secs seconds between L2ARC writing 8241 * 8242 * Tunables may be removed or added as future performance improvements are 8243 * integrated, and also may become zpool properties. 8244 * 8245 * There are three key functions that control how the L2ARC warms up: 8246 * 8247 * l2arc_write_eligible() check if a buffer is eligible to cache 8248 * l2arc_write_size() calculate how much to write 8249 * l2arc_write_interval() calculate sleep delay between writes 8250 * 8251 * These three functions determine what to write, how much, and how quickly 8252 * to send writes. 8253 * 8254 * L2ARC persistence: 8255 * 8256 * When writing buffers to L2ARC, we periodically add some metadata to 8257 * make sure we can pick them up after reboot, thus dramatically reducing 8258 * the impact that any downtime has on the performance of storage systems 8259 * with large caches. 8260 * 8261 * The implementation works fairly simply by integrating the following two 8262 * modifications: 8263 * 8264 * *) When writing to the L2ARC, we occasionally write a "l2arc log block", 8265 * which is an additional piece of metadata which describes what's been 8266 * written. This allows us to rebuild the arc_buf_hdr_t structures of the 8267 * main ARC buffers. There are 2 linked-lists of log blocks headed by 8268 * dh_start_lbps[2]. We alternate which chain we append to, so they are 8269 * time-wise and offset-wise interleaved, but that is an optimization rather 8270 * than for correctness. The log block also includes a pointer to the 8271 * previous block in its chain. 8272 * 8273 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device 8274 * for our header bookkeeping purposes. This contains a device header, 8275 * which contains our top-level reference structures. We update it each 8276 * time we write a new log block, so that we're able to locate it in the 8277 * L2ARC device. If this write results in an inconsistent device header 8278 * (e.g. due to power failure), we detect this by verifying the header's 8279 * checksum and simply fail to reconstruct the L2ARC after reboot. 8280 * 8281 * Implementation diagram: 8282 * 8283 * +=== L2ARC device (not to scale) ======================================+ 8284 * | ___two newest log block pointers__.__________ | 8285 * | / \dh_start_lbps[1] | 8286 * | / \ \dh_start_lbps[0]| 8287 * |.___/__. V V | 8288 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---| 8289 * || hdr| ^ /^ /^ / / | 8290 * |+------+ ...--\-------/ \-----/--\------/ / | 8291 * | \--------------/ \--------------/ | 8292 * +======================================================================+ 8293 * 8294 * As can be seen on the diagram, rather than using a simple linked list, 8295 * we use a pair of linked lists with alternating elements. This is a 8296 * performance enhancement due to the fact that we only find out the 8297 * address of the next log block access once the current block has been 8298 * completely read in. Obviously, this hurts performance, because we'd be 8299 * keeping the device's I/O queue at only a 1 operation deep, thus 8300 * incurring a large amount of I/O round-trip latency. Having two lists 8301 * allows us to fetch two log blocks ahead of where we are currently 8302 * rebuilding L2ARC buffers. 8303 * 8304 * On-device data structures: 8305 * 8306 * L2ARC device header: l2arc_dev_hdr_phys_t 8307 * L2ARC log block: l2arc_log_blk_phys_t 8308 * 8309 * L2ARC reconstruction: 8310 * 8311 * When writing data, we simply write in the standard rotary fashion, 8312 * evicting buffers as we go and simply writing new data over them (writing 8313 * a new log block every now and then). This obviously means that once we 8314 * loop around the end of the device, we will start cutting into an already 8315 * committed log block (and its referenced data buffers), like so: 8316 * 8317 * current write head__ __old tail 8318 * \ / 8319 * V V 8320 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |--> 8321 * ^ ^^^^^^^^^___________________________________ 8322 * | \ 8323 * <<nextwrite>> may overwrite this blk and/or its bufs --' 8324 * 8325 * When importing the pool, we detect this situation and use it to stop 8326 * our scanning process (see l2arc_rebuild). 8327 * 8328 * There is one significant caveat to consider when rebuilding ARC contents 8329 * from an L2ARC device: what about invalidated buffers? Given the above 8330 * construction, we cannot update blocks which we've already written to amend 8331 * them to remove buffers which were invalidated. Thus, during reconstruction, 8332 * we might be populating the cache with buffers for data that's not on the 8333 * main pool anymore, or may have been overwritten! 8334 * 8335 * As it turns out, this isn't a problem. Every arc_read request includes 8336 * both the DVA and, crucially, the birth TXG of the BP the caller is 8337 * looking for. So even if the cache were populated by completely rotten 8338 * blocks for data that had been long deleted and/or overwritten, we'll 8339 * never actually return bad data from the cache, since the DVA with the 8340 * birth TXG uniquely identify a block in space and time - once created, 8341 * a block is immutable on disk. The worst thing we have done is wasted 8342 * some time and memory at l2arc rebuild to reconstruct outdated ARC 8343 * entries that will get dropped from the l2arc as it is being updated 8344 * with new blocks. 8345 * 8346 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write 8347 * hand are not restored. This is done by saving the offset (in bytes) 8348 * l2arc_evict() has evicted to in the L2ARC device header and taking it 8349 * into account when restoring buffers. 8350 */ 8351 8352 static boolean_t 8353 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 8354 { 8355 /* 8356 * A buffer is *not* eligible for the L2ARC if it: 8357 * 1. belongs to a different spa. 8358 * 2. is already cached on the L2ARC. 8359 * 3. has an I/O in progress (it may be an incomplete read). 8360 * 4. is flagged not eligible (zfs property). 8361 */ 8362 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || 8363 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr)) 8364 return (B_FALSE); 8365 8366 return (B_TRUE); 8367 } 8368 8369 static uint64_t 8370 l2arc_write_size(l2arc_dev_t *dev) 8371 { 8372 uint64_t size, dev_size, tsize; 8373 8374 /* 8375 * Make sure our globals have meaningful values in case the user 8376 * altered them. 8377 */ 8378 size = l2arc_write_max; 8379 if (size == 0) { 8380 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 8381 "be greater than zero, resetting it to the default (%d)", 8382 L2ARC_WRITE_SIZE); 8383 size = l2arc_write_max = L2ARC_WRITE_SIZE; 8384 } 8385 8386 if (arc_warm == B_FALSE) 8387 size += l2arc_write_boost; 8388 8389 /* 8390 * Make sure the write size does not exceed the size of the cache 8391 * device. This is important in l2arc_evict(), otherwise infinite 8392 * iteration can occur. 8393 */ 8394 dev_size = dev->l2ad_end - dev->l2ad_start; 8395 tsize = size + l2arc_log_blk_overhead(size, dev); 8396 if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) 8397 tsize += MAX(64 * 1024 * 1024, 8398 (tsize * l2arc_trim_ahead) / 100); 8399 8400 if (tsize >= dev_size) { 8401 cmn_err(CE_NOTE, "l2arc_write_max or l2arc_write_boost " 8402 "plus the overhead of log blocks (persistent L2ARC, " 8403 "%llu bytes) exceeds the size of the cache device " 8404 "(guid %llu), resetting them to the default (%d)", 8405 (u_longlong_t)l2arc_log_blk_overhead(size, dev), 8406 (u_longlong_t)dev->l2ad_vdev->vdev_guid, L2ARC_WRITE_SIZE); 8407 size = l2arc_write_max = l2arc_write_boost = L2ARC_WRITE_SIZE; 8408 8409 if (arc_warm == B_FALSE) 8410 size += l2arc_write_boost; 8411 } 8412 8413 return (size); 8414 8415 } 8416 8417 static clock_t 8418 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 8419 { 8420 clock_t interval, next, now; 8421 8422 /* 8423 * If the ARC lists are busy, increase our write rate; if the 8424 * lists are stale, idle back. This is achieved by checking 8425 * how much we previously wrote - if it was more than half of 8426 * what we wanted, schedule the next write much sooner. 8427 */ 8428 if (l2arc_feed_again && wrote > (wanted / 2)) 8429 interval = (hz * l2arc_feed_min_ms) / 1000; 8430 else 8431 interval = hz * l2arc_feed_secs; 8432 8433 now = ddi_get_lbolt(); 8434 next = MAX(now, MIN(now + interval, began + interval)); 8435 8436 return (next); 8437 } 8438 8439 /* 8440 * Cycle through L2ARC devices. This is how L2ARC load balances. 8441 * If a device is returned, this also returns holding the spa config lock. 8442 */ 8443 static l2arc_dev_t * 8444 l2arc_dev_get_next(void) 8445 { 8446 l2arc_dev_t *first, *next = NULL; 8447 8448 /* 8449 * Lock out the removal of spas (spa_namespace_lock), then removal 8450 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 8451 * both locks will be dropped and a spa config lock held instead. 8452 */ 8453 mutex_enter(&spa_namespace_lock); 8454 mutex_enter(&l2arc_dev_mtx); 8455 8456 /* if there are no vdevs, there is nothing to do */ 8457 if (l2arc_ndev == 0) 8458 goto out; 8459 8460 first = NULL; 8461 next = l2arc_dev_last; 8462 do { 8463 /* loop around the list looking for a non-faulted vdev */ 8464 if (next == NULL) { 8465 next = list_head(l2arc_dev_list); 8466 } else { 8467 next = list_next(l2arc_dev_list, next); 8468 if (next == NULL) 8469 next = list_head(l2arc_dev_list); 8470 } 8471 8472 /* if we have come back to the start, bail out */ 8473 if (first == NULL) 8474 first = next; 8475 else if (next == first) 8476 break; 8477 8478 } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || 8479 next->l2ad_trim_all); 8480 8481 /* if we were unable to find any usable vdevs, return NULL */ 8482 if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || 8483 next->l2ad_trim_all) 8484 next = NULL; 8485 8486 l2arc_dev_last = next; 8487 8488 out: 8489 mutex_exit(&l2arc_dev_mtx); 8490 8491 /* 8492 * Grab the config lock to prevent the 'next' device from being 8493 * removed while we are writing to it. 8494 */ 8495 if (next != NULL) 8496 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 8497 mutex_exit(&spa_namespace_lock); 8498 8499 return (next); 8500 } 8501 8502 /* 8503 * Free buffers that were tagged for destruction. 8504 */ 8505 static void 8506 l2arc_do_free_on_write(void) 8507 { 8508 list_t *buflist; 8509 l2arc_data_free_t *df, *df_prev; 8510 8511 mutex_enter(&l2arc_free_on_write_mtx); 8512 buflist = l2arc_free_on_write; 8513 8514 for (df = list_tail(buflist); df; df = df_prev) { 8515 df_prev = list_prev(buflist, df); 8516 ASSERT3P(df->l2df_abd, !=, NULL); 8517 abd_free(df->l2df_abd); 8518 list_remove(buflist, df); 8519 kmem_free(df, sizeof (l2arc_data_free_t)); 8520 } 8521 8522 mutex_exit(&l2arc_free_on_write_mtx); 8523 } 8524 8525 /* 8526 * A write to a cache device has completed. Update all headers to allow 8527 * reads from these buffers to begin. 8528 */ 8529 static void 8530 l2arc_write_done(zio_t *zio) 8531 { 8532 l2arc_write_callback_t *cb; 8533 l2arc_lb_abd_buf_t *abd_buf; 8534 l2arc_lb_ptr_buf_t *lb_ptr_buf; 8535 l2arc_dev_t *dev; 8536 l2arc_dev_hdr_phys_t *l2dhdr; 8537 list_t *buflist; 8538 arc_buf_hdr_t *head, *hdr, *hdr_prev; 8539 kmutex_t *hash_lock; 8540 int64_t bytes_dropped = 0; 8541 8542 cb = zio->io_private; 8543 ASSERT3P(cb, !=, NULL); 8544 dev = cb->l2wcb_dev; 8545 l2dhdr = dev->l2ad_dev_hdr; 8546 ASSERT3P(dev, !=, NULL); 8547 head = cb->l2wcb_head; 8548 ASSERT3P(head, !=, NULL); 8549 buflist = &dev->l2ad_buflist; 8550 ASSERT3P(buflist, !=, NULL); 8551 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 8552 l2arc_write_callback_t *, cb); 8553 8554 /* 8555 * All writes completed, or an error was hit. 8556 */ 8557 top: 8558 mutex_enter(&dev->l2ad_mtx); 8559 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 8560 hdr_prev = list_prev(buflist, hdr); 8561 8562 hash_lock = HDR_LOCK(hdr); 8563 8564 /* 8565 * We cannot use mutex_enter or else we can deadlock 8566 * with l2arc_write_buffers (due to swapping the order 8567 * the hash lock and l2ad_mtx are taken). 8568 */ 8569 if (!mutex_tryenter(hash_lock)) { 8570 /* 8571 * Missed the hash lock. We must retry so we 8572 * don't leave the ARC_FLAG_L2_WRITING bit set. 8573 */ 8574 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 8575 8576 /* 8577 * We don't want to rescan the headers we've 8578 * already marked as having been written out, so 8579 * we reinsert the head node so we can pick up 8580 * where we left off. 8581 */ 8582 list_remove(buflist, head); 8583 list_insert_after(buflist, hdr, head); 8584 8585 mutex_exit(&dev->l2ad_mtx); 8586 8587 /* 8588 * We wait for the hash lock to become available 8589 * to try and prevent busy waiting, and increase 8590 * the chance we'll be able to acquire the lock 8591 * the next time around. 8592 */ 8593 mutex_enter(hash_lock); 8594 mutex_exit(hash_lock); 8595 goto top; 8596 } 8597 8598 /* 8599 * We could not have been moved into the arc_l2c_only 8600 * state while in-flight due to our ARC_FLAG_L2_WRITING 8601 * bit being set. Let's just ensure that's being enforced. 8602 */ 8603 ASSERT(HDR_HAS_L1HDR(hdr)); 8604 8605 /* 8606 * Skipped - drop L2ARC entry and mark the header as no 8607 * longer L2 eligibile. 8608 */ 8609 if (zio->io_error != 0) { 8610 /* 8611 * Error - drop L2ARC entry. 8612 */ 8613 list_remove(buflist, hdr); 8614 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 8615 8616 uint64_t psize = HDR_GET_PSIZE(hdr); 8617 l2arc_hdr_arcstats_decrement(hdr); 8618 8619 bytes_dropped += 8620 vdev_psize_to_asize(dev->l2ad_vdev, psize); 8621 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 8622 arc_hdr_size(hdr), hdr); 8623 } 8624 8625 /* 8626 * Allow ARC to begin reads and ghost list evictions to 8627 * this L2ARC entry. 8628 */ 8629 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); 8630 8631 mutex_exit(hash_lock); 8632 } 8633 8634 /* 8635 * Free the allocated abd buffers for writing the log blocks. 8636 * If the zio failed reclaim the allocated space and remove the 8637 * pointers to these log blocks from the log block pointer list 8638 * of the L2ARC device. 8639 */ 8640 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) { 8641 abd_free(abd_buf->abd); 8642 zio_buf_free(abd_buf, sizeof (*abd_buf)); 8643 if (zio->io_error != 0) { 8644 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list); 8645 /* 8646 * L2BLK_GET_PSIZE returns aligned size for log 8647 * blocks. 8648 */ 8649 uint64_t asize = 8650 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop); 8651 bytes_dropped += asize; 8652 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 8653 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 8654 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 8655 lb_ptr_buf); 8656 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 8657 kmem_free(lb_ptr_buf->lb_ptr, 8658 sizeof (l2arc_log_blkptr_t)); 8659 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 8660 } 8661 } 8662 list_destroy(&cb->l2wcb_abd_list); 8663 8664 if (zio->io_error != 0) { 8665 ARCSTAT_BUMP(arcstat_l2_writes_error); 8666 8667 /* 8668 * Restore the lbps array in the header to its previous state. 8669 * If the list of log block pointers is empty, zero out the 8670 * log block pointers in the device header. 8671 */ 8672 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list); 8673 for (int i = 0; i < 2; i++) { 8674 if (lb_ptr_buf == NULL) { 8675 /* 8676 * If the list is empty zero out the device 8677 * header. Otherwise zero out the second log 8678 * block pointer in the header. 8679 */ 8680 if (i == 0) { 8681 bzero(l2dhdr, dev->l2ad_dev_hdr_asize); 8682 } else { 8683 bzero(&l2dhdr->dh_start_lbps[i], 8684 sizeof (l2arc_log_blkptr_t)); 8685 } 8686 break; 8687 } 8688 bcopy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[i], 8689 sizeof (l2arc_log_blkptr_t)); 8690 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list, 8691 lb_ptr_buf); 8692 } 8693 } 8694 8695 ARCSTAT_BUMP(arcstat_l2_writes_done); 8696 list_remove(buflist, head); 8697 ASSERT(!HDR_HAS_L1HDR(head)); 8698 kmem_cache_free(hdr_l2only_cache, head); 8699 mutex_exit(&dev->l2ad_mtx); 8700 8701 ASSERT(dev->l2ad_vdev != NULL); 8702 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 8703 8704 l2arc_do_free_on_write(); 8705 8706 kmem_free(cb, sizeof (l2arc_write_callback_t)); 8707 } 8708 8709 static int 8710 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb) 8711 { 8712 int ret; 8713 spa_t *spa = zio->io_spa; 8714 arc_buf_hdr_t *hdr = cb->l2rcb_hdr; 8715 blkptr_t *bp = zio->io_bp; 8716 uint8_t salt[ZIO_DATA_SALT_LEN]; 8717 uint8_t iv[ZIO_DATA_IV_LEN]; 8718 uint8_t mac[ZIO_DATA_MAC_LEN]; 8719 boolean_t no_crypt = B_FALSE; 8720 8721 /* 8722 * ZIL data is never be written to the L2ARC, so we don't need 8723 * special handling for its unique MAC storage. 8724 */ 8725 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 8726 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 8727 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8728 8729 /* 8730 * If the data was encrypted, decrypt it now. Note that 8731 * we must check the bp here and not the hdr, since the 8732 * hdr does not have its encryption parameters updated 8733 * until arc_read_done(). 8734 */ 8735 if (BP_IS_ENCRYPTED(bp)) { 8736 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8737 ARC_HDR_DO_ADAPT | ARC_HDR_USE_RESERVE); 8738 8739 zio_crypt_decode_params_bp(bp, salt, iv); 8740 zio_crypt_decode_mac_bp(bp, mac); 8741 8742 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb, 8743 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 8744 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd, 8745 hdr->b_l1hdr.b_pabd, &no_crypt); 8746 if (ret != 0) { 8747 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8748 goto error; 8749 } 8750 8751 /* 8752 * If we actually performed decryption, replace b_pabd 8753 * with the decrypted data. Otherwise we can just throw 8754 * our decryption buffer away. 8755 */ 8756 if (!no_crypt) { 8757 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8758 arc_hdr_size(hdr), hdr); 8759 hdr->b_l1hdr.b_pabd = eabd; 8760 zio->io_abd = eabd; 8761 } else { 8762 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8763 } 8764 } 8765 8766 /* 8767 * If the L2ARC block was compressed, but ARC compression 8768 * is disabled we decompress the data into a new buffer and 8769 * replace the existing data. 8770 */ 8771 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 8772 !HDR_COMPRESSION_ENABLED(hdr)) { 8773 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8774 ARC_HDR_DO_ADAPT | ARC_HDR_USE_RESERVE); 8775 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 8776 8777 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 8778 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 8779 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 8780 if (ret != 0) { 8781 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 8782 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr); 8783 goto error; 8784 } 8785 8786 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 8787 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8788 arc_hdr_size(hdr), hdr); 8789 hdr->b_l1hdr.b_pabd = cabd; 8790 zio->io_abd = cabd; 8791 zio->io_size = HDR_GET_LSIZE(hdr); 8792 } 8793 8794 return (0); 8795 8796 error: 8797 return (ret); 8798 } 8799 8800 8801 /* 8802 * A read to a cache device completed. Validate buffer contents before 8803 * handing over to the regular ARC routines. 8804 */ 8805 static void 8806 l2arc_read_done(zio_t *zio) 8807 { 8808 int tfm_error = 0; 8809 l2arc_read_callback_t *cb = zio->io_private; 8810 arc_buf_hdr_t *hdr; 8811 kmutex_t *hash_lock; 8812 boolean_t valid_cksum; 8813 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) && 8814 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT)); 8815 8816 ASSERT3P(zio->io_vd, !=, NULL); 8817 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 8818 8819 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 8820 8821 ASSERT3P(cb, !=, NULL); 8822 hdr = cb->l2rcb_hdr; 8823 ASSERT3P(hdr, !=, NULL); 8824 8825 hash_lock = HDR_LOCK(hdr); 8826 mutex_enter(hash_lock); 8827 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 8828 8829 /* 8830 * If the data was read into a temporary buffer, 8831 * move it and free the buffer. 8832 */ 8833 if (cb->l2rcb_abd != NULL) { 8834 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size); 8835 if (zio->io_error == 0) { 8836 if (using_rdata) { 8837 abd_copy(hdr->b_crypt_hdr.b_rabd, 8838 cb->l2rcb_abd, arc_hdr_size(hdr)); 8839 } else { 8840 abd_copy(hdr->b_l1hdr.b_pabd, 8841 cb->l2rcb_abd, arc_hdr_size(hdr)); 8842 } 8843 } 8844 8845 /* 8846 * The following must be done regardless of whether 8847 * there was an error: 8848 * - free the temporary buffer 8849 * - point zio to the real ARC buffer 8850 * - set zio size accordingly 8851 * These are required because zio is either re-used for 8852 * an I/O of the block in the case of the error 8853 * or the zio is passed to arc_read_done() and it 8854 * needs real data. 8855 */ 8856 abd_free(cb->l2rcb_abd); 8857 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr); 8858 8859 if (using_rdata) { 8860 ASSERT(HDR_HAS_RABD(hdr)); 8861 zio->io_abd = zio->io_orig_abd = 8862 hdr->b_crypt_hdr.b_rabd; 8863 } else { 8864 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8865 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd; 8866 } 8867 } 8868 8869 ASSERT3P(zio->io_abd, !=, NULL); 8870 8871 /* 8872 * Check this survived the L2ARC journey. 8873 */ 8874 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd || 8875 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd)); 8876 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 8877 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 8878 zio->io_prop.zp_complevel = hdr->b_complevel; 8879 8880 valid_cksum = arc_cksum_is_equal(hdr, zio); 8881 8882 /* 8883 * b_rabd will always match the data as it exists on disk if it is 8884 * being used. Therefore if we are reading into b_rabd we do not 8885 * attempt to untransform the data. 8886 */ 8887 if (valid_cksum && !using_rdata) 8888 tfm_error = l2arc_untransform(zio, cb); 8889 8890 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 && 8891 !HDR_L2_EVICTED(hdr)) { 8892 mutex_exit(hash_lock); 8893 zio->io_private = hdr; 8894 arc_read_done(zio); 8895 } else { 8896 /* 8897 * Buffer didn't survive caching. Increment stats and 8898 * reissue to the original storage device. 8899 */ 8900 if (zio->io_error != 0) { 8901 ARCSTAT_BUMP(arcstat_l2_io_error); 8902 } else { 8903 zio->io_error = SET_ERROR(EIO); 8904 } 8905 if (!valid_cksum || tfm_error != 0) 8906 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 8907 8908 /* 8909 * If there's no waiter, issue an async i/o to the primary 8910 * storage now. If there *is* a waiter, the caller must 8911 * issue the i/o in a context where it's OK to block. 8912 */ 8913 if (zio->io_waiter == NULL) { 8914 zio_t *pio = zio_unique_parent(zio); 8915 void *abd = (using_rdata) ? 8916 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd; 8917 8918 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 8919 8920 zio = zio_read(pio, zio->io_spa, zio->io_bp, 8921 abd, zio->io_size, arc_read_done, 8922 hdr, zio->io_priority, cb->l2rcb_flags, 8923 &cb->l2rcb_zb); 8924 8925 /* 8926 * Original ZIO will be freed, so we need to update 8927 * ARC header with the new ZIO pointer to be used 8928 * by zio_change_priority() in arc_read(). 8929 */ 8930 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb; 8931 acb != NULL; acb = acb->acb_next) 8932 acb->acb_zio_head = zio; 8933 8934 mutex_exit(hash_lock); 8935 zio_nowait(zio); 8936 } else { 8937 mutex_exit(hash_lock); 8938 } 8939 } 8940 8941 kmem_free(cb, sizeof (l2arc_read_callback_t)); 8942 } 8943 8944 /* 8945 * This is the list priority from which the L2ARC will search for pages to 8946 * cache. This is used within loops (0..3) to cycle through lists in the 8947 * desired order. This order can have a significant effect on cache 8948 * performance. 8949 * 8950 * Currently the metadata lists are hit first, MFU then MRU, followed by 8951 * the data lists. This function returns a locked list, and also returns 8952 * the lock pointer. 8953 */ 8954 static multilist_sublist_t * 8955 l2arc_sublist_lock(int list_num) 8956 { 8957 multilist_t *ml = NULL; 8958 unsigned int idx; 8959 8960 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES); 8961 8962 switch (list_num) { 8963 case 0: 8964 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 8965 break; 8966 case 1: 8967 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 8968 break; 8969 case 2: 8970 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 8971 break; 8972 case 3: 8973 ml = &arc_mru->arcs_list[ARC_BUFC_DATA]; 8974 break; 8975 default: 8976 return (NULL); 8977 } 8978 8979 /* 8980 * Return a randomly-selected sublist. This is acceptable 8981 * because the caller feeds only a little bit of data for each 8982 * call (8MB). Subsequent calls will result in different 8983 * sublists being selected. 8984 */ 8985 idx = multilist_get_random_index(ml); 8986 return (multilist_sublist_lock(ml, idx)); 8987 } 8988 8989 /* 8990 * Calculates the maximum overhead of L2ARC metadata log blocks for a given 8991 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this 8992 * overhead in processing to make sure there is enough headroom available 8993 * when writing buffers. 8994 */ 8995 static inline uint64_t 8996 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev) 8997 { 8998 if (dev->l2ad_log_entries == 0) { 8999 return (0); 9000 } else { 9001 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT; 9002 9003 uint64_t log_blocks = (log_entries + 9004 dev->l2ad_log_entries - 1) / 9005 dev->l2ad_log_entries; 9006 9007 return (vdev_psize_to_asize(dev->l2ad_vdev, 9008 sizeof (l2arc_log_blk_phys_t)) * log_blocks); 9009 } 9010 } 9011 9012 /* 9013 * Evict buffers from the device write hand to the distance specified in 9014 * bytes. This distance may span populated buffers, it may span nothing. 9015 * This is clearing a region on the L2ARC device ready for writing. 9016 * If the 'all' boolean is set, every buffer is evicted. 9017 */ 9018 static void 9019 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 9020 { 9021 list_t *buflist; 9022 arc_buf_hdr_t *hdr, *hdr_prev; 9023 kmutex_t *hash_lock; 9024 uint64_t taddr; 9025 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev; 9026 vdev_t *vd = dev->l2ad_vdev; 9027 boolean_t rerun; 9028 9029 buflist = &dev->l2ad_buflist; 9030 9031 /* 9032 * We need to add in the worst case scenario of log block overhead. 9033 */ 9034 distance += l2arc_log_blk_overhead(distance, dev); 9035 if (vd->vdev_has_trim && l2arc_trim_ahead > 0) { 9036 /* 9037 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100) 9038 * times the write size, whichever is greater. 9039 */ 9040 distance += MAX(64 * 1024 * 1024, 9041 (distance * l2arc_trim_ahead) / 100); 9042 } 9043 9044 top: 9045 rerun = B_FALSE; 9046 if (dev->l2ad_hand >= (dev->l2ad_end - distance)) { 9047 /* 9048 * When there is no space to accommodate upcoming writes, 9049 * evict to the end. Then bump the write and evict hands 9050 * to the start and iterate. This iteration does not 9051 * happen indefinitely as we make sure in 9052 * l2arc_write_size() that when the write hand is reset, 9053 * the write size does not exceed the end of the device. 9054 */ 9055 rerun = B_TRUE; 9056 taddr = dev->l2ad_end; 9057 } else { 9058 taddr = dev->l2ad_hand + distance; 9059 } 9060 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 9061 uint64_t, taddr, boolean_t, all); 9062 9063 if (!all) { 9064 /* 9065 * This check has to be placed after deciding whether to 9066 * iterate (rerun). 9067 */ 9068 if (dev->l2ad_first) { 9069 /* 9070 * This is the first sweep through the device. There is 9071 * nothing to evict. We have already trimmmed the 9072 * whole device. 9073 */ 9074 goto out; 9075 } else { 9076 /* 9077 * Trim the space to be evicted. 9078 */ 9079 if (vd->vdev_has_trim && dev->l2ad_evict < taddr && 9080 l2arc_trim_ahead > 0) { 9081 /* 9082 * We have to drop the spa_config lock because 9083 * vdev_trim_range() will acquire it. 9084 * l2ad_evict already accounts for the label 9085 * size. To prevent vdev_trim_ranges() from 9086 * adding it again, we subtract it from 9087 * l2ad_evict. 9088 */ 9089 spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev); 9090 vdev_trim_simple(vd, 9091 dev->l2ad_evict - VDEV_LABEL_START_SIZE, 9092 taddr - dev->l2ad_evict); 9093 spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev, 9094 RW_READER); 9095 } 9096 9097 /* 9098 * When rebuilding L2ARC we retrieve the evict hand 9099 * from the header of the device. Of note, l2arc_evict() 9100 * does not actually delete buffers from the cache 9101 * device, but trimming may do so depending on the 9102 * hardware implementation. Thus keeping track of the 9103 * evict hand is useful. 9104 */ 9105 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr); 9106 } 9107 } 9108 9109 retry: 9110 mutex_enter(&dev->l2ad_mtx); 9111 /* 9112 * We have to account for evicted log blocks. Run vdev_space_update() 9113 * on log blocks whose offset (in bytes) is before the evicted offset 9114 * (in bytes) by searching in the list of pointers to log blocks 9115 * present in the L2ARC device. 9116 */ 9117 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf; 9118 lb_ptr_buf = lb_ptr_buf_prev) { 9119 9120 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf); 9121 9122 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 9123 uint64_t asize = L2BLK_GET_PSIZE( 9124 (lb_ptr_buf->lb_ptr)->lbp_prop); 9125 9126 /* 9127 * We don't worry about log blocks left behind (ie 9128 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers() 9129 * will never write more than l2arc_evict() evicts. 9130 */ 9131 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) { 9132 break; 9133 } else { 9134 vdev_space_update(vd, -asize, 0, 0); 9135 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 9136 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 9137 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 9138 lb_ptr_buf); 9139 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 9140 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf); 9141 kmem_free(lb_ptr_buf->lb_ptr, 9142 sizeof (l2arc_log_blkptr_t)); 9143 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 9144 } 9145 } 9146 9147 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 9148 hdr_prev = list_prev(buflist, hdr); 9149 9150 ASSERT(!HDR_EMPTY(hdr)); 9151 hash_lock = HDR_LOCK(hdr); 9152 9153 /* 9154 * We cannot use mutex_enter or else we can deadlock 9155 * with l2arc_write_buffers (due to swapping the order 9156 * the hash lock and l2ad_mtx are taken). 9157 */ 9158 if (!mutex_tryenter(hash_lock)) { 9159 /* 9160 * Missed the hash lock. Retry. 9161 */ 9162 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 9163 mutex_exit(&dev->l2ad_mtx); 9164 mutex_enter(hash_lock); 9165 mutex_exit(hash_lock); 9166 goto retry; 9167 } 9168 9169 /* 9170 * A header can't be on this list if it doesn't have L2 header. 9171 */ 9172 ASSERT(HDR_HAS_L2HDR(hdr)); 9173 9174 /* Ensure this header has finished being written. */ 9175 ASSERT(!HDR_L2_WRITING(hdr)); 9176 ASSERT(!HDR_L2_WRITE_HEAD(hdr)); 9177 9178 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict || 9179 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 9180 /* 9181 * We've evicted to the target address, 9182 * or the end of the device. 9183 */ 9184 mutex_exit(hash_lock); 9185 break; 9186 } 9187 9188 if (!HDR_HAS_L1HDR(hdr)) { 9189 ASSERT(!HDR_L2_READING(hdr)); 9190 /* 9191 * This doesn't exist in the ARC. Destroy. 9192 * arc_hdr_destroy() will call list_remove() 9193 * and decrement arcstat_l2_lsize. 9194 */ 9195 arc_change_state(arc_anon, hdr, hash_lock); 9196 arc_hdr_destroy(hdr); 9197 } else { 9198 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 9199 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 9200 /* 9201 * Invalidate issued or about to be issued 9202 * reads, since we may be about to write 9203 * over this location. 9204 */ 9205 if (HDR_L2_READING(hdr)) { 9206 ARCSTAT_BUMP(arcstat_l2_evict_reading); 9207 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); 9208 } 9209 9210 arc_hdr_l2hdr_destroy(hdr); 9211 } 9212 mutex_exit(hash_lock); 9213 } 9214 mutex_exit(&dev->l2ad_mtx); 9215 9216 out: 9217 /* 9218 * We need to check if we evict all buffers, otherwise we may iterate 9219 * unnecessarily. 9220 */ 9221 if (!all && rerun) { 9222 /* 9223 * Bump device hand to the device start if it is approaching the 9224 * end. l2arc_evict() has already evicted ahead for this case. 9225 */ 9226 dev->l2ad_hand = dev->l2ad_start; 9227 dev->l2ad_evict = dev->l2ad_start; 9228 dev->l2ad_first = B_FALSE; 9229 goto top; 9230 } 9231 9232 if (!all) { 9233 /* 9234 * In case of cache device removal (all) the following 9235 * assertions may be violated without functional consequences 9236 * as the device is about to be removed. 9237 */ 9238 ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end); 9239 if (!dev->l2ad_first) 9240 ASSERT3U(dev->l2ad_hand, <, dev->l2ad_evict); 9241 } 9242 } 9243 9244 /* 9245 * Handle any abd transforms that might be required for writing to the L2ARC. 9246 * If successful, this function will always return an abd with the data 9247 * transformed as it is on disk in a new abd of asize bytes. 9248 */ 9249 static int 9250 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize, 9251 abd_t **abd_out) 9252 { 9253 int ret; 9254 void *tmp = NULL; 9255 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd; 9256 enum zio_compress compress = HDR_GET_COMPRESS(hdr); 9257 uint64_t psize = HDR_GET_PSIZE(hdr); 9258 uint64_t size = arc_hdr_size(hdr); 9259 boolean_t ismd = HDR_ISTYPE_METADATA(hdr); 9260 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 9261 dsl_crypto_key_t *dck = NULL; 9262 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 }; 9263 boolean_t no_crypt = B_FALSE; 9264 9265 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 9266 !HDR_COMPRESSION_ENABLED(hdr)) || 9267 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize); 9268 ASSERT3U(psize, <=, asize); 9269 9270 /* 9271 * If this data simply needs its own buffer, we simply allocate it 9272 * and copy the data. This may be done to eliminate a dependency on a 9273 * shared buffer or to reallocate the buffer to match asize. 9274 */ 9275 if (HDR_HAS_RABD(hdr) && asize != psize) { 9276 ASSERT3U(asize, >=, psize); 9277 to_write = abd_alloc_for_io(asize, ismd); 9278 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize); 9279 if (psize != asize) 9280 abd_zero_off(to_write, psize, asize - psize); 9281 goto out; 9282 } 9283 9284 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) && 9285 !HDR_ENCRYPTED(hdr)) { 9286 ASSERT3U(size, ==, psize); 9287 to_write = abd_alloc_for_io(asize, ismd); 9288 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 9289 if (size != asize) 9290 abd_zero_off(to_write, size, asize - size); 9291 goto out; 9292 } 9293 9294 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) { 9295 cabd = abd_alloc_for_io(asize, ismd); 9296 tmp = abd_borrow_buf(cabd, asize); 9297 9298 psize = zio_compress_data(compress, to_write, tmp, size, 9299 hdr->b_complevel); 9300 9301 if (psize >= size) { 9302 abd_return_buf(cabd, tmp, asize); 9303 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF); 9304 to_write = cabd; 9305 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 9306 if (size != asize) 9307 abd_zero_off(to_write, size, asize - size); 9308 goto encrypt; 9309 } 9310 ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr)); 9311 if (psize < asize) 9312 bzero((char *)tmp + psize, asize - psize); 9313 psize = HDR_GET_PSIZE(hdr); 9314 abd_return_buf_copy(cabd, tmp, asize); 9315 to_write = cabd; 9316 } 9317 9318 encrypt: 9319 if (HDR_ENCRYPTED(hdr)) { 9320 eabd = abd_alloc_for_io(asize, ismd); 9321 9322 /* 9323 * If the dataset was disowned before the buffer 9324 * made it to this point, the key to re-encrypt 9325 * it won't be available. In this case we simply 9326 * won't write the buffer to the L2ARC. 9327 */ 9328 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj, 9329 FTAG, &dck); 9330 if (ret != 0) 9331 goto error; 9332 9333 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key, 9334 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt, 9335 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd, 9336 &no_crypt); 9337 if (ret != 0) 9338 goto error; 9339 9340 if (no_crypt) 9341 abd_copy(eabd, to_write, psize); 9342 9343 if (psize != asize) 9344 abd_zero_off(eabd, psize, asize - psize); 9345 9346 /* assert that the MAC we got here matches the one we saved */ 9347 ASSERT0(bcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN)); 9348 spa_keystore_dsl_key_rele(spa, dck, FTAG); 9349 9350 if (to_write == cabd) 9351 abd_free(cabd); 9352 9353 to_write = eabd; 9354 } 9355 9356 out: 9357 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd); 9358 *abd_out = to_write; 9359 return (0); 9360 9361 error: 9362 if (dck != NULL) 9363 spa_keystore_dsl_key_rele(spa, dck, FTAG); 9364 if (cabd != NULL) 9365 abd_free(cabd); 9366 if (eabd != NULL) 9367 abd_free(eabd); 9368 9369 *abd_out = NULL; 9370 return (ret); 9371 } 9372 9373 static void 9374 l2arc_blk_fetch_done(zio_t *zio) 9375 { 9376 l2arc_read_callback_t *cb; 9377 9378 cb = zio->io_private; 9379 if (cb->l2rcb_abd != NULL) 9380 abd_free(cb->l2rcb_abd); 9381 kmem_free(cb, sizeof (l2arc_read_callback_t)); 9382 } 9383 9384 /* 9385 * Find and write ARC buffers to the L2ARC device. 9386 * 9387 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 9388 * for reading until they have completed writing. 9389 * The headroom_boost is an in-out parameter used to maintain headroom boost 9390 * state between calls to this function. 9391 * 9392 * Returns the number of bytes actually written (which may be smaller than 9393 * the delta by which the device hand has changed due to alignment and the 9394 * writing of log blocks). 9395 */ 9396 static uint64_t 9397 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 9398 { 9399 arc_buf_hdr_t *hdr, *hdr_prev, *head; 9400 uint64_t write_asize, write_psize, write_lsize, headroom; 9401 boolean_t full; 9402 l2arc_write_callback_t *cb = NULL; 9403 zio_t *pio, *wzio; 9404 uint64_t guid = spa_load_guid(spa); 9405 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9406 9407 ASSERT3P(dev->l2ad_vdev, !=, NULL); 9408 9409 pio = NULL; 9410 write_lsize = write_asize = write_psize = 0; 9411 full = B_FALSE; 9412 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 9413 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); 9414 9415 /* 9416 * Copy buffers for L2ARC writing. 9417 */ 9418 for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) { 9419 /* 9420 * If pass == 1 or 3, we cache MRU metadata and data 9421 * respectively. 9422 */ 9423 if (l2arc_mfuonly) { 9424 if (pass == 1 || pass == 3) 9425 continue; 9426 } 9427 9428 multilist_sublist_t *mls = l2arc_sublist_lock(pass); 9429 uint64_t passed_sz = 0; 9430 9431 VERIFY3P(mls, !=, NULL); 9432 9433 /* 9434 * L2ARC fast warmup. 9435 * 9436 * Until the ARC is warm and starts to evict, read from the 9437 * head of the ARC lists rather than the tail. 9438 */ 9439 if (arc_warm == B_FALSE) 9440 hdr = multilist_sublist_head(mls); 9441 else 9442 hdr = multilist_sublist_tail(mls); 9443 9444 headroom = target_sz * l2arc_headroom; 9445 if (zfs_compressed_arc_enabled) 9446 headroom = (headroom * l2arc_headroom_boost) / 100; 9447 9448 for (; hdr; hdr = hdr_prev) { 9449 kmutex_t *hash_lock; 9450 abd_t *to_write = NULL; 9451 9452 if (arc_warm == B_FALSE) 9453 hdr_prev = multilist_sublist_next(mls, hdr); 9454 else 9455 hdr_prev = multilist_sublist_prev(mls, hdr); 9456 9457 hash_lock = HDR_LOCK(hdr); 9458 if (!mutex_tryenter(hash_lock)) { 9459 /* 9460 * Skip this buffer rather than waiting. 9461 */ 9462 continue; 9463 } 9464 9465 passed_sz += HDR_GET_LSIZE(hdr); 9466 if (l2arc_headroom != 0 && passed_sz > headroom) { 9467 /* 9468 * Searched too far. 9469 */ 9470 mutex_exit(hash_lock); 9471 break; 9472 } 9473 9474 if (!l2arc_write_eligible(guid, hdr)) { 9475 mutex_exit(hash_lock); 9476 continue; 9477 } 9478 9479 /* 9480 * We rely on the L1 portion of the header below, so 9481 * it's invalid for this header to have been evicted out 9482 * of the ghost cache, prior to being written out. The 9483 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 9484 */ 9485 ASSERT(HDR_HAS_L1HDR(hdr)); 9486 9487 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 9488 ASSERT3U(arc_hdr_size(hdr), >, 0); 9489 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 9490 HDR_HAS_RABD(hdr)); 9491 uint64_t psize = HDR_GET_PSIZE(hdr); 9492 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 9493 psize); 9494 9495 if ((write_asize + asize) > target_sz) { 9496 full = B_TRUE; 9497 mutex_exit(hash_lock); 9498 break; 9499 } 9500 9501 /* 9502 * We rely on the L1 portion of the header below, so 9503 * it's invalid for this header to have been evicted out 9504 * of the ghost cache, prior to being written out. The 9505 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 9506 */ 9507 arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING); 9508 ASSERT(HDR_HAS_L1HDR(hdr)); 9509 9510 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 9511 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 9512 HDR_HAS_RABD(hdr)); 9513 ASSERT3U(arc_hdr_size(hdr), >, 0); 9514 9515 /* 9516 * If this header has b_rabd, we can use this since it 9517 * must always match the data exactly as it exists on 9518 * disk. Otherwise, the L2ARC can normally use the 9519 * hdr's data, but if we're sharing data between the 9520 * hdr and one of its bufs, L2ARC needs its own copy of 9521 * the data so that the ZIO below can't race with the 9522 * buf consumer. To ensure that this copy will be 9523 * available for the lifetime of the ZIO and be cleaned 9524 * up afterwards, we add it to the l2arc_free_on_write 9525 * queue. If we need to apply any transforms to the 9526 * data (compression, encryption) we will also need the 9527 * extra buffer. 9528 */ 9529 if (HDR_HAS_RABD(hdr) && psize == asize) { 9530 to_write = hdr->b_crypt_hdr.b_rabd; 9531 } else if ((HDR_COMPRESSION_ENABLED(hdr) || 9532 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) && 9533 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) && 9534 psize == asize) { 9535 to_write = hdr->b_l1hdr.b_pabd; 9536 } else { 9537 int ret; 9538 arc_buf_contents_t type = arc_buf_type(hdr); 9539 9540 ret = l2arc_apply_transforms(spa, hdr, asize, 9541 &to_write); 9542 if (ret != 0) { 9543 arc_hdr_clear_flags(hdr, 9544 ARC_FLAG_L2_WRITING); 9545 mutex_exit(hash_lock); 9546 continue; 9547 } 9548 9549 l2arc_free_abd_on_write(to_write, asize, type); 9550 } 9551 9552 if (pio == NULL) { 9553 /* 9554 * Insert a dummy header on the buflist so 9555 * l2arc_write_done() can find where the 9556 * write buffers begin without searching. 9557 */ 9558 mutex_enter(&dev->l2ad_mtx); 9559 list_insert_head(&dev->l2ad_buflist, head); 9560 mutex_exit(&dev->l2ad_mtx); 9561 9562 cb = kmem_alloc( 9563 sizeof (l2arc_write_callback_t), KM_SLEEP); 9564 cb->l2wcb_dev = dev; 9565 cb->l2wcb_head = head; 9566 /* 9567 * Create a list to save allocated abd buffers 9568 * for l2arc_log_blk_commit(). 9569 */ 9570 list_create(&cb->l2wcb_abd_list, 9571 sizeof (l2arc_lb_abd_buf_t), 9572 offsetof(l2arc_lb_abd_buf_t, node)); 9573 pio = zio_root(spa, l2arc_write_done, cb, 9574 ZIO_FLAG_CANFAIL); 9575 } 9576 9577 hdr->b_l2hdr.b_dev = dev; 9578 hdr->b_l2hdr.b_hits = 0; 9579 9580 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 9581 hdr->b_l2hdr.b_arcs_state = 9582 hdr->b_l1hdr.b_state->arcs_state; 9583 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR); 9584 9585 mutex_enter(&dev->l2ad_mtx); 9586 list_insert_head(&dev->l2ad_buflist, hdr); 9587 mutex_exit(&dev->l2ad_mtx); 9588 9589 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 9590 arc_hdr_size(hdr), hdr); 9591 9592 wzio = zio_write_phys(pio, dev->l2ad_vdev, 9593 hdr->b_l2hdr.b_daddr, asize, to_write, 9594 ZIO_CHECKSUM_OFF, NULL, hdr, 9595 ZIO_PRIORITY_ASYNC_WRITE, 9596 ZIO_FLAG_CANFAIL, B_FALSE); 9597 9598 write_lsize += HDR_GET_LSIZE(hdr); 9599 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 9600 zio_t *, wzio); 9601 9602 write_psize += psize; 9603 write_asize += asize; 9604 dev->l2ad_hand += asize; 9605 l2arc_hdr_arcstats_increment(hdr); 9606 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 9607 9608 mutex_exit(hash_lock); 9609 9610 /* 9611 * Append buf info to current log and commit if full. 9612 * arcstat_l2_{size,asize} kstats are updated 9613 * internally. 9614 */ 9615 if (l2arc_log_blk_insert(dev, hdr)) 9616 l2arc_log_blk_commit(dev, pio, cb); 9617 9618 zio_nowait(wzio); 9619 } 9620 9621 multilist_sublist_unlock(mls); 9622 9623 if (full == B_TRUE) 9624 break; 9625 } 9626 9627 /* No buffers selected for writing? */ 9628 if (pio == NULL) { 9629 ASSERT0(write_lsize); 9630 ASSERT(!HDR_HAS_L1HDR(head)); 9631 kmem_cache_free(hdr_l2only_cache, head); 9632 9633 /* 9634 * Although we did not write any buffers l2ad_evict may 9635 * have advanced. 9636 */ 9637 if (dev->l2ad_evict != l2dhdr->dh_evict) 9638 l2arc_dev_hdr_update(dev); 9639 9640 return (0); 9641 } 9642 9643 if (!dev->l2ad_first) 9644 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict); 9645 9646 ASSERT3U(write_asize, <=, target_sz); 9647 ARCSTAT_BUMP(arcstat_l2_writes_sent); 9648 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize); 9649 9650 dev->l2ad_writing = B_TRUE; 9651 (void) zio_wait(pio); 9652 dev->l2ad_writing = B_FALSE; 9653 9654 /* 9655 * Update the device header after the zio completes as 9656 * l2arc_write_done() may have updated the memory holding the log block 9657 * pointers in the device header. 9658 */ 9659 l2arc_dev_hdr_update(dev); 9660 9661 return (write_asize); 9662 } 9663 9664 static boolean_t 9665 l2arc_hdr_limit_reached(void) 9666 { 9667 int64_t s = aggsum_upper_bound(&arc_sums.arcstat_l2_hdr_size); 9668 9669 return (arc_reclaim_needed() || (s > arc_meta_limit * 3 / 4) || 9670 (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100)); 9671 } 9672 9673 /* 9674 * This thread feeds the L2ARC at regular intervals. This is the beating 9675 * heart of the L2ARC. 9676 */ 9677 /* ARGSUSED */ 9678 static void 9679 l2arc_feed_thread(void *unused) 9680 { 9681 callb_cpr_t cpr; 9682 l2arc_dev_t *dev; 9683 spa_t *spa; 9684 uint64_t size, wrote; 9685 clock_t begin, next = ddi_get_lbolt(); 9686 fstrans_cookie_t cookie; 9687 9688 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 9689 9690 mutex_enter(&l2arc_feed_thr_lock); 9691 9692 cookie = spl_fstrans_mark(); 9693 while (l2arc_thread_exit == 0) { 9694 CALLB_CPR_SAFE_BEGIN(&cpr); 9695 (void) cv_timedwait_idle(&l2arc_feed_thr_cv, 9696 &l2arc_feed_thr_lock, next); 9697 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 9698 next = ddi_get_lbolt() + hz; 9699 9700 /* 9701 * Quick check for L2ARC devices. 9702 */ 9703 mutex_enter(&l2arc_dev_mtx); 9704 if (l2arc_ndev == 0) { 9705 mutex_exit(&l2arc_dev_mtx); 9706 continue; 9707 } 9708 mutex_exit(&l2arc_dev_mtx); 9709 begin = ddi_get_lbolt(); 9710 9711 /* 9712 * This selects the next l2arc device to write to, and in 9713 * doing so the next spa to feed from: dev->l2ad_spa. This 9714 * will return NULL if there are now no l2arc devices or if 9715 * they are all faulted. 9716 * 9717 * If a device is returned, its spa's config lock is also 9718 * held to prevent device removal. l2arc_dev_get_next() 9719 * will grab and release l2arc_dev_mtx. 9720 */ 9721 if ((dev = l2arc_dev_get_next()) == NULL) 9722 continue; 9723 9724 spa = dev->l2ad_spa; 9725 ASSERT3P(spa, !=, NULL); 9726 9727 /* 9728 * If the pool is read-only then force the feed thread to 9729 * sleep a little longer. 9730 */ 9731 if (!spa_writeable(spa)) { 9732 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 9733 spa_config_exit(spa, SCL_L2ARC, dev); 9734 continue; 9735 } 9736 9737 /* 9738 * Avoid contributing to memory pressure. 9739 */ 9740 if (l2arc_hdr_limit_reached()) { 9741 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 9742 spa_config_exit(spa, SCL_L2ARC, dev); 9743 continue; 9744 } 9745 9746 ARCSTAT_BUMP(arcstat_l2_feeds); 9747 9748 size = l2arc_write_size(dev); 9749 9750 /* 9751 * Evict L2ARC buffers that will be overwritten. 9752 */ 9753 l2arc_evict(dev, size, B_FALSE); 9754 9755 /* 9756 * Write ARC buffers. 9757 */ 9758 wrote = l2arc_write_buffers(spa, dev, size); 9759 9760 /* 9761 * Calculate interval between writes. 9762 */ 9763 next = l2arc_write_interval(begin, size, wrote); 9764 spa_config_exit(spa, SCL_L2ARC, dev); 9765 } 9766 spl_fstrans_unmark(cookie); 9767 9768 l2arc_thread_exit = 0; 9769 cv_broadcast(&l2arc_feed_thr_cv); 9770 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 9771 thread_exit(); 9772 } 9773 9774 boolean_t 9775 l2arc_vdev_present(vdev_t *vd) 9776 { 9777 return (l2arc_vdev_get(vd) != NULL); 9778 } 9779 9780 /* 9781 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if 9782 * the vdev_t isn't an L2ARC device. 9783 */ 9784 l2arc_dev_t * 9785 l2arc_vdev_get(vdev_t *vd) 9786 { 9787 l2arc_dev_t *dev; 9788 9789 mutex_enter(&l2arc_dev_mtx); 9790 for (dev = list_head(l2arc_dev_list); dev != NULL; 9791 dev = list_next(l2arc_dev_list, dev)) { 9792 if (dev->l2ad_vdev == vd) 9793 break; 9794 } 9795 mutex_exit(&l2arc_dev_mtx); 9796 9797 return (dev); 9798 } 9799 9800 static void 9801 l2arc_rebuild_dev(l2arc_dev_t *dev, boolean_t reopen) 9802 { 9803 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9804 uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 9805 spa_t *spa = dev->l2ad_spa; 9806 9807 /* 9808 * The L2ARC has to hold at least the payload of one log block for 9809 * them to be restored (persistent L2ARC). The payload of a log block 9810 * depends on the amount of its log entries. We always write log blocks 9811 * with 1022 entries. How many of them are committed or restored depends 9812 * on the size of the L2ARC device. Thus the maximum payload of 9813 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device 9814 * is less than that, we reduce the amount of committed and restored 9815 * log entries per block so as to enable persistence. 9816 */ 9817 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) { 9818 dev->l2ad_log_entries = 0; 9819 } else { 9820 dev->l2ad_log_entries = MIN((dev->l2ad_end - 9821 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT, 9822 L2ARC_LOG_BLK_MAX_ENTRIES); 9823 } 9824 9825 /* 9826 * Read the device header, if an error is returned do not rebuild L2ARC. 9827 */ 9828 if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) { 9829 /* 9830 * If we are onlining a cache device (vdev_reopen) that was 9831 * still present (l2arc_vdev_present()) and rebuild is enabled, 9832 * we should evict all ARC buffers and pointers to log blocks 9833 * and reclaim their space before restoring its contents to 9834 * L2ARC. 9835 */ 9836 if (reopen) { 9837 if (!l2arc_rebuild_enabled) { 9838 return; 9839 } else { 9840 l2arc_evict(dev, 0, B_TRUE); 9841 /* start a new log block */ 9842 dev->l2ad_log_ent_idx = 0; 9843 dev->l2ad_log_blk_payload_asize = 0; 9844 dev->l2ad_log_blk_payload_start = 0; 9845 } 9846 } 9847 /* 9848 * Just mark the device as pending for a rebuild. We won't 9849 * be starting a rebuild in line here as it would block pool 9850 * import. Instead spa_load_impl will hand that off to an 9851 * async task which will call l2arc_spa_rebuild_start. 9852 */ 9853 dev->l2ad_rebuild = B_TRUE; 9854 } else if (spa_writeable(spa)) { 9855 /* 9856 * In this case TRIM the whole device if l2arc_trim_ahead > 0, 9857 * otherwise create a new header. We zero out the memory holding 9858 * the header to reset dh_start_lbps. If we TRIM the whole 9859 * device the new header will be written by 9860 * vdev_trim_l2arc_thread() at the end of the TRIM to update the 9861 * trim_state in the header too. When reading the header, if 9862 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0 9863 * we opt to TRIM the whole device again. 9864 */ 9865 if (l2arc_trim_ahead > 0) { 9866 dev->l2ad_trim_all = B_TRUE; 9867 } else { 9868 bzero(l2dhdr, l2dhdr_asize); 9869 l2arc_dev_hdr_update(dev); 9870 } 9871 } 9872 } 9873 9874 /* 9875 * Add a vdev for use by the L2ARC. By this point the spa has already 9876 * validated the vdev and opened it. 9877 */ 9878 void 9879 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 9880 { 9881 l2arc_dev_t *adddev; 9882 uint64_t l2dhdr_asize; 9883 9884 ASSERT(!l2arc_vdev_present(vd)); 9885 9886 /* 9887 * Create a new l2arc device entry. 9888 */ 9889 adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 9890 adddev->l2ad_spa = spa; 9891 adddev->l2ad_vdev = vd; 9892 /* leave extra size for an l2arc device header */ 9893 l2dhdr_asize = adddev->l2ad_dev_hdr_asize = 9894 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift); 9895 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize; 9896 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 9897 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end); 9898 adddev->l2ad_hand = adddev->l2ad_start; 9899 adddev->l2ad_evict = adddev->l2ad_start; 9900 adddev->l2ad_first = B_TRUE; 9901 adddev->l2ad_writing = B_FALSE; 9902 adddev->l2ad_trim_all = B_FALSE; 9903 list_link_init(&adddev->l2ad_node); 9904 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP); 9905 9906 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 9907 /* 9908 * This is a list of all ARC buffers that are still valid on the 9909 * device. 9910 */ 9911 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 9912 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 9913 9914 /* 9915 * This is a list of pointers to log blocks that are still present 9916 * on the device. 9917 */ 9918 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t), 9919 offsetof(l2arc_lb_ptr_buf_t, node)); 9920 9921 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 9922 zfs_refcount_create(&adddev->l2ad_alloc); 9923 zfs_refcount_create(&adddev->l2ad_lb_asize); 9924 zfs_refcount_create(&adddev->l2ad_lb_count); 9925 9926 /* 9927 * Decide if dev is eligible for L2ARC rebuild or whole device 9928 * trimming. This has to happen before the device is added in the 9929 * cache device list and l2arc_dev_mtx is released. Otherwise 9930 * l2arc_feed_thread() might already start writing on the 9931 * device. 9932 */ 9933 l2arc_rebuild_dev(adddev, B_FALSE); 9934 9935 /* 9936 * Add device to global list 9937 */ 9938 mutex_enter(&l2arc_dev_mtx); 9939 list_insert_head(l2arc_dev_list, adddev); 9940 atomic_inc_64(&l2arc_ndev); 9941 mutex_exit(&l2arc_dev_mtx); 9942 } 9943 9944 /* 9945 * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen() 9946 * in case of onlining a cache device. 9947 */ 9948 void 9949 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen) 9950 { 9951 l2arc_dev_t *dev = NULL; 9952 9953 dev = l2arc_vdev_get(vd); 9954 ASSERT3P(dev, !=, NULL); 9955 9956 /* 9957 * In contrast to l2arc_add_vdev() we do not have to worry about 9958 * l2arc_feed_thread() invalidating previous content when onlining a 9959 * cache device. The device parameters (l2ad*) are not cleared when 9960 * offlining the device and writing new buffers will not invalidate 9961 * all previous content. In worst case only buffers that have not had 9962 * their log block written to the device will be lost. 9963 * When onlining the cache device (ie offline->online without exporting 9964 * the pool in between) this happens: 9965 * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev() 9966 * | | 9967 * vdev_is_dead() = B_FALSE l2ad_rebuild = B_TRUE 9968 * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild 9969 * is set to B_TRUE we might write additional buffers to the device. 9970 */ 9971 l2arc_rebuild_dev(dev, reopen); 9972 } 9973 9974 /* 9975 * Remove a vdev from the L2ARC. 9976 */ 9977 void 9978 l2arc_remove_vdev(vdev_t *vd) 9979 { 9980 l2arc_dev_t *remdev = NULL; 9981 9982 /* 9983 * Find the device by vdev 9984 */ 9985 remdev = l2arc_vdev_get(vd); 9986 ASSERT3P(remdev, !=, NULL); 9987 9988 /* 9989 * Cancel any ongoing or scheduled rebuild. 9990 */ 9991 mutex_enter(&l2arc_rebuild_thr_lock); 9992 if (remdev->l2ad_rebuild_began == B_TRUE) { 9993 remdev->l2ad_rebuild_cancel = B_TRUE; 9994 while (remdev->l2ad_rebuild == B_TRUE) 9995 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock); 9996 } 9997 mutex_exit(&l2arc_rebuild_thr_lock); 9998 9999 /* 10000 * Remove device from global list 10001 */ 10002 mutex_enter(&l2arc_dev_mtx); 10003 list_remove(l2arc_dev_list, remdev); 10004 l2arc_dev_last = NULL; /* may have been invalidated */ 10005 atomic_dec_64(&l2arc_ndev); 10006 mutex_exit(&l2arc_dev_mtx); 10007 10008 /* 10009 * Clear all buflists and ARC references. L2ARC device flush. 10010 */ 10011 l2arc_evict(remdev, 0, B_TRUE); 10012 list_destroy(&remdev->l2ad_buflist); 10013 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list)); 10014 list_destroy(&remdev->l2ad_lbptr_list); 10015 mutex_destroy(&remdev->l2ad_mtx); 10016 zfs_refcount_destroy(&remdev->l2ad_alloc); 10017 zfs_refcount_destroy(&remdev->l2ad_lb_asize); 10018 zfs_refcount_destroy(&remdev->l2ad_lb_count); 10019 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize); 10020 vmem_free(remdev, sizeof (l2arc_dev_t)); 10021 } 10022 10023 void 10024 l2arc_init(void) 10025 { 10026 l2arc_thread_exit = 0; 10027 l2arc_ndev = 0; 10028 10029 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 10030 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 10031 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL); 10032 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL); 10033 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 10034 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 10035 10036 l2arc_dev_list = &L2ARC_dev_list; 10037 l2arc_free_on_write = &L2ARC_free_on_write; 10038 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 10039 offsetof(l2arc_dev_t, l2ad_node)); 10040 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 10041 offsetof(l2arc_data_free_t, l2df_list_node)); 10042 } 10043 10044 void 10045 l2arc_fini(void) 10046 { 10047 mutex_destroy(&l2arc_feed_thr_lock); 10048 cv_destroy(&l2arc_feed_thr_cv); 10049 mutex_destroy(&l2arc_rebuild_thr_lock); 10050 cv_destroy(&l2arc_rebuild_thr_cv); 10051 mutex_destroy(&l2arc_dev_mtx); 10052 mutex_destroy(&l2arc_free_on_write_mtx); 10053 10054 list_destroy(l2arc_dev_list); 10055 list_destroy(l2arc_free_on_write); 10056 } 10057 10058 void 10059 l2arc_start(void) 10060 { 10061 if (!(spa_mode_global & SPA_MODE_WRITE)) 10062 return; 10063 10064 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 10065 TS_RUN, defclsyspri); 10066 } 10067 10068 void 10069 l2arc_stop(void) 10070 { 10071 if (!(spa_mode_global & SPA_MODE_WRITE)) 10072 return; 10073 10074 mutex_enter(&l2arc_feed_thr_lock); 10075 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 10076 l2arc_thread_exit = 1; 10077 while (l2arc_thread_exit != 0) 10078 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 10079 mutex_exit(&l2arc_feed_thr_lock); 10080 } 10081 10082 /* 10083 * Punches out rebuild threads for the L2ARC devices in a spa. This should 10084 * be called after pool import from the spa async thread, since starting 10085 * these threads directly from spa_import() will make them part of the 10086 * "zpool import" context and delay process exit (and thus pool import). 10087 */ 10088 void 10089 l2arc_spa_rebuild_start(spa_t *spa) 10090 { 10091 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 10092 10093 /* 10094 * Locate the spa's l2arc devices and kick off rebuild threads. 10095 */ 10096 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 10097 l2arc_dev_t *dev = 10098 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]); 10099 if (dev == NULL) { 10100 /* Don't attempt a rebuild if the vdev is UNAVAIL */ 10101 continue; 10102 } 10103 mutex_enter(&l2arc_rebuild_thr_lock); 10104 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) { 10105 dev->l2ad_rebuild_began = B_TRUE; 10106 (void) thread_create(NULL, 0, l2arc_dev_rebuild_thread, 10107 dev, 0, &p0, TS_RUN, minclsyspri); 10108 } 10109 mutex_exit(&l2arc_rebuild_thr_lock); 10110 } 10111 } 10112 10113 /* 10114 * Main entry point for L2ARC rebuilding. 10115 */ 10116 static void 10117 l2arc_dev_rebuild_thread(void *arg) 10118 { 10119 l2arc_dev_t *dev = arg; 10120 10121 VERIFY(!dev->l2ad_rebuild_cancel); 10122 VERIFY(dev->l2ad_rebuild); 10123 (void) l2arc_rebuild(dev); 10124 mutex_enter(&l2arc_rebuild_thr_lock); 10125 dev->l2ad_rebuild_began = B_FALSE; 10126 dev->l2ad_rebuild = B_FALSE; 10127 mutex_exit(&l2arc_rebuild_thr_lock); 10128 10129 thread_exit(); 10130 } 10131 10132 /* 10133 * This function implements the actual L2ARC metadata rebuild. It: 10134 * starts reading the log block chain and restores each block's contents 10135 * to memory (reconstructing arc_buf_hdr_t's). 10136 * 10137 * Operation stops under any of the following conditions: 10138 * 10139 * 1) We reach the end of the log block chain. 10140 * 2) We encounter *any* error condition (cksum errors, io errors) 10141 */ 10142 static int 10143 l2arc_rebuild(l2arc_dev_t *dev) 10144 { 10145 vdev_t *vd = dev->l2ad_vdev; 10146 spa_t *spa = vd->vdev_spa; 10147 int err = 0; 10148 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10149 l2arc_log_blk_phys_t *this_lb, *next_lb; 10150 zio_t *this_io = NULL, *next_io = NULL; 10151 l2arc_log_blkptr_t lbps[2]; 10152 l2arc_lb_ptr_buf_t *lb_ptr_buf; 10153 boolean_t lock_held; 10154 10155 this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP); 10156 next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP); 10157 10158 /* 10159 * We prevent device removal while issuing reads to the device, 10160 * then during the rebuilding phases we drop this lock again so 10161 * that a spa_unload or device remove can be initiated - this is 10162 * safe, because the spa will signal us to stop before removing 10163 * our device and wait for us to stop. 10164 */ 10165 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER); 10166 lock_held = B_TRUE; 10167 10168 /* 10169 * Retrieve the persistent L2ARC device state. 10170 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10171 */ 10172 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start); 10173 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr + 10174 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop), 10175 dev->l2ad_start); 10176 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 10177 10178 vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time; 10179 vd->vdev_trim_state = l2dhdr->dh_trim_state; 10180 10181 /* 10182 * In case the zfs module parameter l2arc_rebuild_enabled is false 10183 * we do not start the rebuild process. 10184 */ 10185 if (!l2arc_rebuild_enabled) 10186 goto out; 10187 10188 /* Prepare the rebuild process */ 10189 bcopy(l2dhdr->dh_start_lbps, lbps, sizeof (lbps)); 10190 10191 /* Start the rebuild process */ 10192 for (;;) { 10193 if (!l2arc_log_blkptr_valid(dev, &lbps[0])) 10194 break; 10195 10196 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1], 10197 this_lb, next_lb, this_io, &next_io)) != 0) 10198 goto out; 10199 10200 /* 10201 * Our memory pressure valve. If the system is running low 10202 * on memory, rather than swamping memory with new ARC buf 10203 * hdrs, we opt not to rebuild the L2ARC. At this point, 10204 * however, we have already set up our L2ARC dev to chain in 10205 * new metadata log blocks, so the user may choose to offline/ 10206 * online the L2ARC dev at a later time (or re-import the pool) 10207 * to reconstruct it (when there's less memory pressure). 10208 */ 10209 if (l2arc_hdr_limit_reached()) { 10210 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem); 10211 cmn_err(CE_NOTE, "System running low on memory, " 10212 "aborting L2ARC rebuild."); 10213 err = SET_ERROR(ENOMEM); 10214 goto out; 10215 } 10216 10217 spa_config_exit(spa, SCL_L2ARC, vd); 10218 lock_held = B_FALSE; 10219 10220 /* 10221 * Now that we know that the next_lb checks out alright, we 10222 * can start reconstruction from this log block. 10223 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10224 */ 10225 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 10226 l2arc_log_blk_restore(dev, this_lb, asize); 10227 10228 /* 10229 * log block restored, include its pointer in the list of 10230 * pointers to log blocks present in the L2ARC device. 10231 */ 10232 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 10233 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), 10234 KM_SLEEP); 10235 bcopy(&lbps[0], lb_ptr_buf->lb_ptr, 10236 sizeof (l2arc_log_blkptr_t)); 10237 mutex_enter(&dev->l2ad_mtx); 10238 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf); 10239 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 10240 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 10241 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 10242 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 10243 mutex_exit(&dev->l2ad_mtx); 10244 vdev_space_update(vd, asize, 0, 0); 10245 10246 /* 10247 * Protection against loops of log blocks: 10248 * 10249 * l2ad_hand l2ad_evict 10250 * V V 10251 * l2ad_start |=======================================| l2ad_end 10252 * -----|||----|||---|||----||| 10253 * (3) (2) (1) (0) 10254 * ---|||---|||----|||---||| 10255 * (7) (6) (5) (4) 10256 * 10257 * In this situation the pointer of log block (4) passes 10258 * l2arc_log_blkptr_valid() but the log block should not be 10259 * restored as it is overwritten by the payload of log block 10260 * (0). Only log blocks (0)-(3) should be restored. We check 10261 * whether l2ad_evict lies in between the payload starting 10262 * offset of the next log block (lbps[1].lbp_payload_start) 10263 * and the payload starting offset of the present log block 10264 * (lbps[0].lbp_payload_start). If true and this isn't the 10265 * first pass, we are looping from the beginning and we should 10266 * stop. 10267 */ 10268 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 10269 lbps[0].lbp_payload_start, dev->l2ad_evict) && 10270 !dev->l2ad_first) 10271 goto out; 10272 10273 cond_resched(); 10274 for (;;) { 10275 mutex_enter(&l2arc_rebuild_thr_lock); 10276 if (dev->l2ad_rebuild_cancel) { 10277 dev->l2ad_rebuild = B_FALSE; 10278 cv_signal(&l2arc_rebuild_thr_cv); 10279 mutex_exit(&l2arc_rebuild_thr_lock); 10280 err = SET_ERROR(ECANCELED); 10281 goto out; 10282 } 10283 mutex_exit(&l2arc_rebuild_thr_lock); 10284 if (spa_config_tryenter(spa, SCL_L2ARC, vd, 10285 RW_READER)) { 10286 lock_held = B_TRUE; 10287 break; 10288 } 10289 /* 10290 * L2ARC config lock held by somebody in writer, 10291 * possibly due to them trying to remove us. They'll 10292 * likely to want us to shut down, so after a little 10293 * delay, we check l2ad_rebuild_cancel and retry 10294 * the lock again. 10295 */ 10296 delay(1); 10297 } 10298 10299 /* 10300 * Continue with the next log block. 10301 */ 10302 lbps[0] = lbps[1]; 10303 lbps[1] = this_lb->lb_prev_lbp; 10304 PTR_SWAP(this_lb, next_lb); 10305 this_io = next_io; 10306 next_io = NULL; 10307 } 10308 10309 if (this_io != NULL) 10310 l2arc_log_blk_fetch_abort(this_io); 10311 out: 10312 if (next_io != NULL) 10313 l2arc_log_blk_fetch_abort(next_io); 10314 vmem_free(this_lb, sizeof (*this_lb)); 10315 vmem_free(next_lb, sizeof (*next_lb)); 10316 10317 if (!l2arc_rebuild_enabled) { 10318 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10319 "disabled"); 10320 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) { 10321 ARCSTAT_BUMP(arcstat_l2_rebuild_success); 10322 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10323 "successful, restored %llu blocks", 10324 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10325 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) { 10326 /* 10327 * No error but also nothing restored, meaning the lbps array 10328 * in the device header points to invalid/non-present log 10329 * blocks. Reset the header. 10330 */ 10331 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10332 "no valid log blocks"); 10333 bzero(l2dhdr, dev->l2ad_dev_hdr_asize); 10334 l2arc_dev_hdr_update(dev); 10335 } else if (err == ECANCELED) { 10336 /* 10337 * In case the rebuild was canceled do not log to spa history 10338 * log as the pool may be in the process of being removed. 10339 */ 10340 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks", 10341 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10342 } else if (err != 0) { 10343 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10344 "aborted, restored %llu blocks", 10345 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10346 } 10347 10348 if (lock_held) 10349 spa_config_exit(spa, SCL_L2ARC, vd); 10350 10351 return (err); 10352 } 10353 10354 /* 10355 * Attempts to read the device header on the provided L2ARC device and writes 10356 * it to `hdr'. On success, this function returns 0, otherwise the appropriate 10357 * error code is returned. 10358 */ 10359 static int 10360 l2arc_dev_hdr_read(l2arc_dev_t *dev) 10361 { 10362 int err; 10363 uint64_t guid; 10364 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10365 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10366 abd_t *abd; 10367 10368 guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10369 10370 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10371 10372 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev, 10373 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, 10374 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 10375 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 10376 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 10377 ZIO_FLAG_SPECULATIVE, B_FALSE)); 10378 10379 abd_free(abd); 10380 10381 if (err != 0) { 10382 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors); 10383 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, " 10384 "vdev guid: %llu", err, 10385 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10386 return (err); 10387 } 10388 10389 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 10390 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr)); 10391 10392 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC || 10393 l2dhdr->dh_spa_guid != guid || 10394 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid || 10395 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION || 10396 l2dhdr->dh_log_entries != dev->l2ad_log_entries || 10397 l2dhdr->dh_end != dev->l2ad_end || 10398 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end, 10399 l2dhdr->dh_evict) || 10400 (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE && 10401 l2arc_trim_ahead > 0)) { 10402 /* 10403 * Attempt to rebuild a device containing no actual dev hdr 10404 * or containing a header from some other pool or from another 10405 * version of persistent L2ARC. 10406 */ 10407 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported); 10408 return (SET_ERROR(ENOTSUP)); 10409 } 10410 10411 return (0); 10412 } 10413 10414 /* 10415 * Reads L2ARC log blocks from storage and validates their contents. 10416 * 10417 * This function implements a simple fetcher to make sure that while 10418 * we're processing one buffer the L2ARC is already fetching the next 10419 * one in the chain. 10420 * 10421 * The arguments this_lp and next_lp point to the current and next log block 10422 * address in the block chain. Similarly, this_lb and next_lb hold the 10423 * l2arc_log_blk_phys_t's of the current and next L2ARC blk. 10424 * 10425 * The `this_io' and `next_io' arguments are used for block fetching. 10426 * When issuing the first blk IO during rebuild, you should pass NULL for 10427 * `this_io'. This function will then issue a sync IO to read the block and 10428 * also issue an async IO to fetch the next block in the block chain. The 10429 * fetched IO is returned in `next_io'. On subsequent calls to this 10430 * function, pass the value returned in `next_io' from the previous call 10431 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO. 10432 * Prior to the call, you should initialize your `next_io' pointer to be 10433 * NULL. If no fetch IO was issued, the pointer is left set at NULL. 10434 * 10435 * On success, this function returns 0, otherwise it returns an appropriate 10436 * error code. On error the fetching IO is aborted and cleared before 10437 * returning from this function. Therefore, if we return `success', the 10438 * caller can assume that we have taken care of cleanup of fetch IOs. 10439 */ 10440 static int 10441 l2arc_log_blk_read(l2arc_dev_t *dev, 10442 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp, 10443 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 10444 zio_t *this_io, zio_t **next_io) 10445 { 10446 int err = 0; 10447 zio_cksum_t cksum; 10448 abd_t *abd = NULL; 10449 uint64_t asize; 10450 10451 ASSERT(this_lbp != NULL && next_lbp != NULL); 10452 ASSERT(this_lb != NULL && next_lb != NULL); 10453 ASSERT(next_io != NULL && *next_io == NULL); 10454 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp)); 10455 10456 /* 10457 * Check to see if we have issued the IO for this log block in a 10458 * previous run. If not, this is the first call, so issue it now. 10459 */ 10460 if (this_io == NULL) { 10461 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp, 10462 this_lb); 10463 } 10464 10465 /* 10466 * Peek to see if we can start issuing the next IO immediately. 10467 */ 10468 if (l2arc_log_blkptr_valid(dev, next_lbp)) { 10469 /* 10470 * Start issuing IO for the next log block early - this 10471 * should help keep the L2ARC device busy while we 10472 * decompress and restore this log block. 10473 */ 10474 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp, 10475 next_lb); 10476 } 10477 10478 /* Wait for the IO to read this log block to complete */ 10479 if ((err = zio_wait(this_io)) != 0) { 10480 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors); 10481 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, " 10482 "offset: %llu, vdev guid: %llu", err, 10483 (u_longlong_t)this_lbp->lbp_daddr, 10484 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10485 goto cleanup; 10486 } 10487 10488 /* 10489 * Make sure the buffer checks out. 10490 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10491 */ 10492 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop); 10493 fletcher_4_native(this_lb, asize, NULL, &cksum); 10494 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) { 10495 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors); 10496 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, " 10497 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu", 10498 (u_longlong_t)this_lbp->lbp_daddr, 10499 (u_longlong_t)dev->l2ad_vdev->vdev_guid, 10500 (u_longlong_t)dev->l2ad_hand, 10501 (u_longlong_t)dev->l2ad_evict); 10502 err = SET_ERROR(ECKSUM); 10503 goto cleanup; 10504 } 10505 10506 /* Now we can take our time decoding this buffer */ 10507 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) { 10508 case ZIO_COMPRESS_OFF: 10509 break; 10510 case ZIO_COMPRESS_LZ4: 10511 abd = abd_alloc_for_io(asize, B_TRUE); 10512 abd_copy_from_buf_off(abd, this_lb, 0, asize); 10513 if ((err = zio_decompress_data( 10514 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop), 10515 abd, this_lb, asize, sizeof (*this_lb), NULL)) != 0) { 10516 err = SET_ERROR(EINVAL); 10517 goto cleanup; 10518 } 10519 break; 10520 default: 10521 err = SET_ERROR(EINVAL); 10522 goto cleanup; 10523 } 10524 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 10525 byteswap_uint64_array(this_lb, sizeof (*this_lb)); 10526 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) { 10527 err = SET_ERROR(EINVAL); 10528 goto cleanup; 10529 } 10530 cleanup: 10531 /* Abort an in-flight fetch I/O in case of error */ 10532 if (err != 0 && *next_io != NULL) { 10533 l2arc_log_blk_fetch_abort(*next_io); 10534 *next_io = NULL; 10535 } 10536 if (abd != NULL) 10537 abd_free(abd); 10538 return (err); 10539 } 10540 10541 /* 10542 * Restores the payload of a log block to ARC. This creates empty ARC hdr 10543 * entries which only contain an l2arc hdr, essentially restoring the 10544 * buffers to their L2ARC evicted state. This function also updates space 10545 * usage on the L2ARC vdev to make sure it tracks restored buffers. 10546 */ 10547 static void 10548 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb, 10549 uint64_t lb_asize) 10550 { 10551 uint64_t size = 0, asize = 0; 10552 uint64_t log_entries = dev->l2ad_log_entries; 10553 10554 /* 10555 * Usually arc_adapt() is called only for data, not headers, but 10556 * since we may allocate significant amount of memory here, let ARC 10557 * grow its arc_c. 10558 */ 10559 arc_adapt(log_entries * HDR_L2ONLY_SIZE, arc_l2c_only); 10560 10561 for (int i = log_entries - 1; i >= 0; i--) { 10562 /* 10563 * Restore goes in the reverse temporal direction to preserve 10564 * correct temporal ordering of buffers in the l2ad_buflist. 10565 * l2arc_hdr_restore also does a list_insert_tail instead of 10566 * list_insert_head on the l2ad_buflist: 10567 * 10568 * LIST l2ad_buflist LIST 10569 * HEAD <------ (time) ------ TAIL 10570 * direction +-----+-----+-----+-----+-----+ direction 10571 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild 10572 * fill +-----+-----+-----+-----+-----+ 10573 * ^ ^ 10574 * | | 10575 * | | 10576 * l2arc_feed_thread l2arc_rebuild 10577 * will place new bufs here restores bufs here 10578 * 10579 * During l2arc_rebuild() the device is not used by 10580 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true. 10581 */ 10582 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop); 10583 asize += vdev_psize_to_asize(dev->l2ad_vdev, 10584 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop)); 10585 l2arc_hdr_restore(&lb->lb_entries[i], dev); 10586 } 10587 10588 /* 10589 * Record rebuild stats: 10590 * size Logical size of restored buffers in the L2ARC 10591 * asize Aligned size of restored buffers in the L2ARC 10592 */ 10593 ARCSTAT_INCR(arcstat_l2_rebuild_size, size); 10594 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize); 10595 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries); 10596 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize); 10597 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize); 10598 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks); 10599 } 10600 10601 /* 10602 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put 10603 * into a state indicating that it has been evicted to L2ARC. 10604 */ 10605 static void 10606 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev) 10607 { 10608 arc_buf_hdr_t *hdr, *exists; 10609 kmutex_t *hash_lock; 10610 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop); 10611 uint64_t asize; 10612 10613 /* 10614 * Do all the allocation before grabbing any locks, this lets us 10615 * sleep if memory is full and we don't have to deal with failed 10616 * allocations. 10617 */ 10618 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type, 10619 dev, le->le_dva, le->le_daddr, 10620 L2BLK_GET_PSIZE((le)->le_prop), le->le_birth, 10621 L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel, 10622 L2BLK_GET_PROTECTED((le)->le_prop), 10623 L2BLK_GET_PREFETCH((le)->le_prop), 10624 L2BLK_GET_STATE((le)->le_prop)); 10625 asize = vdev_psize_to_asize(dev->l2ad_vdev, 10626 L2BLK_GET_PSIZE((le)->le_prop)); 10627 10628 /* 10629 * vdev_space_update() has to be called before arc_hdr_destroy() to 10630 * avoid underflow since the latter also calls vdev_space_update(). 10631 */ 10632 l2arc_hdr_arcstats_increment(hdr); 10633 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10634 10635 mutex_enter(&dev->l2ad_mtx); 10636 list_insert_tail(&dev->l2ad_buflist, hdr); 10637 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); 10638 mutex_exit(&dev->l2ad_mtx); 10639 10640 exists = buf_hash_insert(hdr, &hash_lock); 10641 if (exists) { 10642 /* Buffer was already cached, no need to restore it. */ 10643 arc_hdr_destroy(hdr); 10644 /* 10645 * If the buffer is already cached, check whether it has 10646 * L2ARC metadata. If not, enter them and update the flag. 10647 * This is important is case of onlining a cache device, since 10648 * we previously evicted all L2ARC metadata from ARC. 10649 */ 10650 if (!HDR_HAS_L2HDR(exists)) { 10651 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR); 10652 exists->b_l2hdr.b_dev = dev; 10653 exists->b_l2hdr.b_daddr = le->le_daddr; 10654 exists->b_l2hdr.b_arcs_state = 10655 L2BLK_GET_STATE((le)->le_prop); 10656 mutex_enter(&dev->l2ad_mtx); 10657 list_insert_tail(&dev->l2ad_buflist, exists); 10658 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 10659 arc_hdr_size(exists), exists); 10660 mutex_exit(&dev->l2ad_mtx); 10661 l2arc_hdr_arcstats_increment(exists); 10662 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10663 } 10664 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached); 10665 } 10666 10667 mutex_exit(hash_lock); 10668 } 10669 10670 /* 10671 * Starts an asynchronous read IO to read a log block. This is used in log 10672 * block reconstruction to start reading the next block before we are done 10673 * decoding and reconstructing the current block, to keep the l2arc device 10674 * nice and hot with read IO to process. 10675 * The returned zio will contain a newly allocated memory buffers for the IO 10676 * data which should then be freed by the caller once the zio is no longer 10677 * needed (i.e. due to it having completed). If you wish to abort this 10678 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes 10679 * care of disposing of the allocated buffers correctly. 10680 */ 10681 static zio_t * 10682 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp, 10683 l2arc_log_blk_phys_t *lb) 10684 { 10685 uint32_t asize; 10686 zio_t *pio; 10687 l2arc_read_callback_t *cb; 10688 10689 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10690 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10691 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t)); 10692 10693 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP); 10694 cb->l2rcb_abd = abd_get_from_buf(lb, asize); 10695 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb, 10696 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | 10697 ZIO_FLAG_DONT_RETRY); 10698 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize, 10699 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10700 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 10701 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE)); 10702 10703 return (pio); 10704 } 10705 10706 /* 10707 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data 10708 * buffers allocated for it. 10709 */ 10710 static void 10711 l2arc_log_blk_fetch_abort(zio_t *zio) 10712 { 10713 (void) zio_wait(zio); 10714 } 10715 10716 /* 10717 * Creates a zio to update the device header on an l2arc device. 10718 */ 10719 void 10720 l2arc_dev_hdr_update(l2arc_dev_t *dev) 10721 { 10722 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10723 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10724 abd_t *abd; 10725 int err; 10726 10727 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER)); 10728 10729 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC; 10730 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION; 10731 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10732 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid; 10733 l2dhdr->dh_log_entries = dev->l2ad_log_entries; 10734 l2dhdr->dh_evict = dev->l2ad_evict; 10735 l2dhdr->dh_start = dev->l2ad_start; 10736 l2dhdr->dh_end = dev->l2ad_end; 10737 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize); 10738 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count); 10739 l2dhdr->dh_flags = 0; 10740 l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time; 10741 l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state; 10742 if (dev->l2ad_first) 10743 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST; 10744 10745 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10746 10747 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev, 10748 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL, 10749 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE)); 10750 10751 abd_free(abd); 10752 10753 if (err != 0) { 10754 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, " 10755 "vdev guid: %llu", err, 10756 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10757 } 10758 } 10759 10760 /* 10761 * Commits a log block to the L2ARC device. This routine is invoked from 10762 * l2arc_write_buffers when the log block fills up. 10763 * This function allocates some memory to temporarily hold the serialized 10764 * buffer to be written. This is then released in l2arc_write_done. 10765 */ 10766 static void 10767 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb) 10768 { 10769 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10770 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10771 uint64_t psize, asize; 10772 zio_t *wzio; 10773 l2arc_lb_abd_buf_t *abd_buf; 10774 uint8_t *tmpbuf; 10775 l2arc_lb_ptr_buf_t *lb_ptr_buf; 10776 10777 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries); 10778 10779 tmpbuf = zio_buf_alloc(sizeof (*lb)); 10780 abd_buf = zio_buf_alloc(sizeof (*abd_buf)); 10781 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb)); 10782 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 10783 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP); 10784 10785 /* link the buffer into the block chain */ 10786 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1]; 10787 lb->lb_magic = L2ARC_LOG_BLK_MAGIC; 10788 10789 /* 10790 * l2arc_log_blk_commit() may be called multiple times during a single 10791 * l2arc_write_buffers() call. Save the allocated abd buffers in a list 10792 * so we can free them in l2arc_write_done() later on. 10793 */ 10794 list_insert_tail(&cb->l2wcb_abd_list, abd_buf); 10795 10796 /* try to compress the buffer */ 10797 psize = zio_compress_data(ZIO_COMPRESS_LZ4, 10798 abd_buf->abd, tmpbuf, sizeof (*lb), 0); 10799 10800 /* a log block is never entirely zero */ 10801 ASSERT(psize != 0); 10802 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 10803 ASSERT(asize <= sizeof (*lb)); 10804 10805 /* 10806 * Update the start log block pointer in the device header to point 10807 * to the log block we're about to write. 10808 */ 10809 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0]; 10810 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand; 10811 l2dhdr->dh_start_lbps[0].lbp_payload_asize = 10812 dev->l2ad_log_blk_payload_asize; 10813 l2dhdr->dh_start_lbps[0].lbp_payload_start = 10814 dev->l2ad_log_blk_payload_start; 10815 L2BLK_SET_LSIZE( 10816 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb)); 10817 L2BLK_SET_PSIZE( 10818 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize); 10819 L2BLK_SET_CHECKSUM( 10820 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10821 ZIO_CHECKSUM_FLETCHER_4); 10822 if (asize < sizeof (*lb)) { 10823 /* compression succeeded */ 10824 bzero(tmpbuf + psize, asize - psize); 10825 L2BLK_SET_COMPRESS( 10826 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10827 ZIO_COMPRESS_LZ4); 10828 } else { 10829 /* compression failed */ 10830 bcopy(lb, tmpbuf, sizeof (*lb)); 10831 L2BLK_SET_COMPRESS( 10832 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10833 ZIO_COMPRESS_OFF); 10834 } 10835 10836 /* checksum what we're about to write */ 10837 fletcher_4_native(tmpbuf, asize, NULL, 10838 &l2dhdr->dh_start_lbps[0].lbp_cksum); 10839 10840 abd_free(abd_buf->abd); 10841 10842 /* perform the write itself */ 10843 abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb)); 10844 abd_take_ownership_of_buf(abd_buf->abd, B_TRUE); 10845 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand, 10846 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10847 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE); 10848 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio); 10849 (void) zio_nowait(wzio); 10850 10851 dev->l2ad_hand += asize; 10852 /* 10853 * Include the committed log block's pointer in the list of pointers 10854 * to log blocks present in the L2ARC device. 10855 */ 10856 bcopy(&l2dhdr->dh_start_lbps[0], lb_ptr_buf->lb_ptr, 10857 sizeof (l2arc_log_blkptr_t)); 10858 mutex_enter(&dev->l2ad_mtx); 10859 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf); 10860 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 10861 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 10862 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 10863 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 10864 mutex_exit(&dev->l2ad_mtx); 10865 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10866 10867 /* bump the kstats */ 10868 ARCSTAT_INCR(arcstat_l2_write_bytes, asize); 10869 ARCSTAT_BUMP(arcstat_l2_log_blk_writes); 10870 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize); 10871 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, 10872 dev->l2ad_log_blk_payload_asize / asize); 10873 10874 /* start a new log block */ 10875 dev->l2ad_log_ent_idx = 0; 10876 dev->l2ad_log_blk_payload_asize = 0; 10877 dev->l2ad_log_blk_payload_start = 0; 10878 } 10879 10880 /* 10881 * Validates an L2ARC log block address to make sure that it can be read 10882 * from the provided L2ARC device. 10883 */ 10884 boolean_t 10885 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp) 10886 { 10887 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10888 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10889 uint64_t end = lbp->lbp_daddr + asize - 1; 10890 uint64_t start = lbp->lbp_payload_start; 10891 boolean_t evicted = B_FALSE; 10892 10893 /* 10894 * A log block is valid if all of the following conditions are true: 10895 * - it fits entirely (including its payload) between l2ad_start and 10896 * l2ad_end 10897 * - it has a valid size 10898 * - neither the log block itself nor part of its payload was evicted 10899 * by l2arc_evict(): 10900 * 10901 * l2ad_hand l2ad_evict 10902 * | | lbp_daddr 10903 * | start | | end 10904 * | | | | | 10905 * V V V V V 10906 * l2ad_start ============================================ l2ad_end 10907 * --------------------------|||| 10908 * ^ ^ 10909 * | log block 10910 * payload 10911 */ 10912 10913 evicted = 10914 l2arc_range_check_overlap(start, end, dev->l2ad_hand) || 10915 l2arc_range_check_overlap(start, end, dev->l2ad_evict) || 10916 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) || 10917 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end); 10918 10919 return (start >= dev->l2ad_start && end <= dev->l2ad_end && 10920 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) && 10921 (!evicted || dev->l2ad_first)); 10922 } 10923 10924 /* 10925 * Inserts ARC buffer header `hdr' into the current L2ARC log block on 10926 * the device. The buffer being inserted must be present in L2ARC. 10927 * Returns B_TRUE if the L2ARC log block is full and needs to be committed 10928 * to L2ARC, or B_FALSE if it still has room for more ARC buffers. 10929 */ 10930 static boolean_t 10931 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr) 10932 { 10933 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10934 l2arc_log_ent_phys_t *le; 10935 10936 if (dev->l2ad_log_entries == 0) 10937 return (B_FALSE); 10938 10939 int index = dev->l2ad_log_ent_idx++; 10940 10941 ASSERT3S(index, <, dev->l2ad_log_entries); 10942 ASSERT(HDR_HAS_L2HDR(hdr)); 10943 10944 le = &lb->lb_entries[index]; 10945 bzero(le, sizeof (*le)); 10946 le->le_dva = hdr->b_dva; 10947 le->le_birth = hdr->b_birth; 10948 le->le_daddr = hdr->b_l2hdr.b_daddr; 10949 if (index == 0) 10950 dev->l2ad_log_blk_payload_start = le->le_daddr; 10951 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr)); 10952 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr)); 10953 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr)); 10954 le->le_complevel = hdr->b_complevel; 10955 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type); 10956 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr))); 10957 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr))); 10958 L2BLK_SET_STATE((le)->le_prop, hdr->b_l1hdr.b_state->arcs_state); 10959 10960 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev, 10961 HDR_GET_PSIZE(hdr)); 10962 10963 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries); 10964 } 10965 10966 /* 10967 * Checks whether a given L2ARC device address sits in a time-sequential 10968 * range. The trick here is that the L2ARC is a rotary buffer, so we can't 10969 * just do a range comparison, we need to handle the situation in which the 10970 * range wraps around the end of the L2ARC device. Arguments: 10971 * bottom -- Lower end of the range to check (written to earlier). 10972 * top -- Upper end of the range to check (written to later). 10973 * check -- The address for which we want to determine if it sits in 10974 * between the top and bottom. 10975 * 10976 * The 3-way conditional below represents the following cases: 10977 * 10978 * bottom < top : Sequentially ordered case: 10979 * <check>--------+-------------------+ 10980 * | (overlap here?) | 10981 * L2ARC dev V V 10982 * |---------------<bottom>============<top>--------------| 10983 * 10984 * bottom > top: Looped-around case: 10985 * <check>--------+------------------+ 10986 * | (overlap here?) | 10987 * L2ARC dev V V 10988 * |===============<top>---------------<bottom>===========| 10989 * ^ ^ 10990 * | (or here?) | 10991 * +---------------+---------<check> 10992 * 10993 * top == bottom : Just a single address comparison. 10994 */ 10995 boolean_t 10996 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check) 10997 { 10998 if (bottom < top) 10999 return (bottom <= check && check <= top); 11000 else if (bottom > top) 11001 return (check <= top || bottom <= check); 11002 else 11003 return (check == top); 11004 } 11005 11006 EXPORT_SYMBOL(arc_buf_size); 11007 EXPORT_SYMBOL(arc_write); 11008 EXPORT_SYMBOL(arc_read); 11009 EXPORT_SYMBOL(arc_buf_info); 11010 EXPORT_SYMBOL(arc_getbuf_func); 11011 EXPORT_SYMBOL(arc_add_prune_callback); 11012 EXPORT_SYMBOL(arc_remove_prune_callback); 11013 11014 /* BEGIN CSTYLED */ 11015 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_min, 11016 param_get_long, ZMOD_RW, "Min arc size"); 11017 11018 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_max, 11019 param_get_long, ZMOD_RW, "Max arc size"); 11020 11021 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit, param_set_arc_long, 11022 param_get_long, ZMOD_RW, "Metadata limit for arc size"); 11023 11024 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit_percent, 11025 param_set_arc_long, param_get_long, ZMOD_RW, 11026 "Percent of arc size for arc meta limit"); 11027 11028 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_min, param_set_arc_long, 11029 param_get_long, ZMOD_RW, "Min arc metadata"); 11030 11031 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_prune, INT, ZMOD_RW, 11032 "Meta objects to scan for prune"); 11033 11034 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_adjust_restarts, INT, ZMOD_RW, 11035 "Limit number of restarts in arc_evict_meta"); 11036 11037 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_strategy, INT, ZMOD_RW, 11038 "Meta reclaim strategy"); 11039 11040 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int, 11041 param_get_int, ZMOD_RW, "Seconds before growing arc size"); 11042 11043 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, p_dampener_disable, INT, ZMOD_RW, 11044 "Disable arc_p adapt dampener"); 11045 11046 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int, 11047 param_get_int, ZMOD_RW, "log2(fraction of arc to reclaim)"); 11048 11049 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW, 11050 "Percent of pagecache to reclaim arc to"); 11051 11052 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, p_min_shift, param_set_arc_int, 11053 param_get_int, ZMOD_RW, "arc_c shift to calc min/max arc_p"); 11054 11055 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, INT, ZMOD_RD, 11056 "Target average block size"); 11057 11058 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW, 11059 "Disable compressed arc buffers"); 11060 11061 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int, 11062 param_get_int, ZMOD_RW, "Min life of prefetch block in ms"); 11063 11064 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms, 11065 param_set_arc_int, param_get_int, ZMOD_RW, 11066 "Min life of prescient prefetched block in ms"); 11067 11068 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, ULONG, ZMOD_RW, 11069 "Max write bytes per interval"); 11070 11071 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, ULONG, ZMOD_RW, 11072 "Extra write bytes during device warmup"); 11073 11074 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, ULONG, ZMOD_RW, 11075 "Number of max device writes to precache"); 11076 11077 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, ULONG, ZMOD_RW, 11078 "Compressed l2arc_headroom multiplier"); 11079 11080 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, ULONG, ZMOD_RW, 11081 "TRIM ahead L2ARC write size multiplier"); 11082 11083 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, ULONG, ZMOD_RW, 11084 "Seconds between L2ARC writing"); 11085 11086 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, ULONG, ZMOD_RW, 11087 "Min feed interval in milliseconds"); 11088 11089 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW, 11090 "Skip caching prefetched buffers"); 11091 11092 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW, 11093 "Turbo L2ARC warmup"); 11094 11095 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW, 11096 "No reads during writes"); 11097 11098 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, INT, ZMOD_RW, 11099 "Percent of ARC size allowed for L2ARC-only headers"); 11100 11101 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW, 11102 "Rebuild the L2ARC when importing a pool"); 11103 11104 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, ULONG, ZMOD_RW, 11105 "Min size in bytes to write rebuild log blocks in L2ARC"); 11106 11107 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW, 11108 "Cache only MFU data from ARC into L2ARC"); 11109 11110 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, exclude_special, INT, ZMOD_RW, 11111 "If set to 1 exclude dbufs on special vdevs from being cached to " 11112 "L2ARC."); 11113 11114 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int, 11115 param_get_int, ZMOD_RW, "System free memory I/O throttle in bytes"); 11116 11117 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_long, 11118 param_get_long, ZMOD_RW, "System free memory target size in bytes"); 11119 11120 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_long, 11121 param_get_long, ZMOD_RW, "Minimum bytes of dnodes in arc"); 11122 11123 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent, 11124 param_set_arc_long, param_get_long, ZMOD_RW, 11125 "Percent of ARC meta buffers for dnodes"); 11126 11127 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, ULONG, ZMOD_RW, 11128 "Percentage of excess dnodes to try to unpin"); 11129 11130 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, INT, ZMOD_RW, 11131 "When full, ARC allocation waits for eviction of this % of alloc size"); 11132 11133 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, INT, ZMOD_RW, 11134 "The number of headers to evict per sublist before moving to the next"); 11135 /* END CSTYLED */ 11136