1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2018, Joyent, Inc. 24 * Copyright (c) 2011, 2020, Delphix. All rights reserved. 25 * Copyright (c) 2014, Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 28 * Copyright (c) 2020, George Amanakis. All rights reserved. 29 * Copyright (c) 2019, Klara Inc. 30 * Copyright (c) 2019, Allan Jude 31 * Copyright (c) 2020, The FreeBSD Foundation [1] 32 * 33 * [1] Portions of this software were developed by Allan Jude 34 * under sponsorship from the FreeBSD Foundation. 35 */ 36 37 /* 38 * DVA-based Adjustable Replacement Cache 39 * 40 * While much of the theory of operation used here is 41 * based on the self-tuning, low overhead replacement cache 42 * presented by Megiddo and Modha at FAST 2003, there are some 43 * significant differences: 44 * 45 * 1. The Megiddo and Modha model assumes any page is evictable. 46 * Pages in its cache cannot be "locked" into memory. This makes 47 * the eviction algorithm simple: evict the last page in the list. 48 * This also make the performance characteristics easy to reason 49 * about. Our cache is not so simple. At any given moment, some 50 * subset of the blocks in the cache are un-evictable because we 51 * have handed out a reference to them. Blocks are only evictable 52 * when there are no external references active. This makes 53 * eviction far more problematic: we choose to evict the evictable 54 * blocks that are the "lowest" in the list. 55 * 56 * There are times when it is not possible to evict the requested 57 * space. In these circumstances we are unable to adjust the cache 58 * size. To prevent the cache growing unbounded at these times we 59 * implement a "cache throttle" that slows the flow of new data 60 * into the cache until we can make space available. 61 * 62 * 2. The Megiddo and Modha model assumes a fixed cache size. 63 * Pages are evicted when the cache is full and there is a cache 64 * miss. Our model has a variable sized cache. It grows with 65 * high use, but also tries to react to memory pressure from the 66 * operating system: decreasing its size when system memory is 67 * tight. 68 * 69 * 3. The Megiddo and Modha model assumes a fixed page size. All 70 * elements of the cache are therefore exactly the same size. So 71 * when adjusting the cache size following a cache miss, its simply 72 * a matter of choosing a single page to evict. In our model, we 73 * have variable sized cache blocks (ranging from 512 bytes to 74 * 128K bytes). We therefore choose a set of blocks to evict to make 75 * space for a cache miss that approximates as closely as possible 76 * the space used by the new block. 77 * 78 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 79 * by N. Megiddo & D. Modha, FAST 2003 80 */ 81 82 /* 83 * The locking model: 84 * 85 * A new reference to a cache buffer can be obtained in two 86 * ways: 1) via a hash table lookup using the DVA as a key, 87 * or 2) via one of the ARC lists. The arc_read() interface 88 * uses method 1, while the internal ARC algorithms for 89 * adjusting the cache use method 2. We therefore provide two 90 * types of locks: 1) the hash table lock array, and 2) the 91 * ARC list locks. 92 * 93 * Buffers do not have their own mutexes, rather they rely on the 94 * hash table mutexes for the bulk of their protection (i.e. most 95 * fields in the arc_buf_hdr_t are protected by these mutexes). 96 * 97 * buf_hash_find() returns the appropriate mutex (held) when it 98 * locates the requested buffer in the hash table. It returns 99 * NULL for the mutex if the buffer was not in the table. 100 * 101 * buf_hash_remove() expects the appropriate hash mutex to be 102 * already held before it is invoked. 103 * 104 * Each ARC state also has a mutex which is used to protect the 105 * buffer list associated with the state. When attempting to 106 * obtain a hash table lock while holding an ARC list lock you 107 * must use: mutex_tryenter() to avoid deadlock. Also note that 108 * the active state mutex must be held before the ghost state mutex. 109 * 110 * It as also possible to register a callback which is run when the 111 * arc_meta_limit is reached and no buffers can be safely evicted. In 112 * this case the arc user should drop a reference on some arc buffers so 113 * they can be reclaimed and the arc_meta_limit honored. For example, 114 * when using the ZPL each dentry holds a references on a znode. These 115 * dentries must be pruned before the arc buffer holding the znode can 116 * be safely evicted. 117 * 118 * Note that the majority of the performance stats are manipulated 119 * with atomic operations. 120 * 121 * The L2ARC uses the l2ad_mtx on each vdev for the following: 122 * 123 * - L2ARC buflist creation 124 * - L2ARC buflist eviction 125 * - L2ARC write completion, which walks L2ARC buflists 126 * - ARC header destruction, as it removes from L2ARC buflists 127 * - ARC header release, as it removes from L2ARC buflists 128 */ 129 130 /* 131 * ARC operation: 132 * 133 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. 134 * This structure can point either to a block that is still in the cache or to 135 * one that is only accessible in an L2 ARC device, or it can provide 136 * information about a block that was recently evicted. If a block is 137 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough 138 * information to retrieve it from the L2ARC device. This information is 139 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block 140 * that is in this state cannot access the data directly. 141 * 142 * Blocks that are actively being referenced or have not been evicted 143 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within 144 * the arc_buf_hdr_t that will point to the data block in memory. A block can 145 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC 146 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and 147 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd). 148 * 149 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the 150 * ability to store the physical data (b_pabd) associated with the DVA of the 151 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block, 152 * it will match its on-disk compression characteristics. This behavior can be 153 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the 154 * compressed ARC functionality is disabled, the b_pabd will point to an 155 * uncompressed version of the on-disk data. 156 * 157 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each 158 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it. 159 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC 160 * consumer. The ARC will provide references to this data and will keep it 161 * cached until it is no longer in use. The ARC caches only the L1ARC's physical 162 * data block and will evict any arc_buf_t that is no longer referenced. The 163 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the 164 * "overhead_size" kstat. 165 * 166 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or 167 * compressed form. The typical case is that consumers will want uncompressed 168 * data, and when that happens a new data buffer is allocated where the data is 169 * decompressed for them to use. Currently the only consumer who wants 170 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it 171 * exists on disk. When this happens, the arc_buf_t's data buffer is shared 172 * with the arc_buf_hdr_t. 173 * 174 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The 175 * first one is owned by a compressed send consumer (and therefore references 176 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be 177 * used by any other consumer (and has its own uncompressed copy of the data 178 * buffer). 179 * 180 * arc_buf_hdr_t 181 * +-----------+ 182 * | fields | 183 * | common to | 184 * | L1- and | 185 * | L2ARC | 186 * +-----------+ 187 * | l2arc_buf_hdr_t 188 * | | 189 * +-----------+ 190 * | l1arc_buf_hdr_t 191 * | | arc_buf_t 192 * | b_buf +------------>+-----------+ arc_buf_t 193 * | b_pabd +-+ |b_next +---->+-----------+ 194 * +-----------+ | |-----------| |b_next +-->NULL 195 * | |b_comp = T | +-----------+ 196 * | |b_data +-+ |b_comp = F | 197 * | +-----------+ | |b_data +-+ 198 * +->+------+ | +-----------+ | 199 * compressed | | | | 200 * data | |<--------------+ | uncompressed 201 * +------+ compressed, | data 202 * shared +-->+------+ 203 * data | | 204 * | | 205 * +------+ 206 * 207 * When a consumer reads a block, the ARC must first look to see if the 208 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new 209 * arc_buf_t and either copies uncompressed data into a new data buffer from an 210 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a 211 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the 212 * hdr is compressed and the desired compression characteristics of the 213 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the 214 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be 215 * the last buffer in the hdr's b_buf list, however a shared compressed buf can 216 * be anywhere in the hdr's list. 217 * 218 * The diagram below shows an example of an uncompressed ARC hdr that is 219 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is 220 * the last element in the buf list): 221 * 222 * arc_buf_hdr_t 223 * +-----------+ 224 * | | 225 * | | 226 * | | 227 * +-----------+ 228 * l2arc_buf_hdr_t| | 229 * | | 230 * +-----------+ 231 * l1arc_buf_hdr_t| | 232 * | | arc_buf_t (shared) 233 * | b_buf +------------>+---------+ arc_buf_t 234 * | | |b_next +---->+---------+ 235 * | b_pabd +-+ |---------| |b_next +-->NULL 236 * +-----------+ | | | +---------+ 237 * | |b_data +-+ | | 238 * | +---------+ | |b_data +-+ 239 * +->+------+ | +---------+ | 240 * | | | | 241 * uncompressed | | | | 242 * data +------+ | | 243 * ^ +->+------+ | 244 * | uncompressed | | | 245 * | data | | | 246 * | +------+ | 247 * +---------------------------------+ 248 * 249 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd 250 * since the physical block is about to be rewritten. The new data contents 251 * will be contained in the arc_buf_t. As the I/O pipeline performs the write, 252 * it may compress the data before writing it to disk. The ARC will be called 253 * with the transformed data and will memcpy the transformed on-disk block into 254 * a newly allocated b_pabd. Writes are always done into buffers which have 255 * either been loaned (and hence are new and don't have other readers) or 256 * buffers which have been released (and hence have their own hdr, if there 257 * were originally other readers of the buf's original hdr). This ensures that 258 * the ARC only needs to update a single buf and its hdr after a write occurs. 259 * 260 * When the L2ARC is in use, it will also take advantage of the b_pabd. The 261 * L2ARC will always write the contents of b_pabd to the L2ARC. This means 262 * that when compressed ARC is enabled that the L2ARC blocks are identical 263 * to the on-disk block in the main data pool. This provides a significant 264 * advantage since the ARC can leverage the bp's checksum when reading from the 265 * L2ARC to determine if the contents are valid. However, if the compressed 266 * ARC is disabled, then the L2ARC's block must be transformed to look 267 * like the physical block in the main data pool before comparing the 268 * checksum and determining its validity. 269 * 270 * The L1ARC has a slightly different system for storing encrypted data. 271 * Raw (encrypted + possibly compressed) data has a few subtle differences from 272 * data that is just compressed. The biggest difference is that it is not 273 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded. 274 * The other difference is that encryption cannot be treated as a suggestion. 275 * If a caller would prefer compressed data, but they actually wind up with 276 * uncompressed data the worst thing that could happen is there might be a 277 * performance hit. If the caller requests encrypted data, however, we must be 278 * sure they actually get it or else secret information could be leaked. Raw 279 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore, 280 * may have both an encrypted version and a decrypted version of its data at 281 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is 282 * copied out of this header. To avoid complications with b_pabd, raw buffers 283 * cannot be shared. 284 */ 285 286 #include <sys/spa.h> 287 #include <sys/zio.h> 288 #include <sys/spa_impl.h> 289 #include <sys/zio_compress.h> 290 #include <sys/zio_checksum.h> 291 #include <sys/zfs_context.h> 292 #include <sys/arc.h> 293 #include <sys/zfs_refcount.h> 294 #include <sys/vdev.h> 295 #include <sys/vdev_impl.h> 296 #include <sys/dsl_pool.h> 297 #include <sys/multilist.h> 298 #include <sys/abd.h> 299 #include <sys/zil.h> 300 #include <sys/fm/fs/zfs.h> 301 #include <sys/callb.h> 302 #include <sys/kstat.h> 303 #include <sys/zthr.h> 304 #include <zfs_fletcher.h> 305 #include <sys/arc_impl.h> 306 #include <sys/trace_zfs.h> 307 #include <sys/aggsum.h> 308 #include <sys/wmsum.h> 309 #include <cityhash.h> 310 #include <sys/vdev_trim.h> 311 #include <sys/zfs_racct.h> 312 #include <sys/zstd/zstd.h> 313 314 #ifndef _KERNEL 315 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 316 boolean_t arc_watch = B_FALSE; 317 #endif 318 319 /* 320 * This thread's job is to keep enough free memory in the system, by 321 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves 322 * arc_available_memory(). 323 */ 324 static zthr_t *arc_reap_zthr; 325 326 /* 327 * This thread's job is to keep arc_size under arc_c, by calling 328 * arc_evict(), which improves arc_is_overflowing(). 329 */ 330 static zthr_t *arc_evict_zthr; 331 static arc_buf_hdr_t **arc_state_evict_markers; 332 static int arc_state_evict_marker_count; 333 334 static kmutex_t arc_evict_lock; 335 static boolean_t arc_evict_needed = B_FALSE; 336 337 /* 338 * Count of bytes evicted since boot. 339 */ 340 static uint64_t arc_evict_count; 341 342 /* 343 * List of arc_evict_waiter_t's, representing threads waiting for the 344 * arc_evict_count to reach specific values. 345 */ 346 static list_t arc_evict_waiters; 347 348 /* 349 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of 350 * the requested amount of data to be evicted. For example, by default for 351 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation. 352 * Since this is above 100%, it ensures that progress is made towards getting 353 * arc_size under arc_c. Since this is finite, it ensures that allocations 354 * can still happen, even during the potentially long time that arc_size is 355 * more than arc_c. 356 */ 357 static int zfs_arc_eviction_pct = 200; 358 359 /* 360 * The number of headers to evict in arc_evict_state_impl() before 361 * dropping the sublist lock and evicting from another sublist. A lower 362 * value means we're more likely to evict the "correct" header (i.e. the 363 * oldest header in the arc state), but comes with higher overhead 364 * (i.e. more invocations of arc_evict_state_impl()). 365 */ 366 static int zfs_arc_evict_batch_limit = 10; 367 368 /* number of seconds before growing cache again */ 369 int arc_grow_retry = 5; 370 371 /* 372 * Minimum time between calls to arc_kmem_reap_soon(). 373 */ 374 static const int arc_kmem_cache_reap_retry_ms = 1000; 375 376 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */ 377 static int zfs_arc_overflow_shift = 8; 378 379 /* shift of arc_c for calculating both min and max arc_p */ 380 static int arc_p_min_shift = 4; 381 382 /* log2(fraction of arc to reclaim) */ 383 int arc_shrink_shift = 7; 384 385 /* percent of pagecache to reclaim arc to */ 386 #ifdef _KERNEL 387 uint_t zfs_arc_pc_percent = 0; 388 #endif 389 390 /* 391 * log2(fraction of ARC which must be free to allow growing). 392 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 393 * when reading a new block into the ARC, we will evict an equal-sized block 394 * from the ARC. 395 * 396 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 397 * we will still not allow it to grow. 398 */ 399 int arc_no_grow_shift = 5; 400 401 402 /* 403 * minimum lifespan of a prefetch block in clock ticks 404 * (initialized in arc_init()) 405 */ 406 static int arc_min_prefetch_ms; 407 static int arc_min_prescient_prefetch_ms; 408 409 /* 410 * If this percent of memory is free, don't throttle. 411 */ 412 int arc_lotsfree_percent = 10; 413 414 /* 415 * The arc has filled available memory and has now warmed up. 416 */ 417 boolean_t arc_warm; 418 419 /* 420 * These tunables are for performance analysis. 421 */ 422 unsigned long zfs_arc_max = 0; 423 unsigned long zfs_arc_min = 0; 424 unsigned long zfs_arc_meta_limit = 0; 425 unsigned long zfs_arc_meta_min = 0; 426 static unsigned long zfs_arc_dnode_limit = 0; 427 static unsigned long zfs_arc_dnode_reduce_percent = 10; 428 static int zfs_arc_grow_retry = 0; 429 static int zfs_arc_shrink_shift = 0; 430 static int zfs_arc_p_min_shift = 0; 431 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 432 433 /* 434 * ARC dirty data constraints for arc_tempreserve_space() throttle: 435 * * total dirty data limit 436 * * anon block dirty limit 437 * * each pool's anon allowance 438 */ 439 static const unsigned long zfs_arc_dirty_limit_percent = 50; 440 static const unsigned long zfs_arc_anon_limit_percent = 25; 441 static const unsigned long zfs_arc_pool_dirty_percent = 20; 442 443 /* 444 * Enable or disable compressed arc buffers. 445 */ 446 int zfs_compressed_arc_enabled = B_TRUE; 447 448 /* 449 * ARC will evict meta buffers that exceed arc_meta_limit. This 450 * tunable make arc_meta_limit adjustable for different workloads. 451 */ 452 static unsigned long zfs_arc_meta_limit_percent = 75; 453 454 /* 455 * Percentage that can be consumed by dnodes of ARC meta buffers. 456 */ 457 static unsigned long zfs_arc_dnode_limit_percent = 10; 458 459 /* 460 * These tunables are Linux-specific 461 */ 462 static unsigned long zfs_arc_sys_free = 0; 463 static int zfs_arc_min_prefetch_ms = 0; 464 static int zfs_arc_min_prescient_prefetch_ms = 0; 465 static int zfs_arc_p_dampener_disable = 1; 466 static int zfs_arc_meta_prune = 10000; 467 static int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED; 468 static int zfs_arc_meta_adjust_restarts = 4096; 469 static int zfs_arc_lotsfree_percent = 10; 470 471 /* 472 * Number of arc_prune threads 473 */ 474 static int zfs_arc_prune_task_threads = 1; 475 476 /* The 6 states: */ 477 arc_state_t ARC_anon; 478 arc_state_t ARC_mru; 479 arc_state_t ARC_mru_ghost; 480 arc_state_t ARC_mfu; 481 arc_state_t ARC_mfu_ghost; 482 arc_state_t ARC_l2c_only; 483 484 arc_stats_t arc_stats = { 485 { "hits", KSTAT_DATA_UINT64 }, 486 { "misses", KSTAT_DATA_UINT64 }, 487 { "demand_data_hits", KSTAT_DATA_UINT64 }, 488 { "demand_data_misses", KSTAT_DATA_UINT64 }, 489 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 490 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 491 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 492 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 493 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 494 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 495 { "mru_hits", KSTAT_DATA_UINT64 }, 496 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 497 { "mfu_hits", KSTAT_DATA_UINT64 }, 498 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 499 { "deleted", KSTAT_DATA_UINT64 }, 500 { "mutex_miss", KSTAT_DATA_UINT64 }, 501 { "access_skip", KSTAT_DATA_UINT64 }, 502 { "evict_skip", KSTAT_DATA_UINT64 }, 503 { "evict_not_enough", KSTAT_DATA_UINT64 }, 504 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 505 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 506 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64 }, 507 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64 }, 508 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 509 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 510 { "hash_elements", KSTAT_DATA_UINT64 }, 511 { "hash_elements_max", KSTAT_DATA_UINT64 }, 512 { "hash_collisions", KSTAT_DATA_UINT64 }, 513 { "hash_chains", KSTAT_DATA_UINT64 }, 514 { "hash_chain_max", KSTAT_DATA_UINT64 }, 515 { "p", KSTAT_DATA_UINT64 }, 516 { "c", KSTAT_DATA_UINT64 }, 517 { "c_min", KSTAT_DATA_UINT64 }, 518 { "c_max", KSTAT_DATA_UINT64 }, 519 { "size", KSTAT_DATA_UINT64 }, 520 { "compressed_size", KSTAT_DATA_UINT64 }, 521 { "uncompressed_size", KSTAT_DATA_UINT64 }, 522 { "overhead_size", KSTAT_DATA_UINT64 }, 523 { "hdr_size", KSTAT_DATA_UINT64 }, 524 { "data_size", KSTAT_DATA_UINT64 }, 525 { "metadata_size", KSTAT_DATA_UINT64 }, 526 { "dbuf_size", KSTAT_DATA_UINT64 }, 527 { "dnode_size", KSTAT_DATA_UINT64 }, 528 { "bonus_size", KSTAT_DATA_UINT64 }, 529 #if defined(COMPAT_FREEBSD11) 530 { "other_size", KSTAT_DATA_UINT64 }, 531 #endif 532 { "anon_size", KSTAT_DATA_UINT64 }, 533 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 534 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 535 { "mru_size", KSTAT_DATA_UINT64 }, 536 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 537 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 538 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 539 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 540 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 541 { "mfu_size", KSTAT_DATA_UINT64 }, 542 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 543 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 544 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 545 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 546 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 547 { "l2_hits", KSTAT_DATA_UINT64 }, 548 { "l2_misses", KSTAT_DATA_UINT64 }, 549 { "l2_prefetch_asize", KSTAT_DATA_UINT64 }, 550 { "l2_mru_asize", KSTAT_DATA_UINT64 }, 551 { "l2_mfu_asize", KSTAT_DATA_UINT64 }, 552 { "l2_bufc_data_asize", KSTAT_DATA_UINT64 }, 553 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64 }, 554 { "l2_feeds", KSTAT_DATA_UINT64 }, 555 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 556 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 557 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 558 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 559 { "l2_writes_done", KSTAT_DATA_UINT64 }, 560 { "l2_writes_error", KSTAT_DATA_UINT64 }, 561 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 562 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 563 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 564 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 565 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 566 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 567 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 568 { "l2_io_error", KSTAT_DATA_UINT64 }, 569 { "l2_size", KSTAT_DATA_UINT64 }, 570 { "l2_asize", KSTAT_DATA_UINT64 }, 571 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 572 { "l2_log_blk_writes", KSTAT_DATA_UINT64 }, 573 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 }, 574 { "l2_log_blk_asize", KSTAT_DATA_UINT64 }, 575 { "l2_log_blk_count", KSTAT_DATA_UINT64 }, 576 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 }, 577 { "l2_rebuild_success", KSTAT_DATA_UINT64 }, 578 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 }, 579 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 }, 580 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 }, 581 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 }, 582 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 }, 583 { "l2_rebuild_size", KSTAT_DATA_UINT64 }, 584 { "l2_rebuild_asize", KSTAT_DATA_UINT64 }, 585 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 }, 586 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 }, 587 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 }, 588 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 589 { "memory_direct_count", KSTAT_DATA_UINT64 }, 590 { "memory_indirect_count", KSTAT_DATA_UINT64 }, 591 { "memory_all_bytes", KSTAT_DATA_UINT64 }, 592 { "memory_free_bytes", KSTAT_DATA_UINT64 }, 593 { "memory_available_bytes", KSTAT_DATA_INT64 }, 594 { "arc_no_grow", KSTAT_DATA_UINT64 }, 595 { "arc_tempreserve", KSTAT_DATA_UINT64 }, 596 { "arc_loaned_bytes", KSTAT_DATA_UINT64 }, 597 { "arc_prune", KSTAT_DATA_UINT64 }, 598 { "arc_meta_used", KSTAT_DATA_UINT64 }, 599 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 600 { "arc_dnode_limit", KSTAT_DATA_UINT64 }, 601 { "arc_meta_max", KSTAT_DATA_UINT64 }, 602 { "arc_meta_min", KSTAT_DATA_UINT64 }, 603 { "async_upgrade_sync", KSTAT_DATA_UINT64 }, 604 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 }, 605 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 }, 606 { "arc_need_free", KSTAT_DATA_UINT64 }, 607 { "arc_sys_free", KSTAT_DATA_UINT64 }, 608 { "arc_raw_size", KSTAT_DATA_UINT64 }, 609 { "cached_only_in_progress", KSTAT_DATA_UINT64 }, 610 { "abd_chunk_waste_size", KSTAT_DATA_UINT64 }, 611 }; 612 613 arc_sums_t arc_sums; 614 615 #define ARCSTAT_MAX(stat, val) { \ 616 uint64_t m; \ 617 while ((val) > (m = arc_stats.stat.value.ui64) && \ 618 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 619 continue; \ 620 } 621 622 /* 623 * We define a macro to allow ARC hits/misses to be easily broken down by 624 * two separate conditions, giving a total of four different subtypes for 625 * each of hits and misses (so eight statistics total). 626 */ 627 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 628 if (cond1) { \ 629 if (cond2) { \ 630 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 631 } else { \ 632 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 633 } \ 634 } else { \ 635 if (cond2) { \ 636 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 637 } else { \ 638 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 639 } \ 640 } 641 642 /* 643 * This macro allows us to use kstats as floating averages. Each time we 644 * update this kstat, we first factor it and the update value by 645 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall 646 * average. This macro assumes that integer loads and stores are atomic, but 647 * is not safe for multiple writers updating the kstat in parallel (only the 648 * last writer's update will remain). 649 */ 650 #define ARCSTAT_F_AVG_FACTOR 3 651 #define ARCSTAT_F_AVG(stat, value) \ 652 do { \ 653 uint64_t x = ARCSTAT(stat); \ 654 x = x - x / ARCSTAT_F_AVG_FACTOR + \ 655 (value) / ARCSTAT_F_AVG_FACTOR; \ 656 ARCSTAT(stat) = x; \ 657 } while (0) 658 659 static kstat_t *arc_ksp; 660 661 /* 662 * There are several ARC variables that are critical to export as kstats -- 663 * but we don't want to have to grovel around in the kstat whenever we wish to 664 * manipulate them. For these variables, we therefore define them to be in 665 * terms of the statistic variable. This assures that we are not introducing 666 * the possibility of inconsistency by having shadow copies of the variables, 667 * while still allowing the code to be readable. 668 */ 669 #define arc_tempreserve ARCSTAT(arcstat_tempreserve) 670 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes) 671 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 672 /* max size for dnodes */ 673 #define arc_dnode_size_limit ARCSTAT(arcstat_dnode_limit) 674 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */ 675 #define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */ 676 677 hrtime_t arc_growtime; 678 list_t arc_prune_list; 679 kmutex_t arc_prune_mtx; 680 taskq_t *arc_prune_taskq; 681 682 #define GHOST_STATE(state) \ 683 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 684 (state) == arc_l2c_only) 685 686 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 687 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 688 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 689 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 690 #define HDR_PRESCIENT_PREFETCH(hdr) \ 691 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) 692 #define HDR_COMPRESSION_ENABLED(hdr) \ 693 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) 694 695 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 696 #define HDR_L2_READING(hdr) \ 697 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 698 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 699 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 700 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 701 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 702 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED) 703 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH) 704 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) 705 706 #define HDR_ISTYPE_METADATA(hdr) \ 707 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 708 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 709 710 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 711 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 712 #define HDR_HAS_RABD(hdr) \ 713 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \ 714 (hdr)->b_crypt_hdr.b_rabd != NULL) 715 #define HDR_ENCRYPTED(hdr) \ 716 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 717 #define HDR_AUTHENTICATED(hdr) \ 718 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 719 720 /* For storing compression mode in b_flags */ 721 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) 722 723 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ 724 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) 725 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ 726 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); 727 728 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) 729 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED) 730 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED) 731 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED) 732 733 /* 734 * Other sizes 735 */ 736 737 #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 738 #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr)) 739 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 740 741 /* 742 * Hash table routines 743 */ 744 745 #define BUF_LOCKS 2048 746 typedef struct buf_hash_table { 747 uint64_t ht_mask; 748 arc_buf_hdr_t **ht_table; 749 kmutex_t ht_locks[BUF_LOCKS] ____cacheline_aligned; 750 } buf_hash_table_t; 751 752 static buf_hash_table_t buf_hash_table; 753 754 #define BUF_HASH_INDEX(spa, dva, birth) \ 755 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 756 #define BUF_HASH_LOCK(idx) (&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 757 #define HDR_LOCK(hdr) \ 758 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 759 760 uint64_t zfs_crc64_table[256]; 761 762 /* 763 * Level 2 ARC 764 */ 765 766 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 767 #define L2ARC_HEADROOM 2 /* num of writes */ 768 769 /* 770 * If we discover during ARC scan any buffers to be compressed, we boost 771 * our headroom for the next scanning cycle by this percentage multiple. 772 */ 773 #define L2ARC_HEADROOM_BOOST 200 774 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 775 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 776 777 /* 778 * We can feed L2ARC from two states of ARC buffers, mru and mfu, 779 * and each of the state has two types: data and metadata. 780 */ 781 #define L2ARC_FEED_TYPES 4 782 783 /* L2ARC Performance Tunables */ 784 unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */ 785 unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */ 786 unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */ 787 unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 788 unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 789 unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */ 790 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 791 int l2arc_feed_again = B_TRUE; /* turbo warmup */ 792 int l2arc_norw = B_FALSE; /* no reads during writes */ 793 static int l2arc_meta_percent = 33; /* limit on headers size */ 794 795 /* 796 * L2ARC Internals 797 */ 798 static list_t L2ARC_dev_list; /* device list */ 799 static list_t *l2arc_dev_list; /* device list pointer */ 800 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 801 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 802 static list_t L2ARC_free_on_write; /* free after write buf list */ 803 static list_t *l2arc_free_on_write; /* free after write list ptr */ 804 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 805 static uint64_t l2arc_ndev; /* number of devices */ 806 807 typedef struct l2arc_read_callback { 808 arc_buf_hdr_t *l2rcb_hdr; /* read header */ 809 blkptr_t l2rcb_bp; /* original blkptr */ 810 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 811 int l2rcb_flags; /* original flags */ 812 abd_t *l2rcb_abd; /* temporary buffer */ 813 } l2arc_read_callback_t; 814 815 typedef struct l2arc_data_free { 816 /* protected by l2arc_free_on_write_mtx */ 817 abd_t *l2df_abd; 818 size_t l2df_size; 819 arc_buf_contents_t l2df_type; 820 list_node_t l2df_list_node; 821 } l2arc_data_free_t; 822 823 typedef enum arc_fill_flags { 824 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */ 825 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */ 826 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */ 827 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */ 828 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */ 829 } arc_fill_flags_t; 830 831 typedef enum arc_ovf_level { 832 ARC_OVF_NONE, /* ARC within target size. */ 833 ARC_OVF_SOME, /* ARC is slightly overflowed. */ 834 ARC_OVF_SEVERE /* ARC is severely overflowed. */ 835 } arc_ovf_level_t; 836 837 static kmutex_t l2arc_feed_thr_lock; 838 static kcondvar_t l2arc_feed_thr_cv; 839 static uint8_t l2arc_thread_exit; 840 841 static kmutex_t l2arc_rebuild_thr_lock; 842 static kcondvar_t l2arc_rebuild_thr_cv; 843 844 enum arc_hdr_alloc_flags { 845 ARC_HDR_ALLOC_RDATA = 0x1, 846 ARC_HDR_DO_ADAPT = 0x2, 847 ARC_HDR_USE_RESERVE = 0x4, 848 }; 849 850 851 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, const void *, int); 852 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, const void *); 853 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, const void *, int); 854 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, const void *); 855 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, const void *); 856 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, 857 const void *tag); 858 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t); 859 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int); 860 static void arc_access(arc_buf_hdr_t *, kmutex_t *); 861 static void arc_buf_watch(arc_buf_t *); 862 863 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 864 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 865 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 866 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 867 868 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 869 static void l2arc_read_done(zio_t *); 870 static void l2arc_do_free_on_write(void); 871 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 872 boolean_t state_only); 873 874 #define l2arc_hdr_arcstats_increment(hdr) \ 875 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE) 876 #define l2arc_hdr_arcstats_decrement(hdr) \ 877 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE) 878 #define l2arc_hdr_arcstats_increment_state(hdr) \ 879 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE) 880 #define l2arc_hdr_arcstats_decrement_state(hdr) \ 881 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE) 882 883 /* 884 * l2arc_exclude_special : A zfs module parameter that controls whether buffers 885 * present on special vdevs are eligibile for caching in L2ARC. If 886 * set to 1, exclude dbufs on special vdevs from being cached to 887 * L2ARC. 888 */ 889 int l2arc_exclude_special = 0; 890 891 /* 892 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU 893 * metadata and data are cached from ARC into L2ARC. 894 */ 895 static int l2arc_mfuonly = 0; 896 897 /* 898 * L2ARC TRIM 899 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of 900 * the current write size (l2arc_write_max) we should TRIM if we 901 * have filled the device. It is defined as a percentage of the 902 * write size. If set to 100 we trim twice the space required to 903 * accommodate upcoming writes. A minimum of 64MB will be trimmed. 904 * It also enables TRIM of the whole L2ARC device upon creation or 905 * addition to an existing pool or if the header of the device is 906 * invalid upon importing a pool or onlining a cache device. The 907 * default is 0, which disables TRIM on L2ARC altogether as it can 908 * put significant stress on the underlying storage devices. This 909 * will vary depending of how well the specific device handles 910 * these commands. 911 */ 912 static unsigned long l2arc_trim_ahead = 0; 913 914 /* 915 * Performance tuning of L2ARC persistence: 916 * 917 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding 918 * an L2ARC device (either at pool import or later) will attempt 919 * to rebuild L2ARC buffer contents. 920 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls 921 * whether log blocks are written to the L2ARC device. If the L2ARC 922 * device is less than 1GB, the amount of data l2arc_evict() 923 * evicts is significant compared to the amount of restored L2ARC 924 * data. In this case do not write log blocks in L2ARC in order 925 * not to waste space. 926 */ 927 static int l2arc_rebuild_enabled = B_TRUE; 928 static unsigned long l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024; 929 930 /* L2ARC persistence rebuild control routines. */ 931 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen); 932 static __attribute__((noreturn)) void l2arc_dev_rebuild_thread(void *arg); 933 static int l2arc_rebuild(l2arc_dev_t *dev); 934 935 /* L2ARC persistence read I/O routines. */ 936 static int l2arc_dev_hdr_read(l2arc_dev_t *dev); 937 static int l2arc_log_blk_read(l2arc_dev_t *dev, 938 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp, 939 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 940 zio_t *this_io, zio_t **next_io); 941 static zio_t *l2arc_log_blk_fetch(vdev_t *vd, 942 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb); 943 static void l2arc_log_blk_fetch_abort(zio_t *zio); 944 945 /* L2ARC persistence block restoration routines. */ 946 static void l2arc_log_blk_restore(l2arc_dev_t *dev, 947 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize); 948 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, 949 l2arc_dev_t *dev); 950 951 /* L2ARC persistence write I/O routines. */ 952 static void l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, 953 l2arc_write_callback_t *cb); 954 955 /* L2ARC persistence auxiliary routines. */ 956 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev, 957 const l2arc_log_blkptr_t *lbp); 958 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev, 959 const arc_buf_hdr_t *ab); 960 boolean_t l2arc_range_check_overlap(uint64_t bottom, 961 uint64_t top, uint64_t check); 962 static void l2arc_blk_fetch_done(zio_t *zio); 963 static inline uint64_t 964 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev); 965 966 /* 967 * We use Cityhash for this. It's fast, and has good hash properties without 968 * requiring any large static buffers. 969 */ 970 static uint64_t 971 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 972 { 973 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth)); 974 } 975 976 #define HDR_EMPTY(hdr) \ 977 ((hdr)->b_dva.dva_word[0] == 0 && \ 978 (hdr)->b_dva.dva_word[1] == 0) 979 980 #define HDR_EMPTY_OR_LOCKED(hdr) \ 981 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr))) 982 983 #define HDR_EQUAL(spa, dva, birth, hdr) \ 984 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 985 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 986 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) 987 988 static void 989 buf_discard_identity(arc_buf_hdr_t *hdr) 990 { 991 hdr->b_dva.dva_word[0] = 0; 992 hdr->b_dva.dva_word[1] = 0; 993 hdr->b_birth = 0; 994 } 995 996 static arc_buf_hdr_t * 997 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 998 { 999 const dva_t *dva = BP_IDENTITY(bp); 1000 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 1001 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 1002 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1003 arc_buf_hdr_t *hdr; 1004 1005 mutex_enter(hash_lock); 1006 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 1007 hdr = hdr->b_hash_next) { 1008 if (HDR_EQUAL(spa, dva, birth, hdr)) { 1009 *lockp = hash_lock; 1010 return (hdr); 1011 } 1012 } 1013 mutex_exit(hash_lock); 1014 *lockp = NULL; 1015 return (NULL); 1016 } 1017 1018 /* 1019 * Insert an entry into the hash table. If there is already an element 1020 * equal to elem in the hash table, then the already existing element 1021 * will be returned and the new element will not be inserted. 1022 * Otherwise returns NULL. 1023 * If lockp == NULL, the caller is assumed to already hold the hash lock. 1024 */ 1025 static arc_buf_hdr_t * 1026 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 1027 { 1028 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1029 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1030 arc_buf_hdr_t *fhdr; 1031 uint32_t i; 1032 1033 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 1034 ASSERT(hdr->b_birth != 0); 1035 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1036 1037 if (lockp != NULL) { 1038 *lockp = hash_lock; 1039 mutex_enter(hash_lock); 1040 } else { 1041 ASSERT(MUTEX_HELD(hash_lock)); 1042 } 1043 1044 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 1045 fhdr = fhdr->b_hash_next, i++) { 1046 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 1047 return (fhdr); 1048 } 1049 1050 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 1051 buf_hash_table.ht_table[idx] = hdr; 1052 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1053 1054 /* collect some hash table performance data */ 1055 if (i > 0) { 1056 ARCSTAT_BUMP(arcstat_hash_collisions); 1057 if (i == 1) 1058 ARCSTAT_BUMP(arcstat_hash_chains); 1059 1060 ARCSTAT_MAX(arcstat_hash_chain_max, i); 1061 } 1062 uint64_t he = atomic_inc_64_nv( 1063 &arc_stats.arcstat_hash_elements.value.ui64); 1064 ARCSTAT_MAX(arcstat_hash_elements_max, he); 1065 1066 return (NULL); 1067 } 1068 1069 static void 1070 buf_hash_remove(arc_buf_hdr_t *hdr) 1071 { 1072 arc_buf_hdr_t *fhdr, **hdrp; 1073 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1074 1075 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 1076 ASSERT(HDR_IN_HASH_TABLE(hdr)); 1077 1078 hdrp = &buf_hash_table.ht_table[idx]; 1079 while ((fhdr = *hdrp) != hdr) { 1080 ASSERT3P(fhdr, !=, NULL); 1081 hdrp = &fhdr->b_hash_next; 1082 } 1083 *hdrp = hdr->b_hash_next; 1084 hdr->b_hash_next = NULL; 1085 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1086 1087 /* collect some hash table performance data */ 1088 atomic_dec_64(&arc_stats.arcstat_hash_elements.value.ui64); 1089 1090 if (buf_hash_table.ht_table[idx] && 1091 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 1092 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 1093 } 1094 1095 /* 1096 * Global data structures and functions for the buf kmem cache. 1097 */ 1098 1099 static kmem_cache_t *hdr_full_cache; 1100 static kmem_cache_t *hdr_full_crypt_cache; 1101 static kmem_cache_t *hdr_l2only_cache; 1102 static kmem_cache_t *buf_cache; 1103 1104 static void 1105 buf_fini(void) 1106 { 1107 #if defined(_KERNEL) 1108 /* 1109 * Large allocations which do not require contiguous pages 1110 * should be using vmem_free() in the linux kernel\ 1111 */ 1112 vmem_free(buf_hash_table.ht_table, 1113 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1114 #else 1115 kmem_free(buf_hash_table.ht_table, 1116 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1117 #endif 1118 for (int i = 0; i < BUF_LOCKS; i++) 1119 mutex_destroy(BUF_HASH_LOCK(i)); 1120 kmem_cache_destroy(hdr_full_cache); 1121 kmem_cache_destroy(hdr_full_crypt_cache); 1122 kmem_cache_destroy(hdr_l2only_cache); 1123 kmem_cache_destroy(buf_cache); 1124 } 1125 1126 /* 1127 * Constructor callback - called when the cache is empty 1128 * and a new buf is requested. 1129 */ 1130 static int 1131 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1132 { 1133 (void) unused, (void) kmflag; 1134 arc_buf_hdr_t *hdr = vbuf; 1135 1136 memset(hdr, 0, HDR_FULL_SIZE); 1137 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 1138 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL); 1139 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt); 1140 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1141 list_link_init(&hdr->b_l1hdr.b_arc_node); 1142 list_link_init(&hdr->b_l2hdr.b_l2node); 1143 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1144 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1145 1146 return (0); 1147 } 1148 1149 static int 1150 hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag) 1151 { 1152 (void) unused; 1153 arc_buf_hdr_t *hdr = vbuf; 1154 1155 hdr_full_cons(vbuf, unused, kmflag); 1156 memset(&hdr->b_crypt_hdr, 0, sizeof (hdr->b_crypt_hdr)); 1157 arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1158 1159 return (0); 1160 } 1161 1162 static int 1163 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1164 { 1165 (void) unused, (void) kmflag; 1166 arc_buf_hdr_t *hdr = vbuf; 1167 1168 memset(hdr, 0, HDR_L2ONLY_SIZE); 1169 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1170 1171 return (0); 1172 } 1173 1174 static int 1175 buf_cons(void *vbuf, void *unused, int kmflag) 1176 { 1177 (void) unused, (void) kmflag; 1178 arc_buf_t *buf = vbuf; 1179 1180 memset(buf, 0, sizeof (arc_buf_t)); 1181 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 1182 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1183 1184 return (0); 1185 } 1186 1187 /* 1188 * Destructor callback - called when a cached buf is 1189 * no longer required. 1190 */ 1191 static void 1192 hdr_full_dest(void *vbuf, void *unused) 1193 { 1194 (void) unused; 1195 arc_buf_hdr_t *hdr = vbuf; 1196 1197 ASSERT(HDR_EMPTY(hdr)); 1198 cv_destroy(&hdr->b_l1hdr.b_cv); 1199 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1200 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1201 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1202 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1203 } 1204 1205 static void 1206 hdr_full_crypt_dest(void *vbuf, void *unused) 1207 { 1208 (void) vbuf, (void) unused; 1209 1210 hdr_full_dest(vbuf, unused); 1211 arc_space_return(sizeof (((arc_buf_hdr_t *)NULL)->b_crypt_hdr), 1212 ARC_SPACE_HDRS); 1213 } 1214 1215 static void 1216 hdr_l2only_dest(void *vbuf, void *unused) 1217 { 1218 (void) unused; 1219 arc_buf_hdr_t *hdr = vbuf; 1220 1221 ASSERT(HDR_EMPTY(hdr)); 1222 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1223 } 1224 1225 static void 1226 buf_dest(void *vbuf, void *unused) 1227 { 1228 (void) unused; 1229 arc_buf_t *buf = vbuf; 1230 1231 mutex_destroy(&buf->b_evict_lock); 1232 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1233 } 1234 1235 static void 1236 buf_init(void) 1237 { 1238 uint64_t *ct = NULL; 1239 uint64_t hsize = 1ULL << 12; 1240 int i, j; 1241 1242 /* 1243 * The hash table is big enough to fill all of physical memory 1244 * with an average block size of zfs_arc_average_blocksize (default 8K). 1245 * By default, the table will take up 1246 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1247 */ 1248 while (hsize * zfs_arc_average_blocksize < arc_all_memory()) 1249 hsize <<= 1; 1250 retry: 1251 buf_hash_table.ht_mask = hsize - 1; 1252 #if defined(_KERNEL) 1253 /* 1254 * Large allocations which do not require contiguous pages 1255 * should be using vmem_alloc() in the linux kernel 1256 */ 1257 buf_hash_table.ht_table = 1258 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP); 1259 #else 1260 buf_hash_table.ht_table = 1261 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1262 #endif 1263 if (buf_hash_table.ht_table == NULL) { 1264 ASSERT(hsize > (1ULL << 8)); 1265 hsize >>= 1; 1266 goto retry; 1267 } 1268 1269 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1270 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, 0); 1271 hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt", 1272 HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest, 1273 NULL, NULL, NULL, 0); 1274 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1275 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL, 1276 NULL, NULL, 0); 1277 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1278 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1279 1280 for (i = 0; i < 256; i++) 1281 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1282 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1283 1284 for (i = 0; i < BUF_LOCKS; i++) 1285 mutex_init(BUF_HASH_LOCK(i), NULL, MUTEX_DEFAULT, NULL); 1286 } 1287 1288 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1289 1290 /* 1291 * This is the size that the buf occupies in memory. If the buf is compressed, 1292 * it will correspond to the compressed size. You should use this method of 1293 * getting the buf size unless you explicitly need the logical size. 1294 */ 1295 uint64_t 1296 arc_buf_size(arc_buf_t *buf) 1297 { 1298 return (ARC_BUF_COMPRESSED(buf) ? 1299 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr)); 1300 } 1301 1302 uint64_t 1303 arc_buf_lsize(arc_buf_t *buf) 1304 { 1305 return (HDR_GET_LSIZE(buf->b_hdr)); 1306 } 1307 1308 /* 1309 * This function will return B_TRUE if the buffer is encrypted in memory. 1310 * This buffer can be decrypted by calling arc_untransform(). 1311 */ 1312 boolean_t 1313 arc_is_encrypted(arc_buf_t *buf) 1314 { 1315 return (ARC_BUF_ENCRYPTED(buf) != 0); 1316 } 1317 1318 /* 1319 * Returns B_TRUE if the buffer represents data that has not had its MAC 1320 * verified yet. 1321 */ 1322 boolean_t 1323 arc_is_unauthenticated(arc_buf_t *buf) 1324 { 1325 return (HDR_NOAUTH(buf->b_hdr) != 0); 1326 } 1327 1328 void 1329 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt, 1330 uint8_t *iv, uint8_t *mac) 1331 { 1332 arc_buf_hdr_t *hdr = buf->b_hdr; 1333 1334 ASSERT(HDR_PROTECTED(hdr)); 1335 1336 memcpy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 1337 memcpy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 1338 memcpy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 1339 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 1340 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 1341 } 1342 1343 /* 1344 * Indicates how this buffer is compressed in memory. If it is not compressed 1345 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with 1346 * arc_untransform() as long as it is also unencrypted. 1347 */ 1348 enum zio_compress 1349 arc_get_compression(arc_buf_t *buf) 1350 { 1351 return (ARC_BUF_COMPRESSED(buf) ? 1352 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF); 1353 } 1354 1355 /* 1356 * Return the compression algorithm used to store this data in the ARC. If ARC 1357 * compression is enabled or this is an encrypted block, this will be the same 1358 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF. 1359 */ 1360 static inline enum zio_compress 1361 arc_hdr_get_compress(arc_buf_hdr_t *hdr) 1362 { 1363 return (HDR_COMPRESSION_ENABLED(hdr) ? 1364 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF); 1365 } 1366 1367 uint8_t 1368 arc_get_complevel(arc_buf_t *buf) 1369 { 1370 return (buf->b_hdr->b_complevel); 1371 } 1372 1373 static inline boolean_t 1374 arc_buf_is_shared(arc_buf_t *buf) 1375 { 1376 boolean_t shared = (buf->b_data != NULL && 1377 buf->b_hdr->b_l1hdr.b_pabd != NULL && 1378 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) && 1379 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd)); 1380 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); 1381 IMPLY(shared, ARC_BUF_SHARED(buf)); 1382 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf)); 1383 1384 /* 1385 * It would be nice to assert arc_can_share() too, but the "hdr isn't 1386 * already being shared" requirement prevents us from doing that. 1387 */ 1388 1389 return (shared); 1390 } 1391 1392 /* 1393 * Free the checksum associated with this header. If there is no checksum, this 1394 * is a no-op. 1395 */ 1396 static inline void 1397 arc_cksum_free(arc_buf_hdr_t *hdr) 1398 { 1399 ASSERT(HDR_HAS_L1HDR(hdr)); 1400 1401 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1402 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1403 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); 1404 hdr->b_l1hdr.b_freeze_cksum = NULL; 1405 } 1406 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1407 } 1408 1409 /* 1410 * Return true iff at least one of the bufs on hdr is not compressed. 1411 * Encrypted buffers count as compressed. 1412 */ 1413 static boolean_t 1414 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr) 1415 { 1416 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr)); 1417 1418 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) { 1419 if (!ARC_BUF_COMPRESSED(b)) { 1420 return (B_TRUE); 1421 } 1422 } 1423 return (B_FALSE); 1424 } 1425 1426 1427 /* 1428 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data 1429 * matches the checksum that is stored in the hdr. If there is no checksum, 1430 * or if the buf is compressed, this is a no-op. 1431 */ 1432 static void 1433 arc_cksum_verify(arc_buf_t *buf) 1434 { 1435 arc_buf_hdr_t *hdr = buf->b_hdr; 1436 zio_cksum_t zc; 1437 1438 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1439 return; 1440 1441 if (ARC_BUF_COMPRESSED(buf)) 1442 return; 1443 1444 ASSERT(HDR_HAS_L1HDR(hdr)); 1445 1446 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1447 1448 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { 1449 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1450 return; 1451 } 1452 1453 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc); 1454 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) 1455 panic("buffer modified while frozen!"); 1456 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1457 } 1458 1459 /* 1460 * This function makes the assumption that data stored in the L2ARC 1461 * will be transformed exactly as it is in the main pool. Because of 1462 * this we can verify the checksum against the reading process's bp. 1463 */ 1464 static boolean_t 1465 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) 1466 { 1467 ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); 1468 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); 1469 1470 /* 1471 * Block pointers always store the checksum for the logical data. 1472 * If the block pointer has the gang bit set, then the checksum 1473 * it represents is for the reconstituted data and not for an 1474 * individual gang member. The zio pipeline, however, must be able to 1475 * determine the checksum of each of the gang constituents so it 1476 * treats the checksum comparison differently than what we need 1477 * for l2arc blocks. This prevents us from using the 1478 * zio_checksum_error() interface directly. Instead we must call the 1479 * zio_checksum_error_impl() so that we can ensure the checksum is 1480 * generated using the correct checksum algorithm and accounts for the 1481 * logical I/O size and not just a gang fragment. 1482 */ 1483 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp, 1484 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size, 1485 zio->io_offset, NULL) == 0); 1486 } 1487 1488 /* 1489 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a 1490 * checksum and attaches it to the buf's hdr so that we can ensure that the buf 1491 * isn't modified later on. If buf is compressed or there is already a checksum 1492 * on the hdr, this is a no-op (we only checksum uncompressed bufs). 1493 */ 1494 static void 1495 arc_cksum_compute(arc_buf_t *buf) 1496 { 1497 arc_buf_hdr_t *hdr = buf->b_hdr; 1498 1499 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1500 return; 1501 1502 ASSERT(HDR_HAS_L1HDR(hdr)); 1503 1504 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1505 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) { 1506 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1507 return; 1508 } 1509 1510 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 1511 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1512 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), 1513 KM_SLEEP); 1514 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, 1515 hdr->b_l1hdr.b_freeze_cksum); 1516 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1517 arc_buf_watch(buf); 1518 } 1519 1520 #ifndef _KERNEL 1521 void 1522 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused) 1523 { 1524 (void) sig, (void) unused; 1525 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr); 1526 } 1527 #endif 1528 1529 static void 1530 arc_buf_unwatch(arc_buf_t *buf) 1531 { 1532 #ifndef _KERNEL 1533 if (arc_watch) { 1534 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1535 PROT_READ | PROT_WRITE)); 1536 } 1537 #else 1538 (void) buf; 1539 #endif 1540 } 1541 1542 static void 1543 arc_buf_watch(arc_buf_t *buf) 1544 { 1545 #ifndef _KERNEL 1546 if (arc_watch) 1547 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1548 PROT_READ)); 1549 #else 1550 (void) buf; 1551 #endif 1552 } 1553 1554 static arc_buf_contents_t 1555 arc_buf_type(arc_buf_hdr_t *hdr) 1556 { 1557 arc_buf_contents_t type; 1558 if (HDR_ISTYPE_METADATA(hdr)) { 1559 type = ARC_BUFC_METADATA; 1560 } else { 1561 type = ARC_BUFC_DATA; 1562 } 1563 VERIFY3U(hdr->b_type, ==, type); 1564 return (type); 1565 } 1566 1567 boolean_t 1568 arc_is_metadata(arc_buf_t *buf) 1569 { 1570 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0); 1571 } 1572 1573 static uint32_t 1574 arc_bufc_to_flags(arc_buf_contents_t type) 1575 { 1576 switch (type) { 1577 case ARC_BUFC_DATA: 1578 /* metadata field is 0 if buffer contains normal data */ 1579 return (0); 1580 case ARC_BUFC_METADATA: 1581 return (ARC_FLAG_BUFC_METADATA); 1582 default: 1583 break; 1584 } 1585 panic("undefined ARC buffer type!"); 1586 return ((uint32_t)-1); 1587 } 1588 1589 void 1590 arc_buf_thaw(arc_buf_t *buf) 1591 { 1592 arc_buf_hdr_t *hdr = buf->b_hdr; 1593 1594 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 1595 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1596 1597 arc_cksum_verify(buf); 1598 1599 /* 1600 * Compressed buffers do not manipulate the b_freeze_cksum. 1601 */ 1602 if (ARC_BUF_COMPRESSED(buf)) 1603 return; 1604 1605 ASSERT(HDR_HAS_L1HDR(hdr)); 1606 arc_cksum_free(hdr); 1607 arc_buf_unwatch(buf); 1608 } 1609 1610 void 1611 arc_buf_freeze(arc_buf_t *buf) 1612 { 1613 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1614 return; 1615 1616 if (ARC_BUF_COMPRESSED(buf)) 1617 return; 1618 1619 ASSERT(HDR_HAS_L1HDR(buf->b_hdr)); 1620 arc_cksum_compute(buf); 1621 } 1622 1623 /* 1624 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, 1625 * the following functions should be used to ensure that the flags are 1626 * updated in a thread-safe way. When manipulating the flags either 1627 * the hash_lock must be held or the hdr must be undiscoverable. This 1628 * ensures that we're not racing with any other threads when updating 1629 * the flags. 1630 */ 1631 static inline void 1632 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1633 { 1634 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1635 hdr->b_flags |= flags; 1636 } 1637 1638 static inline void 1639 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1640 { 1641 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1642 hdr->b_flags &= ~flags; 1643 } 1644 1645 /* 1646 * Setting the compression bits in the arc_buf_hdr_t's b_flags is 1647 * done in a special way since we have to clear and set bits 1648 * at the same time. Consumers that wish to set the compression bits 1649 * must use this function to ensure that the flags are updated in 1650 * thread-safe manner. 1651 */ 1652 static void 1653 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) 1654 { 1655 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1656 1657 /* 1658 * Holes and embedded blocks will always have a psize = 0 so 1659 * we ignore the compression of the blkptr and set the 1660 * want to uncompress them. Mark them as uncompressed. 1661 */ 1662 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { 1663 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1664 ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); 1665 } else { 1666 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1667 ASSERT(HDR_COMPRESSION_ENABLED(hdr)); 1668 } 1669 1670 HDR_SET_COMPRESS(hdr, cmp); 1671 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); 1672 } 1673 1674 /* 1675 * Looks for another buf on the same hdr which has the data decompressed, copies 1676 * from it, and returns true. If no such buf exists, returns false. 1677 */ 1678 static boolean_t 1679 arc_buf_try_copy_decompressed_data(arc_buf_t *buf) 1680 { 1681 arc_buf_hdr_t *hdr = buf->b_hdr; 1682 boolean_t copied = B_FALSE; 1683 1684 ASSERT(HDR_HAS_L1HDR(hdr)); 1685 ASSERT3P(buf->b_data, !=, NULL); 1686 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1687 1688 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL; 1689 from = from->b_next) { 1690 /* can't use our own data buffer */ 1691 if (from == buf) { 1692 continue; 1693 } 1694 1695 if (!ARC_BUF_COMPRESSED(from)) { 1696 memcpy(buf->b_data, from->b_data, arc_buf_size(buf)); 1697 copied = B_TRUE; 1698 break; 1699 } 1700 } 1701 1702 /* 1703 * There were no decompressed bufs, so there should not be a 1704 * checksum on the hdr either. 1705 */ 1706 if (zfs_flags & ZFS_DEBUG_MODIFY) 1707 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL); 1708 1709 return (copied); 1710 } 1711 1712 /* 1713 * Allocates an ARC buf header that's in an evicted & L2-cached state. 1714 * This is used during l2arc reconstruction to make empty ARC buffers 1715 * which circumvent the regular disk->arc->l2arc path and instead come 1716 * into being in the reverse order, i.e. l2arc->arc. 1717 */ 1718 static arc_buf_hdr_t * 1719 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev, 1720 dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth, 1721 enum zio_compress compress, uint8_t complevel, boolean_t protected, 1722 boolean_t prefetch, arc_state_type_t arcs_state) 1723 { 1724 arc_buf_hdr_t *hdr; 1725 1726 ASSERT(size != 0); 1727 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP); 1728 hdr->b_birth = birth; 1729 hdr->b_type = type; 1730 hdr->b_flags = 0; 1731 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR); 1732 HDR_SET_LSIZE(hdr, size); 1733 HDR_SET_PSIZE(hdr, psize); 1734 arc_hdr_set_compress(hdr, compress); 1735 hdr->b_complevel = complevel; 1736 if (protected) 1737 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 1738 if (prefetch) 1739 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 1740 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa); 1741 1742 hdr->b_dva = dva; 1743 1744 hdr->b_l2hdr.b_dev = dev; 1745 hdr->b_l2hdr.b_daddr = daddr; 1746 hdr->b_l2hdr.b_arcs_state = arcs_state; 1747 1748 return (hdr); 1749 } 1750 1751 /* 1752 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t. 1753 */ 1754 static uint64_t 1755 arc_hdr_size(arc_buf_hdr_t *hdr) 1756 { 1757 uint64_t size; 1758 1759 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 1760 HDR_GET_PSIZE(hdr) > 0) { 1761 size = HDR_GET_PSIZE(hdr); 1762 } else { 1763 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); 1764 size = HDR_GET_LSIZE(hdr); 1765 } 1766 return (size); 1767 } 1768 1769 static int 1770 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj) 1771 { 1772 int ret; 1773 uint64_t csize; 1774 uint64_t lsize = HDR_GET_LSIZE(hdr); 1775 uint64_t psize = HDR_GET_PSIZE(hdr); 1776 void *tmpbuf = NULL; 1777 abd_t *abd = hdr->b_l1hdr.b_pabd; 1778 1779 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1780 ASSERT(HDR_AUTHENTICATED(hdr)); 1781 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1782 1783 /* 1784 * The MAC is calculated on the compressed data that is stored on disk. 1785 * However, if compressed arc is disabled we will only have the 1786 * decompressed data available to us now. Compress it into a temporary 1787 * abd so we can verify the MAC. The performance overhead of this will 1788 * be relatively low, since most objects in an encrypted objset will 1789 * be encrypted (instead of authenticated) anyway. 1790 */ 1791 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1792 !HDR_COMPRESSION_ENABLED(hdr)) { 1793 tmpbuf = zio_buf_alloc(lsize); 1794 abd = abd_get_from_buf(tmpbuf, lsize); 1795 abd_take_ownership_of_buf(abd, B_TRUE); 1796 csize = zio_compress_data(HDR_GET_COMPRESS(hdr), 1797 hdr->b_l1hdr.b_pabd, tmpbuf, lsize, hdr->b_complevel); 1798 ASSERT3U(csize, <=, psize); 1799 abd_zero_off(abd, csize, psize - csize); 1800 } 1801 1802 /* 1803 * Authentication is best effort. We authenticate whenever the key is 1804 * available. If we succeed we clear ARC_FLAG_NOAUTH. 1805 */ 1806 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) { 1807 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1808 ASSERT3U(lsize, ==, psize); 1809 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd, 1810 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1811 } else { 1812 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize, 1813 hdr->b_crypt_hdr.b_mac); 1814 } 1815 1816 if (ret == 0) 1817 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH); 1818 else if (ret != ENOENT) 1819 goto error; 1820 1821 if (tmpbuf != NULL) 1822 abd_free(abd); 1823 1824 return (0); 1825 1826 error: 1827 if (tmpbuf != NULL) 1828 abd_free(abd); 1829 1830 return (ret); 1831 } 1832 1833 /* 1834 * This function will take a header that only has raw encrypted data in 1835 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in 1836 * b_l1hdr.b_pabd. If designated in the header flags, this function will 1837 * also decompress the data. 1838 */ 1839 static int 1840 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb) 1841 { 1842 int ret; 1843 abd_t *cabd = NULL; 1844 void *tmp = NULL; 1845 boolean_t no_crypt = B_FALSE; 1846 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1847 1848 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1849 ASSERT(HDR_ENCRYPTED(hdr)); 1850 1851 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 1852 1853 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot, 1854 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv, 1855 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd, 1856 hdr->b_crypt_hdr.b_rabd, &no_crypt); 1857 if (ret != 0) 1858 goto error; 1859 1860 if (no_crypt) { 1861 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd, 1862 HDR_GET_PSIZE(hdr)); 1863 } 1864 1865 /* 1866 * If this header has disabled arc compression but the b_pabd is 1867 * compressed after decrypting it, we need to decompress the newly 1868 * decrypted data. 1869 */ 1870 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1871 !HDR_COMPRESSION_ENABLED(hdr)) { 1872 /* 1873 * We want to make sure that we are correctly honoring the 1874 * zfs_abd_scatter_enabled setting, so we allocate an abd here 1875 * and then loan a buffer from it, rather than allocating a 1876 * linear buffer and wrapping it in an abd later. 1877 */ 1878 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 1879 ARC_HDR_DO_ADAPT); 1880 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 1881 1882 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 1883 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 1884 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 1885 if (ret != 0) { 1886 abd_return_buf(cabd, tmp, arc_hdr_size(hdr)); 1887 goto error; 1888 } 1889 1890 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 1891 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 1892 arc_hdr_size(hdr), hdr); 1893 hdr->b_l1hdr.b_pabd = cabd; 1894 } 1895 1896 return (0); 1897 1898 error: 1899 arc_hdr_free_abd(hdr, B_FALSE); 1900 if (cabd != NULL) 1901 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr); 1902 1903 return (ret); 1904 } 1905 1906 /* 1907 * This function is called during arc_buf_fill() to prepare the header's 1908 * abd plaintext pointer for use. This involves authenticated protected 1909 * data and decrypting encrypted data into the plaintext abd. 1910 */ 1911 static int 1912 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa, 1913 const zbookmark_phys_t *zb, boolean_t noauth) 1914 { 1915 int ret; 1916 1917 ASSERT(HDR_PROTECTED(hdr)); 1918 1919 if (hash_lock != NULL) 1920 mutex_enter(hash_lock); 1921 1922 if (HDR_NOAUTH(hdr) && !noauth) { 1923 /* 1924 * The caller requested authenticated data but our data has 1925 * not been authenticated yet. Verify the MAC now if we can. 1926 */ 1927 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset); 1928 if (ret != 0) 1929 goto error; 1930 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) { 1931 /* 1932 * If we only have the encrypted version of the data, but the 1933 * unencrypted version was requested we take this opportunity 1934 * to store the decrypted version in the header for future use. 1935 */ 1936 ret = arc_hdr_decrypt(hdr, spa, zb); 1937 if (ret != 0) 1938 goto error; 1939 } 1940 1941 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1942 1943 if (hash_lock != NULL) 1944 mutex_exit(hash_lock); 1945 1946 return (0); 1947 1948 error: 1949 if (hash_lock != NULL) 1950 mutex_exit(hash_lock); 1951 1952 return (ret); 1953 } 1954 1955 /* 1956 * This function is used by the dbuf code to decrypt bonus buffers in place. 1957 * The dbuf code itself doesn't have any locking for decrypting a shared dnode 1958 * block, so we use the hash lock here to protect against concurrent calls to 1959 * arc_buf_fill(). 1960 */ 1961 static void 1962 arc_buf_untransform_in_place(arc_buf_t *buf) 1963 { 1964 arc_buf_hdr_t *hdr = buf->b_hdr; 1965 1966 ASSERT(HDR_ENCRYPTED(hdr)); 1967 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 1968 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1969 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1970 1971 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data, 1972 arc_buf_size(buf)); 1973 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 1974 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 1975 hdr->b_crypt_hdr.b_ebufcnt -= 1; 1976 } 1977 1978 /* 1979 * Given a buf that has a data buffer attached to it, this function will 1980 * efficiently fill the buf with data of the specified compression setting from 1981 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr 1982 * are already sharing a data buf, no copy is performed. 1983 * 1984 * If the buf is marked as compressed but uncompressed data was requested, this 1985 * will allocate a new data buffer for the buf, remove that flag, and fill the 1986 * buf with uncompressed data. You can't request a compressed buf on a hdr with 1987 * uncompressed data, and (since we haven't added support for it yet) if you 1988 * want compressed data your buf must already be marked as compressed and have 1989 * the correct-sized data buffer. 1990 */ 1991 static int 1992 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 1993 arc_fill_flags_t flags) 1994 { 1995 int error = 0; 1996 arc_buf_hdr_t *hdr = buf->b_hdr; 1997 boolean_t hdr_compressed = 1998 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 1999 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0; 2000 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0; 2001 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; 2002 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr); 2003 2004 ASSERT3P(buf->b_data, !=, NULL); 2005 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf)); 2006 IMPLY(compressed, ARC_BUF_COMPRESSED(buf)); 2007 IMPLY(encrypted, HDR_ENCRYPTED(hdr)); 2008 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf)); 2009 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf)); 2010 IMPLY(encrypted, !ARC_BUF_SHARED(buf)); 2011 2012 /* 2013 * If the caller wanted encrypted data we just need to copy it from 2014 * b_rabd and potentially byteswap it. We won't be able to do any 2015 * further transforms on it. 2016 */ 2017 if (encrypted) { 2018 ASSERT(HDR_HAS_RABD(hdr)); 2019 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd, 2020 HDR_GET_PSIZE(hdr)); 2021 goto byteswap; 2022 } 2023 2024 /* 2025 * Adjust encrypted and authenticated headers to accommodate 2026 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are 2027 * allowed to fail decryption due to keys not being loaded 2028 * without being marked as an IO error. 2029 */ 2030 if (HDR_PROTECTED(hdr)) { 2031 error = arc_fill_hdr_crypt(hdr, hash_lock, spa, 2032 zb, !!(flags & ARC_FILL_NOAUTH)); 2033 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) { 2034 return (error); 2035 } else if (error != 0) { 2036 if (hash_lock != NULL) 2037 mutex_enter(hash_lock); 2038 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2039 if (hash_lock != NULL) 2040 mutex_exit(hash_lock); 2041 return (error); 2042 } 2043 } 2044 2045 /* 2046 * There is a special case here for dnode blocks which are 2047 * decrypting their bonus buffers. These blocks may request to 2048 * be decrypted in-place. This is necessary because there may 2049 * be many dnodes pointing into this buffer and there is 2050 * currently no method to synchronize replacing the backing 2051 * b_data buffer and updating all of the pointers. Here we use 2052 * the hash lock to ensure there are no races. If the need 2053 * arises for other types to be decrypted in-place, they must 2054 * add handling here as well. 2055 */ 2056 if ((flags & ARC_FILL_IN_PLACE) != 0) { 2057 ASSERT(!hdr_compressed); 2058 ASSERT(!compressed); 2059 ASSERT(!encrypted); 2060 2061 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) { 2062 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 2063 2064 if (hash_lock != NULL) 2065 mutex_enter(hash_lock); 2066 arc_buf_untransform_in_place(buf); 2067 if (hash_lock != NULL) 2068 mutex_exit(hash_lock); 2069 2070 /* Compute the hdr's checksum if necessary */ 2071 arc_cksum_compute(buf); 2072 } 2073 2074 return (0); 2075 } 2076 2077 if (hdr_compressed == compressed) { 2078 if (!arc_buf_is_shared(buf)) { 2079 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd, 2080 arc_buf_size(buf)); 2081 } 2082 } else { 2083 ASSERT(hdr_compressed); 2084 ASSERT(!compressed); 2085 2086 /* 2087 * If the buf is sharing its data with the hdr, unlink it and 2088 * allocate a new data buffer for the buf. 2089 */ 2090 if (arc_buf_is_shared(buf)) { 2091 ASSERT(ARC_BUF_COMPRESSED(buf)); 2092 2093 /* We need to give the buf its own b_data */ 2094 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 2095 buf->b_data = 2096 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2097 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2098 2099 /* Previously overhead was 0; just add new overhead */ 2100 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 2101 } else if (ARC_BUF_COMPRESSED(buf)) { 2102 /* We need to reallocate the buf's b_data */ 2103 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr), 2104 buf); 2105 buf->b_data = 2106 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2107 2108 /* We increased the size of b_data; update overhead */ 2109 ARCSTAT_INCR(arcstat_overhead_size, 2110 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr)); 2111 } 2112 2113 /* 2114 * Regardless of the buf's previous compression settings, it 2115 * should not be compressed at the end of this function. 2116 */ 2117 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 2118 2119 /* 2120 * Try copying the data from another buf which already has a 2121 * decompressed version. If that's not possible, it's time to 2122 * bite the bullet and decompress the data from the hdr. 2123 */ 2124 if (arc_buf_try_copy_decompressed_data(buf)) { 2125 /* Skip byteswapping and checksumming (already done) */ 2126 return (0); 2127 } else { 2128 error = zio_decompress_data(HDR_GET_COMPRESS(hdr), 2129 hdr->b_l1hdr.b_pabd, buf->b_data, 2130 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr), 2131 &hdr->b_complevel); 2132 2133 /* 2134 * Absent hardware errors or software bugs, this should 2135 * be impossible, but log it anyway so we can debug it. 2136 */ 2137 if (error != 0) { 2138 zfs_dbgmsg( 2139 "hdr %px, compress %d, psize %d, lsize %d", 2140 hdr, arc_hdr_get_compress(hdr), 2141 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 2142 if (hash_lock != NULL) 2143 mutex_enter(hash_lock); 2144 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2145 if (hash_lock != NULL) 2146 mutex_exit(hash_lock); 2147 return (SET_ERROR(EIO)); 2148 } 2149 } 2150 } 2151 2152 byteswap: 2153 /* Byteswap the buf's data if necessary */ 2154 if (bswap != DMU_BSWAP_NUMFUNCS) { 2155 ASSERT(!HDR_SHARED_DATA(hdr)); 2156 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); 2157 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); 2158 } 2159 2160 /* Compute the hdr's checksum if necessary */ 2161 arc_cksum_compute(buf); 2162 2163 return (0); 2164 } 2165 2166 /* 2167 * If this function is being called to decrypt an encrypted buffer or verify an 2168 * authenticated one, the key must be loaded and a mapping must be made 2169 * available in the keystore via spa_keystore_create_mapping() or one of its 2170 * callers. 2171 */ 2172 int 2173 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 2174 boolean_t in_place) 2175 { 2176 int ret; 2177 arc_fill_flags_t flags = 0; 2178 2179 if (in_place) 2180 flags |= ARC_FILL_IN_PLACE; 2181 2182 ret = arc_buf_fill(buf, spa, zb, flags); 2183 if (ret == ECKSUM) { 2184 /* 2185 * Convert authentication and decryption errors to EIO 2186 * (and generate an ereport) before leaving the ARC. 2187 */ 2188 ret = SET_ERROR(EIO); 2189 spa_log_error(spa, zb); 2190 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 2191 spa, NULL, zb, NULL, 0); 2192 } 2193 2194 return (ret); 2195 } 2196 2197 /* 2198 * Increment the amount of evictable space in the arc_state_t's refcount. 2199 * We account for the space used by the hdr and the arc buf individually 2200 * so that we can add and remove them from the refcount individually. 2201 */ 2202 static void 2203 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) 2204 { 2205 arc_buf_contents_t type = arc_buf_type(hdr); 2206 2207 ASSERT(HDR_HAS_L1HDR(hdr)); 2208 2209 if (GHOST_STATE(state)) { 2210 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2211 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2212 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2213 ASSERT(!HDR_HAS_RABD(hdr)); 2214 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2215 HDR_GET_LSIZE(hdr), hdr); 2216 return; 2217 } 2218 2219 if (hdr->b_l1hdr.b_pabd != NULL) { 2220 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2221 arc_hdr_size(hdr), hdr); 2222 } 2223 if (HDR_HAS_RABD(hdr)) { 2224 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2225 HDR_GET_PSIZE(hdr), hdr); 2226 } 2227 2228 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2229 buf = buf->b_next) { 2230 if (arc_buf_is_shared(buf)) 2231 continue; 2232 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2233 arc_buf_size(buf), buf); 2234 } 2235 } 2236 2237 /* 2238 * Decrement the amount of evictable space in the arc_state_t's refcount. 2239 * We account for the space used by the hdr and the arc buf individually 2240 * so that we can add and remove them from the refcount individually. 2241 */ 2242 static void 2243 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) 2244 { 2245 arc_buf_contents_t type = arc_buf_type(hdr); 2246 2247 ASSERT(HDR_HAS_L1HDR(hdr)); 2248 2249 if (GHOST_STATE(state)) { 2250 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2251 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2252 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2253 ASSERT(!HDR_HAS_RABD(hdr)); 2254 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2255 HDR_GET_LSIZE(hdr), hdr); 2256 return; 2257 } 2258 2259 if (hdr->b_l1hdr.b_pabd != NULL) { 2260 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2261 arc_hdr_size(hdr), hdr); 2262 } 2263 if (HDR_HAS_RABD(hdr)) { 2264 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2265 HDR_GET_PSIZE(hdr), hdr); 2266 } 2267 2268 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2269 buf = buf->b_next) { 2270 if (arc_buf_is_shared(buf)) 2271 continue; 2272 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2273 arc_buf_size(buf), buf); 2274 } 2275 } 2276 2277 /* 2278 * Add a reference to this hdr indicating that someone is actively 2279 * referencing that memory. When the refcount transitions from 0 to 1, 2280 * we remove it from the respective arc_state_t list to indicate that 2281 * it is not evictable. 2282 */ 2283 static void 2284 add_reference(arc_buf_hdr_t *hdr, const void *tag) 2285 { 2286 arc_state_t *state; 2287 2288 ASSERT(HDR_HAS_L1HDR(hdr)); 2289 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) { 2290 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 2291 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2292 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2293 } 2294 2295 state = hdr->b_l1hdr.b_state; 2296 2297 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 2298 (state != arc_anon)) { 2299 /* We don't use the L2-only state list. */ 2300 if (state != arc_l2c_only) { 2301 multilist_remove(&state->arcs_list[arc_buf_type(hdr)], 2302 hdr); 2303 arc_evictable_space_decrement(hdr, state); 2304 } 2305 /* remove the prefetch flag if we get a reference */ 2306 if (HDR_HAS_L2HDR(hdr)) 2307 l2arc_hdr_arcstats_decrement_state(hdr); 2308 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 2309 if (HDR_HAS_L2HDR(hdr)) 2310 l2arc_hdr_arcstats_increment_state(hdr); 2311 } 2312 } 2313 2314 /* 2315 * Remove a reference from this hdr. When the reference transitions from 2316 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's 2317 * list making it eligible for eviction. 2318 */ 2319 static int 2320 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, const void *tag) 2321 { 2322 int cnt; 2323 arc_state_t *state = hdr->b_l1hdr.b_state; 2324 2325 ASSERT(HDR_HAS_L1HDR(hdr)); 2326 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 2327 ASSERT(!GHOST_STATE(state)); 2328 2329 /* 2330 * arc_l2c_only counts as a ghost state so we don't need to explicitly 2331 * check to prevent usage of the arc_l2c_only list. 2332 */ 2333 if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) && 2334 (state != arc_anon)) { 2335 multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr); 2336 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 2337 arc_evictable_space_increment(hdr, state); 2338 } 2339 return (cnt); 2340 } 2341 2342 /* 2343 * Returns detailed information about a specific arc buffer. When the 2344 * state_index argument is set the function will calculate the arc header 2345 * list position for its arc state. Since this requires a linear traversal 2346 * callers are strongly encourage not to do this. However, it can be helpful 2347 * for targeted analysis so the functionality is provided. 2348 */ 2349 void 2350 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index) 2351 { 2352 (void) state_index; 2353 arc_buf_hdr_t *hdr = ab->b_hdr; 2354 l1arc_buf_hdr_t *l1hdr = NULL; 2355 l2arc_buf_hdr_t *l2hdr = NULL; 2356 arc_state_t *state = NULL; 2357 2358 memset(abi, 0, sizeof (arc_buf_info_t)); 2359 2360 if (hdr == NULL) 2361 return; 2362 2363 abi->abi_flags = hdr->b_flags; 2364 2365 if (HDR_HAS_L1HDR(hdr)) { 2366 l1hdr = &hdr->b_l1hdr; 2367 state = l1hdr->b_state; 2368 } 2369 if (HDR_HAS_L2HDR(hdr)) 2370 l2hdr = &hdr->b_l2hdr; 2371 2372 if (l1hdr) { 2373 abi->abi_bufcnt = l1hdr->b_bufcnt; 2374 abi->abi_access = l1hdr->b_arc_access; 2375 abi->abi_mru_hits = l1hdr->b_mru_hits; 2376 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits; 2377 abi->abi_mfu_hits = l1hdr->b_mfu_hits; 2378 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits; 2379 abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt); 2380 } 2381 2382 if (l2hdr) { 2383 abi->abi_l2arc_dattr = l2hdr->b_daddr; 2384 abi->abi_l2arc_hits = l2hdr->b_hits; 2385 } 2386 2387 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON; 2388 abi->abi_state_contents = arc_buf_type(hdr); 2389 abi->abi_size = arc_hdr_size(hdr); 2390 } 2391 2392 /* 2393 * Move the supplied buffer to the indicated state. The hash lock 2394 * for the buffer must be held by the caller. 2395 */ 2396 static void 2397 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr, 2398 kmutex_t *hash_lock) 2399 { 2400 arc_state_t *old_state; 2401 int64_t refcnt; 2402 uint32_t bufcnt; 2403 boolean_t update_old, update_new; 2404 arc_buf_contents_t buftype = arc_buf_type(hdr); 2405 2406 /* 2407 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 2408 * in arc_read() when bringing a buffer out of the L2ARC. However, the 2409 * L1 hdr doesn't always exist when we change state to arc_anon before 2410 * destroying a header, in which case reallocating to add the L1 hdr is 2411 * pointless. 2412 */ 2413 if (HDR_HAS_L1HDR(hdr)) { 2414 old_state = hdr->b_l1hdr.b_state; 2415 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt); 2416 bufcnt = hdr->b_l1hdr.b_bufcnt; 2417 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL || 2418 HDR_HAS_RABD(hdr)); 2419 } else { 2420 old_state = arc_l2c_only; 2421 refcnt = 0; 2422 bufcnt = 0; 2423 update_old = B_FALSE; 2424 } 2425 update_new = update_old; 2426 2427 ASSERT(MUTEX_HELD(hash_lock)); 2428 ASSERT3P(new_state, !=, old_state); 2429 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0); 2430 ASSERT(old_state != arc_anon || bufcnt <= 1); 2431 2432 /* 2433 * If this buffer is evictable, transfer it from the 2434 * old state list to the new state list. 2435 */ 2436 if (refcnt == 0) { 2437 if (old_state != arc_anon && old_state != arc_l2c_only) { 2438 ASSERT(HDR_HAS_L1HDR(hdr)); 2439 multilist_remove(&old_state->arcs_list[buftype], hdr); 2440 2441 if (GHOST_STATE(old_state)) { 2442 ASSERT0(bufcnt); 2443 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2444 update_old = B_TRUE; 2445 } 2446 arc_evictable_space_decrement(hdr, old_state); 2447 } 2448 if (new_state != arc_anon && new_state != arc_l2c_only) { 2449 /* 2450 * An L1 header always exists here, since if we're 2451 * moving to some L1-cached state (i.e. not l2c_only or 2452 * anonymous), we realloc the header to add an L1hdr 2453 * beforehand. 2454 */ 2455 ASSERT(HDR_HAS_L1HDR(hdr)); 2456 multilist_insert(&new_state->arcs_list[buftype], hdr); 2457 2458 if (GHOST_STATE(new_state)) { 2459 ASSERT0(bufcnt); 2460 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2461 update_new = B_TRUE; 2462 } 2463 arc_evictable_space_increment(hdr, new_state); 2464 } 2465 } 2466 2467 ASSERT(!HDR_EMPTY(hdr)); 2468 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 2469 buf_hash_remove(hdr); 2470 2471 /* adjust state sizes (ignore arc_l2c_only) */ 2472 2473 if (update_new && new_state != arc_l2c_only) { 2474 ASSERT(HDR_HAS_L1HDR(hdr)); 2475 if (GHOST_STATE(new_state)) { 2476 ASSERT0(bufcnt); 2477 2478 /* 2479 * When moving a header to a ghost state, we first 2480 * remove all arc buffers. Thus, we'll have a 2481 * bufcnt of zero, and no arc buffer to use for 2482 * the reference. As a result, we use the arc 2483 * header pointer for the reference. 2484 */ 2485 (void) zfs_refcount_add_many(&new_state->arcs_size, 2486 HDR_GET_LSIZE(hdr), hdr); 2487 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2488 ASSERT(!HDR_HAS_RABD(hdr)); 2489 } else { 2490 uint32_t buffers = 0; 2491 2492 /* 2493 * Each individual buffer holds a unique reference, 2494 * thus we must remove each of these references one 2495 * at a time. 2496 */ 2497 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2498 buf = buf->b_next) { 2499 ASSERT3U(bufcnt, !=, 0); 2500 buffers++; 2501 2502 /* 2503 * When the arc_buf_t is sharing the data 2504 * block with the hdr, the owner of the 2505 * reference belongs to the hdr. Only 2506 * add to the refcount if the arc_buf_t is 2507 * not shared. 2508 */ 2509 if (arc_buf_is_shared(buf)) 2510 continue; 2511 2512 (void) zfs_refcount_add_many( 2513 &new_state->arcs_size, 2514 arc_buf_size(buf), buf); 2515 } 2516 ASSERT3U(bufcnt, ==, buffers); 2517 2518 if (hdr->b_l1hdr.b_pabd != NULL) { 2519 (void) zfs_refcount_add_many( 2520 &new_state->arcs_size, 2521 arc_hdr_size(hdr), hdr); 2522 } 2523 2524 if (HDR_HAS_RABD(hdr)) { 2525 (void) zfs_refcount_add_many( 2526 &new_state->arcs_size, 2527 HDR_GET_PSIZE(hdr), hdr); 2528 } 2529 } 2530 } 2531 2532 if (update_old && old_state != arc_l2c_only) { 2533 ASSERT(HDR_HAS_L1HDR(hdr)); 2534 if (GHOST_STATE(old_state)) { 2535 ASSERT0(bufcnt); 2536 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2537 ASSERT(!HDR_HAS_RABD(hdr)); 2538 2539 /* 2540 * When moving a header off of a ghost state, 2541 * the header will not contain any arc buffers. 2542 * We use the arc header pointer for the reference 2543 * which is exactly what we did when we put the 2544 * header on the ghost state. 2545 */ 2546 2547 (void) zfs_refcount_remove_many(&old_state->arcs_size, 2548 HDR_GET_LSIZE(hdr), hdr); 2549 } else { 2550 uint32_t buffers = 0; 2551 2552 /* 2553 * Each individual buffer holds a unique reference, 2554 * thus we must remove each of these references one 2555 * at a time. 2556 */ 2557 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2558 buf = buf->b_next) { 2559 ASSERT3U(bufcnt, !=, 0); 2560 buffers++; 2561 2562 /* 2563 * When the arc_buf_t is sharing the data 2564 * block with the hdr, the owner of the 2565 * reference belongs to the hdr. Only 2566 * add to the refcount if the arc_buf_t is 2567 * not shared. 2568 */ 2569 if (arc_buf_is_shared(buf)) 2570 continue; 2571 2572 (void) zfs_refcount_remove_many( 2573 &old_state->arcs_size, arc_buf_size(buf), 2574 buf); 2575 } 2576 ASSERT3U(bufcnt, ==, buffers); 2577 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 2578 HDR_HAS_RABD(hdr)); 2579 2580 if (hdr->b_l1hdr.b_pabd != NULL) { 2581 (void) zfs_refcount_remove_many( 2582 &old_state->arcs_size, arc_hdr_size(hdr), 2583 hdr); 2584 } 2585 2586 if (HDR_HAS_RABD(hdr)) { 2587 (void) zfs_refcount_remove_many( 2588 &old_state->arcs_size, HDR_GET_PSIZE(hdr), 2589 hdr); 2590 } 2591 } 2592 } 2593 2594 if (HDR_HAS_L1HDR(hdr)) { 2595 hdr->b_l1hdr.b_state = new_state; 2596 2597 if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) { 2598 l2arc_hdr_arcstats_decrement_state(hdr); 2599 hdr->b_l2hdr.b_arcs_state = new_state->arcs_state; 2600 l2arc_hdr_arcstats_increment_state(hdr); 2601 } 2602 } 2603 } 2604 2605 void 2606 arc_space_consume(uint64_t space, arc_space_type_t type) 2607 { 2608 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2609 2610 switch (type) { 2611 default: 2612 break; 2613 case ARC_SPACE_DATA: 2614 ARCSTAT_INCR(arcstat_data_size, space); 2615 break; 2616 case ARC_SPACE_META: 2617 ARCSTAT_INCR(arcstat_metadata_size, space); 2618 break; 2619 case ARC_SPACE_BONUS: 2620 ARCSTAT_INCR(arcstat_bonus_size, space); 2621 break; 2622 case ARC_SPACE_DNODE: 2623 aggsum_add(&arc_sums.arcstat_dnode_size, space); 2624 break; 2625 case ARC_SPACE_DBUF: 2626 ARCSTAT_INCR(arcstat_dbuf_size, space); 2627 break; 2628 case ARC_SPACE_HDRS: 2629 ARCSTAT_INCR(arcstat_hdr_size, space); 2630 break; 2631 case ARC_SPACE_L2HDRS: 2632 aggsum_add(&arc_sums.arcstat_l2_hdr_size, space); 2633 break; 2634 case ARC_SPACE_ABD_CHUNK_WASTE: 2635 /* 2636 * Note: this includes space wasted by all scatter ABD's, not 2637 * just those allocated by the ARC. But the vast majority of 2638 * scatter ABD's come from the ARC, because other users are 2639 * very short-lived. 2640 */ 2641 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, space); 2642 break; 2643 } 2644 2645 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) 2646 aggsum_add(&arc_sums.arcstat_meta_used, space); 2647 2648 aggsum_add(&arc_sums.arcstat_size, space); 2649 } 2650 2651 void 2652 arc_space_return(uint64_t space, arc_space_type_t type) 2653 { 2654 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2655 2656 switch (type) { 2657 default: 2658 break; 2659 case ARC_SPACE_DATA: 2660 ARCSTAT_INCR(arcstat_data_size, -space); 2661 break; 2662 case ARC_SPACE_META: 2663 ARCSTAT_INCR(arcstat_metadata_size, -space); 2664 break; 2665 case ARC_SPACE_BONUS: 2666 ARCSTAT_INCR(arcstat_bonus_size, -space); 2667 break; 2668 case ARC_SPACE_DNODE: 2669 aggsum_add(&arc_sums.arcstat_dnode_size, -space); 2670 break; 2671 case ARC_SPACE_DBUF: 2672 ARCSTAT_INCR(arcstat_dbuf_size, -space); 2673 break; 2674 case ARC_SPACE_HDRS: 2675 ARCSTAT_INCR(arcstat_hdr_size, -space); 2676 break; 2677 case ARC_SPACE_L2HDRS: 2678 aggsum_add(&arc_sums.arcstat_l2_hdr_size, -space); 2679 break; 2680 case ARC_SPACE_ABD_CHUNK_WASTE: 2681 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, -space); 2682 break; 2683 } 2684 2685 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) { 2686 ASSERT(aggsum_compare(&arc_sums.arcstat_meta_used, 2687 space) >= 0); 2688 ARCSTAT_MAX(arcstat_meta_max, 2689 aggsum_upper_bound(&arc_sums.arcstat_meta_used)); 2690 aggsum_add(&arc_sums.arcstat_meta_used, -space); 2691 } 2692 2693 ASSERT(aggsum_compare(&arc_sums.arcstat_size, space) >= 0); 2694 aggsum_add(&arc_sums.arcstat_size, -space); 2695 } 2696 2697 /* 2698 * Given a hdr and a buf, returns whether that buf can share its b_data buffer 2699 * with the hdr's b_pabd. 2700 */ 2701 static boolean_t 2702 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2703 { 2704 /* 2705 * The criteria for sharing a hdr's data are: 2706 * 1. the buffer is not encrypted 2707 * 2. the hdr's compression matches the buf's compression 2708 * 3. the hdr doesn't need to be byteswapped 2709 * 4. the hdr isn't already being shared 2710 * 5. the buf is either compressed or it is the last buf in the hdr list 2711 * 2712 * Criterion #5 maintains the invariant that shared uncompressed 2713 * bufs must be the final buf in the hdr's b_buf list. Reading this, you 2714 * might ask, "if a compressed buf is allocated first, won't that be the 2715 * last thing in the list?", but in that case it's impossible to create 2716 * a shared uncompressed buf anyway (because the hdr must be compressed 2717 * to have the compressed buf). You might also think that #3 is 2718 * sufficient to make this guarantee, however it's possible 2719 * (specifically in the rare L2ARC write race mentioned in 2720 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that 2721 * is shareable, but wasn't at the time of its allocation. Rather than 2722 * allow a new shared uncompressed buf to be created and then shuffle 2723 * the list around to make it the last element, this simply disallows 2724 * sharing if the new buf isn't the first to be added. 2725 */ 2726 ASSERT3P(buf->b_hdr, ==, hdr); 2727 boolean_t hdr_compressed = 2728 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF; 2729 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0; 2730 return (!ARC_BUF_ENCRYPTED(buf) && 2731 buf_compressed == hdr_compressed && 2732 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && 2733 !HDR_SHARED_DATA(hdr) && 2734 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf))); 2735 } 2736 2737 /* 2738 * Allocate a buf for this hdr. If you care about the data that's in the hdr, 2739 * or if you want a compressed buffer, pass those flags in. Returns 0 if the 2740 * copy was made successfully, or an error code otherwise. 2741 */ 2742 static int 2743 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb, 2744 const void *tag, boolean_t encrypted, boolean_t compressed, 2745 boolean_t noauth, boolean_t fill, arc_buf_t **ret) 2746 { 2747 arc_buf_t *buf; 2748 arc_fill_flags_t flags = ARC_FILL_LOCKED; 2749 2750 ASSERT(HDR_HAS_L1HDR(hdr)); 2751 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2752 VERIFY(hdr->b_type == ARC_BUFC_DATA || 2753 hdr->b_type == ARC_BUFC_METADATA); 2754 ASSERT3P(ret, !=, NULL); 2755 ASSERT3P(*ret, ==, NULL); 2756 IMPLY(encrypted, compressed); 2757 2758 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2759 buf->b_hdr = hdr; 2760 buf->b_data = NULL; 2761 buf->b_next = hdr->b_l1hdr.b_buf; 2762 buf->b_flags = 0; 2763 2764 add_reference(hdr, tag); 2765 2766 /* 2767 * We're about to change the hdr's b_flags. We must either 2768 * hold the hash_lock or be undiscoverable. 2769 */ 2770 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2771 2772 /* 2773 * Only honor requests for compressed bufs if the hdr is actually 2774 * compressed. This must be overridden if the buffer is encrypted since 2775 * encrypted buffers cannot be decompressed. 2776 */ 2777 if (encrypted) { 2778 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2779 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED; 2780 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED; 2781 } else if (compressed && 2782 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 2783 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2784 flags |= ARC_FILL_COMPRESSED; 2785 } 2786 2787 if (noauth) { 2788 ASSERT0(encrypted); 2789 flags |= ARC_FILL_NOAUTH; 2790 } 2791 2792 /* 2793 * If the hdr's data can be shared then we share the data buffer and 2794 * set the appropriate bit in the hdr's b_flags to indicate the hdr is 2795 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new 2796 * buffer to store the buf's data. 2797 * 2798 * There are two additional restrictions here because we're sharing 2799 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be 2800 * actively involved in an L2ARC write, because if this buf is used by 2801 * an arc_write() then the hdr's data buffer will be released when the 2802 * write completes, even though the L2ARC write might still be using it. 2803 * Second, the hdr's ABD must be linear so that the buf's user doesn't 2804 * need to be ABD-aware. It must be allocated via 2805 * zio_[data_]buf_alloc(), not as a page, because we need to be able 2806 * to abd_release_ownership_of_buf(), which isn't allowed on "linear 2807 * page" buffers because the ABD code needs to handle freeing them 2808 * specially. 2809 */ 2810 boolean_t can_share = arc_can_share(hdr, buf) && 2811 !HDR_L2_WRITING(hdr) && 2812 hdr->b_l1hdr.b_pabd != NULL && 2813 abd_is_linear(hdr->b_l1hdr.b_pabd) && 2814 !abd_is_linear_page(hdr->b_l1hdr.b_pabd); 2815 2816 /* Set up b_data and sharing */ 2817 if (can_share) { 2818 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd); 2819 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2820 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2821 } else { 2822 buf->b_data = 2823 arc_get_data_buf(hdr, arc_buf_size(buf), buf); 2824 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2825 } 2826 VERIFY3P(buf->b_data, !=, NULL); 2827 2828 hdr->b_l1hdr.b_buf = buf; 2829 hdr->b_l1hdr.b_bufcnt += 1; 2830 if (encrypted) 2831 hdr->b_crypt_hdr.b_ebufcnt += 1; 2832 2833 /* 2834 * If the user wants the data from the hdr, we need to either copy or 2835 * decompress the data. 2836 */ 2837 if (fill) { 2838 ASSERT3P(zb, !=, NULL); 2839 return (arc_buf_fill(buf, spa, zb, flags)); 2840 } 2841 2842 return (0); 2843 } 2844 2845 static const char *arc_onloan_tag = "onloan"; 2846 2847 static inline void 2848 arc_loaned_bytes_update(int64_t delta) 2849 { 2850 atomic_add_64(&arc_loaned_bytes, delta); 2851 2852 /* assert that it did not wrap around */ 2853 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 2854 } 2855 2856 /* 2857 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 2858 * flight data by arc_tempreserve_space() until they are "returned". Loaned 2859 * buffers must be returned to the arc before they can be used by the DMU or 2860 * freed. 2861 */ 2862 arc_buf_t * 2863 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size) 2864 { 2865 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag, 2866 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size); 2867 2868 arc_loaned_bytes_update(arc_buf_size(buf)); 2869 2870 return (buf); 2871 } 2872 2873 arc_buf_t * 2874 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize, 2875 enum zio_compress compression_type, uint8_t complevel) 2876 { 2877 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag, 2878 psize, lsize, compression_type, complevel); 2879 2880 arc_loaned_bytes_update(arc_buf_size(buf)); 2881 2882 return (buf); 2883 } 2884 2885 arc_buf_t * 2886 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder, 2887 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 2888 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 2889 enum zio_compress compression_type, uint8_t complevel) 2890 { 2891 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj, 2892 byteorder, salt, iv, mac, ot, psize, lsize, compression_type, 2893 complevel); 2894 2895 atomic_add_64(&arc_loaned_bytes, psize); 2896 return (buf); 2897 } 2898 2899 2900 /* 2901 * Return a loaned arc buffer to the arc. 2902 */ 2903 void 2904 arc_return_buf(arc_buf_t *buf, const void *tag) 2905 { 2906 arc_buf_hdr_t *hdr = buf->b_hdr; 2907 2908 ASSERT3P(buf->b_data, !=, NULL); 2909 ASSERT(HDR_HAS_L1HDR(hdr)); 2910 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 2911 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2912 2913 arc_loaned_bytes_update(-arc_buf_size(buf)); 2914 } 2915 2916 /* Detach an arc_buf from a dbuf (tag) */ 2917 void 2918 arc_loan_inuse_buf(arc_buf_t *buf, const void *tag) 2919 { 2920 arc_buf_hdr_t *hdr = buf->b_hdr; 2921 2922 ASSERT3P(buf->b_data, !=, NULL); 2923 ASSERT(HDR_HAS_L1HDR(hdr)); 2924 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2925 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 2926 2927 arc_loaned_bytes_update(arc_buf_size(buf)); 2928 } 2929 2930 static void 2931 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type) 2932 { 2933 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); 2934 2935 df->l2df_abd = abd; 2936 df->l2df_size = size; 2937 df->l2df_type = type; 2938 mutex_enter(&l2arc_free_on_write_mtx); 2939 list_insert_head(l2arc_free_on_write, df); 2940 mutex_exit(&l2arc_free_on_write_mtx); 2941 } 2942 2943 static void 2944 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata) 2945 { 2946 arc_state_t *state = hdr->b_l1hdr.b_state; 2947 arc_buf_contents_t type = arc_buf_type(hdr); 2948 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 2949 2950 /* protected by hash lock, if in the hash table */ 2951 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2952 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2953 ASSERT(state != arc_anon && state != arc_l2c_only); 2954 2955 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2956 size, hdr); 2957 } 2958 (void) zfs_refcount_remove_many(&state->arcs_size, size, hdr); 2959 if (type == ARC_BUFC_METADATA) { 2960 arc_space_return(size, ARC_SPACE_META); 2961 } else { 2962 ASSERT(type == ARC_BUFC_DATA); 2963 arc_space_return(size, ARC_SPACE_DATA); 2964 } 2965 2966 if (free_rdata) { 2967 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type); 2968 } else { 2969 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type); 2970 } 2971 } 2972 2973 /* 2974 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the 2975 * data buffer, we transfer the refcount ownership to the hdr and update 2976 * the appropriate kstats. 2977 */ 2978 static void 2979 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2980 { 2981 ASSERT(arc_can_share(hdr, buf)); 2982 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2983 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 2984 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2985 2986 /* 2987 * Start sharing the data buffer. We transfer the 2988 * refcount ownership to the hdr since it always owns 2989 * the refcount whenever an arc_buf_t is shared. 2990 */ 2991 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 2992 arc_hdr_size(hdr), buf, hdr); 2993 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf)); 2994 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd, 2995 HDR_ISTYPE_METADATA(hdr)); 2996 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2997 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2998 2999 /* 3000 * Since we've transferred ownership to the hdr we need 3001 * to increment its compressed and uncompressed kstats and 3002 * decrement the overhead size. 3003 */ 3004 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 3005 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3006 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf)); 3007 } 3008 3009 static void 3010 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 3011 { 3012 ASSERT(arc_buf_is_shared(buf)); 3013 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3014 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3015 3016 /* 3017 * We are no longer sharing this buffer so we need 3018 * to transfer its ownership to the rightful owner. 3019 */ 3020 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 3021 arc_hdr_size(hdr), hdr, buf); 3022 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3023 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd); 3024 abd_free(hdr->b_l1hdr.b_pabd); 3025 hdr->b_l1hdr.b_pabd = NULL; 3026 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 3027 3028 /* 3029 * Since the buffer is no longer shared between 3030 * the arc buf and the hdr, count it as overhead. 3031 */ 3032 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 3033 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3034 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 3035 } 3036 3037 /* 3038 * Remove an arc_buf_t from the hdr's buf list and return the last 3039 * arc_buf_t on the list. If no buffers remain on the list then return 3040 * NULL. 3041 */ 3042 static arc_buf_t * 3043 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf) 3044 { 3045 ASSERT(HDR_HAS_L1HDR(hdr)); 3046 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3047 3048 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf; 3049 arc_buf_t *lastbuf = NULL; 3050 3051 /* 3052 * Remove the buf from the hdr list and locate the last 3053 * remaining buffer on the list. 3054 */ 3055 while (*bufp != NULL) { 3056 if (*bufp == buf) 3057 *bufp = buf->b_next; 3058 3059 /* 3060 * If we've removed a buffer in the middle of 3061 * the list then update the lastbuf and update 3062 * bufp. 3063 */ 3064 if (*bufp != NULL) { 3065 lastbuf = *bufp; 3066 bufp = &(*bufp)->b_next; 3067 } 3068 } 3069 buf->b_next = NULL; 3070 ASSERT3P(lastbuf, !=, buf); 3071 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL); 3072 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL); 3073 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf)); 3074 3075 return (lastbuf); 3076 } 3077 3078 /* 3079 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's 3080 * list and free it. 3081 */ 3082 static void 3083 arc_buf_destroy_impl(arc_buf_t *buf) 3084 { 3085 arc_buf_hdr_t *hdr = buf->b_hdr; 3086 3087 /* 3088 * Free up the data associated with the buf but only if we're not 3089 * sharing this with the hdr. If we are sharing it with the hdr, the 3090 * hdr is responsible for doing the free. 3091 */ 3092 if (buf->b_data != NULL) { 3093 /* 3094 * We're about to change the hdr's b_flags. We must either 3095 * hold the hash_lock or be undiscoverable. 3096 */ 3097 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3098 3099 arc_cksum_verify(buf); 3100 arc_buf_unwatch(buf); 3101 3102 if (arc_buf_is_shared(buf)) { 3103 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3104 } else { 3105 uint64_t size = arc_buf_size(buf); 3106 arc_free_data_buf(hdr, buf->b_data, size, buf); 3107 ARCSTAT_INCR(arcstat_overhead_size, -size); 3108 } 3109 buf->b_data = NULL; 3110 3111 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3112 hdr->b_l1hdr.b_bufcnt -= 1; 3113 3114 if (ARC_BUF_ENCRYPTED(buf)) { 3115 hdr->b_crypt_hdr.b_ebufcnt -= 1; 3116 3117 /* 3118 * If we have no more encrypted buffers and we've 3119 * already gotten a copy of the decrypted data we can 3120 * free b_rabd to save some space. 3121 */ 3122 if (hdr->b_crypt_hdr.b_ebufcnt == 0 && 3123 HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL && 3124 !HDR_IO_IN_PROGRESS(hdr)) { 3125 arc_hdr_free_abd(hdr, B_TRUE); 3126 } 3127 } 3128 } 3129 3130 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 3131 3132 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 3133 /* 3134 * If the current arc_buf_t is sharing its data buffer with the 3135 * hdr, then reassign the hdr's b_pabd to share it with the new 3136 * buffer at the end of the list. The shared buffer is always 3137 * the last one on the hdr's buffer list. 3138 * 3139 * There is an equivalent case for compressed bufs, but since 3140 * they aren't guaranteed to be the last buf in the list and 3141 * that is an exceedingly rare case, we just allow that space be 3142 * wasted temporarily. We must also be careful not to share 3143 * encrypted buffers, since they cannot be shared. 3144 */ 3145 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) { 3146 /* Only one buf can be shared at once */ 3147 VERIFY(!arc_buf_is_shared(lastbuf)); 3148 /* hdr is uncompressed so can't have compressed buf */ 3149 VERIFY(!ARC_BUF_COMPRESSED(lastbuf)); 3150 3151 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3152 arc_hdr_free_abd(hdr, B_FALSE); 3153 3154 /* 3155 * We must setup a new shared block between the 3156 * last buffer and the hdr. The data would have 3157 * been allocated by the arc buf so we need to transfer 3158 * ownership to the hdr since it's now being shared. 3159 */ 3160 arc_share_buf(hdr, lastbuf); 3161 } 3162 } else if (HDR_SHARED_DATA(hdr)) { 3163 /* 3164 * Uncompressed shared buffers are always at the end 3165 * of the list. Compressed buffers don't have the 3166 * same requirements. This makes it hard to 3167 * simply assert that the lastbuf is shared so 3168 * we rely on the hdr's compression flags to determine 3169 * if we have a compressed, shared buffer. 3170 */ 3171 ASSERT3P(lastbuf, !=, NULL); 3172 ASSERT(arc_buf_is_shared(lastbuf) || 3173 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 3174 } 3175 3176 /* 3177 * Free the checksum if we're removing the last uncompressed buf from 3178 * this hdr. 3179 */ 3180 if (!arc_hdr_has_uncompressed_buf(hdr)) { 3181 arc_cksum_free(hdr); 3182 } 3183 3184 /* clean up the buf */ 3185 buf->b_hdr = NULL; 3186 kmem_cache_free(buf_cache, buf); 3187 } 3188 3189 static void 3190 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags) 3191 { 3192 uint64_t size; 3193 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0); 3194 3195 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 3196 ASSERT(HDR_HAS_L1HDR(hdr)); 3197 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata); 3198 IMPLY(alloc_rdata, HDR_PROTECTED(hdr)); 3199 3200 if (alloc_rdata) { 3201 size = HDR_GET_PSIZE(hdr); 3202 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL); 3203 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr, 3204 alloc_flags); 3205 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL); 3206 ARCSTAT_INCR(arcstat_raw_size, size); 3207 } else { 3208 size = arc_hdr_size(hdr); 3209 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3210 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr, 3211 alloc_flags); 3212 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3213 } 3214 3215 ARCSTAT_INCR(arcstat_compressed_size, size); 3216 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3217 } 3218 3219 static void 3220 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata) 3221 { 3222 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 3223 3224 ASSERT(HDR_HAS_L1HDR(hdr)); 3225 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 3226 IMPLY(free_rdata, HDR_HAS_RABD(hdr)); 3227 3228 /* 3229 * If the hdr is currently being written to the l2arc then 3230 * we defer freeing the data by adding it to the l2arc_free_on_write 3231 * list. The l2arc will free the data once it's finished 3232 * writing it to the l2arc device. 3233 */ 3234 if (HDR_L2_WRITING(hdr)) { 3235 arc_hdr_free_on_write(hdr, free_rdata); 3236 ARCSTAT_BUMP(arcstat_l2_free_on_write); 3237 } else if (free_rdata) { 3238 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr); 3239 } else { 3240 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr); 3241 } 3242 3243 if (free_rdata) { 3244 hdr->b_crypt_hdr.b_rabd = NULL; 3245 ARCSTAT_INCR(arcstat_raw_size, -size); 3246 } else { 3247 hdr->b_l1hdr.b_pabd = NULL; 3248 } 3249 3250 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr)) 3251 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 3252 3253 ARCSTAT_INCR(arcstat_compressed_size, -size); 3254 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3255 } 3256 3257 /* 3258 * Allocate empty anonymous ARC header. The header will get its identity 3259 * assigned and buffers attached later as part of read or write operations. 3260 * 3261 * In case of read arc_read() assigns header its identify (b_dva + b_birth), 3262 * inserts it into ARC hash to become globally visible and allocates physical 3263 * (b_pabd) or raw (b_rabd) ABD buffer to read into from disk. On disk read 3264 * completion arc_read_done() allocates ARC buffer(s) as needed, potentially 3265 * sharing one of them with the physical ABD buffer. 3266 * 3267 * In case of write arc_alloc_buf() allocates ARC buffer to be filled with 3268 * data. Then after compression and/or encryption arc_write_ready() allocates 3269 * and fills (or potentially shares) physical (b_pabd) or raw (b_rabd) ABD 3270 * buffer. On disk write completion arc_write_done() assigns the header its 3271 * new identity (b_dva + b_birth) and inserts into ARC hash. 3272 * 3273 * In case of partial overwrite the old data is read first as described. Then 3274 * arc_release() either allocates new anonymous ARC header and moves the ARC 3275 * buffer to it, or reuses the old ARC header by discarding its identity and 3276 * removing it from ARC hash. After buffer modification normal write process 3277 * follows as described. 3278 */ 3279 static arc_buf_hdr_t * 3280 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, 3281 boolean_t protected, enum zio_compress compression_type, uint8_t complevel, 3282 arc_buf_contents_t type) 3283 { 3284 arc_buf_hdr_t *hdr; 3285 3286 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); 3287 if (protected) { 3288 hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE); 3289 } else { 3290 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 3291 } 3292 3293 ASSERT(HDR_EMPTY(hdr)); 3294 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3295 HDR_SET_PSIZE(hdr, psize); 3296 HDR_SET_LSIZE(hdr, lsize); 3297 hdr->b_spa = spa; 3298 hdr->b_type = type; 3299 hdr->b_flags = 0; 3300 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); 3301 arc_hdr_set_compress(hdr, compression_type); 3302 hdr->b_complevel = complevel; 3303 if (protected) 3304 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 3305 3306 hdr->b_l1hdr.b_state = arc_anon; 3307 hdr->b_l1hdr.b_arc_access = 0; 3308 hdr->b_l1hdr.b_mru_hits = 0; 3309 hdr->b_l1hdr.b_mru_ghost_hits = 0; 3310 hdr->b_l1hdr.b_mfu_hits = 0; 3311 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 3312 hdr->b_l1hdr.b_bufcnt = 0; 3313 hdr->b_l1hdr.b_buf = NULL; 3314 3315 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3316 3317 return (hdr); 3318 } 3319 3320 /* 3321 * Transition between the two allocation states for the arc_buf_hdr struct. 3322 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 3323 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 3324 * version is used when a cache buffer is only in the L2ARC in order to reduce 3325 * memory usage. 3326 */ 3327 static arc_buf_hdr_t * 3328 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 3329 { 3330 ASSERT(HDR_HAS_L2HDR(hdr)); 3331 3332 arc_buf_hdr_t *nhdr; 3333 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3334 3335 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 3336 (old == hdr_l2only_cache && new == hdr_full_cache)); 3337 3338 /* 3339 * if the caller wanted a new full header and the header is to be 3340 * encrypted we will actually allocate the header from the full crypt 3341 * cache instead. The same applies to freeing from the old cache. 3342 */ 3343 if (HDR_PROTECTED(hdr) && new == hdr_full_cache) 3344 new = hdr_full_crypt_cache; 3345 if (HDR_PROTECTED(hdr) && old == hdr_full_cache) 3346 old = hdr_full_crypt_cache; 3347 3348 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 3349 3350 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 3351 buf_hash_remove(hdr); 3352 3353 memcpy(nhdr, hdr, HDR_L2ONLY_SIZE); 3354 3355 if (new == hdr_full_cache || new == hdr_full_crypt_cache) { 3356 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3357 /* 3358 * arc_access and arc_change_state need to be aware that a 3359 * header has just come out of L2ARC, so we set its state to 3360 * l2c_only even though it's about to change. 3361 */ 3362 nhdr->b_l1hdr.b_state = arc_l2c_only; 3363 3364 /* Verify previous threads set to NULL before freeing */ 3365 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL); 3366 ASSERT(!HDR_HAS_RABD(hdr)); 3367 } else { 3368 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3369 ASSERT0(hdr->b_l1hdr.b_bufcnt); 3370 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3371 3372 /* 3373 * If we've reached here, We must have been called from 3374 * arc_evict_hdr(), as such we should have already been 3375 * removed from any ghost list we were previously on 3376 * (which protects us from racing with arc_evict_state), 3377 * thus no locking is needed during this check. 3378 */ 3379 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3380 3381 /* 3382 * A buffer must not be moved into the arc_l2c_only 3383 * state if it's not finished being written out to the 3384 * l2arc device. Otherwise, the b_l1hdr.b_pabd field 3385 * might try to be accessed, even though it was removed. 3386 */ 3387 VERIFY(!HDR_L2_WRITING(hdr)); 3388 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3389 ASSERT(!HDR_HAS_RABD(hdr)); 3390 3391 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3392 } 3393 /* 3394 * The header has been reallocated so we need to re-insert it into any 3395 * lists it was on. 3396 */ 3397 (void) buf_hash_insert(nhdr, NULL); 3398 3399 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 3400 3401 mutex_enter(&dev->l2ad_mtx); 3402 3403 /* 3404 * We must place the realloc'ed header back into the list at 3405 * the same spot. Otherwise, if it's placed earlier in the list, 3406 * l2arc_write_buffers() could find it during the function's 3407 * write phase, and try to write it out to the l2arc. 3408 */ 3409 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 3410 list_remove(&dev->l2ad_buflist, hdr); 3411 3412 mutex_exit(&dev->l2ad_mtx); 3413 3414 /* 3415 * Since we're using the pointer address as the tag when 3416 * incrementing and decrementing the l2ad_alloc refcount, we 3417 * must remove the old pointer (that we're about to destroy) and 3418 * add the new pointer to the refcount. Otherwise we'd remove 3419 * the wrong pointer address when calling arc_hdr_destroy() later. 3420 */ 3421 3422 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 3423 arc_hdr_size(hdr), hdr); 3424 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 3425 arc_hdr_size(nhdr), nhdr); 3426 3427 buf_discard_identity(hdr); 3428 kmem_cache_free(old, hdr); 3429 3430 return (nhdr); 3431 } 3432 3433 /* 3434 * This function allows an L1 header to be reallocated as a crypt 3435 * header and vice versa. If we are going to a crypt header, the 3436 * new fields will be zeroed out. 3437 */ 3438 static arc_buf_hdr_t * 3439 arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt) 3440 { 3441 arc_buf_hdr_t *nhdr; 3442 arc_buf_t *buf; 3443 kmem_cache_t *ncache, *ocache; 3444 3445 /* 3446 * This function requires that hdr is in the arc_anon state. 3447 * Therefore it won't have any L2ARC data for us to worry 3448 * about copying. 3449 */ 3450 ASSERT(HDR_HAS_L1HDR(hdr)); 3451 ASSERT(!HDR_HAS_L2HDR(hdr)); 3452 ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt); 3453 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3454 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3455 ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node)); 3456 ASSERT3P(hdr->b_hash_next, ==, NULL); 3457 3458 if (need_crypt) { 3459 ncache = hdr_full_crypt_cache; 3460 ocache = hdr_full_cache; 3461 } else { 3462 ncache = hdr_full_cache; 3463 ocache = hdr_full_crypt_cache; 3464 } 3465 3466 nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE); 3467 3468 /* 3469 * Copy all members that aren't locks or condvars to the new header. 3470 * No lists are pointing to us (as we asserted above), so we don't 3471 * need to worry about the list nodes. 3472 */ 3473 nhdr->b_dva = hdr->b_dva; 3474 nhdr->b_birth = hdr->b_birth; 3475 nhdr->b_type = hdr->b_type; 3476 nhdr->b_flags = hdr->b_flags; 3477 nhdr->b_psize = hdr->b_psize; 3478 nhdr->b_lsize = hdr->b_lsize; 3479 nhdr->b_spa = hdr->b_spa; 3480 nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum; 3481 nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt; 3482 nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap; 3483 nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state; 3484 nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access; 3485 nhdr->b_l1hdr.b_mru_hits = hdr->b_l1hdr.b_mru_hits; 3486 nhdr->b_l1hdr.b_mru_ghost_hits = hdr->b_l1hdr.b_mru_ghost_hits; 3487 nhdr->b_l1hdr.b_mfu_hits = hdr->b_l1hdr.b_mfu_hits; 3488 nhdr->b_l1hdr.b_mfu_ghost_hits = hdr->b_l1hdr.b_mfu_ghost_hits; 3489 nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb; 3490 nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd; 3491 3492 /* 3493 * This zfs_refcount_add() exists only to ensure that the individual 3494 * arc buffers always point to a header that is referenced, avoiding 3495 * a small race condition that could trigger ASSERTs. 3496 */ 3497 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG); 3498 nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf; 3499 for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) { 3500 mutex_enter(&buf->b_evict_lock); 3501 buf->b_hdr = nhdr; 3502 mutex_exit(&buf->b_evict_lock); 3503 } 3504 3505 zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt); 3506 (void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG); 3507 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3508 3509 if (need_crypt) { 3510 arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED); 3511 } else { 3512 arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED); 3513 } 3514 3515 /* unset all members of the original hdr */ 3516 memset(&hdr->b_dva, 0, sizeof (dva_t)); 3517 hdr->b_birth = 0; 3518 hdr->b_type = ARC_BUFC_INVALID; 3519 hdr->b_flags = 0; 3520 hdr->b_psize = 0; 3521 hdr->b_lsize = 0; 3522 hdr->b_spa = 0; 3523 hdr->b_l1hdr.b_freeze_cksum = NULL; 3524 hdr->b_l1hdr.b_buf = NULL; 3525 hdr->b_l1hdr.b_bufcnt = 0; 3526 hdr->b_l1hdr.b_byteswap = 0; 3527 hdr->b_l1hdr.b_state = NULL; 3528 hdr->b_l1hdr.b_arc_access = 0; 3529 hdr->b_l1hdr.b_mru_hits = 0; 3530 hdr->b_l1hdr.b_mru_ghost_hits = 0; 3531 hdr->b_l1hdr.b_mfu_hits = 0; 3532 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 3533 hdr->b_l1hdr.b_acb = NULL; 3534 hdr->b_l1hdr.b_pabd = NULL; 3535 3536 if (ocache == hdr_full_crypt_cache) { 3537 ASSERT(!HDR_HAS_RABD(hdr)); 3538 hdr->b_crypt_hdr.b_ot = DMU_OT_NONE; 3539 hdr->b_crypt_hdr.b_ebufcnt = 0; 3540 hdr->b_crypt_hdr.b_dsobj = 0; 3541 memset(hdr->b_crypt_hdr.b_salt, 0, ZIO_DATA_SALT_LEN); 3542 memset(hdr->b_crypt_hdr.b_iv, 0, ZIO_DATA_IV_LEN); 3543 memset(hdr->b_crypt_hdr.b_mac, 0, ZIO_DATA_MAC_LEN); 3544 } 3545 3546 buf_discard_identity(hdr); 3547 kmem_cache_free(ocache, hdr); 3548 3549 return (nhdr); 3550 } 3551 3552 /* 3553 * This function is used by the send / receive code to convert a newly 3554 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It 3555 * is also used to allow the root objset block to be updated without altering 3556 * its embedded MACs. Both block types will always be uncompressed so we do not 3557 * have to worry about compression type or psize. 3558 */ 3559 void 3560 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder, 3561 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv, 3562 const uint8_t *mac) 3563 { 3564 arc_buf_hdr_t *hdr = buf->b_hdr; 3565 3566 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET); 3567 ASSERT(HDR_HAS_L1HDR(hdr)); 3568 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3569 3570 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED); 3571 if (!HDR_PROTECTED(hdr)) 3572 hdr = arc_hdr_realloc_crypt(hdr, B_TRUE); 3573 hdr->b_crypt_hdr.b_dsobj = dsobj; 3574 hdr->b_crypt_hdr.b_ot = ot; 3575 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3576 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3577 if (!arc_hdr_has_uncompressed_buf(hdr)) 3578 arc_cksum_free(hdr); 3579 3580 if (salt != NULL) 3581 memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN); 3582 if (iv != NULL) 3583 memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN); 3584 if (mac != NULL) 3585 memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN); 3586 } 3587 3588 /* 3589 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. 3590 * The buf is returned thawed since we expect the consumer to modify it. 3591 */ 3592 arc_buf_t * 3593 arc_alloc_buf(spa_t *spa, const void *tag, arc_buf_contents_t type, 3594 int32_t size) 3595 { 3596 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, 3597 B_FALSE, ZIO_COMPRESS_OFF, 0, type); 3598 3599 arc_buf_t *buf = NULL; 3600 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE, 3601 B_FALSE, B_FALSE, &buf)); 3602 arc_buf_thaw(buf); 3603 3604 return (buf); 3605 } 3606 3607 /* 3608 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this 3609 * for bufs containing metadata. 3610 */ 3611 arc_buf_t * 3612 arc_alloc_compressed_buf(spa_t *spa, const void *tag, uint64_t psize, 3613 uint64_t lsize, enum zio_compress compression_type, uint8_t complevel) 3614 { 3615 ASSERT3U(lsize, >, 0); 3616 ASSERT3U(lsize, >=, psize); 3617 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF); 3618 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3619 3620 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 3621 B_FALSE, compression_type, complevel, ARC_BUFC_DATA); 3622 3623 arc_buf_t *buf = NULL; 3624 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, 3625 B_TRUE, B_FALSE, B_FALSE, &buf)); 3626 arc_buf_thaw(buf); 3627 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3628 3629 /* 3630 * To ensure that the hdr has the correct data in it if we call 3631 * arc_untransform() on this buf before it's been written to disk, 3632 * it's easiest if we just set up sharing between the buf and the hdr. 3633 */ 3634 arc_share_buf(hdr, buf); 3635 3636 return (buf); 3637 } 3638 3639 arc_buf_t * 3640 arc_alloc_raw_buf(spa_t *spa, const void *tag, uint64_t dsobj, 3641 boolean_t byteorder, const uint8_t *salt, const uint8_t *iv, 3642 const uint8_t *mac, dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 3643 enum zio_compress compression_type, uint8_t complevel) 3644 { 3645 arc_buf_hdr_t *hdr; 3646 arc_buf_t *buf; 3647 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ? 3648 ARC_BUFC_METADATA : ARC_BUFC_DATA; 3649 3650 ASSERT3U(lsize, >, 0); 3651 ASSERT3U(lsize, >=, psize); 3652 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF); 3653 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3654 3655 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE, 3656 compression_type, complevel, type); 3657 3658 hdr->b_crypt_hdr.b_dsobj = dsobj; 3659 hdr->b_crypt_hdr.b_ot = ot; 3660 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3661 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3662 memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN); 3663 memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN); 3664 memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN); 3665 3666 /* 3667 * This buffer will be considered encrypted even if the ot is not an 3668 * encrypted type. It will become authenticated instead in 3669 * arc_write_ready(). 3670 */ 3671 buf = NULL; 3672 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE, 3673 B_FALSE, B_FALSE, &buf)); 3674 arc_buf_thaw(buf); 3675 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3676 3677 return (buf); 3678 } 3679 3680 static void 3681 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 3682 boolean_t state_only) 3683 { 3684 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3685 l2arc_dev_t *dev = l2hdr->b_dev; 3686 uint64_t lsize = HDR_GET_LSIZE(hdr); 3687 uint64_t psize = HDR_GET_PSIZE(hdr); 3688 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3689 arc_buf_contents_t type = hdr->b_type; 3690 int64_t lsize_s; 3691 int64_t psize_s; 3692 int64_t asize_s; 3693 3694 if (incr) { 3695 lsize_s = lsize; 3696 psize_s = psize; 3697 asize_s = asize; 3698 } else { 3699 lsize_s = -lsize; 3700 psize_s = -psize; 3701 asize_s = -asize; 3702 } 3703 3704 /* If the buffer is a prefetch, count it as such. */ 3705 if (HDR_PREFETCH(hdr)) { 3706 ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s); 3707 } else { 3708 /* 3709 * We use the value stored in the L2 header upon initial 3710 * caching in L2ARC. This value will be updated in case 3711 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC 3712 * metadata (log entry) cannot currently be updated. Having 3713 * the ARC state in the L2 header solves the problem of a 3714 * possibly absent L1 header (apparent in buffers restored 3715 * from persistent L2ARC). 3716 */ 3717 switch (hdr->b_l2hdr.b_arcs_state) { 3718 case ARC_STATE_MRU_GHOST: 3719 case ARC_STATE_MRU: 3720 ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s); 3721 break; 3722 case ARC_STATE_MFU_GHOST: 3723 case ARC_STATE_MFU: 3724 ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s); 3725 break; 3726 default: 3727 break; 3728 } 3729 } 3730 3731 if (state_only) 3732 return; 3733 3734 ARCSTAT_INCR(arcstat_l2_psize, psize_s); 3735 ARCSTAT_INCR(arcstat_l2_lsize, lsize_s); 3736 3737 switch (type) { 3738 case ARC_BUFC_DATA: 3739 ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s); 3740 break; 3741 case ARC_BUFC_METADATA: 3742 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s); 3743 break; 3744 default: 3745 break; 3746 } 3747 } 3748 3749 3750 static void 3751 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 3752 { 3753 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3754 l2arc_dev_t *dev = l2hdr->b_dev; 3755 uint64_t psize = HDR_GET_PSIZE(hdr); 3756 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3757 3758 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 3759 ASSERT(HDR_HAS_L2HDR(hdr)); 3760 3761 list_remove(&dev->l2ad_buflist, hdr); 3762 3763 l2arc_hdr_arcstats_decrement(hdr); 3764 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); 3765 3766 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), 3767 hdr); 3768 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 3769 } 3770 3771 static void 3772 arc_hdr_destroy(arc_buf_hdr_t *hdr) 3773 { 3774 if (HDR_HAS_L1HDR(hdr)) { 3775 ASSERT(hdr->b_l1hdr.b_buf == NULL || 3776 hdr->b_l1hdr.b_bufcnt > 0); 3777 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3778 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3779 } 3780 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3781 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 3782 3783 if (HDR_HAS_L2HDR(hdr)) { 3784 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3785 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 3786 3787 if (!buflist_held) 3788 mutex_enter(&dev->l2ad_mtx); 3789 3790 /* 3791 * Even though we checked this conditional above, we 3792 * need to check this again now that we have the 3793 * l2ad_mtx. This is because we could be racing with 3794 * another thread calling l2arc_evict() which might have 3795 * destroyed this header's L2 portion as we were waiting 3796 * to acquire the l2ad_mtx. If that happens, we don't 3797 * want to re-destroy the header's L2 portion. 3798 */ 3799 if (HDR_HAS_L2HDR(hdr)) { 3800 3801 if (!HDR_EMPTY(hdr)) 3802 buf_discard_identity(hdr); 3803 3804 arc_hdr_l2hdr_destroy(hdr); 3805 } 3806 3807 if (!buflist_held) 3808 mutex_exit(&dev->l2ad_mtx); 3809 } 3810 3811 /* 3812 * The header's identify can only be safely discarded once it is no 3813 * longer discoverable. This requires removing it from the hash table 3814 * and the l2arc header list. After this point the hash lock can not 3815 * be used to protect the header. 3816 */ 3817 if (!HDR_EMPTY(hdr)) 3818 buf_discard_identity(hdr); 3819 3820 if (HDR_HAS_L1HDR(hdr)) { 3821 arc_cksum_free(hdr); 3822 3823 while (hdr->b_l1hdr.b_buf != NULL) 3824 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf); 3825 3826 if (hdr->b_l1hdr.b_pabd != NULL) 3827 arc_hdr_free_abd(hdr, B_FALSE); 3828 3829 if (HDR_HAS_RABD(hdr)) 3830 arc_hdr_free_abd(hdr, B_TRUE); 3831 } 3832 3833 ASSERT3P(hdr->b_hash_next, ==, NULL); 3834 if (HDR_HAS_L1HDR(hdr)) { 3835 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3836 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 3837 3838 if (!HDR_PROTECTED(hdr)) { 3839 kmem_cache_free(hdr_full_cache, hdr); 3840 } else { 3841 kmem_cache_free(hdr_full_crypt_cache, hdr); 3842 } 3843 } else { 3844 kmem_cache_free(hdr_l2only_cache, hdr); 3845 } 3846 } 3847 3848 void 3849 arc_buf_destroy(arc_buf_t *buf, const void *tag) 3850 { 3851 arc_buf_hdr_t *hdr = buf->b_hdr; 3852 3853 if (hdr->b_l1hdr.b_state == arc_anon) { 3854 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 3855 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3856 VERIFY0(remove_reference(hdr, NULL, tag)); 3857 arc_hdr_destroy(hdr); 3858 return; 3859 } 3860 3861 kmutex_t *hash_lock = HDR_LOCK(hdr); 3862 mutex_enter(hash_lock); 3863 3864 ASSERT3P(hdr, ==, buf->b_hdr); 3865 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3866 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3867 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); 3868 ASSERT3P(buf->b_data, !=, NULL); 3869 3870 (void) remove_reference(hdr, hash_lock, tag); 3871 arc_buf_destroy_impl(buf); 3872 mutex_exit(hash_lock); 3873 } 3874 3875 /* 3876 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 3877 * state of the header is dependent on its state prior to entering this 3878 * function. The following transitions are possible: 3879 * 3880 * - arc_mru -> arc_mru_ghost 3881 * - arc_mfu -> arc_mfu_ghost 3882 * - arc_mru_ghost -> arc_l2c_only 3883 * - arc_mru_ghost -> deleted 3884 * - arc_mfu_ghost -> arc_l2c_only 3885 * - arc_mfu_ghost -> deleted 3886 * 3887 * Return total size of evicted data buffers for eviction progress tracking. 3888 * When evicting from ghost states return logical buffer size to make eviction 3889 * progress at the same (or at least comparable) rate as from non-ghost states. 3890 * 3891 * Return *real_evicted for actual ARC size reduction to wake up threads 3892 * waiting for it. For non-ghost states it includes size of evicted data 3893 * buffers (the headers are not freed there). For ghost states it includes 3894 * only the evicted headers size. 3895 */ 3896 static int64_t 3897 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, uint64_t *real_evicted) 3898 { 3899 arc_state_t *evicted_state, *state; 3900 int64_t bytes_evicted = 0; 3901 int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ? 3902 arc_min_prescient_prefetch_ms : arc_min_prefetch_ms; 3903 3904 ASSERT(MUTEX_HELD(hash_lock)); 3905 ASSERT(HDR_HAS_L1HDR(hdr)); 3906 3907 *real_evicted = 0; 3908 state = hdr->b_l1hdr.b_state; 3909 if (GHOST_STATE(state)) { 3910 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3911 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3912 3913 /* 3914 * l2arc_write_buffers() relies on a header's L1 portion 3915 * (i.e. its b_pabd field) during it's write phase. 3916 * Thus, we cannot push a header onto the arc_l2c_only 3917 * state (removing its L1 piece) until the header is 3918 * done being written to the l2arc. 3919 */ 3920 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 3921 ARCSTAT_BUMP(arcstat_evict_l2_skip); 3922 return (bytes_evicted); 3923 } 3924 3925 ARCSTAT_BUMP(arcstat_deleted); 3926 bytes_evicted += HDR_GET_LSIZE(hdr); 3927 3928 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 3929 3930 if (HDR_HAS_L2HDR(hdr)) { 3931 ASSERT(hdr->b_l1hdr.b_pabd == NULL); 3932 ASSERT(!HDR_HAS_RABD(hdr)); 3933 /* 3934 * This buffer is cached on the 2nd Level ARC; 3935 * don't destroy the header. 3936 */ 3937 arc_change_state(arc_l2c_only, hdr, hash_lock); 3938 /* 3939 * dropping from L1+L2 cached to L2-only, 3940 * realloc to remove the L1 header. 3941 */ 3942 hdr = arc_hdr_realloc(hdr, hdr_full_cache, 3943 hdr_l2only_cache); 3944 *real_evicted += HDR_FULL_SIZE - HDR_L2ONLY_SIZE; 3945 } else { 3946 arc_change_state(arc_anon, hdr, hash_lock); 3947 arc_hdr_destroy(hdr); 3948 *real_evicted += HDR_FULL_SIZE; 3949 } 3950 return (bytes_evicted); 3951 } 3952 3953 ASSERT(state == arc_mru || state == arc_mfu); 3954 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3955 3956 /* prefetch buffers have a minimum lifespan */ 3957 if (HDR_IO_IN_PROGRESS(hdr) || 3958 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 3959 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < 3960 MSEC_TO_TICK(min_lifetime))) { 3961 ARCSTAT_BUMP(arcstat_evict_skip); 3962 return (bytes_evicted); 3963 } 3964 3965 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3966 while (hdr->b_l1hdr.b_buf) { 3967 arc_buf_t *buf = hdr->b_l1hdr.b_buf; 3968 if (!mutex_tryenter(&buf->b_evict_lock)) { 3969 ARCSTAT_BUMP(arcstat_mutex_miss); 3970 break; 3971 } 3972 if (buf->b_data != NULL) { 3973 bytes_evicted += HDR_GET_LSIZE(hdr); 3974 *real_evicted += HDR_GET_LSIZE(hdr); 3975 } 3976 mutex_exit(&buf->b_evict_lock); 3977 arc_buf_destroy_impl(buf); 3978 } 3979 3980 if (HDR_HAS_L2HDR(hdr)) { 3981 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); 3982 } else { 3983 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 3984 ARCSTAT_INCR(arcstat_evict_l2_eligible, 3985 HDR_GET_LSIZE(hdr)); 3986 3987 switch (state->arcs_state) { 3988 case ARC_STATE_MRU: 3989 ARCSTAT_INCR( 3990 arcstat_evict_l2_eligible_mru, 3991 HDR_GET_LSIZE(hdr)); 3992 break; 3993 case ARC_STATE_MFU: 3994 ARCSTAT_INCR( 3995 arcstat_evict_l2_eligible_mfu, 3996 HDR_GET_LSIZE(hdr)); 3997 break; 3998 default: 3999 break; 4000 } 4001 } else { 4002 ARCSTAT_INCR(arcstat_evict_l2_ineligible, 4003 HDR_GET_LSIZE(hdr)); 4004 } 4005 } 4006 4007 if (hdr->b_l1hdr.b_bufcnt == 0) { 4008 arc_cksum_free(hdr); 4009 4010 bytes_evicted += arc_hdr_size(hdr); 4011 *real_evicted += arc_hdr_size(hdr); 4012 4013 /* 4014 * If this hdr is being evicted and has a compressed 4015 * buffer then we discard it here before we change states. 4016 * This ensures that the accounting is updated correctly 4017 * in arc_free_data_impl(). 4018 */ 4019 if (hdr->b_l1hdr.b_pabd != NULL) 4020 arc_hdr_free_abd(hdr, B_FALSE); 4021 4022 if (HDR_HAS_RABD(hdr)) 4023 arc_hdr_free_abd(hdr, B_TRUE); 4024 4025 arc_change_state(evicted_state, hdr, hash_lock); 4026 ASSERT(HDR_IN_HASH_TABLE(hdr)); 4027 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 4028 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 4029 } 4030 4031 return (bytes_evicted); 4032 } 4033 4034 static void 4035 arc_set_need_free(void) 4036 { 4037 ASSERT(MUTEX_HELD(&arc_evict_lock)); 4038 int64_t remaining = arc_free_memory() - arc_sys_free / 2; 4039 arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters); 4040 if (aw == NULL) { 4041 arc_need_free = MAX(-remaining, 0); 4042 } else { 4043 arc_need_free = 4044 MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count)); 4045 } 4046 } 4047 4048 static uint64_t 4049 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 4050 uint64_t spa, uint64_t bytes) 4051 { 4052 multilist_sublist_t *mls; 4053 uint64_t bytes_evicted = 0, real_evicted = 0; 4054 arc_buf_hdr_t *hdr; 4055 kmutex_t *hash_lock; 4056 int evict_count = zfs_arc_evict_batch_limit; 4057 4058 ASSERT3P(marker, !=, NULL); 4059 4060 mls = multilist_sublist_lock(ml, idx); 4061 4062 for (hdr = multilist_sublist_prev(mls, marker); likely(hdr != NULL); 4063 hdr = multilist_sublist_prev(mls, marker)) { 4064 if ((evict_count <= 0) || (bytes_evicted >= bytes)) 4065 break; 4066 4067 /* 4068 * To keep our iteration location, move the marker 4069 * forward. Since we're not holding hdr's hash lock, we 4070 * must be very careful and not remove 'hdr' from the 4071 * sublist. Otherwise, other consumers might mistake the 4072 * 'hdr' as not being on a sublist when they call the 4073 * multilist_link_active() function (they all rely on 4074 * the hash lock protecting concurrent insertions and 4075 * removals). multilist_sublist_move_forward() was 4076 * specifically implemented to ensure this is the case 4077 * (only 'marker' will be removed and re-inserted). 4078 */ 4079 multilist_sublist_move_forward(mls, marker); 4080 4081 /* 4082 * The only case where the b_spa field should ever be 4083 * zero, is the marker headers inserted by 4084 * arc_evict_state(). It's possible for multiple threads 4085 * to be calling arc_evict_state() concurrently (e.g. 4086 * dsl_pool_close() and zio_inject_fault()), so we must 4087 * skip any markers we see from these other threads. 4088 */ 4089 if (hdr->b_spa == 0) 4090 continue; 4091 4092 /* we're only interested in evicting buffers of a certain spa */ 4093 if (spa != 0 && hdr->b_spa != spa) { 4094 ARCSTAT_BUMP(arcstat_evict_skip); 4095 continue; 4096 } 4097 4098 hash_lock = HDR_LOCK(hdr); 4099 4100 /* 4101 * We aren't calling this function from any code path 4102 * that would already be holding a hash lock, so we're 4103 * asserting on this assumption to be defensive in case 4104 * this ever changes. Without this check, it would be 4105 * possible to incorrectly increment arcstat_mutex_miss 4106 * below (e.g. if the code changed such that we called 4107 * this function with a hash lock held). 4108 */ 4109 ASSERT(!MUTEX_HELD(hash_lock)); 4110 4111 if (mutex_tryenter(hash_lock)) { 4112 uint64_t revicted; 4113 uint64_t evicted = arc_evict_hdr(hdr, hash_lock, 4114 &revicted); 4115 mutex_exit(hash_lock); 4116 4117 bytes_evicted += evicted; 4118 real_evicted += revicted; 4119 4120 /* 4121 * If evicted is zero, arc_evict_hdr() must have 4122 * decided to skip this header, don't increment 4123 * evict_count in this case. 4124 */ 4125 if (evicted != 0) 4126 evict_count--; 4127 4128 } else { 4129 ARCSTAT_BUMP(arcstat_mutex_miss); 4130 } 4131 } 4132 4133 multilist_sublist_unlock(mls); 4134 4135 /* 4136 * Increment the count of evicted bytes, and wake up any threads that 4137 * are waiting for the count to reach this value. Since the list is 4138 * ordered by ascending aew_count, we pop off the beginning of the 4139 * list until we reach the end, or a waiter that's past the current 4140 * "count". Doing this outside the loop reduces the number of times 4141 * we need to acquire the global arc_evict_lock. 4142 * 4143 * Only wake when there's sufficient free memory in the system 4144 * (specifically, arc_sys_free/2, which by default is a bit more than 4145 * 1/64th of RAM). See the comments in arc_wait_for_eviction(). 4146 */ 4147 mutex_enter(&arc_evict_lock); 4148 arc_evict_count += real_evicted; 4149 4150 if (arc_free_memory() > arc_sys_free / 2) { 4151 arc_evict_waiter_t *aw; 4152 while ((aw = list_head(&arc_evict_waiters)) != NULL && 4153 aw->aew_count <= arc_evict_count) { 4154 list_remove(&arc_evict_waiters, aw); 4155 cv_broadcast(&aw->aew_cv); 4156 } 4157 } 4158 arc_set_need_free(); 4159 mutex_exit(&arc_evict_lock); 4160 4161 /* 4162 * If the ARC size is reduced from arc_c_max to arc_c_min (especially 4163 * if the average cached block is small), eviction can be on-CPU for 4164 * many seconds. To ensure that other threads that may be bound to 4165 * this CPU are able to make progress, make a voluntary preemption 4166 * call here. 4167 */ 4168 kpreempt(KPREEMPT_SYNC); 4169 4170 return (bytes_evicted); 4171 } 4172 4173 /* 4174 * Allocate an array of buffer headers used as placeholders during arc state 4175 * eviction. 4176 */ 4177 static arc_buf_hdr_t ** 4178 arc_state_alloc_markers(int count) 4179 { 4180 arc_buf_hdr_t **markers; 4181 4182 markers = kmem_zalloc(sizeof (*markers) * count, KM_SLEEP); 4183 for (int i = 0; i < count; i++) { 4184 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 4185 4186 /* 4187 * A b_spa of 0 is used to indicate that this header is 4188 * a marker. This fact is used in arc_evict_type() and 4189 * arc_evict_state_impl(). 4190 */ 4191 markers[i]->b_spa = 0; 4192 4193 } 4194 return (markers); 4195 } 4196 4197 static void 4198 arc_state_free_markers(arc_buf_hdr_t **markers, int count) 4199 { 4200 for (int i = 0; i < count; i++) 4201 kmem_cache_free(hdr_full_cache, markers[i]); 4202 kmem_free(markers, sizeof (*markers) * count); 4203 } 4204 4205 /* 4206 * Evict buffers from the given arc state, until we've removed the 4207 * specified number of bytes. Move the removed buffers to the 4208 * appropriate evict state. 4209 * 4210 * This function makes a "best effort". It skips over any buffers 4211 * it can't get a hash_lock on, and so, may not catch all candidates. 4212 * It may also return without evicting as much space as requested. 4213 * 4214 * If bytes is specified using the special value ARC_EVICT_ALL, this 4215 * will evict all available (i.e. unlocked and evictable) buffers from 4216 * the given arc state; which is used by arc_flush(). 4217 */ 4218 static uint64_t 4219 arc_evict_state(arc_state_t *state, uint64_t spa, uint64_t bytes, 4220 arc_buf_contents_t type) 4221 { 4222 uint64_t total_evicted = 0; 4223 multilist_t *ml = &state->arcs_list[type]; 4224 int num_sublists; 4225 arc_buf_hdr_t **markers; 4226 4227 num_sublists = multilist_get_num_sublists(ml); 4228 4229 /* 4230 * If we've tried to evict from each sublist, made some 4231 * progress, but still have not hit the target number of bytes 4232 * to evict, we want to keep trying. The markers allow us to 4233 * pick up where we left off for each individual sublist, rather 4234 * than starting from the tail each time. 4235 */ 4236 if (zthr_iscurthread(arc_evict_zthr)) { 4237 markers = arc_state_evict_markers; 4238 ASSERT3S(num_sublists, <=, arc_state_evict_marker_count); 4239 } else { 4240 markers = arc_state_alloc_markers(num_sublists); 4241 } 4242 for (int i = 0; i < num_sublists; i++) { 4243 multilist_sublist_t *mls; 4244 4245 mls = multilist_sublist_lock(ml, i); 4246 multilist_sublist_insert_tail(mls, markers[i]); 4247 multilist_sublist_unlock(mls); 4248 } 4249 4250 /* 4251 * While we haven't hit our target number of bytes to evict, or 4252 * we're evicting all available buffers. 4253 */ 4254 while (total_evicted < bytes) { 4255 int sublist_idx = multilist_get_random_index(ml); 4256 uint64_t scan_evicted = 0; 4257 4258 /* 4259 * Try to reduce pinned dnodes with a floor of arc_dnode_limit. 4260 * Request that 10% of the LRUs be scanned by the superblock 4261 * shrinker. 4262 */ 4263 if (type == ARC_BUFC_DATA && aggsum_compare( 4264 &arc_sums.arcstat_dnode_size, arc_dnode_size_limit) > 0) { 4265 arc_prune_async((aggsum_upper_bound( 4266 &arc_sums.arcstat_dnode_size) - 4267 arc_dnode_size_limit) / sizeof (dnode_t) / 4268 zfs_arc_dnode_reduce_percent); 4269 } 4270 4271 /* 4272 * Start eviction using a randomly selected sublist, 4273 * this is to try and evenly balance eviction across all 4274 * sublists. Always starting at the same sublist 4275 * (e.g. index 0) would cause evictions to favor certain 4276 * sublists over others. 4277 */ 4278 for (int i = 0; i < num_sublists; i++) { 4279 uint64_t bytes_remaining; 4280 uint64_t bytes_evicted; 4281 4282 if (total_evicted < bytes) 4283 bytes_remaining = bytes - total_evicted; 4284 else 4285 break; 4286 4287 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 4288 markers[sublist_idx], spa, bytes_remaining); 4289 4290 scan_evicted += bytes_evicted; 4291 total_evicted += bytes_evicted; 4292 4293 /* we've reached the end, wrap to the beginning */ 4294 if (++sublist_idx >= num_sublists) 4295 sublist_idx = 0; 4296 } 4297 4298 /* 4299 * If we didn't evict anything during this scan, we have 4300 * no reason to believe we'll evict more during another 4301 * scan, so break the loop. 4302 */ 4303 if (scan_evicted == 0) { 4304 /* This isn't possible, let's make that obvious */ 4305 ASSERT3S(bytes, !=, 0); 4306 4307 /* 4308 * When bytes is ARC_EVICT_ALL, the only way to 4309 * break the loop is when scan_evicted is zero. 4310 * In that case, we actually have evicted enough, 4311 * so we don't want to increment the kstat. 4312 */ 4313 if (bytes != ARC_EVICT_ALL) { 4314 ASSERT3S(total_evicted, <, bytes); 4315 ARCSTAT_BUMP(arcstat_evict_not_enough); 4316 } 4317 4318 break; 4319 } 4320 } 4321 4322 for (int i = 0; i < num_sublists; i++) { 4323 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 4324 multilist_sublist_remove(mls, markers[i]); 4325 multilist_sublist_unlock(mls); 4326 } 4327 if (markers != arc_state_evict_markers) 4328 arc_state_free_markers(markers, num_sublists); 4329 4330 return (total_evicted); 4331 } 4332 4333 /* 4334 * Flush all "evictable" data of the given type from the arc state 4335 * specified. This will not evict any "active" buffers (i.e. referenced). 4336 * 4337 * When 'retry' is set to B_FALSE, the function will make a single pass 4338 * over the state and evict any buffers that it can. Since it doesn't 4339 * continually retry the eviction, it might end up leaving some buffers 4340 * in the ARC due to lock misses. 4341 * 4342 * When 'retry' is set to B_TRUE, the function will continually retry the 4343 * eviction until *all* evictable buffers have been removed from the 4344 * state. As a result, if concurrent insertions into the state are 4345 * allowed (e.g. if the ARC isn't shutting down), this function might 4346 * wind up in an infinite loop, continually trying to evict buffers. 4347 */ 4348 static uint64_t 4349 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 4350 boolean_t retry) 4351 { 4352 uint64_t evicted = 0; 4353 4354 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) { 4355 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type); 4356 4357 if (!retry) 4358 break; 4359 } 4360 4361 return (evicted); 4362 } 4363 4364 /* 4365 * Evict the specified number of bytes from the state specified, 4366 * restricting eviction to the spa and type given. This function 4367 * prevents us from trying to evict more from a state's list than 4368 * is "evictable", and to skip evicting altogether when passed a 4369 * negative value for "bytes". In contrast, arc_evict_state() will 4370 * evict everything it can, when passed a negative value for "bytes". 4371 */ 4372 static uint64_t 4373 arc_evict_impl(arc_state_t *state, uint64_t spa, int64_t bytes, 4374 arc_buf_contents_t type) 4375 { 4376 uint64_t delta; 4377 4378 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) { 4379 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]), 4380 bytes); 4381 return (arc_evict_state(state, spa, delta, type)); 4382 } 4383 4384 return (0); 4385 } 4386 4387 /* 4388 * The goal of this function is to evict enough meta data buffers from the 4389 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly 4390 * more complicated than it appears because it is common for data buffers 4391 * to have holds on meta data buffers. In addition, dnode meta data buffers 4392 * will be held by the dnodes in the block preventing them from being freed. 4393 * This means we can't simply traverse the ARC and expect to always find 4394 * enough unheld meta data buffer to release. 4395 * 4396 * Therefore, this function has been updated to make alternating passes 4397 * over the ARC releasing data buffers and then newly unheld meta data 4398 * buffers. This ensures forward progress is maintained and meta_used 4399 * will decrease. Normally this is sufficient, but if required the ARC 4400 * will call the registered prune callbacks causing dentry and inodes to 4401 * be dropped from the VFS cache. This will make dnode meta data buffers 4402 * available for reclaim. 4403 */ 4404 static uint64_t 4405 arc_evict_meta_balanced(uint64_t meta_used) 4406 { 4407 int64_t delta, prune = 0, adjustmnt; 4408 uint64_t total_evicted = 0; 4409 arc_buf_contents_t type = ARC_BUFC_DATA; 4410 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0); 4411 4412 restart: 4413 /* 4414 * This slightly differs than the way we evict from the mru in 4415 * arc_evict because we don't have a "target" value (i.e. no 4416 * "meta" arc_p). As a result, I think we can completely 4417 * cannibalize the metadata in the MRU before we evict the 4418 * metadata from the MFU. I think we probably need to implement a 4419 * "metadata arc_p" value to do this properly. 4420 */ 4421 adjustmnt = meta_used - arc_meta_limit; 4422 4423 if (adjustmnt > 0 && 4424 zfs_refcount_count(&arc_mru->arcs_esize[type]) > 0) { 4425 delta = MIN(zfs_refcount_count(&arc_mru->arcs_esize[type]), 4426 adjustmnt); 4427 total_evicted += arc_evict_impl(arc_mru, 0, delta, type); 4428 adjustmnt -= delta; 4429 } 4430 4431 /* 4432 * We can't afford to recalculate adjustmnt here. If we do, 4433 * new metadata buffers can sneak into the MRU or ANON lists, 4434 * thus penalize the MFU metadata. Although the fudge factor is 4435 * small, it has been empirically shown to be significant for 4436 * certain workloads (e.g. creating many empty directories). As 4437 * such, we use the original calculation for adjustmnt, and 4438 * simply decrement the amount of data evicted from the MRU. 4439 */ 4440 4441 if (adjustmnt > 0 && 4442 zfs_refcount_count(&arc_mfu->arcs_esize[type]) > 0) { 4443 delta = MIN(zfs_refcount_count(&arc_mfu->arcs_esize[type]), 4444 adjustmnt); 4445 total_evicted += arc_evict_impl(arc_mfu, 0, delta, type); 4446 } 4447 4448 adjustmnt = meta_used - arc_meta_limit; 4449 4450 if (adjustmnt > 0 && 4451 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) { 4452 delta = MIN(adjustmnt, 4453 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type])); 4454 total_evicted += arc_evict_impl(arc_mru_ghost, 0, delta, type); 4455 adjustmnt -= delta; 4456 } 4457 4458 if (adjustmnt > 0 && 4459 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) { 4460 delta = MIN(adjustmnt, 4461 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type])); 4462 total_evicted += arc_evict_impl(arc_mfu_ghost, 0, delta, type); 4463 } 4464 4465 /* 4466 * If after attempting to make the requested adjustment to the ARC 4467 * the meta limit is still being exceeded then request that the 4468 * higher layers drop some cached objects which have holds on ARC 4469 * meta buffers. Requests to the upper layers will be made with 4470 * increasingly large scan sizes until the ARC is below the limit. 4471 */ 4472 if (meta_used > arc_meta_limit) { 4473 if (type == ARC_BUFC_DATA) { 4474 type = ARC_BUFC_METADATA; 4475 } else { 4476 type = ARC_BUFC_DATA; 4477 4478 if (zfs_arc_meta_prune) { 4479 prune += zfs_arc_meta_prune; 4480 arc_prune_async(prune); 4481 } 4482 } 4483 4484 if (restarts > 0) { 4485 restarts--; 4486 goto restart; 4487 } 4488 } 4489 return (total_evicted); 4490 } 4491 4492 /* 4493 * Evict metadata buffers from the cache, such that arcstat_meta_used is 4494 * capped by the arc_meta_limit tunable. 4495 */ 4496 static uint64_t 4497 arc_evict_meta_only(uint64_t meta_used) 4498 { 4499 uint64_t total_evicted = 0; 4500 int64_t target; 4501 4502 /* 4503 * If we're over the meta limit, we want to evict enough 4504 * metadata to get back under the meta limit. We don't want to 4505 * evict so much that we drop the MRU below arc_p, though. If 4506 * we're over the meta limit more than we're over arc_p, we 4507 * evict some from the MRU here, and some from the MFU below. 4508 */ 4509 target = MIN((int64_t)(meta_used - arc_meta_limit), 4510 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4511 zfs_refcount_count(&arc_mru->arcs_size) - arc_p)); 4512 4513 total_evicted += arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4514 4515 /* 4516 * Similar to the above, we want to evict enough bytes to get us 4517 * below the meta limit, but not so much as to drop us below the 4518 * space allotted to the MFU (which is defined as arc_c - arc_p). 4519 */ 4520 target = MIN((int64_t)(meta_used - arc_meta_limit), 4521 (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) - 4522 (arc_c - arc_p))); 4523 4524 total_evicted += arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4525 4526 return (total_evicted); 4527 } 4528 4529 static uint64_t 4530 arc_evict_meta(uint64_t meta_used) 4531 { 4532 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY) 4533 return (arc_evict_meta_only(meta_used)); 4534 else 4535 return (arc_evict_meta_balanced(meta_used)); 4536 } 4537 4538 /* 4539 * Return the type of the oldest buffer in the given arc state 4540 * 4541 * This function will select a random sublist of type ARC_BUFC_DATA and 4542 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist 4543 * is compared, and the type which contains the "older" buffer will be 4544 * returned. 4545 */ 4546 static arc_buf_contents_t 4547 arc_evict_type(arc_state_t *state) 4548 { 4549 multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA]; 4550 multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA]; 4551 int data_idx = multilist_get_random_index(data_ml); 4552 int meta_idx = multilist_get_random_index(meta_ml); 4553 multilist_sublist_t *data_mls; 4554 multilist_sublist_t *meta_mls; 4555 arc_buf_contents_t type; 4556 arc_buf_hdr_t *data_hdr; 4557 arc_buf_hdr_t *meta_hdr; 4558 4559 /* 4560 * We keep the sublist lock until we're finished, to prevent 4561 * the headers from being destroyed via arc_evict_state(). 4562 */ 4563 data_mls = multilist_sublist_lock(data_ml, data_idx); 4564 meta_mls = multilist_sublist_lock(meta_ml, meta_idx); 4565 4566 /* 4567 * These two loops are to ensure we skip any markers that 4568 * might be at the tail of the lists due to arc_evict_state(). 4569 */ 4570 4571 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL; 4572 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) { 4573 if (data_hdr->b_spa != 0) 4574 break; 4575 } 4576 4577 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL; 4578 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) { 4579 if (meta_hdr->b_spa != 0) 4580 break; 4581 } 4582 4583 if (data_hdr == NULL && meta_hdr == NULL) { 4584 type = ARC_BUFC_DATA; 4585 } else if (data_hdr == NULL) { 4586 ASSERT3P(meta_hdr, !=, NULL); 4587 type = ARC_BUFC_METADATA; 4588 } else if (meta_hdr == NULL) { 4589 ASSERT3P(data_hdr, !=, NULL); 4590 type = ARC_BUFC_DATA; 4591 } else { 4592 ASSERT3P(data_hdr, !=, NULL); 4593 ASSERT3P(meta_hdr, !=, NULL); 4594 4595 /* The headers can't be on the sublist without an L1 header */ 4596 ASSERT(HDR_HAS_L1HDR(data_hdr)); 4597 ASSERT(HDR_HAS_L1HDR(meta_hdr)); 4598 4599 if (data_hdr->b_l1hdr.b_arc_access < 4600 meta_hdr->b_l1hdr.b_arc_access) { 4601 type = ARC_BUFC_DATA; 4602 } else { 4603 type = ARC_BUFC_METADATA; 4604 } 4605 } 4606 4607 multilist_sublist_unlock(meta_mls); 4608 multilist_sublist_unlock(data_mls); 4609 4610 return (type); 4611 } 4612 4613 /* 4614 * Evict buffers from the cache, such that arcstat_size is capped by arc_c. 4615 */ 4616 static uint64_t 4617 arc_evict(void) 4618 { 4619 uint64_t total_evicted = 0; 4620 uint64_t bytes; 4621 int64_t target; 4622 uint64_t asize = aggsum_value(&arc_sums.arcstat_size); 4623 uint64_t ameta = aggsum_value(&arc_sums.arcstat_meta_used); 4624 4625 /* 4626 * If we're over arc_meta_limit, we want to correct that before 4627 * potentially evicting data buffers below. 4628 */ 4629 total_evicted += arc_evict_meta(ameta); 4630 4631 /* 4632 * Adjust MRU size 4633 * 4634 * If we're over the target cache size, we want to evict enough 4635 * from the list to get back to our target size. We don't want 4636 * to evict too much from the MRU, such that it drops below 4637 * arc_p. So, if we're over our target cache size more than 4638 * the MRU is over arc_p, we'll evict enough to get back to 4639 * arc_p here, and then evict more from the MFU below. 4640 */ 4641 target = MIN((int64_t)(asize - arc_c), 4642 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4643 zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p)); 4644 4645 /* 4646 * If we're below arc_meta_min, always prefer to evict data. 4647 * Otherwise, try to satisfy the requested number of bytes to 4648 * evict from the type which contains older buffers; in an 4649 * effort to keep newer buffers in the cache regardless of their 4650 * type. If we cannot satisfy the number of bytes from this 4651 * type, spill over into the next type. 4652 */ 4653 if (arc_evict_type(arc_mru) == ARC_BUFC_METADATA && 4654 ameta > arc_meta_min) { 4655 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4656 total_evicted += bytes; 4657 4658 /* 4659 * If we couldn't evict our target number of bytes from 4660 * metadata, we try to get the rest from data. 4661 */ 4662 target -= bytes; 4663 4664 total_evicted += 4665 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4666 } else { 4667 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4668 total_evicted += bytes; 4669 4670 /* 4671 * If we couldn't evict our target number of bytes from 4672 * data, we try to get the rest from metadata. 4673 */ 4674 target -= bytes; 4675 4676 total_evicted += 4677 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4678 } 4679 4680 /* 4681 * Re-sum ARC stats after the first round of evictions. 4682 */ 4683 asize = aggsum_value(&arc_sums.arcstat_size); 4684 ameta = aggsum_value(&arc_sums.arcstat_meta_used); 4685 4686 4687 /* 4688 * Adjust MFU size 4689 * 4690 * Now that we've tried to evict enough from the MRU to get its 4691 * size back to arc_p, if we're still above the target cache 4692 * size, we evict the rest from the MFU. 4693 */ 4694 target = asize - arc_c; 4695 4696 if (arc_evict_type(arc_mfu) == ARC_BUFC_METADATA && 4697 ameta > arc_meta_min) { 4698 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4699 total_evicted += bytes; 4700 4701 /* 4702 * If we couldn't evict our target number of bytes from 4703 * metadata, we try to get the rest from data. 4704 */ 4705 target -= bytes; 4706 4707 total_evicted += 4708 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4709 } else { 4710 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4711 total_evicted += bytes; 4712 4713 /* 4714 * If we couldn't evict our target number of bytes from 4715 * data, we try to get the rest from data. 4716 */ 4717 target -= bytes; 4718 4719 total_evicted += 4720 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4721 } 4722 4723 /* 4724 * Adjust ghost lists 4725 * 4726 * In addition to the above, the ARC also defines target values 4727 * for the ghost lists. The sum of the mru list and mru ghost 4728 * list should never exceed the target size of the cache, and 4729 * the sum of the mru list, mfu list, mru ghost list, and mfu 4730 * ghost list should never exceed twice the target size of the 4731 * cache. The following logic enforces these limits on the ghost 4732 * caches, and evicts from them as needed. 4733 */ 4734 target = zfs_refcount_count(&arc_mru->arcs_size) + 4735 zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c; 4736 4737 bytes = arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA); 4738 total_evicted += bytes; 4739 4740 target -= bytes; 4741 4742 total_evicted += 4743 arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA); 4744 4745 /* 4746 * We assume the sum of the mru list and mfu list is less than 4747 * or equal to arc_c (we enforced this above), which means we 4748 * can use the simpler of the two equations below: 4749 * 4750 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c 4751 * mru ghost + mfu ghost <= arc_c 4752 */ 4753 target = zfs_refcount_count(&arc_mru_ghost->arcs_size) + 4754 zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c; 4755 4756 bytes = arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA); 4757 total_evicted += bytes; 4758 4759 target -= bytes; 4760 4761 total_evicted += 4762 arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA); 4763 4764 return (total_evicted); 4765 } 4766 4767 void 4768 arc_flush(spa_t *spa, boolean_t retry) 4769 { 4770 uint64_t guid = 0; 4771 4772 /* 4773 * If retry is B_TRUE, a spa must not be specified since we have 4774 * no good way to determine if all of a spa's buffers have been 4775 * evicted from an arc state. 4776 */ 4777 ASSERT(!retry || spa == 0); 4778 4779 if (spa != NULL) 4780 guid = spa_load_guid(spa); 4781 4782 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 4783 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 4784 4785 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 4786 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 4787 4788 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 4789 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 4790 4791 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 4792 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 4793 } 4794 4795 void 4796 arc_reduce_target_size(int64_t to_free) 4797 { 4798 uint64_t asize = aggsum_value(&arc_sums.arcstat_size); 4799 4800 /* 4801 * All callers want the ARC to actually evict (at least) this much 4802 * memory. Therefore we reduce from the lower of the current size and 4803 * the target size. This way, even if arc_c is much higher than 4804 * arc_size (as can be the case after many calls to arc_freed(), we will 4805 * immediately have arc_c < arc_size and therefore the arc_evict_zthr 4806 * will evict. 4807 */ 4808 uint64_t c = MIN(arc_c, asize); 4809 4810 if (c > to_free && c - to_free > arc_c_min) { 4811 arc_c = c - to_free; 4812 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 4813 if (arc_p > arc_c) 4814 arc_p = (arc_c >> 1); 4815 ASSERT(arc_c >= arc_c_min); 4816 ASSERT((int64_t)arc_p >= 0); 4817 } else { 4818 arc_c = arc_c_min; 4819 } 4820 4821 if (asize > arc_c) { 4822 /* See comment in arc_evict_cb_check() on why lock+flag */ 4823 mutex_enter(&arc_evict_lock); 4824 arc_evict_needed = B_TRUE; 4825 mutex_exit(&arc_evict_lock); 4826 zthr_wakeup(arc_evict_zthr); 4827 } 4828 } 4829 4830 /* 4831 * Determine if the system is under memory pressure and is asking 4832 * to reclaim memory. A return value of B_TRUE indicates that the system 4833 * is under memory pressure and that the arc should adjust accordingly. 4834 */ 4835 boolean_t 4836 arc_reclaim_needed(void) 4837 { 4838 return (arc_available_memory() < 0); 4839 } 4840 4841 void 4842 arc_kmem_reap_soon(void) 4843 { 4844 size_t i; 4845 kmem_cache_t *prev_cache = NULL; 4846 kmem_cache_t *prev_data_cache = NULL; 4847 4848 #ifdef _KERNEL 4849 if ((aggsum_compare(&arc_sums.arcstat_meta_used, 4850 arc_meta_limit) >= 0) && zfs_arc_meta_prune) { 4851 /* 4852 * We are exceeding our meta-data cache limit. 4853 * Prune some entries to release holds on meta-data. 4854 */ 4855 arc_prune_async(zfs_arc_meta_prune); 4856 } 4857 #if defined(_ILP32) 4858 /* 4859 * Reclaim unused memory from all kmem caches. 4860 */ 4861 kmem_reap(); 4862 #endif 4863 #endif 4864 4865 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 4866 #if defined(_ILP32) 4867 /* reach upper limit of cache size on 32-bit */ 4868 if (zio_buf_cache[i] == NULL) 4869 break; 4870 #endif 4871 if (zio_buf_cache[i] != prev_cache) { 4872 prev_cache = zio_buf_cache[i]; 4873 kmem_cache_reap_now(zio_buf_cache[i]); 4874 } 4875 if (zio_data_buf_cache[i] != prev_data_cache) { 4876 prev_data_cache = zio_data_buf_cache[i]; 4877 kmem_cache_reap_now(zio_data_buf_cache[i]); 4878 } 4879 } 4880 kmem_cache_reap_now(buf_cache); 4881 kmem_cache_reap_now(hdr_full_cache); 4882 kmem_cache_reap_now(hdr_l2only_cache); 4883 kmem_cache_reap_now(zfs_btree_leaf_cache); 4884 abd_cache_reap_now(); 4885 } 4886 4887 static boolean_t 4888 arc_evict_cb_check(void *arg, zthr_t *zthr) 4889 { 4890 (void) arg, (void) zthr; 4891 4892 #ifdef ZFS_DEBUG 4893 /* 4894 * This is necessary in order to keep the kstat information 4895 * up to date for tools that display kstat data such as the 4896 * mdb ::arc dcmd and the Linux crash utility. These tools 4897 * typically do not call kstat's update function, but simply 4898 * dump out stats from the most recent update. Without 4899 * this call, these commands may show stale stats for the 4900 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 4901 * with this call, the data might be out of date if the 4902 * evict thread hasn't been woken recently; but that should 4903 * suffice. The arc_state_t structures can be queried 4904 * directly if more accurate information is needed. 4905 */ 4906 if (arc_ksp != NULL) 4907 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 4908 #endif 4909 4910 /* 4911 * We have to rely on arc_wait_for_eviction() to tell us when to 4912 * evict, rather than checking if we are overflowing here, so that we 4913 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv. 4914 * If we have become "not overflowing" since arc_wait_for_eviction() 4915 * checked, we need to wake it up. We could broadcast the CV here, 4916 * but arc_wait_for_eviction() may have not yet gone to sleep. We 4917 * would need to use a mutex to ensure that this function doesn't 4918 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g. 4919 * the arc_evict_lock). However, the lock ordering of such a lock 4920 * would necessarily be incorrect with respect to the zthr_lock, 4921 * which is held before this function is called, and is held by 4922 * arc_wait_for_eviction() when it calls zthr_wakeup(). 4923 */ 4924 return (arc_evict_needed); 4925 } 4926 4927 /* 4928 * Keep arc_size under arc_c by running arc_evict which evicts data 4929 * from the ARC. 4930 */ 4931 static void 4932 arc_evict_cb(void *arg, zthr_t *zthr) 4933 { 4934 (void) arg, (void) zthr; 4935 4936 uint64_t evicted = 0; 4937 fstrans_cookie_t cookie = spl_fstrans_mark(); 4938 4939 /* Evict from cache */ 4940 evicted = arc_evict(); 4941 4942 /* 4943 * If evicted is zero, we couldn't evict anything 4944 * via arc_evict(). This could be due to hash lock 4945 * collisions, but more likely due to the majority of 4946 * arc buffers being unevictable. Therefore, even if 4947 * arc_size is above arc_c, another pass is unlikely to 4948 * be helpful and could potentially cause us to enter an 4949 * infinite loop. Additionally, zthr_iscancelled() is 4950 * checked here so that if the arc is shutting down, the 4951 * broadcast will wake any remaining arc evict waiters. 4952 */ 4953 mutex_enter(&arc_evict_lock); 4954 arc_evict_needed = !zthr_iscancelled(arc_evict_zthr) && 4955 evicted > 0 && aggsum_compare(&arc_sums.arcstat_size, arc_c) > 0; 4956 if (!arc_evict_needed) { 4957 /* 4958 * We're either no longer overflowing, or we 4959 * can't evict anything more, so we should wake 4960 * arc_get_data_impl() sooner. 4961 */ 4962 arc_evict_waiter_t *aw; 4963 while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) { 4964 cv_broadcast(&aw->aew_cv); 4965 } 4966 arc_set_need_free(); 4967 } 4968 mutex_exit(&arc_evict_lock); 4969 spl_fstrans_unmark(cookie); 4970 } 4971 4972 static boolean_t 4973 arc_reap_cb_check(void *arg, zthr_t *zthr) 4974 { 4975 (void) arg, (void) zthr; 4976 4977 int64_t free_memory = arc_available_memory(); 4978 static int reap_cb_check_counter = 0; 4979 4980 /* 4981 * If a kmem reap is already active, don't schedule more. We must 4982 * check for this because kmem_cache_reap_soon() won't actually 4983 * block on the cache being reaped (this is to prevent callers from 4984 * becoming implicitly blocked by a system-wide kmem reap -- which, 4985 * on a system with many, many full magazines, can take minutes). 4986 */ 4987 if (!kmem_cache_reap_active() && free_memory < 0) { 4988 4989 arc_no_grow = B_TRUE; 4990 arc_warm = B_TRUE; 4991 /* 4992 * Wait at least zfs_grow_retry (default 5) seconds 4993 * before considering growing. 4994 */ 4995 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry); 4996 return (B_TRUE); 4997 } else if (free_memory < arc_c >> arc_no_grow_shift) { 4998 arc_no_grow = B_TRUE; 4999 } else if (gethrtime() >= arc_growtime) { 5000 arc_no_grow = B_FALSE; 5001 } 5002 5003 /* 5004 * Called unconditionally every 60 seconds to reclaim unused 5005 * zstd compression and decompression context. This is done 5006 * here to avoid the need for an independent thread. 5007 */ 5008 if (!((reap_cb_check_counter++) % 60)) 5009 zfs_zstd_cache_reap_now(); 5010 5011 return (B_FALSE); 5012 } 5013 5014 /* 5015 * Keep enough free memory in the system by reaping the ARC's kmem 5016 * caches. To cause more slabs to be reapable, we may reduce the 5017 * target size of the cache (arc_c), causing the arc_evict_cb() 5018 * to free more buffers. 5019 */ 5020 static void 5021 arc_reap_cb(void *arg, zthr_t *zthr) 5022 { 5023 (void) arg, (void) zthr; 5024 5025 int64_t free_memory; 5026 fstrans_cookie_t cookie = spl_fstrans_mark(); 5027 5028 /* 5029 * Kick off asynchronous kmem_reap()'s of all our caches. 5030 */ 5031 arc_kmem_reap_soon(); 5032 5033 /* 5034 * Wait at least arc_kmem_cache_reap_retry_ms between 5035 * arc_kmem_reap_soon() calls. Without this check it is possible to 5036 * end up in a situation where we spend lots of time reaping 5037 * caches, while we're near arc_c_min. Waiting here also gives the 5038 * subsequent free memory check a chance of finding that the 5039 * asynchronous reap has already freed enough memory, and we don't 5040 * need to call arc_reduce_target_size(). 5041 */ 5042 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000); 5043 5044 /* 5045 * Reduce the target size as needed to maintain the amount of free 5046 * memory in the system at a fraction of the arc_size (1/128th by 5047 * default). If oversubscribed (free_memory < 0) then reduce the 5048 * target arc_size by the deficit amount plus the fractional 5049 * amount. If free memory is positive but less than the fractional 5050 * amount, reduce by what is needed to hit the fractional amount. 5051 */ 5052 free_memory = arc_available_memory(); 5053 5054 int64_t can_free = arc_c - arc_c_min; 5055 if (can_free > 0) { 5056 int64_t to_free = (can_free >> arc_shrink_shift) - free_memory; 5057 if (to_free > 0) 5058 arc_reduce_target_size(to_free); 5059 } 5060 spl_fstrans_unmark(cookie); 5061 } 5062 5063 #ifdef _KERNEL 5064 /* 5065 * Determine the amount of memory eligible for eviction contained in the 5066 * ARC. All clean data reported by the ghost lists can always be safely 5067 * evicted. Due to arc_c_min, the same does not hold for all clean data 5068 * contained by the regular mru and mfu lists. 5069 * 5070 * In the case of the regular mru and mfu lists, we need to report as 5071 * much clean data as possible, such that evicting that same reported 5072 * data will not bring arc_size below arc_c_min. Thus, in certain 5073 * circumstances, the total amount of clean data in the mru and mfu 5074 * lists might not actually be evictable. 5075 * 5076 * The following two distinct cases are accounted for: 5077 * 5078 * 1. The sum of the amount of dirty data contained by both the mru and 5079 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 5080 * is greater than or equal to arc_c_min. 5081 * (i.e. amount of dirty data >= arc_c_min) 5082 * 5083 * This is the easy case; all clean data contained by the mru and mfu 5084 * lists is evictable. Evicting all clean data can only drop arc_size 5085 * to the amount of dirty data, which is greater than arc_c_min. 5086 * 5087 * 2. The sum of the amount of dirty data contained by both the mru and 5088 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 5089 * is less than arc_c_min. 5090 * (i.e. arc_c_min > amount of dirty data) 5091 * 5092 * 2.1. arc_size is greater than or equal arc_c_min. 5093 * (i.e. arc_size >= arc_c_min > amount of dirty data) 5094 * 5095 * In this case, not all clean data from the regular mru and mfu 5096 * lists is actually evictable; we must leave enough clean data 5097 * to keep arc_size above arc_c_min. Thus, the maximum amount of 5098 * evictable data from the two lists combined, is exactly the 5099 * difference between arc_size and arc_c_min. 5100 * 5101 * 2.2. arc_size is less than arc_c_min 5102 * (i.e. arc_c_min > arc_size > amount of dirty data) 5103 * 5104 * In this case, none of the data contained in the mru and mfu 5105 * lists is evictable, even if it's clean. Since arc_size is 5106 * already below arc_c_min, evicting any more would only 5107 * increase this negative difference. 5108 */ 5109 5110 #endif /* _KERNEL */ 5111 5112 /* 5113 * Adapt arc info given the number of bytes we are trying to add and 5114 * the state that we are coming from. This function is only called 5115 * when we are adding new content to the cache. 5116 */ 5117 static void 5118 arc_adapt(int bytes, arc_state_t *state) 5119 { 5120 int mult; 5121 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 5122 int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size); 5123 int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size); 5124 5125 ASSERT(bytes > 0); 5126 /* 5127 * Adapt the target size of the MRU list: 5128 * - if we just hit in the MRU ghost list, then increase 5129 * the target size of the MRU list. 5130 * - if we just hit in the MFU ghost list, then increase 5131 * the target size of the MFU list by decreasing the 5132 * target size of the MRU list. 5133 */ 5134 if (state == arc_mru_ghost) { 5135 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size); 5136 if (!zfs_arc_p_dampener_disable) 5137 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 5138 5139 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 5140 } else if (state == arc_mfu_ghost) { 5141 uint64_t delta; 5142 5143 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size); 5144 if (!zfs_arc_p_dampener_disable) 5145 mult = MIN(mult, 10); 5146 5147 delta = MIN(bytes * mult, arc_p); 5148 arc_p = MAX(arc_p_min, arc_p - delta); 5149 } 5150 ASSERT((int64_t)arc_p >= 0); 5151 5152 /* 5153 * Wake reap thread if we do not have any available memory 5154 */ 5155 if (arc_reclaim_needed()) { 5156 zthr_wakeup(arc_reap_zthr); 5157 return; 5158 } 5159 5160 if (arc_no_grow) 5161 return; 5162 5163 if (arc_c >= arc_c_max) 5164 return; 5165 5166 /* 5167 * If we're within (2 * maxblocksize) bytes of the target 5168 * cache size, increment the target cache size 5169 */ 5170 ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT); 5171 if (aggsum_upper_bound(&arc_sums.arcstat_size) >= 5172 arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 5173 atomic_add_64(&arc_c, (int64_t)bytes); 5174 if (arc_c > arc_c_max) 5175 arc_c = arc_c_max; 5176 else if (state == arc_anon) 5177 atomic_add_64(&arc_p, (int64_t)bytes); 5178 if (arc_p > arc_c) 5179 arc_p = arc_c; 5180 } 5181 ASSERT((int64_t)arc_p >= 0); 5182 } 5183 5184 /* 5185 * Check if arc_size has grown past our upper threshold, determined by 5186 * zfs_arc_overflow_shift. 5187 */ 5188 static arc_ovf_level_t 5189 arc_is_overflowing(boolean_t use_reserve) 5190 { 5191 /* Always allow at least one block of overflow */ 5192 int64_t overflow = MAX(SPA_MAXBLOCKSIZE, 5193 arc_c >> zfs_arc_overflow_shift); 5194 5195 /* 5196 * We just compare the lower bound here for performance reasons. Our 5197 * primary goals are to make sure that the arc never grows without 5198 * bound, and that it can reach its maximum size. This check 5199 * accomplishes both goals. The maximum amount we could run over by is 5200 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block 5201 * in the ARC. In practice, that's in the tens of MB, which is low 5202 * enough to be safe. 5203 */ 5204 int64_t over = aggsum_lower_bound(&arc_sums.arcstat_size) - 5205 arc_c - overflow / 2; 5206 if (!use_reserve) 5207 overflow /= 2; 5208 return (over < 0 ? ARC_OVF_NONE : 5209 over < overflow ? ARC_OVF_SOME : ARC_OVF_SEVERE); 5210 } 5211 5212 static abd_t * 5213 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, const void *tag, 5214 int alloc_flags) 5215 { 5216 arc_buf_contents_t type = arc_buf_type(hdr); 5217 5218 arc_get_data_impl(hdr, size, tag, alloc_flags); 5219 if (type == ARC_BUFC_METADATA) { 5220 return (abd_alloc(size, B_TRUE)); 5221 } else { 5222 ASSERT(type == ARC_BUFC_DATA); 5223 return (abd_alloc(size, B_FALSE)); 5224 } 5225 } 5226 5227 static void * 5228 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, const void *tag) 5229 { 5230 arc_buf_contents_t type = arc_buf_type(hdr); 5231 5232 arc_get_data_impl(hdr, size, tag, ARC_HDR_DO_ADAPT); 5233 if (type == ARC_BUFC_METADATA) { 5234 return (zio_buf_alloc(size)); 5235 } else { 5236 ASSERT(type == ARC_BUFC_DATA); 5237 return (zio_data_buf_alloc(size)); 5238 } 5239 } 5240 5241 /* 5242 * Wait for the specified amount of data (in bytes) to be evicted from the 5243 * ARC, and for there to be sufficient free memory in the system. Waiting for 5244 * eviction ensures that the memory used by the ARC decreases. Waiting for 5245 * free memory ensures that the system won't run out of free pages, regardless 5246 * of ARC behavior and settings. See arc_lowmem_init(). 5247 */ 5248 void 5249 arc_wait_for_eviction(uint64_t amount, boolean_t use_reserve) 5250 { 5251 switch (arc_is_overflowing(use_reserve)) { 5252 case ARC_OVF_NONE: 5253 return; 5254 case ARC_OVF_SOME: 5255 /* 5256 * This is a bit racy without taking arc_evict_lock, but the 5257 * worst that can happen is we either call zthr_wakeup() extra 5258 * time due to race with other thread here, or the set flag 5259 * get cleared by arc_evict_cb(), which is unlikely due to 5260 * big hysteresis, but also not important since at this level 5261 * of overflow the eviction is purely advisory. Same time 5262 * taking the global lock here every time without waiting for 5263 * the actual eviction creates a significant lock contention. 5264 */ 5265 if (!arc_evict_needed) { 5266 arc_evict_needed = B_TRUE; 5267 zthr_wakeup(arc_evict_zthr); 5268 } 5269 return; 5270 case ARC_OVF_SEVERE: 5271 default: 5272 { 5273 arc_evict_waiter_t aw; 5274 list_link_init(&aw.aew_node); 5275 cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL); 5276 5277 uint64_t last_count = 0; 5278 mutex_enter(&arc_evict_lock); 5279 if (!list_is_empty(&arc_evict_waiters)) { 5280 arc_evict_waiter_t *last = 5281 list_tail(&arc_evict_waiters); 5282 last_count = last->aew_count; 5283 } else if (!arc_evict_needed) { 5284 arc_evict_needed = B_TRUE; 5285 zthr_wakeup(arc_evict_zthr); 5286 } 5287 /* 5288 * Note, the last waiter's count may be less than 5289 * arc_evict_count if we are low on memory in which 5290 * case arc_evict_state_impl() may have deferred 5291 * wakeups (but still incremented arc_evict_count). 5292 */ 5293 aw.aew_count = MAX(last_count, arc_evict_count) + amount; 5294 5295 list_insert_tail(&arc_evict_waiters, &aw); 5296 5297 arc_set_need_free(); 5298 5299 DTRACE_PROBE3(arc__wait__for__eviction, 5300 uint64_t, amount, 5301 uint64_t, arc_evict_count, 5302 uint64_t, aw.aew_count); 5303 5304 /* 5305 * We will be woken up either when arc_evict_count reaches 5306 * aew_count, or when the ARC is no longer overflowing and 5307 * eviction completes. 5308 * In case of "false" wakeup, we will still be on the list. 5309 */ 5310 do { 5311 cv_wait(&aw.aew_cv, &arc_evict_lock); 5312 } while (list_link_active(&aw.aew_node)); 5313 mutex_exit(&arc_evict_lock); 5314 5315 cv_destroy(&aw.aew_cv); 5316 } 5317 } 5318 } 5319 5320 /* 5321 * Allocate a block and return it to the caller. If we are hitting the 5322 * hard limit for the cache size, we must sleep, waiting for the eviction 5323 * thread to catch up. If we're past the target size but below the hard 5324 * limit, we'll only signal the reclaim thread and continue on. 5325 */ 5326 static void 5327 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag, 5328 int alloc_flags) 5329 { 5330 arc_state_t *state = hdr->b_l1hdr.b_state; 5331 arc_buf_contents_t type = arc_buf_type(hdr); 5332 5333 if (alloc_flags & ARC_HDR_DO_ADAPT) 5334 arc_adapt(size, state); 5335 5336 /* 5337 * If arc_size is currently overflowing, we must be adding data 5338 * faster than we are evicting. To ensure we don't compound the 5339 * problem by adding more data and forcing arc_size to grow even 5340 * further past it's target size, we wait for the eviction thread to 5341 * make some progress. We also wait for there to be sufficient free 5342 * memory in the system, as measured by arc_free_memory(). 5343 * 5344 * Specifically, we wait for zfs_arc_eviction_pct percent of the 5345 * requested size to be evicted. This should be more than 100%, to 5346 * ensure that that progress is also made towards getting arc_size 5347 * under arc_c. See the comment above zfs_arc_eviction_pct. 5348 */ 5349 arc_wait_for_eviction(size * zfs_arc_eviction_pct / 100, 5350 alloc_flags & ARC_HDR_USE_RESERVE); 5351 5352 VERIFY3U(hdr->b_type, ==, type); 5353 if (type == ARC_BUFC_METADATA) { 5354 arc_space_consume(size, ARC_SPACE_META); 5355 } else { 5356 arc_space_consume(size, ARC_SPACE_DATA); 5357 } 5358 5359 /* 5360 * Update the state size. Note that ghost states have a 5361 * "ghost size" and so don't need to be updated. 5362 */ 5363 if (!GHOST_STATE(state)) { 5364 5365 (void) zfs_refcount_add_many(&state->arcs_size, size, tag); 5366 5367 /* 5368 * If this is reached via arc_read, the link is 5369 * protected by the hash lock. If reached via 5370 * arc_buf_alloc, the header should not be accessed by 5371 * any other thread. And, if reached via arc_read_done, 5372 * the hash lock will protect it if it's found in the 5373 * hash table; otherwise no other thread should be 5374 * trying to [add|remove]_reference it. 5375 */ 5376 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5377 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5378 (void) zfs_refcount_add_many(&state->arcs_esize[type], 5379 size, tag); 5380 } 5381 5382 /* 5383 * If we are growing the cache, and we are adding anonymous 5384 * data, and we have outgrown arc_p, update arc_p 5385 */ 5386 if (aggsum_upper_bound(&arc_sums.arcstat_size) < arc_c && 5387 hdr->b_l1hdr.b_state == arc_anon && 5388 (zfs_refcount_count(&arc_anon->arcs_size) + 5389 zfs_refcount_count(&arc_mru->arcs_size) > arc_p)) 5390 arc_p = MIN(arc_c, arc_p + size); 5391 } 5392 } 5393 5394 static void 5395 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, 5396 const void *tag) 5397 { 5398 arc_free_data_impl(hdr, size, tag); 5399 abd_free(abd); 5400 } 5401 5402 static void 5403 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, const void *tag) 5404 { 5405 arc_buf_contents_t type = arc_buf_type(hdr); 5406 5407 arc_free_data_impl(hdr, size, tag); 5408 if (type == ARC_BUFC_METADATA) { 5409 zio_buf_free(buf, size); 5410 } else { 5411 ASSERT(type == ARC_BUFC_DATA); 5412 zio_data_buf_free(buf, size); 5413 } 5414 } 5415 5416 /* 5417 * Free the arc data buffer. 5418 */ 5419 static void 5420 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag) 5421 { 5422 arc_state_t *state = hdr->b_l1hdr.b_state; 5423 arc_buf_contents_t type = arc_buf_type(hdr); 5424 5425 /* protected by hash lock, if in the hash table */ 5426 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5427 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5428 ASSERT(state != arc_anon && state != arc_l2c_only); 5429 5430 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 5431 size, tag); 5432 } 5433 (void) zfs_refcount_remove_many(&state->arcs_size, size, tag); 5434 5435 VERIFY3U(hdr->b_type, ==, type); 5436 if (type == ARC_BUFC_METADATA) { 5437 arc_space_return(size, ARC_SPACE_META); 5438 } else { 5439 ASSERT(type == ARC_BUFC_DATA); 5440 arc_space_return(size, ARC_SPACE_DATA); 5441 } 5442 } 5443 5444 /* 5445 * This routine is called whenever a buffer is accessed. 5446 * NOTE: the hash lock is dropped in this function. 5447 */ 5448 static void 5449 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 5450 { 5451 clock_t now; 5452 5453 ASSERT(MUTEX_HELD(hash_lock)); 5454 ASSERT(HDR_HAS_L1HDR(hdr)); 5455 5456 if (hdr->b_l1hdr.b_state == arc_anon) { 5457 /* 5458 * This buffer is not in the cache, and does not 5459 * appear in our "ghost" list. Add the new buffer 5460 * to the MRU state. 5461 */ 5462 5463 ASSERT0(hdr->b_l1hdr.b_arc_access); 5464 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5465 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5466 arc_change_state(arc_mru, hdr, hash_lock); 5467 5468 } else if (hdr->b_l1hdr.b_state == arc_mru) { 5469 now = ddi_get_lbolt(); 5470 5471 /* 5472 * If this buffer is here because of a prefetch, then either: 5473 * - clear the flag if this is a "referencing" read 5474 * (any subsequent access will bump this into the MFU state). 5475 * or 5476 * - move the buffer to the head of the list if this is 5477 * another prefetch (to make it less likely to be evicted). 5478 */ 5479 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5480 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 5481 /* link protected by hash lock */ 5482 ASSERT(multilist_link_active( 5483 &hdr->b_l1hdr.b_arc_node)); 5484 } else { 5485 if (HDR_HAS_L2HDR(hdr)) 5486 l2arc_hdr_arcstats_decrement_state(hdr); 5487 arc_hdr_clear_flags(hdr, 5488 ARC_FLAG_PREFETCH | 5489 ARC_FLAG_PRESCIENT_PREFETCH); 5490 hdr->b_l1hdr.b_mru_hits++; 5491 ARCSTAT_BUMP(arcstat_mru_hits); 5492 if (HDR_HAS_L2HDR(hdr)) 5493 l2arc_hdr_arcstats_increment_state(hdr); 5494 } 5495 hdr->b_l1hdr.b_arc_access = now; 5496 return; 5497 } 5498 5499 /* 5500 * This buffer has been "accessed" only once so far, 5501 * but it is still in the cache. Move it to the MFU 5502 * state. 5503 */ 5504 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access + 5505 ARC_MINTIME)) { 5506 /* 5507 * More than 125ms have passed since we 5508 * instantiated this buffer. Move it to the 5509 * most frequently used state. 5510 */ 5511 hdr->b_l1hdr.b_arc_access = now; 5512 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5513 arc_change_state(arc_mfu, hdr, hash_lock); 5514 } 5515 hdr->b_l1hdr.b_mru_hits++; 5516 ARCSTAT_BUMP(arcstat_mru_hits); 5517 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 5518 arc_state_t *new_state; 5519 /* 5520 * This buffer has been "accessed" recently, but 5521 * was evicted from the cache. Move it to the 5522 * MFU state. 5523 */ 5524 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5525 new_state = arc_mru; 5526 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) { 5527 if (HDR_HAS_L2HDR(hdr)) 5528 l2arc_hdr_arcstats_decrement_state(hdr); 5529 arc_hdr_clear_flags(hdr, 5530 ARC_FLAG_PREFETCH | 5531 ARC_FLAG_PRESCIENT_PREFETCH); 5532 if (HDR_HAS_L2HDR(hdr)) 5533 l2arc_hdr_arcstats_increment_state(hdr); 5534 } 5535 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5536 } else { 5537 new_state = arc_mfu; 5538 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5539 } 5540 5541 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5542 arc_change_state(new_state, hdr, hash_lock); 5543 5544 hdr->b_l1hdr.b_mru_ghost_hits++; 5545 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 5546 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 5547 /* 5548 * This buffer has been accessed more than once and is 5549 * still in the cache. Keep it in the MFU state. 5550 * 5551 * NOTE: an add_reference() that occurred when we did 5552 * the arc_read() will have kicked this off the list. 5553 * If it was a prefetch, we will explicitly move it to 5554 * the head of the list now. 5555 */ 5556 5557 hdr->b_l1hdr.b_mfu_hits++; 5558 ARCSTAT_BUMP(arcstat_mfu_hits); 5559 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5560 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 5561 arc_state_t *new_state = arc_mfu; 5562 /* 5563 * This buffer has been accessed more than once but has 5564 * been evicted from the cache. Move it back to the 5565 * MFU state. 5566 */ 5567 5568 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5569 /* 5570 * This is a prefetch access... 5571 * move this block back to the MRU state. 5572 */ 5573 new_state = arc_mru; 5574 } 5575 5576 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5577 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5578 arc_change_state(new_state, hdr, hash_lock); 5579 5580 hdr->b_l1hdr.b_mfu_ghost_hits++; 5581 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 5582 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 5583 /* 5584 * This buffer is on the 2nd Level ARC. 5585 */ 5586 5587 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5588 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5589 arc_change_state(arc_mfu, hdr, hash_lock); 5590 } else { 5591 cmn_err(CE_PANIC, "invalid arc state 0x%p", 5592 hdr->b_l1hdr.b_state); 5593 } 5594 } 5595 5596 /* 5597 * This routine is called by dbuf_hold() to update the arc_access() state 5598 * which otherwise would be skipped for entries in the dbuf cache. 5599 */ 5600 void 5601 arc_buf_access(arc_buf_t *buf) 5602 { 5603 mutex_enter(&buf->b_evict_lock); 5604 arc_buf_hdr_t *hdr = buf->b_hdr; 5605 5606 /* 5607 * Avoid taking the hash_lock when possible as an optimization. 5608 * The header must be checked again under the hash_lock in order 5609 * to handle the case where it is concurrently being released. 5610 */ 5611 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5612 mutex_exit(&buf->b_evict_lock); 5613 return; 5614 } 5615 5616 kmutex_t *hash_lock = HDR_LOCK(hdr); 5617 mutex_enter(hash_lock); 5618 5619 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5620 mutex_exit(hash_lock); 5621 mutex_exit(&buf->b_evict_lock); 5622 ARCSTAT_BUMP(arcstat_access_skip); 5623 return; 5624 } 5625 5626 mutex_exit(&buf->b_evict_lock); 5627 5628 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5629 hdr->b_l1hdr.b_state == arc_mfu); 5630 5631 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5632 arc_access(hdr, hash_lock); 5633 mutex_exit(hash_lock); 5634 5635 ARCSTAT_BUMP(arcstat_hits); 5636 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr) && !HDR_PRESCIENT_PREFETCH(hdr), 5637 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits); 5638 } 5639 5640 /* a generic arc_read_done_func_t which you can use */ 5641 void 5642 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5643 arc_buf_t *buf, void *arg) 5644 { 5645 (void) zio, (void) zb, (void) bp; 5646 5647 if (buf == NULL) 5648 return; 5649 5650 memcpy(arg, buf->b_data, arc_buf_size(buf)); 5651 arc_buf_destroy(buf, arg); 5652 } 5653 5654 /* a generic arc_read_done_func_t */ 5655 void 5656 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5657 arc_buf_t *buf, void *arg) 5658 { 5659 (void) zb, (void) bp; 5660 arc_buf_t **bufp = arg; 5661 5662 if (buf == NULL) { 5663 ASSERT(zio == NULL || zio->io_error != 0); 5664 *bufp = NULL; 5665 } else { 5666 ASSERT(zio == NULL || zio->io_error == 0); 5667 *bufp = buf; 5668 ASSERT(buf->b_data != NULL); 5669 } 5670 } 5671 5672 static void 5673 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp) 5674 { 5675 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 5676 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0); 5677 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF); 5678 } else { 5679 if (HDR_COMPRESSION_ENABLED(hdr)) { 5680 ASSERT3U(arc_hdr_get_compress(hdr), ==, 5681 BP_GET_COMPRESS(bp)); 5682 } 5683 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 5684 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); 5685 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp)); 5686 } 5687 } 5688 5689 static void 5690 arc_read_done(zio_t *zio) 5691 { 5692 blkptr_t *bp = zio->io_bp; 5693 arc_buf_hdr_t *hdr = zio->io_private; 5694 kmutex_t *hash_lock = NULL; 5695 arc_callback_t *callback_list; 5696 arc_callback_t *acb; 5697 boolean_t freeable = B_FALSE; 5698 5699 /* 5700 * The hdr was inserted into hash-table and removed from lists 5701 * prior to starting I/O. We should find this header, since 5702 * it's in the hash table, and it should be legit since it's 5703 * not possible to evict it during the I/O. The only possible 5704 * reason for it not to be found is if we were freed during the 5705 * read. 5706 */ 5707 if (HDR_IN_HASH_TABLE(hdr)) { 5708 arc_buf_hdr_t *found; 5709 5710 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 5711 ASSERT3U(hdr->b_dva.dva_word[0], ==, 5712 BP_IDENTITY(zio->io_bp)->dva_word[0]); 5713 ASSERT3U(hdr->b_dva.dva_word[1], ==, 5714 BP_IDENTITY(zio->io_bp)->dva_word[1]); 5715 5716 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock); 5717 5718 ASSERT((found == hdr && 5719 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 5720 (found == hdr && HDR_L2_READING(hdr))); 5721 ASSERT3P(hash_lock, !=, NULL); 5722 } 5723 5724 if (BP_IS_PROTECTED(bp)) { 5725 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 5726 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 5727 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 5728 hdr->b_crypt_hdr.b_iv); 5729 5730 if (zio->io_error == 0) { 5731 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) { 5732 void *tmpbuf; 5733 5734 tmpbuf = abd_borrow_buf_copy(zio->io_abd, 5735 sizeof (zil_chain_t)); 5736 zio_crypt_decode_mac_zil(tmpbuf, 5737 hdr->b_crypt_hdr.b_mac); 5738 abd_return_buf(zio->io_abd, tmpbuf, 5739 sizeof (zil_chain_t)); 5740 } else { 5741 zio_crypt_decode_mac_bp(bp, 5742 hdr->b_crypt_hdr.b_mac); 5743 } 5744 } 5745 } 5746 5747 if (zio->io_error == 0) { 5748 /* byteswap if necessary */ 5749 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 5750 if (BP_GET_LEVEL(zio->io_bp) > 0) { 5751 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 5752 } else { 5753 hdr->b_l1hdr.b_byteswap = 5754 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 5755 } 5756 } else { 5757 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 5758 } 5759 if (!HDR_L2_READING(hdr)) { 5760 hdr->b_complevel = zio->io_prop.zp_complevel; 5761 } 5762 } 5763 5764 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); 5765 if (l2arc_noprefetch && HDR_PREFETCH(hdr)) 5766 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE); 5767 5768 callback_list = hdr->b_l1hdr.b_acb; 5769 ASSERT3P(callback_list, !=, NULL); 5770 5771 if (hash_lock && zio->io_error == 0 && 5772 hdr->b_l1hdr.b_state == arc_anon) { 5773 /* 5774 * Only call arc_access on anonymous buffers. This is because 5775 * if we've issued an I/O for an evicted buffer, we've already 5776 * called arc_access (to prevent any simultaneous readers from 5777 * getting confused). 5778 */ 5779 arc_access(hdr, hash_lock); 5780 } 5781 5782 /* 5783 * If a read request has a callback (i.e. acb_done is not NULL), then we 5784 * make a buf containing the data according to the parameters which were 5785 * passed in. The implementation of arc_buf_alloc_impl() ensures that we 5786 * aren't needlessly decompressing the data multiple times. 5787 */ 5788 int callback_cnt = 0; 5789 for (acb = callback_list; acb != NULL; acb = acb->acb_next) { 5790 if (!acb->acb_done || acb->acb_nobuf) 5791 continue; 5792 5793 callback_cnt++; 5794 5795 if (zio->io_error != 0) 5796 continue; 5797 5798 int error = arc_buf_alloc_impl(hdr, zio->io_spa, 5799 &acb->acb_zb, acb->acb_private, acb->acb_encrypted, 5800 acb->acb_compressed, acb->acb_noauth, B_TRUE, 5801 &acb->acb_buf); 5802 5803 /* 5804 * Assert non-speculative zios didn't fail because an 5805 * encryption key wasn't loaded 5806 */ 5807 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) || 5808 error != EACCES); 5809 5810 /* 5811 * If we failed to decrypt, report an error now (as the zio 5812 * layer would have done if it had done the transforms). 5813 */ 5814 if (error == ECKSUM) { 5815 ASSERT(BP_IS_PROTECTED(bp)); 5816 error = SET_ERROR(EIO); 5817 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5818 spa_log_error(zio->io_spa, &acb->acb_zb); 5819 (void) zfs_ereport_post( 5820 FM_EREPORT_ZFS_AUTHENTICATION, 5821 zio->io_spa, NULL, &acb->acb_zb, zio, 0); 5822 } 5823 } 5824 5825 if (error != 0) { 5826 /* 5827 * Decompression or decryption failed. Set 5828 * io_error so that when we call acb_done 5829 * (below), we will indicate that the read 5830 * failed. Note that in the unusual case 5831 * where one callback is compressed and another 5832 * uncompressed, we will mark all of them 5833 * as failed, even though the uncompressed 5834 * one can't actually fail. In this case, 5835 * the hdr will not be anonymous, because 5836 * if there are multiple callbacks, it's 5837 * because multiple threads found the same 5838 * arc buf in the hash table. 5839 */ 5840 zio->io_error = error; 5841 } 5842 } 5843 5844 /* 5845 * If there are multiple callbacks, we must have the hash lock, 5846 * because the only way for multiple threads to find this hdr is 5847 * in the hash table. This ensures that if there are multiple 5848 * callbacks, the hdr is not anonymous. If it were anonymous, 5849 * we couldn't use arc_buf_destroy() in the error case below. 5850 */ 5851 ASSERT(callback_cnt < 2 || hash_lock != NULL); 5852 5853 hdr->b_l1hdr.b_acb = NULL; 5854 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5855 if (callback_cnt == 0) 5856 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 5857 5858 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) || 5859 callback_list != NULL); 5860 5861 if (zio->io_error == 0) { 5862 arc_hdr_verify(hdr, zio->io_bp); 5863 } else { 5864 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 5865 if (hdr->b_l1hdr.b_state != arc_anon) 5866 arc_change_state(arc_anon, hdr, hash_lock); 5867 if (HDR_IN_HASH_TABLE(hdr)) 5868 buf_hash_remove(hdr); 5869 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5870 } 5871 5872 /* 5873 * Broadcast before we drop the hash_lock to avoid the possibility 5874 * that the hdr (and hence the cv) might be freed before we get to 5875 * the cv_broadcast(). 5876 */ 5877 cv_broadcast(&hdr->b_l1hdr.b_cv); 5878 5879 if (hash_lock != NULL) { 5880 mutex_exit(hash_lock); 5881 } else { 5882 /* 5883 * This block was freed while we waited for the read to 5884 * complete. It has been removed from the hash table and 5885 * moved to the anonymous state (so that it won't show up 5886 * in the cache). 5887 */ 5888 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 5889 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5890 } 5891 5892 /* execute each callback and free its structure */ 5893 while ((acb = callback_list) != NULL) { 5894 if (acb->acb_done != NULL) { 5895 if (zio->io_error != 0 && acb->acb_buf != NULL) { 5896 /* 5897 * If arc_buf_alloc_impl() fails during 5898 * decompression, the buf will still be 5899 * allocated, and needs to be freed here. 5900 */ 5901 arc_buf_destroy(acb->acb_buf, 5902 acb->acb_private); 5903 acb->acb_buf = NULL; 5904 } 5905 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp, 5906 acb->acb_buf, acb->acb_private); 5907 } 5908 5909 if (acb->acb_zio_dummy != NULL) { 5910 acb->acb_zio_dummy->io_error = zio->io_error; 5911 zio_nowait(acb->acb_zio_dummy); 5912 } 5913 5914 callback_list = acb->acb_next; 5915 kmem_free(acb, sizeof (arc_callback_t)); 5916 } 5917 5918 if (freeable) 5919 arc_hdr_destroy(hdr); 5920 } 5921 5922 /* 5923 * "Read" the block at the specified DVA (in bp) via the 5924 * cache. If the block is found in the cache, invoke the provided 5925 * callback immediately and return. Note that the `zio' parameter 5926 * in the callback will be NULL in this case, since no IO was 5927 * required. If the block is not in the cache pass the read request 5928 * on to the spa with a substitute callback function, so that the 5929 * requested block will be added to the cache. 5930 * 5931 * If a read request arrives for a block that has a read in-progress, 5932 * either wait for the in-progress read to complete (and return the 5933 * results); or, if this is a read with a "done" func, add a record 5934 * to the read to invoke the "done" func when the read completes, 5935 * and return; or just return. 5936 * 5937 * arc_read_done() will invoke all the requested "done" functions 5938 * for readers of this block. 5939 */ 5940 int 5941 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 5942 arc_read_done_func_t *done, void *private, zio_priority_t priority, 5943 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 5944 { 5945 arc_buf_hdr_t *hdr = NULL; 5946 kmutex_t *hash_lock = NULL; 5947 zio_t *rzio; 5948 uint64_t guid = spa_load_guid(spa); 5949 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0; 5950 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) && 5951 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5952 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) && 5953 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5954 boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp); 5955 boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF; 5956 int rc = 0; 5957 5958 ASSERT(!embedded_bp || 5959 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 5960 ASSERT(!BP_IS_HOLE(bp)); 5961 ASSERT(!BP_IS_REDACTED(bp)); 5962 5963 /* 5964 * Normally SPL_FSTRANS will already be set since kernel threads which 5965 * expect to call the DMU interfaces will set it when created. System 5966 * calls are similarly handled by setting/cleaning the bit in the 5967 * registered callback (module/os/.../zfs/zpl_*). 5968 * 5969 * External consumers such as Lustre which call the exported DMU 5970 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock 5971 * on the hash_lock always set and clear the bit. 5972 */ 5973 fstrans_cookie_t cookie = spl_fstrans_mark(); 5974 top: 5975 /* 5976 * Verify the block pointer contents are reasonable. This should 5977 * always be the case since the blkptr is protected by a checksum. 5978 * However, if there is damage it's desirable to detect this early 5979 * and treat it as a checksum error. This allows an alternate blkptr 5980 * to be tried when one is available (e.g. ditto blocks). 5981 */ 5982 if (!zfs_blkptr_verify(spa, bp, zio_flags & ZIO_FLAG_CONFIG_WRITER, 5983 BLK_VERIFY_LOG)) { 5984 rc = SET_ERROR(ECKSUM); 5985 goto out; 5986 } 5987 5988 if (!embedded_bp) { 5989 /* 5990 * Embedded BP's have no DVA and require no I/O to "read". 5991 * Create an anonymous arc buf to back it. 5992 */ 5993 hdr = buf_hash_find(guid, bp, &hash_lock); 5994 } 5995 5996 /* 5997 * Determine if we have an L1 cache hit or a cache miss. For simplicity 5998 * we maintain encrypted data separately from compressed / uncompressed 5999 * data. If the user is requesting raw encrypted data and we don't have 6000 * that in the header we will read from disk to guarantee that we can 6001 * get it even if the encryption keys aren't loaded. 6002 */ 6003 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) || 6004 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) { 6005 arc_buf_t *buf = NULL; 6006 *arc_flags |= ARC_FLAG_CACHED; 6007 6008 if (HDR_IO_IN_PROGRESS(hdr)) { 6009 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head; 6010 6011 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 6012 mutex_exit(hash_lock); 6013 ARCSTAT_BUMP(arcstat_cached_only_in_progress); 6014 rc = SET_ERROR(ENOENT); 6015 goto out; 6016 } 6017 6018 ASSERT3P(head_zio, !=, NULL); 6019 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && 6020 priority == ZIO_PRIORITY_SYNC_READ) { 6021 /* 6022 * This is a sync read that needs to wait for 6023 * an in-flight async read. Request that the 6024 * zio have its priority upgraded. 6025 */ 6026 zio_change_priority(head_zio, priority); 6027 DTRACE_PROBE1(arc__async__upgrade__sync, 6028 arc_buf_hdr_t *, hdr); 6029 ARCSTAT_BUMP(arcstat_async_upgrade_sync); 6030 } 6031 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 6032 arc_hdr_clear_flags(hdr, 6033 ARC_FLAG_PREDICTIVE_PREFETCH); 6034 } 6035 6036 /* 6037 * If there are multiple threads reading the same block 6038 * and that block is not yet in the ARC, then only one 6039 * thread will do the physical I/O and all other 6040 * threads will wait until that I/O completes. 6041 * Synchronous reads use the b_cv whereas nowait reads 6042 * register a callback. Both are signalled/called in 6043 * arc_read_done. 6044 * 6045 * Errors of the physical I/O may need to be propagated 6046 * to the pio. For synchronous reads, we simply restart 6047 * this function and it will reassess. Nowait reads 6048 * attach the acb_zio_dummy zio to pio and 6049 * arc_read_done propagates the physical I/O's io_error 6050 * to acb_zio_dummy, and thereby to pio. 6051 */ 6052 6053 if (*arc_flags & ARC_FLAG_WAIT) { 6054 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 6055 mutex_exit(hash_lock); 6056 goto top; 6057 } 6058 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 6059 6060 if (done) { 6061 arc_callback_t *acb = NULL; 6062 6063 acb = kmem_zalloc(sizeof (arc_callback_t), 6064 KM_SLEEP); 6065 acb->acb_done = done; 6066 acb->acb_private = private; 6067 acb->acb_compressed = compressed_read; 6068 acb->acb_encrypted = encrypted_read; 6069 acb->acb_noauth = noauth_read; 6070 acb->acb_nobuf = no_buf; 6071 acb->acb_zb = *zb; 6072 if (pio != NULL) 6073 acb->acb_zio_dummy = zio_null(pio, 6074 spa, NULL, NULL, NULL, zio_flags); 6075 6076 ASSERT3P(acb->acb_done, !=, NULL); 6077 acb->acb_zio_head = head_zio; 6078 acb->acb_next = hdr->b_l1hdr.b_acb; 6079 hdr->b_l1hdr.b_acb = acb; 6080 } 6081 mutex_exit(hash_lock); 6082 goto out; 6083 } 6084 6085 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 6086 hdr->b_l1hdr.b_state == arc_mfu); 6087 6088 if (done && !no_buf) { 6089 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 6090 /* 6091 * This is a demand read which does not have to 6092 * wait for i/o because we did a predictive 6093 * prefetch i/o for it, which has completed. 6094 */ 6095 DTRACE_PROBE1( 6096 arc__demand__hit__predictive__prefetch, 6097 arc_buf_hdr_t *, hdr); 6098 ARCSTAT_BUMP( 6099 arcstat_demand_hit_predictive_prefetch); 6100 arc_hdr_clear_flags(hdr, 6101 ARC_FLAG_PREDICTIVE_PREFETCH); 6102 } 6103 6104 if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) { 6105 ARCSTAT_BUMP( 6106 arcstat_demand_hit_prescient_prefetch); 6107 arc_hdr_clear_flags(hdr, 6108 ARC_FLAG_PRESCIENT_PREFETCH); 6109 } 6110 6111 ASSERT(!embedded_bp || !BP_IS_HOLE(bp)); 6112 6113 /* Get a buf with the desired data in it. */ 6114 rc = arc_buf_alloc_impl(hdr, spa, zb, private, 6115 encrypted_read, compressed_read, noauth_read, 6116 B_TRUE, &buf); 6117 if (rc == ECKSUM) { 6118 /* 6119 * Convert authentication and decryption errors 6120 * to EIO (and generate an ereport if needed) 6121 * before leaving the ARC. 6122 */ 6123 rc = SET_ERROR(EIO); 6124 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) { 6125 spa_log_error(spa, zb); 6126 (void) zfs_ereport_post( 6127 FM_EREPORT_ZFS_AUTHENTICATION, 6128 spa, NULL, zb, NULL, 0); 6129 } 6130 } 6131 if (rc != 0) { 6132 (void) remove_reference(hdr, hash_lock, 6133 private); 6134 arc_buf_destroy_impl(buf); 6135 buf = NULL; 6136 } 6137 6138 /* assert any errors weren't due to unloaded keys */ 6139 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) || 6140 rc != EACCES); 6141 } else if (*arc_flags & ARC_FLAG_PREFETCH && 6142 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6143 if (HDR_HAS_L2HDR(hdr)) 6144 l2arc_hdr_arcstats_decrement_state(hdr); 6145 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 6146 if (HDR_HAS_L2HDR(hdr)) 6147 l2arc_hdr_arcstats_increment_state(hdr); 6148 } 6149 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 6150 arc_access(hdr, hash_lock); 6151 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 6152 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 6153 if (*arc_flags & ARC_FLAG_L2CACHE) 6154 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6155 mutex_exit(hash_lock); 6156 ARCSTAT_BUMP(arcstat_hits); 6157 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 6158 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 6159 data, metadata, hits); 6160 6161 if (done) 6162 done(NULL, zb, bp, buf, private); 6163 } else { 6164 uint64_t lsize = BP_GET_LSIZE(bp); 6165 uint64_t psize = BP_GET_PSIZE(bp); 6166 arc_callback_t *acb; 6167 vdev_t *vd = NULL; 6168 uint64_t addr = 0; 6169 boolean_t devw = B_FALSE; 6170 uint64_t size; 6171 abd_t *hdr_abd; 6172 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0; 6173 6174 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 6175 rc = SET_ERROR(ENOENT); 6176 if (hash_lock != NULL) 6177 mutex_exit(hash_lock); 6178 goto out; 6179 } 6180 6181 if (hdr == NULL) { 6182 /* 6183 * This block is not in the cache or it has 6184 * embedded data. 6185 */ 6186 arc_buf_hdr_t *exists = NULL; 6187 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 6188 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 6189 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type); 6190 6191 if (!embedded_bp) { 6192 hdr->b_dva = *BP_IDENTITY(bp); 6193 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 6194 exists = buf_hash_insert(hdr, &hash_lock); 6195 } 6196 if (exists != NULL) { 6197 /* somebody beat us to the hash insert */ 6198 mutex_exit(hash_lock); 6199 buf_discard_identity(hdr); 6200 arc_hdr_destroy(hdr); 6201 goto top; /* restart the IO request */ 6202 } 6203 alloc_flags |= ARC_HDR_DO_ADAPT; 6204 } else { 6205 /* 6206 * This block is in the ghost cache or encrypted data 6207 * was requested and we didn't have it. If it was 6208 * L2-only (and thus didn't have an L1 hdr), 6209 * we realloc the header to add an L1 hdr. 6210 */ 6211 if (!HDR_HAS_L1HDR(hdr)) { 6212 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 6213 hdr_full_cache); 6214 } 6215 6216 if (GHOST_STATE(hdr->b_l1hdr.b_state)) { 6217 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6218 ASSERT(!HDR_HAS_RABD(hdr)); 6219 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6220 ASSERT0(zfs_refcount_count( 6221 &hdr->b_l1hdr.b_refcnt)); 6222 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 6223 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 6224 } else if (HDR_IO_IN_PROGRESS(hdr)) { 6225 /* 6226 * If this header already had an IO in progress 6227 * and we are performing another IO to fetch 6228 * encrypted data we must wait until the first 6229 * IO completes so as not to confuse 6230 * arc_read_done(). This should be very rare 6231 * and so the performance impact shouldn't 6232 * matter. 6233 */ 6234 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 6235 mutex_exit(hash_lock); 6236 goto top; 6237 } 6238 6239 /* 6240 * This is a delicate dance that we play here. 6241 * This hdr might be in the ghost list so we access 6242 * it to move it out of the ghost list before we 6243 * initiate the read. If it's a prefetch then 6244 * it won't have a callback so we'll remove the 6245 * reference that arc_buf_alloc_impl() created. We 6246 * do this after we've called arc_access() to 6247 * avoid hitting an assert in remove_reference(). 6248 */ 6249 arc_adapt(arc_hdr_size(hdr), hdr->b_l1hdr.b_state); 6250 arc_access(hdr, hash_lock); 6251 } 6252 6253 arc_hdr_alloc_abd(hdr, alloc_flags); 6254 if (encrypted_read) { 6255 ASSERT(HDR_HAS_RABD(hdr)); 6256 size = HDR_GET_PSIZE(hdr); 6257 hdr_abd = hdr->b_crypt_hdr.b_rabd; 6258 zio_flags |= ZIO_FLAG_RAW; 6259 } else { 6260 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 6261 size = arc_hdr_size(hdr); 6262 hdr_abd = hdr->b_l1hdr.b_pabd; 6263 6264 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 6265 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 6266 } 6267 6268 /* 6269 * For authenticated bp's, we do not ask the ZIO layer 6270 * to authenticate them since this will cause the entire 6271 * IO to fail if the key isn't loaded. Instead, we 6272 * defer authentication until arc_buf_fill(), which will 6273 * verify the data when the key is available. 6274 */ 6275 if (BP_IS_AUTHENTICATED(bp)) 6276 zio_flags |= ZIO_FLAG_RAW_ENCRYPT; 6277 } 6278 6279 if (*arc_flags & ARC_FLAG_PREFETCH && 6280 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6281 if (HDR_HAS_L2HDR(hdr)) 6282 l2arc_hdr_arcstats_decrement_state(hdr); 6283 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 6284 if (HDR_HAS_L2HDR(hdr)) 6285 l2arc_hdr_arcstats_increment_state(hdr); 6286 } 6287 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 6288 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 6289 if (*arc_flags & ARC_FLAG_L2CACHE) 6290 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6291 if (BP_IS_AUTHENTICATED(bp)) 6292 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6293 if (BP_GET_LEVEL(bp) > 0) 6294 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); 6295 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH) 6296 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH); 6297 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 6298 6299 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 6300 acb->acb_done = done; 6301 acb->acb_private = private; 6302 acb->acb_compressed = compressed_read; 6303 acb->acb_encrypted = encrypted_read; 6304 acb->acb_noauth = noauth_read; 6305 acb->acb_zb = *zb; 6306 6307 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6308 hdr->b_l1hdr.b_acb = acb; 6309 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6310 6311 if (HDR_HAS_L2HDR(hdr) && 6312 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 6313 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 6314 addr = hdr->b_l2hdr.b_daddr; 6315 /* 6316 * Lock out L2ARC device removal. 6317 */ 6318 if (vdev_is_dead(vd) || 6319 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 6320 vd = NULL; 6321 } 6322 6323 /* 6324 * We count both async reads and scrub IOs as asynchronous so 6325 * that both can be upgraded in the event of a cache hit while 6326 * the read IO is still in-flight. 6327 */ 6328 if (priority == ZIO_PRIORITY_ASYNC_READ || 6329 priority == ZIO_PRIORITY_SCRUB) 6330 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6331 else 6332 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6333 6334 /* 6335 * At this point, we have a level 1 cache miss or a blkptr 6336 * with embedded data. Try again in L2ARC if possible. 6337 */ 6338 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); 6339 6340 /* 6341 * Skip ARC stat bump for block pointers with embedded 6342 * data. The data are read from the blkptr itself via 6343 * decode_embedded_bp_compressed(). 6344 */ 6345 if (!embedded_bp) { 6346 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, 6347 blkptr_t *, bp, uint64_t, lsize, 6348 zbookmark_phys_t *, zb); 6349 ARCSTAT_BUMP(arcstat_misses); 6350 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 6351 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, 6352 metadata, misses); 6353 zfs_racct_read(size, 1); 6354 } 6355 6356 /* Check if the spa even has l2 configured */ 6357 const boolean_t spa_has_l2 = l2arc_ndev != 0 && 6358 spa->spa_l2cache.sav_count > 0; 6359 6360 if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) { 6361 /* 6362 * Read from the L2ARC if the following are true: 6363 * 1. The L2ARC vdev was previously cached. 6364 * 2. This buffer still has L2ARC metadata. 6365 * 3. This buffer isn't currently writing to the L2ARC. 6366 * 4. The L2ARC entry wasn't evicted, which may 6367 * also have invalidated the vdev. 6368 * 5. This isn't prefetch or l2arc_noprefetch is 0. 6369 */ 6370 if (HDR_HAS_L2HDR(hdr) && 6371 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 6372 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 6373 l2arc_read_callback_t *cb; 6374 abd_t *abd; 6375 uint64_t asize; 6376 6377 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 6378 ARCSTAT_BUMP(arcstat_l2_hits); 6379 hdr->b_l2hdr.b_hits++; 6380 6381 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 6382 KM_SLEEP); 6383 cb->l2rcb_hdr = hdr; 6384 cb->l2rcb_bp = *bp; 6385 cb->l2rcb_zb = *zb; 6386 cb->l2rcb_flags = zio_flags; 6387 6388 /* 6389 * When Compressed ARC is disabled, but the 6390 * L2ARC block is compressed, arc_hdr_size() 6391 * will have returned LSIZE rather than PSIZE. 6392 */ 6393 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 6394 !HDR_COMPRESSION_ENABLED(hdr) && 6395 HDR_GET_PSIZE(hdr) != 0) { 6396 size = HDR_GET_PSIZE(hdr); 6397 } 6398 6399 asize = vdev_psize_to_asize(vd, size); 6400 if (asize != size) { 6401 abd = abd_alloc_for_io(asize, 6402 HDR_ISTYPE_METADATA(hdr)); 6403 cb->l2rcb_abd = abd; 6404 } else { 6405 abd = hdr_abd; 6406 } 6407 6408 ASSERT(addr >= VDEV_LABEL_START_SIZE && 6409 addr + asize <= vd->vdev_psize - 6410 VDEV_LABEL_END_SIZE); 6411 6412 /* 6413 * l2arc read. The SCL_L2ARC lock will be 6414 * released by l2arc_read_done(). 6415 * Issue a null zio if the underlying buffer 6416 * was squashed to zero size by compression. 6417 */ 6418 ASSERT3U(arc_hdr_get_compress(hdr), !=, 6419 ZIO_COMPRESS_EMPTY); 6420 rzio = zio_read_phys(pio, vd, addr, 6421 asize, abd, 6422 ZIO_CHECKSUM_OFF, 6423 l2arc_read_done, cb, priority, 6424 zio_flags | ZIO_FLAG_DONT_CACHE | 6425 ZIO_FLAG_CANFAIL | 6426 ZIO_FLAG_DONT_PROPAGATE | 6427 ZIO_FLAG_DONT_RETRY, B_FALSE); 6428 acb->acb_zio_head = rzio; 6429 6430 if (hash_lock != NULL) 6431 mutex_exit(hash_lock); 6432 6433 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 6434 zio_t *, rzio); 6435 ARCSTAT_INCR(arcstat_l2_read_bytes, 6436 HDR_GET_PSIZE(hdr)); 6437 6438 if (*arc_flags & ARC_FLAG_NOWAIT) { 6439 zio_nowait(rzio); 6440 goto out; 6441 } 6442 6443 ASSERT(*arc_flags & ARC_FLAG_WAIT); 6444 if (zio_wait(rzio) == 0) 6445 goto out; 6446 6447 /* l2arc read error; goto zio_read() */ 6448 if (hash_lock != NULL) 6449 mutex_enter(hash_lock); 6450 } else { 6451 DTRACE_PROBE1(l2arc__miss, 6452 arc_buf_hdr_t *, hdr); 6453 ARCSTAT_BUMP(arcstat_l2_misses); 6454 if (HDR_L2_WRITING(hdr)) 6455 ARCSTAT_BUMP(arcstat_l2_rw_clash); 6456 spa_config_exit(spa, SCL_L2ARC, vd); 6457 } 6458 } else { 6459 if (vd != NULL) 6460 spa_config_exit(spa, SCL_L2ARC, vd); 6461 6462 /* 6463 * Only a spa with l2 should contribute to l2 6464 * miss stats. (Including the case of having a 6465 * faulted cache device - that's also a miss.) 6466 */ 6467 if (spa_has_l2) { 6468 /* 6469 * Skip ARC stat bump for block pointers with 6470 * embedded data. The data are read from the 6471 * blkptr itself via 6472 * decode_embedded_bp_compressed(). 6473 */ 6474 if (!embedded_bp) { 6475 DTRACE_PROBE1(l2arc__miss, 6476 arc_buf_hdr_t *, hdr); 6477 ARCSTAT_BUMP(arcstat_l2_misses); 6478 } 6479 } 6480 } 6481 6482 rzio = zio_read(pio, spa, bp, hdr_abd, size, 6483 arc_read_done, hdr, priority, zio_flags, zb); 6484 acb->acb_zio_head = rzio; 6485 6486 if (hash_lock != NULL) 6487 mutex_exit(hash_lock); 6488 6489 if (*arc_flags & ARC_FLAG_WAIT) { 6490 rc = zio_wait(rzio); 6491 goto out; 6492 } 6493 6494 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 6495 zio_nowait(rzio); 6496 } 6497 6498 out: 6499 /* embedded bps don't actually go to disk */ 6500 if (!embedded_bp) 6501 spa_read_history_add(spa, zb, *arc_flags); 6502 spl_fstrans_unmark(cookie); 6503 return (rc); 6504 } 6505 6506 arc_prune_t * 6507 arc_add_prune_callback(arc_prune_func_t *func, void *private) 6508 { 6509 arc_prune_t *p; 6510 6511 p = kmem_alloc(sizeof (*p), KM_SLEEP); 6512 p->p_pfunc = func; 6513 p->p_private = private; 6514 list_link_init(&p->p_node); 6515 zfs_refcount_create(&p->p_refcnt); 6516 6517 mutex_enter(&arc_prune_mtx); 6518 zfs_refcount_add(&p->p_refcnt, &arc_prune_list); 6519 list_insert_head(&arc_prune_list, p); 6520 mutex_exit(&arc_prune_mtx); 6521 6522 return (p); 6523 } 6524 6525 void 6526 arc_remove_prune_callback(arc_prune_t *p) 6527 { 6528 boolean_t wait = B_FALSE; 6529 mutex_enter(&arc_prune_mtx); 6530 list_remove(&arc_prune_list, p); 6531 if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0) 6532 wait = B_TRUE; 6533 mutex_exit(&arc_prune_mtx); 6534 6535 /* wait for arc_prune_task to finish */ 6536 if (wait) 6537 taskq_wait_outstanding(arc_prune_taskq, 0); 6538 ASSERT0(zfs_refcount_count(&p->p_refcnt)); 6539 zfs_refcount_destroy(&p->p_refcnt); 6540 kmem_free(p, sizeof (*p)); 6541 } 6542 6543 /* 6544 * Notify the arc that a block was freed, and thus will never be used again. 6545 */ 6546 void 6547 arc_freed(spa_t *spa, const blkptr_t *bp) 6548 { 6549 arc_buf_hdr_t *hdr; 6550 kmutex_t *hash_lock; 6551 uint64_t guid = spa_load_guid(spa); 6552 6553 ASSERT(!BP_IS_EMBEDDED(bp)); 6554 6555 hdr = buf_hash_find(guid, bp, &hash_lock); 6556 if (hdr == NULL) 6557 return; 6558 6559 /* 6560 * We might be trying to free a block that is still doing I/O 6561 * (i.e. prefetch) or has a reference (i.e. a dedup-ed, 6562 * dmu_sync-ed block). If this block is being prefetched, then it 6563 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr 6564 * until the I/O completes. A block may also have a reference if it is 6565 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would 6566 * have written the new block to its final resting place on disk but 6567 * without the dedup flag set. This would have left the hdr in the MRU 6568 * state and discoverable. When the txg finally syncs it detects that 6569 * the block was overridden in open context and issues an override I/O. 6570 * Since this is a dedup block, the override I/O will determine if the 6571 * block is already in the DDT. If so, then it will replace the io_bp 6572 * with the bp from the DDT and allow the I/O to finish. When the I/O 6573 * reaches the done callback, dbuf_write_override_done, it will 6574 * check to see if the io_bp and io_bp_override are identical. 6575 * If they are not, then it indicates that the bp was replaced with 6576 * the bp in the DDT and the override bp is freed. This allows 6577 * us to arrive here with a reference on a block that is being 6578 * freed. So if we have an I/O in progress, or a reference to 6579 * this hdr, then we don't destroy the hdr. 6580 */ 6581 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) && 6582 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) { 6583 arc_change_state(arc_anon, hdr, hash_lock); 6584 arc_hdr_destroy(hdr); 6585 mutex_exit(hash_lock); 6586 } else { 6587 mutex_exit(hash_lock); 6588 } 6589 6590 } 6591 6592 /* 6593 * Release this buffer from the cache, making it an anonymous buffer. This 6594 * must be done after a read and prior to modifying the buffer contents. 6595 * If the buffer has more than one reference, we must make 6596 * a new hdr for the buffer. 6597 */ 6598 void 6599 arc_release(arc_buf_t *buf, const void *tag) 6600 { 6601 arc_buf_hdr_t *hdr = buf->b_hdr; 6602 6603 /* 6604 * It would be nice to assert that if its DMU metadata (level > 6605 * 0 || it's the dnode file), then it must be syncing context. 6606 * But we don't know that information at this level. 6607 */ 6608 6609 mutex_enter(&buf->b_evict_lock); 6610 6611 ASSERT(HDR_HAS_L1HDR(hdr)); 6612 6613 /* 6614 * We don't grab the hash lock prior to this check, because if 6615 * the buffer's header is in the arc_anon state, it won't be 6616 * linked into the hash table. 6617 */ 6618 if (hdr->b_l1hdr.b_state == arc_anon) { 6619 mutex_exit(&buf->b_evict_lock); 6620 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6621 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 6622 ASSERT(!HDR_HAS_L2HDR(hdr)); 6623 6624 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6625 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 6626 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node)); 6627 6628 hdr->b_l1hdr.b_arc_access = 0; 6629 6630 /* 6631 * If the buf is being overridden then it may already 6632 * have a hdr that is not empty. 6633 */ 6634 buf_discard_identity(hdr); 6635 arc_buf_thaw(buf); 6636 6637 return; 6638 } 6639 6640 kmutex_t *hash_lock = HDR_LOCK(hdr); 6641 mutex_enter(hash_lock); 6642 6643 /* 6644 * This assignment is only valid as long as the hash_lock is 6645 * held, we must be careful not to reference state or the 6646 * b_state field after dropping the lock. 6647 */ 6648 arc_state_t *state = hdr->b_l1hdr.b_state; 6649 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 6650 ASSERT3P(state, !=, arc_anon); 6651 6652 /* this buffer is not on any list */ 6653 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0); 6654 6655 if (HDR_HAS_L2HDR(hdr)) { 6656 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6657 6658 /* 6659 * We have to recheck this conditional again now that 6660 * we're holding the l2ad_mtx to prevent a race with 6661 * another thread which might be concurrently calling 6662 * l2arc_evict(). In that case, l2arc_evict() might have 6663 * destroyed the header's L2 portion as we were waiting 6664 * to acquire the l2ad_mtx. 6665 */ 6666 if (HDR_HAS_L2HDR(hdr)) 6667 arc_hdr_l2hdr_destroy(hdr); 6668 6669 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6670 } 6671 6672 /* 6673 * Do we have more than one buf? 6674 */ 6675 if (hdr->b_l1hdr.b_bufcnt > 1) { 6676 arc_buf_hdr_t *nhdr; 6677 uint64_t spa = hdr->b_spa; 6678 uint64_t psize = HDR_GET_PSIZE(hdr); 6679 uint64_t lsize = HDR_GET_LSIZE(hdr); 6680 boolean_t protected = HDR_PROTECTED(hdr); 6681 enum zio_compress compress = arc_hdr_get_compress(hdr); 6682 arc_buf_contents_t type = arc_buf_type(hdr); 6683 VERIFY3U(hdr->b_type, ==, type); 6684 6685 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); 6686 (void) remove_reference(hdr, hash_lock, tag); 6687 6688 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) { 6689 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6690 ASSERT(ARC_BUF_LAST(buf)); 6691 } 6692 6693 /* 6694 * Pull the data off of this hdr and attach it to 6695 * a new anonymous hdr. Also find the last buffer 6696 * in the hdr's buffer list. 6697 */ 6698 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 6699 ASSERT3P(lastbuf, !=, NULL); 6700 6701 /* 6702 * If the current arc_buf_t and the hdr are sharing their data 6703 * buffer, then we must stop sharing that block. 6704 */ 6705 if (arc_buf_is_shared(buf)) { 6706 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6707 VERIFY(!arc_buf_is_shared(lastbuf)); 6708 6709 /* 6710 * First, sever the block sharing relationship between 6711 * buf and the arc_buf_hdr_t. 6712 */ 6713 arc_unshare_buf(hdr, buf); 6714 6715 /* 6716 * Now we need to recreate the hdr's b_pabd. Since we 6717 * have lastbuf handy, we try to share with it, but if 6718 * we can't then we allocate a new b_pabd and copy the 6719 * data from buf into it. 6720 */ 6721 if (arc_can_share(hdr, lastbuf)) { 6722 arc_share_buf(hdr, lastbuf); 6723 } else { 6724 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 6725 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, 6726 buf->b_data, psize); 6727 } 6728 VERIFY3P(lastbuf->b_data, !=, NULL); 6729 } else if (HDR_SHARED_DATA(hdr)) { 6730 /* 6731 * Uncompressed shared buffers are always at the end 6732 * of the list. Compressed buffers don't have the 6733 * same requirements. This makes it hard to 6734 * simply assert that the lastbuf is shared so 6735 * we rely on the hdr's compression flags to determine 6736 * if we have a compressed, shared buffer. 6737 */ 6738 ASSERT(arc_buf_is_shared(lastbuf) || 6739 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 6740 ASSERT(!ARC_BUF_SHARED(buf)); 6741 } 6742 6743 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 6744 ASSERT3P(state, !=, arc_l2c_only); 6745 6746 (void) zfs_refcount_remove_many(&state->arcs_size, 6747 arc_buf_size(buf), buf); 6748 6749 if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6750 ASSERT3P(state, !=, arc_l2c_only); 6751 (void) zfs_refcount_remove_many( 6752 &state->arcs_esize[type], 6753 arc_buf_size(buf), buf); 6754 } 6755 6756 hdr->b_l1hdr.b_bufcnt -= 1; 6757 if (ARC_BUF_ENCRYPTED(buf)) 6758 hdr->b_crypt_hdr.b_ebufcnt -= 1; 6759 6760 arc_cksum_verify(buf); 6761 arc_buf_unwatch(buf); 6762 6763 /* if this is the last uncompressed buf free the checksum */ 6764 if (!arc_hdr_has_uncompressed_buf(hdr)) 6765 arc_cksum_free(hdr); 6766 6767 mutex_exit(hash_lock); 6768 6769 /* 6770 * Allocate a new hdr. The new hdr will contain a b_pabd 6771 * buffer which will be freed in arc_write(). 6772 */ 6773 nhdr = arc_hdr_alloc(spa, psize, lsize, protected, 6774 compress, hdr->b_complevel, type); 6775 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL); 6776 ASSERT0(nhdr->b_l1hdr.b_bufcnt); 6777 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt)); 6778 VERIFY3U(nhdr->b_type, ==, type); 6779 ASSERT(!HDR_SHARED_DATA(nhdr)); 6780 6781 nhdr->b_l1hdr.b_buf = buf; 6782 nhdr->b_l1hdr.b_bufcnt = 1; 6783 if (ARC_BUF_ENCRYPTED(buf)) 6784 nhdr->b_crypt_hdr.b_ebufcnt = 1; 6785 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 6786 buf->b_hdr = nhdr; 6787 6788 mutex_exit(&buf->b_evict_lock); 6789 (void) zfs_refcount_add_many(&arc_anon->arcs_size, 6790 arc_buf_size(buf), buf); 6791 } else { 6792 mutex_exit(&buf->b_evict_lock); 6793 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 6794 /* protected by hash lock, or hdr is on arc_anon */ 6795 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 6796 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6797 hdr->b_l1hdr.b_mru_hits = 0; 6798 hdr->b_l1hdr.b_mru_ghost_hits = 0; 6799 hdr->b_l1hdr.b_mfu_hits = 0; 6800 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 6801 arc_change_state(arc_anon, hdr, hash_lock); 6802 hdr->b_l1hdr.b_arc_access = 0; 6803 6804 mutex_exit(hash_lock); 6805 buf_discard_identity(hdr); 6806 arc_buf_thaw(buf); 6807 } 6808 } 6809 6810 int 6811 arc_released(arc_buf_t *buf) 6812 { 6813 int released; 6814 6815 mutex_enter(&buf->b_evict_lock); 6816 released = (buf->b_data != NULL && 6817 buf->b_hdr->b_l1hdr.b_state == arc_anon); 6818 mutex_exit(&buf->b_evict_lock); 6819 return (released); 6820 } 6821 6822 #ifdef ZFS_DEBUG 6823 int 6824 arc_referenced(arc_buf_t *buf) 6825 { 6826 int referenced; 6827 6828 mutex_enter(&buf->b_evict_lock); 6829 referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 6830 mutex_exit(&buf->b_evict_lock); 6831 return (referenced); 6832 } 6833 #endif 6834 6835 static void 6836 arc_write_ready(zio_t *zio) 6837 { 6838 arc_write_callback_t *callback = zio->io_private; 6839 arc_buf_t *buf = callback->awcb_buf; 6840 arc_buf_hdr_t *hdr = buf->b_hdr; 6841 blkptr_t *bp = zio->io_bp; 6842 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp); 6843 fstrans_cookie_t cookie = spl_fstrans_mark(); 6844 6845 ASSERT(HDR_HAS_L1HDR(hdr)); 6846 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 6847 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 6848 6849 /* 6850 * If we're reexecuting this zio because the pool suspended, then 6851 * cleanup any state that was previously set the first time the 6852 * callback was invoked. 6853 */ 6854 if (zio->io_flags & ZIO_FLAG_REEXECUTED) { 6855 arc_cksum_free(hdr); 6856 arc_buf_unwatch(buf); 6857 if (hdr->b_l1hdr.b_pabd != NULL) { 6858 if (arc_buf_is_shared(buf)) { 6859 arc_unshare_buf(hdr, buf); 6860 } else { 6861 arc_hdr_free_abd(hdr, B_FALSE); 6862 } 6863 } 6864 6865 if (HDR_HAS_RABD(hdr)) 6866 arc_hdr_free_abd(hdr, B_TRUE); 6867 } 6868 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6869 ASSERT(!HDR_HAS_RABD(hdr)); 6870 ASSERT(!HDR_SHARED_DATA(hdr)); 6871 ASSERT(!arc_buf_is_shared(buf)); 6872 6873 callback->awcb_ready(zio, buf, callback->awcb_private); 6874 6875 if (HDR_IO_IN_PROGRESS(hdr)) 6876 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); 6877 6878 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6879 6880 if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr)) 6881 hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp)); 6882 6883 if (BP_IS_PROTECTED(bp)) { 6884 /* ZIL blocks are written through zio_rewrite */ 6885 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 6886 ASSERT(HDR_PROTECTED(hdr)); 6887 6888 if (BP_SHOULD_BYTESWAP(bp)) { 6889 if (BP_GET_LEVEL(bp) > 0) { 6890 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 6891 } else { 6892 hdr->b_l1hdr.b_byteswap = 6893 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 6894 } 6895 } else { 6896 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 6897 } 6898 6899 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 6900 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 6901 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 6902 hdr->b_crypt_hdr.b_iv); 6903 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 6904 } 6905 6906 /* 6907 * If this block was written for raw encryption but the zio layer 6908 * ended up only authenticating it, adjust the buffer flags now. 6909 */ 6910 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) { 6911 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6912 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6913 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF) 6914 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6915 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) { 6916 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6917 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6918 } 6919 6920 /* this must be done after the buffer flags are adjusted */ 6921 arc_cksum_compute(buf); 6922 6923 enum zio_compress compress; 6924 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 6925 compress = ZIO_COMPRESS_OFF; 6926 } else { 6927 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 6928 compress = BP_GET_COMPRESS(bp); 6929 } 6930 HDR_SET_PSIZE(hdr, psize); 6931 arc_hdr_set_compress(hdr, compress); 6932 hdr->b_complevel = zio->io_prop.zp_complevel; 6933 6934 if (zio->io_error != 0 || psize == 0) 6935 goto out; 6936 6937 /* 6938 * Fill the hdr with data. If the buffer is encrypted we have no choice 6939 * but to copy the data into b_radb. If the hdr is compressed, the data 6940 * we want is available from the zio, otherwise we can take it from 6941 * the buf. 6942 * 6943 * We might be able to share the buf's data with the hdr here. However, 6944 * doing so would cause the ARC to be full of linear ABDs if we write a 6945 * lot of shareable data. As a compromise, we check whether scattered 6946 * ABDs are allowed, and assume that if they are then the user wants 6947 * the ARC to be primarily filled with them regardless of the data being 6948 * written. Therefore, if they're allowed then we allocate one and copy 6949 * the data into it; otherwise, we share the data directly if we can. 6950 */ 6951 if (ARC_BUF_ENCRYPTED(buf)) { 6952 ASSERT3U(psize, >, 0); 6953 ASSERT(ARC_BUF_COMPRESSED(buf)); 6954 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT | ARC_HDR_ALLOC_RDATA | 6955 ARC_HDR_USE_RESERVE); 6956 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6957 } else if (!abd_size_alloc_linear(arc_buf_size(buf)) || 6958 !arc_can_share(hdr, buf)) { 6959 /* 6960 * Ideally, we would always copy the io_abd into b_pabd, but the 6961 * user may have disabled compressed ARC, thus we must check the 6962 * hdr's compression setting rather than the io_bp's. 6963 */ 6964 if (BP_IS_ENCRYPTED(bp)) { 6965 ASSERT3U(psize, >, 0); 6966 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT | 6967 ARC_HDR_ALLOC_RDATA | ARC_HDR_USE_RESERVE); 6968 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6969 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 6970 !ARC_BUF_COMPRESSED(buf)) { 6971 ASSERT3U(psize, >, 0); 6972 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT | 6973 ARC_HDR_USE_RESERVE); 6974 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize); 6975 } else { 6976 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr)); 6977 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT | 6978 ARC_HDR_USE_RESERVE); 6979 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data, 6980 arc_buf_size(buf)); 6981 } 6982 } else { 6983 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd)); 6984 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf)); 6985 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6986 6987 arc_share_buf(hdr, buf); 6988 } 6989 6990 out: 6991 arc_hdr_verify(hdr, bp); 6992 spl_fstrans_unmark(cookie); 6993 } 6994 6995 static void 6996 arc_write_children_ready(zio_t *zio) 6997 { 6998 arc_write_callback_t *callback = zio->io_private; 6999 arc_buf_t *buf = callback->awcb_buf; 7000 7001 callback->awcb_children_ready(zio, buf, callback->awcb_private); 7002 } 7003 7004 /* 7005 * The SPA calls this callback for each physical write that happens on behalf 7006 * of a logical write. See the comment in dbuf_write_physdone() for details. 7007 */ 7008 static void 7009 arc_write_physdone(zio_t *zio) 7010 { 7011 arc_write_callback_t *cb = zio->io_private; 7012 if (cb->awcb_physdone != NULL) 7013 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 7014 } 7015 7016 static void 7017 arc_write_done(zio_t *zio) 7018 { 7019 arc_write_callback_t *callback = zio->io_private; 7020 arc_buf_t *buf = callback->awcb_buf; 7021 arc_buf_hdr_t *hdr = buf->b_hdr; 7022 7023 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 7024 7025 if (zio->io_error == 0) { 7026 arc_hdr_verify(hdr, zio->io_bp); 7027 7028 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 7029 buf_discard_identity(hdr); 7030 } else { 7031 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 7032 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 7033 } 7034 } else { 7035 ASSERT(HDR_EMPTY(hdr)); 7036 } 7037 7038 /* 7039 * If the block to be written was all-zero or compressed enough to be 7040 * embedded in the BP, no write was performed so there will be no 7041 * dva/birth/checksum. The buffer must therefore remain anonymous 7042 * (and uncached). 7043 */ 7044 if (!HDR_EMPTY(hdr)) { 7045 arc_buf_hdr_t *exists; 7046 kmutex_t *hash_lock; 7047 7048 ASSERT3U(zio->io_error, ==, 0); 7049 7050 arc_cksum_verify(buf); 7051 7052 exists = buf_hash_insert(hdr, &hash_lock); 7053 if (exists != NULL) { 7054 /* 7055 * This can only happen if we overwrite for 7056 * sync-to-convergence, because we remove 7057 * buffers from the hash table when we arc_free(). 7058 */ 7059 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 7060 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 7061 panic("bad overwrite, hdr=%p exists=%p", 7062 (void *)hdr, (void *)exists); 7063 ASSERT(zfs_refcount_is_zero( 7064 &exists->b_l1hdr.b_refcnt)); 7065 arc_change_state(arc_anon, exists, hash_lock); 7066 arc_hdr_destroy(exists); 7067 mutex_exit(hash_lock); 7068 exists = buf_hash_insert(hdr, &hash_lock); 7069 ASSERT3P(exists, ==, NULL); 7070 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 7071 /* nopwrite */ 7072 ASSERT(zio->io_prop.zp_nopwrite); 7073 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 7074 panic("bad nopwrite, hdr=%p exists=%p", 7075 (void *)hdr, (void *)exists); 7076 } else { 7077 /* Dedup */ 7078 ASSERT(hdr->b_l1hdr.b_bufcnt == 1); 7079 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 7080 ASSERT(BP_GET_DEDUP(zio->io_bp)); 7081 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 7082 } 7083 } 7084 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 7085 /* if it's not anon, we are doing a scrub */ 7086 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 7087 arc_access(hdr, hash_lock); 7088 mutex_exit(hash_lock); 7089 } else { 7090 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 7091 } 7092 7093 ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 7094 callback->awcb_done(zio, buf, callback->awcb_private); 7095 7096 abd_free(zio->io_abd); 7097 kmem_free(callback, sizeof (arc_write_callback_t)); 7098 } 7099 7100 zio_t * 7101 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 7102 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, 7103 const zio_prop_t *zp, arc_write_done_func_t *ready, 7104 arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone, 7105 arc_write_done_func_t *done, void *private, zio_priority_t priority, 7106 int zio_flags, const zbookmark_phys_t *zb) 7107 { 7108 arc_buf_hdr_t *hdr = buf->b_hdr; 7109 arc_write_callback_t *callback; 7110 zio_t *zio; 7111 zio_prop_t localprop = *zp; 7112 7113 ASSERT3P(ready, !=, NULL); 7114 ASSERT3P(done, !=, NULL); 7115 ASSERT(!HDR_IO_ERROR(hdr)); 7116 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 7117 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 7118 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 7119 if (l2arc) 7120 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 7121 7122 if (ARC_BUF_ENCRYPTED(buf)) { 7123 ASSERT(ARC_BUF_COMPRESSED(buf)); 7124 localprop.zp_encrypt = B_TRUE; 7125 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 7126 localprop.zp_complevel = hdr->b_complevel; 7127 localprop.zp_byteorder = 7128 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 7129 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 7130 memcpy(localprop.zp_salt, hdr->b_crypt_hdr.b_salt, 7131 ZIO_DATA_SALT_LEN); 7132 memcpy(localprop.zp_iv, hdr->b_crypt_hdr.b_iv, 7133 ZIO_DATA_IV_LEN); 7134 memcpy(localprop.zp_mac, hdr->b_crypt_hdr.b_mac, 7135 ZIO_DATA_MAC_LEN); 7136 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) { 7137 localprop.zp_nopwrite = B_FALSE; 7138 localprop.zp_copies = 7139 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1); 7140 } 7141 zio_flags |= ZIO_FLAG_RAW; 7142 } else if (ARC_BUF_COMPRESSED(buf)) { 7143 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf)); 7144 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 7145 localprop.zp_complevel = hdr->b_complevel; 7146 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 7147 } 7148 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 7149 callback->awcb_ready = ready; 7150 callback->awcb_children_ready = children_ready; 7151 callback->awcb_physdone = physdone; 7152 callback->awcb_done = done; 7153 callback->awcb_private = private; 7154 callback->awcb_buf = buf; 7155 7156 /* 7157 * The hdr's b_pabd is now stale, free it now. A new data block 7158 * will be allocated when the zio pipeline calls arc_write_ready(). 7159 */ 7160 if (hdr->b_l1hdr.b_pabd != NULL) { 7161 /* 7162 * If the buf is currently sharing the data block with 7163 * the hdr then we need to break that relationship here. 7164 * The hdr will remain with a NULL data pointer and the 7165 * buf will take sole ownership of the block. 7166 */ 7167 if (arc_buf_is_shared(buf)) { 7168 arc_unshare_buf(hdr, buf); 7169 } else { 7170 arc_hdr_free_abd(hdr, B_FALSE); 7171 } 7172 VERIFY3P(buf->b_data, !=, NULL); 7173 } 7174 7175 if (HDR_HAS_RABD(hdr)) 7176 arc_hdr_free_abd(hdr, B_TRUE); 7177 7178 if (!(zio_flags & ZIO_FLAG_RAW)) 7179 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); 7180 7181 ASSERT(!arc_buf_is_shared(buf)); 7182 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 7183 7184 zio = zio_write(pio, spa, txg, bp, 7185 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)), 7186 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready, 7187 (children_ready != NULL) ? arc_write_children_ready : NULL, 7188 arc_write_physdone, arc_write_done, callback, 7189 priority, zio_flags, zb); 7190 7191 return (zio); 7192 } 7193 7194 void 7195 arc_tempreserve_clear(uint64_t reserve) 7196 { 7197 atomic_add_64(&arc_tempreserve, -reserve); 7198 ASSERT((int64_t)arc_tempreserve >= 0); 7199 } 7200 7201 int 7202 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg) 7203 { 7204 int error; 7205 uint64_t anon_size; 7206 7207 if (!arc_no_grow && 7208 reserve > arc_c/4 && 7209 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT)) 7210 arc_c = MIN(arc_c_max, reserve * 4); 7211 7212 /* 7213 * Throttle when the calculated memory footprint for the TXG 7214 * exceeds the target ARC size. 7215 */ 7216 if (reserve > arc_c) { 7217 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve); 7218 return (SET_ERROR(ERESTART)); 7219 } 7220 7221 /* 7222 * Don't count loaned bufs as in flight dirty data to prevent long 7223 * network delays from blocking transactions that are ready to be 7224 * assigned to a txg. 7225 */ 7226 7227 /* assert that it has not wrapped around */ 7228 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 7229 7230 anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) - 7231 arc_loaned_bytes), 0); 7232 7233 /* 7234 * Writes will, almost always, require additional memory allocations 7235 * in order to compress/encrypt/etc the data. We therefore need to 7236 * make sure that there is sufficient available memory for this. 7237 */ 7238 error = arc_memory_throttle(spa, reserve, txg); 7239 if (error != 0) 7240 return (error); 7241 7242 /* 7243 * Throttle writes when the amount of dirty data in the cache 7244 * gets too large. We try to keep the cache less than half full 7245 * of dirty blocks so that our sync times don't grow too large. 7246 * 7247 * In the case of one pool being built on another pool, we want 7248 * to make sure we don't end up throttling the lower (backing) 7249 * pool when the upper pool is the majority contributor to dirty 7250 * data. To insure we make forward progress during throttling, we 7251 * also check the current pool's net dirty data and only throttle 7252 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty 7253 * data in the cache. 7254 * 7255 * Note: if two requests come in concurrently, we might let them 7256 * both succeed, when one of them should fail. Not a huge deal. 7257 */ 7258 uint64_t total_dirty = reserve + arc_tempreserve + anon_size; 7259 uint64_t spa_dirty_anon = spa_dirty_data(spa); 7260 uint64_t rarc_c = arc_warm ? arc_c : arc_c_max; 7261 if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 && 7262 anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 && 7263 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) { 7264 #ifdef ZFS_DEBUG 7265 uint64_t meta_esize = zfs_refcount_count( 7266 &arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7267 uint64_t data_esize = 7268 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7269 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 7270 "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n", 7271 (u_longlong_t)arc_tempreserve >> 10, 7272 (u_longlong_t)meta_esize >> 10, 7273 (u_longlong_t)data_esize >> 10, 7274 (u_longlong_t)reserve >> 10, 7275 (u_longlong_t)rarc_c >> 10); 7276 #endif 7277 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle); 7278 return (SET_ERROR(ERESTART)); 7279 } 7280 atomic_add_64(&arc_tempreserve, reserve); 7281 return (0); 7282 } 7283 7284 static void 7285 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 7286 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 7287 { 7288 size->value.ui64 = zfs_refcount_count(&state->arcs_size); 7289 evict_data->value.ui64 = 7290 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); 7291 evict_metadata->value.ui64 = 7292 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); 7293 } 7294 7295 static int 7296 arc_kstat_update(kstat_t *ksp, int rw) 7297 { 7298 arc_stats_t *as = ksp->ks_data; 7299 7300 if (rw == KSTAT_WRITE) 7301 return (SET_ERROR(EACCES)); 7302 7303 as->arcstat_hits.value.ui64 = 7304 wmsum_value(&arc_sums.arcstat_hits); 7305 as->arcstat_misses.value.ui64 = 7306 wmsum_value(&arc_sums.arcstat_misses); 7307 as->arcstat_demand_data_hits.value.ui64 = 7308 wmsum_value(&arc_sums.arcstat_demand_data_hits); 7309 as->arcstat_demand_data_misses.value.ui64 = 7310 wmsum_value(&arc_sums.arcstat_demand_data_misses); 7311 as->arcstat_demand_metadata_hits.value.ui64 = 7312 wmsum_value(&arc_sums.arcstat_demand_metadata_hits); 7313 as->arcstat_demand_metadata_misses.value.ui64 = 7314 wmsum_value(&arc_sums.arcstat_demand_metadata_misses); 7315 as->arcstat_prefetch_data_hits.value.ui64 = 7316 wmsum_value(&arc_sums.arcstat_prefetch_data_hits); 7317 as->arcstat_prefetch_data_misses.value.ui64 = 7318 wmsum_value(&arc_sums.arcstat_prefetch_data_misses); 7319 as->arcstat_prefetch_metadata_hits.value.ui64 = 7320 wmsum_value(&arc_sums.arcstat_prefetch_metadata_hits); 7321 as->arcstat_prefetch_metadata_misses.value.ui64 = 7322 wmsum_value(&arc_sums.arcstat_prefetch_metadata_misses); 7323 as->arcstat_mru_hits.value.ui64 = 7324 wmsum_value(&arc_sums.arcstat_mru_hits); 7325 as->arcstat_mru_ghost_hits.value.ui64 = 7326 wmsum_value(&arc_sums.arcstat_mru_ghost_hits); 7327 as->arcstat_mfu_hits.value.ui64 = 7328 wmsum_value(&arc_sums.arcstat_mfu_hits); 7329 as->arcstat_mfu_ghost_hits.value.ui64 = 7330 wmsum_value(&arc_sums.arcstat_mfu_ghost_hits); 7331 as->arcstat_deleted.value.ui64 = 7332 wmsum_value(&arc_sums.arcstat_deleted); 7333 as->arcstat_mutex_miss.value.ui64 = 7334 wmsum_value(&arc_sums.arcstat_mutex_miss); 7335 as->arcstat_access_skip.value.ui64 = 7336 wmsum_value(&arc_sums.arcstat_access_skip); 7337 as->arcstat_evict_skip.value.ui64 = 7338 wmsum_value(&arc_sums.arcstat_evict_skip); 7339 as->arcstat_evict_not_enough.value.ui64 = 7340 wmsum_value(&arc_sums.arcstat_evict_not_enough); 7341 as->arcstat_evict_l2_cached.value.ui64 = 7342 wmsum_value(&arc_sums.arcstat_evict_l2_cached); 7343 as->arcstat_evict_l2_eligible.value.ui64 = 7344 wmsum_value(&arc_sums.arcstat_evict_l2_eligible); 7345 as->arcstat_evict_l2_eligible_mfu.value.ui64 = 7346 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mfu); 7347 as->arcstat_evict_l2_eligible_mru.value.ui64 = 7348 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mru); 7349 as->arcstat_evict_l2_ineligible.value.ui64 = 7350 wmsum_value(&arc_sums.arcstat_evict_l2_ineligible); 7351 as->arcstat_evict_l2_skip.value.ui64 = 7352 wmsum_value(&arc_sums.arcstat_evict_l2_skip); 7353 as->arcstat_hash_collisions.value.ui64 = 7354 wmsum_value(&arc_sums.arcstat_hash_collisions); 7355 as->arcstat_hash_chains.value.ui64 = 7356 wmsum_value(&arc_sums.arcstat_hash_chains); 7357 as->arcstat_size.value.ui64 = 7358 aggsum_value(&arc_sums.arcstat_size); 7359 as->arcstat_compressed_size.value.ui64 = 7360 wmsum_value(&arc_sums.arcstat_compressed_size); 7361 as->arcstat_uncompressed_size.value.ui64 = 7362 wmsum_value(&arc_sums.arcstat_uncompressed_size); 7363 as->arcstat_overhead_size.value.ui64 = 7364 wmsum_value(&arc_sums.arcstat_overhead_size); 7365 as->arcstat_hdr_size.value.ui64 = 7366 wmsum_value(&arc_sums.arcstat_hdr_size); 7367 as->arcstat_data_size.value.ui64 = 7368 wmsum_value(&arc_sums.arcstat_data_size); 7369 as->arcstat_metadata_size.value.ui64 = 7370 wmsum_value(&arc_sums.arcstat_metadata_size); 7371 as->arcstat_dbuf_size.value.ui64 = 7372 wmsum_value(&arc_sums.arcstat_dbuf_size); 7373 #if defined(COMPAT_FREEBSD11) 7374 as->arcstat_other_size.value.ui64 = 7375 wmsum_value(&arc_sums.arcstat_bonus_size) + 7376 aggsum_value(&arc_sums.arcstat_dnode_size) + 7377 wmsum_value(&arc_sums.arcstat_dbuf_size); 7378 #endif 7379 7380 arc_kstat_update_state(arc_anon, 7381 &as->arcstat_anon_size, 7382 &as->arcstat_anon_evictable_data, 7383 &as->arcstat_anon_evictable_metadata); 7384 arc_kstat_update_state(arc_mru, 7385 &as->arcstat_mru_size, 7386 &as->arcstat_mru_evictable_data, 7387 &as->arcstat_mru_evictable_metadata); 7388 arc_kstat_update_state(arc_mru_ghost, 7389 &as->arcstat_mru_ghost_size, 7390 &as->arcstat_mru_ghost_evictable_data, 7391 &as->arcstat_mru_ghost_evictable_metadata); 7392 arc_kstat_update_state(arc_mfu, 7393 &as->arcstat_mfu_size, 7394 &as->arcstat_mfu_evictable_data, 7395 &as->arcstat_mfu_evictable_metadata); 7396 arc_kstat_update_state(arc_mfu_ghost, 7397 &as->arcstat_mfu_ghost_size, 7398 &as->arcstat_mfu_ghost_evictable_data, 7399 &as->arcstat_mfu_ghost_evictable_metadata); 7400 7401 as->arcstat_dnode_size.value.ui64 = 7402 aggsum_value(&arc_sums.arcstat_dnode_size); 7403 as->arcstat_bonus_size.value.ui64 = 7404 wmsum_value(&arc_sums.arcstat_bonus_size); 7405 as->arcstat_l2_hits.value.ui64 = 7406 wmsum_value(&arc_sums.arcstat_l2_hits); 7407 as->arcstat_l2_misses.value.ui64 = 7408 wmsum_value(&arc_sums.arcstat_l2_misses); 7409 as->arcstat_l2_prefetch_asize.value.ui64 = 7410 wmsum_value(&arc_sums.arcstat_l2_prefetch_asize); 7411 as->arcstat_l2_mru_asize.value.ui64 = 7412 wmsum_value(&arc_sums.arcstat_l2_mru_asize); 7413 as->arcstat_l2_mfu_asize.value.ui64 = 7414 wmsum_value(&arc_sums.arcstat_l2_mfu_asize); 7415 as->arcstat_l2_bufc_data_asize.value.ui64 = 7416 wmsum_value(&arc_sums.arcstat_l2_bufc_data_asize); 7417 as->arcstat_l2_bufc_metadata_asize.value.ui64 = 7418 wmsum_value(&arc_sums.arcstat_l2_bufc_metadata_asize); 7419 as->arcstat_l2_feeds.value.ui64 = 7420 wmsum_value(&arc_sums.arcstat_l2_feeds); 7421 as->arcstat_l2_rw_clash.value.ui64 = 7422 wmsum_value(&arc_sums.arcstat_l2_rw_clash); 7423 as->arcstat_l2_read_bytes.value.ui64 = 7424 wmsum_value(&arc_sums.arcstat_l2_read_bytes); 7425 as->arcstat_l2_write_bytes.value.ui64 = 7426 wmsum_value(&arc_sums.arcstat_l2_write_bytes); 7427 as->arcstat_l2_writes_sent.value.ui64 = 7428 wmsum_value(&arc_sums.arcstat_l2_writes_sent); 7429 as->arcstat_l2_writes_done.value.ui64 = 7430 wmsum_value(&arc_sums.arcstat_l2_writes_done); 7431 as->arcstat_l2_writes_error.value.ui64 = 7432 wmsum_value(&arc_sums.arcstat_l2_writes_error); 7433 as->arcstat_l2_writes_lock_retry.value.ui64 = 7434 wmsum_value(&arc_sums.arcstat_l2_writes_lock_retry); 7435 as->arcstat_l2_evict_lock_retry.value.ui64 = 7436 wmsum_value(&arc_sums.arcstat_l2_evict_lock_retry); 7437 as->arcstat_l2_evict_reading.value.ui64 = 7438 wmsum_value(&arc_sums.arcstat_l2_evict_reading); 7439 as->arcstat_l2_evict_l1cached.value.ui64 = 7440 wmsum_value(&arc_sums.arcstat_l2_evict_l1cached); 7441 as->arcstat_l2_free_on_write.value.ui64 = 7442 wmsum_value(&arc_sums.arcstat_l2_free_on_write); 7443 as->arcstat_l2_abort_lowmem.value.ui64 = 7444 wmsum_value(&arc_sums.arcstat_l2_abort_lowmem); 7445 as->arcstat_l2_cksum_bad.value.ui64 = 7446 wmsum_value(&arc_sums.arcstat_l2_cksum_bad); 7447 as->arcstat_l2_io_error.value.ui64 = 7448 wmsum_value(&arc_sums.arcstat_l2_io_error); 7449 as->arcstat_l2_lsize.value.ui64 = 7450 wmsum_value(&arc_sums.arcstat_l2_lsize); 7451 as->arcstat_l2_psize.value.ui64 = 7452 wmsum_value(&arc_sums.arcstat_l2_psize); 7453 as->arcstat_l2_hdr_size.value.ui64 = 7454 aggsum_value(&arc_sums.arcstat_l2_hdr_size); 7455 as->arcstat_l2_log_blk_writes.value.ui64 = 7456 wmsum_value(&arc_sums.arcstat_l2_log_blk_writes); 7457 as->arcstat_l2_log_blk_asize.value.ui64 = 7458 wmsum_value(&arc_sums.arcstat_l2_log_blk_asize); 7459 as->arcstat_l2_log_blk_count.value.ui64 = 7460 wmsum_value(&arc_sums.arcstat_l2_log_blk_count); 7461 as->arcstat_l2_rebuild_success.value.ui64 = 7462 wmsum_value(&arc_sums.arcstat_l2_rebuild_success); 7463 as->arcstat_l2_rebuild_abort_unsupported.value.ui64 = 7464 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_unsupported); 7465 as->arcstat_l2_rebuild_abort_io_errors.value.ui64 = 7466 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_io_errors); 7467 as->arcstat_l2_rebuild_abort_dh_errors.value.ui64 = 7468 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_dh_errors); 7469 as->arcstat_l2_rebuild_abort_cksum_lb_errors.value.ui64 = 7470 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors); 7471 as->arcstat_l2_rebuild_abort_lowmem.value.ui64 = 7472 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_lowmem); 7473 as->arcstat_l2_rebuild_size.value.ui64 = 7474 wmsum_value(&arc_sums.arcstat_l2_rebuild_size); 7475 as->arcstat_l2_rebuild_asize.value.ui64 = 7476 wmsum_value(&arc_sums.arcstat_l2_rebuild_asize); 7477 as->arcstat_l2_rebuild_bufs.value.ui64 = 7478 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs); 7479 as->arcstat_l2_rebuild_bufs_precached.value.ui64 = 7480 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs_precached); 7481 as->arcstat_l2_rebuild_log_blks.value.ui64 = 7482 wmsum_value(&arc_sums.arcstat_l2_rebuild_log_blks); 7483 as->arcstat_memory_throttle_count.value.ui64 = 7484 wmsum_value(&arc_sums.arcstat_memory_throttle_count); 7485 as->arcstat_memory_direct_count.value.ui64 = 7486 wmsum_value(&arc_sums.arcstat_memory_direct_count); 7487 as->arcstat_memory_indirect_count.value.ui64 = 7488 wmsum_value(&arc_sums.arcstat_memory_indirect_count); 7489 7490 as->arcstat_memory_all_bytes.value.ui64 = 7491 arc_all_memory(); 7492 as->arcstat_memory_free_bytes.value.ui64 = 7493 arc_free_memory(); 7494 as->arcstat_memory_available_bytes.value.i64 = 7495 arc_available_memory(); 7496 7497 as->arcstat_prune.value.ui64 = 7498 wmsum_value(&arc_sums.arcstat_prune); 7499 as->arcstat_meta_used.value.ui64 = 7500 aggsum_value(&arc_sums.arcstat_meta_used); 7501 as->arcstat_async_upgrade_sync.value.ui64 = 7502 wmsum_value(&arc_sums.arcstat_async_upgrade_sync); 7503 as->arcstat_demand_hit_predictive_prefetch.value.ui64 = 7504 wmsum_value(&arc_sums.arcstat_demand_hit_predictive_prefetch); 7505 as->arcstat_demand_hit_prescient_prefetch.value.ui64 = 7506 wmsum_value(&arc_sums.arcstat_demand_hit_prescient_prefetch); 7507 as->arcstat_raw_size.value.ui64 = 7508 wmsum_value(&arc_sums.arcstat_raw_size); 7509 as->arcstat_cached_only_in_progress.value.ui64 = 7510 wmsum_value(&arc_sums.arcstat_cached_only_in_progress); 7511 as->arcstat_abd_chunk_waste_size.value.ui64 = 7512 wmsum_value(&arc_sums.arcstat_abd_chunk_waste_size); 7513 7514 return (0); 7515 } 7516 7517 /* 7518 * This function *must* return indices evenly distributed between all 7519 * sublists of the multilist. This is needed due to how the ARC eviction 7520 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 7521 * distributed between all sublists and uses this assumption when 7522 * deciding which sublist to evict from and how much to evict from it. 7523 */ 7524 static unsigned int 7525 arc_state_multilist_index_func(multilist_t *ml, void *obj) 7526 { 7527 arc_buf_hdr_t *hdr = obj; 7528 7529 /* 7530 * We rely on b_dva to generate evenly distributed index 7531 * numbers using buf_hash below. So, as an added precaution, 7532 * let's make sure we never add empty buffers to the arc lists. 7533 */ 7534 ASSERT(!HDR_EMPTY(hdr)); 7535 7536 /* 7537 * The assumption here, is the hash value for a given 7538 * arc_buf_hdr_t will remain constant throughout its lifetime 7539 * (i.e. its b_spa, b_dva, and b_birth fields don't change). 7540 * Thus, we don't need to store the header's sublist index 7541 * on insertion, as this index can be recalculated on removal. 7542 * 7543 * Also, the low order bits of the hash value are thought to be 7544 * distributed evenly. Otherwise, in the case that the multilist 7545 * has a power of two number of sublists, each sublists' usage 7546 * would not be evenly distributed. In this context full 64bit 7547 * division would be a waste of time, so limit it to 32 bits. 7548 */ 7549 return ((unsigned int)buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 7550 multilist_get_num_sublists(ml)); 7551 } 7552 7553 static unsigned int 7554 arc_state_l2c_multilist_index_func(multilist_t *ml, void *obj) 7555 { 7556 panic("Header %p insert into arc_l2c_only %p", obj, ml); 7557 } 7558 7559 #define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \ 7560 if ((do_warn) && (tuning) && ((tuning) != (value))) { \ 7561 cmn_err(CE_WARN, \ 7562 "ignoring tunable %s (using %llu instead)", \ 7563 (#tuning), (u_longlong_t)(value)); \ 7564 } \ 7565 } while (0) 7566 7567 /* 7568 * Called during module initialization and periodically thereafter to 7569 * apply reasonable changes to the exposed performance tunings. Can also be 7570 * called explicitly by param_set_arc_*() functions when ARC tunables are 7571 * updated manually. Non-zero zfs_* values which differ from the currently set 7572 * values will be applied. 7573 */ 7574 void 7575 arc_tuning_update(boolean_t verbose) 7576 { 7577 uint64_t allmem = arc_all_memory(); 7578 unsigned long limit; 7579 7580 /* Valid range: 32M - <arc_c_max> */ 7581 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) && 7582 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) && 7583 (zfs_arc_min <= arc_c_max)) { 7584 arc_c_min = zfs_arc_min; 7585 arc_c = MAX(arc_c, arc_c_min); 7586 } 7587 WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose); 7588 7589 /* Valid range: 64M - <all physical memory> */ 7590 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) && 7591 (zfs_arc_max >= MIN_ARC_MAX) && (zfs_arc_max < allmem) && 7592 (zfs_arc_max > arc_c_min)) { 7593 arc_c_max = zfs_arc_max; 7594 arc_c = MIN(arc_c, arc_c_max); 7595 arc_p = (arc_c >> 1); 7596 if (arc_meta_limit > arc_c_max) 7597 arc_meta_limit = arc_c_max; 7598 if (arc_dnode_size_limit > arc_meta_limit) 7599 arc_dnode_size_limit = arc_meta_limit; 7600 } 7601 WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose); 7602 7603 /* Valid range: 16M - <arc_c_max> */ 7604 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) && 7605 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) && 7606 (zfs_arc_meta_min <= arc_c_max)) { 7607 arc_meta_min = zfs_arc_meta_min; 7608 if (arc_meta_limit < arc_meta_min) 7609 arc_meta_limit = arc_meta_min; 7610 if (arc_dnode_size_limit < arc_meta_min) 7611 arc_dnode_size_limit = arc_meta_min; 7612 } 7613 WARN_IF_TUNING_IGNORED(zfs_arc_meta_min, arc_meta_min, verbose); 7614 7615 /* Valid range: <arc_meta_min> - <arc_c_max> */ 7616 limit = zfs_arc_meta_limit ? zfs_arc_meta_limit : 7617 MIN(zfs_arc_meta_limit_percent, 100) * arc_c_max / 100; 7618 if ((limit != arc_meta_limit) && 7619 (limit >= arc_meta_min) && 7620 (limit <= arc_c_max)) 7621 arc_meta_limit = limit; 7622 WARN_IF_TUNING_IGNORED(zfs_arc_meta_limit, arc_meta_limit, verbose); 7623 7624 /* Valid range: <arc_meta_min> - <arc_meta_limit> */ 7625 limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit : 7626 MIN(zfs_arc_dnode_limit_percent, 100) * arc_meta_limit / 100; 7627 if ((limit != arc_dnode_size_limit) && 7628 (limit >= arc_meta_min) && 7629 (limit <= arc_meta_limit)) 7630 arc_dnode_size_limit = limit; 7631 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_size_limit, 7632 verbose); 7633 7634 /* Valid range: 1 - N */ 7635 if (zfs_arc_grow_retry) 7636 arc_grow_retry = zfs_arc_grow_retry; 7637 7638 /* Valid range: 1 - N */ 7639 if (zfs_arc_shrink_shift) { 7640 arc_shrink_shift = zfs_arc_shrink_shift; 7641 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1); 7642 } 7643 7644 /* Valid range: 1 - N */ 7645 if (zfs_arc_p_min_shift) 7646 arc_p_min_shift = zfs_arc_p_min_shift; 7647 7648 /* Valid range: 1 - N ms */ 7649 if (zfs_arc_min_prefetch_ms) 7650 arc_min_prefetch_ms = zfs_arc_min_prefetch_ms; 7651 7652 /* Valid range: 1 - N ms */ 7653 if (zfs_arc_min_prescient_prefetch_ms) { 7654 arc_min_prescient_prefetch_ms = 7655 zfs_arc_min_prescient_prefetch_ms; 7656 } 7657 7658 /* Valid range: 0 - 100 */ 7659 if ((zfs_arc_lotsfree_percent >= 0) && 7660 (zfs_arc_lotsfree_percent <= 100)) 7661 arc_lotsfree_percent = zfs_arc_lotsfree_percent; 7662 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent, 7663 verbose); 7664 7665 /* Valid range: 0 - <all physical memory> */ 7666 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free)) 7667 arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), allmem); 7668 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose); 7669 } 7670 7671 static void 7672 arc_state_multilist_init(multilist_t *ml, 7673 multilist_sublist_index_func_t *index_func, int *maxcountp) 7674 { 7675 multilist_create(ml, sizeof (arc_buf_hdr_t), 7676 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), index_func); 7677 *maxcountp = MAX(*maxcountp, multilist_get_num_sublists(ml)); 7678 } 7679 7680 static void 7681 arc_state_init(void) 7682 { 7683 int num_sublists = 0; 7684 7685 arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_METADATA], 7686 arc_state_multilist_index_func, &num_sublists); 7687 arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_DATA], 7688 arc_state_multilist_index_func, &num_sublists); 7689 arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 7690 arc_state_multilist_index_func, &num_sublists); 7691 arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 7692 arc_state_multilist_index_func, &num_sublists); 7693 arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 7694 arc_state_multilist_index_func, &num_sublists); 7695 arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_DATA], 7696 arc_state_multilist_index_func, &num_sublists); 7697 arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 7698 arc_state_multilist_index_func, &num_sublists); 7699 arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 7700 arc_state_multilist_index_func, &num_sublists); 7701 7702 /* 7703 * L2 headers should never be on the L2 state list since they don't 7704 * have L1 headers allocated. Special index function asserts that. 7705 */ 7706 arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 7707 arc_state_l2c_multilist_index_func, &num_sublists); 7708 arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 7709 arc_state_l2c_multilist_index_func, &num_sublists); 7710 7711 /* 7712 * Keep track of the number of markers needed to reclaim buffers from 7713 * any ARC state. The markers will be pre-allocated so as to minimize 7714 * the number of memory allocations performed by the eviction thread. 7715 */ 7716 arc_state_evict_marker_count = num_sublists; 7717 7718 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7719 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7720 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7721 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7722 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7723 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7724 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7725 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7726 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7727 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7728 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7729 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7730 7731 zfs_refcount_create(&arc_anon->arcs_size); 7732 zfs_refcount_create(&arc_mru->arcs_size); 7733 zfs_refcount_create(&arc_mru_ghost->arcs_size); 7734 zfs_refcount_create(&arc_mfu->arcs_size); 7735 zfs_refcount_create(&arc_mfu_ghost->arcs_size); 7736 zfs_refcount_create(&arc_l2c_only->arcs_size); 7737 7738 wmsum_init(&arc_sums.arcstat_hits, 0); 7739 wmsum_init(&arc_sums.arcstat_misses, 0); 7740 wmsum_init(&arc_sums.arcstat_demand_data_hits, 0); 7741 wmsum_init(&arc_sums.arcstat_demand_data_misses, 0); 7742 wmsum_init(&arc_sums.arcstat_demand_metadata_hits, 0); 7743 wmsum_init(&arc_sums.arcstat_demand_metadata_misses, 0); 7744 wmsum_init(&arc_sums.arcstat_prefetch_data_hits, 0); 7745 wmsum_init(&arc_sums.arcstat_prefetch_data_misses, 0); 7746 wmsum_init(&arc_sums.arcstat_prefetch_metadata_hits, 0); 7747 wmsum_init(&arc_sums.arcstat_prefetch_metadata_misses, 0); 7748 wmsum_init(&arc_sums.arcstat_mru_hits, 0); 7749 wmsum_init(&arc_sums.arcstat_mru_ghost_hits, 0); 7750 wmsum_init(&arc_sums.arcstat_mfu_hits, 0); 7751 wmsum_init(&arc_sums.arcstat_mfu_ghost_hits, 0); 7752 wmsum_init(&arc_sums.arcstat_deleted, 0); 7753 wmsum_init(&arc_sums.arcstat_mutex_miss, 0); 7754 wmsum_init(&arc_sums.arcstat_access_skip, 0); 7755 wmsum_init(&arc_sums.arcstat_evict_skip, 0); 7756 wmsum_init(&arc_sums.arcstat_evict_not_enough, 0); 7757 wmsum_init(&arc_sums.arcstat_evict_l2_cached, 0); 7758 wmsum_init(&arc_sums.arcstat_evict_l2_eligible, 0); 7759 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mfu, 0); 7760 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mru, 0); 7761 wmsum_init(&arc_sums.arcstat_evict_l2_ineligible, 0); 7762 wmsum_init(&arc_sums.arcstat_evict_l2_skip, 0); 7763 wmsum_init(&arc_sums.arcstat_hash_collisions, 0); 7764 wmsum_init(&arc_sums.arcstat_hash_chains, 0); 7765 aggsum_init(&arc_sums.arcstat_size, 0); 7766 wmsum_init(&arc_sums.arcstat_compressed_size, 0); 7767 wmsum_init(&arc_sums.arcstat_uncompressed_size, 0); 7768 wmsum_init(&arc_sums.arcstat_overhead_size, 0); 7769 wmsum_init(&arc_sums.arcstat_hdr_size, 0); 7770 wmsum_init(&arc_sums.arcstat_data_size, 0); 7771 wmsum_init(&arc_sums.arcstat_metadata_size, 0); 7772 wmsum_init(&arc_sums.arcstat_dbuf_size, 0); 7773 aggsum_init(&arc_sums.arcstat_dnode_size, 0); 7774 wmsum_init(&arc_sums.arcstat_bonus_size, 0); 7775 wmsum_init(&arc_sums.arcstat_l2_hits, 0); 7776 wmsum_init(&arc_sums.arcstat_l2_misses, 0); 7777 wmsum_init(&arc_sums.arcstat_l2_prefetch_asize, 0); 7778 wmsum_init(&arc_sums.arcstat_l2_mru_asize, 0); 7779 wmsum_init(&arc_sums.arcstat_l2_mfu_asize, 0); 7780 wmsum_init(&arc_sums.arcstat_l2_bufc_data_asize, 0); 7781 wmsum_init(&arc_sums.arcstat_l2_bufc_metadata_asize, 0); 7782 wmsum_init(&arc_sums.arcstat_l2_feeds, 0); 7783 wmsum_init(&arc_sums.arcstat_l2_rw_clash, 0); 7784 wmsum_init(&arc_sums.arcstat_l2_read_bytes, 0); 7785 wmsum_init(&arc_sums.arcstat_l2_write_bytes, 0); 7786 wmsum_init(&arc_sums.arcstat_l2_writes_sent, 0); 7787 wmsum_init(&arc_sums.arcstat_l2_writes_done, 0); 7788 wmsum_init(&arc_sums.arcstat_l2_writes_error, 0); 7789 wmsum_init(&arc_sums.arcstat_l2_writes_lock_retry, 0); 7790 wmsum_init(&arc_sums.arcstat_l2_evict_lock_retry, 0); 7791 wmsum_init(&arc_sums.arcstat_l2_evict_reading, 0); 7792 wmsum_init(&arc_sums.arcstat_l2_evict_l1cached, 0); 7793 wmsum_init(&arc_sums.arcstat_l2_free_on_write, 0); 7794 wmsum_init(&arc_sums.arcstat_l2_abort_lowmem, 0); 7795 wmsum_init(&arc_sums.arcstat_l2_cksum_bad, 0); 7796 wmsum_init(&arc_sums.arcstat_l2_io_error, 0); 7797 wmsum_init(&arc_sums.arcstat_l2_lsize, 0); 7798 wmsum_init(&arc_sums.arcstat_l2_psize, 0); 7799 aggsum_init(&arc_sums.arcstat_l2_hdr_size, 0); 7800 wmsum_init(&arc_sums.arcstat_l2_log_blk_writes, 0); 7801 wmsum_init(&arc_sums.arcstat_l2_log_blk_asize, 0); 7802 wmsum_init(&arc_sums.arcstat_l2_log_blk_count, 0); 7803 wmsum_init(&arc_sums.arcstat_l2_rebuild_success, 0); 7804 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_unsupported, 0); 7805 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_io_errors, 0); 7806 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_dh_errors, 0); 7807 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors, 0); 7808 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_lowmem, 0); 7809 wmsum_init(&arc_sums.arcstat_l2_rebuild_size, 0); 7810 wmsum_init(&arc_sums.arcstat_l2_rebuild_asize, 0); 7811 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs, 0); 7812 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs_precached, 0); 7813 wmsum_init(&arc_sums.arcstat_l2_rebuild_log_blks, 0); 7814 wmsum_init(&arc_sums.arcstat_memory_throttle_count, 0); 7815 wmsum_init(&arc_sums.arcstat_memory_direct_count, 0); 7816 wmsum_init(&arc_sums.arcstat_memory_indirect_count, 0); 7817 wmsum_init(&arc_sums.arcstat_prune, 0); 7818 aggsum_init(&arc_sums.arcstat_meta_used, 0); 7819 wmsum_init(&arc_sums.arcstat_async_upgrade_sync, 0); 7820 wmsum_init(&arc_sums.arcstat_demand_hit_predictive_prefetch, 0); 7821 wmsum_init(&arc_sums.arcstat_demand_hit_prescient_prefetch, 0); 7822 wmsum_init(&arc_sums.arcstat_raw_size, 0); 7823 wmsum_init(&arc_sums.arcstat_cached_only_in_progress, 0); 7824 wmsum_init(&arc_sums.arcstat_abd_chunk_waste_size, 0); 7825 7826 arc_anon->arcs_state = ARC_STATE_ANON; 7827 arc_mru->arcs_state = ARC_STATE_MRU; 7828 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST; 7829 arc_mfu->arcs_state = ARC_STATE_MFU; 7830 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST; 7831 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY; 7832 } 7833 7834 static void 7835 arc_state_fini(void) 7836 { 7837 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7838 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7839 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7840 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7841 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7842 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7843 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7844 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7845 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7846 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7847 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7848 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7849 7850 zfs_refcount_destroy(&arc_anon->arcs_size); 7851 zfs_refcount_destroy(&arc_mru->arcs_size); 7852 zfs_refcount_destroy(&arc_mru_ghost->arcs_size); 7853 zfs_refcount_destroy(&arc_mfu->arcs_size); 7854 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size); 7855 zfs_refcount_destroy(&arc_l2c_only->arcs_size); 7856 7857 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 7858 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 7859 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 7860 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 7861 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 7862 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 7863 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 7864 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 7865 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]); 7866 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]); 7867 7868 wmsum_fini(&arc_sums.arcstat_hits); 7869 wmsum_fini(&arc_sums.arcstat_misses); 7870 wmsum_fini(&arc_sums.arcstat_demand_data_hits); 7871 wmsum_fini(&arc_sums.arcstat_demand_data_misses); 7872 wmsum_fini(&arc_sums.arcstat_demand_metadata_hits); 7873 wmsum_fini(&arc_sums.arcstat_demand_metadata_misses); 7874 wmsum_fini(&arc_sums.arcstat_prefetch_data_hits); 7875 wmsum_fini(&arc_sums.arcstat_prefetch_data_misses); 7876 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_hits); 7877 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_misses); 7878 wmsum_fini(&arc_sums.arcstat_mru_hits); 7879 wmsum_fini(&arc_sums.arcstat_mru_ghost_hits); 7880 wmsum_fini(&arc_sums.arcstat_mfu_hits); 7881 wmsum_fini(&arc_sums.arcstat_mfu_ghost_hits); 7882 wmsum_fini(&arc_sums.arcstat_deleted); 7883 wmsum_fini(&arc_sums.arcstat_mutex_miss); 7884 wmsum_fini(&arc_sums.arcstat_access_skip); 7885 wmsum_fini(&arc_sums.arcstat_evict_skip); 7886 wmsum_fini(&arc_sums.arcstat_evict_not_enough); 7887 wmsum_fini(&arc_sums.arcstat_evict_l2_cached); 7888 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible); 7889 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mfu); 7890 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mru); 7891 wmsum_fini(&arc_sums.arcstat_evict_l2_ineligible); 7892 wmsum_fini(&arc_sums.arcstat_evict_l2_skip); 7893 wmsum_fini(&arc_sums.arcstat_hash_collisions); 7894 wmsum_fini(&arc_sums.arcstat_hash_chains); 7895 aggsum_fini(&arc_sums.arcstat_size); 7896 wmsum_fini(&arc_sums.arcstat_compressed_size); 7897 wmsum_fini(&arc_sums.arcstat_uncompressed_size); 7898 wmsum_fini(&arc_sums.arcstat_overhead_size); 7899 wmsum_fini(&arc_sums.arcstat_hdr_size); 7900 wmsum_fini(&arc_sums.arcstat_data_size); 7901 wmsum_fini(&arc_sums.arcstat_metadata_size); 7902 wmsum_fini(&arc_sums.arcstat_dbuf_size); 7903 aggsum_fini(&arc_sums.arcstat_dnode_size); 7904 wmsum_fini(&arc_sums.arcstat_bonus_size); 7905 wmsum_fini(&arc_sums.arcstat_l2_hits); 7906 wmsum_fini(&arc_sums.arcstat_l2_misses); 7907 wmsum_fini(&arc_sums.arcstat_l2_prefetch_asize); 7908 wmsum_fini(&arc_sums.arcstat_l2_mru_asize); 7909 wmsum_fini(&arc_sums.arcstat_l2_mfu_asize); 7910 wmsum_fini(&arc_sums.arcstat_l2_bufc_data_asize); 7911 wmsum_fini(&arc_sums.arcstat_l2_bufc_metadata_asize); 7912 wmsum_fini(&arc_sums.arcstat_l2_feeds); 7913 wmsum_fini(&arc_sums.arcstat_l2_rw_clash); 7914 wmsum_fini(&arc_sums.arcstat_l2_read_bytes); 7915 wmsum_fini(&arc_sums.arcstat_l2_write_bytes); 7916 wmsum_fini(&arc_sums.arcstat_l2_writes_sent); 7917 wmsum_fini(&arc_sums.arcstat_l2_writes_done); 7918 wmsum_fini(&arc_sums.arcstat_l2_writes_error); 7919 wmsum_fini(&arc_sums.arcstat_l2_writes_lock_retry); 7920 wmsum_fini(&arc_sums.arcstat_l2_evict_lock_retry); 7921 wmsum_fini(&arc_sums.arcstat_l2_evict_reading); 7922 wmsum_fini(&arc_sums.arcstat_l2_evict_l1cached); 7923 wmsum_fini(&arc_sums.arcstat_l2_free_on_write); 7924 wmsum_fini(&arc_sums.arcstat_l2_abort_lowmem); 7925 wmsum_fini(&arc_sums.arcstat_l2_cksum_bad); 7926 wmsum_fini(&arc_sums.arcstat_l2_io_error); 7927 wmsum_fini(&arc_sums.arcstat_l2_lsize); 7928 wmsum_fini(&arc_sums.arcstat_l2_psize); 7929 aggsum_fini(&arc_sums.arcstat_l2_hdr_size); 7930 wmsum_fini(&arc_sums.arcstat_l2_log_blk_writes); 7931 wmsum_fini(&arc_sums.arcstat_l2_log_blk_asize); 7932 wmsum_fini(&arc_sums.arcstat_l2_log_blk_count); 7933 wmsum_fini(&arc_sums.arcstat_l2_rebuild_success); 7934 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_unsupported); 7935 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_io_errors); 7936 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_dh_errors); 7937 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors); 7938 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_lowmem); 7939 wmsum_fini(&arc_sums.arcstat_l2_rebuild_size); 7940 wmsum_fini(&arc_sums.arcstat_l2_rebuild_asize); 7941 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs); 7942 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs_precached); 7943 wmsum_fini(&arc_sums.arcstat_l2_rebuild_log_blks); 7944 wmsum_fini(&arc_sums.arcstat_memory_throttle_count); 7945 wmsum_fini(&arc_sums.arcstat_memory_direct_count); 7946 wmsum_fini(&arc_sums.arcstat_memory_indirect_count); 7947 wmsum_fini(&arc_sums.arcstat_prune); 7948 aggsum_fini(&arc_sums.arcstat_meta_used); 7949 wmsum_fini(&arc_sums.arcstat_async_upgrade_sync); 7950 wmsum_fini(&arc_sums.arcstat_demand_hit_predictive_prefetch); 7951 wmsum_fini(&arc_sums.arcstat_demand_hit_prescient_prefetch); 7952 wmsum_fini(&arc_sums.arcstat_raw_size); 7953 wmsum_fini(&arc_sums.arcstat_cached_only_in_progress); 7954 wmsum_fini(&arc_sums.arcstat_abd_chunk_waste_size); 7955 } 7956 7957 uint64_t 7958 arc_target_bytes(void) 7959 { 7960 return (arc_c); 7961 } 7962 7963 void 7964 arc_set_limits(uint64_t allmem) 7965 { 7966 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */ 7967 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT); 7968 7969 /* How to set default max varies by platform. */ 7970 arc_c_max = arc_default_max(arc_c_min, allmem); 7971 } 7972 void 7973 arc_init(void) 7974 { 7975 uint64_t percent, allmem = arc_all_memory(); 7976 mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL); 7977 list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t), 7978 offsetof(arc_evict_waiter_t, aew_node)); 7979 7980 arc_min_prefetch_ms = 1000; 7981 arc_min_prescient_prefetch_ms = 6000; 7982 7983 #if defined(_KERNEL) 7984 arc_lowmem_init(); 7985 #endif 7986 7987 arc_set_limits(allmem); 7988 7989 #ifdef _KERNEL 7990 /* 7991 * If zfs_arc_max is non-zero at init, meaning it was set in the kernel 7992 * environment before the module was loaded, don't block setting the 7993 * maximum because it is less than arc_c_min, instead, reset arc_c_min 7994 * to a lower value. 7995 * zfs_arc_min will be handled by arc_tuning_update(). 7996 */ 7997 if (zfs_arc_max != 0 && zfs_arc_max >= MIN_ARC_MAX && 7998 zfs_arc_max < allmem) { 7999 arc_c_max = zfs_arc_max; 8000 if (arc_c_min >= arc_c_max) { 8001 arc_c_min = MAX(zfs_arc_max / 2, 8002 2ULL << SPA_MAXBLOCKSHIFT); 8003 } 8004 } 8005 #else 8006 /* 8007 * In userland, there's only the memory pressure that we artificially 8008 * create (see arc_available_memory()). Don't let arc_c get too 8009 * small, because it can cause transactions to be larger than 8010 * arc_c, causing arc_tempreserve_space() to fail. 8011 */ 8012 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT); 8013 #endif 8014 8015 arc_c = arc_c_min; 8016 arc_p = (arc_c >> 1); 8017 8018 /* Set min to 1/2 of arc_c_min */ 8019 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT; 8020 /* 8021 * Set arc_meta_limit to a percent of arc_c_max with a floor of 8022 * arc_meta_min, and a ceiling of arc_c_max. 8023 */ 8024 percent = MIN(zfs_arc_meta_limit_percent, 100); 8025 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100); 8026 percent = MIN(zfs_arc_dnode_limit_percent, 100); 8027 arc_dnode_size_limit = (percent * arc_meta_limit) / 100; 8028 8029 /* Apply user specified tunings */ 8030 arc_tuning_update(B_TRUE); 8031 8032 /* if kmem_flags are set, lets try to use less memory */ 8033 if (kmem_debugging()) 8034 arc_c = arc_c / 2; 8035 if (arc_c < arc_c_min) 8036 arc_c = arc_c_min; 8037 8038 arc_register_hotplug(); 8039 8040 arc_state_init(); 8041 8042 buf_init(); 8043 8044 list_create(&arc_prune_list, sizeof (arc_prune_t), 8045 offsetof(arc_prune_t, p_node)); 8046 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL); 8047 8048 arc_prune_taskq = taskq_create("arc_prune", zfs_arc_prune_task_threads, 8049 defclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC); 8050 8051 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 8052 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 8053 8054 if (arc_ksp != NULL) { 8055 arc_ksp->ks_data = &arc_stats; 8056 arc_ksp->ks_update = arc_kstat_update; 8057 kstat_install(arc_ksp); 8058 } 8059 8060 arc_state_evict_markers = 8061 arc_state_alloc_markers(arc_state_evict_marker_count); 8062 arc_evict_zthr = zthr_create("arc_evict", 8063 arc_evict_cb_check, arc_evict_cb, NULL, defclsyspri); 8064 arc_reap_zthr = zthr_create_timer("arc_reap", 8065 arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1), minclsyspri); 8066 8067 arc_warm = B_FALSE; 8068 8069 /* 8070 * Calculate maximum amount of dirty data per pool. 8071 * 8072 * If it has been set by a module parameter, take that. 8073 * Otherwise, use a percentage of physical memory defined by 8074 * zfs_dirty_data_max_percent (default 10%) with a cap at 8075 * zfs_dirty_data_max_max (default 4G or 25% of physical memory). 8076 */ 8077 #ifdef __LP64__ 8078 if (zfs_dirty_data_max_max == 0) 8079 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024, 8080 allmem * zfs_dirty_data_max_max_percent / 100); 8081 #else 8082 if (zfs_dirty_data_max_max == 0) 8083 zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024, 8084 allmem * zfs_dirty_data_max_max_percent / 100); 8085 #endif 8086 8087 if (zfs_dirty_data_max == 0) { 8088 zfs_dirty_data_max = allmem * 8089 zfs_dirty_data_max_percent / 100; 8090 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 8091 zfs_dirty_data_max_max); 8092 } 8093 8094 if (zfs_wrlog_data_max == 0) { 8095 8096 /* 8097 * dp_wrlog_total is reduced for each txg at the end of 8098 * spa_sync(). However, dp_dirty_total is reduced every time 8099 * a block is written out. Thus under normal operation, 8100 * dp_wrlog_total could grow 2 times as big as 8101 * zfs_dirty_data_max. 8102 */ 8103 zfs_wrlog_data_max = zfs_dirty_data_max * 2; 8104 } 8105 } 8106 8107 void 8108 arc_fini(void) 8109 { 8110 arc_prune_t *p; 8111 8112 #ifdef _KERNEL 8113 arc_lowmem_fini(); 8114 #endif /* _KERNEL */ 8115 8116 /* Use B_TRUE to ensure *all* buffers are evicted */ 8117 arc_flush(NULL, B_TRUE); 8118 8119 if (arc_ksp != NULL) { 8120 kstat_delete(arc_ksp); 8121 arc_ksp = NULL; 8122 } 8123 8124 taskq_wait(arc_prune_taskq); 8125 taskq_destroy(arc_prune_taskq); 8126 8127 mutex_enter(&arc_prune_mtx); 8128 while ((p = list_head(&arc_prune_list)) != NULL) { 8129 list_remove(&arc_prune_list, p); 8130 zfs_refcount_remove(&p->p_refcnt, &arc_prune_list); 8131 zfs_refcount_destroy(&p->p_refcnt); 8132 kmem_free(p, sizeof (*p)); 8133 } 8134 mutex_exit(&arc_prune_mtx); 8135 8136 list_destroy(&arc_prune_list); 8137 mutex_destroy(&arc_prune_mtx); 8138 8139 (void) zthr_cancel(arc_evict_zthr); 8140 (void) zthr_cancel(arc_reap_zthr); 8141 arc_state_free_markers(arc_state_evict_markers, 8142 arc_state_evict_marker_count); 8143 8144 mutex_destroy(&arc_evict_lock); 8145 list_destroy(&arc_evict_waiters); 8146 8147 /* 8148 * Free any buffers that were tagged for destruction. This needs 8149 * to occur before arc_state_fini() runs and destroys the aggsum 8150 * values which are updated when freeing scatter ABDs. 8151 */ 8152 l2arc_do_free_on_write(); 8153 8154 /* 8155 * buf_fini() must proceed arc_state_fini() because buf_fin() may 8156 * trigger the release of kmem magazines, which can callback to 8157 * arc_space_return() which accesses aggsums freed in act_state_fini(). 8158 */ 8159 buf_fini(); 8160 arc_state_fini(); 8161 8162 arc_unregister_hotplug(); 8163 8164 /* 8165 * We destroy the zthrs after all the ARC state has been 8166 * torn down to avoid the case of them receiving any 8167 * wakeup() signals after they are destroyed. 8168 */ 8169 zthr_destroy(arc_evict_zthr); 8170 zthr_destroy(arc_reap_zthr); 8171 8172 ASSERT0(arc_loaned_bytes); 8173 } 8174 8175 /* 8176 * Level 2 ARC 8177 * 8178 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 8179 * It uses dedicated storage devices to hold cached data, which are populated 8180 * using large infrequent writes. The main role of this cache is to boost 8181 * the performance of random read workloads. The intended L2ARC devices 8182 * include short-stroked disks, solid state disks, and other media with 8183 * substantially faster read latency than disk. 8184 * 8185 * +-----------------------+ 8186 * | ARC | 8187 * +-----------------------+ 8188 * | ^ ^ 8189 * | | | 8190 * l2arc_feed_thread() arc_read() 8191 * | | | 8192 * | l2arc read | 8193 * V | | 8194 * +---------------+ | 8195 * | L2ARC | | 8196 * +---------------+ | 8197 * | ^ | 8198 * l2arc_write() | | 8199 * | | | 8200 * V | | 8201 * +-------+ +-------+ 8202 * | vdev | | vdev | 8203 * | cache | | cache | 8204 * +-------+ +-------+ 8205 * +=========+ .-----. 8206 * : L2ARC : |-_____-| 8207 * : devices : | Disks | 8208 * +=========+ `-_____-' 8209 * 8210 * Read requests are satisfied from the following sources, in order: 8211 * 8212 * 1) ARC 8213 * 2) vdev cache of L2ARC devices 8214 * 3) L2ARC devices 8215 * 4) vdev cache of disks 8216 * 5) disks 8217 * 8218 * Some L2ARC device types exhibit extremely slow write performance. 8219 * To accommodate for this there are some significant differences between 8220 * the L2ARC and traditional cache design: 8221 * 8222 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 8223 * the ARC behave as usual, freeing buffers and placing headers on ghost 8224 * lists. The ARC does not send buffers to the L2ARC during eviction as 8225 * this would add inflated write latencies for all ARC memory pressure. 8226 * 8227 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 8228 * It does this by periodically scanning buffers from the eviction-end of 8229 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 8230 * not already there. It scans until a headroom of buffers is satisfied, 8231 * which itself is a buffer for ARC eviction. If a compressible buffer is 8232 * found during scanning and selected for writing to an L2ARC device, we 8233 * temporarily boost scanning headroom during the next scan cycle to make 8234 * sure we adapt to compression effects (which might significantly reduce 8235 * the data volume we write to L2ARC). The thread that does this is 8236 * l2arc_feed_thread(), illustrated below; example sizes are included to 8237 * provide a better sense of ratio than this diagram: 8238 * 8239 * head --> tail 8240 * +---------------------+----------+ 8241 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 8242 * +---------------------+----------+ | o L2ARC eligible 8243 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 8244 * +---------------------+----------+ | 8245 * 15.9 Gbytes ^ 32 Mbytes | 8246 * headroom | 8247 * l2arc_feed_thread() 8248 * | 8249 * l2arc write hand <--[oooo]--' 8250 * | 8 Mbyte 8251 * | write max 8252 * V 8253 * +==============================+ 8254 * L2ARC dev |####|#|###|###| |####| ... | 8255 * +==============================+ 8256 * 32 Gbytes 8257 * 8258 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 8259 * evicted, then the L2ARC has cached a buffer much sooner than it probably 8260 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 8261 * safe to say that this is an uncommon case, since buffers at the end of 8262 * the ARC lists have moved there due to inactivity. 8263 * 8264 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 8265 * then the L2ARC simply misses copying some buffers. This serves as a 8266 * pressure valve to prevent heavy read workloads from both stalling the ARC 8267 * with waits and clogging the L2ARC with writes. This also helps prevent 8268 * the potential for the L2ARC to churn if it attempts to cache content too 8269 * quickly, such as during backups of the entire pool. 8270 * 8271 * 5. After system boot and before the ARC has filled main memory, there are 8272 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 8273 * lists can remain mostly static. Instead of searching from tail of these 8274 * lists as pictured, the l2arc_feed_thread() will search from the list heads 8275 * for eligible buffers, greatly increasing its chance of finding them. 8276 * 8277 * The L2ARC device write speed is also boosted during this time so that 8278 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 8279 * there are no L2ARC reads, and no fear of degrading read performance 8280 * through increased writes. 8281 * 8282 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 8283 * the vdev queue can aggregate them into larger and fewer writes. Each 8284 * device is written to in a rotor fashion, sweeping writes through 8285 * available space then repeating. 8286 * 8287 * 7. The L2ARC does not store dirty content. It never needs to flush 8288 * write buffers back to disk based storage. 8289 * 8290 * 8. If an ARC buffer is written (and dirtied) which also exists in the 8291 * L2ARC, the now stale L2ARC buffer is immediately dropped. 8292 * 8293 * The performance of the L2ARC can be tweaked by a number of tunables, which 8294 * may be necessary for different workloads: 8295 * 8296 * l2arc_write_max max write bytes per interval 8297 * l2arc_write_boost extra write bytes during device warmup 8298 * l2arc_noprefetch skip caching prefetched buffers 8299 * l2arc_headroom number of max device writes to precache 8300 * l2arc_headroom_boost when we find compressed buffers during ARC 8301 * scanning, we multiply headroom by this 8302 * percentage factor for the next scan cycle, 8303 * since more compressed buffers are likely to 8304 * be present 8305 * l2arc_feed_secs seconds between L2ARC writing 8306 * 8307 * Tunables may be removed or added as future performance improvements are 8308 * integrated, and also may become zpool properties. 8309 * 8310 * There are three key functions that control how the L2ARC warms up: 8311 * 8312 * l2arc_write_eligible() check if a buffer is eligible to cache 8313 * l2arc_write_size() calculate how much to write 8314 * l2arc_write_interval() calculate sleep delay between writes 8315 * 8316 * These three functions determine what to write, how much, and how quickly 8317 * to send writes. 8318 * 8319 * L2ARC persistence: 8320 * 8321 * When writing buffers to L2ARC, we periodically add some metadata to 8322 * make sure we can pick them up after reboot, thus dramatically reducing 8323 * the impact that any downtime has on the performance of storage systems 8324 * with large caches. 8325 * 8326 * The implementation works fairly simply by integrating the following two 8327 * modifications: 8328 * 8329 * *) When writing to the L2ARC, we occasionally write a "l2arc log block", 8330 * which is an additional piece of metadata which describes what's been 8331 * written. This allows us to rebuild the arc_buf_hdr_t structures of the 8332 * main ARC buffers. There are 2 linked-lists of log blocks headed by 8333 * dh_start_lbps[2]. We alternate which chain we append to, so they are 8334 * time-wise and offset-wise interleaved, but that is an optimization rather 8335 * than for correctness. The log block also includes a pointer to the 8336 * previous block in its chain. 8337 * 8338 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device 8339 * for our header bookkeeping purposes. This contains a device header, 8340 * which contains our top-level reference structures. We update it each 8341 * time we write a new log block, so that we're able to locate it in the 8342 * L2ARC device. If this write results in an inconsistent device header 8343 * (e.g. due to power failure), we detect this by verifying the header's 8344 * checksum and simply fail to reconstruct the L2ARC after reboot. 8345 * 8346 * Implementation diagram: 8347 * 8348 * +=== L2ARC device (not to scale) ======================================+ 8349 * | ___two newest log block pointers__.__________ | 8350 * | / \dh_start_lbps[1] | 8351 * | / \ \dh_start_lbps[0]| 8352 * |.___/__. V V | 8353 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---| 8354 * || hdr| ^ /^ /^ / / | 8355 * |+------+ ...--\-------/ \-----/--\------/ / | 8356 * | \--------------/ \--------------/ | 8357 * +======================================================================+ 8358 * 8359 * As can be seen on the diagram, rather than using a simple linked list, 8360 * we use a pair of linked lists with alternating elements. This is a 8361 * performance enhancement due to the fact that we only find out the 8362 * address of the next log block access once the current block has been 8363 * completely read in. Obviously, this hurts performance, because we'd be 8364 * keeping the device's I/O queue at only a 1 operation deep, thus 8365 * incurring a large amount of I/O round-trip latency. Having two lists 8366 * allows us to fetch two log blocks ahead of where we are currently 8367 * rebuilding L2ARC buffers. 8368 * 8369 * On-device data structures: 8370 * 8371 * L2ARC device header: l2arc_dev_hdr_phys_t 8372 * L2ARC log block: l2arc_log_blk_phys_t 8373 * 8374 * L2ARC reconstruction: 8375 * 8376 * When writing data, we simply write in the standard rotary fashion, 8377 * evicting buffers as we go and simply writing new data over them (writing 8378 * a new log block every now and then). This obviously means that once we 8379 * loop around the end of the device, we will start cutting into an already 8380 * committed log block (and its referenced data buffers), like so: 8381 * 8382 * current write head__ __old tail 8383 * \ / 8384 * V V 8385 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |--> 8386 * ^ ^^^^^^^^^___________________________________ 8387 * | \ 8388 * <<nextwrite>> may overwrite this blk and/or its bufs --' 8389 * 8390 * When importing the pool, we detect this situation and use it to stop 8391 * our scanning process (see l2arc_rebuild). 8392 * 8393 * There is one significant caveat to consider when rebuilding ARC contents 8394 * from an L2ARC device: what about invalidated buffers? Given the above 8395 * construction, we cannot update blocks which we've already written to amend 8396 * them to remove buffers which were invalidated. Thus, during reconstruction, 8397 * we might be populating the cache with buffers for data that's not on the 8398 * main pool anymore, or may have been overwritten! 8399 * 8400 * As it turns out, this isn't a problem. Every arc_read request includes 8401 * both the DVA and, crucially, the birth TXG of the BP the caller is 8402 * looking for. So even if the cache were populated by completely rotten 8403 * blocks for data that had been long deleted and/or overwritten, we'll 8404 * never actually return bad data from the cache, since the DVA with the 8405 * birth TXG uniquely identify a block in space and time - once created, 8406 * a block is immutable on disk. The worst thing we have done is wasted 8407 * some time and memory at l2arc rebuild to reconstruct outdated ARC 8408 * entries that will get dropped from the l2arc as it is being updated 8409 * with new blocks. 8410 * 8411 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write 8412 * hand are not restored. This is done by saving the offset (in bytes) 8413 * l2arc_evict() has evicted to in the L2ARC device header and taking it 8414 * into account when restoring buffers. 8415 */ 8416 8417 static boolean_t 8418 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 8419 { 8420 /* 8421 * A buffer is *not* eligible for the L2ARC if it: 8422 * 1. belongs to a different spa. 8423 * 2. is already cached on the L2ARC. 8424 * 3. has an I/O in progress (it may be an incomplete read). 8425 * 4. is flagged not eligible (zfs property). 8426 */ 8427 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || 8428 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr)) 8429 return (B_FALSE); 8430 8431 return (B_TRUE); 8432 } 8433 8434 static uint64_t 8435 l2arc_write_size(l2arc_dev_t *dev) 8436 { 8437 uint64_t size, dev_size, tsize; 8438 8439 /* 8440 * Make sure our globals have meaningful values in case the user 8441 * altered them. 8442 */ 8443 size = l2arc_write_max; 8444 if (size == 0) { 8445 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 8446 "be greater than zero, resetting it to the default (%d)", 8447 L2ARC_WRITE_SIZE); 8448 size = l2arc_write_max = L2ARC_WRITE_SIZE; 8449 } 8450 8451 if (arc_warm == B_FALSE) 8452 size += l2arc_write_boost; 8453 8454 /* 8455 * Make sure the write size does not exceed the size of the cache 8456 * device. This is important in l2arc_evict(), otherwise infinite 8457 * iteration can occur. 8458 */ 8459 dev_size = dev->l2ad_end - dev->l2ad_start; 8460 tsize = size + l2arc_log_blk_overhead(size, dev); 8461 if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) 8462 tsize += MAX(64 * 1024 * 1024, 8463 (tsize * l2arc_trim_ahead) / 100); 8464 8465 if (tsize >= dev_size) { 8466 cmn_err(CE_NOTE, "l2arc_write_max or l2arc_write_boost " 8467 "plus the overhead of log blocks (persistent L2ARC, " 8468 "%llu bytes) exceeds the size of the cache device " 8469 "(guid %llu), resetting them to the default (%d)", 8470 (u_longlong_t)l2arc_log_blk_overhead(size, dev), 8471 (u_longlong_t)dev->l2ad_vdev->vdev_guid, L2ARC_WRITE_SIZE); 8472 size = l2arc_write_max = l2arc_write_boost = L2ARC_WRITE_SIZE; 8473 8474 if (arc_warm == B_FALSE) 8475 size += l2arc_write_boost; 8476 } 8477 8478 return (size); 8479 8480 } 8481 8482 static clock_t 8483 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 8484 { 8485 clock_t interval, next, now; 8486 8487 /* 8488 * If the ARC lists are busy, increase our write rate; if the 8489 * lists are stale, idle back. This is achieved by checking 8490 * how much we previously wrote - if it was more than half of 8491 * what we wanted, schedule the next write much sooner. 8492 */ 8493 if (l2arc_feed_again && wrote > (wanted / 2)) 8494 interval = (hz * l2arc_feed_min_ms) / 1000; 8495 else 8496 interval = hz * l2arc_feed_secs; 8497 8498 now = ddi_get_lbolt(); 8499 next = MAX(now, MIN(now + interval, began + interval)); 8500 8501 return (next); 8502 } 8503 8504 /* 8505 * Cycle through L2ARC devices. This is how L2ARC load balances. 8506 * If a device is returned, this also returns holding the spa config lock. 8507 */ 8508 static l2arc_dev_t * 8509 l2arc_dev_get_next(void) 8510 { 8511 l2arc_dev_t *first, *next = NULL; 8512 8513 /* 8514 * Lock out the removal of spas (spa_namespace_lock), then removal 8515 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 8516 * both locks will be dropped and a spa config lock held instead. 8517 */ 8518 mutex_enter(&spa_namespace_lock); 8519 mutex_enter(&l2arc_dev_mtx); 8520 8521 /* if there are no vdevs, there is nothing to do */ 8522 if (l2arc_ndev == 0) 8523 goto out; 8524 8525 first = NULL; 8526 next = l2arc_dev_last; 8527 do { 8528 /* loop around the list looking for a non-faulted vdev */ 8529 if (next == NULL) { 8530 next = list_head(l2arc_dev_list); 8531 } else { 8532 next = list_next(l2arc_dev_list, next); 8533 if (next == NULL) 8534 next = list_head(l2arc_dev_list); 8535 } 8536 8537 /* if we have come back to the start, bail out */ 8538 if (first == NULL) 8539 first = next; 8540 else if (next == first) 8541 break; 8542 8543 } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || 8544 next->l2ad_trim_all); 8545 8546 /* if we were unable to find any usable vdevs, return NULL */ 8547 if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || 8548 next->l2ad_trim_all) 8549 next = NULL; 8550 8551 l2arc_dev_last = next; 8552 8553 out: 8554 mutex_exit(&l2arc_dev_mtx); 8555 8556 /* 8557 * Grab the config lock to prevent the 'next' device from being 8558 * removed while we are writing to it. 8559 */ 8560 if (next != NULL) 8561 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 8562 mutex_exit(&spa_namespace_lock); 8563 8564 return (next); 8565 } 8566 8567 /* 8568 * Free buffers that were tagged for destruction. 8569 */ 8570 static void 8571 l2arc_do_free_on_write(void) 8572 { 8573 list_t *buflist; 8574 l2arc_data_free_t *df, *df_prev; 8575 8576 mutex_enter(&l2arc_free_on_write_mtx); 8577 buflist = l2arc_free_on_write; 8578 8579 for (df = list_tail(buflist); df; df = df_prev) { 8580 df_prev = list_prev(buflist, df); 8581 ASSERT3P(df->l2df_abd, !=, NULL); 8582 abd_free(df->l2df_abd); 8583 list_remove(buflist, df); 8584 kmem_free(df, sizeof (l2arc_data_free_t)); 8585 } 8586 8587 mutex_exit(&l2arc_free_on_write_mtx); 8588 } 8589 8590 /* 8591 * A write to a cache device has completed. Update all headers to allow 8592 * reads from these buffers to begin. 8593 */ 8594 static void 8595 l2arc_write_done(zio_t *zio) 8596 { 8597 l2arc_write_callback_t *cb; 8598 l2arc_lb_abd_buf_t *abd_buf; 8599 l2arc_lb_ptr_buf_t *lb_ptr_buf; 8600 l2arc_dev_t *dev; 8601 l2arc_dev_hdr_phys_t *l2dhdr; 8602 list_t *buflist; 8603 arc_buf_hdr_t *head, *hdr, *hdr_prev; 8604 kmutex_t *hash_lock; 8605 int64_t bytes_dropped = 0; 8606 8607 cb = zio->io_private; 8608 ASSERT3P(cb, !=, NULL); 8609 dev = cb->l2wcb_dev; 8610 l2dhdr = dev->l2ad_dev_hdr; 8611 ASSERT3P(dev, !=, NULL); 8612 head = cb->l2wcb_head; 8613 ASSERT3P(head, !=, NULL); 8614 buflist = &dev->l2ad_buflist; 8615 ASSERT3P(buflist, !=, NULL); 8616 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 8617 l2arc_write_callback_t *, cb); 8618 8619 /* 8620 * All writes completed, or an error was hit. 8621 */ 8622 top: 8623 mutex_enter(&dev->l2ad_mtx); 8624 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 8625 hdr_prev = list_prev(buflist, hdr); 8626 8627 hash_lock = HDR_LOCK(hdr); 8628 8629 /* 8630 * We cannot use mutex_enter or else we can deadlock 8631 * with l2arc_write_buffers (due to swapping the order 8632 * the hash lock and l2ad_mtx are taken). 8633 */ 8634 if (!mutex_tryenter(hash_lock)) { 8635 /* 8636 * Missed the hash lock. We must retry so we 8637 * don't leave the ARC_FLAG_L2_WRITING bit set. 8638 */ 8639 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 8640 8641 /* 8642 * We don't want to rescan the headers we've 8643 * already marked as having been written out, so 8644 * we reinsert the head node so we can pick up 8645 * where we left off. 8646 */ 8647 list_remove(buflist, head); 8648 list_insert_after(buflist, hdr, head); 8649 8650 mutex_exit(&dev->l2ad_mtx); 8651 8652 /* 8653 * We wait for the hash lock to become available 8654 * to try and prevent busy waiting, and increase 8655 * the chance we'll be able to acquire the lock 8656 * the next time around. 8657 */ 8658 mutex_enter(hash_lock); 8659 mutex_exit(hash_lock); 8660 goto top; 8661 } 8662 8663 /* 8664 * We could not have been moved into the arc_l2c_only 8665 * state while in-flight due to our ARC_FLAG_L2_WRITING 8666 * bit being set. Let's just ensure that's being enforced. 8667 */ 8668 ASSERT(HDR_HAS_L1HDR(hdr)); 8669 8670 /* 8671 * Skipped - drop L2ARC entry and mark the header as no 8672 * longer L2 eligibile. 8673 */ 8674 if (zio->io_error != 0) { 8675 /* 8676 * Error - drop L2ARC entry. 8677 */ 8678 list_remove(buflist, hdr); 8679 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 8680 8681 uint64_t psize = HDR_GET_PSIZE(hdr); 8682 l2arc_hdr_arcstats_decrement(hdr); 8683 8684 bytes_dropped += 8685 vdev_psize_to_asize(dev->l2ad_vdev, psize); 8686 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 8687 arc_hdr_size(hdr), hdr); 8688 } 8689 8690 /* 8691 * Allow ARC to begin reads and ghost list evictions to 8692 * this L2ARC entry. 8693 */ 8694 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); 8695 8696 mutex_exit(hash_lock); 8697 } 8698 8699 /* 8700 * Free the allocated abd buffers for writing the log blocks. 8701 * If the zio failed reclaim the allocated space and remove the 8702 * pointers to these log blocks from the log block pointer list 8703 * of the L2ARC device. 8704 */ 8705 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) { 8706 abd_free(abd_buf->abd); 8707 zio_buf_free(abd_buf, sizeof (*abd_buf)); 8708 if (zio->io_error != 0) { 8709 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list); 8710 /* 8711 * L2BLK_GET_PSIZE returns aligned size for log 8712 * blocks. 8713 */ 8714 uint64_t asize = 8715 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop); 8716 bytes_dropped += asize; 8717 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 8718 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 8719 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 8720 lb_ptr_buf); 8721 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 8722 kmem_free(lb_ptr_buf->lb_ptr, 8723 sizeof (l2arc_log_blkptr_t)); 8724 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 8725 } 8726 } 8727 list_destroy(&cb->l2wcb_abd_list); 8728 8729 if (zio->io_error != 0) { 8730 ARCSTAT_BUMP(arcstat_l2_writes_error); 8731 8732 /* 8733 * Restore the lbps array in the header to its previous state. 8734 * If the list of log block pointers is empty, zero out the 8735 * log block pointers in the device header. 8736 */ 8737 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list); 8738 for (int i = 0; i < 2; i++) { 8739 if (lb_ptr_buf == NULL) { 8740 /* 8741 * If the list is empty zero out the device 8742 * header. Otherwise zero out the second log 8743 * block pointer in the header. 8744 */ 8745 if (i == 0) { 8746 memset(l2dhdr, 0, 8747 dev->l2ad_dev_hdr_asize); 8748 } else { 8749 memset(&l2dhdr->dh_start_lbps[i], 0, 8750 sizeof (l2arc_log_blkptr_t)); 8751 } 8752 break; 8753 } 8754 memcpy(&l2dhdr->dh_start_lbps[i], lb_ptr_buf->lb_ptr, 8755 sizeof (l2arc_log_blkptr_t)); 8756 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list, 8757 lb_ptr_buf); 8758 } 8759 } 8760 8761 ARCSTAT_BUMP(arcstat_l2_writes_done); 8762 list_remove(buflist, head); 8763 ASSERT(!HDR_HAS_L1HDR(head)); 8764 kmem_cache_free(hdr_l2only_cache, head); 8765 mutex_exit(&dev->l2ad_mtx); 8766 8767 ASSERT(dev->l2ad_vdev != NULL); 8768 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 8769 8770 l2arc_do_free_on_write(); 8771 8772 kmem_free(cb, sizeof (l2arc_write_callback_t)); 8773 } 8774 8775 static int 8776 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb) 8777 { 8778 int ret; 8779 spa_t *spa = zio->io_spa; 8780 arc_buf_hdr_t *hdr = cb->l2rcb_hdr; 8781 blkptr_t *bp = zio->io_bp; 8782 uint8_t salt[ZIO_DATA_SALT_LEN]; 8783 uint8_t iv[ZIO_DATA_IV_LEN]; 8784 uint8_t mac[ZIO_DATA_MAC_LEN]; 8785 boolean_t no_crypt = B_FALSE; 8786 8787 /* 8788 * ZIL data is never be written to the L2ARC, so we don't need 8789 * special handling for its unique MAC storage. 8790 */ 8791 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 8792 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 8793 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8794 8795 /* 8796 * If the data was encrypted, decrypt it now. Note that 8797 * we must check the bp here and not the hdr, since the 8798 * hdr does not have its encryption parameters updated 8799 * until arc_read_done(). 8800 */ 8801 if (BP_IS_ENCRYPTED(bp)) { 8802 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8803 ARC_HDR_DO_ADAPT | ARC_HDR_USE_RESERVE); 8804 8805 zio_crypt_decode_params_bp(bp, salt, iv); 8806 zio_crypt_decode_mac_bp(bp, mac); 8807 8808 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb, 8809 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 8810 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd, 8811 hdr->b_l1hdr.b_pabd, &no_crypt); 8812 if (ret != 0) { 8813 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8814 goto error; 8815 } 8816 8817 /* 8818 * If we actually performed decryption, replace b_pabd 8819 * with the decrypted data. Otherwise we can just throw 8820 * our decryption buffer away. 8821 */ 8822 if (!no_crypt) { 8823 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8824 arc_hdr_size(hdr), hdr); 8825 hdr->b_l1hdr.b_pabd = eabd; 8826 zio->io_abd = eabd; 8827 } else { 8828 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8829 } 8830 } 8831 8832 /* 8833 * If the L2ARC block was compressed, but ARC compression 8834 * is disabled we decompress the data into a new buffer and 8835 * replace the existing data. 8836 */ 8837 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 8838 !HDR_COMPRESSION_ENABLED(hdr)) { 8839 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8840 ARC_HDR_DO_ADAPT | ARC_HDR_USE_RESERVE); 8841 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 8842 8843 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 8844 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 8845 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 8846 if (ret != 0) { 8847 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 8848 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr); 8849 goto error; 8850 } 8851 8852 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 8853 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8854 arc_hdr_size(hdr), hdr); 8855 hdr->b_l1hdr.b_pabd = cabd; 8856 zio->io_abd = cabd; 8857 zio->io_size = HDR_GET_LSIZE(hdr); 8858 } 8859 8860 return (0); 8861 8862 error: 8863 return (ret); 8864 } 8865 8866 8867 /* 8868 * A read to a cache device completed. Validate buffer contents before 8869 * handing over to the regular ARC routines. 8870 */ 8871 static void 8872 l2arc_read_done(zio_t *zio) 8873 { 8874 int tfm_error = 0; 8875 l2arc_read_callback_t *cb = zio->io_private; 8876 arc_buf_hdr_t *hdr; 8877 kmutex_t *hash_lock; 8878 boolean_t valid_cksum; 8879 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) && 8880 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT)); 8881 8882 ASSERT3P(zio->io_vd, !=, NULL); 8883 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 8884 8885 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 8886 8887 ASSERT3P(cb, !=, NULL); 8888 hdr = cb->l2rcb_hdr; 8889 ASSERT3P(hdr, !=, NULL); 8890 8891 hash_lock = HDR_LOCK(hdr); 8892 mutex_enter(hash_lock); 8893 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 8894 8895 /* 8896 * If the data was read into a temporary buffer, 8897 * move it and free the buffer. 8898 */ 8899 if (cb->l2rcb_abd != NULL) { 8900 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size); 8901 if (zio->io_error == 0) { 8902 if (using_rdata) { 8903 abd_copy(hdr->b_crypt_hdr.b_rabd, 8904 cb->l2rcb_abd, arc_hdr_size(hdr)); 8905 } else { 8906 abd_copy(hdr->b_l1hdr.b_pabd, 8907 cb->l2rcb_abd, arc_hdr_size(hdr)); 8908 } 8909 } 8910 8911 /* 8912 * The following must be done regardless of whether 8913 * there was an error: 8914 * - free the temporary buffer 8915 * - point zio to the real ARC buffer 8916 * - set zio size accordingly 8917 * These are required because zio is either re-used for 8918 * an I/O of the block in the case of the error 8919 * or the zio is passed to arc_read_done() and it 8920 * needs real data. 8921 */ 8922 abd_free(cb->l2rcb_abd); 8923 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr); 8924 8925 if (using_rdata) { 8926 ASSERT(HDR_HAS_RABD(hdr)); 8927 zio->io_abd = zio->io_orig_abd = 8928 hdr->b_crypt_hdr.b_rabd; 8929 } else { 8930 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8931 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd; 8932 } 8933 } 8934 8935 ASSERT3P(zio->io_abd, !=, NULL); 8936 8937 /* 8938 * Check this survived the L2ARC journey. 8939 */ 8940 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd || 8941 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd)); 8942 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 8943 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 8944 zio->io_prop.zp_complevel = hdr->b_complevel; 8945 8946 valid_cksum = arc_cksum_is_equal(hdr, zio); 8947 8948 /* 8949 * b_rabd will always match the data as it exists on disk if it is 8950 * being used. Therefore if we are reading into b_rabd we do not 8951 * attempt to untransform the data. 8952 */ 8953 if (valid_cksum && !using_rdata) 8954 tfm_error = l2arc_untransform(zio, cb); 8955 8956 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 && 8957 !HDR_L2_EVICTED(hdr)) { 8958 mutex_exit(hash_lock); 8959 zio->io_private = hdr; 8960 arc_read_done(zio); 8961 } else { 8962 /* 8963 * Buffer didn't survive caching. Increment stats and 8964 * reissue to the original storage device. 8965 */ 8966 if (zio->io_error != 0) { 8967 ARCSTAT_BUMP(arcstat_l2_io_error); 8968 } else { 8969 zio->io_error = SET_ERROR(EIO); 8970 } 8971 if (!valid_cksum || tfm_error != 0) 8972 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 8973 8974 /* 8975 * If there's no waiter, issue an async i/o to the primary 8976 * storage now. If there *is* a waiter, the caller must 8977 * issue the i/o in a context where it's OK to block. 8978 */ 8979 if (zio->io_waiter == NULL) { 8980 zio_t *pio = zio_unique_parent(zio); 8981 void *abd = (using_rdata) ? 8982 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd; 8983 8984 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 8985 8986 zio = zio_read(pio, zio->io_spa, zio->io_bp, 8987 abd, zio->io_size, arc_read_done, 8988 hdr, zio->io_priority, cb->l2rcb_flags, 8989 &cb->l2rcb_zb); 8990 8991 /* 8992 * Original ZIO will be freed, so we need to update 8993 * ARC header with the new ZIO pointer to be used 8994 * by zio_change_priority() in arc_read(). 8995 */ 8996 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb; 8997 acb != NULL; acb = acb->acb_next) 8998 acb->acb_zio_head = zio; 8999 9000 mutex_exit(hash_lock); 9001 zio_nowait(zio); 9002 } else { 9003 mutex_exit(hash_lock); 9004 } 9005 } 9006 9007 kmem_free(cb, sizeof (l2arc_read_callback_t)); 9008 } 9009 9010 /* 9011 * This is the list priority from which the L2ARC will search for pages to 9012 * cache. This is used within loops (0..3) to cycle through lists in the 9013 * desired order. This order can have a significant effect on cache 9014 * performance. 9015 * 9016 * Currently the metadata lists are hit first, MFU then MRU, followed by 9017 * the data lists. This function returns a locked list, and also returns 9018 * the lock pointer. 9019 */ 9020 static multilist_sublist_t * 9021 l2arc_sublist_lock(int list_num) 9022 { 9023 multilist_t *ml = NULL; 9024 unsigned int idx; 9025 9026 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES); 9027 9028 switch (list_num) { 9029 case 0: 9030 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 9031 break; 9032 case 1: 9033 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 9034 break; 9035 case 2: 9036 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 9037 break; 9038 case 3: 9039 ml = &arc_mru->arcs_list[ARC_BUFC_DATA]; 9040 break; 9041 default: 9042 return (NULL); 9043 } 9044 9045 /* 9046 * Return a randomly-selected sublist. This is acceptable 9047 * because the caller feeds only a little bit of data for each 9048 * call (8MB). Subsequent calls will result in different 9049 * sublists being selected. 9050 */ 9051 idx = multilist_get_random_index(ml); 9052 return (multilist_sublist_lock(ml, idx)); 9053 } 9054 9055 /* 9056 * Calculates the maximum overhead of L2ARC metadata log blocks for a given 9057 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this 9058 * overhead in processing to make sure there is enough headroom available 9059 * when writing buffers. 9060 */ 9061 static inline uint64_t 9062 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev) 9063 { 9064 if (dev->l2ad_log_entries == 0) { 9065 return (0); 9066 } else { 9067 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT; 9068 9069 uint64_t log_blocks = (log_entries + 9070 dev->l2ad_log_entries - 1) / 9071 dev->l2ad_log_entries; 9072 9073 return (vdev_psize_to_asize(dev->l2ad_vdev, 9074 sizeof (l2arc_log_blk_phys_t)) * log_blocks); 9075 } 9076 } 9077 9078 /* 9079 * Evict buffers from the device write hand to the distance specified in 9080 * bytes. This distance may span populated buffers, it may span nothing. 9081 * This is clearing a region on the L2ARC device ready for writing. 9082 * If the 'all' boolean is set, every buffer is evicted. 9083 */ 9084 static void 9085 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 9086 { 9087 list_t *buflist; 9088 arc_buf_hdr_t *hdr, *hdr_prev; 9089 kmutex_t *hash_lock; 9090 uint64_t taddr; 9091 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev; 9092 vdev_t *vd = dev->l2ad_vdev; 9093 boolean_t rerun; 9094 9095 buflist = &dev->l2ad_buflist; 9096 9097 /* 9098 * We need to add in the worst case scenario of log block overhead. 9099 */ 9100 distance += l2arc_log_blk_overhead(distance, dev); 9101 if (vd->vdev_has_trim && l2arc_trim_ahead > 0) { 9102 /* 9103 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100) 9104 * times the write size, whichever is greater. 9105 */ 9106 distance += MAX(64 * 1024 * 1024, 9107 (distance * l2arc_trim_ahead) / 100); 9108 } 9109 9110 top: 9111 rerun = B_FALSE; 9112 if (dev->l2ad_hand >= (dev->l2ad_end - distance)) { 9113 /* 9114 * When there is no space to accommodate upcoming writes, 9115 * evict to the end. Then bump the write and evict hands 9116 * to the start and iterate. This iteration does not 9117 * happen indefinitely as we make sure in 9118 * l2arc_write_size() that when the write hand is reset, 9119 * the write size does not exceed the end of the device. 9120 */ 9121 rerun = B_TRUE; 9122 taddr = dev->l2ad_end; 9123 } else { 9124 taddr = dev->l2ad_hand + distance; 9125 } 9126 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 9127 uint64_t, taddr, boolean_t, all); 9128 9129 if (!all) { 9130 /* 9131 * This check has to be placed after deciding whether to 9132 * iterate (rerun). 9133 */ 9134 if (dev->l2ad_first) { 9135 /* 9136 * This is the first sweep through the device. There is 9137 * nothing to evict. We have already trimmmed the 9138 * whole device. 9139 */ 9140 goto out; 9141 } else { 9142 /* 9143 * Trim the space to be evicted. 9144 */ 9145 if (vd->vdev_has_trim && dev->l2ad_evict < taddr && 9146 l2arc_trim_ahead > 0) { 9147 /* 9148 * We have to drop the spa_config lock because 9149 * vdev_trim_range() will acquire it. 9150 * l2ad_evict already accounts for the label 9151 * size. To prevent vdev_trim_ranges() from 9152 * adding it again, we subtract it from 9153 * l2ad_evict. 9154 */ 9155 spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev); 9156 vdev_trim_simple(vd, 9157 dev->l2ad_evict - VDEV_LABEL_START_SIZE, 9158 taddr - dev->l2ad_evict); 9159 spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev, 9160 RW_READER); 9161 } 9162 9163 /* 9164 * When rebuilding L2ARC we retrieve the evict hand 9165 * from the header of the device. Of note, l2arc_evict() 9166 * does not actually delete buffers from the cache 9167 * device, but trimming may do so depending on the 9168 * hardware implementation. Thus keeping track of the 9169 * evict hand is useful. 9170 */ 9171 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr); 9172 } 9173 } 9174 9175 retry: 9176 mutex_enter(&dev->l2ad_mtx); 9177 /* 9178 * We have to account for evicted log blocks. Run vdev_space_update() 9179 * on log blocks whose offset (in bytes) is before the evicted offset 9180 * (in bytes) by searching in the list of pointers to log blocks 9181 * present in the L2ARC device. 9182 */ 9183 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf; 9184 lb_ptr_buf = lb_ptr_buf_prev) { 9185 9186 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf); 9187 9188 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 9189 uint64_t asize = L2BLK_GET_PSIZE( 9190 (lb_ptr_buf->lb_ptr)->lbp_prop); 9191 9192 /* 9193 * We don't worry about log blocks left behind (ie 9194 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers() 9195 * will never write more than l2arc_evict() evicts. 9196 */ 9197 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) { 9198 break; 9199 } else { 9200 vdev_space_update(vd, -asize, 0, 0); 9201 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 9202 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 9203 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 9204 lb_ptr_buf); 9205 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 9206 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf); 9207 kmem_free(lb_ptr_buf->lb_ptr, 9208 sizeof (l2arc_log_blkptr_t)); 9209 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 9210 } 9211 } 9212 9213 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 9214 hdr_prev = list_prev(buflist, hdr); 9215 9216 ASSERT(!HDR_EMPTY(hdr)); 9217 hash_lock = HDR_LOCK(hdr); 9218 9219 /* 9220 * We cannot use mutex_enter or else we can deadlock 9221 * with l2arc_write_buffers (due to swapping the order 9222 * the hash lock and l2ad_mtx are taken). 9223 */ 9224 if (!mutex_tryenter(hash_lock)) { 9225 /* 9226 * Missed the hash lock. Retry. 9227 */ 9228 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 9229 mutex_exit(&dev->l2ad_mtx); 9230 mutex_enter(hash_lock); 9231 mutex_exit(hash_lock); 9232 goto retry; 9233 } 9234 9235 /* 9236 * A header can't be on this list if it doesn't have L2 header. 9237 */ 9238 ASSERT(HDR_HAS_L2HDR(hdr)); 9239 9240 /* Ensure this header has finished being written. */ 9241 ASSERT(!HDR_L2_WRITING(hdr)); 9242 ASSERT(!HDR_L2_WRITE_HEAD(hdr)); 9243 9244 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict || 9245 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 9246 /* 9247 * We've evicted to the target address, 9248 * or the end of the device. 9249 */ 9250 mutex_exit(hash_lock); 9251 break; 9252 } 9253 9254 if (!HDR_HAS_L1HDR(hdr)) { 9255 ASSERT(!HDR_L2_READING(hdr)); 9256 /* 9257 * This doesn't exist in the ARC. Destroy. 9258 * arc_hdr_destroy() will call list_remove() 9259 * and decrement arcstat_l2_lsize. 9260 */ 9261 arc_change_state(arc_anon, hdr, hash_lock); 9262 arc_hdr_destroy(hdr); 9263 } else { 9264 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 9265 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 9266 /* 9267 * Invalidate issued or about to be issued 9268 * reads, since we may be about to write 9269 * over this location. 9270 */ 9271 if (HDR_L2_READING(hdr)) { 9272 ARCSTAT_BUMP(arcstat_l2_evict_reading); 9273 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); 9274 } 9275 9276 arc_hdr_l2hdr_destroy(hdr); 9277 } 9278 mutex_exit(hash_lock); 9279 } 9280 mutex_exit(&dev->l2ad_mtx); 9281 9282 out: 9283 /* 9284 * We need to check if we evict all buffers, otherwise we may iterate 9285 * unnecessarily. 9286 */ 9287 if (!all && rerun) { 9288 /* 9289 * Bump device hand to the device start if it is approaching the 9290 * end. l2arc_evict() has already evicted ahead for this case. 9291 */ 9292 dev->l2ad_hand = dev->l2ad_start; 9293 dev->l2ad_evict = dev->l2ad_start; 9294 dev->l2ad_first = B_FALSE; 9295 goto top; 9296 } 9297 9298 if (!all) { 9299 /* 9300 * In case of cache device removal (all) the following 9301 * assertions may be violated without functional consequences 9302 * as the device is about to be removed. 9303 */ 9304 ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end); 9305 if (!dev->l2ad_first) 9306 ASSERT3U(dev->l2ad_hand, <, dev->l2ad_evict); 9307 } 9308 } 9309 9310 /* 9311 * Handle any abd transforms that might be required for writing to the L2ARC. 9312 * If successful, this function will always return an abd with the data 9313 * transformed as it is on disk in a new abd of asize bytes. 9314 */ 9315 static int 9316 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize, 9317 abd_t **abd_out) 9318 { 9319 int ret; 9320 void *tmp = NULL; 9321 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd; 9322 enum zio_compress compress = HDR_GET_COMPRESS(hdr); 9323 uint64_t psize = HDR_GET_PSIZE(hdr); 9324 uint64_t size = arc_hdr_size(hdr); 9325 boolean_t ismd = HDR_ISTYPE_METADATA(hdr); 9326 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 9327 dsl_crypto_key_t *dck = NULL; 9328 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 }; 9329 boolean_t no_crypt = B_FALSE; 9330 9331 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 9332 !HDR_COMPRESSION_ENABLED(hdr)) || 9333 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize); 9334 ASSERT3U(psize, <=, asize); 9335 9336 /* 9337 * If this data simply needs its own buffer, we simply allocate it 9338 * and copy the data. This may be done to eliminate a dependency on a 9339 * shared buffer or to reallocate the buffer to match asize. 9340 */ 9341 if (HDR_HAS_RABD(hdr) && asize != psize) { 9342 ASSERT3U(asize, >=, psize); 9343 to_write = abd_alloc_for_io(asize, ismd); 9344 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize); 9345 if (psize != asize) 9346 abd_zero_off(to_write, psize, asize - psize); 9347 goto out; 9348 } 9349 9350 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) && 9351 !HDR_ENCRYPTED(hdr)) { 9352 ASSERT3U(size, ==, psize); 9353 to_write = abd_alloc_for_io(asize, ismd); 9354 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 9355 if (size != asize) 9356 abd_zero_off(to_write, size, asize - size); 9357 goto out; 9358 } 9359 9360 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) { 9361 /* 9362 * In some cases, we can wind up with size > asize, so 9363 * we need to opt for the larger allocation option here. 9364 * 9365 * (We also need abd_return_buf_copy in all cases because 9366 * it's an ASSERT() to modify the buffer before returning it 9367 * with arc_return_buf(), and all the compressors 9368 * write things before deciding to fail compression in nearly 9369 * every case.) 9370 */ 9371 cabd = abd_alloc_for_io(size, ismd); 9372 tmp = abd_borrow_buf(cabd, size); 9373 9374 psize = zio_compress_data(compress, to_write, tmp, size, 9375 hdr->b_complevel); 9376 9377 if (psize >= asize) { 9378 psize = HDR_GET_PSIZE(hdr); 9379 abd_return_buf_copy(cabd, tmp, size); 9380 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF); 9381 to_write = cabd; 9382 abd_copy(to_write, hdr->b_l1hdr.b_pabd, psize); 9383 if (psize != asize) 9384 abd_zero_off(to_write, psize, asize - psize); 9385 goto encrypt; 9386 } 9387 ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr)); 9388 if (psize < asize) 9389 memset((char *)tmp + psize, 0, asize - psize); 9390 psize = HDR_GET_PSIZE(hdr); 9391 abd_return_buf_copy(cabd, tmp, size); 9392 to_write = cabd; 9393 } 9394 9395 encrypt: 9396 if (HDR_ENCRYPTED(hdr)) { 9397 eabd = abd_alloc_for_io(asize, ismd); 9398 9399 /* 9400 * If the dataset was disowned before the buffer 9401 * made it to this point, the key to re-encrypt 9402 * it won't be available. In this case we simply 9403 * won't write the buffer to the L2ARC. 9404 */ 9405 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj, 9406 FTAG, &dck); 9407 if (ret != 0) 9408 goto error; 9409 9410 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key, 9411 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt, 9412 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd, 9413 &no_crypt); 9414 if (ret != 0) 9415 goto error; 9416 9417 if (no_crypt) 9418 abd_copy(eabd, to_write, psize); 9419 9420 if (psize != asize) 9421 abd_zero_off(eabd, psize, asize - psize); 9422 9423 /* assert that the MAC we got here matches the one we saved */ 9424 ASSERT0(memcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN)); 9425 spa_keystore_dsl_key_rele(spa, dck, FTAG); 9426 9427 if (to_write == cabd) 9428 abd_free(cabd); 9429 9430 to_write = eabd; 9431 } 9432 9433 out: 9434 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd); 9435 *abd_out = to_write; 9436 return (0); 9437 9438 error: 9439 if (dck != NULL) 9440 spa_keystore_dsl_key_rele(spa, dck, FTAG); 9441 if (cabd != NULL) 9442 abd_free(cabd); 9443 if (eabd != NULL) 9444 abd_free(eabd); 9445 9446 *abd_out = NULL; 9447 return (ret); 9448 } 9449 9450 static void 9451 l2arc_blk_fetch_done(zio_t *zio) 9452 { 9453 l2arc_read_callback_t *cb; 9454 9455 cb = zio->io_private; 9456 if (cb->l2rcb_abd != NULL) 9457 abd_free(cb->l2rcb_abd); 9458 kmem_free(cb, sizeof (l2arc_read_callback_t)); 9459 } 9460 9461 /* 9462 * Find and write ARC buffers to the L2ARC device. 9463 * 9464 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 9465 * for reading until they have completed writing. 9466 * The headroom_boost is an in-out parameter used to maintain headroom boost 9467 * state between calls to this function. 9468 * 9469 * Returns the number of bytes actually written (which may be smaller than 9470 * the delta by which the device hand has changed due to alignment and the 9471 * writing of log blocks). 9472 */ 9473 static uint64_t 9474 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 9475 { 9476 arc_buf_hdr_t *hdr, *hdr_prev, *head; 9477 uint64_t write_asize, write_psize, write_lsize, headroom; 9478 boolean_t full; 9479 l2arc_write_callback_t *cb = NULL; 9480 zio_t *pio, *wzio; 9481 uint64_t guid = spa_load_guid(spa); 9482 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9483 9484 ASSERT3P(dev->l2ad_vdev, !=, NULL); 9485 9486 pio = NULL; 9487 write_lsize = write_asize = write_psize = 0; 9488 full = B_FALSE; 9489 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 9490 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); 9491 9492 /* 9493 * Copy buffers for L2ARC writing. 9494 */ 9495 for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) { 9496 /* 9497 * If pass == 1 or 3, we cache MRU metadata and data 9498 * respectively. 9499 */ 9500 if (l2arc_mfuonly) { 9501 if (pass == 1 || pass == 3) 9502 continue; 9503 } 9504 9505 multilist_sublist_t *mls = l2arc_sublist_lock(pass); 9506 uint64_t passed_sz = 0; 9507 9508 VERIFY3P(mls, !=, NULL); 9509 9510 /* 9511 * L2ARC fast warmup. 9512 * 9513 * Until the ARC is warm and starts to evict, read from the 9514 * head of the ARC lists rather than the tail. 9515 */ 9516 if (arc_warm == B_FALSE) 9517 hdr = multilist_sublist_head(mls); 9518 else 9519 hdr = multilist_sublist_tail(mls); 9520 9521 headroom = target_sz * l2arc_headroom; 9522 if (zfs_compressed_arc_enabled) 9523 headroom = (headroom * l2arc_headroom_boost) / 100; 9524 9525 for (; hdr; hdr = hdr_prev) { 9526 kmutex_t *hash_lock; 9527 abd_t *to_write = NULL; 9528 9529 if (arc_warm == B_FALSE) 9530 hdr_prev = multilist_sublist_next(mls, hdr); 9531 else 9532 hdr_prev = multilist_sublist_prev(mls, hdr); 9533 9534 hash_lock = HDR_LOCK(hdr); 9535 if (!mutex_tryenter(hash_lock)) { 9536 /* 9537 * Skip this buffer rather than waiting. 9538 */ 9539 continue; 9540 } 9541 9542 passed_sz += HDR_GET_LSIZE(hdr); 9543 if (l2arc_headroom != 0 && passed_sz > headroom) { 9544 /* 9545 * Searched too far. 9546 */ 9547 mutex_exit(hash_lock); 9548 break; 9549 } 9550 9551 if (!l2arc_write_eligible(guid, hdr)) { 9552 mutex_exit(hash_lock); 9553 continue; 9554 } 9555 9556 ASSERT(HDR_HAS_L1HDR(hdr)); 9557 9558 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 9559 ASSERT3U(arc_hdr_size(hdr), >, 0); 9560 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 9561 HDR_HAS_RABD(hdr)); 9562 uint64_t psize = HDR_GET_PSIZE(hdr); 9563 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 9564 psize); 9565 9566 if ((write_asize + asize) > target_sz) { 9567 full = B_TRUE; 9568 mutex_exit(hash_lock); 9569 break; 9570 } 9571 9572 /* 9573 * We rely on the L1 portion of the header below, so 9574 * it's invalid for this header to have been evicted out 9575 * of the ghost cache, prior to being written out. The 9576 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 9577 */ 9578 arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING); 9579 9580 /* 9581 * If this header has b_rabd, we can use this since it 9582 * must always match the data exactly as it exists on 9583 * disk. Otherwise, the L2ARC can normally use the 9584 * hdr's data, but if we're sharing data between the 9585 * hdr and one of its bufs, L2ARC needs its own copy of 9586 * the data so that the ZIO below can't race with the 9587 * buf consumer. To ensure that this copy will be 9588 * available for the lifetime of the ZIO and be cleaned 9589 * up afterwards, we add it to the l2arc_free_on_write 9590 * queue. If we need to apply any transforms to the 9591 * data (compression, encryption) we will also need the 9592 * extra buffer. 9593 */ 9594 if (HDR_HAS_RABD(hdr) && psize == asize) { 9595 to_write = hdr->b_crypt_hdr.b_rabd; 9596 } else if ((HDR_COMPRESSION_ENABLED(hdr) || 9597 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) && 9598 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) && 9599 psize == asize) { 9600 to_write = hdr->b_l1hdr.b_pabd; 9601 } else { 9602 int ret; 9603 arc_buf_contents_t type = arc_buf_type(hdr); 9604 9605 ret = l2arc_apply_transforms(spa, hdr, asize, 9606 &to_write); 9607 if (ret != 0) { 9608 arc_hdr_clear_flags(hdr, 9609 ARC_FLAG_L2_WRITING); 9610 mutex_exit(hash_lock); 9611 continue; 9612 } 9613 9614 l2arc_free_abd_on_write(to_write, asize, type); 9615 } 9616 9617 if (pio == NULL) { 9618 /* 9619 * Insert a dummy header on the buflist so 9620 * l2arc_write_done() can find where the 9621 * write buffers begin without searching. 9622 */ 9623 mutex_enter(&dev->l2ad_mtx); 9624 list_insert_head(&dev->l2ad_buflist, head); 9625 mutex_exit(&dev->l2ad_mtx); 9626 9627 cb = kmem_alloc( 9628 sizeof (l2arc_write_callback_t), KM_SLEEP); 9629 cb->l2wcb_dev = dev; 9630 cb->l2wcb_head = head; 9631 /* 9632 * Create a list to save allocated abd buffers 9633 * for l2arc_log_blk_commit(). 9634 */ 9635 list_create(&cb->l2wcb_abd_list, 9636 sizeof (l2arc_lb_abd_buf_t), 9637 offsetof(l2arc_lb_abd_buf_t, node)); 9638 pio = zio_root(spa, l2arc_write_done, cb, 9639 ZIO_FLAG_CANFAIL); 9640 } 9641 9642 hdr->b_l2hdr.b_dev = dev; 9643 hdr->b_l2hdr.b_hits = 0; 9644 9645 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 9646 hdr->b_l2hdr.b_arcs_state = 9647 hdr->b_l1hdr.b_state->arcs_state; 9648 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR); 9649 9650 mutex_enter(&dev->l2ad_mtx); 9651 list_insert_head(&dev->l2ad_buflist, hdr); 9652 mutex_exit(&dev->l2ad_mtx); 9653 9654 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 9655 arc_hdr_size(hdr), hdr); 9656 9657 wzio = zio_write_phys(pio, dev->l2ad_vdev, 9658 hdr->b_l2hdr.b_daddr, asize, to_write, 9659 ZIO_CHECKSUM_OFF, NULL, hdr, 9660 ZIO_PRIORITY_ASYNC_WRITE, 9661 ZIO_FLAG_CANFAIL, B_FALSE); 9662 9663 write_lsize += HDR_GET_LSIZE(hdr); 9664 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 9665 zio_t *, wzio); 9666 9667 write_psize += psize; 9668 write_asize += asize; 9669 dev->l2ad_hand += asize; 9670 l2arc_hdr_arcstats_increment(hdr); 9671 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 9672 9673 mutex_exit(hash_lock); 9674 9675 /* 9676 * Append buf info to current log and commit if full. 9677 * arcstat_l2_{size,asize} kstats are updated 9678 * internally. 9679 */ 9680 if (l2arc_log_blk_insert(dev, hdr)) 9681 l2arc_log_blk_commit(dev, pio, cb); 9682 9683 zio_nowait(wzio); 9684 } 9685 9686 multilist_sublist_unlock(mls); 9687 9688 if (full == B_TRUE) 9689 break; 9690 } 9691 9692 /* No buffers selected for writing? */ 9693 if (pio == NULL) { 9694 ASSERT0(write_lsize); 9695 ASSERT(!HDR_HAS_L1HDR(head)); 9696 kmem_cache_free(hdr_l2only_cache, head); 9697 9698 /* 9699 * Although we did not write any buffers l2ad_evict may 9700 * have advanced. 9701 */ 9702 if (dev->l2ad_evict != l2dhdr->dh_evict) 9703 l2arc_dev_hdr_update(dev); 9704 9705 return (0); 9706 } 9707 9708 if (!dev->l2ad_first) 9709 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict); 9710 9711 ASSERT3U(write_asize, <=, target_sz); 9712 ARCSTAT_BUMP(arcstat_l2_writes_sent); 9713 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize); 9714 9715 dev->l2ad_writing = B_TRUE; 9716 (void) zio_wait(pio); 9717 dev->l2ad_writing = B_FALSE; 9718 9719 /* 9720 * Update the device header after the zio completes as 9721 * l2arc_write_done() may have updated the memory holding the log block 9722 * pointers in the device header. 9723 */ 9724 l2arc_dev_hdr_update(dev); 9725 9726 return (write_asize); 9727 } 9728 9729 static boolean_t 9730 l2arc_hdr_limit_reached(void) 9731 { 9732 int64_t s = aggsum_upper_bound(&arc_sums.arcstat_l2_hdr_size); 9733 9734 return (arc_reclaim_needed() || (s > arc_meta_limit * 3 / 4) || 9735 (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100)); 9736 } 9737 9738 /* 9739 * This thread feeds the L2ARC at regular intervals. This is the beating 9740 * heart of the L2ARC. 9741 */ 9742 static __attribute__((noreturn)) void 9743 l2arc_feed_thread(void *unused) 9744 { 9745 (void) unused; 9746 callb_cpr_t cpr; 9747 l2arc_dev_t *dev; 9748 spa_t *spa; 9749 uint64_t size, wrote; 9750 clock_t begin, next = ddi_get_lbolt(); 9751 fstrans_cookie_t cookie; 9752 9753 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 9754 9755 mutex_enter(&l2arc_feed_thr_lock); 9756 9757 cookie = spl_fstrans_mark(); 9758 while (l2arc_thread_exit == 0) { 9759 CALLB_CPR_SAFE_BEGIN(&cpr); 9760 (void) cv_timedwait_idle(&l2arc_feed_thr_cv, 9761 &l2arc_feed_thr_lock, next); 9762 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 9763 next = ddi_get_lbolt() + hz; 9764 9765 /* 9766 * Quick check for L2ARC devices. 9767 */ 9768 mutex_enter(&l2arc_dev_mtx); 9769 if (l2arc_ndev == 0) { 9770 mutex_exit(&l2arc_dev_mtx); 9771 continue; 9772 } 9773 mutex_exit(&l2arc_dev_mtx); 9774 begin = ddi_get_lbolt(); 9775 9776 /* 9777 * This selects the next l2arc device to write to, and in 9778 * doing so the next spa to feed from: dev->l2ad_spa. This 9779 * will return NULL if there are now no l2arc devices or if 9780 * they are all faulted. 9781 * 9782 * If a device is returned, its spa's config lock is also 9783 * held to prevent device removal. l2arc_dev_get_next() 9784 * will grab and release l2arc_dev_mtx. 9785 */ 9786 if ((dev = l2arc_dev_get_next()) == NULL) 9787 continue; 9788 9789 spa = dev->l2ad_spa; 9790 ASSERT3P(spa, !=, NULL); 9791 9792 /* 9793 * If the pool is read-only then force the feed thread to 9794 * sleep a little longer. 9795 */ 9796 if (!spa_writeable(spa)) { 9797 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 9798 spa_config_exit(spa, SCL_L2ARC, dev); 9799 continue; 9800 } 9801 9802 /* 9803 * Avoid contributing to memory pressure. 9804 */ 9805 if (l2arc_hdr_limit_reached()) { 9806 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 9807 spa_config_exit(spa, SCL_L2ARC, dev); 9808 continue; 9809 } 9810 9811 ARCSTAT_BUMP(arcstat_l2_feeds); 9812 9813 size = l2arc_write_size(dev); 9814 9815 /* 9816 * Evict L2ARC buffers that will be overwritten. 9817 */ 9818 l2arc_evict(dev, size, B_FALSE); 9819 9820 /* 9821 * Write ARC buffers. 9822 */ 9823 wrote = l2arc_write_buffers(spa, dev, size); 9824 9825 /* 9826 * Calculate interval between writes. 9827 */ 9828 next = l2arc_write_interval(begin, size, wrote); 9829 spa_config_exit(spa, SCL_L2ARC, dev); 9830 } 9831 spl_fstrans_unmark(cookie); 9832 9833 l2arc_thread_exit = 0; 9834 cv_broadcast(&l2arc_feed_thr_cv); 9835 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 9836 thread_exit(); 9837 } 9838 9839 boolean_t 9840 l2arc_vdev_present(vdev_t *vd) 9841 { 9842 return (l2arc_vdev_get(vd) != NULL); 9843 } 9844 9845 /* 9846 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if 9847 * the vdev_t isn't an L2ARC device. 9848 */ 9849 l2arc_dev_t * 9850 l2arc_vdev_get(vdev_t *vd) 9851 { 9852 l2arc_dev_t *dev; 9853 9854 mutex_enter(&l2arc_dev_mtx); 9855 for (dev = list_head(l2arc_dev_list); dev != NULL; 9856 dev = list_next(l2arc_dev_list, dev)) { 9857 if (dev->l2ad_vdev == vd) 9858 break; 9859 } 9860 mutex_exit(&l2arc_dev_mtx); 9861 9862 return (dev); 9863 } 9864 9865 static void 9866 l2arc_rebuild_dev(l2arc_dev_t *dev, boolean_t reopen) 9867 { 9868 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9869 uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 9870 spa_t *spa = dev->l2ad_spa; 9871 9872 /* 9873 * The L2ARC has to hold at least the payload of one log block for 9874 * them to be restored (persistent L2ARC). The payload of a log block 9875 * depends on the amount of its log entries. We always write log blocks 9876 * with 1022 entries. How many of them are committed or restored depends 9877 * on the size of the L2ARC device. Thus the maximum payload of 9878 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device 9879 * is less than that, we reduce the amount of committed and restored 9880 * log entries per block so as to enable persistence. 9881 */ 9882 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) { 9883 dev->l2ad_log_entries = 0; 9884 } else { 9885 dev->l2ad_log_entries = MIN((dev->l2ad_end - 9886 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT, 9887 L2ARC_LOG_BLK_MAX_ENTRIES); 9888 } 9889 9890 /* 9891 * Read the device header, if an error is returned do not rebuild L2ARC. 9892 */ 9893 if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) { 9894 /* 9895 * If we are onlining a cache device (vdev_reopen) that was 9896 * still present (l2arc_vdev_present()) and rebuild is enabled, 9897 * we should evict all ARC buffers and pointers to log blocks 9898 * and reclaim their space before restoring its contents to 9899 * L2ARC. 9900 */ 9901 if (reopen) { 9902 if (!l2arc_rebuild_enabled) { 9903 return; 9904 } else { 9905 l2arc_evict(dev, 0, B_TRUE); 9906 /* start a new log block */ 9907 dev->l2ad_log_ent_idx = 0; 9908 dev->l2ad_log_blk_payload_asize = 0; 9909 dev->l2ad_log_blk_payload_start = 0; 9910 } 9911 } 9912 /* 9913 * Just mark the device as pending for a rebuild. We won't 9914 * be starting a rebuild in line here as it would block pool 9915 * import. Instead spa_load_impl will hand that off to an 9916 * async task which will call l2arc_spa_rebuild_start. 9917 */ 9918 dev->l2ad_rebuild = B_TRUE; 9919 } else if (spa_writeable(spa)) { 9920 /* 9921 * In this case TRIM the whole device if l2arc_trim_ahead > 0, 9922 * otherwise create a new header. We zero out the memory holding 9923 * the header to reset dh_start_lbps. If we TRIM the whole 9924 * device the new header will be written by 9925 * vdev_trim_l2arc_thread() at the end of the TRIM to update the 9926 * trim_state in the header too. When reading the header, if 9927 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0 9928 * we opt to TRIM the whole device again. 9929 */ 9930 if (l2arc_trim_ahead > 0) { 9931 dev->l2ad_trim_all = B_TRUE; 9932 } else { 9933 memset(l2dhdr, 0, l2dhdr_asize); 9934 l2arc_dev_hdr_update(dev); 9935 } 9936 } 9937 } 9938 9939 /* 9940 * Add a vdev for use by the L2ARC. By this point the spa has already 9941 * validated the vdev and opened it. 9942 */ 9943 void 9944 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 9945 { 9946 l2arc_dev_t *adddev; 9947 uint64_t l2dhdr_asize; 9948 9949 ASSERT(!l2arc_vdev_present(vd)); 9950 9951 /* 9952 * Create a new l2arc device entry. 9953 */ 9954 adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 9955 adddev->l2ad_spa = spa; 9956 adddev->l2ad_vdev = vd; 9957 /* leave extra size for an l2arc device header */ 9958 l2dhdr_asize = adddev->l2ad_dev_hdr_asize = 9959 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift); 9960 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize; 9961 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 9962 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end); 9963 adddev->l2ad_hand = adddev->l2ad_start; 9964 adddev->l2ad_evict = adddev->l2ad_start; 9965 adddev->l2ad_first = B_TRUE; 9966 adddev->l2ad_writing = B_FALSE; 9967 adddev->l2ad_trim_all = B_FALSE; 9968 list_link_init(&adddev->l2ad_node); 9969 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP); 9970 9971 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 9972 /* 9973 * This is a list of all ARC buffers that are still valid on the 9974 * device. 9975 */ 9976 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 9977 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 9978 9979 /* 9980 * This is a list of pointers to log blocks that are still present 9981 * on the device. 9982 */ 9983 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t), 9984 offsetof(l2arc_lb_ptr_buf_t, node)); 9985 9986 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 9987 zfs_refcount_create(&adddev->l2ad_alloc); 9988 zfs_refcount_create(&adddev->l2ad_lb_asize); 9989 zfs_refcount_create(&adddev->l2ad_lb_count); 9990 9991 /* 9992 * Decide if dev is eligible for L2ARC rebuild or whole device 9993 * trimming. This has to happen before the device is added in the 9994 * cache device list and l2arc_dev_mtx is released. Otherwise 9995 * l2arc_feed_thread() might already start writing on the 9996 * device. 9997 */ 9998 l2arc_rebuild_dev(adddev, B_FALSE); 9999 10000 /* 10001 * Add device to global list 10002 */ 10003 mutex_enter(&l2arc_dev_mtx); 10004 list_insert_head(l2arc_dev_list, adddev); 10005 atomic_inc_64(&l2arc_ndev); 10006 mutex_exit(&l2arc_dev_mtx); 10007 } 10008 10009 /* 10010 * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen() 10011 * in case of onlining a cache device. 10012 */ 10013 void 10014 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen) 10015 { 10016 l2arc_dev_t *dev = NULL; 10017 10018 dev = l2arc_vdev_get(vd); 10019 ASSERT3P(dev, !=, NULL); 10020 10021 /* 10022 * In contrast to l2arc_add_vdev() we do not have to worry about 10023 * l2arc_feed_thread() invalidating previous content when onlining a 10024 * cache device. The device parameters (l2ad*) are not cleared when 10025 * offlining the device and writing new buffers will not invalidate 10026 * all previous content. In worst case only buffers that have not had 10027 * their log block written to the device will be lost. 10028 * When onlining the cache device (ie offline->online without exporting 10029 * the pool in between) this happens: 10030 * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev() 10031 * | | 10032 * vdev_is_dead() = B_FALSE l2ad_rebuild = B_TRUE 10033 * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild 10034 * is set to B_TRUE we might write additional buffers to the device. 10035 */ 10036 l2arc_rebuild_dev(dev, reopen); 10037 } 10038 10039 /* 10040 * Remove a vdev from the L2ARC. 10041 */ 10042 void 10043 l2arc_remove_vdev(vdev_t *vd) 10044 { 10045 l2arc_dev_t *remdev = NULL; 10046 10047 /* 10048 * Find the device by vdev 10049 */ 10050 remdev = l2arc_vdev_get(vd); 10051 ASSERT3P(remdev, !=, NULL); 10052 10053 /* 10054 * Cancel any ongoing or scheduled rebuild. 10055 */ 10056 mutex_enter(&l2arc_rebuild_thr_lock); 10057 if (remdev->l2ad_rebuild_began == B_TRUE) { 10058 remdev->l2ad_rebuild_cancel = B_TRUE; 10059 while (remdev->l2ad_rebuild == B_TRUE) 10060 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock); 10061 } 10062 mutex_exit(&l2arc_rebuild_thr_lock); 10063 10064 /* 10065 * Remove device from global list 10066 */ 10067 mutex_enter(&l2arc_dev_mtx); 10068 list_remove(l2arc_dev_list, remdev); 10069 l2arc_dev_last = NULL; /* may have been invalidated */ 10070 atomic_dec_64(&l2arc_ndev); 10071 mutex_exit(&l2arc_dev_mtx); 10072 10073 /* 10074 * Clear all buflists and ARC references. L2ARC device flush. 10075 */ 10076 l2arc_evict(remdev, 0, B_TRUE); 10077 list_destroy(&remdev->l2ad_buflist); 10078 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list)); 10079 list_destroy(&remdev->l2ad_lbptr_list); 10080 mutex_destroy(&remdev->l2ad_mtx); 10081 zfs_refcount_destroy(&remdev->l2ad_alloc); 10082 zfs_refcount_destroy(&remdev->l2ad_lb_asize); 10083 zfs_refcount_destroy(&remdev->l2ad_lb_count); 10084 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize); 10085 vmem_free(remdev, sizeof (l2arc_dev_t)); 10086 } 10087 10088 void 10089 l2arc_init(void) 10090 { 10091 l2arc_thread_exit = 0; 10092 l2arc_ndev = 0; 10093 10094 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 10095 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 10096 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL); 10097 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL); 10098 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 10099 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 10100 10101 l2arc_dev_list = &L2ARC_dev_list; 10102 l2arc_free_on_write = &L2ARC_free_on_write; 10103 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 10104 offsetof(l2arc_dev_t, l2ad_node)); 10105 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 10106 offsetof(l2arc_data_free_t, l2df_list_node)); 10107 } 10108 10109 void 10110 l2arc_fini(void) 10111 { 10112 mutex_destroy(&l2arc_feed_thr_lock); 10113 cv_destroy(&l2arc_feed_thr_cv); 10114 mutex_destroy(&l2arc_rebuild_thr_lock); 10115 cv_destroy(&l2arc_rebuild_thr_cv); 10116 mutex_destroy(&l2arc_dev_mtx); 10117 mutex_destroy(&l2arc_free_on_write_mtx); 10118 10119 list_destroy(l2arc_dev_list); 10120 list_destroy(l2arc_free_on_write); 10121 } 10122 10123 void 10124 l2arc_start(void) 10125 { 10126 if (!(spa_mode_global & SPA_MODE_WRITE)) 10127 return; 10128 10129 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 10130 TS_RUN, defclsyspri); 10131 } 10132 10133 void 10134 l2arc_stop(void) 10135 { 10136 if (!(spa_mode_global & SPA_MODE_WRITE)) 10137 return; 10138 10139 mutex_enter(&l2arc_feed_thr_lock); 10140 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 10141 l2arc_thread_exit = 1; 10142 while (l2arc_thread_exit != 0) 10143 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 10144 mutex_exit(&l2arc_feed_thr_lock); 10145 } 10146 10147 /* 10148 * Punches out rebuild threads for the L2ARC devices in a spa. This should 10149 * be called after pool import from the spa async thread, since starting 10150 * these threads directly from spa_import() will make them part of the 10151 * "zpool import" context and delay process exit (and thus pool import). 10152 */ 10153 void 10154 l2arc_spa_rebuild_start(spa_t *spa) 10155 { 10156 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 10157 10158 /* 10159 * Locate the spa's l2arc devices and kick off rebuild threads. 10160 */ 10161 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 10162 l2arc_dev_t *dev = 10163 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]); 10164 if (dev == NULL) { 10165 /* Don't attempt a rebuild if the vdev is UNAVAIL */ 10166 continue; 10167 } 10168 mutex_enter(&l2arc_rebuild_thr_lock); 10169 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) { 10170 dev->l2ad_rebuild_began = B_TRUE; 10171 (void) thread_create(NULL, 0, l2arc_dev_rebuild_thread, 10172 dev, 0, &p0, TS_RUN, minclsyspri); 10173 } 10174 mutex_exit(&l2arc_rebuild_thr_lock); 10175 } 10176 } 10177 10178 /* 10179 * Main entry point for L2ARC rebuilding. 10180 */ 10181 static __attribute__((noreturn)) void 10182 l2arc_dev_rebuild_thread(void *arg) 10183 { 10184 l2arc_dev_t *dev = arg; 10185 10186 VERIFY(!dev->l2ad_rebuild_cancel); 10187 VERIFY(dev->l2ad_rebuild); 10188 (void) l2arc_rebuild(dev); 10189 mutex_enter(&l2arc_rebuild_thr_lock); 10190 dev->l2ad_rebuild_began = B_FALSE; 10191 dev->l2ad_rebuild = B_FALSE; 10192 mutex_exit(&l2arc_rebuild_thr_lock); 10193 10194 thread_exit(); 10195 } 10196 10197 /* 10198 * This function implements the actual L2ARC metadata rebuild. It: 10199 * starts reading the log block chain and restores each block's contents 10200 * to memory (reconstructing arc_buf_hdr_t's). 10201 * 10202 * Operation stops under any of the following conditions: 10203 * 10204 * 1) We reach the end of the log block chain. 10205 * 2) We encounter *any* error condition (cksum errors, io errors) 10206 */ 10207 static int 10208 l2arc_rebuild(l2arc_dev_t *dev) 10209 { 10210 vdev_t *vd = dev->l2ad_vdev; 10211 spa_t *spa = vd->vdev_spa; 10212 int err = 0; 10213 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10214 l2arc_log_blk_phys_t *this_lb, *next_lb; 10215 zio_t *this_io = NULL, *next_io = NULL; 10216 l2arc_log_blkptr_t lbps[2]; 10217 l2arc_lb_ptr_buf_t *lb_ptr_buf; 10218 boolean_t lock_held; 10219 10220 this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP); 10221 next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP); 10222 10223 /* 10224 * We prevent device removal while issuing reads to the device, 10225 * then during the rebuilding phases we drop this lock again so 10226 * that a spa_unload or device remove can be initiated - this is 10227 * safe, because the spa will signal us to stop before removing 10228 * our device and wait for us to stop. 10229 */ 10230 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER); 10231 lock_held = B_TRUE; 10232 10233 /* 10234 * Retrieve the persistent L2ARC device state. 10235 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10236 */ 10237 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start); 10238 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr + 10239 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop), 10240 dev->l2ad_start); 10241 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 10242 10243 vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time; 10244 vd->vdev_trim_state = l2dhdr->dh_trim_state; 10245 10246 /* 10247 * In case the zfs module parameter l2arc_rebuild_enabled is false 10248 * we do not start the rebuild process. 10249 */ 10250 if (!l2arc_rebuild_enabled) 10251 goto out; 10252 10253 /* Prepare the rebuild process */ 10254 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps)); 10255 10256 /* Start the rebuild process */ 10257 for (;;) { 10258 if (!l2arc_log_blkptr_valid(dev, &lbps[0])) 10259 break; 10260 10261 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1], 10262 this_lb, next_lb, this_io, &next_io)) != 0) 10263 goto out; 10264 10265 /* 10266 * Our memory pressure valve. If the system is running low 10267 * on memory, rather than swamping memory with new ARC buf 10268 * hdrs, we opt not to rebuild the L2ARC. At this point, 10269 * however, we have already set up our L2ARC dev to chain in 10270 * new metadata log blocks, so the user may choose to offline/ 10271 * online the L2ARC dev at a later time (or re-import the pool) 10272 * to reconstruct it (when there's less memory pressure). 10273 */ 10274 if (l2arc_hdr_limit_reached()) { 10275 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem); 10276 cmn_err(CE_NOTE, "System running low on memory, " 10277 "aborting L2ARC rebuild."); 10278 err = SET_ERROR(ENOMEM); 10279 goto out; 10280 } 10281 10282 spa_config_exit(spa, SCL_L2ARC, vd); 10283 lock_held = B_FALSE; 10284 10285 /* 10286 * Now that we know that the next_lb checks out alright, we 10287 * can start reconstruction from this log block. 10288 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10289 */ 10290 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 10291 l2arc_log_blk_restore(dev, this_lb, asize); 10292 10293 /* 10294 * log block restored, include its pointer in the list of 10295 * pointers to log blocks present in the L2ARC device. 10296 */ 10297 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 10298 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), 10299 KM_SLEEP); 10300 memcpy(lb_ptr_buf->lb_ptr, &lbps[0], 10301 sizeof (l2arc_log_blkptr_t)); 10302 mutex_enter(&dev->l2ad_mtx); 10303 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf); 10304 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 10305 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 10306 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 10307 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 10308 mutex_exit(&dev->l2ad_mtx); 10309 vdev_space_update(vd, asize, 0, 0); 10310 10311 /* 10312 * Protection against loops of log blocks: 10313 * 10314 * l2ad_hand l2ad_evict 10315 * V V 10316 * l2ad_start |=======================================| l2ad_end 10317 * -----|||----|||---|||----||| 10318 * (3) (2) (1) (0) 10319 * ---|||---|||----|||---||| 10320 * (7) (6) (5) (4) 10321 * 10322 * In this situation the pointer of log block (4) passes 10323 * l2arc_log_blkptr_valid() but the log block should not be 10324 * restored as it is overwritten by the payload of log block 10325 * (0). Only log blocks (0)-(3) should be restored. We check 10326 * whether l2ad_evict lies in between the payload starting 10327 * offset of the next log block (lbps[1].lbp_payload_start) 10328 * and the payload starting offset of the present log block 10329 * (lbps[0].lbp_payload_start). If true and this isn't the 10330 * first pass, we are looping from the beginning and we should 10331 * stop. 10332 */ 10333 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 10334 lbps[0].lbp_payload_start, dev->l2ad_evict) && 10335 !dev->l2ad_first) 10336 goto out; 10337 10338 kpreempt(KPREEMPT_SYNC); 10339 for (;;) { 10340 mutex_enter(&l2arc_rebuild_thr_lock); 10341 if (dev->l2ad_rebuild_cancel) { 10342 dev->l2ad_rebuild = B_FALSE; 10343 cv_signal(&l2arc_rebuild_thr_cv); 10344 mutex_exit(&l2arc_rebuild_thr_lock); 10345 err = SET_ERROR(ECANCELED); 10346 goto out; 10347 } 10348 mutex_exit(&l2arc_rebuild_thr_lock); 10349 if (spa_config_tryenter(spa, SCL_L2ARC, vd, 10350 RW_READER)) { 10351 lock_held = B_TRUE; 10352 break; 10353 } 10354 /* 10355 * L2ARC config lock held by somebody in writer, 10356 * possibly due to them trying to remove us. They'll 10357 * likely to want us to shut down, so after a little 10358 * delay, we check l2ad_rebuild_cancel and retry 10359 * the lock again. 10360 */ 10361 delay(1); 10362 } 10363 10364 /* 10365 * Continue with the next log block. 10366 */ 10367 lbps[0] = lbps[1]; 10368 lbps[1] = this_lb->lb_prev_lbp; 10369 PTR_SWAP(this_lb, next_lb); 10370 this_io = next_io; 10371 next_io = NULL; 10372 } 10373 10374 if (this_io != NULL) 10375 l2arc_log_blk_fetch_abort(this_io); 10376 out: 10377 if (next_io != NULL) 10378 l2arc_log_blk_fetch_abort(next_io); 10379 vmem_free(this_lb, sizeof (*this_lb)); 10380 vmem_free(next_lb, sizeof (*next_lb)); 10381 10382 if (!l2arc_rebuild_enabled) { 10383 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10384 "disabled"); 10385 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) { 10386 ARCSTAT_BUMP(arcstat_l2_rebuild_success); 10387 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10388 "successful, restored %llu blocks", 10389 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10390 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) { 10391 /* 10392 * No error but also nothing restored, meaning the lbps array 10393 * in the device header points to invalid/non-present log 10394 * blocks. Reset the header. 10395 */ 10396 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10397 "no valid log blocks"); 10398 memset(l2dhdr, 0, dev->l2ad_dev_hdr_asize); 10399 l2arc_dev_hdr_update(dev); 10400 } else if (err == ECANCELED) { 10401 /* 10402 * In case the rebuild was canceled do not log to spa history 10403 * log as the pool may be in the process of being removed. 10404 */ 10405 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks", 10406 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10407 } else if (err != 0) { 10408 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10409 "aborted, restored %llu blocks", 10410 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10411 } 10412 10413 if (lock_held) 10414 spa_config_exit(spa, SCL_L2ARC, vd); 10415 10416 return (err); 10417 } 10418 10419 /* 10420 * Attempts to read the device header on the provided L2ARC device and writes 10421 * it to `hdr'. On success, this function returns 0, otherwise the appropriate 10422 * error code is returned. 10423 */ 10424 static int 10425 l2arc_dev_hdr_read(l2arc_dev_t *dev) 10426 { 10427 int err; 10428 uint64_t guid; 10429 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10430 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10431 abd_t *abd; 10432 10433 guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10434 10435 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10436 10437 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev, 10438 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, 10439 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 10440 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 10441 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 10442 ZIO_FLAG_SPECULATIVE, B_FALSE)); 10443 10444 abd_free(abd); 10445 10446 if (err != 0) { 10447 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors); 10448 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, " 10449 "vdev guid: %llu", err, 10450 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10451 return (err); 10452 } 10453 10454 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 10455 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr)); 10456 10457 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC || 10458 l2dhdr->dh_spa_guid != guid || 10459 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid || 10460 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION || 10461 l2dhdr->dh_log_entries != dev->l2ad_log_entries || 10462 l2dhdr->dh_end != dev->l2ad_end || 10463 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end, 10464 l2dhdr->dh_evict) || 10465 (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE && 10466 l2arc_trim_ahead > 0)) { 10467 /* 10468 * Attempt to rebuild a device containing no actual dev hdr 10469 * or containing a header from some other pool or from another 10470 * version of persistent L2ARC. 10471 */ 10472 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported); 10473 return (SET_ERROR(ENOTSUP)); 10474 } 10475 10476 return (0); 10477 } 10478 10479 /* 10480 * Reads L2ARC log blocks from storage and validates their contents. 10481 * 10482 * This function implements a simple fetcher to make sure that while 10483 * we're processing one buffer the L2ARC is already fetching the next 10484 * one in the chain. 10485 * 10486 * The arguments this_lp and next_lp point to the current and next log block 10487 * address in the block chain. Similarly, this_lb and next_lb hold the 10488 * l2arc_log_blk_phys_t's of the current and next L2ARC blk. 10489 * 10490 * The `this_io' and `next_io' arguments are used for block fetching. 10491 * When issuing the first blk IO during rebuild, you should pass NULL for 10492 * `this_io'. This function will then issue a sync IO to read the block and 10493 * also issue an async IO to fetch the next block in the block chain. The 10494 * fetched IO is returned in `next_io'. On subsequent calls to this 10495 * function, pass the value returned in `next_io' from the previous call 10496 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO. 10497 * Prior to the call, you should initialize your `next_io' pointer to be 10498 * NULL. If no fetch IO was issued, the pointer is left set at NULL. 10499 * 10500 * On success, this function returns 0, otherwise it returns an appropriate 10501 * error code. On error the fetching IO is aborted and cleared before 10502 * returning from this function. Therefore, if we return `success', the 10503 * caller can assume that we have taken care of cleanup of fetch IOs. 10504 */ 10505 static int 10506 l2arc_log_blk_read(l2arc_dev_t *dev, 10507 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp, 10508 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 10509 zio_t *this_io, zio_t **next_io) 10510 { 10511 int err = 0; 10512 zio_cksum_t cksum; 10513 abd_t *abd = NULL; 10514 uint64_t asize; 10515 10516 ASSERT(this_lbp != NULL && next_lbp != NULL); 10517 ASSERT(this_lb != NULL && next_lb != NULL); 10518 ASSERT(next_io != NULL && *next_io == NULL); 10519 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp)); 10520 10521 /* 10522 * Check to see if we have issued the IO for this log block in a 10523 * previous run. If not, this is the first call, so issue it now. 10524 */ 10525 if (this_io == NULL) { 10526 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp, 10527 this_lb); 10528 } 10529 10530 /* 10531 * Peek to see if we can start issuing the next IO immediately. 10532 */ 10533 if (l2arc_log_blkptr_valid(dev, next_lbp)) { 10534 /* 10535 * Start issuing IO for the next log block early - this 10536 * should help keep the L2ARC device busy while we 10537 * decompress and restore this log block. 10538 */ 10539 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp, 10540 next_lb); 10541 } 10542 10543 /* Wait for the IO to read this log block to complete */ 10544 if ((err = zio_wait(this_io)) != 0) { 10545 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors); 10546 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, " 10547 "offset: %llu, vdev guid: %llu", err, 10548 (u_longlong_t)this_lbp->lbp_daddr, 10549 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10550 goto cleanup; 10551 } 10552 10553 /* 10554 * Make sure the buffer checks out. 10555 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10556 */ 10557 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop); 10558 fletcher_4_native(this_lb, asize, NULL, &cksum); 10559 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) { 10560 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors); 10561 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, " 10562 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu", 10563 (u_longlong_t)this_lbp->lbp_daddr, 10564 (u_longlong_t)dev->l2ad_vdev->vdev_guid, 10565 (u_longlong_t)dev->l2ad_hand, 10566 (u_longlong_t)dev->l2ad_evict); 10567 err = SET_ERROR(ECKSUM); 10568 goto cleanup; 10569 } 10570 10571 /* Now we can take our time decoding this buffer */ 10572 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) { 10573 case ZIO_COMPRESS_OFF: 10574 break; 10575 case ZIO_COMPRESS_LZ4: 10576 abd = abd_alloc_for_io(asize, B_TRUE); 10577 abd_copy_from_buf_off(abd, this_lb, 0, asize); 10578 if ((err = zio_decompress_data( 10579 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop), 10580 abd, this_lb, asize, sizeof (*this_lb), NULL)) != 0) { 10581 err = SET_ERROR(EINVAL); 10582 goto cleanup; 10583 } 10584 break; 10585 default: 10586 err = SET_ERROR(EINVAL); 10587 goto cleanup; 10588 } 10589 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 10590 byteswap_uint64_array(this_lb, sizeof (*this_lb)); 10591 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) { 10592 err = SET_ERROR(EINVAL); 10593 goto cleanup; 10594 } 10595 cleanup: 10596 /* Abort an in-flight fetch I/O in case of error */ 10597 if (err != 0 && *next_io != NULL) { 10598 l2arc_log_blk_fetch_abort(*next_io); 10599 *next_io = NULL; 10600 } 10601 if (abd != NULL) 10602 abd_free(abd); 10603 return (err); 10604 } 10605 10606 /* 10607 * Restores the payload of a log block to ARC. This creates empty ARC hdr 10608 * entries which only contain an l2arc hdr, essentially restoring the 10609 * buffers to their L2ARC evicted state. This function also updates space 10610 * usage on the L2ARC vdev to make sure it tracks restored buffers. 10611 */ 10612 static void 10613 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb, 10614 uint64_t lb_asize) 10615 { 10616 uint64_t size = 0, asize = 0; 10617 uint64_t log_entries = dev->l2ad_log_entries; 10618 10619 /* 10620 * Usually arc_adapt() is called only for data, not headers, but 10621 * since we may allocate significant amount of memory here, let ARC 10622 * grow its arc_c. 10623 */ 10624 arc_adapt(log_entries * HDR_L2ONLY_SIZE, arc_l2c_only); 10625 10626 for (int i = log_entries - 1; i >= 0; i--) { 10627 /* 10628 * Restore goes in the reverse temporal direction to preserve 10629 * correct temporal ordering of buffers in the l2ad_buflist. 10630 * l2arc_hdr_restore also does a list_insert_tail instead of 10631 * list_insert_head on the l2ad_buflist: 10632 * 10633 * LIST l2ad_buflist LIST 10634 * HEAD <------ (time) ------ TAIL 10635 * direction +-----+-----+-----+-----+-----+ direction 10636 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild 10637 * fill +-----+-----+-----+-----+-----+ 10638 * ^ ^ 10639 * | | 10640 * | | 10641 * l2arc_feed_thread l2arc_rebuild 10642 * will place new bufs here restores bufs here 10643 * 10644 * During l2arc_rebuild() the device is not used by 10645 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true. 10646 */ 10647 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop); 10648 asize += vdev_psize_to_asize(dev->l2ad_vdev, 10649 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop)); 10650 l2arc_hdr_restore(&lb->lb_entries[i], dev); 10651 } 10652 10653 /* 10654 * Record rebuild stats: 10655 * size Logical size of restored buffers in the L2ARC 10656 * asize Aligned size of restored buffers in the L2ARC 10657 */ 10658 ARCSTAT_INCR(arcstat_l2_rebuild_size, size); 10659 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize); 10660 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries); 10661 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize); 10662 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize); 10663 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks); 10664 } 10665 10666 /* 10667 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put 10668 * into a state indicating that it has been evicted to L2ARC. 10669 */ 10670 static void 10671 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev) 10672 { 10673 arc_buf_hdr_t *hdr, *exists; 10674 kmutex_t *hash_lock; 10675 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop); 10676 uint64_t asize; 10677 10678 /* 10679 * Do all the allocation before grabbing any locks, this lets us 10680 * sleep if memory is full and we don't have to deal with failed 10681 * allocations. 10682 */ 10683 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type, 10684 dev, le->le_dva, le->le_daddr, 10685 L2BLK_GET_PSIZE((le)->le_prop), le->le_birth, 10686 L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel, 10687 L2BLK_GET_PROTECTED((le)->le_prop), 10688 L2BLK_GET_PREFETCH((le)->le_prop), 10689 L2BLK_GET_STATE((le)->le_prop)); 10690 asize = vdev_psize_to_asize(dev->l2ad_vdev, 10691 L2BLK_GET_PSIZE((le)->le_prop)); 10692 10693 /* 10694 * vdev_space_update() has to be called before arc_hdr_destroy() to 10695 * avoid underflow since the latter also calls vdev_space_update(). 10696 */ 10697 l2arc_hdr_arcstats_increment(hdr); 10698 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10699 10700 mutex_enter(&dev->l2ad_mtx); 10701 list_insert_tail(&dev->l2ad_buflist, hdr); 10702 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); 10703 mutex_exit(&dev->l2ad_mtx); 10704 10705 exists = buf_hash_insert(hdr, &hash_lock); 10706 if (exists) { 10707 /* Buffer was already cached, no need to restore it. */ 10708 arc_hdr_destroy(hdr); 10709 /* 10710 * If the buffer is already cached, check whether it has 10711 * L2ARC metadata. If not, enter them and update the flag. 10712 * This is important is case of onlining a cache device, since 10713 * we previously evicted all L2ARC metadata from ARC. 10714 */ 10715 if (!HDR_HAS_L2HDR(exists)) { 10716 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR); 10717 exists->b_l2hdr.b_dev = dev; 10718 exists->b_l2hdr.b_daddr = le->le_daddr; 10719 exists->b_l2hdr.b_arcs_state = 10720 L2BLK_GET_STATE((le)->le_prop); 10721 mutex_enter(&dev->l2ad_mtx); 10722 list_insert_tail(&dev->l2ad_buflist, exists); 10723 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 10724 arc_hdr_size(exists), exists); 10725 mutex_exit(&dev->l2ad_mtx); 10726 l2arc_hdr_arcstats_increment(exists); 10727 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10728 } 10729 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached); 10730 } 10731 10732 mutex_exit(hash_lock); 10733 } 10734 10735 /* 10736 * Starts an asynchronous read IO to read a log block. This is used in log 10737 * block reconstruction to start reading the next block before we are done 10738 * decoding and reconstructing the current block, to keep the l2arc device 10739 * nice and hot with read IO to process. 10740 * The returned zio will contain a newly allocated memory buffers for the IO 10741 * data which should then be freed by the caller once the zio is no longer 10742 * needed (i.e. due to it having completed). If you wish to abort this 10743 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes 10744 * care of disposing of the allocated buffers correctly. 10745 */ 10746 static zio_t * 10747 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp, 10748 l2arc_log_blk_phys_t *lb) 10749 { 10750 uint32_t asize; 10751 zio_t *pio; 10752 l2arc_read_callback_t *cb; 10753 10754 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10755 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10756 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t)); 10757 10758 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP); 10759 cb->l2rcb_abd = abd_get_from_buf(lb, asize); 10760 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb, 10761 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | 10762 ZIO_FLAG_DONT_RETRY); 10763 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize, 10764 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10765 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 10766 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE)); 10767 10768 return (pio); 10769 } 10770 10771 /* 10772 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data 10773 * buffers allocated for it. 10774 */ 10775 static void 10776 l2arc_log_blk_fetch_abort(zio_t *zio) 10777 { 10778 (void) zio_wait(zio); 10779 } 10780 10781 /* 10782 * Creates a zio to update the device header on an l2arc device. 10783 */ 10784 void 10785 l2arc_dev_hdr_update(l2arc_dev_t *dev) 10786 { 10787 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10788 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10789 abd_t *abd; 10790 int err; 10791 10792 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER)); 10793 10794 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC; 10795 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION; 10796 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10797 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid; 10798 l2dhdr->dh_log_entries = dev->l2ad_log_entries; 10799 l2dhdr->dh_evict = dev->l2ad_evict; 10800 l2dhdr->dh_start = dev->l2ad_start; 10801 l2dhdr->dh_end = dev->l2ad_end; 10802 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize); 10803 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count); 10804 l2dhdr->dh_flags = 0; 10805 l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time; 10806 l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state; 10807 if (dev->l2ad_first) 10808 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST; 10809 10810 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10811 10812 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev, 10813 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL, 10814 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE)); 10815 10816 abd_free(abd); 10817 10818 if (err != 0) { 10819 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, " 10820 "vdev guid: %llu", err, 10821 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10822 } 10823 } 10824 10825 /* 10826 * Commits a log block to the L2ARC device. This routine is invoked from 10827 * l2arc_write_buffers when the log block fills up. 10828 * This function allocates some memory to temporarily hold the serialized 10829 * buffer to be written. This is then released in l2arc_write_done. 10830 */ 10831 static void 10832 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb) 10833 { 10834 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10835 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10836 uint64_t psize, asize; 10837 zio_t *wzio; 10838 l2arc_lb_abd_buf_t *abd_buf; 10839 uint8_t *tmpbuf; 10840 l2arc_lb_ptr_buf_t *lb_ptr_buf; 10841 10842 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries); 10843 10844 tmpbuf = zio_buf_alloc(sizeof (*lb)); 10845 abd_buf = zio_buf_alloc(sizeof (*abd_buf)); 10846 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb)); 10847 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 10848 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP); 10849 10850 /* link the buffer into the block chain */ 10851 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1]; 10852 lb->lb_magic = L2ARC_LOG_BLK_MAGIC; 10853 10854 /* 10855 * l2arc_log_blk_commit() may be called multiple times during a single 10856 * l2arc_write_buffers() call. Save the allocated abd buffers in a list 10857 * so we can free them in l2arc_write_done() later on. 10858 */ 10859 list_insert_tail(&cb->l2wcb_abd_list, abd_buf); 10860 10861 /* try to compress the buffer */ 10862 psize = zio_compress_data(ZIO_COMPRESS_LZ4, 10863 abd_buf->abd, tmpbuf, sizeof (*lb), 0); 10864 10865 /* a log block is never entirely zero */ 10866 ASSERT(psize != 0); 10867 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 10868 ASSERT(asize <= sizeof (*lb)); 10869 10870 /* 10871 * Update the start log block pointer in the device header to point 10872 * to the log block we're about to write. 10873 */ 10874 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0]; 10875 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand; 10876 l2dhdr->dh_start_lbps[0].lbp_payload_asize = 10877 dev->l2ad_log_blk_payload_asize; 10878 l2dhdr->dh_start_lbps[0].lbp_payload_start = 10879 dev->l2ad_log_blk_payload_start; 10880 L2BLK_SET_LSIZE( 10881 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb)); 10882 L2BLK_SET_PSIZE( 10883 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize); 10884 L2BLK_SET_CHECKSUM( 10885 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10886 ZIO_CHECKSUM_FLETCHER_4); 10887 if (asize < sizeof (*lb)) { 10888 /* compression succeeded */ 10889 memset(tmpbuf + psize, 0, asize - psize); 10890 L2BLK_SET_COMPRESS( 10891 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10892 ZIO_COMPRESS_LZ4); 10893 } else { 10894 /* compression failed */ 10895 memcpy(tmpbuf, lb, sizeof (*lb)); 10896 L2BLK_SET_COMPRESS( 10897 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10898 ZIO_COMPRESS_OFF); 10899 } 10900 10901 /* checksum what we're about to write */ 10902 fletcher_4_native(tmpbuf, asize, NULL, 10903 &l2dhdr->dh_start_lbps[0].lbp_cksum); 10904 10905 abd_free(abd_buf->abd); 10906 10907 /* perform the write itself */ 10908 abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb)); 10909 abd_take_ownership_of_buf(abd_buf->abd, B_TRUE); 10910 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand, 10911 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10912 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE); 10913 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio); 10914 (void) zio_nowait(wzio); 10915 10916 dev->l2ad_hand += asize; 10917 /* 10918 * Include the committed log block's pointer in the list of pointers 10919 * to log blocks present in the L2ARC device. 10920 */ 10921 memcpy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[0], 10922 sizeof (l2arc_log_blkptr_t)); 10923 mutex_enter(&dev->l2ad_mtx); 10924 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf); 10925 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 10926 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 10927 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 10928 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 10929 mutex_exit(&dev->l2ad_mtx); 10930 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10931 10932 /* bump the kstats */ 10933 ARCSTAT_INCR(arcstat_l2_write_bytes, asize); 10934 ARCSTAT_BUMP(arcstat_l2_log_blk_writes); 10935 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize); 10936 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, 10937 dev->l2ad_log_blk_payload_asize / asize); 10938 10939 /* start a new log block */ 10940 dev->l2ad_log_ent_idx = 0; 10941 dev->l2ad_log_blk_payload_asize = 0; 10942 dev->l2ad_log_blk_payload_start = 0; 10943 } 10944 10945 /* 10946 * Validates an L2ARC log block address to make sure that it can be read 10947 * from the provided L2ARC device. 10948 */ 10949 boolean_t 10950 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp) 10951 { 10952 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10953 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10954 uint64_t end = lbp->lbp_daddr + asize - 1; 10955 uint64_t start = lbp->lbp_payload_start; 10956 boolean_t evicted = B_FALSE; 10957 10958 /* 10959 * A log block is valid if all of the following conditions are true: 10960 * - it fits entirely (including its payload) between l2ad_start and 10961 * l2ad_end 10962 * - it has a valid size 10963 * - neither the log block itself nor part of its payload was evicted 10964 * by l2arc_evict(): 10965 * 10966 * l2ad_hand l2ad_evict 10967 * | | lbp_daddr 10968 * | start | | end 10969 * | | | | | 10970 * V V V V V 10971 * l2ad_start ============================================ l2ad_end 10972 * --------------------------|||| 10973 * ^ ^ 10974 * | log block 10975 * payload 10976 */ 10977 10978 evicted = 10979 l2arc_range_check_overlap(start, end, dev->l2ad_hand) || 10980 l2arc_range_check_overlap(start, end, dev->l2ad_evict) || 10981 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) || 10982 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end); 10983 10984 return (start >= dev->l2ad_start && end <= dev->l2ad_end && 10985 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) && 10986 (!evicted || dev->l2ad_first)); 10987 } 10988 10989 /* 10990 * Inserts ARC buffer header `hdr' into the current L2ARC log block on 10991 * the device. The buffer being inserted must be present in L2ARC. 10992 * Returns B_TRUE if the L2ARC log block is full and needs to be committed 10993 * to L2ARC, or B_FALSE if it still has room for more ARC buffers. 10994 */ 10995 static boolean_t 10996 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr) 10997 { 10998 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10999 l2arc_log_ent_phys_t *le; 11000 11001 if (dev->l2ad_log_entries == 0) 11002 return (B_FALSE); 11003 11004 int index = dev->l2ad_log_ent_idx++; 11005 11006 ASSERT3S(index, <, dev->l2ad_log_entries); 11007 ASSERT(HDR_HAS_L2HDR(hdr)); 11008 11009 le = &lb->lb_entries[index]; 11010 memset(le, 0, sizeof (*le)); 11011 le->le_dva = hdr->b_dva; 11012 le->le_birth = hdr->b_birth; 11013 le->le_daddr = hdr->b_l2hdr.b_daddr; 11014 if (index == 0) 11015 dev->l2ad_log_blk_payload_start = le->le_daddr; 11016 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr)); 11017 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr)); 11018 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr)); 11019 le->le_complevel = hdr->b_complevel; 11020 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type); 11021 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr))); 11022 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr))); 11023 L2BLK_SET_STATE((le)->le_prop, hdr->b_l1hdr.b_state->arcs_state); 11024 11025 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev, 11026 HDR_GET_PSIZE(hdr)); 11027 11028 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries); 11029 } 11030 11031 /* 11032 * Checks whether a given L2ARC device address sits in a time-sequential 11033 * range. The trick here is that the L2ARC is a rotary buffer, so we can't 11034 * just do a range comparison, we need to handle the situation in which the 11035 * range wraps around the end of the L2ARC device. Arguments: 11036 * bottom -- Lower end of the range to check (written to earlier). 11037 * top -- Upper end of the range to check (written to later). 11038 * check -- The address for which we want to determine if it sits in 11039 * between the top and bottom. 11040 * 11041 * The 3-way conditional below represents the following cases: 11042 * 11043 * bottom < top : Sequentially ordered case: 11044 * <check>--------+-------------------+ 11045 * | (overlap here?) | 11046 * L2ARC dev V V 11047 * |---------------<bottom>============<top>--------------| 11048 * 11049 * bottom > top: Looped-around case: 11050 * <check>--------+------------------+ 11051 * | (overlap here?) | 11052 * L2ARC dev V V 11053 * |===============<top>---------------<bottom>===========| 11054 * ^ ^ 11055 * | (or here?) | 11056 * +---------------+---------<check> 11057 * 11058 * top == bottom : Just a single address comparison. 11059 */ 11060 boolean_t 11061 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check) 11062 { 11063 if (bottom < top) 11064 return (bottom <= check && check <= top); 11065 else if (bottom > top) 11066 return (check <= top || bottom <= check); 11067 else 11068 return (check == top); 11069 } 11070 11071 EXPORT_SYMBOL(arc_buf_size); 11072 EXPORT_SYMBOL(arc_write); 11073 EXPORT_SYMBOL(arc_read); 11074 EXPORT_SYMBOL(arc_buf_info); 11075 EXPORT_SYMBOL(arc_getbuf_func); 11076 EXPORT_SYMBOL(arc_add_prune_callback); 11077 EXPORT_SYMBOL(arc_remove_prune_callback); 11078 11079 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_min, 11080 param_get_long, ZMOD_RW, "Minimum ARC size in bytes"); 11081 11082 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_max, 11083 param_get_long, ZMOD_RW, "Maximum ARC size in bytes"); 11084 11085 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit, param_set_arc_long, 11086 param_get_long, ZMOD_RW, "Metadata limit for ARC size in bytes"); 11087 11088 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit_percent, 11089 param_set_arc_long, param_get_long, ZMOD_RW, 11090 "Percent of ARC size for ARC meta limit"); 11091 11092 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_min, param_set_arc_long, 11093 param_get_long, ZMOD_RW, "Minimum ARC metadata size in bytes"); 11094 11095 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_prune, INT, ZMOD_RW, 11096 "Meta objects to scan for prune"); 11097 11098 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_adjust_restarts, INT, ZMOD_RW, 11099 "Limit number of restarts in arc_evict_meta"); 11100 11101 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_strategy, INT, ZMOD_RW, 11102 "Meta reclaim strategy"); 11103 11104 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int, 11105 param_get_int, ZMOD_RW, "Seconds before growing ARC size"); 11106 11107 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, p_dampener_disable, INT, ZMOD_RW, 11108 "Disable arc_p adapt dampener"); 11109 11110 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int, 11111 param_get_int, ZMOD_RW, "log2(fraction of ARC to reclaim)"); 11112 11113 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW, 11114 "Percent of pagecache to reclaim ARC to"); 11115 11116 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, p_min_shift, param_set_arc_int, 11117 param_get_int, ZMOD_RW, "arc_c shift to calc min/max arc_p"); 11118 11119 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, INT, ZMOD_RD, 11120 "Target average block size"); 11121 11122 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW, 11123 "Disable compressed ARC buffers"); 11124 11125 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int, 11126 param_get_int, ZMOD_RW, "Min life of prefetch block in ms"); 11127 11128 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms, 11129 param_set_arc_int, param_get_int, ZMOD_RW, 11130 "Min life of prescient prefetched block in ms"); 11131 11132 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, ULONG, ZMOD_RW, 11133 "Max write bytes per interval"); 11134 11135 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, ULONG, ZMOD_RW, 11136 "Extra write bytes during device warmup"); 11137 11138 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, ULONG, ZMOD_RW, 11139 "Number of max device writes to precache"); 11140 11141 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, ULONG, ZMOD_RW, 11142 "Compressed l2arc_headroom multiplier"); 11143 11144 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, ULONG, ZMOD_RW, 11145 "TRIM ahead L2ARC write size multiplier"); 11146 11147 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, ULONG, ZMOD_RW, 11148 "Seconds between L2ARC writing"); 11149 11150 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, ULONG, ZMOD_RW, 11151 "Min feed interval in milliseconds"); 11152 11153 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW, 11154 "Skip caching prefetched buffers"); 11155 11156 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW, 11157 "Turbo L2ARC warmup"); 11158 11159 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW, 11160 "No reads during writes"); 11161 11162 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, INT, ZMOD_RW, 11163 "Percent of ARC size allowed for L2ARC-only headers"); 11164 11165 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW, 11166 "Rebuild the L2ARC when importing a pool"); 11167 11168 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, ULONG, ZMOD_RW, 11169 "Min size in bytes to write rebuild log blocks in L2ARC"); 11170 11171 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW, 11172 "Cache only MFU data from ARC into L2ARC"); 11173 11174 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, exclude_special, INT, ZMOD_RW, 11175 "Exclude dbufs on special vdevs from being cached to L2ARC if set."); 11176 11177 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int, 11178 param_get_int, ZMOD_RW, "System free memory I/O throttle in bytes"); 11179 11180 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_long, 11181 param_get_long, ZMOD_RW, "System free memory target size in bytes"); 11182 11183 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_long, 11184 param_get_long, ZMOD_RW, "Minimum bytes of dnodes in ARC"); 11185 11186 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent, 11187 param_set_arc_long, param_get_long, ZMOD_RW, 11188 "Percent of ARC meta buffers for dnodes"); 11189 11190 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, ULONG, ZMOD_RW, 11191 "Percentage of excess dnodes to try to unpin"); 11192 11193 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, INT, ZMOD_RW, 11194 "When full, ARC allocation waits for eviction of this % of alloc size"); 11195 11196 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, INT, ZMOD_RW, 11197 "The number of headers to evict per sublist before moving to the next"); 11198 11199 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, prune_task_threads, INT, ZMOD_RW, 11200 "Number of arc_prune threads"); 11201