1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2018, Joyent, Inc. 24 * Copyright (c) 2011, 2020, Delphix. All rights reserved. 25 * Copyright (c) 2014, Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 28 * Copyright (c) 2020, George Amanakis. All rights reserved. 29 * Copyright (c) 2019, 2023, Klara Inc. 30 * Copyright (c) 2019, Allan Jude 31 * Copyright (c) 2020, The FreeBSD Foundation [1] 32 * Copyright (c) 2021, 2024 by George Melikov. All rights reserved. 33 * 34 * [1] Portions of this software were developed by Allan Jude 35 * under sponsorship from the FreeBSD Foundation. 36 */ 37 38 /* 39 * DVA-based Adjustable Replacement Cache 40 * 41 * While much of the theory of operation used here is 42 * based on the self-tuning, low overhead replacement cache 43 * presented by Megiddo and Modha at FAST 2003, there are some 44 * significant differences: 45 * 46 * 1. The Megiddo and Modha model assumes any page is evictable. 47 * Pages in its cache cannot be "locked" into memory. This makes 48 * the eviction algorithm simple: evict the last page in the list. 49 * This also make the performance characteristics easy to reason 50 * about. Our cache is not so simple. At any given moment, some 51 * subset of the blocks in the cache are un-evictable because we 52 * have handed out a reference to them. Blocks are only evictable 53 * when there are no external references active. This makes 54 * eviction far more problematic: we choose to evict the evictable 55 * blocks that are the "lowest" in the list. 56 * 57 * There are times when it is not possible to evict the requested 58 * space. In these circumstances we are unable to adjust the cache 59 * size. To prevent the cache growing unbounded at these times we 60 * implement a "cache throttle" that slows the flow of new data 61 * into the cache until we can make space available. 62 * 63 * 2. The Megiddo and Modha model assumes a fixed cache size. 64 * Pages are evicted when the cache is full and there is a cache 65 * miss. Our model has a variable sized cache. It grows with 66 * high use, but also tries to react to memory pressure from the 67 * operating system: decreasing its size when system memory is 68 * tight. 69 * 70 * 3. The Megiddo and Modha model assumes a fixed page size. All 71 * elements of the cache are therefore exactly the same size. So 72 * when adjusting the cache size following a cache miss, its simply 73 * a matter of choosing a single page to evict. In our model, we 74 * have variable sized cache blocks (ranging from 512 bytes to 75 * 128K bytes). We therefore choose a set of blocks to evict to make 76 * space for a cache miss that approximates as closely as possible 77 * the space used by the new block. 78 * 79 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 80 * by N. Megiddo & D. Modha, FAST 2003 81 */ 82 83 /* 84 * The locking model: 85 * 86 * A new reference to a cache buffer can be obtained in two 87 * ways: 1) via a hash table lookup using the DVA as a key, 88 * or 2) via one of the ARC lists. The arc_read() interface 89 * uses method 1, while the internal ARC algorithms for 90 * adjusting the cache use method 2. We therefore provide two 91 * types of locks: 1) the hash table lock array, and 2) the 92 * ARC list locks. 93 * 94 * Buffers do not have their own mutexes, rather they rely on the 95 * hash table mutexes for the bulk of their protection (i.e. most 96 * fields in the arc_buf_hdr_t are protected by these mutexes). 97 * 98 * buf_hash_find() returns the appropriate mutex (held) when it 99 * locates the requested buffer in the hash table. It returns 100 * NULL for the mutex if the buffer was not in the table. 101 * 102 * buf_hash_remove() expects the appropriate hash mutex to be 103 * already held before it is invoked. 104 * 105 * Each ARC state also has a mutex which is used to protect the 106 * buffer list associated with the state. When attempting to 107 * obtain a hash table lock while holding an ARC list lock you 108 * must use: mutex_tryenter() to avoid deadlock. Also note that 109 * the active state mutex must be held before the ghost state mutex. 110 * 111 * It as also possible to register a callback which is run when the 112 * metadata limit is reached and no buffers can be safely evicted. In 113 * this case the arc user should drop a reference on some arc buffers so 114 * they can be reclaimed. For example, when using the ZPL each dentry 115 * holds a references on a znode. These dentries must be pruned before 116 * the arc buffer holding the znode can be safely evicted. 117 * 118 * Note that the majority of the performance stats are manipulated 119 * with atomic operations. 120 * 121 * The L2ARC uses the l2ad_mtx on each vdev for the following: 122 * 123 * - L2ARC buflist creation 124 * - L2ARC buflist eviction 125 * - L2ARC write completion, which walks L2ARC buflists 126 * - ARC header destruction, as it removes from L2ARC buflists 127 * - ARC header release, as it removes from L2ARC buflists 128 */ 129 130 /* 131 * ARC operation: 132 * 133 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. 134 * This structure can point either to a block that is still in the cache or to 135 * one that is only accessible in an L2 ARC device, or it can provide 136 * information about a block that was recently evicted. If a block is 137 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough 138 * information to retrieve it from the L2ARC device. This information is 139 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block 140 * that is in this state cannot access the data directly. 141 * 142 * Blocks that are actively being referenced or have not been evicted 143 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within 144 * the arc_buf_hdr_t that will point to the data block in memory. A block can 145 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC 146 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and 147 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd). 148 * 149 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the 150 * ability to store the physical data (b_pabd) associated with the DVA of the 151 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block, 152 * it will match its on-disk compression characteristics. This behavior can be 153 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the 154 * compressed ARC functionality is disabled, the b_pabd will point to an 155 * uncompressed version of the on-disk data. 156 * 157 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each 158 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it. 159 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC 160 * consumer. The ARC will provide references to this data and will keep it 161 * cached until it is no longer in use. The ARC caches only the L1ARC's physical 162 * data block and will evict any arc_buf_t that is no longer referenced. The 163 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the 164 * "overhead_size" kstat. 165 * 166 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or 167 * compressed form. The typical case is that consumers will want uncompressed 168 * data, and when that happens a new data buffer is allocated where the data is 169 * decompressed for them to use. Currently the only consumer who wants 170 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it 171 * exists on disk. When this happens, the arc_buf_t's data buffer is shared 172 * with the arc_buf_hdr_t. 173 * 174 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The 175 * first one is owned by a compressed send consumer (and therefore references 176 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be 177 * used by any other consumer (and has its own uncompressed copy of the data 178 * buffer). 179 * 180 * arc_buf_hdr_t 181 * +-----------+ 182 * | fields | 183 * | common to | 184 * | L1- and | 185 * | L2ARC | 186 * +-----------+ 187 * | l2arc_buf_hdr_t 188 * | | 189 * +-----------+ 190 * | l1arc_buf_hdr_t 191 * | | arc_buf_t 192 * | b_buf +------------>+-----------+ arc_buf_t 193 * | b_pabd +-+ |b_next +---->+-----------+ 194 * +-----------+ | |-----------| |b_next +-->NULL 195 * | |b_comp = T | +-----------+ 196 * | |b_data +-+ |b_comp = F | 197 * | +-----------+ | |b_data +-+ 198 * +->+------+ | +-----------+ | 199 * compressed | | | | 200 * data | |<--------------+ | uncompressed 201 * +------+ compressed, | data 202 * shared +-->+------+ 203 * data | | 204 * | | 205 * +------+ 206 * 207 * When a consumer reads a block, the ARC must first look to see if the 208 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new 209 * arc_buf_t and either copies uncompressed data into a new data buffer from an 210 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a 211 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the 212 * hdr is compressed and the desired compression characteristics of the 213 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the 214 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be 215 * the last buffer in the hdr's b_buf list, however a shared compressed buf can 216 * be anywhere in the hdr's list. 217 * 218 * The diagram below shows an example of an uncompressed ARC hdr that is 219 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is 220 * the last element in the buf list): 221 * 222 * arc_buf_hdr_t 223 * +-----------+ 224 * | | 225 * | | 226 * | | 227 * +-----------+ 228 * l2arc_buf_hdr_t| | 229 * | | 230 * +-----------+ 231 * l1arc_buf_hdr_t| | 232 * | | arc_buf_t (shared) 233 * | b_buf +------------>+---------+ arc_buf_t 234 * | | |b_next +---->+---------+ 235 * | b_pabd +-+ |---------| |b_next +-->NULL 236 * +-----------+ | | | +---------+ 237 * | |b_data +-+ | | 238 * | +---------+ | |b_data +-+ 239 * +->+------+ | +---------+ | 240 * | | | | 241 * uncompressed | | | | 242 * data +------+ | | 243 * ^ +->+------+ | 244 * | uncompressed | | | 245 * | data | | | 246 * | +------+ | 247 * +---------------------------------+ 248 * 249 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd 250 * since the physical block is about to be rewritten. The new data contents 251 * will be contained in the arc_buf_t. As the I/O pipeline performs the write, 252 * it may compress the data before writing it to disk. The ARC will be called 253 * with the transformed data and will memcpy the transformed on-disk block into 254 * a newly allocated b_pabd. Writes are always done into buffers which have 255 * either been loaned (and hence are new and don't have other readers) or 256 * buffers which have been released (and hence have their own hdr, if there 257 * were originally other readers of the buf's original hdr). This ensures that 258 * the ARC only needs to update a single buf and its hdr after a write occurs. 259 * 260 * When the L2ARC is in use, it will also take advantage of the b_pabd. The 261 * L2ARC will always write the contents of b_pabd to the L2ARC. This means 262 * that when compressed ARC is enabled that the L2ARC blocks are identical 263 * to the on-disk block in the main data pool. This provides a significant 264 * advantage since the ARC can leverage the bp's checksum when reading from the 265 * L2ARC to determine if the contents are valid. However, if the compressed 266 * ARC is disabled, then the L2ARC's block must be transformed to look 267 * like the physical block in the main data pool before comparing the 268 * checksum and determining its validity. 269 * 270 * The L1ARC has a slightly different system for storing encrypted data. 271 * Raw (encrypted + possibly compressed) data has a few subtle differences from 272 * data that is just compressed. The biggest difference is that it is not 273 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded. 274 * The other difference is that encryption cannot be treated as a suggestion. 275 * If a caller would prefer compressed data, but they actually wind up with 276 * uncompressed data the worst thing that could happen is there might be a 277 * performance hit. If the caller requests encrypted data, however, we must be 278 * sure they actually get it or else secret information could be leaked. Raw 279 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore, 280 * may have both an encrypted version and a decrypted version of its data at 281 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is 282 * copied out of this header. To avoid complications with b_pabd, raw buffers 283 * cannot be shared. 284 */ 285 286 #include <sys/spa.h> 287 #include <sys/zio.h> 288 #include <sys/spa_impl.h> 289 #include <sys/zio_compress.h> 290 #include <sys/zio_checksum.h> 291 #include <sys/zfs_context.h> 292 #include <sys/arc.h> 293 #include <sys/zfs_refcount.h> 294 #include <sys/vdev.h> 295 #include <sys/vdev_impl.h> 296 #include <sys/dsl_pool.h> 297 #include <sys/multilist.h> 298 #include <sys/abd.h> 299 #include <sys/zil.h> 300 #include <sys/fm/fs/zfs.h> 301 #include <sys/callb.h> 302 #include <sys/kstat.h> 303 #include <sys/zthr.h> 304 #include <zfs_fletcher.h> 305 #include <sys/arc_impl.h> 306 #include <sys/trace_zfs.h> 307 #include <sys/aggsum.h> 308 #include <sys/wmsum.h> 309 #include <cityhash.h> 310 #include <sys/vdev_trim.h> 311 #include <sys/zfs_racct.h> 312 #include <sys/zstd/zstd.h> 313 314 #ifndef _KERNEL 315 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 316 boolean_t arc_watch = B_FALSE; 317 #endif 318 319 /* 320 * This thread's job is to keep enough free memory in the system, by 321 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves 322 * arc_available_memory(). 323 */ 324 static zthr_t *arc_reap_zthr; 325 326 /* 327 * This thread's job is to keep arc_size under arc_c, by calling 328 * arc_evict(), which improves arc_is_overflowing(). 329 */ 330 static zthr_t *arc_evict_zthr; 331 static arc_buf_hdr_t **arc_state_evict_markers; 332 static int arc_state_evict_marker_count; 333 334 static kmutex_t arc_evict_lock; 335 static boolean_t arc_evict_needed = B_FALSE; 336 static clock_t arc_last_uncached_flush; 337 338 /* 339 * Count of bytes evicted since boot. 340 */ 341 static uint64_t arc_evict_count; 342 343 /* 344 * List of arc_evict_waiter_t's, representing threads waiting for the 345 * arc_evict_count to reach specific values. 346 */ 347 static list_t arc_evict_waiters; 348 349 /* 350 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of 351 * the requested amount of data to be evicted. For example, by default for 352 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation. 353 * Since this is above 100%, it ensures that progress is made towards getting 354 * arc_size under arc_c. Since this is finite, it ensures that allocations 355 * can still happen, even during the potentially long time that arc_size is 356 * more than arc_c. 357 */ 358 static uint_t zfs_arc_eviction_pct = 200; 359 360 /* 361 * The number of headers to evict in arc_evict_state_impl() before 362 * dropping the sublist lock and evicting from another sublist. A lower 363 * value means we're more likely to evict the "correct" header (i.e. the 364 * oldest header in the arc state), but comes with higher overhead 365 * (i.e. more invocations of arc_evict_state_impl()). 366 */ 367 static uint_t zfs_arc_evict_batch_limit = 10; 368 369 /* number of seconds before growing cache again */ 370 uint_t arc_grow_retry = 5; 371 372 /* 373 * Minimum time between calls to arc_kmem_reap_soon(). 374 */ 375 static const int arc_kmem_cache_reap_retry_ms = 1000; 376 377 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */ 378 static int zfs_arc_overflow_shift = 8; 379 380 /* log2(fraction of arc to reclaim) */ 381 uint_t arc_shrink_shift = 7; 382 383 /* percent of pagecache to reclaim arc to */ 384 #ifdef _KERNEL 385 uint_t zfs_arc_pc_percent = 0; 386 #endif 387 388 /* 389 * log2(fraction of ARC which must be free to allow growing). 390 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 391 * when reading a new block into the ARC, we will evict an equal-sized block 392 * from the ARC. 393 * 394 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 395 * we will still not allow it to grow. 396 */ 397 uint_t arc_no_grow_shift = 5; 398 399 400 /* 401 * minimum lifespan of a prefetch block in clock ticks 402 * (initialized in arc_init()) 403 */ 404 static uint_t arc_min_prefetch_ms; 405 static uint_t arc_min_prescient_prefetch_ms; 406 407 /* 408 * If this percent of memory is free, don't throttle. 409 */ 410 uint_t arc_lotsfree_percent = 10; 411 412 /* 413 * The arc has filled available memory and has now warmed up. 414 */ 415 boolean_t arc_warm; 416 417 /* 418 * These tunables are for performance analysis. 419 */ 420 uint64_t zfs_arc_max = 0; 421 uint64_t zfs_arc_min = 0; 422 static uint64_t zfs_arc_dnode_limit = 0; 423 static uint_t zfs_arc_dnode_reduce_percent = 10; 424 static uint_t zfs_arc_grow_retry = 0; 425 static uint_t zfs_arc_shrink_shift = 0; 426 uint_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 427 428 /* 429 * ARC dirty data constraints for arc_tempreserve_space() throttle: 430 * * total dirty data limit 431 * * anon block dirty limit 432 * * each pool's anon allowance 433 */ 434 static const unsigned long zfs_arc_dirty_limit_percent = 50; 435 static const unsigned long zfs_arc_anon_limit_percent = 25; 436 static const unsigned long zfs_arc_pool_dirty_percent = 20; 437 438 /* 439 * Enable or disable compressed arc buffers. 440 */ 441 int zfs_compressed_arc_enabled = B_TRUE; 442 443 /* 444 * Balance between metadata and data on ghost hits. Values above 100 445 * increase metadata caching by proportionally reducing effect of ghost 446 * data hits on target data/metadata rate. 447 */ 448 static uint_t zfs_arc_meta_balance = 500; 449 450 /* 451 * Percentage that can be consumed by dnodes of ARC meta buffers. 452 */ 453 static uint_t zfs_arc_dnode_limit_percent = 10; 454 455 /* 456 * These tunables are Linux-specific 457 */ 458 static uint64_t zfs_arc_sys_free = 0; 459 static uint_t zfs_arc_min_prefetch_ms = 0; 460 static uint_t zfs_arc_min_prescient_prefetch_ms = 0; 461 static uint_t zfs_arc_lotsfree_percent = 10; 462 463 /* 464 * Number of arc_prune threads 465 */ 466 static int zfs_arc_prune_task_threads = 1; 467 468 /* The 7 states: */ 469 arc_state_t ARC_anon; 470 arc_state_t ARC_mru; 471 arc_state_t ARC_mru_ghost; 472 arc_state_t ARC_mfu; 473 arc_state_t ARC_mfu_ghost; 474 arc_state_t ARC_l2c_only; 475 arc_state_t ARC_uncached; 476 477 arc_stats_t arc_stats = { 478 { "hits", KSTAT_DATA_UINT64 }, 479 { "iohits", KSTAT_DATA_UINT64 }, 480 { "misses", KSTAT_DATA_UINT64 }, 481 { "demand_data_hits", KSTAT_DATA_UINT64 }, 482 { "demand_data_iohits", KSTAT_DATA_UINT64 }, 483 { "demand_data_misses", KSTAT_DATA_UINT64 }, 484 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 485 { "demand_metadata_iohits", KSTAT_DATA_UINT64 }, 486 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 487 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 488 { "prefetch_data_iohits", KSTAT_DATA_UINT64 }, 489 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 490 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 491 { "prefetch_metadata_iohits", KSTAT_DATA_UINT64 }, 492 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 493 { "mru_hits", KSTAT_DATA_UINT64 }, 494 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 495 { "mfu_hits", KSTAT_DATA_UINT64 }, 496 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 497 { "uncached_hits", KSTAT_DATA_UINT64 }, 498 { "deleted", KSTAT_DATA_UINT64 }, 499 { "mutex_miss", KSTAT_DATA_UINT64 }, 500 { "access_skip", KSTAT_DATA_UINT64 }, 501 { "evict_skip", KSTAT_DATA_UINT64 }, 502 { "evict_not_enough", KSTAT_DATA_UINT64 }, 503 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 504 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 505 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64 }, 506 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64 }, 507 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 508 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 509 { "hash_elements", KSTAT_DATA_UINT64 }, 510 { "hash_elements_max", KSTAT_DATA_UINT64 }, 511 { "hash_collisions", KSTAT_DATA_UINT64 }, 512 { "hash_chains", KSTAT_DATA_UINT64 }, 513 { "hash_chain_max", KSTAT_DATA_UINT64 }, 514 { "meta", KSTAT_DATA_UINT64 }, 515 { "pd", KSTAT_DATA_UINT64 }, 516 { "pm", KSTAT_DATA_UINT64 }, 517 { "c", KSTAT_DATA_UINT64 }, 518 { "c_min", KSTAT_DATA_UINT64 }, 519 { "c_max", KSTAT_DATA_UINT64 }, 520 { "size", KSTAT_DATA_UINT64 }, 521 { "compressed_size", KSTAT_DATA_UINT64 }, 522 { "uncompressed_size", KSTAT_DATA_UINT64 }, 523 { "overhead_size", KSTAT_DATA_UINT64 }, 524 { "hdr_size", KSTAT_DATA_UINT64 }, 525 { "data_size", KSTAT_DATA_UINT64 }, 526 { "metadata_size", KSTAT_DATA_UINT64 }, 527 { "dbuf_size", KSTAT_DATA_UINT64 }, 528 { "dnode_size", KSTAT_DATA_UINT64 }, 529 { "bonus_size", KSTAT_DATA_UINT64 }, 530 #if defined(COMPAT_FREEBSD11) 531 { "other_size", KSTAT_DATA_UINT64 }, 532 #endif 533 { "anon_size", KSTAT_DATA_UINT64 }, 534 { "anon_data", KSTAT_DATA_UINT64 }, 535 { "anon_metadata", KSTAT_DATA_UINT64 }, 536 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 537 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 538 { "mru_size", KSTAT_DATA_UINT64 }, 539 { "mru_data", KSTAT_DATA_UINT64 }, 540 { "mru_metadata", KSTAT_DATA_UINT64 }, 541 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 542 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 543 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 544 { "mru_ghost_data", KSTAT_DATA_UINT64 }, 545 { "mru_ghost_metadata", KSTAT_DATA_UINT64 }, 546 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 547 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 548 { "mfu_size", KSTAT_DATA_UINT64 }, 549 { "mfu_data", KSTAT_DATA_UINT64 }, 550 { "mfu_metadata", KSTAT_DATA_UINT64 }, 551 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 552 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 553 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 554 { "mfu_ghost_data", KSTAT_DATA_UINT64 }, 555 { "mfu_ghost_metadata", KSTAT_DATA_UINT64 }, 556 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 557 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 558 { "uncached_size", KSTAT_DATA_UINT64 }, 559 { "uncached_data", KSTAT_DATA_UINT64 }, 560 { "uncached_metadata", KSTAT_DATA_UINT64 }, 561 { "uncached_evictable_data", KSTAT_DATA_UINT64 }, 562 { "uncached_evictable_metadata", KSTAT_DATA_UINT64 }, 563 { "l2_hits", KSTAT_DATA_UINT64 }, 564 { "l2_misses", KSTAT_DATA_UINT64 }, 565 { "l2_prefetch_asize", KSTAT_DATA_UINT64 }, 566 { "l2_mru_asize", KSTAT_DATA_UINT64 }, 567 { "l2_mfu_asize", KSTAT_DATA_UINT64 }, 568 { "l2_bufc_data_asize", KSTAT_DATA_UINT64 }, 569 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64 }, 570 { "l2_feeds", KSTAT_DATA_UINT64 }, 571 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 572 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 573 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 574 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 575 { "l2_writes_done", KSTAT_DATA_UINT64 }, 576 { "l2_writes_error", KSTAT_DATA_UINT64 }, 577 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 578 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 579 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 580 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 581 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 582 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 583 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 584 { "l2_io_error", KSTAT_DATA_UINT64 }, 585 { "l2_size", KSTAT_DATA_UINT64 }, 586 { "l2_asize", KSTAT_DATA_UINT64 }, 587 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 588 { "l2_log_blk_writes", KSTAT_DATA_UINT64 }, 589 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 }, 590 { "l2_log_blk_asize", KSTAT_DATA_UINT64 }, 591 { "l2_log_blk_count", KSTAT_DATA_UINT64 }, 592 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 }, 593 { "l2_rebuild_success", KSTAT_DATA_UINT64 }, 594 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 }, 595 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 }, 596 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 }, 597 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 }, 598 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 }, 599 { "l2_rebuild_size", KSTAT_DATA_UINT64 }, 600 { "l2_rebuild_asize", KSTAT_DATA_UINT64 }, 601 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 }, 602 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 }, 603 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 }, 604 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 605 { "memory_direct_count", KSTAT_DATA_UINT64 }, 606 { "memory_indirect_count", KSTAT_DATA_UINT64 }, 607 { "memory_all_bytes", KSTAT_DATA_UINT64 }, 608 { "memory_free_bytes", KSTAT_DATA_UINT64 }, 609 { "memory_available_bytes", KSTAT_DATA_INT64 }, 610 { "arc_no_grow", KSTAT_DATA_UINT64 }, 611 { "arc_tempreserve", KSTAT_DATA_UINT64 }, 612 { "arc_loaned_bytes", KSTAT_DATA_UINT64 }, 613 { "arc_prune", KSTAT_DATA_UINT64 }, 614 { "arc_meta_used", KSTAT_DATA_UINT64 }, 615 { "arc_dnode_limit", KSTAT_DATA_UINT64 }, 616 { "async_upgrade_sync", KSTAT_DATA_UINT64 }, 617 { "predictive_prefetch", KSTAT_DATA_UINT64 }, 618 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 }, 619 { "demand_iohit_predictive_prefetch", KSTAT_DATA_UINT64 }, 620 { "prescient_prefetch", KSTAT_DATA_UINT64 }, 621 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 }, 622 { "demand_iohit_prescient_prefetch", KSTAT_DATA_UINT64 }, 623 { "arc_need_free", KSTAT_DATA_UINT64 }, 624 { "arc_sys_free", KSTAT_DATA_UINT64 }, 625 { "arc_raw_size", KSTAT_DATA_UINT64 }, 626 { "cached_only_in_progress", KSTAT_DATA_UINT64 }, 627 { "abd_chunk_waste_size", KSTAT_DATA_UINT64 }, 628 }; 629 630 arc_sums_t arc_sums; 631 632 #define ARCSTAT_MAX(stat, val) { \ 633 uint64_t m; \ 634 while ((val) > (m = arc_stats.stat.value.ui64) && \ 635 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 636 continue; \ 637 } 638 639 /* 640 * We define a macro to allow ARC hits/misses to be easily broken down by 641 * two separate conditions, giving a total of four different subtypes for 642 * each of hits and misses (so eight statistics total). 643 */ 644 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 645 if (cond1) { \ 646 if (cond2) { \ 647 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 648 } else { \ 649 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 650 } \ 651 } else { \ 652 if (cond2) { \ 653 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 654 } else { \ 655 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 656 } \ 657 } 658 659 /* 660 * This macro allows us to use kstats as floating averages. Each time we 661 * update this kstat, we first factor it and the update value by 662 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall 663 * average. This macro assumes that integer loads and stores are atomic, but 664 * is not safe for multiple writers updating the kstat in parallel (only the 665 * last writer's update will remain). 666 */ 667 #define ARCSTAT_F_AVG_FACTOR 3 668 #define ARCSTAT_F_AVG(stat, value) \ 669 do { \ 670 uint64_t x = ARCSTAT(stat); \ 671 x = x - x / ARCSTAT_F_AVG_FACTOR + \ 672 (value) / ARCSTAT_F_AVG_FACTOR; \ 673 ARCSTAT(stat) = x; \ 674 } while (0) 675 676 static kstat_t *arc_ksp; 677 678 /* 679 * There are several ARC variables that are critical to export as kstats -- 680 * but we don't want to have to grovel around in the kstat whenever we wish to 681 * manipulate them. For these variables, we therefore define them to be in 682 * terms of the statistic variable. This assures that we are not introducing 683 * the possibility of inconsistency by having shadow copies of the variables, 684 * while still allowing the code to be readable. 685 */ 686 #define arc_tempreserve ARCSTAT(arcstat_tempreserve) 687 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes) 688 #define arc_dnode_limit ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */ 689 #define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */ 690 691 hrtime_t arc_growtime; 692 list_t arc_prune_list; 693 kmutex_t arc_prune_mtx; 694 taskq_t *arc_prune_taskq; 695 696 #define GHOST_STATE(state) \ 697 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 698 (state) == arc_l2c_only) 699 700 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 701 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 702 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 703 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 704 #define HDR_PRESCIENT_PREFETCH(hdr) \ 705 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) 706 #define HDR_COMPRESSION_ENABLED(hdr) \ 707 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) 708 709 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 710 #define HDR_UNCACHED(hdr) ((hdr)->b_flags & ARC_FLAG_UNCACHED) 711 #define HDR_L2_READING(hdr) \ 712 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 713 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 714 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 715 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 716 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 717 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED) 718 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH) 719 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) 720 721 #define HDR_ISTYPE_METADATA(hdr) \ 722 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 723 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 724 725 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 726 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 727 #define HDR_HAS_RABD(hdr) \ 728 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \ 729 (hdr)->b_crypt_hdr.b_rabd != NULL) 730 #define HDR_ENCRYPTED(hdr) \ 731 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 732 #define HDR_AUTHENTICATED(hdr) \ 733 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 734 735 /* For storing compression mode in b_flags */ 736 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) 737 738 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ 739 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) 740 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ 741 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); 742 743 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) 744 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED) 745 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED) 746 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED) 747 748 /* 749 * Other sizes 750 */ 751 752 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 753 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 754 755 /* 756 * Hash table routines 757 */ 758 759 #define BUF_LOCKS 2048 760 typedef struct buf_hash_table { 761 uint64_t ht_mask; 762 arc_buf_hdr_t **ht_table; 763 kmutex_t ht_locks[BUF_LOCKS] ____cacheline_aligned; 764 } buf_hash_table_t; 765 766 static buf_hash_table_t buf_hash_table; 767 768 #define BUF_HASH_INDEX(spa, dva, birth) \ 769 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 770 #define BUF_HASH_LOCK(idx) (&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 771 #define HDR_LOCK(hdr) \ 772 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 773 774 uint64_t zfs_crc64_table[256]; 775 776 /* 777 * Level 2 ARC 778 */ 779 780 #define L2ARC_WRITE_SIZE (32 * 1024 * 1024) /* initial write max */ 781 #define L2ARC_HEADROOM 8 /* num of writes */ 782 783 /* 784 * If we discover during ARC scan any buffers to be compressed, we boost 785 * our headroom for the next scanning cycle by this percentage multiple. 786 */ 787 #define L2ARC_HEADROOM_BOOST 200 788 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 789 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 790 791 /* 792 * We can feed L2ARC from two states of ARC buffers, mru and mfu, 793 * and each of the state has two types: data and metadata. 794 */ 795 #define L2ARC_FEED_TYPES 4 796 797 /* L2ARC Performance Tunables */ 798 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */ 799 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */ 800 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */ 801 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 802 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 803 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */ 804 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 805 int l2arc_feed_again = B_TRUE; /* turbo warmup */ 806 int l2arc_norw = B_FALSE; /* no reads during writes */ 807 static uint_t l2arc_meta_percent = 33; /* limit on headers size */ 808 809 /* 810 * L2ARC Internals 811 */ 812 static list_t L2ARC_dev_list; /* device list */ 813 static list_t *l2arc_dev_list; /* device list pointer */ 814 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 815 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 816 static list_t L2ARC_free_on_write; /* free after write buf list */ 817 static list_t *l2arc_free_on_write; /* free after write list ptr */ 818 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 819 static uint64_t l2arc_ndev; /* number of devices */ 820 821 typedef struct l2arc_read_callback { 822 arc_buf_hdr_t *l2rcb_hdr; /* read header */ 823 blkptr_t l2rcb_bp; /* original blkptr */ 824 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 825 int l2rcb_flags; /* original flags */ 826 abd_t *l2rcb_abd; /* temporary buffer */ 827 } l2arc_read_callback_t; 828 829 typedef struct l2arc_data_free { 830 /* protected by l2arc_free_on_write_mtx */ 831 abd_t *l2df_abd; 832 size_t l2df_size; 833 arc_buf_contents_t l2df_type; 834 list_node_t l2df_list_node; 835 } l2arc_data_free_t; 836 837 typedef enum arc_fill_flags { 838 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */ 839 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */ 840 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */ 841 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */ 842 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */ 843 } arc_fill_flags_t; 844 845 typedef enum arc_ovf_level { 846 ARC_OVF_NONE, /* ARC within target size. */ 847 ARC_OVF_SOME, /* ARC is slightly overflowed. */ 848 ARC_OVF_SEVERE /* ARC is severely overflowed. */ 849 } arc_ovf_level_t; 850 851 static kmutex_t l2arc_feed_thr_lock; 852 static kcondvar_t l2arc_feed_thr_cv; 853 static uint8_t l2arc_thread_exit; 854 855 static kmutex_t l2arc_rebuild_thr_lock; 856 static kcondvar_t l2arc_rebuild_thr_cv; 857 858 enum arc_hdr_alloc_flags { 859 ARC_HDR_ALLOC_RDATA = 0x1, 860 ARC_HDR_USE_RESERVE = 0x4, 861 ARC_HDR_ALLOC_LINEAR = 0x8, 862 }; 863 864 865 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, const void *, int); 866 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, const void *); 867 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, const void *, int); 868 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, const void *); 869 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, const void *); 870 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, 871 const void *tag); 872 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t); 873 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int); 874 static void arc_hdr_destroy(arc_buf_hdr_t *); 875 static void arc_access(arc_buf_hdr_t *, arc_flags_t, boolean_t); 876 static void arc_buf_watch(arc_buf_t *); 877 static void arc_change_state(arc_state_t *, arc_buf_hdr_t *); 878 879 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 880 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 881 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 882 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 883 884 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 885 static void l2arc_read_done(zio_t *); 886 static void l2arc_do_free_on_write(void); 887 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 888 boolean_t state_only); 889 890 static void arc_prune_async(uint64_t adjust); 891 892 #define l2arc_hdr_arcstats_increment(hdr) \ 893 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE) 894 #define l2arc_hdr_arcstats_decrement(hdr) \ 895 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE) 896 #define l2arc_hdr_arcstats_increment_state(hdr) \ 897 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE) 898 #define l2arc_hdr_arcstats_decrement_state(hdr) \ 899 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE) 900 901 /* 902 * l2arc_exclude_special : A zfs module parameter that controls whether buffers 903 * present on special vdevs are eligibile for caching in L2ARC. If 904 * set to 1, exclude dbufs on special vdevs from being cached to 905 * L2ARC. 906 */ 907 int l2arc_exclude_special = 0; 908 909 /* 910 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU 911 * metadata and data are cached from ARC into L2ARC. 912 */ 913 static int l2arc_mfuonly = 0; 914 915 /* 916 * L2ARC TRIM 917 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of 918 * the current write size (l2arc_write_max) we should TRIM if we 919 * have filled the device. It is defined as a percentage of the 920 * write size. If set to 100 we trim twice the space required to 921 * accommodate upcoming writes. A minimum of 64MB will be trimmed. 922 * It also enables TRIM of the whole L2ARC device upon creation or 923 * addition to an existing pool or if the header of the device is 924 * invalid upon importing a pool or onlining a cache device. The 925 * default is 0, which disables TRIM on L2ARC altogether as it can 926 * put significant stress on the underlying storage devices. This 927 * will vary depending of how well the specific device handles 928 * these commands. 929 */ 930 static uint64_t l2arc_trim_ahead = 0; 931 932 /* 933 * Performance tuning of L2ARC persistence: 934 * 935 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding 936 * an L2ARC device (either at pool import or later) will attempt 937 * to rebuild L2ARC buffer contents. 938 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls 939 * whether log blocks are written to the L2ARC device. If the L2ARC 940 * device is less than 1GB, the amount of data l2arc_evict() 941 * evicts is significant compared to the amount of restored L2ARC 942 * data. In this case do not write log blocks in L2ARC in order 943 * not to waste space. 944 */ 945 static int l2arc_rebuild_enabled = B_TRUE; 946 static uint64_t l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024; 947 948 /* L2ARC persistence rebuild control routines. */ 949 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen); 950 static __attribute__((noreturn)) void l2arc_dev_rebuild_thread(void *arg); 951 static int l2arc_rebuild(l2arc_dev_t *dev); 952 953 /* L2ARC persistence read I/O routines. */ 954 static int l2arc_dev_hdr_read(l2arc_dev_t *dev); 955 static int l2arc_log_blk_read(l2arc_dev_t *dev, 956 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp, 957 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 958 zio_t *this_io, zio_t **next_io); 959 static zio_t *l2arc_log_blk_fetch(vdev_t *vd, 960 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb); 961 static void l2arc_log_blk_fetch_abort(zio_t *zio); 962 963 /* L2ARC persistence block restoration routines. */ 964 static void l2arc_log_blk_restore(l2arc_dev_t *dev, 965 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize); 966 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, 967 l2arc_dev_t *dev); 968 969 /* L2ARC persistence write I/O routines. */ 970 static uint64_t l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, 971 l2arc_write_callback_t *cb); 972 973 /* L2ARC persistence auxiliary routines. */ 974 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev, 975 const l2arc_log_blkptr_t *lbp); 976 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev, 977 const arc_buf_hdr_t *ab); 978 boolean_t l2arc_range_check_overlap(uint64_t bottom, 979 uint64_t top, uint64_t check); 980 static void l2arc_blk_fetch_done(zio_t *zio); 981 static inline uint64_t 982 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev); 983 984 /* 985 * We use Cityhash for this. It's fast, and has good hash properties without 986 * requiring any large static buffers. 987 */ 988 static uint64_t 989 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 990 { 991 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth)); 992 } 993 994 #define HDR_EMPTY(hdr) \ 995 ((hdr)->b_dva.dva_word[0] == 0 && \ 996 (hdr)->b_dva.dva_word[1] == 0) 997 998 #define HDR_EMPTY_OR_LOCKED(hdr) \ 999 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr))) 1000 1001 #define HDR_EQUAL(spa, dva, birth, hdr) \ 1002 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 1003 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 1004 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) 1005 1006 static void 1007 buf_discard_identity(arc_buf_hdr_t *hdr) 1008 { 1009 hdr->b_dva.dva_word[0] = 0; 1010 hdr->b_dva.dva_word[1] = 0; 1011 hdr->b_birth = 0; 1012 } 1013 1014 static arc_buf_hdr_t * 1015 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 1016 { 1017 const dva_t *dva = BP_IDENTITY(bp); 1018 uint64_t birth = BP_GET_BIRTH(bp); 1019 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 1020 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1021 arc_buf_hdr_t *hdr; 1022 1023 mutex_enter(hash_lock); 1024 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 1025 hdr = hdr->b_hash_next) { 1026 if (HDR_EQUAL(spa, dva, birth, hdr)) { 1027 *lockp = hash_lock; 1028 return (hdr); 1029 } 1030 } 1031 mutex_exit(hash_lock); 1032 *lockp = NULL; 1033 return (NULL); 1034 } 1035 1036 /* 1037 * Insert an entry into the hash table. If there is already an element 1038 * equal to elem in the hash table, then the already existing element 1039 * will be returned and the new element will not be inserted. 1040 * Otherwise returns NULL. 1041 * If lockp == NULL, the caller is assumed to already hold the hash lock. 1042 */ 1043 static arc_buf_hdr_t * 1044 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 1045 { 1046 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1047 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1048 arc_buf_hdr_t *fhdr; 1049 uint32_t i; 1050 1051 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 1052 ASSERT(hdr->b_birth != 0); 1053 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1054 1055 if (lockp != NULL) { 1056 *lockp = hash_lock; 1057 mutex_enter(hash_lock); 1058 } else { 1059 ASSERT(MUTEX_HELD(hash_lock)); 1060 } 1061 1062 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 1063 fhdr = fhdr->b_hash_next, i++) { 1064 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 1065 return (fhdr); 1066 } 1067 1068 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 1069 buf_hash_table.ht_table[idx] = hdr; 1070 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1071 1072 /* collect some hash table performance data */ 1073 if (i > 0) { 1074 ARCSTAT_BUMP(arcstat_hash_collisions); 1075 if (i == 1) 1076 ARCSTAT_BUMP(arcstat_hash_chains); 1077 1078 ARCSTAT_MAX(arcstat_hash_chain_max, i); 1079 } 1080 uint64_t he = atomic_inc_64_nv( 1081 &arc_stats.arcstat_hash_elements.value.ui64); 1082 ARCSTAT_MAX(arcstat_hash_elements_max, he); 1083 1084 return (NULL); 1085 } 1086 1087 static void 1088 buf_hash_remove(arc_buf_hdr_t *hdr) 1089 { 1090 arc_buf_hdr_t *fhdr, **hdrp; 1091 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1092 1093 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 1094 ASSERT(HDR_IN_HASH_TABLE(hdr)); 1095 1096 hdrp = &buf_hash_table.ht_table[idx]; 1097 while ((fhdr = *hdrp) != hdr) { 1098 ASSERT3P(fhdr, !=, NULL); 1099 hdrp = &fhdr->b_hash_next; 1100 } 1101 *hdrp = hdr->b_hash_next; 1102 hdr->b_hash_next = NULL; 1103 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1104 1105 /* collect some hash table performance data */ 1106 atomic_dec_64(&arc_stats.arcstat_hash_elements.value.ui64); 1107 1108 if (buf_hash_table.ht_table[idx] && 1109 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 1110 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 1111 } 1112 1113 /* 1114 * Global data structures and functions for the buf kmem cache. 1115 */ 1116 1117 static kmem_cache_t *hdr_full_cache; 1118 static kmem_cache_t *hdr_l2only_cache; 1119 static kmem_cache_t *buf_cache; 1120 1121 static void 1122 buf_fini(void) 1123 { 1124 #if defined(_KERNEL) 1125 /* 1126 * Large allocations which do not require contiguous pages 1127 * should be using vmem_free() in the linux kernel\ 1128 */ 1129 vmem_free(buf_hash_table.ht_table, 1130 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1131 #else 1132 kmem_free(buf_hash_table.ht_table, 1133 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1134 #endif 1135 for (int i = 0; i < BUF_LOCKS; i++) 1136 mutex_destroy(BUF_HASH_LOCK(i)); 1137 kmem_cache_destroy(hdr_full_cache); 1138 kmem_cache_destroy(hdr_l2only_cache); 1139 kmem_cache_destroy(buf_cache); 1140 } 1141 1142 /* 1143 * Constructor callback - called when the cache is empty 1144 * and a new buf is requested. 1145 */ 1146 static int 1147 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1148 { 1149 (void) unused, (void) kmflag; 1150 arc_buf_hdr_t *hdr = vbuf; 1151 1152 memset(hdr, 0, HDR_FULL_SIZE); 1153 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 1154 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt); 1155 #ifdef ZFS_DEBUG 1156 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1157 #endif 1158 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1159 list_link_init(&hdr->b_l2hdr.b_l2node); 1160 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1161 1162 return (0); 1163 } 1164 1165 static int 1166 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1167 { 1168 (void) unused, (void) kmflag; 1169 arc_buf_hdr_t *hdr = vbuf; 1170 1171 memset(hdr, 0, HDR_L2ONLY_SIZE); 1172 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1173 1174 return (0); 1175 } 1176 1177 static int 1178 buf_cons(void *vbuf, void *unused, int kmflag) 1179 { 1180 (void) unused, (void) kmflag; 1181 arc_buf_t *buf = vbuf; 1182 1183 memset(buf, 0, sizeof (arc_buf_t)); 1184 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1185 1186 return (0); 1187 } 1188 1189 /* 1190 * Destructor callback - called when a cached buf is 1191 * no longer required. 1192 */ 1193 static void 1194 hdr_full_dest(void *vbuf, void *unused) 1195 { 1196 (void) unused; 1197 arc_buf_hdr_t *hdr = vbuf; 1198 1199 ASSERT(HDR_EMPTY(hdr)); 1200 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1201 #ifdef ZFS_DEBUG 1202 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1203 #endif 1204 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1205 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1206 } 1207 1208 static void 1209 hdr_l2only_dest(void *vbuf, void *unused) 1210 { 1211 (void) unused; 1212 arc_buf_hdr_t *hdr = vbuf; 1213 1214 ASSERT(HDR_EMPTY(hdr)); 1215 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1216 } 1217 1218 static void 1219 buf_dest(void *vbuf, void *unused) 1220 { 1221 (void) unused; 1222 (void) vbuf; 1223 1224 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1225 } 1226 1227 static void 1228 buf_init(void) 1229 { 1230 uint64_t *ct = NULL; 1231 uint64_t hsize = 1ULL << 12; 1232 int i, j; 1233 1234 /* 1235 * The hash table is big enough to fill all of physical memory 1236 * with an average block size of zfs_arc_average_blocksize (default 8K). 1237 * By default, the table will take up 1238 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1239 */ 1240 while (hsize * zfs_arc_average_blocksize < arc_all_memory()) 1241 hsize <<= 1; 1242 retry: 1243 buf_hash_table.ht_mask = hsize - 1; 1244 #if defined(_KERNEL) 1245 /* 1246 * Large allocations which do not require contiguous pages 1247 * should be using vmem_alloc() in the linux kernel 1248 */ 1249 buf_hash_table.ht_table = 1250 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP); 1251 #else 1252 buf_hash_table.ht_table = 1253 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1254 #endif 1255 if (buf_hash_table.ht_table == NULL) { 1256 ASSERT(hsize > (1ULL << 8)); 1257 hsize >>= 1; 1258 goto retry; 1259 } 1260 1261 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1262 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, KMC_RECLAIMABLE); 1263 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1264 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL, 1265 NULL, NULL, 0); 1266 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1267 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1268 1269 for (i = 0; i < 256; i++) 1270 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1271 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1272 1273 for (i = 0; i < BUF_LOCKS; i++) 1274 mutex_init(BUF_HASH_LOCK(i), NULL, MUTEX_DEFAULT, NULL); 1275 } 1276 1277 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1278 1279 /* 1280 * This is the size that the buf occupies in memory. If the buf is compressed, 1281 * it will correspond to the compressed size. You should use this method of 1282 * getting the buf size unless you explicitly need the logical size. 1283 */ 1284 uint64_t 1285 arc_buf_size(arc_buf_t *buf) 1286 { 1287 return (ARC_BUF_COMPRESSED(buf) ? 1288 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr)); 1289 } 1290 1291 uint64_t 1292 arc_buf_lsize(arc_buf_t *buf) 1293 { 1294 return (HDR_GET_LSIZE(buf->b_hdr)); 1295 } 1296 1297 /* 1298 * This function will return B_TRUE if the buffer is encrypted in memory. 1299 * This buffer can be decrypted by calling arc_untransform(). 1300 */ 1301 boolean_t 1302 arc_is_encrypted(arc_buf_t *buf) 1303 { 1304 return (ARC_BUF_ENCRYPTED(buf) != 0); 1305 } 1306 1307 /* 1308 * Returns B_TRUE if the buffer represents data that has not had its MAC 1309 * verified yet. 1310 */ 1311 boolean_t 1312 arc_is_unauthenticated(arc_buf_t *buf) 1313 { 1314 return (HDR_NOAUTH(buf->b_hdr) != 0); 1315 } 1316 1317 void 1318 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt, 1319 uint8_t *iv, uint8_t *mac) 1320 { 1321 arc_buf_hdr_t *hdr = buf->b_hdr; 1322 1323 ASSERT(HDR_PROTECTED(hdr)); 1324 1325 memcpy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 1326 memcpy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 1327 memcpy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 1328 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 1329 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 1330 } 1331 1332 /* 1333 * Indicates how this buffer is compressed in memory. If it is not compressed 1334 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with 1335 * arc_untransform() as long as it is also unencrypted. 1336 */ 1337 enum zio_compress 1338 arc_get_compression(arc_buf_t *buf) 1339 { 1340 return (ARC_BUF_COMPRESSED(buf) ? 1341 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF); 1342 } 1343 1344 /* 1345 * Return the compression algorithm used to store this data in the ARC. If ARC 1346 * compression is enabled or this is an encrypted block, this will be the same 1347 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF. 1348 */ 1349 static inline enum zio_compress 1350 arc_hdr_get_compress(arc_buf_hdr_t *hdr) 1351 { 1352 return (HDR_COMPRESSION_ENABLED(hdr) ? 1353 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF); 1354 } 1355 1356 uint8_t 1357 arc_get_complevel(arc_buf_t *buf) 1358 { 1359 return (buf->b_hdr->b_complevel); 1360 } 1361 1362 static inline boolean_t 1363 arc_buf_is_shared(arc_buf_t *buf) 1364 { 1365 boolean_t shared = (buf->b_data != NULL && 1366 buf->b_hdr->b_l1hdr.b_pabd != NULL && 1367 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) && 1368 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd)); 1369 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); 1370 EQUIV(shared, ARC_BUF_SHARED(buf)); 1371 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf)); 1372 1373 /* 1374 * It would be nice to assert arc_can_share() too, but the "hdr isn't 1375 * already being shared" requirement prevents us from doing that. 1376 */ 1377 1378 return (shared); 1379 } 1380 1381 /* 1382 * Free the checksum associated with this header. If there is no checksum, this 1383 * is a no-op. 1384 */ 1385 static inline void 1386 arc_cksum_free(arc_buf_hdr_t *hdr) 1387 { 1388 #ifdef ZFS_DEBUG 1389 ASSERT(HDR_HAS_L1HDR(hdr)); 1390 1391 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1392 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1393 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); 1394 hdr->b_l1hdr.b_freeze_cksum = NULL; 1395 } 1396 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1397 #endif 1398 } 1399 1400 /* 1401 * Return true iff at least one of the bufs on hdr is not compressed. 1402 * Encrypted buffers count as compressed. 1403 */ 1404 static boolean_t 1405 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr) 1406 { 1407 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr)); 1408 1409 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) { 1410 if (!ARC_BUF_COMPRESSED(b)) { 1411 return (B_TRUE); 1412 } 1413 } 1414 return (B_FALSE); 1415 } 1416 1417 1418 /* 1419 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data 1420 * matches the checksum that is stored in the hdr. If there is no checksum, 1421 * or if the buf is compressed, this is a no-op. 1422 */ 1423 static void 1424 arc_cksum_verify(arc_buf_t *buf) 1425 { 1426 #ifdef ZFS_DEBUG 1427 arc_buf_hdr_t *hdr = buf->b_hdr; 1428 zio_cksum_t zc; 1429 1430 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1431 return; 1432 1433 if (ARC_BUF_COMPRESSED(buf)) 1434 return; 1435 1436 ASSERT(HDR_HAS_L1HDR(hdr)); 1437 1438 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1439 1440 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { 1441 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1442 return; 1443 } 1444 1445 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc); 1446 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) 1447 panic("buffer modified while frozen!"); 1448 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1449 #endif 1450 } 1451 1452 /* 1453 * This function makes the assumption that data stored in the L2ARC 1454 * will be transformed exactly as it is in the main pool. Because of 1455 * this we can verify the checksum against the reading process's bp. 1456 */ 1457 static boolean_t 1458 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) 1459 { 1460 ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); 1461 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); 1462 1463 /* 1464 * Block pointers always store the checksum for the logical data. 1465 * If the block pointer has the gang bit set, then the checksum 1466 * it represents is for the reconstituted data and not for an 1467 * individual gang member. The zio pipeline, however, must be able to 1468 * determine the checksum of each of the gang constituents so it 1469 * treats the checksum comparison differently than what we need 1470 * for l2arc blocks. This prevents us from using the 1471 * zio_checksum_error() interface directly. Instead we must call the 1472 * zio_checksum_error_impl() so that we can ensure the checksum is 1473 * generated using the correct checksum algorithm and accounts for the 1474 * logical I/O size and not just a gang fragment. 1475 */ 1476 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp, 1477 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size, 1478 zio->io_offset, NULL) == 0); 1479 } 1480 1481 /* 1482 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a 1483 * checksum and attaches it to the buf's hdr so that we can ensure that the buf 1484 * isn't modified later on. If buf is compressed or there is already a checksum 1485 * on the hdr, this is a no-op (we only checksum uncompressed bufs). 1486 */ 1487 static void 1488 arc_cksum_compute(arc_buf_t *buf) 1489 { 1490 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1491 return; 1492 1493 #ifdef ZFS_DEBUG 1494 arc_buf_hdr_t *hdr = buf->b_hdr; 1495 ASSERT(HDR_HAS_L1HDR(hdr)); 1496 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1497 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) { 1498 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1499 return; 1500 } 1501 1502 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 1503 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1504 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), 1505 KM_SLEEP); 1506 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, 1507 hdr->b_l1hdr.b_freeze_cksum); 1508 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1509 #endif 1510 arc_buf_watch(buf); 1511 } 1512 1513 #ifndef _KERNEL 1514 void 1515 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused) 1516 { 1517 (void) sig, (void) unused; 1518 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr); 1519 } 1520 #endif 1521 1522 static void 1523 arc_buf_unwatch(arc_buf_t *buf) 1524 { 1525 #ifndef _KERNEL 1526 if (arc_watch) { 1527 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1528 PROT_READ | PROT_WRITE)); 1529 } 1530 #else 1531 (void) buf; 1532 #endif 1533 } 1534 1535 static void 1536 arc_buf_watch(arc_buf_t *buf) 1537 { 1538 #ifndef _KERNEL 1539 if (arc_watch) 1540 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1541 PROT_READ)); 1542 #else 1543 (void) buf; 1544 #endif 1545 } 1546 1547 static arc_buf_contents_t 1548 arc_buf_type(arc_buf_hdr_t *hdr) 1549 { 1550 arc_buf_contents_t type; 1551 if (HDR_ISTYPE_METADATA(hdr)) { 1552 type = ARC_BUFC_METADATA; 1553 } else { 1554 type = ARC_BUFC_DATA; 1555 } 1556 VERIFY3U(hdr->b_type, ==, type); 1557 return (type); 1558 } 1559 1560 boolean_t 1561 arc_is_metadata(arc_buf_t *buf) 1562 { 1563 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0); 1564 } 1565 1566 static uint32_t 1567 arc_bufc_to_flags(arc_buf_contents_t type) 1568 { 1569 switch (type) { 1570 case ARC_BUFC_DATA: 1571 /* metadata field is 0 if buffer contains normal data */ 1572 return (0); 1573 case ARC_BUFC_METADATA: 1574 return (ARC_FLAG_BUFC_METADATA); 1575 default: 1576 break; 1577 } 1578 panic("undefined ARC buffer type!"); 1579 return ((uint32_t)-1); 1580 } 1581 1582 void 1583 arc_buf_thaw(arc_buf_t *buf) 1584 { 1585 arc_buf_hdr_t *hdr = buf->b_hdr; 1586 1587 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 1588 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1589 1590 arc_cksum_verify(buf); 1591 1592 /* 1593 * Compressed buffers do not manipulate the b_freeze_cksum. 1594 */ 1595 if (ARC_BUF_COMPRESSED(buf)) 1596 return; 1597 1598 ASSERT(HDR_HAS_L1HDR(hdr)); 1599 arc_cksum_free(hdr); 1600 arc_buf_unwatch(buf); 1601 } 1602 1603 void 1604 arc_buf_freeze(arc_buf_t *buf) 1605 { 1606 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1607 return; 1608 1609 if (ARC_BUF_COMPRESSED(buf)) 1610 return; 1611 1612 ASSERT(HDR_HAS_L1HDR(buf->b_hdr)); 1613 arc_cksum_compute(buf); 1614 } 1615 1616 /* 1617 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, 1618 * the following functions should be used to ensure that the flags are 1619 * updated in a thread-safe way. When manipulating the flags either 1620 * the hash_lock must be held or the hdr must be undiscoverable. This 1621 * ensures that we're not racing with any other threads when updating 1622 * the flags. 1623 */ 1624 static inline void 1625 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1626 { 1627 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1628 hdr->b_flags |= flags; 1629 } 1630 1631 static inline void 1632 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1633 { 1634 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1635 hdr->b_flags &= ~flags; 1636 } 1637 1638 /* 1639 * Setting the compression bits in the arc_buf_hdr_t's b_flags is 1640 * done in a special way since we have to clear and set bits 1641 * at the same time. Consumers that wish to set the compression bits 1642 * must use this function to ensure that the flags are updated in 1643 * thread-safe manner. 1644 */ 1645 static void 1646 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) 1647 { 1648 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1649 1650 /* 1651 * Holes and embedded blocks will always have a psize = 0 so 1652 * we ignore the compression of the blkptr and set the 1653 * want to uncompress them. Mark them as uncompressed. 1654 */ 1655 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { 1656 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1657 ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); 1658 } else { 1659 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1660 ASSERT(HDR_COMPRESSION_ENABLED(hdr)); 1661 } 1662 1663 HDR_SET_COMPRESS(hdr, cmp); 1664 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); 1665 } 1666 1667 /* 1668 * Looks for another buf on the same hdr which has the data decompressed, copies 1669 * from it, and returns true. If no such buf exists, returns false. 1670 */ 1671 static boolean_t 1672 arc_buf_try_copy_decompressed_data(arc_buf_t *buf) 1673 { 1674 arc_buf_hdr_t *hdr = buf->b_hdr; 1675 boolean_t copied = B_FALSE; 1676 1677 ASSERT(HDR_HAS_L1HDR(hdr)); 1678 ASSERT3P(buf->b_data, !=, NULL); 1679 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1680 1681 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL; 1682 from = from->b_next) { 1683 /* can't use our own data buffer */ 1684 if (from == buf) { 1685 continue; 1686 } 1687 1688 if (!ARC_BUF_COMPRESSED(from)) { 1689 memcpy(buf->b_data, from->b_data, arc_buf_size(buf)); 1690 copied = B_TRUE; 1691 break; 1692 } 1693 } 1694 1695 #ifdef ZFS_DEBUG 1696 /* 1697 * There were no decompressed bufs, so there should not be a 1698 * checksum on the hdr either. 1699 */ 1700 if (zfs_flags & ZFS_DEBUG_MODIFY) 1701 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL); 1702 #endif 1703 1704 return (copied); 1705 } 1706 1707 /* 1708 * Allocates an ARC buf header that's in an evicted & L2-cached state. 1709 * This is used during l2arc reconstruction to make empty ARC buffers 1710 * which circumvent the regular disk->arc->l2arc path and instead come 1711 * into being in the reverse order, i.e. l2arc->arc. 1712 */ 1713 static arc_buf_hdr_t * 1714 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev, 1715 dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth, 1716 enum zio_compress compress, uint8_t complevel, boolean_t protected, 1717 boolean_t prefetch, arc_state_type_t arcs_state) 1718 { 1719 arc_buf_hdr_t *hdr; 1720 1721 ASSERT(size != 0); 1722 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP); 1723 hdr->b_birth = birth; 1724 hdr->b_type = type; 1725 hdr->b_flags = 0; 1726 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR); 1727 HDR_SET_LSIZE(hdr, size); 1728 HDR_SET_PSIZE(hdr, psize); 1729 arc_hdr_set_compress(hdr, compress); 1730 hdr->b_complevel = complevel; 1731 if (protected) 1732 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 1733 if (prefetch) 1734 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 1735 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa); 1736 1737 hdr->b_dva = dva; 1738 1739 hdr->b_l2hdr.b_dev = dev; 1740 hdr->b_l2hdr.b_daddr = daddr; 1741 hdr->b_l2hdr.b_arcs_state = arcs_state; 1742 1743 return (hdr); 1744 } 1745 1746 /* 1747 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t. 1748 */ 1749 static uint64_t 1750 arc_hdr_size(arc_buf_hdr_t *hdr) 1751 { 1752 uint64_t size; 1753 1754 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 1755 HDR_GET_PSIZE(hdr) > 0) { 1756 size = HDR_GET_PSIZE(hdr); 1757 } else { 1758 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); 1759 size = HDR_GET_LSIZE(hdr); 1760 } 1761 return (size); 1762 } 1763 1764 static int 1765 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj) 1766 { 1767 int ret; 1768 uint64_t csize; 1769 uint64_t lsize = HDR_GET_LSIZE(hdr); 1770 uint64_t psize = HDR_GET_PSIZE(hdr); 1771 abd_t *abd = hdr->b_l1hdr.b_pabd; 1772 boolean_t free_abd = B_FALSE; 1773 1774 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1775 ASSERT(HDR_AUTHENTICATED(hdr)); 1776 ASSERT3P(abd, !=, NULL); 1777 1778 /* 1779 * The MAC is calculated on the compressed data that is stored on disk. 1780 * However, if compressed arc is disabled we will only have the 1781 * decompressed data available to us now. Compress it into a temporary 1782 * abd so we can verify the MAC. The performance overhead of this will 1783 * be relatively low, since most objects in an encrypted objset will 1784 * be encrypted (instead of authenticated) anyway. 1785 */ 1786 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1787 !HDR_COMPRESSION_ENABLED(hdr)) { 1788 abd = NULL; 1789 csize = zio_compress_data(HDR_GET_COMPRESS(hdr), 1790 hdr->b_l1hdr.b_pabd, &abd, lsize, MIN(lsize, psize), 1791 hdr->b_complevel); 1792 if (csize >= lsize || csize > psize) { 1793 ret = SET_ERROR(EIO); 1794 return (ret); 1795 } 1796 ASSERT3P(abd, !=, NULL); 1797 abd_zero_off(abd, csize, psize - csize); 1798 free_abd = B_TRUE; 1799 } 1800 1801 /* 1802 * Authentication is best effort. We authenticate whenever the key is 1803 * available. If we succeed we clear ARC_FLAG_NOAUTH. 1804 */ 1805 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) { 1806 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1807 ASSERT3U(lsize, ==, psize); 1808 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd, 1809 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1810 } else { 1811 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize, 1812 hdr->b_crypt_hdr.b_mac); 1813 } 1814 1815 if (ret == 0) 1816 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH); 1817 else if (ret == ENOENT) 1818 ret = 0; 1819 1820 if (free_abd) 1821 abd_free(abd); 1822 1823 return (ret); 1824 } 1825 1826 /* 1827 * This function will take a header that only has raw encrypted data in 1828 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in 1829 * b_l1hdr.b_pabd. If designated in the header flags, this function will 1830 * also decompress the data. 1831 */ 1832 static int 1833 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb) 1834 { 1835 int ret; 1836 abd_t *cabd = NULL; 1837 boolean_t no_crypt = B_FALSE; 1838 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1839 1840 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1841 ASSERT(HDR_ENCRYPTED(hdr)); 1842 1843 arc_hdr_alloc_abd(hdr, 0); 1844 1845 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot, 1846 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv, 1847 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd, 1848 hdr->b_crypt_hdr.b_rabd, &no_crypt); 1849 if (ret != 0) 1850 goto error; 1851 1852 if (no_crypt) { 1853 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd, 1854 HDR_GET_PSIZE(hdr)); 1855 } 1856 1857 /* 1858 * If this header has disabled arc compression but the b_pabd is 1859 * compressed after decrypting it, we need to decompress the newly 1860 * decrypted data. 1861 */ 1862 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1863 !HDR_COMPRESSION_ENABLED(hdr)) { 1864 /* 1865 * We want to make sure that we are correctly honoring the 1866 * zfs_abd_scatter_enabled setting, so we allocate an abd here 1867 * and then loan a buffer from it, rather than allocating a 1868 * linear buffer and wrapping it in an abd later. 1869 */ 1870 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 0); 1871 1872 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 1873 hdr->b_l1hdr.b_pabd, cabd, HDR_GET_PSIZE(hdr), 1874 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 1875 if (ret != 0) { 1876 goto error; 1877 } 1878 1879 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 1880 arc_hdr_size(hdr), hdr); 1881 hdr->b_l1hdr.b_pabd = cabd; 1882 } 1883 1884 return (0); 1885 1886 error: 1887 arc_hdr_free_abd(hdr, B_FALSE); 1888 if (cabd != NULL) 1889 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr); 1890 1891 return (ret); 1892 } 1893 1894 /* 1895 * This function is called during arc_buf_fill() to prepare the header's 1896 * abd plaintext pointer for use. This involves authenticated protected 1897 * data and decrypting encrypted data into the plaintext abd. 1898 */ 1899 static int 1900 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa, 1901 const zbookmark_phys_t *zb, boolean_t noauth) 1902 { 1903 int ret; 1904 1905 ASSERT(HDR_PROTECTED(hdr)); 1906 1907 if (hash_lock != NULL) 1908 mutex_enter(hash_lock); 1909 1910 if (HDR_NOAUTH(hdr) && !noauth) { 1911 /* 1912 * The caller requested authenticated data but our data has 1913 * not been authenticated yet. Verify the MAC now if we can. 1914 */ 1915 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset); 1916 if (ret != 0) 1917 goto error; 1918 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) { 1919 /* 1920 * If we only have the encrypted version of the data, but the 1921 * unencrypted version was requested we take this opportunity 1922 * to store the decrypted version in the header for future use. 1923 */ 1924 ret = arc_hdr_decrypt(hdr, spa, zb); 1925 if (ret != 0) 1926 goto error; 1927 } 1928 1929 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1930 1931 if (hash_lock != NULL) 1932 mutex_exit(hash_lock); 1933 1934 return (0); 1935 1936 error: 1937 if (hash_lock != NULL) 1938 mutex_exit(hash_lock); 1939 1940 return (ret); 1941 } 1942 1943 /* 1944 * This function is used by the dbuf code to decrypt bonus buffers in place. 1945 * The dbuf code itself doesn't have any locking for decrypting a shared dnode 1946 * block, so we use the hash lock here to protect against concurrent calls to 1947 * arc_buf_fill(). 1948 */ 1949 static void 1950 arc_buf_untransform_in_place(arc_buf_t *buf) 1951 { 1952 arc_buf_hdr_t *hdr = buf->b_hdr; 1953 1954 ASSERT(HDR_ENCRYPTED(hdr)); 1955 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 1956 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1957 ASSERT3PF(hdr->b_l1hdr.b_pabd, !=, NULL, "hdr %px buf %px", hdr, buf); 1958 1959 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data, 1960 arc_buf_size(buf)); 1961 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 1962 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 1963 } 1964 1965 /* 1966 * Given a buf that has a data buffer attached to it, this function will 1967 * efficiently fill the buf with data of the specified compression setting from 1968 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr 1969 * are already sharing a data buf, no copy is performed. 1970 * 1971 * If the buf is marked as compressed but uncompressed data was requested, this 1972 * will allocate a new data buffer for the buf, remove that flag, and fill the 1973 * buf with uncompressed data. You can't request a compressed buf on a hdr with 1974 * uncompressed data, and (since we haven't added support for it yet) if you 1975 * want compressed data your buf must already be marked as compressed and have 1976 * the correct-sized data buffer. 1977 */ 1978 static int 1979 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 1980 arc_fill_flags_t flags) 1981 { 1982 int error = 0; 1983 arc_buf_hdr_t *hdr = buf->b_hdr; 1984 boolean_t hdr_compressed = 1985 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 1986 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0; 1987 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0; 1988 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; 1989 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr); 1990 1991 ASSERT3P(buf->b_data, !=, NULL); 1992 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf)); 1993 IMPLY(compressed, ARC_BUF_COMPRESSED(buf)); 1994 IMPLY(encrypted, HDR_ENCRYPTED(hdr)); 1995 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf)); 1996 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf)); 1997 IMPLY(encrypted, !arc_buf_is_shared(buf)); 1998 1999 /* 2000 * If the caller wanted encrypted data we just need to copy it from 2001 * b_rabd and potentially byteswap it. We won't be able to do any 2002 * further transforms on it. 2003 */ 2004 if (encrypted) { 2005 ASSERT(HDR_HAS_RABD(hdr)); 2006 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd, 2007 HDR_GET_PSIZE(hdr)); 2008 goto byteswap; 2009 } 2010 2011 /* 2012 * Adjust encrypted and authenticated headers to accommodate 2013 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are 2014 * allowed to fail decryption due to keys not being loaded 2015 * without being marked as an IO error. 2016 */ 2017 if (HDR_PROTECTED(hdr)) { 2018 error = arc_fill_hdr_crypt(hdr, hash_lock, spa, 2019 zb, !!(flags & ARC_FILL_NOAUTH)); 2020 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) { 2021 return (error); 2022 } else if (error != 0) { 2023 if (hash_lock != NULL) 2024 mutex_enter(hash_lock); 2025 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2026 if (hash_lock != NULL) 2027 mutex_exit(hash_lock); 2028 return (error); 2029 } 2030 } 2031 2032 /* 2033 * There is a special case here for dnode blocks which are 2034 * decrypting their bonus buffers. These blocks may request to 2035 * be decrypted in-place. This is necessary because there may 2036 * be many dnodes pointing into this buffer and there is 2037 * currently no method to synchronize replacing the backing 2038 * b_data buffer and updating all of the pointers. Here we use 2039 * the hash lock to ensure there are no races. If the need 2040 * arises for other types to be decrypted in-place, they must 2041 * add handling here as well. 2042 */ 2043 if ((flags & ARC_FILL_IN_PLACE) != 0) { 2044 ASSERT(!hdr_compressed); 2045 ASSERT(!compressed); 2046 ASSERT(!encrypted); 2047 2048 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) { 2049 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 2050 2051 if (hash_lock != NULL) 2052 mutex_enter(hash_lock); 2053 arc_buf_untransform_in_place(buf); 2054 if (hash_lock != NULL) 2055 mutex_exit(hash_lock); 2056 2057 /* Compute the hdr's checksum if necessary */ 2058 arc_cksum_compute(buf); 2059 } 2060 2061 return (0); 2062 } 2063 2064 if (hdr_compressed == compressed) { 2065 if (ARC_BUF_SHARED(buf)) { 2066 ASSERT(arc_buf_is_shared(buf)); 2067 } else { 2068 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd, 2069 arc_buf_size(buf)); 2070 } 2071 } else { 2072 ASSERT(hdr_compressed); 2073 ASSERT(!compressed); 2074 2075 /* 2076 * If the buf is sharing its data with the hdr, unlink it and 2077 * allocate a new data buffer for the buf. 2078 */ 2079 if (ARC_BUF_SHARED(buf)) { 2080 ASSERTF(ARC_BUF_COMPRESSED(buf), 2081 "buf %p was uncompressed", buf); 2082 2083 /* We need to give the buf its own b_data */ 2084 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 2085 buf->b_data = 2086 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2087 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2088 2089 /* Previously overhead was 0; just add new overhead */ 2090 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 2091 } else if (ARC_BUF_COMPRESSED(buf)) { 2092 ASSERT(!arc_buf_is_shared(buf)); 2093 2094 /* We need to reallocate the buf's b_data */ 2095 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr), 2096 buf); 2097 buf->b_data = 2098 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2099 2100 /* We increased the size of b_data; update overhead */ 2101 ARCSTAT_INCR(arcstat_overhead_size, 2102 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr)); 2103 } 2104 2105 /* 2106 * Regardless of the buf's previous compression settings, it 2107 * should not be compressed at the end of this function. 2108 */ 2109 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 2110 2111 /* 2112 * Try copying the data from another buf which already has a 2113 * decompressed version. If that's not possible, it's time to 2114 * bite the bullet and decompress the data from the hdr. 2115 */ 2116 if (arc_buf_try_copy_decompressed_data(buf)) { 2117 /* Skip byteswapping and checksumming (already done) */ 2118 return (0); 2119 } else { 2120 abd_t dabd; 2121 abd_get_from_buf_struct(&dabd, buf->b_data, 2122 HDR_GET_LSIZE(hdr)); 2123 error = zio_decompress_data(HDR_GET_COMPRESS(hdr), 2124 hdr->b_l1hdr.b_pabd, &dabd, 2125 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr), 2126 &hdr->b_complevel); 2127 abd_free(&dabd); 2128 2129 /* 2130 * Absent hardware errors or software bugs, this should 2131 * be impossible, but log it anyway so we can debug it. 2132 */ 2133 if (error != 0) { 2134 zfs_dbgmsg( 2135 "hdr %px, compress %d, psize %d, lsize %d", 2136 hdr, arc_hdr_get_compress(hdr), 2137 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 2138 if (hash_lock != NULL) 2139 mutex_enter(hash_lock); 2140 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2141 if (hash_lock != NULL) 2142 mutex_exit(hash_lock); 2143 return (SET_ERROR(EIO)); 2144 } 2145 } 2146 } 2147 2148 byteswap: 2149 /* Byteswap the buf's data if necessary */ 2150 if (bswap != DMU_BSWAP_NUMFUNCS) { 2151 ASSERT(!HDR_SHARED_DATA(hdr)); 2152 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); 2153 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); 2154 } 2155 2156 /* Compute the hdr's checksum if necessary */ 2157 arc_cksum_compute(buf); 2158 2159 return (0); 2160 } 2161 2162 /* 2163 * If this function is being called to decrypt an encrypted buffer or verify an 2164 * authenticated one, the key must be loaded and a mapping must be made 2165 * available in the keystore via spa_keystore_create_mapping() or one of its 2166 * callers. 2167 */ 2168 int 2169 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 2170 boolean_t in_place) 2171 { 2172 int ret; 2173 arc_fill_flags_t flags = 0; 2174 2175 if (in_place) 2176 flags |= ARC_FILL_IN_PLACE; 2177 2178 ret = arc_buf_fill(buf, spa, zb, flags); 2179 if (ret == ECKSUM) { 2180 /* 2181 * Convert authentication and decryption errors to EIO 2182 * (and generate an ereport) before leaving the ARC. 2183 */ 2184 ret = SET_ERROR(EIO); 2185 spa_log_error(spa, zb, buf->b_hdr->b_birth); 2186 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 2187 spa, NULL, zb, NULL, 0); 2188 } 2189 2190 return (ret); 2191 } 2192 2193 /* 2194 * Increment the amount of evictable space in the arc_state_t's refcount. 2195 * We account for the space used by the hdr and the arc buf individually 2196 * so that we can add and remove them from the refcount individually. 2197 */ 2198 static void 2199 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) 2200 { 2201 arc_buf_contents_t type = arc_buf_type(hdr); 2202 2203 ASSERT(HDR_HAS_L1HDR(hdr)); 2204 2205 if (GHOST_STATE(state)) { 2206 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2207 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2208 ASSERT(!HDR_HAS_RABD(hdr)); 2209 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2210 HDR_GET_LSIZE(hdr), hdr); 2211 return; 2212 } 2213 2214 if (hdr->b_l1hdr.b_pabd != NULL) { 2215 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2216 arc_hdr_size(hdr), hdr); 2217 } 2218 if (HDR_HAS_RABD(hdr)) { 2219 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2220 HDR_GET_PSIZE(hdr), hdr); 2221 } 2222 2223 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2224 buf = buf->b_next) { 2225 if (ARC_BUF_SHARED(buf)) 2226 continue; 2227 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2228 arc_buf_size(buf), buf); 2229 } 2230 } 2231 2232 /* 2233 * Decrement the amount of evictable space in the arc_state_t's refcount. 2234 * We account for the space used by the hdr and the arc buf individually 2235 * so that we can add and remove them from the refcount individually. 2236 */ 2237 static void 2238 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) 2239 { 2240 arc_buf_contents_t type = arc_buf_type(hdr); 2241 2242 ASSERT(HDR_HAS_L1HDR(hdr)); 2243 2244 if (GHOST_STATE(state)) { 2245 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2246 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2247 ASSERT(!HDR_HAS_RABD(hdr)); 2248 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2249 HDR_GET_LSIZE(hdr), hdr); 2250 return; 2251 } 2252 2253 if (hdr->b_l1hdr.b_pabd != NULL) { 2254 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2255 arc_hdr_size(hdr), hdr); 2256 } 2257 if (HDR_HAS_RABD(hdr)) { 2258 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2259 HDR_GET_PSIZE(hdr), hdr); 2260 } 2261 2262 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2263 buf = buf->b_next) { 2264 if (ARC_BUF_SHARED(buf)) 2265 continue; 2266 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2267 arc_buf_size(buf), buf); 2268 } 2269 } 2270 2271 /* 2272 * Add a reference to this hdr indicating that someone is actively 2273 * referencing that memory. When the refcount transitions from 0 to 1, 2274 * we remove it from the respective arc_state_t list to indicate that 2275 * it is not evictable. 2276 */ 2277 static void 2278 add_reference(arc_buf_hdr_t *hdr, const void *tag) 2279 { 2280 arc_state_t *state = hdr->b_l1hdr.b_state; 2281 2282 ASSERT(HDR_HAS_L1HDR(hdr)); 2283 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) { 2284 ASSERT(state == arc_anon); 2285 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2286 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2287 } 2288 2289 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 2290 state != arc_anon && state != arc_l2c_only) { 2291 /* We don't use the L2-only state list. */ 2292 multilist_remove(&state->arcs_list[arc_buf_type(hdr)], hdr); 2293 arc_evictable_space_decrement(hdr, state); 2294 } 2295 } 2296 2297 /* 2298 * Remove a reference from this hdr. When the reference transitions from 2299 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's 2300 * list making it eligible for eviction. 2301 */ 2302 static int 2303 remove_reference(arc_buf_hdr_t *hdr, const void *tag) 2304 { 2305 int cnt; 2306 arc_state_t *state = hdr->b_l1hdr.b_state; 2307 2308 ASSERT(HDR_HAS_L1HDR(hdr)); 2309 ASSERT(state == arc_anon || MUTEX_HELD(HDR_LOCK(hdr))); 2310 ASSERT(!GHOST_STATE(state)); /* arc_l2c_only counts as a ghost. */ 2311 2312 if ((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) != 0) 2313 return (cnt); 2314 2315 if (state == arc_anon) { 2316 arc_hdr_destroy(hdr); 2317 return (0); 2318 } 2319 if (state == arc_uncached && !HDR_PREFETCH(hdr)) { 2320 arc_change_state(arc_anon, hdr); 2321 arc_hdr_destroy(hdr); 2322 return (0); 2323 } 2324 multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr); 2325 arc_evictable_space_increment(hdr, state); 2326 return (0); 2327 } 2328 2329 /* 2330 * Returns detailed information about a specific arc buffer. When the 2331 * state_index argument is set the function will calculate the arc header 2332 * list position for its arc state. Since this requires a linear traversal 2333 * callers are strongly encourage not to do this. However, it can be helpful 2334 * for targeted analysis so the functionality is provided. 2335 */ 2336 void 2337 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index) 2338 { 2339 (void) state_index; 2340 arc_buf_hdr_t *hdr = ab->b_hdr; 2341 l1arc_buf_hdr_t *l1hdr = NULL; 2342 l2arc_buf_hdr_t *l2hdr = NULL; 2343 arc_state_t *state = NULL; 2344 2345 memset(abi, 0, sizeof (arc_buf_info_t)); 2346 2347 if (hdr == NULL) 2348 return; 2349 2350 abi->abi_flags = hdr->b_flags; 2351 2352 if (HDR_HAS_L1HDR(hdr)) { 2353 l1hdr = &hdr->b_l1hdr; 2354 state = l1hdr->b_state; 2355 } 2356 if (HDR_HAS_L2HDR(hdr)) 2357 l2hdr = &hdr->b_l2hdr; 2358 2359 if (l1hdr) { 2360 abi->abi_bufcnt = 0; 2361 for (arc_buf_t *buf = l1hdr->b_buf; buf; buf = buf->b_next) 2362 abi->abi_bufcnt++; 2363 abi->abi_access = l1hdr->b_arc_access; 2364 abi->abi_mru_hits = l1hdr->b_mru_hits; 2365 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits; 2366 abi->abi_mfu_hits = l1hdr->b_mfu_hits; 2367 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits; 2368 abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt); 2369 } 2370 2371 if (l2hdr) { 2372 abi->abi_l2arc_dattr = l2hdr->b_daddr; 2373 abi->abi_l2arc_hits = l2hdr->b_hits; 2374 } 2375 2376 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON; 2377 abi->abi_state_contents = arc_buf_type(hdr); 2378 abi->abi_size = arc_hdr_size(hdr); 2379 } 2380 2381 /* 2382 * Move the supplied buffer to the indicated state. The hash lock 2383 * for the buffer must be held by the caller. 2384 */ 2385 static void 2386 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr) 2387 { 2388 arc_state_t *old_state; 2389 int64_t refcnt; 2390 boolean_t update_old, update_new; 2391 arc_buf_contents_t type = arc_buf_type(hdr); 2392 2393 /* 2394 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 2395 * in arc_read() when bringing a buffer out of the L2ARC. However, the 2396 * L1 hdr doesn't always exist when we change state to arc_anon before 2397 * destroying a header, in which case reallocating to add the L1 hdr is 2398 * pointless. 2399 */ 2400 if (HDR_HAS_L1HDR(hdr)) { 2401 old_state = hdr->b_l1hdr.b_state; 2402 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt); 2403 update_old = (hdr->b_l1hdr.b_buf != NULL || 2404 hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 2405 2406 IMPLY(GHOST_STATE(old_state), hdr->b_l1hdr.b_buf == NULL); 2407 IMPLY(GHOST_STATE(new_state), hdr->b_l1hdr.b_buf == NULL); 2408 IMPLY(old_state == arc_anon, hdr->b_l1hdr.b_buf == NULL || 2409 ARC_BUF_LAST(hdr->b_l1hdr.b_buf)); 2410 } else { 2411 old_state = arc_l2c_only; 2412 refcnt = 0; 2413 update_old = B_FALSE; 2414 } 2415 update_new = update_old; 2416 if (GHOST_STATE(old_state)) 2417 update_old = B_TRUE; 2418 if (GHOST_STATE(new_state)) 2419 update_new = B_TRUE; 2420 2421 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 2422 ASSERT3P(new_state, !=, old_state); 2423 2424 /* 2425 * If this buffer is evictable, transfer it from the 2426 * old state list to the new state list. 2427 */ 2428 if (refcnt == 0) { 2429 if (old_state != arc_anon && old_state != arc_l2c_only) { 2430 ASSERT(HDR_HAS_L1HDR(hdr)); 2431 /* remove_reference() saves on insert. */ 2432 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2433 multilist_remove(&old_state->arcs_list[type], 2434 hdr); 2435 arc_evictable_space_decrement(hdr, old_state); 2436 } 2437 } 2438 if (new_state != arc_anon && new_state != arc_l2c_only) { 2439 /* 2440 * An L1 header always exists here, since if we're 2441 * moving to some L1-cached state (i.e. not l2c_only or 2442 * anonymous), we realloc the header to add an L1hdr 2443 * beforehand. 2444 */ 2445 ASSERT(HDR_HAS_L1HDR(hdr)); 2446 multilist_insert(&new_state->arcs_list[type], hdr); 2447 arc_evictable_space_increment(hdr, new_state); 2448 } 2449 } 2450 2451 ASSERT(!HDR_EMPTY(hdr)); 2452 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 2453 buf_hash_remove(hdr); 2454 2455 /* adjust state sizes (ignore arc_l2c_only) */ 2456 2457 if (update_new && new_state != arc_l2c_only) { 2458 ASSERT(HDR_HAS_L1HDR(hdr)); 2459 if (GHOST_STATE(new_state)) { 2460 2461 /* 2462 * When moving a header to a ghost state, we first 2463 * remove all arc buffers. Thus, we'll have no arc 2464 * buffer to use for the reference. As a result, we 2465 * use the arc header pointer for the reference. 2466 */ 2467 (void) zfs_refcount_add_many( 2468 &new_state->arcs_size[type], 2469 HDR_GET_LSIZE(hdr), hdr); 2470 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2471 ASSERT(!HDR_HAS_RABD(hdr)); 2472 } else { 2473 2474 /* 2475 * Each individual buffer holds a unique reference, 2476 * thus we must remove each of these references one 2477 * at a time. 2478 */ 2479 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2480 buf = buf->b_next) { 2481 2482 /* 2483 * When the arc_buf_t is sharing the data 2484 * block with the hdr, the owner of the 2485 * reference belongs to the hdr. Only 2486 * add to the refcount if the arc_buf_t is 2487 * not shared. 2488 */ 2489 if (ARC_BUF_SHARED(buf)) 2490 continue; 2491 2492 (void) zfs_refcount_add_many( 2493 &new_state->arcs_size[type], 2494 arc_buf_size(buf), buf); 2495 } 2496 2497 if (hdr->b_l1hdr.b_pabd != NULL) { 2498 (void) zfs_refcount_add_many( 2499 &new_state->arcs_size[type], 2500 arc_hdr_size(hdr), hdr); 2501 } 2502 2503 if (HDR_HAS_RABD(hdr)) { 2504 (void) zfs_refcount_add_many( 2505 &new_state->arcs_size[type], 2506 HDR_GET_PSIZE(hdr), hdr); 2507 } 2508 } 2509 } 2510 2511 if (update_old && old_state != arc_l2c_only) { 2512 ASSERT(HDR_HAS_L1HDR(hdr)); 2513 if (GHOST_STATE(old_state)) { 2514 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2515 ASSERT(!HDR_HAS_RABD(hdr)); 2516 2517 /* 2518 * When moving a header off of a ghost state, 2519 * the header will not contain any arc buffers. 2520 * We use the arc header pointer for the reference 2521 * which is exactly what we did when we put the 2522 * header on the ghost state. 2523 */ 2524 2525 (void) zfs_refcount_remove_many( 2526 &old_state->arcs_size[type], 2527 HDR_GET_LSIZE(hdr), hdr); 2528 } else { 2529 2530 /* 2531 * Each individual buffer holds a unique reference, 2532 * thus we must remove each of these references one 2533 * at a time. 2534 */ 2535 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2536 buf = buf->b_next) { 2537 2538 /* 2539 * When the arc_buf_t is sharing the data 2540 * block with the hdr, the owner of the 2541 * reference belongs to the hdr. Only 2542 * add to the refcount if the arc_buf_t is 2543 * not shared. 2544 */ 2545 if (ARC_BUF_SHARED(buf)) 2546 continue; 2547 2548 (void) zfs_refcount_remove_many( 2549 &old_state->arcs_size[type], 2550 arc_buf_size(buf), buf); 2551 } 2552 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 2553 HDR_HAS_RABD(hdr)); 2554 2555 if (hdr->b_l1hdr.b_pabd != NULL) { 2556 (void) zfs_refcount_remove_many( 2557 &old_state->arcs_size[type], 2558 arc_hdr_size(hdr), hdr); 2559 } 2560 2561 if (HDR_HAS_RABD(hdr)) { 2562 (void) zfs_refcount_remove_many( 2563 &old_state->arcs_size[type], 2564 HDR_GET_PSIZE(hdr), hdr); 2565 } 2566 } 2567 } 2568 2569 if (HDR_HAS_L1HDR(hdr)) { 2570 hdr->b_l1hdr.b_state = new_state; 2571 2572 if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) { 2573 l2arc_hdr_arcstats_decrement_state(hdr); 2574 hdr->b_l2hdr.b_arcs_state = new_state->arcs_state; 2575 l2arc_hdr_arcstats_increment_state(hdr); 2576 } 2577 } 2578 } 2579 2580 void 2581 arc_space_consume(uint64_t space, arc_space_type_t type) 2582 { 2583 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2584 2585 switch (type) { 2586 default: 2587 break; 2588 case ARC_SPACE_DATA: 2589 ARCSTAT_INCR(arcstat_data_size, space); 2590 break; 2591 case ARC_SPACE_META: 2592 ARCSTAT_INCR(arcstat_metadata_size, space); 2593 break; 2594 case ARC_SPACE_BONUS: 2595 ARCSTAT_INCR(arcstat_bonus_size, space); 2596 break; 2597 case ARC_SPACE_DNODE: 2598 ARCSTAT_INCR(arcstat_dnode_size, space); 2599 break; 2600 case ARC_SPACE_DBUF: 2601 ARCSTAT_INCR(arcstat_dbuf_size, space); 2602 break; 2603 case ARC_SPACE_HDRS: 2604 ARCSTAT_INCR(arcstat_hdr_size, space); 2605 break; 2606 case ARC_SPACE_L2HDRS: 2607 aggsum_add(&arc_sums.arcstat_l2_hdr_size, space); 2608 break; 2609 case ARC_SPACE_ABD_CHUNK_WASTE: 2610 /* 2611 * Note: this includes space wasted by all scatter ABD's, not 2612 * just those allocated by the ARC. But the vast majority of 2613 * scatter ABD's come from the ARC, because other users are 2614 * very short-lived. 2615 */ 2616 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, space); 2617 break; 2618 } 2619 2620 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) 2621 ARCSTAT_INCR(arcstat_meta_used, space); 2622 2623 aggsum_add(&arc_sums.arcstat_size, space); 2624 } 2625 2626 void 2627 arc_space_return(uint64_t space, arc_space_type_t type) 2628 { 2629 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2630 2631 switch (type) { 2632 default: 2633 break; 2634 case ARC_SPACE_DATA: 2635 ARCSTAT_INCR(arcstat_data_size, -space); 2636 break; 2637 case ARC_SPACE_META: 2638 ARCSTAT_INCR(arcstat_metadata_size, -space); 2639 break; 2640 case ARC_SPACE_BONUS: 2641 ARCSTAT_INCR(arcstat_bonus_size, -space); 2642 break; 2643 case ARC_SPACE_DNODE: 2644 ARCSTAT_INCR(arcstat_dnode_size, -space); 2645 break; 2646 case ARC_SPACE_DBUF: 2647 ARCSTAT_INCR(arcstat_dbuf_size, -space); 2648 break; 2649 case ARC_SPACE_HDRS: 2650 ARCSTAT_INCR(arcstat_hdr_size, -space); 2651 break; 2652 case ARC_SPACE_L2HDRS: 2653 aggsum_add(&arc_sums.arcstat_l2_hdr_size, -space); 2654 break; 2655 case ARC_SPACE_ABD_CHUNK_WASTE: 2656 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, -space); 2657 break; 2658 } 2659 2660 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) 2661 ARCSTAT_INCR(arcstat_meta_used, -space); 2662 2663 ASSERT(aggsum_compare(&arc_sums.arcstat_size, space) >= 0); 2664 aggsum_add(&arc_sums.arcstat_size, -space); 2665 } 2666 2667 /* 2668 * Given a hdr and a buf, returns whether that buf can share its b_data buffer 2669 * with the hdr's b_pabd. 2670 */ 2671 static boolean_t 2672 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2673 { 2674 /* 2675 * The criteria for sharing a hdr's data are: 2676 * 1. the buffer is not encrypted 2677 * 2. the hdr's compression matches the buf's compression 2678 * 3. the hdr doesn't need to be byteswapped 2679 * 4. the hdr isn't already being shared 2680 * 5. the buf is either compressed or it is the last buf in the hdr list 2681 * 2682 * Criterion #5 maintains the invariant that shared uncompressed 2683 * bufs must be the final buf in the hdr's b_buf list. Reading this, you 2684 * might ask, "if a compressed buf is allocated first, won't that be the 2685 * last thing in the list?", but in that case it's impossible to create 2686 * a shared uncompressed buf anyway (because the hdr must be compressed 2687 * to have the compressed buf). You might also think that #3 is 2688 * sufficient to make this guarantee, however it's possible 2689 * (specifically in the rare L2ARC write race mentioned in 2690 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that 2691 * is shareable, but wasn't at the time of its allocation. Rather than 2692 * allow a new shared uncompressed buf to be created and then shuffle 2693 * the list around to make it the last element, this simply disallows 2694 * sharing if the new buf isn't the first to be added. 2695 */ 2696 ASSERT3P(buf->b_hdr, ==, hdr); 2697 boolean_t hdr_compressed = 2698 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF; 2699 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0; 2700 return (!ARC_BUF_ENCRYPTED(buf) && 2701 buf_compressed == hdr_compressed && 2702 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && 2703 !HDR_SHARED_DATA(hdr) && 2704 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf))); 2705 } 2706 2707 /* 2708 * Allocate a buf for this hdr. If you care about the data that's in the hdr, 2709 * or if you want a compressed buffer, pass those flags in. Returns 0 if the 2710 * copy was made successfully, or an error code otherwise. 2711 */ 2712 static int 2713 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb, 2714 const void *tag, boolean_t encrypted, boolean_t compressed, 2715 boolean_t noauth, boolean_t fill, arc_buf_t **ret) 2716 { 2717 arc_buf_t *buf; 2718 arc_fill_flags_t flags = ARC_FILL_LOCKED; 2719 2720 ASSERT(HDR_HAS_L1HDR(hdr)); 2721 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2722 VERIFY(hdr->b_type == ARC_BUFC_DATA || 2723 hdr->b_type == ARC_BUFC_METADATA); 2724 ASSERT3P(ret, !=, NULL); 2725 ASSERT3P(*ret, ==, NULL); 2726 IMPLY(encrypted, compressed); 2727 2728 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2729 buf->b_hdr = hdr; 2730 buf->b_data = NULL; 2731 buf->b_next = hdr->b_l1hdr.b_buf; 2732 buf->b_flags = 0; 2733 2734 add_reference(hdr, tag); 2735 2736 /* 2737 * We're about to change the hdr's b_flags. We must either 2738 * hold the hash_lock or be undiscoverable. 2739 */ 2740 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2741 2742 /* 2743 * Only honor requests for compressed bufs if the hdr is actually 2744 * compressed. This must be overridden if the buffer is encrypted since 2745 * encrypted buffers cannot be decompressed. 2746 */ 2747 if (encrypted) { 2748 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2749 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED; 2750 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED; 2751 } else if (compressed && 2752 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 2753 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2754 flags |= ARC_FILL_COMPRESSED; 2755 } 2756 2757 if (noauth) { 2758 ASSERT0(encrypted); 2759 flags |= ARC_FILL_NOAUTH; 2760 } 2761 2762 /* 2763 * If the hdr's data can be shared then we share the data buffer and 2764 * set the appropriate bit in the hdr's b_flags to indicate the hdr is 2765 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new 2766 * buffer to store the buf's data. 2767 * 2768 * There are two additional restrictions here because we're sharing 2769 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be 2770 * actively involved in an L2ARC write, because if this buf is used by 2771 * an arc_write() then the hdr's data buffer will be released when the 2772 * write completes, even though the L2ARC write might still be using it. 2773 * Second, the hdr's ABD must be linear so that the buf's user doesn't 2774 * need to be ABD-aware. It must be allocated via 2775 * zio_[data_]buf_alloc(), not as a page, because we need to be able 2776 * to abd_release_ownership_of_buf(), which isn't allowed on "linear 2777 * page" buffers because the ABD code needs to handle freeing them 2778 * specially. 2779 */ 2780 boolean_t can_share = arc_can_share(hdr, buf) && 2781 !HDR_L2_WRITING(hdr) && 2782 hdr->b_l1hdr.b_pabd != NULL && 2783 abd_is_linear(hdr->b_l1hdr.b_pabd) && 2784 !abd_is_linear_page(hdr->b_l1hdr.b_pabd); 2785 2786 /* Set up b_data and sharing */ 2787 if (can_share) { 2788 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd); 2789 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2790 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2791 } else { 2792 buf->b_data = 2793 arc_get_data_buf(hdr, arc_buf_size(buf), buf); 2794 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2795 } 2796 VERIFY3P(buf->b_data, !=, NULL); 2797 2798 hdr->b_l1hdr.b_buf = buf; 2799 2800 /* 2801 * If the user wants the data from the hdr, we need to either copy or 2802 * decompress the data. 2803 */ 2804 if (fill) { 2805 ASSERT3P(zb, !=, NULL); 2806 return (arc_buf_fill(buf, spa, zb, flags)); 2807 } 2808 2809 return (0); 2810 } 2811 2812 static const char *arc_onloan_tag = "onloan"; 2813 2814 static inline void 2815 arc_loaned_bytes_update(int64_t delta) 2816 { 2817 atomic_add_64(&arc_loaned_bytes, delta); 2818 2819 /* assert that it did not wrap around */ 2820 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 2821 } 2822 2823 /* 2824 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 2825 * flight data by arc_tempreserve_space() until they are "returned". Loaned 2826 * buffers must be returned to the arc before they can be used by the DMU or 2827 * freed. 2828 */ 2829 arc_buf_t * 2830 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size) 2831 { 2832 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag, 2833 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size); 2834 2835 arc_loaned_bytes_update(arc_buf_size(buf)); 2836 2837 return (buf); 2838 } 2839 2840 arc_buf_t * 2841 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize, 2842 enum zio_compress compression_type, uint8_t complevel) 2843 { 2844 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag, 2845 psize, lsize, compression_type, complevel); 2846 2847 arc_loaned_bytes_update(arc_buf_size(buf)); 2848 2849 return (buf); 2850 } 2851 2852 arc_buf_t * 2853 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder, 2854 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 2855 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 2856 enum zio_compress compression_type, uint8_t complevel) 2857 { 2858 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj, 2859 byteorder, salt, iv, mac, ot, psize, lsize, compression_type, 2860 complevel); 2861 2862 atomic_add_64(&arc_loaned_bytes, psize); 2863 return (buf); 2864 } 2865 2866 2867 /* 2868 * Return a loaned arc buffer to the arc. 2869 */ 2870 void 2871 arc_return_buf(arc_buf_t *buf, const void *tag) 2872 { 2873 arc_buf_hdr_t *hdr = buf->b_hdr; 2874 2875 ASSERT3P(buf->b_data, !=, NULL); 2876 ASSERT(HDR_HAS_L1HDR(hdr)); 2877 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 2878 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2879 2880 arc_loaned_bytes_update(-arc_buf_size(buf)); 2881 } 2882 2883 /* Detach an arc_buf from a dbuf (tag) */ 2884 void 2885 arc_loan_inuse_buf(arc_buf_t *buf, const void *tag) 2886 { 2887 arc_buf_hdr_t *hdr = buf->b_hdr; 2888 2889 ASSERT3P(buf->b_data, !=, NULL); 2890 ASSERT(HDR_HAS_L1HDR(hdr)); 2891 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2892 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 2893 2894 arc_loaned_bytes_update(arc_buf_size(buf)); 2895 } 2896 2897 static void 2898 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type) 2899 { 2900 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); 2901 2902 df->l2df_abd = abd; 2903 df->l2df_size = size; 2904 df->l2df_type = type; 2905 mutex_enter(&l2arc_free_on_write_mtx); 2906 list_insert_head(l2arc_free_on_write, df); 2907 mutex_exit(&l2arc_free_on_write_mtx); 2908 } 2909 2910 static void 2911 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata) 2912 { 2913 arc_state_t *state = hdr->b_l1hdr.b_state; 2914 arc_buf_contents_t type = arc_buf_type(hdr); 2915 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 2916 2917 /* protected by hash lock, if in the hash table */ 2918 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2919 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2920 ASSERT(state != arc_anon && state != arc_l2c_only); 2921 2922 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2923 size, hdr); 2924 } 2925 (void) zfs_refcount_remove_many(&state->arcs_size[type], size, hdr); 2926 if (type == ARC_BUFC_METADATA) { 2927 arc_space_return(size, ARC_SPACE_META); 2928 } else { 2929 ASSERT(type == ARC_BUFC_DATA); 2930 arc_space_return(size, ARC_SPACE_DATA); 2931 } 2932 2933 if (free_rdata) { 2934 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type); 2935 } else { 2936 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type); 2937 } 2938 } 2939 2940 /* 2941 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the 2942 * data buffer, we transfer the refcount ownership to the hdr and update 2943 * the appropriate kstats. 2944 */ 2945 static void 2946 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2947 { 2948 ASSERT(arc_can_share(hdr, buf)); 2949 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2950 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 2951 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2952 2953 /* 2954 * Start sharing the data buffer. We transfer the 2955 * refcount ownership to the hdr since it always owns 2956 * the refcount whenever an arc_buf_t is shared. 2957 */ 2958 zfs_refcount_transfer_ownership_many( 2959 &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)], 2960 arc_hdr_size(hdr), buf, hdr); 2961 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf)); 2962 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd, 2963 HDR_ISTYPE_METADATA(hdr)); 2964 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2965 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2966 2967 /* 2968 * Since we've transferred ownership to the hdr we need 2969 * to increment its compressed and uncompressed kstats and 2970 * decrement the overhead size. 2971 */ 2972 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 2973 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 2974 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf)); 2975 } 2976 2977 static void 2978 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2979 { 2980 ASSERT(arc_buf_is_shared(buf)); 2981 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2982 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2983 2984 /* 2985 * We are no longer sharing this buffer so we need 2986 * to transfer its ownership to the rightful owner. 2987 */ 2988 zfs_refcount_transfer_ownership_many( 2989 &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)], 2990 arc_hdr_size(hdr), hdr, buf); 2991 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2992 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd); 2993 abd_free(hdr->b_l1hdr.b_pabd); 2994 hdr->b_l1hdr.b_pabd = NULL; 2995 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 2996 2997 /* 2998 * Since the buffer is no longer shared between 2999 * the arc buf and the hdr, count it as overhead. 3000 */ 3001 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 3002 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3003 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 3004 } 3005 3006 /* 3007 * Remove an arc_buf_t from the hdr's buf list and return the last 3008 * arc_buf_t on the list. If no buffers remain on the list then return 3009 * NULL. 3010 */ 3011 static arc_buf_t * 3012 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf) 3013 { 3014 ASSERT(HDR_HAS_L1HDR(hdr)); 3015 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3016 3017 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf; 3018 arc_buf_t *lastbuf = NULL; 3019 3020 /* 3021 * Remove the buf from the hdr list and locate the last 3022 * remaining buffer on the list. 3023 */ 3024 while (*bufp != NULL) { 3025 if (*bufp == buf) 3026 *bufp = buf->b_next; 3027 3028 /* 3029 * If we've removed a buffer in the middle of 3030 * the list then update the lastbuf and update 3031 * bufp. 3032 */ 3033 if (*bufp != NULL) { 3034 lastbuf = *bufp; 3035 bufp = &(*bufp)->b_next; 3036 } 3037 } 3038 buf->b_next = NULL; 3039 ASSERT3P(lastbuf, !=, buf); 3040 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf)); 3041 3042 return (lastbuf); 3043 } 3044 3045 /* 3046 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's 3047 * list and free it. 3048 */ 3049 static void 3050 arc_buf_destroy_impl(arc_buf_t *buf) 3051 { 3052 arc_buf_hdr_t *hdr = buf->b_hdr; 3053 3054 /* 3055 * Free up the data associated with the buf but only if we're not 3056 * sharing this with the hdr. If we are sharing it with the hdr, the 3057 * hdr is responsible for doing the free. 3058 */ 3059 if (buf->b_data != NULL) { 3060 /* 3061 * We're about to change the hdr's b_flags. We must either 3062 * hold the hash_lock or be undiscoverable. 3063 */ 3064 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3065 3066 arc_cksum_verify(buf); 3067 arc_buf_unwatch(buf); 3068 3069 if (ARC_BUF_SHARED(buf)) { 3070 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3071 } else { 3072 ASSERT(!arc_buf_is_shared(buf)); 3073 uint64_t size = arc_buf_size(buf); 3074 arc_free_data_buf(hdr, buf->b_data, size, buf); 3075 ARCSTAT_INCR(arcstat_overhead_size, -size); 3076 } 3077 buf->b_data = NULL; 3078 3079 /* 3080 * If we have no more encrypted buffers and we've already 3081 * gotten a copy of the decrypted data we can free b_rabd 3082 * to save some space. 3083 */ 3084 if (ARC_BUF_ENCRYPTED(buf) && HDR_HAS_RABD(hdr) && 3085 hdr->b_l1hdr.b_pabd != NULL && !HDR_IO_IN_PROGRESS(hdr)) { 3086 arc_buf_t *b; 3087 for (b = hdr->b_l1hdr.b_buf; b; b = b->b_next) { 3088 if (b != buf && ARC_BUF_ENCRYPTED(b)) 3089 break; 3090 } 3091 if (b == NULL) 3092 arc_hdr_free_abd(hdr, B_TRUE); 3093 } 3094 } 3095 3096 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 3097 3098 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 3099 /* 3100 * If the current arc_buf_t is sharing its data buffer with the 3101 * hdr, then reassign the hdr's b_pabd to share it with the new 3102 * buffer at the end of the list. The shared buffer is always 3103 * the last one on the hdr's buffer list. 3104 * 3105 * There is an equivalent case for compressed bufs, but since 3106 * they aren't guaranteed to be the last buf in the list and 3107 * that is an exceedingly rare case, we just allow that space be 3108 * wasted temporarily. We must also be careful not to share 3109 * encrypted buffers, since they cannot be shared. 3110 */ 3111 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) { 3112 /* Only one buf can be shared at once */ 3113 ASSERT(!arc_buf_is_shared(lastbuf)); 3114 /* hdr is uncompressed so can't have compressed buf */ 3115 ASSERT(!ARC_BUF_COMPRESSED(lastbuf)); 3116 3117 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3118 arc_hdr_free_abd(hdr, B_FALSE); 3119 3120 /* 3121 * We must setup a new shared block between the 3122 * last buffer and the hdr. The data would have 3123 * been allocated by the arc buf so we need to transfer 3124 * ownership to the hdr since it's now being shared. 3125 */ 3126 arc_share_buf(hdr, lastbuf); 3127 } 3128 } else if (HDR_SHARED_DATA(hdr)) { 3129 /* 3130 * Uncompressed shared buffers are always at the end 3131 * of the list. Compressed buffers don't have the 3132 * same requirements. This makes it hard to 3133 * simply assert that the lastbuf is shared so 3134 * we rely on the hdr's compression flags to determine 3135 * if we have a compressed, shared buffer. 3136 */ 3137 ASSERT3P(lastbuf, !=, NULL); 3138 ASSERT(arc_buf_is_shared(lastbuf) || 3139 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 3140 } 3141 3142 /* 3143 * Free the checksum if we're removing the last uncompressed buf from 3144 * this hdr. 3145 */ 3146 if (!arc_hdr_has_uncompressed_buf(hdr)) { 3147 arc_cksum_free(hdr); 3148 } 3149 3150 /* clean up the buf */ 3151 buf->b_hdr = NULL; 3152 kmem_cache_free(buf_cache, buf); 3153 } 3154 3155 static void 3156 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags) 3157 { 3158 uint64_t size; 3159 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0); 3160 3161 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 3162 ASSERT(HDR_HAS_L1HDR(hdr)); 3163 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata); 3164 IMPLY(alloc_rdata, HDR_PROTECTED(hdr)); 3165 3166 if (alloc_rdata) { 3167 size = HDR_GET_PSIZE(hdr); 3168 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL); 3169 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr, 3170 alloc_flags); 3171 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL); 3172 ARCSTAT_INCR(arcstat_raw_size, size); 3173 } else { 3174 size = arc_hdr_size(hdr); 3175 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3176 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr, 3177 alloc_flags); 3178 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3179 } 3180 3181 ARCSTAT_INCR(arcstat_compressed_size, size); 3182 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3183 } 3184 3185 static void 3186 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata) 3187 { 3188 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 3189 3190 ASSERT(HDR_HAS_L1HDR(hdr)); 3191 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 3192 IMPLY(free_rdata, HDR_HAS_RABD(hdr)); 3193 3194 /* 3195 * If the hdr is currently being written to the l2arc then 3196 * we defer freeing the data by adding it to the l2arc_free_on_write 3197 * list. The l2arc will free the data once it's finished 3198 * writing it to the l2arc device. 3199 */ 3200 if (HDR_L2_WRITING(hdr)) { 3201 arc_hdr_free_on_write(hdr, free_rdata); 3202 ARCSTAT_BUMP(arcstat_l2_free_on_write); 3203 } else if (free_rdata) { 3204 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr); 3205 } else { 3206 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr); 3207 } 3208 3209 if (free_rdata) { 3210 hdr->b_crypt_hdr.b_rabd = NULL; 3211 ARCSTAT_INCR(arcstat_raw_size, -size); 3212 } else { 3213 hdr->b_l1hdr.b_pabd = NULL; 3214 } 3215 3216 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr)) 3217 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 3218 3219 ARCSTAT_INCR(arcstat_compressed_size, -size); 3220 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3221 } 3222 3223 /* 3224 * Allocate empty anonymous ARC header. The header will get its identity 3225 * assigned and buffers attached later as part of read or write operations. 3226 * 3227 * In case of read arc_read() assigns header its identify (b_dva + b_birth), 3228 * inserts it into ARC hash to become globally visible and allocates physical 3229 * (b_pabd) or raw (b_rabd) ABD buffer to read into from disk. On disk read 3230 * completion arc_read_done() allocates ARC buffer(s) as needed, potentially 3231 * sharing one of them with the physical ABD buffer. 3232 * 3233 * In case of write arc_alloc_buf() allocates ARC buffer to be filled with 3234 * data. Then after compression and/or encryption arc_write_ready() allocates 3235 * and fills (or potentially shares) physical (b_pabd) or raw (b_rabd) ABD 3236 * buffer. On disk write completion arc_write_done() assigns the header its 3237 * new identity (b_dva + b_birth) and inserts into ARC hash. 3238 * 3239 * In case of partial overwrite the old data is read first as described. Then 3240 * arc_release() either allocates new anonymous ARC header and moves the ARC 3241 * buffer to it, or reuses the old ARC header by discarding its identity and 3242 * removing it from ARC hash. After buffer modification normal write process 3243 * follows as described. 3244 */ 3245 static arc_buf_hdr_t * 3246 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, 3247 boolean_t protected, enum zio_compress compression_type, uint8_t complevel, 3248 arc_buf_contents_t type) 3249 { 3250 arc_buf_hdr_t *hdr; 3251 3252 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); 3253 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 3254 3255 ASSERT(HDR_EMPTY(hdr)); 3256 #ifdef ZFS_DEBUG 3257 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3258 #endif 3259 HDR_SET_PSIZE(hdr, psize); 3260 HDR_SET_LSIZE(hdr, lsize); 3261 hdr->b_spa = spa; 3262 hdr->b_type = type; 3263 hdr->b_flags = 0; 3264 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); 3265 arc_hdr_set_compress(hdr, compression_type); 3266 hdr->b_complevel = complevel; 3267 if (protected) 3268 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 3269 3270 hdr->b_l1hdr.b_state = arc_anon; 3271 hdr->b_l1hdr.b_arc_access = 0; 3272 hdr->b_l1hdr.b_mru_hits = 0; 3273 hdr->b_l1hdr.b_mru_ghost_hits = 0; 3274 hdr->b_l1hdr.b_mfu_hits = 0; 3275 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 3276 hdr->b_l1hdr.b_buf = NULL; 3277 3278 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3279 3280 return (hdr); 3281 } 3282 3283 /* 3284 * Transition between the two allocation states for the arc_buf_hdr struct. 3285 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 3286 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 3287 * version is used when a cache buffer is only in the L2ARC in order to reduce 3288 * memory usage. 3289 */ 3290 static arc_buf_hdr_t * 3291 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 3292 { 3293 ASSERT(HDR_HAS_L2HDR(hdr)); 3294 3295 arc_buf_hdr_t *nhdr; 3296 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3297 3298 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 3299 (old == hdr_l2only_cache && new == hdr_full_cache)); 3300 3301 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 3302 3303 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 3304 buf_hash_remove(hdr); 3305 3306 memcpy(nhdr, hdr, HDR_L2ONLY_SIZE); 3307 3308 if (new == hdr_full_cache) { 3309 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3310 /* 3311 * arc_access and arc_change_state need to be aware that a 3312 * header has just come out of L2ARC, so we set its state to 3313 * l2c_only even though it's about to change. 3314 */ 3315 nhdr->b_l1hdr.b_state = arc_l2c_only; 3316 3317 /* Verify previous threads set to NULL before freeing */ 3318 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL); 3319 ASSERT(!HDR_HAS_RABD(hdr)); 3320 } else { 3321 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3322 #ifdef ZFS_DEBUG 3323 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3324 #endif 3325 3326 /* 3327 * If we've reached here, We must have been called from 3328 * arc_evict_hdr(), as such we should have already been 3329 * removed from any ghost list we were previously on 3330 * (which protects us from racing with arc_evict_state), 3331 * thus no locking is needed during this check. 3332 */ 3333 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3334 3335 /* 3336 * A buffer must not be moved into the arc_l2c_only 3337 * state if it's not finished being written out to the 3338 * l2arc device. Otherwise, the b_l1hdr.b_pabd field 3339 * might try to be accessed, even though it was removed. 3340 */ 3341 VERIFY(!HDR_L2_WRITING(hdr)); 3342 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3343 ASSERT(!HDR_HAS_RABD(hdr)); 3344 3345 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3346 } 3347 /* 3348 * The header has been reallocated so we need to re-insert it into any 3349 * lists it was on. 3350 */ 3351 (void) buf_hash_insert(nhdr, NULL); 3352 3353 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 3354 3355 mutex_enter(&dev->l2ad_mtx); 3356 3357 /* 3358 * We must place the realloc'ed header back into the list at 3359 * the same spot. Otherwise, if it's placed earlier in the list, 3360 * l2arc_write_buffers() could find it during the function's 3361 * write phase, and try to write it out to the l2arc. 3362 */ 3363 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 3364 list_remove(&dev->l2ad_buflist, hdr); 3365 3366 mutex_exit(&dev->l2ad_mtx); 3367 3368 /* 3369 * Since we're using the pointer address as the tag when 3370 * incrementing and decrementing the l2ad_alloc refcount, we 3371 * must remove the old pointer (that we're about to destroy) and 3372 * add the new pointer to the refcount. Otherwise we'd remove 3373 * the wrong pointer address when calling arc_hdr_destroy() later. 3374 */ 3375 3376 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 3377 arc_hdr_size(hdr), hdr); 3378 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 3379 arc_hdr_size(nhdr), nhdr); 3380 3381 buf_discard_identity(hdr); 3382 kmem_cache_free(old, hdr); 3383 3384 return (nhdr); 3385 } 3386 3387 /* 3388 * This function is used by the send / receive code to convert a newly 3389 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It 3390 * is also used to allow the root objset block to be updated without altering 3391 * its embedded MACs. Both block types will always be uncompressed so we do not 3392 * have to worry about compression type or psize. 3393 */ 3394 void 3395 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder, 3396 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv, 3397 const uint8_t *mac) 3398 { 3399 arc_buf_hdr_t *hdr = buf->b_hdr; 3400 3401 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET); 3402 ASSERT(HDR_HAS_L1HDR(hdr)); 3403 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3404 3405 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED); 3406 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 3407 hdr->b_crypt_hdr.b_dsobj = dsobj; 3408 hdr->b_crypt_hdr.b_ot = ot; 3409 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3410 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3411 if (!arc_hdr_has_uncompressed_buf(hdr)) 3412 arc_cksum_free(hdr); 3413 3414 if (salt != NULL) 3415 memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN); 3416 if (iv != NULL) 3417 memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN); 3418 if (mac != NULL) 3419 memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN); 3420 } 3421 3422 /* 3423 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. 3424 * The buf is returned thawed since we expect the consumer to modify it. 3425 */ 3426 arc_buf_t * 3427 arc_alloc_buf(spa_t *spa, const void *tag, arc_buf_contents_t type, 3428 int32_t size) 3429 { 3430 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, 3431 B_FALSE, ZIO_COMPRESS_OFF, 0, type); 3432 3433 arc_buf_t *buf = NULL; 3434 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE, 3435 B_FALSE, B_FALSE, &buf)); 3436 arc_buf_thaw(buf); 3437 3438 return (buf); 3439 } 3440 3441 /* 3442 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this 3443 * for bufs containing metadata. 3444 */ 3445 arc_buf_t * 3446 arc_alloc_compressed_buf(spa_t *spa, const void *tag, uint64_t psize, 3447 uint64_t lsize, enum zio_compress compression_type, uint8_t complevel) 3448 { 3449 ASSERT3U(lsize, >, 0); 3450 ASSERT3U(lsize, >=, psize); 3451 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF); 3452 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3453 3454 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 3455 B_FALSE, compression_type, complevel, ARC_BUFC_DATA); 3456 3457 arc_buf_t *buf = NULL; 3458 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, 3459 B_TRUE, B_FALSE, B_FALSE, &buf)); 3460 arc_buf_thaw(buf); 3461 3462 /* 3463 * To ensure that the hdr has the correct data in it if we call 3464 * arc_untransform() on this buf before it's been written to disk, 3465 * it's easiest if we just set up sharing between the buf and the hdr. 3466 */ 3467 arc_share_buf(hdr, buf); 3468 3469 return (buf); 3470 } 3471 3472 arc_buf_t * 3473 arc_alloc_raw_buf(spa_t *spa, const void *tag, uint64_t dsobj, 3474 boolean_t byteorder, const uint8_t *salt, const uint8_t *iv, 3475 const uint8_t *mac, dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 3476 enum zio_compress compression_type, uint8_t complevel) 3477 { 3478 arc_buf_hdr_t *hdr; 3479 arc_buf_t *buf; 3480 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ? 3481 ARC_BUFC_METADATA : ARC_BUFC_DATA; 3482 3483 ASSERT3U(lsize, >, 0); 3484 ASSERT3U(lsize, >=, psize); 3485 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF); 3486 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3487 3488 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE, 3489 compression_type, complevel, type); 3490 3491 hdr->b_crypt_hdr.b_dsobj = dsobj; 3492 hdr->b_crypt_hdr.b_ot = ot; 3493 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3494 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3495 memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN); 3496 memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN); 3497 memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN); 3498 3499 /* 3500 * This buffer will be considered encrypted even if the ot is not an 3501 * encrypted type. It will become authenticated instead in 3502 * arc_write_ready(). 3503 */ 3504 buf = NULL; 3505 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE, 3506 B_FALSE, B_FALSE, &buf)); 3507 arc_buf_thaw(buf); 3508 3509 return (buf); 3510 } 3511 3512 static void 3513 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 3514 boolean_t state_only) 3515 { 3516 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3517 l2arc_dev_t *dev = l2hdr->b_dev; 3518 uint64_t lsize = HDR_GET_LSIZE(hdr); 3519 uint64_t psize = HDR_GET_PSIZE(hdr); 3520 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3521 arc_buf_contents_t type = hdr->b_type; 3522 int64_t lsize_s; 3523 int64_t psize_s; 3524 int64_t asize_s; 3525 3526 if (incr) { 3527 lsize_s = lsize; 3528 psize_s = psize; 3529 asize_s = asize; 3530 } else { 3531 lsize_s = -lsize; 3532 psize_s = -psize; 3533 asize_s = -asize; 3534 } 3535 3536 /* If the buffer is a prefetch, count it as such. */ 3537 if (HDR_PREFETCH(hdr)) { 3538 ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s); 3539 } else { 3540 /* 3541 * We use the value stored in the L2 header upon initial 3542 * caching in L2ARC. This value will be updated in case 3543 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC 3544 * metadata (log entry) cannot currently be updated. Having 3545 * the ARC state in the L2 header solves the problem of a 3546 * possibly absent L1 header (apparent in buffers restored 3547 * from persistent L2ARC). 3548 */ 3549 switch (hdr->b_l2hdr.b_arcs_state) { 3550 case ARC_STATE_MRU_GHOST: 3551 case ARC_STATE_MRU: 3552 ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s); 3553 break; 3554 case ARC_STATE_MFU_GHOST: 3555 case ARC_STATE_MFU: 3556 ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s); 3557 break; 3558 default: 3559 break; 3560 } 3561 } 3562 3563 if (state_only) 3564 return; 3565 3566 ARCSTAT_INCR(arcstat_l2_psize, psize_s); 3567 ARCSTAT_INCR(arcstat_l2_lsize, lsize_s); 3568 3569 switch (type) { 3570 case ARC_BUFC_DATA: 3571 ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s); 3572 break; 3573 case ARC_BUFC_METADATA: 3574 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s); 3575 break; 3576 default: 3577 break; 3578 } 3579 } 3580 3581 3582 static void 3583 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 3584 { 3585 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3586 l2arc_dev_t *dev = l2hdr->b_dev; 3587 uint64_t psize = HDR_GET_PSIZE(hdr); 3588 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3589 3590 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 3591 ASSERT(HDR_HAS_L2HDR(hdr)); 3592 3593 list_remove(&dev->l2ad_buflist, hdr); 3594 3595 l2arc_hdr_arcstats_decrement(hdr); 3596 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); 3597 3598 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), 3599 hdr); 3600 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 3601 } 3602 3603 static void 3604 arc_hdr_destroy(arc_buf_hdr_t *hdr) 3605 { 3606 if (HDR_HAS_L1HDR(hdr)) { 3607 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3608 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3609 } 3610 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3611 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 3612 3613 if (HDR_HAS_L2HDR(hdr)) { 3614 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3615 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 3616 3617 if (!buflist_held) 3618 mutex_enter(&dev->l2ad_mtx); 3619 3620 /* 3621 * Even though we checked this conditional above, we 3622 * need to check this again now that we have the 3623 * l2ad_mtx. This is because we could be racing with 3624 * another thread calling l2arc_evict() which might have 3625 * destroyed this header's L2 portion as we were waiting 3626 * to acquire the l2ad_mtx. If that happens, we don't 3627 * want to re-destroy the header's L2 portion. 3628 */ 3629 if (HDR_HAS_L2HDR(hdr)) { 3630 3631 if (!HDR_EMPTY(hdr)) 3632 buf_discard_identity(hdr); 3633 3634 arc_hdr_l2hdr_destroy(hdr); 3635 } 3636 3637 if (!buflist_held) 3638 mutex_exit(&dev->l2ad_mtx); 3639 } 3640 3641 /* 3642 * The header's identify can only be safely discarded once it is no 3643 * longer discoverable. This requires removing it from the hash table 3644 * and the l2arc header list. After this point the hash lock can not 3645 * be used to protect the header. 3646 */ 3647 if (!HDR_EMPTY(hdr)) 3648 buf_discard_identity(hdr); 3649 3650 if (HDR_HAS_L1HDR(hdr)) { 3651 arc_cksum_free(hdr); 3652 3653 while (hdr->b_l1hdr.b_buf != NULL) 3654 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf); 3655 3656 if (hdr->b_l1hdr.b_pabd != NULL) 3657 arc_hdr_free_abd(hdr, B_FALSE); 3658 3659 if (HDR_HAS_RABD(hdr)) 3660 arc_hdr_free_abd(hdr, B_TRUE); 3661 } 3662 3663 ASSERT3P(hdr->b_hash_next, ==, NULL); 3664 if (HDR_HAS_L1HDR(hdr)) { 3665 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3666 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 3667 #ifdef ZFS_DEBUG 3668 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3669 #endif 3670 kmem_cache_free(hdr_full_cache, hdr); 3671 } else { 3672 kmem_cache_free(hdr_l2only_cache, hdr); 3673 } 3674 } 3675 3676 void 3677 arc_buf_destroy(arc_buf_t *buf, const void *tag) 3678 { 3679 arc_buf_hdr_t *hdr = buf->b_hdr; 3680 3681 if (hdr->b_l1hdr.b_state == arc_anon) { 3682 ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf); 3683 ASSERT(ARC_BUF_LAST(buf)); 3684 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3685 VERIFY0(remove_reference(hdr, tag)); 3686 return; 3687 } 3688 3689 kmutex_t *hash_lock = HDR_LOCK(hdr); 3690 mutex_enter(hash_lock); 3691 3692 ASSERT3P(hdr, ==, buf->b_hdr); 3693 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL); 3694 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3695 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); 3696 ASSERT3P(buf->b_data, !=, NULL); 3697 3698 arc_buf_destroy_impl(buf); 3699 (void) remove_reference(hdr, tag); 3700 mutex_exit(hash_lock); 3701 } 3702 3703 /* 3704 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 3705 * state of the header is dependent on its state prior to entering this 3706 * function. The following transitions are possible: 3707 * 3708 * - arc_mru -> arc_mru_ghost 3709 * - arc_mfu -> arc_mfu_ghost 3710 * - arc_mru_ghost -> arc_l2c_only 3711 * - arc_mru_ghost -> deleted 3712 * - arc_mfu_ghost -> arc_l2c_only 3713 * - arc_mfu_ghost -> deleted 3714 * - arc_uncached -> deleted 3715 * 3716 * Return total size of evicted data buffers for eviction progress tracking. 3717 * When evicting from ghost states return logical buffer size to make eviction 3718 * progress at the same (or at least comparable) rate as from non-ghost states. 3719 * 3720 * Return *real_evicted for actual ARC size reduction to wake up threads 3721 * waiting for it. For non-ghost states it includes size of evicted data 3722 * buffers (the headers are not freed there). For ghost states it includes 3723 * only the evicted headers size. 3724 */ 3725 static int64_t 3726 arc_evict_hdr(arc_buf_hdr_t *hdr, uint64_t *real_evicted) 3727 { 3728 arc_state_t *evicted_state, *state; 3729 int64_t bytes_evicted = 0; 3730 uint_t min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ? 3731 arc_min_prescient_prefetch_ms : arc_min_prefetch_ms; 3732 3733 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 3734 ASSERT(HDR_HAS_L1HDR(hdr)); 3735 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3736 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3737 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3738 3739 *real_evicted = 0; 3740 state = hdr->b_l1hdr.b_state; 3741 if (GHOST_STATE(state)) { 3742 3743 /* 3744 * l2arc_write_buffers() relies on a header's L1 portion 3745 * (i.e. its b_pabd field) during it's write phase. 3746 * Thus, we cannot push a header onto the arc_l2c_only 3747 * state (removing its L1 piece) until the header is 3748 * done being written to the l2arc. 3749 */ 3750 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 3751 ARCSTAT_BUMP(arcstat_evict_l2_skip); 3752 return (bytes_evicted); 3753 } 3754 3755 ARCSTAT_BUMP(arcstat_deleted); 3756 bytes_evicted += HDR_GET_LSIZE(hdr); 3757 3758 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 3759 3760 if (HDR_HAS_L2HDR(hdr)) { 3761 ASSERT(hdr->b_l1hdr.b_pabd == NULL); 3762 ASSERT(!HDR_HAS_RABD(hdr)); 3763 /* 3764 * This buffer is cached on the 2nd Level ARC; 3765 * don't destroy the header. 3766 */ 3767 arc_change_state(arc_l2c_only, hdr); 3768 /* 3769 * dropping from L1+L2 cached to L2-only, 3770 * realloc to remove the L1 header. 3771 */ 3772 (void) arc_hdr_realloc(hdr, hdr_full_cache, 3773 hdr_l2only_cache); 3774 *real_evicted += HDR_FULL_SIZE - HDR_L2ONLY_SIZE; 3775 } else { 3776 arc_change_state(arc_anon, hdr); 3777 arc_hdr_destroy(hdr); 3778 *real_evicted += HDR_FULL_SIZE; 3779 } 3780 return (bytes_evicted); 3781 } 3782 3783 ASSERT(state == arc_mru || state == arc_mfu || state == arc_uncached); 3784 evicted_state = (state == arc_uncached) ? arc_anon : 3785 ((state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost); 3786 3787 /* prefetch buffers have a minimum lifespan */ 3788 if ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 3789 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < 3790 MSEC_TO_TICK(min_lifetime)) { 3791 ARCSTAT_BUMP(arcstat_evict_skip); 3792 return (bytes_evicted); 3793 } 3794 3795 if (HDR_HAS_L2HDR(hdr)) { 3796 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); 3797 } else { 3798 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 3799 ARCSTAT_INCR(arcstat_evict_l2_eligible, 3800 HDR_GET_LSIZE(hdr)); 3801 3802 switch (state->arcs_state) { 3803 case ARC_STATE_MRU: 3804 ARCSTAT_INCR( 3805 arcstat_evict_l2_eligible_mru, 3806 HDR_GET_LSIZE(hdr)); 3807 break; 3808 case ARC_STATE_MFU: 3809 ARCSTAT_INCR( 3810 arcstat_evict_l2_eligible_mfu, 3811 HDR_GET_LSIZE(hdr)); 3812 break; 3813 default: 3814 break; 3815 } 3816 } else { 3817 ARCSTAT_INCR(arcstat_evict_l2_ineligible, 3818 HDR_GET_LSIZE(hdr)); 3819 } 3820 } 3821 3822 bytes_evicted += arc_hdr_size(hdr); 3823 *real_evicted += arc_hdr_size(hdr); 3824 3825 /* 3826 * If this hdr is being evicted and has a compressed buffer then we 3827 * discard it here before we change states. This ensures that the 3828 * accounting is updated correctly in arc_free_data_impl(). 3829 */ 3830 if (hdr->b_l1hdr.b_pabd != NULL) 3831 arc_hdr_free_abd(hdr, B_FALSE); 3832 3833 if (HDR_HAS_RABD(hdr)) 3834 arc_hdr_free_abd(hdr, B_TRUE); 3835 3836 arc_change_state(evicted_state, hdr); 3837 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 3838 if (evicted_state == arc_anon) { 3839 arc_hdr_destroy(hdr); 3840 *real_evicted += HDR_FULL_SIZE; 3841 } else { 3842 ASSERT(HDR_IN_HASH_TABLE(hdr)); 3843 } 3844 3845 return (bytes_evicted); 3846 } 3847 3848 static void 3849 arc_set_need_free(void) 3850 { 3851 ASSERT(MUTEX_HELD(&arc_evict_lock)); 3852 int64_t remaining = arc_free_memory() - arc_sys_free / 2; 3853 arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters); 3854 if (aw == NULL) { 3855 arc_need_free = MAX(-remaining, 0); 3856 } else { 3857 arc_need_free = 3858 MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count)); 3859 } 3860 } 3861 3862 static uint64_t 3863 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 3864 uint64_t spa, uint64_t bytes) 3865 { 3866 multilist_sublist_t *mls; 3867 uint64_t bytes_evicted = 0, real_evicted = 0; 3868 arc_buf_hdr_t *hdr; 3869 kmutex_t *hash_lock; 3870 uint_t evict_count = zfs_arc_evict_batch_limit; 3871 3872 ASSERT3P(marker, !=, NULL); 3873 3874 mls = multilist_sublist_lock_idx(ml, idx); 3875 3876 for (hdr = multilist_sublist_prev(mls, marker); likely(hdr != NULL); 3877 hdr = multilist_sublist_prev(mls, marker)) { 3878 if ((evict_count == 0) || (bytes_evicted >= bytes)) 3879 break; 3880 3881 /* 3882 * To keep our iteration location, move the marker 3883 * forward. Since we're not holding hdr's hash lock, we 3884 * must be very careful and not remove 'hdr' from the 3885 * sublist. Otherwise, other consumers might mistake the 3886 * 'hdr' as not being on a sublist when they call the 3887 * multilist_link_active() function (they all rely on 3888 * the hash lock protecting concurrent insertions and 3889 * removals). multilist_sublist_move_forward() was 3890 * specifically implemented to ensure this is the case 3891 * (only 'marker' will be removed and re-inserted). 3892 */ 3893 multilist_sublist_move_forward(mls, marker); 3894 3895 /* 3896 * The only case where the b_spa field should ever be 3897 * zero, is the marker headers inserted by 3898 * arc_evict_state(). It's possible for multiple threads 3899 * to be calling arc_evict_state() concurrently (e.g. 3900 * dsl_pool_close() and zio_inject_fault()), so we must 3901 * skip any markers we see from these other threads. 3902 */ 3903 if (hdr->b_spa == 0) 3904 continue; 3905 3906 /* we're only interested in evicting buffers of a certain spa */ 3907 if (spa != 0 && hdr->b_spa != spa) { 3908 ARCSTAT_BUMP(arcstat_evict_skip); 3909 continue; 3910 } 3911 3912 hash_lock = HDR_LOCK(hdr); 3913 3914 /* 3915 * We aren't calling this function from any code path 3916 * that would already be holding a hash lock, so we're 3917 * asserting on this assumption to be defensive in case 3918 * this ever changes. Without this check, it would be 3919 * possible to incorrectly increment arcstat_mutex_miss 3920 * below (e.g. if the code changed such that we called 3921 * this function with a hash lock held). 3922 */ 3923 ASSERT(!MUTEX_HELD(hash_lock)); 3924 3925 if (mutex_tryenter(hash_lock)) { 3926 uint64_t revicted; 3927 uint64_t evicted = arc_evict_hdr(hdr, &revicted); 3928 mutex_exit(hash_lock); 3929 3930 bytes_evicted += evicted; 3931 real_evicted += revicted; 3932 3933 /* 3934 * If evicted is zero, arc_evict_hdr() must have 3935 * decided to skip this header, don't increment 3936 * evict_count in this case. 3937 */ 3938 if (evicted != 0) 3939 evict_count--; 3940 3941 } else { 3942 ARCSTAT_BUMP(arcstat_mutex_miss); 3943 } 3944 } 3945 3946 multilist_sublist_unlock(mls); 3947 3948 /* 3949 * Increment the count of evicted bytes, and wake up any threads that 3950 * are waiting for the count to reach this value. Since the list is 3951 * ordered by ascending aew_count, we pop off the beginning of the 3952 * list until we reach the end, or a waiter that's past the current 3953 * "count". Doing this outside the loop reduces the number of times 3954 * we need to acquire the global arc_evict_lock. 3955 * 3956 * Only wake when there's sufficient free memory in the system 3957 * (specifically, arc_sys_free/2, which by default is a bit more than 3958 * 1/64th of RAM). See the comments in arc_wait_for_eviction(). 3959 */ 3960 mutex_enter(&arc_evict_lock); 3961 arc_evict_count += real_evicted; 3962 3963 if (arc_free_memory() > arc_sys_free / 2) { 3964 arc_evict_waiter_t *aw; 3965 while ((aw = list_head(&arc_evict_waiters)) != NULL && 3966 aw->aew_count <= arc_evict_count) { 3967 list_remove(&arc_evict_waiters, aw); 3968 cv_broadcast(&aw->aew_cv); 3969 } 3970 } 3971 arc_set_need_free(); 3972 mutex_exit(&arc_evict_lock); 3973 3974 /* 3975 * If the ARC size is reduced from arc_c_max to arc_c_min (especially 3976 * if the average cached block is small), eviction can be on-CPU for 3977 * many seconds. To ensure that other threads that may be bound to 3978 * this CPU are able to make progress, make a voluntary preemption 3979 * call here. 3980 */ 3981 kpreempt(KPREEMPT_SYNC); 3982 3983 return (bytes_evicted); 3984 } 3985 3986 static arc_buf_hdr_t * 3987 arc_state_alloc_marker(void) 3988 { 3989 arc_buf_hdr_t *marker = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 3990 3991 /* 3992 * A b_spa of 0 is used to indicate that this header is 3993 * a marker. This fact is used in arc_evict_state_impl(). 3994 */ 3995 marker->b_spa = 0; 3996 3997 return (marker); 3998 } 3999 4000 static void 4001 arc_state_free_marker(arc_buf_hdr_t *marker) 4002 { 4003 kmem_cache_free(hdr_full_cache, marker); 4004 } 4005 4006 /* 4007 * Allocate an array of buffer headers used as placeholders during arc state 4008 * eviction. 4009 */ 4010 static arc_buf_hdr_t ** 4011 arc_state_alloc_markers(int count) 4012 { 4013 arc_buf_hdr_t **markers; 4014 4015 markers = kmem_zalloc(sizeof (*markers) * count, KM_SLEEP); 4016 for (int i = 0; i < count; i++) 4017 markers[i] = arc_state_alloc_marker(); 4018 return (markers); 4019 } 4020 4021 static void 4022 arc_state_free_markers(arc_buf_hdr_t **markers, int count) 4023 { 4024 for (int i = 0; i < count; i++) 4025 arc_state_free_marker(markers[i]); 4026 kmem_free(markers, sizeof (*markers) * count); 4027 } 4028 4029 /* 4030 * Evict buffers from the given arc state, until we've removed the 4031 * specified number of bytes. Move the removed buffers to the 4032 * appropriate evict state. 4033 * 4034 * This function makes a "best effort". It skips over any buffers 4035 * it can't get a hash_lock on, and so, may not catch all candidates. 4036 * It may also return without evicting as much space as requested. 4037 * 4038 * If bytes is specified using the special value ARC_EVICT_ALL, this 4039 * will evict all available (i.e. unlocked and evictable) buffers from 4040 * the given arc state; which is used by arc_flush(). 4041 */ 4042 static uint64_t 4043 arc_evict_state(arc_state_t *state, arc_buf_contents_t type, uint64_t spa, 4044 uint64_t bytes) 4045 { 4046 uint64_t total_evicted = 0; 4047 multilist_t *ml = &state->arcs_list[type]; 4048 int num_sublists; 4049 arc_buf_hdr_t **markers; 4050 4051 num_sublists = multilist_get_num_sublists(ml); 4052 4053 /* 4054 * If we've tried to evict from each sublist, made some 4055 * progress, but still have not hit the target number of bytes 4056 * to evict, we want to keep trying. The markers allow us to 4057 * pick up where we left off for each individual sublist, rather 4058 * than starting from the tail each time. 4059 */ 4060 if (zthr_iscurthread(arc_evict_zthr)) { 4061 markers = arc_state_evict_markers; 4062 ASSERT3S(num_sublists, <=, arc_state_evict_marker_count); 4063 } else { 4064 markers = arc_state_alloc_markers(num_sublists); 4065 } 4066 for (int i = 0; i < num_sublists; i++) { 4067 multilist_sublist_t *mls; 4068 4069 mls = multilist_sublist_lock_idx(ml, i); 4070 multilist_sublist_insert_tail(mls, markers[i]); 4071 multilist_sublist_unlock(mls); 4072 } 4073 4074 /* 4075 * While we haven't hit our target number of bytes to evict, or 4076 * we're evicting all available buffers. 4077 */ 4078 while (total_evicted < bytes) { 4079 int sublist_idx = multilist_get_random_index(ml); 4080 uint64_t scan_evicted = 0; 4081 4082 /* 4083 * Start eviction using a randomly selected sublist, 4084 * this is to try and evenly balance eviction across all 4085 * sublists. Always starting at the same sublist 4086 * (e.g. index 0) would cause evictions to favor certain 4087 * sublists over others. 4088 */ 4089 for (int i = 0; i < num_sublists; i++) { 4090 uint64_t bytes_remaining; 4091 uint64_t bytes_evicted; 4092 4093 if (total_evicted < bytes) 4094 bytes_remaining = bytes - total_evicted; 4095 else 4096 break; 4097 4098 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 4099 markers[sublist_idx], spa, bytes_remaining); 4100 4101 scan_evicted += bytes_evicted; 4102 total_evicted += bytes_evicted; 4103 4104 /* we've reached the end, wrap to the beginning */ 4105 if (++sublist_idx >= num_sublists) 4106 sublist_idx = 0; 4107 } 4108 4109 /* 4110 * If we didn't evict anything during this scan, we have 4111 * no reason to believe we'll evict more during another 4112 * scan, so break the loop. 4113 */ 4114 if (scan_evicted == 0) { 4115 /* This isn't possible, let's make that obvious */ 4116 ASSERT3S(bytes, !=, 0); 4117 4118 /* 4119 * When bytes is ARC_EVICT_ALL, the only way to 4120 * break the loop is when scan_evicted is zero. 4121 * In that case, we actually have evicted enough, 4122 * so we don't want to increment the kstat. 4123 */ 4124 if (bytes != ARC_EVICT_ALL) { 4125 ASSERT3S(total_evicted, <, bytes); 4126 ARCSTAT_BUMP(arcstat_evict_not_enough); 4127 } 4128 4129 break; 4130 } 4131 } 4132 4133 for (int i = 0; i < num_sublists; i++) { 4134 multilist_sublist_t *mls = multilist_sublist_lock_idx(ml, i); 4135 multilist_sublist_remove(mls, markers[i]); 4136 multilist_sublist_unlock(mls); 4137 } 4138 if (markers != arc_state_evict_markers) 4139 arc_state_free_markers(markers, num_sublists); 4140 4141 return (total_evicted); 4142 } 4143 4144 /* 4145 * Flush all "evictable" data of the given type from the arc state 4146 * specified. This will not evict any "active" buffers (i.e. referenced). 4147 * 4148 * When 'retry' is set to B_FALSE, the function will make a single pass 4149 * over the state and evict any buffers that it can. Since it doesn't 4150 * continually retry the eviction, it might end up leaving some buffers 4151 * in the ARC due to lock misses. 4152 * 4153 * When 'retry' is set to B_TRUE, the function will continually retry the 4154 * eviction until *all* evictable buffers have been removed from the 4155 * state. As a result, if concurrent insertions into the state are 4156 * allowed (e.g. if the ARC isn't shutting down), this function might 4157 * wind up in an infinite loop, continually trying to evict buffers. 4158 */ 4159 static uint64_t 4160 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 4161 boolean_t retry) 4162 { 4163 uint64_t evicted = 0; 4164 4165 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) { 4166 evicted += arc_evict_state(state, type, spa, ARC_EVICT_ALL); 4167 4168 if (!retry) 4169 break; 4170 } 4171 4172 return (evicted); 4173 } 4174 4175 /* 4176 * Evict the specified number of bytes from the state specified. This 4177 * function prevents us from trying to evict more from a state's list 4178 * than is "evictable", and to skip evicting altogether when passed a 4179 * negative value for "bytes". In contrast, arc_evict_state() will 4180 * evict everything it can, when passed a negative value for "bytes". 4181 */ 4182 static uint64_t 4183 arc_evict_impl(arc_state_t *state, arc_buf_contents_t type, int64_t bytes) 4184 { 4185 uint64_t delta; 4186 4187 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) { 4188 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]), 4189 bytes); 4190 return (arc_evict_state(state, type, 0, delta)); 4191 } 4192 4193 return (0); 4194 } 4195 4196 /* 4197 * Adjust specified fraction, taking into account initial ghost state(s) size, 4198 * ghost hit bytes towards increasing the fraction, ghost hit bytes towards 4199 * decreasing it, plus a balance factor, controlling the decrease rate, used 4200 * to balance metadata vs data. 4201 */ 4202 static uint64_t 4203 arc_evict_adj(uint64_t frac, uint64_t total, uint64_t up, uint64_t down, 4204 uint_t balance) 4205 { 4206 if (total < 8 || up + down == 0) 4207 return (frac); 4208 4209 /* 4210 * We should not have more ghost hits than ghost size, but they 4211 * may get close. Restrict maximum adjustment in that case. 4212 */ 4213 if (up + down >= total / 4) { 4214 uint64_t scale = (up + down) / (total / 8); 4215 up /= scale; 4216 down /= scale; 4217 } 4218 4219 /* Get maximal dynamic range by choosing optimal shifts. */ 4220 int s = highbit64(total); 4221 s = MIN(64 - s, 32); 4222 4223 uint64_t ofrac = (1ULL << 32) - frac; 4224 4225 if (frac >= 4 * ofrac) 4226 up /= frac / (2 * ofrac + 1); 4227 up = (up << s) / (total >> (32 - s)); 4228 if (ofrac >= 4 * frac) 4229 down /= ofrac / (2 * frac + 1); 4230 down = (down << s) / (total >> (32 - s)); 4231 down = down * 100 / balance; 4232 4233 return (frac + up - down); 4234 } 4235 4236 /* 4237 * Calculate (x * multiplier / divisor) without unnecesary overflows. 4238 */ 4239 static uint64_t 4240 arc_mf(uint64_t x, uint64_t multiplier, uint64_t divisor) 4241 { 4242 uint64_t q = (x / divisor); 4243 uint64_t r = (x % divisor); 4244 4245 return ((q * multiplier) + ((r * multiplier) / divisor)); 4246 } 4247 4248 /* 4249 * Evict buffers from the cache, such that arcstat_size is capped by arc_c. 4250 */ 4251 static uint64_t 4252 arc_evict(void) 4253 { 4254 uint64_t bytes, total_evicted = 0; 4255 int64_t e, mrud, mrum, mfud, mfum, w; 4256 static uint64_t ogrd, ogrm, ogfd, ogfm; 4257 static uint64_t gsrd, gsrm, gsfd, gsfm; 4258 uint64_t ngrd, ngrm, ngfd, ngfm; 4259 4260 /* Get current size of ARC states we can evict from. */ 4261 mrud = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_DATA]) + 4262 zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]); 4263 mrum = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA]) + 4264 zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]); 4265 mfud = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_DATA]); 4266 mfum = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA]); 4267 uint64_t d = mrud + mfud; 4268 uint64_t m = mrum + mfum; 4269 uint64_t t = d + m; 4270 4271 /* Get ARC ghost hits since last eviction. */ 4272 ngrd = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]); 4273 uint64_t grd = ngrd - ogrd; 4274 ogrd = ngrd; 4275 ngrm = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]); 4276 uint64_t grm = ngrm - ogrm; 4277 ogrm = ngrm; 4278 ngfd = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]); 4279 uint64_t gfd = ngfd - ogfd; 4280 ogfd = ngfd; 4281 ngfm = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]); 4282 uint64_t gfm = ngfm - ogfm; 4283 ogfm = ngfm; 4284 4285 /* Adjust ARC states balance based on ghost hits. */ 4286 arc_meta = arc_evict_adj(arc_meta, gsrd + gsrm + gsfd + gsfm, 4287 grm + gfm, grd + gfd, zfs_arc_meta_balance); 4288 arc_pd = arc_evict_adj(arc_pd, gsrd + gsfd, grd, gfd, 100); 4289 arc_pm = arc_evict_adj(arc_pm, gsrm + gsfm, grm, gfm, 100); 4290 4291 uint64_t asize = aggsum_value(&arc_sums.arcstat_size); 4292 uint64_t ac = arc_c; 4293 int64_t wt = t - (asize - ac); 4294 4295 /* 4296 * Try to reduce pinned dnodes if more than 3/4 of wanted metadata 4297 * target is not evictable or if they go over arc_dnode_limit. 4298 */ 4299 int64_t prune = 0; 4300 int64_t dn = wmsum_value(&arc_sums.arcstat_dnode_size); 4301 int64_t nem = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA]) 4302 + zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA]) 4303 - zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA]) 4304 - zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 4305 w = wt * (int64_t)(arc_meta >> 16) >> 16; 4306 if (nem > w * 3 / 4) { 4307 prune = dn / sizeof (dnode_t) * 4308 zfs_arc_dnode_reduce_percent / 100; 4309 if (nem < w && w > 4) 4310 prune = arc_mf(prune, nem - w * 3 / 4, w / 4); 4311 } 4312 if (dn > arc_dnode_limit) { 4313 prune = MAX(prune, (dn - arc_dnode_limit) / sizeof (dnode_t) * 4314 zfs_arc_dnode_reduce_percent / 100); 4315 } 4316 if (prune > 0) 4317 arc_prune_async(prune); 4318 4319 /* Evict MRU metadata. */ 4320 w = wt * (int64_t)(arc_meta * arc_pm >> 48) >> 16; 4321 e = MIN((int64_t)(asize - ac), (int64_t)(mrum - w)); 4322 bytes = arc_evict_impl(arc_mru, ARC_BUFC_METADATA, e); 4323 total_evicted += bytes; 4324 mrum -= bytes; 4325 asize -= bytes; 4326 4327 /* Evict MFU metadata. */ 4328 w = wt * (int64_t)(arc_meta >> 16) >> 16; 4329 e = MIN((int64_t)(asize - ac), (int64_t)(m - bytes - w)); 4330 bytes = arc_evict_impl(arc_mfu, ARC_BUFC_METADATA, e); 4331 total_evicted += bytes; 4332 mfum -= bytes; 4333 asize -= bytes; 4334 4335 /* Evict MRU data. */ 4336 wt -= m - total_evicted; 4337 w = wt * (int64_t)(arc_pd >> 16) >> 16; 4338 e = MIN((int64_t)(asize - ac), (int64_t)(mrud - w)); 4339 bytes = arc_evict_impl(arc_mru, ARC_BUFC_DATA, e); 4340 total_evicted += bytes; 4341 mrud -= bytes; 4342 asize -= bytes; 4343 4344 /* Evict MFU data. */ 4345 e = asize - ac; 4346 bytes = arc_evict_impl(arc_mfu, ARC_BUFC_DATA, e); 4347 mfud -= bytes; 4348 total_evicted += bytes; 4349 4350 /* 4351 * Evict ghost lists 4352 * 4353 * Size of each state's ghost list represents how much that state 4354 * may grow by shrinking the other states. Would it need to shrink 4355 * other states to zero (that is unlikely), its ghost size would be 4356 * equal to sum of other three state sizes. But excessive ghost 4357 * size may result in false ghost hits (too far back), that may 4358 * never result in real cache hits if several states are competing. 4359 * So choose some arbitraty point of 1/2 of other state sizes. 4360 */ 4361 gsrd = (mrum + mfud + mfum) / 2; 4362 e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]) - 4363 gsrd; 4364 (void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_DATA, e); 4365 4366 gsrm = (mrud + mfud + mfum) / 2; 4367 e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]) - 4368 gsrm; 4369 (void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_METADATA, e); 4370 4371 gsfd = (mrud + mrum + mfum) / 2; 4372 e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]) - 4373 gsfd; 4374 (void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_DATA, e); 4375 4376 gsfm = (mrud + mrum + mfud) / 2; 4377 e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]) - 4378 gsfm; 4379 (void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_METADATA, e); 4380 4381 return (total_evicted); 4382 } 4383 4384 void 4385 arc_flush(spa_t *spa, boolean_t retry) 4386 { 4387 uint64_t guid = 0; 4388 4389 /* 4390 * If retry is B_TRUE, a spa must not be specified since we have 4391 * no good way to determine if all of a spa's buffers have been 4392 * evicted from an arc state. 4393 */ 4394 ASSERT(!retry || spa == NULL); 4395 4396 if (spa != NULL) 4397 guid = spa_load_guid(spa); 4398 4399 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 4400 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 4401 4402 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 4403 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 4404 4405 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 4406 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 4407 4408 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 4409 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 4410 4411 (void) arc_flush_state(arc_uncached, guid, ARC_BUFC_DATA, retry); 4412 (void) arc_flush_state(arc_uncached, guid, ARC_BUFC_METADATA, retry); 4413 } 4414 4415 uint64_t 4416 arc_reduce_target_size(uint64_t to_free) 4417 { 4418 /* 4419 * Get the actual arc size. Even if we don't need it, this updates 4420 * the aggsum lower bound estimate for arc_is_overflowing(). 4421 */ 4422 uint64_t asize = aggsum_value(&arc_sums.arcstat_size); 4423 4424 /* 4425 * All callers want the ARC to actually evict (at least) this much 4426 * memory. Therefore we reduce from the lower of the current size and 4427 * the target size. This way, even if arc_c is much higher than 4428 * arc_size (as can be the case after many calls to arc_freed(), we will 4429 * immediately have arc_c < arc_size and therefore the arc_evict_zthr 4430 * will evict. 4431 */ 4432 uint64_t c = arc_c; 4433 if (c > arc_c_min) { 4434 c = MIN(c, MAX(asize, arc_c_min)); 4435 to_free = MIN(to_free, c - arc_c_min); 4436 arc_c = c - to_free; 4437 } else { 4438 to_free = 0; 4439 } 4440 4441 /* 4442 * Whether or not we reduced the target size, request eviction if the 4443 * current size is over it now, since caller obviously wants some RAM. 4444 */ 4445 if (asize > arc_c) { 4446 /* See comment in arc_evict_cb_check() on why lock+flag */ 4447 mutex_enter(&arc_evict_lock); 4448 arc_evict_needed = B_TRUE; 4449 mutex_exit(&arc_evict_lock); 4450 zthr_wakeup(arc_evict_zthr); 4451 } 4452 4453 return (to_free); 4454 } 4455 4456 /* 4457 * Determine if the system is under memory pressure and is asking 4458 * to reclaim memory. A return value of B_TRUE indicates that the system 4459 * is under memory pressure and that the arc should adjust accordingly. 4460 */ 4461 boolean_t 4462 arc_reclaim_needed(void) 4463 { 4464 return (arc_available_memory() < 0); 4465 } 4466 4467 void 4468 arc_kmem_reap_soon(void) 4469 { 4470 size_t i; 4471 kmem_cache_t *prev_cache = NULL; 4472 kmem_cache_t *prev_data_cache = NULL; 4473 4474 #ifdef _KERNEL 4475 #if defined(_ILP32) 4476 /* 4477 * Reclaim unused memory from all kmem caches. 4478 */ 4479 kmem_reap(); 4480 #endif 4481 #endif 4482 4483 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 4484 #if defined(_ILP32) 4485 /* reach upper limit of cache size on 32-bit */ 4486 if (zio_buf_cache[i] == NULL) 4487 break; 4488 #endif 4489 if (zio_buf_cache[i] != prev_cache) { 4490 prev_cache = zio_buf_cache[i]; 4491 kmem_cache_reap_now(zio_buf_cache[i]); 4492 } 4493 if (zio_data_buf_cache[i] != prev_data_cache) { 4494 prev_data_cache = zio_data_buf_cache[i]; 4495 kmem_cache_reap_now(zio_data_buf_cache[i]); 4496 } 4497 } 4498 kmem_cache_reap_now(buf_cache); 4499 kmem_cache_reap_now(hdr_full_cache); 4500 kmem_cache_reap_now(hdr_l2only_cache); 4501 kmem_cache_reap_now(zfs_btree_leaf_cache); 4502 abd_cache_reap_now(); 4503 } 4504 4505 static boolean_t 4506 arc_evict_cb_check(void *arg, zthr_t *zthr) 4507 { 4508 (void) arg, (void) zthr; 4509 4510 #ifdef ZFS_DEBUG 4511 /* 4512 * This is necessary in order to keep the kstat information 4513 * up to date for tools that display kstat data such as the 4514 * mdb ::arc dcmd and the Linux crash utility. These tools 4515 * typically do not call kstat's update function, but simply 4516 * dump out stats from the most recent update. Without 4517 * this call, these commands may show stale stats for the 4518 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 4519 * with this call, the data might be out of date if the 4520 * evict thread hasn't been woken recently; but that should 4521 * suffice. The arc_state_t structures can be queried 4522 * directly if more accurate information is needed. 4523 */ 4524 if (arc_ksp != NULL) 4525 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 4526 #endif 4527 4528 /* 4529 * We have to rely on arc_wait_for_eviction() to tell us when to 4530 * evict, rather than checking if we are overflowing here, so that we 4531 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv. 4532 * If we have become "not overflowing" since arc_wait_for_eviction() 4533 * checked, we need to wake it up. We could broadcast the CV here, 4534 * but arc_wait_for_eviction() may have not yet gone to sleep. We 4535 * would need to use a mutex to ensure that this function doesn't 4536 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g. 4537 * the arc_evict_lock). However, the lock ordering of such a lock 4538 * would necessarily be incorrect with respect to the zthr_lock, 4539 * which is held before this function is called, and is held by 4540 * arc_wait_for_eviction() when it calls zthr_wakeup(). 4541 */ 4542 if (arc_evict_needed) 4543 return (B_TRUE); 4544 4545 /* 4546 * If we have buffers in uncached state, evict them periodically. 4547 */ 4548 return ((zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_DATA]) + 4549 zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]) && 4550 ddi_get_lbolt() - arc_last_uncached_flush > 4551 MSEC_TO_TICK(arc_min_prefetch_ms / 2))); 4552 } 4553 4554 /* 4555 * Keep arc_size under arc_c by running arc_evict which evicts data 4556 * from the ARC. 4557 */ 4558 static void 4559 arc_evict_cb(void *arg, zthr_t *zthr) 4560 { 4561 (void) arg; 4562 4563 uint64_t evicted = 0; 4564 fstrans_cookie_t cookie = spl_fstrans_mark(); 4565 4566 /* Always try to evict from uncached state. */ 4567 arc_last_uncached_flush = ddi_get_lbolt(); 4568 evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_DATA, B_FALSE); 4569 evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_METADATA, B_FALSE); 4570 4571 /* Evict from other states only if told to. */ 4572 if (arc_evict_needed) 4573 evicted += arc_evict(); 4574 4575 /* 4576 * If evicted is zero, we couldn't evict anything 4577 * via arc_evict(). This could be due to hash lock 4578 * collisions, but more likely due to the majority of 4579 * arc buffers being unevictable. Therefore, even if 4580 * arc_size is above arc_c, another pass is unlikely to 4581 * be helpful and could potentially cause us to enter an 4582 * infinite loop. Additionally, zthr_iscancelled() is 4583 * checked here so that if the arc is shutting down, the 4584 * broadcast will wake any remaining arc evict waiters. 4585 * 4586 * Note we cancel using zthr instead of arc_evict_zthr 4587 * because the latter may not yet be initializd when the 4588 * callback is first invoked. 4589 */ 4590 mutex_enter(&arc_evict_lock); 4591 arc_evict_needed = !zthr_iscancelled(zthr) && 4592 evicted > 0 && aggsum_compare(&arc_sums.arcstat_size, arc_c) > 0; 4593 if (!arc_evict_needed) { 4594 /* 4595 * We're either no longer overflowing, or we 4596 * can't evict anything more, so we should wake 4597 * arc_get_data_impl() sooner. 4598 */ 4599 arc_evict_waiter_t *aw; 4600 while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) { 4601 cv_broadcast(&aw->aew_cv); 4602 } 4603 arc_set_need_free(); 4604 } 4605 mutex_exit(&arc_evict_lock); 4606 spl_fstrans_unmark(cookie); 4607 } 4608 4609 static boolean_t 4610 arc_reap_cb_check(void *arg, zthr_t *zthr) 4611 { 4612 (void) arg, (void) zthr; 4613 4614 int64_t free_memory = arc_available_memory(); 4615 static int reap_cb_check_counter = 0; 4616 4617 /* 4618 * If a kmem reap is already active, don't schedule more. We must 4619 * check for this because kmem_cache_reap_soon() won't actually 4620 * block on the cache being reaped (this is to prevent callers from 4621 * becoming implicitly blocked by a system-wide kmem reap -- which, 4622 * on a system with many, many full magazines, can take minutes). 4623 */ 4624 if (!kmem_cache_reap_active() && free_memory < 0) { 4625 4626 arc_no_grow = B_TRUE; 4627 arc_warm = B_TRUE; 4628 /* 4629 * Wait at least zfs_grow_retry (default 5) seconds 4630 * before considering growing. 4631 */ 4632 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry); 4633 return (B_TRUE); 4634 } else if (free_memory < arc_c >> arc_no_grow_shift) { 4635 arc_no_grow = B_TRUE; 4636 } else if (gethrtime() >= arc_growtime) { 4637 arc_no_grow = B_FALSE; 4638 } 4639 4640 /* 4641 * Called unconditionally every 60 seconds to reclaim unused 4642 * zstd compression and decompression context. This is done 4643 * here to avoid the need for an independent thread. 4644 */ 4645 if (!((reap_cb_check_counter++) % 60)) 4646 zfs_zstd_cache_reap_now(); 4647 4648 return (B_FALSE); 4649 } 4650 4651 /* 4652 * Keep enough free memory in the system by reaping the ARC's kmem 4653 * caches. To cause more slabs to be reapable, we may reduce the 4654 * target size of the cache (arc_c), causing the arc_evict_cb() 4655 * to free more buffers. 4656 */ 4657 static void 4658 arc_reap_cb(void *arg, zthr_t *zthr) 4659 { 4660 int64_t can_free, free_memory, to_free; 4661 4662 (void) arg, (void) zthr; 4663 fstrans_cookie_t cookie = spl_fstrans_mark(); 4664 4665 /* 4666 * Kick off asynchronous kmem_reap()'s of all our caches. 4667 */ 4668 arc_kmem_reap_soon(); 4669 4670 /* 4671 * Wait at least arc_kmem_cache_reap_retry_ms between 4672 * arc_kmem_reap_soon() calls. Without this check it is possible to 4673 * end up in a situation where we spend lots of time reaping 4674 * caches, while we're near arc_c_min. Waiting here also gives the 4675 * subsequent free memory check a chance of finding that the 4676 * asynchronous reap has already freed enough memory, and we don't 4677 * need to call arc_reduce_target_size(). 4678 */ 4679 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000); 4680 4681 /* 4682 * Reduce the target size as needed to maintain the amount of free 4683 * memory in the system at a fraction of the arc_size (1/128th by 4684 * default). If oversubscribed (free_memory < 0) then reduce the 4685 * target arc_size by the deficit amount plus the fractional 4686 * amount. If free memory is positive but less than the fractional 4687 * amount, reduce by what is needed to hit the fractional amount. 4688 */ 4689 free_memory = arc_available_memory(); 4690 can_free = arc_c - arc_c_min; 4691 to_free = (MAX(can_free, 0) >> arc_shrink_shift) - free_memory; 4692 if (to_free > 0) 4693 arc_reduce_target_size(to_free); 4694 spl_fstrans_unmark(cookie); 4695 } 4696 4697 #ifdef _KERNEL 4698 /* 4699 * Determine the amount of memory eligible for eviction contained in the 4700 * ARC. All clean data reported by the ghost lists can always be safely 4701 * evicted. Due to arc_c_min, the same does not hold for all clean data 4702 * contained by the regular mru and mfu lists. 4703 * 4704 * In the case of the regular mru and mfu lists, we need to report as 4705 * much clean data as possible, such that evicting that same reported 4706 * data will not bring arc_size below arc_c_min. Thus, in certain 4707 * circumstances, the total amount of clean data in the mru and mfu 4708 * lists might not actually be evictable. 4709 * 4710 * The following two distinct cases are accounted for: 4711 * 4712 * 1. The sum of the amount of dirty data contained by both the mru and 4713 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 4714 * is greater than or equal to arc_c_min. 4715 * (i.e. amount of dirty data >= arc_c_min) 4716 * 4717 * This is the easy case; all clean data contained by the mru and mfu 4718 * lists is evictable. Evicting all clean data can only drop arc_size 4719 * to the amount of dirty data, which is greater than arc_c_min. 4720 * 4721 * 2. The sum of the amount of dirty data contained by both the mru and 4722 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 4723 * is less than arc_c_min. 4724 * (i.e. arc_c_min > amount of dirty data) 4725 * 4726 * 2.1. arc_size is greater than or equal arc_c_min. 4727 * (i.e. arc_size >= arc_c_min > amount of dirty data) 4728 * 4729 * In this case, not all clean data from the regular mru and mfu 4730 * lists is actually evictable; we must leave enough clean data 4731 * to keep arc_size above arc_c_min. Thus, the maximum amount of 4732 * evictable data from the two lists combined, is exactly the 4733 * difference between arc_size and arc_c_min. 4734 * 4735 * 2.2. arc_size is less than arc_c_min 4736 * (i.e. arc_c_min > arc_size > amount of dirty data) 4737 * 4738 * In this case, none of the data contained in the mru and mfu 4739 * lists is evictable, even if it's clean. Since arc_size is 4740 * already below arc_c_min, evicting any more would only 4741 * increase this negative difference. 4742 */ 4743 4744 #endif /* _KERNEL */ 4745 4746 /* 4747 * Adapt arc info given the number of bytes we are trying to add and 4748 * the state that we are coming from. This function is only called 4749 * when we are adding new content to the cache. 4750 */ 4751 static void 4752 arc_adapt(uint64_t bytes) 4753 { 4754 /* 4755 * Wake reap thread if we do not have any available memory 4756 */ 4757 if (arc_reclaim_needed()) { 4758 zthr_wakeup(arc_reap_zthr); 4759 return; 4760 } 4761 4762 if (arc_no_grow) 4763 return; 4764 4765 if (arc_c >= arc_c_max) 4766 return; 4767 4768 /* 4769 * If we're within (2 * maxblocksize) bytes of the target 4770 * cache size, increment the target cache size 4771 */ 4772 if (aggsum_upper_bound(&arc_sums.arcstat_size) + 4773 2 * SPA_MAXBLOCKSIZE >= arc_c) { 4774 uint64_t dc = MAX(bytes, SPA_OLD_MAXBLOCKSIZE); 4775 if (atomic_add_64_nv(&arc_c, dc) > arc_c_max) 4776 arc_c = arc_c_max; 4777 } 4778 } 4779 4780 /* 4781 * Check if ARC current size has grown past our upper thresholds. 4782 */ 4783 static arc_ovf_level_t 4784 arc_is_overflowing(boolean_t lax, boolean_t use_reserve) 4785 { 4786 /* 4787 * We just compare the lower bound here for performance reasons. Our 4788 * primary goals are to make sure that the arc never grows without 4789 * bound, and that it can reach its maximum size. This check 4790 * accomplishes both goals. The maximum amount we could run over by is 4791 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block 4792 * in the ARC. In practice, that's in the tens of MB, which is low 4793 * enough to be safe. 4794 */ 4795 int64_t over = aggsum_lower_bound(&arc_sums.arcstat_size) - arc_c - 4796 zfs_max_recordsize; 4797 4798 /* Always allow at least one block of overflow. */ 4799 if (over < 0) 4800 return (ARC_OVF_NONE); 4801 4802 /* If we are under memory pressure, report severe overflow. */ 4803 if (!lax) 4804 return (ARC_OVF_SEVERE); 4805 4806 /* We are not under pressure, so be more or less relaxed. */ 4807 int64_t overflow = (arc_c >> zfs_arc_overflow_shift) / 2; 4808 if (use_reserve) 4809 overflow *= 3; 4810 return (over < overflow ? ARC_OVF_SOME : ARC_OVF_SEVERE); 4811 } 4812 4813 static abd_t * 4814 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, const void *tag, 4815 int alloc_flags) 4816 { 4817 arc_buf_contents_t type = arc_buf_type(hdr); 4818 4819 arc_get_data_impl(hdr, size, tag, alloc_flags); 4820 if (alloc_flags & ARC_HDR_ALLOC_LINEAR) 4821 return (abd_alloc_linear(size, type == ARC_BUFC_METADATA)); 4822 else 4823 return (abd_alloc(size, type == ARC_BUFC_METADATA)); 4824 } 4825 4826 static void * 4827 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, const void *tag) 4828 { 4829 arc_buf_contents_t type = arc_buf_type(hdr); 4830 4831 arc_get_data_impl(hdr, size, tag, 0); 4832 if (type == ARC_BUFC_METADATA) { 4833 return (zio_buf_alloc(size)); 4834 } else { 4835 ASSERT(type == ARC_BUFC_DATA); 4836 return (zio_data_buf_alloc(size)); 4837 } 4838 } 4839 4840 /* 4841 * Wait for the specified amount of data (in bytes) to be evicted from the 4842 * ARC, and for there to be sufficient free memory in the system. 4843 * The lax argument specifies that caller does not have a specific reason 4844 * to wait, not aware of any memory pressure. Low memory handlers though 4845 * should set it to B_FALSE to wait for all required evictions to complete. 4846 * The use_reserve argument allows some callers to wait less than others 4847 * to not block critical code paths, possibly blocking other resources. 4848 */ 4849 void 4850 arc_wait_for_eviction(uint64_t amount, boolean_t lax, boolean_t use_reserve) 4851 { 4852 switch (arc_is_overflowing(lax, use_reserve)) { 4853 case ARC_OVF_NONE: 4854 return; 4855 case ARC_OVF_SOME: 4856 /* 4857 * This is a bit racy without taking arc_evict_lock, but the 4858 * worst that can happen is we either call zthr_wakeup() extra 4859 * time due to race with other thread here, or the set flag 4860 * get cleared by arc_evict_cb(), which is unlikely due to 4861 * big hysteresis, but also not important since at this level 4862 * of overflow the eviction is purely advisory. Same time 4863 * taking the global lock here every time without waiting for 4864 * the actual eviction creates a significant lock contention. 4865 */ 4866 if (!arc_evict_needed) { 4867 arc_evict_needed = B_TRUE; 4868 zthr_wakeup(arc_evict_zthr); 4869 } 4870 return; 4871 case ARC_OVF_SEVERE: 4872 default: 4873 { 4874 arc_evict_waiter_t aw; 4875 list_link_init(&aw.aew_node); 4876 cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL); 4877 4878 uint64_t last_count = 0; 4879 mutex_enter(&arc_evict_lock); 4880 if (!list_is_empty(&arc_evict_waiters)) { 4881 arc_evict_waiter_t *last = 4882 list_tail(&arc_evict_waiters); 4883 last_count = last->aew_count; 4884 } else if (!arc_evict_needed) { 4885 arc_evict_needed = B_TRUE; 4886 zthr_wakeup(arc_evict_zthr); 4887 } 4888 /* 4889 * Note, the last waiter's count may be less than 4890 * arc_evict_count if we are low on memory in which 4891 * case arc_evict_state_impl() may have deferred 4892 * wakeups (but still incremented arc_evict_count). 4893 */ 4894 aw.aew_count = MAX(last_count, arc_evict_count) + amount; 4895 4896 list_insert_tail(&arc_evict_waiters, &aw); 4897 4898 arc_set_need_free(); 4899 4900 DTRACE_PROBE3(arc__wait__for__eviction, 4901 uint64_t, amount, 4902 uint64_t, arc_evict_count, 4903 uint64_t, aw.aew_count); 4904 4905 /* 4906 * We will be woken up either when arc_evict_count reaches 4907 * aew_count, or when the ARC is no longer overflowing and 4908 * eviction completes. 4909 * In case of "false" wakeup, we will still be on the list. 4910 */ 4911 do { 4912 cv_wait(&aw.aew_cv, &arc_evict_lock); 4913 } while (list_link_active(&aw.aew_node)); 4914 mutex_exit(&arc_evict_lock); 4915 4916 cv_destroy(&aw.aew_cv); 4917 } 4918 } 4919 } 4920 4921 /* 4922 * Allocate a block and return it to the caller. If we are hitting the 4923 * hard limit for the cache size, we must sleep, waiting for the eviction 4924 * thread to catch up. If we're past the target size but below the hard 4925 * limit, we'll only signal the reclaim thread and continue on. 4926 */ 4927 static void 4928 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag, 4929 int alloc_flags) 4930 { 4931 arc_adapt(size); 4932 4933 /* 4934 * If arc_size is currently overflowing, we must be adding data 4935 * faster than we are evicting. To ensure we don't compound the 4936 * problem by adding more data and forcing arc_size to grow even 4937 * further past it's target size, we wait for the eviction thread to 4938 * make some progress. We also wait for there to be sufficient free 4939 * memory in the system, as measured by arc_free_memory(). 4940 * 4941 * Specifically, we wait for zfs_arc_eviction_pct percent of the 4942 * requested size to be evicted. This should be more than 100%, to 4943 * ensure that that progress is also made towards getting arc_size 4944 * under arc_c. See the comment above zfs_arc_eviction_pct. 4945 */ 4946 arc_wait_for_eviction(size * zfs_arc_eviction_pct / 100, 4947 B_TRUE, alloc_flags & ARC_HDR_USE_RESERVE); 4948 4949 arc_buf_contents_t type = arc_buf_type(hdr); 4950 if (type == ARC_BUFC_METADATA) { 4951 arc_space_consume(size, ARC_SPACE_META); 4952 } else { 4953 arc_space_consume(size, ARC_SPACE_DATA); 4954 } 4955 4956 /* 4957 * Update the state size. Note that ghost states have a 4958 * "ghost size" and so don't need to be updated. 4959 */ 4960 arc_state_t *state = hdr->b_l1hdr.b_state; 4961 if (!GHOST_STATE(state)) { 4962 4963 (void) zfs_refcount_add_many(&state->arcs_size[type], size, 4964 tag); 4965 4966 /* 4967 * If this is reached via arc_read, the link is 4968 * protected by the hash lock. If reached via 4969 * arc_buf_alloc, the header should not be accessed by 4970 * any other thread. And, if reached via arc_read_done, 4971 * the hash lock will protect it if it's found in the 4972 * hash table; otherwise no other thread should be 4973 * trying to [add|remove]_reference it. 4974 */ 4975 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 4976 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4977 (void) zfs_refcount_add_many(&state->arcs_esize[type], 4978 size, tag); 4979 } 4980 } 4981 } 4982 4983 static void 4984 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, 4985 const void *tag) 4986 { 4987 arc_free_data_impl(hdr, size, tag); 4988 abd_free(abd); 4989 } 4990 4991 static void 4992 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, const void *tag) 4993 { 4994 arc_buf_contents_t type = arc_buf_type(hdr); 4995 4996 arc_free_data_impl(hdr, size, tag); 4997 if (type == ARC_BUFC_METADATA) { 4998 zio_buf_free(buf, size); 4999 } else { 5000 ASSERT(type == ARC_BUFC_DATA); 5001 zio_data_buf_free(buf, size); 5002 } 5003 } 5004 5005 /* 5006 * Free the arc data buffer. 5007 */ 5008 static void 5009 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag) 5010 { 5011 arc_state_t *state = hdr->b_l1hdr.b_state; 5012 arc_buf_contents_t type = arc_buf_type(hdr); 5013 5014 /* protected by hash lock, if in the hash table */ 5015 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5016 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5017 ASSERT(state != arc_anon && state != arc_l2c_only); 5018 5019 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 5020 size, tag); 5021 } 5022 (void) zfs_refcount_remove_many(&state->arcs_size[type], size, tag); 5023 5024 VERIFY3U(hdr->b_type, ==, type); 5025 if (type == ARC_BUFC_METADATA) { 5026 arc_space_return(size, ARC_SPACE_META); 5027 } else { 5028 ASSERT(type == ARC_BUFC_DATA); 5029 arc_space_return(size, ARC_SPACE_DATA); 5030 } 5031 } 5032 5033 /* 5034 * This routine is called whenever a buffer is accessed. 5035 */ 5036 static void 5037 arc_access(arc_buf_hdr_t *hdr, arc_flags_t arc_flags, boolean_t hit) 5038 { 5039 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 5040 ASSERT(HDR_HAS_L1HDR(hdr)); 5041 5042 /* 5043 * Update buffer prefetch status. 5044 */ 5045 boolean_t was_prefetch = HDR_PREFETCH(hdr); 5046 boolean_t now_prefetch = arc_flags & ARC_FLAG_PREFETCH; 5047 if (was_prefetch != now_prefetch) { 5048 if (was_prefetch) { 5049 ARCSTAT_CONDSTAT(hit, demand_hit, demand_iohit, 5050 HDR_PRESCIENT_PREFETCH(hdr), prescient, predictive, 5051 prefetch); 5052 } 5053 if (HDR_HAS_L2HDR(hdr)) 5054 l2arc_hdr_arcstats_decrement_state(hdr); 5055 if (was_prefetch) { 5056 arc_hdr_clear_flags(hdr, 5057 ARC_FLAG_PREFETCH | ARC_FLAG_PRESCIENT_PREFETCH); 5058 } else { 5059 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 5060 } 5061 if (HDR_HAS_L2HDR(hdr)) 5062 l2arc_hdr_arcstats_increment_state(hdr); 5063 } 5064 if (now_prefetch) { 5065 if (arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) { 5066 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 5067 ARCSTAT_BUMP(arcstat_prescient_prefetch); 5068 } else { 5069 ARCSTAT_BUMP(arcstat_predictive_prefetch); 5070 } 5071 } 5072 if (arc_flags & ARC_FLAG_L2CACHE) 5073 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 5074 5075 clock_t now = ddi_get_lbolt(); 5076 if (hdr->b_l1hdr.b_state == arc_anon) { 5077 arc_state_t *new_state; 5078 /* 5079 * This buffer is not in the cache, and does not appear in 5080 * our "ghost" lists. Add it to the MRU or uncached state. 5081 */ 5082 ASSERT0(hdr->b_l1hdr.b_arc_access); 5083 hdr->b_l1hdr.b_arc_access = now; 5084 if (HDR_UNCACHED(hdr)) { 5085 new_state = arc_uncached; 5086 DTRACE_PROBE1(new_state__uncached, arc_buf_hdr_t *, 5087 hdr); 5088 } else { 5089 new_state = arc_mru; 5090 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5091 } 5092 arc_change_state(new_state, hdr); 5093 } else if (hdr->b_l1hdr.b_state == arc_mru) { 5094 /* 5095 * This buffer has been accessed once recently and either 5096 * its read is still in progress or it is in the cache. 5097 */ 5098 if (HDR_IO_IN_PROGRESS(hdr)) { 5099 hdr->b_l1hdr.b_arc_access = now; 5100 return; 5101 } 5102 hdr->b_l1hdr.b_mru_hits++; 5103 ARCSTAT_BUMP(arcstat_mru_hits); 5104 5105 /* 5106 * If the previous access was a prefetch, then it already 5107 * handled possible promotion, so nothing more to do for now. 5108 */ 5109 if (was_prefetch) { 5110 hdr->b_l1hdr.b_arc_access = now; 5111 return; 5112 } 5113 5114 /* 5115 * If more than ARC_MINTIME have passed from the previous 5116 * hit, promote the buffer to the MFU state. 5117 */ 5118 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access + 5119 ARC_MINTIME)) { 5120 hdr->b_l1hdr.b_arc_access = now; 5121 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5122 arc_change_state(arc_mfu, hdr); 5123 } 5124 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 5125 arc_state_t *new_state; 5126 /* 5127 * This buffer has been accessed once recently, but was 5128 * evicted from the cache. Would we have bigger MRU, it 5129 * would be an MRU hit, so handle it the same way, except 5130 * we don't need to check the previous access time. 5131 */ 5132 hdr->b_l1hdr.b_mru_ghost_hits++; 5133 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 5134 hdr->b_l1hdr.b_arc_access = now; 5135 wmsum_add(&arc_mru_ghost->arcs_hits[arc_buf_type(hdr)], 5136 arc_hdr_size(hdr)); 5137 if (was_prefetch) { 5138 new_state = arc_mru; 5139 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5140 } else { 5141 new_state = arc_mfu; 5142 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5143 } 5144 arc_change_state(new_state, hdr); 5145 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 5146 /* 5147 * This buffer has been accessed more than once and either 5148 * still in the cache or being restored from one of ghosts. 5149 */ 5150 if (!HDR_IO_IN_PROGRESS(hdr)) { 5151 hdr->b_l1hdr.b_mfu_hits++; 5152 ARCSTAT_BUMP(arcstat_mfu_hits); 5153 } 5154 hdr->b_l1hdr.b_arc_access = now; 5155 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 5156 /* 5157 * This buffer has been accessed more than once recently, but 5158 * has been evicted from the cache. Would we have bigger MFU 5159 * it would stay in cache, so move it back to MFU state. 5160 */ 5161 hdr->b_l1hdr.b_mfu_ghost_hits++; 5162 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 5163 hdr->b_l1hdr.b_arc_access = now; 5164 wmsum_add(&arc_mfu_ghost->arcs_hits[arc_buf_type(hdr)], 5165 arc_hdr_size(hdr)); 5166 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5167 arc_change_state(arc_mfu, hdr); 5168 } else if (hdr->b_l1hdr.b_state == arc_uncached) { 5169 /* 5170 * This buffer is uncacheable, but we got a hit. Probably 5171 * a demand read after prefetch. Nothing more to do here. 5172 */ 5173 if (!HDR_IO_IN_PROGRESS(hdr)) 5174 ARCSTAT_BUMP(arcstat_uncached_hits); 5175 hdr->b_l1hdr.b_arc_access = now; 5176 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 5177 /* 5178 * This buffer is on the 2nd Level ARC and was not accessed 5179 * for a long time, so treat it as new and put into MRU. 5180 */ 5181 hdr->b_l1hdr.b_arc_access = now; 5182 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5183 arc_change_state(arc_mru, hdr); 5184 } else { 5185 cmn_err(CE_PANIC, "invalid arc state 0x%p", 5186 hdr->b_l1hdr.b_state); 5187 } 5188 } 5189 5190 /* 5191 * This routine is called by dbuf_hold() to update the arc_access() state 5192 * which otherwise would be skipped for entries in the dbuf cache. 5193 */ 5194 void 5195 arc_buf_access(arc_buf_t *buf) 5196 { 5197 arc_buf_hdr_t *hdr = buf->b_hdr; 5198 5199 /* 5200 * Avoid taking the hash_lock when possible as an optimization. 5201 * The header must be checked again under the hash_lock in order 5202 * to handle the case where it is concurrently being released. 5203 */ 5204 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) 5205 return; 5206 5207 kmutex_t *hash_lock = HDR_LOCK(hdr); 5208 mutex_enter(hash_lock); 5209 5210 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5211 mutex_exit(hash_lock); 5212 ARCSTAT_BUMP(arcstat_access_skip); 5213 return; 5214 } 5215 5216 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5217 hdr->b_l1hdr.b_state == arc_mfu || 5218 hdr->b_l1hdr.b_state == arc_uncached); 5219 5220 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5221 arc_access(hdr, 0, B_TRUE); 5222 mutex_exit(hash_lock); 5223 5224 ARCSTAT_BUMP(arcstat_hits); 5225 ARCSTAT_CONDSTAT(B_TRUE /* demand */, demand, prefetch, 5226 !HDR_ISTYPE_METADATA(hdr), data, metadata, hits); 5227 } 5228 5229 /* a generic arc_read_done_func_t which you can use */ 5230 void 5231 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5232 arc_buf_t *buf, void *arg) 5233 { 5234 (void) zio, (void) zb, (void) bp; 5235 5236 if (buf == NULL) 5237 return; 5238 5239 memcpy(arg, buf->b_data, arc_buf_size(buf)); 5240 arc_buf_destroy(buf, arg); 5241 } 5242 5243 /* a generic arc_read_done_func_t */ 5244 void 5245 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5246 arc_buf_t *buf, void *arg) 5247 { 5248 (void) zb, (void) bp; 5249 arc_buf_t **bufp = arg; 5250 5251 if (buf == NULL) { 5252 ASSERT(zio == NULL || zio->io_error != 0); 5253 *bufp = NULL; 5254 } else { 5255 ASSERT(zio == NULL || zio->io_error == 0); 5256 *bufp = buf; 5257 ASSERT(buf->b_data != NULL); 5258 } 5259 } 5260 5261 static void 5262 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp) 5263 { 5264 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 5265 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0); 5266 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF); 5267 } else { 5268 if (HDR_COMPRESSION_ENABLED(hdr)) { 5269 ASSERT3U(arc_hdr_get_compress(hdr), ==, 5270 BP_GET_COMPRESS(bp)); 5271 } 5272 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 5273 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); 5274 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp)); 5275 } 5276 } 5277 5278 static void 5279 arc_read_done(zio_t *zio) 5280 { 5281 blkptr_t *bp = zio->io_bp; 5282 arc_buf_hdr_t *hdr = zio->io_private; 5283 kmutex_t *hash_lock = NULL; 5284 arc_callback_t *callback_list; 5285 arc_callback_t *acb; 5286 5287 /* 5288 * The hdr was inserted into hash-table and removed from lists 5289 * prior to starting I/O. We should find this header, since 5290 * it's in the hash table, and it should be legit since it's 5291 * not possible to evict it during the I/O. The only possible 5292 * reason for it not to be found is if we were freed during the 5293 * read. 5294 */ 5295 if (HDR_IN_HASH_TABLE(hdr)) { 5296 arc_buf_hdr_t *found; 5297 5298 ASSERT3U(hdr->b_birth, ==, BP_GET_BIRTH(zio->io_bp)); 5299 ASSERT3U(hdr->b_dva.dva_word[0], ==, 5300 BP_IDENTITY(zio->io_bp)->dva_word[0]); 5301 ASSERT3U(hdr->b_dva.dva_word[1], ==, 5302 BP_IDENTITY(zio->io_bp)->dva_word[1]); 5303 5304 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock); 5305 5306 ASSERT((found == hdr && 5307 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 5308 (found == hdr && HDR_L2_READING(hdr))); 5309 ASSERT3P(hash_lock, !=, NULL); 5310 } 5311 5312 if (BP_IS_PROTECTED(bp)) { 5313 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 5314 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 5315 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 5316 hdr->b_crypt_hdr.b_iv); 5317 5318 if (zio->io_error == 0) { 5319 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) { 5320 void *tmpbuf; 5321 5322 tmpbuf = abd_borrow_buf_copy(zio->io_abd, 5323 sizeof (zil_chain_t)); 5324 zio_crypt_decode_mac_zil(tmpbuf, 5325 hdr->b_crypt_hdr.b_mac); 5326 abd_return_buf(zio->io_abd, tmpbuf, 5327 sizeof (zil_chain_t)); 5328 } else { 5329 zio_crypt_decode_mac_bp(bp, 5330 hdr->b_crypt_hdr.b_mac); 5331 } 5332 } 5333 } 5334 5335 if (zio->io_error == 0) { 5336 /* byteswap if necessary */ 5337 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 5338 if (BP_GET_LEVEL(zio->io_bp) > 0) { 5339 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 5340 } else { 5341 hdr->b_l1hdr.b_byteswap = 5342 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 5343 } 5344 } else { 5345 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 5346 } 5347 if (!HDR_L2_READING(hdr)) { 5348 hdr->b_complevel = zio->io_prop.zp_complevel; 5349 } 5350 } 5351 5352 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); 5353 if (l2arc_noprefetch && HDR_PREFETCH(hdr)) 5354 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE); 5355 5356 callback_list = hdr->b_l1hdr.b_acb; 5357 ASSERT3P(callback_list, !=, NULL); 5358 hdr->b_l1hdr.b_acb = NULL; 5359 5360 /* 5361 * If a read request has a callback (i.e. acb_done is not NULL), then we 5362 * make a buf containing the data according to the parameters which were 5363 * passed in. The implementation of arc_buf_alloc_impl() ensures that we 5364 * aren't needlessly decompressing the data multiple times. 5365 */ 5366 int callback_cnt = 0; 5367 for (acb = callback_list; acb != NULL; acb = acb->acb_next) { 5368 5369 /* We need the last one to call below in original order. */ 5370 callback_list = acb; 5371 5372 if (!acb->acb_done || acb->acb_nobuf) 5373 continue; 5374 5375 callback_cnt++; 5376 5377 if (zio->io_error != 0) 5378 continue; 5379 5380 int error = arc_buf_alloc_impl(hdr, zio->io_spa, 5381 &acb->acb_zb, acb->acb_private, acb->acb_encrypted, 5382 acb->acb_compressed, acb->acb_noauth, B_TRUE, 5383 &acb->acb_buf); 5384 5385 /* 5386 * Assert non-speculative zios didn't fail because an 5387 * encryption key wasn't loaded 5388 */ 5389 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) || 5390 error != EACCES); 5391 5392 /* 5393 * If we failed to decrypt, report an error now (as the zio 5394 * layer would have done if it had done the transforms). 5395 */ 5396 if (error == ECKSUM) { 5397 ASSERT(BP_IS_PROTECTED(bp)); 5398 error = SET_ERROR(EIO); 5399 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5400 spa_log_error(zio->io_spa, &acb->acb_zb, 5401 BP_GET_LOGICAL_BIRTH(zio->io_bp)); 5402 (void) zfs_ereport_post( 5403 FM_EREPORT_ZFS_AUTHENTICATION, 5404 zio->io_spa, NULL, &acb->acb_zb, zio, 0); 5405 } 5406 } 5407 5408 if (error != 0) { 5409 /* 5410 * Decompression or decryption failed. Set 5411 * io_error so that when we call acb_done 5412 * (below), we will indicate that the read 5413 * failed. Note that in the unusual case 5414 * where one callback is compressed and another 5415 * uncompressed, we will mark all of them 5416 * as failed, even though the uncompressed 5417 * one can't actually fail. In this case, 5418 * the hdr will not be anonymous, because 5419 * if there are multiple callbacks, it's 5420 * because multiple threads found the same 5421 * arc buf in the hash table. 5422 */ 5423 zio->io_error = error; 5424 } 5425 } 5426 5427 /* 5428 * If there are multiple callbacks, we must have the hash lock, 5429 * because the only way for multiple threads to find this hdr is 5430 * in the hash table. This ensures that if there are multiple 5431 * callbacks, the hdr is not anonymous. If it were anonymous, 5432 * we couldn't use arc_buf_destroy() in the error case below. 5433 */ 5434 ASSERT(callback_cnt < 2 || hash_lock != NULL); 5435 5436 if (zio->io_error == 0) { 5437 arc_hdr_verify(hdr, zio->io_bp); 5438 } else { 5439 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 5440 if (hdr->b_l1hdr.b_state != arc_anon) 5441 arc_change_state(arc_anon, hdr); 5442 if (HDR_IN_HASH_TABLE(hdr)) 5443 buf_hash_remove(hdr); 5444 } 5445 5446 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5447 (void) remove_reference(hdr, hdr); 5448 5449 if (hash_lock != NULL) 5450 mutex_exit(hash_lock); 5451 5452 /* execute each callback and free its structure */ 5453 while ((acb = callback_list) != NULL) { 5454 if (acb->acb_done != NULL) { 5455 if (zio->io_error != 0 && acb->acb_buf != NULL) { 5456 /* 5457 * If arc_buf_alloc_impl() fails during 5458 * decompression, the buf will still be 5459 * allocated, and needs to be freed here. 5460 */ 5461 arc_buf_destroy(acb->acb_buf, 5462 acb->acb_private); 5463 acb->acb_buf = NULL; 5464 } 5465 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp, 5466 acb->acb_buf, acb->acb_private); 5467 } 5468 5469 if (acb->acb_zio_dummy != NULL) { 5470 acb->acb_zio_dummy->io_error = zio->io_error; 5471 zio_nowait(acb->acb_zio_dummy); 5472 } 5473 5474 callback_list = acb->acb_prev; 5475 if (acb->acb_wait) { 5476 mutex_enter(&acb->acb_wait_lock); 5477 acb->acb_wait_error = zio->io_error; 5478 acb->acb_wait = B_FALSE; 5479 cv_signal(&acb->acb_wait_cv); 5480 mutex_exit(&acb->acb_wait_lock); 5481 /* acb will be freed by the waiting thread. */ 5482 } else { 5483 kmem_free(acb, sizeof (arc_callback_t)); 5484 } 5485 } 5486 } 5487 5488 /* 5489 * Lookup the block at the specified DVA (in bp), and return the manner in 5490 * which the block is cached. A zero return indicates not cached. 5491 */ 5492 int 5493 arc_cached(spa_t *spa, const blkptr_t *bp) 5494 { 5495 arc_buf_hdr_t *hdr = NULL; 5496 kmutex_t *hash_lock = NULL; 5497 uint64_t guid = spa_load_guid(spa); 5498 int flags = 0; 5499 5500 if (BP_IS_EMBEDDED(bp)) 5501 return (ARC_CACHED_EMBEDDED); 5502 5503 hdr = buf_hash_find(guid, bp, &hash_lock); 5504 if (hdr == NULL) 5505 return (0); 5506 5507 if (HDR_HAS_L1HDR(hdr)) { 5508 arc_state_t *state = hdr->b_l1hdr.b_state; 5509 /* 5510 * We switch to ensure that any future arc_state_type_t 5511 * changes are handled. This is just a shift to promote 5512 * more compile-time checking. 5513 */ 5514 switch (state->arcs_state) { 5515 case ARC_STATE_ANON: 5516 break; 5517 case ARC_STATE_MRU: 5518 flags |= ARC_CACHED_IN_MRU | ARC_CACHED_IN_L1; 5519 break; 5520 case ARC_STATE_MFU: 5521 flags |= ARC_CACHED_IN_MFU | ARC_CACHED_IN_L1; 5522 break; 5523 case ARC_STATE_UNCACHED: 5524 /* The header is still in L1, probably not for long */ 5525 flags |= ARC_CACHED_IN_L1; 5526 break; 5527 default: 5528 break; 5529 } 5530 } 5531 if (HDR_HAS_L2HDR(hdr)) 5532 flags |= ARC_CACHED_IN_L2; 5533 5534 mutex_exit(hash_lock); 5535 5536 return (flags); 5537 } 5538 5539 /* 5540 * "Read" the block at the specified DVA (in bp) via the 5541 * cache. If the block is found in the cache, invoke the provided 5542 * callback immediately and return. Note that the `zio' parameter 5543 * in the callback will be NULL in this case, since no IO was 5544 * required. If the block is not in the cache pass the read request 5545 * on to the spa with a substitute callback function, so that the 5546 * requested block will be added to the cache. 5547 * 5548 * If a read request arrives for a block that has a read in-progress, 5549 * either wait for the in-progress read to complete (and return the 5550 * results); or, if this is a read with a "done" func, add a record 5551 * to the read to invoke the "done" func when the read completes, 5552 * and return; or just return. 5553 * 5554 * arc_read_done() will invoke all the requested "done" functions 5555 * for readers of this block. 5556 */ 5557 int 5558 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 5559 arc_read_done_func_t *done, void *private, zio_priority_t priority, 5560 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 5561 { 5562 arc_buf_hdr_t *hdr = NULL; 5563 kmutex_t *hash_lock = NULL; 5564 zio_t *rzio; 5565 uint64_t guid = spa_load_guid(spa); 5566 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0; 5567 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) && 5568 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5569 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) && 5570 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5571 boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp); 5572 boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF; 5573 arc_buf_t *buf = NULL; 5574 int rc = 0; 5575 5576 ASSERT(!embedded_bp || 5577 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 5578 ASSERT(!BP_IS_HOLE(bp)); 5579 ASSERT(!BP_IS_REDACTED(bp)); 5580 5581 /* 5582 * Normally SPL_FSTRANS will already be set since kernel threads which 5583 * expect to call the DMU interfaces will set it when created. System 5584 * calls are similarly handled by setting/cleaning the bit in the 5585 * registered callback (module/os/.../zfs/zpl_*). 5586 * 5587 * External consumers such as Lustre which call the exported DMU 5588 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock 5589 * on the hash_lock always set and clear the bit. 5590 */ 5591 fstrans_cookie_t cookie = spl_fstrans_mark(); 5592 top: 5593 if (!embedded_bp) { 5594 /* 5595 * Embedded BP's have no DVA and require no I/O to "read". 5596 * Create an anonymous arc buf to back it. 5597 */ 5598 hdr = buf_hash_find(guid, bp, &hash_lock); 5599 } 5600 5601 /* 5602 * Determine if we have an L1 cache hit or a cache miss. For simplicity 5603 * we maintain encrypted data separately from compressed / uncompressed 5604 * data. If the user is requesting raw encrypted data and we don't have 5605 * that in the header we will read from disk to guarantee that we can 5606 * get it even if the encryption keys aren't loaded. 5607 */ 5608 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) || 5609 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) { 5610 boolean_t is_data = !HDR_ISTYPE_METADATA(hdr); 5611 5612 /* 5613 * Verify the block pointer contents are reasonable. This 5614 * should always be the case since the blkptr is protected by 5615 * a checksum. 5616 */ 5617 if (!zfs_blkptr_verify(spa, bp, BLK_CONFIG_SKIP, 5618 BLK_VERIFY_LOG)) { 5619 mutex_exit(hash_lock); 5620 rc = SET_ERROR(ECKSUM); 5621 goto done; 5622 } 5623 5624 if (HDR_IO_IN_PROGRESS(hdr)) { 5625 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 5626 mutex_exit(hash_lock); 5627 ARCSTAT_BUMP(arcstat_cached_only_in_progress); 5628 rc = SET_ERROR(ENOENT); 5629 goto done; 5630 } 5631 5632 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head; 5633 ASSERT3P(head_zio, !=, NULL); 5634 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && 5635 priority == ZIO_PRIORITY_SYNC_READ) { 5636 /* 5637 * This is a sync read that needs to wait for 5638 * an in-flight async read. Request that the 5639 * zio have its priority upgraded. 5640 */ 5641 zio_change_priority(head_zio, priority); 5642 DTRACE_PROBE1(arc__async__upgrade__sync, 5643 arc_buf_hdr_t *, hdr); 5644 ARCSTAT_BUMP(arcstat_async_upgrade_sync); 5645 } 5646 5647 DTRACE_PROBE1(arc__iohit, arc_buf_hdr_t *, hdr); 5648 arc_access(hdr, *arc_flags, B_FALSE); 5649 5650 /* 5651 * If there are multiple threads reading the same block 5652 * and that block is not yet in the ARC, then only one 5653 * thread will do the physical I/O and all other 5654 * threads will wait until that I/O completes. 5655 * Synchronous reads use the acb_wait_cv whereas nowait 5656 * reads register a callback. Both are signalled/called 5657 * in arc_read_done. 5658 * 5659 * Errors of the physical I/O may need to be propagated. 5660 * Synchronous read errors are returned here from 5661 * arc_read_done via acb_wait_error. Nowait reads 5662 * attach the acb_zio_dummy zio to pio and 5663 * arc_read_done propagates the physical I/O's io_error 5664 * to acb_zio_dummy, and thereby to pio. 5665 */ 5666 arc_callback_t *acb = NULL; 5667 if (done || pio || *arc_flags & ARC_FLAG_WAIT) { 5668 acb = kmem_zalloc(sizeof (arc_callback_t), 5669 KM_SLEEP); 5670 acb->acb_done = done; 5671 acb->acb_private = private; 5672 acb->acb_compressed = compressed_read; 5673 acb->acb_encrypted = encrypted_read; 5674 acb->acb_noauth = noauth_read; 5675 acb->acb_nobuf = no_buf; 5676 if (*arc_flags & ARC_FLAG_WAIT) { 5677 acb->acb_wait = B_TRUE; 5678 mutex_init(&acb->acb_wait_lock, NULL, 5679 MUTEX_DEFAULT, NULL); 5680 cv_init(&acb->acb_wait_cv, NULL, 5681 CV_DEFAULT, NULL); 5682 } 5683 acb->acb_zb = *zb; 5684 if (pio != NULL) { 5685 acb->acb_zio_dummy = zio_null(pio, 5686 spa, NULL, NULL, NULL, zio_flags); 5687 } 5688 acb->acb_zio_head = head_zio; 5689 acb->acb_next = hdr->b_l1hdr.b_acb; 5690 hdr->b_l1hdr.b_acb->acb_prev = acb; 5691 hdr->b_l1hdr.b_acb = acb; 5692 } 5693 mutex_exit(hash_lock); 5694 5695 ARCSTAT_BUMP(arcstat_iohits); 5696 ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH), 5697 demand, prefetch, is_data, data, metadata, iohits); 5698 5699 if (*arc_flags & ARC_FLAG_WAIT) { 5700 mutex_enter(&acb->acb_wait_lock); 5701 while (acb->acb_wait) { 5702 cv_wait(&acb->acb_wait_cv, 5703 &acb->acb_wait_lock); 5704 } 5705 rc = acb->acb_wait_error; 5706 mutex_exit(&acb->acb_wait_lock); 5707 mutex_destroy(&acb->acb_wait_lock); 5708 cv_destroy(&acb->acb_wait_cv); 5709 kmem_free(acb, sizeof (arc_callback_t)); 5710 } 5711 goto out; 5712 } 5713 5714 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5715 hdr->b_l1hdr.b_state == arc_mfu || 5716 hdr->b_l1hdr.b_state == arc_uncached); 5717 5718 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5719 arc_access(hdr, *arc_flags, B_TRUE); 5720 5721 if (done && !no_buf) { 5722 ASSERT(!embedded_bp || !BP_IS_HOLE(bp)); 5723 5724 /* Get a buf with the desired data in it. */ 5725 rc = arc_buf_alloc_impl(hdr, spa, zb, private, 5726 encrypted_read, compressed_read, noauth_read, 5727 B_TRUE, &buf); 5728 if (rc == ECKSUM) { 5729 /* 5730 * Convert authentication and decryption errors 5731 * to EIO (and generate an ereport if needed) 5732 * before leaving the ARC. 5733 */ 5734 rc = SET_ERROR(EIO); 5735 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5736 spa_log_error(spa, zb, hdr->b_birth); 5737 (void) zfs_ereport_post( 5738 FM_EREPORT_ZFS_AUTHENTICATION, 5739 spa, NULL, zb, NULL, 0); 5740 } 5741 } 5742 if (rc != 0) { 5743 arc_buf_destroy_impl(buf); 5744 buf = NULL; 5745 (void) remove_reference(hdr, private); 5746 } 5747 5748 /* assert any errors weren't due to unloaded keys */ 5749 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) || 5750 rc != EACCES); 5751 } 5752 mutex_exit(hash_lock); 5753 ARCSTAT_BUMP(arcstat_hits); 5754 ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH), 5755 demand, prefetch, is_data, data, metadata, hits); 5756 *arc_flags |= ARC_FLAG_CACHED; 5757 goto done; 5758 } else { 5759 uint64_t lsize = BP_GET_LSIZE(bp); 5760 uint64_t psize = BP_GET_PSIZE(bp); 5761 arc_callback_t *acb; 5762 vdev_t *vd = NULL; 5763 uint64_t addr = 0; 5764 boolean_t devw = B_FALSE; 5765 uint64_t size; 5766 abd_t *hdr_abd; 5767 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0; 5768 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 5769 5770 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 5771 if (hash_lock != NULL) 5772 mutex_exit(hash_lock); 5773 rc = SET_ERROR(ENOENT); 5774 goto done; 5775 } 5776 5777 /* 5778 * Verify the block pointer contents are reasonable. This 5779 * should always be the case since the blkptr is protected by 5780 * a checksum. 5781 */ 5782 if (!zfs_blkptr_verify(spa, bp, 5783 (zio_flags & ZIO_FLAG_CONFIG_WRITER) ? 5784 BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) { 5785 if (hash_lock != NULL) 5786 mutex_exit(hash_lock); 5787 rc = SET_ERROR(ECKSUM); 5788 goto done; 5789 } 5790 5791 if (hdr == NULL) { 5792 /* 5793 * This block is not in the cache or it has 5794 * embedded data. 5795 */ 5796 arc_buf_hdr_t *exists = NULL; 5797 hdr = arc_hdr_alloc(guid, psize, lsize, 5798 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type); 5799 5800 if (!embedded_bp) { 5801 hdr->b_dva = *BP_IDENTITY(bp); 5802 hdr->b_birth = BP_GET_BIRTH(bp); 5803 exists = buf_hash_insert(hdr, &hash_lock); 5804 } 5805 if (exists != NULL) { 5806 /* somebody beat us to the hash insert */ 5807 mutex_exit(hash_lock); 5808 buf_discard_identity(hdr); 5809 arc_hdr_destroy(hdr); 5810 goto top; /* restart the IO request */ 5811 } 5812 } else { 5813 /* 5814 * This block is in the ghost cache or encrypted data 5815 * was requested and we didn't have it. If it was 5816 * L2-only (and thus didn't have an L1 hdr), 5817 * we realloc the header to add an L1 hdr. 5818 */ 5819 if (!HDR_HAS_L1HDR(hdr)) { 5820 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 5821 hdr_full_cache); 5822 } 5823 5824 if (GHOST_STATE(hdr->b_l1hdr.b_state)) { 5825 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 5826 ASSERT(!HDR_HAS_RABD(hdr)); 5827 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5828 ASSERT0(zfs_refcount_count( 5829 &hdr->b_l1hdr.b_refcnt)); 5830 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 5831 #ifdef ZFS_DEBUG 5832 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 5833 #endif 5834 } else if (HDR_IO_IN_PROGRESS(hdr)) { 5835 /* 5836 * If this header already had an IO in progress 5837 * and we are performing another IO to fetch 5838 * encrypted data we must wait until the first 5839 * IO completes so as not to confuse 5840 * arc_read_done(). This should be very rare 5841 * and so the performance impact shouldn't 5842 * matter. 5843 */ 5844 arc_callback_t *acb = kmem_zalloc( 5845 sizeof (arc_callback_t), KM_SLEEP); 5846 acb->acb_wait = B_TRUE; 5847 mutex_init(&acb->acb_wait_lock, NULL, 5848 MUTEX_DEFAULT, NULL); 5849 cv_init(&acb->acb_wait_cv, NULL, CV_DEFAULT, 5850 NULL); 5851 acb->acb_zio_head = 5852 hdr->b_l1hdr.b_acb->acb_zio_head; 5853 acb->acb_next = hdr->b_l1hdr.b_acb; 5854 hdr->b_l1hdr.b_acb->acb_prev = acb; 5855 hdr->b_l1hdr.b_acb = acb; 5856 mutex_exit(hash_lock); 5857 mutex_enter(&acb->acb_wait_lock); 5858 while (acb->acb_wait) { 5859 cv_wait(&acb->acb_wait_cv, 5860 &acb->acb_wait_lock); 5861 } 5862 mutex_exit(&acb->acb_wait_lock); 5863 mutex_destroy(&acb->acb_wait_lock); 5864 cv_destroy(&acb->acb_wait_cv); 5865 kmem_free(acb, sizeof (arc_callback_t)); 5866 goto top; 5867 } 5868 } 5869 if (*arc_flags & ARC_FLAG_UNCACHED) { 5870 arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED); 5871 if (!encrypted_read) 5872 alloc_flags |= ARC_HDR_ALLOC_LINEAR; 5873 } 5874 5875 /* 5876 * Take additional reference for IO_IN_PROGRESS. It stops 5877 * arc_access() from putting this header without any buffers 5878 * and so other references but obviously nonevictable onto 5879 * the evictable list of MRU or MFU state. 5880 */ 5881 add_reference(hdr, hdr); 5882 if (!embedded_bp) 5883 arc_access(hdr, *arc_flags, B_FALSE); 5884 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5885 arc_hdr_alloc_abd(hdr, alloc_flags); 5886 if (encrypted_read) { 5887 ASSERT(HDR_HAS_RABD(hdr)); 5888 size = HDR_GET_PSIZE(hdr); 5889 hdr_abd = hdr->b_crypt_hdr.b_rabd; 5890 zio_flags |= ZIO_FLAG_RAW; 5891 } else { 5892 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 5893 size = arc_hdr_size(hdr); 5894 hdr_abd = hdr->b_l1hdr.b_pabd; 5895 5896 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 5897 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 5898 } 5899 5900 /* 5901 * For authenticated bp's, we do not ask the ZIO layer 5902 * to authenticate them since this will cause the entire 5903 * IO to fail if the key isn't loaded. Instead, we 5904 * defer authentication until arc_buf_fill(), which will 5905 * verify the data when the key is available. 5906 */ 5907 if (BP_IS_AUTHENTICATED(bp)) 5908 zio_flags |= ZIO_FLAG_RAW_ENCRYPT; 5909 } 5910 5911 if (BP_IS_AUTHENTICATED(bp)) 5912 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 5913 if (BP_GET_LEVEL(bp) > 0) 5914 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); 5915 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 5916 5917 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 5918 acb->acb_done = done; 5919 acb->acb_private = private; 5920 acb->acb_compressed = compressed_read; 5921 acb->acb_encrypted = encrypted_read; 5922 acb->acb_noauth = noauth_read; 5923 acb->acb_zb = *zb; 5924 5925 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 5926 hdr->b_l1hdr.b_acb = acb; 5927 5928 if (HDR_HAS_L2HDR(hdr) && 5929 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 5930 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 5931 addr = hdr->b_l2hdr.b_daddr; 5932 /* 5933 * Lock out L2ARC device removal. 5934 */ 5935 if (vdev_is_dead(vd) || 5936 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 5937 vd = NULL; 5938 } 5939 5940 /* 5941 * We count both async reads and scrub IOs as asynchronous so 5942 * that both can be upgraded in the event of a cache hit while 5943 * the read IO is still in-flight. 5944 */ 5945 if (priority == ZIO_PRIORITY_ASYNC_READ || 5946 priority == ZIO_PRIORITY_SCRUB) 5947 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 5948 else 5949 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 5950 5951 /* 5952 * At this point, we have a level 1 cache miss or a blkptr 5953 * with embedded data. Try again in L2ARC if possible. 5954 */ 5955 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); 5956 5957 /* 5958 * Skip ARC stat bump for block pointers with embedded 5959 * data. The data are read from the blkptr itself via 5960 * decode_embedded_bp_compressed(). 5961 */ 5962 if (!embedded_bp) { 5963 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, 5964 blkptr_t *, bp, uint64_t, lsize, 5965 zbookmark_phys_t *, zb); 5966 ARCSTAT_BUMP(arcstat_misses); 5967 ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH), 5968 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, 5969 metadata, misses); 5970 zfs_racct_read(spa, size, 1, 0); 5971 } 5972 5973 /* Check if the spa even has l2 configured */ 5974 const boolean_t spa_has_l2 = l2arc_ndev != 0 && 5975 spa->spa_l2cache.sav_count > 0; 5976 5977 if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) { 5978 /* 5979 * Read from the L2ARC if the following are true: 5980 * 1. The L2ARC vdev was previously cached. 5981 * 2. This buffer still has L2ARC metadata. 5982 * 3. This buffer isn't currently writing to the L2ARC. 5983 * 4. The L2ARC entry wasn't evicted, which may 5984 * also have invalidated the vdev. 5985 */ 5986 if (HDR_HAS_L2HDR(hdr) && 5987 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr)) { 5988 l2arc_read_callback_t *cb; 5989 abd_t *abd; 5990 uint64_t asize; 5991 5992 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 5993 ARCSTAT_BUMP(arcstat_l2_hits); 5994 hdr->b_l2hdr.b_hits++; 5995 5996 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 5997 KM_SLEEP); 5998 cb->l2rcb_hdr = hdr; 5999 cb->l2rcb_bp = *bp; 6000 cb->l2rcb_zb = *zb; 6001 cb->l2rcb_flags = zio_flags; 6002 6003 /* 6004 * When Compressed ARC is disabled, but the 6005 * L2ARC block is compressed, arc_hdr_size() 6006 * will have returned LSIZE rather than PSIZE. 6007 */ 6008 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 6009 !HDR_COMPRESSION_ENABLED(hdr) && 6010 HDR_GET_PSIZE(hdr) != 0) { 6011 size = HDR_GET_PSIZE(hdr); 6012 } 6013 6014 asize = vdev_psize_to_asize(vd, size); 6015 if (asize != size) { 6016 abd = abd_alloc_for_io(asize, 6017 HDR_ISTYPE_METADATA(hdr)); 6018 cb->l2rcb_abd = abd; 6019 } else { 6020 abd = hdr_abd; 6021 } 6022 6023 ASSERT(addr >= VDEV_LABEL_START_SIZE && 6024 addr + asize <= vd->vdev_psize - 6025 VDEV_LABEL_END_SIZE); 6026 6027 /* 6028 * l2arc read. The SCL_L2ARC lock will be 6029 * released by l2arc_read_done(). 6030 * Issue a null zio if the underlying buffer 6031 * was squashed to zero size by compression. 6032 */ 6033 ASSERT3U(arc_hdr_get_compress(hdr), !=, 6034 ZIO_COMPRESS_EMPTY); 6035 rzio = zio_read_phys(pio, vd, addr, 6036 asize, abd, 6037 ZIO_CHECKSUM_OFF, 6038 l2arc_read_done, cb, priority, 6039 zio_flags | ZIO_FLAG_CANFAIL | 6040 ZIO_FLAG_DONT_PROPAGATE | 6041 ZIO_FLAG_DONT_RETRY, B_FALSE); 6042 acb->acb_zio_head = rzio; 6043 6044 if (hash_lock != NULL) 6045 mutex_exit(hash_lock); 6046 6047 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 6048 zio_t *, rzio); 6049 ARCSTAT_INCR(arcstat_l2_read_bytes, 6050 HDR_GET_PSIZE(hdr)); 6051 6052 if (*arc_flags & ARC_FLAG_NOWAIT) { 6053 zio_nowait(rzio); 6054 goto out; 6055 } 6056 6057 ASSERT(*arc_flags & ARC_FLAG_WAIT); 6058 if (zio_wait(rzio) == 0) 6059 goto out; 6060 6061 /* l2arc read error; goto zio_read() */ 6062 if (hash_lock != NULL) 6063 mutex_enter(hash_lock); 6064 } else { 6065 DTRACE_PROBE1(l2arc__miss, 6066 arc_buf_hdr_t *, hdr); 6067 ARCSTAT_BUMP(arcstat_l2_misses); 6068 if (HDR_L2_WRITING(hdr)) 6069 ARCSTAT_BUMP(arcstat_l2_rw_clash); 6070 spa_config_exit(spa, SCL_L2ARC, vd); 6071 } 6072 } else { 6073 if (vd != NULL) 6074 spa_config_exit(spa, SCL_L2ARC, vd); 6075 6076 /* 6077 * Only a spa with l2 should contribute to l2 6078 * miss stats. (Including the case of having a 6079 * faulted cache device - that's also a miss.) 6080 */ 6081 if (spa_has_l2) { 6082 /* 6083 * Skip ARC stat bump for block pointers with 6084 * embedded data. The data are read from the 6085 * blkptr itself via 6086 * decode_embedded_bp_compressed(). 6087 */ 6088 if (!embedded_bp) { 6089 DTRACE_PROBE1(l2arc__miss, 6090 arc_buf_hdr_t *, hdr); 6091 ARCSTAT_BUMP(arcstat_l2_misses); 6092 } 6093 } 6094 } 6095 6096 rzio = zio_read(pio, spa, bp, hdr_abd, size, 6097 arc_read_done, hdr, priority, zio_flags, zb); 6098 acb->acb_zio_head = rzio; 6099 6100 if (hash_lock != NULL) 6101 mutex_exit(hash_lock); 6102 6103 if (*arc_flags & ARC_FLAG_WAIT) { 6104 rc = zio_wait(rzio); 6105 goto out; 6106 } 6107 6108 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 6109 zio_nowait(rzio); 6110 } 6111 6112 out: 6113 /* embedded bps don't actually go to disk */ 6114 if (!embedded_bp) 6115 spa_read_history_add(spa, zb, *arc_flags); 6116 spl_fstrans_unmark(cookie); 6117 return (rc); 6118 6119 done: 6120 if (done) 6121 done(NULL, zb, bp, buf, private); 6122 if (pio && rc != 0) { 6123 zio_t *zio = zio_null(pio, spa, NULL, NULL, NULL, zio_flags); 6124 zio->io_error = rc; 6125 zio_nowait(zio); 6126 } 6127 goto out; 6128 } 6129 6130 arc_prune_t * 6131 arc_add_prune_callback(arc_prune_func_t *func, void *private) 6132 { 6133 arc_prune_t *p; 6134 6135 p = kmem_alloc(sizeof (*p), KM_SLEEP); 6136 p->p_pfunc = func; 6137 p->p_private = private; 6138 list_link_init(&p->p_node); 6139 zfs_refcount_create(&p->p_refcnt); 6140 6141 mutex_enter(&arc_prune_mtx); 6142 zfs_refcount_add(&p->p_refcnt, &arc_prune_list); 6143 list_insert_head(&arc_prune_list, p); 6144 mutex_exit(&arc_prune_mtx); 6145 6146 return (p); 6147 } 6148 6149 void 6150 arc_remove_prune_callback(arc_prune_t *p) 6151 { 6152 boolean_t wait = B_FALSE; 6153 mutex_enter(&arc_prune_mtx); 6154 list_remove(&arc_prune_list, p); 6155 if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0) 6156 wait = B_TRUE; 6157 mutex_exit(&arc_prune_mtx); 6158 6159 /* wait for arc_prune_task to finish */ 6160 if (wait) 6161 taskq_wait_outstanding(arc_prune_taskq, 0); 6162 ASSERT0(zfs_refcount_count(&p->p_refcnt)); 6163 zfs_refcount_destroy(&p->p_refcnt); 6164 kmem_free(p, sizeof (*p)); 6165 } 6166 6167 /* 6168 * Helper function for arc_prune_async() it is responsible for safely 6169 * handling the execution of a registered arc_prune_func_t. 6170 */ 6171 static void 6172 arc_prune_task(void *ptr) 6173 { 6174 arc_prune_t *ap = (arc_prune_t *)ptr; 6175 arc_prune_func_t *func = ap->p_pfunc; 6176 6177 if (func != NULL) 6178 func(ap->p_adjust, ap->p_private); 6179 6180 (void) zfs_refcount_remove(&ap->p_refcnt, func); 6181 } 6182 6183 /* 6184 * Notify registered consumers they must drop holds on a portion of the ARC 6185 * buffers they reference. This provides a mechanism to ensure the ARC can 6186 * honor the metadata limit and reclaim otherwise pinned ARC buffers. 6187 * 6188 * This operation is performed asynchronously so it may be safely called 6189 * in the context of the arc_reclaim_thread(). A reference is taken here 6190 * for each registered arc_prune_t and the arc_prune_task() is responsible 6191 * for releasing it once the registered arc_prune_func_t has completed. 6192 */ 6193 static void 6194 arc_prune_async(uint64_t adjust) 6195 { 6196 arc_prune_t *ap; 6197 6198 mutex_enter(&arc_prune_mtx); 6199 for (ap = list_head(&arc_prune_list); ap != NULL; 6200 ap = list_next(&arc_prune_list, ap)) { 6201 6202 if (zfs_refcount_count(&ap->p_refcnt) >= 2) 6203 continue; 6204 6205 zfs_refcount_add(&ap->p_refcnt, ap->p_pfunc); 6206 ap->p_adjust = adjust; 6207 if (taskq_dispatch(arc_prune_taskq, arc_prune_task, 6208 ap, TQ_SLEEP) == TASKQID_INVALID) { 6209 (void) zfs_refcount_remove(&ap->p_refcnt, ap->p_pfunc); 6210 continue; 6211 } 6212 ARCSTAT_BUMP(arcstat_prune); 6213 } 6214 mutex_exit(&arc_prune_mtx); 6215 } 6216 6217 /* 6218 * Notify the arc that a block was freed, and thus will never be used again. 6219 */ 6220 void 6221 arc_freed(spa_t *spa, const blkptr_t *bp) 6222 { 6223 arc_buf_hdr_t *hdr; 6224 kmutex_t *hash_lock; 6225 uint64_t guid = spa_load_guid(spa); 6226 6227 ASSERT(!BP_IS_EMBEDDED(bp)); 6228 6229 hdr = buf_hash_find(guid, bp, &hash_lock); 6230 if (hdr == NULL) 6231 return; 6232 6233 /* 6234 * We might be trying to free a block that is still doing I/O 6235 * (i.e. prefetch) or has some other reference (i.e. a dedup-ed, 6236 * dmu_sync-ed block). A block may also have a reference if it is 6237 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would 6238 * have written the new block to its final resting place on disk but 6239 * without the dedup flag set. This would have left the hdr in the MRU 6240 * state and discoverable. When the txg finally syncs it detects that 6241 * the block was overridden in open context and issues an override I/O. 6242 * Since this is a dedup block, the override I/O will determine if the 6243 * block is already in the DDT. If so, then it will replace the io_bp 6244 * with the bp from the DDT and allow the I/O to finish. When the I/O 6245 * reaches the done callback, dbuf_write_override_done, it will 6246 * check to see if the io_bp and io_bp_override are identical. 6247 * If they are not, then it indicates that the bp was replaced with 6248 * the bp in the DDT and the override bp is freed. This allows 6249 * us to arrive here with a reference on a block that is being 6250 * freed. So if we have an I/O in progress, or a reference to 6251 * this hdr, then we don't destroy the hdr. 6252 */ 6253 if (!HDR_HAS_L1HDR(hdr) || 6254 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6255 arc_change_state(arc_anon, hdr); 6256 arc_hdr_destroy(hdr); 6257 mutex_exit(hash_lock); 6258 } else { 6259 mutex_exit(hash_lock); 6260 } 6261 6262 } 6263 6264 /* 6265 * Release this buffer from the cache, making it an anonymous buffer. This 6266 * must be done after a read and prior to modifying the buffer contents. 6267 * If the buffer has more than one reference, we must make 6268 * a new hdr for the buffer. 6269 */ 6270 void 6271 arc_release(arc_buf_t *buf, const void *tag) 6272 { 6273 arc_buf_hdr_t *hdr = buf->b_hdr; 6274 6275 /* 6276 * It would be nice to assert that if its DMU metadata (level > 6277 * 0 || it's the dnode file), then it must be syncing context. 6278 * But we don't know that information at this level. 6279 */ 6280 6281 ASSERT(HDR_HAS_L1HDR(hdr)); 6282 6283 /* 6284 * We don't grab the hash lock prior to this check, because if 6285 * the buffer's header is in the arc_anon state, it won't be 6286 * linked into the hash table. 6287 */ 6288 if (hdr->b_l1hdr.b_state == arc_anon) { 6289 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6290 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 6291 ASSERT(!HDR_HAS_L2HDR(hdr)); 6292 6293 ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf); 6294 ASSERT(ARC_BUF_LAST(buf)); 6295 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 6296 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 6297 6298 hdr->b_l1hdr.b_arc_access = 0; 6299 6300 /* 6301 * If the buf is being overridden then it may already 6302 * have a hdr that is not empty. 6303 */ 6304 buf_discard_identity(hdr); 6305 arc_buf_thaw(buf); 6306 6307 return; 6308 } 6309 6310 kmutex_t *hash_lock = HDR_LOCK(hdr); 6311 mutex_enter(hash_lock); 6312 6313 /* 6314 * This assignment is only valid as long as the hash_lock is 6315 * held, we must be careful not to reference state or the 6316 * b_state field after dropping the lock. 6317 */ 6318 arc_state_t *state = hdr->b_l1hdr.b_state; 6319 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 6320 ASSERT3P(state, !=, arc_anon); 6321 6322 /* this buffer is not on any list */ 6323 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0); 6324 6325 if (HDR_HAS_L2HDR(hdr)) { 6326 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6327 6328 /* 6329 * We have to recheck this conditional again now that 6330 * we're holding the l2ad_mtx to prevent a race with 6331 * another thread which might be concurrently calling 6332 * l2arc_evict(). In that case, l2arc_evict() might have 6333 * destroyed the header's L2 portion as we were waiting 6334 * to acquire the l2ad_mtx. 6335 */ 6336 if (HDR_HAS_L2HDR(hdr)) 6337 arc_hdr_l2hdr_destroy(hdr); 6338 6339 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6340 } 6341 6342 /* 6343 * Do we have more than one buf? 6344 */ 6345 if (hdr->b_l1hdr.b_buf != buf || !ARC_BUF_LAST(buf)) { 6346 arc_buf_hdr_t *nhdr; 6347 uint64_t spa = hdr->b_spa; 6348 uint64_t psize = HDR_GET_PSIZE(hdr); 6349 uint64_t lsize = HDR_GET_LSIZE(hdr); 6350 boolean_t protected = HDR_PROTECTED(hdr); 6351 enum zio_compress compress = arc_hdr_get_compress(hdr); 6352 arc_buf_contents_t type = arc_buf_type(hdr); 6353 VERIFY3U(hdr->b_type, ==, type); 6354 6355 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); 6356 VERIFY3S(remove_reference(hdr, tag), >, 0); 6357 6358 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 6359 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6360 ASSERT(ARC_BUF_LAST(buf)); 6361 } 6362 6363 /* 6364 * Pull the data off of this hdr and attach it to 6365 * a new anonymous hdr. Also find the last buffer 6366 * in the hdr's buffer list. 6367 */ 6368 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 6369 ASSERT3P(lastbuf, !=, NULL); 6370 6371 /* 6372 * If the current arc_buf_t and the hdr are sharing their data 6373 * buffer, then we must stop sharing that block. 6374 */ 6375 if (ARC_BUF_SHARED(buf)) { 6376 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6377 ASSERT(!arc_buf_is_shared(lastbuf)); 6378 6379 /* 6380 * First, sever the block sharing relationship between 6381 * buf and the arc_buf_hdr_t. 6382 */ 6383 arc_unshare_buf(hdr, buf); 6384 6385 /* 6386 * Now we need to recreate the hdr's b_pabd. Since we 6387 * have lastbuf handy, we try to share with it, but if 6388 * we can't then we allocate a new b_pabd and copy the 6389 * data from buf into it. 6390 */ 6391 if (arc_can_share(hdr, lastbuf)) { 6392 arc_share_buf(hdr, lastbuf); 6393 } else { 6394 arc_hdr_alloc_abd(hdr, 0); 6395 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, 6396 buf->b_data, psize); 6397 } 6398 VERIFY3P(lastbuf->b_data, !=, NULL); 6399 } else if (HDR_SHARED_DATA(hdr)) { 6400 /* 6401 * Uncompressed shared buffers are always at the end 6402 * of the list. Compressed buffers don't have the 6403 * same requirements. This makes it hard to 6404 * simply assert that the lastbuf is shared so 6405 * we rely on the hdr's compression flags to determine 6406 * if we have a compressed, shared buffer. 6407 */ 6408 ASSERT(arc_buf_is_shared(lastbuf) || 6409 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 6410 ASSERT(!arc_buf_is_shared(buf)); 6411 } 6412 6413 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 6414 ASSERT3P(state, !=, arc_l2c_only); 6415 6416 (void) zfs_refcount_remove_many(&state->arcs_size[type], 6417 arc_buf_size(buf), buf); 6418 6419 if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6420 ASSERT3P(state, !=, arc_l2c_only); 6421 (void) zfs_refcount_remove_many( 6422 &state->arcs_esize[type], 6423 arc_buf_size(buf), buf); 6424 } 6425 6426 arc_cksum_verify(buf); 6427 arc_buf_unwatch(buf); 6428 6429 /* if this is the last uncompressed buf free the checksum */ 6430 if (!arc_hdr_has_uncompressed_buf(hdr)) 6431 arc_cksum_free(hdr); 6432 6433 mutex_exit(hash_lock); 6434 6435 nhdr = arc_hdr_alloc(spa, psize, lsize, protected, 6436 compress, hdr->b_complevel, type); 6437 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL); 6438 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt)); 6439 VERIFY3U(nhdr->b_type, ==, type); 6440 ASSERT(!HDR_SHARED_DATA(nhdr)); 6441 6442 nhdr->b_l1hdr.b_buf = buf; 6443 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 6444 buf->b_hdr = nhdr; 6445 6446 (void) zfs_refcount_add_many(&arc_anon->arcs_size[type], 6447 arc_buf_size(buf), buf); 6448 } else { 6449 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 6450 /* protected by hash lock, or hdr is on arc_anon */ 6451 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 6452 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6453 hdr->b_l1hdr.b_mru_hits = 0; 6454 hdr->b_l1hdr.b_mru_ghost_hits = 0; 6455 hdr->b_l1hdr.b_mfu_hits = 0; 6456 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 6457 arc_change_state(arc_anon, hdr); 6458 hdr->b_l1hdr.b_arc_access = 0; 6459 6460 mutex_exit(hash_lock); 6461 buf_discard_identity(hdr); 6462 arc_buf_thaw(buf); 6463 } 6464 } 6465 6466 int 6467 arc_released(arc_buf_t *buf) 6468 { 6469 return (buf->b_data != NULL && 6470 buf->b_hdr->b_l1hdr.b_state == arc_anon); 6471 } 6472 6473 #ifdef ZFS_DEBUG 6474 int 6475 arc_referenced(arc_buf_t *buf) 6476 { 6477 return (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 6478 } 6479 #endif 6480 6481 static void 6482 arc_write_ready(zio_t *zio) 6483 { 6484 arc_write_callback_t *callback = zio->io_private; 6485 arc_buf_t *buf = callback->awcb_buf; 6486 arc_buf_hdr_t *hdr = buf->b_hdr; 6487 blkptr_t *bp = zio->io_bp; 6488 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp); 6489 fstrans_cookie_t cookie = spl_fstrans_mark(); 6490 6491 ASSERT(HDR_HAS_L1HDR(hdr)); 6492 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 6493 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL); 6494 6495 /* 6496 * If we're reexecuting this zio because the pool suspended, then 6497 * cleanup any state that was previously set the first time the 6498 * callback was invoked. 6499 */ 6500 if (zio->io_flags & ZIO_FLAG_REEXECUTED) { 6501 arc_cksum_free(hdr); 6502 arc_buf_unwatch(buf); 6503 if (hdr->b_l1hdr.b_pabd != NULL) { 6504 if (ARC_BUF_SHARED(buf)) { 6505 arc_unshare_buf(hdr, buf); 6506 } else { 6507 ASSERT(!arc_buf_is_shared(buf)); 6508 arc_hdr_free_abd(hdr, B_FALSE); 6509 } 6510 } 6511 6512 if (HDR_HAS_RABD(hdr)) 6513 arc_hdr_free_abd(hdr, B_TRUE); 6514 } 6515 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6516 ASSERT(!HDR_HAS_RABD(hdr)); 6517 ASSERT(!HDR_SHARED_DATA(hdr)); 6518 ASSERT(!arc_buf_is_shared(buf)); 6519 6520 callback->awcb_ready(zio, buf, callback->awcb_private); 6521 6522 if (HDR_IO_IN_PROGRESS(hdr)) { 6523 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); 6524 } else { 6525 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6526 add_reference(hdr, hdr); /* For IO_IN_PROGRESS. */ 6527 } 6528 6529 if (BP_IS_PROTECTED(bp)) { 6530 /* ZIL blocks are written through zio_rewrite */ 6531 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 6532 6533 if (BP_SHOULD_BYTESWAP(bp)) { 6534 if (BP_GET_LEVEL(bp) > 0) { 6535 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 6536 } else { 6537 hdr->b_l1hdr.b_byteswap = 6538 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 6539 } 6540 } else { 6541 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 6542 } 6543 6544 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 6545 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 6546 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 6547 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 6548 hdr->b_crypt_hdr.b_iv); 6549 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 6550 } else { 6551 arc_hdr_clear_flags(hdr, ARC_FLAG_PROTECTED); 6552 } 6553 6554 /* 6555 * If this block was written for raw encryption but the zio layer 6556 * ended up only authenticating it, adjust the buffer flags now. 6557 */ 6558 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) { 6559 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6560 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6561 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF) 6562 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6563 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) { 6564 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6565 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6566 } 6567 6568 /* this must be done after the buffer flags are adjusted */ 6569 arc_cksum_compute(buf); 6570 6571 enum zio_compress compress; 6572 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 6573 compress = ZIO_COMPRESS_OFF; 6574 } else { 6575 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 6576 compress = BP_GET_COMPRESS(bp); 6577 } 6578 HDR_SET_PSIZE(hdr, psize); 6579 arc_hdr_set_compress(hdr, compress); 6580 hdr->b_complevel = zio->io_prop.zp_complevel; 6581 6582 if (zio->io_error != 0 || psize == 0) 6583 goto out; 6584 6585 /* 6586 * Fill the hdr with data. If the buffer is encrypted we have no choice 6587 * but to copy the data into b_radb. If the hdr is compressed, the data 6588 * we want is available from the zio, otherwise we can take it from 6589 * the buf. 6590 * 6591 * We might be able to share the buf's data with the hdr here. However, 6592 * doing so would cause the ARC to be full of linear ABDs if we write a 6593 * lot of shareable data. As a compromise, we check whether scattered 6594 * ABDs are allowed, and assume that if they are then the user wants 6595 * the ARC to be primarily filled with them regardless of the data being 6596 * written. Therefore, if they're allowed then we allocate one and copy 6597 * the data into it; otherwise, we share the data directly if we can. 6598 */ 6599 if (ARC_BUF_ENCRYPTED(buf)) { 6600 ASSERT3U(psize, >, 0); 6601 ASSERT(ARC_BUF_COMPRESSED(buf)); 6602 arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA | 6603 ARC_HDR_USE_RESERVE); 6604 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6605 } else if (!(HDR_UNCACHED(hdr) || 6606 abd_size_alloc_linear(arc_buf_size(buf))) || 6607 !arc_can_share(hdr, buf)) { 6608 /* 6609 * Ideally, we would always copy the io_abd into b_pabd, but the 6610 * user may have disabled compressed ARC, thus we must check the 6611 * hdr's compression setting rather than the io_bp's. 6612 */ 6613 if (BP_IS_ENCRYPTED(bp)) { 6614 ASSERT3U(psize, >, 0); 6615 arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA | 6616 ARC_HDR_USE_RESERVE); 6617 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6618 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 6619 !ARC_BUF_COMPRESSED(buf)) { 6620 ASSERT3U(psize, >, 0); 6621 arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE); 6622 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize); 6623 } else { 6624 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr)); 6625 arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE); 6626 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data, 6627 arc_buf_size(buf)); 6628 } 6629 } else { 6630 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd)); 6631 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf)); 6632 ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf); 6633 ASSERT(ARC_BUF_LAST(buf)); 6634 6635 arc_share_buf(hdr, buf); 6636 } 6637 6638 out: 6639 arc_hdr_verify(hdr, bp); 6640 spl_fstrans_unmark(cookie); 6641 } 6642 6643 static void 6644 arc_write_children_ready(zio_t *zio) 6645 { 6646 arc_write_callback_t *callback = zio->io_private; 6647 arc_buf_t *buf = callback->awcb_buf; 6648 6649 callback->awcb_children_ready(zio, buf, callback->awcb_private); 6650 } 6651 6652 static void 6653 arc_write_done(zio_t *zio) 6654 { 6655 arc_write_callback_t *callback = zio->io_private; 6656 arc_buf_t *buf = callback->awcb_buf; 6657 arc_buf_hdr_t *hdr = buf->b_hdr; 6658 6659 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6660 6661 if (zio->io_error == 0) { 6662 arc_hdr_verify(hdr, zio->io_bp); 6663 6664 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 6665 buf_discard_identity(hdr); 6666 } else { 6667 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 6668 hdr->b_birth = BP_GET_BIRTH(zio->io_bp); 6669 } 6670 } else { 6671 ASSERT(HDR_EMPTY(hdr)); 6672 } 6673 6674 /* 6675 * If the block to be written was all-zero or compressed enough to be 6676 * embedded in the BP, no write was performed so there will be no 6677 * dva/birth/checksum. The buffer must therefore remain anonymous 6678 * (and uncached). 6679 */ 6680 if (!HDR_EMPTY(hdr)) { 6681 arc_buf_hdr_t *exists; 6682 kmutex_t *hash_lock; 6683 6684 ASSERT3U(zio->io_error, ==, 0); 6685 6686 arc_cksum_verify(buf); 6687 6688 exists = buf_hash_insert(hdr, &hash_lock); 6689 if (exists != NULL) { 6690 /* 6691 * This can only happen if we overwrite for 6692 * sync-to-convergence, because we remove 6693 * buffers from the hash table when we arc_free(). 6694 */ 6695 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 6696 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6697 panic("bad overwrite, hdr=%p exists=%p", 6698 (void *)hdr, (void *)exists); 6699 ASSERT(zfs_refcount_is_zero( 6700 &exists->b_l1hdr.b_refcnt)); 6701 arc_change_state(arc_anon, exists); 6702 arc_hdr_destroy(exists); 6703 mutex_exit(hash_lock); 6704 exists = buf_hash_insert(hdr, &hash_lock); 6705 ASSERT3P(exists, ==, NULL); 6706 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 6707 /* nopwrite */ 6708 ASSERT(zio->io_prop.zp_nopwrite); 6709 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6710 panic("bad nopwrite, hdr=%p exists=%p", 6711 (void *)hdr, (void *)exists); 6712 } else { 6713 /* Dedup */ 6714 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL); 6715 ASSERT(ARC_BUF_LAST(hdr->b_l1hdr.b_buf)); 6716 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 6717 ASSERT(BP_GET_DEDUP(zio->io_bp)); 6718 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 6719 } 6720 } 6721 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6722 VERIFY3S(remove_reference(hdr, hdr), >, 0); 6723 /* if it's not anon, we are doing a scrub */ 6724 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 6725 arc_access(hdr, 0, B_FALSE); 6726 mutex_exit(hash_lock); 6727 } else { 6728 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6729 VERIFY3S(remove_reference(hdr, hdr), >, 0); 6730 } 6731 6732 callback->awcb_done(zio, buf, callback->awcb_private); 6733 6734 abd_free(zio->io_abd); 6735 kmem_free(callback, sizeof (arc_write_callback_t)); 6736 } 6737 6738 zio_t * 6739 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 6740 blkptr_t *bp, arc_buf_t *buf, boolean_t uncached, boolean_t l2arc, 6741 const zio_prop_t *zp, arc_write_done_func_t *ready, 6742 arc_write_done_func_t *children_ready, arc_write_done_func_t *done, 6743 void *private, zio_priority_t priority, int zio_flags, 6744 const zbookmark_phys_t *zb) 6745 { 6746 arc_buf_hdr_t *hdr = buf->b_hdr; 6747 arc_write_callback_t *callback; 6748 zio_t *zio; 6749 zio_prop_t localprop = *zp; 6750 6751 ASSERT3P(ready, !=, NULL); 6752 ASSERT3P(done, !=, NULL); 6753 ASSERT(!HDR_IO_ERROR(hdr)); 6754 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6755 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6756 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL); 6757 if (uncached) 6758 arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED); 6759 else if (l2arc) 6760 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6761 6762 if (ARC_BUF_ENCRYPTED(buf)) { 6763 ASSERT(ARC_BUF_COMPRESSED(buf)); 6764 localprop.zp_encrypt = B_TRUE; 6765 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 6766 localprop.zp_complevel = hdr->b_complevel; 6767 localprop.zp_byteorder = 6768 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 6769 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 6770 memcpy(localprop.zp_salt, hdr->b_crypt_hdr.b_salt, 6771 ZIO_DATA_SALT_LEN); 6772 memcpy(localprop.zp_iv, hdr->b_crypt_hdr.b_iv, 6773 ZIO_DATA_IV_LEN); 6774 memcpy(localprop.zp_mac, hdr->b_crypt_hdr.b_mac, 6775 ZIO_DATA_MAC_LEN); 6776 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) { 6777 localprop.zp_nopwrite = B_FALSE; 6778 localprop.zp_copies = 6779 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1); 6780 } 6781 zio_flags |= ZIO_FLAG_RAW; 6782 } else if (ARC_BUF_COMPRESSED(buf)) { 6783 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf)); 6784 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 6785 localprop.zp_complevel = hdr->b_complevel; 6786 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 6787 } 6788 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 6789 callback->awcb_ready = ready; 6790 callback->awcb_children_ready = children_ready; 6791 callback->awcb_done = done; 6792 callback->awcb_private = private; 6793 callback->awcb_buf = buf; 6794 6795 /* 6796 * The hdr's b_pabd is now stale, free it now. A new data block 6797 * will be allocated when the zio pipeline calls arc_write_ready(). 6798 */ 6799 if (hdr->b_l1hdr.b_pabd != NULL) { 6800 /* 6801 * If the buf is currently sharing the data block with 6802 * the hdr then we need to break that relationship here. 6803 * The hdr will remain with a NULL data pointer and the 6804 * buf will take sole ownership of the block. 6805 */ 6806 if (ARC_BUF_SHARED(buf)) { 6807 arc_unshare_buf(hdr, buf); 6808 } else { 6809 ASSERT(!arc_buf_is_shared(buf)); 6810 arc_hdr_free_abd(hdr, B_FALSE); 6811 } 6812 VERIFY3P(buf->b_data, !=, NULL); 6813 } 6814 6815 if (HDR_HAS_RABD(hdr)) 6816 arc_hdr_free_abd(hdr, B_TRUE); 6817 6818 if (!(zio_flags & ZIO_FLAG_RAW)) 6819 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); 6820 6821 ASSERT(!arc_buf_is_shared(buf)); 6822 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6823 6824 zio = zio_write(pio, spa, txg, bp, 6825 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)), 6826 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready, 6827 (children_ready != NULL) ? arc_write_children_ready : NULL, 6828 arc_write_done, callback, priority, zio_flags, zb); 6829 6830 return (zio); 6831 } 6832 6833 void 6834 arc_tempreserve_clear(uint64_t reserve) 6835 { 6836 atomic_add_64(&arc_tempreserve, -reserve); 6837 ASSERT((int64_t)arc_tempreserve >= 0); 6838 } 6839 6840 int 6841 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg) 6842 { 6843 int error; 6844 uint64_t anon_size; 6845 6846 if (!arc_no_grow && 6847 reserve > arc_c/4 && 6848 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT)) 6849 arc_c = MIN(arc_c_max, reserve * 4); 6850 6851 /* 6852 * Throttle when the calculated memory footprint for the TXG 6853 * exceeds the target ARC size. 6854 */ 6855 if (reserve > arc_c) { 6856 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve); 6857 return (SET_ERROR(ERESTART)); 6858 } 6859 6860 /* 6861 * Don't count loaned bufs as in flight dirty data to prevent long 6862 * network delays from blocking transactions that are ready to be 6863 * assigned to a txg. 6864 */ 6865 6866 /* assert that it has not wrapped around */ 6867 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 6868 6869 anon_size = MAX((int64_t) 6870 (zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]) + 6871 zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]) - 6872 arc_loaned_bytes), 0); 6873 6874 /* 6875 * Writes will, almost always, require additional memory allocations 6876 * in order to compress/encrypt/etc the data. We therefore need to 6877 * make sure that there is sufficient available memory for this. 6878 */ 6879 error = arc_memory_throttle(spa, reserve, txg); 6880 if (error != 0) 6881 return (error); 6882 6883 /* 6884 * Throttle writes when the amount of dirty data in the cache 6885 * gets too large. We try to keep the cache less than half full 6886 * of dirty blocks so that our sync times don't grow too large. 6887 * 6888 * In the case of one pool being built on another pool, we want 6889 * to make sure we don't end up throttling the lower (backing) 6890 * pool when the upper pool is the majority contributor to dirty 6891 * data. To insure we make forward progress during throttling, we 6892 * also check the current pool's net dirty data and only throttle 6893 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty 6894 * data in the cache. 6895 * 6896 * Note: if two requests come in concurrently, we might let them 6897 * both succeed, when one of them should fail. Not a huge deal. 6898 */ 6899 uint64_t total_dirty = reserve + arc_tempreserve + anon_size; 6900 uint64_t spa_dirty_anon = spa_dirty_data(spa); 6901 uint64_t rarc_c = arc_warm ? arc_c : arc_c_max; 6902 if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 && 6903 anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 && 6904 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) { 6905 #ifdef ZFS_DEBUG 6906 uint64_t meta_esize = zfs_refcount_count( 6907 &arc_anon->arcs_esize[ARC_BUFC_METADATA]); 6908 uint64_t data_esize = 6909 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 6910 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 6911 "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n", 6912 (u_longlong_t)arc_tempreserve >> 10, 6913 (u_longlong_t)meta_esize >> 10, 6914 (u_longlong_t)data_esize >> 10, 6915 (u_longlong_t)reserve >> 10, 6916 (u_longlong_t)rarc_c >> 10); 6917 #endif 6918 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle); 6919 return (SET_ERROR(ERESTART)); 6920 } 6921 atomic_add_64(&arc_tempreserve, reserve); 6922 return (0); 6923 } 6924 6925 static void 6926 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 6927 kstat_named_t *data, kstat_named_t *metadata, 6928 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 6929 { 6930 data->value.ui64 = 6931 zfs_refcount_count(&state->arcs_size[ARC_BUFC_DATA]); 6932 metadata->value.ui64 = 6933 zfs_refcount_count(&state->arcs_size[ARC_BUFC_METADATA]); 6934 size->value.ui64 = data->value.ui64 + metadata->value.ui64; 6935 evict_data->value.ui64 = 6936 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); 6937 evict_metadata->value.ui64 = 6938 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); 6939 } 6940 6941 static int 6942 arc_kstat_update(kstat_t *ksp, int rw) 6943 { 6944 arc_stats_t *as = ksp->ks_data; 6945 6946 if (rw == KSTAT_WRITE) 6947 return (SET_ERROR(EACCES)); 6948 6949 as->arcstat_hits.value.ui64 = 6950 wmsum_value(&arc_sums.arcstat_hits); 6951 as->arcstat_iohits.value.ui64 = 6952 wmsum_value(&arc_sums.arcstat_iohits); 6953 as->arcstat_misses.value.ui64 = 6954 wmsum_value(&arc_sums.arcstat_misses); 6955 as->arcstat_demand_data_hits.value.ui64 = 6956 wmsum_value(&arc_sums.arcstat_demand_data_hits); 6957 as->arcstat_demand_data_iohits.value.ui64 = 6958 wmsum_value(&arc_sums.arcstat_demand_data_iohits); 6959 as->arcstat_demand_data_misses.value.ui64 = 6960 wmsum_value(&arc_sums.arcstat_demand_data_misses); 6961 as->arcstat_demand_metadata_hits.value.ui64 = 6962 wmsum_value(&arc_sums.arcstat_demand_metadata_hits); 6963 as->arcstat_demand_metadata_iohits.value.ui64 = 6964 wmsum_value(&arc_sums.arcstat_demand_metadata_iohits); 6965 as->arcstat_demand_metadata_misses.value.ui64 = 6966 wmsum_value(&arc_sums.arcstat_demand_metadata_misses); 6967 as->arcstat_prefetch_data_hits.value.ui64 = 6968 wmsum_value(&arc_sums.arcstat_prefetch_data_hits); 6969 as->arcstat_prefetch_data_iohits.value.ui64 = 6970 wmsum_value(&arc_sums.arcstat_prefetch_data_iohits); 6971 as->arcstat_prefetch_data_misses.value.ui64 = 6972 wmsum_value(&arc_sums.arcstat_prefetch_data_misses); 6973 as->arcstat_prefetch_metadata_hits.value.ui64 = 6974 wmsum_value(&arc_sums.arcstat_prefetch_metadata_hits); 6975 as->arcstat_prefetch_metadata_iohits.value.ui64 = 6976 wmsum_value(&arc_sums.arcstat_prefetch_metadata_iohits); 6977 as->arcstat_prefetch_metadata_misses.value.ui64 = 6978 wmsum_value(&arc_sums.arcstat_prefetch_metadata_misses); 6979 as->arcstat_mru_hits.value.ui64 = 6980 wmsum_value(&arc_sums.arcstat_mru_hits); 6981 as->arcstat_mru_ghost_hits.value.ui64 = 6982 wmsum_value(&arc_sums.arcstat_mru_ghost_hits); 6983 as->arcstat_mfu_hits.value.ui64 = 6984 wmsum_value(&arc_sums.arcstat_mfu_hits); 6985 as->arcstat_mfu_ghost_hits.value.ui64 = 6986 wmsum_value(&arc_sums.arcstat_mfu_ghost_hits); 6987 as->arcstat_uncached_hits.value.ui64 = 6988 wmsum_value(&arc_sums.arcstat_uncached_hits); 6989 as->arcstat_deleted.value.ui64 = 6990 wmsum_value(&arc_sums.arcstat_deleted); 6991 as->arcstat_mutex_miss.value.ui64 = 6992 wmsum_value(&arc_sums.arcstat_mutex_miss); 6993 as->arcstat_access_skip.value.ui64 = 6994 wmsum_value(&arc_sums.arcstat_access_skip); 6995 as->arcstat_evict_skip.value.ui64 = 6996 wmsum_value(&arc_sums.arcstat_evict_skip); 6997 as->arcstat_evict_not_enough.value.ui64 = 6998 wmsum_value(&arc_sums.arcstat_evict_not_enough); 6999 as->arcstat_evict_l2_cached.value.ui64 = 7000 wmsum_value(&arc_sums.arcstat_evict_l2_cached); 7001 as->arcstat_evict_l2_eligible.value.ui64 = 7002 wmsum_value(&arc_sums.arcstat_evict_l2_eligible); 7003 as->arcstat_evict_l2_eligible_mfu.value.ui64 = 7004 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mfu); 7005 as->arcstat_evict_l2_eligible_mru.value.ui64 = 7006 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mru); 7007 as->arcstat_evict_l2_ineligible.value.ui64 = 7008 wmsum_value(&arc_sums.arcstat_evict_l2_ineligible); 7009 as->arcstat_evict_l2_skip.value.ui64 = 7010 wmsum_value(&arc_sums.arcstat_evict_l2_skip); 7011 as->arcstat_hash_collisions.value.ui64 = 7012 wmsum_value(&arc_sums.arcstat_hash_collisions); 7013 as->arcstat_hash_chains.value.ui64 = 7014 wmsum_value(&arc_sums.arcstat_hash_chains); 7015 as->arcstat_size.value.ui64 = 7016 aggsum_value(&arc_sums.arcstat_size); 7017 as->arcstat_compressed_size.value.ui64 = 7018 wmsum_value(&arc_sums.arcstat_compressed_size); 7019 as->arcstat_uncompressed_size.value.ui64 = 7020 wmsum_value(&arc_sums.arcstat_uncompressed_size); 7021 as->arcstat_overhead_size.value.ui64 = 7022 wmsum_value(&arc_sums.arcstat_overhead_size); 7023 as->arcstat_hdr_size.value.ui64 = 7024 wmsum_value(&arc_sums.arcstat_hdr_size); 7025 as->arcstat_data_size.value.ui64 = 7026 wmsum_value(&arc_sums.arcstat_data_size); 7027 as->arcstat_metadata_size.value.ui64 = 7028 wmsum_value(&arc_sums.arcstat_metadata_size); 7029 as->arcstat_dbuf_size.value.ui64 = 7030 wmsum_value(&arc_sums.arcstat_dbuf_size); 7031 #if defined(COMPAT_FREEBSD11) 7032 as->arcstat_other_size.value.ui64 = 7033 wmsum_value(&arc_sums.arcstat_bonus_size) + 7034 wmsum_value(&arc_sums.arcstat_dnode_size) + 7035 wmsum_value(&arc_sums.arcstat_dbuf_size); 7036 #endif 7037 7038 arc_kstat_update_state(arc_anon, 7039 &as->arcstat_anon_size, 7040 &as->arcstat_anon_data, 7041 &as->arcstat_anon_metadata, 7042 &as->arcstat_anon_evictable_data, 7043 &as->arcstat_anon_evictable_metadata); 7044 arc_kstat_update_state(arc_mru, 7045 &as->arcstat_mru_size, 7046 &as->arcstat_mru_data, 7047 &as->arcstat_mru_metadata, 7048 &as->arcstat_mru_evictable_data, 7049 &as->arcstat_mru_evictable_metadata); 7050 arc_kstat_update_state(arc_mru_ghost, 7051 &as->arcstat_mru_ghost_size, 7052 &as->arcstat_mru_ghost_data, 7053 &as->arcstat_mru_ghost_metadata, 7054 &as->arcstat_mru_ghost_evictable_data, 7055 &as->arcstat_mru_ghost_evictable_metadata); 7056 arc_kstat_update_state(arc_mfu, 7057 &as->arcstat_mfu_size, 7058 &as->arcstat_mfu_data, 7059 &as->arcstat_mfu_metadata, 7060 &as->arcstat_mfu_evictable_data, 7061 &as->arcstat_mfu_evictable_metadata); 7062 arc_kstat_update_state(arc_mfu_ghost, 7063 &as->arcstat_mfu_ghost_size, 7064 &as->arcstat_mfu_ghost_data, 7065 &as->arcstat_mfu_ghost_metadata, 7066 &as->arcstat_mfu_ghost_evictable_data, 7067 &as->arcstat_mfu_ghost_evictable_metadata); 7068 arc_kstat_update_state(arc_uncached, 7069 &as->arcstat_uncached_size, 7070 &as->arcstat_uncached_data, 7071 &as->arcstat_uncached_metadata, 7072 &as->arcstat_uncached_evictable_data, 7073 &as->arcstat_uncached_evictable_metadata); 7074 7075 as->arcstat_dnode_size.value.ui64 = 7076 wmsum_value(&arc_sums.arcstat_dnode_size); 7077 as->arcstat_bonus_size.value.ui64 = 7078 wmsum_value(&arc_sums.arcstat_bonus_size); 7079 as->arcstat_l2_hits.value.ui64 = 7080 wmsum_value(&arc_sums.arcstat_l2_hits); 7081 as->arcstat_l2_misses.value.ui64 = 7082 wmsum_value(&arc_sums.arcstat_l2_misses); 7083 as->arcstat_l2_prefetch_asize.value.ui64 = 7084 wmsum_value(&arc_sums.arcstat_l2_prefetch_asize); 7085 as->arcstat_l2_mru_asize.value.ui64 = 7086 wmsum_value(&arc_sums.arcstat_l2_mru_asize); 7087 as->arcstat_l2_mfu_asize.value.ui64 = 7088 wmsum_value(&arc_sums.arcstat_l2_mfu_asize); 7089 as->arcstat_l2_bufc_data_asize.value.ui64 = 7090 wmsum_value(&arc_sums.arcstat_l2_bufc_data_asize); 7091 as->arcstat_l2_bufc_metadata_asize.value.ui64 = 7092 wmsum_value(&arc_sums.arcstat_l2_bufc_metadata_asize); 7093 as->arcstat_l2_feeds.value.ui64 = 7094 wmsum_value(&arc_sums.arcstat_l2_feeds); 7095 as->arcstat_l2_rw_clash.value.ui64 = 7096 wmsum_value(&arc_sums.arcstat_l2_rw_clash); 7097 as->arcstat_l2_read_bytes.value.ui64 = 7098 wmsum_value(&arc_sums.arcstat_l2_read_bytes); 7099 as->arcstat_l2_write_bytes.value.ui64 = 7100 wmsum_value(&arc_sums.arcstat_l2_write_bytes); 7101 as->arcstat_l2_writes_sent.value.ui64 = 7102 wmsum_value(&arc_sums.arcstat_l2_writes_sent); 7103 as->arcstat_l2_writes_done.value.ui64 = 7104 wmsum_value(&arc_sums.arcstat_l2_writes_done); 7105 as->arcstat_l2_writes_error.value.ui64 = 7106 wmsum_value(&arc_sums.arcstat_l2_writes_error); 7107 as->arcstat_l2_writes_lock_retry.value.ui64 = 7108 wmsum_value(&arc_sums.arcstat_l2_writes_lock_retry); 7109 as->arcstat_l2_evict_lock_retry.value.ui64 = 7110 wmsum_value(&arc_sums.arcstat_l2_evict_lock_retry); 7111 as->arcstat_l2_evict_reading.value.ui64 = 7112 wmsum_value(&arc_sums.arcstat_l2_evict_reading); 7113 as->arcstat_l2_evict_l1cached.value.ui64 = 7114 wmsum_value(&arc_sums.arcstat_l2_evict_l1cached); 7115 as->arcstat_l2_free_on_write.value.ui64 = 7116 wmsum_value(&arc_sums.arcstat_l2_free_on_write); 7117 as->arcstat_l2_abort_lowmem.value.ui64 = 7118 wmsum_value(&arc_sums.arcstat_l2_abort_lowmem); 7119 as->arcstat_l2_cksum_bad.value.ui64 = 7120 wmsum_value(&arc_sums.arcstat_l2_cksum_bad); 7121 as->arcstat_l2_io_error.value.ui64 = 7122 wmsum_value(&arc_sums.arcstat_l2_io_error); 7123 as->arcstat_l2_lsize.value.ui64 = 7124 wmsum_value(&arc_sums.arcstat_l2_lsize); 7125 as->arcstat_l2_psize.value.ui64 = 7126 wmsum_value(&arc_sums.arcstat_l2_psize); 7127 as->arcstat_l2_hdr_size.value.ui64 = 7128 aggsum_value(&arc_sums.arcstat_l2_hdr_size); 7129 as->arcstat_l2_log_blk_writes.value.ui64 = 7130 wmsum_value(&arc_sums.arcstat_l2_log_blk_writes); 7131 as->arcstat_l2_log_blk_asize.value.ui64 = 7132 wmsum_value(&arc_sums.arcstat_l2_log_blk_asize); 7133 as->arcstat_l2_log_blk_count.value.ui64 = 7134 wmsum_value(&arc_sums.arcstat_l2_log_blk_count); 7135 as->arcstat_l2_rebuild_success.value.ui64 = 7136 wmsum_value(&arc_sums.arcstat_l2_rebuild_success); 7137 as->arcstat_l2_rebuild_abort_unsupported.value.ui64 = 7138 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_unsupported); 7139 as->arcstat_l2_rebuild_abort_io_errors.value.ui64 = 7140 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_io_errors); 7141 as->arcstat_l2_rebuild_abort_dh_errors.value.ui64 = 7142 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_dh_errors); 7143 as->arcstat_l2_rebuild_abort_cksum_lb_errors.value.ui64 = 7144 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors); 7145 as->arcstat_l2_rebuild_abort_lowmem.value.ui64 = 7146 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_lowmem); 7147 as->arcstat_l2_rebuild_size.value.ui64 = 7148 wmsum_value(&arc_sums.arcstat_l2_rebuild_size); 7149 as->arcstat_l2_rebuild_asize.value.ui64 = 7150 wmsum_value(&arc_sums.arcstat_l2_rebuild_asize); 7151 as->arcstat_l2_rebuild_bufs.value.ui64 = 7152 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs); 7153 as->arcstat_l2_rebuild_bufs_precached.value.ui64 = 7154 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs_precached); 7155 as->arcstat_l2_rebuild_log_blks.value.ui64 = 7156 wmsum_value(&arc_sums.arcstat_l2_rebuild_log_blks); 7157 as->arcstat_memory_throttle_count.value.ui64 = 7158 wmsum_value(&arc_sums.arcstat_memory_throttle_count); 7159 as->arcstat_memory_direct_count.value.ui64 = 7160 wmsum_value(&arc_sums.arcstat_memory_direct_count); 7161 as->arcstat_memory_indirect_count.value.ui64 = 7162 wmsum_value(&arc_sums.arcstat_memory_indirect_count); 7163 7164 as->arcstat_memory_all_bytes.value.ui64 = 7165 arc_all_memory(); 7166 as->arcstat_memory_free_bytes.value.ui64 = 7167 arc_free_memory(); 7168 as->arcstat_memory_available_bytes.value.i64 = 7169 arc_available_memory(); 7170 7171 as->arcstat_prune.value.ui64 = 7172 wmsum_value(&arc_sums.arcstat_prune); 7173 as->arcstat_meta_used.value.ui64 = 7174 wmsum_value(&arc_sums.arcstat_meta_used); 7175 as->arcstat_async_upgrade_sync.value.ui64 = 7176 wmsum_value(&arc_sums.arcstat_async_upgrade_sync); 7177 as->arcstat_predictive_prefetch.value.ui64 = 7178 wmsum_value(&arc_sums.arcstat_predictive_prefetch); 7179 as->arcstat_demand_hit_predictive_prefetch.value.ui64 = 7180 wmsum_value(&arc_sums.arcstat_demand_hit_predictive_prefetch); 7181 as->arcstat_demand_iohit_predictive_prefetch.value.ui64 = 7182 wmsum_value(&arc_sums.arcstat_demand_iohit_predictive_prefetch); 7183 as->arcstat_prescient_prefetch.value.ui64 = 7184 wmsum_value(&arc_sums.arcstat_prescient_prefetch); 7185 as->arcstat_demand_hit_prescient_prefetch.value.ui64 = 7186 wmsum_value(&arc_sums.arcstat_demand_hit_prescient_prefetch); 7187 as->arcstat_demand_iohit_prescient_prefetch.value.ui64 = 7188 wmsum_value(&arc_sums.arcstat_demand_iohit_prescient_prefetch); 7189 as->arcstat_raw_size.value.ui64 = 7190 wmsum_value(&arc_sums.arcstat_raw_size); 7191 as->arcstat_cached_only_in_progress.value.ui64 = 7192 wmsum_value(&arc_sums.arcstat_cached_only_in_progress); 7193 as->arcstat_abd_chunk_waste_size.value.ui64 = 7194 wmsum_value(&arc_sums.arcstat_abd_chunk_waste_size); 7195 7196 return (0); 7197 } 7198 7199 /* 7200 * This function *must* return indices evenly distributed between all 7201 * sublists of the multilist. This is needed due to how the ARC eviction 7202 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 7203 * distributed between all sublists and uses this assumption when 7204 * deciding which sublist to evict from and how much to evict from it. 7205 */ 7206 static unsigned int 7207 arc_state_multilist_index_func(multilist_t *ml, void *obj) 7208 { 7209 arc_buf_hdr_t *hdr = obj; 7210 7211 /* 7212 * We rely on b_dva to generate evenly distributed index 7213 * numbers using buf_hash below. So, as an added precaution, 7214 * let's make sure we never add empty buffers to the arc lists. 7215 */ 7216 ASSERT(!HDR_EMPTY(hdr)); 7217 7218 /* 7219 * The assumption here, is the hash value for a given 7220 * arc_buf_hdr_t will remain constant throughout its lifetime 7221 * (i.e. its b_spa, b_dva, and b_birth fields don't change). 7222 * Thus, we don't need to store the header's sublist index 7223 * on insertion, as this index can be recalculated on removal. 7224 * 7225 * Also, the low order bits of the hash value are thought to be 7226 * distributed evenly. Otherwise, in the case that the multilist 7227 * has a power of two number of sublists, each sublists' usage 7228 * would not be evenly distributed. In this context full 64bit 7229 * division would be a waste of time, so limit it to 32 bits. 7230 */ 7231 return ((unsigned int)buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 7232 multilist_get_num_sublists(ml)); 7233 } 7234 7235 static unsigned int 7236 arc_state_l2c_multilist_index_func(multilist_t *ml, void *obj) 7237 { 7238 panic("Header %p insert into arc_l2c_only %p", obj, ml); 7239 } 7240 7241 #define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \ 7242 if ((do_warn) && (tuning) && ((tuning) != (value))) { \ 7243 cmn_err(CE_WARN, \ 7244 "ignoring tunable %s (using %llu instead)", \ 7245 (#tuning), (u_longlong_t)(value)); \ 7246 } \ 7247 } while (0) 7248 7249 /* 7250 * Called during module initialization and periodically thereafter to 7251 * apply reasonable changes to the exposed performance tunings. Can also be 7252 * called explicitly by param_set_arc_*() functions when ARC tunables are 7253 * updated manually. Non-zero zfs_* values which differ from the currently set 7254 * values will be applied. 7255 */ 7256 void 7257 arc_tuning_update(boolean_t verbose) 7258 { 7259 uint64_t allmem = arc_all_memory(); 7260 7261 /* Valid range: 32M - <arc_c_max> */ 7262 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) && 7263 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) && 7264 (zfs_arc_min <= arc_c_max)) { 7265 arc_c_min = zfs_arc_min; 7266 arc_c = MAX(arc_c, arc_c_min); 7267 } 7268 WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose); 7269 7270 /* Valid range: 64M - <all physical memory> */ 7271 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) && 7272 (zfs_arc_max >= MIN_ARC_MAX) && (zfs_arc_max < allmem) && 7273 (zfs_arc_max > arc_c_min)) { 7274 arc_c_max = zfs_arc_max; 7275 arc_c = MIN(arc_c, arc_c_max); 7276 if (arc_dnode_limit > arc_c_max) 7277 arc_dnode_limit = arc_c_max; 7278 } 7279 WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose); 7280 7281 /* Valid range: 0 - <all physical memory> */ 7282 arc_dnode_limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit : 7283 MIN(zfs_arc_dnode_limit_percent, 100) * arc_c_max / 100; 7284 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_limit, verbose); 7285 7286 /* Valid range: 1 - N */ 7287 if (zfs_arc_grow_retry) 7288 arc_grow_retry = zfs_arc_grow_retry; 7289 7290 /* Valid range: 1 - N */ 7291 if (zfs_arc_shrink_shift) { 7292 arc_shrink_shift = zfs_arc_shrink_shift; 7293 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1); 7294 } 7295 7296 /* Valid range: 1 - N ms */ 7297 if (zfs_arc_min_prefetch_ms) 7298 arc_min_prefetch_ms = zfs_arc_min_prefetch_ms; 7299 7300 /* Valid range: 1 - N ms */ 7301 if (zfs_arc_min_prescient_prefetch_ms) { 7302 arc_min_prescient_prefetch_ms = 7303 zfs_arc_min_prescient_prefetch_ms; 7304 } 7305 7306 /* Valid range: 0 - 100 */ 7307 if (zfs_arc_lotsfree_percent <= 100) 7308 arc_lotsfree_percent = zfs_arc_lotsfree_percent; 7309 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent, 7310 verbose); 7311 7312 /* Valid range: 0 - <all physical memory> */ 7313 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free)) 7314 arc_sys_free = MIN(zfs_arc_sys_free, allmem); 7315 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose); 7316 } 7317 7318 static void 7319 arc_state_multilist_init(multilist_t *ml, 7320 multilist_sublist_index_func_t *index_func, int *maxcountp) 7321 { 7322 multilist_create(ml, sizeof (arc_buf_hdr_t), 7323 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), index_func); 7324 *maxcountp = MAX(*maxcountp, multilist_get_num_sublists(ml)); 7325 } 7326 7327 static void 7328 arc_state_init(void) 7329 { 7330 int num_sublists = 0; 7331 7332 arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_METADATA], 7333 arc_state_multilist_index_func, &num_sublists); 7334 arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_DATA], 7335 arc_state_multilist_index_func, &num_sublists); 7336 arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 7337 arc_state_multilist_index_func, &num_sublists); 7338 arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 7339 arc_state_multilist_index_func, &num_sublists); 7340 arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 7341 arc_state_multilist_index_func, &num_sublists); 7342 arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_DATA], 7343 arc_state_multilist_index_func, &num_sublists); 7344 arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 7345 arc_state_multilist_index_func, &num_sublists); 7346 arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 7347 arc_state_multilist_index_func, &num_sublists); 7348 arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_METADATA], 7349 arc_state_multilist_index_func, &num_sublists); 7350 arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_DATA], 7351 arc_state_multilist_index_func, &num_sublists); 7352 7353 /* 7354 * L2 headers should never be on the L2 state list since they don't 7355 * have L1 headers allocated. Special index function asserts that. 7356 */ 7357 arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 7358 arc_state_l2c_multilist_index_func, &num_sublists); 7359 arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 7360 arc_state_l2c_multilist_index_func, &num_sublists); 7361 7362 /* 7363 * Keep track of the number of markers needed to reclaim buffers from 7364 * any ARC state. The markers will be pre-allocated so as to minimize 7365 * the number of memory allocations performed by the eviction thread. 7366 */ 7367 arc_state_evict_marker_count = num_sublists; 7368 7369 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7370 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7371 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7372 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7373 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7374 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7375 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7376 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7377 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7378 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7379 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7380 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7381 zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]); 7382 zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_DATA]); 7383 7384 zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_DATA]); 7385 zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_METADATA]); 7386 zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_DATA]); 7387 zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_METADATA]); 7388 zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]); 7389 zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]); 7390 zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_DATA]); 7391 zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_METADATA]); 7392 zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]); 7393 zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]); 7394 zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]); 7395 zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]); 7396 zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_DATA]); 7397 zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_METADATA]); 7398 7399 wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA], 0); 7400 wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA], 0); 7401 wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA], 0); 7402 wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA], 0); 7403 7404 wmsum_init(&arc_sums.arcstat_hits, 0); 7405 wmsum_init(&arc_sums.arcstat_iohits, 0); 7406 wmsum_init(&arc_sums.arcstat_misses, 0); 7407 wmsum_init(&arc_sums.arcstat_demand_data_hits, 0); 7408 wmsum_init(&arc_sums.arcstat_demand_data_iohits, 0); 7409 wmsum_init(&arc_sums.arcstat_demand_data_misses, 0); 7410 wmsum_init(&arc_sums.arcstat_demand_metadata_hits, 0); 7411 wmsum_init(&arc_sums.arcstat_demand_metadata_iohits, 0); 7412 wmsum_init(&arc_sums.arcstat_demand_metadata_misses, 0); 7413 wmsum_init(&arc_sums.arcstat_prefetch_data_hits, 0); 7414 wmsum_init(&arc_sums.arcstat_prefetch_data_iohits, 0); 7415 wmsum_init(&arc_sums.arcstat_prefetch_data_misses, 0); 7416 wmsum_init(&arc_sums.arcstat_prefetch_metadata_hits, 0); 7417 wmsum_init(&arc_sums.arcstat_prefetch_metadata_iohits, 0); 7418 wmsum_init(&arc_sums.arcstat_prefetch_metadata_misses, 0); 7419 wmsum_init(&arc_sums.arcstat_mru_hits, 0); 7420 wmsum_init(&arc_sums.arcstat_mru_ghost_hits, 0); 7421 wmsum_init(&arc_sums.arcstat_mfu_hits, 0); 7422 wmsum_init(&arc_sums.arcstat_mfu_ghost_hits, 0); 7423 wmsum_init(&arc_sums.arcstat_uncached_hits, 0); 7424 wmsum_init(&arc_sums.arcstat_deleted, 0); 7425 wmsum_init(&arc_sums.arcstat_mutex_miss, 0); 7426 wmsum_init(&arc_sums.arcstat_access_skip, 0); 7427 wmsum_init(&arc_sums.arcstat_evict_skip, 0); 7428 wmsum_init(&arc_sums.arcstat_evict_not_enough, 0); 7429 wmsum_init(&arc_sums.arcstat_evict_l2_cached, 0); 7430 wmsum_init(&arc_sums.arcstat_evict_l2_eligible, 0); 7431 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mfu, 0); 7432 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mru, 0); 7433 wmsum_init(&arc_sums.arcstat_evict_l2_ineligible, 0); 7434 wmsum_init(&arc_sums.arcstat_evict_l2_skip, 0); 7435 wmsum_init(&arc_sums.arcstat_hash_collisions, 0); 7436 wmsum_init(&arc_sums.arcstat_hash_chains, 0); 7437 aggsum_init(&arc_sums.arcstat_size, 0); 7438 wmsum_init(&arc_sums.arcstat_compressed_size, 0); 7439 wmsum_init(&arc_sums.arcstat_uncompressed_size, 0); 7440 wmsum_init(&arc_sums.arcstat_overhead_size, 0); 7441 wmsum_init(&arc_sums.arcstat_hdr_size, 0); 7442 wmsum_init(&arc_sums.arcstat_data_size, 0); 7443 wmsum_init(&arc_sums.arcstat_metadata_size, 0); 7444 wmsum_init(&arc_sums.arcstat_dbuf_size, 0); 7445 wmsum_init(&arc_sums.arcstat_dnode_size, 0); 7446 wmsum_init(&arc_sums.arcstat_bonus_size, 0); 7447 wmsum_init(&arc_sums.arcstat_l2_hits, 0); 7448 wmsum_init(&arc_sums.arcstat_l2_misses, 0); 7449 wmsum_init(&arc_sums.arcstat_l2_prefetch_asize, 0); 7450 wmsum_init(&arc_sums.arcstat_l2_mru_asize, 0); 7451 wmsum_init(&arc_sums.arcstat_l2_mfu_asize, 0); 7452 wmsum_init(&arc_sums.arcstat_l2_bufc_data_asize, 0); 7453 wmsum_init(&arc_sums.arcstat_l2_bufc_metadata_asize, 0); 7454 wmsum_init(&arc_sums.arcstat_l2_feeds, 0); 7455 wmsum_init(&arc_sums.arcstat_l2_rw_clash, 0); 7456 wmsum_init(&arc_sums.arcstat_l2_read_bytes, 0); 7457 wmsum_init(&arc_sums.arcstat_l2_write_bytes, 0); 7458 wmsum_init(&arc_sums.arcstat_l2_writes_sent, 0); 7459 wmsum_init(&arc_sums.arcstat_l2_writes_done, 0); 7460 wmsum_init(&arc_sums.arcstat_l2_writes_error, 0); 7461 wmsum_init(&arc_sums.arcstat_l2_writes_lock_retry, 0); 7462 wmsum_init(&arc_sums.arcstat_l2_evict_lock_retry, 0); 7463 wmsum_init(&arc_sums.arcstat_l2_evict_reading, 0); 7464 wmsum_init(&arc_sums.arcstat_l2_evict_l1cached, 0); 7465 wmsum_init(&arc_sums.arcstat_l2_free_on_write, 0); 7466 wmsum_init(&arc_sums.arcstat_l2_abort_lowmem, 0); 7467 wmsum_init(&arc_sums.arcstat_l2_cksum_bad, 0); 7468 wmsum_init(&arc_sums.arcstat_l2_io_error, 0); 7469 wmsum_init(&arc_sums.arcstat_l2_lsize, 0); 7470 wmsum_init(&arc_sums.arcstat_l2_psize, 0); 7471 aggsum_init(&arc_sums.arcstat_l2_hdr_size, 0); 7472 wmsum_init(&arc_sums.arcstat_l2_log_blk_writes, 0); 7473 wmsum_init(&arc_sums.arcstat_l2_log_blk_asize, 0); 7474 wmsum_init(&arc_sums.arcstat_l2_log_blk_count, 0); 7475 wmsum_init(&arc_sums.arcstat_l2_rebuild_success, 0); 7476 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_unsupported, 0); 7477 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_io_errors, 0); 7478 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_dh_errors, 0); 7479 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors, 0); 7480 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_lowmem, 0); 7481 wmsum_init(&arc_sums.arcstat_l2_rebuild_size, 0); 7482 wmsum_init(&arc_sums.arcstat_l2_rebuild_asize, 0); 7483 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs, 0); 7484 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs_precached, 0); 7485 wmsum_init(&arc_sums.arcstat_l2_rebuild_log_blks, 0); 7486 wmsum_init(&arc_sums.arcstat_memory_throttle_count, 0); 7487 wmsum_init(&arc_sums.arcstat_memory_direct_count, 0); 7488 wmsum_init(&arc_sums.arcstat_memory_indirect_count, 0); 7489 wmsum_init(&arc_sums.arcstat_prune, 0); 7490 wmsum_init(&arc_sums.arcstat_meta_used, 0); 7491 wmsum_init(&arc_sums.arcstat_async_upgrade_sync, 0); 7492 wmsum_init(&arc_sums.arcstat_predictive_prefetch, 0); 7493 wmsum_init(&arc_sums.arcstat_demand_hit_predictive_prefetch, 0); 7494 wmsum_init(&arc_sums.arcstat_demand_iohit_predictive_prefetch, 0); 7495 wmsum_init(&arc_sums.arcstat_prescient_prefetch, 0); 7496 wmsum_init(&arc_sums.arcstat_demand_hit_prescient_prefetch, 0); 7497 wmsum_init(&arc_sums.arcstat_demand_iohit_prescient_prefetch, 0); 7498 wmsum_init(&arc_sums.arcstat_raw_size, 0); 7499 wmsum_init(&arc_sums.arcstat_cached_only_in_progress, 0); 7500 wmsum_init(&arc_sums.arcstat_abd_chunk_waste_size, 0); 7501 7502 arc_anon->arcs_state = ARC_STATE_ANON; 7503 arc_mru->arcs_state = ARC_STATE_MRU; 7504 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST; 7505 arc_mfu->arcs_state = ARC_STATE_MFU; 7506 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST; 7507 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY; 7508 arc_uncached->arcs_state = ARC_STATE_UNCACHED; 7509 } 7510 7511 static void 7512 arc_state_fini(void) 7513 { 7514 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7515 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7516 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7517 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7518 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7519 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7520 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7521 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7522 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7523 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7524 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7525 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7526 zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]); 7527 zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_DATA]); 7528 7529 zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_DATA]); 7530 zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_METADATA]); 7531 zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_DATA]); 7532 zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_METADATA]); 7533 zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]); 7534 zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]); 7535 zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_DATA]); 7536 zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_METADATA]); 7537 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]); 7538 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]); 7539 zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]); 7540 zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]); 7541 zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_DATA]); 7542 zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_METADATA]); 7543 7544 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 7545 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 7546 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 7547 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 7548 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 7549 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 7550 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 7551 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 7552 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]); 7553 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]); 7554 multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_METADATA]); 7555 multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_DATA]); 7556 7557 wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]); 7558 wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]); 7559 wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]); 7560 wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]); 7561 7562 wmsum_fini(&arc_sums.arcstat_hits); 7563 wmsum_fini(&arc_sums.arcstat_iohits); 7564 wmsum_fini(&arc_sums.arcstat_misses); 7565 wmsum_fini(&arc_sums.arcstat_demand_data_hits); 7566 wmsum_fini(&arc_sums.arcstat_demand_data_iohits); 7567 wmsum_fini(&arc_sums.arcstat_demand_data_misses); 7568 wmsum_fini(&arc_sums.arcstat_demand_metadata_hits); 7569 wmsum_fini(&arc_sums.arcstat_demand_metadata_iohits); 7570 wmsum_fini(&arc_sums.arcstat_demand_metadata_misses); 7571 wmsum_fini(&arc_sums.arcstat_prefetch_data_hits); 7572 wmsum_fini(&arc_sums.arcstat_prefetch_data_iohits); 7573 wmsum_fini(&arc_sums.arcstat_prefetch_data_misses); 7574 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_hits); 7575 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_iohits); 7576 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_misses); 7577 wmsum_fini(&arc_sums.arcstat_mru_hits); 7578 wmsum_fini(&arc_sums.arcstat_mru_ghost_hits); 7579 wmsum_fini(&arc_sums.arcstat_mfu_hits); 7580 wmsum_fini(&arc_sums.arcstat_mfu_ghost_hits); 7581 wmsum_fini(&arc_sums.arcstat_uncached_hits); 7582 wmsum_fini(&arc_sums.arcstat_deleted); 7583 wmsum_fini(&arc_sums.arcstat_mutex_miss); 7584 wmsum_fini(&arc_sums.arcstat_access_skip); 7585 wmsum_fini(&arc_sums.arcstat_evict_skip); 7586 wmsum_fini(&arc_sums.arcstat_evict_not_enough); 7587 wmsum_fini(&arc_sums.arcstat_evict_l2_cached); 7588 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible); 7589 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mfu); 7590 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mru); 7591 wmsum_fini(&arc_sums.arcstat_evict_l2_ineligible); 7592 wmsum_fini(&arc_sums.arcstat_evict_l2_skip); 7593 wmsum_fini(&arc_sums.arcstat_hash_collisions); 7594 wmsum_fini(&arc_sums.arcstat_hash_chains); 7595 aggsum_fini(&arc_sums.arcstat_size); 7596 wmsum_fini(&arc_sums.arcstat_compressed_size); 7597 wmsum_fini(&arc_sums.arcstat_uncompressed_size); 7598 wmsum_fini(&arc_sums.arcstat_overhead_size); 7599 wmsum_fini(&arc_sums.arcstat_hdr_size); 7600 wmsum_fini(&arc_sums.arcstat_data_size); 7601 wmsum_fini(&arc_sums.arcstat_metadata_size); 7602 wmsum_fini(&arc_sums.arcstat_dbuf_size); 7603 wmsum_fini(&arc_sums.arcstat_dnode_size); 7604 wmsum_fini(&arc_sums.arcstat_bonus_size); 7605 wmsum_fini(&arc_sums.arcstat_l2_hits); 7606 wmsum_fini(&arc_sums.arcstat_l2_misses); 7607 wmsum_fini(&arc_sums.arcstat_l2_prefetch_asize); 7608 wmsum_fini(&arc_sums.arcstat_l2_mru_asize); 7609 wmsum_fini(&arc_sums.arcstat_l2_mfu_asize); 7610 wmsum_fini(&arc_sums.arcstat_l2_bufc_data_asize); 7611 wmsum_fini(&arc_sums.arcstat_l2_bufc_metadata_asize); 7612 wmsum_fini(&arc_sums.arcstat_l2_feeds); 7613 wmsum_fini(&arc_sums.arcstat_l2_rw_clash); 7614 wmsum_fini(&arc_sums.arcstat_l2_read_bytes); 7615 wmsum_fini(&arc_sums.arcstat_l2_write_bytes); 7616 wmsum_fini(&arc_sums.arcstat_l2_writes_sent); 7617 wmsum_fini(&arc_sums.arcstat_l2_writes_done); 7618 wmsum_fini(&arc_sums.arcstat_l2_writes_error); 7619 wmsum_fini(&arc_sums.arcstat_l2_writes_lock_retry); 7620 wmsum_fini(&arc_sums.arcstat_l2_evict_lock_retry); 7621 wmsum_fini(&arc_sums.arcstat_l2_evict_reading); 7622 wmsum_fini(&arc_sums.arcstat_l2_evict_l1cached); 7623 wmsum_fini(&arc_sums.arcstat_l2_free_on_write); 7624 wmsum_fini(&arc_sums.arcstat_l2_abort_lowmem); 7625 wmsum_fini(&arc_sums.arcstat_l2_cksum_bad); 7626 wmsum_fini(&arc_sums.arcstat_l2_io_error); 7627 wmsum_fini(&arc_sums.arcstat_l2_lsize); 7628 wmsum_fini(&arc_sums.arcstat_l2_psize); 7629 aggsum_fini(&arc_sums.arcstat_l2_hdr_size); 7630 wmsum_fini(&arc_sums.arcstat_l2_log_blk_writes); 7631 wmsum_fini(&arc_sums.arcstat_l2_log_blk_asize); 7632 wmsum_fini(&arc_sums.arcstat_l2_log_blk_count); 7633 wmsum_fini(&arc_sums.arcstat_l2_rebuild_success); 7634 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_unsupported); 7635 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_io_errors); 7636 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_dh_errors); 7637 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors); 7638 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_lowmem); 7639 wmsum_fini(&arc_sums.arcstat_l2_rebuild_size); 7640 wmsum_fini(&arc_sums.arcstat_l2_rebuild_asize); 7641 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs); 7642 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs_precached); 7643 wmsum_fini(&arc_sums.arcstat_l2_rebuild_log_blks); 7644 wmsum_fini(&arc_sums.arcstat_memory_throttle_count); 7645 wmsum_fini(&arc_sums.arcstat_memory_direct_count); 7646 wmsum_fini(&arc_sums.arcstat_memory_indirect_count); 7647 wmsum_fini(&arc_sums.arcstat_prune); 7648 wmsum_fini(&arc_sums.arcstat_meta_used); 7649 wmsum_fini(&arc_sums.arcstat_async_upgrade_sync); 7650 wmsum_fini(&arc_sums.arcstat_predictive_prefetch); 7651 wmsum_fini(&arc_sums.arcstat_demand_hit_predictive_prefetch); 7652 wmsum_fini(&arc_sums.arcstat_demand_iohit_predictive_prefetch); 7653 wmsum_fini(&arc_sums.arcstat_prescient_prefetch); 7654 wmsum_fini(&arc_sums.arcstat_demand_hit_prescient_prefetch); 7655 wmsum_fini(&arc_sums.arcstat_demand_iohit_prescient_prefetch); 7656 wmsum_fini(&arc_sums.arcstat_raw_size); 7657 wmsum_fini(&arc_sums.arcstat_cached_only_in_progress); 7658 wmsum_fini(&arc_sums.arcstat_abd_chunk_waste_size); 7659 } 7660 7661 uint64_t 7662 arc_target_bytes(void) 7663 { 7664 return (arc_c); 7665 } 7666 7667 void 7668 arc_set_limits(uint64_t allmem) 7669 { 7670 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */ 7671 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT); 7672 7673 /* How to set default max varies by platform. */ 7674 arc_c_max = arc_default_max(arc_c_min, allmem); 7675 } 7676 void 7677 arc_init(void) 7678 { 7679 uint64_t percent, allmem = arc_all_memory(); 7680 mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL); 7681 list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t), 7682 offsetof(arc_evict_waiter_t, aew_node)); 7683 7684 arc_min_prefetch_ms = 1000; 7685 arc_min_prescient_prefetch_ms = 6000; 7686 7687 #if defined(_KERNEL) 7688 arc_lowmem_init(); 7689 #endif 7690 7691 arc_set_limits(allmem); 7692 7693 #ifdef _KERNEL 7694 /* 7695 * If zfs_arc_max is non-zero at init, meaning it was set in the kernel 7696 * environment before the module was loaded, don't block setting the 7697 * maximum because it is less than arc_c_min, instead, reset arc_c_min 7698 * to a lower value. 7699 * zfs_arc_min will be handled by arc_tuning_update(). 7700 */ 7701 if (zfs_arc_max != 0 && zfs_arc_max >= MIN_ARC_MAX && 7702 zfs_arc_max < allmem) { 7703 arc_c_max = zfs_arc_max; 7704 if (arc_c_min >= arc_c_max) { 7705 arc_c_min = MAX(zfs_arc_max / 2, 7706 2ULL << SPA_MAXBLOCKSHIFT); 7707 } 7708 } 7709 #else 7710 /* 7711 * In userland, there's only the memory pressure that we artificially 7712 * create (see arc_available_memory()). Don't let arc_c get too 7713 * small, because it can cause transactions to be larger than 7714 * arc_c, causing arc_tempreserve_space() to fail. 7715 */ 7716 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT); 7717 #endif 7718 7719 arc_c = arc_c_min; 7720 /* 7721 * 32-bit fixed point fractions of metadata from total ARC size, 7722 * MRU data from all data and MRU metadata from all metadata. 7723 */ 7724 arc_meta = (1ULL << 32) / 4; /* Metadata is 25% of arc_c. */ 7725 arc_pd = (1ULL << 32) / 2; /* Data MRU is 50% of data. */ 7726 arc_pm = (1ULL << 32) / 2; /* Metadata MRU is 50% of metadata. */ 7727 7728 percent = MIN(zfs_arc_dnode_limit_percent, 100); 7729 arc_dnode_limit = arc_c_max * percent / 100; 7730 7731 /* Apply user specified tunings */ 7732 arc_tuning_update(B_TRUE); 7733 7734 /* if kmem_flags are set, lets try to use less memory */ 7735 if (kmem_debugging()) 7736 arc_c = arc_c / 2; 7737 if (arc_c < arc_c_min) 7738 arc_c = arc_c_min; 7739 7740 arc_register_hotplug(); 7741 7742 arc_state_init(); 7743 7744 buf_init(); 7745 7746 list_create(&arc_prune_list, sizeof (arc_prune_t), 7747 offsetof(arc_prune_t, p_node)); 7748 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL); 7749 7750 arc_prune_taskq = taskq_create("arc_prune", zfs_arc_prune_task_threads, 7751 defclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC); 7752 7753 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 7754 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 7755 7756 if (arc_ksp != NULL) { 7757 arc_ksp->ks_data = &arc_stats; 7758 arc_ksp->ks_update = arc_kstat_update; 7759 kstat_install(arc_ksp); 7760 } 7761 7762 arc_state_evict_markers = 7763 arc_state_alloc_markers(arc_state_evict_marker_count); 7764 arc_evict_zthr = zthr_create_timer("arc_evict", 7765 arc_evict_cb_check, arc_evict_cb, NULL, SEC2NSEC(1), defclsyspri); 7766 arc_reap_zthr = zthr_create_timer("arc_reap", 7767 arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1), minclsyspri); 7768 7769 arc_warm = B_FALSE; 7770 7771 /* 7772 * Calculate maximum amount of dirty data per pool. 7773 * 7774 * If it has been set by a module parameter, take that. 7775 * Otherwise, use a percentage of physical memory defined by 7776 * zfs_dirty_data_max_percent (default 10%) with a cap at 7777 * zfs_dirty_data_max_max (default 4G or 25% of physical memory). 7778 */ 7779 #ifdef __LP64__ 7780 if (zfs_dirty_data_max_max == 0) 7781 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024, 7782 allmem * zfs_dirty_data_max_max_percent / 100); 7783 #else 7784 if (zfs_dirty_data_max_max == 0) 7785 zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024, 7786 allmem * zfs_dirty_data_max_max_percent / 100); 7787 #endif 7788 7789 if (zfs_dirty_data_max == 0) { 7790 zfs_dirty_data_max = allmem * 7791 zfs_dirty_data_max_percent / 100; 7792 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 7793 zfs_dirty_data_max_max); 7794 } 7795 7796 if (zfs_wrlog_data_max == 0) { 7797 7798 /* 7799 * dp_wrlog_total is reduced for each txg at the end of 7800 * spa_sync(). However, dp_dirty_total is reduced every time 7801 * a block is written out. Thus under normal operation, 7802 * dp_wrlog_total could grow 2 times as big as 7803 * zfs_dirty_data_max. 7804 */ 7805 zfs_wrlog_data_max = zfs_dirty_data_max * 2; 7806 } 7807 } 7808 7809 void 7810 arc_fini(void) 7811 { 7812 arc_prune_t *p; 7813 7814 #ifdef _KERNEL 7815 arc_lowmem_fini(); 7816 #endif /* _KERNEL */ 7817 7818 /* Use B_TRUE to ensure *all* buffers are evicted */ 7819 arc_flush(NULL, B_TRUE); 7820 7821 if (arc_ksp != NULL) { 7822 kstat_delete(arc_ksp); 7823 arc_ksp = NULL; 7824 } 7825 7826 taskq_wait(arc_prune_taskq); 7827 taskq_destroy(arc_prune_taskq); 7828 7829 mutex_enter(&arc_prune_mtx); 7830 while ((p = list_remove_head(&arc_prune_list)) != NULL) { 7831 (void) zfs_refcount_remove(&p->p_refcnt, &arc_prune_list); 7832 zfs_refcount_destroy(&p->p_refcnt); 7833 kmem_free(p, sizeof (*p)); 7834 } 7835 mutex_exit(&arc_prune_mtx); 7836 7837 list_destroy(&arc_prune_list); 7838 mutex_destroy(&arc_prune_mtx); 7839 7840 (void) zthr_cancel(arc_evict_zthr); 7841 (void) zthr_cancel(arc_reap_zthr); 7842 arc_state_free_markers(arc_state_evict_markers, 7843 arc_state_evict_marker_count); 7844 7845 mutex_destroy(&arc_evict_lock); 7846 list_destroy(&arc_evict_waiters); 7847 7848 /* 7849 * Free any buffers that were tagged for destruction. This needs 7850 * to occur before arc_state_fini() runs and destroys the aggsum 7851 * values which are updated when freeing scatter ABDs. 7852 */ 7853 l2arc_do_free_on_write(); 7854 7855 /* 7856 * buf_fini() must proceed arc_state_fini() because buf_fin() may 7857 * trigger the release of kmem magazines, which can callback to 7858 * arc_space_return() which accesses aggsums freed in act_state_fini(). 7859 */ 7860 buf_fini(); 7861 arc_state_fini(); 7862 7863 arc_unregister_hotplug(); 7864 7865 /* 7866 * We destroy the zthrs after all the ARC state has been 7867 * torn down to avoid the case of them receiving any 7868 * wakeup() signals after they are destroyed. 7869 */ 7870 zthr_destroy(arc_evict_zthr); 7871 zthr_destroy(arc_reap_zthr); 7872 7873 ASSERT0(arc_loaned_bytes); 7874 } 7875 7876 /* 7877 * Level 2 ARC 7878 * 7879 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 7880 * It uses dedicated storage devices to hold cached data, which are populated 7881 * using large infrequent writes. The main role of this cache is to boost 7882 * the performance of random read workloads. The intended L2ARC devices 7883 * include short-stroked disks, solid state disks, and other media with 7884 * substantially faster read latency than disk. 7885 * 7886 * +-----------------------+ 7887 * | ARC | 7888 * +-----------------------+ 7889 * | ^ ^ 7890 * | | | 7891 * l2arc_feed_thread() arc_read() 7892 * | | | 7893 * | l2arc read | 7894 * V | | 7895 * +---------------+ | 7896 * | L2ARC | | 7897 * +---------------+ | 7898 * | ^ | 7899 * l2arc_write() | | 7900 * | | | 7901 * V | | 7902 * +-------+ +-------+ 7903 * | vdev | | vdev | 7904 * | cache | | cache | 7905 * +-------+ +-------+ 7906 * +=========+ .-----. 7907 * : L2ARC : |-_____-| 7908 * : devices : | Disks | 7909 * +=========+ `-_____-' 7910 * 7911 * Read requests are satisfied from the following sources, in order: 7912 * 7913 * 1) ARC 7914 * 2) vdev cache of L2ARC devices 7915 * 3) L2ARC devices 7916 * 4) vdev cache of disks 7917 * 5) disks 7918 * 7919 * Some L2ARC device types exhibit extremely slow write performance. 7920 * To accommodate for this there are some significant differences between 7921 * the L2ARC and traditional cache design: 7922 * 7923 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 7924 * the ARC behave as usual, freeing buffers and placing headers on ghost 7925 * lists. The ARC does not send buffers to the L2ARC during eviction as 7926 * this would add inflated write latencies for all ARC memory pressure. 7927 * 7928 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 7929 * It does this by periodically scanning buffers from the eviction-end of 7930 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 7931 * not already there. It scans until a headroom of buffers is satisfied, 7932 * which itself is a buffer for ARC eviction. If a compressible buffer is 7933 * found during scanning and selected for writing to an L2ARC device, we 7934 * temporarily boost scanning headroom during the next scan cycle to make 7935 * sure we adapt to compression effects (which might significantly reduce 7936 * the data volume we write to L2ARC). The thread that does this is 7937 * l2arc_feed_thread(), illustrated below; example sizes are included to 7938 * provide a better sense of ratio than this diagram: 7939 * 7940 * head --> tail 7941 * +---------------------+----------+ 7942 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 7943 * +---------------------+----------+ | o L2ARC eligible 7944 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 7945 * +---------------------+----------+ | 7946 * 15.9 Gbytes ^ 32 Mbytes | 7947 * headroom | 7948 * l2arc_feed_thread() 7949 * | 7950 * l2arc write hand <--[oooo]--' 7951 * | 8 Mbyte 7952 * | write max 7953 * V 7954 * +==============================+ 7955 * L2ARC dev |####|#|###|###| |####| ... | 7956 * +==============================+ 7957 * 32 Gbytes 7958 * 7959 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 7960 * evicted, then the L2ARC has cached a buffer much sooner than it probably 7961 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 7962 * safe to say that this is an uncommon case, since buffers at the end of 7963 * the ARC lists have moved there due to inactivity. 7964 * 7965 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 7966 * then the L2ARC simply misses copying some buffers. This serves as a 7967 * pressure valve to prevent heavy read workloads from both stalling the ARC 7968 * with waits and clogging the L2ARC with writes. This also helps prevent 7969 * the potential for the L2ARC to churn if it attempts to cache content too 7970 * quickly, such as during backups of the entire pool. 7971 * 7972 * 5. After system boot and before the ARC has filled main memory, there are 7973 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 7974 * lists can remain mostly static. Instead of searching from tail of these 7975 * lists as pictured, the l2arc_feed_thread() will search from the list heads 7976 * for eligible buffers, greatly increasing its chance of finding them. 7977 * 7978 * The L2ARC device write speed is also boosted during this time so that 7979 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 7980 * there are no L2ARC reads, and no fear of degrading read performance 7981 * through increased writes. 7982 * 7983 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 7984 * the vdev queue can aggregate them into larger and fewer writes. Each 7985 * device is written to in a rotor fashion, sweeping writes through 7986 * available space then repeating. 7987 * 7988 * 7. The L2ARC does not store dirty content. It never needs to flush 7989 * write buffers back to disk based storage. 7990 * 7991 * 8. If an ARC buffer is written (and dirtied) which also exists in the 7992 * L2ARC, the now stale L2ARC buffer is immediately dropped. 7993 * 7994 * The performance of the L2ARC can be tweaked by a number of tunables, which 7995 * may be necessary for different workloads: 7996 * 7997 * l2arc_write_max max write bytes per interval 7998 * l2arc_write_boost extra write bytes during device warmup 7999 * l2arc_noprefetch skip caching prefetched buffers 8000 * l2arc_headroom number of max device writes to precache 8001 * l2arc_headroom_boost when we find compressed buffers during ARC 8002 * scanning, we multiply headroom by this 8003 * percentage factor for the next scan cycle, 8004 * since more compressed buffers are likely to 8005 * be present 8006 * l2arc_feed_secs seconds between L2ARC writing 8007 * 8008 * Tunables may be removed or added as future performance improvements are 8009 * integrated, and also may become zpool properties. 8010 * 8011 * There are three key functions that control how the L2ARC warms up: 8012 * 8013 * l2arc_write_eligible() check if a buffer is eligible to cache 8014 * l2arc_write_size() calculate how much to write 8015 * l2arc_write_interval() calculate sleep delay between writes 8016 * 8017 * These three functions determine what to write, how much, and how quickly 8018 * to send writes. 8019 * 8020 * L2ARC persistence: 8021 * 8022 * When writing buffers to L2ARC, we periodically add some metadata to 8023 * make sure we can pick them up after reboot, thus dramatically reducing 8024 * the impact that any downtime has on the performance of storage systems 8025 * with large caches. 8026 * 8027 * The implementation works fairly simply by integrating the following two 8028 * modifications: 8029 * 8030 * *) When writing to the L2ARC, we occasionally write a "l2arc log block", 8031 * which is an additional piece of metadata which describes what's been 8032 * written. This allows us to rebuild the arc_buf_hdr_t structures of the 8033 * main ARC buffers. There are 2 linked-lists of log blocks headed by 8034 * dh_start_lbps[2]. We alternate which chain we append to, so they are 8035 * time-wise and offset-wise interleaved, but that is an optimization rather 8036 * than for correctness. The log block also includes a pointer to the 8037 * previous block in its chain. 8038 * 8039 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device 8040 * for our header bookkeeping purposes. This contains a device header, 8041 * which contains our top-level reference structures. We update it each 8042 * time we write a new log block, so that we're able to locate it in the 8043 * L2ARC device. If this write results in an inconsistent device header 8044 * (e.g. due to power failure), we detect this by verifying the header's 8045 * checksum and simply fail to reconstruct the L2ARC after reboot. 8046 * 8047 * Implementation diagram: 8048 * 8049 * +=== L2ARC device (not to scale) ======================================+ 8050 * | ___two newest log block pointers__.__________ | 8051 * | / \dh_start_lbps[1] | 8052 * | / \ \dh_start_lbps[0]| 8053 * |.___/__. V V | 8054 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---| 8055 * || hdr| ^ /^ /^ / / | 8056 * |+------+ ...--\-------/ \-----/--\------/ / | 8057 * | \--------------/ \--------------/ | 8058 * +======================================================================+ 8059 * 8060 * As can be seen on the diagram, rather than using a simple linked list, 8061 * we use a pair of linked lists with alternating elements. This is a 8062 * performance enhancement due to the fact that we only find out the 8063 * address of the next log block access once the current block has been 8064 * completely read in. Obviously, this hurts performance, because we'd be 8065 * keeping the device's I/O queue at only a 1 operation deep, thus 8066 * incurring a large amount of I/O round-trip latency. Having two lists 8067 * allows us to fetch two log blocks ahead of where we are currently 8068 * rebuilding L2ARC buffers. 8069 * 8070 * On-device data structures: 8071 * 8072 * L2ARC device header: l2arc_dev_hdr_phys_t 8073 * L2ARC log block: l2arc_log_blk_phys_t 8074 * 8075 * L2ARC reconstruction: 8076 * 8077 * When writing data, we simply write in the standard rotary fashion, 8078 * evicting buffers as we go and simply writing new data over them (writing 8079 * a new log block every now and then). This obviously means that once we 8080 * loop around the end of the device, we will start cutting into an already 8081 * committed log block (and its referenced data buffers), like so: 8082 * 8083 * current write head__ __old tail 8084 * \ / 8085 * V V 8086 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |--> 8087 * ^ ^^^^^^^^^___________________________________ 8088 * | \ 8089 * <<nextwrite>> may overwrite this blk and/or its bufs --' 8090 * 8091 * When importing the pool, we detect this situation and use it to stop 8092 * our scanning process (see l2arc_rebuild). 8093 * 8094 * There is one significant caveat to consider when rebuilding ARC contents 8095 * from an L2ARC device: what about invalidated buffers? Given the above 8096 * construction, we cannot update blocks which we've already written to amend 8097 * them to remove buffers which were invalidated. Thus, during reconstruction, 8098 * we might be populating the cache with buffers for data that's not on the 8099 * main pool anymore, or may have been overwritten! 8100 * 8101 * As it turns out, this isn't a problem. Every arc_read request includes 8102 * both the DVA and, crucially, the birth TXG of the BP the caller is 8103 * looking for. So even if the cache were populated by completely rotten 8104 * blocks for data that had been long deleted and/or overwritten, we'll 8105 * never actually return bad data from the cache, since the DVA with the 8106 * birth TXG uniquely identify a block in space and time - once created, 8107 * a block is immutable on disk. The worst thing we have done is wasted 8108 * some time and memory at l2arc rebuild to reconstruct outdated ARC 8109 * entries that will get dropped from the l2arc as it is being updated 8110 * with new blocks. 8111 * 8112 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write 8113 * hand are not restored. This is done by saving the offset (in bytes) 8114 * l2arc_evict() has evicted to in the L2ARC device header and taking it 8115 * into account when restoring buffers. 8116 */ 8117 8118 static boolean_t 8119 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 8120 { 8121 /* 8122 * A buffer is *not* eligible for the L2ARC if it: 8123 * 1. belongs to a different spa. 8124 * 2. is already cached on the L2ARC. 8125 * 3. has an I/O in progress (it may be an incomplete read). 8126 * 4. is flagged not eligible (zfs property). 8127 */ 8128 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || 8129 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr)) 8130 return (B_FALSE); 8131 8132 return (B_TRUE); 8133 } 8134 8135 static uint64_t 8136 l2arc_write_size(l2arc_dev_t *dev) 8137 { 8138 uint64_t size; 8139 8140 /* 8141 * Make sure our globals have meaningful values in case the user 8142 * altered them. 8143 */ 8144 size = l2arc_write_max; 8145 if (size == 0) { 8146 cmn_err(CE_NOTE, "l2arc_write_max must be greater than zero, " 8147 "resetting it to the default (%d)", L2ARC_WRITE_SIZE); 8148 size = l2arc_write_max = L2ARC_WRITE_SIZE; 8149 } 8150 8151 if (arc_warm == B_FALSE) 8152 size += l2arc_write_boost; 8153 8154 /* We need to add in the worst case scenario of log block overhead. */ 8155 size += l2arc_log_blk_overhead(size, dev); 8156 if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) { 8157 /* 8158 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100) 8159 * times the writesize, whichever is greater. 8160 */ 8161 size += MAX(64 * 1024 * 1024, 8162 (size * l2arc_trim_ahead) / 100); 8163 } 8164 8165 /* 8166 * Make sure the write size does not exceed the size of the cache 8167 * device. This is important in l2arc_evict(), otherwise infinite 8168 * iteration can occur. 8169 */ 8170 size = MIN(size, (dev->l2ad_end - dev->l2ad_start) / 4); 8171 8172 size = P2ROUNDUP(size, 1ULL << dev->l2ad_vdev->vdev_ashift); 8173 8174 return (size); 8175 8176 } 8177 8178 static clock_t 8179 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 8180 { 8181 clock_t interval, next, now; 8182 8183 /* 8184 * If the ARC lists are busy, increase our write rate; if the 8185 * lists are stale, idle back. This is achieved by checking 8186 * how much we previously wrote - if it was more than half of 8187 * what we wanted, schedule the next write much sooner. 8188 */ 8189 if (l2arc_feed_again && wrote > (wanted / 2)) 8190 interval = (hz * l2arc_feed_min_ms) / 1000; 8191 else 8192 interval = hz * l2arc_feed_secs; 8193 8194 now = ddi_get_lbolt(); 8195 next = MAX(now, MIN(now + interval, began + interval)); 8196 8197 return (next); 8198 } 8199 8200 /* 8201 * Cycle through L2ARC devices. This is how L2ARC load balances. 8202 * If a device is returned, this also returns holding the spa config lock. 8203 */ 8204 static l2arc_dev_t * 8205 l2arc_dev_get_next(void) 8206 { 8207 l2arc_dev_t *first, *next = NULL; 8208 8209 /* 8210 * Lock out the removal of spas (spa_namespace_lock), then removal 8211 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 8212 * both locks will be dropped and a spa config lock held instead. 8213 */ 8214 mutex_enter(&spa_namespace_lock); 8215 mutex_enter(&l2arc_dev_mtx); 8216 8217 /* if there are no vdevs, there is nothing to do */ 8218 if (l2arc_ndev == 0) 8219 goto out; 8220 8221 first = NULL; 8222 next = l2arc_dev_last; 8223 do { 8224 /* loop around the list looking for a non-faulted vdev */ 8225 if (next == NULL) { 8226 next = list_head(l2arc_dev_list); 8227 } else { 8228 next = list_next(l2arc_dev_list, next); 8229 if (next == NULL) 8230 next = list_head(l2arc_dev_list); 8231 } 8232 8233 /* if we have come back to the start, bail out */ 8234 if (first == NULL) 8235 first = next; 8236 else if (next == first) 8237 break; 8238 8239 ASSERT3P(next, !=, NULL); 8240 } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || 8241 next->l2ad_trim_all || next->l2ad_spa->spa_is_exporting); 8242 8243 /* if we were unable to find any usable vdevs, return NULL */ 8244 if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || 8245 next->l2ad_trim_all || next->l2ad_spa->spa_is_exporting) 8246 next = NULL; 8247 8248 l2arc_dev_last = next; 8249 8250 out: 8251 mutex_exit(&l2arc_dev_mtx); 8252 8253 /* 8254 * Grab the config lock to prevent the 'next' device from being 8255 * removed while we are writing to it. 8256 */ 8257 if (next != NULL) 8258 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 8259 mutex_exit(&spa_namespace_lock); 8260 8261 return (next); 8262 } 8263 8264 /* 8265 * Free buffers that were tagged for destruction. 8266 */ 8267 static void 8268 l2arc_do_free_on_write(void) 8269 { 8270 l2arc_data_free_t *df; 8271 8272 mutex_enter(&l2arc_free_on_write_mtx); 8273 while ((df = list_remove_head(l2arc_free_on_write)) != NULL) { 8274 ASSERT3P(df->l2df_abd, !=, NULL); 8275 abd_free(df->l2df_abd); 8276 kmem_free(df, sizeof (l2arc_data_free_t)); 8277 } 8278 mutex_exit(&l2arc_free_on_write_mtx); 8279 } 8280 8281 /* 8282 * A write to a cache device has completed. Update all headers to allow 8283 * reads from these buffers to begin. 8284 */ 8285 static void 8286 l2arc_write_done(zio_t *zio) 8287 { 8288 l2arc_write_callback_t *cb; 8289 l2arc_lb_abd_buf_t *abd_buf; 8290 l2arc_lb_ptr_buf_t *lb_ptr_buf; 8291 l2arc_dev_t *dev; 8292 l2arc_dev_hdr_phys_t *l2dhdr; 8293 list_t *buflist; 8294 arc_buf_hdr_t *head, *hdr, *hdr_prev; 8295 kmutex_t *hash_lock; 8296 int64_t bytes_dropped = 0; 8297 8298 cb = zio->io_private; 8299 ASSERT3P(cb, !=, NULL); 8300 dev = cb->l2wcb_dev; 8301 l2dhdr = dev->l2ad_dev_hdr; 8302 ASSERT3P(dev, !=, NULL); 8303 head = cb->l2wcb_head; 8304 ASSERT3P(head, !=, NULL); 8305 buflist = &dev->l2ad_buflist; 8306 ASSERT3P(buflist, !=, NULL); 8307 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 8308 l2arc_write_callback_t *, cb); 8309 8310 /* 8311 * All writes completed, or an error was hit. 8312 */ 8313 top: 8314 mutex_enter(&dev->l2ad_mtx); 8315 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 8316 hdr_prev = list_prev(buflist, hdr); 8317 8318 hash_lock = HDR_LOCK(hdr); 8319 8320 /* 8321 * We cannot use mutex_enter or else we can deadlock 8322 * with l2arc_write_buffers (due to swapping the order 8323 * the hash lock and l2ad_mtx are taken). 8324 */ 8325 if (!mutex_tryenter(hash_lock)) { 8326 /* 8327 * Missed the hash lock. We must retry so we 8328 * don't leave the ARC_FLAG_L2_WRITING bit set. 8329 */ 8330 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 8331 8332 /* 8333 * We don't want to rescan the headers we've 8334 * already marked as having been written out, so 8335 * we reinsert the head node so we can pick up 8336 * where we left off. 8337 */ 8338 list_remove(buflist, head); 8339 list_insert_after(buflist, hdr, head); 8340 8341 mutex_exit(&dev->l2ad_mtx); 8342 8343 /* 8344 * We wait for the hash lock to become available 8345 * to try and prevent busy waiting, and increase 8346 * the chance we'll be able to acquire the lock 8347 * the next time around. 8348 */ 8349 mutex_enter(hash_lock); 8350 mutex_exit(hash_lock); 8351 goto top; 8352 } 8353 8354 /* 8355 * We could not have been moved into the arc_l2c_only 8356 * state while in-flight due to our ARC_FLAG_L2_WRITING 8357 * bit being set. Let's just ensure that's being enforced. 8358 */ 8359 ASSERT(HDR_HAS_L1HDR(hdr)); 8360 8361 /* 8362 * Skipped - drop L2ARC entry and mark the header as no 8363 * longer L2 eligibile. 8364 */ 8365 if (zio->io_error != 0) { 8366 /* 8367 * Error - drop L2ARC entry. 8368 */ 8369 list_remove(buflist, hdr); 8370 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 8371 8372 uint64_t psize = HDR_GET_PSIZE(hdr); 8373 l2arc_hdr_arcstats_decrement(hdr); 8374 8375 bytes_dropped += 8376 vdev_psize_to_asize(dev->l2ad_vdev, psize); 8377 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 8378 arc_hdr_size(hdr), hdr); 8379 } 8380 8381 /* 8382 * Allow ARC to begin reads and ghost list evictions to 8383 * this L2ARC entry. 8384 */ 8385 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); 8386 8387 mutex_exit(hash_lock); 8388 } 8389 8390 /* 8391 * Free the allocated abd buffers for writing the log blocks. 8392 * If the zio failed reclaim the allocated space and remove the 8393 * pointers to these log blocks from the log block pointer list 8394 * of the L2ARC device. 8395 */ 8396 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) { 8397 abd_free(abd_buf->abd); 8398 zio_buf_free(abd_buf, sizeof (*abd_buf)); 8399 if (zio->io_error != 0) { 8400 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list); 8401 /* 8402 * L2BLK_GET_PSIZE returns aligned size for log 8403 * blocks. 8404 */ 8405 uint64_t asize = 8406 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop); 8407 bytes_dropped += asize; 8408 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 8409 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 8410 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 8411 lb_ptr_buf); 8412 (void) zfs_refcount_remove(&dev->l2ad_lb_count, 8413 lb_ptr_buf); 8414 kmem_free(lb_ptr_buf->lb_ptr, 8415 sizeof (l2arc_log_blkptr_t)); 8416 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 8417 } 8418 } 8419 list_destroy(&cb->l2wcb_abd_list); 8420 8421 if (zio->io_error != 0) { 8422 ARCSTAT_BUMP(arcstat_l2_writes_error); 8423 8424 /* 8425 * Restore the lbps array in the header to its previous state. 8426 * If the list of log block pointers is empty, zero out the 8427 * log block pointers in the device header. 8428 */ 8429 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list); 8430 for (int i = 0; i < 2; i++) { 8431 if (lb_ptr_buf == NULL) { 8432 /* 8433 * If the list is empty zero out the device 8434 * header. Otherwise zero out the second log 8435 * block pointer in the header. 8436 */ 8437 if (i == 0) { 8438 memset(l2dhdr, 0, 8439 dev->l2ad_dev_hdr_asize); 8440 } else { 8441 memset(&l2dhdr->dh_start_lbps[i], 0, 8442 sizeof (l2arc_log_blkptr_t)); 8443 } 8444 break; 8445 } 8446 memcpy(&l2dhdr->dh_start_lbps[i], lb_ptr_buf->lb_ptr, 8447 sizeof (l2arc_log_blkptr_t)); 8448 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list, 8449 lb_ptr_buf); 8450 } 8451 } 8452 8453 ARCSTAT_BUMP(arcstat_l2_writes_done); 8454 list_remove(buflist, head); 8455 ASSERT(!HDR_HAS_L1HDR(head)); 8456 kmem_cache_free(hdr_l2only_cache, head); 8457 mutex_exit(&dev->l2ad_mtx); 8458 8459 ASSERT(dev->l2ad_vdev != NULL); 8460 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 8461 8462 l2arc_do_free_on_write(); 8463 8464 kmem_free(cb, sizeof (l2arc_write_callback_t)); 8465 } 8466 8467 static int 8468 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb) 8469 { 8470 int ret; 8471 spa_t *spa = zio->io_spa; 8472 arc_buf_hdr_t *hdr = cb->l2rcb_hdr; 8473 blkptr_t *bp = zio->io_bp; 8474 uint8_t salt[ZIO_DATA_SALT_LEN]; 8475 uint8_t iv[ZIO_DATA_IV_LEN]; 8476 uint8_t mac[ZIO_DATA_MAC_LEN]; 8477 boolean_t no_crypt = B_FALSE; 8478 8479 /* 8480 * ZIL data is never be written to the L2ARC, so we don't need 8481 * special handling for its unique MAC storage. 8482 */ 8483 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 8484 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 8485 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8486 8487 /* 8488 * If the data was encrypted, decrypt it now. Note that 8489 * we must check the bp here and not the hdr, since the 8490 * hdr does not have its encryption parameters updated 8491 * until arc_read_done(). 8492 */ 8493 if (BP_IS_ENCRYPTED(bp)) { 8494 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8495 ARC_HDR_USE_RESERVE); 8496 8497 zio_crypt_decode_params_bp(bp, salt, iv); 8498 zio_crypt_decode_mac_bp(bp, mac); 8499 8500 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb, 8501 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 8502 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd, 8503 hdr->b_l1hdr.b_pabd, &no_crypt); 8504 if (ret != 0) { 8505 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8506 goto error; 8507 } 8508 8509 /* 8510 * If we actually performed decryption, replace b_pabd 8511 * with the decrypted data. Otherwise we can just throw 8512 * our decryption buffer away. 8513 */ 8514 if (!no_crypt) { 8515 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8516 arc_hdr_size(hdr), hdr); 8517 hdr->b_l1hdr.b_pabd = eabd; 8518 zio->io_abd = eabd; 8519 } else { 8520 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8521 } 8522 } 8523 8524 /* 8525 * If the L2ARC block was compressed, but ARC compression 8526 * is disabled we decompress the data into a new buffer and 8527 * replace the existing data. 8528 */ 8529 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 8530 !HDR_COMPRESSION_ENABLED(hdr)) { 8531 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8532 ARC_HDR_USE_RESERVE); 8533 8534 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 8535 hdr->b_l1hdr.b_pabd, cabd, HDR_GET_PSIZE(hdr), 8536 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 8537 if (ret != 0) { 8538 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr); 8539 goto error; 8540 } 8541 8542 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8543 arc_hdr_size(hdr), hdr); 8544 hdr->b_l1hdr.b_pabd = cabd; 8545 zio->io_abd = cabd; 8546 zio->io_size = HDR_GET_LSIZE(hdr); 8547 } 8548 8549 return (0); 8550 8551 error: 8552 return (ret); 8553 } 8554 8555 8556 /* 8557 * A read to a cache device completed. Validate buffer contents before 8558 * handing over to the regular ARC routines. 8559 */ 8560 static void 8561 l2arc_read_done(zio_t *zio) 8562 { 8563 int tfm_error = 0; 8564 l2arc_read_callback_t *cb = zio->io_private; 8565 arc_buf_hdr_t *hdr; 8566 kmutex_t *hash_lock; 8567 boolean_t valid_cksum; 8568 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) && 8569 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT)); 8570 8571 ASSERT3P(zio->io_vd, !=, NULL); 8572 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 8573 8574 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 8575 8576 ASSERT3P(cb, !=, NULL); 8577 hdr = cb->l2rcb_hdr; 8578 ASSERT3P(hdr, !=, NULL); 8579 8580 hash_lock = HDR_LOCK(hdr); 8581 mutex_enter(hash_lock); 8582 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 8583 8584 /* 8585 * If the data was read into a temporary buffer, 8586 * move it and free the buffer. 8587 */ 8588 if (cb->l2rcb_abd != NULL) { 8589 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size); 8590 if (zio->io_error == 0) { 8591 if (using_rdata) { 8592 abd_copy(hdr->b_crypt_hdr.b_rabd, 8593 cb->l2rcb_abd, arc_hdr_size(hdr)); 8594 } else { 8595 abd_copy(hdr->b_l1hdr.b_pabd, 8596 cb->l2rcb_abd, arc_hdr_size(hdr)); 8597 } 8598 } 8599 8600 /* 8601 * The following must be done regardless of whether 8602 * there was an error: 8603 * - free the temporary buffer 8604 * - point zio to the real ARC buffer 8605 * - set zio size accordingly 8606 * These are required because zio is either re-used for 8607 * an I/O of the block in the case of the error 8608 * or the zio is passed to arc_read_done() and it 8609 * needs real data. 8610 */ 8611 abd_free(cb->l2rcb_abd); 8612 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr); 8613 8614 if (using_rdata) { 8615 ASSERT(HDR_HAS_RABD(hdr)); 8616 zio->io_abd = zio->io_orig_abd = 8617 hdr->b_crypt_hdr.b_rabd; 8618 } else { 8619 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8620 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd; 8621 } 8622 } 8623 8624 ASSERT3P(zio->io_abd, !=, NULL); 8625 8626 /* 8627 * Check this survived the L2ARC journey. 8628 */ 8629 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd || 8630 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd)); 8631 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 8632 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 8633 zio->io_prop.zp_complevel = hdr->b_complevel; 8634 8635 valid_cksum = arc_cksum_is_equal(hdr, zio); 8636 8637 /* 8638 * b_rabd will always match the data as it exists on disk if it is 8639 * being used. Therefore if we are reading into b_rabd we do not 8640 * attempt to untransform the data. 8641 */ 8642 if (valid_cksum && !using_rdata) 8643 tfm_error = l2arc_untransform(zio, cb); 8644 8645 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 && 8646 !HDR_L2_EVICTED(hdr)) { 8647 mutex_exit(hash_lock); 8648 zio->io_private = hdr; 8649 arc_read_done(zio); 8650 } else { 8651 /* 8652 * Buffer didn't survive caching. Increment stats and 8653 * reissue to the original storage device. 8654 */ 8655 if (zio->io_error != 0) { 8656 ARCSTAT_BUMP(arcstat_l2_io_error); 8657 } else { 8658 zio->io_error = SET_ERROR(EIO); 8659 } 8660 if (!valid_cksum || tfm_error != 0) 8661 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 8662 8663 /* 8664 * If there's no waiter, issue an async i/o to the primary 8665 * storage now. If there *is* a waiter, the caller must 8666 * issue the i/o in a context where it's OK to block. 8667 */ 8668 if (zio->io_waiter == NULL) { 8669 zio_t *pio = zio_unique_parent(zio); 8670 void *abd = (using_rdata) ? 8671 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd; 8672 8673 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 8674 8675 zio = zio_read(pio, zio->io_spa, zio->io_bp, 8676 abd, zio->io_size, arc_read_done, 8677 hdr, zio->io_priority, cb->l2rcb_flags, 8678 &cb->l2rcb_zb); 8679 8680 /* 8681 * Original ZIO will be freed, so we need to update 8682 * ARC header with the new ZIO pointer to be used 8683 * by zio_change_priority() in arc_read(). 8684 */ 8685 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb; 8686 acb != NULL; acb = acb->acb_next) 8687 acb->acb_zio_head = zio; 8688 8689 mutex_exit(hash_lock); 8690 zio_nowait(zio); 8691 } else { 8692 mutex_exit(hash_lock); 8693 } 8694 } 8695 8696 kmem_free(cb, sizeof (l2arc_read_callback_t)); 8697 } 8698 8699 /* 8700 * This is the list priority from which the L2ARC will search for pages to 8701 * cache. This is used within loops (0..3) to cycle through lists in the 8702 * desired order. This order can have a significant effect on cache 8703 * performance. 8704 * 8705 * Currently the metadata lists are hit first, MFU then MRU, followed by 8706 * the data lists. This function returns a locked list, and also returns 8707 * the lock pointer. 8708 */ 8709 static multilist_sublist_t * 8710 l2arc_sublist_lock(int list_num) 8711 { 8712 multilist_t *ml = NULL; 8713 unsigned int idx; 8714 8715 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES); 8716 8717 switch (list_num) { 8718 case 0: 8719 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 8720 break; 8721 case 1: 8722 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 8723 break; 8724 case 2: 8725 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 8726 break; 8727 case 3: 8728 ml = &arc_mru->arcs_list[ARC_BUFC_DATA]; 8729 break; 8730 default: 8731 return (NULL); 8732 } 8733 8734 /* 8735 * Return a randomly-selected sublist. This is acceptable 8736 * because the caller feeds only a little bit of data for each 8737 * call (8MB). Subsequent calls will result in different 8738 * sublists being selected. 8739 */ 8740 idx = multilist_get_random_index(ml); 8741 return (multilist_sublist_lock_idx(ml, idx)); 8742 } 8743 8744 /* 8745 * Calculates the maximum overhead of L2ARC metadata log blocks for a given 8746 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this 8747 * overhead in processing to make sure there is enough headroom available 8748 * when writing buffers. 8749 */ 8750 static inline uint64_t 8751 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev) 8752 { 8753 if (dev->l2ad_log_entries == 0) { 8754 return (0); 8755 } else { 8756 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT; 8757 8758 uint64_t log_blocks = (log_entries + 8759 dev->l2ad_log_entries - 1) / 8760 dev->l2ad_log_entries; 8761 8762 return (vdev_psize_to_asize(dev->l2ad_vdev, 8763 sizeof (l2arc_log_blk_phys_t)) * log_blocks); 8764 } 8765 } 8766 8767 /* 8768 * Evict buffers from the device write hand to the distance specified in 8769 * bytes. This distance may span populated buffers, it may span nothing. 8770 * This is clearing a region on the L2ARC device ready for writing. 8771 * If the 'all' boolean is set, every buffer is evicted. 8772 */ 8773 static void 8774 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 8775 { 8776 list_t *buflist; 8777 arc_buf_hdr_t *hdr, *hdr_prev; 8778 kmutex_t *hash_lock; 8779 uint64_t taddr; 8780 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev; 8781 vdev_t *vd = dev->l2ad_vdev; 8782 boolean_t rerun; 8783 8784 buflist = &dev->l2ad_buflist; 8785 8786 top: 8787 rerun = B_FALSE; 8788 if (dev->l2ad_hand + distance > dev->l2ad_end) { 8789 /* 8790 * When there is no space to accommodate upcoming writes, 8791 * evict to the end. Then bump the write and evict hands 8792 * to the start and iterate. This iteration does not 8793 * happen indefinitely as we make sure in 8794 * l2arc_write_size() that when the write hand is reset, 8795 * the write size does not exceed the end of the device. 8796 */ 8797 rerun = B_TRUE; 8798 taddr = dev->l2ad_end; 8799 } else { 8800 taddr = dev->l2ad_hand + distance; 8801 } 8802 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 8803 uint64_t, taddr, boolean_t, all); 8804 8805 if (!all) { 8806 /* 8807 * This check has to be placed after deciding whether to 8808 * iterate (rerun). 8809 */ 8810 if (dev->l2ad_first) { 8811 /* 8812 * This is the first sweep through the device. There is 8813 * nothing to evict. We have already trimmmed the 8814 * whole device. 8815 */ 8816 goto out; 8817 } else { 8818 /* 8819 * Trim the space to be evicted. 8820 */ 8821 if (vd->vdev_has_trim && dev->l2ad_evict < taddr && 8822 l2arc_trim_ahead > 0) { 8823 /* 8824 * We have to drop the spa_config lock because 8825 * vdev_trim_range() will acquire it. 8826 * l2ad_evict already accounts for the label 8827 * size. To prevent vdev_trim_ranges() from 8828 * adding it again, we subtract it from 8829 * l2ad_evict. 8830 */ 8831 spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev); 8832 vdev_trim_simple(vd, 8833 dev->l2ad_evict - VDEV_LABEL_START_SIZE, 8834 taddr - dev->l2ad_evict); 8835 spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev, 8836 RW_READER); 8837 } 8838 8839 /* 8840 * When rebuilding L2ARC we retrieve the evict hand 8841 * from the header of the device. Of note, l2arc_evict() 8842 * does not actually delete buffers from the cache 8843 * device, but trimming may do so depending on the 8844 * hardware implementation. Thus keeping track of the 8845 * evict hand is useful. 8846 */ 8847 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr); 8848 } 8849 } 8850 8851 retry: 8852 mutex_enter(&dev->l2ad_mtx); 8853 /* 8854 * We have to account for evicted log blocks. Run vdev_space_update() 8855 * on log blocks whose offset (in bytes) is before the evicted offset 8856 * (in bytes) by searching in the list of pointers to log blocks 8857 * present in the L2ARC device. 8858 */ 8859 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf; 8860 lb_ptr_buf = lb_ptr_buf_prev) { 8861 8862 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf); 8863 8864 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 8865 uint64_t asize = L2BLK_GET_PSIZE( 8866 (lb_ptr_buf->lb_ptr)->lbp_prop); 8867 8868 /* 8869 * We don't worry about log blocks left behind (ie 8870 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers() 8871 * will never write more than l2arc_evict() evicts. 8872 */ 8873 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) { 8874 break; 8875 } else { 8876 vdev_space_update(vd, -asize, 0, 0); 8877 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 8878 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 8879 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 8880 lb_ptr_buf); 8881 (void) zfs_refcount_remove(&dev->l2ad_lb_count, 8882 lb_ptr_buf); 8883 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf); 8884 kmem_free(lb_ptr_buf->lb_ptr, 8885 sizeof (l2arc_log_blkptr_t)); 8886 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 8887 } 8888 } 8889 8890 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 8891 hdr_prev = list_prev(buflist, hdr); 8892 8893 ASSERT(!HDR_EMPTY(hdr)); 8894 hash_lock = HDR_LOCK(hdr); 8895 8896 /* 8897 * We cannot use mutex_enter or else we can deadlock 8898 * with l2arc_write_buffers (due to swapping the order 8899 * the hash lock and l2ad_mtx are taken). 8900 */ 8901 if (!mutex_tryenter(hash_lock)) { 8902 /* 8903 * Missed the hash lock. Retry. 8904 */ 8905 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 8906 mutex_exit(&dev->l2ad_mtx); 8907 mutex_enter(hash_lock); 8908 mutex_exit(hash_lock); 8909 goto retry; 8910 } 8911 8912 /* 8913 * A header can't be on this list if it doesn't have L2 header. 8914 */ 8915 ASSERT(HDR_HAS_L2HDR(hdr)); 8916 8917 /* Ensure this header has finished being written. */ 8918 ASSERT(!HDR_L2_WRITING(hdr)); 8919 ASSERT(!HDR_L2_WRITE_HEAD(hdr)); 8920 8921 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict || 8922 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 8923 /* 8924 * We've evicted to the target address, 8925 * or the end of the device. 8926 */ 8927 mutex_exit(hash_lock); 8928 break; 8929 } 8930 8931 if (!HDR_HAS_L1HDR(hdr)) { 8932 ASSERT(!HDR_L2_READING(hdr)); 8933 /* 8934 * This doesn't exist in the ARC. Destroy. 8935 * arc_hdr_destroy() will call list_remove() 8936 * and decrement arcstat_l2_lsize. 8937 */ 8938 arc_change_state(arc_anon, hdr); 8939 arc_hdr_destroy(hdr); 8940 } else { 8941 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 8942 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 8943 /* 8944 * Invalidate issued or about to be issued 8945 * reads, since we may be about to write 8946 * over this location. 8947 */ 8948 if (HDR_L2_READING(hdr)) { 8949 ARCSTAT_BUMP(arcstat_l2_evict_reading); 8950 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); 8951 } 8952 8953 arc_hdr_l2hdr_destroy(hdr); 8954 } 8955 mutex_exit(hash_lock); 8956 } 8957 mutex_exit(&dev->l2ad_mtx); 8958 8959 out: 8960 /* 8961 * We need to check if we evict all buffers, otherwise we may iterate 8962 * unnecessarily. 8963 */ 8964 if (!all && rerun) { 8965 /* 8966 * Bump device hand to the device start if it is approaching the 8967 * end. l2arc_evict() has already evicted ahead for this case. 8968 */ 8969 dev->l2ad_hand = dev->l2ad_start; 8970 dev->l2ad_evict = dev->l2ad_start; 8971 dev->l2ad_first = B_FALSE; 8972 goto top; 8973 } 8974 8975 if (!all) { 8976 /* 8977 * In case of cache device removal (all) the following 8978 * assertions may be violated without functional consequences 8979 * as the device is about to be removed. 8980 */ 8981 ASSERT3U(dev->l2ad_hand + distance, <=, dev->l2ad_end); 8982 if (!dev->l2ad_first) 8983 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict); 8984 } 8985 } 8986 8987 /* 8988 * Handle any abd transforms that might be required for writing to the L2ARC. 8989 * If successful, this function will always return an abd with the data 8990 * transformed as it is on disk in a new abd of asize bytes. 8991 */ 8992 static int 8993 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize, 8994 abd_t **abd_out) 8995 { 8996 int ret; 8997 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd; 8998 enum zio_compress compress = HDR_GET_COMPRESS(hdr); 8999 uint64_t psize = HDR_GET_PSIZE(hdr); 9000 uint64_t size = arc_hdr_size(hdr); 9001 boolean_t ismd = HDR_ISTYPE_METADATA(hdr); 9002 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 9003 dsl_crypto_key_t *dck = NULL; 9004 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 }; 9005 boolean_t no_crypt = B_FALSE; 9006 9007 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 9008 !HDR_COMPRESSION_ENABLED(hdr)) || 9009 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize); 9010 ASSERT3U(psize, <=, asize); 9011 9012 /* 9013 * If this data simply needs its own buffer, we simply allocate it 9014 * and copy the data. This may be done to eliminate a dependency on a 9015 * shared buffer or to reallocate the buffer to match asize. 9016 */ 9017 if (HDR_HAS_RABD(hdr)) { 9018 ASSERT3U(asize, >, psize); 9019 to_write = abd_alloc_for_io(asize, ismd); 9020 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize); 9021 abd_zero_off(to_write, psize, asize - psize); 9022 goto out; 9023 } 9024 9025 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) && 9026 !HDR_ENCRYPTED(hdr)) { 9027 ASSERT3U(size, ==, psize); 9028 to_write = abd_alloc_for_io(asize, ismd); 9029 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 9030 if (asize > size) 9031 abd_zero_off(to_write, size, asize - size); 9032 goto out; 9033 } 9034 9035 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) { 9036 cabd = abd_alloc_for_io(MAX(size, asize), ismd); 9037 uint64_t csize = zio_compress_data(compress, to_write, &cabd, 9038 size, MIN(size, psize), hdr->b_complevel); 9039 if (csize >= size || csize > psize) { 9040 /* 9041 * We can't re-compress the block into the original 9042 * psize. Even if it fits into asize, it does not 9043 * matter, since checksum will never match on read. 9044 */ 9045 abd_free(cabd); 9046 return (SET_ERROR(EIO)); 9047 } 9048 if (asize > csize) 9049 abd_zero_off(cabd, csize, asize - csize); 9050 to_write = cabd; 9051 } 9052 9053 if (HDR_ENCRYPTED(hdr)) { 9054 eabd = abd_alloc_for_io(asize, ismd); 9055 9056 /* 9057 * If the dataset was disowned before the buffer 9058 * made it to this point, the key to re-encrypt 9059 * it won't be available. In this case we simply 9060 * won't write the buffer to the L2ARC. 9061 */ 9062 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj, 9063 FTAG, &dck); 9064 if (ret != 0) 9065 goto error; 9066 9067 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key, 9068 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt, 9069 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd, 9070 &no_crypt); 9071 if (ret != 0) 9072 goto error; 9073 9074 if (no_crypt) 9075 abd_copy(eabd, to_write, psize); 9076 9077 if (psize != asize) 9078 abd_zero_off(eabd, psize, asize - psize); 9079 9080 /* assert that the MAC we got here matches the one we saved */ 9081 ASSERT0(memcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN)); 9082 spa_keystore_dsl_key_rele(spa, dck, FTAG); 9083 9084 if (to_write == cabd) 9085 abd_free(cabd); 9086 9087 to_write = eabd; 9088 } 9089 9090 out: 9091 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd); 9092 *abd_out = to_write; 9093 return (0); 9094 9095 error: 9096 if (dck != NULL) 9097 spa_keystore_dsl_key_rele(spa, dck, FTAG); 9098 if (cabd != NULL) 9099 abd_free(cabd); 9100 if (eabd != NULL) 9101 abd_free(eabd); 9102 9103 *abd_out = NULL; 9104 return (ret); 9105 } 9106 9107 static void 9108 l2arc_blk_fetch_done(zio_t *zio) 9109 { 9110 l2arc_read_callback_t *cb; 9111 9112 cb = zio->io_private; 9113 if (cb->l2rcb_abd != NULL) 9114 abd_free(cb->l2rcb_abd); 9115 kmem_free(cb, sizeof (l2arc_read_callback_t)); 9116 } 9117 9118 /* 9119 * Find and write ARC buffers to the L2ARC device. 9120 * 9121 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 9122 * for reading until they have completed writing. 9123 * The headroom_boost is an in-out parameter used to maintain headroom boost 9124 * state between calls to this function. 9125 * 9126 * Returns the number of bytes actually written (which may be smaller than 9127 * the delta by which the device hand has changed due to alignment and the 9128 * writing of log blocks). 9129 */ 9130 static uint64_t 9131 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 9132 { 9133 arc_buf_hdr_t *hdr, *head, *marker; 9134 uint64_t write_asize, write_psize, headroom; 9135 boolean_t full, from_head = !arc_warm; 9136 l2arc_write_callback_t *cb = NULL; 9137 zio_t *pio, *wzio; 9138 uint64_t guid = spa_load_guid(spa); 9139 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9140 9141 ASSERT3P(dev->l2ad_vdev, !=, NULL); 9142 9143 pio = NULL; 9144 write_asize = write_psize = 0; 9145 full = B_FALSE; 9146 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 9147 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); 9148 marker = arc_state_alloc_marker(); 9149 9150 /* 9151 * Copy buffers for L2ARC writing. 9152 */ 9153 for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) { 9154 /* 9155 * pass == 0: MFU meta 9156 * pass == 1: MRU meta 9157 * pass == 2: MFU data 9158 * pass == 3: MRU data 9159 */ 9160 if (l2arc_mfuonly == 1) { 9161 if (pass == 1 || pass == 3) 9162 continue; 9163 } else if (l2arc_mfuonly > 1) { 9164 if (pass == 3) 9165 continue; 9166 } 9167 9168 uint64_t passed_sz = 0; 9169 headroom = target_sz * l2arc_headroom; 9170 if (zfs_compressed_arc_enabled) 9171 headroom = (headroom * l2arc_headroom_boost) / 100; 9172 9173 /* 9174 * Until the ARC is warm and starts to evict, read from the 9175 * head of the ARC lists rather than the tail. 9176 */ 9177 multilist_sublist_t *mls = l2arc_sublist_lock(pass); 9178 ASSERT3P(mls, !=, NULL); 9179 if (from_head) 9180 hdr = multilist_sublist_head(mls); 9181 else 9182 hdr = multilist_sublist_tail(mls); 9183 9184 while (hdr != NULL) { 9185 kmutex_t *hash_lock; 9186 abd_t *to_write = NULL; 9187 9188 hash_lock = HDR_LOCK(hdr); 9189 if (!mutex_tryenter(hash_lock)) { 9190 skip: 9191 /* Skip this buffer rather than waiting. */ 9192 if (from_head) 9193 hdr = multilist_sublist_next(mls, hdr); 9194 else 9195 hdr = multilist_sublist_prev(mls, hdr); 9196 continue; 9197 } 9198 9199 passed_sz += HDR_GET_LSIZE(hdr); 9200 if (l2arc_headroom != 0 && passed_sz > headroom) { 9201 /* 9202 * Searched too far. 9203 */ 9204 mutex_exit(hash_lock); 9205 break; 9206 } 9207 9208 if (!l2arc_write_eligible(guid, hdr)) { 9209 mutex_exit(hash_lock); 9210 goto skip; 9211 } 9212 9213 ASSERT(HDR_HAS_L1HDR(hdr)); 9214 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 9215 ASSERT3U(arc_hdr_size(hdr), >, 0); 9216 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 9217 HDR_HAS_RABD(hdr)); 9218 uint64_t psize = HDR_GET_PSIZE(hdr); 9219 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 9220 psize); 9221 9222 /* 9223 * If the allocated size of this buffer plus the max 9224 * size for the pending log block exceeds the evicted 9225 * target size, terminate writing buffers for this run. 9226 */ 9227 if (write_asize + asize + 9228 sizeof (l2arc_log_blk_phys_t) > target_sz) { 9229 full = B_TRUE; 9230 mutex_exit(hash_lock); 9231 break; 9232 } 9233 9234 /* 9235 * We should not sleep with sublist lock held or it 9236 * may block ARC eviction. Insert a marker to save 9237 * the position and drop the lock. 9238 */ 9239 if (from_head) { 9240 multilist_sublist_insert_after(mls, hdr, 9241 marker); 9242 } else { 9243 multilist_sublist_insert_before(mls, hdr, 9244 marker); 9245 } 9246 multilist_sublist_unlock(mls); 9247 9248 /* 9249 * If this header has b_rabd, we can use this since it 9250 * must always match the data exactly as it exists on 9251 * disk. Otherwise, the L2ARC can normally use the 9252 * hdr's data, but if we're sharing data between the 9253 * hdr and one of its bufs, L2ARC needs its own copy of 9254 * the data so that the ZIO below can't race with the 9255 * buf consumer. To ensure that this copy will be 9256 * available for the lifetime of the ZIO and be cleaned 9257 * up afterwards, we add it to the l2arc_free_on_write 9258 * queue. If we need to apply any transforms to the 9259 * data (compression, encryption) we will also need the 9260 * extra buffer. 9261 */ 9262 if (HDR_HAS_RABD(hdr) && psize == asize) { 9263 to_write = hdr->b_crypt_hdr.b_rabd; 9264 } else if ((HDR_COMPRESSION_ENABLED(hdr) || 9265 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) && 9266 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) && 9267 psize == asize) { 9268 to_write = hdr->b_l1hdr.b_pabd; 9269 } else { 9270 int ret; 9271 arc_buf_contents_t type = arc_buf_type(hdr); 9272 9273 ret = l2arc_apply_transforms(spa, hdr, asize, 9274 &to_write); 9275 if (ret != 0) { 9276 arc_hdr_clear_flags(hdr, 9277 ARC_FLAG_L2CACHE); 9278 mutex_exit(hash_lock); 9279 goto next; 9280 } 9281 9282 l2arc_free_abd_on_write(to_write, asize, type); 9283 } 9284 9285 hdr->b_l2hdr.b_dev = dev; 9286 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 9287 hdr->b_l2hdr.b_hits = 0; 9288 hdr->b_l2hdr.b_arcs_state = 9289 hdr->b_l1hdr.b_state->arcs_state; 9290 mutex_enter(&dev->l2ad_mtx); 9291 if (pio == NULL) { 9292 /* 9293 * Insert a dummy header on the buflist so 9294 * l2arc_write_done() can find where the 9295 * write buffers begin without searching. 9296 */ 9297 list_insert_head(&dev->l2ad_buflist, head); 9298 } 9299 list_insert_head(&dev->l2ad_buflist, hdr); 9300 mutex_exit(&dev->l2ad_mtx); 9301 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR | 9302 ARC_FLAG_L2_WRITING); 9303 9304 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 9305 arc_hdr_size(hdr), hdr); 9306 l2arc_hdr_arcstats_increment(hdr); 9307 9308 boolean_t commit = l2arc_log_blk_insert(dev, hdr); 9309 mutex_exit(hash_lock); 9310 9311 if (pio == NULL) { 9312 cb = kmem_alloc( 9313 sizeof (l2arc_write_callback_t), KM_SLEEP); 9314 cb->l2wcb_dev = dev; 9315 cb->l2wcb_head = head; 9316 list_create(&cb->l2wcb_abd_list, 9317 sizeof (l2arc_lb_abd_buf_t), 9318 offsetof(l2arc_lb_abd_buf_t, node)); 9319 pio = zio_root(spa, l2arc_write_done, cb, 9320 ZIO_FLAG_CANFAIL); 9321 } 9322 9323 wzio = zio_write_phys(pio, dev->l2ad_vdev, 9324 dev->l2ad_hand, asize, to_write, 9325 ZIO_CHECKSUM_OFF, NULL, hdr, 9326 ZIO_PRIORITY_ASYNC_WRITE, 9327 ZIO_FLAG_CANFAIL, B_FALSE); 9328 9329 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 9330 zio_t *, wzio); 9331 zio_nowait(wzio); 9332 9333 write_psize += psize; 9334 write_asize += asize; 9335 dev->l2ad_hand += asize; 9336 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 9337 9338 if (commit) { 9339 /* l2ad_hand will be adjusted inside. */ 9340 write_asize += 9341 l2arc_log_blk_commit(dev, pio, cb); 9342 } 9343 9344 next: 9345 multilist_sublist_lock(mls); 9346 if (from_head) 9347 hdr = multilist_sublist_next(mls, marker); 9348 else 9349 hdr = multilist_sublist_prev(mls, marker); 9350 multilist_sublist_remove(mls, marker); 9351 } 9352 9353 multilist_sublist_unlock(mls); 9354 9355 if (full == B_TRUE) 9356 break; 9357 } 9358 9359 arc_state_free_marker(marker); 9360 9361 /* No buffers selected for writing? */ 9362 if (pio == NULL) { 9363 ASSERT0(write_psize); 9364 ASSERT(!HDR_HAS_L1HDR(head)); 9365 kmem_cache_free(hdr_l2only_cache, head); 9366 9367 /* 9368 * Although we did not write any buffers l2ad_evict may 9369 * have advanced. 9370 */ 9371 if (dev->l2ad_evict != l2dhdr->dh_evict) 9372 l2arc_dev_hdr_update(dev); 9373 9374 return (0); 9375 } 9376 9377 if (!dev->l2ad_first) 9378 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict); 9379 9380 ASSERT3U(write_asize, <=, target_sz); 9381 ARCSTAT_BUMP(arcstat_l2_writes_sent); 9382 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize); 9383 9384 dev->l2ad_writing = B_TRUE; 9385 (void) zio_wait(pio); 9386 dev->l2ad_writing = B_FALSE; 9387 9388 /* 9389 * Update the device header after the zio completes as 9390 * l2arc_write_done() may have updated the memory holding the log block 9391 * pointers in the device header. 9392 */ 9393 l2arc_dev_hdr_update(dev); 9394 9395 return (write_asize); 9396 } 9397 9398 static boolean_t 9399 l2arc_hdr_limit_reached(void) 9400 { 9401 int64_t s = aggsum_upper_bound(&arc_sums.arcstat_l2_hdr_size); 9402 9403 return (arc_reclaim_needed() || 9404 (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100)); 9405 } 9406 9407 /* 9408 * This thread feeds the L2ARC at regular intervals. This is the beating 9409 * heart of the L2ARC. 9410 */ 9411 static __attribute__((noreturn)) void 9412 l2arc_feed_thread(void *unused) 9413 { 9414 (void) unused; 9415 callb_cpr_t cpr; 9416 l2arc_dev_t *dev; 9417 spa_t *spa; 9418 uint64_t size, wrote; 9419 clock_t begin, next = ddi_get_lbolt(); 9420 fstrans_cookie_t cookie; 9421 9422 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 9423 9424 mutex_enter(&l2arc_feed_thr_lock); 9425 9426 cookie = spl_fstrans_mark(); 9427 while (l2arc_thread_exit == 0) { 9428 CALLB_CPR_SAFE_BEGIN(&cpr); 9429 (void) cv_timedwait_idle(&l2arc_feed_thr_cv, 9430 &l2arc_feed_thr_lock, next); 9431 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 9432 next = ddi_get_lbolt() + hz; 9433 9434 /* 9435 * Quick check for L2ARC devices. 9436 */ 9437 mutex_enter(&l2arc_dev_mtx); 9438 if (l2arc_ndev == 0) { 9439 mutex_exit(&l2arc_dev_mtx); 9440 continue; 9441 } 9442 mutex_exit(&l2arc_dev_mtx); 9443 begin = ddi_get_lbolt(); 9444 9445 /* 9446 * This selects the next l2arc device to write to, and in 9447 * doing so the next spa to feed from: dev->l2ad_spa. This 9448 * will return NULL if there are now no l2arc devices or if 9449 * they are all faulted. 9450 * 9451 * If a device is returned, its spa's config lock is also 9452 * held to prevent device removal. l2arc_dev_get_next() 9453 * will grab and release l2arc_dev_mtx. 9454 */ 9455 if ((dev = l2arc_dev_get_next()) == NULL) 9456 continue; 9457 9458 spa = dev->l2ad_spa; 9459 ASSERT3P(spa, !=, NULL); 9460 9461 /* 9462 * If the pool is read-only then force the feed thread to 9463 * sleep a little longer. 9464 */ 9465 if (!spa_writeable(spa)) { 9466 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 9467 spa_config_exit(spa, SCL_L2ARC, dev); 9468 continue; 9469 } 9470 9471 /* 9472 * Avoid contributing to memory pressure. 9473 */ 9474 if (l2arc_hdr_limit_reached()) { 9475 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 9476 spa_config_exit(spa, SCL_L2ARC, dev); 9477 continue; 9478 } 9479 9480 ARCSTAT_BUMP(arcstat_l2_feeds); 9481 9482 size = l2arc_write_size(dev); 9483 9484 /* 9485 * Evict L2ARC buffers that will be overwritten. 9486 */ 9487 l2arc_evict(dev, size, B_FALSE); 9488 9489 /* 9490 * Write ARC buffers. 9491 */ 9492 wrote = l2arc_write_buffers(spa, dev, size); 9493 9494 /* 9495 * Calculate interval between writes. 9496 */ 9497 next = l2arc_write_interval(begin, size, wrote); 9498 spa_config_exit(spa, SCL_L2ARC, dev); 9499 } 9500 spl_fstrans_unmark(cookie); 9501 9502 l2arc_thread_exit = 0; 9503 cv_broadcast(&l2arc_feed_thr_cv); 9504 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 9505 thread_exit(); 9506 } 9507 9508 boolean_t 9509 l2arc_vdev_present(vdev_t *vd) 9510 { 9511 return (l2arc_vdev_get(vd) != NULL); 9512 } 9513 9514 /* 9515 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if 9516 * the vdev_t isn't an L2ARC device. 9517 */ 9518 l2arc_dev_t * 9519 l2arc_vdev_get(vdev_t *vd) 9520 { 9521 l2arc_dev_t *dev; 9522 9523 mutex_enter(&l2arc_dev_mtx); 9524 for (dev = list_head(l2arc_dev_list); dev != NULL; 9525 dev = list_next(l2arc_dev_list, dev)) { 9526 if (dev->l2ad_vdev == vd) 9527 break; 9528 } 9529 mutex_exit(&l2arc_dev_mtx); 9530 9531 return (dev); 9532 } 9533 9534 static void 9535 l2arc_rebuild_dev(l2arc_dev_t *dev, boolean_t reopen) 9536 { 9537 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9538 uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 9539 spa_t *spa = dev->l2ad_spa; 9540 9541 /* 9542 * The L2ARC has to hold at least the payload of one log block for 9543 * them to be restored (persistent L2ARC). The payload of a log block 9544 * depends on the amount of its log entries. We always write log blocks 9545 * with 1022 entries. How many of them are committed or restored depends 9546 * on the size of the L2ARC device. Thus the maximum payload of 9547 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device 9548 * is less than that, we reduce the amount of committed and restored 9549 * log entries per block so as to enable persistence. 9550 */ 9551 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) { 9552 dev->l2ad_log_entries = 0; 9553 } else { 9554 dev->l2ad_log_entries = MIN((dev->l2ad_end - 9555 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT, 9556 L2ARC_LOG_BLK_MAX_ENTRIES); 9557 } 9558 9559 /* 9560 * Read the device header, if an error is returned do not rebuild L2ARC. 9561 */ 9562 if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) { 9563 /* 9564 * If we are onlining a cache device (vdev_reopen) that was 9565 * still present (l2arc_vdev_present()) and rebuild is enabled, 9566 * we should evict all ARC buffers and pointers to log blocks 9567 * and reclaim their space before restoring its contents to 9568 * L2ARC. 9569 */ 9570 if (reopen) { 9571 if (!l2arc_rebuild_enabled) { 9572 return; 9573 } else { 9574 l2arc_evict(dev, 0, B_TRUE); 9575 /* start a new log block */ 9576 dev->l2ad_log_ent_idx = 0; 9577 dev->l2ad_log_blk_payload_asize = 0; 9578 dev->l2ad_log_blk_payload_start = 0; 9579 } 9580 } 9581 /* 9582 * Just mark the device as pending for a rebuild. We won't 9583 * be starting a rebuild in line here as it would block pool 9584 * import. Instead spa_load_impl will hand that off to an 9585 * async task which will call l2arc_spa_rebuild_start. 9586 */ 9587 dev->l2ad_rebuild = B_TRUE; 9588 } else if (spa_writeable(spa)) { 9589 /* 9590 * In this case TRIM the whole device if l2arc_trim_ahead > 0, 9591 * otherwise create a new header. We zero out the memory holding 9592 * the header to reset dh_start_lbps. If we TRIM the whole 9593 * device the new header will be written by 9594 * vdev_trim_l2arc_thread() at the end of the TRIM to update the 9595 * trim_state in the header too. When reading the header, if 9596 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0 9597 * we opt to TRIM the whole device again. 9598 */ 9599 if (l2arc_trim_ahead > 0) { 9600 dev->l2ad_trim_all = B_TRUE; 9601 } else { 9602 memset(l2dhdr, 0, l2dhdr_asize); 9603 l2arc_dev_hdr_update(dev); 9604 } 9605 } 9606 } 9607 9608 /* 9609 * Add a vdev for use by the L2ARC. By this point the spa has already 9610 * validated the vdev and opened it. 9611 */ 9612 void 9613 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 9614 { 9615 l2arc_dev_t *adddev; 9616 uint64_t l2dhdr_asize; 9617 9618 ASSERT(!l2arc_vdev_present(vd)); 9619 9620 /* 9621 * Create a new l2arc device entry. 9622 */ 9623 adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 9624 adddev->l2ad_spa = spa; 9625 adddev->l2ad_vdev = vd; 9626 /* leave extra size for an l2arc device header */ 9627 l2dhdr_asize = adddev->l2ad_dev_hdr_asize = 9628 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift); 9629 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize; 9630 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 9631 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end); 9632 adddev->l2ad_hand = adddev->l2ad_start; 9633 adddev->l2ad_evict = adddev->l2ad_start; 9634 adddev->l2ad_first = B_TRUE; 9635 adddev->l2ad_writing = B_FALSE; 9636 adddev->l2ad_trim_all = B_FALSE; 9637 list_link_init(&adddev->l2ad_node); 9638 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP); 9639 9640 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 9641 /* 9642 * This is a list of all ARC buffers that are still valid on the 9643 * device. 9644 */ 9645 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 9646 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 9647 9648 /* 9649 * This is a list of pointers to log blocks that are still present 9650 * on the device. 9651 */ 9652 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t), 9653 offsetof(l2arc_lb_ptr_buf_t, node)); 9654 9655 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 9656 zfs_refcount_create(&adddev->l2ad_alloc); 9657 zfs_refcount_create(&adddev->l2ad_lb_asize); 9658 zfs_refcount_create(&adddev->l2ad_lb_count); 9659 9660 /* 9661 * Decide if dev is eligible for L2ARC rebuild or whole device 9662 * trimming. This has to happen before the device is added in the 9663 * cache device list and l2arc_dev_mtx is released. Otherwise 9664 * l2arc_feed_thread() might already start writing on the 9665 * device. 9666 */ 9667 l2arc_rebuild_dev(adddev, B_FALSE); 9668 9669 /* 9670 * Add device to global list 9671 */ 9672 mutex_enter(&l2arc_dev_mtx); 9673 list_insert_head(l2arc_dev_list, adddev); 9674 atomic_inc_64(&l2arc_ndev); 9675 mutex_exit(&l2arc_dev_mtx); 9676 } 9677 9678 /* 9679 * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen() 9680 * in case of onlining a cache device. 9681 */ 9682 void 9683 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen) 9684 { 9685 l2arc_dev_t *dev = NULL; 9686 9687 dev = l2arc_vdev_get(vd); 9688 ASSERT3P(dev, !=, NULL); 9689 9690 /* 9691 * In contrast to l2arc_add_vdev() we do not have to worry about 9692 * l2arc_feed_thread() invalidating previous content when onlining a 9693 * cache device. The device parameters (l2ad*) are not cleared when 9694 * offlining the device and writing new buffers will not invalidate 9695 * all previous content. In worst case only buffers that have not had 9696 * their log block written to the device will be lost. 9697 * When onlining the cache device (ie offline->online without exporting 9698 * the pool in between) this happens: 9699 * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev() 9700 * | | 9701 * vdev_is_dead() = B_FALSE l2ad_rebuild = B_TRUE 9702 * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild 9703 * is set to B_TRUE we might write additional buffers to the device. 9704 */ 9705 l2arc_rebuild_dev(dev, reopen); 9706 } 9707 9708 /* 9709 * Remove a vdev from the L2ARC. 9710 */ 9711 void 9712 l2arc_remove_vdev(vdev_t *vd) 9713 { 9714 l2arc_dev_t *remdev = NULL; 9715 9716 /* 9717 * Find the device by vdev 9718 */ 9719 remdev = l2arc_vdev_get(vd); 9720 ASSERT3P(remdev, !=, NULL); 9721 9722 /* 9723 * Cancel any ongoing or scheduled rebuild. 9724 */ 9725 mutex_enter(&l2arc_rebuild_thr_lock); 9726 if (remdev->l2ad_rebuild_began == B_TRUE) { 9727 remdev->l2ad_rebuild_cancel = B_TRUE; 9728 while (remdev->l2ad_rebuild == B_TRUE) 9729 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock); 9730 } 9731 mutex_exit(&l2arc_rebuild_thr_lock); 9732 9733 /* 9734 * Remove device from global list 9735 */ 9736 mutex_enter(&l2arc_dev_mtx); 9737 list_remove(l2arc_dev_list, remdev); 9738 l2arc_dev_last = NULL; /* may have been invalidated */ 9739 atomic_dec_64(&l2arc_ndev); 9740 mutex_exit(&l2arc_dev_mtx); 9741 9742 /* 9743 * Clear all buflists and ARC references. L2ARC device flush. 9744 */ 9745 l2arc_evict(remdev, 0, B_TRUE); 9746 list_destroy(&remdev->l2ad_buflist); 9747 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list)); 9748 list_destroy(&remdev->l2ad_lbptr_list); 9749 mutex_destroy(&remdev->l2ad_mtx); 9750 zfs_refcount_destroy(&remdev->l2ad_alloc); 9751 zfs_refcount_destroy(&remdev->l2ad_lb_asize); 9752 zfs_refcount_destroy(&remdev->l2ad_lb_count); 9753 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize); 9754 vmem_free(remdev, sizeof (l2arc_dev_t)); 9755 } 9756 9757 void 9758 l2arc_init(void) 9759 { 9760 l2arc_thread_exit = 0; 9761 l2arc_ndev = 0; 9762 9763 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 9764 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 9765 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL); 9766 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL); 9767 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 9768 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 9769 9770 l2arc_dev_list = &L2ARC_dev_list; 9771 l2arc_free_on_write = &L2ARC_free_on_write; 9772 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 9773 offsetof(l2arc_dev_t, l2ad_node)); 9774 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 9775 offsetof(l2arc_data_free_t, l2df_list_node)); 9776 } 9777 9778 void 9779 l2arc_fini(void) 9780 { 9781 mutex_destroy(&l2arc_feed_thr_lock); 9782 cv_destroy(&l2arc_feed_thr_cv); 9783 mutex_destroy(&l2arc_rebuild_thr_lock); 9784 cv_destroy(&l2arc_rebuild_thr_cv); 9785 mutex_destroy(&l2arc_dev_mtx); 9786 mutex_destroy(&l2arc_free_on_write_mtx); 9787 9788 list_destroy(l2arc_dev_list); 9789 list_destroy(l2arc_free_on_write); 9790 } 9791 9792 void 9793 l2arc_start(void) 9794 { 9795 if (!(spa_mode_global & SPA_MODE_WRITE)) 9796 return; 9797 9798 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 9799 TS_RUN, defclsyspri); 9800 } 9801 9802 void 9803 l2arc_stop(void) 9804 { 9805 if (!(spa_mode_global & SPA_MODE_WRITE)) 9806 return; 9807 9808 mutex_enter(&l2arc_feed_thr_lock); 9809 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 9810 l2arc_thread_exit = 1; 9811 while (l2arc_thread_exit != 0) 9812 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 9813 mutex_exit(&l2arc_feed_thr_lock); 9814 } 9815 9816 /* 9817 * Punches out rebuild threads for the L2ARC devices in a spa. This should 9818 * be called after pool import from the spa async thread, since starting 9819 * these threads directly from spa_import() will make them part of the 9820 * "zpool import" context and delay process exit (and thus pool import). 9821 */ 9822 void 9823 l2arc_spa_rebuild_start(spa_t *spa) 9824 { 9825 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 9826 9827 /* 9828 * Locate the spa's l2arc devices and kick off rebuild threads. 9829 */ 9830 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 9831 l2arc_dev_t *dev = 9832 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]); 9833 if (dev == NULL) { 9834 /* Don't attempt a rebuild if the vdev is UNAVAIL */ 9835 continue; 9836 } 9837 mutex_enter(&l2arc_rebuild_thr_lock); 9838 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) { 9839 dev->l2ad_rebuild_began = B_TRUE; 9840 (void) thread_create(NULL, 0, l2arc_dev_rebuild_thread, 9841 dev, 0, &p0, TS_RUN, minclsyspri); 9842 } 9843 mutex_exit(&l2arc_rebuild_thr_lock); 9844 } 9845 } 9846 9847 /* 9848 * Main entry point for L2ARC rebuilding. 9849 */ 9850 static __attribute__((noreturn)) void 9851 l2arc_dev_rebuild_thread(void *arg) 9852 { 9853 l2arc_dev_t *dev = arg; 9854 9855 VERIFY(!dev->l2ad_rebuild_cancel); 9856 VERIFY(dev->l2ad_rebuild); 9857 (void) l2arc_rebuild(dev); 9858 mutex_enter(&l2arc_rebuild_thr_lock); 9859 dev->l2ad_rebuild_began = B_FALSE; 9860 dev->l2ad_rebuild = B_FALSE; 9861 mutex_exit(&l2arc_rebuild_thr_lock); 9862 9863 thread_exit(); 9864 } 9865 9866 /* 9867 * This function implements the actual L2ARC metadata rebuild. It: 9868 * starts reading the log block chain and restores each block's contents 9869 * to memory (reconstructing arc_buf_hdr_t's). 9870 * 9871 * Operation stops under any of the following conditions: 9872 * 9873 * 1) We reach the end of the log block chain. 9874 * 2) We encounter *any* error condition (cksum errors, io errors) 9875 */ 9876 static int 9877 l2arc_rebuild(l2arc_dev_t *dev) 9878 { 9879 vdev_t *vd = dev->l2ad_vdev; 9880 spa_t *spa = vd->vdev_spa; 9881 int err = 0; 9882 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9883 l2arc_log_blk_phys_t *this_lb, *next_lb; 9884 zio_t *this_io = NULL, *next_io = NULL; 9885 l2arc_log_blkptr_t lbps[2]; 9886 l2arc_lb_ptr_buf_t *lb_ptr_buf; 9887 boolean_t lock_held; 9888 9889 this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP); 9890 next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP); 9891 9892 /* 9893 * We prevent device removal while issuing reads to the device, 9894 * then during the rebuilding phases we drop this lock again so 9895 * that a spa_unload or device remove can be initiated - this is 9896 * safe, because the spa will signal us to stop before removing 9897 * our device and wait for us to stop. 9898 */ 9899 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER); 9900 lock_held = B_TRUE; 9901 9902 /* 9903 * Retrieve the persistent L2ARC device state. 9904 * L2BLK_GET_PSIZE returns aligned size for log blocks. 9905 */ 9906 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start); 9907 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr + 9908 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop), 9909 dev->l2ad_start); 9910 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 9911 9912 vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time; 9913 vd->vdev_trim_state = l2dhdr->dh_trim_state; 9914 9915 /* 9916 * In case the zfs module parameter l2arc_rebuild_enabled is false 9917 * we do not start the rebuild process. 9918 */ 9919 if (!l2arc_rebuild_enabled) 9920 goto out; 9921 9922 /* Prepare the rebuild process */ 9923 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps)); 9924 9925 /* Start the rebuild process */ 9926 for (;;) { 9927 if (!l2arc_log_blkptr_valid(dev, &lbps[0])) 9928 break; 9929 9930 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1], 9931 this_lb, next_lb, this_io, &next_io)) != 0) 9932 goto out; 9933 9934 /* 9935 * Our memory pressure valve. If the system is running low 9936 * on memory, rather than swamping memory with new ARC buf 9937 * hdrs, we opt not to rebuild the L2ARC. At this point, 9938 * however, we have already set up our L2ARC dev to chain in 9939 * new metadata log blocks, so the user may choose to offline/ 9940 * online the L2ARC dev at a later time (or re-import the pool) 9941 * to reconstruct it (when there's less memory pressure). 9942 */ 9943 if (l2arc_hdr_limit_reached()) { 9944 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem); 9945 cmn_err(CE_NOTE, "System running low on memory, " 9946 "aborting L2ARC rebuild."); 9947 err = SET_ERROR(ENOMEM); 9948 goto out; 9949 } 9950 9951 spa_config_exit(spa, SCL_L2ARC, vd); 9952 lock_held = B_FALSE; 9953 9954 /* 9955 * Now that we know that the next_lb checks out alright, we 9956 * can start reconstruction from this log block. 9957 * L2BLK_GET_PSIZE returns aligned size for log blocks. 9958 */ 9959 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 9960 l2arc_log_blk_restore(dev, this_lb, asize); 9961 9962 /* 9963 * log block restored, include its pointer in the list of 9964 * pointers to log blocks present in the L2ARC device. 9965 */ 9966 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 9967 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), 9968 KM_SLEEP); 9969 memcpy(lb_ptr_buf->lb_ptr, &lbps[0], 9970 sizeof (l2arc_log_blkptr_t)); 9971 mutex_enter(&dev->l2ad_mtx); 9972 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf); 9973 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 9974 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 9975 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 9976 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 9977 mutex_exit(&dev->l2ad_mtx); 9978 vdev_space_update(vd, asize, 0, 0); 9979 9980 /* 9981 * Protection against loops of log blocks: 9982 * 9983 * l2ad_hand l2ad_evict 9984 * V V 9985 * l2ad_start |=======================================| l2ad_end 9986 * -----|||----|||---|||----||| 9987 * (3) (2) (1) (0) 9988 * ---|||---|||----|||---||| 9989 * (7) (6) (5) (4) 9990 * 9991 * In this situation the pointer of log block (4) passes 9992 * l2arc_log_blkptr_valid() but the log block should not be 9993 * restored as it is overwritten by the payload of log block 9994 * (0). Only log blocks (0)-(3) should be restored. We check 9995 * whether l2ad_evict lies in between the payload starting 9996 * offset of the next log block (lbps[1].lbp_payload_start) 9997 * and the payload starting offset of the present log block 9998 * (lbps[0].lbp_payload_start). If true and this isn't the 9999 * first pass, we are looping from the beginning and we should 10000 * stop. 10001 */ 10002 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 10003 lbps[0].lbp_payload_start, dev->l2ad_evict) && 10004 !dev->l2ad_first) 10005 goto out; 10006 10007 kpreempt(KPREEMPT_SYNC); 10008 for (;;) { 10009 mutex_enter(&l2arc_rebuild_thr_lock); 10010 if (dev->l2ad_rebuild_cancel) { 10011 dev->l2ad_rebuild = B_FALSE; 10012 cv_signal(&l2arc_rebuild_thr_cv); 10013 mutex_exit(&l2arc_rebuild_thr_lock); 10014 err = SET_ERROR(ECANCELED); 10015 goto out; 10016 } 10017 mutex_exit(&l2arc_rebuild_thr_lock); 10018 if (spa_config_tryenter(spa, SCL_L2ARC, vd, 10019 RW_READER)) { 10020 lock_held = B_TRUE; 10021 break; 10022 } 10023 /* 10024 * L2ARC config lock held by somebody in writer, 10025 * possibly due to them trying to remove us. They'll 10026 * likely to want us to shut down, so after a little 10027 * delay, we check l2ad_rebuild_cancel and retry 10028 * the lock again. 10029 */ 10030 delay(1); 10031 } 10032 10033 /* 10034 * Continue with the next log block. 10035 */ 10036 lbps[0] = lbps[1]; 10037 lbps[1] = this_lb->lb_prev_lbp; 10038 PTR_SWAP(this_lb, next_lb); 10039 this_io = next_io; 10040 next_io = NULL; 10041 } 10042 10043 if (this_io != NULL) 10044 l2arc_log_blk_fetch_abort(this_io); 10045 out: 10046 if (next_io != NULL) 10047 l2arc_log_blk_fetch_abort(next_io); 10048 vmem_free(this_lb, sizeof (*this_lb)); 10049 vmem_free(next_lb, sizeof (*next_lb)); 10050 10051 if (!l2arc_rebuild_enabled) { 10052 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10053 "disabled"); 10054 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) { 10055 ARCSTAT_BUMP(arcstat_l2_rebuild_success); 10056 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10057 "successful, restored %llu blocks", 10058 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10059 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) { 10060 /* 10061 * No error but also nothing restored, meaning the lbps array 10062 * in the device header points to invalid/non-present log 10063 * blocks. Reset the header. 10064 */ 10065 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10066 "no valid log blocks"); 10067 memset(l2dhdr, 0, dev->l2ad_dev_hdr_asize); 10068 l2arc_dev_hdr_update(dev); 10069 } else if (err == ECANCELED) { 10070 /* 10071 * In case the rebuild was canceled do not log to spa history 10072 * log as the pool may be in the process of being removed. 10073 */ 10074 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks", 10075 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10076 } else if (err != 0) { 10077 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10078 "aborted, restored %llu blocks", 10079 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10080 } 10081 10082 if (lock_held) 10083 spa_config_exit(spa, SCL_L2ARC, vd); 10084 10085 return (err); 10086 } 10087 10088 /* 10089 * Attempts to read the device header on the provided L2ARC device and writes 10090 * it to `hdr'. On success, this function returns 0, otherwise the appropriate 10091 * error code is returned. 10092 */ 10093 static int 10094 l2arc_dev_hdr_read(l2arc_dev_t *dev) 10095 { 10096 int err; 10097 uint64_t guid; 10098 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10099 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10100 abd_t *abd; 10101 10102 guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10103 10104 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10105 10106 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev, 10107 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, 10108 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 10109 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 10110 ZIO_FLAG_SPECULATIVE, B_FALSE)); 10111 10112 abd_free(abd); 10113 10114 if (err != 0) { 10115 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors); 10116 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, " 10117 "vdev guid: %llu", err, 10118 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10119 return (err); 10120 } 10121 10122 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 10123 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr)); 10124 10125 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC || 10126 l2dhdr->dh_spa_guid != guid || 10127 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid || 10128 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION || 10129 l2dhdr->dh_log_entries != dev->l2ad_log_entries || 10130 l2dhdr->dh_end != dev->l2ad_end || 10131 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end, 10132 l2dhdr->dh_evict) || 10133 (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE && 10134 l2arc_trim_ahead > 0)) { 10135 /* 10136 * Attempt to rebuild a device containing no actual dev hdr 10137 * or containing a header from some other pool or from another 10138 * version of persistent L2ARC. 10139 */ 10140 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported); 10141 return (SET_ERROR(ENOTSUP)); 10142 } 10143 10144 return (0); 10145 } 10146 10147 /* 10148 * Reads L2ARC log blocks from storage and validates their contents. 10149 * 10150 * This function implements a simple fetcher to make sure that while 10151 * we're processing one buffer the L2ARC is already fetching the next 10152 * one in the chain. 10153 * 10154 * The arguments this_lp and next_lp point to the current and next log block 10155 * address in the block chain. Similarly, this_lb and next_lb hold the 10156 * l2arc_log_blk_phys_t's of the current and next L2ARC blk. 10157 * 10158 * The `this_io' and `next_io' arguments are used for block fetching. 10159 * When issuing the first blk IO during rebuild, you should pass NULL for 10160 * `this_io'. This function will then issue a sync IO to read the block and 10161 * also issue an async IO to fetch the next block in the block chain. The 10162 * fetched IO is returned in `next_io'. On subsequent calls to this 10163 * function, pass the value returned in `next_io' from the previous call 10164 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO. 10165 * Prior to the call, you should initialize your `next_io' pointer to be 10166 * NULL. If no fetch IO was issued, the pointer is left set at NULL. 10167 * 10168 * On success, this function returns 0, otherwise it returns an appropriate 10169 * error code. On error the fetching IO is aborted and cleared before 10170 * returning from this function. Therefore, if we return `success', the 10171 * caller can assume that we have taken care of cleanup of fetch IOs. 10172 */ 10173 static int 10174 l2arc_log_blk_read(l2arc_dev_t *dev, 10175 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp, 10176 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 10177 zio_t *this_io, zio_t **next_io) 10178 { 10179 int err = 0; 10180 zio_cksum_t cksum; 10181 uint64_t asize; 10182 10183 ASSERT(this_lbp != NULL && next_lbp != NULL); 10184 ASSERT(this_lb != NULL && next_lb != NULL); 10185 ASSERT(next_io != NULL && *next_io == NULL); 10186 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp)); 10187 10188 /* 10189 * Check to see if we have issued the IO for this log block in a 10190 * previous run. If not, this is the first call, so issue it now. 10191 */ 10192 if (this_io == NULL) { 10193 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp, 10194 this_lb); 10195 } 10196 10197 /* 10198 * Peek to see if we can start issuing the next IO immediately. 10199 */ 10200 if (l2arc_log_blkptr_valid(dev, next_lbp)) { 10201 /* 10202 * Start issuing IO for the next log block early - this 10203 * should help keep the L2ARC device busy while we 10204 * decompress and restore this log block. 10205 */ 10206 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp, 10207 next_lb); 10208 } 10209 10210 /* Wait for the IO to read this log block to complete */ 10211 if ((err = zio_wait(this_io)) != 0) { 10212 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors); 10213 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, " 10214 "offset: %llu, vdev guid: %llu", err, 10215 (u_longlong_t)this_lbp->lbp_daddr, 10216 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10217 goto cleanup; 10218 } 10219 10220 /* 10221 * Make sure the buffer checks out. 10222 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10223 */ 10224 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop); 10225 fletcher_4_native(this_lb, asize, NULL, &cksum); 10226 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) { 10227 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors); 10228 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, " 10229 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu", 10230 (u_longlong_t)this_lbp->lbp_daddr, 10231 (u_longlong_t)dev->l2ad_vdev->vdev_guid, 10232 (u_longlong_t)dev->l2ad_hand, 10233 (u_longlong_t)dev->l2ad_evict); 10234 err = SET_ERROR(ECKSUM); 10235 goto cleanup; 10236 } 10237 10238 /* Now we can take our time decoding this buffer */ 10239 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) { 10240 case ZIO_COMPRESS_OFF: 10241 break; 10242 case ZIO_COMPRESS_LZ4: { 10243 abd_t *abd = abd_alloc_linear(asize, B_TRUE); 10244 abd_copy_from_buf_off(abd, this_lb, 0, asize); 10245 abd_t dabd; 10246 abd_get_from_buf_struct(&dabd, this_lb, sizeof (*this_lb)); 10247 err = zio_decompress_data( 10248 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop), 10249 abd, &dabd, asize, sizeof (*this_lb), NULL); 10250 abd_free(&dabd); 10251 abd_free(abd); 10252 if (err != 0) { 10253 err = SET_ERROR(EINVAL); 10254 goto cleanup; 10255 } 10256 break; 10257 } 10258 default: 10259 err = SET_ERROR(EINVAL); 10260 goto cleanup; 10261 } 10262 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 10263 byteswap_uint64_array(this_lb, sizeof (*this_lb)); 10264 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) { 10265 err = SET_ERROR(EINVAL); 10266 goto cleanup; 10267 } 10268 cleanup: 10269 /* Abort an in-flight fetch I/O in case of error */ 10270 if (err != 0 && *next_io != NULL) { 10271 l2arc_log_blk_fetch_abort(*next_io); 10272 *next_io = NULL; 10273 } 10274 return (err); 10275 } 10276 10277 /* 10278 * Restores the payload of a log block to ARC. This creates empty ARC hdr 10279 * entries which only contain an l2arc hdr, essentially restoring the 10280 * buffers to their L2ARC evicted state. This function also updates space 10281 * usage on the L2ARC vdev to make sure it tracks restored buffers. 10282 */ 10283 static void 10284 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb, 10285 uint64_t lb_asize) 10286 { 10287 uint64_t size = 0, asize = 0; 10288 uint64_t log_entries = dev->l2ad_log_entries; 10289 10290 /* 10291 * Usually arc_adapt() is called only for data, not headers, but 10292 * since we may allocate significant amount of memory here, let ARC 10293 * grow its arc_c. 10294 */ 10295 arc_adapt(log_entries * HDR_L2ONLY_SIZE); 10296 10297 for (int i = log_entries - 1; i >= 0; i--) { 10298 /* 10299 * Restore goes in the reverse temporal direction to preserve 10300 * correct temporal ordering of buffers in the l2ad_buflist. 10301 * l2arc_hdr_restore also does a list_insert_tail instead of 10302 * list_insert_head on the l2ad_buflist: 10303 * 10304 * LIST l2ad_buflist LIST 10305 * HEAD <------ (time) ------ TAIL 10306 * direction +-----+-----+-----+-----+-----+ direction 10307 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild 10308 * fill +-----+-----+-----+-----+-----+ 10309 * ^ ^ 10310 * | | 10311 * | | 10312 * l2arc_feed_thread l2arc_rebuild 10313 * will place new bufs here restores bufs here 10314 * 10315 * During l2arc_rebuild() the device is not used by 10316 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true. 10317 */ 10318 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop); 10319 asize += vdev_psize_to_asize(dev->l2ad_vdev, 10320 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop)); 10321 l2arc_hdr_restore(&lb->lb_entries[i], dev); 10322 } 10323 10324 /* 10325 * Record rebuild stats: 10326 * size Logical size of restored buffers in the L2ARC 10327 * asize Aligned size of restored buffers in the L2ARC 10328 */ 10329 ARCSTAT_INCR(arcstat_l2_rebuild_size, size); 10330 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize); 10331 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries); 10332 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize); 10333 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize); 10334 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks); 10335 } 10336 10337 /* 10338 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put 10339 * into a state indicating that it has been evicted to L2ARC. 10340 */ 10341 static void 10342 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev) 10343 { 10344 arc_buf_hdr_t *hdr, *exists; 10345 kmutex_t *hash_lock; 10346 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop); 10347 uint64_t asize; 10348 10349 /* 10350 * Do all the allocation before grabbing any locks, this lets us 10351 * sleep if memory is full and we don't have to deal with failed 10352 * allocations. 10353 */ 10354 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type, 10355 dev, le->le_dva, le->le_daddr, 10356 L2BLK_GET_PSIZE((le)->le_prop), le->le_birth, 10357 L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel, 10358 L2BLK_GET_PROTECTED((le)->le_prop), 10359 L2BLK_GET_PREFETCH((le)->le_prop), 10360 L2BLK_GET_STATE((le)->le_prop)); 10361 asize = vdev_psize_to_asize(dev->l2ad_vdev, 10362 L2BLK_GET_PSIZE((le)->le_prop)); 10363 10364 /* 10365 * vdev_space_update() has to be called before arc_hdr_destroy() to 10366 * avoid underflow since the latter also calls vdev_space_update(). 10367 */ 10368 l2arc_hdr_arcstats_increment(hdr); 10369 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10370 10371 mutex_enter(&dev->l2ad_mtx); 10372 list_insert_tail(&dev->l2ad_buflist, hdr); 10373 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); 10374 mutex_exit(&dev->l2ad_mtx); 10375 10376 exists = buf_hash_insert(hdr, &hash_lock); 10377 if (exists) { 10378 /* Buffer was already cached, no need to restore it. */ 10379 arc_hdr_destroy(hdr); 10380 /* 10381 * If the buffer is already cached, check whether it has 10382 * L2ARC metadata. If not, enter them and update the flag. 10383 * This is important is case of onlining a cache device, since 10384 * we previously evicted all L2ARC metadata from ARC. 10385 */ 10386 if (!HDR_HAS_L2HDR(exists)) { 10387 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR); 10388 exists->b_l2hdr.b_dev = dev; 10389 exists->b_l2hdr.b_daddr = le->le_daddr; 10390 exists->b_l2hdr.b_arcs_state = 10391 L2BLK_GET_STATE((le)->le_prop); 10392 mutex_enter(&dev->l2ad_mtx); 10393 list_insert_tail(&dev->l2ad_buflist, exists); 10394 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 10395 arc_hdr_size(exists), exists); 10396 mutex_exit(&dev->l2ad_mtx); 10397 l2arc_hdr_arcstats_increment(exists); 10398 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10399 } 10400 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached); 10401 } 10402 10403 mutex_exit(hash_lock); 10404 } 10405 10406 /* 10407 * Starts an asynchronous read IO to read a log block. This is used in log 10408 * block reconstruction to start reading the next block before we are done 10409 * decoding and reconstructing the current block, to keep the l2arc device 10410 * nice and hot with read IO to process. 10411 * The returned zio will contain a newly allocated memory buffers for the IO 10412 * data which should then be freed by the caller once the zio is no longer 10413 * needed (i.e. due to it having completed). If you wish to abort this 10414 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes 10415 * care of disposing of the allocated buffers correctly. 10416 */ 10417 static zio_t * 10418 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp, 10419 l2arc_log_blk_phys_t *lb) 10420 { 10421 uint32_t asize; 10422 zio_t *pio; 10423 l2arc_read_callback_t *cb; 10424 10425 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10426 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10427 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t)); 10428 10429 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP); 10430 cb->l2rcb_abd = abd_get_from_buf(lb, asize); 10431 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb, 10432 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY); 10433 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize, 10434 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10435 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL | 10436 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE)); 10437 10438 return (pio); 10439 } 10440 10441 /* 10442 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data 10443 * buffers allocated for it. 10444 */ 10445 static void 10446 l2arc_log_blk_fetch_abort(zio_t *zio) 10447 { 10448 (void) zio_wait(zio); 10449 } 10450 10451 /* 10452 * Creates a zio to update the device header on an l2arc device. 10453 */ 10454 void 10455 l2arc_dev_hdr_update(l2arc_dev_t *dev) 10456 { 10457 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10458 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10459 abd_t *abd; 10460 int err; 10461 10462 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER)); 10463 10464 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC; 10465 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION; 10466 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10467 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid; 10468 l2dhdr->dh_log_entries = dev->l2ad_log_entries; 10469 l2dhdr->dh_evict = dev->l2ad_evict; 10470 l2dhdr->dh_start = dev->l2ad_start; 10471 l2dhdr->dh_end = dev->l2ad_end; 10472 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize); 10473 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count); 10474 l2dhdr->dh_flags = 0; 10475 l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time; 10476 l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state; 10477 if (dev->l2ad_first) 10478 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST; 10479 10480 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10481 10482 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev, 10483 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL, 10484 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE)); 10485 10486 abd_free(abd); 10487 10488 if (err != 0) { 10489 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, " 10490 "vdev guid: %llu", err, 10491 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10492 } 10493 } 10494 10495 /* 10496 * Commits a log block to the L2ARC device. This routine is invoked from 10497 * l2arc_write_buffers when the log block fills up. 10498 * This function allocates some memory to temporarily hold the serialized 10499 * buffer to be written. This is then released in l2arc_write_done. 10500 */ 10501 static uint64_t 10502 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb) 10503 { 10504 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10505 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10506 uint64_t psize, asize; 10507 zio_t *wzio; 10508 l2arc_lb_abd_buf_t *abd_buf; 10509 abd_t *abd = NULL; 10510 l2arc_lb_ptr_buf_t *lb_ptr_buf; 10511 10512 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries); 10513 10514 abd_buf = zio_buf_alloc(sizeof (*abd_buf)); 10515 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb)); 10516 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 10517 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP); 10518 10519 /* link the buffer into the block chain */ 10520 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1]; 10521 lb->lb_magic = L2ARC_LOG_BLK_MAGIC; 10522 10523 /* 10524 * l2arc_log_blk_commit() may be called multiple times during a single 10525 * l2arc_write_buffers() call. Save the allocated abd buffers in a list 10526 * so we can free them in l2arc_write_done() later on. 10527 */ 10528 list_insert_tail(&cb->l2wcb_abd_list, abd_buf); 10529 10530 /* try to compress the buffer, at least one sector to save */ 10531 psize = zio_compress_data(ZIO_COMPRESS_LZ4, 10532 abd_buf->abd, &abd, sizeof (*lb), 10533 zio_get_compression_max_size(ZIO_COMPRESS_LZ4, 10534 dev->l2ad_vdev->vdev_ashift, 10535 dev->l2ad_vdev->vdev_ashift, sizeof (*lb)), 0); 10536 10537 /* a log block is never entirely zero */ 10538 ASSERT(psize != 0); 10539 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 10540 ASSERT(asize <= sizeof (*lb)); 10541 10542 /* 10543 * Update the start log block pointer in the device header to point 10544 * to the log block we're about to write. 10545 */ 10546 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0]; 10547 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand; 10548 l2dhdr->dh_start_lbps[0].lbp_payload_asize = 10549 dev->l2ad_log_blk_payload_asize; 10550 l2dhdr->dh_start_lbps[0].lbp_payload_start = 10551 dev->l2ad_log_blk_payload_start; 10552 L2BLK_SET_LSIZE( 10553 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb)); 10554 L2BLK_SET_PSIZE( 10555 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize); 10556 L2BLK_SET_CHECKSUM( 10557 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10558 ZIO_CHECKSUM_FLETCHER_4); 10559 if (asize < sizeof (*lb)) { 10560 /* compression succeeded */ 10561 abd_zero_off(abd, psize, asize - psize); 10562 L2BLK_SET_COMPRESS( 10563 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10564 ZIO_COMPRESS_LZ4); 10565 } else { 10566 /* compression failed */ 10567 abd_copy_from_buf_off(abd, lb, 0, sizeof (*lb)); 10568 L2BLK_SET_COMPRESS( 10569 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10570 ZIO_COMPRESS_OFF); 10571 } 10572 10573 /* checksum what we're about to write */ 10574 abd_fletcher_4_native(abd, asize, NULL, 10575 &l2dhdr->dh_start_lbps[0].lbp_cksum); 10576 10577 abd_free(abd_buf->abd); 10578 10579 /* perform the write itself */ 10580 abd_buf->abd = abd; 10581 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand, 10582 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10583 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE); 10584 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio); 10585 (void) zio_nowait(wzio); 10586 10587 dev->l2ad_hand += asize; 10588 /* 10589 * Include the committed log block's pointer in the list of pointers 10590 * to log blocks present in the L2ARC device. 10591 */ 10592 memcpy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[0], 10593 sizeof (l2arc_log_blkptr_t)); 10594 mutex_enter(&dev->l2ad_mtx); 10595 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf); 10596 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 10597 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 10598 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 10599 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 10600 mutex_exit(&dev->l2ad_mtx); 10601 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10602 10603 /* bump the kstats */ 10604 ARCSTAT_INCR(arcstat_l2_write_bytes, asize); 10605 ARCSTAT_BUMP(arcstat_l2_log_blk_writes); 10606 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize); 10607 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, 10608 dev->l2ad_log_blk_payload_asize / asize); 10609 10610 /* start a new log block */ 10611 dev->l2ad_log_ent_idx = 0; 10612 dev->l2ad_log_blk_payload_asize = 0; 10613 dev->l2ad_log_blk_payload_start = 0; 10614 10615 return (asize); 10616 } 10617 10618 /* 10619 * Validates an L2ARC log block address to make sure that it can be read 10620 * from the provided L2ARC device. 10621 */ 10622 boolean_t 10623 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp) 10624 { 10625 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10626 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10627 uint64_t end = lbp->lbp_daddr + asize - 1; 10628 uint64_t start = lbp->lbp_payload_start; 10629 boolean_t evicted = B_FALSE; 10630 10631 /* 10632 * A log block is valid if all of the following conditions are true: 10633 * - it fits entirely (including its payload) between l2ad_start and 10634 * l2ad_end 10635 * - it has a valid size 10636 * - neither the log block itself nor part of its payload was evicted 10637 * by l2arc_evict(): 10638 * 10639 * l2ad_hand l2ad_evict 10640 * | | lbp_daddr 10641 * | start | | end 10642 * | | | | | 10643 * V V V V V 10644 * l2ad_start ============================================ l2ad_end 10645 * --------------------------|||| 10646 * ^ ^ 10647 * | log block 10648 * payload 10649 */ 10650 10651 evicted = 10652 l2arc_range_check_overlap(start, end, dev->l2ad_hand) || 10653 l2arc_range_check_overlap(start, end, dev->l2ad_evict) || 10654 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) || 10655 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end); 10656 10657 return (start >= dev->l2ad_start && end <= dev->l2ad_end && 10658 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) && 10659 (!evicted || dev->l2ad_first)); 10660 } 10661 10662 /* 10663 * Inserts ARC buffer header `hdr' into the current L2ARC log block on 10664 * the device. The buffer being inserted must be present in L2ARC. 10665 * Returns B_TRUE if the L2ARC log block is full and needs to be committed 10666 * to L2ARC, or B_FALSE if it still has room for more ARC buffers. 10667 */ 10668 static boolean_t 10669 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr) 10670 { 10671 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10672 l2arc_log_ent_phys_t *le; 10673 10674 if (dev->l2ad_log_entries == 0) 10675 return (B_FALSE); 10676 10677 int index = dev->l2ad_log_ent_idx++; 10678 10679 ASSERT3S(index, <, dev->l2ad_log_entries); 10680 ASSERT(HDR_HAS_L2HDR(hdr)); 10681 10682 le = &lb->lb_entries[index]; 10683 memset(le, 0, sizeof (*le)); 10684 le->le_dva = hdr->b_dva; 10685 le->le_birth = hdr->b_birth; 10686 le->le_daddr = hdr->b_l2hdr.b_daddr; 10687 if (index == 0) 10688 dev->l2ad_log_blk_payload_start = le->le_daddr; 10689 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr)); 10690 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr)); 10691 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr)); 10692 le->le_complevel = hdr->b_complevel; 10693 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type); 10694 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr))); 10695 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr))); 10696 L2BLK_SET_STATE((le)->le_prop, hdr->b_l2hdr.b_arcs_state); 10697 10698 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev, 10699 HDR_GET_PSIZE(hdr)); 10700 10701 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries); 10702 } 10703 10704 /* 10705 * Checks whether a given L2ARC device address sits in a time-sequential 10706 * range. The trick here is that the L2ARC is a rotary buffer, so we can't 10707 * just do a range comparison, we need to handle the situation in which the 10708 * range wraps around the end of the L2ARC device. Arguments: 10709 * bottom -- Lower end of the range to check (written to earlier). 10710 * top -- Upper end of the range to check (written to later). 10711 * check -- The address for which we want to determine if it sits in 10712 * between the top and bottom. 10713 * 10714 * The 3-way conditional below represents the following cases: 10715 * 10716 * bottom < top : Sequentially ordered case: 10717 * <check>--------+-------------------+ 10718 * | (overlap here?) | 10719 * L2ARC dev V V 10720 * |---------------<bottom>============<top>--------------| 10721 * 10722 * bottom > top: Looped-around case: 10723 * <check>--------+------------------+ 10724 * | (overlap here?) | 10725 * L2ARC dev V V 10726 * |===============<top>---------------<bottom>===========| 10727 * ^ ^ 10728 * | (or here?) | 10729 * +---------------+---------<check> 10730 * 10731 * top == bottom : Just a single address comparison. 10732 */ 10733 boolean_t 10734 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check) 10735 { 10736 if (bottom < top) 10737 return (bottom <= check && check <= top); 10738 else if (bottom > top) 10739 return (check <= top || bottom <= check); 10740 else 10741 return (check == top); 10742 } 10743 10744 EXPORT_SYMBOL(arc_buf_size); 10745 EXPORT_SYMBOL(arc_write); 10746 EXPORT_SYMBOL(arc_read); 10747 EXPORT_SYMBOL(arc_buf_info); 10748 EXPORT_SYMBOL(arc_getbuf_func); 10749 EXPORT_SYMBOL(arc_add_prune_callback); 10750 EXPORT_SYMBOL(arc_remove_prune_callback); 10751 10752 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_min, 10753 spl_param_get_u64, ZMOD_RW, "Minimum ARC size in bytes"); 10754 10755 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_max, 10756 spl_param_get_u64, ZMOD_RW, "Maximum ARC size in bytes"); 10757 10758 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_balance, UINT, ZMOD_RW, 10759 "Balance between metadata and data on ghost hits."); 10760 10761 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int, 10762 param_get_uint, ZMOD_RW, "Seconds before growing ARC size"); 10763 10764 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int, 10765 param_get_uint, ZMOD_RW, "log2(fraction of ARC to reclaim)"); 10766 10767 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW, 10768 "Percent of pagecache to reclaim ARC to"); 10769 10770 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, UINT, ZMOD_RD, 10771 "Target average block size"); 10772 10773 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW, 10774 "Disable compressed ARC buffers"); 10775 10776 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int, 10777 param_get_uint, ZMOD_RW, "Min life of prefetch block in ms"); 10778 10779 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms, 10780 param_set_arc_int, param_get_uint, ZMOD_RW, 10781 "Min life of prescient prefetched block in ms"); 10782 10783 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, U64, ZMOD_RW, 10784 "Max write bytes per interval"); 10785 10786 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, U64, ZMOD_RW, 10787 "Extra write bytes during device warmup"); 10788 10789 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, U64, ZMOD_RW, 10790 "Number of max device writes to precache"); 10791 10792 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, U64, ZMOD_RW, 10793 "Compressed l2arc_headroom multiplier"); 10794 10795 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, U64, ZMOD_RW, 10796 "TRIM ahead L2ARC write size multiplier"); 10797 10798 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, U64, ZMOD_RW, 10799 "Seconds between L2ARC writing"); 10800 10801 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, U64, ZMOD_RW, 10802 "Min feed interval in milliseconds"); 10803 10804 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW, 10805 "Skip caching prefetched buffers"); 10806 10807 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW, 10808 "Turbo L2ARC warmup"); 10809 10810 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW, 10811 "No reads during writes"); 10812 10813 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, UINT, ZMOD_RW, 10814 "Percent of ARC size allowed for L2ARC-only headers"); 10815 10816 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW, 10817 "Rebuild the L2ARC when importing a pool"); 10818 10819 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, U64, ZMOD_RW, 10820 "Min size in bytes to write rebuild log blocks in L2ARC"); 10821 10822 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW, 10823 "Cache only MFU data from ARC into L2ARC"); 10824 10825 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, exclude_special, INT, ZMOD_RW, 10826 "Exclude dbufs on special vdevs from being cached to L2ARC if set."); 10827 10828 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int, 10829 param_get_uint, ZMOD_RW, "System free memory I/O throttle in bytes"); 10830 10831 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_u64, 10832 spl_param_get_u64, ZMOD_RW, "System free memory target size in bytes"); 10833 10834 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_u64, 10835 spl_param_get_u64, ZMOD_RW, "Minimum bytes of dnodes in ARC"); 10836 10837 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent, 10838 param_set_arc_int, param_get_uint, ZMOD_RW, 10839 "Percent of ARC meta buffers for dnodes"); 10840 10841 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, UINT, ZMOD_RW, 10842 "Percentage of excess dnodes to try to unpin"); 10843 10844 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, UINT, ZMOD_RW, 10845 "When full, ARC allocation waits for eviction of this % of alloc size"); 10846 10847 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, UINT, ZMOD_RW, 10848 "The number of headers to evict per sublist before moving to the next"); 10849 10850 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, prune_task_threads, INT, ZMOD_RW, 10851 "Number of arc_prune threads"); 10852