1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2018, Joyent, Inc. 24 * Copyright (c) 2011, 2020, Delphix. All rights reserved. 25 * Copyright (c) 2014, Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 28 * Copyright (c) 2020, George Amanakis. All rights reserved. 29 * Copyright (c) 2019, Klara Inc. 30 * Copyright (c) 2019, Allan Jude 31 * Copyright (c) 2020, The FreeBSD Foundation [1] 32 * 33 * [1] Portions of this software were developed by Allan Jude 34 * under sponsorship from the FreeBSD Foundation. 35 */ 36 37 /* 38 * DVA-based Adjustable Replacement Cache 39 * 40 * While much of the theory of operation used here is 41 * based on the self-tuning, low overhead replacement cache 42 * presented by Megiddo and Modha at FAST 2003, there are some 43 * significant differences: 44 * 45 * 1. The Megiddo and Modha model assumes any page is evictable. 46 * Pages in its cache cannot be "locked" into memory. This makes 47 * the eviction algorithm simple: evict the last page in the list. 48 * This also make the performance characteristics easy to reason 49 * about. Our cache is not so simple. At any given moment, some 50 * subset of the blocks in the cache are un-evictable because we 51 * have handed out a reference to them. Blocks are only evictable 52 * when there are no external references active. This makes 53 * eviction far more problematic: we choose to evict the evictable 54 * blocks that are the "lowest" in the list. 55 * 56 * There are times when it is not possible to evict the requested 57 * space. In these circumstances we are unable to adjust the cache 58 * size. To prevent the cache growing unbounded at these times we 59 * implement a "cache throttle" that slows the flow of new data 60 * into the cache until we can make space available. 61 * 62 * 2. The Megiddo and Modha model assumes a fixed cache size. 63 * Pages are evicted when the cache is full and there is a cache 64 * miss. Our model has a variable sized cache. It grows with 65 * high use, but also tries to react to memory pressure from the 66 * operating system: decreasing its size when system memory is 67 * tight. 68 * 69 * 3. The Megiddo and Modha model assumes a fixed page size. All 70 * elements of the cache are therefore exactly the same size. So 71 * when adjusting the cache size following a cache miss, its simply 72 * a matter of choosing a single page to evict. In our model, we 73 * have variable sized cache blocks (ranging from 512 bytes to 74 * 128K bytes). We therefore choose a set of blocks to evict to make 75 * space for a cache miss that approximates as closely as possible 76 * the space used by the new block. 77 * 78 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 79 * by N. Megiddo & D. Modha, FAST 2003 80 */ 81 82 /* 83 * The locking model: 84 * 85 * A new reference to a cache buffer can be obtained in two 86 * ways: 1) via a hash table lookup using the DVA as a key, 87 * or 2) via one of the ARC lists. The arc_read() interface 88 * uses method 1, while the internal ARC algorithms for 89 * adjusting the cache use method 2. We therefore provide two 90 * types of locks: 1) the hash table lock array, and 2) the 91 * ARC list locks. 92 * 93 * Buffers do not have their own mutexes, rather they rely on the 94 * hash table mutexes for the bulk of their protection (i.e. most 95 * fields in the arc_buf_hdr_t are protected by these mutexes). 96 * 97 * buf_hash_find() returns the appropriate mutex (held) when it 98 * locates the requested buffer in the hash table. It returns 99 * NULL for the mutex if the buffer was not in the table. 100 * 101 * buf_hash_remove() expects the appropriate hash mutex to be 102 * already held before it is invoked. 103 * 104 * Each ARC state also has a mutex which is used to protect the 105 * buffer list associated with the state. When attempting to 106 * obtain a hash table lock while holding an ARC list lock you 107 * must use: mutex_tryenter() to avoid deadlock. Also note that 108 * the active state mutex must be held before the ghost state mutex. 109 * 110 * It as also possible to register a callback which is run when the 111 * arc_meta_limit is reached and no buffers can be safely evicted. In 112 * this case the arc user should drop a reference on some arc buffers so 113 * they can be reclaimed and the arc_meta_limit honored. For example, 114 * when using the ZPL each dentry holds a references on a znode. These 115 * dentries must be pruned before the arc buffer holding the znode can 116 * be safely evicted. 117 * 118 * Note that the majority of the performance stats are manipulated 119 * with atomic operations. 120 * 121 * The L2ARC uses the l2ad_mtx on each vdev for the following: 122 * 123 * - L2ARC buflist creation 124 * - L2ARC buflist eviction 125 * - L2ARC write completion, which walks L2ARC buflists 126 * - ARC header destruction, as it removes from L2ARC buflists 127 * - ARC header release, as it removes from L2ARC buflists 128 */ 129 130 /* 131 * ARC operation: 132 * 133 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. 134 * This structure can point either to a block that is still in the cache or to 135 * one that is only accessible in an L2 ARC device, or it can provide 136 * information about a block that was recently evicted. If a block is 137 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough 138 * information to retrieve it from the L2ARC device. This information is 139 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block 140 * that is in this state cannot access the data directly. 141 * 142 * Blocks that are actively being referenced or have not been evicted 143 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within 144 * the arc_buf_hdr_t that will point to the data block in memory. A block can 145 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC 146 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and 147 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd). 148 * 149 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the 150 * ability to store the physical data (b_pabd) associated with the DVA of the 151 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block, 152 * it will match its on-disk compression characteristics. This behavior can be 153 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the 154 * compressed ARC functionality is disabled, the b_pabd will point to an 155 * uncompressed version of the on-disk data. 156 * 157 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each 158 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it. 159 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC 160 * consumer. The ARC will provide references to this data and will keep it 161 * cached until it is no longer in use. The ARC caches only the L1ARC's physical 162 * data block and will evict any arc_buf_t that is no longer referenced. The 163 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the 164 * "overhead_size" kstat. 165 * 166 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or 167 * compressed form. The typical case is that consumers will want uncompressed 168 * data, and when that happens a new data buffer is allocated where the data is 169 * decompressed for them to use. Currently the only consumer who wants 170 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it 171 * exists on disk. When this happens, the arc_buf_t's data buffer is shared 172 * with the arc_buf_hdr_t. 173 * 174 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The 175 * first one is owned by a compressed send consumer (and therefore references 176 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be 177 * used by any other consumer (and has its own uncompressed copy of the data 178 * buffer). 179 * 180 * arc_buf_hdr_t 181 * +-----------+ 182 * | fields | 183 * | common to | 184 * | L1- and | 185 * | L2ARC | 186 * +-----------+ 187 * | l2arc_buf_hdr_t 188 * | | 189 * +-----------+ 190 * | l1arc_buf_hdr_t 191 * | | arc_buf_t 192 * | b_buf +------------>+-----------+ arc_buf_t 193 * | b_pabd +-+ |b_next +---->+-----------+ 194 * +-----------+ | |-----------| |b_next +-->NULL 195 * | |b_comp = T | +-----------+ 196 * | |b_data +-+ |b_comp = F | 197 * | +-----------+ | |b_data +-+ 198 * +->+------+ | +-----------+ | 199 * compressed | | | | 200 * data | |<--------------+ | uncompressed 201 * +------+ compressed, | data 202 * shared +-->+------+ 203 * data | | 204 * | | 205 * +------+ 206 * 207 * When a consumer reads a block, the ARC must first look to see if the 208 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new 209 * arc_buf_t and either copies uncompressed data into a new data buffer from an 210 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a 211 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the 212 * hdr is compressed and the desired compression characteristics of the 213 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the 214 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be 215 * the last buffer in the hdr's b_buf list, however a shared compressed buf can 216 * be anywhere in the hdr's list. 217 * 218 * The diagram below shows an example of an uncompressed ARC hdr that is 219 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is 220 * the last element in the buf list): 221 * 222 * arc_buf_hdr_t 223 * +-----------+ 224 * | | 225 * | | 226 * | | 227 * +-----------+ 228 * l2arc_buf_hdr_t| | 229 * | | 230 * +-----------+ 231 * l1arc_buf_hdr_t| | 232 * | | arc_buf_t (shared) 233 * | b_buf +------------>+---------+ arc_buf_t 234 * | | |b_next +---->+---------+ 235 * | b_pabd +-+ |---------| |b_next +-->NULL 236 * +-----------+ | | | +---------+ 237 * | |b_data +-+ | | 238 * | +---------+ | |b_data +-+ 239 * +->+------+ | +---------+ | 240 * | | | | 241 * uncompressed | | | | 242 * data +------+ | | 243 * ^ +->+------+ | 244 * | uncompressed | | | 245 * | data | | | 246 * | +------+ | 247 * +---------------------------------+ 248 * 249 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd 250 * since the physical block is about to be rewritten. The new data contents 251 * will be contained in the arc_buf_t. As the I/O pipeline performs the write, 252 * it may compress the data before writing it to disk. The ARC will be called 253 * with the transformed data and will bcopy the transformed on-disk block into 254 * a newly allocated b_pabd. Writes are always done into buffers which have 255 * either been loaned (and hence are new and don't have other readers) or 256 * buffers which have been released (and hence have their own hdr, if there 257 * were originally other readers of the buf's original hdr). This ensures that 258 * the ARC only needs to update a single buf and its hdr after a write occurs. 259 * 260 * When the L2ARC is in use, it will also take advantage of the b_pabd. The 261 * L2ARC will always write the contents of b_pabd to the L2ARC. This means 262 * that when compressed ARC is enabled that the L2ARC blocks are identical 263 * to the on-disk block in the main data pool. This provides a significant 264 * advantage since the ARC can leverage the bp's checksum when reading from the 265 * L2ARC to determine if the contents are valid. However, if the compressed 266 * ARC is disabled, then the L2ARC's block must be transformed to look 267 * like the physical block in the main data pool before comparing the 268 * checksum and determining its validity. 269 * 270 * The L1ARC has a slightly different system for storing encrypted data. 271 * Raw (encrypted + possibly compressed) data has a few subtle differences from 272 * data that is just compressed. The biggest difference is that it is not 273 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded. 274 * The other difference is that encryption cannot be treated as a suggestion. 275 * If a caller would prefer compressed data, but they actually wind up with 276 * uncompressed data the worst thing that could happen is there might be a 277 * performance hit. If the caller requests encrypted data, however, we must be 278 * sure they actually get it or else secret information could be leaked. Raw 279 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore, 280 * may have both an encrypted version and a decrypted version of its data at 281 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is 282 * copied out of this header. To avoid complications with b_pabd, raw buffers 283 * cannot be shared. 284 */ 285 286 #include <sys/spa.h> 287 #include <sys/zio.h> 288 #include <sys/spa_impl.h> 289 #include <sys/zio_compress.h> 290 #include <sys/zio_checksum.h> 291 #include <sys/zfs_context.h> 292 #include <sys/arc.h> 293 #include <sys/zfs_refcount.h> 294 #include <sys/vdev.h> 295 #include <sys/vdev_impl.h> 296 #include <sys/dsl_pool.h> 297 #include <sys/zio_checksum.h> 298 #include <sys/multilist.h> 299 #include <sys/abd.h> 300 #include <sys/zil.h> 301 #include <sys/fm/fs/zfs.h> 302 #include <sys/callb.h> 303 #include <sys/kstat.h> 304 #include <sys/zthr.h> 305 #include <zfs_fletcher.h> 306 #include <sys/arc_impl.h> 307 #include <sys/trace_zfs.h> 308 #include <sys/aggsum.h> 309 #include <cityhash.h> 310 #include <sys/vdev_trim.h> 311 #include <sys/zstd/zstd.h> 312 313 #ifndef _KERNEL 314 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 315 boolean_t arc_watch = B_FALSE; 316 #endif 317 318 /* 319 * This thread's job is to keep enough free memory in the system, by 320 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves 321 * arc_available_memory(). 322 */ 323 static zthr_t *arc_reap_zthr; 324 325 /* 326 * This thread's job is to keep arc_size under arc_c, by calling 327 * arc_evict(), which improves arc_is_overflowing(). 328 */ 329 static zthr_t *arc_evict_zthr; 330 331 static kmutex_t arc_evict_lock; 332 static boolean_t arc_evict_needed = B_FALSE; 333 334 /* 335 * Count of bytes evicted since boot. 336 */ 337 static uint64_t arc_evict_count; 338 339 /* 340 * List of arc_evict_waiter_t's, representing threads waiting for the 341 * arc_evict_count to reach specific values. 342 */ 343 static list_t arc_evict_waiters; 344 345 /* 346 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of 347 * the requested amount of data to be evicted. For example, by default for 348 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation. 349 * Since this is above 100%, it ensures that progress is made towards getting 350 * arc_size under arc_c. Since this is finite, it ensures that allocations 351 * can still happen, even during the potentially long time that arc_size is 352 * more than arc_c. 353 */ 354 int zfs_arc_eviction_pct = 200; 355 356 /* 357 * The number of headers to evict in arc_evict_state_impl() before 358 * dropping the sublist lock and evicting from another sublist. A lower 359 * value means we're more likely to evict the "correct" header (i.e. the 360 * oldest header in the arc state), but comes with higher overhead 361 * (i.e. more invocations of arc_evict_state_impl()). 362 */ 363 int zfs_arc_evict_batch_limit = 10; 364 365 /* number of seconds before growing cache again */ 366 int arc_grow_retry = 5; 367 368 /* 369 * Minimum time between calls to arc_kmem_reap_soon(). 370 */ 371 int arc_kmem_cache_reap_retry_ms = 1000; 372 373 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */ 374 int zfs_arc_overflow_shift = 8; 375 376 /* shift of arc_c for calculating both min and max arc_p */ 377 int arc_p_min_shift = 4; 378 379 /* log2(fraction of arc to reclaim) */ 380 int arc_shrink_shift = 7; 381 382 /* percent of pagecache to reclaim arc to */ 383 #ifdef _KERNEL 384 uint_t zfs_arc_pc_percent = 0; 385 #endif 386 387 /* 388 * log2(fraction of ARC which must be free to allow growing). 389 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 390 * when reading a new block into the ARC, we will evict an equal-sized block 391 * from the ARC. 392 * 393 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 394 * we will still not allow it to grow. 395 */ 396 int arc_no_grow_shift = 5; 397 398 399 /* 400 * minimum lifespan of a prefetch block in clock ticks 401 * (initialized in arc_init()) 402 */ 403 static int arc_min_prefetch_ms; 404 static int arc_min_prescient_prefetch_ms; 405 406 /* 407 * If this percent of memory is free, don't throttle. 408 */ 409 int arc_lotsfree_percent = 10; 410 411 /* 412 * The arc has filled available memory and has now warmed up. 413 */ 414 boolean_t arc_warm; 415 416 /* 417 * These tunables are for performance analysis. 418 */ 419 unsigned long zfs_arc_max = 0; 420 unsigned long zfs_arc_min = 0; 421 unsigned long zfs_arc_meta_limit = 0; 422 unsigned long zfs_arc_meta_min = 0; 423 unsigned long zfs_arc_dnode_limit = 0; 424 unsigned long zfs_arc_dnode_reduce_percent = 10; 425 int zfs_arc_grow_retry = 0; 426 int zfs_arc_shrink_shift = 0; 427 int zfs_arc_p_min_shift = 0; 428 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 429 430 /* 431 * ARC dirty data constraints for arc_tempreserve_space() throttle. 432 */ 433 unsigned long zfs_arc_dirty_limit_percent = 50; /* total dirty data limit */ 434 unsigned long zfs_arc_anon_limit_percent = 25; /* anon block dirty limit */ 435 unsigned long zfs_arc_pool_dirty_percent = 20; /* each pool's anon allowance */ 436 437 /* 438 * Enable or disable compressed arc buffers. 439 */ 440 int zfs_compressed_arc_enabled = B_TRUE; 441 442 /* 443 * ARC will evict meta buffers that exceed arc_meta_limit. This 444 * tunable make arc_meta_limit adjustable for different workloads. 445 */ 446 unsigned long zfs_arc_meta_limit_percent = 75; 447 448 /* 449 * Percentage that can be consumed by dnodes of ARC meta buffers. 450 */ 451 unsigned long zfs_arc_dnode_limit_percent = 10; 452 453 /* 454 * These tunables are Linux specific 455 */ 456 unsigned long zfs_arc_sys_free = 0; 457 int zfs_arc_min_prefetch_ms = 0; 458 int zfs_arc_min_prescient_prefetch_ms = 0; 459 int zfs_arc_p_dampener_disable = 1; 460 int zfs_arc_meta_prune = 10000; 461 int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED; 462 int zfs_arc_meta_adjust_restarts = 4096; 463 int zfs_arc_lotsfree_percent = 10; 464 465 /* The 6 states: */ 466 arc_state_t ARC_anon; 467 arc_state_t ARC_mru; 468 arc_state_t ARC_mru_ghost; 469 arc_state_t ARC_mfu; 470 arc_state_t ARC_mfu_ghost; 471 arc_state_t ARC_l2c_only; 472 473 arc_stats_t arc_stats = { 474 { "hits", KSTAT_DATA_UINT64 }, 475 { "misses", KSTAT_DATA_UINT64 }, 476 { "demand_data_hits", KSTAT_DATA_UINT64 }, 477 { "demand_data_misses", KSTAT_DATA_UINT64 }, 478 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 479 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 480 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 481 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 482 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 483 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 484 { "mru_hits", KSTAT_DATA_UINT64 }, 485 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 486 { "mfu_hits", KSTAT_DATA_UINT64 }, 487 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 488 { "deleted", KSTAT_DATA_UINT64 }, 489 { "mutex_miss", KSTAT_DATA_UINT64 }, 490 { "access_skip", KSTAT_DATA_UINT64 }, 491 { "evict_skip", KSTAT_DATA_UINT64 }, 492 { "evict_not_enough", KSTAT_DATA_UINT64 }, 493 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 494 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 495 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 496 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 497 { "hash_elements", KSTAT_DATA_UINT64 }, 498 { "hash_elements_max", KSTAT_DATA_UINT64 }, 499 { "hash_collisions", KSTAT_DATA_UINT64 }, 500 { "hash_chains", KSTAT_DATA_UINT64 }, 501 { "hash_chain_max", KSTAT_DATA_UINT64 }, 502 { "p", KSTAT_DATA_UINT64 }, 503 { "c", KSTAT_DATA_UINT64 }, 504 { "c_min", KSTAT_DATA_UINT64 }, 505 { "c_max", KSTAT_DATA_UINT64 }, 506 { "size", KSTAT_DATA_UINT64 }, 507 { "compressed_size", KSTAT_DATA_UINT64 }, 508 { "uncompressed_size", KSTAT_DATA_UINT64 }, 509 { "overhead_size", KSTAT_DATA_UINT64 }, 510 { "hdr_size", KSTAT_DATA_UINT64 }, 511 { "data_size", KSTAT_DATA_UINT64 }, 512 { "metadata_size", KSTAT_DATA_UINT64 }, 513 { "dbuf_size", KSTAT_DATA_UINT64 }, 514 { "dnode_size", KSTAT_DATA_UINT64 }, 515 { "bonus_size", KSTAT_DATA_UINT64 }, 516 #if defined(COMPAT_FREEBSD11) 517 { "other_size", KSTAT_DATA_UINT64 }, 518 #endif 519 { "anon_size", KSTAT_DATA_UINT64 }, 520 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 521 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 522 { "mru_size", KSTAT_DATA_UINT64 }, 523 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 524 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 525 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 526 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 527 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 528 { "mfu_size", KSTAT_DATA_UINT64 }, 529 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 530 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 531 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 532 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 533 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 534 { "l2_hits", KSTAT_DATA_UINT64 }, 535 { "l2_misses", KSTAT_DATA_UINT64 }, 536 { "l2_feeds", KSTAT_DATA_UINT64 }, 537 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 538 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 539 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 540 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 541 { "l2_writes_done", KSTAT_DATA_UINT64 }, 542 { "l2_writes_error", KSTAT_DATA_UINT64 }, 543 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 544 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 545 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 546 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 547 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 548 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 549 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 550 { "l2_io_error", KSTAT_DATA_UINT64 }, 551 { "l2_size", KSTAT_DATA_UINT64 }, 552 { "l2_asize", KSTAT_DATA_UINT64 }, 553 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 554 { "l2_log_blk_writes", KSTAT_DATA_UINT64 }, 555 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 }, 556 { "l2_log_blk_asize", KSTAT_DATA_UINT64 }, 557 { "l2_log_blk_count", KSTAT_DATA_UINT64 }, 558 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 }, 559 { "l2_rebuild_success", KSTAT_DATA_UINT64 }, 560 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 }, 561 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 }, 562 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 }, 563 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 }, 564 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 }, 565 { "l2_rebuild_size", KSTAT_DATA_UINT64 }, 566 { "l2_rebuild_asize", KSTAT_DATA_UINT64 }, 567 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 }, 568 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 }, 569 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 }, 570 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 571 { "memory_direct_count", KSTAT_DATA_UINT64 }, 572 { "memory_indirect_count", KSTAT_DATA_UINT64 }, 573 { "memory_all_bytes", KSTAT_DATA_UINT64 }, 574 { "memory_free_bytes", KSTAT_DATA_UINT64 }, 575 { "memory_available_bytes", KSTAT_DATA_INT64 }, 576 { "arc_no_grow", KSTAT_DATA_UINT64 }, 577 { "arc_tempreserve", KSTAT_DATA_UINT64 }, 578 { "arc_loaned_bytes", KSTAT_DATA_UINT64 }, 579 { "arc_prune", KSTAT_DATA_UINT64 }, 580 { "arc_meta_used", KSTAT_DATA_UINT64 }, 581 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 582 { "arc_dnode_limit", KSTAT_DATA_UINT64 }, 583 { "arc_meta_max", KSTAT_DATA_UINT64 }, 584 { "arc_meta_min", KSTAT_DATA_UINT64 }, 585 { "async_upgrade_sync", KSTAT_DATA_UINT64 }, 586 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 }, 587 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 }, 588 { "arc_need_free", KSTAT_DATA_UINT64 }, 589 { "arc_sys_free", KSTAT_DATA_UINT64 }, 590 { "arc_raw_size", KSTAT_DATA_UINT64 }, 591 { "cached_only_in_progress", KSTAT_DATA_UINT64 }, 592 { "abd_chunk_waste_size", KSTAT_DATA_UINT64 }, 593 }; 594 595 #define ARCSTAT_MAX(stat, val) { \ 596 uint64_t m; \ 597 while ((val) > (m = arc_stats.stat.value.ui64) && \ 598 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 599 continue; \ 600 } 601 602 #define ARCSTAT_MAXSTAT(stat) \ 603 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 604 605 /* 606 * We define a macro to allow ARC hits/misses to be easily broken down by 607 * two separate conditions, giving a total of four different subtypes for 608 * each of hits and misses (so eight statistics total). 609 */ 610 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 611 if (cond1) { \ 612 if (cond2) { \ 613 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 614 } else { \ 615 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 616 } \ 617 } else { \ 618 if (cond2) { \ 619 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 620 } else { \ 621 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 622 } \ 623 } 624 625 /* 626 * This macro allows us to use kstats as floating averages. Each time we 627 * update this kstat, we first factor it and the update value by 628 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall 629 * average. This macro assumes that integer loads and stores are atomic, but 630 * is not safe for multiple writers updating the kstat in parallel (only the 631 * last writer's update will remain). 632 */ 633 #define ARCSTAT_F_AVG_FACTOR 3 634 #define ARCSTAT_F_AVG(stat, value) \ 635 do { \ 636 uint64_t x = ARCSTAT(stat); \ 637 x = x - x / ARCSTAT_F_AVG_FACTOR + \ 638 (value) / ARCSTAT_F_AVG_FACTOR; \ 639 ARCSTAT(stat) = x; \ 640 _NOTE(CONSTCOND) \ 641 } while (0) 642 643 kstat_t *arc_ksp; 644 static arc_state_t *arc_anon; 645 static arc_state_t *arc_mru_ghost; 646 static arc_state_t *arc_mfu_ghost; 647 static arc_state_t *arc_l2c_only; 648 649 arc_state_t *arc_mru; 650 arc_state_t *arc_mfu; 651 652 /* 653 * There are several ARC variables that are critical to export as kstats -- 654 * but we don't want to have to grovel around in the kstat whenever we wish to 655 * manipulate them. For these variables, we therefore define them to be in 656 * terms of the statistic variable. This assures that we are not introducing 657 * the possibility of inconsistency by having shadow copies of the variables, 658 * while still allowing the code to be readable. 659 */ 660 #define arc_tempreserve ARCSTAT(arcstat_tempreserve) 661 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes) 662 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 663 /* max size for dnodes */ 664 #define arc_dnode_size_limit ARCSTAT(arcstat_dnode_limit) 665 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */ 666 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */ 667 #define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */ 668 669 /* size of all b_rabd's in entire arc */ 670 #define arc_raw_size ARCSTAT(arcstat_raw_size) 671 /* compressed size of entire arc */ 672 #define arc_compressed_size ARCSTAT(arcstat_compressed_size) 673 /* uncompressed size of entire arc */ 674 #define arc_uncompressed_size ARCSTAT(arcstat_uncompressed_size) 675 /* number of bytes in the arc from arc_buf_t's */ 676 #define arc_overhead_size ARCSTAT(arcstat_overhead_size) 677 678 /* 679 * There are also some ARC variables that we want to export, but that are 680 * updated so often that having the canonical representation be the statistic 681 * variable causes a performance bottleneck. We want to use aggsum_t's for these 682 * instead, but still be able to export the kstat in the same way as before. 683 * The solution is to always use the aggsum version, except in the kstat update 684 * callback. 685 */ 686 aggsum_t arc_size; 687 aggsum_t arc_meta_used; 688 aggsum_t astat_data_size; 689 aggsum_t astat_metadata_size; 690 aggsum_t astat_dbuf_size; 691 aggsum_t astat_dnode_size; 692 aggsum_t astat_bonus_size; 693 aggsum_t astat_hdr_size; 694 aggsum_t astat_l2_hdr_size; 695 aggsum_t astat_abd_chunk_waste_size; 696 697 hrtime_t arc_growtime; 698 list_t arc_prune_list; 699 kmutex_t arc_prune_mtx; 700 taskq_t *arc_prune_taskq; 701 702 #define GHOST_STATE(state) \ 703 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 704 (state) == arc_l2c_only) 705 706 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 707 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 708 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 709 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 710 #define HDR_PRESCIENT_PREFETCH(hdr) \ 711 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) 712 #define HDR_COMPRESSION_ENABLED(hdr) \ 713 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) 714 715 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 716 #define HDR_L2_READING(hdr) \ 717 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 718 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 719 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 720 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 721 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 722 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED) 723 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH) 724 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) 725 726 #define HDR_ISTYPE_METADATA(hdr) \ 727 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 728 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 729 730 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 731 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 732 #define HDR_HAS_RABD(hdr) \ 733 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \ 734 (hdr)->b_crypt_hdr.b_rabd != NULL) 735 #define HDR_ENCRYPTED(hdr) \ 736 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 737 #define HDR_AUTHENTICATED(hdr) \ 738 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 739 740 /* For storing compression mode in b_flags */ 741 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) 742 743 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ 744 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) 745 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ 746 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); 747 748 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) 749 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED) 750 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED) 751 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED) 752 753 /* 754 * Other sizes 755 */ 756 757 #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 758 #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr)) 759 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 760 761 /* 762 * Hash table routines 763 */ 764 765 #define HT_LOCK_ALIGN 64 766 #define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN))) 767 768 struct ht_lock { 769 kmutex_t ht_lock; 770 #ifdef _KERNEL 771 unsigned char pad[HT_LOCK_PAD]; 772 #endif 773 }; 774 775 #define BUF_LOCKS 8192 776 typedef struct buf_hash_table { 777 uint64_t ht_mask; 778 arc_buf_hdr_t **ht_table; 779 struct ht_lock ht_locks[BUF_LOCKS]; 780 } buf_hash_table_t; 781 782 static buf_hash_table_t buf_hash_table; 783 784 #define BUF_HASH_INDEX(spa, dva, birth) \ 785 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 786 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 787 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 788 #define HDR_LOCK(hdr) \ 789 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 790 791 uint64_t zfs_crc64_table[256]; 792 793 /* 794 * Level 2 ARC 795 */ 796 797 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 798 #define L2ARC_HEADROOM 2 /* num of writes */ 799 800 /* 801 * If we discover during ARC scan any buffers to be compressed, we boost 802 * our headroom for the next scanning cycle by this percentage multiple. 803 */ 804 #define L2ARC_HEADROOM_BOOST 200 805 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 806 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 807 808 /* 809 * We can feed L2ARC from two states of ARC buffers, mru and mfu, 810 * and each of the state has two types: data and metadata. 811 */ 812 #define L2ARC_FEED_TYPES 4 813 814 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 815 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 816 817 /* L2ARC Performance Tunables */ 818 unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */ 819 unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */ 820 unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */ 821 unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 822 unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 823 unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */ 824 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 825 int l2arc_feed_again = B_TRUE; /* turbo warmup */ 826 int l2arc_norw = B_FALSE; /* no reads during writes */ 827 int l2arc_meta_percent = 33; /* limit on headers size */ 828 829 /* 830 * L2ARC Internals 831 */ 832 static list_t L2ARC_dev_list; /* device list */ 833 static list_t *l2arc_dev_list; /* device list pointer */ 834 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 835 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 836 static list_t L2ARC_free_on_write; /* free after write buf list */ 837 static list_t *l2arc_free_on_write; /* free after write list ptr */ 838 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 839 static uint64_t l2arc_ndev; /* number of devices */ 840 841 typedef struct l2arc_read_callback { 842 arc_buf_hdr_t *l2rcb_hdr; /* read header */ 843 blkptr_t l2rcb_bp; /* original blkptr */ 844 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 845 int l2rcb_flags; /* original flags */ 846 abd_t *l2rcb_abd; /* temporary buffer */ 847 } l2arc_read_callback_t; 848 849 typedef struct l2arc_data_free { 850 /* protected by l2arc_free_on_write_mtx */ 851 abd_t *l2df_abd; 852 size_t l2df_size; 853 arc_buf_contents_t l2df_type; 854 list_node_t l2df_list_node; 855 } l2arc_data_free_t; 856 857 typedef enum arc_fill_flags { 858 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */ 859 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */ 860 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */ 861 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */ 862 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */ 863 } arc_fill_flags_t; 864 865 static kmutex_t l2arc_feed_thr_lock; 866 static kcondvar_t l2arc_feed_thr_cv; 867 static uint8_t l2arc_thread_exit; 868 869 static kmutex_t l2arc_rebuild_thr_lock; 870 static kcondvar_t l2arc_rebuild_thr_cv; 871 872 enum arc_hdr_alloc_flags { 873 ARC_HDR_ALLOC_RDATA = 0x1, 874 ARC_HDR_DO_ADAPT = 0x2, 875 }; 876 877 878 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *, boolean_t); 879 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *); 880 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *, boolean_t); 881 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *); 882 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *); 883 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag); 884 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t); 885 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int); 886 static void arc_access(arc_buf_hdr_t *, kmutex_t *); 887 static void arc_buf_watch(arc_buf_t *); 888 889 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 890 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 891 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 892 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 893 894 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 895 static void l2arc_read_done(zio_t *); 896 static void l2arc_do_free_on_write(void); 897 898 /* 899 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU 900 * metadata and data are cached from ARC into L2ARC. 901 */ 902 int l2arc_mfuonly = 0; 903 904 /* 905 * L2ARC TRIM 906 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of 907 * the current write size (l2arc_write_max) we should TRIM if we 908 * have filled the device. It is defined as a percentage of the 909 * write size. If set to 100 we trim twice the space required to 910 * accommodate upcoming writes. A minimum of 64MB will be trimmed. 911 * It also enables TRIM of the whole L2ARC device upon creation or 912 * addition to an existing pool or if the header of the device is 913 * invalid upon importing a pool or onlining a cache device. The 914 * default is 0, which disables TRIM on L2ARC altogether as it can 915 * put significant stress on the underlying storage devices. This 916 * will vary depending of how well the specific device handles 917 * these commands. 918 */ 919 unsigned long l2arc_trim_ahead = 0; 920 921 /* 922 * Performance tuning of L2ARC persistence: 923 * 924 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding 925 * an L2ARC device (either at pool import or later) will attempt 926 * to rebuild L2ARC buffer contents. 927 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls 928 * whether log blocks are written to the L2ARC device. If the L2ARC 929 * device is less than 1GB, the amount of data l2arc_evict() 930 * evicts is significant compared to the amount of restored L2ARC 931 * data. In this case do not write log blocks in L2ARC in order 932 * not to waste space. 933 */ 934 int l2arc_rebuild_enabled = B_TRUE; 935 unsigned long l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024; 936 937 /* L2ARC persistence rebuild control routines. */ 938 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen); 939 static void l2arc_dev_rebuild_thread(void *arg); 940 static int l2arc_rebuild(l2arc_dev_t *dev); 941 942 /* L2ARC persistence read I/O routines. */ 943 static int l2arc_dev_hdr_read(l2arc_dev_t *dev); 944 static int l2arc_log_blk_read(l2arc_dev_t *dev, 945 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp, 946 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 947 zio_t *this_io, zio_t **next_io); 948 static zio_t *l2arc_log_blk_fetch(vdev_t *vd, 949 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb); 950 static void l2arc_log_blk_fetch_abort(zio_t *zio); 951 952 /* L2ARC persistence block restoration routines. */ 953 static void l2arc_log_blk_restore(l2arc_dev_t *dev, 954 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize, uint64_t lb_daddr); 955 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, 956 l2arc_dev_t *dev); 957 958 /* L2ARC persistence write I/O routines. */ 959 static void l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, 960 l2arc_write_callback_t *cb); 961 962 /* L2ARC persistence auxiliary routines. */ 963 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev, 964 const l2arc_log_blkptr_t *lbp); 965 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev, 966 const arc_buf_hdr_t *ab); 967 boolean_t l2arc_range_check_overlap(uint64_t bottom, 968 uint64_t top, uint64_t check); 969 static void l2arc_blk_fetch_done(zio_t *zio); 970 static inline uint64_t 971 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev); 972 973 /* 974 * We use Cityhash for this. It's fast, and has good hash properties without 975 * requiring any large static buffers. 976 */ 977 static uint64_t 978 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 979 { 980 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth)); 981 } 982 983 #define HDR_EMPTY(hdr) \ 984 ((hdr)->b_dva.dva_word[0] == 0 && \ 985 (hdr)->b_dva.dva_word[1] == 0) 986 987 #define HDR_EMPTY_OR_LOCKED(hdr) \ 988 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr))) 989 990 #define HDR_EQUAL(spa, dva, birth, hdr) \ 991 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 992 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 993 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) 994 995 static void 996 buf_discard_identity(arc_buf_hdr_t *hdr) 997 { 998 hdr->b_dva.dva_word[0] = 0; 999 hdr->b_dva.dva_word[1] = 0; 1000 hdr->b_birth = 0; 1001 } 1002 1003 static arc_buf_hdr_t * 1004 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 1005 { 1006 const dva_t *dva = BP_IDENTITY(bp); 1007 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 1008 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 1009 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1010 arc_buf_hdr_t *hdr; 1011 1012 mutex_enter(hash_lock); 1013 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 1014 hdr = hdr->b_hash_next) { 1015 if (HDR_EQUAL(spa, dva, birth, hdr)) { 1016 *lockp = hash_lock; 1017 return (hdr); 1018 } 1019 } 1020 mutex_exit(hash_lock); 1021 *lockp = NULL; 1022 return (NULL); 1023 } 1024 1025 /* 1026 * Insert an entry into the hash table. If there is already an element 1027 * equal to elem in the hash table, then the already existing element 1028 * will be returned and the new element will not be inserted. 1029 * Otherwise returns NULL. 1030 * If lockp == NULL, the caller is assumed to already hold the hash lock. 1031 */ 1032 static arc_buf_hdr_t * 1033 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 1034 { 1035 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1036 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1037 arc_buf_hdr_t *fhdr; 1038 uint32_t i; 1039 1040 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 1041 ASSERT(hdr->b_birth != 0); 1042 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1043 1044 if (lockp != NULL) { 1045 *lockp = hash_lock; 1046 mutex_enter(hash_lock); 1047 } else { 1048 ASSERT(MUTEX_HELD(hash_lock)); 1049 } 1050 1051 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 1052 fhdr = fhdr->b_hash_next, i++) { 1053 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 1054 return (fhdr); 1055 } 1056 1057 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 1058 buf_hash_table.ht_table[idx] = hdr; 1059 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1060 1061 /* collect some hash table performance data */ 1062 if (i > 0) { 1063 ARCSTAT_BUMP(arcstat_hash_collisions); 1064 if (i == 1) 1065 ARCSTAT_BUMP(arcstat_hash_chains); 1066 1067 ARCSTAT_MAX(arcstat_hash_chain_max, i); 1068 } 1069 1070 ARCSTAT_BUMP(arcstat_hash_elements); 1071 ARCSTAT_MAXSTAT(arcstat_hash_elements); 1072 1073 return (NULL); 1074 } 1075 1076 static void 1077 buf_hash_remove(arc_buf_hdr_t *hdr) 1078 { 1079 arc_buf_hdr_t *fhdr, **hdrp; 1080 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1081 1082 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 1083 ASSERT(HDR_IN_HASH_TABLE(hdr)); 1084 1085 hdrp = &buf_hash_table.ht_table[idx]; 1086 while ((fhdr = *hdrp) != hdr) { 1087 ASSERT3P(fhdr, !=, NULL); 1088 hdrp = &fhdr->b_hash_next; 1089 } 1090 *hdrp = hdr->b_hash_next; 1091 hdr->b_hash_next = NULL; 1092 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1093 1094 /* collect some hash table performance data */ 1095 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 1096 1097 if (buf_hash_table.ht_table[idx] && 1098 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 1099 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 1100 } 1101 1102 /* 1103 * Global data structures and functions for the buf kmem cache. 1104 */ 1105 1106 static kmem_cache_t *hdr_full_cache; 1107 static kmem_cache_t *hdr_full_crypt_cache; 1108 static kmem_cache_t *hdr_l2only_cache; 1109 static kmem_cache_t *buf_cache; 1110 1111 static void 1112 buf_fini(void) 1113 { 1114 int i; 1115 1116 #if defined(_KERNEL) 1117 /* 1118 * Large allocations which do not require contiguous pages 1119 * should be using vmem_free() in the linux kernel\ 1120 */ 1121 vmem_free(buf_hash_table.ht_table, 1122 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1123 #else 1124 kmem_free(buf_hash_table.ht_table, 1125 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1126 #endif 1127 for (i = 0; i < BUF_LOCKS; i++) 1128 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 1129 kmem_cache_destroy(hdr_full_cache); 1130 kmem_cache_destroy(hdr_full_crypt_cache); 1131 kmem_cache_destroy(hdr_l2only_cache); 1132 kmem_cache_destroy(buf_cache); 1133 } 1134 1135 /* 1136 * Constructor callback - called when the cache is empty 1137 * and a new buf is requested. 1138 */ 1139 /* ARGSUSED */ 1140 static int 1141 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1142 { 1143 arc_buf_hdr_t *hdr = vbuf; 1144 1145 bzero(hdr, HDR_FULL_SIZE); 1146 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 1147 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL); 1148 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt); 1149 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1150 list_link_init(&hdr->b_l1hdr.b_arc_node); 1151 list_link_init(&hdr->b_l2hdr.b_l2node); 1152 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1153 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1154 1155 return (0); 1156 } 1157 1158 /* ARGSUSED */ 1159 static int 1160 hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag) 1161 { 1162 arc_buf_hdr_t *hdr = vbuf; 1163 1164 hdr_full_cons(vbuf, unused, kmflag); 1165 bzero(&hdr->b_crypt_hdr, sizeof (hdr->b_crypt_hdr)); 1166 arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1167 1168 return (0); 1169 } 1170 1171 /* ARGSUSED */ 1172 static int 1173 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1174 { 1175 arc_buf_hdr_t *hdr = vbuf; 1176 1177 bzero(hdr, HDR_L2ONLY_SIZE); 1178 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1179 1180 return (0); 1181 } 1182 1183 /* ARGSUSED */ 1184 static int 1185 buf_cons(void *vbuf, void *unused, int kmflag) 1186 { 1187 arc_buf_t *buf = vbuf; 1188 1189 bzero(buf, sizeof (arc_buf_t)); 1190 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 1191 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1192 1193 return (0); 1194 } 1195 1196 /* 1197 * Destructor callback - called when a cached buf is 1198 * no longer required. 1199 */ 1200 /* ARGSUSED */ 1201 static void 1202 hdr_full_dest(void *vbuf, void *unused) 1203 { 1204 arc_buf_hdr_t *hdr = vbuf; 1205 1206 ASSERT(HDR_EMPTY(hdr)); 1207 cv_destroy(&hdr->b_l1hdr.b_cv); 1208 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1209 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1210 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1211 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1212 } 1213 1214 /* ARGSUSED */ 1215 static void 1216 hdr_full_crypt_dest(void *vbuf, void *unused) 1217 { 1218 arc_buf_hdr_t *hdr = vbuf; 1219 1220 hdr_full_dest(vbuf, unused); 1221 arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1222 } 1223 1224 /* ARGSUSED */ 1225 static void 1226 hdr_l2only_dest(void *vbuf, void *unused) 1227 { 1228 arc_buf_hdr_t *hdr __maybe_unused = vbuf; 1229 1230 ASSERT(HDR_EMPTY(hdr)); 1231 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1232 } 1233 1234 /* ARGSUSED */ 1235 static void 1236 buf_dest(void *vbuf, void *unused) 1237 { 1238 arc_buf_t *buf = vbuf; 1239 1240 mutex_destroy(&buf->b_evict_lock); 1241 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1242 } 1243 1244 static void 1245 buf_init(void) 1246 { 1247 uint64_t *ct = NULL; 1248 uint64_t hsize = 1ULL << 12; 1249 int i, j; 1250 1251 /* 1252 * The hash table is big enough to fill all of physical memory 1253 * with an average block size of zfs_arc_average_blocksize (default 8K). 1254 * By default, the table will take up 1255 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1256 */ 1257 while (hsize * zfs_arc_average_blocksize < arc_all_memory()) 1258 hsize <<= 1; 1259 retry: 1260 buf_hash_table.ht_mask = hsize - 1; 1261 #if defined(_KERNEL) 1262 /* 1263 * Large allocations which do not require contiguous pages 1264 * should be using vmem_alloc() in the linux kernel 1265 */ 1266 buf_hash_table.ht_table = 1267 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP); 1268 #else 1269 buf_hash_table.ht_table = 1270 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1271 #endif 1272 if (buf_hash_table.ht_table == NULL) { 1273 ASSERT(hsize > (1ULL << 8)); 1274 hsize >>= 1; 1275 goto retry; 1276 } 1277 1278 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1279 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, 0); 1280 hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt", 1281 HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest, 1282 NULL, NULL, NULL, 0); 1283 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1284 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL, 1285 NULL, NULL, 0); 1286 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1287 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1288 1289 for (i = 0; i < 256; i++) 1290 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1291 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1292 1293 for (i = 0; i < BUF_LOCKS; i++) { 1294 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 1295 NULL, MUTEX_DEFAULT, NULL); 1296 } 1297 } 1298 1299 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1300 1301 /* 1302 * This is the size that the buf occupies in memory. If the buf is compressed, 1303 * it will correspond to the compressed size. You should use this method of 1304 * getting the buf size unless you explicitly need the logical size. 1305 */ 1306 uint64_t 1307 arc_buf_size(arc_buf_t *buf) 1308 { 1309 return (ARC_BUF_COMPRESSED(buf) ? 1310 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr)); 1311 } 1312 1313 uint64_t 1314 arc_buf_lsize(arc_buf_t *buf) 1315 { 1316 return (HDR_GET_LSIZE(buf->b_hdr)); 1317 } 1318 1319 /* 1320 * This function will return B_TRUE if the buffer is encrypted in memory. 1321 * This buffer can be decrypted by calling arc_untransform(). 1322 */ 1323 boolean_t 1324 arc_is_encrypted(arc_buf_t *buf) 1325 { 1326 return (ARC_BUF_ENCRYPTED(buf) != 0); 1327 } 1328 1329 /* 1330 * Returns B_TRUE if the buffer represents data that has not had its MAC 1331 * verified yet. 1332 */ 1333 boolean_t 1334 arc_is_unauthenticated(arc_buf_t *buf) 1335 { 1336 return (HDR_NOAUTH(buf->b_hdr) != 0); 1337 } 1338 1339 void 1340 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt, 1341 uint8_t *iv, uint8_t *mac) 1342 { 1343 arc_buf_hdr_t *hdr = buf->b_hdr; 1344 1345 ASSERT(HDR_PROTECTED(hdr)); 1346 1347 bcopy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN); 1348 bcopy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN); 1349 bcopy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN); 1350 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 1351 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 1352 } 1353 1354 /* 1355 * Indicates how this buffer is compressed in memory. If it is not compressed 1356 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with 1357 * arc_untransform() as long as it is also unencrypted. 1358 */ 1359 enum zio_compress 1360 arc_get_compression(arc_buf_t *buf) 1361 { 1362 return (ARC_BUF_COMPRESSED(buf) ? 1363 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF); 1364 } 1365 1366 /* 1367 * Return the compression algorithm used to store this data in the ARC. If ARC 1368 * compression is enabled or this is an encrypted block, this will be the same 1369 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF. 1370 */ 1371 static inline enum zio_compress 1372 arc_hdr_get_compress(arc_buf_hdr_t *hdr) 1373 { 1374 return (HDR_COMPRESSION_ENABLED(hdr) ? 1375 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF); 1376 } 1377 1378 uint8_t 1379 arc_get_complevel(arc_buf_t *buf) 1380 { 1381 return (buf->b_hdr->b_complevel); 1382 } 1383 1384 static inline boolean_t 1385 arc_buf_is_shared(arc_buf_t *buf) 1386 { 1387 boolean_t shared = (buf->b_data != NULL && 1388 buf->b_hdr->b_l1hdr.b_pabd != NULL && 1389 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) && 1390 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd)); 1391 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); 1392 IMPLY(shared, ARC_BUF_SHARED(buf)); 1393 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf)); 1394 1395 /* 1396 * It would be nice to assert arc_can_share() too, but the "hdr isn't 1397 * already being shared" requirement prevents us from doing that. 1398 */ 1399 1400 return (shared); 1401 } 1402 1403 /* 1404 * Free the checksum associated with this header. If there is no checksum, this 1405 * is a no-op. 1406 */ 1407 static inline void 1408 arc_cksum_free(arc_buf_hdr_t *hdr) 1409 { 1410 ASSERT(HDR_HAS_L1HDR(hdr)); 1411 1412 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1413 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1414 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); 1415 hdr->b_l1hdr.b_freeze_cksum = NULL; 1416 } 1417 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1418 } 1419 1420 /* 1421 * Return true iff at least one of the bufs on hdr is not compressed. 1422 * Encrypted buffers count as compressed. 1423 */ 1424 static boolean_t 1425 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr) 1426 { 1427 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr)); 1428 1429 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) { 1430 if (!ARC_BUF_COMPRESSED(b)) { 1431 return (B_TRUE); 1432 } 1433 } 1434 return (B_FALSE); 1435 } 1436 1437 1438 /* 1439 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data 1440 * matches the checksum that is stored in the hdr. If there is no checksum, 1441 * or if the buf is compressed, this is a no-op. 1442 */ 1443 static void 1444 arc_cksum_verify(arc_buf_t *buf) 1445 { 1446 arc_buf_hdr_t *hdr = buf->b_hdr; 1447 zio_cksum_t zc; 1448 1449 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1450 return; 1451 1452 if (ARC_BUF_COMPRESSED(buf)) 1453 return; 1454 1455 ASSERT(HDR_HAS_L1HDR(hdr)); 1456 1457 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1458 1459 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { 1460 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1461 return; 1462 } 1463 1464 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc); 1465 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) 1466 panic("buffer modified while frozen!"); 1467 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1468 } 1469 1470 /* 1471 * This function makes the assumption that data stored in the L2ARC 1472 * will be transformed exactly as it is in the main pool. Because of 1473 * this we can verify the checksum against the reading process's bp. 1474 */ 1475 static boolean_t 1476 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) 1477 { 1478 ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); 1479 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); 1480 1481 /* 1482 * Block pointers always store the checksum for the logical data. 1483 * If the block pointer has the gang bit set, then the checksum 1484 * it represents is for the reconstituted data and not for an 1485 * individual gang member. The zio pipeline, however, must be able to 1486 * determine the checksum of each of the gang constituents so it 1487 * treats the checksum comparison differently than what we need 1488 * for l2arc blocks. This prevents us from using the 1489 * zio_checksum_error() interface directly. Instead we must call the 1490 * zio_checksum_error_impl() so that we can ensure the checksum is 1491 * generated using the correct checksum algorithm and accounts for the 1492 * logical I/O size and not just a gang fragment. 1493 */ 1494 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp, 1495 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size, 1496 zio->io_offset, NULL) == 0); 1497 } 1498 1499 /* 1500 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a 1501 * checksum and attaches it to the buf's hdr so that we can ensure that the buf 1502 * isn't modified later on. If buf is compressed or there is already a checksum 1503 * on the hdr, this is a no-op (we only checksum uncompressed bufs). 1504 */ 1505 static void 1506 arc_cksum_compute(arc_buf_t *buf) 1507 { 1508 arc_buf_hdr_t *hdr = buf->b_hdr; 1509 1510 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1511 return; 1512 1513 ASSERT(HDR_HAS_L1HDR(hdr)); 1514 1515 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1516 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) { 1517 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1518 return; 1519 } 1520 1521 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 1522 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1523 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), 1524 KM_SLEEP); 1525 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, 1526 hdr->b_l1hdr.b_freeze_cksum); 1527 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1528 arc_buf_watch(buf); 1529 } 1530 1531 #ifndef _KERNEL 1532 void 1533 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused) 1534 { 1535 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr); 1536 } 1537 #endif 1538 1539 /* ARGSUSED */ 1540 static void 1541 arc_buf_unwatch(arc_buf_t *buf) 1542 { 1543 #ifndef _KERNEL 1544 if (arc_watch) { 1545 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1546 PROT_READ | PROT_WRITE)); 1547 } 1548 #endif 1549 } 1550 1551 /* ARGSUSED */ 1552 static void 1553 arc_buf_watch(arc_buf_t *buf) 1554 { 1555 #ifndef _KERNEL 1556 if (arc_watch) 1557 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1558 PROT_READ)); 1559 #endif 1560 } 1561 1562 static arc_buf_contents_t 1563 arc_buf_type(arc_buf_hdr_t *hdr) 1564 { 1565 arc_buf_contents_t type; 1566 if (HDR_ISTYPE_METADATA(hdr)) { 1567 type = ARC_BUFC_METADATA; 1568 } else { 1569 type = ARC_BUFC_DATA; 1570 } 1571 VERIFY3U(hdr->b_type, ==, type); 1572 return (type); 1573 } 1574 1575 boolean_t 1576 arc_is_metadata(arc_buf_t *buf) 1577 { 1578 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0); 1579 } 1580 1581 static uint32_t 1582 arc_bufc_to_flags(arc_buf_contents_t type) 1583 { 1584 switch (type) { 1585 case ARC_BUFC_DATA: 1586 /* metadata field is 0 if buffer contains normal data */ 1587 return (0); 1588 case ARC_BUFC_METADATA: 1589 return (ARC_FLAG_BUFC_METADATA); 1590 default: 1591 break; 1592 } 1593 panic("undefined ARC buffer type!"); 1594 return ((uint32_t)-1); 1595 } 1596 1597 void 1598 arc_buf_thaw(arc_buf_t *buf) 1599 { 1600 arc_buf_hdr_t *hdr = buf->b_hdr; 1601 1602 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 1603 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1604 1605 arc_cksum_verify(buf); 1606 1607 /* 1608 * Compressed buffers do not manipulate the b_freeze_cksum. 1609 */ 1610 if (ARC_BUF_COMPRESSED(buf)) 1611 return; 1612 1613 ASSERT(HDR_HAS_L1HDR(hdr)); 1614 arc_cksum_free(hdr); 1615 arc_buf_unwatch(buf); 1616 } 1617 1618 void 1619 arc_buf_freeze(arc_buf_t *buf) 1620 { 1621 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1622 return; 1623 1624 if (ARC_BUF_COMPRESSED(buf)) 1625 return; 1626 1627 ASSERT(HDR_HAS_L1HDR(buf->b_hdr)); 1628 arc_cksum_compute(buf); 1629 } 1630 1631 /* 1632 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, 1633 * the following functions should be used to ensure that the flags are 1634 * updated in a thread-safe way. When manipulating the flags either 1635 * the hash_lock must be held or the hdr must be undiscoverable. This 1636 * ensures that we're not racing with any other threads when updating 1637 * the flags. 1638 */ 1639 static inline void 1640 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1641 { 1642 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1643 hdr->b_flags |= flags; 1644 } 1645 1646 static inline void 1647 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1648 { 1649 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1650 hdr->b_flags &= ~flags; 1651 } 1652 1653 /* 1654 * Setting the compression bits in the arc_buf_hdr_t's b_flags is 1655 * done in a special way since we have to clear and set bits 1656 * at the same time. Consumers that wish to set the compression bits 1657 * must use this function to ensure that the flags are updated in 1658 * thread-safe manner. 1659 */ 1660 static void 1661 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) 1662 { 1663 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1664 1665 /* 1666 * Holes and embedded blocks will always have a psize = 0 so 1667 * we ignore the compression of the blkptr and set the 1668 * want to uncompress them. Mark them as uncompressed. 1669 */ 1670 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { 1671 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1672 ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); 1673 } else { 1674 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1675 ASSERT(HDR_COMPRESSION_ENABLED(hdr)); 1676 } 1677 1678 HDR_SET_COMPRESS(hdr, cmp); 1679 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); 1680 } 1681 1682 /* 1683 * Looks for another buf on the same hdr which has the data decompressed, copies 1684 * from it, and returns true. If no such buf exists, returns false. 1685 */ 1686 static boolean_t 1687 arc_buf_try_copy_decompressed_data(arc_buf_t *buf) 1688 { 1689 arc_buf_hdr_t *hdr = buf->b_hdr; 1690 boolean_t copied = B_FALSE; 1691 1692 ASSERT(HDR_HAS_L1HDR(hdr)); 1693 ASSERT3P(buf->b_data, !=, NULL); 1694 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1695 1696 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL; 1697 from = from->b_next) { 1698 /* can't use our own data buffer */ 1699 if (from == buf) { 1700 continue; 1701 } 1702 1703 if (!ARC_BUF_COMPRESSED(from)) { 1704 bcopy(from->b_data, buf->b_data, arc_buf_size(buf)); 1705 copied = B_TRUE; 1706 break; 1707 } 1708 } 1709 1710 /* 1711 * There were no decompressed bufs, so there should not be a 1712 * checksum on the hdr either. 1713 */ 1714 if (zfs_flags & ZFS_DEBUG_MODIFY) 1715 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL); 1716 1717 return (copied); 1718 } 1719 1720 /* 1721 * Allocates an ARC buf header that's in an evicted & L2-cached state. 1722 * This is used during l2arc reconstruction to make empty ARC buffers 1723 * which circumvent the regular disk->arc->l2arc path and instead come 1724 * into being in the reverse order, i.e. l2arc->arc. 1725 */ 1726 static arc_buf_hdr_t * 1727 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev, 1728 dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth, 1729 enum zio_compress compress, uint8_t complevel, boolean_t protected, 1730 boolean_t prefetch) 1731 { 1732 arc_buf_hdr_t *hdr; 1733 1734 ASSERT(size != 0); 1735 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP); 1736 hdr->b_birth = birth; 1737 hdr->b_type = type; 1738 hdr->b_flags = 0; 1739 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR); 1740 HDR_SET_LSIZE(hdr, size); 1741 HDR_SET_PSIZE(hdr, psize); 1742 arc_hdr_set_compress(hdr, compress); 1743 hdr->b_complevel = complevel; 1744 if (protected) 1745 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 1746 if (prefetch) 1747 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 1748 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa); 1749 1750 hdr->b_dva = dva; 1751 1752 hdr->b_l2hdr.b_dev = dev; 1753 hdr->b_l2hdr.b_daddr = daddr; 1754 1755 return (hdr); 1756 } 1757 1758 /* 1759 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t. 1760 */ 1761 static uint64_t 1762 arc_hdr_size(arc_buf_hdr_t *hdr) 1763 { 1764 uint64_t size; 1765 1766 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 1767 HDR_GET_PSIZE(hdr) > 0) { 1768 size = HDR_GET_PSIZE(hdr); 1769 } else { 1770 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); 1771 size = HDR_GET_LSIZE(hdr); 1772 } 1773 return (size); 1774 } 1775 1776 static int 1777 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj) 1778 { 1779 int ret; 1780 uint64_t csize; 1781 uint64_t lsize = HDR_GET_LSIZE(hdr); 1782 uint64_t psize = HDR_GET_PSIZE(hdr); 1783 void *tmpbuf = NULL; 1784 abd_t *abd = hdr->b_l1hdr.b_pabd; 1785 1786 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1787 ASSERT(HDR_AUTHENTICATED(hdr)); 1788 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1789 1790 /* 1791 * The MAC is calculated on the compressed data that is stored on disk. 1792 * However, if compressed arc is disabled we will only have the 1793 * decompressed data available to us now. Compress it into a temporary 1794 * abd so we can verify the MAC. The performance overhead of this will 1795 * be relatively low, since most objects in an encrypted objset will 1796 * be encrypted (instead of authenticated) anyway. 1797 */ 1798 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1799 !HDR_COMPRESSION_ENABLED(hdr)) { 1800 tmpbuf = zio_buf_alloc(lsize); 1801 abd = abd_get_from_buf(tmpbuf, lsize); 1802 abd_take_ownership_of_buf(abd, B_TRUE); 1803 csize = zio_compress_data(HDR_GET_COMPRESS(hdr), 1804 hdr->b_l1hdr.b_pabd, tmpbuf, lsize, hdr->b_complevel); 1805 ASSERT3U(csize, <=, psize); 1806 abd_zero_off(abd, csize, psize - csize); 1807 } 1808 1809 /* 1810 * Authentication is best effort. We authenticate whenever the key is 1811 * available. If we succeed we clear ARC_FLAG_NOAUTH. 1812 */ 1813 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) { 1814 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1815 ASSERT3U(lsize, ==, psize); 1816 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd, 1817 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1818 } else { 1819 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize, 1820 hdr->b_crypt_hdr.b_mac); 1821 } 1822 1823 if (ret == 0) 1824 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH); 1825 else if (ret != ENOENT) 1826 goto error; 1827 1828 if (tmpbuf != NULL) 1829 abd_free(abd); 1830 1831 return (0); 1832 1833 error: 1834 if (tmpbuf != NULL) 1835 abd_free(abd); 1836 1837 return (ret); 1838 } 1839 1840 /* 1841 * This function will take a header that only has raw encrypted data in 1842 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in 1843 * b_l1hdr.b_pabd. If designated in the header flags, this function will 1844 * also decompress the data. 1845 */ 1846 static int 1847 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb) 1848 { 1849 int ret; 1850 abd_t *cabd = NULL; 1851 void *tmp = NULL; 1852 boolean_t no_crypt = B_FALSE; 1853 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1854 1855 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1856 ASSERT(HDR_ENCRYPTED(hdr)); 1857 1858 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 1859 1860 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot, 1861 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv, 1862 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd, 1863 hdr->b_crypt_hdr.b_rabd, &no_crypt); 1864 if (ret != 0) 1865 goto error; 1866 1867 if (no_crypt) { 1868 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd, 1869 HDR_GET_PSIZE(hdr)); 1870 } 1871 1872 /* 1873 * If this header has disabled arc compression but the b_pabd is 1874 * compressed after decrypting it, we need to decompress the newly 1875 * decrypted data. 1876 */ 1877 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1878 !HDR_COMPRESSION_ENABLED(hdr)) { 1879 /* 1880 * We want to make sure that we are correctly honoring the 1881 * zfs_abd_scatter_enabled setting, so we allocate an abd here 1882 * and then loan a buffer from it, rather than allocating a 1883 * linear buffer and wrapping it in an abd later. 1884 */ 1885 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, B_TRUE); 1886 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 1887 1888 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 1889 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 1890 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 1891 if (ret != 0) { 1892 abd_return_buf(cabd, tmp, arc_hdr_size(hdr)); 1893 goto error; 1894 } 1895 1896 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 1897 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 1898 arc_hdr_size(hdr), hdr); 1899 hdr->b_l1hdr.b_pabd = cabd; 1900 } 1901 1902 return (0); 1903 1904 error: 1905 arc_hdr_free_abd(hdr, B_FALSE); 1906 if (cabd != NULL) 1907 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr); 1908 1909 return (ret); 1910 } 1911 1912 /* 1913 * This function is called during arc_buf_fill() to prepare the header's 1914 * abd plaintext pointer for use. This involves authenticated protected 1915 * data and decrypting encrypted data into the plaintext abd. 1916 */ 1917 static int 1918 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa, 1919 const zbookmark_phys_t *zb, boolean_t noauth) 1920 { 1921 int ret; 1922 1923 ASSERT(HDR_PROTECTED(hdr)); 1924 1925 if (hash_lock != NULL) 1926 mutex_enter(hash_lock); 1927 1928 if (HDR_NOAUTH(hdr) && !noauth) { 1929 /* 1930 * The caller requested authenticated data but our data has 1931 * not been authenticated yet. Verify the MAC now if we can. 1932 */ 1933 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset); 1934 if (ret != 0) 1935 goto error; 1936 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) { 1937 /* 1938 * If we only have the encrypted version of the data, but the 1939 * unencrypted version was requested we take this opportunity 1940 * to store the decrypted version in the header for future use. 1941 */ 1942 ret = arc_hdr_decrypt(hdr, spa, zb); 1943 if (ret != 0) 1944 goto error; 1945 } 1946 1947 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1948 1949 if (hash_lock != NULL) 1950 mutex_exit(hash_lock); 1951 1952 return (0); 1953 1954 error: 1955 if (hash_lock != NULL) 1956 mutex_exit(hash_lock); 1957 1958 return (ret); 1959 } 1960 1961 /* 1962 * This function is used by the dbuf code to decrypt bonus buffers in place. 1963 * The dbuf code itself doesn't have any locking for decrypting a shared dnode 1964 * block, so we use the hash lock here to protect against concurrent calls to 1965 * arc_buf_fill(). 1966 */ 1967 static void 1968 arc_buf_untransform_in_place(arc_buf_t *buf, kmutex_t *hash_lock) 1969 { 1970 arc_buf_hdr_t *hdr = buf->b_hdr; 1971 1972 ASSERT(HDR_ENCRYPTED(hdr)); 1973 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 1974 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1975 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1976 1977 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data, 1978 arc_buf_size(buf)); 1979 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 1980 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 1981 hdr->b_crypt_hdr.b_ebufcnt -= 1; 1982 } 1983 1984 /* 1985 * Given a buf that has a data buffer attached to it, this function will 1986 * efficiently fill the buf with data of the specified compression setting from 1987 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr 1988 * are already sharing a data buf, no copy is performed. 1989 * 1990 * If the buf is marked as compressed but uncompressed data was requested, this 1991 * will allocate a new data buffer for the buf, remove that flag, and fill the 1992 * buf with uncompressed data. You can't request a compressed buf on a hdr with 1993 * uncompressed data, and (since we haven't added support for it yet) if you 1994 * want compressed data your buf must already be marked as compressed and have 1995 * the correct-sized data buffer. 1996 */ 1997 static int 1998 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 1999 arc_fill_flags_t flags) 2000 { 2001 int error = 0; 2002 arc_buf_hdr_t *hdr = buf->b_hdr; 2003 boolean_t hdr_compressed = 2004 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 2005 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0; 2006 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0; 2007 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; 2008 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr); 2009 2010 ASSERT3P(buf->b_data, !=, NULL); 2011 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf)); 2012 IMPLY(compressed, ARC_BUF_COMPRESSED(buf)); 2013 IMPLY(encrypted, HDR_ENCRYPTED(hdr)); 2014 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf)); 2015 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf)); 2016 IMPLY(encrypted, !ARC_BUF_SHARED(buf)); 2017 2018 /* 2019 * If the caller wanted encrypted data we just need to copy it from 2020 * b_rabd and potentially byteswap it. We won't be able to do any 2021 * further transforms on it. 2022 */ 2023 if (encrypted) { 2024 ASSERT(HDR_HAS_RABD(hdr)); 2025 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd, 2026 HDR_GET_PSIZE(hdr)); 2027 goto byteswap; 2028 } 2029 2030 /* 2031 * Adjust encrypted and authenticated headers to accommodate 2032 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are 2033 * allowed to fail decryption due to keys not being loaded 2034 * without being marked as an IO error. 2035 */ 2036 if (HDR_PROTECTED(hdr)) { 2037 error = arc_fill_hdr_crypt(hdr, hash_lock, spa, 2038 zb, !!(flags & ARC_FILL_NOAUTH)); 2039 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) { 2040 return (error); 2041 } else if (error != 0) { 2042 if (hash_lock != NULL) 2043 mutex_enter(hash_lock); 2044 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2045 if (hash_lock != NULL) 2046 mutex_exit(hash_lock); 2047 return (error); 2048 } 2049 } 2050 2051 /* 2052 * There is a special case here for dnode blocks which are 2053 * decrypting their bonus buffers. These blocks may request to 2054 * be decrypted in-place. This is necessary because there may 2055 * be many dnodes pointing into this buffer and there is 2056 * currently no method to synchronize replacing the backing 2057 * b_data buffer and updating all of the pointers. Here we use 2058 * the hash lock to ensure there are no races. If the need 2059 * arises for other types to be decrypted in-place, they must 2060 * add handling here as well. 2061 */ 2062 if ((flags & ARC_FILL_IN_PLACE) != 0) { 2063 ASSERT(!hdr_compressed); 2064 ASSERT(!compressed); 2065 ASSERT(!encrypted); 2066 2067 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) { 2068 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 2069 2070 if (hash_lock != NULL) 2071 mutex_enter(hash_lock); 2072 arc_buf_untransform_in_place(buf, hash_lock); 2073 if (hash_lock != NULL) 2074 mutex_exit(hash_lock); 2075 2076 /* Compute the hdr's checksum if necessary */ 2077 arc_cksum_compute(buf); 2078 } 2079 2080 return (0); 2081 } 2082 2083 if (hdr_compressed == compressed) { 2084 if (!arc_buf_is_shared(buf)) { 2085 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd, 2086 arc_buf_size(buf)); 2087 } 2088 } else { 2089 ASSERT(hdr_compressed); 2090 ASSERT(!compressed); 2091 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr)); 2092 2093 /* 2094 * If the buf is sharing its data with the hdr, unlink it and 2095 * allocate a new data buffer for the buf. 2096 */ 2097 if (arc_buf_is_shared(buf)) { 2098 ASSERT(ARC_BUF_COMPRESSED(buf)); 2099 2100 /* We need to give the buf its own b_data */ 2101 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 2102 buf->b_data = 2103 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2104 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2105 2106 /* Previously overhead was 0; just add new overhead */ 2107 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 2108 } else if (ARC_BUF_COMPRESSED(buf)) { 2109 /* We need to reallocate the buf's b_data */ 2110 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr), 2111 buf); 2112 buf->b_data = 2113 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2114 2115 /* We increased the size of b_data; update overhead */ 2116 ARCSTAT_INCR(arcstat_overhead_size, 2117 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr)); 2118 } 2119 2120 /* 2121 * Regardless of the buf's previous compression settings, it 2122 * should not be compressed at the end of this function. 2123 */ 2124 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 2125 2126 /* 2127 * Try copying the data from another buf which already has a 2128 * decompressed version. If that's not possible, it's time to 2129 * bite the bullet and decompress the data from the hdr. 2130 */ 2131 if (arc_buf_try_copy_decompressed_data(buf)) { 2132 /* Skip byteswapping and checksumming (already done) */ 2133 return (0); 2134 } else { 2135 error = zio_decompress_data(HDR_GET_COMPRESS(hdr), 2136 hdr->b_l1hdr.b_pabd, buf->b_data, 2137 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr), 2138 &hdr->b_complevel); 2139 2140 /* 2141 * Absent hardware errors or software bugs, this should 2142 * be impossible, but log it anyway so we can debug it. 2143 */ 2144 if (error != 0) { 2145 zfs_dbgmsg( 2146 "hdr %px, compress %d, psize %d, lsize %d", 2147 hdr, arc_hdr_get_compress(hdr), 2148 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 2149 if (hash_lock != NULL) 2150 mutex_enter(hash_lock); 2151 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2152 if (hash_lock != NULL) 2153 mutex_exit(hash_lock); 2154 return (SET_ERROR(EIO)); 2155 } 2156 } 2157 } 2158 2159 byteswap: 2160 /* Byteswap the buf's data if necessary */ 2161 if (bswap != DMU_BSWAP_NUMFUNCS) { 2162 ASSERT(!HDR_SHARED_DATA(hdr)); 2163 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); 2164 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); 2165 } 2166 2167 /* Compute the hdr's checksum if necessary */ 2168 arc_cksum_compute(buf); 2169 2170 return (0); 2171 } 2172 2173 /* 2174 * If this function is being called to decrypt an encrypted buffer or verify an 2175 * authenticated one, the key must be loaded and a mapping must be made 2176 * available in the keystore via spa_keystore_create_mapping() or one of its 2177 * callers. 2178 */ 2179 int 2180 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 2181 boolean_t in_place) 2182 { 2183 int ret; 2184 arc_fill_flags_t flags = 0; 2185 2186 if (in_place) 2187 flags |= ARC_FILL_IN_PLACE; 2188 2189 ret = arc_buf_fill(buf, spa, zb, flags); 2190 if (ret == ECKSUM) { 2191 /* 2192 * Convert authentication and decryption errors to EIO 2193 * (and generate an ereport) before leaving the ARC. 2194 */ 2195 ret = SET_ERROR(EIO); 2196 spa_log_error(spa, zb); 2197 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 2198 spa, NULL, zb, NULL, 0); 2199 } 2200 2201 return (ret); 2202 } 2203 2204 /* 2205 * Increment the amount of evictable space in the arc_state_t's refcount. 2206 * We account for the space used by the hdr and the arc buf individually 2207 * so that we can add and remove them from the refcount individually. 2208 */ 2209 static void 2210 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) 2211 { 2212 arc_buf_contents_t type = arc_buf_type(hdr); 2213 2214 ASSERT(HDR_HAS_L1HDR(hdr)); 2215 2216 if (GHOST_STATE(state)) { 2217 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2218 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2219 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2220 ASSERT(!HDR_HAS_RABD(hdr)); 2221 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2222 HDR_GET_LSIZE(hdr), hdr); 2223 return; 2224 } 2225 2226 ASSERT(!GHOST_STATE(state)); 2227 if (hdr->b_l1hdr.b_pabd != NULL) { 2228 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2229 arc_hdr_size(hdr), hdr); 2230 } 2231 if (HDR_HAS_RABD(hdr)) { 2232 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2233 HDR_GET_PSIZE(hdr), hdr); 2234 } 2235 2236 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2237 buf = buf->b_next) { 2238 if (arc_buf_is_shared(buf)) 2239 continue; 2240 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2241 arc_buf_size(buf), buf); 2242 } 2243 } 2244 2245 /* 2246 * Decrement the amount of evictable space in the arc_state_t's refcount. 2247 * We account for the space used by the hdr and the arc buf individually 2248 * so that we can add and remove them from the refcount individually. 2249 */ 2250 static void 2251 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) 2252 { 2253 arc_buf_contents_t type = arc_buf_type(hdr); 2254 2255 ASSERT(HDR_HAS_L1HDR(hdr)); 2256 2257 if (GHOST_STATE(state)) { 2258 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2259 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2260 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2261 ASSERT(!HDR_HAS_RABD(hdr)); 2262 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2263 HDR_GET_LSIZE(hdr), hdr); 2264 return; 2265 } 2266 2267 ASSERT(!GHOST_STATE(state)); 2268 if (hdr->b_l1hdr.b_pabd != NULL) { 2269 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2270 arc_hdr_size(hdr), hdr); 2271 } 2272 if (HDR_HAS_RABD(hdr)) { 2273 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2274 HDR_GET_PSIZE(hdr), hdr); 2275 } 2276 2277 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2278 buf = buf->b_next) { 2279 if (arc_buf_is_shared(buf)) 2280 continue; 2281 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2282 arc_buf_size(buf), buf); 2283 } 2284 } 2285 2286 /* 2287 * Add a reference to this hdr indicating that someone is actively 2288 * referencing that memory. When the refcount transitions from 0 to 1, 2289 * we remove it from the respective arc_state_t list to indicate that 2290 * it is not evictable. 2291 */ 2292 static void 2293 add_reference(arc_buf_hdr_t *hdr, void *tag) 2294 { 2295 arc_state_t *state; 2296 2297 ASSERT(HDR_HAS_L1HDR(hdr)); 2298 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) { 2299 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 2300 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2301 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2302 } 2303 2304 state = hdr->b_l1hdr.b_state; 2305 2306 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 2307 (state != arc_anon)) { 2308 /* We don't use the L2-only state list. */ 2309 if (state != arc_l2c_only) { 2310 multilist_remove(state->arcs_list[arc_buf_type(hdr)], 2311 hdr); 2312 arc_evictable_space_decrement(hdr, state); 2313 } 2314 /* remove the prefetch flag if we get a reference */ 2315 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 2316 } 2317 } 2318 2319 /* 2320 * Remove a reference from this hdr. When the reference transitions from 2321 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's 2322 * list making it eligible for eviction. 2323 */ 2324 static int 2325 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 2326 { 2327 int cnt; 2328 arc_state_t *state = hdr->b_l1hdr.b_state; 2329 2330 ASSERT(HDR_HAS_L1HDR(hdr)); 2331 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 2332 ASSERT(!GHOST_STATE(state)); 2333 2334 /* 2335 * arc_l2c_only counts as a ghost state so we don't need to explicitly 2336 * check to prevent usage of the arc_l2c_only list. 2337 */ 2338 if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) && 2339 (state != arc_anon)) { 2340 multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr); 2341 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 2342 arc_evictable_space_increment(hdr, state); 2343 } 2344 return (cnt); 2345 } 2346 2347 /* 2348 * Returns detailed information about a specific arc buffer. When the 2349 * state_index argument is set the function will calculate the arc header 2350 * list position for its arc state. Since this requires a linear traversal 2351 * callers are strongly encourage not to do this. However, it can be helpful 2352 * for targeted analysis so the functionality is provided. 2353 */ 2354 void 2355 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index) 2356 { 2357 arc_buf_hdr_t *hdr = ab->b_hdr; 2358 l1arc_buf_hdr_t *l1hdr = NULL; 2359 l2arc_buf_hdr_t *l2hdr = NULL; 2360 arc_state_t *state = NULL; 2361 2362 memset(abi, 0, sizeof (arc_buf_info_t)); 2363 2364 if (hdr == NULL) 2365 return; 2366 2367 abi->abi_flags = hdr->b_flags; 2368 2369 if (HDR_HAS_L1HDR(hdr)) { 2370 l1hdr = &hdr->b_l1hdr; 2371 state = l1hdr->b_state; 2372 } 2373 if (HDR_HAS_L2HDR(hdr)) 2374 l2hdr = &hdr->b_l2hdr; 2375 2376 if (l1hdr) { 2377 abi->abi_bufcnt = l1hdr->b_bufcnt; 2378 abi->abi_access = l1hdr->b_arc_access; 2379 abi->abi_mru_hits = l1hdr->b_mru_hits; 2380 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits; 2381 abi->abi_mfu_hits = l1hdr->b_mfu_hits; 2382 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits; 2383 abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt); 2384 } 2385 2386 if (l2hdr) { 2387 abi->abi_l2arc_dattr = l2hdr->b_daddr; 2388 abi->abi_l2arc_hits = l2hdr->b_hits; 2389 } 2390 2391 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON; 2392 abi->abi_state_contents = arc_buf_type(hdr); 2393 abi->abi_size = arc_hdr_size(hdr); 2394 } 2395 2396 /* 2397 * Move the supplied buffer to the indicated state. The hash lock 2398 * for the buffer must be held by the caller. 2399 */ 2400 static void 2401 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr, 2402 kmutex_t *hash_lock) 2403 { 2404 arc_state_t *old_state; 2405 int64_t refcnt; 2406 uint32_t bufcnt; 2407 boolean_t update_old, update_new; 2408 arc_buf_contents_t buftype = arc_buf_type(hdr); 2409 2410 /* 2411 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 2412 * in arc_read() when bringing a buffer out of the L2ARC. However, the 2413 * L1 hdr doesn't always exist when we change state to arc_anon before 2414 * destroying a header, in which case reallocating to add the L1 hdr is 2415 * pointless. 2416 */ 2417 if (HDR_HAS_L1HDR(hdr)) { 2418 old_state = hdr->b_l1hdr.b_state; 2419 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt); 2420 bufcnt = hdr->b_l1hdr.b_bufcnt; 2421 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL || 2422 HDR_HAS_RABD(hdr)); 2423 } else { 2424 old_state = arc_l2c_only; 2425 refcnt = 0; 2426 bufcnt = 0; 2427 update_old = B_FALSE; 2428 } 2429 update_new = update_old; 2430 2431 ASSERT(MUTEX_HELD(hash_lock)); 2432 ASSERT3P(new_state, !=, old_state); 2433 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0); 2434 ASSERT(old_state != arc_anon || bufcnt <= 1); 2435 2436 /* 2437 * If this buffer is evictable, transfer it from the 2438 * old state list to the new state list. 2439 */ 2440 if (refcnt == 0) { 2441 if (old_state != arc_anon && old_state != arc_l2c_only) { 2442 ASSERT(HDR_HAS_L1HDR(hdr)); 2443 multilist_remove(old_state->arcs_list[buftype], hdr); 2444 2445 if (GHOST_STATE(old_state)) { 2446 ASSERT0(bufcnt); 2447 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2448 update_old = B_TRUE; 2449 } 2450 arc_evictable_space_decrement(hdr, old_state); 2451 } 2452 if (new_state != arc_anon && new_state != arc_l2c_only) { 2453 /* 2454 * An L1 header always exists here, since if we're 2455 * moving to some L1-cached state (i.e. not l2c_only or 2456 * anonymous), we realloc the header to add an L1hdr 2457 * beforehand. 2458 */ 2459 ASSERT(HDR_HAS_L1HDR(hdr)); 2460 multilist_insert(new_state->arcs_list[buftype], hdr); 2461 2462 if (GHOST_STATE(new_state)) { 2463 ASSERT0(bufcnt); 2464 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2465 update_new = B_TRUE; 2466 } 2467 arc_evictable_space_increment(hdr, new_state); 2468 } 2469 } 2470 2471 ASSERT(!HDR_EMPTY(hdr)); 2472 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 2473 buf_hash_remove(hdr); 2474 2475 /* adjust state sizes (ignore arc_l2c_only) */ 2476 2477 if (update_new && new_state != arc_l2c_only) { 2478 ASSERT(HDR_HAS_L1HDR(hdr)); 2479 if (GHOST_STATE(new_state)) { 2480 ASSERT0(bufcnt); 2481 2482 /* 2483 * When moving a header to a ghost state, we first 2484 * remove all arc buffers. Thus, we'll have a 2485 * bufcnt of zero, and no arc buffer to use for 2486 * the reference. As a result, we use the arc 2487 * header pointer for the reference. 2488 */ 2489 (void) zfs_refcount_add_many(&new_state->arcs_size, 2490 HDR_GET_LSIZE(hdr), hdr); 2491 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2492 ASSERT(!HDR_HAS_RABD(hdr)); 2493 } else { 2494 uint32_t buffers = 0; 2495 2496 /* 2497 * Each individual buffer holds a unique reference, 2498 * thus we must remove each of these references one 2499 * at a time. 2500 */ 2501 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2502 buf = buf->b_next) { 2503 ASSERT3U(bufcnt, !=, 0); 2504 buffers++; 2505 2506 /* 2507 * When the arc_buf_t is sharing the data 2508 * block with the hdr, the owner of the 2509 * reference belongs to the hdr. Only 2510 * add to the refcount if the arc_buf_t is 2511 * not shared. 2512 */ 2513 if (arc_buf_is_shared(buf)) 2514 continue; 2515 2516 (void) zfs_refcount_add_many( 2517 &new_state->arcs_size, 2518 arc_buf_size(buf), buf); 2519 } 2520 ASSERT3U(bufcnt, ==, buffers); 2521 2522 if (hdr->b_l1hdr.b_pabd != NULL) { 2523 (void) zfs_refcount_add_many( 2524 &new_state->arcs_size, 2525 arc_hdr_size(hdr), hdr); 2526 } 2527 2528 if (HDR_HAS_RABD(hdr)) { 2529 (void) zfs_refcount_add_many( 2530 &new_state->arcs_size, 2531 HDR_GET_PSIZE(hdr), hdr); 2532 } 2533 } 2534 } 2535 2536 if (update_old && old_state != arc_l2c_only) { 2537 ASSERT(HDR_HAS_L1HDR(hdr)); 2538 if (GHOST_STATE(old_state)) { 2539 ASSERT0(bufcnt); 2540 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2541 ASSERT(!HDR_HAS_RABD(hdr)); 2542 2543 /* 2544 * When moving a header off of a ghost state, 2545 * the header will not contain any arc buffers. 2546 * We use the arc header pointer for the reference 2547 * which is exactly what we did when we put the 2548 * header on the ghost state. 2549 */ 2550 2551 (void) zfs_refcount_remove_many(&old_state->arcs_size, 2552 HDR_GET_LSIZE(hdr), hdr); 2553 } else { 2554 uint32_t buffers = 0; 2555 2556 /* 2557 * Each individual buffer holds a unique reference, 2558 * thus we must remove each of these references one 2559 * at a time. 2560 */ 2561 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2562 buf = buf->b_next) { 2563 ASSERT3U(bufcnt, !=, 0); 2564 buffers++; 2565 2566 /* 2567 * When the arc_buf_t is sharing the data 2568 * block with the hdr, the owner of the 2569 * reference belongs to the hdr. Only 2570 * add to the refcount if the arc_buf_t is 2571 * not shared. 2572 */ 2573 if (arc_buf_is_shared(buf)) 2574 continue; 2575 2576 (void) zfs_refcount_remove_many( 2577 &old_state->arcs_size, arc_buf_size(buf), 2578 buf); 2579 } 2580 ASSERT3U(bufcnt, ==, buffers); 2581 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 2582 HDR_HAS_RABD(hdr)); 2583 2584 if (hdr->b_l1hdr.b_pabd != NULL) { 2585 (void) zfs_refcount_remove_many( 2586 &old_state->arcs_size, arc_hdr_size(hdr), 2587 hdr); 2588 } 2589 2590 if (HDR_HAS_RABD(hdr)) { 2591 (void) zfs_refcount_remove_many( 2592 &old_state->arcs_size, HDR_GET_PSIZE(hdr), 2593 hdr); 2594 } 2595 } 2596 } 2597 2598 if (HDR_HAS_L1HDR(hdr)) 2599 hdr->b_l1hdr.b_state = new_state; 2600 2601 /* 2602 * L2 headers should never be on the L2 state list since they don't 2603 * have L1 headers allocated. 2604 */ 2605 ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) && 2606 multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA])); 2607 } 2608 2609 void 2610 arc_space_consume(uint64_t space, arc_space_type_t type) 2611 { 2612 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2613 2614 switch (type) { 2615 default: 2616 break; 2617 case ARC_SPACE_DATA: 2618 aggsum_add(&astat_data_size, space); 2619 break; 2620 case ARC_SPACE_META: 2621 aggsum_add(&astat_metadata_size, space); 2622 break; 2623 case ARC_SPACE_BONUS: 2624 aggsum_add(&astat_bonus_size, space); 2625 break; 2626 case ARC_SPACE_DNODE: 2627 aggsum_add(&astat_dnode_size, space); 2628 break; 2629 case ARC_SPACE_DBUF: 2630 aggsum_add(&astat_dbuf_size, space); 2631 break; 2632 case ARC_SPACE_HDRS: 2633 aggsum_add(&astat_hdr_size, space); 2634 break; 2635 case ARC_SPACE_L2HDRS: 2636 aggsum_add(&astat_l2_hdr_size, space); 2637 break; 2638 case ARC_SPACE_ABD_CHUNK_WASTE: 2639 /* 2640 * Note: this includes space wasted by all scatter ABD's, not 2641 * just those allocated by the ARC. But the vast majority of 2642 * scatter ABD's come from the ARC, because other users are 2643 * very short-lived. 2644 */ 2645 aggsum_add(&astat_abd_chunk_waste_size, space); 2646 break; 2647 } 2648 2649 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) 2650 aggsum_add(&arc_meta_used, space); 2651 2652 aggsum_add(&arc_size, space); 2653 } 2654 2655 void 2656 arc_space_return(uint64_t space, arc_space_type_t type) 2657 { 2658 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2659 2660 switch (type) { 2661 default: 2662 break; 2663 case ARC_SPACE_DATA: 2664 aggsum_add(&astat_data_size, -space); 2665 break; 2666 case ARC_SPACE_META: 2667 aggsum_add(&astat_metadata_size, -space); 2668 break; 2669 case ARC_SPACE_BONUS: 2670 aggsum_add(&astat_bonus_size, -space); 2671 break; 2672 case ARC_SPACE_DNODE: 2673 aggsum_add(&astat_dnode_size, -space); 2674 break; 2675 case ARC_SPACE_DBUF: 2676 aggsum_add(&astat_dbuf_size, -space); 2677 break; 2678 case ARC_SPACE_HDRS: 2679 aggsum_add(&astat_hdr_size, -space); 2680 break; 2681 case ARC_SPACE_L2HDRS: 2682 aggsum_add(&astat_l2_hdr_size, -space); 2683 break; 2684 case ARC_SPACE_ABD_CHUNK_WASTE: 2685 aggsum_add(&astat_abd_chunk_waste_size, -space); 2686 break; 2687 } 2688 2689 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) { 2690 ASSERT(aggsum_compare(&arc_meta_used, space) >= 0); 2691 /* 2692 * We use the upper bound here rather than the precise value 2693 * because the arc_meta_max value doesn't need to be 2694 * precise. It's only consumed by humans via arcstats. 2695 */ 2696 if (arc_meta_max < aggsum_upper_bound(&arc_meta_used)) 2697 arc_meta_max = aggsum_upper_bound(&arc_meta_used); 2698 aggsum_add(&arc_meta_used, -space); 2699 } 2700 2701 ASSERT(aggsum_compare(&arc_size, space) >= 0); 2702 aggsum_add(&arc_size, -space); 2703 } 2704 2705 /* 2706 * Given a hdr and a buf, returns whether that buf can share its b_data buffer 2707 * with the hdr's b_pabd. 2708 */ 2709 static boolean_t 2710 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2711 { 2712 /* 2713 * The criteria for sharing a hdr's data are: 2714 * 1. the buffer is not encrypted 2715 * 2. the hdr's compression matches the buf's compression 2716 * 3. the hdr doesn't need to be byteswapped 2717 * 4. the hdr isn't already being shared 2718 * 5. the buf is either compressed or it is the last buf in the hdr list 2719 * 2720 * Criterion #5 maintains the invariant that shared uncompressed 2721 * bufs must be the final buf in the hdr's b_buf list. Reading this, you 2722 * might ask, "if a compressed buf is allocated first, won't that be the 2723 * last thing in the list?", but in that case it's impossible to create 2724 * a shared uncompressed buf anyway (because the hdr must be compressed 2725 * to have the compressed buf). You might also think that #3 is 2726 * sufficient to make this guarantee, however it's possible 2727 * (specifically in the rare L2ARC write race mentioned in 2728 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that 2729 * is shareable, but wasn't at the time of its allocation. Rather than 2730 * allow a new shared uncompressed buf to be created and then shuffle 2731 * the list around to make it the last element, this simply disallows 2732 * sharing if the new buf isn't the first to be added. 2733 */ 2734 ASSERT3P(buf->b_hdr, ==, hdr); 2735 boolean_t hdr_compressed = 2736 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF; 2737 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0; 2738 return (!ARC_BUF_ENCRYPTED(buf) && 2739 buf_compressed == hdr_compressed && 2740 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && 2741 !HDR_SHARED_DATA(hdr) && 2742 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf))); 2743 } 2744 2745 /* 2746 * Allocate a buf for this hdr. If you care about the data that's in the hdr, 2747 * or if you want a compressed buffer, pass those flags in. Returns 0 if the 2748 * copy was made successfully, or an error code otherwise. 2749 */ 2750 static int 2751 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb, 2752 void *tag, boolean_t encrypted, boolean_t compressed, boolean_t noauth, 2753 boolean_t fill, arc_buf_t **ret) 2754 { 2755 arc_buf_t *buf; 2756 arc_fill_flags_t flags = ARC_FILL_LOCKED; 2757 2758 ASSERT(HDR_HAS_L1HDR(hdr)); 2759 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2760 VERIFY(hdr->b_type == ARC_BUFC_DATA || 2761 hdr->b_type == ARC_BUFC_METADATA); 2762 ASSERT3P(ret, !=, NULL); 2763 ASSERT3P(*ret, ==, NULL); 2764 IMPLY(encrypted, compressed); 2765 2766 hdr->b_l1hdr.b_mru_hits = 0; 2767 hdr->b_l1hdr.b_mru_ghost_hits = 0; 2768 hdr->b_l1hdr.b_mfu_hits = 0; 2769 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 2770 hdr->b_l1hdr.b_l2_hits = 0; 2771 2772 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2773 buf->b_hdr = hdr; 2774 buf->b_data = NULL; 2775 buf->b_next = hdr->b_l1hdr.b_buf; 2776 buf->b_flags = 0; 2777 2778 add_reference(hdr, tag); 2779 2780 /* 2781 * We're about to change the hdr's b_flags. We must either 2782 * hold the hash_lock or be undiscoverable. 2783 */ 2784 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2785 2786 /* 2787 * Only honor requests for compressed bufs if the hdr is actually 2788 * compressed. This must be overridden if the buffer is encrypted since 2789 * encrypted buffers cannot be decompressed. 2790 */ 2791 if (encrypted) { 2792 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2793 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED; 2794 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED; 2795 } else if (compressed && 2796 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 2797 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2798 flags |= ARC_FILL_COMPRESSED; 2799 } 2800 2801 if (noauth) { 2802 ASSERT0(encrypted); 2803 flags |= ARC_FILL_NOAUTH; 2804 } 2805 2806 /* 2807 * If the hdr's data can be shared then we share the data buffer and 2808 * set the appropriate bit in the hdr's b_flags to indicate the hdr is 2809 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new 2810 * buffer to store the buf's data. 2811 * 2812 * There are two additional restrictions here because we're sharing 2813 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be 2814 * actively involved in an L2ARC write, because if this buf is used by 2815 * an arc_write() then the hdr's data buffer will be released when the 2816 * write completes, even though the L2ARC write might still be using it. 2817 * Second, the hdr's ABD must be linear so that the buf's user doesn't 2818 * need to be ABD-aware. It must be allocated via 2819 * zio_[data_]buf_alloc(), not as a page, because we need to be able 2820 * to abd_release_ownership_of_buf(), which isn't allowed on "linear 2821 * page" buffers because the ABD code needs to handle freeing them 2822 * specially. 2823 */ 2824 boolean_t can_share = arc_can_share(hdr, buf) && 2825 !HDR_L2_WRITING(hdr) && 2826 hdr->b_l1hdr.b_pabd != NULL && 2827 abd_is_linear(hdr->b_l1hdr.b_pabd) && 2828 !abd_is_linear_page(hdr->b_l1hdr.b_pabd); 2829 2830 /* Set up b_data and sharing */ 2831 if (can_share) { 2832 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd); 2833 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2834 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2835 } else { 2836 buf->b_data = 2837 arc_get_data_buf(hdr, arc_buf_size(buf), buf); 2838 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2839 } 2840 VERIFY3P(buf->b_data, !=, NULL); 2841 2842 hdr->b_l1hdr.b_buf = buf; 2843 hdr->b_l1hdr.b_bufcnt += 1; 2844 if (encrypted) 2845 hdr->b_crypt_hdr.b_ebufcnt += 1; 2846 2847 /* 2848 * If the user wants the data from the hdr, we need to either copy or 2849 * decompress the data. 2850 */ 2851 if (fill) { 2852 ASSERT3P(zb, !=, NULL); 2853 return (arc_buf_fill(buf, spa, zb, flags)); 2854 } 2855 2856 return (0); 2857 } 2858 2859 static char *arc_onloan_tag = "onloan"; 2860 2861 static inline void 2862 arc_loaned_bytes_update(int64_t delta) 2863 { 2864 atomic_add_64(&arc_loaned_bytes, delta); 2865 2866 /* assert that it did not wrap around */ 2867 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 2868 } 2869 2870 /* 2871 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 2872 * flight data by arc_tempreserve_space() until they are "returned". Loaned 2873 * buffers must be returned to the arc before they can be used by the DMU or 2874 * freed. 2875 */ 2876 arc_buf_t * 2877 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size) 2878 { 2879 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag, 2880 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size); 2881 2882 arc_loaned_bytes_update(arc_buf_size(buf)); 2883 2884 return (buf); 2885 } 2886 2887 arc_buf_t * 2888 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize, 2889 enum zio_compress compression_type, uint8_t complevel) 2890 { 2891 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag, 2892 psize, lsize, compression_type, complevel); 2893 2894 arc_loaned_bytes_update(arc_buf_size(buf)); 2895 2896 return (buf); 2897 } 2898 2899 arc_buf_t * 2900 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder, 2901 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 2902 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 2903 enum zio_compress compression_type, uint8_t complevel) 2904 { 2905 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj, 2906 byteorder, salt, iv, mac, ot, psize, lsize, compression_type, 2907 complevel); 2908 2909 atomic_add_64(&arc_loaned_bytes, psize); 2910 return (buf); 2911 } 2912 2913 2914 /* 2915 * Return a loaned arc buffer to the arc. 2916 */ 2917 void 2918 arc_return_buf(arc_buf_t *buf, void *tag) 2919 { 2920 arc_buf_hdr_t *hdr = buf->b_hdr; 2921 2922 ASSERT3P(buf->b_data, !=, NULL); 2923 ASSERT(HDR_HAS_L1HDR(hdr)); 2924 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 2925 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2926 2927 arc_loaned_bytes_update(-arc_buf_size(buf)); 2928 } 2929 2930 /* Detach an arc_buf from a dbuf (tag) */ 2931 void 2932 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 2933 { 2934 arc_buf_hdr_t *hdr = buf->b_hdr; 2935 2936 ASSERT3P(buf->b_data, !=, NULL); 2937 ASSERT(HDR_HAS_L1HDR(hdr)); 2938 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2939 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 2940 2941 arc_loaned_bytes_update(arc_buf_size(buf)); 2942 } 2943 2944 static void 2945 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type) 2946 { 2947 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); 2948 2949 df->l2df_abd = abd; 2950 df->l2df_size = size; 2951 df->l2df_type = type; 2952 mutex_enter(&l2arc_free_on_write_mtx); 2953 list_insert_head(l2arc_free_on_write, df); 2954 mutex_exit(&l2arc_free_on_write_mtx); 2955 } 2956 2957 static void 2958 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata) 2959 { 2960 arc_state_t *state = hdr->b_l1hdr.b_state; 2961 arc_buf_contents_t type = arc_buf_type(hdr); 2962 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 2963 2964 /* protected by hash lock, if in the hash table */ 2965 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2966 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2967 ASSERT(state != arc_anon && state != arc_l2c_only); 2968 2969 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2970 size, hdr); 2971 } 2972 (void) zfs_refcount_remove_many(&state->arcs_size, size, hdr); 2973 if (type == ARC_BUFC_METADATA) { 2974 arc_space_return(size, ARC_SPACE_META); 2975 } else { 2976 ASSERT(type == ARC_BUFC_DATA); 2977 arc_space_return(size, ARC_SPACE_DATA); 2978 } 2979 2980 if (free_rdata) { 2981 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type); 2982 } else { 2983 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type); 2984 } 2985 } 2986 2987 /* 2988 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the 2989 * data buffer, we transfer the refcount ownership to the hdr and update 2990 * the appropriate kstats. 2991 */ 2992 static void 2993 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2994 { 2995 ASSERT(arc_can_share(hdr, buf)); 2996 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2997 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 2998 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2999 3000 /* 3001 * Start sharing the data buffer. We transfer the 3002 * refcount ownership to the hdr since it always owns 3003 * the refcount whenever an arc_buf_t is shared. 3004 */ 3005 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 3006 arc_hdr_size(hdr), buf, hdr); 3007 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf)); 3008 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd, 3009 HDR_ISTYPE_METADATA(hdr)); 3010 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 3011 buf->b_flags |= ARC_BUF_FLAG_SHARED; 3012 3013 /* 3014 * Since we've transferred ownership to the hdr we need 3015 * to increment its compressed and uncompressed kstats and 3016 * decrement the overhead size. 3017 */ 3018 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 3019 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3020 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf)); 3021 } 3022 3023 static void 3024 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 3025 { 3026 ASSERT(arc_buf_is_shared(buf)); 3027 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3028 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3029 3030 /* 3031 * We are no longer sharing this buffer so we need 3032 * to transfer its ownership to the rightful owner. 3033 */ 3034 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 3035 arc_hdr_size(hdr), hdr, buf); 3036 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3037 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd); 3038 abd_put(hdr->b_l1hdr.b_pabd); 3039 hdr->b_l1hdr.b_pabd = NULL; 3040 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 3041 3042 /* 3043 * Since the buffer is no longer shared between 3044 * the arc buf and the hdr, count it as overhead. 3045 */ 3046 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 3047 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3048 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 3049 } 3050 3051 /* 3052 * Remove an arc_buf_t from the hdr's buf list and return the last 3053 * arc_buf_t on the list. If no buffers remain on the list then return 3054 * NULL. 3055 */ 3056 static arc_buf_t * 3057 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf) 3058 { 3059 ASSERT(HDR_HAS_L1HDR(hdr)); 3060 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3061 3062 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf; 3063 arc_buf_t *lastbuf = NULL; 3064 3065 /* 3066 * Remove the buf from the hdr list and locate the last 3067 * remaining buffer on the list. 3068 */ 3069 while (*bufp != NULL) { 3070 if (*bufp == buf) 3071 *bufp = buf->b_next; 3072 3073 /* 3074 * If we've removed a buffer in the middle of 3075 * the list then update the lastbuf and update 3076 * bufp. 3077 */ 3078 if (*bufp != NULL) { 3079 lastbuf = *bufp; 3080 bufp = &(*bufp)->b_next; 3081 } 3082 } 3083 buf->b_next = NULL; 3084 ASSERT3P(lastbuf, !=, buf); 3085 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL); 3086 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL); 3087 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf)); 3088 3089 return (lastbuf); 3090 } 3091 3092 /* 3093 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's 3094 * list and free it. 3095 */ 3096 static void 3097 arc_buf_destroy_impl(arc_buf_t *buf) 3098 { 3099 arc_buf_hdr_t *hdr = buf->b_hdr; 3100 3101 /* 3102 * Free up the data associated with the buf but only if we're not 3103 * sharing this with the hdr. If we are sharing it with the hdr, the 3104 * hdr is responsible for doing the free. 3105 */ 3106 if (buf->b_data != NULL) { 3107 /* 3108 * We're about to change the hdr's b_flags. We must either 3109 * hold the hash_lock or be undiscoverable. 3110 */ 3111 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3112 3113 arc_cksum_verify(buf); 3114 arc_buf_unwatch(buf); 3115 3116 if (arc_buf_is_shared(buf)) { 3117 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3118 } else { 3119 uint64_t size = arc_buf_size(buf); 3120 arc_free_data_buf(hdr, buf->b_data, size, buf); 3121 ARCSTAT_INCR(arcstat_overhead_size, -size); 3122 } 3123 buf->b_data = NULL; 3124 3125 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3126 hdr->b_l1hdr.b_bufcnt -= 1; 3127 3128 if (ARC_BUF_ENCRYPTED(buf)) { 3129 hdr->b_crypt_hdr.b_ebufcnt -= 1; 3130 3131 /* 3132 * If we have no more encrypted buffers and we've 3133 * already gotten a copy of the decrypted data we can 3134 * free b_rabd to save some space. 3135 */ 3136 if (hdr->b_crypt_hdr.b_ebufcnt == 0 && 3137 HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL && 3138 !HDR_IO_IN_PROGRESS(hdr)) { 3139 arc_hdr_free_abd(hdr, B_TRUE); 3140 } 3141 } 3142 } 3143 3144 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 3145 3146 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 3147 /* 3148 * If the current arc_buf_t is sharing its data buffer with the 3149 * hdr, then reassign the hdr's b_pabd to share it with the new 3150 * buffer at the end of the list. The shared buffer is always 3151 * the last one on the hdr's buffer list. 3152 * 3153 * There is an equivalent case for compressed bufs, but since 3154 * they aren't guaranteed to be the last buf in the list and 3155 * that is an exceedingly rare case, we just allow that space be 3156 * wasted temporarily. We must also be careful not to share 3157 * encrypted buffers, since they cannot be shared. 3158 */ 3159 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) { 3160 /* Only one buf can be shared at once */ 3161 VERIFY(!arc_buf_is_shared(lastbuf)); 3162 /* hdr is uncompressed so can't have compressed buf */ 3163 VERIFY(!ARC_BUF_COMPRESSED(lastbuf)); 3164 3165 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3166 arc_hdr_free_abd(hdr, B_FALSE); 3167 3168 /* 3169 * We must setup a new shared block between the 3170 * last buffer and the hdr. The data would have 3171 * been allocated by the arc buf so we need to transfer 3172 * ownership to the hdr since it's now being shared. 3173 */ 3174 arc_share_buf(hdr, lastbuf); 3175 } 3176 } else if (HDR_SHARED_DATA(hdr)) { 3177 /* 3178 * Uncompressed shared buffers are always at the end 3179 * of the list. Compressed buffers don't have the 3180 * same requirements. This makes it hard to 3181 * simply assert that the lastbuf is shared so 3182 * we rely on the hdr's compression flags to determine 3183 * if we have a compressed, shared buffer. 3184 */ 3185 ASSERT3P(lastbuf, !=, NULL); 3186 ASSERT(arc_buf_is_shared(lastbuf) || 3187 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 3188 } 3189 3190 /* 3191 * Free the checksum if we're removing the last uncompressed buf from 3192 * this hdr. 3193 */ 3194 if (!arc_hdr_has_uncompressed_buf(hdr)) { 3195 arc_cksum_free(hdr); 3196 } 3197 3198 /* clean up the buf */ 3199 buf->b_hdr = NULL; 3200 kmem_cache_free(buf_cache, buf); 3201 } 3202 3203 static void 3204 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags) 3205 { 3206 uint64_t size; 3207 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0); 3208 boolean_t do_adapt = ((alloc_flags & ARC_HDR_DO_ADAPT) != 0); 3209 3210 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 3211 ASSERT(HDR_HAS_L1HDR(hdr)); 3212 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata); 3213 IMPLY(alloc_rdata, HDR_PROTECTED(hdr)); 3214 3215 if (alloc_rdata) { 3216 size = HDR_GET_PSIZE(hdr); 3217 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL); 3218 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr, 3219 do_adapt); 3220 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL); 3221 ARCSTAT_INCR(arcstat_raw_size, size); 3222 } else { 3223 size = arc_hdr_size(hdr); 3224 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3225 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr, 3226 do_adapt); 3227 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3228 } 3229 3230 ARCSTAT_INCR(arcstat_compressed_size, size); 3231 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3232 } 3233 3234 static void 3235 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata) 3236 { 3237 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 3238 3239 ASSERT(HDR_HAS_L1HDR(hdr)); 3240 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 3241 IMPLY(free_rdata, HDR_HAS_RABD(hdr)); 3242 3243 /* 3244 * If the hdr is currently being written to the l2arc then 3245 * we defer freeing the data by adding it to the l2arc_free_on_write 3246 * list. The l2arc will free the data once it's finished 3247 * writing it to the l2arc device. 3248 */ 3249 if (HDR_L2_WRITING(hdr)) { 3250 arc_hdr_free_on_write(hdr, free_rdata); 3251 ARCSTAT_BUMP(arcstat_l2_free_on_write); 3252 } else if (free_rdata) { 3253 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr); 3254 } else { 3255 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr); 3256 } 3257 3258 if (free_rdata) { 3259 hdr->b_crypt_hdr.b_rabd = NULL; 3260 ARCSTAT_INCR(arcstat_raw_size, -size); 3261 } else { 3262 hdr->b_l1hdr.b_pabd = NULL; 3263 } 3264 3265 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr)) 3266 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 3267 3268 ARCSTAT_INCR(arcstat_compressed_size, -size); 3269 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3270 } 3271 3272 static arc_buf_hdr_t * 3273 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, 3274 boolean_t protected, enum zio_compress compression_type, uint8_t complevel, 3275 arc_buf_contents_t type, boolean_t alloc_rdata) 3276 { 3277 arc_buf_hdr_t *hdr; 3278 int flags = ARC_HDR_DO_ADAPT; 3279 3280 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); 3281 if (protected) { 3282 hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE); 3283 } else { 3284 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 3285 } 3286 flags |= alloc_rdata ? ARC_HDR_ALLOC_RDATA : 0; 3287 3288 ASSERT(HDR_EMPTY(hdr)); 3289 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3290 HDR_SET_PSIZE(hdr, psize); 3291 HDR_SET_LSIZE(hdr, lsize); 3292 hdr->b_spa = spa; 3293 hdr->b_type = type; 3294 hdr->b_flags = 0; 3295 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); 3296 arc_hdr_set_compress(hdr, compression_type); 3297 hdr->b_complevel = complevel; 3298 if (protected) 3299 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 3300 3301 hdr->b_l1hdr.b_state = arc_anon; 3302 hdr->b_l1hdr.b_arc_access = 0; 3303 hdr->b_l1hdr.b_bufcnt = 0; 3304 hdr->b_l1hdr.b_buf = NULL; 3305 3306 /* 3307 * Allocate the hdr's buffer. This will contain either 3308 * the compressed or uncompressed data depending on the block 3309 * it references and compressed arc enablement. 3310 */ 3311 arc_hdr_alloc_abd(hdr, flags); 3312 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3313 3314 return (hdr); 3315 } 3316 3317 /* 3318 * Transition between the two allocation states for the arc_buf_hdr struct. 3319 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 3320 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 3321 * version is used when a cache buffer is only in the L2ARC in order to reduce 3322 * memory usage. 3323 */ 3324 static arc_buf_hdr_t * 3325 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 3326 { 3327 ASSERT(HDR_HAS_L2HDR(hdr)); 3328 3329 arc_buf_hdr_t *nhdr; 3330 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3331 3332 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 3333 (old == hdr_l2only_cache && new == hdr_full_cache)); 3334 3335 /* 3336 * if the caller wanted a new full header and the header is to be 3337 * encrypted we will actually allocate the header from the full crypt 3338 * cache instead. The same applies to freeing from the old cache. 3339 */ 3340 if (HDR_PROTECTED(hdr) && new == hdr_full_cache) 3341 new = hdr_full_crypt_cache; 3342 if (HDR_PROTECTED(hdr) && old == hdr_full_cache) 3343 old = hdr_full_crypt_cache; 3344 3345 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 3346 3347 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 3348 buf_hash_remove(hdr); 3349 3350 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE); 3351 3352 if (new == hdr_full_cache || new == hdr_full_crypt_cache) { 3353 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3354 /* 3355 * arc_access and arc_change_state need to be aware that a 3356 * header has just come out of L2ARC, so we set its state to 3357 * l2c_only even though it's about to change. 3358 */ 3359 nhdr->b_l1hdr.b_state = arc_l2c_only; 3360 3361 /* Verify previous threads set to NULL before freeing */ 3362 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL); 3363 ASSERT(!HDR_HAS_RABD(hdr)); 3364 } else { 3365 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3366 ASSERT0(hdr->b_l1hdr.b_bufcnt); 3367 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3368 3369 /* 3370 * If we've reached here, We must have been called from 3371 * arc_evict_hdr(), as such we should have already been 3372 * removed from any ghost list we were previously on 3373 * (which protects us from racing with arc_evict_state), 3374 * thus no locking is needed during this check. 3375 */ 3376 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3377 3378 /* 3379 * A buffer must not be moved into the arc_l2c_only 3380 * state if it's not finished being written out to the 3381 * l2arc device. Otherwise, the b_l1hdr.b_pabd field 3382 * might try to be accessed, even though it was removed. 3383 */ 3384 VERIFY(!HDR_L2_WRITING(hdr)); 3385 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3386 ASSERT(!HDR_HAS_RABD(hdr)); 3387 3388 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3389 } 3390 /* 3391 * The header has been reallocated so we need to re-insert it into any 3392 * lists it was on. 3393 */ 3394 (void) buf_hash_insert(nhdr, NULL); 3395 3396 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 3397 3398 mutex_enter(&dev->l2ad_mtx); 3399 3400 /* 3401 * We must place the realloc'ed header back into the list at 3402 * the same spot. Otherwise, if it's placed earlier in the list, 3403 * l2arc_write_buffers() could find it during the function's 3404 * write phase, and try to write it out to the l2arc. 3405 */ 3406 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 3407 list_remove(&dev->l2ad_buflist, hdr); 3408 3409 mutex_exit(&dev->l2ad_mtx); 3410 3411 /* 3412 * Since we're using the pointer address as the tag when 3413 * incrementing and decrementing the l2ad_alloc refcount, we 3414 * must remove the old pointer (that we're about to destroy) and 3415 * add the new pointer to the refcount. Otherwise we'd remove 3416 * the wrong pointer address when calling arc_hdr_destroy() later. 3417 */ 3418 3419 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 3420 arc_hdr_size(hdr), hdr); 3421 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 3422 arc_hdr_size(nhdr), nhdr); 3423 3424 buf_discard_identity(hdr); 3425 kmem_cache_free(old, hdr); 3426 3427 return (nhdr); 3428 } 3429 3430 /* 3431 * This function allows an L1 header to be reallocated as a crypt 3432 * header and vice versa. If we are going to a crypt header, the 3433 * new fields will be zeroed out. 3434 */ 3435 static arc_buf_hdr_t * 3436 arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt) 3437 { 3438 arc_buf_hdr_t *nhdr; 3439 arc_buf_t *buf; 3440 kmem_cache_t *ncache, *ocache; 3441 unsigned nsize, osize; 3442 3443 /* 3444 * This function requires that hdr is in the arc_anon state. 3445 * Therefore it won't have any L2ARC data for us to worry 3446 * about copying. 3447 */ 3448 ASSERT(HDR_HAS_L1HDR(hdr)); 3449 ASSERT(!HDR_HAS_L2HDR(hdr)); 3450 ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt); 3451 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3452 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3453 ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node)); 3454 ASSERT3P(hdr->b_hash_next, ==, NULL); 3455 3456 if (need_crypt) { 3457 ncache = hdr_full_crypt_cache; 3458 nsize = sizeof (hdr->b_crypt_hdr); 3459 ocache = hdr_full_cache; 3460 osize = HDR_FULL_SIZE; 3461 } else { 3462 ncache = hdr_full_cache; 3463 nsize = HDR_FULL_SIZE; 3464 ocache = hdr_full_crypt_cache; 3465 osize = sizeof (hdr->b_crypt_hdr); 3466 } 3467 3468 nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE); 3469 3470 /* 3471 * Copy all members that aren't locks or condvars to the new header. 3472 * No lists are pointing to us (as we asserted above), so we don't 3473 * need to worry about the list nodes. 3474 */ 3475 nhdr->b_dva = hdr->b_dva; 3476 nhdr->b_birth = hdr->b_birth; 3477 nhdr->b_type = hdr->b_type; 3478 nhdr->b_flags = hdr->b_flags; 3479 nhdr->b_psize = hdr->b_psize; 3480 nhdr->b_lsize = hdr->b_lsize; 3481 nhdr->b_spa = hdr->b_spa; 3482 nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum; 3483 nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt; 3484 nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap; 3485 nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state; 3486 nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access; 3487 nhdr->b_l1hdr.b_mru_hits = hdr->b_l1hdr.b_mru_hits; 3488 nhdr->b_l1hdr.b_mru_ghost_hits = hdr->b_l1hdr.b_mru_ghost_hits; 3489 nhdr->b_l1hdr.b_mfu_hits = hdr->b_l1hdr.b_mfu_hits; 3490 nhdr->b_l1hdr.b_mfu_ghost_hits = hdr->b_l1hdr.b_mfu_ghost_hits; 3491 nhdr->b_l1hdr.b_l2_hits = hdr->b_l1hdr.b_l2_hits; 3492 nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb; 3493 nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd; 3494 3495 /* 3496 * This zfs_refcount_add() exists only to ensure that the individual 3497 * arc buffers always point to a header that is referenced, avoiding 3498 * a small race condition that could trigger ASSERTs. 3499 */ 3500 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG); 3501 nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf; 3502 for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) { 3503 mutex_enter(&buf->b_evict_lock); 3504 buf->b_hdr = nhdr; 3505 mutex_exit(&buf->b_evict_lock); 3506 } 3507 3508 zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt); 3509 (void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG); 3510 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3511 3512 if (need_crypt) { 3513 arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED); 3514 } else { 3515 arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED); 3516 } 3517 3518 /* unset all members of the original hdr */ 3519 bzero(&hdr->b_dva, sizeof (dva_t)); 3520 hdr->b_birth = 0; 3521 hdr->b_type = ARC_BUFC_INVALID; 3522 hdr->b_flags = 0; 3523 hdr->b_psize = 0; 3524 hdr->b_lsize = 0; 3525 hdr->b_spa = 0; 3526 hdr->b_l1hdr.b_freeze_cksum = NULL; 3527 hdr->b_l1hdr.b_buf = NULL; 3528 hdr->b_l1hdr.b_bufcnt = 0; 3529 hdr->b_l1hdr.b_byteswap = 0; 3530 hdr->b_l1hdr.b_state = NULL; 3531 hdr->b_l1hdr.b_arc_access = 0; 3532 hdr->b_l1hdr.b_mru_hits = 0; 3533 hdr->b_l1hdr.b_mru_ghost_hits = 0; 3534 hdr->b_l1hdr.b_mfu_hits = 0; 3535 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 3536 hdr->b_l1hdr.b_l2_hits = 0; 3537 hdr->b_l1hdr.b_acb = NULL; 3538 hdr->b_l1hdr.b_pabd = NULL; 3539 3540 if (ocache == hdr_full_crypt_cache) { 3541 ASSERT(!HDR_HAS_RABD(hdr)); 3542 hdr->b_crypt_hdr.b_ot = DMU_OT_NONE; 3543 hdr->b_crypt_hdr.b_ebufcnt = 0; 3544 hdr->b_crypt_hdr.b_dsobj = 0; 3545 bzero(hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3546 bzero(hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3547 bzero(hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3548 } 3549 3550 buf_discard_identity(hdr); 3551 kmem_cache_free(ocache, hdr); 3552 3553 return (nhdr); 3554 } 3555 3556 /* 3557 * This function is used by the send / receive code to convert a newly 3558 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It 3559 * is also used to allow the root objset block to be updated without altering 3560 * its embedded MACs. Both block types will always be uncompressed so we do not 3561 * have to worry about compression type or psize. 3562 */ 3563 void 3564 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder, 3565 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv, 3566 const uint8_t *mac) 3567 { 3568 arc_buf_hdr_t *hdr = buf->b_hdr; 3569 3570 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET); 3571 ASSERT(HDR_HAS_L1HDR(hdr)); 3572 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3573 3574 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED); 3575 if (!HDR_PROTECTED(hdr)) 3576 hdr = arc_hdr_realloc_crypt(hdr, B_TRUE); 3577 hdr->b_crypt_hdr.b_dsobj = dsobj; 3578 hdr->b_crypt_hdr.b_ot = ot; 3579 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3580 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3581 if (!arc_hdr_has_uncompressed_buf(hdr)) 3582 arc_cksum_free(hdr); 3583 3584 if (salt != NULL) 3585 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3586 if (iv != NULL) 3587 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3588 if (mac != NULL) 3589 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3590 } 3591 3592 /* 3593 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. 3594 * The buf is returned thawed since we expect the consumer to modify it. 3595 */ 3596 arc_buf_t * 3597 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size) 3598 { 3599 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, 3600 B_FALSE, ZIO_COMPRESS_OFF, 0, type, B_FALSE); 3601 3602 arc_buf_t *buf = NULL; 3603 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE, 3604 B_FALSE, B_FALSE, &buf)); 3605 arc_buf_thaw(buf); 3606 3607 return (buf); 3608 } 3609 3610 /* 3611 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this 3612 * for bufs containing metadata. 3613 */ 3614 arc_buf_t * 3615 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize, 3616 enum zio_compress compression_type, uint8_t complevel) 3617 { 3618 ASSERT3U(lsize, >, 0); 3619 ASSERT3U(lsize, >=, psize); 3620 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF); 3621 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3622 3623 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 3624 B_FALSE, compression_type, complevel, ARC_BUFC_DATA, B_FALSE); 3625 3626 arc_buf_t *buf = NULL; 3627 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, 3628 B_TRUE, B_FALSE, B_FALSE, &buf)); 3629 arc_buf_thaw(buf); 3630 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3631 3632 if (!arc_buf_is_shared(buf)) { 3633 /* 3634 * To ensure that the hdr has the correct data in it if we call 3635 * arc_untransform() on this buf before it's been written to 3636 * disk, it's easiest if we just set up sharing between the 3637 * buf and the hdr. 3638 */ 3639 arc_hdr_free_abd(hdr, B_FALSE); 3640 arc_share_buf(hdr, buf); 3641 } 3642 3643 return (buf); 3644 } 3645 3646 arc_buf_t * 3647 arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder, 3648 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 3649 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 3650 enum zio_compress compression_type, uint8_t complevel) 3651 { 3652 arc_buf_hdr_t *hdr; 3653 arc_buf_t *buf; 3654 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ? 3655 ARC_BUFC_METADATA : ARC_BUFC_DATA; 3656 3657 ASSERT3U(lsize, >, 0); 3658 ASSERT3U(lsize, >=, psize); 3659 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF); 3660 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3661 3662 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE, 3663 compression_type, complevel, type, B_TRUE); 3664 3665 hdr->b_crypt_hdr.b_dsobj = dsobj; 3666 hdr->b_crypt_hdr.b_ot = ot; 3667 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3668 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3669 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3670 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3671 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3672 3673 /* 3674 * This buffer will be considered encrypted even if the ot is not an 3675 * encrypted type. It will become authenticated instead in 3676 * arc_write_ready(). 3677 */ 3678 buf = NULL; 3679 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE, 3680 B_FALSE, B_FALSE, &buf)); 3681 arc_buf_thaw(buf); 3682 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3683 3684 return (buf); 3685 } 3686 3687 static void 3688 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 3689 { 3690 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3691 l2arc_dev_t *dev = l2hdr->b_dev; 3692 uint64_t psize = HDR_GET_PSIZE(hdr); 3693 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3694 3695 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 3696 ASSERT(HDR_HAS_L2HDR(hdr)); 3697 3698 list_remove(&dev->l2ad_buflist, hdr); 3699 3700 ARCSTAT_INCR(arcstat_l2_psize, -psize); 3701 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr)); 3702 3703 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); 3704 3705 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), 3706 hdr); 3707 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 3708 } 3709 3710 static void 3711 arc_hdr_destroy(arc_buf_hdr_t *hdr) 3712 { 3713 if (HDR_HAS_L1HDR(hdr)) { 3714 ASSERT(hdr->b_l1hdr.b_buf == NULL || 3715 hdr->b_l1hdr.b_bufcnt > 0); 3716 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3717 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3718 } 3719 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3720 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 3721 3722 if (HDR_HAS_L2HDR(hdr)) { 3723 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3724 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 3725 3726 if (!buflist_held) 3727 mutex_enter(&dev->l2ad_mtx); 3728 3729 /* 3730 * Even though we checked this conditional above, we 3731 * need to check this again now that we have the 3732 * l2ad_mtx. This is because we could be racing with 3733 * another thread calling l2arc_evict() which might have 3734 * destroyed this header's L2 portion as we were waiting 3735 * to acquire the l2ad_mtx. If that happens, we don't 3736 * want to re-destroy the header's L2 portion. 3737 */ 3738 if (HDR_HAS_L2HDR(hdr)) 3739 arc_hdr_l2hdr_destroy(hdr); 3740 3741 if (!buflist_held) 3742 mutex_exit(&dev->l2ad_mtx); 3743 } 3744 3745 /* 3746 * The header's identify can only be safely discarded once it is no 3747 * longer discoverable. This requires removing it from the hash table 3748 * and the l2arc header list. After this point the hash lock can not 3749 * be used to protect the header. 3750 */ 3751 if (!HDR_EMPTY(hdr)) 3752 buf_discard_identity(hdr); 3753 3754 if (HDR_HAS_L1HDR(hdr)) { 3755 arc_cksum_free(hdr); 3756 3757 while (hdr->b_l1hdr.b_buf != NULL) 3758 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf); 3759 3760 if (hdr->b_l1hdr.b_pabd != NULL) 3761 arc_hdr_free_abd(hdr, B_FALSE); 3762 3763 if (HDR_HAS_RABD(hdr)) 3764 arc_hdr_free_abd(hdr, B_TRUE); 3765 } 3766 3767 ASSERT3P(hdr->b_hash_next, ==, NULL); 3768 if (HDR_HAS_L1HDR(hdr)) { 3769 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3770 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 3771 3772 if (!HDR_PROTECTED(hdr)) { 3773 kmem_cache_free(hdr_full_cache, hdr); 3774 } else { 3775 kmem_cache_free(hdr_full_crypt_cache, hdr); 3776 } 3777 } else { 3778 kmem_cache_free(hdr_l2only_cache, hdr); 3779 } 3780 } 3781 3782 void 3783 arc_buf_destroy(arc_buf_t *buf, void* tag) 3784 { 3785 arc_buf_hdr_t *hdr = buf->b_hdr; 3786 3787 if (hdr->b_l1hdr.b_state == arc_anon) { 3788 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 3789 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3790 VERIFY0(remove_reference(hdr, NULL, tag)); 3791 arc_hdr_destroy(hdr); 3792 return; 3793 } 3794 3795 kmutex_t *hash_lock = HDR_LOCK(hdr); 3796 mutex_enter(hash_lock); 3797 3798 ASSERT3P(hdr, ==, buf->b_hdr); 3799 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3800 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3801 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); 3802 ASSERT3P(buf->b_data, !=, NULL); 3803 3804 (void) remove_reference(hdr, hash_lock, tag); 3805 arc_buf_destroy_impl(buf); 3806 mutex_exit(hash_lock); 3807 } 3808 3809 /* 3810 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 3811 * state of the header is dependent on its state prior to entering this 3812 * function. The following transitions are possible: 3813 * 3814 * - arc_mru -> arc_mru_ghost 3815 * - arc_mfu -> arc_mfu_ghost 3816 * - arc_mru_ghost -> arc_l2c_only 3817 * - arc_mru_ghost -> deleted 3818 * - arc_mfu_ghost -> arc_l2c_only 3819 * - arc_mfu_ghost -> deleted 3820 */ 3821 static int64_t 3822 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 3823 { 3824 arc_state_t *evicted_state, *state; 3825 int64_t bytes_evicted = 0; 3826 int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ? 3827 arc_min_prescient_prefetch_ms : arc_min_prefetch_ms; 3828 3829 ASSERT(MUTEX_HELD(hash_lock)); 3830 ASSERT(HDR_HAS_L1HDR(hdr)); 3831 3832 state = hdr->b_l1hdr.b_state; 3833 if (GHOST_STATE(state)) { 3834 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3835 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3836 3837 /* 3838 * l2arc_write_buffers() relies on a header's L1 portion 3839 * (i.e. its b_pabd field) during it's write phase. 3840 * Thus, we cannot push a header onto the arc_l2c_only 3841 * state (removing its L1 piece) until the header is 3842 * done being written to the l2arc. 3843 */ 3844 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 3845 ARCSTAT_BUMP(arcstat_evict_l2_skip); 3846 return (bytes_evicted); 3847 } 3848 3849 ARCSTAT_BUMP(arcstat_deleted); 3850 bytes_evicted += HDR_GET_LSIZE(hdr); 3851 3852 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 3853 3854 if (HDR_HAS_L2HDR(hdr)) { 3855 ASSERT(hdr->b_l1hdr.b_pabd == NULL); 3856 ASSERT(!HDR_HAS_RABD(hdr)); 3857 /* 3858 * This buffer is cached on the 2nd Level ARC; 3859 * don't destroy the header. 3860 */ 3861 arc_change_state(arc_l2c_only, hdr, hash_lock); 3862 /* 3863 * dropping from L1+L2 cached to L2-only, 3864 * realloc to remove the L1 header. 3865 */ 3866 hdr = arc_hdr_realloc(hdr, hdr_full_cache, 3867 hdr_l2only_cache); 3868 } else { 3869 arc_change_state(arc_anon, hdr, hash_lock); 3870 arc_hdr_destroy(hdr); 3871 } 3872 return (bytes_evicted); 3873 } 3874 3875 ASSERT(state == arc_mru || state == arc_mfu); 3876 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3877 3878 /* prefetch buffers have a minimum lifespan */ 3879 if (HDR_IO_IN_PROGRESS(hdr) || 3880 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 3881 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < 3882 MSEC_TO_TICK(min_lifetime))) { 3883 ARCSTAT_BUMP(arcstat_evict_skip); 3884 return (bytes_evicted); 3885 } 3886 3887 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3888 while (hdr->b_l1hdr.b_buf) { 3889 arc_buf_t *buf = hdr->b_l1hdr.b_buf; 3890 if (!mutex_tryenter(&buf->b_evict_lock)) { 3891 ARCSTAT_BUMP(arcstat_mutex_miss); 3892 break; 3893 } 3894 if (buf->b_data != NULL) 3895 bytes_evicted += HDR_GET_LSIZE(hdr); 3896 mutex_exit(&buf->b_evict_lock); 3897 arc_buf_destroy_impl(buf); 3898 } 3899 3900 if (HDR_HAS_L2HDR(hdr)) { 3901 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); 3902 } else { 3903 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 3904 ARCSTAT_INCR(arcstat_evict_l2_eligible, 3905 HDR_GET_LSIZE(hdr)); 3906 } else { 3907 ARCSTAT_INCR(arcstat_evict_l2_ineligible, 3908 HDR_GET_LSIZE(hdr)); 3909 } 3910 } 3911 3912 if (hdr->b_l1hdr.b_bufcnt == 0) { 3913 arc_cksum_free(hdr); 3914 3915 bytes_evicted += arc_hdr_size(hdr); 3916 3917 /* 3918 * If this hdr is being evicted and has a compressed 3919 * buffer then we discard it here before we change states. 3920 * This ensures that the accounting is updated correctly 3921 * in arc_free_data_impl(). 3922 */ 3923 if (hdr->b_l1hdr.b_pabd != NULL) 3924 arc_hdr_free_abd(hdr, B_FALSE); 3925 3926 if (HDR_HAS_RABD(hdr)) 3927 arc_hdr_free_abd(hdr, B_TRUE); 3928 3929 arc_change_state(evicted_state, hdr, hash_lock); 3930 ASSERT(HDR_IN_HASH_TABLE(hdr)); 3931 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 3932 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 3933 } 3934 3935 return (bytes_evicted); 3936 } 3937 3938 static void 3939 arc_set_need_free(void) 3940 { 3941 ASSERT(MUTEX_HELD(&arc_evict_lock)); 3942 int64_t remaining = arc_free_memory() - arc_sys_free / 2; 3943 arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters); 3944 if (aw == NULL) { 3945 arc_need_free = MAX(-remaining, 0); 3946 } else { 3947 arc_need_free = 3948 MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count)); 3949 } 3950 } 3951 3952 static uint64_t 3953 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 3954 uint64_t spa, int64_t bytes) 3955 { 3956 multilist_sublist_t *mls; 3957 uint64_t bytes_evicted = 0; 3958 arc_buf_hdr_t *hdr; 3959 kmutex_t *hash_lock; 3960 int evict_count = 0; 3961 3962 ASSERT3P(marker, !=, NULL); 3963 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 3964 3965 mls = multilist_sublist_lock(ml, idx); 3966 3967 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL; 3968 hdr = multilist_sublist_prev(mls, marker)) { 3969 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) || 3970 (evict_count >= zfs_arc_evict_batch_limit)) 3971 break; 3972 3973 /* 3974 * To keep our iteration location, move the marker 3975 * forward. Since we're not holding hdr's hash lock, we 3976 * must be very careful and not remove 'hdr' from the 3977 * sublist. Otherwise, other consumers might mistake the 3978 * 'hdr' as not being on a sublist when they call the 3979 * multilist_link_active() function (they all rely on 3980 * the hash lock protecting concurrent insertions and 3981 * removals). multilist_sublist_move_forward() was 3982 * specifically implemented to ensure this is the case 3983 * (only 'marker' will be removed and re-inserted). 3984 */ 3985 multilist_sublist_move_forward(mls, marker); 3986 3987 /* 3988 * The only case where the b_spa field should ever be 3989 * zero, is the marker headers inserted by 3990 * arc_evict_state(). It's possible for multiple threads 3991 * to be calling arc_evict_state() concurrently (e.g. 3992 * dsl_pool_close() and zio_inject_fault()), so we must 3993 * skip any markers we see from these other threads. 3994 */ 3995 if (hdr->b_spa == 0) 3996 continue; 3997 3998 /* we're only interested in evicting buffers of a certain spa */ 3999 if (spa != 0 && hdr->b_spa != spa) { 4000 ARCSTAT_BUMP(arcstat_evict_skip); 4001 continue; 4002 } 4003 4004 hash_lock = HDR_LOCK(hdr); 4005 4006 /* 4007 * We aren't calling this function from any code path 4008 * that would already be holding a hash lock, so we're 4009 * asserting on this assumption to be defensive in case 4010 * this ever changes. Without this check, it would be 4011 * possible to incorrectly increment arcstat_mutex_miss 4012 * below (e.g. if the code changed such that we called 4013 * this function with a hash lock held). 4014 */ 4015 ASSERT(!MUTEX_HELD(hash_lock)); 4016 4017 if (mutex_tryenter(hash_lock)) { 4018 uint64_t evicted = arc_evict_hdr(hdr, hash_lock); 4019 mutex_exit(hash_lock); 4020 4021 bytes_evicted += evicted; 4022 4023 /* 4024 * If evicted is zero, arc_evict_hdr() must have 4025 * decided to skip this header, don't increment 4026 * evict_count in this case. 4027 */ 4028 if (evicted != 0) 4029 evict_count++; 4030 4031 } else { 4032 ARCSTAT_BUMP(arcstat_mutex_miss); 4033 } 4034 } 4035 4036 multilist_sublist_unlock(mls); 4037 4038 /* 4039 * Increment the count of evicted bytes, and wake up any threads that 4040 * are waiting for the count to reach this value. Since the list is 4041 * ordered by ascending aew_count, we pop off the beginning of the 4042 * list until we reach the end, or a waiter that's past the current 4043 * "count". Doing this outside the loop reduces the number of times 4044 * we need to acquire the global arc_evict_lock. 4045 * 4046 * Only wake when there's sufficient free memory in the system 4047 * (specifically, arc_sys_free/2, which by default is a bit more than 4048 * 1/64th of RAM). See the comments in arc_wait_for_eviction(). 4049 */ 4050 mutex_enter(&arc_evict_lock); 4051 arc_evict_count += bytes_evicted; 4052 4053 if ((int64_t)(arc_free_memory() - arc_sys_free / 2) > 0) { 4054 arc_evict_waiter_t *aw; 4055 while ((aw = list_head(&arc_evict_waiters)) != NULL && 4056 aw->aew_count <= arc_evict_count) { 4057 list_remove(&arc_evict_waiters, aw); 4058 cv_broadcast(&aw->aew_cv); 4059 } 4060 } 4061 arc_set_need_free(); 4062 mutex_exit(&arc_evict_lock); 4063 4064 /* 4065 * If the ARC size is reduced from arc_c_max to arc_c_min (especially 4066 * if the average cached block is small), eviction can be on-CPU for 4067 * many seconds. To ensure that other threads that may be bound to 4068 * this CPU are able to make progress, make a voluntary preemption 4069 * call here. 4070 */ 4071 cond_resched(); 4072 4073 return (bytes_evicted); 4074 } 4075 4076 /* 4077 * Evict buffers from the given arc state, until we've removed the 4078 * specified number of bytes. Move the removed buffers to the 4079 * appropriate evict state. 4080 * 4081 * This function makes a "best effort". It skips over any buffers 4082 * it can't get a hash_lock on, and so, may not catch all candidates. 4083 * It may also return without evicting as much space as requested. 4084 * 4085 * If bytes is specified using the special value ARC_EVICT_ALL, this 4086 * will evict all available (i.e. unlocked and evictable) buffers from 4087 * the given arc state; which is used by arc_flush(). 4088 */ 4089 static uint64_t 4090 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes, 4091 arc_buf_contents_t type) 4092 { 4093 uint64_t total_evicted = 0; 4094 multilist_t *ml = state->arcs_list[type]; 4095 int num_sublists; 4096 arc_buf_hdr_t **markers; 4097 4098 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 4099 4100 num_sublists = multilist_get_num_sublists(ml); 4101 4102 /* 4103 * If we've tried to evict from each sublist, made some 4104 * progress, but still have not hit the target number of bytes 4105 * to evict, we want to keep trying. The markers allow us to 4106 * pick up where we left off for each individual sublist, rather 4107 * than starting from the tail each time. 4108 */ 4109 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP); 4110 for (int i = 0; i < num_sublists; i++) { 4111 multilist_sublist_t *mls; 4112 4113 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 4114 4115 /* 4116 * A b_spa of 0 is used to indicate that this header is 4117 * a marker. This fact is used in arc_evict_type() and 4118 * arc_evict_state_impl(). 4119 */ 4120 markers[i]->b_spa = 0; 4121 4122 mls = multilist_sublist_lock(ml, i); 4123 multilist_sublist_insert_tail(mls, markers[i]); 4124 multilist_sublist_unlock(mls); 4125 } 4126 4127 /* 4128 * While we haven't hit our target number of bytes to evict, or 4129 * we're evicting all available buffers. 4130 */ 4131 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) { 4132 int sublist_idx = multilist_get_random_index(ml); 4133 uint64_t scan_evicted = 0; 4134 4135 /* 4136 * Try to reduce pinned dnodes with a floor of arc_dnode_limit. 4137 * Request that 10% of the LRUs be scanned by the superblock 4138 * shrinker. 4139 */ 4140 if (type == ARC_BUFC_DATA && aggsum_compare(&astat_dnode_size, 4141 arc_dnode_size_limit) > 0) { 4142 arc_prune_async((aggsum_upper_bound(&astat_dnode_size) - 4143 arc_dnode_size_limit) / sizeof (dnode_t) / 4144 zfs_arc_dnode_reduce_percent); 4145 } 4146 4147 /* 4148 * Start eviction using a randomly selected sublist, 4149 * this is to try and evenly balance eviction across all 4150 * sublists. Always starting at the same sublist 4151 * (e.g. index 0) would cause evictions to favor certain 4152 * sublists over others. 4153 */ 4154 for (int i = 0; i < num_sublists; i++) { 4155 uint64_t bytes_remaining; 4156 uint64_t bytes_evicted; 4157 4158 if (bytes == ARC_EVICT_ALL) 4159 bytes_remaining = ARC_EVICT_ALL; 4160 else if (total_evicted < bytes) 4161 bytes_remaining = bytes - total_evicted; 4162 else 4163 break; 4164 4165 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 4166 markers[sublist_idx], spa, bytes_remaining); 4167 4168 scan_evicted += bytes_evicted; 4169 total_evicted += bytes_evicted; 4170 4171 /* we've reached the end, wrap to the beginning */ 4172 if (++sublist_idx >= num_sublists) 4173 sublist_idx = 0; 4174 } 4175 4176 /* 4177 * If we didn't evict anything during this scan, we have 4178 * no reason to believe we'll evict more during another 4179 * scan, so break the loop. 4180 */ 4181 if (scan_evicted == 0) { 4182 /* This isn't possible, let's make that obvious */ 4183 ASSERT3S(bytes, !=, 0); 4184 4185 /* 4186 * When bytes is ARC_EVICT_ALL, the only way to 4187 * break the loop is when scan_evicted is zero. 4188 * In that case, we actually have evicted enough, 4189 * so we don't want to increment the kstat. 4190 */ 4191 if (bytes != ARC_EVICT_ALL) { 4192 ASSERT3S(total_evicted, <, bytes); 4193 ARCSTAT_BUMP(arcstat_evict_not_enough); 4194 } 4195 4196 break; 4197 } 4198 } 4199 4200 for (int i = 0; i < num_sublists; i++) { 4201 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 4202 multilist_sublist_remove(mls, markers[i]); 4203 multilist_sublist_unlock(mls); 4204 4205 kmem_cache_free(hdr_full_cache, markers[i]); 4206 } 4207 kmem_free(markers, sizeof (*markers) * num_sublists); 4208 4209 return (total_evicted); 4210 } 4211 4212 /* 4213 * Flush all "evictable" data of the given type from the arc state 4214 * specified. This will not evict any "active" buffers (i.e. referenced). 4215 * 4216 * When 'retry' is set to B_FALSE, the function will make a single pass 4217 * over the state and evict any buffers that it can. Since it doesn't 4218 * continually retry the eviction, it might end up leaving some buffers 4219 * in the ARC due to lock misses. 4220 * 4221 * When 'retry' is set to B_TRUE, the function will continually retry the 4222 * eviction until *all* evictable buffers have been removed from the 4223 * state. As a result, if concurrent insertions into the state are 4224 * allowed (e.g. if the ARC isn't shutting down), this function might 4225 * wind up in an infinite loop, continually trying to evict buffers. 4226 */ 4227 static uint64_t 4228 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 4229 boolean_t retry) 4230 { 4231 uint64_t evicted = 0; 4232 4233 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) { 4234 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type); 4235 4236 if (!retry) 4237 break; 4238 } 4239 4240 return (evicted); 4241 } 4242 4243 /* 4244 * Evict the specified number of bytes from the state specified, 4245 * restricting eviction to the spa and type given. This function 4246 * prevents us from trying to evict more from a state's list than 4247 * is "evictable", and to skip evicting altogether when passed a 4248 * negative value for "bytes". In contrast, arc_evict_state() will 4249 * evict everything it can, when passed a negative value for "bytes". 4250 */ 4251 static uint64_t 4252 arc_evict_impl(arc_state_t *state, uint64_t spa, int64_t bytes, 4253 arc_buf_contents_t type) 4254 { 4255 int64_t delta; 4256 4257 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) { 4258 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]), 4259 bytes); 4260 return (arc_evict_state(state, spa, delta, type)); 4261 } 4262 4263 return (0); 4264 } 4265 4266 /* 4267 * The goal of this function is to evict enough meta data buffers from the 4268 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly 4269 * more complicated than it appears because it is common for data buffers 4270 * to have holds on meta data buffers. In addition, dnode meta data buffers 4271 * will be held by the dnodes in the block preventing them from being freed. 4272 * This means we can't simply traverse the ARC and expect to always find 4273 * enough unheld meta data buffer to release. 4274 * 4275 * Therefore, this function has been updated to make alternating passes 4276 * over the ARC releasing data buffers and then newly unheld meta data 4277 * buffers. This ensures forward progress is maintained and meta_used 4278 * will decrease. Normally this is sufficient, but if required the ARC 4279 * will call the registered prune callbacks causing dentry and inodes to 4280 * be dropped from the VFS cache. This will make dnode meta data buffers 4281 * available for reclaim. 4282 */ 4283 static uint64_t 4284 arc_evict_meta_balanced(uint64_t meta_used) 4285 { 4286 int64_t delta, prune = 0, adjustmnt; 4287 uint64_t total_evicted = 0; 4288 arc_buf_contents_t type = ARC_BUFC_DATA; 4289 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0); 4290 4291 restart: 4292 /* 4293 * This slightly differs than the way we evict from the mru in 4294 * arc_evict because we don't have a "target" value (i.e. no 4295 * "meta" arc_p). As a result, I think we can completely 4296 * cannibalize the metadata in the MRU before we evict the 4297 * metadata from the MFU. I think we probably need to implement a 4298 * "metadata arc_p" value to do this properly. 4299 */ 4300 adjustmnt = meta_used - arc_meta_limit; 4301 4302 if (adjustmnt > 0 && 4303 zfs_refcount_count(&arc_mru->arcs_esize[type]) > 0) { 4304 delta = MIN(zfs_refcount_count(&arc_mru->arcs_esize[type]), 4305 adjustmnt); 4306 total_evicted += arc_evict_impl(arc_mru, 0, delta, type); 4307 adjustmnt -= delta; 4308 } 4309 4310 /* 4311 * We can't afford to recalculate adjustmnt here. If we do, 4312 * new metadata buffers can sneak into the MRU or ANON lists, 4313 * thus penalize the MFU metadata. Although the fudge factor is 4314 * small, it has been empirically shown to be significant for 4315 * certain workloads (e.g. creating many empty directories). As 4316 * such, we use the original calculation for adjustmnt, and 4317 * simply decrement the amount of data evicted from the MRU. 4318 */ 4319 4320 if (adjustmnt > 0 && 4321 zfs_refcount_count(&arc_mfu->arcs_esize[type]) > 0) { 4322 delta = MIN(zfs_refcount_count(&arc_mfu->arcs_esize[type]), 4323 adjustmnt); 4324 total_evicted += arc_evict_impl(arc_mfu, 0, delta, type); 4325 } 4326 4327 adjustmnt = meta_used - arc_meta_limit; 4328 4329 if (adjustmnt > 0 && 4330 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) { 4331 delta = MIN(adjustmnt, 4332 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type])); 4333 total_evicted += arc_evict_impl(arc_mru_ghost, 0, delta, type); 4334 adjustmnt -= delta; 4335 } 4336 4337 if (adjustmnt > 0 && 4338 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) { 4339 delta = MIN(adjustmnt, 4340 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type])); 4341 total_evicted += arc_evict_impl(arc_mfu_ghost, 0, delta, type); 4342 } 4343 4344 /* 4345 * If after attempting to make the requested adjustment to the ARC 4346 * the meta limit is still being exceeded then request that the 4347 * higher layers drop some cached objects which have holds on ARC 4348 * meta buffers. Requests to the upper layers will be made with 4349 * increasingly large scan sizes until the ARC is below the limit. 4350 */ 4351 if (meta_used > arc_meta_limit) { 4352 if (type == ARC_BUFC_DATA) { 4353 type = ARC_BUFC_METADATA; 4354 } else { 4355 type = ARC_BUFC_DATA; 4356 4357 if (zfs_arc_meta_prune) { 4358 prune += zfs_arc_meta_prune; 4359 arc_prune_async(prune); 4360 } 4361 } 4362 4363 if (restarts > 0) { 4364 restarts--; 4365 goto restart; 4366 } 4367 } 4368 return (total_evicted); 4369 } 4370 4371 /* 4372 * Evict metadata buffers from the cache, such that arc_meta_used is 4373 * capped by the arc_meta_limit tunable. 4374 */ 4375 static uint64_t 4376 arc_evict_meta_only(uint64_t meta_used) 4377 { 4378 uint64_t total_evicted = 0; 4379 int64_t target; 4380 4381 /* 4382 * If we're over the meta limit, we want to evict enough 4383 * metadata to get back under the meta limit. We don't want to 4384 * evict so much that we drop the MRU below arc_p, though. If 4385 * we're over the meta limit more than we're over arc_p, we 4386 * evict some from the MRU here, and some from the MFU below. 4387 */ 4388 target = MIN((int64_t)(meta_used - arc_meta_limit), 4389 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4390 zfs_refcount_count(&arc_mru->arcs_size) - arc_p)); 4391 4392 total_evicted += arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4393 4394 /* 4395 * Similar to the above, we want to evict enough bytes to get us 4396 * below the meta limit, but not so much as to drop us below the 4397 * space allotted to the MFU (which is defined as arc_c - arc_p). 4398 */ 4399 target = MIN((int64_t)(meta_used - arc_meta_limit), 4400 (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) - 4401 (arc_c - arc_p))); 4402 4403 total_evicted += arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4404 4405 return (total_evicted); 4406 } 4407 4408 static uint64_t 4409 arc_evict_meta(uint64_t meta_used) 4410 { 4411 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY) 4412 return (arc_evict_meta_only(meta_used)); 4413 else 4414 return (arc_evict_meta_balanced(meta_used)); 4415 } 4416 4417 /* 4418 * Return the type of the oldest buffer in the given arc state 4419 * 4420 * This function will select a random sublist of type ARC_BUFC_DATA and 4421 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist 4422 * is compared, and the type which contains the "older" buffer will be 4423 * returned. 4424 */ 4425 static arc_buf_contents_t 4426 arc_evict_type(arc_state_t *state) 4427 { 4428 multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA]; 4429 multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA]; 4430 int data_idx = multilist_get_random_index(data_ml); 4431 int meta_idx = multilist_get_random_index(meta_ml); 4432 multilist_sublist_t *data_mls; 4433 multilist_sublist_t *meta_mls; 4434 arc_buf_contents_t type; 4435 arc_buf_hdr_t *data_hdr; 4436 arc_buf_hdr_t *meta_hdr; 4437 4438 /* 4439 * We keep the sublist lock until we're finished, to prevent 4440 * the headers from being destroyed via arc_evict_state(). 4441 */ 4442 data_mls = multilist_sublist_lock(data_ml, data_idx); 4443 meta_mls = multilist_sublist_lock(meta_ml, meta_idx); 4444 4445 /* 4446 * These two loops are to ensure we skip any markers that 4447 * might be at the tail of the lists due to arc_evict_state(). 4448 */ 4449 4450 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL; 4451 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) { 4452 if (data_hdr->b_spa != 0) 4453 break; 4454 } 4455 4456 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL; 4457 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) { 4458 if (meta_hdr->b_spa != 0) 4459 break; 4460 } 4461 4462 if (data_hdr == NULL && meta_hdr == NULL) { 4463 type = ARC_BUFC_DATA; 4464 } else if (data_hdr == NULL) { 4465 ASSERT3P(meta_hdr, !=, NULL); 4466 type = ARC_BUFC_METADATA; 4467 } else if (meta_hdr == NULL) { 4468 ASSERT3P(data_hdr, !=, NULL); 4469 type = ARC_BUFC_DATA; 4470 } else { 4471 ASSERT3P(data_hdr, !=, NULL); 4472 ASSERT3P(meta_hdr, !=, NULL); 4473 4474 /* The headers can't be on the sublist without an L1 header */ 4475 ASSERT(HDR_HAS_L1HDR(data_hdr)); 4476 ASSERT(HDR_HAS_L1HDR(meta_hdr)); 4477 4478 if (data_hdr->b_l1hdr.b_arc_access < 4479 meta_hdr->b_l1hdr.b_arc_access) { 4480 type = ARC_BUFC_DATA; 4481 } else { 4482 type = ARC_BUFC_METADATA; 4483 } 4484 } 4485 4486 multilist_sublist_unlock(meta_mls); 4487 multilist_sublist_unlock(data_mls); 4488 4489 return (type); 4490 } 4491 4492 /* 4493 * Evict buffers from the cache, such that arc_size is capped by arc_c. 4494 */ 4495 static uint64_t 4496 arc_evict(void) 4497 { 4498 uint64_t total_evicted = 0; 4499 uint64_t bytes; 4500 int64_t target; 4501 uint64_t asize = aggsum_value(&arc_size); 4502 uint64_t ameta = aggsum_value(&arc_meta_used); 4503 4504 /* 4505 * If we're over arc_meta_limit, we want to correct that before 4506 * potentially evicting data buffers below. 4507 */ 4508 total_evicted += arc_evict_meta(ameta); 4509 4510 /* 4511 * Adjust MRU size 4512 * 4513 * If we're over the target cache size, we want to evict enough 4514 * from the list to get back to our target size. We don't want 4515 * to evict too much from the MRU, such that it drops below 4516 * arc_p. So, if we're over our target cache size more than 4517 * the MRU is over arc_p, we'll evict enough to get back to 4518 * arc_p here, and then evict more from the MFU below. 4519 */ 4520 target = MIN((int64_t)(asize - arc_c), 4521 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4522 zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p)); 4523 4524 /* 4525 * If we're below arc_meta_min, always prefer to evict data. 4526 * Otherwise, try to satisfy the requested number of bytes to 4527 * evict from the type which contains older buffers; in an 4528 * effort to keep newer buffers in the cache regardless of their 4529 * type. If we cannot satisfy the number of bytes from this 4530 * type, spill over into the next type. 4531 */ 4532 if (arc_evict_type(arc_mru) == ARC_BUFC_METADATA && 4533 ameta > arc_meta_min) { 4534 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4535 total_evicted += bytes; 4536 4537 /* 4538 * If we couldn't evict our target number of bytes from 4539 * metadata, we try to get the rest from data. 4540 */ 4541 target -= bytes; 4542 4543 total_evicted += 4544 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4545 } else { 4546 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4547 total_evicted += bytes; 4548 4549 /* 4550 * If we couldn't evict our target number of bytes from 4551 * data, we try to get the rest from metadata. 4552 */ 4553 target -= bytes; 4554 4555 total_evicted += 4556 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4557 } 4558 4559 /* 4560 * Re-sum ARC stats after the first round of evictions. 4561 */ 4562 asize = aggsum_value(&arc_size); 4563 ameta = aggsum_value(&arc_meta_used); 4564 4565 4566 /* 4567 * Adjust MFU size 4568 * 4569 * Now that we've tried to evict enough from the MRU to get its 4570 * size back to arc_p, if we're still above the target cache 4571 * size, we evict the rest from the MFU. 4572 */ 4573 target = asize - arc_c; 4574 4575 if (arc_evict_type(arc_mfu) == ARC_BUFC_METADATA && 4576 ameta > arc_meta_min) { 4577 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4578 total_evicted += bytes; 4579 4580 /* 4581 * If we couldn't evict our target number of bytes from 4582 * metadata, we try to get the rest from data. 4583 */ 4584 target -= bytes; 4585 4586 total_evicted += 4587 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4588 } else { 4589 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4590 total_evicted += bytes; 4591 4592 /* 4593 * If we couldn't evict our target number of bytes from 4594 * data, we try to get the rest from data. 4595 */ 4596 target -= bytes; 4597 4598 total_evicted += 4599 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4600 } 4601 4602 /* 4603 * Adjust ghost lists 4604 * 4605 * In addition to the above, the ARC also defines target values 4606 * for the ghost lists. The sum of the mru list and mru ghost 4607 * list should never exceed the target size of the cache, and 4608 * the sum of the mru list, mfu list, mru ghost list, and mfu 4609 * ghost list should never exceed twice the target size of the 4610 * cache. The following logic enforces these limits on the ghost 4611 * caches, and evicts from them as needed. 4612 */ 4613 target = zfs_refcount_count(&arc_mru->arcs_size) + 4614 zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c; 4615 4616 bytes = arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA); 4617 total_evicted += bytes; 4618 4619 target -= bytes; 4620 4621 total_evicted += 4622 arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA); 4623 4624 /* 4625 * We assume the sum of the mru list and mfu list is less than 4626 * or equal to arc_c (we enforced this above), which means we 4627 * can use the simpler of the two equations below: 4628 * 4629 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c 4630 * mru ghost + mfu ghost <= arc_c 4631 */ 4632 target = zfs_refcount_count(&arc_mru_ghost->arcs_size) + 4633 zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c; 4634 4635 bytes = arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA); 4636 total_evicted += bytes; 4637 4638 target -= bytes; 4639 4640 total_evicted += 4641 arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA); 4642 4643 return (total_evicted); 4644 } 4645 4646 void 4647 arc_flush(spa_t *spa, boolean_t retry) 4648 { 4649 uint64_t guid = 0; 4650 4651 /* 4652 * If retry is B_TRUE, a spa must not be specified since we have 4653 * no good way to determine if all of a spa's buffers have been 4654 * evicted from an arc state. 4655 */ 4656 ASSERT(!retry || spa == 0); 4657 4658 if (spa != NULL) 4659 guid = spa_load_guid(spa); 4660 4661 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 4662 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 4663 4664 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 4665 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 4666 4667 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 4668 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 4669 4670 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 4671 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 4672 } 4673 4674 void 4675 arc_reduce_target_size(int64_t to_free) 4676 { 4677 uint64_t asize = aggsum_value(&arc_size); 4678 4679 /* 4680 * All callers want the ARC to actually evict (at least) this much 4681 * memory. Therefore we reduce from the lower of the current size and 4682 * the target size. This way, even if arc_c is much higher than 4683 * arc_size (as can be the case after many calls to arc_freed(), we will 4684 * immediately have arc_c < arc_size and therefore the arc_evict_zthr 4685 * will evict. 4686 */ 4687 uint64_t c = MIN(arc_c, asize); 4688 4689 if (c > to_free && c - to_free > arc_c_min) { 4690 arc_c = c - to_free; 4691 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 4692 if (arc_p > arc_c) 4693 arc_p = (arc_c >> 1); 4694 ASSERT(arc_c >= arc_c_min); 4695 ASSERT((int64_t)arc_p >= 0); 4696 } else { 4697 arc_c = arc_c_min; 4698 } 4699 4700 if (asize > arc_c) { 4701 /* See comment in arc_evict_cb_check() on why lock+flag */ 4702 mutex_enter(&arc_evict_lock); 4703 arc_evict_needed = B_TRUE; 4704 mutex_exit(&arc_evict_lock); 4705 zthr_wakeup(arc_evict_zthr); 4706 } 4707 } 4708 4709 /* 4710 * Determine if the system is under memory pressure and is asking 4711 * to reclaim memory. A return value of B_TRUE indicates that the system 4712 * is under memory pressure and that the arc should adjust accordingly. 4713 */ 4714 boolean_t 4715 arc_reclaim_needed(void) 4716 { 4717 return (arc_available_memory() < 0); 4718 } 4719 4720 void 4721 arc_kmem_reap_soon(void) 4722 { 4723 size_t i; 4724 kmem_cache_t *prev_cache = NULL; 4725 kmem_cache_t *prev_data_cache = NULL; 4726 extern kmem_cache_t *zio_buf_cache[]; 4727 extern kmem_cache_t *zio_data_buf_cache[]; 4728 4729 #ifdef _KERNEL 4730 if ((aggsum_compare(&arc_meta_used, arc_meta_limit) >= 0) && 4731 zfs_arc_meta_prune) { 4732 /* 4733 * We are exceeding our meta-data cache limit. 4734 * Prune some entries to release holds on meta-data. 4735 */ 4736 arc_prune_async(zfs_arc_meta_prune); 4737 } 4738 #if defined(_ILP32) 4739 /* 4740 * Reclaim unused memory from all kmem caches. 4741 */ 4742 kmem_reap(); 4743 #endif 4744 #endif 4745 4746 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 4747 #if defined(_ILP32) 4748 /* reach upper limit of cache size on 32-bit */ 4749 if (zio_buf_cache[i] == NULL) 4750 break; 4751 #endif 4752 if (zio_buf_cache[i] != prev_cache) { 4753 prev_cache = zio_buf_cache[i]; 4754 kmem_cache_reap_now(zio_buf_cache[i]); 4755 } 4756 if (zio_data_buf_cache[i] != prev_data_cache) { 4757 prev_data_cache = zio_data_buf_cache[i]; 4758 kmem_cache_reap_now(zio_data_buf_cache[i]); 4759 } 4760 } 4761 kmem_cache_reap_now(buf_cache); 4762 kmem_cache_reap_now(hdr_full_cache); 4763 kmem_cache_reap_now(hdr_l2only_cache); 4764 kmem_cache_reap_now(zfs_btree_leaf_cache); 4765 abd_cache_reap_now(); 4766 } 4767 4768 /* ARGSUSED */ 4769 static boolean_t 4770 arc_evict_cb_check(void *arg, zthr_t *zthr) 4771 { 4772 /* 4773 * This is necessary so that any changes which may have been made to 4774 * many of the zfs_arc_* module parameters will be propagated to 4775 * their actual internal variable counterparts. Without this, 4776 * changing those module params at runtime would have no effect. 4777 */ 4778 arc_tuning_update(B_FALSE); 4779 4780 /* 4781 * This is necessary in order to keep the kstat information 4782 * up to date for tools that display kstat data such as the 4783 * mdb ::arc dcmd and the Linux crash utility. These tools 4784 * typically do not call kstat's update function, but simply 4785 * dump out stats from the most recent update. Without 4786 * this call, these commands may show stale stats for the 4787 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 4788 * with this change, the data might be up to 1 second 4789 * out of date(the arc_evict_zthr has a maximum sleep 4790 * time of 1 second); but that should suffice. The 4791 * arc_state_t structures can be queried directly if more 4792 * accurate information is needed. 4793 */ 4794 if (arc_ksp != NULL) 4795 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 4796 4797 /* 4798 * We have to rely on arc_wait_for_eviction() to tell us when to 4799 * evict, rather than checking if we are overflowing here, so that we 4800 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv. 4801 * If we have become "not overflowing" since arc_wait_for_eviction() 4802 * checked, we need to wake it up. We could broadcast the CV here, 4803 * but arc_wait_for_eviction() may have not yet gone to sleep. We 4804 * would need to use a mutex to ensure that this function doesn't 4805 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g. 4806 * the arc_evict_lock). However, the lock ordering of such a lock 4807 * would necessarily be incorrect with respect to the zthr_lock, 4808 * which is held before this function is called, and is held by 4809 * arc_wait_for_eviction() when it calls zthr_wakeup(). 4810 */ 4811 return (arc_evict_needed); 4812 } 4813 4814 /* 4815 * Keep arc_size under arc_c by running arc_evict which evicts data 4816 * from the ARC. 4817 */ 4818 /* ARGSUSED */ 4819 static void 4820 arc_evict_cb(void *arg, zthr_t *zthr) 4821 { 4822 uint64_t evicted = 0; 4823 fstrans_cookie_t cookie = spl_fstrans_mark(); 4824 4825 /* Evict from cache */ 4826 evicted = arc_evict(); 4827 4828 /* 4829 * If evicted is zero, we couldn't evict anything 4830 * via arc_evict(). This could be due to hash lock 4831 * collisions, but more likely due to the majority of 4832 * arc buffers being unevictable. Therefore, even if 4833 * arc_size is above arc_c, another pass is unlikely to 4834 * be helpful and could potentially cause us to enter an 4835 * infinite loop. Additionally, zthr_iscancelled() is 4836 * checked here so that if the arc is shutting down, the 4837 * broadcast will wake any remaining arc evict waiters. 4838 */ 4839 mutex_enter(&arc_evict_lock); 4840 arc_evict_needed = !zthr_iscancelled(arc_evict_zthr) && 4841 evicted > 0 && aggsum_compare(&arc_size, arc_c) > 0; 4842 if (!arc_evict_needed) { 4843 /* 4844 * We're either no longer overflowing, or we 4845 * can't evict anything more, so we should wake 4846 * arc_get_data_impl() sooner. 4847 */ 4848 arc_evict_waiter_t *aw; 4849 while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) { 4850 cv_broadcast(&aw->aew_cv); 4851 } 4852 arc_set_need_free(); 4853 } 4854 mutex_exit(&arc_evict_lock); 4855 spl_fstrans_unmark(cookie); 4856 } 4857 4858 /* ARGSUSED */ 4859 static boolean_t 4860 arc_reap_cb_check(void *arg, zthr_t *zthr) 4861 { 4862 int64_t free_memory = arc_available_memory(); 4863 static int reap_cb_check_counter = 0; 4864 4865 /* 4866 * If a kmem reap is already active, don't schedule more. We must 4867 * check for this because kmem_cache_reap_soon() won't actually 4868 * block on the cache being reaped (this is to prevent callers from 4869 * becoming implicitly blocked by a system-wide kmem reap -- which, 4870 * on a system with many, many full magazines, can take minutes). 4871 */ 4872 if (!kmem_cache_reap_active() && free_memory < 0) { 4873 4874 arc_no_grow = B_TRUE; 4875 arc_warm = B_TRUE; 4876 /* 4877 * Wait at least zfs_grow_retry (default 5) seconds 4878 * before considering growing. 4879 */ 4880 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry); 4881 return (B_TRUE); 4882 } else if (free_memory < arc_c >> arc_no_grow_shift) { 4883 arc_no_grow = B_TRUE; 4884 } else if (gethrtime() >= arc_growtime) { 4885 arc_no_grow = B_FALSE; 4886 } 4887 4888 /* 4889 * Called unconditionally every 60 seconds to reclaim unused 4890 * zstd compression and decompression context. This is done 4891 * here to avoid the need for an independent thread. 4892 */ 4893 if (!((reap_cb_check_counter++) % 60)) 4894 zfs_zstd_cache_reap_now(); 4895 4896 return (B_FALSE); 4897 } 4898 4899 /* 4900 * Keep enough free memory in the system by reaping the ARC's kmem 4901 * caches. To cause more slabs to be reapable, we may reduce the 4902 * target size of the cache (arc_c), causing the arc_evict_cb() 4903 * to free more buffers. 4904 */ 4905 /* ARGSUSED */ 4906 static void 4907 arc_reap_cb(void *arg, zthr_t *zthr) 4908 { 4909 int64_t free_memory; 4910 fstrans_cookie_t cookie = spl_fstrans_mark(); 4911 4912 /* 4913 * Kick off asynchronous kmem_reap()'s of all our caches. 4914 */ 4915 arc_kmem_reap_soon(); 4916 4917 /* 4918 * Wait at least arc_kmem_cache_reap_retry_ms between 4919 * arc_kmem_reap_soon() calls. Without this check it is possible to 4920 * end up in a situation where we spend lots of time reaping 4921 * caches, while we're near arc_c_min. Waiting here also gives the 4922 * subsequent free memory check a chance of finding that the 4923 * asynchronous reap has already freed enough memory, and we don't 4924 * need to call arc_reduce_target_size(). 4925 */ 4926 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000); 4927 4928 /* 4929 * Reduce the target size as needed to maintain the amount of free 4930 * memory in the system at a fraction of the arc_size (1/128th by 4931 * default). If oversubscribed (free_memory < 0) then reduce the 4932 * target arc_size by the deficit amount plus the fractional 4933 * amount. If free memory is positive but less then the fractional 4934 * amount, reduce by what is needed to hit the fractional amount. 4935 */ 4936 free_memory = arc_available_memory(); 4937 4938 int64_t to_free = 4939 (arc_c >> arc_shrink_shift) - free_memory; 4940 if (to_free > 0) { 4941 arc_reduce_target_size(to_free); 4942 } 4943 spl_fstrans_unmark(cookie); 4944 } 4945 4946 #ifdef _KERNEL 4947 /* 4948 * Determine the amount of memory eligible for eviction contained in the 4949 * ARC. All clean data reported by the ghost lists can always be safely 4950 * evicted. Due to arc_c_min, the same does not hold for all clean data 4951 * contained by the regular mru and mfu lists. 4952 * 4953 * In the case of the regular mru and mfu lists, we need to report as 4954 * much clean data as possible, such that evicting that same reported 4955 * data will not bring arc_size below arc_c_min. Thus, in certain 4956 * circumstances, the total amount of clean data in the mru and mfu 4957 * lists might not actually be evictable. 4958 * 4959 * The following two distinct cases are accounted for: 4960 * 4961 * 1. The sum of the amount of dirty data contained by both the mru and 4962 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 4963 * is greater than or equal to arc_c_min. 4964 * (i.e. amount of dirty data >= arc_c_min) 4965 * 4966 * This is the easy case; all clean data contained by the mru and mfu 4967 * lists is evictable. Evicting all clean data can only drop arc_size 4968 * to the amount of dirty data, which is greater than arc_c_min. 4969 * 4970 * 2. The sum of the amount of dirty data contained by both the mru and 4971 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 4972 * is less than arc_c_min. 4973 * (i.e. arc_c_min > amount of dirty data) 4974 * 4975 * 2.1. arc_size is greater than or equal arc_c_min. 4976 * (i.e. arc_size >= arc_c_min > amount of dirty data) 4977 * 4978 * In this case, not all clean data from the regular mru and mfu 4979 * lists is actually evictable; we must leave enough clean data 4980 * to keep arc_size above arc_c_min. Thus, the maximum amount of 4981 * evictable data from the two lists combined, is exactly the 4982 * difference between arc_size and arc_c_min. 4983 * 4984 * 2.2. arc_size is less than arc_c_min 4985 * (i.e. arc_c_min > arc_size > amount of dirty data) 4986 * 4987 * In this case, none of the data contained in the mru and mfu 4988 * lists is evictable, even if it's clean. Since arc_size is 4989 * already below arc_c_min, evicting any more would only 4990 * increase this negative difference. 4991 */ 4992 4993 #endif /* _KERNEL */ 4994 4995 /* 4996 * Adapt arc info given the number of bytes we are trying to add and 4997 * the state that we are coming from. This function is only called 4998 * when we are adding new content to the cache. 4999 */ 5000 static void 5001 arc_adapt(int bytes, arc_state_t *state) 5002 { 5003 int mult; 5004 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 5005 int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size); 5006 int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size); 5007 5008 ASSERT(bytes > 0); 5009 /* 5010 * Adapt the target size of the MRU list: 5011 * - if we just hit in the MRU ghost list, then increase 5012 * the target size of the MRU list. 5013 * - if we just hit in the MFU ghost list, then increase 5014 * the target size of the MFU list by decreasing the 5015 * target size of the MRU list. 5016 */ 5017 if (state == arc_mru_ghost) { 5018 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size); 5019 if (!zfs_arc_p_dampener_disable) 5020 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 5021 5022 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 5023 } else if (state == arc_mfu_ghost) { 5024 uint64_t delta; 5025 5026 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size); 5027 if (!zfs_arc_p_dampener_disable) 5028 mult = MIN(mult, 10); 5029 5030 delta = MIN(bytes * mult, arc_p); 5031 arc_p = MAX(arc_p_min, arc_p - delta); 5032 } 5033 ASSERT((int64_t)arc_p >= 0); 5034 5035 /* 5036 * Wake reap thread if we do not have any available memory 5037 */ 5038 if (arc_reclaim_needed()) { 5039 zthr_wakeup(arc_reap_zthr); 5040 return; 5041 } 5042 5043 if (arc_no_grow) 5044 return; 5045 5046 if (arc_c >= arc_c_max) 5047 return; 5048 5049 /* 5050 * If we're within (2 * maxblocksize) bytes of the target 5051 * cache size, increment the target cache size 5052 */ 5053 ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT); 5054 if (aggsum_upper_bound(&arc_size) >= 5055 arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 5056 atomic_add_64(&arc_c, (int64_t)bytes); 5057 if (arc_c > arc_c_max) 5058 arc_c = arc_c_max; 5059 else if (state == arc_anon) 5060 atomic_add_64(&arc_p, (int64_t)bytes); 5061 if (arc_p > arc_c) 5062 arc_p = arc_c; 5063 } 5064 ASSERT((int64_t)arc_p >= 0); 5065 } 5066 5067 /* 5068 * Check if arc_size has grown past our upper threshold, determined by 5069 * zfs_arc_overflow_shift. 5070 */ 5071 boolean_t 5072 arc_is_overflowing(void) 5073 { 5074 /* Always allow at least one block of overflow */ 5075 int64_t overflow = MAX(SPA_MAXBLOCKSIZE, 5076 arc_c >> zfs_arc_overflow_shift); 5077 5078 /* 5079 * We just compare the lower bound here for performance reasons. Our 5080 * primary goals are to make sure that the arc never grows without 5081 * bound, and that it can reach its maximum size. This check 5082 * accomplishes both goals. The maximum amount we could run over by is 5083 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block 5084 * in the ARC. In practice, that's in the tens of MB, which is low 5085 * enough to be safe. 5086 */ 5087 return (aggsum_lower_bound(&arc_size) >= (int64_t)arc_c + overflow); 5088 } 5089 5090 static abd_t * 5091 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 5092 boolean_t do_adapt) 5093 { 5094 arc_buf_contents_t type = arc_buf_type(hdr); 5095 5096 arc_get_data_impl(hdr, size, tag, do_adapt); 5097 if (type == ARC_BUFC_METADATA) { 5098 return (abd_alloc(size, B_TRUE)); 5099 } else { 5100 ASSERT(type == ARC_BUFC_DATA); 5101 return (abd_alloc(size, B_FALSE)); 5102 } 5103 } 5104 5105 static void * 5106 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 5107 { 5108 arc_buf_contents_t type = arc_buf_type(hdr); 5109 5110 arc_get_data_impl(hdr, size, tag, B_TRUE); 5111 if (type == ARC_BUFC_METADATA) { 5112 return (zio_buf_alloc(size)); 5113 } else { 5114 ASSERT(type == ARC_BUFC_DATA); 5115 return (zio_data_buf_alloc(size)); 5116 } 5117 } 5118 5119 /* 5120 * Wait for the specified amount of data (in bytes) to be evicted from the 5121 * ARC, and for there to be sufficient free memory in the system. Waiting for 5122 * eviction ensures that the memory used by the ARC decreases. Waiting for 5123 * free memory ensures that the system won't run out of free pages, regardless 5124 * of ARC behavior and settings. See arc_lowmem_init(). 5125 */ 5126 void 5127 arc_wait_for_eviction(uint64_t amount) 5128 { 5129 mutex_enter(&arc_evict_lock); 5130 if (arc_is_overflowing()) { 5131 arc_evict_needed = B_TRUE; 5132 zthr_wakeup(arc_evict_zthr); 5133 5134 if (amount != 0) { 5135 arc_evict_waiter_t aw; 5136 list_link_init(&aw.aew_node); 5137 cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL); 5138 5139 arc_evict_waiter_t *last = 5140 list_tail(&arc_evict_waiters); 5141 if (last != NULL) { 5142 ASSERT3U(last->aew_count, >, arc_evict_count); 5143 aw.aew_count = last->aew_count + amount; 5144 } else { 5145 aw.aew_count = arc_evict_count + amount; 5146 } 5147 5148 list_insert_tail(&arc_evict_waiters, &aw); 5149 5150 arc_set_need_free(); 5151 5152 DTRACE_PROBE3(arc__wait__for__eviction, 5153 uint64_t, amount, 5154 uint64_t, arc_evict_count, 5155 uint64_t, aw.aew_count); 5156 5157 /* 5158 * We will be woken up either when arc_evict_count 5159 * reaches aew_count, or when the ARC is no longer 5160 * overflowing and eviction completes. 5161 */ 5162 cv_wait(&aw.aew_cv, &arc_evict_lock); 5163 5164 /* 5165 * In case of "false" wakeup, we will still be on the 5166 * list. 5167 */ 5168 if (list_link_active(&aw.aew_node)) 5169 list_remove(&arc_evict_waiters, &aw); 5170 5171 cv_destroy(&aw.aew_cv); 5172 } 5173 } 5174 mutex_exit(&arc_evict_lock); 5175 } 5176 5177 /* 5178 * Allocate a block and return it to the caller. If we are hitting the 5179 * hard limit for the cache size, we must sleep, waiting for the eviction 5180 * thread to catch up. If we're past the target size but below the hard 5181 * limit, we'll only signal the reclaim thread and continue on. 5182 */ 5183 static void 5184 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 5185 boolean_t do_adapt) 5186 { 5187 arc_state_t *state = hdr->b_l1hdr.b_state; 5188 arc_buf_contents_t type = arc_buf_type(hdr); 5189 5190 if (do_adapt) 5191 arc_adapt(size, state); 5192 5193 /* 5194 * If arc_size is currently overflowing, we must be adding data 5195 * faster than we are evicting. To ensure we don't compound the 5196 * problem by adding more data and forcing arc_size to grow even 5197 * further past it's target size, we wait for the eviction thread to 5198 * make some progress. We also wait for there to be sufficient free 5199 * memory in the system, as measured by arc_free_memory(). 5200 * 5201 * Specifically, we wait for zfs_arc_eviction_pct percent of the 5202 * requested size to be evicted. This should be more than 100%, to 5203 * ensure that that progress is also made towards getting arc_size 5204 * under arc_c. See the comment above zfs_arc_eviction_pct. 5205 * 5206 * We do the overflowing check without holding the arc_evict_lock to 5207 * reduce lock contention in this hot path. Note that 5208 * arc_wait_for_eviction() will acquire the lock and check again to 5209 * ensure we are truly overflowing before blocking. 5210 */ 5211 if (arc_is_overflowing()) { 5212 arc_wait_for_eviction(size * 5213 zfs_arc_eviction_pct / 100); 5214 } 5215 5216 VERIFY3U(hdr->b_type, ==, type); 5217 if (type == ARC_BUFC_METADATA) { 5218 arc_space_consume(size, ARC_SPACE_META); 5219 } else { 5220 arc_space_consume(size, ARC_SPACE_DATA); 5221 } 5222 5223 /* 5224 * Update the state size. Note that ghost states have a 5225 * "ghost size" and so don't need to be updated. 5226 */ 5227 if (!GHOST_STATE(state)) { 5228 5229 (void) zfs_refcount_add_many(&state->arcs_size, size, tag); 5230 5231 /* 5232 * If this is reached via arc_read, the link is 5233 * protected by the hash lock. If reached via 5234 * arc_buf_alloc, the header should not be accessed by 5235 * any other thread. And, if reached via arc_read_done, 5236 * the hash lock will protect it if it's found in the 5237 * hash table; otherwise no other thread should be 5238 * trying to [add|remove]_reference it. 5239 */ 5240 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5241 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5242 (void) zfs_refcount_add_many(&state->arcs_esize[type], 5243 size, tag); 5244 } 5245 5246 /* 5247 * If we are growing the cache, and we are adding anonymous 5248 * data, and we have outgrown arc_p, update arc_p 5249 */ 5250 if (aggsum_upper_bound(&arc_size) < arc_c && 5251 hdr->b_l1hdr.b_state == arc_anon && 5252 (zfs_refcount_count(&arc_anon->arcs_size) + 5253 zfs_refcount_count(&arc_mru->arcs_size) > arc_p)) 5254 arc_p = MIN(arc_c, arc_p + size); 5255 } 5256 } 5257 5258 static void 5259 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag) 5260 { 5261 arc_free_data_impl(hdr, size, tag); 5262 abd_free(abd); 5263 } 5264 5265 static void 5266 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag) 5267 { 5268 arc_buf_contents_t type = arc_buf_type(hdr); 5269 5270 arc_free_data_impl(hdr, size, tag); 5271 if (type == ARC_BUFC_METADATA) { 5272 zio_buf_free(buf, size); 5273 } else { 5274 ASSERT(type == ARC_BUFC_DATA); 5275 zio_data_buf_free(buf, size); 5276 } 5277 } 5278 5279 /* 5280 * Free the arc data buffer. 5281 */ 5282 static void 5283 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 5284 { 5285 arc_state_t *state = hdr->b_l1hdr.b_state; 5286 arc_buf_contents_t type = arc_buf_type(hdr); 5287 5288 /* protected by hash lock, if in the hash table */ 5289 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5290 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5291 ASSERT(state != arc_anon && state != arc_l2c_only); 5292 5293 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 5294 size, tag); 5295 } 5296 (void) zfs_refcount_remove_many(&state->arcs_size, size, tag); 5297 5298 VERIFY3U(hdr->b_type, ==, type); 5299 if (type == ARC_BUFC_METADATA) { 5300 arc_space_return(size, ARC_SPACE_META); 5301 } else { 5302 ASSERT(type == ARC_BUFC_DATA); 5303 arc_space_return(size, ARC_SPACE_DATA); 5304 } 5305 } 5306 5307 /* 5308 * This routine is called whenever a buffer is accessed. 5309 * NOTE: the hash lock is dropped in this function. 5310 */ 5311 static void 5312 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 5313 { 5314 clock_t now; 5315 5316 ASSERT(MUTEX_HELD(hash_lock)); 5317 ASSERT(HDR_HAS_L1HDR(hdr)); 5318 5319 if (hdr->b_l1hdr.b_state == arc_anon) { 5320 /* 5321 * This buffer is not in the cache, and does not 5322 * appear in our "ghost" list. Add the new buffer 5323 * to the MRU state. 5324 */ 5325 5326 ASSERT0(hdr->b_l1hdr.b_arc_access); 5327 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5328 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5329 arc_change_state(arc_mru, hdr, hash_lock); 5330 5331 } else if (hdr->b_l1hdr.b_state == arc_mru) { 5332 now = ddi_get_lbolt(); 5333 5334 /* 5335 * If this buffer is here because of a prefetch, then either: 5336 * - clear the flag if this is a "referencing" read 5337 * (any subsequent access will bump this into the MFU state). 5338 * or 5339 * - move the buffer to the head of the list if this is 5340 * another prefetch (to make it less likely to be evicted). 5341 */ 5342 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5343 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 5344 /* link protected by hash lock */ 5345 ASSERT(multilist_link_active( 5346 &hdr->b_l1hdr.b_arc_node)); 5347 } else { 5348 arc_hdr_clear_flags(hdr, 5349 ARC_FLAG_PREFETCH | 5350 ARC_FLAG_PRESCIENT_PREFETCH); 5351 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits); 5352 ARCSTAT_BUMP(arcstat_mru_hits); 5353 } 5354 hdr->b_l1hdr.b_arc_access = now; 5355 return; 5356 } 5357 5358 /* 5359 * This buffer has been "accessed" only once so far, 5360 * but it is still in the cache. Move it to the MFU 5361 * state. 5362 */ 5363 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access + 5364 ARC_MINTIME)) { 5365 /* 5366 * More than 125ms have passed since we 5367 * instantiated this buffer. Move it to the 5368 * most frequently used state. 5369 */ 5370 hdr->b_l1hdr.b_arc_access = now; 5371 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5372 arc_change_state(arc_mfu, hdr, hash_lock); 5373 } 5374 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits); 5375 ARCSTAT_BUMP(arcstat_mru_hits); 5376 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 5377 arc_state_t *new_state; 5378 /* 5379 * This buffer has been "accessed" recently, but 5380 * was evicted from the cache. Move it to the 5381 * MFU state. 5382 */ 5383 5384 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5385 new_state = arc_mru; 5386 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) { 5387 arc_hdr_clear_flags(hdr, 5388 ARC_FLAG_PREFETCH | 5389 ARC_FLAG_PRESCIENT_PREFETCH); 5390 } 5391 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5392 } else { 5393 new_state = arc_mfu; 5394 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5395 } 5396 5397 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5398 arc_change_state(new_state, hdr, hash_lock); 5399 5400 atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits); 5401 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 5402 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 5403 /* 5404 * This buffer has been accessed more than once and is 5405 * still in the cache. Keep it in the MFU state. 5406 * 5407 * NOTE: an add_reference() that occurred when we did 5408 * the arc_read() will have kicked this off the list. 5409 * If it was a prefetch, we will explicitly move it to 5410 * the head of the list now. 5411 */ 5412 5413 atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits); 5414 ARCSTAT_BUMP(arcstat_mfu_hits); 5415 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5416 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 5417 arc_state_t *new_state = arc_mfu; 5418 /* 5419 * This buffer has been accessed more than once but has 5420 * been evicted from the cache. Move it back to the 5421 * MFU state. 5422 */ 5423 5424 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5425 /* 5426 * This is a prefetch access... 5427 * move this block back to the MRU state. 5428 */ 5429 new_state = arc_mru; 5430 } 5431 5432 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5433 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5434 arc_change_state(new_state, hdr, hash_lock); 5435 5436 atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits); 5437 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 5438 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 5439 /* 5440 * This buffer is on the 2nd Level ARC. 5441 */ 5442 5443 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5444 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5445 arc_change_state(arc_mfu, hdr, hash_lock); 5446 } else { 5447 cmn_err(CE_PANIC, "invalid arc state 0x%p", 5448 hdr->b_l1hdr.b_state); 5449 } 5450 } 5451 5452 /* 5453 * This routine is called by dbuf_hold() to update the arc_access() state 5454 * which otherwise would be skipped for entries in the dbuf cache. 5455 */ 5456 void 5457 arc_buf_access(arc_buf_t *buf) 5458 { 5459 mutex_enter(&buf->b_evict_lock); 5460 arc_buf_hdr_t *hdr = buf->b_hdr; 5461 5462 /* 5463 * Avoid taking the hash_lock when possible as an optimization. 5464 * The header must be checked again under the hash_lock in order 5465 * to handle the case where it is concurrently being released. 5466 */ 5467 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5468 mutex_exit(&buf->b_evict_lock); 5469 return; 5470 } 5471 5472 kmutex_t *hash_lock = HDR_LOCK(hdr); 5473 mutex_enter(hash_lock); 5474 5475 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5476 mutex_exit(hash_lock); 5477 mutex_exit(&buf->b_evict_lock); 5478 ARCSTAT_BUMP(arcstat_access_skip); 5479 return; 5480 } 5481 5482 mutex_exit(&buf->b_evict_lock); 5483 5484 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5485 hdr->b_l1hdr.b_state == arc_mfu); 5486 5487 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5488 arc_access(hdr, hash_lock); 5489 mutex_exit(hash_lock); 5490 5491 ARCSTAT_BUMP(arcstat_hits); 5492 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr) && !HDR_PRESCIENT_PREFETCH(hdr), 5493 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits); 5494 } 5495 5496 /* a generic arc_read_done_func_t which you can use */ 5497 /* ARGSUSED */ 5498 void 5499 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5500 arc_buf_t *buf, void *arg) 5501 { 5502 if (buf == NULL) 5503 return; 5504 5505 bcopy(buf->b_data, arg, arc_buf_size(buf)); 5506 arc_buf_destroy(buf, arg); 5507 } 5508 5509 /* a generic arc_read_done_func_t */ 5510 /* ARGSUSED */ 5511 void 5512 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5513 arc_buf_t *buf, void *arg) 5514 { 5515 arc_buf_t **bufp = arg; 5516 5517 if (buf == NULL) { 5518 ASSERT(zio == NULL || zio->io_error != 0); 5519 *bufp = NULL; 5520 } else { 5521 ASSERT(zio == NULL || zio->io_error == 0); 5522 *bufp = buf; 5523 ASSERT(buf->b_data != NULL); 5524 } 5525 } 5526 5527 static void 5528 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp) 5529 { 5530 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 5531 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0); 5532 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF); 5533 } else { 5534 if (HDR_COMPRESSION_ENABLED(hdr)) { 5535 ASSERT3U(arc_hdr_get_compress(hdr), ==, 5536 BP_GET_COMPRESS(bp)); 5537 } 5538 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 5539 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); 5540 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp)); 5541 } 5542 } 5543 5544 static void 5545 arc_read_done(zio_t *zio) 5546 { 5547 blkptr_t *bp = zio->io_bp; 5548 arc_buf_hdr_t *hdr = zio->io_private; 5549 kmutex_t *hash_lock = NULL; 5550 arc_callback_t *callback_list; 5551 arc_callback_t *acb; 5552 boolean_t freeable = B_FALSE; 5553 5554 /* 5555 * The hdr was inserted into hash-table and removed from lists 5556 * prior to starting I/O. We should find this header, since 5557 * it's in the hash table, and it should be legit since it's 5558 * not possible to evict it during the I/O. The only possible 5559 * reason for it not to be found is if we were freed during the 5560 * read. 5561 */ 5562 if (HDR_IN_HASH_TABLE(hdr)) { 5563 arc_buf_hdr_t *found; 5564 5565 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 5566 ASSERT3U(hdr->b_dva.dva_word[0], ==, 5567 BP_IDENTITY(zio->io_bp)->dva_word[0]); 5568 ASSERT3U(hdr->b_dva.dva_word[1], ==, 5569 BP_IDENTITY(zio->io_bp)->dva_word[1]); 5570 5571 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock); 5572 5573 ASSERT((found == hdr && 5574 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 5575 (found == hdr && HDR_L2_READING(hdr))); 5576 ASSERT3P(hash_lock, !=, NULL); 5577 } 5578 5579 if (BP_IS_PROTECTED(bp)) { 5580 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 5581 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 5582 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 5583 hdr->b_crypt_hdr.b_iv); 5584 5585 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) { 5586 void *tmpbuf; 5587 5588 tmpbuf = abd_borrow_buf_copy(zio->io_abd, 5589 sizeof (zil_chain_t)); 5590 zio_crypt_decode_mac_zil(tmpbuf, 5591 hdr->b_crypt_hdr.b_mac); 5592 abd_return_buf(zio->io_abd, tmpbuf, 5593 sizeof (zil_chain_t)); 5594 } else { 5595 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 5596 } 5597 } 5598 5599 if (zio->io_error == 0) { 5600 /* byteswap if necessary */ 5601 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 5602 if (BP_GET_LEVEL(zio->io_bp) > 0) { 5603 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 5604 } else { 5605 hdr->b_l1hdr.b_byteswap = 5606 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 5607 } 5608 } else { 5609 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 5610 } 5611 if (!HDR_L2_READING(hdr)) { 5612 hdr->b_complevel = zio->io_prop.zp_complevel; 5613 } 5614 } 5615 5616 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); 5617 if (l2arc_noprefetch && HDR_PREFETCH(hdr)) 5618 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE); 5619 5620 callback_list = hdr->b_l1hdr.b_acb; 5621 ASSERT3P(callback_list, !=, NULL); 5622 5623 if (hash_lock && zio->io_error == 0 && 5624 hdr->b_l1hdr.b_state == arc_anon) { 5625 /* 5626 * Only call arc_access on anonymous buffers. This is because 5627 * if we've issued an I/O for an evicted buffer, we've already 5628 * called arc_access (to prevent any simultaneous readers from 5629 * getting confused). 5630 */ 5631 arc_access(hdr, hash_lock); 5632 } 5633 5634 /* 5635 * If a read request has a callback (i.e. acb_done is not NULL), then we 5636 * make a buf containing the data according to the parameters which were 5637 * passed in. The implementation of arc_buf_alloc_impl() ensures that we 5638 * aren't needlessly decompressing the data multiple times. 5639 */ 5640 int callback_cnt = 0; 5641 for (acb = callback_list; acb != NULL; acb = acb->acb_next) { 5642 if (!acb->acb_done) 5643 continue; 5644 5645 callback_cnt++; 5646 5647 if (zio->io_error != 0) 5648 continue; 5649 5650 int error = arc_buf_alloc_impl(hdr, zio->io_spa, 5651 &acb->acb_zb, acb->acb_private, acb->acb_encrypted, 5652 acb->acb_compressed, acb->acb_noauth, B_TRUE, 5653 &acb->acb_buf); 5654 5655 /* 5656 * Assert non-speculative zios didn't fail because an 5657 * encryption key wasn't loaded 5658 */ 5659 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) || 5660 error != EACCES); 5661 5662 /* 5663 * If we failed to decrypt, report an error now (as the zio 5664 * layer would have done if it had done the transforms). 5665 */ 5666 if (error == ECKSUM) { 5667 ASSERT(BP_IS_PROTECTED(bp)); 5668 error = SET_ERROR(EIO); 5669 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5670 spa_log_error(zio->io_spa, &acb->acb_zb); 5671 (void) zfs_ereport_post( 5672 FM_EREPORT_ZFS_AUTHENTICATION, 5673 zio->io_spa, NULL, &acb->acb_zb, zio, 0); 5674 } 5675 } 5676 5677 if (error != 0) { 5678 /* 5679 * Decompression or decryption failed. Set 5680 * io_error so that when we call acb_done 5681 * (below), we will indicate that the read 5682 * failed. Note that in the unusual case 5683 * where one callback is compressed and another 5684 * uncompressed, we will mark all of them 5685 * as failed, even though the uncompressed 5686 * one can't actually fail. In this case, 5687 * the hdr will not be anonymous, because 5688 * if there are multiple callbacks, it's 5689 * because multiple threads found the same 5690 * arc buf in the hash table. 5691 */ 5692 zio->io_error = error; 5693 } 5694 } 5695 5696 /* 5697 * If there are multiple callbacks, we must have the hash lock, 5698 * because the only way for multiple threads to find this hdr is 5699 * in the hash table. This ensures that if there are multiple 5700 * callbacks, the hdr is not anonymous. If it were anonymous, 5701 * we couldn't use arc_buf_destroy() in the error case below. 5702 */ 5703 ASSERT(callback_cnt < 2 || hash_lock != NULL); 5704 5705 hdr->b_l1hdr.b_acb = NULL; 5706 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5707 if (callback_cnt == 0) 5708 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 5709 5710 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) || 5711 callback_list != NULL); 5712 5713 if (zio->io_error == 0) { 5714 arc_hdr_verify(hdr, zio->io_bp); 5715 } else { 5716 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 5717 if (hdr->b_l1hdr.b_state != arc_anon) 5718 arc_change_state(arc_anon, hdr, hash_lock); 5719 if (HDR_IN_HASH_TABLE(hdr)) 5720 buf_hash_remove(hdr); 5721 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5722 } 5723 5724 /* 5725 * Broadcast before we drop the hash_lock to avoid the possibility 5726 * that the hdr (and hence the cv) might be freed before we get to 5727 * the cv_broadcast(). 5728 */ 5729 cv_broadcast(&hdr->b_l1hdr.b_cv); 5730 5731 if (hash_lock != NULL) { 5732 mutex_exit(hash_lock); 5733 } else { 5734 /* 5735 * This block was freed while we waited for the read to 5736 * complete. It has been removed from the hash table and 5737 * moved to the anonymous state (so that it won't show up 5738 * in the cache). 5739 */ 5740 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 5741 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5742 } 5743 5744 /* execute each callback and free its structure */ 5745 while ((acb = callback_list) != NULL) { 5746 if (acb->acb_done != NULL) { 5747 if (zio->io_error != 0 && acb->acb_buf != NULL) { 5748 /* 5749 * If arc_buf_alloc_impl() fails during 5750 * decompression, the buf will still be 5751 * allocated, and needs to be freed here. 5752 */ 5753 arc_buf_destroy(acb->acb_buf, 5754 acb->acb_private); 5755 acb->acb_buf = NULL; 5756 } 5757 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp, 5758 acb->acb_buf, acb->acb_private); 5759 } 5760 5761 if (acb->acb_zio_dummy != NULL) { 5762 acb->acb_zio_dummy->io_error = zio->io_error; 5763 zio_nowait(acb->acb_zio_dummy); 5764 } 5765 5766 callback_list = acb->acb_next; 5767 kmem_free(acb, sizeof (arc_callback_t)); 5768 } 5769 5770 if (freeable) 5771 arc_hdr_destroy(hdr); 5772 } 5773 5774 /* 5775 * "Read" the block at the specified DVA (in bp) via the 5776 * cache. If the block is found in the cache, invoke the provided 5777 * callback immediately and return. Note that the `zio' parameter 5778 * in the callback will be NULL in this case, since no IO was 5779 * required. If the block is not in the cache pass the read request 5780 * on to the spa with a substitute callback function, so that the 5781 * requested block will be added to the cache. 5782 * 5783 * If a read request arrives for a block that has a read in-progress, 5784 * either wait for the in-progress read to complete (and return the 5785 * results); or, if this is a read with a "done" func, add a record 5786 * to the read to invoke the "done" func when the read completes, 5787 * and return; or just return. 5788 * 5789 * arc_read_done() will invoke all the requested "done" functions 5790 * for readers of this block. 5791 */ 5792 int 5793 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 5794 arc_read_done_func_t *done, void *private, zio_priority_t priority, 5795 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 5796 { 5797 arc_buf_hdr_t *hdr = NULL; 5798 kmutex_t *hash_lock = NULL; 5799 zio_t *rzio; 5800 uint64_t guid = spa_load_guid(spa); 5801 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0; 5802 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) && 5803 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5804 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) && 5805 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5806 boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp); 5807 int rc = 0; 5808 5809 ASSERT(!embedded_bp || 5810 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 5811 ASSERT(!BP_IS_HOLE(bp)); 5812 ASSERT(!BP_IS_REDACTED(bp)); 5813 5814 /* 5815 * Normally SPL_FSTRANS will already be set since kernel threads which 5816 * expect to call the DMU interfaces will set it when created. System 5817 * calls are similarly handled by setting/cleaning the bit in the 5818 * registered callback (module/os/.../zfs/zpl_*). 5819 * 5820 * External consumers such as Lustre which call the exported DMU 5821 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock 5822 * on the hash_lock always set and clear the bit. 5823 */ 5824 fstrans_cookie_t cookie = spl_fstrans_mark(); 5825 top: 5826 if (!embedded_bp) { 5827 /* 5828 * Embedded BP's have no DVA and require no I/O to "read". 5829 * Create an anonymous arc buf to back it. 5830 */ 5831 hdr = buf_hash_find(guid, bp, &hash_lock); 5832 } 5833 5834 /* 5835 * Determine if we have an L1 cache hit or a cache miss. For simplicity 5836 * we maintain encrypted data separately from compressed / uncompressed 5837 * data. If the user is requesting raw encrypted data and we don't have 5838 * that in the header we will read from disk to guarantee that we can 5839 * get it even if the encryption keys aren't loaded. 5840 */ 5841 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) || 5842 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) { 5843 arc_buf_t *buf = NULL; 5844 *arc_flags |= ARC_FLAG_CACHED; 5845 5846 if (HDR_IO_IN_PROGRESS(hdr)) { 5847 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head; 5848 5849 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 5850 mutex_exit(hash_lock); 5851 ARCSTAT_BUMP(arcstat_cached_only_in_progress); 5852 rc = SET_ERROR(ENOENT); 5853 goto out; 5854 } 5855 5856 ASSERT3P(head_zio, !=, NULL); 5857 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && 5858 priority == ZIO_PRIORITY_SYNC_READ) { 5859 /* 5860 * This is a sync read that needs to wait for 5861 * an in-flight async read. Request that the 5862 * zio have its priority upgraded. 5863 */ 5864 zio_change_priority(head_zio, priority); 5865 DTRACE_PROBE1(arc__async__upgrade__sync, 5866 arc_buf_hdr_t *, hdr); 5867 ARCSTAT_BUMP(arcstat_async_upgrade_sync); 5868 } 5869 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 5870 arc_hdr_clear_flags(hdr, 5871 ARC_FLAG_PREDICTIVE_PREFETCH); 5872 } 5873 5874 if (*arc_flags & ARC_FLAG_WAIT) { 5875 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 5876 mutex_exit(hash_lock); 5877 goto top; 5878 } 5879 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 5880 5881 if (done) { 5882 arc_callback_t *acb = NULL; 5883 5884 acb = kmem_zalloc(sizeof (arc_callback_t), 5885 KM_SLEEP); 5886 acb->acb_done = done; 5887 acb->acb_private = private; 5888 acb->acb_compressed = compressed_read; 5889 acb->acb_encrypted = encrypted_read; 5890 acb->acb_noauth = noauth_read; 5891 acb->acb_zb = *zb; 5892 if (pio != NULL) 5893 acb->acb_zio_dummy = zio_null(pio, 5894 spa, NULL, NULL, NULL, zio_flags); 5895 5896 ASSERT3P(acb->acb_done, !=, NULL); 5897 acb->acb_zio_head = head_zio; 5898 acb->acb_next = hdr->b_l1hdr.b_acb; 5899 hdr->b_l1hdr.b_acb = acb; 5900 mutex_exit(hash_lock); 5901 goto out; 5902 } 5903 mutex_exit(hash_lock); 5904 goto out; 5905 } 5906 5907 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5908 hdr->b_l1hdr.b_state == arc_mfu); 5909 5910 if (done) { 5911 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 5912 /* 5913 * This is a demand read which does not have to 5914 * wait for i/o because we did a predictive 5915 * prefetch i/o for it, which has completed. 5916 */ 5917 DTRACE_PROBE1( 5918 arc__demand__hit__predictive__prefetch, 5919 arc_buf_hdr_t *, hdr); 5920 ARCSTAT_BUMP( 5921 arcstat_demand_hit_predictive_prefetch); 5922 arc_hdr_clear_flags(hdr, 5923 ARC_FLAG_PREDICTIVE_PREFETCH); 5924 } 5925 5926 if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) { 5927 ARCSTAT_BUMP( 5928 arcstat_demand_hit_prescient_prefetch); 5929 arc_hdr_clear_flags(hdr, 5930 ARC_FLAG_PRESCIENT_PREFETCH); 5931 } 5932 5933 ASSERT(!embedded_bp || !BP_IS_HOLE(bp)); 5934 5935 /* Get a buf with the desired data in it. */ 5936 rc = arc_buf_alloc_impl(hdr, spa, zb, private, 5937 encrypted_read, compressed_read, noauth_read, 5938 B_TRUE, &buf); 5939 if (rc == ECKSUM) { 5940 /* 5941 * Convert authentication and decryption errors 5942 * to EIO (and generate an ereport if needed) 5943 * before leaving the ARC. 5944 */ 5945 rc = SET_ERROR(EIO); 5946 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5947 spa_log_error(spa, zb); 5948 (void) zfs_ereport_post( 5949 FM_EREPORT_ZFS_AUTHENTICATION, 5950 spa, NULL, zb, NULL, 0); 5951 } 5952 } 5953 if (rc != 0) { 5954 (void) remove_reference(hdr, hash_lock, 5955 private); 5956 arc_buf_destroy_impl(buf); 5957 buf = NULL; 5958 } 5959 5960 /* assert any errors weren't due to unloaded keys */ 5961 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) || 5962 rc != EACCES); 5963 } else if (*arc_flags & ARC_FLAG_PREFETCH && 5964 zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 5965 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 5966 } 5967 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5968 arc_access(hdr, hash_lock); 5969 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 5970 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 5971 if (*arc_flags & ARC_FLAG_L2CACHE) 5972 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 5973 mutex_exit(hash_lock); 5974 ARCSTAT_BUMP(arcstat_hits); 5975 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 5976 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 5977 data, metadata, hits); 5978 5979 if (done) 5980 done(NULL, zb, bp, buf, private); 5981 } else { 5982 uint64_t lsize = BP_GET_LSIZE(bp); 5983 uint64_t psize = BP_GET_PSIZE(bp); 5984 arc_callback_t *acb; 5985 vdev_t *vd = NULL; 5986 uint64_t addr = 0; 5987 boolean_t devw = B_FALSE; 5988 uint64_t size; 5989 abd_t *hdr_abd; 5990 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0; 5991 5992 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 5993 rc = SET_ERROR(ENOENT); 5994 if (hash_lock != NULL) 5995 mutex_exit(hash_lock); 5996 goto out; 5997 } 5998 5999 /* 6000 * Gracefully handle a damaged logical block size as a 6001 * checksum error. 6002 */ 6003 if (lsize > spa_maxblocksize(spa)) { 6004 rc = SET_ERROR(ECKSUM); 6005 if (hash_lock != NULL) 6006 mutex_exit(hash_lock); 6007 goto out; 6008 } 6009 6010 if (hdr == NULL) { 6011 /* 6012 * This block is not in the cache or it has 6013 * embedded data. 6014 */ 6015 arc_buf_hdr_t *exists = NULL; 6016 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 6017 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 6018 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type, 6019 encrypted_read); 6020 6021 if (!embedded_bp) { 6022 hdr->b_dva = *BP_IDENTITY(bp); 6023 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 6024 exists = buf_hash_insert(hdr, &hash_lock); 6025 } 6026 if (exists != NULL) { 6027 /* somebody beat us to the hash insert */ 6028 mutex_exit(hash_lock); 6029 buf_discard_identity(hdr); 6030 arc_hdr_destroy(hdr); 6031 goto top; /* restart the IO request */ 6032 } 6033 } else { 6034 /* 6035 * This block is in the ghost cache or encrypted data 6036 * was requested and we didn't have it. If it was 6037 * L2-only (and thus didn't have an L1 hdr), 6038 * we realloc the header to add an L1 hdr. 6039 */ 6040 if (!HDR_HAS_L1HDR(hdr)) { 6041 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 6042 hdr_full_cache); 6043 } 6044 6045 if (GHOST_STATE(hdr->b_l1hdr.b_state)) { 6046 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6047 ASSERT(!HDR_HAS_RABD(hdr)); 6048 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6049 ASSERT0(zfs_refcount_count( 6050 &hdr->b_l1hdr.b_refcnt)); 6051 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 6052 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 6053 } else if (HDR_IO_IN_PROGRESS(hdr)) { 6054 /* 6055 * If this header already had an IO in progress 6056 * and we are performing another IO to fetch 6057 * encrypted data we must wait until the first 6058 * IO completes so as not to confuse 6059 * arc_read_done(). This should be very rare 6060 * and so the performance impact shouldn't 6061 * matter. 6062 */ 6063 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 6064 mutex_exit(hash_lock); 6065 goto top; 6066 } 6067 6068 /* 6069 * This is a delicate dance that we play here. 6070 * This hdr might be in the ghost list so we access 6071 * it to move it out of the ghost list before we 6072 * initiate the read. If it's a prefetch then 6073 * it won't have a callback so we'll remove the 6074 * reference that arc_buf_alloc_impl() created. We 6075 * do this after we've called arc_access() to 6076 * avoid hitting an assert in remove_reference(). 6077 */ 6078 arc_adapt(arc_hdr_size(hdr), hdr->b_l1hdr.b_state); 6079 arc_access(hdr, hash_lock); 6080 arc_hdr_alloc_abd(hdr, alloc_flags); 6081 } 6082 6083 if (encrypted_read) { 6084 ASSERT(HDR_HAS_RABD(hdr)); 6085 size = HDR_GET_PSIZE(hdr); 6086 hdr_abd = hdr->b_crypt_hdr.b_rabd; 6087 zio_flags |= ZIO_FLAG_RAW; 6088 } else { 6089 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 6090 size = arc_hdr_size(hdr); 6091 hdr_abd = hdr->b_l1hdr.b_pabd; 6092 6093 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 6094 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 6095 } 6096 6097 /* 6098 * For authenticated bp's, we do not ask the ZIO layer 6099 * to authenticate them since this will cause the entire 6100 * IO to fail if the key isn't loaded. Instead, we 6101 * defer authentication until arc_buf_fill(), which will 6102 * verify the data when the key is available. 6103 */ 6104 if (BP_IS_AUTHENTICATED(bp)) 6105 zio_flags |= ZIO_FLAG_RAW_ENCRYPT; 6106 } 6107 6108 if (*arc_flags & ARC_FLAG_PREFETCH && 6109 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) 6110 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 6111 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 6112 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 6113 if (*arc_flags & ARC_FLAG_L2CACHE) 6114 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6115 if (BP_IS_AUTHENTICATED(bp)) 6116 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6117 if (BP_GET_LEVEL(bp) > 0) 6118 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); 6119 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH) 6120 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH); 6121 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 6122 6123 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 6124 acb->acb_done = done; 6125 acb->acb_private = private; 6126 acb->acb_compressed = compressed_read; 6127 acb->acb_encrypted = encrypted_read; 6128 acb->acb_noauth = noauth_read; 6129 acb->acb_zb = *zb; 6130 6131 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6132 hdr->b_l1hdr.b_acb = acb; 6133 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6134 6135 if (HDR_HAS_L2HDR(hdr) && 6136 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 6137 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 6138 addr = hdr->b_l2hdr.b_daddr; 6139 /* 6140 * Lock out L2ARC device removal. 6141 */ 6142 if (vdev_is_dead(vd) || 6143 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 6144 vd = NULL; 6145 } 6146 6147 /* 6148 * We count both async reads and scrub IOs as asynchronous so 6149 * that both can be upgraded in the event of a cache hit while 6150 * the read IO is still in-flight. 6151 */ 6152 if (priority == ZIO_PRIORITY_ASYNC_READ || 6153 priority == ZIO_PRIORITY_SCRUB) 6154 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6155 else 6156 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6157 6158 /* 6159 * At this point, we have a level 1 cache miss or a blkptr 6160 * with embedded data. Try again in L2ARC if possible. 6161 */ 6162 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); 6163 6164 /* 6165 * Skip ARC stat bump for block pointers with embedded 6166 * data. The data are read from the blkptr itself via 6167 * decode_embedded_bp_compressed(). 6168 */ 6169 if (!embedded_bp) { 6170 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, 6171 blkptr_t *, bp, uint64_t, lsize, 6172 zbookmark_phys_t *, zb); 6173 ARCSTAT_BUMP(arcstat_misses); 6174 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 6175 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, 6176 metadata, misses); 6177 } 6178 6179 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 6180 /* 6181 * Read from the L2ARC if the following are true: 6182 * 1. The L2ARC vdev was previously cached. 6183 * 2. This buffer still has L2ARC metadata. 6184 * 3. This buffer isn't currently writing to the L2ARC. 6185 * 4. The L2ARC entry wasn't evicted, which may 6186 * also have invalidated the vdev. 6187 * 5. This isn't prefetch and l2arc_noprefetch is set. 6188 */ 6189 if (HDR_HAS_L2HDR(hdr) && 6190 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 6191 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 6192 l2arc_read_callback_t *cb; 6193 abd_t *abd; 6194 uint64_t asize; 6195 6196 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 6197 ARCSTAT_BUMP(arcstat_l2_hits); 6198 atomic_inc_32(&hdr->b_l2hdr.b_hits); 6199 6200 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 6201 KM_SLEEP); 6202 cb->l2rcb_hdr = hdr; 6203 cb->l2rcb_bp = *bp; 6204 cb->l2rcb_zb = *zb; 6205 cb->l2rcb_flags = zio_flags; 6206 6207 /* 6208 * When Compressed ARC is disabled, but the 6209 * L2ARC block is compressed, arc_hdr_size() 6210 * will have returned LSIZE rather than PSIZE. 6211 */ 6212 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 6213 !HDR_COMPRESSION_ENABLED(hdr) && 6214 HDR_GET_PSIZE(hdr) != 0) { 6215 size = HDR_GET_PSIZE(hdr); 6216 } 6217 6218 asize = vdev_psize_to_asize(vd, size); 6219 if (asize != size) { 6220 abd = abd_alloc_for_io(asize, 6221 HDR_ISTYPE_METADATA(hdr)); 6222 cb->l2rcb_abd = abd; 6223 } else { 6224 abd = hdr_abd; 6225 } 6226 6227 ASSERT(addr >= VDEV_LABEL_START_SIZE && 6228 addr + asize <= vd->vdev_psize - 6229 VDEV_LABEL_END_SIZE); 6230 6231 /* 6232 * l2arc read. The SCL_L2ARC lock will be 6233 * released by l2arc_read_done(). 6234 * Issue a null zio if the underlying buffer 6235 * was squashed to zero size by compression. 6236 */ 6237 ASSERT3U(arc_hdr_get_compress(hdr), !=, 6238 ZIO_COMPRESS_EMPTY); 6239 rzio = zio_read_phys(pio, vd, addr, 6240 asize, abd, 6241 ZIO_CHECKSUM_OFF, 6242 l2arc_read_done, cb, priority, 6243 zio_flags | ZIO_FLAG_DONT_CACHE | 6244 ZIO_FLAG_CANFAIL | 6245 ZIO_FLAG_DONT_PROPAGATE | 6246 ZIO_FLAG_DONT_RETRY, B_FALSE); 6247 acb->acb_zio_head = rzio; 6248 6249 if (hash_lock != NULL) 6250 mutex_exit(hash_lock); 6251 6252 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 6253 zio_t *, rzio); 6254 ARCSTAT_INCR(arcstat_l2_read_bytes, 6255 HDR_GET_PSIZE(hdr)); 6256 6257 if (*arc_flags & ARC_FLAG_NOWAIT) { 6258 zio_nowait(rzio); 6259 goto out; 6260 } 6261 6262 ASSERT(*arc_flags & ARC_FLAG_WAIT); 6263 if (zio_wait(rzio) == 0) 6264 goto out; 6265 6266 /* l2arc read error; goto zio_read() */ 6267 if (hash_lock != NULL) 6268 mutex_enter(hash_lock); 6269 } else { 6270 DTRACE_PROBE1(l2arc__miss, 6271 arc_buf_hdr_t *, hdr); 6272 ARCSTAT_BUMP(arcstat_l2_misses); 6273 if (HDR_L2_WRITING(hdr)) 6274 ARCSTAT_BUMP(arcstat_l2_rw_clash); 6275 spa_config_exit(spa, SCL_L2ARC, vd); 6276 } 6277 } else { 6278 if (vd != NULL) 6279 spa_config_exit(spa, SCL_L2ARC, vd); 6280 /* 6281 * Skip ARC stat bump for block pointers with 6282 * embedded data. The data are read from the blkptr 6283 * itself via decode_embedded_bp_compressed(). 6284 */ 6285 if (l2arc_ndev != 0 && !embedded_bp) { 6286 DTRACE_PROBE1(l2arc__miss, 6287 arc_buf_hdr_t *, hdr); 6288 ARCSTAT_BUMP(arcstat_l2_misses); 6289 } 6290 } 6291 6292 rzio = zio_read(pio, spa, bp, hdr_abd, size, 6293 arc_read_done, hdr, priority, zio_flags, zb); 6294 acb->acb_zio_head = rzio; 6295 6296 if (hash_lock != NULL) 6297 mutex_exit(hash_lock); 6298 6299 if (*arc_flags & ARC_FLAG_WAIT) { 6300 rc = zio_wait(rzio); 6301 goto out; 6302 } 6303 6304 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 6305 zio_nowait(rzio); 6306 } 6307 6308 out: 6309 /* embedded bps don't actually go to disk */ 6310 if (!embedded_bp) 6311 spa_read_history_add(spa, zb, *arc_flags); 6312 spl_fstrans_unmark(cookie); 6313 return (rc); 6314 } 6315 6316 arc_prune_t * 6317 arc_add_prune_callback(arc_prune_func_t *func, void *private) 6318 { 6319 arc_prune_t *p; 6320 6321 p = kmem_alloc(sizeof (*p), KM_SLEEP); 6322 p->p_pfunc = func; 6323 p->p_private = private; 6324 list_link_init(&p->p_node); 6325 zfs_refcount_create(&p->p_refcnt); 6326 6327 mutex_enter(&arc_prune_mtx); 6328 zfs_refcount_add(&p->p_refcnt, &arc_prune_list); 6329 list_insert_head(&arc_prune_list, p); 6330 mutex_exit(&arc_prune_mtx); 6331 6332 return (p); 6333 } 6334 6335 void 6336 arc_remove_prune_callback(arc_prune_t *p) 6337 { 6338 boolean_t wait = B_FALSE; 6339 mutex_enter(&arc_prune_mtx); 6340 list_remove(&arc_prune_list, p); 6341 if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0) 6342 wait = B_TRUE; 6343 mutex_exit(&arc_prune_mtx); 6344 6345 /* wait for arc_prune_task to finish */ 6346 if (wait) 6347 taskq_wait_outstanding(arc_prune_taskq, 0); 6348 ASSERT0(zfs_refcount_count(&p->p_refcnt)); 6349 zfs_refcount_destroy(&p->p_refcnt); 6350 kmem_free(p, sizeof (*p)); 6351 } 6352 6353 /* 6354 * Notify the arc that a block was freed, and thus will never be used again. 6355 */ 6356 void 6357 arc_freed(spa_t *spa, const blkptr_t *bp) 6358 { 6359 arc_buf_hdr_t *hdr; 6360 kmutex_t *hash_lock; 6361 uint64_t guid = spa_load_guid(spa); 6362 6363 ASSERT(!BP_IS_EMBEDDED(bp)); 6364 6365 hdr = buf_hash_find(guid, bp, &hash_lock); 6366 if (hdr == NULL) 6367 return; 6368 6369 /* 6370 * We might be trying to free a block that is still doing I/O 6371 * (i.e. prefetch) or has a reference (i.e. a dedup-ed, 6372 * dmu_sync-ed block). If this block is being prefetched, then it 6373 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr 6374 * until the I/O completes. A block may also have a reference if it is 6375 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would 6376 * have written the new block to its final resting place on disk but 6377 * without the dedup flag set. This would have left the hdr in the MRU 6378 * state and discoverable. When the txg finally syncs it detects that 6379 * the block was overridden in open context and issues an override I/O. 6380 * Since this is a dedup block, the override I/O will determine if the 6381 * block is already in the DDT. If so, then it will replace the io_bp 6382 * with the bp from the DDT and allow the I/O to finish. When the I/O 6383 * reaches the done callback, dbuf_write_override_done, it will 6384 * check to see if the io_bp and io_bp_override are identical. 6385 * If they are not, then it indicates that the bp was replaced with 6386 * the bp in the DDT and the override bp is freed. This allows 6387 * us to arrive here with a reference on a block that is being 6388 * freed. So if we have an I/O in progress, or a reference to 6389 * this hdr, then we don't destroy the hdr. 6390 */ 6391 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) && 6392 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) { 6393 arc_change_state(arc_anon, hdr, hash_lock); 6394 arc_hdr_destroy(hdr); 6395 mutex_exit(hash_lock); 6396 } else { 6397 mutex_exit(hash_lock); 6398 } 6399 6400 } 6401 6402 /* 6403 * Release this buffer from the cache, making it an anonymous buffer. This 6404 * must be done after a read and prior to modifying the buffer contents. 6405 * If the buffer has more than one reference, we must make 6406 * a new hdr for the buffer. 6407 */ 6408 void 6409 arc_release(arc_buf_t *buf, void *tag) 6410 { 6411 arc_buf_hdr_t *hdr = buf->b_hdr; 6412 6413 /* 6414 * It would be nice to assert that if its DMU metadata (level > 6415 * 0 || it's the dnode file), then it must be syncing context. 6416 * But we don't know that information at this level. 6417 */ 6418 6419 mutex_enter(&buf->b_evict_lock); 6420 6421 ASSERT(HDR_HAS_L1HDR(hdr)); 6422 6423 /* 6424 * We don't grab the hash lock prior to this check, because if 6425 * the buffer's header is in the arc_anon state, it won't be 6426 * linked into the hash table. 6427 */ 6428 if (hdr->b_l1hdr.b_state == arc_anon) { 6429 mutex_exit(&buf->b_evict_lock); 6430 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6431 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 6432 ASSERT(!HDR_HAS_L2HDR(hdr)); 6433 ASSERT(HDR_EMPTY(hdr)); 6434 6435 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6436 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 6437 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node)); 6438 6439 hdr->b_l1hdr.b_arc_access = 0; 6440 6441 /* 6442 * If the buf is being overridden then it may already 6443 * have a hdr that is not empty. 6444 */ 6445 buf_discard_identity(hdr); 6446 arc_buf_thaw(buf); 6447 6448 return; 6449 } 6450 6451 kmutex_t *hash_lock = HDR_LOCK(hdr); 6452 mutex_enter(hash_lock); 6453 6454 /* 6455 * This assignment is only valid as long as the hash_lock is 6456 * held, we must be careful not to reference state or the 6457 * b_state field after dropping the lock. 6458 */ 6459 arc_state_t *state = hdr->b_l1hdr.b_state; 6460 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 6461 ASSERT3P(state, !=, arc_anon); 6462 6463 /* this buffer is not on any list */ 6464 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0); 6465 6466 if (HDR_HAS_L2HDR(hdr)) { 6467 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6468 6469 /* 6470 * We have to recheck this conditional again now that 6471 * we're holding the l2ad_mtx to prevent a race with 6472 * another thread which might be concurrently calling 6473 * l2arc_evict(). In that case, l2arc_evict() might have 6474 * destroyed the header's L2 portion as we were waiting 6475 * to acquire the l2ad_mtx. 6476 */ 6477 if (HDR_HAS_L2HDR(hdr)) 6478 arc_hdr_l2hdr_destroy(hdr); 6479 6480 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6481 } 6482 6483 /* 6484 * Do we have more than one buf? 6485 */ 6486 if (hdr->b_l1hdr.b_bufcnt > 1) { 6487 arc_buf_hdr_t *nhdr; 6488 uint64_t spa = hdr->b_spa; 6489 uint64_t psize = HDR_GET_PSIZE(hdr); 6490 uint64_t lsize = HDR_GET_LSIZE(hdr); 6491 boolean_t protected = HDR_PROTECTED(hdr); 6492 enum zio_compress compress = arc_hdr_get_compress(hdr); 6493 arc_buf_contents_t type = arc_buf_type(hdr); 6494 VERIFY3U(hdr->b_type, ==, type); 6495 6496 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); 6497 (void) remove_reference(hdr, hash_lock, tag); 6498 6499 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) { 6500 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6501 ASSERT(ARC_BUF_LAST(buf)); 6502 } 6503 6504 /* 6505 * Pull the data off of this hdr and attach it to 6506 * a new anonymous hdr. Also find the last buffer 6507 * in the hdr's buffer list. 6508 */ 6509 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 6510 ASSERT3P(lastbuf, !=, NULL); 6511 6512 /* 6513 * If the current arc_buf_t and the hdr are sharing their data 6514 * buffer, then we must stop sharing that block. 6515 */ 6516 if (arc_buf_is_shared(buf)) { 6517 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6518 VERIFY(!arc_buf_is_shared(lastbuf)); 6519 6520 /* 6521 * First, sever the block sharing relationship between 6522 * buf and the arc_buf_hdr_t. 6523 */ 6524 arc_unshare_buf(hdr, buf); 6525 6526 /* 6527 * Now we need to recreate the hdr's b_pabd. Since we 6528 * have lastbuf handy, we try to share with it, but if 6529 * we can't then we allocate a new b_pabd and copy the 6530 * data from buf into it. 6531 */ 6532 if (arc_can_share(hdr, lastbuf)) { 6533 arc_share_buf(hdr, lastbuf); 6534 } else { 6535 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 6536 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, 6537 buf->b_data, psize); 6538 } 6539 VERIFY3P(lastbuf->b_data, !=, NULL); 6540 } else if (HDR_SHARED_DATA(hdr)) { 6541 /* 6542 * Uncompressed shared buffers are always at the end 6543 * of the list. Compressed buffers don't have the 6544 * same requirements. This makes it hard to 6545 * simply assert that the lastbuf is shared so 6546 * we rely on the hdr's compression flags to determine 6547 * if we have a compressed, shared buffer. 6548 */ 6549 ASSERT(arc_buf_is_shared(lastbuf) || 6550 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 6551 ASSERT(!ARC_BUF_SHARED(buf)); 6552 } 6553 6554 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 6555 ASSERT3P(state, !=, arc_l2c_only); 6556 6557 (void) zfs_refcount_remove_many(&state->arcs_size, 6558 arc_buf_size(buf), buf); 6559 6560 if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6561 ASSERT3P(state, !=, arc_l2c_only); 6562 (void) zfs_refcount_remove_many( 6563 &state->arcs_esize[type], 6564 arc_buf_size(buf), buf); 6565 } 6566 6567 hdr->b_l1hdr.b_bufcnt -= 1; 6568 if (ARC_BUF_ENCRYPTED(buf)) 6569 hdr->b_crypt_hdr.b_ebufcnt -= 1; 6570 6571 arc_cksum_verify(buf); 6572 arc_buf_unwatch(buf); 6573 6574 /* if this is the last uncompressed buf free the checksum */ 6575 if (!arc_hdr_has_uncompressed_buf(hdr)) 6576 arc_cksum_free(hdr); 6577 6578 mutex_exit(hash_lock); 6579 6580 /* 6581 * Allocate a new hdr. The new hdr will contain a b_pabd 6582 * buffer which will be freed in arc_write(). 6583 */ 6584 nhdr = arc_hdr_alloc(spa, psize, lsize, protected, 6585 compress, hdr->b_complevel, type, HDR_HAS_RABD(hdr)); 6586 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL); 6587 ASSERT0(nhdr->b_l1hdr.b_bufcnt); 6588 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt)); 6589 VERIFY3U(nhdr->b_type, ==, type); 6590 ASSERT(!HDR_SHARED_DATA(nhdr)); 6591 6592 nhdr->b_l1hdr.b_buf = buf; 6593 nhdr->b_l1hdr.b_bufcnt = 1; 6594 if (ARC_BUF_ENCRYPTED(buf)) 6595 nhdr->b_crypt_hdr.b_ebufcnt = 1; 6596 nhdr->b_l1hdr.b_mru_hits = 0; 6597 nhdr->b_l1hdr.b_mru_ghost_hits = 0; 6598 nhdr->b_l1hdr.b_mfu_hits = 0; 6599 nhdr->b_l1hdr.b_mfu_ghost_hits = 0; 6600 nhdr->b_l1hdr.b_l2_hits = 0; 6601 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 6602 buf->b_hdr = nhdr; 6603 6604 mutex_exit(&buf->b_evict_lock); 6605 (void) zfs_refcount_add_many(&arc_anon->arcs_size, 6606 arc_buf_size(buf), buf); 6607 } else { 6608 mutex_exit(&buf->b_evict_lock); 6609 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 6610 /* protected by hash lock, or hdr is on arc_anon */ 6611 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 6612 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6613 hdr->b_l1hdr.b_mru_hits = 0; 6614 hdr->b_l1hdr.b_mru_ghost_hits = 0; 6615 hdr->b_l1hdr.b_mfu_hits = 0; 6616 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 6617 hdr->b_l1hdr.b_l2_hits = 0; 6618 arc_change_state(arc_anon, hdr, hash_lock); 6619 hdr->b_l1hdr.b_arc_access = 0; 6620 6621 mutex_exit(hash_lock); 6622 buf_discard_identity(hdr); 6623 arc_buf_thaw(buf); 6624 } 6625 } 6626 6627 int 6628 arc_released(arc_buf_t *buf) 6629 { 6630 int released; 6631 6632 mutex_enter(&buf->b_evict_lock); 6633 released = (buf->b_data != NULL && 6634 buf->b_hdr->b_l1hdr.b_state == arc_anon); 6635 mutex_exit(&buf->b_evict_lock); 6636 return (released); 6637 } 6638 6639 #ifdef ZFS_DEBUG 6640 int 6641 arc_referenced(arc_buf_t *buf) 6642 { 6643 int referenced; 6644 6645 mutex_enter(&buf->b_evict_lock); 6646 referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 6647 mutex_exit(&buf->b_evict_lock); 6648 return (referenced); 6649 } 6650 #endif 6651 6652 static void 6653 arc_write_ready(zio_t *zio) 6654 { 6655 arc_write_callback_t *callback = zio->io_private; 6656 arc_buf_t *buf = callback->awcb_buf; 6657 arc_buf_hdr_t *hdr = buf->b_hdr; 6658 blkptr_t *bp = zio->io_bp; 6659 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp); 6660 fstrans_cookie_t cookie = spl_fstrans_mark(); 6661 6662 ASSERT(HDR_HAS_L1HDR(hdr)); 6663 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 6664 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 6665 6666 /* 6667 * If we're reexecuting this zio because the pool suspended, then 6668 * cleanup any state that was previously set the first time the 6669 * callback was invoked. 6670 */ 6671 if (zio->io_flags & ZIO_FLAG_REEXECUTED) { 6672 arc_cksum_free(hdr); 6673 arc_buf_unwatch(buf); 6674 if (hdr->b_l1hdr.b_pabd != NULL) { 6675 if (arc_buf_is_shared(buf)) { 6676 arc_unshare_buf(hdr, buf); 6677 } else { 6678 arc_hdr_free_abd(hdr, B_FALSE); 6679 } 6680 } 6681 6682 if (HDR_HAS_RABD(hdr)) 6683 arc_hdr_free_abd(hdr, B_TRUE); 6684 } 6685 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6686 ASSERT(!HDR_HAS_RABD(hdr)); 6687 ASSERT(!HDR_SHARED_DATA(hdr)); 6688 ASSERT(!arc_buf_is_shared(buf)); 6689 6690 callback->awcb_ready(zio, buf, callback->awcb_private); 6691 6692 if (HDR_IO_IN_PROGRESS(hdr)) 6693 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); 6694 6695 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6696 6697 if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr)) 6698 hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp)); 6699 6700 if (BP_IS_PROTECTED(bp)) { 6701 /* ZIL blocks are written through zio_rewrite */ 6702 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 6703 ASSERT(HDR_PROTECTED(hdr)); 6704 6705 if (BP_SHOULD_BYTESWAP(bp)) { 6706 if (BP_GET_LEVEL(bp) > 0) { 6707 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 6708 } else { 6709 hdr->b_l1hdr.b_byteswap = 6710 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 6711 } 6712 } else { 6713 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 6714 } 6715 6716 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 6717 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 6718 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 6719 hdr->b_crypt_hdr.b_iv); 6720 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 6721 } 6722 6723 /* 6724 * If this block was written for raw encryption but the zio layer 6725 * ended up only authenticating it, adjust the buffer flags now. 6726 */ 6727 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) { 6728 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6729 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6730 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF) 6731 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6732 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) { 6733 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6734 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6735 } 6736 6737 /* this must be done after the buffer flags are adjusted */ 6738 arc_cksum_compute(buf); 6739 6740 enum zio_compress compress; 6741 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 6742 compress = ZIO_COMPRESS_OFF; 6743 } else { 6744 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 6745 compress = BP_GET_COMPRESS(bp); 6746 } 6747 HDR_SET_PSIZE(hdr, psize); 6748 arc_hdr_set_compress(hdr, compress); 6749 hdr->b_complevel = zio->io_prop.zp_complevel; 6750 6751 if (zio->io_error != 0 || psize == 0) 6752 goto out; 6753 6754 /* 6755 * Fill the hdr with data. If the buffer is encrypted we have no choice 6756 * but to copy the data into b_radb. If the hdr is compressed, the data 6757 * we want is available from the zio, otherwise we can take it from 6758 * the buf. 6759 * 6760 * We might be able to share the buf's data with the hdr here. However, 6761 * doing so would cause the ARC to be full of linear ABDs if we write a 6762 * lot of shareable data. As a compromise, we check whether scattered 6763 * ABDs are allowed, and assume that if they are then the user wants 6764 * the ARC to be primarily filled with them regardless of the data being 6765 * written. Therefore, if they're allowed then we allocate one and copy 6766 * the data into it; otherwise, we share the data directly if we can. 6767 */ 6768 if (ARC_BUF_ENCRYPTED(buf)) { 6769 ASSERT3U(psize, >, 0); 6770 ASSERT(ARC_BUF_COMPRESSED(buf)); 6771 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA); 6772 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6773 } else if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) { 6774 /* 6775 * Ideally, we would always copy the io_abd into b_pabd, but the 6776 * user may have disabled compressed ARC, thus we must check the 6777 * hdr's compression setting rather than the io_bp's. 6778 */ 6779 if (BP_IS_ENCRYPTED(bp)) { 6780 ASSERT3U(psize, >, 0); 6781 arc_hdr_alloc_abd(hdr, 6782 ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA); 6783 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6784 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 6785 !ARC_BUF_COMPRESSED(buf)) { 6786 ASSERT3U(psize, >, 0); 6787 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 6788 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize); 6789 } else { 6790 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr)); 6791 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 6792 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data, 6793 arc_buf_size(buf)); 6794 } 6795 } else { 6796 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd)); 6797 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf)); 6798 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6799 6800 arc_share_buf(hdr, buf); 6801 } 6802 6803 out: 6804 arc_hdr_verify(hdr, bp); 6805 spl_fstrans_unmark(cookie); 6806 } 6807 6808 static void 6809 arc_write_children_ready(zio_t *zio) 6810 { 6811 arc_write_callback_t *callback = zio->io_private; 6812 arc_buf_t *buf = callback->awcb_buf; 6813 6814 callback->awcb_children_ready(zio, buf, callback->awcb_private); 6815 } 6816 6817 /* 6818 * The SPA calls this callback for each physical write that happens on behalf 6819 * of a logical write. See the comment in dbuf_write_physdone() for details. 6820 */ 6821 static void 6822 arc_write_physdone(zio_t *zio) 6823 { 6824 arc_write_callback_t *cb = zio->io_private; 6825 if (cb->awcb_physdone != NULL) 6826 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 6827 } 6828 6829 static void 6830 arc_write_done(zio_t *zio) 6831 { 6832 arc_write_callback_t *callback = zio->io_private; 6833 arc_buf_t *buf = callback->awcb_buf; 6834 arc_buf_hdr_t *hdr = buf->b_hdr; 6835 6836 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6837 6838 if (zio->io_error == 0) { 6839 arc_hdr_verify(hdr, zio->io_bp); 6840 6841 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 6842 buf_discard_identity(hdr); 6843 } else { 6844 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 6845 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 6846 } 6847 } else { 6848 ASSERT(HDR_EMPTY(hdr)); 6849 } 6850 6851 /* 6852 * If the block to be written was all-zero or compressed enough to be 6853 * embedded in the BP, no write was performed so there will be no 6854 * dva/birth/checksum. The buffer must therefore remain anonymous 6855 * (and uncached). 6856 */ 6857 if (!HDR_EMPTY(hdr)) { 6858 arc_buf_hdr_t *exists; 6859 kmutex_t *hash_lock; 6860 6861 ASSERT3U(zio->io_error, ==, 0); 6862 6863 arc_cksum_verify(buf); 6864 6865 exists = buf_hash_insert(hdr, &hash_lock); 6866 if (exists != NULL) { 6867 /* 6868 * This can only happen if we overwrite for 6869 * sync-to-convergence, because we remove 6870 * buffers from the hash table when we arc_free(). 6871 */ 6872 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 6873 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6874 panic("bad overwrite, hdr=%p exists=%p", 6875 (void *)hdr, (void *)exists); 6876 ASSERT(zfs_refcount_is_zero( 6877 &exists->b_l1hdr.b_refcnt)); 6878 arc_change_state(arc_anon, exists, hash_lock); 6879 arc_hdr_destroy(exists); 6880 mutex_exit(hash_lock); 6881 exists = buf_hash_insert(hdr, &hash_lock); 6882 ASSERT3P(exists, ==, NULL); 6883 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 6884 /* nopwrite */ 6885 ASSERT(zio->io_prop.zp_nopwrite); 6886 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6887 panic("bad nopwrite, hdr=%p exists=%p", 6888 (void *)hdr, (void *)exists); 6889 } else { 6890 /* Dedup */ 6891 ASSERT(hdr->b_l1hdr.b_bufcnt == 1); 6892 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 6893 ASSERT(BP_GET_DEDUP(zio->io_bp)); 6894 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 6895 } 6896 } 6897 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6898 /* if it's not anon, we are doing a scrub */ 6899 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 6900 arc_access(hdr, hash_lock); 6901 mutex_exit(hash_lock); 6902 } else { 6903 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6904 } 6905 6906 ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 6907 callback->awcb_done(zio, buf, callback->awcb_private); 6908 6909 abd_put(zio->io_abd); 6910 kmem_free(callback, sizeof (arc_write_callback_t)); 6911 } 6912 6913 zio_t * 6914 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 6915 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, 6916 const zio_prop_t *zp, arc_write_done_func_t *ready, 6917 arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone, 6918 arc_write_done_func_t *done, void *private, zio_priority_t priority, 6919 int zio_flags, const zbookmark_phys_t *zb) 6920 { 6921 arc_buf_hdr_t *hdr = buf->b_hdr; 6922 arc_write_callback_t *callback; 6923 zio_t *zio; 6924 zio_prop_t localprop = *zp; 6925 6926 ASSERT3P(ready, !=, NULL); 6927 ASSERT3P(done, !=, NULL); 6928 ASSERT(!HDR_IO_ERROR(hdr)); 6929 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6930 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6931 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 6932 if (l2arc) 6933 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6934 6935 if (ARC_BUF_ENCRYPTED(buf)) { 6936 ASSERT(ARC_BUF_COMPRESSED(buf)); 6937 localprop.zp_encrypt = B_TRUE; 6938 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 6939 localprop.zp_complevel = hdr->b_complevel; 6940 localprop.zp_byteorder = 6941 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 6942 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 6943 bcopy(hdr->b_crypt_hdr.b_salt, localprop.zp_salt, 6944 ZIO_DATA_SALT_LEN); 6945 bcopy(hdr->b_crypt_hdr.b_iv, localprop.zp_iv, 6946 ZIO_DATA_IV_LEN); 6947 bcopy(hdr->b_crypt_hdr.b_mac, localprop.zp_mac, 6948 ZIO_DATA_MAC_LEN); 6949 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) { 6950 localprop.zp_nopwrite = B_FALSE; 6951 localprop.zp_copies = 6952 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1); 6953 } 6954 zio_flags |= ZIO_FLAG_RAW; 6955 } else if (ARC_BUF_COMPRESSED(buf)) { 6956 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf)); 6957 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 6958 localprop.zp_complevel = hdr->b_complevel; 6959 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 6960 } 6961 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 6962 callback->awcb_ready = ready; 6963 callback->awcb_children_ready = children_ready; 6964 callback->awcb_physdone = physdone; 6965 callback->awcb_done = done; 6966 callback->awcb_private = private; 6967 callback->awcb_buf = buf; 6968 6969 /* 6970 * The hdr's b_pabd is now stale, free it now. A new data block 6971 * will be allocated when the zio pipeline calls arc_write_ready(). 6972 */ 6973 if (hdr->b_l1hdr.b_pabd != NULL) { 6974 /* 6975 * If the buf is currently sharing the data block with 6976 * the hdr then we need to break that relationship here. 6977 * The hdr will remain with a NULL data pointer and the 6978 * buf will take sole ownership of the block. 6979 */ 6980 if (arc_buf_is_shared(buf)) { 6981 arc_unshare_buf(hdr, buf); 6982 } else { 6983 arc_hdr_free_abd(hdr, B_FALSE); 6984 } 6985 VERIFY3P(buf->b_data, !=, NULL); 6986 } 6987 6988 if (HDR_HAS_RABD(hdr)) 6989 arc_hdr_free_abd(hdr, B_TRUE); 6990 6991 if (!(zio_flags & ZIO_FLAG_RAW)) 6992 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); 6993 6994 ASSERT(!arc_buf_is_shared(buf)); 6995 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6996 6997 zio = zio_write(pio, spa, txg, bp, 6998 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)), 6999 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready, 7000 (children_ready != NULL) ? arc_write_children_ready : NULL, 7001 arc_write_physdone, arc_write_done, callback, 7002 priority, zio_flags, zb); 7003 7004 return (zio); 7005 } 7006 7007 void 7008 arc_tempreserve_clear(uint64_t reserve) 7009 { 7010 atomic_add_64(&arc_tempreserve, -reserve); 7011 ASSERT((int64_t)arc_tempreserve >= 0); 7012 } 7013 7014 int 7015 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg) 7016 { 7017 int error; 7018 uint64_t anon_size; 7019 7020 if (!arc_no_grow && 7021 reserve > arc_c/4 && 7022 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT)) 7023 arc_c = MIN(arc_c_max, reserve * 4); 7024 7025 /* 7026 * Throttle when the calculated memory footprint for the TXG 7027 * exceeds the target ARC size. 7028 */ 7029 if (reserve > arc_c) { 7030 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve); 7031 return (SET_ERROR(ERESTART)); 7032 } 7033 7034 /* 7035 * Don't count loaned bufs as in flight dirty data to prevent long 7036 * network delays from blocking transactions that are ready to be 7037 * assigned to a txg. 7038 */ 7039 7040 /* assert that it has not wrapped around */ 7041 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 7042 7043 anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) - 7044 arc_loaned_bytes), 0); 7045 7046 /* 7047 * Writes will, almost always, require additional memory allocations 7048 * in order to compress/encrypt/etc the data. We therefore need to 7049 * make sure that there is sufficient available memory for this. 7050 */ 7051 error = arc_memory_throttle(spa, reserve, txg); 7052 if (error != 0) 7053 return (error); 7054 7055 /* 7056 * Throttle writes when the amount of dirty data in the cache 7057 * gets too large. We try to keep the cache less than half full 7058 * of dirty blocks so that our sync times don't grow too large. 7059 * 7060 * In the case of one pool being built on another pool, we want 7061 * to make sure we don't end up throttling the lower (backing) 7062 * pool when the upper pool is the majority contributor to dirty 7063 * data. To insure we make forward progress during throttling, we 7064 * also check the current pool's net dirty data and only throttle 7065 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty 7066 * data in the cache. 7067 * 7068 * Note: if two requests come in concurrently, we might let them 7069 * both succeed, when one of them should fail. Not a huge deal. 7070 */ 7071 uint64_t total_dirty = reserve + arc_tempreserve + anon_size; 7072 uint64_t spa_dirty_anon = spa_dirty_data(spa); 7073 7074 if (total_dirty > arc_c * zfs_arc_dirty_limit_percent / 100 && 7075 anon_size > arc_c * zfs_arc_anon_limit_percent / 100 && 7076 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) { 7077 #ifdef ZFS_DEBUG 7078 uint64_t meta_esize = zfs_refcount_count( 7079 &arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7080 uint64_t data_esize = 7081 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7082 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 7083 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 7084 arc_tempreserve >> 10, meta_esize >> 10, 7085 data_esize >> 10, reserve >> 10, arc_c >> 10); 7086 #endif 7087 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle); 7088 return (SET_ERROR(ERESTART)); 7089 } 7090 atomic_add_64(&arc_tempreserve, reserve); 7091 return (0); 7092 } 7093 7094 static void 7095 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 7096 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 7097 { 7098 size->value.ui64 = zfs_refcount_count(&state->arcs_size); 7099 evict_data->value.ui64 = 7100 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); 7101 evict_metadata->value.ui64 = 7102 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); 7103 } 7104 7105 static int 7106 arc_kstat_update(kstat_t *ksp, int rw) 7107 { 7108 arc_stats_t *as = ksp->ks_data; 7109 7110 if (rw == KSTAT_WRITE) { 7111 return (SET_ERROR(EACCES)); 7112 } else { 7113 arc_kstat_update_state(arc_anon, 7114 &as->arcstat_anon_size, 7115 &as->arcstat_anon_evictable_data, 7116 &as->arcstat_anon_evictable_metadata); 7117 arc_kstat_update_state(arc_mru, 7118 &as->arcstat_mru_size, 7119 &as->arcstat_mru_evictable_data, 7120 &as->arcstat_mru_evictable_metadata); 7121 arc_kstat_update_state(arc_mru_ghost, 7122 &as->arcstat_mru_ghost_size, 7123 &as->arcstat_mru_ghost_evictable_data, 7124 &as->arcstat_mru_ghost_evictable_metadata); 7125 arc_kstat_update_state(arc_mfu, 7126 &as->arcstat_mfu_size, 7127 &as->arcstat_mfu_evictable_data, 7128 &as->arcstat_mfu_evictable_metadata); 7129 arc_kstat_update_state(arc_mfu_ghost, 7130 &as->arcstat_mfu_ghost_size, 7131 &as->arcstat_mfu_ghost_evictable_data, 7132 &as->arcstat_mfu_ghost_evictable_metadata); 7133 7134 ARCSTAT(arcstat_size) = aggsum_value(&arc_size); 7135 ARCSTAT(arcstat_meta_used) = aggsum_value(&arc_meta_used); 7136 ARCSTAT(arcstat_data_size) = aggsum_value(&astat_data_size); 7137 ARCSTAT(arcstat_metadata_size) = 7138 aggsum_value(&astat_metadata_size); 7139 ARCSTAT(arcstat_hdr_size) = aggsum_value(&astat_hdr_size); 7140 ARCSTAT(arcstat_l2_hdr_size) = aggsum_value(&astat_l2_hdr_size); 7141 ARCSTAT(arcstat_dbuf_size) = aggsum_value(&astat_dbuf_size); 7142 #if defined(COMPAT_FREEBSD11) 7143 ARCSTAT(arcstat_other_size) = aggsum_value(&astat_bonus_size) + 7144 aggsum_value(&astat_dnode_size) + 7145 aggsum_value(&astat_dbuf_size); 7146 #endif 7147 ARCSTAT(arcstat_dnode_size) = aggsum_value(&astat_dnode_size); 7148 ARCSTAT(arcstat_bonus_size) = aggsum_value(&astat_bonus_size); 7149 ARCSTAT(arcstat_abd_chunk_waste_size) = 7150 aggsum_value(&astat_abd_chunk_waste_size); 7151 7152 as->arcstat_memory_all_bytes.value.ui64 = 7153 arc_all_memory(); 7154 as->arcstat_memory_free_bytes.value.ui64 = 7155 arc_free_memory(); 7156 as->arcstat_memory_available_bytes.value.i64 = 7157 arc_available_memory(); 7158 } 7159 7160 return (0); 7161 } 7162 7163 /* 7164 * This function *must* return indices evenly distributed between all 7165 * sublists of the multilist. This is needed due to how the ARC eviction 7166 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 7167 * distributed between all sublists and uses this assumption when 7168 * deciding which sublist to evict from and how much to evict from it. 7169 */ 7170 static unsigned int 7171 arc_state_multilist_index_func(multilist_t *ml, void *obj) 7172 { 7173 arc_buf_hdr_t *hdr = obj; 7174 7175 /* 7176 * We rely on b_dva to generate evenly distributed index 7177 * numbers using buf_hash below. So, as an added precaution, 7178 * let's make sure we never add empty buffers to the arc lists. 7179 */ 7180 ASSERT(!HDR_EMPTY(hdr)); 7181 7182 /* 7183 * The assumption here, is the hash value for a given 7184 * arc_buf_hdr_t will remain constant throughout its lifetime 7185 * (i.e. its b_spa, b_dva, and b_birth fields don't change). 7186 * Thus, we don't need to store the header's sublist index 7187 * on insertion, as this index can be recalculated on removal. 7188 * 7189 * Also, the low order bits of the hash value are thought to be 7190 * distributed evenly. Otherwise, in the case that the multilist 7191 * has a power of two number of sublists, each sublists' usage 7192 * would not be evenly distributed. 7193 */ 7194 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 7195 multilist_get_num_sublists(ml)); 7196 } 7197 7198 #define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \ 7199 if ((do_warn) && (tuning) && ((tuning) != (value))) { \ 7200 cmn_err(CE_WARN, \ 7201 "ignoring tunable %s (using %llu instead)", \ 7202 (#tuning), (value)); \ 7203 } \ 7204 } while (0) 7205 7206 /* 7207 * Called during module initialization and periodically thereafter to 7208 * apply reasonable changes to the exposed performance tunings. Can also be 7209 * called explicitly by param_set_arc_*() functions when ARC tunables are 7210 * updated manually. Non-zero zfs_* values which differ from the currently set 7211 * values will be applied. 7212 */ 7213 void 7214 arc_tuning_update(boolean_t verbose) 7215 { 7216 uint64_t allmem = arc_all_memory(); 7217 unsigned long limit; 7218 7219 /* Valid range: 32M - <arc_c_max> */ 7220 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) && 7221 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) && 7222 (zfs_arc_min <= arc_c_max)) { 7223 arc_c_min = zfs_arc_min; 7224 arc_c = MAX(arc_c, arc_c_min); 7225 } 7226 WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose); 7227 7228 /* Valid range: 64M - <all physical memory> */ 7229 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) && 7230 (zfs_arc_max >= 64 << 20) && (zfs_arc_max < allmem) && 7231 (zfs_arc_max > arc_c_min)) { 7232 arc_c_max = zfs_arc_max; 7233 arc_c = MIN(arc_c, arc_c_max); 7234 arc_p = (arc_c >> 1); 7235 if (arc_meta_limit > arc_c_max) 7236 arc_meta_limit = arc_c_max; 7237 if (arc_dnode_size_limit > arc_meta_limit) 7238 arc_dnode_size_limit = arc_meta_limit; 7239 } 7240 WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose); 7241 7242 /* Valid range: 16M - <arc_c_max> */ 7243 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) && 7244 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) && 7245 (zfs_arc_meta_min <= arc_c_max)) { 7246 arc_meta_min = zfs_arc_meta_min; 7247 if (arc_meta_limit < arc_meta_min) 7248 arc_meta_limit = arc_meta_min; 7249 if (arc_dnode_size_limit < arc_meta_min) 7250 arc_dnode_size_limit = arc_meta_min; 7251 } 7252 WARN_IF_TUNING_IGNORED(zfs_arc_meta_min, arc_meta_min, verbose); 7253 7254 /* Valid range: <arc_meta_min> - <arc_c_max> */ 7255 limit = zfs_arc_meta_limit ? zfs_arc_meta_limit : 7256 MIN(zfs_arc_meta_limit_percent, 100) * arc_c_max / 100; 7257 if ((limit != arc_meta_limit) && 7258 (limit >= arc_meta_min) && 7259 (limit <= arc_c_max)) 7260 arc_meta_limit = limit; 7261 WARN_IF_TUNING_IGNORED(zfs_arc_meta_limit, arc_meta_limit, verbose); 7262 7263 /* Valid range: <arc_meta_min> - <arc_meta_limit> */ 7264 limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit : 7265 MIN(zfs_arc_dnode_limit_percent, 100) * arc_meta_limit / 100; 7266 if ((limit != arc_dnode_size_limit) && 7267 (limit >= arc_meta_min) && 7268 (limit <= arc_meta_limit)) 7269 arc_dnode_size_limit = limit; 7270 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_size_limit, 7271 verbose); 7272 7273 /* Valid range: 1 - N */ 7274 if (zfs_arc_grow_retry) 7275 arc_grow_retry = zfs_arc_grow_retry; 7276 7277 /* Valid range: 1 - N */ 7278 if (zfs_arc_shrink_shift) { 7279 arc_shrink_shift = zfs_arc_shrink_shift; 7280 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1); 7281 } 7282 7283 /* Valid range: 1 - N */ 7284 if (zfs_arc_p_min_shift) 7285 arc_p_min_shift = zfs_arc_p_min_shift; 7286 7287 /* Valid range: 1 - N ms */ 7288 if (zfs_arc_min_prefetch_ms) 7289 arc_min_prefetch_ms = zfs_arc_min_prefetch_ms; 7290 7291 /* Valid range: 1 - N ms */ 7292 if (zfs_arc_min_prescient_prefetch_ms) { 7293 arc_min_prescient_prefetch_ms = 7294 zfs_arc_min_prescient_prefetch_ms; 7295 } 7296 7297 /* Valid range: 0 - 100 */ 7298 if ((zfs_arc_lotsfree_percent >= 0) && 7299 (zfs_arc_lotsfree_percent <= 100)) 7300 arc_lotsfree_percent = zfs_arc_lotsfree_percent; 7301 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent, 7302 verbose); 7303 7304 /* Valid range: 0 - <all physical memory> */ 7305 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free)) 7306 arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), allmem); 7307 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose); 7308 } 7309 7310 static void 7311 arc_state_init(void) 7312 { 7313 arc_anon = &ARC_anon; 7314 arc_mru = &ARC_mru; 7315 arc_mru_ghost = &ARC_mru_ghost; 7316 arc_mfu = &ARC_mfu; 7317 arc_mfu_ghost = &ARC_mfu_ghost; 7318 arc_l2c_only = &ARC_l2c_only; 7319 7320 arc_mru->arcs_list[ARC_BUFC_METADATA] = 7321 multilist_create(sizeof (arc_buf_hdr_t), 7322 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7323 arc_state_multilist_index_func); 7324 arc_mru->arcs_list[ARC_BUFC_DATA] = 7325 multilist_create(sizeof (arc_buf_hdr_t), 7326 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7327 arc_state_multilist_index_func); 7328 arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] = 7329 multilist_create(sizeof (arc_buf_hdr_t), 7330 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7331 arc_state_multilist_index_func); 7332 arc_mru_ghost->arcs_list[ARC_BUFC_DATA] = 7333 multilist_create(sizeof (arc_buf_hdr_t), 7334 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7335 arc_state_multilist_index_func); 7336 arc_mfu->arcs_list[ARC_BUFC_METADATA] = 7337 multilist_create(sizeof (arc_buf_hdr_t), 7338 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7339 arc_state_multilist_index_func); 7340 arc_mfu->arcs_list[ARC_BUFC_DATA] = 7341 multilist_create(sizeof (arc_buf_hdr_t), 7342 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7343 arc_state_multilist_index_func); 7344 arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] = 7345 multilist_create(sizeof (arc_buf_hdr_t), 7346 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7347 arc_state_multilist_index_func); 7348 arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] = 7349 multilist_create(sizeof (arc_buf_hdr_t), 7350 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7351 arc_state_multilist_index_func); 7352 arc_l2c_only->arcs_list[ARC_BUFC_METADATA] = 7353 multilist_create(sizeof (arc_buf_hdr_t), 7354 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7355 arc_state_multilist_index_func); 7356 arc_l2c_only->arcs_list[ARC_BUFC_DATA] = 7357 multilist_create(sizeof (arc_buf_hdr_t), 7358 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7359 arc_state_multilist_index_func); 7360 7361 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7362 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7363 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7364 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7365 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7366 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7367 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7368 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7369 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7370 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7371 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7372 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7373 7374 zfs_refcount_create(&arc_anon->arcs_size); 7375 zfs_refcount_create(&arc_mru->arcs_size); 7376 zfs_refcount_create(&arc_mru_ghost->arcs_size); 7377 zfs_refcount_create(&arc_mfu->arcs_size); 7378 zfs_refcount_create(&arc_mfu_ghost->arcs_size); 7379 zfs_refcount_create(&arc_l2c_only->arcs_size); 7380 7381 aggsum_init(&arc_meta_used, 0); 7382 aggsum_init(&arc_size, 0); 7383 aggsum_init(&astat_data_size, 0); 7384 aggsum_init(&astat_metadata_size, 0); 7385 aggsum_init(&astat_hdr_size, 0); 7386 aggsum_init(&astat_l2_hdr_size, 0); 7387 aggsum_init(&astat_bonus_size, 0); 7388 aggsum_init(&astat_dnode_size, 0); 7389 aggsum_init(&astat_dbuf_size, 0); 7390 aggsum_init(&astat_abd_chunk_waste_size, 0); 7391 7392 arc_anon->arcs_state = ARC_STATE_ANON; 7393 arc_mru->arcs_state = ARC_STATE_MRU; 7394 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST; 7395 arc_mfu->arcs_state = ARC_STATE_MFU; 7396 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST; 7397 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY; 7398 } 7399 7400 static void 7401 arc_state_fini(void) 7402 { 7403 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7404 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7405 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7406 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7407 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7408 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7409 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7410 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7411 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7412 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7413 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7414 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7415 7416 zfs_refcount_destroy(&arc_anon->arcs_size); 7417 zfs_refcount_destroy(&arc_mru->arcs_size); 7418 zfs_refcount_destroy(&arc_mru_ghost->arcs_size); 7419 zfs_refcount_destroy(&arc_mfu->arcs_size); 7420 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size); 7421 zfs_refcount_destroy(&arc_l2c_only->arcs_size); 7422 7423 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]); 7424 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 7425 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]); 7426 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 7427 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]); 7428 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 7429 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]); 7430 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 7431 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]); 7432 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_DATA]); 7433 7434 aggsum_fini(&arc_meta_used); 7435 aggsum_fini(&arc_size); 7436 aggsum_fini(&astat_data_size); 7437 aggsum_fini(&astat_metadata_size); 7438 aggsum_fini(&astat_hdr_size); 7439 aggsum_fini(&astat_l2_hdr_size); 7440 aggsum_fini(&astat_bonus_size); 7441 aggsum_fini(&astat_dnode_size); 7442 aggsum_fini(&astat_dbuf_size); 7443 aggsum_fini(&astat_abd_chunk_waste_size); 7444 } 7445 7446 uint64_t 7447 arc_target_bytes(void) 7448 { 7449 return (arc_c); 7450 } 7451 7452 void 7453 arc_init(void) 7454 { 7455 uint64_t percent, allmem = arc_all_memory(); 7456 mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL); 7457 list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t), 7458 offsetof(arc_evict_waiter_t, aew_node)); 7459 7460 arc_min_prefetch_ms = 1000; 7461 arc_min_prescient_prefetch_ms = 6000; 7462 7463 #if defined(_KERNEL) 7464 arc_lowmem_init(); 7465 #endif 7466 7467 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */ 7468 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT); 7469 7470 /* How to set default max varies by platform. */ 7471 arc_c_max = arc_default_max(arc_c_min, allmem); 7472 7473 #ifndef _KERNEL 7474 /* 7475 * In userland, there's only the memory pressure that we artificially 7476 * create (see arc_available_memory()). Don't let arc_c get too 7477 * small, because it can cause transactions to be larger than 7478 * arc_c, causing arc_tempreserve_space() to fail. 7479 */ 7480 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT); 7481 #endif 7482 7483 arc_c = arc_c_min; 7484 arc_p = (arc_c >> 1); 7485 7486 /* Set min to 1/2 of arc_c_min */ 7487 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT; 7488 /* Initialize maximum observed usage to zero */ 7489 arc_meta_max = 0; 7490 /* 7491 * Set arc_meta_limit to a percent of arc_c_max with a floor of 7492 * arc_meta_min, and a ceiling of arc_c_max. 7493 */ 7494 percent = MIN(zfs_arc_meta_limit_percent, 100); 7495 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100); 7496 percent = MIN(zfs_arc_dnode_limit_percent, 100); 7497 arc_dnode_size_limit = (percent * arc_meta_limit) / 100; 7498 7499 /* Apply user specified tunings */ 7500 arc_tuning_update(B_TRUE); 7501 7502 /* if kmem_flags are set, lets try to use less memory */ 7503 if (kmem_debugging()) 7504 arc_c = arc_c / 2; 7505 if (arc_c < arc_c_min) 7506 arc_c = arc_c_min; 7507 7508 arc_state_init(); 7509 7510 buf_init(); 7511 7512 list_create(&arc_prune_list, sizeof (arc_prune_t), 7513 offsetof(arc_prune_t, p_node)); 7514 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL); 7515 7516 arc_prune_taskq = taskq_create("arc_prune", boot_ncpus, defclsyspri, 7517 boot_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC); 7518 7519 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 7520 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 7521 7522 if (arc_ksp != NULL) { 7523 arc_ksp->ks_data = &arc_stats; 7524 arc_ksp->ks_update = arc_kstat_update; 7525 kstat_install(arc_ksp); 7526 } 7527 7528 arc_evict_zthr = zthr_create_timer("arc_evict", 7529 arc_evict_cb_check, arc_evict_cb, NULL, SEC2NSEC(1)); 7530 arc_reap_zthr = zthr_create_timer("arc_reap", 7531 arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1)); 7532 7533 arc_warm = B_FALSE; 7534 7535 /* 7536 * Calculate maximum amount of dirty data per pool. 7537 * 7538 * If it has been set by a module parameter, take that. 7539 * Otherwise, use a percentage of physical memory defined by 7540 * zfs_dirty_data_max_percent (default 10%) with a cap at 7541 * zfs_dirty_data_max_max (default 4G or 25% of physical memory). 7542 */ 7543 #ifdef __LP64__ 7544 if (zfs_dirty_data_max_max == 0) 7545 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024, 7546 allmem * zfs_dirty_data_max_max_percent / 100); 7547 #else 7548 if (zfs_dirty_data_max_max == 0) 7549 zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024, 7550 allmem * zfs_dirty_data_max_max_percent / 100); 7551 #endif 7552 7553 if (zfs_dirty_data_max == 0) { 7554 zfs_dirty_data_max = allmem * 7555 zfs_dirty_data_max_percent / 100; 7556 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 7557 zfs_dirty_data_max_max); 7558 } 7559 } 7560 7561 void 7562 arc_fini(void) 7563 { 7564 arc_prune_t *p; 7565 7566 #ifdef _KERNEL 7567 arc_lowmem_fini(); 7568 #endif /* _KERNEL */ 7569 7570 /* Use B_TRUE to ensure *all* buffers are evicted */ 7571 arc_flush(NULL, B_TRUE); 7572 7573 if (arc_ksp != NULL) { 7574 kstat_delete(arc_ksp); 7575 arc_ksp = NULL; 7576 } 7577 7578 taskq_wait(arc_prune_taskq); 7579 taskq_destroy(arc_prune_taskq); 7580 7581 mutex_enter(&arc_prune_mtx); 7582 while ((p = list_head(&arc_prune_list)) != NULL) { 7583 list_remove(&arc_prune_list, p); 7584 zfs_refcount_remove(&p->p_refcnt, &arc_prune_list); 7585 zfs_refcount_destroy(&p->p_refcnt); 7586 kmem_free(p, sizeof (*p)); 7587 } 7588 mutex_exit(&arc_prune_mtx); 7589 7590 list_destroy(&arc_prune_list); 7591 mutex_destroy(&arc_prune_mtx); 7592 7593 (void) zthr_cancel(arc_evict_zthr); 7594 (void) zthr_cancel(arc_reap_zthr); 7595 7596 mutex_destroy(&arc_evict_lock); 7597 list_destroy(&arc_evict_waiters); 7598 7599 /* 7600 * Free any buffers that were tagged for destruction. This needs 7601 * to occur before arc_state_fini() runs and destroys the aggsum 7602 * values which are updated when freeing scatter ABDs. 7603 */ 7604 l2arc_do_free_on_write(); 7605 7606 /* 7607 * buf_fini() must proceed arc_state_fini() because buf_fin() may 7608 * trigger the release of kmem magazines, which can callback to 7609 * arc_space_return() which accesses aggsums freed in act_state_fini(). 7610 */ 7611 buf_fini(); 7612 arc_state_fini(); 7613 7614 /* 7615 * We destroy the zthrs after all the ARC state has been 7616 * torn down to avoid the case of them receiving any 7617 * wakeup() signals after they are destroyed. 7618 */ 7619 zthr_destroy(arc_evict_zthr); 7620 zthr_destroy(arc_reap_zthr); 7621 7622 ASSERT0(arc_loaned_bytes); 7623 } 7624 7625 /* 7626 * Level 2 ARC 7627 * 7628 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 7629 * It uses dedicated storage devices to hold cached data, which are populated 7630 * using large infrequent writes. The main role of this cache is to boost 7631 * the performance of random read workloads. The intended L2ARC devices 7632 * include short-stroked disks, solid state disks, and other media with 7633 * substantially faster read latency than disk. 7634 * 7635 * +-----------------------+ 7636 * | ARC | 7637 * +-----------------------+ 7638 * | ^ ^ 7639 * | | | 7640 * l2arc_feed_thread() arc_read() 7641 * | | | 7642 * | l2arc read | 7643 * V | | 7644 * +---------------+ | 7645 * | L2ARC | | 7646 * +---------------+ | 7647 * | ^ | 7648 * l2arc_write() | | 7649 * | | | 7650 * V | | 7651 * +-------+ +-------+ 7652 * | vdev | | vdev | 7653 * | cache | | cache | 7654 * +-------+ +-------+ 7655 * +=========+ .-----. 7656 * : L2ARC : |-_____-| 7657 * : devices : | Disks | 7658 * +=========+ `-_____-' 7659 * 7660 * Read requests are satisfied from the following sources, in order: 7661 * 7662 * 1) ARC 7663 * 2) vdev cache of L2ARC devices 7664 * 3) L2ARC devices 7665 * 4) vdev cache of disks 7666 * 5) disks 7667 * 7668 * Some L2ARC device types exhibit extremely slow write performance. 7669 * To accommodate for this there are some significant differences between 7670 * the L2ARC and traditional cache design: 7671 * 7672 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 7673 * the ARC behave as usual, freeing buffers and placing headers on ghost 7674 * lists. The ARC does not send buffers to the L2ARC during eviction as 7675 * this would add inflated write latencies for all ARC memory pressure. 7676 * 7677 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 7678 * It does this by periodically scanning buffers from the eviction-end of 7679 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 7680 * not already there. It scans until a headroom of buffers is satisfied, 7681 * which itself is a buffer for ARC eviction. If a compressible buffer is 7682 * found during scanning and selected for writing to an L2ARC device, we 7683 * temporarily boost scanning headroom during the next scan cycle to make 7684 * sure we adapt to compression effects (which might significantly reduce 7685 * the data volume we write to L2ARC). The thread that does this is 7686 * l2arc_feed_thread(), illustrated below; example sizes are included to 7687 * provide a better sense of ratio than this diagram: 7688 * 7689 * head --> tail 7690 * +---------------------+----------+ 7691 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 7692 * +---------------------+----------+ | o L2ARC eligible 7693 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 7694 * +---------------------+----------+ | 7695 * 15.9 Gbytes ^ 32 Mbytes | 7696 * headroom | 7697 * l2arc_feed_thread() 7698 * | 7699 * l2arc write hand <--[oooo]--' 7700 * | 8 Mbyte 7701 * | write max 7702 * V 7703 * +==============================+ 7704 * L2ARC dev |####|#|###|###| |####| ... | 7705 * +==============================+ 7706 * 32 Gbytes 7707 * 7708 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 7709 * evicted, then the L2ARC has cached a buffer much sooner than it probably 7710 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 7711 * safe to say that this is an uncommon case, since buffers at the end of 7712 * the ARC lists have moved there due to inactivity. 7713 * 7714 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 7715 * then the L2ARC simply misses copying some buffers. This serves as a 7716 * pressure valve to prevent heavy read workloads from both stalling the ARC 7717 * with waits and clogging the L2ARC with writes. This also helps prevent 7718 * the potential for the L2ARC to churn if it attempts to cache content too 7719 * quickly, such as during backups of the entire pool. 7720 * 7721 * 5. After system boot and before the ARC has filled main memory, there are 7722 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 7723 * lists can remain mostly static. Instead of searching from tail of these 7724 * lists as pictured, the l2arc_feed_thread() will search from the list heads 7725 * for eligible buffers, greatly increasing its chance of finding them. 7726 * 7727 * The L2ARC device write speed is also boosted during this time so that 7728 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 7729 * there are no L2ARC reads, and no fear of degrading read performance 7730 * through increased writes. 7731 * 7732 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 7733 * the vdev queue can aggregate them into larger and fewer writes. Each 7734 * device is written to in a rotor fashion, sweeping writes through 7735 * available space then repeating. 7736 * 7737 * 7. The L2ARC does not store dirty content. It never needs to flush 7738 * write buffers back to disk based storage. 7739 * 7740 * 8. If an ARC buffer is written (and dirtied) which also exists in the 7741 * L2ARC, the now stale L2ARC buffer is immediately dropped. 7742 * 7743 * The performance of the L2ARC can be tweaked by a number of tunables, which 7744 * may be necessary for different workloads: 7745 * 7746 * l2arc_write_max max write bytes per interval 7747 * l2arc_write_boost extra write bytes during device warmup 7748 * l2arc_noprefetch skip caching prefetched buffers 7749 * l2arc_headroom number of max device writes to precache 7750 * l2arc_headroom_boost when we find compressed buffers during ARC 7751 * scanning, we multiply headroom by this 7752 * percentage factor for the next scan cycle, 7753 * since more compressed buffers are likely to 7754 * be present 7755 * l2arc_feed_secs seconds between L2ARC writing 7756 * 7757 * Tunables may be removed or added as future performance improvements are 7758 * integrated, and also may become zpool properties. 7759 * 7760 * There are three key functions that control how the L2ARC warms up: 7761 * 7762 * l2arc_write_eligible() check if a buffer is eligible to cache 7763 * l2arc_write_size() calculate how much to write 7764 * l2arc_write_interval() calculate sleep delay between writes 7765 * 7766 * These three functions determine what to write, how much, and how quickly 7767 * to send writes. 7768 * 7769 * L2ARC persistence: 7770 * 7771 * When writing buffers to L2ARC, we periodically add some metadata to 7772 * make sure we can pick them up after reboot, thus dramatically reducing 7773 * the impact that any downtime has on the performance of storage systems 7774 * with large caches. 7775 * 7776 * The implementation works fairly simply by integrating the following two 7777 * modifications: 7778 * 7779 * *) When writing to the L2ARC, we occasionally write a "l2arc log block", 7780 * which is an additional piece of metadata which describes what's been 7781 * written. This allows us to rebuild the arc_buf_hdr_t structures of the 7782 * main ARC buffers. There are 2 linked-lists of log blocks headed by 7783 * dh_start_lbps[2]. We alternate which chain we append to, so they are 7784 * time-wise and offset-wise interleaved, but that is an optimization rather 7785 * than for correctness. The log block also includes a pointer to the 7786 * previous block in its chain. 7787 * 7788 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device 7789 * for our header bookkeeping purposes. This contains a device header, 7790 * which contains our top-level reference structures. We update it each 7791 * time we write a new log block, so that we're able to locate it in the 7792 * L2ARC device. If this write results in an inconsistent device header 7793 * (e.g. due to power failure), we detect this by verifying the header's 7794 * checksum and simply fail to reconstruct the L2ARC after reboot. 7795 * 7796 * Implementation diagram: 7797 * 7798 * +=== L2ARC device (not to scale) ======================================+ 7799 * | ___two newest log block pointers__.__________ | 7800 * | / \dh_start_lbps[1] | 7801 * | / \ \dh_start_lbps[0]| 7802 * |.___/__. V V | 7803 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---| 7804 * || hdr| ^ /^ /^ / / | 7805 * |+------+ ...--\-------/ \-----/--\------/ / | 7806 * | \--------------/ \--------------/ | 7807 * +======================================================================+ 7808 * 7809 * As can be seen on the diagram, rather than using a simple linked list, 7810 * we use a pair of linked lists with alternating elements. This is a 7811 * performance enhancement due to the fact that we only find out the 7812 * address of the next log block access once the current block has been 7813 * completely read in. Obviously, this hurts performance, because we'd be 7814 * keeping the device's I/O queue at only a 1 operation deep, thus 7815 * incurring a large amount of I/O round-trip latency. Having two lists 7816 * allows us to fetch two log blocks ahead of where we are currently 7817 * rebuilding L2ARC buffers. 7818 * 7819 * On-device data structures: 7820 * 7821 * L2ARC device header: l2arc_dev_hdr_phys_t 7822 * L2ARC log block: l2arc_log_blk_phys_t 7823 * 7824 * L2ARC reconstruction: 7825 * 7826 * When writing data, we simply write in the standard rotary fashion, 7827 * evicting buffers as we go and simply writing new data over them (writing 7828 * a new log block every now and then). This obviously means that once we 7829 * loop around the end of the device, we will start cutting into an already 7830 * committed log block (and its referenced data buffers), like so: 7831 * 7832 * current write head__ __old tail 7833 * \ / 7834 * V V 7835 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |--> 7836 * ^ ^^^^^^^^^___________________________________ 7837 * | \ 7838 * <<nextwrite>> may overwrite this blk and/or its bufs --' 7839 * 7840 * When importing the pool, we detect this situation and use it to stop 7841 * our scanning process (see l2arc_rebuild). 7842 * 7843 * There is one significant caveat to consider when rebuilding ARC contents 7844 * from an L2ARC device: what about invalidated buffers? Given the above 7845 * construction, we cannot update blocks which we've already written to amend 7846 * them to remove buffers which were invalidated. Thus, during reconstruction, 7847 * we might be populating the cache with buffers for data that's not on the 7848 * main pool anymore, or may have been overwritten! 7849 * 7850 * As it turns out, this isn't a problem. Every arc_read request includes 7851 * both the DVA and, crucially, the birth TXG of the BP the caller is 7852 * looking for. So even if the cache were populated by completely rotten 7853 * blocks for data that had been long deleted and/or overwritten, we'll 7854 * never actually return bad data from the cache, since the DVA with the 7855 * birth TXG uniquely identify a block in space and time - once created, 7856 * a block is immutable on disk. The worst thing we have done is wasted 7857 * some time and memory at l2arc rebuild to reconstruct outdated ARC 7858 * entries that will get dropped from the l2arc as it is being updated 7859 * with new blocks. 7860 * 7861 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write 7862 * hand are not restored. This is done by saving the offset (in bytes) 7863 * l2arc_evict() has evicted to in the L2ARC device header and taking it 7864 * into account when restoring buffers. 7865 */ 7866 7867 static boolean_t 7868 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 7869 { 7870 /* 7871 * A buffer is *not* eligible for the L2ARC if it: 7872 * 1. belongs to a different spa. 7873 * 2. is already cached on the L2ARC. 7874 * 3. has an I/O in progress (it may be an incomplete read). 7875 * 4. is flagged not eligible (zfs property). 7876 */ 7877 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || 7878 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr)) 7879 return (B_FALSE); 7880 7881 return (B_TRUE); 7882 } 7883 7884 static uint64_t 7885 l2arc_write_size(l2arc_dev_t *dev) 7886 { 7887 uint64_t size, dev_size, tsize; 7888 7889 /* 7890 * Make sure our globals have meaningful values in case the user 7891 * altered them. 7892 */ 7893 size = l2arc_write_max; 7894 if (size == 0) { 7895 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 7896 "be greater than zero, resetting it to the default (%d)", 7897 L2ARC_WRITE_SIZE); 7898 size = l2arc_write_max = L2ARC_WRITE_SIZE; 7899 } 7900 7901 if (arc_warm == B_FALSE) 7902 size += l2arc_write_boost; 7903 7904 /* 7905 * Make sure the write size does not exceed the size of the cache 7906 * device. This is important in l2arc_evict(), otherwise infinite 7907 * iteration can occur. 7908 */ 7909 dev_size = dev->l2ad_end - dev->l2ad_start; 7910 tsize = size + l2arc_log_blk_overhead(size, dev); 7911 if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) 7912 tsize += MAX(64 * 1024 * 1024, 7913 (tsize * l2arc_trim_ahead) / 100); 7914 7915 if (tsize >= dev_size) { 7916 cmn_err(CE_NOTE, "l2arc_write_max or l2arc_write_boost " 7917 "plus the overhead of log blocks (persistent L2ARC, " 7918 "%llu bytes) exceeds the size of the cache device " 7919 "(guid %llu), resetting them to the default (%d)", 7920 l2arc_log_blk_overhead(size, dev), 7921 dev->l2ad_vdev->vdev_guid, L2ARC_WRITE_SIZE); 7922 size = l2arc_write_max = l2arc_write_boost = L2ARC_WRITE_SIZE; 7923 7924 if (arc_warm == B_FALSE) 7925 size += l2arc_write_boost; 7926 } 7927 7928 return (size); 7929 7930 } 7931 7932 static clock_t 7933 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 7934 { 7935 clock_t interval, next, now; 7936 7937 /* 7938 * If the ARC lists are busy, increase our write rate; if the 7939 * lists are stale, idle back. This is achieved by checking 7940 * how much we previously wrote - if it was more than half of 7941 * what we wanted, schedule the next write much sooner. 7942 */ 7943 if (l2arc_feed_again && wrote > (wanted / 2)) 7944 interval = (hz * l2arc_feed_min_ms) / 1000; 7945 else 7946 interval = hz * l2arc_feed_secs; 7947 7948 now = ddi_get_lbolt(); 7949 next = MAX(now, MIN(now + interval, began + interval)); 7950 7951 return (next); 7952 } 7953 7954 /* 7955 * Cycle through L2ARC devices. This is how L2ARC load balances. 7956 * If a device is returned, this also returns holding the spa config lock. 7957 */ 7958 static l2arc_dev_t * 7959 l2arc_dev_get_next(void) 7960 { 7961 l2arc_dev_t *first, *next = NULL; 7962 7963 /* 7964 * Lock out the removal of spas (spa_namespace_lock), then removal 7965 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 7966 * both locks will be dropped and a spa config lock held instead. 7967 */ 7968 mutex_enter(&spa_namespace_lock); 7969 mutex_enter(&l2arc_dev_mtx); 7970 7971 /* if there are no vdevs, there is nothing to do */ 7972 if (l2arc_ndev == 0) 7973 goto out; 7974 7975 first = NULL; 7976 next = l2arc_dev_last; 7977 do { 7978 /* loop around the list looking for a non-faulted vdev */ 7979 if (next == NULL) { 7980 next = list_head(l2arc_dev_list); 7981 } else { 7982 next = list_next(l2arc_dev_list, next); 7983 if (next == NULL) 7984 next = list_head(l2arc_dev_list); 7985 } 7986 7987 /* if we have come back to the start, bail out */ 7988 if (first == NULL) 7989 first = next; 7990 else if (next == first) 7991 break; 7992 7993 } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || 7994 next->l2ad_trim_all); 7995 7996 /* if we were unable to find any usable vdevs, return NULL */ 7997 if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || 7998 next->l2ad_trim_all) 7999 next = NULL; 8000 8001 l2arc_dev_last = next; 8002 8003 out: 8004 mutex_exit(&l2arc_dev_mtx); 8005 8006 /* 8007 * Grab the config lock to prevent the 'next' device from being 8008 * removed while we are writing to it. 8009 */ 8010 if (next != NULL) 8011 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 8012 mutex_exit(&spa_namespace_lock); 8013 8014 return (next); 8015 } 8016 8017 /* 8018 * Free buffers that were tagged for destruction. 8019 */ 8020 static void 8021 l2arc_do_free_on_write(void) 8022 { 8023 list_t *buflist; 8024 l2arc_data_free_t *df, *df_prev; 8025 8026 mutex_enter(&l2arc_free_on_write_mtx); 8027 buflist = l2arc_free_on_write; 8028 8029 for (df = list_tail(buflist); df; df = df_prev) { 8030 df_prev = list_prev(buflist, df); 8031 ASSERT3P(df->l2df_abd, !=, NULL); 8032 abd_free(df->l2df_abd); 8033 list_remove(buflist, df); 8034 kmem_free(df, sizeof (l2arc_data_free_t)); 8035 } 8036 8037 mutex_exit(&l2arc_free_on_write_mtx); 8038 } 8039 8040 /* 8041 * A write to a cache device has completed. Update all headers to allow 8042 * reads from these buffers to begin. 8043 */ 8044 static void 8045 l2arc_write_done(zio_t *zio) 8046 { 8047 l2arc_write_callback_t *cb; 8048 l2arc_lb_abd_buf_t *abd_buf; 8049 l2arc_lb_ptr_buf_t *lb_ptr_buf; 8050 l2arc_dev_t *dev; 8051 l2arc_dev_hdr_phys_t *l2dhdr; 8052 list_t *buflist; 8053 arc_buf_hdr_t *head, *hdr, *hdr_prev; 8054 kmutex_t *hash_lock; 8055 int64_t bytes_dropped = 0; 8056 8057 cb = zio->io_private; 8058 ASSERT3P(cb, !=, NULL); 8059 dev = cb->l2wcb_dev; 8060 l2dhdr = dev->l2ad_dev_hdr; 8061 ASSERT3P(dev, !=, NULL); 8062 head = cb->l2wcb_head; 8063 ASSERT3P(head, !=, NULL); 8064 buflist = &dev->l2ad_buflist; 8065 ASSERT3P(buflist, !=, NULL); 8066 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 8067 l2arc_write_callback_t *, cb); 8068 8069 if (zio->io_error != 0) 8070 ARCSTAT_BUMP(arcstat_l2_writes_error); 8071 8072 /* 8073 * All writes completed, or an error was hit. 8074 */ 8075 top: 8076 mutex_enter(&dev->l2ad_mtx); 8077 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 8078 hdr_prev = list_prev(buflist, hdr); 8079 8080 hash_lock = HDR_LOCK(hdr); 8081 8082 /* 8083 * We cannot use mutex_enter or else we can deadlock 8084 * with l2arc_write_buffers (due to swapping the order 8085 * the hash lock and l2ad_mtx are taken). 8086 */ 8087 if (!mutex_tryenter(hash_lock)) { 8088 /* 8089 * Missed the hash lock. We must retry so we 8090 * don't leave the ARC_FLAG_L2_WRITING bit set. 8091 */ 8092 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 8093 8094 /* 8095 * We don't want to rescan the headers we've 8096 * already marked as having been written out, so 8097 * we reinsert the head node so we can pick up 8098 * where we left off. 8099 */ 8100 list_remove(buflist, head); 8101 list_insert_after(buflist, hdr, head); 8102 8103 mutex_exit(&dev->l2ad_mtx); 8104 8105 /* 8106 * We wait for the hash lock to become available 8107 * to try and prevent busy waiting, and increase 8108 * the chance we'll be able to acquire the lock 8109 * the next time around. 8110 */ 8111 mutex_enter(hash_lock); 8112 mutex_exit(hash_lock); 8113 goto top; 8114 } 8115 8116 /* 8117 * We could not have been moved into the arc_l2c_only 8118 * state while in-flight due to our ARC_FLAG_L2_WRITING 8119 * bit being set. Let's just ensure that's being enforced. 8120 */ 8121 ASSERT(HDR_HAS_L1HDR(hdr)); 8122 8123 /* 8124 * Skipped - drop L2ARC entry and mark the header as no 8125 * longer L2 eligibile. 8126 */ 8127 if (zio->io_error != 0) { 8128 /* 8129 * Error - drop L2ARC entry. 8130 */ 8131 list_remove(buflist, hdr); 8132 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 8133 8134 uint64_t psize = HDR_GET_PSIZE(hdr); 8135 ARCSTAT_INCR(arcstat_l2_psize, -psize); 8136 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr)); 8137 8138 bytes_dropped += 8139 vdev_psize_to_asize(dev->l2ad_vdev, psize); 8140 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 8141 arc_hdr_size(hdr), hdr); 8142 } 8143 8144 /* 8145 * Allow ARC to begin reads and ghost list evictions to 8146 * this L2ARC entry. 8147 */ 8148 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); 8149 8150 mutex_exit(hash_lock); 8151 } 8152 8153 /* 8154 * Free the allocated abd buffers for writing the log blocks. 8155 * If the zio failed reclaim the allocated space and remove the 8156 * pointers to these log blocks from the log block pointer list 8157 * of the L2ARC device. 8158 */ 8159 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) { 8160 abd_free(abd_buf->abd); 8161 zio_buf_free(abd_buf, sizeof (*abd_buf)); 8162 if (zio->io_error != 0) { 8163 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list); 8164 /* 8165 * L2BLK_GET_PSIZE returns aligned size for log 8166 * blocks. 8167 */ 8168 uint64_t asize = 8169 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop); 8170 bytes_dropped += asize; 8171 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 8172 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 8173 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 8174 lb_ptr_buf); 8175 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 8176 kmem_free(lb_ptr_buf->lb_ptr, 8177 sizeof (l2arc_log_blkptr_t)); 8178 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 8179 } 8180 } 8181 list_destroy(&cb->l2wcb_abd_list); 8182 8183 if (zio->io_error != 0) { 8184 /* 8185 * Restore the lbps array in the header to its previous state. 8186 * If the list of log block pointers is empty, zero out the 8187 * log block pointers in the device header. 8188 */ 8189 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list); 8190 for (int i = 0; i < 2; i++) { 8191 if (lb_ptr_buf == NULL) { 8192 /* 8193 * If the list is empty zero out the device 8194 * header. Otherwise zero out the second log 8195 * block pointer in the header. 8196 */ 8197 if (i == 0) { 8198 bzero(l2dhdr, dev->l2ad_dev_hdr_asize); 8199 } else { 8200 bzero(&l2dhdr->dh_start_lbps[i], 8201 sizeof (l2arc_log_blkptr_t)); 8202 } 8203 break; 8204 } 8205 bcopy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[i], 8206 sizeof (l2arc_log_blkptr_t)); 8207 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list, 8208 lb_ptr_buf); 8209 } 8210 } 8211 8212 atomic_inc_64(&l2arc_writes_done); 8213 list_remove(buflist, head); 8214 ASSERT(!HDR_HAS_L1HDR(head)); 8215 kmem_cache_free(hdr_l2only_cache, head); 8216 mutex_exit(&dev->l2ad_mtx); 8217 8218 ASSERT(dev->l2ad_vdev != NULL); 8219 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 8220 8221 l2arc_do_free_on_write(); 8222 8223 kmem_free(cb, sizeof (l2arc_write_callback_t)); 8224 } 8225 8226 static int 8227 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb) 8228 { 8229 int ret; 8230 spa_t *spa = zio->io_spa; 8231 arc_buf_hdr_t *hdr = cb->l2rcb_hdr; 8232 blkptr_t *bp = zio->io_bp; 8233 uint8_t salt[ZIO_DATA_SALT_LEN]; 8234 uint8_t iv[ZIO_DATA_IV_LEN]; 8235 uint8_t mac[ZIO_DATA_MAC_LEN]; 8236 boolean_t no_crypt = B_FALSE; 8237 8238 /* 8239 * ZIL data is never be written to the L2ARC, so we don't need 8240 * special handling for its unique MAC storage. 8241 */ 8242 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 8243 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 8244 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8245 8246 /* 8247 * If the data was encrypted, decrypt it now. Note that 8248 * we must check the bp here and not the hdr, since the 8249 * hdr does not have its encryption parameters updated 8250 * until arc_read_done(). 8251 */ 8252 if (BP_IS_ENCRYPTED(bp)) { 8253 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8254 B_TRUE); 8255 8256 zio_crypt_decode_params_bp(bp, salt, iv); 8257 zio_crypt_decode_mac_bp(bp, mac); 8258 8259 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb, 8260 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 8261 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd, 8262 hdr->b_l1hdr.b_pabd, &no_crypt); 8263 if (ret != 0) { 8264 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8265 goto error; 8266 } 8267 8268 /* 8269 * If we actually performed decryption, replace b_pabd 8270 * with the decrypted data. Otherwise we can just throw 8271 * our decryption buffer away. 8272 */ 8273 if (!no_crypt) { 8274 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8275 arc_hdr_size(hdr), hdr); 8276 hdr->b_l1hdr.b_pabd = eabd; 8277 zio->io_abd = eabd; 8278 } else { 8279 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8280 } 8281 } 8282 8283 /* 8284 * If the L2ARC block was compressed, but ARC compression 8285 * is disabled we decompress the data into a new buffer and 8286 * replace the existing data. 8287 */ 8288 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 8289 !HDR_COMPRESSION_ENABLED(hdr)) { 8290 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8291 B_TRUE); 8292 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 8293 8294 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 8295 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 8296 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 8297 if (ret != 0) { 8298 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 8299 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr); 8300 goto error; 8301 } 8302 8303 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 8304 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8305 arc_hdr_size(hdr), hdr); 8306 hdr->b_l1hdr.b_pabd = cabd; 8307 zio->io_abd = cabd; 8308 zio->io_size = HDR_GET_LSIZE(hdr); 8309 } 8310 8311 return (0); 8312 8313 error: 8314 return (ret); 8315 } 8316 8317 8318 /* 8319 * A read to a cache device completed. Validate buffer contents before 8320 * handing over to the regular ARC routines. 8321 */ 8322 static void 8323 l2arc_read_done(zio_t *zio) 8324 { 8325 int tfm_error = 0; 8326 l2arc_read_callback_t *cb = zio->io_private; 8327 arc_buf_hdr_t *hdr; 8328 kmutex_t *hash_lock; 8329 boolean_t valid_cksum; 8330 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) && 8331 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT)); 8332 8333 ASSERT3P(zio->io_vd, !=, NULL); 8334 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 8335 8336 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 8337 8338 ASSERT3P(cb, !=, NULL); 8339 hdr = cb->l2rcb_hdr; 8340 ASSERT3P(hdr, !=, NULL); 8341 8342 hash_lock = HDR_LOCK(hdr); 8343 mutex_enter(hash_lock); 8344 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 8345 8346 /* 8347 * If the data was read into a temporary buffer, 8348 * move it and free the buffer. 8349 */ 8350 if (cb->l2rcb_abd != NULL) { 8351 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size); 8352 if (zio->io_error == 0) { 8353 if (using_rdata) { 8354 abd_copy(hdr->b_crypt_hdr.b_rabd, 8355 cb->l2rcb_abd, arc_hdr_size(hdr)); 8356 } else { 8357 abd_copy(hdr->b_l1hdr.b_pabd, 8358 cb->l2rcb_abd, arc_hdr_size(hdr)); 8359 } 8360 } 8361 8362 /* 8363 * The following must be done regardless of whether 8364 * there was an error: 8365 * - free the temporary buffer 8366 * - point zio to the real ARC buffer 8367 * - set zio size accordingly 8368 * These are required because zio is either re-used for 8369 * an I/O of the block in the case of the error 8370 * or the zio is passed to arc_read_done() and it 8371 * needs real data. 8372 */ 8373 abd_free(cb->l2rcb_abd); 8374 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr); 8375 8376 if (using_rdata) { 8377 ASSERT(HDR_HAS_RABD(hdr)); 8378 zio->io_abd = zio->io_orig_abd = 8379 hdr->b_crypt_hdr.b_rabd; 8380 } else { 8381 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8382 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd; 8383 } 8384 } 8385 8386 ASSERT3P(zio->io_abd, !=, NULL); 8387 8388 /* 8389 * Check this survived the L2ARC journey. 8390 */ 8391 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd || 8392 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd)); 8393 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 8394 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 8395 zio->io_prop.zp_complevel = hdr->b_complevel; 8396 8397 valid_cksum = arc_cksum_is_equal(hdr, zio); 8398 8399 /* 8400 * b_rabd will always match the data as it exists on disk if it is 8401 * being used. Therefore if we are reading into b_rabd we do not 8402 * attempt to untransform the data. 8403 */ 8404 if (valid_cksum && !using_rdata) 8405 tfm_error = l2arc_untransform(zio, cb); 8406 8407 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 && 8408 !HDR_L2_EVICTED(hdr)) { 8409 mutex_exit(hash_lock); 8410 zio->io_private = hdr; 8411 arc_read_done(zio); 8412 } else { 8413 /* 8414 * Buffer didn't survive caching. Increment stats and 8415 * reissue to the original storage device. 8416 */ 8417 if (zio->io_error != 0) { 8418 ARCSTAT_BUMP(arcstat_l2_io_error); 8419 } else { 8420 zio->io_error = SET_ERROR(EIO); 8421 } 8422 if (!valid_cksum || tfm_error != 0) 8423 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 8424 8425 /* 8426 * If there's no waiter, issue an async i/o to the primary 8427 * storage now. If there *is* a waiter, the caller must 8428 * issue the i/o in a context where it's OK to block. 8429 */ 8430 if (zio->io_waiter == NULL) { 8431 zio_t *pio = zio_unique_parent(zio); 8432 void *abd = (using_rdata) ? 8433 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd; 8434 8435 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 8436 8437 zio = zio_read(pio, zio->io_spa, zio->io_bp, 8438 abd, zio->io_size, arc_read_done, 8439 hdr, zio->io_priority, cb->l2rcb_flags, 8440 &cb->l2rcb_zb); 8441 8442 /* 8443 * Original ZIO will be freed, so we need to update 8444 * ARC header with the new ZIO pointer to be used 8445 * by zio_change_priority() in arc_read(). 8446 */ 8447 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb; 8448 acb != NULL; acb = acb->acb_next) 8449 acb->acb_zio_head = zio; 8450 8451 mutex_exit(hash_lock); 8452 zio_nowait(zio); 8453 } else { 8454 mutex_exit(hash_lock); 8455 } 8456 } 8457 8458 kmem_free(cb, sizeof (l2arc_read_callback_t)); 8459 } 8460 8461 /* 8462 * This is the list priority from which the L2ARC will search for pages to 8463 * cache. This is used within loops (0..3) to cycle through lists in the 8464 * desired order. This order can have a significant effect on cache 8465 * performance. 8466 * 8467 * Currently the metadata lists are hit first, MFU then MRU, followed by 8468 * the data lists. This function returns a locked list, and also returns 8469 * the lock pointer. 8470 */ 8471 static multilist_sublist_t * 8472 l2arc_sublist_lock(int list_num) 8473 { 8474 multilist_t *ml = NULL; 8475 unsigned int idx; 8476 8477 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES); 8478 8479 switch (list_num) { 8480 case 0: 8481 ml = arc_mfu->arcs_list[ARC_BUFC_METADATA]; 8482 break; 8483 case 1: 8484 ml = arc_mru->arcs_list[ARC_BUFC_METADATA]; 8485 break; 8486 case 2: 8487 ml = arc_mfu->arcs_list[ARC_BUFC_DATA]; 8488 break; 8489 case 3: 8490 ml = arc_mru->arcs_list[ARC_BUFC_DATA]; 8491 break; 8492 default: 8493 return (NULL); 8494 } 8495 8496 /* 8497 * Return a randomly-selected sublist. This is acceptable 8498 * because the caller feeds only a little bit of data for each 8499 * call (8MB). Subsequent calls will result in different 8500 * sublists being selected. 8501 */ 8502 idx = multilist_get_random_index(ml); 8503 return (multilist_sublist_lock(ml, idx)); 8504 } 8505 8506 /* 8507 * Calculates the maximum overhead of L2ARC metadata log blocks for a given 8508 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this 8509 * overhead in processing to make sure there is enough headroom available 8510 * when writing buffers. 8511 */ 8512 static inline uint64_t 8513 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev) 8514 { 8515 if (dev->l2ad_log_entries == 0) { 8516 return (0); 8517 } else { 8518 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT; 8519 8520 uint64_t log_blocks = (log_entries + 8521 dev->l2ad_log_entries - 1) / 8522 dev->l2ad_log_entries; 8523 8524 return (vdev_psize_to_asize(dev->l2ad_vdev, 8525 sizeof (l2arc_log_blk_phys_t)) * log_blocks); 8526 } 8527 } 8528 8529 /* 8530 * Evict buffers from the device write hand to the distance specified in 8531 * bytes. This distance may span populated buffers, it may span nothing. 8532 * This is clearing a region on the L2ARC device ready for writing. 8533 * If the 'all' boolean is set, every buffer is evicted. 8534 */ 8535 static void 8536 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 8537 { 8538 list_t *buflist; 8539 arc_buf_hdr_t *hdr, *hdr_prev; 8540 kmutex_t *hash_lock; 8541 uint64_t taddr; 8542 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev; 8543 vdev_t *vd = dev->l2ad_vdev; 8544 boolean_t rerun; 8545 8546 buflist = &dev->l2ad_buflist; 8547 8548 /* 8549 * We need to add in the worst case scenario of log block overhead. 8550 */ 8551 distance += l2arc_log_blk_overhead(distance, dev); 8552 if (vd->vdev_has_trim && l2arc_trim_ahead > 0) { 8553 /* 8554 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100) 8555 * times the write size, whichever is greater. 8556 */ 8557 distance += MAX(64 * 1024 * 1024, 8558 (distance * l2arc_trim_ahead) / 100); 8559 } 8560 8561 top: 8562 rerun = B_FALSE; 8563 if (dev->l2ad_hand >= (dev->l2ad_end - distance)) { 8564 /* 8565 * When there is no space to accommodate upcoming writes, 8566 * evict to the end. Then bump the write and evict hands 8567 * to the start and iterate. This iteration does not 8568 * happen indefinitely as we make sure in 8569 * l2arc_write_size() that when the write hand is reset, 8570 * the write size does not exceed the end of the device. 8571 */ 8572 rerun = B_TRUE; 8573 taddr = dev->l2ad_end; 8574 } else { 8575 taddr = dev->l2ad_hand + distance; 8576 } 8577 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 8578 uint64_t, taddr, boolean_t, all); 8579 8580 if (!all) { 8581 /* 8582 * This check has to be placed after deciding whether to 8583 * iterate (rerun). 8584 */ 8585 if (dev->l2ad_first) { 8586 /* 8587 * This is the first sweep through the device. There is 8588 * nothing to evict. We have already trimmmed the 8589 * whole device. 8590 */ 8591 goto out; 8592 } else { 8593 /* 8594 * Trim the space to be evicted. 8595 */ 8596 if (vd->vdev_has_trim && dev->l2ad_evict < taddr && 8597 l2arc_trim_ahead > 0) { 8598 /* 8599 * We have to drop the spa_config lock because 8600 * vdev_trim_range() will acquire it. 8601 * l2ad_evict already accounts for the label 8602 * size. To prevent vdev_trim_ranges() from 8603 * adding it again, we subtract it from 8604 * l2ad_evict. 8605 */ 8606 spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev); 8607 vdev_trim_simple(vd, 8608 dev->l2ad_evict - VDEV_LABEL_START_SIZE, 8609 taddr - dev->l2ad_evict); 8610 spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev, 8611 RW_READER); 8612 } 8613 8614 /* 8615 * When rebuilding L2ARC we retrieve the evict hand 8616 * from the header of the device. Of note, l2arc_evict() 8617 * does not actually delete buffers from the cache 8618 * device, but trimming may do so depending on the 8619 * hardware implementation. Thus keeping track of the 8620 * evict hand is useful. 8621 */ 8622 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr); 8623 } 8624 } 8625 8626 retry: 8627 mutex_enter(&dev->l2ad_mtx); 8628 /* 8629 * We have to account for evicted log blocks. Run vdev_space_update() 8630 * on log blocks whose offset (in bytes) is before the evicted offset 8631 * (in bytes) by searching in the list of pointers to log blocks 8632 * present in the L2ARC device. 8633 */ 8634 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf; 8635 lb_ptr_buf = lb_ptr_buf_prev) { 8636 8637 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf); 8638 8639 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 8640 uint64_t asize = L2BLK_GET_PSIZE( 8641 (lb_ptr_buf->lb_ptr)->lbp_prop); 8642 8643 /* 8644 * We don't worry about log blocks left behind (ie 8645 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers() 8646 * will never write more than l2arc_evict() evicts. 8647 */ 8648 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) { 8649 break; 8650 } else { 8651 vdev_space_update(vd, -asize, 0, 0); 8652 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 8653 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 8654 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 8655 lb_ptr_buf); 8656 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 8657 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf); 8658 kmem_free(lb_ptr_buf->lb_ptr, 8659 sizeof (l2arc_log_blkptr_t)); 8660 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 8661 } 8662 } 8663 8664 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 8665 hdr_prev = list_prev(buflist, hdr); 8666 8667 ASSERT(!HDR_EMPTY(hdr)); 8668 hash_lock = HDR_LOCK(hdr); 8669 8670 /* 8671 * We cannot use mutex_enter or else we can deadlock 8672 * with l2arc_write_buffers (due to swapping the order 8673 * the hash lock and l2ad_mtx are taken). 8674 */ 8675 if (!mutex_tryenter(hash_lock)) { 8676 /* 8677 * Missed the hash lock. Retry. 8678 */ 8679 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 8680 mutex_exit(&dev->l2ad_mtx); 8681 mutex_enter(hash_lock); 8682 mutex_exit(hash_lock); 8683 goto retry; 8684 } 8685 8686 /* 8687 * A header can't be on this list if it doesn't have L2 header. 8688 */ 8689 ASSERT(HDR_HAS_L2HDR(hdr)); 8690 8691 /* Ensure this header has finished being written. */ 8692 ASSERT(!HDR_L2_WRITING(hdr)); 8693 ASSERT(!HDR_L2_WRITE_HEAD(hdr)); 8694 8695 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict || 8696 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 8697 /* 8698 * We've evicted to the target address, 8699 * or the end of the device. 8700 */ 8701 mutex_exit(hash_lock); 8702 break; 8703 } 8704 8705 if (!HDR_HAS_L1HDR(hdr)) { 8706 ASSERT(!HDR_L2_READING(hdr)); 8707 /* 8708 * This doesn't exist in the ARC. Destroy. 8709 * arc_hdr_destroy() will call list_remove() 8710 * and decrement arcstat_l2_lsize. 8711 */ 8712 arc_change_state(arc_anon, hdr, hash_lock); 8713 arc_hdr_destroy(hdr); 8714 } else { 8715 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 8716 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 8717 /* 8718 * Invalidate issued or about to be issued 8719 * reads, since we may be about to write 8720 * over this location. 8721 */ 8722 if (HDR_L2_READING(hdr)) { 8723 ARCSTAT_BUMP(arcstat_l2_evict_reading); 8724 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); 8725 } 8726 8727 arc_hdr_l2hdr_destroy(hdr); 8728 } 8729 mutex_exit(hash_lock); 8730 } 8731 mutex_exit(&dev->l2ad_mtx); 8732 8733 out: 8734 /* 8735 * We need to check if we evict all buffers, otherwise we may iterate 8736 * unnecessarily. 8737 */ 8738 if (!all && rerun) { 8739 /* 8740 * Bump device hand to the device start if it is approaching the 8741 * end. l2arc_evict() has already evicted ahead for this case. 8742 */ 8743 dev->l2ad_hand = dev->l2ad_start; 8744 dev->l2ad_evict = dev->l2ad_start; 8745 dev->l2ad_first = B_FALSE; 8746 goto top; 8747 } 8748 8749 ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end); 8750 if (!dev->l2ad_first) 8751 ASSERT3U(dev->l2ad_hand, <, dev->l2ad_evict); 8752 } 8753 8754 /* 8755 * Handle any abd transforms that might be required for writing to the L2ARC. 8756 * If successful, this function will always return an abd with the data 8757 * transformed as it is on disk in a new abd of asize bytes. 8758 */ 8759 static int 8760 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize, 8761 abd_t **abd_out) 8762 { 8763 int ret; 8764 void *tmp = NULL; 8765 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd; 8766 enum zio_compress compress = HDR_GET_COMPRESS(hdr); 8767 uint64_t psize = HDR_GET_PSIZE(hdr); 8768 uint64_t size = arc_hdr_size(hdr); 8769 boolean_t ismd = HDR_ISTYPE_METADATA(hdr); 8770 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 8771 dsl_crypto_key_t *dck = NULL; 8772 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 }; 8773 boolean_t no_crypt = B_FALSE; 8774 8775 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 8776 !HDR_COMPRESSION_ENABLED(hdr)) || 8777 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize); 8778 ASSERT3U(psize, <=, asize); 8779 8780 /* 8781 * If this data simply needs its own buffer, we simply allocate it 8782 * and copy the data. This may be done to eliminate a dependency on a 8783 * shared buffer or to reallocate the buffer to match asize. 8784 */ 8785 if (HDR_HAS_RABD(hdr) && asize != psize) { 8786 ASSERT3U(asize, >=, psize); 8787 to_write = abd_alloc_for_io(asize, ismd); 8788 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize); 8789 if (psize != asize) 8790 abd_zero_off(to_write, psize, asize - psize); 8791 goto out; 8792 } 8793 8794 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) && 8795 !HDR_ENCRYPTED(hdr)) { 8796 ASSERT3U(size, ==, psize); 8797 to_write = abd_alloc_for_io(asize, ismd); 8798 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 8799 if (size != asize) 8800 abd_zero_off(to_write, size, asize - size); 8801 goto out; 8802 } 8803 8804 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) { 8805 cabd = abd_alloc_for_io(asize, ismd); 8806 tmp = abd_borrow_buf(cabd, asize); 8807 8808 psize = zio_compress_data(compress, to_write, tmp, size, 8809 hdr->b_complevel); 8810 8811 if (psize >= size) { 8812 abd_return_buf(cabd, tmp, asize); 8813 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF); 8814 to_write = cabd; 8815 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 8816 if (size != asize) 8817 abd_zero_off(to_write, size, asize - size); 8818 goto encrypt; 8819 } 8820 ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr)); 8821 if (psize < asize) 8822 bzero((char *)tmp + psize, asize - psize); 8823 psize = HDR_GET_PSIZE(hdr); 8824 abd_return_buf_copy(cabd, tmp, asize); 8825 to_write = cabd; 8826 } 8827 8828 encrypt: 8829 if (HDR_ENCRYPTED(hdr)) { 8830 eabd = abd_alloc_for_io(asize, ismd); 8831 8832 /* 8833 * If the dataset was disowned before the buffer 8834 * made it to this point, the key to re-encrypt 8835 * it won't be available. In this case we simply 8836 * won't write the buffer to the L2ARC. 8837 */ 8838 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj, 8839 FTAG, &dck); 8840 if (ret != 0) 8841 goto error; 8842 8843 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key, 8844 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt, 8845 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd, 8846 &no_crypt); 8847 if (ret != 0) 8848 goto error; 8849 8850 if (no_crypt) 8851 abd_copy(eabd, to_write, psize); 8852 8853 if (psize != asize) 8854 abd_zero_off(eabd, psize, asize - psize); 8855 8856 /* assert that the MAC we got here matches the one we saved */ 8857 ASSERT0(bcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN)); 8858 spa_keystore_dsl_key_rele(spa, dck, FTAG); 8859 8860 if (to_write == cabd) 8861 abd_free(cabd); 8862 8863 to_write = eabd; 8864 } 8865 8866 out: 8867 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd); 8868 *abd_out = to_write; 8869 return (0); 8870 8871 error: 8872 if (dck != NULL) 8873 spa_keystore_dsl_key_rele(spa, dck, FTAG); 8874 if (cabd != NULL) 8875 abd_free(cabd); 8876 if (eabd != NULL) 8877 abd_free(eabd); 8878 8879 *abd_out = NULL; 8880 return (ret); 8881 } 8882 8883 static void 8884 l2arc_blk_fetch_done(zio_t *zio) 8885 { 8886 l2arc_read_callback_t *cb; 8887 8888 cb = zio->io_private; 8889 if (cb->l2rcb_abd != NULL) 8890 abd_put(cb->l2rcb_abd); 8891 kmem_free(cb, sizeof (l2arc_read_callback_t)); 8892 } 8893 8894 /* 8895 * Find and write ARC buffers to the L2ARC device. 8896 * 8897 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 8898 * for reading until they have completed writing. 8899 * The headroom_boost is an in-out parameter used to maintain headroom boost 8900 * state between calls to this function. 8901 * 8902 * Returns the number of bytes actually written (which may be smaller than 8903 * the delta by which the device hand has changed due to alignment and the 8904 * writing of log blocks). 8905 */ 8906 static uint64_t 8907 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 8908 { 8909 arc_buf_hdr_t *hdr, *hdr_prev, *head; 8910 uint64_t write_asize, write_psize, write_lsize, headroom; 8911 boolean_t full; 8912 l2arc_write_callback_t *cb = NULL; 8913 zio_t *pio, *wzio; 8914 uint64_t guid = spa_load_guid(spa); 8915 8916 ASSERT3P(dev->l2ad_vdev, !=, NULL); 8917 8918 pio = NULL; 8919 write_lsize = write_asize = write_psize = 0; 8920 full = B_FALSE; 8921 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 8922 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); 8923 8924 /* 8925 * Copy buffers for L2ARC writing. 8926 */ 8927 for (int try = 0; try < L2ARC_FEED_TYPES; try++) { 8928 /* 8929 * If try == 1 or 3, we cache MRU metadata and data 8930 * respectively. 8931 */ 8932 if (l2arc_mfuonly) { 8933 if (try == 1 || try == 3) 8934 continue; 8935 } 8936 8937 multilist_sublist_t *mls = l2arc_sublist_lock(try); 8938 uint64_t passed_sz = 0; 8939 8940 VERIFY3P(mls, !=, NULL); 8941 8942 /* 8943 * L2ARC fast warmup. 8944 * 8945 * Until the ARC is warm and starts to evict, read from the 8946 * head of the ARC lists rather than the tail. 8947 */ 8948 if (arc_warm == B_FALSE) 8949 hdr = multilist_sublist_head(mls); 8950 else 8951 hdr = multilist_sublist_tail(mls); 8952 8953 headroom = target_sz * l2arc_headroom; 8954 if (zfs_compressed_arc_enabled) 8955 headroom = (headroom * l2arc_headroom_boost) / 100; 8956 8957 for (; hdr; hdr = hdr_prev) { 8958 kmutex_t *hash_lock; 8959 abd_t *to_write = NULL; 8960 8961 if (arc_warm == B_FALSE) 8962 hdr_prev = multilist_sublist_next(mls, hdr); 8963 else 8964 hdr_prev = multilist_sublist_prev(mls, hdr); 8965 8966 hash_lock = HDR_LOCK(hdr); 8967 if (!mutex_tryenter(hash_lock)) { 8968 /* 8969 * Skip this buffer rather than waiting. 8970 */ 8971 continue; 8972 } 8973 8974 passed_sz += HDR_GET_LSIZE(hdr); 8975 if (l2arc_headroom != 0 && passed_sz > headroom) { 8976 /* 8977 * Searched too far. 8978 */ 8979 mutex_exit(hash_lock); 8980 break; 8981 } 8982 8983 if (!l2arc_write_eligible(guid, hdr)) { 8984 mutex_exit(hash_lock); 8985 continue; 8986 } 8987 8988 /* 8989 * We rely on the L1 portion of the header below, so 8990 * it's invalid for this header to have been evicted out 8991 * of the ghost cache, prior to being written out. The 8992 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 8993 */ 8994 ASSERT(HDR_HAS_L1HDR(hdr)); 8995 8996 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 8997 ASSERT3U(arc_hdr_size(hdr), >, 0); 8998 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 8999 HDR_HAS_RABD(hdr)); 9000 uint64_t psize = HDR_GET_PSIZE(hdr); 9001 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 9002 psize); 9003 9004 if ((write_asize + asize) > target_sz) { 9005 full = B_TRUE; 9006 mutex_exit(hash_lock); 9007 break; 9008 } 9009 9010 /* 9011 * We rely on the L1 portion of the header below, so 9012 * it's invalid for this header to have been evicted out 9013 * of the ghost cache, prior to being written out. The 9014 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 9015 */ 9016 arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING); 9017 ASSERT(HDR_HAS_L1HDR(hdr)); 9018 9019 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 9020 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 9021 HDR_HAS_RABD(hdr)); 9022 ASSERT3U(arc_hdr_size(hdr), >, 0); 9023 9024 /* 9025 * If this header has b_rabd, we can use this since it 9026 * must always match the data exactly as it exists on 9027 * disk. Otherwise, the L2ARC can normally use the 9028 * hdr's data, but if we're sharing data between the 9029 * hdr and one of its bufs, L2ARC needs its own copy of 9030 * the data so that the ZIO below can't race with the 9031 * buf consumer. To ensure that this copy will be 9032 * available for the lifetime of the ZIO and be cleaned 9033 * up afterwards, we add it to the l2arc_free_on_write 9034 * queue. If we need to apply any transforms to the 9035 * data (compression, encryption) we will also need the 9036 * extra buffer. 9037 */ 9038 if (HDR_HAS_RABD(hdr) && psize == asize) { 9039 to_write = hdr->b_crypt_hdr.b_rabd; 9040 } else if ((HDR_COMPRESSION_ENABLED(hdr) || 9041 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) && 9042 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) && 9043 psize == asize) { 9044 to_write = hdr->b_l1hdr.b_pabd; 9045 } else { 9046 int ret; 9047 arc_buf_contents_t type = arc_buf_type(hdr); 9048 9049 ret = l2arc_apply_transforms(spa, hdr, asize, 9050 &to_write); 9051 if (ret != 0) { 9052 arc_hdr_clear_flags(hdr, 9053 ARC_FLAG_L2_WRITING); 9054 mutex_exit(hash_lock); 9055 continue; 9056 } 9057 9058 l2arc_free_abd_on_write(to_write, asize, type); 9059 } 9060 9061 if (pio == NULL) { 9062 /* 9063 * Insert a dummy header on the buflist so 9064 * l2arc_write_done() can find where the 9065 * write buffers begin without searching. 9066 */ 9067 mutex_enter(&dev->l2ad_mtx); 9068 list_insert_head(&dev->l2ad_buflist, head); 9069 mutex_exit(&dev->l2ad_mtx); 9070 9071 cb = kmem_alloc( 9072 sizeof (l2arc_write_callback_t), KM_SLEEP); 9073 cb->l2wcb_dev = dev; 9074 cb->l2wcb_head = head; 9075 /* 9076 * Create a list to save allocated abd buffers 9077 * for l2arc_log_blk_commit(). 9078 */ 9079 list_create(&cb->l2wcb_abd_list, 9080 sizeof (l2arc_lb_abd_buf_t), 9081 offsetof(l2arc_lb_abd_buf_t, node)); 9082 pio = zio_root(spa, l2arc_write_done, cb, 9083 ZIO_FLAG_CANFAIL); 9084 } 9085 9086 hdr->b_l2hdr.b_dev = dev; 9087 hdr->b_l2hdr.b_hits = 0; 9088 9089 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 9090 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR); 9091 9092 mutex_enter(&dev->l2ad_mtx); 9093 list_insert_head(&dev->l2ad_buflist, hdr); 9094 mutex_exit(&dev->l2ad_mtx); 9095 9096 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 9097 arc_hdr_size(hdr), hdr); 9098 9099 wzio = zio_write_phys(pio, dev->l2ad_vdev, 9100 hdr->b_l2hdr.b_daddr, asize, to_write, 9101 ZIO_CHECKSUM_OFF, NULL, hdr, 9102 ZIO_PRIORITY_ASYNC_WRITE, 9103 ZIO_FLAG_CANFAIL, B_FALSE); 9104 9105 write_lsize += HDR_GET_LSIZE(hdr); 9106 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 9107 zio_t *, wzio); 9108 9109 write_psize += psize; 9110 write_asize += asize; 9111 dev->l2ad_hand += asize; 9112 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 9113 9114 mutex_exit(hash_lock); 9115 9116 /* 9117 * Append buf info to current log and commit if full. 9118 * arcstat_l2_{size,asize} kstats are updated 9119 * internally. 9120 */ 9121 if (l2arc_log_blk_insert(dev, hdr)) 9122 l2arc_log_blk_commit(dev, pio, cb); 9123 9124 zio_nowait(wzio); 9125 } 9126 9127 multilist_sublist_unlock(mls); 9128 9129 if (full == B_TRUE) 9130 break; 9131 } 9132 9133 /* No buffers selected for writing? */ 9134 if (pio == NULL) { 9135 ASSERT0(write_lsize); 9136 ASSERT(!HDR_HAS_L1HDR(head)); 9137 kmem_cache_free(hdr_l2only_cache, head); 9138 9139 /* 9140 * Although we did not write any buffers l2ad_evict may 9141 * have advanced. 9142 */ 9143 l2arc_dev_hdr_update(dev); 9144 9145 return (0); 9146 } 9147 9148 if (!dev->l2ad_first) 9149 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict); 9150 9151 ASSERT3U(write_asize, <=, target_sz); 9152 ARCSTAT_BUMP(arcstat_l2_writes_sent); 9153 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize); 9154 ARCSTAT_INCR(arcstat_l2_lsize, write_lsize); 9155 ARCSTAT_INCR(arcstat_l2_psize, write_psize); 9156 9157 dev->l2ad_writing = B_TRUE; 9158 (void) zio_wait(pio); 9159 dev->l2ad_writing = B_FALSE; 9160 9161 /* 9162 * Update the device header after the zio completes as 9163 * l2arc_write_done() may have updated the memory holding the log block 9164 * pointers in the device header. 9165 */ 9166 l2arc_dev_hdr_update(dev); 9167 9168 return (write_asize); 9169 } 9170 9171 static boolean_t 9172 l2arc_hdr_limit_reached(void) 9173 { 9174 int64_t s = aggsum_upper_bound(&astat_l2_hdr_size); 9175 9176 return (arc_reclaim_needed() || (s > arc_meta_limit * 3 / 4) || 9177 (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100)); 9178 } 9179 9180 /* 9181 * This thread feeds the L2ARC at regular intervals. This is the beating 9182 * heart of the L2ARC. 9183 */ 9184 /* ARGSUSED */ 9185 static void 9186 l2arc_feed_thread(void *unused) 9187 { 9188 callb_cpr_t cpr; 9189 l2arc_dev_t *dev; 9190 spa_t *spa; 9191 uint64_t size, wrote; 9192 clock_t begin, next = ddi_get_lbolt(); 9193 fstrans_cookie_t cookie; 9194 9195 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 9196 9197 mutex_enter(&l2arc_feed_thr_lock); 9198 9199 cookie = spl_fstrans_mark(); 9200 while (l2arc_thread_exit == 0) { 9201 CALLB_CPR_SAFE_BEGIN(&cpr); 9202 (void) cv_timedwait_idle(&l2arc_feed_thr_cv, 9203 &l2arc_feed_thr_lock, next); 9204 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 9205 next = ddi_get_lbolt() + hz; 9206 9207 /* 9208 * Quick check for L2ARC devices. 9209 */ 9210 mutex_enter(&l2arc_dev_mtx); 9211 if (l2arc_ndev == 0) { 9212 mutex_exit(&l2arc_dev_mtx); 9213 continue; 9214 } 9215 mutex_exit(&l2arc_dev_mtx); 9216 begin = ddi_get_lbolt(); 9217 9218 /* 9219 * This selects the next l2arc device to write to, and in 9220 * doing so the next spa to feed from: dev->l2ad_spa. This 9221 * will return NULL if there are now no l2arc devices or if 9222 * they are all faulted. 9223 * 9224 * If a device is returned, its spa's config lock is also 9225 * held to prevent device removal. l2arc_dev_get_next() 9226 * will grab and release l2arc_dev_mtx. 9227 */ 9228 if ((dev = l2arc_dev_get_next()) == NULL) 9229 continue; 9230 9231 spa = dev->l2ad_spa; 9232 ASSERT3P(spa, !=, NULL); 9233 9234 /* 9235 * If the pool is read-only then force the feed thread to 9236 * sleep a little longer. 9237 */ 9238 if (!spa_writeable(spa)) { 9239 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 9240 spa_config_exit(spa, SCL_L2ARC, dev); 9241 continue; 9242 } 9243 9244 /* 9245 * Avoid contributing to memory pressure. 9246 */ 9247 if (l2arc_hdr_limit_reached()) { 9248 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 9249 spa_config_exit(spa, SCL_L2ARC, dev); 9250 continue; 9251 } 9252 9253 ARCSTAT_BUMP(arcstat_l2_feeds); 9254 9255 size = l2arc_write_size(dev); 9256 9257 /* 9258 * Evict L2ARC buffers that will be overwritten. 9259 */ 9260 l2arc_evict(dev, size, B_FALSE); 9261 9262 /* 9263 * Write ARC buffers. 9264 */ 9265 wrote = l2arc_write_buffers(spa, dev, size); 9266 9267 /* 9268 * Calculate interval between writes. 9269 */ 9270 next = l2arc_write_interval(begin, size, wrote); 9271 spa_config_exit(spa, SCL_L2ARC, dev); 9272 } 9273 spl_fstrans_unmark(cookie); 9274 9275 l2arc_thread_exit = 0; 9276 cv_broadcast(&l2arc_feed_thr_cv); 9277 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 9278 thread_exit(); 9279 } 9280 9281 boolean_t 9282 l2arc_vdev_present(vdev_t *vd) 9283 { 9284 return (l2arc_vdev_get(vd) != NULL); 9285 } 9286 9287 /* 9288 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if 9289 * the vdev_t isn't an L2ARC device. 9290 */ 9291 l2arc_dev_t * 9292 l2arc_vdev_get(vdev_t *vd) 9293 { 9294 l2arc_dev_t *dev; 9295 9296 mutex_enter(&l2arc_dev_mtx); 9297 for (dev = list_head(l2arc_dev_list); dev != NULL; 9298 dev = list_next(l2arc_dev_list, dev)) { 9299 if (dev->l2ad_vdev == vd) 9300 break; 9301 } 9302 mutex_exit(&l2arc_dev_mtx); 9303 9304 return (dev); 9305 } 9306 9307 /* 9308 * Add a vdev for use by the L2ARC. By this point the spa has already 9309 * validated the vdev and opened it. 9310 */ 9311 void 9312 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 9313 { 9314 l2arc_dev_t *adddev; 9315 uint64_t l2dhdr_asize; 9316 9317 ASSERT(!l2arc_vdev_present(vd)); 9318 9319 /* 9320 * Create a new l2arc device entry. 9321 */ 9322 adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 9323 adddev->l2ad_spa = spa; 9324 adddev->l2ad_vdev = vd; 9325 /* leave extra size for an l2arc device header */ 9326 l2dhdr_asize = adddev->l2ad_dev_hdr_asize = 9327 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift); 9328 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize; 9329 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 9330 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end); 9331 adddev->l2ad_hand = adddev->l2ad_start; 9332 adddev->l2ad_evict = adddev->l2ad_start; 9333 adddev->l2ad_first = B_TRUE; 9334 adddev->l2ad_writing = B_FALSE; 9335 adddev->l2ad_trim_all = B_FALSE; 9336 list_link_init(&adddev->l2ad_node); 9337 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP); 9338 9339 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 9340 /* 9341 * This is a list of all ARC buffers that are still valid on the 9342 * device. 9343 */ 9344 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 9345 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 9346 9347 /* 9348 * This is a list of pointers to log blocks that are still present 9349 * on the device. 9350 */ 9351 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t), 9352 offsetof(l2arc_lb_ptr_buf_t, node)); 9353 9354 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 9355 zfs_refcount_create(&adddev->l2ad_alloc); 9356 zfs_refcount_create(&adddev->l2ad_lb_asize); 9357 zfs_refcount_create(&adddev->l2ad_lb_count); 9358 9359 /* 9360 * Add device to global list 9361 */ 9362 mutex_enter(&l2arc_dev_mtx); 9363 list_insert_head(l2arc_dev_list, adddev); 9364 atomic_inc_64(&l2arc_ndev); 9365 mutex_exit(&l2arc_dev_mtx); 9366 9367 /* 9368 * Decide if vdev is eligible for L2ARC rebuild 9369 */ 9370 l2arc_rebuild_vdev(adddev->l2ad_vdev, B_FALSE); 9371 } 9372 9373 void 9374 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen) 9375 { 9376 l2arc_dev_t *dev = NULL; 9377 l2arc_dev_hdr_phys_t *l2dhdr; 9378 uint64_t l2dhdr_asize; 9379 spa_t *spa; 9380 int err; 9381 boolean_t l2dhdr_valid = B_TRUE; 9382 9383 dev = l2arc_vdev_get(vd); 9384 ASSERT3P(dev, !=, NULL); 9385 spa = dev->l2ad_spa; 9386 l2dhdr = dev->l2ad_dev_hdr; 9387 l2dhdr_asize = dev->l2ad_dev_hdr_asize; 9388 9389 /* 9390 * The L2ARC has to hold at least the payload of one log block for 9391 * them to be restored (persistent L2ARC). The payload of a log block 9392 * depends on the amount of its log entries. We always write log blocks 9393 * with 1022 entries. How many of them are committed or restored depends 9394 * on the size of the L2ARC device. Thus the maximum payload of 9395 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device 9396 * is less than that, we reduce the amount of committed and restored 9397 * log entries per block so as to enable persistence. 9398 */ 9399 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) { 9400 dev->l2ad_log_entries = 0; 9401 } else { 9402 dev->l2ad_log_entries = MIN((dev->l2ad_end - 9403 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT, 9404 L2ARC_LOG_BLK_MAX_ENTRIES); 9405 } 9406 9407 /* 9408 * Read the device header, if an error is returned do not rebuild L2ARC. 9409 */ 9410 if ((err = l2arc_dev_hdr_read(dev)) != 0) 9411 l2dhdr_valid = B_FALSE; 9412 9413 if (l2dhdr_valid && dev->l2ad_log_entries > 0) { 9414 /* 9415 * If we are onlining a cache device (vdev_reopen) that was 9416 * still present (l2arc_vdev_present()) and rebuild is enabled, 9417 * we should evict all ARC buffers and pointers to log blocks 9418 * and reclaim their space before restoring its contents to 9419 * L2ARC. 9420 */ 9421 if (reopen) { 9422 if (!l2arc_rebuild_enabled) { 9423 return; 9424 } else { 9425 l2arc_evict(dev, 0, B_TRUE); 9426 /* start a new log block */ 9427 dev->l2ad_log_ent_idx = 0; 9428 dev->l2ad_log_blk_payload_asize = 0; 9429 dev->l2ad_log_blk_payload_start = 0; 9430 } 9431 } 9432 /* 9433 * Just mark the device as pending for a rebuild. We won't 9434 * be starting a rebuild in line here as it would block pool 9435 * import. Instead spa_load_impl will hand that off to an 9436 * async task which will call l2arc_spa_rebuild_start. 9437 */ 9438 dev->l2ad_rebuild = B_TRUE; 9439 } else if (spa_writeable(spa)) { 9440 /* 9441 * In this case TRIM the whole device if l2arc_trim_ahead > 0, 9442 * otherwise create a new header. We zero out the memory holding 9443 * the header to reset dh_start_lbps. If we TRIM the whole 9444 * device the new header will be written by 9445 * vdev_trim_l2arc_thread() at the end of the TRIM to update the 9446 * trim_state in the header too. When reading the header, if 9447 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0 9448 * we opt to TRIM the whole device again. 9449 */ 9450 if (l2arc_trim_ahead > 0) { 9451 dev->l2ad_trim_all = B_TRUE; 9452 } else { 9453 bzero(l2dhdr, l2dhdr_asize); 9454 l2arc_dev_hdr_update(dev); 9455 } 9456 } 9457 } 9458 9459 /* 9460 * Remove a vdev from the L2ARC. 9461 */ 9462 void 9463 l2arc_remove_vdev(vdev_t *vd) 9464 { 9465 l2arc_dev_t *remdev = NULL; 9466 9467 /* 9468 * Find the device by vdev 9469 */ 9470 remdev = l2arc_vdev_get(vd); 9471 ASSERT3P(remdev, !=, NULL); 9472 9473 /* 9474 * Cancel any ongoing or scheduled rebuild. 9475 */ 9476 mutex_enter(&l2arc_rebuild_thr_lock); 9477 if (remdev->l2ad_rebuild_began == B_TRUE) { 9478 remdev->l2ad_rebuild_cancel = B_TRUE; 9479 while (remdev->l2ad_rebuild == B_TRUE) 9480 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock); 9481 } 9482 mutex_exit(&l2arc_rebuild_thr_lock); 9483 9484 /* 9485 * Remove device from global list 9486 */ 9487 mutex_enter(&l2arc_dev_mtx); 9488 list_remove(l2arc_dev_list, remdev); 9489 l2arc_dev_last = NULL; /* may have been invalidated */ 9490 atomic_dec_64(&l2arc_ndev); 9491 mutex_exit(&l2arc_dev_mtx); 9492 9493 /* 9494 * Clear all buflists and ARC references. L2ARC device flush. 9495 */ 9496 l2arc_evict(remdev, 0, B_TRUE); 9497 list_destroy(&remdev->l2ad_buflist); 9498 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list)); 9499 list_destroy(&remdev->l2ad_lbptr_list); 9500 mutex_destroy(&remdev->l2ad_mtx); 9501 zfs_refcount_destroy(&remdev->l2ad_alloc); 9502 zfs_refcount_destroy(&remdev->l2ad_lb_asize); 9503 zfs_refcount_destroy(&remdev->l2ad_lb_count); 9504 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize); 9505 vmem_free(remdev, sizeof (l2arc_dev_t)); 9506 } 9507 9508 void 9509 l2arc_init(void) 9510 { 9511 l2arc_thread_exit = 0; 9512 l2arc_ndev = 0; 9513 l2arc_writes_sent = 0; 9514 l2arc_writes_done = 0; 9515 9516 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 9517 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 9518 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL); 9519 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL); 9520 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 9521 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 9522 9523 l2arc_dev_list = &L2ARC_dev_list; 9524 l2arc_free_on_write = &L2ARC_free_on_write; 9525 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 9526 offsetof(l2arc_dev_t, l2ad_node)); 9527 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 9528 offsetof(l2arc_data_free_t, l2df_list_node)); 9529 } 9530 9531 void 9532 l2arc_fini(void) 9533 { 9534 mutex_destroy(&l2arc_feed_thr_lock); 9535 cv_destroy(&l2arc_feed_thr_cv); 9536 mutex_destroy(&l2arc_rebuild_thr_lock); 9537 cv_destroy(&l2arc_rebuild_thr_cv); 9538 mutex_destroy(&l2arc_dev_mtx); 9539 mutex_destroy(&l2arc_free_on_write_mtx); 9540 9541 list_destroy(l2arc_dev_list); 9542 list_destroy(l2arc_free_on_write); 9543 } 9544 9545 void 9546 l2arc_start(void) 9547 { 9548 if (!(spa_mode_global & SPA_MODE_WRITE)) 9549 return; 9550 9551 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 9552 TS_RUN, defclsyspri); 9553 } 9554 9555 void 9556 l2arc_stop(void) 9557 { 9558 if (!(spa_mode_global & SPA_MODE_WRITE)) 9559 return; 9560 9561 mutex_enter(&l2arc_feed_thr_lock); 9562 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 9563 l2arc_thread_exit = 1; 9564 while (l2arc_thread_exit != 0) 9565 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 9566 mutex_exit(&l2arc_feed_thr_lock); 9567 } 9568 9569 /* 9570 * Punches out rebuild threads for the L2ARC devices in a spa. This should 9571 * be called after pool import from the spa async thread, since starting 9572 * these threads directly from spa_import() will make them part of the 9573 * "zpool import" context and delay process exit (and thus pool import). 9574 */ 9575 void 9576 l2arc_spa_rebuild_start(spa_t *spa) 9577 { 9578 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 9579 9580 /* 9581 * Locate the spa's l2arc devices and kick off rebuild threads. 9582 */ 9583 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 9584 l2arc_dev_t *dev = 9585 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]); 9586 if (dev == NULL) { 9587 /* Don't attempt a rebuild if the vdev is UNAVAIL */ 9588 continue; 9589 } 9590 mutex_enter(&l2arc_rebuild_thr_lock); 9591 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) { 9592 dev->l2ad_rebuild_began = B_TRUE; 9593 (void) thread_create(NULL, 0, l2arc_dev_rebuild_thread, 9594 dev, 0, &p0, TS_RUN, minclsyspri); 9595 } 9596 mutex_exit(&l2arc_rebuild_thr_lock); 9597 } 9598 } 9599 9600 /* 9601 * Main entry point for L2ARC rebuilding. 9602 */ 9603 static void 9604 l2arc_dev_rebuild_thread(void *arg) 9605 { 9606 l2arc_dev_t *dev = arg; 9607 9608 VERIFY(!dev->l2ad_rebuild_cancel); 9609 VERIFY(dev->l2ad_rebuild); 9610 (void) l2arc_rebuild(dev); 9611 mutex_enter(&l2arc_rebuild_thr_lock); 9612 dev->l2ad_rebuild_began = B_FALSE; 9613 dev->l2ad_rebuild = B_FALSE; 9614 mutex_exit(&l2arc_rebuild_thr_lock); 9615 9616 thread_exit(); 9617 } 9618 9619 /* 9620 * This function implements the actual L2ARC metadata rebuild. It: 9621 * starts reading the log block chain and restores each block's contents 9622 * to memory (reconstructing arc_buf_hdr_t's). 9623 * 9624 * Operation stops under any of the following conditions: 9625 * 9626 * 1) We reach the end of the log block chain. 9627 * 2) We encounter *any* error condition (cksum errors, io errors) 9628 */ 9629 static int 9630 l2arc_rebuild(l2arc_dev_t *dev) 9631 { 9632 vdev_t *vd = dev->l2ad_vdev; 9633 spa_t *spa = vd->vdev_spa; 9634 int err = 0; 9635 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9636 l2arc_log_blk_phys_t *this_lb, *next_lb; 9637 zio_t *this_io = NULL, *next_io = NULL; 9638 l2arc_log_blkptr_t lbps[2]; 9639 l2arc_lb_ptr_buf_t *lb_ptr_buf; 9640 boolean_t lock_held; 9641 9642 this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP); 9643 next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP); 9644 9645 /* 9646 * We prevent device removal while issuing reads to the device, 9647 * then during the rebuilding phases we drop this lock again so 9648 * that a spa_unload or device remove can be initiated - this is 9649 * safe, because the spa will signal us to stop before removing 9650 * our device and wait for us to stop. 9651 */ 9652 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER); 9653 lock_held = B_TRUE; 9654 9655 /* 9656 * Retrieve the persistent L2ARC device state. 9657 * L2BLK_GET_PSIZE returns aligned size for log blocks. 9658 */ 9659 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start); 9660 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr + 9661 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop), 9662 dev->l2ad_start); 9663 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 9664 9665 vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time; 9666 vd->vdev_trim_state = l2dhdr->dh_trim_state; 9667 9668 /* 9669 * In case the zfs module parameter l2arc_rebuild_enabled is false 9670 * we do not start the rebuild process. 9671 */ 9672 if (!l2arc_rebuild_enabled) 9673 goto out; 9674 9675 /* Prepare the rebuild process */ 9676 bcopy(l2dhdr->dh_start_lbps, lbps, sizeof (lbps)); 9677 9678 /* Start the rebuild process */ 9679 for (;;) { 9680 if (!l2arc_log_blkptr_valid(dev, &lbps[0])) 9681 break; 9682 9683 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1], 9684 this_lb, next_lb, this_io, &next_io)) != 0) 9685 goto out; 9686 9687 /* 9688 * Our memory pressure valve. If the system is running low 9689 * on memory, rather than swamping memory with new ARC buf 9690 * hdrs, we opt not to rebuild the L2ARC. At this point, 9691 * however, we have already set up our L2ARC dev to chain in 9692 * new metadata log blocks, so the user may choose to offline/ 9693 * online the L2ARC dev at a later time (or re-import the pool) 9694 * to reconstruct it (when there's less memory pressure). 9695 */ 9696 if (l2arc_hdr_limit_reached()) { 9697 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem); 9698 cmn_err(CE_NOTE, "System running low on memory, " 9699 "aborting L2ARC rebuild."); 9700 err = SET_ERROR(ENOMEM); 9701 goto out; 9702 } 9703 9704 spa_config_exit(spa, SCL_L2ARC, vd); 9705 lock_held = B_FALSE; 9706 9707 /* 9708 * Now that we know that the next_lb checks out alright, we 9709 * can start reconstruction from this log block. 9710 * L2BLK_GET_PSIZE returns aligned size for log blocks. 9711 */ 9712 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 9713 l2arc_log_blk_restore(dev, this_lb, asize, lbps[0].lbp_daddr); 9714 9715 /* 9716 * log block restored, include its pointer in the list of 9717 * pointers to log blocks present in the L2ARC device. 9718 */ 9719 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 9720 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), 9721 KM_SLEEP); 9722 bcopy(&lbps[0], lb_ptr_buf->lb_ptr, 9723 sizeof (l2arc_log_blkptr_t)); 9724 mutex_enter(&dev->l2ad_mtx); 9725 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf); 9726 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 9727 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 9728 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 9729 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 9730 mutex_exit(&dev->l2ad_mtx); 9731 vdev_space_update(vd, asize, 0, 0); 9732 9733 /* 9734 * Protection against loops of log blocks: 9735 * 9736 * l2ad_hand l2ad_evict 9737 * V V 9738 * l2ad_start |=======================================| l2ad_end 9739 * -----|||----|||---|||----||| 9740 * (3) (2) (1) (0) 9741 * ---|||---|||----|||---||| 9742 * (7) (6) (5) (4) 9743 * 9744 * In this situation the pointer of log block (4) passes 9745 * l2arc_log_blkptr_valid() but the log block should not be 9746 * restored as it is overwritten by the payload of log block 9747 * (0). Only log blocks (0)-(3) should be restored. We check 9748 * whether l2ad_evict lies in between the payload starting 9749 * offset of the next log block (lbps[1].lbp_payload_start) 9750 * and the payload starting offset of the present log block 9751 * (lbps[0].lbp_payload_start). If true and this isn't the 9752 * first pass, we are looping from the beginning and we should 9753 * stop. 9754 */ 9755 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 9756 lbps[0].lbp_payload_start, dev->l2ad_evict) && 9757 !dev->l2ad_first) 9758 goto out; 9759 9760 for (;;) { 9761 mutex_enter(&l2arc_rebuild_thr_lock); 9762 if (dev->l2ad_rebuild_cancel) { 9763 dev->l2ad_rebuild = B_FALSE; 9764 cv_signal(&l2arc_rebuild_thr_cv); 9765 mutex_exit(&l2arc_rebuild_thr_lock); 9766 err = SET_ERROR(ECANCELED); 9767 goto out; 9768 } 9769 mutex_exit(&l2arc_rebuild_thr_lock); 9770 if (spa_config_tryenter(spa, SCL_L2ARC, vd, 9771 RW_READER)) { 9772 lock_held = B_TRUE; 9773 break; 9774 } 9775 /* 9776 * L2ARC config lock held by somebody in writer, 9777 * possibly due to them trying to remove us. They'll 9778 * likely to want us to shut down, so after a little 9779 * delay, we check l2ad_rebuild_cancel and retry 9780 * the lock again. 9781 */ 9782 delay(1); 9783 } 9784 9785 /* 9786 * Continue with the next log block. 9787 */ 9788 lbps[0] = lbps[1]; 9789 lbps[1] = this_lb->lb_prev_lbp; 9790 PTR_SWAP(this_lb, next_lb); 9791 this_io = next_io; 9792 next_io = NULL; 9793 } 9794 9795 if (this_io != NULL) 9796 l2arc_log_blk_fetch_abort(this_io); 9797 out: 9798 if (next_io != NULL) 9799 l2arc_log_blk_fetch_abort(next_io); 9800 vmem_free(this_lb, sizeof (*this_lb)); 9801 vmem_free(next_lb, sizeof (*next_lb)); 9802 9803 if (!l2arc_rebuild_enabled) { 9804 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9805 "disabled"); 9806 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) { 9807 ARCSTAT_BUMP(arcstat_l2_rebuild_success); 9808 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9809 "successful, restored %llu blocks", 9810 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 9811 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) { 9812 /* 9813 * No error but also nothing restored, meaning the lbps array 9814 * in the device header points to invalid/non-present log 9815 * blocks. Reset the header. 9816 */ 9817 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9818 "no valid log blocks"); 9819 bzero(l2dhdr, dev->l2ad_dev_hdr_asize); 9820 l2arc_dev_hdr_update(dev); 9821 } else if (err == ECANCELED) { 9822 /* 9823 * In case the rebuild was canceled do not log to spa history 9824 * log as the pool may be in the process of being removed. 9825 */ 9826 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks", 9827 zfs_refcount_count(&dev->l2ad_lb_count)); 9828 } else if (err != 0) { 9829 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9830 "aborted, restored %llu blocks", 9831 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 9832 } 9833 9834 if (lock_held) 9835 spa_config_exit(spa, SCL_L2ARC, vd); 9836 9837 return (err); 9838 } 9839 9840 /* 9841 * Attempts to read the device header on the provided L2ARC device and writes 9842 * it to `hdr'. On success, this function returns 0, otherwise the appropriate 9843 * error code is returned. 9844 */ 9845 static int 9846 l2arc_dev_hdr_read(l2arc_dev_t *dev) 9847 { 9848 int err; 9849 uint64_t guid; 9850 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9851 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 9852 abd_t *abd; 9853 9854 guid = spa_guid(dev->l2ad_vdev->vdev_spa); 9855 9856 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 9857 9858 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev, 9859 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, 9860 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_ASYNC_READ, 9861 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 9862 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 9863 ZIO_FLAG_SPECULATIVE, B_FALSE)); 9864 9865 abd_put(abd); 9866 9867 if (err != 0) { 9868 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors); 9869 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, " 9870 "vdev guid: %llu", err, dev->l2ad_vdev->vdev_guid); 9871 return (err); 9872 } 9873 9874 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 9875 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr)); 9876 9877 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC || 9878 l2dhdr->dh_spa_guid != guid || 9879 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid || 9880 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION || 9881 l2dhdr->dh_log_entries != dev->l2ad_log_entries || 9882 l2dhdr->dh_end != dev->l2ad_end || 9883 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end, 9884 l2dhdr->dh_evict) || 9885 (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE && 9886 l2arc_trim_ahead > 0)) { 9887 /* 9888 * Attempt to rebuild a device containing no actual dev hdr 9889 * or containing a header from some other pool or from another 9890 * version of persistent L2ARC. 9891 */ 9892 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported); 9893 return (SET_ERROR(ENOTSUP)); 9894 } 9895 9896 return (0); 9897 } 9898 9899 /* 9900 * Reads L2ARC log blocks from storage and validates their contents. 9901 * 9902 * This function implements a simple fetcher to make sure that while 9903 * we're processing one buffer the L2ARC is already fetching the next 9904 * one in the chain. 9905 * 9906 * The arguments this_lp and next_lp point to the current and next log block 9907 * address in the block chain. Similarly, this_lb and next_lb hold the 9908 * l2arc_log_blk_phys_t's of the current and next L2ARC blk. 9909 * 9910 * The `this_io' and `next_io' arguments are used for block fetching. 9911 * When issuing the first blk IO during rebuild, you should pass NULL for 9912 * `this_io'. This function will then issue a sync IO to read the block and 9913 * also issue an async IO to fetch the next block in the block chain. The 9914 * fetched IO is returned in `next_io'. On subsequent calls to this 9915 * function, pass the value returned in `next_io' from the previous call 9916 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO. 9917 * Prior to the call, you should initialize your `next_io' pointer to be 9918 * NULL. If no fetch IO was issued, the pointer is left set at NULL. 9919 * 9920 * On success, this function returns 0, otherwise it returns an appropriate 9921 * error code. On error the fetching IO is aborted and cleared before 9922 * returning from this function. Therefore, if we return `success', the 9923 * caller can assume that we have taken care of cleanup of fetch IOs. 9924 */ 9925 static int 9926 l2arc_log_blk_read(l2arc_dev_t *dev, 9927 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp, 9928 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 9929 zio_t *this_io, zio_t **next_io) 9930 { 9931 int err = 0; 9932 zio_cksum_t cksum; 9933 abd_t *abd = NULL; 9934 uint64_t asize; 9935 9936 ASSERT(this_lbp != NULL && next_lbp != NULL); 9937 ASSERT(this_lb != NULL && next_lb != NULL); 9938 ASSERT(next_io != NULL && *next_io == NULL); 9939 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp)); 9940 9941 /* 9942 * Check to see if we have issued the IO for this log block in a 9943 * previous run. If not, this is the first call, so issue it now. 9944 */ 9945 if (this_io == NULL) { 9946 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp, 9947 this_lb); 9948 } 9949 9950 /* 9951 * Peek to see if we can start issuing the next IO immediately. 9952 */ 9953 if (l2arc_log_blkptr_valid(dev, next_lbp)) { 9954 /* 9955 * Start issuing IO for the next log block early - this 9956 * should help keep the L2ARC device busy while we 9957 * decompress and restore this log block. 9958 */ 9959 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp, 9960 next_lb); 9961 } 9962 9963 /* Wait for the IO to read this log block to complete */ 9964 if ((err = zio_wait(this_io)) != 0) { 9965 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors); 9966 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, " 9967 "offset: %llu, vdev guid: %llu", err, this_lbp->lbp_daddr, 9968 dev->l2ad_vdev->vdev_guid); 9969 goto cleanup; 9970 } 9971 9972 /* 9973 * Make sure the buffer checks out. 9974 * L2BLK_GET_PSIZE returns aligned size for log blocks. 9975 */ 9976 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop); 9977 fletcher_4_native(this_lb, asize, NULL, &cksum); 9978 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) { 9979 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors); 9980 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, " 9981 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu", 9982 this_lbp->lbp_daddr, dev->l2ad_vdev->vdev_guid, 9983 dev->l2ad_hand, dev->l2ad_evict); 9984 err = SET_ERROR(ECKSUM); 9985 goto cleanup; 9986 } 9987 9988 /* Now we can take our time decoding this buffer */ 9989 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) { 9990 case ZIO_COMPRESS_OFF: 9991 break; 9992 case ZIO_COMPRESS_LZ4: 9993 abd = abd_alloc_for_io(asize, B_TRUE); 9994 abd_copy_from_buf_off(abd, this_lb, 0, asize); 9995 if ((err = zio_decompress_data( 9996 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop), 9997 abd, this_lb, asize, sizeof (*this_lb), NULL)) != 0) { 9998 err = SET_ERROR(EINVAL); 9999 goto cleanup; 10000 } 10001 break; 10002 default: 10003 err = SET_ERROR(EINVAL); 10004 goto cleanup; 10005 } 10006 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 10007 byteswap_uint64_array(this_lb, sizeof (*this_lb)); 10008 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) { 10009 err = SET_ERROR(EINVAL); 10010 goto cleanup; 10011 } 10012 cleanup: 10013 /* Abort an in-flight fetch I/O in case of error */ 10014 if (err != 0 && *next_io != NULL) { 10015 l2arc_log_blk_fetch_abort(*next_io); 10016 *next_io = NULL; 10017 } 10018 if (abd != NULL) 10019 abd_free(abd); 10020 return (err); 10021 } 10022 10023 /* 10024 * Restores the payload of a log block to ARC. This creates empty ARC hdr 10025 * entries which only contain an l2arc hdr, essentially restoring the 10026 * buffers to their L2ARC evicted state. This function also updates space 10027 * usage on the L2ARC vdev to make sure it tracks restored buffers. 10028 */ 10029 static void 10030 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb, 10031 uint64_t lb_asize, uint64_t lb_daddr) 10032 { 10033 uint64_t size = 0, asize = 0; 10034 uint64_t log_entries = dev->l2ad_log_entries; 10035 10036 /* 10037 * Usually arc_adapt() is called only for data, not headers, but 10038 * since we may allocate significant amount of memory here, let ARC 10039 * grow its arc_c. 10040 */ 10041 arc_adapt(log_entries * HDR_L2ONLY_SIZE, arc_l2c_only); 10042 10043 for (int i = log_entries - 1; i >= 0; i--) { 10044 /* 10045 * Restore goes in the reverse temporal direction to preserve 10046 * correct temporal ordering of buffers in the l2ad_buflist. 10047 * l2arc_hdr_restore also does a list_insert_tail instead of 10048 * list_insert_head on the l2ad_buflist: 10049 * 10050 * LIST l2ad_buflist LIST 10051 * HEAD <------ (time) ------ TAIL 10052 * direction +-----+-----+-----+-----+-----+ direction 10053 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild 10054 * fill +-----+-----+-----+-----+-----+ 10055 * ^ ^ 10056 * | | 10057 * | | 10058 * l2arc_feed_thread l2arc_rebuild 10059 * will place new bufs here restores bufs here 10060 * 10061 * During l2arc_rebuild() the device is not used by 10062 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true. 10063 */ 10064 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop); 10065 asize += vdev_psize_to_asize(dev->l2ad_vdev, 10066 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop)); 10067 l2arc_hdr_restore(&lb->lb_entries[i], dev); 10068 } 10069 10070 /* 10071 * Record rebuild stats: 10072 * size Logical size of restored buffers in the L2ARC 10073 * asize Aligned size of restored buffers in the L2ARC 10074 */ 10075 ARCSTAT_INCR(arcstat_l2_rebuild_size, size); 10076 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize); 10077 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries); 10078 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize); 10079 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize); 10080 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks); 10081 } 10082 10083 /* 10084 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put 10085 * into a state indicating that it has been evicted to L2ARC. 10086 */ 10087 static void 10088 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev) 10089 { 10090 arc_buf_hdr_t *hdr, *exists; 10091 kmutex_t *hash_lock; 10092 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop); 10093 uint64_t asize; 10094 10095 /* 10096 * Do all the allocation before grabbing any locks, this lets us 10097 * sleep if memory is full and we don't have to deal with failed 10098 * allocations. 10099 */ 10100 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type, 10101 dev, le->le_dva, le->le_daddr, 10102 L2BLK_GET_PSIZE((le)->le_prop), le->le_birth, 10103 L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel, 10104 L2BLK_GET_PROTECTED((le)->le_prop), 10105 L2BLK_GET_PREFETCH((le)->le_prop)); 10106 asize = vdev_psize_to_asize(dev->l2ad_vdev, 10107 L2BLK_GET_PSIZE((le)->le_prop)); 10108 10109 /* 10110 * vdev_space_update() has to be called before arc_hdr_destroy() to 10111 * avoid underflow since the latter also calls the former. 10112 */ 10113 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10114 10115 ARCSTAT_INCR(arcstat_l2_lsize, HDR_GET_LSIZE(hdr)); 10116 ARCSTAT_INCR(arcstat_l2_psize, HDR_GET_PSIZE(hdr)); 10117 10118 mutex_enter(&dev->l2ad_mtx); 10119 list_insert_tail(&dev->l2ad_buflist, hdr); 10120 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); 10121 mutex_exit(&dev->l2ad_mtx); 10122 10123 exists = buf_hash_insert(hdr, &hash_lock); 10124 if (exists) { 10125 /* Buffer was already cached, no need to restore it. */ 10126 arc_hdr_destroy(hdr); 10127 /* 10128 * If the buffer is already cached, check whether it has 10129 * L2ARC metadata. If not, enter them and update the flag. 10130 * This is important is case of onlining a cache device, since 10131 * we previously evicted all L2ARC metadata from ARC. 10132 */ 10133 if (!HDR_HAS_L2HDR(exists)) { 10134 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR); 10135 exists->b_l2hdr.b_dev = dev; 10136 exists->b_l2hdr.b_daddr = le->le_daddr; 10137 mutex_enter(&dev->l2ad_mtx); 10138 list_insert_tail(&dev->l2ad_buflist, exists); 10139 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 10140 arc_hdr_size(exists), exists); 10141 mutex_exit(&dev->l2ad_mtx); 10142 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10143 ARCSTAT_INCR(arcstat_l2_lsize, HDR_GET_LSIZE(exists)); 10144 ARCSTAT_INCR(arcstat_l2_psize, HDR_GET_PSIZE(exists)); 10145 } 10146 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached); 10147 } 10148 10149 mutex_exit(hash_lock); 10150 } 10151 10152 /* 10153 * Starts an asynchronous read IO to read a log block. This is used in log 10154 * block reconstruction to start reading the next block before we are done 10155 * decoding and reconstructing the current block, to keep the l2arc device 10156 * nice and hot with read IO to process. 10157 * The returned zio will contain a newly allocated memory buffers for the IO 10158 * data which should then be freed by the caller once the zio is no longer 10159 * needed (i.e. due to it having completed). If you wish to abort this 10160 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes 10161 * care of disposing of the allocated buffers correctly. 10162 */ 10163 static zio_t * 10164 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp, 10165 l2arc_log_blk_phys_t *lb) 10166 { 10167 uint32_t asize; 10168 zio_t *pio; 10169 l2arc_read_callback_t *cb; 10170 10171 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10172 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10173 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t)); 10174 10175 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP); 10176 cb->l2rcb_abd = abd_get_from_buf(lb, asize); 10177 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb, 10178 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | 10179 ZIO_FLAG_DONT_RETRY); 10180 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize, 10181 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10182 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 10183 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE)); 10184 10185 return (pio); 10186 } 10187 10188 /* 10189 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data 10190 * buffers allocated for it. 10191 */ 10192 static void 10193 l2arc_log_blk_fetch_abort(zio_t *zio) 10194 { 10195 (void) zio_wait(zio); 10196 } 10197 10198 /* 10199 * Creates a zio to update the device header on an l2arc device. 10200 */ 10201 void 10202 l2arc_dev_hdr_update(l2arc_dev_t *dev) 10203 { 10204 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10205 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10206 abd_t *abd; 10207 int err; 10208 10209 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER)); 10210 10211 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC; 10212 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION; 10213 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10214 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid; 10215 l2dhdr->dh_log_entries = dev->l2ad_log_entries; 10216 l2dhdr->dh_evict = dev->l2ad_evict; 10217 l2dhdr->dh_start = dev->l2ad_start; 10218 l2dhdr->dh_end = dev->l2ad_end; 10219 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize); 10220 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count); 10221 l2dhdr->dh_flags = 0; 10222 l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time; 10223 l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state; 10224 if (dev->l2ad_first) 10225 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST; 10226 10227 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10228 10229 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev, 10230 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL, 10231 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE)); 10232 10233 abd_put(abd); 10234 10235 if (err != 0) { 10236 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, " 10237 "vdev guid: %llu", err, dev->l2ad_vdev->vdev_guid); 10238 } 10239 } 10240 10241 /* 10242 * Commits a log block to the L2ARC device. This routine is invoked from 10243 * l2arc_write_buffers when the log block fills up. 10244 * This function allocates some memory to temporarily hold the serialized 10245 * buffer to be written. This is then released in l2arc_write_done. 10246 */ 10247 static void 10248 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb) 10249 { 10250 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10251 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10252 uint64_t psize, asize; 10253 zio_t *wzio; 10254 l2arc_lb_abd_buf_t *abd_buf; 10255 uint8_t *tmpbuf; 10256 l2arc_lb_ptr_buf_t *lb_ptr_buf; 10257 10258 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries); 10259 10260 tmpbuf = zio_buf_alloc(sizeof (*lb)); 10261 abd_buf = zio_buf_alloc(sizeof (*abd_buf)); 10262 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb)); 10263 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 10264 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP); 10265 10266 /* link the buffer into the block chain */ 10267 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1]; 10268 lb->lb_magic = L2ARC_LOG_BLK_MAGIC; 10269 10270 /* 10271 * l2arc_log_blk_commit() may be called multiple times during a single 10272 * l2arc_write_buffers() call. Save the allocated abd buffers in a list 10273 * so we can free them in l2arc_write_done() later on. 10274 */ 10275 list_insert_tail(&cb->l2wcb_abd_list, abd_buf); 10276 10277 /* try to compress the buffer */ 10278 psize = zio_compress_data(ZIO_COMPRESS_LZ4, 10279 abd_buf->abd, tmpbuf, sizeof (*lb), 0); 10280 10281 /* a log block is never entirely zero */ 10282 ASSERT(psize != 0); 10283 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 10284 ASSERT(asize <= sizeof (*lb)); 10285 10286 /* 10287 * Update the start log block pointer in the device header to point 10288 * to the log block we're about to write. 10289 */ 10290 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0]; 10291 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand; 10292 l2dhdr->dh_start_lbps[0].lbp_payload_asize = 10293 dev->l2ad_log_blk_payload_asize; 10294 l2dhdr->dh_start_lbps[0].lbp_payload_start = 10295 dev->l2ad_log_blk_payload_start; 10296 _NOTE(CONSTCOND) 10297 L2BLK_SET_LSIZE( 10298 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb)); 10299 L2BLK_SET_PSIZE( 10300 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize); 10301 L2BLK_SET_CHECKSUM( 10302 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10303 ZIO_CHECKSUM_FLETCHER_4); 10304 if (asize < sizeof (*lb)) { 10305 /* compression succeeded */ 10306 bzero(tmpbuf + psize, asize - psize); 10307 L2BLK_SET_COMPRESS( 10308 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10309 ZIO_COMPRESS_LZ4); 10310 } else { 10311 /* compression failed */ 10312 bcopy(lb, tmpbuf, sizeof (*lb)); 10313 L2BLK_SET_COMPRESS( 10314 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10315 ZIO_COMPRESS_OFF); 10316 } 10317 10318 /* checksum what we're about to write */ 10319 fletcher_4_native(tmpbuf, asize, NULL, 10320 &l2dhdr->dh_start_lbps[0].lbp_cksum); 10321 10322 abd_put(abd_buf->abd); 10323 10324 /* perform the write itself */ 10325 abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb)); 10326 abd_take_ownership_of_buf(abd_buf->abd, B_TRUE); 10327 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand, 10328 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10329 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE); 10330 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio); 10331 (void) zio_nowait(wzio); 10332 10333 dev->l2ad_hand += asize; 10334 /* 10335 * Include the committed log block's pointer in the list of pointers 10336 * to log blocks present in the L2ARC device. 10337 */ 10338 bcopy(&l2dhdr->dh_start_lbps[0], lb_ptr_buf->lb_ptr, 10339 sizeof (l2arc_log_blkptr_t)); 10340 mutex_enter(&dev->l2ad_mtx); 10341 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf); 10342 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 10343 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 10344 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 10345 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 10346 mutex_exit(&dev->l2ad_mtx); 10347 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10348 10349 /* bump the kstats */ 10350 ARCSTAT_INCR(arcstat_l2_write_bytes, asize); 10351 ARCSTAT_BUMP(arcstat_l2_log_blk_writes); 10352 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize); 10353 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, 10354 dev->l2ad_log_blk_payload_asize / asize); 10355 10356 /* start a new log block */ 10357 dev->l2ad_log_ent_idx = 0; 10358 dev->l2ad_log_blk_payload_asize = 0; 10359 dev->l2ad_log_blk_payload_start = 0; 10360 } 10361 10362 /* 10363 * Validates an L2ARC log block address to make sure that it can be read 10364 * from the provided L2ARC device. 10365 */ 10366 boolean_t 10367 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp) 10368 { 10369 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10370 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10371 uint64_t end = lbp->lbp_daddr + asize - 1; 10372 uint64_t start = lbp->lbp_payload_start; 10373 boolean_t evicted = B_FALSE; 10374 10375 /* 10376 * A log block is valid if all of the following conditions are true: 10377 * - it fits entirely (including its payload) between l2ad_start and 10378 * l2ad_end 10379 * - it has a valid size 10380 * - neither the log block itself nor part of its payload was evicted 10381 * by l2arc_evict(): 10382 * 10383 * l2ad_hand l2ad_evict 10384 * | | lbp_daddr 10385 * | start | | end 10386 * | | | | | 10387 * V V V V V 10388 * l2ad_start ============================================ l2ad_end 10389 * --------------------------|||| 10390 * ^ ^ 10391 * | log block 10392 * payload 10393 */ 10394 10395 evicted = 10396 l2arc_range_check_overlap(start, end, dev->l2ad_hand) || 10397 l2arc_range_check_overlap(start, end, dev->l2ad_evict) || 10398 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) || 10399 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end); 10400 10401 return (start >= dev->l2ad_start && end <= dev->l2ad_end && 10402 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) && 10403 (!evicted || dev->l2ad_first)); 10404 } 10405 10406 /* 10407 * Inserts ARC buffer header `hdr' into the current L2ARC log block on 10408 * the device. The buffer being inserted must be present in L2ARC. 10409 * Returns B_TRUE if the L2ARC log block is full and needs to be committed 10410 * to L2ARC, or B_FALSE if it still has room for more ARC buffers. 10411 */ 10412 static boolean_t 10413 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr) 10414 { 10415 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10416 l2arc_log_ent_phys_t *le; 10417 10418 if (dev->l2ad_log_entries == 0) 10419 return (B_FALSE); 10420 10421 int index = dev->l2ad_log_ent_idx++; 10422 10423 ASSERT3S(index, <, dev->l2ad_log_entries); 10424 ASSERT(HDR_HAS_L2HDR(hdr)); 10425 10426 le = &lb->lb_entries[index]; 10427 bzero(le, sizeof (*le)); 10428 le->le_dva = hdr->b_dva; 10429 le->le_birth = hdr->b_birth; 10430 le->le_daddr = hdr->b_l2hdr.b_daddr; 10431 if (index == 0) 10432 dev->l2ad_log_blk_payload_start = le->le_daddr; 10433 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr)); 10434 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr)); 10435 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr)); 10436 le->le_complevel = hdr->b_complevel; 10437 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type); 10438 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr))); 10439 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr))); 10440 10441 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev, 10442 HDR_GET_PSIZE(hdr)); 10443 10444 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries); 10445 } 10446 10447 /* 10448 * Checks whether a given L2ARC device address sits in a time-sequential 10449 * range. The trick here is that the L2ARC is a rotary buffer, so we can't 10450 * just do a range comparison, we need to handle the situation in which the 10451 * range wraps around the end of the L2ARC device. Arguments: 10452 * bottom -- Lower end of the range to check (written to earlier). 10453 * top -- Upper end of the range to check (written to later). 10454 * check -- The address for which we want to determine if it sits in 10455 * between the top and bottom. 10456 * 10457 * The 3-way conditional below represents the following cases: 10458 * 10459 * bottom < top : Sequentially ordered case: 10460 * <check>--------+-------------------+ 10461 * | (overlap here?) | 10462 * L2ARC dev V V 10463 * |---------------<bottom>============<top>--------------| 10464 * 10465 * bottom > top: Looped-around case: 10466 * <check>--------+------------------+ 10467 * | (overlap here?) | 10468 * L2ARC dev V V 10469 * |===============<top>---------------<bottom>===========| 10470 * ^ ^ 10471 * | (or here?) | 10472 * +---------------+---------<check> 10473 * 10474 * top == bottom : Just a single address comparison. 10475 */ 10476 boolean_t 10477 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check) 10478 { 10479 if (bottom < top) 10480 return (bottom <= check && check <= top); 10481 else if (bottom > top) 10482 return (check <= top || bottom <= check); 10483 else 10484 return (check == top); 10485 } 10486 10487 EXPORT_SYMBOL(arc_buf_size); 10488 EXPORT_SYMBOL(arc_write); 10489 EXPORT_SYMBOL(arc_read); 10490 EXPORT_SYMBOL(arc_buf_info); 10491 EXPORT_SYMBOL(arc_getbuf_func); 10492 EXPORT_SYMBOL(arc_add_prune_callback); 10493 EXPORT_SYMBOL(arc_remove_prune_callback); 10494 10495 /* BEGIN CSTYLED */ 10496 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_long, 10497 param_get_long, ZMOD_RW, "Min arc size"); 10498 10499 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_long, 10500 param_get_long, ZMOD_RW, "Max arc size"); 10501 10502 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit, param_set_arc_long, 10503 param_get_long, ZMOD_RW, "Metadata limit for arc size"); 10504 10505 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit_percent, 10506 param_set_arc_long, param_get_long, ZMOD_RW, 10507 "Percent of arc size for arc meta limit"); 10508 10509 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_min, param_set_arc_long, 10510 param_get_long, ZMOD_RW, "Min arc metadata"); 10511 10512 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_prune, INT, ZMOD_RW, 10513 "Meta objects to scan for prune"); 10514 10515 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_adjust_restarts, INT, ZMOD_RW, 10516 "Limit number of restarts in arc_evict_meta"); 10517 10518 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_strategy, INT, ZMOD_RW, 10519 "Meta reclaim strategy"); 10520 10521 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int, 10522 param_get_int, ZMOD_RW, "Seconds before growing arc size"); 10523 10524 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, p_dampener_disable, INT, ZMOD_RW, 10525 "Disable arc_p adapt dampener"); 10526 10527 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int, 10528 param_get_int, ZMOD_RW, "log2(fraction of arc to reclaim)"); 10529 10530 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW, 10531 "Percent of pagecache to reclaim arc to"); 10532 10533 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, p_min_shift, param_set_arc_int, 10534 param_get_int, ZMOD_RW, "arc_c shift to calc min/max arc_p"); 10535 10536 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, INT, ZMOD_RD, 10537 "Target average block size"); 10538 10539 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW, 10540 "Disable compressed arc buffers"); 10541 10542 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int, 10543 param_get_int, ZMOD_RW, "Min life of prefetch block in ms"); 10544 10545 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms, 10546 param_set_arc_int, param_get_int, ZMOD_RW, 10547 "Min life of prescient prefetched block in ms"); 10548 10549 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, ULONG, ZMOD_RW, 10550 "Max write bytes per interval"); 10551 10552 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, ULONG, ZMOD_RW, 10553 "Extra write bytes during device warmup"); 10554 10555 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, ULONG, ZMOD_RW, 10556 "Number of max device writes to precache"); 10557 10558 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, ULONG, ZMOD_RW, 10559 "Compressed l2arc_headroom multiplier"); 10560 10561 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, ULONG, ZMOD_RW, 10562 "TRIM ahead L2ARC write size multiplier"); 10563 10564 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, ULONG, ZMOD_RW, 10565 "Seconds between L2ARC writing"); 10566 10567 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, ULONG, ZMOD_RW, 10568 "Min feed interval in milliseconds"); 10569 10570 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW, 10571 "Skip caching prefetched buffers"); 10572 10573 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW, 10574 "Turbo L2ARC warmup"); 10575 10576 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW, 10577 "No reads during writes"); 10578 10579 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, INT, ZMOD_RW, 10580 "Percent of ARC size allowed for L2ARC-only headers"); 10581 10582 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW, 10583 "Rebuild the L2ARC when importing a pool"); 10584 10585 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, ULONG, ZMOD_RW, 10586 "Min size in bytes to write rebuild log blocks in L2ARC"); 10587 10588 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW, 10589 "Cache only MFU data from ARC into L2ARC"); 10590 10591 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int, 10592 param_get_int, ZMOD_RW, "System free memory I/O throttle in bytes"); 10593 10594 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_long, 10595 param_get_long, ZMOD_RW, "System free memory target size in bytes"); 10596 10597 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_long, 10598 param_get_long, ZMOD_RW, "Minimum bytes of dnodes in arc"); 10599 10600 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent, 10601 param_set_arc_long, param_get_long, ZMOD_RW, 10602 "Percent of ARC meta buffers for dnodes"); 10603 10604 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, ULONG, ZMOD_RW, 10605 "Percentage of excess dnodes to try to unpin"); 10606 10607 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, INT, ZMOD_RW, 10608 "When full, ARC allocation waits for eviction of this % of alloc size"); 10609 /* END CSTYLED */ 10610