1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2018, Joyent, Inc. 24 * Copyright (c) 2011, 2020, Delphix. All rights reserved. 25 * Copyright (c) 2014, Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 28 * Copyright (c) 2020, George Amanakis. All rights reserved. 29 * Copyright (c) 2019, Klara Inc. 30 * Copyright (c) 2019, Allan Jude 31 * Copyright (c) 2020, The FreeBSD Foundation [1] 32 * 33 * [1] Portions of this software were developed by Allan Jude 34 * under sponsorship from the FreeBSD Foundation. 35 */ 36 37 /* 38 * DVA-based Adjustable Replacement Cache 39 * 40 * While much of the theory of operation used here is 41 * based on the self-tuning, low overhead replacement cache 42 * presented by Megiddo and Modha at FAST 2003, there are some 43 * significant differences: 44 * 45 * 1. The Megiddo and Modha model assumes any page is evictable. 46 * Pages in its cache cannot be "locked" into memory. This makes 47 * the eviction algorithm simple: evict the last page in the list. 48 * This also make the performance characteristics easy to reason 49 * about. Our cache is not so simple. At any given moment, some 50 * subset of the blocks in the cache are un-evictable because we 51 * have handed out a reference to them. Blocks are only evictable 52 * when there are no external references active. This makes 53 * eviction far more problematic: we choose to evict the evictable 54 * blocks that are the "lowest" in the list. 55 * 56 * There are times when it is not possible to evict the requested 57 * space. In these circumstances we are unable to adjust the cache 58 * size. To prevent the cache growing unbounded at these times we 59 * implement a "cache throttle" that slows the flow of new data 60 * into the cache until we can make space available. 61 * 62 * 2. The Megiddo and Modha model assumes a fixed cache size. 63 * Pages are evicted when the cache is full and there is a cache 64 * miss. Our model has a variable sized cache. It grows with 65 * high use, but also tries to react to memory pressure from the 66 * operating system: decreasing its size when system memory is 67 * tight. 68 * 69 * 3. The Megiddo and Modha model assumes a fixed page size. All 70 * elements of the cache are therefore exactly the same size. So 71 * when adjusting the cache size following a cache miss, its simply 72 * a matter of choosing a single page to evict. In our model, we 73 * have variable sized cache blocks (ranging from 512 bytes to 74 * 128K bytes). We therefore choose a set of blocks to evict to make 75 * space for a cache miss that approximates as closely as possible 76 * the space used by the new block. 77 * 78 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 79 * by N. Megiddo & D. Modha, FAST 2003 80 */ 81 82 /* 83 * The locking model: 84 * 85 * A new reference to a cache buffer can be obtained in two 86 * ways: 1) via a hash table lookup using the DVA as a key, 87 * or 2) via one of the ARC lists. The arc_read() interface 88 * uses method 1, while the internal ARC algorithms for 89 * adjusting the cache use method 2. We therefore provide two 90 * types of locks: 1) the hash table lock array, and 2) the 91 * ARC list locks. 92 * 93 * Buffers do not have their own mutexes, rather they rely on the 94 * hash table mutexes for the bulk of their protection (i.e. most 95 * fields in the arc_buf_hdr_t are protected by these mutexes). 96 * 97 * buf_hash_find() returns the appropriate mutex (held) when it 98 * locates the requested buffer in the hash table. It returns 99 * NULL for the mutex if the buffer was not in the table. 100 * 101 * buf_hash_remove() expects the appropriate hash mutex to be 102 * already held before it is invoked. 103 * 104 * Each ARC state also has a mutex which is used to protect the 105 * buffer list associated with the state. When attempting to 106 * obtain a hash table lock while holding an ARC list lock you 107 * must use: mutex_tryenter() to avoid deadlock. Also note that 108 * the active state mutex must be held before the ghost state mutex. 109 * 110 * It as also possible to register a callback which is run when the 111 * arc_meta_limit is reached and no buffers can be safely evicted. In 112 * this case the arc user should drop a reference on some arc buffers so 113 * they can be reclaimed and the arc_meta_limit honored. For example, 114 * when using the ZPL each dentry holds a references on a znode. These 115 * dentries must be pruned before the arc buffer holding the znode can 116 * be safely evicted. 117 * 118 * Note that the majority of the performance stats are manipulated 119 * with atomic operations. 120 * 121 * The L2ARC uses the l2ad_mtx on each vdev for the following: 122 * 123 * - L2ARC buflist creation 124 * - L2ARC buflist eviction 125 * - L2ARC write completion, which walks L2ARC buflists 126 * - ARC header destruction, as it removes from L2ARC buflists 127 * - ARC header release, as it removes from L2ARC buflists 128 */ 129 130 /* 131 * ARC operation: 132 * 133 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. 134 * This structure can point either to a block that is still in the cache or to 135 * one that is only accessible in an L2 ARC device, or it can provide 136 * information about a block that was recently evicted. If a block is 137 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough 138 * information to retrieve it from the L2ARC device. This information is 139 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block 140 * that is in this state cannot access the data directly. 141 * 142 * Blocks that are actively being referenced or have not been evicted 143 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within 144 * the arc_buf_hdr_t that will point to the data block in memory. A block can 145 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC 146 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and 147 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd). 148 * 149 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the 150 * ability to store the physical data (b_pabd) associated with the DVA of the 151 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block, 152 * it will match its on-disk compression characteristics. This behavior can be 153 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the 154 * compressed ARC functionality is disabled, the b_pabd will point to an 155 * uncompressed version of the on-disk data. 156 * 157 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each 158 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it. 159 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC 160 * consumer. The ARC will provide references to this data and will keep it 161 * cached until it is no longer in use. The ARC caches only the L1ARC's physical 162 * data block and will evict any arc_buf_t that is no longer referenced. The 163 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the 164 * "overhead_size" kstat. 165 * 166 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or 167 * compressed form. The typical case is that consumers will want uncompressed 168 * data, and when that happens a new data buffer is allocated where the data is 169 * decompressed for them to use. Currently the only consumer who wants 170 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it 171 * exists on disk. When this happens, the arc_buf_t's data buffer is shared 172 * with the arc_buf_hdr_t. 173 * 174 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The 175 * first one is owned by a compressed send consumer (and therefore references 176 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be 177 * used by any other consumer (and has its own uncompressed copy of the data 178 * buffer). 179 * 180 * arc_buf_hdr_t 181 * +-----------+ 182 * | fields | 183 * | common to | 184 * | L1- and | 185 * | L2ARC | 186 * +-----------+ 187 * | l2arc_buf_hdr_t 188 * | | 189 * +-----------+ 190 * | l1arc_buf_hdr_t 191 * | | arc_buf_t 192 * | b_buf +------------>+-----------+ arc_buf_t 193 * | b_pabd +-+ |b_next +---->+-----------+ 194 * +-----------+ | |-----------| |b_next +-->NULL 195 * | |b_comp = T | +-----------+ 196 * | |b_data +-+ |b_comp = F | 197 * | +-----------+ | |b_data +-+ 198 * +->+------+ | +-----------+ | 199 * compressed | | | | 200 * data | |<--------------+ | uncompressed 201 * +------+ compressed, | data 202 * shared +-->+------+ 203 * data | | 204 * | | 205 * +------+ 206 * 207 * When a consumer reads a block, the ARC must first look to see if the 208 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new 209 * arc_buf_t and either copies uncompressed data into a new data buffer from an 210 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a 211 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the 212 * hdr is compressed and the desired compression characteristics of the 213 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the 214 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be 215 * the last buffer in the hdr's b_buf list, however a shared compressed buf can 216 * be anywhere in the hdr's list. 217 * 218 * The diagram below shows an example of an uncompressed ARC hdr that is 219 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is 220 * the last element in the buf list): 221 * 222 * arc_buf_hdr_t 223 * +-----------+ 224 * | | 225 * | | 226 * | | 227 * +-----------+ 228 * l2arc_buf_hdr_t| | 229 * | | 230 * +-----------+ 231 * l1arc_buf_hdr_t| | 232 * | | arc_buf_t (shared) 233 * | b_buf +------------>+---------+ arc_buf_t 234 * | | |b_next +---->+---------+ 235 * | b_pabd +-+ |---------| |b_next +-->NULL 236 * +-----------+ | | | +---------+ 237 * | |b_data +-+ | | 238 * | +---------+ | |b_data +-+ 239 * +->+------+ | +---------+ | 240 * | | | | 241 * uncompressed | | | | 242 * data +------+ | | 243 * ^ +->+------+ | 244 * | uncompressed | | | 245 * | data | | | 246 * | +------+ | 247 * +---------------------------------+ 248 * 249 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd 250 * since the physical block is about to be rewritten. The new data contents 251 * will be contained in the arc_buf_t. As the I/O pipeline performs the write, 252 * it may compress the data before writing it to disk. The ARC will be called 253 * with the transformed data and will bcopy the transformed on-disk block into 254 * a newly allocated b_pabd. Writes are always done into buffers which have 255 * either been loaned (and hence are new and don't have other readers) or 256 * buffers which have been released (and hence have their own hdr, if there 257 * were originally other readers of the buf's original hdr). This ensures that 258 * the ARC only needs to update a single buf and its hdr after a write occurs. 259 * 260 * When the L2ARC is in use, it will also take advantage of the b_pabd. The 261 * L2ARC will always write the contents of b_pabd to the L2ARC. This means 262 * that when compressed ARC is enabled that the L2ARC blocks are identical 263 * to the on-disk block in the main data pool. This provides a significant 264 * advantage since the ARC can leverage the bp's checksum when reading from the 265 * L2ARC to determine if the contents are valid. However, if the compressed 266 * ARC is disabled, then the L2ARC's block must be transformed to look 267 * like the physical block in the main data pool before comparing the 268 * checksum and determining its validity. 269 * 270 * The L1ARC has a slightly different system for storing encrypted data. 271 * Raw (encrypted + possibly compressed) data has a few subtle differences from 272 * data that is just compressed. The biggest difference is that it is not 273 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded. 274 * The other difference is that encryption cannot be treated as a suggestion. 275 * If a caller would prefer compressed data, but they actually wind up with 276 * uncompressed data the worst thing that could happen is there might be a 277 * performance hit. If the caller requests encrypted data, however, we must be 278 * sure they actually get it or else secret information could be leaked. Raw 279 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore, 280 * may have both an encrypted version and a decrypted version of its data at 281 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is 282 * copied out of this header. To avoid complications with b_pabd, raw buffers 283 * cannot be shared. 284 */ 285 286 #include <sys/spa.h> 287 #include <sys/zio.h> 288 #include <sys/spa_impl.h> 289 #include <sys/zio_compress.h> 290 #include <sys/zio_checksum.h> 291 #include <sys/zfs_context.h> 292 #include <sys/arc.h> 293 #include <sys/zfs_refcount.h> 294 #include <sys/vdev.h> 295 #include <sys/vdev_impl.h> 296 #include <sys/dsl_pool.h> 297 #include <sys/multilist.h> 298 #include <sys/abd.h> 299 #include <sys/zil.h> 300 #include <sys/fm/fs/zfs.h> 301 #include <sys/callb.h> 302 #include <sys/kstat.h> 303 #include <sys/zthr.h> 304 #include <zfs_fletcher.h> 305 #include <sys/arc_impl.h> 306 #include <sys/trace_zfs.h> 307 #include <sys/aggsum.h> 308 #include <sys/wmsum.h> 309 #include <cityhash.h> 310 #include <sys/vdev_trim.h> 311 #include <sys/zfs_racct.h> 312 #include <sys/zstd/zstd.h> 313 314 #ifndef _KERNEL 315 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 316 boolean_t arc_watch = B_FALSE; 317 #endif 318 319 /* 320 * This thread's job is to keep enough free memory in the system, by 321 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves 322 * arc_available_memory(). 323 */ 324 static zthr_t *arc_reap_zthr; 325 326 /* 327 * This thread's job is to keep arc_size under arc_c, by calling 328 * arc_evict(), which improves arc_is_overflowing(). 329 */ 330 static zthr_t *arc_evict_zthr; 331 332 static kmutex_t arc_evict_lock; 333 static boolean_t arc_evict_needed = B_FALSE; 334 335 /* 336 * Count of bytes evicted since boot. 337 */ 338 static uint64_t arc_evict_count; 339 340 /* 341 * List of arc_evict_waiter_t's, representing threads waiting for the 342 * arc_evict_count to reach specific values. 343 */ 344 static list_t arc_evict_waiters; 345 346 /* 347 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of 348 * the requested amount of data to be evicted. For example, by default for 349 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation. 350 * Since this is above 100%, it ensures that progress is made towards getting 351 * arc_size under arc_c. Since this is finite, it ensures that allocations 352 * can still happen, even during the potentially long time that arc_size is 353 * more than arc_c. 354 */ 355 int zfs_arc_eviction_pct = 200; 356 357 /* 358 * The number of headers to evict in arc_evict_state_impl() before 359 * dropping the sublist lock and evicting from another sublist. A lower 360 * value means we're more likely to evict the "correct" header (i.e. the 361 * oldest header in the arc state), but comes with higher overhead 362 * (i.e. more invocations of arc_evict_state_impl()). 363 */ 364 int zfs_arc_evict_batch_limit = 10; 365 366 /* number of seconds before growing cache again */ 367 int arc_grow_retry = 5; 368 369 /* 370 * Minimum time between calls to arc_kmem_reap_soon(). 371 */ 372 int arc_kmem_cache_reap_retry_ms = 1000; 373 374 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */ 375 int zfs_arc_overflow_shift = 8; 376 377 /* shift of arc_c for calculating both min and max arc_p */ 378 int arc_p_min_shift = 4; 379 380 /* log2(fraction of arc to reclaim) */ 381 int arc_shrink_shift = 7; 382 383 /* percent of pagecache to reclaim arc to */ 384 #ifdef _KERNEL 385 uint_t zfs_arc_pc_percent = 0; 386 #endif 387 388 /* 389 * log2(fraction of ARC which must be free to allow growing). 390 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 391 * when reading a new block into the ARC, we will evict an equal-sized block 392 * from the ARC. 393 * 394 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 395 * we will still not allow it to grow. 396 */ 397 int arc_no_grow_shift = 5; 398 399 400 /* 401 * minimum lifespan of a prefetch block in clock ticks 402 * (initialized in arc_init()) 403 */ 404 static int arc_min_prefetch_ms; 405 static int arc_min_prescient_prefetch_ms; 406 407 /* 408 * If this percent of memory is free, don't throttle. 409 */ 410 int arc_lotsfree_percent = 10; 411 412 /* 413 * The arc has filled available memory and has now warmed up. 414 */ 415 boolean_t arc_warm; 416 417 /* 418 * These tunables are for performance analysis. 419 */ 420 unsigned long zfs_arc_max = 0; 421 unsigned long zfs_arc_min = 0; 422 unsigned long zfs_arc_meta_limit = 0; 423 unsigned long zfs_arc_meta_min = 0; 424 unsigned long zfs_arc_dnode_limit = 0; 425 unsigned long zfs_arc_dnode_reduce_percent = 10; 426 int zfs_arc_grow_retry = 0; 427 int zfs_arc_shrink_shift = 0; 428 int zfs_arc_p_min_shift = 0; 429 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 430 431 /* 432 * ARC dirty data constraints for arc_tempreserve_space() throttle. 433 */ 434 unsigned long zfs_arc_dirty_limit_percent = 50; /* total dirty data limit */ 435 unsigned long zfs_arc_anon_limit_percent = 25; /* anon block dirty limit */ 436 unsigned long zfs_arc_pool_dirty_percent = 20; /* each pool's anon allowance */ 437 438 /* 439 * Enable or disable compressed arc buffers. 440 */ 441 int zfs_compressed_arc_enabled = B_TRUE; 442 443 /* 444 * ARC will evict meta buffers that exceed arc_meta_limit. This 445 * tunable make arc_meta_limit adjustable for different workloads. 446 */ 447 unsigned long zfs_arc_meta_limit_percent = 75; 448 449 /* 450 * Percentage that can be consumed by dnodes of ARC meta buffers. 451 */ 452 unsigned long zfs_arc_dnode_limit_percent = 10; 453 454 /* 455 * These tunables are Linux specific 456 */ 457 unsigned long zfs_arc_sys_free = 0; 458 int zfs_arc_min_prefetch_ms = 0; 459 int zfs_arc_min_prescient_prefetch_ms = 0; 460 int zfs_arc_p_dampener_disable = 1; 461 int zfs_arc_meta_prune = 10000; 462 int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED; 463 int zfs_arc_meta_adjust_restarts = 4096; 464 int zfs_arc_lotsfree_percent = 10; 465 466 /* The 6 states: */ 467 arc_state_t ARC_anon; 468 arc_state_t ARC_mru; 469 arc_state_t ARC_mru_ghost; 470 arc_state_t ARC_mfu; 471 arc_state_t ARC_mfu_ghost; 472 arc_state_t ARC_l2c_only; 473 474 arc_stats_t arc_stats = { 475 { "hits", KSTAT_DATA_UINT64 }, 476 { "misses", KSTAT_DATA_UINT64 }, 477 { "demand_data_hits", KSTAT_DATA_UINT64 }, 478 { "demand_data_misses", KSTAT_DATA_UINT64 }, 479 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 480 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 481 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 482 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 483 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 484 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 485 { "mru_hits", KSTAT_DATA_UINT64 }, 486 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 487 { "mfu_hits", KSTAT_DATA_UINT64 }, 488 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 489 { "deleted", KSTAT_DATA_UINT64 }, 490 { "mutex_miss", KSTAT_DATA_UINT64 }, 491 { "access_skip", KSTAT_DATA_UINT64 }, 492 { "evict_skip", KSTAT_DATA_UINT64 }, 493 { "evict_not_enough", KSTAT_DATA_UINT64 }, 494 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 495 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 496 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64 }, 497 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64 }, 498 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 499 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 500 { "hash_elements", KSTAT_DATA_UINT64 }, 501 { "hash_elements_max", KSTAT_DATA_UINT64 }, 502 { "hash_collisions", KSTAT_DATA_UINT64 }, 503 { "hash_chains", KSTAT_DATA_UINT64 }, 504 { "hash_chain_max", KSTAT_DATA_UINT64 }, 505 { "p", KSTAT_DATA_UINT64 }, 506 { "c", KSTAT_DATA_UINT64 }, 507 { "c_min", KSTAT_DATA_UINT64 }, 508 { "c_max", KSTAT_DATA_UINT64 }, 509 { "size", KSTAT_DATA_UINT64 }, 510 { "compressed_size", KSTAT_DATA_UINT64 }, 511 { "uncompressed_size", KSTAT_DATA_UINT64 }, 512 { "overhead_size", KSTAT_DATA_UINT64 }, 513 { "hdr_size", KSTAT_DATA_UINT64 }, 514 { "data_size", KSTAT_DATA_UINT64 }, 515 { "metadata_size", KSTAT_DATA_UINT64 }, 516 { "dbuf_size", KSTAT_DATA_UINT64 }, 517 { "dnode_size", KSTAT_DATA_UINT64 }, 518 { "bonus_size", KSTAT_DATA_UINT64 }, 519 #if defined(COMPAT_FREEBSD11) 520 { "other_size", KSTAT_DATA_UINT64 }, 521 #endif 522 { "anon_size", KSTAT_DATA_UINT64 }, 523 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 524 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 525 { "mru_size", KSTAT_DATA_UINT64 }, 526 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 527 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 528 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 529 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 530 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 531 { "mfu_size", KSTAT_DATA_UINT64 }, 532 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 533 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 534 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 535 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 536 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 537 { "l2_hits", KSTAT_DATA_UINT64 }, 538 { "l2_misses", KSTAT_DATA_UINT64 }, 539 { "l2_prefetch_asize", KSTAT_DATA_UINT64 }, 540 { "l2_mru_asize", KSTAT_DATA_UINT64 }, 541 { "l2_mfu_asize", KSTAT_DATA_UINT64 }, 542 { "l2_bufc_data_asize", KSTAT_DATA_UINT64 }, 543 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64 }, 544 { "l2_feeds", KSTAT_DATA_UINT64 }, 545 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 546 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 547 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 548 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 549 { "l2_writes_done", KSTAT_DATA_UINT64 }, 550 { "l2_writes_error", KSTAT_DATA_UINT64 }, 551 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 552 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 553 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 554 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 555 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 556 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 557 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 558 { "l2_io_error", KSTAT_DATA_UINT64 }, 559 { "l2_size", KSTAT_DATA_UINT64 }, 560 { "l2_asize", KSTAT_DATA_UINT64 }, 561 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 562 { "l2_log_blk_writes", KSTAT_DATA_UINT64 }, 563 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 }, 564 { "l2_log_blk_asize", KSTAT_DATA_UINT64 }, 565 { "l2_log_blk_count", KSTAT_DATA_UINT64 }, 566 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 }, 567 { "l2_rebuild_success", KSTAT_DATA_UINT64 }, 568 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 }, 569 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 }, 570 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 }, 571 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 }, 572 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 }, 573 { "l2_rebuild_size", KSTAT_DATA_UINT64 }, 574 { "l2_rebuild_asize", KSTAT_DATA_UINT64 }, 575 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 }, 576 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 }, 577 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 }, 578 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 579 { "memory_direct_count", KSTAT_DATA_UINT64 }, 580 { "memory_indirect_count", KSTAT_DATA_UINT64 }, 581 { "memory_all_bytes", KSTAT_DATA_UINT64 }, 582 { "memory_free_bytes", KSTAT_DATA_UINT64 }, 583 { "memory_available_bytes", KSTAT_DATA_INT64 }, 584 { "arc_no_grow", KSTAT_DATA_UINT64 }, 585 { "arc_tempreserve", KSTAT_DATA_UINT64 }, 586 { "arc_loaned_bytes", KSTAT_DATA_UINT64 }, 587 { "arc_prune", KSTAT_DATA_UINT64 }, 588 { "arc_meta_used", KSTAT_DATA_UINT64 }, 589 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 590 { "arc_dnode_limit", KSTAT_DATA_UINT64 }, 591 { "arc_meta_max", KSTAT_DATA_UINT64 }, 592 { "arc_meta_min", KSTAT_DATA_UINT64 }, 593 { "async_upgrade_sync", KSTAT_DATA_UINT64 }, 594 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 }, 595 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 }, 596 { "arc_need_free", KSTAT_DATA_UINT64 }, 597 { "arc_sys_free", KSTAT_DATA_UINT64 }, 598 { "arc_raw_size", KSTAT_DATA_UINT64 }, 599 { "cached_only_in_progress", KSTAT_DATA_UINT64 }, 600 { "abd_chunk_waste_size", KSTAT_DATA_UINT64 }, 601 }; 602 603 arc_sums_t arc_sums; 604 605 #define ARCSTAT_MAX(stat, val) { \ 606 uint64_t m; \ 607 while ((val) > (m = arc_stats.stat.value.ui64) && \ 608 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 609 continue; \ 610 } 611 612 /* 613 * We define a macro to allow ARC hits/misses to be easily broken down by 614 * two separate conditions, giving a total of four different subtypes for 615 * each of hits and misses (so eight statistics total). 616 */ 617 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 618 if (cond1) { \ 619 if (cond2) { \ 620 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 621 } else { \ 622 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 623 } \ 624 } else { \ 625 if (cond2) { \ 626 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 627 } else { \ 628 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 629 } \ 630 } 631 632 /* 633 * This macro allows us to use kstats as floating averages. Each time we 634 * update this kstat, we first factor it and the update value by 635 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall 636 * average. This macro assumes that integer loads and stores are atomic, but 637 * is not safe for multiple writers updating the kstat in parallel (only the 638 * last writer's update will remain). 639 */ 640 #define ARCSTAT_F_AVG_FACTOR 3 641 #define ARCSTAT_F_AVG(stat, value) \ 642 do { \ 643 uint64_t x = ARCSTAT(stat); \ 644 x = x - x / ARCSTAT_F_AVG_FACTOR + \ 645 (value) / ARCSTAT_F_AVG_FACTOR; \ 646 ARCSTAT(stat) = x; \ 647 } while (0) 648 649 kstat_t *arc_ksp; 650 651 /* 652 * There are several ARC variables that are critical to export as kstats -- 653 * but we don't want to have to grovel around in the kstat whenever we wish to 654 * manipulate them. For these variables, we therefore define them to be in 655 * terms of the statistic variable. This assures that we are not introducing 656 * the possibility of inconsistency by having shadow copies of the variables, 657 * while still allowing the code to be readable. 658 */ 659 #define arc_tempreserve ARCSTAT(arcstat_tempreserve) 660 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes) 661 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 662 /* max size for dnodes */ 663 #define arc_dnode_size_limit ARCSTAT(arcstat_dnode_limit) 664 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */ 665 #define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */ 666 667 hrtime_t arc_growtime; 668 list_t arc_prune_list; 669 kmutex_t arc_prune_mtx; 670 taskq_t *arc_prune_taskq; 671 672 #define GHOST_STATE(state) \ 673 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 674 (state) == arc_l2c_only) 675 676 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 677 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 678 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 679 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 680 #define HDR_PRESCIENT_PREFETCH(hdr) \ 681 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) 682 #define HDR_COMPRESSION_ENABLED(hdr) \ 683 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) 684 685 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 686 #define HDR_L2_READING(hdr) \ 687 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 688 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 689 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 690 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 691 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 692 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED) 693 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH) 694 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) 695 696 #define HDR_ISTYPE_METADATA(hdr) \ 697 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 698 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 699 700 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 701 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 702 #define HDR_HAS_RABD(hdr) \ 703 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \ 704 (hdr)->b_crypt_hdr.b_rabd != NULL) 705 #define HDR_ENCRYPTED(hdr) \ 706 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 707 #define HDR_AUTHENTICATED(hdr) \ 708 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 709 710 /* For storing compression mode in b_flags */ 711 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) 712 713 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ 714 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) 715 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ 716 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); 717 718 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) 719 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED) 720 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED) 721 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED) 722 723 /* 724 * Other sizes 725 */ 726 727 #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 728 #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr)) 729 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 730 731 /* 732 * Hash table routines 733 */ 734 735 #define BUF_LOCKS 2048 736 typedef struct buf_hash_table { 737 uint64_t ht_mask; 738 arc_buf_hdr_t **ht_table; 739 kmutex_t ht_locks[BUF_LOCKS] ____cacheline_aligned; 740 } buf_hash_table_t; 741 742 static buf_hash_table_t buf_hash_table; 743 744 #define BUF_HASH_INDEX(spa, dva, birth) \ 745 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 746 #define BUF_HASH_LOCK(idx) (&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 747 #define HDR_LOCK(hdr) \ 748 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 749 750 uint64_t zfs_crc64_table[256]; 751 752 /* 753 * Level 2 ARC 754 */ 755 756 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 757 #define L2ARC_HEADROOM 2 /* num of writes */ 758 759 /* 760 * If we discover during ARC scan any buffers to be compressed, we boost 761 * our headroom for the next scanning cycle by this percentage multiple. 762 */ 763 #define L2ARC_HEADROOM_BOOST 200 764 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 765 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 766 767 /* 768 * We can feed L2ARC from two states of ARC buffers, mru and mfu, 769 * and each of the state has two types: data and metadata. 770 */ 771 #define L2ARC_FEED_TYPES 4 772 773 /* L2ARC Performance Tunables */ 774 unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */ 775 unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */ 776 unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */ 777 unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 778 unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 779 unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */ 780 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 781 int l2arc_feed_again = B_TRUE; /* turbo warmup */ 782 int l2arc_norw = B_FALSE; /* no reads during writes */ 783 int l2arc_meta_percent = 33; /* limit on headers size */ 784 785 /* 786 * L2ARC Internals 787 */ 788 static list_t L2ARC_dev_list; /* device list */ 789 static list_t *l2arc_dev_list; /* device list pointer */ 790 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 791 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 792 static list_t L2ARC_free_on_write; /* free after write buf list */ 793 static list_t *l2arc_free_on_write; /* free after write list ptr */ 794 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 795 static uint64_t l2arc_ndev; /* number of devices */ 796 797 typedef struct l2arc_read_callback { 798 arc_buf_hdr_t *l2rcb_hdr; /* read header */ 799 blkptr_t l2rcb_bp; /* original blkptr */ 800 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 801 int l2rcb_flags; /* original flags */ 802 abd_t *l2rcb_abd; /* temporary buffer */ 803 } l2arc_read_callback_t; 804 805 typedef struct l2arc_data_free { 806 /* protected by l2arc_free_on_write_mtx */ 807 abd_t *l2df_abd; 808 size_t l2df_size; 809 arc_buf_contents_t l2df_type; 810 list_node_t l2df_list_node; 811 } l2arc_data_free_t; 812 813 typedef enum arc_fill_flags { 814 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */ 815 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */ 816 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */ 817 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */ 818 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */ 819 } arc_fill_flags_t; 820 821 typedef enum arc_ovf_level { 822 ARC_OVF_NONE, /* ARC within target size. */ 823 ARC_OVF_SOME, /* ARC is slightly overflowed. */ 824 ARC_OVF_SEVERE /* ARC is severely overflowed. */ 825 } arc_ovf_level_t; 826 827 static kmutex_t l2arc_feed_thr_lock; 828 static kcondvar_t l2arc_feed_thr_cv; 829 static uint8_t l2arc_thread_exit; 830 831 static kmutex_t l2arc_rebuild_thr_lock; 832 static kcondvar_t l2arc_rebuild_thr_cv; 833 834 enum arc_hdr_alloc_flags { 835 ARC_HDR_ALLOC_RDATA = 0x1, 836 ARC_HDR_DO_ADAPT = 0x2, 837 ARC_HDR_USE_RESERVE = 0x4, 838 }; 839 840 841 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *, int); 842 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *); 843 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *, int); 844 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *); 845 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *); 846 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag); 847 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t); 848 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int); 849 static void arc_access(arc_buf_hdr_t *, kmutex_t *); 850 static void arc_buf_watch(arc_buf_t *); 851 852 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 853 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 854 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 855 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 856 857 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 858 static void l2arc_read_done(zio_t *); 859 static void l2arc_do_free_on_write(void); 860 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 861 boolean_t state_only); 862 863 #define l2arc_hdr_arcstats_increment(hdr) \ 864 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE) 865 #define l2arc_hdr_arcstats_decrement(hdr) \ 866 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE) 867 #define l2arc_hdr_arcstats_increment_state(hdr) \ 868 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE) 869 #define l2arc_hdr_arcstats_decrement_state(hdr) \ 870 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE) 871 872 /* 873 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU 874 * metadata and data are cached from ARC into L2ARC. 875 */ 876 int l2arc_mfuonly = 0; 877 878 /* 879 * L2ARC TRIM 880 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of 881 * the current write size (l2arc_write_max) we should TRIM if we 882 * have filled the device. It is defined as a percentage of the 883 * write size. If set to 100 we trim twice the space required to 884 * accommodate upcoming writes. A minimum of 64MB will be trimmed. 885 * It also enables TRIM of the whole L2ARC device upon creation or 886 * addition to an existing pool or if the header of the device is 887 * invalid upon importing a pool or onlining a cache device. The 888 * default is 0, which disables TRIM on L2ARC altogether as it can 889 * put significant stress on the underlying storage devices. This 890 * will vary depending of how well the specific device handles 891 * these commands. 892 */ 893 unsigned long l2arc_trim_ahead = 0; 894 895 /* 896 * Performance tuning of L2ARC persistence: 897 * 898 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding 899 * an L2ARC device (either at pool import or later) will attempt 900 * to rebuild L2ARC buffer contents. 901 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls 902 * whether log blocks are written to the L2ARC device. If the L2ARC 903 * device is less than 1GB, the amount of data l2arc_evict() 904 * evicts is significant compared to the amount of restored L2ARC 905 * data. In this case do not write log blocks in L2ARC in order 906 * not to waste space. 907 */ 908 int l2arc_rebuild_enabled = B_TRUE; 909 unsigned long l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024; 910 911 /* L2ARC persistence rebuild control routines. */ 912 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen); 913 static void l2arc_dev_rebuild_thread(void *arg); 914 static int l2arc_rebuild(l2arc_dev_t *dev); 915 916 /* L2ARC persistence read I/O routines. */ 917 static int l2arc_dev_hdr_read(l2arc_dev_t *dev); 918 static int l2arc_log_blk_read(l2arc_dev_t *dev, 919 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp, 920 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 921 zio_t *this_io, zio_t **next_io); 922 static zio_t *l2arc_log_blk_fetch(vdev_t *vd, 923 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb); 924 static void l2arc_log_blk_fetch_abort(zio_t *zio); 925 926 /* L2ARC persistence block restoration routines. */ 927 static void l2arc_log_blk_restore(l2arc_dev_t *dev, 928 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize); 929 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, 930 l2arc_dev_t *dev); 931 932 /* L2ARC persistence write I/O routines. */ 933 static void l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, 934 l2arc_write_callback_t *cb); 935 936 /* L2ARC persistence auxiliary routines. */ 937 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev, 938 const l2arc_log_blkptr_t *lbp); 939 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev, 940 const arc_buf_hdr_t *ab); 941 boolean_t l2arc_range_check_overlap(uint64_t bottom, 942 uint64_t top, uint64_t check); 943 static void l2arc_blk_fetch_done(zio_t *zio); 944 static inline uint64_t 945 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev); 946 947 /* 948 * We use Cityhash for this. It's fast, and has good hash properties without 949 * requiring any large static buffers. 950 */ 951 static uint64_t 952 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 953 { 954 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth)); 955 } 956 957 #define HDR_EMPTY(hdr) \ 958 ((hdr)->b_dva.dva_word[0] == 0 && \ 959 (hdr)->b_dva.dva_word[1] == 0) 960 961 #define HDR_EMPTY_OR_LOCKED(hdr) \ 962 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr))) 963 964 #define HDR_EQUAL(spa, dva, birth, hdr) \ 965 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 966 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 967 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) 968 969 static void 970 buf_discard_identity(arc_buf_hdr_t *hdr) 971 { 972 hdr->b_dva.dva_word[0] = 0; 973 hdr->b_dva.dva_word[1] = 0; 974 hdr->b_birth = 0; 975 } 976 977 static arc_buf_hdr_t * 978 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 979 { 980 const dva_t *dva = BP_IDENTITY(bp); 981 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 982 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 983 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 984 arc_buf_hdr_t *hdr; 985 986 mutex_enter(hash_lock); 987 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 988 hdr = hdr->b_hash_next) { 989 if (HDR_EQUAL(spa, dva, birth, hdr)) { 990 *lockp = hash_lock; 991 return (hdr); 992 } 993 } 994 mutex_exit(hash_lock); 995 *lockp = NULL; 996 return (NULL); 997 } 998 999 /* 1000 * Insert an entry into the hash table. If there is already an element 1001 * equal to elem in the hash table, then the already existing element 1002 * will be returned and the new element will not be inserted. 1003 * Otherwise returns NULL. 1004 * If lockp == NULL, the caller is assumed to already hold the hash lock. 1005 */ 1006 static arc_buf_hdr_t * 1007 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 1008 { 1009 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1010 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1011 arc_buf_hdr_t *fhdr; 1012 uint32_t i; 1013 1014 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 1015 ASSERT(hdr->b_birth != 0); 1016 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1017 1018 if (lockp != NULL) { 1019 *lockp = hash_lock; 1020 mutex_enter(hash_lock); 1021 } else { 1022 ASSERT(MUTEX_HELD(hash_lock)); 1023 } 1024 1025 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 1026 fhdr = fhdr->b_hash_next, i++) { 1027 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 1028 return (fhdr); 1029 } 1030 1031 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 1032 buf_hash_table.ht_table[idx] = hdr; 1033 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1034 1035 /* collect some hash table performance data */ 1036 if (i > 0) { 1037 ARCSTAT_BUMP(arcstat_hash_collisions); 1038 if (i == 1) 1039 ARCSTAT_BUMP(arcstat_hash_chains); 1040 1041 ARCSTAT_MAX(arcstat_hash_chain_max, i); 1042 } 1043 uint64_t he = atomic_inc_64_nv( 1044 &arc_stats.arcstat_hash_elements.value.ui64); 1045 ARCSTAT_MAX(arcstat_hash_elements_max, he); 1046 1047 return (NULL); 1048 } 1049 1050 static void 1051 buf_hash_remove(arc_buf_hdr_t *hdr) 1052 { 1053 arc_buf_hdr_t *fhdr, **hdrp; 1054 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1055 1056 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 1057 ASSERT(HDR_IN_HASH_TABLE(hdr)); 1058 1059 hdrp = &buf_hash_table.ht_table[idx]; 1060 while ((fhdr = *hdrp) != hdr) { 1061 ASSERT3P(fhdr, !=, NULL); 1062 hdrp = &fhdr->b_hash_next; 1063 } 1064 *hdrp = hdr->b_hash_next; 1065 hdr->b_hash_next = NULL; 1066 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1067 1068 /* collect some hash table performance data */ 1069 atomic_dec_64(&arc_stats.arcstat_hash_elements.value.ui64); 1070 1071 if (buf_hash_table.ht_table[idx] && 1072 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 1073 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 1074 } 1075 1076 /* 1077 * Global data structures and functions for the buf kmem cache. 1078 */ 1079 1080 static kmem_cache_t *hdr_full_cache; 1081 static kmem_cache_t *hdr_full_crypt_cache; 1082 static kmem_cache_t *hdr_l2only_cache; 1083 static kmem_cache_t *buf_cache; 1084 1085 static void 1086 buf_fini(void) 1087 { 1088 int i; 1089 1090 #if defined(_KERNEL) 1091 /* 1092 * Large allocations which do not require contiguous pages 1093 * should be using vmem_free() in the linux kernel\ 1094 */ 1095 vmem_free(buf_hash_table.ht_table, 1096 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1097 #else 1098 kmem_free(buf_hash_table.ht_table, 1099 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1100 #endif 1101 for (i = 0; i < BUF_LOCKS; i++) 1102 mutex_destroy(BUF_HASH_LOCK(i)); 1103 kmem_cache_destroy(hdr_full_cache); 1104 kmem_cache_destroy(hdr_full_crypt_cache); 1105 kmem_cache_destroy(hdr_l2only_cache); 1106 kmem_cache_destroy(buf_cache); 1107 } 1108 1109 /* 1110 * Constructor callback - called when the cache is empty 1111 * and a new buf is requested. 1112 */ 1113 /* ARGSUSED */ 1114 static int 1115 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1116 { 1117 arc_buf_hdr_t *hdr = vbuf; 1118 1119 bzero(hdr, HDR_FULL_SIZE); 1120 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 1121 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL); 1122 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt); 1123 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1124 list_link_init(&hdr->b_l1hdr.b_arc_node); 1125 list_link_init(&hdr->b_l2hdr.b_l2node); 1126 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1127 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1128 1129 return (0); 1130 } 1131 1132 /* ARGSUSED */ 1133 static int 1134 hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag) 1135 { 1136 arc_buf_hdr_t *hdr = vbuf; 1137 1138 hdr_full_cons(vbuf, unused, kmflag); 1139 bzero(&hdr->b_crypt_hdr, sizeof (hdr->b_crypt_hdr)); 1140 arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1141 1142 return (0); 1143 } 1144 1145 /* ARGSUSED */ 1146 static int 1147 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1148 { 1149 arc_buf_hdr_t *hdr = vbuf; 1150 1151 bzero(hdr, HDR_L2ONLY_SIZE); 1152 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1153 1154 return (0); 1155 } 1156 1157 /* ARGSUSED */ 1158 static int 1159 buf_cons(void *vbuf, void *unused, int kmflag) 1160 { 1161 arc_buf_t *buf = vbuf; 1162 1163 bzero(buf, sizeof (arc_buf_t)); 1164 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 1165 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1166 1167 return (0); 1168 } 1169 1170 /* 1171 * Destructor callback - called when a cached buf is 1172 * no longer required. 1173 */ 1174 /* ARGSUSED */ 1175 static void 1176 hdr_full_dest(void *vbuf, void *unused) 1177 { 1178 arc_buf_hdr_t *hdr = vbuf; 1179 1180 ASSERT(HDR_EMPTY(hdr)); 1181 cv_destroy(&hdr->b_l1hdr.b_cv); 1182 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1183 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1184 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1185 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1186 } 1187 1188 /* ARGSUSED */ 1189 static void 1190 hdr_full_crypt_dest(void *vbuf, void *unused) 1191 { 1192 arc_buf_hdr_t *hdr = vbuf; 1193 1194 hdr_full_dest(vbuf, unused); 1195 arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1196 } 1197 1198 /* ARGSUSED */ 1199 static void 1200 hdr_l2only_dest(void *vbuf, void *unused) 1201 { 1202 arc_buf_hdr_t *hdr __maybe_unused = vbuf; 1203 1204 ASSERT(HDR_EMPTY(hdr)); 1205 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1206 } 1207 1208 /* ARGSUSED */ 1209 static void 1210 buf_dest(void *vbuf, void *unused) 1211 { 1212 arc_buf_t *buf = vbuf; 1213 1214 mutex_destroy(&buf->b_evict_lock); 1215 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1216 } 1217 1218 static void 1219 buf_init(void) 1220 { 1221 uint64_t *ct = NULL; 1222 uint64_t hsize = 1ULL << 12; 1223 int i, j; 1224 1225 /* 1226 * The hash table is big enough to fill all of physical memory 1227 * with an average block size of zfs_arc_average_blocksize (default 8K). 1228 * By default, the table will take up 1229 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1230 */ 1231 while (hsize * zfs_arc_average_blocksize < arc_all_memory()) 1232 hsize <<= 1; 1233 retry: 1234 buf_hash_table.ht_mask = hsize - 1; 1235 #if defined(_KERNEL) 1236 /* 1237 * Large allocations which do not require contiguous pages 1238 * should be using vmem_alloc() in the linux kernel 1239 */ 1240 buf_hash_table.ht_table = 1241 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP); 1242 #else 1243 buf_hash_table.ht_table = 1244 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1245 #endif 1246 if (buf_hash_table.ht_table == NULL) { 1247 ASSERT(hsize > (1ULL << 8)); 1248 hsize >>= 1; 1249 goto retry; 1250 } 1251 1252 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1253 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, 0); 1254 hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt", 1255 HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest, 1256 NULL, NULL, NULL, 0); 1257 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1258 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL, 1259 NULL, NULL, 0); 1260 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1261 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1262 1263 for (i = 0; i < 256; i++) 1264 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1265 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1266 1267 for (i = 0; i < BUF_LOCKS; i++) 1268 mutex_init(BUF_HASH_LOCK(i), NULL, MUTEX_DEFAULT, NULL); 1269 } 1270 1271 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1272 1273 /* 1274 * This is the size that the buf occupies in memory. If the buf is compressed, 1275 * it will correspond to the compressed size. You should use this method of 1276 * getting the buf size unless you explicitly need the logical size. 1277 */ 1278 uint64_t 1279 arc_buf_size(arc_buf_t *buf) 1280 { 1281 return (ARC_BUF_COMPRESSED(buf) ? 1282 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr)); 1283 } 1284 1285 uint64_t 1286 arc_buf_lsize(arc_buf_t *buf) 1287 { 1288 return (HDR_GET_LSIZE(buf->b_hdr)); 1289 } 1290 1291 /* 1292 * This function will return B_TRUE if the buffer is encrypted in memory. 1293 * This buffer can be decrypted by calling arc_untransform(). 1294 */ 1295 boolean_t 1296 arc_is_encrypted(arc_buf_t *buf) 1297 { 1298 return (ARC_BUF_ENCRYPTED(buf) != 0); 1299 } 1300 1301 /* 1302 * Returns B_TRUE if the buffer represents data that has not had its MAC 1303 * verified yet. 1304 */ 1305 boolean_t 1306 arc_is_unauthenticated(arc_buf_t *buf) 1307 { 1308 return (HDR_NOAUTH(buf->b_hdr) != 0); 1309 } 1310 1311 void 1312 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt, 1313 uint8_t *iv, uint8_t *mac) 1314 { 1315 arc_buf_hdr_t *hdr = buf->b_hdr; 1316 1317 ASSERT(HDR_PROTECTED(hdr)); 1318 1319 bcopy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN); 1320 bcopy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN); 1321 bcopy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN); 1322 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 1323 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 1324 } 1325 1326 /* 1327 * Indicates how this buffer is compressed in memory. If it is not compressed 1328 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with 1329 * arc_untransform() as long as it is also unencrypted. 1330 */ 1331 enum zio_compress 1332 arc_get_compression(arc_buf_t *buf) 1333 { 1334 return (ARC_BUF_COMPRESSED(buf) ? 1335 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF); 1336 } 1337 1338 /* 1339 * Return the compression algorithm used to store this data in the ARC. If ARC 1340 * compression is enabled or this is an encrypted block, this will be the same 1341 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF. 1342 */ 1343 static inline enum zio_compress 1344 arc_hdr_get_compress(arc_buf_hdr_t *hdr) 1345 { 1346 return (HDR_COMPRESSION_ENABLED(hdr) ? 1347 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF); 1348 } 1349 1350 uint8_t 1351 arc_get_complevel(arc_buf_t *buf) 1352 { 1353 return (buf->b_hdr->b_complevel); 1354 } 1355 1356 static inline boolean_t 1357 arc_buf_is_shared(arc_buf_t *buf) 1358 { 1359 boolean_t shared = (buf->b_data != NULL && 1360 buf->b_hdr->b_l1hdr.b_pabd != NULL && 1361 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) && 1362 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd)); 1363 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); 1364 IMPLY(shared, ARC_BUF_SHARED(buf)); 1365 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf)); 1366 1367 /* 1368 * It would be nice to assert arc_can_share() too, but the "hdr isn't 1369 * already being shared" requirement prevents us from doing that. 1370 */ 1371 1372 return (shared); 1373 } 1374 1375 /* 1376 * Free the checksum associated with this header. If there is no checksum, this 1377 * is a no-op. 1378 */ 1379 static inline void 1380 arc_cksum_free(arc_buf_hdr_t *hdr) 1381 { 1382 ASSERT(HDR_HAS_L1HDR(hdr)); 1383 1384 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1385 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1386 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); 1387 hdr->b_l1hdr.b_freeze_cksum = NULL; 1388 } 1389 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1390 } 1391 1392 /* 1393 * Return true iff at least one of the bufs on hdr is not compressed. 1394 * Encrypted buffers count as compressed. 1395 */ 1396 static boolean_t 1397 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr) 1398 { 1399 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr)); 1400 1401 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) { 1402 if (!ARC_BUF_COMPRESSED(b)) { 1403 return (B_TRUE); 1404 } 1405 } 1406 return (B_FALSE); 1407 } 1408 1409 1410 /* 1411 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data 1412 * matches the checksum that is stored in the hdr. If there is no checksum, 1413 * or if the buf is compressed, this is a no-op. 1414 */ 1415 static void 1416 arc_cksum_verify(arc_buf_t *buf) 1417 { 1418 arc_buf_hdr_t *hdr = buf->b_hdr; 1419 zio_cksum_t zc; 1420 1421 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1422 return; 1423 1424 if (ARC_BUF_COMPRESSED(buf)) 1425 return; 1426 1427 ASSERT(HDR_HAS_L1HDR(hdr)); 1428 1429 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1430 1431 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { 1432 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1433 return; 1434 } 1435 1436 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc); 1437 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) 1438 panic("buffer modified while frozen!"); 1439 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1440 } 1441 1442 /* 1443 * This function makes the assumption that data stored in the L2ARC 1444 * will be transformed exactly as it is in the main pool. Because of 1445 * this we can verify the checksum against the reading process's bp. 1446 */ 1447 static boolean_t 1448 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) 1449 { 1450 ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); 1451 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); 1452 1453 /* 1454 * Block pointers always store the checksum for the logical data. 1455 * If the block pointer has the gang bit set, then the checksum 1456 * it represents is for the reconstituted data and not for an 1457 * individual gang member. The zio pipeline, however, must be able to 1458 * determine the checksum of each of the gang constituents so it 1459 * treats the checksum comparison differently than what we need 1460 * for l2arc blocks. This prevents us from using the 1461 * zio_checksum_error() interface directly. Instead we must call the 1462 * zio_checksum_error_impl() so that we can ensure the checksum is 1463 * generated using the correct checksum algorithm and accounts for the 1464 * logical I/O size and not just a gang fragment. 1465 */ 1466 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp, 1467 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size, 1468 zio->io_offset, NULL) == 0); 1469 } 1470 1471 /* 1472 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a 1473 * checksum and attaches it to the buf's hdr so that we can ensure that the buf 1474 * isn't modified later on. If buf is compressed or there is already a checksum 1475 * on the hdr, this is a no-op (we only checksum uncompressed bufs). 1476 */ 1477 static void 1478 arc_cksum_compute(arc_buf_t *buf) 1479 { 1480 arc_buf_hdr_t *hdr = buf->b_hdr; 1481 1482 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1483 return; 1484 1485 ASSERT(HDR_HAS_L1HDR(hdr)); 1486 1487 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1488 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) { 1489 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1490 return; 1491 } 1492 1493 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 1494 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1495 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), 1496 KM_SLEEP); 1497 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, 1498 hdr->b_l1hdr.b_freeze_cksum); 1499 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1500 arc_buf_watch(buf); 1501 } 1502 1503 #ifndef _KERNEL 1504 void 1505 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused) 1506 { 1507 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr); 1508 } 1509 #endif 1510 1511 /* ARGSUSED */ 1512 static void 1513 arc_buf_unwatch(arc_buf_t *buf) 1514 { 1515 #ifndef _KERNEL 1516 if (arc_watch) { 1517 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1518 PROT_READ | PROT_WRITE)); 1519 } 1520 #endif 1521 } 1522 1523 /* ARGSUSED */ 1524 static void 1525 arc_buf_watch(arc_buf_t *buf) 1526 { 1527 #ifndef _KERNEL 1528 if (arc_watch) 1529 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1530 PROT_READ)); 1531 #endif 1532 } 1533 1534 static arc_buf_contents_t 1535 arc_buf_type(arc_buf_hdr_t *hdr) 1536 { 1537 arc_buf_contents_t type; 1538 if (HDR_ISTYPE_METADATA(hdr)) { 1539 type = ARC_BUFC_METADATA; 1540 } else { 1541 type = ARC_BUFC_DATA; 1542 } 1543 VERIFY3U(hdr->b_type, ==, type); 1544 return (type); 1545 } 1546 1547 boolean_t 1548 arc_is_metadata(arc_buf_t *buf) 1549 { 1550 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0); 1551 } 1552 1553 static uint32_t 1554 arc_bufc_to_flags(arc_buf_contents_t type) 1555 { 1556 switch (type) { 1557 case ARC_BUFC_DATA: 1558 /* metadata field is 0 if buffer contains normal data */ 1559 return (0); 1560 case ARC_BUFC_METADATA: 1561 return (ARC_FLAG_BUFC_METADATA); 1562 default: 1563 break; 1564 } 1565 panic("undefined ARC buffer type!"); 1566 return ((uint32_t)-1); 1567 } 1568 1569 void 1570 arc_buf_thaw(arc_buf_t *buf) 1571 { 1572 arc_buf_hdr_t *hdr = buf->b_hdr; 1573 1574 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 1575 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1576 1577 arc_cksum_verify(buf); 1578 1579 /* 1580 * Compressed buffers do not manipulate the b_freeze_cksum. 1581 */ 1582 if (ARC_BUF_COMPRESSED(buf)) 1583 return; 1584 1585 ASSERT(HDR_HAS_L1HDR(hdr)); 1586 arc_cksum_free(hdr); 1587 arc_buf_unwatch(buf); 1588 } 1589 1590 void 1591 arc_buf_freeze(arc_buf_t *buf) 1592 { 1593 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1594 return; 1595 1596 if (ARC_BUF_COMPRESSED(buf)) 1597 return; 1598 1599 ASSERT(HDR_HAS_L1HDR(buf->b_hdr)); 1600 arc_cksum_compute(buf); 1601 } 1602 1603 /* 1604 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, 1605 * the following functions should be used to ensure that the flags are 1606 * updated in a thread-safe way. When manipulating the flags either 1607 * the hash_lock must be held or the hdr must be undiscoverable. This 1608 * ensures that we're not racing with any other threads when updating 1609 * the flags. 1610 */ 1611 static inline void 1612 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1613 { 1614 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1615 hdr->b_flags |= flags; 1616 } 1617 1618 static inline void 1619 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1620 { 1621 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1622 hdr->b_flags &= ~flags; 1623 } 1624 1625 /* 1626 * Setting the compression bits in the arc_buf_hdr_t's b_flags is 1627 * done in a special way since we have to clear and set bits 1628 * at the same time. Consumers that wish to set the compression bits 1629 * must use this function to ensure that the flags are updated in 1630 * thread-safe manner. 1631 */ 1632 static void 1633 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) 1634 { 1635 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1636 1637 /* 1638 * Holes and embedded blocks will always have a psize = 0 so 1639 * we ignore the compression of the blkptr and set the 1640 * want to uncompress them. Mark them as uncompressed. 1641 */ 1642 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { 1643 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1644 ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); 1645 } else { 1646 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1647 ASSERT(HDR_COMPRESSION_ENABLED(hdr)); 1648 } 1649 1650 HDR_SET_COMPRESS(hdr, cmp); 1651 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); 1652 } 1653 1654 /* 1655 * Looks for another buf on the same hdr which has the data decompressed, copies 1656 * from it, and returns true. If no such buf exists, returns false. 1657 */ 1658 static boolean_t 1659 arc_buf_try_copy_decompressed_data(arc_buf_t *buf) 1660 { 1661 arc_buf_hdr_t *hdr = buf->b_hdr; 1662 boolean_t copied = B_FALSE; 1663 1664 ASSERT(HDR_HAS_L1HDR(hdr)); 1665 ASSERT3P(buf->b_data, !=, NULL); 1666 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1667 1668 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL; 1669 from = from->b_next) { 1670 /* can't use our own data buffer */ 1671 if (from == buf) { 1672 continue; 1673 } 1674 1675 if (!ARC_BUF_COMPRESSED(from)) { 1676 bcopy(from->b_data, buf->b_data, arc_buf_size(buf)); 1677 copied = B_TRUE; 1678 break; 1679 } 1680 } 1681 1682 /* 1683 * There were no decompressed bufs, so there should not be a 1684 * checksum on the hdr either. 1685 */ 1686 if (zfs_flags & ZFS_DEBUG_MODIFY) 1687 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL); 1688 1689 return (copied); 1690 } 1691 1692 /* 1693 * Allocates an ARC buf header that's in an evicted & L2-cached state. 1694 * This is used during l2arc reconstruction to make empty ARC buffers 1695 * which circumvent the regular disk->arc->l2arc path and instead come 1696 * into being in the reverse order, i.e. l2arc->arc. 1697 */ 1698 static arc_buf_hdr_t * 1699 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev, 1700 dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth, 1701 enum zio_compress compress, uint8_t complevel, boolean_t protected, 1702 boolean_t prefetch, arc_state_type_t arcs_state) 1703 { 1704 arc_buf_hdr_t *hdr; 1705 1706 ASSERT(size != 0); 1707 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP); 1708 hdr->b_birth = birth; 1709 hdr->b_type = type; 1710 hdr->b_flags = 0; 1711 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR); 1712 HDR_SET_LSIZE(hdr, size); 1713 HDR_SET_PSIZE(hdr, psize); 1714 arc_hdr_set_compress(hdr, compress); 1715 hdr->b_complevel = complevel; 1716 if (protected) 1717 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 1718 if (prefetch) 1719 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 1720 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa); 1721 1722 hdr->b_dva = dva; 1723 1724 hdr->b_l2hdr.b_dev = dev; 1725 hdr->b_l2hdr.b_daddr = daddr; 1726 hdr->b_l2hdr.b_arcs_state = arcs_state; 1727 1728 return (hdr); 1729 } 1730 1731 /* 1732 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t. 1733 */ 1734 static uint64_t 1735 arc_hdr_size(arc_buf_hdr_t *hdr) 1736 { 1737 uint64_t size; 1738 1739 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 1740 HDR_GET_PSIZE(hdr) > 0) { 1741 size = HDR_GET_PSIZE(hdr); 1742 } else { 1743 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); 1744 size = HDR_GET_LSIZE(hdr); 1745 } 1746 return (size); 1747 } 1748 1749 static int 1750 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj) 1751 { 1752 int ret; 1753 uint64_t csize; 1754 uint64_t lsize = HDR_GET_LSIZE(hdr); 1755 uint64_t psize = HDR_GET_PSIZE(hdr); 1756 void *tmpbuf = NULL; 1757 abd_t *abd = hdr->b_l1hdr.b_pabd; 1758 1759 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1760 ASSERT(HDR_AUTHENTICATED(hdr)); 1761 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1762 1763 /* 1764 * The MAC is calculated on the compressed data that is stored on disk. 1765 * However, if compressed arc is disabled we will only have the 1766 * decompressed data available to us now. Compress it into a temporary 1767 * abd so we can verify the MAC. The performance overhead of this will 1768 * be relatively low, since most objects in an encrypted objset will 1769 * be encrypted (instead of authenticated) anyway. 1770 */ 1771 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1772 !HDR_COMPRESSION_ENABLED(hdr)) { 1773 tmpbuf = zio_buf_alloc(lsize); 1774 abd = abd_get_from_buf(tmpbuf, lsize); 1775 abd_take_ownership_of_buf(abd, B_TRUE); 1776 csize = zio_compress_data(HDR_GET_COMPRESS(hdr), 1777 hdr->b_l1hdr.b_pabd, tmpbuf, lsize, hdr->b_complevel); 1778 ASSERT3U(csize, <=, psize); 1779 abd_zero_off(abd, csize, psize - csize); 1780 } 1781 1782 /* 1783 * Authentication is best effort. We authenticate whenever the key is 1784 * available. If we succeed we clear ARC_FLAG_NOAUTH. 1785 */ 1786 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) { 1787 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1788 ASSERT3U(lsize, ==, psize); 1789 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd, 1790 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1791 } else { 1792 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize, 1793 hdr->b_crypt_hdr.b_mac); 1794 } 1795 1796 if (ret == 0) 1797 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH); 1798 else if (ret != ENOENT) 1799 goto error; 1800 1801 if (tmpbuf != NULL) 1802 abd_free(abd); 1803 1804 return (0); 1805 1806 error: 1807 if (tmpbuf != NULL) 1808 abd_free(abd); 1809 1810 return (ret); 1811 } 1812 1813 /* 1814 * This function will take a header that only has raw encrypted data in 1815 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in 1816 * b_l1hdr.b_pabd. If designated in the header flags, this function will 1817 * also decompress the data. 1818 */ 1819 static int 1820 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb) 1821 { 1822 int ret; 1823 abd_t *cabd = NULL; 1824 void *tmp = NULL; 1825 boolean_t no_crypt = B_FALSE; 1826 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1827 1828 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1829 ASSERT(HDR_ENCRYPTED(hdr)); 1830 1831 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 1832 1833 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot, 1834 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv, 1835 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd, 1836 hdr->b_crypt_hdr.b_rabd, &no_crypt); 1837 if (ret != 0) 1838 goto error; 1839 1840 if (no_crypt) { 1841 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd, 1842 HDR_GET_PSIZE(hdr)); 1843 } 1844 1845 /* 1846 * If this header has disabled arc compression but the b_pabd is 1847 * compressed after decrypting it, we need to decompress the newly 1848 * decrypted data. 1849 */ 1850 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1851 !HDR_COMPRESSION_ENABLED(hdr)) { 1852 /* 1853 * We want to make sure that we are correctly honoring the 1854 * zfs_abd_scatter_enabled setting, so we allocate an abd here 1855 * and then loan a buffer from it, rather than allocating a 1856 * linear buffer and wrapping it in an abd later. 1857 */ 1858 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 1859 ARC_HDR_DO_ADAPT); 1860 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 1861 1862 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 1863 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 1864 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 1865 if (ret != 0) { 1866 abd_return_buf(cabd, tmp, arc_hdr_size(hdr)); 1867 goto error; 1868 } 1869 1870 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 1871 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 1872 arc_hdr_size(hdr), hdr); 1873 hdr->b_l1hdr.b_pabd = cabd; 1874 } 1875 1876 return (0); 1877 1878 error: 1879 arc_hdr_free_abd(hdr, B_FALSE); 1880 if (cabd != NULL) 1881 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr); 1882 1883 return (ret); 1884 } 1885 1886 /* 1887 * This function is called during arc_buf_fill() to prepare the header's 1888 * abd plaintext pointer for use. This involves authenticated protected 1889 * data and decrypting encrypted data into the plaintext abd. 1890 */ 1891 static int 1892 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa, 1893 const zbookmark_phys_t *zb, boolean_t noauth) 1894 { 1895 int ret; 1896 1897 ASSERT(HDR_PROTECTED(hdr)); 1898 1899 if (hash_lock != NULL) 1900 mutex_enter(hash_lock); 1901 1902 if (HDR_NOAUTH(hdr) && !noauth) { 1903 /* 1904 * The caller requested authenticated data but our data has 1905 * not been authenticated yet. Verify the MAC now if we can. 1906 */ 1907 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset); 1908 if (ret != 0) 1909 goto error; 1910 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) { 1911 /* 1912 * If we only have the encrypted version of the data, but the 1913 * unencrypted version was requested we take this opportunity 1914 * to store the decrypted version in the header for future use. 1915 */ 1916 ret = arc_hdr_decrypt(hdr, spa, zb); 1917 if (ret != 0) 1918 goto error; 1919 } 1920 1921 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1922 1923 if (hash_lock != NULL) 1924 mutex_exit(hash_lock); 1925 1926 return (0); 1927 1928 error: 1929 if (hash_lock != NULL) 1930 mutex_exit(hash_lock); 1931 1932 return (ret); 1933 } 1934 1935 /* 1936 * This function is used by the dbuf code to decrypt bonus buffers in place. 1937 * The dbuf code itself doesn't have any locking for decrypting a shared dnode 1938 * block, so we use the hash lock here to protect against concurrent calls to 1939 * arc_buf_fill(). 1940 */ 1941 static void 1942 arc_buf_untransform_in_place(arc_buf_t *buf, kmutex_t *hash_lock) 1943 { 1944 arc_buf_hdr_t *hdr = buf->b_hdr; 1945 1946 ASSERT(HDR_ENCRYPTED(hdr)); 1947 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 1948 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1949 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1950 1951 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data, 1952 arc_buf_size(buf)); 1953 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 1954 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 1955 hdr->b_crypt_hdr.b_ebufcnt -= 1; 1956 } 1957 1958 /* 1959 * Given a buf that has a data buffer attached to it, this function will 1960 * efficiently fill the buf with data of the specified compression setting from 1961 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr 1962 * are already sharing a data buf, no copy is performed. 1963 * 1964 * If the buf is marked as compressed but uncompressed data was requested, this 1965 * will allocate a new data buffer for the buf, remove that flag, and fill the 1966 * buf with uncompressed data. You can't request a compressed buf on a hdr with 1967 * uncompressed data, and (since we haven't added support for it yet) if you 1968 * want compressed data your buf must already be marked as compressed and have 1969 * the correct-sized data buffer. 1970 */ 1971 static int 1972 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 1973 arc_fill_flags_t flags) 1974 { 1975 int error = 0; 1976 arc_buf_hdr_t *hdr = buf->b_hdr; 1977 boolean_t hdr_compressed = 1978 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 1979 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0; 1980 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0; 1981 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; 1982 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr); 1983 1984 ASSERT3P(buf->b_data, !=, NULL); 1985 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf)); 1986 IMPLY(compressed, ARC_BUF_COMPRESSED(buf)); 1987 IMPLY(encrypted, HDR_ENCRYPTED(hdr)); 1988 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf)); 1989 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf)); 1990 IMPLY(encrypted, !ARC_BUF_SHARED(buf)); 1991 1992 /* 1993 * If the caller wanted encrypted data we just need to copy it from 1994 * b_rabd and potentially byteswap it. We won't be able to do any 1995 * further transforms on it. 1996 */ 1997 if (encrypted) { 1998 ASSERT(HDR_HAS_RABD(hdr)); 1999 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd, 2000 HDR_GET_PSIZE(hdr)); 2001 goto byteswap; 2002 } 2003 2004 /* 2005 * Adjust encrypted and authenticated headers to accommodate 2006 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are 2007 * allowed to fail decryption due to keys not being loaded 2008 * without being marked as an IO error. 2009 */ 2010 if (HDR_PROTECTED(hdr)) { 2011 error = arc_fill_hdr_crypt(hdr, hash_lock, spa, 2012 zb, !!(flags & ARC_FILL_NOAUTH)); 2013 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) { 2014 return (error); 2015 } else if (error != 0) { 2016 if (hash_lock != NULL) 2017 mutex_enter(hash_lock); 2018 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2019 if (hash_lock != NULL) 2020 mutex_exit(hash_lock); 2021 return (error); 2022 } 2023 } 2024 2025 /* 2026 * There is a special case here for dnode blocks which are 2027 * decrypting their bonus buffers. These blocks may request to 2028 * be decrypted in-place. This is necessary because there may 2029 * be many dnodes pointing into this buffer and there is 2030 * currently no method to synchronize replacing the backing 2031 * b_data buffer and updating all of the pointers. Here we use 2032 * the hash lock to ensure there are no races. If the need 2033 * arises for other types to be decrypted in-place, they must 2034 * add handling here as well. 2035 */ 2036 if ((flags & ARC_FILL_IN_PLACE) != 0) { 2037 ASSERT(!hdr_compressed); 2038 ASSERT(!compressed); 2039 ASSERT(!encrypted); 2040 2041 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) { 2042 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 2043 2044 if (hash_lock != NULL) 2045 mutex_enter(hash_lock); 2046 arc_buf_untransform_in_place(buf, hash_lock); 2047 if (hash_lock != NULL) 2048 mutex_exit(hash_lock); 2049 2050 /* Compute the hdr's checksum if necessary */ 2051 arc_cksum_compute(buf); 2052 } 2053 2054 return (0); 2055 } 2056 2057 if (hdr_compressed == compressed) { 2058 if (!arc_buf_is_shared(buf)) { 2059 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd, 2060 arc_buf_size(buf)); 2061 } 2062 } else { 2063 ASSERT(hdr_compressed); 2064 ASSERT(!compressed); 2065 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr)); 2066 2067 /* 2068 * If the buf is sharing its data with the hdr, unlink it and 2069 * allocate a new data buffer for the buf. 2070 */ 2071 if (arc_buf_is_shared(buf)) { 2072 ASSERT(ARC_BUF_COMPRESSED(buf)); 2073 2074 /* We need to give the buf its own b_data */ 2075 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 2076 buf->b_data = 2077 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2078 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2079 2080 /* Previously overhead was 0; just add new overhead */ 2081 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 2082 } else if (ARC_BUF_COMPRESSED(buf)) { 2083 /* We need to reallocate the buf's b_data */ 2084 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr), 2085 buf); 2086 buf->b_data = 2087 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2088 2089 /* We increased the size of b_data; update overhead */ 2090 ARCSTAT_INCR(arcstat_overhead_size, 2091 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr)); 2092 } 2093 2094 /* 2095 * Regardless of the buf's previous compression settings, it 2096 * should not be compressed at the end of this function. 2097 */ 2098 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 2099 2100 /* 2101 * Try copying the data from another buf which already has a 2102 * decompressed version. If that's not possible, it's time to 2103 * bite the bullet and decompress the data from the hdr. 2104 */ 2105 if (arc_buf_try_copy_decompressed_data(buf)) { 2106 /* Skip byteswapping and checksumming (already done) */ 2107 return (0); 2108 } else { 2109 error = zio_decompress_data(HDR_GET_COMPRESS(hdr), 2110 hdr->b_l1hdr.b_pabd, buf->b_data, 2111 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr), 2112 &hdr->b_complevel); 2113 2114 /* 2115 * Absent hardware errors or software bugs, this should 2116 * be impossible, but log it anyway so we can debug it. 2117 */ 2118 if (error != 0) { 2119 zfs_dbgmsg( 2120 "hdr %px, compress %d, psize %d, lsize %d", 2121 hdr, arc_hdr_get_compress(hdr), 2122 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 2123 if (hash_lock != NULL) 2124 mutex_enter(hash_lock); 2125 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2126 if (hash_lock != NULL) 2127 mutex_exit(hash_lock); 2128 return (SET_ERROR(EIO)); 2129 } 2130 } 2131 } 2132 2133 byteswap: 2134 /* Byteswap the buf's data if necessary */ 2135 if (bswap != DMU_BSWAP_NUMFUNCS) { 2136 ASSERT(!HDR_SHARED_DATA(hdr)); 2137 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); 2138 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); 2139 } 2140 2141 /* Compute the hdr's checksum if necessary */ 2142 arc_cksum_compute(buf); 2143 2144 return (0); 2145 } 2146 2147 /* 2148 * If this function is being called to decrypt an encrypted buffer or verify an 2149 * authenticated one, the key must be loaded and a mapping must be made 2150 * available in the keystore via spa_keystore_create_mapping() or one of its 2151 * callers. 2152 */ 2153 int 2154 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 2155 boolean_t in_place) 2156 { 2157 int ret; 2158 arc_fill_flags_t flags = 0; 2159 2160 if (in_place) 2161 flags |= ARC_FILL_IN_PLACE; 2162 2163 ret = arc_buf_fill(buf, spa, zb, flags); 2164 if (ret == ECKSUM) { 2165 /* 2166 * Convert authentication and decryption errors to EIO 2167 * (and generate an ereport) before leaving the ARC. 2168 */ 2169 ret = SET_ERROR(EIO); 2170 spa_log_error(spa, zb); 2171 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 2172 spa, NULL, zb, NULL, 0); 2173 } 2174 2175 return (ret); 2176 } 2177 2178 /* 2179 * Increment the amount of evictable space in the arc_state_t's refcount. 2180 * We account for the space used by the hdr and the arc buf individually 2181 * so that we can add and remove them from the refcount individually. 2182 */ 2183 static void 2184 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) 2185 { 2186 arc_buf_contents_t type = arc_buf_type(hdr); 2187 2188 ASSERT(HDR_HAS_L1HDR(hdr)); 2189 2190 if (GHOST_STATE(state)) { 2191 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2192 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2193 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2194 ASSERT(!HDR_HAS_RABD(hdr)); 2195 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2196 HDR_GET_LSIZE(hdr), hdr); 2197 return; 2198 } 2199 2200 if (hdr->b_l1hdr.b_pabd != NULL) { 2201 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2202 arc_hdr_size(hdr), hdr); 2203 } 2204 if (HDR_HAS_RABD(hdr)) { 2205 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2206 HDR_GET_PSIZE(hdr), hdr); 2207 } 2208 2209 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2210 buf = buf->b_next) { 2211 if (arc_buf_is_shared(buf)) 2212 continue; 2213 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2214 arc_buf_size(buf), buf); 2215 } 2216 } 2217 2218 /* 2219 * Decrement the amount of evictable space in the arc_state_t's refcount. 2220 * We account for the space used by the hdr and the arc buf individually 2221 * so that we can add and remove them from the refcount individually. 2222 */ 2223 static void 2224 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) 2225 { 2226 arc_buf_contents_t type = arc_buf_type(hdr); 2227 2228 ASSERT(HDR_HAS_L1HDR(hdr)); 2229 2230 if (GHOST_STATE(state)) { 2231 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2232 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2233 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2234 ASSERT(!HDR_HAS_RABD(hdr)); 2235 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2236 HDR_GET_LSIZE(hdr), hdr); 2237 return; 2238 } 2239 2240 if (hdr->b_l1hdr.b_pabd != NULL) { 2241 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2242 arc_hdr_size(hdr), hdr); 2243 } 2244 if (HDR_HAS_RABD(hdr)) { 2245 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2246 HDR_GET_PSIZE(hdr), hdr); 2247 } 2248 2249 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2250 buf = buf->b_next) { 2251 if (arc_buf_is_shared(buf)) 2252 continue; 2253 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2254 arc_buf_size(buf), buf); 2255 } 2256 } 2257 2258 /* 2259 * Add a reference to this hdr indicating that someone is actively 2260 * referencing that memory. When the refcount transitions from 0 to 1, 2261 * we remove it from the respective arc_state_t list to indicate that 2262 * it is not evictable. 2263 */ 2264 static void 2265 add_reference(arc_buf_hdr_t *hdr, void *tag) 2266 { 2267 arc_state_t *state; 2268 2269 ASSERT(HDR_HAS_L1HDR(hdr)); 2270 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) { 2271 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 2272 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2273 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2274 } 2275 2276 state = hdr->b_l1hdr.b_state; 2277 2278 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 2279 (state != arc_anon)) { 2280 /* We don't use the L2-only state list. */ 2281 if (state != arc_l2c_only) { 2282 multilist_remove(&state->arcs_list[arc_buf_type(hdr)], 2283 hdr); 2284 arc_evictable_space_decrement(hdr, state); 2285 } 2286 /* remove the prefetch flag if we get a reference */ 2287 if (HDR_HAS_L2HDR(hdr)) 2288 l2arc_hdr_arcstats_decrement_state(hdr); 2289 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 2290 if (HDR_HAS_L2HDR(hdr)) 2291 l2arc_hdr_arcstats_increment_state(hdr); 2292 } 2293 } 2294 2295 /* 2296 * Remove a reference from this hdr. When the reference transitions from 2297 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's 2298 * list making it eligible for eviction. 2299 */ 2300 static int 2301 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 2302 { 2303 int cnt; 2304 arc_state_t *state = hdr->b_l1hdr.b_state; 2305 2306 ASSERT(HDR_HAS_L1HDR(hdr)); 2307 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 2308 ASSERT(!GHOST_STATE(state)); 2309 2310 /* 2311 * arc_l2c_only counts as a ghost state so we don't need to explicitly 2312 * check to prevent usage of the arc_l2c_only list. 2313 */ 2314 if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) && 2315 (state != arc_anon)) { 2316 multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr); 2317 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 2318 arc_evictable_space_increment(hdr, state); 2319 } 2320 return (cnt); 2321 } 2322 2323 /* 2324 * Returns detailed information about a specific arc buffer. When the 2325 * state_index argument is set the function will calculate the arc header 2326 * list position for its arc state. Since this requires a linear traversal 2327 * callers are strongly encourage not to do this. However, it can be helpful 2328 * for targeted analysis so the functionality is provided. 2329 */ 2330 void 2331 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index) 2332 { 2333 arc_buf_hdr_t *hdr = ab->b_hdr; 2334 l1arc_buf_hdr_t *l1hdr = NULL; 2335 l2arc_buf_hdr_t *l2hdr = NULL; 2336 arc_state_t *state = NULL; 2337 2338 memset(abi, 0, sizeof (arc_buf_info_t)); 2339 2340 if (hdr == NULL) 2341 return; 2342 2343 abi->abi_flags = hdr->b_flags; 2344 2345 if (HDR_HAS_L1HDR(hdr)) { 2346 l1hdr = &hdr->b_l1hdr; 2347 state = l1hdr->b_state; 2348 } 2349 if (HDR_HAS_L2HDR(hdr)) 2350 l2hdr = &hdr->b_l2hdr; 2351 2352 if (l1hdr) { 2353 abi->abi_bufcnt = l1hdr->b_bufcnt; 2354 abi->abi_access = l1hdr->b_arc_access; 2355 abi->abi_mru_hits = l1hdr->b_mru_hits; 2356 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits; 2357 abi->abi_mfu_hits = l1hdr->b_mfu_hits; 2358 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits; 2359 abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt); 2360 } 2361 2362 if (l2hdr) { 2363 abi->abi_l2arc_dattr = l2hdr->b_daddr; 2364 abi->abi_l2arc_hits = l2hdr->b_hits; 2365 } 2366 2367 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON; 2368 abi->abi_state_contents = arc_buf_type(hdr); 2369 abi->abi_size = arc_hdr_size(hdr); 2370 } 2371 2372 /* 2373 * Move the supplied buffer to the indicated state. The hash lock 2374 * for the buffer must be held by the caller. 2375 */ 2376 static void 2377 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr, 2378 kmutex_t *hash_lock) 2379 { 2380 arc_state_t *old_state; 2381 int64_t refcnt; 2382 uint32_t bufcnt; 2383 boolean_t update_old, update_new; 2384 arc_buf_contents_t buftype = arc_buf_type(hdr); 2385 2386 /* 2387 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 2388 * in arc_read() when bringing a buffer out of the L2ARC. However, the 2389 * L1 hdr doesn't always exist when we change state to arc_anon before 2390 * destroying a header, in which case reallocating to add the L1 hdr is 2391 * pointless. 2392 */ 2393 if (HDR_HAS_L1HDR(hdr)) { 2394 old_state = hdr->b_l1hdr.b_state; 2395 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt); 2396 bufcnt = hdr->b_l1hdr.b_bufcnt; 2397 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL || 2398 HDR_HAS_RABD(hdr)); 2399 } else { 2400 old_state = arc_l2c_only; 2401 refcnt = 0; 2402 bufcnt = 0; 2403 update_old = B_FALSE; 2404 } 2405 update_new = update_old; 2406 2407 ASSERT(MUTEX_HELD(hash_lock)); 2408 ASSERT3P(new_state, !=, old_state); 2409 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0); 2410 ASSERT(old_state != arc_anon || bufcnt <= 1); 2411 2412 /* 2413 * If this buffer is evictable, transfer it from the 2414 * old state list to the new state list. 2415 */ 2416 if (refcnt == 0) { 2417 if (old_state != arc_anon && old_state != arc_l2c_only) { 2418 ASSERT(HDR_HAS_L1HDR(hdr)); 2419 multilist_remove(&old_state->arcs_list[buftype], hdr); 2420 2421 if (GHOST_STATE(old_state)) { 2422 ASSERT0(bufcnt); 2423 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2424 update_old = B_TRUE; 2425 } 2426 arc_evictable_space_decrement(hdr, old_state); 2427 } 2428 if (new_state != arc_anon && new_state != arc_l2c_only) { 2429 /* 2430 * An L1 header always exists here, since if we're 2431 * moving to some L1-cached state (i.e. not l2c_only or 2432 * anonymous), we realloc the header to add an L1hdr 2433 * beforehand. 2434 */ 2435 ASSERT(HDR_HAS_L1HDR(hdr)); 2436 multilist_insert(&new_state->arcs_list[buftype], hdr); 2437 2438 if (GHOST_STATE(new_state)) { 2439 ASSERT0(bufcnt); 2440 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2441 update_new = B_TRUE; 2442 } 2443 arc_evictable_space_increment(hdr, new_state); 2444 } 2445 } 2446 2447 ASSERT(!HDR_EMPTY(hdr)); 2448 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 2449 buf_hash_remove(hdr); 2450 2451 /* adjust state sizes (ignore arc_l2c_only) */ 2452 2453 if (update_new && new_state != arc_l2c_only) { 2454 ASSERT(HDR_HAS_L1HDR(hdr)); 2455 if (GHOST_STATE(new_state)) { 2456 ASSERT0(bufcnt); 2457 2458 /* 2459 * When moving a header to a ghost state, we first 2460 * remove all arc buffers. Thus, we'll have a 2461 * bufcnt of zero, and no arc buffer to use for 2462 * the reference. As a result, we use the arc 2463 * header pointer for the reference. 2464 */ 2465 (void) zfs_refcount_add_many(&new_state->arcs_size, 2466 HDR_GET_LSIZE(hdr), hdr); 2467 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2468 ASSERT(!HDR_HAS_RABD(hdr)); 2469 } else { 2470 uint32_t buffers = 0; 2471 2472 /* 2473 * Each individual buffer holds a unique reference, 2474 * thus we must remove each of these references one 2475 * at a time. 2476 */ 2477 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2478 buf = buf->b_next) { 2479 ASSERT3U(bufcnt, !=, 0); 2480 buffers++; 2481 2482 /* 2483 * When the arc_buf_t is sharing the data 2484 * block with the hdr, the owner of the 2485 * reference belongs to the hdr. Only 2486 * add to the refcount if the arc_buf_t is 2487 * not shared. 2488 */ 2489 if (arc_buf_is_shared(buf)) 2490 continue; 2491 2492 (void) zfs_refcount_add_many( 2493 &new_state->arcs_size, 2494 arc_buf_size(buf), buf); 2495 } 2496 ASSERT3U(bufcnt, ==, buffers); 2497 2498 if (hdr->b_l1hdr.b_pabd != NULL) { 2499 (void) zfs_refcount_add_many( 2500 &new_state->arcs_size, 2501 arc_hdr_size(hdr), hdr); 2502 } 2503 2504 if (HDR_HAS_RABD(hdr)) { 2505 (void) zfs_refcount_add_many( 2506 &new_state->arcs_size, 2507 HDR_GET_PSIZE(hdr), hdr); 2508 } 2509 } 2510 } 2511 2512 if (update_old && old_state != arc_l2c_only) { 2513 ASSERT(HDR_HAS_L1HDR(hdr)); 2514 if (GHOST_STATE(old_state)) { 2515 ASSERT0(bufcnt); 2516 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2517 ASSERT(!HDR_HAS_RABD(hdr)); 2518 2519 /* 2520 * When moving a header off of a ghost state, 2521 * the header will not contain any arc buffers. 2522 * We use the arc header pointer for the reference 2523 * which is exactly what we did when we put the 2524 * header on the ghost state. 2525 */ 2526 2527 (void) zfs_refcount_remove_many(&old_state->arcs_size, 2528 HDR_GET_LSIZE(hdr), hdr); 2529 } else { 2530 uint32_t buffers = 0; 2531 2532 /* 2533 * Each individual buffer holds a unique reference, 2534 * thus we must remove each of these references one 2535 * at a time. 2536 */ 2537 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2538 buf = buf->b_next) { 2539 ASSERT3U(bufcnt, !=, 0); 2540 buffers++; 2541 2542 /* 2543 * When the arc_buf_t is sharing the data 2544 * block with the hdr, the owner of the 2545 * reference belongs to the hdr. Only 2546 * add to the refcount if the arc_buf_t is 2547 * not shared. 2548 */ 2549 if (arc_buf_is_shared(buf)) 2550 continue; 2551 2552 (void) zfs_refcount_remove_many( 2553 &old_state->arcs_size, arc_buf_size(buf), 2554 buf); 2555 } 2556 ASSERT3U(bufcnt, ==, buffers); 2557 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 2558 HDR_HAS_RABD(hdr)); 2559 2560 if (hdr->b_l1hdr.b_pabd != NULL) { 2561 (void) zfs_refcount_remove_many( 2562 &old_state->arcs_size, arc_hdr_size(hdr), 2563 hdr); 2564 } 2565 2566 if (HDR_HAS_RABD(hdr)) { 2567 (void) zfs_refcount_remove_many( 2568 &old_state->arcs_size, HDR_GET_PSIZE(hdr), 2569 hdr); 2570 } 2571 } 2572 } 2573 2574 if (HDR_HAS_L1HDR(hdr)) { 2575 hdr->b_l1hdr.b_state = new_state; 2576 2577 if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) { 2578 l2arc_hdr_arcstats_decrement_state(hdr); 2579 hdr->b_l2hdr.b_arcs_state = new_state->arcs_state; 2580 l2arc_hdr_arcstats_increment_state(hdr); 2581 } 2582 } 2583 } 2584 2585 void 2586 arc_space_consume(uint64_t space, arc_space_type_t type) 2587 { 2588 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2589 2590 switch (type) { 2591 default: 2592 break; 2593 case ARC_SPACE_DATA: 2594 ARCSTAT_INCR(arcstat_data_size, space); 2595 break; 2596 case ARC_SPACE_META: 2597 ARCSTAT_INCR(arcstat_metadata_size, space); 2598 break; 2599 case ARC_SPACE_BONUS: 2600 ARCSTAT_INCR(arcstat_bonus_size, space); 2601 break; 2602 case ARC_SPACE_DNODE: 2603 aggsum_add(&arc_sums.arcstat_dnode_size, space); 2604 break; 2605 case ARC_SPACE_DBUF: 2606 ARCSTAT_INCR(arcstat_dbuf_size, space); 2607 break; 2608 case ARC_SPACE_HDRS: 2609 ARCSTAT_INCR(arcstat_hdr_size, space); 2610 break; 2611 case ARC_SPACE_L2HDRS: 2612 aggsum_add(&arc_sums.arcstat_l2_hdr_size, space); 2613 break; 2614 case ARC_SPACE_ABD_CHUNK_WASTE: 2615 /* 2616 * Note: this includes space wasted by all scatter ABD's, not 2617 * just those allocated by the ARC. But the vast majority of 2618 * scatter ABD's come from the ARC, because other users are 2619 * very short-lived. 2620 */ 2621 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, space); 2622 break; 2623 } 2624 2625 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) 2626 aggsum_add(&arc_sums.arcstat_meta_used, space); 2627 2628 aggsum_add(&arc_sums.arcstat_size, space); 2629 } 2630 2631 void 2632 arc_space_return(uint64_t space, arc_space_type_t type) 2633 { 2634 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2635 2636 switch (type) { 2637 default: 2638 break; 2639 case ARC_SPACE_DATA: 2640 ARCSTAT_INCR(arcstat_data_size, -space); 2641 break; 2642 case ARC_SPACE_META: 2643 ARCSTAT_INCR(arcstat_metadata_size, -space); 2644 break; 2645 case ARC_SPACE_BONUS: 2646 ARCSTAT_INCR(arcstat_bonus_size, -space); 2647 break; 2648 case ARC_SPACE_DNODE: 2649 aggsum_add(&arc_sums.arcstat_dnode_size, -space); 2650 break; 2651 case ARC_SPACE_DBUF: 2652 ARCSTAT_INCR(arcstat_dbuf_size, -space); 2653 break; 2654 case ARC_SPACE_HDRS: 2655 ARCSTAT_INCR(arcstat_hdr_size, -space); 2656 break; 2657 case ARC_SPACE_L2HDRS: 2658 aggsum_add(&arc_sums.arcstat_l2_hdr_size, -space); 2659 break; 2660 case ARC_SPACE_ABD_CHUNK_WASTE: 2661 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, -space); 2662 break; 2663 } 2664 2665 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) { 2666 ASSERT(aggsum_compare(&arc_sums.arcstat_meta_used, 2667 space) >= 0); 2668 ARCSTAT_MAX(arcstat_meta_max, 2669 aggsum_upper_bound(&arc_sums.arcstat_meta_used)); 2670 aggsum_add(&arc_sums.arcstat_meta_used, -space); 2671 } 2672 2673 ASSERT(aggsum_compare(&arc_sums.arcstat_size, space) >= 0); 2674 aggsum_add(&arc_sums.arcstat_size, -space); 2675 } 2676 2677 /* 2678 * Given a hdr and a buf, returns whether that buf can share its b_data buffer 2679 * with the hdr's b_pabd. 2680 */ 2681 static boolean_t 2682 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2683 { 2684 /* 2685 * The criteria for sharing a hdr's data are: 2686 * 1. the buffer is not encrypted 2687 * 2. the hdr's compression matches the buf's compression 2688 * 3. the hdr doesn't need to be byteswapped 2689 * 4. the hdr isn't already being shared 2690 * 5. the buf is either compressed or it is the last buf in the hdr list 2691 * 2692 * Criterion #5 maintains the invariant that shared uncompressed 2693 * bufs must be the final buf in the hdr's b_buf list. Reading this, you 2694 * might ask, "if a compressed buf is allocated first, won't that be the 2695 * last thing in the list?", but in that case it's impossible to create 2696 * a shared uncompressed buf anyway (because the hdr must be compressed 2697 * to have the compressed buf). You might also think that #3 is 2698 * sufficient to make this guarantee, however it's possible 2699 * (specifically in the rare L2ARC write race mentioned in 2700 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that 2701 * is shareable, but wasn't at the time of its allocation. Rather than 2702 * allow a new shared uncompressed buf to be created and then shuffle 2703 * the list around to make it the last element, this simply disallows 2704 * sharing if the new buf isn't the first to be added. 2705 */ 2706 ASSERT3P(buf->b_hdr, ==, hdr); 2707 boolean_t hdr_compressed = 2708 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF; 2709 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0; 2710 return (!ARC_BUF_ENCRYPTED(buf) && 2711 buf_compressed == hdr_compressed && 2712 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && 2713 !HDR_SHARED_DATA(hdr) && 2714 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf))); 2715 } 2716 2717 /* 2718 * Allocate a buf for this hdr. If you care about the data that's in the hdr, 2719 * or if you want a compressed buffer, pass those flags in. Returns 0 if the 2720 * copy was made successfully, or an error code otherwise. 2721 */ 2722 static int 2723 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb, 2724 void *tag, boolean_t encrypted, boolean_t compressed, boolean_t noauth, 2725 boolean_t fill, arc_buf_t **ret) 2726 { 2727 arc_buf_t *buf; 2728 arc_fill_flags_t flags = ARC_FILL_LOCKED; 2729 2730 ASSERT(HDR_HAS_L1HDR(hdr)); 2731 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2732 VERIFY(hdr->b_type == ARC_BUFC_DATA || 2733 hdr->b_type == ARC_BUFC_METADATA); 2734 ASSERT3P(ret, !=, NULL); 2735 ASSERT3P(*ret, ==, NULL); 2736 IMPLY(encrypted, compressed); 2737 2738 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2739 buf->b_hdr = hdr; 2740 buf->b_data = NULL; 2741 buf->b_next = hdr->b_l1hdr.b_buf; 2742 buf->b_flags = 0; 2743 2744 add_reference(hdr, tag); 2745 2746 /* 2747 * We're about to change the hdr's b_flags. We must either 2748 * hold the hash_lock or be undiscoverable. 2749 */ 2750 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2751 2752 /* 2753 * Only honor requests for compressed bufs if the hdr is actually 2754 * compressed. This must be overridden if the buffer is encrypted since 2755 * encrypted buffers cannot be decompressed. 2756 */ 2757 if (encrypted) { 2758 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2759 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED; 2760 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED; 2761 } else if (compressed && 2762 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 2763 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2764 flags |= ARC_FILL_COMPRESSED; 2765 } 2766 2767 if (noauth) { 2768 ASSERT0(encrypted); 2769 flags |= ARC_FILL_NOAUTH; 2770 } 2771 2772 /* 2773 * If the hdr's data can be shared then we share the data buffer and 2774 * set the appropriate bit in the hdr's b_flags to indicate the hdr is 2775 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new 2776 * buffer to store the buf's data. 2777 * 2778 * There are two additional restrictions here because we're sharing 2779 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be 2780 * actively involved in an L2ARC write, because if this buf is used by 2781 * an arc_write() then the hdr's data buffer will be released when the 2782 * write completes, even though the L2ARC write might still be using it. 2783 * Second, the hdr's ABD must be linear so that the buf's user doesn't 2784 * need to be ABD-aware. It must be allocated via 2785 * zio_[data_]buf_alloc(), not as a page, because we need to be able 2786 * to abd_release_ownership_of_buf(), which isn't allowed on "linear 2787 * page" buffers because the ABD code needs to handle freeing them 2788 * specially. 2789 */ 2790 boolean_t can_share = arc_can_share(hdr, buf) && 2791 !HDR_L2_WRITING(hdr) && 2792 hdr->b_l1hdr.b_pabd != NULL && 2793 abd_is_linear(hdr->b_l1hdr.b_pabd) && 2794 !abd_is_linear_page(hdr->b_l1hdr.b_pabd); 2795 2796 /* Set up b_data and sharing */ 2797 if (can_share) { 2798 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd); 2799 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2800 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2801 } else { 2802 buf->b_data = 2803 arc_get_data_buf(hdr, arc_buf_size(buf), buf); 2804 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2805 } 2806 VERIFY3P(buf->b_data, !=, NULL); 2807 2808 hdr->b_l1hdr.b_buf = buf; 2809 hdr->b_l1hdr.b_bufcnt += 1; 2810 if (encrypted) 2811 hdr->b_crypt_hdr.b_ebufcnt += 1; 2812 2813 /* 2814 * If the user wants the data from the hdr, we need to either copy or 2815 * decompress the data. 2816 */ 2817 if (fill) { 2818 ASSERT3P(zb, !=, NULL); 2819 return (arc_buf_fill(buf, spa, zb, flags)); 2820 } 2821 2822 return (0); 2823 } 2824 2825 static char *arc_onloan_tag = "onloan"; 2826 2827 static inline void 2828 arc_loaned_bytes_update(int64_t delta) 2829 { 2830 atomic_add_64(&arc_loaned_bytes, delta); 2831 2832 /* assert that it did not wrap around */ 2833 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 2834 } 2835 2836 /* 2837 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 2838 * flight data by arc_tempreserve_space() until they are "returned". Loaned 2839 * buffers must be returned to the arc before they can be used by the DMU or 2840 * freed. 2841 */ 2842 arc_buf_t * 2843 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size) 2844 { 2845 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag, 2846 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size); 2847 2848 arc_loaned_bytes_update(arc_buf_size(buf)); 2849 2850 return (buf); 2851 } 2852 2853 arc_buf_t * 2854 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize, 2855 enum zio_compress compression_type, uint8_t complevel) 2856 { 2857 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag, 2858 psize, lsize, compression_type, complevel); 2859 2860 arc_loaned_bytes_update(arc_buf_size(buf)); 2861 2862 return (buf); 2863 } 2864 2865 arc_buf_t * 2866 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder, 2867 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 2868 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 2869 enum zio_compress compression_type, uint8_t complevel) 2870 { 2871 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj, 2872 byteorder, salt, iv, mac, ot, psize, lsize, compression_type, 2873 complevel); 2874 2875 atomic_add_64(&arc_loaned_bytes, psize); 2876 return (buf); 2877 } 2878 2879 2880 /* 2881 * Return a loaned arc buffer to the arc. 2882 */ 2883 void 2884 arc_return_buf(arc_buf_t *buf, void *tag) 2885 { 2886 arc_buf_hdr_t *hdr = buf->b_hdr; 2887 2888 ASSERT3P(buf->b_data, !=, NULL); 2889 ASSERT(HDR_HAS_L1HDR(hdr)); 2890 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 2891 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2892 2893 arc_loaned_bytes_update(-arc_buf_size(buf)); 2894 } 2895 2896 /* Detach an arc_buf from a dbuf (tag) */ 2897 void 2898 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 2899 { 2900 arc_buf_hdr_t *hdr = buf->b_hdr; 2901 2902 ASSERT3P(buf->b_data, !=, NULL); 2903 ASSERT(HDR_HAS_L1HDR(hdr)); 2904 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2905 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 2906 2907 arc_loaned_bytes_update(arc_buf_size(buf)); 2908 } 2909 2910 static void 2911 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type) 2912 { 2913 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); 2914 2915 df->l2df_abd = abd; 2916 df->l2df_size = size; 2917 df->l2df_type = type; 2918 mutex_enter(&l2arc_free_on_write_mtx); 2919 list_insert_head(l2arc_free_on_write, df); 2920 mutex_exit(&l2arc_free_on_write_mtx); 2921 } 2922 2923 static void 2924 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata) 2925 { 2926 arc_state_t *state = hdr->b_l1hdr.b_state; 2927 arc_buf_contents_t type = arc_buf_type(hdr); 2928 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 2929 2930 /* protected by hash lock, if in the hash table */ 2931 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2932 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2933 ASSERT(state != arc_anon && state != arc_l2c_only); 2934 2935 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2936 size, hdr); 2937 } 2938 (void) zfs_refcount_remove_many(&state->arcs_size, size, hdr); 2939 if (type == ARC_BUFC_METADATA) { 2940 arc_space_return(size, ARC_SPACE_META); 2941 } else { 2942 ASSERT(type == ARC_BUFC_DATA); 2943 arc_space_return(size, ARC_SPACE_DATA); 2944 } 2945 2946 if (free_rdata) { 2947 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type); 2948 } else { 2949 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type); 2950 } 2951 } 2952 2953 /* 2954 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the 2955 * data buffer, we transfer the refcount ownership to the hdr and update 2956 * the appropriate kstats. 2957 */ 2958 static void 2959 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2960 { 2961 ASSERT(arc_can_share(hdr, buf)); 2962 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2963 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 2964 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2965 2966 /* 2967 * Start sharing the data buffer. We transfer the 2968 * refcount ownership to the hdr since it always owns 2969 * the refcount whenever an arc_buf_t is shared. 2970 */ 2971 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 2972 arc_hdr_size(hdr), buf, hdr); 2973 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf)); 2974 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd, 2975 HDR_ISTYPE_METADATA(hdr)); 2976 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2977 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2978 2979 /* 2980 * Since we've transferred ownership to the hdr we need 2981 * to increment its compressed and uncompressed kstats and 2982 * decrement the overhead size. 2983 */ 2984 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 2985 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 2986 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf)); 2987 } 2988 2989 static void 2990 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2991 { 2992 ASSERT(arc_buf_is_shared(buf)); 2993 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2994 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2995 2996 /* 2997 * We are no longer sharing this buffer so we need 2998 * to transfer its ownership to the rightful owner. 2999 */ 3000 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 3001 arc_hdr_size(hdr), hdr, buf); 3002 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3003 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd); 3004 abd_free(hdr->b_l1hdr.b_pabd); 3005 hdr->b_l1hdr.b_pabd = NULL; 3006 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 3007 3008 /* 3009 * Since the buffer is no longer shared between 3010 * the arc buf and the hdr, count it as overhead. 3011 */ 3012 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 3013 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3014 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 3015 } 3016 3017 /* 3018 * Remove an arc_buf_t from the hdr's buf list and return the last 3019 * arc_buf_t on the list. If no buffers remain on the list then return 3020 * NULL. 3021 */ 3022 static arc_buf_t * 3023 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf) 3024 { 3025 ASSERT(HDR_HAS_L1HDR(hdr)); 3026 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3027 3028 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf; 3029 arc_buf_t *lastbuf = NULL; 3030 3031 /* 3032 * Remove the buf from the hdr list and locate the last 3033 * remaining buffer on the list. 3034 */ 3035 while (*bufp != NULL) { 3036 if (*bufp == buf) 3037 *bufp = buf->b_next; 3038 3039 /* 3040 * If we've removed a buffer in the middle of 3041 * the list then update the lastbuf and update 3042 * bufp. 3043 */ 3044 if (*bufp != NULL) { 3045 lastbuf = *bufp; 3046 bufp = &(*bufp)->b_next; 3047 } 3048 } 3049 buf->b_next = NULL; 3050 ASSERT3P(lastbuf, !=, buf); 3051 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL); 3052 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL); 3053 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf)); 3054 3055 return (lastbuf); 3056 } 3057 3058 /* 3059 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's 3060 * list and free it. 3061 */ 3062 static void 3063 arc_buf_destroy_impl(arc_buf_t *buf) 3064 { 3065 arc_buf_hdr_t *hdr = buf->b_hdr; 3066 3067 /* 3068 * Free up the data associated with the buf but only if we're not 3069 * sharing this with the hdr. If we are sharing it with the hdr, the 3070 * hdr is responsible for doing the free. 3071 */ 3072 if (buf->b_data != NULL) { 3073 /* 3074 * We're about to change the hdr's b_flags. We must either 3075 * hold the hash_lock or be undiscoverable. 3076 */ 3077 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3078 3079 arc_cksum_verify(buf); 3080 arc_buf_unwatch(buf); 3081 3082 if (arc_buf_is_shared(buf)) { 3083 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3084 } else { 3085 uint64_t size = arc_buf_size(buf); 3086 arc_free_data_buf(hdr, buf->b_data, size, buf); 3087 ARCSTAT_INCR(arcstat_overhead_size, -size); 3088 } 3089 buf->b_data = NULL; 3090 3091 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3092 hdr->b_l1hdr.b_bufcnt -= 1; 3093 3094 if (ARC_BUF_ENCRYPTED(buf)) { 3095 hdr->b_crypt_hdr.b_ebufcnt -= 1; 3096 3097 /* 3098 * If we have no more encrypted buffers and we've 3099 * already gotten a copy of the decrypted data we can 3100 * free b_rabd to save some space. 3101 */ 3102 if (hdr->b_crypt_hdr.b_ebufcnt == 0 && 3103 HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL && 3104 !HDR_IO_IN_PROGRESS(hdr)) { 3105 arc_hdr_free_abd(hdr, B_TRUE); 3106 } 3107 } 3108 } 3109 3110 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 3111 3112 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 3113 /* 3114 * If the current arc_buf_t is sharing its data buffer with the 3115 * hdr, then reassign the hdr's b_pabd to share it with the new 3116 * buffer at the end of the list. The shared buffer is always 3117 * the last one on the hdr's buffer list. 3118 * 3119 * There is an equivalent case for compressed bufs, but since 3120 * they aren't guaranteed to be the last buf in the list and 3121 * that is an exceedingly rare case, we just allow that space be 3122 * wasted temporarily. We must also be careful not to share 3123 * encrypted buffers, since they cannot be shared. 3124 */ 3125 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) { 3126 /* Only one buf can be shared at once */ 3127 VERIFY(!arc_buf_is_shared(lastbuf)); 3128 /* hdr is uncompressed so can't have compressed buf */ 3129 VERIFY(!ARC_BUF_COMPRESSED(lastbuf)); 3130 3131 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3132 arc_hdr_free_abd(hdr, B_FALSE); 3133 3134 /* 3135 * We must setup a new shared block between the 3136 * last buffer and the hdr. The data would have 3137 * been allocated by the arc buf so we need to transfer 3138 * ownership to the hdr since it's now being shared. 3139 */ 3140 arc_share_buf(hdr, lastbuf); 3141 } 3142 } else if (HDR_SHARED_DATA(hdr)) { 3143 /* 3144 * Uncompressed shared buffers are always at the end 3145 * of the list. Compressed buffers don't have the 3146 * same requirements. This makes it hard to 3147 * simply assert that the lastbuf is shared so 3148 * we rely on the hdr's compression flags to determine 3149 * if we have a compressed, shared buffer. 3150 */ 3151 ASSERT3P(lastbuf, !=, NULL); 3152 ASSERT(arc_buf_is_shared(lastbuf) || 3153 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 3154 } 3155 3156 /* 3157 * Free the checksum if we're removing the last uncompressed buf from 3158 * this hdr. 3159 */ 3160 if (!arc_hdr_has_uncompressed_buf(hdr)) { 3161 arc_cksum_free(hdr); 3162 } 3163 3164 /* clean up the buf */ 3165 buf->b_hdr = NULL; 3166 kmem_cache_free(buf_cache, buf); 3167 } 3168 3169 static void 3170 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags) 3171 { 3172 uint64_t size; 3173 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0); 3174 3175 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 3176 ASSERT(HDR_HAS_L1HDR(hdr)); 3177 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata); 3178 IMPLY(alloc_rdata, HDR_PROTECTED(hdr)); 3179 3180 if (alloc_rdata) { 3181 size = HDR_GET_PSIZE(hdr); 3182 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL); 3183 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr, 3184 alloc_flags); 3185 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL); 3186 ARCSTAT_INCR(arcstat_raw_size, size); 3187 } else { 3188 size = arc_hdr_size(hdr); 3189 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3190 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr, 3191 alloc_flags); 3192 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3193 } 3194 3195 ARCSTAT_INCR(arcstat_compressed_size, size); 3196 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3197 } 3198 3199 static void 3200 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata) 3201 { 3202 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 3203 3204 ASSERT(HDR_HAS_L1HDR(hdr)); 3205 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 3206 IMPLY(free_rdata, HDR_HAS_RABD(hdr)); 3207 3208 /* 3209 * If the hdr is currently being written to the l2arc then 3210 * we defer freeing the data by adding it to the l2arc_free_on_write 3211 * list. The l2arc will free the data once it's finished 3212 * writing it to the l2arc device. 3213 */ 3214 if (HDR_L2_WRITING(hdr)) { 3215 arc_hdr_free_on_write(hdr, free_rdata); 3216 ARCSTAT_BUMP(arcstat_l2_free_on_write); 3217 } else if (free_rdata) { 3218 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr); 3219 } else { 3220 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr); 3221 } 3222 3223 if (free_rdata) { 3224 hdr->b_crypt_hdr.b_rabd = NULL; 3225 ARCSTAT_INCR(arcstat_raw_size, -size); 3226 } else { 3227 hdr->b_l1hdr.b_pabd = NULL; 3228 } 3229 3230 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr)) 3231 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 3232 3233 ARCSTAT_INCR(arcstat_compressed_size, -size); 3234 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3235 } 3236 3237 /* 3238 * Allocate empty anonymous ARC header. The header will get its identity 3239 * assigned and buffers attached later as part of read or write operations. 3240 * 3241 * In case of read arc_read() assigns header its identify (b_dva + b_birth), 3242 * inserts it into ARC hash to become globally visible and allocates physical 3243 * (b_pabd) or raw (b_rabd) ABD buffer to read into from disk. On disk read 3244 * completion arc_read_done() allocates ARC buffer(s) as needed, potentially 3245 * sharing one of them with the physical ABD buffer. 3246 * 3247 * In case of write arc_alloc_buf() allocates ARC buffer to be filled with 3248 * data. Then after compression and/or encryption arc_write_ready() allocates 3249 * and fills (or potentially shares) physical (b_pabd) or raw (b_rabd) ABD 3250 * buffer. On disk write completion arc_write_done() assigns the header its 3251 * new identity (b_dva + b_birth) and inserts into ARC hash. 3252 * 3253 * In case of partial overwrite the old data is read first as described. Then 3254 * arc_release() either allocates new anonymous ARC header and moves the ARC 3255 * buffer to it, or reuses the old ARC header by discarding its identity and 3256 * removing it from ARC hash. After buffer modification normal write process 3257 * follows as described. 3258 */ 3259 static arc_buf_hdr_t * 3260 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, 3261 boolean_t protected, enum zio_compress compression_type, uint8_t complevel, 3262 arc_buf_contents_t type) 3263 { 3264 arc_buf_hdr_t *hdr; 3265 3266 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); 3267 if (protected) { 3268 hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE); 3269 } else { 3270 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 3271 } 3272 3273 ASSERT(HDR_EMPTY(hdr)); 3274 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3275 HDR_SET_PSIZE(hdr, psize); 3276 HDR_SET_LSIZE(hdr, lsize); 3277 hdr->b_spa = spa; 3278 hdr->b_type = type; 3279 hdr->b_flags = 0; 3280 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); 3281 arc_hdr_set_compress(hdr, compression_type); 3282 hdr->b_complevel = complevel; 3283 if (protected) 3284 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 3285 3286 hdr->b_l1hdr.b_state = arc_anon; 3287 hdr->b_l1hdr.b_arc_access = 0; 3288 hdr->b_l1hdr.b_mru_hits = 0; 3289 hdr->b_l1hdr.b_mru_ghost_hits = 0; 3290 hdr->b_l1hdr.b_mfu_hits = 0; 3291 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 3292 hdr->b_l1hdr.b_bufcnt = 0; 3293 hdr->b_l1hdr.b_buf = NULL; 3294 3295 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3296 3297 return (hdr); 3298 } 3299 3300 /* 3301 * Transition between the two allocation states for the arc_buf_hdr struct. 3302 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 3303 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 3304 * version is used when a cache buffer is only in the L2ARC in order to reduce 3305 * memory usage. 3306 */ 3307 static arc_buf_hdr_t * 3308 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 3309 { 3310 ASSERT(HDR_HAS_L2HDR(hdr)); 3311 3312 arc_buf_hdr_t *nhdr; 3313 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3314 3315 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 3316 (old == hdr_l2only_cache && new == hdr_full_cache)); 3317 3318 /* 3319 * if the caller wanted a new full header and the header is to be 3320 * encrypted we will actually allocate the header from the full crypt 3321 * cache instead. The same applies to freeing from the old cache. 3322 */ 3323 if (HDR_PROTECTED(hdr) && new == hdr_full_cache) 3324 new = hdr_full_crypt_cache; 3325 if (HDR_PROTECTED(hdr) && old == hdr_full_cache) 3326 old = hdr_full_crypt_cache; 3327 3328 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 3329 3330 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 3331 buf_hash_remove(hdr); 3332 3333 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE); 3334 3335 if (new == hdr_full_cache || new == hdr_full_crypt_cache) { 3336 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3337 /* 3338 * arc_access and arc_change_state need to be aware that a 3339 * header has just come out of L2ARC, so we set its state to 3340 * l2c_only even though it's about to change. 3341 */ 3342 nhdr->b_l1hdr.b_state = arc_l2c_only; 3343 3344 /* Verify previous threads set to NULL before freeing */ 3345 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL); 3346 ASSERT(!HDR_HAS_RABD(hdr)); 3347 } else { 3348 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3349 ASSERT0(hdr->b_l1hdr.b_bufcnt); 3350 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3351 3352 /* 3353 * If we've reached here, We must have been called from 3354 * arc_evict_hdr(), as such we should have already been 3355 * removed from any ghost list we were previously on 3356 * (which protects us from racing with arc_evict_state), 3357 * thus no locking is needed during this check. 3358 */ 3359 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3360 3361 /* 3362 * A buffer must not be moved into the arc_l2c_only 3363 * state if it's not finished being written out to the 3364 * l2arc device. Otherwise, the b_l1hdr.b_pabd field 3365 * might try to be accessed, even though it was removed. 3366 */ 3367 VERIFY(!HDR_L2_WRITING(hdr)); 3368 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3369 ASSERT(!HDR_HAS_RABD(hdr)); 3370 3371 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3372 } 3373 /* 3374 * The header has been reallocated so we need to re-insert it into any 3375 * lists it was on. 3376 */ 3377 (void) buf_hash_insert(nhdr, NULL); 3378 3379 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 3380 3381 mutex_enter(&dev->l2ad_mtx); 3382 3383 /* 3384 * We must place the realloc'ed header back into the list at 3385 * the same spot. Otherwise, if it's placed earlier in the list, 3386 * l2arc_write_buffers() could find it during the function's 3387 * write phase, and try to write it out to the l2arc. 3388 */ 3389 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 3390 list_remove(&dev->l2ad_buflist, hdr); 3391 3392 mutex_exit(&dev->l2ad_mtx); 3393 3394 /* 3395 * Since we're using the pointer address as the tag when 3396 * incrementing and decrementing the l2ad_alloc refcount, we 3397 * must remove the old pointer (that we're about to destroy) and 3398 * add the new pointer to the refcount. Otherwise we'd remove 3399 * the wrong pointer address when calling arc_hdr_destroy() later. 3400 */ 3401 3402 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 3403 arc_hdr_size(hdr), hdr); 3404 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 3405 arc_hdr_size(nhdr), nhdr); 3406 3407 buf_discard_identity(hdr); 3408 kmem_cache_free(old, hdr); 3409 3410 return (nhdr); 3411 } 3412 3413 /* 3414 * This function allows an L1 header to be reallocated as a crypt 3415 * header and vice versa. If we are going to a crypt header, the 3416 * new fields will be zeroed out. 3417 */ 3418 static arc_buf_hdr_t * 3419 arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt) 3420 { 3421 arc_buf_hdr_t *nhdr; 3422 arc_buf_t *buf; 3423 kmem_cache_t *ncache, *ocache; 3424 3425 /* 3426 * This function requires that hdr is in the arc_anon state. 3427 * Therefore it won't have any L2ARC data for us to worry 3428 * about copying. 3429 */ 3430 ASSERT(HDR_HAS_L1HDR(hdr)); 3431 ASSERT(!HDR_HAS_L2HDR(hdr)); 3432 ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt); 3433 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3434 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3435 ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node)); 3436 ASSERT3P(hdr->b_hash_next, ==, NULL); 3437 3438 if (need_crypt) { 3439 ncache = hdr_full_crypt_cache; 3440 ocache = hdr_full_cache; 3441 } else { 3442 ncache = hdr_full_cache; 3443 ocache = hdr_full_crypt_cache; 3444 } 3445 3446 nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE); 3447 3448 /* 3449 * Copy all members that aren't locks or condvars to the new header. 3450 * No lists are pointing to us (as we asserted above), so we don't 3451 * need to worry about the list nodes. 3452 */ 3453 nhdr->b_dva = hdr->b_dva; 3454 nhdr->b_birth = hdr->b_birth; 3455 nhdr->b_type = hdr->b_type; 3456 nhdr->b_flags = hdr->b_flags; 3457 nhdr->b_psize = hdr->b_psize; 3458 nhdr->b_lsize = hdr->b_lsize; 3459 nhdr->b_spa = hdr->b_spa; 3460 nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum; 3461 nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt; 3462 nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap; 3463 nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state; 3464 nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access; 3465 nhdr->b_l1hdr.b_mru_hits = hdr->b_l1hdr.b_mru_hits; 3466 nhdr->b_l1hdr.b_mru_ghost_hits = hdr->b_l1hdr.b_mru_ghost_hits; 3467 nhdr->b_l1hdr.b_mfu_hits = hdr->b_l1hdr.b_mfu_hits; 3468 nhdr->b_l1hdr.b_mfu_ghost_hits = hdr->b_l1hdr.b_mfu_ghost_hits; 3469 nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb; 3470 nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd; 3471 3472 /* 3473 * This zfs_refcount_add() exists only to ensure that the individual 3474 * arc buffers always point to a header that is referenced, avoiding 3475 * a small race condition that could trigger ASSERTs. 3476 */ 3477 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG); 3478 nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf; 3479 for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) { 3480 mutex_enter(&buf->b_evict_lock); 3481 buf->b_hdr = nhdr; 3482 mutex_exit(&buf->b_evict_lock); 3483 } 3484 3485 zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt); 3486 (void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG); 3487 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3488 3489 if (need_crypt) { 3490 arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED); 3491 } else { 3492 arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED); 3493 } 3494 3495 /* unset all members of the original hdr */ 3496 bzero(&hdr->b_dva, sizeof (dva_t)); 3497 hdr->b_birth = 0; 3498 hdr->b_type = ARC_BUFC_INVALID; 3499 hdr->b_flags = 0; 3500 hdr->b_psize = 0; 3501 hdr->b_lsize = 0; 3502 hdr->b_spa = 0; 3503 hdr->b_l1hdr.b_freeze_cksum = NULL; 3504 hdr->b_l1hdr.b_buf = NULL; 3505 hdr->b_l1hdr.b_bufcnt = 0; 3506 hdr->b_l1hdr.b_byteswap = 0; 3507 hdr->b_l1hdr.b_state = NULL; 3508 hdr->b_l1hdr.b_arc_access = 0; 3509 hdr->b_l1hdr.b_mru_hits = 0; 3510 hdr->b_l1hdr.b_mru_ghost_hits = 0; 3511 hdr->b_l1hdr.b_mfu_hits = 0; 3512 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 3513 hdr->b_l1hdr.b_acb = NULL; 3514 hdr->b_l1hdr.b_pabd = NULL; 3515 3516 if (ocache == hdr_full_crypt_cache) { 3517 ASSERT(!HDR_HAS_RABD(hdr)); 3518 hdr->b_crypt_hdr.b_ot = DMU_OT_NONE; 3519 hdr->b_crypt_hdr.b_ebufcnt = 0; 3520 hdr->b_crypt_hdr.b_dsobj = 0; 3521 bzero(hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3522 bzero(hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3523 bzero(hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3524 } 3525 3526 buf_discard_identity(hdr); 3527 kmem_cache_free(ocache, hdr); 3528 3529 return (nhdr); 3530 } 3531 3532 /* 3533 * This function is used by the send / receive code to convert a newly 3534 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It 3535 * is also used to allow the root objset block to be updated without altering 3536 * its embedded MACs. Both block types will always be uncompressed so we do not 3537 * have to worry about compression type or psize. 3538 */ 3539 void 3540 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder, 3541 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv, 3542 const uint8_t *mac) 3543 { 3544 arc_buf_hdr_t *hdr = buf->b_hdr; 3545 3546 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET); 3547 ASSERT(HDR_HAS_L1HDR(hdr)); 3548 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3549 3550 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED); 3551 if (!HDR_PROTECTED(hdr)) 3552 hdr = arc_hdr_realloc_crypt(hdr, B_TRUE); 3553 hdr->b_crypt_hdr.b_dsobj = dsobj; 3554 hdr->b_crypt_hdr.b_ot = ot; 3555 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3556 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3557 if (!arc_hdr_has_uncompressed_buf(hdr)) 3558 arc_cksum_free(hdr); 3559 3560 if (salt != NULL) 3561 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3562 if (iv != NULL) 3563 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3564 if (mac != NULL) 3565 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3566 } 3567 3568 /* 3569 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. 3570 * The buf is returned thawed since we expect the consumer to modify it. 3571 */ 3572 arc_buf_t * 3573 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size) 3574 { 3575 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, 3576 B_FALSE, ZIO_COMPRESS_OFF, 0, type); 3577 3578 arc_buf_t *buf = NULL; 3579 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE, 3580 B_FALSE, B_FALSE, &buf)); 3581 arc_buf_thaw(buf); 3582 3583 return (buf); 3584 } 3585 3586 /* 3587 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this 3588 * for bufs containing metadata. 3589 */ 3590 arc_buf_t * 3591 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize, 3592 enum zio_compress compression_type, uint8_t complevel) 3593 { 3594 ASSERT3U(lsize, >, 0); 3595 ASSERT3U(lsize, >=, psize); 3596 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF); 3597 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3598 3599 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 3600 B_FALSE, compression_type, complevel, ARC_BUFC_DATA); 3601 3602 arc_buf_t *buf = NULL; 3603 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, 3604 B_TRUE, B_FALSE, B_FALSE, &buf)); 3605 arc_buf_thaw(buf); 3606 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3607 3608 /* 3609 * To ensure that the hdr has the correct data in it if we call 3610 * arc_untransform() on this buf before it's been written to disk, 3611 * it's easiest if we just set up sharing between the buf and the hdr. 3612 */ 3613 arc_share_buf(hdr, buf); 3614 3615 return (buf); 3616 } 3617 3618 arc_buf_t * 3619 arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder, 3620 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 3621 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 3622 enum zio_compress compression_type, uint8_t complevel) 3623 { 3624 arc_buf_hdr_t *hdr; 3625 arc_buf_t *buf; 3626 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ? 3627 ARC_BUFC_METADATA : ARC_BUFC_DATA; 3628 3629 ASSERT3U(lsize, >, 0); 3630 ASSERT3U(lsize, >=, psize); 3631 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF); 3632 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3633 3634 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE, 3635 compression_type, complevel, type); 3636 3637 hdr->b_crypt_hdr.b_dsobj = dsobj; 3638 hdr->b_crypt_hdr.b_ot = ot; 3639 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3640 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3641 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3642 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3643 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3644 3645 /* 3646 * This buffer will be considered encrypted even if the ot is not an 3647 * encrypted type. It will become authenticated instead in 3648 * arc_write_ready(). 3649 */ 3650 buf = NULL; 3651 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE, 3652 B_FALSE, B_FALSE, &buf)); 3653 arc_buf_thaw(buf); 3654 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3655 3656 return (buf); 3657 } 3658 3659 static void 3660 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 3661 boolean_t state_only) 3662 { 3663 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3664 l2arc_dev_t *dev = l2hdr->b_dev; 3665 uint64_t lsize = HDR_GET_LSIZE(hdr); 3666 uint64_t psize = HDR_GET_PSIZE(hdr); 3667 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3668 arc_buf_contents_t type = hdr->b_type; 3669 int64_t lsize_s; 3670 int64_t psize_s; 3671 int64_t asize_s; 3672 3673 if (incr) { 3674 lsize_s = lsize; 3675 psize_s = psize; 3676 asize_s = asize; 3677 } else { 3678 lsize_s = -lsize; 3679 psize_s = -psize; 3680 asize_s = -asize; 3681 } 3682 3683 /* If the buffer is a prefetch, count it as such. */ 3684 if (HDR_PREFETCH(hdr)) { 3685 ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s); 3686 } else { 3687 /* 3688 * We use the value stored in the L2 header upon initial 3689 * caching in L2ARC. This value will be updated in case 3690 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC 3691 * metadata (log entry) cannot currently be updated. Having 3692 * the ARC state in the L2 header solves the problem of a 3693 * possibly absent L1 header (apparent in buffers restored 3694 * from persistent L2ARC). 3695 */ 3696 switch (hdr->b_l2hdr.b_arcs_state) { 3697 case ARC_STATE_MRU_GHOST: 3698 case ARC_STATE_MRU: 3699 ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s); 3700 break; 3701 case ARC_STATE_MFU_GHOST: 3702 case ARC_STATE_MFU: 3703 ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s); 3704 break; 3705 default: 3706 break; 3707 } 3708 } 3709 3710 if (state_only) 3711 return; 3712 3713 ARCSTAT_INCR(arcstat_l2_psize, psize_s); 3714 ARCSTAT_INCR(arcstat_l2_lsize, lsize_s); 3715 3716 switch (type) { 3717 case ARC_BUFC_DATA: 3718 ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s); 3719 break; 3720 case ARC_BUFC_METADATA: 3721 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s); 3722 break; 3723 default: 3724 break; 3725 } 3726 } 3727 3728 3729 static void 3730 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 3731 { 3732 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3733 l2arc_dev_t *dev = l2hdr->b_dev; 3734 uint64_t psize = HDR_GET_PSIZE(hdr); 3735 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3736 3737 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 3738 ASSERT(HDR_HAS_L2HDR(hdr)); 3739 3740 list_remove(&dev->l2ad_buflist, hdr); 3741 3742 l2arc_hdr_arcstats_decrement(hdr); 3743 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); 3744 3745 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), 3746 hdr); 3747 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 3748 } 3749 3750 static void 3751 arc_hdr_destroy(arc_buf_hdr_t *hdr) 3752 { 3753 if (HDR_HAS_L1HDR(hdr)) { 3754 ASSERT(hdr->b_l1hdr.b_buf == NULL || 3755 hdr->b_l1hdr.b_bufcnt > 0); 3756 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3757 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3758 } 3759 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3760 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 3761 3762 if (HDR_HAS_L2HDR(hdr)) { 3763 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3764 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 3765 3766 if (!buflist_held) 3767 mutex_enter(&dev->l2ad_mtx); 3768 3769 /* 3770 * Even though we checked this conditional above, we 3771 * need to check this again now that we have the 3772 * l2ad_mtx. This is because we could be racing with 3773 * another thread calling l2arc_evict() which might have 3774 * destroyed this header's L2 portion as we were waiting 3775 * to acquire the l2ad_mtx. If that happens, we don't 3776 * want to re-destroy the header's L2 portion. 3777 */ 3778 if (HDR_HAS_L2HDR(hdr)) 3779 arc_hdr_l2hdr_destroy(hdr); 3780 3781 if (!buflist_held) 3782 mutex_exit(&dev->l2ad_mtx); 3783 } 3784 3785 /* 3786 * The header's identify can only be safely discarded once it is no 3787 * longer discoverable. This requires removing it from the hash table 3788 * and the l2arc header list. After this point the hash lock can not 3789 * be used to protect the header. 3790 */ 3791 if (!HDR_EMPTY(hdr)) 3792 buf_discard_identity(hdr); 3793 3794 if (HDR_HAS_L1HDR(hdr)) { 3795 arc_cksum_free(hdr); 3796 3797 while (hdr->b_l1hdr.b_buf != NULL) 3798 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf); 3799 3800 if (hdr->b_l1hdr.b_pabd != NULL) 3801 arc_hdr_free_abd(hdr, B_FALSE); 3802 3803 if (HDR_HAS_RABD(hdr)) 3804 arc_hdr_free_abd(hdr, B_TRUE); 3805 } 3806 3807 ASSERT3P(hdr->b_hash_next, ==, NULL); 3808 if (HDR_HAS_L1HDR(hdr)) { 3809 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3810 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 3811 3812 if (!HDR_PROTECTED(hdr)) { 3813 kmem_cache_free(hdr_full_cache, hdr); 3814 } else { 3815 kmem_cache_free(hdr_full_crypt_cache, hdr); 3816 } 3817 } else { 3818 kmem_cache_free(hdr_l2only_cache, hdr); 3819 } 3820 } 3821 3822 void 3823 arc_buf_destroy(arc_buf_t *buf, void* tag) 3824 { 3825 arc_buf_hdr_t *hdr = buf->b_hdr; 3826 3827 if (hdr->b_l1hdr.b_state == arc_anon) { 3828 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 3829 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3830 VERIFY0(remove_reference(hdr, NULL, tag)); 3831 arc_hdr_destroy(hdr); 3832 return; 3833 } 3834 3835 kmutex_t *hash_lock = HDR_LOCK(hdr); 3836 mutex_enter(hash_lock); 3837 3838 ASSERT3P(hdr, ==, buf->b_hdr); 3839 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3840 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3841 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); 3842 ASSERT3P(buf->b_data, !=, NULL); 3843 3844 (void) remove_reference(hdr, hash_lock, tag); 3845 arc_buf_destroy_impl(buf); 3846 mutex_exit(hash_lock); 3847 } 3848 3849 /* 3850 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 3851 * state of the header is dependent on its state prior to entering this 3852 * function. The following transitions are possible: 3853 * 3854 * - arc_mru -> arc_mru_ghost 3855 * - arc_mfu -> arc_mfu_ghost 3856 * - arc_mru_ghost -> arc_l2c_only 3857 * - arc_mru_ghost -> deleted 3858 * - arc_mfu_ghost -> arc_l2c_only 3859 * - arc_mfu_ghost -> deleted 3860 * 3861 * Return total size of evicted data buffers for eviction progress tracking. 3862 * When evicting from ghost states return logical buffer size to make eviction 3863 * progress at the same (or at least comparable) rate as from non-ghost states. 3864 * 3865 * Return *real_evicted for actual ARC size reduction to wake up threads 3866 * waiting for it. For non-ghost states it includes size of evicted data 3867 * buffers (the headers are not freed there). For ghost states it includes 3868 * only the evicted headers size. 3869 */ 3870 static int64_t 3871 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, uint64_t *real_evicted) 3872 { 3873 arc_state_t *evicted_state, *state; 3874 int64_t bytes_evicted = 0; 3875 int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ? 3876 arc_min_prescient_prefetch_ms : arc_min_prefetch_ms; 3877 3878 ASSERT(MUTEX_HELD(hash_lock)); 3879 ASSERT(HDR_HAS_L1HDR(hdr)); 3880 3881 *real_evicted = 0; 3882 state = hdr->b_l1hdr.b_state; 3883 if (GHOST_STATE(state)) { 3884 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3885 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3886 3887 /* 3888 * l2arc_write_buffers() relies on a header's L1 portion 3889 * (i.e. its b_pabd field) during it's write phase. 3890 * Thus, we cannot push a header onto the arc_l2c_only 3891 * state (removing its L1 piece) until the header is 3892 * done being written to the l2arc. 3893 */ 3894 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 3895 ARCSTAT_BUMP(arcstat_evict_l2_skip); 3896 return (bytes_evicted); 3897 } 3898 3899 ARCSTAT_BUMP(arcstat_deleted); 3900 bytes_evicted += HDR_GET_LSIZE(hdr); 3901 3902 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 3903 3904 if (HDR_HAS_L2HDR(hdr)) { 3905 ASSERT(hdr->b_l1hdr.b_pabd == NULL); 3906 ASSERT(!HDR_HAS_RABD(hdr)); 3907 /* 3908 * This buffer is cached on the 2nd Level ARC; 3909 * don't destroy the header. 3910 */ 3911 arc_change_state(arc_l2c_only, hdr, hash_lock); 3912 /* 3913 * dropping from L1+L2 cached to L2-only, 3914 * realloc to remove the L1 header. 3915 */ 3916 hdr = arc_hdr_realloc(hdr, hdr_full_cache, 3917 hdr_l2only_cache); 3918 *real_evicted += HDR_FULL_SIZE - HDR_L2ONLY_SIZE; 3919 } else { 3920 arc_change_state(arc_anon, hdr, hash_lock); 3921 arc_hdr_destroy(hdr); 3922 *real_evicted += HDR_FULL_SIZE; 3923 } 3924 return (bytes_evicted); 3925 } 3926 3927 ASSERT(state == arc_mru || state == arc_mfu); 3928 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3929 3930 /* prefetch buffers have a minimum lifespan */ 3931 if (HDR_IO_IN_PROGRESS(hdr) || 3932 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 3933 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < 3934 MSEC_TO_TICK(min_lifetime))) { 3935 ARCSTAT_BUMP(arcstat_evict_skip); 3936 return (bytes_evicted); 3937 } 3938 3939 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3940 while (hdr->b_l1hdr.b_buf) { 3941 arc_buf_t *buf = hdr->b_l1hdr.b_buf; 3942 if (!mutex_tryenter(&buf->b_evict_lock)) { 3943 ARCSTAT_BUMP(arcstat_mutex_miss); 3944 break; 3945 } 3946 if (buf->b_data != NULL) { 3947 bytes_evicted += HDR_GET_LSIZE(hdr); 3948 *real_evicted += HDR_GET_LSIZE(hdr); 3949 } 3950 mutex_exit(&buf->b_evict_lock); 3951 arc_buf_destroy_impl(buf); 3952 } 3953 3954 if (HDR_HAS_L2HDR(hdr)) { 3955 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); 3956 } else { 3957 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 3958 ARCSTAT_INCR(arcstat_evict_l2_eligible, 3959 HDR_GET_LSIZE(hdr)); 3960 3961 switch (state->arcs_state) { 3962 case ARC_STATE_MRU: 3963 ARCSTAT_INCR( 3964 arcstat_evict_l2_eligible_mru, 3965 HDR_GET_LSIZE(hdr)); 3966 break; 3967 case ARC_STATE_MFU: 3968 ARCSTAT_INCR( 3969 arcstat_evict_l2_eligible_mfu, 3970 HDR_GET_LSIZE(hdr)); 3971 break; 3972 default: 3973 break; 3974 } 3975 } else { 3976 ARCSTAT_INCR(arcstat_evict_l2_ineligible, 3977 HDR_GET_LSIZE(hdr)); 3978 } 3979 } 3980 3981 if (hdr->b_l1hdr.b_bufcnt == 0) { 3982 arc_cksum_free(hdr); 3983 3984 bytes_evicted += arc_hdr_size(hdr); 3985 *real_evicted += arc_hdr_size(hdr); 3986 3987 /* 3988 * If this hdr is being evicted and has a compressed 3989 * buffer then we discard it here before we change states. 3990 * This ensures that the accounting is updated correctly 3991 * in arc_free_data_impl(). 3992 */ 3993 if (hdr->b_l1hdr.b_pabd != NULL) 3994 arc_hdr_free_abd(hdr, B_FALSE); 3995 3996 if (HDR_HAS_RABD(hdr)) 3997 arc_hdr_free_abd(hdr, B_TRUE); 3998 3999 arc_change_state(evicted_state, hdr, hash_lock); 4000 ASSERT(HDR_IN_HASH_TABLE(hdr)); 4001 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 4002 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 4003 } 4004 4005 return (bytes_evicted); 4006 } 4007 4008 static void 4009 arc_set_need_free(void) 4010 { 4011 ASSERT(MUTEX_HELD(&arc_evict_lock)); 4012 int64_t remaining = arc_free_memory() - arc_sys_free / 2; 4013 arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters); 4014 if (aw == NULL) { 4015 arc_need_free = MAX(-remaining, 0); 4016 } else { 4017 arc_need_free = 4018 MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count)); 4019 } 4020 } 4021 4022 static uint64_t 4023 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 4024 uint64_t spa, uint64_t bytes) 4025 { 4026 multilist_sublist_t *mls; 4027 uint64_t bytes_evicted = 0, real_evicted = 0; 4028 arc_buf_hdr_t *hdr; 4029 kmutex_t *hash_lock; 4030 int evict_count = zfs_arc_evict_batch_limit; 4031 4032 ASSERT3P(marker, !=, NULL); 4033 4034 mls = multilist_sublist_lock(ml, idx); 4035 4036 for (hdr = multilist_sublist_prev(mls, marker); likely(hdr != NULL); 4037 hdr = multilist_sublist_prev(mls, marker)) { 4038 if ((evict_count <= 0) || (bytes_evicted >= bytes)) 4039 break; 4040 4041 /* 4042 * To keep our iteration location, move the marker 4043 * forward. Since we're not holding hdr's hash lock, we 4044 * must be very careful and not remove 'hdr' from the 4045 * sublist. Otherwise, other consumers might mistake the 4046 * 'hdr' as not being on a sublist when they call the 4047 * multilist_link_active() function (they all rely on 4048 * the hash lock protecting concurrent insertions and 4049 * removals). multilist_sublist_move_forward() was 4050 * specifically implemented to ensure this is the case 4051 * (only 'marker' will be removed and re-inserted). 4052 */ 4053 multilist_sublist_move_forward(mls, marker); 4054 4055 /* 4056 * The only case where the b_spa field should ever be 4057 * zero, is the marker headers inserted by 4058 * arc_evict_state(). It's possible for multiple threads 4059 * to be calling arc_evict_state() concurrently (e.g. 4060 * dsl_pool_close() and zio_inject_fault()), so we must 4061 * skip any markers we see from these other threads. 4062 */ 4063 if (hdr->b_spa == 0) 4064 continue; 4065 4066 /* we're only interested in evicting buffers of a certain spa */ 4067 if (spa != 0 && hdr->b_spa != spa) { 4068 ARCSTAT_BUMP(arcstat_evict_skip); 4069 continue; 4070 } 4071 4072 hash_lock = HDR_LOCK(hdr); 4073 4074 /* 4075 * We aren't calling this function from any code path 4076 * that would already be holding a hash lock, so we're 4077 * asserting on this assumption to be defensive in case 4078 * this ever changes. Without this check, it would be 4079 * possible to incorrectly increment arcstat_mutex_miss 4080 * below (e.g. if the code changed such that we called 4081 * this function with a hash lock held). 4082 */ 4083 ASSERT(!MUTEX_HELD(hash_lock)); 4084 4085 if (mutex_tryenter(hash_lock)) { 4086 uint64_t revicted; 4087 uint64_t evicted = arc_evict_hdr(hdr, hash_lock, 4088 &revicted); 4089 mutex_exit(hash_lock); 4090 4091 bytes_evicted += evicted; 4092 real_evicted += revicted; 4093 4094 /* 4095 * If evicted is zero, arc_evict_hdr() must have 4096 * decided to skip this header, don't increment 4097 * evict_count in this case. 4098 */ 4099 if (evicted != 0) 4100 evict_count--; 4101 4102 } else { 4103 ARCSTAT_BUMP(arcstat_mutex_miss); 4104 } 4105 } 4106 4107 multilist_sublist_unlock(mls); 4108 4109 /* 4110 * Increment the count of evicted bytes, and wake up any threads that 4111 * are waiting for the count to reach this value. Since the list is 4112 * ordered by ascending aew_count, we pop off the beginning of the 4113 * list until we reach the end, or a waiter that's past the current 4114 * "count". Doing this outside the loop reduces the number of times 4115 * we need to acquire the global arc_evict_lock. 4116 * 4117 * Only wake when there's sufficient free memory in the system 4118 * (specifically, arc_sys_free/2, which by default is a bit more than 4119 * 1/64th of RAM). See the comments in arc_wait_for_eviction(). 4120 */ 4121 mutex_enter(&arc_evict_lock); 4122 arc_evict_count += real_evicted; 4123 4124 if (arc_free_memory() > arc_sys_free / 2) { 4125 arc_evict_waiter_t *aw; 4126 while ((aw = list_head(&arc_evict_waiters)) != NULL && 4127 aw->aew_count <= arc_evict_count) { 4128 list_remove(&arc_evict_waiters, aw); 4129 cv_broadcast(&aw->aew_cv); 4130 } 4131 } 4132 arc_set_need_free(); 4133 mutex_exit(&arc_evict_lock); 4134 4135 /* 4136 * If the ARC size is reduced from arc_c_max to arc_c_min (especially 4137 * if the average cached block is small), eviction can be on-CPU for 4138 * many seconds. To ensure that other threads that may be bound to 4139 * this CPU are able to make progress, make a voluntary preemption 4140 * call here. 4141 */ 4142 cond_resched(); 4143 4144 return (bytes_evicted); 4145 } 4146 4147 /* 4148 * Evict buffers from the given arc state, until we've removed the 4149 * specified number of bytes. Move the removed buffers to the 4150 * appropriate evict state. 4151 * 4152 * This function makes a "best effort". It skips over any buffers 4153 * it can't get a hash_lock on, and so, may not catch all candidates. 4154 * It may also return without evicting as much space as requested. 4155 * 4156 * If bytes is specified using the special value ARC_EVICT_ALL, this 4157 * will evict all available (i.e. unlocked and evictable) buffers from 4158 * the given arc state; which is used by arc_flush(). 4159 */ 4160 static uint64_t 4161 arc_evict_state(arc_state_t *state, uint64_t spa, uint64_t bytes, 4162 arc_buf_contents_t type) 4163 { 4164 uint64_t total_evicted = 0; 4165 multilist_t *ml = &state->arcs_list[type]; 4166 int num_sublists; 4167 arc_buf_hdr_t **markers; 4168 4169 num_sublists = multilist_get_num_sublists(ml); 4170 4171 /* 4172 * If we've tried to evict from each sublist, made some 4173 * progress, but still have not hit the target number of bytes 4174 * to evict, we want to keep trying. The markers allow us to 4175 * pick up where we left off for each individual sublist, rather 4176 * than starting from the tail each time. 4177 */ 4178 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP); 4179 for (int i = 0; i < num_sublists; i++) { 4180 multilist_sublist_t *mls; 4181 4182 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 4183 4184 /* 4185 * A b_spa of 0 is used to indicate that this header is 4186 * a marker. This fact is used in arc_evict_type() and 4187 * arc_evict_state_impl(). 4188 */ 4189 markers[i]->b_spa = 0; 4190 4191 mls = multilist_sublist_lock(ml, i); 4192 multilist_sublist_insert_tail(mls, markers[i]); 4193 multilist_sublist_unlock(mls); 4194 } 4195 4196 /* 4197 * While we haven't hit our target number of bytes to evict, or 4198 * we're evicting all available buffers. 4199 */ 4200 while (total_evicted < bytes) { 4201 int sublist_idx = multilist_get_random_index(ml); 4202 uint64_t scan_evicted = 0; 4203 4204 /* 4205 * Try to reduce pinned dnodes with a floor of arc_dnode_limit. 4206 * Request that 10% of the LRUs be scanned by the superblock 4207 * shrinker. 4208 */ 4209 if (type == ARC_BUFC_DATA && aggsum_compare( 4210 &arc_sums.arcstat_dnode_size, arc_dnode_size_limit) > 0) { 4211 arc_prune_async((aggsum_upper_bound( 4212 &arc_sums.arcstat_dnode_size) - 4213 arc_dnode_size_limit) / sizeof (dnode_t) / 4214 zfs_arc_dnode_reduce_percent); 4215 } 4216 4217 /* 4218 * Start eviction using a randomly selected sublist, 4219 * this is to try and evenly balance eviction across all 4220 * sublists. Always starting at the same sublist 4221 * (e.g. index 0) would cause evictions to favor certain 4222 * sublists over others. 4223 */ 4224 for (int i = 0; i < num_sublists; i++) { 4225 uint64_t bytes_remaining; 4226 uint64_t bytes_evicted; 4227 4228 if (total_evicted < bytes) 4229 bytes_remaining = bytes - total_evicted; 4230 else 4231 break; 4232 4233 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 4234 markers[sublist_idx], spa, bytes_remaining); 4235 4236 scan_evicted += bytes_evicted; 4237 total_evicted += bytes_evicted; 4238 4239 /* we've reached the end, wrap to the beginning */ 4240 if (++sublist_idx >= num_sublists) 4241 sublist_idx = 0; 4242 } 4243 4244 /* 4245 * If we didn't evict anything during this scan, we have 4246 * no reason to believe we'll evict more during another 4247 * scan, so break the loop. 4248 */ 4249 if (scan_evicted == 0) { 4250 /* This isn't possible, let's make that obvious */ 4251 ASSERT3S(bytes, !=, 0); 4252 4253 /* 4254 * When bytes is ARC_EVICT_ALL, the only way to 4255 * break the loop is when scan_evicted is zero. 4256 * In that case, we actually have evicted enough, 4257 * so we don't want to increment the kstat. 4258 */ 4259 if (bytes != ARC_EVICT_ALL) { 4260 ASSERT3S(total_evicted, <, bytes); 4261 ARCSTAT_BUMP(arcstat_evict_not_enough); 4262 } 4263 4264 break; 4265 } 4266 } 4267 4268 for (int i = 0; i < num_sublists; i++) { 4269 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 4270 multilist_sublist_remove(mls, markers[i]); 4271 multilist_sublist_unlock(mls); 4272 4273 kmem_cache_free(hdr_full_cache, markers[i]); 4274 } 4275 kmem_free(markers, sizeof (*markers) * num_sublists); 4276 4277 return (total_evicted); 4278 } 4279 4280 /* 4281 * Flush all "evictable" data of the given type from the arc state 4282 * specified. This will not evict any "active" buffers (i.e. referenced). 4283 * 4284 * When 'retry' is set to B_FALSE, the function will make a single pass 4285 * over the state and evict any buffers that it can. Since it doesn't 4286 * continually retry the eviction, it might end up leaving some buffers 4287 * in the ARC due to lock misses. 4288 * 4289 * When 'retry' is set to B_TRUE, the function will continually retry the 4290 * eviction until *all* evictable buffers have been removed from the 4291 * state. As a result, if concurrent insertions into the state are 4292 * allowed (e.g. if the ARC isn't shutting down), this function might 4293 * wind up in an infinite loop, continually trying to evict buffers. 4294 */ 4295 static uint64_t 4296 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 4297 boolean_t retry) 4298 { 4299 uint64_t evicted = 0; 4300 4301 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) { 4302 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type); 4303 4304 if (!retry) 4305 break; 4306 } 4307 4308 return (evicted); 4309 } 4310 4311 /* 4312 * Evict the specified number of bytes from the state specified, 4313 * restricting eviction to the spa and type given. This function 4314 * prevents us from trying to evict more from a state's list than 4315 * is "evictable", and to skip evicting altogether when passed a 4316 * negative value for "bytes". In contrast, arc_evict_state() will 4317 * evict everything it can, when passed a negative value for "bytes". 4318 */ 4319 static uint64_t 4320 arc_evict_impl(arc_state_t *state, uint64_t spa, int64_t bytes, 4321 arc_buf_contents_t type) 4322 { 4323 uint64_t delta; 4324 4325 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) { 4326 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]), 4327 bytes); 4328 return (arc_evict_state(state, spa, delta, type)); 4329 } 4330 4331 return (0); 4332 } 4333 4334 /* 4335 * The goal of this function is to evict enough meta data buffers from the 4336 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly 4337 * more complicated than it appears because it is common for data buffers 4338 * to have holds on meta data buffers. In addition, dnode meta data buffers 4339 * will be held by the dnodes in the block preventing them from being freed. 4340 * This means we can't simply traverse the ARC and expect to always find 4341 * enough unheld meta data buffer to release. 4342 * 4343 * Therefore, this function has been updated to make alternating passes 4344 * over the ARC releasing data buffers and then newly unheld meta data 4345 * buffers. This ensures forward progress is maintained and meta_used 4346 * will decrease. Normally this is sufficient, but if required the ARC 4347 * will call the registered prune callbacks causing dentry and inodes to 4348 * be dropped from the VFS cache. This will make dnode meta data buffers 4349 * available for reclaim. 4350 */ 4351 static uint64_t 4352 arc_evict_meta_balanced(uint64_t meta_used) 4353 { 4354 int64_t delta, prune = 0, adjustmnt; 4355 uint64_t total_evicted = 0; 4356 arc_buf_contents_t type = ARC_BUFC_DATA; 4357 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0); 4358 4359 restart: 4360 /* 4361 * This slightly differs than the way we evict from the mru in 4362 * arc_evict because we don't have a "target" value (i.e. no 4363 * "meta" arc_p). As a result, I think we can completely 4364 * cannibalize the metadata in the MRU before we evict the 4365 * metadata from the MFU. I think we probably need to implement a 4366 * "metadata arc_p" value to do this properly. 4367 */ 4368 adjustmnt = meta_used - arc_meta_limit; 4369 4370 if (adjustmnt > 0 && 4371 zfs_refcount_count(&arc_mru->arcs_esize[type]) > 0) { 4372 delta = MIN(zfs_refcount_count(&arc_mru->arcs_esize[type]), 4373 adjustmnt); 4374 total_evicted += arc_evict_impl(arc_mru, 0, delta, type); 4375 adjustmnt -= delta; 4376 } 4377 4378 /* 4379 * We can't afford to recalculate adjustmnt here. If we do, 4380 * new metadata buffers can sneak into the MRU or ANON lists, 4381 * thus penalize the MFU metadata. Although the fudge factor is 4382 * small, it has been empirically shown to be significant for 4383 * certain workloads (e.g. creating many empty directories). As 4384 * such, we use the original calculation for adjustmnt, and 4385 * simply decrement the amount of data evicted from the MRU. 4386 */ 4387 4388 if (adjustmnt > 0 && 4389 zfs_refcount_count(&arc_mfu->arcs_esize[type]) > 0) { 4390 delta = MIN(zfs_refcount_count(&arc_mfu->arcs_esize[type]), 4391 adjustmnt); 4392 total_evicted += arc_evict_impl(arc_mfu, 0, delta, type); 4393 } 4394 4395 adjustmnt = meta_used - arc_meta_limit; 4396 4397 if (adjustmnt > 0 && 4398 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) { 4399 delta = MIN(adjustmnt, 4400 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type])); 4401 total_evicted += arc_evict_impl(arc_mru_ghost, 0, delta, type); 4402 adjustmnt -= delta; 4403 } 4404 4405 if (adjustmnt > 0 && 4406 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) { 4407 delta = MIN(adjustmnt, 4408 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type])); 4409 total_evicted += arc_evict_impl(arc_mfu_ghost, 0, delta, type); 4410 } 4411 4412 /* 4413 * If after attempting to make the requested adjustment to the ARC 4414 * the meta limit is still being exceeded then request that the 4415 * higher layers drop some cached objects which have holds on ARC 4416 * meta buffers. Requests to the upper layers will be made with 4417 * increasingly large scan sizes until the ARC is below the limit. 4418 */ 4419 if (meta_used > arc_meta_limit) { 4420 if (type == ARC_BUFC_DATA) { 4421 type = ARC_BUFC_METADATA; 4422 } else { 4423 type = ARC_BUFC_DATA; 4424 4425 if (zfs_arc_meta_prune) { 4426 prune += zfs_arc_meta_prune; 4427 arc_prune_async(prune); 4428 } 4429 } 4430 4431 if (restarts > 0) { 4432 restarts--; 4433 goto restart; 4434 } 4435 } 4436 return (total_evicted); 4437 } 4438 4439 /* 4440 * Evict metadata buffers from the cache, such that arcstat_meta_used is 4441 * capped by the arc_meta_limit tunable. 4442 */ 4443 static uint64_t 4444 arc_evict_meta_only(uint64_t meta_used) 4445 { 4446 uint64_t total_evicted = 0; 4447 int64_t target; 4448 4449 /* 4450 * If we're over the meta limit, we want to evict enough 4451 * metadata to get back under the meta limit. We don't want to 4452 * evict so much that we drop the MRU below arc_p, though. If 4453 * we're over the meta limit more than we're over arc_p, we 4454 * evict some from the MRU here, and some from the MFU below. 4455 */ 4456 target = MIN((int64_t)(meta_used - arc_meta_limit), 4457 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4458 zfs_refcount_count(&arc_mru->arcs_size) - arc_p)); 4459 4460 total_evicted += arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4461 4462 /* 4463 * Similar to the above, we want to evict enough bytes to get us 4464 * below the meta limit, but not so much as to drop us below the 4465 * space allotted to the MFU (which is defined as arc_c - arc_p). 4466 */ 4467 target = MIN((int64_t)(meta_used - arc_meta_limit), 4468 (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) - 4469 (arc_c - arc_p))); 4470 4471 total_evicted += arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4472 4473 return (total_evicted); 4474 } 4475 4476 static uint64_t 4477 arc_evict_meta(uint64_t meta_used) 4478 { 4479 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY) 4480 return (arc_evict_meta_only(meta_used)); 4481 else 4482 return (arc_evict_meta_balanced(meta_used)); 4483 } 4484 4485 /* 4486 * Return the type of the oldest buffer in the given arc state 4487 * 4488 * This function will select a random sublist of type ARC_BUFC_DATA and 4489 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist 4490 * is compared, and the type which contains the "older" buffer will be 4491 * returned. 4492 */ 4493 static arc_buf_contents_t 4494 arc_evict_type(arc_state_t *state) 4495 { 4496 multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA]; 4497 multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA]; 4498 int data_idx = multilist_get_random_index(data_ml); 4499 int meta_idx = multilist_get_random_index(meta_ml); 4500 multilist_sublist_t *data_mls; 4501 multilist_sublist_t *meta_mls; 4502 arc_buf_contents_t type; 4503 arc_buf_hdr_t *data_hdr; 4504 arc_buf_hdr_t *meta_hdr; 4505 4506 /* 4507 * We keep the sublist lock until we're finished, to prevent 4508 * the headers from being destroyed via arc_evict_state(). 4509 */ 4510 data_mls = multilist_sublist_lock(data_ml, data_idx); 4511 meta_mls = multilist_sublist_lock(meta_ml, meta_idx); 4512 4513 /* 4514 * These two loops are to ensure we skip any markers that 4515 * might be at the tail of the lists due to arc_evict_state(). 4516 */ 4517 4518 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL; 4519 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) { 4520 if (data_hdr->b_spa != 0) 4521 break; 4522 } 4523 4524 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL; 4525 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) { 4526 if (meta_hdr->b_spa != 0) 4527 break; 4528 } 4529 4530 if (data_hdr == NULL && meta_hdr == NULL) { 4531 type = ARC_BUFC_DATA; 4532 } else if (data_hdr == NULL) { 4533 ASSERT3P(meta_hdr, !=, NULL); 4534 type = ARC_BUFC_METADATA; 4535 } else if (meta_hdr == NULL) { 4536 ASSERT3P(data_hdr, !=, NULL); 4537 type = ARC_BUFC_DATA; 4538 } else { 4539 ASSERT3P(data_hdr, !=, NULL); 4540 ASSERT3P(meta_hdr, !=, NULL); 4541 4542 /* The headers can't be on the sublist without an L1 header */ 4543 ASSERT(HDR_HAS_L1HDR(data_hdr)); 4544 ASSERT(HDR_HAS_L1HDR(meta_hdr)); 4545 4546 if (data_hdr->b_l1hdr.b_arc_access < 4547 meta_hdr->b_l1hdr.b_arc_access) { 4548 type = ARC_BUFC_DATA; 4549 } else { 4550 type = ARC_BUFC_METADATA; 4551 } 4552 } 4553 4554 multilist_sublist_unlock(meta_mls); 4555 multilist_sublist_unlock(data_mls); 4556 4557 return (type); 4558 } 4559 4560 /* 4561 * Evict buffers from the cache, such that arcstat_size is capped by arc_c. 4562 */ 4563 static uint64_t 4564 arc_evict(void) 4565 { 4566 uint64_t total_evicted = 0; 4567 uint64_t bytes; 4568 int64_t target; 4569 uint64_t asize = aggsum_value(&arc_sums.arcstat_size); 4570 uint64_t ameta = aggsum_value(&arc_sums.arcstat_meta_used); 4571 4572 /* 4573 * If we're over arc_meta_limit, we want to correct that before 4574 * potentially evicting data buffers below. 4575 */ 4576 total_evicted += arc_evict_meta(ameta); 4577 4578 /* 4579 * Adjust MRU size 4580 * 4581 * If we're over the target cache size, we want to evict enough 4582 * from the list to get back to our target size. We don't want 4583 * to evict too much from the MRU, such that it drops below 4584 * arc_p. So, if we're over our target cache size more than 4585 * the MRU is over arc_p, we'll evict enough to get back to 4586 * arc_p here, and then evict more from the MFU below. 4587 */ 4588 target = MIN((int64_t)(asize - arc_c), 4589 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4590 zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p)); 4591 4592 /* 4593 * If we're below arc_meta_min, always prefer to evict data. 4594 * Otherwise, try to satisfy the requested number of bytes to 4595 * evict from the type which contains older buffers; in an 4596 * effort to keep newer buffers in the cache regardless of their 4597 * type. If we cannot satisfy the number of bytes from this 4598 * type, spill over into the next type. 4599 */ 4600 if (arc_evict_type(arc_mru) == ARC_BUFC_METADATA && 4601 ameta > arc_meta_min) { 4602 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4603 total_evicted += bytes; 4604 4605 /* 4606 * If we couldn't evict our target number of bytes from 4607 * metadata, we try to get the rest from data. 4608 */ 4609 target -= bytes; 4610 4611 total_evicted += 4612 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4613 } else { 4614 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4615 total_evicted += bytes; 4616 4617 /* 4618 * If we couldn't evict our target number of bytes from 4619 * data, we try to get the rest from metadata. 4620 */ 4621 target -= bytes; 4622 4623 total_evicted += 4624 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4625 } 4626 4627 /* 4628 * Re-sum ARC stats after the first round of evictions. 4629 */ 4630 asize = aggsum_value(&arc_sums.arcstat_size); 4631 ameta = aggsum_value(&arc_sums.arcstat_meta_used); 4632 4633 4634 /* 4635 * Adjust MFU size 4636 * 4637 * Now that we've tried to evict enough from the MRU to get its 4638 * size back to arc_p, if we're still above the target cache 4639 * size, we evict the rest from the MFU. 4640 */ 4641 target = asize - arc_c; 4642 4643 if (arc_evict_type(arc_mfu) == ARC_BUFC_METADATA && 4644 ameta > arc_meta_min) { 4645 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4646 total_evicted += bytes; 4647 4648 /* 4649 * If we couldn't evict our target number of bytes from 4650 * metadata, we try to get the rest from data. 4651 */ 4652 target -= bytes; 4653 4654 total_evicted += 4655 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4656 } else { 4657 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4658 total_evicted += bytes; 4659 4660 /* 4661 * If we couldn't evict our target number of bytes from 4662 * data, we try to get the rest from data. 4663 */ 4664 target -= bytes; 4665 4666 total_evicted += 4667 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4668 } 4669 4670 /* 4671 * Adjust ghost lists 4672 * 4673 * In addition to the above, the ARC also defines target values 4674 * for the ghost lists. The sum of the mru list and mru ghost 4675 * list should never exceed the target size of the cache, and 4676 * the sum of the mru list, mfu list, mru ghost list, and mfu 4677 * ghost list should never exceed twice the target size of the 4678 * cache. The following logic enforces these limits on the ghost 4679 * caches, and evicts from them as needed. 4680 */ 4681 target = zfs_refcount_count(&arc_mru->arcs_size) + 4682 zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c; 4683 4684 bytes = arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA); 4685 total_evicted += bytes; 4686 4687 target -= bytes; 4688 4689 total_evicted += 4690 arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA); 4691 4692 /* 4693 * We assume the sum of the mru list and mfu list is less than 4694 * or equal to arc_c (we enforced this above), which means we 4695 * can use the simpler of the two equations below: 4696 * 4697 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c 4698 * mru ghost + mfu ghost <= arc_c 4699 */ 4700 target = zfs_refcount_count(&arc_mru_ghost->arcs_size) + 4701 zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c; 4702 4703 bytes = arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA); 4704 total_evicted += bytes; 4705 4706 target -= bytes; 4707 4708 total_evicted += 4709 arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA); 4710 4711 return (total_evicted); 4712 } 4713 4714 void 4715 arc_flush(spa_t *spa, boolean_t retry) 4716 { 4717 uint64_t guid = 0; 4718 4719 /* 4720 * If retry is B_TRUE, a spa must not be specified since we have 4721 * no good way to determine if all of a spa's buffers have been 4722 * evicted from an arc state. 4723 */ 4724 ASSERT(!retry || spa == 0); 4725 4726 if (spa != NULL) 4727 guid = spa_load_guid(spa); 4728 4729 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 4730 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 4731 4732 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 4733 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 4734 4735 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 4736 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 4737 4738 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 4739 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 4740 } 4741 4742 void 4743 arc_reduce_target_size(int64_t to_free) 4744 { 4745 uint64_t asize = aggsum_value(&arc_sums.arcstat_size); 4746 4747 /* 4748 * All callers want the ARC to actually evict (at least) this much 4749 * memory. Therefore we reduce from the lower of the current size and 4750 * the target size. This way, even if arc_c is much higher than 4751 * arc_size (as can be the case after many calls to arc_freed(), we will 4752 * immediately have arc_c < arc_size and therefore the arc_evict_zthr 4753 * will evict. 4754 */ 4755 uint64_t c = MIN(arc_c, asize); 4756 4757 if (c > to_free && c - to_free > arc_c_min) { 4758 arc_c = c - to_free; 4759 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 4760 if (arc_p > arc_c) 4761 arc_p = (arc_c >> 1); 4762 ASSERT(arc_c >= arc_c_min); 4763 ASSERT((int64_t)arc_p >= 0); 4764 } else { 4765 arc_c = arc_c_min; 4766 } 4767 4768 if (asize > arc_c) { 4769 /* See comment in arc_evict_cb_check() on why lock+flag */ 4770 mutex_enter(&arc_evict_lock); 4771 arc_evict_needed = B_TRUE; 4772 mutex_exit(&arc_evict_lock); 4773 zthr_wakeup(arc_evict_zthr); 4774 } 4775 } 4776 4777 /* 4778 * Determine if the system is under memory pressure and is asking 4779 * to reclaim memory. A return value of B_TRUE indicates that the system 4780 * is under memory pressure and that the arc should adjust accordingly. 4781 */ 4782 boolean_t 4783 arc_reclaim_needed(void) 4784 { 4785 return (arc_available_memory() < 0); 4786 } 4787 4788 void 4789 arc_kmem_reap_soon(void) 4790 { 4791 size_t i; 4792 kmem_cache_t *prev_cache = NULL; 4793 kmem_cache_t *prev_data_cache = NULL; 4794 extern kmem_cache_t *zio_buf_cache[]; 4795 extern kmem_cache_t *zio_data_buf_cache[]; 4796 4797 #ifdef _KERNEL 4798 if ((aggsum_compare(&arc_sums.arcstat_meta_used, 4799 arc_meta_limit) >= 0) && zfs_arc_meta_prune) { 4800 /* 4801 * We are exceeding our meta-data cache limit. 4802 * Prune some entries to release holds on meta-data. 4803 */ 4804 arc_prune_async(zfs_arc_meta_prune); 4805 } 4806 #if defined(_ILP32) 4807 /* 4808 * Reclaim unused memory from all kmem caches. 4809 */ 4810 kmem_reap(); 4811 #endif 4812 #endif 4813 4814 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 4815 #if defined(_ILP32) 4816 /* reach upper limit of cache size on 32-bit */ 4817 if (zio_buf_cache[i] == NULL) 4818 break; 4819 #endif 4820 if (zio_buf_cache[i] != prev_cache) { 4821 prev_cache = zio_buf_cache[i]; 4822 kmem_cache_reap_now(zio_buf_cache[i]); 4823 } 4824 if (zio_data_buf_cache[i] != prev_data_cache) { 4825 prev_data_cache = zio_data_buf_cache[i]; 4826 kmem_cache_reap_now(zio_data_buf_cache[i]); 4827 } 4828 } 4829 kmem_cache_reap_now(buf_cache); 4830 kmem_cache_reap_now(hdr_full_cache); 4831 kmem_cache_reap_now(hdr_l2only_cache); 4832 kmem_cache_reap_now(zfs_btree_leaf_cache); 4833 abd_cache_reap_now(); 4834 } 4835 4836 /* ARGSUSED */ 4837 static boolean_t 4838 arc_evict_cb_check(void *arg, zthr_t *zthr) 4839 { 4840 #ifdef ZFS_DEBUG 4841 /* 4842 * This is necessary in order to keep the kstat information 4843 * up to date for tools that display kstat data such as the 4844 * mdb ::arc dcmd and the Linux crash utility. These tools 4845 * typically do not call kstat's update function, but simply 4846 * dump out stats from the most recent update. Without 4847 * this call, these commands may show stale stats for the 4848 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 4849 * with this call, the data might be out of date if the 4850 * evict thread hasn't been woken recently; but that should 4851 * suffice. The arc_state_t structures can be queried 4852 * directly if more accurate information is needed. 4853 */ 4854 if (arc_ksp != NULL) 4855 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 4856 #endif 4857 4858 /* 4859 * We have to rely on arc_wait_for_eviction() to tell us when to 4860 * evict, rather than checking if we are overflowing here, so that we 4861 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv. 4862 * If we have become "not overflowing" since arc_wait_for_eviction() 4863 * checked, we need to wake it up. We could broadcast the CV here, 4864 * but arc_wait_for_eviction() may have not yet gone to sleep. We 4865 * would need to use a mutex to ensure that this function doesn't 4866 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g. 4867 * the arc_evict_lock). However, the lock ordering of such a lock 4868 * would necessarily be incorrect with respect to the zthr_lock, 4869 * which is held before this function is called, and is held by 4870 * arc_wait_for_eviction() when it calls zthr_wakeup(). 4871 */ 4872 return (arc_evict_needed); 4873 } 4874 4875 /* 4876 * Keep arc_size under arc_c by running arc_evict which evicts data 4877 * from the ARC. 4878 */ 4879 /* ARGSUSED */ 4880 static void 4881 arc_evict_cb(void *arg, zthr_t *zthr) 4882 { 4883 uint64_t evicted = 0; 4884 fstrans_cookie_t cookie = spl_fstrans_mark(); 4885 4886 /* Evict from cache */ 4887 evicted = arc_evict(); 4888 4889 /* 4890 * If evicted is zero, we couldn't evict anything 4891 * via arc_evict(). This could be due to hash lock 4892 * collisions, but more likely due to the majority of 4893 * arc buffers being unevictable. Therefore, even if 4894 * arc_size is above arc_c, another pass is unlikely to 4895 * be helpful and could potentially cause us to enter an 4896 * infinite loop. Additionally, zthr_iscancelled() is 4897 * checked here so that if the arc is shutting down, the 4898 * broadcast will wake any remaining arc evict waiters. 4899 */ 4900 mutex_enter(&arc_evict_lock); 4901 arc_evict_needed = !zthr_iscancelled(arc_evict_zthr) && 4902 evicted > 0 && aggsum_compare(&arc_sums.arcstat_size, arc_c) > 0; 4903 if (!arc_evict_needed) { 4904 /* 4905 * We're either no longer overflowing, or we 4906 * can't evict anything more, so we should wake 4907 * arc_get_data_impl() sooner. 4908 */ 4909 arc_evict_waiter_t *aw; 4910 while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) { 4911 cv_broadcast(&aw->aew_cv); 4912 } 4913 arc_set_need_free(); 4914 } 4915 mutex_exit(&arc_evict_lock); 4916 spl_fstrans_unmark(cookie); 4917 } 4918 4919 /* ARGSUSED */ 4920 static boolean_t 4921 arc_reap_cb_check(void *arg, zthr_t *zthr) 4922 { 4923 int64_t free_memory = arc_available_memory(); 4924 static int reap_cb_check_counter = 0; 4925 4926 /* 4927 * If a kmem reap is already active, don't schedule more. We must 4928 * check for this because kmem_cache_reap_soon() won't actually 4929 * block on the cache being reaped (this is to prevent callers from 4930 * becoming implicitly blocked by a system-wide kmem reap -- which, 4931 * on a system with many, many full magazines, can take minutes). 4932 */ 4933 if (!kmem_cache_reap_active() && free_memory < 0) { 4934 4935 arc_no_grow = B_TRUE; 4936 arc_warm = B_TRUE; 4937 /* 4938 * Wait at least zfs_grow_retry (default 5) seconds 4939 * before considering growing. 4940 */ 4941 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry); 4942 return (B_TRUE); 4943 } else if (free_memory < arc_c >> arc_no_grow_shift) { 4944 arc_no_grow = B_TRUE; 4945 } else if (gethrtime() >= arc_growtime) { 4946 arc_no_grow = B_FALSE; 4947 } 4948 4949 /* 4950 * Called unconditionally every 60 seconds to reclaim unused 4951 * zstd compression and decompression context. This is done 4952 * here to avoid the need for an independent thread. 4953 */ 4954 if (!((reap_cb_check_counter++) % 60)) 4955 zfs_zstd_cache_reap_now(); 4956 4957 return (B_FALSE); 4958 } 4959 4960 /* 4961 * Keep enough free memory in the system by reaping the ARC's kmem 4962 * caches. To cause more slabs to be reapable, we may reduce the 4963 * target size of the cache (arc_c), causing the arc_evict_cb() 4964 * to free more buffers. 4965 */ 4966 /* ARGSUSED */ 4967 static void 4968 arc_reap_cb(void *arg, zthr_t *zthr) 4969 { 4970 int64_t free_memory; 4971 fstrans_cookie_t cookie = spl_fstrans_mark(); 4972 4973 /* 4974 * Kick off asynchronous kmem_reap()'s of all our caches. 4975 */ 4976 arc_kmem_reap_soon(); 4977 4978 /* 4979 * Wait at least arc_kmem_cache_reap_retry_ms between 4980 * arc_kmem_reap_soon() calls. Without this check it is possible to 4981 * end up in a situation where we spend lots of time reaping 4982 * caches, while we're near arc_c_min. Waiting here also gives the 4983 * subsequent free memory check a chance of finding that the 4984 * asynchronous reap has already freed enough memory, and we don't 4985 * need to call arc_reduce_target_size(). 4986 */ 4987 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000); 4988 4989 /* 4990 * Reduce the target size as needed to maintain the amount of free 4991 * memory in the system at a fraction of the arc_size (1/128th by 4992 * default). If oversubscribed (free_memory < 0) then reduce the 4993 * target arc_size by the deficit amount plus the fractional 4994 * amount. If free memory is positive but less than the fractional 4995 * amount, reduce by what is needed to hit the fractional amount. 4996 */ 4997 free_memory = arc_available_memory(); 4998 4999 int64_t to_free = 5000 (arc_c >> arc_shrink_shift) - free_memory; 5001 if (to_free > 0) { 5002 arc_reduce_target_size(to_free); 5003 } 5004 spl_fstrans_unmark(cookie); 5005 } 5006 5007 #ifdef _KERNEL 5008 /* 5009 * Determine the amount of memory eligible for eviction contained in the 5010 * ARC. All clean data reported by the ghost lists can always be safely 5011 * evicted. Due to arc_c_min, the same does not hold for all clean data 5012 * contained by the regular mru and mfu lists. 5013 * 5014 * In the case of the regular mru and mfu lists, we need to report as 5015 * much clean data as possible, such that evicting that same reported 5016 * data will not bring arc_size below arc_c_min. Thus, in certain 5017 * circumstances, the total amount of clean data in the mru and mfu 5018 * lists might not actually be evictable. 5019 * 5020 * The following two distinct cases are accounted for: 5021 * 5022 * 1. The sum of the amount of dirty data contained by both the mru and 5023 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 5024 * is greater than or equal to arc_c_min. 5025 * (i.e. amount of dirty data >= arc_c_min) 5026 * 5027 * This is the easy case; all clean data contained by the mru and mfu 5028 * lists is evictable. Evicting all clean data can only drop arc_size 5029 * to the amount of dirty data, which is greater than arc_c_min. 5030 * 5031 * 2. The sum of the amount of dirty data contained by both the mru and 5032 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 5033 * is less than arc_c_min. 5034 * (i.e. arc_c_min > amount of dirty data) 5035 * 5036 * 2.1. arc_size is greater than or equal arc_c_min. 5037 * (i.e. arc_size >= arc_c_min > amount of dirty data) 5038 * 5039 * In this case, not all clean data from the regular mru and mfu 5040 * lists is actually evictable; we must leave enough clean data 5041 * to keep arc_size above arc_c_min. Thus, the maximum amount of 5042 * evictable data from the two lists combined, is exactly the 5043 * difference between arc_size and arc_c_min. 5044 * 5045 * 2.2. arc_size is less than arc_c_min 5046 * (i.e. arc_c_min > arc_size > amount of dirty data) 5047 * 5048 * In this case, none of the data contained in the mru and mfu 5049 * lists is evictable, even if it's clean. Since arc_size is 5050 * already below arc_c_min, evicting any more would only 5051 * increase this negative difference. 5052 */ 5053 5054 #endif /* _KERNEL */ 5055 5056 /* 5057 * Adapt arc info given the number of bytes we are trying to add and 5058 * the state that we are coming from. This function is only called 5059 * when we are adding new content to the cache. 5060 */ 5061 static void 5062 arc_adapt(int bytes, arc_state_t *state) 5063 { 5064 int mult; 5065 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 5066 int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size); 5067 int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size); 5068 5069 ASSERT(bytes > 0); 5070 /* 5071 * Adapt the target size of the MRU list: 5072 * - if we just hit in the MRU ghost list, then increase 5073 * the target size of the MRU list. 5074 * - if we just hit in the MFU ghost list, then increase 5075 * the target size of the MFU list by decreasing the 5076 * target size of the MRU list. 5077 */ 5078 if (state == arc_mru_ghost) { 5079 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size); 5080 if (!zfs_arc_p_dampener_disable) 5081 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 5082 5083 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 5084 } else if (state == arc_mfu_ghost) { 5085 uint64_t delta; 5086 5087 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size); 5088 if (!zfs_arc_p_dampener_disable) 5089 mult = MIN(mult, 10); 5090 5091 delta = MIN(bytes * mult, arc_p); 5092 arc_p = MAX(arc_p_min, arc_p - delta); 5093 } 5094 ASSERT((int64_t)arc_p >= 0); 5095 5096 /* 5097 * Wake reap thread if we do not have any available memory 5098 */ 5099 if (arc_reclaim_needed()) { 5100 zthr_wakeup(arc_reap_zthr); 5101 return; 5102 } 5103 5104 if (arc_no_grow) 5105 return; 5106 5107 if (arc_c >= arc_c_max) 5108 return; 5109 5110 /* 5111 * If we're within (2 * maxblocksize) bytes of the target 5112 * cache size, increment the target cache size 5113 */ 5114 ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT); 5115 if (aggsum_upper_bound(&arc_sums.arcstat_size) >= 5116 arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 5117 atomic_add_64(&arc_c, (int64_t)bytes); 5118 if (arc_c > arc_c_max) 5119 arc_c = arc_c_max; 5120 else if (state == arc_anon) 5121 atomic_add_64(&arc_p, (int64_t)bytes); 5122 if (arc_p > arc_c) 5123 arc_p = arc_c; 5124 } 5125 ASSERT((int64_t)arc_p >= 0); 5126 } 5127 5128 /* 5129 * Check if arc_size has grown past our upper threshold, determined by 5130 * zfs_arc_overflow_shift. 5131 */ 5132 static arc_ovf_level_t 5133 arc_is_overflowing(boolean_t use_reserve) 5134 { 5135 /* Always allow at least one block of overflow */ 5136 int64_t overflow = MAX(SPA_MAXBLOCKSIZE, 5137 arc_c >> zfs_arc_overflow_shift); 5138 5139 /* 5140 * We just compare the lower bound here for performance reasons. Our 5141 * primary goals are to make sure that the arc never grows without 5142 * bound, and that it can reach its maximum size. This check 5143 * accomplishes both goals. The maximum amount we could run over by is 5144 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block 5145 * in the ARC. In practice, that's in the tens of MB, which is low 5146 * enough to be safe. 5147 */ 5148 int64_t over = aggsum_lower_bound(&arc_sums.arcstat_size) - 5149 arc_c - overflow / 2; 5150 if (!use_reserve) 5151 overflow /= 2; 5152 return (over < 0 ? ARC_OVF_NONE : 5153 over < overflow ? ARC_OVF_SOME : ARC_OVF_SEVERE); 5154 } 5155 5156 static abd_t * 5157 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 5158 int alloc_flags) 5159 { 5160 arc_buf_contents_t type = arc_buf_type(hdr); 5161 5162 arc_get_data_impl(hdr, size, tag, alloc_flags); 5163 if (type == ARC_BUFC_METADATA) { 5164 return (abd_alloc(size, B_TRUE)); 5165 } else { 5166 ASSERT(type == ARC_BUFC_DATA); 5167 return (abd_alloc(size, B_FALSE)); 5168 } 5169 } 5170 5171 static void * 5172 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 5173 { 5174 arc_buf_contents_t type = arc_buf_type(hdr); 5175 5176 arc_get_data_impl(hdr, size, tag, ARC_HDR_DO_ADAPT); 5177 if (type == ARC_BUFC_METADATA) { 5178 return (zio_buf_alloc(size)); 5179 } else { 5180 ASSERT(type == ARC_BUFC_DATA); 5181 return (zio_data_buf_alloc(size)); 5182 } 5183 } 5184 5185 /* 5186 * Wait for the specified amount of data (in bytes) to be evicted from the 5187 * ARC, and for there to be sufficient free memory in the system. Waiting for 5188 * eviction ensures that the memory used by the ARC decreases. Waiting for 5189 * free memory ensures that the system won't run out of free pages, regardless 5190 * of ARC behavior and settings. See arc_lowmem_init(). 5191 */ 5192 void 5193 arc_wait_for_eviction(uint64_t amount, boolean_t use_reserve) 5194 { 5195 switch (arc_is_overflowing(use_reserve)) { 5196 case ARC_OVF_NONE: 5197 return; 5198 case ARC_OVF_SOME: 5199 /* 5200 * This is a bit racy without taking arc_evict_lock, but the 5201 * worst that can happen is we either call zthr_wakeup() extra 5202 * time due to race with other thread here, or the set flag 5203 * get cleared by arc_evict_cb(), which is unlikely due to 5204 * big hysteresis, but also not important since at this level 5205 * of overflow the eviction is purely advisory. Same time 5206 * taking the global lock here every time without waiting for 5207 * the actual eviction creates a significant lock contention. 5208 */ 5209 if (!arc_evict_needed) { 5210 arc_evict_needed = B_TRUE; 5211 zthr_wakeup(arc_evict_zthr); 5212 } 5213 return; 5214 case ARC_OVF_SEVERE: 5215 default: 5216 { 5217 arc_evict_waiter_t aw; 5218 list_link_init(&aw.aew_node); 5219 cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL); 5220 5221 uint64_t last_count = 0; 5222 mutex_enter(&arc_evict_lock); 5223 if (!list_is_empty(&arc_evict_waiters)) { 5224 arc_evict_waiter_t *last = 5225 list_tail(&arc_evict_waiters); 5226 last_count = last->aew_count; 5227 } else if (!arc_evict_needed) { 5228 arc_evict_needed = B_TRUE; 5229 zthr_wakeup(arc_evict_zthr); 5230 } 5231 /* 5232 * Note, the last waiter's count may be less than 5233 * arc_evict_count if we are low on memory in which 5234 * case arc_evict_state_impl() may have deferred 5235 * wakeups (but still incremented arc_evict_count). 5236 */ 5237 aw.aew_count = MAX(last_count, arc_evict_count) + amount; 5238 5239 list_insert_tail(&arc_evict_waiters, &aw); 5240 5241 arc_set_need_free(); 5242 5243 DTRACE_PROBE3(arc__wait__for__eviction, 5244 uint64_t, amount, 5245 uint64_t, arc_evict_count, 5246 uint64_t, aw.aew_count); 5247 5248 /* 5249 * We will be woken up either when arc_evict_count reaches 5250 * aew_count, or when the ARC is no longer overflowing and 5251 * eviction completes. 5252 * In case of "false" wakeup, we will still be on the list. 5253 */ 5254 do { 5255 cv_wait(&aw.aew_cv, &arc_evict_lock); 5256 } while (list_link_active(&aw.aew_node)); 5257 mutex_exit(&arc_evict_lock); 5258 5259 cv_destroy(&aw.aew_cv); 5260 } 5261 } 5262 } 5263 5264 /* 5265 * Allocate a block and return it to the caller. If we are hitting the 5266 * hard limit for the cache size, we must sleep, waiting for the eviction 5267 * thread to catch up. If we're past the target size but below the hard 5268 * limit, we'll only signal the reclaim thread and continue on. 5269 */ 5270 static void 5271 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 5272 int alloc_flags) 5273 { 5274 arc_state_t *state = hdr->b_l1hdr.b_state; 5275 arc_buf_contents_t type = arc_buf_type(hdr); 5276 5277 if (alloc_flags & ARC_HDR_DO_ADAPT) 5278 arc_adapt(size, state); 5279 5280 /* 5281 * If arc_size is currently overflowing, we must be adding data 5282 * faster than we are evicting. To ensure we don't compound the 5283 * problem by adding more data and forcing arc_size to grow even 5284 * further past it's target size, we wait for the eviction thread to 5285 * make some progress. We also wait for there to be sufficient free 5286 * memory in the system, as measured by arc_free_memory(). 5287 * 5288 * Specifically, we wait for zfs_arc_eviction_pct percent of the 5289 * requested size to be evicted. This should be more than 100%, to 5290 * ensure that that progress is also made towards getting arc_size 5291 * under arc_c. See the comment above zfs_arc_eviction_pct. 5292 */ 5293 arc_wait_for_eviction(size * zfs_arc_eviction_pct / 100, 5294 alloc_flags & ARC_HDR_USE_RESERVE); 5295 5296 VERIFY3U(hdr->b_type, ==, type); 5297 if (type == ARC_BUFC_METADATA) { 5298 arc_space_consume(size, ARC_SPACE_META); 5299 } else { 5300 arc_space_consume(size, ARC_SPACE_DATA); 5301 } 5302 5303 /* 5304 * Update the state size. Note that ghost states have a 5305 * "ghost size" and so don't need to be updated. 5306 */ 5307 if (!GHOST_STATE(state)) { 5308 5309 (void) zfs_refcount_add_many(&state->arcs_size, size, tag); 5310 5311 /* 5312 * If this is reached via arc_read, the link is 5313 * protected by the hash lock. If reached via 5314 * arc_buf_alloc, the header should not be accessed by 5315 * any other thread. And, if reached via arc_read_done, 5316 * the hash lock will protect it if it's found in the 5317 * hash table; otherwise no other thread should be 5318 * trying to [add|remove]_reference it. 5319 */ 5320 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5321 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5322 (void) zfs_refcount_add_many(&state->arcs_esize[type], 5323 size, tag); 5324 } 5325 5326 /* 5327 * If we are growing the cache, and we are adding anonymous 5328 * data, and we have outgrown arc_p, update arc_p 5329 */ 5330 if (aggsum_upper_bound(&arc_sums.arcstat_size) < arc_c && 5331 hdr->b_l1hdr.b_state == arc_anon && 5332 (zfs_refcount_count(&arc_anon->arcs_size) + 5333 zfs_refcount_count(&arc_mru->arcs_size) > arc_p)) 5334 arc_p = MIN(arc_c, arc_p + size); 5335 } 5336 } 5337 5338 static void 5339 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag) 5340 { 5341 arc_free_data_impl(hdr, size, tag); 5342 abd_free(abd); 5343 } 5344 5345 static void 5346 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag) 5347 { 5348 arc_buf_contents_t type = arc_buf_type(hdr); 5349 5350 arc_free_data_impl(hdr, size, tag); 5351 if (type == ARC_BUFC_METADATA) { 5352 zio_buf_free(buf, size); 5353 } else { 5354 ASSERT(type == ARC_BUFC_DATA); 5355 zio_data_buf_free(buf, size); 5356 } 5357 } 5358 5359 /* 5360 * Free the arc data buffer. 5361 */ 5362 static void 5363 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 5364 { 5365 arc_state_t *state = hdr->b_l1hdr.b_state; 5366 arc_buf_contents_t type = arc_buf_type(hdr); 5367 5368 /* protected by hash lock, if in the hash table */ 5369 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5370 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5371 ASSERT(state != arc_anon && state != arc_l2c_only); 5372 5373 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 5374 size, tag); 5375 } 5376 (void) zfs_refcount_remove_many(&state->arcs_size, size, tag); 5377 5378 VERIFY3U(hdr->b_type, ==, type); 5379 if (type == ARC_BUFC_METADATA) { 5380 arc_space_return(size, ARC_SPACE_META); 5381 } else { 5382 ASSERT(type == ARC_BUFC_DATA); 5383 arc_space_return(size, ARC_SPACE_DATA); 5384 } 5385 } 5386 5387 /* 5388 * This routine is called whenever a buffer is accessed. 5389 * NOTE: the hash lock is dropped in this function. 5390 */ 5391 static void 5392 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 5393 { 5394 clock_t now; 5395 5396 ASSERT(MUTEX_HELD(hash_lock)); 5397 ASSERT(HDR_HAS_L1HDR(hdr)); 5398 5399 if (hdr->b_l1hdr.b_state == arc_anon) { 5400 /* 5401 * This buffer is not in the cache, and does not 5402 * appear in our "ghost" list. Add the new buffer 5403 * to the MRU state. 5404 */ 5405 5406 ASSERT0(hdr->b_l1hdr.b_arc_access); 5407 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5408 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5409 arc_change_state(arc_mru, hdr, hash_lock); 5410 5411 } else if (hdr->b_l1hdr.b_state == arc_mru) { 5412 now = ddi_get_lbolt(); 5413 5414 /* 5415 * If this buffer is here because of a prefetch, then either: 5416 * - clear the flag if this is a "referencing" read 5417 * (any subsequent access will bump this into the MFU state). 5418 * or 5419 * - move the buffer to the head of the list if this is 5420 * another prefetch (to make it less likely to be evicted). 5421 */ 5422 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5423 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 5424 /* link protected by hash lock */ 5425 ASSERT(multilist_link_active( 5426 &hdr->b_l1hdr.b_arc_node)); 5427 } else { 5428 if (HDR_HAS_L2HDR(hdr)) 5429 l2arc_hdr_arcstats_decrement_state(hdr); 5430 arc_hdr_clear_flags(hdr, 5431 ARC_FLAG_PREFETCH | 5432 ARC_FLAG_PRESCIENT_PREFETCH); 5433 hdr->b_l1hdr.b_mru_hits++; 5434 ARCSTAT_BUMP(arcstat_mru_hits); 5435 if (HDR_HAS_L2HDR(hdr)) 5436 l2arc_hdr_arcstats_increment_state(hdr); 5437 } 5438 hdr->b_l1hdr.b_arc_access = now; 5439 return; 5440 } 5441 5442 /* 5443 * This buffer has been "accessed" only once so far, 5444 * but it is still in the cache. Move it to the MFU 5445 * state. 5446 */ 5447 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access + 5448 ARC_MINTIME)) { 5449 /* 5450 * More than 125ms have passed since we 5451 * instantiated this buffer. Move it to the 5452 * most frequently used state. 5453 */ 5454 hdr->b_l1hdr.b_arc_access = now; 5455 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5456 arc_change_state(arc_mfu, hdr, hash_lock); 5457 } 5458 hdr->b_l1hdr.b_mru_hits++; 5459 ARCSTAT_BUMP(arcstat_mru_hits); 5460 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 5461 arc_state_t *new_state; 5462 /* 5463 * This buffer has been "accessed" recently, but 5464 * was evicted from the cache. Move it to the 5465 * MFU state. 5466 */ 5467 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5468 new_state = arc_mru; 5469 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) { 5470 if (HDR_HAS_L2HDR(hdr)) 5471 l2arc_hdr_arcstats_decrement_state(hdr); 5472 arc_hdr_clear_flags(hdr, 5473 ARC_FLAG_PREFETCH | 5474 ARC_FLAG_PRESCIENT_PREFETCH); 5475 if (HDR_HAS_L2HDR(hdr)) 5476 l2arc_hdr_arcstats_increment_state(hdr); 5477 } 5478 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5479 } else { 5480 new_state = arc_mfu; 5481 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5482 } 5483 5484 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5485 arc_change_state(new_state, hdr, hash_lock); 5486 5487 hdr->b_l1hdr.b_mru_ghost_hits++; 5488 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 5489 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 5490 /* 5491 * This buffer has been accessed more than once and is 5492 * still in the cache. Keep it in the MFU state. 5493 * 5494 * NOTE: an add_reference() that occurred when we did 5495 * the arc_read() will have kicked this off the list. 5496 * If it was a prefetch, we will explicitly move it to 5497 * the head of the list now. 5498 */ 5499 5500 hdr->b_l1hdr.b_mfu_hits++; 5501 ARCSTAT_BUMP(arcstat_mfu_hits); 5502 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5503 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 5504 arc_state_t *new_state = arc_mfu; 5505 /* 5506 * This buffer has been accessed more than once but has 5507 * been evicted from the cache. Move it back to the 5508 * MFU state. 5509 */ 5510 5511 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5512 /* 5513 * This is a prefetch access... 5514 * move this block back to the MRU state. 5515 */ 5516 new_state = arc_mru; 5517 } 5518 5519 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5520 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5521 arc_change_state(new_state, hdr, hash_lock); 5522 5523 hdr->b_l1hdr.b_mfu_ghost_hits++; 5524 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 5525 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 5526 /* 5527 * This buffer is on the 2nd Level ARC. 5528 */ 5529 5530 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5531 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5532 arc_change_state(arc_mfu, hdr, hash_lock); 5533 } else { 5534 cmn_err(CE_PANIC, "invalid arc state 0x%p", 5535 hdr->b_l1hdr.b_state); 5536 } 5537 } 5538 5539 /* 5540 * This routine is called by dbuf_hold() to update the arc_access() state 5541 * which otherwise would be skipped for entries in the dbuf cache. 5542 */ 5543 void 5544 arc_buf_access(arc_buf_t *buf) 5545 { 5546 mutex_enter(&buf->b_evict_lock); 5547 arc_buf_hdr_t *hdr = buf->b_hdr; 5548 5549 /* 5550 * Avoid taking the hash_lock when possible as an optimization. 5551 * The header must be checked again under the hash_lock in order 5552 * to handle the case where it is concurrently being released. 5553 */ 5554 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5555 mutex_exit(&buf->b_evict_lock); 5556 return; 5557 } 5558 5559 kmutex_t *hash_lock = HDR_LOCK(hdr); 5560 mutex_enter(hash_lock); 5561 5562 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5563 mutex_exit(hash_lock); 5564 mutex_exit(&buf->b_evict_lock); 5565 ARCSTAT_BUMP(arcstat_access_skip); 5566 return; 5567 } 5568 5569 mutex_exit(&buf->b_evict_lock); 5570 5571 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5572 hdr->b_l1hdr.b_state == arc_mfu); 5573 5574 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5575 arc_access(hdr, hash_lock); 5576 mutex_exit(hash_lock); 5577 5578 ARCSTAT_BUMP(arcstat_hits); 5579 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr) && !HDR_PRESCIENT_PREFETCH(hdr), 5580 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits); 5581 } 5582 5583 /* a generic arc_read_done_func_t which you can use */ 5584 /* ARGSUSED */ 5585 void 5586 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5587 arc_buf_t *buf, void *arg) 5588 { 5589 if (buf == NULL) 5590 return; 5591 5592 bcopy(buf->b_data, arg, arc_buf_size(buf)); 5593 arc_buf_destroy(buf, arg); 5594 } 5595 5596 /* a generic arc_read_done_func_t */ 5597 /* ARGSUSED */ 5598 void 5599 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5600 arc_buf_t *buf, void *arg) 5601 { 5602 arc_buf_t **bufp = arg; 5603 5604 if (buf == NULL) { 5605 ASSERT(zio == NULL || zio->io_error != 0); 5606 *bufp = NULL; 5607 } else { 5608 ASSERT(zio == NULL || zio->io_error == 0); 5609 *bufp = buf; 5610 ASSERT(buf->b_data != NULL); 5611 } 5612 } 5613 5614 static void 5615 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp) 5616 { 5617 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 5618 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0); 5619 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF); 5620 } else { 5621 if (HDR_COMPRESSION_ENABLED(hdr)) { 5622 ASSERT3U(arc_hdr_get_compress(hdr), ==, 5623 BP_GET_COMPRESS(bp)); 5624 } 5625 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 5626 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); 5627 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp)); 5628 } 5629 } 5630 5631 static void 5632 arc_read_done(zio_t *zio) 5633 { 5634 blkptr_t *bp = zio->io_bp; 5635 arc_buf_hdr_t *hdr = zio->io_private; 5636 kmutex_t *hash_lock = NULL; 5637 arc_callback_t *callback_list; 5638 arc_callback_t *acb; 5639 boolean_t freeable = B_FALSE; 5640 5641 /* 5642 * The hdr was inserted into hash-table and removed from lists 5643 * prior to starting I/O. We should find this header, since 5644 * it's in the hash table, and it should be legit since it's 5645 * not possible to evict it during the I/O. The only possible 5646 * reason for it not to be found is if we were freed during the 5647 * read. 5648 */ 5649 if (HDR_IN_HASH_TABLE(hdr)) { 5650 arc_buf_hdr_t *found; 5651 5652 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 5653 ASSERT3U(hdr->b_dva.dva_word[0], ==, 5654 BP_IDENTITY(zio->io_bp)->dva_word[0]); 5655 ASSERT3U(hdr->b_dva.dva_word[1], ==, 5656 BP_IDENTITY(zio->io_bp)->dva_word[1]); 5657 5658 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock); 5659 5660 ASSERT((found == hdr && 5661 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 5662 (found == hdr && HDR_L2_READING(hdr))); 5663 ASSERT3P(hash_lock, !=, NULL); 5664 } 5665 5666 if (BP_IS_PROTECTED(bp)) { 5667 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 5668 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 5669 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 5670 hdr->b_crypt_hdr.b_iv); 5671 5672 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) { 5673 void *tmpbuf; 5674 5675 tmpbuf = abd_borrow_buf_copy(zio->io_abd, 5676 sizeof (zil_chain_t)); 5677 zio_crypt_decode_mac_zil(tmpbuf, 5678 hdr->b_crypt_hdr.b_mac); 5679 abd_return_buf(zio->io_abd, tmpbuf, 5680 sizeof (zil_chain_t)); 5681 } else { 5682 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 5683 } 5684 } 5685 5686 if (zio->io_error == 0) { 5687 /* byteswap if necessary */ 5688 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 5689 if (BP_GET_LEVEL(zio->io_bp) > 0) { 5690 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 5691 } else { 5692 hdr->b_l1hdr.b_byteswap = 5693 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 5694 } 5695 } else { 5696 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 5697 } 5698 if (!HDR_L2_READING(hdr)) { 5699 hdr->b_complevel = zio->io_prop.zp_complevel; 5700 } 5701 } 5702 5703 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); 5704 if (l2arc_noprefetch && HDR_PREFETCH(hdr)) 5705 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE); 5706 5707 callback_list = hdr->b_l1hdr.b_acb; 5708 ASSERT3P(callback_list, !=, NULL); 5709 5710 if (hash_lock && zio->io_error == 0 && 5711 hdr->b_l1hdr.b_state == arc_anon) { 5712 /* 5713 * Only call arc_access on anonymous buffers. This is because 5714 * if we've issued an I/O for an evicted buffer, we've already 5715 * called arc_access (to prevent any simultaneous readers from 5716 * getting confused). 5717 */ 5718 arc_access(hdr, hash_lock); 5719 } 5720 5721 /* 5722 * If a read request has a callback (i.e. acb_done is not NULL), then we 5723 * make a buf containing the data according to the parameters which were 5724 * passed in. The implementation of arc_buf_alloc_impl() ensures that we 5725 * aren't needlessly decompressing the data multiple times. 5726 */ 5727 int callback_cnt = 0; 5728 for (acb = callback_list; acb != NULL; acb = acb->acb_next) { 5729 if (!acb->acb_done || acb->acb_nobuf) 5730 continue; 5731 5732 callback_cnt++; 5733 5734 if (zio->io_error != 0) 5735 continue; 5736 5737 int error = arc_buf_alloc_impl(hdr, zio->io_spa, 5738 &acb->acb_zb, acb->acb_private, acb->acb_encrypted, 5739 acb->acb_compressed, acb->acb_noauth, B_TRUE, 5740 &acb->acb_buf); 5741 5742 /* 5743 * Assert non-speculative zios didn't fail because an 5744 * encryption key wasn't loaded 5745 */ 5746 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) || 5747 error != EACCES); 5748 5749 /* 5750 * If we failed to decrypt, report an error now (as the zio 5751 * layer would have done if it had done the transforms). 5752 */ 5753 if (error == ECKSUM) { 5754 ASSERT(BP_IS_PROTECTED(bp)); 5755 error = SET_ERROR(EIO); 5756 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5757 spa_log_error(zio->io_spa, &acb->acb_zb); 5758 (void) zfs_ereport_post( 5759 FM_EREPORT_ZFS_AUTHENTICATION, 5760 zio->io_spa, NULL, &acb->acb_zb, zio, 0); 5761 } 5762 } 5763 5764 if (error != 0) { 5765 /* 5766 * Decompression or decryption failed. Set 5767 * io_error so that when we call acb_done 5768 * (below), we will indicate that the read 5769 * failed. Note that in the unusual case 5770 * where one callback is compressed and another 5771 * uncompressed, we will mark all of them 5772 * as failed, even though the uncompressed 5773 * one can't actually fail. In this case, 5774 * the hdr will not be anonymous, because 5775 * if there are multiple callbacks, it's 5776 * because multiple threads found the same 5777 * arc buf in the hash table. 5778 */ 5779 zio->io_error = error; 5780 } 5781 } 5782 5783 /* 5784 * If there are multiple callbacks, we must have the hash lock, 5785 * because the only way for multiple threads to find this hdr is 5786 * in the hash table. This ensures that if there are multiple 5787 * callbacks, the hdr is not anonymous. If it were anonymous, 5788 * we couldn't use arc_buf_destroy() in the error case below. 5789 */ 5790 ASSERT(callback_cnt < 2 || hash_lock != NULL); 5791 5792 hdr->b_l1hdr.b_acb = NULL; 5793 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5794 if (callback_cnt == 0) 5795 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 5796 5797 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) || 5798 callback_list != NULL); 5799 5800 if (zio->io_error == 0) { 5801 arc_hdr_verify(hdr, zio->io_bp); 5802 } else { 5803 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 5804 if (hdr->b_l1hdr.b_state != arc_anon) 5805 arc_change_state(arc_anon, hdr, hash_lock); 5806 if (HDR_IN_HASH_TABLE(hdr)) 5807 buf_hash_remove(hdr); 5808 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5809 } 5810 5811 /* 5812 * Broadcast before we drop the hash_lock to avoid the possibility 5813 * that the hdr (and hence the cv) might be freed before we get to 5814 * the cv_broadcast(). 5815 */ 5816 cv_broadcast(&hdr->b_l1hdr.b_cv); 5817 5818 if (hash_lock != NULL) { 5819 mutex_exit(hash_lock); 5820 } else { 5821 /* 5822 * This block was freed while we waited for the read to 5823 * complete. It has been removed from the hash table and 5824 * moved to the anonymous state (so that it won't show up 5825 * in the cache). 5826 */ 5827 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 5828 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5829 } 5830 5831 /* execute each callback and free its structure */ 5832 while ((acb = callback_list) != NULL) { 5833 if (acb->acb_done != NULL) { 5834 if (zio->io_error != 0 && acb->acb_buf != NULL) { 5835 /* 5836 * If arc_buf_alloc_impl() fails during 5837 * decompression, the buf will still be 5838 * allocated, and needs to be freed here. 5839 */ 5840 arc_buf_destroy(acb->acb_buf, 5841 acb->acb_private); 5842 acb->acb_buf = NULL; 5843 } 5844 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp, 5845 acb->acb_buf, acb->acb_private); 5846 } 5847 5848 if (acb->acb_zio_dummy != NULL) { 5849 acb->acb_zio_dummy->io_error = zio->io_error; 5850 zio_nowait(acb->acb_zio_dummy); 5851 } 5852 5853 callback_list = acb->acb_next; 5854 kmem_free(acb, sizeof (arc_callback_t)); 5855 } 5856 5857 if (freeable) 5858 arc_hdr_destroy(hdr); 5859 } 5860 5861 /* 5862 * "Read" the block at the specified DVA (in bp) via the 5863 * cache. If the block is found in the cache, invoke the provided 5864 * callback immediately and return. Note that the `zio' parameter 5865 * in the callback will be NULL in this case, since no IO was 5866 * required. If the block is not in the cache pass the read request 5867 * on to the spa with a substitute callback function, so that the 5868 * requested block will be added to the cache. 5869 * 5870 * If a read request arrives for a block that has a read in-progress, 5871 * either wait for the in-progress read to complete (and return the 5872 * results); or, if this is a read with a "done" func, add a record 5873 * to the read to invoke the "done" func when the read completes, 5874 * and return; or just return. 5875 * 5876 * arc_read_done() will invoke all the requested "done" functions 5877 * for readers of this block. 5878 */ 5879 int 5880 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 5881 arc_read_done_func_t *done, void *private, zio_priority_t priority, 5882 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 5883 { 5884 arc_buf_hdr_t *hdr = NULL; 5885 kmutex_t *hash_lock = NULL; 5886 zio_t *rzio; 5887 uint64_t guid = spa_load_guid(spa); 5888 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0; 5889 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) && 5890 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5891 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) && 5892 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5893 boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp); 5894 boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF; 5895 int rc = 0; 5896 5897 ASSERT(!embedded_bp || 5898 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 5899 ASSERT(!BP_IS_HOLE(bp)); 5900 ASSERT(!BP_IS_REDACTED(bp)); 5901 5902 /* 5903 * Normally SPL_FSTRANS will already be set since kernel threads which 5904 * expect to call the DMU interfaces will set it when created. System 5905 * calls are similarly handled by setting/cleaning the bit in the 5906 * registered callback (module/os/.../zfs/zpl_*). 5907 * 5908 * External consumers such as Lustre which call the exported DMU 5909 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock 5910 * on the hash_lock always set and clear the bit. 5911 */ 5912 fstrans_cookie_t cookie = spl_fstrans_mark(); 5913 top: 5914 if (!embedded_bp) { 5915 /* 5916 * Embedded BP's have no DVA and require no I/O to "read". 5917 * Create an anonymous arc buf to back it. 5918 */ 5919 if (!zfs_blkptr_verify(spa, bp, zio_flags & 5920 ZIO_FLAG_CONFIG_WRITER, BLK_VERIFY_LOG)) { 5921 rc = SET_ERROR(ECKSUM); 5922 goto out; 5923 } 5924 5925 hdr = buf_hash_find(guid, bp, &hash_lock); 5926 } 5927 5928 /* 5929 * Determine if we have an L1 cache hit or a cache miss. For simplicity 5930 * we maintain encrypted data separately from compressed / uncompressed 5931 * data. If the user is requesting raw encrypted data and we don't have 5932 * that in the header we will read from disk to guarantee that we can 5933 * get it even if the encryption keys aren't loaded. 5934 */ 5935 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) || 5936 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) { 5937 arc_buf_t *buf = NULL; 5938 *arc_flags |= ARC_FLAG_CACHED; 5939 5940 if (HDR_IO_IN_PROGRESS(hdr)) { 5941 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head; 5942 5943 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 5944 mutex_exit(hash_lock); 5945 ARCSTAT_BUMP(arcstat_cached_only_in_progress); 5946 rc = SET_ERROR(ENOENT); 5947 goto out; 5948 } 5949 5950 ASSERT3P(head_zio, !=, NULL); 5951 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && 5952 priority == ZIO_PRIORITY_SYNC_READ) { 5953 /* 5954 * This is a sync read that needs to wait for 5955 * an in-flight async read. Request that the 5956 * zio have its priority upgraded. 5957 */ 5958 zio_change_priority(head_zio, priority); 5959 DTRACE_PROBE1(arc__async__upgrade__sync, 5960 arc_buf_hdr_t *, hdr); 5961 ARCSTAT_BUMP(arcstat_async_upgrade_sync); 5962 } 5963 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 5964 arc_hdr_clear_flags(hdr, 5965 ARC_FLAG_PREDICTIVE_PREFETCH); 5966 } 5967 5968 if (*arc_flags & ARC_FLAG_WAIT) { 5969 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 5970 mutex_exit(hash_lock); 5971 goto top; 5972 } 5973 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 5974 5975 if (done) { 5976 arc_callback_t *acb = NULL; 5977 5978 acb = kmem_zalloc(sizeof (arc_callback_t), 5979 KM_SLEEP); 5980 acb->acb_done = done; 5981 acb->acb_private = private; 5982 acb->acb_compressed = compressed_read; 5983 acb->acb_encrypted = encrypted_read; 5984 acb->acb_noauth = noauth_read; 5985 acb->acb_nobuf = no_buf; 5986 acb->acb_zb = *zb; 5987 if (pio != NULL) 5988 acb->acb_zio_dummy = zio_null(pio, 5989 spa, NULL, NULL, NULL, zio_flags); 5990 5991 ASSERT3P(acb->acb_done, !=, NULL); 5992 acb->acb_zio_head = head_zio; 5993 acb->acb_next = hdr->b_l1hdr.b_acb; 5994 hdr->b_l1hdr.b_acb = acb; 5995 } 5996 mutex_exit(hash_lock); 5997 goto out; 5998 } 5999 6000 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 6001 hdr->b_l1hdr.b_state == arc_mfu); 6002 6003 if (done && !no_buf) { 6004 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 6005 /* 6006 * This is a demand read which does not have to 6007 * wait for i/o because we did a predictive 6008 * prefetch i/o for it, which has completed. 6009 */ 6010 DTRACE_PROBE1( 6011 arc__demand__hit__predictive__prefetch, 6012 arc_buf_hdr_t *, hdr); 6013 ARCSTAT_BUMP( 6014 arcstat_demand_hit_predictive_prefetch); 6015 arc_hdr_clear_flags(hdr, 6016 ARC_FLAG_PREDICTIVE_PREFETCH); 6017 } 6018 6019 if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) { 6020 ARCSTAT_BUMP( 6021 arcstat_demand_hit_prescient_prefetch); 6022 arc_hdr_clear_flags(hdr, 6023 ARC_FLAG_PRESCIENT_PREFETCH); 6024 } 6025 6026 ASSERT(!embedded_bp || !BP_IS_HOLE(bp)); 6027 6028 /* Get a buf with the desired data in it. */ 6029 rc = arc_buf_alloc_impl(hdr, spa, zb, private, 6030 encrypted_read, compressed_read, noauth_read, 6031 B_TRUE, &buf); 6032 if (rc == ECKSUM) { 6033 /* 6034 * Convert authentication and decryption errors 6035 * to EIO (and generate an ereport if needed) 6036 * before leaving the ARC. 6037 */ 6038 rc = SET_ERROR(EIO); 6039 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) { 6040 spa_log_error(spa, zb); 6041 (void) zfs_ereport_post( 6042 FM_EREPORT_ZFS_AUTHENTICATION, 6043 spa, NULL, zb, NULL, 0); 6044 } 6045 } 6046 if (rc != 0) { 6047 (void) remove_reference(hdr, hash_lock, 6048 private); 6049 arc_buf_destroy_impl(buf); 6050 buf = NULL; 6051 } 6052 6053 /* assert any errors weren't due to unloaded keys */ 6054 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) || 6055 rc != EACCES); 6056 } else if (*arc_flags & ARC_FLAG_PREFETCH && 6057 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6058 if (HDR_HAS_L2HDR(hdr)) 6059 l2arc_hdr_arcstats_decrement_state(hdr); 6060 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 6061 if (HDR_HAS_L2HDR(hdr)) 6062 l2arc_hdr_arcstats_increment_state(hdr); 6063 } 6064 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 6065 arc_access(hdr, hash_lock); 6066 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 6067 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 6068 if (*arc_flags & ARC_FLAG_L2CACHE) 6069 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6070 mutex_exit(hash_lock); 6071 ARCSTAT_BUMP(arcstat_hits); 6072 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 6073 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 6074 data, metadata, hits); 6075 6076 if (done) 6077 done(NULL, zb, bp, buf, private); 6078 } else { 6079 uint64_t lsize = BP_GET_LSIZE(bp); 6080 uint64_t psize = BP_GET_PSIZE(bp); 6081 arc_callback_t *acb; 6082 vdev_t *vd = NULL; 6083 uint64_t addr = 0; 6084 boolean_t devw = B_FALSE; 6085 uint64_t size; 6086 abd_t *hdr_abd; 6087 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0; 6088 6089 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 6090 rc = SET_ERROR(ENOENT); 6091 if (hash_lock != NULL) 6092 mutex_exit(hash_lock); 6093 goto out; 6094 } 6095 6096 if (hdr == NULL) { 6097 /* 6098 * This block is not in the cache or it has 6099 * embedded data. 6100 */ 6101 arc_buf_hdr_t *exists = NULL; 6102 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 6103 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 6104 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type); 6105 6106 if (!embedded_bp) { 6107 hdr->b_dva = *BP_IDENTITY(bp); 6108 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 6109 exists = buf_hash_insert(hdr, &hash_lock); 6110 } 6111 if (exists != NULL) { 6112 /* somebody beat us to the hash insert */ 6113 mutex_exit(hash_lock); 6114 buf_discard_identity(hdr); 6115 arc_hdr_destroy(hdr); 6116 goto top; /* restart the IO request */ 6117 } 6118 alloc_flags |= ARC_HDR_DO_ADAPT; 6119 } else { 6120 /* 6121 * This block is in the ghost cache or encrypted data 6122 * was requested and we didn't have it. If it was 6123 * L2-only (and thus didn't have an L1 hdr), 6124 * we realloc the header to add an L1 hdr. 6125 */ 6126 if (!HDR_HAS_L1HDR(hdr)) { 6127 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 6128 hdr_full_cache); 6129 } 6130 6131 if (GHOST_STATE(hdr->b_l1hdr.b_state)) { 6132 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6133 ASSERT(!HDR_HAS_RABD(hdr)); 6134 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6135 ASSERT0(zfs_refcount_count( 6136 &hdr->b_l1hdr.b_refcnt)); 6137 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 6138 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 6139 } else if (HDR_IO_IN_PROGRESS(hdr)) { 6140 /* 6141 * If this header already had an IO in progress 6142 * and we are performing another IO to fetch 6143 * encrypted data we must wait until the first 6144 * IO completes so as not to confuse 6145 * arc_read_done(). This should be very rare 6146 * and so the performance impact shouldn't 6147 * matter. 6148 */ 6149 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 6150 mutex_exit(hash_lock); 6151 goto top; 6152 } 6153 6154 /* 6155 * This is a delicate dance that we play here. 6156 * This hdr might be in the ghost list so we access 6157 * it to move it out of the ghost list before we 6158 * initiate the read. If it's a prefetch then 6159 * it won't have a callback so we'll remove the 6160 * reference that arc_buf_alloc_impl() created. We 6161 * do this after we've called arc_access() to 6162 * avoid hitting an assert in remove_reference(). 6163 */ 6164 arc_adapt(arc_hdr_size(hdr), hdr->b_l1hdr.b_state); 6165 arc_access(hdr, hash_lock); 6166 } 6167 6168 arc_hdr_alloc_abd(hdr, alloc_flags); 6169 if (encrypted_read) { 6170 ASSERT(HDR_HAS_RABD(hdr)); 6171 size = HDR_GET_PSIZE(hdr); 6172 hdr_abd = hdr->b_crypt_hdr.b_rabd; 6173 zio_flags |= ZIO_FLAG_RAW; 6174 } else { 6175 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 6176 size = arc_hdr_size(hdr); 6177 hdr_abd = hdr->b_l1hdr.b_pabd; 6178 6179 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 6180 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 6181 } 6182 6183 /* 6184 * For authenticated bp's, we do not ask the ZIO layer 6185 * to authenticate them since this will cause the entire 6186 * IO to fail if the key isn't loaded. Instead, we 6187 * defer authentication until arc_buf_fill(), which will 6188 * verify the data when the key is available. 6189 */ 6190 if (BP_IS_AUTHENTICATED(bp)) 6191 zio_flags |= ZIO_FLAG_RAW_ENCRYPT; 6192 } 6193 6194 if (*arc_flags & ARC_FLAG_PREFETCH && 6195 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6196 if (HDR_HAS_L2HDR(hdr)) 6197 l2arc_hdr_arcstats_decrement_state(hdr); 6198 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 6199 if (HDR_HAS_L2HDR(hdr)) 6200 l2arc_hdr_arcstats_increment_state(hdr); 6201 } 6202 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 6203 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 6204 if (*arc_flags & ARC_FLAG_L2CACHE) 6205 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6206 if (BP_IS_AUTHENTICATED(bp)) 6207 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6208 if (BP_GET_LEVEL(bp) > 0) 6209 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); 6210 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH) 6211 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH); 6212 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 6213 6214 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 6215 acb->acb_done = done; 6216 acb->acb_private = private; 6217 acb->acb_compressed = compressed_read; 6218 acb->acb_encrypted = encrypted_read; 6219 acb->acb_noauth = noauth_read; 6220 acb->acb_zb = *zb; 6221 6222 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6223 hdr->b_l1hdr.b_acb = acb; 6224 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6225 6226 if (HDR_HAS_L2HDR(hdr) && 6227 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 6228 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 6229 addr = hdr->b_l2hdr.b_daddr; 6230 /* 6231 * Lock out L2ARC device removal. 6232 */ 6233 if (vdev_is_dead(vd) || 6234 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 6235 vd = NULL; 6236 } 6237 6238 /* 6239 * We count both async reads and scrub IOs as asynchronous so 6240 * that both can be upgraded in the event of a cache hit while 6241 * the read IO is still in-flight. 6242 */ 6243 if (priority == ZIO_PRIORITY_ASYNC_READ || 6244 priority == ZIO_PRIORITY_SCRUB) 6245 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6246 else 6247 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6248 6249 /* 6250 * At this point, we have a level 1 cache miss or a blkptr 6251 * with embedded data. Try again in L2ARC if possible. 6252 */ 6253 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); 6254 6255 /* 6256 * Skip ARC stat bump for block pointers with embedded 6257 * data. The data are read from the blkptr itself via 6258 * decode_embedded_bp_compressed(). 6259 */ 6260 if (!embedded_bp) { 6261 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, 6262 blkptr_t *, bp, uint64_t, lsize, 6263 zbookmark_phys_t *, zb); 6264 ARCSTAT_BUMP(arcstat_misses); 6265 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 6266 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, 6267 metadata, misses); 6268 zfs_racct_read(size, 1); 6269 } 6270 6271 /* Check if the spa even has l2 configured */ 6272 const boolean_t spa_has_l2 = l2arc_ndev != 0 && 6273 spa->spa_l2cache.sav_count > 0; 6274 6275 if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) { 6276 /* 6277 * Read from the L2ARC if the following are true: 6278 * 1. The L2ARC vdev was previously cached. 6279 * 2. This buffer still has L2ARC metadata. 6280 * 3. This buffer isn't currently writing to the L2ARC. 6281 * 4. The L2ARC entry wasn't evicted, which may 6282 * also have invalidated the vdev. 6283 * 5. This isn't prefetch or l2arc_noprefetch is 0. 6284 */ 6285 if (HDR_HAS_L2HDR(hdr) && 6286 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 6287 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 6288 l2arc_read_callback_t *cb; 6289 abd_t *abd; 6290 uint64_t asize; 6291 6292 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 6293 ARCSTAT_BUMP(arcstat_l2_hits); 6294 hdr->b_l2hdr.b_hits++; 6295 6296 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 6297 KM_SLEEP); 6298 cb->l2rcb_hdr = hdr; 6299 cb->l2rcb_bp = *bp; 6300 cb->l2rcb_zb = *zb; 6301 cb->l2rcb_flags = zio_flags; 6302 6303 /* 6304 * When Compressed ARC is disabled, but the 6305 * L2ARC block is compressed, arc_hdr_size() 6306 * will have returned LSIZE rather than PSIZE. 6307 */ 6308 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 6309 !HDR_COMPRESSION_ENABLED(hdr) && 6310 HDR_GET_PSIZE(hdr) != 0) { 6311 size = HDR_GET_PSIZE(hdr); 6312 } 6313 6314 asize = vdev_psize_to_asize(vd, size); 6315 if (asize != size) { 6316 abd = abd_alloc_for_io(asize, 6317 HDR_ISTYPE_METADATA(hdr)); 6318 cb->l2rcb_abd = abd; 6319 } else { 6320 abd = hdr_abd; 6321 } 6322 6323 ASSERT(addr >= VDEV_LABEL_START_SIZE && 6324 addr + asize <= vd->vdev_psize - 6325 VDEV_LABEL_END_SIZE); 6326 6327 /* 6328 * l2arc read. The SCL_L2ARC lock will be 6329 * released by l2arc_read_done(). 6330 * Issue a null zio if the underlying buffer 6331 * was squashed to zero size by compression. 6332 */ 6333 ASSERT3U(arc_hdr_get_compress(hdr), !=, 6334 ZIO_COMPRESS_EMPTY); 6335 rzio = zio_read_phys(pio, vd, addr, 6336 asize, abd, 6337 ZIO_CHECKSUM_OFF, 6338 l2arc_read_done, cb, priority, 6339 zio_flags | ZIO_FLAG_DONT_CACHE | 6340 ZIO_FLAG_CANFAIL | 6341 ZIO_FLAG_DONT_PROPAGATE | 6342 ZIO_FLAG_DONT_RETRY, B_FALSE); 6343 acb->acb_zio_head = rzio; 6344 6345 if (hash_lock != NULL) 6346 mutex_exit(hash_lock); 6347 6348 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 6349 zio_t *, rzio); 6350 ARCSTAT_INCR(arcstat_l2_read_bytes, 6351 HDR_GET_PSIZE(hdr)); 6352 6353 if (*arc_flags & ARC_FLAG_NOWAIT) { 6354 zio_nowait(rzio); 6355 goto out; 6356 } 6357 6358 ASSERT(*arc_flags & ARC_FLAG_WAIT); 6359 if (zio_wait(rzio) == 0) 6360 goto out; 6361 6362 /* l2arc read error; goto zio_read() */ 6363 if (hash_lock != NULL) 6364 mutex_enter(hash_lock); 6365 } else { 6366 DTRACE_PROBE1(l2arc__miss, 6367 arc_buf_hdr_t *, hdr); 6368 ARCSTAT_BUMP(arcstat_l2_misses); 6369 if (HDR_L2_WRITING(hdr)) 6370 ARCSTAT_BUMP(arcstat_l2_rw_clash); 6371 spa_config_exit(spa, SCL_L2ARC, vd); 6372 } 6373 } else { 6374 if (vd != NULL) 6375 spa_config_exit(spa, SCL_L2ARC, vd); 6376 6377 /* 6378 * Only a spa with l2 should contribute to l2 6379 * miss stats. (Including the case of having a 6380 * faulted cache device - that's also a miss.) 6381 */ 6382 if (spa_has_l2) { 6383 /* 6384 * Skip ARC stat bump for block pointers with 6385 * embedded data. The data are read from the 6386 * blkptr itself via 6387 * decode_embedded_bp_compressed(). 6388 */ 6389 if (!embedded_bp) { 6390 DTRACE_PROBE1(l2arc__miss, 6391 arc_buf_hdr_t *, hdr); 6392 ARCSTAT_BUMP(arcstat_l2_misses); 6393 } 6394 } 6395 } 6396 6397 rzio = zio_read(pio, spa, bp, hdr_abd, size, 6398 arc_read_done, hdr, priority, zio_flags, zb); 6399 acb->acb_zio_head = rzio; 6400 6401 if (hash_lock != NULL) 6402 mutex_exit(hash_lock); 6403 6404 if (*arc_flags & ARC_FLAG_WAIT) { 6405 rc = zio_wait(rzio); 6406 goto out; 6407 } 6408 6409 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 6410 zio_nowait(rzio); 6411 } 6412 6413 out: 6414 /* embedded bps don't actually go to disk */ 6415 if (!embedded_bp) 6416 spa_read_history_add(spa, zb, *arc_flags); 6417 spl_fstrans_unmark(cookie); 6418 return (rc); 6419 } 6420 6421 arc_prune_t * 6422 arc_add_prune_callback(arc_prune_func_t *func, void *private) 6423 { 6424 arc_prune_t *p; 6425 6426 p = kmem_alloc(sizeof (*p), KM_SLEEP); 6427 p->p_pfunc = func; 6428 p->p_private = private; 6429 list_link_init(&p->p_node); 6430 zfs_refcount_create(&p->p_refcnt); 6431 6432 mutex_enter(&arc_prune_mtx); 6433 zfs_refcount_add(&p->p_refcnt, &arc_prune_list); 6434 list_insert_head(&arc_prune_list, p); 6435 mutex_exit(&arc_prune_mtx); 6436 6437 return (p); 6438 } 6439 6440 void 6441 arc_remove_prune_callback(arc_prune_t *p) 6442 { 6443 boolean_t wait = B_FALSE; 6444 mutex_enter(&arc_prune_mtx); 6445 list_remove(&arc_prune_list, p); 6446 if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0) 6447 wait = B_TRUE; 6448 mutex_exit(&arc_prune_mtx); 6449 6450 /* wait for arc_prune_task to finish */ 6451 if (wait) 6452 taskq_wait_outstanding(arc_prune_taskq, 0); 6453 ASSERT0(zfs_refcount_count(&p->p_refcnt)); 6454 zfs_refcount_destroy(&p->p_refcnt); 6455 kmem_free(p, sizeof (*p)); 6456 } 6457 6458 /* 6459 * Notify the arc that a block was freed, and thus will never be used again. 6460 */ 6461 void 6462 arc_freed(spa_t *spa, const blkptr_t *bp) 6463 { 6464 arc_buf_hdr_t *hdr; 6465 kmutex_t *hash_lock; 6466 uint64_t guid = spa_load_guid(spa); 6467 6468 ASSERT(!BP_IS_EMBEDDED(bp)); 6469 6470 hdr = buf_hash_find(guid, bp, &hash_lock); 6471 if (hdr == NULL) 6472 return; 6473 6474 /* 6475 * We might be trying to free a block that is still doing I/O 6476 * (i.e. prefetch) or has a reference (i.e. a dedup-ed, 6477 * dmu_sync-ed block). If this block is being prefetched, then it 6478 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr 6479 * until the I/O completes. A block may also have a reference if it is 6480 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would 6481 * have written the new block to its final resting place on disk but 6482 * without the dedup flag set. This would have left the hdr in the MRU 6483 * state and discoverable. When the txg finally syncs it detects that 6484 * the block was overridden in open context and issues an override I/O. 6485 * Since this is a dedup block, the override I/O will determine if the 6486 * block is already in the DDT. If so, then it will replace the io_bp 6487 * with the bp from the DDT and allow the I/O to finish. When the I/O 6488 * reaches the done callback, dbuf_write_override_done, it will 6489 * check to see if the io_bp and io_bp_override are identical. 6490 * If they are not, then it indicates that the bp was replaced with 6491 * the bp in the DDT and the override bp is freed. This allows 6492 * us to arrive here with a reference on a block that is being 6493 * freed. So if we have an I/O in progress, or a reference to 6494 * this hdr, then we don't destroy the hdr. 6495 */ 6496 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) && 6497 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) { 6498 arc_change_state(arc_anon, hdr, hash_lock); 6499 arc_hdr_destroy(hdr); 6500 mutex_exit(hash_lock); 6501 } else { 6502 mutex_exit(hash_lock); 6503 } 6504 6505 } 6506 6507 /* 6508 * Release this buffer from the cache, making it an anonymous buffer. This 6509 * must be done after a read and prior to modifying the buffer contents. 6510 * If the buffer has more than one reference, we must make 6511 * a new hdr for the buffer. 6512 */ 6513 void 6514 arc_release(arc_buf_t *buf, void *tag) 6515 { 6516 arc_buf_hdr_t *hdr = buf->b_hdr; 6517 6518 /* 6519 * It would be nice to assert that if its DMU metadata (level > 6520 * 0 || it's the dnode file), then it must be syncing context. 6521 * But we don't know that information at this level. 6522 */ 6523 6524 mutex_enter(&buf->b_evict_lock); 6525 6526 ASSERT(HDR_HAS_L1HDR(hdr)); 6527 6528 /* 6529 * We don't grab the hash lock prior to this check, because if 6530 * the buffer's header is in the arc_anon state, it won't be 6531 * linked into the hash table. 6532 */ 6533 if (hdr->b_l1hdr.b_state == arc_anon) { 6534 mutex_exit(&buf->b_evict_lock); 6535 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6536 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 6537 ASSERT(!HDR_HAS_L2HDR(hdr)); 6538 ASSERT(HDR_EMPTY(hdr)); 6539 6540 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6541 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 6542 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node)); 6543 6544 hdr->b_l1hdr.b_arc_access = 0; 6545 6546 /* 6547 * If the buf is being overridden then it may already 6548 * have a hdr that is not empty. 6549 */ 6550 buf_discard_identity(hdr); 6551 arc_buf_thaw(buf); 6552 6553 return; 6554 } 6555 6556 kmutex_t *hash_lock = HDR_LOCK(hdr); 6557 mutex_enter(hash_lock); 6558 6559 /* 6560 * This assignment is only valid as long as the hash_lock is 6561 * held, we must be careful not to reference state or the 6562 * b_state field after dropping the lock. 6563 */ 6564 arc_state_t *state = hdr->b_l1hdr.b_state; 6565 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 6566 ASSERT3P(state, !=, arc_anon); 6567 6568 /* this buffer is not on any list */ 6569 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0); 6570 6571 if (HDR_HAS_L2HDR(hdr)) { 6572 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6573 6574 /* 6575 * We have to recheck this conditional again now that 6576 * we're holding the l2ad_mtx to prevent a race with 6577 * another thread which might be concurrently calling 6578 * l2arc_evict(). In that case, l2arc_evict() might have 6579 * destroyed the header's L2 portion as we were waiting 6580 * to acquire the l2ad_mtx. 6581 */ 6582 if (HDR_HAS_L2HDR(hdr)) 6583 arc_hdr_l2hdr_destroy(hdr); 6584 6585 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6586 } 6587 6588 /* 6589 * Do we have more than one buf? 6590 */ 6591 if (hdr->b_l1hdr.b_bufcnt > 1) { 6592 arc_buf_hdr_t *nhdr; 6593 uint64_t spa = hdr->b_spa; 6594 uint64_t psize = HDR_GET_PSIZE(hdr); 6595 uint64_t lsize = HDR_GET_LSIZE(hdr); 6596 boolean_t protected = HDR_PROTECTED(hdr); 6597 enum zio_compress compress = arc_hdr_get_compress(hdr); 6598 arc_buf_contents_t type = arc_buf_type(hdr); 6599 VERIFY3U(hdr->b_type, ==, type); 6600 6601 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); 6602 (void) remove_reference(hdr, hash_lock, tag); 6603 6604 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) { 6605 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6606 ASSERT(ARC_BUF_LAST(buf)); 6607 } 6608 6609 /* 6610 * Pull the data off of this hdr and attach it to 6611 * a new anonymous hdr. Also find the last buffer 6612 * in the hdr's buffer list. 6613 */ 6614 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 6615 ASSERT3P(lastbuf, !=, NULL); 6616 6617 /* 6618 * If the current arc_buf_t and the hdr are sharing their data 6619 * buffer, then we must stop sharing that block. 6620 */ 6621 if (arc_buf_is_shared(buf)) { 6622 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6623 VERIFY(!arc_buf_is_shared(lastbuf)); 6624 6625 /* 6626 * First, sever the block sharing relationship between 6627 * buf and the arc_buf_hdr_t. 6628 */ 6629 arc_unshare_buf(hdr, buf); 6630 6631 /* 6632 * Now we need to recreate the hdr's b_pabd. Since we 6633 * have lastbuf handy, we try to share with it, but if 6634 * we can't then we allocate a new b_pabd and copy the 6635 * data from buf into it. 6636 */ 6637 if (arc_can_share(hdr, lastbuf)) { 6638 arc_share_buf(hdr, lastbuf); 6639 } else { 6640 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 6641 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, 6642 buf->b_data, psize); 6643 } 6644 VERIFY3P(lastbuf->b_data, !=, NULL); 6645 } else if (HDR_SHARED_DATA(hdr)) { 6646 /* 6647 * Uncompressed shared buffers are always at the end 6648 * of the list. Compressed buffers don't have the 6649 * same requirements. This makes it hard to 6650 * simply assert that the lastbuf is shared so 6651 * we rely on the hdr's compression flags to determine 6652 * if we have a compressed, shared buffer. 6653 */ 6654 ASSERT(arc_buf_is_shared(lastbuf) || 6655 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 6656 ASSERT(!ARC_BUF_SHARED(buf)); 6657 } 6658 6659 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 6660 ASSERT3P(state, !=, arc_l2c_only); 6661 6662 (void) zfs_refcount_remove_many(&state->arcs_size, 6663 arc_buf_size(buf), buf); 6664 6665 if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6666 ASSERT3P(state, !=, arc_l2c_only); 6667 (void) zfs_refcount_remove_many( 6668 &state->arcs_esize[type], 6669 arc_buf_size(buf), buf); 6670 } 6671 6672 hdr->b_l1hdr.b_bufcnt -= 1; 6673 if (ARC_BUF_ENCRYPTED(buf)) 6674 hdr->b_crypt_hdr.b_ebufcnt -= 1; 6675 6676 arc_cksum_verify(buf); 6677 arc_buf_unwatch(buf); 6678 6679 /* if this is the last uncompressed buf free the checksum */ 6680 if (!arc_hdr_has_uncompressed_buf(hdr)) 6681 arc_cksum_free(hdr); 6682 6683 mutex_exit(hash_lock); 6684 6685 /* 6686 * Allocate a new hdr. The new hdr will contain a b_pabd 6687 * buffer which will be freed in arc_write(). 6688 */ 6689 nhdr = arc_hdr_alloc(spa, psize, lsize, protected, 6690 compress, hdr->b_complevel, type); 6691 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL); 6692 ASSERT0(nhdr->b_l1hdr.b_bufcnt); 6693 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt)); 6694 VERIFY3U(nhdr->b_type, ==, type); 6695 ASSERT(!HDR_SHARED_DATA(nhdr)); 6696 6697 nhdr->b_l1hdr.b_buf = buf; 6698 nhdr->b_l1hdr.b_bufcnt = 1; 6699 if (ARC_BUF_ENCRYPTED(buf)) 6700 nhdr->b_crypt_hdr.b_ebufcnt = 1; 6701 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 6702 buf->b_hdr = nhdr; 6703 6704 mutex_exit(&buf->b_evict_lock); 6705 (void) zfs_refcount_add_many(&arc_anon->arcs_size, 6706 arc_buf_size(buf), buf); 6707 } else { 6708 mutex_exit(&buf->b_evict_lock); 6709 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 6710 /* protected by hash lock, or hdr is on arc_anon */ 6711 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 6712 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6713 hdr->b_l1hdr.b_mru_hits = 0; 6714 hdr->b_l1hdr.b_mru_ghost_hits = 0; 6715 hdr->b_l1hdr.b_mfu_hits = 0; 6716 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 6717 arc_change_state(arc_anon, hdr, hash_lock); 6718 hdr->b_l1hdr.b_arc_access = 0; 6719 6720 mutex_exit(hash_lock); 6721 buf_discard_identity(hdr); 6722 arc_buf_thaw(buf); 6723 } 6724 } 6725 6726 int 6727 arc_released(arc_buf_t *buf) 6728 { 6729 int released; 6730 6731 mutex_enter(&buf->b_evict_lock); 6732 released = (buf->b_data != NULL && 6733 buf->b_hdr->b_l1hdr.b_state == arc_anon); 6734 mutex_exit(&buf->b_evict_lock); 6735 return (released); 6736 } 6737 6738 #ifdef ZFS_DEBUG 6739 int 6740 arc_referenced(arc_buf_t *buf) 6741 { 6742 int referenced; 6743 6744 mutex_enter(&buf->b_evict_lock); 6745 referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 6746 mutex_exit(&buf->b_evict_lock); 6747 return (referenced); 6748 } 6749 #endif 6750 6751 static void 6752 arc_write_ready(zio_t *zio) 6753 { 6754 arc_write_callback_t *callback = zio->io_private; 6755 arc_buf_t *buf = callback->awcb_buf; 6756 arc_buf_hdr_t *hdr = buf->b_hdr; 6757 blkptr_t *bp = zio->io_bp; 6758 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp); 6759 fstrans_cookie_t cookie = spl_fstrans_mark(); 6760 6761 ASSERT(HDR_HAS_L1HDR(hdr)); 6762 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 6763 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 6764 6765 /* 6766 * If we're reexecuting this zio because the pool suspended, then 6767 * cleanup any state that was previously set the first time the 6768 * callback was invoked. 6769 */ 6770 if (zio->io_flags & ZIO_FLAG_REEXECUTED) { 6771 arc_cksum_free(hdr); 6772 arc_buf_unwatch(buf); 6773 if (hdr->b_l1hdr.b_pabd != NULL) { 6774 if (arc_buf_is_shared(buf)) { 6775 arc_unshare_buf(hdr, buf); 6776 } else { 6777 arc_hdr_free_abd(hdr, B_FALSE); 6778 } 6779 } 6780 6781 if (HDR_HAS_RABD(hdr)) 6782 arc_hdr_free_abd(hdr, B_TRUE); 6783 } 6784 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6785 ASSERT(!HDR_HAS_RABD(hdr)); 6786 ASSERT(!HDR_SHARED_DATA(hdr)); 6787 ASSERT(!arc_buf_is_shared(buf)); 6788 6789 callback->awcb_ready(zio, buf, callback->awcb_private); 6790 6791 if (HDR_IO_IN_PROGRESS(hdr)) 6792 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); 6793 6794 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6795 6796 if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr)) 6797 hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp)); 6798 6799 if (BP_IS_PROTECTED(bp)) { 6800 /* ZIL blocks are written through zio_rewrite */ 6801 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 6802 ASSERT(HDR_PROTECTED(hdr)); 6803 6804 if (BP_SHOULD_BYTESWAP(bp)) { 6805 if (BP_GET_LEVEL(bp) > 0) { 6806 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 6807 } else { 6808 hdr->b_l1hdr.b_byteswap = 6809 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 6810 } 6811 } else { 6812 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 6813 } 6814 6815 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 6816 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 6817 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 6818 hdr->b_crypt_hdr.b_iv); 6819 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 6820 } 6821 6822 /* 6823 * If this block was written for raw encryption but the zio layer 6824 * ended up only authenticating it, adjust the buffer flags now. 6825 */ 6826 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) { 6827 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6828 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6829 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF) 6830 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6831 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) { 6832 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6833 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6834 } 6835 6836 /* this must be done after the buffer flags are adjusted */ 6837 arc_cksum_compute(buf); 6838 6839 enum zio_compress compress; 6840 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 6841 compress = ZIO_COMPRESS_OFF; 6842 } else { 6843 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 6844 compress = BP_GET_COMPRESS(bp); 6845 } 6846 HDR_SET_PSIZE(hdr, psize); 6847 arc_hdr_set_compress(hdr, compress); 6848 hdr->b_complevel = zio->io_prop.zp_complevel; 6849 6850 if (zio->io_error != 0 || psize == 0) 6851 goto out; 6852 6853 /* 6854 * Fill the hdr with data. If the buffer is encrypted we have no choice 6855 * but to copy the data into b_radb. If the hdr is compressed, the data 6856 * we want is available from the zio, otherwise we can take it from 6857 * the buf. 6858 * 6859 * We might be able to share the buf's data with the hdr here. However, 6860 * doing so would cause the ARC to be full of linear ABDs if we write a 6861 * lot of shareable data. As a compromise, we check whether scattered 6862 * ABDs are allowed, and assume that if they are then the user wants 6863 * the ARC to be primarily filled with them regardless of the data being 6864 * written. Therefore, if they're allowed then we allocate one and copy 6865 * the data into it; otherwise, we share the data directly if we can. 6866 */ 6867 if (ARC_BUF_ENCRYPTED(buf)) { 6868 ASSERT3U(psize, >, 0); 6869 ASSERT(ARC_BUF_COMPRESSED(buf)); 6870 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT | ARC_HDR_ALLOC_RDATA | 6871 ARC_HDR_USE_RESERVE); 6872 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6873 } else if (!abd_size_alloc_linear(arc_buf_size(buf)) || 6874 !arc_can_share(hdr, buf)) { 6875 /* 6876 * Ideally, we would always copy the io_abd into b_pabd, but the 6877 * user may have disabled compressed ARC, thus we must check the 6878 * hdr's compression setting rather than the io_bp's. 6879 */ 6880 if (BP_IS_ENCRYPTED(bp)) { 6881 ASSERT3U(psize, >, 0); 6882 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT | 6883 ARC_HDR_ALLOC_RDATA | ARC_HDR_USE_RESERVE); 6884 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6885 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 6886 !ARC_BUF_COMPRESSED(buf)) { 6887 ASSERT3U(psize, >, 0); 6888 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT | 6889 ARC_HDR_USE_RESERVE); 6890 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize); 6891 } else { 6892 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr)); 6893 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT | 6894 ARC_HDR_USE_RESERVE); 6895 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data, 6896 arc_buf_size(buf)); 6897 } 6898 } else { 6899 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd)); 6900 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf)); 6901 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6902 6903 arc_share_buf(hdr, buf); 6904 } 6905 6906 out: 6907 arc_hdr_verify(hdr, bp); 6908 spl_fstrans_unmark(cookie); 6909 } 6910 6911 static void 6912 arc_write_children_ready(zio_t *zio) 6913 { 6914 arc_write_callback_t *callback = zio->io_private; 6915 arc_buf_t *buf = callback->awcb_buf; 6916 6917 callback->awcb_children_ready(zio, buf, callback->awcb_private); 6918 } 6919 6920 /* 6921 * The SPA calls this callback for each physical write that happens on behalf 6922 * of a logical write. See the comment in dbuf_write_physdone() for details. 6923 */ 6924 static void 6925 arc_write_physdone(zio_t *zio) 6926 { 6927 arc_write_callback_t *cb = zio->io_private; 6928 if (cb->awcb_physdone != NULL) 6929 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 6930 } 6931 6932 static void 6933 arc_write_done(zio_t *zio) 6934 { 6935 arc_write_callback_t *callback = zio->io_private; 6936 arc_buf_t *buf = callback->awcb_buf; 6937 arc_buf_hdr_t *hdr = buf->b_hdr; 6938 6939 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6940 6941 if (zio->io_error == 0) { 6942 arc_hdr_verify(hdr, zio->io_bp); 6943 6944 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 6945 buf_discard_identity(hdr); 6946 } else { 6947 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 6948 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 6949 } 6950 } else { 6951 ASSERT(HDR_EMPTY(hdr)); 6952 } 6953 6954 /* 6955 * If the block to be written was all-zero or compressed enough to be 6956 * embedded in the BP, no write was performed so there will be no 6957 * dva/birth/checksum. The buffer must therefore remain anonymous 6958 * (and uncached). 6959 */ 6960 if (!HDR_EMPTY(hdr)) { 6961 arc_buf_hdr_t *exists; 6962 kmutex_t *hash_lock; 6963 6964 ASSERT3U(zio->io_error, ==, 0); 6965 6966 arc_cksum_verify(buf); 6967 6968 exists = buf_hash_insert(hdr, &hash_lock); 6969 if (exists != NULL) { 6970 /* 6971 * This can only happen if we overwrite for 6972 * sync-to-convergence, because we remove 6973 * buffers from the hash table when we arc_free(). 6974 */ 6975 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 6976 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6977 panic("bad overwrite, hdr=%p exists=%p", 6978 (void *)hdr, (void *)exists); 6979 ASSERT(zfs_refcount_is_zero( 6980 &exists->b_l1hdr.b_refcnt)); 6981 arc_change_state(arc_anon, exists, hash_lock); 6982 arc_hdr_destroy(exists); 6983 mutex_exit(hash_lock); 6984 exists = buf_hash_insert(hdr, &hash_lock); 6985 ASSERT3P(exists, ==, NULL); 6986 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 6987 /* nopwrite */ 6988 ASSERT(zio->io_prop.zp_nopwrite); 6989 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6990 panic("bad nopwrite, hdr=%p exists=%p", 6991 (void *)hdr, (void *)exists); 6992 } else { 6993 /* Dedup */ 6994 ASSERT(hdr->b_l1hdr.b_bufcnt == 1); 6995 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 6996 ASSERT(BP_GET_DEDUP(zio->io_bp)); 6997 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 6998 } 6999 } 7000 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 7001 /* if it's not anon, we are doing a scrub */ 7002 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 7003 arc_access(hdr, hash_lock); 7004 mutex_exit(hash_lock); 7005 } else { 7006 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 7007 } 7008 7009 ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 7010 callback->awcb_done(zio, buf, callback->awcb_private); 7011 7012 abd_free(zio->io_abd); 7013 kmem_free(callback, sizeof (arc_write_callback_t)); 7014 } 7015 7016 zio_t * 7017 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 7018 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, 7019 const zio_prop_t *zp, arc_write_done_func_t *ready, 7020 arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone, 7021 arc_write_done_func_t *done, void *private, zio_priority_t priority, 7022 int zio_flags, const zbookmark_phys_t *zb) 7023 { 7024 arc_buf_hdr_t *hdr = buf->b_hdr; 7025 arc_write_callback_t *callback; 7026 zio_t *zio; 7027 zio_prop_t localprop = *zp; 7028 7029 ASSERT3P(ready, !=, NULL); 7030 ASSERT3P(done, !=, NULL); 7031 ASSERT(!HDR_IO_ERROR(hdr)); 7032 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 7033 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 7034 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 7035 if (l2arc) 7036 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 7037 7038 if (ARC_BUF_ENCRYPTED(buf)) { 7039 ASSERT(ARC_BUF_COMPRESSED(buf)); 7040 localprop.zp_encrypt = B_TRUE; 7041 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 7042 localprop.zp_complevel = hdr->b_complevel; 7043 localprop.zp_byteorder = 7044 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 7045 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 7046 bcopy(hdr->b_crypt_hdr.b_salt, localprop.zp_salt, 7047 ZIO_DATA_SALT_LEN); 7048 bcopy(hdr->b_crypt_hdr.b_iv, localprop.zp_iv, 7049 ZIO_DATA_IV_LEN); 7050 bcopy(hdr->b_crypt_hdr.b_mac, localprop.zp_mac, 7051 ZIO_DATA_MAC_LEN); 7052 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) { 7053 localprop.zp_nopwrite = B_FALSE; 7054 localprop.zp_copies = 7055 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1); 7056 } 7057 zio_flags |= ZIO_FLAG_RAW; 7058 } else if (ARC_BUF_COMPRESSED(buf)) { 7059 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf)); 7060 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 7061 localprop.zp_complevel = hdr->b_complevel; 7062 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 7063 } 7064 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 7065 callback->awcb_ready = ready; 7066 callback->awcb_children_ready = children_ready; 7067 callback->awcb_physdone = physdone; 7068 callback->awcb_done = done; 7069 callback->awcb_private = private; 7070 callback->awcb_buf = buf; 7071 7072 /* 7073 * The hdr's b_pabd is now stale, free it now. A new data block 7074 * will be allocated when the zio pipeline calls arc_write_ready(). 7075 */ 7076 if (hdr->b_l1hdr.b_pabd != NULL) { 7077 /* 7078 * If the buf is currently sharing the data block with 7079 * the hdr then we need to break that relationship here. 7080 * The hdr will remain with a NULL data pointer and the 7081 * buf will take sole ownership of the block. 7082 */ 7083 if (arc_buf_is_shared(buf)) { 7084 arc_unshare_buf(hdr, buf); 7085 } else { 7086 arc_hdr_free_abd(hdr, B_FALSE); 7087 } 7088 VERIFY3P(buf->b_data, !=, NULL); 7089 } 7090 7091 if (HDR_HAS_RABD(hdr)) 7092 arc_hdr_free_abd(hdr, B_TRUE); 7093 7094 if (!(zio_flags & ZIO_FLAG_RAW)) 7095 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); 7096 7097 ASSERT(!arc_buf_is_shared(buf)); 7098 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 7099 7100 zio = zio_write(pio, spa, txg, bp, 7101 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)), 7102 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready, 7103 (children_ready != NULL) ? arc_write_children_ready : NULL, 7104 arc_write_physdone, arc_write_done, callback, 7105 priority, zio_flags, zb); 7106 7107 return (zio); 7108 } 7109 7110 void 7111 arc_tempreserve_clear(uint64_t reserve) 7112 { 7113 atomic_add_64(&arc_tempreserve, -reserve); 7114 ASSERT((int64_t)arc_tempreserve >= 0); 7115 } 7116 7117 int 7118 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg) 7119 { 7120 int error; 7121 uint64_t anon_size; 7122 7123 if (!arc_no_grow && 7124 reserve > arc_c/4 && 7125 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT)) 7126 arc_c = MIN(arc_c_max, reserve * 4); 7127 7128 /* 7129 * Throttle when the calculated memory footprint for the TXG 7130 * exceeds the target ARC size. 7131 */ 7132 if (reserve > arc_c) { 7133 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve); 7134 return (SET_ERROR(ERESTART)); 7135 } 7136 7137 /* 7138 * Don't count loaned bufs as in flight dirty data to prevent long 7139 * network delays from blocking transactions that are ready to be 7140 * assigned to a txg. 7141 */ 7142 7143 /* assert that it has not wrapped around */ 7144 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 7145 7146 anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) - 7147 arc_loaned_bytes), 0); 7148 7149 /* 7150 * Writes will, almost always, require additional memory allocations 7151 * in order to compress/encrypt/etc the data. We therefore need to 7152 * make sure that there is sufficient available memory for this. 7153 */ 7154 error = arc_memory_throttle(spa, reserve, txg); 7155 if (error != 0) 7156 return (error); 7157 7158 /* 7159 * Throttle writes when the amount of dirty data in the cache 7160 * gets too large. We try to keep the cache less than half full 7161 * of dirty blocks so that our sync times don't grow too large. 7162 * 7163 * In the case of one pool being built on another pool, we want 7164 * to make sure we don't end up throttling the lower (backing) 7165 * pool when the upper pool is the majority contributor to dirty 7166 * data. To insure we make forward progress during throttling, we 7167 * also check the current pool's net dirty data and only throttle 7168 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty 7169 * data in the cache. 7170 * 7171 * Note: if two requests come in concurrently, we might let them 7172 * both succeed, when one of them should fail. Not a huge deal. 7173 */ 7174 uint64_t total_dirty = reserve + arc_tempreserve + anon_size; 7175 uint64_t spa_dirty_anon = spa_dirty_data(spa); 7176 uint64_t rarc_c = arc_warm ? arc_c : arc_c_max; 7177 if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 && 7178 anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 && 7179 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) { 7180 #ifdef ZFS_DEBUG 7181 uint64_t meta_esize = zfs_refcount_count( 7182 &arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7183 uint64_t data_esize = 7184 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7185 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 7186 "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n", 7187 (u_longlong_t)arc_tempreserve >> 10, 7188 (u_longlong_t)meta_esize >> 10, 7189 (u_longlong_t)data_esize >> 10, 7190 (u_longlong_t)reserve >> 10, 7191 (u_longlong_t)rarc_c >> 10); 7192 #endif 7193 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle); 7194 return (SET_ERROR(ERESTART)); 7195 } 7196 atomic_add_64(&arc_tempreserve, reserve); 7197 return (0); 7198 } 7199 7200 static void 7201 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 7202 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 7203 { 7204 size->value.ui64 = zfs_refcount_count(&state->arcs_size); 7205 evict_data->value.ui64 = 7206 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); 7207 evict_metadata->value.ui64 = 7208 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); 7209 } 7210 7211 static int 7212 arc_kstat_update(kstat_t *ksp, int rw) 7213 { 7214 arc_stats_t *as = ksp->ks_data; 7215 7216 if (rw == KSTAT_WRITE) 7217 return (SET_ERROR(EACCES)); 7218 7219 as->arcstat_hits.value.ui64 = 7220 wmsum_value(&arc_sums.arcstat_hits); 7221 as->arcstat_misses.value.ui64 = 7222 wmsum_value(&arc_sums.arcstat_misses); 7223 as->arcstat_demand_data_hits.value.ui64 = 7224 wmsum_value(&arc_sums.arcstat_demand_data_hits); 7225 as->arcstat_demand_data_misses.value.ui64 = 7226 wmsum_value(&arc_sums.arcstat_demand_data_misses); 7227 as->arcstat_demand_metadata_hits.value.ui64 = 7228 wmsum_value(&arc_sums.arcstat_demand_metadata_hits); 7229 as->arcstat_demand_metadata_misses.value.ui64 = 7230 wmsum_value(&arc_sums.arcstat_demand_metadata_misses); 7231 as->arcstat_prefetch_data_hits.value.ui64 = 7232 wmsum_value(&arc_sums.arcstat_prefetch_data_hits); 7233 as->arcstat_prefetch_data_misses.value.ui64 = 7234 wmsum_value(&arc_sums.arcstat_prefetch_data_misses); 7235 as->arcstat_prefetch_metadata_hits.value.ui64 = 7236 wmsum_value(&arc_sums.arcstat_prefetch_metadata_hits); 7237 as->arcstat_prefetch_metadata_misses.value.ui64 = 7238 wmsum_value(&arc_sums.arcstat_prefetch_metadata_misses); 7239 as->arcstat_mru_hits.value.ui64 = 7240 wmsum_value(&arc_sums.arcstat_mru_hits); 7241 as->arcstat_mru_ghost_hits.value.ui64 = 7242 wmsum_value(&arc_sums.arcstat_mru_ghost_hits); 7243 as->arcstat_mfu_hits.value.ui64 = 7244 wmsum_value(&arc_sums.arcstat_mfu_hits); 7245 as->arcstat_mfu_ghost_hits.value.ui64 = 7246 wmsum_value(&arc_sums.arcstat_mfu_ghost_hits); 7247 as->arcstat_deleted.value.ui64 = 7248 wmsum_value(&arc_sums.arcstat_deleted); 7249 as->arcstat_mutex_miss.value.ui64 = 7250 wmsum_value(&arc_sums.arcstat_mutex_miss); 7251 as->arcstat_access_skip.value.ui64 = 7252 wmsum_value(&arc_sums.arcstat_access_skip); 7253 as->arcstat_evict_skip.value.ui64 = 7254 wmsum_value(&arc_sums.arcstat_evict_skip); 7255 as->arcstat_evict_not_enough.value.ui64 = 7256 wmsum_value(&arc_sums.arcstat_evict_not_enough); 7257 as->arcstat_evict_l2_cached.value.ui64 = 7258 wmsum_value(&arc_sums.arcstat_evict_l2_cached); 7259 as->arcstat_evict_l2_eligible.value.ui64 = 7260 wmsum_value(&arc_sums.arcstat_evict_l2_eligible); 7261 as->arcstat_evict_l2_eligible_mfu.value.ui64 = 7262 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mfu); 7263 as->arcstat_evict_l2_eligible_mru.value.ui64 = 7264 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mru); 7265 as->arcstat_evict_l2_ineligible.value.ui64 = 7266 wmsum_value(&arc_sums.arcstat_evict_l2_ineligible); 7267 as->arcstat_evict_l2_skip.value.ui64 = 7268 wmsum_value(&arc_sums.arcstat_evict_l2_skip); 7269 as->arcstat_hash_collisions.value.ui64 = 7270 wmsum_value(&arc_sums.arcstat_hash_collisions); 7271 as->arcstat_hash_chains.value.ui64 = 7272 wmsum_value(&arc_sums.arcstat_hash_chains); 7273 as->arcstat_size.value.ui64 = 7274 aggsum_value(&arc_sums.arcstat_size); 7275 as->arcstat_compressed_size.value.ui64 = 7276 wmsum_value(&arc_sums.arcstat_compressed_size); 7277 as->arcstat_uncompressed_size.value.ui64 = 7278 wmsum_value(&arc_sums.arcstat_uncompressed_size); 7279 as->arcstat_overhead_size.value.ui64 = 7280 wmsum_value(&arc_sums.arcstat_overhead_size); 7281 as->arcstat_hdr_size.value.ui64 = 7282 wmsum_value(&arc_sums.arcstat_hdr_size); 7283 as->arcstat_data_size.value.ui64 = 7284 wmsum_value(&arc_sums.arcstat_data_size); 7285 as->arcstat_metadata_size.value.ui64 = 7286 wmsum_value(&arc_sums.arcstat_metadata_size); 7287 as->arcstat_dbuf_size.value.ui64 = 7288 wmsum_value(&arc_sums.arcstat_dbuf_size); 7289 #if defined(COMPAT_FREEBSD11) 7290 as->arcstat_other_size.value.ui64 = 7291 wmsum_value(&arc_sums.arcstat_bonus_size) + 7292 aggsum_value(&arc_sums.arcstat_dnode_size) + 7293 wmsum_value(&arc_sums.arcstat_dbuf_size); 7294 #endif 7295 7296 arc_kstat_update_state(arc_anon, 7297 &as->arcstat_anon_size, 7298 &as->arcstat_anon_evictable_data, 7299 &as->arcstat_anon_evictable_metadata); 7300 arc_kstat_update_state(arc_mru, 7301 &as->arcstat_mru_size, 7302 &as->arcstat_mru_evictable_data, 7303 &as->arcstat_mru_evictable_metadata); 7304 arc_kstat_update_state(arc_mru_ghost, 7305 &as->arcstat_mru_ghost_size, 7306 &as->arcstat_mru_ghost_evictable_data, 7307 &as->arcstat_mru_ghost_evictable_metadata); 7308 arc_kstat_update_state(arc_mfu, 7309 &as->arcstat_mfu_size, 7310 &as->arcstat_mfu_evictable_data, 7311 &as->arcstat_mfu_evictable_metadata); 7312 arc_kstat_update_state(arc_mfu_ghost, 7313 &as->arcstat_mfu_ghost_size, 7314 &as->arcstat_mfu_ghost_evictable_data, 7315 &as->arcstat_mfu_ghost_evictable_metadata); 7316 7317 as->arcstat_dnode_size.value.ui64 = 7318 aggsum_value(&arc_sums.arcstat_dnode_size); 7319 as->arcstat_bonus_size.value.ui64 = 7320 wmsum_value(&arc_sums.arcstat_bonus_size); 7321 as->arcstat_l2_hits.value.ui64 = 7322 wmsum_value(&arc_sums.arcstat_l2_hits); 7323 as->arcstat_l2_misses.value.ui64 = 7324 wmsum_value(&arc_sums.arcstat_l2_misses); 7325 as->arcstat_l2_prefetch_asize.value.ui64 = 7326 wmsum_value(&arc_sums.arcstat_l2_prefetch_asize); 7327 as->arcstat_l2_mru_asize.value.ui64 = 7328 wmsum_value(&arc_sums.arcstat_l2_mru_asize); 7329 as->arcstat_l2_mfu_asize.value.ui64 = 7330 wmsum_value(&arc_sums.arcstat_l2_mfu_asize); 7331 as->arcstat_l2_bufc_data_asize.value.ui64 = 7332 wmsum_value(&arc_sums.arcstat_l2_bufc_data_asize); 7333 as->arcstat_l2_bufc_metadata_asize.value.ui64 = 7334 wmsum_value(&arc_sums.arcstat_l2_bufc_metadata_asize); 7335 as->arcstat_l2_feeds.value.ui64 = 7336 wmsum_value(&arc_sums.arcstat_l2_feeds); 7337 as->arcstat_l2_rw_clash.value.ui64 = 7338 wmsum_value(&arc_sums.arcstat_l2_rw_clash); 7339 as->arcstat_l2_read_bytes.value.ui64 = 7340 wmsum_value(&arc_sums.arcstat_l2_read_bytes); 7341 as->arcstat_l2_write_bytes.value.ui64 = 7342 wmsum_value(&arc_sums.arcstat_l2_write_bytes); 7343 as->arcstat_l2_writes_sent.value.ui64 = 7344 wmsum_value(&arc_sums.arcstat_l2_writes_sent); 7345 as->arcstat_l2_writes_done.value.ui64 = 7346 wmsum_value(&arc_sums.arcstat_l2_writes_done); 7347 as->arcstat_l2_writes_error.value.ui64 = 7348 wmsum_value(&arc_sums.arcstat_l2_writes_error); 7349 as->arcstat_l2_writes_lock_retry.value.ui64 = 7350 wmsum_value(&arc_sums.arcstat_l2_writes_lock_retry); 7351 as->arcstat_l2_evict_lock_retry.value.ui64 = 7352 wmsum_value(&arc_sums.arcstat_l2_evict_lock_retry); 7353 as->arcstat_l2_evict_reading.value.ui64 = 7354 wmsum_value(&arc_sums.arcstat_l2_evict_reading); 7355 as->arcstat_l2_evict_l1cached.value.ui64 = 7356 wmsum_value(&arc_sums.arcstat_l2_evict_l1cached); 7357 as->arcstat_l2_free_on_write.value.ui64 = 7358 wmsum_value(&arc_sums.arcstat_l2_free_on_write); 7359 as->arcstat_l2_abort_lowmem.value.ui64 = 7360 wmsum_value(&arc_sums.arcstat_l2_abort_lowmem); 7361 as->arcstat_l2_cksum_bad.value.ui64 = 7362 wmsum_value(&arc_sums.arcstat_l2_cksum_bad); 7363 as->arcstat_l2_io_error.value.ui64 = 7364 wmsum_value(&arc_sums.arcstat_l2_io_error); 7365 as->arcstat_l2_lsize.value.ui64 = 7366 wmsum_value(&arc_sums.arcstat_l2_lsize); 7367 as->arcstat_l2_psize.value.ui64 = 7368 wmsum_value(&arc_sums.arcstat_l2_psize); 7369 as->arcstat_l2_hdr_size.value.ui64 = 7370 aggsum_value(&arc_sums.arcstat_l2_hdr_size); 7371 as->arcstat_l2_log_blk_writes.value.ui64 = 7372 wmsum_value(&arc_sums.arcstat_l2_log_blk_writes); 7373 as->arcstat_l2_log_blk_asize.value.ui64 = 7374 wmsum_value(&arc_sums.arcstat_l2_log_blk_asize); 7375 as->arcstat_l2_log_blk_count.value.ui64 = 7376 wmsum_value(&arc_sums.arcstat_l2_log_blk_count); 7377 as->arcstat_l2_rebuild_success.value.ui64 = 7378 wmsum_value(&arc_sums.arcstat_l2_rebuild_success); 7379 as->arcstat_l2_rebuild_abort_unsupported.value.ui64 = 7380 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_unsupported); 7381 as->arcstat_l2_rebuild_abort_io_errors.value.ui64 = 7382 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_io_errors); 7383 as->arcstat_l2_rebuild_abort_dh_errors.value.ui64 = 7384 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_dh_errors); 7385 as->arcstat_l2_rebuild_abort_cksum_lb_errors.value.ui64 = 7386 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors); 7387 as->arcstat_l2_rebuild_abort_lowmem.value.ui64 = 7388 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_lowmem); 7389 as->arcstat_l2_rebuild_size.value.ui64 = 7390 wmsum_value(&arc_sums.arcstat_l2_rebuild_size); 7391 as->arcstat_l2_rebuild_asize.value.ui64 = 7392 wmsum_value(&arc_sums.arcstat_l2_rebuild_asize); 7393 as->arcstat_l2_rebuild_bufs.value.ui64 = 7394 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs); 7395 as->arcstat_l2_rebuild_bufs_precached.value.ui64 = 7396 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs_precached); 7397 as->arcstat_l2_rebuild_log_blks.value.ui64 = 7398 wmsum_value(&arc_sums.arcstat_l2_rebuild_log_blks); 7399 as->arcstat_memory_throttle_count.value.ui64 = 7400 wmsum_value(&arc_sums.arcstat_memory_throttle_count); 7401 as->arcstat_memory_direct_count.value.ui64 = 7402 wmsum_value(&arc_sums.arcstat_memory_direct_count); 7403 as->arcstat_memory_indirect_count.value.ui64 = 7404 wmsum_value(&arc_sums.arcstat_memory_indirect_count); 7405 7406 as->arcstat_memory_all_bytes.value.ui64 = 7407 arc_all_memory(); 7408 as->arcstat_memory_free_bytes.value.ui64 = 7409 arc_free_memory(); 7410 as->arcstat_memory_available_bytes.value.i64 = 7411 arc_available_memory(); 7412 7413 as->arcstat_prune.value.ui64 = 7414 wmsum_value(&arc_sums.arcstat_prune); 7415 as->arcstat_meta_used.value.ui64 = 7416 aggsum_value(&arc_sums.arcstat_meta_used); 7417 as->arcstat_async_upgrade_sync.value.ui64 = 7418 wmsum_value(&arc_sums.arcstat_async_upgrade_sync); 7419 as->arcstat_demand_hit_predictive_prefetch.value.ui64 = 7420 wmsum_value(&arc_sums.arcstat_demand_hit_predictive_prefetch); 7421 as->arcstat_demand_hit_prescient_prefetch.value.ui64 = 7422 wmsum_value(&arc_sums.arcstat_demand_hit_prescient_prefetch); 7423 as->arcstat_raw_size.value.ui64 = 7424 wmsum_value(&arc_sums.arcstat_raw_size); 7425 as->arcstat_cached_only_in_progress.value.ui64 = 7426 wmsum_value(&arc_sums.arcstat_cached_only_in_progress); 7427 as->arcstat_abd_chunk_waste_size.value.ui64 = 7428 wmsum_value(&arc_sums.arcstat_abd_chunk_waste_size); 7429 7430 return (0); 7431 } 7432 7433 /* 7434 * This function *must* return indices evenly distributed between all 7435 * sublists of the multilist. This is needed due to how the ARC eviction 7436 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 7437 * distributed between all sublists and uses this assumption when 7438 * deciding which sublist to evict from and how much to evict from it. 7439 */ 7440 static unsigned int 7441 arc_state_multilist_index_func(multilist_t *ml, void *obj) 7442 { 7443 arc_buf_hdr_t *hdr = obj; 7444 7445 /* 7446 * We rely on b_dva to generate evenly distributed index 7447 * numbers using buf_hash below. So, as an added precaution, 7448 * let's make sure we never add empty buffers to the arc lists. 7449 */ 7450 ASSERT(!HDR_EMPTY(hdr)); 7451 7452 /* 7453 * The assumption here, is the hash value for a given 7454 * arc_buf_hdr_t will remain constant throughout its lifetime 7455 * (i.e. its b_spa, b_dva, and b_birth fields don't change). 7456 * Thus, we don't need to store the header's sublist index 7457 * on insertion, as this index can be recalculated on removal. 7458 * 7459 * Also, the low order bits of the hash value are thought to be 7460 * distributed evenly. Otherwise, in the case that the multilist 7461 * has a power of two number of sublists, each sublists' usage 7462 * would not be evenly distributed. In this context full 64bit 7463 * division would be a waste of time, so limit it to 32 bits. 7464 */ 7465 return ((unsigned int)buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 7466 multilist_get_num_sublists(ml)); 7467 } 7468 7469 static unsigned int 7470 arc_state_l2c_multilist_index_func(multilist_t *ml, void *obj) 7471 { 7472 panic("Header %p insert into arc_l2c_only %p", obj, ml); 7473 } 7474 7475 #define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \ 7476 if ((do_warn) && (tuning) && ((tuning) != (value))) { \ 7477 cmn_err(CE_WARN, \ 7478 "ignoring tunable %s (using %llu instead)", \ 7479 (#tuning), (u_longlong_t)(value)); \ 7480 } \ 7481 } while (0) 7482 7483 /* 7484 * Called during module initialization and periodically thereafter to 7485 * apply reasonable changes to the exposed performance tunings. Can also be 7486 * called explicitly by param_set_arc_*() functions when ARC tunables are 7487 * updated manually. Non-zero zfs_* values which differ from the currently set 7488 * values will be applied. 7489 */ 7490 void 7491 arc_tuning_update(boolean_t verbose) 7492 { 7493 uint64_t allmem = arc_all_memory(); 7494 unsigned long limit; 7495 7496 /* Valid range: 32M - <arc_c_max> */ 7497 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) && 7498 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) && 7499 (zfs_arc_min <= arc_c_max)) { 7500 arc_c_min = zfs_arc_min; 7501 arc_c = MAX(arc_c, arc_c_min); 7502 } 7503 WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose); 7504 7505 /* Valid range: 64M - <all physical memory> */ 7506 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) && 7507 (zfs_arc_max >= MIN_ARC_MAX) && (zfs_arc_max < allmem) && 7508 (zfs_arc_max > arc_c_min)) { 7509 arc_c_max = zfs_arc_max; 7510 arc_c = MIN(arc_c, arc_c_max); 7511 arc_p = (arc_c >> 1); 7512 if (arc_meta_limit > arc_c_max) 7513 arc_meta_limit = arc_c_max; 7514 if (arc_dnode_size_limit > arc_meta_limit) 7515 arc_dnode_size_limit = arc_meta_limit; 7516 } 7517 WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose); 7518 7519 /* Valid range: 16M - <arc_c_max> */ 7520 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) && 7521 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) && 7522 (zfs_arc_meta_min <= arc_c_max)) { 7523 arc_meta_min = zfs_arc_meta_min; 7524 if (arc_meta_limit < arc_meta_min) 7525 arc_meta_limit = arc_meta_min; 7526 if (arc_dnode_size_limit < arc_meta_min) 7527 arc_dnode_size_limit = arc_meta_min; 7528 } 7529 WARN_IF_TUNING_IGNORED(zfs_arc_meta_min, arc_meta_min, verbose); 7530 7531 /* Valid range: <arc_meta_min> - <arc_c_max> */ 7532 limit = zfs_arc_meta_limit ? zfs_arc_meta_limit : 7533 MIN(zfs_arc_meta_limit_percent, 100) * arc_c_max / 100; 7534 if ((limit != arc_meta_limit) && 7535 (limit >= arc_meta_min) && 7536 (limit <= arc_c_max)) 7537 arc_meta_limit = limit; 7538 WARN_IF_TUNING_IGNORED(zfs_arc_meta_limit, arc_meta_limit, verbose); 7539 7540 /* Valid range: <arc_meta_min> - <arc_meta_limit> */ 7541 limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit : 7542 MIN(zfs_arc_dnode_limit_percent, 100) * arc_meta_limit / 100; 7543 if ((limit != arc_dnode_size_limit) && 7544 (limit >= arc_meta_min) && 7545 (limit <= arc_meta_limit)) 7546 arc_dnode_size_limit = limit; 7547 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_size_limit, 7548 verbose); 7549 7550 /* Valid range: 1 - N */ 7551 if (zfs_arc_grow_retry) 7552 arc_grow_retry = zfs_arc_grow_retry; 7553 7554 /* Valid range: 1 - N */ 7555 if (zfs_arc_shrink_shift) { 7556 arc_shrink_shift = zfs_arc_shrink_shift; 7557 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1); 7558 } 7559 7560 /* Valid range: 1 - N */ 7561 if (zfs_arc_p_min_shift) 7562 arc_p_min_shift = zfs_arc_p_min_shift; 7563 7564 /* Valid range: 1 - N ms */ 7565 if (zfs_arc_min_prefetch_ms) 7566 arc_min_prefetch_ms = zfs_arc_min_prefetch_ms; 7567 7568 /* Valid range: 1 - N ms */ 7569 if (zfs_arc_min_prescient_prefetch_ms) { 7570 arc_min_prescient_prefetch_ms = 7571 zfs_arc_min_prescient_prefetch_ms; 7572 } 7573 7574 /* Valid range: 0 - 100 */ 7575 if ((zfs_arc_lotsfree_percent >= 0) && 7576 (zfs_arc_lotsfree_percent <= 100)) 7577 arc_lotsfree_percent = zfs_arc_lotsfree_percent; 7578 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent, 7579 verbose); 7580 7581 /* Valid range: 0 - <all physical memory> */ 7582 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free)) 7583 arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), allmem); 7584 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose); 7585 } 7586 7587 static void 7588 arc_state_init(void) 7589 { 7590 multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 7591 sizeof (arc_buf_hdr_t), 7592 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7593 arc_state_multilist_index_func); 7594 multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 7595 sizeof (arc_buf_hdr_t), 7596 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7597 arc_state_multilist_index_func); 7598 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 7599 sizeof (arc_buf_hdr_t), 7600 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7601 arc_state_multilist_index_func); 7602 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 7603 sizeof (arc_buf_hdr_t), 7604 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7605 arc_state_multilist_index_func); 7606 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 7607 sizeof (arc_buf_hdr_t), 7608 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7609 arc_state_multilist_index_func); 7610 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 7611 sizeof (arc_buf_hdr_t), 7612 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7613 arc_state_multilist_index_func); 7614 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 7615 sizeof (arc_buf_hdr_t), 7616 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7617 arc_state_multilist_index_func); 7618 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 7619 sizeof (arc_buf_hdr_t), 7620 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7621 arc_state_multilist_index_func); 7622 /* 7623 * L2 headers should never be on the L2 state list since they don't 7624 * have L1 headers allocated. Special index function asserts that. 7625 */ 7626 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 7627 sizeof (arc_buf_hdr_t), 7628 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7629 arc_state_l2c_multilist_index_func); 7630 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 7631 sizeof (arc_buf_hdr_t), 7632 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7633 arc_state_l2c_multilist_index_func); 7634 7635 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7636 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7637 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7638 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7639 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7640 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7641 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7642 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7643 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7644 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7645 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7646 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7647 7648 zfs_refcount_create(&arc_anon->arcs_size); 7649 zfs_refcount_create(&arc_mru->arcs_size); 7650 zfs_refcount_create(&arc_mru_ghost->arcs_size); 7651 zfs_refcount_create(&arc_mfu->arcs_size); 7652 zfs_refcount_create(&arc_mfu_ghost->arcs_size); 7653 zfs_refcount_create(&arc_l2c_only->arcs_size); 7654 7655 wmsum_init(&arc_sums.arcstat_hits, 0); 7656 wmsum_init(&arc_sums.arcstat_misses, 0); 7657 wmsum_init(&arc_sums.arcstat_demand_data_hits, 0); 7658 wmsum_init(&arc_sums.arcstat_demand_data_misses, 0); 7659 wmsum_init(&arc_sums.arcstat_demand_metadata_hits, 0); 7660 wmsum_init(&arc_sums.arcstat_demand_metadata_misses, 0); 7661 wmsum_init(&arc_sums.arcstat_prefetch_data_hits, 0); 7662 wmsum_init(&arc_sums.arcstat_prefetch_data_misses, 0); 7663 wmsum_init(&arc_sums.arcstat_prefetch_metadata_hits, 0); 7664 wmsum_init(&arc_sums.arcstat_prefetch_metadata_misses, 0); 7665 wmsum_init(&arc_sums.arcstat_mru_hits, 0); 7666 wmsum_init(&arc_sums.arcstat_mru_ghost_hits, 0); 7667 wmsum_init(&arc_sums.arcstat_mfu_hits, 0); 7668 wmsum_init(&arc_sums.arcstat_mfu_ghost_hits, 0); 7669 wmsum_init(&arc_sums.arcstat_deleted, 0); 7670 wmsum_init(&arc_sums.arcstat_mutex_miss, 0); 7671 wmsum_init(&arc_sums.arcstat_access_skip, 0); 7672 wmsum_init(&arc_sums.arcstat_evict_skip, 0); 7673 wmsum_init(&arc_sums.arcstat_evict_not_enough, 0); 7674 wmsum_init(&arc_sums.arcstat_evict_l2_cached, 0); 7675 wmsum_init(&arc_sums.arcstat_evict_l2_eligible, 0); 7676 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mfu, 0); 7677 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mru, 0); 7678 wmsum_init(&arc_sums.arcstat_evict_l2_ineligible, 0); 7679 wmsum_init(&arc_sums.arcstat_evict_l2_skip, 0); 7680 wmsum_init(&arc_sums.arcstat_hash_collisions, 0); 7681 wmsum_init(&arc_sums.arcstat_hash_chains, 0); 7682 aggsum_init(&arc_sums.arcstat_size, 0); 7683 wmsum_init(&arc_sums.arcstat_compressed_size, 0); 7684 wmsum_init(&arc_sums.arcstat_uncompressed_size, 0); 7685 wmsum_init(&arc_sums.arcstat_overhead_size, 0); 7686 wmsum_init(&arc_sums.arcstat_hdr_size, 0); 7687 wmsum_init(&arc_sums.arcstat_data_size, 0); 7688 wmsum_init(&arc_sums.arcstat_metadata_size, 0); 7689 wmsum_init(&arc_sums.arcstat_dbuf_size, 0); 7690 aggsum_init(&arc_sums.arcstat_dnode_size, 0); 7691 wmsum_init(&arc_sums.arcstat_bonus_size, 0); 7692 wmsum_init(&arc_sums.arcstat_l2_hits, 0); 7693 wmsum_init(&arc_sums.arcstat_l2_misses, 0); 7694 wmsum_init(&arc_sums.arcstat_l2_prefetch_asize, 0); 7695 wmsum_init(&arc_sums.arcstat_l2_mru_asize, 0); 7696 wmsum_init(&arc_sums.arcstat_l2_mfu_asize, 0); 7697 wmsum_init(&arc_sums.arcstat_l2_bufc_data_asize, 0); 7698 wmsum_init(&arc_sums.arcstat_l2_bufc_metadata_asize, 0); 7699 wmsum_init(&arc_sums.arcstat_l2_feeds, 0); 7700 wmsum_init(&arc_sums.arcstat_l2_rw_clash, 0); 7701 wmsum_init(&arc_sums.arcstat_l2_read_bytes, 0); 7702 wmsum_init(&arc_sums.arcstat_l2_write_bytes, 0); 7703 wmsum_init(&arc_sums.arcstat_l2_writes_sent, 0); 7704 wmsum_init(&arc_sums.arcstat_l2_writes_done, 0); 7705 wmsum_init(&arc_sums.arcstat_l2_writes_error, 0); 7706 wmsum_init(&arc_sums.arcstat_l2_writes_lock_retry, 0); 7707 wmsum_init(&arc_sums.arcstat_l2_evict_lock_retry, 0); 7708 wmsum_init(&arc_sums.arcstat_l2_evict_reading, 0); 7709 wmsum_init(&arc_sums.arcstat_l2_evict_l1cached, 0); 7710 wmsum_init(&arc_sums.arcstat_l2_free_on_write, 0); 7711 wmsum_init(&arc_sums.arcstat_l2_abort_lowmem, 0); 7712 wmsum_init(&arc_sums.arcstat_l2_cksum_bad, 0); 7713 wmsum_init(&arc_sums.arcstat_l2_io_error, 0); 7714 wmsum_init(&arc_sums.arcstat_l2_lsize, 0); 7715 wmsum_init(&arc_sums.arcstat_l2_psize, 0); 7716 aggsum_init(&arc_sums.arcstat_l2_hdr_size, 0); 7717 wmsum_init(&arc_sums.arcstat_l2_log_blk_writes, 0); 7718 wmsum_init(&arc_sums.arcstat_l2_log_blk_asize, 0); 7719 wmsum_init(&arc_sums.arcstat_l2_log_blk_count, 0); 7720 wmsum_init(&arc_sums.arcstat_l2_rebuild_success, 0); 7721 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_unsupported, 0); 7722 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_io_errors, 0); 7723 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_dh_errors, 0); 7724 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors, 0); 7725 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_lowmem, 0); 7726 wmsum_init(&arc_sums.arcstat_l2_rebuild_size, 0); 7727 wmsum_init(&arc_sums.arcstat_l2_rebuild_asize, 0); 7728 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs, 0); 7729 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs_precached, 0); 7730 wmsum_init(&arc_sums.arcstat_l2_rebuild_log_blks, 0); 7731 wmsum_init(&arc_sums.arcstat_memory_throttle_count, 0); 7732 wmsum_init(&arc_sums.arcstat_memory_direct_count, 0); 7733 wmsum_init(&arc_sums.arcstat_memory_indirect_count, 0); 7734 wmsum_init(&arc_sums.arcstat_prune, 0); 7735 aggsum_init(&arc_sums.arcstat_meta_used, 0); 7736 wmsum_init(&arc_sums.arcstat_async_upgrade_sync, 0); 7737 wmsum_init(&arc_sums.arcstat_demand_hit_predictive_prefetch, 0); 7738 wmsum_init(&arc_sums.arcstat_demand_hit_prescient_prefetch, 0); 7739 wmsum_init(&arc_sums.arcstat_raw_size, 0); 7740 wmsum_init(&arc_sums.arcstat_cached_only_in_progress, 0); 7741 wmsum_init(&arc_sums.arcstat_abd_chunk_waste_size, 0); 7742 7743 arc_anon->arcs_state = ARC_STATE_ANON; 7744 arc_mru->arcs_state = ARC_STATE_MRU; 7745 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST; 7746 arc_mfu->arcs_state = ARC_STATE_MFU; 7747 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST; 7748 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY; 7749 } 7750 7751 static void 7752 arc_state_fini(void) 7753 { 7754 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7755 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7756 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7757 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7758 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7759 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7760 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7761 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7762 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7763 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7764 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7765 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7766 7767 zfs_refcount_destroy(&arc_anon->arcs_size); 7768 zfs_refcount_destroy(&arc_mru->arcs_size); 7769 zfs_refcount_destroy(&arc_mru_ghost->arcs_size); 7770 zfs_refcount_destroy(&arc_mfu->arcs_size); 7771 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size); 7772 zfs_refcount_destroy(&arc_l2c_only->arcs_size); 7773 7774 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 7775 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 7776 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 7777 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 7778 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 7779 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 7780 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 7781 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 7782 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]); 7783 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]); 7784 7785 wmsum_fini(&arc_sums.arcstat_hits); 7786 wmsum_fini(&arc_sums.arcstat_misses); 7787 wmsum_fini(&arc_sums.arcstat_demand_data_hits); 7788 wmsum_fini(&arc_sums.arcstat_demand_data_misses); 7789 wmsum_fini(&arc_sums.arcstat_demand_metadata_hits); 7790 wmsum_fini(&arc_sums.arcstat_demand_metadata_misses); 7791 wmsum_fini(&arc_sums.arcstat_prefetch_data_hits); 7792 wmsum_fini(&arc_sums.arcstat_prefetch_data_misses); 7793 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_hits); 7794 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_misses); 7795 wmsum_fini(&arc_sums.arcstat_mru_hits); 7796 wmsum_fini(&arc_sums.arcstat_mru_ghost_hits); 7797 wmsum_fini(&arc_sums.arcstat_mfu_hits); 7798 wmsum_fini(&arc_sums.arcstat_mfu_ghost_hits); 7799 wmsum_fini(&arc_sums.arcstat_deleted); 7800 wmsum_fini(&arc_sums.arcstat_mutex_miss); 7801 wmsum_fini(&arc_sums.arcstat_access_skip); 7802 wmsum_fini(&arc_sums.arcstat_evict_skip); 7803 wmsum_fini(&arc_sums.arcstat_evict_not_enough); 7804 wmsum_fini(&arc_sums.arcstat_evict_l2_cached); 7805 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible); 7806 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mfu); 7807 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mru); 7808 wmsum_fini(&arc_sums.arcstat_evict_l2_ineligible); 7809 wmsum_fini(&arc_sums.arcstat_evict_l2_skip); 7810 wmsum_fini(&arc_sums.arcstat_hash_collisions); 7811 wmsum_fini(&arc_sums.arcstat_hash_chains); 7812 aggsum_fini(&arc_sums.arcstat_size); 7813 wmsum_fini(&arc_sums.arcstat_compressed_size); 7814 wmsum_fini(&arc_sums.arcstat_uncompressed_size); 7815 wmsum_fini(&arc_sums.arcstat_overhead_size); 7816 wmsum_fini(&arc_sums.arcstat_hdr_size); 7817 wmsum_fini(&arc_sums.arcstat_data_size); 7818 wmsum_fini(&arc_sums.arcstat_metadata_size); 7819 wmsum_fini(&arc_sums.arcstat_dbuf_size); 7820 aggsum_fini(&arc_sums.arcstat_dnode_size); 7821 wmsum_fini(&arc_sums.arcstat_bonus_size); 7822 wmsum_fini(&arc_sums.arcstat_l2_hits); 7823 wmsum_fini(&arc_sums.arcstat_l2_misses); 7824 wmsum_fini(&arc_sums.arcstat_l2_prefetch_asize); 7825 wmsum_fini(&arc_sums.arcstat_l2_mru_asize); 7826 wmsum_fini(&arc_sums.arcstat_l2_mfu_asize); 7827 wmsum_fini(&arc_sums.arcstat_l2_bufc_data_asize); 7828 wmsum_fini(&arc_sums.arcstat_l2_bufc_metadata_asize); 7829 wmsum_fini(&arc_sums.arcstat_l2_feeds); 7830 wmsum_fini(&arc_sums.arcstat_l2_rw_clash); 7831 wmsum_fini(&arc_sums.arcstat_l2_read_bytes); 7832 wmsum_fini(&arc_sums.arcstat_l2_write_bytes); 7833 wmsum_fini(&arc_sums.arcstat_l2_writes_sent); 7834 wmsum_fini(&arc_sums.arcstat_l2_writes_done); 7835 wmsum_fini(&arc_sums.arcstat_l2_writes_error); 7836 wmsum_fini(&arc_sums.arcstat_l2_writes_lock_retry); 7837 wmsum_fini(&arc_sums.arcstat_l2_evict_lock_retry); 7838 wmsum_fini(&arc_sums.arcstat_l2_evict_reading); 7839 wmsum_fini(&arc_sums.arcstat_l2_evict_l1cached); 7840 wmsum_fini(&arc_sums.arcstat_l2_free_on_write); 7841 wmsum_fini(&arc_sums.arcstat_l2_abort_lowmem); 7842 wmsum_fini(&arc_sums.arcstat_l2_cksum_bad); 7843 wmsum_fini(&arc_sums.arcstat_l2_io_error); 7844 wmsum_fini(&arc_sums.arcstat_l2_lsize); 7845 wmsum_fini(&arc_sums.arcstat_l2_psize); 7846 aggsum_fini(&arc_sums.arcstat_l2_hdr_size); 7847 wmsum_fini(&arc_sums.arcstat_l2_log_blk_writes); 7848 wmsum_fini(&arc_sums.arcstat_l2_log_blk_asize); 7849 wmsum_fini(&arc_sums.arcstat_l2_log_blk_count); 7850 wmsum_fini(&arc_sums.arcstat_l2_rebuild_success); 7851 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_unsupported); 7852 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_io_errors); 7853 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_dh_errors); 7854 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors); 7855 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_lowmem); 7856 wmsum_fini(&arc_sums.arcstat_l2_rebuild_size); 7857 wmsum_fini(&arc_sums.arcstat_l2_rebuild_asize); 7858 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs); 7859 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs_precached); 7860 wmsum_fini(&arc_sums.arcstat_l2_rebuild_log_blks); 7861 wmsum_fini(&arc_sums.arcstat_memory_throttle_count); 7862 wmsum_fini(&arc_sums.arcstat_memory_direct_count); 7863 wmsum_fini(&arc_sums.arcstat_memory_indirect_count); 7864 wmsum_fini(&arc_sums.arcstat_prune); 7865 aggsum_fini(&arc_sums.arcstat_meta_used); 7866 wmsum_fini(&arc_sums.arcstat_async_upgrade_sync); 7867 wmsum_fini(&arc_sums.arcstat_demand_hit_predictive_prefetch); 7868 wmsum_fini(&arc_sums.arcstat_demand_hit_prescient_prefetch); 7869 wmsum_fini(&arc_sums.arcstat_raw_size); 7870 wmsum_fini(&arc_sums.arcstat_cached_only_in_progress); 7871 wmsum_fini(&arc_sums.arcstat_abd_chunk_waste_size); 7872 } 7873 7874 uint64_t 7875 arc_target_bytes(void) 7876 { 7877 return (arc_c); 7878 } 7879 7880 void 7881 arc_set_limits(uint64_t allmem) 7882 { 7883 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */ 7884 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT); 7885 7886 /* How to set default max varies by platform. */ 7887 arc_c_max = arc_default_max(arc_c_min, allmem); 7888 } 7889 void 7890 arc_init(void) 7891 { 7892 uint64_t percent, allmem = arc_all_memory(); 7893 mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL); 7894 list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t), 7895 offsetof(arc_evict_waiter_t, aew_node)); 7896 7897 arc_min_prefetch_ms = 1000; 7898 arc_min_prescient_prefetch_ms = 6000; 7899 7900 #if defined(_KERNEL) 7901 arc_lowmem_init(); 7902 #endif 7903 7904 arc_set_limits(allmem); 7905 7906 #ifdef _KERNEL 7907 /* 7908 * If zfs_arc_max is non-zero at init, meaning it was set in the kernel 7909 * environment before the module was loaded, don't block setting the 7910 * maximum because it is less than arc_c_min, instead, reset arc_c_min 7911 * to a lower value. 7912 * zfs_arc_min will be handled by arc_tuning_update(). 7913 */ 7914 if (zfs_arc_max != 0 && zfs_arc_max >= MIN_ARC_MAX && 7915 zfs_arc_max < allmem) { 7916 arc_c_max = zfs_arc_max; 7917 if (arc_c_min >= arc_c_max) { 7918 arc_c_min = MAX(zfs_arc_max / 2, 7919 2ULL << SPA_MAXBLOCKSHIFT); 7920 } 7921 } 7922 #else 7923 /* 7924 * In userland, there's only the memory pressure that we artificially 7925 * create (see arc_available_memory()). Don't let arc_c get too 7926 * small, because it can cause transactions to be larger than 7927 * arc_c, causing arc_tempreserve_space() to fail. 7928 */ 7929 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT); 7930 #endif 7931 7932 arc_c = arc_c_min; 7933 arc_p = (arc_c >> 1); 7934 7935 /* Set min to 1/2 of arc_c_min */ 7936 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT; 7937 /* 7938 * Set arc_meta_limit to a percent of arc_c_max with a floor of 7939 * arc_meta_min, and a ceiling of arc_c_max. 7940 */ 7941 percent = MIN(zfs_arc_meta_limit_percent, 100); 7942 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100); 7943 percent = MIN(zfs_arc_dnode_limit_percent, 100); 7944 arc_dnode_size_limit = (percent * arc_meta_limit) / 100; 7945 7946 /* Apply user specified tunings */ 7947 arc_tuning_update(B_TRUE); 7948 7949 /* if kmem_flags are set, lets try to use less memory */ 7950 if (kmem_debugging()) 7951 arc_c = arc_c / 2; 7952 if (arc_c < arc_c_min) 7953 arc_c = arc_c_min; 7954 7955 arc_register_hotplug(); 7956 7957 arc_state_init(); 7958 7959 buf_init(); 7960 7961 list_create(&arc_prune_list, sizeof (arc_prune_t), 7962 offsetof(arc_prune_t, p_node)); 7963 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL); 7964 7965 arc_prune_taskq = taskq_create("arc_prune", 100, defclsyspri, 7966 boot_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC | 7967 TASKQ_THREADS_CPU_PCT); 7968 7969 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 7970 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 7971 7972 if (arc_ksp != NULL) { 7973 arc_ksp->ks_data = &arc_stats; 7974 arc_ksp->ks_update = arc_kstat_update; 7975 kstat_install(arc_ksp); 7976 } 7977 7978 arc_evict_zthr = zthr_create("arc_evict", 7979 arc_evict_cb_check, arc_evict_cb, NULL, defclsyspri); 7980 arc_reap_zthr = zthr_create_timer("arc_reap", 7981 arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1), minclsyspri); 7982 7983 arc_warm = B_FALSE; 7984 7985 /* 7986 * Calculate maximum amount of dirty data per pool. 7987 * 7988 * If it has been set by a module parameter, take that. 7989 * Otherwise, use a percentage of physical memory defined by 7990 * zfs_dirty_data_max_percent (default 10%) with a cap at 7991 * zfs_dirty_data_max_max (default 4G or 25% of physical memory). 7992 */ 7993 #ifdef __LP64__ 7994 if (zfs_dirty_data_max_max == 0) 7995 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024, 7996 allmem * zfs_dirty_data_max_max_percent / 100); 7997 #else 7998 if (zfs_dirty_data_max_max == 0) 7999 zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024, 8000 allmem * zfs_dirty_data_max_max_percent / 100); 8001 #endif 8002 8003 if (zfs_dirty_data_max == 0) { 8004 zfs_dirty_data_max = allmem * 8005 zfs_dirty_data_max_percent / 100; 8006 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 8007 zfs_dirty_data_max_max); 8008 } 8009 8010 if (zfs_wrlog_data_max == 0) { 8011 8012 /* 8013 * dp_wrlog_total is reduced for each txg at the end of 8014 * spa_sync(). However, dp_dirty_total is reduced every time 8015 * a block is written out. Thus under normal operation, 8016 * dp_wrlog_total could grow 2 times as big as 8017 * zfs_dirty_data_max. 8018 */ 8019 zfs_wrlog_data_max = zfs_dirty_data_max * 2; 8020 } 8021 } 8022 8023 void 8024 arc_fini(void) 8025 { 8026 arc_prune_t *p; 8027 8028 #ifdef _KERNEL 8029 arc_lowmem_fini(); 8030 #endif /* _KERNEL */ 8031 8032 /* Use B_TRUE to ensure *all* buffers are evicted */ 8033 arc_flush(NULL, B_TRUE); 8034 8035 if (arc_ksp != NULL) { 8036 kstat_delete(arc_ksp); 8037 arc_ksp = NULL; 8038 } 8039 8040 taskq_wait(arc_prune_taskq); 8041 taskq_destroy(arc_prune_taskq); 8042 8043 mutex_enter(&arc_prune_mtx); 8044 while ((p = list_head(&arc_prune_list)) != NULL) { 8045 list_remove(&arc_prune_list, p); 8046 zfs_refcount_remove(&p->p_refcnt, &arc_prune_list); 8047 zfs_refcount_destroy(&p->p_refcnt); 8048 kmem_free(p, sizeof (*p)); 8049 } 8050 mutex_exit(&arc_prune_mtx); 8051 8052 list_destroy(&arc_prune_list); 8053 mutex_destroy(&arc_prune_mtx); 8054 8055 (void) zthr_cancel(arc_evict_zthr); 8056 (void) zthr_cancel(arc_reap_zthr); 8057 8058 mutex_destroy(&arc_evict_lock); 8059 list_destroy(&arc_evict_waiters); 8060 8061 /* 8062 * Free any buffers that were tagged for destruction. This needs 8063 * to occur before arc_state_fini() runs and destroys the aggsum 8064 * values which are updated when freeing scatter ABDs. 8065 */ 8066 l2arc_do_free_on_write(); 8067 8068 /* 8069 * buf_fini() must proceed arc_state_fini() because buf_fin() may 8070 * trigger the release of kmem magazines, which can callback to 8071 * arc_space_return() which accesses aggsums freed in act_state_fini(). 8072 */ 8073 buf_fini(); 8074 arc_state_fini(); 8075 8076 arc_unregister_hotplug(); 8077 8078 /* 8079 * We destroy the zthrs after all the ARC state has been 8080 * torn down to avoid the case of them receiving any 8081 * wakeup() signals after they are destroyed. 8082 */ 8083 zthr_destroy(arc_evict_zthr); 8084 zthr_destroy(arc_reap_zthr); 8085 8086 ASSERT0(arc_loaned_bytes); 8087 } 8088 8089 /* 8090 * Level 2 ARC 8091 * 8092 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 8093 * It uses dedicated storage devices to hold cached data, which are populated 8094 * using large infrequent writes. The main role of this cache is to boost 8095 * the performance of random read workloads. The intended L2ARC devices 8096 * include short-stroked disks, solid state disks, and other media with 8097 * substantially faster read latency than disk. 8098 * 8099 * +-----------------------+ 8100 * | ARC | 8101 * +-----------------------+ 8102 * | ^ ^ 8103 * | | | 8104 * l2arc_feed_thread() arc_read() 8105 * | | | 8106 * | l2arc read | 8107 * V | | 8108 * +---------------+ | 8109 * | L2ARC | | 8110 * +---------------+ | 8111 * | ^ | 8112 * l2arc_write() | | 8113 * | | | 8114 * V | | 8115 * +-------+ +-------+ 8116 * | vdev | | vdev | 8117 * | cache | | cache | 8118 * +-------+ +-------+ 8119 * +=========+ .-----. 8120 * : L2ARC : |-_____-| 8121 * : devices : | Disks | 8122 * +=========+ `-_____-' 8123 * 8124 * Read requests are satisfied from the following sources, in order: 8125 * 8126 * 1) ARC 8127 * 2) vdev cache of L2ARC devices 8128 * 3) L2ARC devices 8129 * 4) vdev cache of disks 8130 * 5) disks 8131 * 8132 * Some L2ARC device types exhibit extremely slow write performance. 8133 * To accommodate for this there are some significant differences between 8134 * the L2ARC and traditional cache design: 8135 * 8136 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 8137 * the ARC behave as usual, freeing buffers and placing headers on ghost 8138 * lists. The ARC does not send buffers to the L2ARC during eviction as 8139 * this would add inflated write latencies for all ARC memory pressure. 8140 * 8141 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 8142 * It does this by periodically scanning buffers from the eviction-end of 8143 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 8144 * not already there. It scans until a headroom of buffers is satisfied, 8145 * which itself is a buffer for ARC eviction. If a compressible buffer is 8146 * found during scanning and selected for writing to an L2ARC device, we 8147 * temporarily boost scanning headroom during the next scan cycle to make 8148 * sure we adapt to compression effects (which might significantly reduce 8149 * the data volume we write to L2ARC). The thread that does this is 8150 * l2arc_feed_thread(), illustrated below; example sizes are included to 8151 * provide a better sense of ratio than this diagram: 8152 * 8153 * head --> tail 8154 * +---------------------+----------+ 8155 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 8156 * +---------------------+----------+ | o L2ARC eligible 8157 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 8158 * +---------------------+----------+ | 8159 * 15.9 Gbytes ^ 32 Mbytes | 8160 * headroom | 8161 * l2arc_feed_thread() 8162 * | 8163 * l2arc write hand <--[oooo]--' 8164 * | 8 Mbyte 8165 * | write max 8166 * V 8167 * +==============================+ 8168 * L2ARC dev |####|#|###|###| |####| ... | 8169 * +==============================+ 8170 * 32 Gbytes 8171 * 8172 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 8173 * evicted, then the L2ARC has cached a buffer much sooner than it probably 8174 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 8175 * safe to say that this is an uncommon case, since buffers at the end of 8176 * the ARC lists have moved there due to inactivity. 8177 * 8178 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 8179 * then the L2ARC simply misses copying some buffers. This serves as a 8180 * pressure valve to prevent heavy read workloads from both stalling the ARC 8181 * with waits and clogging the L2ARC with writes. This also helps prevent 8182 * the potential for the L2ARC to churn if it attempts to cache content too 8183 * quickly, such as during backups of the entire pool. 8184 * 8185 * 5. After system boot and before the ARC has filled main memory, there are 8186 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 8187 * lists can remain mostly static. Instead of searching from tail of these 8188 * lists as pictured, the l2arc_feed_thread() will search from the list heads 8189 * for eligible buffers, greatly increasing its chance of finding them. 8190 * 8191 * The L2ARC device write speed is also boosted during this time so that 8192 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 8193 * there are no L2ARC reads, and no fear of degrading read performance 8194 * through increased writes. 8195 * 8196 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 8197 * the vdev queue can aggregate them into larger and fewer writes. Each 8198 * device is written to in a rotor fashion, sweeping writes through 8199 * available space then repeating. 8200 * 8201 * 7. The L2ARC does not store dirty content. It never needs to flush 8202 * write buffers back to disk based storage. 8203 * 8204 * 8. If an ARC buffer is written (and dirtied) which also exists in the 8205 * L2ARC, the now stale L2ARC buffer is immediately dropped. 8206 * 8207 * The performance of the L2ARC can be tweaked by a number of tunables, which 8208 * may be necessary for different workloads: 8209 * 8210 * l2arc_write_max max write bytes per interval 8211 * l2arc_write_boost extra write bytes during device warmup 8212 * l2arc_noprefetch skip caching prefetched buffers 8213 * l2arc_headroom number of max device writes to precache 8214 * l2arc_headroom_boost when we find compressed buffers during ARC 8215 * scanning, we multiply headroom by this 8216 * percentage factor for the next scan cycle, 8217 * since more compressed buffers are likely to 8218 * be present 8219 * l2arc_feed_secs seconds between L2ARC writing 8220 * 8221 * Tunables may be removed or added as future performance improvements are 8222 * integrated, and also may become zpool properties. 8223 * 8224 * There are three key functions that control how the L2ARC warms up: 8225 * 8226 * l2arc_write_eligible() check if a buffer is eligible to cache 8227 * l2arc_write_size() calculate how much to write 8228 * l2arc_write_interval() calculate sleep delay between writes 8229 * 8230 * These three functions determine what to write, how much, and how quickly 8231 * to send writes. 8232 * 8233 * L2ARC persistence: 8234 * 8235 * When writing buffers to L2ARC, we periodically add some metadata to 8236 * make sure we can pick them up after reboot, thus dramatically reducing 8237 * the impact that any downtime has on the performance of storage systems 8238 * with large caches. 8239 * 8240 * The implementation works fairly simply by integrating the following two 8241 * modifications: 8242 * 8243 * *) When writing to the L2ARC, we occasionally write a "l2arc log block", 8244 * which is an additional piece of metadata which describes what's been 8245 * written. This allows us to rebuild the arc_buf_hdr_t structures of the 8246 * main ARC buffers. There are 2 linked-lists of log blocks headed by 8247 * dh_start_lbps[2]. We alternate which chain we append to, so they are 8248 * time-wise and offset-wise interleaved, but that is an optimization rather 8249 * than for correctness. The log block also includes a pointer to the 8250 * previous block in its chain. 8251 * 8252 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device 8253 * for our header bookkeeping purposes. This contains a device header, 8254 * which contains our top-level reference structures. We update it each 8255 * time we write a new log block, so that we're able to locate it in the 8256 * L2ARC device. If this write results in an inconsistent device header 8257 * (e.g. due to power failure), we detect this by verifying the header's 8258 * checksum and simply fail to reconstruct the L2ARC after reboot. 8259 * 8260 * Implementation diagram: 8261 * 8262 * +=== L2ARC device (not to scale) ======================================+ 8263 * | ___two newest log block pointers__.__________ | 8264 * | / \dh_start_lbps[1] | 8265 * | / \ \dh_start_lbps[0]| 8266 * |.___/__. V V | 8267 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---| 8268 * || hdr| ^ /^ /^ / / | 8269 * |+------+ ...--\-------/ \-----/--\------/ / | 8270 * | \--------------/ \--------------/ | 8271 * +======================================================================+ 8272 * 8273 * As can be seen on the diagram, rather than using a simple linked list, 8274 * we use a pair of linked lists with alternating elements. This is a 8275 * performance enhancement due to the fact that we only find out the 8276 * address of the next log block access once the current block has been 8277 * completely read in. Obviously, this hurts performance, because we'd be 8278 * keeping the device's I/O queue at only a 1 operation deep, thus 8279 * incurring a large amount of I/O round-trip latency. Having two lists 8280 * allows us to fetch two log blocks ahead of where we are currently 8281 * rebuilding L2ARC buffers. 8282 * 8283 * On-device data structures: 8284 * 8285 * L2ARC device header: l2arc_dev_hdr_phys_t 8286 * L2ARC log block: l2arc_log_blk_phys_t 8287 * 8288 * L2ARC reconstruction: 8289 * 8290 * When writing data, we simply write in the standard rotary fashion, 8291 * evicting buffers as we go and simply writing new data over them (writing 8292 * a new log block every now and then). This obviously means that once we 8293 * loop around the end of the device, we will start cutting into an already 8294 * committed log block (and its referenced data buffers), like so: 8295 * 8296 * current write head__ __old tail 8297 * \ / 8298 * V V 8299 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |--> 8300 * ^ ^^^^^^^^^___________________________________ 8301 * | \ 8302 * <<nextwrite>> may overwrite this blk and/or its bufs --' 8303 * 8304 * When importing the pool, we detect this situation and use it to stop 8305 * our scanning process (see l2arc_rebuild). 8306 * 8307 * There is one significant caveat to consider when rebuilding ARC contents 8308 * from an L2ARC device: what about invalidated buffers? Given the above 8309 * construction, we cannot update blocks which we've already written to amend 8310 * them to remove buffers which were invalidated. Thus, during reconstruction, 8311 * we might be populating the cache with buffers for data that's not on the 8312 * main pool anymore, or may have been overwritten! 8313 * 8314 * As it turns out, this isn't a problem. Every arc_read request includes 8315 * both the DVA and, crucially, the birth TXG of the BP the caller is 8316 * looking for. So even if the cache were populated by completely rotten 8317 * blocks for data that had been long deleted and/or overwritten, we'll 8318 * never actually return bad data from the cache, since the DVA with the 8319 * birth TXG uniquely identify a block in space and time - once created, 8320 * a block is immutable on disk. The worst thing we have done is wasted 8321 * some time and memory at l2arc rebuild to reconstruct outdated ARC 8322 * entries that will get dropped from the l2arc as it is being updated 8323 * with new blocks. 8324 * 8325 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write 8326 * hand are not restored. This is done by saving the offset (in bytes) 8327 * l2arc_evict() has evicted to in the L2ARC device header and taking it 8328 * into account when restoring buffers. 8329 */ 8330 8331 static boolean_t 8332 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 8333 { 8334 /* 8335 * A buffer is *not* eligible for the L2ARC if it: 8336 * 1. belongs to a different spa. 8337 * 2. is already cached on the L2ARC. 8338 * 3. has an I/O in progress (it may be an incomplete read). 8339 * 4. is flagged not eligible (zfs property). 8340 */ 8341 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || 8342 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr)) 8343 return (B_FALSE); 8344 8345 return (B_TRUE); 8346 } 8347 8348 static uint64_t 8349 l2arc_write_size(l2arc_dev_t *dev) 8350 { 8351 uint64_t size, dev_size, tsize; 8352 8353 /* 8354 * Make sure our globals have meaningful values in case the user 8355 * altered them. 8356 */ 8357 size = l2arc_write_max; 8358 if (size == 0) { 8359 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 8360 "be greater than zero, resetting it to the default (%d)", 8361 L2ARC_WRITE_SIZE); 8362 size = l2arc_write_max = L2ARC_WRITE_SIZE; 8363 } 8364 8365 if (arc_warm == B_FALSE) 8366 size += l2arc_write_boost; 8367 8368 /* 8369 * Make sure the write size does not exceed the size of the cache 8370 * device. This is important in l2arc_evict(), otherwise infinite 8371 * iteration can occur. 8372 */ 8373 dev_size = dev->l2ad_end - dev->l2ad_start; 8374 tsize = size + l2arc_log_blk_overhead(size, dev); 8375 if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) 8376 tsize += MAX(64 * 1024 * 1024, 8377 (tsize * l2arc_trim_ahead) / 100); 8378 8379 if (tsize >= dev_size) { 8380 cmn_err(CE_NOTE, "l2arc_write_max or l2arc_write_boost " 8381 "plus the overhead of log blocks (persistent L2ARC, " 8382 "%llu bytes) exceeds the size of the cache device " 8383 "(guid %llu), resetting them to the default (%d)", 8384 (u_longlong_t)l2arc_log_blk_overhead(size, dev), 8385 (u_longlong_t)dev->l2ad_vdev->vdev_guid, L2ARC_WRITE_SIZE); 8386 size = l2arc_write_max = l2arc_write_boost = L2ARC_WRITE_SIZE; 8387 8388 if (arc_warm == B_FALSE) 8389 size += l2arc_write_boost; 8390 } 8391 8392 return (size); 8393 8394 } 8395 8396 static clock_t 8397 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 8398 { 8399 clock_t interval, next, now; 8400 8401 /* 8402 * If the ARC lists are busy, increase our write rate; if the 8403 * lists are stale, idle back. This is achieved by checking 8404 * how much we previously wrote - if it was more than half of 8405 * what we wanted, schedule the next write much sooner. 8406 */ 8407 if (l2arc_feed_again && wrote > (wanted / 2)) 8408 interval = (hz * l2arc_feed_min_ms) / 1000; 8409 else 8410 interval = hz * l2arc_feed_secs; 8411 8412 now = ddi_get_lbolt(); 8413 next = MAX(now, MIN(now + interval, began + interval)); 8414 8415 return (next); 8416 } 8417 8418 /* 8419 * Cycle through L2ARC devices. This is how L2ARC load balances. 8420 * If a device is returned, this also returns holding the spa config lock. 8421 */ 8422 static l2arc_dev_t * 8423 l2arc_dev_get_next(void) 8424 { 8425 l2arc_dev_t *first, *next = NULL; 8426 8427 /* 8428 * Lock out the removal of spas (spa_namespace_lock), then removal 8429 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 8430 * both locks will be dropped and a spa config lock held instead. 8431 */ 8432 mutex_enter(&spa_namespace_lock); 8433 mutex_enter(&l2arc_dev_mtx); 8434 8435 /* if there are no vdevs, there is nothing to do */ 8436 if (l2arc_ndev == 0) 8437 goto out; 8438 8439 first = NULL; 8440 next = l2arc_dev_last; 8441 do { 8442 /* loop around the list looking for a non-faulted vdev */ 8443 if (next == NULL) { 8444 next = list_head(l2arc_dev_list); 8445 } else { 8446 next = list_next(l2arc_dev_list, next); 8447 if (next == NULL) 8448 next = list_head(l2arc_dev_list); 8449 } 8450 8451 /* if we have come back to the start, bail out */ 8452 if (first == NULL) 8453 first = next; 8454 else if (next == first) 8455 break; 8456 8457 } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || 8458 next->l2ad_trim_all); 8459 8460 /* if we were unable to find any usable vdevs, return NULL */ 8461 if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || 8462 next->l2ad_trim_all) 8463 next = NULL; 8464 8465 l2arc_dev_last = next; 8466 8467 out: 8468 mutex_exit(&l2arc_dev_mtx); 8469 8470 /* 8471 * Grab the config lock to prevent the 'next' device from being 8472 * removed while we are writing to it. 8473 */ 8474 if (next != NULL) 8475 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 8476 mutex_exit(&spa_namespace_lock); 8477 8478 return (next); 8479 } 8480 8481 /* 8482 * Free buffers that were tagged for destruction. 8483 */ 8484 static void 8485 l2arc_do_free_on_write(void) 8486 { 8487 list_t *buflist; 8488 l2arc_data_free_t *df, *df_prev; 8489 8490 mutex_enter(&l2arc_free_on_write_mtx); 8491 buflist = l2arc_free_on_write; 8492 8493 for (df = list_tail(buflist); df; df = df_prev) { 8494 df_prev = list_prev(buflist, df); 8495 ASSERT3P(df->l2df_abd, !=, NULL); 8496 abd_free(df->l2df_abd); 8497 list_remove(buflist, df); 8498 kmem_free(df, sizeof (l2arc_data_free_t)); 8499 } 8500 8501 mutex_exit(&l2arc_free_on_write_mtx); 8502 } 8503 8504 /* 8505 * A write to a cache device has completed. Update all headers to allow 8506 * reads from these buffers to begin. 8507 */ 8508 static void 8509 l2arc_write_done(zio_t *zio) 8510 { 8511 l2arc_write_callback_t *cb; 8512 l2arc_lb_abd_buf_t *abd_buf; 8513 l2arc_lb_ptr_buf_t *lb_ptr_buf; 8514 l2arc_dev_t *dev; 8515 l2arc_dev_hdr_phys_t *l2dhdr; 8516 list_t *buflist; 8517 arc_buf_hdr_t *head, *hdr, *hdr_prev; 8518 kmutex_t *hash_lock; 8519 int64_t bytes_dropped = 0; 8520 8521 cb = zio->io_private; 8522 ASSERT3P(cb, !=, NULL); 8523 dev = cb->l2wcb_dev; 8524 l2dhdr = dev->l2ad_dev_hdr; 8525 ASSERT3P(dev, !=, NULL); 8526 head = cb->l2wcb_head; 8527 ASSERT3P(head, !=, NULL); 8528 buflist = &dev->l2ad_buflist; 8529 ASSERT3P(buflist, !=, NULL); 8530 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 8531 l2arc_write_callback_t *, cb); 8532 8533 /* 8534 * All writes completed, or an error was hit. 8535 */ 8536 top: 8537 mutex_enter(&dev->l2ad_mtx); 8538 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 8539 hdr_prev = list_prev(buflist, hdr); 8540 8541 hash_lock = HDR_LOCK(hdr); 8542 8543 /* 8544 * We cannot use mutex_enter or else we can deadlock 8545 * with l2arc_write_buffers (due to swapping the order 8546 * the hash lock and l2ad_mtx are taken). 8547 */ 8548 if (!mutex_tryenter(hash_lock)) { 8549 /* 8550 * Missed the hash lock. We must retry so we 8551 * don't leave the ARC_FLAG_L2_WRITING bit set. 8552 */ 8553 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 8554 8555 /* 8556 * We don't want to rescan the headers we've 8557 * already marked as having been written out, so 8558 * we reinsert the head node so we can pick up 8559 * where we left off. 8560 */ 8561 list_remove(buflist, head); 8562 list_insert_after(buflist, hdr, head); 8563 8564 mutex_exit(&dev->l2ad_mtx); 8565 8566 /* 8567 * We wait for the hash lock to become available 8568 * to try and prevent busy waiting, and increase 8569 * the chance we'll be able to acquire the lock 8570 * the next time around. 8571 */ 8572 mutex_enter(hash_lock); 8573 mutex_exit(hash_lock); 8574 goto top; 8575 } 8576 8577 /* 8578 * We could not have been moved into the arc_l2c_only 8579 * state while in-flight due to our ARC_FLAG_L2_WRITING 8580 * bit being set. Let's just ensure that's being enforced. 8581 */ 8582 ASSERT(HDR_HAS_L1HDR(hdr)); 8583 8584 /* 8585 * Skipped - drop L2ARC entry and mark the header as no 8586 * longer L2 eligibile. 8587 */ 8588 if (zio->io_error != 0) { 8589 /* 8590 * Error - drop L2ARC entry. 8591 */ 8592 list_remove(buflist, hdr); 8593 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 8594 8595 uint64_t psize = HDR_GET_PSIZE(hdr); 8596 l2arc_hdr_arcstats_decrement(hdr); 8597 8598 bytes_dropped += 8599 vdev_psize_to_asize(dev->l2ad_vdev, psize); 8600 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 8601 arc_hdr_size(hdr), hdr); 8602 } 8603 8604 /* 8605 * Allow ARC to begin reads and ghost list evictions to 8606 * this L2ARC entry. 8607 */ 8608 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); 8609 8610 mutex_exit(hash_lock); 8611 } 8612 8613 /* 8614 * Free the allocated abd buffers for writing the log blocks. 8615 * If the zio failed reclaim the allocated space and remove the 8616 * pointers to these log blocks from the log block pointer list 8617 * of the L2ARC device. 8618 */ 8619 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) { 8620 abd_free(abd_buf->abd); 8621 zio_buf_free(abd_buf, sizeof (*abd_buf)); 8622 if (zio->io_error != 0) { 8623 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list); 8624 /* 8625 * L2BLK_GET_PSIZE returns aligned size for log 8626 * blocks. 8627 */ 8628 uint64_t asize = 8629 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop); 8630 bytes_dropped += asize; 8631 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 8632 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 8633 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 8634 lb_ptr_buf); 8635 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 8636 kmem_free(lb_ptr_buf->lb_ptr, 8637 sizeof (l2arc_log_blkptr_t)); 8638 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 8639 } 8640 } 8641 list_destroy(&cb->l2wcb_abd_list); 8642 8643 if (zio->io_error != 0) { 8644 ARCSTAT_BUMP(arcstat_l2_writes_error); 8645 8646 /* 8647 * Restore the lbps array in the header to its previous state. 8648 * If the list of log block pointers is empty, zero out the 8649 * log block pointers in the device header. 8650 */ 8651 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list); 8652 for (int i = 0; i < 2; i++) { 8653 if (lb_ptr_buf == NULL) { 8654 /* 8655 * If the list is empty zero out the device 8656 * header. Otherwise zero out the second log 8657 * block pointer in the header. 8658 */ 8659 if (i == 0) { 8660 bzero(l2dhdr, dev->l2ad_dev_hdr_asize); 8661 } else { 8662 bzero(&l2dhdr->dh_start_lbps[i], 8663 sizeof (l2arc_log_blkptr_t)); 8664 } 8665 break; 8666 } 8667 bcopy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[i], 8668 sizeof (l2arc_log_blkptr_t)); 8669 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list, 8670 lb_ptr_buf); 8671 } 8672 } 8673 8674 ARCSTAT_BUMP(arcstat_l2_writes_done); 8675 list_remove(buflist, head); 8676 ASSERT(!HDR_HAS_L1HDR(head)); 8677 kmem_cache_free(hdr_l2only_cache, head); 8678 mutex_exit(&dev->l2ad_mtx); 8679 8680 ASSERT(dev->l2ad_vdev != NULL); 8681 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 8682 8683 l2arc_do_free_on_write(); 8684 8685 kmem_free(cb, sizeof (l2arc_write_callback_t)); 8686 } 8687 8688 static int 8689 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb) 8690 { 8691 int ret; 8692 spa_t *spa = zio->io_spa; 8693 arc_buf_hdr_t *hdr = cb->l2rcb_hdr; 8694 blkptr_t *bp = zio->io_bp; 8695 uint8_t salt[ZIO_DATA_SALT_LEN]; 8696 uint8_t iv[ZIO_DATA_IV_LEN]; 8697 uint8_t mac[ZIO_DATA_MAC_LEN]; 8698 boolean_t no_crypt = B_FALSE; 8699 8700 /* 8701 * ZIL data is never be written to the L2ARC, so we don't need 8702 * special handling for its unique MAC storage. 8703 */ 8704 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 8705 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 8706 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8707 8708 /* 8709 * If the data was encrypted, decrypt it now. Note that 8710 * we must check the bp here and not the hdr, since the 8711 * hdr does not have its encryption parameters updated 8712 * until arc_read_done(). 8713 */ 8714 if (BP_IS_ENCRYPTED(bp)) { 8715 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8716 ARC_HDR_DO_ADAPT | ARC_HDR_USE_RESERVE); 8717 8718 zio_crypt_decode_params_bp(bp, salt, iv); 8719 zio_crypt_decode_mac_bp(bp, mac); 8720 8721 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb, 8722 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 8723 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd, 8724 hdr->b_l1hdr.b_pabd, &no_crypt); 8725 if (ret != 0) { 8726 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8727 goto error; 8728 } 8729 8730 /* 8731 * If we actually performed decryption, replace b_pabd 8732 * with the decrypted data. Otherwise we can just throw 8733 * our decryption buffer away. 8734 */ 8735 if (!no_crypt) { 8736 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8737 arc_hdr_size(hdr), hdr); 8738 hdr->b_l1hdr.b_pabd = eabd; 8739 zio->io_abd = eabd; 8740 } else { 8741 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8742 } 8743 } 8744 8745 /* 8746 * If the L2ARC block was compressed, but ARC compression 8747 * is disabled we decompress the data into a new buffer and 8748 * replace the existing data. 8749 */ 8750 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 8751 !HDR_COMPRESSION_ENABLED(hdr)) { 8752 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8753 ARC_HDR_DO_ADAPT | ARC_HDR_USE_RESERVE); 8754 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 8755 8756 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 8757 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 8758 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 8759 if (ret != 0) { 8760 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 8761 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr); 8762 goto error; 8763 } 8764 8765 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 8766 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8767 arc_hdr_size(hdr), hdr); 8768 hdr->b_l1hdr.b_pabd = cabd; 8769 zio->io_abd = cabd; 8770 zio->io_size = HDR_GET_LSIZE(hdr); 8771 } 8772 8773 return (0); 8774 8775 error: 8776 return (ret); 8777 } 8778 8779 8780 /* 8781 * A read to a cache device completed. Validate buffer contents before 8782 * handing over to the regular ARC routines. 8783 */ 8784 static void 8785 l2arc_read_done(zio_t *zio) 8786 { 8787 int tfm_error = 0; 8788 l2arc_read_callback_t *cb = zio->io_private; 8789 arc_buf_hdr_t *hdr; 8790 kmutex_t *hash_lock; 8791 boolean_t valid_cksum; 8792 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) && 8793 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT)); 8794 8795 ASSERT3P(zio->io_vd, !=, NULL); 8796 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 8797 8798 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 8799 8800 ASSERT3P(cb, !=, NULL); 8801 hdr = cb->l2rcb_hdr; 8802 ASSERT3P(hdr, !=, NULL); 8803 8804 hash_lock = HDR_LOCK(hdr); 8805 mutex_enter(hash_lock); 8806 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 8807 8808 /* 8809 * If the data was read into a temporary buffer, 8810 * move it and free the buffer. 8811 */ 8812 if (cb->l2rcb_abd != NULL) { 8813 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size); 8814 if (zio->io_error == 0) { 8815 if (using_rdata) { 8816 abd_copy(hdr->b_crypt_hdr.b_rabd, 8817 cb->l2rcb_abd, arc_hdr_size(hdr)); 8818 } else { 8819 abd_copy(hdr->b_l1hdr.b_pabd, 8820 cb->l2rcb_abd, arc_hdr_size(hdr)); 8821 } 8822 } 8823 8824 /* 8825 * The following must be done regardless of whether 8826 * there was an error: 8827 * - free the temporary buffer 8828 * - point zio to the real ARC buffer 8829 * - set zio size accordingly 8830 * These are required because zio is either re-used for 8831 * an I/O of the block in the case of the error 8832 * or the zio is passed to arc_read_done() and it 8833 * needs real data. 8834 */ 8835 abd_free(cb->l2rcb_abd); 8836 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr); 8837 8838 if (using_rdata) { 8839 ASSERT(HDR_HAS_RABD(hdr)); 8840 zio->io_abd = zio->io_orig_abd = 8841 hdr->b_crypt_hdr.b_rabd; 8842 } else { 8843 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8844 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd; 8845 } 8846 } 8847 8848 ASSERT3P(zio->io_abd, !=, NULL); 8849 8850 /* 8851 * Check this survived the L2ARC journey. 8852 */ 8853 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd || 8854 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd)); 8855 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 8856 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 8857 zio->io_prop.zp_complevel = hdr->b_complevel; 8858 8859 valid_cksum = arc_cksum_is_equal(hdr, zio); 8860 8861 /* 8862 * b_rabd will always match the data as it exists on disk if it is 8863 * being used. Therefore if we are reading into b_rabd we do not 8864 * attempt to untransform the data. 8865 */ 8866 if (valid_cksum && !using_rdata) 8867 tfm_error = l2arc_untransform(zio, cb); 8868 8869 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 && 8870 !HDR_L2_EVICTED(hdr)) { 8871 mutex_exit(hash_lock); 8872 zio->io_private = hdr; 8873 arc_read_done(zio); 8874 } else { 8875 /* 8876 * Buffer didn't survive caching. Increment stats and 8877 * reissue to the original storage device. 8878 */ 8879 if (zio->io_error != 0) { 8880 ARCSTAT_BUMP(arcstat_l2_io_error); 8881 } else { 8882 zio->io_error = SET_ERROR(EIO); 8883 } 8884 if (!valid_cksum || tfm_error != 0) 8885 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 8886 8887 /* 8888 * If there's no waiter, issue an async i/o to the primary 8889 * storage now. If there *is* a waiter, the caller must 8890 * issue the i/o in a context where it's OK to block. 8891 */ 8892 if (zio->io_waiter == NULL) { 8893 zio_t *pio = zio_unique_parent(zio); 8894 void *abd = (using_rdata) ? 8895 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd; 8896 8897 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 8898 8899 zio = zio_read(pio, zio->io_spa, zio->io_bp, 8900 abd, zio->io_size, arc_read_done, 8901 hdr, zio->io_priority, cb->l2rcb_flags, 8902 &cb->l2rcb_zb); 8903 8904 /* 8905 * Original ZIO will be freed, so we need to update 8906 * ARC header with the new ZIO pointer to be used 8907 * by zio_change_priority() in arc_read(). 8908 */ 8909 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb; 8910 acb != NULL; acb = acb->acb_next) 8911 acb->acb_zio_head = zio; 8912 8913 mutex_exit(hash_lock); 8914 zio_nowait(zio); 8915 } else { 8916 mutex_exit(hash_lock); 8917 } 8918 } 8919 8920 kmem_free(cb, sizeof (l2arc_read_callback_t)); 8921 } 8922 8923 /* 8924 * This is the list priority from which the L2ARC will search for pages to 8925 * cache. This is used within loops (0..3) to cycle through lists in the 8926 * desired order. This order can have a significant effect on cache 8927 * performance. 8928 * 8929 * Currently the metadata lists are hit first, MFU then MRU, followed by 8930 * the data lists. This function returns a locked list, and also returns 8931 * the lock pointer. 8932 */ 8933 static multilist_sublist_t * 8934 l2arc_sublist_lock(int list_num) 8935 { 8936 multilist_t *ml = NULL; 8937 unsigned int idx; 8938 8939 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES); 8940 8941 switch (list_num) { 8942 case 0: 8943 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 8944 break; 8945 case 1: 8946 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 8947 break; 8948 case 2: 8949 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 8950 break; 8951 case 3: 8952 ml = &arc_mru->arcs_list[ARC_BUFC_DATA]; 8953 break; 8954 default: 8955 return (NULL); 8956 } 8957 8958 /* 8959 * Return a randomly-selected sublist. This is acceptable 8960 * because the caller feeds only a little bit of data for each 8961 * call (8MB). Subsequent calls will result in different 8962 * sublists being selected. 8963 */ 8964 idx = multilist_get_random_index(ml); 8965 return (multilist_sublist_lock(ml, idx)); 8966 } 8967 8968 /* 8969 * Calculates the maximum overhead of L2ARC metadata log blocks for a given 8970 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this 8971 * overhead in processing to make sure there is enough headroom available 8972 * when writing buffers. 8973 */ 8974 static inline uint64_t 8975 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev) 8976 { 8977 if (dev->l2ad_log_entries == 0) { 8978 return (0); 8979 } else { 8980 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT; 8981 8982 uint64_t log_blocks = (log_entries + 8983 dev->l2ad_log_entries - 1) / 8984 dev->l2ad_log_entries; 8985 8986 return (vdev_psize_to_asize(dev->l2ad_vdev, 8987 sizeof (l2arc_log_blk_phys_t)) * log_blocks); 8988 } 8989 } 8990 8991 /* 8992 * Evict buffers from the device write hand to the distance specified in 8993 * bytes. This distance may span populated buffers, it may span nothing. 8994 * This is clearing a region on the L2ARC device ready for writing. 8995 * If the 'all' boolean is set, every buffer is evicted. 8996 */ 8997 static void 8998 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 8999 { 9000 list_t *buflist; 9001 arc_buf_hdr_t *hdr, *hdr_prev; 9002 kmutex_t *hash_lock; 9003 uint64_t taddr; 9004 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev; 9005 vdev_t *vd = dev->l2ad_vdev; 9006 boolean_t rerun; 9007 9008 buflist = &dev->l2ad_buflist; 9009 9010 /* 9011 * We need to add in the worst case scenario of log block overhead. 9012 */ 9013 distance += l2arc_log_blk_overhead(distance, dev); 9014 if (vd->vdev_has_trim && l2arc_trim_ahead > 0) { 9015 /* 9016 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100) 9017 * times the write size, whichever is greater. 9018 */ 9019 distance += MAX(64 * 1024 * 1024, 9020 (distance * l2arc_trim_ahead) / 100); 9021 } 9022 9023 top: 9024 rerun = B_FALSE; 9025 if (dev->l2ad_hand >= (dev->l2ad_end - distance)) { 9026 /* 9027 * When there is no space to accommodate upcoming writes, 9028 * evict to the end. Then bump the write and evict hands 9029 * to the start and iterate. This iteration does not 9030 * happen indefinitely as we make sure in 9031 * l2arc_write_size() that when the write hand is reset, 9032 * the write size does not exceed the end of the device. 9033 */ 9034 rerun = B_TRUE; 9035 taddr = dev->l2ad_end; 9036 } else { 9037 taddr = dev->l2ad_hand + distance; 9038 } 9039 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 9040 uint64_t, taddr, boolean_t, all); 9041 9042 if (!all) { 9043 /* 9044 * This check has to be placed after deciding whether to 9045 * iterate (rerun). 9046 */ 9047 if (dev->l2ad_first) { 9048 /* 9049 * This is the first sweep through the device. There is 9050 * nothing to evict. We have already trimmmed the 9051 * whole device. 9052 */ 9053 goto out; 9054 } else { 9055 /* 9056 * Trim the space to be evicted. 9057 */ 9058 if (vd->vdev_has_trim && dev->l2ad_evict < taddr && 9059 l2arc_trim_ahead > 0) { 9060 /* 9061 * We have to drop the spa_config lock because 9062 * vdev_trim_range() will acquire it. 9063 * l2ad_evict already accounts for the label 9064 * size. To prevent vdev_trim_ranges() from 9065 * adding it again, we subtract it from 9066 * l2ad_evict. 9067 */ 9068 spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev); 9069 vdev_trim_simple(vd, 9070 dev->l2ad_evict - VDEV_LABEL_START_SIZE, 9071 taddr - dev->l2ad_evict); 9072 spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev, 9073 RW_READER); 9074 } 9075 9076 /* 9077 * When rebuilding L2ARC we retrieve the evict hand 9078 * from the header of the device. Of note, l2arc_evict() 9079 * does not actually delete buffers from the cache 9080 * device, but trimming may do so depending on the 9081 * hardware implementation. Thus keeping track of the 9082 * evict hand is useful. 9083 */ 9084 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr); 9085 } 9086 } 9087 9088 retry: 9089 mutex_enter(&dev->l2ad_mtx); 9090 /* 9091 * We have to account for evicted log blocks. Run vdev_space_update() 9092 * on log blocks whose offset (in bytes) is before the evicted offset 9093 * (in bytes) by searching in the list of pointers to log blocks 9094 * present in the L2ARC device. 9095 */ 9096 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf; 9097 lb_ptr_buf = lb_ptr_buf_prev) { 9098 9099 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf); 9100 9101 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 9102 uint64_t asize = L2BLK_GET_PSIZE( 9103 (lb_ptr_buf->lb_ptr)->lbp_prop); 9104 9105 /* 9106 * We don't worry about log blocks left behind (ie 9107 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers() 9108 * will never write more than l2arc_evict() evicts. 9109 */ 9110 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) { 9111 break; 9112 } else { 9113 vdev_space_update(vd, -asize, 0, 0); 9114 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 9115 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 9116 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 9117 lb_ptr_buf); 9118 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 9119 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf); 9120 kmem_free(lb_ptr_buf->lb_ptr, 9121 sizeof (l2arc_log_blkptr_t)); 9122 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 9123 } 9124 } 9125 9126 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 9127 hdr_prev = list_prev(buflist, hdr); 9128 9129 ASSERT(!HDR_EMPTY(hdr)); 9130 hash_lock = HDR_LOCK(hdr); 9131 9132 /* 9133 * We cannot use mutex_enter or else we can deadlock 9134 * with l2arc_write_buffers (due to swapping the order 9135 * the hash lock and l2ad_mtx are taken). 9136 */ 9137 if (!mutex_tryenter(hash_lock)) { 9138 /* 9139 * Missed the hash lock. Retry. 9140 */ 9141 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 9142 mutex_exit(&dev->l2ad_mtx); 9143 mutex_enter(hash_lock); 9144 mutex_exit(hash_lock); 9145 goto retry; 9146 } 9147 9148 /* 9149 * A header can't be on this list if it doesn't have L2 header. 9150 */ 9151 ASSERT(HDR_HAS_L2HDR(hdr)); 9152 9153 /* Ensure this header has finished being written. */ 9154 ASSERT(!HDR_L2_WRITING(hdr)); 9155 ASSERT(!HDR_L2_WRITE_HEAD(hdr)); 9156 9157 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict || 9158 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 9159 /* 9160 * We've evicted to the target address, 9161 * or the end of the device. 9162 */ 9163 mutex_exit(hash_lock); 9164 break; 9165 } 9166 9167 if (!HDR_HAS_L1HDR(hdr)) { 9168 ASSERT(!HDR_L2_READING(hdr)); 9169 /* 9170 * This doesn't exist in the ARC. Destroy. 9171 * arc_hdr_destroy() will call list_remove() 9172 * and decrement arcstat_l2_lsize. 9173 */ 9174 arc_change_state(arc_anon, hdr, hash_lock); 9175 arc_hdr_destroy(hdr); 9176 } else { 9177 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 9178 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 9179 /* 9180 * Invalidate issued or about to be issued 9181 * reads, since we may be about to write 9182 * over this location. 9183 */ 9184 if (HDR_L2_READING(hdr)) { 9185 ARCSTAT_BUMP(arcstat_l2_evict_reading); 9186 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); 9187 } 9188 9189 arc_hdr_l2hdr_destroy(hdr); 9190 } 9191 mutex_exit(hash_lock); 9192 } 9193 mutex_exit(&dev->l2ad_mtx); 9194 9195 out: 9196 /* 9197 * We need to check if we evict all buffers, otherwise we may iterate 9198 * unnecessarily. 9199 */ 9200 if (!all && rerun) { 9201 /* 9202 * Bump device hand to the device start if it is approaching the 9203 * end. l2arc_evict() has already evicted ahead for this case. 9204 */ 9205 dev->l2ad_hand = dev->l2ad_start; 9206 dev->l2ad_evict = dev->l2ad_start; 9207 dev->l2ad_first = B_FALSE; 9208 goto top; 9209 } 9210 9211 if (!all) { 9212 /* 9213 * In case of cache device removal (all) the following 9214 * assertions may be violated without functional consequences 9215 * as the device is about to be removed. 9216 */ 9217 ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end); 9218 if (!dev->l2ad_first) 9219 ASSERT3U(dev->l2ad_hand, <, dev->l2ad_evict); 9220 } 9221 } 9222 9223 /* 9224 * Handle any abd transforms that might be required for writing to the L2ARC. 9225 * If successful, this function will always return an abd with the data 9226 * transformed as it is on disk in a new abd of asize bytes. 9227 */ 9228 static int 9229 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize, 9230 abd_t **abd_out) 9231 { 9232 int ret; 9233 void *tmp = NULL; 9234 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd; 9235 enum zio_compress compress = HDR_GET_COMPRESS(hdr); 9236 uint64_t psize = HDR_GET_PSIZE(hdr); 9237 uint64_t size = arc_hdr_size(hdr); 9238 boolean_t ismd = HDR_ISTYPE_METADATA(hdr); 9239 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 9240 dsl_crypto_key_t *dck = NULL; 9241 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 }; 9242 boolean_t no_crypt = B_FALSE; 9243 9244 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 9245 !HDR_COMPRESSION_ENABLED(hdr)) || 9246 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize); 9247 ASSERT3U(psize, <=, asize); 9248 9249 /* 9250 * If this data simply needs its own buffer, we simply allocate it 9251 * and copy the data. This may be done to eliminate a dependency on a 9252 * shared buffer or to reallocate the buffer to match asize. 9253 */ 9254 if (HDR_HAS_RABD(hdr) && asize != psize) { 9255 ASSERT3U(asize, >=, psize); 9256 to_write = abd_alloc_for_io(asize, ismd); 9257 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize); 9258 if (psize != asize) 9259 abd_zero_off(to_write, psize, asize - psize); 9260 goto out; 9261 } 9262 9263 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) && 9264 !HDR_ENCRYPTED(hdr)) { 9265 ASSERT3U(size, ==, psize); 9266 to_write = abd_alloc_for_io(asize, ismd); 9267 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 9268 if (size != asize) 9269 abd_zero_off(to_write, size, asize - size); 9270 goto out; 9271 } 9272 9273 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) { 9274 cabd = abd_alloc_for_io(asize, ismd); 9275 tmp = abd_borrow_buf(cabd, asize); 9276 9277 psize = zio_compress_data(compress, to_write, tmp, size, 9278 hdr->b_complevel); 9279 9280 if (psize >= size) { 9281 abd_return_buf(cabd, tmp, asize); 9282 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF); 9283 to_write = cabd; 9284 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 9285 if (size != asize) 9286 abd_zero_off(to_write, size, asize - size); 9287 goto encrypt; 9288 } 9289 ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr)); 9290 if (psize < asize) 9291 bzero((char *)tmp + psize, asize - psize); 9292 psize = HDR_GET_PSIZE(hdr); 9293 abd_return_buf_copy(cabd, tmp, asize); 9294 to_write = cabd; 9295 } 9296 9297 encrypt: 9298 if (HDR_ENCRYPTED(hdr)) { 9299 eabd = abd_alloc_for_io(asize, ismd); 9300 9301 /* 9302 * If the dataset was disowned before the buffer 9303 * made it to this point, the key to re-encrypt 9304 * it won't be available. In this case we simply 9305 * won't write the buffer to the L2ARC. 9306 */ 9307 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj, 9308 FTAG, &dck); 9309 if (ret != 0) 9310 goto error; 9311 9312 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key, 9313 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt, 9314 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd, 9315 &no_crypt); 9316 if (ret != 0) 9317 goto error; 9318 9319 if (no_crypt) 9320 abd_copy(eabd, to_write, psize); 9321 9322 if (psize != asize) 9323 abd_zero_off(eabd, psize, asize - psize); 9324 9325 /* assert that the MAC we got here matches the one we saved */ 9326 ASSERT0(bcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN)); 9327 spa_keystore_dsl_key_rele(spa, dck, FTAG); 9328 9329 if (to_write == cabd) 9330 abd_free(cabd); 9331 9332 to_write = eabd; 9333 } 9334 9335 out: 9336 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd); 9337 *abd_out = to_write; 9338 return (0); 9339 9340 error: 9341 if (dck != NULL) 9342 spa_keystore_dsl_key_rele(spa, dck, FTAG); 9343 if (cabd != NULL) 9344 abd_free(cabd); 9345 if (eabd != NULL) 9346 abd_free(eabd); 9347 9348 *abd_out = NULL; 9349 return (ret); 9350 } 9351 9352 static void 9353 l2arc_blk_fetch_done(zio_t *zio) 9354 { 9355 l2arc_read_callback_t *cb; 9356 9357 cb = zio->io_private; 9358 if (cb->l2rcb_abd != NULL) 9359 abd_free(cb->l2rcb_abd); 9360 kmem_free(cb, sizeof (l2arc_read_callback_t)); 9361 } 9362 9363 /* 9364 * Find and write ARC buffers to the L2ARC device. 9365 * 9366 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 9367 * for reading until they have completed writing. 9368 * The headroom_boost is an in-out parameter used to maintain headroom boost 9369 * state between calls to this function. 9370 * 9371 * Returns the number of bytes actually written (which may be smaller than 9372 * the delta by which the device hand has changed due to alignment and the 9373 * writing of log blocks). 9374 */ 9375 static uint64_t 9376 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 9377 { 9378 arc_buf_hdr_t *hdr, *hdr_prev, *head; 9379 uint64_t write_asize, write_psize, write_lsize, headroom; 9380 boolean_t full; 9381 l2arc_write_callback_t *cb = NULL; 9382 zio_t *pio, *wzio; 9383 uint64_t guid = spa_load_guid(spa); 9384 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9385 9386 ASSERT3P(dev->l2ad_vdev, !=, NULL); 9387 9388 pio = NULL; 9389 write_lsize = write_asize = write_psize = 0; 9390 full = B_FALSE; 9391 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 9392 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); 9393 9394 /* 9395 * Copy buffers for L2ARC writing. 9396 */ 9397 for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) { 9398 /* 9399 * If pass == 1 or 3, we cache MRU metadata and data 9400 * respectively. 9401 */ 9402 if (l2arc_mfuonly) { 9403 if (pass == 1 || pass == 3) 9404 continue; 9405 } 9406 9407 multilist_sublist_t *mls = l2arc_sublist_lock(pass); 9408 uint64_t passed_sz = 0; 9409 9410 VERIFY3P(mls, !=, NULL); 9411 9412 /* 9413 * L2ARC fast warmup. 9414 * 9415 * Until the ARC is warm and starts to evict, read from the 9416 * head of the ARC lists rather than the tail. 9417 */ 9418 if (arc_warm == B_FALSE) 9419 hdr = multilist_sublist_head(mls); 9420 else 9421 hdr = multilist_sublist_tail(mls); 9422 9423 headroom = target_sz * l2arc_headroom; 9424 if (zfs_compressed_arc_enabled) 9425 headroom = (headroom * l2arc_headroom_boost) / 100; 9426 9427 for (; hdr; hdr = hdr_prev) { 9428 kmutex_t *hash_lock; 9429 abd_t *to_write = NULL; 9430 9431 if (arc_warm == B_FALSE) 9432 hdr_prev = multilist_sublist_next(mls, hdr); 9433 else 9434 hdr_prev = multilist_sublist_prev(mls, hdr); 9435 9436 hash_lock = HDR_LOCK(hdr); 9437 if (!mutex_tryenter(hash_lock)) { 9438 /* 9439 * Skip this buffer rather than waiting. 9440 */ 9441 continue; 9442 } 9443 9444 passed_sz += HDR_GET_LSIZE(hdr); 9445 if (l2arc_headroom != 0 && passed_sz > headroom) { 9446 /* 9447 * Searched too far. 9448 */ 9449 mutex_exit(hash_lock); 9450 break; 9451 } 9452 9453 if (!l2arc_write_eligible(guid, hdr)) { 9454 mutex_exit(hash_lock); 9455 continue; 9456 } 9457 9458 /* 9459 * We rely on the L1 portion of the header below, so 9460 * it's invalid for this header to have been evicted out 9461 * of the ghost cache, prior to being written out. The 9462 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 9463 */ 9464 ASSERT(HDR_HAS_L1HDR(hdr)); 9465 9466 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 9467 ASSERT3U(arc_hdr_size(hdr), >, 0); 9468 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 9469 HDR_HAS_RABD(hdr)); 9470 uint64_t psize = HDR_GET_PSIZE(hdr); 9471 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 9472 psize); 9473 9474 if ((write_asize + asize) > target_sz) { 9475 full = B_TRUE; 9476 mutex_exit(hash_lock); 9477 break; 9478 } 9479 9480 /* 9481 * We rely on the L1 portion of the header below, so 9482 * it's invalid for this header to have been evicted out 9483 * of the ghost cache, prior to being written out. The 9484 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 9485 */ 9486 arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING); 9487 ASSERT(HDR_HAS_L1HDR(hdr)); 9488 9489 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 9490 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 9491 HDR_HAS_RABD(hdr)); 9492 ASSERT3U(arc_hdr_size(hdr), >, 0); 9493 9494 /* 9495 * If this header has b_rabd, we can use this since it 9496 * must always match the data exactly as it exists on 9497 * disk. Otherwise, the L2ARC can normally use the 9498 * hdr's data, but if we're sharing data between the 9499 * hdr and one of its bufs, L2ARC needs its own copy of 9500 * the data so that the ZIO below can't race with the 9501 * buf consumer. To ensure that this copy will be 9502 * available for the lifetime of the ZIO and be cleaned 9503 * up afterwards, we add it to the l2arc_free_on_write 9504 * queue. If we need to apply any transforms to the 9505 * data (compression, encryption) we will also need the 9506 * extra buffer. 9507 */ 9508 if (HDR_HAS_RABD(hdr) && psize == asize) { 9509 to_write = hdr->b_crypt_hdr.b_rabd; 9510 } else if ((HDR_COMPRESSION_ENABLED(hdr) || 9511 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) && 9512 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) && 9513 psize == asize) { 9514 to_write = hdr->b_l1hdr.b_pabd; 9515 } else { 9516 int ret; 9517 arc_buf_contents_t type = arc_buf_type(hdr); 9518 9519 ret = l2arc_apply_transforms(spa, hdr, asize, 9520 &to_write); 9521 if (ret != 0) { 9522 arc_hdr_clear_flags(hdr, 9523 ARC_FLAG_L2_WRITING); 9524 mutex_exit(hash_lock); 9525 continue; 9526 } 9527 9528 l2arc_free_abd_on_write(to_write, asize, type); 9529 } 9530 9531 if (pio == NULL) { 9532 /* 9533 * Insert a dummy header on the buflist so 9534 * l2arc_write_done() can find where the 9535 * write buffers begin without searching. 9536 */ 9537 mutex_enter(&dev->l2ad_mtx); 9538 list_insert_head(&dev->l2ad_buflist, head); 9539 mutex_exit(&dev->l2ad_mtx); 9540 9541 cb = kmem_alloc( 9542 sizeof (l2arc_write_callback_t), KM_SLEEP); 9543 cb->l2wcb_dev = dev; 9544 cb->l2wcb_head = head; 9545 /* 9546 * Create a list to save allocated abd buffers 9547 * for l2arc_log_blk_commit(). 9548 */ 9549 list_create(&cb->l2wcb_abd_list, 9550 sizeof (l2arc_lb_abd_buf_t), 9551 offsetof(l2arc_lb_abd_buf_t, node)); 9552 pio = zio_root(spa, l2arc_write_done, cb, 9553 ZIO_FLAG_CANFAIL); 9554 } 9555 9556 hdr->b_l2hdr.b_dev = dev; 9557 hdr->b_l2hdr.b_hits = 0; 9558 9559 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 9560 hdr->b_l2hdr.b_arcs_state = 9561 hdr->b_l1hdr.b_state->arcs_state; 9562 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR); 9563 9564 mutex_enter(&dev->l2ad_mtx); 9565 list_insert_head(&dev->l2ad_buflist, hdr); 9566 mutex_exit(&dev->l2ad_mtx); 9567 9568 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 9569 arc_hdr_size(hdr), hdr); 9570 9571 wzio = zio_write_phys(pio, dev->l2ad_vdev, 9572 hdr->b_l2hdr.b_daddr, asize, to_write, 9573 ZIO_CHECKSUM_OFF, NULL, hdr, 9574 ZIO_PRIORITY_ASYNC_WRITE, 9575 ZIO_FLAG_CANFAIL, B_FALSE); 9576 9577 write_lsize += HDR_GET_LSIZE(hdr); 9578 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 9579 zio_t *, wzio); 9580 9581 write_psize += psize; 9582 write_asize += asize; 9583 dev->l2ad_hand += asize; 9584 l2arc_hdr_arcstats_increment(hdr); 9585 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 9586 9587 mutex_exit(hash_lock); 9588 9589 /* 9590 * Append buf info to current log and commit if full. 9591 * arcstat_l2_{size,asize} kstats are updated 9592 * internally. 9593 */ 9594 if (l2arc_log_blk_insert(dev, hdr)) 9595 l2arc_log_blk_commit(dev, pio, cb); 9596 9597 zio_nowait(wzio); 9598 } 9599 9600 multilist_sublist_unlock(mls); 9601 9602 if (full == B_TRUE) 9603 break; 9604 } 9605 9606 /* No buffers selected for writing? */ 9607 if (pio == NULL) { 9608 ASSERT0(write_lsize); 9609 ASSERT(!HDR_HAS_L1HDR(head)); 9610 kmem_cache_free(hdr_l2only_cache, head); 9611 9612 /* 9613 * Although we did not write any buffers l2ad_evict may 9614 * have advanced. 9615 */ 9616 if (dev->l2ad_evict != l2dhdr->dh_evict) 9617 l2arc_dev_hdr_update(dev); 9618 9619 return (0); 9620 } 9621 9622 if (!dev->l2ad_first) 9623 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict); 9624 9625 ASSERT3U(write_asize, <=, target_sz); 9626 ARCSTAT_BUMP(arcstat_l2_writes_sent); 9627 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize); 9628 9629 dev->l2ad_writing = B_TRUE; 9630 (void) zio_wait(pio); 9631 dev->l2ad_writing = B_FALSE; 9632 9633 /* 9634 * Update the device header after the zio completes as 9635 * l2arc_write_done() may have updated the memory holding the log block 9636 * pointers in the device header. 9637 */ 9638 l2arc_dev_hdr_update(dev); 9639 9640 return (write_asize); 9641 } 9642 9643 static boolean_t 9644 l2arc_hdr_limit_reached(void) 9645 { 9646 int64_t s = aggsum_upper_bound(&arc_sums.arcstat_l2_hdr_size); 9647 9648 return (arc_reclaim_needed() || (s > arc_meta_limit * 3 / 4) || 9649 (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100)); 9650 } 9651 9652 /* 9653 * This thread feeds the L2ARC at regular intervals. This is the beating 9654 * heart of the L2ARC. 9655 */ 9656 /* ARGSUSED */ 9657 static void 9658 l2arc_feed_thread(void *unused) 9659 { 9660 callb_cpr_t cpr; 9661 l2arc_dev_t *dev; 9662 spa_t *spa; 9663 uint64_t size, wrote; 9664 clock_t begin, next = ddi_get_lbolt(); 9665 fstrans_cookie_t cookie; 9666 9667 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 9668 9669 mutex_enter(&l2arc_feed_thr_lock); 9670 9671 cookie = spl_fstrans_mark(); 9672 while (l2arc_thread_exit == 0) { 9673 CALLB_CPR_SAFE_BEGIN(&cpr); 9674 (void) cv_timedwait_idle(&l2arc_feed_thr_cv, 9675 &l2arc_feed_thr_lock, next); 9676 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 9677 next = ddi_get_lbolt() + hz; 9678 9679 /* 9680 * Quick check for L2ARC devices. 9681 */ 9682 mutex_enter(&l2arc_dev_mtx); 9683 if (l2arc_ndev == 0) { 9684 mutex_exit(&l2arc_dev_mtx); 9685 continue; 9686 } 9687 mutex_exit(&l2arc_dev_mtx); 9688 begin = ddi_get_lbolt(); 9689 9690 /* 9691 * This selects the next l2arc device to write to, and in 9692 * doing so the next spa to feed from: dev->l2ad_spa. This 9693 * will return NULL if there are now no l2arc devices or if 9694 * they are all faulted. 9695 * 9696 * If a device is returned, its spa's config lock is also 9697 * held to prevent device removal. l2arc_dev_get_next() 9698 * will grab and release l2arc_dev_mtx. 9699 */ 9700 if ((dev = l2arc_dev_get_next()) == NULL) 9701 continue; 9702 9703 spa = dev->l2ad_spa; 9704 ASSERT3P(spa, !=, NULL); 9705 9706 /* 9707 * If the pool is read-only then force the feed thread to 9708 * sleep a little longer. 9709 */ 9710 if (!spa_writeable(spa)) { 9711 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 9712 spa_config_exit(spa, SCL_L2ARC, dev); 9713 continue; 9714 } 9715 9716 /* 9717 * Avoid contributing to memory pressure. 9718 */ 9719 if (l2arc_hdr_limit_reached()) { 9720 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 9721 spa_config_exit(spa, SCL_L2ARC, dev); 9722 continue; 9723 } 9724 9725 ARCSTAT_BUMP(arcstat_l2_feeds); 9726 9727 size = l2arc_write_size(dev); 9728 9729 /* 9730 * Evict L2ARC buffers that will be overwritten. 9731 */ 9732 l2arc_evict(dev, size, B_FALSE); 9733 9734 /* 9735 * Write ARC buffers. 9736 */ 9737 wrote = l2arc_write_buffers(spa, dev, size); 9738 9739 /* 9740 * Calculate interval between writes. 9741 */ 9742 next = l2arc_write_interval(begin, size, wrote); 9743 spa_config_exit(spa, SCL_L2ARC, dev); 9744 } 9745 spl_fstrans_unmark(cookie); 9746 9747 l2arc_thread_exit = 0; 9748 cv_broadcast(&l2arc_feed_thr_cv); 9749 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 9750 thread_exit(); 9751 } 9752 9753 boolean_t 9754 l2arc_vdev_present(vdev_t *vd) 9755 { 9756 return (l2arc_vdev_get(vd) != NULL); 9757 } 9758 9759 /* 9760 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if 9761 * the vdev_t isn't an L2ARC device. 9762 */ 9763 l2arc_dev_t * 9764 l2arc_vdev_get(vdev_t *vd) 9765 { 9766 l2arc_dev_t *dev; 9767 9768 mutex_enter(&l2arc_dev_mtx); 9769 for (dev = list_head(l2arc_dev_list); dev != NULL; 9770 dev = list_next(l2arc_dev_list, dev)) { 9771 if (dev->l2ad_vdev == vd) 9772 break; 9773 } 9774 mutex_exit(&l2arc_dev_mtx); 9775 9776 return (dev); 9777 } 9778 9779 static void 9780 l2arc_rebuild_dev(l2arc_dev_t *dev, boolean_t reopen) 9781 { 9782 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9783 uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 9784 spa_t *spa = dev->l2ad_spa; 9785 9786 /* 9787 * The L2ARC has to hold at least the payload of one log block for 9788 * them to be restored (persistent L2ARC). The payload of a log block 9789 * depends on the amount of its log entries. We always write log blocks 9790 * with 1022 entries. How many of them are committed or restored depends 9791 * on the size of the L2ARC device. Thus the maximum payload of 9792 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device 9793 * is less than that, we reduce the amount of committed and restored 9794 * log entries per block so as to enable persistence. 9795 */ 9796 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) { 9797 dev->l2ad_log_entries = 0; 9798 } else { 9799 dev->l2ad_log_entries = MIN((dev->l2ad_end - 9800 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT, 9801 L2ARC_LOG_BLK_MAX_ENTRIES); 9802 } 9803 9804 /* 9805 * Read the device header, if an error is returned do not rebuild L2ARC. 9806 */ 9807 if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) { 9808 /* 9809 * If we are onlining a cache device (vdev_reopen) that was 9810 * still present (l2arc_vdev_present()) and rebuild is enabled, 9811 * we should evict all ARC buffers and pointers to log blocks 9812 * and reclaim their space before restoring its contents to 9813 * L2ARC. 9814 */ 9815 if (reopen) { 9816 if (!l2arc_rebuild_enabled) { 9817 return; 9818 } else { 9819 l2arc_evict(dev, 0, B_TRUE); 9820 /* start a new log block */ 9821 dev->l2ad_log_ent_idx = 0; 9822 dev->l2ad_log_blk_payload_asize = 0; 9823 dev->l2ad_log_blk_payload_start = 0; 9824 } 9825 } 9826 /* 9827 * Just mark the device as pending for a rebuild. We won't 9828 * be starting a rebuild in line here as it would block pool 9829 * import. Instead spa_load_impl will hand that off to an 9830 * async task which will call l2arc_spa_rebuild_start. 9831 */ 9832 dev->l2ad_rebuild = B_TRUE; 9833 } else if (spa_writeable(spa)) { 9834 /* 9835 * In this case TRIM the whole device if l2arc_trim_ahead > 0, 9836 * otherwise create a new header. We zero out the memory holding 9837 * the header to reset dh_start_lbps. If we TRIM the whole 9838 * device the new header will be written by 9839 * vdev_trim_l2arc_thread() at the end of the TRIM to update the 9840 * trim_state in the header too. When reading the header, if 9841 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0 9842 * we opt to TRIM the whole device again. 9843 */ 9844 if (l2arc_trim_ahead > 0) { 9845 dev->l2ad_trim_all = B_TRUE; 9846 } else { 9847 bzero(l2dhdr, l2dhdr_asize); 9848 l2arc_dev_hdr_update(dev); 9849 } 9850 } 9851 } 9852 9853 /* 9854 * Add a vdev for use by the L2ARC. By this point the spa has already 9855 * validated the vdev and opened it. 9856 */ 9857 void 9858 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 9859 { 9860 l2arc_dev_t *adddev; 9861 uint64_t l2dhdr_asize; 9862 9863 ASSERT(!l2arc_vdev_present(vd)); 9864 9865 /* 9866 * Create a new l2arc device entry. 9867 */ 9868 adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 9869 adddev->l2ad_spa = spa; 9870 adddev->l2ad_vdev = vd; 9871 /* leave extra size for an l2arc device header */ 9872 l2dhdr_asize = adddev->l2ad_dev_hdr_asize = 9873 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift); 9874 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize; 9875 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 9876 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end); 9877 adddev->l2ad_hand = adddev->l2ad_start; 9878 adddev->l2ad_evict = adddev->l2ad_start; 9879 adddev->l2ad_first = B_TRUE; 9880 adddev->l2ad_writing = B_FALSE; 9881 adddev->l2ad_trim_all = B_FALSE; 9882 list_link_init(&adddev->l2ad_node); 9883 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP); 9884 9885 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 9886 /* 9887 * This is a list of all ARC buffers that are still valid on the 9888 * device. 9889 */ 9890 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 9891 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 9892 9893 /* 9894 * This is a list of pointers to log blocks that are still present 9895 * on the device. 9896 */ 9897 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t), 9898 offsetof(l2arc_lb_ptr_buf_t, node)); 9899 9900 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 9901 zfs_refcount_create(&adddev->l2ad_alloc); 9902 zfs_refcount_create(&adddev->l2ad_lb_asize); 9903 zfs_refcount_create(&adddev->l2ad_lb_count); 9904 9905 /* 9906 * Decide if dev is eligible for L2ARC rebuild or whole device 9907 * trimming. This has to happen before the device is added in the 9908 * cache device list and l2arc_dev_mtx is released. Otherwise 9909 * l2arc_feed_thread() might already start writing on the 9910 * device. 9911 */ 9912 l2arc_rebuild_dev(adddev, B_FALSE); 9913 9914 /* 9915 * Add device to global list 9916 */ 9917 mutex_enter(&l2arc_dev_mtx); 9918 list_insert_head(l2arc_dev_list, adddev); 9919 atomic_inc_64(&l2arc_ndev); 9920 mutex_exit(&l2arc_dev_mtx); 9921 } 9922 9923 /* 9924 * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen() 9925 * in case of onlining a cache device. 9926 */ 9927 void 9928 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen) 9929 { 9930 l2arc_dev_t *dev = NULL; 9931 9932 dev = l2arc_vdev_get(vd); 9933 ASSERT3P(dev, !=, NULL); 9934 9935 /* 9936 * In contrast to l2arc_add_vdev() we do not have to worry about 9937 * l2arc_feed_thread() invalidating previous content when onlining a 9938 * cache device. The device parameters (l2ad*) are not cleared when 9939 * offlining the device and writing new buffers will not invalidate 9940 * all previous content. In worst case only buffers that have not had 9941 * their log block written to the device will be lost. 9942 * When onlining the cache device (ie offline->online without exporting 9943 * the pool in between) this happens: 9944 * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev() 9945 * | | 9946 * vdev_is_dead() = B_FALSE l2ad_rebuild = B_TRUE 9947 * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild 9948 * is set to B_TRUE we might write additional buffers to the device. 9949 */ 9950 l2arc_rebuild_dev(dev, reopen); 9951 } 9952 9953 /* 9954 * Remove a vdev from the L2ARC. 9955 */ 9956 void 9957 l2arc_remove_vdev(vdev_t *vd) 9958 { 9959 l2arc_dev_t *remdev = NULL; 9960 9961 /* 9962 * Find the device by vdev 9963 */ 9964 remdev = l2arc_vdev_get(vd); 9965 ASSERT3P(remdev, !=, NULL); 9966 9967 /* 9968 * Cancel any ongoing or scheduled rebuild. 9969 */ 9970 mutex_enter(&l2arc_rebuild_thr_lock); 9971 if (remdev->l2ad_rebuild_began == B_TRUE) { 9972 remdev->l2ad_rebuild_cancel = B_TRUE; 9973 while (remdev->l2ad_rebuild == B_TRUE) 9974 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock); 9975 } 9976 mutex_exit(&l2arc_rebuild_thr_lock); 9977 9978 /* 9979 * Remove device from global list 9980 */ 9981 mutex_enter(&l2arc_dev_mtx); 9982 list_remove(l2arc_dev_list, remdev); 9983 l2arc_dev_last = NULL; /* may have been invalidated */ 9984 atomic_dec_64(&l2arc_ndev); 9985 mutex_exit(&l2arc_dev_mtx); 9986 9987 /* 9988 * Clear all buflists and ARC references. L2ARC device flush. 9989 */ 9990 l2arc_evict(remdev, 0, B_TRUE); 9991 list_destroy(&remdev->l2ad_buflist); 9992 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list)); 9993 list_destroy(&remdev->l2ad_lbptr_list); 9994 mutex_destroy(&remdev->l2ad_mtx); 9995 zfs_refcount_destroy(&remdev->l2ad_alloc); 9996 zfs_refcount_destroy(&remdev->l2ad_lb_asize); 9997 zfs_refcount_destroy(&remdev->l2ad_lb_count); 9998 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize); 9999 vmem_free(remdev, sizeof (l2arc_dev_t)); 10000 } 10001 10002 void 10003 l2arc_init(void) 10004 { 10005 l2arc_thread_exit = 0; 10006 l2arc_ndev = 0; 10007 10008 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 10009 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 10010 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL); 10011 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL); 10012 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 10013 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 10014 10015 l2arc_dev_list = &L2ARC_dev_list; 10016 l2arc_free_on_write = &L2ARC_free_on_write; 10017 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 10018 offsetof(l2arc_dev_t, l2ad_node)); 10019 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 10020 offsetof(l2arc_data_free_t, l2df_list_node)); 10021 } 10022 10023 void 10024 l2arc_fini(void) 10025 { 10026 mutex_destroy(&l2arc_feed_thr_lock); 10027 cv_destroy(&l2arc_feed_thr_cv); 10028 mutex_destroy(&l2arc_rebuild_thr_lock); 10029 cv_destroy(&l2arc_rebuild_thr_cv); 10030 mutex_destroy(&l2arc_dev_mtx); 10031 mutex_destroy(&l2arc_free_on_write_mtx); 10032 10033 list_destroy(l2arc_dev_list); 10034 list_destroy(l2arc_free_on_write); 10035 } 10036 10037 void 10038 l2arc_start(void) 10039 { 10040 if (!(spa_mode_global & SPA_MODE_WRITE)) 10041 return; 10042 10043 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 10044 TS_RUN, defclsyspri); 10045 } 10046 10047 void 10048 l2arc_stop(void) 10049 { 10050 if (!(spa_mode_global & SPA_MODE_WRITE)) 10051 return; 10052 10053 mutex_enter(&l2arc_feed_thr_lock); 10054 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 10055 l2arc_thread_exit = 1; 10056 while (l2arc_thread_exit != 0) 10057 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 10058 mutex_exit(&l2arc_feed_thr_lock); 10059 } 10060 10061 /* 10062 * Punches out rebuild threads for the L2ARC devices in a spa. This should 10063 * be called after pool import from the spa async thread, since starting 10064 * these threads directly from spa_import() will make them part of the 10065 * "zpool import" context and delay process exit (and thus pool import). 10066 */ 10067 void 10068 l2arc_spa_rebuild_start(spa_t *spa) 10069 { 10070 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 10071 10072 /* 10073 * Locate the spa's l2arc devices and kick off rebuild threads. 10074 */ 10075 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 10076 l2arc_dev_t *dev = 10077 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]); 10078 if (dev == NULL) { 10079 /* Don't attempt a rebuild if the vdev is UNAVAIL */ 10080 continue; 10081 } 10082 mutex_enter(&l2arc_rebuild_thr_lock); 10083 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) { 10084 dev->l2ad_rebuild_began = B_TRUE; 10085 (void) thread_create(NULL, 0, l2arc_dev_rebuild_thread, 10086 dev, 0, &p0, TS_RUN, minclsyspri); 10087 } 10088 mutex_exit(&l2arc_rebuild_thr_lock); 10089 } 10090 } 10091 10092 /* 10093 * Main entry point for L2ARC rebuilding. 10094 */ 10095 static void 10096 l2arc_dev_rebuild_thread(void *arg) 10097 { 10098 l2arc_dev_t *dev = arg; 10099 10100 VERIFY(!dev->l2ad_rebuild_cancel); 10101 VERIFY(dev->l2ad_rebuild); 10102 (void) l2arc_rebuild(dev); 10103 mutex_enter(&l2arc_rebuild_thr_lock); 10104 dev->l2ad_rebuild_began = B_FALSE; 10105 dev->l2ad_rebuild = B_FALSE; 10106 mutex_exit(&l2arc_rebuild_thr_lock); 10107 10108 thread_exit(); 10109 } 10110 10111 /* 10112 * This function implements the actual L2ARC metadata rebuild. It: 10113 * starts reading the log block chain and restores each block's contents 10114 * to memory (reconstructing arc_buf_hdr_t's). 10115 * 10116 * Operation stops under any of the following conditions: 10117 * 10118 * 1) We reach the end of the log block chain. 10119 * 2) We encounter *any* error condition (cksum errors, io errors) 10120 */ 10121 static int 10122 l2arc_rebuild(l2arc_dev_t *dev) 10123 { 10124 vdev_t *vd = dev->l2ad_vdev; 10125 spa_t *spa = vd->vdev_spa; 10126 int err = 0; 10127 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10128 l2arc_log_blk_phys_t *this_lb, *next_lb; 10129 zio_t *this_io = NULL, *next_io = NULL; 10130 l2arc_log_blkptr_t lbps[2]; 10131 l2arc_lb_ptr_buf_t *lb_ptr_buf; 10132 boolean_t lock_held; 10133 10134 this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP); 10135 next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP); 10136 10137 /* 10138 * We prevent device removal while issuing reads to the device, 10139 * then during the rebuilding phases we drop this lock again so 10140 * that a spa_unload or device remove can be initiated - this is 10141 * safe, because the spa will signal us to stop before removing 10142 * our device and wait for us to stop. 10143 */ 10144 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER); 10145 lock_held = B_TRUE; 10146 10147 /* 10148 * Retrieve the persistent L2ARC device state. 10149 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10150 */ 10151 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start); 10152 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr + 10153 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop), 10154 dev->l2ad_start); 10155 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 10156 10157 vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time; 10158 vd->vdev_trim_state = l2dhdr->dh_trim_state; 10159 10160 /* 10161 * In case the zfs module parameter l2arc_rebuild_enabled is false 10162 * we do not start the rebuild process. 10163 */ 10164 if (!l2arc_rebuild_enabled) 10165 goto out; 10166 10167 /* Prepare the rebuild process */ 10168 bcopy(l2dhdr->dh_start_lbps, lbps, sizeof (lbps)); 10169 10170 /* Start the rebuild process */ 10171 for (;;) { 10172 if (!l2arc_log_blkptr_valid(dev, &lbps[0])) 10173 break; 10174 10175 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1], 10176 this_lb, next_lb, this_io, &next_io)) != 0) 10177 goto out; 10178 10179 /* 10180 * Our memory pressure valve. If the system is running low 10181 * on memory, rather than swamping memory with new ARC buf 10182 * hdrs, we opt not to rebuild the L2ARC. At this point, 10183 * however, we have already set up our L2ARC dev to chain in 10184 * new metadata log blocks, so the user may choose to offline/ 10185 * online the L2ARC dev at a later time (or re-import the pool) 10186 * to reconstruct it (when there's less memory pressure). 10187 */ 10188 if (l2arc_hdr_limit_reached()) { 10189 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem); 10190 cmn_err(CE_NOTE, "System running low on memory, " 10191 "aborting L2ARC rebuild."); 10192 err = SET_ERROR(ENOMEM); 10193 goto out; 10194 } 10195 10196 spa_config_exit(spa, SCL_L2ARC, vd); 10197 lock_held = B_FALSE; 10198 10199 /* 10200 * Now that we know that the next_lb checks out alright, we 10201 * can start reconstruction from this log block. 10202 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10203 */ 10204 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 10205 l2arc_log_blk_restore(dev, this_lb, asize); 10206 10207 /* 10208 * log block restored, include its pointer in the list of 10209 * pointers to log blocks present in the L2ARC device. 10210 */ 10211 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 10212 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), 10213 KM_SLEEP); 10214 bcopy(&lbps[0], lb_ptr_buf->lb_ptr, 10215 sizeof (l2arc_log_blkptr_t)); 10216 mutex_enter(&dev->l2ad_mtx); 10217 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf); 10218 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 10219 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 10220 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 10221 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 10222 mutex_exit(&dev->l2ad_mtx); 10223 vdev_space_update(vd, asize, 0, 0); 10224 10225 /* 10226 * Protection against loops of log blocks: 10227 * 10228 * l2ad_hand l2ad_evict 10229 * V V 10230 * l2ad_start |=======================================| l2ad_end 10231 * -----|||----|||---|||----||| 10232 * (3) (2) (1) (0) 10233 * ---|||---|||----|||---||| 10234 * (7) (6) (5) (4) 10235 * 10236 * In this situation the pointer of log block (4) passes 10237 * l2arc_log_blkptr_valid() but the log block should not be 10238 * restored as it is overwritten by the payload of log block 10239 * (0). Only log blocks (0)-(3) should be restored. We check 10240 * whether l2ad_evict lies in between the payload starting 10241 * offset of the next log block (lbps[1].lbp_payload_start) 10242 * and the payload starting offset of the present log block 10243 * (lbps[0].lbp_payload_start). If true and this isn't the 10244 * first pass, we are looping from the beginning and we should 10245 * stop. 10246 */ 10247 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 10248 lbps[0].lbp_payload_start, dev->l2ad_evict) && 10249 !dev->l2ad_first) 10250 goto out; 10251 10252 cond_resched(); 10253 for (;;) { 10254 mutex_enter(&l2arc_rebuild_thr_lock); 10255 if (dev->l2ad_rebuild_cancel) { 10256 dev->l2ad_rebuild = B_FALSE; 10257 cv_signal(&l2arc_rebuild_thr_cv); 10258 mutex_exit(&l2arc_rebuild_thr_lock); 10259 err = SET_ERROR(ECANCELED); 10260 goto out; 10261 } 10262 mutex_exit(&l2arc_rebuild_thr_lock); 10263 if (spa_config_tryenter(spa, SCL_L2ARC, vd, 10264 RW_READER)) { 10265 lock_held = B_TRUE; 10266 break; 10267 } 10268 /* 10269 * L2ARC config lock held by somebody in writer, 10270 * possibly due to them trying to remove us. They'll 10271 * likely to want us to shut down, so after a little 10272 * delay, we check l2ad_rebuild_cancel and retry 10273 * the lock again. 10274 */ 10275 delay(1); 10276 } 10277 10278 /* 10279 * Continue with the next log block. 10280 */ 10281 lbps[0] = lbps[1]; 10282 lbps[1] = this_lb->lb_prev_lbp; 10283 PTR_SWAP(this_lb, next_lb); 10284 this_io = next_io; 10285 next_io = NULL; 10286 } 10287 10288 if (this_io != NULL) 10289 l2arc_log_blk_fetch_abort(this_io); 10290 out: 10291 if (next_io != NULL) 10292 l2arc_log_blk_fetch_abort(next_io); 10293 vmem_free(this_lb, sizeof (*this_lb)); 10294 vmem_free(next_lb, sizeof (*next_lb)); 10295 10296 if (!l2arc_rebuild_enabled) { 10297 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10298 "disabled"); 10299 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) { 10300 ARCSTAT_BUMP(arcstat_l2_rebuild_success); 10301 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10302 "successful, restored %llu blocks", 10303 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10304 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) { 10305 /* 10306 * No error but also nothing restored, meaning the lbps array 10307 * in the device header points to invalid/non-present log 10308 * blocks. Reset the header. 10309 */ 10310 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10311 "no valid log blocks"); 10312 bzero(l2dhdr, dev->l2ad_dev_hdr_asize); 10313 l2arc_dev_hdr_update(dev); 10314 } else if (err == ECANCELED) { 10315 /* 10316 * In case the rebuild was canceled do not log to spa history 10317 * log as the pool may be in the process of being removed. 10318 */ 10319 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks", 10320 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10321 } else if (err != 0) { 10322 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10323 "aborted, restored %llu blocks", 10324 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10325 } 10326 10327 if (lock_held) 10328 spa_config_exit(spa, SCL_L2ARC, vd); 10329 10330 return (err); 10331 } 10332 10333 /* 10334 * Attempts to read the device header on the provided L2ARC device and writes 10335 * it to `hdr'. On success, this function returns 0, otherwise the appropriate 10336 * error code is returned. 10337 */ 10338 static int 10339 l2arc_dev_hdr_read(l2arc_dev_t *dev) 10340 { 10341 int err; 10342 uint64_t guid; 10343 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10344 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10345 abd_t *abd; 10346 10347 guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10348 10349 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10350 10351 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev, 10352 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, 10353 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 10354 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 10355 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 10356 ZIO_FLAG_SPECULATIVE, B_FALSE)); 10357 10358 abd_free(abd); 10359 10360 if (err != 0) { 10361 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors); 10362 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, " 10363 "vdev guid: %llu", err, 10364 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10365 return (err); 10366 } 10367 10368 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 10369 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr)); 10370 10371 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC || 10372 l2dhdr->dh_spa_guid != guid || 10373 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid || 10374 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION || 10375 l2dhdr->dh_log_entries != dev->l2ad_log_entries || 10376 l2dhdr->dh_end != dev->l2ad_end || 10377 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end, 10378 l2dhdr->dh_evict) || 10379 (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE && 10380 l2arc_trim_ahead > 0)) { 10381 /* 10382 * Attempt to rebuild a device containing no actual dev hdr 10383 * or containing a header from some other pool or from another 10384 * version of persistent L2ARC. 10385 */ 10386 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported); 10387 return (SET_ERROR(ENOTSUP)); 10388 } 10389 10390 return (0); 10391 } 10392 10393 /* 10394 * Reads L2ARC log blocks from storage and validates their contents. 10395 * 10396 * This function implements a simple fetcher to make sure that while 10397 * we're processing one buffer the L2ARC is already fetching the next 10398 * one in the chain. 10399 * 10400 * The arguments this_lp and next_lp point to the current and next log block 10401 * address in the block chain. Similarly, this_lb and next_lb hold the 10402 * l2arc_log_blk_phys_t's of the current and next L2ARC blk. 10403 * 10404 * The `this_io' and `next_io' arguments are used for block fetching. 10405 * When issuing the first blk IO during rebuild, you should pass NULL for 10406 * `this_io'. This function will then issue a sync IO to read the block and 10407 * also issue an async IO to fetch the next block in the block chain. The 10408 * fetched IO is returned in `next_io'. On subsequent calls to this 10409 * function, pass the value returned in `next_io' from the previous call 10410 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO. 10411 * Prior to the call, you should initialize your `next_io' pointer to be 10412 * NULL. If no fetch IO was issued, the pointer is left set at NULL. 10413 * 10414 * On success, this function returns 0, otherwise it returns an appropriate 10415 * error code. On error the fetching IO is aborted and cleared before 10416 * returning from this function. Therefore, if we return `success', the 10417 * caller can assume that we have taken care of cleanup of fetch IOs. 10418 */ 10419 static int 10420 l2arc_log_blk_read(l2arc_dev_t *dev, 10421 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp, 10422 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 10423 zio_t *this_io, zio_t **next_io) 10424 { 10425 int err = 0; 10426 zio_cksum_t cksum; 10427 abd_t *abd = NULL; 10428 uint64_t asize; 10429 10430 ASSERT(this_lbp != NULL && next_lbp != NULL); 10431 ASSERT(this_lb != NULL && next_lb != NULL); 10432 ASSERT(next_io != NULL && *next_io == NULL); 10433 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp)); 10434 10435 /* 10436 * Check to see if we have issued the IO for this log block in a 10437 * previous run. If not, this is the first call, so issue it now. 10438 */ 10439 if (this_io == NULL) { 10440 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp, 10441 this_lb); 10442 } 10443 10444 /* 10445 * Peek to see if we can start issuing the next IO immediately. 10446 */ 10447 if (l2arc_log_blkptr_valid(dev, next_lbp)) { 10448 /* 10449 * Start issuing IO for the next log block early - this 10450 * should help keep the L2ARC device busy while we 10451 * decompress and restore this log block. 10452 */ 10453 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp, 10454 next_lb); 10455 } 10456 10457 /* Wait for the IO to read this log block to complete */ 10458 if ((err = zio_wait(this_io)) != 0) { 10459 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors); 10460 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, " 10461 "offset: %llu, vdev guid: %llu", err, 10462 (u_longlong_t)this_lbp->lbp_daddr, 10463 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10464 goto cleanup; 10465 } 10466 10467 /* 10468 * Make sure the buffer checks out. 10469 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10470 */ 10471 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop); 10472 fletcher_4_native(this_lb, asize, NULL, &cksum); 10473 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) { 10474 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors); 10475 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, " 10476 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu", 10477 (u_longlong_t)this_lbp->lbp_daddr, 10478 (u_longlong_t)dev->l2ad_vdev->vdev_guid, 10479 (u_longlong_t)dev->l2ad_hand, 10480 (u_longlong_t)dev->l2ad_evict); 10481 err = SET_ERROR(ECKSUM); 10482 goto cleanup; 10483 } 10484 10485 /* Now we can take our time decoding this buffer */ 10486 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) { 10487 case ZIO_COMPRESS_OFF: 10488 break; 10489 case ZIO_COMPRESS_LZ4: 10490 abd = abd_alloc_for_io(asize, B_TRUE); 10491 abd_copy_from_buf_off(abd, this_lb, 0, asize); 10492 if ((err = zio_decompress_data( 10493 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop), 10494 abd, this_lb, asize, sizeof (*this_lb), NULL)) != 0) { 10495 err = SET_ERROR(EINVAL); 10496 goto cleanup; 10497 } 10498 break; 10499 default: 10500 err = SET_ERROR(EINVAL); 10501 goto cleanup; 10502 } 10503 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 10504 byteswap_uint64_array(this_lb, sizeof (*this_lb)); 10505 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) { 10506 err = SET_ERROR(EINVAL); 10507 goto cleanup; 10508 } 10509 cleanup: 10510 /* Abort an in-flight fetch I/O in case of error */ 10511 if (err != 0 && *next_io != NULL) { 10512 l2arc_log_blk_fetch_abort(*next_io); 10513 *next_io = NULL; 10514 } 10515 if (abd != NULL) 10516 abd_free(abd); 10517 return (err); 10518 } 10519 10520 /* 10521 * Restores the payload of a log block to ARC. This creates empty ARC hdr 10522 * entries which only contain an l2arc hdr, essentially restoring the 10523 * buffers to their L2ARC evicted state. This function also updates space 10524 * usage on the L2ARC vdev to make sure it tracks restored buffers. 10525 */ 10526 static void 10527 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb, 10528 uint64_t lb_asize) 10529 { 10530 uint64_t size = 0, asize = 0; 10531 uint64_t log_entries = dev->l2ad_log_entries; 10532 10533 /* 10534 * Usually arc_adapt() is called only for data, not headers, but 10535 * since we may allocate significant amount of memory here, let ARC 10536 * grow its arc_c. 10537 */ 10538 arc_adapt(log_entries * HDR_L2ONLY_SIZE, arc_l2c_only); 10539 10540 for (int i = log_entries - 1; i >= 0; i--) { 10541 /* 10542 * Restore goes in the reverse temporal direction to preserve 10543 * correct temporal ordering of buffers in the l2ad_buflist. 10544 * l2arc_hdr_restore also does a list_insert_tail instead of 10545 * list_insert_head on the l2ad_buflist: 10546 * 10547 * LIST l2ad_buflist LIST 10548 * HEAD <------ (time) ------ TAIL 10549 * direction +-----+-----+-----+-----+-----+ direction 10550 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild 10551 * fill +-----+-----+-----+-----+-----+ 10552 * ^ ^ 10553 * | | 10554 * | | 10555 * l2arc_feed_thread l2arc_rebuild 10556 * will place new bufs here restores bufs here 10557 * 10558 * During l2arc_rebuild() the device is not used by 10559 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true. 10560 */ 10561 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop); 10562 asize += vdev_psize_to_asize(dev->l2ad_vdev, 10563 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop)); 10564 l2arc_hdr_restore(&lb->lb_entries[i], dev); 10565 } 10566 10567 /* 10568 * Record rebuild stats: 10569 * size Logical size of restored buffers in the L2ARC 10570 * asize Aligned size of restored buffers in the L2ARC 10571 */ 10572 ARCSTAT_INCR(arcstat_l2_rebuild_size, size); 10573 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize); 10574 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries); 10575 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize); 10576 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize); 10577 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks); 10578 } 10579 10580 /* 10581 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put 10582 * into a state indicating that it has been evicted to L2ARC. 10583 */ 10584 static void 10585 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev) 10586 { 10587 arc_buf_hdr_t *hdr, *exists; 10588 kmutex_t *hash_lock; 10589 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop); 10590 uint64_t asize; 10591 10592 /* 10593 * Do all the allocation before grabbing any locks, this lets us 10594 * sleep if memory is full and we don't have to deal with failed 10595 * allocations. 10596 */ 10597 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type, 10598 dev, le->le_dva, le->le_daddr, 10599 L2BLK_GET_PSIZE((le)->le_prop), le->le_birth, 10600 L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel, 10601 L2BLK_GET_PROTECTED((le)->le_prop), 10602 L2BLK_GET_PREFETCH((le)->le_prop), 10603 L2BLK_GET_STATE((le)->le_prop)); 10604 asize = vdev_psize_to_asize(dev->l2ad_vdev, 10605 L2BLK_GET_PSIZE((le)->le_prop)); 10606 10607 /* 10608 * vdev_space_update() has to be called before arc_hdr_destroy() to 10609 * avoid underflow since the latter also calls vdev_space_update(). 10610 */ 10611 l2arc_hdr_arcstats_increment(hdr); 10612 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10613 10614 mutex_enter(&dev->l2ad_mtx); 10615 list_insert_tail(&dev->l2ad_buflist, hdr); 10616 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); 10617 mutex_exit(&dev->l2ad_mtx); 10618 10619 exists = buf_hash_insert(hdr, &hash_lock); 10620 if (exists) { 10621 /* Buffer was already cached, no need to restore it. */ 10622 arc_hdr_destroy(hdr); 10623 /* 10624 * If the buffer is already cached, check whether it has 10625 * L2ARC metadata. If not, enter them and update the flag. 10626 * This is important is case of onlining a cache device, since 10627 * we previously evicted all L2ARC metadata from ARC. 10628 */ 10629 if (!HDR_HAS_L2HDR(exists)) { 10630 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR); 10631 exists->b_l2hdr.b_dev = dev; 10632 exists->b_l2hdr.b_daddr = le->le_daddr; 10633 exists->b_l2hdr.b_arcs_state = 10634 L2BLK_GET_STATE((le)->le_prop); 10635 mutex_enter(&dev->l2ad_mtx); 10636 list_insert_tail(&dev->l2ad_buflist, exists); 10637 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 10638 arc_hdr_size(exists), exists); 10639 mutex_exit(&dev->l2ad_mtx); 10640 l2arc_hdr_arcstats_increment(exists); 10641 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10642 } 10643 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached); 10644 } 10645 10646 mutex_exit(hash_lock); 10647 } 10648 10649 /* 10650 * Starts an asynchronous read IO to read a log block. This is used in log 10651 * block reconstruction to start reading the next block before we are done 10652 * decoding and reconstructing the current block, to keep the l2arc device 10653 * nice and hot with read IO to process. 10654 * The returned zio will contain a newly allocated memory buffers for the IO 10655 * data which should then be freed by the caller once the zio is no longer 10656 * needed (i.e. due to it having completed). If you wish to abort this 10657 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes 10658 * care of disposing of the allocated buffers correctly. 10659 */ 10660 static zio_t * 10661 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp, 10662 l2arc_log_blk_phys_t *lb) 10663 { 10664 uint32_t asize; 10665 zio_t *pio; 10666 l2arc_read_callback_t *cb; 10667 10668 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10669 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10670 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t)); 10671 10672 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP); 10673 cb->l2rcb_abd = abd_get_from_buf(lb, asize); 10674 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb, 10675 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | 10676 ZIO_FLAG_DONT_RETRY); 10677 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize, 10678 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10679 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 10680 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE)); 10681 10682 return (pio); 10683 } 10684 10685 /* 10686 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data 10687 * buffers allocated for it. 10688 */ 10689 static void 10690 l2arc_log_blk_fetch_abort(zio_t *zio) 10691 { 10692 (void) zio_wait(zio); 10693 } 10694 10695 /* 10696 * Creates a zio to update the device header on an l2arc device. 10697 */ 10698 void 10699 l2arc_dev_hdr_update(l2arc_dev_t *dev) 10700 { 10701 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10702 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10703 abd_t *abd; 10704 int err; 10705 10706 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER)); 10707 10708 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC; 10709 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION; 10710 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10711 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid; 10712 l2dhdr->dh_log_entries = dev->l2ad_log_entries; 10713 l2dhdr->dh_evict = dev->l2ad_evict; 10714 l2dhdr->dh_start = dev->l2ad_start; 10715 l2dhdr->dh_end = dev->l2ad_end; 10716 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize); 10717 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count); 10718 l2dhdr->dh_flags = 0; 10719 l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time; 10720 l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state; 10721 if (dev->l2ad_first) 10722 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST; 10723 10724 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10725 10726 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev, 10727 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL, 10728 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE)); 10729 10730 abd_free(abd); 10731 10732 if (err != 0) { 10733 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, " 10734 "vdev guid: %llu", err, 10735 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10736 } 10737 } 10738 10739 /* 10740 * Commits a log block to the L2ARC device. This routine is invoked from 10741 * l2arc_write_buffers when the log block fills up. 10742 * This function allocates some memory to temporarily hold the serialized 10743 * buffer to be written. This is then released in l2arc_write_done. 10744 */ 10745 static void 10746 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb) 10747 { 10748 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10749 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10750 uint64_t psize, asize; 10751 zio_t *wzio; 10752 l2arc_lb_abd_buf_t *abd_buf; 10753 uint8_t *tmpbuf; 10754 l2arc_lb_ptr_buf_t *lb_ptr_buf; 10755 10756 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries); 10757 10758 tmpbuf = zio_buf_alloc(sizeof (*lb)); 10759 abd_buf = zio_buf_alloc(sizeof (*abd_buf)); 10760 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb)); 10761 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 10762 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP); 10763 10764 /* link the buffer into the block chain */ 10765 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1]; 10766 lb->lb_magic = L2ARC_LOG_BLK_MAGIC; 10767 10768 /* 10769 * l2arc_log_blk_commit() may be called multiple times during a single 10770 * l2arc_write_buffers() call. Save the allocated abd buffers in a list 10771 * so we can free them in l2arc_write_done() later on. 10772 */ 10773 list_insert_tail(&cb->l2wcb_abd_list, abd_buf); 10774 10775 /* try to compress the buffer */ 10776 psize = zio_compress_data(ZIO_COMPRESS_LZ4, 10777 abd_buf->abd, tmpbuf, sizeof (*lb), 0); 10778 10779 /* a log block is never entirely zero */ 10780 ASSERT(psize != 0); 10781 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 10782 ASSERT(asize <= sizeof (*lb)); 10783 10784 /* 10785 * Update the start log block pointer in the device header to point 10786 * to the log block we're about to write. 10787 */ 10788 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0]; 10789 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand; 10790 l2dhdr->dh_start_lbps[0].lbp_payload_asize = 10791 dev->l2ad_log_blk_payload_asize; 10792 l2dhdr->dh_start_lbps[0].lbp_payload_start = 10793 dev->l2ad_log_blk_payload_start; 10794 L2BLK_SET_LSIZE( 10795 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb)); 10796 L2BLK_SET_PSIZE( 10797 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize); 10798 L2BLK_SET_CHECKSUM( 10799 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10800 ZIO_CHECKSUM_FLETCHER_4); 10801 if (asize < sizeof (*lb)) { 10802 /* compression succeeded */ 10803 bzero(tmpbuf + psize, asize - psize); 10804 L2BLK_SET_COMPRESS( 10805 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10806 ZIO_COMPRESS_LZ4); 10807 } else { 10808 /* compression failed */ 10809 bcopy(lb, tmpbuf, sizeof (*lb)); 10810 L2BLK_SET_COMPRESS( 10811 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10812 ZIO_COMPRESS_OFF); 10813 } 10814 10815 /* checksum what we're about to write */ 10816 fletcher_4_native(tmpbuf, asize, NULL, 10817 &l2dhdr->dh_start_lbps[0].lbp_cksum); 10818 10819 abd_free(abd_buf->abd); 10820 10821 /* perform the write itself */ 10822 abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb)); 10823 abd_take_ownership_of_buf(abd_buf->abd, B_TRUE); 10824 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand, 10825 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10826 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE); 10827 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio); 10828 (void) zio_nowait(wzio); 10829 10830 dev->l2ad_hand += asize; 10831 /* 10832 * Include the committed log block's pointer in the list of pointers 10833 * to log blocks present in the L2ARC device. 10834 */ 10835 bcopy(&l2dhdr->dh_start_lbps[0], lb_ptr_buf->lb_ptr, 10836 sizeof (l2arc_log_blkptr_t)); 10837 mutex_enter(&dev->l2ad_mtx); 10838 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf); 10839 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 10840 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 10841 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 10842 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 10843 mutex_exit(&dev->l2ad_mtx); 10844 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10845 10846 /* bump the kstats */ 10847 ARCSTAT_INCR(arcstat_l2_write_bytes, asize); 10848 ARCSTAT_BUMP(arcstat_l2_log_blk_writes); 10849 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize); 10850 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, 10851 dev->l2ad_log_blk_payload_asize / asize); 10852 10853 /* start a new log block */ 10854 dev->l2ad_log_ent_idx = 0; 10855 dev->l2ad_log_blk_payload_asize = 0; 10856 dev->l2ad_log_blk_payload_start = 0; 10857 } 10858 10859 /* 10860 * Validates an L2ARC log block address to make sure that it can be read 10861 * from the provided L2ARC device. 10862 */ 10863 boolean_t 10864 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp) 10865 { 10866 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10867 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10868 uint64_t end = lbp->lbp_daddr + asize - 1; 10869 uint64_t start = lbp->lbp_payload_start; 10870 boolean_t evicted = B_FALSE; 10871 10872 /* 10873 * A log block is valid if all of the following conditions are true: 10874 * - it fits entirely (including its payload) between l2ad_start and 10875 * l2ad_end 10876 * - it has a valid size 10877 * - neither the log block itself nor part of its payload was evicted 10878 * by l2arc_evict(): 10879 * 10880 * l2ad_hand l2ad_evict 10881 * | | lbp_daddr 10882 * | start | | end 10883 * | | | | | 10884 * V V V V V 10885 * l2ad_start ============================================ l2ad_end 10886 * --------------------------|||| 10887 * ^ ^ 10888 * | log block 10889 * payload 10890 */ 10891 10892 evicted = 10893 l2arc_range_check_overlap(start, end, dev->l2ad_hand) || 10894 l2arc_range_check_overlap(start, end, dev->l2ad_evict) || 10895 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) || 10896 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end); 10897 10898 return (start >= dev->l2ad_start && end <= dev->l2ad_end && 10899 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) && 10900 (!evicted || dev->l2ad_first)); 10901 } 10902 10903 /* 10904 * Inserts ARC buffer header `hdr' into the current L2ARC log block on 10905 * the device. The buffer being inserted must be present in L2ARC. 10906 * Returns B_TRUE if the L2ARC log block is full and needs to be committed 10907 * to L2ARC, or B_FALSE if it still has room for more ARC buffers. 10908 */ 10909 static boolean_t 10910 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr) 10911 { 10912 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10913 l2arc_log_ent_phys_t *le; 10914 10915 if (dev->l2ad_log_entries == 0) 10916 return (B_FALSE); 10917 10918 int index = dev->l2ad_log_ent_idx++; 10919 10920 ASSERT3S(index, <, dev->l2ad_log_entries); 10921 ASSERT(HDR_HAS_L2HDR(hdr)); 10922 10923 le = &lb->lb_entries[index]; 10924 bzero(le, sizeof (*le)); 10925 le->le_dva = hdr->b_dva; 10926 le->le_birth = hdr->b_birth; 10927 le->le_daddr = hdr->b_l2hdr.b_daddr; 10928 if (index == 0) 10929 dev->l2ad_log_blk_payload_start = le->le_daddr; 10930 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr)); 10931 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr)); 10932 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr)); 10933 le->le_complevel = hdr->b_complevel; 10934 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type); 10935 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr))); 10936 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr))); 10937 L2BLK_SET_STATE((le)->le_prop, hdr->b_l1hdr.b_state->arcs_state); 10938 10939 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev, 10940 HDR_GET_PSIZE(hdr)); 10941 10942 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries); 10943 } 10944 10945 /* 10946 * Checks whether a given L2ARC device address sits in a time-sequential 10947 * range. The trick here is that the L2ARC is a rotary buffer, so we can't 10948 * just do a range comparison, we need to handle the situation in which the 10949 * range wraps around the end of the L2ARC device. Arguments: 10950 * bottom -- Lower end of the range to check (written to earlier). 10951 * top -- Upper end of the range to check (written to later). 10952 * check -- The address for which we want to determine if it sits in 10953 * between the top and bottom. 10954 * 10955 * The 3-way conditional below represents the following cases: 10956 * 10957 * bottom < top : Sequentially ordered case: 10958 * <check>--------+-------------------+ 10959 * | (overlap here?) | 10960 * L2ARC dev V V 10961 * |---------------<bottom>============<top>--------------| 10962 * 10963 * bottom > top: Looped-around case: 10964 * <check>--------+------------------+ 10965 * | (overlap here?) | 10966 * L2ARC dev V V 10967 * |===============<top>---------------<bottom>===========| 10968 * ^ ^ 10969 * | (or here?) | 10970 * +---------------+---------<check> 10971 * 10972 * top == bottom : Just a single address comparison. 10973 */ 10974 boolean_t 10975 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check) 10976 { 10977 if (bottom < top) 10978 return (bottom <= check && check <= top); 10979 else if (bottom > top) 10980 return (check <= top || bottom <= check); 10981 else 10982 return (check == top); 10983 } 10984 10985 EXPORT_SYMBOL(arc_buf_size); 10986 EXPORT_SYMBOL(arc_write); 10987 EXPORT_SYMBOL(arc_read); 10988 EXPORT_SYMBOL(arc_buf_info); 10989 EXPORT_SYMBOL(arc_getbuf_func); 10990 EXPORT_SYMBOL(arc_add_prune_callback); 10991 EXPORT_SYMBOL(arc_remove_prune_callback); 10992 10993 /* BEGIN CSTYLED */ 10994 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_min, 10995 param_get_long, ZMOD_RW, "Min arc size"); 10996 10997 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_max, 10998 param_get_long, ZMOD_RW, "Max arc size"); 10999 11000 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit, param_set_arc_long, 11001 param_get_long, ZMOD_RW, "Metadata limit for arc size"); 11002 11003 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit_percent, 11004 param_set_arc_long, param_get_long, ZMOD_RW, 11005 "Percent of arc size for arc meta limit"); 11006 11007 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_min, param_set_arc_long, 11008 param_get_long, ZMOD_RW, "Min arc metadata"); 11009 11010 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_prune, INT, ZMOD_RW, 11011 "Meta objects to scan for prune"); 11012 11013 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_adjust_restarts, INT, ZMOD_RW, 11014 "Limit number of restarts in arc_evict_meta"); 11015 11016 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_strategy, INT, ZMOD_RW, 11017 "Meta reclaim strategy"); 11018 11019 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int, 11020 param_get_int, ZMOD_RW, "Seconds before growing arc size"); 11021 11022 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, p_dampener_disable, INT, ZMOD_RW, 11023 "Disable arc_p adapt dampener"); 11024 11025 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int, 11026 param_get_int, ZMOD_RW, "log2(fraction of arc to reclaim)"); 11027 11028 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW, 11029 "Percent of pagecache to reclaim arc to"); 11030 11031 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, p_min_shift, param_set_arc_int, 11032 param_get_int, ZMOD_RW, "arc_c shift to calc min/max arc_p"); 11033 11034 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, INT, ZMOD_RD, 11035 "Target average block size"); 11036 11037 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW, 11038 "Disable compressed arc buffers"); 11039 11040 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int, 11041 param_get_int, ZMOD_RW, "Min life of prefetch block in ms"); 11042 11043 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms, 11044 param_set_arc_int, param_get_int, ZMOD_RW, 11045 "Min life of prescient prefetched block in ms"); 11046 11047 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, ULONG, ZMOD_RW, 11048 "Max write bytes per interval"); 11049 11050 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, ULONG, ZMOD_RW, 11051 "Extra write bytes during device warmup"); 11052 11053 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, ULONG, ZMOD_RW, 11054 "Number of max device writes to precache"); 11055 11056 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, ULONG, ZMOD_RW, 11057 "Compressed l2arc_headroom multiplier"); 11058 11059 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, ULONG, ZMOD_RW, 11060 "TRIM ahead L2ARC write size multiplier"); 11061 11062 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, ULONG, ZMOD_RW, 11063 "Seconds between L2ARC writing"); 11064 11065 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, ULONG, ZMOD_RW, 11066 "Min feed interval in milliseconds"); 11067 11068 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW, 11069 "Skip caching prefetched buffers"); 11070 11071 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW, 11072 "Turbo L2ARC warmup"); 11073 11074 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW, 11075 "No reads during writes"); 11076 11077 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, INT, ZMOD_RW, 11078 "Percent of ARC size allowed for L2ARC-only headers"); 11079 11080 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW, 11081 "Rebuild the L2ARC when importing a pool"); 11082 11083 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, ULONG, ZMOD_RW, 11084 "Min size in bytes to write rebuild log blocks in L2ARC"); 11085 11086 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW, 11087 "Cache only MFU data from ARC into L2ARC"); 11088 11089 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int, 11090 param_get_int, ZMOD_RW, "System free memory I/O throttle in bytes"); 11091 11092 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_long, 11093 param_get_long, ZMOD_RW, "System free memory target size in bytes"); 11094 11095 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_long, 11096 param_get_long, ZMOD_RW, "Minimum bytes of dnodes in arc"); 11097 11098 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent, 11099 param_set_arc_long, param_get_long, ZMOD_RW, 11100 "Percent of ARC meta buffers for dnodes"); 11101 11102 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, ULONG, ZMOD_RW, 11103 "Percentage of excess dnodes to try to unpin"); 11104 11105 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, INT, ZMOD_RW, 11106 "When full, ARC allocation waits for eviction of this % of alloc size"); 11107 11108 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, INT, ZMOD_RW, 11109 "The number of headers to evict per sublist before moving to the next"); 11110 /* END CSTYLED */ 11111