1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2018, Joyent, Inc. 24 * Copyright (c) 2011, 2020, Delphix. All rights reserved. 25 * Copyright (c) 2014, Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 28 * Copyright (c) 2020, George Amanakis. All rights reserved. 29 * Copyright (c) 2019, Klara Inc. 30 * Copyright (c) 2019, Allan Jude 31 * Copyright (c) 2020, The FreeBSD Foundation [1] 32 * 33 * [1] Portions of this software were developed by Allan Jude 34 * under sponsorship from the FreeBSD Foundation. 35 */ 36 37 /* 38 * DVA-based Adjustable Replacement Cache 39 * 40 * While much of the theory of operation used here is 41 * based on the self-tuning, low overhead replacement cache 42 * presented by Megiddo and Modha at FAST 2003, there are some 43 * significant differences: 44 * 45 * 1. The Megiddo and Modha model assumes any page is evictable. 46 * Pages in its cache cannot be "locked" into memory. This makes 47 * the eviction algorithm simple: evict the last page in the list. 48 * This also make the performance characteristics easy to reason 49 * about. Our cache is not so simple. At any given moment, some 50 * subset of the blocks in the cache are un-evictable because we 51 * have handed out a reference to them. Blocks are only evictable 52 * when there are no external references active. This makes 53 * eviction far more problematic: we choose to evict the evictable 54 * blocks that are the "lowest" in the list. 55 * 56 * There are times when it is not possible to evict the requested 57 * space. In these circumstances we are unable to adjust the cache 58 * size. To prevent the cache growing unbounded at these times we 59 * implement a "cache throttle" that slows the flow of new data 60 * into the cache until we can make space available. 61 * 62 * 2. The Megiddo and Modha model assumes a fixed cache size. 63 * Pages are evicted when the cache is full and there is a cache 64 * miss. Our model has a variable sized cache. It grows with 65 * high use, but also tries to react to memory pressure from the 66 * operating system: decreasing its size when system memory is 67 * tight. 68 * 69 * 3. The Megiddo and Modha model assumes a fixed page size. All 70 * elements of the cache are therefore exactly the same size. So 71 * when adjusting the cache size following a cache miss, its simply 72 * a matter of choosing a single page to evict. In our model, we 73 * have variable sized cache blocks (ranging from 512 bytes to 74 * 128K bytes). We therefore choose a set of blocks to evict to make 75 * space for a cache miss that approximates as closely as possible 76 * the space used by the new block. 77 * 78 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 79 * by N. Megiddo & D. Modha, FAST 2003 80 */ 81 82 /* 83 * The locking model: 84 * 85 * A new reference to a cache buffer can be obtained in two 86 * ways: 1) via a hash table lookup using the DVA as a key, 87 * or 2) via one of the ARC lists. The arc_read() interface 88 * uses method 1, while the internal ARC algorithms for 89 * adjusting the cache use method 2. We therefore provide two 90 * types of locks: 1) the hash table lock array, and 2) the 91 * ARC list locks. 92 * 93 * Buffers do not have their own mutexes, rather they rely on the 94 * hash table mutexes for the bulk of their protection (i.e. most 95 * fields in the arc_buf_hdr_t are protected by these mutexes). 96 * 97 * buf_hash_find() returns the appropriate mutex (held) when it 98 * locates the requested buffer in the hash table. It returns 99 * NULL for the mutex if the buffer was not in the table. 100 * 101 * buf_hash_remove() expects the appropriate hash mutex to be 102 * already held before it is invoked. 103 * 104 * Each ARC state also has a mutex which is used to protect the 105 * buffer list associated with the state. When attempting to 106 * obtain a hash table lock while holding an ARC list lock you 107 * must use: mutex_tryenter() to avoid deadlock. Also note that 108 * the active state mutex must be held before the ghost state mutex. 109 * 110 * It as also possible to register a callback which is run when the 111 * arc_meta_limit is reached and no buffers can be safely evicted. In 112 * this case the arc user should drop a reference on some arc buffers so 113 * they can be reclaimed and the arc_meta_limit honored. For example, 114 * when using the ZPL each dentry holds a references on a znode. These 115 * dentries must be pruned before the arc buffer holding the znode can 116 * be safely evicted. 117 * 118 * Note that the majority of the performance stats are manipulated 119 * with atomic operations. 120 * 121 * The L2ARC uses the l2ad_mtx on each vdev for the following: 122 * 123 * - L2ARC buflist creation 124 * - L2ARC buflist eviction 125 * - L2ARC write completion, which walks L2ARC buflists 126 * - ARC header destruction, as it removes from L2ARC buflists 127 * - ARC header release, as it removes from L2ARC buflists 128 */ 129 130 /* 131 * ARC operation: 132 * 133 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. 134 * This structure can point either to a block that is still in the cache or to 135 * one that is only accessible in an L2 ARC device, or it can provide 136 * information about a block that was recently evicted. If a block is 137 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough 138 * information to retrieve it from the L2ARC device. This information is 139 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block 140 * that is in this state cannot access the data directly. 141 * 142 * Blocks that are actively being referenced or have not been evicted 143 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within 144 * the arc_buf_hdr_t that will point to the data block in memory. A block can 145 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC 146 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and 147 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd). 148 * 149 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the 150 * ability to store the physical data (b_pabd) associated with the DVA of the 151 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block, 152 * it will match its on-disk compression characteristics. This behavior can be 153 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the 154 * compressed ARC functionality is disabled, the b_pabd will point to an 155 * uncompressed version of the on-disk data. 156 * 157 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each 158 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it. 159 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC 160 * consumer. The ARC will provide references to this data and will keep it 161 * cached until it is no longer in use. The ARC caches only the L1ARC's physical 162 * data block and will evict any arc_buf_t that is no longer referenced. The 163 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the 164 * "overhead_size" kstat. 165 * 166 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or 167 * compressed form. The typical case is that consumers will want uncompressed 168 * data, and when that happens a new data buffer is allocated where the data is 169 * decompressed for them to use. Currently the only consumer who wants 170 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it 171 * exists on disk. When this happens, the arc_buf_t's data buffer is shared 172 * with the arc_buf_hdr_t. 173 * 174 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The 175 * first one is owned by a compressed send consumer (and therefore references 176 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be 177 * used by any other consumer (and has its own uncompressed copy of the data 178 * buffer). 179 * 180 * arc_buf_hdr_t 181 * +-----------+ 182 * | fields | 183 * | common to | 184 * | L1- and | 185 * | L2ARC | 186 * +-----------+ 187 * | l2arc_buf_hdr_t 188 * | | 189 * +-----------+ 190 * | l1arc_buf_hdr_t 191 * | | arc_buf_t 192 * | b_buf +------------>+-----------+ arc_buf_t 193 * | b_pabd +-+ |b_next +---->+-----------+ 194 * +-----------+ | |-----------| |b_next +-->NULL 195 * | |b_comp = T | +-----------+ 196 * | |b_data +-+ |b_comp = F | 197 * | +-----------+ | |b_data +-+ 198 * +->+------+ | +-----------+ | 199 * compressed | | | | 200 * data | |<--------------+ | uncompressed 201 * +------+ compressed, | data 202 * shared +-->+------+ 203 * data | | 204 * | | 205 * +------+ 206 * 207 * When a consumer reads a block, the ARC must first look to see if the 208 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new 209 * arc_buf_t and either copies uncompressed data into a new data buffer from an 210 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a 211 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the 212 * hdr is compressed and the desired compression characteristics of the 213 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the 214 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be 215 * the last buffer in the hdr's b_buf list, however a shared compressed buf can 216 * be anywhere in the hdr's list. 217 * 218 * The diagram below shows an example of an uncompressed ARC hdr that is 219 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is 220 * the last element in the buf list): 221 * 222 * arc_buf_hdr_t 223 * +-----------+ 224 * | | 225 * | | 226 * | | 227 * +-----------+ 228 * l2arc_buf_hdr_t| | 229 * | | 230 * +-----------+ 231 * l1arc_buf_hdr_t| | 232 * | | arc_buf_t (shared) 233 * | b_buf +------------>+---------+ arc_buf_t 234 * | | |b_next +---->+---------+ 235 * | b_pabd +-+ |---------| |b_next +-->NULL 236 * +-----------+ | | | +---------+ 237 * | |b_data +-+ | | 238 * | +---------+ | |b_data +-+ 239 * +->+------+ | +---------+ | 240 * | | | | 241 * uncompressed | | | | 242 * data +------+ | | 243 * ^ +->+------+ | 244 * | uncompressed | | | 245 * | data | | | 246 * | +------+ | 247 * +---------------------------------+ 248 * 249 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd 250 * since the physical block is about to be rewritten. The new data contents 251 * will be contained in the arc_buf_t. As the I/O pipeline performs the write, 252 * it may compress the data before writing it to disk. The ARC will be called 253 * with the transformed data and will bcopy the transformed on-disk block into 254 * a newly allocated b_pabd. Writes are always done into buffers which have 255 * either been loaned (and hence are new and don't have other readers) or 256 * buffers which have been released (and hence have their own hdr, if there 257 * were originally other readers of the buf's original hdr). This ensures that 258 * the ARC only needs to update a single buf and its hdr after a write occurs. 259 * 260 * When the L2ARC is in use, it will also take advantage of the b_pabd. The 261 * L2ARC will always write the contents of b_pabd to the L2ARC. This means 262 * that when compressed ARC is enabled that the L2ARC blocks are identical 263 * to the on-disk block in the main data pool. This provides a significant 264 * advantage since the ARC can leverage the bp's checksum when reading from the 265 * L2ARC to determine if the contents are valid. However, if the compressed 266 * ARC is disabled, then the L2ARC's block must be transformed to look 267 * like the physical block in the main data pool before comparing the 268 * checksum and determining its validity. 269 * 270 * The L1ARC has a slightly different system for storing encrypted data. 271 * Raw (encrypted + possibly compressed) data has a few subtle differences from 272 * data that is just compressed. The biggest difference is that it is not 273 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded. 274 * The other difference is that encryption cannot be treated as a suggestion. 275 * If a caller would prefer compressed data, but they actually wind up with 276 * uncompressed data the worst thing that could happen is there might be a 277 * performance hit. If the caller requests encrypted data, however, we must be 278 * sure they actually get it or else secret information could be leaked. Raw 279 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore, 280 * may have both an encrypted version and a decrypted version of its data at 281 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is 282 * copied out of this header. To avoid complications with b_pabd, raw buffers 283 * cannot be shared. 284 */ 285 286 #include <sys/spa.h> 287 #include <sys/zio.h> 288 #include <sys/spa_impl.h> 289 #include <sys/zio_compress.h> 290 #include <sys/zio_checksum.h> 291 #include <sys/zfs_context.h> 292 #include <sys/arc.h> 293 #include <sys/zfs_refcount.h> 294 #include <sys/vdev.h> 295 #include <sys/vdev_impl.h> 296 #include <sys/dsl_pool.h> 297 #include <sys/zio_checksum.h> 298 #include <sys/multilist.h> 299 #include <sys/abd.h> 300 #include <sys/zil.h> 301 #include <sys/fm/fs/zfs.h> 302 #include <sys/callb.h> 303 #include <sys/kstat.h> 304 #include <sys/zthr.h> 305 #include <zfs_fletcher.h> 306 #include <sys/arc_impl.h> 307 #include <sys/trace_zfs.h> 308 #include <sys/aggsum.h> 309 #include <cityhash.h> 310 #include <sys/vdev_trim.h> 311 #include <sys/zfs_racct.h> 312 #include <sys/zstd/zstd.h> 313 314 #ifndef _KERNEL 315 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 316 boolean_t arc_watch = B_FALSE; 317 #endif 318 319 /* 320 * This thread's job is to keep enough free memory in the system, by 321 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves 322 * arc_available_memory(). 323 */ 324 static zthr_t *arc_reap_zthr; 325 326 /* 327 * This thread's job is to keep arc_size under arc_c, by calling 328 * arc_evict(), which improves arc_is_overflowing(). 329 */ 330 static zthr_t *arc_evict_zthr; 331 332 static kmutex_t arc_evict_lock; 333 static boolean_t arc_evict_needed = B_FALSE; 334 335 /* 336 * Count of bytes evicted since boot. 337 */ 338 static uint64_t arc_evict_count; 339 340 /* 341 * List of arc_evict_waiter_t's, representing threads waiting for the 342 * arc_evict_count to reach specific values. 343 */ 344 static list_t arc_evict_waiters; 345 346 /* 347 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of 348 * the requested amount of data to be evicted. For example, by default for 349 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation. 350 * Since this is above 100%, it ensures that progress is made towards getting 351 * arc_size under arc_c. Since this is finite, it ensures that allocations 352 * can still happen, even during the potentially long time that arc_size is 353 * more than arc_c. 354 */ 355 int zfs_arc_eviction_pct = 200; 356 357 /* 358 * The number of headers to evict in arc_evict_state_impl() before 359 * dropping the sublist lock and evicting from another sublist. A lower 360 * value means we're more likely to evict the "correct" header (i.e. the 361 * oldest header in the arc state), but comes with higher overhead 362 * (i.e. more invocations of arc_evict_state_impl()). 363 */ 364 int zfs_arc_evict_batch_limit = 10; 365 366 /* number of seconds before growing cache again */ 367 int arc_grow_retry = 5; 368 369 /* 370 * Minimum time between calls to arc_kmem_reap_soon(). 371 */ 372 int arc_kmem_cache_reap_retry_ms = 1000; 373 374 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */ 375 int zfs_arc_overflow_shift = 8; 376 377 /* shift of arc_c for calculating both min and max arc_p */ 378 int arc_p_min_shift = 4; 379 380 /* log2(fraction of arc to reclaim) */ 381 int arc_shrink_shift = 7; 382 383 /* percent of pagecache to reclaim arc to */ 384 #ifdef _KERNEL 385 uint_t zfs_arc_pc_percent = 0; 386 #endif 387 388 /* 389 * log2(fraction of ARC which must be free to allow growing). 390 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 391 * when reading a new block into the ARC, we will evict an equal-sized block 392 * from the ARC. 393 * 394 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 395 * we will still not allow it to grow. 396 */ 397 int arc_no_grow_shift = 5; 398 399 400 /* 401 * minimum lifespan of a prefetch block in clock ticks 402 * (initialized in arc_init()) 403 */ 404 static int arc_min_prefetch_ms; 405 static int arc_min_prescient_prefetch_ms; 406 407 /* 408 * If this percent of memory is free, don't throttle. 409 */ 410 int arc_lotsfree_percent = 10; 411 412 /* 413 * The arc has filled available memory and has now warmed up. 414 */ 415 boolean_t arc_warm; 416 417 /* 418 * These tunables are for performance analysis. 419 */ 420 unsigned long zfs_arc_max = 0; 421 unsigned long zfs_arc_min = 0; 422 unsigned long zfs_arc_meta_limit = 0; 423 unsigned long zfs_arc_meta_min = 0; 424 unsigned long zfs_arc_dnode_limit = 0; 425 unsigned long zfs_arc_dnode_reduce_percent = 10; 426 int zfs_arc_grow_retry = 0; 427 int zfs_arc_shrink_shift = 0; 428 int zfs_arc_p_min_shift = 0; 429 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 430 431 /* 432 * ARC dirty data constraints for arc_tempreserve_space() throttle. 433 */ 434 unsigned long zfs_arc_dirty_limit_percent = 50; /* total dirty data limit */ 435 unsigned long zfs_arc_anon_limit_percent = 25; /* anon block dirty limit */ 436 unsigned long zfs_arc_pool_dirty_percent = 20; /* each pool's anon allowance */ 437 438 /* 439 * Enable or disable compressed arc buffers. 440 */ 441 int zfs_compressed_arc_enabled = B_TRUE; 442 443 /* 444 * ARC will evict meta buffers that exceed arc_meta_limit. This 445 * tunable make arc_meta_limit adjustable for different workloads. 446 */ 447 unsigned long zfs_arc_meta_limit_percent = 75; 448 449 /* 450 * Percentage that can be consumed by dnodes of ARC meta buffers. 451 */ 452 unsigned long zfs_arc_dnode_limit_percent = 10; 453 454 /* 455 * These tunables are Linux specific 456 */ 457 unsigned long zfs_arc_sys_free = 0; 458 int zfs_arc_min_prefetch_ms = 0; 459 int zfs_arc_min_prescient_prefetch_ms = 0; 460 int zfs_arc_p_dampener_disable = 1; 461 int zfs_arc_meta_prune = 10000; 462 int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED; 463 int zfs_arc_meta_adjust_restarts = 4096; 464 int zfs_arc_lotsfree_percent = 10; 465 466 /* The 6 states: */ 467 arc_state_t ARC_anon; 468 arc_state_t ARC_mru; 469 arc_state_t ARC_mru_ghost; 470 arc_state_t ARC_mfu; 471 arc_state_t ARC_mfu_ghost; 472 arc_state_t ARC_l2c_only; 473 474 arc_stats_t arc_stats = { 475 { "hits", KSTAT_DATA_UINT64 }, 476 { "misses", KSTAT_DATA_UINT64 }, 477 { "demand_data_hits", KSTAT_DATA_UINT64 }, 478 { "demand_data_misses", KSTAT_DATA_UINT64 }, 479 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 480 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 481 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 482 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 483 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 484 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 485 { "mru_hits", KSTAT_DATA_UINT64 }, 486 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 487 { "mfu_hits", KSTAT_DATA_UINT64 }, 488 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 489 { "deleted", KSTAT_DATA_UINT64 }, 490 { "mutex_miss", KSTAT_DATA_UINT64 }, 491 { "access_skip", KSTAT_DATA_UINT64 }, 492 { "evict_skip", KSTAT_DATA_UINT64 }, 493 { "evict_not_enough", KSTAT_DATA_UINT64 }, 494 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 495 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 496 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64 }, 497 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64 }, 498 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 499 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 500 { "hash_elements", KSTAT_DATA_UINT64 }, 501 { "hash_elements_max", KSTAT_DATA_UINT64 }, 502 { "hash_collisions", KSTAT_DATA_UINT64 }, 503 { "hash_chains", KSTAT_DATA_UINT64 }, 504 { "hash_chain_max", KSTAT_DATA_UINT64 }, 505 { "p", KSTAT_DATA_UINT64 }, 506 { "c", KSTAT_DATA_UINT64 }, 507 { "c_min", KSTAT_DATA_UINT64 }, 508 { "c_max", KSTAT_DATA_UINT64 }, 509 { "size", KSTAT_DATA_UINT64 }, 510 { "compressed_size", KSTAT_DATA_UINT64 }, 511 { "uncompressed_size", KSTAT_DATA_UINT64 }, 512 { "overhead_size", KSTAT_DATA_UINT64 }, 513 { "hdr_size", KSTAT_DATA_UINT64 }, 514 { "data_size", KSTAT_DATA_UINT64 }, 515 { "metadata_size", KSTAT_DATA_UINT64 }, 516 { "dbuf_size", KSTAT_DATA_UINT64 }, 517 { "dnode_size", KSTAT_DATA_UINT64 }, 518 { "bonus_size", KSTAT_DATA_UINT64 }, 519 #if defined(COMPAT_FREEBSD11) 520 { "other_size", KSTAT_DATA_UINT64 }, 521 #endif 522 { "anon_size", KSTAT_DATA_UINT64 }, 523 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 524 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 525 { "mru_size", KSTAT_DATA_UINT64 }, 526 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 527 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 528 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 529 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 530 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 531 { "mfu_size", KSTAT_DATA_UINT64 }, 532 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 533 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 534 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 535 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 536 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 537 { "l2_hits", KSTAT_DATA_UINT64 }, 538 { "l2_misses", KSTAT_DATA_UINT64 }, 539 { "l2_prefetch_asize", KSTAT_DATA_UINT64 }, 540 { "l2_mru_asize", KSTAT_DATA_UINT64 }, 541 { "l2_mfu_asize", KSTAT_DATA_UINT64 }, 542 { "l2_bufc_data_asize", KSTAT_DATA_UINT64 }, 543 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64 }, 544 { "l2_feeds", KSTAT_DATA_UINT64 }, 545 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 546 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 547 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 548 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 549 { "l2_writes_done", KSTAT_DATA_UINT64 }, 550 { "l2_writes_error", KSTAT_DATA_UINT64 }, 551 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 552 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 553 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 554 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 555 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 556 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 557 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 558 { "l2_io_error", KSTAT_DATA_UINT64 }, 559 { "l2_size", KSTAT_DATA_UINT64 }, 560 { "l2_asize", KSTAT_DATA_UINT64 }, 561 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 562 { "l2_log_blk_writes", KSTAT_DATA_UINT64 }, 563 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 }, 564 { "l2_log_blk_asize", KSTAT_DATA_UINT64 }, 565 { "l2_log_blk_count", KSTAT_DATA_UINT64 }, 566 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 }, 567 { "l2_rebuild_success", KSTAT_DATA_UINT64 }, 568 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 }, 569 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 }, 570 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 }, 571 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 }, 572 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 }, 573 { "l2_rebuild_size", KSTAT_DATA_UINT64 }, 574 { "l2_rebuild_asize", KSTAT_DATA_UINT64 }, 575 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 }, 576 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 }, 577 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 }, 578 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 579 { "memory_direct_count", KSTAT_DATA_UINT64 }, 580 { "memory_indirect_count", KSTAT_DATA_UINT64 }, 581 { "memory_all_bytes", KSTAT_DATA_UINT64 }, 582 { "memory_free_bytes", KSTAT_DATA_UINT64 }, 583 { "memory_available_bytes", KSTAT_DATA_INT64 }, 584 { "arc_no_grow", KSTAT_DATA_UINT64 }, 585 { "arc_tempreserve", KSTAT_DATA_UINT64 }, 586 { "arc_loaned_bytes", KSTAT_DATA_UINT64 }, 587 { "arc_prune", KSTAT_DATA_UINT64 }, 588 { "arc_meta_used", KSTAT_DATA_UINT64 }, 589 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 590 { "arc_dnode_limit", KSTAT_DATA_UINT64 }, 591 { "arc_meta_max", KSTAT_DATA_UINT64 }, 592 { "arc_meta_min", KSTAT_DATA_UINT64 }, 593 { "async_upgrade_sync", KSTAT_DATA_UINT64 }, 594 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 }, 595 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 }, 596 { "arc_need_free", KSTAT_DATA_UINT64 }, 597 { "arc_sys_free", KSTAT_DATA_UINT64 }, 598 { "arc_raw_size", KSTAT_DATA_UINT64 }, 599 { "cached_only_in_progress", KSTAT_DATA_UINT64 }, 600 { "abd_chunk_waste_size", KSTAT_DATA_UINT64 }, 601 }; 602 603 #define ARCSTAT_MAX(stat, val) { \ 604 uint64_t m; \ 605 while ((val) > (m = arc_stats.stat.value.ui64) && \ 606 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 607 continue; \ 608 } 609 610 #define ARCSTAT_MAXSTAT(stat) \ 611 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 612 613 /* 614 * We define a macro to allow ARC hits/misses to be easily broken down by 615 * two separate conditions, giving a total of four different subtypes for 616 * each of hits and misses (so eight statistics total). 617 */ 618 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 619 if (cond1) { \ 620 if (cond2) { \ 621 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 622 } else { \ 623 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 624 } \ 625 } else { \ 626 if (cond2) { \ 627 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 628 } else { \ 629 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 630 } \ 631 } 632 633 /* 634 * This macro allows us to use kstats as floating averages. Each time we 635 * update this kstat, we first factor it and the update value by 636 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall 637 * average. This macro assumes that integer loads and stores are atomic, but 638 * is not safe for multiple writers updating the kstat in parallel (only the 639 * last writer's update will remain). 640 */ 641 #define ARCSTAT_F_AVG_FACTOR 3 642 #define ARCSTAT_F_AVG(stat, value) \ 643 do { \ 644 uint64_t x = ARCSTAT(stat); \ 645 x = x - x / ARCSTAT_F_AVG_FACTOR + \ 646 (value) / ARCSTAT_F_AVG_FACTOR; \ 647 ARCSTAT(stat) = x; \ 648 _NOTE(CONSTCOND) \ 649 } while (0) 650 651 kstat_t *arc_ksp; 652 static arc_state_t *arc_anon; 653 static arc_state_t *arc_mru_ghost; 654 static arc_state_t *arc_mfu_ghost; 655 static arc_state_t *arc_l2c_only; 656 657 arc_state_t *arc_mru; 658 arc_state_t *arc_mfu; 659 660 /* 661 * There are several ARC variables that are critical to export as kstats -- 662 * but we don't want to have to grovel around in the kstat whenever we wish to 663 * manipulate them. For these variables, we therefore define them to be in 664 * terms of the statistic variable. This assures that we are not introducing 665 * the possibility of inconsistency by having shadow copies of the variables, 666 * while still allowing the code to be readable. 667 */ 668 #define arc_tempreserve ARCSTAT(arcstat_tempreserve) 669 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes) 670 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 671 /* max size for dnodes */ 672 #define arc_dnode_size_limit ARCSTAT(arcstat_dnode_limit) 673 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */ 674 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */ 675 #define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */ 676 677 /* size of all b_rabd's in entire arc */ 678 #define arc_raw_size ARCSTAT(arcstat_raw_size) 679 /* compressed size of entire arc */ 680 #define arc_compressed_size ARCSTAT(arcstat_compressed_size) 681 /* uncompressed size of entire arc */ 682 #define arc_uncompressed_size ARCSTAT(arcstat_uncompressed_size) 683 /* number of bytes in the arc from arc_buf_t's */ 684 #define arc_overhead_size ARCSTAT(arcstat_overhead_size) 685 686 /* 687 * There are also some ARC variables that we want to export, but that are 688 * updated so often that having the canonical representation be the statistic 689 * variable causes a performance bottleneck. We want to use aggsum_t's for these 690 * instead, but still be able to export the kstat in the same way as before. 691 * The solution is to always use the aggsum version, except in the kstat update 692 * callback. 693 */ 694 aggsum_t arc_size; 695 aggsum_t arc_meta_used; 696 aggsum_t astat_data_size; 697 aggsum_t astat_metadata_size; 698 aggsum_t astat_dbuf_size; 699 aggsum_t astat_dnode_size; 700 aggsum_t astat_bonus_size; 701 aggsum_t astat_hdr_size; 702 aggsum_t astat_l2_hdr_size; 703 aggsum_t astat_abd_chunk_waste_size; 704 705 hrtime_t arc_growtime; 706 list_t arc_prune_list; 707 kmutex_t arc_prune_mtx; 708 taskq_t *arc_prune_taskq; 709 710 #define GHOST_STATE(state) \ 711 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 712 (state) == arc_l2c_only) 713 714 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 715 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 716 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 717 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 718 #define HDR_PRESCIENT_PREFETCH(hdr) \ 719 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) 720 #define HDR_COMPRESSION_ENABLED(hdr) \ 721 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) 722 723 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 724 #define HDR_L2_READING(hdr) \ 725 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 726 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 727 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 728 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 729 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 730 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED) 731 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH) 732 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) 733 734 #define HDR_ISTYPE_METADATA(hdr) \ 735 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 736 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 737 738 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 739 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 740 #define HDR_HAS_RABD(hdr) \ 741 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \ 742 (hdr)->b_crypt_hdr.b_rabd != NULL) 743 #define HDR_ENCRYPTED(hdr) \ 744 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 745 #define HDR_AUTHENTICATED(hdr) \ 746 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 747 748 /* For storing compression mode in b_flags */ 749 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) 750 751 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ 752 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) 753 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ 754 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); 755 756 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) 757 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED) 758 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED) 759 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED) 760 761 /* 762 * Other sizes 763 */ 764 765 #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 766 #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr)) 767 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 768 769 /* 770 * Hash table routines 771 */ 772 773 #define HT_LOCK_ALIGN 64 774 #define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN))) 775 776 struct ht_lock { 777 kmutex_t ht_lock; 778 #ifdef _KERNEL 779 unsigned char pad[HT_LOCK_PAD]; 780 #endif 781 }; 782 783 #define BUF_LOCKS 8192 784 typedef struct buf_hash_table { 785 uint64_t ht_mask; 786 arc_buf_hdr_t **ht_table; 787 struct ht_lock ht_locks[BUF_LOCKS]; 788 } buf_hash_table_t; 789 790 static buf_hash_table_t buf_hash_table; 791 792 #define BUF_HASH_INDEX(spa, dva, birth) \ 793 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 794 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 795 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 796 #define HDR_LOCK(hdr) \ 797 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 798 799 uint64_t zfs_crc64_table[256]; 800 801 /* 802 * Level 2 ARC 803 */ 804 805 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 806 #define L2ARC_HEADROOM 2 /* num of writes */ 807 808 /* 809 * If we discover during ARC scan any buffers to be compressed, we boost 810 * our headroom for the next scanning cycle by this percentage multiple. 811 */ 812 #define L2ARC_HEADROOM_BOOST 200 813 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 814 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 815 816 /* 817 * We can feed L2ARC from two states of ARC buffers, mru and mfu, 818 * and each of the state has two types: data and metadata. 819 */ 820 #define L2ARC_FEED_TYPES 4 821 822 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 823 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 824 825 /* L2ARC Performance Tunables */ 826 unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */ 827 unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */ 828 unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */ 829 unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 830 unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 831 unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */ 832 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 833 int l2arc_feed_again = B_TRUE; /* turbo warmup */ 834 int l2arc_norw = B_FALSE; /* no reads during writes */ 835 int l2arc_meta_percent = 33; /* limit on headers size */ 836 837 /* 838 * L2ARC Internals 839 */ 840 static list_t L2ARC_dev_list; /* device list */ 841 static list_t *l2arc_dev_list; /* device list pointer */ 842 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 843 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 844 static list_t L2ARC_free_on_write; /* free after write buf list */ 845 static list_t *l2arc_free_on_write; /* free after write list ptr */ 846 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 847 static uint64_t l2arc_ndev; /* number of devices */ 848 849 typedef struct l2arc_read_callback { 850 arc_buf_hdr_t *l2rcb_hdr; /* read header */ 851 blkptr_t l2rcb_bp; /* original blkptr */ 852 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 853 int l2rcb_flags; /* original flags */ 854 abd_t *l2rcb_abd; /* temporary buffer */ 855 } l2arc_read_callback_t; 856 857 typedef struct l2arc_data_free { 858 /* protected by l2arc_free_on_write_mtx */ 859 abd_t *l2df_abd; 860 size_t l2df_size; 861 arc_buf_contents_t l2df_type; 862 list_node_t l2df_list_node; 863 } l2arc_data_free_t; 864 865 typedef enum arc_fill_flags { 866 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */ 867 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */ 868 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */ 869 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */ 870 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */ 871 } arc_fill_flags_t; 872 873 static kmutex_t l2arc_feed_thr_lock; 874 static kcondvar_t l2arc_feed_thr_cv; 875 static uint8_t l2arc_thread_exit; 876 877 static kmutex_t l2arc_rebuild_thr_lock; 878 static kcondvar_t l2arc_rebuild_thr_cv; 879 880 enum arc_hdr_alloc_flags { 881 ARC_HDR_ALLOC_RDATA = 0x1, 882 ARC_HDR_DO_ADAPT = 0x2, 883 }; 884 885 886 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *, boolean_t); 887 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *); 888 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *, boolean_t); 889 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *); 890 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *); 891 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag); 892 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t); 893 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int); 894 static void arc_access(arc_buf_hdr_t *, kmutex_t *); 895 static void arc_buf_watch(arc_buf_t *); 896 897 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 898 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 899 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 900 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 901 902 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 903 static void l2arc_read_done(zio_t *); 904 static void l2arc_do_free_on_write(void); 905 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 906 boolean_t state_only); 907 908 #define l2arc_hdr_arcstats_increment(hdr) \ 909 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE) 910 #define l2arc_hdr_arcstats_decrement(hdr) \ 911 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE) 912 #define l2arc_hdr_arcstats_increment_state(hdr) \ 913 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE) 914 #define l2arc_hdr_arcstats_decrement_state(hdr) \ 915 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE) 916 917 /* 918 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU 919 * metadata and data are cached from ARC into L2ARC. 920 */ 921 int l2arc_mfuonly = 0; 922 923 /* 924 * L2ARC TRIM 925 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of 926 * the current write size (l2arc_write_max) we should TRIM if we 927 * have filled the device. It is defined as a percentage of the 928 * write size. If set to 100 we trim twice the space required to 929 * accommodate upcoming writes. A minimum of 64MB will be trimmed. 930 * It also enables TRIM of the whole L2ARC device upon creation or 931 * addition to an existing pool or if the header of the device is 932 * invalid upon importing a pool or onlining a cache device. The 933 * default is 0, which disables TRIM on L2ARC altogether as it can 934 * put significant stress on the underlying storage devices. This 935 * will vary depending of how well the specific device handles 936 * these commands. 937 */ 938 unsigned long l2arc_trim_ahead = 0; 939 940 /* 941 * Performance tuning of L2ARC persistence: 942 * 943 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding 944 * an L2ARC device (either at pool import or later) will attempt 945 * to rebuild L2ARC buffer contents. 946 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls 947 * whether log blocks are written to the L2ARC device. If the L2ARC 948 * device is less than 1GB, the amount of data l2arc_evict() 949 * evicts is significant compared to the amount of restored L2ARC 950 * data. In this case do not write log blocks in L2ARC in order 951 * not to waste space. 952 */ 953 int l2arc_rebuild_enabled = B_TRUE; 954 unsigned long l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024; 955 956 /* L2ARC persistence rebuild control routines. */ 957 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen); 958 static void l2arc_dev_rebuild_thread(void *arg); 959 static int l2arc_rebuild(l2arc_dev_t *dev); 960 961 /* L2ARC persistence read I/O routines. */ 962 static int l2arc_dev_hdr_read(l2arc_dev_t *dev); 963 static int l2arc_log_blk_read(l2arc_dev_t *dev, 964 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp, 965 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 966 zio_t *this_io, zio_t **next_io); 967 static zio_t *l2arc_log_blk_fetch(vdev_t *vd, 968 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb); 969 static void l2arc_log_blk_fetch_abort(zio_t *zio); 970 971 /* L2ARC persistence block restoration routines. */ 972 static void l2arc_log_blk_restore(l2arc_dev_t *dev, 973 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize); 974 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, 975 l2arc_dev_t *dev); 976 977 /* L2ARC persistence write I/O routines. */ 978 static void l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, 979 l2arc_write_callback_t *cb); 980 981 /* L2ARC persistence auxiliary routines. */ 982 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev, 983 const l2arc_log_blkptr_t *lbp); 984 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev, 985 const arc_buf_hdr_t *ab); 986 boolean_t l2arc_range_check_overlap(uint64_t bottom, 987 uint64_t top, uint64_t check); 988 static void l2arc_blk_fetch_done(zio_t *zio); 989 static inline uint64_t 990 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev); 991 992 /* 993 * We use Cityhash for this. It's fast, and has good hash properties without 994 * requiring any large static buffers. 995 */ 996 static uint64_t 997 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 998 { 999 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth)); 1000 } 1001 1002 #define HDR_EMPTY(hdr) \ 1003 ((hdr)->b_dva.dva_word[0] == 0 && \ 1004 (hdr)->b_dva.dva_word[1] == 0) 1005 1006 #define HDR_EMPTY_OR_LOCKED(hdr) \ 1007 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr))) 1008 1009 #define HDR_EQUAL(spa, dva, birth, hdr) \ 1010 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 1011 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 1012 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) 1013 1014 static void 1015 buf_discard_identity(arc_buf_hdr_t *hdr) 1016 { 1017 hdr->b_dva.dva_word[0] = 0; 1018 hdr->b_dva.dva_word[1] = 0; 1019 hdr->b_birth = 0; 1020 } 1021 1022 static arc_buf_hdr_t * 1023 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 1024 { 1025 const dva_t *dva = BP_IDENTITY(bp); 1026 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 1027 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 1028 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1029 arc_buf_hdr_t *hdr; 1030 1031 mutex_enter(hash_lock); 1032 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 1033 hdr = hdr->b_hash_next) { 1034 if (HDR_EQUAL(spa, dva, birth, hdr)) { 1035 *lockp = hash_lock; 1036 return (hdr); 1037 } 1038 } 1039 mutex_exit(hash_lock); 1040 *lockp = NULL; 1041 return (NULL); 1042 } 1043 1044 /* 1045 * Insert an entry into the hash table. If there is already an element 1046 * equal to elem in the hash table, then the already existing element 1047 * will be returned and the new element will not be inserted. 1048 * Otherwise returns NULL. 1049 * If lockp == NULL, the caller is assumed to already hold the hash lock. 1050 */ 1051 static arc_buf_hdr_t * 1052 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 1053 { 1054 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1055 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1056 arc_buf_hdr_t *fhdr; 1057 uint32_t i; 1058 1059 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 1060 ASSERT(hdr->b_birth != 0); 1061 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1062 1063 if (lockp != NULL) { 1064 *lockp = hash_lock; 1065 mutex_enter(hash_lock); 1066 } else { 1067 ASSERT(MUTEX_HELD(hash_lock)); 1068 } 1069 1070 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 1071 fhdr = fhdr->b_hash_next, i++) { 1072 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 1073 return (fhdr); 1074 } 1075 1076 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 1077 buf_hash_table.ht_table[idx] = hdr; 1078 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1079 1080 /* collect some hash table performance data */ 1081 if (i > 0) { 1082 ARCSTAT_BUMP(arcstat_hash_collisions); 1083 if (i == 1) 1084 ARCSTAT_BUMP(arcstat_hash_chains); 1085 1086 ARCSTAT_MAX(arcstat_hash_chain_max, i); 1087 } 1088 1089 ARCSTAT_BUMP(arcstat_hash_elements); 1090 ARCSTAT_MAXSTAT(arcstat_hash_elements); 1091 1092 return (NULL); 1093 } 1094 1095 static void 1096 buf_hash_remove(arc_buf_hdr_t *hdr) 1097 { 1098 arc_buf_hdr_t *fhdr, **hdrp; 1099 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1100 1101 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 1102 ASSERT(HDR_IN_HASH_TABLE(hdr)); 1103 1104 hdrp = &buf_hash_table.ht_table[idx]; 1105 while ((fhdr = *hdrp) != hdr) { 1106 ASSERT3P(fhdr, !=, NULL); 1107 hdrp = &fhdr->b_hash_next; 1108 } 1109 *hdrp = hdr->b_hash_next; 1110 hdr->b_hash_next = NULL; 1111 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1112 1113 /* collect some hash table performance data */ 1114 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 1115 1116 if (buf_hash_table.ht_table[idx] && 1117 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 1118 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 1119 } 1120 1121 /* 1122 * Global data structures and functions for the buf kmem cache. 1123 */ 1124 1125 static kmem_cache_t *hdr_full_cache; 1126 static kmem_cache_t *hdr_full_crypt_cache; 1127 static kmem_cache_t *hdr_l2only_cache; 1128 static kmem_cache_t *buf_cache; 1129 1130 static void 1131 buf_fini(void) 1132 { 1133 int i; 1134 1135 #if defined(_KERNEL) 1136 /* 1137 * Large allocations which do not require contiguous pages 1138 * should be using vmem_free() in the linux kernel\ 1139 */ 1140 vmem_free(buf_hash_table.ht_table, 1141 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1142 #else 1143 kmem_free(buf_hash_table.ht_table, 1144 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1145 #endif 1146 for (i = 0; i < BUF_LOCKS; i++) 1147 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 1148 kmem_cache_destroy(hdr_full_cache); 1149 kmem_cache_destroy(hdr_full_crypt_cache); 1150 kmem_cache_destroy(hdr_l2only_cache); 1151 kmem_cache_destroy(buf_cache); 1152 } 1153 1154 /* 1155 * Constructor callback - called when the cache is empty 1156 * and a new buf is requested. 1157 */ 1158 /* ARGSUSED */ 1159 static int 1160 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1161 { 1162 arc_buf_hdr_t *hdr = vbuf; 1163 1164 bzero(hdr, HDR_FULL_SIZE); 1165 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 1166 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL); 1167 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt); 1168 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1169 list_link_init(&hdr->b_l1hdr.b_arc_node); 1170 list_link_init(&hdr->b_l2hdr.b_l2node); 1171 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1172 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1173 1174 return (0); 1175 } 1176 1177 /* ARGSUSED */ 1178 static int 1179 hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag) 1180 { 1181 arc_buf_hdr_t *hdr = vbuf; 1182 1183 hdr_full_cons(vbuf, unused, kmflag); 1184 bzero(&hdr->b_crypt_hdr, sizeof (hdr->b_crypt_hdr)); 1185 arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1186 1187 return (0); 1188 } 1189 1190 /* ARGSUSED */ 1191 static int 1192 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1193 { 1194 arc_buf_hdr_t *hdr = vbuf; 1195 1196 bzero(hdr, HDR_L2ONLY_SIZE); 1197 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1198 1199 return (0); 1200 } 1201 1202 /* ARGSUSED */ 1203 static int 1204 buf_cons(void *vbuf, void *unused, int kmflag) 1205 { 1206 arc_buf_t *buf = vbuf; 1207 1208 bzero(buf, sizeof (arc_buf_t)); 1209 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 1210 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1211 1212 return (0); 1213 } 1214 1215 /* 1216 * Destructor callback - called when a cached buf is 1217 * no longer required. 1218 */ 1219 /* ARGSUSED */ 1220 static void 1221 hdr_full_dest(void *vbuf, void *unused) 1222 { 1223 arc_buf_hdr_t *hdr = vbuf; 1224 1225 ASSERT(HDR_EMPTY(hdr)); 1226 cv_destroy(&hdr->b_l1hdr.b_cv); 1227 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1228 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1229 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1230 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1231 } 1232 1233 /* ARGSUSED */ 1234 static void 1235 hdr_full_crypt_dest(void *vbuf, void *unused) 1236 { 1237 arc_buf_hdr_t *hdr = vbuf; 1238 1239 hdr_full_dest(vbuf, unused); 1240 arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1241 } 1242 1243 /* ARGSUSED */ 1244 static void 1245 hdr_l2only_dest(void *vbuf, void *unused) 1246 { 1247 arc_buf_hdr_t *hdr __maybe_unused = vbuf; 1248 1249 ASSERT(HDR_EMPTY(hdr)); 1250 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1251 } 1252 1253 /* ARGSUSED */ 1254 static void 1255 buf_dest(void *vbuf, void *unused) 1256 { 1257 arc_buf_t *buf = vbuf; 1258 1259 mutex_destroy(&buf->b_evict_lock); 1260 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1261 } 1262 1263 static void 1264 buf_init(void) 1265 { 1266 uint64_t *ct = NULL; 1267 uint64_t hsize = 1ULL << 12; 1268 int i, j; 1269 1270 /* 1271 * The hash table is big enough to fill all of physical memory 1272 * with an average block size of zfs_arc_average_blocksize (default 8K). 1273 * By default, the table will take up 1274 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1275 */ 1276 while (hsize * zfs_arc_average_blocksize < arc_all_memory()) 1277 hsize <<= 1; 1278 retry: 1279 buf_hash_table.ht_mask = hsize - 1; 1280 #if defined(_KERNEL) 1281 /* 1282 * Large allocations which do not require contiguous pages 1283 * should be using vmem_alloc() in the linux kernel 1284 */ 1285 buf_hash_table.ht_table = 1286 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP); 1287 #else 1288 buf_hash_table.ht_table = 1289 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1290 #endif 1291 if (buf_hash_table.ht_table == NULL) { 1292 ASSERT(hsize > (1ULL << 8)); 1293 hsize >>= 1; 1294 goto retry; 1295 } 1296 1297 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1298 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, 0); 1299 hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt", 1300 HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest, 1301 NULL, NULL, NULL, 0); 1302 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1303 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL, 1304 NULL, NULL, 0); 1305 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1306 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1307 1308 for (i = 0; i < 256; i++) 1309 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1310 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1311 1312 for (i = 0; i < BUF_LOCKS; i++) { 1313 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 1314 NULL, MUTEX_DEFAULT, NULL); 1315 } 1316 } 1317 1318 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1319 1320 /* 1321 * This is the size that the buf occupies in memory. If the buf is compressed, 1322 * it will correspond to the compressed size. You should use this method of 1323 * getting the buf size unless you explicitly need the logical size. 1324 */ 1325 uint64_t 1326 arc_buf_size(arc_buf_t *buf) 1327 { 1328 return (ARC_BUF_COMPRESSED(buf) ? 1329 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr)); 1330 } 1331 1332 uint64_t 1333 arc_buf_lsize(arc_buf_t *buf) 1334 { 1335 return (HDR_GET_LSIZE(buf->b_hdr)); 1336 } 1337 1338 /* 1339 * This function will return B_TRUE if the buffer is encrypted in memory. 1340 * This buffer can be decrypted by calling arc_untransform(). 1341 */ 1342 boolean_t 1343 arc_is_encrypted(arc_buf_t *buf) 1344 { 1345 return (ARC_BUF_ENCRYPTED(buf) != 0); 1346 } 1347 1348 /* 1349 * Returns B_TRUE if the buffer represents data that has not had its MAC 1350 * verified yet. 1351 */ 1352 boolean_t 1353 arc_is_unauthenticated(arc_buf_t *buf) 1354 { 1355 return (HDR_NOAUTH(buf->b_hdr) != 0); 1356 } 1357 1358 void 1359 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt, 1360 uint8_t *iv, uint8_t *mac) 1361 { 1362 arc_buf_hdr_t *hdr = buf->b_hdr; 1363 1364 ASSERT(HDR_PROTECTED(hdr)); 1365 1366 bcopy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN); 1367 bcopy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN); 1368 bcopy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN); 1369 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 1370 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 1371 } 1372 1373 /* 1374 * Indicates how this buffer is compressed in memory. If it is not compressed 1375 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with 1376 * arc_untransform() as long as it is also unencrypted. 1377 */ 1378 enum zio_compress 1379 arc_get_compression(arc_buf_t *buf) 1380 { 1381 return (ARC_BUF_COMPRESSED(buf) ? 1382 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF); 1383 } 1384 1385 /* 1386 * Return the compression algorithm used to store this data in the ARC. If ARC 1387 * compression is enabled or this is an encrypted block, this will be the same 1388 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF. 1389 */ 1390 static inline enum zio_compress 1391 arc_hdr_get_compress(arc_buf_hdr_t *hdr) 1392 { 1393 return (HDR_COMPRESSION_ENABLED(hdr) ? 1394 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF); 1395 } 1396 1397 uint8_t 1398 arc_get_complevel(arc_buf_t *buf) 1399 { 1400 return (buf->b_hdr->b_complevel); 1401 } 1402 1403 static inline boolean_t 1404 arc_buf_is_shared(arc_buf_t *buf) 1405 { 1406 boolean_t shared = (buf->b_data != NULL && 1407 buf->b_hdr->b_l1hdr.b_pabd != NULL && 1408 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) && 1409 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd)); 1410 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); 1411 IMPLY(shared, ARC_BUF_SHARED(buf)); 1412 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf)); 1413 1414 /* 1415 * It would be nice to assert arc_can_share() too, but the "hdr isn't 1416 * already being shared" requirement prevents us from doing that. 1417 */ 1418 1419 return (shared); 1420 } 1421 1422 /* 1423 * Free the checksum associated with this header. If there is no checksum, this 1424 * is a no-op. 1425 */ 1426 static inline void 1427 arc_cksum_free(arc_buf_hdr_t *hdr) 1428 { 1429 ASSERT(HDR_HAS_L1HDR(hdr)); 1430 1431 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1432 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1433 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); 1434 hdr->b_l1hdr.b_freeze_cksum = NULL; 1435 } 1436 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1437 } 1438 1439 /* 1440 * Return true iff at least one of the bufs on hdr is not compressed. 1441 * Encrypted buffers count as compressed. 1442 */ 1443 static boolean_t 1444 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr) 1445 { 1446 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr)); 1447 1448 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) { 1449 if (!ARC_BUF_COMPRESSED(b)) { 1450 return (B_TRUE); 1451 } 1452 } 1453 return (B_FALSE); 1454 } 1455 1456 1457 /* 1458 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data 1459 * matches the checksum that is stored in the hdr. If there is no checksum, 1460 * or if the buf is compressed, this is a no-op. 1461 */ 1462 static void 1463 arc_cksum_verify(arc_buf_t *buf) 1464 { 1465 arc_buf_hdr_t *hdr = buf->b_hdr; 1466 zio_cksum_t zc; 1467 1468 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1469 return; 1470 1471 if (ARC_BUF_COMPRESSED(buf)) 1472 return; 1473 1474 ASSERT(HDR_HAS_L1HDR(hdr)); 1475 1476 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1477 1478 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { 1479 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1480 return; 1481 } 1482 1483 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc); 1484 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) 1485 panic("buffer modified while frozen!"); 1486 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1487 } 1488 1489 /* 1490 * This function makes the assumption that data stored in the L2ARC 1491 * will be transformed exactly as it is in the main pool. Because of 1492 * this we can verify the checksum against the reading process's bp. 1493 */ 1494 static boolean_t 1495 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) 1496 { 1497 ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); 1498 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); 1499 1500 /* 1501 * Block pointers always store the checksum for the logical data. 1502 * If the block pointer has the gang bit set, then the checksum 1503 * it represents is for the reconstituted data and not for an 1504 * individual gang member. The zio pipeline, however, must be able to 1505 * determine the checksum of each of the gang constituents so it 1506 * treats the checksum comparison differently than what we need 1507 * for l2arc blocks. This prevents us from using the 1508 * zio_checksum_error() interface directly. Instead we must call the 1509 * zio_checksum_error_impl() so that we can ensure the checksum is 1510 * generated using the correct checksum algorithm and accounts for the 1511 * logical I/O size and not just a gang fragment. 1512 */ 1513 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp, 1514 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size, 1515 zio->io_offset, NULL) == 0); 1516 } 1517 1518 /* 1519 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a 1520 * checksum and attaches it to the buf's hdr so that we can ensure that the buf 1521 * isn't modified later on. If buf is compressed or there is already a checksum 1522 * on the hdr, this is a no-op (we only checksum uncompressed bufs). 1523 */ 1524 static void 1525 arc_cksum_compute(arc_buf_t *buf) 1526 { 1527 arc_buf_hdr_t *hdr = buf->b_hdr; 1528 1529 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1530 return; 1531 1532 ASSERT(HDR_HAS_L1HDR(hdr)); 1533 1534 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1535 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) { 1536 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1537 return; 1538 } 1539 1540 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 1541 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1542 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), 1543 KM_SLEEP); 1544 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, 1545 hdr->b_l1hdr.b_freeze_cksum); 1546 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1547 arc_buf_watch(buf); 1548 } 1549 1550 #ifndef _KERNEL 1551 void 1552 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused) 1553 { 1554 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr); 1555 } 1556 #endif 1557 1558 /* ARGSUSED */ 1559 static void 1560 arc_buf_unwatch(arc_buf_t *buf) 1561 { 1562 #ifndef _KERNEL 1563 if (arc_watch) { 1564 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1565 PROT_READ | PROT_WRITE)); 1566 } 1567 #endif 1568 } 1569 1570 /* ARGSUSED */ 1571 static void 1572 arc_buf_watch(arc_buf_t *buf) 1573 { 1574 #ifndef _KERNEL 1575 if (arc_watch) 1576 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1577 PROT_READ)); 1578 #endif 1579 } 1580 1581 static arc_buf_contents_t 1582 arc_buf_type(arc_buf_hdr_t *hdr) 1583 { 1584 arc_buf_contents_t type; 1585 if (HDR_ISTYPE_METADATA(hdr)) { 1586 type = ARC_BUFC_METADATA; 1587 } else { 1588 type = ARC_BUFC_DATA; 1589 } 1590 VERIFY3U(hdr->b_type, ==, type); 1591 return (type); 1592 } 1593 1594 boolean_t 1595 arc_is_metadata(arc_buf_t *buf) 1596 { 1597 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0); 1598 } 1599 1600 static uint32_t 1601 arc_bufc_to_flags(arc_buf_contents_t type) 1602 { 1603 switch (type) { 1604 case ARC_BUFC_DATA: 1605 /* metadata field is 0 if buffer contains normal data */ 1606 return (0); 1607 case ARC_BUFC_METADATA: 1608 return (ARC_FLAG_BUFC_METADATA); 1609 default: 1610 break; 1611 } 1612 panic("undefined ARC buffer type!"); 1613 return ((uint32_t)-1); 1614 } 1615 1616 void 1617 arc_buf_thaw(arc_buf_t *buf) 1618 { 1619 arc_buf_hdr_t *hdr = buf->b_hdr; 1620 1621 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 1622 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1623 1624 arc_cksum_verify(buf); 1625 1626 /* 1627 * Compressed buffers do not manipulate the b_freeze_cksum. 1628 */ 1629 if (ARC_BUF_COMPRESSED(buf)) 1630 return; 1631 1632 ASSERT(HDR_HAS_L1HDR(hdr)); 1633 arc_cksum_free(hdr); 1634 arc_buf_unwatch(buf); 1635 } 1636 1637 void 1638 arc_buf_freeze(arc_buf_t *buf) 1639 { 1640 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1641 return; 1642 1643 if (ARC_BUF_COMPRESSED(buf)) 1644 return; 1645 1646 ASSERT(HDR_HAS_L1HDR(buf->b_hdr)); 1647 arc_cksum_compute(buf); 1648 } 1649 1650 /* 1651 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, 1652 * the following functions should be used to ensure that the flags are 1653 * updated in a thread-safe way. When manipulating the flags either 1654 * the hash_lock must be held or the hdr must be undiscoverable. This 1655 * ensures that we're not racing with any other threads when updating 1656 * the flags. 1657 */ 1658 static inline void 1659 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1660 { 1661 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1662 hdr->b_flags |= flags; 1663 } 1664 1665 static inline void 1666 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1667 { 1668 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1669 hdr->b_flags &= ~flags; 1670 } 1671 1672 /* 1673 * Setting the compression bits in the arc_buf_hdr_t's b_flags is 1674 * done in a special way since we have to clear and set bits 1675 * at the same time. Consumers that wish to set the compression bits 1676 * must use this function to ensure that the flags are updated in 1677 * thread-safe manner. 1678 */ 1679 static void 1680 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) 1681 { 1682 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1683 1684 /* 1685 * Holes and embedded blocks will always have a psize = 0 so 1686 * we ignore the compression of the blkptr and set the 1687 * want to uncompress them. Mark them as uncompressed. 1688 */ 1689 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { 1690 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1691 ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); 1692 } else { 1693 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1694 ASSERT(HDR_COMPRESSION_ENABLED(hdr)); 1695 } 1696 1697 HDR_SET_COMPRESS(hdr, cmp); 1698 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); 1699 } 1700 1701 /* 1702 * Looks for another buf on the same hdr which has the data decompressed, copies 1703 * from it, and returns true. If no such buf exists, returns false. 1704 */ 1705 static boolean_t 1706 arc_buf_try_copy_decompressed_data(arc_buf_t *buf) 1707 { 1708 arc_buf_hdr_t *hdr = buf->b_hdr; 1709 boolean_t copied = B_FALSE; 1710 1711 ASSERT(HDR_HAS_L1HDR(hdr)); 1712 ASSERT3P(buf->b_data, !=, NULL); 1713 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1714 1715 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL; 1716 from = from->b_next) { 1717 /* can't use our own data buffer */ 1718 if (from == buf) { 1719 continue; 1720 } 1721 1722 if (!ARC_BUF_COMPRESSED(from)) { 1723 bcopy(from->b_data, buf->b_data, arc_buf_size(buf)); 1724 copied = B_TRUE; 1725 break; 1726 } 1727 } 1728 1729 /* 1730 * There were no decompressed bufs, so there should not be a 1731 * checksum on the hdr either. 1732 */ 1733 if (zfs_flags & ZFS_DEBUG_MODIFY) 1734 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL); 1735 1736 return (copied); 1737 } 1738 1739 /* 1740 * Allocates an ARC buf header that's in an evicted & L2-cached state. 1741 * This is used during l2arc reconstruction to make empty ARC buffers 1742 * which circumvent the regular disk->arc->l2arc path and instead come 1743 * into being in the reverse order, i.e. l2arc->arc. 1744 */ 1745 static arc_buf_hdr_t * 1746 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev, 1747 dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth, 1748 enum zio_compress compress, uint8_t complevel, boolean_t protected, 1749 boolean_t prefetch, arc_state_type_t arcs_state) 1750 { 1751 arc_buf_hdr_t *hdr; 1752 1753 ASSERT(size != 0); 1754 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP); 1755 hdr->b_birth = birth; 1756 hdr->b_type = type; 1757 hdr->b_flags = 0; 1758 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR); 1759 HDR_SET_LSIZE(hdr, size); 1760 HDR_SET_PSIZE(hdr, psize); 1761 arc_hdr_set_compress(hdr, compress); 1762 hdr->b_complevel = complevel; 1763 if (protected) 1764 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 1765 if (prefetch) 1766 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 1767 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa); 1768 1769 hdr->b_dva = dva; 1770 1771 hdr->b_l2hdr.b_dev = dev; 1772 hdr->b_l2hdr.b_daddr = daddr; 1773 hdr->b_l2hdr.b_arcs_state = arcs_state; 1774 1775 return (hdr); 1776 } 1777 1778 /* 1779 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t. 1780 */ 1781 static uint64_t 1782 arc_hdr_size(arc_buf_hdr_t *hdr) 1783 { 1784 uint64_t size; 1785 1786 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 1787 HDR_GET_PSIZE(hdr) > 0) { 1788 size = HDR_GET_PSIZE(hdr); 1789 } else { 1790 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); 1791 size = HDR_GET_LSIZE(hdr); 1792 } 1793 return (size); 1794 } 1795 1796 static int 1797 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj) 1798 { 1799 int ret; 1800 uint64_t csize; 1801 uint64_t lsize = HDR_GET_LSIZE(hdr); 1802 uint64_t psize = HDR_GET_PSIZE(hdr); 1803 void *tmpbuf = NULL; 1804 abd_t *abd = hdr->b_l1hdr.b_pabd; 1805 1806 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1807 ASSERT(HDR_AUTHENTICATED(hdr)); 1808 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1809 1810 /* 1811 * The MAC is calculated on the compressed data that is stored on disk. 1812 * However, if compressed arc is disabled we will only have the 1813 * decompressed data available to us now. Compress it into a temporary 1814 * abd so we can verify the MAC. The performance overhead of this will 1815 * be relatively low, since most objects in an encrypted objset will 1816 * be encrypted (instead of authenticated) anyway. 1817 */ 1818 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1819 !HDR_COMPRESSION_ENABLED(hdr)) { 1820 tmpbuf = zio_buf_alloc(lsize); 1821 abd = abd_get_from_buf(tmpbuf, lsize); 1822 abd_take_ownership_of_buf(abd, B_TRUE); 1823 csize = zio_compress_data(HDR_GET_COMPRESS(hdr), 1824 hdr->b_l1hdr.b_pabd, tmpbuf, lsize, hdr->b_complevel); 1825 ASSERT3U(csize, <=, psize); 1826 abd_zero_off(abd, csize, psize - csize); 1827 } 1828 1829 /* 1830 * Authentication is best effort. We authenticate whenever the key is 1831 * available. If we succeed we clear ARC_FLAG_NOAUTH. 1832 */ 1833 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) { 1834 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1835 ASSERT3U(lsize, ==, psize); 1836 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd, 1837 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1838 } else { 1839 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize, 1840 hdr->b_crypt_hdr.b_mac); 1841 } 1842 1843 if (ret == 0) 1844 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH); 1845 else if (ret != ENOENT) 1846 goto error; 1847 1848 if (tmpbuf != NULL) 1849 abd_free(abd); 1850 1851 return (0); 1852 1853 error: 1854 if (tmpbuf != NULL) 1855 abd_free(abd); 1856 1857 return (ret); 1858 } 1859 1860 /* 1861 * This function will take a header that only has raw encrypted data in 1862 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in 1863 * b_l1hdr.b_pabd. If designated in the header flags, this function will 1864 * also decompress the data. 1865 */ 1866 static int 1867 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb) 1868 { 1869 int ret; 1870 abd_t *cabd = NULL; 1871 void *tmp = NULL; 1872 boolean_t no_crypt = B_FALSE; 1873 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1874 1875 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1876 ASSERT(HDR_ENCRYPTED(hdr)); 1877 1878 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 1879 1880 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot, 1881 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv, 1882 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd, 1883 hdr->b_crypt_hdr.b_rabd, &no_crypt); 1884 if (ret != 0) 1885 goto error; 1886 1887 if (no_crypt) { 1888 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd, 1889 HDR_GET_PSIZE(hdr)); 1890 } 1891 1892 /* 1893 * If this header has disabled arc compression but the b_pabd is 1894 * compressed after decrypting it, we need to decompress the newly 1895 * decrypted data. 1896 */ 1897 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1898 !HDR_COMPRESSION_ENABLED(hdr)) { 1899 /* 1900 * We want to make sure that we are correctly honoring the 1901 * zfs_abd_scatter_enabled setting, so we allocate an abd here 1902 * and then loan a buffer from it, rather than allocating a 1903 * linear buffer and wrapping it in an abd later. 1904 */ 1905 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, B_TRUE); 1906 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 1907 1908 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 1909 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 1910 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 1911 if (ret != 0) { 1912 abd_return_buf(cabd, tmp, arc_hdr_size(hdr)); 1913 goto error; 1914 } 1915 1916 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 1917 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 1918 arc_hdr_size(hdr), hdr); 1919 hdr->b_l1hdr.b_pabd = cabd; 1920 } 1921 1922 return (0); 1923 1924 error: 1925 arc_hdr_free_abd(hdr, B_FALSE); 1926 if (cabd != NULL) 1927 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr); 1928 1929 return (ret); 1930 } 1931 1932 /* 1933 * This function is called during arc_buf_fill() to prepare the header's 1934 * abd plaintext pointer for use. This involves authenticated protected 1935 * data and decrypting encrypted data into the plaintext abd. 1936 */ 1937 static int 1938 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa, 1939 const zbookmark_phys_t *zb, boolean_t noauth) 1940 { 1941 int ret; 1942 1943 ASSERT(HDR_PROTECTED(hdr)); 1944 1945 if (hash_lock != NULL) 1946 mutex_enter(hash_lock); 1947 1948 if (HDR_NOAUTH(hdr) && !noauth) { 1949 /* 1950 * The caller requested authenticated data but our data has 1951 * not been authenticated yet. Verify the MAC now if we can. 1952 */ 1953 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset); 1954 if (ret != 0) 1955 goto error; 1956 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) { 1957 /* 1958 * If we only have the encrypted version of the data, but the 1959 * unencrypted version was requested we take this opportunity 1960 * to store the decrypted version in the header for future use. 1961 */ 1962 ret = arc_hdr_decrypt(hdr, spa, zb); 1963 if (ret != 0) 1964 goto error; 1965 } 1966 1967 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1968 1969 if (hash_lock != NULL) 1970 mutex_exit(hash_lock); 1971 1972 return (0); 1973 1974 error: 1975 if (hash_lock != NULL) 1976 mutex_exit(hash_lock); 1977 1978 return (ret); 1979 } 1980 1981 /* 1982 * This function is used by the dbuf code to decrypt bonus buffers in place. 1983 * The dbuf code itself doesn't have any locking for decrypting a shared dnode 1984 * block, so we use the hash lock here to protect against concurrent calls to 1985 * arc_buf_fill(). 1986 */ 1987 static void 1988 arc_buf_untransform_in_place(arc_buf_t *buf, kmutex_t *hash_lock) 1989 { 1990 arc_buf_hdr_t *hdr = buf->b_hdr; 1991 1992 ASSERT(HDR_ENCRYPTED(hdr)); 1993 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 1994 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1995 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1996 1997 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data, 1998 arc_buf_size(buf)); 1999 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 2000 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 2001 hdr->b_crypt_hdr.b_ebufcnt -= 1; 2002 } 2003 2004 /* 2005 * Given a buf that has a data buffer attached to it, this function will 2006 * efficiently fill the buf with data of the specified compression setting from 2007 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr 2008 * are already sharing a data buf, no copy is performed. 2009 * 2010 * If the buf is marked as compressed but uncompressed data was requested, this 2011 * will allocate a new data buffer for the buf, remove that flag, and fill the 2012 * buf with uncompressed data. You can't request a compressed buf on a hdr with 2013 * uncompressed data, and (since we haven't added support for it yet) if you 2014 * want compressed data your buf must already be marked as compressed and have 2015 * the correct-sized data buffer. 2016 */ 2017 static int 2018 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 2019 arc_fill_flags_t flags) 2020 { 2021 int error = 0; 2022 arc_buf_hdr_t *hdr = buf->b_hdr; 2023 boolean_t hdr_compressed = 2024 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 2025 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0; 2026 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0; 2027 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; 2028 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr); 2029 2030 ASSERT3P(buf->b_data, !=, NULL); 2031 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf)); 2032 IMPLY(compressed, ARC_BUF_COMPRESSED(buf)); 2033 IMPLY(encrypted, HDR_ENCRYPTED(hdr)); 2034 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf)); 2035 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf)); 2036 IMPLY(encrypted, !ARC_BUF_SHARED(buf)); 2037 2038 /* 2039 * If the caller wanted encrypted data we just need to copy it from 2040 * b_rabd and potentially byteswap it. We won't be able to do any 2041 * further transforms on it. 2042 */ 2043 if (encrypted) { 2044 ASSERT(HDR_HAS_RABD(hdr)); 2045 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd, 2046 HDR_GET_PSIZE(hdr)); 2047 goto byteswap; 2048 } 2049 2050 /* 2051 * Adjust encrypted and authenticated headers to accommodate 2052 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are 2053 * allowed to fail decryption due to keys not being loaded 2054 * without being marked as an IO error. 2055 */ 2056 if (HDR_PROTECTED(hdr)) { 2057 error = arc_fill_hdr_crypt(hdr, hash_lock, spa, 2058 zb, !!(flags & ARC_FILL_NOAUTH)); 2059 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) { 2060 return (error); 2061 } else if (error != 0) { 2062 if (hash_lock != NULL) 2063 mutex_enter(hash_lock); 2064 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2065 if (hash_lock != NULL) 2066 mutex_exit(hash_lock); 2067 return (error); 2068 } 2069 } 2070 2071 /* 2072 * There is a special case here for dnode blocks which are 2073 * decrypting their bonus buffers. These blocks may request to 2074 * be decrypted in-place. This is necessary because there may 2075 * be many dnodes pointing into this buffer and there is 2076 * currently no method to synchronize replacing the backing 2077 * b_data buffer and updating all of the pointers. Here we use 2078 * the hash lock to ensure there are no races. If the need 2079 * arises for other types to be decrypted in-place, they must 2080 * add handling here as well. 2081 */ 2082 if ((flags & ARC_FILL_IN_PLACE) != 0) { 2083 ASSERT(!hdr_compressed); 2084 ASSERT(!compressed); 2085 ASSERT(!encrypted); 2086 2087 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) { 2088 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 2089 2090 if (hash_lock != NULL) 2091 mutex_enter(hash_lock); 2092 arc_buf_untransform_in_place(buf, hash_lock); 2093 if (hash_lock != NULL) 2094 mutex_exit(hash_lock); 2095 2096 /* Compute the hdr's checksum if necessary */ 2097 arc_cksum_compute(buf); 2098 } 2099 2100 return (0); 2101 } 2102 2103 if (hdr_compressed == compressed) { 2104 if (!arc_buf_is_shared(buf)) { 2105 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd, 2106 arc_buf_size(buf)); 2107 } 2108 } else { 2109 ASSERT(hdr_compressed); 2110 ASSERT(!compressed); 2111 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr)); 2112 2113 /* 2114 * If the buf is sharing its data with the hdr, unlink it and 2115 * allocate a new data buffer for the buf. 2116 */ 2117 if (arc_buf_is_shared(buf)) { 2118 ASSERT(ARC_BUF_COMPRESSED(buf)); 2119 2120 /* We need to give the buf its own b_data */ 2121 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 2122 buf->b_data = 2123 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2124 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2125 2126 /* Previously overhead was 0; just add new overhead */ 2127 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 2128 } else if (ARC_BUF_COMPRESSED(buf)) { 2129 /* We need to reallocate the buf's b_data */ 2130 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr), 2131 buf); 2132 buf->b_data = 2133 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2134 2135 /* We increased the size of b_data; update overhead */ 2136 ARCSTAT_INCR(arcstat_overhead_size, 2137 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr)); 2138 } 2139 2140 /* 2141 * Regardless of the buf's previous compression settings, it 2142 * should not be compressed at the end of this function. 2143 */ 2144 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 2145 2146 /* 2147 * Try copying the data from another buf which already has a 2148 * decompressed version. If that's not possible, it's time to 2149 * bite the bullet and decompress the data from the hdr. 2150 */ 2151 if (arc_buf_try_copy_decompressed_data(buf)) { 2152 /* Skip byteswapping and checksumming (already done) */ 2153 return (0); 2154 } else { 2155 error = zio_decompress_data(HDR_GET_COMPRESS(hdr), 2156 hdr->b_l1hdr.b_pabd, buf->b_data, 2157 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr), 2158 &hdr->b_complevel); 2159 2160 /* 2161 * Absent hardware errors or software bugs, this should 2162 * be impossible, but log it anyway so we can debug it. 2163 */ 2164 if (error != 0) { 2165 zfs_dbgmsg( 2166 "hdr %px, compress %d, psize %d, lsize %d", 2167 hdr, arc_hdr_get_compress(hdr), 2168 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 2169 if (hash_lock != NULL) 2170 mutex_enter(hash_lock); 2171 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2172 if (hash_lock != NULL) 2173 mutex_exit(hash_lock); 2174 return (SET_ERROR(EIO)); 2175 } 2176 } 2177 } 2178 2179 byteswap: 2180 /* Byteswap the buf's data if necessary */ 2181 if (bswap != DMU_BSWAP_NUMFUNCS) { 2182 ASSERT(!HDR_SHARED_DATA(hdr)); 2183 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); 2184 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); 2185 } 2186 2187 /* Compute the hdr's checksum if necessary */ 2188 arc_cksum_compute(buf); 2189 2190 return (0); 2191 } 2192 2193 /* 2194 * If this function is being called to decrypt an encrypted buffer or verify an 2195 * authenticated one, the key must be loaded and a mapping must be made 2196 * available in the keystore via spa_keystore_create_mapping() or one of its 2197 * callers. 2198 */ 2199 int 2200 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 2201 boolean_t in_place) 2202 { 2203 int ret; 2204 arc_fill_flags_t flags = 0; 2205 2206 if (in_place) 2207 flags |= ARC_FILL_IN_PLACE; 2208 2209 ret = arc_buf_fill(buf, spa, zb, flags); 2210 if (ret == ECKSUM) { 2211 /* 2212 * Convert authentication and decryption errors to EIO 2213 * (and generate an ereport) before leaving the ARC. 2214 */ 2215 ret = SET_ERROR(EIO); 2216 spa_log_error(spa, zb); 2217 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 2218 spa, NULL, zb, NULL, 0); 2219 } 2220 2221 return (ret); 2222 } 2223 2224 /* 2225 * Increment the amount of evictable space in the arc_state_t's refcount. 2226 * We account for the space used by the hdr and the arc buf individually 2227 * so that we can add and remove them from the refcount individually. 2228 */ 2229 static void 2230 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) 2231 { 2232 arc_buf_contents_t type = arc_buf_type(hdr); 2233 2234 ASSERT(HDR_HAS_L1HDR(hdr)); 2235 2236 if (GHOST_STATE(state)) { 2237 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2238 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2239 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2240 ASSERT(!HDR_HAS_RABD(hdr)); 2241 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2242 HDR_GET_LSIZE(hdr), hdr); 2243 return; 2244 } 2245 2246 ASSERT(!GHOST_STATE(state)); 2247 if (hdr->b_l1hdr.b_pabd != NULL) { 2248 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2249 arc_hdr_size(hdr), hdr); 2250 } 2251 if (HDR_HAS_RABD(hdr)) { 2252 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2253 HDR_GET_PSIZE(hdr), hdr); 2254 } 2255 2256 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2257 buf = buf->b_next) { 2258 if (arc_buf_is_shared(buf)) 2259 continue; 2260 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2261 arc_buf_size(buf), buf); 2262 } 2263 } 2264 2265 /* 2266 * Decrement the amount of evictable space in the arc_state_t's refcount. 2267 * We account for the space used by the hdr and the arc buf individually 2268 * so that we can add and remove them from the refcount individually. 2269 */ 2270 static void 2271 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) 2272 { 2273 arc_buf_contents_t type = arc_buf_type(hdr); 2274 2275 ASSERT(HDR_HAS_L1HDR(hdr)); 2276 2277 if (GHOST_STATE(state)) { 2278 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2279 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2280 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2281 ASSERT(!HDR_HAS_RABD(hdr)); 2282 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2283 HDR_GET_LSIZE(hdr), hdr); 2284 return; 2285 } 2286 2287 ASSERT(!GHOST_STATE(state)); 2288 if (hdr->b_l1hdr.b_pabd != NULL) { 2289 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2290 arc_hdr_size(hdr), hdr); 2291 } 2292 if (HDR_HAS_RABD(hdr)) { 2293 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2294 HDR_GET_PSIZE(hdr), hdr); 2295 } 2296 2297 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2298 buf = buf->b_next) { 2299 if (arc_buf_is_shared(buf)) 2300 continue; 2301 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2302 arc_buf_size(buf), buf); 2303 } 2304 } 2305 2306 /* 2307 * Add a reference to this hdr indicating that someone is actively 2308 * referencing that memory. When the refcount transitions from 0 to 1, 2309 * we remove it from the respective arc_state_t list to indicate that 2310 * it is not evictable. 2311 */ 2312 static void 2313 add_reference(arc_buf_hdr_t *hdr, void *tag) 2314 { 2315 arc_state_t *state; 2316 2317 ASSERT(HDR_HAS_L1HDR(hdr)); 2318 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) { 2319 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 2320 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2321 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2322 } 2323 2324 state = hdr->b_l1hdr.b_state; 2325 2326 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 2327 (state != arc_anon)) { 2328 /* We don't use the L2-only state list. */ 2329 if (state != arc_l2c_only) { 2330 multilist_remove(state->arcs_list[arc_buf_type(hdr)], 2331 hdr); 2332 arc_evictable_space_decrement(hdr, state); 2333 } 2334 /* remove the prefetch flag if we get a reference */ 2335 if (HDR_HAS_L2HDR(hdr)) 2336 l2arc_hdr_arcstats_decrement_state(hdr); 2337 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 2338 if (HDR_HAS_L2HDR(hdr)) 2339 l2arc_hdr_arcstats_increment_state(hdr); 2340 } 2341 } 2342 2343 /* 2344 * Remove a reference from this hdr. When the reference transitions from 2345 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's 2346 * list making it eligible for eviction. 2347 */ 2348 static int 2349 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 2350 { 2351 int cnt; 2352 arc_state_t *state = hdr->b_l1hdr.b_state; 2353 2354 ASSERT(HDR_HAS_L1HDR(hdr)); 2355 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 2356 ASSERT(!GHOST_STATE(state)); 2357 2358 /* 2359 * arc_l2c_only counts as a ghost state so we don't need to explicitly 2360 * check to prevent usage of the arc_l2c_only list. 2361 */ 2362 if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) && 2363 (state != arc_anon)) { 2364 multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr); 2365 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 2366 arc_evictable_space_increment(hdr, state); 2367 } 2368 return (cnt); 2369 } 2370 2371 /* 2372 * Returns detailed information about a specific arc buffer. When the 2373 * state_index argument is set the function will calculate the arc header 2374 * list position for its arc state. Since this requires a linear traversal 2375 * callers are strongly encourage not to do this. However, it can be helpful 2376 * for targeted analysis so the functionality is provided. 2377 */ 2378 void 2379 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index) 2380 { 2381 arc_buf_hdr_t *hdr = ab->b_hdr; 2382 l1arc_buf_hdr_t *l1hdr = NULL; 2383 l2arc_buf_hdr_t *l2hdr = NULL; 2384 arc_state_t *state = NULL; 2385 2386 memset(abi, 0, sizeof (arc_buf_info_t)); 2387 2388 if (hdr == NULL) 2389 return; 2390 2391 abi->abi_flags = hdr->b_flags; 2392 2393 if (HDR_HAS_L1HDR(hdr)) { 2394 l1hdr = &hdr->b_l1hdr; 2395 state = l1hdr->b_state; 2396 } 2397 if (HDR_HAS_L2HDR(hdr)) 2398 l2hdr = &hdr->b_l2hdr; 2399 2400 if (l1hdr) { 2401 abi->abi_bufcnt = l1hdr->b_bufcnt; 2402 abi->abi_access = l1hdr->b_arc_access; 2403 abi->abi_mru_hits = l1hdr->b_mru_hits; 2404 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits; 2405 abi->abi_mfu_hits = l1hdr->b_mfu_hits; 2406 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits; 2407 abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt); 2408 } 2409 2410 if (l2hdr) { 2411 abi->abi_l2arc_dattr = l2hdr->b_daddr; 2412 abi->abi_l2arc_hits = l2hdr->b_hits; 2413 } 2414 2415 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON; 2416 abi->abi_state_contents = arc_buf_type(hdr); 2417 abi->abi_size = arc_hdr_size(hdr); 2418 } 2419 2420 /* 2421 * Move the supplied buffer to the indicated state. The hash lock 2422 * for the buffer must be held by the caller. 2423 */ 2424 static void 2425 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr, 2426 kmutex_t *hash_lock) 2427 { 2428 arc_state_t *old_state; 2429 int64_t refcnt; 2430 uint32_t bufcnt; 2431 boolean_t update_old, update_new; 2432 arc_buf_contents_t buftype = arc_buf_type(hdr); 2433 2434 /* 2435 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 2436 * in arc_read() when bringing a buffer out of the L2ARC. However, the 2437 * L1 hdr doesn't always exist when we change state to arc_anon before 2438 * destroying a header, in which case reallocating to add the L1 hdr is 2439 * pointless. 2440 */ 2441 if (HDR_HAS_L1HDR(hdr)) { 2442 old_state = hdr->b_l1hdr.b_state; 2443 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt); 2444 bufcnt = hdr->b_l1hdr.b_bufcnt; 2445 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL || 2446 HDR_HAS_RABD(hdr)); 2447 } else { 2448 old_state = arc_l2c_only; 2449 refcnt = 0; 2450 bufcnt = 0; 2451 update_old = B_FALSE; 2452 } 2453 update_new = update_old; 2454 2455 ASSERT(MUTEX_HELD(hash_lock)); 2456 ASSERT3P(new_state, !=, old_state); 2457 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0); 2458 ASSERT(old_state != arc_anon || bufcnt <= 1); 2459 2460 /* 2461 * If this buffer is evictable, transfer it from the 2462 * old state list to the new state list. 2463 */ 2464 if (refcnt == 0) { 2465 if (old_state != arc_anon && old_state != arc_l2c_only) { 2466 ASSERT(HDR_HAS_L1HDR(hdr)); 2467 multilist_remove(old_state->arcs_list[buftype], hdr); 2468 2469 if (GHOST_STATE(old_state)) { 2470 ASSERT0(bufcnt); 2471 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2472 update_old = B_TRUE; 2473 } 2474 arc_evictable_space_decrement(hdr, old_state); 2475 } 2476 if (new_state != arc_anon && new_state != arc_l2c_only) { 2477 /* 2478 * An L1 header always exists here, since if we're 2479 * moving to some L1-cached state (i.e. not l2c_only or 2480 * anonymous), we realloc the header to add an L1hdr 2481 * beforehand. 2482 */ 2483 ASSERT(HDR_HAS_L1HDR(hdr)); 2484 multilist_insert(new_state->arcs_list[buftype], hdr); 2485 2486 if (GHOST_STATE(new_state)) { 2487 ASSERT0(bufcnt); 2488 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2489 update_new = B_TRUE; 2490 } 2491 arc_evictable_space_increment(hdr, new_state); 2492 } 2493 } 2494 2495 ASSERT(!HDR_EMPTY(hdr)); 2496 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 2497 buf_hash_remove(hdr); 2498 2499 /* adjust state sizes (ignore arc_l2c_only) */ 2500 2501 if (update_new && new_state != arc_l2c_only) { 2502 ASSERT(HDR_HAS_L1HDR(hdr)); 2503 if (GHOST_STATE(new_state)) { 2504 ASSERT0(bufcnt); 2505 2506 /* 2507 * When moving a header to a ghost state, we first 2508 * remove all arc buffers. Thus, we'll have a 2509 * bufcnt of zero, and no arc buffer to use for 2510 * the reference. As a result, we use the arc 2511 * header pointer for the reference. 2512 */ 2513 (void) zfs_refcount_add_many(&new_state->arcs_size, 2514 HDR_GET_LSIZE(hdr), hdr); 2515 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2516 ASSERT(!HDR_HAS_RABD(hdr)); 2517 } else { 2518 uint32_t buffers = 0; 2519 2520 /* 2521 * Each individual buffer holds a unique reference, 2522 * thus we must remove each of these references one 2523 * at a time. 2524 */ 2525 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2526 buf = buf->b_next) { 2527 ASSERT3U(bufcnt, !=, 0); 2528 buffers++; 2529 2530 /* 2531 * When the arc_buf_t is sharing the data 2532 * block with the hdr, the owner of the 2533 * reference belongs to the hdr. Only 2534 * add to the refcount if the arc_buf_t is 2535 * not shared. 2536 */ 2537 if (arc_buf_is_shared(buf)) 2538 continue; 2539 2540 (void) zfs_refcount_add_many( 2541 &new_state->arcs_size, 2542 arc_buf_size(buf), buf); 2543 } 2544 ASSERT3U(bufcnt, ==, buffers); 2545 2546 if (hdr->b_l1hdr.b_pabd != NULL) { 2547 (void) zfs_refcount_add_many( 2548 &new_state->arcs_size, 2549 arc_hdr_size(hdr), hdr); 2550 } 2551 2552 if (HDR_HAS_RABD(hdr)) { 2553 (void) zfs_refcount_add_many( 2554 &new_state->arcs_size, 2555 HDR_GET_PSIZE(hdr), hdr); 2556 } 2557 } 2558 } 2559 2560 if (update_old && old_state != arc_l2c_only) { 2561 ASSERT(HDR_HAS_L1HDR(hdr)); 2562 if (GHOST_STATE(old_state)) { 2563 ASSERT0(bufcnt); 2564 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2565 ASSERT(!HDR_HAS_RABD(hdr)); 2566 2567 /* 2568 * When moving a header off of a ghost state, 2569 * the header will not contain any arc buffers. 2570 * We use the arc header pointer for the reference 2571 * which is exactly what we did when we put the 2572 * header on the ghost state. 2573 */ 2574 2575 (void) zfs_refcount_remove_many(&old_state->arcs_size, 2576 HDR_GET_LSIZE(hdr), hdr); 2577 } else { 2578 uint32_t buffers = 0; 2579 2580 /* 2581 * Each individual buffer holds a unique reference, 2582 * thus we must remove each of these references one 2583 * at a time. 2584 */ 2585 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2586 buf = buf->b_next) { 2587 ASSERT3U(bufcnt, !=, 0); 2588 buffers++; 2589 2590 /* 2591 * When the arc_buf_t is sharing the data 2592 * block with the hdr, the owner of the 2593 * reference belongs to the hdr. Only 2594 * add to the refcount if the arc_buf_t is 2595 * not shared. 2596 */ 2597 if (arc_buf_is_shared(buf)) 2598 continue; 2599 2600 (void) zfs_refcount_remove_many( 2601 &old_state->arcs_size, arc_buf_size(buf), 2602 buf); 2603 } 2604 ASSERT3U(bufcnt, ==, buffers); 2605 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 2606 HDR_HAS_RABD(hdr)); 2607 2608 if (hdr->b_l1hdr.b_pabd != NULL) { 2609 (void) zfs_refcount_remove_many( 2610 &old_state->arcs_size, arc_hdr_size(hdr), 2611 hdr); 2612 } 2613 2614 if (HDR_HAS_RABD(hdr)) { 2615 (void) zfs_refcount_remove_many( 2616 &old_state->arcs_size, HDR_GET_PSIZE(hdr), 2617 hdr); 2618 } 2619 } 2620 } 2621 2622 if (HDR_HAS_L1HDR(hdr)) { 2623 hdr->b_l1hdr.b_state = new_state; 2624 2625 if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) { 2626 l2arc_hdr_arcstats_decrement_state(hdr); 2627 hdr->b_l2hdr.b_arcs_state = new_state->arcs_state; 2628 l2arc_hdr_arcstats_increment_state(hdr); 2629 } 2630 } 2631 2632 /* 2633 * L2 headers should never be on the L2 state list since they don't 2634 * have L1 headers allocated. 2635 */ 2636 ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) && 2637 multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA])); 2638 } 2639 2640 void 2641 arc_space_consume(uint64_t space, arc_space_type_t type) 2642 { 2643 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2644 2645 switch (type) { 2646 default: 2647 break; 2648 case ARC_SPACE_DATA: 2649 aggsum_add(&astat_data_size, space); 2650 break; 2651 case ARC_SPACE_META: 2652 aggsum_add(&astat_metadata_size, space); 2653 break; 2654 case ARC_SPACE_BONUS: 2655 aggsum_add(&astat_bonus_size, space); 2656 break; 2657 case ARC_SPACE_DNODE: 2658 aggsum_add(&astat_dnode_size, space); 2659 break; 2660 case ARC_SPACE_DBUF: 2661 aggsum_add(&astat_dbuf_size, space); 2662 break; 2663 case ARC_SPACE_HDRS: 2664 aggsum_add(&astat_hdr_size, space); 2665 break; 2666 case ARC_SPACE_L2HDRS: 2667 aggsum_add(&astat_l2_hdr_size, space); 2668 break; 2669 case ARC_SPACE_ABD_CHUNK_WASTE: 2670 /* 2671 * Note: this includes space wasted by all scatter ABD's, not 2672 * just those allocated by the ARC. But the vast majority of 2673 * scatter ABD's come from the ARC, because other users are 2674 * very short-lived. 2675 */ 2676 aggsum_add(&astat_abd_chunk_waste_size, space); 2677 break; 2678 } 2679 2680 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) 2681 aggsum_add(&arc_meta_used, space); 2682 2683 aggsum_add(&arc_size, space); 2684 } 2685 2686 void 2687 arc_space_return(uint64_t space, arc_space_type_t type) 2688 { 2689 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2690 2691 switch (type) { 2692 default: 2693 break; 2694 case ARC_SPACE_DATA: 2695 aggsum_add(&astat_data_size, -space); 2696 break; 2697 case ARC_SPACE_META: 2698 aggsum_add(&astat_metadata_size, -space); 2699 break; 2700 case ARC_SPACE_BONUS: 2701 aggsum_add(&astat_bonus_size, -space); 2702 break; 2703 case ARC_SPACE_DNODE: 2704 aggsum_add(&astat_dnode_size, -space); 2705 break; 2706 case ARC_SPACE_DBUF: 2707 aggsum_add(&astat_dbuf_size, -space); 2708 break; 2709 case ARC_SPACE_HDRS: 2710 aggsum_add(&astat_hdr_size, -space); 2711 break; 2712 case ARC_SPACE_L2HDRS: 2713 aggsum_add(&astat_l2_hdr_size, -space); 2714 break; 2715 case ARC_SPACE_ABD_CHUNK_WASTE: 2716 aggsum_add(&astat_abd_chunk_waste_size, -space); 2717 break; 2718 } 2719 2720 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) { 2721 ASSERT(aggsum_compare(&arc_meta_used, space) >= 0); 2722 /* 2723 * We use the upper bound here rather than the precise value 2724 * because the arc_meta_max value doesn't need to be 2725 * precise. It's only consumed by humans via arcstats. 2726 */ 2727 if (arc_meta_max < aggsum_upper_bound(&arc_meta_used)) 2728 arc_meta_max = aggsum_upper_bound(&arc_meta_used); 2729 aggsum_add(&arc_meta_used, -space); 2730 } 2731 2732 ASSERT(aggsum_compare(&arc_size, space) >= 0); 2733 aggsum_add(&arc_size, -space); 2734 } 2735 2736 /* 2737 * Given a hdr and a buf, returns whether that buf can share its b_data buffer 2738 * with the hdr's b_pabd. 2739 */ 2740 static boolean_t 2741 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2742 { 2743 /* 2744 * The criteria for sharing a hdr's data are: 2745 * 1. the buffer is not encrypted 2746 * 2. the hdr's compression matches the buf's compression 2747 * 3. the hdr doesn't need to be byteswapped 2748 * 4. the hdr isn't already being shared 2749 * 5. the buf is either compressed or it is the last buf in the hdr list 2750 * 2751 * Criterion #5 maintains the invariant that shared uncompressed 2752 * bufs must be the final buf in the hdr's b_buf list. Reading this, you 2753 * might ask, "if a compressed buf is allocated first, won't that be the 2754 * last thing in the list?", but in that case it's impossible to create 2755 * a shared uncompressed buf anyway (because the hdr must be compressed 2756 * to have the compressed buf). You might also think that #3 is 2757 * sufficient to make this guarantee, however it's possible 2758 * (specifically in the rare L2ARC write race mentioned in 2759 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that 2760 * is shareable, but wasn't at the time of its allocation. Rather than 2761 * allow a new shared uncompressed buf to be created and then shuffle 2762 * the list around to make it the last element, this simply disallows 2763 * sharing if the new buf isn't the first to be added. 2764 */ 2765 ASSERT3P(buf->b_hdr, ==, hdr); 2766 boolean_t hdr_compressed = 2767 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF; 2768 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0; 2769 return (!ARC_BUF_ENCRYPTED(buf) && 2770 buf_compressed == hdr_compressed && 2771 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && 2772 !HDR_SHARED_DATA(hdr) && 2773 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf))); 2774 } 2775 2776 /* 2777 * Allocate a buf for this hdr. If you care about the data that's in the hdr, 2778 * or if you want a compressed buffer, pass those flags in. Returns 0 if the 2779 * copy was made successfully, or an error code otherwise. 2780 */ 2781 static int 2782 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb, 2783 void *tag, boolean_t encrypted, boolean_t compressed, boolean_t noauth, 2784 boolean_t fill, arc_buf_t **ret) 2785 { 2786 arc_buf_t *buf; 2787 arc_fill_flags_t flags = ARC_FILL_LOCKED; 2788 2789 ASSERT(HDR_HAS_L1HDR(hdr)); 2790 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2791 VERIFY(hdr->b_type == ARC_BUFC_DATA || 2792 hdr->b_type == ARC_BUFC_METADATA); 2793 ASSERT3P(ret, !=, NULL); 2794 ASSERT3P(*ret, ==, NULL); 2795 IMPLY(encrypted, compressed); 2796 2797 hdr->b_l1hdr.b_mru_hits = 0; 2798 hdr->b_l1hdr.b_mru_ghost_hits = 0; 2799 hdr->b_l1hdr.b_mfu_hits = 0; 2800 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 2801 hdr->b_l1hdr.b_l2_hits = 0; 2802 2803 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2804 buf->b_hdr = hdr; 2805 buf->b_data = NULL; 2806 buf->b_next = hdr->b_l1hdr.b_buf; 2807 buf->b_flags = 0; 2808 2809 add_reference(hdr, tag); 2810 2811 /* 2812 * We're about to change the hdr's b_flags. We must either 2813 * hold the hash_lock or be undiscoverable. 2814 */ 2815 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2816 2817 /* 2818 * Only honor requests for compressed bufs if the hdr is actually 2819 * compressed. This must be overridden if the buffer is encrypted since 2820 * encrypted buffers cannot be decompressed. 2821 */ 2822 if (encrypted) { 2823 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2824 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED; 2825 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED; 2826 } else if (compressed && 2827 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 2828 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2829 flags |= ARC_FILL_COMPRESSED; 2830 } 2831 2832 if (noauth) { 2833 ASSERT0(encrypted); 2834 flags |= ARC_FILL_NOAUTH; 2835 } 2836 2837 /* 2838 * If the hdr's data can be shared then we share the data buffer and 2839 * set the appropriate bit in the hdr's b_flags to indicate the hdr is 2840 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new 2841 * buffer to store the buf's data. 2842 * 2843 * There are two additional restrictions here because we're sharing 2844 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be 2845 * actively involved in an L2ARC write, because if this buf is used by 2846 * an arc_write() then the hdr's data buffer will be released when the 2847 * write completes, even though the L2ARC write might still be using it. 2848 * Second, the hdr's ABD must be linear so that the buf's user doesn't 2849 * need to be ABD-aware. It must be allocated via 2850 * zio_[data_]buf_alloc(), not as a page, because we need to be able 2851 * to abd_release_ownership_of_buf(), which isn't allowed on "linear 2852 * page" buffers because the ABD code needs to handle freeing them 2853 * specially. 2854 */ 2855 boolean_t can_share = arc_can_share(hdr, buf) && 2856 !HDR_L2_WRITING(hdr) && 2857 hdr->b_l1hdr.b_pabd != NULL && 2858 abd_is_linear(hdr->b_l1hdr.b_pabd) && 2859 !abd_is_linear_page(hdr->b_l1hdr.b_pabd); 2860 2861 /* Set up b_data and sharing */ 2862 if (can_share) { 2863 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd); 2864 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2865 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2866 } else { 2867 buf->b_data = 2868 arc_get_data_buf(hdr, arc_buf_size(buf), buf); 2869 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2870 } 2871 VERIFY3P(buf->b_data, !=, NULL); 2872 2873 hdr->b_l1hdr.b_buf = buf; 2874 hdr->b_l1hdr.b_bufcnt += 1; 2875 if (encrypted) 2876 hdr->b_crypt_hdr.b_ebufcnt += 1; 2877 2878 /* 2879 * If the user wants the data from the hdr, we need to either copy or 2880 * decompress the data. 2881 */ 2882 if (fill) { 2883 ASSERT3P(zb, !=, NULL); 2884 return (arc_buf_fill(buf, spa, zb, flags)); 2885 } 2886 2887 return (0); 2888 } 2889 2890 static char *arc_onloan_tag = "onloan"; 2891 2892 static inline void 2893 arc_loaned_bytes_update(int64_t delta) 2894 { 2895 atomic_add_64(&arc_loaned_bytes, delta); 2896 2897 /* assert that it did not wrap around */ 2898 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 2899 } 2900 2901 /* 2902 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 2903 * flight data by arc_tempreserve_space() until they are "returned". Loaned 2904 * buffers must be returned to the arc before they can be used by the DMU or 2905 * freed. 2906 */ 2907 arc_buf_t * 2908 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size) 2909 { 2910 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag, 2911 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size); 2912 2913 arc_loaned_bytes_update(arc_buf_size(buf)); 2914 2915 return (buf); 2916 } 2917 2918 arc_buf_t * 2919 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize, 2920 enum zio_compress compression_type, uint8_t complevel) 2921 { 2922 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag, 2923 psize, lsize, compression_type, complevel); 2924 2925 arc_loaned_bytes_update(arc_buf_size(buf)); 2926 2927 return (buf); 2928 } 2929 2930 arc_buf_t * 2931 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder, 2932 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 2933 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 2934 enum zio_compress compression_type, uint8_t complevel) 2935 { 2936 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj, 2937 byteorder, salt, iv, mac, ot, psize, lsize, compression_type, 2938 complevel); 2939 2940 atomic_add_64(&arc_loaned_bytes, psize); 2941 return (buf); 2942 } 2943 2944 2945 /* 2946 * Return a loaned arc buffer to the arc. 2947 */ 2948 void 2949 arc_return_buf(arc_buf_t *buf, void *tag) 2950 { 2951 arc_buf_hdr_t *hdr = buf->b_hdr; 2952 2953 ASSERT3P(buf->b_data, !=, NULL); 2954 ASSERT(HDR_HAS_L1HDR(hdr)); 2955 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 2956 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2957 2958 arc_loaned_bytes_update(-arc_buf_size(buf)); 2959 } 2960 2961 /* Detach an arc_buf from a dbuf (tag) */ 2962 void 2963 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 2964 { 2965 arc_buf_hdr_t *hdr = buf->b_hdr; 2966 2967 ASSERT3P(buf->b_data, !=, NULL); 2968 ASSERT(HDR_HAS_L1HDR(hdr)); 2969 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2970 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 2971 2972 arc_loaned_bytes_update(arc_buf_size(buf)); 2973 } 2974 2975 static void 2976 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type) 2977 { 2978 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); 2979 2980 df->l2df_abd = abd; 2981 df->l2df_size = size; 2982 df->l2df_type = type; 2983 mutex_enter(&l2arc_free_on_write_mtx); 2984 list_insert_head(l2arc_free_on_write, df); 2985 mutex_exit(&l2arc_free_on_write_mtx); 2986 } 2987 2988 static void 2989 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata) 2990 { 2991 arc_state_t *state = hdr->b_l1hdr.b_state; 2992 arc_buf_contents_t type = arc_buf_type(hdr); 2993 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 2994 2995 /* protected by hash lock, if in the hash table */ 2996 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2997 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2998 ASSERT(state != arc_anon && state != arc_l2c_only); 2999 3000 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 3001 size, hdr); 3002 } 3003 (void) zfs_refcount_remove_many(&state->arcs_size, size, hdr); 3004 if (type == ARC_BUFC_METADATA) { 3005 arc_space_return(size, ARC_SPACE_META); 3006 } else { 3007 ASSERT(type == ARC_BUFC_DATA); 3008 arc_space_return(size, ARC_SPACE_DATA); 3009 } 3010 3011 if (free_rdata) { 3012 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type); 3013 } else { 3014 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type); 3015 } 3016 } 3017 3018 /* 3019 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the 3020 * data buffer, we transfer the refcount ownership to the hdr and update 3021 * the appropriate kstats. 3022 */ 3023 static void 3024 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 3025 { 3026 ASSERT(arc_can_share(hdr, buf)); 3027 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3028 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 3029 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3030 3031 /* 3032 * Start sharing the data buffer. We transfer the 3033 * refcount ownership to the hdr since it always owns 3034 * the refcount whenever an arc_buf_t is shared. 3035 */ 3036 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 3037 arc_hdr_size(hdr), buf, hdr); 3038 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf)); 3039 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd, 3040 HDR_ISTYPE_METADATA(hdr)); 3041 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 3042 buf->b_flags |= ARC_BUF_FLAG_SHARED; 3043 3044 /* 3045 * Since we've transferred ownership to the hdr we need 3046 * to increment its compressed and uncompressed kstats and 3047 * decrement the overhead size. 3048 */ 3049 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 3050 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3051 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf)); 3052 } 3053 3054 static void 3055 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 3056 { 3057 ASSERT(arc_buf_is_shared(buf)); 3058 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3059 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3060 3061 /* 3062 * We are no longer sharing this buffer so we need 3063 * to transfer its ownership to the rightful owner. 3064 */ 3065 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 3066 arc_hdr_size(hdr), hdr, buf); 3067 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3068 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd); 3069 abd_free(hdr->b_l1hdr.b_pabd); 3070 hdr->b_l1hdr.b_pabd = NULL; 3071 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 3072 3073 /* 3074 * Since the buffer is no longer shared between 3075 * the arc buf and the hdr, count it as overhead. 3076 */ 3077 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 3078 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3079 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 3080 } 3081 3082 /* 3083 * Remove an arc_buf_t from the hdr's buf list and return the last 3084 * arc_buf_t on the list. If no buffers remain on the list then return 3085 * NULL. 3086 */ 3087 static arc_buf_t * 3088 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf) 3089 { 3090 ASSERT(HDR_HAS_L1HDR(hdr)); 3091 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3092 3093 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf; 3094 arc_buf_t *lastbuf = NULL; 3095 3096 /* 3097 * Remove the buf from the hdr list and locate the last 3098 * remaining buffer on the list. 3099 */ 3100 while (*bufp != NULL) { 3101 if (*bufp == buf) 3102 *bufp = buf->b_next; 3103 3104 /* 3105 * If we've removed a buffer in the middle of 3106 * the list then update the lastbuf and update 3107 * bufp. 3108 */ 3109 if (*bufp != NULL) { 3110 lastbuf = *bufp; 3111 bufp = &(*bufp)->b_next; 3112 } 3113 } 3114 buf->b_next = NULL; 3115 ASSERT3P(lastbuf, !=, buf); 3116 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL); 3117 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL); 3118 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf)); 3119 3120 return (lastbuf); 3121 } 3122 3123 /* 3124 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's 3125 * list and free it. 3126 */ 3127 static void 3128 arc_buf_destroy_impl(arc_buf_t *buf) 3129 { 3130 arc_buf_hdr_t *hdr = buf->b_hdr; 3131 3132 /* 3133 * Free up the data associated with the buf but only if we're not 3134 * sharing this with the hdr. If we are sharing it with the hdr, the 3135 * hdr is responsible for doing the free. 3136 */ 3137 if (buf->b_data != NULL) { 3138 /* 3139 * We're about to change the hdr's b_flags. We must either 3140 * hold the hash_lock or be undiscoverable. 3141 */ 3142 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3143 3144 arc_cksum_verify(buf); 3145 arc_buf_unwatch(buf); 3146 3147 if (arc_buf_is_shared(buf)) { 3148 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3149 } else { 3150 uint64_t size = arc_buf_size(buf); 3151 arc_free_data_buf(hdr, buf->b_data, size, buf); 3152 ARCSTAT_INCR(arcstat_overhead_size, -size); 3153 } 3154 buf->b_data = NULL; 3155 3156 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3157 hdr->b_l1hdr.b_bufcnt -= 1; 3158 3159 if (ARC_BUF_ENCRYPTED(buf)) { 3160 hdr->b_crypt_hdr.b_ebufcnt -= 1; 3161 3162 /* 3163 * If we have no more encrypted buffers and we've 3164 * already gotten a copy of the decrypted data we can 3165 * free b_rabd to save some space. 3166 */ 3167 if (hdr->b_crypt_hdr.b_ebufcnt == 0 && 3168 HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL && 3169 !HDR_IO_IN_PROGRESS(hdr)) { 3170 arc_hdr_free_abd(hdr, B_TRUE); 3171 } 3172 } 3173 } 3174 3175 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 3176 3177 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 3178 /* 3179 * If the current arc_buf_t is sharing its data buffer with the 3180 * hdr, then reassign the hdr's b_pabd to share it with the new 3181 * buffer at the end of the list. The shared buffer is always 3182 * the last one on the hdr's buffer list. 3183 * 3184 * There is an equivalent case for compressed bufs, but since 3185 * they aren't guaranteed to be the last buf in the list and 3186 * that is an exceedingly rare case, we just allow that space be 3187 * wasted temporarily. We must also be careful not to share 3188 * encrypted buffers, since they cannot be shared. 3189 */ 3190 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) { 3191 /* Only one buf can be shared at once */ 3192 VERIFY(!arc_buf_is_shared(lastbuf)); 3193 /* hdr is uncompressed so can't have compressed buf */ 3194 VERIFY(!ARC_BUF_COMPRESSED(lastbuf)); 3195 3196 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3197 arc_hdr_free_abd(hdr, B_FALSE); 3198 3199 /* 3200 * We must setup a new shared block between the 3201 * last buffer and the hdr. The data would have 3202 * been allocated by the arc buf so we need to transfer 3203 * ownership to the hdr since it's now being shared. 3204 */ 3205 arc_share_buf(hdr, lastbuf); 3206 } 3207 } else if (HDR_SHARED_DATA(hdr)) { 3208 /* 3209 * Uncompressed shared buffers are always at the end 3210 * of the list. Compressed buffers don't have the 3211 * same requirements. This makes it hard to 3212 * simply assert that the lastbuf is shared so 3213 * we rely on the hdr's compression flags to determine 3214 * if we have a compressed, shared buffer. 3215 */ 3216 ASSERT3P(lastbuf, !=, NULL); 3217 ASSERT(arc_buf_is_shared(lastbuf) || 3218 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 3219 } 3220 3221 /* 3222 * Free the checksum if we're removing the last uncompressed buf from 3223 * this hdr. 3224 */ 3225 if (!arc_hdr_has_uncompressed_buf(hdr)) { 3226 arc_cksum_free(hdr); 3227 } 3228 3229 /* clean up the buf */ 3230 buf->b_hdr = NULL; 3231 kmem_cache_free(buf_cache, buf); 3232 } 3233 3234 static void 3235 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags) 3236 { 3237 uint64_t size; 3238 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0); 3239 boolean_t do_adapt = ((alloc_flags & ARC_HDR_DO_ADAPT) != 0); 3240 3241 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 3242 ASSERT(HDR_HAS_L1HDR(hdr)); 3243 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata); 3244 IMPLY(alloc_rdata, HDR_PROTECTED(hdr)); 3245 3246 if (alloc_rdata) { 3247 size = HDR_GET_PSIZE(hdr); 3248 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL); 3249 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr, 3250 do_adapt); 3251 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL); 3252 ARCSTAT_INCR(arcstat_raw_size, size); 3253 } else { 3254 size = arc_hdr_size(hdr); 3255 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3256 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr, 3257 do_adapt); 3258 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3259 } 3260 3261 ARCSTAT_INCR(arcstat_compressed_size, size); 3262 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3263 } 3264 3265 static void 3266 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata) 3267 { 3268 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 3269 3270 ASSERT(HDR_HAS_L1HDR(hdr)); 3271 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 3272 IMPLY(free_rdata, HDR_HAS_RABD(hdr)); 3273 3274 /* 3275 * If the hdr is currently being written to the l2arc then 3276 * we defer freeing the data by adding it to the l2arc_free_on_write 3277 * list. The l2arc will free the data once it's finished 3278 * writing it to the l2arc device. 3279 */ 3280 if (HDR_L2_WRITING(hdr)) { 3281 arc_hdr_free_on_write(hdr, free_rdata); 3282 ARCSTAT_BUMP(arcstat_l2_free_on_write); 3283 } else if (free_rdata) { 3284 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr); 3285 } else { 3286 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr); 3287 } 3288 3289 if (free_rdata) { 3290 hdr->b_crypt_hdr.b_rabd = NULL; 3291 ARCSTAT_INCR(arcstat_raw_size, -size); 3292 } else { 3293 hdr->b_l1hdr.b_pabd = NULL; 3294 } 3295 3296 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr)) 3297 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 3298 3299 ARCSTAT_INCR(arcstat_compressed_size, -size); 3300 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3301 } 3302 3303 static arc_buf_hdr_t * 3304 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, 3305 boolean_t protected, enum zio_compress compression_type, uint8_t complevel, 3306 arc_buf_contents_t type, boolean_t alloc_rdata) 3307 { 3308 arc_buf_hdr_t *hdr; 3309 int flags = ARC_HDR_DO_ADAPT; 3310 3311 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); 3312 if (protected) { 3313 hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE); 3314 } else { 3315 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 3316 } 3317 flags |= alloc_rdata ? ARC_HDR_ALLOC_RDATA : 0; 3318 3319 ASSERT(HDR_EMPTY(hdr)); 3320 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3321 HDR_SET_PSIZE(hdr, psize); 3322 HDR_SET_LSIZE(hdr, lsize); 3323 hdr->b_spa = spa; 3324 hdr->b_type = type; 3325 hdr->b_flags = 0; 3326 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); 3327 arc_hdr_set_compress(hdr, compression_type); 3328 hdr->b_complevel = complevel; 3329 if (protected) 3330 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 3331 3332 hdr->b_l1hdr.b_state = arc_anon; 3333 hdr->b_l1hdr.b_arc_access = 0; 3334 hdr->b_l1hdr.b_bufcnt = 0; 3335 hdr->b_l1hdr.b_buf = NULL; 3336 3337 /* 3338 * Allocate the hdr's buffer. This will contain either 3339 * the compressed or uncompressed data depending on the block 3340 * it references and compressed arc enablement. 3341 */ 3342 arc_hdr_alloc_abd(hdr, flags); 3343 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3344 3345 return (hdr); 3346 } 3347 3348 /* 3349 * Transition between the two allocation states for the arc_buf_hdr struct. 3350 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 3351 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 3352 * version is used when a cache buffer is only in the L2ARC in order to reduce 3353 * memory usage. 3354 */ 3355 static arc_buf_hdr_t * 3356 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 3357 { 3358 ASSERT(HDR_HAS_L2HDR(hdr)); 3359 3360 arc_buf_hdr_t *nhdr; 3361 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3362 3363 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 3364 (old == hdr_l2only_cache && new == hdr_full_cache)); 3365 3366 /* 3367 * if the caller wanted a new full header and the header is to be 3368 * encrypted we will actually allocate the header from the full crypt 3369 * cache instead. The same applies to freeing from the old cache. 3370 */ 3371 if (HDR_PROTECTED(hdr) && new == hdr_full_cache) 3372 new = hdr_full_crypt_cache; 3373 if (HDR_PROTECTED(hdr) && old == hdr_full_cache) 3374 old = hdr_full_crypt_cache; 3375 3376 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 3377 3378 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 3379 buf_hash_remove(hdr); 3380 3381 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE); 3382 3383 if (new == hdr_full_cache || new == hdr_full_crypt_cache) { 3384 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3385 /* 3386 * arc_access and arc_change_state need to be aware that a 3387 * header has just come out of L2ARC, so we set its state to 3388 * l2c_only even though it's about to change. 3389 */ 3390 nhdr->b_l1hdr.b_state = arc_l2c_only; 3391 3392 /* Verify previous threads set to NULL before freeing */ 3393 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL); 3394 ASSERT(!HDR_HAS_RABD(hdr)); 3395 } else { 3396 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3397 ASSERT0(hdr->b_l1hdr.b_bufcnt); 3398 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3399 3400 /* 3401 * If we've reached here, We must have been called from 3402 * arc_evict_hdr(), as such we should have already been 3403 * removed from any ghost list we were previously on 3404 * (which protects us from racing with arc_evict_state), 3405 * thus no locking is needed during this check. 3406 */ 3407 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3408 3409 /* 3410 * A buffer must not be moved into the arc_l2c_only 3411 * state if it's not finished being written out to the 3412 * l2arc device. Otherwise, the b_l1hdr.b_pabd field 3413 * might try to be accessed, even though it was removed. 3414 */ 3415 VERIFY(!HDR_L2_WRITING(hdr)); 3416 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3417 ASSERT(!HDR_HAS_RABD(hdr)); 3418 3419 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3420 } 3421 /* 3422 * The header has been reallocated so we need to re-insert it into any 3423 * lists it was on. 3424 */ 3425 (void) buf_hash_insert(nhdr, NULL); 3426 3427 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 3428 3429 mutex_enter(&dev->l2ad_mtx); 3430 3431 /* 3432 * We must place the realloc'ed header back into the list at 3433 * the same spot. Otherwise, if it's placed earlier in the list, 3434 * l2arc_write_buffers() could find it during the function's 3435 * write phase, and try to write it out to the l2arc. 3436 */ 3437 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 3438 list_remove(&dev->l2ad_buflist, hdr); 3439 3440 mutex_exit(&dev->l2ad_mtx); 3441 3442 /* 3443 * Since we're using the pointer address as the tag when 3444 * incrementing and decrementing the l2ad_alloc refcount, we 3445 * must remove the old pointer (that we're about to destroy) and 3446 * add the new pointer to the refcount. Otherwise we'd remove 3447 * the wrong pointer address when calling arc_hdr_destroy() later. 3448 */ 3449 3450 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 3451 arc_hdr_size(hdr), hdr); 3452 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 3453 arc_hdr_size(nhdr), nhdr); 3454 3455 buf_discard_identity(hdr); 3456 kmem_cache_free(old, hdr); 3457 3458 return (nhdr); 3459 } 3460 3461 /* 3462 * This function allows an L1 header to be reallocated as a crypt 3463 * header and vice versa. If we are going to a crypt header, the 3464 * new fields will be zeroed out. 3465 */ 3466 static arc_buf_hdr_t * 3467 arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt) 3468 { 3469 arc_buf_hdr_t *nhdr; 3470 arc_buf_t *buf; 3471 kmem_cache_t *ncache, *ocache; 3472 unsigned nsize, osize; 3473 3474 /* 3475 * This function requires that hdr is in the arc_anon state. 3476 * Therefore it won't have any L2ARC data for us to worry 3477 * about copying. 3478 */ 3479 ASSERT(HDR_HAS_L1HDR(hdr)); 3480 ASSERT(!HDR_HAS_L2HDR(hdr)); 3481 ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt); 3482 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3483 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3484 ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node)); 3485 ASSERT3P(hdr->b_hash_next, ==, NULL); 3486 3487 if (need_crypt) { 3488 ncache = hdr_full_crypt_cache; 3489 nsize = sizeof (hdr->b_crypt_hdr); 3490 ocache = hdr_full_cache; 3491 osize = HDR_FULL_SIZE; 3492 } else { 3493 ncache = hdr_full_cache; 3494 nsize = HDR_FULL_SIZE; 3495 ocache = hdr_full_crypt_cache; 3496 osize = sizeof (hdr->b_crypt_hdr); 3497 } 3498 3499 nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE); 3500 3501 /* 3502 * Copy all members that aren't locks or condvars to the new header. 3503 * No lists are pointing to us (as we asserted above), so we don't 3504 * need to worry about the list nodes. 3505 */ 3506 nhdr->b_dva = hdr->b_dva; 3507 nhdr->b_birth = hdr->b_birth; 3508 nhdr->b_type = hdr->b_type; 3509 nhdr->b_flags = hdr->b_flags; 3510 nhdr->b_psize = hdr->b_psize; 3511 nhdr->b_lsize = hdr->b_lsize; 3512 nhdr->b_spa = hdr->b_spa; 3513 nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum; 3514 nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt; 3515 nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap; 3516 nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state; 3517 nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access; 3518 nhdr->b_l1hdr.b_mru_hits = hdr->b_l1hdr.b_mru_hits; 3519 nhdr->b_l1hdr.b_mru_ghost_hits = hdr->b_l1hdr.b_mru_ghost_hits; 3520 nhdr->b_l1hdr.b_mfu_hits = hdr->b_l1hdr.b_mfu_hits; 3521 nhdr->b_l1hdr.b_mfu_ghost_hits = hdr->b_l1hdr.b_mfu_ghost_hits; 3522 nhdr->b_l1hdr.b_l2_hits = hdr->b_l1hdr.b_l2_hits; 3523 nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb; 3524 nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd; 3525 3526 /* 3527 * This zfs_refcount_add() exists only to ensure that the individual 3528 * arc buffers always point to a header that is referenced, avoiding 3529 * a small race condition that could trigger ASSERTs. 3530 */ 3531 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG); 3532 nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf; 3533 for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) { 3534 mutex_enter(&buf->b_evict_lock); 3535 buf->b_hdr = nhdr; 3536 mutex_exit(&buf->b_evict_lock); 3537 } 3538 3539 zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt); 3540 (void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG); 3541 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3542 3543 if (need_crypt) { 3544 arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED); 3545 } else { 3546 arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED); 3547 } 3548 3549 /* unset all members of the original hdr */ 3550 bzero(&hdr->b_dva, sizeof (dva_t)); 3551 hdr->b_birth = 0; 3552 hdr->b_type = ARC_BUFC_INVALID; 3553 hdr->b_flags = 0; 3554 hdr->b_psize = 0; 3555 hdr->b_lsize = 0; 3556 hdr->b_spa = 0; 3557 hdr->b_l1hdr.b_freeze_cksum = NULL; 3558 hdr->b_l1hdr.b_buf = NULL; 3559 hdr->b_l1hdr.b_bufcnt = 0; 3560 hdr->b_l1hdr.b_byteswap = 0; 3561 hdr->b_l1hdr.b_state = NULL; 3562 hdr->b_l1hdr.b_arc_access = 0; 3563 hdr->b_l1hdr.b_mru_hits = 0; 3564 hdr->b_l1hdr.b_mru_ghost_hits = 0; 3565 hdr->b_l1hdr.b_mfu_hits = 0; 3566 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 3567 hdr->b_l1hdr.b_l2_hits = 0; 3568 hdr->b_l1hdr.b_acb = NULL; 3569 hdr->b_l1hdr.b_pabd = NULL; 3570 3571 if (ocache == hdr_full_crypt_cache) { 3572 ASSERT(!HDR_HAS_RABD(hdr)); 3573 hdr->b_crypt_hdr.b_ot = DMU_OT_NONE; 3574 hdr->b_crypt_hdr.b_ebufcnt = 0; 3575 hdr->b_crypt_hdr.b_dsobj = 0; 3576 bzero(hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3577 bzero(hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3578 bzero(hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3579 } 3580 3581 buf_discard_identity(hdr); 3582 kmem_cache_free(ocache, hdr); 3583 3584 return (nhdr); 3585 } 3586 3587 /* 3588 * This function is used by the send / receive code to convert a newly 3589 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It 3590 * is also used to allow the root objset block to be updated without altering 3591 * its embedded MACs. Both block types will always be uncompressed so we do not 3592 * have to worry about compression type or psize. 3593 */ 3594 void 3595 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder, 3596 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv, 3597 const uint8_t *mac) 3598 { 3599 arc_buf_hdr_t *hdr = buf->b_hdr; 3600 3601 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET); 3602 ASSERT(HDR_HAS_L1HDR(hdr)); 3603 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3604 3605 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED); 3606 if (!HDR_PROTECTED(hdr)) 3607 hdr = arc_hdr_realloc_crypt(hdr, B_TRUE); 3608 hdr->b_crypt_hdr.b_dsobj = dsobj; 3609 hdr->b_crypt_hdr.b_ot = ot; 3610 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3611 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3612 if (!arc_hdr_has_uncompressed_buf(hdr)) 3613 arc_cksum_free(hdr); 3614 3615 if (salt != NULL) 3616 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3617 if (iv != NULL) 3618 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3619 if (mac != NULL) 3620 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3621 } 3622 3623 /* 3624 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. 3625 * The buf is returned thawed since we expect the consumer to modify it. 3626 */ 3627 arc_buf_t * 3628 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size) 3629 { 3630 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, 3631 B_FALSE, ZIO_COMPRESS_OFF, 0, type, B_FALSE); 3632 3633 arc_buf_t *buf = NULL; 3634 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE, 3635 B_FALSE, B_FALSE, &buf)); 3636 arc_buf_thaw(buf); 3637 3638 return (buf); 3639 } 3640 3641 /* 3642 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this 3643 * for bufs containing metadata. 3644 */ 3645 arc_buf_t * 3646 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize, 3647 enum zio_compress compression_type, uint8_t complevel) 3648 { 3649 ASSERT3U(lsize, >, 0); 3650 ASSERT3U(lsize, >=, psize); 3651 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF); 3652 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3653 3654 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 3655 B_FALSE, compression_type, complevel, ARC_BUFC_DATA, B_FALSE); 3656 3657 arc_buf_t *buf = NULL; 3658 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, 3659 B_TRUE, B_FALSE, B_FALSE, &buf)); 3660 arc_buf_thaw(buf); 3661 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3662 3663 if (!arc_buf_is_shared(buf)) { 3664 /* 3665 * To ensure that the hdr has the correct data in it if we call 3666 * arc_untransform() on this buf before it's been written to 3667 * disk, it's easiest if we just set up sharing between the 3668 * buf and the hdr. 3669 */ 3670 arc_hdr_free_abd(hdr, B_FALSE); 3671 arc_share_buf(hdr, buf); 3672 } 3673 3674 return (buf); 3675 } 3676 3677 arc_buf_t * 3678 arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder, 3679 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 3680 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 3681 enum zio_compress compression_type, uint8_t complevel) 3682 { 3683 arc_buf_hdr_t *hdr; 3684 arc_buf_t *buf; 3685 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ? 3686 ARC_BUFC_METADATA : ARC_BUFC_DATA; 3687 3688 ASSERT3U(lsize, >, 0); 3689 ASSERT3U(lsize, >=, psize); 3690 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF); 3691 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3692 3693 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE, 3694 compression_type, complevel, type, B_TRUE); 3695 3696 hdr->b_crypt_hdr.b_dsobj = dsobj; 3697 hdr->b_crypt_hdr.b_ot = ot; 3698 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3699 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3700 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3701 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3702 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3703 3704 /* 3705 * This buffer will be considered encrypted even if the ot is not an 3706 * encrypted type. It will become authenticated instead in 3707 * arc_write_ready(). 3708 */ 3709 buf = NULL; 3710 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE, 3711 B_FALSE, B_FALSE, &buf)); 3712 arc_buf_thaw(buf); 3713 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3714 3715 return (buf); 3716 } 3717 3718 static void 3719 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 3720 boolean_t state_only) 3721 { 3722 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3723 l2arc_dev_t *dev = l2hdr->b_dev; 3724 uint64_t lsize = HDR_GET_LSIZE(hdr); 3725 uint64_t psize = HDR_GET_PSIZE(hdr); 3726 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3727 arc_buf_contents_t type = hdr->b_type; 3728 int64_t lsize_s; 3729 int64_t psize_s; 3730 int64_t asize_s; 3731 3732 if (incr) { 3733 lsize_s = lsize; 3734 psize_s = psize; 3735 asize_s = asize; 3736 } else { 3737 lsize_s = -lsize; 3738 psize_s = -psize; 3739 asize_s = -asize; 3740 } 3741 3742 /* If the buffer is a prefetch, count it as such. */ 3743 if (HDR_PREFETCH(hdr)) { 3744 ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s); 3745 } else { 3746 /* 3747 * We use the value stored in the L2 header upon initial 3748 * caching in L2ARC. This value will be updated in case 3749 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC 3750 * metadata (log entry) cannot currently be updated. Having 3751 * the ARC state in the L2 header solves the problem of a 3752 * possibly absent L1 header (apparent in buffers restored 3753 * from persistent L2ARC). 3754 */ 3755 switch (hdr->b_l2hdr.b_arcs_state) { 3756 case ARC_STATE_MRU_GHOST: 3757 case ARC_STATE_MRU: 3758 ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s); 3759 break; 3760 case ARC_STATE_MFU_GHOST: 3761 case ARC_STATE_MFU: 3762 ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s); 3763 break; 3764 default: 3765 break; 3766 } 3767 } 3768 3769 if (state_only) 3770 return; 3771 3772 ARCSTAT_INCR(arcstat_l2_psize, psize_s); 3773 ARCSTAT_INCR(arcstat_l2_lsize, lsize_s); 3774 3775 switch (type) { 3776 case ARC_BUFC_DATA: 3777 ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s); 3778 break; 3779 case ARC_BUFC_METADATA: 3780 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s); 3781 break; 3782 default: 3783 break; 3784 } 3785 } 3786 3787 3788 static void 3789 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 3790 { 3791 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3792 l2arc_dev_t *dev = l2hdr->b_dev; 3793 uint64_t psize = HDR_GET_PSIZE(hdr); 3794 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3795 3796 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 3797 ASSERT(HDR_HAS_L2HDR(hdr)); 3798 3799 list_remove(&dev->l2ad_buflist, hdr); 3800 3801 l2arc_hdr_arcstats_decrement(hdr); 3802 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); 3803 3804 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), 3805 hdr); 3806 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 3807 } 3808 3809 static void 3810 arc_hdr_destroy(arc_buf_hdr_t *hdr) 3811 { 3812 if (HDR_HAS_L1HDR(hdr)) { 3813 ASSERT(hdr->b_l1hdr.b_buf == NULL || 3814 hdr->b_l1hdr.b_bufcnt > 0); 3815 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3816 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3817 } 3818 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3819 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 3820 3821 if (HDR_HAS_L2HDR(hdr)) { 3822 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3823 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 3824 3825 if (!buflist_held) 3826 mutex_enter(&dev->l2ad_mtx); 3827 3828 /* 3829 * Even though we checked this conditional above, we 3830 * need to check this again now that we have the 3831 * l2ad_mtx. This is because we could be racing with 3832 * another thread calling l2arc_evict() which might have 3833 * destroyed this header's L2 portion as we were waiting 3834 * to acquire the l2ad_mtx. If that happens, we don't 3835 * want to re-destroy the header's L2 portion. 3836 */ 3837 if (HDR_HAS_L2HDR(hdr)) 3838 arc_hdr_l2hdr_destroy(hdr); 3839 3840 if (!buflist_held) 3841 mutex_exit(&dev->l2ad_mtx); 3842 } 3843 3844 /* 3845 * The header's identify can only be safely discarded once it is no 3846 * longer discoverable. This requires removing it from the hash table 3847 * and the l2arc header list. After this point the hash lock can not 3848 * be used to protect the header. 3849 */ 3850 if (!HDR_EMPTY(hdr)) 3851 buf_discard_identity(hdr); 3852 3853 if (HDR_HAS_L1HDR(hdr)) { 3854 arc_cksum_free(hdr); 3855 3856 while (hdr->b_l1hdr.b_buf != NULL) 3857 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf); 3858 3859 if (hdr->b_l1hdr.b_pabd != NULL) 3860 arc_hdr_free_abd(hdr, B_FALSE); 3861 3862 if (HDR_HAS_RABD(hdr)) 3863 arc_hdr_free_abd(hdr, B_TRUE); 3864 } 3865 3866 ASSERT3P(hdr->b_hash_next, ==, NULL); 3867 if (HDR_HAS_L1HDR(hdr)) { 3868 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3869 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 3870 3871 if (!HDR_PROTECTED(hdr)) { 3872 kmem_cache_free(hdr_full_cache, hdr); 3873 } else { 3874 kmem_cache_free(hdr_full_crypt_cache, hdr); 3875 } 3876 } else { 3877 kmem_cache_free(hdr_l2only_cache, hdr); 3878 } 3879 } 3880 3881 void 3882 arc_buf_destroy(arc_buf_t *buf, void* tag) 3883 { 3884 arc_buf_hdr_t *hdr = buf->b_hdr; 3885 3886 if (hdr->b_l1hdr.b_state == arc_anon) { 3887 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 3888 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3889 VERIFY0(remove_reference(hdr, NULL, tag)); 3890 arc_hdr_destroy(hdr); 3891 return; 3892 } 3893 3894 kmutex_t *hash_lock = HDR_LOCK(hdr); 3895 mutex_enter(hash_lock); 3896 3897 ASSERT3P(hdr, ==, buf->b_hdr); 3898 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3899 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3900 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); 3901 ASSERT3P(buf->b_data, !=, NULL); 3902 3903 (void) remove_reference(hdr, hash_lock, tag); 3904 arc_buf_destroy_impl(buf); 3905 mutex_exit(hash_lock); 3906 } 3907 3908 /* 3909 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 3910 * state of the header is dependent on its state prior to entering this 3911 * function. The following transitions are possible: 3912 * 3913 * - arc_mru -> arc_mru_ghost 3914 * - arc_mfu -> arc_mfu_ghost 3915 * - arc_mru_ghost -> arc_l2c_only 3916 * - arc_mru_ghost -> deleted 3917 * - arc_mfu_ghost -> arc_l2c_only 3918 * - arc_mfu_ghost -> deleted 3919 */ 3920 static int64_t 3921 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 3922 { 3923 arc_state_t *evicted_state, *state; 3924 int64_t bytes_evicted = 0; 3925 int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ? 3926 arc_min_prescient_prefetch_ms : arc_min_prefetch_ms; 3927 3928 ASSERT(MUTEX_HELD(hash_lock)); 3929 ASSERT(HDR_HAS_L1HDR(hdr)); 3930 3931 state = hdr->b_l1hdr.b_state; 3932 if (GHOST_STATE(state)) { 3933 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3934 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3935 3936 /* 3937 * l2arc_write_buffers() relies on a header's L1 portion 3938 * (i.e. its b_pabd field) during it's write phase. 3939 * Thus, we cannot push a header onto the arc_l2c_only 3940 * state (removing its L1 piece) until the header is 3941 * done being written to the l2arc. 3942 */ 3943 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 3944 ARCSTAT_BUMP(arcstat_evict_l2_skip); 3945 return (bytes_evicted); 3946 } 3947 3948 ARCSTAT_BUMP(arcstat_deleted); 3949 bytes_evicted += HDR_GET_LSIZE(hdr); 3950 3951 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 3952 3953 if (HDR_HAS_L2HDR(hdr)) { 3954 ASSERT(hdr->b_l1hdr.b_pabd == NULL); 3955 ASSERT(!HDR_HAS_RABD(hdr)); 3956 /* 3957 * This buffer is cached on the 2nd Level ARC; 3958 * don't destroy the header. 3959 */ 3960 arc_change_state(arc_l2c_only, hdr, hash_lock); 3961 /* 3962 * dropping from L1+L2 cached to L2-only, 3963 * realloc to remove the L1 header. 3964 */ 3965 hdr = arc_hdr_realloc(hdr, hdr_full_cache, 3966 hdr_l2only_cache); 3967 } else { 3968 arc_change_state(arc_anon, hdr, hash_lock); 3969 arc_hdr_destroy(hdr); 3970 } 3971 return (bytes_evicted); 3972 } 3973 3974 ASSERT(state == arc_mru || state == arc_mfu); 3975 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3976 3977 /* prefetch buffers have a minimum lifespan */ 3978 if (HDR_IO_IN_PROGRESS(hdr) || 3979 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 3980 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < 3981 MSEC_TO_TICK(min_lifetime))) { 3982 ARCSTAT_BUMP(arcstat_evict_skip); 3983 return (bytes_evicted); 3984 } 3985 3986 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3987 while (hdr->b_l1hdr.b_buf) { 3988 arc_buf_t *buf = hdr->b_l1hdr.b_buf; 3989 if (!mutex_tryenter(&buf->b_evict_lock)) { 3990 ARCSTAT_BUMP(arcstat_mutex_miss); 3991 break; 3992 } 3993 if (buf->b_data != NULL) 3994 bytes_evicted += HDR_GET_LSIZE(hdr); 3995 mutex_exit(&buf->b_evict_lock); 3996 arc_buf_destroy_impl(buf); 3997 } 3998 3999 if (HDR_HAS_L2HDR(hdr)) { 4000 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); 4001 } else { 4002 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 4003 ARCSTAT_INCR(arcstat_evict_l2_eligible, 4004 HDR_GET_LSIZE(hdr)); 4005 4006 switch (state->arcs_state) { 4007 case ARC_STATE_MRU: 4008 ARCSTAT_INCR( 4009 arcstat_evict_l2_eligible_mru, 4010 HDR_GET_LSIZE(hdr)); 4011 break; 4012 case ARC_STATE_MFU: 4013 ARCSTAT_INCR( 4014 arcstat_evict_l2_eligible_mfu, 4015 HDR_GET_LSIZE(hdr)); 4016 break; 4017 default: 4018 break; 4019 } 4020 } else { 4021 ARCSTAT_INCR(arcstat_evict_l2_ineligible, 4022 HDR_GET_LSIZE(hdr)); 4023 } 4024 } 4025 4026 if (hdr->b_l1hdr.b_bufcnt == 0) { 4027 arc_cksum_free(hdr); 4028 4029 bytes_evicted += arc_hdr_size(hdr); 4030 4031 /* 4032 * If this hdr is being evicted and has a compressed 4033 * buffer then we discard it here before we change states. 4034 * This ensures that the accounting is updated correctly 4035 * in arc_free_data_impl(). 4036 */ 4037 if (hdr->b_l1hdr.b_pabd != NULL) 4038 arc_hdr_free_abd(hdr, B_FALSE); 4039 4040 if (HDR_HAS_RABD(hdr)) 4041 arc_hdr_free_abd(hdr, B_TRUE); 4042 4043 arc_change_state(evicted_state, hdr, hash_lock); 4044 ASSERT(HDR_IN_HASH_TABLE(hdr)); 4045 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 4046 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 4047 } 4048 4049 return (bytes_evicted); 4050 } 4051 4052 static void 4053 arc_set_need_free(void) 4054 { 4055 ASSERT(MUTEX_HELD(&arc_evict_lock)); 4056 int64_t remaining = arc_free_memory() - arc_sys_free / 2; 4057 arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters); 4058 if (aw == NULL) { 4059 arc_need_free = MAX(-remaining, 0); 4060 } else { 4061 arc_need_free = 4062 MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count)); 4063 } 4064 } 4065 4066 static uint64_t 4067 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 4068 uint64_t spa, int64_t bytes) 4069 { 4070 multilist_sublist_t *mls; 4071 uint64_t bytes_evicted = 0; 4072 arc_buf_hdr_t *hdr; 4073 kmutex_t *hash_lock; 4074 int evict_count = 0; 4075 4076 ASSERT3P(marker, !=, NULL); 4077 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 4078 4079 mls = multilist_sublist_lock(ml, idx); 4080 4081 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL; 4082 hdr = multilist_sublist_prev(mls, marker)) { 4083 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) || 4084 (evict_count >= zfs_arc_evict_batch_limit)) 4085 break; 4086 4087 /* 4088 * To keep our iteration location, move the marker 4089 * forward. Since we're not holding hdr's hash lock, we 4090 * must be very careful and not remove 'hdr' from the 4091 * sublist. Otherwise, other consumers might mistake the 4092 * 'hdr' as not being on a sublist when they call the 4093 * multilist_link_active() function (they all rely on 4094 * the hash lock protecting concurrent insertions and 4095 * removals). multilist_sublist_move_forward() was 4096 * specifically implemented to ensure this is the case 4097 * (only 'marker' will be removed and re-inserted). 4098 */ 4099 multilist_sublist_move_forward(mls, marker); 4100 4101 /* 4102 * The only case where the b_spa field should ever be 4103 * zero, is the marker headers inserted by 4104 * arc_evict_state(). It's possible for multiple threads 4105 * to be calling arc_evict_state() concurrently (e.g. 4106 * dsl_pool_close() and zio_inject_fault()), so we must 4107 * skip any markers we see from these other threads. 4108 */ 4109 if (hdr->b_spa == 0) 4110 continue; 4111 4112 /* we're only interested in evicting buffers of a certain spa */ 4113 if (spa != 0 && hdr->b_spa != spa) { 4114 ARCSTAT_BUMP(arcstat_evict_skip); 4115 continue; 4116 } 4117 4118 hash_lock = HDR_LOCK(hdr); 4119 4120 /* 4121 * We aren't calling this function from any code path 4122 * that would already be holding a hash lock, so we're 4123 * asserting on this assumption to be defensive in case 4124 * this ever changes. Without this check, it would be 4125 * possible to incorrectly increment arcstat_mutex_miss 4126 * below (e.g. if the code changed such that we called 4127 * this function with a hash lock held). 4128 */ 4129 ASSERT(!MUTEX_HELD(hash_lock)); 4130 4131 if (mutex_tryenter(hash_lock)) { 4132 uint64_t evicted = arc_evict_hdr(hdr, hash_lock); 4133 mutex_exit(hash_lock); 4134 4135 bytes_evicted += evicted; 4136 4137 /* 4138 * If evicted is zero, arc_evict_hdr() must have 4139 * decided to skip this header, don't increment 4140 * evict_count in this case. 4141 */ 4142 if (evicted != 0) 4143 evict_count++; 4144 4145 } else { 4146 ARCSTAT_BUMP(arcstat_mutex_miss); 4147 } 4148 } 4149 4150 multilist_sublist_unlock(mls); 4151 4152 /* 4153 * Increment the count of evicted bytes, and wake up any threads that 4154 * are waiting for the count to reach this value. Since the list is 4155 * ordered by ascending aew_count, we pop off the beginning of the 4156 * list until we reach the end, or a waiter that's past the current 4157 * "count". Doing this outside the loop reduces the number of times 4158 * we need to acquire the global arc_evict_lock. 4159 * 4160 * Only wake when there's sufficient free memory in the system 4161 * (specifically, arc_sys_free/2, which by default is a bit more than 4162 * 1/64th of RAM). See the comments in arc_wait_for_eviction(). 4163 */ 4164 mutex_enter(&arc_evict_lock); 4165 arc_evict_count += bytes_evicted; 4166 4167 if (arc_free_memory() > arc_sys_free / 2) { 4168 arc_evict_waiter_t *aw; 4169 while ((aw = list_head(&arc_evict_waiters)) != NULL && 4170 aw->aew_count <= arc_evict_count) { 4171 list_remove(&arc_evict_waiters, aw); 4172 cv_broadcast(&aw->aew_cv); 4173 } 4174 } 4175 arc_set_need_free(); 4176 mutex_exit(&arc_evict_lock); 4177 4178 /* 4179 * If the ARC size is reduced from arc_c_max to arc_c_min (especially 4180 * if the average cached block is small), eviction can be on-CPU for 4181 * many seconds. To ensure that other threads that may be bound to 4182 * this CPU are able to make progress, make a voluntary preemption 4183 * call here. 4184 */ 4185 cond_resched(); 4186 4187 return (bytes_evicted); 4188 } 4189 4190 /* 4191 * Evict buffers from the given arc state, until we've removed the 4192 * specified number of bytes. Move the removed buffers to the 4193 * appropriate evict state. 4194 * 4195 * This function makes a "best effort". It skips over any buffers 4196 * it can't get a hash_lock on, and so, may not catch all candidates. 4197 * It may also return without evicting as much space as requested. 4198 * 4199 * If bytes is specified using the special value ARC_EVICT_ALL, this 4200 * will evict all available (i.e. unlocked and evictable) buffers from 4201 * the given arc state; which is used by arc_flush(). 4202 */ 4203 static uint64_t 4204 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes, 4205 arc_buf_contents_t type) 4206 { 4207 uint64_t total_evicted = 0; 4208 multilist_t *ml = state->arcs_list[type]; 4209 int num_sublists; 4210 arc_buf_hdr_t **markers; 4211 4212 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 4213 4214 num_sublists = multilist_get_num_sublists(ml); 4215 4216 /* 4217 * If we've tried to evict from each sublist, made some 4218 * progress, but still have not hit the target number of bytes 4219 * to evict, we want to keep trying. The markers allow us to 4220 * pick up where we left off for each individual sublist, rather 4221 * than starting from the tail each time. 4222 */ 4223 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP); 4224 for (int i = 0; i < num_sublists; i++) { 4225 multilist_sublist_t *mls; 4226 4227 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 4228 4229 /* 4230 * A b_spa of 0 is used to indicate that this header is 4231 * a marker. This fact is used in arc_evict_type() and 4232 * arc_evict_state_impl(). 4233 */ 4234 markers[i]->b_spa = 0; 4235 4236 mls = multilist_sublist_lock(ml, i); 4237 multilist_sublist_insert_tail(mls, markers[i]); 4238 multilist_sublist_unlock(mls); 4239 } 4240 4241 /* 4242 * While we haven't hit our target number of bytes to evict, or 4243 * we're evicting all available buffers. 4244 */ 4245 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) { 4246 int sublist_idx = multilist_get_random_index(ml); 4247 uint64_t scan_evicted = 0; 4248 4249 /* 4250 * Try to reduce pinned dnodes with a floor of arc_dnode_limit. 4251 * Request that 10% of the LRUs be scanned by the superblock 4252 * shrinker. 4253 */ 4254 if (type == ARC_BUFC_DATA && aggsum_compare(&astat_dnode_size, 4255 arc_dnode_size_limit) > 0) { 4256 arc_prune_async((aggsum_upper_bound(&astat_dnode_size) - 4257 arc_dnode_size_limit) / sizeof (dnode_t) / 4258 zfs_arc_dnode_reduce_percent); 4259 } 4260 4261 /* 4262 * Start eviction using a randomly selected sublist, 4263 * this is to try and evenly balance eviction across all 4264 * sublists. Always starting at the same sublist 4265 * (e.g. index 0) would cause evictions to favor certain 4266 * sublists over others. 4267 */ 4268 for (int i = 0; i < num_sublists; i++) { 4269 uint64_t bytes_remaining; 4270 uint64_t bytes_evicted; 4271 4272 if (bytes == ARC_EVICT_ALL) 4273 bytes_remaining = ARC_EVICT_ALL; 4274 else if (total_evicted < bytes) 4275 bytes_remaining = bytes - total_evicted; 4276 else 4277 break; 4278 4279 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 4280 markers[sublist_idx], spa, bytes_remaining); 4281 4282 scan_evicted += bytes_evicted; 4283 total_evicted += bytes_evicted; 4284 4285 /* we've reached the end, wrap to the beginning */ 4286 if (++sublist_idx >= num_sublists) 4287 sublist_idx = 0; 4288 } 4289 4290 /* 4291 * If we didn't evict anything during this scan, we have 4292 * no reason to believe we'll evict more during another 4293 * scan, so break the loop. 4294 */ 4295 if (scan_evicted == 0) { 4296 /* This isn't possible, let's make that obvious */ 4297 ASSERT3S(bytes, !=, 0); 4298 4299 /* 4300 * When bytes is ARC_EVICT_ALL, the only way to 4301 * break the loop is when scan_evicted is zero. 4302 * In that case, we actually have evicted enough, 4303 * so we don't want to increment the kstat. 4304 */ 4305 if (bytes != ARC_EVICT_ALL) { 4306 ASSERT3S(total_evicted, <, bytes); 4307 ARCSTAT_BUMP(arcstat_evict_not_enough); 4308 } 4309 4310 break; 4311 } 4312 } 4313 4314 for (int i = 0; i < num_sublists; i++) { 4315 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 4316 multilist_sublist_remove(mls, markers[i]); 4317 multilist_sublist_unlock(mls); 4318 4319 kmem_cache_free(hdr_full_cache, markers[i]); 4320 } 4321 kmem_free(markers, sizeof (*markers) * num_sublists); 4322 4323 return (total_evicted); 4324 } 4325 4326 /* 4327 * Flush all "evictable" data of the given type from the arc state 4328 * specified. This will not evict any "active" buffers (i.e. referenced). 4329 * 4330 * When 'retry' is set to B_FALSE, the function will make a single pass 4331 * over the state and evict any buffers that it can. Since it doesn't 4332 * continually retry the eviction, it might end up leaving some buffers 4333 * in the ARC due to lock misses. 4334 * 4335 * When 'retry' is set to B_TRUE, the function will continually retry the 4336 * eviction until *all* evictable buffers have been removed from the 4337 * state. As a result, if concurrent insertions into the state are 4338 * allowed (e.g. if the ARC isn't shutting down), this function might 4339 * wind up in an infinite loop, continually trying to evict buffers. 4340 */ 4341 static uint64_t 4342 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 4343 boolean_t retry) 4344 { 4345 uint64_t evicted = 0; 4346 4347 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) { 4348 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type); 4349 4350 if (!retry) 4351 break; 4352 } 4353 4354 return (evicted); 4355 } 4356 4357 /* 4358 * Evict the specified number of bytes from the state specified, 4359 * restricting eviction to the spa and type given. This function 4360 * prevents us from trying to evict more from a state's list than 4361 * is "evictable", and to skip evicting altogether when passed a 4362 * negative value for "bytes". In contrast, arc_evict_state() will 4363 * evict everything it can, when passed a negative value for "bytes". 4364 */ 4365 static uint64_t 4366 arc_evict_impl(arc_state_t *state, uint64_t spa, int64_t bytes, 4367 arc_buf_contents_t type) 4368 { 4369 int64_t delta; 4370 4371 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) { 4372 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]), 4373 bytes); 4374 return (arc_evict_state(state, spa, delta, type)); 4375 } 4376 4377 return (0); 4378 } 4379 4380 /* 4381 * The goal of this function is to evict enough meta data buffers from the 4382 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly 4383 * more complicated than it appears because it is common for data buffers 4384 * to have holds on meta data buffers. In addition, dnode meta data buffers 4385 * will be held by the dnodes in the block preventing them from being freed. 4386 * This means we can't simply traverse the ARC and expect to always find 4387 * enough unheld meta data buffer to release. 4388 * 4389 * Therefore, this function has been updated to make alternating passes 4390 * over the ARC releasing data buffers and then newly unheld meta data 4391 * buffers. This ensures forward progress is maintained and meta_used 4392 * will decrease. Normally this is sufficient, but if required the ARC 4393 * will call the registered prune callbacks causing dentry and inodes to 4394 * be dropped from the VFS cache. This will make dnode meta data buffers 4395 * available for reclaim. 4396 */ 4397 static uint64_t 4398 arc_evict_meta_balanced(uint64_t meta_used) 4399 { 4400 int64_t delta, prune = 0, adjustmnt; 4401 uint64_t total_evicted = 0; 4402 arc_buf_contents_t type = ARC_BUFC_DATA; 4403 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0); 4404 4405 restart: 4406 /* 4407 * This slightly differs than the way we evict from the mru in 4408 * arc_evict because we don't have a "target" value (i.e. no 4409 * "meta" arc_p). As a result, I think we can completely 4410 * cannibalize the metadata in the MRU before we evict the 4411 * metadata from the MFU. I think we probably need to implement a 4412 * "metadata arc_p" value to do this properly. 4413 */ 4414 adjustmnt = meta_used - arc_meta_limit; 4415 4416 if (adjustmnt > 0 && 4417 zfs_refcount_count(&arc_mru->arcs_esize[type]) > 0) { 4418 delta = MIN(zfs_refcount_count(&arc_mru->arcs_esize[type]), 4419 adjustmnt); 4420 total_evicted += arc_evict_impl(arc_mru, 0, delta, type); 4421 adjustmnt -= delta; 4422 } 4423 4424 /* 4425 * We can't afford to recalculate adjustmnt here. If we do, 4426 * new metadata buffers can sneak into the MRU or ANON lists, 4427 * thus penalize the MFU metadata. Although the fudge factor is 4428 * small, it has been empirically shown to be significant for 4429 * certain workloads (e.g. creating many empty directories). As 4430 * such, we use the original calculation for adjustmnt, and 4431 * simply decrement the amount of data evicted from the MRU. 4432 */ 4433 4434 if (adjustmnt > 0 && 4435 zfs_refcount_count(&arc_mfu->arcs_esize[type]) > 0) { 4436 delta = MIN(zfs_refcount_count(&arc_mfu->arcs_esize[type]), 4437 adjustmnt); 4438 total_evicted += arc_evict_impl(arc_mfu, 0, delta, type); 4439 } 4440 4441 adjustmnt = meta_used - arc_meta_limit; 4442 4443 if (adjustmnt > 0 && 4444 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) { 4445 delta = MIN(adjustmnt, 4446 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type])); 4447 total_evicted += arc_evict_impl(arc_mru_ghost, 0, delta, type); 4448 adjustmnt -= delta; 4449 } 4450 4451 if (adjustmnt > 0 && 4452 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) { 4453 delta = MIN(adjustmnt, 4454 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type])); 4455 total_evicted += arc_evict_impl(arc_mfu_ghost, 0, delta, type); 4456 } 4457 4458 /* 4459 * If after attempting to make the requested adjustment to the ARC 4460 * the meta limit is still being exceeded then request that the 4461 * higher layers drop some cached objects which have holds on ARC 4462 * meta buffers. Requests to the upper layers will be made with 4463 * increasingly large scan sizes until the ARC is below the limit. 4464 */ 4465 if (meta_used > arc_meta_limit) { 4466 if (type == ARC_BUFC_DATA) { 4467 type = ARC_BUFC_METADATA; 4468 } else { 4469 type = ARC_BUFC_DATA; 4470 4471 if (zfs_arc_meta_prune) { 4472 prune += zfs_arc_meta_prune; 4473 arc_prune_async(prune); 4474 } 4475 } 4476 4477 if (restarts > 0) { 4478 restarts--; 4479 goto restart; 4480 } 4481 } 4482 return (total_evicted); 4483 } 4484 4485 /* 4486 * Evict metadata buffers from the cache, such that arc_meta_used is 4487 * capped by the arc_meta_limit tunable. 4488 */ 4489 static uint64_t 4490 arc_evict_meta_only(uint64_t meta_used) 4491 { 4492 uint64_t total_evicted = 0; 4493 int64_t target; 4494 4495 /* 4496 * If we're over the meta limit, we want to evict enough 4497 * metadata to get back under the meta limit. We don't want to 4498 * evict so much that we drop the MRU below arc_p, though. If 4499 * we're over the meta limit more than we're over arc_p, we 4500 * evict some from the MRU here, and some from the MFU below. 4501 */ 4502 target = MIN((int64_t)(meta_used - arc_meta_limit), 4503 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4504 zfs_refcount_count(&arc_mru->arcs_size) - arc_p)); 4505 4506 total_evicted += arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4507 4508 /* 4509 * Similar to the above, we want to evict enough bytes to get us 4510 * below the meta limit, but not so much as to drop us below the 4511 * space allotted to the MFU (which is defined as arc_c - arc_p). 4512 */ 4513 target = MIN((int64_t)(meta_used - arc_meta_limit), 4514 (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) - 4515 (arc_c - arc_p))); 4516 4517 total_evicted += arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4518 4519 return (total_evicted); 4520 } 4521 4522 static uint64_t 4523 arc_evict_meta(uint64_t meta_used) 4524 { 4525 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY) 4526 return (arc_evict_meta_only(meta_used)); 4527 else 4528 return (arc_evict_meta_balanced(meta_used)); 4529 } 4530 4531 /* 4532 * Return the type of the oldest buffer in the given arc state 4533 * 4534 * This function will select a random sublist of type ARC_BUFC_DATA and 4535 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist 4536 * is compared, and the type which contains the "older" buffer will be 4537 * returned. 4538 */ 4539 static arc_buf_contents_t 4540 arc_evict_type(arc_state_t *state) 4541 { 4542 multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA]; 4543 multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA]; 4544 int data_idx = multilist_get_random_index(data_ml); 4545 int meta_idx = multilist_get_random_index(meta_ml); 4546 multilist_sublist_t *data_mls; 4547 multilist_sublist_t *meta_mls; 4548 arc_buf_contents_t type; 4549 arc_buf_hdr_t *data_hdr; 4550 arc_buf_hdr_t *meta_hdr; 4551 4552 /* 4553 * We keep the sublist lock until we're finished, to prevent 4554 * the headers from being destroyed via arc_evict_state(). 4555 */ 4556 data_mls = multilist_sublist_lock(data_ml, data_idx); 4557 meta_mls = multilist_sublist_lock(meta_ml, meta_idx); 4558 4559 /* 4560 * These two loops are to ensure we skip any markers that 4561 * might be at the tail of the lists due to arc_evict_state(). 4562 */ 4563 4564 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL; 4565 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) { 4566 if (data_hdr->b_spa != 0) 4567 break; 4568 } 4569 4570 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL; 4571 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) { 4572 if (meta_hdr->b_spa != 0) 4573 break; 4574 } 4575 4576 if (data_hdr == NULL && meta_hdr == NULL) { 4577 type = ARC_BUFC_DATA; 4578 } else if (data_hdr == NULL) { 4579 ASSERT3P(meta_hdr, !=, NULL); 4580 type = ARC_BUFC_METADATA; 4581 } else if (meta_hdr == NULL) { 4582 ASSERT3P(data_hdr, !=, NULL); 4583 type = ARC_BUFC_DATA; 4584 } else { 4585 ASSERT3P(data_hdr, !=, NULL); 4586 ASSERT3P(meta_hdr, !=, NULL); 4587 4588 /* The headers can't be on the sublist without an L1 header */ 4589 ASSERT(HDR_HAS_L1HDR(data_hdr)); 4590 ASSERT(HDR_HAS_L1HDR(meta_hdr)); 4591 4592 if (data_hdr->b_l1hdr.b_arc_access < 4593 meta_hdr->b_l1hdr.b_arc_access) { 4594 type = ARC_BUFC_DATA; 4595 } else { 4596 type = ARC_BUFC_METADATA; 4597 } 4598 } 4599 4600 multilist_sublist_unlock(meta_mls); 4601 multilist_sublist_unlock(data_mls); 4602 4603 return (type); 4604 } 4605 4606 /* 4607 * Evict buffers from the cache, such that arc_size is capped by arc_c. 4608 */ 4609 static uint64_t 4610 arc_evict(void) 4611 { 4612 uint64_t total_evicted = 0; 4613 uint64_t bytes; 4614 int64_t target; 4615 uint64_t asize = aggsum_value(&arc_size); 4616 uint64_t ameta = aggsum_value(&arc_meta_used); 4617 4618 /* 4619 * If we're over arc_meta_limit, we want to correct that before 4620 * potentially evicting data buffers below. 4621 */ 4622 total_evicted += arc_evict_meta(ameta); 4623 4624 /* 4625 * Adjust MRU size 4626 * 4627 * If we're over the target cache size, we want to evict enough 4628 * from the list to get back to our target size. We don't want 4629 * to evict too much from the MRU, such that it drops below 4630 * arc_p. So, if we're over our target cache size more than 4631 * the MRU is over arc_p, we'll evict enough to get back to 4632 * arc_p here, and then evict more from the MFU below. 4633 */ 4634 target = MIN((int64_t)(asize - arc_c), 4635 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4636 zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p)); 4637 4638 /* 4639 * If we're below arc_meta_min, always prefer to evict data. 4640 * Otherwise, try to satisfy the requested number of bytes to 4641 * evict from the type which contains older buffers; in an 4642 * effort to keep newer buffers in the cache regardless of their 4643 * type. If we cannot satisfy the number of bytes from this 4644 * type, spill over into the next type. 4645 */ 4646 if (arc_evict_type(arc_mru) == ARC_BUFC_METADATA && 4647 ameta > arc_meta_min) { 4648 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4649 total_evicted += bytes; 4650 4651 /* 4652 * If we couldn't evict our target number of bytes from 4653 * metadata, we try to get the rest from data. 4654 */ 4655 target -= bytes; 4656 4657 total_evicted += 4658 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4659 } else { 4660 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4661 total_evicted += bytes; 4662 4663 /* 4664 * If we couldn't evict our target number of bytes from 4665 * data, we try to get the rest from metadata. 4666 */ 4667 target -= bytes; 4668 4669 total_evicted += 4670 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4671 } 4672 4673 /* 4674 * Re-sum ARC stats after the first round of evictions. 4675 */ 4676 asize = aggsum_value(&arc_size); 4677 ameta = aggsum_value(&arc_meta_used); 4678 4679 4680 /* 4681 * Adjust MFU size 4682 * 4683 * Now that we've tried to evict enough from the MRU to get its 4684 * size back to arc_p, if we're still above the target cache 4685 * size, we evict the rest from the MFU. 4686 */ 4687 target = asize - arc_c; 4688 4689 if (arc_evict_type(arc_mfu) == ARC_BUFC_METADATA && 4690 ameta > arc_meta_min) { 4691 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4692 total_evicted += bytes; 4693 4694 /* 4695 * If we couldn't evict our target number of bytes from 4696 * metadata, we try to get the rest from data. 4697 */ 4698 target -= bytes; 4699 4700 total_evicted += 4701 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4702 } else { 4703 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4704 total_evicted += bytes; 4705 4706 /* 4707 * If we couldn't evict our target number of bytes from 4708 * data, we try to get the rest from data. 4709 */ 4710 target -= bytes; 4711 4712 total_evicted += 4713 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4714 } 4715 4716 /* 4717 * Adjust ghost lists 4718 * 4719 * In addition to the above, the ARC also defines target values 4720 * for the ghost lists. The sum of the mru list and mru ghost 4721 * list should never exceed the target size of the cache, and 4722 * the sum of the mru list, mfu list, mru ghost list, and mfu 4723 * ghost list should never exceed twice the target size of the 4724 * cache. The following logic enforces these limits on the ghost 4725 * caches, and evicts from them as needed. 4726 */ 4727 target = zfs_refcount_count(&arc_mru->arcs_size) + 4728 zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c; 4729 4730 bytes = arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA); 4731 total_evicted += bytes; 4732 4733 target -= bytes; 4734 4735 total_evicted += 4736 arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA); 4737 4738 /* 4739 * We assume the sum of the mru list and mfu list is less than 4740 * or equal to arc_c (we enforced this above), which means we 4741 * can use the simpler of the two equations below: 4742 * 4743 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c 4744 * mru ghost + mfu ghost <= arc_c 4745 */ 4746 target = zfs_refcount_count(&arc_mru_ghost->arcs_size) + 4747 zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c; 4748 4749 bytes = arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA); 4750 total_evicted += bytes; 4751 4752 target -= bytes; 4753 4754 total_evicted += 4755 arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA); 4756 4757 return (total_evicted); 4758 } 4759 4760 void 4761 arc_flush(spa_t *spa, boolean_t retry) 4762 { 4763 uint64_t guid = 0; 4764 4765 /* 4766 * If retry is B_TRUE, a spa must not be specified since we have 4767 * no good way to determine if all of a spa's buffers have been 4768 * evicted from an arc state. 4769 */ 4770 ASSERT(!retry || spa == 0); 4771 4772 if (spa != NULL) 4773 guid = spa_load_guid(spa); 4774 4775 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 4776 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 4777 4778 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 4779 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 4780 4781 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 4782 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 4783 4784 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 4785 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 4786 } 4787 4788 void 4789 arc_reduce_target_size(int64_t to_free) 4790 { 4791 uint64_t asize = aggsum_value(&arc_size); 4792 4793 /* 4794 * All callers want the ARC to actually evict (at least) this much 4795 * memory. Therefore we reduce from the lower of the current size and 4796 * the target size. This way, even if arc_c is much higher than 4797 * arc_size (as can be the case after many calls to arc_freed(), we will 4798 * immediately have arc_c < arc_size and therefore the arc_evict_zthr 4799 * will evict. 4800 */ 4801 uint64_t c = MIN(arc_c, asize); 4802 4803 if (c > to_free && c - to_free > arc_c_min) { 4804 arc_c = c - to_free; 4805 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 4806 if (arc_p > arc_c) 4807 arc_p = (arc_c >> 1); 4808 ASSERT(arc_c >= arc_c_min); 4809 ASSERT((int64_t)arc_p >= 0); 4810 } else { 4811 arc_c = arc_c_min; 4812 } 4813 4814 if (asize > arc_c) { 4815 /* See comment in arc_evict_cb_check() on why lock+flag */ 4816 mutex_enter(&arc_evict_lock); 4817 arc_evict_needed = B_TRUE; 4818 mutex_exit(&arc_evict_lock); 4819 zthr_wakeup(arc_evict_zthr); 4820 } 4821 } 4822 4823 /* 4824 * Determine if the system is under memory pressure and is asking 4825 * to reclaim memory. A return value of B_TRUE indicates that the system 4826 * is under memory pressure and that the arc should adjust accordingly. 4827 */ 4828 boolean_t 4829 arc_reclaim_needed(void) 4830 { 4831 return (arc_available_memory() < 0); 4832 } 4833 4834 void 4835 arc_kmem_reap_soon(void) 4836 { 4837 size_t i; 4838 kmem_cache_t *prev_cache = NULL; 4839 kmem_cache_t *prev_data_cache = NULL; 4840 extern kmem_cache_t *zio_buf_cache[]; 4841 extern kmem_cache_t *zio_data_buf_cache[]; 4842 4843 #ifdef _KERNEL 4844 if ((aggsum_compare(&arc_meta_used, arc_meta_limit) >= 0) && 4845 zfs_arc_meta_prune) { 4846 /* 4847 * We are exceeding our meta-data cache limit. 4848 * Prune some entries to release holds on meta-data. 4849 */ 4850 arc_prune_async(zfs_arc_meta_prune); 4851 } 4852 #if defined(_ILP32) 4853 /* 4854 * Reclaim unused memory from all kmem caches. 4855 */ 4856 kmem_reap(); 4857 #endif 4858 #endif 4859 4860 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 4861 #if defined(_ILP32) 4862 /* reach upper limit of cache size on 32-bit */ 4863 if (zio_buf_cache[i] == NULL) 4864 break; 4865 #endif 4866 if (zio_buf_cache[i] != prev_cache) { 4867 prev_cache = zio_buf_cache[i]; 4868 kmem_cache_reap_now(zio_buf_cache[i]); 4869 } 4870 if (zio_data_buf_cache[i] != prev_data_cache) { 4871 prev_data_cache = zio_data_buf_cache[i]; 4872 kmem_cache_reap_now(zio_data_buf_cache[i]); 4873 } 4874 } 4875 kmem_cache_reap_now(buf_cache); 4876 kmem_cache_reap_now(hdr_full_cache); 4877 kmem_cache_reap_now(hdr_l2only_cache); 4878 kmem_cache_reap_now(zfs_btree_leaf_cache); 4879 abd_cache_reap_now(); 4880 } 4881 4882 /* ARGSUSED */ 4883 static boolean_t 4884 arc_evict_cb_check(void *arg, zthr_t *zthr) 4885 { 4886 #ifdef ZFS_DEBUG 4887 /* 4888 * This is necessary in order to keep the kstat information 4889 * up to date for tools that display kstat data such as the 4890 * mdb ::arc dcmd and the Linux crash utility. These tools 4891 * typically do not call kstat's update function, but simply 4892 * dump out stats from the most recent update. Without 4893 * this call, these commands may show stale stats for the 4894 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 4895 * with this call, the data might be out of date if the 4896 * evict thread hasn't been woken recently; but that should 4897 * suffice. The arc_state_t structures can be queried 4898 * directly if more accurate information is needed. 4899 */ 4900 if (arc_ksp != NULL) 4901 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 4902 #endif 4903 4904 /* 4905 * We have to rely on arc_wait_for_eviction() to tell us when to 4906 * evict, rather than checking if we are overflowing here, so that we 4907 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv. 4908 * If we have become "not overflowing" since arc_wait_for_eviction() 4909 * checked, we need to wake it up. We could broadcast the CV here, 4910 * but arc_wait_for_eviction() may have not yet gone to sleep. We 4911 * would need to use a mutex to ensure that this function doesn't 4912 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g. 4913 * the arc_evict_lock). However, the lock ordering of such a lock 4914 * would necessarily be incorrect with respect to the zthr_lock, 4915 * which is held before this function is called, and is held by 4916 * arc_wait_for_eviction() when it calls zthr_wakeup(). 4917 */ 4918 return (arc_evict_needed); 4919 } 4920 4921 /* 4922 * Keep arc_size under arc_c by running arc_evict which evicts data 4923 * from the ARC. 4924 */ 4925 /* ARGSUSED */ 4926 static void 4927 arc_evict_cb(void *arg, zthr_t *zthr) 4928 { 4929 uint64_t evicted = 0; 4930 fstrans_cookie_t cookie = spl_fstrans_mark(); 4931 4932 /* Evict from cache */ 4933 evicted = arc_evict(); 4934 4935 /* 4936 * If evicted is zero, we couldn't evict anything 4937 * via arc_evict(). This could be due to hash lock 4938 * collisions, but more likely due to the majority of 4939 * arc buffers being unevictable. Therefore, even if 4940 * arc_size is above arc_c, another pass is unlikely to 4941 * be helpful and could potentially cause us to enter an 4942 * infinite loop. Additionally, zthr_iscancelled() is 4943 * checked here so that if the arc is shutting down, the 4944 * broadcast will wake any remaining arc evict waiters. 4945 */ 4946 mutex_enter(&arc_evict_lock); 4947 arc_evict_needed = !zthr_iscancelled(arc_evict_zthr) && 4948 evicted > 0 && aggsum_compare(&arc_size, arc_c) > 0; 4949 if (!arc_evict_needed) { 4950 /* 4951 * We're either no longer overflowing, or we 4952 * can't evict anything more, so we should wake 4953 * arc_get_data_impl() sooner. 4954 */ 4955 arc_evict_waiter_t *aw; 4956 while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) { 4957 cv_broadcast(&aw->aew_cv); 4958 } 4959 arc_set_need_free(); 4960 } 4961 mutex_exit(&arc_evict_lock); 4962 spl_fstrans_unmark(cookie); 4963 } 4964 4965 /* ARGSUSED */ 4966 static boolean_t 4967 arc_reap_cb_check(void *arg, zthr_t *zthr) 4968 { 4969 int64_t free_memory = arc_available_memory(); 4970 static int reap_cb_check_counter = 0; 4971 4972 /* 4973 * If a kmem reap is already active, don't schedule more. We must 4974 * check for this because kmem_cache_reap_soon() won't actually 4975 * block on the cache being reaped (this is to prevent callers from 4976 * becoming implicitly blocked by a system-wide kmem reap -- which, 4977 * on a system with many, many full magazines, can take minutes). 4978 */ 4979 if (!kmem_cache_reap_active() && free_memory < 0) { 4980 4981 arc_no_grow = B_TRUE; 4982 arc_warm = B_TRUE; 4983 /* 4984 * Wait at least zfs_grow_retry (default 5) seconds 4985 * before considering growing. 4986 */ 4987 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry); 4988 return (B_TRUE); 4989 } else if (free_memory < arc_c >> arc_no_grow_shift) { 4990 arc_no_grow = B_TRUE; 4991 } else if (gethrtime() >= arc_growtime) { 4992 arc_no_grow = B_FALSE; 4993 } 4994 4995 /* 4996 * Called unconditionally every 60 seconds to reclaim unused 4997 * zstd compression and decompression context. This is done 4998 * here to avoid the need for an independent thread. 4999 */ 5000 if (!((reap_cb_check_counter++) % 60)) 5001 zfs_zstd_cache_reap_now(); 5002 5003 return (B_FALSE); 5004 } 5005 5006 /* 5007 * Keep enough free memory in the system by reaping the ARC's kmem 5008 * caches. To cause more slabs to be reapable, we may reduce the 5009 * target size of the cache (arc_c), causing the arc_evict_cb() 5010 * to free more buffers. 5011 */ 5012 /* ARGSUSED */ 5013 static void 5014 arc_reap_cb(void *arg, zthr_t *zthr) 5015 { 5016 int64_t free_memory; 5017 fstrans_cookie_t cookie = spl_fstrans_mark(); 5018 5019 /* 5020 * Kick off asynchronous kmem_reap()'s of all our caches. 5021 */ 5022 arc_kmem_reap_soon(); 5023 5024 /* 5025 * Wait at least arc_kmem_cache_reap_retry_ms between 5026 * arc_kmem_reap_soon() calls. Without this check it is possible to 5027 * end up in a situation where we spend lots of time reaping 5028 * caches, while we're near arc_c_min. Waiting here also gives the 5029 * subsequent free memory check a chance of finding that the 5030 * asynchronous reap has already freed enough memory, and we don't 5031 * need to call arc_reduce_target_size(). 5032 */ 5033 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000); 5034 5035 /* 5036 * Reduce the target size as needed to maintain the amount of free 5037 * memory in the system at a fraction of the arc_size (1/128th by 5038 * default). If oversubscribed (free_memory < 0) then reduce the 5039 * target arc_size by the deficit amount plus the fractional 5040 * amount. If free memory is positive but less then the fractional 5041 * amount, reduce by what is needed to hit the fractional amount. 5042 */ 5043 free_memory = arc_available_memory(); 5044 5045 int64_t to_free = 5046 (arc_c >> arc_shrink_shift) - free_memory; 5047 if (to_free > 0) { 5048 arc_reduce_target_size(to_free); 5049 } 5050 spl_fstrans_unmark(cookie); 5051 } 5052 5053 #ifdef _KERNEL 5054 /* 5055 * Determine the amount of memory eligible for eviction contained in the 5056 * ARC. All clean data reported by the ghost lists can always be safely 5057 * evicted. Due to arc_c_min, the same does not hold for all clean data 5058 * contained by the regular mru and mfu lists. 5059 * 5060 * In the case of the regular mru and mfu lists, we need to report as 5061 * much clean data as possible, such that evicting that same reported 5062 * data will not bring arc_size below arc_c_min. Thus, in certain 5063 * circumstances, the total amount of clean data in the mru and mfu 5064 * lists might not actually be evictable. 5065 * 5066 * The following two distinct cases are accounted for: 5067 * 5068 * 1. The sum of the amount of dirty data contained by both the mru and 5069 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 5070 * is greater than or equal to arc_c_min. 5071 * (i.e. amount of dirty data >= arc_c_min) 5072 * 5073 * This is the easy case; all clean data contained by the mru and mfu 5074 * lists is evictable. Evicting all clean data can only drop arc_size 5075 * to the amount of dirty data, which is greater than arc_c_min. 5076 * 5077 * 2. The sum of the amount of dirty data contained by both the mru and 5078 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 5079 * is less than arc_c_min. 5080 * (i.e. arc_c_min > amount of dirty data) 5081 * 5082 * 2.1. arc_size is greater than or equal arc_c_min. 5083 * (i.e. arc_size >= arc_c_min > amount of dirty data) 5084 * 5085 * In this case, not all clean data from the regular mru and mfu 5086 * lists is actually evictable; we must leave enough clean data 5087 * to keep arc_size above arc_c_min. Thus, the maximum amount of 5088 * evictable data from the two lists combined, is exactly the 5089 * difference between arc_size and arc_c_min. 5090 * 5091 * 2.2. arc_size is less than arc_c_min 5092 * (i.e. arc_c_min > arc_size > amount of dirty data) 5093 * 5094 * In this case, none of the data contained in the mru and mfu 5095 * lists is evictable, even if it's clean. Since arc_size is 5096 * already below arc_c_min, evicting any more would only 5097 * increase this negative difference. 5098 */ 5099 5100 #endif /* _KERNEL */ 5101 5102 /* 5103 * Adapt arc info given the number of bytes we are trying to add and 5104 * the state that we are coming from. This function is only called 5105 * when we are adding new content to the cache. 5106 */ 5107 static void 5108 arc_adapt(int bytes, arc_state_t *state) 5109 { 5110 int mult; 5111 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 5112 int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size); 5113 int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size); 5114 5115 ASSERT(bytes > 0); 5116 /* 5117 * Adapt the target size of the MRU list: 5118 * - if we just hit in the MRU ghost list, then increase 5119 * the target size of the MRU list. 5120 * - if we just hit in the MFU ghost list, then increase 5121 * the target size of the MFU list by decreasing the 5122 * target size of the MRU list. 5123 */ 5124 if (state == arc_mru_ghost) { 5125 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size); 5126 if (!zfs_arc_p_dampener_disable) 5127 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 5128 5129 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 5130 } else if (state == arc_mfu_ghost) { 5131 uint64_t delta; 5132 5133 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size); 5134 if (!zfs_arc_p_dampener_disable) 5135 mult = MIN(mult, 10); 5136 5137 delta = MIN(bytes * mult, arc_p); 5138 arc_p = MAX(arc_p_min, arc_p - delta); 5139 } 5140 ASSERT((int64_t)arc_p >= 0); 5141 5142 /* 5143 * Wake reap thread if we do not have any available memory 5144 */ 5145 if (arc_reclaim_needed()) { 5146 zthr_wakeup(arc_reap_zthr); 5147 return; 5148 } 5149 5150 if (arc_no_grow) 5151 return; 5152 5153 if (arc_c >= arc_c_max) 5154 return; 5155 5156 /* 5157 * If we're within (2 * maxblocksize) bytes of the target 5158 * cache size, increment the target cache size 5159 */ 5160 ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT); 5161 if (aggsum_upper_bound(&arc_size) >= 5162 arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 5163 atomic_add_64(&arc_c, (int64_t)bytes); 5164 if (arc_c > arc_c_max) 5165 arc_c = arc_c_max; 5166 else if (state == arc_anon) 5167 atomic_add_64(&arc_p, (int64_t)bytes); 5168 if (arc_p > arc_c) 5169 arc_p = arc_c; 5170 } 5171 ASSERT((int64_t)arc_p >= 0); 5172 } 5173 5174 /* 5175 * Check if arc_size has grown past our upper threshold, determined by 5176 * zfs_arc_overflow_shift. 5177 */ 5178 boolean_t 5179 arc_is_overflowing(void) 5180 { 5181 /* Always allow at least one block of overflow */ 5182 int64_t overflow = MAX(SPA_MAXBLOCKSIZE, 5183 arc_c >> zfs_arc_overflow_shift); 5184 5185 /* 5186 * We just compare the lower bound here for performance reasons. Our 5187 * primary goals are to make sure that the arc never grows without 5188 * bound, and that it can reach its maximum size. This check 5189 * accomplishes both goals. The maximum amount we could run over by is 5190 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block 5191 * in the ARC. In practice, that's in the tens of MB, which is low 5192 * enough to be safe. 5193 */ 5194 return (aggsum_lower_bound(&arc_size) >= (int64_t)arc_c + overflow); 5195 } 5196 5197 static abd_t * 5198 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 5199 boolean_t do_adapt) 5200 { 5201 arc_buf_contents_t type = arc_buf_type(hdr); 5202 5203 arc_get_data_impl(hdr, size, tag, do_adapt); 5204 if (type == ARC_BUFC_METADATA) { 5205 return (abd_alloc(size, B_TRUE)); 5206 } else { 5207 ASSERT(type == ARC_BUFC_DATA); 5208 return (abd_alloc(size, B_FALSE)); 5209 } 5210 } 5211 5212 static void * 5213 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 5214 { 5215 arc_buf_contents_t type = arc_buf_type(hdr); 5216 5217 arc_get_data_impl(hdr, size, tag, B_TRUE); 5218 if (type == ARC_BUFC_METADATA) { 5219 return (zio_buf_alloc(size)); 5220 } else { 5221 ASSERT(type == ARC_BUFC_DATA); 5222 return (zio_data_buf_alloc(size)); 5223 } 5224 } 5225 5226 /* 5227 * Wait for the specified amount of data (in bytes) to be evicted from the 5228 * ARC, and for there to be sufficient free memory in the system. Waiting for 5229 * eviction ensures that the memory used by the ARC decreases. Waiting for 5230 * free memory ensures that the system won't run out of free pages, regardless 5231 * of ARC behavior and settings. See arc_lowmem_init(). 5232 */ 5233 void 5234 arc_wait_for_eviction(uint64_t amount) 5235 { 5236 mutex_enter(&arc_evict_lock); 5237 if (arc_is_overflowing()) { 5238 arc_evict_needed = B_TRUE; 5239 zthr_wakeup(arc_evict_zthr); 5240 5241 if (amount != 0) { 5242 arc_evict_waiter_t aw; 5243 list_link_init(&aw.aew_node); 5244 cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL); 5245 5246 uint64_t last_count = 0; 5247 if (!list_is_empty(&arc_evict_waiters)) { 5248 arc_evict_waiter_t *last = 5249 list_tail(&arc_evict_waiters); 5250 last_count = last->aew_count; 5251 } 5252 /* 5253 * Note, the last waiter's count may be less than 5254 * arc_evict_count if we are low on memory in which 5255 * case arc_evict_state_impl() may have deferred 5256 * wakeups (but still incremented arc_evict_count). 5257 */ 5258 aw.aew_count = 5259 MAX(last_count, arc_evict_count) + amount; 5260 5261 list_insert_tail(&arc_evict_waiters, &aw); 5262 5263 arc_set_need_free(); 5264 5265 DTRACE_PROBE3(arc__wait__for__eviction, 5266 uint64_t, amount, 5267 uint64_t, arc_evict_count, 5268 uint64_t, aw.aew_count); 5269 5270 /* 5271 * We will be woken up either when arc_evict_count 5272 * reaches aew_count, or when the ARC is no longer 5273 * overflowing and eviction completes. 5274 */ 5275 cv_wait(&aw.aew_cv, &arc_evict_lock); 5276 5277 /* 5278 * In case of "false" wakeup, we will still be on the 5279 * list. 5280 */ 5281 if (list_link_active(&aw.aew_node)) 5282 list_remove(&arc_evict_waiters, &aw); 5283 5284 cv_destroy(&aw.aew_cv); 5285 } 5286 } 5287 mutex_exit(&arc_evict_lock); 5288 } 5289 5290 /* 5291 * Allocate a block and return it to the caller. If we are hitting the 5292 * hard limit for the cache size, we must sleep, waiting for the eviction 5293 * thread to catch up. If we're past the target size but below the hard 5294 * limit, we'll only signal the reclaim thread and continue on. 5295 */ 5296 static void 5297 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 5298 boolean_t do_adapt) 5299 { 5300 arc_state_t *state = hdr->b_l1hdr.b_state; 5301 arc_buf_contents_t type = arc_buf_type(hdr); 5302 5303 if (do_adapt) 5304 arc_adapt(size, state); 5305 5306 /* 5307 * If arc_size is currently overflowing, we must be adding data 5308 * faster than we are evicting. To ensure we don't compound the 5309 * problem by adding more data and forcing arc_size to grow even 5310 * further past it's target size, we wait for the eviction thread to 5311 * make some progress. We also wait for there to be sufficient free 5312 * memory in the system, as measured by arc_free_memory(). 5313 * 5314 * Specifically, we wait for zfs_arc_eviction_pct percent of the 5315 * requested size to be evicted. This should be more than 100%, to 5316 * ensure that that progress is also made towards getting arc_size 5317 * under arc_c. See the comment above zfs_arc_eviction_pct. 5318 * 5319 * We do the overflowing check without holding the arc_evict_lock to 5320 * reduce lock contention in this hot path. Note that 5321 * arc_wait_for_eviction() will acquire the lock and check again to 5322 * ensure we are truly overflowing before blocking. 5323 */ 5324 if (arc_is_overflowing()) { 5325 arc_wait_for_eviction(size * 5326 zfs_arc_eviction_pct / 100); 5327 } 5328 5329 VERIFY3U(hdr->b_type, ==, type); 5330 if (type == ARC_BUFC_METADATA) { 5331 arc_space_consume(size, ARC_SPACE_META); 5332 } else { 5333 arc_space_consume(size, ARC_SPACE_DATA); 5334 } 5335 5336 /* 5337 * Update the state size. Note that ghost states have a 5338 * "ghost size" and so don't need to be updated. 5339 */ 5340 if (!GHOST_STATE(state)) { 5341 5342 (void) zfs_refcount_add_many(&state->arcs_size, size, tag); 5343 5344 /* 5345 * If this is reached via arc_read, the link is 5346 * protected by the hash lock. If reached via 5347 * arc_buf_alloc, the header should not be accessed by 5348 * any other thread. And, if reached via arc_read_done, 5349 * the hash lock will protect it if it's found in the 5350 * hash table; otherwise no other thread should be 5351 * trying to [add|remove]_reference it. 5352 */ 5353 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5354 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5355 (void) zfs_refcount_add_many(&state->arcs_esize[type], 5356 size, tag); 5357 } 5358 5359 /* 5360 * If we are growing the cache, and we are adding anonymous 5361 * data, and we have outgrown arc_p, update arc_p 5362 */ 5363 if (aggsum_upper_bound(&arc_size) < arc_c && 5364 hdr->b_l1hdr.b_state == arc_anon && 5365 (zfs_refcount_count(&arc_anon->arcs_size) + 5366 zfs_refcount_count(&arc_mru->arcs_size) > arc_p)) 5367 arc_p = MIN(arc_c, arc_p + size); 5368 } 5369 } 5370 5371 static void 5372 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag) 5373 { 5374 arc_free_data_impl(hdr, size, tag); 5375 abd_free(abd); 5376 } 5377 5378 static void 5379 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag) 5380 { 5381 arc_buf_contents_t type = arc_buf_type(hdr); 5382 5383 arc_free_data_impl(hdr, size, tag); 5384 if (type == ARC_BUFC_METADATA) { 5385 zio_buf_free(buf, size); 5386 } else { 5387 ASSERT(type == ARC_BUFC_DATA); 5388 zio_data_buf_free(buf, size); 5389 } 5390 } 5391 5392 /* 5393 * Free the arc data buffer. 5394 */ 5395 static void 5396 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 5397 { 5398 arc_state_t *state = hdr->b_l1hdr.b_state; 5399 arc_buf_contents_t type = arc_buf_type(hdr); 5400 5401 /* protected by hash lock, if in the hash table */ 5402 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5403 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5404 ASSERT(state != arc_anon && state != arc_l2c_only); 5405 5406 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 5407 size, tag); 5408 } 5409 (void) zfs_refcount_remove_many(&state->arcs_size, size, tag); 5410 5411 VERIFY3U(hdr->b_type, ==, type); 5412 if (type == ARC_BUFC_METADATA) { 5413 arc_space_return(size, ARC_SPACE_META); 5414 } else { 5415 ASSERT(type == ARC_BUFC_DATA); 5416 arc_space_return(size, ARC_SPACE_DATA); 5417 } 5418 } 5419 5420 /* 5421 * This routine is called whenever a buffer is accessed. 5422 * NOTE: the hash lock is dropped in this function. 5423 */ 5424 static void 5425 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 5426 { 5427 clock_t now; 5428 5429 ASSERT(MUTEX_HELD(hash_lock)); 5430 ASSERT(HDR_HAS_L1HDR(hdr)); 5431 5432 if (hdr->b_l1hdr.b_state == arc_anon) { 5433 /* 5434 * This buffer is not in the cache, and does not 5435 * appear in our "ghost" list. Add the new buffer 5436 * to the MRU state. 5437 */ 5438 5439 ASSERT0(hdr->b_l1hdr.b_arc_access); 5440 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5441 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5442 arc_change_state(arc_mru, hdr, hash_lock); 5443 5444 } else if (hdr->b_l1hdr.b_state == arc_mru) { 5445 now = ddi_get_lbolt(); 5446 5447 /* 5448 * If this buffer is here because of a prefetch, then either: 5449 * - clear the flag if this is a "referencing" read 5450 * (any subsequent access will bump this into the MFU state). 5451 * or 5452 * - move the buffer to the head of the list if this is 5453 * another prefetch (to make it less likely to be evicted). 5454 */ 5455 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5456 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 5457 /* link protected by hash lock */ 5458 ASSERT(multilist_link_active( 5459 &hdr->b_l1hdr.b_arc_node)); 5460 } else { 5461 if (HDR_HAS_L2HDR(hdr)) 5462 l2arc_hdr_arcstats_decrement_state(hdr); 5463 arc_hdr_clear_flags(hdr, 5464 ARC_FLAG_PREFETCH | 5465 ARC_FLAG_PRESCIENT_PREFETCH); 5466 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits); 5467 ARCSTAT_BUMP(arcstat_mru_hits); 5468 if (HDR_HAS_L2HDR(hdr)) 5469 l2arc_hdr_arcstats_increment_state(hdr); 5470 } 5471 hdr->b_l1hdr.b_arc_access = now; 5472 return; 5473 } 5474 5475 /* 5476 * This buffer has been "accessed" only once so far, 5477 * but it is still in the cache. Move it to the MFU 5478 * state. 5479 */ 5480 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access + 5481 ARC_MINTIME)) { 5482 /* 5483 * More than 125ms have passed since we 5484 * instantiated this buffer. Move it to the 5485 * most frequently used state. 5486 */ 5487 hdr->b_l1hdr.b_arc_access = now; 5488 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5489 arc_change_state(arc_mfu, hdr, hash_lock); 5490 } 5491 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits); 5492 ARCSTAT_BUMP(arcstat_mru_hits); 5493 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 5494 arc_state_t *new_state; 5495 /* 5496 * This buffer has been "accessed" recently, but 5497 * was evicted from the cache. Move it to the 5498 * MFU state. 5499 */ 5500 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5501 new_state = arc_mru; 5502 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) { 5503 if (HDR_HAS_L2HDR(hdr)) 5504 l2arc_hdr_arcstats_decrement_state(hdr); 5505 arc_hdr_clear_flags(hdr, 5506 ARC_FLAG_PREFETCH | 5507 ARC_FLAG_PRESCIENT_PREFETCH); 5508 if (HDR_HAS_L2HDR(hdr)) 5509 l2arc_hdr_arcstats_increment_state(hdr); 5510 } 5511 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5512 } else { 5513 new_state = arc_mfu; 5514 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5515 } 5516 5517 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5518 arc_change_state(new_state, hdr, hash_lock); 5519 5520 atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits); 5521 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 5522 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 5523 /* 5524 * This buffer has been accessed more than once and is 5525 * still in the cache. Keep it in the MFU state. 5526 * 5527 * NOTE: an add_reference() that occurred when we did 5528 * the arc_read() will have kicked this off the list. 5529 * If it was a prefetch, we will explicitly move it to 5530 * the head of the list now. 5531 */ 5532 5533 atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits); 5534 ARCSTAT_BUMP(arcstat_mfu_hits); 5535 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5536 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 5537 arc_state_t *new_state = arc_mfu; 5538 /* 5539 * This buffer has been accessed more than once but has 5540 * been evicted from the cache. Move it back to the 5541 * MFU state. 5542 */ 5543 5544 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5545 /* 5546 * This is a prefetch access... 5547 * move this block back to the MRU state. 5548 */ 5549 new_state = arc_mru; 5550 } 5551 5552 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5553 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5554 arc_change_state(new_state, hdr, hash_lock); 5555 5556 atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits); 5557 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 5558 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 5559 /* 5560 * This buffer is on the 2nd Level ARC. 5561 */ 5562 5563 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5564 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5565 arc_change_state(arc_mfu, hdr, hash_lock); 5566 } else { 5567 cmn_err(CE_PANIC, "invalid arc state 0x%p", 5568 hdr->b_l1hdr.b_state); 5569 } 5570 } 5571 5572 /* 5573 * This routine is called by dbuf_hold() to update the arc_access() state 5574 * which otherwise would be skipped for entries in the dbuf cache. 5575 */ 5576 void 5577 arc_buf_access(arc_buf_t *buf) 5578 { 5579 mutex_enter(&buf->b_evict_lock); 5580 arc_buf_hdr_t *hdr = buf->b_hdr; 5581 5582 /* 5583 * Avoid taking the hash_lock when possible as an optimization. 5584 * The header must be checked again under the hash_lock in order 5585 * to handle the case where it is concurrently being released. 5586 */ 5587 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5588 mutex_exit(&buf->b_evict_lock); 5589 return; 5590 } 5591 5592 kmutex_t *hash_lock = HDR_LOCK(hdr); 5593 mutex_enter(hash_lock); 5594 5595 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5596 mutex_exit(hash_lock); 5597 mutex_exit(&buf->b_evict_lock); 5598 ARCSTAT_BUMP(arcstat_access_skip); 5599 return; 5600 } 5601 5602 mutex_exit(&buf->b_evict_lock); 5603 5604 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5605 hdr->b_l1hdr.b_state == arc_mfu); 5606 5607 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5608 arc_access(hdr, hash_lock); 5609 mutex_exit(hash_lock); 5610 5611 ARCSTAT_BUMP(arcstat_hits); 5612 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr) && !HDR_PRESCIENT_PREFETCH(hdr), 5613 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits); 5614 } 5615 5616 /* a generic arc_read_done_func_t which you can use */ 5617 /* ARGSUSED */ 5618 void 5619 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5620 arc_buf_t *buf, void *arg) 5621 { 5622 if (buf == NULL) 5623 return; 5624 5625 bcopy(buf->b_data, arg, arc_buf_size(buf)); 5626 arc_buf_destroy(buf, arg); 5627 } 5628 5629 /* a generic arc_read_done_func_t */ 5630 /* ARGSUSED */ 5631 void 5632 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5633 arc_buf_t *buf, void *arg) 5634 { 5635 arc_buf_t **bufp = arg; 5636 5637 if (buf == NULL) { 5638 ASSERT(zio == NULL || zio->io_error != 0); 5639 *bufp = NULL; 5640 } else { 5641 ASSERT(zio == NULL || zio->io_error == 0); 5642 *bufp = buf; 5643 ASSERT(buf->b_data != NULL); 5644 } 5645 } 5646 5647 static void 5648 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp) 5649 { 5650 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 5651 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0); 5652 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF); 5653 } else { 5654 if (HDR_COMPRESSION_ENABLED(hdr)) { 5655 ASSERT3U(arc_hdr_get_compress(hdr), ==, 5656 BP_GET_COMPRESS(bp)); 5657 } 5658 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 5659 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); 5660 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp)); 5661 } 5662 } 5663 5664 static void 5665 arc_read_done(zio_t *zio) 5666 { 5667 blkptr_t *bp = zio->io_bp; 5668 arc_buf_hdr_t *hdr = zio->io_private; 5669 kmutex_t *hash_lock = NULL; 5670 arc_callback_t *callback_list; 5671 arc_callback_t *acb; 5672 boolean_t freeable = B_FALSE; 5673 5674 /* 5675 * The hdr was inserted into hash-table and removed from lists 5676 * prior to starting I/O. We should find this header, since 5677 * it's in the hash table, and it should be legit since it's 5678 * not possible to evict it during the I/O. The only possible 5679 * reason for it not to be found is if we were freed during the 5680 * read. 5681 */ 5682 if (HDR_IN_HASH_TABLE(hdr)) { 5683 arc_buf_hdr_t *found; 5684 5685 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 5686 ASSERT3U(hdr->b_dva.dva_word[0], ==, 5687 BP_IDENTITY(zio->io_bp)->dva_word[0]); 5688 ASSERT3U(hdr->b_dva.dva_word[1], ==, 5689 BP_IDENTITY(zio->io_bp)->dva_word[1]); 5690 5691 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock); 5692 5693 ASSERT((found == hdr && 5694 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 5695 (found == hdr && HDR_L2_READING(hdr))); 5696 ASSERT3P(hash_lock, !=, NULL); 5697 } 5698 5699 if (BP_IS_PROTECTED(bp)) { 5700 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 5701 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 5702 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 5703 hdr->b_crypt_hdr.b_iv); 5704 5705 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) { 5706 void *tmpbuf; 5707 5708 tmpbuf = abd_borrow_buf_copy(zio->io_abd, 5709 sizeof (zil_chain_t)); 5710 zio_crypt_decode_mac_zil(tmpbuf, 5711 hdr->b_crypt_hdr.b_mac); 5712 abd_return_buf(zio->io_abd, tmpbuf, 5713 sizeof (zil_chain_t)); 5714 } else { 5715 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 5716 } 5717 } 5718 5719 if (zio->io_error == 0) { 5720 /* byteswap if necessary */ 5721 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 5722 if (BP_GET_LEVEL(zio->io_bp) > 0) { 5723 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 5724 } else { 5725 hdr->b_l1hdr.b_byteswap = 5726 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 5727 } 5728 } else { 5729 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 5730 } 5731 if (!HDR_L2_READING(hdr)) { 5732 hdr->b_complevel = zio->io_prop.zp_complevel; 5733 } 5734 } 5735 5736 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); 5737 if (l2arc_noprefetch && HDR_PREFETCH(hdr)) 5738 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE); 5739 5740 callback_list = hdr->b_l1hdr.b_acb; 5741 ASSERT3P(callback_list, !=, NULL); 5742 5743 if (hash_lock && zio->io_error == 0 && 5744 hdr->b_l1hdr.b_state == arc_anon) { 5745 /* 5746 * Only call arc_access on anonymous buffers. This is because 5747 * if we've issued an I/O for an evicted buffer, we've already 5748 * called arc_access (to prevent any simultaneous readers from 5749 * getting confused). 5750 */ 5751 arc_access(hdr, hash_lock); 5752 } 5753 5754 /* 5755 * If a read request has a callback (i.e. acb_done is not NULL), then we 5756 * make a buf containing the data according to the parameters which were 5757 * passed in. The implementation of arc_buf_alloc_impl() ensures that we 5758 * aren't needlessly decompressing the data multiple times. 5759 */ 5760 int callback_cnt = 0; 5761 for (acb = callback_list; acb != NULL; acb = acb->acb_next) { 5762 if (!acb->acb_done || acb->acb_nobuf) 5763 continue; 5764 5765 callback_cnt++; 5766 5767 if (zio->io_error != 0) 5768 continue; 5769 5770 int error = arc_buf_alloc_impl(hdr, zio->io_spa, 5771 &acb->acb_zb, acb->acb_private, acb->acb_encrypted, 5772 acb->acb_compressed, acb->acb_noauth, B_TRUE, 5773 &acb->acb_buf); 5774 5775 /* 5776 * Assert non-speculative zios didn't fail because an 5777 * encryption key wasn't loaded 5778 */ 5779 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) || 5780 error != EACCES); 5781 5782 /* 5783 * If we failed to decrypt, report an error now (as the zio 5784 * layer would have done if it had done the transforms). 5785 */ 5786 if (error == ECKSUM) { 5787 ASSERT(BP_IS_PROTECTED(bp)); 5788 error = SET_ERROR(EIO); 5789 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5790 spa_log_error(zio->io_spa, &acb->acb_zb); 5791 (void) zfs_ereport_post( 5792 FM_EREPORT_ZFS_AUTHENTICATION, 5793 zio->io_spa, NULL, &acb->acb_zb, zio, 0); 5794 } 5795 } 5796 5797 if (error != 0) { 5798 /* 5799 * Decompression or decryption failed. Set 5800 * io_error so that when we call acb_done 5801 * (below), we will indicate that the read 5802 * failed. Note that in the unusual case 5803 * where one callback is compressed and another 5804 * uncompressed, we will mark all of them 5805 * as failed, even though the uncompressed 5806 * one can't actually fail. In this case, 5807 * the hdr will not be anonymous, because 5808 * if there are multiple callbacks, it's 5809 * because multiple threads found the same 5810 * arc buf in the hash table. 5811 */ 5812 zio->io_error = error; 5813 } 5814 } 5815 5816 /* 5817 * If there are multiple callbacks, we must have the hash lock, 5818 * because the only way for multiple threads to find this hdr is 5819 * in the hash table. This ensures that if there are multiple 5820 * callbacks, the hdr is not anonymous. If it were anonymous, 5821 * we couldn't use arc_buf_destroy() in the error case below. 5822 */ 5823 ASSERT(callback_cnt < 2 || hash_lock != NULL); 5824 5825 hdr->b_l1hdr.b_acb = NULL; 5826 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5827 if (callback_cnt == 0) 5828 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 5829 5830 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) || 5831 callback_list != NULL); 5832 5833 if (zio->io_error == 0) { 5834 arc_hdr_verify(hdr, zio->io_bp); 5835 } else { 5836 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 5837 if (hdr->b_l1hdr.b_state != arc_anon) 5838 arc_change_state(arc_anon, hdr, hash_lock); 5839 if (HDR_IN_HASH_TABLE(hdr)) 5840 buf_hash_remove(hdr); 5841 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5842 } 5843 5844 /* 5845 * Broadcast before we drop the hash_lock to avoid the possibility 5846 * that the hdr (and hence the cv) might be freed before we get to 5847 * the cv_broadcast(). 5848 */ 5849 cv_broadcast(&hdr->b_l1hdr.b_cv); 5850 5851 if (hash_lock != NULL) { 5852 mutex_exit(hash_lock); 5853 } else { 5854 /* 5855 * This block was freed while we waited for the read to 5856 * complete. It has been removed from the hash table and 5857 * moved to the anonymous state (so that it won't show up 5858 * in the cache). 5859 */ 5860 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 5861 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5862 } 5863 5864 /* execute each callback and free its structure */ 5865 while ((acb = callback_list) != NULL) { 5866 if (acb->acb_done != NULL) { 5867 if (zio->io_error != 0 && acb->acb_buf != NULL) { 5868 /* 5869 * If arc_buf_alloc_impl() fails during 5870 * decompression, the buf will still be 5871 * allocated, and needs to be freed here. 5872 */ 5873 arc_buf_destroy(acb->acb_buf, 5874 acb->acb_private); 5875 acb->acb_buf = NULL; 5876 } 5877 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp, 5878 acb->acb_buf, acb->acb_private); 5879 } 5880 5881 if (acb->acb_zio_dummy != NULL) { 5882 acb->acb_zio_dummy->io_error = zio->io_error; 5883 zio_nowait(acb->acb_zio_dummy); 5884 } 5885 5886 callback_list = acb->acb_next; 5887 kmem_free(acb, sizeof (arc_callback_t)); 5888 } 5889 5890 if (freeable) 5891 arc_hdr_destroy(hdr); 5892 } 5893 5894 /* 5895 * "Read" the block at the specified DVA (in bp) via the 5896 * cache. If the block is found in the cache, invoke the provided 5897 * callback immediately and return. Note that the `zio' parameter 5898 * in the callback will be NULL in this case, since no IO was 5899 * required. If the block is not in the cache pass the read request 5900 * on to the spa with a substitute callback function, so that the 5901 * requested block will be added to the cache. 5902 * 5903 * If a read request arrives for a block that has a read in-progress, 5904 * either wait for the in-progress read to complete (and return the 5905 * results); or, if this is a read with a "done" func, add a record 5906 * to the read to invoke the "done" func when the read completes, 5907 * and return; or just return. 5908 * 5909 * arc_read_done() will invoke all the requested "done" functions 5910 * for readers of this block. 5911 */ 5912 int 5913 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 5914 arc_read_done_func_t *done, void *private, zio_priority_t priority, 5915 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 5916 { 5917 arc_buf_hdr_t *hdr = NULL; 5918 kmutex_t *hash_lock = NULL; 5919 zio_t *rzio; 5920 uint64_t guid = spa_load_guid(spa); 5921 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0; 5922 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) && 5923 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5924 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) && 5925 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5926 boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp); 5927 boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF; 5928 int rc = 0; 5929 5930 ASSERT(!embedded_bp || 5931 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 5932 ASSERT(!BP_IS_HOLE(bp)); 5933 ASSERT(!BP_IS_REDACTED(bp)); 5934 5935 /* 5936 * Normally SPL_FSTRANS will already be set since kernel threads which 5937 * expect to call the DMU interfaces will set it when created. System 5938 * calls are similarly handled by setting/cleaning the bit in the 5939 * registered callback (module/os/.../zfs/zpl_*). 5940 * 5941 * External consumers such as Lustre which call the exported DMU 5942 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock 5943 * on the hash_lock always set and clear the bit. 5944 */ 5945 fstrans_cookie_t cookie = spl_fstrans_mark(); 5946 top: 5947 if (!embedded_bp) { 5948 /* 5949 * Embedded BP's have no DVA and require no I/O to "read". 5950 * Create an anonymous arc buf to back it. 5951 */ 5952 hdr = buf_hash_find(guid, bp, &hash_lock); 5953 } 5954 5955 /* 5956 * Determine if we have an L1 cache hit or a cache miss. For simplicity 5957 * we maintain encrypted data separately from compressed / uncompressed 5958 * data. If the user is requesting raw encrypted data and we don't have 5959 * that in the header we will read from disk to guarantee that we can 5960 * get it even if the encryption keys aren't loaded. 5961 */ 5962 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) || 5963 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) { 5964 arc_buf_t *buf = NULL; 5965 *arc_flags |= ARC_FLAG_CACHED; 5966 5967 if (HDR_IO_IN_PROGRESS(hdr)) { 5968 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head; 5969 5970 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 5971 mutex_exit(hash_lock); 5972 ARCSTAT_BUMP(arcstat_cached_only_in_progress); 5973 rc = SET_ERROR(ENOENT); 5974 goto out; 5975 } 5976 5977 ASSERT3P(head_zio, !=, NULL); 5978 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && 5979 priority == ZIO_PRIORITY_SYNC_READ) { 5980 /* 5981 * This is a sync read that needs to wait for 5982 * an in-flight async read. Request that the 5983 * zio have its priority upgraded. 5984 */ 5985 zio_change_priority(head_zio, priority); 5986 DTRACE_PROBE1(arc__async__upgrade__sync, 5987 arc_buf_hdr_t *, hdr); 5988 ARCSTAT_BUMP(arcstat_async_upgrade_sync); 5989 } 5990 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 5991 arc_hdr_clear_flags(hdr, 5992 ARC_FLAG_PREDICTIVE_PREFETCH); 5993 } 5994 5995 if (*arc_flags & ARC_FLAG_WAIT) { 5996 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 5997 mutex_exit(hash_lock); 5998 goto top; 5999 } 6000 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 6001 6002 if (done) { 6003 arc_callback_t *acb = NULL; 6004 6005 acb = kmem_zalloc(sizeof (arc_callback_t), 6006 KM_SLEEP); 6007 acb->acb_done = done; 6008 acb->acb_private = private; 6009 acb->acb_compressed = compressed_read; 6010 acb->acb_encrypted = encrypted_read; 6011 acb->acb_noauth = noauth_read; 6012 acb->acb_nobuf = no_buf; 6013 acb->acb_zb = *zb; 6014 if (pio != NULL) 6015 acb->acb_zio_dummy = zio_null(pio, 6016 spa, NULL, NULL, NULL, zio_flags); 6017 6018 ASSERT3P(acb->acb_done, !=, NULL); 6019 acb->acb_zio_head = head_zio; 6020 acb->acb_next = hdr->b_l1hdr.b_acb; 6021 hdr->b_l1hdr.b_acb = acb; 6022 } 6023 mutex_exit(hash_lock); 6024 goto out; 6025 } 6026 6027 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 6028 hdr->b_l1hdr.b_state == arc_mfu); 6029 6030 if (done && !no_buf) { 6031 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 6032 /* 6033 * This is a demand read which does not have to 6034 * wait for i/o because we did a predictive 6035 * prefetch i/o for it, which has completed. 6036 */ 6037 DTRACE_PROBE1( 6038 arc__demand__hit__predictive__prefetch, 6039 arc_buf_hdr_t *, hdr); 6040 ARCSTAT_BUMP( 6041 arcstat_demand_hit_predictive_prefetch); 6042 arc_hdr_clear_flags(hdr, 6043 ARC_FLAG_PREDICTIVE_PREFETCH); 6044 } 6045 6046 if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) { 6047 ARCSTAT_BUMP( 6048 arcstat_demand_hit_prescient_prefetch); 6049 arc_hdr_clear_flags(hdr, 6050 ARC_FLAG_PRESCIENT_PREFETCH); 6051 } 6052 6053 ASSERT(!embedded_bp || !BP_IS_HOLE(bp)); 6054 6055 /* Get a buf with the desired data in it. */ 6056 rc = arc_buf_alloc_impl(hdr, spa, zb, private, 6057 encrypted_read, compressed_read, noauth_read, 6058 B_TRUE, &buf); 6059 if (rc == ECKSUM) { 6060 /* 6061 * Convert authentication and decryption errors 6062 * to EIO (and generate an ereport if needed) 6063 * before leaving the ARC. 6064 */ 6065 rc = SET_ERROR(EIO); 6066 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) { 6067 spa_log_error(spa, zb); 6068 (void) zfs_ereport_post( 6069 FM_EREPORT_ZFS_AUTHENTICATION, 6070 spa, NULL, zb, NULL, 0); 6071 } 6072 } 6073 if (rc != 0) { 6074 (void) remove_reference(hdr, hash_lock, 6075 private); 6076 arc_buf_destroy_impl(buf); 6077 buf = NULL; 6078 } 6079 6080 /* assert any errors weren't due to unloaded keys */ 6081 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) || 6082 rc != EACCES); 6083 } else if (*arc_flags & ARC_FLAG_PREFETCH && 6084 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6085 if (HDR_HAS_L2HDR(hdr)) 6086 l2arc_hdr_arcstats_decrement_state(hdr); 6087 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 6088 if (HDR_HAS_L2HDR(hdr)) 6089 l2arc_hdr_arcstats_increment_state(hdr); 6090 } 6091 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 6092 arc_access(hdr, hash_lock); 6093 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 6094 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 6095 if (*arc_flags & ARC_FLAG_L2CACHE) 6096 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6097 mutex_exit(hash_lock); 6098 ARCSTAT_BUMP(arcstat_hits); 6099 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 6100 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 6101 data, metadata, hits); 6102 6103 if (done) 6104 done(NULL, zb, bp, buf, private); 6105 } else { 6106 uint64_t lsize = BP_GET_LSIZE(bp); 6107 uint64_t psize = BP_GET_PSIZE(bp); 6108 arc_callback_t *acb; 6109 vdev_t *vd = NULL; 6110 uint64_t addr = 0; 6111 boolean_t devw = B_FALSE; 6112 uint64_t size; 6113 abd_t *hdr_abd; 6114 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0; 6115 6116 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 6117 rc = SET_ERROR(ENOENT); 6118 if (hash_lock != NULL) 6119 mutex_exit(hash_lock); 6120 goto out; 6121 } 6122 6123 /* 6124 * Gracefully handle a damaged logical block size as a 6125 * checksum error. 6126 */ 6127 if (lsize > spa_maxblocksize(spa)) { 6128 rc = SET_ERROR(ECKSUM); 6129 if (hash_lock != NULL) 6130 mutex_exit(hash_lock); 6131 goto out; 6132 } 6133 6134 if (hdr == NULL) { 6135 /* 6136 * This block is not in the cache or it has 6137 * embedded data. 6138 */ 6139 arc_buf_hdr_t *exists = NULL; 6140 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 6141 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 6142 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type, 6143 encrypted_read); 6144 6145 if (!embedded_bp) { 6146 hdr->b_dva = *BP_IDENTITY(bp); 6147 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 6148 exists = buf_hash_insert(hdr, &hash_lock); 6149 } 6150 if (exists != NULL) { 6151 /* somebody beat us to the hash insert */ 6152 mutex_exit(hash_lock); 6153 buf_discard_identity(hdr); 6154 arc_hdr_destroy(hdr); 6155 goto top; /* restart the IO request */ 6156 } 6157 } else { 6158 /* 6159 * This block is in the ghost cache or encrypted data 6160 * was requested and we didn't have it. If it was 6161 * L2-only (and thus didn't have an L1 hdr), 6162 * we realloc the header to add an L1 hdr. 6163 */ 6164 if (!HDR_HAS_L1HDR(hdr)) { 6165 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 6166 hdr_full_cache); 6167 } 6168 6169 if (GHOST_STATE(hdr->b_l1hdr.b_state)) { 6170 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6171 ASSERT(!HDR_HAS_RABD(hdr)); 6172 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6173 ASSERT0(zfs_refcount_count( 6174 &hdr->b_l1hdr.b_refcnt)); 6175 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 6176 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 6177 } else if (HDR_IO_IN_PROGRESS(hdr)) { 6178 /* 6179 * If this header already had an IO in progress 6180 * and we are performing another IO to fetch 6181 * encrypted data we must wait until the first 6182 * IO completes so as not to confuse 6183 * arc_read_done(). This should be very rare 6184 * and so the performance impact shouldn't 6185 * matter. 6186 */ 6187 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 6188 mutex_exit(hash_lock); 6189 goto top; 6190 } 6191 6192 /* 6193 * This is a delicate dance that we play here. 6194 * This hdr might be in the ghost list so we access 6195 * it to move it out of the ghost list before we 6196 * initiate the read. If it's a prefetch then 6197 * it won't have a callback so we'll remove the 6198 * reference that arc_buf_alloc_impl() created. We 6199 * do this after we've called arc_access() to 6200 * avoid hitting an assert in remove_reference(). 6201 */ 6202 arc_adapt(arc_hdr_size(hdr), hdr->b_l1hdr.b_state); 6203 arc_access(hdr, hash_lock); 6204 arc_hdr_alloc_abd(hdr, alloc_flags); 6205 } 6206 6207 if (encrypted_read) { 6208 ASSERT(HDR_HAS_RABD(hdr)); 6209 size = HDR_GET_PSIZE(hdr); 6210 hdr_abd = hdr->b_crypt_hdr.b_rabd; 6211 zio_flags |= ZIO_FLAG_RAW; 6212 } else { 6213 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 6214 size = arc_hdr_size(hdr); 6215 hdr_abd = hdr->b_l1hdr.b_pabd; 6216 6217 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 6218 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 6219 } 6220 6221 /* 6222 * For authenticated bp's, we do not ask the ZIO layer 6223 * to authenticate them since this will cause the entire 6224 * IO to fail if the key isn't loaded. Instead, we 6225 * defer authentication until arc_buf_fill(), which will 6226 * verify the data when the key is available. 6227 */ 6228 if (BP_IS_AUTHENTICATED(bp)) 6229 zio_flags |= ZIO_FLAG_RAW_ENCRYPT; 6230 } 6231 6232 if (*arc_flags & ARC_FLAG_PREFETCH && 6233 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6234 if (HDR_HAS_L2HDR(hdr)) 6235 l2arc_hdr_arcstats_decrement_state(hdr); 6236 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 6237 if (HDR_HAS_L2HDR(hdr)) 6238 l2arc_hdr_arcstats_increment_state(hdr); 6239 } 6240 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 6241 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 6242 if (*arc_flags & ARC_FLAG_L2CACHE) 6243 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6244 if (BP_IS_AUTHENTICATED(bp)) 6245 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6246 if (BP_GET_LEVEL(bp) > 0) 6247 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); 6248 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH) 6249 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH); 6250 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 6251 6252 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 6253 acb->acb_done = done; 6254 acb->acb_private = private; 6255 acb->acb_compressed = compressed_read; 6256 acb->acb_encrypted = encrypted_read; 6257 acb->acb_noauth = noauth_read; 6258 acb->acb_zb = *zb; 6259 6260 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6261 hdr->b_l1hdr.b_acb = acb; 6262 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6263 6264 if (HDR_HAS_L2HDR(hdr) && 6265 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 6266 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 6267 addr = hdr->b_l2hdr.b_daddr; 6268 /* 6269 * Lock out L2ARC device removal. 6270 */ 6271 if (vdev_is_dead(vd) || 6272 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 6273 vd = NULL; 6274 } 6275 6276 /* 6277 * We count both async reads and scrub IOs as asynchronous so 6278 * that both can be upgraded in the event of a cache hit while 6279 * the read IO is still in-flight. 6280 */ 6281 if (priority == ZIO_PRIORITY_ASYNC_READ || 6282 priority == ZIO_PRIORITY_SCRUB) 6283 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6284 else 6285 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6286 6287 /* 6288 * At this point, we have a level 1 cache miss or a blkptr 6289 * with embedded data. Try again in L2ARC if possible. 6290 */ 6291 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); 6292 6293 /* 6294 * Skip ARC stat bump for block pointers with embedded 6295 * data. The data are read from the blkptr itself via 6296 * decode_embedded_bp_compressed(). 6297 */ 6298 if (!embedded_bp) { 6299 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, 6300 blkptr_t *, bp, uint64_t, lsize, 6301 zbookmark_phys_t *, zb); 6302 ARCSTAT_BUMP(arcstat_misses); 6303 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 6304 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, 6305 metadata, misses); 6306 zfs_racct_read(size, 1); 6307 } 6308 6309 /* Check if the spa even has l2 configured */ 6310 const boolean_t spa_has_l2 = l2arc_ndev != 0 && 6311 spa->spa_l2cache.sav_count > 0; 6312 6313 if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) { 6314 /* 6315 * Read from the L2ARC if the following are true: 6316 * 1. The L2ARC vdev was previously cached. 6317 * 2. This buffer still has L2ARC metadata. 6318 * 3. This buffer isn't currently writing to the L2ARC. 6319 * 4. The L2ARC entry wasn't evicted, which may 6320 * also have invalidated the vdev. 6321 * 5. This isn't prefetch or l2arc_noprefetch is 0. 6322 */ 6323 if (HDR_HAS_L2HDR(hdr) && 6324 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 6325 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 6326 l2arc_read_callback_t *cb; 6327 abd_t *abd; 6328 uint64_t asize; 6329 6330 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 6331 ARCSTAT_BUMP(arcstat_l2_hits); 6332 atomic_inc_32(&hdr->b_l2hdr.b_hits); 6333 6334 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 6335 KM_SLEEP); 6336 cb->l2rcb_hdr = hdr; 6337 cb->l2rcb_bp = *bp; 6338 cb->l2rcb_zb = *zb; 6339 cb->l2rcb_flags = zio_flags; 6340 6341 /* 6342 * When Compressed ARC is disabled, but the 6343 * L2ARC block is compressed, arc_hdr_size() 6344 * will have returned LSIZE rather than PSIZE. 6345 */ 6346 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 6347 !HDR_COMPRESSION_ENABLED(hdr) && 6348 HDR_GET_PSIZE(hdr) != 0) { 6349 size = HDR_GET_PSIZE(hdr); 6350 } 6351 6352 asize = vdev_psize_to_asize(vd, size); 6353 if (asize != size) { 6354 abd = abd_alloc_for_io(asize, 6355 HDR_ISTYPE_METADATA(hdr)); 6356 cb->l2rcb_abd = abd; 6357 } else { 6358 abd = hdr_abd; 6359 } 6360 6361 ASSERT(addr >= VDEV_LABEL_START_SIZE && 6362 addr + asize <= vd->vdev_psize - 6363 VDEV_LABEL_END_SIZE); 6364 6365 /* 6366 * l2arc read. The SCL_L2ARC lock will be 6367 * released by l2arc_read_done(). 6368 * Issue a null zio if the underlying buffer 6369 * was squashed to zero size by compression. 6370 */ 6371 ASSERT3U(arc_hdr_get_compress(hdr), !=, 6372 ZIO_COMPRESS_EMPTY); 6373 rzio = zio_read_phys(pio, vd, addr, 6374 asize, abd, 6375 ZIO_CHECKSUM_OFF, 6376 l2arc_read_done, cb, priority, 6377 zio_flags | ZIO_FLAG_DONT_CACHE | 6378 ZIO_FLAG_CANFAIL | 6379 ZIO_FLAG_DONT_PROPAGATE | 6380 ZIO_FLAG_DONT_RETRY, B_FALSE); 6381 acb->acb_zio_head = rzio; 6382 6383 if (hash_lock != NULL) 6384 mutex_exit(hash_lock); 6385 6386 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 6387 zio_t *, rzio); 6388 ARCSTAT_INCR(arcstat_l2_read_bytes, 6389 HDR_GET_PSIZE(hdr)); 6390 6391 if (*arc_flags & ARC_FLAG_NOWAIT) { 6392 zio_nowait(rzio); 6393 goto out; 6394 } 6395 6396 ASSERT(*arc_flags & ARC_FLAG_WAIT); 6397 if (zio_wait(rzio) == 0) 6398 goto out; 6399 6400 /* l2arc read error; goto zio_read() */ 6401 if (hash_lock != NULL) 6402 mutex_enter(hash_lock); 6403 } else { 6404 DTRACE_PROBE1(l2arc__miss, 6405 arc_buf_hdr_t *, hdr); 6406 ARCSTAT_BUMP(arcstat_l2_misses); 6407 if (HDR_L2_WRITING(hdr)) 6408 ARCSTAT_BUMP(arcstat_l2_rw_clash); 6409 spa_config_exit(spa, SCL_L2ARC, vd); 6410 } 6411 } else { 6412 if (vd != NULL) 6413 spa_config_exit(spa, SCL_L2ARC, vd); 6414 6415 /* 6416 * Only a spa with l2 should contribute to l2 6417 * miss stats. (Including the case of having a 6418 * faulted cache device - that's also a miss.) 6419 */ 6420 if (spa_has_l2) { 6421 /* 6422 * Skip ARC stat bump for block pointers with 6423 * embedded data. The data are read from the 6424 * blkptr itself via 6425 * decode_embedded_bp_compressed(). 6426 */ 6427 if (!embedded_bp) { 6428 DTRACE_PROBE1(l2arc__miss, 6429 arc_buf_hdr_t *, hdr); 6430 ARCSTAT_BUMP(arcstat_l2_misses); 6431 } 6432 } 6433 } 6434 6435 rzio = zio_read(pio, spa, bp, hdr_abd, size, 6436 arc_read_done, hdr, priority, zio_flags, zb); 6437 acb->acb_zio_head = rzio; 6438 6439 if (hash_lock != NULL) 6440 mutex_exit(hash_lock); 6441 6442 if (*arc_flags & ARC_FLAG_WAIT) { 6443 rc = zio_wait(rzio); 6444 goto out; 6445 } 6446 6447 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 6448 zio_nowait(rzio); 6449 } 6450 6451 out: 6452 /* embedded bps don't actually go to disk */ 6453 if (!embedded_bp) 6454 spa_read_history_add(spa, zb, *arc_flags); 6455 spl_fstrans_unmark(cookie); 6456 return (rc); 6457 } 6458 6459 arc_prune_t * 6460 arc_add_prune_callback(arc_prune_func_t *func, void *private) 6461 { 6462 arc_prune_t *p; 6463 6464 p = kmem_alloc(sizeof (*p), KM_SLEEP); 6465 p->p_pfunc = func; 6466 p->p_private = private; 6467 list_link_init(&p->p_node); 6468 zfs_refcount_create(&p->p_refcnt); 6469 6470 mutex_enter(&arc_prune_mtx); 6471 zfs_refcount_add(&p->p_refcnt, &arc_prune_list); 6472 list_insert_head(&arc_prune_list, p); 6473 mutex_exit(&arc_prune_mtx); 6474 6475 return (p); 6476 } 6477 6478 void 6479 arc_remove_prune_callback(arc_prune_t *p) 6480 { 6481 boolean_t wait = B_FALSE; 6482 mutex_enter(&arc_prune_mtx); 6483 list_remove(&arc_prune_list, p); 6484 if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0) 6485 wait = B_TRUE; 6486 mutex_exit(&arc_prune_mtx); 6487 6488 /* wait for arc_prune_task to finish */ 6489 if (wait) 6490 taskq_wait_outstanding(arc_prune_taskq, 0); 6491 ASSERT0(zfs_refcount_count(&p->p_refcnt)); 6492 zfs_refcount_destroy(&p->p_refcnt); 6493 kmem_free(p, sizeof (*p)); 6494 } 6495 6496 /* 6497 * Notify the arc that a block was freed, and thus will never be used again. 6498 */ 6499 void 6500 arc_freed(spa_t *spa, const blkptr_t *bp) 6501 { 6502 arc_buf_hdr_t *hdr; 6503 kmutex_t *hash_lock; 6504 uint64_t guid = spa_load_guid(spa); 6505 6506 ASSERT(!BP_IS_EMBEDDED(bp)); 6507 6508 hdr = buf_hash_find(guid, bp, &hash_lock); 6509 if (hdr == NULL) 6510 return; 6511 6512 /* 6513 * We might be trying to free a block that is still doing I/O 6514 * (i.e. prefetch) or has a reference (i.e. a dedup-ed, 6515 * dmu_sync-ed block). If this block is being prefetched, then it 6516 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr 6517 * until the I/O completes. A block may also have a reference if it is 6518 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would 6519 * have written the new block to its final resting place on disk but 6520 * without the dedup flag set. This would have left the hdr in the MRU 6521 * state and discoverable. When the txg finally syncs it detects that 6522 * the block was overridden in open context and issues an override I/O. 6523 * Since this is a dedup block, the override I/O will determine if the 6524 * block is already in the DDT. If so, then it will replace the io_bp 6525 * with the bp from the DDT and allow the I/O to finish. When the I/O 6526 * reaches the done callback, dbuf_write_override_done, it will 6527 * check to see if the io_bp and io_bp_override are identical. 6528 * If they are not, then it indicates that the bp was replaced with 6529 * the bp in the DDT and the override bp is freed. This allows 6530 * us to arrive here with a reference on a block that is being 6531 * freed. So if we have an I/O in progress, or a reference to 6532 * this hdr, then we don't destroy the hdr. 6533 */ 6534 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) && 6535 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) { 6536 arc_change_state(arc_anon, hdr, hash_lock); 6537 arc_hdr_destroy(hdr); 6538 mutex_exit(hash_lock); 6539 } else { 6540 mutex_exit(hash_lock); 6541 } 6542 6543 } 6544 6545 /* 6546 * Release this buffer from the cache, making it an anonymous buffer. This 6547 * must be done after a read and prior to modifying the buffer contents. 6548 * If the buffer has more than one reference, we must make 6549 * a new hdr for the buffer. 6550 */ 6551 void 6552 arc_release(arc_buf_t *buf, void *tag) 6553 { 6554 arc_buf_hdr_t *hdr = buf->b_hdr; 6555 6556 /* 6557 * It would be nice to assert that if its DMU metadata (level > 6558 * 0 || it's the dnode file), then it must be syncing context. 6559 * But we don't know that information at this level. 6560 */ 6561 6562 mutex_enter(&buf->b_evict_lock); 6563 6564 ASSERT(HDR_HAS_L1HDR(hdr)); 6565 6566 /* 6567 * We don't grab the hash lock prior to this check, because if 6568 * the buffer's header is in the arc_anon state, it won't be 6569 * linked into the hash table. 6570 */ 6571 if (hdr->b_l1hdr.b_state == arc_anon) { 6572 mutex_exit(&buf->b_evict_lock); 6573 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6574 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 6575 ASSERT(!HDR_HAS_L2HDR(hdr)); 6576 ASSERT(HDR_EMPTY(hdr)); 6577 6578 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6579 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 6580 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node)); 6581 6582 hdr->b_l1hdr.b_arc_access = 0; 6583 6584 /* 6585 * If the buf is being overridden then it may already 6586 * have a hdr that is not empty. 6587 */ 6588 buf_discard_identity(hdr); 6589 arc_buf_thaw(buf); 6590 6591 return; 6592 } 6593 6594 kmutex_t *hash_lock = HDR_LOCK(hdr); 6595 mutex_enter(hash_lock); 6596 6597 /* 6598 * This assignment is only valid as long as the hash_lock is 6599 * held, we must be careful not to reference state or the 6600 * b_state field after dropping the lock. 6601 */ 6602 arc_state_t *state = hdr->b_l1hdr.b_state; 6603 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 6604 ASSERT3P(state, !=, arc_anon); 6605 6606 /* this buffer is not on any list */ 6607 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0); 6608 6609 if (HDR_HAS_L2HDR(hdr)) { 6610 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6611 6612 /* 6613 * We have to recheck this conditional again now that 6614 * we're holding the l2ad_mtx to prevent a race with 6615 * another thread which might be concurrently calling 6616 * l2arc_evict(). In that case, l2arc_evict() might have 6617 * destroyed the header's L2 portion as we were waiting 6618 * to acquire the l2ad_mtx. 6619 */ 6620 if (HDR_HAS_L2HDR(hdr)) 6621 arc_hdr_l2hdr_destroy(hdr); 6622 6623 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6624 } 6625 6626 /* 6627 * Do we have more than one buf? 6628 */ 6629 if (hdr->b_l1hdr.b_bufcnt > 1) { 6630 arc_buf_hdr_t *nhdr; 6631 uint64_t spa = hdr->b_spa; 6632 uint64_t psize = HDR_GET_PSIZE(hdr); 6633 uint64_t lsize = HDR_GET_LSIZE(hdr); 6634 boolean_t protected = HDR_PROTECTED(hdr); 6635 enum zio_compress compress = arc_hdr_get_compress(hdr); 6636 arc_buf_contents_t type = arc_buf_type(hdr); 6637 VERIFY3U(hdr->b_type, ==, type); 6638 6639 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); 6640 (void) remove_reference(hdr, hash_lock, tag); 6641 6642 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) { 6643 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6644 ASSERT(ARC_BUF_LAST(buf)); 6645 } 6646 6647 /* 6648 * Pull the data off of this hdr and attach it to 6649 * a new anonymous hdr. Also find the last buffer 6650 * in the hdr's buffer list. 6651 */ 6652 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 6653 ASSERT3P(lastbuf, !=, NULL); 6654 6655 /* 6656 * If the current arc_buf_t and the hdr are sharing their data 6657 * buffer, then we must stop sharing that block. 6658 */ 6659 if (arc_buf_is_shared(buf)) { 6660 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6661 VERIFY(!arc_buf_is_shared(lastbuf)); 6662 6663 /* 6664 * First, sever the block sharing relationship between 6665 * buf and the arc_buf_hdr_t. 6666 */ 6667 arc_unshare_buf(hdr, buf); 6668 6669 /* 6670 * Now we need to recreate the hdr's b_pabd. Since we 6671 * have lastbuf handy, we try to share with it, but if 6672 * we can't then we allocate a new b_pabd and copy the 6673 * data from buf into it. 6674 */ 6675 if (arc_can_share(hdr, lastbuf)) { 6676 arc_share_buf(hdr, lastbuf); 6677 } else { 6678 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 6679 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, 6680 buf->b_data, psize); 6681 } 6682 VERIFY3P(lastbuf->b_data, !=, NULL); 6683 } else if (HDR_SHARED_DATA(hdr)) { 6684 /* 6685 * Uncompressed shared buffers are always at the end 6686 * of the list. Compressed buffers don't have the 6687 * same requirements. This makes it hard to 6688 * simply assert that the lastbuf is shared so 6689 * we rely on the hdr's compression flags to determine 6690 * if we have a compressed, shared buffer. 6691 */ 6692 ASSERT(arc_buf_is_shared(lastbuf) || 6693 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 6694 ASSERT(!ARC_BUF_SHARED(buf)); 6695 } 6696 6697 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 6698 ASSERT3P(state, !=, arc_l2c_only); 6699 6700 (void) zfs_refcount_remove_many(&state->arcs_size, 6701 arc_buf_size(buf), buf); 6702 6703 if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6704 ASSERT3P(state, !=, arc_l2c_only); 6705 (void) zfs_refcount_remove_many( 6706 &state->arcs_esize[type], 6707 arc_buf_size(buf), buf); 6708 } 6709 6710 hdr->b_l1hdr.b_bufcnt -= 1; 6711 if (ARC_BUF_ENCRYPTED(buf)) 6712 hdr->b_crypt_hdr.b_ebufcnt -= 1; 6713 6714 arc_cksum_verify(buf); 6715 arc_buf_unwatch(buf); 6716 6717 /* if this is the last uncompressed buf free the checksum */ 6718 if (!arc_hdr_has_uncompressed_buf(hdr)) 6719 arc_cksum_free(hdr); 6720 6721 mutex_exit(hash_lock); 6722 6723 /* 6724 * Allocate a new hdr. The new hdr will contain a b_pabd 6725 * buffer which will be freed in arc_write(). 6726 */ 6727 nhdr = arc_hdr_alloc(spa, psize, lsize, protected, 6728 compress, hdr->b_complevel, type, HDR_HAS_RABD(hdr)); 6729 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL); 6730 ASSERT0(nhdr->b_l1hdr.b_bufcnt); 6731 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt)); 6732 VERIFY3U(nhdr->b_type, ==, type); 6733 ASSERT(!HDR_SHARED_DATA(nhdr)); 6734 6735 nhdr->b_l1hdr.b_buf = buf; 6736 nhdr->b_l1hdr.b_bufcnt = 1; 6737 if (ARC_BUF_ENCRYPTED(buf)) 6738 nhdr->b_crypt_hdr.b_ebufcnt = 1; 6739 nhdr->b_l1hdr.b_mru_hits = 0; 6740 nhdr->b_l1hdr.b_mru_ghost_hits = 0; 6741 nhdr->b_l1hdr.b_mfu_hits = 0; 6742 nhdr->b_l1hdr.b_mfu_ghost_hits = 0; 6743 nhdr->b_l1hdr.b_l2_hits = 0; 6744 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 6745 buf->b_hdr = nhdr; 6746 6747 mutex_exit(&buf->b_evict_lock); 6748 (void) zfs_refcount_add_many(&arc_anon->arcs_size, 6749 arc_buf_size(buf), buf); 6750 } else { 6751 mutex_exit(&buf->b_evict_lock); 6752 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 6753 /* protected by hash lock, or hdr is on arc_anon */ 6754 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 6755 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6756 hdr->b_l1hdr.b_mru_hits = 0; 6757 hdr->b_l1hdr.b_mru_ghost_hits = 0; 6758 hdr->b_l1hdr.b_mfu_hits = 0; 6759 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 6760 hdr->b_l1hdr.b_l2_hits = 0; 6761 arc_change_state(arc_anon, hdr, hash_lock); 6762 hdr->b_l1hdr.b_arc_access = 0; 6763 6764 mutex_exit(hash_lock); 6765 buf_discard_identity(hdr); 6766 arc_buf_thaw(buf); 6767 } 6768 } 6769 6770 int 6771 arc_released(arc_buf_t *buf) 6772 { 6773 int released; 6774 6775 mutex_enter(&buf->b_evict_lock); 6776 released = (buf->b_data != NULL && 6777 buf->b_hdr->b_l1hdr.b_state == arc_anon); 6778 mutex_exit(&buf->b_evict_lock); 6779 return (released); 6780 } 6781 6782 #ifdef ZFS_DEBUG 6783 int 6784 arc_referenced(arc_buf_t *buf) 6785 { 6786 int referenced; 6787 6788 mutex_enter(&buf->b_evict_lock); 6789 referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 6790 mutex_exit(&buf->b_evict_lock); 6791 return (referenced); 6792 } 6793 #endif 6794 6795 static void 6796 arc_write_ready(zio_t *zio) 6797 { 6798 arc_write_callback_t *callback = zio->io_private; 6799 arc_buf_t *buf = callback->awcb_buf; 6800 arc_buf_hdr_t *hdr = buf->b_hdr; 6801 blkptr_t *bp = zio->io_bp; 6802 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp); 6803 fstrans_cookie_t cookie = spl_fstrans_mark(); 6804 6805 ASSERT(HDR_HAS_L1HDR(hdr)); 6806 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 6807 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 6808 6809 /* 6810 * If we're reexecuting this zio because the pool suspended, then 6811 * cleanup any state that was previously set the first time the 6812 * callback was invoked. 6813 */ 6814 if (zio->io_flags & ZIO_FLAG_REEXECUTED) { 6815 arc_cksum_free(hdr); 6816 arc_buf_unwatch(buf); 6817 if (hdr->b_l1hdr.b_pabd != NULL) { 6818 if (arc_buf_is_shared(buf)) { 6819 arc_unshare_buf(hdr, buf); 6820 } else { 6821 arc_hdr_free_abd(hdr, B_FALSE); 6822 } 6823 } 6824 6825 if (HDR_HAS_RABD(hdr)) 6826 arc_hdr_free_abd(hdr, B_TRUE); 6827 } 6828 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6829 ASSERT(!HDR_HAS_RABD(hdr)); 6830 ASSERT(!HDR_SHARED_DATA(hdr)); 6831 ASSERT(!arc_buf_is_shared(buf)); 6832 6833 callback->awcb_ready(zio, buf, callback->awcb_private); 6834 6835 if (HDR_IO_IN_PROGRESS(hdr)) 6836 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); 6837 6838 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6839 6840 if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr)) 6841 hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp)); 6842 6843 if (BP_IS_PROTECTED(bp)) { 6844 /* ZIL blocks are written through zio_rewrite */ 6845 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 6846 ASSERT(HDR_PROTECTED(hdr)); 6847 6848 if (BP_SHOULD_BYTESWAP(bp)) { 6849 if (BP_GET_LEVEL(bp) > 0) { 6850 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 6851 } else { 6852 hdr->b_l1hdr.b_byteswap = 6853 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 6854 } 6855 } else { 6856 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 6857 } 6858 6859 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 6860 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 6861 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 6862 hdr->b_crypt_hdr.b_iv); 6863 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 6864 } 6865 6866 /* 6867 * If this block was written for raw encryption but the zio layer 6868 * ended up only authenticating it, adjust the buffer flags now. 6869 */ 6870 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) { 6871 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6872 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6873 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF) 6874 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6875 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) { 6876 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6877 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6878 } 6879 6880 /* this must be done after the buffer flags are adjusted */ 6881 arc_cksum_compute(buf); 6882 6883 enum zio_compress compress; 6884 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 6885 compress = ZIO_COMPRESS_OFF; 6886 } else { 6887 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 6888 compress = BP_GET_COMPRESS(bp); 6889 } 6890 HDR_SET_PSIZE(hdr, psize); 6891 arc_hdr_set_compress(hdr, compress); 6892 hdr->b_complevel = zio->io_prop.zp_complevel; 6893 6894 if (zio->io_error != 0 || psize == 0) 6895 goto out; 6896 6897 /* 6898 * Fill the hdr with data. If the buffer is encrypted we have no choice 6899 * but to copy the data into b_radb. If the hdr is compressed, the data 6900 * we want is available from the zio, otherwise we can take it from 6901 * the buf. 6902 * 6903 * We might be able to share the buf's data with the hdr here. However, 6904 * doing so would cause the ARC to be full of linear ABDs if we write a 6905 * lot of shareable data. As a compromise, we check whether scattered 6906 * ABDs are allowed, and assume that if they are then the user wants 6907 * the ARC to be primarily filled with them regardless of the data being 6908 * written. Therefore, if they're allowed then we allocate one and copy 6909 * the data into it; otherwise, we share the data directly if we can. 6910 */ 6911 if (ARC_BUF_ENCRYPTED(buf)) { 6912 ASSERT3U(psize, >, 0); 6913 ASSERT(ARC_BUF_COMPRESSED(buf)); 6914 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA); 6915 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6916 } else if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) { 6917 /* 6918 * Ideally, we would always copy the io_abd into b_pabd, but the 6919 * user may have disabled compressed ARC, thus we must check the 6920 * hdr's compression setting rather than the io_bp's. 6921 */ 6922 if (BP_IS_ENCRYPTED(bp)) { 6923 ASSERT3U(psize, >, 0); 6924 arc_hdr_alloc_abd(hdr, 6925 ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA); 6926 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6927 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 6928 !ARC_BUF_COMPRESSED(buf)) { 6929 ASSERT3U(psize, >, 0); 6930 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 6931 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize); 6932 } else { 6933 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr)); 6934 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 6935 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data, 6936 arc_buf_size(buf)); 6937 } 6938 } else { 6939 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd)); 6940 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf)); 6941 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6942 6943 arc_share_buf(hdr, buf); 6944 } 6945 6946 out: 6947 arc_hdr_verify(hdr, bp); 6948 spl_fstrans_unmark(cookie); 6949 } 6950 6951 static void 6952 arc_write_children_ready(zio_t *zio) 6953 { 6954 arc_write_callback_t *callback = zio->io_private; 6955 arc_buf_t *buf = callback->awcb_buf; 6956 6957 callback->awcb_children_ready(zio, buf, callback->awcb_private); 6958 } 6959 6960 /* 6961 * The SPA calls this callback for each physical write that happens on behalf 6962 * of a logical write. See the comment in dbuf_write_physdone() for details. 6963 */ 6964 static void 6965 arc_write_physdone(zio_t *zio) 6966 { 6967 arc_write_callback_t *cb = zio->io_private; 6968 if (cb->awcb_physdone != NULL) 6969 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 6970 } 6971 6972 static void 6973 arc_write_done(zio_t *zio) 6974 { 6975 arc_write_callback_t *callback = zio->io_private; 6976 arc_buf_t *buf = callback->awcb_buf; 6977 arc_buf_hdr_t *hdr = buf->b_hdr; 6978 6979 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6980 6981 if (zio->io_error == 0) { 6982 arc_hdr_verify(hdr, zio->io_bp); 6983 6984 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 6985 buf_discard_identity(hdr); 6986 } else { 6987 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 6988 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 6989 } 6990 } else { 6991 ASSERT(HDR_EMPTY(hdr)); 6992 } 6993 6994 /* 6995 * If the block to be written was all-zero or compressed enough to be 6996 * embedded in the BP, no write was performed so there will be no 6997 * dva/birth/checksum. The buffer must therefore remain anonymous 6998 * (and uncached). 6999 */ 7000 if (!HDR_EMPTY(hdr)) { 7001 arc_buf_hdr_t *exists; 7002 kmutex_t *hash_lock; 7003 7004 ASSERT3U(zio->io_error, ==, 0); 7005 7006 arc_cksum_verify(buf); 7007 7008 exists = buf_hash_insert(hdr, &hash_lock); 7009 if (exists != NULL) { 7010 /* 7011 * This can only happen if we overwrite for 7012 * sync-to-convergence, because we remove 7013 * buffers from the hash table when we arc_free(). 7014 */ 7015 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 7016 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 7017 panic("bad overwrite, hdr=%p exists=%p", 7018 (void *)hdr, (void *)exists); 7019 ASSERT(zfs_refcount_is_zero( 7020 &exists->b_l1hdr.b_refcnt)); 7021 arc_change_state(arc_anon, exists, hash_lock); 7022 arc_hdr_destroy(exists); 7023 mutex_exit(hash_lock); 7024 exists = buf_hash_insert(hdr, &hash_lock); 7025 ASSERT3P(exists, ==, NULL); 7026 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 7027 /* nopwrite */ 7028 ASSERT(zio->io_prop.zp_nopwrite); 7029 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 7030 panic("bad nopwrite, hdr=%p exists=%p", 7031 (void *)hdr, (void *)exists); 7032 } else { 7033 /* Dedup */ 7034 ASSERT(hdr->b_l1hdr.b_bufcnt == 1); 7035 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 7036 ASSERT(BP_GET_DEDUP(zio->io_bp)); 7037 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 7038 } 7039 } 7040 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 7041 /* if it's not anon, we are doing a scrub */ 7042 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 7043 arc_access(hdr, hash_lock); 7044 mutex_exit(hash_lock); 7045 } else { 7046 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 7047 } 7048 7049 ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 7050 callback->awcb_done(zio, buf, callback->awcb_private); 7051 7052 abd_free(zio->io_abd); 7053 kmem_free(callback, sizeof (arc_write_callback_t)); 7054 } 7055 7056 zio_t * 7057 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 7058 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, 7059 const zio_prop_t *zp, arc_write_done_func_t *ready, 7060 arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone, 7061 arc_write_done_func_t *done, void *private, zio_priority_t priority, 7062 int zio_flags, const zbookmark_phys_t *zb) 7063 { 7064 arc_buf_hdr_t *hdr = buf->b_hdr; 7065 arc_write_callback_t *callback; 7066 zio_t *zio; 7067 zio_prop_t localprop = *zp; 7068 7069 ASSERT3P(ready, !=, NULL); 7070 ASSERT3P(done, !=, NULL); 7071 ASSERT(!HDR_IO_ERROR(hdr)); 7072 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 7073 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 7074 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 7075 if (l2arc) 7076 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 7077 7078 if (ARC_BUF_ENCRYPTED(buf)) { 7079 ASSERT(ARC_BUF_COMPRESSED(buf)); 7080 localprop.zp_encrypt = B_TRUE; 7081 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 7082 localprop.zp_complevel = hdr->b_complevel; 7083 localprop.zp_byteorder = 7084 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 7085 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 7086 bcopy(hdr->b_crypt_hdr.b_salt, localprop.zp_salt, 7087 ZIO_DATA_SALT_LEN); 7088 bcopy(hdr->b_crypt_hdr.b_iv, localprop.zp_iv, 7089 ZIO_DATA_IV_LEN); 7090 bcopy(hdr->b_crypt_hdr.b_mac, localprop.zp_mac, 7091 ZIO_DATA_MAC_LEN); 7092 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) { 7093 localprop.zp_nopwrite = B_FALSE; 7094 localprop.zp_copies = 7095 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1); 7096 } 7097 zio_flags |= ZIO_FLAG_RAW; 7098 } else if (ARC_BUF_COMPRESSED(buf)) { 7099 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf)); 7100 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 7101 localprop.zp_complevel = hdr->b_complevel; 7102 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 7103 } 7104 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 7105 callback->awcb_ready = ready; 7106 callback->awcb_children_ready = children_ready; 7107 callback->awcb_physdone = physdone; 7108 callback->awcb_done = done; 7109 callback->awcb_private = private; 7110 callback->awcb_buf = buf; 7111 7112 /* 7113 * The hdr's b_pabd is now stale, free it now. A new data block 7114 * will be allocated when the zio pipeline calls arc_write_ready(). 7115 */ 7116 if (hdr->b_l1hdr.b_pabd != NULL) { 7117 /* 7118 * If the buf is currently sharing the data block with 7119 * the hdr then we need to break that relationship here. 7120 * The hdr will remain with a NULL data pointer and the 7121 * buf will take sole ownership of the block. 7122 */ 7123 if (arc_buf_is_shared(buf)) { 7124 arc_unshare_buf(hdr, buf); 7125 } else { 7126 arc_hdr_free_abd(hdr, B_FALSE); 7127 } 7128 VERIFY3P(buf->b_data, !=, NULL); 7129 } 7130 7131 if (HDR_HAS_RABD(hdr)) 7132 arc_hdr_free_abd(hdr, B_TRUE); 7133 7134 if (!(zio_flags & ZIO_FLAG_RAW)) 7135 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); 7136 7137 ASSERT(!arc_buf_is_shared(buf)); 7138 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 7139 7140 zio = zio_write(pio, spa, txg, bp, 7141 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)), 7142 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready, 7143 (children_ready != NULL) ? arc_write_children_ready : NULL, 7144 arc_write_physdone, arc_write_done, callback, 7145 priority, zio_flags, zb); 7146 7147 return (zio); 7148 } 7149 7150 void 7151 arc_tempreserve_clear(uint64_t reserve) 7152 { 7153 atomic_add_64(&arc_tempreserve, -reserve); 7154 ASSERT((int64_t)arc_tempreserve >= 0); 7155 } 7156 7157 int 7158 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg) 7159 { 7160 int error; 7161 uint64_t anon_size; 7162 7163 if (!arc_no_grow && 7164 reserve > arc_c/4 && 7165 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT)) 7166 arc_c = MIN(arc_c_max, reserve * 4); 7167 7168 /* 7169 * Throttle when the calculated memory footprint for the TXG 7170 * exceeds the target ARC size. 7171 */ 7172 if (reserve > arc_c) { 7173 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve); 7174 return (SET_ERROR(ERESTART)); 7175 } 7176 7177 /* 7178 * Don't count loaned bufs as in flight dirty data to prevent long 7179 * network delays from blocking transactions that are ready to be 7180 * assigned to a txg. 7181 */ 7182 7183 /* assert that it has not wrapped around */ 7184 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 7185 7186 anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) - 7187 arc_loaned_bytes), 0); 7188 7189 /* 7190 * Writes will, almost always, require additional memory allocations 7191 * in order to compress/encrypt/etc the data. We therefore need to 7192 * make sure that there is sufficient available memory for this. 7193 */ 7194 error = arc_memory_throttle(spa, reserve, txg); 7195 if (error != 0) 7196 return (error); 7197 7198 /* 7199 * Throttle writes when the amount of dirty data in the cache 7200 * gets too large. We try to keep the cache less than half full 7201 * of dirty blocks so that our sync times don't grow too large. 7202 * 7203 * In the case of one pool being built on another pool, we want 7204 * to make sure we don't end up throttling the lower (backing) 7205 * pool when the upper pool is the majority contributor to dirty 7206 * data. To insure we make forward progress during throttling, we 7207 * also check the current pool's net dirty data and only throttle 7208 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty 7209 * data in the cache. 7210 * 7211 * Note: if two requests come in concurrently, we might let them 7212 * both succeed, when one of them should fail. Not a huge deal. 7213 */ 7214 uint64_t total_dirty = reserve + arc_tempreserve + anon_size; 7215 uint64_t spa_dirty_anon = spa_dirty_data(spa); 7216 uint64_t rarc_c = arc_warm ? arc_c : arc_c_max; 7217 if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 && 7218 anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 && 7219 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) { 7220 #ifdef ZFS_DEBUG 7221 uint64_t meta_esize = zfs_refcount_count( 7222 &arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7223 uint64_t data_esize = 7224 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7225 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 7226 "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n", 7227 arc_tempreserve >> 10, meta_esize >> 10, 7228 data_esize >> 10, reserve >> 10, rarc_c >> 10); 7229 #endif 7230 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle); 7231 return (SET_ERROR(ERESTART)); 7232 } 7233 atomic_add_64(&arc_tempreserve, reserve); 7234 return (0); 7235 } 7236 7237 static void 7238 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 7239 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 7240 { 7241 size->value.ui64 = zfs_refcount_count(&state->arcs_size); 7242 evict_data->value.ui64 = 7243 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); 7244 evict_metadata->value.ui64 = 7245 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); 7246 } 7247 7248 static int 7249 arc_kstat_update(kstat_t *ksp, int rw) 7250 { 7251 arc_stats_t *as = ksp->ks_data; 7252 7253 if (rw == KSTAT_WRITE) { 7254 return (SET_ERROR(EACCES)); 7255 } else { 7256 arc_kstat_update_state(arc_anon, 7257 &as->arcstat_anon_size, 7258 &as->arcstat_anon_evictable_data, 7259 &as->arcstat_anon_evictable_metadata); 7260 arc_kstat_update_state(arc_mru, 7261 &as->arcstat_mru_size, 7262 &as->arcstat_mru_evictable_data, 7263 &as->arcstat_mru_evictable_metadata); 7264 arc_kstat_update_state(arc_mru_ghost, 7265 &as->arcstat_mru_ghost_size, 7266 &as->arcstat_mru_ghost_evictable_data, 7267 &as->arcstat_mru_ghost_evictable_metadata); 7268 arc_kstat_update_state(arc_mfu, 7269 &as->arcstat_mfu_size, 7270 &as->arcstat_mfu_evictable_data, 7271 &as->arcstat_mfu_evictable_metadata); 7272 arc_kstat_update_state(arc_mfu_ghost, 7273 &as->arcstat_mfu_ghost_size, 7274 &as->arcstat_mfu_ghost_evictable_data, 7275 &as->arcstat_mfu_ghost_evictable_metadata); 7276 7277 ARCSTAT(arcstat_size) = aggsum_value(&arc_size); 7278 ARCSTAT(arcstat_meta_used) = aggsum_value(&arc_meta_used); 7279 ARCSTAT(arcstat_data_size) = aggsum_value(&astat_data_size); 7280 ARCSTAT(arcstat_metadata_size) = 7281 aggsum_value(&astat_metadata_size); 7282 ARCSTAT(arcstat_hdr_size) = aggsum_value(&astat_hdr_size); 7283 ARCSTAT(arcstat_l2_hdr_size) = aggsum_value(&astat_l2_hdr_size); 7284 ARCSTAT(arcstat_dbuf_size) = aggsum_value(&astat_dbuf_size); 7285 #if defined(COMPAT_FREEBSD11) 7286 ARCSTAT(arcstat_other_size) = aggsum_value(&astat_bonus_size) + 7287 aggsum_value(&astat_dnode_size) + 7288 aggsum_value(&astat_dbuf_size); 7289 #endif 7290 ARCSTAT(arcstat_dnode_size) = aggsum_value(&astat_dnode_size); 7291 ARCSTAT(arcstat_bonus_size) = aggsum_value(&astat_bonus_size); 7292 ARCSTAT(arcstat_abd_chunk_waste_size) = 7293 aggsum_value(&astat_abd_chunk_waste_size); 7294 7295 as->arcstat_memory_all_bytes.value.ui64 = 7296 arc_all_memory(); 7297 as->arcstat_memory_free_bytes.value.ui64 = 7298 arc_free_memory(); 7299 as->arcstat_memory_available_bytes.value.i64 = 7300 arc_available_memory(); 7301 } 7302 7303 return (0); 7304 } 7305 7306 /* 7307 * This function *must* return indices evenly distributed between all 7308 * sublists of the multilist. This is needed due to how the ARC eviction 7309 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 7310 * distributed between all sublists and uses this assumption when 7311 * deciding which sublist to evict from and how much to evict from it. 7312 */ 7313 static unsigned int 7314 arc_state_multilist_index_func(multilist_t *ml, void *obj) 7315 { 7316 arc_buf_hdr_t *hdr = obj; 7317 7318 /* 7319 * We rely on b_dva to generate evenly distributed index 7320 * numbers using buf_hash below. So, as an added precaution, 7321 * let's make sure we never add empty buffers to the arc lists. 7322 */ 7323 ASSERT(!HDR_EMPTY(hdr)); 7324 7325 /* 7326 * The assumption here, is the hash value for a given 7327 * arc_buf_hdr_t will remain constant throughout its lifetime 7328 * (i.e. its b_spa, b_dva, and b_birth fields don't change). 7329 * Thus, we don't need to store the header's sublist index 7330 * on insertion, as this index can be recalculated on removal. 7331 * 7332 * Also, the low order bits of the hash value are thought to be 7333 * distributed evenly. Otherwise, in the case that the multilist 7334 * has a power of two number of sublists, each sublists' usage 7335 * would not be evenly distributed. 7336 */ 7337 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 7338 multilist_get_num_sublists(ml)); 7339 } 7340 7341 #define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \ 7342 if ((do_warn) && (tuning) && ((tuning) != (value))) { \ 7343 cmn_err(CE_WARN, \ 7344 "ignoring tunable %s (using %llu instead)", \ 7345 (#tuning), (value)); \ 7346 } \ 7347 } while (0) 7348 7349 /* 7350 * Called during module initialization and periodically thereafter to 7351 * apply reasonable changes to the exposed performance tunings. Can also be 7352 * called explicitly by param_set_arc_*() functions when ARC tunables are 7353 * updated manually. Non-zero zfs_* values which differ from the currently set 7354 * values will be applied. 7355 */ 7356 void 7357 arc_tuning_update(boolean_t verbose) 7358 { 7359 uint64_t allmem = arc_all_memory(); 7360 unsigned long limit; 7361 7362 /* Valid range: 32M - <arc_c_max> */ 7363 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) && 7364 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) && 7365 (zfs_arc_min <= arc_c_max)) { 7366 arc_c_min = zfs_arc_min; 7367 arc_c = MAX(arc_c, arc_c_min); 7368 } 7369 WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose); 7370 7371 /* Valid range: 64M - <all physical memory> */ 7372 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) && 7373 (zfs_arc_max >= 64 << 20) && (zfs_arc_max < allmem) && 7374 (zfs_arc_max > arc_c_min)) { 7375 arc_c_max = zfs_arc_max; 7376 arc_c = MIN(arc_c, arc_c_max); 7377 arc_p = (arc_c >> 1); 7378 if (arc_meta_limit > arc_c_max) 7379 arc_meta_limit = arc_c_max; 7380 if (arc_dnode_size_limit > arc_meta_limit) 7381 arc_dnode_size_limit = arc_meta_limit; 7382 } 7383 WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose); 7384 7385 /* Valid range: 16M - <arc_c_max> */ 7386 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) && 7387 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) && 7388 (zfs_arc_meta_min <= arc_c_max)) { 7389 arc_meta_min = zfs_arc_meta_min; 7390 if (arc_meta_limit < arc_meta_min) 7391 arc_meta_limit = arc_meta_min; 7392 if (arc_dnode_size_limit < arc_meta_min) 7393 arc_dnode_size_limit = arc_meta_min; 7394 } 7395 WARN_IF_TUNING_IGNORED(zfs_arc_meta_min, arc_meta_min, verbose); 7396 7397 /* Valid range: <arc_meta_min> - <arc_c_max> */ 7398 limit = zfs_arc_meta_limit ? zfs_arc_meta_limit : 7399 MIN(zfs_arc_meta_limit_percent, 100) * arc_c_max / 100; 7400 if ((limit != arc_meta_limit) && 7401 (limit >= arc_meta_min) && 7402 (limit <= arc_c_max)) 7403 arc_meta_limit = limit; 7404 WARN_IF_TUNING_IGNORED(zfs_arc_meta_limit, arc_meta_limit, verbose); 7405 7406 /* Valid range: <arc_meta_min> - <arc_meta_limit> */ 7407 limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit : 7408 MIN(zfs_arc_dnode_limit_percent, 100) * arc_meta_limit / 100; 7409 if ((limit != arc_dnode_size_limit) && 7410 (limit >= arc_meta_min) && 7411 (limit <= arc_meta_limit)) 7412 arc_dnode_size_limit = limit; 7413 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_size_limit, 7414 verbose); 7415 7416 /* Valid range: 1 - N */ 7417 if (zfs_arc_grow_retry) 7418 arc_grow_retry = zfs_arc_grow_retry; 7419 7420 /* Valid range: 1 - N */ 7421 if (zfs_arc_shrink_shift) { 7422 arc_shrink_shift = zfs_arc_shrink_shift; 7423 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1); 7424 } 7425 7426 /* Valid range: 1 - N */ 7427 if (zfs_arc_p_min_shift) 7428 arc_p_min_shift = zfs_arc_p_min_shift; 7429 7430 /* Valid range: 1 - N ms */ 7431 if (zfs_arc_min_prefetch_ms) 7432 arc_min_prefetch_ms = zfs_arc_min_prefetch_ms; 7433 7434 /* Valid range: 1 - N ms */ 7435 if (zfs_arc_min_prescient_prefetch_ms) { 7436 arc_min_prescient_prefetch_ms = 7437 zfs_arc_min_prescient_prefetch_ms; 7438 } 7439 7440 /* Valid range: 0 - 100 */ 7441 if ((zfs_arc_lotsfree_percent >= 0) && 7442 (zfs_arc_lotsfree_percent <= 100)) 7443 arc_lotsfree_percent = zfs_arc_lotsfree_percent; 7444 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent, 7445 verbose); 7446 7447 /* Valid range: 0 - <all physical memory> */ 7448 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free)) 7449 arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), allmem); 7450 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose); 7451 } 7452 7453 static void 7454 arc_state_init(void) 7455 { 7456 arc_anon = &ARC_anon; 7457 arc_mru = &ARC_mru; 7458 arc_mru_ghost = &ARC_mru_ghost; 7459 arc_mfu = &ARC_mfu; 7460 arc_mfu_ghost = &ARC_mfu_ghost; 7461 arc_l2c_only = &ARC_l2c_only; 7462 7463 arc_mru->arcs_list[ARC_BUFC_METADATA] = 7464 multilist_create(sizeof (arc_buf_hdr_t), 7465 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7466 arc_state_multilist_index_func); 7467 arc_mru->arcs_list[ARC_BUFC_DATA] = 7468 multilist_create(sizeof (arc_buf_hdr_t), 7469 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7470 arc_state_multilist_index_func); 7471 arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] = 7472 multilist_create(sizeof (arc_buf_hdr_t), 7473 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7474 arc_state_multilist_index_func); 7475 arc_mru_ghost->arcs_list[ARC_BUFC_DATA] = 7476 multilist_create(sizeof (arc_buf_hdr_t), 7477 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7478 arc_state_multilist_index_func); 7479 arc_mfu->arcs_list[ARC_BUFC_METADATA] = 7480 multilist_create(sizeof (arc_buf_hdr_t), 7481 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7482 arc_state_multilist_index_func); 7483 arc_mfu->arcs_list[ARC_BUFC_DATA] = 7484 multilist_create(sizeof (arc_buf_hdr_t), 7485 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7486 arc_state_multilist_index_func); 7487 arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] = 7488 multilist_create(sizeof (arc_buf_hdr_t), 7489 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7490 arc_state_multilist_index_func); 7491 arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] = 7492 multilist_create(sizeof (arc_buf_hdr_t), 7493 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7494 arc_state_multilist_index_func); 7495 arc_l2c_only->arcs_list[ARC_BUFC_METADATA] = 7496 multilist_create(sizeof (arc_buf_hdr_t), 7497 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7498 arc_state_multilist_index_func); 7499 arc_l2c_only->arcs_list[ARC_BUFC_DATA] = 7500 multilist_create(sizeof (arc_buf_hdr_t), 7501 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7502 arc_state_multilist_index_func); 7503 7504 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7505 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7506 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7507 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7508 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7509 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7510 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7511 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7512 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7513 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7514 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7515 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7516 7517 zfs_refcount_create(&arc_anon->arcs_size); 7518 zfs_refcount_create(&arc_mru->arcs_size); 7519 zfs_refcount_create(&arc_mru_ghost->arcs_size); 7520 zfs_refcount_create(&arc_mfu->arcs_size); 7521 zfs_refcount_create(&arc_mfu_ghost->arcs_size); 7522 zfs_refcount_create(&arc_l2c_only->arcs_size); 7523 7524 aggsum_init(&arc_meta_used, 0); 7525 aggsum_init(&arc_size, 0); 7526 aggsum_init(&astat_data_size, 0); 7527 aggsum_init(&astat_metadata_size, 0); 7528 aggsum_init(&astat_hdr_size, 0); 7529 aggsum_init(&astat_l2_hdr_size, 0); 7530 aggsum_init(&astat_bonus_size, 0); 7531 aggsum_init(&astat_dnode_size, 0); 7532 aggsum_init(&astat_dbuf_size, 0); 7533 aggsum_init(&astat_abd_chunk_waste_size, 0); 7534 7535 arc_anon->arcs_state = ARC_STATE_ANON; 7536 arc_mru->arcs_state = ARC_STATE_MRU; 7537 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST; 7538 arc_mfu->arcs_state = ARC_STATE_MFU; 7539 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST; 7540 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY; 7541 } 7542 7543 static void 7544 arc_state_fini(void) 7545 { 7546 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7547 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7548 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7549 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7550 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7551 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7552 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7553 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7554 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7555 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7556 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7557 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7558 7559 zfs_refcount_destroy(&arc_anon->arcs_size); 7560 zfs_refcount_destroy(&arc_mru->arcs_size); 7561 zfs_refcount_destroy(&arc_mru_ghost->arcs_size); 7562 zfs_refcount_destroy(&arc_mfu->arcs_size); 7563 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size); 7564 zfs_refcount_destroy(&arc_l2c_only->arcs_size); 7565 7566 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]); 7567 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 7568 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]); 7569 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 7570 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]); 7571 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 7572 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]); 7573 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 7574 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]); 7575 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_DATA]); 7576 7577 aggsum_fini(&arc_meta_used); 7578 aggsum_fini(&arc_size); 7579 aggsum_fini(&astat_data_size); 7580 aggsum_fini(&astat_metadata_size); 7581 aggsum_fini(&astat_hdr_size); 7582 aggsum_fini(&astat_l2_hdr_size); 7583 aggsum_fini(&astat_bonus_size); 7584 aggsum_fini(&astat_dnode_size); 7585 aggsum_fini(&astat_dbuf_size); 7586 aggsum_fini(&astat_abd_chunk_waste_size); 7587 } 7588 7589 uint64_t 7590 arc_target_bytes(void) 7591 { 7592 return (arc_c); 7593 } 7594 7595 void 7596 arc_set_limits(uint64_t allmem) 7597 { 7598 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */ 7599 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT); 7600 7601 /* How to set default max varies by platform. */ 7602 arc_c_max = arc_default_max(arc_c_min, allmem); 7603 } 7604 void 7605 arc_init(void) 7606 { 7607 uint64_t percent, allmem = arc_all_memory(); 7608 mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL); 7609 list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t), 7610 offsetof(arc_evict_waiter_t, aew_node)); 7611 7612 arc_min_prefetch_ms = 1000; 7613 arc_min_prescient_prefetch_ms = 6000; 7614 7615 #if defined(_KERNEL) 7616 arc_lowmem_init(); 7617 #endif 7618 7619 arc_set_limits(allmem); 7620 7621 #ifndef _KERNEL 7622 /* 7623 * In userland, there's only the memory pressure that we artificially 7624 * create (see arc_available_memory()). Don't let arc_c get too 7625 * small, because it can cause transactions to be larger than 7626 * arc_c, causing arc_tempreserve_space() to fail. 7627 */ 7628 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT); 7629 #endif 7630 7631 arc_c = arc_c_min; 7632 arc_p = (arc_c >> 1); 7633 7634 /* Set min to 1/2 of arc_c_min */ 7635 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT; 7636 /* Initialize maximum observed usage to zero */ 7637 arc_meta_max = 0; 7638 /* 7639 * Set arc_meta_limit to a percent of arc_c_max with a floor of 7640 * arc_meta_min, and a ceiling of arc_c_max. 7641 */ 7642 percent = MIN(zfs_arc_meta_limit_percent, 100); 7643 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100); 7644 percent = MIN(zfs_arc_dnode_limit_percent, 100); 7645 arc_dnode_size_limit = (percent * arc_meta_limit) / 100; 7646 7647 /* Apply user specified tunings */ 7648 arc_tuning_update(B_TRUE); 7649 7650 /* if kmem_flags are set, lets try to use less memory */ 7651 if (kmem_debugging()) 7652 arc_c = arc_c / 2; 7653 if (arc_c < arc_c_min) 7654 arc_c = arc_c_min; 7655 7656 arc_register_hotplug(); 7657 7658 arc_state_init(); 7659 7660 buf_init(); 7661 7662 list_create(&arc_prune_list, sizeof (arc_prune_t), 7663 offsetof(arc_prune_t, p_node)); 7664 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL); 7665 7666 arc_prune_taskq = taskq_create("arc_prune", 100, defclsyspri, 7667 boot_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC | 7668 TASKQ_THREADS_CPU_PCT); 7669 7670 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 7671 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 7672 7673 if (arc_ksp != NULL) { 7674 arc_ksp->ks_data = &arc_stats; 7675 arc_ksp->ks_update = arc_kstat_update; 7676 kstat_install(arc_ksp); 7677 } 7678 7679 arc_evict_zthr = zthr_create("arc_evict", 7680 arc_evict_cb_check, arc_evict_cb, NULL); 7681 arc_reap_zthr = zthr_create_timer("arc_reap", 7682 arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1)); 7683 7684 arc_warm = B_FALSE; 7685 7686 /* 7687 * Calculate maximum amount of dirty data per pool. 7688 * 7689 * If it has been set by a module parameter, take that. 7690 * Otherwise, use a percentage of physical memory defined by 7691 * zfs_dirty_data_max_percent (default 10%) with a cap at 7692 * zfs_dirty_data_max_max (default 4G or 25% of physical memory). 7693 */ 7694 #ifdef __LP64__ 7695 if (zfs_dirty_data_max_max == 0) 7696 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024, 7697 allmem * zfs_dirty_data_max_max_percent / 100); 7698 #else 7699 if (zfs_dirty_data_max_max == 0) 7700 zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024, 7701 allmem * zfs_dirty_data_max_max_percent / 100); 7702 #endif 7703 7704 if (zfs_dirty_data_max == 0) { 7705 zfs_dirty_data_max = allmem * 7706 zfs_dirty_data_max_percent / 100; 7707 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 7708 zfs_dirty_data_max_max); 7709 } 7710 } 7711 7712 void 7713 arc_fini(void) 7714 { 7715 arc_prune_t *p; 7716 7717 #ifdef _KERNEL 7718 arc_lowmem_fini(); 7719 #endif /* _KERNEL */ 7720 7721 /* Use B_TRUE to ensure *all* buffers are evicted */ 7722 arc_flush(NULL, B_TRUE); 7723 7724 if (arc_ksp != NULL) { 7725 kstat_delete(arc_ksp); 7726 arc_ksp = NULL; 7727 } 7728 7729 taskq_wait(arc_prune_taskq); 7730 taskq_destroy(arc_prune_taskq); 7731 7732 mutex_enter(&arc_prune_mtx); 7733 while ((p = list_head(&arc_prune_list)) != NULL) { 7734 list_remove(&arc_prune_list, p); 7735 zfs_refcount_remove(&p->p_refcnt, &arc_prune_list); 7736 zfs_refcount_destroy(&p->p_refcnt); 7737 kmem_free(p, sizeof (*p)); 7738 } 7739 mutex_exit(&arc_prune_mtx); 7740 7741 list_destroy(&arc_prune_list); 7742 mutex_destroy(&arc_prune_mtx); 7743 7744 (void) zthr_cancel(arc_evict_zthr); 7745 (void) zthr_cancel(arc_reap_zthr); 7746 7747 mutex_destroy(&arc_evict_lock); 7748 list_destroy(&arc_evict_waiters); 7749 7750 /* 7751 * Free any buffers that were tagged for destruction. This needs 7752 * to occur before arc_state_fini() runs and destroys the aggsum 7753 * values which are updated when freeing scatter ABDs. 7754 */ 7755 l2arc_do_free_on_write(); 7756 7757 /* 7758 * buf_fini() must proceed arc_state_fini() because buf_fin() may 7759 * trigger the release of kmem magazines, which can callback to 7760 * arc_space_return() which accesses aggsums freed in act_state_fini(). 7761 */ 7762 buf_fini(); 7763 arc_state_fini(); 7764 7765 arc_unregister_hotplug(); 7766 7767 /* 7768 * We destroy the zthrs after all the ARC state has been 7769 * torn down to avoid the case of them receiving any 7770 * wakeup() signals after they are destroyed. 7771 */ 7772 zthr_destroy(arc_evict_zthr); 7773 zthr_destroy(arc_reap_zthr); 7774 7775 ASSERT0(arc_loaned_bytes); 7776 } 7777 7778 /* 7779 * Level 2 ARC 7780 * 7781 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 7782 * It uses dedicated storage devices to hold cached data, which are populated 7783 * using large infrequent writes. The main role of this cache is to boost 7784 * the performance of random read workloads. The intended L2ARC devices 7785 * include short-stroked disks, solid state disks, and other media with 7786 * substantially faster read latency than disk. 7787 * 7788 * +-----------------------+ 7789 * | ARC | 7790 * +-----------------------+ 7791 * | ^ ^ 7792 * | | | 7793 * l2arc_feed_thread() arc_read() 7794 * | | | 7795 * | l2arc read | 7796 * V | | 7797 * +---------------+ | 7798 * | L2ARC | | 7799 * +---------------+ | 7800 * | ^ | 7801 * l2arc_write() | | 7802 * | | | 7803 * V | | 7804 * +-------+ +-------+ 7805 * | vdev | | vdev | 7806 * | cache | | cache | 7807 * +-------+ +-------+ 7808 * +=========+ .-----. 7809 * : L2ARC : |-_____-| 7810 * : devices : | Disks | 7811 * +=========+ `-_____-' 7812 * 7813 * Read requests are satisfied from the following sources, in order: 7814 * 7815 * 1) ARC 7816 * 2) vdev cache of L2ARC devices 7817 * 3) L2ARC devices 7818 * 4) vdev cache of disks 7819 * 5) disks 7820 * 7821 * Some L2ARC device types exhibit extremely slow write performance. 7822 * To accommodate for this there are some significant differences between 7823 * the L2ARC and traditional cache design: 7824 * 7825 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 7826 * the ARC behave as usual, freeing buffers and placing headers on ghost 7827 * lists. The ARC does not send buffers to the L2ARC during eviction as 7828 * this would add inflated write latencies for all ARC memory pressure. 7829 * 7830 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 7831 * It does this by periodically scanning buffers from the eviction-end of 7832 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 7833 * not already there. It scans until a headroom of buffers is satisfied, 7834 * which itself is a buffer for ARC eviction. If a compressible buffer is 7835 * found during scanning and selected for writing to an L2ARC device, we 7836 * temporarily boost scanning headroom during the next scan cycle to make 7837 * sure we adapt to compression effects (which might significantly reduce 7838 * the data volume we write to L2ARC). The thread that does this is 7839 * l2arc_feed_thread(), illustrated below; example sizes are included to 7840 * provide a better sense of ratio than this diagram: 7841 * 7842 * head --> tail 7843 * +---------------------+----------+ 7844 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 7845 * +---------------------+----------+ | o L2ARC eligible 7846 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 7847 * +---------------------+----------+ | 7848 * 15.9 Gbytes ^ 32 Mbytes | 7849 * headroom | 7850 * l2arc_feed_thread() 7851 * | 7852 * l2arc write hand <--[oooo]--' 7853 * | 8 Mbyte 7854 * | write max 7855 * V 7856 * +==============================+ 7857 * L2ARC dev |####|#|###|###| |####| ... | 7858 * +==============================+ 7859 * 32 Gbytes 7860 * 7861 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 7862 * evicted, then the L2ARC has cached a buffer much sooner than it probably 7863 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 7864 * safe to say that this is an uncommon case, since buffers at the end of 7865 * the ARC lists have moved there due to inactivity. 7866 * 7867 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 7868 * then the L2ARC simply misses copying some buffers. This serves as a 7869 * pressure valve to prevent heavy read workloads from both stalling the ARC 7870 * with waits and clogging the L2ARC with writes. This also helps prevent 7871 * the potential for the L2ARC to churn if it attempts to cache content too 7872 * quickly, such as during backups of the entire pool. 7873 * 7874 * 5. After system boot and before the ARC has filled main memory, there are 7875 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 7876 * lists can remain mostly static. Instead of searching from tail of these 7877 * lists as pictured, the l2arc_feed_thread() will search from the list heads 7878 * for eligible buffers, greatly increasing its chance of finding them. 7879 * 7880 * The L2ARC device write speed is also boosted during this time so that 7881 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 7882 * there are no L2ARC reads, and no fear of degrading read performance 7883 * through increased writes. 7884 * 7885 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 7886 * the vdev queue can aggregate them into larger and fewer writes. Each 7887 * device is written to in a rotor fashion, sweeping writes through 7888 * available space then repeating. 7889 * 7890 * 7. The L2ARC does not store dirty content. It never needs to flush 7891 * write buffers back to disk based storage. 7892 * 7893 * 8. If an ARC buffer is written (and dirtied) which also exists in the 7894 * L2ARC, the now stale L2ARC buffer is immediately dropped. 7895 * 7896 * The performance of the L2ARC can be tweaked by a number of tunables, which 7897 * may be necessary for different workloads: 7898 * 7899 * l2arc_write_max max write bytes per interval 7900 * l2arc_write_boost extra write bytes during device warmup 7901 * l2arc_noprefetch skip caching prefetched buffers 7902 * l2arc_headroom number of max device writes to precache 7903 * l2arc_headroom_boost when we find compressed buffers during ARC 7904 * scanning, we multiply headroom by this 7905 * percentage factor for the next scan cycle, 7906 * since more compressed buffers are likely to 7907 * be present 7908 * l2arc_feed_secs seconds between L2ARC writing 7909 * 7910 * Tunables may be removed or added as future performance improvements are 7911 * integrated, and also may become zpool properties. 7912 * 7913 * There are three key functions that control how the L2ARC warms up: 7914 * 7915 * l2arc_write_eligible() check if a buffer is eligible to cache 7916 * l2arc_write_size() calculate how much to write 7917 * l2arc_write_interval() calculate sleep delay between writes 7918 * 7919 * These three functions determine what to write, how much, and how quickly 7920 * to send writes. 7921 * 7922 * L2ARC persistence: 7923 * 7924 * When writing buffers to L2ARC, we periodically add some metadata to 7925 * make sure we can pick them up after reboot, thus dramatically reducing 7926 * the impact that any downtime has on the performance of storage systems 7927 * with large caches. 7928 * 7929 * The implementation works fairly simply by integrating the following two 7930 * modifications: 7931 * 7932 * *) When writing to the L2ARC, we occasionally write a "l2arc log block", 7933 * which is an additional piece of metadata which describes what's been 7934 * written. This allows us to rebuild the arc_buf_hdr_t structures of the 7935 * main ARC buffers. There are 2 linked-lists of log blocks headed by 7936 * dh_start_lbps[2]. We alternate which chain we append to, so they are 7937 * time-wise and offset-wise interleaved, but that is an optimization rather 7938 * than for correctness. The log block also includes a pointer to the 7939 * previous block in its chain. 7940 * 7941 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device 7942 * for our header bookkeeping purposes. This contains a device header, 7943 * which contains our top-level reference structures. We update it each 7944 * time we write a new log block, so that we're able to locate it in the 7945 * L2ARC device. If this write results in an inconsistent device header 7946 * (e.g. due to power failure), we detect this by verifying the header's 7947 * checksum and simply fail to reconstruct the L2ARC after reboot. 7948 * 7949 * Implementation diagram: 7950 * 7951 * +=== L2ARC device (not to scale) ======================================+ 7952 * | ___two newest log block pointers__.__________ | 7953 * | / \dh_start_lbps[1] | 7954 * | / \ \dh_start_lbps[0]| 7955 * |.___/__. V V | 7956 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---| 7957 * || hdr| ^ /^ /^ / / | 7958 * |+------+ ...--\-------/ \-----/--\------/ / | 7959 * | \--------------/ \--------------/ | 7960 * +======================================================================+ 7961 * 7962 * As can be seen on the diagram, rather than using a simple linked list, 7963 * we use a pair of linked lists with alternating elements. This is a 7964 * performance enhancement due to the fact that we only find out the 7965 * address of the next log block access once the current block has been 7966 * completely read in. Obviously, this hurts performance, because we'd be 7967 * keeping the device's I/O queue at only a 1 operation deep, thus 7968 * incurring a large amount of I/O round-trip latency. Having two lists 7969 * allows us to fetch two log blocks ahead of where we are currently 7970 * rebuilding L2ARC buffers. 7971 * 7972 * On-device data structures: 7973 * 7974 * L2ARC device header: l2arc_dev_hdr_phys_t 7975 * L2ARC log block: l2arc_log_blk_phys_t 7976 * 7977 * L2ARC reconstruction: 7978 * 7979 * When writing data, we simply write in the standard rotary fashion, 7980 * evicting buffers as we go and simply writing new data over them (writing 7981 * a new log block every now and then). This obviously means that once we 7982 * loop around the end of the device, we will start cutting into an already 7983 * committed log block (and its referenced data buffers), like so: 7984 * 7985 * current write head__ __old tail 7986 * \ / 7987 * V V 7988 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |--> 7989 * ^ ^^^^^^^^^___________________________________ 7990 * | \ 7991 * <<nextwrite>> may overwrite this blk and/or its bufs --' 7992 * 7993 * When importing the pool, we detect this situation and use it to stop 7994 * our scanning process (see l2arc_rebuild). 7995 * 7996 * There is one significant caveat to consider when rebuilding ARC contents 7997 * from an L2ARC device: what about invalidated buffers? Given the above 7998 * construction, we cannot update blocks which we've already written to amend 7999 * them to remove buffers which were invalidated. Thus, during reconstruction, 8000 * we might be populating the cache with buffers for data that's not on the 8001 * main pool anymore, or may have been overwritten! 8002 * 8003 * As it turns out, this isn't a problem. Every arc_read request includes 8004 * both the DVA and, crucially, the birth TXG of the BP the caller is 8005 * looking for. So even if the cache were populated by completely rotten 8006 * blocks for data that had been long deleted and/or overwritten, we'll 8007 * never actually return bad data from the cache, since the DVA with the 8008 * birth TXG uniquely identify a block in space and time - once created, 8009 * a block is immutable on disk. The worst thing we have done is wasted 8010 * some time and memory at l2arc rebuild to reconstruct outdated ARC 8011 * entries that will get dropped from the l2arc as it is being updated 8012 * with new blocks. 8013 * 8014 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write 8015 * hand are not restored. This is done by saving the offset (in bytes) 8016 * l2arc_evict() has evicted to in the L2ARC device header and taking it 8017 * into account when restoring buffers. 8018 */ 8019 8020 static boolean_t 8021 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 8022 { 8023 /* 8024 * A buffer is *not* eligible for the L2ARC if it: 8025 * 1. belongs to a different spa. 8026 * 2. is already cached on the L2ARC. 8027 * 3. has an I/O in progress (it may be an incomplete read). 8028 * 4. is flagged not eligible (zfs property). 8029 */ 8030 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || 8031 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr)) 8032 return (B_FALSE); 8033 8034 return (B_TRUE); 8035 } 8036 8037 static uint64_t 8038 l2arc_write_size(l2arc_dev_t *dev) 8039 { 8040 uint64_t size, dev_size, tsize; 8041 8042 /* 8043 * Make sure our globals have meaningful values in case the user 8044 * altered them. 8045 */ 8046 size = l2arc_write_max; 8047 if (size == 0) { 8048 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 8049 "be greater than zero, resetting it to the default (%d)", 8050 L2ARC_WRITE_SIZE); 8051 size = l2arc_write_max = L2ARC_WRITE_SIZE; 8052 } 8053 8054 if (arc_warm == B_FALSE) 8055 size += l2arc_write_boost; 8056 8057 /* 8058 * Make sure the write size does not exceed the size of the cache 8059 * device. This is important in l2arc_evict(), otherwise infinite 8060 * iteration can occur. 8061 */ 8062 dev_size = dev->l2ad_end - dev->l2ad_start; 8063 tsize = size + l2arc_log_blk_overhead(size, dev); 8064 if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) 8065 tsize += MAX(64 * 1024 * 1024, 8066 (tsize * l2arc_trim_ahead) / 100); 8067 8068 if (tsize >= dev_size) { 8069 cmn_err(CE_NOTE, "l2arc_write_max or l2arc_write_boost " 8070 "plus the overhead of log blocks (persistent L2ARC, " 8071 "%llu bytes) exceeds the size of the cache device " 8072 "(guid %llu), resetting them to the default (%d)", 8073 l2arc_log_blk_overhead(size, dev), 8074 dev->l2ad_vdev->vdev_guid, L2ARC_WRITE_SIZE); 8075 size = l2arc_write_max = l2arc_write_boost = L2ARC_WRITE_SIZE; 8076 8077 if (arc_warm == B_FALSE) 8078 size += l2arc_write_boost; 8079 } 8080 8081 return (size); 8082 8083 } 8084 8085 static clock_t 8086 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 8087 { 8088 clock_t interval, next, now; 8089 8090 /* 8091 * If the ARC lists are busy, increase our write rate; if the 8092 * lists are stale, idle back. This is achieved by checking 8093 * how much we previously wrote - if it was more than half of 8094 * what we wanted, schedule the next write much sooner. 8095 */ 8096 if (l2arc_feed_again && wrote > (wanted / 2)) 8097 interval = (hz * l2arc_feed_min_ms) / 1000; 8098 else 8099 interval = hz * l2arc_feed_secs; 8100 8101 now = ddi_get_lbolt(); 8102 next = MAX(now, MIN(now + interval, began + interval)); 8103 8104 return (next); 8105 } 8106 8107 /* 8108 * Cycle through L2ARC devices. This is how L2ARC load balances. 8109 * If a device is returned, this also returns holding the spa config lock. 8110 */ 8111 static l2arc_dev_t * 8112 l2arc_dev_get_next(void) 8113 { 8114 l2arc_dev_t *first, *next = NULL; 8115 8116 /* 8117 * Lock out the removal of spas (spa_namespace_lock), then removal 8118 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 8119 * both locks will be dropped and a spa config lock held instead. 8120 */ 8121 mutex_enter(&spa_namespace_lock); 8122 mutex_enter(&l2arc_dev_mtx); 8123 8124 /* if there are no vdevs, there is nothing to do */ 8125 if (l2arc_ndev == 0) 8126 goto out; 8127 8128 first = NULL; 8129 next = l2arc_dev_last; 8130 do { 8131 /* loop around the list looking for a non-faulted vdev */ 8132 if (next == NULL) { 8133 next = list_head(l2arc_dev_list); 8134 } else { 8135 next = list_next(l2arc_dev_list, next); 8136 if (next == NULL) 8137 next = list_head(l2arc_dev_list); 8138 } 8139 8140 /* if we have come back to the start, bail out */ 8141 if (first == NULL) 8142 first = next; 8143 else if (next == first) 8144 break; 8145 8146 } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || 8147 next->l2ad_trim_all); 8148 8149 /* if we were unable to find any usable vdevs, return NULL */ 8150 if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || 8151 next->l2ad_trim_all) 8152 next = NULL; 8153 8154 l2arc_dev_last = next; 8155 8156 out: 8157 mutex_exit(&l2arc_dev_mtx); 8158 8159 /* 8160 * Grab the config lock to prevent the 'next' device from being 8161 * removed while we are writing to it. 8162 */ 8163 if (next != NULL) 8164 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 8165 mutex_exit(&spa_namespace_lock); 8166 8167 return (next); 8168 } 8169 8170 /* 8171 * Free buffers that were tagged for destruction. 8172 */ 8173 static void 8174 l2arc_do_free_on_write(void) 8175 { 8176 list_t *buflist; 8177 l2arc_data_free_t *df, *df_prev; 8178 8179 mutex_enter(&l2arc_free_on_write_mtx); 8180 buflist = l2arc_free_on_write; 8181 8182 for (df = list_tail(buflist); df; df = df_prev) { 8183 df_prev = list_prev(buflist, df); 8184 ASSERT3P(df->l2df_abd, !=, NULL); 8185 abd_free(df->l2df_abd); 8186 list_remove(buflist, df); 8187 kmem_free(df, sizeof (l2arc_data_free_t)); 8188 } 8189 8190 mutex_exit(&l2arc_free_on_write_mtx); 8191 } 8192 8193 /* 8194 * A write to a cache device has completed. Update all headers to allow 8195 * reads from these buffers to begin. 8196 */ 8197 static void 8198 l2arc_write_done(zio_t *zio) 8199 { 8200 l2arc_write_callback_t *cb; 8201 l2arc_lb_abd_buf_t *abd_buf; 8202 l2arc_lb_ptr_buf_t *lb_ptr_buf; 8203 l2arc_dev_t *dev; 8204 l2arc_dev_hdr_phys_t *l2dhdr; 8205 list_t *buflist; 8206 arc_buf_hdr_t *head, *hdr, *hdr_prev; 8207 kmutex_t *hash_lock; 8208 int64_t bytes_dropped = 0; 8209 8210 cb = zio->io_private; 8211 ASSERT3P(cb, !=, NULL); 8212 dev = cb->l2wcb_dev; 8213 l2dhdr = dev->l2ad_dev_hdr; 8214 ASSERT3P(dev, !=, NULL); 8215 head = cb->l2wcb_head; 8216 ASSERT3P(head, !=, NULL); 8217 buflist = &dev->l2ad_buflist; 8218 ASSERT3P(buflist, !=, NULL); 8219 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 8220 l2arc_write_callback_t *, cb); 8221 8222 /* 8223 * All writes completed, or an error was hit. 8224 */ 8225 top: 8226 mutex_enter(&dev->l2ad_mtx); 8227 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 8228 hdr_prev = list_prev(buflist, hdr); 8229 8230 hash_lock = HDR_LOCK(hdr); 8231 8232 /* 8233 * We cannot use mutex_enter or else we can deadlock 8234 * with l2arc_write_buffers (due to swapping the order 8235 * the hash lock and l2ad_mtx are taken). 8236 */ 8237 if (!mutex_tryenter(hash_lock)) { 8238 /* 8239 * Missed the hash lock. We must retry so we 8240 * don't leave the ARC_FLAG_L2_WRITING bit set. 8241 */ 8242 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 8243 8244 /* 8245 * We don't want to rescan the headers we've 8246 * already marked as having been written out, so 8247 * we reinsert the head node so we can pick up 8248 * where we left off. 8249 */ 8250 list_remove(buflist, head); 8251 list_insert_after(buflist, hdr, head); 8252 8253 mutex_exit(&dev->l2ad_mtx); 8254 8255 /* 8256 * We wait for the hash lock to become available 8257 * to try and prevent busy waiting, and increase 8258 * the chance we'll be able to acquire the lock 8259 * the next time around. 8260 */ 8261 mutex_enter(hash_lock); 8262 mutex_exit(hash_lock); 8263 goto top; 8264 } 8265 8266 /* 8267 * We could not have been moved into the arc_l2c_only 8268 * state while in-flight due to our ARC_FLAG_L2_WRITING 8269 * bit being set. Let's just ensure that's being enforced. 8270 */ 8271 ASSERT(HDR_HAS_L1HDR(hdr)); 8272 8273 /* 8274 * Skipped - drop L2ARC entry and mark the header as no 8275 * longer L2 eligibile. 8276 */ 8277 if (zio->io_error != 0) { 8278 /* 8279 * Error - drop L2ARC entry. 8280 */ 8281 list_remove(buflist, hdr); 8282 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 8283 8284 uint64_t psize = HDR_GET_PSIZE(hdr); 8285 l2arc_hdr_arcstats_decrement(hdr); 8286 8287 bytes_dropped += 8288 vdev_psize_to_asize(dev->l2ad_vdev, psize); 8289 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 8290 arc_hdr_size(hdr), hdr); 8291 } 8292 8293 /* 8294 * Allow ARC to begin reads and ghost list evictions to 8295 * this L2ARC entry. 8296 */ 8297 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); 8298 8299 mutex_exit(hash_lock); 8300 } 8301 8302 /* 8303 * Free the allocated abd buffers for writing the log blocks. 8304 * If the zio failed reclaim the allocated space and remove the 8305 * pointers to these log blocks from the log block pointer list 8306 * of the L2ARC device. 8307 */ 8308 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) { 8309 abd_free(abd_buf->abd); 8310 zio_buf_free(abd_buf, sizeof (*abd_buf)); 8311 if (zio->io_error != 0) { 8312 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list); 8313 /* 8314 * L2BLK_GET_PSIZE returns aligned size for log 8315 * blocks. 8316 */ 8317 uint64_t asize = 8318 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop); 8319 bytes_dropped += asize; 8320 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 8321 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 8322 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 8323 lb_ptr_buf); 8324 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 8325 kmem_free(lb_ptr_buf->lb_ptr, 8326 sizeof (l2arc_log_blkptr_t)); 8327 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 8328 } 8329 } 8330 list_destroy(&cb->l2wcb_abd_list); 8331 8332 if (zio->io_error != 0) { 8333 ARCSTAT_BUMP(arcstat_l2_writes_error); 8334 8335 /* 8336 * Restore the lbps array in the header to its previous state. 8337 * If the list of log block pointers is empty, zero out the 8338 * log block pointers in the device header. 8339 */ 8340 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list); 8341 for (int i = 0; i < 2; i++) { 8342 if (lb_ptr_buf == NULL) { 8343 /* 8344 * If the list is empty zero out the device 8345 * header. Otherwise zero out the second log 8346 * block pointer in the header. 8347 */ 8348 if (i == 0) { 8349 bzero(l2dhdr, dev->l2ad_dev_hdr_asize); 8350 } else { 8351 bzero(&l2dhdr->dh_start_lbps[i], 8352 sizeof (l2arc_log_blkptr_t)); 8353 } 8354 break; 8355 } 8356 bcopy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[i], 8357 sizeof (l2arc_log_blkptr_t)); 8358 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list, 8359 lb_ptr_buf); 8360 } 8361 } 8362 8363 atomic_inc_64(&l2arc_writes_done); 8364 list_remove(buflist, head); 8365 ASSERT(!HDR_HAS_L1HDR(head)); 8366 kmem_cache_free(hdr_l2only_cache, head); 8367 mutex_exit(&dev->l2ad_mtx); 8368 8369 ASSERT(dev->l2ad_vdev != NULL); 8370 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 8371 8372 l2arc_do_free_on_write(); 8373 8374 kmem_free(cb, sizeof (l2arc_write_callback_t)); 8375 } 8376 8377 static int 8378 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb) 8379 { 8380 int ret; 8381 spa_t *spa = zio->io_spa; 8382 arc_buf_hdr_t *hdr = cb->l2rcb_hdr; 8383 blkptr_t *bp = zio->io_bp; 8384 uint8_t salt[ZIO_DATA_SALT_LEN]; 8385 uint8_t iv[ZIO_DATA_IV_LEN]; 8386 uint8_t mac[ZIO_DATA_MAC_LEN]; 8387 boolean_t no_crypt = B_FALSE; 8388 8389 /* 8390 * ZIL data is never be written to the L2ARC, so we don't need 8391 * special handling for its unique MAC storage. 8392 */ 8393 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 8394 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 8395 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8396 8397 /* 8398 * If the data was encrypted, decrypt it now. Note that 8399 * we must check the bp here and not the hdr, since the 8400 * hdr does not have its encryption parameters updated 8401 * until arc_read_done(). 8402 */ 8403 if (BP_IS_ENCRYPTED(bp)) { 8404 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8405 B_TRUE); 8406 8407 zio_crypt_decode_params_bp(bp, salt, iv); 8408 zio_crypt_decode_mac_bp(bp, mac); 8409 8410 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb, 8411 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 8412 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd, 8413 hdr->b_l1hdr.b_pabd, &no_crypt); 8414 if (ret != 0) { 8415 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8416 goto error; 8417 } 8418 8419 /* 8420 * If we actually performed decryption, replace b_pabd 8421 * with the decrypted data. Otherwise we can just throw 8422 * our decryption buffer away. 8423 */ 8424 if (!no_crypt) { 8425 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8426 arc_hdr_size(hdr), hdr); 8427 hdr->b_l1hdr.b_pabd = eabd; 8428 zio->io_abd = eabd; 8429 } else { 8430 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8431 } 8432 } 8433 8434 /* 8435 * If the L2ARC block was compressed, but ARC compression 8436 * is disabled we decompress the data into a new buffer and 8437 * replace the existing data. 8438 */ 8439 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 8440 !HDR_COMPRESSION_ENABLED(hdr)) { 8441 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8442 B_TRUE); 8443 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 8444 8445 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 8446 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 8447 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 8448 if (ret != 0) { 8449 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 8450 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr); 8451 goto error; 8452 } 8453 8454 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 8455 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8456 arc_hdr_size(hdr), hdr); 8457 hdr->b_l1hdr.b_pabd = cabd; 8458 zio->io_abd = cabd; 8459 zio->io_size = HDR_GET_LSIZE(hdr); 8460 } 8461 8462 return (0); 8463 8464 error: 8465 return (ret); 8466 } 8467 8468 8469 /* 8470 * A read to a cache device completed. Validate buffer contents before 8471 * handing over to the regular ARC routines. 8472 */ 8473 static void 8474 l2arc_read_done(zio_t *zio) 8475 { 8476 int tfm_error = 0; 8477 l2arc_read_callback_t *cb = zio->io_private; 8478 arc_buf_hdr_t *hdr; 8479 kmutex_t *hash_lock; 8480 boolean_t valid_cksum; 8481 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) && 8482 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT)); 8483 8484 ASSERT3P(zio->io_vd, !=, NULL); 8485 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 8486 8487 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 8488 8489 ASSERT3P(cb, !=, NULL); 8490 hdr = cb->l2rcb_hdr; 8491 ASSERT3P(hdr, !=, NULL); 8492 8493 hash_lock = HDR_LOCK(hdr); 8494 mutex_enter(hash_lock); 8495 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 8496 8497 /* 8498 * If the data was read into a temporary buffer, 8499 * move it and free the buffer. 8500 */ 8501 if (cb->l2rcb_abd != NULL) { 8502 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size); 8503 if (zio->io_error == 0) { 8504 if (using_rdata) { 8505 abd_copy(hdr->b_crypt_hdr.b_rabd, 8506 cb->l2rcb_abd, arc_hdr_size(hdr)); 8507 } else { 8508 abd_copy(hdr->b_l1hdr.b_pabd, 8509 cb->l2rcb_abd, arc_hdr_size(hdr)); 8510 } 8511 } 8512 8513 /* 8514 * The following must be done regardless of whether 8515 * there was an error: 8516 * - free the temporary buffer 8517 * - point zio to the real ARC buffer 8518 * - set zio size accordingly 8519 * These are required because zio is either re-used for 8520 * an I/O of the block in the case of the error 8521 * or the zio is passed to arc_read_done() and it 8522 * needs real data. 8523 */ 8524 abd_free(cb->l2rcb_abd); 8525 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr); 8526 8527 if (using_rdata) { 8528 ASSERT(HDR_HAS_RABD(hdr)); 8529 zio->io_abd = zio->io_orig_abd = 8530 hdr->b_crypt_hdr.b_rabd; 8531 } else { 8532 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8533 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd; 8534 } 8535 } 8536 8537 ASSERT3P(zio->io_abd, !=, NULL); 8538 8539 /* 8540 * Check this survived the L2ARC journey. 8541 */ 8542 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd || 8543 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd)); 8544 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 8545 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 8546 zio->io_prop.zp_complevel = hdr->b_complevel; 8547 8548 valid_cksum = arc_cksum_is_equal(hdr, zio); 8549 8550 /* 8551 * b_rabd will always match the data as it exists on disk if it is 8552 * being used. Therefore if we are reading into b_rabd we do not 8553 * attempt to untransform the data. 8554 */ 8555 if (valid_cksum && !using_rdata) 8556 tfm_error = l2arc_untransform(zio, cb); 8557 8558 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 && 8559 !HDR_L2_EVICTED(hdr)) { 8560 mutex_exit(hash_lock); 8561 zio->io_private = hdr; 8562 arc_read_done(zio); 8563 } else { 8564 /* 8565 * Buffer didn't survive caching. Increment stats and 8566 * reissue to the original storage device. 8567 */ 8568 if (zio->io_error != 0) { 8569 ARCSTAT_BUMP(arcstat_l2_io_error); 8570 } else { 8571 zio->io_error = SET_ERROR(EIO); 8572 } 8573 if (!valid_cksum || tfm_error != 0) 8574 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 8575 8576 /* 8577 * If there's no waiter, issue an async i/o to the primary 8578 * storage now. If there *is* a waiter, the caller must 8579 * issue the i/o in a context where it's OK to block. 8580 */ 8581 if (zio->io_waiter == NULL) { 8582 zio_t *pio = zio_unique_parent(zio); 8583 void *abd = (using_rdata) ? 8584 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd; 8585 8586 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 8587 8588 zio = zio_read(pio, zio->io_spa, zio->io_bp, 8589 abd, zio->io_size, arc_read_done, 8590 hdr, zio->io_priority, cb->l2rcb_flags, 8591 &cb->l2rcb_zb); 8592 8593 /* 8594 * Original ZIO will be freed, so we need to update 8595 * ARC header with the new ZIO pointer to be used 8596 * by zio_change_priority() in arc_read(). 8597 */ 8598 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb; 8599 acb != NULL; acb = acb->acb_next) 8600 acb->acb_zio_head = zio; 8601 8602 mutex_exit(hash_lock); 8603 zio_nowait(zio); 8604 } else { 8605 mutex_exit(hash_lock); 8606 } 8607 } 8608 8609 kmem_free(cb, sizeof (l2arc_read_callback_t)); 8610 } 8611 8612 /* 8613 * This is the list priority from which the L2ARC will search for pages to 8614 * cache. This is used within loops (0..3) to cycle through lists in the 8615 * desired order. This order can have a significant effect on cache 8616 * performance. 8617 * 8618 * Currently the metadata lists are hit first, MFU then MRU, followed by 8619 * the data lists. This function returns a locked list, and also returns 8620 * the lock pointer. 8621 */ 8622 static multilist_sublist_t * 8623 l2arc_sublist_lock(int list_num) 8624 { 8625 multilist_t *ml = NULL; 8626 unsigned int idx; 8627 8628 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES); 8629 8630 switch (list_num) { 8631 case 0: 8632 ml = arc_mfu->arcs_list[ARC_BUFC_METADATA]; 8633 break; 8634 case 1: 8635 ml = arc_mru->arcs_list[ARC_BUFC_METADATA]; 8636 break; 8637 case 2: 8638 ml = arc_mfu->arcs_list[ARC_BUFC_DATA]; 8639 break; 8640 case 3: 8641 ml = arc_mru->arcs_list[ARC_BUFC_DATA]; 8642 break; 8643 default: 8644 return (NULL); 8645 } 8646 8647 /* 8648 * Return a randomly-selected sublist. This is acceptable 8649 * because the caller feeds only a little bit of data for each 8650 * call (8MB). Subsequent calls will result in different 8651 * sublists being selected. 8652 */ 8653 idx = multilist_get_random_index(ml); 8654 return (multilist_sublist_lock(ml, idx)); 8655 } 8656 8657 /* 8658 * Calculates the maximum overhead of L2ARC metadata log blocks for a given 8659 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this 8660 * overhead in processing to make sure there is enough headroom available 8661 * when writing buffers. 8662 */ 8663 static inline uint64_t 8664 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev) 8665 { 8666 if (dev->l2ad_log_entries == 0) { 8667 return (0); 8668 } else { 8669 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT; 8670 8671 uint64_t log_blocks = (log_entries + 8672 dev->l2ad_log_entries - 1) / 8673 dev->l2ad_log_entries; 8674 8675 return (vdev_psize_to_asize(dev->l2ad_vdev, 8676 sizeof (l2arc_log_blk_phys_t)) * log_blocks); 8677 } 8678 } 8679 8680 /* 8681 * Evict buffers from the device write hand to the distance specified in 8682 * bytes. This distance may span populated buffers, it may span nothing. 8683 * This is clearing a region on the L2ARC device ready for writing. 8684 * If the 'all' boolean is set, every buffer is evicted. 8685 */ 8686 static void 8687 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 8688 { 8689 list_t *buflist; 8690 arc_buf_hdr_t *hdr, *hdr_prev; 8691 kmutex_t *hash_lock; 8692 uint64_t taddr; 8693 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev; 8694 vdev_t *vd = dev->l2ad_vdev; 8695 boolean_t rerun; 8696 8697 buflist = &dev->l2ad_buflist; 8698 8699 /* 8700 * We need to add in the worst case scenario of log block overhead. 8701 */ 8702 distance += l2arc_log_blk_overhead(distance, dev); 8703 if (vd->vdev_has_trim && l2arc_trim_ahead > 0) { 8704 /* 8705 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100) 8706 * times the write size, whichever is greater. 8707 */ 8708 distance += MAX(64 * 1024 * 1024, 8709 (distance * l2arc_trim_ahead) / 100); 8710 } 8711 8712 top: 8713 rerun = B_FALSE; 8714 if (dev->l2ad_hand >= (dev->l2ad_end - distance)) { 8715 /* 8716 * When there is no space to accommodate upcoming writes, 8717 * evict to the end. Then bump the write and evict hands 8718 * to the start and iterate. This iteration does not 8719 * happen indefinitely as we make sure in 8720 * l2arc_write_size() that when the write hand is reset, 8721 * the write size does not exceed the end of the device. 8722 */ 8723 rerun = B_TRUE; 8724 taddr = dev->l2ad_end; 8725 } else { 8726 taddr = dev->l2ad_hand + distance; 8727 } 8728 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 8729 uint64_t, taddr, boolean_t, all); 8730 8731 if (!all) { 8732 /* 8733 * This check has to be placed after deciding whether to 8734 * iterate (rerun). 8735 */ 8736 if (dev->l2ad_first) { 8737 /* 8738 * This is the first sweep through the device. There is 8739 * nothing to evict. We have already trimmmed the 8740 * whole device. 8741 */ 8742 goto out; 8743 } else { 8744 /* 8745 * Trim the space to be evicted. 8746 */ 8747 if (vd->vdev_has_trim && dev->l2ad_evict < taddr && 8748 l2arc_trim_ahead > 0) { 8749 /* 8750 * We have to drop the spa_config lock because 8751 * vdev_trim_range() will acquire it. 8752 * l2ad_evict already accounts for the label 8753 * size. To prevent vdev_trim_ranges() from 8754 * adding it again, we subtract it from 8755 * l2ad_evict. 8756 */ 8757 spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev); 8758 vdev_trim_simple(vd, 8759 dev->l2ad_evict - VDEV_LABEL_START_SIZE, 8760 taddr - dev->l2ad_evict); 8761 spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev, 8762 RW_READER); 8763 } 8764 8765 /* 8766 * When rebuilding L2ARC we retrieve the evict hand 8767 * from the header of the device. Of note, l2arc_evict() 8768 * does not actually delete buffers from the cache 8769 * device, but trimming may do so depending on the 8770 * hardware implementation. Thus keeping track of the 8771 * evict hand is useful. 8772 */ 8773 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr); 8774 } 8775 } 8776 8777 retry: 8778 mutex_enter(&dev->l2ad_mtx); 8779 /* 8780 * We have to account for evicted log blocks. Run vdev_space_update() 8781 * on log blocks whose offset (in bytes) is before the evicted offset 8782 * (in bytes) by searching in the list of pointers to log blocks 8783 * present in the L2ARC device. 8784 */ 8785 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf; 8786 lb_ptr_buf = lb_ptr_buf_prev) { 8787 8788 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf); 8789 8790 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 8791 uint64_t asize = L2BLK_GET_PSIZE( 8792 (lb_ptr_buf->lb_ptr)->lbp_prop); 8793 8794 /* 8795 * We don't worry about log blocks left behind (ie 8796 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers() 8797 * will never write more than l2arc_evict() evicts. 8798 */ 8799 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) { 8800 break; 8801 } else { 8802 vdev_space_update(vd, -asize, 0, 0); 8803 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 8804 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 8805 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 8806 lb_ptr_buf); 8807 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 8808 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf); 8809 kmem_free(lb_ptr_buf->lb_ptr, 8810 sizeof (l2arc_log_blkptr_t)); 8811 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 8812 } 8813 } 8814 8815 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 8816 hdr_prev = list_prev(buflist, hdr); 8817 8818 ASSERT(!HDR_EMPTY(hdr)); 8819 hash_lock = HDR_LOCK(hdr); 8820 8821 /* 8822 * We cannot use mutex_enter or else we can deadlock 8823 * with l2arc_write_buffers (due to swapping the order 8824 * the hash lock and l2ad_mtx are taken). 8825 */ 8826 if (!mutex_tryenter(hash_lock)) { 8827 /* 8828 * Missed the hash lock. Retry. 8829 */ 8830 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 8831 mutex_exit(&dev->l2ad_mtx); 8832 mutex_enter(hash_lock); 8833 mutex_exit(hash_lock); 8834 goto retry; 8835 } 8836 8837 /* 8838 * A header can't be on this list if it doesn't have L2 header. 8839 */ 8840 ASSERT(HDR_HAS_L2HDR(hdr)); 8841 8842 /* Ensure this header has finished being written. */ 8843 ASSERT(!HDR_L2_WRITING(hdr)); 8844 ASSERT(!HDR_L2_WRITE_HEAD(hdr)); 8845 8846 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict || 8847 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 8848 /* 8849 * We've evicted to the target address, 8850 * or the end of the device. 8851 */ 8852 mutex_exit(hash_lock); 8853 break; 8854 } 8855 8856 if (!HDR_HAS_L1HDR(hdr)) { 8857 ASSERT(!HDR_L2_READING(hdr)); 8858 /* 8859 * This doesn't exist in the ARC. Destroy. 8860 * arc_hdr_destroy() will call list_remove() 8861 * and decrement arcstat_l2_lsize. 8862 */ 8863 arc_change_state(arc_anon, hdr, hash_lock); 8864 arc_hdr_destroy(hdr); 8865 } else { 8866 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 8867 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 8868 /* 8869 * Invalidate issued or about to be issued 8870 * reads, since we may be about to write 8871 * over this location. 8872 */ 8873 if (HDR_L2_READING(hdr)) { 8874 ARCSTAT_BUMP(arcstat_l2_evict_reading); 8875 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); 8876 } 8877 8878 arc_hdr_l2hdr_destroy(hdr); 8879 } 8880 mutex_exit(hash_lock); 8881 } 8882 mutex_exit(&dev->l2ad_mtx); 8883 8884 out: 8885 /* 8886 * We need to check if we evict all buffers, otherwise we may iterate 8887 * unnecessarily. 8888 */ 8889 if (!all && rerun) { 8890 /* 8891 * Bump device hand to the device start if it is approaching the 8892 * end. l2arc_evict() has already evicted ahead for this case. 8893 */ 8894 dev->l2ad_hand = dev->l2ad_start; 8895 dev->l2ad_evict = dev->l2ad_start; 8896 dev->l2ad_first = B_FALSE; 8897 goto top; 8898 } 8899 8900 if (!all) { 8901 /* 8902 * In case of cache device removal (all) the following 8903 * assertions may be violated without functional consequences 8904 * as the device is about to be removed. 8905 */ 8906 ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end); 8907 if (!dev->l2ad_first) 8908 ASSERT3U(dev->l2ad_hand, <, dev->l2ad_evict); 8909 } 8910 } 8911 8912 /* 8913 * Handle any abd transforms that might be required for writing to the L2ARC. 8914 * If successful, this function will always return an abd with the data 8915 * transformed as it is on disk in a new abd of asize bytes. 8916 */ 8917 static int 8918 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize, 8919 abd_t **abd_out) 8920 { 8921 int ret; 8922 void *tmp = NULL; 8923 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd; 8924 enum zio_compress compress = HDR_GET_COMPRESS(hdr); 8925 uint64_t psize = HDR_GET_PSIZE(hdr); 8926 uint64_t size = arc_hdr_size(hdr); 8927 boolean_t ismd = HDR_ISTYPE_METADATA(hdr); 8928 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 8929 dsl_crypto_key_t *dck = NULL; 8930 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 }; 8931 boolean_t no_crypt = B_FALSE; 8932 8933 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 8934 !HDR_COMPRESSION_ENABLED(hdr)) || 8935 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize); 8936 ASSERT3U(psize, <=, asize); 8937 8938 /* 8939 * If this data simply needs its own buffer, we simply allocate it 8940 * and copy the data. This may be done to eliminate a dependency on a 8941 * shared buffer or to reallocate the buffer to match asize. 8942 */ 8943 if (HDR_HAS_RABD(hdr) && asize != psize) { 8944 ASSERT3U(asize, >=, psize); 8945 to_write = abd_alloc_for_io(asize, ismd); 8946 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize); 8947 if (psize != asize) 8948 abd_zero_off(to_write, psize, asize - psize); 8949 goto out; 8950 } 8951 8952 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) && 8953 !HDR_ENCRYPTED(hdr)) { 8954 ASSERT3U(size, ==, psize); 8955 to_write = abd_alloc_for_io(asize, ismd); 8956 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 8957 if (size != asize) 8958 abd_zero_off(to_write, size, asize - size); 8959 goto out; 8960 } 8961 8962 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) { 8963 cabd = abd_alloc_for_io(asize, ismd); 8964 tmp = abd_borrow_buf(cabd, asize); 8965 8966 psize = zio_compress_data(compress, to_write, tmp, size, 8967 hdr->b_complevel); 8968 8969 if (psize >= size) { 8970 abd_return_buf(cabd, tmp, asize); 8971 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF); 8972 to_write = cabd; 8973 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 8974 if (size != asize) 8975 abd_zero_off(to_write, size, asize - size); 8976 goto encrypt; 8977 } 8978 ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr)); 8979 if (psize < asize) 8980 bzero((char *)tmp + psize, asize - psize); 8981 psize = HDR_GET_PSIZE(hdr); 8982 abd_return_buf_copy(cabd, tmp, asize); 8983 to_write = cabd; 8984 } 8985 8986 encrypt: 8987 if (HDR_ENCRYPTED(hdr)) { 8988 eabd = abd_alloc_for_io(asize, ismd); 8989 8990 /* 8991 * If the dataset was disowned before the buffer 8992 * made it to this point, the key to re-encrypt 8993 * it won't be available. In this case we simply 8994 * won't write the buffer to the L2ARC. 8995 */ 8996 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj, 8997 FTAG, &dck); 8998 if (ret != 0) 8999 goto error; 9000 9001 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key, 9002 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt, 9003 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd, 9004 &no_crypt); 9005 if (ret != 0) 9006 goto error; 9007 9008 if (no_crypt) 9009 abd_copy(eabd, to_write, psize); 9010 9011 if (psize != asize) 9012 abd_zero_off(eabd, psize, asize - psize); 9013 9014 /* assert that the MAC we got here matches the one we saved */ 9015 ASSERT0(bcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN)); 9016 spa_keystore_dsl_key_rele(spa, dck, FTAG); 9017 9018 if (to_write == cabd) 9019 abd_free(cabd); 9020 9021 to_write = eabd; 9022 } 9023 9024 out: 9025 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd); 9026 *abd_out = to_write; 9027 return (0); 9028 9029 error: 9030 if (dck != NULL) 9031 spa_keystore_dsl_key_rele(spa, dck, FTAG); 9032 if (cabd != NULL) 9033 abd_free(cabd); 9034 if (eabd != NULL) 9035 abd_free(eabd); 9036 9037 *abd_out = NULL; 9038 return (ret); 9039 } 9040 9041 static void 9042 l2arc_blk_fetch_done(zio_t *zio) 9043 { 9044 l2arc_read_callback_t *cb; 9045 9046 cb = zio->io_private; 9047 if (cb->l2rcb_abd != NULL) 9048 abd_free(cb->l2rcb_abd); 9049 kmem_free(cb, sizeof (l2arc_read_callback_t)); 9050 } 9051 9052 /* 9053 * Find and write ARC buffers to the L2ARC device. 9054 * 9055 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 9056 * for reading until they have completed writing. 9057 * The headroom_boost is an in-out parameter used to maintain headroom boost 9058 * state between calls to this function. 9059 * 9060 * Returns the number of bytes actually written (which may be smaller than 9061 * the delta by which the device hand has changed due to alignment and the 9062 * writing of log blocks). 9063 */ 9064 static uint64_t 9065 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 9066 { 9067 arc_buf_hdr_t *hdr, *hdr_prev, *head; 9068 uint64_t write_asize, write_psize, write_lsize, headroom; 9069 boolean_t full; 9070 l2arc_write_callback_t *cb = NULL; 9071 zio_t *pio, *wzio; 9072 uint64_t guid = spa_load_guid(spa); 9073 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9074 9075 ASSERT3P(dev->l2ad_vdev, !=, NULL); 9076 9077 pio = NULL; 9078 write_lsize = write_asize = write_psize = 0; 9079 full = B_FALSE; 9080 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 9081 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); 9082 9083 /* 9084 * Copy buffers for L2ARC writing. 9085 */ 9086 for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) { 9087 /* 9088 * If pass == 1 or 3, we cache MRU metadata and data 9089 * respectively. 9090 */ 9091 if (l2arc_mfuonly) { 9092 if (pass == 1 || pass == 3) 9093 continue; 9094 } 9095 9096 multilist_sublist_t *mls = l2arc_sublist_lock(pass); 9097 uint64_t passed_sz = 0; 9098 9099 VERIFY3P(mls, !=, NULL); 9100 9101 /* 9102 * L2ARC fast warmup. 9103 * 9104 * Until the ARC is warm and starts to evict, read from the 9105 * head of the ARC lists rather than the tail. 9106 */ 9107 if (arc_warm == B_FALSE) 9108 hdr = multilist_sublist_head(mls); 9109 else 9110 hdr = multilist_sublist_tail(mls); 9111 9112 headroom = target_sz * l2arc_headroom; 9113 if (zfs_compressed_arc_enabled) 9114 headroom = (headroom * l2arc_headroom_boost) / 100; 9115 9116 for (; hdr; hdr = hdr_prev) { 9117 kmutex_t *hash_lock; 9118 abd_t *to_write = NULL; 9119 9120 if (arc_warm == B_FALSE) 9121 hdr_prev = multilist_sublist_next(mls, hdr); 9122 else 9123 hdr_prev = multilist_sublist_prev(mls, hdr); 9124 9125 hash_lock = HDR_LOCK(hdr); 9126 if (!mutex_tryenter(hash_lock)) { 9127 /* 9128 * Skip this buffer rather than waiting. 9129 */ 9130 continue; 9131 } 9132 9133 passed_sz += HDR_GET_LSIZE(hdr); 9134 if (l2arc_headroom != 0 && passed_sz > headroom) { 9135 /* 9136 * Searched too far. 9137 */ 9138 mutex_exit(hash_lock); 9139 break; 9140 } 9141 9142 if (!l2arc_write_eligible(guid, hdr)) { 9143 mutex_exit(hash_lock); 9144 continue; 9145 } 9146 9147 /* 9148 * We rely on the L1 portion of the header below, so 9149 * it's invalid for this header to have been evicted out 9150 * of the ghost cache, prior to being written out. The 9151 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 9152 */ 9153 ASSERT(HDR_HAS_L1HDR(hdr)); 9154 9155 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 9156 ASSERT3U(arc_hdr_size(hdr), >, 0); 9157 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 9158 HDR_HAS_RABD(hdr)); 9159 uint64_t psize = HDR_GET_PSIZE(hdr); 9160 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 9161 psize); 9162 9163 if ((write_asize + asize) > target_sz) { 9164 full = B_TRUE; 9165 mutex_exit(hash_lock); 9166 break; 9167 } 9168 9169 /* 9170 * We rely on the L1 portion of the header below, so 9171 * it's invalid for this header to have been evicted out 9172 * of the ghost cache, prior to being written out. The 9173 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 9174 */ 9175 arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING); 9176 ASSERT(HDR_HAS_L1HDR(hdr)); 9177 9178 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 9179 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 9180 HDR_HAS_RABD(hdr)); 9181 ASSERT3U(arc_hdr_size(hdr), >, 0); 9182 9183 /* 9184 * If this header has b_rabd, we can use this since it 9185 * must always match the data exactly as it exists on 9186 * disk. Otherwise, the L2ARC can normally use the 9187 * hdr's data, but if we're sharing data between the 9188 * hdr and one of its bufs, L2ARC needs its own copy of 9189 * the data so that the ZIO below can't race with the 9190 * buf consumer. To ensure that this copy will be 9191 * available for the lifetime of the ZIO and be cleaned 9192 * up afterwards, we add it to the l2arc_free_on_write 9193 * queue. If we need to apply any transforms to the 9194 * data (compression, encryption) we will also need the 9195 * extra buffer. 9196 */ 9197 if (HDR_HAS_RABD(hdr) && psize == asize) { 9198 to_write = hdr->b_crypt_hdr.b_rabd; 9199 } else if ((HDR_COMPRESSION_ENABLED(hdr) || 9200 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) && 9201 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) && 9202 psize == asize) { 9203 to_write = hdr->b_l1hdr.b_pabd; 9204 } else { 9205 int ret; 9206 arc_buf_contents_t type = arc_buf_type(hdr); 9207 9208 ret = l2arc_apply_transforms(spa, hdr, asize, 9209 &to_write); 9210 if (ret != 0) { 9211 arc_hdr_clear_flags(hdr, 9212 ARC_FLAG_L2_WRITING); 9213 mutex_exit(hash_lock); 9214 continue; 9215 } 9216 9217 l2arc_free_abd_on_write(to_write, asize, type); 9218 } 9219 9220 if (pio == NULL) { 9221 /* 9222 * Insert a dummy header on the buflist so 9223 * l2arc_write_done() can find where the 9224 * write buffers begin without searching. 9225 */ 9226 mutex_enter(&dev->l2ad_mtx); 9227 list_insert_head(&dev->l2ad_buflist, head); 9228 mutex_exit(&dev->l2ad_mtx); 9229 9230 cb = kmem_alloc( 9231 sizeof (l2arc_write_callback_t), KM_SLEEP); 9232 cb->l2wcb_dev = dev; 9233 cb->l2wcb_head = head; 9234 /* 9235 * Create a list to save allocated abd buffers 9236 * for l2arc_log_blk_commit(). 9237 */ 9238 list_create(&cb->l2wcb_abd_list, 9239 sizeof (l2arc_lb_abd_buf_t), 9240 offsetof(l2arc_lb_abd_buf_t, node)); 9241 pio = zio_root(spa, l2arc_write_done, cb, 9242 ZIO_FLAG_CANFAIL); 9243 } 9244 9245 hdr->b_l2hdr.b_dev = dev; 9246 hdr->b_l2hdr.b_hits = 0; 9247 9248 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 9249 hdr->b_l2hdr.b_arcs_state = 9250 hdr->b_l1hdr.b_state->arcs_state; 9251 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR); 9252 9253 mutex_enter(&dev->l2ad_mtx); 9254 list_insert_head(&dev->l2ad_buflist, hdr); 9255 mutex_exit(&dev->l2ad_mtx); 9256 9257 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 9258 arc_hdr_size(hdr), hdr); 9259 9260 wzio = zio_write_phys(pio, dev->l2ad_vdev, 9261 hdr->b_l2hdr.b_daddr, asize, to_write, 9262 ZIO_CHECKSUM_OFF, NULL, hdr, 9263 ZIO_PRIORITY_ASYNC_WRITE, 9264 ZIO_FLAG_CANFAIL, B_FALSE); 9265 9266 write_lsize += HDR_GET_LSIZE(hdr); 9267 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 9268 zio_t *, wzio); 9269 9270 write_psize += psize; 9271 write_asize += asize; 9272 dev->l2ad_hand += asize; 9273 l2arc_hdr_arcstats_increment(hdr); 9274 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 9275 9276 mutex_exit(hash_lock); 9277 9278 /* 9279 * Append buf info to current log and commit if full. 9280 * arcstat_l2_{size,asize} kstats are updated 9281 * internally. 9282 */ 9283 if (l2arc_log_blk_insert(dev, hdr)) 9284 l2arc_log_blk_commit(dev, pio, cb); 9285 9286 zio_nowait(wzio); 9287 } 9288 9289 multilist_sublist_unlock(mls); 9290 9291 if (full == B_TRUE) 9292 break; 9293 } 9294 9295 /* No buffers selected for writing? */ 9296 if (pio == NULL) { 9297 ASSERT0(write_lsize); 9298 ASSERT(!HDR_HAS_L1HDR(head)); 9299 kmem_cache_free(hdr_l2only_cache, head); 9300 9301 /* 9302 * Although we did not write any buffers l2ad_evict may 9303 * have advanced. 9304 */ 9305 if (dev->l2ad_evict != l2dhdr->dh_evict) 9306 l2arc_dev_hdr_update(dev); 9307 9308 return (0); 9309 } 9310 9311 if (!dev->l2ad_first) 9312 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict); 9313 9314 ASSERT3U(write_asize, <=, target_sz); 9315 ARCSTAT_BUMP(arcstat_l2_writes_sent); 9316 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize); 9317 9318 dev->l2ad_writing = B_TRUE; 9319 (void) zio_wait(pio); 9320 dev->l2ad_writing = B_FALSE; 9321 9322 /* 9323 * Update the device header after the zio completes as 9324 * l2arc_write_done() may have updated the memory holding the log block 9325 * pointers in the device header. 9326 */ 9327 l2arc_dev_hdr_update(dev); 9328 9329 return (write_asize); 9330 } 9331 9332 static boolean_t 9333 l2arc_hdr_limit_reached(void) 9334 { 9335 int64_t s = aggsum_upper_bound(&astat_l2_hdr_size); 9336 9337 return (arc_reclaim_needed() || (s > arc_meta_limit * 3 / 4) || 9338 (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100)); 9339 } 9340 9341 /* 9342 * This thread feeds the L2ARC at regular intervals. This is the beating 9343 * heart of the L2ARC. 9344 */ 9345 /* ARGSUSED */ 9346 static void 9347 l2arc_feed_thread(void *unused) 9348 { 9349 callb_cpr_t cpr; 9350 l2arc_dev_t *dev; 9351 spa_t *spa; 9352 uint64_t size, wrote; 9353 clock_t begin, next = ddi_get_lbolt(); 9354 fstrans_cookie_t cookie; 9355 9356 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 9357 9358 mutex_enter(&l2arc_feed_thr_lock); 9359 9360 cookie = spl_fstrans_mark(); 9361 while (l2arc_thread_exit == 0) { 9362 CALLB_CPR_SAFE_BEGIN(&cpr); 9363 (void) cv_timedwait_idle(&l2arc_feed_thr_cv, 9364 &l2arc_feed_thr_lock, next); 9365 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 9366 next = ddi_get_lbolt() + hz; 9367 9368 /* 9369 * Quick check for L2ARC devices. 9370 */ 9371 mutex_enter(&l2arc_dev_mtx); 9372 if (l2arc_ndev == 0) { 9373 mutex_exit(&l2arc_dev_mtx); 9374 continue; 9375 } 9376 mutex_exit(&l2arc_dev_mtx); 9377 begin = ddi_get_lbolt(); 9378 9379 /* 9380 * This selects the next l2arc device to write to, and in 9381 * doing so the next spa to feed from: dev->l2ad_spa. This 9382 * will return NULL if there are now no l2arc devices or if 9383 * they are all faulted. 9384 * 9385 * If a device is returned, its spa's config lock is also 9386 * held to prevent device removal. l2arc_dev_get_next() 9387 * will grab and release l2arc_dev_mtx. 9388 */ 9389 if ((dev = l2arc_dev_get_next()) == NULL) 9390 continue; 9391 9392 spa = dev->l2ad_spa; 9393 ASSERT3P(spa, !=, NULL); 9394 9395 /* 9396 * If the pool is read-only then force the feed thread to 9397 * sleep a little longer. 9398 */ 9399 if (!spa_writeable(spa)) { 9400 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 9401 spa_config_exit(spa, SCL_L2ARC, dev); 9402 continue; 9403 } 9404 9405 /* 9406 * Avoid contributing to memory pressure. 9407 */ 9408 if (l2arc_hdr_limit_reached()) { 9409 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 9410 spa_config_exit(spa, SCL_L2ARC, dev); 9411 continue; 9412 } 9413 9414 ARCSTAT_BUMP(arcstat_l2_feeds); 9415 9416 size = l2arc_write_size(dev); 9417 9418 /* 9419 * Evict L2ARC buffers that will be overwritten. 9420 */ 9421 l2arc_evict(dev, size, B_FALSE); 9422 9423 /* 9424 * Write ARC buffers. 9425 */ 9426 wrote = l2arc_write_buffers(spa, dev, size); 9427 9428 /* 9429 * Calculate interval between writes. 9430 */ 9431 next = l2arc_write_interval(begin, size, wrote); 9432 spa_config_exit(spa, SCL_L2ARC, dev); 9433 } 9434 spl_fstrans_unmark(cookie); 9435 9436 l2arc_thread_exit = 0; 9437 cv_broadcast(&l2arc_feed_thr_cv); 9438 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 9439 thread_exit(); 9440 } 9441 9442 boolean_t 9443 l2arc_vdev_present(vdev_t *vd) 9444 { 9445 return (l2arc_vdev_get(vd) != NULL); 9446 } 9447 9448 /* 9449 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if 9450 * the vdev_t isn't an L2ARC device. 9451 */ 9452 l2arc_dev_t * 9453 l2arc_vdev_get(vdev_t *vd) 9454 { 9455 l2arc_dev_t *dev; 9456 9457 mutex_enter(&l2arc_dev_mtx); 9458 for (dev = list_head(l2arc_dev_list); dev != NULL; 9459 dev = list_next(l2arc_dev_list, dev)) { 9460 if (dev->l2ad_vdev == vd) 9461 break; 9462 } 9463 mutex_exit(&l2arc_dev_mtx); 9464 9465 return (dev); 9466 } 9467 9468 /* 9469 * Add a vdev for use by the L2ARC. By this point the spa has already 9470 * validated the vdev and opened it. 9471 */ 9472 void 9473 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 9474 { 9475 l2arc_dev_t *adddev; 9476 uint64_t l2dhdr_asize; 9477 9478 ASSERT(!l2arc_vdev_present(vd)); 9479 9480 /* 9481 * Create a new l2arc device entry. 9482 */ 9483 adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 9484 adddev->l2ad_spa = spa; 9485 adddev->l2ad_vdev = vd; 9486 /* leave extra size for an l2arc device header */ 9487 l2dhdr_asize = adddev->l2ad_dev_hdr_asize = 9488 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift); 9489 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize; 9490 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 9491 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end); 9492 adddev->l2ad_hand = adddev->l2ad_start; 9493 adddev->l2ad_evict = adddev->l2ad_start; 9494 adddev->l2ad_first = B_TRUE; 9495 adddev->l2ad_writing = B_FALSE; 9496 adddev->l2ad_trim_all = B_FALSE; 9497 list_link_init(&adddev->l2ad_node); 9498 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP); 9499 9500 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 9501 /* 9502 * This is a list of all ARC buffers that are still valid on the 9503 * device. 9504 */ 9505 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 9506 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 9507 9508 /* 9509 * This is a list of pointers to log blocks that are still present 9510 * on the device. 9511 */ 9512 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t), 9513 offsetof(l2arc_lb_ptr_buf_t, node)); 9514 9515 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 9516 zfs_refcount_create(&adddev->l2ad_alloc); 9517 zfs_refcount_create(&adddev->l2ad_lb_asize); 9518 zfs_refcount_create(&adddev->l2ad_lb_count); 9519 9520 /* 9521 * Add device to global list 9522 */ 9523 mutex_enter(&l2arc_dev_mtx); 9524 list_insert_head(l2arc_dev_list, adddev); 9525 atomic_inc_64(&l2arc_ndev); 9526 mutex_exit(&l2arc_dev_mtx); 9527 9528 /* 9529 * Decide if vdev is eligible for L2ARC rebuild 9530 */ 9531 l2arc_rebuild_vdev(adddev->l2ad_vdev, B_FALSE); 9532 } 9533 9534 void 9535 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen) 9536 { 9537 l2arc_dev_t *dev = NULL; 9538 l2arc_dev_hdr_phys_t *l2dhdr; 9539 uint64_t l2dhdr_asize; 9540 spa_t *spa; 9541 9542 dev = l2arc_vdev_get(vd); 9543 ASSERT3P(dev, !=, NULL); 9544 spa = dev->l2ad_spa; 9545 l2dhdr = dev->l2ad_dev_hdr; 9546 l2dhdr_asize = dev->l2ad_dev_hdr_asize; 9547 9548 /* 9549 * The L2ARC has to hold at least the payload of one log block for 9550 * them to be restored (persistent L2ARC). The payload of a log block 9551 * depends on the amount of its log entries. We always write log blocks 9552 * with 1022 entries. How many of them are committed or restored depends 9553 * on the size of the L2ARC device. Thus the maximum payload of 9554 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device 9555 * is less than that, we reduce the amount of committed and restored 9556 * log entries per block so as to enable persistence. 9557 */ 9558 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) { 9559 dev->l2ad_log_entries = 0; 9560 } else { 9561 dev->l2ad_log_entries = MIN((dev->l2ad_end - 9562 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT, 9563 L2ARC_LOG_BLK_MAX_ENTRIES); 9564 } 9565 9566 /* 9567 * Read the device header, if an error is returned do not rebuild L2ARC. 9568 */ 9569 if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) { 9570 /* 9571 * If we are onlining a cache device (vdev_reopen) that was 9572 * still present (l2arc_vdev_present()) and rebuild is enabled, 9573 * we should evict all ARC buffers and pointers to log blocks 9574 * and reclaim their space before restoring its contents to 9575 * L2ARC. 9576 */ 9577 if (reopen) { 9578 if (!l2arc_rebuild_enabled) { 9579 return; 9580 } else { 9581 l2arc_evict(dev, 0, B_TRUE); 9582 /* start a new log block */ 9583 dev->l2ad_log_ent_idx = 0; 9584 dev->l2ad_log_blk_payload_asize = 0; 9585 dev->l2ad_log_blk_payload_start = 0; 9586 } 9587 } 9588 /* 9589 * Just mark the device as pending for a rebuild. We won't 9590 * be starting a rebuild in line here as it would block pool 9591 * import. Instead spa_load_impl will hand that off to an 9592 * async task which will call l2arc_spa_rebuild_start. 9593 */ 9594 dev->l2ad_rebuild = B_TRUE; 9595 } else if (spa_writeable(spa)) { 9596 /* 9597 * In this case TRIM the whole device if l2arc_trim_ahead > 0, 9598 * otherwise create a new header. We zero out the memory holding 9599 * the header to reset dh_start_lbps. If we TRIM the whole 9600 * device the new header will be written by 9601 * vdev_trim_l2arc_thread() at the end of the TRIM to update the 9602 * trim_state in the header too. When reading the header, if 9603 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0 9604 * we opt to TRIM the whole device again. 9605 */ 9606 if (l2arc_trim_ahead > 0) { 9607 dev->l2ad_trim_all = B_TRUE; 9608 } else { 9609 bzero(l2dhdr, l2dhdr_asize); 9610 l2arc_dev_hdr_update(dev); 9611 } 9612 } 9613 } 9614 9615 /* 9616 * Remove a vdev from the L2ARC. 9617 */ 9618 void 9619 l2arc_remove_vdev(vdev_t *vd) 9620 { 9621 l2arc_dev_t *remdev = NULL; 9622 9623 /* 9624 * Find the device by vdev 9625 */ 9626 remdev = l2arc_vdev_get(vd); 9627 ASSERT3P(remdev, !=, NULL); 9628 9629 /* 9630 * Cancel any ongoing or scheduled rebuild. 9631 */ 9632 mutex_enter(&l2arc_rebuild_thr_lock); 9633 if (remdev->l2ad_rebuild_began == B_TRUE) { 9634 remdev->l2ad_rebuild_cancel = B_TRUE; 9635 while (remdev->l2ad_rebuild == B_TRUE) 9636 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock); 9637 } 9638 mutex_exit(&l2arc_rebuild_thr_lock); 9639 9640 /* 9641 * Remove device from global list 9642 */ 9643 mutex_enter(&l2arc_dev_mtx); 9644 list_remove(l2arc_dev_list, remdev); 9645 l2arc_dev_last = NULL; /* may have been invalidated */ 9646 atomic_dec_64(&l2arc_ndev); 9647 mutex_exit(&l2arc_dev_mtx); 9648 9649 /* 9650 * Clear all buflists and ARC references. L2ARC device flush. 9651 */ 9652 l2arc_evict(remdev, 0, B_TRUE); 9653 list_destroy(&remdev->l2ad_buflist); 9654 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list)); 9655 list_destroy(&remdev->l2ad_lbptr_list); 9656 mutex_destroy(&remdev->l2ad_mtx); 9657 zfs_refcount_destroy(&remdev->l2ad_alloc); 9658 zfs_refcount_destroy(&remdev->l2ad_lb_asize); 9659 zfs_refcount_destroy(&remdev->l2ad_lb_count); 9660 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize); 9661 vmem_free(remdev, sizeof (l2arc_dev_t)); 9662 } 9663 9664 void 9665 l2arc_init(void) 9666 { 9667 l2arc_thread_exit = 0; 9668 l2arc_ndev = 0; 9669 l2arc_writes_sent = 0; 9670 l2arc_writes_done = 0; 9671 9672 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 9673 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 9674 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL); 9675 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL); 9676 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 9677 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 9678 9679 l2arc_dev_list = &L2ARC_dev_list; 9680 l2arc_free_on_write = &L2ARC_free_on_write; 9681 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 9682 offsetof(l2arc_dev_t, l2ad_node)); 9683 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 9684 offsetof(l2arc_data_free_t, l2df_list_node)); 9685 } 9686 9687 void 9688 l2arc_fini(void) 9689 { 9690 mutex_destroy(&l2arc_feed_thr_lock); 9691 cv_destroy(&l2arc_feed_thr_cv); 9692 mutex_destroy(&l2arc_rebuild_thr_lock); 9693 cv_destroy(&l2arc_rebuild_thr_cv); 9694 mutex_destroy(&l2arc_dev_mtx); 9695 mutex_destroy(&l2arc_free_on_write_mtx); 9696 9697 list_destroy(l2arc_dev_list); 9698 list_destroy(l2arc_free_on_write); 9699 } 9700 9701 void 9702 l2arc_start(void) 9703 { 9704 if (!(spa_mode_global & SPA_MODE_WRITE)) 9705 return; 9706 9707 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 9708 TS_RUN, defclsyspri); 9709 } 9710 9711 void 9712 l2arc_stop(void) 9713 { 9714 if (!(spa_mode_global & SPA_MODE_WRITE)) 9715 return; 9716 9717 mutex_enter(&l2arc_feed_thr_lock); 9718 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 9719 l2arc_thread_exit = 1; 9720 while (l2arc_thread_exit != 0) 9721 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 9722 mutex_exit(&l2arc_feed_thr_lock); 9723 } 9724 9725 /* 9726 * Punches out rebuild threads for the L2ARC devices in a spa. This should 9727 * be called after pool import from the spa async thread, since starting 9728 * these threads directly from spa_import() will make them part of the 9729 * "zpool import" context and delay process exit (and thus pool import). 9730 */ 9731 void 9732 l2arc_spa_rebuild_start(spa_t *spa) 9733 { 9734 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 9735 9736 /* 9737 * Locate the spa's l2arc devices and kick off rebuild threads. 9738 */ 9739 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 9740 l2arc_dev_t *dev = 9741 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]); 9742 if (dev == NULL) { 9743 /* Don't attempt a rebuild if the vdev is UNAVAIL */ 9744 continue; 9745 } 9746 mutex_enter(&l2arc_rebuild_thr_lock); 9747 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) { 9748 dev->l2ad_rebuild_began = B_TRUE; 9749 (void) thread_create(NULL, 0, l2arc_dev_rebuild_thread, 9750 dev, 0, &p0, TS_RUN, minclsyspri); 9751 } 9752 mutex_exit(&l2arc_rebuild_thr_lock); 9753 } 9754 } 9755 9756 /* 9757 * Main entry point for L2ARC rebuilding. 9758 */ 9759 static void 9760 l2arc_dev_rebuild_thread(void *arg) 9761 { 9762 l2arc_dev_t *dev = arg; 9763 9764 VERIFY(!dev->l2ad_rebuild_cancel); 9765 VERIFY(dev->l2ad_rebuild); 9766 (void) l2arc_rebuild(dev); 9767 mutex_enter(&l2arc_rebuild_thr_lock); 9768 dev->l2ad_rebuild_began = B_FALSE; 9769 dev->l2ad_rebuild = B_FALSE; 9770 mutex_exit(&l2arc_rebuild_thr_lock); 9771 9772 thread_exit(); 9773 } 9774 9775 /* 9776 * This function implements the actual L2ARC metadata rebuild. It: 9777 * starts reading the log block chain and restores each block's contents 9778 * to memory (reconstructing arc_buf_hdr_t's). 9779 * 9780 * Operation stops under any of the following conditions: 9781 * 9782 * 1) We reach the end of the log block chain. 9783 * 2) We encounter *any* error condition (cksum errors, io errors) 9784 */ 9785 static int 9786 l2arc_rebuild(l2arc_dev_t *dev) 9787 { 9788 vdev_t *vd = dev->l2ad_vdev; 9789 spa_t *spa = vd->vdev_spa; 9790 int err = 0; 9791 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9792 l2arc_log_blk_phys_t *this_lb, *next_lb; 9793 zio_t *this_io = NULL, *next_io = NULL; 9794 l2arc_log_blkptr_t lbps[2]; 9795 l2arc_lb_ptr_buf_t *lb_ptr_buf; 9796 boolean_t lock_held; 9797 9798 this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP); 9799 next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP); 9800 9801 /* 9802 * We prevent device removal while issuing reads to the device, 9803 * then during the rebuilding phases we drop this lock again so 9804 * that a spa_unload or device remove can be initiated - this is 9805 * safe, because the spa will signal us to stop before removing 9806 * our device and wait for us to stop. 9807 */ 9808 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER); 9809 lock_held = B_TRUE; 9810 9811 /* 9812 * Retrieve the persistent L2ARC device state. 9813 * L2BLK_GET_PSIZE returns aligned size for log blocks. 9814 */ 9815 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start); 9816 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr + 9817 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop), 9818 dev->l2ad_start); 9819 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 9820 9821 vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time; 9822 vd->vdev_trim_state = l2dhdr->dh_trim_state; 9823 9824 /* 9825 * In case the zfs module parameter l2arc_rebuild_enabled is false 9826 * we do not start the rebuild process. 9827 */ 9828 if (!l2arc_rebuild_enabled) 9829 goto out; 9830 9831 /* Prepare the rebuild process */ 9832 bcopy(l2dhdr->dh_start_lbps, lbps, sizeof (lbps)); 9833 9834 /* Start the rebuild process */ 9835 for (;;) { 9836 if (!l2arc_log_blkptr_valid(dev, &lbps[0])) 9837 break; 9838 9839 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1], 9840 this_lb, next_lb, this_io, &next_io)) != 0) 9841 goto out; 9842 9843 /* 9844 * Our memory pressure valve. If the system is running low 9845 * on memory, rather than swamping memory with new ARC buf 9846 * hdrs, we opt not to rebuild the L2ARC. At this point, 9847 * however, we have already set up our L2ARC dev to chain in 9848 * new metadata log blocks, so the user may choose to offline/ 9849 * online the L2ARC dev at a later time (or re-import the pool) 9850 * to reconstruct it (when there's less memory pressure). 9851 */ 9852 if (l2arc_hdr_limit_reached()) { 9853 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem); 9854 cmn_err(CE_NOTE, "System running low on memory, " 9855 "aborting L2ARC rebuild."); 9856 err = SET_ERROR(ENOMEM); 9857 goto out; 9858 } 9859 9860 spa_config_exit(spa, SCL_L2ARC, vd); 9861 lock_held = B_FALSE; 9862 9863 /* 9864 * Now that we know that the next_lb checks out alright, we 9865 * can start reconstruction from this log block. 9866 * L2BLK_GET_PSIZE returns aligned size for log blocks. 9867 */ 9868 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 9869 l2arc_log_blk_restore(dev, this_lb, asize); 9870 9871 /* 9872 * log block restored, include its pointer in the list of 9873 * pointers to log blocks present in the L2ARC device. 9874 */ 9875 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 9876 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), 9877 KM_SLEEP); 9878 bcopy(&lbps[0], lb_ptr_buf->lb_ptr, 9879 sizeof (l2arc_log_blkptr_t)); 9880 mutex_enter(&dev->l2ad_mtx); 9881 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf); 9882 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 9883 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 9884 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 9885 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 9886 mutex_exit(&dev->l2ad_mtx); 9887 vdev_space_update(vd, asize, 0, 0); 9888 9889 /* 9890 * Protection against loops of log blocks: 9891 * 9892 * l2ad_hand l2ad_evict 9893 * V V 9894 * l2ad_start |=======================================| l2ad_end 9895 * -----|||----|||---|||----||| 9896 * (3) (2) (1) (0) 9897 * ---|||---|||----|||---||| 9898 * (7) (6) (5) (4) 9899 * 9900 * In this situation the pointer of log block (4) passes 9901 * l2arc_log_blkptr_valid() but the log block should not be 9902 * restored as it is overwritten by the payload of log block 9903 * (0). Only log blocks (0)-(3) should be restored. We check 9904 * whether l2ad_evict lies in between the payload starting 9905 * offset of the next log block (lbps[1].lbp_payload_start) 9906 * and the payload starting offset of the present log block 9907 * (lbps[0].lbp_payload_start). If true and this isn't the 9908 * first pass, we are looping from the beginning and we should 9909 * stop. 9910 */ 9911 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 9912 lbps[0].lbp_payload_start, dev->l2ad_evict) && 9913 !dev->l2ad_first) 9914 goto out; 9915 9916 cond_resched(); 9917 for (;;) { 9918 mutex_enter(&l2arc_rebuild_thr_lock); 9919 if (dev->l2ad_rebuild_cancel) { 9920 dev->l2ad_rebuild = B_FALSE; 9921 cv_signal(&l2arc_rebuild_thr_cv); 9922 mutex_exit(&l2arc_rebuild_thr_lock); 9923 err = SET_ERROR(ECANCELED); 9924 goto out; 9925 } 9926 mutex_exit(&l2arc_rebuild_thr_lock); 9927 if (spa_config_tryenter(spa, SCL_L2ARC, vd, 9928 RW_READER)) { 9929 lock_held = B_TRUE; 9930 break; 9931 } 9932 /* 9933 * L2ARC config lock held by somebody in writer, 9934 * possibly due to them trying to remove us. They'll 9935 * likely to want us to shut down, so after a little 9936 * delay, we check l2ad_rebuild_cancel and retry 9937 * the lock again. 9938 */ 9939 delay(1); 9940 } 9941 9942 /* 9943 * Continue with the next log block. 9944 */ 9945 lbps[0] = lbps[1]; 9946 lbps[1] = this_lb->lb_prev_lbp; 9947 PTR_SWAP(this_lb, next_lb); 9948 this_io = next_io; 9949 next_io = NULL; 9950 } 9951 9952 if (this_io != NULL) 9953 l2arc_log_blk_fetch_abort(this_io); 9954 out: 9955 if (next_io != NULL) 9956 l2arc_log_blk_fetch_abort(next_io); 9957 vmem_free(this_lb, sizeof (*this_lb)); 9958 vmem_free(next_lb, sizeof (*next_lb)); 9959 9960 if (!l2arc_rebuild_enabled) { 9961 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9962 "disabled"); 9963 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) { 9964 ARCSTAT_BUMP(arcstat_l2_rebuild_success); 9965 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9966 "successful, restored %llu blocks", 9967 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 9968 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) { 9969 /* 9970 * No error but also nothing restored, meaning the lbps array 9971 * in the device header points to invalid/non-present log 9972 * blocks. Reset the header. 9973 */ 9974 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9975 "no valid log blocks"); 9976 bzero(l2dhdr, dev->l2ad_dev_hdr_asize); 9977 l2arc_dev_hdr_update(dev); 9978 } else if (err == ECANCELED) { 9979 /* 9980 * In case the rebuild was canceled do not log to spa history 9981 * log as the pool may be in the process of being removed. 9982 */ 9983 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks", 9984 zfs_refcount_count(&dev->l2ad_lb_count)); 9985 } else if (err != 0) { 9986 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9987 "aborted, restored %llu blocks", 9988 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 9989 } 9990 9991 if (lock_held) 9992 spa_config_exit(spa, SCL_L2ARC, vd); 9993 9994 return (err); 9995 } 9996 9997 /* 9998 * Attempts to read the device header on the provided L2ARC device and writes 9999 * it to `hdr'. On success, this function returns 0, otherwise the appropriate 10000 * error code is returned. 10001 */ 10002 static int 10003 l2arc_dev_hdr_read(l2arc_dev_t *dev) 10004 { 10005 int err; 10006 uint64_t guid; 10007 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10008 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10009 abd_t *abd; 10010 10011 guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10012 10013 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10014 10015 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev, 10016 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, 10017 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 10018 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 10019 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 10020 ZIO_FLAG_SPECULATIVE, B_FALSE)); 10021 10022 abd_free(abd); 10023 10024 if (err != 0) { 10025 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors); 10026 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, " 10027 "vdev guid: %llu", err, dev->l2ad_vdev->vdev_guid); 10028 return (err); 10029 } 10030 10031 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 10032 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr)); 10033 10034 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC || 10035 l2dhdr->dh_spa_guid != guid || 10036 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid || 10037 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION || 10038 l2dhdr->dh_log_entries != dev->l2ad_log_entries || 10039 l2dhdr->dh_end != dev->l2ad_end || 10040 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end, 10041 l2dhdr->dh_evict) || 10042 (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE && 10043 l2arc_trim_ahead > 0)) { 10044 /* 10045 * Attempt to rebuild a device containing no actual dev hdr 10046 * or containing a header from some other pool or from another 10047 * version of persistent L2ARC. 10048 */ 10049 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported); 10050 return (SET_ERROR(ENOTSUP)); 10051 } 10052 10053 return (0); 10054 } 10055 10056 /* 10057 * Reads L2ARC log blocks from storage and validates their contents. 10058 * 10059 * This function implements a simple fetcher to make sure that while 10060 * we're processing one buffer the L2ARC is already fetching the next 10061 * one in the chain. 10062 * 10063 * The arguments this_lp and next_lp point to the current and next log block 10064 * address in the block chain. Similarly, this_lb and next_lb hold the 10065 * l2arc_log_blk_phys_t's of the current and next L2ARC blk. 10066 * 10067 * The `this_io' and `next_io' arguments are used for block fetching. 10068 * When issuing the first blk IO during rebuild, you should pass NULL for 10069 * `this_io'. This function will then issue a sync IO to read the block and 10070 * also issue an async IO to fetch the next block in the block chain. The 10071 * fetched IO is returned in `next_io'. On subsequent calls to this 10072 * function, pass the value returned in `next_io' from the previous call 10073 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO. 10074 * Prior to the call, you should initialize your `next_io' pointer to be 10075 * NULL. If no fetch IO was issued, the pointer is left set at NULL. 10076 * 10077 * On success, this function returns 0, otherwise it returns an appropriate 10078 * error code. On error the fetching IO is aborted and cleared before 10079 * returning from this function. Therefore, if we return `success', the 10080 * caller can assume that we have taken care of cleanup of fetch IOs. 10081 */ 10082 static int 10083 l2arc_log_blk_read(l2arc_dev_t *dev, 10084 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp, 10085 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 10086 zio_t *this_io, zio_t **next_io) 10087 { 10088 int err = 0; 10089 zio_cksum_t cksum; 10090 abd_t *abd = NULL; 10091 uint64_t asize; 10092 10093 ASSERT(this_lbp != NULL && next_lbp != NULL); 10094 ASSERT(this_lb != NULL && next_lb != NULL); 10095 ASSERT(next_io != NULL && *next_io == NULL); 10096 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp)); 10097 10098 /* 10099 * Check to see if we have issued the IO for this log block in a 10100 * previous run. If not, this is the first call, so issue it now. 10101 */ 10102 if (this_io == NULL) { 10103 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp, 10104 this_lb); 10105 } 10106 10107 /* 10108 * Peek to see if we can start issuing the next IO immediately. 10109 */ 10110 if (l2arc_log_blkptr_valid(dev, next_lbp)) { 10111 /* 10112 * Start issuing IO for the next log block early - this 10113 * should help keep the L2ARC device busy while we 10114 * decompress and restore this log block. 10115 */ 10116 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp, 10117 next_lb); 10118 } 10119 10120 /* Wait for the IO to read this log block to complete */ 10121 if ((err = zio_wait(this_io)) != 0) { 10122 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors); 10123 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, " 10124 "offset: %llu, vdev guid: %llu", err, this_lbp->lbp_daddr, 10125 dev->l2ad_vdev->vdev_guid); 10126 goto cleanup; 10127 } 10128 10129 /* 10130 * Make sure the buffer checks out. 10131 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10132 */ 10133 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop); 10134 fletcher_4_native(this_lb, asize, NULL, &cksum); 10135 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) { 10136 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors); 10137 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, " 10138 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu", 10139 this_lbp->lbp_daddr, dev->l2ad_vdev->vdev_guid, 10140 dev->l2ad_hand, dev->l2ad_evict); 10141 err = SET_ERROR(ECKSUM); 10142 goto cleanup; 10143 } 10144 10145 /* Now we can take our time decoding this buffer */ 10146 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) { 10147 case ZIO_COMPRESS_OFF: 10148 break; 10149 case ZIO_COMPRESS_LZ4: 10150 abd = abd_alloc_for_io(asize, B_TRUE); 10151 abd_copy_from_buf_off(abd, this_lb, 0, asize); 10152 if ((err = zio_decompress_data( 10153 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop), 10154 abd, this_lb, asize, sizeof (*this_lb), NULL)) != 0) { 10155 err = SET_ERROR(EINVAL); 10156 goto cleanup; 10157 } 10158 break; 10159 default: 10160 err = SET_ERROR(EINVAL); 10161 goto cleanup; 10162 } 10163 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 10164 byteswap_uint64_array(this_lb, sizeof (*this_lb)); 10165 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) { 10166 err = SET_ERROR(EINVAL); 10167 goto cleanup; 10168 } 10169 cleanup: 10170 /* Abort an in-flight fetch I/O in case of error */ 10171 if (err != 0 && *next_io != NULL) { 10172 l2arc_log_blk_fetch_abort(*next_io); 10173 *next_io = NULL; 10174 } 10175 if (abd != NULL) 10176 abd_free(abd); 10177 return (err); 10178 } 10179 10180 /* 10181 * Restores the payload of a log block to ARC. This creates empty ARC hdr 10182 * entries which only contain an l2arc hdr, essentially restoring the 10183 * buffers to their L2ARC evicted state. This function also updates space 10184 * usage on the L2ARC vdev to make sure it tracks restored buffers. 10185 */ 10186 static void 10187 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb, 10188 uint64_t lb_asize) 10189 { 10190 uint64_t size = 0, asize = 0; 10191 uint64_t log_entries = dev->l2ad_log_entries; 10192 10193 /* 10194 * Usually arc_adapt() is called only for data, not headers, but 10195 * since we may allocate significant amount of memory here, let ARC 10196 * grow its arc_c. 10197 */ 10198 arc_adapt(log_entries * HDR_L2ONLY_SIZE, arc_l2c_only); 10199 10200 for (int i = log_entries - 1; i >= 0; i--) { 10201 /* 10202 * Restore goes in the reverse temporal direction to preserve 10203 * correct temporal ordering of buffers in the l2ad_buflist. 10204 * l2arc_hdr_restore also does a list_insert_tail instead of 10205 * list_insert_head on the l2ad_buflist: 10206 * 10207 * LIST l2ad_buflist LIST 10208 * HEAD <------ (time) ------ TAIL 10209 * direction +-----+-----+-----+-----+-----+ direction 10210 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild 10211 * fill +-----+-----+-----+-----+-----+ 10212 * ^ ^ 10213 * | | 10214 * | | 10215 * l2arc_feed_thread l2arc_rebuild 10216 * will place new bufs here restores bufs here 10217 * 10218 * During l2arc_rebuild() the device is not used by 10219 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true. 10220 */ 10221 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop); 10222 asize += vdev_psize_to_asize(dev->l2ad_vdev, 10223 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop)); 10224 l2arc_hdr_restore(&lb->lb_entries[i], dev); 10225 } 10226 10227 /* 10228 * Record rebuild stats: 10229 * size Logical size of restored buffers in the L2ARC 10230 * asize Aligned size of restored buffers in the L2ARC 10231 */ 10232 ARCSTAT_INCR(arcstat_l2_rebuild_size, size); 10233 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize); 10234 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries); 10235 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize); 10236 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize); 10237 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks); 10238 } 10239 10240 /* 10241 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put 10242 * into a state indicating that it has been evicted to L2ARC. 10243 */ 10244 static void 10245 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev) 10246 { 10247 arc_buf_hdr_t *hdr, *exists; 10248 kmutex_t *hash_lock; 10249 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop); 10250 uint64_t asize; 10251 10252 /* 10253 * Do all the allocation before grabbing any locks, this lets us 10254 * sleep if memory is full and we don't have to deal with failed 10255 * allocations. 10256 */ 10257 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type, 10258 dev, le->le_dva, le->le_daddr, 10259 L2BLK_GET_PSIZE((le)->le_prop), le->le_birth, 10260 L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel, 10261 L2BLK_GET_PROTECTED((le)->le_prop), 10262 L2BLK_GET_PREFETCH((le)->le_prop), 10263 L2BLK_GET_STATE((le)->le_prop)); 10264 asize = vdev_psize_to_asize(dev->l2ad_vdev, 10265 L2BLK_GET_PSIZE((le)->le_prop)); 10266 10267 /* 10268 * vdev_space_update() has to be called before arc_hdr_destroy() to 10269 * avoid underflow since the latter also calls vdev_space_update(). 10270 */ 10271 l2arc_hdr_arcstats_increment(hdr); 10272 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10273 10274 mutex_enter(&dev->l2ad_mtx); 10275 list_insert_tail(&dev->l2ad_buflist, hdr); 10276 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); 10277 mutex_exit(&dev->l2ad_mtx); 10278 10279 exists = buf_hash_insert(hdr, &hash_lock); 10280 if (exists) { 10281 /* Buffer was already cached, no need to restore it. */ 10282 arc_hdr_destroy(hdr); 10283 /* 10284 * If the buffer is already cached, check whether it has 10285 * L2ARC metadata. If not, enter them and update the flag. 10286 * This is important is case of onlining a cache device, since 10287 * we previously evicted all L2ARC metadata from ARC. 10288 */ 10289 if (!HDR_HAS_L2HDR(exists)) { 10290 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR); 10291 exists->b_l2hdr.b_dev = dev; 10292 exists->b_l2hdr.b_daddr = le->le_daddr; 10293 exists->b_l2hdr.b_arcs_state = 10294 L2BLK_GET_STATE((le)->le_prop); 10295 mutex_enter(&dev->l2ad_mtx); 10296 list_insert_tail(&dev->l2ad_buflist, exists); 10297 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 10298 arc_hdr_size(exists), exists); 10299 mutex_exit(&dev->l2ad_mtx); 10300 l2arc_hdr_arcstats_increment(exists); 10301 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10302 } 10303 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached); 10304 } 10305 10306 mutex_exit(hash_lock); 10307 } 10308 10309 /* 10310 * Starts an asynchronous read IO to read a log block. This is used in log 10311 * block reconstruction to start reading the next block before we are done 10312 * decoding and reconstructing the current block, to keep the l2arc device 10313 * nice and hot with read IO to process. 10314 * The returned zio will contain a newly allocated memory buffers for the IO 10315 * data which should then be freed by the caller once the zio is no longer 10316 * needed (i.e. due to it having completed). If you wish to abort this 10317 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes 10318 * care of disposing of the allocated buffers correctly. 10319 */ 10320 static zio_t * 10321 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp, 10322 l2arc_log_blk_phys_t *lb) 10323 { 10324 uint32_t asize; 10325 zio_t *pio; 10326 l2arc_read_callback_t *cb; 10327 10328 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10329 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10330 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t)); 10331 10332 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP); 10333 cb->l2rcb_abd = abd_get_from_buf(lb, asize); 10334 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb, 10335 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | 10336 ZIO_FLAG_DONT_RETRY); 10337 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize, 10338 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10339 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 10340 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE)); 10341 10342 return (pio); 10343 } 10344 10345 /* 10346 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data 10347 * buffers allocated for it. 10348 */ 10349 static void 10350 l2arc_log_blk_fetch_abort(zio_t *zio) 10351 { 10352 (void) zio_wait(zio); 10353 } 10354 10355 /* 10356 * Creates a zio to update the device header on an l2arc device. 10357 */ 10358 void 10359 l2arc_dev_hdr_update(l2arc_dev_t *dev) 10360 { 10361 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10362 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10363 abd_t *abd; 10364 int err; 10365 10366 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER)); 10367 10368 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC; 10369 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION; 10370 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10371 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid; 10372 l2dhdr->dh_log_entries = dev->l2ad_log_entries; 10373 l2dhdr->dh_evict = dev->l2ad_evict; 10374 l2dhdr->dh_start = dev->l2ad_start; 10375 l2dhdr->dh_end = dev->l2ad_end; 10376 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize); 10377 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count); 10378 l2dhdr->dh_flags = 0; 10379 l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time; 10380 l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state; 10381 if (dev->l2ad_first) 10382 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST; 10383 10384 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10385 10386 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev, 10387 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL, 10388 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE)); 10389 10390 abd_free(abd); 10391 10392 if (err != 0) { 10393 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, " 10394 "vdev guid: %llu", err, dev->l2ad_vdev->vdev_guid); 10395 } 10396 } 10397 10398 /* 10399 * Commits a log block to the L2ARC device. This routine is invoked from 10400 * l2arc_write_buffers when the log block fills up. 10401 * This function allocates some memory to temporarily hold the serialized 10402 * buffer to be written. This is then released in l2arc_write_done. 10403 */ 10404 static void 10405 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb) 10406 { 10407 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10408 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10409 uint64_t psize, asize; 10410 zio_t *wzio; 10411 l2arc_lb_abd_buf_t *abd_buf; 10412 uint8_t *tmpbuf; 10413 l2arc_lb_ptr_buf_t *lb_ptr_buf; 10414 10415 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries); 10416 10417 tmpbuf = zio_buf_alloc(sizeof (*lb)); 10418 abd_buf = zio_buf_alloc(sizeof (*abd_buf)); 10419 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb)); 10420 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 10421 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP); 10422 10423 /* link the buffer into the block chain */ 10424 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1]; 10425 lb->lb_magic = L2ARC_LOG_BLK_MAGIC; 10426 10427 /* 10428 * l2arc_log_blk_commit() may be called multiple times during a single 10429 * l2arc_write_buffers() call. Save the allocated abd buffers in a list 10430 * so we can free them in l2arc_write_done() later on. 10431 */ 10432 list_insert_tail(&cb->l2wcb_abd_list, abd_buf); 10433 10434 /* try to compress the buffer */ 10435 psize = zio_compress_data(ZIO_COMPRESS_LZ4, 10436 abd_buf->abd, tmpbuf, sizeof (*lb), 0); 10437 10438 /* a log block is never entirely zero */ 10439 ASSERT(psize != 0); 10440 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 10441 ASSERT(asize <= sizeof (*lb)); 10442 10443 /* 10444 * Update the start log block pointer in the device header to point 10445 * to the log block we're about to write. 10446 */ 10447 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0]; 10448 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand; 10449 l2dhdr->dh_start_lbps[0].lbp_payload_asize = 10450 dev->l2ad_log_blk_payload_asize; 10451 l2dhdr->dh_start_lbps[0].lbp_payload_start = 10452 dev->l2ad_log_blk_payload_start; 10453 _NOTE(CONSTCOND) 10454 L2BLK_SET_LSIZE( 10455 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb)); 10456 L2BLK_SET_PSIZE( 10457 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize); 10458 L2BLK_SET_CHECKSUM( 10459 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10460 ZIO_CHECKSUM_FLETCHER_4); 10461 if (asize < sizeof (*lb)) { 10462 /* compression succeeded */ 10463 bzero(tmpbuf + psize, asize - psize); 10464 L2BLK_SET_COMPRESS( 10465 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10466 ZIO_COMPRESS_LZ4); 10467 } else { 10468 /* compression failed */ 10469 bcopy(lb, tmpbuf, sizeof (*lb)); 10470 L2BLK_SET_COMPRESS( 10471 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10472 ZIO_COMPRESS_OFF); 10473 } 10474 10475 /* checksum what we're about to write */ 10476 fletcher_4_native(tmpbuf, asize, NULL, 10477 &l2dhdr->dh_start_lbps[0].lbp_cksum); 10478 10479 abd_free(abd_buf->abd); 10480 10481 /* perform the write itself */ 10482 abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb)); 10483 abd_take_ownership_of_buf(abd_buf->abd, B_TRUE); 10484 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand, 10485 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10486 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE); 10487 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio); 10488 (void) zio_nowait(wzio); 10489 10490 dev->l2ad_hand += asize; 10491 /* 10492 * Include the committed log block's pointer in the list of pointers 10493 * to log blocks present in the L2ARC device. 10494 */ 10495 bcopy(&l2dhdr->dh_start_lbps[0], lb_ptr_buf->lb_ptr, 10496 sizeof (l2arc_log_blkptr_t)); 10497 mutex_enter(&dev->l2ad_mtx); 10498 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf); 10499 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 10500 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 10501 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 10502 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 10503 mutex_exit(&dev->l2ad_mtx); 10504 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10505 10506 /* bump the kstats */ 10507 ARCSTAT_INCR(arcstat_l2_write_bytes, asize); 10508 ARCSTAT_BUMP(arcstat_l2_log_blk_writes); 10509 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize); 10510 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, 10511 dev->l2ad_log_blk_payload_asize / asize); 10512 10513 /* start a new log block */ 10514 dev->l2ad_log_ent_idx = 0; 10515 dev->l2ad_log_blk_payload_asize = 0; 10516 dev->l2ad_log_blk_payload_start = 0; 10517 } 10518 10519 /* 10520 * Validates an L2ARC log block address to make sure that it can be read 10521 * from the provided L2ARC device. 10522 */ 10523 boolean_t 10524 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp) 10525 { 10526 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10527 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10528 uint64_t end = lbp->lbp_daddr + asize - 1; 10529 uint64_t start = lbp->lbp_payload_start; 10530 boolean_t evicted = B_FALSE; 10531 10532 /* 10533 * A log block is valid if all of the following conditions are true: 10534 * - it fits entirely (including its payload) between l2ad_start and 10535 * l2ad_end 10536 * - it has a valid size 10537 * - neither the log block itself nor part of its payload was evicted 10538 * by l2arc_evict(): 10539 * 10540 * l2ad_hand l2ad_evict 10541 * | | lbp_daddr 10542 * | start | | end 10543 * | | | | | 10544 * V V V V V 10545 * l2ad_start ============================================ l2ad_end 10546 * --------------------------|||| 10547 * ^ ^ 10548 * | log block 10549 * payload 10550 */ 10551 10552 evicted = 10553 l2arc_range_check_overlap(start, end, dev->l2ad_hand) || 10554 l2arc_range_check_overlap(start, end, dev->l2ad_evict) || 10555 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) || 10556 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end); 10557 10558 return (start >= dev->l2ad_start && end <= dev->l2ad_end && 10559 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) && 10560 (!evicted || dev->l2ad_first)); 10561 } 10562 10563 /* 10564 * Inserts ARC buffer header `hdr' into the current L2ARC log block on 10565 * the device. The buffer being inserted must be present in L2ARC. 10566 * Returns B_TRUE if the L2ARC log block is full and needs to be committed 10567 * to L2ARC, or B_FALSE if it still has room for more ARC buffers. 10568 */ 10569 static boolean_t 10570 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr) 10571 { 10572 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10573 l2arc_log_ent_phys_t *le; 10574 10575 if (dev->l2ad_log_entries == 0) 10576 return (B_FALSE); 10577 10578 int index = dev->l2ad_log_ent_idx++; 10579 10580 ASSERT3S(index, <, dev->l2ad_log_entries); 10581 ASSERT(HDR_HAS_L2HDR(hdr)); 10582 10583 le = &lb->lb_entries[index]; 10584 bzero(le, sizeof (*le)); 10585 le->le_dva = hdr->b_dva; 10586 le->le_birth = hdr->b_birth; 10587 le->le_daddr = hdr->b_l2hdr.b_daddr; 10588 if (index == 0) 10589 dev->l2ad_log_blk_payload_start = le->le_daddr; 10590 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr)); 10591 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr)); 10592 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr)); 10593 le->le_complevel = hdr->b_complevel; 10594 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type); 10595 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr))); 10596 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr))); 10597 L2BLK_SET_STATE((le)->le_prop, hdr->b_l1hdr.b_state->arcs_state); 10598 10599 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev, 10600 HDR_GET_PSIZE(hdr)); 10601 10602 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries); 10603 } 10604 10605 /* 10606 * Checks whether a given L2ARC device address sits in a time-sequential 10607 * range. The trick here is that the L2ARC is a rotary buffer, so we can't 10608 * just do a range comparison, we need to handle the situation in which the 10609 * range wraps around the end of the L2ARC device. Arguments: 10610 * bottom -- Lower end of the range to check (written to earlier). 10611 * top -- Upper end of the range to check (written to later). 10612 * check -- The address for which we want to determine if it sits in 10613 * between the top and bottom. 10614 * 10615 * The 3-way conditional below represents the following cases: 10616 * 10617 * bottom < top : Sequentially ordered case: 10618 * <check>--------+-------------------+ 10619 * | (overlap here?) | 10620 * L2ARC dev V V 10621 * |---------------<bottom>============<top>--------------| 10622 * 10623 * bottom > top: Looped-around case: 10624 * <check>--------+------------------+ 10625 * | (overlap here?) | 10626 * L2ARC dev V V 10627 * |===============<top>---------------<bottom>===========| 10628 * ^ ^ 10629 * | (or here?) | 10630 * +---------------+---------<check> 10631 * 10632 * top == bottom : Just a single address comparison. 10633 */ 10634 boolean_t 10635 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check) 10636 { 10637 if (bottom < top) 10638 return (bottom <= check && check <= top); 10639 else if (bottom > top) 10640 return (check <= top || bottom <= check); 10641 else 10642 return (check == top); 10643 } 10644 10645 EXPORT_SYMBOL(arc_buf_size); 10646 EXPORT_SYMBOL(arc_write); 10647 EXPORT_SYMBOL(arc_read); 10648 EXPORT_SYMBOL(arc_buf_info); 10649 EXPORT_SYMBOL(arc_getbuf_func); 10650 EXPORT_SYMBOL(arc_add_prune_callback); 10651 EXPORT_SYMBOL(arc_remove_prune_callback); 10652 10653 /* BEGIN CSTYLED */ 10654 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_long, 10655 param_get_long, ZMOD_RW, "Min arc size"); 10656 10657 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_long, 10658 param_get_long, ZMOD_RW, "Max arc size"); 10659 10660 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit, param_set_arc_long, 10661 param_get_long, ZMOD_RW, "Metadata limit for arc size"); 10662 10663 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit_percent, 10664 param_set_arc_long, param_get_long, ZMOD_RW, 10665 "Percent of arc size for arc meta limit"); 10666 10667 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_min, param_set_arc_long, 10668 param_get_long, ZMOD_RW, "Min arc metadata"); 10669 10670 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_prune, INT, ZMOD_RW, 10671 "Meta objects to scan for prune"); 10672 10673 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_adjust_restarts, INT, ZMOD_RW, 10674 "Limit number of restarts in arc_evict_meta"); 10675 10676 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_strategy, INT, ZMOD_RW, 10677 "Meta reclaim strategy"); 10678 10679 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int, 10680 param_get_int, ZMOD_RW, "Seconds before growing arc size"); 10681 10682 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, p_dampener_disable, INT, ZMOD_RW, 10683 "Disable arc_p adapt dampener"); 10684 10685 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int, 10686 param_get_int, ZMOD_RW, "log2(fraction of arc to reclaim)"); 10687 10688 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW, 10689 "Percent of pagecache to reclaim arc to"); 10690 10691 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, p_min_shift, param_set_arc_int, 10692 param_get_int, ZMOD_RW, "arc_c shift to calc min/max arc_p"); 10693 10694 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, INT, ZMOD_RD, 10695 "Target average block size"); 10696 10697 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW, 10698 "Disable compressed arc buffers"); 10699 10700 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int, 10701 param_get_int, ZMOD_RW, "Min life of prefetch block in ms"); 10702 10703 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms, 10704 param_set_arc_int, param_get_int, ZMOD_RW, 10705 "Min life of prescient prefetched block in ms"); 10706 10707 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, ULONG, ZMOD_RW, 10708 "Max write bytes per interval"); 10709 10710 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, ULONG, ZMOD_RW, 10711 "Extra write bytes during device warmup"); 10712 10713 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, ULONG, ZMOD_RW, 10714 "Number of max device writes to precache"); 10715 10716 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, ULONG, ZMOD_RW, 10717 "Compressed l2arc_headroom multiplier"); 10718 10719 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, ULONG, ZMOD_RW, 10720 "TRIM ahead L2ARC write size multiplier"); 10721 10722 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, ULONG, ZMOD_RW, 10723 "Seconds between L2ARC writing"); 10724 10725 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, ULONG, ZMOD_RW, 10726 "Min feed interval in milliseconds"); 10727 10728 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW, 10729 "Skip caching prefetched buffers"); 10730 10731 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW, 10732 "Turbo L2ARC warmup"); 10733 10734 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW, 10735 "No reads during writes"); 10736 10737 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, INT, ZMOD_RW, 10738 "Percent of ARC size allowed for L2ARC-only headers"); 10739 10740 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW, 10741 "Rebuild the L2ARC when importing a pool"); 10742 10743 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, ULONG, ZMOD_RW, 10744 "Min size in bytes to write rebuild log blocks in L2ARC"); 10745 10746 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW, 10747 "Cache only MFU data from ARC into L2ARC"); 10748 10749 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int, 10750 param_get_int, ZMOD_RW, "System free memory I/O throttle in bytes"); 10751 10752 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_long, 10753 param_get_long, ZMOD_RW, "System free memory target size in bytes"); 10754 10755 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_long, 10756 param_get_long, ZMOD_RW, "Minimum bytes of dnodes in arc"); 10757 10758 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent, 10759 param_set_arc_long, param_get_long, ZMOD_RW, 10760 "Percent of ARC meta buffers for dnodes"); 10761 10762 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, ULONG, ZMOD_RW, 10763 "Percentage of excess dnodes to try to unpin"); 10764 10765 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, INT, ZMOD_RW, 10766 "When full, ARC allocation waits for eviction of this % of alloc size"); 10767 10768 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, INT, ZMOD_RW, 10769 "The number of headers to evict per sublist before moving to the next"); 10770 /* END CSTYLED */ 10771