1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2018, Joyent, Inc. 24 * Copyright (c) 2011, 2020, Delphix. All rights reserved. 25 * Copyright (c) 2014, Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 28 * Copyright (c) 2020, George Amanakis. All rights reserved. 29 * Copyright (c) 2019, 2024, Klara Inc. 30 * Copyright (c) 2019, Allan Jude 31 * Copyright (c) 2020, The FreeBSD Foundation [1] 32 * Copyright (c) 2021, 2024 by George Melikov. All rights reserved. 33 * 34 * [1] Portions of this software were developed by Allan Jude 35 * under sponsorship from the FreeBSD Foundation. 36 */ 37 38 /* 39 * DVA-based Adjustable Replacement Cache 40 * 41 * While much of the theory of operation used here is 42 * based on the self-tuning, low overhead replacement cache 43 * presented by Megiddo and Modha at FAST 2003, there are some 44 * significant differences: 45 * 46 * 1. The Megiddo and Modha model assumes any page is evictable. 47 * Pages in its cache cannot be "locked" into memory. This makes 48 * the eviction algorithm simple: evict the last page in the list. 49 * This also make the performance characteristics easy to reason 50 * about. Our cache is not so simple. At any given moment, some 51 * subset of the blocks in the cache are un-evictable because we 52 * have handed out a reference to them. Blocks are only evictable 53 * when there are no external references active. This makes 54 * eviction far more problematic: we choose to evict the evictable 55 * blocks that are the "lowest" in the list. 56 * 57 * There are times when it is not possible to evict the requested 58 * space. In these circumstances we are unable to adjust the cache 59 * size. To prevent the cache growing unbounded at these times we 60 * implement a "cache throttle" that slows the flow of new data 61 * into the cache until we can make space available. 62 * 63 * 2. The Megiddo and Modha model assumes a fixed cache size. 64 * Pages are evicted when the cache is full and there is a cache 65 * miss. Our model has a variable sized cache. It grows with 66 * high use, but also tries to react to memory pressure from the 67 * operating system: decreasing its size when system memory is 68 * tight. 69 * 70 * 3. The Megiddo and Modha model assumes a fixed page size. All 71 * elements of the cache are therefore exactly the same size. So 72 * when adjusting the cache size following a cache miss, its simply 73 * a matter of choosing a single page to evict. In our model, we 74 * have variable sized cache blocks (ranging from 512 bytes to 75 * 128K bytes). We therefore choose a set of blocks to evict to make 76 * space for a cache miss that approximates as closely as possible 77 * the space used by the new block. 78 * 79 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 80 * by N. Megiddo & D. Modha, FAST 2003 81 */ 82 83 /* 84 * The locking model: 85 * 86 * A new reference to a cache buffer can be obtained in two 87 * ways: 1) via a hash table lookup using the DVA as a key, 88 * or 2) via one of the ARC lists. The arc_read() interface 89 * uses method 1, while the internal ARC algorithms for 90 * adjusting the cache use method 2. We therefore provide two 91 * types of locks: 1) the hash table lock array, and 2) the 92 * ARC list locks. 93 * 94 * Buffers do not have their own mutexes, rather they rely on the 95 * hash table mutexes for the bulk of their protection (i.e. most 96 * fields in the arc_buf_hdr_t are protected by these mutexes). 97 * 98 * buf_hash_find() returns the appropriate mutex (held) when it 99 * locates the requested buffer in the hash table. It returns 100 * NULL for the mutex if the buffer was not in the table. 101 * 102 * buf_hash_remove() expects the appropriate hash mutex to be 103 * already held before it is invoked. 104 * 105 * Each ARC state also has a mutex which is used to protect the 106 * buffer list associated with the state. When attempting to 107 * obtain a hash table lock while holding an ARC list lock you 108 * must use: mutex_tryenter() to avoid deadlock. Also note that 109 * the active state mutex must be held before the ghost state mutex. 110 * 111 * It as also possible to register a callback which is run when the 112 * metadata limit is reached and no buffers can be safely evicted. In 113 * this case the arc user should drop a reference on some arc buffers so 114 * they can be reclaimed. For example, when using the ZPL each dentry 115 * holds a references on a znode. These dentries must be pruned before 116 * the arc buffer holding the znode can be safely evicted. 117 * 118 * Note that the majority of the performance stats are manipulated 119 * with atomic operations. 120 * 121 * The L2ARC uses the l2ad_mtx on each vdev for the following: 122 * 123 * - L2ARC buflist creation 124 * - L2ARC buflist eviction 125 * - L2ARC write completion, which walks L2ARC buflists 126 * - ARC header destruction, as it removes from L2ARC buflists 127 * - ARC header release, as it removes from L2ARC buflists 128 */ 129 130 /* 131 * ARC operation: 132 * 133 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. 134 * This structure can point either to a block that is still in the cache or to 135 * one that is only accessible in an L2 ARC device, or it can provide 136 * information about a block that was recently evicted. If a block is 137 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough 138 * information to retrieve it from the L2ARC device. This information is 139 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block 140 * that is in this state cannot access the data directly. 141 * 142 * Blocks that are actively being referenced or have not been evicted 143 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within 144 * the arc_buf_hdr_t that will point to the data block in memory. A block can 145 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC 146 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and 147 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd). 148 * 149 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the 150 * ability to store the physical data (b_pabd) associated with the DVA of the 151 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block, 152 * it will match its on-disk compression characteristics. This behavior can be 153 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the 154 * compressed ARC functionality is disabled, the b_pabd will point to an 155 * uncompressed version of the on-disk data. 156 * 157 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each 158 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it. 159 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC 160 * consumer. The ARC will provide references to this data and will keep it 161 * cached until it is no longer in use. The ARC caches only the L1ARC's physical 162 * data block and will evict any arc_buf_t that is no longer referenced. The 163 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the 164 * "overhead_size" kstat. 165 * 166 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or 167 * compressed form. The typical case is that consumers will want uncompressed 168 * data, and when that happens a new data buffer is allocated where the data is 169 * decompressed for them to use. Currently the only consumer who wants 170 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it 171 * exists on disk. When this happens, the arc_buf_t's data buffer is shared 172 * with the arc_buf_hdr_t. 173 * 174 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The 175 * first one is owned by a compressed send consumer (and therefore references 176 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be 177 * used by any other consumer (and has its own uncompressed copy of the data 178 * buffer). 179 * 180 * arc_buf_hdr_t 181 * +-----------+ 182 * | fields | 183 * | common to | 184 * | L1- and | 185 * | L2ARC | 186 * +-----------+ 187 * | l2arc_buf_hdr_t 188 * | | 189 * +-----------+ 190 * | l1arc_buf_hdr_t 191 * | | arc_buf_t 192 * | b_buf +------------>+-----------+ arc_buf_t 193 * | b_pabd +-+ |b_next +---->+-----------+ 194 * +-----------+ | |-----------| |b_next +-->NULL 195 * | |b_comp = T | +-----------+ 196 * | |b_data +-+ |b_comp = F | 197 * | +-----------+ | |b_data +-+ 198 * +->+------+ | +-----------+ | 199 * compressed | | | | 200 * data | |<--------------+ | uncompressed 201 * +------+ compressed, | data 202 * shared +-->+------+ 203 * data | | 204 * | | 205 * +------+ 206 * 207 * When a consumer reads a block, the ARC must first look to see if the 208 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new 209 * arc_buf_t and either copies uncompressed data into a new data buffer from an 210 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a 211 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the 212 * hdr is compressed and the desired compression characteristics of the 213 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the 214 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be 215 * the last buffer in the hdr's b_buf list, however a shared compressed buf can 216 * be anywhere in the hdr's list. 217 * 218 * The diagram below shows an example of an uncompressed ARC hdr that is 219 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is 220 * the last element in the buf list): 221 * 222 * arc_buf_hdr_t 223 * +-----------+ 224 * | | 225 * | | 226 * | | 227 * +-----------+ 228 * l2arc_buf_hdr_t| | 229 * | | 230 * +-----------+ 231 * l1arc_buf_hdr_t| | 232 * | | arc_buf_t (shared) 233 * | b_buf +------------>+---------+ arc_buf_t 234 * | | |b_next +---->+---------+ 235 * | b_pabd +-+ |---------| |b_next +-->NULL 236 * +-----------+ | | | +---------+ 237 * | |b_data +-+ | | 238 * | +---------+ | |b_data +-+ 239 * +->+------+ | +---------+ | 240 * | | | | 241 * uncompressed | | | | 242 * data +------+ | | 243 * ^ +->+------+ | 244 * | uncompressed | | | 245 * | data | | | 246 * | +------+ | 247 * +---------------------------------+ 248 * 249 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd 250 * since the physical block is about to be rewritten. The new data contents 251 * will be contained in the arc_buf_t. As the I/O pipeline performs the write, 252 * it may compress the data before writing it to disk. The ARC will be called 253 * with the transformed data and will memcpy the transformed on-disk block into 254 * a newly allocated b_pabd. Writes are always done into buffers which have 255 * either been loaned (and hence are new and don't have other readers) or 256 * buffers which have been released (and hence have their own hdr, if there 257 * were originally other readers of the buf's original hdr). This ensures that 258 * the ARC only needs to update a single buf and its hdr after a write occurs. 259 * 260 * When the L2ARC is in use, it will also take advantage of the b_pabd. The 261 * L2ARC will always write the contents of b_pabd to the L2ARC. This means 262 * that when compressed ARC is enabled that the L2ARC blocks are identical 263 * to the on-disk block in the main data pool. This provides a significant 264 * advantage since the ARC can leverage the bp's checksum when reading from the 265 * L2ARC to determine if the contents are valid. However, if the compressed 266 * ARC is disabled, then the L2ARC's block must be transformed to look 267 * like the physical block in the main data pool before comparing the 268 * checksum and determining its validity. 269 * 270 * The L1ARC has a slightly different system for storing encrypted data. 271 * Raw (encrypted + possibly compressed) data has a few subtle differences from 272 * data that is just compressed. The biggest difference is that it is not 273 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded. 274 * The other difference is that encryption cannot be treated as a suggestion. 275 * If a caller would prefer compressed data, but they actually wind up with 276 * uncompressed data the worst thing that could happen is there might be a 277 * performance hit. If the caller requests encrypted data, however, we must be 278 * sure they actually get it or else secret information could be leaked. Raw 279 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore, 280 * may have both an encrypted version and a decrypted version of its data at 281 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is 282 * copied out of this header. To avoid complications with b_pabd, raw buffers 283 * cannot be shared. 284 */ 285 286 #include <sys/spa.h> 287 #include <sys/zio.h> 288 #include <sys/spa_impl.h> 289 #include <sys/zio_compress.h> 290 #include <sys/zio_checksum.h> 291 #include <sys/zfs_context.h> 292 #include <sys/arc.h> 293 #include <sys/zfs_refcount.h> 294 #include <sys/vdev.h> 295 #include <sys/vdev_impl.h> 296 #include <sys/dsl_pool.h> 297 #include <sys/multilist.h> 298 #include <sys/abd.h> 299 #include <sys/zil.h> 300 #include <sys/fm/fs/zfs.h> 301 #include <sys/callb.h> 302 #include <sys/kstat.h> 303 #include <sys/zthr.h> 304 #include <zfs_fletcher.h> 305 #include <sys/arc_impl.h> 306 #include <sys/trace_zfs.h> 307 #include <sys/aggsum.h> 308 #include <sys/wmsum.h> 309 #include <cityhash.h> 310 #include <sys/vdev_trim.h> 311 #include <sys/zfs_racct.h> 312 #include <sys/zstd/zstd.h> 313 314 #ifndef _KERNEL 315 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 316 boolean_t arc_watch = B_FALSE; 317 #endif 318 319 /* 320 * This thread's job is to keep enough free memory in the system, by 321 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves 322 * arc_available_memory(). 323 */ 324 static zthr_t *arc_reap_zthr; 325 326 /* 327 * This thread's job is to keep arc_size under arc_c, by calling 328 * arc_evict(), which improves arc_is_overflowing(). 329 */ 330 static zthr_t *arc_evict_zthr; 331 static arc_buf_hdr_t **arc_state_evict_markers; 332 static int arc_state_evict_marker_count; 333 334 static kmutex_t arc_evict_lock; 335 static boolean_t arc_evict_needed = B_FALSE; 336 static clock_t arc_last_uncached_flush; 337 338 /* 339 * Count of bytes evicted since boot. 340 */ 341 static uint64_t arc_evict_count; 342 343 /* 344 * List of arc_evict_waiter_t's, representing threads waiting for the 345 * arc_evict_count to reach specific values. 346 */ 347 static list_t arc_evict_waiters; 348 349 /* 350 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of 351 * the requested amount of data to be evicted. For example, by default for 352 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation. 353 * Since this is above 100%, it ensures that progress is made towards getting 354 * arc_size under arc_c. Since this is finite, it ensures that allocations 355 * can still happen, even during the potentially long time that arc_size is 356 * more than arc_c. 357 */ 358 static uint_t zfs_arc_eviction_pct = 200; 359 360 /* 361 * The number of headers to evict in arc_evict_state_impl() before 362 * dropping the sublist lock and evicting from another sublist. A lower 363 * value means we're more likely to evict the "correct" header (i.e. the 364 * oldest header in the arc state), but comes with higher overhead 365 * (i.e. more invocations of arc_evict_state_impl()). 366 */ 367 static uint_t zfs_arc_evict_batch_limit = 10; 368 369 /* number of seconds before growing cache again */ 370 uint_t arc_grow_retry = 5; 371 372 /* 373 * Minimum time between calls to arc_kmem_reap_soon(). 374 */ 375 static const int arc_kmem_cache_reap_retry_ms = 1000; 376 377 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */ 378 static int zfs_arc_overflow_shift = 8; 379 380 /* log2(fraction of arc to reclaim) */ 381 uint_t arc_shrink_shift = 7; 382 383 /* percent of pagecache to reclaim arc to */ 384 #ifdef _KERNEL 385 uint_t zfs_arc_pc_percent = 0; 386 #endif 387 388 /* 389 * log2(fraction of ARC which must be free to allow growing). 390 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 391 * when reading a new block into the ARC, we will evict an equal-sized block 392 * from the ARC. 393 * 394 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 395 * we will still not allow it to grow. 396 */ 397 uint_t arc_no_grow_shift = 5; 398 399 400 /* 401 * minimum lifespan of a prefetch block in clock ticks 402 * (initialized in arc_init()) 403 */ 404 static uint_t arc_min_prefetch_ms; 405 static uint_t arc_min_prescient_prefetch_ms; 406 407 /* 408 * If this percent of memory is free, don't throttle. 409 */ 410 uint_t arc_lotsfree_percent = 10; 411 412 /* 413 * The arc has filled available memory and has now warmed up. 414 */ 415 boolean_t arc_warm; 416 417 /* 418 * These tunables are for performance analysis. 419 */ 420 uint64_t zfs_arc_max = 0; 421 uint64_t zfs_arc_min = 0; 422 static uint64_t zfs_arc_dnode_limit = 0; 423 static uint_t zfs_arc_dnode_reduce_percent = 10; 424 static uint_t zfs_arc_grow_retry = 0; 425 static uint_t zfs_arc_shrink_shift = 0; 426 uint_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 427 428 /* 429 * ARC dirty data constraints for arc_tempreserve_space() throttle: 430 * * total dirty data limit 431 * * anon block dirty limit 432 * * each pool's anon allowance 433 */ 434 static const unsigned long zfs_arc_dirty_limit_percent = 50; 435 static const unsigned long zfs_arc_anon_limit_percent = 25; 436 static const unsigned long zfs_arc_pool_dirty_percent = 20; 437 438 /* 439 * Enable or disable compressed arc buffers. 440 */ 441 int zfs_compressed_arc_enabled = B_TRUE; 442 443 /* 444 * Balance between metadata and data on ghost hits. Values above 100 445 * increase metadata caching by proportionally reducing effect of ghost 446 * data hits on target data/metadata rate. 447 */ 448 static uint_t zfs_arc_meta_balance = 500; 449 450 /* 451 * Percentage that can be consumed by dnodes of ARC meta buffers. 452 */ 453 static uint_t zfs_arc_dnode_limit_percent = 10; 454 455 /* 456 * These tunables are Linux-specific 457 */ 458 static uint64_t zfs_arc_sys_free = 0; 459 static uint_t zfs_arc_min_prefetch_ms = 0; 460 static uint_t zfs_arc_min_prescient_prefetch_ms = 0; 461 static uint_t zfs_arc_lotsfree_percent = 10; 462 463 /* 464 * Number of arc_prune threads 465 */ 466 static int zfs_arc_prune_task_threads = 1; 467 468 /* Used by spa_export/spa_destroy to flush the arc asynchronously */ 469 static taskq_t *arc_flush_taskq; 470 471 /* The 7 states: */ 472 arc_state_t ARC_anon; 473 arc_state_t ARC_mru; 474 arc_state_t ARC_mru_ghost; 475 arc_state_t ARC_mfu; 476 arc_state_t ARC_mfu_ghost; 477 arc_state_t ARC_l2c_only; 478 arc_state_t ARC_uncached; 479 480 arc_stats_t arc_stats = { 481 { "hits", KSTAT_DATA_UINT64 }, 482 { "iohits", KSTAT_DATA_UINT64 }, 483 { "misses", KSTAT_DATA_UINT64 }, 484 { "demand_data_hits", KSTAT_DATA_UINT64 }, 485 { "demand_data_iohits", KSTAT_DATA_UINT64 }, 486 { "demand_data_misses", KSTAT_DATA_UINT64 }, 487 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 488 { "demand_metadata_iohits", KSTAT_DATA_UINT64 }, 489 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 490 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 491 { "prefetch_data_iohits", KSTAT_DATA_UINT64 }, 492 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 493 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 494 { "prefetch_metadata_iohits", KSTAT_DATA_UINT64 }, 495 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 496 { "mru_hits", KSTAT_DATA_UINT64 }, 497 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 498 { "mfu_hits", KSTAT_DATA_UINT64 }, 499 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 500 { "uncached_hits", KSTAT_DATA_UINT64 }, 501 { "deleted", KSTAT_DATA_UINT64 }, 502 { "mutex_miss", KSTAT_DATA_UINT64 }, 503 { "access_skip", KSTAT_DATA_UINT64 }, 504 { "evict_skip", KSTAT_DATA_UINT64 }, 505 { "evict_not_enough", KSTAT_DATA_UINT64 }, 506 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 507 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 508 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64 }, 509 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64 }, 510 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 511 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 512 { "hash_elements", KSTAT_DATA_UINT64 }, 513 { "hash_elements_max", KSTAT_DATA_UINT64 }, 514 { "hash_collisions", KSTAT_DATA_UINT64 }, 515 { "hash_chains", KSTAT_DATA_UINT64 }, 516 { "hash_chain_max", KSTAT_DATA_UINT64 }, 517 { "meta", KSTAT_DATA_UINT64 }, 518 { "pd", KSTAT_DATA_UINT64 }, 519 { "pm", KSTAT_DATA_UINT64 }, 520 { "c", KSTAT_DATA_UINT64 }, 521 { "c_min", KSTAT_DATA_UINT64 }, 522 { "c_max", KSTAT_DATA_UINT64 }, 523 { "size", KSTAT_DATA_UINT64 }, 524 { "compressed_size", KSTAT_DATA_UINT64 }, 525 { "uncompressed_size", KSTAT_DATA_UINT64 }, 526 { "overhead_size", KSTAT_DATA_UINT64 }, 527 { "hdr_size", KSTAT_DATA_UINT64 }, 528 { "data_size", KSTAT_DATA_UINT64 }, 529 { "metadata_size", KSTAT_DATA_UINT64 }, 530 { "dbuf_size", KSTAT_DATA_UINT64 }, 531 { "dnode_size", KSTAT_DATA_UINT64 }, 532 { "bonus_size", KSTAT_DATA_UINT64 }, 533 #if defined(COMPAT_FREEBSD11) 534 { "other_size", KSTAT_DATA_UINT64 }, 535 #endif 536 { "anon_size", KSTAT_DATA_UINT64 }, 537 { "anon_data", KSTAT_DATA_UINT64 }, 538 { "anon_metadata", KSTAT_DATA_UINT64 }, 539 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 540 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 541 { "mru_size", KSTAT_DATA_UINT64 }, 542 { "mru_data", KSTAT_DATA_UINT64 }, 543 { "mru_metadata", KSTAT_DATA_UINT64 }, 544 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 545 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 546 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 547 { "mru_ghost_data", KSTAT_DATA_UINT64 }, 548 { "mru_ghost_metadata", KSTAT_DATA_UINT64 }, 549 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 550 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 551 { "mfu_size", KSTAT_DATA_UINT64 }, 552 { "mfu_data", KSTAT_DATA_UINT64 }, 553 { "mfu_metadata", KSTAT_DATA_UINT64 }, 554 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 555 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 556 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 557 { "mfu_ghost_data", KSTAT_DATA_UINT64 }, 558 { "mfu_ghost_metadata", KSTAT_DATA_UINT64 }, 559 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 560 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 561 { "uncached_size", KSTAT_DATA_UINT64 }, 562 { "uncached_data", KSTAT_DATA_UINT64 }, 563 { "uncached_metadata", KSTAT_DATA_UINT64 }, 564 { "uncached_evictable_data", KSTAT_DATA_UINT64 }, 565 { "uncached_evictable_metadata", KSTAT_DATA_UINT64 }, 566 { "l2_hits", KSTAT_DATA_UINT64 }, 567 { "l2_misses", KSTAT_DATA_UINT64 }, 568 { "l2_prefetch_asize", KSTAT_DATA_UINT64 }, 569 { "l2_mru_asize", KSTAT_DATA_UINT64 }, 570 { "l2_mfu_asize", KSTAT_DATA_UINT64 }, 571 { "l2_bufc_data_asize", KSTAT_DATA_UINT64 }, 572 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64 }, 573 { "l2_feeds", KSTAT_DATA_UINT64 }, 574 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 575 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 576 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 577 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 578 { "l2_writes_done", KSTAT_DATA_UINT64 }, 579 { "l2_writes_error", KSTAT_DATA_UINT64 }, 580 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 581 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 582 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 583 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 584 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 585 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 586 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 587 { "l2_io_error", KSTAT_DATA_UINT64 }, 588 { "l2_size", KSTAT_DATA_UINT64 }, 589 { "l2_asize", KSTAT_DATA_UINT64 }, 590 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 591 { "l2_log_blk_writes", KSTAT_DATA_UINT64 }, 592 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 }, 593 { "l2_log_blk_asize", KSTAT_DATA_UINT64 }, 594 { "l2_log_blk_count", KSTAT_DATA_UINT64 }, 595 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 }, 596 { "l2_rebuild_success", KSTAT_DATA_UINT64 }, 597 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 }, 598 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 }, 599 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 }, 600 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 }, 601 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 }, 602 { "l2_rebuild_size", KSTAT_DATA_UINT64 }, 603 { "l2_rebuild_asize", KSTAT_DATA_UINT64 }, 604 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 }, 605 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 }, 606 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 }, 607 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 608 { "memory_direct_count", KSTAT_DATA_UINT64 }, 609 { "memory_indirect_count", KSTAT_DATA_UINT64 }, 610 { "memory_all_bytes", KSTAT_DATA_UINT64 }, 611 { "memory_free_bytes", KSTAT_DATA_UINT64 }, 612 { "memory_available_bytes", KSTAT_DATA_INT64 }, 613 { "arc_no_grow", KSTAT_DATA_UINT64 }, 614 { "arc_tempreserve", KSTAT_DATA_UINT64 }, 615 { "arc_loaned_bytes", KSTAT_DATA_UINT64 }, 616 { "arc_prune", KSTAT_DATA_UINT64 }, 617 { "arc_meta_used", KSTAT_DATA_UINT64 }, 618 { "arc_dnode_limit", KSTAT_DATA_UINT64 }, 619 { "async_upgrade_sync", KSTAT_DATA_UINT64 }, 620 { "predictive_prefetch", KSTAT_DATA_UINT64 }, 621 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 }, 622 { "demand_iohit_predictive_prefetch", KSTAT_DATA_UINT64 }, 623 { "prescient_prefetch", KSTAT_DATA_UINT64 }, 624 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 }, 625 { "demand_iohit_prescient_prefetch", KSTAT_DATA_UINT64 }, 626 { "arc_need_free", KSTAT_DATA_UINT64 }, 627 { "arc_sys_free", KSTAT_DATA_UINT64 }, 628 { "arc_raw_size", KSTAT_DATA_UINT64 }, 629 { "cached_only_in_progress", KSTAT_DATA_UINT64 }, 630 { "abd_chunk_waste_size", KSTAT_DATA_UINT64 }, 631 }; 632 633 arc_sums_t arc_sums; 634 635 #define ARCSTAT_MAX(stat, val) { \ 636 uint64_t m; \ 637 while ((val) > (m = arc_stats.stat.value.ui64) && \ 638 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 639 continue; \ 640 } 641 642 /* 643 * We define a macro to allow ARC hits/misses to be easily broken down by 644 * two separate conditions, giving a total of four different subtypes for 645 * each of hits and misses (so eight statistics total). 646 */ 647 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 648 if (cond1) { \ 649 if (cond2) { \ 650 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 651 } else { \ 652 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 653 } \ 654 } else { \ 655 if (cond2) { \ 656 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 657 } else { \ 658 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 659 } \ 660 } 661 662 /* 663 * This macro allows us to use kstats as floating averages. Each time we 664 * update this kstat, we first factor it and the update value by 665 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall 666 * average. This macro assumes that integer loads and stores are atomic, but 667 * is not safe for multiple writers updating the kstat in parallel (only the 668 * last writer's update will remain). 669 */ 670 #define ARCSTAT_F_AVG_FACTOR 3 671 #define ARCSTAT_F_AVG(stat, value) \ 672 do { \ 673 uint64_t x = ARCSTAT(stat); \ 674 x = x - x / ARCSTAT_F_AVG_FACTOR + \ 675 (value) / ARCSTAT_F_AVG_FACTOR; \ 676 ARCSTAT(stat) = x; \ 677 } while (0) 678 679 static kstat_t *arc_ksp; 680 681 /* 682 * There are several ARC variables that are critical to export as kstats -- 683 * but we don't want to have to grovel around in the kstat whenever we wish to 684 * manipulate them. For these variables, we therefore define them to be in 685 * terms of the statistic variable. This assures that we are not introducing 686 * the possibility of inconsistency by having shadow copies of the variables, 687 * while still allowing the code to be readable. 688 */ 689 #define arc_tempreserve ARCSTAT(arcstat_tempreserve) 690 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes) 691 #define arc_dnode_limit ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */ 692 #define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */ 693 694 hrtime_t arc_growtime; 695 list_t arc_prune_list; 696 kmutex_t arc_prune_mtx; 697 taskq_t *arc_prune_taskq; 698 699 #define GHOST_STATE(state) \ 700 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 701 (state) == arc_l2c_only) 702 703 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 704 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 705 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 706 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 707 #define HDR_PRESCIENT_PREFETCH(hdr) \ 708 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) 709 #define HDR_COMPRESSION_ENABLED(hdr) \ 710 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) 711 712 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 713 #define HDR_UNCACHED(hdr) ((hdr)->b_flags & ARC_FLAG_UNCACHED) 714 #define HDR_L2_READING(hdr) \ 715 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 716 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 717 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 718 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 719 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 720 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED) 721 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH) 722 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) 723 724 #define HDR_ISTYPE_METADATA(hdr) \ 725 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 726 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 727 728 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 729 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 730 #define HDR_HAS_RABD(hdr) \ 731 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \ 732 (hdr)->b_crypt_hdr.b_rabd != NULL) 733 #define HDR_ENCRYPTED(hdr) \ 734 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 735 #define HDR_AUTHENTICATED(hdr) \ 736 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 737 738 /* For storing compression mode in b_flags */ 739 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) 740 741 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ 742 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) 743 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ 744 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); 745 746 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) 747 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED) 748 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED) 749 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED) 750 751 /* 752 * Other sizes 753 */ 754 755 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 756 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 757 758 /* 759 * Hash table routines 760 */ 761 762 #define BUF_LOCKS 2048 763 typedef struct buf_hash_table { 764 uint64_t ht_mask; 765 arc_buf_hdr_t **ht_table; 766 kmutex_t ht_locks[BUF_LOCKS] ____cacheline_aligned; 767 } buf_hash_table_t; 768 769 static buf_hash_table_t buf_hash_table; 770 771 #define BUF_HASH_INDEX(spa, dva, birth) \ 772 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 773 #define BUF_HASH_LOCK(idx) (&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 774 #define HDR_LOCK(hdr) \ 775 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 776 777 uint64_t zfs_crc64_table[256]; 778 779 /* 780 * Asynchronous ARC flush 781 * 782 * We track these in a list for arc_async_flush_guid_inuse(). 783 * Used for both L1 and L2 async teardown. 784 */ 785 static list_t arc_async_flush_list; 786 static kmutex_t arc_async_flush_lock; 787 788 typedef struct arc_async_flush { 789 uint64_t af_spa_guid; 790 taskq_ent_t af_tqent; 791 uint_t af_cache_level; /* 1 or 2 to differentiate node */ 792 list_node_t af_node; 793 } arc_async_flush_t; 794 795 796 /* 797 * Level 2 ARC 798 */ 799 800 #define L2ARC_WRITE_SIZE (32 * 1024 * 1024) /* initial write max */ 801 #define L2ARC_HEADROOM 8 /* num of writes */ 802 803 /* 804 * If we discover during ARC scan any buffers to be compressed, we boost 805 * our headroom for the next scanning cycle by this percentage multiple. 806 */ 807 #define L2ARC_HEADROOM_BOOST 200 808 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 809 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 810 811 /* 812 * We can feed L2ARC from two states of ARC buffers, mru and mfu, 813 * and each of the state has two types: data and metadata. 814 */ 815 #define L2ARC_FEED_TYPES 4 816 817 /* L2ARC Performance Tunables */ 818 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */ 819 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */ 820 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */ 821 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 822 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 823 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */ 824 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 825 int l2arc_feed_again = B_TRUE; /* turbo warmup */ 826 int l2arc_norw = B_FALSE; /* no reads during writes */ 827 static uint_t l2arc_meta_percent = 33; /* limit on headers size */ 828 829 /* 830 * L2ARC Internals 831 */ 832 static list_t L2ARC_dev_list; /* device list */ 833 static list_t *l2arc_dev_list; /* device list pointer */ 834 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 835 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 836 static list_t L2ARC_free_on_write; /* free after write buf list */ 837 static list_t *l2arc_free_on_write; /* free after write list ptr */ 838 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 839 static uint64_t l2arc_ndev; /* number of devices */ 840 841 typedef struct l2arc_read_callback { 842 arc_buf_hdr_t *l2rcb_hdr; /* read header */ 843 blkptr_t l2rcb_bp; /* original blkptr */ 844 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 845 int l2rcb_flags; /* original flags */ 846 abd_t *l2rcb_abd; /* temporary buffer */ 847 } l2arc_read_callback_t; 848 849 typedef struct l2arc_data_free { 850 /* protected by l2arc_free_on_write_mtx */ 851 abd_t *l2df_abd; 852 size_t l2df_size; 853 arc_buf_contents_t l2df_type; 854 list_node_t l2df_list_node; 855 } l2arc_data_free_t; 856 857 typedef enum arc_fill_flags { 858 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */ 859 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */ 860 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */ 861 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */ 862 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */ 863 } arc_fill_flags_t; 864 865 typedef enum arc_ovf_level { 866 ARC_OVF_NONE, /* ARC within target size. */ 867 ARC_OVF_SOME, /* ARC is slightly overflowed. */ 868 ARC_OVF_SEVERE /* ARC is severely overflowed. */ 869 } arc_ovf_level_t; 870 871 static kmutex_t l2arc_feed_thr_lock; 872 static kcondvar_t l2arc_feed_thr_cv; 873 static uint8_t l2arc_thread_exit; 874 875 static kmutex_t l2arc_rebuild_thr_lock; 876 static kcondvar_t l2arc_rebuild_thr_cv; 877 878 enum arc_hdr_alloc_flags { 879 ARC_HDR_ALLOC_RDATA = 0x1, 880 ARC_HDR_USE_RESERVE = 0x4, 881 ARC_HDR_ALLOC_LINEAR = 0x8, 882 }; 883 884 885 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, const void *, int); 886 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, const void *); 887 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, const void *, int); 888 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, const void *); 889 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, const void *); 890 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, 891 const void *tag); 892 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t); 893 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int); 894 static void arc_hdr_destroy(arc_buf_hdr_t *); 895 static void arc_access(arc_buf_hdr_t *, arc_flags_t, boolean_t); 896 static void arc_buf_watch(arc_buf_t *); 897 static void arc_change_state(arc_state_t *, arc_buf_hdr_t *); 898 899 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 900 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 901 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 902 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 903 904 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 905 static void l2arc_read_done(zio_t *); 906 static void l2arc_do_free_on_write(void); 907 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 908 boolean_t state_only); 909 910 static void arc_prune_async(uint64_t adjust); 911 912 #define l2arc_hdr_arcstats_increment(hdr) \ 913 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE) 914 #define l2arc_hdr_arcstats_decrement(hdr) \ 915 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE) 916 #define l2arc_hdr_arcstats_increment_state(hdr) \ 917 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE) 918 #define l2arc_hdr_arcstats_decrement_state(hdr) \ 919 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE) 920 921 /* 922 * l2arc_exclude_special : A zfs module parameter that controls whether buffers 923 * present on special vdevs are eligibile for caching in L2ARC. If 924 * set to 1, exclude dbufs on special vdevs from being cached to 925 * L2ARC. 926 */ 927 int l2arc_exclude_special = 0; 928 929 /* 930 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU 931 * metadata and data are cached from ARC into L2ARC. 932 */ 933 static int l2arc_mfuonly = 0; 934 935 /* 936 * L2ARC TRIM 937 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of 938 * the current write size (l2arc_write_max) we should TRIM if we 939 * have filled the device. It is defined as a percentage of the 940 * write size. If set to 100 we trim twice the space required to 941 * accommodate upcoming writes. A minimum of 64MB will be trimmed. 942 * It also enables TRIM of the whole L2ARC device upon creation or 943 * addition to an existing pool or if the header of the device is 944 * invalid upon importing a pool or onlining a cache device. The 945 * default is 0, which disables TRIM on L2ARC altogether as it can 946 * put significant stress on the underlying storage devices. This 947 * will vary depending of how well the specific device handles 948 * these commands. 949 */ 950 static uint64_t l2arc_trim_ahead = 0; 951 952 /* 953 * Performance tuning of L2ARC persistence: 954 * 955 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding 956 * an L2ARC device (either at pool import or later) will attempt 957 * to rebuild L2ARC buffer contents. 958 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls 959 * whether log blocks are written to the L2ARC device. If the L2ARC 960 * device is less than 1GB, the amount of data l2arc_evict() 961 * evicts is significant compared to the amount of restored L2ARC 962 * data. In this case do not write log blocks in L2ARC in order 963 * not to waste space. 964 */ 965 static int l2arc_rebuild_enabled = B_TRUE; 966 static uint64_t l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024; 967 968 /* L2ARC persistence rebuild control routines. */ 969 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen); 970 static __attribute__((noreturn)) void l2arc_dev_rebuild_thread(void *arg); 971 static int l2arc_rebuild(l2arc_dev_t *dev); 972 973 /* L2ARC persistence read I/O routines. */ 974 static int l2arc_dev_hdr_read(l2arc_dev_t *dev); 975 static int l2arc_log_blk_read(l2arc_dev_t *dev, 976 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp, 977 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 978 zio_t *this_io, zio_t **next_io); 979 static zio_t *l2arc_log_blk_fetch(vdev_t *vd, 980 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb); 981 static void l2arc_log_blk_fetch_abort(zio_t *zio); 982 983 /* L2ARC persistence block restoration routines. */ 984 static void l2arc_log_blk_restore(l2arc_dev_t *dev, 985 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize); 986 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, 987 l2arc_dev_t *dev); 988 989 /* L2ARC persistence write I/O routines. */ 990 static uint64_t l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, 991 l2arc_write_callback_t *cb); 992 993 /* L2ARC persistence auxiliary routines. */ 994 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev, 995 const l2arc_log_blkptr_t *lbp); 996 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev, 997 const arc_buf_hdr_t *ab); 998 boolean_t l2arc_range_check_overlap(uint64_t bottom, 999 uint64_t top, uint64_t check); 1000 static void l2arc_blk_fetch_done(zio_t *zio); 1001 static inline uint64_t 1002 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev); 1003 1004 /* 1005 * We use Cityhash for this. It's fast, and has good hash properties without 1006 * requiring any large static buffers. 1007 */ 1008 static uint64_t 1009 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 1010 { 1011 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth)); 1012 } 1013 1014 #define HDR_EMPTY(hdr) \ 1015 ((hdr)->b_dva.dva_word[0] == 0 && \ 1016 (hdr)->b_dva.dva_word[1] == 0) 1017 1018 #define HDR_EMPTY_OR_LOCKED(hdr) \ 1019 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr))) 1020 1021 #define HDR_EQUAL(spa, dva, birth, hdr) \ 1022 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 1023 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 1024 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) 1025 1026 static void 1027 buf_discard_identity(arc_buf_hdr_t *hdr) 1028 { 1029 hdr->b_dva.dva_word[0] = 0; 1030 hdr->b_dva.dva_word[1] = 0; 1031 hdr->b_birth = 0; 1032 } 1033 1034 static arc_buf_hdr_t * 1035 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 1036 { 1037 const dva_t *dva = BP_IDENTITY(bp); 1038 uint64_t birth = BP_GET_BIRTH(bp); 1039 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 1040 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1041 arc_buf_hdr_t *hdr; 1042 1043 mutex_enter(hash_lock); 1044 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 1045 hdr = hdr->b_hash_next) { 1046 if (HDR_EQUAL(spa, dva, birth, hdr)) { 1047 *lockp = hash_lock; 1048 return (hdr); 1049 } 1050 } 1051 mutex_exit(hash_lock); 1052 *lockp = NULL; 1053 return (NULL); 1054 } 1055 1056 /* 1057 * Insert an entry into the hash table. If there is already an element 1058 * equal to elem in the hash table, then the already existing element 1059 * will be returned and the new element will not be inserted. 1060 * Otherwise returns NULL. 1061 * If lockp == NULL, the caller is assumed to already hold the hash lock. 1062 */ 1063 static arc_buf_hdr_t * 1064 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 1065 { 1066 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1067 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1068 arc_buf_hdr_t *fhdr; 1069 uint32_t i; 1070 1071 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 1072 ASSERT(hdr->b_birth != 0); 1073 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1074 1075 if (lockp != NULL) { 1076 *lockp = hash_lock; 1077 mutex_enter(hash_lock); 1078 } else { 1079 ASSERT(MUTEX_HELD(hash_lock)); 1080 } 1081 1082 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 1083 fhdr = fhdr->b_hash_next, i++) { 1084 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 1085 return (fhdr); 1086 } 1087 1088 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 1089 buf_hash_table.ht_table[idx] = hdr; 1090 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1091 1092 /* collect some hash table performance data */ 1093 if (i > 0) { 1094 ARCSTAT_BUMP(arcstat_hash_collisions); 1095 if (i == 1) 1096 ARCSTAT_BUMP(arcstat_hash_chains); 1097 ARCSTAT_MAX(arcstat_hash_chain_max, i); 1098 } 1099 ARCSTAT_BUMP(arcstat_hash_elements); 1100 1101 return (NULL); 1102 } 1103 1104 static void 1105 buf_hash_remove(arc_buf_hdr_t *hdr) 1106 { 1107 arc_buf_hdr_t *fhdr, **hdrp; 1108 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1109 1110 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 1111 ASSERT(HDR_IN_HASH_TABLE(hdr)); 1112 1113 hdrp = &buf_hash_table.ht_table[idx]; 1114 while ((fhdr = *hdrp) != hdr) { 1115 ASSERT3P(fhdr, !=, NULL); 1116 hdrp = &fhdr->b_hash_next; 1117 } 1118 *hdrp = hdr->b_hash_next; 1119 hdr->b_hash_next = NULL; 1120 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1121 1122 /* collect some hash table performance data */ 1123 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 1124 if (buf_hash_table.ht_table[idx] && 1125 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 1126 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 1127 } 1128 1129 /* 1130 * Global data structures and functions for the buf kmem cache. 1131 */ 1132 1133 static kmem_cache_t *hdr_full_cache; 1134 static kmem_cache_t *hdr_l2only_cache; 1135 static kmem_cache_t *buf_cache; 1136 1137 static void 1138 buf_fini(void) 1139 { 1140 #if defined(_KERNEL) 1141 /* 1142 * Large allocations which do not require contiguous pages 1143 * should be using vmem_free() in the linux kernel\ 1144 */ 1145 vmem_free(buf_hash_table.ht_table, 1146 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1147 #else 1148 kmem_free(buf_hash_table.ht_table, 1149 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1150 #endif 1151 for (int i = 0; i < BUF_LOCKS; i++) 1152 mutex_destroy(BUF_HASH_LOCK(i)); 1153 kmem_cache_destroy(hdr_full_cache); 1154 kmem_cache_destroy(hdr_l2only_cache); 1155 kmem_cache_destroy(buf_cache); 1156 } 1157 1158 /* 1159 * Constructor callback - called when the cache is empty 1160 * and a new buf is requested. 1161 */ 1162 static int 1163 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1164 { 1165 (void) unused, (void) kmflag; 1166 arc_buf_hdr_t *hdr = vbuf; 1167 1168 memset(hdr, 0, HDR_FULL_SIZE); 1169 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 1170 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt); 1171 #ifdef ZFS_DEBUG 1172 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1173 #endif 1174 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1175 list_link_init(&hdr->b_l2hdr.b_l2node); 1176 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1177 1178 return (0); 1179 } 1180 1181 static int 1182 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1183 { 1184 (void) unused, (void) kmflag; 1185 arc_buf_hdr_t *hdr = vbuf; 1186 1187 memset(hdr, 0, HDR_L2ONLY_SIZE); 1188 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1189 1190 return (0); 1191 } 1192 1193 static int 1194 buf_cons(void *vbuf, void *unused, int kmflag) 1195 { 1196 (void) unused, (void) kmflag; 1197 arc_buf_t *buf = vbuf; 1198 1199 memset(buf, 0, sizeof (arc_buf_t)); 1200 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1201 1202 return (0); 1203 } 1204 1205 /* 1206 * Destructor callback - called when a cached buf is 1207 * no longer required. 1208 */ 1209 static void 1210 hdr_full_dest(void *vbuf, void *unused) 1211 { 1212 (void) unused; 1213 arc_buf_hdr_t *hdr = vbuf; 1214 1215 ASSERT(HDR_EMPTY(hdr)); 1216 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1217 #ifdef ZFS_DEBUG 1218 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1219 #endif 1220 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1221 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1222 } 1223 1224 static void 1225 hdr_l2only_dest(void *vbuf, void *unused) 1226 { 1227 (void) unused; 1228 arc_buf_hdr_t *hdr = vbuf; 1229 1230 ASSERT(HDR_EMPTY(hdr)); 1231 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1232 } 1233 1234 static void 1235 buf_dest(void *vbuf, void *unused) 1236 { 1237 (void) unused; 1238 (void) vbuf; 1239 1240 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1241 } 1242 1243 static void 1244 buf_init(void) 1245 { 1246 uint64_t *ct = NULL; 1247 uint64_t hsize = 1ULL << 12; 1248 int i, j; 1249 1250 /* 1251 * The hash table is big enough to fill all of physical memory 1252 * with an average block size of zfs_arc_average_blocksize (default 8K). 1253 * By default, the table will take up 1254 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1255 */ 1256 while (hsize * zfs_arc_average_blocksize < arc_all_memory()) 1257 hsize <<= 1; 1258 retry: 1259 buf_hash_table.ht_mask = hsize - 1; 1260 #if defined(_KERNEL) 1261 /* 1262 * Large allocations which do not require contiguous pages 1263 * should be using vmem_alloc() in the linux kernel 1264 */ 1265 buf_hash_table.ht_table = 1266 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP); 1267 #else 1268 buf_hash_table.ht_table = 1269 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1270 #endif 1271 if (buf_hash_table.ht_table == NULL) { 1272 ASSERT(hsize > (1ULL << 8)); 1273 hsize >>= 1; 1274 goto retry; 1275 } 1276 1277 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1278 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, KMC_RECLAIMABLE); 1279 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1280 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL, 1281 NULL, NULL, 0); 1282 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1283 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1284 1285 for (i = 0; i < 256; i++) 1286 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1287 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1288 1289 for (i = 0; i < BUF_LOCKS; i++) 1290 mutex_init(BUF_HASH_LOCK(i), NULL, MUTEX_DEFAULT, NULL); 1291 } 1292 1293 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1294 1295 /* 1296 * This is the size that the buf occupies in memory. If the buf is compressed, 1297 * it will correspond to the compressed size. You should use this method of 1298 * getting the buf size unless you explicitly need the logical size. 1299 */ 1300 uint64_t 1301 arc_buf_size(arc_buf_t *buf) 1302 { 1303 return (ARC_BUF_COMPRESSED(buf) ? 1304 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr)); 1305 } 1306 1307 uint64_t 1308 arc_buf_lsize(arc_buf_t *buf) 1309 { 1310 return (HDR_GET_LSIZE(buf->b_hdr)); 1311 } 1312 1313 /* 1314 * This function will return B_TRUE if the buffer is encrypted in memory. 1315 * This buffer can be decrypted by calling arc_untransform(). 1316 */ 1317 boolean_t 1318 arc_is_encrypted(arc_buf_t *buf) 1319 { 1320 return (ARC_BUF_ENCRYPTED(buf) != 0); 1321 } 1322 1323 /* 1324 * Returns B_TRUE if the buffer represents data that has not had its MAC 1325 * verified yet. 1326 */ 1327 boolean_t 1328 arc_is_unauthenticated(arc_buf_t *buf) 1329 { 1330 return (HDR_NOAUTH(buf->b_hdr) != 0); 1331 } 1332 1333 void 1334 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt, 1335 uint8_t *iv, uint8_t *mac) 1336 { 1337 arc_buf_hdr_t *hdr = buf->b_hdr; 1338 1339 ASSERT(HDR_PROTECTED(hdr)); 1340 1341 memcpy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 1342 memcpy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 1343 memcpy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 1344 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 1345 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 1346 } 1347 1348 /* 1349 * Indicates how this buffer is compressed in memory. If it is not compressed 1350 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with 1351 * arc_untransform() as long as it is also unencrypted. 1352 */ 1353 enum zio_compress 1354 arc_get_compression(arc_buf_t *buf) 1355 { 1356 return (ARC_BUF_COMPRESSED(buf) ? 1357 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF); 1358 } 1359 1360 /* 1361 * Return the compression algorithm used to store this data in the ARC. If ARC 1362 * compression is enabled or this is an encrypted block, this will be the same 1363 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF. 1364 */ 1365 static inline enum zio_compress 1366 arc_hdr_get_compress(arc_buf_hdr_t *hdr) 1367 { 1368 return (HDR_COMPRESSION_ENABLED(hdr) ? 1369 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF); 1370 } 1371 1372 uint8_t 1373 arc_get_complevel(arc_buf_t *buf) 1374 { 1375 return (buf->b_hdr->b_complevel); 1376 } 1377 1378 static inline boolean_t 1379 arc_buf_is_shared(arc_buf_t *buf) 1380 { 1381 boolean_t shared = (buf->b_data != NULL && 1382 buf->b_hdr->b_l1hdr.b_pabd != NULL && 1383 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) && 1384 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd)); 1385 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); 1386 EQUIV(shared, ARC_BUF_SHARED(buf)); 1387 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf)); 1388 1389 /* 1390 * It would be nice to assert arc_can_share() too, but the "hdr isn't 1391 * already being shared" requirement prevents us from doing that. 1392 */ 1393 1394 return (shared); 1395 } 1396 1397 /* 1398 * Free the checksum associated with this header. If there is no checksum, this 1399 * is a no-op. 1400 */ 1401 static inline void 1402 arc_cksum_free(arc_buf_hdr_t *hdr) 1403 { 1404 #ifdef ZFS_DEBUG 1405 ASSERT(HDR_HAS_L1HDR(hdr)); 1406 1407 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1408 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1409 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); 1410 hdr->b_l1hdr.b_freeze_cksum = NULL; 1411 } 1412 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1413 #endif 1414 } 1415 1416 /* 1417 * Return true iff at least one of the bufs on hdr is not compressed. 1418 * Encrypted buffers count as compressed. 1419 */ 1420 static boolean_t 1421 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr) 1422 { 1423 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr)); 1424 1425 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) { 1426 if (!ARC_BUF_COMPRESSED(b)) { 1427 return (B_TRUE); 1428 } 1429 } 1430 return (B_FALSE); 1431 } 1432 1433 1434 /* 1435 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data 1436 * matches the checksum that is stored in the hdr. If there is no checksum, 1437 * or if the buf is compressed, this is a no-op. 1438 */ 1439 static void 1440 arc_cksum_verify(arc_buf_t *buf) 1441 { 1442 #ifdef ZFS_DEBUG 1443 arc_buf_hdr_t *hdr = buf->b_hdr; 1444 zio_cksum_t zc; 1445 1446 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1447 return; 1448 1449 if (ARC_BUF_COMPRESSED(buf)) 1450 return; 1451 1452 ASSERT(HDR_HAS_L1HDR(hdr)); 1453 1454 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1455 1456 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { 1457 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1458 return; 1459 } 1460 1461 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc); 1462 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) 1463 panic("buffer modified while frozen!"); 1464 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1465 #endif 1466 } 1467 1468 /* 1469 * This function makes the assumption that data stored in the L2ARC 1470 * will be transformed exactly as it is in the main pool. Because of 1471 * this we can verify the checksum against the reading process's bp. 1472 */ 1473 static boolean_t 1474 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) 1475 { 1476 ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); 1477 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); 1478 1479 /* 1480 * Block pointers always store the checksum for the logical data. 1481 * If the block pointer has the gang bit set, then the checksum 1482 * it represents is for the reconstituted data and not for an 1483 * individual gang member. The zio pipeline, however, must be able to 1484 * determine the checksum of each of the gang constituents so it 1485 * treats the checksum comparison differently than what we need 1486 * for l2arc blocks. This prevents us from using the 1487 * zio_checksum_error() interface directly. Instead we must call the 1488 * zio_checksum_error_impl() so that we can ensure the checksum is 1489 * generated using the correct checksum algorithm and accounts for the 1490 * logical I/O size and not just a gang fragment. 1491 */ 1492 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp, 1493 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size, 1494 zio->io_offset, NULL) == 0); 1495 } 1496 1497 /* 1498 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a 1499 * checksum and attaches it to the buf's hdr so that we can ensure that the buf 1500 * isn't modified later on. If buf is compressed or there is already a checksum 1501 * on the hdr, this is a no-op (we only checksum uncompressed bufs). 1502 */ 1503 static void 1504 arc_cksum_compute(arc_buf_t *buf) 1505 { 1506 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1507 return; 1508 1509 #ifdef ZFS_DEBUG 1510 arc_buf_hdr_t *hdr = buf->b_hdr; 1511 ASSERT(HDR_HAS_L1HDR(hdr)); 1512 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1513 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) { 1514 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1515 return; 1516 } 1517 1518 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 1519 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1520 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), 1521 KM_SLEEP); 1522 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, 1523 hdr->b_l1hdr.b_freeze_cksum); 1524 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1525 #endif 1526 arc_buf_watch(buf); 1527 } 1528 1529 #ifndef _KERNEL 1530 void 1531 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused) 1532 { 1533 (void) sig, (void) unused; 1534 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr); 1535 } 1536 #endif 1537 1538 static void 1539 arc_buf_unwatch(arc_buf_t *buf) 1540 { 1541 #ifndef _KERNEL 1542 if (arc_watch) { 1543 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1544 PROT_READ | PROT_WRITE)); 1545 } 1546 #else 1547 (void) buf; 1548 #endif 1549 } 1550 1551 static void 1552 arc_buf_watch(arc_buf_t *buf) 1553 { 1554 #ifndef _KERNEL 1555 if (arc_watch) 1556 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1557 PROT_READ)); 1558 #else 1559 (void) buf; 1560 #endif 1561 } 1562 1563 static arc_buf_contents_t 1564 arc_buf_type(arc_buf_hdr_t *hdr) 1565 { 1566 arc_buf_contents_t type; 1567 if (HDR_ISTYPE_METADATA(hdr)) { 1568 type = ARC_BUFC_METADATA; 1569 } else { 1570 type = ARC_BUFC_DATA; 1571 } 1572 VERIFY3U(hdr->b_type, ==, type); 1573 return (type); 1574 } 1575 1576 boolean_t 1577 arc_is_metadata(arc_buf_t *buf) 1578 { 1579 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0); 1580 } 1581 1582 static uint32_t 1583 arc_bufc_to_flags(arc_buf_contents_t type) 1584 { 1585 switch (type) { 1586 case ARC_BUFC_DATA: 1587 /* metadata field is 0 if buffer contains normal data */ 1588 return (0); 1589 case ARC_BUFC_METADATA: 1590 return (ARC_FLAG_BUFC_METADATA); 1591 default: 1592 break; 1593 } 1594 panic("undefined ARC buffer type!"); 1595 return ((uint32_t)-1); 1596 } 1597 1598 void 1599 arc_buf_thaw(arc_buf_t *buf) 1600 { 1601 arc_buf_hdr_t *hdr = buf->b_hdr; 1602 1603 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 1604 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1605 1606 arc_cksum_verify(buf); 1607 1608 /* 1609 * Compressed buffers do not manipulate the b_freeze_cksum. 1610 */ 1611 if (ARC_BUF_COMPRESSED(buf)) 1612 return; 1613 1614 ASSERT(HDR_HAS_L1HDR(hdr)); 1615 arc_cksum_free(hdr); 1616 arc_buf_unwatch(buf); 1617 } 1618 1619 void 1620 arc_buf_freeze(arc_buf_t *buf) 1621 { 1622 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1623 return; 1624 1625 if (ARC_BUF_COMPRESSED(buf)) 1626 return; 1627 1628 ASSERT(HDR_HAS_L1HDR(buf->b_hdr)); 1629 arc_cksum_compute(buf); 1630 } 1631 1632 /* 1633 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, 1634 * the following functions should be used to ensure that the flags are 1635 * updated in a thread-safe way. When manipulating the flags either 1636 * the hash_lock must be held or the hdr must be undiscoverable. This 1637 * ensures that we're not racing with any other threads when updating 1638 * the flags. 1639 */ 1640 static inline void 1641 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1642 { 1643 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1644 hdr->b_flags |= flags; 1645 } 1646 1647 static inline void 1648 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1649 { 1650 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1651 hdr->b_flags &= ~flags; 1652 } 1653 1654 /* 1655 * Setting the compression bits in the arc_buf_hdr_t's b_flags is 1656 * done in a special way since we have to clear and set bits 1657 * at the same time. Consumers that wish to set the compression bits 1658 * must use this function to ensure that the flags are updated in 1659 * thread-safe manner. 1660 */ 1661 static void 1662 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) 1663 { 1664 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1665 1666 /* 1667 * Holes and embedded blocks will always have a psize = 0 so 1668 * we ignore the compression of the blkptr and set the 1669 * want to uncompress them. Mark them as uncompressed. 1670 */ 1671 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { 1672 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1673 ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); 1674 } else { 1675 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1676 ASSERT(HDR_COMPRESSION_ENABLED(hdr)); 1677 } 1678 1679 HDR_SET_COMPRESS(hdr, cmp); 1680 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); 1681 } 1682 1683 /* 1684 * Looks for another buf on the same hdr which has the data decompressed, copies 1685 * from it, and returns true. If no such buf exists, returns false. 1686 */ 1687 static boolean_t 1688 arc_buf_try_copy_decompressed_data(arc_buf_t *buf) 1689 { 1690 arc_buf_hdr_t *hdr = buf->b_hdr; 1691 boolean_t copied = B_FALSE; 1692 1693 ASSERT(HDR_HAS_L1HDR(hdr)); 1694 ASSERT3P(buf->b_data, !=, NULL); 1695 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1696 1697 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL; 1698 from = from->b_next) { 1699 /* can't use our own data buffer */ 1700 if (from == buf) { 1701 continue; 1702 } 1703 1704 if (!ARC_BUF_COMPRESSED(from)) { 1705 memcpy(buf->b_data, from->b_data, arc_buf_size(buf)); 1706 copied = B_TRUE; 1707 break; 1708 } 1709 } 1710 1711 #ifdef ZFS_DEBUG 1712 /* 1713 * There were no decompressed bufs, so there should not be a 1714 * checksum on the hdr either. 1715 */ 1716 if (zfs_flags & ZFS_DEBUG_MODIFY) 1717 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL); 1718 #endif 1719 1720 return (copied); 1721 } 1722 1723 /* 1724 * Allocates an ARC buf header that's in an evicted & L2-cached state. 1725 * This is used during l2arc reconstruction to make empty ARC buffers 1726 * which circumvent the regular disk->arc->l2arc path and instead come 1727 * into being in the reverse order, i.e. l2arc->arc. 1728 */ 1729 static arc_buf_hdr_t * 1730 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev, 1731 dva_t dva, uint64_t daddr, int32_t psize, uint64_t asize, uint64_t birth, 1732 enum zio_compress compress, uint8_t complevel, boolean_t protected, 1733 boolean_t prefetch, arc_state_type_t arcs_state) 1734 { 1735 arc_buf_hdr_t *hdr; 1736 1737 ASSERT(size != 0); 1738 ASSERT(dev->l2ad_vdev != NULL); 1739 1740 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP); 1741 hdr->b_birth = birth; 1742 hdr->b_type = type; 1743 hdr->b_flags = 0; 1744 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR); 1745 HDR_SET_LSIZE(hdr, size); 1746 HDR_SET_PSIZE(hdr, psize); 1747 HDR_SET_L2SIZE(hdr, asize); 1748 arc_hdr_set_compress(hdr, compress); 1749 hdr->b_complevel = complevel; 1750 if (protected) 1751 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 1752 if (prefetch) 1753 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 1754 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa); 1755 1756 hdr->b_dva = dva; 1757 1758 hdr->b_l2hdr.b_dev = dev; 1759 hdr->b_l2hdr.b_daddr = daddr; 1760 hdr->b_l2hdr.b_arcs_state = arcs_state; 1761 1762 return (hdr); 1763 } 1764 1765 /* 1766 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t. 1767 */ 1768 static uint64_t 1769 arc_hdr_size(arc_buf_hdr_t *hdr) 1770 { 1771 uint64_t size; 1772 1773 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 1774 HDR_GET_PSIZE(hdr) > 0) { 1775 size = HDR_GET_PSIZE(hdr); 1776 } else { 1777 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); 1778 size = HDR_GET_LSIZE(hdr); 1779 } 1780 return (size); 1781 } 1782 1783 static int 1784 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj) 1785 { 1786 int ret; 1787 uint64_t csize; 1788 uint64_t lsize = HDR_GET_LSIZE(hdr); 1789 uint64_t psize = HDR_GET_PSIZE(hdr); 1790 abd_t *abd = hdr->b_l1hdr.b_pabd; 1791 boolean_t free_abd = B_FALSE; 1792 1793 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1794 ASSERT(HDR_AUTHENTICATED(hdr)); 1795 ASSERT3P(abd, !=, NULL); 1796 1797 /* 1798 * The MAC is calculated on the compressed data that is stored on disk. 1799 * However, if compressed arc is disabled we will only have the 1800 * decompressed data available to us now. Compress it into a temporary 1801 * abd so we can verify the MAC. The performance overhead of this will 1802 * be relatively low, since most objects in an encrypted objset will 1803 * be encrypted (instead of authenticated) anyway. 1804 */ 1805 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1806 !HDR_COMPRESSION_ENABLED(hdr)) { 1807 abd = NULL; 1808 csize = zio_compress_data(HDR_GET_COMPRESS(hdr), 1809 hdr->b_l1hdr.b_pabd, &abd, lsize, MIN(lsize, psize), 1810 hdr->b_complevel); 1811 if (csize >= lsize || csize > psize) { 1812 ret = SET_ERROR(EIO); 1813 return (ret); 1814 } 1815 ASSERT3P(abd, !=, NULL); 1816 abd_zero_off(abd, csize, psize - csize); 1817 free_abd = B_TRUE; 1818 } 1819 1820 /* 1821 * Authentication is best effort. We authenticate whenever the key is 1822 * available. If we succeed we clear ARC_FLAG_NOAUTH. 1823 */ 1824 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) { 1825 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1826 ASSERT3U(lsize, ==, psize); 1827 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd, 1828 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1829 } else { 1830 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize, 1831 hdr->b_crypt_hdr.b_mac); 1832 } 1833 1834 if (ret == 0) 1835 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH); 1836 else if (ret == ENOENT) 1837 ret = 0; 1838 1839 if (free_abd) 1840 abd_free(abd); 1841 1842 return (ret); 1843 } 1844 1845 /* 1846 * This function will take a header that only has raw encrypted data in 1847 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in 1848 * b_l1hdr.b_pabd. If designated in the header flags, this function will 1849 * also decompress the data. 1850 */ 1851 static int 1852 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb) 1853 { 1854 int ret; 1855 abd_t *cabd = NULL; 1856 boolean_t no_crypt = B_FALSE; 1857 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1858 1859 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1860 ASSERT(HDR_ENCRYPTED(hdr)); 1861 1862 arc_hdr_alloc_abd(hdr, 0); 1863 1864 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot, 1865 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv, 1866 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd, 1867 hdr->b_crypt_hdr.b_rabd, &no_crypt); 1868 if (ret != 0) 1869 goto error; 1870 1871 if (no_crypt) { 1872 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd, 1873 HDR_GET_PSIZE(hdr)); 1874 } 1875 1876 /* 1877 * If this header has disabled arc compression but the b_pabd is 1878 * compressed after decrypting it, we need to decompress the newly 1879 * decrypted data. 1880 */ 1881 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1882 !HDR_COMPRESSION_ENABLED(hdr)) { 1883 /* 1884 * We want to make sure that we are correctly honoring the 1885 * zfs_abd_scatter_enabled setting, so we allocate an abd here 1886 * and then loan a buffer from it, rather than allocating a 1887 * linear buffer and wrapping it in an abd later. 1888 */ 1889 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 0); 1890 1891 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 1892 hdr->b_l1hdr.b_pabd, cabd, HDR_GET_PSIZE(hdr), 1893 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 1894 if (ret != 0) { 1895 goto error; 1896 } 1897 1898 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 1899 arc_hdr_size(hdr), hdr); 1900 hdr->b_l1hdr.b_pabd = cabd; 1901 } 1902 1903 return (0); 1904 1905 error: 1906 arc_hdr_free_abd(hdr, B_FALSE); 1907 if (cabd != NULL) 1908 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr); 1909 1910 return (ret); 1911 } 1912 1913 /* 1914 * This function is called during arc_buf_fill() to prepare the header's 1915 * abd plaintext pointer for use. This involves authenticated protected 1916 * data and decrypting encrypted data into the plaintext abd. 1917 */ 1918 static int 1919 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa, 1920 const zbookmark_phys_t *zb, boolean_t noauth) 1921 { 1922 int ret; 1923 1924 ASSERT(HDR_PROTECTED(hdr)); 1925 1926 if (hash_lock != NULL) 1927 mutex_enter(hash_lock); 1928 1929 if (HDR_NOAUTH(hdr) && !noauth) { 1930 /* 1931 * The caller requested authenticated data but our data has 1932 * not been authenticated yet. Verify the MAC now if we can. 1933 */ 1934 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset); 1935 if (ret != 0) 1936 goto error; 1937 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) { 1938 /* 1939 * If we only have the encrypted version of the data, but the 1940 * unencrypted version was requested we take this opportunity 1941 * to store the decrypted version in the header for future use. 1942 */ 1943 ret = arc_hdr_decrypt(hdr, spa, zb); 1944 if (ret != 0) 1945 goto error; 1946 } 1947 1948 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1949 1950 if (hash_lock != NULL) 1951 mutex_exit(hash_lock); 1952 1953 return (0); 1954 1955 error: 1956 if (hash_lock != NULL) 1957 mutex_exit(hash_lock); 1958 1959 return (ret); 1960 } 1961 1962 /* 1963 * This function is used by the dbuf code to decrypt bonus buffers in place. 1964 * The dbuf code itself doesn't have any locking for decrypting a shared dnode 1965 * block, so we use the hash lock here to protect against concurrent calls to 1966 * arc_buf_fill(). 1967 */ 1968 static void 1969 arc_buf_untransform_in_place(arc_buf_t *buf) 1970 { 1971 arc_buf_hdr_t *hdr = buf->b_hdr; 1972 1973 ASSERT(HDR_ENCRYPTED(hdr)); 1974 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 1975 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1976 ASSERT3PF(hdr->b_l1hdr.b_pabd, !=, NULL, "hdr %px buf %px", hdr, buf); 1977 1978 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data, 1979 arc_buf_size(buf)); 1980 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 1981 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 1982 } 1983 1984 /* 1985 * Given a buf that has a data buffer attached to it, this function will 1986 * efficiently fill the buf with data of the specified compression setting from 1987 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr 1988 * are already sharing a data buf, no copy is performed. 1989 * 1990 * If the buf is marked as compressed but uncompressed data was requested, this 1991 * will allocate a new data buffer for the buf, remove that flag, and fill the 1992 * buf with uncompressed data. You can't request a compressed buf on a hdr with 1993 * uncompressed data, and (since we haven't added support for it yet) if you 1994 * want compressed data your buf must already be marked as compressed and have 1995 * the correct-sized data buffer. 1996 */ 1997 static int 1998 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 1999 arc_fill_flags_t flags) 2000 { 2001 int error = 0; 2002 arc_buf_hdr_t *hdr = buf->b_hdr; 2003 boolean_t hdr_compressed = 2004 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 2005 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0; 2006 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0; 2007 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; 2008 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr); 2009 2010 ASSERT3P(buf->b_data, !=, NULL); 2011 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf)); 2012 IMPLY(compressed, ARC_BUF_COMPRESSED(buf)); 2013 IMPLY(encrypted, HDR_ENCRYPTED(hdr)); 2014 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf)); 2015 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf)); 2016 IMPLY(encrypted, !arc_buf_is_shared(buf)); 2017 2018 /* 2019 * If the caller wanted encrypted data we just need to copy it from 2020 * b_rabd and potentially byteswap it. We won't be able to do any 2021 * further transforms on it. 2022 */ 2023 if (encrypted) { 2024 ASSERT(HDR_HAS_RABD(hdr)); 2025 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd, 2026 HDR_GET_PSIZE(hdr)); 2027 goto byteswap; 2028 } 2029 2030 /* 2031 * Adjust encrypted and authenticated headers to accommodate 2032 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are 2033 * allowed to fail decryption due to keys not being loaded 2034 * without being marked as an IO error. 2035 */ 2036 if (HDR_PROTECTED(hdr)) { 2037 error = arc_fill_hdr_crypt(hdr, hash_lock, spa, 2038 zb, !!(flags & ARC_FILL_NOAUTH)); 2039 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) { 2040 return (error); 2041 } else if (error != 0) { 2042 if (hash_lock != NULL) 2043 mutex_enter(hash_lock); 2044 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2045 if (hash_lock != NULL) 2046 mutex_exit(hash_lock); 2047 return (error); 2048 } 2049 } 2050 2051 /* 2052 * There is a special case here for dnode blocks which are 2053 * decrypting their bonus buffers. These blocks may request to 2054 * be decrypted in-place. This is necessary because there may 2055 * be many dnodes pointing into this buffer and there is 2056 * currently no method to synchronize replacing the backing 2057 * b_data buffer and updating all of the pointers. Here we use 2058 * the hash lock to ensure there are no races. If the need 2059 * arises for other types to be decrypted in-place, they must 2060 * add handling here as well. 2061 */ 2062 if ((flags & ARC_FILL_IN_PLACE) != 0) { 2063 ASSERT(!hdr_compressed); 2064 ASSERT(!compressed); 2065 ASSERT(!encrypted); 2066 2067 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) { 2068 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 2069 2070 if (hash_lock != NULL) 2071 mutex_enter(hash_lock); 2072 arc_buf_untransform_in_place(buf); 2073 if (hash_lock != NULL) 2074 mutex_exit(hash_lock); 2075 2076 /* Compute the hdr's checksum if necessary */ 2077 arc_cksum_compute(buf); 2078 } 2079 2080 return (0); 2081 } 2082 2083 if (hdr_compressed == compressed) { 2084 if (ARC_BUF_SHARED(buf)) { 2085 ASSERT(arc_buf_is_shared(buf)); 2086 } else { 2087 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd, 2088 arc_buf_size(buf)); 2089 } 2090 } else { 2091 ASSERT(hdr_compressed); 2092 ASSERT(!compressed); 2093 2094 /* 2095 * If the buf is sharing its data with the hdr, unlink it and 2096 * allocate a new data buffer for the buf. 2097 */ 2098 if (ARC_BUF_SHARED(buf)) { 2099 ASSERTF(ARC_BUF_COMPRESSED(buf), 2100 "buf %p was uncompressed", buf); 2101 2102 /* We need to give the buf its own b_data */ 2103 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 2104 buf->b_data = 2105 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2106 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2107 2108 /* Previously overhead was 0; just add new overhead */ 2109 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 2110 } else if (ARC_BUF_COMPRESSED(buf)) { 2111 ASSERT(!arc_buf_is_shared(buf)); 2112 2113 /* We need to reallocate the buf's b_data */ 2114 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr), 2115 buf); 2116 buf->b_data = 2117 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2118 2119 /* We increased the size of b_data; update overhead */ 2120 ARCSTAT_INCR(arcstat_overhead_size, 2121 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr)); 2122 } 2123 2124 /* 2125 * Regardless of the buf's previous compression settings, it 2126 * should not be compressed at the end of this function. 2127 */ 2128 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 2129 2130 /* 2131 * Try copying the data from another buf which already has a 2132 * decompressed version. If that's not possible, it's time to 2133 * bite the bullet and decompress the data from the hdr. 2134 */ 2135 if (arc_buf_try_copy_decompressed_data(buf)) { 2136 /* Skip byteswapping and checksumming (already done) */ 2137 return (0); 2138 } else { 2139 abd_t dabd; 2140 abd_get_from_buf_struct(&dabd, buf->b_data, 2141 HDR_GET_LSIZE(hdr)); 2142 error = zio_decompress_data(HDR_GET_COMPRESS(hdr), 2143 hdr->b_l1hdr.b_pabd, &dabd, 2144 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr), 2145 &hdr->b_complevel); 2146 abd_free(&dabd); 2147 2148 /* 2149 * Absent hardware errors or software bugs, this should 2150 * be impossible, but log it anyway so we can debug it. 2151 */ 2152 if (error != 0) { 2153 zfs_dbgmsg( 2154 "hdr %px, compress %d, psize %d, lsize %d", 2155 hdr, arc_hdr_get_compress(hdr), 2156 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 2157 if (hash_lock != NULL) 2158 mutex_enter(hash_lock); 2159 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2160 if (hash_lock != NULL) 2161 mutex_exit(hash_lock); 2162 return (SET_ERROR(EIO)); 2163 } 2164 } 2165 } 2166 2167 byteswap: 2168 /* Byteswap the buf's data if necessary */ 2169 if (bswap != DMU_BSWAP_NUMFUNCS) { 2170 ASSERT(!HDR_SHARED_DATA(hdr)); 2171 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); 2172 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); 2173 } 2174 2175 /* Compute the hdr's checksum if necessary */ 2176 arc_cksum_compute(buf); 2177 2178 return (0); 2179 } 2180 2181 /* 2182 * If this function is being called to decrypt an encrypted buffer or verify an 2183 * authenticated one, the key must be loaded and a mapping must be made 2184 * available in the keystore via spa_keystore_create_mapping() or one of its 2185 * callers. 2186 */ 2187 int 2188 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 2189 boolean_t in_place) 2190 { 2191 int ret; 2192 arc_fill_flags_t flags = 0; 2193 2194 if (in_place) 2195 flags |= ARC_FILL_IN_PLACE; 2196 2197 ret = arc_buf_fill(buf, spa, zb, flags); 2198 if (ret == ECKSUM) { 2199 /* 2200 * Convert authentication and decryption errors to EIO 2201 * (and generate an ereport) before leaving the ARC. 2202 */ 2203 ret = SET_ERROR(EIO); 2204 spa_log_error(spa, zb, buf->b_hdr->b_birth); 2205 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 2206 spa, NULL, zb, NULL, 0); 2207 } 2208 2209 return (ret); 2210 } 2211 2212 /* 2213 * Increment the amount of evictable space in the arc_state_t's refcount. 2214 * We account for the space used by the hdr and the arc buf individually 2215 * so that we can add and remove them from the refcount individually. 2216 */ 2217 static void 2218 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) 2219 { 2220 arc_buf_contents_t type = arc_buf_type(hdr); 2221 2222 ASSERT(HDR_HAS_L1HDR(hdr)); 2223 2224 if (GHOST_STATE(state)) { 2225 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2226 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2227 ASSERT(!HDR_HAS_RABD(hdr)); 2228 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2229 HDR_GET_LSIZE(hdr), hdr); 2230 return; 2231 } 2232 2233 if (hdr->b_l1hdr.b_pabd != NULL) { 2234 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2235 arc_hdr_size(hdr), hdr); 2236 } 2237 if (HDR_HAS_RABD(hdr)) { 2238 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2239 HDR_GET_PSIZE(hdr), hdr); 2240 } 2241 2242 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2243 buf = buf->b_next) { 2244 if (ARC_BUF_SHARED(buf)) 2245 continue; 2246 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2247 arc_buf_size(buf), buf); 2248 } 2249 } 2250 2251 /* 2252 * Decrement the amount of evictable space in the arc_state_t's refcount. 2253 * We account for the space used by the hdr and the arc buf individually 2254 * so that we can add and remove them from the refcount individually. 2255 */ 2256 static void 2257 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) 2258 { 2259 arc_buf_contents_t type = arc_buf_type(hdr); 2260 2261 ASSERT(HDR_HAS_L1HDR(hdr)); 2262 2263 if (GHOST_STATE(state)) { 2264 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2265 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2266 ASSERT(!HDR_HAS_RABD(hdr)); 2267 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2268 HDR_GET_LSIZE(hdr), hdr); 2269 return; 2270 } 2271 2272 if (hdr->b_l1hdr.b_pabd != NULL) { 2273 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2274 arc_hdr_size(hdr), hdr); 2275 } 2276 if (HDR_HAS_RABD(hdr)) { 2277 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2278 HDR_GET_PSIZE(hdr), hdr); 2279 } 2280 2281 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2282 buf = buf->b_next) { 2283 if (ARC_BUF_SHARED(buf)) 2284 continue; 2285 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2286 arc_buf_size(buf), buf); 2287 } 2288 } 2289 2290 /* 2291 * Add a reference to this hdr indicating that someone is actively 2292 * referencing that memory. When the refcount transitions from 0 to 1, 2293 * we remove it from the respective arc_state_t list to indicate that 2294 * it is not evictable. 2295 */ 2296 static void 2297 add_reference(arc_buf_hdr_t *hdr, const void *tag) 2298 { 2299 arc_state_t *state = hdr->b_l1hdr.b_state; 2300 2301 ASSERT(HDR_HAS_L1HDR(hdr)); 2302 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) { 2303 ASSERT(state == arc_anon); 2304 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2305 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2306 } 2307 2308 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 2309 state != arc_anon && state != arc_l2c_only) { 2310 /* We don't use the L2-only state list. */ 2311 multilist_remove(&state->arcs_list[arc_buf_type(hdr)], hdr); 2312 arc_evictable_space_decrement(hdr, state); 2313 } 2314 } 2315 2316 /* 2317 * Remove a reference from this hdr. When the reference transitions from 2318 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's 2319 * list making it eligible for eviction. 2320 */ 2321 static int 2322 remove_reference(arc_buf_hdr_t *hdr, const void *tag) 2323 { 2324 int cnt; 2325 arc_state_t *state = hdr->b_l1hdr.b_state; 2326 2327 ASSERT(HDR_HAS_L1HDR(hdr)); 2328 ASSERT(state == arc_anon || MUTEX_HELD(HDR_LOCK(hdr))); 2329 ASSERT(!GHOST_STATE(state)); /* arc_l2c_only counts as a ghost. */ 2330 2331 if ((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) != 0) 2332 return (cnt); 2333 2334 if (state == arc_anon) { 2335 arc_hdr_destroy(hdr); 2336 return (0); 2337 } 2338 if (state == arc_uncached && !HDR_PREFETCH(hdr)) { 2339 arc_change_state(arc_anon, hdr); 2340 arc_hdr_destroy(hdr); 2341 return (0); 2342 } 2343 multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr); 2344 arc_evictable_space_increment(hdr, state); 2345 return (0); 2346 } 2347 2348 /* 2349 * Returns detailed information about a specific arc buffer. When the 2350 * state_index argument is set the function will calculate the arc header 2351 * list position for its arc state. Since this requires a linear traversal 2352 * callers are strongly encourage not to do this. However, it can be helpful 2353 * for targeted analysis so the functionality is provided. 2354 */ 2355 void 2356 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index) 2357 { 2358 (void) state_index; 2359 arc_buf_hdr_t *hdr = ab->b_hdr; 2360 l1arc_buf_hdr_t *l1hdr = NULL; 2361 l2arc_buf_hdr_t *l2hdr = NULL; 2362 arc_state_t *state = NULL; 2363 2364 memset(abi, 0, sizeof (arc_buf_info_t)); 2365 2366 if (hdr == NULL) 2367 return; 2368 2369 abi->abi_flags = hdr->b_flags; 2370 2371 if (HDR_HAS_L1HDR(hdr)) { 2372 l1hdr = &hdr->b_l1hdr; 2373 state = l1hdr->b_state; 2374 } 2375 if (HDR_HAS_L2HDR(hdr)) 2376 l2hdr = &hdr->b_l2hdr; 2377 2378 if (l1hdr) { 2379 abi->abi_bufcnt = 0; 2380 for (arc_buf_t *buf = l1hdr->b_buf; buf; buf = buf->b_next) 2381 abi->abi_bufcnt++; 2382 abi->abi_access = l1hdr->b_arc_access; 2383 abi->abi_mru_hits = l1hdr->b_mru_hits; 2384 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits; 2385 abi->abi_mfu_hits = l1hdr->b_mfu_hits; 2386 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits; 2387 abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt); 2388 } 2389 2390 if (l2hdr) { 2391 abi->abi_l2arc_dattr = l2hdr->b_daddr; 2392 abi->abi_l2arc_hits = l2hdr->b_hits; 2393 } 2394 2395 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON; 2396 abi->abi_state_contents = arc_buf_type(hdr); 2397 abi->abi_size = arc_hdr_size(hdr); 2398 } 2399 2400 /* 2401 * Move the supplied buffer to the indicated state. The hash lock 2402 * for the buffer must be held by the caller. 2403 */ 2404 static void 2405 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr) 2406 { 2407 arc_state_t *old_state; 2408 int64_t refcnt; 2409 boolean_t update_old, update_new; 2410 arc_buf_contents_t type = arc_buf_type(hdr); 2411 2412 /* 2413 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 2414 * in arc_read() when bringing a buffer out of the L2ARC. However, the 2415 * L1 hdr doesn't always exist when we change state to arc_anon before 2416 * destroying a header, in which case reallocating to add the L1 hdr is 2417 * pointless. 2418 */ 2419 if (HDR_HAS_L1HDR(hdr)) { 2420 old_state = hdr->b_l1hdr.b_state; 2421 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt); 2422 update_old = (hdr->b_l1hdr.b_buf != NULL || 2423 hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 2424 2425 IMPLY(GHOST_STATE(old_state), hdr->b_l1hdr.b_buf == NULL); 2426 IMPLY(GHOST_STATE(new_state), hdr->b_l1hdr.b_buf == NULL); 2427 IMPLY(old_state == arc_anon, hdr->b_l1hdr.b_buf == NULL || 2428 ARC_BUF_LAST(hdr->b_l1hdr.b_buf)); 2429 } else { 2430 old_state = arc_l2c_only; 2431 refcnt = 0; 2432 update_old = B_FALSE; 2433 } 2434 update_new = update_old; 2435 if (GHOST_STATE(old_state)) 2436 update_old = B_TRUE; 2437 if (GHOST_STATE(new_state)) 2438 update_new = B_TRUE; 2439 2440 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 2441 ASSERT3P(new_state, !=, old_state); 2442 2443 /* 2444 * If this buffer is evictable, transfer it from the 2445 * old state list to the new state list. 2446 */ 2447 if (refcnt == 0) { 2448 if (old_state != arc_anon && old_state != arc_l2c_only) { 2449 ASSERT(HDR_HAS_L1HDR(hdr)); 2450 /* remove_reference() saves on insert. */ 2451 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2452 multilist_remove(&old_state->arcs_list[type], 2453 hdr); 2454 arc_evictable_space_decrement(hdr, old_state); 2455 } 2456 } 2457 if (new_state != arc_anon && new_state != arc_l2c_only) { 2458 /* 2459 * An L1 header always exists here, since if we're 2460 * moving to some L1-cached state (i.e. not l2c_only or 2461 * anonymous), we realloc the header to add an L1hdr 2462 * beforehand. 2463 */ 2464 ASSERT(HDR_HAS_L1HDR(hdr)); 2465 multilist_insert(&new_state->arcs_list[type], hdr); 2466 arc_evictable_space_increment(hdr, new_state); 2467 } 2468 } 2469 2470 ASSERT(!HDR_EMPTY(hdr)); 2471 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 2472 buf_hash_remove(hdr); 2473 2474 /* adjust state sizes (ignore arc_l2c_only) */ 2475 2476 if (update_new && new_state != arc_l2c_only) { 2477 ASSERT(HDR_HAS_L1HDR(hdr)); 2478 if (GHOST_STATE(new_state)) { 2479 2480 /* 2481 * When moving a header to a ghost state, we first 2482 * remove all arc buffers. Thus, we'll have no arc 2483 * buffer to use for the reference. As a result, we 2484 * use the arc header pointer for the reference. 2485 */ 2486 (void) zfs_refcount_add_many( 2487 &new_state->arcs_size[type], 2488 HDR_GET_LSIZE(hdr), hdr); 2489 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2490 ASSERT(!HDR_HAS_RABD(hdr)); 2491 } else { 2492 2493 /* 2494 * Each individual buffer holds a unique reference, 2495 * thus we must remove each of these references one 2496 * at a time. 2497 */ 2498 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2499 buf = buf->b_next) { 2500 2501 /* 2502 * When the arc_buf_t is sharing the data 2503 * block with the hdr, the owner of the 2504 * reference belongs to the hdr. Only 2505 * add to the refcount if the arc_buf_t is 2506 * not shared. 2507 */ 2508 if (ARC_BUF_SHARED(buf)) 2509 continue; 2510 2511 (void) zfs_refcount_add_many( 2512 &new_state->arcs_size[type], 2513 arc_buf_size(buf), buf); 2514 } 2515 2516 if (hdr->b_l1hdr.b_pabd != NULL) { 2517 (void) zfs_refcount_add_many( 2518 &new_state->arcs_size[type], 2519 arc_hdr_size(hdr), hdr); 2520 } 2521 2522 if (HDR_HAS_RABD(hdr)) { 2523 (void) zfs_refcount_add_many( 2524 &new_state->arcs_size[type], 2525 HDR_GET_PSIZE(hdr), hdr); 2526 } 2527 } 2528 } 2529 2530 if (update_old && old_state != arc_l2c_only) { 2531 ASSERT(HDR_HAS_L1HDR(hdr)); 2532 if (GHOST_STATE(old_state)) { 2533 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2534 ASSERT(!HDR_HAS_RABD(hdr)); 2535 2536 /* 2537 * When moving a header off of a ghost state, 2538 * the header will not contain any arc buffers. 2539 * We use the arc header pointer for the reference 2540 * which is exactly what we did when we put the 2541 * header on the ghost state. 2542 */ 2543 2544 (void) zfs_refcount_remove_many( 2545 &old_state->arcs_size[type], 2546 HDR_GET_LSIZE(hdr), hdr); 2547 } else { 2548 2549 /* 2550 * Each individual buffer holds a unique reference, 2551 * thus we must remove each of these references one 2552 * at a time. 2553 */ 2554 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2555 buf = buf->b_next) { 2556 2557 /* 2558 * When the arc_buf_t is sharing the data 2559 * block with the hdr, the owner of the 2560 * reference belongs to the hdr. Only 2561 * add to the refcount if the arc_buf_t is 2562 * not shared. 2563 */ 2564 if (ARC_BUF_SHARED(buf)) 2565 continue; 2566 2567 (void) zfs_refcount_remove_many( 2568 &old_state->arcs_size[type], 2569 arc_buf_size(buf), buf); 2570 } 2571 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 2572 HDR_HAS_RABD(hdr)); 2573 2574 if (hdr->b_l1hdr.b_pabd != NULL) { 2575 (void) zfs_refcount_remove_many( 2576 &old_state->arcs_size[type], 2577 arc_hdr_size(hdr), hdr); 2578 } 2579 2580 if (HDR_HAS_RABD(hdr)) { 2581 (void) zfs_refcount_remove_many( 2582 &old_state->arcs_size[type], 2583 HDR_GET_PSIZE(hdr), hdr); 2584 } 2585 } 2586 } 2587 2588 if (HDR_HAS_L1HDR(hdr)) { 2589 hdr->b_l1hdr.b_state = new_state; 2590 2591 if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) { 2592 l2arc_hdr_arcstats_decrement_state(hdr); 2593 hdr->b_l2hdr.b_arcs_state = new_state->arcs_state; 2594 l2arc_hdr_arcstats_increment_state(hdr); 2595 } 2596 } 2597 } 2598 2599 void 2600 arc_space_consume(uint64_t space, arc_space_type_t type) 2601 { 2602 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2603 2604 switch (type) { 2605 default: 2606 break; 2607 case ARC_SPACE_DATA: 2608 ARCSTAT_INCR(arcstat_data_size, space); 2609 break; 2610 case ARC_SPACE_META: 2611 ARCSTAT_INCR(arcstat_metadata_size, space); 2612 break; 2613 case ARC_SPACE_BONUS: 2614 ARCSTAT_INCR(arcstat_bonus_size, space); 2615 break; 2616 case ARC_SPACE_DNODE: 2617 ARCSTAT_INCR(arcstat_dnode_size, space); 2618 break; 2619 case ARC_SPACE_DBUF: 2620 ARCSTAT_INCR(arcstat_dbuf_size, space); 2621 break; 2622 case ARC_SPACE_HDRS: 2623 ARCSTAT_INCR(arcstat_hdr_size, space); 2624 break; 2625 case ARC_SPACE_L2HDRS: 2626 aggsum_add(&arc_sums.arcstat_l2_hdr_size, space); 2627 break; 2628 case ARC_SPACE_ABD_CHUNK_WASTE: 2629 /* 2630 * Note: this includes space wasted by all scatter ABD's, not 2631 * just those allocated by the ARC. But the vast majority of 2632 * scatter ABD's come from the ARC, because other users are 2633 * very short-lived. 2634 */ 2635 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, space); 2636 break; 2637 } 2638 2639 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) 2640 ARCSTAT_INCR(arcstat_meta_used, space); 2641 2642 aggsum_add(&arc_sums.arcstat_size, space); 2643 } 2644 2645 void 2646 arc_space_return(uint64_t space, arc_space_type_t type) 2647 { 2648 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2649 2650 switch (type) { 2651 default: 2652 break; 2653 case ARC_SPACE_DATA: 2654 ARCSTAT_INCR(arcstat_data_size, -space); 2655 break; 2656 case ARC_SPACE_META: 2657 ARCSTAT_INCR(arcstat_metadata_size, -space); 2658 break; 2659 case ARC_SPACE_BONUS: 2660 ARCSTAT_INCR(arcstat_bonus_size, -space); 2661 break; 2662 case ARC_SPACE_DNODE: 2663 ARCSTAT_INCR(arcstat_dnode_size, -space); 2664 break; 2665 case ARC_SPACE_DBUF: 2666 ARCSTAT_INCR(arcstat_dbuf_size, -space); 2667 break; 2668 case ARC_SPACE_HDRS: 2669 ARCSTAT_INCR(arcstat_hdr_size, -space); 2670 break; 2671 case ARC_SPACE_L2HDRS: 2672 aggsum_add(&arc_sums.arcstat_l2_hdr_size, -space); 2673 break; 2674 case ARC_SPACE_ABD_CHUNK_WASTE: 2675 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, -space); 2676 break; 2677 } 2678 2679 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) 2680 ARCSTAT_INCR(arcstat_meta_used, -space); 2681 2682 ASSERT(aggsum_compare(&arc_sums.arcstat_size, space) >= 0); 2683 aggsum_add(&arc_sums.arcstat_size, -space); 2684 } 2685 2686 /* 2687 * Given a hdr and a buf, returns whether that buf can share its b_data buffer 2688 * with the hdr's b_pabd. 2689 */ 2690 static boolean_t 2691 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2692 { 2693 /* 2694 * The criteria for sharing a hdr's data are: 2695 * 1. the buffer is not encrypted 2696 * 2. the hdr's compression matches the buf's compression 2697 * 3. the hdr doesn't need to be byteswapped 2698 * 4. the hdr isn't already being shared 2699 * 5. the buf is either compressed or it is the last buf in the hdr list 2700 * 2701 * Criterion #5 maintains the invariant that shared uncompressed 2702 * bufs must be the final buf in the hdr's b_buf list. Reading this, you 2703 * might ask, "if a compressed buf is allocated first, won't that be the 2704 * last thing in the list?", but in that case it's impossible to create 2705 * a shared uncompressed buf anyway (because the hdr must be compressed 2706 * to have the compressed buf). You might also think that #3 is 2707 * sufficient to make this guarantee, however it's possible 2708 * (specifically in the rare L2ARC write race mentioned in 2709 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that 2710 * is shareable, but wasn't at the time of its allocation. Rather than 2711 * allow a new shared uncompressed buf to be created and then shuffle 2712 * the list around to make it the last element, this simply disallows 2713 * sharing if the new buf isn't the first to be added. 2714 */ 2715 ASSERT3P(buf->b_hdr, ==, hdr); 2716 boolean_t hdr_compressed = 2717 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF; 2718 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0; 2719 return (!ARC_BUF_ENCRYPTED(buf) && 2720 buf_compressed == hdr_compressed && 2721 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && 2722 !HDR_SHARED_DATA(hdr) && 2723 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf))); 2724 } 2725 2726 /* 2727 * Allocate a buf for this hdr. If you care about the data that's in the hdr, 2728 * or if you want a compressed buffer, pass those flags in. Returns 0 if the 2729 * copy was made successfully, or an error code otherwise. 2730 */ 2731 static int 2732 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb, 2733 const void *tag, boolean_t encrypted, boolean_t compressed, 2734 boolean_t noauth, boolean_t fill, arc_buf_t **ret) 2735 { 2736 arc_buf_t *buf; 2737 arc_fill_flags_t flags = ARC_FILL_LOCKED; 2738 2739 ASSERT(HDR_HAS_L1HDR(hdr)); 2740 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2741 VERIFY(hdr->b_type == ARC_BUFC_DATA || 2742 hdr->b_type == ARC_BUFC_METADATA); 2743 ASSERT3P(ret, !=, NULL); 2744 ASSERT3P(*ret, ==, NULL); 2745 IMPLY(encrypted, compressed); 2746 2747 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2748 buf->b_hdr = hdr; 2749 buf->b_data = NULL; 2750 buf->b_next = hdr->b_l1hdr.b_buf; 2751 buf->b_flags = 0; 2752 2753 add_reference(hdr, tag); 2754 2755 /* 2756 * We're about to change the hdr's b_flags. We must either 2757 * hold the hash_lock or be undiscoverable. 2758 */ 2759 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2760 2761 /* 2762 * Only honor requests for compressed bufs if the hdr is actually 2763 * compressed. This must be overridden if the buffer is encrypted since 2764 * encrypted buffers cannot be decompressed. 2765 */ 2766 if (encrypted) { 2767 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2768 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED; 2769 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED; 2770 } else if (compressed && 2771 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 2772 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2773 flags |= ARC_FILL_COMPRESSED; 2774 } 2775 2776 if (noauth) { 2777 ASSERT0(encrypted); 2778 flags |= ARC_FILL_NOAUTH; 2779 } 2780 2781 /* 2782 * If the hdr's data can be shared then we share the data buffer and 2783 * set the appropriate bit in the hdr's b_flags to indicate the hdr is 2784 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new 2785 * buffer to store the buf's data. 2786 * 2787 * There are two additional restrictions here because we're sharing 2788 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be 2789 * actively involved in an L2ARC write, because if this buf is used by 2790 * an arc_write() then the hdr's data buffer will be released when the 2791 * write completes, even though the L2ARC write might still be using it. 2792 * Second, the hdr's ABD must be linear so that the buf's user doesn't 2793 * need to be ABD-aware. It must be allocated via 2794 * zio_[data_]buf_alloc(), not as a page, because we need to be able 2795 * to abd_release_ownership_of_buf(), which isn't allowed on "linear 2796 * page" buffers because the ABD code needs to handle freeing them 2797 * specially. 2798 */ 2799 boolean_t can_share = arc_can_share(hdr, buf) && 2800 !HDR_L2_WRITING(hdr) && 2801 hdr->b_l1hdr.b_pabd != NULL && 2802 abd_is_linear(hdr->b_l1hdr.b_pabd) && 2803 !abd_is_linear_page(hdr->b_l1hdr.b_pabd); 2804 2805 /* Set up b_data and sharing */ 2806 if (can_share) { 2807 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd); 2808 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2809 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2810 } else { 2811 buf->b_data = 2812 arc_get_data_buf(hdr, arc_buf_size(buf), buf); 2813 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2814 } 2815 VERIFY3P(buf->b_data, !=, NULL); 2816 2817 hdr->b_l1hdr.b_buf = buf; 2818 2819 /* 2820 * If the user wants the data from the hdr, we need to either copy or 2821 * decompress the data. 2822 */ 2823 if (fill) { 2824 ASSERT3P(zb, !=, NULL); 2825 return (arc_buf_fill(buf, spa, zb, flags)); 2826 } 2827 2828 return (0); 2829 } 2830 2831 static const char *arc_onloan_tag = "onloan"; 2832 2833 static inline void 2834 arc_loaned_bytes_update(int64_t delta) 2835 { 2836 atomic_add_64(&arc_loaned_bytes, delta); 2837 2838 /* assert that it did not wrap around */ 2839 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 2840 } 2841 2842 /* 2843 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 2844 * flight data by arc_tempreserve_space() until they are "returned". Loaned 2845 * buffers must be returned to the arc before they can be used by the DMU or 2846 * freed. 2847 */ 2848 arc_buf_t * 2849 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size) 2850 { 2851 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag, 2852 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size); 2853 2854 arc_loaned_bytes_update(arc_buf_size(buf)); 2855 2856 return (buf); 2857 } 2858 2859 arc_buf_t * 2860 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize, 2861 enum zio_compress compression_type, uint8_t complevel) 2862 { 2863 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag, 2864 psize, lsize, compression_type, complevel); 2865 2866 arc_loaned_bytes_update(arc_buf_size(buf)); 2867 2868 return (buf); 2869 } 2870 2871 arc_buf_t * 2872 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder, 2873 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 2874 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 2875 enum zio_compress compression_type, uint8_t complevel) 2876 { 2877 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj, 2878 byteorder, salt, iv, mac, ot, psize, lsize, compression_type, 2879 complevel); 2880 2881 atomic_add_64(&arc_loaned_bytes, psize); 2882 return (buf); 2883 } 2884 2885 2886 /* 2887 * Return a loaned arc buffer to the arc. 2888 */ 2889 void 2890 arc_return_buf(arc_buf_t *buf, const void *tag) 2891 { 2892 arc_buf_hdr_t *hdr = buf->b_hdr; 2893 2894 ASSERT3P(buf->b_data, !=, NULL); 2895 ASSERT(HDR_HAS_L1HDR(hdr)); 2896 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 2897 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2898 2899 arc_loaned_bytes_update(-arc_buf_size(buf)); 2900 } 2901 2902 /* Detach an arc_buf from a dbuf (tag) */ 2903 void 2904 arc_loan_inuse_buf(arc_buf_t *buf, const void *tag) 2905 { 2906 arc_buf_hdr_t *hdr = buf->b_hdr; 2907 2908 ASSERT3P(buf->b_data, !=, NULL); 2909 ASSERT(HDR_HAS_L1HDR(hdr)); 2910 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2911 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 2912 2913 arc_loaned_bytes_update(arc_buf_size(buf)); 2914 } 2915 2916 static void 2917 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type) 2918 { 2919 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); 2920 2921 df->l2df_abd = abd; 2922 df->l2df_size = size; 2923 df->l2df_type = type; 2924 mutex_enter(&l2arc_free_on_write_mtx); 2925 list_insert_head(l2arc_free_on_write, df); 2926 mutex_exit(&l2arc_free_on_write_mtx); 2927 } 2928 2929 static void 2930 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata) 2931 { 2932 arc_state_t *state = hdr->b_l1hdr.b_state; 2933 arc_buf_contents_t type = arc_buf_type(hdr); 2934 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 2935 2936 /* protected by hash lock, if in the hash table */ 2937 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2938 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2939 ASSERT(state != arc_anon && state != arc_l2c_only); 2940 2941 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2942 size, hdr); 2943 } 2944 (void) zfs_refcount_remove_many(&state->arcs_size[type], size, hdr); 2945 if (type == ARC_BUFC_METADATA) { 2946 arc_space_return(size, ARC_SPACE_META); 2947 } else { 2948 ASSERT(type == ARC_BUFC_DATA); 2949 arc_space_return(size, ARC_SPACE_DATA); 2950 } 2951 2952 if (free_rdata) { 2953 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type); 2954 } else { 2955 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type); 2956 } 2957 } 2958 2959 /* 2960 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the 2961 * data buffer, we transfer the refcount ownership to the hdr and update 2962 * the appropriate kstats. 2963 */ 2964 static void 2965 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2966 { 2967 ASSERT(arc_can_share(hdr, buf)); 2968 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2969 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 2970 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2971 2972 /* 2973 * Start sharing the data buffer. We transfer the 2974 * refcount ownership to the hdr since it always owns 2975 * the refcount whenever an arc_buf_t is shared. 2976 */ 2977 zfs_refcount_transfer_ownership_many( 2978 &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)], 2979 arc_hdr_size(hdr), buf, hdr); 2980 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf)); 2981 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd, 2982 HDR_ISTYPE_METADATA(hdr)); 2983 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2984 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2985 2986 /* 2987 * Since we've transferred ownership to the hdr we need 2988 * to increment its compressed and uncompressed kstats and 2989 * decrement the overhead size. 2990 */ 2991 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 2992 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 2993 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf)); 2994 } 2995 2996 static void 2997 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2998 { 2999 ASSERT(arc_buf_is_shared(buf)); 3000 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3001 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3002 3003 /* 3004 * We are no longer sharing this buffer so we need 3005 * to transfer its ownership to the rightful owner. 3006 */ 3007 zfs_refcount_transfer_ownership_many( 3008 &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)], 3009 arc_hdr_size(hdr), hdr, buf); 3010 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3011 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd); 3012 abd_free(hdr->b_l1hdr.b_pabd); 3013 hdr->b_l1hdr.b_pabd = NULL; 3014 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 3015 3016 /* 3017 * Since the buffer is no longer shared between 3018 * the arc buf and the hdr, count it as overhead. 3019 */ 3020 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 3021 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3022 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 3023 } 3024 3025 /* 3026 * Remove an arc_buf_t from the hdr's buf list and return the last 3027 * arc_buf_t on the list. If no buffers remain on the list then return 3028 * NULL. 3029 */ 3030 static arc_buf_t * 3031 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf) 3032 { 3033 ASSERT(HDR_HAS_L1HDR(hdr)); 3034 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3035 3036 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf; 3037 arc_buf_t *lastbuf = NULL; 3038 3039 /* 3040 * Remove the buf from the hdr list and locate the last 3041 * remaining buffer on the list. 3042 */ 3043 while (*bufp != NULL) { 3044 if (*bufp == buf) 3045 *bufp = buf->b_next; 3046 3047 /* 3048 * If we've removed a buffer in the middle of 3049 * the list then update the lastbuf and update 3050 * bufp. 3051 */ 3052 if (*bufp != NULL) { 3053 lastbuf = *bufp; 3054 bufp = &(*bufp)->b_next; 3055 } 3056 } 3057 buf->b_next = NULL; 3058 ASSERT3P(lastbuf, !=, buf); 3059 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf)); 3060 3061 return (lastbuf); 3062 } 3063 3064 /* 3065 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's 3066 * list and free it. 3067 */ 3068 static void 3069 arc_buf_destroy_impl(arc_buf_t *buf) 3070 { 3071 arc_buf_hdr_t *hdr = buf->b_hdr; 3072 3073 /* 3074 * Free up the data associated with the buf but only if we're not 3075 * sharing this with the hdr. If we are sharing it with the hdr, the 3076 * hdr is responsible for doing the free. 3077 */ 3078 if (buf->b_data != NULL) { 3079 /* 3080 * We're about to change the hdr's b_flags. We must either 3081 * hold the hash_lock or be undiscoverable. 3082 */ 3083 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3084 3085 arc_cksum_verify(buf); 3086 arc_buf_unwatch(buf); 3087 3088 if (ARC_BUF_SHARED(buf)) { 3089 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3090 } else { 3091 ASSERT(!arc_buf_is_shared(buf)); 3092 uint64_t size = arc_buf_size(buf); 3093 arc_free_data_buf(hdr, buf->b_data, size, buf); 3094 ARCSTAT_INCR(arcstat_overhead_size, -size); 3095 } 3096 buf->b_data = NULL; 3097 3098 /* 3099 * If we have no more encrypted buffers and we've already 3100 * gotten a copy of the decrypted data we can free b_rabd 3101 * to save some space. 3102 */ 3103 if (ARC_BUF_ENCRYPTED(buf) && HDR_HAS_RABD(hdr) && 3104 hdr->b_l1hdr.b_pabd != NULL && !HDR_IO_IN_PROGRESS(hdr)) { 3105 arc_buf_t *b; 3106 for (b = hdr->b_l1hdr.b_buf; b; b = b->b_next) { 3107 if (b != buf && ARC_BUF_ENCRYPTED(b)) 3108 break; 3109 } 3110 if (b == NULL) 3111 arc_hdr_free_abd(hdr, B_TRUE); 3112 } 3113 } 3114 3115 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 3116 3117 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 3118 /* 3119 * If the current arc_buf_t is sharing its data buffer with the 3120 * hdr, then reassign the hdr's b_pabd to share it with the new 3121 * buffer at the end of the list. The shared buffer is always 3122 * the last one on the hdr's buffer list. 3123 * 3124 * There is an equivalent case for compressed bufs, but since 3125 * they aren't guaranteed to be the last buf in the list and 3126 * that is an exceedingly rare case, we just allow that space be 3127 * wasted temporarily. We must also be careful not to share 3128 * encrypted buffers, since they cannot be shared. 3129 */ 3130 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) { 3131 /* Only one buf can be shared at once */ 3132 ASSERT(!arc_buf_is_shared(lastbuf)); 3133 /* hdr is uncompressed so can't have compressed buf */ 3134 ASSERT(!ARC_BUF_COMPRESSED(lastbuf)); 3135 3136 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3137 arc_hdr_free_abd(hdr, B_FALSE); 3138 3139 /* 3140 * We must setup a new shared block between the 3141 * last buffer and the hdr. The data would have 3142 * been allocated by the arc buf so we need to transfer 3143 * ownership to the hdr since it's now being shared. 3144 */ 3145 arc_share_buf(hdr, lastbuf); 3146 } 3147 } else if (HDR_SHARED_DATA(hdr)) { 3148 /* 3149 * Uncompressed shared buffers are always at the end 3150 * of the list. Compressed buffers don't have the 3151 * same requirements. This makes it hard to 3152 * simply assert that the lastbuf is shared so 3153 * we rely on the hdr's compression flags to determine 3154 * if we have a compressed, shared buffer. 3155 */ 3156 ASSERT3P(lastbuf, !=, NULL); 3157 ASSERT(arc_buf_is_shared(lastbuf) || 3158 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 3159 } 3160 3161 /* 3162 * Free the checksum if we're removing the last uncompressed buf from 3163 * this hdr. 3164 */ 3165 if (!arc_hdr_has_uncompressed_buf(hdr)) { 3166 arc_cksum_free(hdr); 3167 } 3168 3169 /* clean up the buf */ 3170 buf->b_hdr = NULL; 3171 kmem_cache_free(buf_cache, buf); 3172 } 3173 3174 static void 3175 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags) 3176 { 3177 uint64_t size; 3178 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0); 3179 3180 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 3181 ASSERT(HDR_HAS_L1HDR(hdr)); 3182 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata); 3183 IMPLY(alloc_rdata, HDR_PROTECTED(hdr)); 3184 3185 if (alloc_rdata) { 3186 size = HDR_GET_PSIZE(hdr); 3187 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL); 3188 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr, 3189 alloc_flags); 3190 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL); 3191 ARCSTAT_INCR(arcstat_raw_size, size); 3192 } else { 3193 size = arc_hdr_size(hdr); 3194 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3195 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr, 3196 alloc_flags); 3197 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3198 } 3199 3200 ARCSTAT_INCR(arcstat_compressed_size, size); 3201 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3202 } 3203 3204 static void 3205 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata) 3206 { 3207 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 3208 3209 ASSERT(HDR_HAS_L1HDR(hdr)); 3210 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 3211 IMPLY(free_rdata, HDR_HAS_RABD(hdr)); 3212 3213 /* 3214 * If the hdr is currently being written to the l2arc then 3215 * we defer freeing the data by adding it to the l2arc_free_on_write 3216 * list. The l2arc will free the data once it's finished 3217 * writing it to the l2arc device. 3218 */ 3219 if (HDR_L2_WRITING(hdr)) { 3220 arc_hdr_free_on_write(hdr, free_rdata); 3221 ARCSTAT_BUMP(arcstat_l2_free_on_write); 3222 } else if (free_rdata) { 3223 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr); 3224 } else { 3225 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr); 3226 } 3227 3228 if (free_rdata) { 3229 hdr->b_crypt_hdr.b_rabd = NULL; 3230 ARCSTAT_INCR(arcstat_raw_size, -size); 3231 } else { 3232 hdr->b_l1hdr.b_pabd = NULL; 3233 } 3234 3235 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr)) 3236 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 3237 3238 ARCSTAT_INCR(arcstat_compressed_size, -size); 3239 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3240 } 3241 3242 /* 3243 * Allocate empty anonymous ARC header. The header will get its identity 3244 * assigned and buffers attached later as part of read or write operations. 3245 * 3246 * In case of read arc_read() assigns header its identify (b_dva + b_birth), 3247 * inserts it into ARC hash to become globally visible and allocates physical 3248 * (b_pabd) or raw (b_rabd) ABD buffer to read into from disk. On disk read 3249 * completion arc_read_done() allocates ARC buffer(s) as needed, potentially 3250 * sharing one of them with the physical ABD buffer. 3251 * 3252 * In case of write arc_alloc_buf() allocates ARC buffer to be filled with 3253 * data. Then after compression and/or encryption arc_write_ready() allocates 3254 * and fills (or potentially shares) physical (b_pabd) or raw (b_rabd) ABD 3255 * buffer. On disk write completion arc_write_done() assigns the header its 3256 * new identity (b_dva + b_birth) and inserts into ARC hash. 3257 * 3258 * In case of partial overwrite the old data is read first as described. Then 3259 * arc_release() either allocates new anonymous ARC header and moves the ARC 3260 * buffer to it, or reuses the old ARC header by discarding its identity and 3261 * removing it from ARC hash. After buffer modification normal write process 3262 * follows as described. 3263 */ 3264 static arc_buf_hdr_t * 3265 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, 3266 boolean_t protected, enum zio_compress compression_type, uint8_t complevel, 3267 arc_buf_contents_t type) 3268 { 3269 arc_buf_hdr_t *hdr; 3270 3271 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); 3272 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 3273 3274 ASSERT(HDR_EMPTY(hdr)); 3275 #ifdef ZFS_DEBUG 3276 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3277 #endif 3278 HDR_SET_PSIZE(hdr, psize); 3279 HDR_SET_LSIZE(hdr, lsize); 3280 hdr->b_spa = spa; 3281 hdr->b_type = type; 3282 hdr->b_flags = 0; 3283 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); 3284 arc_hdr_set_compress(hdr, compression_type); 3285 hdr->b_complevel = complevel; 3286 if (protected) 3287 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 3288 3289 hdr->b_l1hdr.b_state = arc_anon; 3290 hdr->b_l1hdr.b_arc_access = 0; 3291 hdr->b_l1hdr.b_mru_hits = 0; 3292 hdr->b_l1hdr.b_mru_ghost_hits = 0; 3293 hdr->b_l1hdr.b_mfu_hits = 0; 3294 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 3295 hdr->b_l1hdr.b_buf = NULL; 3296 3297 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3298 3299 return (hdr); 3300 } 3301 3302 /* 3303 * Transition between the two allocation states for the arc_buf_hdr struct. 3304 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 3305 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 3306 * version is used when a cache buffer is only in the L2ARC in order to reduce 3307 * memory usage. 3308 */ 3309 static arc_buf_hdr_t * 3310 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 3311 { 3312 ASSERT(HDR_HAS_L2HDR(hdr)); 3313 3314 arc_buf_hdr_t *nhdr; 3315 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3316 3317 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 3318 (old == hdr_l2only_cache && new == hdr_full_cache)); 3319 3320 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 3321 3322 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 3323 buf_hash_remove(hdr); 3324 3325 memcpy(nhdr, hdr, HDR_L2ONLY_SIZE); 3326 3327 if (new == hdr_full_cache) { 3328 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3329 /* 3330 * arc_access and arc_change_state need to be aware that a 3331 * header has just come out of L2ARC, so we set its state to 3332 * l2c_only even though it's about to change. 3333 */ 3334 nhdr->b_l1hdr.b_state = arc_l2c_only; 3335 3336 /* Verify previous threads set to NULL before freeing */ 3337 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL); 3338 ASSERT(!HDR_HAS_RABD(hdr)); 3339 } else { 3340 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3341 #ifdef ZFS_DEBUG 3342 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3343 #endif 3344 3345 /* 3346 * If we've reached here, We must have been called from 3347 * arc_evict_hdr(), as such we should have already been 3348 * removed from any ghost list we were previously on 3349 * (which protects us from racing with arc_evict_state), 3350 * thus no locking is needed during this check. 3351 */ 3352 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3353 3354 /* 3355 * A buffer must not be moved into the arc_l2c_only 3356 * state if it's not finished being written out to the 3357 * l2arc device. Otherwise, the b_l1hdr.b_pabd field 3358 * might try to be accessed, even though it was removed. 3359 */ 3360 VERIFY(!HDR_L2_WRITING(hdr)); 3361 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3362 ASSERT(!HDR_HAS_RABD(hdr)); 3363 3364 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3365 } 3366 /* 3367 * The header has been reallocated so we need to re-insert it into any 3368 * lists it was on. 3369 */ 3370 (void) buf_hash_insert(nhdr, NULL); 3371 3372 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 3373 3374 mutex_enter(&dev->l2ad_mtx); 3375 3376 /* 3377 * We must place the realloc'ed header back into the list at 3378 * the same spot. Otherwise, if it's placed earlier in the list, 3379 * l2arc_write_buffers() could find it during the function's 3380 * write phase, and try to write it out to the l2arc. 3381 */ 3382 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 3383 list_remove(&dev->l2ad_buflist, hdr); 3384 3385 mutex_exit(&dev->l2ad_mtx); 3386 3387 /* 3388 * Since we're using the pointer address as the tag when 3389 * incrementing and decrementing the l2ad_alloc refcount, we 3390 * must remove the old pointer (that we're about to destroy) and 3391 * add the new pointer to the refcount. Otherwise we'd remove 3392 * the wrong pointer address when calling arc_hdr_destroy() later. 3393 */ 3394 3395 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 3396 arc_hdr_size(hdr), hdr); 3397 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 3398 arc_hdr_size(nhdr), nhdr); 3399 3400 buf_discard_identity(hdr); 3401 kmem_cache_free(old, hdr); 3402 3403 return (nhdr); 3404 } 3405 3406 /* 3407 * This function is used by the send / receive code to convert a newly 3408 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It 3409 * is also used to allow the root objset block to be updated without altering 3410 * its embedded MACs. Both block types will always be uncompressed so we do not 3411 * have to worry about compression type or psize. 3412 */ 3413 void 3414 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder, 3415 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv, 3416 const uint8_t *mac) 3417 { 3418 arc_buf_hdr_t *hdr = buf->b_hdr; 3419 3420 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET); 3421 ASSERT(HDR_HAS_L1HDR(hdr)); 3422 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3423 3424 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED); 3425 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 3426 hdr->b_crypt_hdr.b_dsobj = dsobj; 3427 hdr->b_crypt_hdr.b_ot = ot; 3428 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3429 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3430 if (!arc_hdr_has_uncompressed_buf(hdr)) 3431 arc_cksum_free(hdr); 3432 3433 if (salt != NULL) 3434 memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN); 3435 if (iv != NULL) 3436 memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN); 3437 if (mac != NULL) 3438 memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN); 3439 } 3440 3441 /* 3442 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. 3443 * The buf is returned thawed since we expect the consumer to modify it. 3444 */ 3445 arc_buf_t * 3446 arc_alloc_buf(spa_t *spa, const void *tag, arc_buf_contents_t type, 3447 int32_t size) 3448 { 3449 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, 3450 B_FALSE, ZIO_COMPRESS_OFF, 0, type); 3451 3452 arc_buf_t *buf = NULL; 3453 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE, 3454 B_FALSE, B_FALSE, &buf)); 3455 arc_buf_thaw(buf); 3456 3457 return (buf); 3458 } 3459 3460 /* 3461 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this 3462 * for bufs containing metadata. 3463 */ 3464 arc_buf_t * 3465 arc_alloc_compressed_buf(spa_t *spa, const void *tag, uint64_t psize, 3466 uint64_t lsize, enum zio_compress compression_type, uint8_t complevel) 3467 { 3468 ASSERT3U(lsize, >, 0); 3469 ASSERT3U(lsize, >=, psize); 3470 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF); 3471 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3472 3473 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 3474 B_FALSE, compression_type, complevel, ARC_BUFC_DATA); 3475 3476 arc_buf_t *buf = NULL; 3477 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, 3478 B_TRUE, B_FALSE, B_FALSE, &buf)); 3479 arc_buf_thaw(buf); 3480 3481 /* 3482 * To ensure that the hdr has the correct data in it if we call 3483 * arc_untransform() on this buf before it's been written to disk, 3484 * it's easiest if we just set up sharing between the buf and the hdr. 3485 */ 3486 arc_share_buf(hdr, buf); 3487 3488 return (buf); 3489 } 3490 3491 arc_buf_t * 3492 arc_alloc_raw_buf(spa_t *spa, const void *tag, uint64_t dsobj, 3493 boolean_t byteorder, const uint8_t *salt, const uint8_t *iv, 3494 const uint8_t *mac, dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 3495 enum zio_compress compression_type, uint8_t complevel) 3496 { 3497 arc_buf_hdr_t *hdr; 3498 arc_buf_t *buf; 3499 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ? 3500 ARC_BUFC_METADATA : ARC_BUFC_DATA; 3501 3502 ASSERT3U(lsize, >, 0); 3503 ASSERT3U(lsize, >=, psize); 3504 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF); 3505 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3506 3507 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE, 3508 compression_type, complevel, type); 3509 3510 hdr->b_crypt_hdr.b_dsobj = dsobj; 3511 hdr->b_crypt_hdr.b_ot = ot; 3512 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3513 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3514 memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN); 3515 memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN); 3516 memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN); 3517 3518 /* 3519 * This buffer will be considered encrypted even if the ot is not an 3520 * encrypted type. It will become authenticated instead in 3521 * arc_write_ready(). 3522 */ 3523 buf = NULL; 3524 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE, 3525 B_FALSE, B_FALSE, &buf)); 3526 arc_buf_thaw(buf); 3527 3528 return (buf); 3529 } 3530 3531 static void 3532 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 3533 boolean_t state_only) 3534 { 3535 uint64_t lsize = HDR_GET_LSIZE(hdr); 3536 uint64_t psize = HDR_GET_PSIZE(hdr); 3537 uint64_t asize = HDR_GET_L2SIZE(hdr); 3538 arc_buf_contents_t type = hdr->b_type; 3539 int64_t lsize_s; 3540 int64_t psize_s; 3541 int64_t asize_s; 3542 3543 /* For L2 we expect the header's b_l2size to be valid */ 3544 ASSERT3U(asize, >=, psize); 3545 3546 if (incr) { 3547 lsize_s = lsize; 3548 psize_s = psize; 3549 asize_s = asize; 3550 } else { 3551 lsize_s = -lsize; 3552 psize_s = -psize; 3553 asize_s = -asize; 3554 } 3555 3556 /* If the buffer is a prefetch, count it as such. */ 3557 if (HDR_PREFETCH(hdr)) { 3558 ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s); 3559 } else { 3560 /* 3561 * We use the value stored in the L2 header upon initial 3562 * caching in L2ARC. This value will be updated in case 3563 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC 3564 * metadata (log entry) cannot currently be updated. Having 3565 * the ARC state in the L2 header solves the problem of a 3566 * possibly absent L1 header (apparent in buffers restored 3567 * from persistent L2ARC). 3568 */ 3569 switch (hdr->b_l2hdr.b_arcs_state) { 3570 case ARC_STATE_MRU_GHOST: 3571 case ARC_STATE_MRU: 3572 ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s); 3573 break; 3574 case ARC_STATE_MFU_GHOST: 3575 case ARC_STATE_MFU: 3576 ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s); 3577 break; 3578 default: 3579 break; 3580 } 3581 } 3582 3583 if (state_only) 3584 return; 3585 3586 ARCSTAT_INCR(arcstat_l2_psize, psize_s); 3587 ARCSTAT_INCR(arcstat_l2_lsize, lsize_s); 3588 3589 switch (type) { 3590 case ARC_BUFC_DATA: 3591 ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s); 3592 break; 3593 case ARC_BUFC_METADATA: 3594 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s); 3595 break; 3596 default: 3597 break; 3598 } 3599 } 3600 3601 3602 static void 3603 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 3604 { 3605 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3606 l2arc_dev_t *dev = l2hdr->b_dev; 3607 3608 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 3609 ASSERT(HDR_HAS_L2HDR(hdr)); 3610 3611 list_remove(&dev->l2ad_buflist, hdr); 3612 3613 l2arc_hdr_arcstats_decrement(hdr); 3614 if (dev->l2ad_vdev != NULL) { 3615 uint64_t asize = HDR_GET_L2SIZE(hdr); 3616 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); 3617 } 3618 3619 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), 3620 hdr); 3621 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 3622 } 3623 3624 static void 3625 arc_hdr_destroy(arc_buf_hdr_t *hdr) 3626 { 3627 if (HDR_HAS_L1HDR(hdr)) { 3628 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3629 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3630 } 3631 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3632 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 3633 3634 if (HDR_HAS_L2HDR(hdr)) { 3635 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3636 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 3637 3638 if (!buflist_held) 3639 mutex_enter(&dev->l2ad_mtx); 3640 3641 /* 3642 * Even though we checked this conditional above, we 3643 * need to check this again now that we have the 3644 * l2ad_mtx. This is because we could be racing with 3645 * another thread calling l2arc_evict() which might have 3646 * destroyed this header's L2 portion as we were waiting 3647 * to acquire the l2ad_mtx. If that happens, we don't 3648 * want to re-destroy the header's L2 portion. 3649 */ 3650 if (HDR_HAS_L2HDR(hdr)) { 3651 3652 if (!HDR_EMPTY(hdr)) 3653 buf_discard_identity(hdr); 3654 3655 arc_hdr_l2hdr_destroy(hdr); 3656 } 3657 3658 if (!buflist_held) 3659 mutex_exit(&dev->l2ad_mtx); 3660 } 3661 3662 /* 3663 * The header's identify can only be safely discarded once it is no 3664 * longer discoverable. This requires removing it from the hash table 3665 * and the l2arc header list. After this point the hash lock can not 3666 * be used to protect the header. 3667 */ 3668 if (!HDR_EMPTY(hdr)) 3669 buf_discard_identity(hdr); 3670 3671 if (HDR_HAS_L1HDR(hdr)) { 3672 arc_cksum_free(hdr); 3673 3674 while (hdr->b_l1hdr.b_buf != NULL) 3675 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf); 3676 3677 if (hdr->b_l1hdr.b_pabd != NULL) 3678 arc_hdr_free_abd(hdr, B_FALSE); 3679 3680 if (HDR_HAS_RABD(hdr)) 3681 arc_hdr_free_abd(hdr, B_TRUE); 3682 } 3683 3684 ASSERT3P(hdr->b_hash_next, ==, NULL); 3685 if (HDR_HAS_L1HDR(hdr)) { 3686 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3687 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 3688 #ifdef ZFS_DEBUG 3689 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3690 #endif 3691 kmem_cache_free(hdr_full_cache, hdr); 3692 } else { 3693 kmem_cache_free(hdr_l2only_cache, hdr); 3694 } 3695 } 3696 3697 void 3698 arc_buf_destroy(arc_buf_t *buf, const void *tag) 3699 { 3700 arc_buf_hdr_t *hdr = buf->b_hdr; 3701 3702 if (hdr->b_l1hdr.b_state == arc_anon) { 3703 ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf); 3704 ASSERT(ARC_BUF_LAST(buf)); 3705 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3706 VERIFY0(remove_reference(hdr, tag)); 3707 return; 3708 } 3709 3710 kmutex_t *hash_lock = HDR_LOCK(hdr); 3711 mutex_enter(hash_lock); 3712 3713 ASSERT3P(hdr, ==, buf->b_hdr); 3714 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL); 3715 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3716 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); 3717 ASSERT3P(buf->b_data, !=, NULL); 3718 3719 arc_buf_destroy_impl(buf); 3720 (void) remove_reference(hdr, tag); 3721 mutex_exit(hash_lock); 3722 } 3723 3724 /* 3725 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 3726 * state of the header is dependent on its state prior to entering this 3727 * function. The following transitions are possible: 3728 * 3729 * - arc_mru -> arc_mru_ghost 3730 * - arc_mfu -> arc_mfu_ghost 3731 * - arc_mru_ghost -> arc_l2c_only 3732 * - arc_mru_ghost -> deleted 3733 * - arc_mfu_ghost -> arc_l2c_only 3734 * - arc_mfu_ghost -> deleted 3735 * - arc_uncached -> deleted 3736 * 3737 * Return total size of evicted data buffers for eviction progress tracking. 3738 * When evicting from ghost states return logical buffer size to make eviction 3739 * progress at the same (or at least comparable) rate as from non-ghost states. 3740 * 3741 * Return *real_evicted for actual ARC size reduction to wake up threads 3742 * waiting for it. For non-ghost states it includes size of evicted data 3743 * buffers (the headers are not freed there). For ghost states it includes 3744 * only the evicted headers size. 3745 */ 3746 static int64_t 3747 arc_evict_hdr(arc_buf_hdr_t *hdr, uint64_t *real_evicted) 3748 { 3749 arc_state_t *evicted_state, *state; 3750 int64_t bytes_evicted = 0; 3751 uint_t min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ? 3752 arc_min_prescient_prefetch_ms : arc_min_prefetch_ms; 3753 3754 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 3755 ASSERT(HDR_HAS_L1HDR(hdr)); 3756 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3757 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3758 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3759 3760 *real_evicted = 0; 3761 state = hdr->b_l1hdr.b_state; 3762 if (GHOST_STATE(state)) { 3763 3764 /* 3765 * l2arc_write_buffers() relies on a header's L1 portion 3766 * (i.e. its b_pabd field) during it's write phase. 3767 * Thus, we cannot push a header onto the arc_l2c_only 3768 * state (removing its L1 piece) until the header is 3769 * done being written to the l2arc. 3770 */ 3771 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 3772 ARCSTAT_BUMP(arcstat_evict_l2_skip); 3773 return (bytes_evicted); 3774 } 3775 3776 ARCSTAT_BUMP(arcstat_deleted); 3777 bytes_evicted += HDR_GET_LSIZE(hdr); 3778 3779 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 3780 3781 if (HDR_HAS_L2HDR(hdr)) { 3782 ASSERT(hdr->b_l1hdr.b_pabd == NULL); 3783 ASSERT(!HDR_HAS_RABD(hdr)); 3784 /* 3785 * This buffer is cached on the 2nd Level ARC; 3786 * don't destroy the header. 3787 */ 3788 arc_change_state(arc_l2c_only, hdr); 3789 /* 3790 * dropping from L1+L2 cached to L2-only, 3791 * realloc to remove the L1 header. 3792 */ 3793 (void) arc_hdr_realloc(hdr, hdr_full_cache, 3794 hdr_l2only_cache); 3795 *real_evicted += HDR_FULL_SIZE - HDR_L2ONLY_SIZE; 3796 } else { 3797 arc_change_state(arc_anon, hdr); 3798 arc_hdr_destroy(hdr); 3799 *real_evicted += HDR_FULL_SIZE; 3800 } 3801 return (bytes_evicted); 3802 } 3803 3804 ASSERT(state == arc_mru || state == arc_mfu || state == arc_uncached); 3805 evicted_state = (state == arc_uncached) ? arc_anon : 3806 ((state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost); 3807 3808 /* prefetch buffers have a minimum lifespan */ 3809 if ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 3810 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < 3811 MSEC_TO_TICK(min_lifetime)) { 3812 ARCSTAT_BUMP(arcstat_evict_skip); 3813 return (bytes_evicted); 3814 } 3815 3816 if (HDR_HAS_L2HDR(hdr)) { 3817 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); 3818 } else { 3819 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 3820 ARCSTAT_INCR(arcstat_evict_l2_eligible, 3821 HDR_GET_LSIZE(hdr)); 3822 3823 switch (state->arcs_state) { 3824 case ARC_STATE_MRU: 3825 ARCSTAT_INCR( 3826 arcstat_evict_l2_eligible_mru, 3827 HDR_GET_LSIZE(hdr)); 3828 break; 3829 case ARC_STATE_MFU: 3830 ARCSTAT_INCR( 3831 arcstat_evict_l2_eligible_mfu, 3832 HDR_GET_LSIZE(hdr)); 3833 break; 3834 default: 3835 break; 3836 } 3837 } else { 3838 ARCSTAT_INCR(arcstat_evict_l2_ineligible, 3839 HDR_GET_LSIZE(hdr)); 3840 } 3841 } 3842 3843 bytes_evicted += arc_hdr_size(hdr); 3844 *real_evicted += arc_hdr_size(hdr); 3845 3846 /* 3847 * If this hdr is being evicted and has a compressed buffer then we 3848 * discard it here before we change states. This ensures that the 3849 * accounting is updated correctly in arc_free_data_impl(). 3850 */ 3851 if (hdr->b_l1hdr.b_pabd != NULL) 3852 arc_hdr_free_abd(hdr, B_FALSE); 3853 3854 if (HDR_HAS_RABD(hdr)) 3855 arc_hdr_free_abd(hdr, B_TRUE); 3856 3857 arc_change_state(evicted_state, hdr); 3858 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 3859 if (evicted_state == arc_anon) { 3860 arc_hdr_destroy(hdr); 3861 *real_evicted += HDR_FULL_SIZE; 3862 } else { 3863 ASSERT(HDR_IN_HASH_TABLE(hdr)); 3864 } 3865 3866 return (bytes_evicted); 3867 } 3868 3869 static void 3870 arc_set_need_free(void) 3871 { 3872 ASSERT(MUTEX_HELD(&arc_evict_lock)); 3873 int64_t remaining = arc_free_memory() - arc_sys_free / 2; 3874 arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters); 3875 if (aw == NULL) { 3876 arc_need_free = MAX(-remaining, 0); 3877 } else { 3878 arc_need_free = 3879 MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count)); 3880 } 3881 } 3882 3883 static uint64_t 3884 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 3885 uint64_t spa, uint64_t bytes) 3886 { 3887 multilist_sublist_t *mls; 3888 uint64_t bytes_evicted = 0, real_evicted = 0; 3889 arc_buf_hdr_t *hdr; 3890 kmutex_t *hash_lock; 3891 uint_t evict_count = zfs_arc_evict_batch_limit; 3892 3893 ASSERT3P(marker, !=, NULL); 3894 3895 mls = multilist_sublist_lock_idx(ml, idx); 3896 3897 for (hdr = multilist_sublist_prev(mls, marker); likely(hdr != NULL); 3898 hdr = multilist_sublist_prev(mls, marker)) { 3899 if ((evict_count == 0) || (bytes_evicted >= bytes)) 3900 break; 3901 3902 /* 3903 * To keep our iteration location, move the marker 3904 * forward. Since we're not holding hdr's hash lock, we 3905 * must be very careful and not remove 'hdr' from the 3906 * sublist. Otherwise, other consumers might mistake the 3907 * 'hdr' as not being on a sublist when they call the 3908 * multilist_link_active() function (they all rely on 3909 * the hash lock protecting concurrent insertions and 3910 * removals). multilist_sublist_move_forward() was 3911 * specifically implemented to ensure this is the case 3912 * (only 'marker' will be removed and re-inserted). 3913 */ 3914 multilist_sublist_move_forward(mls, marker); 3915 3916 /* 3917 * The only case where the b_spa field should ever be 3918 * zero, is the marker headers inserted by 3919 * arc_evict_state(). It's possible for multiple threads 3920 * to be calling arc_evict_state() concurrently (e.g. 3921 * dsl_pool_close() and zio_inject_fault()), so we must 3922 * skip any markers we see from these other threads. 3923 */ 3924 if (hdr->b_spa == 0) 3925 continue; 3926 3927 /* we're only interested in evicting buffers of a certain spa */ 3928 if (spa != 0 && hdr->b_spa != spa) { 3929 ARCSTAT_BUMP(arcstat_evict_skip); 3930 continue; 3931 } 3932 3933 hash_lock = HDR_LOCK(hdr); 3934 3935 /* 3936 * We aren't calling this function from any code path 3937 * that would already be holding a hash lock, so we're 3938 * asserting on this assumption to be defensive in case 3939 * this ever changes. Without this check, it would be 3940 * possible to incorrectly increment arcstat_mutex_miss 3941 * below (e.g. if the code changed such that we called 3942 * this function with a hash lock held). 3943 */ 3944 ASSERT(!MUTEX_HELD(hash_lock)); 3945 3946 if (mutex_tryenter(hash_lock)) { 3947 uint64_t revicted; 3948 uint64_t evicted = arc_evict_hdr(hdr, &revicted); 3949 mutex_exit(hash_lock); 3950 3951 bytes_evicted += evicted; 3952 real_evicted += revicted; 3953 3954 /* 3955 * If evicted is zero, arc_evict_hdr() must have 3956 * decided to skip this header, don't increment 3957 * evict_count in this case. 3958 */ 3959 if (evicted != 0) 3960 evict_count--; 3961 3962 } else { 3963 ARCSTAT_BUMP(arcstat_mutex_miss); 3964 } 3965 } 3966 3967 multilist_sublist_unlock(mls); 3968 3969 /* 3970 * Increment the count of evicted bytes, and wake up any threads that 3971 * are waiting for the count to reach this value. Since the list is 3972 * ordered by ascending aew_count, we pop off the beginning of the 3973 * list until we reach the end, or a waiter that's past the current 3974 * "count". Doing this outside the loop reduces the number of times 3975 * we need to acquire the global arc_evict_lock. 3976 * 3977 * Only wake when there's sufficient free memory in the system 3978 * (specifically, arc_sys_free/2, which by default is a bit more than 3979 * 1/64th of RAM). See the comments in arc_wait_for_eviction(). 3980 */ 3981 mutex_enter(&arc_evict_lock); 3982 arc_evict_count += real_evicted; 3983 3984 if (arc_free_memory() > arc_sys_free / 2) { 3985 arc_evict_waiter_t *aw; 3986 while ((aw = list_head(&arc_evict_waiters)) != NULL && 3987 aw->aew_count <= arc_evict_count) { 3988 list_remove(&arc_evict_waiters, aw); 3989 cv_broadcast(&aw->aew_cv); 3990 } 3991 } 3992 arc_set_need_free(); 3993 mutex_exit(&arc_evict_lock); 3994 3995 /* 3996 * If the ARC size is reduced from arc_c_max to arc_c_min (especially 3997 * if the average cached block is small), eviction can be on-CPU for 3998 * many seconds. To ensure that other threads that may be bound to 3999 * this CPU are able to make progress, make a voluntary preemption 4000 * call here. 4001 */ 4002 kpreempt(KPREEMPT_SYNC); 4003 4004 return (bytes_evicted); 4005 } 4006 4007 static arc_buf_hdr_t * 4008 arc_state_alloc_marker(void) 4009 { 4010 arc_buf_hdr_t *marker = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 4011 4012 /* 4013 * A b_spa of 0 is used to indicate that this header is 4014 * a marker. This fact is used in arc_evict_state_impl(). 4015 */ 4016 marker->b_spa = 0; 4017 4018 return (marker); 4019 } 4020 4021 static void 4022 arc_state_free_marker(arc_buf_hdr_t *marker) 4023 { 4024 kmem_cache_free(hdr_full_cache, marker); 4025 } 4026 4027 /* 4028 * Allocate an array of buffer headers used as placeholders during arc state 4029 * eviction. 4030 */ 4031 static arc_buf_hdr_t ** 4032 arc_state_alloc_markers(int count) 4033 { 4034 arc_buf_hdr_t **markers; 4035 4036 markers = kmem_zalloc(sizeof (*markers) * count, KM_SLEEP); 4037 for (int i = 0; i < count; i++) 4038 markers[i] = arc_state_alloc_marker(); 4039 return (markers); 4040 } 4041 4042 static void 4043 arc_state_free_markers(arc_buf_hdr_t **markers, int count) 4044 { 4045 for (int i = 0; i < count; i++) 4046 arc_state_free_marker(markers[i]); 4047 kmem_free(markers, sizeof (*markers) * count); 4048 } 4049 4050 /* 4051 * Evict buffers from the given arc state, until we've removed the 4052 * specified number of bytes. Move the removed buffers to the 4053 * appropriate evict state. 4054 * 4055 * This function makes a "best effort". It skips over any buffers 4056 * it can't get a hash_lock on, and so, may not catch all candidates. 4057 * It may also return without evicting as much space as requested. 4058 * 4059 * If bytes is specified using the special value ARC_EVICT_ALL, this 4060 * will evict all available (i.e. unlocked and evictable) buffers from 4061 * the given arc state; which is used by arc_flush(). 4062 */ 4063 static uint64_t 4064 arc_evict_state(arc_state_t *state, arc_buf_contents_t type, uint64_t spa, 4065 uint64_t bytes) 4066 { 4067 uint64_t total_evicted = 0; 4068 multilist_t *ml = &state->arcs_list[type]; 4069 int num_sublists; 4070 arc_buf_hdr_t **markers; 4071 4072 num_sublists = multilist_get_num_sublists(ml); 4073 4074 /* 4075 * If we've tried to evict from each sublist, made some 4076 * progress, but still have not hit the target number of bytes 4077 * to evict, we want to keep trying. The markers allow us to 4078 * pick up where we left off for each individual sublist, rather 4079 * than starting from the tail each time. 4080 */ 4081 if (zthr_iscurthread(arc_evict_zthr)) { 4082 markers = arc_state_evict_markers; 4083 ASSERT3S(num_sublists, <=, arc_state_evict_marker_count); 4084 } else { 4085 markers = arc_state_alloc_markers(num_sublists); 4086 } 4087 for (int i = 0; i < num_sublists; i++) { 4088 multilist_sublist_t *mls; 4089 4090 mls = multilist_sublist_lock_idx(ml, i); 4091 multilist_sublist_insert_tail(mls, markers[i]); 4092 multilist_sublist_unlock(mls); 4093 } 4094 4095 /* 4096 * While we haven't hit our target number of bytes to evict, or 4097 * we're evicting all available buffers. 4098 */ 4099 while (total_evicted < bytes) { 4100 int sublist_idx = multilist_get_random_index(ml); 4101 uint64_t scan_evicted = 0; 4102 4103 /* 4104 * Start eviction using a randomly selected sublist, 4105 * this is to try and evenly balance eviction across all 4106 * sublists. Always starting at the same sublist 4107 * (e.g. index 0) would cause evictions to favor certain 4108 * sublists over others. 4109 */ 4110 for (int i = 0; i < num_sublists; i++) { 4111 uint64_t bytes_remaining; 4112 uint64_t bytes_evicted; 4113 4114 if (total_evicted < bytes) 4115 bytes_remaining = bytes - total_evicted; 4116 else 4117 break; 4118 4119 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 4120 markers[sublist_idx], spa, bytes_remaining); 4121 4122 scan_evicted += bytes_evicted; 4123 total_evicted += bytes_evicted; 4124 4125 /* we've reached the end, wrap to the beginning */ 4126 if (++sublist_idx >= num_sublists) 4127 sublist_idx = 0; 4128 } 4129 4130 /* 4131 * If we didn't evict anything during this scan, we have 4132 * no reason to believe we'll evict more during another 4133 * scan, so break the loop. 4134 */ 4135 if (scan_evicted == 0) { 4136 /* This isn't possible, let's make that obvious */ 4137 ASSERT3S(bytes, !=, 0); 4138 4139 /* 4140 * When bytes is ARC_EVICT_ALL, the only way to 4141 * break the loop is when scan_evicted is zero. 4142 * In that case, we actually have evicted enough, 4143 * so we don't want to increment the kstat. 4144 */ 4145 if (bytes != ARC_EVICT_ALL) { 4146 ASSERT3S(total_evicted, <, bytes); 4147 ARCSTAT_BUMP(arcstat_evict_not_enough); 4148 } 4149 4150 break; 4151 } 4152 } 4153 4154 for (int i = 0; i < num_sublists; i++) { 4155 multilist_sublist_t *mls = multilist_sublist_lock_idx(ml, i); 4156 multilist_sublist_remove(mls, markers[i]); 4157 multilist_sublist_unlock(mls); 4158 } 4159 if (markers != arc_state_evict_markers) 4160 arc_state_free_markers(markers, num_sublists); 4161 4162 return (total_evicted); 4163 } 4164 4165 /* 4166 * Flush all "evictable" data of the given type from the arc state 4167 * specified. This will not evict any "active" buffers (i.e. referenced). 4168 * 4169 * When 'retry' is set to B_FALSE, the function will make a single pass 4170 * over the state and evict any buffers that it can. Since it doesn't 4171 * continually retry the eviction, it might end up leaving some buffers 4172 * in the ARC due to lock misses. 4173 * 4174 * When 'retry' is set to B_TRUE, the function will continually retry the 4175 * eviction until *all* evictable buffers have been removed from the 4176 * state. As a result, if concurrent insertions into the state are 4177 * allowed (e.g. if the ARC isn't shutting down), this function might 4178 * wind up in an infinite loop, continually trying to evict buffers. 4179 */ 4180 static uint64_t 4181 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 4182 boolean_t retry) 4183 { 4184 uint64_t evicted = 0; 4185 4186 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) { 4187 evicted += arc_evict_state(state, type, spa, ARC_EVICT_ALL); 4188 4189 if (!retry) 4190 break; 4191 } 4192 4193 return (evicted); 4194 } 4195 4196 /* 4197 * Evict the specified number of bytes from the state specified. This 4198 * function prevents us from trying to evict more from a state's list 4199 * than is "evictable", and to skip evicting altogether when passed a 4200 * negative value for "bytes". In contrast, arc_evict_state() will 4201 * evict everything it can, when passed a negative value for "bytes". 4202 */ 4203 static uint64_t 4204 arc_evict_impl(arc_state_t *state, arc_buf_contents_t type, int64_t bytes) 4205 { 4206 uint64_t delta; 4207 4208 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) { 4209 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]), 4210 bytes); 4211 return (arc_evict_state(state, type, 0, delta)); 4212 } 4213 4214 return (0); 4215 } 4216 4217 /* 4218 * Adjust specified fraction, taking into account initial ghost state(s) size, 4219 * ghost hit bytes towards increasing the fraction, ghost hit bytes towards 4220 * decreasing it, plus a balance factor, controlling the decrease rate, used 4221 * to balance metadata vs data. 4222 */ 4223 static uint64_t 4224 arc_evict_adj(uint64_t frac, uint64_t total, uint64_t up, uint64_t down, 4225 uint_t balance) 4226 { 4227 if (total < 8 || up + down == 0) 4228 return (frac); 4229 4230 /* 4231 * We should not have more ghost hits than ghost size, but they 4232 * may get close. Restrict maximum adjustment in that case. 4233 */ 4234 if (up + down >= total / 4) { 4235 uint64_t scale = (up + down) / (total / 8); 4236 up /= scale; 4237 down /= scale; 4238 } 4239 4240 /* Get maximal dynamic range by choosing optimal shifts. */ 4241 int s = highbit64(total); 4242 s = MIN(64 - s, 32); 4243 4244 uint64_t ofrac = (1ULL << 32) - frac; 4245 4246 if (frac >= 4 * ofrac) 4247 up /= frac / (2 * ofrac + 1); 4248 up = (up << s) / (total >> (32 - s)); 4249 if (ofrac >= 4 * frac) 4250 down /= ofrac / (2 * frac + 1); 4251 down = (down << s) / (total >> (32 - s)); 4252 down = down * 100 / balance; 4253 4254 return (frac + up - down); 4255 } 4256 4257 /* 4258 * Calculate (x * multiplier / divisor) without unnecesary overflows. 4259 */ 4260 static uint64_t 4261 arc_mf(uint64_t x, uint64_t multiplier, uint64_t divisor) 4262 { 4263 uint64_t q = (x / divisor); 4264 uint64_t r = (x % divisor); 4265 4266 return ((q * multiplier) + ((r * multiplier) / divisor)); 4267 } 4268 4269 /* 4270 * Evict buffers from the cache, such that arcstat_size is capped by arc_c. 4271 */ 4272 static uint64_t 4273 arc_evict(void) 4274 { 4275 uint64_t bytes, total_evicted = 0; 4276 int64_t e, mrud, mrum, mfud, mfum, w; 4277 static uint64_t ogrd, ogrm, ogfd, ogfm; 4278 static uint64_t gsrd, gsrm, gsfd, gsfm; 4279 uint64_t ngrd, ngrm, ngfd, ngfm; 4280 4281 /* Get current size of ARC states we can evict from. */ 4282 mrud = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_DATA]) + 4283 zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]); 4284 mrum = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA]) + 4285 zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]); 4286 mfud = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_DATA]); 4287 mfum = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA]); 4288 uint64_t d = mrud + mfud; 4289 uint64_t m = mrum + mfum; 4290 uint64_t t = d + m; 4291 4292 /* Get ARC ghost hits since last eviction. */ 4293 ngrd = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]); 4294 uint64_t grd = ngrd - ogrd; 4295 ogrd = ngrd; 4296 ngrm = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]); 4297 uint64_t grm = ngrm - ogrm; 4298 ogrm = ngrm; 4299 ngfd = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]); 4300 uint64_t gfd = ngfd - ogfd; 4301 ogfd = ngfd; 4302 ngfm = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]); 4303 uint64_t gfm = ngfm - ogfm; 4304 ogfm = ngfm; 4305 4306 /* Adjust ARC states balance based on ghost hits. */ 4307 arc_meta = arc_evict_adj(arc_meta, gsrd + gsrm + gsfd + gsfm, 4308 grm + gfm, grd + gfd, zfs_arc_meta_balance); 4309 arc_pd = arc_evict_adj(arc_pd, gsrd + gsfd, grd, gfd, 100); 4310 arc_pm = arc_evict_adj(arc_pm, gsrm + gsfm, grm, gfm, 100); 4311 4312 uint64_t asize = aggsum_value(&arc_sums.arcstat_size); 4313 uint64_t ac = arc_c; 4314 int64_t wt = t - (asize - ac); 4315 4316 /* 4317 * Try to reduce pinned dnodes if more than 3/4 of wanted metadata 4318 * target is not evictable or if they go over arc_dnode_limit. 4319 */ 4320 int64_t prune = 0; 4321 int64_t dn = wmsum_value(&arc_sums.arcstat_dnode_size); 4322 int64_t nem = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA]) 4323 + zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA]) 4324 - zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA]) 4325 - zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 4326 w = wt * (int64_t)(arc_meta >> 16) >> 16; 4327 if (nem > w * 3 / 4) { 4328 prune = dn / sizeof (dnode_t) * 4329 zfs_arc_dnode_reduce_percent / 100; 4330 if (nem < w && w > 4) 4331 prune = arc_mf(prune, nem - w * 3 / 4, w / 4); 4332 } 4333 if (dn > arc_dnode_limit) { 4334 prune = MAX(prune, (dn - arc_dnode_limit) / sizeof (dnode_t) * 4335 zfs_arc_dnode_reduce_percent / 100); 4336 } 4337 if (prune > 0) 4338 arc_prune_async(prune); 4339 4340 /* Evict MRU metadata. */ 4341 w = wt * (int64_t)(arc_meta * arc_pm >> 48) >> 16; 4342 e = MIN((int64_t)(asize - ac), (int64_t)(mrum - w)); 4343 bytes = arc_evict_impl(arc_mru, ARC_BUFC_METADATA, e); 4344 total_evicted += bytes; 4345 mrum -= bytes; 4346 asize -= bytes; 4347 4348 /* Evict MFU metadata. */ 4349 w = wt * (int64_t)(arc_meta >> 16) >> 16; 4350 e = MIN((int64_t)(asize - ac), (int64_t)(m - bytes - w)); 4351 bytes = arc_evict_impl(arc_mfu, ARC_BUFC_METADATA, e); 4352 total_evicted += bytes; 4353 mfum -= bytes; 4354 asize -= bytes; 4355 4356 /* Evict MRU data. */ 4357 wt -= m - total_evicted; 4358 w = wt * (int64_t)(arc_pd >> 16) >> 16; 4359 e = MIN((int64_t)(asize - ac), (int64_t)(mrud - w)); 4360 bytes = arc_evict_impl(arc_mru, ARC_BUFC_DATA, e); 4361 total_evicted += bytes; 4362 mrud -= bytes; 4363 asize -= bytes; 4364 4365 /* Evict MFU data. */ 4366 e = asize - ac; 4367 bytes = arc_evict_impl(arc_mfu, ARC_BUFC_DATA, e); 4368 mfud -= bytes; 4369 total_evicted += bytes; 4370 4371 /* 4372 * Evict ghost lists 4373 * 4374 * Size of each state's ghost list represents how much that state 4375 * may grow by shrinking the other states. Would it need to shrink 4376 * other states to zero (that is unlikely), its ghost size would be 4377 * equal to sum of other three state sizes. But excessive ghost 4378 * size may result in false ghost hits (too far back), that may 4379 * never result in real cache hits if several states are competing. 4380 * So choose some arbitraty point of 1/2 of other state sizes. 4381 */ 4382 gsrd = (mrum + mfud + mfum) / 2; 4383 e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]) - 4384 gsrd; 4385 (void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_DATA, e); 4386 4387 gsrm = (mrud + mfud + mfum) / 2; 4388 e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]) - 4389 gsrm; 4390 (void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_METADATA, e); 4391 4392 gsfd = (mrud + mrum + mfum) / 2; 4393 e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]) - 4394 gsfd; 4395 (void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_DATA, e); 4396 4397 gsfm = (mrud + mrum + mfud) / 2; 4398 e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]) - 4399 gsfm; 4400 (void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_METADATA, e); 4401 4402 return (total_evicted); 4403 } 4404 4405 static void 4406 arc_flush_impl(uint64_t guid, boolean_t retry) 4407 { 4408 ASSERT(!retry || guid == 0); 4409 4410 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 4411 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 4412 4413 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 4414 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 4415 4416 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 4417 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 4418 4419 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 4420 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 4421 4422 (void) arc_flush_state(arc_uncached, guid, ARC_BUFC_DATA, retry); 4423 (void) arc_flush_state(arc_uncached, guid, ARC_BUFC_METADATA, retry); 4424 } 4425 4426 void 4427 arc_flush(spa_t *spa, boolean_t retry) 4428 { 4429 /* 4430 * If retry is B_TRUE, a spa must not be specified since we have 4431 * no good way to determine if all of a spa's buffers have been 4432 * evicted from an arc state. 4433 */ 4434 ASSERT(!retry || spa == NULL); 4435 4436 arc_flush_impl(spa != NULL ? spa_load_guid(spa) : 0, retry); 4437 } 4438 4439 static arc_async_flush_t * 4440 arc_async_flush_add(uint64_t spa_guid, uint_t level) 4441 { 4442 arc_async_flush_t *af = kmem_alloc(sizeof (*af), KM_SLEEP); 4443 af->af_spa_guid = spa_guid; 4444 af->af_cache_level = level; 4445 taskq_init_ent(&af->af_tqent); 4446 list_link_init(&af->af_node); 4447 4448 mutex_enter(&arc_async_flush_lock); 4449 list_insert_tail(&arc_async_flush_list, af); 4450 mutex_exit(&arc_async_flush_lock); 4451 4452 return (af); 4453 } 4454 4455 static void 4456 arc_async_flush_remove(uint64_t spa_guid, uint_t level) 4457 { 4458 mutex_enter(&arc_async_flush_lock); 4459 for (arc_async_flush_t *af = list_head(&arc_async_flush_list); 4460 af != NULL; af = list_next(&arc_async_flush_list, af)) { 4461 if (af->af_spa_guid == spa_guid && 4462 af->af_cache_level == level) { 4463 list_remove(&arc_async_flush_list, af); 4464 kmem_free(af, sizeof (*af)); 4465 break; 4466 } 4467 } 4468 mutex_exit(&arc_async_flush_lock); 4469 } 4470 4471 static void 4472 arc_flush_task(void *arg) 4473 { 4474 arc_async_flush_t *af = arg; 4475 hrtime_t start_time = gethrtime(); 4476 uint64_t spa_guid = af->af_spa_guid; 4477 4478 arc_flush_impl(spa_guid, B_FALSE); 4479 arc_async_flush_remove(spa_guid, af->af_cache_level); 4480 4481 uint64_t elaspsed = NSEC2MSEC(gethrtime() - start_time); 4482 if (elaspsed > 0) { 4483 zfs_dbgmsg("spa %llu arc flushed in %llu ms", 4484 (u_longlong_t)spa_guid, (u_longlong_t)elaspsed); 4485 } 4486 } 4487 4488 /* 4489 * ARC buffers use the spa's load guid and can continue to exist after 4490 * the spa_t is gone (exported). The blocks are orphaned since each 4491 * spa import has a different load guid. 4492 * 4493 * It's OK if the spa is re-imported while this asynchronous flush is 4494 * still in progress. The new spa_load_guid will be different. 4495 * 4496 * Also, arc_fini will wait for any arc_flush_task to finish. 4497 */ 4498 void 4499 arc_flush_async(spa_t *spa) 4500 { 4501 uint64_t spa_guid = spa_load_guid(spa); 4502 arc_async_flush_t *af = arc_async_flush_add(spa_guid, 1); 4503 4504 taskq_dispatch_ent(arc_flush_taskq, arc_flush_task, 4505 af, TQ_SLEEP, &af->af_tqent); 4506 } 4507 4508 /* 4509 * Check if a guid is still in-use as part of an async teardown task 4510 */ 4511 boolean_t 4512 arc_async_flush_guid_inuse(uint64_t spa_guid) 4513 { 4514 mutex_enter(&arc_async_flush_lock); 4515 for (arc_async_flush_t *af = list_head(&arc_async_flush_list); 4516 af != NULL; af = list_next(&arc_async_flush_list, af)) { 4517 if (af->af_spa_guid == spa_guid) { 4518 mutex_exit(&arc_async_flush_lock); 4519 return (B_TRUE); 4520 } 4521 } 4522 mutex_exit(&arc_async_flush_lock); 4523 return (B_FALSE); 4524 } 4525 4526 uint64_t 4527 arc_reduce_target_size(uint64_t to_free) 4528 { 4529 /* 4530 * Get the actual arc size. Even if we don't need it, this updates 4531 * the aggsum lower bound estimate for arc_is_overflowing(). 4532 */ 4533 uint64_t asize = aggsum_value(&arc_sums.arcstat_size); 4534 4535 /* 4536 * All callers want the ARC to actually evict (at least) this much 4537 * memory. Therefore we reduce from the lower of the current size and 4538 * the target size. This way, even if arc_c is much higher than 4539 * arc_size (as can be the case after many calls to arc_freed(), we will 4540 * immediately have arc_c < arc_size and therefore the arc_evict_zthr 4541 * will evict. 4542 */ 4543 uint64_t c = arc_c; 4544 if (c > arc_c_min) { 4545 c = MIN(c, MAX(asize, arc_c_min)); 4546 to_free = MIN(to_free, c - arc_c_min); 4547 arc_c = c - to_free; 4548 } else { 4549 to_free = 0; 4550 } 4551 4552 /* 4553 * Whether or not we reduced the target size, request eviction if the 4554 * current size is over it now, since caller obviously wants some RAM. 4555 */ 4556 if (asize > arc_c) { 4557 /* See comment in arc_evict_cb_check() on why lock+flag */ 4558 mutex_enter(&arc_evict_lock); 4559 arc_evict_needed = B_TRUE; 4560 mutex_exit(&arc_evict_lock); 4561 zthr_wakeup(arc_evict_zthr); 4562 } 4563 4564 return (to_free); 4565 } 4566 4567 /* 4568 * Determine if the system is under memory pressure and is asking 4569 * to reclaim memory. A return value of B_TRUE indicates that the system 4570 * is under memory pressure and that the arc should adjust accordingly. 4571 */ 4572 boolean_t 4573 arc_reclaim_needed(void) 4574 { 4575 return (arc_available_memory() < 0); 4576 } 4577 4578 void 4579 arc_kmem_reap_soon(void) 4580 { 4581 size_t i; 4582 kmem_cache_t *prev_cache = NULL; 4583 kmem_cache_t *prev_data_cache = NULL; 4584 4585 #ifdef _KERNEL 4586 #if defined(_ILP32) 4587 /* 4588 * Reclaim unused memory from all kmem caches. 4589 */ 4590 kmem_reap(); 4591 #endif 4592 #endif 4593 4594 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 4595 #if defined(_ILP32) 4596 /* reach upper limit of cache size on 32-bit */ 4597 if (zio_buf_cache[i] == NULL) 4598 break; 4599 #endif 4600 if (zio_buf_cache[i] != prev_cache) { 4601 prev_cache = zio_buf_cache[i]; 4602 kmem_cache_reap_now(zio_buf_cache[i]); 4603 } 4604 if (zio_data_buf_cache[i] != prev_data_cache) { 4605 prev_data_cache = zio_data_buf_cache[i]; 4606 kmem_cache_reap_now(zio_data_buf_cache[i]); 4607 } 4608 } 4609 kmem_cache_reap_now(buf_cache); 4610 kmem_cache_reap_now(hdr_full_cache); 4611 kmem_cache_reap_now(hdr_l2only_cache); 4612 kmem_cache_reap_now(zfs_btree_leaf_cache); 4613 abd_cache_reap_now(); 4614 } 4615 4616 static boolean_t 4617 arc_evict_cb_check(void *arg, zthr_t *zthr) 4618 { 4619 (void) arg, (void) zthr; 4620 4621 #ifdef ZFS_DEBUG 4622 /* 4623 * This is necessary in order to keep the kstat information 4624 * up to date for tools that display kstat data such as the 4625 * mdb ::arc dcmd and the Linux crash utility. These tools 4626 * typically do not call kstat's update function, but simply 4627 * dump out stats from the most recent update. Without 4628 * this call, these commands may show stale stats for the 4629 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 4630 * with this call, the data might be out of date if the 4631 * evict thread hasn't been woken recently; but that should 4632 * suffice. The arc_state_t structures can be queried 4633 * directly if more accurate information is needed. 4634 */ 4635 if (arc_ksp != NULL) 4636 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 4637 #endif 4638 4639 /* 4640 * We have to rely on arc_wait_for_eviction() to tell us when to 4641 * evict, rather than checking if we are overflowing here, so that we 4642 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv. 4643 * If we have become "not overflowing" since arc_wait_for_eviction() 4644 * checked, we need to wake it up. We could broadcast the CV here, 4645 * but arc_wait_for_eviction() may have not yet gone to sleep. We 4646 * would need to use a mutex to ensure that this function doesn't 4647 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g. 4648 * the arc_evict_lock). However, the lock ordering of such a lock 4649 * would necessarily be incorrect with respect to the zthr_lock, 4650 * which is held before this function is called, and is held by 4651 * arc_wait_for_eviction() when it calls zthr_wakeup(). 4652 */ 4653 if (arc_evict_needed) 4654 return (B_TRUE); 4655 4656 /* 4657 * If we have buffers in uncached state, evict them periodically. 4658 */ 4659 return ((zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_DATA]) + 4660 zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]) && 4661 ddi_get_lbolt() - arc_last_uncached_flush > 4662 MSEC_TO_TICK(arc_min_prefetch_ms / 2))); 4663 } 4664 4665 /* 4666 * Keep arc_size under arc_c by running arc_evict which evicts data 4667 * from the ARC. 4668 */ 4669 static void 4670 arc_evict_cb(void *arg, zthr_t *zthr) 4671 { 4672 (void) arg; 4673 4674 uint64_t evicted = 0; 4675 fstrans_cookie_t cookie = spl_fstrans_mark(); 4676 4677 /* Always try to evict from uncached state. */ 4678 arc_last_uncached_flush = ddi_get_lbolt(); 4679 evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_DATA, B_FALSE); 4680 evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_METADATA, B_FALSE); 4681 4682 /* Evict from other states only if told to. */ 4683 if (arc_evict_needed) 4684 evicted += arc_evict(); 4685 4686 /* 4687 * If evicted is zero, we couldn't evict anything 4688 * via arc_evict(). This could be due to hash lock 4689 * collisions, but more likely due to the majority of 4690 * arc buffers being unevictable. Therefore, even if 4691 * arc_size is above arc_c, another pass is unlikely to 4692 * be helpful and could potentially cause us to enter an 4693 * infinite loop. Additionally, zthr_iscancelled() is 4694 * checked here so that if the arc is shutting down, the 4695 * broadcast will wake any remaining arc evict waiters. 4696 * 4697 * Note we cancel using zthr instead of arc_evict_zthr 4698 * because the latter may not yet be initializd when the 4699 * callback is first invoked. 4700 */ 4701 mutex_enter(&arc_evict_lock); 4702 arc_evict_needed = !zthr_iscancelled(zthr) && 4703 evicted > 0 && aggsum_compare(&arc_sums.arcstat_size, arc_c) > 0; 4704 if (!arc_evict_needed) { 4705 /* 4706 * We're either no longer overflowing, or we 4707 * can't evict anything more, so we should wake 4708 * arc_get_data_impl() sooner. 4709 */ 4710 arc_evict_waiter_t *aw; 4711 while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) { 4712 cv_broadcast(&aw->aew_cv); 4713 } 4714 arc_set_need_free(); 4715 } 4716 mutex_exit(&arc_evict_lock); 4717 spl_fstrans_unmark(cookie); 4718 } 4719 4720 static boolean_t 4721 arc_reap_cb_check(void *arg, zthr_t *zthr) 4722 { 4723 (void) arg, (void) zthr; 4724 4725 int64_t free_memory = arc_available_memory(); 4726 static int reap_cb_check_counter = 0; 4727 4728 /* 4729 * If a kmem reap is already active, don't schedule more. We must 4730 * check for this because kmem_cache_reap_soon() won't actually 4731 * block on the cache being reaped (this is to prevent callers from 4732 * becoming implicitly blocked by a system-wide kmem reap -- which, 4733 * on a system with many, many full magazines, can take minutes). 4734 */ 4735 if (!kmem_cache_reap_active() && free_memory < 0) { 4736 4737 arc_no_grow = B_TRUE; 4738 arc_warm = B_TRUE; 4739 /* 4740 * Wait at least zfs_grow_retry (default 5) seconds 4741 * before considering growing. 4742 */ 4743 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry); 4744 return (B_TRUE); 4745 } else if (free_memory < arc_c >> arc_no_grow_shift) { 4746 arc_no_grow = B_TRUE; 4747 } else if (gethrtime() >= arc_growtime) { 4748 arc_no_grow = B_FALSE; 4749 } 4750 4751 /* 4752 * Called unconditionally every 60 seconds to reclaim unused 4753 * zstd compression and decompression context. This is done 4754 * here to avoid the need for an independent thread. 4755 */ 4756 if (!((reap_cb_check_counter++) % 60)) 4757 zfs_zstd_cache_reap_now(); 4758 4759 return (B_FALSE); 4760 } 4761 4762 /* 4763 * Keep enough free memory in the system by reaping the ARC's kmem 4764 * caches. To cause more slabs to be reapable, we may reduce the 4765 * target size of the cache (arc_c), causing the arc_evict_cb() 4766 * to free more buffers. 4767 */ 4768 static void 4769 arc_reap_cb(void *arg, zthr_t *zthr) 4770 { 4771 int64_t can_free, free_memory, to_free; 4772 4773 (void) arg, (void) zthr; 4774 fstrans_cookie_t cookie = spl_fstrans_mark(); 4775 4776 /* 4777 * Kick off asynchronous kmem_reap()'s of all our caches. 4778 */ 4779 arc_kmem_reap_soon(); 4780 4781 /* 4782 * Wait at least arc_kmem_cache_reap_retry_ms between 4783 * arc_kmem_reap_soon() calls. Without this check it is possible to 4784 * end up in a situation where we spend lots of time reaping 4785 * caches, while we're near arc_c_min. Waiting here also gives the 4786 * subsequent free memory check a chance of finding that the 4787 * asynchronous reap has already freed enough memory, and we don't 4788 * need to call arc_reduce_target_size(). 4789 */ 4790 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000); 4791 4792 /* 4793 * Reduce the target size as needed to maintain the amount of free 4794 * memory in the system at a fraction of the arc_size (1/128th by 4795 * default). If oversubscribed (free_memory < 0) then reduce the 4796 * target arc_size by the deficit amount plus the fractional 4797 * amount. If free memory is positive but less than the fractional 4798 * amount, reduce by what is needed to hit the fractional amount. 4799 */ 4800 free_memory = arc_available_memory(); 4801 can_free = arc_c - arc_c_min; 4802 to_free = (MAX(can_free, 0) >> arc_shrink_shift) - free_memory; 4803 if (to_free > 0) 4804 arc_reduce_target_size(to_free); 4805 spl_fstrans_unmark(cookie); 4806 } 4807 4808 #ifdef _KERNEL 4809 /* 4810 * Determine the amount of memory eligible for eviction contained in the 4811 * ARC. All clean data reported by the ghost lists can always be safely 4812 * evicted. Due to arc_c_min, the same does not hold for all clean data 4813 * contained by the regular mru and mfu lists. 4814 * 4815 * In the case of the regular mru and mfu lists, we need to report as 4816 * much clean data as possible, such that evicting that same reported 4817 * data will not bring arc_size below arc_c_min. Thus, in certain 4818 * circumstances, the total amount of clean data in the mru and mfu 4819 * lists might not actually be evictable. 4820 * 4821 * The following two distinct cases are accounted for: 4822 * 4823 * 1. The sum of the amount of dirty data contained by both the mru and 4824 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 4825 * is greater than or equal to arc_c_min. 4826 * (i.e. amount of dirty data >= arc_c_min) 4827 * 4828 * This is the easy case; all clean data contained by the mru and mfu 4829 * lists is evictable. Evicting all clean data can only drop arc_size 4830 * to the amount of dirty data, which is greater than arc_c_min. 4831 * 4832 * 2. The sum of the amount of dirty data contained by both the mru and 4833 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 4834 * is less than arc_c_min. 4835 * (i.e. arc_c_min > amount of dirty data) 4836 * 4837 * 2.1. arc_size is greater than or equal arc_c_min. 4838 * (i.e. arc_size >= arc_c_min > amount of dirty data) 4839 * 4840 * In this case, not all clean data from the regular mru and mfu 4841 * lists is actually evictable; we must leave enough clean data 4842 * to keep arc_size above arc_c_min. Thus, the maximum amount of 4843 * evictable data from the two lists combined, is exactly the 4844 * difference between arc_size and arc_c_min. 4845 * 4846 * 2.2. arc_size is less than arc_c_min 4847 * (i.e. arc_c_min > arc_size > amount of dirty data) 4848 * 4849 * In this case, none of the data contained in the mru and mfu 4850 * lists is evictable, even if it's clean. Since arc_size is 4851 * already below arc_c_min, evicting any more would only 4852 * increase this negative difference. 4853 */ 4854 4855 #endif /* _KERNEL */ 4856 4857 /* 4858 * Adapt arc info given the number of bytes we are trying to add and 4859 * the state that we are coming from. This function is only called 4860 * when we are adding new content to the cache. 4861 */ 4862 static void 4863 arc_adapt(uint64_t bytes) 4864 { 4865 /* 4866 * Wake reap thread if we do not have any available memory 4867 */ 4868 if (arc_reclaim_needed()) { 4869 zthr_wakeup(arc_reap_zthr); 4870 return; 4871 } 4872 4873 if (arc_no_grow) 4874 return; 4875 4876 if (arc_c >= arc_c_max) 4877 return; 4878 4879 /* 4880 * If we're within (2 * maxblocksize) bytes of the target 4881 * cache size, increment the target cache size 4882 */ 4883 if (aggsum_upper_bound(&arc_sums.arcstat_size) + 4884 2 * SPA_MAXBLOCKSIZE >= arc_c) { 4885 uint64_t dc = MAX(bytes, SPA_OLD_MAXBLOCKSIZE); 4886 if (atomic_add_64_nv(&arc_c, dc) > arc_c_max) 4887 arc_c = arc_c_max; 4888 } 4889 } 4890 4891 /* 4892 * Check if ARC current size has grown past our upper thresholds. 4893 */ 4894 static arc_ovf_level_t 4895 arc_is_overflowing(boolean_t lax, boolean_t use_reserve) 4896 { 4897 /* 4898 * We just compare the lower bound here for performance reasons. Our 4899 * primary goals are to make sure that the arc never grows without 4900 * bound, and that it can reach its maximum size. This check 4901 * accomplishes both goals. The maximum amount we could run over by is 4902 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block 4903 * in the ARC. In practice, that's in the tens of MB, which is low 4904 * enough to be safe. 4905 */ 4906 int64_t over = aggsum_lower_bound(&arc_sums.arcstat_size) - arc_c - 4907 zfs_max_recordsize; 4908 4909 /* Always allow at least one block of overflow. */ 4910 if (over < 0) 4911 return (ARC_OVF_NONE); 4912 4913 /* If we are under memory pressure, report severe overflow. */ 4914 if (!lax) 4915 return (ARC_OVF_SEVERE); 4916 4917 /* We are not under pressure, so be more or less relaxed. */ 4918 int64_t overflow = (arc_c >> zfs_arc_overflow_shift) / 2; 4919 if (use_reserve) 4920 overflow *= 3; 4921 return (over < overflow ? ARC_OVF_SOME : ARC_OVF_SEVERE); 4922 } 4923 4924 static abd_t * 4925 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, const void *tag, 4926 int alloc_flags) 4927 { 4928 arc_buf_contents_t type = arc_buf_type(hdr); 4929 4930 arc_get_data_impl(hdr, size, tag, alloc_flags); 4931 if (alloc_flags & ARC_HDR_ALLOC_LINEAR) 4932 return (abd_alloc_linear(size, type == ARC_BUFC_METADATA)); 4933 else 4934 return (abd_alloc(size, type == ARC_BUFC_METADATA)); 4935 } 4936 4937 static void * 4938 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, const void *tag) 4939 { 4940 arc_buf_contents_t type = arc_buf_type(hdr); 4941 4942 arc_get_data_impl(hdr, size, tag, 0); 4943 if (type == ARC_BUFC_METADATA) { 4944 return (zio_buf_alloc(size)); 4945 } else { 4946 ASSERT(type == ARC_BUFC_DATA); 4947 return (zio_data_buf_alloc(size)); 4948 } 4949 } 4950 4951 /* 4952 * Wait for the specified amount of data (in bytes) to be evicted from the 4953 * ARC, and for there to be sufficient free memory in the system. 4954 * The lax argument specifies that caller does not have a specific reason 4955 * to wait, not aware of any memory pressure. Low memory handlers though 4956 * should set it to B_FALSE to wait for all required evictions to complete. 4957 * The use_reserve argument allows some callers to wait less than others 4958 * to not block critical code paths, possibly blocking other resources. 4959 */ 4960 void 4961 arc_wait_for_eviction(uint64_t amount, boolean_t lax, boolean_t use_reserve) 4962 { 4963 switch (arc_is_overflowing(lax, use_reserve)) { 4964 case ARC_OVF_NONE: 4965 return; 4966 case ARC_OVF_SOME: 4967 /* 4968 * This is a bit racy without taking arc_evict_lock, but the 4969 * worst that can happen is we either call zthr_wakeup() extra 4970 * time due to race with other thread here, or the set flag 4971 * get cleared by arc_evict_cb(), which is unlikely due to 4972 * big hysteresis, but also not important since at this level 4973 * of overflow the eviction is purely advisory. Same time 4974 * taking the global lock here every time without waiting for 4975 * the actual eviction creates a significant lock contention. 4976 */ 4977 if (!arc_evict_needed) { 4978 arc_evict_needed = B_TRUE; 4979 zthr_wakeup(arc_evict_zthr); 4980 } 4981 return; 4982 case ARC_OVF_SEVERE: 4983 default: 4984 { 4985 arc_evict_waiter_t aw; 4986 list_link_init(&aw.aew_node); 4987 cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL); 4988 4989 uint64_t last_count = 0; 4990 mutex_enter(&arc_evict_lock); 4991 if (!list_is_empty(&arc_evict_waiters)) { 4992 arc_evict_waiter_t *last = 4993 list_tail(&arc_evict_waiters); 4994 last_count = last->aew_count; 4995 } else if (!arc_evict_needed) { 4996 arc_evict_needed = B_TRUE; 4997 zthr_wakeup(arc_evict_zthr); 4998 } 4999 /* 5000 * Note, the last waiter's count may be less than 5001 * arc_evict_count if we are low on memory in which 5002 * case arc_evict_state_impl() may have deferred 5003 * wakeups (but still incremented arc_evict_count). 5004 */ 5005 aw.aew_count = MAX(last_count, arc_evict_count) + amount; 5006 5007 list_insert_tail(&arc_evict_waiters, &aw); 5008 5009 arc_set_need_free(); 5010 5011 DTRACE_PROBE3(arc__wait__for__eviction, 5012 uint64_t, amount, 5013 uint64_t, arc_evict_count, 5014 uint64_t, aw.aew_count); 5015 5016 /* 5017 * We will be woken up either when arc_evict_count reaches 5018 * aew_count, or when the ARC is no longer overflowing and 5019 * eviction completes. 5020 * In case of "false" wakeup, we will still be on the list. 5021 */ 5022 do { 5023 cv_wait(&aw.aew_cv, &arc_evict_lock); 5024 } while (list_link_active(&aw.aew_node)); 5025 mutex_exit(&arc_evict_lock); 5026 5027 cv_destroy(&aw.aew_cv); 5028 } 5029 } 5030 } 5031 5032 /* 5033 * Allocate a block and return it to the caller. If we are hitting the 5034 * hard limit for the cache size, we must sleep, waiting for the eviction 5035 * thread to catch up. If we're past the target size but below the hard 5036 * limit, we'll only signal the reclaim thread and continue on. 5037 */ 5038 static void 5039 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag, 5040 int alloc_flags) 5041 { 5042 arc_adapt(size); 5043 5044 /* 5045 * If arc_size is currently overflowing, we must be adding data 5046 * faster than we are evicting. To ensure we don't compound the 5047 * problem by adding more data and forcing arc_size to grow even 5048 * further past it's target size, we wait for the eviction thread to 5049 * make some progress. We also wait for there to be sufficient free 5050 * memory in the system, as measured by arc_free_memory(). 5051 * 5052 * Specifically, we wait for zfs_arc_eviction_pct percent of the 5053 * requested size to be evicted. This should be more than 100%, to 5054 * ensure that that progress is also made towards getting arc_size 5055 * under arc_c. See the comment above zfs_arc_eviction_pct. 5056 */ 5057 arc_wait_for_eviction(size * zfs_arc_eviction_pct / 100, 5058 B_TRUE, alloc_flags & ARC_HDR_USE_RESERVE); 5059 5060 arc_buf_contents_t type = arc_buf_type(hdr); 5061 if (type == ARC_BUFC_METADATA) { 5062 arc_space_consume(size, ARC_SPACE_META); 5063 } else { 5064 arc_space_consume(size, ARC_SPACE_DATA); 5065 } 5066 5067 /* 5068 * Update the state size. Note that ghost states have a 5069 * "ghost size" and so don't need to be updated. 5070 */ 5071 arc_state_t *state = hdr->b_l1hdr.b_state; 5072 if (!GHOST_STATE(state)) { 5073 5074 (void) zfs_refcount_add_many(&state->arcs_size[type], size, 5075 tag); 5076 5077 /* 5078 * If this is reached via arc_read, the link is 5079 * protected by the hash lock. If reached via 5080 * arc_buf_alloc, the header should not be accessed by 5081 * any other thread. And, if reached via arc_read_done, 5082 * the hash lock will protect it if it's found in the 5083 * hash table; otherwise no other thread should be 5084 * trying to [add|remove]_reference it. 5085 */ 5086 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5087 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5088 (void) zfs_refcount_add_many(&state->arcs_esize[type], 5089 size, tag); 5090 } 5091 } 5092 } 5093 5094 static void 5095 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, 5096 const void *tag) 5097 { 5098 arc_free_data_impl(hdr, size, tag); 5099 abd_free(abd); 5100 } 5101 5102 static void 5103 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, const void *tag) 5104 { 5105 arc_buf_contents_t type = arc_buf_type(hdr); 5106 5107 arc_free_data_impl(hdr, size, tag); 5108 if (type == ARC_BUFC_METADATA) { 5109 zio_buf_free(buf, size); 5110 } else { 5111 ASSERT(type == ARC_BUFC_DATA); 5112 zio_data_buf_free(buf, size); 5113 } 5114 } 5115 5116 /* 5117 * Free the arc data buffer. 5118 */ 5119 static void 5120 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag) 5121 { 5122 arc_state_t *state = hdr->b_l1hdr.b_state; 5123 arc_buf_contents_t type = arc_buf_type(hdr); 5124 5125 /* protected by hash lock, if in the hash table */ 5126 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5127 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5128 ASSERT(state != arc_anon && state != arc_l2c_only); 5129 5130 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 5131 size, tag); 5132 } 5133 (void) zfs_refcount_remove_many(&state->arcs_size[type], size, tag); 5134 5135 VERIFY3U(hdr->b_type, ==, type); 5136 if (type == ARC_BUFC_METADATA) { 5137 arc_space_return(size, ARC_SPACE_META); 5138 } else { 5139 ASSERT(type == ARC_BUFC_DATA); 5140 arc_space_return(size, ARC_SPACE_DATA); 5141 } 5142 } 5143 5144 /* 5145 * This routine is called whenever a buffer is accessed. 5146 */ 5147 static void 5148 arc_access(arc_buf_hdr_t *hdr, arc_flags_t arc_flags, boolean_t hit) 5149 { 5150 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 5151 ASSERT(HDR_HAS_L1HDR(hdr)); 5152 5153 /* 5154 * Update buffer prefetch status. 5155 */ 5156 boolean_t was_prefetch = HDR_PREFETCH(hdr); 5157 boolean_t now_prefetch = arc_flags & ARC_FLAG_PREFETCH; 5158 if (was_prefetch != now_prefetch) { 5159 if (was_prefetch) { 5160 ARCSTAT_CONDSTAT(hit, demand_hit, demand_iohit, 5161 HDR_PRESCIENT_PREFETCH(hdr), prescient, predictive, 5162 prefetch); 5163 } 5164 if (HDR_HAS_L2HDR(hdr)) 5165 l2arc_hdr_arcstats_decrement_state(hdr); 5166 if (was_prefetch) { 5167 arc_hdr_clear_flags(hdr, 5168 ARC_FLAG_PREFETCH | ARC_FLAG_PRESCIENT_PREFETCH); 5169 } else { 5170 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 5171 } 5172 if (HDR_HAS_L2HDR(hdr)) 5173 l2arc_hdr_arcstats_increment_state(hdr); 5174 } 5175 if (now_prefetch) { 5176 if (arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) { 5177 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 5178 ARCSTAT_BUMP(arcstat_prescient_prefetch); 5179 } else { 5180 ARCSTAT_BUMP(arcstat_predictive_prefetch); 5181 } 5182 } 5183 if (arc_flags & ARC_FLAG_L2CACHE) 5184 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 5185 5186 clock_t now = ddi_get_lbolt(); 5187 if (hdr->b_l1hdr.b_state == arc_anon) { 5188 arc_state_t *new_state; 5189 /* 5190 * This buffer is not in the cache, and does not appear in 5191 * our "ghost" lists. Add it to the MRU or uncached state. 5192 */ 5193 ASSERT0(hdr->b_l1hdr.b_arc_access); 5194 hdr->b_l1hdr.b_arc_access = now; 5195 if (HDR_UNCACHED(hdr)) { 5196 new_state = arc_uncached; 5197 DTRACE_PROBE1(new_state__uncached, arc_buf_hdr_t *, 5198 hdr); 5199 } else { 5200 new_state = arc_mru; 5201 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5202 } 5203 arc_change_state(new_state, hdr); 5204 } else if (hdr->b_l1hdr.b_state == arc_mru) { 5205 /* 5206 * This buffer has been accessed once recently and either 5207 * its read is still in progress or it is in the cache. 5208 */ 5209 if (HDR_IO_IN_PROGRESS(hdr)) { 5210 hdr->b_l1hdr.b_arc_access = now; 5211 return; 5212 } 5213 hdr->b_l1hdr.b_mru_hits++; 5214 ARCSTAT_BUMP(arcstat_mru_hits); 5215 5216 /* 5217 * If the previous access was a prefetch, then it already 5218 * handled possible promotion, so nothing more to do for now. 5219 */ 5220 if (was_prefetch) { 5221 hdr->b_l1hdr.b_arc_access = now; 5222 return; 5223 } 5224 5225 /* 5226 * If more than ARC_MINTIME have passed from the previous 5227 * hit, promote the buffer to the MFU state. 5228 */ 5229 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access + 5230 ARC_MINTIME)) { 5231 hdr->b_l1hdr.b_arc_access = now; 5232 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5233 arc_change_state(arc_mfu, hdr); 5234 } 5235 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 5236 arc_state_t *new_state; 5237 /* 5238 * This buffer has been accessed once recently, but was 5239 * evicted from the cache. Would we have bigger MRU, it 5240 * would be an MRU hit, so handle it the same way, except 5241 * we don't need to check the previous access time. 5242 */ 5243 hdr->b_l1hdr.b_mru_ghost_hits++; 5244 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 5245 hdr->b_l1hdr.b_arc_access = now; 5246 wmsum_add(&arc_mru_ghost->arcs_hits[arc_buf_type(hdr)], 5247 arc_hdr_size(hdr)); 5248 if (was_prefetch) { 5249 new_state = arc_mru; 5250 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5251 } else { 5252 new_state = arc_mfu; 5253 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5254 } 5255 arc_change_state(new_state, hdr); 5256 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 5257 /* 5258 * This buffer has been accessed more than once and either 5259 * still in the cache or being restored from one of ghosts. 5260 */ 5261 if (!HDR_IO_IN_PROGRESS(hdr)) { 5262 hdr->b_l1hdr.b_mfu_hits++; 5263 ARCSTAT_BUMP(arcstat_mfu_hits); 5264 } 5265 hdr->b_l1hdr.b_arc_access = now; 5266 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 5267 /* 5268 * This buffer has been accessed more than once recently, but 5269 * has been evicted from the cache. Would we have bigger MFU 5270 * it would stay in cache, so move it back to MFU state. 5271 */ 5272 hdr->b_l1hdr.b_mfu_ghost_hits++; 5273 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 5274 hdr->b_l1hdr.b_arc_access = now; 5275 wmsum_add(&arc_mfu_ghost->arcs_hits[arc_buf_type(hdr)], 5276 arc_hdr_size(hdr)); 5277 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5278 arc_change_state(arc_mfu, hdr); 5279 } else if (hdr->b_l1hdr.b_state == arc_uncached) { 5280 /* 5281 * This buffer is uncacheable, but we got a hit. Probably 5282 * a demand read after prefetch. Nothing more to do here. 5283 */ 5284 if (!HDR_IO_IN_PROGRESS(hdr)) 5285 ARCSTAT_BUMP(arcstat_uncached_hits); 5286 hdr->b_l1hdr.b_arc_access = now; 5287 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 5288 /* 5289 * This buffer is on the 2nd Level ARC and was not accessed 5290 * for a long time, so treat it as new and put into MRU. 5291 */ 5292 hdr->b_l1hdr.b_arc_access = now; 5293 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5294 arc_change_state(arc_mru, hdr); 5295 } else { 5296 cmn_err(CE_PANIC, "invalid arc state 0x%p", 5297 hdr->b_l1hdr.b_state); 5298 } 5299 } 5300 5301 /* 5302 * This routine is called by dbuf_hold() to update the arc_access() state 5303 * which otherwise would be skipped for entries in the dbuf cache. 5304 */ 5305 void 5306 arc_buf_access(arc_buf_t *buf) 5307 { 5308 arc_buf_hdr_t *hdr = buf->b_hdr; 5309 5310 /* 5311 * Avoid taking the hash_lock when possible as an optimization. 5312 * The header must be checked again under the hash_lock in order 5313 * to handle the case where it is concurrently being released. 5314 */ 5315 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) 5316 return; 5317 5318 kmutex_t *hash_lock = HDR_LOCK(hdr); 5319 mutex_enter(hash_lock); 5320 5321 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5322 mutex_exit(hash_lock); 5323 ARCSTAT_BUMP(arcstat_access_skip); 5324 return; 5325 } 5326 5327 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5328 hdr->b_l1hdr.b_state == arc_mfu || 5329 hdr->b_l1hdr.b_state == arc_uncached); 5330 5331 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5332 arc_access(hdr, 0, B_TRUE); 5333 mutex_exit(hash_lock); 5334 5335 ARCSTAT_BUMP(arcstat_hits); 5336 ARCSTAT_CONDSTAT(B_TRUE /* demand */, demand, prefetch, 5337 !HDR_ISTYPE_METADATA(hdr), data, metadata, hits); 5338 } 5339 5340 /* a generic arc_read_done_func_t which you can use */ 5341 void 5342 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5343 arc_buf_t *buf, void *arg) 5344 { 5345 (void) zio, (void) zb, (void) bp; 5346 5347 if (buf == NULL) 5348 return; 5349 5350 memcpy(arg, buf->b_data, arc_buf_size(buf)); 5351 arc_buf_destroy(buf, arg); 5352 } 5353 5354 /* a generic arc_read_done_func_t */ 5355 void 5356 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5357 arc_buf_t *buf, void *arg) 5358 { 5359 (void) zb, (void) bp; 5360 arc_buf_t **bufp = arg; 5361 5362 if (buf == NULL) { 5363 ASSERT(zio == NULL || zio->io_error != 0); 5364 *bufp = NULL; 5365 } else { 5366 ASSERT(zio == NULL || zio->io_error == 0); 5367 *bufp = buf; 5368 ASSERT(buf->b_data != NULL); 5369 } 5370 } 5371 5372 static void 5373 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp) 5374 { 5375 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 5376 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0); 5377 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF); 5378 } else { 5379 if (HDR_COMPRESSION_ENABLED(hdr)) { 5380 ASSERT3U(arc_hdr_get_compress(hdr), ==, 5381 BP_GET_COMPRESS(bp)); 5382 } 5383 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 5384 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); 5385 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp)); 5386 } 5387 } 5388 5389 static void 5390 arc_read_done(zio_t *zio) 5391 { 5392 blkptr_t *bp = zio->io_bp; 5393 arc_buf_hdr_t *hdr = zio->io_private; 5394 kmutex_t *hash_lock = NULL; 5395 arc_callback_t *callback_list; 5396 arc_callback_t *acb; 5397 5398 /* 5399 * The hdr was inserted into hash-table and removed from lists 5400 * prior to starting I/O. We should find this header, since 5401 * it's in the hash table, and it should be legit since it's 5402 * not possible to evict it during the I/O. The only possible 5403 * reason for it not to be found is if we were freed during the 5404 * read. 5405 */ 5406 if (HDR_IN_HASH_TABLE(hdr)) { 5407 arc_buf_hdr_t *found; 5408 5409 ASSERT3U(hdr->b_birth, ==, BP_GET_BIRTH(zio->io_bp)); 5410 ASSERT3U(hdr->b_dva.dva_word[0], ==, 5411 BP_IDENTITY(zio->io_bp)->dva_word[0]); 5412 ASSERT3U(hdr->b_dva.dva_word[1], ==, 5413 BP_IDENTITY(zio->io_bp)->dva_word[1]); 5414 5415 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock); 5416 5417 ASSERT((found == hdr && 5418 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 5419 (found == hdr && HDR_L2_READING(hdr))); 5420 ASSERT3P(hash_lock, !=, NULL); 5421 } 5422 5423 if (BP_IS_PROTECTED(bp)) { 5424 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 5425 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 5426 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 5427 hdr->b_crypt_hdr.b_iv); 5428 5429 if (zio->io_error == 0) { 5430 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) { 5431 void *tmpbuf; 5432 5433 tmpbuf = abd_borrow_buf_copy(zio->io_abd, 5434 sizeof (zil_chain_t)); 5435 zio_crypt_decode_mac_zil(tmpbuf, 5436 hdr->b_crypt_hdr.b_mac); 5437 abd_return_buf(zio->io_abd, tmpbuf, 5438 sizeof (zil_chain_t)); 5439 } else { 5440 zio_crypt_decode_mac_bp(bp, 5441 hdr->b_crypt_hdr.b_mac); 5442 } 5443 } 5444 } 5445 5446 if (zio->io_error == 0) { 5447 /* byteswap if necessary */ 5448 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 5449 if (BP_GET_LEVEL(zio->io_bp) > 0) { 5450 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 5451 } else { 5452 hdr->b_l1hdr.b_byteswap = 5453 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 5454 } 5455 } else { 5456 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 5457 } 5458 if (!HDR_L2_READING(hdr)) { 5459 hdr->b_complevel = zio->io_prop.zp_complevel; 5460 } 5461 } 5462 5463 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); 5464 if (l2arc_noprefetch && HDR_PREFETCH(hdr)) 5465 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE); 5466 5467 callback_list = hdr->b_l1hdr.b_acb; 5468 ASSERT3P(callback_list, !=, NULL); 5469 hdr->b_l1hdr.b_acb = NULL; 5470 5471 /* 5472 * If a read request has a callback (i.e. acb_done is not NULL), then we 5473 * make a buf containing the data according to the parameters which were 5474 * passed in. The implementation of arc_buf_alloc_impl() ensures that we 5475 * aren't needlessly decompressing the data multiple times. 5476 */ 5477 int callback_cnt = 0; 5478 for (acb = callback_list; acb != NULL; acb = acb->acb_next) { 5479 5480 /* We need the last one to call below in original order. */ 5481 callback_list = acb; 5482 5483 if (!acb->acb_done || acb->acb_nobuf) 5484 continue; 5485 5486 callback_cnt++; 5487 5488 if (zio->io_error != 0) 5489 continue; 5490 5491 int error = arc_buf_alloc_impl(hdr, zio->io_spa, 5492 &acb->acb_zb, acb->acb_private, acb->acb_encrypted, 5493 acb->acb_compressed, acb->acb_noauth, B_TRUE, 5494 &acb->acb_buf); 5495 5496 /* 5497 * Assert non-speculative zios didn't fail because an 5498 * encryption key wasn't loaded 5499 */ 5500 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) || 5501 error != EACCES); 5502 5503 /* 5504 * If we failed to decrypt, report an error now (as the zio 5505 * layer would have done if it had done the transforms). 5506 */ 5507 if (error == ECKSUM) { 5508 ASSERT(BP_IS_PROTECTED(bp)); 5509 error = SET_ERROR(EIO); 5510 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5511 spa_log_error(zio->io_spa, &acb->acb_zb, 5512 BP_GET_LOGICAL_BIRTH(zio->io_bp)); 5513 (void) zfs_ereport_post( 5514 FM_EREPORT_ZFS_AUTHENTICATION, 5515 zio->io_spa, NULL, &acb->acb_zb, zio, 0); 5516 } 5517 } 5518 5519 if (error != 0) { 5520 /* 5521 * Decompression or decryption failed. Set 5522 * io_error so that when we call acb_done 5523 * (below), we will indicate that the read 5524 * failed. Note that in the unusual case 5525 * where one callback is compressed and another 5526 * uncompressed, we will mark all of them 5527 * as failed, even though the uncompressed 5528 * one can't actually fail. In this case, 5529 * the hdr will not be anonymous, because 5530 * if there are multiple callbacks, it's 5531 * because multiple threads found the same 5532 * arc buf in the hash table. 5533 */ 5534 zio->io_error = error; 5535 } 5536 } 5537 5538 /* 5539 * If there are multiple callbacks, we must have the hash lock, 5540 * because the only way for multiple threads to find this hdr is 5541 * in the hash table. This ensures that if there are multiple 5542 * callbacks, the hdr is not anonymous. If it were anonymous, 5543 * we couldn't use arc_buf_destroy() in the error case below. 5544 */ 5545 ASSERT(callback_cnt < 2 || hash_lock != NULL); 5546 5547 if (zio->io_error == 0) { 5548 arc_hdr_verify(hdr, zio->io_bp); 5549 } else { 5550 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 5551 if (hdr->b_l1hdr.b_state != arc_anon) 5552 arc_change_state(arc_anon, hdr); 5553 if (HDR_IN_HASH_TABLE(hdr)) 5554 buf_hash_remove(hdr); 5555 } 5556 5557 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5558 (void) remove_reference(hdr, hdr); 5559 5560 if (hash_lock != NULL) 5561 mutex_exit(hash_lock); 5562 5563 /* execute each callback and free its structure */ 5564 while ((acb = callback_list) != NULL) { 5565 if (acb->acb_done != NULL) { 5566 if (zio->io_error != 0 && acb->acb_buf != NULL) { 5567 /* 5568 * If arc_buf_alloc_impl() fails during 5569 * decompression, the buf will still be 5570 * allocated, and needs to be freed here. 5571 */ 5572 arc_buf_destroy(acb->acb_buf, 5573 acb->acb_private); 5574 acb->acb_buf = NULL; 5575 } 5576 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp, 5577 acb->acb_buf, acb->acb_private); 5578 } 5579 5580 if (acb->acb_zio_dummy != NULL) { 5581 acb->acb_zio_dummy->io_error = zio->io_error; 5582 zio_nowait(acb->acb_zio_dummy); 5583 } 5584 5585 callback_list = acb->acb_prev; 5586 if (acb->acb_wait) { 5587 mutex_enter(&acb->acb_wait_lock); 5588 acb->acb_wait_error = zio->io_error; 5589 acb->acb_wait = B_FALSE; 5590 cv_signal(&acb->acb_wait_cv); 5591 mutex_exit(&acb->acb_wait_lock); 5592 /* acb will be freed by the waiting thread. */ 5593 } else { 5594 kmem_free(acb, sizeof (arc_callback_t)); 5595 } 5596 } 5597 } 5598 5599 /* 5600 * Lookup the block at the specified DVA (in bp), and return the manner in 5601 * which the block is cached. A zero return indicates not cached. 5602 */ 5603 int 5604 arc_cached(spa_t *spa, const blkptr_t *bp) 5605 { 5606 arc_buf_hdr_t *hdr = NULL; 5607 kmutex_t *hash_lock = NULL; 5608 uint64_t guid = spa_load_guid(spa); 5609 int flags = 0; 5610 5611 if (BP_IS_EMBEDDED(bp)) 5612 return (ARC_CACHED_EMBEDDED); 5613 5614 hdr = buf_hash_find(guid, bp, &hash_lock); 5615 if (hdr == NULL) 5616 return (0); 5617 5618 if (HDR_HAS_L1HDR(hdr)) { 5619 arc_state_t *state = hdr->b_l1hdr.b_state; 5620 /* 5621 * We switch to ensure that any future arc_state_type_t 5622 * changes are handled. This is just a shift to promote 5623 * more compile-time checking. 5624 */ 5625 switch (state->arcs_state) { 5626 case ARC_STATE_ANON: 5627 break; 5628 case ARC_STATE_MRU: 5629 flags |= ARC_CACHED_IN_MRU | ARC_CACHED_IN_L1; 5630 break; 5631 case ARC_STATE_MFU: 5632 flags |= ARC_CACHED_IN_MFU | ARC_CACHED_IN_L1; 5633 break; 5634 case ARC_STATE_UNCACHED: 5635 /* The header is still in L1, probably not for long */ 5636 flags |= ARC_CACHED_IN_L1; 5637 break; 5638 default: 5639 break; 5640 } 5641 } 5642 if (HDR_HAS_L2HDR(hdr)) 5643 flags |= ARC_CACHED_IN_L2; 5644 5645 mutex_exit(hash_lock); 5646 5647 return (flags); 5648 } 5649 5650 /* 5651 * "Read" the block at the specified DVA (in bp) via the 5652 * cache. If the block is found in the cache, invoke the provided 5653 * callback immediately and return. Note that the `zio' parameter 5654 * in the callback will be NULL in this case, since no IO was 5655 * required. If the block is not in the cache pass the read request 5656 * on to the spa with a substitute callback function, so that the 5657 * requested block will be added to the cache. 5658 * 5659 * If a read request arrives for a block that has a read in-progress, 5660 * either wait for the in-progress read to complete (and return the 5661 * results); or, if this is a read with a "done" func, add a record 5662 * to the read to invoke the "done" func when the read completes, 5663 * and return; or just return. 5664 * 5665 * arc_read_done() will invoke all the requested "done" functions 5666 * for readers of this block. 5667 */ 5668 int 5669 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 5670 arc_read_done_func_t *done, void *private, zio_priority_t priority, 5671 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 5672 { 5673 arc_buf_hdr_t *hdr = NULL; 5674 kmutex_t *hash_lock = NULL; 5675 zio_t *rzio; 5676 uint64_t guid = spa_load_guid(spa); 5677 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0; 5678 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) && 5679 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5680 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) && 5681 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5682 boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp); 5683 boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF; 5684 arc_buf_t *buf = NULL; 5685 int rc = 0; 5686 5687 ASSERT(!embedded_bp || 5688 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 5689 ASSERT(!BP_IS_HOLE(bp)); 5690 ASSERT(!BP_IS_REDACTED(bp)); 5691 5692 /* 5693 * Normally SPL_FSTRANS will already be set since kernel threads which 5694 * expect to call the DMU interfaces will set it when created. System 5695 * calls are similarly handled by setting/cleaning the bit in the 5696 * registered callback (module/os/.../zfs/zpl_*). 5697 * 5698 * External consumers such as Lustre which call the exported DMU 5699 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock 5700 * on the hash_lock always set and clear the bit. 5701 */ 5702 fstrans_cookie_t cookie = spl_fstrans_mark(); 5703 top: 5704 if (!embedded_bp) { 5705 /* 5706 * Embedded BP's have no DVA and require no I/O to "read". 5707 * Create an anonymous arc buf to back it. 5708 */ 5709 hdr = buf_hash_find(guid, bp, &hash_lock); 5710 } 5711 5712 /* 5713 * Determine if we have an L1 cache hit or a cache miss. For simplicity 5714 * we maintain encrypted data separately from compressed / uncompressed 5715 * data. If the user is requesting raw encrypted data and we don't have 5716 * that in the header we will read from disk to guarantee that we can 5717 * get it even if the encryption keys aren't loaded. 5718 */ 5719 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) || 5720 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) { 5721 boolean_t is_data = !HDR_ISTYPE_METADATA(hdr); 5722 5723 /* 5724 * Verify the block pointer contents are reasonable. This 5725 * should always be the case since the blkptr is protected by 5726 * a checksum. 5727 */ 5728 if (!zfs_blkptr_verify(spa, bp, BLK_CONFIG_SKIP, 5729 BLK_VERIFY_LOG)) { 5730 mutex_exit(hash_lock); 5731 rc = SET_ERROR(ECKSUM); 5732 goto done; 5733 } 5734 5735 if (HDR_IO_IN_PROGRESS(hdr)) { 5736 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 5737 mutex_exit(hash_lock); 5738 ARCSTAT_BUMP(arcstat_cached_only_in_progress); 5739 rc = SET_ERROR(ENOENT); 5740 goto done; 5741 } 5742 5743 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head; 5744 ASSERT3P(head_zio, !=, NULL); 5745 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && 5746 priority == ZIO_PRIORITY_SYNC_READ) { 5747 /* 5748 * This is a sync read that needs to wait for 5749 * an in-flight async read. Request that the 5750 * zio have its priority upgraded. 5751 */ 5752 zio_change_priority(head_zio, priority); 5753 DTRACE_PROBE1(arc__async__upgrade__sync, 5754 arc_buf_hdr_t *, hdr); 5755 ARCSTAT_BUMP(arcstat_async_upgrade_sync); 5756 } 5757 5758 DTRACE_PROBE1(arc__iohit, arc_buf_hdr_t *, hdr); 5759 arc_access(hdr, *arc_flags, B_FALSE); 5760 5761 /* 5762 * If there are multiple threads reading the same block 5763 * and that block is not yet in the ARC, then only one 5764 * thread will do the physical I/O and all other 5765 * threads will wait until that I/O completes. 5766 * Synchronous reads use the acb_wait_cv whereas nowait 5767 * reads register a callback. Both are signalled/called 5768 * in arc_read_done. 5769 * 5770 * Errors of the physical I/O may need to be propagated. 5771 * Synchronous read errors are returned here from 5772 * arc_read_done via acb_wait_error. Nowait reads 5773 * attach the acb_zio_dummy zio to pio and 5774 * arc_read_done propagates the physical I/O's io_error 5775 * to acb_zio_dummy, and thereby to pio. 5776 */ 5777 arc_callback_t *acb = NULL; 5778 if (done || pio || *arc_flags & ARC_FLAG_WAIT) { 5779 acb = kmem_zalloc(sizeof (arc_callback_t), 5780 KM_SLEEP); 5781 acb->acb_done = done; 5782 acb->acb_private = private; 5783 acb->acb_compressed = compressed_read; 5784 acb->acb_encrypted = encrypted_read; 5785 acb->acb_noauth = noauth_read; 5786 acb->acb_nobuf = no_buf; 5787 if (*arc_flags & ARC_FLAG_WAIT) { 5788 acb->acb_wait = B_TRUE; 5789 mutex_init(&acb->acb_wait_lock, NULL, 5790 MUTEX_DEFAULT, NULL); 5791 cv_init(&acb->acb_wait_cv, NULL, 5792 CV_DEFAULT, NULL); 5793 } 5794 acb->acb_zb = *zb; 5795 if (pio != NULL) { 5796 acb->acb_zio_dummy = zio_null(pio, 5797 spa, NULL, NULL, NULL, zio_flags); 5798 } 5799 acb->acb_zio_head = head_zio; 5800 acb->acb_next = hdr->b_l1hdr.b_acb; 5801 hdr->b_l1hdr.b_acb->acb_prev = acb; 5802 hdr->b_l1hdr.b_acb = acb; 5803 } 5804 mutex_exit(hash_lock); 5805 5806 ARCSTAT_BUMP(arcstat_iohits); 5807 ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH), 5808 demand, prefetch, is_data, data, metadata, iohits); 5809 5810 if (*arc_flags & ARC_FLAG_WAIT) { 5811 mutex_enter(&acb->acb_wait_lock); 5812 while (acb->acb_wait) { 5813 cv_wait(&acb->acb_wait_cv, 5814 &acb->acb_wait_lock); 5815 } 5816 rc = acb->acb_wait_error; 5817 mutex_exit(&acb->acb_wait_lock); 5818 mutex_destroy(&acb->acb_wait_lock); 5819 cv_destroy(&acb->acb_wait_cv); 5820 kmem_free(acb, sizeof (arc_callback_t)); 5821 } 5822 goto out; 5823 } 5824 5825 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5826 hdr->b_l1hdr.b_state == arc_mfu || 5827 hdr->b_l1hdr.b_state == arc_uncached); 5828 5829 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5830 arc_access(hdr, *arc_flags, B_TRUE); 5831 5832 if (done && !no_buf) { 5833 ASSERT(!embedded_bp || !BP_IS_HOLE(bp)); 5834 5835 /* Get a buf with the desired data in it. */ 5836 rc = arc_buf_alloc_impl(hdr, spa, zb, private, 5837 encrypted_read, compressed_read, noauth_read, 5838 B_TRUE, &buf); 5839 if (rc == ECKSUM) { 5840 /* 5841 * Convert authentication and decryption errors 5842 * to EIO (and generate an ereport if needed) 5843 * before leaving the ARC. 5844 */ 5845 rc = SET_ERROR(EIO); 5846 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5847 spa_log_error(spa, zb, hdr->b_birth); 5848 (void) zfs_ereport_post( 5849 FM_EREPORT_ZFS_AUTHENTICATION, 5850 spa, NULL, zb, NULL, 0); 5851 } 5852 } 5853 if (rc != 0) { 5854 arc_buf_destroy_impl(buf); 5855 buf = NULL; 5856 (void) remove_reference(hdr, private); 5857 } 5858 5859 /* assert any errors weren't due to unloaded keys */ 5860 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) || 5861 rc != EACCES); 5862 } 5863 mutex_exit(hash_lock); 5864 ARCSTAT_BUMP(arcstat_hits); 5865 ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH), 5866 demand, prefetch, is_data, data, metadata, hits); 5867 *arc_flags |= ARC_FLAG_CACHED; 5868 goto done; 5869 } else { 5870 uint64_t lsize = BP_GET_LSIZE(bp); 5871 uint64_t psize = BP_GET_PSIZE(bp); 5872 arc_callback_t *acb; 5873 vdev_t *vd = NULL; 5874 uint64_t addr = 0; 5875 boolean_t devw = B_FALSE; 5876 uint64_t size; 5877 abd_t *hdr_abd; 5878 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0; 5879 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 5880 5881 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 5882 if (hash_lock != NULL) 5883 mutex_exit(hash_lock); 5884 rc = SET_ERROR(ENOENT); 5885 goto done; 5886 } 5887 5888 /* 5889 * Verify the block pointer contents are reasonable. This 5890 * should always be the case since the blkptr is protected by 5891 * a checksum. 5892 */ 5893 if (!zfs_blkptr_verify(spa, bp, 5894 (zio_flags & ZIO_FLAG_CONFIG_WRITER) ? 5895 BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) { 5896 if (hash_lock != NULL) 5897 mutex_exit(hash_lock); 5898 rc = SET_ERROR(ECKSUM); 5899 goto done; 5900 } 5901 5902 if (hdr == NULL) { 5903 /* 5904 * This block is not in the cache or it has 5905 * embedded data. 5906 */ 5907 arc_buf_hdr_t *exists = NULL; 5908 hdr = arc_hdr_alloc(guid, psize, lsize, 5909 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type); 5910 5911 if (!embedded_bp) { 5912 hdr->b_dva = *BP_IDENTITY(bp); 5913 hdr->b_birth = BP_GET_BIRTH(bp); 5914 exists = buf_hash_insert(hdr, &hash_lock); 5915 } 5916 if (exists != NULL) { 5917 /* somebody beat us to the hash insert */ 5918 mutex_exit(hash_lock); 5919 buf_discard_identity(hdr); 5920 arc_hdr_destroy(hdr); 5921 goto top; /* restart the IO request */ 5922 } 5923 } else { 5924 /* 5925 * This block is in the ghost cache or encrypted data 5926 * was requested and we didn't have it. If it was 5927 * L2-only (and thus didn't have an L1 hdr), 5928 * we realloc the header to add an L1 hdr. 5929 */ 5930 if (!HDR_HAS_L1HDR(hdr)) { 5931 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 5932 hdr_full_cache); 5933 } 5934 5935 if (GHOST_STATE(hdr->b_l1hdr.b_state)) { 5936 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 5937 ASSERT(!HDR_HAS_RABD(hdr)); 5938 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5939 ASSERT0(zfs_refcount_count( 5940 &hdr->b_l1hdr.b_refcnt)); 5941 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 5942 #ifdef ZFS_DEBUG 5943 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 5944 #endif 5945 } else if (HDR_IO_IN_PROGRESS(hdr)) { 5946 /* 5947 * If this header already had an IO in progress 5948 * and we are performing another IO to fetch 5949 * encrypted data we must wait until the first 5950 * IO completes so as not to confuse 5951 * arc_read_done(). This should be very rare 5952 * and so the performance impact shouldn't 5953 * matter. 5954 */ 5955 arc_callback_t *acb = kmem_zalloc( 5956 sizeof (arc_callback_t), KM_SLEEP); 5957 acb->acb_wait = B_TRUE; 5958 mutex_init(&acb->acb_wait_lock, NULL, 5959 MUTEX_DEFAULT, NULL); 5960 cv_init(&acb->acb_wait_cv, NULL, CV_DEFAULT, 5961 NULL); 5962 acb->acb_zio_head = 5963 hdr->b_l1hdr.b_acb->acb_zio_head; 5964 acb->acb_next = hdr->b_l1hdr.b_acb; 5965 hdr->b_l1hdr.b_acb->acb_prev = acb; 5966 hdr->b_l1hdr.b_acb = acb; 5967 mutex_exit(hash_lock); 5968 mutex_enter(&acb->acb_wait_lock); 5969 while (acb->acb_wait) { 5970 cv_wait(&acb->acb_wait_cv, 5971 &acb->acb_wait_lock); 5972 } 5973 mutex_exit(&acb->acb_wait_lock); 5974 mutex_destroy(&acb->acb_wait_lock); 5975 cv_destroy(&acb->acb_wait_cv); 5976 kmem_free(acb, sizeof (arc_callback_t)); 5977 goto top; 5978 } 5979 } 5980 if (*arc_flags & ARC_FLAG_UNCACHED) { 5981 arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED); 5982 if (!encrypted_read) 5983 alloc_flags |= ARC_HDR_ALLOC_LINEAR; 5984 } 5985 5986 /* 5987 * Take additional reference for IO_IN_PROGRESS. It stops 5988 * arc_access() from putting this header without any buffers 5989 * and so other references but obviously nonevictable onto 5990 * the evictable list of MRU or MFU state. 5991 */ 5992 add_reference(hdr, hdr); 5993 if (!embedded_bp) 5994 arc_access(hdr, *arc_flags, B_FALSE); 5995 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5996 arc_hdr_alloc_abd(hdr, alloc_flags); 5997 if (encrypted_read) { 5998 ASSERT(HDR_HAS_RABD(hdr)); 5999 size = HDR_GET_PSIZE(hdr); 6000 hdr_abd = hdr->b_crypt_hdr.b_rabd; 6001 zio_flags |= ZIO_FLAG_RAW; 6002 } else { 6003 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 6004 size = arc_hdr_size(hdr); 6005 hdr_abd = hdr->b_l1hdr.b_pabd; 6006 6007 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 6008 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 6009 } 6010 6011 /* 6012 * For authenticated bp's, we do not ask the ZIO layer 6013 * to authenticate them since this will cause the entire 6014 * IO to fail if the key isn't loaded. Instead, we 6015 * defer authentication until arc_buf_fill(), which will 6016 * verify the data when the key is available. 6017 */ 6018 if (BP_IS_AUTHENTICATED(bp)) 6019 zio_flags |= ZIO_FLAG_RAW_ENCRYPT; 6020 } 6021 6022 if (BP_IS_AUTHENTICATED(bp)) 6023 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6024 if (BP_GET_LEVEL(bp) > 0) 6025 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); 6026 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 6027 6028 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 6029 acb->acb_done = done; 6030 acb->acb_private = private; 6031 acb->acb_compressed = compressed_read; 6032 acb->acb_encrypted = encrypted_read; 6033 acb->acb_noauth = noauth_read; 6034 acb->acb_zb = *zb; 6035 6036 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6037 hdr->b_l1hdr.b_acb = acb; 6038 6039 if (HDR_HAS_L2HDR(hdr) && 6040 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 6041 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 6042 addr = hdr->b_l2hdr.b_daddr; 6043 /* 6044 * Lock out L2ARC device removal. 6045 */ 6046 if (vdev_is_dead(vd) || 6047 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 6048 vd = NULL; 6049 } 6050 6051 /* 6052 * We count both async reads and scrub IOs as asynchronous so 6053 * that both can be upgraded in the event of a cache hit while 6054 * the read IO is still in-flight. 6055 */ 6056 if (priority == ZIO_PRIORITY_ASYNC_READ || 6057 priority == ZIO_PRIORITY_SCRUB) 6058 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6059 else 6060 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6061 6062 /* 6063 * At this point, we have a level 1 cache miss or a blkptr 6064 * with embedded data. Try again in L2ARC if possible. 6065 */ 6066 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); 6067 6068 /* 6069 * Skip ARC stat bump for block pointers with embedded 6070 * data. The data are read from the blkptr itself via 6071 * decode_embedded_bp_compressed(). 6072 */ 6073 if (!embedded_bp) { 6074 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, 6075 blkptr_t *, bp, uint64_t, lsize, 6076 zbookmark_phys_t *, zb); 6077 ARCSTAT_BUMP(arcstat_misses); 6078 ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH), 6079 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, 6080 metadata, misses); 6081 zfs_racct_read(spa, size, 1, 0); 6082 } 6083 6084 /* Check if the spa even has l2 configured */ 6085 const boolean_t spa_has_l2 = l2arc_ndev != 0 && 6086 spa->spa_l2cache.sav_count > 0; 6087 6088 if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) { 6089 /* 6090 * Read from the L2ARC if the following are true: 6091 * 1. The L2ARC vdev was previously cached. 6092 * 2. This buffer still has L2ARC metadata. 6093 * 3. This buffer isn't currently writing to the L2ARC. 6094 * 4. The L2ARC entry wasn't evicted, which may 6095 * also have invalidated the vdev. 6096 */ 6097 if (HDR_HAS_L2HDR(hdr) && 6098 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr)) { 6099 l2arc_read_callback_t *cb; 6100 abd_t *abd; 6101 uint64_t asize; 6102 6103 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 6104 ARCSTAT_BUMP(arcstat_l2_hits); 6105 hdr->b_l2hdr.b_hits++; 6106 6107 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 6108 KM_SLEEP); 6109 cb->l2rcb_hdr = hdr; 6110 cb->l2rcb_bp = *bp; 6111 cb->l2rcb_zb = *zb; 6112 cb->l2rcb_flags = zio_flags; 6113 6114 /* 6115 * When Compressed ARC is disabled, but the 6116 * L2ARC block is compressed, arc_hdr_size() 6117 * will have returned LSIZE rather than PSIZE. 6118 */ 6119 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 6120 !HDR_COMPRESSION_ENABLED(hdr) && 6121 HDR_GET_PSIZE(hdr) != 0) { 6122 size = HDR_GET_PSIZE(hdr); 6123 } 6124 6125 asize = vdev_psize_to_asize(vd, size); 6126 if (asize != size) { 6127 abd = abd_alloc_for_io(asize, 6128 HDR_ISTYPE_METADATA(hdr)); 6129 cb->l2rcb_abd = abd; 6130 } else { 6131 abd = hdr_abd; 6132 } 6133 6134 ASSERT(addr >= VDEV_LABEL_START_SIZE && 6135 addr + asize <= vd->vdev_psize - 6136 VDEV_LABEL_END_SIZE); 6137 6138 /* 6139 * l2arc read. The SCL_L2ARC lock will be 6140 * released by l2arc_read_done(). 6141 * Issue a null zio if the underlying buffer 6142 * was squashed to zero size by compression. 6143 */ 6144 ASSERT3U(arc_hdr_get_compress(hdr), !=, 6145 ZIO_COMPRESS_EMPTY); 6146 rzio = zio_read_phys(pio, vd, addr, 6147 asize, abd, 6148 ZIO_CHECKSUM_OFF, 6149 l2arc_read_done, cb, priority, 6150 zio_flags | ZIO_FLAG_CANFAIL | 6151 ZIO_FLAG_DONT_PROPAGATE | 6152 ZIO_FLAG_DONT_RETRY, B_FALSE); 6153 acb->acb_zio_head = rzio; 6154 6155 if (hash_lock != NULL) 6156 mutex_exit(hash_lock); 6157 6158 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 6159 zio_t *, rzio); 6160 ARCSTAT_INCR(arcstat_l2_read_bytes, 6161 HDR_GET_PSIZE(hdr)); 6162 6163 if (*arc_flags & ARC_FLAG_NOWAIT) { 6164 zio_nowait(rzio); 6165 goto out; 6166 } 6167 6168 ASSERT(*arc_flags & ARC_FLAG_WAIT); 6169 if (zio_wait(rzio) == 0) 6170 goto out; 6171 6172 /* l2arc read error; goto zio_read() */ 6173 if (hash_lock != NULL) 6174 mutex_enter(hash_lock); 6175 } else { 6176 DTRACE_PROBE1(l2arc__miss, 6177 arc_buf_hdr_t *, hdr); 6178 ARCSTAT_BUMP(arcstat_l2_misses); 6179 if (HDR_L2_WRITING(hdr)) 6180 ARCSTAT_BUMP(arcstat_l2_rw_clash); 6181 spa_config_exit(spa, SCL_L2ARC, vd); 6182 } 6183 } else { 6184 if (vd != NULL) 6185 spa_config_exit(spa, SCL_L2ARC, vd); 6186 6187 /* 6188 * Only a spa with l2 should contribute to l2 6189 * miss stats. (Including the case of having a 6190 * faulted cache device - that's also a miss.) 6191 */ 6192 if (spa_has_l2) { 6193 /* 6194 * Skip ARC stat bump for block pointers with 6195 * embedded data. The data are read from the 6196 * blkptr itself via 6197 * decode_embedded_bp_compressed(). 6198 */ 6199 if (!embedded_bp) { 6200 DTRACE_PROBE1(l2arc__miss, 6201 arc_buf_hdr_t *, hdr); 6202 ARCSTAT_BUMP(arcstat_l2_misses); 6203 } 6204 } 6205 } 6206 6207 rzio = zio_read(pio, spa, bp, hdr_abd, size, 6208 arc_read_done, hdr, priority, zio_flags, zb); 6209 acb->acb_zio_head = rzio; 6210 6211 if (hash_lock != NULL) 6212 mutex_exit(hash_lock); 6213 6214 if (*arc_flags & ARC_FLAG_WAIT) { 6215 rc = zio_wait(rzio); 6216 goto out; 6217 } 6218 6219 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 6220 zio_nowait(rzio); 6221 } 6222 6223 out: 6224 /* embedded bps don't actually go to disk */ 6225 if (!embedded_bp) 6226 spa_read_history_add(spa, zb, *arc_flags); 6227 spl_fstrans_unmark(cookie); 6228 return (rc); 6229 6230 done: 6231 if (done) 6232 done(NULL, zb, bp, buf, private); 6233 if (pio && rc != 0) { 6234 zio_t *zio = zio_null(pio, spa, NULL, NULL, NULL, zio_flags); 6235 zio->io_error = rc; 6236 zio_nowait(zio); 6237 } 6238 goto out; 6239 } 6240 6241 arc_prune_t * 6242 arc_add_prune_callback(arc_prune_func_t *func, void *private) 6243 { 6244 arc_prune_t *p; 6245 6246 p = kmem_alloc(sizeof (*p), KM_SLEEP); 6247 p->p_pfunc = func; 6248 p->p_private = private; 6249 list_link_init(&p->p_node); 6250 zfs_refcount_create(&p->p_refcnt); 6251 6252 mutex_enter(&arc_prune_mtx); 6253 zfs_refcount_add(&p->p_refcnt, &arc_prune_list); 6254 list_insert_head(&arc_prune_list, p); 6255 mutex_exit(&arc_prune_mtx); 6256 6257 return (p); 6258 } 6259 6260 void 6261 arc_remove_prune_callback(arc_prune_t *p) 6262 { 6263 boolean_t wait = B_FALSE; 6264 mutex_enter(&arc_prune_mtx); 6265 list_remove(&arc_prune_list, p); 6266 if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0) 6267 wait = B_TRUE; 6268 mutex_exit(&arc_prune_mtx); 6269 6270 /* wait for arc_prune_task to finish */ 6271 if (wait) 6272 taskq_wait_outstanding(arc_prune_taskq, 0); 6273 ASSERT0(zfs_refcount_count(&p->p_refcnt)); 6274 zfs_refcount_destroy(&p->p_refcnt); 6275 kmem_free(p, sizeof (*p)); 6276 } 6277 6278 /* 6279 * Helper function for arc_prune_async() it is responsible for safely 6280 * handling the execution of a registered arc_prune_func_t. 6281 */ 6282 static void 6283 arc_prune_task(void *ptr) 6284 { 6285 arc_prune_t *ap = (arc_prune_t *)ptr; 6286 arc_prune_func_t *func = ap->p_pfunc; 6287 6288 if (func != NULL) 6289 func(ap->p_adjust, ap->p_private); 6290 6291 (void) zfs_refcount_remove(&ap->p_refcnt, func); 6292 } 6293 6294 /* 6295 * Notify registered consumers they must drop holds on a portion of the ARC 6296 * buffers they reference. This provides a mechanism to ensure the ARC can 6297 * honor the metadata limit and reclaim otherwise pinned ARC buffers. 6298 * 6299 * This operation is performed asynchronously so it may be safely called 6300 * in the context of the arc_reclaim_thread(). A reference is taken here 6301 * for each registered arc_prune_t and the arc_prune_task() is responsible 6302 * for releasing it once the registered arc_prune_func_t has completed. 6303 */ 6304 static void 6305 arc_prune_async(uint64_t adjust) 6306 { 6307 arc_prune_t *ap; 6308 6309 mutex_enter(&arc_prune_mtx); 6310 for (ap = list_head(&arc_prune_list); ap != NULL; 6311 ap = list_next(&arc_prune_list, ap)) { 6312 6313 if (zfs_refcount_count(&ap->p_refcnt) >= 2) 6314 continue; 6315 6316 zfs_refcount_add(&ap->p_refcnt, ap->p_pfunc); 6317 ap->p_adjust = adjust; 6318 if (taskq_dispatch(arc_prune_taskq, arc_prune_task, 6319 ap, TQ_SLEEP) == TASKQID_INVALID) { 6320 (void) zfs_refcount_remove(&ap->p_refcnt, ap->p_pfunc); 6321 continue; 6322 } 6323 ARCSTAT_BUMP(arcstat_prune); 6324 } 6325 mutex_exit(&arc_prune_mtx); 6326 } 6327 6328 /* 6329 * Notify the arc that a block was freed, and thus will never be used again. 6330 */ 6331 void 6332 arc_freed(spa_t *spa, const blkptr_t *bp) 6333 { 6334 arc_buf_hdr_t *hdr; 6335 kmutex_t *hash_lock; 6336 uint64_t guid = spa_load_guid(spa); 6337 6338 ASSERT(!BP_IS_EMBEDDED(bp)); 6339 6340 hdr = buf_hash_find(guid, bp, &hash_lock); 6341 if (hdr == NULL) 6342 return; 6343 6344 /* 6345 * We might be trying to free a block that is still doing I/O 6346 * (i.e. prefetch) or has some other reference (i.e. a dedup-ed, 6347 * dmu_sync-ed block). A block may also have a reference if it is 6348 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would 6349 * have written the new block to its final resting place on disk but 6350 * without the dedup flag set. This would have left the hdr in the MRU 6351 * state and discoverable. When the txg finally syncs it detects that 6352 * the block was overridden in open context and issues an override I/O. 6353 * Since this is a dedup block, the override I/O will determine if the 6354 * block is already in the DDT. If so, then it will replace the io_bp 6355 * with the bp from the DDT and allow the I/O to finish. When the I/O 6356 * reaches the done callback, dbuf_write_override_done, it will 6357 * check to see if the io_bp and io_bp_override are identical. 6358 * If they are not, then it indicates that the bp was replaced with 6359 * the bp in the DDT and the override bp is freed. This allows 6360 * us to arrive here with a reference on a block that is being 6361 * freed. So if we have an I/O in progress, or a reference to 6362 * this hdr, then we don't destroy the hdr. 6363 */ 6364 if (!HDR_HAS_L1HDR(hdr) || 6365 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6366 arc_change_state(arc_anon, hdr); 6367 arc_hdr_destroy(hdr); 6368 mutex_exit(hash_lock); 6369 } else { 6370 mutex_exit(hash_lock); 6371 } 6372 6373 } 6374 6375 /* 6376 * Release this buffer from the cache, making it an anonymous buffer. This 6377 * must be done after a read and prior to modifying the buffer contents. 6378 * If the buffer has more than one reference, we must make 6379 * a new hdr for the buffer. 6380 */ 6381 void 6382 arc_release(arc_buf_t *buf, const void *tag) 6383 { 6384 arc_buf_hdr_t *hdr = buf->b_hdr; 6385 6386 /* 6387 * It would be nice to assert that if its DMU metadata (level > 6388 * 0 || it's the dnode file), then it must be syncing context. 6389 * But we don't know that information at this level. 6390 */ 6391 6392 ASSERT(HDR_HAS_L1HDR(hdr)); 6393 6394 /* 6395 * We don't grab the hash lock prior to this check, because if 6396 * the buffer's header is in the arc_anon state, it won't be 6397 * linked into the hash table. 6398 */ 6399 if (hdr->b_l1hdr.b_state == arc_anon) { 6400 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6401 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 6402 ASSERT(!HDR_HAS_L2HDR(hdr)); 6403 6404 ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf); 6405 ASSERT(ARC_BUF_LAST(buf)); 6406 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 6407 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 6408 6409 hdr->b_l1hdr.b_arc_access = 0; 6410 6411 /* 6412 * If the buf is being overridden then it may already 6413 * have a hdr that is not empty. 6414 */ 6415 buf_discard_identity(hdr); 6416 arc_buf_thaw(buf); 6417 6418 return; 6419 } 6420 6421 kmutex_t *hash_lock = HDR_LOCK(hdr); 6422 mutex_enter(hash_lock); 6423 6424 /* 6425 * This assignment is only valid as long as the hash_lock is 6426 * held, we must be careful not to reference state or the 6427 * b_state field after dropping the lock. 6428 */ 6429 arc_state_t *state = hdr->b_l1hdr.b_state; 6430 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 6431 ASSERT3P(state, !=, arc_anon); 6432 6433 /* this buffer is not on any list */ 6434 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0); 6435 6436 if (HDR_HAS_L2HDR(hdr)) { 6437 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6438 6439 /* 6440 * We have to recheck this conditional again now that 6441 * we're holding the l2ad_mtx to prevent a race with 6442 * another thread which might be concurrently calling 6443 * l2arc_evict(). In that case, l2arc_evict() might have 6444 * destroyed the header's L2 portion as we were waiting 6445 * to acquire the l2ad_mtx. 6446 */ 6447 if (HDR_HAS_L2HDR(hdr)) 6448 arc_hdr_l2hdr_destroy(hdr); 6449 6450 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6451 } 6452 6453 /* 6454 * Do we have more than one buf? 6455 */ 6456 if (hdr->b_l1hdr.b_buf != buf || !ARC_BUF_LAST(buf)) { 6457 arc_buf_hdr_t *nhdr; 6458 uint64_t spa = hdr->b_spa; 6459 uint64_t psize = HDR_GET_PSIZE(hdr); 6460 uint64_t lsize = HDR_GET_LSIZE(hdr); 6461 boolean_t protected = HDR_PROTECTED(hdr); 6462 enum zio_compress compress = arc_hdr_get_compress(hdr); 6463 arc_buf_contents_t type = arc_buf_type(hdr); 6464 VERIFY3U(hdr->b_type, ==, type); 6465 6466 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); 6467 VERIFY3S(remove_reference(hdr, tag), >, 0); 6468 6469 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 6470 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6471 ASSERT(ARC_BUF_LAST(buf)); 6472 } 6473 6474 /* 6475 * Pull the data off of this hdr and attach it to 6476 * a new anonymous hdr. Also find the last buffer 6477 * in the hdr's buffer list. 6478 */ 6479 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 6480 ASSERT3P(lastbuf, !=, NULL); 6481 6482 /* 6483 * If the current arc_buf_t and the hdr are sharing their data 6484 * buffer, then we must stop sharing that block. 6485 */ 6486 if (ARC_BUF_SHARED(buf)) { 6487 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6488 ASSERT(!arc_buf_is_shared(lastbuf)); 6489 6490 /* 6491 * First, sever the block sharing relationship between 6492 * buf and the arc_buf_hdr_t. 6493 */ 6494 arc_unshare_buf(hdr, buf); 6495 6496 /* 6497 * Now we need to recreate the hdr's b_pabd. Since we 6498 * have lastbuf handy, we try to share with it, but if 6499 * we can't then we allocate a new b_pabd and copy the 6500 * data from buf into it. 6501 */ 6502 if (arc_can_share(hdr, lastbuf)) { 6503 arc_share_buf(hdr, lastbuf); 6504 } else { 6505 arc_hdr_alloc_abd(hdr, 0); 6506 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, 6507 buf->b_data, psize); 6508 } 6509 VERIFY3P(lastbuf->b_data, !=, NULL); 6510 } else if (HDR_SHARED_DATA(hdr)) { 6511 /* 6512 * Uncompressed shared buffers are always at the end 6513 * of the list. Compressed buffers don't have the 6514 * same requirements. This makes it hard to 6515 * simply assert that the lastbuf is shared so 6516 * we rely on the hdr's compression flags to determine 6517 * if we have a compressed, shared buffer. 6518 */ 6519 ASSERT(arc_buf_is_shared(lastbuf) || 6520 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 6521 ASSERT(!arc_buf_is_shared(buf)); 6522 } 6523 6524 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 6525 ASSERT3P(state, !=, arc_l2c_only); 6526 6527 (void) zfs_refcount_remove_many(&state->arcs_size[type], 6528 arc_buf_size(buf), buf); 6529 6530 if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6531 ASSERT3P(state, !=, arc_l2c_only); 6532 (void) zfs_refcount_remove_many( 6533 &state->arcs_esize[type], 6534 arc_buf_size(buf), buf); 6535 } 6536 6537 arc_cksum_verify(buf); 6538 arc_buf_unwatch(buf); 6539 6540 /* if this is the last uncompressed buf free the checksum */ 6541 if (!arc_hdr_has_uncompressed_buf(hdr)) 6542 arc_cksum_free(hdr); 6543 6544 mutex_exit(hash_lock); 6545 6546 nhdr = arc_hdr_alloc(spa, psize, lsize, protected, 6547 compress, hdr->b_complevel, type); 6548 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL); 6549 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt)); 6550 VERIFY3U(nhdr->b_type, ==, type); 6551 ASSERT(!HDR_SHARED_DATA(nhdr)); 6552 6553 nhdr->b_l1hdr.b_buf = buf; 6554 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 6555 buf->b_hdr = nhdr; 6556 6557 (void) zfs_refcount_add_many(&arc_anon->arcs_size[type], 6558 arc_buf_size(buf), buf); 6559 } else { 6560 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 6561 /* protected by hash lock, or hdr is on arc_anon */ 6562 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 6563 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6564 hdr->b_l1hdr.b_mru_hits = 0; 6565 hdr->b_l1hdr.b_mru_ghost_hits = 0; 6566 hdr->b_l1hdr.b_mfu_hits = 0; 6567 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 6568 arc_change_state(arc_anon, hdr); 6569 hdr->b_l1hdr.b_arc_access = 0; 6570 6571 mutex_exit(hash_lock); 6572 buf_discard_identity(hdr); 6573 arc_buf_thaw(buf); 6574 } 6575 } 6576 6577 int 6578 arc_released(arc_buf_t *buf) 6579 { 6580 return (buf->b_data != NULL && 6581 buf->b_hdr->b_l1hdr.b_state == arc_anon); 6582 } 6583 6584 #ifdef ZFS_DEBUG 6585 int 6586 arc_referenced(arc_buf_t *buf) 6587 { 6588 return (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 6589 } 6590 #endif 6591 6592 static void 6593 arc_write_ready(zio_t *zio) 6594 { 6595 arc_write_callback_t *callback = zio->io_private; 6596 arc_buf_t *buf = callback->awcb_buf; 6597 arc_buf_hdr_t *hdr = buf->b_hdr; 6598 blkptr_t *bp = zio->io_bp; 6599 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp); 6600 fstrans_cookie_t cookie = spl_fstrans_mark(); 6601 6602 ASSERT(HDR_HAS_L1HDR(hdr)); 6603 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 6604 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL); 6605 6606 /* 6607 * If we're reexecuting this zio because the pool suspended, then 6608 * cleanup any state that was previously set the first time the 6609 * callback was invoked. 6610 */ 6611 if (zio->io_flags & ZIO_FLAG_REEXECUTED) { 6612 arc_cksum_free(hdr); 6613 arc_buf_unwatch(buf); 6614 if (hdr->b_l1hdr.b_pabd != NULL) { 6615 if (ARC_BUF_SHARED(buf)) { 6616 arc_unshare_buf(hdr, buf); 6617 } else { 6618 ASSERT(!arc_buf_is_shared(buf)); 6619 arc_hdr_free_abd(hdr, B_FALSE); 6620 } 6621 } 6622 6623 if (HDR_HAS_RABD(hdr)) 6624 arc_hdr_free_abd(hdr, B_TRUE); 6625 } 6626 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6627 ASSERT(!HDR_HAS_RABD(hdr)); 6628 ASSERT(!HDR_SHARED_DATA(hdr)); 6629 ASSERT(!arc_buf_is_shared(buf)); 6630 6631 callback->awcb_ready(zio, buf, callback->awcb_private); 6632 6633 if (HDR_IO_IN_PROGRESS(hdr)) { 6634 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); 6635 } else { 6636 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6637 add_reference(hdr, hdr); /* For IO_IN_PROGRESS. */ 6638 } 6639 6640 if (BP_IS_PROTECTED(bp)) { 6641 /* ZIL blocks are written through zio_rewrite */ 6642 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 6643 6644 if (BP_SHOULD_BYTESWAP(bp)) { 6645 if (BP_GET_LEVEL(bp) > 0) { 6646 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 6647 } else { 6648 hdr->b_l1hdr.b_byteswap = 6649 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 6650 } 6651 } else { 6652 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 6653 } 6654 6655 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 6656 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 6657 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 6658 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 6659 hdr->b_crypt_hdr.b_iv); 6660 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 6661 } else { 6662 arc_hdr_clear_flags(hdr, ARC_FLAG_PROTECTED); 6663 } 6664 6665 /* 6666 * If this block was written for raw encryption but the zio layer 6667 * ended up only authenticating it, adjust the buffer flags now. 6668 */ 6669 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) { 6670 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6671 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6672 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF) 6673 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6674 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) { 6675 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6676 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6677 } 6678 6679 /* this must be done after the buffer flags are adjusted */ 6680 arc_cksum_compute(buf); 6681 6682 enum zio_compress compress; 6683 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 6684 compress = ZIO_COMPRESS_OFF; 6685 } else { 6686 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 6687 compress = BP_GET_COMPRESS(bp); 6688 } 6689 HDR_SET_PSIZE(hdr, psize); 6690 arc_hdr_set_compress(hdr, compress); 6691 hdr->b_complevel = zio->io_prop.zp_complevel; 6692 6693 if (zio->io_error != 0 || psize == 0) 6694 goto out; 6695 6696 /* 6697 * Fill the hdr with data. If the buffer is encrypted we have no choice 6698 * but to copy the data into b_radb. If the hdr is compressed, the data 6699 * we want is available from the zio, otherwise we can take it from 6700 * the buf. 6701 * 6702 * We might be able to share the buf's data with the hdr here. However, 6703 * doing so would cause the ARC to be full of linear ABDs if we write a 6704 * lot of shareable data. As a compromise, we check whether scattered 6705 * ABDs are allowed, and assume that if they are then the user wants 6706 * the ARC to be primarily filled with them regardless of the data being 6707 * written. Therefore, if they're allowed then we allocate one and copy 6708 * the data into it; otherwise, we share the data directly if we can. 6709 */ 6710 if (ARC_BUF_ENCRYPTED(buf)) { 6711 ASSERT3U(psize, >, 0); 6712 ASSERT(ARC_BUF_COMPRESSED(buf)); 6713 arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA | 6714 ARC_HDR_USE_RESERVE); 6715 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6716 } else if (!(HDR_UNCACHED(hdr) || 6717 abd_size_alloc_linear(arc_buf_size(buf))) || 6718 !arc_can_share(hdr, buf)) { 6719 /* 6720 * Ideally, we would always copy the io_abd into b_pabd, but the 6721 * user may have disabled compressed ARC, thus we must check the 6722 * hdr's compression setting rather than the io_bp's. 6723 */ 6724 if (BP_IS_ENCRYPTED(bp)) { 6725 ASSERT3U(psize, >, 0); 6726 arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA | 6727 ARC_HDR_USE_RESERVE); 6728 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6729 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 6730 !ARC_BUF_COMPRESSED(buf)) { 6731 ASSERT3U(psize, >, 0); 6732 arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE); 6733 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize); 6734 } else { 6735 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr)); 6736 arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE); 6737 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data, 6738 arc_buf_size(buf)); 6739 } 6740 } else { 6741 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd)); 6742 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf)); 6743 ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf); 6744 ASSERT(ARC_BUF_LAST(buf)); 6745 6746 arc_share_buf(hdr, buf); 6747 } 6748 6749 out: 6750 arc_hdr_verify(hdr, bp); 6751 spl_fstrans_unmark(cookie); 6752 } 6753 6754 static void 6755 arc_write_children_ready(zio_t *zio) 6756 { 6757 arc_write_callback_t *callback = zio->io_private; 6758 arc_buf_t *buf = callback->awcb_buf; 6759 6760 callback->awcb_children_ready(zio, buf, callback->awcb_private); 6761 } 6762 6763 static void 6764 arc_write_done(zio_t *zio) 6765 { 6766 arc_write_callback_t *callback = zio->io_private; 6767 arc_buf_t *buf = callback->awcb_buf; 6768 arc_buf_hdr_t *hdr = buf->b_hdr; 6769 6770 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6771 6772 if (zio->io_error == 0) { 6773 arc_hdr_verify(hdr, zio->io_bp); 6774 6775 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 6776 buf_discard_identity(hdr); 6777 } else { 6778 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 6779 hdr->b_birth = BP_GET_BIRTH(zio->io_bp); 6780 } 6781 } else { 6782 ASSERT(HDR_EMPTY(hdr)); 6783 } 6784 6785 /* 6786 * If the block to be written was all-zero or compressed enough to be 6787 * embedded in the BP, no write was performed so there will be no 6788 * dva/birth/checksum. The buffer must therefore remain anonymous 6789 * (and uncached). 6790 */ 6791 if (!HDR_EMPTY(hdr)) { 6792 arc_buf_hdr_t *exists; 6793 kmutex_t *hash_lock; 6794 6795 ASSERT3U(zio->io_error, ==, 0); 6796 6797 arc_cksum_verify(buf); 6798 6799 exists = buf_hash_insert(hdr, &hash_lock); 6800 if (exists != NULL) { 6801 /* 6802 * This can only happen if we overwrite for 6803 * sync-to-convergence, because we remove 6804 * buffers from the hash table when we arc_free(). 6805 */ 6806 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 6807 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6808 panic("bad overwrite, hdr=%p exists=%p", 6809 (void *)hdr, (void *)exists); 6810 ASSERT(zfs_refcount_is_zero( 6811 &exists->b_l1hdr.b_refcnt)); 6812 arc_change_state(arc_anon, exists); 6813 arc_hdr_destroy(exists); 6814 mutex_exit(hash_lock); 6815 exists = buf_hash_insert(hdr, &hash_lock); 6816 ASSERT3P(exists, ==, NULL); 6817 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 6818 /* nopwrite */ 6819 ASSERT(zio->io_prop.zp_nopwrite); 6820 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6821 panic("bad nopwrite, hdr=%p exists=%p", 6822 (void *)hdr, (void *)exists); 6823 } else { 6824 /* Dedup */ 6825 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL); 6826 ASSERT(ARC_BUF_LAST(hdr->b_l1hdr.b_buf)); 6827 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 6828 ASSERT(BP_GET_DEDUP(zio->io_bp)); 6829 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 6830 } 6831 } 6832 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6833 VERIFY3S(remove_reference(hdr, hdr), >, 0); 6834 /* if it's not anon, we are doing a scrub */ 6835 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 6836 arc_access(hdr, 0, B_FALSE); 6837 mutex_exit(hash_lock); 6838 } else { 6839 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6840 VERIFY3S(remove_reference(hdr, hdr), >, 0); 6841 } 6842 6843 callback->awcb_done(zio, buf, callback->awcb_private); 6844 6845 abd_free(zio->io_abd); 6846 kmem_free(callback, sizeof (arc_write_callback_t)); 6847 } 6848 6849 zio_t * 6850 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 6851 blkptr_t *bp, arc_buf_t *buf, boolean_t uncached, boolean_t l2arc, 6852 const zio_prop_t *zp, arc_write_done_func_t *ready, 6853 arc_write_done_func_t *children_ready, arc_write_done_func_t *done, 6854 void *private, zio_priority_t priority, int zio_flags, 6855 const zbookmark_phys_t *zb) 6856 { 6857 arc_buf_hdr_t *hdr = buf->b_hdr; 6858 arc_write_callback_t *callback; 6859 zio_t *zio; 6860 zio_prop_t localprop = *zp; 6861 6862 ASSERT3P(ready, !=, NULL); 6863 ASSERT3P(done, !=, NULL); 6864 ASSERT(!HDR_IO_ERROR(hdr)); 6865 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6866 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6867 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL); 6868 if (uncached) 6869 arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED); 6870 else if (l2arc) 6871 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6872 6873 if (ARC_BUF_ENCRYPTED(buf)) { 6874 ASSERT(ARC_BUF_COMPRESSED(buf)); 6875 localprop.zp_encrypt = B_TRUE; 6876 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 6877 localprop.zp_complevel = hdr->b_complevel; 6878 localprop.zp_byteorder = 6879 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 6880 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 6881 memcpy(localprop.zp_salt, hdr->b_crypt_hdr.b_salt, 6882 ZIO_DATA_SALT_LEN); 6883 memcpy(localprop.zp_iv, hdr->b_crypt_hdr.b_iv, 6884 ZIO_DATA_IV_LEN); 6885 memcpy(localprop.zp_mac, hdr->b_crypt_hdr.b_mac, 6886 ZIO_DATA_MAC_LEN); 6887 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) { 6888 localprop.zp_nopwrite = B_FALSE; 6889 localprop.zp_copies = 6890 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1); 6891 } 6892 zio_flags |= ZIO_FLAG_RAW; 6893 } else if (ARC_BUF_COMPRESSED(buf)) { 6894 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf)); 6895 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 6896 localprop.zp_complevel = hdr->b_complevel; 6897 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 6898 } 6899 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 6900 callback->awcb_ready = ready; 6901 callback->awcb_children_ready = children_ready; 6902 callback->awcb_done = done; 6903 callback->awcb_private = private; 6904 callback->awcb_buf = buf; 6905 6906 /* 6907 * The hdr's b_pabd is now stale, free it now. A new data block 6908 * will be allocated when the zio pipeline calls arc_write_ready(). 6909 */ 6910 if (hdr->b_l1hdr.b_pabd != NULL) { 6911 /* 6912 * If the buf is currently sharing the data block with 6913 * the hdr then we need to break that relationship here. 6914 * The hdr will remain with a NULL data pointer and the 6915 * buf will take sole ownership of the block. 6916 */ 6917 if (ARC_BUF_SHARED(buf)) { 6918 arc_unshare_buf(hdr, buf); 6919 } else { 6920 ASSERT(!arc_buf_is_shared(buf)); 6921 arc_hdr_free_abd(hdr, B_FALSE); 6922 } 6923 VERIFY3P(buf->b_data, !=, NULL); 6924 } 6925 6926 if (HDR_HAS_RABD(hdr)) 6927 arc_hdr_free_abd(hdr, B_TRUE); 6928 6929 if (!(zio_flags & ZIO_FLAG_RAW)) 6930 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); 6931 6932 ASSERT(!arc_buf_is_shared(buf)); 6933 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6934 6935 zio = zio_write(pio, spa, txg, bp, 6936 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)), 6937 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready, 6938 (children_ready != NULL) ? arc_write_children_ready : NULL, 6939 arc_write_done, callback, priority, zio_flags, zb); 6940 6941 return (zio); 6942 } 6943 6944 void 6945 arc_tempreserve_clear(uint64_t reserve) 6946 { 6947 atomic_add_64(&arc_tempreserve, -reserve); 6948 ASSERT((int64_t)arc_tempreserve >= 0); 6949 } 6950 6951 int 6952 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg) 6953 { 6954 int error; 6955 uint64_t anon_size; 6956 6957 if (!arc_no_grow && 6958 reserve > arc_c/4 && 6959 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT)) 6960 arc_c = MIN(arc_c_max, reserve * 4); 6961 6962 /* 6963 * Throttle when the calculated memory footprint for the TXG 6964 * exceeds the target ARC size. 6965 */ 6966 if (reserve > arc_c) { 6967 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve); 6968 return (SET_ERROR(ERESTART)); 6969 } 6970 6971 /* 6972 * Don't count loaned bufs as in flight dirty data to prevent long 6973 * network delays from blocking transactions that are ready to be 6974 * assigned to a txg. 6975 */ 6976 6977 /* assert that it has not wrapped around */ 6978 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 6979 6980 anon_size = MAX((int64_t) 6981 (zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]) + 6982 zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]) - 6983 arc_loaned_bytes), 0); 6984 6985 /* 6986 * Writes will, almost always, require additional memory allocations 6987 * in order to compress/encrypt/etc the data. We therefore need to 6988 * make sure that there is sufficient available memory for this. 6989 */ 6990 error = arc_memory_throttle(spa, reserve, txg); 6991 if (error != 0) 6992 return (error); 6993 6994 /* 6995 * Throttle writes when the amount of dirty data in the cache 6996 * gets too large. We try to keep the cache less than half full 6997 * of dirty blocks so that our sync times don't grow too large. 6998 * 6999 * In the case of one pool being built on another pool, we want 7000 * to make sure we don't end up throttling the lower (backing) 7001 * pool when the upper pool is the majority contributor to dirty 7002 * data. To insure we make forward progress during throttling, we 7003 * also check the current pool's net dirty data and only throttle 7004 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty 7005 * data in the cache. 7006 * 7007 * Note: if two requests come in concurrently, we might let them 7008 * both succeed, when one of them should fail. Not a huge deal. 7009 */ 7010 uint64_t total_dirty = reserve + arc_tempreserve + anon_size; 7011 uint64_t spa_dirty_anon = spa_dirty_data(spa); 7012 uint64_t rarc_c = arc_warm ? arc_c : arc_c_max; 7013 if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 && 7014 anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 && 7015 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) { 7016 #ifdef ZFS_DEBUG 7017 uint64_t meta_esize = zfs_refcount_count( 7018 &arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7019 uint64_t data_esize = 7020 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7021 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 7022 "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n", 7023 (u_longlong_t)arc_tempreserve >> 10, 7024 (u_longlong_t)meta_esize >> 10, 7025 (u_longlong_t)data_esize >> 10, 7026 (u_longlong_t)reserve >> 10, 7027 (u_longlong_t)rarc_c >> 10); 7028 #endif 7029 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle); 7030 return (SET_ERROR(ERESTART)); 7031 } 7032 atomic_add_64(&arc_tempreserve, reserve); 7033 return (0); 7034 } 7035 7036 static void 7037 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 7038 kstat_named_t *data, kstat_named_t *metadata, 7039 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 7040 { 7041 data->value.ui64 = 7042 zfs_refcount_count(&state->arcs_size[ARC_BUFC_DATA]); 7043 metadata->value.ui64 = 7044 zfs_refcount_count(&state->arcs_size[ARC_BUFC_METADATA]); 7045 size->value.ui64 = data->value.ui64 + metadata->value.ui64; 7046 evict_data->value.ui64 = 7047 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); 7048 evict_metadata->value.ui64 = 7049 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); 7050 } 7051 7052 static int 7053 arc_kstat_update(kstat_t *ksp, int rw) 7054 { 7055 arc_stats_t *as = ksp->ks_data; 7056 7057 if (rw == KSTAT_WRITE) 7058 return (SET_ERROR(EACCES)); 7059 7060 as->arcstat_hits.value.ui64 = 7061 wmsum_value(&arc_sums.arcstat_hits); 7062 as->arcstat_iohits.value.ui64 = 7063 wmsum_value(&arc_sums.arcstat_iohits); 7064 as->arcstat_misses.value.ui64 = 7065 wmsum_value(&arc_sums.arcstat_misses); 7066 as->arcstat_demand_data_hits.value.ui64 = 7067 wmsum_value(&arc_sums.arcstat_demand_data_hits); 7068 as->arcstat_demand_data_iohits.value.ui64 = 7069 wmsum_value(&arc_sums.arcstat_demand_data_iohits); 7070 as->arcstat_demand_data_misses.value.ui64 = 7071 wmsum_value(&arc_sums.arcstat_demand_data_misses); 7072 as->arcstat_demand_metadata_hits.value.ui64 = 7073 wmsum_value(&arc_sums.arcstat_demand_metadata_hits); 7074 as->arcstat_demand_metadata_iohits.value.ui64 = 7075 wmsum_value(&arc_sums.arcstat_demand_metadata_iohits); 7076 as->arcstat_demand_metadata_misses.value.ui64 = 7077 wmsum_value(&arc_sums.arcstat_demand_metadata_misses); 7078 as->arcstat_prefetch_data_hits.value.ui64 = 7079 wmsum_value(&arc_sums.arcstat_prefetch_data_hits); 7080 as->arcstat_prefetch_data_iohits.value.ui64 = 7081 wmsum_value(&arc_sums.arcstat_prefetch_data_iohits); 7082 as->arcstat_prefetch_data_misses.value.ui64 = 7083 wmsum_value(&arc_sums.arcstat_prefetch_data_misses); 7084 as->arcstat_prefetch_metadata_hits.value.ui64 = 7085 wmsum_value(&arc_sums.arcstat_prefetch_metadata_hits); 7086 as->arcstat_prefetch_metadata_iohits.value.ui64 = 7087 wmsum_value(&arc_sums.arcstat_prefetch_metadata_iohits); 7088 as->arcstat_prefetch_metadata_misses.value.ui64 = 7089 wmsum_value(&arc_sums.arcstat_prefetch_metadata_misses); 7090 as->arcstat_mru_hits.value.ui64 = 7091 wmsum_value(&arc_sums.arcstat_mru_hits); 7092 as->arcstat_mru_ghost_hits.value.ui64 = 7093 wmsum_value(&arc_sums.arcstat_mru_ghost_hits); 7094 as->arcstat_mfu_hits.value.ui64 = 7095 wmsum_value(&arc_sums.arcstat_mfu_hits); 7096 as->arcstat_mfu_ghost_hits.value.ui64 = 7097 wmsum_value(&arc_sums.arcstat_mfu_ghost_hits); 7098 as->arcstat_uncached_hits.value.ui64 = 7099 wmsum_value(&arc_sums.arcstat_uncached_hits); 7100 as->arcstat_deleted.value.ui64 = 7101 wmsum_value(&arc_sums.arcstat_deleted); 7102 as->arcstat_mutex_miss.value.ui64 = 7103 wmsum_value(&arc_sums.arcstat_mutex_miss); 7104 as->arcstat_access_skip.value.ui64 = 7105 wmsum_value(&arc_sums.arcstat_access_skip); 7106 as->arcstat_evict_skip.value.ui64 = 7107 wmsum_value(&arc_sums.arcstat_evict_skip); 7108 as->arcstat_evict_not_enough.value.ui64 = 7109 wmsum_value(&arc_sums.arcstat_evict_not_enough); 7110 as->arcstat_evict_l2_cached.value.ui64 = 7111 wmsum_value(&arc_sums.arcstat_evict_l2_cached); 7112 as->arcstat_evict_l2_eligible.value.ui64 = 7113 wmsum_value(&arc_sums.arcstat_evict_l2_eligible); 7114 as->arcstat_evict_l2_eligible_mfu.value.ui64 = 7115 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mfu); 7116 as->arcstat_evict_l2_eligible_mru.value.ui64 = 7117 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mru); 7118 as->arcstat_evict_l2_ineligible.value.ui64 = 7119 wmsum_value(&arc_sums.arcstat_evict_l2_ineligible); 7120 as->arcstat_evict_l2_skip.value.ui64 = 7121 wmsum_value(&arc_sums.arcstat_evict_l2_skip); 7122 as->arcstat_hash_elements.value.ui64 = 7123 as->arcstat_hash_elements_max.value.ui64 = 7124 wmsum_value(&arc_sums.arcstat_hash_elements); 7125 as->arcstat_hash_collisions.value.ui64 = 7126 wmsum_value(&arc_sums.arcstat_hash_collisions); 7127 as->arcstat_hash_chains.value.ui64 = 7128 wmsum_value(&arc_sums.arcstat_hash_chains); 7129 as->arcstat_size.value.ui64 = 7130 aggsum_value(&arc_sums.arcstat_size); 7131 as->arcstat_compressed_size.value.ui64 = 7132 wmsum_value(&arc_sums.arcstat_compressed_size); 7133 as->arcstat_uncompressed_size.value.ui64 = 7134 wmsum_value(&arc_sums.arcstat_uncompressed_size); 7135 as->arcstat_overhead_size.value.ui64 = 7136 wmsum_value(&arc_sums.arcstat_overhead_size); 7137 as->arcstat_hdr_size.value.ui64 = 7138 wmsum_value(&arc_sums.arcstat_hdr_size); 7139 as->arcstat_data_size.value.ui64 = 7140 wmsum_value(&arc_sums.arcstat_data_size); 7141 as->arcstat_metadata_size.value.ui64 = 7142 wmsum_value(&arc_sums.arcstat_metadata_size); 7143 as->arcstat_dbuf_size.value.ui64 = 7144 wmsum_value(&arc_sums.arcstat_dbuf_size); 7145 #if defined(COMPAT_FREEBSD11) 7146 as->arcstat_other_size.value.ui64 = 7147 wmsum_value(&arc_sums.arcstat_bonus_size) + 7148 wmsum_value(&arc_sums.arcstat_dnode_size) + 7149 wmsum_value(&arc_sums.arcstat_dbuf_size); 7150 #endif 7151 7152 arc_kstat_update_state(arc_anon, 7153 &as->arcstat_anon_size, 7154 &as->arcstat_anon_data, 7155 &as->arcstat_anon_metadata, 7156 &as->arcstat_anon_evictable_data, 7157 &as->arcstat_anon_evictable_metadata); 7158 arc_kstat_update_state(arc_mru, 7159 &as->arcstat_mru_size, 7160 &as->arcstat_mru_data, 7161 &as->arcstat_mru_metadata, 7162 &as->arcstat_mru_evictable_data, 7163 &as->arcstat_mru_evictable_metadata); 7164 arc_kstat_update_state(arc_mru_ghost, 7165 &as->arcstat_mru_ghost_size, 7166 &as->arcstat_mru_ghost_data, 7167 &as->arcstat_mru_ghost_metadata, 7168 &as->arcstat_mru_ghost_evictable_data, 7169 &as->arcstat_mru_ghost_evictable_metadata); 7170 arc_kstat_update_state(arc_mfu, 7171 &as->arcstat_mfu_size, 7172 &as->arcstat_mfu_data, 7173 &as->arcstat_mfu_metadata, 7174 &as->arcstat_mfu_evictable_data, 7175 &as->arcstat_mfu_evictable_metadata); 7176 arc_kstat_update_state(arc_mfu_ghost, 7177 &as->arcstat_mfu_ghost_size, 7178 &as->arcstat_mfu_ghost_data, 7179 &as->arcstat_mfu_ghost_metadata, 7180 &as->arcstat_mfu_ghost_evictable_data, 7181 &as->arcstat_mfu_ghost_evictable_metadata); 7182 arc_kstat_update_state(arc_uncached, 7183 &as->arcstat_uncached_size, 7184 &as->arcstat_uncached_data, 7185 &as->arcstat_uncached_metadata, 7186 &as->arcstat_uncached_evictable_data, 7187 &as->arcstat_uncached_evictable_metadata); 7188 7189 as->arcstat_dnode_size.value.ui64 = 7190 wmsum_value(&arc_sums.arcstat_dnode_size); 7191 as->arcstat_bonus_size.value.ui64 = 7192 wmsum_value(&arc_sums.arcstat_bonus_size); 7193 as->arcstat_l2_hits.value.ui64 = 7194 wmsum_value(&arc_sums.arcstat_l2_hits); 7195 as->arcstat_l2_misses.value.ui64 = 7196 wmsum_value(&arc_sums.arcstat_l2_misses); 7197 as->arcstat_l2_prefetch_asize.value.ui64 = 7198 wmsum_value(&arc_sums.arcstat_l2_prefetch_asize); 7199 as->arcstat_l2_mru_asize.value.ui64 = 7200 wmsum_value(&arc_sums.arcstat_l2_mru_asize); 7201 as->arcstat_l2_mfu_asize.value.ui64 = 7202 wmsum_value(&arc_sums.arcstat_l2_mfu_asize); 7203 as->arcstat_l2_bufc_data_asize.value.ui64 = 7204 wmsum_value(&arc_sums.arcstat_l2_bufc_data_asize); 7205 as->arcstat_l2_bufc_metadata_asize.value.ui64 = 7206 wmsum_value(&arc_sums.arcstat_l2_bufc_metadata_asize); 7207 as->arcstat_l2_feeds.value.ui64 = 7208 wmsum_value(&arc_sums.arcstat_l2_feeds); 7209 as->arcstat_l2_rw_clash.value.ui64 = 7210 wmsum_value(&arc_sums.arcstat_l2_rw_clash); 7211 as->arcstat_l2_read_bytes.value.ui64 = 7212 wmsum_value(&arc_sums.arcstat_l2_read_bytes); 7213 as->arcstat_l2_write_bytes.value.ui64 = 7214 wmsum_value(&arc_sums.arcstat_l2_write_bytes); 7215 as->arcstat_l2_writes_sent.value.ui64 = 7216 wmsum_value(&arc_sums.arcstat_l2_writes_sent); 7217 as->arcstat_l2_writes_done.value.ui64 = 7218 wmsum_value(&arc_sums.arcstat_l2_writes_done); 7219 as->arcstat_l2_writes_error.value.ui64 = 7220 wmsum_value(&arc_sums.arcstat_l2_writes_error); 7221 as->arcstat_l2_writes_lock_retry.value.ui64 = 7222 wmsum_value(&arc_sums.arcstat_l2_writes_lock_retry); 7223 as->arcstat_l2_evict_lock_retry.value.ui64 = 7224 wmsum_value(&arc_sums.arcstat_l2_evict_lock_retry); 7225 as->arcstat_l2_evict_reading.value.ui64 = 7226 wmsum_value(&arc_sums.arcstat_l2_evict_reading); 7227 as->arcstat_l2_evict_l1cached.value.ui64 = 7228 wmsum_value(&arc_sums.arcstat_l2_evict_l1cached); 7229 as->arcstat_l2_free_on_write.value.ui64 = 7230 wmsum_value(&arc_sums.arcstat_l2_free_on_write); 7231 as->arcstat_l2_abort_lowmem.value.ui64 = 7232 wmsum_value(&arc_sums.arcstat_l2_abort_lowmem); 7233 as->arcstat_l2_cksum_bad.value.ui64 = 7234 wmsum_value(&arc_sums.arcstat_l2_cksum_bad); 7235 as->arcstat_l2_io_error.value.ui64 = 7236 wmsum_value(&arc_sums.arcstat_l2_io_error); 7237 as->arcstat_l2_lsize.value.ui64 = 7238 wmsum_value(&arc_sums.arcstat_l2_lsize); 7239 as->arcstat_l2_psize.value.ui64 = 7240 wmsum_value(&arc_sums.arcstat_l2_psize); 7241 as->arcstat_l2_hdr_size.value.ui64 = 7242 aggsum_value(&arc_sums.arcstat_l2_hdr_size); 7243 as->arcstat_l2_log_blk_writes.value.ui64 = 7244 wmsum_value(&arc_sums.arcstat_l2_log_blk_writes); 7245 as->arcstat_l2_log_blk_asize.value.ui64 = 7246 wmsum_value(&arc_sums.arcstat_l2_log_blk_asize); 7247 as->arcstat_l2_log_blk_count.value.ui64 = 7248 wmsum_value(&arc_sums.arcstat_l2_log_blk_count); 7249 as->arcstat_l2_rebuild_success.value.ui64 = 7250 wmsum_value(&arc_sums.arcstat_l2_rebuild_success); 7251 as->arcstat_l2_rebuild_abort_unsupported.value.ui64 = 7252 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_unsupported); 7253 as->arcstat_l2_rebuild_abort_io_errors.value.ui64 = 7254 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_io_errors); 7255 as->arcstat_l2_rebuild_abort_dh_errors.value.ui64 = 7256 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_dh_errors); 7257 as->arcstat_l2_rebuild_abort_cksum_lb_errors.value.ui64 = 7258 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors); 7259 as->arcstat_l2_rebuild_abort_lowmem.value.ui64 = 7260 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_lowmem); 7261 as->arcstat_l2_rebuild_size.value.ui64 = 7262 wmsum_value(&arc_sums.arcstat_l2_rebuild_size); 7263 as->arcstat_l2_rebuild_asize.value.ui64 = 7264 wmsum_value(&arc_sums.arcstat_l2_rebuild_asize); 7265 as->arcstat_l2_rebuild_bufs.value.ui64 = 7266 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs); 7267 as->arcstat_l2_rebuild_bufs_precached.value.ui64 = 7268 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs_precached); 7269 as->arcstat_l2_rebuild_log_blks.value.ui64 = 7270 wmsum_value(&arc_sums.arcstat_l2_rebuild_log_blks); 7271 as->arcstat_memory_throttle_count.value.ui64 = 7272 wmsum_value(&arc_sums.arcstat_memory_throttle_count); 7273 as->arcstat_memory_direct_count.value.ui64 = 7274 wmsum_value(&arc_sums.arcstat_memory_direct_count); 7275 as->arcstat_memory_indirect_count.value.ui64 = 7276 wmsum_value(&arc_sums.arcstat_memory_indirect_count); 7277 7278 as->arcstat_memory_all_bytes.value.ui64 = 7279 arc_all_memory(); 7280 as->arcstat_memory_free_bytes.value.ui64 = 7281 arc_free_memory(); 7282 as->arcstat_memory_available_bytes.value.i64 = 7283 arc_available_memory(); 7284 7285 as->arcstat_prune.value.ui64 = 7286 wmsum_value(&arc_sums.arcstat_prune); 7287 as->arcstat_meta_used.value.ui64 = 7288 wmsum_value(&arc_sums.arcstat_meta_used); 7289 as->arcstat_async_upgrade_sync.value.ui64 = 7290 wmsum_value(&arc_sums.arcstat_async_upgrade_sync); 7291 as->arcstat_predictive_prefetch.value.ui64 = 7292 wmsum_value(&arc_sums.arcstat_predictive_prefetch); 7293 as->arcstat_demand_hit_predictive_prefetch.value.ui64 = 7294 wmsum_value(&arc_sums.arcstat_demand_hit_predictive_prefetch); 7295 as->arcstat_demand_iohit_predictive_prefetch.value.ui64 = 7296 wmsum_value(&arc_sums.arcstat_demand_iohit_predictive_prefetch); 7297 as->arcstat_prescient_prefetch.value.ui64 = 7298 wmsum_value(&arc_sums.arcstat_prescient_prefetch); 7299 as->arcstat_demand_hit_prescient_prefetch.value.ui64 = 7300 wmsum_value(&arc_sums.arcstat_demand_hit_prescient_prefetch); 7301 as->arcstat_demand_iohit_prescient_prefetch.value.ui64 = 7302 wmsum_value(&arc_sums.arcstat_demand_iohit_prescient_prefetch); 7303 as->arcstat_raw_size.value.ui64 = 7304 wmsum_value(&arc_sums.arcstat_raw_size); 7305 as->arcstat_cached_only_in_progress.value.ui64 = 7306 wmsum_value(&arc_sums.arcstat_cached_only_in_progress); 7307 as->arcstat_abd_chunk_waste_size.value.ui64 = 7308 wmsum_value(&arc_sums.arcstat_abd_chunk_waste_size); 7309 7310 return (0); 7311 } 7312 7313 /* 7314 * This function *must* return indices evenly distributed between all 7315 * sublists of the multilist. This is needed due to how the ARC eviction 7316 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 7317 * distributed between all sublists and uses this assumption when 7318 * deciding which sublist to evict from and how much to evict from it. 7319 */ 7320 static unsigned int 7321 arc_state_multilist_index_func(multilist_t *ml, void *obj) 7322 { 7323 arc_buf_hdr_t *hdr = obj; 7324 7325 /* 7326 * We rely on b_dva to generate evenly distributed index 7327 * numbers using buf_hash below. So, as an added precaution, 7328 * let's make sure we never add empty buffers to the arc lists. 7329 */ 7330 ASSERT(!HDR_EMPTY(hdr)); 7331 7332 /* 7333 * The assumption here, is the hash value for a given 7334 * arc_buf_hdr_t will remain constant throughout its lifetime 7335 * (i.e. its b_spa, b_dva, and b_birth fields don't change). 7336 * Thus, we don't need to store the header's sublist index 7337 * on insertion, as this index can be recalculated on removal. 7338 * 7339 * Also, the low order bits of the hash value are thought to be 7340 * distributed evenly. Otherwise, in the case that the multilist 7341 * has a power of two number of sublists, each sublists' usage 7342 * would not be evenly distributed. In this context full 64bit 7343 * division would be a waste of time, so limit it to 32 bits. 7344 */ 7345 return ((unsigned int)buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 7346 multilist_get_num_sublists(ml)); 7347 } 7348 7349 static unsigned int 7350 arc_state_l2c_multilist_index_func(multilist_t *ml, void *obj) 7351 { 7352 panic("Header %p insert into arc_l2c_only %p", obj, ml); 7353 } 7354 7355 #define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \ 7356 if ((do_warn) && (tuning) && ((tuning) != (value))) { \ 7357 cmn_err(CE_WARN, \ 7358 "ignoring tunable %s (using %llu instead)", \ 7359 (#tuning), (u_longlong_t)(value)); \ 7360 } \ 7361 } while (0) 7362 7363 /* 7364 * Called during module initialization and periodically thereafter to 7365 * apply reasonable changes to the exposed performance tunings. Can also be 7366 * called explicitly by param_set_arc_*() functions when ARC tunables are 7367 * updated manually. Non-zero zfs_* values which differ from the currently set 7368 * values will be applied. 7369 */ 7370 void 7371 arc_tuning_update(boolean_t verbose) 7372 { 7373 uint64_t allmem = arc_all_memory(); 7374 7375 /* Valid range: 32M - <arc_c_max> */ 7376 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) && 7377 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) && 7378 (zfs_arc_min <= arc_c_max)) { 7379 arc_c_min = zfs_arc_min; 7380 arc_c = MAX(arc_c, arc_c_min); 7381 } 7382 WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose); 7383 7384 /* Valid range: 64M - <all physical memory> */ 7385 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) && 7386 (zfs_arc_max >= MIN_ARC_MAX) && (zfs_arc_max < allmem) && 7387 (zfs_arc_max > arc_c_min)) { 7388 arc_c_max = zfs_arc_max; 7389 arc_c = MIN(arc_c, arc_c_max); 7390 if (arc_dnode_limit > arc_c_max) 7391 arc_dnode_limit = arc_c_max; 7392 } 7393 WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose); 7394 7395 /* Valid range: 0 - <all physical memory> */ 7396 arc_dnode_limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit : 7397 MIN(zfs_arc_dnode_limit_percent, 100) * arc_c_max / 100; 7398 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_limit, verbose); 7399 7400 /* Valid range: 1 - N */ 7401 if (zfs_arc_grow_retry) 7402 arc_grow_retry = zfs_arc_grow_retry; 7403 7404 /* Valid range: 1 - N */ 7405 if (zfs_arc_shrink_shift) { 7406 arc_shrink_shift = zfs_arc_shrink_shift; 7407 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1); 7408 } 7409 7410 /* Valid range: 1 - N ms */ 7411 if (zfs_arc_min_prefetch_ms) 7412 arc_min_prefetch_ms = zfs_arc_min_prefetch_ms; 7413 7414 /* Valid range: 1 - N ms */ 7415 if (zfs_arc_min_prescient_prefetch_ms) { 7416 arc_min_prescient_prefetch_ms = 7417 zfs_arc_min_prescient_prefetch_ms; 7418 } 7419 7420 /* Valid range: 0 - 100 */ 7421 if (zfs_arc_lotsfree_percent <= 100) 7422 arc_lotsfree_percent = zfs_arc_lotsfree_percent; 7423 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent, 7424 verbose); 7425 7426 /* Valid range: 0 - <all physical memory> */ 7427 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free)) 7428 arc_sys_free = MIN(zfs_arc_sys_free, allmem); 7429 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose); 7430 } 7431 7432 static void 7433 arc_state_multilist_init(multilist_t *ml, 7434 multilist_sublist_index_func_t *index_func, int *maxcountp) 7435 { 7436 multilist_create(ml, sizeof (arc_buf_hdr_t), 7437 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), index_func); 7438 *maxcountp = MAX(*maxcountp, multilist_get_num_sublists(ml)); 7439 } 7440 7441 static void 7442 arc_state_init(void) 7443 { 7444 int num_sublists = 0; 7445 7446 arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_METADATA], 7447 arc_state_multilist_index_func, &num_sublists); 7448 arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_DATA], 7449 arc_state_multilist_index_func, &num_sublists); 7450 arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 7451 arc_state_multilist_index_func, &num_sublists); 7452 arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 7453 arc_state_multilist_index_func, &num_sublists); 7454 arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 7455 arc_state_multilist_index_func, &num_sublists); 7456 arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_DATA], 7457 arc_state_multilist_index_func, &num_sublists); 7458 arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 7459 arc_state_multilist_index_func, &num_sublists); 7460 arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 7461 arc_state_multilist_index_func, &num_sublists); 7462 arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_METADATA], 7463 arc_state_multilist_index_func, &num_sublists); 7464 arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_DATA], 7465 arc_state_multilist_index_func, &num_sublists); 7466 7467 /* 7468 * L2 headers should never be on the L2 state list since they don't 7469 * have L1 headers allocated. Special index function asserts that. 7470 */ 7471 arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 7472 arc_state_l2c_multilist_index_func, &num_sublists); 7473 arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 7474 arc_state_l2c_multilist_index_func, &num_sublists); 7475 7476 /* 7477 * Keep track of the number of markers needed to reclaim buffers from 7478 * any ARC state. The markers will be pre-allocated so as to minimize 7479 * the number of memory allocations performed by the eviction thread. 7480 */ 7481 arc_state_evict_marker_count = num_sublists; 7482 7483 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7484 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7485 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7486 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7487 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7488 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7489 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7490 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7491 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7492 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7493 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7494 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7495 zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]); 7496 zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_DATA]); 7497 7498 zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_DATA]); 7499 zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_METADATA]); 7500 zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_DATA]); 7501 zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_METADATA]); 7502 zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]); 7503 zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]); 7504 zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_DATA]); 7505 zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_METADATA]); 7506 zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]); 7507 zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]); 7508 zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]); 7509 zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]); 7510 zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_DATA]); 7511 zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_METADATA]); 7512 7513 wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA], 0); 7514 wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA], 0); 7515 wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA], 0); 7516 wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA], 0); 7517 7518 wmsum_init(&arc_sums.arcstat_hits, 0); 7519 wmsum_init(&arc_sums.arcstat_iohits, 0); 7520 wmsum_init(&arc_sums.arcstat_misses, 0); 7521 wmsum_init(&arc_sums.arcstat_demand_data_hits, 0); 7522 wmsum_init(&arc_sums.arcstat_demand_data_iohits, 0); 7523 wmsum_init(&arc_sums.arcstat_demand_data_misses, 0); 7524 wmsum_init(&arc_sums.arcstat_demand_metadata_hits, 0); 7525 wmsum_init(&arc_sums.arcstat_demand_metadata_iohits, 0); 7526 wmsum_init(&arc_sums.arcstat_demand_metadata_misses, 0); 7527 wmsum_init(&arc_sums.arcstat_prefetch_data_hits, 0); 7528 wmsum_init(&arc_sums.arcstat_prefetch_data_iohits, 0); 7529 wmsum_init(&arc_sums.arcstat_prefetch_data_misses, 0); 7530 wmsum_init(&arc_sums.arcstat_prefetch_metadata_hits, 0); 7531 wmsum_init(&arc_sums.arcstat_prefetch_metadata_iohits, 0); 7532 wmsum_init(&arc_sums.arcstat_prefetch_metadata_misses, 0); 7533 wmsum_init(&arc_sums.arcstat_mru_hits, 0); 7534 wmsum_init(&arc_sums.arcstat_mru_ghost_hits, 0); 7535 wmsum_init(&arc_sums.arcstat_mfu_hits, 0); 7536 wmsum_init(&arc_sums.arcstat_mfu_ghost_hits, 0); 7537 wmsum_init(&arc_sums.arcstat_uncached_hits, 0); 7538 wmsum_init(&arc_sums.arcstat_deleted, 0); 7539 wmsum_init(&arc_sums.arcstat_mutex_miss, 0); 7540 wmsum_init(&arc_sums.arcstat_access_skip, 0); 7541 wmsum_init(&arc_sums.arcstat_evict_skip, 0); 7542 wmsum_init(&arc_sums.arcstat_evict_not_enough, 0); 7543 wmsum_init(&arc_sums.arcstat_evict_l2_cached, 0); 7544 wmsum_init(&arc_sums.arcstat_evict_l2_eligible, 0); 7545 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mfu, 0); 7546 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mru, 0); 7547 wmsum_init(&arc_sums.arcstat_evict_l2_ineligible, 0); 7548 wmsum_init(&arc_sums.arcstat_evict_l2_skip, 0); 7549 wmsum_init(&arc_sums.arcstat_hash_elements, 0); 7550 wmsum_init(&arc_sums.arcstat_hash_collisions, 0); 7551 wmsum_init(&arc_sums.arcstat_hash_chains, 0); 7552 aggsum_init(&arc_sums.arcstat_size, 0); 7553 wmsum_init(&arc_sums.arcstat_compressed_size, 0); 7554 wmsum_init(&arc_sums.arcstat_uncompressed_size, 0); 7555 wmsum_init(&arc_sums.arcstat_overhead_size, 0); 7556 wmsum_init(&arc_sums.arcstat_hdr_size, 0); 7557 wmsum_init(&arc_sums.arcstat_data_size, 0); 7558 wmsum_init(&arc_sums.arcstat_metadata_size, 0); 7559 wmsum_init(&arc_sums.arcstat_dbuf_size, 0); 7560 wmsum_init(&arc_sums.arcstat_dnode_size, 0); 7561 wmsum_init(&arc_sums.arcstat_bonus_size, 0); 7562 wmsum_init(&arc_sums.arcstat_l2_hits, 0); 7563 wmsum_init(&arc_sums.arcstat_l2_misses, 0); 7564 wmsum_init(&arc_sums.arcstat_l2_prefetch_asize, 0); 7565 wmsum_init(&arc_sums.arcstat_l2_mru_asize, 0); 7566 wmsum_init(&arc_sums.arcstat_l2_mfu_asize, 0); 7567 wmsum_init(&arc_sums.arcstat_l2_bufc_data_asize, 0); 7568 wmsum_init(&arc_sums.arcstat_l2_bufc_metadata_asize, 0); 7569 wmsum_init(&arc_sums.arcstat_l2_feeds, 0); 7570 wmsum_init(&arc_sums.arcstat_l2_rw_clash, 0); 7571 wmsum_init(&arc_sums.arcstat_l2_read_bytes, 0); 7572 wmsum_init(&arc_sums.arcstat_l2_write_bytes, 0); 7573 wmsum_init(&arc_sums.arcstat_l2_writes_sent, 0); 7574 wmsum_init(&arc_sums.arcstat_l2_writes_done, 0); 7575 wmsum_init(&arc_sums.arcstat_l2_writes_error, 0); 7576 wmsum_init(&arc_sums.arcstat_l2_writes_lock_retry, 0); 7577 wmsum_init(&arc_sums.arcstat_l2_evict_lock_retry, 0); 7578 wmsum_init(&arc_sums.arcstat_l2_evict_reading, 0); 7579 wmsum_init(&arc_sums.arcstat_l2_evict_l1cached, 0); 7580 wmsum_init(&arc_sums.arcstat_l2_free_on_write, 0); 7581 wmsum_init(&arc_sums.arcstat_l2_abort_lowmem, 0); 7582 wmsum_init(&arc_sums.arcstat_l2_cksum_bad, 0); 7583 wmsum_init(&arc_sums.arcstat_l2_io_error, 0); 7584 wmsum_init(&arc_sums.arcstat_l2_lsize, 0); 7585 wmsum_init(&arc_sums.arcstat_l2_psize, 0); 7586 aggsum_init(&arc_sums.arcstat_l2_hdr_size, 0); 7587 wmsum_init(&arc_sums.arcstat_l2_log_blk_writes, 0); 7588 wmsum_init(&arc_sums.arcstat_l2_log_blk_asize, 0); 7589 wmsum_init(&arc_sums.arcstat_l2_log_blk_count, 0); 7590 wmsum_init(&arc_sums.arcstat_l2_rebuild_success, 0); 7591 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_unsupported, 0); 7592 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_io_errors, 0); 7593 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_dh_errors, 0); 7594 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors, 0); 7595 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_lowmem, 0); 7596 wmsum_init(&arc_sums.arcstat_l2_rebuild_size, 0); 7597 wmsum_init(&arc_sums.arcstat_l2_rebuild_asize, 0); 7598 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs, 0); 7599 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs_precached, 0); 7600 wmsum_init(&arc_sums.arcstat_l2_rebuild_log_blks, 0); 7601 wmsum_init(&arc_sums.arcstat_memory_throttle_count, 0); 7602 wmsum_init(&arc_sums.arcstat_memory_direct_count, 0); 7603 wmsum_init(&arc_sums.arcstat_memory_indirect_count, 0); 7604 wmsum_init(&arc_sums.arcstat_prune, 0); 7605 wmsum_init(&arc_sums.arcstat_meta_used, 0); 7606 wmsum_init(&arc_sums.arcstat_async_upgrade_sync, 0); 7607 wmsum_init(&arc_sums.arcstat_predictive_prefetch, 0); 7608 wmsum_init(&arc_sums.arcstat_demand_hit_predictive_prefetch, 0); 7609 wmsum_init(&arc_sums.arcstat_demand_iohit_predictive_prefetch, 0); 7610 wmsum_init(&arc_sums.arcstat_prescient_prefetch, 0); 7611 wmsum_init(&arc_sums.arcstat_demand_hit_prescient_prefetch, 0); 7612 wmsum_init(&arc_sums.arcstat_demand_iohit_prescient_prefetch, 0); 7613 wmsum_init(&arc_sums.arcstat_raw_size, 0); 7614 wmsum_init(&arc_sums.arcstat_cached_only_in_progress, 0); 7615 wmsum_init(&arc_sums.arcstat_abd_chunk_waste_size, 0); 7616 7617 arc_anon->arcs_state = ARC_STATE_ANON; 7618 arc_mru->arcs_state = ARC_STATE_MRU; 7619 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST; 7620 arc_mfu->arcs_state = ARC_STATE_MFU; 7621 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST; 7622 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY; 7623 arc_uncached->arcs_state = ARC_STATE_UNCACHED; 7624 } 7625 7626 static void 7627 arc_state_fini(void) 7628 { 7629 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7630 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7631 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7632 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7633 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7634 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7635 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7636 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7637 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7638 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7639 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7640 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7641 zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]); 7642 zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_DATA]); 7643 7644 zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_DATA]); 7645 zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_METADATA]); 7646 zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_DATA]); 7647 zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_METADATA]); 7648 zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]); 7649 zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]); 7650 zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_DATA]); 7651 zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_METADATA]); 7652 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]); 7653 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]); 7654 zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]); 7655 zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]); 7656 zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_DATA]); 7657 zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_METADATA]); 7658 7659 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 7660 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 7661 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 7662 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 7663 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 7664 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 7665 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 7666 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 7667 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]); 7668 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]); 7669 multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_METADATA]); 7670 multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_DATA]); 7671 7672 wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]); 7673 wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]); 7674 wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]); 7675 wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]); 7676 7677 wmsum_fini(&arc_sums.arcstat_hits); 7678 wmsum_fini(&arc_sums.arcstat_iohits); 7679 wmsum_fini(&arc_sums.arcstat_misses); 7680 wmsum_fini(&arc_sums.arcstat_demand_data_hits); 7681 wmsum_fini(&arc_sums.arcstat_demand_data_iohits); 7682 wmsum_fini(&arc_sums.arcstat_demand_data_misses); 7683 wmsum_fini(&arc_sums.arcstat_demand_metadata_hits); 7684 wmsum_fini(&arc_sums.arcstat_demand_metadata_iohits); 7685 wmsum_fini(&arc_sums.arcstat_demand_metadata_misses); 7686 wmsum_fini(&arc_sums.arcstat_prefetch_data_hits); 7687 wmsum_fini(&arc_sums.arcstat_prefetch_data_iohits); 7688 wmsum_fini(&arc_sums.arcstat_prefetch_data_misses); 7689 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_hits); 7690 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_iohits); 7691 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_misses); 7692 wmsum_fini(&arc_sums.arcstat_mru_hits); 7693 wmsum_fini(&arc_sums.arcstat_mru_ghost_hits); 7694 wmsum_fini(&arc_sums.arcstat_mfu_hits); 7695 wmsum_fini(&arc_sums.arcstat_mfu_ghost_hits); 7696 wmsum_fini(&arc_sums.arcstat_uncached_hits); 7697 wmsum_fini(&arc_sums.arcstat_deleted); 7698 wmsum_fini(&arc_sums.arcstat_mutex_miss); 7699 wmsum_fini(&arc_sums.arcstat_access_skip); 7700 wmsum_fini(&arc_sums.arcstat_evict_skip); 7701 wmsum_fini(&arc_sums.arcstat_evict_not_enough); 7702 wmsum_fini(&arc_sums.arcstat_evict_l2_cached); 7703 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible); 7704 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mfu); 7705 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mru); 7706 wmsum_fini(&arc_sums.arcstat_evict_l2_ineligible); 7707 wmsum_fini(&arc_sums.arcstat_evict_l2_skip); 7708 wmsum_fini(&arc_sums.arcstat_hash_elements); 7709 wmsum_fini(&arc_sums.arcstat_hash_collisions); 7710 wmsum_fini(&arc_sums.arcstat_hash_chains); 7711 aggsum_fini(&arc_sums.arcstat_size); 7712 wmsum_fini(&arc_sums.arcstat_compressed_size); 7713 wmsum_fini(&arc_sums.arcstat_uncompressed_size); 7714 wmsum_fini(&arc_sums.arcstat_overhead_size); 7715 wmsum_fini(&arc_sums.arcstat_hdr_size); 7716 wmsum_fini(&arc_sums.arcstat_data_size); 7717 wmsum_fini(&arc_sums.arcstat_metadata_size); 7718 wmsum_fini(&arc_sums.arcstat_dbuf_size); 7719 wmsum_fini(&arc_sums.arcstat_dnode_size); 7720 wmsum_fini(&arc_sums.arcstat_bonus_size); 7721 wmsum_fini(&arc_sums.arcstat_l2_hits); 7722 wmsum_fini(&arc_sums.arcstat_l2_misses); 7723 wmsum_fini(&arc_sums.arcstat_l2_prefetch_asize); 7724 wmsum_fini(&arc_sums.arcstat_l2_mru_asize); 7725 wmsum_fini(&arc_sums.arcstat_l2_mfu_asize); 7726 wmsum_fini(&arc_sums.arcstat_l2_bufc_data_asize); 7727 wmsum_fini(&arc_sums.arcstat_l2_bufc_metadata_asize); 7728 wmsum_fini(&arc_sums.arcstat_l2_feeds); 7729 wmsum_fini(&arc_sums.arcstat_l2_rw_clash); 7730 wmsum_fini(&arc_sums.arcstat_l2_read_bytes); 7731 wmsum_fini(&arc_sums.arcstat_l2_write_bytes); 7732 wmsum_fini(&arc_sums.arcstat_l2_writes_sent); 7733 wmsum_fini(&arc_sums.arcstat_l2_writes_done); 7734 wmsum_fini(&arc_sums.arcstat_l2_writes_error); 7735 wmsum_fini(&arc_sums.arcstat_l2_writes_lock_retry); 7736 wmsum_fini(&arc_sums.arcstat_l2_evict_lock_retry); 7737 wmsum_fini(&arc_sums.arcstat_l2_evict_reading); 7738 wmsum_fini(&arc_sums.arcstat_l2_evict_l1cached); 7739 wmsum_fini(&arc_sums.arcstat_l2_free_on_write); 7740 wmsum_fini(&arc_sums.arcstat_l2_abort_lowmem); 7741 wmsum_fini(&arc_sums.arcstat_l2_cksum_bad); 7742 wmsum_fini(&arc_sums.arcstat_l2_io_error); 7743 wmsum_fini(&arc_sums.arcstat_l2_lsize); 7744 wmsum_fini(&arc_sums.arcstat_l2_psize); 7745 aggsum_fini(&arc_sums.arcstat_l2_hdr_size); 7746 wmsum_fini(&arc_sums.arcstat_l2_log_blk_writes); 7747 wmsum_fini(&arc_sums.arcstat_l2_log_blk_asize); 7748 wmsum_fini(&arc_sums.arcstat_l2_log_blk_count); 7749 wmsum_fini(&arc_sums.arcstat_l2_rebuild_success); 7750 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_unsupported); 7751 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_io_errors); 7752 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_dh_errors); 7753 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors); 7754 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_lowmem); 7755 wmsum_fini(&arc_sums.arcstat_l2_rebuild_size); 7756 wmsum_fini(&arc_sums.arcstat_l2_rebuild_asize); 7757 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs); 7758 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs_precached); 7759 wmsum_fini(&arc_sums.arcstat_l2_rebuild_log_blks); 7760 wmsum_fini(&arc_sums.arcstat_memory_throttle_count); 7761 wmsum_fini(&arc_sums.arcstat_memory_direct_count); 7762 wmsum_fini(&arc_sums.arcstat_memory_indirect_count); 7763 wmsum_fini(&arc_sums.arcstat_prune); 7764 wmsum_fini(&arc_sums.arcstat_meta_used); 7765 wmsum_fini(&arc_sums.arcstat_async_upgrade_sync); 7766 wmsum_fini(&arc_sums.arcstat_predictive_prefetch); 7767 wmsum_fini(&arc_sums.arcstat_demand_hit_predictive_prefetch); 7768 wmsum_fini(&arc_sums.arcstat_demand_iohit_predictive_prefetch); 7769 wmsum_fini(&arc_sums.arcstat_prescient_prefetch); 7770 wmsum_fini(&arc_sums.arcstat_demand_hit_prescient_prefetch); 7771 wmsum_fini(&arc_sums.arcstat_demand_iohit_prescient_prefetch); 7772 wmsum_fini(&arc_sums.arcstat_raw_size); 7773 wmsum_fini(&arc_sums.arcstat_cached_only_in_progress); 7774 wmsum_fini(&arc_sums.arcstat_abd_chunk_waste_size); 7775 } 7776 7777 uint64_t 7778 arc_target_bytes(void) 7779 { 7780 return (arc_c); 7781 } 7782 7783 void 7784 arc_set_limits(uint64_t allmem) 7785 { 7786 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */ 7787 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT); 7788 7789 /* How to set default max varies by platform. */ 7790 arc_c_max = arc_default_max(arc_c_min, allmem); 7791 } 7792 void 7793 arc_init(void) 7794 { 7795 uint64_t percent, allmem = arc_all_memory(); 7796 mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL); 7797 list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t), 7798 offsetof(arc_evict_waiter_t, aew_node)); 7799 7800 arc_min_prefetch_ms = 1000; 7801 arc_min_prescient_prefetch_ms = 6000; 7802 7803 #if defined(_KERNEL) 7804 arc_lowmem_init(); 7805 #endif 7806 7807 arc_set_limits(allmem); 7808 7809 #ifdef _KERNEL 7810 /* 7811 * If zfs_arc_max is non-zero at init, meaning it was set in the kernel 7812 * environment before the module was loaded, don't block setting the 7813 * maximum because it is less than arc_c_min, instead, reset arc_c_min 7814 * to a lower value. 7815 * zfs_arc_min will be handled by arc_tuning_update(). 7816 */ 7817 if (zfs_arc_max != 0 && zfs_arc_max >= MIN_ARC_MAX && 7818 zfs_arc_max < allmem) { 7819 arc_c_max = zfs_arc_max; 7820 if (arc_c_min >= arc_c_max) { 7821 arc_c_min = MAX(zfs_arc_max / 2, 7822 2ULL << SPA_MAXBLOCKSHIFT); 7823 } 7824 } 7825 #else 7826 /* 7827 * In userland, there's only the memory pressure that we artificially 7828 * create (see arc_available_memory()). Don't let arc_c get too 7829 * small, because it can cause transactions to be larger than 7830 * arc_c, causing arc_tempreserve_space() to fail. 7831 */ 7832 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT); 7833 #endif 7834 7835 arc_c = arc_c_min; 7836 /* 7837 * 32-bit fixed point fractions of metadata from total ARC size, 7838 * MRU data from all data and MRU metadata from all metadata. 7839 */ 7840 arc_meta = (1ULL << 32) / 4; /* Metadata is 25% of arc_c. */ 7841 arc_pd = (1ULL << 32) / 2; /* Data MRU is 50% of data. */ 7842 arc_pm = (1ULL << 32) / 2; /* Metadata MRU is 50% of metadata. */ 7843 7844 percent = MIN(zfs_arc_dnode_limit_percent, 100); 7845 arc_dnode_limit = arc_c_max * percent / 100; 7846 7847 /* Apply user specified tunings */ 7848 arc_tuning_update(B_TRUE); 7849 7850 /* if kmem_flags are set, lets try to use less memory */ 7851 if (kmem_debugging()) 7852 arc_c = arc_c / 2; 7853 if (arc_c < arc_c_min) 7854 arc_c = arc_c_min; 7855 7856 arc_register_hotplug(); 7857 7858 arc_state_init(); 7859 7860 buf_init(); 7861 7862 list_create(&arc_prune_list, sizeof (arc_prune_t), 7863 offsetof(arc_prune_t, p_node)); 7864 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL); 7865 7866 arc_prune_taskq = taskq_create("arc_prune", zfs_arc_prune_task_threads, 7867 defclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC); 7868 7869 list_create(&arc_async_flush_list, sizeof (arc_async_flush_t), 7870 offsetof(arc_async_flush_t, af_node)); 7871 mutex_init(&arc_async_flush_lock, NULL, MUTEX_DEFAULT, NULL); 7872 arc_flush_taskq = taskq_create("arc_flush", MIN(boot_ncpus, 4), 7873 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC); 7874 7875 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 7876 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 7877 7878 if (arc_ksp != NULL) { 7879 arc_ksp->ks_data = &arc_stats; 7880 arc_ksp->ks_update = arc_kstat_update; 7881 kstat_install(arc_ksp); 7882 } 7883 7884 arc_state_evict_markers = 7885 arc_state_alloc_markers(arc_state_evict_marker_count); 7886 arc_evict_zthr = zthr_create_timer("arc_evict", 7887 arc_evict_cb_check, arc_evict_cb, NULL, SEC2NSEC(1), defclsyspri); 7888 arc_reap_zthr = zthr_create_timer("arc_reap", 7889 arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1), minclsyspri); 7890 7891 arc_warm = B_FALSE; 7892 7893 /* 7894 * Calculate maximum amount of dirty data per pool. 7895 * 7896 * If it has been set by a module parameter, take that. 7897 * Otherwise, use a percentage of physical memory defined by 7898 * zfs_dirty_data_max_percent (default 10%) with a cap at 7899 * zfs_dirty_data_max_max (default 4G or 25% of physical memory). 7900 */ 7901 #ifdef __LP64__ 7902 if (zfs_dirty_data_max_max == 0) 7903 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024, 7904 allmem * zfs_dirty_data_max_max_percent / 100); 7905 #else 7906 if (zfs_dirty_data_max_max == 0) 7907 zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024, 7908 allmem * zfs_dirty_data_max_max_percent / 100); 7909 #endif 7910 7911 if (zfs_dirty_data_max == 0) { 7912 zfs_dirty_data_max = allmem * 7913 zfs_dirty_data_max_percent / 100; 7914 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 7915 zfs_dirty_data_max_max); 7916 } 7917 7918 if (zfs_wrlog_data_max == 0) { 7919 7920 /* 7921 * dp_wrlog_total is reduced for each txg at the end of 7922 * spa_sync(). However, dp_dirty_total is reduced every time 7923 * a block is written out. Thus under normal operation, 7924 * dp_wrlog_total could grow 2 times as big as 7925 * zfs_dirty_data_max. 7926 */ 7927 zfs_wrlog_data_max = zfs_dirty_data_max * 2; 7928 } 7929 } 7930 7931 void 7932 arc_fini(void) 7933 { 7934 arc_prune_t *p; 7935 7936 #ifdef _KERNEL 7937 arc_lowmem_fini(); 7938 #endif /* _KERNEL */ 7939 7940 /* Wait for any background flushes */ 7941 taskq_wait(arc_flush_taskq); 7942 taskq_destroy(arc_flush_taskq); 7943 7944 /* Use B_TRUE to ensure *all* buffers are evicted */ 7945 arc_flush(NULL, B_TRUE); 7946 7947 if (arc_ksp != NULL) { 7948 kstat_delete(arc_ksp); 7949 arc_ksp = NULL; 7950 } 7951 7952 taskq_wait(arc_prune_taskq); 7953 taskq_destroy(arc_prune_taskq); 7954 7955 list_destroy(&arc_async_flush_list); 7956 mutex_destroy(&arc_async_flush_lock); 7957 7958 mutex_enter(&arc_prune_mtx); 7959 while ((p = list_remove_head(&arc_prune_list)) != NULL) { 7960 (void) zfs_refcount_remove(&p->p_refcnt, &arc_prune_list); 7961 zfs_refcount_destroy(&p->p_refcnt); 7962 kmem_free(p, sizeof (*p)); 7963 } 7964 mutex_exit(&arc_prune_mtx); 7965 7966 list_destroy(&arc_prune_list); 7967 mutex_destroy(&arc_prune_mtx); 7968 7969 (void) zthr_cancel(arc_evict_zthr); 7970 (void) zthr_cancel(arc_reap_zthr); 7971 arc_state_free_markers(arc_state_evict_markers, 7972 arc_state_evict_marker_count); 7973 7974 mutex_destroy(&arc_evict_lock); 7975 list_destroy(&arc_evict_waiters); 7976 7977 /* 7978 * Free any buffers that were tagged for destruction. This needs 7979 * to occur before arc_state_fini() runs and destroys the aggsum 7980 * values which are updated when freeing scatter ABDs. 7981 */ 7982 l2arc_do_free_on_write(); 7983 7984 /* 7985 * buf_fini() must proceed arc_state_fini() because buf_fin() may 7986 * trigger the release of kmem magazines, which can callback to 7987 * arc_space_return() which accesses aggsums freed in act_state_fini(). 7988 */ 7989 buf_fini(); 7990 arc_state_fini(); 7991 7992 arc_unregister_hotplug(); 7993 7994 /* 7995 * We destroy the zthrs after all the ARC state has been 7996 * torn down to avoid the case of them receiving any 7997 * wakeup() signals after they are destroyed. 7998 */ 7999 zthr_destroy(arc_evict_zthr); 8000 zthr_destroy(arc_reap_zthr); 8001 8002 ASSERT0(arc_loaned_bytes); 8003 } 8004 8005 /* 8006 * Level 2 ARC 8007 * 8008 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 8009 * It uses dedicated storage devices to hold cached data, which are populated 8010 * using large infrequent writes. The main role of this cache is to boost 8011 * the performance of random read workloads. The intended L2ARC devices 8012 * include short-stroked disks, solid state disks, and other media with 8013 * substantially faster read latency than disk. 8014 * 8015 * +-----------------------+ 8016 * | ARC | 8017 * +-----------------------+ 8018 * | ^ ^ 8019 * | | | 8020 * l2arc_feed_thread() arc_read() 8021 * | | | 8022 * | l2arc read | 8023 * V | | 8024 * +---------------+ | 8025 * | L2ARC | | 8026 * +---------------+ | 8027 * | ^ | 8028 * l2arc_write() | | 8029 * | | | 8030 * V | | 8031 * +-------+ +-------+ 8032 * | vdev | | vdev | 8033 * | cache | | cache | 8034 * +-------+ +-------+ 8035 * +=========+ .-----. 8036 * : L2ARC : |-_____-| 8037 * : devices : | Disks | 8038 * +=========+ `-_____-' 8039 * 8040 * Read requests are satisfied from the following sources, in order: 8041 * 8042 * 1) ARC 8043 * 2) vdev cache of L2ARC devices 8044 * 3) L2ARC devices 8045 * 4) vdev cache of disks 8046 * 5) disks 8047 * 8048 * Some L2ARC device types exhibit extremely slow write performance. 8049 * To accommodate for this there are some significant differences between 8050 * the L2ARC and traditional cache design: 8051 * 8052 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 8053 * the ARC behave as usual, freeing buffers and placing headers on ghost 8054 * lists. The ARC does not send buffers to the L2ARC during eviction as 8055 * this would add inflated write latencies for all ARC memory pressure. 8056 * 8057 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 8058 * It does this by periodically scanning buffers from the eviction-end of 8059 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 8060 * not already there. It scans until a headroom of buffers is satisfied, 8061 * which itself is a buffer for ARC eviction. If a compressible buffer is 8062 * found during scanning and selected for writing to an L2ARC device, we 8063 * temporarily boost scanning headroom during the next scan cycle to make 8064 * sure we adapt to compression effects (which might significantly reduce 8065 * the data volume we write to L2ARC). The thread that does this is 8066 * l2arc_feed_thread(), illustrated below; example sizes are included to 8067 * provide a better sense of ratio than this diagram: 8068 * 8069 * head --> tail 8070 * +---------------------+----------+ 8071 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 8072 * +---------------------+----------+ | o L2ARC eligible 8073 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 8074 * +---------------------+----------+ | 8075 * 15.9 Gbytes ^ 32 Mbytes | 8076 * headroom | 8077 * l2arc_feed_thread() 8078 * | 8079 * l2arc write hand <--[oooo]--' 8080 * | 8 Mbyte 8081 * | write max 8082 * V 8083 * +==============================+ 8084 * L2ARC dev |####|#|###|###| |####| ... | 8085 * +==============================+ 8086 * 32 Gbytes 8087 * 8088 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 8089 * evicted, then the L2ARC has cached a buffer much sooner than it probably 8090 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 8091 * safe to say that this is an uncommon case, since buffers at the end of 8092 * the ARC lists have moved there due to inactivity. 8093 * 8094 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 8095 * then the L2ARC simply misses copying some buffers. This serves as a 8096 * pressure valve to prevent heavy read workloads from both stalling the ARC 8097 * with waits and clogging the L2ARC with writes. This also helps prevent 8098 * the potential for the L2ARC to churn if it attempts to cache content too 8099 * quickly, such as during backups of the entire pool. 8100 * 8101 * 5. After system boot and before the ARC has filled main memory, there are 8102 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 8103 * lists can remain mostly static. Instead of searching from tail of these 8104 * lists as pictured, the l2arc_feed_thread() will search from the list heads 8105 * for eligible buffers, greatly increasing its chance of finding them. 8106 * 8107 * The L2ARC device write speed is also boosted during this time so that 8108 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 8109 * there are no L2ARC reads, and no fear of degrading read performance 8110 * through increased writes. 8111 * 8112 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 8113 * the vdev queue can aggregate them into larger and fewer writes. Each 8114 * device is written to in a rotor fashion, sweeping writes through 8115 * available space then repeating. 8116 * 8117 * 7. The L2ARC does not store dirty content. It never needs to flush 8118 * write buffers back to disk based storage. 8119 * 8120 * 8. If an ARC buffer is written (and dirtied) which also exists in the 8121 * L2ARC, the now stale L2ARC buffer is immediately dropped. 8122 * 8123 * The performance of the L2ARC can be tweaked by a number of tunables, which 8124 * may be necessary for different workloads: 8125 * 8126 * l2arc_write_max max write bytes per interval 8127 * l2arc_write_boost extra write bytes during device warmup 8128 * l2arc_noprefetch skip caching prefetched buffers 8129 * l2arc_headroom number of max device writes to precache 8130 * l2arc_headroom_boost when we find compressed buffers during ARC 8131 * scanning, we multiply headroom by this 8132 * percentage factor for the next scan cycle, 8133 * since more compressed buffers are likely to 8134 * be present 8135 * l2arc_feed_secs seconds between L2ARC writing 8136 * 8137 * Tunables may be removed or added as future performance improvements are 8138 * integrated, and also may become zpool properties. 8139 * 8140 * There are three key functions that control how the L2ARC warms up: 8141 * 8142 * l2arc_write_eligible() check if a buffer is eligible to cache 8143 * l2arc_write_size() calculate how much to write 8144 * l2arc_write_interval() calculate sleep delay between writes 8145 * 8146 * These three functions determine what to write, how much, and how quickly 8147 * to send writes. 8148 * 8149 * L2ARC persistence: 8150 * 8151 * When writing buffers to L2ARC, we periodically add some metadata to 8152 * make sure we can pick them up after reboot, thus dramatically reducing 8153 * the impact that any downtime has on the performance of storage systems 8154 * with large caches. 8155 * 8156 * The implementation works fairly simply by integrating the following two 8157 * modifications: 8158 * 8159 * *) When writing to the L2ARC, we occasionally write a "l2arc log block", 8160 * which is an additional piece of metadata which describes what's been 8161 * written. This allows us to rebuild the arc_buf_hdr_t structures of the 8162 * main ARC buffers. There are 2 linked-lists of log blocks headed by 8163 * dh_start_lbps[2]. We alternate which chain we append to, so they are 8164 * time-wise and offset-wise interleaved, but that is an optimization rather 8165 * than for correctness. The log block also includes a pointer to the 8166 * previous block in its chain. 8167 * 8168 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device 8169 * for our header bookkeeping purposes. This contains a device header, 8170 * which contains our top-level reference structures. We update it each 8171 * time we write a new log block, so that we're able to locate it in the 8172 * L2ARC device. If this write results in an inconsistent device header 8173 * (e.g. due to power failure), we detect this by verifying the header's 8174 * checksum and simply fail to reconstruct the L2ARC after reboot. 8175 * 8176 * Implementation diagram: 8177 * 8178 * +=== L2ARC device (not to scale) ======================================+ 8179 * | ___two newest log block pointers__.__________ | 8180 * | / \dh_start_lbps[1] | 8181 * | / \ \dh_start_lbps[0]| 8182 * |.___/__. V V | 8183 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---| 8184 * || hdr| ^ /^ /^ / / | 8185 * |+------+ ...--\-------/ \-----/--\------/ / | 8186 * | \--------------/ \--------------/ | 8187 * +======================================================================+ 8188 * 8189 * As can be seen on the diagram, rather than using a simple linked list, 8190 * we use a pair of linked lists with alternating elements. This is a 8191 * performance enhancement due to the fact that we only find out the 8192 * address of the next log block access once the current block has been 8193 * completely read in. Obviously, this hurts performance, because we'd be 8194 * keeping the device's I/O queue at only a 1 operation deep, thus 8195 * incurring a large amount of I/O round-trip latency. Having two lists 8196 * allows us to fetch two log blocks ahead of where we are currently 8197 * rebuilding L2ARC buffers. 8198 * 8199 * On-device data structures: 8200 * 8201 * L2ARC device header: l2arc_dev_hdr_phys_t 8202 * L2ARC log block: l2arc_log_blk_phys_t 8203 * 8204 * L2ARC reconstruction: 8205 * 8206 * When writing data, we simply write in the standard rotary fashion, 8207 * evicting buffers as we go and simply writing new data over them (writing 8208 * a new log block every now and then). This obviously means that once we 8209 * loop around the end of the device, we will start cutting into an already 8210 * committed log block (and its referenced data buffers), like so: 8211 * 8212 * current write head__ __old tail 8213 * \ / 8214 * V V 8215 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |--> 8216 * ^ ^^^^^^^^^___________________________________ 8217 * | \ 8218 * <<nextwrite>> may overwrite this blk and/or its bufs --' 8219 * 8220 * When importing the pool, we detect this situation and use it to stop 8221 * our scanning process (see l2arc_rebuild). 8222 * 8223 * There is one significant caveat to consider when rebuilding ARC contents 8224 * from an L2ARC device: what about invalidated buffers? Given the above 8225 * construction, we cannot update blocks which we've already written to amend 8226 * them to remove buffers which were invalidated. Thus, during reconstruction, 8227 * we might be populating the cache with buffers for data that's not on the 8228 * main pool anymore, or may have been overwritten! 8229 * 8230 * As it turns out, this isn't a problem. Every arc_read request includes 8231 * both the DVA and, crucially, the birth TXG of the BP the caller is 8232 * looking for. So even if the cache were populated by completely rotten 8233 * blocks for data that had been long deleted and/or overwritten, we'll 8234 * never actually return bad data from the cache, since the DVA with the 8235 * birth TXG uniquely identify a block in space and time - once created, 8236 * a block is immutable on disk. The worst thing we have done is wasted 8237 * some time and memory at l2arc rebuild to reconstruct outdated ARC 8238 * entries that will get dropped from the l2arc as it is being updated 8239 * with new blocks. 8240 * 8241 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write 8242 * hand are not restored. This is done by saving the offset (in bytes) 8243 * l2arc_evict() has evicted to in the L2ARC device header and taking it 8244 * into account when restoring buffers. 8245 */ 8246 8247 static boolean_t 8248 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 8249 { 8250 /* 8251 * A buffer is *not* eligible for the L2ARC if it: 8252 * 1. belongs to a different spa. 8253 * 2. is already cached on the L2ARC. 8254 * 3. has an I/O in progress (it may be an incomplete read). 8255 * 4. is flagged not eligible (zfs property). 8256 */ 8257 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || 8258 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr)) 8259 return (B_FALSE); 8260 8261 return (B_TRUE); 8262 } 8263 8264 static uint64_t 8265 l2arc_write_size(l2arc_dev_t *dev) 8266 { 8267 uint64_t size; 8268 8269 /* 8270 * Make sure our globals have meaningful values in case the user 8271 * altered them. 8272 */ 8273 size = l2arc_write_max; 8274 if (size == 0) { 8275 cmn_err(CE_NOTE, "l2arc_write_max must be greater than zero, " 8276 "resetting it to the default (%d)", L2ARC_WRITE_SIZE); 8277 size = l2arc_write_max = L2ARC_WRITE_SIZE; 8278 } 8279 8280 if (arc_warm == B_FALSE) 8281 size += l2arc_write_boost; 8282 8283 /* We need to add in the worst case scenario of log block overhead. */ 8284 size += l2arc_log_blk_overhead(size, dev); 8285 if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) { 8286 /* 8287 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100) 8288 * times the writesize, whichever is greater. 8289 */ 8290 size += MAX(64 * 1024 * 1024, 8291 (size * l2arc_trim_ahead) / 100); 8292 } 8293 8294 /* 8295 * Make sure the write size does not exceed the size of the cache 8296 * device. This is important in l2arc_evict(), otherwise infinite 8297 * iteration can occur. 8298 */ 8299 size = MIN(size, (dev->l2ad_end - dev->l2ad_start) / 4); 8300 8301 size = P2ROUNDUP(size, 1ULL << dev->l2ad_vdev->vdev_ashift); 8302 8303 return (size); 8304 8305 } 8306 8307 static clock_t 8308 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 8309 { 8310 clock_t interval, next, now; 8311 8312 /* 8313 * If the ARC lists are busy, increase our write rate; if the 8314 * lists are stale, idle back. This is achieved by checking 8315 * how much we previously wrote - if it was more than half of 8316 * what we wanted, schedule the next write much sooner. 8317 */ 8318 if (l2arc_feed_again && wrote > (wanted / 2)) 8319 interval = (hz * l2arc_feed_min_ms) / 1000; 8320 else 8321 interval = hz * l2arc_feed_secs; 8322 8323 now = ddi_get_lbolt(); 8324 next = MAX(now, MIN(now + interval, began + interval)); 8325 8326 return (next); 8327 } 8328 8329 static boolean_t 8330 l2arc_dev_invalid(const l2arc_dev_t *dev) 8331 { 8332 /* 8333 * We want to skip devices that are being rebuilt, trimmed, 8334 * removed, or belong to a spa that is being exported. 8335 */ 8336 return (dev->l2ad_vdev == NULL || vdev_is_dead(dev->l2ad_vdev) || 8337 dev->l2ad_rebuild || dev->l2ad_trim_all || 8338 dev->l2ad_spa == NULL || dev->l2ad_spa->spa_is_exporting); 8339 } 8340 8341 /* 8342 * Cycle through L2ARC devices. This is how L2ARC load balances. 8343 * If a device is returned, this also returns holding the spa config lock. 8344 */ 8345 static l2arc_dev_t * 8346 l2arc_dev_get_next(void) 8347 { 8348 l2arc_dev_t *first, *next = NULL; 8349 8350 /* 8351 * Lock out the removal of spas (spa_namespace_lock), then removal 8352 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 8353 * both locks will be dropped and a spa config lock held instead. 8354 */ 8355 mutex_enter(&spa_namespace_lock); 8356 mutex_enter(&l2arc_dev_mtx); 8357 8358 /* if there are no vdevs, there is nothing to do */ 8359 if (l2arc_ndev == 0) 8360 goto out; 8361 8362 first = NULL; 8363 next = l2arc_dev_last; 8364 do { 8365 /* loop around the list looking for a non-faulted vdev */ 8366 if (next == NULL) { 8367 next = list_head(l2arc_dev_list); 8368 } else { 8369 next = list_next(l2arc_dev_list, next); 8370 if (next == NULL) 8371 next = list_head(l2arc_dev_list); 8372 } 8373 8374 /* if we have come back to the start, bail out */ 8375 if (first == NULL) 8376 first = next; 8377 else if (next == first) 8378 break; 8379 8380 ASSERT3P(next, !=, NULL); 8381 } while (l2arc_dev_invalid(next)); 8382 8383 /* if we were unable to find any usable vdevs, return NULL */ 8384 if (l2arc_dev_invalid(next)) 8385 next = NULL; 8386 8387 l2arc_dev_last = next; 8388 8389 out: 8390 mutex_exit(&l2arc_dev_mtx); 8391 8392 /* 8393 * Grab the config lock to prevent the 'next' device from being 8394 * removed while we are writing to it. 8395 */ 8396 if (next != NULL) 8397 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 8398 mutex_exit(&spa_namespace_lock); 8399 8400 return (next); 8401 } 8402 8403 /* 8404 * Free buffers that were tagged for destruction. 8405 */ 8406 static void 8407 l2arc_do_free_on_write(void) 8408 { 8409 l2arc_data_free_t *df; 8410 8411 mutex_enter(&l2arc_free_on_write_mtx); 8412 while ((df = list_remove_head(l2arc_free_on_write)) != NULL) { 8413 ASSERT3P(df->l2df_abd, !=, NULL); 8414 abd_free(df->l2df_abd); 8415 kmem_free(df, sizeof (l2arc_data_free_t)); 8416 } 8417 mutex_exit(&l2arc_free_on_write_mtx); 8418 } 8419 8420 /* 8421 * A write to a cache device has completed. Update all headers to allow 8422 * reads from these buffers to begin. 8423 */ 8424 static void 8425 l2arc_write_done(zio_t *zio) 8426 { 8427 l2arc_write_callback_t *cb; 8428 l2arc_lb_abd_buf_t *abd_buf; 8429 l2arc_lb_ptr_buf_t *lb_ptr_buf; 8430 l2arc_dev_t *dev; 8431 l2arc_dev_hdr_phys_t *l2dhdr; 8432 list_t *buflist; 8433 arc_buf_hdr_t *head, *hdr, *hdr_prev; 8434 kmutex_t *hash_lock; 8435 int64_t bytes_dropped = 0; 8436 8437 cb = zio->io_private; 8438 ASSERT3P(cb, !=, NULL); 8439 dev = cb->l2wcb_dev; 8440 l2dhdr = dev->l2ad_dev_hdr; 8441 ASSERT3P(dev, !=, NULL); 8442 head = cb->l2wcb_head; 8443 ASSERT3P(head, !=, NULL); 8444 buflist = &dev->l2ad_buflist; 8445 ASSERT3P(buflist, !=, NULL); 8446 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 8447 l2arc_write_callback_t *, cb); 8448 8449 /* 8450 * All writes completed, or an error was hit. 8451 */ 8452 top: 8453 mutex_enter(&dev->l2ad_mtx); 8454 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 8455 hdr_prev = list_prev(buflist, hdr); 8456 8457 hash_lock = HDR_LOCK(hdr); 8458 8459 /* 8460 * We cannot use mutex_enter or else we can deadlock 8461 * with l2arc_write_buffers (due to swapping the order 8462 * the hash lock and l2ad_mtx are taken). 8463 */ 8464 if (!mutex_tryenter(hash_lock)) { 8465 /* 8466 * Missed the hash lock. We must retry so we 8467 * don't leave the ARC_FLAG_L2_WRITING bit set. 8468 */ 8469 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 8470 8471 /* 8472 * We don't want to rescan the headers we've 8473 * already marked as having been written out, so 8474 * we reinsert the head node so we can pick up 8475 * where we left off. 8476 */ 8477 list_remove(buflist, head); 8478 list_insert_after(buflist, hdr, head); 8479 8480 mutex_exit(&dev->l2ad_mtx); 8481 8482 /* 8483 * We wait for the hash lock to become available 8484 * to try and prevent busy waiting, and increase 8485 * the chance we'll be able to acquire the lock 8486 * the next time around. 8487 */ 8488 mutex_enter(hash_lock); 8489 mutex_exit(hash_lock); 8490 goto top; 8491 } 8492 8493 /* 8494 * We could not have been moved into the arc_l2c_only 8495 * state while in-flight due to our ARC_FLAG_L2_WRITING 8496 * bit being set. Let's just ensure that's being enforced. 8497 */ 8498 ASSERT(HDR_HAS_L1HDR(hdr)); 8499 8500 /* 8501 * Skipped - drop L2ARC entry and mark the header as no 8502 * longer L2 eligibile. 8503 */ 8504 if (zio->io_error != 0) { 8505 /* 8506 * Error - drop L2ARC entry. 8507 */ 8508 list_remove(buflist, hdr); 8509 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 8510 8511 uint64_t psize = HDR_GET_PSIZE(hdr); 8512 l2arc_hdr_arcstats_decrement(hdr); 8513 8514 ASSERT(dev->l2ad_vdev != NULL); 8515 8516 bytes_dropped += 8517 vdev_psize_to_asize(dev->l2ad_vdev, psize); 8518 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 8519 arc_hdr_size(hdr), hdr); 8520 } 8521 8522 /* 8523 * Allow ARC to begin reads and ghost list evictions to 8524 * this L2ARC entry. 8525 */ 8526 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); 8527 8528 mutex_exit(hash_lock); 8529 } 8530 8531 /* 8532 * Free the allocated abd buffers for writing the log blocks. 8533 * If the zio failed reclaim the allocated space and remove the 8534 * pointers to these log blocks from the log block pointer list 8535 * of the L2ARC device. 8536 */ 8537 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) { 8538 abd_free(abd_buf->abd); 8539 zio_buf_free(abd_buf, sizeof (*abd_buf)); 8540 if (zio->io_error != 0) { 8541 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list); 8542 /* 8543 * L2BLK_GET_PSIZE returns aligned size for log 8544 * blocks. 8545 */ 8546 uint64_t asize = 8547 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop); 8548 bytes_dropped += asize; 8549 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 8550 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 8551 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 8552 lb_ptr_buf); 8553 (void) zfs_refcount_remove(&dev->l2ad_lb_count, 8554 lb_ptr_buf); 8555 kmem_free(lb_ptr_buf->lb_ptr, 8556 sizeof (l2arc_log_blkptr_t)); 8557 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 8558 } 8559 } 8560 list_destroy(&cb->l2wcb_abd_list); 8561 8562 if (zio->io_error != 0) { 8563 ARCSTAT_BUMP(arcstat_l2_writes_error); 8564 8565 /* 8566 * Restore the lbps array in the header to its previous state. 8567 * If the list of log block pointers is empty, zero out the 8568 * log block pointers in the device header. 8569 */ 8570 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list); 8571 for (int i = 0; i < 2; i++) { 8572 if (lb_ptr_buf == NULL) { 8573 /* 8574 * If the list is empty zero out the device 8575 * header. Otherwise zero out the second log 8576 * block pointer in the header. 8577 */ 8578 if (i == 0) { 8579 memset(l2dhdr, 0, 8580 dev->l2ad_dev_hdr_asize); 8581 } else { 8582 memset(&l2dhdr->dh_start_lbps[i], 0, 8583 sizeof (l2arc_log_blkptr_t)); 8584 } 8585 break; 8586 } 8587 memcpy(&l2dhdr->dh_start_lbps[i], lb_ptr_buf->lb_ptr, 8588 sizeof (l2arc_log_blkptr_t)); 8589 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list, 8590 lb_ptr_buf); 8591 } 8592 } 8593 8594 ARCSTAT_BUMP(arcstat_l2_writes_done); 8595 list_remove(buflist, head); 8596 ASSERT(!HDR_HAS_L1HDR(head)); 8597 kmem_cache_free(hdr_l2only_cache, head); 8598 mutex_exit(&dev->l2ad_mtx); 8599 8600 ASSERT(dev->l2ad_vdev != NULL); 8601 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 8602 8603 l2arc_do_free_on_write(); 8604 8605 kmem_free(cb, sizeof (l2arc_write_callback_t)); 8606 } 8607 8608 static int 8609 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb) 8610 { 8611 int ret; 8612 spa_t *spa = zio->io_spa; 8613 arc_buf_hdr_t *hdr = cb->l2rcb_hdr; 8614 blkptr_t *bp = zio->io_bp; 8615 uint8_t salt[ZIO_DATA_SALT_LEN]; 8616 uint8_t iv[ZIO_DATA_IV_LEN]; 8617 uint8_t mac[ZIO_DATA_MAC_LEN]; 8618 boolean_t no_crypt = B_FALSE; 8619 8620 /* 8621 * ZIL data is never be written to the L2ARC, so we don't need 8622 * special handling for its unique MAC storage. 8623 */ 8624 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 8625 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 8626 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8627 8628 /* 8629 * If the data was encrypted, decrypt it now. Note that 8630 * we must check the bp here and not the hdr, since the 8631 * hdr does not have its encryption parameters updated 8632 * until arc_read_done(). 8633 */ 8634 if (BP_IS_ENCRYPTED(bp)) { 8635 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8636 ARC_HDR_USE_RESERVE); 8637 8638 zio_crypt_decode_params_bp(bp, salt, iv); 8639 zio_crypt_decode_mac_bp(bp, mac); 8640 8641 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb, 8642 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 8643 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd, 8644 hdr->b_l1hdr.b_pabd, &no_crypt); 8645 if (ret != 0) { 8646 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8647 goto error; 8648 } 8649 8650 /* 8651 * If we actually performed decryption, replace b_pabd 8652 * with the decrypted data. Otherwise we can just throw 8653 * our decryption buffer away. 8654 */ 8655 if (!no_crypt) { 8656 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8657 arc_hdr_size(hdr), hdr); 8658 hdr->b_l1hdr.b_pabd = eabd; 8659 zio->io_abd = eabd; 8660 } else { 8661 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8662 } 8663 } 8664 8665 /* 8666 * If the L2ARC block was compressed, but ARC compression 8667 * is disabled we decompress the data into a new buffer and 8668 * replace the existing data. 8669 */ 8670 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 8671 !HDR_COMPRESSION_ENABLED(hdr)) { 8672 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8673 ARC_HDR_USE_RESERVE); 8674 8675 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 8676 hdr->b_l1hdr.b_pabd, cabd, HDR_GET_PSIZE(hdr), 8677 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 8678 if (ret != 0) { 8679 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr); 8680 goto error; 8681 } 8682 8683 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8684 arc_hdr_size(hdr), hdr); 8685 hdr->b_l1hdr.b_pabd = cabd; 8686 zio->io_abd = cabd; 8687 zio->io_size = HDR_GET_LSIZE(hdr); 8688 } 8689 8690 return (0); 8691 8692 error: 8693 return (ret); 8694 } 8695 8696 8697 /* 8698 * A read to a cache device completed. Validate buffer contents before 8699 * handing over to the regular ARC routines. 8700 */ 8701 static void 8702 l2arc_read_done(zio_t *zio) 8703 { 8704 int tfm_error = 0; 8705 l2arc_read_callback_t *cb = zio->io_private; 8706 arc_buf_hdr_t *hdr; 8707 kmutex_t *hash_lock; 8708 boolean_t valid_cksum; 8709 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) && 8710 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT)); 8711 8712 ASSERT3P(zio->io_vd, !=, NULL); 8713 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 8714 8715 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 8716 8717 ASSERT3P(cb, !=, NULL); 8718 hdr = cb->l2rcb_hdr; 8719 ASSERT3P(hdr, !=, NULL); 8720 8721 hash_lock = HDR_LOCK(hdr); 8722 mutex_enter(hash_lock); 8723 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 8724 8725 /* 8726 * If the data was read into a temporary buffer, 8727 * move it and free the buffer. 8728 */ 8729 if (cb->l2rcb_abd != NULL) { 8730 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size); 8731 if (zio->io_error == 0) { 8732 if (using_rdata) { 8733 abd_copy(hdr->b_crypt_hdr.b_rabd, 8734 cb->l2rcb_abd, arc_hdr_size(hdr)); 8735 } else { 8736 abd_copy(hdr->b_l1hdr.b_pabd, 8737 cb->l2rcb_abd, arc_hdr_size(hdr)); 8738 } 8739 } 8740 8741 /* 8742 * The following must be done regardless of whether 8743 * there was an error: 8744 * - free the temporary buffer 8745 * - point zio to the real ARC buffer 8746 * - set zio size accordingly 8747 * These are required because zio is either re-used for 8748 * an I/O of the block in the case of the error 8749 * or the zio is passed to arc_read_done() and it 8750 * needs real data. 8751 */ 8752 abd_free(cb->l2rcb_abd); 8753 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr); 8754 8755 if (using_rdata) { 8756 ASSERT(HDR_HAS_RABD(hdr)); 8757 zio->io_abd = zio->io_orig_abd = 8758 hdr->b_crypt_hdr.b_rabd; 8759 } else { 8760 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8761 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd; 8762 } 8763 } 8764 8765 ASSERT3P(zio->io_abd, !=, NULL); 8766 8767 /* 8768 * Check this survived the L2ARC journey. 8769 */ 8770 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd || 8771 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd)); 8772 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 8773 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 8774 zio->io_prop.zp_complevel = hdr->b_complevel; 8775 8776 valid_cksum = arc_cksum_is_equal(hdr, zio); 8777 8778 /* 8779 * b_rabd will always match the data as it exists on disk if it is 8780 * being used. Therefore if we are reading into b_rabd we do not 8781 * attempt to untransform the data. 8782 */ 8783 if (valid_cksum && !using_rdata) 8784 tfm_error = l2arc_untransform(zio, cb); 8785 8786 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 && 8787 !HDR_L2_EVICTED(hdr)) { 8788 mutex_exit(hash_lock); 8789 zio->io_private = hdr; 8790 arc_read_done(zio); 8791 } else { 8792 /* 8793 * Buffer didn't survive caching. Increment stats and 8794 * reissue to the original storage device. 8795 */ 8796 if (zio->io_error != 0) { 8797 ARCSTAT_BUMP(arcstat_l2_io_error); 8798 } else { 8799 zio->io_error = SET_ERROR(EIO); 8800 } 8801 if (!valid_cksum || tfm_error != 0) 8802 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 8803 8804 /* 8805 * If there's no waiter, issue an async i/o to the primary 8806 * storage now. If there *is* a waiter, the caller must 8807 * issue the i/o in a context where it's OK to block. 8808 */ 8809 if (zio->io_waiter == NULL) { 8810 zio_t *pio = zio_unique_parent(zio); 8811 void *abd = (using_rdata) ? 8812 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd; 8813 8814 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 8815 8816 zio = zio_read(pio, zio->io_spa, zio->io_bp, 8817 abd, zio->io_size, arc_read_done, 8818 hdr, zio->io_priority, cb->l2rcb_flags, 8819 &cb->l2rcb_zb); 8820 8821 /* 8822 * Original ZIO will be freed, so we need to update 8823 * ARC header with the new ZIO pointer to be used 8824 * by zio_change_priority() in arc_read(). 8825 */ 8826 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb; 8827 acb != NULL; acb = acb->acb_next) 8828 acb->acb_zio_head = zio; 8829 8830 mutex_exit(hash_lock); 8831 zio_nowait(zio); 8832 } else { 8833 mutex_exit(hash_lock); 8834 } 8835 } 8836 8837 kmem_free(cb, sizeof (l2arc_read_callback_t)); 8838 } 8839 8840 /* 8841 * This is the list priority from which the L2ARC will search for pages to 8842 * cache. This is used within loops (0..3) to cycle through lists in the 8843 * desired order. This order can have a significant effect on cache 8844 * performance. 8845 * 8846 * Currently the metadata lists are hit first, MFU then MRU, followed by 8847 * the data lists. This function returns a locked list, and also returns 8848 * the lock pointer. 8849 */ 8850 static multilist_sublist_t * 8851 l2arc_sublist_lock(int list_num) 8852 { 8853 multilist_t *ml = NULL; 8854 unsigned int idx; 8855 8856 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES); 8857 8858 switch (list_num) { 8859 case 0: 8860 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 8861 break; 8862 case 1: 8863 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 8864 break; 8865 case 2: 8866 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 8867 break; 8868 case 3: 8869 ml = &arc_mru->arcs_list[ARC_BUFC_DATA]; 8870 break; 8871 default: 8872 return (NULL); 8873 } 8874 8875 /* 8876 * Return a randomly-selected sublist. This is acceptable 8877 * because the caller feeds only a little bit of data for each 8878 * call (8MB). Subsequent calls will result in different 8879 * sublists being selected. 8880 */ 8881 idx = multilist_get_random_index(ml); 8882 return (multilist_sublist_lock_idx(ml, idx)); 8883 } 8884 8885 /* 8886 * Calculates the maximum overhead of L2ARC metadata log blocks for a given 8887 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this 8888 * overhead in processing to make sure there is enough headroom available 8889 * when writing buffers. 8890 */ 8891 static inline uint64_t 8892 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev) 8893 { 8894 if (dev->l2ad_log_entries == 0) { 8895 return (0); 8896 } else { 8897 ASSERT(dev->l2ad_vdev != NULL); 8898 8899 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT; 8900 8901 uint64_t log_blocks = (log_entries + 8902 dev->l2ad_log_entries - 1) / 8903 dev->l2ad_log_entries; 8904 8905 return (vdev_psize_to_asize(dev->l2ad_vdev, 8906 sizeof (l2arc_log_blk_phys_t)) * log_blocks); 8907 } 8908 } 8909 8910 /* 8911 * Evict buffers from the device write hand to the distance specified in 8912 * bytes. This distance may span populated buffers, it may span nothing. 8913 * This is clearing a region on the L2ARC device ready for writing. 8914 * If the 'all' boolean is set, every buffer is evicted. 8915 */ 8916 static void 8917 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 8918 { 8919 list_t *buflist; 8920 arc_buf_hdr_t *hdr, *hdr_prev; 8921 kmutex_t *hash_lock; 8922 uint64_t taddr; 8923 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev; 8924 vdev_t *vd = dev->l2ad_vdev; 8925 boolean_t rerun; 8926 8927 ASSERT(vd != NULL || all); 8928 ASSERT(dev->l2ad_spa != NULL || all); 8929 8930 buflist = &dev->l2ad_buflist; 8931 8932 top: 8933 rerun = B_FALSE; 8934 if (dev->l2ad_hand + distance > dev->l2ad_end) { 8935 /* 8936 * When there is no space to accommodate upcoming writes, 8937 * evict to the end. Then bump the write and evict hands 8938 * to the start and iterate. This iteration does not 8939 * happen indefinitely as we make sure in 8940 * l2arc_write_size() that when the write hand is reset, 8941 * the write size does not exceed the end of the device. 8942 */ 8943 rerun = B_TRUE; 8944 taddr = dev->l2ad_end; 8945 } else { 8946 taddr = dev->l2ad_hand + distance; 8947 } 8948 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 8949 uint64_t, taddr, boolean_t, all); 8950 8951 if (!all) { 8952 /* 8953 * This check has to be placed after deciding whether to 8954 * iterate (rerun). 8955 */ 8956 if (dev->l2ad_first) { 8957 /* 8958 * This is the first sweep through the device. There is 8959 * nothing to evict. We have already trimmmed the 8960 * whole device. 8961 */ 8962 goto out; 8963 } else { 8964 /* 8965 * Trim the space to be evicted. 8966 */ 8967 if (vd->vdev_has_trim && dev->l2ad_evict < taddr && 8968 l2arc_trim_ahead > 0) { 8969 /* 8970 * We have to drop the spa_config lock because 8971 * vdev_trim_range() will acquire it. 8972 * l2ad_evict already accounts for the label 8973 * size. To prevent vdev_trim_ranges() from 8974 * adding it again, we subtract it from 8975 * l2ad_evict. 8976 */ 8977 spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev); 8978 vdev_trim_simple(vd, 8979 dev->l2ad_evict - VDEV_LABEL_START_SIZE, 8980 taddr - dev->l2ad_evict); 8981 spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev, 8982 RW_READER); 8983 } 8984 8985 /* 8986 * When rebuilding L2ARC we retrieve the evict hand 8987 * from the header of the device. Of note, l2arc_evict() 8988 * does not actually delete buffers from the cache 8989 * device, but trimming may do so depending on the 8990 * hardware implementation. Thus keeping track of the 8991 * evict hand is useful. 8992 */ 8993 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr); 8994 } 8995 } 8996 8997 retry: 8998 mutex_enter(&dev->l2ad_mtx); 8999 /* 9000 * We have to account for evicted log blocks. Run vdev_space_update() 9001 * on log blocks whose offset (in bytes) is before the evicted offset 9002 * (in bytes) by searching in the list of pointers to log blocks 9003 * present in the L2ARC device. 9004 */ 9005 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf; 9006 lb_ptr_buf = lb_ptr_buf_prev) { 9007 9008 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf); 9009 9010 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 9011 uint64_t asize = L2BLK_GET_PSIZE( 9012 (lb_ptr_buf->lb_ptr)->lbp_prop); 9013 9014 /* 9015 * We don't worry about log blocks left behind (ie 9016 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers() 9017 * will never write more than l2arc_evict() evicts. 9018 */ 9019 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) { 9020 break; 9021 } else { 9022 if (vd != NULL) 9023 vdev_space_update(vd, -asize, 0, 0); 9024 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 9025 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 9026 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 9027 lb_ptr_buf); 9028 (void) zfs_refcount_remove(&dev->l2ad_lb_count, 9029 lb_ptr_buf); 9030 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf); 9031 kmem_free(lb_ptr_buf->lb_ptr, 9032 sizeof (l2arc_log_blkptr_t)); 9033 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 9034 } 9035 } 9036 9037 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 9038 hdr_prev = list_prev(buflist, hdr); 9039 9040 ASSERT(!HDR_EMPTY(hdr)); 9041 hash_lock = HDR_LOCK(hdr); 9042 9043 /* 9044 * We cannot use mutex_enter or else we can deadlock 9045 * with l2arc_write_buffers (due to swapping the order 9046 * the hash lock and l2ad_mtx are taken). 9047 */ 9048 if (!mutex_tryenter(hash_lock)) { 9049 /* 9050 * Missed the hash lock. Retry. 9051 */ 9052 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 9053 mutex_exit(&dev->l2ad_mtx); 9054 mutex_enter(hash_lock); 9055 mutex_exit(hash_lock); 9056 goto retry; 9057 } 9058 9059 /* 9060 * A header can't be on this list if it doesn't have L2 header. 9061 */ 9062 ASSERT(HDR_HAS_L2HDR(hdr)); 9063 9064 /* Ensure this header has finished being written. */ 9065 ASSERT(!HDR_L2_WRITING(hdr)); 9066 ASSERT(!HDR_L2_WRITE_HEAD(hdr)); 9067 9068 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict || 9069 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 9070 /* 9071 * We've evicted to the target address, 9072 * or the end of the device. 9073 */ 9074 mutex_exit(hash_lock); 9075 break; 9076 } 9077 9078 if (!HDR_HAS_L1HDR(hdr)) { 9079 ASSERT(!HDR_L2_READING(hdr)); 9080 /* 9081 * This doesn't exist in the ARC. Destroy. 9082 * arc_hdr_destroy() will call list_remove() 9083 * and decrement arcstat_l2_lsize. 9084 */ 9085 arc_change_state(arc_anon, hdr); 9086 arc_hdr_destroy(hdr); 9087 } else { 9088 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 9089 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 9090 /* 9091 * Invalidate issued or about to be issued 9092 * reads, since we may be about to write 9093 * over this location. 9094 */ 9095 if (HDR_L2_READING(hdr)) { 9096 ARCSTAT_BUMP(arcstat_l2_evict_reading); 9097 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); 9098 } 9099 9100 arc_hdr_l2hdr_destroy(hdr); 9101 } 9102 mutex_exit(hash_lock); 9103 } 9104 mutex_exit(&dev->l2ad_mtx); 9105 9106 out: 9107 /* 9108 * We need to check if we evict all buffers, otherwise we may iterate 9109 * unnecessarily. 9110 */ 9111 if (!all && rerun) { 9112 /* 9113 * Bump device hand to the device start if it is approaching the 9114 * end. l2arc_evict() has already evicted ahead for this case. 9115 */ 9116 dev->l2ad_hand = dev->l2ad_start; 9117 dev->l2ad_evict = dev->l2ad_start; 9118 dev->l2ad_first = B_FALSE; 9119 goto top; 9120 } 9121 9122 if (!all) { 9123 /* 9124 * In case of cache device removal (all) the following 9125 * assertions may be violated without functional consequences 9126 * as the device is about to be removed. 9127 */ 9128 ASSERT3U(dev->l2ad_hand + distance, <=, dev->l2ad_end); 9129 if (!dev->l2ad_first) 9130 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict); 9131 } 9132 } 9133 9134 /* 9135 * Handle any abd transforms that might be required for writing to the L2ARC. 9136 * If successful, this function will always return an abd with the data 9137 * transformed as it is on disk in a new abd of asize bytes. 9138 */ 9139 static int 9140 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize, 9141 abd_t **abd_out) 9142 { 9143 int ret; 9144 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd; 9145 enum zio_compress compress = HDR_GET_COMPRESS(hdr); 9146 uint64_t psize = HDR_GET_PSIZE(hdr); 9147 uint64_t size = arc_hdr_size(hdr); 9148 boolean_t ismd = HDR_ISTYPE_METADATA(hdr); 9149 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 9150 dsl_crypto_key_t *dck = NULL; 9151 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 }; 9152 boolean_t no_crypt = B_FALSE; 9153 9154 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 9155 !HDR_COMPRESSION_ENABLED(hdr)) || 9156 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize); 9157 ASSERT3U(psize, <=, asize); 9158 9159 /* 9160 * If this data simply needs its own buffer, we simply allocate it 9161 * and copy the data. This may be done to eliminate a dependency on a 9162 * shared buffer or to reallocate the buffer to match asize. 9163 */ 9164 if (HDR_HAS_RABD(hdr)) { 9165 ASSERT3U(asize, >, psize); 9166 to_write = abd_alloc_for_io(asize, ismd); 9167 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize); 9168 abd_zero_off(to_write, psize, asize - psize); 9169 goto out; 9170 } 9171 9172 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) && 9173 !HDR_ENCRYPTED(hdr)) { 9174 ASSERT3U(size, ==, psize); 9175 to_write = abd_alloc_for_io(asize, ismd); 9176 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 9177 if (asize > size) 9178 abd_zero_off(to_write, size, asize - size); 9179 goto out; 9180 } 9181 9182 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) { 9183 cabd = abd_alloc_for_io(MAX(size, asize), ismd); 9184 uint64_t csize = zio_compress_data(compress, to_write, &cabd, 9185 size, MIN(size, psize), hdr->b_complevel); 9186 if (csize >= size || csize > psize) { 9187 /* 9188 * We can't re-compress the block into the original 9189 * psize. Even if it fits into asize, it does not 9190 * matter, since checksum will never match on read. 9191 */ 9192 abd_free(cabd); 9193 return (SET_ERROR(EIO)); 9194 } 9195 if (asize > csize) 9196 abd_zero_off(cabd, csize, asize - csize); 9197 to_write = cabd; 9198 } 9199 9200 if (HDR_ENCRYPTED(hdr)) { 9201 eabd = abd_alloc_for_io(asize, ismd); 9202 9203 /* 9204 * If the dataset was disowned before the buffer 9205 * made it to this point, the key to re-encrypt 9206 * it won't be available. In this case we simply 9207 * won't write the buffer to the L2ARC. 9208 */ 9209 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj, 9210 FTAG, &dck); 9211 if (ret != 0) 9212 goto error; 9213 9214 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key, 9215 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt, 9216 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd, 9217 &no_crypt); 9218 if (ret != 0) 9219 goto error; 9220 9221 if (no_crypt) 9222 abd_copy(eabd, to_write, psize); 9223 9224 if (psize != asize) 9225 abd_zero_off(eabd, psize, asize - psize); 9226 9227 /* assert that the MAC we got here matches the one we saved */ 9228 ASSERT0(memcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN)); 9229 spa_keystore_dsl_key_rele(spa, dck, FTAG); 9230 9231 if (to_write == cabd) 9232 abd_free(cabd); 9233 9234 to_write = eabd; 9235 } 9236 9237 out: 9238 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd); 9239 *abd_out = to_write; 9240 return (0); 9241 9242 error: 9243 if (dck != NULL) 9244 spa_keystore_dsl_key_rele(spa, dck, FTAG); 9245 if (cabd != NULL) 9246 abd_free(cabd); 9247 if (eabd != NULL) 9248 abd_free(eabd); 9249 9250 *abd_out = NULL; 9251 return (ret); 9252 } 9253 9254 static void 9255 l2arc_blk_fetch_done(zio_t *zio) 9256 { 9257 l2arc_read_callback_t *cb; 9258 9259 cb = zio->io_private; 9260 if (cb->l2rcb_abd != NULL) 9261 abd_free(cb->l2rcb_abd); 9262 kmem_free(cb, sizeof (l2arc_read_callback_t)); 9263 } 9264 9265 /* 9266 * Find and write ARC buffers to the L2ARC device. 9267 * 9268 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 9269 * for reading until they have completed writing. 9270 * The headroom_boost is an in-out parameter used to maintain headroom boost 9271 * state between calls to this function. 9272 * 9273 * Returns the number of bytes actually written (which may be smaller than 9274 * the delta by which the device hand has changed due to alignment and the 9275 * writing of log blocks). 9276 */ 9277 static uint64_t 9278 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 9279 { 9280 arc_buf_hdr_t *hdr, *head, *marker; 9281 uint64_t write_asize, write_psize, headroom; 9282 boolean_t full, from_head = !arc_warm; 9283 l2arc_write_callback_t *cb = NULL; 9284 zio_t *pio, *wzio; 9285 uint64_t guid = spa_load_guid(spa); 9286 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9287 9288 ASSERT3P(dev->l2ad_vdev, !=, NULL); 9289 9290 pio = NULL; 9291 write_asize = write_psize = 0; 9292 full = B_FALSE; 9293 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 9294 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); 9295 marker = arc_state_alloc_marker(); 9296 9297 /* 9298 * Copy buffers for L2ARC writing. 9299 */ 9300 for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) { 9301 /* 9302 * pass == 0: MFU meta 9303 * pass == 1: MRU meta 9304 * pass == 2: MFU data 9305 * pass == 3: MRU data 9306 */ 9307 if (l2arc_mfuonly == 1) { 9308 if (pass == 1 || pass == 3) 9309 continue; 9310 } else if (l2arc_mfuonly > 1) { 9311 if (pass == 3) 9312 continue; 9313 } 9314 9315 uint64_t passed_sz = 0; 9316 headroom = target_sz * l2arc_headroom; 9317 if (zfs_compressed_arc_enabled) 9318 headroom = (headroom * l2arc_headroom_boost) / 100; 9319 9320 /* 9321 * Until the ARC is warm and starts to evict, read from the 9322 * head of the ARC lists rather than the tail. 9323 */ 9324 multilist_sublist_t *mls = l2arc_sublist_lock(pass); 9325 ASSERT3P(mls, !=, NULL); 9326 if (from_head) 9327 hdr = multilist_sublist_head(mls); 9328 else 9329 hdr = multilist_sublist_tail(mls); 9330 9331 while (hdr != NULL) { 9332 kmutex_t *hash_lock; 9333 abd_t *to_write = NULL; 9334 9335 hash_lock = HDR_LOCK(hdr); 9336 if (!mutex_tryenter(hash_lock)) { 9337 skip: 9338 /* Skip this buffer rather than waiting. */ 9339 if (from_head) 9340 hdr = multilist_sublist_next(mls, hdr); 9341 else 9342 hdr = multilist_sublist_prev(mls, hdr); 9343 continue; 9344 } 9345 9346 passed_sz += HDR_GET_LSIZE(hdr); 9347 if (l2arc_headroom != 0 && passed_sz > headroom) { 9348 /* 9349 * Searched too far. 9350 */ 9351 mutex_exit(hash_lock); 9352 break; 9353 } 9354 9355 if (!l2arc_write_eligible(guid, hdr)) { 9356 mutex_exit(hash_lock); 9357 goto skip; 9358 } 9359 9360 ASSERT(HDR_HAS_L1HDR(hdr)); 9361 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 9362 ASSERT3U(arc_hdr_size(hdr), >, 0); 9363 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 9364 HDR_HAS_RABD(hdr)); 9365 uint64_t psize = HDR_GET_PSIZE(hdr); 9366 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 9367 psize); 9368 9369 /* 9370 * If the allocated size of this buffer plus the max 9371 * size for the pending log block exceeds the evicted 9372 * target size, terminate writing buffers for this run. 9373 */ 9374 if (write_asize + asize + 9375 sizeof (l2arc_log_blk_phys_t) > target_sz) { 9376 full = B_TRUE; 9377 mutex_exit(hash_lock); 9378 break; 9379 } 9380 9381 /* 9382 * We should not sleep with sublist lock held or it 9383 * may block ARC eviction. Insert a marker to save 9384 * the position and drop the lock. 9385 */ 9386 if (from_head) { 9387 multilist_sublist_insert_after(mls, hdr, 9388 marker); 9389 } else { 9390 multilist_sublist_insert_before(mls, hdr, 9391 marker); 9392 } 9393 multilist_sublist_unlock(mls); 9394 9395 /* 9396 * If this header has b_rabd, we can use this since it 9397 * must always match the data exactly as it exists on 9398 * disk. Otherwise, the L2ARC can normally use the 9399 * hdr's data, but if we're sharing data between the 9400 * hdr and one of its bufs, L2ARC needs its own copy of 9401 * the data so that the ZIO below can't race with the 9402 * buf consumer. To ensure that this copy will be 9403 * available for the lifetime of the ZIO and be cleaned 9404 * up afterwards, we add it to the l2arc_free_on_write 9405 * queue. If we need to apply any transforms to the 9406 * data (compression, encryption) we will also need the 9407 * extra buffer. 9408 */ 9409 if (HDR_HAS_RABD(hdr) && psize == asize) { 9410 to_write = hdr->b_crypt_hdr.b_rabd; 9411 } else if ((HDR_COMPRESSION_ENABLED(hdr) || 9412 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) && 9413 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) && 9414 psize == asize) { 9415 to_write = hdr->b_l1hdr.b_pabd; 9416 } else { 9417 int ret; 9418 arc_buf_contents_t type = arc_buf_type(hdr); 9419 9420 ret = l2arc_apply_transforms(spa, hdr, asize, 9421 &to_write); 9422 if (ret != 0) { 9423 arc_hdr_clear_flags(hdr, 9424 ARC_FLAG_L2CACHE); 9425 mutex_exit(hash_lock); 9426 goto next; 9427 } 9428 9429 l2arc_free_abd_on_write(to_write, asize, type); 9430 } 9431 9432 hdr->b_l2hdr.b_dev = dev; 9433 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 9434 hdr->b_l2hdr.b_hits = 0; 9435 hdr->b_l2hdr.b_arcs_state = 9436 hdr->b_l1hdr.b_state->arcs_state; 9437 /* l2arc_hdr_arcstats_update() expects a valid asize */ 9438 HDR_SET_L2SIZE(hdr, asize); 9439 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR | 9440 ARC_FLAG_L2_WRITING); 9441 9442 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 9443 arc_hdr_size(hdr), hdr); 9444 l2arc_hdr_arcstats_increment(hdr); 9445 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 9446 9447 mutex_enter(&dev->l2ad_mtx); 9448 if (pio == NULL) { 9449 /* 9450 * Insert a dummy header on the buflist so 9451 * l2arc_write_done() can find where the 9452 * write buffers begin without searching. 9453 */ 9454 list_insert_head(&dev->l2ad_buflist, head); 9455 } 9456 list_insert_head(&dev->l2ad_buflist, hdr); 9457 mutex_exit(&dev->l2ad_mtx); 9458 9459 boolean_t commit = l2arc_log_blk_insert(dev, hdr); 9460 mutex_exit(hash_lock); 9461 9462 if (pio == NULL) { 9463 cb = kmem_alloc( 9464 sizeof (l2arc_write_callback_t), KM_SLEEP); 9465 cb->l2wcb_dev = dev; 9466 cb->l2wcb_head = head; 9467 list_create(&cb->l2wcb_abd_list, 9468 sizeof (l2arc_lb_abd_buf_t), 9469 offsetof(l2arc_lb_abd_buf_t, node)); 9470 pio = zio_root(spa, l2arc_write_done, cb, 9471 ZIO_FLAG_CANFAIL); 9472 } 9473 9474 wzio = zio_write_phys(pio, dev->l2ad_vdev, 9475 dev->l2ad_hand, asize, to_write, 9476 ZIO_CHECKSUM_OFF, NULL, hdr, 9477 ZIO_PRIORITY_ASYNC_WRITE, 9478 ZIO_FLAG_CANFAIL, B_FALSE); 9479 9480 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 9481 zio_t *, wzio); 9482 zio_nowait(wzio); 9483 9484 write_psize += psize; 9485 write_asize += asize; 9486 dev->l2ad_hand += asize; 9487 9488 if (commit) { 9489 /* l2ad_hand will be adjusted inside. */ 9490 write_asize += 9491 l2arc_log_blk_commit(dev, pio, cb); 9492 } 9493 9494 next: 9495 multilist_sublist_lock(mls); 9496 if (from_head) 9497 hdr = multilist_sublist_next(mls, marker); 9498 else 9499 hdr = multilist_sublist_prev(mls, marker); 9500 multilist_sublist_remove(mls, marker); 9501 } 9502 9503 multilist_sublist_unlock(mls); 9504 9505 if (full == B_TRUE) 9506 break; 9507 } 9508 9509 arc_state_free_marker(marker); 9510 9511 /* No buffers selected for writing? */ 9512 if (pio == NULL) { 9513 ASSERT0(write_psize); 9514 ASSERT(!HDR_HAS_L1HDR(head)); 9515 kmem_cache_free(hdr_l2only_cache, head); 9516 9517 /* 9518 * Although we did not write any buffers l2ad_evict may 9519 * have advanced. 9520 */ 9521 if (dev->l2ad_evict != l2dhdr->dh_evict) 9522 l2arc_dev_hdr_update(dev); 9523 9524 return (0); 9525 } 9526 9527 if (!dev->l2ad_first) 9528 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict); 9529 9530 ASSERT3U(write_asize, <=, target_sz); 9531 ARCSTAT_BUMP(arcstat_l2_writes_sent); 9532 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize); 9533 9534 dev->l2ad_writing = B_TRUE; 9535 (void) zio_wait(pio); 9536 dev->l2ad_writing = B_FALSE; 9537 9538 /* 9539 * Update the device header after the zio completes as 9540 * l2arc_write_done() may have updated the memory holding the log block 9541 * pointers in the device header. 9542 */ 9543 l2arc_dev_hdr_update(dev); 9544 9545 return (write_asize); 9546 } 9547 9548 static boolean_t 9549 l2arc_hdr_limit_reached(void) 9550 { 9551 int64_t s = aggsum_upper_bound(&arc_sums.arcstat_l2_hdr_size); 9552 9553 return (arc_reclaim_needed() || 9554 (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100)); 9555 } 9556 9557 /* 9558 * This thread feeds the L2ARC at regular intervals. This is the beating 9559 * heart of the L2ARC. 9560 */ 9561 static __attribute__((noreturn)) void 9562 l2arc_feed_thread(void *unused) 9563 { 9564 (void) unused; 9565 callb_cpr_t cpr; 9566 l2arc_dev_t *dev; 9567 spa_t *spa; 9568 uint64_t size, wrote; 9569 clock_t begin, next = ddi_get_lbolt(); 9570 fstrans_cookie_t cookie; 9571 9572 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 9573 9574 mutex_enter(&l2arc_feed_thr_lock); 9575 9576 cookie = spl_fstrans_mark(); 9577 while (l2arc_thread_exit == 0) { 9578 CALLB_CPR_SAFE_BEGIN(&cpr); 9579 (void) cv_timedwait_idle(&l2arc_feed_thr_cv, 9580 &l2arc_feed_thr_lock, next); 9581 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 9582 next = ddi_get_lbolt() + hz; 9583 9584 /* 9585 * Quick check for L2ARC devices. 9586 */ 9587 mutex_enter(&l2arc_dev_mtx); 9588 if (l2arc_ndev == 0) { 9589 mutex_exit(&l2arc_dev_mtx); 9590 continue; 9591 } 9592 mutex_exit(&l2arc_dev_mtx); 9593 begin = ddi_get_lbolt(); 9594 9595 /* 9596 * This selects the next l2arc device to write to, and in 9597 * doing so the next spa to feed from: dev->l2ad_spa. This 9598 * will return NULL if there are now no l2arc devices or if 9599 * they are all faulted. 9600 * 9601 * If a device is returned, its spa's config lock is also 9602 * held to prevent device removal. l2arc_dev_get_next() 9603 * will grab and release l2arc_dev_mtx. 9604 */ 9605 if ((dev = l2arc_dev_get_next()) == NULL) 9606 continue; 9607 9608 spa = dev->l2ad_spa; 9609 ASSERT3P(spa, !=, NULL); 9610 9611 /* 9612 * If the pool is read-only then force the feed thread to 9613 * sleep a little longer. 9614 */ 9615 if (!spa_writeable(spa)) { 9616 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 9617 spa_config_exit(spa, SCL_L2ARC, dev); 9618 continue; 9619 } 9620 9621 /* 9622 * Avoid contributing to memory pressure. 9623 */ 9624 if (l2arc_hdr_limit_reached()) { 9625 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 9626 spa_config_exit(spa, SCL_L2ARC, dev); 9627 continue; 9628 } 9629 9630 ARCSTAT_BUMP(arcstat_l2_feeds); 9631 9632 size = l2arc_write_size(dev); 9633 9634 /* 9635 * Evict L2ARC buffers that will be overwritten. 9636 */ 9637 l2arc_evict(dev, size, B_FALSE); 9638 9639 /* 9640 * Write ARC buffers. 9641 */ 9642 wrote = l2arc_write_buffers(spa, dev, size); 9643 9644 /* 9645 * Calculate interval between writes. 9646 */ 9647 next = l2arc_write_interval(begin, size, wrote); 9648 spa_config_exit(spa, SCL_L2ARC, dev); 9649 } 9650 spl_fstrans_unmark(cookie); 9651 9652 l2arc_thread_exit = 0; 9653 cv_broadcast(&l2arc_feed_thr_cv); 9654 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 9655 thread_exit(); 9656 } 9657 9658 boolean_t 9659 l2arc_vdev_present(vdev_t *vd) 9660 { 9661 return (l2arc_vdev_get(vd) != NULL); 9662 } 9663 9664 /* 9665 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if 9666 * the vdev_t isn't an L2ARC device. 9667 */ 9668 l2arc_dev_t * 9669 l2arc_vdev_get(vdev_t *vd) 9670 { 9671 l2arc_dev_t *dev; 9672 9673 mutex_enter(&l2arc_dev_mtx); 9674 for (dev = list_head(l2arc_dev_list); dev != NULL; 9675 dev = list_next(l2arc_dev_list, dev)) { 9676 if (dev->l2ad_vdev == vd) 9677 break; 9678 } 9679 mutex_exit(&l2arc_dev_mtx); 9680 9681 return (dev); 9682 } 9683 9684 static void 9685 l2arc_rebuild_dev(l2arc_dev_t *dev, boolean_t reopen) 9686 { 9687 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9688 uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 9689 spa_t *spa = dev->l2ad_spa; 9690 9691 /* 9692 * After a l2arc_remove_vdev(), the spa_t will no longer be valid 9693 */ 9694 if (spa == NULL) 9695 return; 9696 9697 /* 9698 * The L2ARC has to hold at least the payload of one log block for 9699 * them to be restored (persistent L2ARC). The payload of a log block 9700 * depends on the amount of its log entries. We always write log blocks 9701 * with 1022 entries. How many of them are committed or restored depends 9702 * on the size of the L2ARC device. Thus the maximum payload of 9703 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device 9704 * is less than that, we reduce the amount of committed and restored 9705 * log entries per block so as to enable persistence. 9706 */ 9707 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) { 9708 dev->l2ad_log_entries = 0; 9709 } else { 9710 dev->l2ad_log_entries = MIN((dev->l2ad_end - 9711 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT, 9712 L2ARC_LOG_BLK_MAX_ENTRIES); 9713 } 9714 9715 /* 9716 * Read the device header, if an error is returned do not rebuild L2ARC. 9717 */ 9718 if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) { 9719 /* 9720 * If we are onlining a cache device (vdev_reopen) that was 9721 * still present (l2arc_vdev_present()) and rebuild is enabled, 9722 * we should evict all ARC buffers and pointers to log blocks 9723 * and reclaim their space before restoring its contents to 9724 * L2ARC. 9725 */ 9726 if (reopen) { 9727 if (!l2arc_rebuild_enabled) { 9728 return; 9729 } else { 9730 l2arc_evict(dev, 0, B_TRUE); 9731 /* start a new log block */ 9732 dev->l2ad_log_ent_idx = 0; 9733 dev->l2ad_log_blk_payload_asize = 0; 9734 dev->l2ad_log_blk_payload_start = 0; 9735 } 9736 } 9737 /* 9738 * Just mark the device as pending for a rebuild. We won't 9739 * be starting a rebuild in line here as it would block pool 9740 * import. Instead spa_load_impl will hand that off to an 9741 * async task which will call l2arc_spa_rebuild_start. 9742 */ 9743 dev->l2ad_rebuild = B_TRUE; 9744 } else if (spa_writeable(spa)) { 9745 /* 9746 * In this case TRIM the whole device if l2arc_trim_ahead > 0, 9747 * otherwise create a new header. We zero out the memory holding 9748 * the header to reset dh_start_lbps. If we TRIM the whole 9749 * device the new header will be written by 9750 * vdev_trim_l2arc_thread() at the end of the TRIM to update the 9751 * trim_state in the header too. When reading the header, if 9752 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0 9753 * we opt to TRIM the whole device again. 9754 */ 9755 if (l2arc_trim_ahead > 0) { 9756 dev->l2ad_trim_all = B_TRUE; 9757 } else { 9758 memset(l2dhdr, 0, l2dhdr_asize); 9759 l2arc_dev_hdr_update(dev); 9760 } 9761 } 9762 } 9763 9764 /* 9765 * Add a vdev for use by the L2ARC. By this point the spa has already 9766 * validated the vdev and opened it. 9767 */ 9768 void 9769 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 9770 { 9771 l2arc_dev_t *adddev; 9772 uint64_t l2dhdr_asize; 9773 9774 ASSERT(!l2arc_vdev_present(vd)); 9775 9776 /* 9777 * Create a new l2arc device entry. 9778 */ 9779 adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 9780 adddev->l2ad_spa = spa; 9781 adddev->l2ad_vdev = vd; 9782 /* leave extra size for an l2arc device header */ 9783 l2dhdr_asize = adddev->l2ad_dev_hdr_asize = 9784 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift); 9785 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize; 9786 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 9787 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end); 9788 adddev->l2ad_hand = adddev->l2ad_start; 9789 adddev->l2ad_evict = adddev->l2ad_start; 9790 adddev->l2ad_first = B_TRUE; 9791 adddev->l2ad_writing = B_FALSE; 9792 adddev->l2ad_trim_all = B_FALSE; 9793 list_link_init(&adddev->l2ad_node); 9794 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP); 9795 9796 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 9797 /* 9798 * This is a list of all ARC buffers that are still valid on the 9799 * device. 9800 */ 9801 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 9802 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 9803 9804 /* 9805 * This is a list of pointers to log blocks that are still present 9806 * on the device. 9807 */ 9808 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t), 9809 offsetof(l2arc_lb_ptr_buf_t, node)); 9810 9811 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 9812 zfs_refcount_create(&adddev->l2ad_alloc); 9813 zfs_refcount_create(&adddev->l2ad_lb_asize); 9814 zfs_refcount_create(&adddev->l2ad_lb_count); 9815 9816 /* 9817 * Decide if dev is eligible for L2ARC rebuild or whole device 9818 * trimming. This has to happen before the device is added in the 9819 * cache device list and l2arc_dev_mtx is released. Otherwise 9820 * l2arc_feed_thread() might already start writing on the 9821 * device. 9822 */ 9823 l2arc_rebuild_dev(adddev, B_FALSE); 9824 9825 /* 9826 * Add device to global list 9827 */ 9828 mutex_enter(&l2arc_dev_mtx); 9829 list_insert_head(l2arc_dev_list, adddev); 9830 atomic_inc_64(&l2arc_ndev); 9831 mutex_exit(&l2arc_dev_mtx); 9832 } 9833 9834 /* 9835 * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen() 9836 * in case of onlining a cache device. 9837 */ 9838 void 9839 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen) 9840 { 9841 l2arc_dev_t *dev = NULL; 9842 9843 dev = l2arc_vdev_get(vd); 9844 ASSERT3P(dev, !=, NULL); 9845 9846 /* 9847 * In contrast to l2arc_add_vdev() we do not have to worry about 9848 * l2arc_feed_thread() invalidating previous content when onlining a 9849 * cache device. The device parameters (l2ad*) are not cleared when 9850 * offlining the device and writing new buffers will not invalidate 9851 * all previous content. In worst case only buffers that have not had 9852 * their log block written to the device will be lost. 9853 * When onlining the cache device (ie offline->online without exporting 9854 * the pool in between) this happens: 9855 * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev() 9856 * | | 9857 * vdev_is_dead() = B_FALSE l2ad_rebuild = B_TRUE 9858 * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild 9859 * is set to B_TRUE we might write additional buffers to the device. 9860 */ 9861 l2arc_rebuild_dev(dev, reopen); 9862 } 9863 9864 typedef struct { 9865 l2arc_dev_t *rva_l2arc_dev; 9866 uint64_t rva_spa_gid; 9867 uint64_t rva_vdev_gid; 9868 boolean_t rva_async; 9869 9870 } remove_vdev_args_t; 9871 9872 static void 9873 l2arc_device_teardown(void *arg) 9874 { 9875 remove_vdev_args_t *rva = arg; 9876 l2arc_dev_t *remdev = rva->rva_l2arc_dev; 9877 hrtime_t start_time = gethrtime(); 9878 9879 /* 9880 * Clear all buflists and ARC references. L2ARC device flush. 9881 */ 9882 l2arc_evict(remdev, 0, B_TRUE); 9883 list_destroy(&remdev->l2ad_buflist); 9884 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list)); 9885 list_destroy(&remdev->l2ad_lbptr_list); 9886 mutex_destroy(&remdev->l2ad_mtx); 9887 zfs_refcount_destroy(&remdev->l2ad_alloc); 9888 zfs_refcount_destroy(&remdev->l2ad_lb_asize); 9889 zfs_refcount_destroy(&remdev->l2ad_lb_count); 9890 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize); 9891 vmem_free(remdev, sizeof (l2arc_dev_t)); 9892 9893 uint64_t elaspsed = NSEC2MSEC(gethrtime() - start_time); 9894 if (elaspsed > 0) { 9895 zfs_dbgmsg("spa %llu, vdev %llu removed in %llu ms", 9896 (u_longlong_t)rva->rva_spa_gid, 9897 (u_longlong_t)rva->rva_vdev_gid, 9898 (u_longlong_t)elaspsed); 9899 } 9900 9901 if (rva->rva_async) 9902 arc_async_flush_remove(rva->rva_spa_gid, 2); 9903 kmem_free(rva, sizeof (remove_vdev_args_t)); 9904 } 9905 9906 /* 9907 * Remove a vdev from the L2ARC. 9908 */ 9909 void 9910 l2arc_remove_vdev(vdev_t *vd) 9911 { 9912 spa_t *spa = vd->vdev_spa; 9913 boolean_t asynchronous = spa->spa_state == POOL_STATE_EXPORTED || 9914 spa->spa_state == POOL_STATE_DESTROYED; 9915 9916 /* 9917 * Find the device by vdev 9918 */ 9919 l2arc_dev_t *remdev = l2arc_vdev_get(vd); 9920 ASSERT3P(remdev, !=, NULL); 9921 9922 /* 9923 * Save info for final teardown 9924 */ 9925 remove_vdev_args_t *rva = kmem_alloc(sizeof (remove_vdev_args_t), 9926 KM_SLEEP); 9927 rva->rva_l2arc_dev = remdev; 9928 rva->rva_spa_gid = spa_load_guid(spa); 9929 rva->rva_vdev_gid = remdev->l2ad_vdev->vdev_guid; 9930 9931 /* 9932 * Cancel any ongoing or scheduled rebuild. 9933 */ 9934 mutex_enter(&l2arc_rebuild_thr_lock); 9935 remdev->l2ad_rebuild_cancel = B_TRUE; 9936 if (remdev->l2ad_rebuild_began == B_TRUE) { 9937 while (remdev->l2ad_rebuild == B_TRUE) 9938 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock); 9939 } 9940 mutex_exit(&l2arc_rebuild_thr_lock); 9941 rva->rva_async = asynchronous; 9942 9943 /* 9944 * Remove device from global list 9945 */ 9946 ASSERT(spa_config_held(spa, SCL_L2ARC, RW_WRITER) & SCL_L2ARC); 9947 mutex_enter(&l2arc_dev_mtx); 9948 list_remove(l2arc_dev_list, remdev); 9949 l2arc_dev_last = NULL; /* may have been invalidated */ 9950 atomic_dec_64(&l2arc_ndev); 9951 9952 /* During a pool export spa & vdev will no longer be valid */ 9953 if (asynchronous) { 9954 remdev->l2ad_spa = NULL; 9955 remdev->l2ad_vdev = NULL; 9956 } 9957 mutex_exit(&l2arc_dev_mtx); 9958 9959 if (!asynchronous) { 9960 l2arc_device_teardown(rva); 9961 return; 9962 } 9963 9964 arc_async_flush_t *af = arc_async_flush_add(rva->rva_spa_gid, 2); 9965 9966 taskq_dispatch_ent(arc_flush_taskq, l2arc_device_teardown, rva, 9967 TQ_SLEEP, &af->af_tqent); 9968 } 9969 9970 void 9971 l2arc_init(void) 9972 { 9973 l2arc_thread_exit = 0; 9974 l2arc_ndev = 0; 9975 9976 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 9977 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 9978 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL); 9979 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL); 9980 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 9981 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 9982 9983 l2arc_dev_list = &L2ARC_dev_list; 9984 l2arc_free_on_write = &L2ARC_free_on_write; 9985 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 9986 offsetof(l2arc_dev_t, l2ad_node)); 9987 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 9988 offsetof(l2arc_data_free_t, l2df_list_node)); 9989 } 9990 9991 void 9992 l2arc_fini(void) 9993 { 9994 mutex_destroy(&l2arc_feed_thr_lock); 9995 cv_destroy(&l2arc_feed_thr_cv); 9996 mutex_destroy(&l2arc_rebuild_thr_lock); 9997 cv_destroy(&l2arc_rebuild_thr_cv); 9998 mutex_destroy(&l2arc_dev_mtx); 9999 mutex_destroy(&l2arc_free_on_write_mtx); 10000 10001 list_destroy(l2arc_dev_list); 10002 list_destroy(l2arc_free_on_write); 10003 } 10004 10005 void 10006 l2arc_start(void) 10007 { 10008 if (!(spa_mode_global & SPA_MODE_WRITE)) 10009 return; 10010 10011 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 10012 TS_RUN, defclsyspri); 10013 } 10014 10015 void 10016 l2arc_stop(void) 10017 { 10018 if (!(spa_mode_global & SPA_MODE_WRITE)) 10019 return; 10020 10021 mutex_enter(&l2arc_feed_thr_lock); 10022 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 10023 l2arc_thread_exit = 1; 10024 while (l2arc_thread_exit != 0) 10025 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 10026 mutex_exit(&l2arc_feed_thr_lock); 10027 } 10028 10029 /* 10030 * Punches out rebuild threads for the L2ARC devices in a spa. This should 10031 * be called after pool import from the spa async thread, since starting 10032 * these threads directly from spa_import() will make them part of the 10033 * "zpool import" context and delay process exit (and thus pool import). 10034 */ 10035 void 10036 l2arc_spa_rebuild_start(spa_t *spa) 10037 { 10038 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 10039 10040 /* 10041 * Locate the spa's l2arc devices and kick off rebuild threads. 10042 */ 10043 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 10044 l2arc_dev_t *dev = 10045 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]); 10046 if (dev == NULL) { 10047 /* Don't attempt a rebuild if the vdev is UNAVAIL */ 10048 continue; 10049 } 10050 mutex_enter(&l2arc_rebuild_thr_lock); 10051 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) { 10052 dev->l2ad_rebuild_began = B_TRUE; 10053 (void) thread_create(NULL, 0, l2arc_dev_rebuild_thread, 10054 dev, 0, &p0, TS_RUN, minclsyspri); 10055 } 10056 mutex_exit(&l2arc_rebuild_thr_lock); 10057 } 10058 } 10059 10060 void 10061 l2arc_spa_rebuild_stop(spa_t *spa) 10062 { 10063 ASSERT(MUTEX_HELD(&spa_namespace_lock) || 10064 spa->spa_export_thread == curthread); 10065 10066 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 10067 l2arc_dev_t *dev = 10068 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]); 10069 if (dev == NULL) 10070 continue; 10071 mutex_enter(&l2arc_rebuild_thr_lock); 10072 dev->l2ad_rebuild_cancel = B_TRUE; 10073 mutex_exit(&l2arc_rebuild_thr_lock); 10074 } 10075 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 10076 l2arc_dev_t *dev = 10077 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]); 10078 if (dev == NULL) 10079 continue; 10080 mutex_enter(&l2arc_rebuild_thr_lock); 10081 if (dev->l2ad_rebuild_began == B_TRUE) { 10082 while (dev->l2ad_rebuild == B_TRUE) { 10083 cv_wait(&l2arc_rebuild_thr_cv, 10084 &l2arc_rebuild_thr_lock); 10085 } 10086 } 10087 mutex_exit(&l2arc_rebuild_thr_lock); 10088 } 10089 } 10090 10091 /* 10092 * Main entry point for L2ARC rebuilding. 10093 */ 10094 static __attribute__((noreturn)) void 10095 l2arc_dev_rebuild_thread(void *arg) 10096 { 10097 l2arc_dev_t *dev = arg; 10098 10099 VERIFY(dev->l2ad_rebuild); 10100 (void) l2arc_rebuild(dev); 10101 mutex_enter(&l2arc_rebuild_thr_lock); 10102 dev->l2ad_rebuild_began = B_FALSE; 10103 dev->l2ad_rebuild = B_FALSE; 10104 cv_signal(&l2arc_rebuild_thr_cv); 10105 mutex_exit(&l2arc_rebuild_thr_lock); 10106 10107 thread_exit(); 10108 } 10109 10110 /* 10111 * This function implements the actual L2ARC metadata rebuild. It: 10112 * starts reading the log block chain and restores each block's contents 10113 * to memory (reconstructing arc_buf_hdr_t's). 10114 * 10115 * Operation stops under any of the following conditions: 10116 * 10117 * 1) We reach the end of the log block chain. 10118 * 2) We encounter *any* error condition (cksum errors, io errors) 10119 */ 10120 static int 10121 l2arc_rebuild(l2arc_dev_t *dev) 10122 { 10123 vdev_t *vd = dev->l2ad_vdev; 10124 spa_t *spa = vd->vdev_spa; 10125 int err = 0; 10126 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10127 l2arc_log_blk_phys_t *this_lb, *next_lb; 10128 zio_t *this_io = NULL, *next_io = NULL; 10129 l2arc_log_blkptr_t lbps[2]; 10130 l2arc_lb_ptr_buf_t *lb_ptr_buf; 10131 boolean_t lock_held; 10132 10133 this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP); 10134 next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP); 10135 10136 /* 10137 * We prevent device removal while issuing reads to the device, 10138 * then during the rebuilding phases we drop this lock again so 10139 * that a spa_unload or device remove can be initiated - this is 10140 * safe, because the spa will signal us to stop before removing 10141 * our device and wait for us to stop. 10142 */ 10143 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER); 10144 lock_held = B_TRUE; 10145 10146 /* 10147 * Retrieve the persistent L2ARC device state. 10148 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10149 */ 10150 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start); 10151 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr + 10152 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop), 10153 dev->l2ad_start); 10154 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 10155 10156 vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time; 10157 vd->vdev_trim_state = l2dhdr->dh_trim_state; 10158 10159 /* 10160 * In case the zfs module parameter l2arc_rebuild_enabled is false 10161 * we do not start the rebuild process. 10162 */ 10163 if (!l2arc_rebuild_enabled) 10164 goto out; 10165 10166 /* Prepare the rebuild process */ 10167 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps)); 10168 10169 /* Start the rebuild process */ 10170 for (;;) { 10171 if (!l2arc_log_blkptr_valid(dev, &lbps[0])) 10172 break; 10173 10174 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1], 10175 this_lb, next_lb, this_io, &next_io)) != 0) 10176 goto out; 10177 10178 /* 10179 * Our memory pressure valve. If the system is running low 10180 * on memory, rather than swamping memory with new ARC buf 10181 * hdrs, we opt not to rebuild the L2ARC. At this point, 10182 * however, we have already set up our L2ARC dev to chain in 10183 * new metadata log blocks, so the user may choose to offline/ 10184 * online the L2ARC dev at a later time (or re-import the pool) 10185 * to reconstruct it (when there's less memory pressure). 10186 */ 10187 if (l2arc_hdr_limit_reached()) { 10188 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem); 10189 cmn_err(CE_NOTE, "System running low on memory, " 10190 "aborting L2ARC rebuild."); 10191 err = SET_ERROR(ENOMEM); 10192 goto out; 10193 } 10194 10195 spa_config_exit(spa, SCL_L2ARC, vd); 10196 lock_held = B_FALSE; 10197 10198 /* 10199 * Now that we know that the next_lb checks out alright, we 10200 * can start reconstruction from this log block. 10201 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10202 */ 10203 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 10204 l2arc_log_blk_restore(dev, this_lb, asize); 10205 10206 /* 10207 * log block restored, include its pointer in the list of 10208 * pointers to log blocks present in the L2ARC device. 10209 */ 10210 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 10211 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), 10212 KM_SLEEP); 10213 memcpy(lb_ptr_buf->lb_ptr, &lbps[0], 10214 sizeof (l2arc_log_blkptr_t)); 10215 mutex_enter(&dev->l2ad_mtx); 10216 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf); 10217 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 10218 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 10219 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 10220 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 10221 mutex_exit(&dev->l2ad_mtx); 10222 vdev_space_update(vd, asize, 0, 0); 10223 10224 /* 10225 * Protection against loops of log blocks: 10226 * 10227 * l2ad_hand l2ad_evict 10228 * V V 10229 * l2ad_start |=======================================| l2ad_end 10230 * -----|||----|||---|||----||| 10231 * (3) (2) (1) (0) 10232 * ---|||---|||----|||---||| 10233 * (7) (6) (5) (4) 10234 * 10235 * In this situation the pointer of log block (4) passes 10236 * l2arc_log_blkptr_valid() but the log block should not be 10237 * restored as it is overwritten by the payload of log block 10238 * (0). Only log blocks (0)-(3) should be restored. We check 10239 * whether l2ad_evict lies in between the payload starting 10240 * offset of the next log block (lbps[1].lbp_payload_start) 10241 * and the payload starting offset of the present log block 10242 * (lbps[0].lbp_payload_start). If true and this isn't the 10243 * first pass, we are looping from the beginning and we should 10244 * stop. 10245 */ 10246 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 10247 lbps[0].lbp_payload_start, dev->l2ad_evict) && 10248 !dev->l2ad_first) 10249 goto out; 10250 10251 kpreempt(KPREEMPT_SYNC); 10252 for (;;) { 10253 mutex_enter(&l2arc_rebuild_thr_lock); 10254 if (dev->l2ad_rebuild_cancel) { 10255 mutex_exit(&l2arc_rebuild_thr_lock); 10256 err = SET_ERROR(ECANCELED); 10257 goto out; 10258 } 10259 mutex_exit(&l2arc_rebuild_thr_lock); 10260 if (spa_config_tryenter(spa, SCL_L2ARC, vd, 10261 RW_READER)) { 10262 lock_held = B_TRUE; 10263 break; 10264 } 10265 /* 10266 * L2ARC config lock held by somebody in writer, 10267 * possibly due to them trying to remove us. They'll 10268 * likely to want us to shut down, so after a little 10269 * delay, we check l2ad_rebuild_cancel and retry 10270 * the lock again. 10271 */ 10272 delay(1); 10273 } 10274 10275 /* 10276 * Continue with the next log block. 10277 */ 10278 lbps[0] = lbps[1]; 10279 lbps[1] = this_lb->lb_prev_lbp; 10280 PTR_SWAP(this_lb, next_lb); 10281 this_io = next_io; 10282 next_io = NULL; 10283 } 10284 10285 if (this_io != NULL) 10286 l2arc_log_blk_fetch_abort(this_io); 10287 out: 10288 if (next_io != NULL) 10289 l2arc_log_blk_fetch_abort(next_io); 10290 vmem_free(this_lb, sizeof (*this_lb)); 10291 vmem_free(next_lb, sizeof (*next_lb)); 10292 10293 if (err == ECANCELED) { 10294 /* 10295 * In case the rebuild was canceled do not log to spa history 10296 * log as the pool may be in the process of being removed. 10297 */ 10298 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks", 10299 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10300 return (err); 10301 } else if (!l2arc_rebuild_enabled) { 10302 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10303 "disabled"); 10304 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) { 10305 ARCSTAT_BUMP(arcstat_l2_rebuild_success); 10306 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10307 "successful, restored %llu blocks", 10308 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10309 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) { 10310 /* 10311 * No error but also nothing restored, meaning the lbps array 10312 * in the device header points to invalid/non-present log 10313 * blocks. Reset the header. 10314 */ 10315 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10316 "no valid log blocks"); 10317 memset(l2dhdr, 0, dev->l2ad_dev_hdr_asize); 10318 l2arc_dev_hdr_update(dev); 10319 } else if (err != 0) { 10320 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10321 "aborted, restored %llu blocks", 10322 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10323 } 10324 10325 if (lock_held) 10326 spa_config_exit(spa, SCL_L2ARC, vd); 10327 10328 return (err); 10329 } 10330 10331 /* 10332 * Attempts to read the device header on the provided L2ARC device and writes 10333 * it to `hdr'. On success, this function returns 0, otherwise the appropriate 10334 * error code is returned. 10335 */ 10336 static int 10337 l2arc_dev_hdr_read(l2arc_dev_t *dev) 10338 { 10339 int err; 10340 uint64_t guid; 10341 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10342 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10343 abd_t *abd; 10344 10345 guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10346 10347 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10348 10349 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev, 10350 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, 10351 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 10352 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 10353 ZIO_FLAG_SPECULATIVE, B_FALSE)); 10354 10355 abd_free(abd); 10356 10357 if (err != 0) { 10358 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors); 10359 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, " 10360 "vdev guid: %llu", err, 10361 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10362 return (err); 10363 } 10364 10365 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 10366 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr)); 10367 10368 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC || 10369 l2dhdr->dh_spa_guid != guid || 10370 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid || 10371 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION || 10372 l2dhdr->dh_log_entries != dev->l2ad_log_entries || 10373 l2dhdr->dh_end != dev->l2ad_end || 10374 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end, 10375 l2dhdr->dh_evict) || 10376 (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE && 10377 l2arc_trim_ahead > 0)) { 10378 /* 10379 * Attempt to rebuild a device containing no actual dev hdr 10380 * or containing a header from some other pool or from another 10381 * version of persistent L2ARC. 10382 */ 10383 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported); 10384 return (SET_ERROR(ENOTSUP)); 10385 } 10386 10387 return (0); 10388 } 10389 10390 /* 10391 * Reads L2ARC log blocks from storage and validates their contents. 10392 * 10393 * This function implements a simple fetcher to make sure that while 10394 * we're processing one buffer the L2ARC is already fetching the next 10395 * one in the chain. 10396 * 10397 * The arguments this_lp and next_lp point to the current and next log block 10398 * address in the block chain. Similarly, this_lb and next_lb hold the 10399 * l2arc_log_blk_phys_t's of the current and next L2ARC blk. 10400 * 10401 * The `this_io' and `next_io' arguments are used for block fetching. 10402 * When issuing the first blk IO during rebuild, you should pass NULL for 10403 * `this_io'. This function will then issue a sync IO to read the block and 10404 * also issue an async IO to fetch the next block in the block chain. The 10405 * fetched IO is returned in `next_io'. On subsequent calls to this 10406 * function, pass the value returned in `next_io' from the previous call 10407 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO. 10408 * Prior to the call, you should initialize your `next_io' pointer to be 10409 * NULL. If no fetch IO was issued, the pointer is left set at NULL. 10410 * 10411 * On success, this function returns 0, otherwise it returns an appropriate 10412 * error code. On error the fetching IO is aborted and cleared before 10413 * returning from this function. Therefore, if we return `success', the 10414 * caller can assume that we have taken care of cleanup of fetch IOs. 10415 */ 10416 static int 10417 l2arc_log_blk_read(l2arc_dev_t *dev, 10418 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp, 10419 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 10420 zio_t *this_io, zio_t **next_io) 10421 { 10422 int err = 0; 10423 zio_cksum_t cksum; 10424 uint64_t asize; 10425 10426 ASSERT(this_lbp != NULL && next_lbp != NULL); 10427 ASSERT(this_lb != NULL && next_lb != NULL); 10428 ASSERT(next_io != NULL && *next_io == NULL); 10429 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp)); 10430 10431 /* 10432 * Check to see if we have issued the IO for this log block in a 10433 * previous run. If not, this is the first call, so issue it now. 10434 */ 10435 if (this_io == NULL) { 10436 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp, 10437 this_lb); 10438 } 10439 10440 /* 10441 * Peek to see if we can start issuing the next IO immediately. 10442 */ 10443 if (l2arc_log_blkptr_valid(dev, next_lbp)) { 10444 /* 10445 * Start issuing IO for the next log block early - this 10446 * should help keep the L2ARC device busy while we 10447 * decompress and restore this log block. 10448 */ 10449 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp, 10450 next_lb); 10451 } 10452 10453 /* Wait for the IO to read this log block to complete */ 10454 if ((err = zio_wait(this_io)) != 0) { 10455 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors); 10456 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, " 10457 "offset: %llu, vdev guid: %llu", err, 10458 (u_longlong_t)this_lbp->lbp_daddr, 10459 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10460 goto cleanup; 10461 } 10462 10463 /* 10464 * Make sure the buffer checks out. 10465 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10466 */ 10467 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop); 10468 fletcher_4_native(this_lb, asize, NULL, &cksum); 10469 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) { 10470 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors); 10471 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, " 10472 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu", 10473 (u_longlong_t)this_lbp->lbp_daddr, 10474 (u_longlong_t)dev->l2ad_vdev->vdev_guid, 10475 (u_longlong_t)dev->l2ad_hand, 10476 (u_longlong_t)dev->l2ad_evict); 10477 err = SET_ERROR(ECKSUM); 10478 goto cleanup; 10479 } 10480 10481 /* Now we can take our time decoding this buffer */ 10482 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) { 10483 case ZIO_COMPRESS_OFF: 10484 break; 10485 case ZIO_COMPRESS_LZ4: { 10486 abd_t *abd = abd_alloc_linear(asize, B_TRUE); 10487 abd_copy_from_buf_off(abd, this_lb, 0, asize); 10488 abd_t dabd; 10489 abd_get_from_buf_struct(&dabd, this_lb, sizeof (*this_lb)); 10490 err = zio_decompress_data( 10491 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop), 10492 abd, &dabd, asize, sizeof (*this_lb), NULL); 10493 abd_free(&dabd); 10494 abd_free(abd); 10495 if (err != 0) { 10496 err = SET_ERROR(EINVAL); 10497 goto cleanup; 10498 } 10499 break; 10500 } 10501 default: 10502 err = SET_ERROR(EINVAL); 10503 goto cleanup; 10504 } 10505 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 10506 byteswap_uint64_array(this_lb, sizeof (*this_lb)); 10507 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) { 10508 err = SET_ERROR(EINVAL); 10509 goto cleanup; 10510 } 10511 cleanup: 10512 /* Abort an in-flight fetch I/O in case of error */ 10513 if (err != 0 && *next_io != NULL) { 10514 l2arc_log_blk_fetch_abort(*next_io); 10515 *next_io = NULL; 10516 } 10517 return (err); 10518 } 10519 10520 /* 10521 * Restores the payload of a log block to ARC. This creates empty ARC hdr 10522 * entries which only contain an l2arc hdr, essentially restoring the 10523 * buffers to their L2ARC evicted state. This function also updates space 10524 * usage on the L2ARC vdev to make sure it tracks restored buffers. 10525 */ 10526 static void 10527 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb, 10528 uint64_t lb_asize) 10529 { 10530 uint64_t size = 0, asize = 0; 10531 uint64_t log_entries = dev->l2ad_log_entries; 10532 10533 /* 10534 * Usually arc_adapt() is called only for data, not headers, but 10535 * since we may allocate significant amount of memory here, let ARC 10536 * grow its arc_c. 10537 */ 10538 arc_adapt(log_entries * HDR_L2ONLY_SIZE); 10539 10540 for (int i = log_entries - 1; i >= 0; i--) { 10541 /* 10542 * Restore goes in the reverse temporal direction to preserve 10543 * correct temporal ordering of buffers in the l2ad_buflist. 10544 * l2arc_hdr_restore also does a list_insert_tail instead of 10545 * list_insert_head on the l2ad_buflist: 10546 * 10547 * LIST l2ad_buflist LIST 10548 * HEAD <------ (time) ------ TAIL 10549 * direction +-----+-----+-----+-----+-----+ direction 10550 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild 10551 * fill +-----+-----+-----+-----+-----+ 10552 * ^ ^ 10553 * | | 10554 * | | 10555 * l2arc_feed_thread l2arc_rebuild 10556 * will place new bufs here restores bufs here 10557 * 10558 * During l2arc_rebuild() the device is not used by 10559 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true. 10560 */ 10561 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop); 10562 asize += vdev_psize_to_asize(dev->l2ad_vdev, 10563 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop)); 10564 l2arc_hdr_restore(&lb->lb_entries[i], dev); 10565 } 10566 10567 /* 10568 * Record rebuild stats: 10569 * size Logical size of restored buffers in the L2ARC 10570 * asize Aligned size of restored buffers in the L2ARC 10571 */ 10572 ARCSTAT_INCR(arcstat_l2_rebuild_size, size); 10573 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize); 10574 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries); 10575 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize); 10576 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize); 10577 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks); 10578 } 10579 10580 /* 10581 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put 10582 * into a state indicating that it has been evicted to L2ARC. 10583 */ 10584 static void 10585 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev) 10586 { 10587 arc_buf_hdr_t *hdr, *exists; 10588 kmutex_t *hash_lock; 10589 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop); 10590 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 10591 L2BLK_GET_PSIZE((le)->le_prop)); 10592 10593 /* 10594 * Do all the allocation before grabbing any locks, this lets us 10595 * sleep if memory is full and we don't have to deal with failed 10596 * allocations. 10597 */ 10598 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type, 10599 dev, le->le_dva, le->le_daddr, 10600 L2BLK_GET_PSIZE((le)->le_prop), asize, le->le_birth, 10601 L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel, 10602 L2BLK_GET_PROTECTED((le)->le_prop), 10603 L2BLK_GET_PREFETCH((le)->le_prop), 10604 L2BLK_GET_STATE((le)->le_prop)); 10605 10606 /* 10607 * vdev_space_update() has to be called before arc_hdr_destroy() to 10608 * avoid underflow since the latter also calls vdev_space_update(). 10609 */ 10610 l2arc_hdr_arcstats_increment(hdr); 10611 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10612 10613 mutex_enter(&dev->l2ad_mtx); 10614 list_insert_tail(&dev->l2ad_buflist, hdr); 10615 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); 10616 mutex_exit(&dev->l2ad_mtx); 10617 10618 exists = buf_hash_insert(hdr, &hash_lock); 10619 if (exists) { 10620 /* Buffer was already cached, no need to restore it. */ 10621 arc_hdr_destroy(hdr); 10622 /* 10623 * If the buffer is already cached, check whether it has 10624 * L2ARC metadata. If not, enter them and update the flag. 10625 * This is important is case of onlining a cache device, since 10626 * we previously evicted all L2ARC metadata from ARC. 10627 */ 10628 if (!HDR_HAS_L2HDR(exists)) { 10629 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR); 10630 exists->b_l2hdr.b_dev = dev; 10631 exists->b_l2hdr.b_daddr = le->le_daddr; 10632 exists->b_l2hdr.b_arcs_state = 10633 L2BLK_GET_STATE((le)->le_prop); 10634 /* l2arc_hdr_arcstats_update() expects a valid asize */ 10635 HDR_SET_L2SIZE(exists, asize); 10636 mutex_enter(&dev->l2ad_mtx); 10637 list_insert_tail(&dev->l2ad_buflist, exists); 10638 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 10639 arc_hdr_size(exists), exists); 10640 mutex_exit(&dev->l2ad_mtx); 10641 l2arc_hdr_arcstats_increment(exists); 10642 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10643 } 10644 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached); 10645 } 10646 10647 mutex_exit(hash_lock); 10648 } 10649 10650 /* 10651 * Starts an asynchronous read IO to read a log block. This is used in log 10652 * block reconstruction to start reading the next block before we are done 10653 * decoding and reconstructing the current block, to keep the l2arc device 10654 * nice and hot with read IO to process. 10655 * The returned zio will contain a newly allocated memory buffers for the IO 10656 * data which should then be freed by the caller once the zio is no longer 10657 * needed (i.e. due to it having completed). If you wish to abort this 10658 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes 10659 * care of disposing of the allocated buffers correctly. 10660 */ 10661 static zio_t * 10662 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp, 10663 l2arc_log_blk_phys_t *lb) 10664 { 10665 uint32_t asize; 10666 zio_t *pio; 10667 l2arc_read_callback_t *cb; 10668 10669 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10670 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10671 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t)); 10672 10673 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP); 10674 cb->l2rcb_abd = abd_get_from_buf(lb, asize); 10675 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb, 10676 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY); 10677 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize, 10678 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10679 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL | 10680 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE)); 10681 10682 return (pio); 10683 } 10684 10685 /* 10686 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data 10687 * buffers allocated for it. 10688 */ 10689 static void 10690 l2arc_log_blk_fetch_abort(zio_t *zio) 10691 { 10692 (void) zio_wait(zio); 10693 } 10694 10695 /* 10696 * Creates a zio to update the device header on an l2arc device. 10697 */ 10698 void 10699 l2arc_dev_hdr_update(l2arc_dev_t *dev) 10700 { 10701 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10702 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10703 abd_t *abd; 10704 int err; 10705 10706 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER)); 10707 10708 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC; 10709 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION; 10710 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10711 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid; 10712 l2dhdr->dh_log_entries = dev->l2ad_log_entries; 10713 l2dhdr->dh_evict = dev->l2ad_evict; 10714 l2dhdr->dh_start = dev->l2ad_start; 10715 l2dhdr->dh_end = dev->l2ad_end; 10716 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize); 10717 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count); 10718 l2dhdr->dh_flags = 0; 10719 l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time; 10720 l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state; 10721 if (dev->l2ad_first) 10722 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST; 10723 10724 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10725 10726 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev, 10727 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL, 10728 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE)); 10729 10730 abd_free(abd); 10731 10732 if (err != 0) { 10733 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, " 10734 "vdev guid: %llu", err, 10735 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10736 } 10737 } 10738 10739 /* 10740 * Commits a log block to the L2ARC device. This routine is invoked from 10741 * l2arc_write_buffers when the log block fills up. 10742 * This function allocates some memory to temporarily hold the serialized 10743 * buffer to be written. This is then released in l2arc_write_done. 10744 */ 10745 static uint64_t 10746 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb) 10747 { 10748 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10749 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10750 uint64_t psize, asize; 10751 zio_t *wzio; 10752 l2arc_lb_abd_buf_t *abd_buf; 10753 abd_t *abd = NULL; 10754 l2arc_lb_ptr_buf_t *lb_ptr_buf; 10755 10756 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries); 10757 10758 abd_buf = zio_buf_alloc(sizeof (*abd_buf)); 10759 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb)); 10760 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 10761 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP); 10762 10763 /* link the buffer into the block chain */ 10764 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1]; 10765 lb->lb_magic = L2ARC_LOG_BLK_MAGIC; 10766 10767 /* 10768 * l2arc_log_blk_commit() may be called multiple times during a single 10769 * l2arc_write_buffers() call. Save the allocated abd buffers in a list 10770 * so we can free them in l2arc_write_done() later on. 10771 */ 10772 list_insert_tail(&cb->l2wcb_abd_list, abd_buf); 10773 10774 /* try to compress the buffer, at least one sector to save */ 10775 psize = zio_compress_data(ZIO_COMPRESS_LZ4, 10776 abd_buf->abd, &abd, sizeof (*lb), 10777 zio_get_compression_max_size(ZIO_COMPRESS_LZ4, 10778 dev->l2ad_vdev->vdev_ashift, 10779 dev->l2ad_vdev->vdev_ashift, sizeof (*lb)), 0); 10780 10781 /* a log block is never entirely zero */ 10782 ASSERT(psize != 0); 10783 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 10784 ASSERT(asize <= sizeof (*lb)); 10785 10786 /* 10787 * Update the start log block pointer in the device header to point 10788 * to the log block we're about to write. 10789 */ 10790 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0]; 10791 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand; 10792 l2dhdr->dh_start_lbps[0].lbp_payload_asize = 10793 dev->l2ad_log_blk_payload_asize; 10794 l2dhdr->dh_start_lbps[0].lbp_payload_start = 10795 dev->l2ad_log_blk_payload_start; 10796 L2BLK_SET_LSIZE( 10797 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb)); 10798 L2BLK_SET_PSIZE( 10799 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize); 10800 L2BLK_SET_CHECKSUM( 10801 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10802 ZIO_CHECKSUM_FLETCHER_4); 10803 if (asize < sizeof (*lb)) { 10804 /* compression succeeded */ 10805 abd_zero_off(abd, psize, asize - psize); 10806 L2BLK_SET_COMPRESS( 10807 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10808 ZIO_COMPRESS_LZ4); 10809 } else { 10810 /* compression failed */ 10811 abd_copy_from_buf_off(abd, lb, 0, sizeof (*lb)); 10812 L2BLK_SET_COMPRESS( 10813 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10814 ZIO_COMPRESS_OFF); 10815 } 10816 10817 /* checksum what we're about to write */ 10818 abd_fletcher_4_native(abd, asize, NULL, 10819 &l2dhdr->dh_start_lbps[0].lbp_cksum); 10820 10821 abd_free(abd_buf->abd); 10822 10823 /* perform the write itself */ 10824 abd_buf->abd = abd; 10825 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand, 10826 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10827 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE); 10828 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio); 10829 (void) zio_nowait(wzio); 10830 10831 dev->l2ad_hand += asize; 10832 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10833 10834 /* 10835 * Include the committed log block's pointer in the list of pointers 10836 * to log blocks present in the L2ARC device. 10837 */ 10838 memcpy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[0], 10839 sizeof (l2arc_log_blkptr_t)); 10840 mutex_enter(&dev->l2ad_mtx); 10841 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf); 10842 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 10843 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 10844 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 10845 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 10846 mutex_exit(&dev->l2ad_mtx); 10847 10848 /* bump the kstats */ 10849 ARCSTAT_INCR(arcstat_l2_write_bytes, asize); 10850 ARCSTAT_BUMP(arcstat_l2_log_blk_writes); 10851 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize); 10852 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, 10853 dev->l2ad_log_blk_payload_asize / asize); 10854 10855 /* start a new log block */ 10856 dev->l2ad_log_ent_idx = 0; 10857 dev->l2ad_log_blk_payload_asize = 0; 10858 dev->l2ad_log_blk_payload_start = 0; 10859 10860 return (asize); 10861 } 10862 10863 /* 10864 * Validates an L2ARC log block address to make sure that it can be read 10865 * from the provided L2ARC device. 10866 */ 10867 boolean_t 10868 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp) 10869 { 10870 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10871 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10872 uint64_t end = lbp->lbp_daddr + asize - 1; 10873 uint64_t start = lbp->lbp_payload_start; 10874 boolean_t evicted = B_FALSE; 10875 10876 /* 10877 * A log block is valid if all of the following conditions are true: 10878 * - it fits entirely (including its payload) between l2ad_start and 10879 * l2ad_end 10880 * - it has a valid size 10881 * - neither the log block itself nor part of its payload was evicted 10882 * by l2arc_evict(): 10883 * 10884 * l2ad_hand l2ad_evict 10885 * | | lbp_daddr 10886 * | start | | end 10887 * | | | | | 10888 * V V V V V 10889 * l2ad_start ============================================ l2ad_end 10890 * --------------------------|||| 10891 * ^ ^ 10892 * | log block 10893 * payload 10894 */ 10895 10896 evicted = 10897 l2arc_range_check_overlap(start, end, dev->l2ad_hand) || 10898 l2arc_range_check_overlap(start, end, dev->l2ad_evict) || 10899 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) || 10900 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end); 10901 10902 return (start >= dev->l2ad_start && end <= dev->l2ad_end && 10903 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) && 10904 (!evicted || dev->l2ad_first)); 10905 } 10906 10907 /* 10908 * Inserts ARC buffer header `hdr' into the current L2ARC log block on 10909 * the device. The buffer being inserted must be present in L2ARC. 10910 * Returns B_TRUE if the L2ARC log block is full and needs to be committed 10911 * to L2ARC, or B_FALSE if it still has room for more ARC buffers. 10912 */ 10913 static boolean_t 10914 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr) 10915 { 10916 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10917 l2arc_log_ent_phys_t *le; 10918 10919 if (dev->l2ad_log_entries == 0) 10920 return (B_FALSE); 10921 10922 int index = dev->l2ad_log_ent_idx++; 10923 10924 ASSERT3S(index, <, dev->l2ad_log_entries); 10925 ASSERT(HDR_HAS_L2HDR(hdr)); 10926 10927 le = &lb->lb_entries[index]; 10928 memset(le, 0, sizeof (*le)); 10929 le->le_dva = hdr->b_dva; 10930 le->le_birth = hdr->b_birth; 10931 le->le_daddr = hdr->b_l2hdr.b_daddr; 10932 if (index == 0) 10933 dev->l2ad_log_blk_payload_start = le->le_daddr; 10934 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr)); 10935 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr)); 10936 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr)); 10937 le->le_complevel = hdr->b_complevel; 10938 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type); 10939 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr))); 10940 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr))); 10941 L2BLK_SET_STATE((le)->le_prop, hdr->b_l2hdr.b_arcs_state); 10942 10943 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev, 10944 HDR_GET_PSIZE(hdr)); 10945 10946 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries); 10947 } 10948 10949 /* 10950 * Checks whether a given L2ARC device address sits in a time-sequential 10951 * range. The trick here is that the L2ARC is a rotary buffer, so we can't 10952 * just do a range comparison, we need to handle the situation in which the 10953 * range wraps around the end of the L2ARC device. Arguments: 10954 * bottom -- Lower end of the range to check (written to earlier). 10955 * top -- Upper end of the range to check (written to later). 10956 * check -- The address for which we want to determine if it sits in 10957 * between the top and bottom. 10958 * 10959 * The 3-way conditional below represents the following cases: 10960 * 10961 * bottom < top : Sequentially ordered case: 10962 * <check>--------+-------------------+ 10963 * | (overlap here?) | 10964 * L2ARC dev V V 10965 * |---------------<bottom>============<top>--------------| 10966 * 10967 * bottom > top: Looped-around case: 10968 * <check>--------+------------------+ 10969 * | (overlap here?) | 10970 * L2ARC dev V V 10971 * |===============<top>---------------<bottom>===========| 10972 * ^ ^ 10973 * | (or here?) | 10974 * +---------------+---------<check> 10975 * 10976 * top == bottom : Just a single address comparison. 10977 */ 10978 boolean_t 10979 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check) 10980 { 10981 if (bottom < top) 10982 return (bottom <= check && check <= top); 10983 else if (bottom > top) 10984 return (check <= top || bottom <= check); 10985 else 10986 return (check == top); 10987 } 10988 10989 EXPORT_SYMBOL(arc_buf_size); 10990 EXPORT_SYMBOL(arc_write); 10991 EXPORT_SYMBOL(arc_read); 10992 EXPORT_SYMBOL(arc_buf_info); 10993 EXPORT_SYMBOL(arc_getbuf_func); 10994 EXPORT_SYMBOL(arc_add_prune_callback); 10995 EXPORT_SYMBOL(arc_remove_prune_callback); 10996 10997 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_min, 10998 spl_param_get_u64, ZMOD_RW, "Minimum ARC size in bytes"); 10999 11000 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_max, 11001 spl_param_get_u64, ZMOD_RW, "Maximum ARC size in bytes"); 11002 11003 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_balance, UINT, ZMOD_RW, 11004 "Balance between metadata and data on ghost hits."); 11005 11006 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int, 11007 param_get_uint, ZMOD_RW, "Seconds before growing ARC size"); 11008 11009 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int, 11010 param_get_uint, ZMOD_RW, "log2(fraction of ARC to reclaim)"); 11011 11012 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW, 11013 "Percent of pagecache to reclaim ARC to"); 11014 11015 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, UINT, ZMOD_RD, 11016 "Target average block size"); 11017 11018 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW, 11019 "Disable compressed ARC buffers"); 11020 11021 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int, 11022 param_get_uint, ZMOD_RW, "Min life of prefetch block in ms"); 11023 11024 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms, 11025 param_set_arc_int, param_get_uint, ZMOD_RW, 11026 "Min life of prescient prefetched block in ms"); 11027 11028 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, U64, ZMOD_RW, 11029 "Max write bytes per interval"); 11030 11031 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, U64, ZMOD_RW, 11032 "Extra write bytes during device warmup"); 11033 11034 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, U64, ZMOD_RW, 11035 "Number of max device writes to precache"); 11036 11037 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, U64, ZMOD_RW, 11038 "Compressed l2arc_headroom multiplier"); 11039 11040 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, U64, ZMOD_RW, 11041 "TRIM ahead L2ARC write size multiplier"); 11042 11043 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, U64, ZMOD_RW, 11044 "Seconds between L2ARC writing"); 11045 11046 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, U64, ZMOD_RW, 11047 "Min feed interval in milliseconds"); 11048 11049 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW, 11050 "Skip caching prefetched buffers"); 11051 11052 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW, 11053 "Turbo L2ARC warmup"); 11054 11055 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW, 11056 "No reads during writes"); 11057 11058 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, UINT, ZMOD_RW, 11059 "Percent of ARC size allowed for L2ARC-only headers"); 11060 11061 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW, 11062 "Rebuild the L2ARC when importing a pool"); 11063 11064 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, U64, ZMOD_RW, 11065 "Min size in bytes to write rebuild log blocks in L2ARC"); 11066 11067 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW, 11068 "Cache only MFU data from ARC into L2ARC"); 11069 11070 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, exclude_special, INT, ZMOD_RW, 11071 "Exclude dbufs on special vdevs from being cached to L2ARC if set."); 11072 11073 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int, 11074 param_get_uint, ZMOD_RW, "System free memory I/O throttle in bytes"); 11075 11076 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_u64, 11077 spl_param_get_u64, ZMOD_RW, "System free memory target size in bytes"); 11078 11079 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_u64, 11080 spl_param_get_u64, ZMOD_RW, "Minimum bytes of dnodes in ARC"); 11081 11082 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent, 11083 param_set_arc_int, param_get_uint, ZMOD_RW, 11084 "Percent of ARC meta buffers for dnodes"); 11085 11086 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, UINT, ZMOD_RW, 11087 "Percentage of excess dnodes to try to unpin"); 11088 11089 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, UINT, ZMOD_RW, 11090 "When full, ARC allocation waits for eviction of this % of alloc size"); 11091 11092 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, UINT, ZMOD_RW, 11093 "The number of headers to evict per sublist before moving to the next"); 11094 11095 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, prune_task_threads, INT, ZMOD_RW, 11096 "Number of arc_prune threads"); 11097