1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2018, Joyent, Inc. 24 * Copyright (c) 2011, 2020, Delphix. All rights reserved. 25 * Copyright (c) 2014, Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 28 * Copyright (c) 2020, George Amanakis. All rights reserved. 29 * Copyright (c) 2019, Klara Inc. 30 * Copyright (c) 2019, Allan Jude 31 * Copyright (c) 2020, The FreeBSD Foundation [1] 32 * 33 * [1] Portions of this software were developed by Allan Jude 34 * under sponsorship from the FreeBSD Foundation. 35 */ 36 37 /* 38 * DVA-based Adjustable Replacement Cache 39 * 40 * While much of the theory of operation used here is 41 * based on the self-tuning, low overhead replacement cache 42 * presented by Megiddo and Modha at FAST 2003, there are some 43 * significant differences: 44 * 45 * 1. The Megiddo and Modha model assumes any page is evictable. 46 * Pages in its cache cannot be "locked" into memory. This makes 47 * the eviction algorithm simple: evict the last page in the list. 48 * This also make the performance characteristics easy to reason 49 * about. Our cache is not so simple. At any given moment, some 50 * subset of the blocks in the cache are un-evictable because we 51 * have handed out a reference to them. Blocks are only evictable 52 * when there are no external references active. This makes 53 * eviction far more problematic: we choose to evict the evictable 54 * blocks that are the "lowest" in the list. 55 * 56 * There are times when it is not possible to evict the requested 57 * space. In these circumstances we are unable to adjust the cache 58 * size. To prevent the cache growing unbounded at these times we 59 * implement a "cache throttle" that slows the flow of new data 60 * into the cache until we can make space available. 61 * 62 * 2. The Megiddo and Modha model assumes a fixed cache size. 63 * Pages are evicted when the cache is full and there is a cache 64 * miss. Our model has a variable sized cache. It grows with 65 * high use, but also tries to react to memory pressure from the 66 * operating system: decreasing its size when system memory is 67 * tight. 68 * 69 * 3. The Megiddo and Modha model assumes a fixed page size. All 70 * elements of the cache are therefore exactly the same size. So 71 * when adjusting the cache size following a cache miss, its simply 72 * a matter of choosing a single page to evict. In our model, we 73 * have variable sized cache blocks (ranging from 512 bytes to 74 * 128K bytes). We therefore choose a set of blocks to evict to make 75 * space for a cache miss that approximates as closely as possible 76 * the space used by the new block. 77 * 78 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 79 * by N. Megiddo & D. Modha, FAST 2003 80 */ 81 82 /* 83 * The locking model: 84 * 85 * A new reference to a cache buffer can be obtained in two 86 * ways: 1) via a hash table lookup using the DVA as a key, 87 * or 2) via one of the ARC lists. The arc_read() interface 88 * uses method 1, while the internal ARC algorithms for 89 * adjusting the cache use method 2. We therefore provide two 90 * types of locks: 1) the hash table lock array, and 2) the 91 * ARC list locks. 92 * 93 * Buffers do not have their own mutexes, rather they rely on the 94 * hash table mutexes for the bulk of their protection (i.e. most 95 * fields in the arc_buf_hdr_t are protected by these mutexes). 96 * 97 * buf_hash_find() returns the appropriate mutex (held) when it 98 * locates the requested buffer in the hash table. It returns 99 * NULL for the mutex if the buffer was not in the table. 100 * 101 * buf_hash_remove() expects the appropriate hash mutex to be 102 * already held before it is invoked. 103 * 104 * Each ARC state also has a mutex which is used to protect the 105 * buffer list associated with the state. When attempting to 106 * obtain a hash table lock while holding an ARC list lock you 107 * must use: mutex_tryenter() to avoid deadlock. Also note that 108 * the active state mutex must be held before the ghost state mutex. 109 * 110 * It as also possible to register a callback which is run when the 111 * arc_meta_limit is reached and no buffers can be safely evicted. In 112 * this case the arc user should drop a reference on some arc buffers so 113 * they can be reclaimed and the arc_meta_limit honored. For example, 114 * when using the ZPL each dentry holds a references on a znode. These 115 * dentries must be pruned before the arc buffer holding the znode can 116 * be safely evicted. 117 * 118 * Note that the majority of the performance stats are manipulated 119 * with atomic operations. 120 * 121 * The L2ARC uses the l2ad_mtx on each vdev for the following: 122 * 123 * - L2ARC buflist creation 124 * - L2ARC buflist eviction 125 * - L2ARC write completion, which walks L2ARC buflists 126 * - ARC header destruction, as it removes from L2ARC buflists 127 * - ARC header release, as it removes from L2ARC buflists 128 */ 129 130 /* 131 * ARC operation: 132 * 133 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. 134 * This structure can point either to a block that is still in the cache or to 135 * one that is only accessible in an L2 ARC device, or it can provide 136 * information about a block that was recently evicted. If a block is 137 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough 138 * information to retrieve it from the L2ARC device. This information is 139 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block 140 * that is in this state cannot access the data directly. 141 * 142 * Blocks that are actively being referenced or have not been evicted 143 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within 144 * the arc_buf_hdr_t that will point to the data block in memory. A block can 145 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC 146 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and 147 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd). 148 * 149 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the 150 * ability to store the physical data (b_pabd) associated with the DVA of the 151 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block, 152 * it will match its on-disk compression characteristics. This behavior can be 153 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the 154 * compressed ARC functionality is disabled, the b_pabd will point to an 155 * uncompressed version of the on-disk data. 156 * 157 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each 158 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it. 159 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC 160 * consumer. The ARC will provide references to this data and will keep it 161 * cached until it is no longer in use. The ARC caches only the L1ARC's physical 162 * data block and will evict any arc_buf_t that is no longer referenced. The 163 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the 164 * "overhead_size" kstat. 165 * 166 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or 167 * compressed form. The typical case is that consumers will want uncompressed 168 * data, and when that happens a new data buffer is allocated where the data is 169 * decompressed for them to use. Currently the only consumer who wants 170 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it 171 * exists on disk. When this happens, the arc_buf_t's data buffer is shared 172 * with the arc_buf_hdr_t. 173 * 174 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The 175 * first one is owned by a compressed send consumer (and therefore references 176 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be 177 * used by any other consumer (and has its own uncompressed copy of the data 178 * buffer). 179 * 180 * arc_buf_hdr_t 181 * +-----------+ 182 * | fields | 183 * | common to | 184 * | L1- and | 185 * | L2ARC | 186 * +-----------+ 187 * | l2arc_buf_hdr_t 188 * | | 189 * +-----------+ 190 * | l1arc_buf_hdr_t 191 * | | arc_buf_t 192 * | b_buf +------------>+-----------+ arc_buf_t 193 * | b_pabd +-+ |b_next +---->+-----------+ 194 * +-----------+ | |-----------| |b_next +-->NULL 195 * | |b_comp = T | +-----------+ 196 * | |b_data +-+ |b_comp = F | 197 * | +-----------+ | |b_data +-+ 198 * +->+------+ | +-----------+ | 199 * compressed | | | | 200 * data | |<--------------+ | uncompressed 201 * +------+ compressed, | data 202 * shared +-->+------+ 203 * data | | 204 * | | 205 * +------+ 206 * 207 * When a consumer reads a block, the ARC must first look to see if the 208 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new 209 * arc_buf_t and either copies uncompressed data into a new data buffer from an 210 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a 211 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the 212 * hdr is compressed and the desired compression characteristics of the 213 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the 214 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be 215 * the last buffer in the hdr's b_buf list, however a shared compressed buf can 216 * be anywhere in the hdr's list. 217 * 218 * The diagram below shows an example of an uncompressed ARC hdr that is 219 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is 220 * the last element in the buf list): 221 * 222 * arc_buf_hdr_t 223 * +-----------+ 224 * | | 225 * | | 226 * | | 227 * +-----------+ 228 * l2arc_buf_hdr_t| | 229 * | | 230 * +-----------+ 231 * l1arc_buf_hdr_t| | 232 * | | arc_buf_t (shared) 233 * | b_buf +------------>+---------+ arc_buf_t 234 * | | |b_next +---->+---------+ 235 * | b_pabd +-+ |---------| |b_next +-->NULL 236 * +-----------+ | | | +---------+ 237 * | |b_data +-+ | | 238 * | +---------+ | |b_data +-+ 239 * +->+------+ | +---------+ | 240 * | | | | 241 * uncompressed | | | | 242 * data +------+ | | 243 * ^ +->+------+ | 244 * | uncompressed | | | 245 * | data | | | 246 * | +------+ | 247 * +---------------------------------+ 248 * 249 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd 250 * since the physical block is about to be rewritten. The new data contents 251 * will be contained in the arc_buf_t. As the I/O pipeline performs the write, 252 * it may compress the data before writing it to disk. The ARC will be called 253 * with the transformed data and will bcopy the transformed on-disk block into 254 * a newly allocated b_pabd. Writes are always done into buffers which have 255 * either been loaned (and hence are new and don't have other readers) or 256 * buffers which have been released (and hence have their own hdr, if there 257 * were originally other readers of the buf's original hdr). This ensures that 258 * the ARC only needs to update a single buf and its hdr after a write occurs. 259 * 260 * When the L2ARC is in use, it will also take advantage of the b_pabd. The 261 * L2ARC will always write the contents of b_pabd to the L2ARC. This means 262 * that when compressed ARC is enabled that the L2ARC blocks are identical 263 * to the on-disk block in the main data pool. This provides a significant 264 * advantage since the ARC can leverage the bp's checksum when reading from the 265 * L2ARC to determine if the contents are valid. However, if the compressed 266 * ARC is disabled, then the L2ARC's block must be transformed to look 267 * like the physical block in the main data pool before comparing the 268 * checksum and determining its validity. 269 * 270 * The L1ARC has a slightly different system for storing encrypted data. 271 * Raw (encrypted + possibly compressed) data has a few subtle differences from 272 * data that is just compressed. The biggest difference is that it is not 273 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded. 274 * The other difference is that encryption cannot be treated as a suggestion. 275 * If a caller would prefer compressed data, but they actually wind up with 276 * uncompressed data the worst thing that could happen is there might be a 277 * performance hit. If the caller requests encrypted data, however, we must be 278 * sure they actually get it or else secret information could be leaked. Raw 279 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore, 280 * may have both an encrypted version and a decrypted version of its data at 281 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is 282 * copied out of this header. To avoid complications with b_pabd, raw buffers 283 * cannot be shared. 284 */ 285 286 #include <sys/spa.h> 287 #include <sys/zio.h> 288 #include <sys/spa_impl.h> 289 #include <sys/zio_compress.h> 290 #include <sys/zio_checksum.h> 291 #include <sys/zfs_context.h> 292 #include <sys/arc.h> 293 #include <sys/zfs_refcount.h> 294 #include <sys/vdev.h> 295 #include <sys/vdev_impl.h> 296 #include <sys/dsl_pool.h> 297 #include <sys/multilist.h> 298 #include <sys/abd.h> 299 #include <sys/zil.h> 300 #include <sys/fm/fs/zfs.h> 301 #include <sys/callb.h> 302 #include <sys/kstat.h> 303 #include <sys/zthr.h> 304 #include <zfs_fletcher.h> 305 #include <sys/arc_impl.h> 306 #include <sys/trace_zfs.h> 307 #include <sys/aggsum.h> 308 #include <sys/wmsum.h> 309 #include <cityhash.h> 310 #include <sys/vdev_trim.h> 311 #include <sys/zfs_racct.h> 312 #include <sys/zstd/zstd.h> 313 314 #ifndef _KERNEL 315 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 316 boolean_t arc_watch = B_FALSE; 317 #endif 318 319 /* 320 * This thread's job is to keep enough free memory in the system, by 321 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves 322 * arc_available_memory(). 323 */ 324 static zthr_t *arc_reap_zthr; 325 326 /* 327 * This thread's job is to keep arc_size under arc_c, by calling 328 * arc_evict(), which improves arc_is_overflowing(). 329 */ 330 static zthr_t *arc_evict_zthr; 331 332 static kmutex_t arc_evict_lock; 333 static boolean_t arc_evict_needed = B_FALSE; 334 335 /* 336 * Count of bytes evicted since boot. 337 */ 338 static uint64_t arc_evict_count; 339 340 /* 341 * List of arc_evict_waiter_t's, representing threads waiting for the 342 * arc_evict_count to reach specific values. 343 */ 344 static list_t arc_evict_waiters; 345 346 /* 347 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of 348 * the requested amount of data to be evicted. For example, by default for 349 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation. 350 * Since this is above 100%, it ensures that progress is made towards getting 351 * arc_size under arc_c. Since this is finite, it ensures that allocations 352 * can still happen, even during the potentially long time that arc_size is 353 * more than arc_c. 354 */ 355 int zfs_arc_eviction_pct = 200; 356 357 /* 358 * The number of headers to evict in arc_evict_state_impl() before 359 * dropping the sublist lock and evicting from another sublist. A lower 360 * value means we're more likely to evict the "correct" header (i.e. the 361 * oldest header in the arc state), but comes with higher overhead 362 * (i.e. more invocations of arc_evict_state_impl()). 363 */ 364 int zfs_arc_evict_batch_limit = 10; 365 366 /* number of seconds before growing cache again */ 367 int arc_grow_retry = 5; 368 369 /* 370 * Minimum time between calls to arc_kmem_reap_soon(). 371 */ 372 int arc_kmem_cache_reap_retry_ms = 1000; 373 374 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */ 375 int zfs_arc_overflow_shift = 8; 376 377 /* shift of arc_c for calculating both min and max arc_p */ 378 int arc_p_min_shift = 4; 379 380 /* log2(fraction of arc to reclaim) */ 381 int arc_shrink_shift = 7; 382 383 /* percent of pagecache to reclaim arc to */ 384 #ifdef _KERNEL 385 uint_t zfs_arc_pc_percent = 0; 386 #endif 387 388 /* 389 * log2(fraction of ARC which must be free to allow growing). 390 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 391 * when reading a new block into the ARC, we will evict an equal-sized block 392 * from the ARC. 393 * 394 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 395 * we will still not allow it to grow. 396 */ 397 int arc_no_grow_shift = 5; 398 399 400 /* 401 * minimum lifespan of a prefetch block in clock ticks 402 * (initialized in arc_init()) 403 */ 404 static int arc_min_prefetch_ms; 405 static int arc_min_prescient_prefetch_ms; 406 407 /* 408 * If this percent of memory is free, don't throttle. 409 */ 410 int arc_lotsfree_percent = 10; 411 412 /* 413 * The arc has filled available memory and has now warmed up. 414 */ 415 boolean_t arc_warm; 416 417 /* 418 * These tunables are for performance analysis. 419 */ 420 unsigned long zfs_arc_max = 0; 421 unsigned long zfs_arc_min = 0; 422 unsigned long zfs_arc_meta_limit = 0; 423 unsigned long zfs_arc_meta_min = 0; 424 unsigned long zfs_arc_dnode_limit = 0; 425 unsigned long zfs_arc_dnode_reduce_percent = 10; 426 int zfs_arc_grow_retry = 0; 427 int zfs_arc_shrink_shift = 0; 428 int zfs_arc_p_min_shift = 0; 429 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 430 431 /* 432 * ARC dirty data constraints for arc_tempreserve_space() throttle. 433 */ 434 unsigned long zfs_arc_dirty_limit_percent = 50; /* total dirty data limit */ 435 unsigned long zfs_arc_anon_limit_percent = 25; /* anon block dirty limit */ 436 unsigned long zfs_arc_pool_dirty_percent = 20; /* each pool's anon allowance */ 437 438 /* 439 * Enable or disable compressed arc buffers. 440 */ 441 int zfs_compressed_arc_enabled = B_TRUE; 442 443 /* 444 * ARC will evict meta buffers that exceed arc_meta_limit. This 445 * tunable make arc_meta_limit adjustable for different workloads. 446 */ 447 unsigned long zfs_arc_meta_limit_percent = 75; 448 449 /* 450 * Percentage that can be consumed by dnodes of ARC meta buffers. 451 */ 452 unsigned long zfs_arc_dnode_limit_percent = 10; 453 454 /* 455 * These tunables are Linux specific 456 */ 457 unsigned long zfs_arc_sys_free = 0; 458 int zfs_arc_min_prefetch_ms = 0; 459 int zfs_arc_min_prescient_prefetch_ms = 0; 460 int zfs_arc_p_dampener_disable = 1; 461 int zfs_arc_meta_prune = 10000; 462 int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED; 463 int zfs_arc_meta_adjust_restarts = 4096; 464 int zfs_arc_lotsfree_percent = 10; 465 466 /* The 6 states: */ 467 arc_state_t ARC_anon; 468 arc_state_t ARC_mru; 469 arc_state_t ARC_mru_ghost; 470 arc_state_t ARC_mfu; 471 arc_state_t ARC_mfu_ghost; 472 arc_state_t ARC_l2c_only; 473 474 arc_stats_t arc_stats = { 475 { "hits", KSTAT_DATA_UINT64 }, 476 { "misses", KSTAT_DATA_UINT64 }, 477 { "demand_data_hits", KSTAT_DATA_UINT64 }, 478 { "demand_data_misses", KSTAT_DATA_UINT64 }, 479 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 480 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 481 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 482 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 483 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 484 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 485 { "mru_hits", KSTAT_DATA_UINT64 }, 486 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 487 { "mfu_hits", KSTAT_DATA_UINT64 }, 488 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 489 { "deleted", KSTAT_DATA_UINT64 }, 490 { "mutex_miss", KSTAT_DATA_UINT64 }, 491 { "access_skip", KSTAT_DATA_UINT64 }, 492 { "evict_skip", KSTAT_DATA_UINT64 }, 493 { "evict_not_enough", KSTAT_DATA_UINT64 }, 494 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 495 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 496 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64 }, 497 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64 }, 498 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 499 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 500 { "hash_elements", KSTAT_DATA_UINT64 }, 501 { "hash_elements_max", KSTAT_DATA_UINT64 }, 502 { "hash_collisions", KSTAT_DATA_UINT64 }, 503 { "hash_chains", KSTAT_DATA_UINT64 }, 504 { "hash_chain_max", KSTAT_DATA_UINT64 }, 505 { "p", KSTAT_DATA_UINT64 }, 506 { "c", KSTAT_DATA_UINT64 }, 507 { "c_min", KSTAT_DATA_UINT64 }, 508 { "c_max", KSTAT_DATA_UINT64 }, 509 { "size", KSTAT_DATA_UINT64 }, 510 { "compressed_size", KSTAT_DATA_UINT64 }, 511 { "uncompressed_size", KSTAT_DATA_UINT64 }, 512 { "overhead_size", KSTAT_DATA_UINT64 }, 513 { "hdr_size", KSTAT_DATA_UINT64 }, 514 { "data_size", KSTAT_DATA_UINT64 }, 515 { "metadata_size", KSTAT_DATA_UINT64 }, 516 { "dbuf_size", KSTAT_DATA_UINT64 }, 517 { "dnode_size", KSTAT_DATA_UINT64 }, 518 { "bonus_size", KSTAT_DATA_UINT64 }, 519 #if defined(COMPAT_FREEBSD11) 520 { "other_size", KSTAT_DATA_UINT64 }, 521 #endif 522 { "anon_size", KSTAT_DATA_UINT64 }, 523 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 524 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 525 { "mru_size", KSTAT_DATA_UINT64 }, 526 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 527 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 528 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 529 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 530 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 531 { "mfu_size", KSTAT_DATA_UINT64 }, 532 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 533 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 534 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 535 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 536 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 537 { "l2_hits", KSTAT_DATA_UINT64 }, 538 { "l2_misses", KSTAT_DATA_UINT64 }, 539 { "l2_prefetch_asize", KSTAT_DATA_UINT64 }, 540 { "l2_mru_asize", KSTAT_DATA_UINT64 }, 541 { "l2_mfu_asize", KSTAT_DATA_UINT64 }, 542 { "l2_bufc_data_asize", KSTAT_DATA_UINT64 }, 543 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64 }, 544 { "l2_feeds", KSTAT_DATA_UINT64 }, 545 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 546 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 547 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 548 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 549 { "l2_writes_done", KSTAT_DATA_UINT64 }, 550 { "l2_writes_error", KSTAT_DATA_UINT64 }, 551 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 552 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 553 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 554 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 555 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 556 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 557 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 558 { "l2_io_error", KSTAT_DATA_UINT64 }, 559 { "l2_size", KSTAT_DATA_UINT64 }, 560 { "l2_asize", KSTAT_DATA_UINT64 }, 561 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 562 { "l2_log_blk_writes", KSTAT_DATA_UINT64 }, 563 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 }, 564 { "l2_log_blk_asize", KSTAT_DATA_UINT64 }, 565 { "l2_log_blk_count", KSTAT_DATA_UINT64 }, 566 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 }, 567 { "l2_rebuild_success", KSTAT_DATA_UINT64 }, 568 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 }, 569 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 }, 570 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 }, 571 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 }, 572 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 }, 573 { "l2_rebuild_size", KSTAT_DATA_UINT64 }, 574 { "l2_rebuild_asize", KSTAT_DATA_UINT64 }, 575 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 }, 576 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 }, 577 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 }, 578 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 579 { "memory_direct_count", KSTAT_DATA_UINT64 }, 580 { "memory_indirect_count", KSTAT_DATA_UINT64 }, 581 { "memory_all_bytes", KSTAT_DATA_UINT64 }, 582 { "memory_free_bytes", KSTAT_DATA_UINT64 }, 583 { "memory_available_bytes", KSTAT_DATA_INT64 }, 584 { "arc_no_grow", KSTAT_DATA_UINT64 }, 585 { "arc_tempreserve", KSTAT_DATA_UINT64 }, 586 { "arc_loaned_bytes", KSTAT_DATA_UINT64 }, 587 { "arc_prune", KSTAT_DATA_UINT64 }, 588 { "arc_meta_used", KSTAT_DATA_UINT64 }, 589 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 590 { "arc_dnode_limit", KSTAT_DATA_UINT64 }, 591 { "arc_meta_max", KSTAT_DATA_UINT64 }, 592 { "arc_meta_min", KSTAT_DATA_UINT64 }, 593 { "async_upgrade_sync", KSTAT_DATA_UINT64 }, 594 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 }, 595 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 }, 596 { "arc_need_free", KSTAT_DATA_UINT64 }, 597 { "arc_sys_free", KSTAT_DATA_UINT64 }, 598 { "arc_raw_size", KSTAT_DATA_UINT64 }, 599 { "cached_only_in_progress", KSTAT_DATA_UINT64 }, 600 { "abd_chunk_waste_size", KSTAT_DATA_UINT64 }, 601 }; 602 603 arc_sums_t arc_sums; 604 605 #define ARCSTAT_MAX(stat, val) { \ 606 uint64_t m; \ 607 while ((val) > (m = arc_stats.stat.value.ui64) && \ 608 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 609 continue; \ 610 } 611 612 /* 613 * We define a macro to allow ARC hits/misses to be easily broken down by 614 * two separate conditions, giving a total of four different subtypes for 615 * each of hits and misses (so eight statistics total). 616 */ 617 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 618 if (cond1) { \ 619 if (cond2) { \ 620 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 621 } else { \ 622 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 623 } \ 624 } else { \ 625 if (cond2) { \ 626 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 627 } else { \ 628 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 629 } \ 630 } 631 632 /* 633 * This macro allows us to use kstats as floating averages. Each time we 634 * update this kstat, we first factor it and the update value by 635 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall 636 * average. This macro assumes that integer loads and stores are atomic, but 637 * is not safe for multiple writers updating the kstat in parallel (only the 638 * last writer's update will remain). 639 */ 640 #define ARCSTAT_F_AVG_FACTOR 3 641 #define ARCSTAT_F_AVG(stat, value) \ 642 do { \ 643 uint64_t x = ARCSTAT(stat); \ 644 x = x - x / ARCSTAT_F_AVG_FACTOR + \ 645 (value) / ARCSTAT_F_AVG_FACTOR; \ 646 ARCSTAT(stat) = x; \ 647 _NOTE(CONSTCOND) \ 648 } while (0) 649 650 kstat_t *arc_ksp; 651 static arc_state_t *arc_anon; 652 static arc_state_t *arc_mru_ghost; 653 static arc_state_t *arc_mfu_ghost; 654 static arc_state_t *arc_l2c_only; 655 656 arc_state_t *arc_mru; 657 arc_state_t *arc_mfu; 658 659 /* 660 * There are several ARC variables that are critical to export as kstats -- 661 * but we don't want to have to grovel around in the kstat whenever we wish to 662 * manipulate them. For these variables, we therefore define them to be in 663 * terms of the statistic variable. This assures that we are not introducing 664 * the possibility of inconsistency by having shadow copies of the variables, 665 * while still allowing the code to be readable. 666 */ 667 #define arc_tempreserve ARCSTAT(arcstat_tempreserve) 668 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes) 669 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 670 /* max size for dnodes */ 671 #define arc_dnode_size_limit ARCSTAT(arcstat_dnode_limit) 672 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */ 673 #define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */ 674 675 hrtime_t arc_growtime; 676 list_t arc_prune_list; 677 kmutex_t arc_prune_mtx; 678 taskq_t *arc_prune_taskq; 679 680 #define GHOST_STATE(state) \ 681 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 682 (state) == arc_l2c_only) 683 684 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 685 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 686 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 687 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 688 #define HDR_PRESCIENT_PREFETCH(hdr) \ 689 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) 690 #define HDR_COMPRESSION_ENABLED(hdr) \ 691 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) 692 693 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 694 #define HDR_L2_READING(hdr) \ 695 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 696 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 697 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 698 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 699 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 700 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED) 701 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH) 702 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) 703 704 #define HDR_ISTYPE_METADATA(hdr) \ 705 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 706 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 707 708 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 709 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 710 #define HDR_HAS_RABD(hdr) \ 711 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \ 712 (hdr)->b_crypt_hdr.b_rabd != NULL) 713 #define HDR_ENCRYPTED(hdr) \ 714 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 715 #define HDR_AUTHENTICATED(hdr) \ 716 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 717 718 /* For storing compression mode in b_flags */ 719 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) 720 721 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ 722 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) 723 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ 724 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); 725 726 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) 727 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED) 728 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED) 729 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED) 730 731 /* 732 * Other sizes 733 */ 734 735 #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 736 #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr)) 737 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 738 739 /* 740 * Hash table routines 741 */ 742 743 #define BUF_LOCKS 2048 744 typedef struct buf_hash_table { 745 uint64_t ht_mask; 746 arc_buf_hdr_t **ht_table; 747 kmutex_t ht_locks[BUF_LOCKS] ____cacheline_aligned; 748 } buf_hash_table_t; 749 750 static buf_hash_table_t buf_hash_table; 751 752 #define BUF_HASH_INDEX(spa, dva, birth) \ 753 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 754 #define BUF_HASH_LOCK(idx) (&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 755 #define HDR_LOCK(hdr) \ 756 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 757 758 uint64_t zfs_crc64_table[256]; 759 760 /* 761 * Level 2 ARC 762 */ 763 764 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 765 #define L2ARC_HEADROOM 2 /* num of writes */ 766 767 /* 768 * If we discover during ARC scan any buffers to be compressed, we boost 769 * our headroom for the next scanning cycle by this percentage multiple. 770 */ 771 #define L2ARC_HEADROOM_BOOST 200 772 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 773 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 774 775 /* 776 * We can feed L2ARC from two states of ARC buffers, mru and mfu, 777 * and each of the state has two types: data and metadata. 778 */ 779 #define L2ARC_FEED_TYPES 4 780 781 /* L2ARC Performance Tunables */ 782 unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */ 783 unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */ 784 unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */ 785 unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 786 unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 787 unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */ 788 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 789 int l2arc_feed_again = B_TRUE; /* turbo warmup */ 790 int l2arc_norw = B_FALSE; /* no reads during writes */ 791 int l2arc_meta_percent = 33; /* limit on headers size */ 792 793 /* 794 * L2ARC Internals 795 */ 796 static list_t L2ARC_dev_list; /* device list */ 797 static list_t *l2arc_dev_list; /* device list pointer */ 798 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 799 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 800 static list_t L2ARC_free_on_write; /* free after write buf list */ 801 static list_t *l2arc_free_on_write; /* free after write list ptr */ 802 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 803 static uint64_t l2arc_ndev; /* number of devices */ 804 805 typedef struct l2arc_read_callback { 806 arc_buf_hdr_t *l2rcb_hdr; /* read header */ 807 blkptr_t l2rcb_bp; /* original blkptr */ 808 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 809 int l2rcb_flags; /* original flags */ 810 abd_t *l2rcb_abd; /* temporary buffer */ 811 } l2arc_read_callback_t; 812 813 typedef struct l2arc_data_free { 814 /* protected by l2arc_free_on_write_mtx */ 815 abd_t *l2df_abd; 816 size_t l2df_size; 817 arc_buf_contents_t l2df_type; 818 list_node_t l2df_list_node; 819 } l2arc_data_free_t; 820 821 typedef enum arc_fill_flags { 822 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */ 823 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */ 824 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */ 825 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */ 826 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */ 827 } arc_fill_flags_t; 828 829 static kmutex_t l2arc_feed_thr_lock; 830 static kcondvar_t l2arc_feed_thr_cv; 831 static uint8_t l2arc_thread_exit; 832 833 static kmutex_t l2arc_rebuild_thr_lock; 834 static kcondvar_t l2arc_rebuild_thr_cv; 835 836 enum arc_hdr_alloc_flags { 837 ARC_HDR_ALLOC_RDATA = 0x1, 838 ARC_HDR_DO_ADAPT = 0x2, 839 }; 840 841 842 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *, boolean_t); 843 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *); 844 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *, boolean_t); 845 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *); 846 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *); 847 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag); 848 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t); 849 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int); 850 static void arc_access(arc_buf_hdr_t *, kmutex_t *); 851 static void arc_buf_watch(arc_buf_t *); 852 853 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 854 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 855 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 856 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 857 858 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 859 static void l2arc_read_done(zio_t *); 860 static void l2arc_do_free_on_write(void); 861 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 862 boolean_t state_only); 863 864 #define l2arc_hdr_arcstats_increment(hdr) \ 865 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE) 866 #define l2arc_hdr_arcstats_decrement(hdr) \ 867 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE) 868 #define l2arc_hdr_arcstats_increment_state(hdr) \ 869 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE) 870 #define l2arc_hdr_arcstats_decrement_state(hdr) \ 871 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE) 872 873 /* 874 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU 875 * metadata and data are cached from ARC into L2ARC. 876 */ 877 int l2arc_mfuonly = 0; 878 879 /* 880 * L2ARC TRIM 881 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of 882 * the current write size (l2arc_write_max) we should TRIM if we 883 * have filled the device. It is defined as a percentage of the 884 * write size. If set to 100 we trim twice the space required to 885 * accommodate upcoming writes. A minimum of 64MB will be trimmed. 886 * It also enables TRIM of the whole L2ARC device upon creation or 887 * addition to an existing pool or if the header of the device is 888 * invalid upon importing a pool or onlining a cache device. The 889 * default is 0, which disables TRIM on L2ARC altogether as it can 890 * put significant stress on the underlying storage devices. This 891 * will vary depending of how well the specific device handles 892 * these commands. 893 */ 894 unsigned long l2arc_trim_ahead = 0; 895 896 /* 897 * Performance tuning of L2ARC persistence: 898 * 899 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding 900 * an L2ARC device (either at pool import or later) will attempt 901 * to rebuild L2ARC buffer contents. 902 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls 903 * whether log blocks are written to the L2ARC device. If the L2ARC 904 * device is less than 1GB, the amount of data l2arc_evict() 905 * evicts is significant compared to the amount of restored L2ARC 906 * data. In this case do not write log blocks in L2ARC in order 907 * not to waste space. 908 */ 909 int l2arc_rebuild_enabled = B_TRUE; 910 unsigned long l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024; 911 912 /* L2ARC persistence rebuild control routines. */ 913 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen); 914 static void l2arc_dev_rebuild_thread(void *arg); 915 static int l2arc_rebuild(l2arc_dev_t *dev); 916 917 /* L2ARC persistence read I/O routines. */ 918 static int l2arc_dev_hdr_read(l2arc_dev_t *dev); 919 static int l2arc_log_blk_read(l2arc_dev_t *dev, 920 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp, 921 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 922 zio_t *this_io, zio_t **next_io); 923 static zio_t *l2arc_log_blk_fetch(vdev_t *vd, 924 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb); 925 static void l2arc_log_blk_fetch_abort(zio_t *zio); 926 927 /* L2ARC persistence block restoration routines. */ 928 static void l2arc_log_blk_restore(l2arc_dev_t *dev, 929 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize); 930 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, 931 l2arc_dev_t *dev); 932 933 /* L2ARC persistence write I/O routines. */ 934 static void l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, 935 l2arc_write_callback_t *cb); 936 937 /* L2ARC persistence auxiliary routines. */ 938 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev, 939 const l2arc_log_blkptr_t *lbp); 940 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev, 941 const arc_buf_hdr_t *ab); 942 boolean_t l2arc_range_check_overlap(uint64_t bottom, 943 uint64_t top, uint64_t check); 944 static void l2arc_blk_fetch_done(zio_t *zio); 945 static inline uint64_t 946 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev); 947 948 /* 949 * We use Cityhash for this. It's fast, and has good hash properties without 950 * requiring any large static buffers. 951 */ 952 static uint64_t 953 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 954 { 955 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth)); 956 } 957 958 #define HDR_EMPTY(hdr) \ 959 ((hdr)->b_dva.dva_word[0] == 0 && \ 960 (hdr)->b_dva.dva_word[1] == 0) 961 962 #define HDR_EMPTY_OR_LOCKED(hdr) \ 963 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr))) 964 965 #define HDR_EQUAL(spa, dva, birth, hdr) \ 966 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 967 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 968 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) 969 970 static void 971 buf_discard_identity(arc_buf_hdr_t *hdr) 972 { 973 hdr->b_dva.dva_word[0] = 0; 974 hdr->b_dva.dva_word[1] = 0; 975 hdr->b_birth = 0; 976 } 977 978 static arc_buf_hdr_t * 979 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 980 { 981 const dva_t *dva = BP_IDENTITY(bp); 982 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 983 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 984 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 985 arc_buf_hdr_t *hdr; 986 987 mutex_enter(hash_lock); 988 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 989 hdr = hdr->b_hash_next) { 990 if (HDR_EQUAL(spa, dva, birth, hdr)) { 991 *lockp = hash_lock; 992 return (hdr); 993 } 994 } 995 mutex_exit(hash_lock); 996 *lockp = NULL; 997 return (NULL); 998 } 999 1000 /* 1001 * Insert an entry into the hash table. If there is already an element 1002 * equal to elem in the hash table, then the already existing element 1003 * will be returned and the new element will not be inserted. 1004 * Otherwise returns NULL. 1005 * If lockp == NULL, the caller is assumed to already hold the hash lock. 1006 */ 1007 static arc_buf_hdr_t * 1008 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 1009 { 1010 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1011 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1012 arc_buf_hdr_t *fhdr; 1013 uint32_t i; 1014 1015 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 1016 ASSERT(hdr->b_birth != 0); 1017 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1018 1019 if (lockp != NULL) { 1020 *lockp = hash_lock; 1021 mutex_enter(hash_lock); 1022 } else { 1023 ASSERT(MUTEX_HELD(hash_lock)); 1024 } 1025 1026 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 1027 fhdr = fhdr->b_hash_next, i++) { 1028 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 1029 return (fhdr); 1030 } 1031 1032 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 1033 buf_hash_table.ht_table[idx] = hdr; 1034 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1035 1036 /* collect some hash table performance data */ 1037 if (i > 0) { 1038 ARCSTAT_BUMP(arcstat_hash_collisions); 1039 if (i == 1) 1040 ARCSTAT_BUMP(arcstat_hash_chains); 1041 1042 ARCSTAT_MAX(arcstat_hash_chain_max, i); 1043 } 1044 uint64_t he = atomic_inc_64_nv( 1045 &arc_stats.arcstat_hash_elements.value.ui64); 1046 ARCSTAT_MAX(arcstat_hash_elements_max, he); 1047 1048 return (NULL); 1049 } 1050 1051 static void 1052 buf_hash_remove(arc_buf_hdr_t *hdr) 1053 { 1054 arc_buf_hdr_t *fhdr, **hdrp; 1055 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1056 1057 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 1058 ASSERT(HDR_IN_HASH_TABLE(hdr)); 1059 1060 hdrp = &buf_hash_table.ht_table[idx]; 1061 while ((fhdr = *hdrp) != hdr) { 1062 ASSERT3P(fhdr, !=, NULL); 1063 hdrp = &fhdr->b_hash_next; 1064 } 1065 *hdrp = hdr->b_hash_next; 1066 hdr->b_hash_next = NULL; 1067 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1068 1069 /* collect some hash table performance data */ 1070 atomic_dec_64(&arc_stats.arcstat_hash_elements.value.ui64); 1071 1072 if (buf_hash_table.ht_table[idx] && 1073 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 1074 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 1075 } 1076 1077 /* 1078 * Global data structures and functions for the buf kmem cache. 1079 */ 1080 1081 static kmem_cache_t *hdr_full_cache; 1082 static kmem_cache_t *hdr_full_crypt_cache; 1083 static kmem_cache_t *hdr_l2only_cache; 1084 static kmem_cache_t *buf_cache; 1085 1086 static void 1087 buf_fini(void) 1088 { 1089 int i; 1090 1091 #if defined(_KERNEL) 1092 /* 1093 * Large allocations which do not require contiguous pages 1094 * should be using vmem_free() in the linux kernel\ 1095 */ 1096 vmem_free(buf_hash_table.ht_table, 1097 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1098 #else 1099 kmem_free(buf_hash_table.ht_table, 1100 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1101 #endif 1102 for (i = 0; i < BUF_LOCKS; i++) 1103 mutex_destroy(BUF_HASH_LOCK(i)); 1104 kmem_cache_destroy(hdr_full_cache); 1105 kmem_cache_destroy(hdr_full_crypt_cache); 1106 kmem_cache_destroy(hdr_l2only_cache); 1107 kmem_cache_destroy(buf_cache); 1108 } 1109 1110 /* 1111 * Constructor callback - called when the cache is empty 1112 * and a new buf is requested. 1113 */ 1114 /* ARGSUSED */ 1115 static int 1116 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1117 { 1118 arc_buf_hdr_t *hdr = vbuf; 1119 1120 bzero(hdr, HDR_FULL_SIZE); 1121 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 1122 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL); 1123 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt); 1124 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1125 list_link_init(&hdr->b_l1hdr.b_arc_node); 1126 list_link_init(&hdr->b_l2hdr.b_l2node); 1127 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1128 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1129 1130 return (0); 1131 } 1132 1133 /* ARGSUSED */ 1134 static int 1135 hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag) 1136 { 1137 arc_buf_hdr_t *hdr = vbuf; 1138 1139 hdr_full_cons(vbuf, unused, kmflag); 1140 bzero(&hdr->b_crypt_hdr, sizeof (hdr->b_crypt_hdr)); 1141 arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1142 1143 return (0); 1144 } 1145 1146 /* ARGSUSED */ 1147 static int 1148 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1149 { 1150 arc_buf_hdr_t *hdr = vbuf; 1151 1152 bzero(hdr, HDR_L2ONLY_SIZE); 1153 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1154 1155 return (0); 1156 } 1157 1158 /* ARGSUSED */ 1159 static int 1160 buf_cons(void *vbuf, void *unused, int kmflag) 1161 { 1162 arc_buf_t *buf = vbuf; 1163 1164 bzero(buf, sizeof (arc_buf_t)); 1165 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 1166 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1167 1168 return (0); 1169 } 1170 1171 /* 1172 * Destructor callback - called when a cached buf is 1173 * no longer required. 1174 */ 1175 /* ARGSUSED */ 1176 static void 1177 hdr_full_dest(void *vbuf, void *unused) 1178 { 1179 arc_buf_hdr_t *hdr = vbuf; 1180 1181 ASSERT(HDR_EMPTY(hdr)); 1182 cv_destroy(&hdr->b_l1hdr.b_cv); 1183 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1184 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1185 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1186 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1187 } 1188 1189 /* ARGSUSED */ 1190 static void 1191 hdr_full_crypt_dest(void *vbuf, void *unused) 1192 { 1193 arc_buf_hdr_t *hdr = vbuf; 1194 1195 hdr_full_dest(vbuf, unused); 1196 arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1197 } 1198 1199 /* ARGSUSED */ 1200 static void 1201 hdr_l2only_dest(void *vbuf, void *unused) 1202 { 1203 arc_buf_hdr_t *hdr __maybe_unused = vbuf; 1204 1205 ASSERT(HDR_EMPTY(hdr)); 1206 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1207 } 1208 1209 /* ARGSUSED */ 1210 static void 1211 buf_dest(void *vbuf, void *unused) 1212 { 1213 arc_buf_t *buf = vbuf; 1214 1215 mutex_destroy(&buf->b_evict_lock); 1216 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1217 } 1218 1219 static void 1220 buf_init(void) 1221 { 1222 uint64_t *ct = NULL; 1223 uint64_t hsize = 1ULL << 12; 1224 int i, j; 1225 1226 /* 1227 * The hash table is big enough to fill all of physical memory 1228 * with an average block size of zfs_arc_average_blocksize (default 8K). 1229 * By default, the table will take up 1230 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1231 */ 1232 while (hsize * zfs_arc_average_blocksize < arc_all_memory()) 1233 hsize <<= 1; 1234 retry: 1235 buf_hash_table.ht_mask = hsize - 1; 1236 #if defined(_KERNEL) 1237 /* 1238 * Large allocations which do not require contiguous pages 1239 * should be using vmem_alloc() in the linux kernel 1240 */ 1241 buf_hash_table.ht_table = 1242 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP); 1243 #else 1244 buf_hash_table.ht_table = 1245 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1246 #endif 1247 if (buf_hash_table.ht_table == NULL) { 1248 ASSERT(hsize > (1ULL << 8)); 1249 hsize >>= 1; 1250 goto retry; 1251 } 1252 1253 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1254 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, 0); 1255 hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt", 1256 HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest, 1257 NULL, NULL, NULL, 0); 1258 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1259 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL, 1260 NULL, NULL, 0); 1261 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1262 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1263 1264 for (i = 0; i < 256; i++) 1265 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1266 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1267 1268 for (i = 0; i < BUF_LOCKS; i++) 1269 mutex_init(BUF_HASH_LOCK(i), NULL, MUTEX_DEFAULT, NULL); 1270 } 1271 1272 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1273 1274 /* 1275 * This is the size that the buf occupies in memory. If the buf is compressed, 1276 * it will correspond to the compressed size. You should use this method of 1277 * getting the buf size unless you explicitly need the logical size. 1278 */ 1279 uint64_t 1280 arc_buf_size(arc_buf_t *buf) 1281 { 1282 return (ARC_BUF_COMPRESSED(buf) ? 1283 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr)); 1284 } 1285 1286 uint64_t 1287 arc_buf_lsize(arc_buf_t *buf) 1288 { 1289 return (HDR_GET_LSIZE(buf->b_hdr)); 1290 } 1291 1292 /* 1293 * This function will return B_TRUE if the buffer is encrypted in memory. 1294 * This buffer can be decrypted by calling arc_untransform(). 1295 */ 1296 boolean_t 1297 arc_is_encrypted(arc_buf_t *buf) 1298 { 1299 return (ARC_BUF_ENCRYPTED(buf) != 0); 1300 } 1301 1302 /* 1303 * Returns B_TRUE if the buffer represents data that has not had its MAC 1304 * verified yet. 1305 */ 1306 boolean_t 1307 arc_is_unauthenticated(arc_buf_t *buf) 1308 { 1309 return (HDR_NOAUTH(buf->b_hdr) != 0); 1310 } 1311 1312 void 1313 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt, 1314 uint8_t *iv, uint8_t *mac) 1315 { 1316 arc_buf_hdr_t *hdr = buf->b_hdr; 1317 1318 ASSERT(HDR_PROTECTED(hdr)); 1319 1320 bcopy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN); 1321 bcopy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN); 1322 bcopy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN); 1323 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 1324 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 1325 } 1326 1327 /* 1328 * Indicates how this buffer is compressed in memory. If it is not compressed 1329 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with 1330 * arc_untransform() as long as it is also unencrypted. 1331 */ 1332 enum zio_compress 1333 arc_get_compression(arc_buf_t *buf) 1334 { 1335 return (ARC_BUF_COMPRESSED(buf) ? 1336 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF); 1337 } 1338 1339 /* 1340 * Return the compression algorithm used to store this data in the ARC. If ARC 1341 * compression is enabled or this is an encrypted block, this will be the same 1342 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF. 1343 */ 1344 static inline enum zio_compress 1345 arc_hdr_get_compress(arc_buf_hdr_t *hdr) 1346 { 1347 return (HDR_COMPRESSION_ENABLED(hdr) ? 1348 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF); 1349 } 1350 1351 uint8_t 1352 arc_get_complevel(arc_buf_t *buf) 1353 { 1354 return (buf->b_hdr->b_complevel); 1355 } 1356 1357 static inline boolean_t 1358 arc_buf_is_shared(arc_buf_t *buf) 1359 { 1360 boolean_t shared = (buf->b_data != NULL && 1361 buf->b_hdr->b_l1hdr.b_pabd != NULL && 1362 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) && 1363 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd)); 1364 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); 1365 IMPLY(shared, ARC_BUF_SHARED(buf)); 1366 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf)); 1367 1368 /* 1369 * It would be nice to assert arc_can_share() too, but the "hdr isn't 1370 * already being shared" requirement prevents us from doing that. 1371 */ 1372 1373 return (shared); 1374 } 1375 1376 /* 1377 * Free the checksum associated with this header. If there is no checksum, this 1378 * is a no-op. 1379 */ 1380 static inline void 1381 arc_cksum_free(arc_buf_hdr_t *hdr) 1382 { 1383 ASSERT(HDR_HAS_L1HDR(hdr)); 1384 1385 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1386 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1387 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); 1388 hdr->b_l1hdr.b_freeze_cksum = NULL; 1389 } 1390 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1391 } 1392 1393 /* 1394 * Return true iff at least one of the bufs on hdr is not compressed. 1395 * Encrypted buffers count as compressed. 1396 */ 1397 static boolean_t 1398 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr) 1399 { 1400 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr)); 1401 1402 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) { 1403 if (!ARC_BUF_COMPRESSED(b)) { 1404 return (B_TRUE); 1405 } 1406 } 1407 return (B_FALSE); 1408 } 1409 1410 1411 /* 1412 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data 1413 * matches the checksum that is stored in the hdr. If there is no checksum, 1414 * or if the buf is compressed, this is a no-op. 1415 */ 1416 static void 1417 arc_cksum_verify(arc_buf_t *buf) 1418 { 1419 arc_buf_hdr_t *hdr = buf->b_hdr; 1420 zio_cksum_t zc; 1421 1422 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1423 return; 1424 1425 if (ARC_BUF_COMPRESSED(buf)) 1426 return; 1427 1428 ASSERT(HDR_HAS_L1HDR(hdr)); 1429 1430 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1431 1432 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { 1433 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1434 return; 1435 } 1436 1437 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc); 1438 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) 1439 panic("buffer modified while frozen!"); 1440 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1441 } 1442 1443 /* 1444 * This function makes the assumption that data stored in the L2ARC 1445 * will be transformed exactly as it is in the main pool. Because of 1446 * this we can verify the checksum against the reading process's bp. 1447 */ 1448 static boolean_t 1449 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) 1450 { 1451 ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); 1452 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); 1453 1454 /* 1455 * Block pointers always store the checksum for the logical data. 1456 * If the block pointer has the gang bit set, then the checksum 1457 * it represents is for the reconstituted data and not for an 1458 * individual gang member. The zio pipeline, however, must be able to 1459 * determine the checksum of each of the gang constituents so it 1460 * treats the checksum comparison differently than what we need 1461 * for l2arc blocks. This prevents us from using the 1462 * zio_checksum_error() interface directly. Instead we must call the 1463 * zio_checksum_error_impl() so that we can ensure the checksum is 1464 * generated using the correct checksum algorithm and accounts for the 1465 * logical I/O size and not just a gang fragment. 1466 */ 1467 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp, 1468 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size, 1469 zio->io_offset, NULL) == 0); 1470 } 1471 1472 /* 1473 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a 1474 * checksum and attaches it to the buf's hdr so that we can ensure that the buf 1475 * isn't modified later on. If buf is compressed or there is already a checksum 1476 * on the hdr, this is a no-op (we only checksum uncompressed bufs). 1477 */ 1478 static void 1479 arc_cksum_compute(arc_buf_t *buf) 1480 { 1481 arc_buf_hdr_t *hdr = buf->b_hdr; 1482 1483 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1484 return; 1485 1486 ASSERT(HDR_HAS_L1HDR(hdr)); 1487 1488 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1489 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) { 1490 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1491 return; 1492 } 1493 1494 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 1495 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1496 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), 1497 KM_SLEEP); 1498 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, 1499 hdr->b_l1hdr.b_freeze_cksum); 1500 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1501 arc_buf_watch(buf); 1502 } 1503 1504 #ifndef _KERNEL 1505 void 1506 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused) 1507 { 1508 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr); 1509 } 1510 #endif 1511 1512 /* ARGSUSED */ 1513 static void 1514 arc_buf_unwatch(arc_buf_t *buf) 1515 { 1516 #ifndef _KERNEL 1517 if (arc_watch) { 1518 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1519 PROT_READ | PROT_WRITE)); 1520 } 1521 #endif 1522 } 1523 1524 /* ARGSUSED */ 1525 static void 1526 arc_buf_watch(arc_buf_t *buf) 1527 { 1528 #ifndef _KERNEL 1529 if (arc_watch) 1530 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1531 PROT_READ)); 1532 #endif 1533 } 1534 1535 static arc_buf_contents_t 1536 arc_buf_type(arc_buf_hdr_t *hdr) 1537 { 1538 arc_buf_contents_t type; 1539 if (HDR_ISTYPE_METADATA(hdr)) { 1540 type = ARC_BUFC_METADATA; 1541 } else { 1542 type = ARC_BUFC_DATA; 1543 } 1544 VERIFY3U(hdr->b_type, ==, type); 1545 return (type); 1546 } 1547 1548 boolean_t 1549 arc_is_metadata(arc_buf_t *buf) 1550 { 1551 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0); 1552 } 1553 1554 static uint32_t 1555 arc_bufc_to_flags(arc_buf_contents_t type) 1556 { 1557 switch (type) { 1558 case ARC_BUFC_DATA: 1559 /* metadata field is 0 if buffer contains normal data */ 1560 return (0); 1561 case ARC_BUFC_METADATA: 1562 return (ARC_FLAG_BUFC_METADATA); 1563 default: 1564 break; 1565 } 1566 panic("undefined ARC buffer type!"); 1567 return ((uint32_t)-1); 1568 } 1569 1570 void 1571 arc_buf_thaw(arc_buf_t *buf) 1572 { 1573 arc_buf_hdr_t *hdr = buf->b_hdr; 1574 1575 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 1576 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1577 1578 arc_cksum_verify(buf); 1579 1580 /* 1581 * Compressed buffers do not manipulate the b_freeze_cksum. 1582 */ 1583 if (ARC_BUF_COMPRESSED(buf)) 1584 return; 1585 1586 ASSERT(HDR_HAS_L1HDR(hdr)); 1587 arc_cksum_free(hdr); 1588 arc_buf_unwatch(buf); 1589 } 1590 1591 void 1592 arc_buf_freeze(arc_buf_t *buf) 1593 { 1594 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1595 return; 1596 1597 if (ARC_BUF_COMPRESSED(buf)) 1598 return; 1599 1600 ASSERT(HDR_HAS_L1HDR(buf->b_hdr)); 1601 arc_cksum_compute(buf); 1602 } 1603 1604 /* 1605 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, 1606 * the following functions should be used to ensure that the flags are 1607 * updated in a thread-safe way. When manipulating the flags either 1608 * the hash_lock must be held or the hdr must be undiscoverable. This 1609 * ensures that we're not racing with any other threads when updating 1610 * the flags. 1611 */ 1612 static inline void 1613 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1614 { 1615 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1616 hdr->b_flags |= flags; 1617 } 1618 1619 static inline void 1620 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1621 { 1622 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1623 hdr->b_flags &= ~flags; 1624 } 1625 1626 /* 1627 * Setting the compression bits in the arc_buf_hdr_t's b_flags is 1628 * done in a special way since we have to clear and set bits 1629 * at the same time. Consumers that wish to set the compression bits 1630 * must use this function to ensure that the flags are updated in 1631 * thread-safe manner. 1632 */ 1633 static void 1634 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) 1635 { 1636 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1637 1638 /* 1639 * Holes and embedded blocks will always have a psize = 0 so 1640 * we ignore the compression of the blkptr and set the 1641 * want to uncompress them. Mark them as uncompressed. 1642 */ 1643 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { 1644 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1645 ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); 1646 } else { 1647 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1648 ASSERT(HDR_COMPRESSION_ENABLED(hdr)); 1649 } 1650 1651 HDR_SET_COMPRESS(hdr, cmp); 1652 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); 1653 } 1654 1655 /* 1656 * Looks for another buf on the same hdr which has the data decompressed, copies 1657 * from it, and returns true. If no such buf exists, returns false. 1658 */ 1659 static boolean_t 1660 arc_buf_try_copy_decompressed_data(arc_buf_t *buf) 1661 { 1662 arc_buf_hdr_t *hdr = buf->b_hdr; 1663 boolean_t copied = B_FALSE; 1664 1665 ASSERT(HDR_HAS_L1HDR(hdr)); 1666 ASSERT3P(buf->b_data, !=, NULL); 1667 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1668 1669 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL; 1670 from = from->b_next) { 1671 /* can't use our own data buffer */ 1672 if (from == buf) { 1673 continue; 1674 } 1675 1676 if (!ARC_BUF_COMPRESSED(from)) { 1677 bcopy(from->b_data, buf->b_data, arc_buf_size(buf)); 1678 copied = B_TRUE; 1679 break; 1680 } 1681 } 1682 1683 /* 1684 * There were no decompressed bufs, so there should not be a 1685 * checksum on the hdr either. 1686 */ 1687 if (zfs_flags & ZFS_DEBUG_MODIFY) 1688 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL); 1689 1690 return (copied); 1691 } 1692 1693 /* 1694 * Allocates an ARC buf header that's in an evicted & L2-cached state. 1695 * This is used during l2arc reconstruction to make empty ARC buffers 1696 * which circumvent the regular disk->arc->l2arc path and instead come 1697 * into being in the reverse order, i.e. l2arc->arc. 1698 */ 1699 static arc_buf_hdr_t * 1700 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev, 1701 dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth, 1702 enum zio_compress compress, uint8_t complevel, boolean_t protected, 1703 boolean_t prefetch, arc_state_type_t arcs_state) 1704 { 1705 arc_buf_hdr_t *hdr; 1706 1707 ASSERT(size != 0); 1708 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP); 1709 hdr->b_birth = birth; 1710 hdr->b_type = type; 1711 hdr->b_flags = 0; 1712 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR); 1713 HDR_SET_LSIZE(hdr, size); 1714 HDR_SET_PSIZE(hdr, psize); 1715 arc_hdr_set_compress(hdr, compress); 1716 hdr->b_complevel = complevel; 1717 if (protected) 1718 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 1719 if (prefetch) 1720 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 1721 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa); 1722 1723 hdr->b_dva = dva; 1724 1725 hdr->b_l2hdr.b_dev = dev; 1726 hdr->b_l2hdr.b_daddr = daddr; 1727 hdr->b_l2hdr.b_arcs_state = arcs_state; 1728 1729 return (hdr); 1730 } 1731 1732 /* 1733 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t. 1734 */ 1735 static uint64_t 1736 arc_hdr_size(arc_buf_hdr_t *hdr) 1737 { 1738 uint64_t size; 1739 1740 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 1741 HDR_GET_PSIZE(hdr) > 0) { 1742 size = HDR_GET_PSIZE(hdr); 1743 } else { 1744 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); 1745 size = HDR_GET_LSIZE(hdr); 1746 } 1747 return (size); 1748 } 1749 1750 static int 1751 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj) 1752 { 1753 int ret; 1754 uint64_t csize; 1755 uint64_t lsize = HDR_GET_LSIZE(hdr); 1756 uint64_t psize = HDR_GET_PSIZE(hdr); 1757 void *tmpbuf = NULL; 1758 abd_t *abd = hdr->b_l1hdr.b_pabd; 1759 1760 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1761 ASSERT(HDR_AUTHENTICATED(hdr)); 1762 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1763 1764 /* 1765 * The MAC is calculated on the compressed data that is stored on disk. 1766 * However, if compressed arc is disabled we will only have the 1767 * decompressed data available to us now. Compress it into a temporary 1768 * abd so we can verify the MAC. The performance overhead of this will 1769 * be relatively low, since most objects in an encrypted objset will 1770 * be encrypted (instead of authenticated) anyway. 1771 */ 1772 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1773 !HDR_COMPRESSION_ENABLED(hdr)) { 1774 tmpbuf = zio_buf_alloc(lsize); 1775 abd = abd_get_from_buf(tmpbuf, lsize); 1776 abd_take_ownership_of_buf(abd, B_TRUE); 1777 csize = zio_compress_data(HDR_GET_COMPRESS(hdr), 1778 hdr->b_l1hdr.b_pabd, tmpbuf, lsize, hdr->b_complevel); 1779 ASSERT3U(csize, <=, psize); 1780 abd_zero_off(abd, csize, psize - csize); 1781 } 1782 1783 /* 1784 * Authentication is best effort. We authenticate whenever the key is 1785 * available. If we succeed we clear ARC_FLAG_NOAUTH. 1786 */ 1787 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) { 1788 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1789 ASSERT3U(lsize, ==, psize); 1790 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd, 1791 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1792 } else { 1793 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize, 1794 hdr->b_crypt_hdr.b_mac); 1795 } 1796 1797 if (ret == 0) 1798 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH); 1799 else if (ret != ENOENT) 1800 goto error; 1801 1802 if (tmpbuf != NULL) 1803 abd_free(abd); 1804 1805 return (0); 1806 1807 error: 1808 if (tmpbuf != NULL) 1809 abd_free(abd); 1810 1811 return (ret); 1812 } 1813 1814 /* 1815 * This function will take a header that only has raw encrypted data in 1816 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in 1817 * b_l1hdr.b_pabd. If designated in the header flags, this function will 1818 * also decompress the data. 1819 */ 1820 static int 1821 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb) 1822 { 1823 int ret; 1824 abd_t *cabd = NULL; 1825 void *tmp = NULL; 1826 boolean_t no_crypt = B_FALSE; 1827 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1828 1829 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1830 ASSERT(HDR_ENCRYPTED(hdr)); 1831 1832 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 1833 1834 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot, 1835 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv, 1836 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd, 1837 hdr->b_crypt_hdr.b_rabd, &no_crypt); 1838 if (ret != 0) 1839 goto error; 1840 1841 if (no_crypt) { 1842 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd, 1843 HDR_GET_PSIZE(hdr)); 1844 } 1845 1846 /* 1847 * If this header has disabled arc compression but the b_pabd is 1848 * compressed after decrypting it, we need to decompress the newly 1849 * decrypted data. 1850 */ 1851 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1852 !HDR_COMPRESSION_ENABLED(hdr)) { 1853 /* 1854 * We want to make sure that we are correctly honoring the 1855 * zfs_abd_scatter_enabled setting, so we allocate an abd here 1856 * and then loan a buffer from it, rather than allocating a 1857 * linear buffer and wrapping it in an abd later. 1858 */ 1859 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, B_TRUE); 1860 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 1861 1862 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 1863 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 1864 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 1865 if (ret != 0) { 1866 abd_return_buf(cabd, tmp, arc_hdr_size(hdr)); 1867 goto error; 1868 } 1869 1870 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 1871 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 1872 arc_hdr_size(hdr), hdr); 1873 hdr->b_l1hdr.b_pabd = cabd; 1874 } 1875 1876 return (0); 1877 1878 error: 1879 arc_hdr_free_abd(hdr, B_FALSE); 1880 if (cabd != NULL) 1881 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr); 1882 1883 return (ret); 1884 } 1885 1886 /* 1887 * This function is called during arc_buf_fill() to prepare the header's 1888 * abd plaintext pointer for use. This involves authenticated protected 1889 * data and decrypting encrypted data into the plaintext abd. 1890 */ 1891 static int 1892 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa, 1893 const zbookmark_phys_t *zb, boolean_t noauth) 1894 { 1895 int ret; 1896 1897 ASSERT(HDR_PROTECTED(hdr)); 1898 1899 if (hash_lock != NULL) 1900 mutex_enter(hash_lock); 1901 1902 if (HDR_NOAUTH(hdr) && !noauth) { 1903 /* 1904 * The caller requested authenticated data but our data has 1905 * not been authenticated yet. Verify the MAC now if we can. 1906 */ 1907 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset); 1908 if (ret != 0) 1909 goto error; 1910 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) { 1911 /* 1912 * If we only have the encrypted version of the data, but the 1913 * unencrypted version was requested we take this opportunity 1914 * to store the decrypted version in the header for future use. 1915 */ 1916 ret = arc_hdr_decrypt(hdr, spa, zb); 1917 if (ret != 0) 1918 goto error; 1919 } 1920 1921 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1922 1923 if (hash_lock != NULL) 1924 mutex_exit(hash_lock); 1925 1926 return (0); 1927 1928 error: 1929 if (hash_lock != NULL) 1930 mutex_exit(hash_lock); 1931 1932 return (ret); 1933 } 1934 1935 /* 1936 * This function is used by the dbuf code to decrypt bonus buffers in place. 1937 * The dbuf code itself doesn't have any locking for decrypting a shared dnode 1938 * block, so we use the hash lock here to protect against concurrent calls to 1939 * arc_buf_fill(). 1940 */ 1941 static void 1942 arc_buf_untransform_in_place(arc_buf_t *buf, kmutex_t *hash_lock) 1943 { 1944 arc_buf_hdr_t *hdr = buf->b_hdr; 1945 1946 ASSERT(HDR_ENCRYPTED(hdr)); 1947 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 1948 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1949 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1950 1951 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data, 1952 arc_buf_size(buf)); 1953 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 1954 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 1955 hdr->b_crypt_hdr.b_ebufcnt -= 1; 1956 } 1957 1958 /* 1959 * Given a buf that has a data buffer attached to it, this function will 1960 * efficiently fill the buf with data of the specified compression setting from 1961 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr 1962 * are already sharing a data buf, no copy is performed. 1963 * 1964 * If the buf is marked as compressed but uncompressed data was requested, this 1965 * will allocate a new data buffer for the buf, remove that flag, and fill the 1966 * buf with uncompressed data. You can't request a compressed buf on a hdr with 1967 * uncompressed data, and (since we haven't added support for it yet) if you 1968 * want compressed data your buf must already be marked as compressed and have 1969 * the correct-sized data buffer. 1970 */ 1971 static int 1972 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 1973 arc_fill_flags_t flags) 1974 { 1975 int error = 0; 1976 arc_buf_hdr_t *hdr = buf->b_hdr; 1977 boolean_t hdr_compressed = 1978 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 1979 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0; 1980 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0; 1981 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; 1982 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr); 1983 1984 ASSERT3P(buf->b_data, !=, NULL); 1985 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf)); 1986 IMPLY(compressed, ARC_BUF_COMPRESSED(buf)); 1987 IMPLY(encrypted, HDR_ENCRYPTED(hdr)); 1988 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf)); 1989 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf)); 1990 IMPLY(encrypted, !ARC_BUF_SHARED(buf)); 1991 1992 /* 1993 * If the caller wanted encrypted data we just need to copy it from 1994 * b_rabd and potentially byteswap it. We won't be able to do any 1995 * further transforms on it. 1996 */ 1997 if (encrypted) { 1998 ASSERT(HDR_HAS_RABD(hdr)); 1999 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd, 2000 HDR_GET_PSIZE(hdr)); 2001 goto byteswap; 2002 } 2003 2004 /* 2005 * Adjust encrypted and authenticated headers to accommodate 2006 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are 2007 * allowed to fail decryption due to keys not being loaded 2008 * without being marked as an IO error. 2009 */ 2010 if (HDR_PROTECTED(hdr)) { 2011 error = arc_fill_hdr_crypt(hdr, hash_lock, spa, 2012 zb, !!(flags & ARC_FILL_NOAUTH)); 2013 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) { 2014 return (error); 2015 } else if (error != 0) { 2016 if (hash_lock != NULL) 2017 mutex_enter(hash_lock); 2018 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2019 if (hash_lock != NULL) 2020 mutex_exit(hash_lock); 2021 return (error); 2022 } 2023 } 2024 2025 /* 2026 * There is a special case here for dnode blocks which are 2027 * decrypting their bonus buffers. These blocks may request to 2028 * be decrypted in-place. This is necessary because there may 2029 * be many dnodes pointing into this buffer and there is 2030 * currently no method to synchronize replacing the backing 2031 * b_data buffer and updating all of the pointers. Here we use 2032 * the hash lock to ensure there are no races. If the need 2033 * arises for other types to be decrypted in-place, they must 2034 * add handling here as well. 2035 */ 2036 if ((flags & ARC_FILL_IN_PLACE) != 0) { 2037 ASSERT(!hdr_compressed); 2038 ASSERT(!compressed); 2039 ASSERT(!encrypted); 2040 2041 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) { 2042 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 2043 2044 if (hash_lock != NULL) 2045 mutex_enter(hash_lock); 2046 arc_buf_untransform_in_place(buf, hash_lock); 2047 if (hash_lock != NULL) 2048 mutex_exit(hash_lock); 2049 2050 /* Compute the hdr's checksum if necessary */ 2051 arc_cksum_compute(buf); 2052 } 2053 2054 return (0); 2055 } 2056 2057 if (hdr_compressed == compressed) { 2058 if (!arc_buf_is_shared(buf)) { 2059 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd, 2060 arc_buf_size(buf)); 2061 } 2062 } else { 2063 ASSERT(hdr_compressed); 2064 ASSERT(!compressed); 2065 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr)); 2066 2067 /* 2068 * If the buf is sharing its data with the hdr, unlink it and 2069 * allocate a new data buffer for the buf. 2070 */ 2071 if (arc_buf_is_shared(buf)) { 2072 ASSERT(ARC_BUF_COMPRESSED(buf)); 2073 2074 /* We need to give the buf its own b_data */ 2075 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 2076 buf->b_data = 2077 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2078 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2079 2080 /* Previously overhead was 0; just add new overhead */ 2081 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 2082 } else if (ARC_BUF_COMPRESSED(buf)) { 2083 /* We need to reallocate the buf's b_data */ 2084 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr), 2085 buf); 2086 buf->b_data = 2087 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2088 2089 /* We increased the size of b_data; update overhead */ 2090 ARCSTAT_INCR(arcstat_overhead_size, 2091 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr)); 2092 } 2093 2094 /* 2095 * Regardless of the buf's previous compression settings, it 2096 * should not be compressed at the end of this function. 2097 */ 2098 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 2099 2100 /* 2101 * Try copying the data from another buf which already has a 2102 * decompressed version. If that's not possible, it's time to 2103 * bite the bullet and decompress the data from the hdr. 2104 */ 2105 if (arc_buf_try_copy_decompressed_data(buf)) { 2106 /* Skip byteswapping and checksumming (already done) */ 2107 return (0); 2108 } else { 2109 error = zio_decompress_data(HDR_GET_COMPRESS(hdr), 2110 hdr->b_l1hdr.b_pabd, buf->b_data, 2111 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr), 2112 &hdr->b_complevel); 2113 2114 /* 2115 * Absent hardware errors or software bugs, this should 2116 * be impossible, but log it anyway so we can debug it. 2117 */ 2118 if (error != 0) { 2119 zfs_dbgmsg( 2120 "hdr %px, compress %d, psize %d, lsize %d", 2121 hdr, arc_hdr_get_compress(hdr), 2122 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 2123 if (hash_lock != NULL) 2124 mutex_enter(hash_lock); 2125 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2126 if (hash_lock != NULL) 2127 mutex_exit(hash_lock); 2128 return (SET_ERROR(EIO)); 2129 } 2130 } 2131 } 2132 2133 byteswap: 2134 /* Byteswap the buf's data if necessary */ 2135 if (bswap != DMU_BSWAP_NUMFUNCS) { 2136 ASSERT(!HDR_SHARED_DATA(hdr)); 2137 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); 2138 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); 2139 } 2140 2141 /* Compute the hdr's checksum if necessary */ 2142 arc_cksum_compute(buf); 2143 2144 return (0); 2145 } 2146 2147 /* 2148 * If this function is being called to decrypt an encrypted buffer or verify an 2149 * authenticated one, the key must be loaded and a mapping must be made 2150 * available in the keystore via spa_keystore_create_mapping() or one of its 2151 * callers. 2152 */ 2153 int 2154 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 2155 boolean_t in_place) 2156 { 2157 int ret; 2158 arc_fill_flags_t flags = 0; 2159 2160 if (in_place) 2161 flags |= ARC_FILL_IN_PLACE; 2162 2163 ret = arc_buf_fill(buf, spa, zb, flags); 2164 if (ret == ECKSUM) { 2165 /* 2166 * Convert authentication and decryption errors to EIO 2167 * (and generate an ereport) before leaving the ARC. 2168 */ 2169 ret = SET_ERROR(EIO); 2170 spa_log_error(spa, zb); 2171 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 2172 spa, NULL, zb, NULL, 0); 2173 } 2174 2175 return (ret); 2176 } 2177 2178 /* 2179 * Increment the amount of evictable space in the arc_state_t's refcount. 2180 * We account for the space used by the hdr and the arc buf individually 2181 * so that we can add and remove them from the refcount individually. 2182 */ 2183 static void 2184 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) 2185 { 2186 arc_buf_contents_t type = arc_buf_type(hdr); 2187 2188 ASSERT(HDR_HAS_L1HDR(hdr)); 2189 2190 if (GHOST_STATE(state)) { 2191 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2192 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2193 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2194 ASSERT(!HDR_HAS_RABD(hdr)); 2195 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2196 HDR_GET_LSIZE(hdr), hdr); 2197 return; 2198 } 2199 2200 ASSERT(!GHOST_STATE(state)); 2201 if (hdr->b_l1hdr.b_pabd != NULL) { 2202 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2203 arc_hdr_size(hdr), hdr); 2204 } 2205 if (HDR_HAS_RABD(hdr)) { 2206 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2207 HDR_GET_PSIZE(hdr), hdr); 2208 } 2209 2210 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2211 buf = buf->b_next) { 2212 if (arc_buf_is_shared(buf)) 2213 continue; 2214 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2215 arc_buf_size(buf), buf); 2216 } 2217 } 2218 2219 /* 2220 * Decrement the amount of evictable space in the arc_state_t's refcount. 2221 * We account for the space used by the hdr and the arc buf individually 2222 * so that we can add and remove them from the refcount individually. 2223 */ 2224 static void 2225 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) 2226 { 2227 arc_buf_contents_t type = arc_buf_type(hdr); 2228 2229 ASSERT(HDR_HAS_L1HDR(hdr)); 2230 2231 if (GHOST_STATE(state)) { 2232 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2233 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2234 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2235 ASSERT(!HDR_HAS_RABD(hdr)); 2236 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2237 HDR_GET_LSIZE(hdr), hdr); 2238 return; 2239 } 2240 2241 ASSERT(!GHOST_STATE(state)); 2242 if (hdr->b_l1hdr.b_pabd != NULL) { 2243 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2244 arc_hdr_size(hdr), hdr); 2245 } 2246 if (HDR_HAS_RABD(hdr)) { 2247 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2248 HDR_GET_PSIZE(hdr), hdr); 2249 } 2250 2251 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2252 buf = buf->b_next) { 2253 if (arc_buf_is_shared(buf)) 2254 continue; 2255 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2256 arc_buf_size(buf), buf); 2257 } 2258 } 2259 2260 /* 2261 * Add a reference to this hdr indicating that someone is actively 2262 * referencing that memory. When the refcount transitions from 0 to 1, 2263 * we remove it from the respective arc_state_t list to indicate that 2264 * it is not evictable. 2265 */ 2266 static void 2267 add_reference(arc_buf_hdr_t *hdr, void *tag) 2268 { 2269 arc_state_t *state; 2270 2271 ASSERT(HDR_HAS_L1HDR(hdr)); 2272 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) { 2273 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 2274 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2275 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2276 } 2277 2278 state = hdr->b_l1hdr.b_state; 2279 2280 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 2281 (state != arc_anon)) { 2282 /* We don't use the L2-only state list. */ 2283 if (state != arc_l2c_only) { 2284 multilist_remove(&state->arcs_list[arc_buf_type(hdr)], 2285 hdr); 2286 arc_evictable_space_decrement(hdr, state); 2287 } 2288 /* remove the prefetch flag if we get a reference */ 2289 if (HDR_HAS_L2HDR(hdr)) 2290 l2arc_hdr_arcstats_decrement_state(hdr); 2291 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 2292 if (HDR_HAS_L2HDR(hdr)) 2293 l2arc_hdr_arcstats_increment_state(hdr); 2294 } 2295 } 2296 2297 /* 2298 * Remove a reference from this hdr. When the reference transitions from 2299 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's 2300 * list making it eligible for eviction. 2301 */ 2302 static int 2303 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 2304 { 2305 int cnt; 2306 arc_state_t *state = hdr->b_l1hdr.b_state; 2307 2308 ASSERT(HDR_HAS_L1HDR(hdr)); 2309 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 2310 ASSERT(!GHOST_STATE(state)); 2311 2312 /* 2313 * arc_l2c_only counts as a ghost state so we don't need to explicitly 2314 * check to prevent usage of the arc_l2c_only list. 2315 */ 2316 if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) && 2317 (state != arc_anon)) { 2318 multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr); 2319 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 2320 arc_evictable_space_increment(hdr, state); 2321 } 2322 return (cnt); 2323 } 2324 2325 /* 2326 * Returns detailed information about a specific arc buffer. When the 2327 * state_index argument is set the function will calculate the arc header 2328 * list position for its arc state. Since this requires a linear traversal 2329 * callers are strongly encourage not to do this. However, it can be helpful 2330 * for targeted analysis so the functionality is provided. 2331 */ 2332 void 2333 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index) 2334 { 2335 arc_buf_hdr_t *hdr = ab->b_hdr; 2336 l1arc_buf_hdr_t *l1hdr = NULL; 2337 l2arc_buf_hdr_t *l2hdr = NULL; 2338 arc_state_t *state = NULL; 2339 2340 memset(abi, 0, sizeof (arc_buf_info_t)); 2341 2342 if (hdr == NULL) 2343 return; 2344 2345 abi->abi_flags = hdr->b_flags; 2346 2347 if (HDR_HAS_L1HDR(hdr)) { 2348 l1hdr = &hdr->b_l1hdr; 2349 state = l1hdr->b_state; 2350 } 2351 if (HDR_HAS_L2HDR(hdr)) 2352 l2hdr = &hdr->b_l2hdr; 2353 2354 if (l1hdr) { 2355 abi->abi_bufcnt = l1hdr->b_bufcnt; 2356 abi->abi_access = l1hdr->b_arc_access; 2357 abi->abi_mru_hits = l1hdr->b_mru_hits; 2358 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits; 2359 abi->abi_mfu_hits = l1hdr->b_mfu_hits; 2360 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits; 2361 abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt); 2362 } 2363 2364 if (l2hdr) { 2365 abi->abi_l2arc_dattr = l2hdr->b_daddr; 2366 abi->abi_l2arc_hits = l2hdr->b_hits; 2367 } 2368 2369 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON; 2370 abi->abi_state_contents = arc_buf_type(hdr); 2371 abi->abi_size = arc_hdr_size(hdr); 2372 } 2373 2374 /* 2375 * Move the supplied buffer to the indicated state. The hash lock 2376 * for the buffer must be held by the caller. 2377 */ 2378 static void 2379 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr, 2380 kmutex_t *hash_lock) 2381 { 2382 arc_state_t *old_state; 2383 int64_t refcnt; 2384 uint32_t bufcnt; 2385 boolean_t update_old, update_new; 2386 arc_buf_contents_t buftype = arc_buf_type(hdr); 2387 2388 /* 2389 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 2390 * in arc_read() when bringing a buffer out of the L2ARC. However, the 2391 * L1 hdr doesn't always exist when we change state to arc_anon before 2392 * destroying a header, in which case reallocating to add the L1 hdr is 2393 * pointless. 2394 */ 2395 if (HDR_HAS_L1HDR(hdr)) { 2396 old_state = hdr->b_l1hdr.b_state; 2397 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt); 2398 bufcnt = hdr->b_l1hdr.b_bufcnt; 2399 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL || 2400 HDR_HAS_RABD(hdr)); 2401 } else { 2402 old_state = arc_l2c_only; 2403 refcnt = 0; 2404 bufcnt = 0; 2405 update_old = B_FALSE; 2406 } 2407 update_new = update_old; 2408 2409 ASSERT(MUTEX_HELD(hash_lock)); 2410 ASSERT3P(new_state, !=, old_state); 2411 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0); 2412 ASSERT(old_state != arc_anon || bufcnt <= 1); 2413 2414 /* 2415 * If this buffer is evictable, transfer it from the 2416 * old state list to the new state list. 2417 */ 2418 if (refcnt == 0) { 2419 if (old_state != arc_anon && old_state != arc_l2c_only) { 2420 ASSERT(HDR_HAS_L1HDR(hdr)); 2421 multilist_remove(&old_state->arcs_list[buftype], hdr); 2422 2423 if (GHOST_STATE(old_state)) { 2424 ASSERT0(bufcnt); 2425 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2426 update_old = B_TRUE; 2427 } 2428 arc_evictable_space_decrement(hdr, old_state); 2429 } 2430 if (new_state != arc_anon && new_state != arc_l2c_only) { 2431 /* 2432 * An L1 header always exists here, since if we're 2433 * moving to some L1-cached state (i.e. not l2c_only or 2434 * anonymous), we realloc the header to add an L1hdr 2435 * beforehand. 2436 */ 2437 ASSERT(HDR_HAS_L1HDR(hdr)); 2438 multilist_insert(&new_state->arcs_list[buftype], hdr); 2439 2440 if (GHOST_STATE(new_state)) { 2441 ASSERT0(bufcnt); 2442 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2443 update_new = B_TRUE; 2444 } 2445 arc_evictable_space_increment(hdr, new_state); 2446 } 2447 } 2448 2449 ASSERT(!HDR_EMPTY(hdr)); 2450 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 2451 buf_hash_remove(hdr); 2452 2453 /* adjust state sizes (ignore arc_l2c_only) */ 2454 2455 if (update_new && new_state != arc_l2c_only) { 2456 ASSERT(HDR_HAS_L1HDR(hdr)); 2457 if (GHOST_STATE(new_state)) { 2458 ASSERT0(bufcnt); 2459 2460 /* 2461 * When moving a header to a ghost state, we first 2462 * remove all arc buffers. Thus, we'll have a 2463 * bufcnt of zero, and no arc buffer to use for 2464 * the reference. As a result, we use the arc 2465 * header pointer for the reference. 2466 */ 2467 (void) zfs_refcount_add_many(&new_state->arcs_size, 2468 HDR_GET_LSIZE(hdr), hdr); 2469 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2470 ASSERT(!HDR_HAS_RABD(hdr)); 2471 } else { 2472 uint32_t buffers = 0; 2473 2474 /* 2475 * Each individual buffer holds a unique reference, 2476 * thus we must remove each of these references one 2477 * at a time. 2478 */ 2479 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2480 buf = buf->b_next) { 2481 ASSERT3U(bufcnt, !=, 0); 2482 buffers++; 2483 2484 /* 2485 * When the arc_buf_t is sharing the data 2486 * block with the hdr, the owner of the 2487 * reference belongs to the hdr. Only 2488 * add to the refcount if the arc_buf_t is 2489 * not shared. 2490 */ 2491 if (arc_buf_is_shared(buf)) 2492 continue; 2493 2494 (void) zfs_refcount_add_many( 2495 &new_state->arcs_size, 2496 arc_buf_size(buf), buf); 2497 } 2498 ASSERT3U(bufcnt, ==, buffers); 2499 2500 if (hdr->b_l1hdr.b_pabd != NULL) { 2501 (void) zfs_refcount_add_many( 2502 &new_state->arcs_size, 2503 arc_hdr_size(hdr), hdr); 2504 } 2505 2506 if (HDR_HAS_RABD(hdr)) { 2507 (void) zfs_refcount_add_many( 2508 &new_state->arcs_size, 2509 HDR_GET_PSIZE(hdr), hdr); 2510 } 2511 } 2512 } 2513 2514 if (update_old && old_state != arc_l2c_only) { 2515 ASSERT(HDR_HAS_L1HDR(hdr)); 2516 if (GHOST_STATE(old_state)) { 2517 ASSERT0(bufcnt); 2518 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2519 ASSERT(!HDR_HAS_RABD(hdr)); 2520 2521 /* 2522 * When moving a header off of a ghost state, 2523 * the header will not contain any arc buffers. 2524 * We use the arc header pointer for the reference 2525 * which is exactly what we did when we put the 2526 * header on the ghost state. 2527 */ 2528 2529 (void) zfs_refcount_remove_many(&old_state->arcs_size, 2530 HDR_GET_LSIZE(hdr), hdr); 2531 } else { 2532 uint32_t buffers = 0; 2533 2534 /* 2535 * Each individual buffer holds a unique reference, 2536 * thus we must remove each of these references one 2537 * at a time. 2538 */ 2539 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2540 buf = buf->b_next) { 2541 ASSERT3U(bufcnt, !=, 0); 2542 buffers++; 2543 2544 /* 2545 * When the arc_buf_t is sharing the data 2546 * block with the hdr, the owner of the 2547 * reference belongs to the hdr. Only 2548 * add to the refcount if the arc_buf_t is 2549 * not shared. 2550 */ 2551 if (arc_buf_is_shared(buf)) 2552 continue; 2553 2554 (void) zfs_refcount_remove_many( 2555 &old_state->arcs_size, arc_buf_size(buf), 2556 buf); 2557 } 2558 ASSERT3U(bufcnt, ==, buffers); 2559 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 2560 HDR_HAS_RABD(hdr)); 2561 2562 if (hdr->b_l1hdr.b_pabd != NULL) { 2563 (void) zfs_refcount_remove_many( 2564 &old_state->arcs_size, arc_hdr_size(hdr), 2565 hdr); 2566 } 2567 2568 if (HDR_HAS_RABD(hdr)) { 2569 (void) zfs_refcount_remove_many( 2570 &old_state->arcs_size, HDR_GET_PSIZE(hdr), 2571 hdr); 2572 } 2573 } 2574 } 2575 2576 if (HDR_HAS_L1HDR(hdr)) { 2577 hdr->b_l1hdr.b_state = new_state; 2578 2579 if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) { 2580 l2arc_hdr_arcstats_decrement_state(hdr); 2581 hdr->b_l2hdr.b_arcs_state = new_state->arcs_state; 2582 l2arc_hdr_arcstats_increment_state(hdr); 2583 } 2584 } 2585 2586 /* 2587 * L2 headers should never be on the L2 state list since they don't 2588 * have L1 headers allocated. 2589 */ 2590 ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) && 2591 multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA])); 2592 } 2593 2594 void 2595 arc_space_consume(uint64_t space, arc_space_type_t type) 2596 { 2597 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2598 2599 switch (type) { 2600 default: 2601 break; 2602 case ARC_SPACE_DATA: 2603 ARCSTAT_INCR(arcstat_data_size, space); 2604 break; 2605 case ARC_SPACE_META: 2606 ARCSTAT_INCR(arcstat_metadata_size, space); 2607 break; 2608 case ARC_SPACE_BONUS: 2609 ARCSTAT_INCR(arcstat_bonus_size, space); 2610 break; 2611 case ARC_SPACE_DNODE: 2612 aggsum_add(&arc_sums.arcstat_dnode_size, space); 2613 break; 2614 case ARC_SPACE_DBUF: 2615 ARCSTAT_INCR(arcstat_dbuf_size, space); 2616 break; 2617 case ARC_SPACE_HDRS: 2618 ARCSTAT_INCR(arcstat_hdr_size, space); 2619 break; 2620 case ARC_SPACE_L2HDRS: 2621 aggsum_add(&arc_sums.arcstat_l2_hdr_size, space); 2622 break; 2623 case ARC_SPACE_ABD_CHUNK_WASTE: 2624 /* 2625 * Note: this includes space wasted by all scatter ABD's, not 2626 * just those allocated by the ARC. But the vast majority of 2627 * scatter ABD's come from the ARC, because other users are 2628 * very short-lived. 2629 */ 2630 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, space); 2631 break; 2632 } 2633 2634 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) 2635 aggsum_add(&arc_sums.arcstat_meta_used, space); 2636 2637 aggsum_add(&arc_sums.arcstat_size, space); 2638 } 2639 2640 void 2641 arc_space_return(uint64_t space, arc_space_type_t type) 2642 { 2643 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2644 2645 switch (type) { 2646 default: 2647 break; 2648 case ARC_SPACE_DATA: 2649 ARCSTAT_INCR(arcstat_data_size, -space); 2650 break; 2651 case ARC_SPACE_META: 2652 ARCSTAT_INCR(arcstat_metadata_size, -space); 2653 break; 2654 case ARC_SPACE_BONUS: 2655 ARCSTAT_INCR(arcstat_bonus_size, -space); 2656 break; 2657 case ARC_SPACE_DNODE: 2658 aggsum_add(&arc_sums.arcstat_dnode_size, -space); 2659 break; 2660 case ARC_SPACE_DBUF: 2661 ARCSTAT_INCR(arcstat_dbuf_size, -space); 2662 break; 2663 case ARC_SPACE_HDRS: 2664 ARCSTAT_INCR(arcstat_hdr_size, -space); 2665 break; 2666 case ARC_SPACE_L2HDRS: 2667 aggsum_add(&arc_sums.arcstat_l2_hdr_size, -space); 2668 break; 2669 case ARC_SPACE_ABD_CHUNK_WASTE: 2670 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, -space); 2671 break; 2672 } 2673 2674 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) { 2675 ASSERT(aggsum_compare(&arc_sums.arcstat_meta_used, 2676 space) >= 0); 2677 ARCSTAT_MAX(arcstat_meta_max, 2678 aggsum_upper_bound(&arc_sums.arcstat_meta_used)); 2679 aggsum_add(&arc_sums.arcstat_meta_used, -space); 2680 } 2681 2682 ASSERT(aggsum_compare(&arc_sums.arcstat_size, space) >= 0); 2683 aggsum_add(&arc_sums.arcstat_size, -space); 2684 } 2685 2686 /* 2687 * Given a hdr and a buf, returns whether that buf can share its b_data buffer 2688 * with the hdr's b_pabd. 2689 */ 2690 static boolean_t 2691 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2692 { 2693 /* 2694 * The criteria for sharing a hdr's data are: 2695 * 1. the buffer is not encrypted 2696 * 2. the hdr's compression matches the buf's compression 2697 * 3. the hdr doesn't need to be byteswapped 2698 * 4. the hdr isn't already being shared 2699 * 5. the buf is either compressed or it is the last buf in the hdr list 2700 * 2701 * Criterion #5 maintains the invariant that shared uncompressed 2702 * bufs must be the final buf in the hdr's b_buf list. Reading this, you 2703 * might ask, "if a compressed buf is allocated first, won't that be the 2704 * last thing in the list?", but in that case it's impossible to create 2705 * a shared uncompressed buf anyway (because the hdr must be compressed 2706 * to have the compressed buf). You might also think that #3 is 2707 * sufficient to make this guarantee, however it's possible 2708 * (specifically in the rare L2ARC write race mentioned in 2709 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that 2710 * is shareable, but wasn't at the time of its allocation. Rather than 2711 * allow a new shared uncompressed buf to be created and then shuffle 2712 * the list around to make it the last element, this simply disallows 2713 * sharing if the new buf isn't the first to be added. 2714 */ 2715 ASSERT3P(buf->b_hdr, ==, hdr); 2716 boolean_t hdr_compressed = 2717 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF; 2718 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0; 2719 return (!ARC_BUF_ENCRYPTED(buf) && 2720 buf_compressed == hdr_compressed && 2721 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && 2722 !HDR_SHARED_DATA(hdr) && 2723 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf))); 2724 } 2725 2726 /* 2727 * Allocate a buf for this hdr. If you care about the data that's in the hdr, 2728 * or if you want a compressed buffer, pass those flags in. Returns 0 if the 2729 * copy was made successfully, or an error code otherwise. 2730 */ 2731 static int 2732 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb, 2733 void *tag, boolean_t encrypted, boolean_t compressed, boolean_t noauth, 2734 boolean_t fill, arc_buf_t **ret) 2735 { 2736 arc_buf_t *buf; 2737 arc_fill_flags_t flags = ARC_FILL_LOCKED; 2738 2739 ASSERT(HDR_HAS_L1HDR(hdr)); 2740 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2741 VERIFY(hdr->b_type == ARC_BUFC_DATA || 2742 hdr->b_type == ARC_BUFC_METADATA); 2743 ASSERT3P(ret, !=, NULL); 2744 ASSERT3P(*ret, ==, NULL); 2745 IMPLY(encrypted, compressed); 2746 2747 hdr->b_l1hdr.b_mru_hits = 0; 2748 hdr->b_l1hdr.b_mru_ghost_hits = 0; 2749 hdr->b_l1hdr.b_mfu_hits = 0; 2750 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 2751 hdr->b_l1hdr.b_l2_hits = 0; 2752 2753 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2754 buf->b_hdr = hdr; 2755 buf->b_data = NULL; 2756 buf->b_next = hdr->b_l1hdr.b_buf; 2757 buf->b_flags = 0; 2758 2759 add_reference(hdr, tag); 2760 2761 /* 2762 * We're about to change the hdr's b_flags. We must either 2763 * hold the hash_lock or be undiscoverable. 2764 */ 2765 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2766 2767 /* 2768 * Only honor requests for compressed bufs if the hdr is actually 2769 * compressed. This must be overridden if the buffer is encrypted since 2770 * encrypted buffers cannot be decompressed. 2771 */ 2772 if (encrypted) { 2773 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2774 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED; 2775 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED; 2776 } else if (compressed && 2777 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 2778 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2779 flags |= ARC_FILL_COMPRESSED; 2780 } 2781 2782 if (noauth) { 2783 ASSERT0(encrypted); 2784 flags |= ARC_FILL_NOAUTH; 2785 } 2786 2787 /* 2788 * If the hdr's data can be shared then we share the data buffer and 2789 * set the appropriate bit in the hdr's b_flags to indicate the hdr is 2790 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new 2791 * buffer to store the buf's data. 2792 * 2793 * There are two additional restrictions here because we're sharing 2794 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be 2795 * actively involved in an L2ARC write, because if this buf is used by 2796 * an arc_write() then the hdr's data buffer will be released when the 2797 * write completes, even though the L2ARC write might still be using it. 2798 * Second, the hdr's ABD must be linear so that the buf's user doesn't 2799 * need to be ABD-aware. It must be allocated via 2800 * zio_[data_]buf_alloc(), not as a page, because we need to be able 2801 * to abd_release_ownership_of_buf(), which isn't allowed on "linear 2802 * page" buffers because the ABD code needs to handle freeing them 2803 * specially. 2804 */ 2805 boolean_t can_share = arc_can_share(hdr, buf) && 2806 !HDR_L2_WRITING(hdr) && 2807 hdr->b_l1hdr.b_pabd != NULL && 2808 abd_is_linear(hdr->b_l1hdr.b_pabd) && 2809 !abd_is_linear_page(hdr->b_l1hdr.b_pabd); 2810 2811 /* Set up b_data and sharing */ 2812 if (can_share) { 2813 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd); 2814 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2815 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2816 } else { 2817 buf->b_data = 2818 arc_get_data_buf(hdr, arc_buf_size(buf), buf); 2819 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2820 } 2821 VERIFY3P(buf->b_data, !=, NULL); 2822 2823 hdr->b_l1hdr.b_buf = buf; 2824 hdr->b_l1hdr.b_bufcnt += 1; 2825 if (encrypted) 2826 hdr->b_crypt_hdr.b_ebufcnt += 1; 2827 2828 /* 2829 * If the user wants the data from the hdr, we need to either copy or 2830 * decompress the data. 2831 */ 2832 if (fill) { 2833 ASSERT3P(zb, !=, NULL); 2834 return (arc_buf_fill(buf, spa, zb, flags)); 2835 } 2836 2837 return (0); 2838 } 2839 2840 static char *arc_onloan_tag = "onloan"; 2841 2842 static inline void 2843 arc_loaned_bytes_update(int64_t delta) 2844 { 2845 atomic_add_64(&arc_loaned_bytes, delta); 2846 2847 /* assert that it did not wrap around */ 2848 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 2849 } 2850 2851 /* 2852 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 2853 * flight data by arc_tempreserve_space() until they are "returned". Loaned 2854 * buffers must be returned to the arc before they can be used by the DMU or 2855 * freed. 2856 */ 2857 arc_buf_t * 2858 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size) 2859 { 2860 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag, 2861 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size); 2862 2863 arc_loaned_bytes_update(arc_buf_size(buf)); 2864 2865 return (buf); 2866 } 2867 2868 arc_buf_t * 2869 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize, 2870 enum zio_compress compression_type, uint8_t complevel) 2871 { 2872 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag, 2873 psize, lsize, compression_type, complevel); 2874 2875 arc_loaned_bytes_update(arc_buf_size(buf)); 2876 2877 return (buf); 2878 } 2879 2880 arc_buf_t * 2881 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder, 2882 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 2883 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 2884 enum zio_compress compression_type, uint8_t complevel) 2885 { 2886 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj, 2887 byteorder, salt, iv, mac, ot, psize, lsize, compression_type, 2888 complevel); 2889 2890 atomic_add_64(&arc_loaned_bytes, psize); 2891 return (buf); 2892 } 2893 2894 2895 /* 2896 * Return a loaned arc buffer to the arc. 2897 */ 2898 void 2899 arc_return_buf(arc_buf_t *buf, void *tag) 2900 { 2901 arc_buf_hdr_t *hdr = buf->b_hdr; 2902 2903 ASSERT3P(buf->b_data, !=, NULL); 2904 ASSERT(HDR_HAS_L1HDR(hdr)); 2905 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 2906 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2907 2908 arc_loaned_bytes_update(-arc_buf_size(buf)); 2909 } 2910 2911 /* Detach an arc_buf from a dbuf (tag) */ 2912 void 2913 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 2914 { 2915 arc_buf_hdr_t *hdr = buf->b_hdr; 2916 2917 ASSERT3P(buf->b_data, !=, NULL); 2918 ASSERT(HDR_HAS_L1HDR(hdr)); 2919 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2920 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 2921 2922 arc_loaned_bytes_update(arc_buf_size(buf)); 2923 } 2924 2925 static void 2926 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type) 2927 { 2928 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); 2929 2930 df->l2df_abd = abd; 2931 df->l2df_size = size; 2932 df->l2df_type = type; 2933 mutex_enter(&l2arc_free_on_write_mtx); 2934 list_insert_head(l2arc_free_on_write, df); 2935 mutex_exit(&l2arc_free_on_write_mtx); 2936 } 2937 2938 static void 2939 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata) 2940 { 2941 arc_state_t *state = hdr->b_l1hdr.b_state; 2942 arc_buf_contents_t type = arc_buf_type(hdr); 2943 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 2944 2945 /* protected by hash lock, if in the hash table */ 2946 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2947 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2948 ASSERT(state != arc_anon && state != arc_l2c_only); 2949 2950 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2951 size, hdr); 2952 } 2953 (void) zfs_refcount_remove_many(&state->arcs_size, size, hdr); 2954 if (type == ARC_BUFC_METADATA) { 2955 arc_space_return(size, ARC_SPACE_META); 2956 } else { 2957 ASSERT(type == ARC_BUFC_DATA); 2958 arc_space_return(size, ARC_SPACE_DATA); 2959 } 2960 2961 if (free_rdata) { 2962 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type); 2963 } else { 2964 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type); 2965 } 2966 } 2967 2968 /* 2969 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the 2970 * data buffer, we transfer the refcount ownership to the hdr and update 2971 * the appropriate kstats. 2972 */ 2973 static void 2974 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2975 { 2976 ASSERT(arc_can_share(hdr, buf)); 2977 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2978 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 2979 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2980 2981 /* 2982 * Start sharing the data buffer. We transfer the 2983 * refcount ownership to the hdr since it always owns 2984 * the refcount whenever an arc_buf_t is shared. 2985 */ 2986 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 2987 arc_hdr_size(hdr), buf, hdr); 2988 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf)); 2989 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd, 2990 HDR_ISTYPE_METADATA(hdr)); 2991 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2992 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2993 2994 /* 2995 * Since we've transferred ownership to the hdr we need 2996 * to increment its compressed and uncompressed kstats and 2997 * decrement the overhead size. 2998 */ 2999 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 3000 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3001 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf)); 3002 } 3003 3004 static void 3005 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 3006 { 3007 ASSERT(arc_buf_is_shared(buf)); 3008 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3009 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3010 3011 /* 3012 * We are no longer sharing this buffer so we need 3013 * to transfer its ownership to the rightful owner. 3014 */ 3015 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 3016 arc_hdr_size(hdr), hdr, buf); 3017 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3018 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd); 3019 abd_free(hdr->b_l1hdr.b_pabd); 3020 hdr->b_l1hdr.b_pabd = NULL; 3021 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 3022 3023 /* 3024 * Since the buffer is no longer shared between 3025 * the arc buf and the hdr, count it as overhead. 3026 */ 3027 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 3028 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3029 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 3030 } 3031 3032 /* 3033 * Remove an arc_buf_t from the hdr's buf list and return the last 3034 * arc_buf_t on the list. If no buffers remain on the list then return 3035 * NULL. 3036 */ 3037 static arc_buf_t * 3038 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf) 3039 { 3040 ASSERT(HDR_HAS_L1HDR(hdr)); 3041 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3042 3043 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf; 3044 arc_buf_t *lastbuf = NULL; 3045 3046 /* 3047 * Remove the buf from the hdr list and locate the last 3048 * remaining buffer on the list. 3049 */ 3050 while (*bufp != NULL) { 3051 if (*bufp == buf) 3052 *bufp = buf->b_next; 3053 3054 /* 3055 * If we've removed a buffer in the middle of 3056 * the list then update the lastbuf and update 3057 * bufp. 3058 */ 3059 if (*bufp != NULL) { 3060 lastbuf = *bufp; 3061 bufp = &(*bufp)->b_next; 3062 } 3063 } 3064 buf->b_next = NULL; 3065 ASSERT3P(lastbuf, !=, buf); 3066 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL); 3067 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL); 3068 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf)); 3069 3070 return (lastbuf); 3071 } 3072 3073 /* 3074 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's 3075 * list and free it. 3076 */ 3077 static void 3078 arc_buf_destroy_impl(arc_buf_t *buf) 3079 { 3080 arc_buf_hdr_t *hdr = buf->b_hdr; 3081 3082 /* 3083 * Free up the data associated with the buf but only if we're not 3084 * sharing this with the hdr. If we are sharing it with the hdr, the 3085 * hdr is responsible for doing the free. 3086 */ 3087 if (buf->b_data != NULL) { 3088 /* 3089 * We're about to change the hdr's b_flags. We must either 3090 * hold the hash_lock or be undiscoverable. 3091 */ 3092 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3093 3094 arc_cksum_verify(buf); 3095 arc_buf_unwatch(buf); 3096 3097 if (arc_buf_is_shared(buf)) { 3098 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3099 } else { 3100 uint64_t size = arc_buf_size(buf); 3101 arc_free_data_buf(hdr, buf->b_data, size, buf); 3102 ARCSTAT_INCR(arcstat_overhead_size, -size); 3103 } 3104 buf->b_data = NULL; 3105 3106 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3107 hdr->b_l1hdr.b_bufcnt -= 1; 3108 3109 if (ARC_BUF_ENCRYPTED(buf)) { 3110 hdr->b_crypt_hdr.b_ebufcnt -= 1; 3111 3112 /* 3113 * If we have no more encrypted buffers and we've 3114 * already gotten a copy of the decrypted data we can 3115 * free b_rabd to save some space. 3116 */ 3117 if (hdr->b_crypt_hdr.b_ebufcnt == 0 && 3118 HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL && 3119 !HDR_IO_IN_PROGRESS(hdr)) { 3120 arc_hdr_free_abd(hdr, B_TRUE); 3121 } 3122 } 3123 } 3124 3125 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 3126 3127 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 3128 /* 3129 * If the current arc_buf_t is sharing its data buffer with the 3130 * hdr, then reassign the hdr's b_pabd to share it with the new 3131 * buffer at the end of the list. The shared buffer is always 3132 * the last one on the hdr's buffer list. 3133 * 3134 * There is an equivalent case for compressed bufs, but since 3135 * they aren't guaranteed to be the last buf in the list and 3136 * that is an exceedingly rare case, we just allow that space be 3137 * wasted temporarily. We must also be careful not to share 3138 * encrypted buffers, since they cannot be shared. 3139 */ 3140 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) { 3141 /* Only one buf can be shared at once */ 3142 VERIFY(!arc_buf_is_shared(lastbuf)); 3143 /* hdr is uncompressed so can't have compressed buf */ 3144 VERIFY(!ARC_BUF_COMPRESSED(lastbuf)); 3145 3146 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3147 arc_hdr_free_abd(hdr, B_FALSE); 3148 3149 /* 3150 * We must setup a new shared block between the 3151 * last buffer and the hdr. The data would have 3152 * been allocated by the arc buf so we need to transfer 3153 * ownership to the hdr since it's now being shared. 3154 */ 3155 arc_share_buf(hdr, lastbuf); 3156 } 3157 } else if (HDR_SHARED_DATA(hdr)) { 3158 /* 3159 * Uncompressed shared buffers are always at the end 3160 * of the list. Compressed buffers don't have the 3161 * same requirements. This makes it hard to 3162 * simply assert that the lastbuf is shared so 3163 * we rely on the hdr's compression flags to determine 3164 * if we have a compressed, shared buffer. 3165 */ 3166 ASSERT3P(lastbuf, !=, NULL); 3167 ASSERT(arc_buf_is_shared(lastbuf) || 3168 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 3169 } 3170 3171 /* 3172 * Free the checksum if we're removing the last uncompressed buf from 3173 * this hdr. 3174 */ 3175 if (!arc_hdr_has_uncompressed_buf(hdr)) { 3176 arc_cksum_free(hdr); 3177 } 3178 3179 /* clean up the buf */ 3180 buf->b_hdr = NULL; 3181 kmem_cache_free(buf_cache, buf); 3182 } 3183 3184 static void 3185 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags) 3186 { 3187 uint64_t size; 3188 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0); 3189 boolean_t do_adapt = ((alloc_flags & ARC_HDR_DO_ADAPT) != 0); 3190 3191 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 3192 ASSERT(HDR_HAS_L1HDR(hdr)); 3193 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata); 3194 IMPLY(alloc_rdata, HDR_PROTECTED(hdr)); 3195 3196 if (alloc_rdata) { 3197 size = HDR_GET_PSIZE(hdr); 3198 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL); 3199 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr, 3200 do_adapt); 3201 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL); 3202 ARCSTAT_INCR(arcstat_raw_size, size); 3203 } else { 3204 size = arc_hdr_size(hdr); 3205 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3206 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr, 3207 do_adapt); 3208 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3209 } 3210 3211 ARCSTAT_INCR(arcstat_compressed_size, size); 3212 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3213 } 3214 3215 static void 3216 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata) 3217 { 3218 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 3219 3220 ASSERT(HDR_HAS_L1HDR(hdr)); 3221 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 3222 IMPLY(free_rdata, HDR_HAS_RABD(hdr)); 3223 3224 /* 3225 * If the hdr is currently being written to the l2arc then 3226 * we defer freeing the data by adding it to the l2arc_free_on_write 3227 * list. The l2arc will free the data once it's finished 3228 * writing it to the l2arc device. 3229 */ 3230 if (HDR_L2_WRITING(hdr)) { 3231 arc_hdr_free_on_write(hdr, free_rdata); 3232 ARCSTAT_BUMP(arcstat_l2_free_on_write); 3233 } else if (free_rdata) { 3234 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr); 3235 } else { 3236 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr); 3237 } 3238 3239 if (free_rdata) { 3240 hdr->b_crypt_hdr.b_rabd = NULL; 3241 ARCSTAT_INCR(arcstat_raw_size, -size); 3242 } else { 3243 hdr->b_l1hdr.b_pabd = NULL; 3244 } 3245 3246 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr)) 3247 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 3248 3249 ARCSTAT_INCR(arcstat_compressed_size, -size); 3250 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3251 } 3252 3253 static arc_buf_hdr_t * 3254 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, 3255 boolean_t protected, enum zio_compress compression_type, uint8_t complevel, 3256 arc_buf_contents_t type, boolean_t alloc_rdata) 3257 { 3258 arc_buf_hdr_t *hdr; 3259 int flags = ARC_HDR_DO_ADAPT; 3260 3261 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); 3262 if (protected) { 3263 hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE); 3264 } else { 3265 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 3266 } 3267 flags |= alloc_rdata ? ARC_HDR_ALLOC_RDATA : 0; 3268 3269 ASSERT(HDR_EMPTY(hdr)); 3270 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3271 HDR_SET_PSIZE(hdr, psize); 3272 HDR_SET_LSIZE(hdr, lsize); 3273 hdr->b_spa = spa; 3274 hdr->b_type = type; 3275 hdr->b_flags = 0; 3276 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); 3277 arc_hdr_set_compress(hdr, compression_type); 3278 hdr->b_complevel = complevel; 3279 if (protected) 3280 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 3281 3282 hdr->b_l1hdr.b_state = arc_anon; 3283 hdr->b_l1hdr.b_arc_access = 0; 3284 hdr->b_l1hdr.b_bufcnt = 0; 3285 hdr->b_l1hdr.b_buf = NULL; 3286 3287 /* 3288 * Allocate the hdr's buffer. This will contain either 3289 * the compressed or uncompressed data depending on the block 3290 * it references and compressed arc enablement. 3291 */ 3292 arc_hdr_alloc_abd(hdr, flags); 3293 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3294 3295 return (hdr); 3296 } 3297 3298 /* 3299 * Transition between the two allocation states for the arc_buf_hdr struct. 3300 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 3301 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 3302 * version is used when a cache buffer is only in the L2ARC in order to reduce 3303 * memory usage. 3304 */ 3305 static arc_buf_hdr_t * 3306 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 3307 { 3308 ASSERT(HDR_HAS_L2HDR(hdr)); 3309 3310 arc_buf_hdr_t *nhdr; 3311 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3312 3313 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 3314 (old == hdr_l2only_cache && new == hdr_full_cache)); 3315 3316 /* 3317 * if the caller wanted a new full header and the header is to be 3318 * encrypted we will actually allocate the header from the full crypt 3319 * cache instead. The same applies to freeing from the old cache. 3320 */ 3321 if (HDR_PROTECTED(hdr) && new == hdr_full_cache) 3322 new = hdr_full_crypt_cache; 3323 if (HDR_PROTECTED(hdr) && old == hdr_full_cache) 3324 old = hdr_full_crypt_cache; 3325 3326 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 3327 3328 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 3329 buf_hash_remove(hdr); 3330 3331 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE); 3332 3333 if (new == hdr_full_cache || new == hdr_full_crypt_cache) { 3334 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3335 /* 3336 * arc_access and arc_change_state need to be aware that a 3337 * header has just come out of L2ARC, so we set its state to 3338 * l2c_only even though it's about to change. 3339 */ 3340 nhdr->b_l1hdr.b_state = arc_l2c_only; 3341 3342 /* Verify previous threads set to NULL before freeing */ 3343 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL); 3344 ASSERT(!HDR_HAS_RABD(hdr)); 3345 } else { 3346 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3347 ASSERT0(hdr->b_l1hdr.b_bufcnt); 3348 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3349 3350 /* 3351 * If we've reached here, We must have been called from 3352 * arc_evict_hdr(), as such we should have already been 3353 * removed from any ghost list we were previously on 3354 * (which protects us from racing with arc_evict_state), 3355 * thus no locking is needed during this check. 3356 */ 3357 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3358 3359 /* 3360 * A buffer must not be moved into the arc_l2c_only 3361 * state if it's not finished being written out to the 3362 * l2arc device. Otherwise, the b_l1hdr.b_pabd field 3363 * might try to be accessed, even though it was removed. 3364 */ 3365 VERIFY(!HDR_L2_WRITING(hdr)); 3366 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3367 ASSERT(!HDR_HAS_RABD(hdr)); 3368 3369 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3370 } 3371 /* 3372 * The header has been reallocated so we need to re-insert it into any 3373 * lists it was on. 3374 */ 3375 (void) buf_hash_insert(nhdr, NULL); 3376 3377 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 3378 3379 mutex_enter(&dev->l2ad_mtx); 3380 3381 /* 3382 * We must place the realloc'ed header back into the list at 3383 * the same spot. Otherwise, if it's placed earlier in the list, 3384 * l2arc_write_buffers() could find it during the function's 3385 * write phase, and try to write it out to the l2arc. 3386 */ 3387 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 3388 list_remove(&dev->l2ad_buflist, hdr); 3389 3390 mutex_exit(&dev->l2ad_mtx); 3391 3392 /* 3393 * Since we're using the pointer address as the tag when 3394 * incrementing and decrementing the l2ad_alloc refcount, we 3395 * must remove the old pointer (that we're about to destroy) and 3396 * add the new pointer to the refcount. Otherwise we'd remove 3397 * the wrong pointer address when calling arc_hdr_destroy() later. 3398 */ 3399 3400 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 3401 arc_hdr_size(hdr), hdr); 3402 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 3403 arc_hdr_size(nhdr), nhdr); 3404 3405 buf_discard_identity(hdr); 3406 kmem_cache_free(old, hdr); 3407 3408 return (nhdr); 3409 } 3410 3411 /* 3412 * This function allows an L1 header to be reallocated as a crypt 3413 * header and vice versa. If we are going to a crypt header, the 3414 * new fields will be zeroed out. 3415 */ 3416 static arc_buf_hdr_t * 3417 arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt) 3418 { 3419 arc_buf_hdr_t *nhdr; 3420 arc_buf_t *buf; 3421 kmem_cache_t *ncache, *ocache; 3422 3423 /* 3424 * This function requires that hdr is in the arc_anon state. 3425 * Therefore it won't have any L2ARC data for us to worry 3426 * about copying. 3427 */ 3428 ASSERT(HDR_HAS_L1HDR(hdr)); 3429 ASSERT(!HDR_HAS_L2HDR(hdr)); 3430 ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt); 3431 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3432 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3433 ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node)); 3434 ASSERT3P(hdr->b_hash_next, ==, NULL); 3435 3436 if (need_crypt) { 3437 ncache = hdr_full_crypt_cache; 3438 ocache = hdr_full_cache; 3439 } else { 3440 ncache = hdr_full_cache; 3441 ocache = hdr_full_crypt_cache; 3442 } 3443 3444 nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE); 3445 3446 /* 3447 * Copy all members that aren't locks or condvars to the new header. 3448 * No lists are pointing to us (as we asserted above), so we don't 3449 * need to worry about the list nodes. 3450 */ 3451 nhdr->b_dva = hdr->b_dva; 3452 nhdr->b_birth = hdr->b_birth; 3453 nhdr->b_type = hdr->b_type; 3454 nhdr->b_flags = hdr->b_flags; 3455 nhdr->b_psize = hdr->b_psize; 3456 nhdr->b_lsize = hdr->b_lsize; 3457 nhdr->b_spa = hdr->b_spa; 3458 nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum; 3459 nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt; 3460 nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap; 3461 nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state; 3462 nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access; 3463 nhdr->b_l1hdr.b_mru_hits = hdr->b_l1hdr.b_mru_hits; 3464 nhdr->b_l1hdr.b_mru_ghost_hits = hdr->b_l1hdr.b_mru_ghost_hits; 3465 nhdr->b_l1hdr.b_mfu_hits = hdr->b_l1hdr.b_mfu_hits; 3466 nhdr->b_l1hdr.b_mfu_ghost_hits = hdr->b_l1hdr.b_mfu_ghost_hits; 3467 nhdr->b_l1hdr.b_l2_hits = hdr->b_l1hdr.b_l2_hits; 3468 nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb; 3469 nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd; 3470 3471 /* 3472 * This zfs_refcount_add() exists only to ensure that the individual 3473 * arc buffers always point to a header that is referenced, avoiding 3474 * a small race condition that could trigger ASSERTs. 3475 */ 3476 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG); 3477 nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf; 3478 for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) { 3479 mutex_enter(&buf->b_evict_lock); 3480 buf->b_hdr = nhdr; 3481 mutex_exit(&buf->b_evict_lock); 3482 } 3483 3484 zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt); 3485 (void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG); 3486 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3487 3488 if (need_crypt) { 3489 arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED); 3490 } else { 3491 arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED); 3492 } 3493 3494 /* unset all members of the original hdr */ 3495 bzero(&hdr->b_dva, sizeof (dva_t)); 3496 hdr->b_birth = 0; 3497 hdr->b_type = ARC_BUFC_INVALID; 3498 hdr->b_flags = 0; 3499 hdr->b_psize = 0; 3500 hdr->b_lsize = 0; 3501 hdr->b_spa = 0; 3502 hdr->b_l1hdr.b_freeze_cksum = NULL; 3503 hdr->b_l1hdr.b_buf = NULL; 3504 hdr->b_l1hdr.b_bufcnt = 0; 3505 hdr->b_l1hdr.b_byteswap = 0; 3506 hdr->b_l1hdr.b_state = NULL; 3507 hdr->b_l1hdr.b_arc_access = 0; 3508 hdr->b_l1hdr.b_mru_hits = 0; 3509 hdr->b_l1hdr.b_mru_ghost_hits = 0; 3510 hdr->b_l1hdr.b_mfu_hits = 0; 3511 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 3512 hdr->b_l1hdr.b_l2_hits = 0; 3513 hdr->b_l1hdr.b_acb = NULL; 3514 hdr->b_l1hdr.b_pabd = NULL; 3515 3516 if (ocache == hdr_full_crypt_cache) { 3517 ASSERT(!HDR_HAS_RABD(hdr)); 3518 hdr->b_crypt_hdr.b_ot = DMU_OT_NONE; 3519 hdr->b_crypt_hdr.b_ebufcnt = 0; 3520 hdr->b_crypt_hdr.b_dsobj = 0; 3521 bzero(hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3522 bzero(hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3523 bzero(hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3524 } 3525 3526 buf_discard_identity(hdr); 3527 kmem_cache_free(ocache, hdr); 3528 3529 return (nhdr); 3530 } 3531 3532 /* 3533 * This function is used by the send / receive code to convert a newly 3534 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It 3535 * is also used to allow the root objset block to be updated without altering 3536 * its embedded MACs. Both block types will always be uncompressed so we do not 3537 * have to worry about compression type or psize. 3538 */ 3539 void 3540 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder, 3541 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv, 3542 const uint8_t *mac) 3543 { 3544 arc_buf_hdr_t *hdr = buf->b_hdr; 3545 3546 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET); 3547 ASSERT(HDR_HAS_L1HDR(hdr)); 3548 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3549 3550 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED); 3551 if (!HDR_PROTECTED(hdr)) 3552 hdr = arc_hdr_realloc_crypt(hdr, B_TRUE); 3553 hdr->b_crypt_hdr.b_dsobj = dsobj; 3554 hdr->b_crypt_hdr.b_ot = ot; 3555 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3556 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3557 if (!arc_hdr_has_uncompressed_buf(hdr)) 3558 arc_cksum_free(hdr); 3559 3560 if (salt != NULL) 3561 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3562 if (iv != NULL) 3563 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3564 if (mac != NULL) 3565 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3566 } 3567 3568 /* 3569 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. 3570 * The buf is returned thawed since we expect the consumer to modify it. 3571 */ 3572 arc_buf_t * 3573 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size) 3574 { 3575 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, 3576 B_FALSE, ZIO_COMPRESS_OFF, 0, type, B_FALSE); 3577 3578 arc_buf_t *buf = NULL; 3579 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE, 3580 B_FALSE, B_FALSE, &buf)); 3581 arc_buf_thaw(buf); 3582 3583 return (buf); 3584 } 3585 3586 /* 3587 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this 3588 * for bufs containing metadata. 3589 */ 3590 arc_buf_t * 3591 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize, 3592 enum zio_compress compression_type, uint8_t complevel) 3593 { 3594 ASSERT3U(lsize, >, 0); 3595 ASSERT3U(lsize, >=, psize); 3596 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF); 3597 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3598 3599 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 3600 B_FALSE, compression_type, complevel, ARC_BUFC_DATA, B_FALSE); 3601 3602 arc_buf_t *buf = NULL; 3603 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, 3604 B_TRUE, B_FALSE, B_FALSE, &buf)); 3605 arc_buf_thaw(buf); 3606 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3607 3608 if (!arc_buf_is_shared(buf)) { 3609 /* 3610 * To ensure that the hdr has the correct data in it if we call 3611 * arc_untransform() on this buf before it's been written to 3612 * disk, it's easiest if we just set up sharing between the 3613 * buf and the hdr. 3614 */ 3615 arc_hdr_free_abd(hdr, B_FALSE); 3616 arc_share_buf(hdr, buf); 3617 } 3618 3619 return (buf); 3620 } 3621 3622 arc_buf_t * 3623 arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder, 3624 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 3625 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 3626 enum zio_compress compression_type, uint8_t complevel) 3627 { 3628 arc_buf_hdr_t *hdr; 3629 arc_buf_t *buf; 3630 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ? 3631 ARC_BUFC_METADATA : ARC_BUFC_DATA; 3632 3633 ASSERT3U(lsize, >, 0); 3634 ASSERT3U(lsize, >=, psize); 3635 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF); 3636 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3637 3638 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE, 3639 compression_type, complevel, type, B_TRUE); 3640 3641 hdr->b_crypt_hdr.b_dsobj = dsobj; 3642 hdr->b_crypt_hdr.b_ot = ot; 3643 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3644 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3645 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3646 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3647 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3648 3649 /* 3650 * This buffer will be considered encrypted even if the ot is not an 3651 * encrypted type. It will become authenticated instead in 3652 * arc_write_ready(). 3653 */ 3654 buf = NULL; 3655 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE, 3656 B_FALSE, B_FALSE, &buf)); 3657 arc_buf_thaw(buf); 3658 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3659 3660 return (buf); 3661 } 3662 3663 static void 3664 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 3665 boolean_t state_only) 3666 { 3667 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3668 l2arc_dev_t *dev = l2hdr->b_dev; 3669 uint64_t lsize = HDR_GET_LSIZE(hdr); 3670 uint64_t psize = HDR_GET_PSIZE(hdr); 3671 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3672 arc_buf_contents_t type = hdr->b_type; 3673 int64_t lsize_s; 3674 int64_t psize_s; 3675 int64_t asize_s; 3676 3677 if (incr) { 3678 lsize_s = lsize; 3679 psize_s = psize; 3680 asize_s = asize; 3681 } else { 3682 lsize_s = -lsize; 3683 psize_s = -psize; 3684 asize_s = -asize; 3685 } 3686 3687 /* If the buffer is a prefetch, count it as such. */ 3688 if (HDR_PREFETCH(hdr)) { 3689 ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s); 3690 } else { 3691 /* 3692 * We use the value stored in the L2 header upon initial 3693 * caching in L2ARC. This value will be updated in case 3694 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC 3695 * metadata (log entry) cannot currently be updated. Having 3696 * the ARC state in the L2 header solves the problem of a 3697 * possibly absent L1 header (apparent in buffers restored 3698 * from persistent L2ARC). 3699 */ 3700 switch (hdr->b_l2hdr.b_arcs_state) { 3701 case ARC_STATE_MRU_GHOST: 3702 case ARC_STATE_MRU: 3703 ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s); 3704 break; 3705 case ARC_STATE_MFU_GHOST: 3706 case ARC_STATE_MFU: 3707 ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s); 3708 break; 3709 default: 3710 break; 3711 } 3712 } 3713 3714 if (state_only) 3715 return; 3716 3717 ARCSTAT_INCR(arcstat_l2_psize, psize_s); 3718 ARCSTAT_INCR(arcstat_l2_lsize, lsize_s); 3719 3720 switch (type) { 3721 case ARC_BUFC_DATA: 3722 ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s); 3723 break; 3724 case ARC_BUFC_METADATA: 3725 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s); 3726 break; 3727 default: 3728 break; 3729 } 3730 } 3731 3732 3733 static void 3734 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 3735 { 3736 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3737 l2arc_dev_t *dev = l2hdr->b_dev; 3738 uint64_t psize = HDR_GET_PSIZE(hdr); 3739 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3740 3741 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 3742 ASSERT(HDR_HAS_L2HDR(hdr)); 3743 3744 list_remove(&dev->l2ad_buflist, hdr); 3745 3746 l2arc_hdr_arcstats_decrement(hdr); 3747 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); 3748 3749 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), 3750 hdr); 3751 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 3752 } 3753 3754 static void 3755 arc_hdr_destroy(arc_buf_hdr_t *hdr) 3756 { 3757 if (HDR_HAS_L1HDR(hdr)) { 3758 ASSERT(hdr->b_l1hdr.b_buf == NULL || 3759 hdr->b_l1hdr.b_bufcnt > 0); 3760 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3761 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3762 } 3763 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3764 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 3765 3766 if (HDR_HAS_L2HDR(hdr)) { 3767 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3768 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 3769 3770 if (!buflist_held) 3771 mutex_enter(&dev->l2ad_mtx); 3772 3773 /* 3774 * Even though we checked this conditional above, we 3775 * need to check this again now that we have the 3776 * l2ad_mtx. This is because we could be racing with 3777 * another thread calling l2arc_evict() which might have 3778 * destroyed this header's L2 portion as we were waiting 3779 * to acquire the l2ad_mtx. If that happens, we don't 3780 * want to re-destroy the header's L2 portion. 3781 */ 3782 if (HDR_HAS_L2HDR(hdr)) 3783 arc_hdr_l2hdr_destroy(hdr); 3784 3785 if (!buflist_held) 3786 mutex_exit(&dev->l2ad_mtx); 3787 } 3788 3789 /* 3790 * The header's identify can only be safely discarded once it is no 3791 * longer discoverable. This requires removing it from the hash table 3792 * and the l2arc header list. After this point the hash lock can not 3793 * be used to protect the header. 3794 */ 3795 if (!HDR_EMPTY(hdr)) 3796 buf_discard_identity(hdr); 3797 3798 if (HDR_HAS_L1HDR(hdr)) { 3799 arc_cksum_free(hdr); 3800 3801 while (hdr->b_l1hdr.b_buf != NULL) 3802 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf); 3803 3804 if (hdr->b_l1hdr.b_pabd != NULL) 3805 arc_hdr_free_abd(hdr, B_FALSE); 3806 3807 if (HDR_HAS_RABD(hdr)) 3808 arc_hdr_free_abd(hdr, B_TRUE); 3809 } 3810 3811 ASSERT3P(hdr->b_hash_next, ==, NULL); 3812 if (HDR_HAS_L1HDR(hdr)) { 3813 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3814 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 3815 3816 if (!HDR_PROTECTED(hdr)) { 3817 kmem_cache_free(hdr_full_cache, hdr); 3818 } else { 3819 kmem_cache_free(hdr_full_crypt_cache, hdr); 3820 } 3821 } else { 3822 kmem_cache_free(hdr_l2only_cache, hdr); 3823 } 3824 } 3825 3826 void 3827 arc_buf_destroy(arc_buf_t *buf, void* tag) 3828 { 3829 arc_buf_hdr_t *hdr = buf->b_hdr; 3830 3831 if (hdr->b_l1hdr.b_state == arc_anon) { 3832 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 3833 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3834 VERIFY0(remove_reference(hdr, NULL, tag)); 3835 arc_hdr_destroy(hdr); 3836 return; 3837 } 3838 3839 kmutex_t *hash_lock = HDR_LOCK(hdr); 3840 mutex_enter(hash_lock); 3841 3842 ASSERT3P(hdr, ==, buf->b_hdr); 3843 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3844 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3845 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); 3846 ASSERT3P(buf->b_data, !=, NULL); 3847 3848 (void) remove_reference(hdr, hash_lock, tag); 3849 arc_buf_destroy_impl(buf); 3850 mutex_exit(hash_lock); 3851 } 3852 3853 /* 3854 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 3855 * state of the header is dependent on its state prior to entering this 3856 * function. The following transitions are possible: 3857 * 3858 * - arc_mru -> arc_mru_ghost 3859 * - arc_mfu -> arc_mfu_ghost 3860 * - arc_mru_ghost -> arc_l2c_only 3861 * - arc_mru_ghost -> deleted 3862 * - arc_mfu_ghost -> arc_l2c_only 3863 * - arc_mfu_ghost -> deleted 3864 */ 3865 static int64_t 3866 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 3867 { 3868 arc_state_t *evicted_state, *state; 3869 int64_t bytes_evicted = 0; 3870 int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ? 3871 arc_min_prescient_prefetch_ms : arc_min_prefetch_ms; 3872 3873 ASSERT(MUTEX_HELD(hash_lock)); 3874 ASSERT(HDR_HAS_L1HDR(hdr)); 3875 3876 state = hdr->b_l1hdr.b_state; 3877 if (GHOST_STATE(state)) { 3878 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3879 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3880 3881 /* 3882 * l2arc_write_buffers() relies on a header's L1 portion 3883 * (i.e. its b_pabd field) during it's write phase. 3884 * Thus, we cannot push a header onto the arc_l2c_only 3885 * state (removing its L1 piece) until the header is 3886 * done being written to the l2arc. 3887 */ 3888 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 3889 ARCSTAT_BUMP(arcstat_evict_l2_skip); 3890 return (bytes_evicted); 3891 } 3892 3893 ARCSTAT_BUMP(arcstat_deleted); 3894 bytes_evicted += HDR_GET_LSIZE(hdr); 3895 3896 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 3897 3898 if (HDR_HAS_L2HDR(hdr)) { 3899 ASSERT(hdr->b_l1hdr.b_pabd == NULL); 3900 ASSERT(!HDR_HAS_RABD(hdr)); 3901 /* 3902 * This buffer is cached on the 2nd Level ARC; 3903 * don't destroy the header. 3904 */ 3905 arc_change_state(arc_l2c_only, hdr, hash_lock); 3906 /* 3907 * dropping from L1+L2 cached to L2-only, 3908 * realloc to remove the L1 header. 3909 */ 3910 hdr = arc_hdr_realloc(hdr, hdr_full_cache, 3911 hdr_l2only_cache); 3912 } else { 3913 arc_change_state(arc_anon, hdr, hash_lock); 3914 arc_hdr_destroy(hdr); 3915 } 3916 return (bytes_evicted); 3917 } 3918 3919 ASSERT(state == arc_mru || state == arc_mfu); 3920 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3921 3922 /* prefetch buffers have a minimum lifespan */ 3923 if (HDR_IO_IN_PROGRESS(hdr) || 3924 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 3925 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < 3926 MSEC_TO_TICK(min_lifetime))) { 3927 ARCSTAT_BUMP(arcstat_evict_skip); 3928 return (bytes_evicted); 3929 } 3930 3931 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3932 while (hdr->b_l1hdr.b_buf) { 3933 arc_buf_t *buf = hdr->b_l1hdr.b_buf; 3934 if (!mutex_tryenter(&buf->b_evict_lock)) { 3935 ARCSTAT_BUMP(arcstat_mutex_miss); 3936 break; 3937 } 3938 if (buf->b_data != NULL) 3939 bytes_evicted += HDR_GET_LSIZE(hdr); 3940 mutex_exit(&buf->b_evict_lock); 3941 arc_buf_destroy_impl(buf); 3942 } 3943 3944 if (HDR_HAS_L2HDR(hdr)) { 3945 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); 3946 } else { 3947 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 3948 ARCSTAT_INCR(arcstat_evict_l2_eligible, 3949 HDR_GET_LSIZE(hdr)); 3950 3951 switch (state->arcs_state) { 3952 case ARC_STATE_MRU: 3953 ARCSTAT_INCR( 3954 arcstat_evict_l2_eligible_mru, 3955 HDR_GET_LSIZE(hdr)); 3956 break; 3957 case ARC_STATE_MFU: 3958 ARCSTAT_INCR( 3959 arcstat_evict_l2_eligible_mfu, 3960 HDR_GET_LSIZE(hdr)); 3961 break; 3962 default: 3963 break; 3964 } 3965 } else { 3966 ARCSTAT_INCR(arcstat_evict_l2_ineligible, 3967 HDR_GET_LSIZE(hdr)); 3968 } 3969 } 3970 3971 if (hdr->b_l1hdr.b_bufcnt == 0) { 3972 arc_cksum_free(hdr); 3973 3974 bytes_evicted += arc_hdr_size(hdr); 3975 3976 /* 3977 * If this hdr is being evicted and has a compressed 3978 * buffer then we discard it here before we change states. 3979 * This ensures that the accounting is updated correctly 3980 * in arc_free_data_impl(). 3981 */ 3982 if (hdr->b_l1hdr.b_pabd != NULL) 3983 arc_hdr_free_abd(hdr, B_FALSE); 3984 3985 if (HDR_HAS_RABD(hdr)) 3986 arc_hdr_free_abd(hdr, B_TRUE); 3987 3988 arc_change_state(evicted_state, hdr, hash_lock); 3989 ASSERT(HDR_IN_HASH_TABLE(hdr)); 3990 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 3991 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 3992 } 3993 3994 return (bytes_evicted); 3995 } 3996 3997 static void 3998 arc_set_need_free(void) 3999 { 4000 ASSERT(MUTEX_HELD(&arc_evict_lock)); 4001 int64_t remaining = arc_free_memory() - arc_sys_free / 2; 4002 arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters); 4003 if (aw == NULL) { 4004 arc_need_free = MAX(-remaining, 0); 4005 } else { 4006 arc_need_free = 4007 MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count)); 4008 } 4009 } 4010 4011 static uint64_t 4012 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 4013 uint64_t spa, int64_t bytes) 4014 { 4015 multilist_sublist_t *mls; 4016 uint64_t bytes_evicted = 0; 4017 arc_buf_hdr_t *hdr; 4018 kmutex_t *hash_lock; 4019 int evict_count = 0; 4020 4021 ASSERT3P(marker, !=, NULL); 4022 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 4023 4024 mls = multilist_sublist_lock(ml, idx); 4025 4026 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL; 4027 hdr = multilist_sublist_prev(mls, marker)) { 4028 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) || 4029 (evict_count >= zfs_arc_evict_batch_limit)) 4030 break; 4031 4032 /* 4033 * To keep our iteration location, move the marker 4034 * forward. Since we're not holding hdr's hash lock, we 4035 * must be very careful and not remove 'hdr' from the 4036 * sublist. Otherwise, other consumers might mistake the 4037 * 'hdr' as not being on a sublist when they call the 4038 * multilist_link_active() function (they all rely on 4039 * the hash lock protecting concurrent insertions and 4040 * removals). multilist_sublist_move_forward() was 4041 * specifically implemented to ensure this is the case 4042 * (only 'marker' will be removed and re-inserted). 4043 */ 4044 multilist_sublist_move_forward(mls, marker); 4045 4046 /* 4047 * The only case where the b_spa field should ever be 4048 * zero, is the marker headers inserted by 4049 * arc_evict_state(). It's possible for multiple threads 4050 * to be calling arc_evict_state() concurrently (e.g. 4051 * dsl_pool_close() and zio_inject_fault()), so we must 4052 * skip any markers we see from these other threads. 4053 */ 4054 if (hdr->b_spa == 0) 4055 continue; 4056 4057 /* we're only interested in evicting buffers of a certain spa */ 4058 if (spa != 0 && hdr->b_spa != spa) { 4059 ARCSTAT_BUMP(arcstat_evict_skip); 4060 continue; 4061 } 4062 4063 hash_lock = HDR_LOCK(hdr); 4064 4065 /* 4066 * We aren't calling this function from any code path 4067 * that would already be holding a hash lock, so we're 4068 * asserting on this assumption to be defensive in case 4069 * this ever changes. Without this check, it would be 4070 * possible to incorrectly increment arcstat_mutex_miss 4071 * below (e.g. if the code changed such that we called 4072 * this function with a hash lock held). 4073 */ 4074 ASSERT(!MUTEX_HELD(hash_lock)); 4075 4076 if (mutex_tryenter(hash_lock)) { 4077 uint64_t evicted = arc_evict_hdr(hdr, hash_lock); 4078 mutex_exit(hash_lock); 4079 4080 bytes_evicted += evicted; 4081 4082 /* 4083 * If evicted is zero, arc_evict_hdr() must have 4084 * decided to skip this header, don't increment 4085 * evict_count in this case. 4086 */ 4087 if (evicted != 0) 4088 evict_count++; 4089 4090 } else { 4091 ARCSTAT_BUMP(arcstat_mutex_miss); 4092 } 4093 } 4094 4095 multilist_sublist_unlock(mls); 4096 4097 /* 4098 * Increment the count of evicted bytes, and wake up any threads that 4099 * are waiting for the count to reach this value. Since the list is 4100 * ordered by ascending aew_count, we pop off the beginning of the 4101 * list until we reach the end, or a waiter that's past the current 4102 * "count". Doing this outside the loop reduces the number of times 4103 * we need to acquire the global arc_evict_lock. 4104 * 4105 * Only wake when there's sufficient free memory in the system 4106 * (specifically, arc_sys_free/2, which by default is a bit more than 4107 * 1/64th of RAM). See the comments in arc_wait_for_eviction(). 4108 */ 4109 mutex_enter(&arc_evict_lock); 4110 arc_evict_count += bytes_evicted; 4111 4112 if (arc_free_memory() > arc_sys_free / 2) { 4113 arc_evict_waiter_t *aw; 4114 while ((aw = list_head(&arc_evict_waiters)) != NULL && 4115 aw->aew_count <= arc_evict_count) { 4116 list_remove(&arc_evict_waiters, aw); 4117 cv_broadcast(&aw->aew_cv); 4118 } 4119 } 4120 arc_set_need_free(); 4121 mutex_exit(&arc_evict_lock); 4122 4123 /* 4124 * If the ARC size is reduced from arc_c_max to arc_c_min (especially 4125 * if the average cached block is small), eviction can be on-CPU for 4126 * many seconds. To ensure that other threads that may be bound to 4127 * this CPU are able to make progress, make a voluntary preemption 4128 * call here. 4129 */ 4130 cond_resched(); 4131 4132 return (bytes_evicted); 4133 } 4134 4135 /* 4136 * Evict buffers from the given arc state, until we've removed the 4137 * specified number of bytes. Move the removed buffers to the 4138 * appropriate evict state. 4139 * 4140 * This function makes a "best effort". It skips over any buffers 4141 * it can't get a hash_lock on, and so, may not catch all candidates. 4142 * It may also return without evicting as much space as requested. 4143 * 4144 * If bytes is specified using the special value ARC_EVICT_ALL, this 4145 * will evict all available (i.e. unlocked and evictable) buffers from 4146 * the given arc state; which is used by arc_flush(). 4147 */ 4148 static uint64_t 4149 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes, 4150 arc_buf_contents_t type) 4151 { 4152 uint64_t total_evicted = 0; 4153 multilist_t *ml = &state->arcs_list[type]; 4154 int num_sublists; 4155 arc_buf_hdr_t **markers; 4156 4157 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 4158 4159 num_sublists = multilist_get_num_sublists(ml); 4160 4161 /* 4162 * If we've tried to evict from each sublist, made some 4163 * progress, but still have not hit the target number of bytes 4164 * to evict, we want to keep trying. The markers allow us to 4165 * pick up where we left off for each individual sublist, rather 4166 * than starting from the tail each time. 4167 */ 4168 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP); 4169 for (int i = 0; i < num_sublists; i++) { 4170 multilist_sublist_t *mls; 4171 4172 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 4173 4174 /* 4175 * A b_spa of 0 is used to indicate that this header is 4176 * a marker. This fact is used in arc_evict_type() and 4177 * arc_evict_state_impl(). 4178 */ 4179 markers[i]->b_spa = 0; 4180 4181 mls = multilist_sublist_lock(ml, i); 4182 multilist_sublist_insert_tail(mls, markers[i]); 4183 multilist_sublist_unlock(mls); 4184 } 4185 4186 /* 4187 * While we haven't hit our target number of bytes to evict, or 4188 * we're evicting all available buffers. 4189 */ 4190 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) { 4191 int sublist_idx = multilist_get_random_index(ml); 4192 uint64_t scan_evicted = 0; 4193 4194 /* 4195 * Try to reduce pinned dnodes with a floor of arc_dnode_limit. 4196 * Request that 10% of the LRUs be scanned by the superblock 4197 * shrinker. 4198 */ 4199 if (type == ARC_BUFC_DATA && aggsum_compare( 4200 &arc_sums.arcstat_dnode_size, arc_dnode_size_limit) > 0) { 4201 arc_prune_async((aggsum_upper_bound( 4202 &arc_sums.arcstat_dnode_size) - 4203 arc_dnode_size_limit) / sizeof (dnode_t) / 4204 zfs_arc_dnode_reduce_percent); 4205 } 4206 4207 /* 4208 * Start eviction using a randomly selected sublist, 4209 * this is to try and evenly balance eviction across all 4210 * sublists. Always starting at the same sublist 4211 * (e.g. index 0) would cause evictions to favor certain 4212 * sublists over others. 4213 */ 4214 for (int i = 0; i < num_sublists; i++) { 4215 uint64_t bytes_remaining; 4216 uint64_t bytes_evicted; 4217 4218 if (bytes == ARC_EVICT_ALL) 4219 bytes_remaining = ARC_EVICT_ALL; 4220 else if (total_evicted < bytes) 4221 bytes_remaining = bytes - total_evicted; 4222 else 4223 break; 4224 4225 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 4226 markers[sublist_idx], spa, bytes_remaining); 4227 4228 scan_evicted += bytes_evicted; 4229 total_evicted += bytes_evicted; 4230 4231 /* we've reached the end, wrap to the beginning */ 4232 if (++sublist_idx >= num_sublists) 4233 sublist_idx = 0; 4234 } 4235 4236 /* 4237 * If we didn't evict anything during this scan, we have 4238 * no reason to believe we'll evict more during another 4239 * scan, so break the loop. 4240 */ 4241 if (scan_evicted == 0) { 4242 /* This isn't possible, let's make that obvious */ 4243 ASSERT3S(bytes, !=, 0); 4244 4245 /* 4246 * When bytes is ARC_EVICT_ALL, the only way to 4247 * break the loop is when scan_evicted is zero. 4248 * In that case, we actually have evicted enough, 4249 * so we don't want to increment the kstat. 4250 */ 4251 if (bytes != ARC_EVICT_ALL) { 4252 ASSERT3S(total_evicted, <, bytes); 4253 ARCSTAT_BUMP(arcstat_evict_not_enough); 4254 } 4255 4256 break; 4257 } 4258 } 4259 4260 for (int i = 0; i < num_sublists; i++) { 4261 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 4262 multilist_sublist_remove(mls, markers[i]); 4263 multilist_sublist_unlock(mls); 4264 4265 kmem_cache_free(hdr_full_cache, markers[i]); 4266 } 4267 kmem_free(markers, sizeof (*markers) * num_sublists); 4268 4269 return (total_evicted); 4270 } 4271 4272 /* 4273 * Flush all "evictable" data of the given type from the arc state 4274 * specified. This will not evict any "active" buffers (i.e. referenced). 4275 * 4276 * When 'retry' is set to B_FALSE, the function will make a single pass 4277 * over the state and evict any buffers that it can. Since it doesn't 4278 * continually retry the eviction, it might end up leaving some buffers 4279 * in the ARC due to lock misses. 4280 * 4281 * When 'retry' is set to B_TRUE, the function will continually retry the 4282 * eviction until *all* evictable buffers have been removed from the 4283 * state. As a result, if concurrent insertions into the state are 4284 * allowed (e.g. if the ARC isn't shutting down), this function might 4285 * wind up in an infinite loop, continually trying to evict buffers. 4286 */ 4287 static uint64_t 4288 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 4289 boolean_t retry) 4290 { 4291 uint64_t evicted = 0; 4292 4293 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) { 4294 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type); 4295 4296 if (!retry) 4297 break; 4298 } 4299 4300 return (evicted); 4301 } 4302 4303 /* 4304 * Evict the specified number of bytes from the state specified, 4305 * restricting eviction to the spa and type given. This function 4306 * prevents us from trying to evict more from a state's list than 4307 * is "evictable", and to skip evicting altogether when passed a 4308 * negative value for "bytes". In contrast, arc_evict_state() will 4309 * evict everything it can, when passed a negative value for "bytes". 4310 */ 4311 static uint64_t 4312 arc_evict_impl(arc_state_t *state, uint64_t spa, int64_t bytes, 4313 arc_buf_contents_t type) 4314 { 4315 int64_t delta; 4316 4317 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) { 4318 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]), 4319 bytes); 4320 return (arc_evict_state(state, spa, delta, type)); 4321 } 4322 4323 return (0); 4324 } 4325 4326 /* 4327 * The goal of this function is to evict enough meta data buffers from the 4328 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly 4329 * more complicated than it appears because it is common for data buffers 4330 * to have holds on meta data buffers. In addition, dnode meta data buffers 4331 * will be held by the dnodes in the block preventing them from being freed. 4332 * This means we can't simply traverse the ARC and expect to always find 4333 * enough unheld meta data buffer to release. 4334 * 4335 * Therefore, this function has been updated to make alternating passes 4336 * over the ARC releasing data buffers and then newly unheld meta data 4337 * buffers. This ensures forward progress is maintained and meta_used 4338 * will decrease. Normally this is sufficient, but if required the ARC 4339 * will call the registered prune callbacks causing dentry and inodes to 4340 * be dropped from the VFS cache. This will make dnode meta data buffers 4341 * available for reclaim. 4342 */ 4343 static uint64_t 4344 arc_evict_meta_balanced(uint64_t meta_used) 4345 { 4346 int64_t delta, prune = 0, adjustmnt; 4347 uint64_t total_evicted = 0; 4348 arc_buf_contents_t type = ARC_BUFC_DATA; 4349 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0); 4350 4351 restart: 4352 /* 4353 * This slightly differs than the way we evict from the mru in 4354 * arc_evict because we don't have a "target" value (i.e. no 4355 * "meta" arc_p). As a result, I think we can completely 4356 * cannibalize the metadata in the MRU before we evict the 4357 * metadata from the MFU. I think we probably need to implement a 4358 * "metadata arc_p" value to do this properly. 4359 */ 4360 adjustmnt = meta_used - arc_meta_limit; 4361 4362 if (adjustmnt > 0 && 4363 zfs_refcount_count(&arc_mru->arcs_esize[type]) > 0) { 4364 delta = MIN(zfs_refcount_count(&arc_mru->arcs_esize[type]), 4365 adjustmnt); 4366 total_evicted += arc_evict_impl(arc_mru, 0, delta, type); 4367 adjustmnt -= delta; 4368 } 4369 4370 /* 4371 * We can't afford to recalculate adjustmnt here. If we do, 4372 * new metadata buffers can sneak into the MRU or ANON lists, 4373 * thus penalize the MFU metadata. Although the fudge factor is 4374 * small, it has been empirically shown to be significant for 4375 * certain workloads (e.g. creating many empty directories). As 4376 * such, we use the original calculation for adjustmnt, and 4377 * simply decrement the amount of data evicted from the MRU. 4378 */ 4379 4380 if (adjustmnt > 0 && 4381 zfs_refcount_count(&arc_mfu->arcs_esize[type]) > 0) { 4382 delta = MIN(zfs_refcount_count(&arc_mfu->arcs_esize[type]), 4383 adjustmnt); 4384 total_evicted += arc_evict_impl(arc_mfu, 0, delta, type); 4385 } 4386 4387 adjustmnt = meta_used - arc_meta_limit; 4388 4389 if (adjustmnt > 0 && 4390 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) { 4391 delta = MIN(adjustmnt, 4392 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type])); 4393 total_evicted += arc_evict_impl(arc_mru_ghost, 0, delta, type); 4394 adjustmnt -= delta; 4395 } 4396 4397 if (adjustmnt > 0 && 4398 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) { 4399 delta = MIN(adjustmnt, 4400 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type])); 4401 total_evicted += arc_evict_impl(arc_mfu_ghost, 0, delta, type); 4402 } 4403 4404 /* 4405 * If after attempting to make the requested adjustment to the ARC 4406 * the meta limit is still being exceeded then request that the 4407 * higher layers drop some cached objects which have holds on ARC 4408 * meta buffers. Requests to the upper layers will be made with 4409 * increasingly large scan sizes until the ARC is below the limit. 4410 */ 4411 if (meta_used > arc_meta_limit) { 4412 if (type == ARC_BUFC_DATA) { 4413 type = ARC_BUFC_METADATA; 4414 } else { 4415 type = ARC_BUFC_DATA; 4416 4417 if (zfs_arc_meta_prune) { 4418 prune += zfs_arc_meta_prune; 4419 arc_prune_async(prune); 4420 } 4421 } 4422 4423 if (restarts > 0) { 4424 restarts--; 4425 goto restart; 4426 } 4427 } 4428 return (total_evicted); 4429 } 4430 4431 /* 4432 * Evict metadata buffers from the cache, such that arcstat_meta_used is 4433 * capped by the arc_meta_limit tunable. 4434 */ 4435 static uint64_t 4436 arc_evict_meta_only(uint64_t meta_used) 4437 { 4438 uint64_t total_evicted = 0; 4439 int64_t target; 4440 4441 /* 4442 * If we're over the meta limit, we want to evict enough 4443 * metadata to get back under the meta limit. We don't want to 4444 * evict so much that we drop the MRU below arc_p, though. If 4445 * we're over the meta limit more than we're over arc_p, we 4446 * evict some from the MRU here, and some from the MFU below. 4447 */ 4448 target = MIN((int64_t)(meta_used - arc_meta_limit), 4449 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4450 zfs_refcount_count(&arc_mru->arcs_size) - arc_p)); 4451 4452 total_evicted += arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4453 4454 /* 4455 * Similar to the above, we want to evict enough bytes to get us 4456 * below the meta limit, but not so much as to drop us below the 4457 * space allotted to the MFU (which is defined as arc_c - arc_p). 4458 */ 4459 target = MIN((int64_t)(meta_used - arc_meta_limit), 4460 (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) - 4461 (arc_c - arc_p))); 4462 4463 total_evicted += arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4464 4465 return (total_evicted); 4466 } 4467 4468 static uint64_t 4469 arc_evict_meta(uint64_t meta_used) 4470 { 4471 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY) 4472 return (arc_evict_meta_only(meta_used)); 4473 else 4474 return (arc_evict_meta_balanced(meta_used)); 4475 } 4476 4477 /* 4478 * Return the type of the oldest buffer in the given arc state 4479 * 4480 * This function will select a random sublist of type ARC_BUFC_DATA and 4481 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist 4482 * is compared, and the type which contains the "older" buffer will be 4483 * returned. 4484 */ 4485 static arc_buf_contents_t 4486 arc_evict_type(arc_state_t *state) 4487 { 4488 multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA]; 4489 multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA]; 4490 int data_idx = multilist_get_random_index(data_ml); 4491 int meta_idx = multilist_get_random_index(meta_ml); 4492 multilist_sublist_t *data_mls; 4493 multilist_sublist_t *meta_mls; 4494 arc_buf_contents_t type; 4495 arc_buf_hdr_t *data_hdr; 4496 arc_buf_hdr_t *meta_hdr; 4497 4498 /* 4499 * We keep the sublist lock until we're finished, to prevent 4500 * the headers from being destroyed via arc_evict_state(). 4501 */ 4502 data_mls = multilist_sublist_lock(data_ml, data_idx); 4503 meta_mls = multilist_sublist_lock(meta_ml, meta_idx); 4504 4505 /* 4506 * These two loops are to ensure we skip any markers that 4507 * might be at the tail of the lists due to arc_evict_state(). 4508 */ 4509 4510 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL; 4511 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) { 4512 if (data_hdr->b_spa != 0) 4513 break; 4514 } 4515 4516 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL; 4517 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) { 4518 if (meta_hdr->b_spa != 0) 4519 break; 4520 } 4521 4522 if (data_hdr == NULL && meta_hdr == NULL) { 4523 type = ARC_BUFC_DATA; 4524 } else if (data_hdr == NULL) { 4525 ASSERT3P(meta_hdr, !=, NULL); 4526 type = ARC_BUFC_METADATA; 4527 } else if (meta_hdr == NULL) { 4528 ASSERT3P(data_hdr, !=, NULL); 4529 type = ARC_BUFC_DATA; 4530 } else { 4531 ASSERT3P(data_hdr, !=, NULL); 4532 ASSERT3P(meta_hdr, !=, NULL); 4533 4534 /* The headers can't be on the sublist without an L1 header */ 4535 ASSERT(HDR_HAS_L1HDR(data_hdr)); 4536 ASSERT(HDR_HAS_L1HDR(meta_hdr)); 4537 4538 if (data_hdr->b_l1hdr.b_arc_access < 4539 meta_hdr->b_l1hdr.b_arc_access) { 4540 type = ARC_BUFC_DATA; 4541 } else { 4542 type = ARC_BUFC_METADATA; 4543 } 4544 } 4545 4546 multilist_sublist_unlock(meta_mls); 4547 multilist_sublist_unlock(data_mls); 4548 4549 return (type); 4550 } 4551 4552 /* 4553 * Evict buffers from the cache, such that arcstat_size is capped by arc_c. 4554 */ 4555 static uint64_t 4556 arc_evict(void) 4557 { 4558 uint64_t total_evicted = 0; 4559 uint64_t bytes; 4560 int64_t target; 4561 uint64_t asize = aggsum_value(&arc_sums.arcstat_size); 4562 uint64_t ameta = aggsum_value(&arc_sums.arcstat_meta_used); 4563 4564 /* 4565 * If we're over arc_meta_limit, we want to correct that before 4566 * potentially evicting data buffers below. 4567 */ 4568 total_evicted += arc_evict_meta(ameta); 4569 4570 /* 4571 * Adjust MRU size 4572 * 4573 * If we're over the target cache size, we want to evict enough 4574 * from the list to get back to our target size. We don't want 4575 * to evict too much from the MRU, such that it drops below 4576 * arc_p. So, if we're over our target cache size more than 4577 * the MRU is over arc_p, we'll evict enough to get back to 4578 * arc_p here, and then evict more from the MFU below. 4579 */ 4580 target = MIN((int64_t)(asize - arc_c), 4581 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4582 zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p)); 4583 4584 /* 4585 * If we're below arc_meta_min, always prefer to evict data. 4586 * Otherwise, try to satisfy the requested number of bytes to 4587 * evict from the type which contains older buffers; in an 4588 * effort to keep newer buffers in the cache regardless of their 4589 * type. If we cannot satisfy the number of bytes from this 4590 * type, spill over into the next type. 4591 */ 4592 if (arc_evict_type(arc_mru) == ARC_BUFC_METADATA && 4593 ameta > arc_meta_min) { 4594 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4595 total_evicted += bytes; 4596 4597 /* 4598 * If we couldn't evict our target number of bytes from 4599 * metadata, we try to get the rest from data. 4600 */ 4601 target -= bytes; 4602 4603 total_evicted += 4604 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4605 } else { 4606 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4607 total_evicted += bytes; 4608 4609 /* 4610 * If we couldn't evict our target number of bytes from 4611 * data, we try to get the rest from metadata. 4612 */ 4613 target -= bytes; 4614 4615 total_evicted += 4616 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4617 } 4618 4619 /* 4620 * Re-sum ARC stats after the first round of evictions. 4621 */ 4622 asize = aggsum_value(&arc_sums.arcstat_size); 4623 ameta = aggsum_value(&arc_sums.arcstat_meta_used); 4624 4625 4626 /* 4627 * Adjust MFU size 4628 * 4629 * Now that we've tried to evict enough from the MRU to get its 4630 * size back to arc_p, if we're still above the target cache 4631 * size, we evict the rest from the MFU. 4632 */ 4633 target = asize - arc_c; 4634 4635 if (arc_evict_type(arc_mfu) == ARC_BUFC_METADATA && 4636 ameta > arc_meta_min) { 4637 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4638 total_evicted += bytes; 4639 4640 /* 4641 * If we couldn't evict our target number of bytes from 4642 * metadata, we try to get the rest from data. 4643 */ 4644 target -= bytes; 4645 4646 total_evicted += 4647 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4648 } else { 4649 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4650 total_evicted += bytes; 4651 4652 /* 4653 * If we couldn't evict our target number of bytes from 4654 * data, we try to get the rest from data. 4655 */ 4656 target -= bytes; 4657 4658 total_evicted += 4659 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4660 } 4661 4662 /* 4663 * Adjust ghost lists 4664 * 4665 * In addition to the above, the ARC also defines target values 4666 * for the ghost lists. The sum of the mru list and mru ghost 4667 * list should never exceed the target size of the cache, and 4668 * the sum of the mru list, mfu list, mru ghost list, and mfu 4669 * ghost list should never exceed twice the target size of the 4670 * cache. The following logic enforces these limits on the ghost 4671 * caches, and evicts from them as needed. 4672 */ 4673 target = zfs_refcount_count(&arc_mru->arcs_size) + 4674 zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c; 4675 4676 bytes = arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA); 4677 total_evicted += bytes; 4678 4679 target -= bytes; 4680 4681 total_evicted += 4682 arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA); 4683 4684 /* 4685 * We assume the sum of the mru list and mfu list is less than 4686 * or equal to arc_c (we enforced this above), which means we 4687 * can use the simpler of the two equations below: 4688 * 4689 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c 4690 * mru ghost + mfu ghost <= arc_c 4691 */ 4692 target = zfs_refcount_count(&arc_mru_ghost->arcs_size) + 4693 zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c; 4694 4695 bytes = arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA); 4696 total_evicted += bytes; 4697 4698 target -= bytes; 4699 4700 total_evicted += 4701 arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA); 4702 4703 return (total_evicted); 4704 } 4705 4706 void 4707 arc_flush(spa_t *spa, boolean_t retry) 4708 { 4709 uint64_t guid = 0; 4710 4711 /* 4712 * If retry is B_TRUE, a spa must not be specified since we have 4713 * no good way to determine if all of a spa's buffers have been 4714 * evicted from an arc state. 4715 */ 4716 ASSERT(!retry || spa == 0); 4717 4718 if (spa != NULL) 4719 guid = spa_load_guid(spa); 4720 4721 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 4722 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 4723 4724 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 4725 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 4726 4727 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 4728 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 4729 4730 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 4731 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 4732 } 4733 4734 void 4735 arc_reduce_target_size(int64_t to_free) 4736 { 4737 uint64_t asize = aggsum_value(&arc_sums.arcstat_size); 4738 4739 /* 4740 * All callers want the ARC to actually evict (at least) this much 4741 * memory. Therefore we reduce from the lower of the current size and 4742 * the target size. This way, even if arc_c is much higher than 4743 * arc_size (as can be the case after many calls to arc_freed(), we will 4744 * immediately have arc_c < arc_size and therefore the arc_evict_zthr 4745 * will evict. 4746 */ 4747 uint64_t c = MIN(arc_c, asize); 4748 4749 if (c > to_free && c - to_free > arc_c_min) { 4750 arc_c = c - to_free; 4751 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 4752 if (arc_p > arc_c) 4753 arc_p = (arc_c >> 1); 4754 ASSERT(arc_c >= arc_c_min); 4755 ASSERT((int64_t)arc_p >= 0); 4756 } else { 4757 arc_c = arc_c_min; 4758 } 4759 4760 if (asize > arc_c) { 4761 /* See comment in arc_evict_cb_check() on why lock+flag */ 4762 mutex_enter(&arc_evict_lock); 4763 arc_evict_needed = B_TRUE; 4764 mutex_exit(&arc_evict_lock); 4765 zthr_wakeup(arc_evict_zthr); 4766 } 4767 } 4768 4769 /* 4770 * Determine if the system is under memory pressure and is asking 4771 * to reclaim memory. A return value of B_TRUE indicates that the system 4772 * is under memory pressure and that the arc should adjust accordingly. 4773 */ 4774 boolean_t 4775 arc_reclaim_needed(void) 4776 { 4777 return (arc_available_memory() < 0); 4778 } 4779 4780 void 4781 arc_kmem_reap_soon(void) 4782 { 4783 size_t i; 4784 kmem_cache_t *prev_cache = NULL; 4785 kmem_cache_t *prev_data_cache = NULL; 4786 extern kmem_cache_t *zio_buf_cache[]; 4787 extern kmem_cache_t *zio_data_buf_cache[]; 4788 4789 #ifdef _KERNEL 4790 if ((aggsum_compare(&arc_sums.arcstat_meta_used, 4791 arc_meta_limit) >= 0) && zfs_arc_meta_prune) { 4792 /* 4793 * We are exceeding our meta-data cache limit. 4794 * Prune some entries to release holds on meta-data. 4795 */ 4796 arc_prune_async(zfs_arc_meta_prune); 4797 } 4798 #if defined(_ILP32) 4799 /* 4800 * Reclaim unused memory from all kmem caches. 4801 */ 4802 kmem_reap(); 4803 #endif 4804 #endif 4805 4806 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 4807 #if defined(_ILP32) 4808 /* reach upper limit of cache size on 32-bit */ 4809 if (zio_buf_cache[i] == NULL) 4810 break; 4811 #endif 4812 if (zio_buf_cache[i] != prev_cache) { 4813 prev_cache = zio_buf_cache[i]; 4814 kmem_cache_reap_now(zio_buf_cache[i]); 4815 } 4816 if (zio_data_buf_cache[i] != prev_data_cache) { 4817 prev_data_cache = zio_data_buf_cache[i]; 4818 kmem_cache_reap_now(zio_data_buf_cache[i]); 4819 } 4820 } 4821 kmem_cache_reap_now(buf_cache); 4822 kmem_cache_reap_now(hdr_full_cache); 4823 kmem_cache_reap_now(hdr_l2only_cache); 4824 kmem_cache_reap_now(zfs_btree_leaf_cache); 4825 abd_cache_reap_now(); 4826 } 4827 4828 /* ARGSUSED */ 4829 static boolean_t 4830 arc_evict_cb_check(void *arg, zthr_t *zthr) 4831 { 4832 #ifdef ZFS_DEBUG 4833 /* 4834 * This is necessary in order to keep the kstat information 4835 * up to date for tools that display kstat data such as the 4836 * mdb ::arc dcmd and the Linux crash utility. These tools 4837 * typically do not call kstat's update function, but simply 4838 * dump out stats from the most recent update. Without 4839 * this call, these commands may show stale stats for the 4840 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 4841 * with this call, the data might be out of date if the 4842 * evict thread hasn't been woken recently; but that should 4843 * suffice. The arc_state_t structures can be queried 4844 * directly if more accurate information is needed. 4845 */ 4846 if (arc_ksp != NULL) 4847 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 4848 #endif 4849 4850 /* 4851 * We have to rely on arc_wait_for_eviction() to tell us when to 4852 * evict, rather than checking if we are overflowing here, so that we 4853 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv. 4854 * If we have become "not overflowing" since arc_wait_for_eviction() 4855 * checked, we need to wake it up. We could broadcast the CV here, 4856 * but arc_wait_for_eviction() may have not yet gone to sleep. We 4857 * would need to use a mutex to ensure that this function doesn't 4858 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g. 4859 * the arc_evict_lock). However, the lock ordering of such a lock 4860 * would necessarily be incorrect with respect to the zthr_lock, 4861 * which is held before this function is called, and is held by 4862 * arc_wait_for_eviction() when it calls zthr_wakeup(). 4863 */ 4864 return (arc_evict_needed); 4865 } 4866 4867 /* 4868 * Keep arc_size under arc_c by running arc_evict which evicts data 4869 * from the ARC. 4870 */ 4871 /* ARGSUSED */ 4872 static void 4873 arc_evict_cb(void *arg, zthr_t *zthr) 4874 { 4875 uint64_t evicted = 0; 4876 fstrans_cookie_t cookie = spl_fstrans_mark(); 4877 4878 /* Evict from cache */ 4879 evicted = arc_evict(); 4880 4881 /* 4882 * If evicted is zero, we couldn't evict anything 4883 * via arc_evict(). This could be due to hash lock 4884 * collisions, but more likely due to the majority of 4885 * arc buffers being unevictable. Therefore, even if 4886 * arc_size is above arc_c, another pass is unlikely to 4887 * be helpful and could potentially cause us to enter an 4888 * infinite loop. Additionally, zthr_iscancelled() is 4889 * checked here so that if the arc is shutting down, the 4890 * broadcast will wake any remaining arc evict waiters. 4891 */ 4892 mutex_enter(&arc_evict_lock); 4893 arc_evict_needed = !zthr_iscancelled(arc_evict_zthr) && 4894 evicted > 0 && aggsum_compare(&arc_sums.arcstat_size, arc_c) > 0; 4895 if (!arc_evict_needed) { 4896 /* 4897 * We're either no longer overflowing, or we 4898 * can't evict anything more, so we should wake 4899 * arc_get_data_impl() sooner. 4900 */ 4901 arc_evict_waiter_t *aw; 4902 while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) { 4903 cv_broadcast(&aw->aew_cv); 4904 } 4905 arc_set_need_free(); 4906 } 4907 mutex_exit(&arc_evict_lock); 4908 spl_fstrans_unmark(cookie); 4909 } 4910 4911 /* ARGSUSED */ 4912 static boolean_t 4913 arc_reap_cb_check(void *arg, zthr_t *zthr) 4914 { 4915 int64_t free_memory = arc_available_memory(); 4916 static int reap_cb_check_counter = 0; 4917 4918 /* 4919 * If a kmem reap is already active, don't schedule more. We must 4920 * check for this because kmem_cache_reap_soon() won't actually 4921 * block on the cache being reaped (this is to prevent callers from 4922 * becoming implicitly blocked by a system-wide kmem reap -- which, 4923 * on a system with many, many full magazines, can take minutes). 4924 */ 4925 if (!kmem_cache_reap_active() && free_memory < 0) { 4926 4927 arc_no_grow = B_TRUE; 4928 arc_warm = B_TRUE; 4929 /* 4930 * Wait at least zfs_grow_retry (default 5) seconds 4931 * before considering growing. 4932 */ 4933 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry); 4934 return (B_TRUE); 4935 } else if (free_memory < arc_c >> arc_no_grow_shift) { 4936 arc_no_grow = B_TRUE; 4937 } else if (gethrtime() >= arc_growtime) { 4938 arc_no_grow = B_FALSE; 4939 } 4940 4941 /* 4942 * Called unconditionally every 60 seconds to reclaim unused 4943 * zstd compression and decompression context. This is done 4944 * here to avoid the need for an independent thread. 4945 */ 4946 if (!((reap_cb_check_counter++) % 60)) 4947 zfs_zstd_cache_reap_now(); 4948 4949 return (B_FALSE); 4950 } 4951 4952 /* 4953 * Keep enough free memory in the system by reaping the ARC's kmem 4954 * caches. To cause more slabs to be reapable, we may reduce the 4955 * target size of the cache (arc_c), causing the arc_evict_cb() 4956 * to free more buffers. 4957 */ 4958 /* ARGSUSED */ 4959 static void 4960 arc_reap_cb(void *arg, zthr_t *zthr) 4961 { 4962 int64_t free_memory; 4963 fstrans_cookie_t cookie = spl_fstrans_mark(); 4964 4965 /* 4966 * Kick off asynchronous kmem_reap()'s of all our caches. 4967 */ 4968 arc_kmem_reap_soon(); 4969 4970 /* 4971 * Wait at least arc_kmem_cache_reap_retry_ms between 4972 * arc_kmem_reap_soon() calls. Without this check it is possible to 4973 * end up in a situation where we spend lots of time reaping 4974 * caches, while we're near arc_c_min. Waiting here also gives the 4975 * subsequent free memory check a chance of finding that the 4976 * asynchronous reap has already freed enough memory, and we don't 4977 * need to call arc_reduce_target_size(). 4978 */ 4979 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000); 4980 4981 /* 4982 * Reduce the target size as needed to maintain the amount of free 4983 * memory in the system at a fraction of the arc_size (1/128th by 4984 * default). If oversubscribed (free_memory < 0) then reduce the 4985 * target arc_size by the deficit amount plus the fractional 4986 * amount. If free memory is positive but less than the fractional 4987 * amount, reduce by what is needed to hit the fractional amount. 4988 */ 4989 free_memory = arc_available_memory(); 4990 4991 int64_t to_free = 4992 (arc_c >> arc_shrink_shift) - free_memory; 4993 if (to_free > 0) { 4994 arc_reduce_target_size(to_free); 4995 } 4996 spl_fstrans_unmark(cookie); 4997 } 4998 4999 #ifdef _KERNEL 5000 /* 5001 * Determine the amount of memory eligible for eviction contained in the 5002 * ARC. All clean data reported by the ghost lists can always be safely 5003 * evicted. Due to arc_c_min, the same does not hold for all clean data 5004 * contained by the regular mru and mfu lists. 5005 * 5006 * In the case of the regular mru and mfu lists, we need to report as 5007 * much clean data as possible, such that evicting that same reported 5008 * data will not bring arc_size below arc_c_min. Thus, in certain 5009 * circumstances, the total amount of clean data in the mru and mfu 5010 * lists might not actually be evictable. 5011 * 5012 * The following two distinct cases are accounted for: 5013 * 5014 * 1. The sum of the amount of dirty data contained by both the mru and 5015 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 5016 * is greater than or equal to arc_c_min. 5017 * (i.e. amount of dirty data >= arc_c_min) 5018 * 5019 * This is the easy case; all clean data contained by the mru and mfu 5020 * lists is evictable. Evicting all clean data can only drop arc_size 5021 * to the amount of dirty data, which is greater than arc_c_min. 5022 * 5023 * 2. The sum of the amount of dirty data contained by both the mru and 5024 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 5025 * is less than arc_c_min. 5026 * (i.e. arc_c_min > amount of dirty data) 5027 * 5028 * 2.1. arc_size is greater than or equal arc_c_min. 5029 * (i.e. arc_size >= arc_c_min > amount of dirty data) 5030 * 5031 * In this case, not all clean data from the regular mru and mfu 5032 * lists is actually evictable; we must leave enough clean data 5033 * to keep arc_size above arc_c_min. Thus, the maximum amount of 5034 * evictable data from the two lists combined, is exactly the 5035 * difference between arc_size and arc_c_min. 5036 * 5037 * 2.2. arc_size is less than arc_c_min 5038 * (i.e. arc_c_min > arc_size > amount of dirty data) 5039 * 5040 * In this case, none of the data contained in the mru and mfu 5041 * lists is evictable, even if it's clean. Since arc_size is 5042 * already below arc_c_min, evicting any more would only 5043 * increase this negative difference. 5044 */ 5045 5046 #endif /* _KERNEL */ 5047 5048 /* 5049 * Adapt arc info given the number of bytes we are trying to add and 5050 * the state that we are coming from. This function is only called 5051 * when we are adding new content to the cache. 5052 */ 5053 static void 5054 arc_adapt(int bytes, arc_state_t *state) 5055 { 5056 int mult; 5057 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 5058 int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size); 5059 int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size); 5060 5061 ASSERT(bytes > 0); 5062 /* 5063 * Adapt the target size of the MRU list: 5064 * - if we just hit in the MRU ghost list, then increase 5065 * the target size of the MRU list. 5066 * - if we just hit in the MFU ghost list, then increase 5067 * the target size of the MFU list by decreasing the 5068 * target size of the MRU list. 5069 */ 5070 if (state == arc_mru_ghost) { 5071 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size); 5072 if (!zfs_arc_p_dampener_disable) 5073 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 5074 5075 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 5076 } else if (state == arc_mfu_ghost) { 5077 uint64_t delta; 5078 5079 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size); 5080 if (!zfs_arc_p_dampener_disable) 5081 mult = MIN(mult, 10); 5082 5083 delta = MIN(bytes * mult, arc_p); 5084 arc_p = MAX(arc_p_min, arc_p - delta); 5085 } 5086 ASSERT((int64_t)arc_p >= 0); 5087 5088 /* 5089 * Wake reap thread if we do not have any available memory 5090 */ 5091 if (arc_reclaim_needed()) { 5092 zthr_wakeup(arc_reap_zthr); 5093 return; 5094 } 5095 5096 if (arc_no_grow) 5097 return; 5098 5099 if (arc_c >= arc_c_max) 5100 return; 5101 5102 /* 5103 * If we're within (2 * maxblocksize) bytes of the target 5104 * cache size, increment the target cache size 5105 */ 5106 ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT); 5107 if (aggsum_upper_bound(&arc_sums.arcstat_size) >= 5108 arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 5109 atomic_add_64(&arc_c, (int64_t)bytes); 5110 if (arc_c > arc_c_max) 5111 arc_c = arc_c_max; 5112 else if (state == arc_anon) 5113 atomic_add_64(&arc_p, (int64_t)bytes); 5114 if (arc_p > arc_c) 5115 arc_p = arc_c; 5116 } 5117 ASSERT((int64_t)arc_p >= 0); 5118 } 5119 5120 /* 5121 * Check if arc_size has grown past our upper threshold, determined by 5122 * zfs_arc_overflow_shift. 5123 */ 5124 boolean_t 5125 arc_is_overflowing(void) 5126 { 5127 /* Always allow at least one block of overflow */ 5128 int64_t overflow = MAX(SPA_MAXBLOCKSIZE, 5129 arc_c >> zfs_arc_overflow_shift); 5130 5131 /* 5132 * We just compare the lower bound here for performance reasons. Our 5133 * primary goals are to make sure that the arc never grows without 5134 * bound, and that it can reach its maximum size. This check 5135 * accomplishes both goals. The maximum amount we could run over by is 5136 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block 5137 * in the ARC. In practice, that's in the tens of MB, which is low 5138 * enough to be safe. 5139 */ 5140 return (aggsum_lower_bound(&arc_sums.arcstat_size) >= 5141 (int64_t)arc_c + overflow); 5142 } 5143 5144 static abd_t * 5145 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 5146 boolean_t do_adapt) 5147 { 5148 arc_buf_contents_t type = arc_buf_type(hdr); 5149 5150 arc_get_data_impl(hdr, size, tag, do_adapt); 5151 if (type == ARC_BUFC_METADATA) { 5152 return (abd_alloc(size, B_TRUE)); 5153 } else { 5154 ASSERT(type == ARC_BUFC_DATA); 5155 return (abd_alloc(size, B_FALSE)); 5156 } 5157 } 5158 5159 static void * 5160 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 5161 { 5162 arc_buf_contents_t type = arc_buf_type(hdr); 5163 5164 arc_get_data_impl(hdr, size, tag, B_TRUE); 5165 if (type == ARC_BUFC_METADATA) { 5166 return (zio_buf_alloc(size)); 5167 } else { 5168 ASSERT(type == ARC_BUFC_DATA); 5169 return (zio_data_buf_alloc(size)); 5170 } 5171 } 5172 5173 /* 5174 * Wait for the specified amount of data (in bytes) to be evicted from the 5175 * ARC, and for there to be sufficient free memory in the system. Waiting for 5176 * eviction ensures that the memory used by the ARC decreases. Waiting for 5177 * free memory ensures that the system won't run out of free pages, regardless 5178 * of ARC behavior and settings. See arc_lowmem_init(). 5179 */ 5180 void 5181 arc_wait_for_eviction(uint64_t amount) 5182 { 5183 mutex_enter(&arc_evict_lock); 5184 if (arc_is_overflowing()) { 5185 arc_evict_needed = B_TRUE; 5186 zthr_wakeup(arc_evict_zthr); 5187 5188 if (amount != 0) { 5189 arc_evict_waiter_t aw; 5190 list_link_init(&aw.aew_node); 5191 cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL); 5192 5193 uint64_t last_count = 0; 5194 if (!list_is_empty(&arc_evict_waiters)) { 5195 arc_evict_waiter_t *last = 5196 list_tail(&arc_evict_waiters); 5197 last_count = last->aew_count; 5198 } 5199 /* 5200 * Note, the last waiter's count may be less than 5201 * arc_evict_count if we are low on memory in which 5202 * case arc_evict_state_impl() may have deferred 5203 * wakeups (but still incremented arc_evict_count). 5204 */ 5205 aw.aew_count = 5206 MAX(last_count, arc_evict_count) + amount; 5207 5208 list_insert_tail(&arc_evict_waiters, &aw); 5209 5210 arc_set_need_free(); 5211 5212 DTRACE_PROBE3(arc__wait__for__eviction, 5213 uint64_t, amount, 5214 uint64_t, arc_evict_count, 5215 uint64_t, aw.aew_count); 5216 5217 /* 5218 * We will be woken up either when arc_evict_count 5219 * reaches aew_count, or when the ARC is no longer 5220 * overflowing and eviction completes. 5221 */ 5222 cv_wait(&aw.aew_cv, &arc_evict_lock); 5223 5224 /* 5225 * In case of "false" wakeup, we will still be on the 5226 * list. 5227 */ 5228 if (list_link_active(&aw.aew_node)) 5229 list_remove(&arc_evict_waiters, &aw); 5230 5231 cv_destroy(&aw.aew_cv); 5232 } 5233 } 5234 mutex_exit(&arc_evict_lock); 5235 } 5236 5237 /* 5238 * Allocate a block and return it to the caller. If we are hitting the 5239 * hard limit for the cache size, we must sleep, waiting for the eviction 5240 * thread to catch up. If we're past the target size but below the hard 5241 * limit, we'll only signal the reclaim thread and continue on. 5242 */ 5243 static void 5244 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 5245 boolean_t do_adapt) 5246 { 5247 arc_state_t *state = hdr->b_l1hdr.b_state; 5248 arc_buf_contents_t type = arc_buf_type(hdr); 5249 5250 if (do_adapt) 5251 arc_adapt(size, state); 5252 5253 /* 5254 * If arc_size is currently overflowing, we must be adding data 5255 * faster than we are evicting. To ensure we don't compound the 5256 * problem by adding more data and forcing arc_size to grow even 5257 * further past it's target size, we wait for the eviction thread to 5258 * make some progress. We also wait for there to be sufficient free 5259 * memory in the system, as measured by arc_free_memory(). 5260 * 5261 * Specifically, we wait for zfs_arc_eviction_pct percent of the 5262 * requested size to be evicted. This should be more than 100%, to 5263 * ensure that that progress is also made towards getting arc_size 5264 * under arc_c. See the comment above zfs_arc_eviction_pct. 5265 * 5266 * We do the overflowing check without holding the arc_evict_lock to 5267 * reduce lock contention in this hot path. Note that 5268 * arc_wait_for_eviction() will acquire the lock and check again to 5269 * ensure we are truly overflowing before blocking. 5270 */ 5271 if (arc_is_overflowing()) { 5272 arc_wait_for_eviction(size * 5273 zfs_arc_eviction_pct / 100); 5274 } 5275 5276 VERIFY3U(hdr->b_type, ==, type); 5277 if (type == ARC_BUFC_METADATA) { 5278 arc_space_consume(size, ARC_SPACE_META); 5279 } else { 5280 arc_space_consume(size, ARC_SPACE_DATA); 5281 } 5282 5283 /* 5284 * Update the state size. Note that ghost states have a 5285 * "ghost size" and so don't need to be updated. 5286 */ 5287 if (!GHOST_STATE(state)) { 5288 5289 (void) zfs_refcount_add_many(&state->arcs_size, size, tag); 5290 5291 /* 5292 * If this is reached via arc_read, the link is 5293 * protected by the hash lock. If reached via 5294 * arc_buf_alloc, the header should not be accessed by 5295 * any other thread. And, if reached via arc_read_done, 5296 * the hash lock will protect it if it's found in the 5297 * hash table; otherwise no other thread should be 5298 * trying to [add|remove]_reference it. 5299 */ 5300 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5301 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5302 (void) zfs_refcount_add_many(&state->arcs_esize[type], 5303 size, tag); 5304 } 5305 5306 /* 5307 * If we are growing the cache, and we are adding anonymous 5308 * data, and we have outgrown arc_p, update arc_p 5309 */ 5310 if (aggsum_upper_bound(&arc_sums.arcstat_size) < arc_c && 5311 hdr->b_l1hdr.b_state == arc_anon && 5312 (zfs_refcount_count(&arc_anon->arcs_size) + 5313 zfs_refcount_count(&arc_mru->arcs_size) > arc_p)) 5314 arc_p = MIN(arc_c, arc_p + size); 5315 } 5316 } 5317 5318 static void 5319 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag) 5320 { 5321 arc_free_data_impl(hdr, size, tag); 5322 abd_free(abd); 5323 } 5324 5325 static void 5326 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag) 5327 { 5328 arc_buf_contents_t type = arc_buf_type(hdr); 5329 5330 arc_free_data_impl(hdr, size, tag); 5331 if (type == ARC_BUFC_METADATA) { 5332 zio_buf_free(buf, size); 5333 } else { 5334 ASSERT(type == ARC_BUFC_DATA); 5335 zio_data_buf_free(buf, size); 5336 } 5337 } 5338 5339 /* 5340 * Free the arc data buffer. 5341 */ 5342 static void 5343 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 5344 { 5345 arc_state_t *state = hdr->b_l1hdr.b_state; 5346 arc_buf_contents_t type = arc_buf_type(hdr); 5347 5348 /* protected by hash lock, if in the hash table */ 5349 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5350 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5351 ASSERT(state != arc_anon && state != arc_l2c_only); 5352 5353 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 5354 size, tag); 5355 } 5356 (void) zfs_refcount_remove_many(&state->arcs_size, size, tag); 5357 5358 VERIFY3U(hdr->b_type, ==, type); 5359 if (type == ARC_BUFC_METADATA) { 5360 arc_space_return(size, ARC_SPACE_META); 5361 } else { 5362 ASSERT(type == ARC_BUFC_DATA); 5363 arc_space_return(size, ARC_SPACE_DATA); 5364 } 5365 } 5366 5367 /* 5368 * This routine is called whenever a buffer is accessed. 5369 * NOTE: the hash lock is dropped in this function. 5370 */ 5371 static void 5372 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 5373 { 5374 clock_t now; 5375 5376 ASSERT(MUTEX_HELD(hash_lock)); 5377 ASSERT(HDR_HAS_L1HDR(hdr)); 5378 5379 if (hdr->b_l1hdr.b_state == arc_anon) { 5380 /* 5381 * This buffer is not in the cache, and does not 5382 * appear in our "ghost" list. Add the new buffer 5383 * to the MRU state. 5384 */ 5385 5386 ASSERT0(hdr->b_l1hdr.b_arc_access); 5387 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5388 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5389 arc_change_state(arc_mru, hdr, hash_lock); 5390 5391 } else if (hdr->b_l1hdr.b_state == arc_mru) { 5392 now = ddi_get_lbolt(); 5393 5394 /* 5395 * If this buffer is here because of a prefetch, then either: 5396 * - clear the flag if this is a "referencing" read 5397 * (any subsequent access will bump this into the MFU state). 5398 * or 5399 * - move the buffer to the head of the list if this is 5400 * another prefetch (to make it less likely to be evicted). 5401 */ 5402 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5403 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 5404 /* link protected by hash lock */ 5405 ASSERT(multilist_link_active( 5406 &hdr->b_l1hdr.b_arc_node)); 5407 } else { 5408 if (HDR_HAS_L2HDR(hdr)) 5409 l2arc_hdr_arcstats_decrement_state(hdr); 5410 arc_hdr_clear_flags(hdr, 5411 ARC_FLAG_PREFETCH | 5412 ARC_FLAG_PRESCIENT_PREFETCH); 5413 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits); 5414 ARCSTAT_BUMP(arcstat_mru_hits); 5415 if (HDR_HAS_L2HDR(hdr)) 5416 l2arc_hdr_arcstats_increment_state(hdr); 5417 } 5418 hdr->b_l1hdr.b_arc_access = now; 5419 return; 5420 } 5421 5422 /* 5423 * This buffer has been "accessed" only once so far, 5424 * but it is still in the cache. Move it to the MFU 5425 * state. 5426 */ 5427 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access + 5428 ARC_MINTIME)) { 5429 /* 5430 * More than 125ms have passed since we 5431 * instantiated this buffer. Move it to the 5432 * most frequently used state. 5433 */ 5434 hdr->b_l1hdr.b_arc_access = now; 5435 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5436 arc_change_state(arc_mfu, hdr, hash_lock); 5437 } 5438 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits); 5439 ARCSTAT_BUMP(arcstat_mru_hits); 5440 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 5441 arc_state_t *new_state; 5442 /* 5443 * This buffer has been "accessed" recently, but 5444 * was evicted from the cache. Move it to the 5445 * MFU state. 5446 */ 5447 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5448 new_state = arc_mru; 5449 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) { 5450 if (HDR_HAS_L2HDR(hdr)) 5451 l2arc_hdr_arcstats_decrement_state(hdr); 5452 arc_hdr_clear_flags(hdr, 5453 ARC_FLAG_PREFETCH | 5454 ARC_FLAG_PRESCIENT_PREFETCH); 5455 if (HDR_HAS_L2HDR(hdr)) 5456 l2arc_hdr_arcstats_increment_state(hdr); 5457 } 5458 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5459 } else { 5460 new_state = arc_mfu; 5461 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5462 } 5463 5464 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5465 arc_change_state(new_state, hdr, hash_lock); 5466 5467 atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits); 5468 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 5469 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 5470 /* 5471 * This buffer has been accessed more than once and is 5472 * still in the cache. Keep it in the MFU state. 5473 * 5474 * NOTE: an add_reference() that occurred when we did 5475 * the arc_read() will have kicked this off the list. 5476 * If it was a prefetch, we will explicitly move it to 5477 * the head of the list now. 5478 */ 5479 5480 atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits); 5481 ARCSTAT_BUMP(arcstat_mfu_hits); 5482 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5483 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 5484 arc_state_t *new_state = arc_mfu; 5485 /* 5486 * This buffer has been accessed more than once but has 5487 * been evicted from the cache. Move it back to the 5488 * MFU state. 5489 */ 5490 5491 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5492 /* 5493 * This is a prefetch access... 5494 * move this block back to the MRU state. 5495 */ 5496 new_state = arc_mru; 5497 } 5498 5499 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5500 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5501 arc_change_state(new_state, hdr, hash_lock); 5502 5503 atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits); 5504 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 5505 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 5506 /* 5507 * This buffer is on the 2nd Level ARC. 5508 */ 5509 5510 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5511 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5512 arc_change_state(arc_mfu, hdr, hash_lock); 5513 } else { 5514 cmn_err(CE_PANIC, "invalid arc state 0x%p", 5515 hdr->b_l1hdr.b_state); 5516 } 5517 } 5518 5519 /* 5520 * This routine is called by dbuf_hold() to update the arc_access() state 5521 * which otherwise would be skipped for entries in the dbuf cache. 5522 */ 5523 void 5524 arc_buf_access(arc_buf_t *buf) 5525 { 5526 mutex_enter(&buf->b_evict_lock); 5527 arc_buf_hdr_t *hdr = buf->b_hdr; 5528 5529 /* 5530 * Avoid taking the hash_lock when possible as an optimization. 5531 * The header must be checked again under the hash_lock in order 5532 * to handle the case where it is concurrently being released. 5533 */ 5534 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5535 mutex_exit(&buf->b_evict_lock); 5536 return; 5537 } 5538 5539 kmutex_t *hash_lock = HDR_LOCK(hdr); 5540 mutex_enter(hash_lock); 5541 5542 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5543 mutex_exit(hash_lock); 5544 mutex_exit(&buf->b_evict_lock); 5545 ARCSTAT_BUMP(arcstat_access_skip); 5546 return; 5547 } 5548 5549 mutex_exit(&buf->b_evict_lock); 5550 5551 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5552 hdr->b_l1hdr.b_state == arc_mfu); 5553 5554 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5555 arc_access(hdr, hash_lock); 5556 mutex_exit(hash_lock); 5557 5558 ARCSTAT_BUMP(arcstat_hits); 5559 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr) && !HDR_PRESCIENT_PREFETCH(hdr), 5560 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits); 5561 } 5562 5563 /* a generic arc_read_done_func_t which you can use */ 5564 /* ARGSUSED */ 5565 void 5566 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5567 arc_buf_t *buf, void *arg) 5568 { 5569 if (buf == NULL) 5570 return; 5571 5572 bcopy(buf->b_data, arg, arc_buf_size(buf)); 5573 arc_buf_destroy(buf, arg); 5574 } 5575 5576 /* a generic arc_read_done_func_t */ 5577 /* ARGSUSED */ 5578 void 5579 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5580 arc_buf_t *buf, void *arg) 5581 { 5582 arc_buf_t **bufp = arg; 5583 5584 if (buf == NULL) { 5585 ASSERT(zio == NULL || zio->io_error != 0); 5586 *bufp = NULL; 5587 } else { 5588 ASSERT(zio == NULL || zio->io_error == 0); 5589 *bufp = buf; 5590 ASSERT(buf->b_data != NULL); 5591 } 5592 } 5593 5594 static void 5595 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp) 5596 { 5597 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 5598 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0); 5599 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF); 5600 } else { 5601 if (HDR_COMPRESSION_ENABLED(hdr)) { 5602 ASSERT3U(arc_hdr_get_compress(hdr), ==, 5603 BP_GET_COMPRESS(bp)); 5604 } 5605 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 5606 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); 5607 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp)); 5608 } 5609 } 5610 5611 static void 5612 arc_read_done(zio_t *zio) 5613 { 5614 blkptr_t *bp = zio->io_bp; 5615 arc_buf_hdr_t *hdr = zio->io_private; 5616 kmutex_t *hash_lock = NULL; 5617 arc_callback_t *callback_list; 5618 arc_callback_t *acb; 5619 boolean_t freeable = B_FALSE; 5620 5621 /* 5622 * The hdr was inserted into hash-table and removed from lists 5623 * prior to starting I/O. We should find this header, since 5624 * it's in the hash table, and it should be legit since it's 5625 * not possible to evict it during the I/O. The only possible 5626 * reason for it not to be found is if we were freed during the 5627 * read. 5628 */ 5629 if (HDR_IN_HASH_TABLE(hdr)) { 5630 arc_buf_hdr_t *found; 5631 5632 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 5633 ASSERT3U(hdr->b_dva.dva_word[0], ==, 5634 BP_IDENTITY(zio->io_bp)->dva_word[0]); 5635 ASSERT3U(hdr->b_dva.dva_word[1], ==, 5636 BP_IDENTITY(zio->io_bp)->dva_word[1]); 5637 5638 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock); 5639 5640 ASSERT((found == hdr && 5641 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 5642 (found == hdr && HDR_L2_READING(hdr))); 5643 ASSERT3P(hash_lock, !=, NULL); 5644 } 5645 5646 if (BP_IS_PROTECTED(bp)) { 5647 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 5648 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 5649 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 5650 hdr->b_crypt_hdr.b_iv); 5651 5652 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) { 5653 void *tmpbuf; 5654 5655 tmpbuf = abd_borrow_buf_copy(zio->io_abd, 5656 sizeof (zil_chain_t)); 5657 zio_crypt_decode_mac_zil(tmpbuf, 5658 hdr->b_crypt_hdr.b_mac); 5659 abd_return_buf(zio->io_abd, tmpbuf, 5660 sizeof (zil_chain_t)); 5661 } else { 5662 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 5663 } 5664 } 5665 5666 if (zio->io_error == 0) { 5667 /* byteswap if necessary */ 5668 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 5669 if (BP_GET_LEVEL(zio->io_bp) > 0) { 5670 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 5671 } else { 5672 hdr->b_l1hdr.b_byteswap = 5673 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 5674 } 5675 } else { 5676 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 5677 } 5678 if (!HDR_L2_READING(hdr)) { 5679 hdr->b_complevel = zio->io_prop.zp_complevel; 5680 } 5681 } 5682 5683 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); 5684 if (l2arc_noprefetch && HDR_PREFETCH(hdr)) 5685 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE); 5686 5687 callback_list = hdr->b_l1hdr.b_acb; 5688 ASSERT3P(callback_list, !=, NULL); 5689 5690 if (hash_lock && zio->io_error == 0 && 5691 hdr->b_l1hdr.b_state == arc_anon) { 5692 /* 5693 * Only call arc_access on anonymous buffers. This is because 5694 * if we've issued an I/O for an evicted buffer, we've already 5695 * called arc_access (to prevent any simultaneous readers from 5696 * getting confused). 5697 */ 5698 arc_access(hdr, hash_lock); 5699 } 5700 5701 /* 5702 * If a read request has a callback (i.e. acb_done is not NULL), then we 5703 * make a buf containing the data according to the parameters which were 5704 * passed in. The implementation of arc_buf_alloc_impl() ensures that we 5705 * aren't needlessly decompressing the data multiple times. 5706 */ 5707 int callback_cnt = 0; 5708 for (acb = callback_list; acb != NULL; acb = acb->acb_next) { 5709 if (!acb->acb_done || acb->acb_nobuf) 5710 continue; 5711 5712 callback_cnt++; 5713 5714 if (zio->io_error != 0) 5715 continue; 5716 5717 int error = arc_buf_alloc_impl(hdr, zio->io_spa, 5718 &acb->acb_zb, acb->acb_private, acb->acb_encrypted, 5719 acb->acb_compressed, acb->acb_noauth, B_TRUE, 5720 &acb->acb_buf); 5721 5722 /* 5723 * Assert non-speculative zios didn't fail because an 5724 * encryption key wasn't loaded 5725 */ 5726 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) || 5727 error != EACCES); 5728 5729 /* 5730 * If we failed to decrypt, report an error now (as the zio 5731 * layer would have done if it had done the transforms). 5732 */ 5733 if (error == ECKSUM) { 5734 ASSERT(BP_IS_PROTECTED(bp)); 5735 error = SET_ERROR(EIO); 5736 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5737 spa_log_error(zio->io_spa, &acb->acb_zb); 5738 (void) zfs_ereport_post( 5739 FM_EREPORT_ZFS_AUTHENTICATION, 5740 zio->io_spa, NULL, &acb->acb_zb, zio, 0); 5741 } 5742 } 5743 5744 if (error != 0) { 5745 /* 5746 * Decompression or decryption failed. Set 5747 * io_error so that when we call acb_done 5748 * (below), we will indicate that the read 5749 * failed. Note that in the unusual case 5750 * where one callback is compressed and another 5751 * uncompressed, we will mark all of them 5752 * as failed, even though the uncompressed 5753 * one can't actually fail. In this case, 5754 * the hdr will not be anonymous, because 5755 * if there are multiple callbacks, it's 5756 * because multiple threads found the same 5757 * arc buf in the hash table. 5758 */ 5759 zio->io_error = error; 5760 } 5761 } 5762 5763 /* 5764 * If there are multiple callbacks, we must have the hash lock, 5765 * because the only way for multiple threads to find this hdr is 5766 * in the hash table. This ensures that if there are multiple 5767 * callbacks, the hdr is not anonymous. If it were anonymous, 5768 * we couldn't use arc_buf_destroy() in the error case below. 5769 */ 5770 ASSERT(callback_cnt < 2 || hash_lock != NULL); 5771 5772 hdr->b_l1hdr.b_acb = NULL; 5773 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5774 if (callback_cnt == 0) 5775 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 5776 5777 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) || 5778 callback_list != NULL); 5779 5780 if (zio->io_error == 0) { 5781 arc_hdr_verify(hdr, zio->io_bp); 5782 } else { 5783 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 5784 if (hdr->b_l1hdr.b_state != arc_anon) 5785 arc_change_state(arc_anon, hdr, hash_lock); 5786 if (HDR_IN_HASH_TABLE(hdr)) 5787 buf_hash_remove(hdr); 5788 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5789 } 5790 5791 /* 5792 * Broadcast before we drop the hash_lock to avoid the possibility 5793 * that the hdr (and hence the cv) might be freed before we get to 5794 * the cv_broadcast(). 5795 */ 5796 cv_broadcast(&hdr->b_l1hdr.b_cv); 5797 5798 if (hash_lock != NULL) { 5799 mutex_exit(hash_lock); 5800 } else { 5801 /* 5802 * This block was freed while we waited for the read to 5803 * complete. It has been removed from the hash table and 5804 * moved to the anonymous state (so that it won't show up 5805 * in the cache). 5806 */ 5807 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 5808 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5809 } 5810 5811 /* execute each callback and free its structure */ 5812 while ((acb = callback_list) != NULL) { 5813 if (acb->acb_done != NULL) { 5814 if (zio->io_error != 0 && acb->acb_buf != NULL) { 5815 /* 5816 * If arc_buf_alloc_impl() fails during 5817 * decompression, the buf will still be 5818 * allocated, and needs to be freed here. 5819 */ 5820 arc_buf_destroy(acb->acb_buf, 5821 acb->acb_private); 5822 acb->acb_buf = NULL; 5823 } 5824 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp, 5825 acb->acb_buf, acb->acb_private); 5826 } 5827 5828 if (acb->acb_zio_dummy != NULL) { 5829 acb->acb_zio_dummy->io_error = zio->io_error; 5830 zio_nowait(acb->acb_zio_dummy); 5831 } 5832 5833 callback_list = acb->acb_next; 5834 kmem_free(acb, sizeof (arc_callback_t)); 5835 } 5836 5837 if (freeable) 5838 arc_hdr_destroy(hdr); 5839 } 5840 5841 /* 5842 * "Read" the block at the specified DVA (in bp) via the 5843 * cache. If the block is found in the cache, invoke the provided 5844 * callback immediately and return. Note that the `zio' parameter 5845 * in the callback will be NULL in this case, since no IO was 5846 * required. If the block is not in the cache pass the read request 5847 * on to the spa with a substitute callback function, so that the 5848 * requested block will be added to the cache. 5849 * 5850 * If a read request arrives for a block that has a read in-progress, 5851 * either wait for the in-progress read to complete (and return the 5852 * results); or, if this is a read with a "done" func, add a record 5853 * to the read to invoke the "done" func when the read completes, 5854 * and return; or just return. 5855 * 5856 * arc_read_done() will invoke all the requested "done" functions 5857 * for readers of this block. 5858 */ 5859 int 5860 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 5861 arc_read_done_func_t *done, void *private, zio_priority_t priority, 5862 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 5863 { 5864 arc_buf_hdr_t *hdr = NULL; 5865 kmutex_t *hash_lock = NULL; 5866 zio_t *rzio; 5867 uint64_t guid = spa_load_guid(spa); 5868 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0; 5869 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) && 5870 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5871 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) && 5872 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5873 boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp); 5874 boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF; 5875 int rc = 0; 5876 5877 ASSERT(!embedded_bp || 5878 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 5879 ASSERT(!BP_IS_HOLE(bp)); 5880 ASSERT(!BP_IS_REDACTED(bp)); 5881 5882 /* 5883 * Normally SPL_FSTRANS will already be set since kernel threads which 5884 * expect to call the DMU interfaces will set it when created. System 5885 * calls are similarly handled by setting/cleaning the bit in the 5886 * registered callback (module/os/.../zfs/zpl_*). 5887 * 5888 * External consumers such as Lustre which call the exported DMU 5889 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock 5890 * on the hash_lock always set and clear the bit. 5891 */ 5892 fstrans_cookie_t cookie = spl_fstrans_mark(); 5893 top: 5894 if (!embedded_bp) { 5895 /* 5896 * Embedded BP's have no DVA and require no I/O to "read". 5897 * Create an anonymous arc buf to back it. 5898 */ 5899 if (!zfs_blkptr_verify(spa, bp, zio_flags & 5900 ZIO_FLAG_CONFIG_WRITER, BLK_VERIFY_LOG)) { 5901 rc = SET_ERROR(ECKSUM); 5902 goto out; 5903 } 5904 5905 hdr = buf_hash_find(guid, bp, &hash_lock); 5906 } 5907 5908 /* 5909 * Determine if we have an L1 cache hit or a cache miss. For simplicity 5910 * we maintain encrypted data separately from compressed / uncompressed 5911 * data. If the user is requesting raw encrypted data and we don't have 5912 * that in the header we will read from disk to guarantee that we can 5913 * get it even if the encryption keys aren't loaded. 5914 */ 5915 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) || 5916 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) { 5917 arc_buf_t *buf = NULL; 5918 *arc_flags |= ARC_FLAG_CACHED; 5919 5920 if (HDR_IO_IN_PROGRESS(hdr)) { 5921 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head; 5922 5923 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 5924 mutex_exit(hash_lock); 5925 ARCSTAT_BUMP(arcstat_cached_only_in_progress); 5926 rc = SET_ERROR(ENOENT); 5927 goto out; 5928 } 5929 5930 ASSERT3P(head_zio, !=, NULL); 5931 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && 5932 priority == ZIO_PRIORITY_SYNC_READ) { 5933 /* 5934 * This is a sync read that needs to wait for 5935 * an in-flight async read. Request that the 5936 * zio have its priority upgraded. 5937 */ 5938 zio_change_priority(head_zio, priority); 5939 DTRACE_PROBE1(arc__async__upgrade__sync, 5940 arc_buf_hdr_t *, hdr); 5941 ARCSTAT_BUMP(arcstat_async_upgrade_sync); 5942 } 5943 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 5944 arc_hdr_clear_flags(hdr, 5945 ARC_FLAG_PREDICTIVE_PREFETCH); 5946 } 5947 5948 if (*arc_flags & ARC_FLAG_WAIT) { 5949 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 5950 mutex_exit(hash_lock); 5951 goto top; 5952 } 5953 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 5954 5955 if (done) { 5956 arc_callback_t *acb = NULL; 5957 5958 acb = kmem_zalloc(sizeof (arc_callback_t), 5959 KM_SLEEP); 5960 acb->acb_done = done; 5961 acb->acb_private = private; 5962 acb->acb_compressed = compressed_read; 5963 acb->acb_encrypted = encrypted_read; 5964 acb->acb_noauth = noauth_read; 5965 acb->acb_nobuf = no_buf; 5966 acb->acb_zb = *zb; 5967 if (pio != NULL) 5968 acb->acb_zio_dummy = zio_null(pio, 5969 spa, NULL, NULL, NULL, zio_flags); 5970 5971 ASSERT3P(acb->acb_done, !=, NULL); 5972 acb->acb_zio_head = head_zio; 5973 acb->acb_next = hdr->b_l1hdr.b_acb; 5974 hdr->b_l1hdr.b_acb = acb; 5975 } 5976 mutex_exit(hash_lock); 5977 goto out; 5978 } 5979 5980 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5981 hdr->b_l1hdr.b_state == arc_mfu); 5982 5983 if (done && !no_buf) { 5984 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 5985 /* 5986 * This is a demand read which does not have to 5987 * wait for i/o because we did a predictive 5988 * prefetch i/o for it, which has completed. 5989 */ 5990 DTRACE_PROBE1( 5991 arc__demand__hit__predictive__prefetch, 5992 arc_buf_hdr_t *, hdr); 5993 ARCSTAT_BUMP( 5994 arcstat_demand_hit_predictive_prefetch); 5995 arc_hdr_clear_flags(hdr, 5996 ARC_FLAG_PREDICTIVE_PREFETCH); 5997 } 5998 5999 if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) { 6000 ARCSTAT_BUMP( 6001 arcstat_demand_hit_prescient_prefetch); 6002 arc_hdr_clear_flags(hdr, 6003 ARC_FLAG_PRESCIENT_PREFETCH); 6004 } 6005 6006 ASSERT(!embedded_bp || !BP_IS_HOLE(bp)); 6007 6008 /* Get a buf with the desired data in it. */ 6009 rc = arc_buf_alloc_impl(hdr, spa, zb, private, 6010 encrypted_read, compressed_read, noauth_read, 6011 B_TRUE, &buf); 6012 if (rc == ECKSUM) { 6013 /* 6014 * Convert authentication and decryption errors 6015 * to EIO (and generate an ereport if needed) 6016 * before leaving the ARC. 6017 */ 6018 rc = SET_ERROR(EIO); 6019 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) { 6020 spa_log_error(spa, zb); 6021 (void) zfs_ereport_post( 6022 FM_EREPORT_ZFS_AUTHENTICATION, 6023 spa, NULL, zb, NULL, 0); 6024 } 6025 } 6026 if (rc != 0) { 6027 (void) remove_reference(hdr, hash_lock, 6028 private); 6029 arc_buf_destroy_impl(buf); 6030 buf = NULL; 6031 } 6032 6033 /* assert any errors weren't due to unloaded keys */ 6034 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) || 6035 rc != EACCES); 6036 } else if (*arc_flags & ARC_FLAG_PREFETCH && 6037 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6038 if (HDR_HAS_L2HDR(hdr)) 6039 l2arc_hdr_arcstats_decrement_state(hdr); 6040 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 6041 if (HDR_HAS_L2HDR(hdr)) 6042 l2arc_hdr_arcstats_increment_state(hdr); 6043 } 6044 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 6045 arc_access(hdr, hash_lock); 6046 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 6047 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 6048 if (*arc_flags & ARC_FLAG_L2CACHE) 6049 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6050 mutex_exit(hash_lock); 6051 ARCSTAT_BUMP(arcstat_hits); 6052 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 6053 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 6054 data, metadata, hits); 6055 6056 if (done) 6057 done(NULL, zb, bp, buf, private); 6058 } else { 6059 uint64_t lsize = BP_GET_LSIZE(bp); 6060 uint64_t psize = BP_GET_PSIZE(bp); 6061 arc_callback_t *acb; 6062 vdev_t *vd = NULL; 6063 uint64_t addr = 0; 6064 boolean_t devw = B_FALSE; 6065 uint64_t size; 6066 abd_t *hdr_abd; 6067 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0; 6068 6069 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 6070 rc = SET_ERROR(ENOENT); 6071 if (hash_lock != NULL) 6072 mutex_exit(hash_lock); 6073 goto out; 6074 } 6075 6076 if (hdr == NULL) { 6077 /* 6078 * This block is not in the cache or it has 6079 * embedded data. 6080 */ 6081 arc_buf_hdr_t *exists = NULL; 6082 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 6083 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 6084 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type, 6085 encrypted_read); 6086 6087 if (!embedded_bp) { 6088 hdr->b_dva = *BP_IDENTITY(bp); 6089 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 6090 exists = buf_hash_insert(hdr, &hash_lock); 6091 } 6092 if (exists != NULL) { 6093 /* somebody beat us to the hash insert */ 6094 mutex_exit(hash_lock); 6095 buf_discard_identity(hdr); 6096 arc_hdr_destroy(hdr); 6097 goto top; /* restart the IO request */ 6098 } 6099 } else { 6100 /* 6101 * This block is in the ghost cache or encrypted data 6102 * was requested and we didn't have it. If it was 6103 * L2-only (and thus didn't have an L1 hdr), 6104 * we realloc the header to add an L1 hdr. 6105 */ 6106 if (!HDR_HAS_L1HDR(hdr)) { 6107 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 6108 hdr_full_cache); 6109 } 6110 6111 if (GHOST_STATE(hdr->b_l1hdr.b_state)) { 6112 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6113 ASSERT(!HDR_HAS_RABD(hdr)); 6114 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6115 ASSERT0(zfs_refcount_count( 6116 &hdr->b_l1hdr.b_refcnt)); 6117 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 6118 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 6119 } else if (HDR_IO_IN_PROGRESS(hdr)) { 6120 /* 6121 * If this header already had an IO in progress 6122 * and we are performing another IO to fetch 6123 * encrypted data we must wait until the first 6124 * IO completes so as not to confuse 6125 * arc_read_done(). This should be very rare 6126 * and so the performance impact shouldn't 6127 * matter. 6128 */ 6129 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 6130 mutex_exit(hash_lock); 6131 goto top; 6132 } 6133 6134 /* 6135 * This is a delicate dance that we play here. 6136 * This hdr might be in the ghost list so we access 6137 * it to move it out of the ghost list before we 6138 * initiate the read. If it's a prefetch then 6139 * it won't have a callback so we'll remove the 6140 * reference that arc_buf_alloc_impl() created. We 6141 * do this after we've called arc_access() to 6142 * avoid hitting an assert in remove_reference(). 6143 */ 6144 arc_adapt(arc_hdr_size(hdr), hdr->b_l1hdr.b_state); 6145 arc_access(hdr, hash_lock); 6146 arc_hdr_alloc_abd(hdr, alloc_flags); 6147 } 6148 6149 if (encrypted_read) { 6150 ASSERT(HDR_HAS_RABD(hdr)); 6151 size = HDR_GET_PSIZE(hdr); 6152 hdr_abd = hdr->b_crypt_hdr.b_rabd; 6153 zio_flags |= ZIO_FLAG_RAW; 6154 } else { 6155 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 6156 size = arc_hdr_size(hdr); 6157 hdr_abd = hdr->b_l1hdr.b_pabd; 6158 6159 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 6160 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 6161 } 6162 6163 /* 6164 * For authenticated bp's, we do not ask the ZIO layer 6165 * to authenticate them since this will cause the entire 6166 * IO to fail if the key isn't loaded. Instead, we 6167 * defer authentication until arc_buf_fill(), which will 6168 * verify the data when the key is available. 6169 */ 6170 if (BP_IS_AUTHENTICATED(bp)) 6171 zio_flags |= ZIO_FLAG_RAW_ENCRYPT; 6172 } 6173 6174 if (*arc_flags & ARC_FLAG_PREFETCH && 6175 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6176 if (HDR_HAS_L2HDR(hdr)) 6177 l2arc_hdr_arcstats_decrement_state(hdr); 6178 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 6179 if (HDR_HAS_L2HDR(hdr)) 6180 l2arc_hdr_arcstats_increment_state(hdr); 6181 } 6182 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 6183 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 6184 if (*arc_flags & ARC_FLAG_L2CACHE) 6185 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6186 if (BP_IS_AUTHENTICATED(bp)) 6187 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6188 if (BP_GET_LEVEL(bp) > 0) 6189 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); 6190 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH) 6191 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH); 6192 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 6193 6194 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 6195 acb->acb_done = done; 6196 acb->acb_private = private; 6197 acb->acb_compressed = compressed_read; 6198 acb->acb_encrypted = encrypted_read; 6199 acb->acb_noauth = noauth_read; 6200 acb->acb_zb = *zb; 6201 6202 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6203 hdr->b_l1hdr.b_acb = acb; 6204 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6205 6206 if (HDR_HAS_L2HDR(hdr) && 6207 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 6208 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 6209 addr = hdr->b_l2hdr.b_daddr; 6210 /* 6211 * Lock out L2ARC device removal. 6212 */ 6213 if (vdev_is_dead(vd) || 6214 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 6215 vd = NULL; 6216 } 6217 6218 /* 6219 * We count both async reads and scrub IOs as asynchronous so 6220 * that both can be upgraded in the event of a cache hit while 6221 * the read IO is still in-flight. 6222 */ 6223 if (priority == ZIO_PRIORITY_ASYNC_READ || 6224 priority == ZIO_PRIORITY_SCRUB) 6225 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6226 else 6227 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6228 6229 /* 6230 * At this point, we have a level 1 cache miss or a blkptr 6231 * with embedded data. Try again in L2ARC if possible. 6232 */ 6233 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); 6234 6235 /* 6236 * Skip ARC stat bump for block pointers with embedded 6237 * data. The data are read from the blkptr itself via 6238 * decode_embedded_bp_compressed(). 6239 */ 6240 if (!embedded_bp) { 6241 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, 6242 blkptr_t *, bp, uint64_t, lsize, 6243 zbookmark_phys_t *, zb); 6244 ARCSTAT_BUMP(arcstat_misses); 6245 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 6246 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, 6247 metadata, misses); 6248 zfs_racct_read(size, 1); 6249 } 6250 6251 /* Check if the spa even has l2 configured */ 6252 const boolean_t spa_has_l2 = l2arc_ndev != 0 && 6253 spa->spa_l2cache.sav_count > 0; 6254 6255 if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) { 6256 /* 6257 * Read from the L2ARC if the following are true: 6258 * 1. The L2ARC vdev was previously cached. 6259 * 2. This buffer still has L2ARC metadata. 6260 * 3. This buffer isn't currently writing to the L2ARC. 6261 * 4. The L2ARC entry wasn't evicted, which may 6262 * also have invalidated the vdev. 6263 * 5. This isn't prefetch or l2arc_noprefetch is 0. 6264 */ 6265 if (HDR_HAS_L2HDR(hdr) && 6266 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 6267 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 6268 l2arc_read_callback_t *cb; 6269 abd_t *abd; 6270 uint64_t asize; 6271 6272 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 6273 ARCSTAT_BUMP(arcstat_l2_hits); 6274 atomic_inc_32(&hdr->b_l2hdr.b_hits); 6275 6276 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 6277 KM_SLEEP); 6278 cb->l2rcb_hdr = hdr; 6279 cb->l2rcb_bp = *bp; 6280 cb->l2rcb_zb = *zb; 6281 cb->l2rcb_flags = zio_flags; 6282 6283 /* 6284 * When Compressed ARC is disabled, but the 6285 * L2ARC block is compressed, arc_hdr_size() 6286 * will have returned LSIZE rather than PSIZE. 6287 */ 6288 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 6289 !HDR_COMPRESSION_ENABLED(hdr) && 6290 HDR_GET_PSIZE(hdr) != 0) { 6291 size = HDR_GET_PSIZE(hdr); 6292 } 6293 6294 asize = vdev_psize_to_asize(vd, size); 6295 if (asize != size) { 6296 abd = abd_alloc_for_io(asize, 6297 HDR_ISTYPE_METADATA(hdr)); 6298 cb->l2rcb_abd = abd; 6299 } else { 6300 abd = hdr_abd; 6301 } 6302 6303 ASSERT(addr >= VDEV_LABEL_START_SIZE && 6304 addr + asize <= vd->vdev_psize - 6305 VDEV_LABEL_END_SIZE); 6306 6307 /* 6308 * l2arc read. The SCL_L2ARC lock will be 6309 * released by l2arc_read_done(). 6310 * Issue a null zio if the underlying buffer 6311 * was squashed to zero size by compression. 6312 */ 6313 ASSERT3U(arc_hdr_get_compress(hdr), !=, 6314 ZIO_COMPRESS_EMPTY); 6315 rzio = zio_read_phys(pio, vd, addr, 6316 asize, abd, 6317 ZIO_CHECKSUM_OFF, 6318 l2arc_read_done, cb, priority, 6319 zio_flags | ZIO_FLAG_DONT_CACHE | 6320 ZIO_FLAG_CANFAIL | 6321 ZIO_FLAG_DONT_PROPAGATE | 6322 ZIO_FLAG_DONT_RETRY, B_FALSE); 6323 acb->acb_zio_head = rzio; 6324 6325 if (hash_lock != NULL) 6326 mutex_exit(hash_lock); 6327 6328 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 6329 zio_t *, rzio); 6330 ARCSTAT_INCR(arcstat_l2_read_bytes, 6331 HDR_GET_PSIZE(hdr)); 6332 6333 if (*arc_flags & ARC_FLAG_NOWAIT) { 6334 zio_nowait(rzio); 6335 goto out; 6336 } 6337 6338 ASSERT(*arc_flags & ARC_FLAG_WAIT); 6339 if (zio_wait(rzio) == 0) 6340 goto out; 6341 6342 /* l2arc read error; goto zio_read() */ 6343 if (hash_lock != NULL) 6344 mutex_enter(hash_lock); 6345 } else { 6346 DTRACE_PROBE1(l2arc__miss, 6347 arc_buf_hdr_t *, hdr); 6348 ARCSTAT_BUMP(arcstat_l2_misses); 6349 if (HDR_L2_WRITING(hdr)) 6350 ARCSTAT_BUMP(arcstat_l2_rw_clash); 6351 spa_config_exit(spa, SCL_L2ARC, vd); 6352 } 6353 } else { 6354 if (vd != NULL) 6355 spa_config_exit(spa, SCL_L2ARC, vd); 6356 6357 /* 6358 * Only a spa with l2 should contribute to l2 6359 * miss stats. (Including the case of having a 6360 * faulted cache device - that's also a miss.) 6361 */ 6362 if (spa_has_l2) { 6363 /* 6364 * Skip ARC stat bump for block pointers with 6365 * embedded data. The data are read from the 6366 * blkptr itself via 6367 * decode_embedded_bp_compressed(). 6368 */ 6369 if (!embedded_bp) { 6370 DTRACE_PROBE1(l2arc__miss, 6371 arc_buf_hdr_t *, hdr); 6372 ARCSTAT_BUMP(arcstat_l2_misses); 6373 } 6374 } 6375 } 6376 6377 rzio = zio_read(pio, spa, bp, hdr_abd, size, 6378 arc_read_done, hdr, priority, zio_flags, zb); 6379 acb->acb_zio_head = rzio; 6380 6381 if (hash_lock != NULL) 6382 mutex_exit(hash_lock); 6383 6384 if (*arc_flags & ARC_FLAG_WAIT) { 6385 rc = zio_wait(rzio); 6386 goto out; 6387 } 6388 6389 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 6390 zio_nowait(rzio); 6391 } 6392 6393 out: 6394 /* embedded bps don't actually go to disk */ 6395 if (!embedded_bp) 6396 spa_read_history_add(spa, zb, *arc_flags); 6397 spl_fstrans_unmark(cookie); 6398 return (rc); 6399 } 6400 6401 arc_prune_t * 6402 arc_add_prune_callback(arc_prune_func_t *func, void *private) 6403 { 6404 arc_prune_t *p; 6405 6406 p = kmem_alloc(sizeof (*p), KM_SLEEP); 6407 p->p_pfunc = func; 6408 p->p_private = private; 6409 list_link_init(&p->p_node); 6410 zfs_refcount_create(&p->p_refcnt); 6411 6412 mutex_enter(&arc_prune_mtx); 6413 zfs_refcount_add(&p->p_refcnt, &arc_prune_list); 6414 list_insert_head(&arc_prune_list, p); 6415 mutex_exit(&arc_prune_mtx); 6416 6417 return (p); 6418 } 6419 6420 void 6421 arc_remove_prune_callback(arc_prune_t *p) 6422 { 6423 boolean_t wait = B_FALSE; 6424 mutex_enter(&arc_prune_mtx); 6425 list_remove(&arc_prune_list, p); 6426 if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0) 6427 wait = B_TRUE; 6428 mutex_exit(&arc_prune_mtx); 6429 6430 /* wait for arc_prune_task to finish */ 6431 if (wait) 6432 taskq_wait_outstanding(arc_prune_taskq, 0); 6433 ASSERT0(zfs_refcount_count(&p->p_refcnt)); 6434 zfs_refcount_destroy(&p->p_refcnt); 6435 kmem_free(p, sizeof (*p)); 6436 } 6437 6438 /* 6439 * Notify the arc that a block was freed, and thus will never be used again. 6440 */ 6441 void 6442 arc_freed(spa_t *spa, const blkptr_t *bp) 6443 { 6444 arc_buf_hdr_t *hdr; 6445 kmutex_t *hash_lock; 6446 uint64_t guid = spa_load_guid(spa); 6447 6448 ASSERT(!BP_IS_EMBEDDED(bp)); 6449 6450 hdr = buf_hash_find(guid, bp, &hash_lock); 6451 if (hdr == NULL) 6452 return; 6453 6454 /* 6455 * We might be trying to free a block that is still doing I/O 6456 * (i.e. prefetch) or has a reference (i.e. a dedup-ed, 6457 * dmu_sync-ed block). If this block is being prefetched, then it 6458 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr 6459 * until the I/O completes. A block may also have a reference if it is 6460 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would 6461 * have written the new block to its final resting place on disk but 6462 * without the dedup flag set. This would have left the hdr in the MRU 6463 * state and discoverable. When the txg finally syncs it detects that 6464 * the block was overridden in open context and issues an override I/O. 6465 * Since this is a dedup block, the override I/O will determine if the 6466 * block is already in the DDT. If so, then it will replace the io_bp 6467 * with the bp from the DDT and allow the I/O to finish. When the I/O 6468 * reaches the done callback, dbuf_write_override_done, it will 6469 * check to see if the io_bp and io_bp_override are identical. 6470 * If they are not, then it indicates that the bp was replaced with 6471 * the bp in the DDT and the override bp is freed. This allows 6472 * us to arrive here with a reference on a block that is being 6473 * freed. So if we have an I/O in progress, or a reference to 6474 * this hdr, then we don't destroy the hdr. 6475 */ 6476 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) && 6477 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) { 6478 arc_change_state(arc_anon, hdr, hash_lock); 6479 arc_hdr_destroy(hdr); 6480 mutex_exit(hash_lock); 6481 } else { 6482 mutex_exit(hash_lock); 6483 } 6484 6485 } 6486 6487 /* 6488 * Release this buffer from the cache, making it an anonymous buffer. This 6489 * must be done after a read and prior to modifying the buffer contents. 6490 * If the buffer has more than one reference, we must make 6491 * a new hdr for the buffer. 6492 */ 6493 void 6494 arc_release(arc_buf_t *buf, void *tag) 6495 { 6496 arc_buf_hdr_t *hdr = buf->b_hdr; 6497 6498 /* 6499 * It would be nice to assert that if its DMU metadata (level > 6500 * 0 || it's the dnode file), then it must be syncing context. 6501 * But we don't know that information at this level. 6502 */ 6503 6504 mutex_enter(&buf->b_evict_lock); 6505 6506 ASSERT(HDR_HAS_L1HDR(hdr)); 6507 6508 /* 6509 * We don't grab the hash lock prior to this check, because if 6510 * the buffer's header is in the arc_anon state, it won't be 6511 * linked into the hash table. 6512 */ 6513 if (hdr->b_l1hdr.b_state == arc_anon) { 6514 mutex_exit(&buf->b_evict_lock); 6515 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6516 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 6517 ASSERT(!HDR_HAS_L2HDR(hdr)); 6518 ASSERT(HDR_EMPTY(hdr)); 6519 6520 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6521 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 6522 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node)); 6523 6524 hdr->b_l1hdr.b_arc_access = 0; 6525 6526 /* 6527 * If the buf is being overridden then it may already 6528 * have a hdr that is not empty. 6529 */ 6530 buf_discard_identity(hdr); 6531 arc_buf_thaw(buf); 6532 6533 return; 6534 } 6535 6536 kmutex_t *hash_lock = HDR_LOCK(hdr); 6537 mutex_enter(hash_lock); 6538 6539 /* 6540 * This assignment is only valid as long as the hash_lock is 6541 * held, we must be careful not to reference state or the 6542 * b_state field after dropping the lock. 6543 */ 6544 arc_state_t *state = hdr->b_l1hdr.b_state; 6545 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 6546 ASSERT3P(state, !=, arc_anon); 6547 6548 /* this buffer is not on any list */ 6549 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0); 6550 6551 if (HDR_HAS_L2HDR(hdr)) { 6552 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6553 6554 /* 6555 * We have to recheck this conditional again now that 6556 * we're holding the l2ad_mtx to prevent a race with 6557 * another thread which might be concurrently calling 6558 * l2arc_evict(). In that case, l2arc_evict() might have 6559 * destroyed the header's L2 portion as we were waiting 6560 * to acquire the l2ad_mtx. 6561 */ 6562 if (HDR_HAS_L2HDR(hdr)) 6563 arc_hdr_l2hdr_destroy(hdr); 6564 6565 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6566 } 6567 6568 /* 6569 * Do we have more than one buf? 6570 */ 6571 if (hdr->b_l1hdr.b_bufcnt > 1) { 6572 arc_buf_hdr_t *nhdr; 6573 uint64_t spa = hdr->b_spa; 6574 uint64_t psize = HDR_GET_PSIZE(hdr); 6575 uint64_t lsize = HDR_GET_LSIZE(hdr); 6576 boolean_t protected = HDR_PROTECTED(hdr); 6577 enum zio_compress compress = arc_hdr_get_compress(hdr); 6578 arc_buf_contents_t type = arc_buf_type(hdr); 6579 VERIFY3U(hdr->b_type, ==, type); 6580 6581 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); 6582 (void) remove_reference(hdr, hash_lock, tag); 6583 6584 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) { 6585 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6586 ASSERT(ARC_BUF_LAST(buf)); 6587 } 6588 6589 /* 6590 * Pull the data off of this hdr and attach it to 6591 * a new anonymous hdr. Also find the last buffer 6592 * in the hdr's buffer list. 6593 */ 6594 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 6595 ASSERT3P(lastbuf, !=, NULL); 6596 6597 /* 6598 * If the current arc_buf_t and the hdr are sharing their data 6599 * buffer, then we must stop sharing that block. 6600 */ 6601 if (arc_buf_is_shared(buf)) { 6602 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6603 VERIFY(!arc_buf_is_shared(lastbuf)); 6604 6605 /* 6606 * First, sever the block sharing relationship between 6607 * buf and the arc_buf_hdr_t. 6608 */ 6609 arc_unshare_buf(hdr, buf); 6610 6611 /* 6612 * Now we need to recreate the hdr's b_pabd. Since we 6613 * have lastbuf handy, we try to share with it, but if 6614 * we can't then we allocate a new b_pabd and copy the 6615 * data from buf into it. 6616 */ 6617 if (arc_can_share(hdr, lastbuf)) { 6618 arc_share_buf(hdr, lastbuf); 6619 } else { 6620 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 6621 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, 6622 buf->b_data, psize); 6623 } 6624 VERIFY3P(lastbuf->b_data, !=, NULL); 6625 } else if (HDR_SHARED_DATA(hdr)) { 6626 /* 6627 * Uncompressed shared buffers are always at the end 6628 * of the list. Compressed buffers don't have the 6629 * same requirements. This makes it hard to 6630 * simply assert that the lastbuf is shared so 6631 * we rely on the hdr's compression flags to determine 6632 * if we have a compressed, shared buffer. 6633 */ 6634 ASSERT(arc_buf_is_shared(lastbuf) || 6635 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 6636 ASSERT(!ARC_BUF_SHARED(buf)); 6637 } 6638 6639 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 6640 ASSERT3P(state, !=, arc_l2c_only); 6641 6642 (void) zfs_refcount_remove_many(&state->arcs_size, 6643 arc_buf_size(buf), buf); 6644 6645 if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6646 ASSERT3P(state, !=, arc_l2c_only); 6647 (void) zfs_refcount_remove_many( 6648 &state->arcs_esize[type], 6649 arc_buf_size(buf), buf); 6650 } 6651 6652 hdr->b_l1hdr.b_bufcnt -= 1; 6653 if (ARC_BUF_ENCRYPTED(buf)) 6654 hdr->b_crypt_hdr.b_ebufcnt -= 1; 6655 6656 arc_cksum_verify(buf); 6657 arc_buf_unwatch(buf); 6658 6659 /* if this is the last uncompressed buf free the checksum */ 6660 if (!arc_hdr_has_uncompressed_buf(hdr)) 6661 arc_cksum_free(hdr); 6662 6663 mutex_exit(hash_lock); 6664 6665 /* 6666 * Allocate a new hdr. The new hdr will contain a b_pabd 6667 * buffer which will be freed in arc_write(). 6668 */ 6669 nhdr = arc_hdr_alloc(spa, psize, lsize, protected, 6670 compress, hdr->b_complevel, type, HDR_HAS_RABD(hdr)); 6671 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL); 6672 ASSERT0(nhdr->b_l1hdr.b_bufcnt); 6673 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt)); 6674 VERIFY3U(nhdr->b_type, ==, type); 6675 ASSERT(!HDR_SHARED_DATA(nhdr)); 6676 6677 nhdr->b_l1hdr.b_buf = buf; 6678 nhdr->b_l1hdr.b_bufcnt = 1; 6679 if (ARC_BUF_ENCRYPTED(buf)) 6680 nhdr->b_crypt_hdr.b_ebufcnt = 1; 6681 nhdr->b_l1hdr.b_mru_hits = 0; 6682 nhdr->b_l1hdr.b_mru_ghost_hits = 0; 6683 nhdr->b_l1hdr.b_mfu_hits = 0; 6684 nhdr->b_l1hdr.b_mfu_ghost_hits = 0; 6685 nhdr->b_l1hdr.b_l2_hits = 0; 6686 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 6687 buf->b_hdr = nhdr; 6688 6689 mutex_exit(&buf->b_evict_lock); 6690 (void) zfs_refcount_add_many(&arc_anon->arcs_size, 6691 arc_buf_size(buf), buf); 6692 } else { 6693 mutex_exit(&buf->b_evict_lock); 6694 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 6695 /* protected by hash lock, or hdr is on arc_anon */ 6696 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 6697 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6698 hdr->b_l1hdr.b_mru_hits = 0; 6699 hdr->b_l1hdr.b_mru_ghost_hits = 0; 6700 hdr->b_l1hdr.b_mfu_hits = 0; 6701 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 6702 hdr->b_l1hdr.b_l2_hits = 0; 6703 arc_change_state(arc_anon, hdr, hash_lock); 6704 hdr->b_l1hdr.b_arc_access = 0; 6705 6706 mutex_exit(hash_lock); 6707 buf_discard_identity(hdr); 6708 arc_buf_thaw(buf); 6709 } 6710 } 6711 6712 int 6713 arc_released(arc_buf_t *buf) 6714 { 6715 int released; 6716 6717 mutex_enter(&buf->b_evict_lock); 6718 released = (buf->b_data != NULL && 6719 buf->b_hdr->b_l1hdr.b_state == arc_anon); 6720 mutex_exit(&buf->b_evict_lock); 6721 return (released); 6722 } 6723 6724 #ifdef ZFS_DEBUG 6725 int 6726 arc_referenced(arc_buf_t *buf) 6727 { 6728 int referenced; 6729 6730 mutex_enter(&buf->b_evict_lock); 6731 referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 6732 mutex_exit(&buf->b_evict_lock); 6733 return (referenced); 6734 } 6735 #endif 6736 6737 static void 6738 arc_write_ready(zio_t *zio) 6739 { 6740 arc_write_callback_t *callback = zio->io_private; 6741 arc_buf_t *buf = callback->awcb_buf; 6742 arc_buf_hdr_t *hdr = buf->b_hdr; 6743 blkptr_t *bp = zio->io_bp; 6744 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp); 6745 fstrans_cookie_t cookie = spl_fstrans_mark(); 6746 6747 ASSERT(HDR_HAS_L1HDR(hdr)); 6748 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 6749 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 6750 6751 /* 6752 * If we're reexecuting this zio because the pool suspended, then 6753 * cleanup any state that was previously set the first time the 6754 * callback was invoked. 6755 */ 6756 if (zio->io_flags & ZIO_FLAG_REEXECUTED) { 6757 arc_cksum_free(hdr); 6758 arc_buf_unwatch(buf); 6759 if (hdr->b_l1hdr.b_pabd != NULL) { 6760 if (arc_buf_is_shared(buf)) { 6761 arc_unshare_buf(hdr, buf); 6762 } else { 6763 arc_hdr_free_abd(hdr, B_FALSE); 6764 } 6765 } 6766 6767 if (HDR_HAS_RABD(hdr)) 6768 arc_hdr_free_abd(hdr, B_TRUE); 6769 } 6770 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6771 ASSERT(!HDR_HAS_RABD(hdr)); 6772 ASSERT(!HDR_SHARED_DATA(hdr)); 6773 ASSERT(!arc_buf_is_shared(buf)); 6774 6775 callback->awcb_ready(zio, buf, callback->awcb_private); 6776 6777 if (HDR_IO_IN_PROGRESS(hdr)) 6778 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); 6779 6780 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6781 6782 if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr)) 6783 hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp)); 6784 6785 if (BP_IS_PROTECTED(bp)) { 6786 /* ZIL blocks are written through zio_rewrite */ 6787 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 6788 ASSERT(HDR_PROTECTED(hdr)); 6789 6790 if (BP_SHOULD_BYTESWAP(bp)) { 6791 if (BP_GET_LEVEL(bp) > 0) { 6792 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 6793 } else { 6794 hdr->b_l1hdr.b_byteswap = 6795 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 6796 } 6797 } else { 6798 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 6799 } 6800 6801 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 6802 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 6803 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 6804 hdr->b_crypt_hdr.b_iv); 6805 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 6806 } 6807 6808 /* 6809 * If this block was written for raw encryption but the zio layer 6810 * ended up only authenticating it, adjust the buffer flags now. 6811 */ 6812 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) { 6813 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6814 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6815 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF) 6816 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6817 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) { 6818 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6819 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6820 } 6821 6822 /* this must be done after the buffer flags are adjusted */ 6823 arc_cksum_compute(buf); 6824 6825 enum zio_compress compress; 6826 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 6827 compress = ZIO_COMPRESS_OFF; 6828 } else { 6829 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 6830 compress = BP_GET_COMPRESS(bp); 6831 } 6832 HDR_SET_PSIZE(hdr, psize); 6833 arc_hdr_set_compress(hdr, compress); 6834 hdr->b_complevel = zio->io_prop.zp_complevel; 6835 6836 if (zio->io_error != 0 || psize == 0) 6837 goto out; 6838 6839 /* 6840 * Fill the hdr with data. If the buffer is encrypted we have no choice 6841 * but to copy the data into b_radb. If the hdr is compressed, the data 6842 * we want is available from the zio, otherwise we can take it from 6843 * the buf. 6844 * 6845 * We might be able to share the buf's data with the hdr here. However, 6846 * doing so would cause the ARC to be full of linear ABDs if we write a 6847 * lot of shareable data. As a compromise, we check whether scattered 6848 * ABDs are allowed, and assume that if they are then the user wants 6849 * the ARC to be primarily filled with them regardless of the data being 6850 * written. Therefore, if they're allowed then we allocate one and copy 6851 * the data into it; otherwise, we share the data directly if we can. 6852 */ 6853 if (ARC_BUF_ENCRYPTED(buf)) { 6854 ASSERT3U(psize, >, 0); 6855 ASSERT(ARC_BUF_COMPRESSED(buf)); 6856 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA); 6857 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6858 } else if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) { 6859 /* 6860 * Ideally, we would always copy the io_abd into b_pabd, but the 6861 * user may have disabled compressed ARC, thus we must check the 6862 * hdr's compression setting rather than the io_bp's. 6863 */ 6864 if (BP_IS_ENCRYPTED(bp)) { 6865 ASSERT3U(psize, >, 0); 6866 arc_hdr_alloc_abd(hdr, 6867 ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA); 6868 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6869 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 6870 !ARC_BUF_COMPRESSED(buf)) { 6871 ASSERT3U(psize, >, 0); 6872 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 6873 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize); 6874 } else { 6875 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr)); 6876 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 6877 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data, 6878 arc_buf_size(buf)); 6879 } 6880 } else { 6881 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd)); 6882 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf)); 6883 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6884 6885 arc_share_buf(hdr, buf); 6886 } 6887 6888 out: 6889 arc_hdr_verify(hdr, bp); 6890 spl_fstrans_unmark(cookie); 6891 } 6892 6893 static void 6894 arc_write_children_ready(zio_t *zio) 6895 { 6896 arc_write_callback_t *callback = zio->io_private; 6897 arc_buf_t *buf = callback->awcb_buf; 6898 6899 callback->awcb_children_ready(zio, buf, callback->awcb_private); 6900 } 6901 6902 /* 6903 * The SPA calls this callback for each physical write that happens on behalf 6904 * of a logical write. See the comment in dbuf_write_physdone() for details. 6905 */ 6906 static void 6907 arc_write_physdone(zio_t *zio) 6908 { 6909 arc_write_callback_t *cb = zio->io_private; 6910 if (cb->awcb_physdone != NULL) 6911 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 6912 } 6913 6914 static void 6915 arc_write_done(zio_t *zio) 6916 { 6917 arc_write_callback_t *callback = zio->io_private; 6918 arc_buf_t *buf = callback->awcb_buf; 6919 arc_buf_hdr_t *hdr = buf->b_hdr; 6920 6921 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6922 6923 if (zio->io_error == 0) { 6924 arc_hdr_verify(hdr, zio->io_bp); 6925 6926 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 6927 buf_discard_identity(hdr); 6928 } else { 6929 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 6930 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 6931 } 6932 } else { 6933 ASSERT(HDR_EMPTY(hdr)); 6934 } 6935 6936 /* 6937 * If the block to be written was all-zero or compressed enough to be 6938 * embedded in the BP, no write was performed so there will be no 6939 * dva/birth/checksum. The buffer must therefore remain anonymous 6940 * (and uncached). 6941 */ 6942 if (!HDR_EMPTY(hdr)) { 6943 arc_buf_hdr_t *exists; 6944 kmutex_t *hash_lock; 6945 6946 ASSERT3U(zio->io_error, ==, 0); 6947 6948 arc_cksum_verify(buf); 6949 6950 exists = buf_hash_insert(hdr, &hash_lock); 6951 if (exists != NULL) { 6952 /* 6953 * This can only happen if we overwrite for 6954 * sync-to-convergence, because we remove 6955 * buffers from the hash table when we arc_free(). 6956 */ 6957 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 6958 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6959 panic("bad overwrite, hdr=%p exists=%p", 6960 (void *)hdr, (void *)exists); 6961 ASSERT(zfs_refcount_is_zero( 6962 &exists->b_l1hdr.b_refcnt)); 6963 arc_change_state(arc_anon, exists, hash_lock); 6964 arc_hdr_destroy(exists); 6965 mutex_exit(hash_lock); 6966 exists = buf_hash_insert(hdr, &hash_lock); 6967 ASSERT3P(exists, ==, NULL); 6968 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 6969 /* nopwrite */ 6970 ASSERT(zio->io_prop.zp_nopwrite); 6971 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6972 panic("bad nopwrite, hdr=%p exists=%p", 6973 (void *)hdr, (void *)exists); 6974 } else { 6975 /* Dedup */ 6976 ASSERT(hdr->b_l1hdr.b_bufcnt == 1); 6977 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 6978 ASSERT(BP_GET_DEDUP(zio->io_bp)); 6979 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 6980 } 6981 } 6982 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6983 /* if it's not anon, we are doing a scrub */ 6984 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 6985 arc_access(hdr, hash_lock); 6986 mutex_exit(hash_lock); 6987 } else { 6988 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6989 } 6990 6991 ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 6992 callback->awcb_done(zio, buf, callback->awcb_private); 6993 6994 abd_free(zio->io_abd); 6995 kmem_free(callback, sizeof (arc_write_callback_t)); 6996 } 6997 6998 zio_t * 6999 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 7000 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, 7001 const zio_prop_t *zp, arc_write_done_func_t *ready, 7002 arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone, 7003 arc_write_done_func_t *done, void *private, zio_priority_t priority, 7004 int zio_flags, const zbookmark_phys_t *zb) 7005 { 7006 arc_buf_hdr_t *hdr = buf->b_hdr; 7007 arc_write_callback_t *callback; 7008 zio_t *zio; 7009 zio_prop_t localprop = *zp; 7010 7011 ASSERT3P(ready, !=, NULL); 7012 ASSERT3P(done, !=, NULL); 7013 ASSERT(!HDR_IO_ERROR(hdr)); 7014 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 7015 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 7016 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 7017 if (l2arc) 7018 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 7019 7020 if (ARC_BUF_ENCRYPTED(buf)) { 7021 ASSERT(ARC_BUF_COMPRESSED(buf)); 7022 localprop.zp_encrypt = B_TRUE; 7023 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 7024 localprop.zp_complevel = hdr->b_complevel; 7025 localprop.zp_byteorder = 7026 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 7027 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 7028 bcopy(hdr->b_crypt_hdr.b_salt, localprop.zp_salt, 7029 ZIO_DATA_SALT_LEN); 7030 bcopy(hdr->b_crypt_hdr.b_iv, localprop.zp_iv, 7031 ZIO_DATA_IV_LEN); 7032 bcopy(hdr->b_crypt_hdr.b_mac, localprop.zp_mac, 7033 ZIO_DATA_MAC_LEN); 7034 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) { 7035 localprop.zp_nopwrite = B_FALSE; 7036 localprop.zp_copies = 7037 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1); 7038 } 7039 zio_flags |= ZIO_FLAG_RAW; 7040 } else if (ARC_BUF_COMPRESSED(buf)) { 7041 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf)); 7042 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 7043 localprop.zp_complevel = hdr->b_complevel; 7044 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 7045 } 7046 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 7047 callback->awcb_ready = ready; 7048 callback->awcb_children_ready = children_ready; 7049 callback->awcb_physdone = physdone; 7050 callback->awcb_done = done; 7051 callback->awcb_private = private; 7052 callback->awcb_buf = buf; 7053 7054 /* 7055 * The hdr's b_pabd is now stale, free it now. A new data block 7056 * will be allocated when the zio pipeline calls arc_write_ready(). 7057 */ 7058 if (hdr->b_l1hdr.b_pabd != NULL) { 7059 /* 7060 * If the buf is currently sharing the data block with 7061 * the hdr then we need to break that relationship here. 7062 * The hdr will remain with a NULL data pointer and the 7063 * buf will take sole ownership of the block. 7064 */ 7065 if (arc_buf_is_shared(buf)) { 7066 arc_unshare_buf(hdr, buf); 7067 } else { 7068 arc_hdr_free_abd(hdr, B_FALSE); 7069 } 7070 VERIFY3P(buf->b_data, !=, NULL); 7071 } 7072 7073 if (HDR_HAS_RABD(hdr)) 7074 arc_hdr_free_abd(hdr, B_TRUE); 7075 7076 if (!(zio_flags & ZIO_FLAG_RAW)) 7077 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); 7078 7079 ASSERT(!arc_buf_is_shared(buf)); 7080 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 7081 7082 zio = zio_write(pio, spa, txg, bp, 7083 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)), 7084 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready, 7085 (children_ready != NULL) ? arc_write_children_ready : NULL, 7086 arc_write_physdone, arc_write_done, callback, 7087 priority, zio_flags, zb); 7088 7089 return (zio); 7090 } 7091 7092 void 7093 arc_tempreserve_clear(uint64_t reserve) 7094 { 7095 atomic_add_64(&arc_tempreserve, -reserve); 7096 ASSERT((int64_t)arc_tempreserve >= 0); 7097 } 7098 7099 int 7100 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg) 7101 { 7102 int error; 7103 uint64_t anon_size; 7104 7105 if (!arc_no_grow && 7106 reserve > arc_c/4 && 7107 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT)) 7108 arc_c = MIN(arc_c_max, reserve * 4); 7109 7110 /* 7111 * Throttle when the calculated memory footprint for the TXG 7112 * exceeds the target ARC size. 7113 */ 7114 if (reserve > arc_c) { 7115 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve); 7116 return (SET_ERROR(ERESTART)); 7117 } 7118 7119 /* 7120 * Don't count loaned bufs as in flight dirty data to prevent long 7121 * network delays from blocking transactions that are ready to be 7122 * assigned to a txg. 7123 */ 7124 7125 /* assert that it has not wrapped around */ 7126 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 7127 7128 anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) - 7129 arc_loaned_bytes), 0); 7130 7131 /* 7132 * Writes will, almost always, require additional memory allocations 7133 * in order to compress/encrypt/etc the data. We therefore need to 7134 * make sure that there is sufficient available memory for this. 7135 */ 7136 error = arc_memory_throttle(spa, reserve, txg); 7137 if (error != 0) 7138 return (error); 7139 7140 /* 7141 * Throttle writes when the amount of dirty data in the cache 7142 * gets too large. We try to keep the cache less than half full 7143 * of dirty blocks so that our sync times don't grow too large. 7144 * 7145 * In the case of one pool being built on another pool, we want 7146 * to make sure we don't end up throttling the lower (backing) 7147 * pool when the upper pool is the majority contributor to dirty 7148 * data. To insure we make forward progress during throttling, we 7149 * also check the current pool's net dirty data and only throttle 7150 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty 7151 * data in the cache. 7152 * 7153 * Note: if two requests come in concurrently, we might let them 7154 * both succeed, when one of them should fail. Not a huge deal. 7155 */ 7156 uint64_t total_dirty = reserve + arc_tempreserve + anon_size; 7157 uint64_t spa_dirty_anon = spa_dirty_data(spa); 7158 uint64_t rarc_c = arc_warm ? arc_c : arc_c_max; 7159 if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 && 7160 anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 && 7161 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) { 7162 #ifdef ZFS_DEBUG 7163 uint64_t meta_esize = zfs_refcount_count( 7164 &arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7165 uint64_t data_esize = 7166 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7167 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 7168 "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n", 7169 (u_longlong_t)arc_tempreserve >> 10, 7170 (u_longlong_t)meta_esize >> 10, 7171 (u_longlong_t)data_esize >> 10, 7172 (u_longlong_t)reserve >> 10, 7173 (u_longlong_t)rarc_c >> 10); 7174 #endif 7175 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle); 7176 return (SET_ERROR(ERESTART)); 7177 } 7178 atomic_add_64(&arc_tempreserve, reserve); 7179 return (0); 7180 } 7181 7182 static void 7183 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 7184 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 7185 { 7186 size->value.ui64 = zfs_refcount_count(&state->arcs_size); 7187 evict_data->value.ui64 = 7188 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); 7189 evict_metadata->value.ui64 = 7190 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); 7191 } 7192 7193 static int 7194 arc_kstat_update(kstat_t *ksp, int rw) 7195 { 7196 arc_stats_t *as = ksp->ks_data; 7197 7198 if (rw == KSTAT_WRITE) 7199 return (SET_ERROR(EACCES)); 7200 7201 as->arcstat_hits.value.ui64 = 7202 wmsum_value(&arc_sums.arcstat_hits); 7203 as->arcstat_misses.value.ui64 = 7204 wmsum_value(&arc_sums.arcstat_misses); 7205 as->arcstat_demand_data_hits.value.ui64 = 7206 wmsum_value(&arc_sums.arcstat_demand_data_hits); 7207 as->arcstat_demand_data_misses.value.ui64 = 7208 wmsum_value(&arc_sums.arcstat_demand_data_misses); 7209 as->arcstat_demand_metadata_hits.value.ui64 = 7210 wmsum_value(&arc_sums.arcstat_demand_metadata_hits); 7211 as->arcstat_demand_metadata_misses.value.ui64 = 7212 wmsum_value(&arc_sums.arcstat_demand_metadata_misses); 7213 as->arcstat_prefetch_data_hits.value.ui64 = 7214 wmsum_value(&arc_sums.arcstat_prefetch_data_hits); 7215 as->arcstat_prefetch_data_misses.value.ui64 = 7216 wmsum_value(&arc_sums.arcstat_prefetch_data_misses); 7217 as->arcstat_prefetch_metadata_hits.value.ui64 = 7218 wmsum_value(&arc_sums.arcstat_prefetch_metadata_hits); 7219 as->arcstat_prefetch_metadata_misses.value.ui64 = 7220 wmsum_value(&arc_sums.arcstat_prefetch_metadata_misses); 7221 as->arcstat_mru_hits.value.ui64 = 7222 wmsum_value(&arc_sums.arcstat_mru_hits); 7223 as->arcstat_mru_ghost_hits.value.ui64 = 7224 wmsum_value(&arc_sums.arcstat_mru_ghost_hits); 7225 as->arcstat_mfu_hits.value.ui64 = 7226 wmsum_value(&arc_sums.arcstat_mfu_hits); 7227 as->arcstat_mfu_ghost_hits.value.ui64 = 7228 wmsum_value(&arc_sums.arcstat_mfu_ghost_hits); 7229 as->arcstat_deleted.value.ui64 = 7230 wmsum_value(&arc_sums.arcstat_deleted); 7231 as->arcstat_mutex_miss.value.ui64 = 7232 wmsum_value(&arc_sums.arcstat_mutex_miss); 7233 as->arcstat_access_skip.value.ui64 = 7234 wmsum_value(&arc_sums.arcstat_access_skip); 7235 as->arcstat_evict_skip.value.ui64 = 7236 wmsum_value(&arc_sums.arcstat_evict_skip); 7237 as->arcstat_evict_not_enough.value.ui64 = 7238 wmsum_value(&arc_sums.arcstat_evict_not_enough); 7239 as->arcstat_evict_l2_cached.value.ui64 = 7240 wmsum_value(&arc_sums.arcstat_evict_l2_cached); 7241 as->arcstat_evict_l2_eligible.value.ui64 = 7242 wmsum_value(&arc_sums.arcstat_evict_l2_eligible); 7243 as->arcstat_evict_l2_eligible_mfu.value.ui64 = 7244 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mfu); 7245 as->arcstat_evict_l2_eligible_mru.value.ui64 = 7246 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mru); 7247 as->arcstat_evict_l2_ineligible.value.ui64 = 7248 wmsum_value(&arc_sums.arcstat_evict_l2_ineligible); 7249 as->arcstat_evict_l2_skip.value.ui64 = 7250 wmsum_value(&arc_sums.arcstat_evict_l2_skip); 7251 as->arcstat_hash_collisions.value.ui64 = 7252 wmsum_value(&arc_sums.arcstat_hash_collisions); 7253 as->arcstat_hash_chains.value.ui64 = 7254 wmsum_value(&arc_sums.arcstat_hash_chains); 7255 as->arcstat_size.value.ui64 = 7256 aggsum_value(&arc_sums.arcstat_size); 7257 as->arcstat_compressed_size.value.ui64 = 7258 wmsum_value(&arc_sums.arcstat_compressed_size); 7259 as->arcstat_uncompressed_size.value.ui64 = 7260 wmsum_value(&arc_sums.arcstat_uncompressed_size); 7261 as->arcstat_overhead_size.value.ui64 = 7262 wmsum_value(&arc_sums.arcstat_overhead_size); 7263 as->arcstat_hdr_size.value.ui64 = 7264 wmsum_value(&arc_sums.arcstat_hdr_size); 7265 as->arcstat_data_size.value.ui64 = 7266 wmsum_value(&arc_sums.arcstat_data_size); 7267 as->arcstat_metadata_size.value.ui64 = 7268 wmsum_value(&arc_sums.arcstat_metadata_size); 7269 as->arcstat_dbuf_size.value.ui64 = 7270 wmsum_value(&arc_sums.arcstat_dbuf_size); 7271 #if defined(COMPAT_FREEBSD11) 7272 as->arcstat_other_size.value.ui64 = 7273 wmsum_value(&arc_sums.arcstat_bonus_size) + 7274 aggsum_value(&arc_sums.arcstat_dnode_size) + 7275 wmsum_value(&arc_sums.arcstat_dbuf_size); 7276 #endif 7277 7278 arc_kstat_update_state(arc_anon, 7279 &as->arcstat_anon_size, 7280 &as->arcstat_anon_evictable_data, 7281 &as->arcstat_anon_evictable_metadata); 7282 arc_kstat_update_state(arc_mru, 7283 &as->arcstat_mru_size, 7284 &as->arcstat_mru_evictable_data, 7285 &as->arcstat_mru_evictable_metadata); 7286 arc_kstat_update_state(arc_mru_ghost, 7287 &as->arcstat_mru_ghost_size, 7288 &as->arcstat_mru_ghost_evictable_data, 7289 &as->arcstat_mru_ghost_evictable_metadata); 7290 arc_kstat_update_state(arc_mfu, 7291 &as->arcstat_mfu_size, 7292 &as->arcstat_mfu_evictable_data, 7293 &as->arcstat_mfu_evictable_metadata); 7294 arc_kstat_update_state(arc_mfu_ghost, 7295 &as->arcstat_mfu_ghost_size, 7296 &as->arcstat_mfu_ghost_evictable_data, 7297 &as->arcstat_mfu_ghost_evictable_metadata); 7298 7299 as->arcstat_dnode_size.value.ui64 = 7300 aggsum_value(&arc_sums.arcstat_dnode_size); 7301 as->arcstat_bonus_size.value.ui64 = 7302 wmsum_value(&arc_sums.arcstat_bonus_size); 7303 as->arcstat_l2_hits.value.ui64 = 7304 wmsum_value(&arc_sums.arcstat_l2_hits); 7305 as->arcstat_l2_misses.value.ui64 = 7306 wmsum_value(&arc_sums.arcstat_l2_misses); 7307 as->arcstat_l2_prefetch_asize.value.ui64 = 7308 wmsum_value(&arc_sums.arcstat_l2_prefetch_asize); 7309 as->arcstat_l2_mru_asize.value.ui64 = 7310 wmsum_value(&arc_sums.arcstat_l2_mru_asize); 7311 as->arcstat_l2_mfu_asize.value.ui64 = 7312 wmsum_value(&arc_sums.arcstat_l2_mfu_asize); 7313 as->arcstat_l2_bufc_data_asize.value.ui64 = 7314 wmsum_value(&arc_sums.arcstat_l2_bufc_data_asize); 7315 as->arcstat_l2_bufc_metadata_asize.value.ui64 = 7316 wmsum_value(&arc_sums.arcstat_l2_bufc_metadata_asize); 7317 as->arcstat_l2_feeds.value.ui64 = 7318 wmsum_value(&arc_sums.arcstat_l2_feeds); 7319 as->arcstat_l2_rw_clash.value.ui64 = 7320 wmsum_value(&arc_sums.arcstat_l2_rw_clash); 7321 as->arcstat_l2_read_bytes.value.ui64 = 7322 wmsum_value(&arc_sums.arcstat_l2_read_bytes); 7323 as->arcstat_l2_write_bytes.value.ui64 = 7324 wmsum_value(&arc_sums.arcstat_l2_write_bytes); 7325 as->arcstat_l2_writes_sent.value.ui64 = 7326 wmsum_value(&arc_sums.arcstat_l2_writes_sent); 7327 as->arcstat_l2_writes_done.value.ui64 = 7328 wmsum_value(&arc_sums.arcstat_l2_writes_done); 7329 as->arcstat_l2_writes_error.value.ui64 = 7330 wmsum_value(&arc_sums.arcstat_l2_writes_error); 7331 as->arcstat_l2_writes_lock_retry.value.ui64 = 7332 wmsum_value(&arc_sums.arcstat_l2_writes_lock_retry); 7333 as->arcstat_l2_evict_lock_retry.value.ui64 = 7334 wmsum_value(&arc_sums.arcstat_l2_evict_lock_retry); 7335 as->arcstat_l2_evict_reading.value.ui64 = 7336 wmsum_value(&arc_sums.arcstat_l2_evict_reading); 7337 as->arcstat_l2_evict_l1cached.value.ui64 = 7338 wmsum_value(&arc_sums.arcstat_l2_evict_l1cached); 7339 as->arcstat_l2_free_on_write.value.ui64 = 7340 wmsum_value(&arc_sums.arcstat_l2_free_on_write); 7341 as->arcstat_l2_abort_lowmem.value.ui64 = 7342 wmsum_value(&arc_sums.arcstat_l2_abort_lowmem); 7343 as->arcstat_l2_cksum_bad.value.ui64 = 7344 wmsum_value(&arc_sums.arcstat_l2_cksum_bad); 7345 as->arcstat_l2_io_error.value.ui64 = 7346 wmsum_value(&arc_sums.arcstat_l2_io_error); 7347 as->arcstat_l2_lsize.value.ui64 = 7348 wmsum_value(&arc_sums.arcstat_l2_lsize); 7349 as->arcstat_l2_psize.value.ui64 = 7350 wmsum_value(&arc_sums.arcstat_l2_psize); 7351 as->arcstat_l2_hdr_size.value.ui64 = 7352 aggsum_value(&arc_sums.arcstat_l2_hdr_size); 7353 as->arcstat_l2_log_blk_writes.value.ui64 = 7354 wmsum_value(&arc_sums.arcstat_l2_log_blk_writes); 7355 as->arcstat_l2_log_blk_asize.value.ui64 = 7356 wmsum_value(&arc_sums.arcstat_l2_log_blk_asize); 7357 as->arcstat_l2_log_blk_count.value.ui64 = 7358 wmsum_value(&arc_sums.arcstat_l2_log_blk_count); 7359 as->arcstat_l2_rebuild_success.value.ui64 = 7360 wmsum_value(&arc_sums.arcstat_l2_rebuild_success); 7361 as->arcstat_l2_rebuild_abort_unsupported.value.ui64 = 7362 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_unsupported); 7363 as->arcstat_l2_rebuild_abort_io_errors.value.ui64 = 7364 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_io_errors); 7365 as->arcstat_l2_rebuild_abort_dh_errors.value.ui64 = 7366 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_dh_errors); 7367 as->arcstat_l2_rebuild_abort_cksum_lb_errors.value.ui64 = 7368 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors); 7369 as->arcstat_l2_rebuild_abort_lowmem.value.ui64 = 7370 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_lowmem); 7371 as->arcstat_l2_rebuild_size.value.ui64 = 7372 wmsum_value(&arc_sums.arcstat_l2_rebuild_size); 7373 as->arcstat_l2_rebuild_asize.value.ui64 = 7374 wmsum_value(&arc_sums.arcstat_l2_rebuild_asize); 7375 as->arcstat_l2_rebuild_bufs.value.ui64 = 7376 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs); 7377 as->arcstat_l2_rebuild_bufs_precached.value.ui64 = 7378 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs_precached); 7379 as->arcstat_l2_rebuild_log_blks.value.ui64 = 7380 wmsum_value(&arc_sums.arcstat_l2_rebuild_log_blks); 7381 as->arcstat_memory_throttle_count.value.ui64 = 7382 wmsum_value(&arc_sums.arcstat_memory_throttle_count); 7383 as->arcstat_memory_direct_count.value.ui64 = 7384 wmsum_value(&arc_sums.arcstat_memory_direct_count); 7385 as->arcstat_memory_indirect_count.value.ui64 = 7386 wmsum_value(&arc_sums.arcstat_memory_indirect_count); 7387 7388 as->arcstat_memory_all_bytes.value.ui64 = 7389 arc_all_memory(); 7390 as->arcstat_memory_free_bytes.value.ui64 = 7391 arc_free_memory(); 7392 as->arcstat_memory_available_bytes.value.i64 = 7393 arc_available_memory(); 7394 7395 as->arcstat_prune.value.ui64 = 7396 wmsum_value(&arc_sums.arcstat_prune); 7397 as->arcstat_meta_used.value.ui64 = 7398 aggsum_value(&arc_sums.arcstat_meta_used); 7399 as->arcstat_async_upgrade_sync.value.ui64 = 7400 wmsum_value(&arc_sums.arcstat_async_upgrade_sync); 7401 as->arcstat_demand_hit_predictive_prefetch.value.ui64 = 7402 wmsum_value(&arc_sums.arcstat_demand_hit_predictive_prefetch); 7403 as->arcstat_demand_hit_prescient_prefetch.value.ui64 = 7404 wmsum_value(&arc_sums.arcstat_demand_hit_prescient_prefetch); 7405 as->arcstat_raw_size.value.ui64 = 7406 wmsum_value(&arc_sums.arcstat_raw_size); 7407 as->arcstat_cached_only_in_progress.value.ui64 = 7408 wmsum_value(&arc_sums.arcstat_cached_only_in_progress); 7409 as->arcstat_abd_chunk_waste_size.value.ui64 = 7410 wmsum_value(&arc_sums.arcstat_abd_chunk_waste_size); 7411 7412 return (0); 7413 } 7414 7415 /* 7416 * This function *must* return indices evenly distributed between all 7417 * sublists of the multilist. This is needed due to how the ARC eviction 7418 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 7419 * distributed between all sublists and uses this assumption when 7420 * deciding which sublist to evict from and how much to evict from it. 7421 */ 7422 static unsigned int 7423 arc_state_multilist_index_func(multilist_t *ml, void *obj) 7424 { 7425 arc_buf_hdr_t *hdr = obj; 7426 7427 /* 7428 * We rely on b_dva to generate evenly distributed index 7429 * numbers using buf_hash below. So, as an added precaution, 7430 * let's make sure we never add empty buffers to the arc lists. 7431 */ 7432 ASSERT(!HDR_EMPTY(hdr)); 7433 7434 /* 7435 * The assumption here, is the hash value for a given 7436 * arc_buf_hdr_t will remain constant throughout its lifetime 7437 * (i.e. its b_spa, b_dva, and b_birth fields don't change). 7438 * Thus, we don't need to store the header's sublist index 7439 * on insertion, as this index can be recalculated on removal. 7440 * 7441 * Also, the low order bits of the hash value are thought to be 7442 * distributed evenly. Otherwise, in the case that the multilist 7443 * has a power of two number of sublists, each sublists' usage 7444 * would not be evenly distributed. In this context full 64bit 7445 * division would be a waste of time, so limit it to 32 bits. 7446 */ 7447 return ((unsigned int)buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 7448 multilist_get_num_sublists(ml)); 7449 } 7450 7451 #define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \ 7452 if ((do_warn) && (tuning) && ((tuning) != (value))) { \ 7453 cmn_err(CE_WARN, \ 7454 "ignoring tunable %s (using %llu instead)", \ 7455 (#tuning), (value)); \ 7456 } \ 7457 } while (0) 7458 7459 /* 7460 * Called during module initialization and periodically thereafter to 7461 * apply reasonable changes to the exposed performance tunings. Can also be 7462 * called explicitly by param_set_arc_*() functions when ARC tunables are 7463 * updated manually. Non-zero zfs_* values which differ from the currently set 7464 * values will be applied. 7465 */ 7466 void 7467 arc_tuning_update(boolean_t verbose) 7468 { 7469 uint64_t allmem = arc_all_memory(); 7470 unsigned long limit; 7471 7472 /* Valid range: 32M - <arc_c_max> */ 7473 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) && 7474 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) && 7475 (zfs_arc_min <= arc_c_max)) { 7476 arc_c_min = zfs_arc_min; 7477 arc_c = MAX(arc_c, arc_c_min); 7478 } 7479 WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose); 7480 7481 /* Valid range: 64M - <all physical memory> */ 7482 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) && 7483 (zfs_arc_max >= 64 << 20) && (zfs_arc_max < allmem) && 7484 (zfs_arc_max > arc_c_min)) { 7485 arc_c_max = zfs_arc_max; 7486 arc_c = MIN(arc_c, arc_c_max); 7487 arc_p = (arc_c >> 1); 7488 if (arc_meta_limit > arc_c_max) 7489 arc_meta_limit = arc_c_max; 7490 if (arc_dnode_size_limit > arc_meta_limit) 7491 arc_dnode_size_limit = arc_meta_limit; 7492 } 7493 WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose); 7494 7495 /* Valid range: 16M - <arc_c_max> */ 7496 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) && 7497 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) && 7498 (zfs_arc_meta_min <= arc_c_max)) { 7499 arc_meta_min = zfs_arc_meta_min; 7500 if (arc_meta_limit < arc_meta_min) 7501 arc_meta_limit = arc_meta_min; 7502 if (arc_dnode_size_limit < arc_meta_min) 7503 arc_dnode_size_limit = arc_meta_min; 7504 } 7505 WARN_IF_TUNING_IGNORED(zfs_arc_meta_min, arc_meta_min, verbose); 7506 7507 /* Valid range: <arc_meta_min> - <arc_c_max> */ 7508 limit = zfs_arc_meta_limit ? zfs_arc_meta_limit : 7509 MIN(zfs_arc_meta_limit_percent, 100) * arc_c_max / 100; 7510 if ((limit != arc_meta_limit) && 7511 (limit >= arc_meta_min) && 7512 (limit <= arc_c_max)) 7513 arc_meta_limit = limit; 7514 WARN_IF_TUNING_IGNORED(zfs_arc_meta_limit, arc_meta_limit, verbose); 7515 7516 /* Valid range: <arc_meta_min> - <arc_meta_limit> */ 7517 limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit : 7518 MIN(zfs_arc_dnode_limit_percent, 100) * arc_meta_limit / 100; 7519 if ((limit != arc_dnode_size_limit) && 7520 (limit >= arc_meta_min) && 7521 (limit <= arc_meta_limit)) 7522 arc_dnode_size_limit = limit; 7523 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_size_limit, 7524 verbose); 7525 7526 /* Valid range: 1 - N */ 7527 if (zfs_arc_grow_retry) 7528 arc_grow_retry = zfs_arc_grow_retry; 7529 7530 /* Valid range: 1 - N */ 7531 if (zfs_arc_shrink_shift) { 7532 arc_shrink_shift = zfs_arc_shrink_shift; 7533 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1); 7534 } 7535 7536 /* Valid range: 1 - N */ 7537 if (zfs_arc_p_min_shift) 7538 arc_p_min_shift = zfs_arc_p_min_shift; 7539 7540 /* Valid range: 1 - N ms */ 7541 if (zfs_arc_min_prefetch_ms) 7542 arc_min_prefetch_ms = zfs_arc_min_prefetch_ms; 7543 7544 /* Valid range: 1 - N ms */ 7545 if (zfs_arc_min_prescient_prefetch_ms) { 7546 arc_min_prescient_prefetch_ms = 7547 zfs_arc_min_prescient_prefetch_ms; 7548 } 7549 7550 /* Valid range: 0 - 100 */ 7551 if ((zfs_arc_lotsfree_percent >= 0) && 7552 (zfs_arc_lotsfree_percent <= 100)) 7553 arc_lotsfree_percent = zfs_arc_lotsfree_percent; 7554 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent, 7555 verbose); 7556 7557 /* Valid range: 0 - <all physical memory> */ 7558 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free)) 7559 arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), allmem); 7560 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose); 7561 } 7562 7563 static void 7564 arc_state_init(void) 7565 { 7566 arc_anon = &ARC_anon; 7567 arc_mru = &ARC_mru; 7568 arc_mru_ghost = &ARC_mru_ghost; 7569 arc_mfu = &ARC_mfu; 7570 arc_mfu_ghost = &ARC_mfu_ghost; 7571 arc_l2c_only = &ARC_l2c_only; 7572 7573 multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 7574 sizeof (arc_buf_hdr_t), 7575 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7576 arc_state_multilist_index_func); 7577 multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 7578 sizeof (arc_buf_hdr_t), 7579 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7580 arc_state_multilist_index_func); 7581 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 7582 sizeof (arc_buf_hdr_t), 7583 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7584 arc_state_multilist_index_func); 7585 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 7586 sizeof (arc_buf_hdr_t), 7587 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7588 arc_state_multilist_index_func); 7589 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 7590 sizeof (arc_buf_hdr_t), 7591 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7592 arc_state_multilist_index_func); 7593 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 7594 sizeof (arc_buf_hdr_t), 7595 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7596 arc_state_multilist_index_func); 7597 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 7598 sizeof (arc_buf_hdr_t), 7599 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7600 arc_state_multilist_index_func); 7601 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 7602 sizeof (arc_buf_hdr_t), 7603 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7604 arc_state_multilist_index_func); 7605 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 7606 sizeof (arc_buf_hdr_t), 7607 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7608 arc_state_multilist_index_func); 7609 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 7610 sizeof (arc_buf_hdr_t), 7611 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7612 arc_state_multilist_index_func); 7613 7614 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7615 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7616 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7617 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7618 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7619 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7620 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7621 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7622 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7623 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7624 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7625 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7626 7627 zfs_refcount_create(&arc_anon->arcs_size); 7628 zfs_refcount_create(&arc_mru->arcs_size); 7629 zfs_refcount_create(&arc_mru_ghost->arcs_size); 7630 zfs_refcount_create(&arc_mfu->arcs_size); 7631 zfs_refcount_create(&arc_mfu_ghost->arcs_size); 7632 zfs_refcount_create(&arc_l2c_only->arcs_size); 7633 7634 wmsum_init(&arc_sums.arcstat_hits, 0); 7635 wmsum_init(&arc_sums.arcstat_misses, 0); 7636 wmsum_init(&arc_sums.arcstat_demand_data_hits, 0); 7637 wmsum_init(&arc_sums.arcstat_demand_data_misses, 0); 7638 wmsum_init(&arc_sums.arcstat_demand_metadata_hits, 0); 7639 wmsum_init(&arc_sums.arcstat_demand_metadata_misses, 0); 7640 wmsum_init(&arc_sums.arcstat_prefetch_data_hits, 0); 7641 wmsum_init(&arc_sums.arcstat_prefetch_data_misses, 0); 7642 wmsum_init(&arc_sums.arcstat_prefetch_metadata_hits, 0); 7643 wmsum_init(&arc_sums.arcstat_prefetch_metadata_misses, 0); 7644 wmsum_init(&arc_sums.arcstat_mru_hits, 0); 7645 wmsum_init(&arc_sums.arcstat_mru_ghost_hits, 0); 7646 wmsum_init(&arc_sums.arcstat_mfu_hits, 0); 7647 wmsum_init(&arc_sums.arcstat_mfu_ghost_hits, 0); 7648 wmsum_init(&arc_sums.arcstat_deleted, 0); 7649 wmsum_init(&arc_sums.arcstat_mutex_miss, 0); 7650 wmsum_init(&arc_sums.arcstat_access_skip, 0); 7651 wmsum_init(&arc_sums.arcstat_evict_skip, 0); 7652 wmsum_init(&arc_sums.arcstat_evict_not_enough, 0); 7653 wmsum_init(&arc_sums.arcstat_evict_l2_cached, 0); 7654 wmsum_init(&arc_sums.arcstat_evict_l2_eligible, 0); 7655 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mfu, 0); 7656 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mru, 0); 7657 wmsum_init(&arc_sums.arcstat_evict_l2_ineligible, 0); 7658 wmsum_init(&arc_sums.arcstat_evict_l2_skip, 0); 7659 wmsum_init(&arc_sums.arcstat_hash_collisions, 0); 7660 wmsum_init(&arc_sums.arcstat_hash_chains, 0); 7661 aggsum_init(&arc_sums.arcstat_size, 0); 7662 wmsum_init(&arc_sums.arcstat_compressed_size, 0); 7663 wmsum_init(&arc_sums.arcstat_uncompressed_size, 0); 7664 wmsum_init(&arc_sums.arcstat_overhead_size, 0); 7665 wmsum_init(&arc_sums.arcstat_hdr_size, 0); 7666 wmsum_init(&arc_sums.arcstat_data_size, 0); 7667 wmsum_init(&arc_sums.arcstat_metadata_size, 0); 7668 wmsum_init(&arc_sums.arcstat_dbuf_size, 0); 7669 aggsum_init(&arc_sums.arcstat_dnode_size, 0); 7670 wmsum_init(&arc_sums.arcstat_bonus_size, 0); 7671 wmsum_init(&arc_sums.arcstat_l2_hits, 0); 7672 wmsum_init(&arc_sums.arcstat_l2_misses, 0); 7673 wmsum_init(&arc_sums.arcstat_l2_prefetch_asize, 0); 7674 wmsum_init(&arc_sums.arcstat_l2_mru_asize, 0); 7675 wmsum_init(&arc_sums.arcstat_l2_mfu_asize, 0); 7676 wmsum_init(&arc_sums.arcstat_l2_bufc_data_asize, 0); 7677 wmsum_init(&arc_sums.arcstat_l2_bufc_metadata_asize, 0); 7678 wmsum_init(&arc_sums.arcstat_l2_feeds, 0); 7679 wmsum_init(&arc_sums.arcstat_l2_rw_clash, 0); 7680 wmsum_init(&arc_sums.arcstat_l2_read_bytes, 0); 7681 wmsum_init(&arc_sums.arcstat_l2_write_bytes, 0); 7682 wmsum_init(&arc_sums.arcstat_l2_writes_sent, 0); 7683 wmsum_init(&arc_sums.arcstat_l2_writes_done, 0); 7684 wmsum_init(&arc_sums.arcstat_l2_writes_error, 0); 7685 wmsum_init(&arc_sums.arcstat_l2_writes_lock_retry, 0); 7686 wmsum_init(&arc_sums.arcstat_l2_evict_lock_retry, 0); 7687 wmsum_init(&arc_sums.arcstat_l2_evict_reading, 0); 7688 wmsum_init(&arc_sums.arcstat_l2_evict_l1cached, 0); 7689 wmsum_init(&arc_sums.arcstat_l2_free_on_write, 0); 7690 wmsum_init(&arc_sums.arcstat_l2_abort_lowmem, 0); 7691 wmsum_init(&arc_sums.arcstat_l2_cksum_bad, 0); 7692 wmsum_init(&arc_sums.arcstat_l2_io_error, 0); 7693 wmsum_init(&arc_sums.arcstat_l2_lsize, 0); 7694 wmsum_init(&arc_sums.arcstat_l2_psize, 0); 7695 aggsum_init(&arc_sums.arcstat_l2_hdr_size, 0); 7696 wmsum_init(&arc_sums.arcstat_l2_log_blk_writes, 0); 7697 wmsum_init(&arc_sums.arcstat_l2_log_blk_asize, 0); 7698 wmsum_init(&arc_sums.arcstat_l2_log_blk_count, 0); 7699 wmsum_init(&arc_sums.arcstat_l2_rebuild_success, 0); 7700 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_unsupported, 0); 7701 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_io_errors, 0); 7702 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_dh_errors, 0); 7703 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors, 0); 7704 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_lowmem, 0); 7705 wmsum_init(&arc_sums.arcstat_l2_rebuild_size, 0); 7706 wmsum_init(&arc_sums.arcstat_l2_rebuild_asize, 0); 7707 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs, 0); 7708 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs_precached, 0); 7709 wmsum_init(&arc_sums.arcstat_l2_rebuild_log_blks, 0); 7710 wmsum_init(&arc_sums.arcstat_memory_throttle_count, 0); 7711 wmsum_init(&arc_sums.arcstat_memory_direct_count, 0); 7712 wmsum_init(&arc_sums.arcstat_memory_indirect_count, 0); 7713 wmsum_init(&arc_sums.arcstat_prune, 0); 7714 aggsum_init(&arc_sums.arcstat_meta_used, 0); 7715 wmsum_init(&arc_sums.arcstat_async_upgrade_sync, 0); 7716 wmsum_init(&arc_sums.arcstat_demand_hit_predictive_prefetch, 0); 7717 wmsum_init(&arc_sums.arcstat_demand_hit_prescient_prefetch, 0); 7718 wmsum_init(&arc_sums.arcstat_raw_size, 0); 7719 wmsum_init(&arc_sums.arcstat_cached_only_in_progress, 0); 7720 wmsum_init(&arc_sums.arcstat_abd_chunk_waste_size, 0); 7721 7722 arc_anon->arcs_state = ARC_STATE_ANON; 7723 arc_mru->arcs_state = ARC_STATE_MRU; 7724 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST; 7725 arc_mfu->arcs_state = ARC_STATE_MFU; 7726 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST; 7727 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY; 7728 } 7729 7730 static void 7731 arc_state_fini(void) 7732 { 7733 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7734 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7735 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7736 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7737 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7738 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7739 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7740 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7741 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7742 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7743 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7744 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7745 7746 zfs_refcount_destroy(&arc_anon->arcs_size); 7747 zfs_refcount_destroy(&arc_mru->arcs_size); 7748 zfs_refcount_destroy(&arc_mru_ghost->arcs_size); 7749 zfs_refcount_destroy(&arc_mfu->arcs_size); 7750 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size); 7751 zfs_refcount_destroy(&arc_l2c_only->arcs_size); 7752 7753 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 7754 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 7755 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 7756 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 7757 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 7758 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 7759 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 7760 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 7761 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]); 7762 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]); 7763 7764 wmsum_fini(&arc_sums.arcstat_hits); 7765 wmsum_fini(&arc_sums.arcstat_misses); 7766 wmsum_fini(&arc_sums.arcstat_demand_data_hits); 7767 wmsum_fini(&arc_sums.arcstat_demand_data_misses); 7768 wmsum_fini(&arc_sums.arcstat_demand_metadata_hits); 7769 wmsum_fini(&arc_sums.arcstat_demand_metadata_misses); 7770 wmsum_fini(&arc_sums.arcstat_prefetch_data_hits); 7771 wmsum_fini(&arc_sums.arcstat_prefetch_data_misses); 7772 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_hits); 7773 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_misses); 7774 wmsum_fini(&arc_sums.arcstat_mru_hits); 7775 wmsum_fini(&arc_sums.arcstat_mru_ghost_hits); 7776 wmsum_fini(&arc_sums.arcstat_mfu_hits); 7777 wmsum_fini(&arc_sums.arcstat_mfu_ghost_hits); 7778 wmsum_fini(&arc_sums.arcstat_deleted); 7779 wmsum_fini(&arc_sums.arcstat_mutex_miss); 7780 wmsum_fini(&arc_sums.arcstat_access_skip); 7781 wmsum_fini(&arc_sums.arcstat_evict_skip); 7782 wmsum_fini(&arc_sums.arcstat_evict_not_enough); 7783 wmsum_fini(&arc_sums.arcstat_evict_l2_cached); 7784 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible); 7785 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mfu); 7786 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mru); 7787 wmsum_fini(&arc_sums.arcstat_evict_l2_ineligible); 7788 wmsum_fini(&arc_sums.arcstat_evict_l2_skip); 7789 wmsum_fini(&arc_sums.arcstat_hash_collisions); 7790 wmsum_fini(&arc_sums.arcstat_hash_chains); 7791 aggsum_fini(&arc_sums.arcstat_size); 7792 wmsum_fini(&arc_sums.arcstat_compressed_size); 7793 wmsum_fini(&arc_sums.arcstat_uncompressed_size); 7794 wmsum_fini(&arc_sums.arcstat_overhead_size); 7795 wmsum_fini(&arc_sums.arcstat_hdr_size); 7796 wmsum_fini(&arc_sums.arcstat_data_size); 7797 wmsum_fini(&arc_sums.arcstat_metadata_size); 7798 wmsum_fini(&arc_sums.arcstat_dbuf_size); 7799 aggsum_fini(&arc_sums.arcstat_dnode_size); 7800 wmsum_fini(&arc_sums.arcstat_bonus_size); 7801 wmsum_fini(&arc_sums.arcstat_l2_hits); 7802 wmsum_fini(&arc_sums.arcstat_l2_misses); 7803 wmsum_fini(&arc_sums.arcstat_l2_prefetch_asize); 7804 wmsum_fini(&arc_sums.arcstat_l2_mru_asize); 7805 wmsum_fini(&arc_sums.arcstat_l2_mfu_asize); 7806 wmsum_fini(&arc_sums.arcstat_l2_bufc_data_asize); 7807 wmsum_fini(&arc_sums.arcstat_l2_bufc_metadata_asize); 7808 wmsum_fini(&arc_sums.arcstat_l2_feeds); 7809 wmsum_fini(&arc_sums.arcstat_l2_rw_clash); 7810 wmsum_fini(&arc_sums.arcstat_l2_read_bytes); 7811 wmsum_fini(&arc_sums.arcstat_l2_write_bytes); 7812 wmsum_fini(&arc_sums.arcstat_l2_writes_sent); 7813 wmsum_fini(&arc_sums.arcstat_l2_writes_done); 7814 wmsum_fini(&arc_sums.arcstat_l2_writes_error); 7815 wmsum_fini(&arc_sums.arcstat_l2_writes_lock_retry); 7816 wmsum_fini(&arc_sums.arcstat_l2_evict_lock_retry); 7817 wmsum_fini(&arc_sums.arcstat_l2_evict_reading); 7818 wmsum_fini(&arc_sums.arcstat_l2_evict_l1cached); 7819 wmsum_fini(&arc_sums.arcstat_l2_free_on_write); 7820 wmsum_fini(&arc_sums.arcstat_l2_abort_lowmem); 7821 wmsum_fini(&arc_sums.arcstat_l2_cksum_bad); 7822 wmsum_fini(&arc_sums.arcstat_l2_io_error); 7823 wmsum_fini(&arc_sums.arcstat_l2_lsize); 7824 wmsum_fini(&arc_sums.arcstat_l2_psize); 7825 aggsum_fini(&arc_sums.arcstat_l2_hdr_size); 7826 wmsum_fini(&arc_sums.arcstat_l2_log_blk_writes); 7827 wmsum_fini(&arc_sums.arcstat_l2_log_blk_asize); 7828 wmsum_fini(&arc_sums.arcstat_l2_log_blk_count); 7829 wmsum_fini(&arc_sums.arcstat_l2_rebuild_success); 7830 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_unsupported); 7831 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_io_errors); 7832 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_dh_errors); 7833 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors); 7834 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_lowmem); 7835 wmsum_fini(&arc_sums.arcstat_l2_rebuild_size); 7836 wmsum_fini(&arc_sums.arcstat_l2_rebuild_asize); 7837 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs); 7838 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs_precached); 7839 wmsum_fini(&arc_sums.arcstat_l2_rebuild_log_blks); 7840 wmsum_fini(&arc_sums.arcstat_memory_throttle_count); 7841 wmsum_fini(&arc_sums.arcstat_memory_direct_count); 7842 wmsum_fini(&arc_sums.arcstat_memory_indirect_count); 7843 wmsum_fini(&arc_sums.arcstat_prune); 7844 aggsum_fini(&arc_sums.arcstat_meta_used); 7845 wmsum_fini(&arc_sums.arcstat_async_upgrade_sync); 7846 wmsum_fini(&arc_sums.arcstat_demand_hit_predictive_prefetch); 7847 wmsum_fini(&arc_sums.arcstat_demand_hit_prescient_prefetch); 7848 wmsum_fini(&arc_sums.arcstat_raw_size); 7849 wmsum_fini(&arc_sums.arcstat_cached_only_in_progress); 7850 wmsum_fini(&arc_sums.arcstat_abd_chunk_waste_size); 7851 } 7852 7853 uint64_t 7854 arc_target_bytes(void) 7855 { 7856 return (arc_c); 7857 } 7858 7859 void 7860 arc_set_limits(uint64_t allmem) 7861 { 7862 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */ 7863 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT); 7864 7865 /* How to set default max varies by platform. */ 7866 arc_c_max = arc_default_max(arc_c_min, allmem); 7867 } 7868 void 7869 arc_init(void) 7870 { 7871 uint64_t percent, allmem = arc_all_memory(); 7872 mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL); 7873 list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t), 7874 offsetof(arc_evict_waiter_t, aew_node)); 7875 7876 arc_min_prefetch_ms = 1000; 7877 arc_min_prescient_prefetch_ms = 6000; 7878 7879 #if defined(_KERNEL) 7880 arc_lowmem_init(); 7881 #endif 7882 7883 arc_set_limits(allmem); 7884 7885 #ifndef _KERNEL 7886 /* 7887 * In userland, there's only the memory pressure that we artificially 7888 * create (see arc_available_memory()). Don't let arc_c get too 7889 * small, because it can cause transactions to be larger than 7890 * arc_c, causing arc_tempreserve_space() to fail. 7891 */ 7892 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT); 7893 #endif 7894 7895 arc_c = arc_c_min; 7896 arc_p = (arc_c >> 1); 7897 7898 /* Set min to 1/2 of arc_c_min */ 7899 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT; 7900 /* 7901 * Set arc_meta_limit to a percent of arc_c_max with a floor of 7902 * arc_meta_min, and a ceiling of arc_c_max. 7903 */ 7904 percent = MIN(zfs_arc_meta_limit_percent, 100); 7905 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100); 7906 percent = MIN(zfs_arc_dnode_limit_percent, 100); 7907 arc_dnode_size_limit = (percent * arc_meta_limit) / 100; 7908 7909 /* Apply user specified tunings */ 7910 arc_tuning_update(B_TRUE); 7911 7912 /* if kmem_flags are set, lets try to use less memory */ 7913 if (kmem_debugging()) 7914 arc_c = arc_c / 2; 7915 if (arc_c < arc_c_min) 7916 arc_c = arc_c_min; 7917 7918 arc_register_hotplug(); 7919 7920 arc_state_init(); 7921 7922 buf_init(); 7923 7924 list_create(&arc_prune_list, sizeof (arc_prune_t), 7925 offsetof(arc_prune_t, p_node)); 7926 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL); 7927 7928 arc_prune_taskq = taskq_create("arc_prune", 100, defclsyspri, 7929 boot_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC | 7930 TASKQ_THREADS_CPU_PCT); 7931 7932 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 7933 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 7934 7935 if (arc_ksp != NULL) { 7936 arc_ksp->ks_data = &arc_stats; 7937 arc_ksp->ks_update = arc_kstat_update; 7938 kstat_install(arc_ksp); 7939 } 7940 7941 arc_evict_zthr = zthr_create("arc_evict", 7942 arc_evict_cb_check, arc_evict_cb, NULL); 7943 arc_reap_zthr = zthr_create_timer("arc_reap", 7944 arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1)); 7945 7946 arc_warm = B_FALSE; 7947 7948 /* 7949 * Calculate maximum amount of dirty data per pool. 7950 * 7951 * If it has been set by a module parameter, take that. 7952 * Otherwise, use a percentage of physical memory defined by 7953 * zfs_dirty_data_max_percent (default 10%) with a cap at 7954 * zfs_dirty_data_max_max (default 4G or 25% of physical memory). 7955 */ 7956 #ifdef __LP64__ 7957 if (zfs_dirty_data_max_max == 0) 7958 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024, 7959 allmem * zfs_dirty_data_max_max_percent / 100); 7960 #else 7961 if (zfs_dirty_data_max_max == 0) 7962 zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024, 7963 allmem * zfs_dirty_data_max_max_percent / 100); 7964 #endif 7965 7966 if (zfs_dirty_data_max == 0) { 7967 zfs_dirty_data_max = allmem * 7968 zfs_dirty_data_max_percent / 100; 7969 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 7970 zfs_dirty_data_max_max); 7971 } 7972 } 7973 7974 void 7975 arc_fini(void) 7976 { 7977 arc_prune_t *p; 7978 7979 #ifdef _KERNEL 7980 arc_lowmem_fini(); 7981 #endif /* _KERNEL */ 7982 7983 /* Use B_TRUE to ensure *all* buffers are evicted */ 7984 arc_flush(NULL, B_TRUE); 7985 7986 if (arc_ksp != NULL) { 7987 kstat_delete(arc_ksp); 7988 arc_ksp = NULL; 7989 } 7990 7991 taskq_wait(arc_prune_taskq); 7992 taskq_destroy(arc_prune_taskq); 7993 7994 mutex_enter(&arc_prune_mtx); 7995 while ((p = list_head(&arc_prune_list)) != NULL) { 7996 list_remove(&arc_prune_list, p); 7997 zfs_refcount_remove(&p->p_refcnt, &arc_prune_list); 7998 zfs_refcount_destroy(&p->p_refcnt); 7999 kmem_free(p, sizeof (*p)); 8000 } 8001 mutex_exit(&arc_prune_mtx); 8002 8003 list_destroy(&arc_prune_list); 8004 mutex_destroy(&arc_prune_mtx); 8005 8006 (void) zthr_cancel(arc_evict_zthr); 8007 (void) zthr_cancel(arc_reap_zthr); 8008 8009 mutex_destroy(&arc_evict_lock); 8010 list_destroy(&arc_evict_waiters); 8011 8012 /* 8013 * Free any buffers that were tagged for destruction. This needs 8014 * to occur before arc_state_fini() runs and destroys the aggsum 8015 * values which are updated when freeing scatter ABDs. 8016 */ 8017 l2arc_do_free_on_write(); 8018 8019 /* 8020 * buf_fini() must proceed arc_state_fini() because buf_fin() may 8021 * trigger the release of kmem magazines, which can callback to 8022 * arc_space_return() which accesses aggsums freed in act_state_fini(). 8023 */ 8024 buf_fini(); 8025 arc_state_fini(); 8026 8027 arc_unregister_hotplug(); 8028 8029 /* 8030 * We destroy the zthrs after all the ARC state has been 8031 * torn down to avoid the case of them receiving any 8032 * wakeup() signals after they are destroyed. 8033 */ 8034 zthr_destroy(arc_evict_zthr); 8035 zthr_destroy(arc_reap_zthr); 8036 8037 ASSERT0(arc_loaned_bytes); 8038 } 8039 8040 /* 8041 * Level 2 ARC 8042 * 8043 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 8044 * It uses dedicated storage devices to hold cached data, which are populated 8045 * using large infrequent writes. The main role of this cache is to boost 8046 * the performance of random read workloads. The intended L2ARC devices 8047 * include short-stroked disks, solid state disks, and other media with 8048 * substantially faster read latency than disk. 8049 * 8050 * +-----------------------+ 8051 * | ARC | 8052 * +-----------------------+ 8053 * | ^ ^ 8054 * | | | 8055 * l2arc_feed_thread() arc_read() 8056 * | | | 8057 * | l2arc read | 8058 * V | | 8059 * +---------------+ | 8060 * | L2ARC | | 8061 * +---------------+ | 8062 * | ^ | 8063 * l2arc_write() | | 8064 * | | | 8065 * V | | 8066 * +-------+ +-------+ 8067 * | vdev | | vdev | 8068 * | cache | | cache | 8069 * +-------+ +-------+ 8070 * +=========+ .-----. 8071 * : L2ARC : |-_____-| 8072 * : devices : | Disks | 8073 * +=========+ `-_____-' 8074 * 8075 * Read requests are satisfied from the following sources, in order: 8076 * 8077 * 1) ARC 8078 * 2) vdev cache of L2ARC devices 8079 * 3) L2ARC devices 8080 * 4) vdev cache of disks 8081 * 5) disks 8082 * 8083 * Some L2ARC device types exhibit extremely slow write performance. 8084 * To accommodate for this there are some significant differences between 8085 * the L2ARC and traditional cache design: 8086 * 8087 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 8088 * the ARC behave as usual, freeing buffers and placing headers on ghost 8089 * lists. The ARC does not send buffers to the L2ARC during eviction as 8090 * this would add inflated write latencies for all ARC memory pressure. 8091 * 8092 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 8093 * It does this by periodically scanning buffers from the eviction-end of 8094 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 8095 * not already there. It scans until a headroom of buffers is satisfied, 8096 * which itself is a buffer for ARC eviction. If a compressible buffer is 8097 * found during scanning and selected for writing to an L2ARC device, we 8098 * temporarily boost scanning headroom during the next scan cycle to make 8099 * sure we adapt to compression effects (which might significantly reduce 8100 * the data volume we write to L2ARC). The thread that does this is 8101 * l2arc_feed_thread(), illustrated below; example sizes are included to 8102 * provide a better sense of ratio than this diagram: 8103 * 8104 * head --> tail 8105 * +---------------------+----------+ 8106 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 8107 * +---------------------+----------+ | o L2ARC eligible 8108 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 8109 * +---------------------+----------+ | 8110 * 15.9 Gbytes ^ 32 Mbytes | 8111 * headroom | 8112 * l2arc_feed_thread() 8113 * | 8114 * l2arc write hand <--[oooo]--' 8115 * | 8 Mbyte 8116 * | write max 8117 * V 8118 * +==============================+ 8119 * L2ARC dev |####|#|###|###| |####| ... | 8120 * +==============================+ 8121 * 32 Gbytes 8122 * 8123 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 8124 * evicted, then the L2ARC has cached a buffer much sooner than it probably 8125 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 8126 * safe to say that this is an uncommon case, since buffers at the end of 8127 * the ARC lists have moved there due to inactivity. 8128 * 8129 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 8130 * then the L2ARC simply misses copying some buffers. This serves as a 8131 * pressure valve to prevent heavy read workloads from both stalling the ARC 8132 * with waits and clogging the L2ARC with writes. This also helps prevent 8133 * the potential for the L2ARC to churn if it attempts to cache content too 8134 * quickly, such as during backups of the entire pool. 8135 * 8136 * 5. After system boot and before the ARC has filled main memory, there are 8137 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 8138 * lists can remain mostly static. Instead of searching from tail of these 8139 * lists as pictured, the l2arc_feed_thread() will search from the list heads 8140 * for eligible buffers, greatly increasing its chance of finding them. 8141 * 8142 * The L2ARC device write speed is also boosted during this time so that 8143 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 8144 * there are no L2ARC reads, and no fear of degrading read performance 8145 * through increased writes. 8146 * 8147 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 8148 * the vdev queue can aggregate them into larger and fewer writes. Each 8149 * device is written to in a rotor fashion, sweeping writes through 8150 * available space then repeating. 8151 * 8152 * 7. The L2ARC does not store dirty content. It never needs to flush 8153 * write buffers back to disk based storage. 8154 * 8155 * 8. If an ARC buffer is written (and dirtied) which also exists in the 8156 * L2ARC, the now stale L2ARC buffer is immediately dropped. 8157 * 8158 * The performance of the L2ARC can be tweaked by a number of tunables, which 8159 * may be necessary for different workloads: 8160 * 8161 * l2arc_write_max max write bytes per interval 8162 * l2arc_write_boost extra write bytes during device warmup 8163 * l2arc_noprefetch skip caching prefetched buffers 8164 * l2arc_headroom number of max device writes to precache 8165 * l2arc_headroom_boost when we find compressed buffers during ARC 8166 * scanning, we multiply headroom by this 8167 * percentage factor for the next scan cycle, 8168 * since more compressed buffers are likely to 8169 * be present 8170 * l2arc_feed_secs seconds between L2ARC writing 8171 * 8172 * Tunables may be removed or added as future performance improvements are 8173 * integrated, and also may become zpool properties. 8174 * 8175 * There are three key functions that control how the L2ARC warms up: 8176 * 8177 * l2arc_write_eligible() check if a buffer is eligible to cache 8178 * l2arc_write_size() calculate how much to write 8179 * l2arc_write_interval() calculate sleep delay between writes 8180 * 8181 * These three functions determine what to write, how much, and how quickly 8182 * to send writes. 8183 * 8184 * L2ARC persistence: 8185 * 8186 * When writing buffers to L2ARC, we periodically add some metadata to 8187 * make sure we can pick them up after reboot, thus dramatically reducing 8188 * the impact that any downtime has on the performance of storage systems 8189 * with large caches. 8190 * 8191 * The implementation works fairly simply by integrating the following two 8192 * modifications: 8193 * 8194 * *) When writing to the L2ARC, we occasionally write a "l2arc log block", 8195 * which is an additional piece of metadata which describes what's been 8196 * written. This allows us to rebuild the arc_buf_hdr_t structures of the 8197 * main ARC buffers. There are 2 linked-lists of log blocks headed by 8198 * dh_start_lbps[2]. We alternate which chain we append to, so they are 8199 * time-wise and offset-wise interleaved, but that is an optimization rather 8200 * than for correctness. The log block also includes a pointer to the 8201 * previous block in its chain. 8202 * 8203 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device 8204 * for our header bookkeeping purposes. This contains a device header, 8205 * which contains our top-level reference structures. We update it each 8206 * time we write a new log block, so that we're able to locate it in the 8207 * L2ARC device. If this write results in an inconsistent device header 8208 * (e.g. due to power failure), we detect this by verifying the header's 8209 * checksum and simply fail to reconstruct the L2ARC after reboot. 8210 * 8211 * Implementation diagram: 8212 * 8213 * +=== L2ARC device (not to scale) ======================================+ 8214 * | ___two newest log block pointers__.__________ | 8215 * | / \dh_start_lbps[1] | 8216 * | / \ \dh_start_lbps[0]| 8217 * |.___/__. V V | 8218 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---| 8219 * || hdr| ^ /^ /^ / / | 8220 * |+------+ ...--\-------/ \-----/--\------/ / | 8221 * | \--------------/ \--------------/ | 8222 * +======================================================================+ 8223 * 8224 * As can be seen on the diagram, rather than using a simple linked list, 8225 * we use a pair of linked lists with alternating elements. This is a 8226 * performance enhancement due to the fact that we only find out the 8227 * address of the next log block access once the current block has been 8228 * completely read in. Obviously, this hurts performance, because we'd be 8229 * keeping the device's I/O queue at only a 1 operation deep, thus 8230 * incurring a large amount of I/O round-trip latency. Having two lists 8231 * allows us to fetch two log blocks ahead of where we are currently 8232 * rebuilding L2ARC buffers. 8233 * 8234 * On-device data structures: 8235 * 8236 * L2ARC device header: l2arc_dev_hdr_phys_t 8237 * L2ARC log block: l2arc_log_blk_phys_t 8238 * 8239 * L2ARC reconstruction: 8240 * 8241 * When writing data, we simply write in the standard rotary fashion, 8242 * evicting buffers as we go and simply writing new data over them (writing 8243 * a new log block every now and then). This obviously means that once we 8244 * loop around the end of the device, we will start cutting into an already 8245 * committed log block (and its referenced data buffers), like so: 8246 * 8247 * current write head__ __old tail 8248 * \ / 8249 * V V 8250 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |--> 8251 * ^ ^^^^^^^^^___________________________________ 8252 * | \ 8253 * <<nextwrite>> may overwrite this blk and/or its bufs --' 8254 * 8255 * When importing the pool, we detect this situation and use it to stop 8256 * our scanning process (see l2arc_rebuild). 8257 * 8258 * There is one significant caveat to consider when rebuilding ARC contents 8259 * from an L2ARC device: what about invalidated buffers? Given the above 8260 * construction, we cannot update blocks which we've already written to amend 8261 * them to remove buffers which were invalidated. Thus, during reconstruction, 8262 * we might be populating the cache with buffers for data that's not on the 8263 * main pool anymore, or may have been overwritten! 8264 * 8265 * As it turns out, this isn't a problem. Every arc_read request includes 8266 * both the DVA and, crucially, the birth TXG of the BP the caller is 8267 * looking for. So even if the cache were populated by completely rotten 8268 * blocks for data that had been long deleted and/or overwritten, we'll 8269 * never actually return bad data from the cache, since the DVA with the 8270 * birth TXG uniquely identify a block in space and time - once created, 8271 * a block is immutable on disk. The worst thing we have done is wasted 8272 * some time and memory at l2arc rebuild to reconstruct outdated ARC 8273 * entries that will get dropped from the l2arc as it is being updated 8274 * with new blocks. 8275 * 8276 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write 8277 * hand are not restored. This is done by saving the offset (in bytes) 8278 * l2arc_evict() has evicted to in the L2ARC device header and taking it 8279 * into account when restoring buffers. 8280 */ 8281 8282 static boolean_t 8283 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 8284 { 8285 /* 8286 * A buffer is *not* eligible for the L2ARC if it: 8287 * 1. belongs to a different spa. 8288 * 2. is already cached on the L2ARC. 8289 * 3. has an I/O in progress (it may be an incomplete read). 8290 * 4. is flagged not eligible (zfs property). 8291 */ 8292 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || 8293 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr)) 8294 return (B_FALSE); 8295 8296 return (B_TRUE); 8297 } 8298 8299 static uint64_t 8300 l2arc_write_size(l2arc_dev_t *dev) 8301 { 8302 uint64_t size, dev_size, tsize; 8303 8304 /* 8305 * Make sure our globals have meaningful values in case the user 8306 * altered them. 8307 */ 8308 size = l2arc_write_max; 8309 if (size == 0) { 8310 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 8311 "be greater than zero, resetting it to the default (%d)", 8312 L2ARC_WRITE_SIZE); 8313 size = l2arc_write_max = L2ARC_WRITE_SIZE; 8314 } 8315 8316 if (arc_warm == B_FALSE) 8317 size += l2arc_write_boost; 8318 8319 /* 8320 * Make sure the write size does not exceed the size of the cache 8321 * device. This is important in l2arc_evict(), otherwise infinite 8322 * iteration can occur. 8323 */ 8324 dev_size = dev->l2ad_end - dev->l2ad_start; 8325 tsize = size + l2arc_log_blk_overhead(size, dev); 8326 if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) 8327 tsize += MAX(64 * 1024 * 1024, 8328 (tsize * l2arc_trim_ahead) / 100); 8329 8330 if (tsize >= dev_size) { 8331 cmn_err(CE_NOTE, "l2arc_write_max or l2arc_write_boost " 8332 "plus the overhead of log blocks (persistent L2ARC, " 8333 "%llu bytes) exceeds the size of the cache device " 8334 "(guid %llu), resetting them to the default (%d)", 8335 l2arc_log_blk_overhead(size, dev), 8336 dev->l2ad_vdev->vdev_guid, L2ARC_WRITE_SIZE); 8337 size = l2arc_write_max = l2arc_write_boost = L2ARC_WRITE_SIZE; 8338 8339 if (arc_warm == B_FALSE) 8340 size += l2arc_write_boost; 8341 } 8342 8343 return (size); 8344 8345 } 8346 8347 static clock_t 8348 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 8349 { 8350 clock_t interval, next, now; 8351 8352 /* 8353 * If the ARC lists are busy, increase our write rate; if the 8354 * lists are stale, idle back. This is achieved by checking 8355 * how much we previously wrote - if it was more than half of 8356 * what we wanted, schedule the next write much sooner. 8357 */ 8358 if (l2arc_feed_again && wrote > (wanted / 2)) 8359 interval = (hz * l2arc_feed_min_ms) / 1000; 8360 else 8361 interval = hz * l2arc_feed_secs; 8362 8363 now = ddi_get_lbolt(); 8364 next = MAX(now, MIN(now + interval, began + interval)); 8365 8366 return (next); 8367 } 8368 8369 /* 8370 * Cycle through L2ARC devices. This is how L2ARC load balances. 8371 * If a device is returned, this also returns holding the spa config lock. 8372 */ 8373 static l2arc_dev_t * 8374 l2arc_dev_get_next(void) 8375 { 8376 l2arc_dev_t *first, *next = NULL; 8377 8378 /* 8379 * Lock out the removal of spas (spa_namespace_lock), then removal 8380 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 8381 * both locks will be dropped and a spa config lock held instead. 8382 */ 8383 mutex_enter(&spa_namespace_lock); 8384 mutex_enter(&l2arc_dev_mtx); 8385 8386 /* if there are no vdevs, there is nothing to do */ 8387 if (l2arc_ndev == 0) 8388 goto out; 8389 8390 first = NULL; 8391 next = l2arc_dev_last; 8392 do { 8393 /* loop around the list looking for a non-faulted vdev */ 8394 if (next == NULL) { 8395 next = list_head(l2arc_dev_list); 8396 } else { 8397 next = list_next(l2arc_dev_list, next); 8398 if (next == NULL) 8399 next = list_head(l2arc_dev_list); 8400 } 8401 8402 /* if we have come back to the start, bail out */ 8403 if (first == NULL) 8404 first = next; 8405 else if (next == first) 8406 break; 8407 8408 } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || 8409 next->l2ad_trim_all); 8410 8411 /* if we were unable to find any usable vdevs, return NULL */ 8412 if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || 8413 next->l2ad_trim_all) 8414 next = NULL; 8415 8416 l2arc_dev_last = next; 8417 8418 out: 8419 mutex_exit(&l2arc_dev_mtx); 8420 8421 /* 8422 * Grab the config lock to prevent the 'next' device from being 8423 * removed while we are writing to it. 8424 */ 8425 if (next != NULL) 8426 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 8427 mutex_exit(&spa_namespace_lock); 8428 8429 return (next); 8430 } 8431 8432 /* 8433 * Free buffers that were tagged for destruction. 8434 */ 8435 static void 8436 l2arc_do_free_on_write(void) 8437 { 8438 list_t *buflist; 8439 l2arc_data_free_t *df, *df_prev; 8440 8441 mutex_enter(&l2arc_free_on_write_mtx); 8442 buflist = l2arc_free_on_write; 8443 8444 for (df = list_tail(buflist); df; df = df_prev) { 8445 df_prev = list_prev(buflist, df); 8446 ASSERT3P(df->l2df_abd, !=, NULL); 8447 abd_free(df->l2df_abd); 8448 list_remove(buflist, df); 8449 kmem_free(df, sizeof (l2arc_data_free_t)); 8450 } 8451 8452 mutex_exit(&l2arc_free_on_write_mtx); 8453 } 8454 8455 /* 8456 * A write to a cache device has completed. Update all headers to allow 8457 * reads from these buffers to begin. 8458 */ 8459 static void 8460 l2arc_write_done(zio_t *zio) 8461 { 8462 l2arc_write_callback_t *cb; 8463 l2arc_lb_abd_buf_t *abd_buf; 8464 l2arc_lb_ptr_buf_t *lb_ptr_buf; 8465 l2arc_dev_t *dev; 8466 l2arc_dev_hdr_phys_t *l2dhdr; 8467 list_t *buflist; 8468 arc_buf_hdr_t *head, *hdr, *hdr_prev; 8469 kmutex_t *hash_lock; 8470 int64_t bytes_dropped = 0; 8471 8472 cb = zio->io_private; 8473 ASSERT3P(cb, !=, NULL); 8474 dev = cb->l2wcb_dev; 8475 l2dhdr = dev->l2ad_dev_hdr; 8476 ASSERT3P(dev, !=, NULL); 8477 head = cb->l2wcb_head; 8478 ASSERT3P(head, !=, NULL); 8479 buflist = &dev->l2ad_buflist; 8480 ASSERT3P(buflist, !=, NULL); 8481 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 8482 l2arc_write_callback_t *, cb); 8483 8484 /* 8485 * All writes completed, or an error was hit. 8486 */ 8487 top: 8488 mutex_enter(&dev->l2ad_mtx); 8489 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 8490 hdr_prev = list_prev(buflist, hdr); 8491 8492 hash_lock = HDR_LOCK(hdr); 8493 8494 /* 8495 * We cannot use mutex_enter or else we can deadlock 8496 * with l2arc_write_buffers (due to swapping the order 8497 * the hash lock and l2ad_mtx are taken). 8498 */ 8499 if (!mutex_tryenter(hash_lock)) { 8500 /* 8501 * Missed the hash lock. We must retry so we 8502 * don't leave the ARC_FLAG_L2_WRITING bit set. 8503 */ 8504 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 8505 8506 /* 8507 * We don't want to rescan the headers we've 8508 * already marked as having been written out, so 8509 * we reinsert the head node so we can pick up 8510 * where we left off. 8511 */ 8512 list_remove(buflist, head); 8513 list_insert_after(buflist, hdr, head); 8514 8515 mutex_exit(&dev->l2ad_mtx); 8516 8517 /* 8518 * We wait for the hash lock to become available 8519 * to try and prevent busy waiting, and increase 8520 * the chance we'll be able to acquire the lock 8521 * the next time around. 8522 */ 8523 mutex_enter(hash_lock); 8524 mutex_exit(hash_lock); 8525 goto top; 8526 } 8527 8528 /* 8529 * We could not have been moved into the arc_l2c_only 8530 * state while in-flight due to our ARC_FLAG_L2_WRITING 8531 * bit being set. Let's just ensure that's being enforced. 8532 */ 8533 ASSERT(HDR_HAS_L1HDR(hdr)); 8534 8535 /* 8536 * Skipped - drop L2ARC entry and mark the header as no 8537 * longer L2 eligibile. 8538 */ 8539 if (zio->io_error != 0) { 8540 /* 8541 * Error - drop L2ARC entry. 8542 */ 8543 list_remove(buflist, hdr); 8544 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 8545 8546 uint64_t psize = HDR_GET_PSIZE(hdr); 8547 l2arc_hdr_arcstats_decrement(hdr); 8548 8549 bytes_dropped += 8550 vdev_psize_to_asize(dev->l2ad_vdev, psize); 8551 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 8552 arc_hdr_size(hdr), hdr); 8553 } 8554 8555 /* 8556 * Allow ARC to begin reads and ghost list evictions to 8557 * this L2ARC entry. 8558 */ 8559 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); 8560 8561 mutex_exit(hash_lock); 8562 } 8563 8564 /* 8565 * Free the allocated abd buffers for writing the log blocks. 8566 * If the zio failed reclaim the allocated space and remove the 8567 * pointers to these log blocks from the log block pointer list 8568 * of the L2ARC device. 8569 */ 8570 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) { 8571 abd_free(abd_buf->abd); 8572 zio_buf_free(abd_buf, sizeof (*abd_buf)); 8573 if (zio->io_error != 0) { 8574 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list); 8575 /* 8576 * L2BLK_GET_PSIZE returns aligned size for log 8577 * blocks. 8578 */ 8579 uint64_t asize = 8580 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop); 8581 bytes_dropped += asize; 8582 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 8583 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 8584 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 8585 lb_ptr_buf); 8586 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 8587 kmem_free(lb_ptr_buf->lb_ptr, 8588 sizeof (l2arc_log_blkptr_t)); 8589 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 8590 } 8591 } 8592 list_destroy(&cb->l2wcb_abd_list); 8593 8594 if (zio->io_error != 0) { 8595 ARCSTAT_BUMP(arcstat_l2_writes_error); 8596 8597 /* 8598 * Restore the lbps array in the header to its previous state. 8599 * If the list of log block pointers is empty, zero out the 8600 * log block pointers in the device header. 8601 */ 8602 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list); 8603 for (int i = 0; i < 2; i++) { 8604 if (lb_ptr_buf == NULL) { 8605 /* 8606 * If the list is empty zero out the device 8607 * header. Otherwise zero out the second log 8608 * block pointer in the header. 8609 */ 8610 if (i == 0) { 8611 bzero(l2dhdr, dev->l2ad_dev_hdr_asize); 8612 } else { 8613 bzero(&l2dhdr->dh_start_lbps[i], 8614 sizeof (l2arc_log_blkptr_t)); 8615 } 8616 break; 8617 } 8618 bcopy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[i], 8619 sizeof (l2arc_log_blkptr_t)); 8620 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list, 8621 lb_ptr_buf); 8622 } 8623 } 8624 8625 ARCSTAT_BUMP(arcstat_l2_writes_done); 8626 list_remove(buflist, head); 8627 ASSERT(!HDR_HAS_L1HDR(head)); 8628 kmem_cache_free(hdr_l2only_cache, head); 8629 mutex_exit(&dev->l2ad_mtx); 8630 8631 ASSERT(dev->l2ad_vdev != NULL); 8632 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 8633 8634 l2arc_do_free_on_write(); 8635 8636 kmem_free(cb, sizeof (l2arc_write_callback_t)); 8637 } 8638 8639 static int 8640 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb) 8641 { 8642 int ret; 8643 spa_t *spa = zio->io_spa; 8644 arc_buf_hdr_t *hdr = cb->l2rcb_hdr; 8645 blkptr_t *bp = zio->io_bp; 8646 uint8_t salt[ZIO_DATA_SALT_LEN]; 8647 uint8_t iv[ZIO_DATA_IV_LEN]; 8648 uint8_t mac[ZIO_DATA_MAC_LEN]; 8649 boolean_t no_crypt = B_FALSE; 8650 8651 /* 8652 * ZIL data is never be written to the L2ARC, so we don't need 8653 * special handling for its unique MAC storage. 8654 */ 8655 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 8656 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 8657 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8658 8659 /* 8660 * If the data was encrypted, decrypt it now. Note that 8661 * we must check the bp here and not the hdr, since the 8662 * hdr does not have its encryption parameters updated 8663 * until arc_read_done(). 8664 */ 8665 if (BP_IS_ENCRYPTED(bp)) { 8666 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8667 B_TRUE); 8668 8669 zio_crypt_decode_params_bp(bp, salt, iv); 8670 zio_crypt_decode_mac_bp(bp, mac); 8671 8672 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb, 8673 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 8674 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd, 8675 hdr->b_l1hdr.b_pabd, &no_crypt); 8676 if (ret != 0) { 8677 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8678 goto error; 8679 } 8680 8681 /* 8682 * If we actually performed decryption, replace b_pabd 8683 * with the decrypted data. Otherwise we can just throw 8684 * our decryption buffer away. 8685 */ 8686 if (!no_crypt) { 8687 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8688 arc_hdr_size(hdr), hdr); 8689 hdr->b_l1hdr.b_pabd = eabd; 8690 zio->io_abd = eabd; 8691 } else { 8692 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8693 } 8694 } 8695 8696 /* 8697 * If the L2ARC block was compressed, but ARC compression 8698 * is disabled we decompress the data into a new buffer and 8699 * replace the existing data. 8700 */ 8701 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 8702 !HDR_COMPRESSION_ENABLED(hdr)) { 8703 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8704 B_TRUE); 8705 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 8706 8707 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 8708 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 8709 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 8710 if (ret != 0) { 8711 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 8712 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr); 8713 goto error; 8714 } 8715 8716 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 8717 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8718 arc_hdr_size(hdr), hdr); 8719 hdr->b_l1hdr.b_pabd = cabd; 8720 zio->io_abd = cabd; 8721 zio->io_size = HDR_GET_LSIZE(hdr); 8722 } 8723 8724 return (0); 8725 8726 error: 8727 return (ret); 8728 } 8729 8730 8731 /* 8732 * A read to a cache device completed. Validate buffer contents before 8733 * handing over to the regular ARC routines. 8734 */ 8735 static void 8736 l2arc_read_done(zio_t *zio) 8737 { 8738 int tfm_error = 0; 8739 l2arc_read_callback_t *cb = zio->io_private; 8740 arc_buf_hdr_t *hdr; 8741 kmutex_t *hash_lock; 8742 boolean_t valid_cksum; 8743 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) && 8744 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT)); 8745 8746 ASSERT3P(zio->io_vd, !=, NULL); 8747 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 8748 8749 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 8750 8751 ASSERT3P(cb, !=, NULL); 8752 hdr = cb->l2rcb_hdr; 8753 ASSERT3P(hdr, !=, NULL); 8754 8755 hash_lock = HDR_LOCK(hdr); 8756 mutex_enter(hash_lock); 8757 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 8758 8759 /* 8760 * If the data was read into a temporary buffer, 8761 * move it and free the buffer. 8762 */ 8763 if (cb->l2rcb_abd != NULL) { 8764 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size); 8765 if (zio->io_error == 0) { 8766 if (using_rdata) { 8767 abd_copy(hdr->b_crypt_hdr.b_rabd, 8768 cb->l2rcb_abd, arc_hdr_size(hdr)); 8769 } else { 8770 abd_copy(hdr->b_l1hdr.b_pabd, 8771 cb->l2rcb_abd, arc_hdr_size(hdr)); 8772 } 8773 } 8774 8775 /* 8776 * The following must be done regardless of whether 8777 * there was an error: 8778 * - free the temporary buffer 8779 * - point zio to the real ARC buffer 8780 * - set zio size accordingly 8781 * These are required because zio is either re-used for 8782 * an I/O of the block in the case of the error 8783 * or the zio is passed to arc_read_done() and it 8784 * needs real data. 8785 */ 8786 abd_free(cb->l2rcb_abd); 8787 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr); 8788 8789 if (using_rdata) { 8790 ASSERT(HDR_HAS_RABD(hdr)); 8791 zio->io_abd = zio->io_orig_abd = 8792 hdr->b_crypt_hdr.b_rabd; 8793 } else { 8794 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8795 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd; 8796 } 8797 } 8798 8799 ASSERT3P(zio->io_abd, !=, NULL); 8800 8801 /* 8802 * Check this survived the L2ARC journey. 8803 */ 8804 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd || 8805 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd)); 8806 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 8807 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 8808 zio->io_prop.zp_complevel = hdr->b_complevel; 8809 8810 valid_cksum = arc_cksum_is_equal(hdr, zio); 8811 8812 /* 8813 * b_rabd will always match the data as it exists on disk if it is 8814 * being used. Therefore if we are reading into b_rabd we do not 8815 * attempt to untransform the data. 8816 */ 8817 if (valid_cksum && !using_rdata) 8818 tfm_error = l2arc_untransform(zio, cb); 8819 8820 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 && 8821 !HDR_L2_EVICTED(hdr)) { 8822 mutex_exit(hash_lock); 8823 zio->io_private = hdr; 8824 arc_read_done(zio); 8825 } else { 8826 /* 8827 * Buffer didn't survive caching. Increment stats and 8828 * reissue to the original storage device. 8829 */ 8830 if (zio->io_error != 0) { 8831 ARCSTAT_BUMP(arcstat_l2_io_error); 8832 } else { 8833 zio->io_error = SET_ERROR(EIO); 8834 } 8835 if (!valid_cksum || tfm_error != 0) 8836 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 8837 8838 /* 8839 * If there's no waiter, issue an async i/o to the primary 8840 * storage now. If there *is* a waiter, the caller must 8841 * issue the i/o in a context where it's OK to block. 8842 */ 8843 if (zio->io_waiter == NULL) { 8844 zio_t *pio = zio_unique_parent(zio); 8845 void *abd = (using_rdata) ? 8846 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd; 8847 8848 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 8849 8850 zio = zio_read(pio, zio->io_spa, zio->io_bp, 8851 abd, zio->io_size, arc_read_done, 8852 hdr, zio->io_priority, cb->l2rcb_flags, 8853 &cb->l2rcb_zb); 8854 8855 /* 8856 * Original ZIO will be freed, so we need to update 8857 * ARC header with the new ZIO pointer to be used 8858 * by zio_change_priority() in arc_read(). 8859 */ 8860 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb; 8861 acb != NULL; acb = acb->acb_next) 8862 acb->acb_zio_head = zio; 8863 8864 mutex_exit(hash_lock); 8865 zio_nowait(zio); 8866 } else { 8867 mutex_exit(hash_lock); 8868 } 8869 } 8870 8871 kmem_free(cb, sizeof (l2arc_read_callback_t)); 8872 } 8873 8874 /* 8875 * This is the list priority from which the L2ARC will search for pages to 8876 * cache. This is used within loops (0..3) to cycle through lists in the 8877 * desired order. This order can have a significant effect on cache 8878 * performance. 8879 * 8880 * Currently the metadata lists are hit first, MFU then MRU, followed by 8881 * the data lists. This function returns a locked list, and also returns 8882 * the lock pointer. 8883 */ 8884 static multilist_sublist_t * 8885 l2arc_sublist_lock(int list_num) 8886 { 8887 multilist_t *ml = NULL; 8888 unsigned int idx; 8889 8890 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES); 8891 8892 switch (list_num) { 8893 case 0: 8894 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 8895 break; 8896 case 1: 8897 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 8898 break; 8899 case 2: 8900 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 8901 break; 8902 case 3: 8903 ml = &arc_mru->arcs_list[ARC_BUFC_DATA]; 8904 break; 8905 default: 8906 return (NULL); 8907 } 8908 8909 /* 8910 * Return a randomly-selected sublist. This is acceptable 8911 * because the caller feeds only a little bit of data for each 8912 * call (8MB). Subsequent calls will result in different 8913 * sublists being selected. 8914 */ 8915 idx = multilist_get_random_index(ml); 8916 return (multilist_sublist_lock(ml, idx)); 8917 } 8918 8919 /* 8920 * Calculates the maximum overhead of L2ARC metadata log blocks for a given 8921 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this 8922 * overhead in processing to make sure there is enough headroom available 8923 * when writing buffers. 8924 */ 8925 static inline uint64_t 8926 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev) 8927 { 8928 if (dev->l2ad_log_entries == 0) { 8929 return (0); 8930 } else { 8931 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT; 8932 8933 uint64_t log_blocks = (log_entries + 8934 dev->l2ad_log_entries - 1) / 8935 dev->l2ad_log_entries; 8936 8937 return (vdev_psize_to_asize(dev->l2ad_vdev, 8938 sizeof (l2arc_log_blk_phys_t)) * log_blocks); 8939 } 8940 } 8941 8942 /* 8943 * Evict buffers from the device write hand to the distance specified in 8944 * bytes. This distance may span populated buffers, it may span nothing. 8945 * This is clearing a region on the L2ARC device ready for writing. 8946 * If the 'all' boolean is set, every buffer is evicted. 8947 */ 8948 static void 8949 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 8950 { 8951 list_t *buflist; 8952 arc_buf_hdr_t *hdr, *hdr_prev; 8953 kmutex_t *hash_lock; 8954 uint64_t taddr; 8955 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev; 8956 vdev_t *vd = dev->l2ad_vdev; 8957 boolean_t rerun; 8958 8959 buflist = &dev->l2ad_buflist; 8960 8961 /* 8962 * We need to add in the worst case scenario of log block overhead. 8963 */ 8964 distance += l2arc_log_blk_overhead(distance, dev); 8965 if (vd->vdev_has_trim && l2arc_trim_ahead > 0) { 8966 /* 8967 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100) 8968 * times the write size, whichever is greater. 8969 */ 8970 distance += MAX(64 * 1024 * 1024, 8971 (distance * l2arc_trim_ahead) / 100); 8972 } 8973 8974 top: 8975 rerun = B_FALSE; 8976 if (dev->l2ad_hand >= (dev->l2ad_end - distance)) { 8977 /* 8978 * When there is no space to accommodate upcoming writes, 8979 * evict to the end. Then bump the write and evict hands 8980 * to the start and iterate. This iteration does not 8981 * happen indefinitely as we make sure in 8982 * l2arc_write_size() that when the write hand is reset, 8983 * the write size does not exceed the end of the device. 8984 */ 8985 rerun = B_TRUE; 8986 taddr = dev->l2ad_end; 8987 } else { 8988 taddr = dev->l2ad_hand + distance; 8989 } 8990 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 8991 uint64_t, taddr, boolean_t, all); 8992 8993 if (!all) { 8994 /* 8995 * This check has to be placed after deciding whether to 8996 * iterate (rerun). 8997 */ 8998 if (dev->l2ad_first) { 8999 /* 9000 * This is the first sweep through the device. There is 9001 * nothing to evict. We have already trimmmed the 9002 * whole device. 9003 */ 9004 goto out; 9005 } else { 9006 /* 9007 * Trim the space to be evicted. 9008 */ 9009 if (vd->vdev_has_trim && dev->l2ad_evict < taddr && 9010 l2arc_trim_ahead > 0) { 9011 /* 9012 * We have to drop the spa_config lock because 9013 * vdev_trim_range() will acquire it. 9014 * l2ad_evict already accounts for the label 9015 * size. To prevent vdev_trim_ranges() from 9016 * adding it again, we subtract it from 9017 * l2ad_evict. 9018 */ 9019 spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev); 9020 vdev_trim_simple(vd, 9021 dev->l2ad_evict - VDEV_LABEL_START_SIZE, 9022 taddr - dev->l2ad_evict); 9023 spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev, 9024 RW_READER); 9025 } 9026 9027 /* 9028 * When rebuilding L2ARC we retrieve the evict hand 9029 * from the header of the device. Of note, l2arc_evict() 9030 * does not actually delete buffers from the cache 9031 * device, but trimming may do so depending on the 9032 * hardware implementation. Thus keeping track of the 9033 * evict hand is useful. 9034 */ 9035 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr); 9036 } 9037 } 9038 9039 retry: 9040 mutex_enter(&dev->l2ad_mtx); 9041 /* 9042 * We have to account for evicted log blocks. Run vdev_space_update() 9043 * on log blocks whose offset (in bytes) is before the evicted offset 9044 * (in bytes) by searching in the list of pointers to log blocks 9045 * present in the L2ARC device. 9046 */ 9047 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf; 9048 lb_ptr_buf = lb_ptr_buf_prev) { 9049 9050 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf); 9051 9052 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 9053 uint64_t asize = L2BLK_GET_PSIZE( 9054 (lb_ptr_buf->lb_ptr)->lbp_prop); 9055 9056 /* 9057 * We don't worry about log blocks left behind (ie 9058 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers() 9059 * will never write more than l2arc_evict() evicts. 9060 */ 9061 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) { 9062 break; 9063 } else { 9064 vdev_space_update(vd, -asize, 0, 0); 9065 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 9066 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 9067 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 9068 lb_ptr_buf); 9069 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 9070 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf); 9071 kmem_free(lb_ptr_buf->lb_ptr, 9072 sizeof (l2arc_log_blkptr_t)); 9073 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 9074 } 9075 } 9076 9077 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 9078 hdr_prev = list_prev(buflist, hdr); 9079 9080 ASSERT(!HDR_EMPTY(hdr)); 9081 hash_lock = HDR_LOCK(hdr); 9082 9083 /* 9084 * We cannot use mutex_enter or else we can deadlock 9085 * with l2arc_write_buffers (due to swapping the order 9086 * the hash lock and l2ad_mtx are taken). 9087 */ 9088 if (!mutex_tryenter(hash_lock)) { 9089 /* 9090 * Missed the hash lock. Retry. 9091 */ 9092 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 9093 mutex_exit(&dev->l2ad_mtx); 9094 mutex_enter(hash_lock); 9095 mutex_exit(hash_lock); 9096 goto retry; 9097 } 9098 9099 /* 9100 * A header can't be on this list if it doesn't have L2 header. 9101 */ 9102 ASSERT(HDR_HAS_L2HDR(hdr)); 9103 9104 /* Ensure this header has finished being written. */ 9105 ASSERT(!HDR_L2_WRITING(hdr)); 9106 ASSERT(!HDR_L2_WRITE_HEAD(hdr)); 9107 9108 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict || 9109 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 9110 /* 9111 * We've evicted to the target address, 9112 * or the end of the device. 9113 */ 9114 mutex_exit(hash_lock); 9115 break; 9116 } 9117 9118 if (!HDR_HAS_L1HDR(hdr)) { 9119 ASSERT(!HDR_L2_READING(hdr)); 9120 /* 9121 * This doesn't exist in the ARC. Destroy. 9122 * arc_hdr_destroy() will call list_remove() 9123 * and decrement arcstat_l2_lsize. 9124 */ 9125 arc_change_state(arc_anon, hdr, hash_lock); 9126 arc_hdr_destroy(hdr); 9127 } else { 9128 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 9129 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 9130 /* 9131 * Invalidate issued or about to be issued 9132 * reads, since we may be about to write 9133 * over this location. 9134 */ 9135 if (HDR_L2_READING(hdr)) { 9136 ARCSTAT_BUMP(arcstat_l2_evict_reading); 9137 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); 9138 } 9139 9140 arc_hdr_l2hdr_destroy(hdr); 9141 } 9142 mutex_exit(hash_lock); 9143 } 9144 mutex_exit(&dev->l2ad_mtx); 9145 9146 out: 9147 /* 9148 * We need to check if we evict all buffers, otherwise we may iterate 9149 * unnecessarily. 9150 */ 9151 if (!all && rerun) { 9152 /* 9153 * Bump device hand to the device start if it is approaching the 9154 * end. l2arc_evict() has already evicted ahead for this case. 9155 */ 9156 dev->l2ad_hand = dev->l2ad_start; 9157 dev->l2ad_evict = dev->l2ad_start; 9158 dev->l2ad_first = B_FALSE; 9159 goto top; 9160 } 9161 9162 if (!all) { 9163 /* 9164 * In case of cache device removal (all) the following 9165 * assertions may be violated without functional consequences 9166 * as the device is about to be removed. 9167 */ 9168 ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end); 9169 if (!dev->l2ad_first) 9170 ASSERT3U(dev->l2ad_hand, <, dev->l2ad_evict); 9171 } 9172 } 9173 9174 /* 9175 * Handle any abd transforms that might be required for writing to the L2ARC. 9176 * If successful, this function will always return an abd with the data 9177 * transformed as it is on disk in a new abd of asize bytes. 9178 */ 9179 static int 9180 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize, 9181 abd_t **abd_out) 9182 { 9183 int ret; 9184 void *tmp = NULL; 9185 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd; 9186 enum zio_compress compress = HDR_GET_COMPRESS(hdr); 9187 uint64_t psize = HDR_GET_PSIZE(hdr); 9188 uint64_t size = arc_hdr_size(hdr); 9189 boolean_t ismd = HDR_ISTYPE_METADATA(hdr); 9190 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 9191 dsl_crypto_key_t *dck = NULL; 9192 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 }; 9193 boolean_t no_crypt = B_FALSE; 9194 9195 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 9196 !HDR_COMPRESSION_ENABLED(hdr)) || 9197 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize); 9198 ASSERT3U(psize, <=, asize); 9199 9200 /* 9201 * If this data simply needs its own buffer, we simply allocate it 9202 * and copy the data. This may be done to eliminate a dependency on a 9203 * shared buffer or to reallocate the buffer to match asize. 9204 */ 9205 if (HDR_HAS_RABD(hdr) && asize != psize) { 9206 ASSERT3U(asize, >=, psize); 9207 to_write = abd_alloc_for_io(asize, ismd); 9208 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize); 9209 if (psize != asize) 9210 abd_zero_off(to_write, psize, asize - psize); 9211 goto out; 9212 } 9213 9214 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) && 9215 !HDR_ENCRYPTED(hdr)) { 9216 ASSERT3U(size, ==, psize); 9217 to_write = abd_alloc_for_io(asize, ismd); 9218 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 9219 if (size != asize) 9220 abd_zero_off(to_write, size, asize - size); 9221 goto out; 9222 } 9223 9224 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) { 9225 cabd = abd_alloc_for_io(asize, ismd); 9226 tmp = abd_borrow_buf(cabd, asize); 9227 9228 psize = zio_compress_data(compress, to_write, tmp, size, 9229 hdr->b_complevel); 9230 9231 if (psize >= size) { 9232 abd_return_buf(cabd, tmp, asize); 9233 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF); 9234 to_write = cabd; 9235 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 9236 if (size != asize) 9237 abd_zero_off(to_write, size, asize - size); 9238 goto encrypt; 9239 } 9240 ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr)); 9241 if (psize < asize) 9242 bzero((char *)tmp + psize, asize - psize); 9243 psize = HDR_GET_PSIZE(hdr); 9244 abd_return_buf_copy(cabd, tmp, asize); 9245 to_write = cabd; 9246 } 9247 9248 encrypt: 9249 if (HDR_ENCRYPTED(hdr)) { 9250 eabd = abd_alloc_for_io(asize, ismd); 9251 9252 /* 9253 * If the dataset was disowned before the buffer 9254 * made it to this point, the key to re-encrypt 9255 * it won't be available. In this case we simply 9256 * won't write the buffer to the L2ARC. 9257 */ 9258 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj, 9259 FTAG, &dck); 9260 if (ret != 0) 9261 goto error; 9262 9263 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key, 9264 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt, 9265 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd, 9266 &no_crypt); 9267 if (ret != 0) 9268 goto error; 9269 9270 if (no_crypt) 9271 abd_copy(eabd, to_write, psize); 9272 9273 if (psize != asize) 9274 abd_zero_off(eabd, psize, asize - psize); 9275 9276 /* assert that the MAC we got here matches the one we saved */ 9277 ASSERT0(bcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN)); 9278 spa_keystore_dsl_key_rele(spa, dck, FTAG); 9279 9280 if (to_write == cabd) 9281 abd_free(cabd); 9282 9283 to_write = eabd; 9284 } 9285 9286 out: 9287 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd); 9288 *abd_out = to_write; 9289 return (0); 9290 9291 error: 9292 if (dck != NULL) 9293 spa_keystore_dsl_key_rele(spa, dck, FTAG); 9294 if (cabd != NULL) 9295 abd_free(cabd); 9296 if (eabd != NULL) 9297 abd_free(eabd); 9298 9299 *abd_out = NULL; 9300 return (ret); 9301 } 9302 9303 static void 9304 l2arc_blk_fetch_done(zio_t *zio) 9305 { 9306 l2arc_read_callback_t *cb; 9307 9308 cb = zio->io_private; 9309 if (cb->l2rcb_abd != NULL) 9310 abd_free(cb->l2rcb_abd); 9311 kmem_free(cb, sizeof (l2arc_read_callback_t)); 9312 } 9313 9314 /* 9315 * Find and write ARC buffers to the L2ARC device. 9316 * 9317 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 9318 * for reading until they have completed writing. 9319 * The headroom_boost is an in-out parameter used to maintain headroom boost 9320 * state between calls to this function. 9321 * 9322 * Returns the number of bytes actually written (which may be smaller than 9323 * the delta by which the device hand has changed due to alignment and the 9324 * writing of log blocks). 9325 */ 9326 static uint64_t 9327 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 9328 { 9329 arc_buf_hdr_t *hdr, *hdr_prev, *head; 9330 uint64_t write_asize, write_psize, write_lsize, headroom; 9331 boolean_t full; 9332 l2arc_write_callback_t *cb = NULL; 9333 zio_t *pio, *wzio; 9334 uint64_t guid = spa_load_guid(spa); 9335 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9336 9337 ASSERT3P(dev->l2ad_vdev, !=, NULL); 9338 9339 pio = NULL; 9340 write_lsize = write_asize = write_psize = 0; 9341 full = B_FALSE; 9342 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 9343 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); 9344 9345 /* 9346 * Copy buffers for L2ARC writing. 9347 */ 9348 for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) { 9349 /* 9350 * If pass == 1 or 3, we cache MRU metadata and data 9351 * respectively. 9352 */ 9353 if (l2arc_mfuonly) { 9354 if (pass == 1 || pass == 3) 9355 continue; 9356 } 9357 9358 multilist_sublist_t *mls = l2arc_sublist_lock(pass); 9359 uint64_t passed_sz = 0; 9360 9361 VERIFY3P(mls, !=, NULL); 9362 9363 /* 9364 * L2ARC fast warmup. 9365 * 9366 * Until the ARC is warm and starts to evict, read from the 9367 * head of the ARC lists rather than the tail. 9368 */ 9369 if (arc_warm == B_FALSE) 9370 hdr = multilist_sublist_head(mls); 9371 else 9372 hdr = multilist_sublist_tail(mls); 9373 9374 headroom = target_sz * l2arc_headroom; 9375 if (zfs_compressed_arc_enabled) 9376 headroom = (headroom * l2arc_headroom_boost) / 100; 9377 9378 for (; hdr; hdr = hdr_prev) { 9379 kmutex_t *hash_lock; 9380 abd_t *to_write = NULL; 9381 9382 if (arc_warm == B_FALSE) 9383 hdr_prev = multilist_sublist_next(mls, hdr); 9384 else 9385 hdr_prev = multilist_sublist_prev(mls, hdr); 9386 9387 hash_lock = HDR_LOCK(hdr); 9388 if (!mutex_tryenter(hash_lock)) { 9389 /* 9390 * Skip this buffer rather than waiting. 9391 */ 9392 continue; 9393 } 9394 9395 passed_sz += HDR_GET_LSIZE(hdr); 9396 if (l2arc_headroom != 0 && passed_sz > headroom) { 9397 /* 9398 * Searched too far. 9399 */ 9400 mutex_exit(hash_lock); 9401 break; 9402 } 9403 9404 if (!l2arc_write_eligible(guid, hdr)) { 9405 mutex_exit(hash_lock); 9406 continue; 9407 } 9408 9409 /* 9410 * We rely on the L1 portion of the header below, so 9411 * it's invalid for this header to have been evicted out 9412 * of the ghost cache, prior to being written out. The 9413 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 9414 */ 9415 ASSERT(HDR_HAS_L1HDR(hdr)); 9416 9417 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 9418 ASSERT3U(arc_hdr_size(hdr), >, 0); 9419 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 9420 HDR_HAS_RABD(hdr)); 9421 uint64_t psize = HDR_GET_PSIZE(hdr); 9422 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 9423 psize); 9424 9425 if ((write_asize + asize) > target_sz) { 9426 full = B_TRUE; 9427 mutex_exit(hash_lock); 9428 break; 9429 } 9430 9431 /* 9432 * We rely on the L1 portion of the header below, so 9433 * it's invalid for this header to have been evicted out 9434 * of the ghost cache, prior to being written out. The 9435 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 9436 */ 9437 arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING); 9438 ASSERT(HDR_HAS_L1HDR(hdr)); 9439 9440 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 9441 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 9442 HDR_HAS_RABD(hdr)); 9443 ASSERT3U(arc_hdr_size(hdr), >, 0); 9444 9445 /* 9446 * If this header has b_rabd, we can use this since it 9447 * must always match the data exactly as it exists on 9448 * disk. Otherwise, the L2ARC can normally use the 9449 * hdr's data, but if we're sharing data between the 9450 * hdr and one of its bufs, L2ARC needs its own copy of 9451 * the data so that the ZIO below can't race with the 9452 * buf consumer. To ensure that this copy will be 9453 * available for the lifetime of the ZIO and be cleaned 9454 * up afterwards, we add it to the l2arc_free_on_write 9455 * queue. If we need to apply any transforms to the 9456 * data (compression, encryption) we will also need the 9457 * extra buffer. 9458 */ 9459 if (HDR_HAS_RABD(hdr) && psize == asize) { 9460 to_write = hdr->b_crypt_hdr.b_rabd; 9461 } else if ((HDR_COMPRESSION_ENABLED(hdr) || 9462 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) && 9463 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) && 9464 psize == asize) { 9465 to_write = hdr->b_l1hdr.b_pabd; 9466 } else { 9467 int ret; 9468 arc_buf_contents_t type = arc_buf_type(hdr); 9469 9470 ret = l2arc_apply_transforms(spa, hdr, asize, 9471 &to_write); 9472 if (ret != 0) { 9473 arc_hdr_clear_flags(hdr, 9474 ARC_FLAG_L2_WRITING); 9475 mutex_exit(hash_lock); 9476 continue; 9477 } 9478 9479 l2arc_free_abd_on_write(to_write, asize, type); 9480 } 9481 9482 if (pio == NULL) { 9483 /* 9484 * Insert a dummy header on the buflist so 9485 * l2arc_write_done() can find where the 9486 * write buffers begin without searching. 9487 */ 9488 mutex_enter(&dev->l2ad_mtx); 9489 list_insert_head(&dev->l2ad_buflist, head); 9490 mutex_exit(&dev->l2ad_mtx); 9491 9492 cb = kmem_alloc( 9493 sizeof (l2arc_write_callback_t), KM_SLEEP); 9494 cb->l2wcb_dev = dev; 9495 cb->l2wcb_head = head; 9496 /* 9497 * Create a list to save allocated abd buffers 9498 * for l2arc_log_blk_commit(). 9499 */ 9500 list_create(&cb->l2wcb_abd_list, 9501 sizeof (l2arc_lb_abd_buf_t), 9502 offsetof(l2arc_lb_abd_buf_t, node)); 9503 pio = zio_root(spa, l2arc_write_done, cb, 9504 ZIO_FLAG_CANFAIL); 9505 } 9506 9507 hdr->b_l2hdr.b_dev = dev; 9508 hdr->b_l2hdr.b_hits = 0; 9509 9510 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 9511 hdr->b_l2hdr.b_arcs_state = 9512 hdr->b_l1hdr.b_state->arcs_state; 9513 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR); 9514 9515 mutex_enter(&dev->l2ad_mtx); 9516 list_insert_head(&dev->l2ad_buflist, hdr); 9517 mutex_exit(&dev->l2ad_mtx); 9518 9519 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 9520 arc_hdr_size(hdr), hdr); 9521 9522 wzio = zio_write_phys(pio, dev->l2ad_vdev, 9523 hdr->b_l2hdr.b_daddr, asize, to_write, 9524 ZIO_CHECKSUM_OFF, NULL, hdr, 9525 ZIO_PRIORITY_ASYNC_WRITE, 9526 ZIO_FLAG_CANFAIL, B_FALSE); 9527 9528 write_lsize += HDR_GET_LSIZE(hdr); 9529 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 9530 zio_t *, wzio); 9531 9532 write_psize += psize; 9533 write_asize += asize; 9534 dev->l2ad_hand += asize; 9535 l2arc_hdr_arcstats_increment(hdr); 9536 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 9537 9538 mutex_exit(hash_lock); 9539 9540 /* 9541 * Append buf info to current log and commit if full. 9542 * arcstat_l2_{size,asize} kstats are updated 9543 * internally. 9544 */ 9545 if (l2arc_log_blk_insert(dev, hdr)) 9546 l2arc_log_blk_commit(dev, pio, cb); 9547 9548 zio_nowait(wzio); 9549 } 9550 9551 multilist_sublist_unlock(mls); 9552 9553 if (full == B_TRUE) 9554 break; 9555 } 9556 9557 /* No buffers selected for writing? */ 9558 if (pio == NULL) { 9559 ASSERT0(write_lsize); 9560 ASSERT(!HDR_HAS_L1HDR(head)); 9561 kmem_cache_free(hdr_l2only_cache, head); 9562 9563 /* 9564 * Although we did not write any buffers l2ad_evict may 9565 * have advanced. 9566 */ 9567 if (dev->l2ad_evict != l2dhdr->dh_evict) 9568 l2arc_dev_hdr_update(dev); 9569 9570 return (0); 9571 } 9572 9573 if (!dev->l2ad_first) 9574 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict); 9575 9576 ASSERT3U(write_asize, <=, target_sz); 9577 ARCSTAT_BUMP(arcstat_l2_writes_sent); 9578 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize); 9579 9580 dev->l2ad_writing = B_TRUE; 9581 (void) zio_wait(pio); 9582 dev->l2ad_writing = B_FALSE; 9583 9584 /* 9585 * Update the device header after the zio completes as 9586 * l2arc_write_done() may have updated the memory holding the log block 9587 * pointers in the device header. 9588 */ 9589 l2arc_dev_hdr_update(dev); 9590 9591 return (write_asize); 9592 } 9593 9594 static boolean_t 9595 l2arc_hdr_limit_reached(void) 9596 { 9597 int64_t s = aggsum_upper_bound(&arc_sums.arcstat_l2_hdr_size); 9598 9599 return (arc_reclaim_needed() || (s > arc_meta_limit * 3 / 4) || 9600 (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100)); 9601 } 9602 9603 /* 9604 * This thread feeds the L2ARC at regular intervals. This is the beating 9605 * heart of the L2ARC. 9606 */ 9607 /* ARGSUSED */ 9608 static void 9609 l2arc_feed_thread(void *unused) 9610 { 9611 callb_cpr_t cpr; 9612 l2arc_dev_t *dev; 9613 spa_t *spa; 9614 uint64_t size, wrote; 9615 clock_t begin, next = ddi_get_lbolt(); 9616 fstrans_cookie_t cookie; 9617 9618 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 9619 9620 mutex_enter(&l2arc_feed_thr_lock); 9621 9622 cookie = spl_fstrans_mark(); 9623 while (l2arc_thread_exit == 0) { 9624 CALLB_CPR_SAFE_BEGIN(&cpr); 9625 (void) cv_timedwait_idle(&l2arc_feed_thr_cv, 9626 &l2arc_feed_thr_lock, next); 9627 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 9628 next = ddi_get_lbolt() + hz; 9629 9630 /* 9631 * Quick check for L2ARC devices. 9632 */ 9633 mutex_enter(&l2arc_dev_mtx); 9634 if (l2arc_ndev == 0) { 9635 mutex_exit(&l2arc_dev_mtx); 9636 continue; 9637 } 9638 mutex_exit(&l2arc_dev_mtx); 9639 begin = ddi_get_lbolt(); 9640 9641 /* 9642 * This selects the next l2arc device to write to, and in 9643 * doing so the next spa to feed from: dev->l2ad_spa. This 9644 * will return NULL if there are now no l2arc devices or if 9645 * they are all faulted. 9646 * 9647 * If a device is returned, its spa's config lock is also 9648 * held to prevent device removal. l2arc_dev_get_next() 9649 * will grab and release l2arc_dev_mtx. 9650 */ 9651 if ((dev = l2arc_dev_get_next()) == NULL) 9652 continue; 9653 9654 spa = dev->l2ad_spa; 9655 ASSERT3P(spa, !=, NULL); 9656 9657 /* 9658 * If the pool is read-only then force the feed thread to 9659 * sleep a little longer. 9660 */ 9661 if (!spa_writeable(spa)) { 9662 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 9663 spa_config_exit(spa, SCL_L2ARC, dev); 9664 continue; 9665 } 9666 9667 /* 9668 * Avoid contributing to memory pressure. 9669 */ 9670 if (l2arc_hdr_limit_reached()) { 9671 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 9672 spa_config_exit(spa, SCL_L2ARC, dev); 9673 continue; 9674 } 9675 9676 ARCSTAT_BUMP(arcstat_l2_feeds); 9677 9678 size = l2arc_write_size(dev); 9679 9680 /* 9681 * Evict L2ARC buffers that will be overwritten. 9682 */ 9683 l2arc_evict(dev, size, B_FALSE); 9684 9685 /* 9686 * Write ARC buffers. 9687 */ 9688 wrote = l2arc_write_buffers(spa, dev, size); 9689 9690 /* 9691 * Calculate interval between writes. 9692 */ 9693 next = l2arc_write_interval(begin, size, wrote); 9694 spa_config_exit(spa, SCL_L2ARC, dev); 9695 } 9696 spl_fstrans_unmark(cookie); 9697 9698 l2arc_thread_exit = 0; 9699 cv_broadcast(&l2arc_feed_thr_cv); 9700 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 9701 thread_exit(); 9702 } 9703 9704 boolean_t 9705 l2arc_vdev_present(vdev_t *vd) 9706 { 9707 return (l2arc_vdev_get(vd) != NULL); 9708 } 9709 9710 /* 9711 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if 9712 * the vdev_t isn't an L2ARC device. 9713 */ 9714 l2arc_dev_t * 9715 l2arc_vdev_get(vdev_t *vd) 9716 { 9717 l2arc_dev_t *dev; 9718 9719 mutex_enter(&l2arc_dev_mtx); 9720 for (dev = list_head(l2arc_dev_list); dev != NULL; 9721 dev = list_next(l2arc_dev_list, dev)) { 9722 if (dev->l2ad_vdev == vd) 9723 break; 9724 } 9725 mutex_exit(&l2arc_dev_mtx); 9726 9727 return (dev); 9728 } 9729 9730 /* 9731 * Add a vdev for use by the L2ARC. By this point the spa has already 9732 * validated the vdev and opened it. 9733 */ 9734 void 9735 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 9736 { 9737 l2arc_dev_t *adddev; 9738 uint64_t l2dhdr_asize; 9739 9740 ASSERT(!l2arc_vdev_present(vd)); 9741 9742 /* 9743 * Create a new l2arc device entry. 9744 */ 9745 adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 9746 adddev->l2ad_spa = spa; 9747 adddev->l2ad_vdev = vd; 9748 /* leave extra size for an l2arc device header */ 9749 l2dhdr_asize = adddev->l2ad_dev_hdr_asize = 9750 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift); 9751 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize; 9752 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 9753 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end); 9754 adddev->l2ad_hand = adddev->l2ad_start; 9755 adddev->l2ad_evict = adddev->l2ad_start; 9756 adddev->l2ad_first = B_TRUE; 9757 adddev->l2ad_writing = B_FALSE; 9758 adddev->l2ad_trim_all = B_FALSE; 9759 list_link_init(&adddev->l2ad_node); 9760 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP); 9761 9762 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 9763 /* 9764 * This is a list of all ARC buffers that are still valid on the 9765 * device. 9766 */ 9767 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 9768 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 9769 9770 /* 9771 * This is a list of pointers to log blocks that are still present 9772 * on the device. 9773 */ 9774 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t), 9775 offsetof(l2arc_lb_ptr_buf_t, node)); 9776 9777 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 9778 zfs_refcount_create(&adddev->l2ad_alloc); 9779 zfs_refcount_create(&adddev->l2ad_lb_asize); 9780 zfs_refcount_create(&adddev->l2ad_lb_count); 9781 9782 /* 9783 * Add device to global list 9784 */ 9785 mutex_enter(&l2arc_dev_mtx); 9786 list_insert_head(l2arc_dev_list, adddev); 9787 atomic_inc_64(&l2arc_ndev); 9788 mutex_exit(&l2arc_dev_mtx); 9789 9790 /* 9791 * Decide if vdev is eligible for L2ARC rebuild 9792 */ 9793 l2arc_rebuild_vdev(adddev->l2ad_vdev, B_FALSE); 9794 } 9795 9796 void 9797 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen) 9798 { 9799 l2arc_dev_t *dev = NULL; 9800 l2arc_dev_hdr_phys_t *l2dhdr; 9801 uint64_t l2dhdr_asize; 9802 spa_t *spa; 9803 9804 dev = l2arc_vdev_get(vd); 9805 ASSERT3P(dev, !=, NULL); 9806 spa = dev->l2ad_spa; 9807 l2dhdr = dev->l2ad_dev_hdr; 9808 l2dhdr_asize = dev->l2ad_dev_hdr_asize; 9809 9810 /* 9811 * The L2ARC has to hold at least the payload of one log block for 9812 * them to be restored (persistent L2ARC). The payload of a log block 9813 * depends on the amount of its log entries. We always write log blocks 9814 * with 1022 entries. How many of them are committed or restored depends 9815 * on the size of the L2ARC device. Thus the maximum payload of 9816 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device 9817 * is less than that, we reduce the amount of committed and restored 9818 * log entries per block so as to enable persistence. 9819 */ 9820 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) { 9821 dev->l2ad_log_entries = 0; 9822 } else { 9823 dev->l2ad_log_entries = MIN((dev->l2ad_end - 9824 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT, 9825 L2ARC_LOG_BLK_MAX_ENTRIES); 9826 } 9827 9828 /* 9829 * Read the device header, if an error is returned do not rebuild L2ARC. 9830 */ 9831 if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) { 9832 /* 9833 * If we are onlining a cache device (vdev_reopen) that was 9834 * still present (l2arc_vdev_present()) and rebuild is enabled, 9835 * we should evict all ARC buffers and pointers to log blocks 9836 * and reclaim their space before restoring its contents to 9837 * L2ARC. 9838 */ 9839 if (reopen) { 9840 if (!l2arc_rebuild_enabled) { 9841 return; 9842 } else { 9843 l2arc_evict(dev, 0, B_TRUE); 9844 /* start a new log block */ 9845 dev->l2ad_log_ent_idx = 0; 9846 dev->l2ad_log_blk_payload_asize = 0; 9847 dev->l2ad_log_blk_payload_start = 0; 9848 } 9849 } 9850 /* 9851 * Just mark the device as pending for a rebuild. We won't 9852 * be starting a rebuild in line here as it would block pool 9853 * import. Instead spa_load_impl will hand that off to an 9854 * async task which will call l2arc_spa_rebuild_start. 9855 */ 9856 dev->l2ad_rebuild = B_TRUE; 9857 } else if (spa_writeable(spa)) { 9858 /* 9859 * In this case TRIM the whole device if l2arc_trim_ahead > 0, 9860 * otherwise create a new header. We zero out the memory holding 9861 * the header to reset dh_start_lbps. If we TRIM the whole 9862 * device the new header will be written by 9863 * vdev_trim_l2arc_thread() at the end of the TRIM to update the 9864 * trim_state in the header too. When reading the header, if 9865 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0 9866 * we opt to TRIM the whole device again. 9867 */ 9868 if (l2arc_trim_ahead > 0) { 9869 dev->l2ad_trim_all = B_TRUE; 9870 } else { 9871 bzero(l2dhdr, l2dhdr_asize); 9872 l2arc_dev_hdr_update(dev); 9873 } 9874 } 9875 } 9876 9877 /* 9878 * Remove a vdev from the L2ARC. 9879 */ 9880 void 9881 l2arc_remove_vdev(vdev_t *vd) 9882 { 9883 l2arc_dev_t *remdev = NULL; 9884 9885 /* 9886 * Find the device by vdev 9887 */ 9888 remdev = l2arc_vdev_get(vd); 9889 ASSERT3P(remdev, !=, NULL); 9890 9891 /* 9892 * Cancel any ongoing or scheduled rebuild. 9893 */ 9894 mutex_enter(&l2arc_rebuild_thr_lock); 9895 if (remdev->l2ad_rebuild_began == B_TRUE) { 9896 remdev->l2ad_rebuild_cancel = B_TRUE; 9897 while (remdev->l2ad_rebuild == B_TRUE) 9898 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock); 9899 } 9900 mutex_exit(&l2arc_rebuild_thr_lock); 9901 9902 /* 9903 * Remove device from global list 9904 */ 9905 mutex_enter(&l2arc_dev_mtx); 9906 list_remove(l2arc_dev_list, remdev); 9907 l2arc_dev_last = NULL; /* may have been invalidated */ 9908 atomic_dec_64(&l2arc_ndev); 9909 mutex_exit(&l2arc_dev_mtx); 9910 9911 /* 9912 * Clear all buflists and ARC references. L2ARC device flush. 9913 */ 9914 l2arc_evict(remdev, 0, B_TRUE); 9915 list_destroy(&remdev->l2ad_buflist); 9916 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list)); 9917 list_destroy(&remdev->l2ad_lbptr_list); 9918 mutex_destroy(&remdev->l2ad_mtx); 9919 zfs_refcount_destroy(&remdev->l2ad_alloc); 9920 zfs_refcount_destroy(&remdev->l2ad_lb_asize); 9921 zfs_refcount_destroy(&remdev->l2ad_lb_count); 9922 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize); 9923 vmem_free(remdev, sizeof (l2arc_dev_t)); 9924 } 9925 9926 void 9927 l2arc_init(void) 9928 { 9929 l2arc_thread_exit = 0; 9930 l2arc_ndev = 0; 9931 9932 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 9933 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 9934 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL); 9935 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL); 9936 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 9937 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 9938 9939 l2arc_dev_list = &L2ARC_dev_list; 9940 l2arc_free_on_write = &L2ARC_free_on_write; 9941 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 9942 offsetof(l2arc_dev_t, l2ad_node)); 9943 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 9944 offsetof(l2arc_data_free_t, l2df_list_node)); 9945 } 9946 9947 void 9948 l2arc_fini(void) 9949 { 9950 mutex_destroy(&l2arc_feed_thr_lock); 9951 cv_destroy(&l2arc_feed_thr_cv); 9952 mutex_destroy(&l2arc_rebuild_thr_lock); 9953 cv_destroy(&l2arc_rebuild_thr_cv); 9954 mutex_destroy(&l2arc_dev_mtx); 9955 mutex_destroy(&l2arc_free_on_write_mtx); 9956 9957 list_destroy(l2arc_dev_list); 9958 list_destroy(l2arc_free_on_write); 9959 } 9960 9961 void 9962 l2arc_start(void) 9963 { 9964 if (!(spa_mode_global & SPA_MODE_WRITE)) 9965 return; 9966 9967 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 9968 TS_RUN, defclsyspri); 9969 } 9970 9971 void 9972 l2arc_stop(void) 9973 { 9974 if (!(spa_mode_global & SPA_MODE_WRITE)) 9975 return; 9976 9977 mutex_enter(&l2arc_feed_thr_lock); 9978 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 9979 l2arc_thread_exit = 1; 9980 while (l2arc_thread_exit != 0) 9981 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 9982 mutex_exit(&l2arc_feed_thr_lock); 9983 } 9984 9985 /* 9986 * Punches out rebuild threads for the L2ARC devices in a spa. This should 9987 * be called after pool import from the spa async thread, since starting 9988 * these threads directly from spa_import() will make them part of the 9989 * "zpool import" context and delay process exit (and thus pool import). 9990 */ 9991 void 9992 l2arc_spa_rebuild_start(spa_t *spa) 9993 { 9994 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 9995 9996 /* 9997 * Locate the spa's l2arc devices and kick off rebuild threads. 9998 */ 9999 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 10000 l2arc_dev_t *dev = 10001 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]); 10002 if (dev == NULL) { 10003 /* Don't attempt a rebuild if the vdev is UNAVAIL */ 10004 continue; 10005 } 10006 mutex_enter(&l2arc_rebuild_thr_lock); 10007 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) { 10008 dev->l2ad_rebuild_began = B_TRUE; 10009 (void) thread_create(NULL, 0, l2arc_dev_rebuild_thread, 10010 dev, 0, &p0, TS_RUN, minclsyspri); 10011 } 10012 mutex_exit(&l2arc_rebuild_thr_lock); 10013 } 10014 } 10015 10016 /* 10017 * Main entry point for L2ARC rebuilding. 10018 */ 10019 static void 10020 l2arc_dev_rebuild_thread(void *arg) 10021 { 10022 l2arc_dev_t *dev = arg; 10023 10024 VERIFY(!dev->l2ad_rebuild_cancel); 10025 VERIFY(dev->l2ad_rebuild); 10026 (void) l2arc_rebuild(dev); 10027 mutex_enter(&l2arc_rebuild_thr_lock); 10028 dev->l2ad_rebuild_began = B_FALSE; 10029 dev->l2ad_rebuild = B_FALSE; 10030 mutex_exit(&l2arc_rebuild_thr_lock); 10031 10032 thread_exit(); 10033 } 10034 10035 /* 10036 * This function implements the actual L2ARC metadata rebuild. It: 10037 * starts reading the log block chain and restores each block's contents 10038 * to memory (reconstructing arc_buf_hdr_t's). 10039 * 10040 * Operation stops under any of the following conditions: 10041 * 10042 * 1) We reach the end of the log block chain. 10043 * 2) We encounter *any* error condition (cksum errors, io errors) 10044 */ 10045 static int 10046 l2arc_rebuild(l2arc_dev_t *dev) 10047 { 10048 vdev_t *vd = dev->l2ad_vdev; 10049 spa_t *spa = vd->vdev_spa; 10050 int err = 0; 10051 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10052 l2arc_log_blk_phys_t *this_lb, *next_lb; 10053 zio_t *this_io = NULL, *next_io = NULL; 10054 l2arc_log_blkptr_t lbps[2]; 10055 l2arc_lb_ptr_buf_t *lb_ptr_buf; 10056 boolean_t lock_held; 10057 10058 this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP); 10059 next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP); 10060 10061 /* 10062 * We prevent device removal while issuing reads to the device, 10063 * then during the rebuilding phases we drop this lock again so 10064 * that a spa_unload or device remove can be initiated - this is 10065 * safe, because the spa will signal us to stop before removing 10066 * our device and wait for us to stop. 10067 */ 10068 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER); 10069 lock_held = B_TRUE; 10070 10071 /* 10072 * Retrieve the persistent L2ARC device state. 10073 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10074 */ 10075 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start); 10076 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr + 10077 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop), 10078 dev->l2ad_start); 10079 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 10080 10081 vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time; 10082 vd->vdev_trim_state = l2dhdr->dh_trim_state; 10083 10084 /* 10085 * In case the zfs module parameter l2arc_rebuild_enabled is false 10086 * we do not start the rebuild process. 10087 */ 10088 if (!l2arc_rebuild_enabled) 10089 goto out; 10090 10091 /* Prepare the rebuild process */ 10092 bcopy(l2dhdr->dh_start_lbps, lbps, sizeof (lbps)); 10093 10094 /* Start the rebuild process */ 10095 for (;;) { 10096 if (!l2arc_log_blkptr_valid(dev, &lbps[0])) 10097 break; 10098 10099 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1], 10100 this_lb, next_lb, this_io, &next_io)) != 0) 10101 goto out; 10102 10103 /* 10104 * Our memory pressure valve. If the system is running low 10105 * on memory, rather than swamping memory with new ARC buf 10106 * hdrs, we opt not to rebuild the L2ARC. At this point, 10107 * however, we have already set up our L2ARC dev to chain in 10108 * new metadata log blocks, so the user may choose to offline/ 10109 * online the L2ARC dev at a later time (or re-import the pool) 10110 * to reconstruct it (when there's less memory pressure). 10111 */ 10112 if (l2arc_hdr_limit_reached()) { 10113 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem); 10114 cmn_err(CE_NOTE, "System running low on memory, " 10115 "aborting L2ARC rebuild."); 10116 err = SET_ERROR(ENOMEM); 10117 goto out; 10118 } 10119 10120 spa_config_exit(spa, SCL_L2ARC, vd); 10121 lock_held = B_FALSE; 10122 10123 /* 10124 * Now that we know that the next_lb checks out alright, we 10125 * can start reconstruction from this log block. 10126 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10127 */ 10128 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 10129 l2arc_log_blk_restore(dev, this_lb, asize); 10130 10131 /* 10132 * log block restored, include its pointer in the list of 10133 * pointers to log blocks present in the L2ARC device. 10134 */ 10135 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 10136 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), 10137 KM_SLEEP); 10138 bcopy(&lbps[0], lb_ptr_buf->lb_ptr, 10139 sizeof (l2arc_log_blkptr_t)); 10140 mutex_enter(&dev->l2ad_mtx); 10141 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf); 10142 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 10143 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 10144 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 10145 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 10146 mutex_exit(&dev->l2ad_mtx); 10147 vdev_space_update(vd, asize, 0, 0); 10148 10149 /* 10150 * Protection against loops of log blocks: 10151 * 10152 * l2ad_hand l2ad_evict 10153 * V V 10154 * l2ad_start |=======================================| l2ad_end 10155 * -----|||----|||---|||----||| 10156 * (3) (2) (1) (0) 10157 * ---|||---|||----|||---||| 10158 * (7) (6) (5) (4) 10159 * 10160 * In this situation the pointer of log block (4) passes 10161 * l2arc_log_blkptr_valid() but the log block should not be 10162 * restored as it is overwritten by the payload of log block 10163 * (0). Only log blocks (0)-(3) should be restored. We check 10164 * whether l2ad_evict lies in between the payload starting 10165 * offset of the next log block (lbps[1].lbp_payload_start) 10166 * and the payload starting offset of the present log block 10167 * (lbps[0].lbp_payload_start). If true and this isn't the 10168 * first pass, we are looping from the beginning and we should 10169 * stop. 10170 */ 10171 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 10172 lbps[0].lbp_payload_start, dev->l2ad_evict) && 10173 !dev->l2ad_first) 10174 goto out; 10175 10176 cond_resched(); 10177 for (;;) { 10178 mutex_enter(&l2arc_rebuild_thr_lock); 10179 if (dev->l2ad_rebuild_cancel) { 10180 dev->l2ad_rebuild = B_FALSE; 10181 cv_signal(&l2arc_rebuild_thr_cv); 10182 mutex_exit(&l2arc_rebuild_thr_lock); 10183 err = SET_ERROR(ECANCELED); 10184 goto out; 10185 } 10186 mutex_exit(&l2arc_rebuild_thr_lock); 10187 if (spa_config_tryenter(spa, SCL_L2ARC, vd, 10188 RW_READER)) { 10189 lock_held = B_TRUE; 10190 break; 10191 } 10192 /* 10193 * L2ARC config lock held by somebody in writer, 10194 * possibly due to them trying to remove us. They'll 10195 * likely to want us to shut down, so after a little 10196 * delay, we check l2ad_rebuild_cancel and retry 10197 * the lock again. 10198 */ 10199 delay(1); 10200 } 10201 10202 /* 10203 * Continue with the next log block. 10204 */ 10205 lbps[0] = lbps[1]; 10206 lbps[1] = this_lb->lb_prev_lbp; 10207 PTR_SWAP(this_lb, next_lb); 10208 this_io = next_io; 10209 next_io = NULL; 10210 } 10211 10212 if (this_io != NULL) 10213 l2arc_log_blk_fetch_abort(this_io); 10214 out: 10215 if (next_io != NULL) 10216 l2arc_log_blk_fetch_abort(next_io); 10217 vmem_free(this_lb, sizeof (*this_lb)); 10218 vmem_free(next_lb, sizeof (*next_lb)); 10219 10220 if (!l2arc_rebuild_enabled) { 10221 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10222 "disabled"); 10223 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) { 10224 ARCSTAT_BUMP(arcstat_l2_rebuild_success); 10225 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10226 "successful, restored %llu blocks", 10227 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10228 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) { 10229 /* 10230 * No error but also nothing restored, meaning the lbps array 10231 * in the device header points to invalid/non-present log 10232 * blocks. Reset the header. 10233 */ 10234 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10235 "no valid log blocks"); 10236 bzero(l2dhdr, dev->l2ad_dev_hdr_asize); 10237 l2arc_dev_hdr_update(dev); 10238 } else if (err == ECANCELED) { 10239 /* 10240 * In case the rebuild was canceled do not log to spa history 10241 * log as the pool may be in the process of being removed. 10242 */ 10243 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks", 10244 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10245 } else if (err != 0) { 10246 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10247 "aborted, restored %llu blocks", 10248 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10249 } 10250 10251 if (lock_held) 10252 spa_config_exit(spa, SCL_L2ARC, vd); 10253 10254 return (err); 10255 } 10256 10257 /* 10258 * Attempts to read the device header on the provided L2ARC device and writes 10259 * it to `hdr'. On success, this function returns 0, otherwise the appropriate 10260 * error code is returned. 10261 */ 10262 static int 10263 l2arc_dev_hdr_read(l2arc_dev_t *dev) 10264 { 10265 int err; 10266 uint64_t guid; 10267 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10268 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10269 abd_t *abd; 10270 10271 guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10272 10273 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10274 10275 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev, 10276 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, 10277 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 10278 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 10279 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 10280 ZIO_FLAG_SPECULATIVE, B_FALSE)); 10281 10282 abd_free(abd); 10283 10284 if (err != 0) { 10285 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors); 10286 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, " 10287 "vdev guid: %llu", err, 10288 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10289 return (err); 10290 } 10291 10292 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 10293 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr)); 10294 10295 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC || 10296 l2dhdr->dh_spa_guid != guid || 10297 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid || 10298 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION || 10299 l2dhdr->dh_log_entries != dev->l2ad_log_entries || 10300 l2dhdr->dh_end != dev->l2ad_end || 10301 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end, 10302 l2dhdr->dh_evict) || 10303 (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE && 10304 l2arc_trim_ahead > 0)) { 10305 /* 10306 * Attempt to rebuild a device containing no actual dev hdr 10307 * or containing a header from some other pool or from another 10308 * version of persistent L2ARC. 10309 */ 10310 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported); 10311 return (SET_ERROR(ENOTSUP)); 10312 } 10313 10314 return (0); 10315 } 10316 10317 /* 10318 * Reads L2ARC log blocks from storage and validates their contents. 10319 * 10320 * This function implements a simple fetcher to make sure that while 10321 * we're processing one buffer the L2ARC is already fetching the next 10322 * one in the chain. 10323 * 10324 * The arguments this_lp and next_lp point to the current and next log block 10325 * address in the block chain. Similarly, this_lb and next_lb hold the 10326 * l2arc_log_blk_phys_t's of the current and next L2ARC blk. 10327 * 10328 * The `this_io' and `next_io' arguments are used for block fetching. 10329 * When issuing the first blk IO during rebuild, you should pass NULL for 10330 * `this_io'. This function will then issue a sync IO to read the block and 10331 * also issue an async IO to fetch the next block in the block chain. The 10332 * fetched IO is returned in `next_io'. On subsequent calls to this 10333 * function, pass the value returned in `next_io' from the previous call 10334 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO. 10335 * Prior to the call, you should initialize your `next_io' pointer to be 10336 * NULL. If no fetch IO was issued, the pointer is left set at NULL. 10337 * 10338 * On success, this function returns 0, otherwise it returns an appropriate 10339 * error code. On error the fetching IO is aborted and cleared before 10340 * returning from this function. Therefore, if we return `success', the 10341 * caller can assume that we have taken care of cleanup of fetch IOs. 10342 */ 10343 static int 10344 l2arc_log_blk_read(l2arc_dev_t *dev, 10345 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp, 10346 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 10347 zio_t *this_io, zio_t **next_io) 10348 { 10349 int err = 0; 10350 zio_cksum_t cksum; 10351 abd_t *abd = NULL; 10352 uint64_t asize; 10353 10354 ASSERT(this_lbp != NULL && next_lbp != NULL); 10355 ASSERT(this_lb != NULL && next_lb != NULL); 10356 ASSERT(next_io != NULL && *next_io == NULL); 10357 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp)); 10358 10359 /* 10360 * Check to see if we have issued the IO for this log block in a 10361 * previous run. If not, this is the first call, so issue it now. 10362 */ 10363 if (this_io == NULL) { 10364 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp, 10365 this_lb); 10366 } 10367 10368 /* 10369 * Peek to see if we can start issuing the next IO immediately. 10370 */ 10371 if (l2arc_log_blkptr_valid(dev, next_lbp)) { 10372 /* 10373 * Start issuing IO for the next log block early - this 10374 * should help keep the L2ARC device busy while we 10375 * decompress and restore this log block. 10376 */ 10377 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp, 10378 next_lb); 10379 } 10380 10381 /* Wait for the IO to read this log block to complete */ 10382 if ((err = zio_wait(this_io)) != 0) { 10383 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors); 10384 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, " 10385 "offset: %llu, vdev guid: %llu", err, 10386 (u_longlong_t)this_lbp->lbp_daddr, 10387 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10388 goto cleanup; 10389 } 10390 10391 /* 10392 * Make sure the buffer checks out. 10393 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10394 */ 10395 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop); 10396 fletcher_4_native(this_lb, asize, NULL, &cksum); 10397 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) { 10398 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors); 10399 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, " 10400 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu", 10401 (u_longlong_t)this_lbp->lbp_daddr, 10402 (u_longlong_t)dev->l2ad_vdev->vdev_guid, 10403 (u_longlong_t)dev->l2ad_hand, 10404 (u_longlong_t)dev->l2ad_evict); 10405 err = SET_ERROR(ECKSUM); 10406 goto cleanup; 10407 } 10408 10409 /* Now we can take our time decoding this buffer */ 10410 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) { 10411 case ZIO_COMPRESS_OFF: 10412 break; 10413 case ZIO_COMPRESS_LZ4: 10414 abd = abd_alloc_for_io(asize, B_TRUE); 10415 abd_copy_from_buf_off(abd, this_lb, 0, asize); 10416 if ((err = zio_decompress_data( 10417 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop), 10418 abd, this_lb, asize, sizeof (*this_lb), NULL)) != 0) { 10419 err = SET_ERROR(EINVAL); 10420 goto cleanup; 10421 } 10422 break; 10423 default: 10424 err = SET_ERROR(EINVAL); 10425 goto cleanup; 10426 } 10427 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 10428 byteswap_uint64_array(this_lb, sizeof (*this_lb)); 10429 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) { 10430 err = SET_ERROR(EINVAL); 10431 goto cleanup; 10432 } 10433 cleanup: 10434 /* Abort an in-flight fetch I/O in case of error */ 10435 if (err != 0 && *next_io != NULL) { 10436 l2arc_log_blk_fetch_abort(*next_io); 10437 *next_io = NULL; 10438 } 10439 if (abd != NULL) 10440 abd_free(abd); 10441 return (err); 10442 } 10443 10444 /* 10445 * Restores the payload of a log block to ARC. This creates empty ARC hdr 10446 * entries which only contain an l2arc hdr, essentially restoring the 10447 * buffers to their L2ARC evicted state. This function also updates space 10448 * usage on the L2ARC vdev to make sure it tracks restored buffers. 10449 */ 10450 static void 10451 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb, 10452 uint64_t lb_asize) 10453 { 10454 uint64_t size = 0, asize = 0; 10455 uint64_t log_entries = dev->l2ad_log_entries; 10456 10457 /* 10458 * Usually arc_adapt() is called only for data, not headers, but 10459 * since we may allocate significant amount of memory here, let ARC 10460 * grow its arc_c. 10461 */ 10462 arc_adapt(log_entries * HDR_L2ONLY_SIZE, arc_l2c_only); 10463 10464 for (int i = log_entries - 1; i >= 0; i--) { 10465 /* 10466 * Restore goes in the reverse temporal direction to preserve 10467 * correct temporal ordering of buffers in the l2ad_buflist. 10468 * l2arc_hdr_restore also does a list_insert_tail instead of 10469 * list_insert_head on the l2ad_buflist: 10470 * 10471 * LIST l2ad_buflist LIST 10472 * HEAD <------ (time) ------ TAIL 10473 * direction +-----+-----+-----+-----+-----+ direction 10474 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild 10475 * fill +-----+-----+-----+-----+-----+ 10476 * ^ ^ 10477 * | | 10478 * | | 10479 * l2arc_feed_thread l2arc_rebuild 10480 * will place new bufs here restores bufs here 10481 * 10482 * During l2arc_rebuild() the device is not used by 10483 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true. 10484 */ 10485 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop); 10486 asize += vdev_psize_to_asize(dev->l2ad_vdev, 10487 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop)); 10488 l2arc_hdr_restore(&lb->lb_entries[i], dev); 10489 } 10490 10491 /* 10492 * Record rebuild stats: 10493 * size Logical size of restored buffers in the L2ARC 10494 * asize Aligned size of restored buffers in the L2ARC 10495 */ 10496 ARCSTAT_INCR(arcstat_l2_rebuild_size, size); 10497 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize); 10498 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries); 10499 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize); 10500 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize); 10501 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks); 10502 } 10503 10504 /* 10505 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put 10506 * into a state indicating that it has been evicted to L2ARC. 10507 */ 10508 static void 10509 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev) 10510 { 10511 arc_buf_hdr_t *hdr, *exists; 10512 kmutex_t *hash_lock; 10513 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop); 10514 uint64_t asize; 10515 10516 /* 10517 * Do all the allocation before grabbing any locks, this lets us 10518 * sleep if memory is full and we don't have to deal with failed 10519 * allocations. 10520 */ 10521 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type, 10522 dev, le->le_dva, le->le_daddr, 10523 L2BLK_GET_PSIZE((le)->le_prop), le->le_birth, 10524 L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel, 10525 L2BLK_GET_PROTECTED((le)->le_prop), 10526 L2BLK_GET_PREFETCH((le)->le_prop), 10527 L2BLK_GET_STATE((le)->le_prop)); 10528 asize = vdev_psize_to_asize(dev->l2ad_vdev, 10529 L2BLK_GET_PSIZE((le)->le_prop)); 10530 10531 /* 10532 * vdev_space_update() has to be called before arc_hdr_destroy() to 10533 * avoid underflow since the latter also calls vdev_space_update(). 10534 */ 10535 l2arc_hdr_arcstats_increment(hdr); 10536 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10537 10538 mutex_enter(&dev->l2ad_mtx); 10539 list_insert_tail(&dev->l2ad_buflist, hdr); 10540 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); 10541 mutex_exit(&dev->l2ad_mtx); 10542 10543 exists = buf_hash_insert(hdr, &hash_lock); 10544 if (exists) { 10545 /* Buffer was already cached, no need to restore it. */ 10546 arc_hdr_destroy(hdr); 10547 /* 10548 * If the buffer is already cached, check whether it has 10549 * L2ARC metadata. If not, enter them and update the flag. 10550 * This is important is case of onlining a cache device, since 10551 * we previously evicted all L2ARC metadata from ARC. 10552 */ 10553 if (!HDR_HAS_L2HDR(exists)) { 10554 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR); 10555 exists->b_l2hdr.b_dev = dev; 10556 exists->b_l2hdr.b_daddr = le->le_daddr; 10557 exists->b_l2hdr.b_arcs_state = 10558 L2BLK_GET_STATE((le)->le_prop); 10559 mutex_enter(&dev->l2ad_mtx); 10560 list_insert_tail(&dev->l2ad_buflist, exists); 10561 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 10562 arc_hdr_size(exists), exists); 10563 mutex_exit(&dev->l2ad_mtx); 10564 l2arc_hdr_arcstats_increment(exists); 10565 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10566 } 10567 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached); 10568 } 10569 10570 mutex_exit(hash_lock); 10571 } 10572 10573 /* 10574 * Starts an asynchronous read IO to read a log block. This is used in log 10575 * block reconstruction to start reading the next block before we are done 10576 * decoding and reconstructing the current block, to keep the l2arc device 10577 * nice and hot with read IO to process. 10578 * The returned zio will contain a newly allocated memory buffers for the IO 10579 * data which should then be freed by the caller once the zio is no longer 10580 * needed (i.e. due to it having completed). If you wish to abort this 10581 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes 10582 * care of disposing of the allocated buffers correctly. 10583 */ 10584 static zio_t * 10585 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp, 10586 l2arc_log_blk_phys_t *lb) 10587 { 10588 uint32_t asize; 10589 zio_t *pio; 10590 l2arc_read_callback_t *cb; 10591 10592 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10593 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10594 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t)); 10595 10596 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP); 10597 cb->l2rcb_abd = abd_get_from_buf(lb, asize); 10598 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb, 10599 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | 10600 ZIO_FLAG_DONT_RETRY); 10601 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize, 10602 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10603 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 10604 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE)); 10605 10606 return (pio); 10607 } 10608 10609 /* 10610 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data 10611 * buffers allocated for it. 10612 */ 10613 static void 10614 l2arc_log_blk_fetch_abort(zio_t *zio) 10615 { 10616 (void) zio_wait(zio); 10617 } 10618 10619 /* 10620 * Creates a zio to update the device header on an l2arc device. 10621 */ 10622 void 10623 l2arc_dev_hdr_update(l2arc_dev_t *dev) 10624 { 10625 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10626 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10627 abd_t *abd; 10628 int err; 10629 10630 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER)); 10631 10632 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC; 10633 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION; 10634 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10635 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid; 10636 l2dhdr->dh_log_entries = dev->l2ad_log_entries; 10637 l2dhdr->dh_evict = dev->l2ad_evict; 10638 l2dhdr->dh_start = dev->l2ad_start; 10639 l2dhdr->dh_end = dev->l2ad_end; 10640 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize); 10641 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count); 10642 l2dhdr->dh_flags = 0; 10643 l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time; 10644 l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state; 10645 if (dev->l2ad_first) 10646 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST; 10647 10648 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10649 10650 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev, 10651 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL, 10652 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE)); 10653 10654 abd_free(abd); 10655 10656 if (err != 0) { 10657 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, " 10658 "vdev guid: %llu", err, 10659 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10660 } 10661 } 10662 10663 /* 10664 * Commits a log block to the L2ARC device. This routine is invoked from 10665 * l2arc_write_buffers when the log block fills up. 10666 * This function allocates some memory to temporarily hold the serialized 10667 * buffer to be written. This is then released in l2arc_write_done. 10668 */ 10669 static void 10670 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb) 10671 { 10672 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10673 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10674 uint64_t psize, asize; 10675 zio_t *wzio; 10676 l2arc_lb_abd_buf_t *abd_buf; 10677 uint8_t *tmpbuf; 10678 l2arc_lb_ptr_buf_t *lb_ptr_buf; 10679 10680 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries); 10681 10682 tmpbuf = zio_buf_alloc(sizeof (*lb)); 10683 abd_buf = zio_buf_alloc(sizeof (*abd_buf)); 10684 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb)); 10685 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 10686 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP); 10687 10688 /* link the buffer into the block chain */ 10689 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1]; 10690 lb->lb_magic = L2ARC_LOG_BLK_MAGIC; 10691 10692 /* 10693 * l2arc_log_blk_commit() may be called multiple times during a single 10694 * l2arc_write_buffers() call. Save the allocated abd buffers in a list 10695 * so we can free them in l2arc_write_done() later on. 10696 */ 10697 list_insert_tail(&cb->l2wcb_abd_list, abd_buf); 10698 10699 /* try to compress the buffer */ 10700 psize = zio_compress_data(ZIO_COMPRESS_LZ4, 10701 abd_buf->abd, tmpbuf, sizeof (*lb), 0); 10702 10703 /* a log block is never entirely zero */ 10704 ASSERT(psize != 0); 10705 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 10706 ASSERT(asize <= sizeof (*lb)); 10707 10708 /* 10709 * Update the start log block pointer in the device header to point 10710 * to the log block we're about to write. 10711 */ 10712 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0]; 10713 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand; 10714 l2dhdr->dh_start_lbps[0].lbp_payload_asize = 10715 dev->l2ad_log_blk_payload_asize; 10716 l2dhdr->dh_start_lbps[0].lbp_payload_start = 10717 dev->l2ad_log_blk_payload_start; 10718 _NOTE(CONSTCOND) 10719 L2BLK_SET_LSIZE( 10720 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb)); 10721 L2BLK_SET_PSIZE( 10722 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize); 10723 L2BLK_SET_CHECKSUM( 10724 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10725 ZIO_CHECKSUM_FLETCHER_4); 10726 if (asize < sizeof (*lb)) { 10727 /* compression succeeded */ 10728 bzero(tmpbuf + psize, asize - psize); 10729 L2BLK_SET_COMPRESS( 10730 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10731 ZIO_COMPRESS_LZ4); 10732 } else { 10733 /* compression failed */ 10734 bcopy(lb, tmpbuf, sizeof (*lb)); 10735 L2BLK_SET_COMPRESS( 10736 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10737 ZIO_COMPRESS_OFF); 10738 } 10739 10740 /* checksum what we're about to write */ 10741 fletcher_4_native(tmpbuf, asize, NULL, 10742 &l2dhdr->dh_start_lbps[0].lbp_cksum); 10743 10744 abd_free(abd_buf->abd); 10745 10746 /* perform the write itself */ 10747 abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb)); 10748 abd_take_ownership_of_buf(abd_buf->abd, B_TRUE); 10749 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand, 10750 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10751 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE); 10752 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio); 10753 (void) zio_nowait(wzio); 10754 10755 dev->l2ad_hand += asize; 10756 /* 10757 * Include the committed log block's pointer in the list of pointers 10758 * to log blocks present in the L2ARC device. 10759 */ 10760 bcopy(&l2dhdr->dh_start_lbps[0], lb_ptr_buf->lb_ptr, 10761 sizeof (l2arc_log_blkptr_t)); 10762 mutex_enter(&dev->l2ad_mtx); 10763 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf); 10764 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 10765 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 10766 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 10767 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 10768 mutex_exit(&dev->l2ad_mtx); 10769 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10770 10771 /* bump the kstats */ 10772 ARCSTAT_INCR(arcstat_l2_write_bytes, asize); 10773 ARCSTAT_BUMP(arcstat_l2_log_blk_writes); 10774 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize); 10775 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, 10776 dev->l2ad_log_blk_payload_asize / asize); 10777 10778 /* start a new log block */ 10779 dev->l2ad_log_ent_idx = 0; 10780 dev->l2ad_log_blk_payload_asize = 0; 10781 dev->l2ad_log_blk_payload_start = 0; 10782 } 10783 10784 /* 10785 * Validates an L2ARC log block address to make sure that it can be read 10786 * from the provided L2ARC device. 10787 */ 10788 boolean_t 10789 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp) 10790 { 10791 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10792 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10793 uint64_t end = lbp->lbp_daddr + asize - 1; 10794 uint64_t start = lbp->lbp_payload_start; 10795 boolean_t evicted = B_FALSE; 10796 10797 /* 10798 * A log block is valid if all of the following conditions are true: 10799 * - it fits entirely (including its payload) between l2ad_start and 10800 * l2ad_end 10801 * - it has a valid size 10802 * - neither the log block itself nor part of its payload was evicted 10803 * by l2arc_evict(): 10804 * 10805 * l2ad_hand l2ad_evict 10806 * | | lbp_daddr 10807 * | start | | end 10808 * | | | | | 10809 * V V V V V 10810 * l2ad_start ============================================ l2ad_end 10811 * --------------------------|||| 10812 * ^ ^ 10813 * | log block 10814 * payload 10815 */ 10816 10817 evicted = 10818 l2arc_range_check_overlap(start, end, dev->l2ad_hand) || 10819 l2arc_range_check_overlap(start, end, dev->l2ad_evict) || 10820 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) || 10821 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end); 10822 10823 return (start >= dev->l2ad_start && end <= dev->l2ad_end && 10824 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) && 10825 (!evicted || dev->l2ad_first)); 10826 } 10827 10828 /* 10829 * Inserts ARC buffer header `hdr' into the current L2ARC log block on 10830 * the device. The buffer being inserted must be present in L2ARC. 10831 * Returns B_TRUE if the L2ARC log block is full and needs to be committed 10832 * to L2ARC, or B_FALSE if it still has room for more ARC buffers. 10833 */ 10834 static boolean_t 10835 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr) 10836 { 10837 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10838 l2arc_log_ent_phys_t *le; 10839 10840 if (dev->l2ad_log_entries == 0) 10841 return (B_FALSE); 10842 10843 int index = dev->l2ad_log_ent_idx++; 10844 10845 ASSERT3S(index, <, dev->l2ad_log_entries); 10846 ASSERT(HDR_HAS_L2HDR(hdr)); 10847 10848 le = &lb->lb_entries[index]; 10849 bzero(le, sizeof (*le)); 10850 le->le_dva = hdr->b_dva; 10851 le->le_birth = hdr->b_birth; 10852 le->le_daddr = hdr->b_l2hdr.b_daddr; 10853 if (index == 0) 10854 dev->l2ad_log_blk_payload_start = le->le_daddr; 10855 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr)); 10856 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr)); 10857 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr)); 10858 le->le_complevel = hdr->b_complevel; 10859 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type); 10860 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr))); 10861 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr))); 10862 L2BLK_SET_STATE((le)->le_prop, hdr->b_l1hdr.b_state->arcs_state); 10863 10864 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev, 10865 HDR_GET_PSIZE(hdr)); 10866 10867 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries); 10868 } 10869 10870 /* 10871 * Checks whether a given L2ARC device address sits in a time-sequential 10872 * range. The trick here is that the L2ARC is a rotary buffer, so we can't 10873 * just do a range comparison, we need to handle the situation in which the 10874 * range wraps around the end of the L2ARC device. Arguments: 10875 * bottom -- Lower end of the range to check (written to earlier). 10876 * top -- Upper end of the range to check (written to later). 10877 * check -- The address for which we want to determine if it sits in 10878 * between the top and bottom. 10879 * 10880 * The 3-way conditional below represents the following cases: 10881 * 10882 * bottom < top : Sequentially ordered case: 10883 * <check>--------+-------------------+ 10884 * | (overlap here?) | 10885 * L2ARC dev V V 10886 * |---------------<bottom>============<top>--------------| 10887 * 10888 * bottom > top: Looped-around case: 10889 * <check>--------+------------------+ 10890 * | (overlap here?) | 10891 * L2ARC dev V V 10892 * |===============<top>---------------<bottom>===========| 10893 * ^ ^ 10894 * | (or here?) | 10895 * +---------------+---------<check> 10896 * 10897 * top == bottom : Just a single address comparison. 10898 */ 10899 boolean_t 10900 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check) 10901 { 10902 if (bottom < top) 10903 return (bottom <= check && check <= top); 10904 else if (bottom > top) 10905 return (check <= top || bottom <= check); 10906 else 10907 return (check == top); 10908 } 10909 10910 EXPORT_SYMBOL(arc_buf_size); 10911 EXPORT_SYMBOL(arc_write); 10912 EXPORT_SYMBOL(arc_read); 10913 EXPORT_SYMBOL(arc_buf_info); 10914 EXPORT_SYMBOL(arc_getbuf_func); 10915 EXPORT_SYMBOL(arc_add_prune_callback); 10916 EXPORT_SYMBOL(arc_remove_prune_callback); 10917 10918 /* BEGIN CSTYLED */ 10919 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_long, 10920 param_get_long, ZMOD_RW, "Min arc size"); 10921 10922 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_long, 10923 param_get_long, ZMOD_RW, "Max arc size"); 10924 10925 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit, param_set_arc_long, 10926 param_get_long, ZMOD_RW, "Metadata limit for arc size"); 10927 10928 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit_percent, 10929 param_set_arc_long, param_get_long, ZMOD_RW, 10930 "Percent of arc size for arc meta limit"); 10931 10932 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_min, param_set_arc_long, 10933 param_get_long, ZMOD_RW, "Min arc metadata"); 10934 10935 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_prune, INT, ZMOD_RW, 10936 "Meta objects to scan for prune"); 10937 10938 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_adjust_restarts, INT, ZMOD_RW, 10939 "Limit number of restarts in arc_evict_meta"); 10940 10941 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_strategy, INT, ZMOD_RW, 10942 "Meta reclaim strategy"); 10943 10944 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int, 10945 param_get_int, ZMOD_RW, "Seconds before growing arc size"); 10946 10947 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, p_dampener_disable, INT, ZMOD_RW, 10948 "Disable arc_p adapt dampener"); 10949 10950 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int, 10951 param_get_int, ZMOD_RW, "log2(fraction of arc to reclaim)"); 10952 10953 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW, 10954 "Percent of pagecache to reclaim arc to"); 10955 10956 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, p_min_shift, param_set_arc_int, 10957 param_get_int, ZMOD_RW, "arc_c shift to calc min/max arc_p"); 10958 10959 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, INT, ZMOD_RD, 10960 "Target average block size"); 10961 10962 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW, 10963 "Disable compressed arc buffers"); 10964 10965 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int, 10966 param_get_int, ZMOD_RW, "Min life of prefetch block in ms"); 10967 10968 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms, 10969 param_set_arc_int, param_get_int, ZMOD_RW, 10970 "Min life of prescient prefetched block in ms"); 10971 10972 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, ULONG, ZMOD_RW, 10973 "Max write bytes per interval"); 10974 10975 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, ULONG, ZMOD_RW, 10976 "Extra write bytes during device warmup"); 10977 10978 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, ULONG, ZMOD_RW, 10979 "Number of max device writes to precache"); 10980 10981 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, ULONG, ZMOD_RW, 10982 "Compressed l2arc_headroom multiplier"); 10983 10984 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, ULONG, ZMOD_RW, 10985 "TRIM ahead L2ARC write size multiplier"); 10986 10987 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, ULONG, ZMOD_RW, 10988 "Seconds between L2ARC writing"); 10989 10990 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, ULONG, ZMOD_RW, 10991 "Min feed interval in milliseconds"); 10992 10993 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW, 10994 "Skip caching prefetched buffers"); 10995 10996 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW, 10997 "Turbo L2ARC warmup"); 10998 10999 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW, 11000 "No reads during writes"); 11001 11002 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, INT, ZMOD_RW, 11003 "Percent of ARC size allowed for L2ARC-only headers"); 11004 11005 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW, 11006 "Rebuild the L2ARC when importing a pool"); 11007 11008 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, ULONG, ZMOD_RW, 11009 "Min size in bytes to write rebuild log blocks in L2ARC"); 11010 11011 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW, 11012 "Cache only MFU data from ARC into L2ARC"); 11013 11014 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int, 11015 param_get_int, ZMOD_RW, "System free memory I/O throttle in bytes"); 11016 11017 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_long, 11018 param_get_long, ZMOD_RW, "System free memory target size in bytes"); 11019 11020 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_long, 11021 param_get_long, ZMOD_RW, "Minimum bytes of dnodes in arc"); 11022 11023 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent, 11024 param_set_arc_long, param_get_long, ZMOD_RW, 11025 "Percent of ARC meta buffers for dnodes"); 11026 11027 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, ULONG, ZMOD_RW, 11028 "Percentage of excess dnodes to try to unpin"); 11029 11030 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, INT, ZMOD_RW, 11031 "When full, ARC allocation waits for eviction of this % of alloc size"); 11032 11033 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, INT, ZMOD_RW, 11034 "The number of headers to evict per sublist before moving to the next"); 11035 /* END CSTYLED */ 11036