1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2018, Joyent, Inc. 24 * Copyright (c) 2011, 2020, Delphix. All rights reserved. 25 * Copyright (c) 2014, Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 28 * Copyright (c) 2020, George Amanakis. All rights reserved. 29 * Copyright (c) 2019, Klara Inc. 30 * Copyright (c) 2019, Allan Jude 31 * Copyright (c) 2020, The FreeBSD Foundation [1] 32 * 33 * [1] Portions of this software were developed by Allan Jude 34 * under sponsorship from the FreeBSD Foundation. 35 */ 36 37 /* 38 * DVA-based Adjustable Replacement Cache 39 * 40 * While much of the theory of operation used here is 41 * based on the self-tuning, low overhead replacement cache 42 * presented by Megiddo and Modha at FAST 2003, there are some 43 * significant differences: 44 * 45 * 1. The Megiddo and Modha model assumes any page is evictable. 46 * Pages in its cache cannot be "locked" into memory. This makes 47 * the eviction algorithm simple: evict the last page in the list. 48 * This also make the performance characteristics easy to reason 49 * about. Our cache is not so simple. At any given moment, some 50 * subset of the blocks in the cache are un-evictable because we 51 * have handed out a reference to them. Blocks are only evictable 52 * when there are no external references active. This makes 53 * eviction far more problematic: we choose to evict the evictable 54 * blocks that are the "lowest" in the list. 55 * 56 * There are times when it is not possible to evict the requested 57 * space. In these circumstances we are unable to adjust the cache 58 * size. To prevent the cache growing unbounded at these times we 59 * implement a "cache throttle" that slows the flow of new data 60 * into the cache until we can make space available. 61 * 62 * 2. The Megiddo and Modha model assumes a fixed cache size. 63 * Pages are evicted when the cache is full and there is a cache 64 * miss. Our model has a variable sized cache. It grows with 65 * high use, but also tries to react to memory pressure from the 66 * operating system: decreasing its size when system memory is 67 * tight. 68 * 69 * 3. The Megiddo and Modha model assumes a fixed page size. All 70 * elements of the cache are therefore exactly the same size. So 71 * when adjusting the cache size following a cache miss, its simply 72 * a matter of choosing a single page to evict. In our model, we 73 * have variable sized cache blocks (ranging from 512 bytes to 74 * 128K bytes). We therefore choose a set of blocks to evict to make 75 * space for a cache miss that approximates as closely as possible 76 * the space used by the new block. 77 * 78 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 79 * by N. Megiddo & D. Modha, FAST 2003 80 */ 81 82 /* 83 * The locking model: 84 * 85 * A new reference to a cache buffer can be obtained in two 86 * ways: 1) via a hash table lookup using the DVA as a key, 87 * or 2) via one of the ARC lists. The arc_read() interface 88 * uses method 1, while the internal ARC algorithms for 89 * adjusting the cache use method 2. We therefore provide two 90 * types of locks: 1) the hash table lock array, and 2) the 91 * ARC list locks. 92 * 93 * Buffers do not have their own mutexes, rather they rely on the 94 * hash table mutexes for the bulk of their protection (i.e. most 95 * fields in the arc_buf_hdr_t are protected by these mutexes). 96 * 97 * buf_hash_find() returns the appropriate mutex (held) when it 98 * locates the requested buffer in the hash table. It returns 99 * NULL for the mutex if the buffer was not in the table. 100 * 101 * buf_hash_remove() expects the appropriate hash mutex to be 102 * already held before it is invoked. 103 * 104 * Each ARC state also has a mutex which is used to protect the 105 * buffer list associated with the state. When attempting to 106 * obtain a hash table lock while holding an ARC list lock you 107 * must use: mutex_tryenter() to avoid deadlock. Also note that 108 * the active state mutex must be held before the ghost state mutex. 109 * 110 * It as also possible to register a callback which is run when the 111 * arc_meta_limit is reached and no buffers can be safely evicted. In 112 * this case the arc user should drop a reference on some arc buffers so 113 * they can be reclaimed and the arc_meta_limit honored. For example, 114 * when using the ZPL each dentry holds a references on a znode. These 115 * dentries must be pruned before the arc buffer holding the znode can 116 * be safely evicted. 117 * 118 * Note that the majority of the performance stats are manipulated 119 * with atomic operations. 120 * 121 * The L2ARC uses the l2ad_mtx on each vdev for the following: 122 * 123 * - L2ARC buflist creation 124 * - L2ARC buflist eviction 125 * - L2ARC write completion, which walks L2ARC buflists 126 * - ARC header destruction, as it removes from L2ARC buflists 127 * - ARC header release, as it removes from L2ARC buflists 128 */ 129 130 /* 131 * ARC operation: 132 * 133 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. 134 * This structure can point either to a block that is still in the cache or to 135 * one that is only accessible in an L2 ARC device, or it can provide 136 * information about a block that was recently evicted. If a block is 137 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough 138 * information to retrieve it from the L2ARC device. This information is 139 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block 140 * that is in this state cannot access the data directly. 141 * 142 * Blocks that are actively being referenced or have not been evicted 143 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within 144 * the arc_buf_hdr_t that will point to the data block in memory. A block can 145 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC 146 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and 147 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd). 148 * 149 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the 150 * ability to store the physical data (b_pabd) associated with the DVA of the 151 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block, 152 * it will match its on-disk compression characteristics. This behavior can be 153 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the 154 * compressed ARC functionality is disabled, the b_pabd will point to an 155 * uncompressed version of the on-disk data. 156 * 157 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each 158 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it. 159 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC 160 * consumer. The ARC will provide references to this data and will keep it 161 * cached until it is no longer in use. The ARC caches only the L1ARC's physical 162 * data block and will evict any arc_buf_t that is no longer referenced. The 163 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the 164 * "overhead_size" kstat. 165 * 166 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or 167 * compressed form. The typical case is that consumers will want uncompressed 168 * data, and when that happens a new data buffer is allocated where the data is 169 * decompressed for them to use. Currently the only consumer who wants 170 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it 171 * exists on disk. When this happens, the arc_buf_t's data buffer is shared 172 * with the arc_buf_hdr_t. 173 * 174 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The 175 * first one is owned by a compressed send consumer (and therefore references 176 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be 177 * used by any other consumer (and has its own uncompressed copy of the data 178 * buffer). 179 * 180 * arc_buf_hdr_t 181 * +-----------+ 182 * | fields | 183 * | common to | 184 * | L1- and | 185 * | L2ARC | 186 * +-----------+ 187 * | l2arc_buf_hdr_t 188 * | | 189 * +-----------+ 190 * | l1arc_buf_hdr_t 191 * | | arc_buf_t 192 * | b_buf +------------>+-----------+ arc_buf_t 193 * | b_pabd +-+ |b_next +---->+-----------+ 194 * +-----------+ | |-----------| |b_next +-->NULL 195 * | |b_comp = T | +-----------+ 196 * | |b_data +-+ |b_comp = F | 197 * | +-----------+ | |b_data +-+ 198 * +->+------+ | +-----------+ | 199 * compressed | | | | 200 * data | |<--------------+ | uncompressed 201 * +------+ compressed, | data 202 * shared +-->+------+ 203 * data | | 204 * | | 205 * +------+ 206 * 207 * When a consumer reads a block, the ARC must first look to see if the 208 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new 209 * arc_buf_t and either copies uncompressed data into a new data buffer from an 210 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a 211 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the 212 * hdr is compressed and the desired compression characteristics of the 213 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the 214 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be 215 * the last buffer in the hdr's b_buf list, however a shared compressed buf can 216 * be anywhere in the hdr's list. 217 * 218 * The diagram below shows an example of an uncompressed ARC hdr that is 219 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is 220 * the last element in the buf list): 221 * 222 * arc_buf_hdr_t 223 * +-----------+ 224 * | | 225 * | | 226 * | | 227 * +-----------+ 228 * l2arc_buf_hdr_t| | 229 * | | 230 * +-----------+ 231 * l1arc_buf_hdr_t| | 232 * | | arc_buf_t (shared) 233 * | b_buf +------------>+---------+ arc_buf_t 234 * | | |b_next +---->+---------+ 235 * | b_pabd +-+ |---------| |b_next +-->NULL 236 * +-----------+ | | | +---------+ 237 * | |b_data +-+ | | 238 * | +---------+ | |b_data +-+ 239 * +->+------+ | +---------+ | 240 * | | | | 241 * uncompressed | | | | 242 * data +------+ | | 243 * ^ +->+------+ | 244 * | uncompressed | | | 245 * | data | | | 246 * | +------+ | 247 * +---------------------------------+ 248 * 249 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd 250 * since the physical block is about to be rewritten. The new data contents 251 * will be contained in the arc_buf_t. As the I/O pipeline performs the write, 252 * it may compress the data before writing it to disk. The ARC will be called 253 * with the transformed data and will bcopy the transformed on-disk block into 254 * a newly allocated b_pabd. Writes are always done into buffers which have 255 * either been loaned (and hence are new and don't have other readers) or 256 * buffers which have been released (and hence have their own hdr, if there 257 * were originally other readers of the buf's original hdr). This ensures that 258 * the ARC only needs to update a single buf and its hdr after a write occurs. 259 * 260 * When the L2ARC is in use, it will also take advantage of the b_pabd. The 261 * L2ARC will always write the contents of b_pabd to the L2ARC. This means 262 * that when compressed ARC is enabled that the L2ARC blocks are identical 263 * to the on-disk block in the main data pool. This provides a significant 264 * advantage since the ARC can leverage the bp's checksum when reading from the 265 * L2ARC to determine if the contents are valid. However, if the compressed 266 * ARC is disabled, then the L2ARC's block must be transformed to look 267 * like the physical block in the main data pool before comparing the 268 * checksum and determining its validity. 269 * 270 * The L1ARC has a slightly different system for storing encrypted data. 271 * Raw (encrypted + possibly compressed) data has a few subtle differences from 272 * data that is just compressed. The biggest difference is that it is not 273 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded. 274 * The other difference is that encryption cannot be treated as a suggestion. 275 * If a caller would prefer compressed data, but they actually wind up with 276 * uncompressed data the worst thing that could happen is there might be a 277 * performance hit. If the caller requests encrypted data, however, we must be 278 * sure they actually get it or else secret information could be leaked. Raw 279 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore, 280 * may have both an encrypted version and a decrypted version of its data at 281 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is 282 * copied out of this header. To avoid complications with b_pabd, raw buffers 283 * cannot be shared. 284 */ 285 286 #include <sys/spa.h> 287 #include <sys/zio.h> 288 #include <sys/spa_impl.h> 289 #include <sys/zio_compress.h> 290 #include <sys/zio_checksum.h> 291 #include <sys/zfs_context.h> 292 #include <sys/arc.h> 293 #include <sys/zfs_refcount.h> 294 #include <sys/vdev.h> 295 #include <sys/vdev_impl.h> 296 #include <sys/dsl_pool.h> 297 #include <sys/multilist.h> 298 #include <sys/abd.h> 299 #include <sys/zil.h> 300 #include <sys/fm/fs/zfs.h> 301 #include <sys/callb.h> 302 #include <sys/kstat.h> 303 #include <sys/zthr.h> 304 #include <zfs_fletcher.h> 305 #include <sys/arc_impl.h> 306 #include <sys/trace_zfs.h> 307 #include <sys/aggsum.h> 308 #include <sys/wmsum.h> 309 #include <cityhash.h> 310 #include <sys/vdev_trim.h> 311 #include <sys/zfs_racct.h> 312 #include <sys/zstd/zstd.h> 313 314 #ifndef _KERNEL 315 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 316 boolean_t arc_watch = B_FALSE; 317 #endif 318 319 /* 320 * This thread's job is to keep enough free memory in the system, by 321 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves 322 * arc_available_memory(). 323 */ 324 static zthr_t *arc_reap_zthr; 325 326 /* 327 * This thread's job is to keep arc_size under arc_c, by calling 328 * arc_evict(), which improves arc_is_overflowing(). 329 */ 330 static zthr_t *arc_evict_zthr; 331 332 static kmutex_t arc_evict_lock; 333 static boolean_t arc_evict_needed = B_FALSE; 334 335 /* 336 * Count of bytes evicted since boot. 337 */ 338 static uint64_t arc_evict_count; 339 340 /* 341 * List of arc_evict_waiter_t's, representing threads waiting for the 342 * arc_evict_count to reach specific values. 343 */ 344 static list_t arc_evict_waiters; 345 346 /* 347 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of 348 * the requested amount of data to be evicted. For example, by default for 349 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation. 350 * Since this is above 100%, it ensures that progress is made towards getting 351 * arc_size under arc_c. Since this is finite, it ensures that allocations 352 * can still happen, even during the potentially long time that arc_size is 353 * more than arc_c. 354 */ 355 int zfs_arc_eviction_pct = 200; 356 357 /* 358 * The number of headers to evict in arc_evict_state_impl() before 359 * dropping the sublist lock and evicting from another sublist. A lower 360 * value means we're more likely to evict the "correct" header (i.e. the 361 * oldest header in the arc state), but comes with higher overhead 362 * (i.e. more invocations of arc_evict_state_impl()). 363 */ 364 int zfs_arc_evict_batch_limit = 10; 365 366 /* number of seconds before growing cache again */ 367 int arc_grow_retry = 5; 368 369 /* 370 * Minimum time between calls to arc_kmem_reap_soon(). 371 */ 372 int arc_kmem_cache_reap_retry_ms = 1000; 373 374 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */ 375 int zfs_arc_overflow_shift = 8; 376 377 /* shift of arc_c for calculating both min and max arc_p */ 378 int arc_p_min_shift = 4; 379 380 /* log2(fraction of arc to reclaim) */ 381 int arc_shrink_shift = 7; 382 383 /* percent of pagecache to reclaim arc to */ 384 #ifdef _KERNEL 385 uint_t zfs_arc_pc_percent = 0; 386 #endif 387 388 /* 389 * log2(fraction of ARC which must be free to allow growing). 390 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 391 * when reading a new block into the ARC, we will evict an equal-sized block 392 * from the ARC. 393 * 394 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 395 * we will still not allow it to grow. 396 */ 397 int arc_no_grow_shift = 5; 398 399 400 /* 401 * minimum lifespan of a prefetch block in clock ticks 402 * (initialized in arc_init()) 403 */ 404 static int arc_min_prefetch_ms; 405 static int arc_min_prescient_prefetch_ms; 406 407 /* 408 * If this percent of memory is free, don't throttle. 409 */ 410 int arc_lotsfree_percent = 10; 411 412 /* 413 * The arc has filled available memory and has now warmed up. 414 */ 415 boolean_t arc_warm; 416 417 /* 418 * These tunables are for performance analysis. 419 */ 420 unsigned long zfs_arc_max = 0; 421 unsigned long zfs_arc_min = 0; 422 unsigned long zfs_arc_meta_limit = 0; 423 unsigned long zfs_arc_meta_min = 0; 424 unsigned long zfs_arc_dnode_limit = 0; 425 unsigned long zfs_arc_dnode_reduce_percent = 10; 426 int zfs_arc_grow_retry = 0; 427 int zfs_arc_shrink_shift = 0; 428 int zfs_arc_p_min_shift = 0; 429 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 430 431 /* 432 * ARC dirty data constraints for arc_tempreserve_space() throttle. 433 */ 434 unsigned long zfs_arc_dirty_limit_percent = 50; /* total dirty data limit */ 435 unsigned long zfs_arc_anon_limit_percent = 25; /* anon block dirty limit */ 436 unsigned long zfs_arc_pool_dirty_percent = 20; /* each pool's anon allowance */ 437 438 /* 439 * Enable or disable compressed arc buffers. 440 */ 441 int zfs_compressed_arc_enabled = B_TRUE; 442 443 /* 444 * ARC will evict meta buffers that exceed arc_meta_limit. This 445 * tunable make arc_meta_limit adjustable for different workloads. 446 */ 447 unsigned long zfs_arc_meta_limit_percent = 75; 448 449 /* 450 * Percentage that can be consumed by dnodes of ARC meta buffers. 451 */ 452 unsigned long zfs_arc_dnode_limit_percent = 10; 453 454 /* 455 * These tunables are Linux specific 456 */ 457 unsigned long zfs_arc_sys_free = 0; 458 int zfs_arc_min_prefetch_ms = 0; 459 int zfs_arc_min_prescient_prefetch_ms = 0; 460 int zfs_arc_p_dampener_disable = 1; 461 int zfs_arc_meta_prune = 10000; 462 int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED; 463 int zfs_arc_meta_adjust_restarts = 4096; 464 int zfs_arc_lotsfree_percent = 10; 465 466 /* The 6 states: */ 467 arc_state_t ARC_anon; 468 arc_state_t ARC_mru; 469 arc_state_t ARC_mru_ghost; 470 arc_state_t ARC_mfu; 471 arc_state_t ARC_mfu_ghost; 472 arc_state_t ARC_l2c_only; 473 474 arc_stats_t arc_stats = { 475 { "hits", KSTAT_DATA_UINT64 }, 476 { "misses", KSTAT_DATA_UINT64 }, 477 { "demand_data_hits", KSTAT_DATA_UINT64 }, 478 { "demand_data_misses", KSTAT_DATA_UINT64 }, 479 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 480 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 481 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 482 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 483 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 484 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 485 { "mru_hits", KSTAT_DATA_UINT64 }, 486 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 487 { "mfu_hits", KSTAT_DATA_UINT64 }, 488 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 489 { "deleted", KSTAT_DATA_UINT64 }, 490 { "mutex_miss", KSTAT_DATA_UINT64 }, 491 { "access_skip", KSTAT_DATA_UINT64 }, 492 { "evict_skip", KSTAT_DATA_UINT64 }, 493 { "evict_not_enough", KSTAT_DATA_UINT64 }, 494 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 495 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 496 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64 }, 497 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64 }, 498 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 499 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 500 { "hash_elements", KSTAT_DATA_UINT64 }, 501 { "hash_elements_max", KSTAT_DATA_UINT64 }, 502 { "hash_collisions", KSTAT_DATA_UINT64 }, 503 { "hash_chains", KSTAT_DATA_UINT64 }, 504 { "hash_chain_max", KSTAT_DATA_UINT64 }, 505 { "p", KSTAT_DATA_UINT64 }, 506 { "c", KSTAT_DATA_UINT64 }, 507 { "c_min", KSTAT_DATA_UINT64 }, 508 { "c_max", KSTAT_DATA_UINT64 }, 509 { "size", KSTAT_DATA_UINT64 }, 510 { "compressed_size", KSTAT_DATA_UINT64 }, 511 { "uncompressed_size", KSTAT_DATA_UINT64 }, 512 { "overhead_size", KSTAT_DATA_UINT64 }, 513 { "hdr_size", KSTAT_DATA_UINT64 }, 514 { "data_size", KSTAT_DATA_UINT64 }, 515 { "metadata_size", KSTAT_DATA_UINT64 }, 516 { "dbuf_size", KSTAT_DATA_UINT64 }, 517 { "dnode_size", KSTAT_DATA_UINT64 }, 518 { "bonus_size", KSTAT_DATA_UINT64 }, 519 #if defined(COMPAT_FREEBSD11) 520 { "other_size", KSTAT_DATA_UINT64 }, 521 #endif 522 { "anon_size", KSTAT_DATA_UINT64 }, 523 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 524 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 525 { "mru_size", KSTAT_DATA_UINT64 }, 526 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 527 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 528 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 529 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 530 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 531 { "mfu_size", KSTAT_DATA_UINT64 }, 532 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 533 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 534 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 535 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 536 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 537 { "l2_hits", KSTAT_DATA_UINT64 }, 538 { "l2_misses", KSTAT_DATA_UINT64 }, 539 { "l2_prefetch_asize", KSTAT_DATA_UINT64 }, 540 { "l2_mru_asize", KSTAT_DATA_UINT64 }, 541 { "l2_mfu_asize", KSTAT_DATA_UINT64 }, 542 { "l2_bufc_data_asize", KSTAT_DATA_UINT64 }, 543 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64 }, 544 { "l2_feeds", KSTAT_DATA_UINT64 }, 545 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 546 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 547 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 548 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 549 { "l2_writes_done", KSTAT_DATA_UINT64 }, 550 { "l2_writes_error", KSTAT_DATA_UINT64 }, 551 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 552 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 553 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 554 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 555 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 556 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 557 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 558 { "l2_io_error", KSTAT_DATA_UINT64 }, 559 { "l2_size", KSTAT_DATA_UINT64 }, 560 { "l2_asize", KSTAT_DATA_UINT64 }, 561 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 562 { "l2_log_blk_writes", KSTAT_DATA_UINT64 }, 563 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 }, 564 { "l2_log_blk_asize", KSTAT_DATA_UINT64 }, 565 { "l2_log_blk_count", KSTAT_DATA_UINT64 }, 566 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 }, 567 { "l2_rebuild_success", KSTAT_DATA_UINT64 }, 568 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 }, 569 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 }, 570 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 }, 571 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 }, 572 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 }, 573 { "l2_rebuild_size", KSTAT_DATA_UINT64 }, 574 { "l2_rebuild_asize", KSTAT_DATA_UINT64 }, 575 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 }, 576 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 }, 577 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 }, 578 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 579 { "memory_direct_count", KSTAT_DATA_UINT64 }, 580 { "memory_indirect_count", KSTAT_DATA_UINT64 }, 581 { "memory_all_bytes", KSTAT_DATA_UINT64 }, 582 { "memory_free_bytes", KSTAT_DATA_UINT64 }, 583 { "memory_available_bytes", KSTAT_DATA_INT64 }, 584 { "arc_no_grow", KSTAT_DATA_UINT64 }, 585 { "arc_tempreserve", KSTAT_DATA_UINT64 }, 586 { "arc_loaned_bytes", KSTAT_DATA_UINT64 }, 587 { "arc_prune", KSTAT_DATA_UINT64 }, 588 { "arc_meta_used", KSTAT_DATA_UINT64 }, 589 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 590 { "arc_dnode_limit", KSTAT_DATA_UINT64 }, 591 { "arc_meta_max", KSTAT_DATA_UINT64 }, 592 { "arc_meta_min", KSTAT_DATA_UINT64 }, 593 { "async_upgrade_sync", KSTAT_DATA_UINT64 }, 594 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 }, 595 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 }, 596 { "arc_need_free", KSTAT_DATA_UINT64 }, 597 { "arc_sys_free", KSTAT_DATA_UINT64 }, 598 { "arc_raw_size", KSTAT_DATA_UINT64 }, 599 { "cached_only_in_progress", KSTAT_DATA_UINT64 }, 600 { "abd_chunk_waste_size", KSTAT_DATA_UINT64 }, 601 }; 602 603 #define ARCSTAT_MAX(stat, val) { \ 604 uint64_t m; \ 605 while ((val) > (m = arc_stats.stat.value.ui64) && \ 606 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 607 continue; \ 608 } 609 610 #define ARCSTAT_MAXSTAT(stat) \ 611 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 612 613 /* 614 * We define a macro to allow ARC hits/misses to be easily broken down by 615 * two separate conditions, giving a total of four different subtypes for 616 * each of hits and misses (so eight statistics total). 617 */ 618 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 619 if (cond1) { \ 620 if (cond2) { \ 621 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 622 } else { \ 623 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 624 } \ 625 } else { \ 626 if (cond2) { \ 627 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 628 } else { \ 629 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 630 } \ 631 } 632 633 /* 634 * This macro allows us to use kstats as floating averages. Each time we 635 * update this kstat, we first factor it and the update value by 636 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall 637 * average. This macro assumes that integer loads and stores are atomic, but 638 * is not safe for multiple writers updating the kstat in parallel (only the 639 * last writer's update will remain). 640 */ 641 #define ARCSTAT_F_AVG_FACTOR 3 642 #define ARCSTAT_F_AVG(stat, value) \ 643 do { \ 644 uint64_t x = ARCSTAT(stat); \ 645 x = x - x / ARCSTAT_F_AVG_FACTOR + \ 646 (value) / ARCSTAT_F_AVG_FACTOR; \ 647 ARCSTAT(stat) = x; \ 648 _NOTE(CONSTCOND) \ 649 } while (0) 650 651 kstat_t *arc_ksp; 652 static arc_state_t *arc_anon; 653 static arc_state_t *arc_mru_ghost; 654 static arc_state_t *arc_mfu_ghost; 655 static arc_state_t *arc_l2c_only; 656 657 arc_state_t *arc_mru; 658 arc_state_t *arc_mfu; 659 660 /* 661 * There are several ARC variables that are critical to export as kstats -- 662 * but we don't want to have to grovel around in the kstat whenever we wish to 663 * manipulate them. For these variables, we therefore define them to be in 664 * terms of the statistic variable. This assures that we are not introducing 665 * the possibility of inconsistency by having shadow copies of the variables, 666 * while still allowing the code to be readable. 667 */ 668 #define arc_tempreserve ARCSTAT(arcstat_tempreserve) 669 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes) 670 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 671 /* max size for dnodes */ 672 #define arc_dnode_size_limit ARCSTAT(arcstat_dnode_limit) 673 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */ 674 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */ 675 #define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */ 676 677 /* size of all b_rabd's in entire arc */ 678 #define arc_raw_size ARCSTAT(arcstat_raw_size) 679 /* compressed size of entire arc */ 680 #define arc_compressed_size ARCSTAT(arcstat_compressed_size) 681 /* uncompressed size of entire arc */ 682 #define arc_uncompressed_size ARCSTAT(arcstat_uncompressed_size) 683 /* number of bytes in the arc from arc_buf_t's */ 684 #define arc_overhead_size ARCSTAT(arcstat_overhead_size) 685 686 /* 687 * There are also some ARC variables that we want to export, but that are 688 * updated so often that having the canonical representation be the statistic 689 * variable causes a performance bottleneck. We want to use aggsum_t's for these 690 * instead, but still be able to export the kstat in the same way as before. 691 * The solution is to always use the aggsum version, except in the kstat update 692 * callback. 693 */ 694 aggsum_t arc_size; 695 aggsum_t arc_meta_used; 696 wmsum_t astat_data_size; 697 wmsum_t astat_metadata_size; 698 wmsum_t astat_dbuf_size; 699 aggsum_t astat_dnode_size; 700 wmsum_t astat_bonus_size; 701 wmsum_t astat_hdr_size; 702 aggsum_t astat_l2_hdr_size; 703 wmsum_t astat_abd_chunk_waste_size; 704 705 hrtime_t arc_growtime; 706 list_t arc_prune_list; 707 kmutex_t arc_prune_mtx; 708 taskq_t *arc_prune_taskq; 709 710 #define GHOST_STATE(state) \ 711 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 712 (state) == arc_l2c_only) 713 714 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 715 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 716 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 717 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 718 #define HDR_PRESCIENT_PREFETCH(hdr) \ 719 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) 720 #define HDR_COMPRESSION_ENABLED(hdr) \ 721 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) 722 723 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 724 #define HDR_L2_READING(hdr) \ 725 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 726 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 727 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 728 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 729 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 730 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED) 731 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH) 732 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) 733 734 #define HDR_ISTYPE_METADATA(hdr) \ 735 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 736 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 737 738 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 739 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 740 #define HDR_HAS_RABD(hdr) \ 741 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \ 742 (hdr)->b_crypt_hdr.b_rabd != NULL) 743 #define HDR_ENCRYPTED(hdr) \ 744 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 745 #define HDR_AUTHENTICATED(hdr) \ 746 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 747 748 /* For storing compression mode in b_flags */ 749 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) 750 751 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ 752 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) 753 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ 754 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); 755 756 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) 757 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED) 758 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED) 759 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED) 760 761 /* 762 * Other sizes 763 */ 764 765 #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 766 #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr)) 767 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 768 769 /* 770 * Hash table routines 771 */ 772 773 #define HT_LOCK_ALIGN 64 774 #define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN))) 775 776 struct ht_lock { 777 kmutex_t ht_lock; 778 #ifdef _KERNEL 779 unsigned char pad[HT_LOCK_PAD]; 780 #endif 781 }; 782 783 #define BUF_LOCKS 8192 784 typedef struct buf_hash_table { 785 uint64_t ht_mask; 786 arc_buf_hdr_t **ht_table; 787 struct ht_lock ht_locks[BUF_LOCKS]; 788 } buf_hash_table_t; 789 790 static buf_hash_table_t buf_hash_table; 791 792 #define BUF_HASH_INDEX(spa, dva, birth) \ 793 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 794 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 795 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 796 #define HDR_LOCK(hdr) \ 797 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 798 799 uint64_t zfs_crc64_table[256]; 800 801 /* 802 * Level 2 ARC 803 */ 804 805 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 806 #define L2ARC_HEADROOM 2 /* num of writes */ 807 808 /* 809 * If we discover during ARC scan any buffers to be compressed, we boost 810 * our headroom for the next scanning cycle by this percentage multiple. 811 */ 812 #define L2ARC_HEADROOM_BOOST 200 813 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 814 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 815 816 /* 817 * We can feed L2ARC from two states of ARC buffers, mru and mfu, 818 * and each of the state has two types: data and metadata. 819 */ 820 #define L2ARC_FEED_TYPES 4 821 822 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 823 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 824 825 /* L2ARC Performance Tunables */ 826 unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */ 827 unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */ 828 unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */ 829 unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 830 unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 831 unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */ 832 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 833 int l2arc_feed_again = B_TRUE; /* turbo warmup */ 834 int l2arc_norw = B_FALSE; /* no reads during writes */ 835 int l2arc_meta_percent = 33; /* limit on headers size */ 836 837 /* 838 * L2ARC Internals 839 */ 840 static list_t L2ARC_dev_list; /* device list */ 841 static list_t *l2arc_dev_list; /* device list pointer */ 842 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 843 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 844 static list_t L2ARC_free_on_write; /* free after write buf list */ 845 static list_t *l2arc_free_on_write; /* free after write list ptr */ 846 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 847 static uint64_t l2arc_ndev; /* number of devices */ 848 849 typedef struct l2arc_read_callback { 850 arc_buf_hdr_t *l2rcb_hdr; /* read header */ 851 blkptr_t l2rcb_bp; /* original blkptr */ 852 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 853 int l2rcb_flags; /* original flags */ 854 abd_t *l2rcb_abd; /* temporary buffer */ 855 } l2arc_read_callback_t; 856 857 typedef struct l2arc_data_free { 858 /* protected by l2arc_free_on_write_mtx */ 859 abd_t *l2df_abd; 860 size_t l2df_size; 861 arc_buf_contents_t l2df_type; 862 list_node_t l2df_list_node; 863 } l2arc_data_free_t; 864 865 typedef enum arc_fill_flags { 866 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */ 867 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */ 868 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */ 869 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */ 870 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */ 871 } arc_fill_flags_t; 872 873 static kmutex_t l2arc_feed_thr_lock; 874 static kcondvar_t l2arc_feed_thr_cv; 875 static uint8_t l2arc_thread_exit; 876 877 static kmutex_t l2arc_rebuild_thr_lock; 878 static kcondvar_t l2arc_rebuild_thr_cv; 879 880 enum arc_hdr_alloc_flags { 881 ARC_HDR_ALLOC_RDATA = 0x1, 882 ARC_HDR_DO_ADAPT = 0x2, 883 }; 884 885 886 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *, boolean_t); 887 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *); 888 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *, boolean_t); 889 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *); 890 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *); 891 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag); 892 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t); 893 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int); 894 static void arc_access(arc_buf_hdr_t *, kmutex_t *); 895 static void arc_buf_watch(arc_buf_t *); 896 897 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 898 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 899 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 900 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 901 902 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 903 static void l2arc_read_done(zio_t *); 904 static void l2arc_do_free_on_write(void); 905 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 906 boolean_t state_only); 907 908 #define l2arc_hdr_arcstats_increment(hdr) \ 909 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE) 910 #define l2arc_hdr_arcstats_decrement(hdr) \ 911 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE) 912 #define l2arc_hdr_arcstats_increment_state(hdr) \ 913 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE) 914 #define l2arc_hdr_arcstats_decrement_state(hdr) \ 915 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE) 916 917 /* 918 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU 919 * metadata and data are cached from ARC into L2ARC. 920 */ 921 int l2arc_mfuonly = 0; 922 923 /* 924 * L2ARC TRIM 925 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of 926 * the current write size (l2arc_write_max) we should TRIM if we 927 * have filled the device. It is defined as a percentage of the 928 * write size. If set to 100 we trim twice the space required to 929 * accommodate upcoming writes. A minimum of 64MB will be trimmed. 930 * It also enables TRIM of the whole L2ARC device upon creation or 931 * addition to an existing pool or if the header of the device is 932 * invalid upon importing a pool or onlining a cache device. The 933 * default is 0, which disables TRIM on L2ARC altogether as it can 934 * put significant stress on the underlying storage devices. This 935 * will vary depending of how well the specific device handles 936 * these commands. 937 */ 938 unsigned long l2arc_trim_ahead = 0; 939 940 /* 941 * Performance tuning of L2ARC persistence: 942 * 943 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding 944 * an L2ARC device (either at pool import or later) will attempt 945 * to rebuild L2ARC buffer contents. 946 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls 947 * whether log blocks are written to the L2ARC device. If the L2ARC 948 * device is less than 1GB, the amount of data l2arc_evict() 949 * evicts is significant compared to the amount of restored L2ARC 950 * data. In this case do not write log blocks in L2ARC in order 951 * not to waste space. 952 */ 953 int l2arc_rebuild_enabled = B_TRUE; 954 unsigned long l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024; 955 956 /* L2ARC persistence rebuild control routines. */ 957 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen); 958 static void l2arc_dev_rebuild_thread(void *arg); 959 static int l2arc_rebuild(l2arc_dev_t *dev); 960 961 /* L2ARC persistence read I/O routines. */ 962 static int l2arc_dev_hdr_read(l2arc_dev_t *dev); 963 static int l2arc_log_blk_read(l2arc_dev_t *dev, 964 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp, 965 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 966 zio_t *this_io, zio_t **next_io); 967 static zio_t *l2arc_log_blk_fetch(vdev_t *vd, 968 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb); 969 static void l2arc_log_blk_fetch_abort(zio_t *zio); 970 971 /* L2ARC persistence block restoration routines. */ 972 static void l2arc_log_blk_restore(l2arc_dev_t *dev, 973 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize); 974 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, 975 l2arc_dev_t *dev); 976 977 /* L2ARC persistence write I/O routines. */ 978 static void l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, 979 l2arc_write_callback_t *cb); 980 981 /* L2ARC persistence auxiliary routines. */ 982 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev, 983 const l2arc_log_blkptr_t *lbp); 984 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev, 985 const arc_buf_hdr_t *ab); 986 boolean_t l2arc_range_check_overlap(uint64_t bottom, 987 uint64_t top, uint64_t check); 988 static void l2arc_blk_fetch_done(zio_t *zio); 989 static inline uint64_t 990 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev); 991 992 /* 993 * We use Cityhash for this. It's fast, and has good hash properties without 994 * requiring any large static buffers. 995 */ 996 static uint64_t 997 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 998 { 999 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth)); 1000 } 1001 1002 #define HDR_EMPTY(hdr) \ 1003 ((hdr)->b_dva.dva_word[0] == 0 && \ 1004 (hdr)->b_dva.dva_word[1] == 0) 1005 1006 #define HDR_EMPTY_OR_LOCKED(hdr) \ 1007 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr))) 1008 1009 #define HDR_EQUAL(spa, dva, birth, hdr) \ 1010 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 1011 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 1012 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) 1013 1014 static void 1015 buf_discard_identity(arc_buf_hdr_t *hdr) 1016 { 1017 hdr->b_dva.dva_word[0] = 0; 1018 hdr->b_dva.dva_word[1] = 0; 1019 hdr->b_birth = 0; 1020 } 1021 1022 static arc_buf_hdr_t * 1023 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 1024 { 1025 const dva_t *dva = BP_IDENTITY(bp); 1026 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 1027 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 1028 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1029 arc_buf_hdr_t *hdr; 1030 1031 mutex_enter(hash_lock); 1032 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 1033 hdr = hdr->b_hash_next) { 1034 if (HDR_EQUAL(spa, dva, birth, hdr)) { 1035 *lockp = hash_lock; 1036 return (hdr); 1037 } 1038 } 1039 mutex_exit(hash_lock); 1040 *lockp = NULL; 1041 return (NULL); 1042 } 1043 1044 /* 1045 * Insert an entry into the hash table. If there is already an element 1046 * equal to elem in the hash table, then the already existing element 1047 * will be returned and the new element will not be inserted. 1048 * Otherwise returns NULL. 1049 * If lockp == NULL, the caller is assumed to already hold the hash lock. 1050 */ 1051 static arc_buf_hdr_t * 1052 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 1053 { 1054 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1055 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1056 arc_buf_hdr_t *fhdr; 1057 uint32_t i; 1058 1059 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 1060 ASSERT(hdr->b_birth != 0); 1061 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1062 1063 if (lockp != NULL) { 1064 *lockp = hash_lock; 1065 mutex_enter(hash_lock); 1066 } else { 1067 ASSERT(MUTEX_HELD(hash_lock)); 1068 } 1069 1070 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 1071 fhdr = fhdr->b_hash_next, i++) { 1072 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 1073 return (fhdr); 1074 } 1075 1076 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 1077 buf_hash_table.ht_table[idx] = hdr; 1078 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1079 1080 /* collect some hash table performance data */ 1081 if (i > 0) { 1082 ARCSTAT_BUMP(arcstat_hash_collisions); 1083 if (i == 1) 1084 ARCSTAT_BUMP(arcstat_hash_chains); 1085 1086 ARCSTAT_MAX(arcstat_hash_chain_max, i); 1087 } 1088 1089 ARCSTAT_BUMP(arcstat_hash_elements); 1090 ARCSTAT_MAXSTAT(arcstat_hash_elements); 1091 1092 return (NULL); 1093 } 1094 1095 static void 1096 buf_hash_remove(arc_buf_hdr_t *hdr) 1097 { 1098 arc_buf_hdr_t *fhdr, **hdrp; 1099 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1100 1101 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 1102 ASSERT(HDR_IN_HASH_TABLE(hdr)); 1103 1104 hdrp = &buf_hash_table.ht_table[idx]; 1105 while ((fhdr = *hdrp) != hdr) { 1106 ASSERT3P(fhdr, !=, NULL); 1107 hdrp = &fhdr->b_hash_next; 1108 } 1109 *hdrp = hdr->b_hash_next; 1110 hdr->b_hash_next = NULL; 1111 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1112 1113 /* collect some hash table performance data */ 1114 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 1115 1116 if (buf_hash_table.ht_table[idx] && 1117 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 1118 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 1119 } 1120 1121 /* 1122 * Global data structures and functions for the buf kmem cache. 1123 */ 1124 1125 static kmem_cache_t *hdr_full_cache; 1126 static kmem_cache_t *hdr_full_crypt_cache; 1127 static kmem_cache_t *hdr_l2only_cache; 1128 static kmem_cache_t *buf_cache; 1129 1130 static void 1131 buf_fini(void) 1132 { 1133 int i; 1134 1135 #if defined(_KERNEL) 1136 /* 1137 * Large allocations which do not require contiguous pages 1138 * should be using vmem_free() in the linux kernel\ 1139 */ 1140 vmem_free(buf_hash_table.ht_table, 1141 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1142 #else 1143 kmem_free(buf_hash_table.ht_table, 1144 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1145 #endif 1146 for (i = 0; i < BUF_LOCKS; i++) 1147 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 1148 kmem_cache_destroy(hdr_full_cache); 1149 kmem_cache_destroy(hdr_full_crypt_cache); 1150 kmem_cache_destroy(hdr_l2only_cache); 1151 kmem_cache_destroy(buf_cache); 1152 } 1153 1154 /* 1155 * Constructor callback - called when the cache is empty 1156 * and a new buf is requested. 1157 */ 1158 /* ARGSUSED */ 1159 static int 1160 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1161 { 1162 arc_buf_hdr_t *hdr = vbuf; 1163 1164 bzero(hdr, HDR_FULL_SIZE); 1165 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 1166 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL); 1167 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt); 1168 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1169 list_link_init(&hdr->b_l1hdr.b_arc_node); 1170 list_link_init(&hdr->b_l2hdr.b_l2node); 1171 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1172 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1173 1174 return (0); 1175 } 1176 1177 /* ARGSUSED */ 1178 static int 1179 hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag) 1180 { 1181 arc_buf_hdr_t *hdr = vbuf; 1182 1183 hdr_full_cons(vbuf, unused, kmflag); 1184 bzero(&hdr->b_crypt_hdr, sizeof (hdr->b_crypt_hdr)); 1185 arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1186 1187 return (0); 1188 } 1189 1190 /* ARGSUSED */ 1191 static int 1192 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1193 { 1194 arc_buf_hdr_t *hdr = vbuf; 1195 1196 bzero(hdr, HDR_L2ONLY_SIZE); 1197 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1198 1199 return (0); 1200 } 1201 1202 /* ARGSUSED */ 1203 static int 1204 buf_cons(void *vbuf, void *unused, int kmflag) 1205 { 1206 arc_buf_t *buf = vbuf; 1207 1208 bzero(buf, sizeof (arc_buf_t)); 1209 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 1210 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1211 1212 return (0); 1213 } 1214 1215 /* 1216 * Destructor callback - called when a cached buf is 1217 * no longer required. 1218 */ 1219 /* ARGSUSED */ 1220 static void 1221 hdr_full_dest(void *vbuf, void *unused) 1222 { 1223 arc_buf_hdr_t *hdr = vbuf; 1224 1225 ASSERT(HDR_EMPTY(hdr)); 1226 cv_destroy(&hdr->b_l1hdr.b_cv); 1227 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1228 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1229 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1230 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1231 } 1232 1233 /* ARGSUSED */ 1234 static void 1235 hdr_full_crypt_dest(void *vbuf, void *unused) 1236 { 1237 arc_buf_hdr_t *hdr = vbuf; 1238 1239 hdr_full_dest(vbuf, unused); 1240 arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1241 } 1242 1243 /* ARGSUSED */ 1244 static void 1245 hdr_l2only_dest(void *vbuf, void *unused) 1246 { 1247 arc_buf_hdr_t *hdr __maybe_unused = vbuf; 1248 1249 ASSERT(HDR_EMPTY(hdr)); 1250 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1251 } 1252 1253 /* ARGSUSED */ 1254 static void 1255 buf_dest(void *vbuf, void *unused) 1256 { 1257 arc_buf_t *buf = vbuf; 1258 1259 mutex_destroy(&buf->b_evict_lock); 1260 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1261 } 1262 1263 static void 1264 buf_init(void) 1265 { 1266 uint64_t *ct = NULL; 1267 uint64_t hsize = 1ULL << 12; 1268 int i, j; 1269 1270 /* 1271 * The hash table is big enough to fill all of physical memory 1272 * with an average block size of zfs_arc_average_blocksize (default 8K). 1273 * By default, the table will take up 1274 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1275 */ 1276 while (hsize * zfs_arc_average_blocksize < arc_all_memory()) 1277 hsize <<= 1; 1278 retry: 1279 buf_hash_table.ht_mask = hsize - 1; 1280 #if defined(_KERNEL) 1281 /* 1282 * Large allocations which do not require contiguous pages 1283 * should be using vmem_alloc() in the linux kernel 1284 */ 1285 buf_hash_table.ht_table = 1286 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP); 1287 #else 1288 buf_hash_table.ht_table = 1289 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1290 #endif 1291 if (buf_hash_table.ht_table == NULL) { 1292 ASSERT(hsize > (1ULL << 8)); 1293 hsize >>= 1; 1294 goto retry; 1295 } 1296 1297 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1298 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, 0); 1299 hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt", 1300 HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest, 1301 NULL, NULL, NULL, 0); 1302 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1303 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL, 1304 NULL, NULL, 0); 1305 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1306 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1307 1308 for (i = 0; i < 256; i++) 1309 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1310 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1311 1312 for (i = 0; i < BUF_LOCKS; i++) { 1313 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 1314 NULL, MUTEX_DEFAULT, NULL); 1315 } 1316 } 1317 1318 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1319 1320 /* 1321 * This is the size that the buf occupies in memory. If the buf is compressed, 1322 * it will correspond to the compressed size. You should use this method of 1323 * getting the buf size unless you explicitly need the logical size. 1324 */ 1325 uint64_t 1326 arc_buf_size(arc_buf_t *buf) 1327 { 1328 return (ARC_BUF_COMPRESSED(buf) ? 1329 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr)); 1330 } 1331 1332 uint64_t 1333 arc_buf_lsize(arc_buf_t *buf) 1334 { 1335 return (HDR_GET_LSIZE(buf->b_hdr)); 1336 } 1337 1338 /* 1339 * This function will return B_TRUE if the buffer is encrypted in memory. 1340 * This buffer can be decrypted by calling arc_untransform(). 1341 */ 1342 boolean_t 1343 arc_is_encrypted(arc_buf_t *buf) 1344 { 1345 return (ARC_BUF_ENCRYPTED(buf) != 0); 1346 } 1347 1348 /* 1349 * Returns B_TRUE if the buffer represents data that has not had its MAC 1350 * verified yet. 1351 */ 1352 boolean_t 1353 arc_is_unauthenticated(arc_buf_t *buf) 1354 { 1355 return (HDR_NOAUTH(buf->b_hdr) != 0); 1356 } 1357 1358 void 1359 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt, 1360 uint8_t *iv, uint8_t *mac) 1361 { 1362 arc_buf_hdr_t *hdr = buf->b_hdr; 1363 1364 ASSERT(HDR_PROTECTED(hdr)); 1365 1366 bcopy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN); 1367 bcopy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN); 1368 bcopy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN); 1369 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 1370 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 1371 } 1372 1373 /* 1374 * Indicates how this buffer is compressed in memory. If it is not compressed 1375 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with 1376 * arc_untransform() as long as it is also unencrypted. 1377 */ 1378 enum zio_compress 1379 arc_get_compression(arc_buf_t *buf) 1380 { 1381 return (ARC_BUF_COMPRESSED(buf) ? 1382 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF); 1383 } 1384 1385 /* 1386 * Return the compression algorithm used to store this data in the ARC. If ARC 1387 * compression is enabled or this is an encrypted block, this will be the same 1388 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF. 1389 */ 1390 static inline enum zio_compress 1391 arc_hdr_get_compress(arc_buf_hdr_t *hdr) 1392 { 1393 return (HDR_COMPRESSION_ENABLED(hdr) ? 1394 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF); 1395 } 1396 1397 uint8_t 1398 arc_get_complevel(arc_buf_t *buf) 1399 { 1400 return (buf->b_hdr->b_complevel); 1401 } 1402 1403 static inline boolean_t 1404 arc_buf_is_shared(arc_buf_t *buf) 1405 { 1406 boolean_t shared = (buf->b_data != NULL && 1407 buf->b_hdr->b_l1hdr.b_pabd != NULL && 1408 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) && 1409 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd)); 1410 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); 1411 IMPLY(shared, ARC_BUF_SHARED(buf)); 1412 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf)); 1413 1414 /* 1415 * It would be nice to assert arc_can_share() too, but the "hdr isn't 1416 * already being shared" requirement prevents us from doing that. 1417 */ 1418 1419 return (shared); 1420 } 1421 1422 /* 1423 * Free the checksum associated with this header. If there is no checksum, this 1424 * is a no-op. 1425 */ 1426 static inline void 1427 arc_cksum_free(arc_buf_hdr_t *hdr) 1428 { 1429 ASSERT(HDR_HAS_L1HDR(hdr)); 1430 1431 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1432 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1433 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); 1434 hdr->b_l1hdr.b_freeze_cksum = NULL; 1435 } 1436 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1437 } 1438 1439 /* 1440 * Return true iff at least one of the bufs on hdr is not compressed. 1441 * Encrypted buffers count as compressed. 1442 */ 1443 static boolean_t 1444 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr) 1445 { 1446 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr)); 1447 1448 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) { 1449 if (!ARC_BUF_COMPRESSED(b)) { 1450 return (B_TRUE); 1451 } 1452 } 1453 return (B_FALSE); 1454 } 1455 1456 1457 /* 1458 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data 1459 * matches the checksum that is stored in the hdr. If there is no checksum, 1460 * or if the buf is compressed, this is a no-op. 1461 */ 1462 static void 1463 arc_cksum_verify(arc_buf_t *buf) 1464 { 1465 arc_buf_hdr_t *hdr = buf->b_hdr; 1466 zio_cksum_t zc; 1467 1468 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1469 return; 1470 1471 if (ARC_BUF_COMPRESSED(buf)) 1472 return; 1473 1474 ASSERT(HDR_HAS_L1HDR(hdr)); 1475 1476 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1477 1478 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { 1479 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1480 return; 1481 } 1482 1483 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc); 1484 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) 1485 panic("buffer modified while frozen!"); 1486 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1487 } 1488 1489 /* 1490 * This function makes the assumption that data stored in the L2ARC 1491 * will be transformed exactly as it is in the main pool. Because of 1492 * this we can verify the checksum against the reading process's bp. 1493 */ 1494 static boolean_t 1495 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) 1496 { 1497 ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); 1498 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); 1499 1500 /* 1501 * Block pointers always store the checksum for the logical data. 1502 * If the block pointer has the gang bit set, then the checksum 1503 * it represents is for the reconstituted data and not for an 1504 * individual gang member. The zio pipeline, however, must be able to 1505 * determine the checksum of each of the gang constituents so it 1506 * treats the checksum comparison differently than what we need 1507 * for l2arc blocks. This prevents us from using the 1508 * zio_checksum_error() interface directly. Instead we must call the 1509 * zio_checksum_error_impl() so that we can ensure the checksum is 1510 * generated using the correct checksum algorithm and accounts for the 1511 * logical I/O size and not just a gang fragment. 1512 */ 1513 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp, 1514 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size, 1515 zio->io_offset, NULL) == 0); 1516 } 1517 1518 /* 1519 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a 1520 * checksum and attaches it to the buf's hdr so that we can ensure that the buf 1521 * isn't modified later on. If buf is compressed or there is already a checksum 1522 * on the hdr, this is a no-op (we only checksum uncompressed bufs). 1523 */ 1524 static void 1525 arc_cksum_compute(arc_buf_t *buf) 1526 { 1527 arc_buf_hdr_t *hdr = buf->b_hdr; 1528 1529 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1530 return; 1531 1532 ASSERT(HDR_HAS_L1HDR(hdr)); 1533 1534 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1535 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) { 1536 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1537 return; 1538 } 1539 1540 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 1541 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1542 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), 1543 KM_SLEEP); 1544 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, 1545 hdr->b_l1hdr.b_freeze_cksum); 1546 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1547 arc_buf_watch(buf); 1548 } 1549 1550 #ifndef _KERNEL 1551 void 1552 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused) 1553 { 1554 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr); 1555 } 1556 #endif 1557 1558 /* ARGSUSED */ 1559 static void 1560 arc_buf_unwatch(arc_buf_t *buf) 1561 { 1562 #ifndef _KERNEL 1563 if (arc_watch) { 1564 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1565 PROT_READ | PROT_WRITE)); 1566 } 1567 #endif 1568 } 1569 1570 /* ARGSUSED */ 1571 static void 1572 arc_buf_watch(arc_buf_t *buf) 1573 { 1574 #ifndef _KERNEL 1575 if (arc_watch) 1576 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1577 PROT_READ)); 1578 #endif 1579 } 1580 1581 static arc_buf_contents_t 1582 arc_buf_type(arc_buf_hdr_t *hdr) 1583 { 1584 arc_buf_contents_t type; 1585 if (HDR_ISTYPE_METADATA(hdr)) { 1586 type = ARC_BUFC_METADATA; 1587 } else { 1588 type = ARC_BUFC_DATA; 1589 } 1590 VERIFY3U(hdr->b_type, ==, type); 1591 return (type); 1592 } 1593 1594 boolean_t 1595 arc_is_metadata(arc_buf_t *buf) 1596 { 1597 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0); 1598 } 1599 1600 static uint32_t 1601 arc_bufc_to_flags(arc_buf_contents_t type) 1602 { 1603 switch (type) { 1604 case ARC_BUFC_DATA: 1605 /* metadata field is 0 if buffer contains normal data */ 1606 return (0); 1607 case ARC_BUFC_METADATA: 1608 return (ARC_FLAG_BUFC_METADATA); 1609 default: 1610 break; 1611 } 1612 panic("undefined ARC buffer type!"); 1613 return ((uint32_t)-1); 1614 } 1615 1616 void 1617 arc_buf_thaw(arc_buf_t *buf) 1618 { 1619 arc_buf_hdr_t *hdr = buf->b_hdr; 1620 1621 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 1622 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1623 1624 arc_cksum_verify(buf); 1625 1626 /* 1627 * Compressed buffers do not manipulate the b_freeze_cksum. 1628 */ 1629 if (ARC_BUF_COMPRESSED(buf)) 1630 return; 1631 1632 ASSERT(HDR_HAS_L1HDR(hdr)); 1633 arc_cksum_free(hdr); 1634 arc_buf_unwatch(buf); 1635 } 1636 1637 void 1638 arc_buf_freeze(arc_buf_t *buf) 1639 { 1640 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1641 return; 1642 1643 if (ARC_BUF_COMPRESSED(buf)) 1644 return; 1645 1646 ASSERT(HDR_HAS_L1HDR(buf->b_hdr)); 1647 arc_cksum_compute(buf); 1648 } 1649 1650 /* 1651 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, 1652 * the following functions should be used to ensure that the flags are 1653 * updated in a thread-safe way. When manipulating the flags either 1654 * the hash_lock must be held or the hdr must be undiscoverable. This 1655 * ensures that we're not racing with any other threads when updating 1656 * the flags. 1657 */ 1658 static inline void 1659 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1660 { 1661 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1662 hdr->b_flags |= flags; 1663 } 1664 1665 static inline void 1666 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1667 { 1668 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1669 hdr->b_flags &= ~flags; 1670 } 1671 1672 /* 1673 * Setting the compression bits in the arc_buf_hdr_t's b_flags is 1674 * done in a special way since we have to clear and set bits 1675 * at the same time. Consumers that wish to set the compression bits 1676 * must use this function to ensure that the flags are updated in 1677 * thread-safe manner. 1678 */ 1679 static void 1680 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) 1681 { 1682 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1683 1684 /* 1685 * Holes and embedded blocks will always have a psize = 0 so 1686 * we ignore the compression of the blkptr and set the 1687 * want to uncompress them. Mark them as uncompressed. 1688 */ 1689 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { 1690 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1691 ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); 1692 } else { 1693 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1694 ASSERT(HDR_COMPRESSION_ENABLED(hdr)); 1695 } 1696 1697 HDR_SET_COMPRESS(hdr, cmp); 1698 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); 1699 } 1700 1701 /* 1702 * Looks for another buf on the same hdr which has the data decompressed, copies 1703 * from it, and returns true. If no such buf exists, returns false. 1704 */ 1705 static boolean_t 1706 arc_buf_try_copy_decompressed_data(arc_buf_t *buf) 1707 { 1708 arc_buf_hdr_t *hdr = buf->b_hdr; 1709 boolean_t copied = B_FALSE; 1710 1711 ASSERT(HDR_HAS_L1HDR(hdr)); 1712 ASSERT3P(buf->b_data, !=, NULL); 1713 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1714 1715 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL; 1716 from = from->b_next) { 1717 /* can't use our own data buffer */ 1718 if (from == buf) { 1719 continue; 1720 } 1721 1722 if (!ARC_BUF_COMPRESSED(from)) { 1723 bcopy(from->b_data, buf->b_data, arc_buf_size(buf)); 1724 copied = B_TRUE; 1725 break; 1726 } 1727 } 1728 1729 /* 1730 * There were no decompressed bufs, so there should not be a 1731 * checksum on the hdr either. 1732 */ 1733 if (zfs_flags & ZFS_DEBUG_MODIFY) 1734 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL); 1735 1736 return (copied); 1737 } 1738 1739 /* 1740 * Allocates an ARC buf header that's in an evicted & L2-cached state. 1741 * This is used during l2arc reconstruction to make empty ARC buffers 1742 * which circumvent the regular disk->arc->l2arc path and instead come 1743 * into being in the reverse order, i.e. l2arc->arc. 1744 */ 1745 static arc_buf_hdr_t * 1746 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev, 1747 dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth, 1748 enum zio_compress compress, uint8_t complevel, boolean_t protected, 1749 boolean_t prefetch, arc_state_type_t arcs_state) 1750 { 1751 arc_buf_hdr_t *hdr; 1752 1753 ASSERT(size != 0); 1754 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP); 1755 hdr->b_birth = birth; 1756 hdr->b_type = type; 1757 hdr->b_flags = 0; 1758 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR); 1759 HDR_SET_LSIZE(hdr, size); 1760 HDR_SET_PSIZE(hdr, psize); 1761 arc_hdr_set_compress(hdr, compress); 1762 hdr->b_complevel = complevel; 1763 if (protected) 1764 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 1765 if (prefetch) 1766 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 1767 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa); 1768 1769 hdr->b_dva = dva; 1770 1771 hdr->b_l2hdr.b_dev = dev; 1772 hdr->b_l2hdr.b_daddr = daddr; 1773 hdr->b_l2hdr.b_arcs_state = arcs_state; 1774 1775 return (hdr); 1776 } 1777 1778 /* 1779 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t. 1780 */ 1781 static uint64_t 1782 arc_hdr_size(arc_buf_hdr_t *hdr) 1783 { 1784 uint64_t size; 1785 1786 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 1787 HDR_GET_PSIZE(hdr) > 0) { 1788 size = HDR_GET_PSIZE(hdr); 1789 } else { 1790 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); 1791 size = HDR_GET_LSIZE(hdr); 1792 } 1793 return (size); 1794 } 1795 1796 static int 1797 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj) 1798 { 1799 int ret; 1800 uint64_t csize; 1801 uint64_t lsize = HDR_GET_LSIZE(hdr); 1802 uint64_t psize = HDR_GET_PSIZE(hdr); 1803 void *tmpbuf = NULL; 1804 abd_t *abd = hdr->b_l1hdr.b_pabd; 1805 1806 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1807 ASSERT(HDR_AUTHENTICATED(hdr)); 1808 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1809 1810 /* 1811 * The MAC is calculated on the compressed data that is stored on disk. 1812 * However, if compressed arc is disabled we will only have the 1813 * decompressed data available to us now. Compress it into a temporary 1814 * abd so we can verify the MAC. The performance overhead of this will 1815 * be relatively low, since most objects in an encrypted objset will 1816 * be encrypted (instead of authenticated) anyway. 1817 */ 1818 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1819 !HDR_COMPRESSION_ENABLED(hdr)) { 1820 tmpbuf = zio_buf_alloc(lsize); 1821 abd = abd_get_from_buf(tmpbuf, lsize); 1822 abd_take_ownership_of_buf(abd, B_TRUE); 1823 csize = zio_compress_data(HDR_GET_COMPRESS(hdr), 1824 hdr->b_l1hdr.b_pabd, tmpbuf, lsize, hdr->b_complevel); 1825 ASSERT3U(csize, <=, psize); 1826 abd_zero_off(abd, csize, psize - csize); 1827 } 1828 1829 /* 1830 * Authentication is best effort. We authenticate whenever the key is 1831 * available. If we succeed we clear ARC_FLAG_NOAUTH. 1832 */ 1833 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) { 1834 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1835 ASSERT3U(lsize, ==, psize); 1836 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd, 1837 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1838 } else { 1839 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize, 1840 hdr->b_crypt_hdr.b_mac); 1841 } 1842 1843 if (ret == 0) 1844 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH); 1845 else if (ret != ENOENT) 1846 goto error; 1847 1848 if (tmpbuf != NULL) 1849 abd_free(abd); 1850 1851 return (0); 1852 1853 error: 1854 if (tmpbuf != NULL) 1855 abd_free(abd); 1856 1857 return (ret); 1858 } 1859 1860 /* 1861 * This function will take a header that only has raw encrypted data in 1862 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in 1863 * b_l1hdr.b_pabd. If designated in the header flags, this function will 1864 * also decompress the data. 1865 */ 1866 static int 1867 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb) 1868 { 1869 int ret; 1870 abd_t *cabd = NULL; 1871 void *tmp = NULL; 1872 boolean_t no_crypt = B_FALSE; 1873 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1874 1875 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1876 ASSERT(HDR_ENCRYPTED(hdr)); 1877 1878 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 1879 1880 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot, 1881 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv, 1882 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd, 1883 hdr->b_crypt_hdr.b_rabd, &no_crypt); 1884 if (ret != 0) 1885 goto error; 1886 1887 if (no_crypt) { 1888 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd, 1889 HDR_GET_PSIZE(hdr)); 1890 } 1891 1892 /* 1893 * If this header has disabled arc compression but the b_pabd is 1894 * compressed after decrypting it, we need to decompress the newly 1895 * decrypted data. 1896 */ 1897 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1898 !HDR_COMPRESSION_ENABLED(hdr)) { 1899 /* 1900 * We want to make sure that we are correctly honoring the 1901 * zfs_abd_scatter_enabled setting, so we allocate an abd here 1902 * and then loan a buffer from it, rather than allocating a 1903 * linear buffer and wrapping it in an abd later. 1904 */ 1905 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, B_TRUE); 1906 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 1907 1908 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 1909 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 1910 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 1911 if (ret != 0) { 1912 abd_return_buf(cabd, tmp, arc_hdr_size(hdr)); 1913 goto error; 1914 } 1915 1916 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 1917 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 1918 arc_hdr_size(hdr), hdr); 1919 hdr->b_l1hdr.b_pabd = cabd; 1920 } 1921 1922 return (0); 1923 1924 error: 1925 arc_hdr_free_abd(hdr, B_FALSE); 1926 if (cabd != NULL) 1927 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr); 1928 1929 return (ret); 1930 } 1931 1932 /* 1933 * This function is called during arc_buf_fill() to prepare the header's 1934 * abd plaintext pointer for use. This involves authenticated protected 1935 * data and decrypting encrypted data into the plaintext abd. 1936 */ 1937 static int 1938 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa, 1939 const zbookmark_phys_t *zb, boolean_t noauth) 1940 { 1941 int ret; 1942 1943 ASSERT(HDR_PROTECTED(hdr)); 1944 1945 if (hash_lock != NULL) 1946 mutex_enter(hash_lock); 1947 1948 if (HDR_NOAUTH(hdr) && !noauth) { 1949 /* 1950 * The caller requested authenticated data but our data has 1951 * not been authenticated yet. Verify the MAC now if we can. 1952 */ 1953 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset); 1954 if (ret != 0) 1955 goto error; 1956 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) { 1957 /* 1958 * If we only have the encrypted version of the data, but the 1959 * unencrypted version was requested we take this opportunity 1960 * to store the decrypted version in the header for future use. 1961 */ 1962 ret = arc_hdr_decrypt(hdr, spa, zb); 1963 if (ret != 0) 1964 goto error; 1965 } 1966 1967 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1968 1969 if (hash_lock != NULL) 1970 mutex_exit(hash_lock); 1971 1972 return (0); 1973 1974 error: 1975 if (hash_lock != NULL) 1976 mutex_exit(hash_lock); 1977 1978 return (ret); 1979 } 1980 1981 /* 1982 * This function is used by the dbuf code to decrypt bonus buffers in place. 1983 * The dbuf code itself doesn't have any locking for decrypting a shared dnode 1984 * block, so we use the hash lock here to protect against concurrent calls to 1985 * arc_buf_fill(). 1986 */ 1987 static void 1988 arc_buf_untransform_in_place(arc_buf_t *buf, kmutex_t *hash_lock) 1989 { 1990 arc_buf_hdr_t *hdr = buf->b_hdr; 1991 1992 ASSERT(HDR_ENCRYPTED(hdr)); 1993 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 1994 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1995 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1996 1997 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data, 1998 arc_buf_size(buf)); 1999 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 2000 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 2001 hdr->b_crypt_hdr.b_ebufcnt -= 1; 2002 } 2003 2004 /* 2005 * Given a buf that has a data buffer attached to it, this function will 2006 * efficiently fill the buf with data of the specified compression setting from 2007 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr 2008 * are already sharing a data buf, no copy is performed. 2009 * 2010 * If the buf is marked as compressed but uncompressed data was requested, this 2011 * will allocate a new data buffer for the buf, remove that flag, and fill the 2012 * buf with uncompressed data. You can't request a compressed buf on a hdr with 2013 * uncompressed data, and (since we haven't added support for it yet) if you 2014 * want compressed data your buf must already be marked as compressed and have 2015 * the correct-sized data buffer. 2016 */ 2017 static int 2018 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 2019 arc_fill_flags_t flags) 2020 { 2021 int error = 0; 2022 arc_buf_hdr_t *hdr = buf->b_hdr; 2023 boolean_t hdr_compressed = 2024 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 2025 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0; 2026 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0; 2027 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; 2028 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr); 2029 2030 ASSERT3P(buf->b_data, !=, NULL); 2031 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf)); 2032 IMPLY(compressed, ARC_BUF_COMPRESSED(buf)); 2033 IMPLY(encrypted, HDR_ENCRYPTED(hdr)); 2034 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf)); 2035 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf)); 2036 IMPLY(encrypted, !ARC_BUF_SHARED(buf)); 2037 2038 /* 2039 * If the caller wanted encrypted data we just need to copy it from 2040 * b_rabd and potentially byteswap it. We won't be able to do any 2041 * further transforms on it. 2042 */ 2043 if (encrypted) { 2044 ASSERT(HDR_HAS_RABD(hdr)); 2045 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd, 2046 HDR_GET_PSIZE(hdr)); 2047 goto byteswap; 2048 } 2049 2050 /* 2051 * Adjust encrypted and authenticated headers to accommodate 2052 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are 2053 * allowed to fail decryption due to keys not being loaded 2054 * without being marked as an IO error. 2055 */ 2056 if (HDR_PROTECTED(hdr)) { 2057 error = arc_fill_hdr_crypt(hdr, hash_lock, spa, 2058 zb, !!(flags & ARC_FILL_NOAUTH)); 2059 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) { 2060 return (error); 2061 } else if (error != 0) { 2062 if (hash_lock != NULL) 2063 mutex_enter(hash_lock); 2064 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2065 if (hash_lock != NULL) 2066 mutex_exit(hash_lock); 2067 return (error); 2068 } 2069 } 2070 2071 /* 2072 * There is a special case here for dnode blocks which are 2073 * decrypting their bonus buffers. These blocks may request to 2074 * be decrypted in-place. This is necessary because there may 2075 * be many dnodes pointing into this buffer and there is 2076 * currently no method to synchronize replacing the backing 2077 * b_data buffer and updating all of the pointers. Here we use 2078 * the hash lock to ensure there are no races. If the need 2079 * arises for other types to be decrypted in-place, they must 2080 * add handling here as well. 2081 */ 2082 if ((flags & ARC_FILL_IN_PLACE) != 0) { 2083 ASSERT(!hdr_compressed); 2084 ASSERT(!compressed); 2085 ASSERT(!encrypted); 2086 2087 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) { 2088 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 2089 2090 if (hash_lock != NULL) 2091 mutex_enter(hash_lock); 2092 arc_buf_untransform_in_place(buf, hash_lock); 2093 if (hash_lock != NULL) 2094 mutex_exit(hash_lock); 2095 2096 /* Compute the hdr's checksum if necessary */ 2097 arc_cksum_compute(buf); 2098 } 2099 2100 return (0); 2101 } 2102 2103 if (hdr_compressed == compressed) { 2104 if (!arc_buf_is_shared(buf)) { 2105 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd, 2106 arc_buf_size(buf)); 2107 } 2108 } else { 2109 ASSERT(hdr_compressed); 2110 ASSERT(!compressed); 2111 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr)); 2112 2113 /* 2114 * If the buf is sharing its data with the hdr, unlink it and 2115 * allocate a new data buffer for the buf. 2116 */ 2117 if (arc_buf_is_shared(buf)) { 2118 ASSERT(ARC_BUF_COMPRESSED(buf)); 2119 2120 /* We need to give the buf its own b_data */ 2121 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 2122 buf->b_data = 2123 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2124 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2125 2126 /* Previously overhead was 0; just add new overhead */ 2127 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 2128 } else if (ARC_BUF_COMPRESSED(buf)) { 2129 /* We need to reallocate the buf's b_data */ 2130 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr), 2131 buf); 2132 buf->b_data = 2133 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2134 2135 /* We increased the size of b_data; update overhead */ 2136 ARCSTAT_INCR(arcstat_overhead_size, 2137 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr)); 2138 } 2139 2140 /* 2141 * Regardless of the buf's previous compression settings, it 2142 * should not be compressed at the end of this function. 2143 */ 2144 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 2145 2146 /* 2147 * Try copying the data from another buf which already has a 2148 * decompressed version. If that's not possible, it's time to 2149 * bite the bullet and decompress the data from the hdr. 2150 */ 2151 if (arc_buf_try_copy_decompressed_data(buf)) { 2152 /* Skip byteswapping and checksumming (already done) */ 2153 return (0); 2154 } else { 2155 error = zio_decompress_data(HDR_GET_COMPRESS(hdr), 2156 hdr->b_l1hdr.b_pabd, buf->b_data, 2157 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr), 2158 &hdr->b_complevel); 2159 2160 /* 2161 * Absent hardware errors or software bugs, this should 2162 * be impossible, but log it anyway so we can debug it. 2163 */ 2164 if (error != 0) { 2165 zfs_dbgmsg( 2166 "hdr %px, compress %d, psize %d, lsize %d", 2167 hdr, arc_hdr_get_compress(hdr), 2168 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 2169 if (hash_lock != NULL) 2170 mutex_enter(hash_lock); 2171 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2172 if (hash_lock != NULL) 2173 mutex_exit(hash_lock); 2174 return (SET_ERROR(EIO)); 2175 } 2176 } 2177 } 2178 2179 byteswap: 2180 /* Byteswap the buf's data if necessary */ 2181 if (bswap != DMU_BSWAP_NUMFUNCS) { 2182 ASSERT(!HDR_SHARED_DATA(hdr)); 2183 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); 2184 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); 2185 } 2186 2187 /* Compute the hdr's checksum if necessary */ 2188 arc_cksum_compute(buf); 2189 2190 return (0); 2191 } 2192 2193 /* 2194 * If this function is being called to decrypt an encrypted buffer or verify an 2195 * authenticated one, the key must be loaded and a mapping must be made 2196 * available in the keystore via spa_keystore_create_mapping() or one of its 2197 * callers. 2198 */ 2199 int 2200 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 2201 boolean_t in_place) 2202 { 2203 int ret; 2204 arc_fill_flags_t flags = 0; 2205 2206 if (in_place) 2207 flags |= ARC_FILL_IN_PLACE; 2208 2209 ret = arc_buf_fill(buf, spa, zb, flags); 2210 if (ret == ECKSUM) { 2211 /* 2212 * Convert authentication and decryption errors to EIO 2213 * (and generate an ereport) before leaving the ARC. 2214 */ 2215 ret = SET_ERROR(EIO); 2216 spa_log_error(spa, zb); 2217 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 2218 spa, NULL, zb, NULL, 0); 2219 } 2220 2221 return (ret); 2222 } 2223 2224 /* 2225 * Increment the amount of evictable space in the arc_state_t's refcount. 2226 * We account for the space used by the hdr and the arc buf individually 2227 * so that we can add and remove them from the refcount individually. 2228 */ 2229 static void 2230 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) 2231 { 2232 arc_buf_contents_t type = arc_buf_type(hdr); 2233 2234 ASSERT(HDR_HAS_L1HDR(hdr)); 2235 2236 if (GHOST_STATE(state)) { 2237 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2238 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2239 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2240 ASSERT(!HDR_HAS_RABD(hdr)); 2241 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2242 HDR_GET_LSIZE(hdr), hdr); 2243 return; 2244 } 2245 2246 ASSERT(!GHOST_STATE(state)); 2247 if (hdr->b_l1hdr.b_pabd != NULL) { 2248 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2249 arc_hdr_size(hdr), hdr); 2250 } 2251 if (HDR_HAS_RABD(hdr)) { 2252 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2253 HDR_GET_PSIZE(hdr), hdr); 2254 } 2255 2256 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2257 buf = buf->b_next) { 2258 if (arc_buf_is_shared(buf)) 2259 continue; 2260 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2261 arc_buf_size(buf), buf); 2262 } 2263 } 2264 2265 /* 2266 * Decrement the amount of evictable space in the arc_state_t's refcount. 2267 * We account for the space used by the hdr and the arc buf individually 2268 * so that we can add and remove them from the refcount individually. 2269 */ 2270 static void 2271 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) 2272 { 2273 arc_buf_contents_t type = arc_buf_type(hdr); 2274 2275 ASSERT(HDR_HAS_L1HDR(hdr)); 2276 2277 if (GHOST_STATE(state)) { 2278 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2279 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2280 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2281 ASSERT(!HDR_HAS_RABD(hdr)); 2282 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2283 HDR_GET_LSIZE(hdr), hdr); 2284 return; 2285 } 2286 2287 ASSERT(!GHOST_STATE(state)); 2288 if (hdr->b_l1hdr.b_pabd != NULL) { 2289 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2290 arc_hdr_size(hdr), hdr); 2291 } 2292 if (HDR_HAS_RABD(hdr)) { 2293 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2294 HDR_GET_PSIZE(hdr), hdr); 2295 } 2296 2297 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2298 buf = buf->b_next) { 2299 if (arc_buf_is_shared(buf)) 2300 continue; 2301 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2302 arc_buf_size(buf), buf); 2303 } 2304 } 2305 2306 /* 2307 * Add a reference to this hdr indicating that someone is actively 2308 * referencing that memory. When the refcount transitions from 0 to 1, 2309 * we remove it from the respective arc_state_t list to indicate that 2310 * it is not evictable. 2311 */ 2312 static void 2313 add_reference(arc_buf_hdr_t *hdr, void *tag) 2314 { 2315 arc_state_t *state; 2316 2317 ASSERT(HDR_HAS_L1HDR(hdr)); 2318 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) { 2319 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 2320 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2321 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2322 } 2323 2324 state = hdr->b_l1hdr.b_state; 2325 2326 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 2327 (state != arc_anon)) { 2328 /* We don't use the L2-only state list. */ 2329 if (state != arc_l2c_only) { 2330 multilist_remove(&state->arcs_list[arc_buf_type(hdr)], 2331 hdr); 2332 arc_evictable_space_decrement(hdr, state); 2333 } 2334 /* remove the prefetch flag if we get a reference */ 2335 if (HDR_HAS_L2HDR(hdr)) 2336 l2arc_hdr_arcstats_decrement_state(hdr); 2337 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 2338 if (HDR_HAS_L2HDR(hdr)) 2339 l2arc_hdr_arcstats_increment_state(hdr); 2340 } 2341 } 2342 2343 /* 2344 * Remove a reference from this hdr. When the reference transitions from 2345 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's 2346 * list making it eligible for eviction. 2347 */ 2348 static int 2349 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 2350 { 2351 int cnt; 2352 arc_state_t *state = hdr->b_l1hdr.b_state; 2353 2354 ASSERT(HDR_HAS_L1HDR(hdr)); 2355 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 2356 ASSERT(!GHOST_STATE(state)); 2357 2358 /* 2359 * arc_l2c_only counts as a ghost state so we don't need to explicitly 2360 * check to prevent usage of the arc_l2c_only list. 2361 */ 2362 if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) && 2363 (state != arc_anon)) { 2364 multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr); 2365 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 2366 arc_evictable_space_increment(hdr, state); 2367 } 2368 return (cnt); 2369 } 2370 2371 /* 2372 * Returns detailed information about a specific arc buffer. When the 2373 * state_index argument is set the function will calculate the arc header 2374 * list position for its arc state. Since this requires a linear traversal 2375 * callers are strongly encourage not to do this. However, it can be helpful 2376 * for targeted analysis so the functionality is provided. 2377 */ 2378 void 2379 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index) 2380 { 2381 arc_buf_hdr_t *hdr = ab->b_hdr; 2382 l1arc_buf_hdr_t *l1hdr = NULL; 2383 l2arc_buf_hdr_t *l2hdr = NULL; 2384 arc_state_t *state = NULL; 2385 2386 memset(abi, 0, sizeof (arc_buf_info_t)); 2387 2388 if (hdr == NULL) 2389 return; 2390 2391 abi->abi_flags = hdr->b_flags; 2392 2393 if (HDR_HAS_L1HDR(hdr)) { 2394 l1hdr = &hdr->b_l1hdr; 2395 state = l1hdr->b_state; 2396 } 2397 if (HDR_HAS_L2HDR(hdr)) 2398 l2hdr = &hdr->b_l2hdr; 2399 2400 if (l1hdr) { 2401 abi->abi_bufcnt = l1hdr->b_bufcnt; 2402 abi->abi_access = l1hdr->b_arc_access; 2403 abi->abi_mru_hits = l1hdr->b_mru_hits; 2404 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits; 2405 abi->abi_mfu_hits = l1hdr->b_mfu_hits; 2406 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits; 2407 abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt); 2408 } 2409 2410 if (l2hdr) { 2411 abi->abi_l2arc_dattr = l2hdr->b_daddr; 2412 abi->abi_l2arc_hits = l2hdr->b_hits; 2413 } 2414 2415 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON; 2416 abi->abi_state_contents = arc_buf_type(hdr); 2417 abi->abi_size = arc_hdr_size(hdr); 2418 } 2419 2420 /* 2421 * Move the supplied buffer to the indicated state. The hash lock 2422 * for the buffer must be held by the caller. 2423 */ 2424 static void 2425 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr, 2426 kmutex_t *hash_lock) 2427 { 2428 arc_state_t *old_state; 2429 int64_t refcnt; 2430 uint32_t bufcnt; 2431 boolean_t update_old, update_new; 2432 arc_buf_contents_t buftype = arc_buf_type(hdr); 2433 2434 /* 2435 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 2436 * in arc_read() when bringing a buffer out of the L2ARC. However, the 2437 * L1 hdr doesn't always exist when we change state to arc_anon before 2438 * destroying a header, in which case reallocating to add the L1 hdr is 2439 * pointless. 2440 */ 2441 if (HDR_HAS_L1HDR(hdr)) { 2442 old_state = hdr->b_l1hdr.b_state; 2443 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt); 2444 bufcnt = hdr->b_l1hdr.b_bufcnt; 2445 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL || 2446 HDR_HAS_RABD(hdr)); 2447 } else { 2448 old_state = arc_l2c_only; 2449 refcnt = 0; 2450 bufcnt = 0; 2451 update_old = B_FALSE; 2452 } 2453 update_new = update_old; 2454 2455 ASSERT(MUTEX_HELD(hash_lock)); 2456 ASSERT3P(new_state, !=, old_state); 2457 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0); 2458 ASSERT(old_state != arc_anon || bufcnt <= 1); 2459 2460 /* 2461 * If this buffer is evictable, transfer it from the 2462 * old state list to the new state list. 2463 */ 2464 if (refcnt == 0) { 2465 if (old_state != arc_anon && old_state != arc_l2c_only) { 2466 ASSERT(HDR_HAS_L1HDR(hdr)); 2467 multilist_remove(&old_state->arcs_list[buftype], hdr); 2468 2469 if (GHOST_STATE(old_state)) { 2470 ASSERT0(bufcnt); 2471 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2472 update_old = B_TRUE; 2473 } 2474 arc_evictable_space_decrement(hdr, old_state); 2475 } 2476 if (new_state != arc_anon && new_state != arc_l2c_only) { 2477 /* 2478 * An L1 header always exists here, since if we're 2479 * moving to some L1-cached state (i.e. not l2c_only or 2480 * anonymous), we realloc the header to add an L1hdr 2481 * beforehand. 2482 */ 2483 ASSERT(HDR_HAS_L1HDR(hdr)); 2484 multilist_insert(&new_state->arcs_list[buftype], hdr); 2485 2486 if (GHOST_STATE(new_state)) { 2487 ASSERT0(bufcnt); 2488 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2489 update_new = B_TRUE; 2490 } 2491 arc_evictable_space_increment(hdr, new_state); 2492 } 2493 } 2494 2495 ASSERT(!HDR_EMPTY(hdr)); 2496 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 2497 buf_hash_remove(hdr); 2498 2499 /* adjust state sizes (ignore arc_l2c_only) */ 2500 2501 if (update_new && new_state != arc_l2c_only) { 2502 ASSERT(HDR_HAS_L1HDR(hdr)); 2503 if (GHOST_STATE(new_state)) { 2504 ASSERT0(bufcnt); 2505 2506 /* 2507 * When moving a header to a ghost state, we first 2508 * remove all arc buffers. Thus, we'll have a 2509 * bufcnt of zero, and no arc buffer to use for 2510 * the reference. As a result, we use the arc 2511 * header pointer for the reference. 2512 */ 2513 (void) zfs_refcount_add_many(&new_state->arcs_size, 2514 HDR_GET_LSIZE(hdr), hdr); 2515 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2516 ASSERT(!HDR_HAS_RABD(hdr)); 2517 } else { 2518 uint32_t buffers = 0; 2519 2520 /* 2521 * Each individual buffer holds a unique reference, 2522 * thus we must remove each of these references one 2523 * at a time. 2524 */ 2525 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2526 buf = buf->b_next) { 2527 ASSERT3U(bufcnt, !=, 0); 2528 buffers++; 2529 2530 /* 2531 * When the arc_buf_t is sharing the data 2532 * block with the hdr, the owner of the 2533 * reference belongs to the hdr. Only 2534 * add to the refcount if the arc_buf_t is 2535 * not shared. 2536 */ 2537 if (arc_buf_is_shared(buf)) 2538 continue; 2539 2540 (void) zfs_refcount_add_many( 2541 &new_state->arcs_size, 2542 arc_buf_size(buf), buf); 2543 } 2544 ASSERT3U(bufcnt, ==, buffers); 2545 2546 if (hdr->b_l1hdr.b_pabd != NULL) { 2547 (void) zfs_refcount_add_many( 2548 &new_state->arcs_size, 2549 arc_hdr_size(hdr), hdr); 2550 } 2551 2552 if (HDR_HAS_RABD(hdr)) { 2553 (void) zfs_refcount_add_many( 2554 &new_state->arcs_size, 2555 HDR_GET_PSIZE(hdr), hdr); 2556 } 2557 } 2558 } 2559 2560 if (update_old && old_state != arc_l2c_only) { 2561 ASSERT(HDR_HAS_L1HDR(hdr)); 2562 if (GHOST_STATE(old_state)) { 2563 ASSERT0(bufcnt); 2564 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2565 ASSERT(!HDR_HAS_RABD(hdr)); 2566 2567 /* 2568 * When moving a header off of a ghost state, 2569 * the header will not contain any arc buffers. 2570 * We use the arc header pointer for the reference 2571 * which is exactly what we did when we put the 2572 * header on the ghost state. 2573 */ 2574 2575 (void) zfs_refcount_remove_many(&old_state->arcs_size, 2576 HDR_GET_LSIZE(hdr), hdr); 2577 } else { 2578 uint32_t buffers = 0; 2579 2580 /* 2581 * Each individual buffer holds a unique reference, 2582 * thus we must remove each of these references one 2583 * at a time. 2584 */ 2585 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2586 buf = buf->b_next) { 2587 ASSERT3U(bufcnt, !=, 0); 2588 buffers++; 2589 2590 /* 2591 * When the arc_buf_t is sharing the data 2592 * block with the hdr, the owner of the 2593 * reference belongs to the hdr. Only 2594 * add to the refcount if the arc_buf_t is 2595 * not shared. 2596 */ 2597 if (arc_buf_is_shared(buf)) 2598 continue; 2599 2600 (void) zfs_refcount_remove_many( 2601 &old_state->arcs_size, arc_buf_size(buf), 2602 buf); 2603 } 2604 ASSERT3U(bufcnt, ==, buffers); 2605 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 2606 HDR_HAS_RABD(hdr)); 2607 2608 if (hdr->b_l1hdr.b_pabd != NULL) { 2609 (void) zfs_refcount_remove_many( 2610 &old_state->arcs_size, arc_hdr_size(hdr), 2611 hdr); 2612 } 2613 2614 if (HDR_HAS_RABD(hdr)) { 2615 (void) zfs_refcount_remove_many( 2616 &old_state->arcs_size, HDR_GET_PSIZE(hdr), 2617 hdr); 2618 } 2619 } 2620 } 2621 2622 if (HDR_HAS_L1HDR(hdr)) { 2623 hdr->b_l1hdr.b_state = new_state; 2624 2625 if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) { 2626 l2arc_hdr_arcstats_decrement_state(hdr); 2627 hdr->b_l2hdr.b_arcs_state = new_state->arcs_state; 2628 l2arc_hdr_arcstats_increment_state(hdr); 2629 } 2630 } 2631 2632 /* 2633 * L2 headers should never be on the L2 state list since they don't 2634 * have L1 headers allocated. 2635 */ 2636 ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) && 2637 multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA])); 2638 } 2639 2640 void 2641 arc_space_consume(uint64_t space, arc_space_type_t type) 2642 { 2643 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2644 2645 switch (type) { 2646 default: 2647 break; 2648 case ARC_SPACE_DATA: 2649 wmsum_add(&astat_data_size, space); 2650 break; 2651 case ARC_SPACE_META: 2652 wmsum_add(&astat_metadata_size, space); 2653 break; 2654 case ARC_SPACE_BONUS: 2655 wmsum_add(&astat_bonus_size, space); 2656 break; 2657 case ARC_SPACE_DNODE: 2658 aggsum_add(&astat_dnode_size, space); 2659 break; 2660 case ARC_SPACE_DBUF: 2661 wmsum_add(&astat_dbuf_size, space); 2662 break; 2663 case ARC_SPACE_HDRS: 2664 wmsum_add(&astat_hdr_size, space); 2665 break; 2666 case ARC_SPACE_L2HDRS: 2667 aggsum_add(&astat_l2_hdr_size, space); 2668 break; 2669 case ARC_SPACE_ABD_CHUNK_WASTE: 2670 /* 2671 * Note: this includes space wasted by all scatter ABD's, not 2672 * just those allocated by the ARC. But the vast majority of 2673 * scatter ABD's come from the ARC, because other users are 2674 * very short-lived. 2675 */ 2676 wmsum_add(&astat_abd_chunk_waste_size, space); 2677 break; 2678 } 2679 2680 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) 2681 aggsum_add(&arc_meta_used, space); 2682 2683 aggsum_add(&arc_size, space); 2684 } 2685 2686 void 2687 arc_space_return(uint64_t space, arc_space_type_t type) 2688 { 2689 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2690 2691 switch (type) { 2692 default: 2693 break; 2694 case ARC_SPACE_DATA: 2695 wmsum_add(&astat_data_size, -space); 2696 break; 2697 case ARC_SPACE_META: 2698 wmsum_add(&astat_metadata_size, -space); 2699 break; 2700 case ARC_SPACE_BONUS: 2701 wmsum_add(&astat_bonus_size, -space); 2702 break; 2703 case ARC_SPACE_DNODE: 2704 aggsum_add(&astat_dnode_size, -space); 2705 break; 2706 case ARC_SPACE_DBUF: 2707 wmsum_add(&astat_dbuf_size, -space); 2708 break; 2709 case ARC_SPACE_HDRS: 2710 wmsum_add(&astat_hdr_size, -space); 2711 break; 2712 case ARC_SPACE_L2HDRS: 2713 aggsum_add(&astat_l2_hdr_size, -space); 2714 break; 2715 case ARC_SPACE_ABD_CHUNK_WASTE: 2716 wmsum_add(&astat_abd_chunk_waste_size, -space); 2717 break; 2718 } 2719 2720 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) { 2721 ASSERT(aggsum_compare(&arc_meta_used, space) >= 0); 2722 /* 2723 * We use the upper bound here rather than the precise value 2724 * because the arc_meta_max value doesn't need to be 2725 * precise. It's only consumed by humans via arcstats. 2726 */ 2727 if (arc_meta_max < aggsum_upper_bound(&arc_meta_used)) 2728 arc_meta_max = aggsum_upper_bound(&arc_meta_used); 2729 aggsum_add(&arc_meta_used, -space); 2730 } 2731 2732 ASSERT(aggsum_compare(&arc_size, space) >= 0); 2733 aggsum_add(&arc_size, -space); 2734 } 2735 2736 /* 2737 * Given a hdr and a buf, returns whether that buf can share its b_data buffer 2738 * with the hdr's b_pabd. 2739 */ 2740 static boolean_t 2741 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2742 { 2743 /* 2744 * The criteria for sharing a hdr's data are: 2745 * 1. the buffer is not encrypted 2746 * 2. the hdr's compression matches the buf's compression 2747 * 3. the hdr doesn't need to be byteswapped 2748 * 4. the hdr isn't already being shared 2749 * 5. the buf is either compressed or it is the last buf in the hdr list 2750 * 2751 * Criterion #5 maintains the invariant that shared uncompressed 2752 * bufs must be the final buf in the hdr's b_buf list. Reading this, you 2753 * might ask, "if a compressed buf is allocated first, won't that be the 2754 * last thing in the list?", but in that case it's impossible to create 2755 * a shared uncompressed buf anyway (because the hdr must be compressed 2756 * to have the compressed buf). You might also think that #3 is 2757 * sufficient to make this guarantee, however it's possible 2758 * (specifically in the rare L2ARC write race mentioned in 2759 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that 2760 * is shareable, but wasn't at the time of its allocation. Rather than 2761 * allow a new shared uncompressed buf to be created and then shuffle 2762 * the list around to make it the last element, this simply disallows 2763 * sharing if the new buf isn't the first to be added. 2764 */ 2765 ASSERT3P(buf->b_hdr, ==, hdr); 2766 boolean_t hdr_compressed = 2767 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF; 2768 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0; 2769 return (!ARC_BUF_ENCRYPTED(buf) && 2770 buf_compressed == hdr_compressed && 2771 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && 2772 !HDR_SHARED_DATA(hdr) && 2773 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf))); 2774 } 2775 2776 /* 2777 * Allocate a buf for this hdr. If you care about the data that's in the hdr, 2778 * or if you want a compressed buffer, pass those flags in. Returns 0 if the 2779 * copy was made successfully, or an error code otherwise. 2780 */ 2781 static int 2782 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb, 2783 void *tag, boolean_t encrypted, boolean_t compressed, boolean_t noauth, 2784 boolean_t fill, arc_buf_t **ret) 2785 { 2786 arc_buf_t *buf; 2787 arc_fill_flags_t flags = ARC_FILL_LOCKED; 2788 2789 ASSERT(HDR_HAS_L1HDR(hdr)); 2790 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2791 VERIFY(hdr->b_type == ARC_BUFC_DATA || 2792 hdr->b_type == ARC_BUFC_METADATA); 2793 ASSERT3P(ret, !=, NULL); 2794 ASSERT3P(*ret, ==, NULL); 2795 IMPLY(encrypted, compressed); 2796 2797 hdr->b_l1hdr.b_mru_hits = 0; 2798 hdr->b_l1hdr.b_mru_ghost_hits = 0; 2799 hdr->b_l1hdr.b_mfu_hits = 0; 2800 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 2801 hdr->b_l1hdr.b_l2_hits = 0; 2802 2803 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2804 buf->b_hdr = hdr; 2805 buf->b_data = NULL; 2806 buf->b_next = hdr->b_l1hdr.b_buf; 2807 buf->b_flags = 0; 2808 2809 add_reference(hdr, tag); 2810 2811 /* 2812 * We're about to change the hdr's b_flags. We must either 2813 * hold the hash_lock or be undiscoverable. 2814 */ 2815 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2816 2817 /* 2818 * Only honor requests for compressed bufs if the hdr is actually 2819 * compressed. This must be overridden if the buffer is encrypted since 2820 * encrypted buffers cannot be decompressed. 2821 */ 2822 if (encrypted) { 2823 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2824 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED; 2825 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED; 2826 } else if (compressed && 2827 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 2828 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2829 flags |= ARC_FILL_COMPRESSED; 2830 } 2831 2832 if (noauth) { 2833 ASSERT0(encrypted); 2834 flags |= ARC_FILL_NOAUTH; 2835 } 2836 2837 /* 2838 * If the hdr's data can be shared then we share the data buffer and 2839 * set the appropriate bit in the hdr's b_flags to indicate the hdr is 2840 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new 2841 * buffer to store the buf's data. 2842 * 2843 * There are two additional restrictions here because we're sharing 2844 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be 2845 * actively involved in an L2ARC write, because if this buf is used by 2846 * an arc_write() then the hdr's data buffer will be released when the 2847 * write completes, even though the L2ARC write might still be using it. 2848 * Second, the hdr's ABD must be linear so that the buf's user doesn't 2849 * need to be ABD-aware. It must be allocated via 2850 * zio_[data_]buf_alloc(), not as a page, because we need to be able 2851 * to abd_release_ownership_of_buf(), which isn't allowed on "linear 2852 * page" buffers because the ABD code needs to handle freeing them 2853 * specially. 2854 */ 2855 boolean_t can_share = arc_can_share(hdr, buf) && 2856 !HDR_L2_WRITING(hdr) && 2857 hdr->b_l1hdr.b_pabd != NULL && 2858 abd_is_linear(hdr->b_l1hdr.b_pabd) && 2859 !abd_is_linear_page(hdr->b_l1hdr.b_pabd); 2860 2861 /* Set up b_data and sharing */ 2862 if (can_share) { 2863 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd); 2864 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2865 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2866 } else { 2867 buf->b_data = 2868 arc_get_data_buf(hdr, arc_buf_size(buf), buf); 2869 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2870 } 2871 VERIFY3P(buf->b_data, !=, NULL); 2872 2873 hdr->b_l1hdr.b_buf = buf; 2874 hdr->b_l1hdr.b_bufcnt += 1; 2875 if (encrypted) 2876 hdr->b_crypt_hdr.b_ebufcnt += 1; 2877 2878 /* 2879 * If the user wants the data from the hdr, we need to either copy or 2880 * decompress the data. 2881 */ 2882 if (fill) { 2883 ASSERT3P(zb, !=, NULL); 2884 return (arc_buf_fill(buf, spa, zb, flags)); 2885 } 2886 2887 return (0); 2888 } 2889 2890 static char *arc_onloan_tag = "onloan"; 2891 2892 static inline void 2893 arc_loaned_bytes_update(int64_t delta) 2894 { 2895 atomic_add_64(&arc_loaned_bytes, delta); 2896 2897 /* assert that it did not wrap around */ 2898 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 2899 } 2900 2901 /* 2902 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 2903 * flight data by arc_tempreserve_space() until they are "returned". Loaned 2904 * buffers must be returned to the arc before they can be used by the DMU or 2905 * freed. 2906 */ 2907 arc_buf_t * 2908 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size) 2909 { 2910 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag, 2911 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size); 2912 2913 arc_loaned_bytes_update(arc_buf_size(buf)); 2914 2915 return (buf); 2916 } 2917 2918 arc_buf_t * 2919 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize, 2920 enum zio_compress compression_type, uint8_t complevel) 2921 { 2922 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag, 2923 psize, lsize, compression_type, complevel); 2924 2925 arc_loaned_bytes_update(arc_buf_size(buf)); 2926 2927 return (buf); 2928 } 2929 2930 arc_buf_t * 2931 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder, 2932 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 2933 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 2934 enum zio_compress compression_type, uint8_t complevel) 2935 { 2936 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj, 2937 byteorder, salt, iv, mac, ot, psize, lsize, compression_type, 2938 complevel); 2939 2940 atomic_add_64(&arc_loaned_bytes, psize); 2941 return (buf); 2942 } 2943 2944 2945 /* 2946 * Return a loaned arc buffer to the arc. 2947 */ 2948 void 2949 arc_return_buf(arc_buf_t *buf, void *tag) 2950 { 2951 arc_buf_hdr_t *hdr = buf->b_hdr; 2952 2953 ASSERT3P(buf->b_data, !=, NULL); 2954 ASSERT(HDR_HAS_L1HDR(hdr)); 2955 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 2956 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2957 2958 arc_loaned_bytes_update(-arc_buf_size(buf)); 2959 } 2960 2961 /* Detach an arc_buf from a dbuf (tag) */ 2962 void 2963 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 2964 { 2965 arc_buf_hdr_t *hdr = buf->b_hdr; 2966 2967 ASSERT3P(buf->b_data, !=, NULL); 2968 ASSERT(HDR_HAS_L1HDR(hdr)); 2969 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2970 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 2971 2972 arc_loaned_bytes_update(arc_buf_size(buf)); 2973 } 2974 2975 static void 2976 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type) 2977 { 2978 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); 2979 2980 df->l2df_abd = abd; 2981 df->l2df_size = size; 2982 df->l2df_type = type; 2983 mutex_enter(&l2arc_free_on_write_mtx); 2984 list_insert_head(l2arc_free_on_write, df); 2985 mutex_exit(&l2arc_free_on_write_mtx); 2986 } 2987 2988 static void 2989 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata) 2990 { 2991 arc_state_t *state = hdr->b_l1hdr.b_state; 2992 arc_buf_contents_t type = arc_buf_type(hdr); 2993 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 2994 2995 /* protected by hash lock, if in the hash table */ 2996 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2997 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2998 ASSERT(state != arc_anon && state != arc_l2c_only); 2999 3000 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 3001 size, hdr); 3002 } 3003 (void) zfs_refcount_remove_many(&state->arcs_size, size, hdr); 3004 if (type == ARC_BUFC_METADATA) { 3005 arc_space_return(size, ARC_SPACE_META); 3006 } else { 3007 ASSERT(type == ARC_BUFC_DATA); 3008 arc_space_return(size, ARC_SPACE_DATA); 3009 } 3010 3011 if (free_rdata) { 3012 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type); 3013 } else { 3014 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type); 3015 } 3016 } 3017 3018 /* 3019 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the 3020 * data buffer, we transfer the refcount ownership to the hdr and update 3021 * the appropriate kstats. 3022 */ 3023 static void 3024 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 3025 { 3026 ASSERT(arc_can_share(hdr, buf)); 3027 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3028 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 3029 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3030 3031 /* 3032 * Start sharing the data buffer. We transfer the 3033 * refcount ownership to the hdr since it always owns 3034 * the refcount whenever an arc_buf_t is shared. 3035 */ 3036 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 3037 arc_hdr_size(hdr), buf, hdr); 3038 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf)); 3039 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd, 3040 HDR_ISTYPE_METADATA(hdr)); 3041 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 3042 buf->b_flags |= ARC_BUF_FLAG_SHARED; 3043 3044 /* 3045 * Since we've transferred ownership to the hdr we need 3046 * to increment its compressed and uncompressed kstats and 3047 * decrement the overhead size. 3048 */ 3049 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 3050 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3051 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf)); 3052 } 3053 3054 static void 3055 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 3056 { 3057 ASSERT(arc_buf_is_shared(buf)); 3058 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3059 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3060 3061 /* 3062 * We are no longer sharing this buffer so we need 3063 * to transfer its ownership to the rightful owner. 3064 */ 3065 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 3066 arc_hdr_size(hdr), hdr, buf); 3067 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3068 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd); 3069 abd_free(hdr->b_l1hdr.b_pabd); 3070 hdr->b_l1hdr.b_pabd = NULL; 3071 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 3072 3073 /* 3074 * Since the buffer is no longer shared between 3075 * the arc buf and the hdr, count it as overhead. 3076 */ 3077 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 3078 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3079 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 3080 } 3081 3082 /* 3083 * Remove an arc_buf_t from the hdr's buf list and return the last 3084 * arc_buf_t on the list. If no buffers remain on the list then return 3085 * NULL. 3086 */ 3087 static arc_buf_t * 3088 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf) 3089 { 3090 ASSERT(HDR_HAS_L1HDR(hdr)); 3091 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3092 3093 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf; 3094 arc_buf_t *lastbuf = NULL; 3095 3096 /* 3097 * Remove the buf from the hdr list and locate the last 3098 * remaining buffer on the list. 3099 */ 3100 while (*bufp != NULL) { 3101 if (*bufp == buf) 3102 *bufp = buf->b_next; 3103 3104 /* 3105 * If we've removed a buffer in the middle of 3106 * the list then update the lastbuf and update 3107 * bufp. 3108 */ 3109 if (*bufp != NULL) { 3110 lastbuf = *bufp; 3111 bufp = &(*bufp)->b_next; 3112 } 3113 } 3114 buf->b_next = NULL; 3115 ASSERT3P(lastbuf, !=, buf); 3116 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL); 3117 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL); 3118 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf)); 3119 3120 return (lastbuf); 3121 } 3122 3123 /* 3124 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's 3125 * list and free it. 3126 */ 3127 static void 3128 arc_buf_destroy_impl(arc_buf_t *buf) 3129 { 3130 arc_buf_hdr_t *hdr = buf->b_hdr; 3131 3132 /* 3133 * Free up the data associated with the buf but only if we're not 3134 * sharing this with the hdr. If we are sharing it with the hdr, the 3135 * hdr is responsible for doing the free. 3136 */ 3137 if (buf->b_data != NULL) { 3138 /* 3139 * We're about to change the hdr's b_flags. We must either 3140 * hold the hash_lock or be undiscoverable. 3141 */ 3142 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3143 3144 arc_cksum_verify(buf); 3145 arc_buf_unwatch(buf); 3146 3147 if (arc_buf_is_shared(buf)) { 3148 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3149 } else { 3150 uint64_t size = arc_buf_size(buf); 3151 arc_free_data_buf(hdr, buf->b_data, size, buf); 3152 ARCSTAT_INCR(arcstat_overhead_size, -size); 3153 } 3154 buf->b_data = NULL; 3155 3156 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3157 hdr->b_l1hdr.b_bufcnt -= 1; 3158 3159 if (ARC_BUF_ENCRYPTED(buf)) { 3160 hdr->b_crypt_hdr.b_ebufcnt -= 1; 3161 3162 /* 3163 * If we have no more encrypted buffers and we've 3164 * already gotten a copy of the decrypted data we can 3165 * free b_rabd to save some space. 3166 */ 3167 if (hdr->b_crypt_hdr.b_ebufcnt == 0 && 3168 HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL && 3169 !HDR_IO_IN_PROGRESS(hdr)) { 3170 arc_hdr_free_abd(hdr, B_TRUE); 3171 } 3172 } 3173 } 3174 3175 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 3176 3177 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 3178 /* 3179 * If the current arc_buf_t is sharing its data buffer with the 3180 * hdr, then reassign the hdr's b_pabd to share it with the new 3181 * buffer at the end of the list. The shared buffer is always 3182 * the last one on the hdr's buffer list. 3183 * 3184 * There is an equivalent case for compressed bufs, but since 3185 * they aren't guaranteed to be the last buf in the list and 3186 * that is an exceedingly rare case, we just allow that space be 3187 * wasted temporarily. We must also be careful not to share 3188 * encrypted buffers, since they cannot be shared. 3189 */ 3190 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) { 3191 /* Only one buf can be shared at once */ 3192 VERIFY(!arc_buf_is_shared(lastbuf)); 3193 /* hdr is uncompressed so can't have compressed buf */ 3194 VERIFY(!ARC_BUF_COMPRESSED(lastbuf)); 3195 3196 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3197 arc_hdr_free_abd(hdr, B_FALSE); 3198 3199 /* 3200 * We must setup a new shared block between the 3201 * last buffer and the hdr. The data would have 3202 * been allocated by the arc buf so we need to transfer 3203 * ownership to the hdr since it's now being shared. 3204 */ 3205 arc_share_buf(hdr, lastbuf); 3206 } 3207 } else if (HDR_SHARED_DATA(hdr)) { 3208 /* 3209 * Uncompressed shared buffers are always at the end 3210 * of the list. Compressed buffers don't have the 3211 * same requirements. This makes it hard to 3212 * simply assert that the lastbuf is shared so 3213 * we rely on the hdr's compression flags to determine 3214 * if we have a compressed, shared buffer. 3215 */ 3216 ASSERT3P(lastbuf, !=, NULL); 3217 ASSERT(arc_buf_is_shared(lastbuf) || 3218 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 3219 } 3220 3221 /* 3222 * Free the checksum if we're removing the last uncompressed buf from 3223 * this hdr. 3224 */ 3225 if (!arc_hdr_has_uncompressed_buf(hdr)) { 3226 arc_cksum_free(hdr); 3227 } 3228 3229 /* clean up the buf */ 3230 buf->b_hdr = NULL; 3231 kmem_cache_free(buf_cache, buf); 3232 } 3233 3234 static void 3235 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags) 3236 { 3237 uint64_t size; 3238 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0); 3239 boolean_t do_adapt = ((alloc_flags & ARC_HDR_DO_ADAPT) != 0); 3240 3241 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 3242 ASSERT(HDR_HAS_L1HDR(hdr)); 3243 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata); 3244 IMPLY(alloc_rdata, HDR_PROTECTED(hdr)); 3245 3246 if (alloc_rdata) { 3247 size = HDR_GET_PSIZE(hdr); 3248 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL); 3249 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr, 3250 do_adapt); 3251 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL); 3252 ARCSTAT_INCR(arcstat_raw_size, size); 3253 } else { 3254 size = arc_hdr_size(hdr); 3255 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3256 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr, 3257 do_adapt); 3258 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3259 } 3260 3261 ARCSTAT_INCR(arcstat_compressed_size, size); 3262 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3263 } 3264 3265 static void 3266 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata) 3267 { 3268 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 3269 3270 ASSERT(HDR_HAS_L1HDR(hdr)); 3271 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 3272 IMPLY(free_rdata, HDR_HAS_RABD(hdr)); 3273 3274 /* 3275 * If the hdr is currently being written to the l2arc then 3276 * we defer freeing the data by adding it to the l2arc_free_on_write 3277 * list. The l2arc will free the data once it's finished 3278 * writing it to the l2arc device. 3279 */ 3280 if (HDR_L2_WRITING(hdr)) { 3281 arc_hdr_free_on_write(hdr, free_rdata); 3282 ARCSTAT_BUMP(arcstat_l2_free_on_write); 3283 } else if (free_rdata) { 3284 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr); 3285 } else { 3286 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr); 3287 } 3288 3289 if (free_rdata) { 3290 hdr->b_crypt_hdr.b_rabd = NULL; 3291 ARCSTAT_INCR(arcstat_raw_size, -size); 3292 } else { 3293 hdr->b_l1hdr.b_pabd = NULL; 3294 } 3295 3296 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr)) 3297 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 3298 3299 ARCSTAT_INCR(arcstat_compressed_size, -size); 3300 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3301 } 3302 3303 static arc_buf_hdr_t * 3304 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, 3305 boolean_t protected, enum zio_compress compression_type, uint8_t complevel, 3306 arc_buf_contents_t type, boolean_t alloc_rdata) 3307 { 3308 arc_buf_hdr_t *hdr; 3309 int flags = ARC_HDR_DO_ADAPT; 3310 3311 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); 3312 if (protected) { 3313 hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE); 3314 } else { 3315 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 3316 } 3317 flags |= alloc_rdata ? ARC_HDR_ALLOC_RDATA : 0; 3318 3319 ASSERT(HDR_EMPTY(hdr)); 3320 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3321 HDR_SET_PSIZE(hdr, psize); 3322 HDR_SET_LSIZE(hdr, lsize); 3323 hdr->b_spa = spa; 3324 hdr->b_type = type; 3325 hdr->b_flags = 0; 3326 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); 3327 arc_hdr_set_compress(hdr, compression_type); 3328 hdr->b_complevel = complevel; 3329 if (protected) 3330 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 3331 3332 hdr->b_l1hdr.b_state = arc_anon; 3333 hdr->b_l1hdr.b_arc_access = 0; 3334 hdr->b_l1hdr.b_bufcnt = 0; 3335 hdr->b_l1hdr.b_buf = NULL; 3336 3337 /* 3338 * Allocate the hdr's buffer. This will contain either 3339 * the compressed or uncompressed data depending on the block 3340 * it references and compressed arc enablement. 3341 */ 3342 arc_hdr_alloc_abd(hdr, flags); 3343 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3344 3345 return (hdr); 3346 } 3347 3348 /* 3349 * Transition between the two allocation states for the arc_buf_hdr struct. 3350 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 3351 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 3352 * version is used when a cache buffer is only in the L2ARC in order to reduce 3353 * memory usage. 3354 */ 3355 static arc_buf_hdr_t * 3356 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 3357 { 3358 ASSERT(HDR_HAS_L2HDR(hdr)); 3359 3360 arc_buf_hdr_t *nhdr; 3361 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3362 3363 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 3364 (old == hdr_l2only_cache && new == hdr_full_cache)); 3365 3366 /* 3367 * if the caller wanted a new full header and the header is to be 3368 * encrypted we will actually allocate the header from the full crypt 3369 * cache instead. The same applies to freeing from the old cache. 3370 */ 3371 if (HDR_PROTECTED(hdr) && new == hdr_full_cache) 3372 new = hdr_full_crypt_cache; 3373 if (HDR_PROTECTED(hdr) && old == hdr_full_cache) 3374 old = hdr_full_crypt_cache; 3375 3376 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 3377 3378 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 3379 buf_hash_remove(hdr); 3380 3381 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE); 3382 3383 if (new == hdr_full_cache || new == hdr_full_crypt_cache) { 3384 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3385 /* 3386 * arc_access and arc_change_state need to be aware that a 3387 * header has just come out of L2ARC, so we set its state to 3388 * l2c_only even though it's about to change. 3389 */ 3390 nhdr->b_l1hdr.b_state = arc_l2c_only; 3391 3392 /* Verify previous threads set to NULL before freeing */ 3393 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL); 3394 ASSERT(!HDR_HAS_RABD(hdr)); 3395 } else { 3396 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3397 ASSERT0(hdr->b_l1hdr.b_bufcnt); 3398 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3399 3400 /* 3401 * If we've reached here, We must have been called from 3402 * arc_evict_hdr(), as such we should have already been 3403 * removed from any ghost list we were previously on 3404 * (which protects us from racing with arc_evict_state), 3405 * thus no locking is needed during this check. 3406 */ 3407 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3408 3409 /* 3410 * A buffer must not be moved into the arc_l2c_only 3411 * state if it's not finished being written out to the 3412 * l2arc device. Otherwise, the b_l1hdr.b_pabd field 3413 * might try to be accessed, even though it was removed. 3414 */ 3415 VERIFY(!HDR_L2_WRITING(hdr)); 3416 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3417 ASSERT(!HDR_HAS_RABD(hdr)); 3418 3419 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3420 } 3421 /* 3422 * The header has been reallocated so we need to re-insert it into any 3423 * lists it was on. 3424 */ 3425 (void) buf_hash_insert(nhdr, NULL); 3426 3427 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 3428 3429 mutex_enter(&dev->l2ad_mtx); 3430 3431 /* 3432 * We must place the realloc'ed header back into the list at 3433 * the same spot. Otherwise, if it's placed earlier in the list, 3434 * l2arc_write_buffers() could find it during the function's 3435 * write phase, and try to write it out to the l2arc. 3436 */ 3437 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 3438 list_remove(&dev->l2ad_buflist, hdr); 3439 3440 mutex_exit(&dev->l2ad_mtx); 3441 3442 /* 3443 * Since we're using the pointer address as the tag when 3444 * incrementing and decrementing the l2ad_alloc refcount, we 3445 * must remove the old pointer (that we're about to destroy) and 3446 * add the new pointer to the refcount. Otherwise we'd remove 3447 * the wrong pointer address when calling arc_hdr_destroy() later. 3448 */ 3449 3450 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 3451 arc_hdr_size(hdr), hdr); 3452 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 3453 arc_hdr_size(nhdr), nhdr); 3454 3455 buf_discard_identity(hdr); 3456 kmem_cache_free(old, hdr); 3457 3458 return (nhdr); 3459 } 3460 3461 /* 3462 * This function allows an L1 header to be reallocated as a crypt 3463 * header and vice versa. If we are going to a crypt header, the 3464 * new fields will be zeroed out. 3465 */ 3466 static arc_buf_hdr_t * 3467 arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt) 3468 { 3469 arc_buf_hdr_t *nhdr; 3470 arc_buf_t *buf; 3471 kmem_cache_t *ncache, *ocache; 3472 3473 /* 3474 * This function requires that hdr is in the arc_anon state. 3475 * Therefore it won't have any L2ARC data for us to worry 3476 * about copying. 3477 */ 3478 ASSERT(HDR_HAS_L1HDR(hdr)); 3479 ASSERT(!HDR_HAS_L2HDR(hdr)); 3480 ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt); 3481 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3482 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3483 ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node)); 3484 ASSERT3P(hdr->b_hash_next, ==, NULL); 3485 3486 if (need_crypt) { 3487 ncache = hdr_full_crypt_cache; 3488 ocache = hdr_full_cache; 3489 } else { 3490 ncache = hdr_full_cache; 3491 ocache = hdr_full_crypt_cache; 3492 } 3493 3494 nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE); 3495 3496 /* 3497 * Copy all members that aren't locks or condvars to the new header. 3498 * No lists are pointing to us (as we asserted above), so we don't 3499 * need to worry about the list nodes. 3500 */ 3501 nhdr->b_dva = hdr->b_dva; 3502 nhdr->b_birth = hdr->b_birth; 3503 nhdr->b_type = hdr->b_type; 3504 nhdr->b_flags = hdr->b_flags; 3505 nhdr->b_psize = hdr->b_psize; 3506 nhdr->b_lsize = hdr->b_lsize; 3507 nhdr->b_spa = hdr->b_spa; 3508 nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum; 3509 nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt; 3510 nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap; 3511 nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state; 3512 nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access; 3513 nhdr->b_l1hdr.b_mru_hits = hdr->b_l1hdr.b_mru_hits; 3514 nhdr->b_l1hdr.b_mru_ghost_hits = hdr->b_l1hdr.b_mru_ghost_hits; 3515 nhdr->b_l1hdr.b_mfu_hits = hdr->b_l1hdr.b_mfu_hits; 3516 nhdr->b_l1hdr.b_mfu_ghost_hits = hdr->b_l1hdr.b_mfu_ghost_hits; 3517 nhdr->b_l1hdr.b_l2_hits = hdr->b_l1hdr.b_l2_hits; 3518 nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb; 3519 nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd; 3520 3521 /* 3522 * This zfs_refcount_add() exists only to ensure that the individual 3523 * arc buffers always point to a header that is referenced, avoiding 3524 * a small race condition that could trigger ASSERTs. 3525 */ 3526 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG); 3527 nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf; 3528 for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) { 3529 mutex_enter(&buf->b_evict_lock); 3530 buf->b_hdr = nhdr; 3531 mutex_exit(&buf->b_evict_lock); 3532 } 3533 3534 zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt); 3535 (void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG); 3536 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3537 3538 if (need_crypt) { 3539 arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED); 3540 } else { 3541 arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED); 3542 } 3543 3544 /* unset all members of the original hdr */ 3545 bzero(&hdr->b_dva, sizeof (dva_t)); 3546 hdr->b_birth = 0; 3547 hdr->b_type = ARC_BUFC_INVALID; 3548 hdr->b_flags = 0; 3549 hdr->b_psize = 0; 3550 hdr->b_lsize = 0; 3551 hdr->b_spa = 0; 3552 hdr->b_l1hdr.b_freeze_cksum = NULL; 3553 hdr->b_l1hdr.b_buf = NULL; 3554 hdr->b_l1hdr.b_bufcnt = 0; 3555 hdr->b_l1hdr.b_byteswap = 0; 3556 hdr->b_l1hdr.b_state = NULL; 3557 hdr->b_l1hdr.b_arc_access = 0; 3558 hdr->b_l1hdr.b_mru_hits = 0; 3559 hdr->b_l1hdr.b_mru_ghost_hits = 0; 3560 hdr->b_l1hdr.b_mfu_hits = 0; 3561 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 3562 hdr->b_l1hdr.b_l2_hits = 0; 3563 hdr->b_l1hdr.b_acb = NULL; 3564 hdr->b_l1hdr.b_pabd = NULL; 3565 3566 if (ocache == hdr_full_crypt_cache) { 3567 ASSERT(!HDR_HAS_RABD(hdr)); 3568 hdr->b_crypt_hdr.b_ot = DMU_OT_NONE; 3569 hdr->b_crypt_hdr.b_ebufcnt = 0; 3570 hdr->b_crypt_hdr.b_dsobj = 0; 3571 bzero(hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3572 bzero(hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3573 bzero(hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3574 } 3575 3576 buf_discard_identity(hdr); 3577 kmem_cache_free(ocache, hdr); 3578 3579 return (nhdr); 3580 } 3581 3582 /* 3583 * This function is used by the send / receive code to convert a newly 3584 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It 3585 * is also used to allow the root objset block to be updated without altering 3586 * its embedded MACs. Both block types will always be uncompressed so we do not 3587 * have to worry about compression type or psize. 3588 */ 3589 void 3590 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder, 3591 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv, 3592 const uint8_t *mac) 3593 { 3594 arc_buf_hdr_t *hdr = buf->b_hdr; 3595 3596 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET); 3597 ASSERT(HDR_HAS_L1HDR(hdr)); 3598 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3599 3600 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED); 3601 if (!HDR_PROTECTED(hdr)) 3602 hdr = arc_hdr_realloc_crypt(hdr, B_TRUE); 3603 hdr->b_crypt_hdr.b_dsobj = dsobj; 3604 hdr->b_crypt_hdr.b_ot = ot; 3605 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3606 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3607 if (!arc_hdr_has_uncompressed_buf(hdr)) 3608 arc_cksum_free(hdr); 3609 3610 if (salt != NULL) 3611 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3612 if (iv != NULL) 3613 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3614 if (mac != NULL) 3615 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3616 } 3617 3618 /* 3619 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. 3620 * The buf is returned thawed since we expect the consumer to modify it. 3621 */ 3622 arc_buf_t * 3623 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size) 3624 { 3625 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, 3626 B_FALSE, ZIO_COMPRESS_OFF, 0, type, B_FALSE); 3627 3628 arc_buf_t *buf = NULL; 3629 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE, 3630 B_FALSE, B_FALSE, &buf)); 3631 arc_buf_thaw(buf); 3632 3633 return (buf); 3634 } 3635 3636 /* 3637 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this 3638 * for bufs containing metadata. 3639 */ 3640 arc_buf_t * 3641 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize, 3642 enum zio_compress compression_type, uint8_t complevel) 3643 { 3644 ASSERT3U(lsize, >, 0); 3645 ASSERT3U(lsize, >=, psize); 3646 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF); 3647 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3648 3649 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 3650 B_FALSE, compression_type, complevel, ARC_BUFC_DATA, B_FALSE); 3651 3652 arc_buf_t *buf = NULL; 3653 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, 3654 B_TRUE, B_FALSE, B_FALSE, &buf)); 3655 arc_buf_thaw(buf); 3656 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3657 3658 if (!arc_buf_is_shared(buf)) { 3659 /* 3660 * To ensure that the hdr has the correct data in it if we call 3661 * arc_untransform() on this buf before it's been written to 3662 * disk, it's easiest if we just set up sharing between the 3663 * buf and the hdr. 3664 */ 3665 arc_hdr_free_abd(hdr, B_FALSE); 3666 arc_share_buf(hdr, buf); 3667 } 3668 3669 return (buf); 3670 } 3671 3672 arc_buf_t * 3673 arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder, 3674 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 3675 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 3676 enum zio_compress compression_type, uint8_t complevel) 3677 { 3678 arc_buf_hdr_t *hdr; 3679 arc_buf_t *buf; 3680 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ? 3681 ARC_BUFC_METADATA : ARC_BUFC_DATA; 3682 3683 ASSERT3U(lsize, >, 0); 3684 ASSERT3U(lsize, >=, psize); 3685 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF); 3686 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3687 3688 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE, 3689 compression_type, complevel, type, B_TRUE); 3690 3691 hdr->b_crypt_hdr.b_dsobj = dsobj; 3692 hdr->b_crypt_hdr.b_ot = ot; 3693 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3694 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3695 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3696 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3697 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3698 3699 /* 3700 * This buffer will be considered encrypted even if the ot is not an 3701 * encrypted type. It will become authenticated instead in 3702 * arc_write_ready(). 3703 */ 3704 buf = NULL; 3705 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE, 3706 B_FALSE, B_FALSE, &buf)); 3707 arc_buf_thaw(buf); 3708 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3709 3710 return (buf); 3711 } 3712 3713 static void 3714 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 3715 boolean_t state_only) 3716 { 3717 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3718 l2arc_dev_t *dev = l2hdr->b_dev; 3719 uint64_t lsize = HDR_GET_LSIZE(hdr); 3720 uint64_t psize = HDR_GET_PSIZE(hdr); 3721 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3722 arc_buf_contents_t type = hdr->b_type; 3723 int64_t lsize_s; 3724 int64_t psize_s; 3725 int64_t asize_s; 3726 3727 if (incr) { 3728 lsize_s = lsize; 3729 psize_s = psize; 3730 asize_s = asize; 3731 } else { 3732 lsize_s = -lsize; 3733 psize_s = -psize; 3734 asize_s = -asize; 3735 } 3736 3737 /* If the buffer is a prefetch, count it as such. */ 3738 if (HDR_PREFETCH(hdr)) { 3739 ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s); 3740 } else { 3741 /* 3742 * We use the value stored in the L2 header upon initial 3743 * caching in L2ARC. This value will be updated in case 3744 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC 3745 * metadata (log entry) cannot currently be updated. Having 3746 * the ARC state in the L2 header solves the problem of a 3747 * possibly absent L1 header (apparent in buffers restored 3748 * from persistent L2ARC). 3749 */ 3750 switch (hdr->b_l2hdr.b_arcs_state) { 3751 case ARC_STATE_MRU_GHOST: 3752 case ARC_STATE_MRU: 3753 ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s); 3754 break; 3755 case ARC_STATE_MFU_GHOST: 3756 case ARC_STATE_MFU: 3757 ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s); 3758 break; 3759 default: 3760 break; 3761 } 3762 } 3763 3764 if (state_only) 3765 return; 3766 3767 ARCSTAT_INCR(arcstat_l2_psize, psize_s); 3768 ARCSTAT_INCR(arcstat_l2_lsize, lsize_s); 3769 3770 switch (type) { 3771 case ARC_BUFC_DATA: 3772 ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s); 3773 break; 3774 case ARC_BUFC_METADATA: 3775 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s); 3776 break; 3777 default: 3778 break; 3779 } 3780 } 3781 3782 3783 static void 3784 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 3785 { 3786 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3787 l2arc_dev_t *dev = l2hdr->b_dev; 3788 uint64_t psize = HDR_GET_PSIZE(hdr); 3789 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3790 3791 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 3792 ASSERT(HDR_HAS_L2HDR(hdr)); 3793 3794 list_remove(&dev->l2ad_buflist, hdr); 3795 3796 l2arc_hdr_arcstats_decrement(hdr); 3797 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); 3798 3799 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), 3800 hdr); 3801 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 3802 } 3803 3804 static void 3805 arc_hdr_destroy(arc_buf_hdr_t *hdr) 3806 { 3807 if (HDR_HAS_L1HDR(hdr)) { 3808 ASSERT(hdr->b_l1hdr.b_buf == NULL || 3809 hdr->b_l1hdr.b_bufcnt > 0); 3810 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3811 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3812 } 3813 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3814 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 3815 3816 if (HDR_HAS_L2HDR(hdr)) { 3817 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3818 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 3819 3820 if (!buflist_held) 3821 mutex_enter(&dev->l2ad_mtx); 3822 3823 /* 3824 * Even though we checked this conditional above, we 3825 * need to check this again now that we have the 3826 * l2ad_mtx. This is because we could be racing with 3827 * another thread calling l2arc_evict() which might have 3828 * destroyed this header's L2 portion as we were waiting 3829 * to acquire the l2ad_mtx. If that happens, we don't 3830 * want to re-destroy the header's L2 portion. 3831 */ 3832 if (HDR_HAS_L2HDR(hdr)) 3833 arc_hdr_l2hdr_destroy(hdr); 3834 3835 if (!buflist_held) 3836 mutex_exit(&dev->l2ad_mtx); 3837 } 3838 3839 /* 3840 * The header's identify can only be safely discarded once it is no 3841 * longer discoverable. This requires removing it from the hash table 3842 * and the l2arc header list. After this point the hash lock can not 3843 * be used to protect the header. 3844 */ 3845 if (!HDR_EMPTY(hdr)) 3846 buf_discard_identity(hdr); 3847 3848 if (HDR_HAS_L1HDR(hdr)) { 3849 arc_cksum_free(hdr); 3850 3851 while (hdr->b_l1hdr.b_buf != NULL) 3852 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf); 3853 3854 if (hdr->b_l1hdr.b_pabd != NULL) 3855 arc_hdr_free_abd(hdr, B_FALSE); 3856 3857 if (HDR_HAS_RABD(hdr)) 3858 arc_hdr_free_abd(hdr, B_TRUE); 3859 } 3860 3861 ASSERT3P(hdr->b_hash_next, ==, NULL); 3862 if (HDR_HAS_L1HDR(hdr)) { 3863 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3864 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 3865 3866 if (!HDR_PROTECTED(hdr)) { 3867 kmem_cache_free(hdr_full_cache, hdr); 3868 } else { 3869 kmem_cache_free(hdr_full_crypt_cache, hdr); 3870 } 3871 } else { 3872 kmem_cache_free(hdr_l2only_cache, hdr); 3873 } 3874 } 3875 3876 void 3877 arc_buf_destroy(arc_buf_t *buf, void* tag) 3878 { 3879 arc_buf_hdr_t *hdr = buf->b_hdr; 3880 3881 if (hdr->b_l1hdr.b_state == arc_anon) { 3882 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 3883 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3884 VERIFY0(remove_reference(hdr, NULL, tag)); 3885 arc_hdr_destroy(hdr); 3886 return; 3887 } 3888 3889 kmutex_t *hash_lock = HDR_LOCK(hdr); 3890 mutex_enter(hash_lock); 3891 3892 ASSERT3P(hdr, ==, buf->b_hdr); 3893 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3894 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3895 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); 3896 ASSERT3P(buf->b_data, !=, NULL); 3897 3898 (void) remove_reference(hdr, hash_lock, tag); 3899 arc_buf_destroy_impl(buf); 3900 mutex_exit(hash_lock); 3901 } 3902 3903 /* 3904 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 3905 * state of the header is dependent on its state prior to entering this 3906 * function. The following transitions are possible: 3907 * 3908 * - arc_mru -> arc_mru_ghost 3909 * - arc_mfu -> arc_mfu_ghost 3910 * - arc_mru_ghost -> arc_l2c_only 3911 * - arc_mru_ghost -> deleted 3912 * - arc_mfu_ghost -> arc_l2c_only 3913 * - arc_mfu_ghost -> deleted 3914 */ 3915 static int64_t 3916 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 3917 { 3918 arc_state_t *evicted_state, *state; 3919 int64_t bytes_evicted = 0; 3920 int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ? 3921 arc_min_prescient_prefetch_ms : arc_min_prefetch_ms; 3922 3923 ASSERT(MUTEX_HELD(hash_lock)); 3924 ASSERT(HDR_HAS_L1HDR(hdr)); 3925 3926 state = hdr->b_l1hdr.b_state; 3927 if (GHOST_STATE(state)) { 3928 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3929 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3930 3931 /* 3932 * l2arc_write_buffers() relies on a header's L1 portion 3933 * (i.e. its b_pabd field) during it's write phase. 3934 * Thus, we cannot push a header onto the arc_l2c_only 3935 * state (removing its L1 piece) until the header is 3936 * done being written to the l2arc. 3937 */ 3938 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 3939 ARCSTAT_BUMP(arcstat_evict_l2_skip); 3940 return (bytes_evicted); 3941 } 3942 3943 ARCSTAT_BUMP(arcstat_deleted); 3944 bytes_evicted += HDR_GET_LSIZE(hdr); 3945 3946 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 3947 3948 if (HDR_HAS_L2HDR(hdr)) { 3949 ASSERT(hdr->b_l1hdr.b_pabd == NULL); 3950 ASSERT(!HDR_HAS_RABD(hdr)); 3951 /* 3952 * This buffer is cached on the 2nd Level ARC; 3953 * don't destroy the header. 3954 */ 3955 arc_change_state(arc_l2c_only, hdr, hash_lock); 3956 /* 3957 * dropping from L1+L2 cached to L2-only, 3958 * realloc to remove the L1 header. 3959 */ 3960 hdr = arc_hdr_realloc(hdr, hdr_full_cache, 3961 hdr_l2only_cache); 3962 } else { 3963 arc_change_state(arc_anon, hdr, hash_lock); 3964 arc_hdr_destroy(hdr); 3965 } 3966 return (bytes_evicted); 3967 } 3968 3969 ASSERT(state == arc_mru || state == arc_mfu); 3970 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3971 3972 /* prefetch buffers have a minimum lifespan */ 3973 if (HDR_IO_IN_PROGRESS(hdr) || 3974 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 3975 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < 3976 MSEC_TO_TICK(min_lifetime))) { 3977 ARCSTAT_BUMP(arcstat_evict_skip); 3978 return (bytes_evicted); 3979 } 3980 3981 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3982 while (hdr->b_l1hdr.b_buf) { 3983 arc_buf_t *buf = hdr->b_l1hdr.b_buf; 3984 if (!mutex_tryenter(&buf->b_evict_lock)) { 3985 ARCSTAT_BUMP(arcstat_mutex_miss); 3986 break; 3987 } 3988 if (buf->b_data != NULL) 3989 bytes_evicted += HDR_GET_LSIZE(hdr); 3990 mutex_exit(&buf->b_evict_lock); 3991 arc_buf_destroy_impl(buf); 3992 } 3993 3994 if (HDR_HAS_L2HDR(hdr)) { 3995 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); 3996 } else { 3997 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 3998 ARCSTAT_INCR(arcstat_evict_l2_eligible, 3999 HDR_GET_LSIZE(hdr)); 4000 4001 switch (state->arcs_state) { 4002 case ARC_STATE_MRU: 4003 ARCSTAT_INCR( 4004 arcstat_evict_l2_eligible_mru, 4005 HDR_GET_LSIZE(hdr)); 4006 break; 4007 case ARC_STATE_MFU: 4008 ARCSTAT_INCR( 4009 arcstat_evict_l2_eligible_mfu, 4010 HDR_GET_LSIZE(hdr)); 4011 break; 4012 default: 4013 break; 4014 } 4015 } else { 4016 ARCSTAT_INCR(arcstat_evict_l2_ineligible, 4017 HDR_GET_LSIZE(hdr)); 4018 } 4019 } 4020 4021 if (hdr->b_l1hdr.b_bufcnt == 0) { 4022 arc_cksum_free(hdr); 4023 4024 bytes_evicted += arc_hdr_size(hdr); 4025 4026 /* 4027 * If this hdr is being evicted and has a compressed 4028 * buffer then we discard it here before we change states. 4029 * This ensures that the accounting is updated correctly 4030 * in arc_free_data_impl(). 4031 */ 4032 if (hdr->b_l1hdr.b_pabd != NULL) 4033 arc_hdr_free_abd(hdr, B_FALSE); 4034 4035 if (HDR_HAS_RABD(hdr)) 4036 arc_hdr_free_abd(hdr, B_TRUE); 4037 4038 arc_change_state(evicted_state, hdr, hash_lock); 4039 ASSERT(HDR_IN_HASH_TABLE(hdr)); 4040 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 4041 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 4042 } 4043 4044 return (bytes_evicted); 4045 } 4046 4047 static void 4048 arc_set_need_free(void) 4049 { 4050 ASSERT(MUTEX_HELD(&arc_evict_lock)); 4051 int64_t remaining = arc_free_memory() - arc_sys_free / 2; 4052 arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters); 4053 if (aw == NULL) { 4054 arc_need_free = MAX(-remaining, 0); 4055 } else { 4056 arc_need_free = 4057 MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count)); 4058 } 4059 } 4060 4061 static uint64_t 4062 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 4063 uint64_t spa, int64_t bytes) 4064 { 4065 multilist_sublist_t *mls; 4066 uint64_t bytes_evicted = 0; 4067 arc_buf_hdr_t *hdr; 4068 kmutex_t *hash_lock; 4069 int evict_count = 0; 4070 4071 ASSERT3P(marker, !=, NULL); 4072 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 4073 4074 mls = multilist_sublist_lock(ml, idx); 4075 4076 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL; 4077 hdr = multilist_sublist_prev(mls, marker)) { 4078 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) || 4079 (evict_count >= zfs_arc_evict_batch_limit)) 4080 break; 4081 4082 /* 4083 * To keep our iteration location, move the marker 4084 * forward. Since we're not holding hdr's hash lock, we 4085 * must be very careful and not remove 'hdr' from the 4086 * sublist. Otherwise, other consumers might mistake the 4087 * 'hdr' as not being on a sublist when they call the 4088 * multilist_link_active() function (they all rely on 4089 * the hash lock protecting concurrent insertions and 4090 * removals). multilist_sublist_move_forward() was 4091 * specifically implemented to ensure this is the case 4092 * (only 'marker' will be removed and re-inserted). 4093 */ 4094 multilist_sublist_move_forward(mls, marker); 4095 4096 /* 4097 * The only case where the b_spa field should ever be 4098 * zero, is the marker headers inserted by 4099 * arc_evict_state(). It's possible for multiple threads 4100 * to be calling arc_evict_state() concurrently (e.g. 4101 * dsl_pool_close() and zio_inject_fault()), so we must 4102 * skip any markers we see from these other threads. 4103 */ 4104 if (hdr->b_spa == 0) 4105 continue; 4106 4107 /* we're only interested in evicting buffers of a certain spa */ 4108 if (spa != 0 && hdr->b_spa != spa) { 4109 ARCSTAT_BUMP(arcstat_evict_skip); 4110 continue; 4111 } 4112 4113 hash_lock = HDR_LOCK(hdr); 4114 4115 /* 4116 * We aren't calling this function from any code path 4117 * that would already be holding a hash lock, so we're 4118 * asserting on this assumption to be defensive in case 4119 * this ever changes. Without this check, it would be 4120 * possible to incorrectly increment arcstat_mutex_miss 4121 * below (e.g. if the code changed such that we called 4122 * this function with a hash lock held). 4123 */ 4124 ASSERT(!MUTEX_HELD(hash_lock)); 4125 4126 if (mutex_tryenter(hash_lock)) { 4127 uint64_t evicted = arc_evict_hdr(hdr, hash_lock); 4128 mutex_exit(hash_lock); 4129 4130 bytes_evicted += evicted; 4131 4132 /* 4133 * If evicted is zero, arc_evict_hdr() must have 4134 * decided to skip this header, don't increment 4135 * evict_count in this case. 4136 */ 4137 if (evicted != 0) 4138 evict_count++; 4139 4140 } else { 4141 ARCSTAT_BUMP(arcstat_mutex_miss); 4142 } 4143 } 4144 4145 multilist_sublist_unlock(mls); 4146 4147 /* 4148 * Increment the count of evicted bytes, and wake up any threads that 4149 * are waiting for the count to reach this value. Since the list is 4150 * ordered by ascending aew_count, we pop off the beginning of the 4151 * list until we reach the end, or a waiter that's past the current 4152 * "count". Doing this outside the loop reduces the number of times 4153 * we need to acquire the global arc_evict_lock. 4154 * 4155 * Only wake when there's sufficient free memory in the system 4156 * (specifically, arc_sys_free/2, which by default is a bit more than 4157 * 1/64th of RAM). See the comments in arc_wait_for_eviction(). 4158 */ 4159 mutex_enter(&arc_evict_lock); 4160 arc_evict_count += bytes_evicted; 4161 4162 if (arc_free_memory() > arc_sys_free / 2) { 4163 arc_evict_waiter_t *aw; 4164 while ((aw = list_head(&arc_evict_waiters)) != NULL && 4165 aw->aew_count <= arc_evict_count) { 4166 list_remove(&arc_evict_waiters, aw); 4167 cv_broadcast(&aw->aew_cv); 4168 } 4169 } 4170 arc_set_need_free(); 4171 mutex_exit(&arc_evict_lock); 4172 4173 /* 4174 * If the ARC size is reduced from arc_c_max to arc_c_min (especially 4175 * if the average cached block is small), eviction can be on-CPU for 4176 * many seconds. To ensure that other threads that may be bound to 4177 * this CPU are able to make progress, make a voluntary preemption 4178 * call here. 4179 */ 4180 cond_resched(); 4181 4182 return (bytes_evicted); 4183 } 4184 4185 /* 4186 * Evict buffers from the given arc state, until we've removed the 4187 * specified number of bytes. Move the removed buffers to the 4188 * appropriate evict state. 4189 * 4190 * This function makes a "best effort". It skips over any buffers 4191 * it can't get a hash_lock on, and so, may not catch all candidates. 4192 * It may also return without evicting as much space as requested. 4193 * 4194 * If bytes is specified using the special value ARC_EVICT_ALL, this 4195 * will evict all available (i.e. unlocked and evictable) buffers from 4196 * the given arc state; which is used by arc_flush(). 4197 */ 4198 static uint64_t 4199 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes, 4200 arc_buf_contents_t type) 4201 { 4202 uint64_t total_evicted = 0; 4203 multilist_t *ml = &state->arcs_list[type]; 4204 int num_sublists; 4205 arc_buf_hdr_t **markers; 4206 4207 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 4208 4209 num_sublists = multilist_get_num_sublists(ml); 4210 4211 /* 4212 * If we've tried to evict from each sublist, made some 4213 * progress, but still have not hit the target number of bytes 4214 * to evict, we want to keep trying. The markers allow us to 4215 * pick up where we left off for each individual sublist, rather 4216 * than starting from the tail each time. 4217 */ 4218 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP); 4219 for (int i = 0; i < num_sublists; i++) { 4220 multilist_sublist_t *mls; 4221 4222 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 4223 4224 /* 4225 * A b_spa of 0 is used to indicate that this header is 4226 * a marker. This fact is used in arc_evict_type() and 4227 * arc_evict_state_impl(). 4228 */ 4229 markers[i]->b_spa = 0; 4230 4231 mls = multilist_sublist_lock(ml, i); 4232 multilist_sublist_insert_tail(mls, markers[i]); 4233 multilist_sublist_unlock(mls); 4234 } 4235 4236 /* 4237 * While we haven't hit our target number of bytes to evict, or 4238 * we're evicting all available buffers. 4239 */ 4240 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) { 4241 int sublist_idx = multilist_get_random_index(ml); 4242 uint64_t scan_evicted = 0; 4243 4244 /* 4245 * Try to reduce pinned dnodes with a floor of arc_dnode_limit. 4246 * Request that 10% of the LRUs be scanned by the superblock 4247 * shrinker. 4248 */ 4249 if (type == ARC_BUFC_DATA && aggsum_compare(&astat_dnode_size, 4250 arc_dnode_size_limit) > 0) { 4251 arc_prune_async((aggsum_upper_bound(&astat_dnode_size) - 4252 arc_dnode_size_limit) / sizeof (dnode_t) / 4253 zfs_arc_dnode_reduce_percent); 4254 } 4255 4256 /* 4257 * Start eviction using a randomly selected sublist, 4258 * this is to try and evenly balance eviction across all 4259 * sublists. Always starting at the same sublist 4260 * (e.g. index 0) would cause evictions to favor certain 4261 * sublists over others. 4262 */ 4263 for (int i = 0; i < num_sublists; i++) { 4264 uint64_t bytes_remaining; 4265 uint64_t bytes_evicted; 4266 4267 if (bytes == ARC_EVICT_ALL) 4268 bytes_remaining = ARC_EVICT_ALL; 4269 else if (total_evicted < bytes) 4270 bytes_remaining = bytes - total_evicted; 4271 else 4272 break; 4273 4274 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 4275 markers[sublist_idx], spa, bytes_remaining); 4276 4277 scan_evicted += bytes_evicted; 4278 total_evicted += bytes_evicted; 4279 4280 /* we've reached the end, wrap to the beginning */ 4281 if (++sublist_idx >= num_sublists) 4282 sublist_idx = 0; 4283 } 4284 4285 /* 4286 * If we didn't evict anything during this scan, we have 4287 * no reason to believe we'll evict more during another 4288 * scan, so break the loop. 4289 */ 4290 if (scan_evicted == 0) { 4291 /* This isn't possible, let's make that obvious */ 4292 ASSERT3S(bytes, !=, 0); 4293 4294 /* 4295 * When bytes is ARC_EVICT_ALL, the only way to 4296 * break the loop is when scan_evicted is zero. 4297 * In that case, we actually have evicted enough, 4298 * so we don't want to increment the kstat. 4299 */ 4300 if (bytes != ARC_EVICT_ALL) { 4301 ASSERT3S(total_evicted, <, bytes); 4302 ARCSTAT_BUMP(arcstat_evict_not_enough); 4303 } 4304 4305 break; 4306 } 4307 } 4308 4309 for (int i = 0; i < num_sublists; i++) { 4310 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 4311 multilist_sublist_remove(mls, markers[i]); 4312 multilist_sublist_unlock(mls); 4313 4314 kmem_cache_free(hdr_full_cache, markers[i]); 4315 } 4316 kmem_free(markers, sizeof (*markers) * num_sublists); 4317 4318 return (total_evicted); 4319 } 4320 4321 /* 4322 * Flush all "evictable" data of the given type from the arc state 4323 * specified. This will not evict any "active" buffers (i.e. referenced). 4324 * 4325 * When 'retry' is set to B_FALSE, the function will make a single pass 4326 * over the state and evict any buffers that it can. Since it doesn't 4327 * continually retry the eviction, it might end up leaving some buffers 4328 * in the ARC due to lock misses. 4329 * 4330 * When 'retry' is set to B_TRUE, the function will continually retry the 4331 * eviction until *all* evictable buffers have been removed from the 4332 * state. As a result, if concurrent insertions into the state are 4333 * allowed (e.g. if the ARC isn't shutting down), this function might 4334 * wind up in an infinite loop, continually trying to evict buffers. 4335 */ 4336 static uint64_t 4337 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 4338 boolean_t retry) 4339 { 4340 uint64_t evicted = 0; 4341 4342 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) { 4343 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type); 4344 4345 if (!retry) 4346 break; 4347 } 4348 4349 return (evicted); 4350 } 4351 4352 /* 4353 * Evict the specified number of bytes from the state specified, 4354 * restricting eviction to the spa and type given. This function 4355 * prevents us from trying to evict more from a state's list than 4356 * is "evictable", and to skip evicting altogether when passed a 4357 * negative value for "bytes". In contrast, arc_evict_state() will 4358 * evict everything it can, when passed a negative value for "bytes". 4359 */ 4360 static uint64_t 4361 arc_evict_impl(arc_state_t *state, uint64_t spa, int64_t bytes, 4362 arc_buf_contents_t type) 4363 { 4364 int64_t delta; 4365 4366 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) { 4367 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]), 4368 bytes); 4369 return (arc_evict_state(state, spa, delta, type)); 4370 } 4371 4372 return (0); 4373 } 4374 4375 /* 4376 * The goal of this function is to evict enough meta data buffers from the 4377 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly 4378 * more complicated than it appears because it is common for data buffers 4379 * to have holds on meta data buffers. In addition, dnode meta data buffers 4380 * will be held by the dnodes in the block preventing them from being freed. 4381 * This means we can't simply traverse the ARC and expect to always find 4382 * enough unheld meta data buffer to release. 4383 * 4384 * Therefore, this function has been updated to make alternating passes 4385 * over the ARC releasing data buffers and then newly unheld meta data 4386 * buffers. This ensures forward progress is maintained and meta_used 4387 * will decrease. Normally this is sufficient, but if required the ARC 4388 * will call the registered prune callbacks causing dentry and inodes to 4389 * be dropped from the VFS cache. This will make dnode meta data buffers 4390 * available for reclaim. 4391 */ 4392 static uint64_t 4393 arc_evict_meta_balanced(uint64_t meta_used) 4394 { 4395 int64_t delta, prune = 0, adjustmnt; 4396 uint64_t total_evicted = 0; 4397 arc_buf_contents_t type = ARC_BUFC_DATA; 4398 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0); 4399 4400 restart: 4401 /* 4402 * This slightly differs than the way we evict from the mru in 4403 * arc_evict because we don't have a "target" value (i.e. no 4404 * "meta" arc_p). As a result, I think we can completely 4405 * cannibalize the metadata in the MRU before we evict the 4406 * metadata from the MFU. I think we probably need to implement a 4407 * "metadata arc_p" value to do this properly. 4408 */ 4409 adjustmnt = meta_used - arc_meta_limit; 4410 4411 if (adjustmnt > 0 && 4412 zfs_refcount_count(&arc_mru->arcs_esize[type]) > 0) { 4413 delta = MIN(zfs_refcount_count(&arc_mru->arcs_esize[type]), 4414 adjustmnt); 4415 total_evicted += arc_evict_impl(arc_mru, 0, delta, type); 4416 adjustmnt -= delta; 4417 } 4418 4419 /* 4420 * We can't afford to recalculate adjustmnt here. If we do, 4421 * new metadata buffers can sneak into the MRU or ANON lists, 4422 * thus penalize the MFU metadata. Although the fudge factor is 4423 * small, it has been empirically shown to be significant for 4424 * certain workloads (e.g. creating many empty directories). As 4425 * such, we use the original calculation for adjustmnt, and 4426 * simply decrement the amount of data evicted from the MRU. 4427 */ 4428 4429 if (adjustmnt > 0 && 4430 zfs_refcount_count(&arc_mfu->arcs_esize[type]) > 0) { 4431 delta = MIN(zfs_refcount_count(&arc_mfu->arcs_esize[type]), 4432 adjustmnt); 4433 total_evicted += arc_evict_impl(arc_mfu, 0, delta, type); 4434 } 4435 4436 adjustmnt = meta_used - arc_meta_limit; 4437 4438 if (adjustmnt > 0 && 4439 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) { 4440 delta = MIN(adjustmnt, 4441 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type])); 4442 total_evicted += arc_evict_impl(arc_mru_ghost, 0, delta, type); 4443 adjustmnt -= delta; 4444 } 4445 4446 if (adjustmnt > 0 && 4447 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) { 4448 delta = MIN(adjustmnt, 4449 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type])); 4450 total_evicted += arc_evict_impl(arc_mfu_ghost, 0, delta, type); 4451 } 4452 4453 /* 4454 * If after attempting to make the requested adjustment to the ARC 4455 * the meta limit is still being exceeded then request that the 4456 * higher layers drop some cached objects which have holds on ARC 4457 * meta buffers. Requests to the upper layers will be made with 4458 * increasingly large scan sizes until the ARC is below the limit. 4459 */ 4460 if (meta_used > arc_meta_limit) { 4461 if (type == ARC_BUFC_DATA) { 4462 type = ARC_BUFC_METADATA; 4463 } else { 4464 type = ARC_BUFC_DATA; 4465 4466 if (zfs_arc_meta_prune) { 4467 prune += zfs_arc_meta_prune; 4468 arc_prune_async(prune); 4469 } 4470 } 4471 4472 if (restarts > 0) { 4473 restarts--; 4474 goto restart; 4475 } 4476 } 4477 return (total_evicted); 4478 } 4479 4480 /* 4481 * Evict metadata buffers from the cache, such that arc_meta_used is 4482 * capped by the arc_meta_limit tunable. 4483 */ 4484 static uint64_t 4485 arc_evict_meta_only(uint64_t meta_used) 4486 { 4487 uint64_t total_evicted = 0; 4488 int64_t target; 4489 4490 /* 4491 * If we're over the meta limit, we want to evict enough 4492 * metadata to get back under the meta limit. We don't want to 4493 * evict so much that we drop the MRU below arc_p, though. If 4494 * we're over the meta limit more than we're over arc_p, we 4495 * evict some from the MRU here, and some from the MFU below. 4496 */ 4497 target = MIN((int64_t)(meta_used - arc_meta_limit), 4498 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4499 zfs_refcount_count(&arc_mru->arcs_size) - arc_p)); 4500 4501 total_evicted += arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4502 4503 /* 4504 * Similar to the above, we want to evict enough bytes to get us 4505 * below the meta limit, but not so much as to drop us below the 4506 * space allotted to the MFU (which is defined as arc_c - arc_p). 4507 */ 4508 target = MIN((int64_t)(meta_used - arc_meta_limit), 4509 (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) - 4510 (arc_c - arc_p))); 4511 4512 total_evicted += arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4513 4514 return (total_evicted); 4515 } 4516 4517 static uint64_t 4518 arc_evict_meta(uint64_t meta_used) 4519 { 4520 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY) 4521 return (arc_evict_meta_only(meta_used)); 4522 else 4523 return (arc_evict_meta_balanced(meta_used)); 4524 } 4525 4526 /* 4527 * Return the type of the oldest buffer in the given arc state 4528 * 4529 * This function will select a random sublist of type ARC_BUFC_DATA and 4530 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist 4531 * is compared, and the type which contains the "older" buffer will be 4532 * returned. 4533 */ 4534 static arc_buf_contents_t 4535 arc_evict_type(arc_state_t *state) 4536 { 4537 multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA]; 4538 multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA]; 4539 int data_idx = multilist_get_random_index(data_ml); 4540 int meta_idx = multilist_get_random_index(meta_ml); 4541 multilist_sublist_t *data_mls; 4542 multilist_sublist_t *meta_mls; 4543 arc_buf_contents_t type; 4544 arc_buf_hdr_t *data_hdr; 4545 arc_buf_hdr_t *meta_hdr; 4546 4547 /* 4548 * We keep the sublist lock until we're finished, to prevent 4549 * the headers from being destroyed via arc_evict_state(). 4550 */ 4551 data_mls = multilist_sublist_lock(data_ml, data_idx); 4552 meta_mls = multilist_sublist_lock(meta_ml, meta_idx); 4553 4554 /* 4555 * These two loops are to ensure we skip any markers that 4556 * might be at the tail of the lists due to arc_evict_state(). 4557 */ 4558 4559 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL; 4560 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) { 4561 if (data_hdr->b_spa != 0) 4562 break; 4563 } 4564 4565 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL; 4566 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) { 4567 if (meta_hdr->b_spa != 0) 4568 break; 4569 } 4570 4571 if (data_hdr == NULL && meta_hdr == NULL) { 4572 type = ARC_BUFC_DATA; 4573 } else if (data_hdr == NULL) { 4574 ASSERT3P(meta_hdr, !=, NULL); 4575 type = ARC_BUFC_METADATA; 4576 } else if (meta_hdr == NULL) { 4577 ASSERT3P(data_hdr, !=, NULL); 4578 type = ARC_BUFC_DATA; 4579 } else { 4580 ASSERT3P(data_hdr, !=, NULL); 4581 ASSERT3P(meta_hdr, !=, NULL); 4582 4583 /* The headers can't be on the sublist without an L1 header */ 4584 ASSERT(HDR_HAS_L1HDR(data_hdr)); 4585 ASSERT(HDR_HAS_L1HDR(meta_hdr)); 4586 4587 if (data_hdr->b_l1hdr.b_arc_access < 4588 meta_hdr->b_l1hdr.b_arc_access) { 4589 type = ARC_BUFC_DATA; 4590 } else { 4591 type = ARC_BUFC_METADATA; 4592 } 4593 } 4594 4595 multilist_sublist_unlock(meta_mls); 4596 multilist_sublist_unlock(data_mls); 4597 4598 return (type); 4599 } 4600 4601 /* 4602 * Evict buffers from the cache, such that arc_size is capped by arc_c. 4603 */ 4604 static uint64_t 4605 arc_evict(void) 4606 { 4607 uint64_t total_evicted = 0; 4608 uint64_t bytes; 4609 int64_t target; 4610 uint64_t asize = aggsum_value(&arc_size); 4611 uint64_t ameta = aggsum_value(&arc_meta_used); 4612 4613 /* 4614 * If we're over arc_meta_limit, we want to correct that before 4615 * potentially evicting data buffers below. 4616 */ 4617 total_evicted += arc_evict_meta(ameta); 4618 4619 /* 4620 * Adjust MRU size 4621 * 4622 * If we're over the target cache size, we want to evict enough 4623 * from the list to get back to our target size. We don't want 4624 * to evict too much from the MRU, such that it drops below 4625 * arc_p. So, if we're over our target cache size more than 4626 * the MRU is over arc_p, we'll evict enough to get back to 4627 * arc_p here, and then evict more from the MFU below. 4628 */ 4629 target = MIN((int64_t)(asize - arc_c), 4630 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4631 zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p)); 4632 4633 /* 4634 * If we're below arc_meta_min, always prefer to evict data. 4635 * Otherwise, try to satisfy the requested number of bytes to 4636 * evict from the type which contains older buffers; in an 4637 * effort to keep newer buffers in the cache regardless of their 4638 * type. If we cannot satisfy the number of bytes from this 4639 * type, spill over into the next type. 4640 */ 4641 if (arc_evict_type(arc_mru) == ARC_BUFC_METADATA && 4642 ameta > arc_meta_min) { 4643 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4644 total_evicted += bytes; 4645 4646 /* 4647 * If we couldn't evict our target number of bytes from 4648 * metadata, we try to get the rest from data. 4649 */ 4650 target -= bytes; 4651 4652 total_evicted += 4653 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4654 } else { 4655 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4656 total_evicted += bytes; 4657 4658 /* 4659 * If we couldn't evict our target number of bytes from 4660 * data, we try to get the rest from metadata. 4661 */ 4662 target -= bytes; 4663 4664 total_evicted += 4665 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4666 } 4667 4668 /* 4669 * Re-sum ARC stats after the first round of evictions. 4670 */ 4671 asize = aggsum_value(&arc_size); 4672 ameta = aggsum_value(&arc_meta_used); 4673 4674 4675 /* 4676 * Adjust MFU size 4677 * 4678 * Now that we've tried to evict enough from the MRU to get its 4679 * size back to arc_p, if we're still above the target cache 4680 * size, we evict the rest from the MFU. 4681 */ 4682 target = asize - arc_c; 4683 4684 if (arc_evict_type(arc_mfu) == ARC_BUFC_METADATA && 4685 ameta > arc_meta_min) { 4686 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4687 total_evicted += bytes; 4688 4689 /* 4690 * If we couldn't evict our target number of bytes from 4691 * metadata, we try to get the rest from data. 4692 */ 4693 target -= bytes; 4694 4695 total_evicted += 4696 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4697 } else { 4698 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4699 total_evicted += bytes; 4700 4701 /* 4702 * If we couldn't evict our target number of bytes from 4703 * data, we try to get the rest from data. 4704 */ 4705 target -= bytes; 4706 4707 total_evicted += 4708 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4709 } 4710 4711 /* 4712 * Adjust ghost lists 4713 * 4714 * In addition to the above, the ARC also defines target values 4715 * for the ghost lists. The sum of the mru list and mru ghost 4716 * list should never exceed the target size of the cache, and 4717 * the sum of the mru list, mfu list, mru ghost list, and mfu 4718 * ghost list should never exceed twice the target size of the 4719 * cache. The following logic enforces these limits on the ghost 4720 * caches, and evicts from them as needed. 4721 */ 4722 target = zfs_refcount_count(&arc_mru->arcs_size) + 4723 zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c; 4724 4725 bytes = arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA); 4726 total_evicted += bytes; 4727 4728 target -= bytes; 4729 4730 total_evicted += 4731 arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA); 4732 4733 /* 4734 * We assume the sum of the mru list and mfu list is less than 4735 * or equal to arc_c (we enforced this above), which means we 4736 * can use the simpler of the two equations below: 4737 * 4738 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c 4739 * mru ghost + mfu ghost <= arc_c 4740 */ 4741 target = zfs_refcount_count(&arc_mru_ghost->arcs_size) + 4742 zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c; 4743 4744 bytes = arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA); 4745 total_evicted += bytes; 4746 4747 target -= bytes; 4748 4749 total_evicted += 4750 arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA); 4751 4752 return (total_evicted); 4753 } 4754 4755 void 4756 arc_flush(spa_t *spa, boolean_t retry) 4757 { 4758 uint64_t guid = 0; 4759 4760 /* 4761 * If retry is B_TRUE, a spa must not be specified since we have 4762 * no good way to determine if all of a spa's buffers have been 4763 * evicted from an arc state. 4764 */ 4765 ASSERT(!retry || spa == 0); 4766 4767 if (spa != NULL) 4768 guid = spa_load_guid(spa); 4769 4770 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 4771 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 4772 4773 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 4774 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 4775 4776 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 4777 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 4778 4779 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 4780 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 4781 } 4782 4783 void 4784 arc_reduce_target_size(int64_t to_free) 4785 { 4786 uint64_t asize = aggsum_value(&arc_size); 4787 4788 /* 4789 * All callers want the ARC to actually evict (at least) this much 4790 * memory. Therefore we reduce from the lower of the current size and 4791 * the target size. This way, even if arc_c is much higher than 4792 * arc_size (as can be the case after many calls to arc_freed(), we will 4793 * immediately have arc_c < arc_size and therefore the arc_evict_zthr 4794 * will evict. 4795 */ 4796 uint64_t c = MIN(arc_c, asize); 4797 4798 if (c > to_free && c - to_free > arc_c_min) { 4799 arc_c = c - to_free; 4800 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 4801 if (arc_p > arc_c) 4802 arc_p = (arc_c >> 1); 4803 ASSERT(arc_c >= arc_c_min); 4804 ASSERT((int64_t)arc_p >= 0); 4805 } else { 4806 arc_c = arc_c_min; 4807 } 4808 4809 if (asize > arc_c) { 4810 /* See comment in arc_evict_cb_check() on why lock+flag */ 4811 mutex_enter(&arc_evict_lock); 4812 arc_evict_needed = B_TRUE; 4813 mutex_exit(&arc_evict_lock); 4814 zthr_wakeup(arc_evict_zthr); 4815 } 4816 } 4817 4818 /* 4819 * Determine if the system is under memory pressure and is asking 4820 * to reclaim memory. A return value of B_TRUE indicates that the system 4821 * is under memory pressure and that the arc should adjust accordingly. 4822 */ 4823 boolean_t 4824 arc_reclaim_needed(void) 4825 { 4826 return (arc_available_memory() < 0); 4827 } 4828 4829 void 4830 arc_kmem_reap_soon(void) 4831 { 4832 size_t i; 4833 kmem_cache_t *prev_cache = NULL; 4834 kmem_cache_t *prev_data_cache = NULL; 4835 extern kmem_cache_t *zio_buf_cache[]; 4836 extern kmem_cache_t *zio_data_buf_cache[]; 4837 4838 #ifdef _KERNEL 4839 if ((aggsum_compare(&arc_meta_used, arc_meta_limit) >= 0) && 4840 zfs_arc_meta_prune) { 4841 /* 4842 * We are exceeding our meta-data cache limit. 4843 * Prune some entries to release holds on meta-data. 4844 */ 4845 arc_prune_async(zfs_arc_meta_prune); 4846 } 4847 #if defined(_ILP32) 4848 /* 4849 * Reclaim unused memory from all kmem caches. 4850 */ 4851 kmem_reap(); 4852 #endif 4853 #endif 4854 4855 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 4856 #if defined(_ILP32) 4857 /* reach upper limit of cache size on 32-bit */ 4858 if (zio_buf_cache[i] == NULL) 4859 break; 4860 #endif 4861 if (zio_buf_cache[i] != prev_cache) { 4862 prev_cache = zio_buf_cache[i]; 4863 kmem_cache_reap_now(zio_buf_cache[i]); 4864 } 4865 if (zio_data_buf_cache[i] != prev_data_cache) { 4866 prev_data_cache = zio_data_buf_cache[i]; 4867 kmem_cache_reap_now(zio_data_buf_cache[i]); 4868 } 4869 } 4870 kmem_cache_reap_now(buf_cache); 4871 kmem_cache_reap_now(hdr_full_cache); 4872 kmem_cache_reap_now(hdr_l2only_cache); 4873 kmem_cache_reap_now(zfs_btree_leaf_cache); 4874 abd_cache_reap_now(); 4875 } 4876 4877 /* ARGSUSED */ 4878 static boolean_t 4879 arc_evict_cb_check(void *arg, zthr_t *zthr) 4880 { 4881 #ifdef ZFS_DEBUG 4882 /* 4883 * This is necessary in order to keep the kstat information 4884 * up to date for tools that display kstat data such as the 4885 * mdb ::arc dcmd and the Linux crash utility. These tools 4886 * typically do not call kstat's update function, but simply 4887 * dump out stats from the most recent update. Without 4888 * this call, these commands may show stale stats for the 4889 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 4890 * with this call, the data might be out of date if the 4891 * evict thread hasn't been woken recently; but that should 4892 * suffice. The arc_state_t structures can be queried 4893 * directly if more accurate information is needed. 4894 */ 4895 if (arc_ksp != NULL) 4896 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 4897 #endif 4898 4899 /* 4900 * We have to rely on arc_wait_for_eviction() to tell us when to 4901 * evict, rather than checking if we are overflowing here, so that we 4902 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv. 4903 * If we have become "not overflowing" since arc_wait_for_eviction() 4904 * checked, we need to wake it up. We could broadcast the CV here, 4905 * but arc_wait_for_eviction() may have not yet gone to sleep. We 4906 * would need to use a mutex to ensure that this function doesn't 4907 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g. 4908 * the arc_evict_lock). However, the lock ordering of such a lock 4909 * would necessarily be incorrect with respect to the zthr_lock, 4910 * which is held before this function is called, and is held by 4911 * arc_wait_for_eviction() when it calls zthr_wakeup(). 4912 */ 4913 return (arc_evict_needed); 4914 } 4915 4916 /* 4917 * Keep arc_size under arc_c by running arc_evict which evicts data 4918 * from the ARC. 4919 */ 4920 /* ARGSUSED */ 4921 static void 4922 arc_evict_cb(void *arg, zthr_t *zthr) 4923 { 4924 uint64_t evicted = 0; 4925 fstrans_cookie_t cookie = spl_fstrans_mark(); 4926 4927 /* Evict from cache */ 4928 evicted = arc_evict(); 4929 4930 /* 4931 * If evicted is zero, we couldn't evict anything 4932 * via arc_evict(). This could be due to hash lock 4933 * collisions, but more likely due to the majority of 4934 * arc buffers being unevictable. Therefore, even if 4935 * arc_size is above arc_c, another pass is unlikely to 4936 * be helpful and could potentially cause us to enter an 4937 * infinite loop. Additionally, zthr_iscancelled() is 4938 * checked here so that if the arc is shutting down, the 4939 * broadcast will wake any remaining arc evict waiters. 4940 */ 4941 mutex_enter(&arc_evict_lock); 4942 arc_evict_needed = !zthr_iscancelled(arc_evict_zthr) && 4943 evicted > 0 && aggsum_compare(&arc_size, arc_c) > 0; 4944 if (!arc_evict_needed) { 4945 /* 4946 * We're either no longer overflowing, or we 4947 * can't evict anything more, so we should wake 4948 * arc_get_data_impl() sooner. 4949 */ 4950 arc_evict_waiter_t *aw; 4951 while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) { 4952 cv_broadcast(&aw->aew_cv); 4953 } 4954 arc_set_need_free(); 4955 } 4956 mutex_exit(&arc_evict_lock); 4957 spl_fstrans_unmark(cookie); 4958 } 4959 4960 /* ARGSUSED */ 4961 static boolean_t 4962 arc_reap_cb_check(void *arg, zthr_t *zthr) 4963 { 4964 int64_t free_memory = arc_available_memory(); 4965 static int reap_cb_check_counter = 0; 4966 4967 /* 4968 * If a kmem reap is already active, don't schedule more. We must 4969 * check for this because kmem_cache_reap_soon() won't actually 4970 * block on the cache being reaped (this is to prevent callers from 4971 * becoming implicitly blocked by a system-wide kmem reap -- which, 4972 * on a system with many, many full magazines, can take minutes). 4973 */ 4974 if (!kmem_cache_reap_active() && free_memory < 0) { 4975 4976 arc_no_grow = B_TRUE; 4977 arc_warm = B_TRUE; 4978 /* 4979 * Wait at least zfs_grow_retry (default 5) seconds 4980 * before considering growing. 4981 */ 4982 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry); 4983 return (B_TRUE); 4984 } else if (free_memory < arc_c >> arc_no_grow_shift) { 4985 arc_no_grow = B_TRUE; 4986 } else if (gethrtime() >= arc_growtime) { 4987 arc_no_grow = B_FALSE; 4988 } 4989 4990 /* 4991 * Called unconditionally every 60 seconds to reclaim unused 4992 * zstd compression and decompression context. This is done 4993 * here to avoid the need for an independent thread. 4994 */ 4995 if (!((reap_cb_check_counter++) % 60)) 4996 zfs_zstd_cache_reap_now(); 4997 4998 return (B_FALSE); 4999 } 5000 5001 /* 5002 * Keep enough free memory in the system by reaping the ARC's kmem 5003 * caches. To cause more slabs to be reapable, we may reduce the 5004 * target size of the cache (arc_c), causing the arc_evict_cb() 5005 * to free more buffers. 5006 */ 5007 /* ARGSUSED */ 5008 static void 5009 arc_reap_cb(void *arg, zthr_t *zthr) 5010 { 5011 int64_t free_memory; 5012 fstrans_cookie_t cookie = spl_fstrans_mark(); 5013 5014 /* 5015 * Kick off asynchronous kmem_reap()'s of all our caches. 5016 */ 5017 arc_kmem_reap_soon(); 5018 5019 /* 5020 * Wait at least arc_kmem_cache_reap_retry_ms between 5021 * arc_kmem_reap_soon() calls. Without this check it is possible to 5022 * end up in a situation where we spend lots of time reaping 5023 * caches, while we're near arc_c_min. Waiting here also gives the 5024 * subsequent free memory check a chance of finding that the 5025 * asynchronous reap has already freed enough memory, and we don't 5026 * need to call arc_reduce_target_size(). 5027 */ 5028 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000); 5029 5030 /* 5031 * Reduce the target size as needed to maintain the amount of free 5032 * memory in the system at a fraction of the arc_size (1/128th by 5033 * default). If oversubscribed (free_memory < 0) then reduce the 5034 * target arc_size by the deficit amount plus the fractional 5035 * amount. If free memory is positive but less than the fractional 5036 * amount, reduce by what is needed to hit the fractional amount. 5037 */ 5038 free_memory = arc_available_memory(); 5039 5040 int64_t to_free = 5041 (arc_c >> arc_shrink_shift) - free_memory; 5042 if (to_free > 0) { 5043 arc_reduce_target_size(to_free); 5044 } 5045 spl_fstrans_unmark(cookie); 5046 } 5047 5048 #ifdef _KERNEL 5049 /* 5050 * Determine the amount of memory eligible for eviction contained in the 5051 * ARC. All clean data reported by the ghost lists can always be safely 5052 * evicted. Due to arc_c_min, the same does not hold for all clean data 5053 * contained by the regular mru and mfu lists. 5054 * 5055 * In the case of the regular mru and mfu lists, we need to report as 5056 * much clean data as possible, such that evicting that same reported 5057 * data will not bring arc_size below arc_c_min. Thus, in certain 5058 * circumstances, the total amount of clean data in the mru and mfu 5059 * lists might not actually be evictable. 5060 * 5061 * The following two distinct cases are accounted for: 5062 * 5063 * 1. The sum of the amount of dirty data contained by both the mru and 5064 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 5065 * is greater than or equal to arc_c_min. 5066 * (i.e. amount of dirty data >= arc_c_min) 5067 * 5068 * This is the easy case; all clean data contained by the mru and mfu 5069 * lists is evictable. Evicting all clean data can only drop arc_size 5070 * to the amount of dirty data, which is greater than arc_c_min. 5071 * 5072 * 2. The sum of the amount of dirty data contained by both the mru and 5073 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 5074 * is less than arc_c_min. 5075 * (i.e. arc_c_min > amount of dirty data) 5076 * 5077 * 2.1. arc_size is greater than or equal arc_c_min. 5078 * (i.e. arc_size >= arc_c_min > amount of dirty data) 5079 * 5080 * In this case, not all clean data from the regular mru and mfu 5081 * lists is actually evictable; we must leave enough clean data 5082 * to keep arc_size above arc_c_min. Thus, the maximum amount of 5083 * evictable data from the two lists combined, is exactly the 5084 * difference between arc_size and arc_c_min. 5085 * 5086 * 2.2. arc_size is less than arc_c_min 5087 * (i.e. arc_c_min > arc_size > amount of dirty data) 5088 * 5089 * In this case, none of the data contained in the mru and mfu 5090 * lists is evictable, even if it's clean. Since arc_size is 5091 * already below arc_c_min, evicting any more would only 5092 * increase this negative difference. 5093 */ 5094 5095 #endif /* _KERNEL */ 5096 5097 /* 5098 * Adapt arc info given the number of bytes we are trying to add and 5099 * the state that we are coming from. This function is only called 5100 * when we are adding new content to the cache. 5101 */ 5102 static void 5103 arc_adapt(int bytes, arc_state_t *state) 5104 { 5105 int mult; 5106 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 5107 int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size); 5108 int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size); 5109 5110 ASSERT(bytes > 0); 5111 /* 5112 * Adapt the target size of the MRU list: 5113 * - if we just hit in the MRU ghost list, then increase 5114 * the target size of the MRU list. 5115 * - if we just hit in the MFU ghost list, then increase 5116 * the target size of the MFU list by decreasing the 5117 * target size of the MRU list. 5118 */ 5119 if (state == arc_mru_ghost) { 5120 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size); 5121 if (!zfs_arc_p_dampener_disable) 5122 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 5123 5124 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 5125 } else if (state == arc_mfu_ghost) { 5126 uint64_t delta; 5127 5128 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size); 5129 if (!zfs_arc_p_dampener_disable) 5130 mult = MIN(mult, 10); 5131 5132 delta = MIN(bytes * mult, arc_p); 5133 arc_p = MAX(arc_p_min, arc_p - delta); 5134 } 5135 ASSERT((int64_t)arc_p >= 0); 5136 5137 /* 5138 * Wake reap thread if we do not have any available memory 5139 */ 5140 if (arc_reclaim_needed()) { 5141 zthr_wakeup(arc_reap_zthr); 5142 return; 5143 } 5144 5145 if (arc_no_grow) 5146 return; 5147 5148 if (arc_c >= arc_c_max) 5149 return; 5150 5151 /* 5152 * If we're within (2 * maxblocksize) bytes of the target 5153 * cache size, increment the target cache size 5154 */ 5155 ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT); 5156 if (aggsum_upper_bound(&arc_size) >= 5157 arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 5158 atomic_add_64(&arc_c, (int64_t)bytes); 5159 if (arc_c > arc_c_max) 5160 arc_c = arc_c_max; 5161 else if (state == arc_anon) 5162 atomic_add_64(&arc_p, (int64_t)bytes); 5163 if (arc_p > arc_c) 5164 arc_p = arc_c; 5165 } 5166 ASSERT((int64_t)arc_p >= 0); 5167 } 5168 5169 /* 5170 * Check if arc_size has grown past our upper threshold, determined by 5171 * zfs_arc_overflow_shift. 5172 */ 5173 boolean_t 5174 arc_is_overflowing(void) 5175 { 5176 /* Always allow at least one block of overflow */ 5177 int64_t overflow = MAX(SPA_MAXBLOCKSIZE, 5178 arc_c >> zfs_arc_overflow_shift); 5179 5180 /* 5181 * We just compare the lower bound here for performance reasons. Our 5182 * primary goals are to make sure that the arc never grows without 5183 * bound, and that it can reach its maximum size. This check 5184 * accomplishes both goals. The maximum amount we could run over by is 5185 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block 5186 * in the ARC. In practice, that's in the tens of MB, which is low 5187 * enough to be safe. 5188 */ 5189 return (aggsum_lower_bound(&arc_size) >= (int64_t)arc_c + overflow); 5190 } 5191 5192 static abd_t * 5193 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 5194 boolean_t do_adapt) 5195 { 5196 arc_buf_contents_t type = arc_buf_type(hdr); 5197 5198 arc_get_data_impl(hdr, size, tag, do_adapt); 5199 if (type == ARC_BUFC_METADATA) { 5200 return (abd_alloc(size, B_TRUE)); 5201 } else { 5202 ASSERT(type == ARC_BUFC_DATA); 5203 return (abd_alloc(size, B_FALSE)); 5204 } 5205 } 5206 5207 static void * 5208 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 5209 { 5210 arc_buf_contents_t type = arc_buf_type(hdr); 5211 5212 arc_get_data_impl(hdr, size, tag, B_TRUE); 5213 if (type == ARC_BUFC_METADATA) { 5214 return (zio_buf_alloc(size)); 5215 } else { 5216 ASSERT(type == ARC_BUFC_DATA); 5217 return (zio_data_buf_alloc(size)); 5218 } 5219 } 5220 5221 /* 5222 * Wait for the specified amount of data (in bytes) to be evicted from the 5223 * ARC, and for there to be sufficient free memory in the system. Waiting for 5224 * eviction ensures that the memory used by the ARC decreases. Waiting for 5225 * free memory ensures that the system won't run out of free pages, regardless 5226 * of ARC behavior and settings. See arc_lowmem_init(). 5227 */ 5228 void 5229 arc_wait_for_eviction(uint64_t amount) 5230 { 5231 mutex_enter(&arc_evict_lock); 5232 if (arc_is_overflowing()) { 5233 arc_evict_needed = B_TRUE; 5234 zthr_wakeup(arc_evict_zthr); 5235 5236 if (amount != 0) { 5237 arc_evict_waiter_t aw; 5238 list_link_init(&aw.aew_node); 5239 cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL); 5240 5241 uint64_t last_count = 0; 5242 if (!list_is_empty(&arc_evict_waiters)) { 5243 arc_evict_waiter_t *last = 5244 list_tail(&arc_evict_waiters); 5245 last_count = last->aew_count; 5246 } 5247 /* 5248 * Note, the last waiter's count may be less than 5249 * arc_evict_count if we are low on memory in which 5250 * case arc_evict_state_impl() may have deferred 5251 * wakeups (but still incremented arc_evict_count). 5252 */ 5253 aw.aew_count = 5254 MAX(last_count, arc_evict_count) + amount; 5255 5256 list_insert_tail(&arc_evict_waiters, &aw); 5257 5258 arc_set_need_free(); 5259 5260 DTRACE_PROBE3(arc__wait__for__eviction, 5261 uint64_t, amount, 5262 uint64_t, arc_evict_count, 5263 uint64_t, aw.aew_count); 5264 5265 /* 5266 * We will be woken up either when arc_evict_count 5267 * reaches aew_count, or when the ARC is no longer 5268 * overflowing and eviction completes. 5269 */ 5270 cv_wait(&aw.aew_cv, &arc_evict_lock); 5271 5272 /* 5273 * In case of "false" wakeup, we will still be on the 5274 * list. 5275 */ 5276 if (list_link_active(&aw.aew_node)) 5277 list_remove(&arc_evict_waiters, &aw); 5278 5279 cv_destroy(&aw.aew_cv); 5280 } 5281 } 5282 mutex_exit(&arc_evict_lock); 5283 } 5284 5285 /* 5286 * Allocate a block and return it to the caller. If we are hitting the 5287 * hard limit for the cache size, we must sleep, waiting for the eviction 5288 * thread to catch up. If we're past the target size but below the hard 5289 * limit, we'll only signal the reclaim thread and continue on. 5290 */ 5291 static void 5292 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 5293 boolean_t do_adapt) 5294 { 5295 arc_state_t *state = hdr->b_l1hdr.b_state; 5296 arc_buf_contents_t type = arc_buf_type(hdr); 5297 5298 if (do_adapt) 5299 arc_adapt(size, state); 5300 5301 /* 5302 * If arc_size is currently overflowing, we must be adding data 5303 * faster than we are evicting. To ensure we don't compound the 5304 * problem by adding more data and forcing arc_size to grow even 5305 * further past it's target size, we wait for the eviction thread to 5306 * make some progress. We also wait for there to be sufficient free 5307 * memory in the system, as measured by arc_free_memory(). 5308 * 5309 * Specifically, we wait for zfs_arc_eviction_pct percent of the 5310 * requested size to be evicted. This should be more than 100%, to 5311 * ensure that that progress is also made towards getting arc_size 5312 * under arc_c. See the comment above zfs_arc_eviction_pct. 5313 * 5314 * We do the overflowing check without holding the arc_evict_lock to 5315 * reduce lock contention in this hot path. Note that 5316 * arc_wait_for_eviction() will acquire the lock and check again to 5317 * ensure we are truly overflowing before blocking. 5318 */ 5319 if (arc_is_overflowing()) { 5320 arc_wait_for_eviction(size * 5321 zfs_arc_eviction_pct / 100); 5322 } 5323 5324 VERIFY3U(hdr->b_type, ==, type); 5325 if (type == ARC_BUFC_METADATA) { 5326 arc_space_consume(size, ARC_SPACE_META); 5327 } else { 5328 arc_space_consume(size, ARC_SPACE_DATA); 5329 } 5330 5331 /* 5332 * Update the state size. Note that ghost states have a 5333 * "ghost size" and so don't need to be updated. 5334 */ 5335 if (!GHOST_STATE(state)) { 5336 5337 (void) zfs_refcount_add_many(&state->arcs_size, size, tag); 5338 5339 /* 5340 * If this is reached via arc_read, the link is 5341 * protected by the hash lock. If reached via 5342 * arc_buf_alloc, the header should not be accessed by 5343 * any other thread. And, if reached via arc_read_done, 5344 * the hash lock will protect it if it's found in the 5345 * hash table; otherwise no other thread should be 5346 * trying to [add|remove]_reference it. 5347 */ 5348 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5349 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5350 (void) zfs_refcount_add_many(&state->arcs_esize[type], 5351 size, tag); 5352 } 5353 5354 /* 5355 * If we are growing the cache, and we are adding anonymous 5356 * data, and we have outgrown arc_p, update arc_p 5357 */ 5358 if (aggsum_upper_bound(&arc_size) < arc_c && 5359 hdr->b_l1hdr.b_state == arc_anon && 5360 (zfs_refcount_count(&arc_anon->arcs_size) + 5361 zfs_refcount_count(&arc_mru->arcs_size) > arc_p)) 5362 arc_p = MIN(arc_c, arc_p + size); 5363 } 5364 } 5365 5366 static void 5367 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag) 5368 { 5369 arc_free_data_impl(hdr, size, tag); 5370 abd_free(abd); 5371 } 5372 5373 static void 5374 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag) 5375 { 5376 arc_buf_contents_t type = arc_buf_type(hdr); 5377 5378 arc_free_data_impl(hdr, size, tag); 5379 if (type == ARC_BUFC_METADATA) { 5380 zio_buf_free(buf, size); 5381 } else { 5382 ASSERT(type == ARC_BUFC_DATA); 5383 zio_data_buf_free(buf, size); 5384 } 5385 } 5386 5387 /* 5388 * Free the arc data buffer. 5389 */ 5390 static void 5391 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 5392 { 5393 arc_state_t *state = hdr->b_l1hdr.b_state; 5394 arc_buf_contents_t type = arc_buf_type(hdr); 5395 5396 /* protected by hash lock, if in the hash table */ 5397 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5398 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5399 ASSERT(state != arc_anon && state != arc_l2c_only); 5400 5401 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 5402 size, tag); 5403 } 5404 (void) zfs_refcount_remove_many(&state->arcs_size, size, tag); 5405 5406 VERIFY3U(hdr->b_type, ==, type); 5407 if (type == ARC_BUFC_METADATA) { 5408 arc_space_return(size, ARC_SPACE_META); 5409 } else { 5410 ASSERT(type == ARC_BUFC_DATA); 5411 arc_space_return(size, ARC_SPACE_DATA); 5412 } 5413 } 5414 5415 /* 5416 * This routine is called whenever a buffer is accessed. 5417 * NOTE: the hash lock is dropped in this function. 5418 */ 5419 static void 5420 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 5421 { 5422 clock_t now; 5423 5424 ASSERT(MUTEX_HELD(hash_lock)); 5425 ASSERT(HDR_HAS_L1HDR(hdr)); 5426 5427 if (hdr->b_l1hdr.b_state == arc_anon) { 5428 /* 5429 * This buffer is not in the cache, and does not 5430 * appear in our "ghost" list. Add the new buffer 5431 * to the MRU state. 5432 */ 5433 5434 ASSERT0(hdr->b_l1hdr.b_arc_access); 5435 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5436 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5437 arc_change_state(arc_mru, hdr, hash_lock); 5438 5439 } else if (hdr->b_l1hdr.b_state == arc_mru) { 5440 now = ddi_get_lbolt(); 5441 5442 /* 5443 * If this buffer is here because of a prefetch, then either: 5444 * - clear the flag if this is a "referencing" read 5445 * (any subsequent access will bump this into the MFU state). 5446 * or 5447 * - move the buffer to the head of the list if this is 5448 * another prefetch (to make it less likely to be evicted). 5449 */ 5450 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5451 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 5452 /* link protected by hash lock */ 5453 ASSERT(multilist_link_active( 5454 &hdr->b_l1hdr.b_arc_node)); 5455 } else { 5456 if (HDR_HAS_L2HDR(hdr)) 5457 l2arc_hdr_arcstats_decrement_state(hdr); 5458 arc_hdr_clear_flags(hdr, 5459 ARC_FLAG_PREFETCH | 5460 ARC_FLAG_PRESCIENT_PREFETCH); 5461 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits); 5462 ARCSTAT_BUMP(arcstat_mru_hits); 5463 if (HDR_HAS_L2HDR(hdr)) 5464 l2arc_hdr_arcstats_increment_state(hdr); 5465 } 5466 hdr->b_l1hdr.b_arc_access = now; 5467 return; 5468 } 5469 5470 /* 5471 * This buffer has been "accessed" only once so far, 5472 * but it is still in the cache. Move it to the MFU 5473 * state. 5474 */ 5475 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access + 5476 ARC_MINTIME)) { 5477 /* 5478 * More than 125ms have passed since we 5479 * instantiated this buffer. Move it to the 5480 * most frequently used state. 5481 */ 5482 hdr->b_l1hdr.b_arc_access = now; 5483 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5484 arc_change_state(arc_mfu, hdr, hash_lock); 5485 } 5486 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits); 5487 ARCSTAT_BUMP(arcstat_mru_hits); 5488 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 5489 arc_state_t *new_state; 5490 /* 5491 * This buffer has been "accessed" recently, but 5492 * was evicted from the cache. Move it to the 5493 * MFU state. 5494 */ 5495 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5496 new_state = arc_mru; 5497 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) { 5498 if (HDR_HAS_L2HDR(hdr)) 5499 l2arc_hdr_arcstats_decrement_state(hdr); 5500 arc_hdr_clear_flags(hdr, 5501 ARC_FLAG_PREFETCH | 5502 ARC_FLAG_PRESCIENT_PREFETCH); 5503 if (HDR_HAS_L2HDR(hdr)) 5504 l2arc_hdr_arcstats_increment_state(hdr); 5505 } 5506 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5507 } else { 5508 new_state = arc_mfu; 5509 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5510 } 5511 5512 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5513 arc_change_state(new_state, hdr, hash_lock); 5514 5515 atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits); 5516 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 5517 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 5518 /* 5519 * This buffer has been accessed more than once and is 5520 * still in the cache. Keep it in the MFU state. 5521 * 5522 * NOTE: an add_reference() that occurred when we did 5523 * the arc_read() will have kicked this off the list. 5524 * If it was a prefetch, we will explicitly move it to 5525 * the head of the list now. 5526 */ 5527 5528 atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits); 5529 ARCSTAT_BUMP(arcstat_mfu_hits); 5530 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5531 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 5532 arc_state_t *new_state = arc_mfu; 5533 /* 5534 * This buffer has been accessed more than once but has 5535 * been evicted from the cache. Move it back to the 5536 * MFU state. 5537 */ 5538 5539 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5540 /* 5541 * This is a prefetch access... 5542 * move this block back to the MRU state. 5543 */ 5544 new_state = arc_mru; 5545 } 5546 5547 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5548 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5549 arc_change_state(new_state, hdr, hash_lock); 5550 5551 atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits); 5552 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 5553 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 5554 /* 5555 * This buffer is on the 2nd Level ARC. 5556 */ 5557 5558 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5559 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5560 arc_change_state(arc_mfu, hdr, hash_lock); 5561 } else { 5562 cmn_err(CE_PANIC, "invalid arc state 0x%p", 5563 hdr->b_l1hdr.b_state); 5564 } 5565 } 5566 5567 /* 5568 * This routine is called by dbuf_hold() to update the arc_access() state 5569 * which otherwise would be skipped for entries in the dbuf cache. 5570 */ 5571 void 5572 arc_buf_access(arc_buf_t *buf) 5573 { 5574 mutex_enter(&buf->b_evict_lock); 5575 arc_buf_hdr_t *hdr = buf->b_hdr; 5576 5577 /* 5578 * Avoid taking the hash_lock when possible as an optimization. 5579 * The header must be checked again under the hash_lock in order 5580 * to handle the case where it is concurrently being released. 5581 */ 5582 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5583 mutex_exit(&buf->b_evict_lock); 5584 return; 5585 } 5586 5587 kmutex_t *hash_lock = HDR_LOCK(hdr); 5588 mutex_enter(hash_lock); 5589 5590 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5591 mutex_exit(hash_lock); 5592 mutex_exit(&buf->b_evict_lock); 5593 ARCSTAT_BUMP(arcstat_access_skip); 5594 return; 5595 } 5596 5597 mutex_exit(&buf->b_evict_lock); 5598 5599 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5600 hdr->b_l1hdr.b_state == arc_mfu); 5601 5602 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5603 arc_access(hdr, hash_lock); 5604 mutex_exit(hash_lock); 5605 5606 ARCSTAT_BUMP(arcstat_hits); 5607 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr) && !HDR_PRESCIENT_PREFETCH(hdr), 5608 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits); 5609 } 5610 5611 /* a generic arc_read_done_func_t which you can use */ 5612 /* ARGSUSED */ 5613 void 5614 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5615 arc_buf_t *buf, void *arg) 5616 { 5617 if (buf == NULL) 5618 return; 5619 5620 bcopy(buf->b_data, arg, arc_buf_size(buf)); 5621 arc_buf_destroy(buf, arg); 5622 } 5623 5624 /* a generic arc_read_done_func_t */ 5625 /* ARGSUSED */ 5626 void 5627 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5628 arc_buf_t *buf, void *arg) 5629 { 5630 arc_buf_t **bufp = arg; 5631 5632 if (buf == NULL) { 5633 ASSERT(zio == NULL || zio->io_error != 0); 5634 *bufp = NULL; 5635 } else { 5636 ASSERT(zio == NULL || zio->io_error == 0); 5637 *bufp = buf; 5638 ASSERT(buf->b_data != NULL); 5639 } 5640 } 5641 5642 static void 5643 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp) 5644 { 5645 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 5646 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0); 5647 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF); 5648 } else { 5649 if (HDR_COMPRESSION_ENABLED(hdr)) { 5650 ASSERT3U(arc_hdr_get_compress(hdr), ==, 5651 BP_GET_COMPRESS(bp)); 5652 } 5653 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 5654 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); 5655 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp)); 5656 } 5657 } 5658 5659 static void 5660 arc_read_done(zio_t *zio) 5661 { 5662 blkptr_t *bp = zio->io_bp; 5663 arc_buf_hdr_t *hdr = zio->io_private; 5664 kmutex_t *hash_lock = NULL; 5665 arc_callback_t *callback_list; 5666 arc_callback_t *acb; 5667 boolean_t freeable = B_FALSE; 5668 5669 /* 5670 * The hdr was inserted into hash-table and removed from lists 5671 * prior to starting I/O. We should find this header, since 5672 * it's in the hash table, and it should be legit since it's 5673 * not possible to evict it during the I/O. The only possible 5674 * reason for it not to be found is if we were freed during the 5675 * read. 5676 */ 5677 if (HDR_IN_HASH_TABLE(hdr)) { 5678 arc_buf_hdr_t *found; 5679 5680 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 5681 ASSERT3U(hdr->b_dva.dva_word[0], ==, 5682 BP_IDENTITY(zio->io_bp)->dva_word[0]); 5683 ASSERT3U(hdr->b_dva.dva_word[1], ==, 5684 BP_IDENTITY(zio->io_bp)->dva_word[1]); 5685 5686 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock); 5687 5688 ASSERT((found == hdr && 5689 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 5690 (found == hdr && HDR_L2_READING(hdr))); 5691 ASSERT3P(hash_lock, !=, NULL); 5692 } 5693 5694 if (BP_IS_PROTECTED(bp)) { 5695 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 5696 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 5697 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 5698 hdr->b_crypt_hdr.b_iv); 5699 5700 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) { 5701 void *tmpbuf; 5702 5703 tmpbuf = abd_borrow_buf_copy(zio->io_abd, 5704 sizeof (zil_chain_t)); 5705 zio_crypt_decode_mac_zil(tmpbuf, 5706 hdr->b_crypt_hdr.b_mac); 5707 abd_return_buf(zio->io_abd, tmpbuf, 5708 sizeof (zil_chain_t)); 5709 } else { 5710 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 5711 } 5712 } 5713 5714 if (zio->io_error == 0) { 5715 /* byteswap if necessary */ 5716 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 5717 if (BP_GET_LEVEL(zio->io_bp) > 0) { 5718 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 5719 } else { 5720 hdr->b_l1hdr.b_byteswap = 5721 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 5722 } 5723 } else { 5724 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 5725 } 5726 if (!HDR_L2_READING(hdr)) { 5727 hdr->b_complevel = zio->io_prop.zp_complevel; 5728 } 5729 } 5730 5731 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); 5732 if (l2arc_noprefetch && HDR_PREFETCH(hdr)) 5733 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE); 5734 5735 callback_list = hdr->b_l1hdr.b_acb; 5736 ASSERT3P(callback_list, !=, NULL); 5737 5738 if (hash_lock && zio->io_error == 0 && 5739 hdr->b_l1hdr.b_state == arc_anon) { 5740 /* 5741 * Only call arc_access on anonymous buffers. This is because 5742 * if we've issued an I/O for an evicted buffer, we've already 5743 * called arc_access (to prevent any simultaneous readers from 5744 * getting confused). 5745 */ 5746 arc_access(hdr, hash_lock); 5747 } 5748 5749 /* 5750 * If a read request has a callback (i.e. acb_done is not NULL), then we 5751 * make a buf containing the data according to the parameters which were 5752 * passed in. The implementation of arc_buf_alloc_impl() ensures that we 5753 * aren't needlessly decompressing the data multiple times. 5754 */ 5755 int callback_cnt = 0; 5756 for (acb = callback_list; acb != NULL; acb = acb->acb_next) { 5757 if (!acb->acb_done || acb->acb_nobuf) 5758 continue; 5759 5760 callback_cnt++; 5761 5762 if (zio->io_error != 0) 5763 continue; 5764 5765 int error = arc_buf_alloc_impl(hdr, zio->io_spa, 5766 &acb->acb_zb, acb->acb_private, acb->acb_encrypted, 5767 acb->acb_compressed, acb->acb_noauth, B_TRUE, 5768 &acb->acb_buf); 5769 5770 /* 5771 * Assert non-speculative zios didn't fail because an 5772 * encryption key wasn't loaded 5773 */ 5774 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) || 5775 error != EACCES); 5776 5777 /* 5778 * If we failed to decrypt, report an error now (as the zio 5779 * layer would have done if it had done the transforms). 5780 */ 5781 if (error == ECKSUM) { 5782 ASSERT(BP_IS_PROTECTED(bp)); 5783 error = SET_ERROR(EIO); 5784 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5785 spa_log_error(zio->io_spa, &acb->acb_zb); 5786 (void) zfs_ereport_post( 5787 FM_EREPORT_ZFS_AUTHENTICATION, 5788 zio->io_spa, NULL, &acb->acb_zb, zio, 0); 5789 } 5790 } 5791 5792 if (error != 0) { 5793 /* 5794 * Decompression or decryption failed. Set 5795 * io_error so that when we call acb_done 5796 * (below), we will indicate that the read 5797 * failed. Note that in the unusual case 5798 * where one callback is compressed and another 5799 * uncompressed, we will mark all of them 5800 * as failed, even though the uncompressed 5801 * one can't actually fail. In this case, 5802 * the hdr will not be anonymous, because 5803 * if there are multiple callbacks, it's 5804 * because multiple threads found the same 5805 * arc buf in the hash table. 5806 */ 5807 zio->io_error = error; 5808 } 5809 } 5810 5811 /* 5812 * If there are multiple callbacks, we must have the hash lock, 5813 * because the only way for multiple threads to find this hdr is 5814 * in the hash table. This ensures that if there are multiple 5815 * callbacks, the hdr is not anonymous. If it were anonymous, 5816 * we couldn't use arc_buf_destroy() in the error case below. 5817 */ 5818 ASSERT(callback_cnt < 2 || hash_lock != NULL); 5819 5820 hdr->b_l1hdr.b_acb = NULL; 5821 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5822 if (callback_cnt == 0) 5823 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 5824 5825 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) || 5826 callback_list != NULL); 5827 5828 if (zio->io_error == 0) { 5829 arc_hdr_verify(hdr, zio->io_bp); 5830 } else { 5831 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 5832 if (hdr->b_l1hdr.b_state != arc_anon) 5833 arc_change_state(arc_anon, hdr, hash_lock); 5834 if (HDR_IN_HASH_TABLE(hdr)) 5835 buf_hash_remove(hdr); 5836 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5837 } 5838 5839 /* 5840 * Broadcast before we drop the hash_lock to avoid the possibility 5841 * that the hdr (and hence the cv) might be freed before we get to 5842 * the cv_broadcast(). 5843 */ 5844 cv_broadcast(&hdr->b_l1hdr.b_cv); 5845 5846 if (hash_lock != NULL) { 5847 mutex_exit(hash_lock); 5848 } else { 5849 /* 5850 * This block was freed while we waited for the read to 5851 * complete. It has been removed from the hash table and 5852 * moved to the anonymous state (so that it won't show up 5853 * in the cache). 5854 */ 5855 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 5856 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5857 } 5858 5859 /* execute each callback and free its structure */ 5860 while ((acb = callback_list) != NULL) { 5861 if (acb->acb_done != NULL) { 5862 if (zio->io_error != 0 && acb->acb_buf != NULL) { 5863 /* 5864 * If arc_buf_alloc_impl() fails during 5865 * decompression, the buf will still be 5866 * allocated, and needs to be freed here. 5867 */ 5868 arc_buf_destroy(acb->acb_buf, 5869 acb->acb_private); 5870 acb->acb_buf = NULL; 5871 } 5872 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp, 5873 acb->acb_buf, acb->acb_private); 5874 } 5875 5876 if (acb->acb_zio_dummy != NULL) { 5877 acb->acb_zio_dummy->io_error = zio->io_error; 5878 zio_nowait(acb->acb_zio_dummy); 5879 } 5880 5881 callback_list = acb->acb_next; 5882 kmem_free(acb, sizeof (arc_callback_t)); 5883 } 5884 5885 if (freeable) 5886 arc_hdr_destroy(hdr); 5887 } 5888 5889 /* 5890 * "Read" the block at the specified DVA (in bp) via the 5891 * cache. If the block is found in the cache, invoke the provided 5892 * callback immediately and return. Note that the `zio' parameter 5893 * in the callback will be NULL in this case, since no IO was 5894 * required. If the block is not in the cache pass the read request 5895 * on to the spa with a substitute callback function, so that the 5896 * requested block will be added to the cache. 5897 * 5898 * If a read request arrives for a block that has a read in-progress, 5899 * either wait for the in-progress read to complete (and return the 5900 * results); or, if this is a read with a "done" func, add a record 5901 * to the read to invoke the "done" func when the read completes, 5902 * and return; or just return. 5903 * 5904 * arc_read_done() will invoke all the requested "done" functions 5905 * for readers of this block. 5906 */ 5907 int 5908 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 5909 arc_read_done_func_t *done, void *private, zio_priority_t priority, 5910 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 5911 { 5912 arc_buf_hdr_t *hdr = NULL; 5913 kmutex_t *hash_lock = NULL; 5914 zio_t *rzio; 5915 uint64_t guid = spa_load_guid(spa); 5916 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0; 5917 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) && 5918 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5919 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) && 5920 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5921 boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp); 5922 boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF; 5923 int rc = 0; 5924 5925 ASSERT(!embedded_bp || 5926 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 5927 ASSERT(!BP_IS_HOLE(bp)); 5928 ASSERT(!BP_IS_REDACTED(bp)); 5929 5930 /* 5931 * Normally SPL_FSTRANS will already be set since kernel threads which 5932 * expect to call the DMU interfaces will set it when created. System 5933 * calls are similarly handled by setting/cleaning the bit in the 5934 * registered callback (module/os/.../zfs/zpl_*). 5935 * 5936 * External consumers such as Lustre which call the exported DMU 5937 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock 5938 * on the hash_lock always set and clear the bit. 5939 */ 5940 fstrans_cookie_t cookie = spl_fstrans_mark(); 5941 top: 5942 if (!embedded_bp) { 5943 /* 5944 * Embedded BP's have no DVA and require no I/O to "read". 5945 * Create an anonymous arc buf to back it. 5946 */ 5947 hdr = buf_hash_find(guid, bp, &hash_lock); 5948 } 5949 5950 /* 5951 * Determine if we have an L1 cache hit or a cache miss. For simplicity 5952 * we maintain encrypted data separately from compressed / uncompressed 5953 * data. If the user is requesting raw encrypted data and we don't have 5954 * that in the header we will read from disk to guarantee that we can 5955 * get it even if the encryption keys aren't loaded. 5956 */ 5957 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) || 5958 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) { 5959 arc_buf_t *buf = NULL; 5960 *arc_flags |= ARC_FLAG_CACHED; 5961 5962 if (HDR_IO_IN_PROGRESS(hdr)) { 5963 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head; 5964 5965 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 5966 mutex_exit(hash_lock); 5967 ARCSTAT_BUMP(arcstat_cached_only_in_progress); 5968 rc = SET_ERROR(ENOENT); 5969 goto out; 5970 } 5971 5972 ASSERT3P(head_zio, !=, NULL); 5973 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && 5974 priority == ZIO_PRIORITY_SYNC_READ) { 5975 /* 5976 * This is a sync read that needs to wait for 5977 * an in-flight async read. Request that the 5978 * zio have its priority upgraded. 5979 */ 5980 zio_change_priority(head_zio, priority); 5981 DTRACE_PROBE1(arc__async__upgrade__sync, 5982 arc_buf_hdr_t *, hdr); 5983 ARCSTAT_BUMP(arcstat_async_upgrade_sync); 5984 } 5985 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 5986 arc_hdr_clear_flags(hdr, 5987 ARC_FLAG_PREDICTIVE_PREFETCH); 5988 } 5989 5990 if (*arc_flags & ARC_FLAG_WAIT) { 5991 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 5992 mutex_exit(hash_lock); 5993 goto top; 5994 } 5995 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 5996 5997 if (done) { 5998 arc_callback_t *acb = NULL; 5999 6000 acb = kmem_zalloc(sizeof (arc_callback_t), 6001 KM_SLEEP); 6002 acb->acb_done = done; 6003 acb->acb_private = private; 6004 acb->acb_compressed = compressed_read; 6005 acb->acb_encrypted = encrypted_read; 6006 acb->acb_noauth = noauth_read; 6007 acb->acb_nobuf = no_buf; 6008 acb->acb_zb = *zb; 6009 if (pio != NULL) 6010 acb->acb_zio_dummy = zio_null(pio, 6011 spa, NULL, NULL, NULL, zio_flags); 6012 6013 ASSERT3P(acb->acb_done, !=, NULL); 6014 acb->acb_zio_head = head_zio; 6015 acb->acb_next = hdr->b_l1hdr.b_acb; 6016 hdr->b_l1hdr.b_acb = acb; 6017 } 6018 mutex_exit(hash_lock); 6019 goto out; 6020 } 6021 6022 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 6023 hdr->b_l1hdr.b_state == arc_mfu); 6024 6025 if (done && !no_buf) { 6026 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 6027 /* 6028 * This is a demand read which does not have to 6029 * wait for i/o because we did a predictive 6030 * prefetch i/o for it, which has completed. 6031 */ 6032 DTRACE_PROBE1( 6033 arc__demand__hit__predictive__prefetch, 6034 arc_buf_hdr_t *, hdr); 6035 ARCSTAT_BUMP( 6036 arcstat_demand_hit_predictive_prefetch); 6037 arc_hdr_clear_flags(hdr, 6038 ARC_FLAG_PREDICTIVE_PREFETCH); 6039 } 6040 6041 if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) { 6042 ARCSTAT_BUMP( 6043 arcstat_demand_hit_prescient_prefetch); 6044 arc_hdr_clear_flags(hdr, 6045 ARC_FLAG_PRESCIENT_PREFETCH); 6046 } 6047 6048 ASSERT(!embedded_bp || !BP_IS_HOLE(bp)); 6049 6050 /* Get a buf with the desired data in it. */ 6051 rc = arc_buf_alloc_impl(hdr, spa, zb, private, 6052 encrypted_read, compressed_read, noauth_read, 6053 B_TRUE, &buf); 6054 if (rc == ECKSUM) { 6055 /* 6056 * Convert authentication and decryption errors 6057 * to EIO (and generate an ereport if needed) 6058 * before leaving the ARC. 6059 */ 6060 rc = SET_ERROR(EIO); 6061 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) { 6062 spa_log_error(spa, zb); 6063 (void) zfs_ereport_post( 6064 FM_EREPORT_ZFS_AUTHENTICATION, 6065 spa, NULL, zb, NULL, 0); 6066 } 6067 } 6068 if (rc != 0) { 6069 (void) remove_reference(hdr, hash_lock, 6070 private); 6071 arc_buf_destroy_impl(buf); 6072 buf = NULL; 6073 } 6074 6075 /* assert any errors weren't due to unloaded keys */ 6076 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) || 6077 rc != EACCES); 6078 } else if (*arc_flags & ARC_FLAG_PREFETCH && 6079 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6080 if (HDR_HAS_L2HDR(hdr)) 6081 l2arc_hdr_arcstats_decrement_state(hdr); 6082 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 6083 if (HDR_HAS_L2HDR(hdr)) 6084 l2arc_hdr_arcstats_increment_state(hdr); 6085 } 6086 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 6087 arc_access(hdr, hash_lock); 6088 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 6089 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 6090 if (*arc_flags & ARC_FLAG_L2CACHE) 6091 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6092 mutex_exit(hash_lock); 6093 ARCSTAT_BUMP(arcstat_hits); 6094 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 6095 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 6096 data, metadata, hits); 6097 6098 if (done) 6099 done(NULL, zb, bp, buf, private); 6100 } else { 6101 uint64_t lsize = BP_GET_LSIZE(bp); 6102 uint64_t psize = BP_GET_PSIZE(bp); 6103 arc_callback_t *acb; 6104 vdev_t *vd = NULL; 6105 uint64_t addr = 0; 6106 boolean_t devw = B_FALSE; 6107 uint64_t size; 6108 abd_t *hdr_abd; 6109 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0; 6110 6111 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 6112 rc = SET_ERROR(ENOENT); 6113 if (hash_lock != NULL) 6114 mutex_exit(hash_lock); 6115 goto out; 6116 } 6117 6118 /* 6119 * Gracefully handle a damaged logical block size as a 6120 * checksum error. 6121 */ 6122 if (lsize > spa_maxblocksize(spa)) { 6123 rc = SET_ERROR(ECKSUM); 6124 if (hash_lock != NULL) 6125 mutex_exit(hash_lock); 6126 goto out; 6127 } 6128 6129 if (hdr == NULL) { 6130 /* 6131 * This block is not in the cache or it has 6132 * embedded data. 6133 */ 6134 arc_buf_hdr_t *exists = NULL; 6135 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 6136 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 6137 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type, 6138 encrypted_read); 6139 6140 if (!embedded_bp) { 6141 hdr->b_dva = *BP_IDENTITY(bp); 6142 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 6143 exists = buf_hash_insert(hdr, &hash_lock); 6144 } 6145 if (exists != NULL) { 6146 /* somebody beat us to the hash insert */ 6147 mutex_exit(hash_lock); 6148 buf_discard_identity(hdr); 6149 arc_hdr_destroy(hdr); 6150 goto top; /* restart the IO request */ 6151 } 6152 } else { 6153 /* 6154 * This block is in the ghost cache or encrypted data 6155 * was requested and we didn't have it. If it was 6156 * L2-only (and thus didn't have an L1 hdr), 6157 * we realloc the header to add an L1 hdr. 6158 */ 6159 if (!HDR_HAS_L1HDR(hdr)) { 6160 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 6161 hdr_full_cache); 6162 } 6163 6164 if (GHOST_STATE(hdr->b_l1hdr.b_state)) { 6165 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6166 ASSERT(!HDR_HAS_RABD(hdr)); 6167 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6168 ASSERT0(zfs_refcount_count( 6169 &hdr->b_l1hdr.b_refcnt)); 6170 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 6171 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 6172 } else if (HDR_IO_IN_PROGRESS(hdr)) { 6173 /* 6174 * If this header already had an IO in progress 6175 * and we are performing another IO to fetch 6176 * encrypted data we must wait until the first 6177 * IO completes so as not to confuse 6178 * arc_read_done(). This should be very rare 6179 * and so the performance impact shouldn't 6180 * matter. 6181 */ 6182 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 6183 mutex_exit(hash_lock); 6184 goto top; 6185 } 6186 6187 /* 6188 * This is a delicate dance that we play here. 6189 * This hdr might be in the ghost list so we access 6190 * it to move it out of the ghost list before we 6191 * initiate the read. If it's a prefetch then 6192 * it won't have a callback so we'll remove the 6193 * reference that arc_buf_alloc_impl() created. We 6194 * do this after we've called arc_access() to 6195 * avoid hitting an assert in remove_reference(). 6196 */ 6197 arc_adapt(arc_hdr_size(hdr), hdr->b_l1hdr.b_state); 6198 arc_access(hdr, hash_lock); 6199 arc_hdr_alloc_abd(hdr, alloc_flags); 6200 } 6201 6202 if (encrypted_read) { 6203 ASSERT(HDR_HAS_RABD(hdr)); 6204 size = HDR_GET_PSIZE(hdr); 6205 hdr_abd = hdr->b_crypt_hdr.b_rabd; 6206 zio_flags |= ZIO_FLAG_RAW; 6207 } else { 6208 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 6209 size = arc_hdr_size(hdr); 6210 hdr_abd = hdr->b_l1hdr.b_pabd; 6211 6212 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 6213 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 6214 } 6215 6216 /* 6217 * For authenticated bp's, we do not ask the ZIO layer 6218 * to authenticate them since this will cause the entire 6219 * IO to fail if the key isn't loaded. Instead, we 6220 * defer authentication until arc_buf_fill(), which will 6221 * verify the data when the key is available. 6222 */ 6223 if (BP_IS_AUTHENTICATED(bp)) 6224 zio_flags |= ZIO_FLAG_RAW_ENCRYPT; 6225 } 6226 6227 if (*arc_flags & ARC_FLAG_PREFETCH && 6228 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6229 if (HDR_HAS_L2HDR(hdr)) 6230 l2arc_hdr_arcstats_decrement_state(hdr); 6231 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 6232 if (HDR_HAS_L2HDR(hdr)) 6233 l2arc_hdr_arcstats_increment_state(hdr); 6234 } 6235 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 6236 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 6237 if (*arc_flags & ARC_FLAG_L2CACHE) 6238 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6239 if (BP_IS_AUTHENTICATED(bp)) 6240 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6241 if (BP_GET_LEVEL(bp) > 0) 6242 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); 6243 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH) 6244 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH); 6245 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 6246 6247 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 6248 acb->acb_done = done; 6249 acb->acb_private = private; 6250 acb->acb_compressed = compressed_read; 6251 acb->acb_encrypted = encrypted_read; 6252 acb->acb_noauth = noauth_read; 6253 acb->acb_zb = *zb; 6254 6255 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6256 hdr->b_l1hdr.b_acb = acb; 6257 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6258 6259 if (HDR_HAS_L2HDR(hdr) && 6260 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 6261 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 6262 addr = hdr->b_l2hdr.b_daddr; 6263 /* 6264 * Lock out L2ARC device removal. 6265 */ 6266 if (vdev_is_dead(vd) || 6267 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 6268 vd = NULL; 6269 } 6270 6271 /* 6272 * We count both async reads and scrub IOs as asynchronous so 6273 * that both can be upgraded in the event of a cache hit while 6274 * the read IO is still in-flight. 6275 */ 6276 if (priority == ZIO_PRIORITY_ASYNC_READ || 6277 priority == ZIO_PRIORITY_SCRUB) 6278 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6279 else 6280 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6281 6282 /* 6283 * At this point, we have a level 1 cache miss or a blkptr 6284 * with embedded data. Try again in L2ARC if possible. 6285 */ 6286 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); 6287 6288 /* 6289 * Skip ARC stat bump for block pointers with embedded 6290 * data. The data are read from the blkptr itself via 6291 * decode_embedded_bp_compressed(). 6292 */ 6293 if (!embedded_bp) { 6294 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, 6295 blkptr_t *, bp, uint64_t, lsize, 6296 zbookmark_phys_t *, zb); 6297 ARCSTAT_BUMP(arcstat_misses); 6298 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 6299 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, 6300 metadata, misses); 6301 zfs_racct_read(size, 1); 6302 } 6303 6304 /* Check if the spa even has l2 configured */ 6305 const boolean_t spa_has_l2 = l2arc_ndev != 0 && 6306 spa->spa_l2cache.sav_count > 0; 6307 6308 if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) { 6309 /* 6310 * Read from the L2ARC if the following are true: 6311 * 1. The L2ARC vdev was previously cached. 6312 * 2. This buffer still has L2ARC metadata. 6313 * 3. This buffer isn't currently writing to the L2ARC. 6314 * 4. The L2ARC entry wasn't evicted, which may 6315 * also have invalidated the vdev. 6316 * 5. This isn't prefetch or l2arc_noprefetch is 0. 6317 */ 6318 if (HDR_HAS_L2HDR(hdr) && 6319 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 6320 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 6321 l2arc_read_callback_t *cb; 6322 abd_t *abd; 6323 uint64_t asize; 6324 6325 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 6326 ARCSTAT_BUMP(arcstat_l2_hits); 6327 atomic_inc_32(&hdr->b_l2hdr.b_hits); 6328 6329 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 6330 KM_SLEEP); 6331 cb->l2rcb_hdr = hdr; 6332 cb->l2rcb_bp = *bp; 6333 cb->l2rcb_zb = *zb; 6334 cb->l2rcb_flags = zio_flags; 6335 6336 /* 6337 * When Compressed ARC is disabled, but the 6338 * L2ARC block is compressed, arc_hdr_size() 6339 * will have returned LSIZE rather than PSIZE. 6340 */ 6341 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 6342 !HDR_COMPRESSION_ENABLED(hdr) && 6343 HDR_GET_PSIZE(hdr) != 0) { 6344 size = HDR_GET_PSIZE(hdr); 6345 } 6346 6347 asize = vdev_psize_to_asize(vd, size); 6348 if (asize != size) { 6349 abd = abd_alloc_for_io(asize, 6350 HDR_ISTYPE_METADATA(hdr)); 6351 cb->l2rcb_abd = abd; 6352 } else { 6353 abd = hdr_abd; 6354 } 6355 6356 ASSERT(addr >= VDEV_LABEL_START_SIZE && 6357 addr + asize <= vd->vdev_psize - 6358 VDEV_LABEL_END_SIZE); 6359 6360 /* 6361 * l2arc read. The SCL_L2ARC lock will be 6362 * released by l2arc_read_done(). 6363 * Issue a null zio if the underlying buffer 6364 * was squashed to zero size by compression. 6365 */ 6366 ASSERT3U(arc_hdr_get_compress(hdr), !=, 6367 ZIO_COMPRESS_EMPTY); 6368 rzio = zio_read_phys(pio, vd, addr, 6369 asize, abd, 6370 ZIO_CHECKSUM_OFF, 6371 l2arc_read_done, cb, priority, 6372 zio_flags | ZIO_FLAG_DONT_CACHE | 6373 ZIO_FLAG_CANFAIL | 6374 ZIO_FLAG_DONT_PROPAGATE | 6375 ZIO_FLAG_DONT_RETRY, B_FALSE); 6376 acb->acb_zio_head = rzio; 6377 6378 if (hash_lock != NULL) 6379 mutex_exit(hash_lock); 6380 6381 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 6382 zio_t *, rzio); 6383 ARCSTAT_INCR(arcstat_l2_read_bytes, 6384 HDR_GET_PSIZE(hdr)); 6385 6386 if (*arc_flags & ARC_FLAG_NOWAIT) { 6387 zio_nowait(rzio); 6388 goto out; 6389 } 6390 6391 ASSERT(*arc_flags & ARC_FLAG_WAIT); 6392 if (zio_wait(rzio) == 0) 6393 goto out; 6394 6395 /* l2arc read error; goto zio_read() */ 6396 if (hash_lock != NULL) 6397 mutex_enter(hash_lock); 6398 } else { 6399 DTRACE_PROBE1(l2arc__miss, 6400 arc_buf_hdr_t *, hdr); 6401 ARCSTAT_BUMP(arcstat_l2_misses); 6402 if (HDR_L2_WRITING(hdr)) 6403 ARCSTAT_BUMP(arcstat_l2_rw_clash); 6404 spa_config_exit(spa, SCL_L2ARC, vd); 6405 } 6406 } else { 6407 if (vd != NULL) 6408 spa_config_exit(spa, SCL_L2ARC, vd); 6409 6410 /* 6411 * Only a spa with l2 should contribute to l2 6412 * miss stats. (Including the case of having a 6413 * faulted cache device - that's also a miss.) 6414 */ 6415 if (spa_has_l2) { 6416 /* 6417 * Skip ARC stat bump for block pointers with 6418 * embedded data. The data are read from the 6419 * blkptr itself via 6420 * decode_embedded_bp_compressed(). 6421 */ 6422 if (!embedded_bp) { 6423 DTRACE_PROBE1(l2arc__miss, 6424 arc_buf_hdr_t *, hdr); 6425 ARCSTAT_BUMP(arcstat_l2_misses); 6426 } 6427 } 6428 } 6429 6430 rzio = zio_read(pio, spa, bp, hdr_abd, size, 6431 arc_read_done, hdr, priority, zio_flags, zb); 6432 acb->acb_zio_head = rzio; 6433 6434 if (hash_lock != NULL) 6435 mutex_exit(hash_lock); 6436 6437 if (*arc_flags & ARC_FLAG_WAIT) { 6438 rc = zio_wait(rzio); 6439 goto out; 6440 } 6441 6442 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 6443 zio_nowait(rzio); 6444 } 6445 6446 out: 6447 /* embedded bps don't actually go to disk */ 6448 if (!embedded_bp) 6449 spa_read_history_add(spa, zb, *arc_flags); 6450 spl_fstrans_unmark(cookie); 6451 return (rc); 6452 } 6453 6454 arc_prune_t * 6455 arc_add_prune_callback(arc_prune_func_t *func, void *private) 6456 { 6457 arc_prune_t *p; 6458 6459 p = kmem_alloc(sizeof (*p), KM_SLEEP); 6460 p->p_pfunc = func; 6461 p->p_private = private; 6462 list_link_init(&p->p_node); 6463 zfs_refcount_create(&p->p_refcnt); 6464 6465 mutex_enter(&arc_prune_mtx); 6466 zfs_refcount_add(&p->p_refcnt, &arc_prune_list); 6467 list_insert_head(&arc_prune_list, p); 6468 mutex_exit(&arc_prune_mtx); 6469 6470 return (p); 6471 } 6472 6473 void 6474 arc_remove_prune_callback(arc_prune_t *p) 6475 { 6476 boolean_t wait = B_FALSE; 6477 mutex_enter(&arc_prune_mtx); 6478 list_remove(&arc_prune_list, p); 6479 if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0) 6480 wait = B_TRUE; 6481 mutex_exit(&arc_prune_mtx); 6482 6483 /* wait for arc_prune_task to finish */ 6484 if (wait) 6485 taskq_wait_outstanding(arc_prune_taskq, 0); 6486 ASSERT0(zfs_refcount_count(&p->p_refcnt)); 6487 zfs_refcount_destroy(&p->p_refcnt); 6488 kmem_free(p, sizeof (*p)); 6489 } 6490 6491 /* 6492 * Notify the arc that a block was freed, and thus will never be used again. 6493 */ 6494 void 6495 arc_freed(spa_t *spa, const blkptr_t *bp) 6496 { 6497 arc_buf_hdr_t *hdr; 6498 kmutex_t *hash_lock; 6499 uint64_t guid = spa_load_guid(spa); 6500 6501 ASSERT(!BP_IS_EMBEDDED(bp)); 6502 6503 hdr = buf_hash_find(guid, bp, &hash_lock); 6504 if (hdr == NULL) 6505 return; 6506 6507 /* 6508 * We might be trying to free a block that is still doing I/O 6509 * (i.e. prefetch) or has a reference (i.e. a dedup-ed, 6510 * dmu_sync-ed block). If this block is being prefetched, then it 6511 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr 6512 * until the I/O completes. A block may also have a reference if it is 6513 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would 6514 * have written the new block to its final resting place on disk but 6515 * without the dedup flag set. This would have left the hdr in the MRU 6516 * state and discoverable. When the txg finally syncs it detects that 6517 * the block was overridden in open context and issues an override I/O. 6518 * Since this is a dedup block, the override I/O will determine if the 6519 * block is already in the DDT. If so, then it will replace the io_bp 6520 * with the bp from the DDT and allow the I/O to finish. When the I/O 6521 * reaches the done callback, dbuf_write_override_done, it will 6522 * check to see if the io_bp and io_bp_override are identical. 6523 * If they are not, then it indicates that the bp was replaced with 6524 * the bp in the DDT and the override bp is freed. This allows 6525 * us to arrive here with a reference on a block that is being 6526 * freed. So if we have an I/O in progress, or a reference to 6527 * this hdr, then we don't destroy the hdr. 6528 */ 6529 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) && 6530 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) { 6531 arc_change_state(arc_anon, hdr, hash_lock); 6532 arc_hdr_destroy(hdr); 6533 mutex_exit(hash_lock); 6534 } else { 6535 mutex_exit(hash_lock); 6536 } 6537 6538 } 6539 6540 /* 6541 * Release this buffer from the cache, making it an anonymous buffer. This 6542 * must be done after a read and prior to modifying the buffer contents. 6543 * If the buffer has more than one reference, we must make 6544 * a new hdr for the buffer. 6545 */ 6546 void 6547 arc_release(arc_buf_t *buf, void *tag) 6548 { 6549 arc_buf_hdr_t *hdr = buf->b_hdr; 6550 6551 /* 6552 * It would be nice to assert that if its DMU metadata (level > 6553 * 0 || it's the dnode file), then it must be syncing context. 6554 * But we don't know that information at this level. 6555 */ 6556 6557 mutex_enter(&buf->b_evict_lock); 6558 6559 ASSERT(HDR_HAS_L1HDR(hdr)); 6560 6561 /* 6562 * We don't grab the hash lock prior to this check, because if 6563 * the buffer's header is in the arc_anon state, it won't be 6564 * linked into the hash table. 6565 */ 6566 if (hdr->b_l1hdr.b_state == arc_anon) { 6567 mutex_exit(&buf->b_evict_lock); 6568 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6569 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 6570 ASSERT(!HDR_HAS_L2HDR(hdr)); 6571 ASSERT(HDR_EMPTY(hdr)); 6572 6573 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6574 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 6575 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node)); 6576 6577 hdr->b_l1hdr.b_arc_access = 0; 6578 6579 /* 6580 * If the buf is being overridden then it may already 6581 * have a hdr that is not empty. 6582 */ 6583 buf_discard_identity(hdr); 6584 arc_buf_thaw(buf); 6585 6586 return; 6587 } 6588 6589 kmutex_t *hash_lock = HDR_LOCK(hdr); 6590 mutex_enter(hash_lock); 6591 6592 /* 6593 * This assignment is only valid as long as the hash_lock is 6594 * held, we must be careful not to reference state or the 6595 * b_state field after dropping the lock. 6596 */ 6597 arc_state_t *state = hdr->b_l1hdr.b_state; 6598 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 6599 ASSERT3P(state, !=, arc_anon); 6600 6601 /* this buffer is not on any list */ 6602 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0); 6603 6604 if (HDR_HAS_L2HDR(hdr)) { 6605 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6606 6607 /* 6608 * We have to recheck this conditional again now that 6609 * we're holding the l2ad_mtx to prevent a race with 6610 * another thread which might be concurrently calling 6611 * l2arc_evict(). In that case, l2arc_evict() might have 6612 * destroyed the header's L2 portion as we were waiting 6613 * to acquire the l2ad_mtx. 6614 */ 6615 if (HDR_HAS_L2HDR(hdr)) 6616 arc_hdr_l2hdr_destroy(hdr); 6617 6618 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6619 } 6620 6621 /* 6622 * Do we have more than one buf? 6623 */ 6624 if (hdr->b_l1hdr.b_bufcnt > 1) { 6625 arc_buf_hdr_t *nhdr; 6626 uint64_t spa = hdr->b_spa; 6627 uint64_t psize = HDR_GET_PSIZE(hdr); 6628 uint64_t lsize = HDR_GET_LSIZE(hdr); 6629 boolean_t protected = HDR_PROTECTED(hdr); 6630 enum zio_compress compress = arc_hdr_get_compress(hdr); 6631 arc_buf_contents_t type = arc_buf_type(hdr); 6632 VERIFY3U(hdr->b_type, ==, type); 6633 6634 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); 6635 (void) remove_reference(hdr, hash_lock, tag); 6636 6637 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) { 6638 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6639 ASSERT(ARC_BUF_LAST(buf)); 6640 } 6641 6642 /* 6643 * Pull the data off of this hdr and attach it to 6644 * a new anonymous hdr. Also find the last buffer 6645 * in the hdr's buffer list. 6646 */ 6647 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 6648 ASSERT3P(lastbuf, !=, NULL); 6649 6650 /* 6651 * If the current arc_buf_t and the hdr are sharing their data 6652 * buffer, then we must stop sharing that block. 6653 */ 6654 if (arc_buf_is_shared(buf)) { 6655 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6656 VERIFY(!arc_buf_is_shared(lastbuf)); 6657 6658 /* 6659 * First, sever the block sharing relationship between 6660 * buf and the arc_buf_hdr_t. 6661 */ 6662 arc_unshare_buf(hdr, buf); 6663 6664 /* 6665 * Now we need to recreate the hdr's b_pabd. Since we 6666 * have lastbuf handy, we try to share with it, but if 6667 * we can't then we allocate a new b_pabd and copy the 6668 * data from buf into it. 6669 */ 6670 if (arc_can_share(hdr, lastbuf)) { 6671 arc_share_buf(hdr, lastbuf); 6672 } else { 6673 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 6674 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, 6675 buf->b_data, psize); 6676 } 6677 VERIFY3P(lastbuf->b_data, !=, NULL); 6678 } else if (HDR_SHARED_DATA(hdr)) { 6679 /* 6680 * Uncompressed shared buffers are always at the end 6681 * of the list. Compressed buffers don't have the 6682 * same requirements. This makes it hard to 6683 * simply assert that the lastbuf is shared so 6684 * we rely on the hdr's compression flags to determine 6685 * if we have a compressed, shared buffer. 6686 */ 6687 ASSERT(arc_buf_is_shared(lastbuf) || 6688 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 6689 ASSERT(!ARC_BUF_SHARED(buf)); 6690 } 6691 6692 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 6693 ASSERT3P(state, !=, arc_l2c_only); 6694 6695 (void) zfs_refcount_remove_many(&state->arcs_size, 6696 arc_buf_size(buf), buf); 6697 6698 if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6699 ASSERT3P(state, !=, arc_l2c_only); 6700 (void) zfs_refcount_remove_many( 6701 &state->arcs_esize[type], 6702 arc_buf_size(buf), buf); 6703 } 6704 6705 hdr->b_l1hdr.b_bufcnt -= 1; 6706 if (ARC_BUF_ENCRYPTED(buf)) 6707 hdr->b_crypt_hdr.b_ebufcnt -= 1; 6708 6709 arc_cksum_verify(buf); 6710 arc_buf_unwatch(buf); 6711 6712 /* if this is the last uncompressed buf free the checksum */ 6713 if (!arc_hdr_has_uncompressed_buf(hdr)) 6714 arc_cksum_free(hdr); 6715 6716 mutex_exit(hash_lock); 6717 6718 /* 6719 * Allocate a new hdr. The new hdr will contain a b_pabd 6720 * buffer which will be freed in arc_write(). 6721 */ 6722 nhdr = arc_hdr_alloc(spa, psize, lsize, protected, 6723 compress, hdr->b_complevel, type, HDR_HAS_RABD(hdr)); 6724 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL); 6725 ASSERT0(nhdr->b_l1hdr.b_bufcnt); 6726 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt)); 6727 VERIFY3U(nhdr->b_type, ==, type); 6728 ASSERT(!HDR_SHARED_DATA(nhdr)); 6729 6730 nhdr->b_l1hdr.b_buf = buf; 6731 nhdr->b_l1hdr.b_bufcnt = 1; 6732 if (ARC_BUF_ENCRYPTED(buf)) 6733 nhdr->b_crypt_hdr.b_ebufcnt = 1; 6734 nhdr->b_l1hdr.b_mru_hits = 0; 6735 nhdr->b_l1hdr.b_mru_ghost_hits = 0; 6736 nhdr->b_l1hdr.b_mfu_hits = 0; 6737 nhdr->b_l1hdr.b_mfu_ghost_hits = 0; 6738 nhdr->b_l1hdr.b_l2_hits = 0; 6739 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 6740 buf->b_hdr = nhdr; 6741 6742 mutex_exit(&buf->b_evict_lock); 6743 (void) zfs_refcount_add_many(&arc_anon->arcs_size, 6744 arc_buf_size(buf), buf); 6745 } else { 6746 mutex_exit(&buf->b_evict_lock); 6747 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 6748 /* protected by hash lock, or hdr is on arc_anon */ 6749 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 6750 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6751 hdr->b_l1hdr.b_mru_hits = 0; 6752 hdr->b_l1hdr.b_mru_ghost_hits = 0; 6753 hdr->b_l1hdr.b_mfu_hits = 0; 6754 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 6755 hdr->b_l1hdr.b_l2_hits = 0; 6756 arc_change_state(arc_anon, hdr, hash_lock); 6757 hdr->b_l1hdr.b_arc_access = 0; 6758 6759 mutex_exit(hash_lock); 6760 buf_discard_identity(hdr); 6761 arc_buf_thaw(buf); 6762 } 6763 } 6764 6765 int 6766 arc_released(arc_buf_t *buf) 6767 { 6768 int released; 6769 6770 mutex_enter(&buf->b_evict_lock); 6771 released = (buf->b_data != NULL && 6772 buf->b_hdr->b_l1hdr.b_state == arc_anon); 6773 mutex_exit(&buf->b_evict_lock); 6774 return (released); 6775 } 6776 6777 #ifdef ZFS_DEBUG 6778 int 6779 arc_referenced(arc_buf_t *buf) 6780 { 6781 int referenced; 6782 6783 mutex_enter(&buf->b_evict_lock); 6784 referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 6785 mutex_exit(&buf->b_evict_lock); 6786 return (referenced); 6787 } 6788 #endif 6789 6790 static void 6791 arc_write_ready(zio_t *zio) 6792 { 6793 arc_write_callback_t *callback = zio->io_private; 6794 arc_buf_t *buf = callback->awcb_buf; 6795 arc_buf_hdr_t *hdr = buf->b_hdr; 6796 blkptr_t *bp = zio->io_bp; 6797 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp); 6798 fstrans_cookie_t cookie = spl_fstrans_mark(); 6799 6800 ASSERT(HDR_HAS_L1HDR(hdr)); 6801 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 6802 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 6803 6804 /* 6805 * If we're reexecuting this zio because the pool suspended, then 6806 * cleanup any state that was previously set the first time the 6807 * callback was invoked. 6808 */ 6809 if (zio->io_flags & ZIO_FLAG_REEXECUTED) { 6810 arc_cksum_free(hdr); 6811 arc_buf_unwatch(buf); 6812 if (hdr->b_l1hdr.b_pabd != NULL) { 6813 if (arc_buf_is_shared(buf)) { 6814 arc_unshare_buf(hdr, buf); 6815 } else { 6816 arc_hdr_free_abd(hdr, B_FALSE); 6817 } 6818 } 6819 6820 if (HDR_HAS_RABD(hdr)) 6821 arc_hdr_free_abd(hdr, B_TRUE); 6822 } 6823 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6824 ASSERT(!HDR_HAS_RABD(hdr)); 6825 ASSERT(!HDR_SHARED_DATA(hdr)); 6826 ASSERT(!arc_buf_is_shared(buf)); 6827 6828 callback->awcb_ready(zio, buf, callback->awcb_private); 6829 6830 if (HDR_IO_IN_PROGRESS(hdr)) 6831 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); 6832 6833 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6834 6835 if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr)) 6836 hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp)); 6837 6838 if (BP_IS_PROTECTED(bp)) { 6839 /* ZIL blocks are written through zio_rewrite */ 6840 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 6841 ASSERT(HDR_PROTECTED(hdr)); 6842 6843 if (BP_SHOULD_BYTESWAP(bp)) { 6844 if (BP_GET_LEVEL(bp) > 0) { 6845 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 6846 } else { 6847 hdr->b_l1hdr.b_byteswap = 6848 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 6849 } 6850 } else { 6851 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 6852 } 6853 6854 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 6855 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 6856 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 6857 hdr->b_crypt_hdr.b_iv); 6858 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 6859 } 6860 6861 /* 6862 * If this block was written for raw encryption but the zio layer 6863 * ended up only authenticating it, adjust the buffer flags now. 6864 */ 6865 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) { 6866 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6867 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6868 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF) 6869 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6870 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) { 6871 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6872 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6873 } 6874 6875 /* this must be done after the buffer flags are adjusted */ 6876 arc_cksum_compute(buf); 6877 6878 enum zio_compress compress; 6879 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 6880 compress = ZIO_COMPRESS_OFF; 6881 } else { 6882 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 6883 compress = BP_GET_COMPRESS(bp); 6884 } 6885 HDR_SET_PSIZE(hdr, psize); 6886 arc_hdr_set_compress(hdr, compress); 6887 hdr->b_complevel = zio->io_prop.zp_complevel; 6888 6889 if (zio->io_error != 0 || psize == 0) 6890 goto out; 6891 6892 /* 6893 * Fill the hdr with data. If the buffer is encrypted we have no choice 6894 * but to copy the data into b_radb. If the hdr is compressed, the data 6895 * we want is available from the zio, otherwise we can take it from 6896 * the buf. 6897 * 6898 * We might be able to share the buf's data with the hdr here. However, 6899 * doing so would cause the ARC to be full of linear ABDs if we write a 6900 * lot of shareable data. As a compromise, we check whether scattered 6901 * ABDs are allowed, and assume that if they are then the user wants 6902 * the ARC to be primarily filled with them regardless of the data being 6903 * written. Therefore, if they're allowed then we allocate one and copy 6904 * the data into it; otherwise, we share the data directly if we can. 6905 */ 6906 if (ARC_BUF_ENCRYPTED(buf)) { 6907 ASSERT3U(psize, >, 0); 6908 ASSERT(ARC_BUF_COMPRESSED(buf)); 6909 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA); 6910 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6911 } else if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) { 6912 /* 6913 * Ideally, we would always copy the io_abd into b_pabd, but the 6914 * user may have disabled compressed ARC, thus we must check the 6915 * hdr's compression setting rather than the io_bp's. 6916 */ 6917 if (BP_IS_ENCRYPTED(bp)) { 6918 ASSERT3U(psize, >, 0); 6919 arc_hdr_alloc_abd(hdr, 6920 ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA); 6921 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6922 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 6923 !ARC_BUF_COMPRESSED(buf)) { 6924 ASSERT3U(psize, >, 0); 6925 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 6926 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize); 6927 } else { 6928 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr)); 6929 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 6930 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data, 6931 arc_buf_size(buf)); 6932 } 6933 } else { 6934 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd)); 6935 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf)); 6936 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6937 6938 arc_share_buf(hdr, buf); 6939 } 6940 6941 out: 6942 arc_hdr_verify(hdr, bp); 6943 spl_fstrans_unmark(cookie); 6944 } 6945 6946 static void 6947 arc_write_children_ready(zio_t *zio) 6948 { 6949 arc_write_callback_t *callback = zio->io_private; 6950 arc_buf_t *buf = callback->awcb_buf; 6951 6952 callback->awcb_children_ready(zio, buf, callback->awcb_private); 6953 } 6954 6955 /* 6956 * The SPA calls this callback for each physical write that happens on behalf 6957 * of a logical write. See the comment in dbuf_write_physdone() for details. 6958 */ 6959 static void 6960 arc_write_physdone(zio_t *zio) 6961 { 6962 arc_write_callback_t *cb = zio->io_private; 6963 if (cb->awcb_physdone != NULL) 6964 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 6965 } 6966 6967 static void 6968 arc_write_done(zio_t *zio) 6969 { 6970 arc_write_callback_t *callback = zio->io_private; 6971 arc_buf_t *buf = callback->awcb_buf; 6972 arc_buf_hdr_t *hdr = buf->b_hdr; 6973 6974 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6975 6976 if (zio->io_error == 0) { 6977 arc_hdr_verify(hdr, zio->io_bp); 6978 6979 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 6980 buf_discard_identity(hdr); 6981 } else { 6982 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 6983 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 6984 } 6985 } else { 6986 ASSERT(HDR_EMPTY(hdr)); 6987 } 6988 6989 /* 6990 * If the block to be written was all-zero or compressed enough to be 6991 * embedded in the BP, no write was performed so there will be no 6992 * dva/birth/checksum. The buffer must therefore remain anonymous 6993 * (and uncached). 6994 */ 6995 if (!HDR_EMPTY(hdr)) { 6996 arc_buf_hdr_t *exists; 6997 kmutex_t *hash_lock; 6998 6999 ASSERT3U(zio->io_error, ==, 0); 7000 7001 arc_cksum_verify(buf); 7002 7003 exists = buf_hash_insert(hdr, &hash_lock); 7004 if (exists != NULL) { 7005 /* 7006 * This can only happen if we overwrite for 7007 * sync-to-convergence, because we remove 7008 * buffers from the hash table when we arc_free(). 7009 */ 7010 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 7011 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 7012 panic("bad overwrite, hdr=%p exists=%p", 7013 (void *)hdr, (void *)exists); 7014 ASSERT(zfs_refcount_is_zero( 7015 &exists->b_l1hdr.b_refcnt)); 7016 arc_change_state(arc_anon, exists, hash_lock); 7017 arc_hdr_destroy(exists); 7018 mutex_exit(hash_lock); 7019 exists = buf_hash_insert(hdr, &hash_lock); 7020 ASSERT3P(exists, ==, NULL); 7021 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 7022 /* nopwrite */ 7023 ASSERT(zio->io_prop.zp_nopwrite); 7024 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 7025 panic("bad nopwrite, hdr=%p exists=%p", 7026 (void *)hdr, (void *)exists); 7027 } else { 7028 /* Dedup */ 7029 ASSERT(hdr->b_l1hdr.b_bufcnt == 1); 7030 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 7031 ASSERT(BP_GET_DEDUP(zio->io_bp)); 7032 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 7033 } 7034 } 7035 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 7036 /* if it's not anon, we are doing a scrub */ 7037 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 7038 arc_access(hdr, hash_lock); 7039 mutex_exit(hash_lock); 7040 } else { 7041 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 7042 } 7043 7044 ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 7045 callback->awcb_done(zio, buf, callback->awcb_private); 7046 7047 abd_free(zio->io_abd); 7048 kmem_free(callback, sizeof (arc_write_callback_t)); 7049 } 7050 7051 zio_t * 7052 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 7053 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, 7054 const zio_prop_t *zp, arc_write_done_func_t *ready, 7055 arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone, 7056 arc_write_done_func_t *done, void *private, zio_priority_t priority, 7057 int zio_flags, const zbookmark_phys_t *zb) 7058 { 7059 arc_buf_hdr_t *hdr = buf->b_hdr; 7060 arc_write_callback_t *callback; 7061 zio_t *zio; 7062 zio_prop_t localprop = *zp; 7063 7064 ASSERT3P(ready, !=, NULL); 7065 ASSERT3P(done, !=, NULL); 7066 ASSERT(!HDR_IO_ERROR(hdr)); 7067 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 7068 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 7069 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 7070 if (l2arc) 7071 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 7072 7073 if (ARC_BUF_ENCRYPTED(buf)) { 7074 ASSERT(ARC_BUF_COMPRESSED(buf)); 7075 localprop.zp_encrypt = B_TRUE; 7076 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 7077 localprop.zp_complevel = hdr->b_complevel; 7078 localprop.zp_byteorder = 7079 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 7080 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 7081 bcopy(hdr->b_crypt_hdr.b_salt, localprop.zp_salt, 7082 ZIO_DATA_SALT_LEN); 7083 bcopy(hdr->b_crypt_hdr.b_iv, localprop.zp_iv, 7084 ZIO_DATA_IV_LEN); 7085 bcopy(hdr->b_crypt_hdr.b_mac, localprop.zp_mac, 7086 ZIO_DATA_MAC_LEN); 7087 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) { 7088 localprop.zp_nopwrite = B_FALSE; 7089 localprop.zp_copies = 7090 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1); 7091 } 7092 zio_flags |= ZIO_FLAG_RAW; 7093 } else if (ARC_BUF_COMPRESSED(buf)) { 7094 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf)); 7095 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 7096 localprop.zp_complevel = hdr->b_complevel; 7097 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 7098 } 7099 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 7100 callback->awcb_ready = ready; 7101 callback->awcb_children_ready = children_ready; 7102 callback->awcb_physdone = physdone; 7103 callback->awcb_done = done; 7104 callback->awcb_private = private; 7105 callback->awcb_buf = buf; 7106 7107 /* 7108 * The hdr's b_pabd is now stale, free it now. A new data block 7109 * will be allocated when the zio pipeline calls arc_write_ready(). 7110 */ 7111 if (hdr->b_l1hdr.b_pabd != NULL) { 7112 /* 7113 * If the buf is currently sharing the data block with 7114 * the hdr then we need to break that relationship here. 7115 * The hdr will remain with a NULL data pointer and the 7116 * buf will take sole ownership of the block. 7117 */ 7118 if (arc_buf_is_shared(buf)) { 7119 arc_unshare_buf(hdr, buf); 7120 } else { 7121 arc_hdr_free_abd(hdr, B_FALSE); 7122 } 7123 VERIFY3P(buf->b_data, !=, NULL); 7124 } 7125 7126 if (HDR_HAS_RABD(hdr)) 7127 arc_hdr_free_abd(hdr, B_TRUE); 7128 7129 if (!(zio_flags & ZIO_FLAG_RAW)) 7130 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); 7131 7132 ASSERT(!arc_buf_is_shared(buf)); 7133 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 7134 7135 zio = zio_write(pio, spa, txg, bp, 7136 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)), 7137 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready, 7138 (children_ready != NULL) ? arc_write_children_ready : NULL, 7139 arc_write_physdone, arc_write_done, callback, 7140 priority, zio_flags, zb); 7141 7142 return (zio); 7143 } 7144 7145 void 7146 arc_tempreserve_clear(uint64_t reserve) 7147 { 7148 atomic_add_64(&arc_tempreserve, -reserve); 7149 ASSERT((int64_t)arc_tempreserve >= 0); 7150 } 7151 7152 int 7153 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg) 7154 { 7155 int error; 7156 uint64_t anon_size; 7157 7158 if (!arc_no_grow && 7159 reserve > arc_c/4 && 7160 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT)) 7161 arc_c = MIN(arc_c_max, reserve * 4); 7162 7163 /* 7164 * Throttle when the calculated memory footprint for the TXG 7165 * exceeds the target ARC size. 7166 */ 7167 if (reserve > arc_c) { 7168 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve); 7169 return (SET_ERROR(ERESTART)); 7170 } 7171 7172 /* 7173 * Don't count loaned bufs as in flight dirty data to prevent long 7174 * network delays from blocking transactions that are ready to be 7175 * assigned to a txg. 7176 */ 7177 7178 /* assert that it has not wrapped around */ 7179 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 7180 7181 anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) - 7182 arc_loaned_bytes), 0); 7183 7184 /* 7185 * Writes will, almost always, require additional memory allocations 7186 * in order to compress/encrypt/etc the data. We therefore need to 7187 * make sure that there is sufficient available memory for this. 7188 */ 7189 error = arc_memory_throttle(spa, reserve, txg); 7190 if (error != 0) 7191 return (error); 7192 7193 /* 7194 * Throttle writes when the amount of dirty data in the cache 7195 * gets too large. We try to keep the cache less than half full 7196 * of dirty blocks so that our sync times don't grow too large. 7197 * 7198 * In the case of one pool being built on another pool, we want 7199 * to make sure we don't end up throttling the lower (backing) 7200 * pool when the upper pool is the majority contributor to dirty 7201 * data. To insure we make forward progress during throttling, we 7202 * also check the current pool's net dirty data and only throttle 7203 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty 7204 * data in the cache. 7205 * 7206 * Note: if two requests come in concurrently, we might let them 7207 * both succeed, when one of them should fail. Not a huge deal. 7208 */ 7209 uint64_t total_dirty = reserve + arc_tempreserve + anon_size; 7210 uint64_t spa_dirty_anon = spa_dirty_data(spa); 7211 uint64_t rarc_c = arc_warm ? arc_c : arc_c_max; 7212 if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 && 7213 anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 && 7214 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) { 7215 #ifdef ZFS_DEBUG 7216 uint64_t meta_esize = zfs_refcount_count( 7217 &arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7218 uint64_t data_esize = 7219 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7220 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 7221 "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n", 7222 arc_tempreserve >> 10, meta_esize >> 10, 7223 data_esize >> 10, reserve >> 10, rarc_c >> 10); 7224 #endif 7225 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle); 7226 return (SET_ERROR(ERESTART)); 7227 } 7228 atomic_add_64(&arc_tempreserve, reserve); 7229 return (0); 7230 } 7231 7232 static void 7233 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 7234 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 7235 { 7236 size->value.ui64 = zfs_refcount_count(&state->arcs_size); 7237 evict_data->value.ui64 = 7238 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); 7239 evict_metadata->value.ui64 = 7240 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); 7241 } 7242 7243 static int 7244 arc_kstat_update(kstat_t *ksp, int rw) 7245 { 7246 arc_stats_t *as = ksp->ks_data; 7247 7248 if (rw == KSTAT_WRITE) { 7249 return (SET_ERROR(EACCES)); 7250 } else { 7251 arc_kstat_update_state(arc_anon, 7252 &as->arcstat_anon_size, 7253 &as->arcstat_anon_evictable_data, 7254 &as->arcstat_anon_evictable_metadata); 7255 arc_kstat_update_state(arc_mru, 7256 &as->arcstat_mru_size, 7257 &as->arcstat_mru_evictable_data, 7258 &as->arcstat_mru_evictable_metadata); 7259 arc_kstat_update_state(arc_mru_ghost, 7260 &as->arcstat_mru_ghost_size, 7261 &as->arcstat_mru_ghost_evictable_data, 7262 &as->arcstat_mru_ghost_evictable_metadata); 7263 arc_kstat_update_state(arc_mfu, 7264 &as->arcstat_mfu_size, 7265 &as->arcstat_mfu_evictable_data, 7266 &as->arcstat_mfu_evictable_metadata); 7267 arc_kstat_update_state(arc_mfu_ghost, 7268 &as->arcstat_mfu_ghost_size, 7269 &as->arcstat_mfu_ghost_evictable_data, 7270 &as->arcstat_mfu_ghost_evictable_metadata); 7271 7272 ARCSTAT(arcstat_size) = aggsum_value(&arc_size); 7273 ARCSTAT(arcstat_meta_used) = aggsum_value(&arc_meta_used); 7274 ARCSTAT(arcstat_data_size) = wmsum_value(&astat_data_size); 7275 ARCSTAT(arcstat_metadata_size) = 7276 wmsum_value(&astat_metadata_size); 7277 ARCSTAT(arcstat_hdr_size) = wmsum_value(&astat_hdr_size); 7278 ARCSTAT(arcstat_l2_hdr_size) = aggsum_value(&astat_l2_hdr_size); 7279 ARCSTAT(arcstat_dbuf_size) = wmsum_value(&astat_dbuf_size); 7280 #if defined(COMPAT_FREEBSD11) 7281 ARCSTAT(arcstat_other_size) = wmsum_value(&astat_bonus_size) + 7282 aggsum_value(&astat_dnode_size) + 7283 wmsum_value(&astat_dbuf_size); 7284 #endif 7285 ARCSTAT(arcstat_dnode_size) = aggsum_value(&astat_dnode_size); 7286 ARCSTAT(arcstat_bonus_size) = wmsum_value(&astat_bonus_size); 7287 ARCSTAT(arcstat_abd_chunk_waste_size) = 7288 wmsum_value(&astat_abd_chunk_waste_size); 7289 7290 as->arcstat_memory_all_bytes.value.ui64 = 7291 arc_all_memory(); 7292 as->arcstat_memory_free_bytes.value.ui64 = 7293 arc_free_memory(); 7294 as->arcstat_memory_available_bytes.value.i64 = 7295 arc_available_memory(); 7296 } 7297 7298 return (0); 7299 } 7300 7301 /* 7302 * This function *must* return indices evenly distributed between all 7303 * sublists of the multilist. This is needed due to how the ARC eviction 7304 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 7305 * distributed between all sublists and uses this assumption when 7306 * deciding which sublist to evict from and how much to evict from it. 7307 */ 7308 static unsigned int 7309 arc_state_multilist_index_func(multilist_t *ml, void *obj) 7310 { 7311 arc_buf_hdr_t *hdr = obj; 7312 7313 /* 7314 * We rely on b_dva to generate evenly distributed index 7315 * numbers using buf_hash below. So, as an added precaution, 7316 * let's make sure we never add empty buffers to the arc lists. 7317 */ 7318 ASSERT(!HDR_EMPTY(hdr)); 7319 7320 /* 7321 * The assumption here, is the hash value for a given 7322 * arc_buf_hdr_t will remain constant throughout its lifetime 7323 * (i.e. its b_spa, b_dva, and b_birth fields don't change). 7324 * Thus, we don't need to store the header's sublist index 7325 * on insertion, as this index can be recalculated on removal. 7326 * 7327 * Also, the low order bits of the hash value are thought to be 7328 * distributed evenly. Otherwise, in the case that the multilist 7329 * has a power of two number of sublists, each sublists' usage 7330 * would not be evenly distributed. 7331 */ 7332 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 7333 multilist_get_num_sublists(ml)); 7334 } 7335 7336 #define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \ 7337 if ((do_warn) && (tuning) && ((tuning) != (value))) { \ 7338 cmn_err(CE_WARN, \ 7339 "ignoring tunable %s (using %llu instead)", \ 7340 (#tuning), (value)); \ 7341 } \ 7342 } while (0) 7343 7344 /* 7345 * Called during module initialization and periodically thereafter to 7346 * apply reasonable changes to the exposed performance tunings. Can also be 7347 * called explicitly by param_set_arc_*() functions when ARC tunables are 7348 * updated manually. Non-zero zfs_* values which differ from the currently set 7349 * values will be applied. 7350 */ 7351 void 7352 arc_tuning_update(boolean_t verbose) 7353 { 7354 uint64_t allmem = arc_all_memory(); 7355 unsigned long limit; 7356 7357 /* Valid range: 32M - <arc_c_max> */ 7358 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) && 7359 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) && 7360 (zfs_arc_min <= arc_c_max)) { 7361 arc_c_min = zfs_arc_min; 7362 arc_c = MAX(arc_c, arc_c_min); 7363 } 7364 WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose); 7365 7366 /* Valid range: 64M - <all physical memory> */ 7367 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) && 7368 (zfs_arc_max >= 64 << 20) && (zfs_arc_max < allmem) && 7369 (zfs_arc_max > arc_c_min)) { 7370 arc_c_max = zfs_arc_max; 7371 arc_c = MIN(arc_c, arc_c_max); 7372 arc_p = (arc_c >> 1); 7373 if (arc_meta_limit > arc_c_max) 7374 arc_meta_limit = arc_c_max; 7375 if (arc_dnode_size_limit > arc_meta_limit) 7376 arc_dnode_size_limit = arc_meta_limit; 7377 } 7378 WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose); 7379 7380 /* Valid range: 16M - <arc_c_max> */ 7381 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) && 7382 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) && 7383 (zfs_arc_meta_min <= arc_c_max)) { 7384 arc_meta_min = zfs_arc_meta_min; 7385 if (arc_meta_limit < arc_meta_min) 7386 arc_meta_limit = arc_meta_min; 7387 if (arc_dnode_size_limit < arc_meta_min) 7388 arc_dnode_size_limit = arc_meta_min; 7389 } 7390 WARN_IF_TUNING_IGNORED(zfs_arc_meta_min, arc_meta_min, verbose); 7391 7392 /* Valid range: <arc_meta_min> - <arc_c_max> */ 7393 limit = zfs_arc_meta_limit ? zfs_arc_meta_limit : 7394 MIN(zfs_arc_meta_limit_percent, 100) * arc_c_max / 100; 7395 if ((limit != arc_meta_limit) && 7396 (limit >= arc_meta_min) && 7397 (limit <= arc_c_max)) 7398 arc_meta_limit = limit; 7399 WARN_IF_TUNING_IGNORED(zfs_arc_meta_limit, arc_meta_limit, verbose); 7400 7401 /* Valid range: <arc_meta_min> - <arc_meta_limit> */ 7402 limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit : 7403 MIN(zfs_arc_dnode_limit_percent, 100) * arc_meta_limit / 100; 7404 if ((limit != arc_dnode_size_limit) && 7405 (limit >= arc_meta_min) && 7406 (limit <= arc_meta_limit)) 7407 arc_dnode_size_limit = limit; 7408 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_size_limit, 7409 verbose); 7410 7411 /* Valid range: 1 - N */ 7412 if (zfs_arc_grow_retry) 7413 arc_grow_retry = zfs_arc_grow_retry; 7414 7415 /* Valid range: 1 - N */ 7416 if (zfs_arc_shrink_shift) { 7417 arc_shrink_shift = zfs_arc_shrink_shift; 7418 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1); 7419 } 7420 7421 /* Valid range: 1 - N */ 7422 if (zfs_arc_p_min_shift) 7423 arc_p_min_shift = zfs_arc_p_min_shift; 7424 7425 /* Valid range: 1 - N ms */ 7426 if (zfs_arc_min_prefetch_ms) 7427 arc_min_prefetch_ms = zfs_arc_min_prefetch_ms; 7428 7429 /* Valid range: 1 - N ms */ 7430 if (zfs_arc_min_prescient_prefetch_ms) { 7431 arc_min_prescient_prefetch_ms = 7432 zfs_arc_min_prescient_prefetch_ms; 7433 } 7434 7435 /* Valid range: 0 - 100 */ 7436 if ((zfs_arc_lotsfree_percent >= 0) && 7437 (zfs_arc_lotsfree_percent <= 100)) 7438 arc_lotsfree_percent = zfs_arc_lotsfree_percent; 7439 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent, 7440 verbose); 7441 7442 /* Valid range: 0 - <all physical memory> */ 7443 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free)) 7444 arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), allmem); 7445 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose); 7446 } 7447 7448 static void 7449 arc_state_init(void) 7450 { 7451 arc_anon = &ARC_anon; 7452 arc_mru = &ARC_mru; 7453 arc_mru_ghost = &ARC_mru_ghost; 7454 arc_mfu = &ARC_mfu; 7455 arc_mfu_ghost = &ARC_mfu_ghost; 7456 arc_l2c_only = &ARC_l2c_only; 7457 7458 multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 7459 sizeof (arc_buf_hdr_t), 7460 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7461 arc_state_multilist_index_func); 7462 multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 7463 sizeof (arc_buf_hdr_t), 7464 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7465 arc_state_multilist_index_func); 7466 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 7467 sizeof (arc_buf_hdr_t), 7468 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7469 arc_state_multilist_index_func); 7470 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 7471 sizeof (arc_buf_hdr_t), 7472 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7473 arc_state_multilist_index_func); 7474 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 7475 sizeof (arc_buf_hdr_t), 7476 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7477 arc_state_multilist_index_func); 7478 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 7479 sizeof (arc_buf_hdr_t), 7480 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7481 arc_state_multilist_index_func); 7482 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 7483 sizeof (arc_buf_hdr_t), 7484 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7485 arc_state_multilist_index_func); 7486 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 7487 sizeof (arc_buf_hdr_t), 7488 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7489 arc_state_multilist_index_func); 7490 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 7491 sizeof (arc_buf_hdr_t), 7492 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7493 arc_state_multilist_index_func); 7494 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 7495 sizeof (arc_buf_hdr_t), 7496 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7497 arc_state_multilist_index_func); 7498 7499 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7500 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7501 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7502 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7503 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7504 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7505 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7506 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7507 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7508 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7509 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7510 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7511 7512 zfs_refcount_create(&arc_anon->arcs_size); 7513 zfs_refcount_create(&arc_mru->arcs_size); 7514 zfs_refcount_create(&arc_mru_ghost->arcs_size); 7515 zfs_refcount_create(&arc_mfu->arcs_size); 7516 zfs_refcount_create(&arc_mfu_ghost->arcs_size); 7517 zfs_refcount_create(&arc_l2c_only->arcs_size); 7518 7519 aggsum_init(&arc_meta_used, 0); 7520 aggsum_init(&arc_size, 0); 7521 wmsum_init(&astat_data_size, 0); 7522 wmsum_init(&astat_metadata_size, 0); 7523 wmsum_init(&astat_hdr_size, 0); 7524 aggsum_init(&astat_l2_hdr_size, 0); 7525 wmsum_init(&astat_bonus_size, 0); 7526 aggsum_init(&astat_dnode_size, 0); 7527 wmsum_init(&astat_dbuf_size, 0); 7528 wmsum_init(&astat_abd_chunk_waste_size, 0); 7529 7530 arc_anon->arcs_state = ARC_STATE_ANON; 7531 arc_mru->arcs_state = ARC_STATE_MRU; 7532 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST; 7533 arc_mfu->arcs_state = ARC_STATE_MFU; 7534 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST; 7535 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY; 7536 } 7537 7538 static void 7539 arc_state_fini(void) 7540 { 7541 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7542 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7543 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7544 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7545 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7546 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7547 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7548 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7549 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7550 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7551 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7552 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7553 7554 zfs_refcount_destroy(&arc_anon->arcs_size); 7555 zfs_refcount_destroy(&arc_mru->arcs_size); 7556 zfs_refcount_destroy(&arc_mru_ghost->arcs_size); 7557 zfs_refcount_destroy(&arc_mfu->arcs_size); 7558 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size); 7559 zfs_refcount_destroy(&arc_l2c_only->arcs_size); 7560 7561 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 7562 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 7563 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 7564 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 7565 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 7566 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 7567 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 7568 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 7569 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]); 7570 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]); 7571 7572 aggsum_fini(&arc_meta_used); 7573 aggsum_fini(&arc_size); 7574 wmsum_fini(&astat_data_size); 7575 wmsum_fini(&astat_metadata_size); 7576 wmsum_fini(&astat_hdr_size); 7577 aggsum_fini(&astat_l2_hdr_size); 7578 wmsum_fini(&astat_bonus_size); 7579 aggsum_fini(&astat_dnode_size); 7580 wmsum_fini(&astat_dbuf_size); 7581 wmsum_fini(&astat_abd_chunk_waste_size); 7582 } 7583 7584 uint64_t 7585 arc_target_bytes(void) 7586 { 7587 return (arc_c); 7588 } 7589 7590 void 7591 arc_set_limits(uint64_t allmem) 7592 { 7593 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */ 7594 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT); 7595 7596 /* How to set default max varies by platform. */ 7597 arc_c_max = arc_default_max(arc_c_min, allmem); 7598 } 7599 void 7600 arc_init(void) 7601 { 7602 uint64_t percent, allmem = arc_all_memory(); 7603 mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL); 7604 list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t), 7605 offsetof(arc_evict_waiter_t, aew_node)); 7606 7607 arc_min_prefetch_ms = 1000; 7608 arc_min_prescient_prefetch_ms = 6000; 7609 7610 #if defined(_KERNEL) 7611 arc_lowmem_init(); 7612 #endif 7613 7614 arc_set_limits(allmem); 7615 7616 #ifndef _KERNEL 7617 /* 7618 * In userland, there's only the memory pressure that we artificially 7619 * create (see arc_available_memory()). Don't let arc_c get too 7620 * small, because it can cause transactions to be larger than 7621 * arc_c, causing arc_tempreserve_space() to fail. 7622 */ 7623 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT); 7624 #endif 7625 7626 arc_c = arc_c_min; 7627 arc_p = (arc_c >> 1); 7628 7629 /* Set min to 1/2 of arc_c_min */ 7630 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT; 7631 /* Initialize maximum observed usage to zero */ 7632 arc_meta_max = 0; 7633 /* 7634 * Set arc_meta_limit to a percent of arc_c_max with a floor of 7635 * arc_meta_min, and a ceiling of arc_c_max. 7636 */ 7637 percent = MIN(zfs_arc_meta_limit_percent, 100); 7638 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100); 7639 percent = MIN(zfs_arc_dnode_limit_percent, 100); 7640 arc_dnode_size_limit = (percent * arc_meta_limit) / 100; 7641 7642 /* Apply user specified tunings */ 7643 arc_tuning_update(B_TRUE); 7644 7645 /* if kmem_flags are set, lets try to use less memory */ 7646 if (kmem_debugging()) 7647 arc_c = arc_c / 2; 7648 if (arc_c < arc_c_min) 7649 arc_c = arc_c_min; 7650 7651 arc_register_hotplug(); 7652 7653 arc_state_init(); 7654 7655 buf_init(); 7656 7657 list_create(&arc_prune_list, sizeof (arc_prune_t), 7658 offsetof(arc_prune_t, p_node)); 7659 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL); 7660 7661 arc_prune_taskq = taskq_create("arc_prune", 100, defclsyspri, 7662 boot_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC | 7663 TASKQ_THREADS_CPU_PCT); 7664 7665 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 7666 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 7667 7668 if (arc_ksp != NULL) { 7669 arc_ksp->ks_data = &arc_stats; 7670 arc_ksp->ks_update = arc_kstat_update; 7671 kstat_install(arc_ksp); 7672 } 7673 7674 arc_evict_zthr = zthr_create("arc_evict", 7675 arc_evict_cb_check, arc_evict_cb, NULL); 7676 arc_reap_zthr = zthr_create_timer("arc_reap", 7677 arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1)); 7678 7679 arc_warm = B_FALSE; 7680 7681 /* 7682 * Calculate maximum amount of dirty data per pool. 7683 * 7684 * If it has been set by a module parameter, take that. 7685 * Otherwise, use a percentage of physical memory defined by 7686 * zfs_dirty_data_max_percent (default 10%) with a cap at 7687 * zfs_dirty_data_max_max (default 4G or 25% of physical memory). 7688 */ 7689 #ifdef __LP64__ 7690 if (zfs_dirty_data_max_max == 0) 7691 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024, 7692 allmem * zfs_dirty_data_max_max_percent / 100); 7693 #else 7694 if (zfs_dirty_data_max_max == 0) 7695 zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024, 7696 allmem * zfs_dirty_data_max_max_percent / 100); 7697 #endif 7698 7699 if (zfs_dirty_data_max == 0) { 7700 zfs_dirty_data_max = allmem * 7701 zfs_dirty_data_max_percent / 100; 7702 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 7703 zfs_dirty_data_max_max); 7704 } 7705 } 7706 7707 void 7708 arc_fini(void) 7709 { 7710 arc_prune_t *p; 7711 7712 #ifdef _KERNEL 7713 arc_lowmem_fini(); 7714 #endif /* _KERNEL */ 7715 7716 /* Use B_TRUE to ensure *all* buffers are evicted */ 7717 arc_flush(NULL, B_TRUE); 7718 7719 if (arc_ksp != NULL) { 7720 kstat_delete(arc_ksp); 7721 arc_ksp = NULL; 7722 } 7723 7724 taskq_wait(arc_prune_taskq); 7725 taskq_destroy(arc_prune_taskq); 7726 7727 mutex_enter(&arc_prune_mtx); 7728 while ((p = list_head(&arc_prune_list)) != NULL) { 7729 list_remove(&arc_prune_list, p); 7730 zfs_refcount_remove(&p->p_refcnt, &arc_prune_list); 7731 zfs_refcount_destroy(&p->p_refcnt); 7732 kmem_free(p, sizeof (*p)); 7733 } 7734 mutex_exit(&arc_prune_mtx); 7735 7736 list_destroy(&arc_prune_list); 7737 mutex_destroy(&arc_prune_mtx); 7738 7739 (void) zthr_cancel(arc_evict_zthr); 7740 (void) zthr_cancel(arc_reap_zthr); 7741 7742 mutex_destroy(&arc_evict_lock); 7743 list_destroy(&arc_evict_waiters); 7744 7745 /* 7746 * Free any buffers that were tagged for destruction. This needs 7747 * to occur before arc_state_fini() runs and destroys the aggsum 7748 * values which are updated when freeing scatter ABDs. 7749 */ 7750 l2arc_do_free_on_write(); 7751 7752 /* 7753 * buf_fini() must proceed arc_state_fini() because buf_fin() may 7754 * trigger the release of kmem magazines, which can callback to 7755 * arc_space_return() which accesses aggsums freed in act_state_fini(). 7756 */ 7757 buf_fini(); 7758 arc_state_fini(); 7759 7760 arc_unregister_hotplug(); 7761 7762 /* 7763 * We destroy the zthrs after all the ARC state has been 7764 * torn down to avoid the case of them receiving any 7765 * wakeup() signals after they are destroyed. 7766 */ 7767 zthr_destroy(arc_evict_zthr); 7768 zthr_destroy(arc_reap_zthr); 7769 7770 ASSERT0(arc_loaned_bytes); 7771 } 7772 7773 /* 7774 * Level 2 ARC 7775 * 7776 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 7777 * It uses dedicated storage devices to hold cached data, which are populated 7778 * using large infrequent writes. The main role of this cache is to boost 7779 * the performance of random read workloads. The intended L2ARC devices 7780 * include short-stroked disks, solid state disks, and other media with 7781 * substantially faster read latency than disk. 7782 * 7783 * +-----------------------+ 7784 * | ARC | 7785 * +-----------------------+ 7786 * | ^ ^ 7787 * | | | 7788 * l2arc_feed_thread() arc_read() 7789 * | | | 7790 * | l2arc read | 7791 * V | | 7792 * +---------------+ | 7793 * | L2ARC | | 7794 * +---------------+ | 7795 * | ^ | 7796 * l2arc_write() | | 7797 * | | | 7798 * V | | 7799 * +-------+ +-------+ 7800 * | vdev | | vdev | 7801 * | cache | | cache | 7802 * +-------+ +-------+ 7803 * +=========+ .-----. 7804 * : L2ARC : |-_____-| 7805 * : devices : | Disks | 7806 * +=========+ `-_____-' 7807 * 7808 * Read requests are satisfied from the following sources, in order: 7809 * 7810 * 1) ARC 7811 * 2) vdev cache of L2ARC devices 7812 * 3) L2ARC devices 7813 * 4) vdev cache of disks 7814 * 5) disks 7815 * 7816 * Some L2ARC device types exhibit extremely slow write performance. 7817 * To accommodate for this there are some significant differences between 7818 * the L2ARC and traditional cache design: 7819 * 7820 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 7821 * the ARC behave as usual, freeing buffers and placing headers on ghost 7822 * lists. The ARC does not send buffers to the L2ARC during eviction as 7823 * this would add inflated write latencies for all ARC memory pressure. 7824 * 7825 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 7826 * It does this by periodically scanning buffers from the eviction-end of 7827 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 7828 * not already there. It scans until a headroom of buffers is satisfied, 7829 * which itself is a buffer for ARC eviction. If a compressible buffer is 7830 * found during scanning and selected for writing to an L2ARC device, we 7831 * temporarily boost scanning headroom during the next scan cycle to make 7832 * sure we adapt to compression effects (which might significantly reduce 7833 * the data volume we write to L2ARC). The thread that does this is 7834 * l2arc_feed_thread(), illustrated below; example sizes are included to 7835 * provide a better sense of ratio than this diagram: 7836 * 7837 * head --> tail 7838 * +---------------------+----------+ 7839 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 7840 * +---------------------+----------+ | o L2ARC eligible 7841 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 7842 * +---------------------+----------+ | 7843 * 15.9 Gbytes ^ 32 Mbytes | 7844 * headroom | 7845 * l2arc_feed_thread() 7846 * | 7847 * l2arc write hand <--[oooo]--' 7848 * | 8 Mbyte 7849 * | write max 7850 * V 7851 * +==============================+ 7852 * L2ARC dev |####|#|###|###| |####| ... | 7853 * +==============================+ 7854 * 32 Gbytes 7855 * 7856 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 7857 * evicted, then the L2ARC has cached a buffer much sooner than it probably 7858 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 7859 * safe to say that this is an uncommon case, since buffers at the end of 7860 * the ARC lists have moved there due to inactivity. 7861 * 7862 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 7863 * then the L2ARC simply misses copying some buffers. This serves as a 7864 * pressure valve to prevent heavy read workloads from both stalling the ARC 7865 * with waits and clogging the L2ARC with writes. This also helps prevent 7866 * the potential for the L2ARC to churn if it attempts to cache content too 7867 * quickly, such as during backups of the entire pool. 7868 * 7869 * 5. After system boot and before the ARC has filled main memory, there are 7870 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 7871 * lists can remain mostly static. Instead of searching from tail of these 7872 * lists as pictured, the l2arc_feed_thread() will search from the list heads 7873 * for eligible buffers, greatly increasing its chance of finding them. 7874 * 7875 * The L2ARC device write speed is also boosted during this time so that 7876 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 7877 * there are no L2ARC reads, and no fear of degrading read performance 7878 * through increased writes. 7879 * 7880 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 7881 * the vdev queue can aggregate them into larger and fewer writes. Each 7882 * device is written to in a rotor fashion, sweeping writes through 7883 * available space then repeating. 7884 * 7885 * 7. The L2ARC does not store dirty content. It never needs to flush 7886 * write buffers back to disk based storage. 7887 * 7888 * 8. If an ARC buffer is written (and dirtied) which also exists in the 7889 * L2ARC, the now stale L2ARC buffer is immediately dropped. 7890 * 7891 * The performance of the L2ARC can be tweaked by a number of tunables, which 7892 * may be necessary for different workloads: 7893 * 7894 * l2arc_write_max max write bytes per interval 7895 * l2arc_write_boost extra write bytes during device warmup 7896 * l2arc_noprefetch skip caching prefetched buffers 7897 * l2arc_headroom number of max device writes to precache 7898 * l2arc_headroom_boost when we find compressed buffers during ARC 7899 * scanning, we multiply headroom by this 7900 * percentage factor for the next scan cycle, 7901 * since more compressed buffers are likely to 7902 * be present 7903 * l2arc_feed_secs seconds between L2ARC writing 7904 * 7905 * Tunables may be removed or added as future performance improvements are 7906 * integrated, and also may become zpool properties. 7907 * 7908 * There are three key functions that control how the L2ARC warms up: 7909 * 7910 * l2arc_write_eligible() check if a buffer is eligible to cache 7911 * l2arc_write_size() calculate how much to write 7912 * l2arc_write_interval() calculate sleep delay between writes 7913 * 7914 * These three functions determine what to write, how much, and how quickly 7915 * to send writes. 7916 * 7917 * L2ARC persistence: 7918 * 7919 * When writing buffers to L2ARC, we periodically add some metadata to 7920 * make sure we can pick them up after reboot, thus dramatically reducing 7921 * the impact that any downtime has on the performance of storage systems 7922 * with large caches. 7923 * 7924 * The implementation works fairly simply by integrating the following two 7925 * modifications: 7926 * 7927 * *) When writing to the L2ARC, we occasionally write a "l2arc log block", 7928 * which is an additional piece of metadata which describes what's been 7929 * written. This allows us to rebuild the arc_buf_hdr_t structures of the 7930 * main ARC buffers. There are 2 linked-lists of log blocks headed by 7931 * dh_start_lbps[2]. We alternate which chain we append to, so they are 7932 * time-wise and offset-wise interleaved, but that is an optimization rather 7933 * than for correctness. The log block also includes a pointer to the 7934 * previous block in its chain. 7935 * 7936 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device 7937 * for our header bookkeeping purposes. This contains a device header, 7938 * which contains our top-level reference structures. We update it each 7939 * time we write a new log block, so that we're able to locate it in the 7940 * L2ARC device. If this write results in an inconsistent device header 7941 * (e.g. due to power failure), we detect this by verifying the header's 7942 * checksum and simply fail to reconstruct the L2ARC after reboot. 7943 * 7944 * Implementation diagram: 7945 * 7946 * +=== L2ARC device (not to scale) ======================================+ 7947 * | ___two newest log block pointers__.__________ | 7948 * | / \dh_start_lbps[1] | 7949 * | / \ \dh_start_lbps[0]| 7950 * |.___/__. V V | 7951 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---| 7952 * || hdr| ^ /^ /^ / / | 7953 * |+------+ ...--\-------/ \-----/--\------/ / | 7954 * | \--------------/ \--------------/ | 7955 * +======================================================================+ 7956 * 7957 * As can be seen on the diagram, rather than using a simple linked list, 7958 * we use a pair of linked lists with alternating elements. This is a 7959 * performance enhancement due to the fact that we only find out the 7960 * address of the next log block access once the current block has been 7961 * completely read in. Obviously, this hurts performance, because we'd be 7962 * keeping the device's I/O queue at only a 1 operation deep, thus 7963 * incurring a large amount of I/O round-trip latency. Having two lists 7964 * allows us to fetch two log blocks ahead of where we are currently 7965 * rebuilding L2ARC buffers. 7966 * 7967 * On-device data structures: 7968 * 7969 * L2ARC device header: l2arc_dev_hdr_phys_t 7970 * L2ARC log block: l2arc_log_blk_phys_t 7971 * 7972 * L2ARC reconstruction: 7973 * 7974 * When writing data, we simply write in the standard rotary fashion, 7975 * evicting buffers as we go and simply writing new data over them (writing 7976 * a new log block every now and then). This obviously means that once we 7977 * loop around the end of the device, we will start cutting into an already 7978 * committed log block (and its referenced data buffers), like so: 7979 * 7980 * current write head__ __old tail 7981 * \ / 7982 * V V 7983 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |--> 7984 * ^ ^^^^^^^^^___________________________________ 7985 * | \ 7986 * <<nextwrite>> may overwrite this blk and/or its bufs --' 7987 * 7988 * When importing the pool, we detect this situation and use it to stop 7989 * our scanning process (see l2arc_rebuild). 7990 * 7991 * There is one significant caveat to consider when rebuilding ARC contents 7992 * from an L2ARC device: what about invalidated buffers? Given the above 7993 * construction, we cannot update blocks which we've already written to amend 7994 * them to remove buffers which were invalidated. Thus, during reconstruction, 7995 * we might be populating the cache with buffers for data that's not on the 7996 * main pool anymore, or may have been overwritten! 7997 * 7998 * As it turns out, this isn't a problem. Every arc_read request includes 7999 * both the DVA and, crucially, the birth TXG of the BP the caller is 8000 * looking for. So even if the cache were populated by completely rotten 8001 * blocks for data that had been long deleted and/or overwritten, we'll 8002 * never actually return bad data from the cache, since the DVA with the 8003 * birth TXG uniquely identify a block in space and time - once created, 8004 * a block is immutable on disk. The worst thing we have done is wasted 8005 * some time and memory at l2arc rebuild to reconstruct outdated ARC 8006 * entries that will get dropped from the l2arc as it is being updated 8007 * with new blocks. 8008 * 8009 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write 8010 * hand are not restored. This is done by saving the offset (in bytes) 8011 * l2arc_evict() has evicted to in the L2ARC device header and taking it 8012 * into account when restoring buffers. 8013 */ 8014 8015 static boolean_t 8016 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 8017 { 8018 /* 8019 * A buffer is *not* eligible for the L2ARC if it: 8020 * 1. belongs to a different spa. 8021 * 2. is already cached on the L2ARC. 8022 * 3. has an I/O in progress (it may be an incomplete read). 8023 * 4. is flagged not eligible (zfs property). 8024 */ 8025 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || 8026 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr)) 8027 return (B_FALSE); 8028 8029 return (B_TRUE); 8030 } 8031 8032 static uint64_t 8033 l2arc_write_size(l2arc_dev_t *dev) 8034 { 8035 uint64_t size, dev_size, tsize; 8036 8037 /* 8038 * Make sure our globals have meaningful values in case the user 8039 * altered them. 8040 */ 8041 size = l2arc_write_max; 8042 if (size == 0) { 8043 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 8044 "be greater than zero, resetting it to the default (%d)", 8045 L2ARC_WRITE_SIZE); 8046 size = l2arc_write_max = L2ARC_WRITE_SIZE; 8047 } 8048 8049 if (arc_warm == B_FALSE) 8050 size += l2arc_write_boost; 8051 8052 /* 8053 * Make sure the write size does not exceed the size of the cache 8054 * device. This is important in l2arc_evict(), otherwise infinite 8055 * iteration can occur. 8056 */ 8057 dev_size = dev->l2ad_end - dev->l2ad_start; 8058 tsize = size + l2arc_log_blk_overhead(size, dev); 8059 if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) 8060 tsize += MAX(64 * 1024 * 1024, 8061 (tsize * l2arc_trim_ahead) / 100); 8062 8063 if (tsize >= dev_size) { 8064 cmn_err(CE_NOTE, "l2arc_write_max or l2arc_write_boost " 8065 "plus the overhead of log blocks (persistent L2ARC, " 8066 "%llu bytes) exceeds the size of the cache device " 8067 "(guid %llu), resetting them to the default (%d)", 8068 l2arc_log_blk_overhead(size, dev), 8069 dev->l2ad_vdev->vdev_guid, L2ARC_WRITE_SIZE); 8070 size = l2arc_write_max = l2arc_write_boost = L2ARC_WRITE_SIZE; 8071 8072 if (arc_warm == B_FALSE) 8073 size += l2arc_write_boost; 8074 } 8075 8076 return (size); 8077 8078 } 8079 8080 static clock_t 8081 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 8082 { 8083 clock_t interval, next, now; 8084 8085 /* 8086 * If the ARC lists are busy, increase our write rate; if the 8087 * lists are stale, idle back. This is achieved by checking 8088 * how much we previously wrote - if it was more than half of 8089 * what we wanted, schedule the next write much sooner. 8090 */ 8091 if (l2arc_feed_again && wrote > (wanted / 2)) 8092 interval = (hz * l2arc_feed_min_ms) / 1000; 8093 else 8094 interval = hz * l2arc_feed_secs; 8095 8096 now = ddi_get_lbolt(); 8097 next = MAX(now, MIN(now + interval, began + interval)); 8098 8099 return (next); 8100 } 8101 8102 /* 8103 * Cycle through L2ARC devices. This is how L2ARC load balances. 8104 * If a device is returned, this also returns holding the spa config lock. 8105 */ 8106 static l2arc_dev_t * 8107 l2arc_dev_get_next(void) 8108 { 8109 l2arc_dev_t *first, *next = NULL; 8110 8111 /* 8112 * Lock out the removal of spas (spa_namespace_lock), then removal 8113 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 8114 * both locks will be dropped and a spa config lock held instead. 8115 */ 8116 mutex_enter(&spa_namespace_lock); 8117 mutex_enter(&l2arc_dev_mtx); 8118 8119 /* if there are no vdevs, there is nothing to do */ 8120 if (l2arc_ndev == 0) 8121 goto out; 8122 8123 first = NULL; 8124 next = l2arc_dev_last; 8125 do { 8126 /* loop around the list looking for a non-faulted vdev */ 8127 if (next == NULL) { 8128 next = list_head(l2arc_dev_list); 8129 } else { 8130 next = list_next(l2arc_dev_list, next); 8131 if (next == NULL) 8132 next = list_head(l2arc_dev_list); 8133 } 8134 8135 /* if we have come back to the start, bail out */ 8136 if (first == NULL) 8137 first = next; 8138 else if (next == first) 8139 break; 8140 8141 } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || 8142 next->l2ad_trim_all); 8143 8144 /* if we were unable to find any usable vdevs, return NULL */ 8145 if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || 8146 next->l2ad_trim_all) 8147 next = NULL; 8148 8149 l2arc_dev_last = next; 8150 8151 out: 8152 mutex_exit(&l2arc_dev_mtx); 8153 8154 /* 8155 * Grab the config lock to prevent the 'next' device from being 8156 * removed while we are writing to it. 8157 */ 8158 if (next != NULL) 8159 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 8160 mutex_exit(&spa_namespace_lock); 8161 8162 return (next); 8163 } 8164 8165 /* 8166 * Free buffers that were tagged for destruction. 8167 */ 8168 static void 8169 l2arc_do_free_on_write(void) 8170 { 8171 list_t *buflist; 8172 l2arc_data_free_t *df, *df_prev; 8173 8174 mutex_enter(&l2arc_free_on_write_mtx); 8175 buflist = l2arc_free_on_write; 8176 8177 for (df = list_tail(buflist); df; df = df_prev) { 8178 df_prev = list_prev(buflist, df); 8179 ASSERT3P(df->l2df_abd, !=, NULL); 8180 abd_free(df->l2df_abd); 8181 list_remove(buflist, df); 8182 kmem_free(df, sizeof (l2arc_data_free_t)); 8183 } 8184 8185 mutex_exit(&l2arc_free_on_write_mtx); 8186 } 8187 8188 /* 8189 * A write to a cache device has completed. Update all headers to allow 8190 * reads from these buffers to begin. 8191 */ 8192 static void 8193 l2arc_write_done(zio_t *zio) 8194 { 8195 l2arc_write_callback_t *cb; 8196 l2arc_lb_abd_buf_t *abd_buf; 8197 l2arc_lb_ptr_buf_t *lb_ptr_buf; 8198 l2arc_dev_t *dev; 8199 l2arc_dev_hdr_phys_t *l2dhdr; 8200 list_t *buflist; 8201 arc_buf_hdr_t *head, *hdr, *hdr_prev; 8202 kmutex_t *hash_lock; 8203 int64_t bytes_dropped = 0; 8204 8205 cb = zio->io_private; 8206 ASSERT3P(cb, !=, NULL); 8207 dev = cb->l2wcb_dev; 8208 l2dhdr = dev->l2ad_dev_hdr; 8209 ASSERT3P(dev, !=, NULL); 8210 head = cb->l2wcb_head; 8211 ASSERT3P(head, !=, NULL); 8212 buflist = &dev->l2ad_buflist; 8213 ASSERT3P(buflist, !=, NULL); 8214 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 8215 l2arc_write_callback_t *, cb); 8216 8217 /* 8218 * All writes completed, or an error was hit. 8219 */ 8220 top: 8221 mutex_enter(&dev->l2ad_mtx); 8222 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 8223 hdr_prev = list_prev(buflist, hdr); 8224 8225 hash_lock = HDR_LOCK(hdr); 8226 8227 /* 8228 * We cannot use mutex_enter or else we can deadlock 8229 * with l2arc_write_buffers (due to swapping the order 8230 * the hash lock and l2ad_mtx are taken). 8231 */ 8232 if (!mutex_tryenter(hash_lock)) { 8233 /* 8234 * Missed the hash lock. We must retry so we 8235 * don't leave the ARC_FLAG_L2_WRITING bit set. 8236 */ 8237 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 8238 8239 /* 8240 * We don't want to rescan the headers we've 8241 * already marked as having been written out, so 8242 * we reinsert the head node so we can pick up 8243 * where we left off. 8244 */ 8245 list_remove(buflist, head); 8246 list_insert_after(buflist, hdr, head); 8247 8248 mutex_exit(&dev->l2ad_mtx); 8249 8250 /* 8251 * We wait for the hash lock to become available 8252 * to try and prevent busy waiting, and increase 8253 * the chance we'll be able to acquire the lock 8254 * the next time around. 8255 */ 8256 mutex_enter(hash_lock); 8257 mutex_exit(hash_lock); 8258 goto top; 8259 } 8260 8261 /* 8262 * We could not have been moved into the arc_l2c_only 8263 * state while in-flight due to our ARC_FLAG_L2_WRITING 8264 * bit being set. Let's just ensure that's being enforced. 8265 */ 8266 ASSERT(HDR_HAS_L1HDR(hdr)); 8267 8268 /* 8269 * Skipped - drop L2ARC entry and mark the header as no 8270 * longer L2 eligibile. 8271 */ 8272 if (zio->io_error != 0) { 8273 /* 8274 * Error - drop L2ARC entry. 8275 */ 8276 list_remove(buflist, hdr); 8277 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 8278 8279 uint64_t psize = HDR_GET_PSIZE(hdr); 8280 l2arc_hdr_arcstats_decrement(hdr); 8281 8282 bytes_dropped += 8283 vdev_psize_to_asize(dev->l2ad_vdev, psize); 8284 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 8285 arc_hdr_size(hdr), hdr); 8286 } 8287 8288 /* 8289 * Allow ARC to begin reads and ghost list evictions to 8290 * this L2ARC entry. 8291 */ 8292 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); 8293 8294 mutex_exit(hash_lock); 8295 } 8296 8297 /* 8298 * Free the allocated abd buffers for writing the log blocks. 8299 * If the zio failed reclaim the allocated space and remove the 8300 * pointers to these log blocks from the log block pointer list 8301 * of the L2ARC device. 8302 */ 8303 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) { 8304 abd_free(abd_buf->abd); 8305 zio_buf_free(abd_buf, sizeof (*abd_buf)); 8306 if (zio->io_error != 0) { 8307 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list); 8308 /* 8309 * L2BLK_GET_PSIZE returns aligned size for log 8310 * blocks. 8311 */ 8312 uint64_t asize = 8313 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop); 8314 bytes_dropped += asize; 8315 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 8316 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 8317 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 8318 lb_ptr_buf); 8319 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 8320 kmem_free(lb_ptr_buf->lb_ptr, 8321 sizeof (l2arc_log_blkptr_t)); 8322 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 8323 } 8324 } 8325 list_destroy(&cb->l2wcb_abd_list); 8326 8327 if (zio->io_error != 0) { 8328 ARCSTAT_BUMP(arcstat_l2_writes_error); 8329 8330 /* 8331 * Restore the lbps array in the header to its previous state. 8332 * If the list of log block pointers is empty, zero out the 8333 * log block pointers in the device header. 8334 */ 8335 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list); 8336 for (int i = 0; i < 2; i++) { 8337 if (lb_ptr_buf == NULL) { 8338 /* 8339 * If the list is empty zero out the device 8340 * header. Otherwise zero out the second log 8341 * block pointer in the header. 8342 */ 8343 if (i == 0) { 8344 bzero(l2dhdr, dev->l2ad_dev_hdr_asize); 8345 } else { 8346 bzero(&l2dhdr->dh_start_lbps[i], 8347 sizeof (l2arc_log_blkptr_t)); 8348 } 8349 break; 8350 } 8351 bcopy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[i], 8352 sizeof (l2arc_log_blkptr_t)); 8353 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list, 8354 lb_ptr_buf); 8355 } 8356 } 8357 8358 atomic_inc_64(&l2arc_writes_done); 8359 list_remove(buflist, head); 8360 ASSERT(!HDR_HAS_L1HDR(head)); 8361 kmem_cache_free(hdr_l2only_cache, head); 8362 mutex_exit(&dev->l2ad_mtx); 8363 8364 ASSERT(dev->l2ad_vdev != NULL); 8365 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 8366 8367 l2arc_do_free_on_write(); 8368 8369 kmem_free(cb, sizeof (l2arc_write_callback_t)); 8370 } 8371 8372 static int 8373 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb) 8374 { 8375 int ret; 8376 spa_t *spa = zio->io_spa; 8377 arc_buf_hdr_t *hdr = cb->l2rcb_hdr; 8378 blkptr_t *bp = zio->io_bp; 8379 uint8_t salt[ZIO_DATA_SALT_LEN]; 8380 uint8_t iv[ZIO_DATA_IV_LEN]; 8381 uint8_t mac[ZIO_DATA_MAC_LEN]; 8382 boolean_t no_crypt = B_FALSE; 8383 8384 /* 8385 * ZIL data is never be written to the L2ARC, so we don't need 8386 * special handling for its unique MAC storage. 8387 */ 8388 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 8389 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 8390 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8391 8392 /* 8393 * If the data was encrypted, decrypt it now. Note that 8394 * we must check the bp here and not the hdr, since the 8395 * hdr does not have its encryption parameters updated 8396 * until arc_read_done(). 8397 */ 8398 if (BP_IS_ENCRYPTED(bp)) { 8399 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8400 B_TRUE); 8401 8402 zio_crypt_decode_params_bp(bp, salt, iv); 8403 zio_crypt_decode_mac_bp(bp, mac); 8404 8405 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb, 8406 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 8407 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd, 8408 hdr->b_l1hdr.b_pabd, &no_crypt); 8409 if (ret != 0) { 8410 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8411 goto error; 8412 } 8413 8414 /* 8415 * If we actually performed decryption, replace b_pabd 8416 * with the decrypted data. Otherwise we can just throw 8417 * our decryption buffer away. 8418 */ 8419 if (!no_crypt) { 8420 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8421 arc_hdr_size(hdr), hdr); 8422 hdr->b_l1hdr.b_pabd = eabd; 8423 zio->io_abd = eabd; 8424 } else { 8425 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8426 } 8427 } 8428 8429 /* 8430 * If the L2ARC block was compressed, but ARC compression 8431 * is disabled we decompress the data into a new buffer and 8432 * replace the existing data. 8433 */ 8434 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 8435 !HDR_COMPRESSION_ENABLED(hdr)) { 8436 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8437 B_TRUE); 8438 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 8439 8440 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 8441 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 8442 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 8443 if (ret != 0) { 8444 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 8445 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr); 8446 goto error; 8447 } 8448 8449 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 8450 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8451 arc_hdr_size(hdr), hdr); 8452 hdr->b_l1hdr.b_pabd = cabd; 8453 zio->io_abd = cabd; 8454 zio->io_size = HDR_GET_LSIZE(hdr); 8455 } 8456 8457 return (0); 8458 8459 error: 8460 return (ret); 8461 } 8462 8463 8464 /* 8465 * A read to a cache device completed. Validate buffer contents before 8466 * handing over to the regular ARC routines. 8467 */ 8468 static void 8469 l2arc_read_done(zio_t *zio) 8470 { 8471 int tfm_error = 0; 8472 l2arc_read_callback_t *cb = zio->io_private; 8473 arc_buf_hdr_t *hdr; 8474 kmutex_t *hash_lock; 8475 boolean_t valid_cksum; 8476 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) && 8477 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT)); 8478 8479 ASSERT3P(zio->io_vd, !=, NULL); 8480 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 8481 8482 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 8483 8484 ASSERT3P(cb, !=, NULL); 8485 hdr = cb->l2rcb_hdr; 8486 ASSERT3P(hdr, !=, NULL); 8487 8488 hash_lock = HDR_LOCK(hdr); 8489 mutex_enter(hash_lock); 8490 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 8491 8492 /* 8493 * If the data was read into a temporary buffer, 8494 * move it and free the buffer. 8495 */ 8496 if (cb->l2rcb_abd != NULL) { 8497 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size); 8498 if (zio->io_error == 0) { 8499 if (using_rdata) { 8500 abd_copy(hdr->b_crypt_hdr.b_rabd, 8501 cb->l2rcb_abd, arc_hdr_size(hdr)); 8502 } else { 8503 abd_copy(hdr->b_l1hdr.b_pabd, 8504 cb->l2rcb_abd, arc_hdr_size(hdr)); 8505 } 8506 } 8507 8508 /* 8509 * The following must be done regardless of whether 8510 * there was an error: 8511 * - free the temporary buffer 8512 * - point zio to the real ARC buffer 8513 * - set zio size accordingly 8514 * These are required because zio is either re-used for 8515 * an I/O of the block in the case of the error 8516 * or the zio is passed to arc_read_done() and it 8517 * needs real data. 8518 */ 8519 abd_free(cb->l2rcb_abd); 8520 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr); 8521 8522 if (using_rdata) { 8523 ASSERT(HDR_HAS_RABD(hdr)); 8524 zio->io_abd = zio->io_orig_abd = 8525 hdr->b_crypt_hdr.b_rabd; 8526 } else { 8527 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8528 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd; 8529 } 8530 } 8531 8532 ASSERT3P(zio->io_abd, !=, NULL); 8533 8534 /* 8535 * Check this survived the L2ARC journey. 8536 */ 8537 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd || 8538 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd)); 8539 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 8540 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 8541 zio->io_prop.zp_complevel = hdr->b_complevel; 8542 8543 valid_cksum = arc_cksum_is_equal(hdr, zio); 8544 8545 /* 8546 * b_rabd will always match the data as it exists on disk if it is 8547 * being used. Therefore if we are reading into b_rabd we do not 8548 * attempt to untransform the data. 8549 */ 8550 if (valid_cksum && !using_rdata) 8551 tfm_error = l2arc_untransform(zio, cb); 8552 8553 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 && 8554 !HDR_L2_EVICTED(hdr)) { 8555 mutex_exit(hash_lock); 8556 zio->io_private = hdr; 8557 arc_read_done(zio); 8558 } else { 8559 /* 8560 * Buffer didn't survive caching. Increment stats and 8561 * reissue to the original storage device. 8562 */ 8563 if (zio->io_error != 0) { 8564 ARCSTAT_BUMP(arcstat_l2_io_error); 8565 } else { 8566 zio->io_error = SET_ERROR(EIO); 8567 } 8568 if (!valid_cksum || tfm_error != 0) 8569 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 8570 8571 /* 8572 * If there's no waiter, issue an async i/o to the primary 8573 * storage now. If there *is* a waiter, the caller must 8574 * issue the i/o in a context where it's OK to block. 8575 */ 8576 if (zio->io_waiter == NULL) { 8577 zio_t *pio = zio_unique_parent(zio); 8578 void *abd = (using_rdata) ? 8579 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd; 8580 8581 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 8582 8583 zio = zio_read(pio, zio->io_spa, zio->io_bp, 8584 abd, zio->io_size, arc_read_done, 8585 hdr, zio->io_priority, cb->l2rcb_flags, 8586 &cb->l2rcb_zb); 8587 8588 /* 8589 * Original ZIO will be freed, so we need to update 8590 * ARC header with the new ZIO pointer to be used 8591 * by zio_change_priority() in arc_read(). 8592 */ 8593 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb; 8594 acb != NULL; acb = acb->acb_next) 8595 acb->acb_zio_head = zio; 8596 8597 mutex_exit(hash_lock); 8598 zio_nowait(zio); 8599 } else { 8600 mutex_exit(hash_lock); 8601 } 8602 } 8603 8604 kmem_free(cb, sizeof (l2arc_read_callback_t)); 8605 } 8606 8607 /* 8608 * This is the list priority from which the L2ARC will search for pages to 8609 * cache. This is used within loops (0..3) to cycle through lists in the 8610 * desired order. This order can have a significant effect on cache 8611 * performance. 8612 * 8613 * Currently the metadata lists are hit first, MFU then MRU, followed by 8614 * the data lists. This function returns a locked list, and also returns 8615 * the lock pointer. 8616 */ 8617 static multilist_sublist_t * 8618 l2arc_sublist_lock(int list_num) 8619 { 8620 multilist_t *ml = NULL; 8621 unsigned int idx; 8622 8623 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES); 8624 8625 switch (list_num) { 8626 case 0: 8627 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 8628 break; 8629 case 1: 8630 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 8631 break; 8632 case 2: 8633 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 8634 break; 8635 case 3: 8636 ml = &arc_mru->arcs_list[ARC_BUFC_DATA]; 8637 break; 8638 default: 8639 return (NULL); 8640 } 8641 8642 /* 8643 * Return a randomly-selected sublist. This is acceptable 8644 * because the caller feeds only a little bit of data for each 8645 * call (8MB). Subsequent calls will result in different 8646 * sublists being selected. 8647 */ 8648 idx = multilist_get_random_index(ml); 8649 return (multilist_sublist_lock(ml, idx)); 8650 } 8651 8652 /* 8653 * Calculates the maximum overhead of L2ARC metadata log blocks for a given 8654 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this 8655 * overhead in processing to make sure there is enough headroom available 8656 * when writing buffers. 8657 */ 8658 static inline uint64_t 8659 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev) 8660 { 8661 if (dev->l2ad_log_entries == 0) { 8662 return (0); 8663 } else { 8664 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT; 8665 8666 uint64_t log_blocks = (log_entries + 8667 dev->l2ad_log_entries - 1) / 8668 dev->l2ad_log_entries; 8669 8670 return (vdev_psize_to_asize(dev->l2ad_vdev, 8671 sizeof (l2arc_log_blk_phys_t)) * log_blocks); 8672 } 8673 } 8674 8675 /* 8676 * Evict buffers from the device write hand to the distance specified in 8677 * bytes. This distance may span populated buffers, it may span nothing. 8678 * This is clearing a region on the L2ARC device ready for writing. 8679 * If the 'all' boolean is set, every buffer is evicted. 8680 */ 8681 static void 8682 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 8683 { 8684 list_t *buflist; 8685 arc_buf_hdr_t *hdr, *hdr_prev; 8686 kmutex_t *hash_lock; 8687 uint64_t taddr; 8688 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev; 8689 vdev_t *vd = dev->l2ad_vdev; 8690 boolean_t rerun; 8691 8692 buflist = &dev->l2ad_buflist; 8693 8694 /* 8695 * We need to add in the worst case scenario of log block overhead. 8696 */ 8697 distance += l2arc_log_blk_overhead(distance, dev); 8698 if (vd->vdev_has_trim && l2arc_trim_ahead > 0) { 8699 /* 8700 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100) 8701 * times the write size, whichever is greater. 8702 */ 8703 distance += MAX(64 * 1024 * 1024, 8704 (distance * l2arc_trim_ahead) / 100); 8705 } 8706 8707 top: 8708 rerun = B_FALSE; 8709 if (dev->l2ad_hand >= (dev->l2ad_end - distance)) { 8710 /* 8711 * When there is no space to accommodate upcoming writes, 8712 * evict to the end. Then bump the write and evict hands 8713 * to the start and iterate. This iteration does not 8714 * happen indefinitely as we make sure in 8715 * l2arc_write_size() that when the write hand is reset, 8716 * the write size does not exceed the end of the device. 8717 */ 8718 rerun = B_TRUE; 8719 taddr = dev->l2ad_end; 8720 } else { 8721 taddr = dev->l2ad_hand + distance; 8722 } 8723 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 8724 uint64_t, taddr, boolean_t, all); 8725 8726 if (!all) { 8727 /* 8728 * This check has to be placed after deciding whether to 8729 * iterate (rerun). 8730 */ 8731 if (dev->l2ad_first) { 8732 /* 8733 * This is the first sweep through the device. There is 8734 * nothing to evict. We have already trimmmed the 8735 * whole device. 8736 */ 8737 goto out; 8738 } else { 8739 /* 8740 * Trim the space to be evicted. 8741 */ 8742 if (vd->vdev_has_trim && dev->l2ad_evict < taddr && 8743 l2arc_trim_ahead > 0) { 8744 /* 8745 * We have to drop the spa_config lock because 8746 * vdev_trim_range() will acquire it. 8747 * l2ad_evict already accounts for the label 8748 * size. To prevent vdev_trim_ranges() from 8749 * adding it again, we subtract it from 8750 * l2ad_evict. 8751 */ 8752 spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev); 8753 vdev_trim_simple(vd, 8754 dev->l2ad_evict - VDEV_LABEL_START_SIZE, 8755 taddr - dev->l2ad_evict); 8756 spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev, 8757 RW_READER); 8758 } 8759 8760 /* 8761 * When rebuilding L2ARC we retrieve the evict hand 8762 * from the header of the device. Of note, l2arc_evict() 8763 * does not actually delete buffers from the cache 8764 * device, but trimming may do so depending on the 8765 * hardware implementation. Thus keeping track of the 8766 * evict hand is useful. 8767 */ 8768 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr); 8769 } 8770 } 8771 8772 retry: 8773 mutex_enter(&dev->l2ad_mtx); 8774 /* 8775 * We have to account for evicted log blocks. Run vdev_space_update() 8776 * on log blocks whose offset (in bytes) is before the evicted offset 8777 * (in bytes) by searching in the list of pointers to log blocks 8778 * present in the L2ARC device. 8779 */ 8780 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf; 8781 lb_ptr_buf = lb_ptr_buf_prev) { 8782 8783 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf); 8784 8785 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 8786 uint64_t asize = L2BLK_GET_PSIZE( 8787 (lb_ptr_buf->lb_ptr)->lbp_prop); 8788 8789 /* 8790 * We don't worry about log blocks left behind (ie 8791 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers() 8792 * will never write more than l2arc_evict() evicts. 8793 */ 8794 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) { 8795 break; 8796 } else { 8797 vdev_space_update(vd, -asize, 0, 0); 8798 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 8799 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 8800 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 8801 lb_ptr_buf); 8802 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 8803 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf); 8804 kmem_free(lb_ptr_buf->lb_ptr, 8805 sizeof (l2arc_log_blkptr_t)); 8806 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 8807 } 8808 } 8809 8810 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 8811 hdr_prev = list_prev(buflist, hdr); 8812 8813 ASSERT(!HDR_EMPTY(hdr)); 8814 hash_lock = HDR_LOCK(hdr); 8815 8816 /* 8817 * We cannot use mutex_enter or else we can deadlock 8818 * with l2arc_write_buffers (due to swapping the order 8819 * the hash lock and l2ad_mtx are taken). 8820 */ 8821 if (!mutex_tryenter(hash_lock)) { 8822 /* 8823 * Missed the hash lock. Retry. 8824 */ 8825 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 8826 mutex_exit(&dev->l2ad_mtx); 8827 mutex_enter(hash_lock); 8828 mutex_exit(hash_lock); 8829 goto retry; 8830 } 8831 8832 /* 8833 * A header can't be on this list if it doesn't have L2 header. 8834 */ 8835 ASSERT(HDR_HAS_L2HDR(hdr)); 8836 8837 /* Ensure this header has finished being written. */ 8838 ASSERT(!HDR_L2_WRITING(hdr)); 8839 ASSERT(!HDR_L2_WRITE_HEAD(hdr)); 8840 8841 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict || 8842 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 8843 /* 8844 * We've evicted to the target address, 8845 * or the end of the device. 8846 */ 8847 mutex_exit(hash_lock); 8848 break; 8849 } 8850 8851 if (!HDR_HAS_L1HDR(hdr)) { 8852 ASSERT(!HDR_L2_READING(hdr)); 8853 /* 8854 * This doesn't exist in the ARC. Destroy. 8855 * arc_hdr_destroy() will call list_remove() 8856 * and decrement arcstat_l2_lsize. 8857 */ 8858 arc_change_state(arc_anon, hdr, hash_lock); 8859 arc_hdr_destroy(hdr); 8860 } else { 8861 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 8862 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 8863 /* 8864 * Invalidate issued or about to be issued 8865 * reads, since we may be about to write 8866 * over this location. 8867 */ 8868 if (HDR_L2_READING(hdr)) { 8869 ARCSTAT_BUMP(arcstat_l2_evict_reading); 8870 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); 8871 } 8872 8873 arc_hdr_l2hdr_destroy(hdr); 8874 } 8875 mutex_exit(hash_lock); 8876 } 8877 mutex_exit(&dev->l2ad_mtx); 8878 8879 out: 8880 /* 8881 * We need to check if we evict all buffers, otherwise we may iterate 8882 * unnecessarily. 8883 */ 8884 if (!all && rerun) { 8885 /* 8886 * Bump device hand to the device start if it is approaching the 8887 * end. l2arc_evict() has already evicted ahead for this case. 8888 */ 8889 dev->l2ad_hand = dev->l2ad_start; 8890 dev->l2ad_evict = dev->l2ad_start; 8891 dev->l2ad_first = B_FALSE; 8892 goto top; 8893 } 8894 8895 if (!all) { 8896 /* 8897 * In case of cache device removal (all) the following 8898 * assertions may be violated without functional consequences 8899 * as the device is about to be removed. 8900 */ 8901 ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end); 8902 if (!dev->l2ad_first) 8903 ASSERT3U(dev->l2ad_hand, <, dev->l2ad_evict); 8904 } 8905 } 8906 8907 /* 8908 * Handle any abd transforms that might be required for writing to the L2ARC. 8909 * If successful, this function will always return an abd with the data 8910 * transformed as it is on disk in a new abd of asize bytes. 8911 */ 8912 static int 8913 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize, 8914 abd_t **abd_out) 8915 { 8916 int ret; 8917 void *tmp = NULL; 8918 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd; 8919 enum zio_compress compress = HDR_GET_COMPRESS(hdr); 8920 uint64_t psize = HDR_GET_PSIZE(hdr); 8921 uint64_t size = arc_hdr_size(hdr); 8922 boolean_t ismd = HDR_ISTYPE_METADATA(hdr); 8923 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 8924 dsl_crypto_key_t *dck = NULL; 8925 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 }; 8926 boolean_t no_crypt = B_FALSE; 8927 8928 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 8929 !HDR_COMPRESSION_ENABLED(hdr)) || 8930 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize); 8931 ASSERT3U(psize, <=, asize); 8932 8933 /* 8934 * If this data simply needs its own buffer, we simply allocate it 8935 * and copy the data. This may be done to eliminate a dependency on a 8936 * shared buffer or to reallocate the buffer to match asize. 8937 */ 8938 if (HDR_HAS_RABD(hdr) && asize != psize) { 8939 ASSERT3U(asize, >=, psize); 8940 to_write = abd_alloc_for_io(asize, ismd); 8941 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize); 8942 if (psize != asize) 8943 abd_zero_off(to_write, psize, asize - psize); 8944 goto out; 8945 } 8946 8947 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) && 8948 !HDR_ENCRYPTED(hdr)) { 8949 ASSERT3U(size, ==, psize); 8950 to_write = abd_alloc_for_io(asize, ismd); 8951 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 8952 if (size != asize) 8953 abd_zero_off(to_write, size, asize - size); 8954 goto out; 8955 } 8956 8957 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) { 8958 cabd = abd_alloc_for_io(asize, ismd); 8959 tmp = abd_borrow_buf(cabd, asize); 8960 8961 psize = zio_compress_data(compress, to_write, tmp, size, 8962 hdr->b_complevel); 8963 8964 if (psize >= size) { 8965 abd_return_buf(cabd, tmp, asize); 8966 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF); 8967 to_write = cabd; 8968 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 8969 if (size != asize) 8970 abd_zero_off(to_write, size, asize - size); 8971 goto encrypt; 8972 } 8973 ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr)); 8974 if (psize < asize) 8975 bzero((char *)tmp + psize, asize - psize); 8976 psize = HDR_GET_PSIZE(hdr); 8977 abd_return_buf_copy(cabd, tmp, asize); 8978 to_write = cabd; 8979 } 8980 8981 encrypt: 8982 if (HDR_ENCRYPTED(hdr)) { 8983 eabd = abd_alloc_for_io(asize, ismd); 8984 8985 /* 8986 * If the dataset was disowned before the buffer 8987 * made it to this point, the key to re-encrypt 8988 * it won't be available. In this case we simply 8989 * won't write the buffer to the L2ARC. 8990 */ 8991 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj, 8992 FTAG, &dck); 8993 if (ret != 0) 8994 goto error; 8995 8996 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key, 8997 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt, 8998 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd, 8999 &no_crypt); 9000 if (ret != 0) 9001 goto error; 9002 9003 if (no_crypt) 9004 abd_copy(eabd, to_write, psize); 9005 9006 if (psize != asize) 9007 abd_zero_off(eabd, psize, asize - psize); 9008 9009 /* assert that the MAC we got here matches the one we saved */ 9010 ASSERT0(bcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN)); 9011 spa_keystore_dsl_key_rele(spa, dck, FTAG); 9012 9013 if (to_write == cabd) 9014 abd_free(cabd); 9015 9016 to_write = eabd; 9017 } 9018 9019 out: 9020 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd); 9021 *abd_out = to_write; 9022 return (0); 9023 9024 error: 9025 if (dck != NULL) 9026 spa_keystore_dsl_key_rele(spa, dck, FTAG); 9027 if (cabd != NULL) 9028 abd_free(cabd); 9029 if (eabd != NULL) 9030 abd_free(eabd); 9031 9032 *abd_out = NULL; 9033 return (ret); 9034 } 9035 9036 static void 9037 l2arc_blk_fetch_done(zio_t *zio) 9038 { 9039 l2arc_read_callback_t *cb; 9040 9041 cb = zio->io_private; 9042 if (cb->l2rcb_abd != NULL) 9043 abd_free(cb->l2rcb_abd); 9044 kmem_free(cb, sizeof (l2arc_read_callback_t)); 9045 } 9046 9047 /* 9048 * Find and write ARC buffers to the L2ARC device. 9049 * 9050 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 9051 * for reading until they have completed writing. 9052 * The headroom_boost is an in-out parameter used to maintain headroom boost 9053 * state between calls to this function. 9054 * 9055 * Returns the number of bytes actually written (which may be smaller than 9056 * the delta by which the device hand has changed due to alignment and the 9057 * writing of log blocks). 9058 */ 9059 static uint64_t 9060 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 9061 { 9062 arc_buf_hdr_t *hdr, *hdr_prev, *head; 9063 uint64_t write_asize, write_psize, write_lsize, headroom; 9064 boolean_t full; 9065 l2arc_write_callback_t *cb = NULL; 9066 zio_t *pio, *wzio; 9067 uint64_t guid = spa_load_guid(spa); 9068 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9069 9070 ASSERT3P(dev->l2ad_vdev, !=, NULL); 9071 9072 pio = NULL; 9073 write_lsize = write_asize = write_psize = 0; 9074 full = B_FALSE; 9075 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 9076 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); 9077 9078 /* 9079 * Copy buffers for L2ARC writing. 9080 */ 9081 for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) { 9082 /* 9083 * If pass == 1 or 3, we cache MRU metadata and data 9084 * respectively. 9085 */ 9086 if (l2arc_mfuonly) { 9087 if (pass == 1 || pass == 3) 9088 continue; 9089 } 9090 9091 multilist_sublist_t *mls = l2arc_sublist_lock(pass); 9092 uint64_t passed_sz = 0; 9093 9094 VERIFY3P(mls, !=, NULL); 9095 9096 /* 9097 * L2ARC fast warmup. 9098 * 9099 * Until the ARC is warm and starts to evict, read from the 9100 * head of the ARC lists rather than the tail. 9101 */ 9102 if (arc_warm == B_FALSE) 9103 hdr = multilist_sublist_head(mls); 9104 else 9105 hdr = multilist_sublist_tail(mls); 9106 9107 headroom = target_sz * l2arc_headroom; 9108 if (zfs_compressed_arc_enabled) 9109 headroom = (headroom * l2arc_headroom_boost) / 100; 9110 9111 for (; hdr; hdr = hdr_prev) { 9112 kmutex_t *hash_lock; 9113 abd_t *to_write = NULL; 9114 9115 if (arc_warm == B_FALSE) 9116 hdr_prev = multilist_sublist_next(mls, hdr); 9117 else 9118 hdr_prev = multilist_sublist_prev(mls, hdr); 9119 9120 hash_lock = HDR_LOCK(hdr); 9121 if (!mutex_tryenter(hash_lock)) { 9122 /* 9123 * Skip this buffer rather than waiting. 9124 */ 9125 continue; 9126 } 9127 9128 passed_sz += HDR_GET_LSIZE(hdr); 9129 if (l2arc_headroom != 0 && passed_sz > headroom) { 9130 /* 9131 * Searched too far. 9132 */ 9133 mutex_exit(hash_lock); 9134 break; 9135 } 9136 9137 if (!l2arc_write_eligible(guid, hdr)) { 9138 mutex_exit(hash_lock); 9139 continue; 9140 } 9141 9142 /* 9143 * We rely on the L1 portion of the header below, so 9144 * it's invalid for this header to have been evicted out 9145 * of the ghost cache, prior to being written out. The 9146 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 9147 */ 9148 ASSERT(HDR_HAS_L1HDR(hdr)); 9149 9150 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 9151 ASSERT3U(arc_hdr_size(hdr), >, 0); 9152 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 9153 HDR_HAS_RABD(hdr)); 9154 uint64_t psize = HDR_GET_PSIZE(hdr); 9155 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 9156 psize); 9157 9158 if ((write_asize + asize) > target_sz) { 9159 full = B_TRUE; 9160 mutex_exit(hash_lock); 9161 break; 9162 } 9163 9164 /* 9165 * We rely on the L1 portion of the header below, so 9166 * it's invalid for this header to have been evicted out 9167 * of the ghost cache, prior to being written out. The 9168 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 9169 */ 9170 arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING); 9171 ASSERT(HDR_HAS_L1HDR(hdr)); 9172 9173 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 9174 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 9175 HDR_HAS_RABD(hdr)); 9176 ASSERT3U(arc_hdr_size(hdr), >, 0); 9177 9178 /* 9179 * If this header has b_rabd, we can use this since it 9180 * must always match the data exactly as it exists on 9181 * disk. Otherwise, the L2ARC can normally use the 9182 * hdr's data, but if we're sharing data between the 9183 * hdr and one of its bufs, L2ARC needs its own copy of 9184 * the data so that the ZIO below can't race with the 9185 * buf consumer. To ensure that this copy will be 9186 * available for the lifetime of the ZIO and be cleaned 9187 * up afterwards, we add it to the l2arc_free_on_write 9188 * queue. If we need to apply any transforms to the 9189 * data (compression, encryption) we will also need the 9190 * extra buffer. 9191 */ 9192 if (HDR_HAS_RABD(hdr) && psize == asize) { 9193 to_write = hdr->b_crypt_hdr.b_rabd; 9194 } else if ((HDR_COMPRESSION_ENABLED(hdr) || 9195 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) && 9196 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) && 9197 psize == asize) { 9198 to_write = hdr->b_l1hdr.b_pabd; 9199 } else { 9200 int ret; 9201 arc_buf_contents_t type = arc_buf_type(hdr); 9202 9203 ret = l2arc_apply_transforms(spa, hdr, asize, 9204 &to_write); 9205 if (ret != 0) { 9206 arc_hdr_clear_flags(hdr, 9207 ARC_FLAG_L2_WRITING); 9208 mutex_exit(hash_lock); 9209 continue; 9210 } 9211 9212 l2arc_free_abd_on_write(to_write, asize, type); 9213 } 9214 9215 if (pio == NULL) { 9216 /* 9217 * Insert a dummy header on the buflist so 9218 * l2arc_write_done() can find where the 9219 * write buffers begin without searching. 9220 */ 9221 mutex_enter(&dev->l2ad_mtx); 9222 list_insert_head(&dev->l2ad_buflist, head); 9223 mutex_exit(&dev->l2ad_mtx); 9224 9225 cb = kmem_alloc( 9226 sizeof (l2arc_write_callback_t), KM_SLEEP); 9227 cb->l2wcb_dev = dev; 9228 cb->l2wcb_head = head; 9229 /* 9230 * Create a list to save allocated abd buffers 9231 * for l2arc_log_blk_commit(). 9232 */ 9233 list_create(&cb->l2wcb_abd_list, 9234 sizeof (l2arc_lb_abd_buf_t), 9235 offsetof(l2arc_lb_abd_buf_t, node)); 9236 pio = zio_root(spa, l2arc_write_done, cb, 9237 ZIO_FLAG_CANFAIL); 9238 } 9239 9240 hdr->b_l2hdr.b_dev = dev; 9241 hdr->b_l2hdr.b_hits = 0; 9242 9243 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 9244 hdr->b_l2hdr.b_arcs_state = 9245 hdr->b_l1hdr.b_state->arcs_state; 9246 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR); 9247 9248 mutex_enter(&dev->l2ad_mtx); 9249 list_insert_head(&dev->l2ad_buflist, hdr); 9250 mutex_exit(&dev->l2ad_mtx); 9251 9252 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 9253 arc_hdr_size(hdr), hdr); 9254 9255 wzio = zio_write_phys(pio, dev->l2ad_vdev, 9256 hdr->b_l2hdr.b_daddr, asize, to_write, 9257 ZIO_CHECKSUM_OFF, NULL, hdr, 9258 ZIO_PRIORITY_ASYNC_WRITE, 9259 ZIO_FLAG_CANFAIL, B_FALSE); 9260 9261 write_lsize += HDR_GET_LSIZE(hdr); 9262 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 9263 zio_t *, wzio); 9264 9265 write_psize += psize; 9266 write_asize += asize; 9267 dev->l2ad_hand += asize; 9268 l2arc_hdr_arcstats_increment(hdr); 9269 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 9270 9271 mutex_exit(hash_lock); 9272 9273 /* 9274 * Append buf info to current log and commit if full. 9275 * arcstat_l2_{size,asize} kstats are updated 9276 * internally. 9277 */ 9278 if (l2arc_log_blk_insert(dev, hdr)) 9279 l2arc_log_blk_commit(dev, pio, cb); 9280 9281 zio_nowait(wzio); 9282 } 9283 9284 multilist_sublist_unlock(mls); 9285 9286 if (full == B_TRUE) 9287 break; 9288 } 9289 9290 /* No buffers selected for writing? */ 9291 if (pio == NULL) { 9292 ASSERT0(write_lsize); 9293 ASSERT(!HDR_HAS_L1HDR(head)); 9294 kmem_cache_free(hdr_l2only_cache, head); 9295 9296 /* 9297 * Although we did not write any buffers l2ad_evict may 9298 * have advanced. 9299 */ 9300 if (dev->l2ad_evict != l2dhdr->dh_evict) 9301 l2arc_dev_hdr_update(dev); 9302 9303 return (0); 9304 } 9305 9306 if (!dev->l2ad_first) 9307 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict); 9308 9309 ASSERT3U(write_asize, <=, target_sz); 9310 ARCSTAT_BUMP(arcstat_l2_writes_sent); 9311 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize); 9312 9313 dev->l2ad_writing = B_TRUE; 9314 (void) zio_wait(pio); 9315 dev->l2ad_writing = B_FALSE; 9316 9317 /* 9318 * Update the device header after the zio completes as 9319 * l2arc_write_done() may have updated the memory holding the log block 9320 * pointers in the device header. 9321 */ 9322 l2arc_dev_hdr_update(dev); 9323 9324 return (write_asize); 9325 } 9326 9327 static boolean_t 9328 l2arc_hdr_limit_reached(void) 9329 { 9330 int64_t s = aggsum_upper_bound(&astat_l2_hdr_size); 9331 9332 return (arc_reclaim_needed() || (s > arc_meta_limit * 3 / 4) || 9333 (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100)); 9334 } 9335 9336 /* 9337 * This thread feeds the L2ARC at regular intervals. This is the beating 9338 * heart of the L2ARC. 9339 */ 9340 /* ARGSUSED */ 9341 static void 9342 l2arc_feed_thread(void *unused) 9343 { 9344 callb_cpr_t cpr; 9345 l2arc_dev_t *dev; 9346 spa_t *spa; 9347 uint64_t size, wrote; 9348 clock_t begin, next = ddi_get_lbolt(); 9349 fstrans_cookie_t cookie; 9350 9351 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 9352 9353 mutex_enter(&l2arc_feed_thr_lock); 9354 9355 cookie = spl_fstrans_mark(); 9356 while (l2arc_thread_exit == 0) { 9357 CALLB_CPR_SAFE_BEGIN(&cpr); 9358 (void) cv_timedwait_idle(&l2arc_feed_thr_cv, 9359 &l2arc_feed_thr_lock, next); 9360 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 9361 next = ddi_get_lbolt() + hz; 9362 9363 /* 9364 * Quick check for L2ARC devices. 9365 */ 9366 mutex_enter(&l2arc_dev_mtx); 9367 if (l2arc_ndev == 0) { 9368 mutex_exit(&l2arc_dev_mtx); 9369 continue; 9370 } 9371 mutex_exit(&l2arc_dev_mtx); 9372 begin = ddi_get_lbolt(); 9373 9374 /* 9375 * This selects the next l2arc device to write to, and in 9376 * doing so the next spa to feed from: dev->l2ad_spa. This 9377 * will return NULL if there are now no l2arc devices or if 9378 * they are all faulted. 9379 * 9380 * If a device is returned, its spa's config lock is also 9381 * held to prevent device removal. l2arc_dev_get_next() 9382 * will grab and release l2arc_dev_mtx. 9383 */ 9384 if ((dev = l2arc_dev_get_next()) == NULL) 9385 continue; 9386 9387 spa = dev->l2ad_spa; 9388 ASSERT3P(spa, !=, NULL); 9389 9390 /* 9391 * If the pool is read-only then force the feed thread to 9392 * sleep a little longer. 9393 */ 9394 if (!spa_writeable(spa)) { 9395 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 9396 spa_config_exit(spa, SCL_L2ARC, dev); 9397 continue; 9398 } 9399 9400 /* 9401 * Avoid contributing to memory pressure. 9402 */ 9403 if (l2arc_hdr_limit_reached()) { 9404 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 9405 spa_config_exit(spa, SCL_L2ARC, dev); 9406 continue; 9407 } 9408 9409 ARCSTAT_BUMP(arcstat_l2_feeds); 9410 9411 size = l2arc_write_size(dev); 9412 9413 /* 9414 * Evict L2ARC buffers that will be overwritten. 9415 */ 9416 l2arc_evict(dev, size, B_FALSE); 9417 9418 /* 9419 * Write ARC buffers. 9420 */ 9421 wrote = l2arc_write_buffers(spa, dev, size); 9422 9423 /* 9424 * Calculate interval between writes. 9425 */ 9426 next = l2arc_write_interval(begin, size, wrote); 9427 spa_config_exit(spa, SCL_L2ARC, dev); 9428 } 9429 spl_fstrans_unmark(cookie); 9430 9431 l2arc_thread_exit = 0; 9432 cv_broadcast(&l2arc_feed_thr_cv); 9433 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 9434 thread_exit(); 9435 } 9436 9437 boolean_t 9438 l2arc_vdev_present(vdev_t *vd) 9439 { 9440 return (l2arc_vdev_get(vd) != NULL); 9441 } 9442 9443 /* 9444 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if 9445 * the vdev_t isn't an L2ARC device. 9446 */ 9447 l2arc_dev_t * 9448 l2arc_vdev_get(vdev_t *vd) 9449 { 9450 l2arc_dev_t *dev; 9451 9452 mutex_enter(&l2arc_dev_mtx); 9453 for (dev = list_head(l2arc_dev_list); dev != NULL; 9454 dev = list_next(l2arc_dev_list, dev)) { 9455 if (dev->l2ad_vdev == vd) 9456 break; 9457 } 9458 mutex_exit(&l2arc_dev_mtx); 9459 9460 return (dev); 9461 } 9462 9463 /* 9464 * Add a vdev for use by the L2ARC. By this point the spa has already 9465 * validated the vdev and opened it. 9466 */ 9467 void 9468 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 9469 { 9470 l2arc_dev_t *adddev; 9471 uint64_t l2dhdr_asize; 9472 9473 ASSERT(!l2arc_vdev_present(vd)); 9474 9475 /* 9476 * Create a new l2arc device entry. 9477 */ 9478 adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 9479 adddev->l2ad_spa = spa; 9480 adddev->l2ad_vdev = vd; 9481 /* leave extra size for an l2arc device header */ 9482 l2dhdr_asize = adddev->l2ad_dev_hdr_asize = 9483 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift); 9484 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize; 9485 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 9486 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end); 9487 adddev->l2ad_hand = adddev->l2ad_start; 9488 adddev->l2ad_evict = adddev->l2ad_start; 9489 adddev->l2ad_first = B_TRUE; 9490 adddev->l2ad_writing = B_FALSE; 9491 adddev->l2ad_trim_all = B_FALSE; 9492 list_link_init(&adddev->l2ad_node); 9493 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP); 9494 9495 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 9496 /* 9497 * This is a list of all ARC buffers that are still valid on the 9498 * device. 9499 */ 9500 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 9501 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 9502 9503 /* 9504 * This is a list of pointers to log blocks that are still present 9505 * on the device. 9506 */ 9507 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t), 9508 offsetof(l2arc_lb_ptr_buf_t, node)); 9509 9510 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 9511 zfs_refcount_create(&adddev->l2ad_alloc); 9512 zfs_refcount_create(&adddev->l2ad_lb_asize); 9513 zfs_refcount_create(&adddev->l2ad_lb_count); 9514 9515 /* 9516 * Add device to global list 9517 */ 9518 mutex_enter(&l2arc_dev_mtx); 9519 list_insert_head(l2arc_dev_list, adddev); 9520 atomic_inc_64(&l2arc_ndev); 9521 mutex_exit(&l2arc_dev_mtx); 9522 9523 /* 9524 * Decide if vdev is eligible for L2ARC rebuild 9525 */ 9526 l2arc_rebuild_vdev(adddev->l2ad_vdev, B_FALSE); 9527 } 9528 9529 void 9530 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen) 9531 { 9532 l2arc_dev_t *dev = NULL; 9533 l2arc_dev_hdr_phys_t *l2dhdr; 9534 uint64_t l2dhdr_asize; 9535 spa_t *spa; 9536 9537 dev = l2arc_vdev_get(vd); 9538 ASSERT3P(dev, !=, NULL); 9539 spa = dev->l2ad_spa; 9540 l2dhdr = dev->l2ad_dev_hdr; 9541 l2dhdr_asize = dev->l2ad_dev_hdr_asize; 9542 9543 /* 9544 * The L2ARC has to hold at least the payload of one log block for 9545 * them to be restored (persistent L2ARC). The payload of a log block 9546 * depends on the amount of its log entries. We always write log blocks 9547 * with 1022 entries. How many of them are committed or restored depends 9548 * on the size of the L2ARC device. Thus the maximum payload of 9549 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device 9550 * is less than that, we reduce the amount of committed and restored 9551 * log entries per block so as to enable persistence. 9552 */ 9553 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) { 9554 dev->l2ad_log_entries = 0; 9555 } else { 9556 dev->l2ad_log_entries = MIN((dev->l2ad_end - 9557 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT, 9558 L2ARC_LOG_BLK_MAX_ENTRIES); 9559 } 9560 9561 /* 9562 * Read the device header, if an error is returned do not rebuild L2ARC. 9563 */ 9564 if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) { 9565 /* 9566 * If we are onlining a cache device (vdev_reopen) that was 9567 * still present (l2arc_vdev_present()) and rebuild is enabled, 9568 * we should evict all ARC buffers and pointers to log blocks 9569 * and reclaim their space before restoring its contents to 9570 * L2ARC. 9571 */ 9572 if (reopen) { 9573 if (!l2arc_rebuild_enabled) { 9574 return; 9575 } else { 9576 l2arc_evict(dev, 0, B_TRUE); 9577 /* start a new log block */ 9578 dev->l2ad_log_ent_idx = 0; 9579 dev->l2ad_log_blk_payload_asize = 0; 9580 dev->l2ad_log_blk_payload_start = 0; 9581 } 9582 } 9583 /* 9584 * Just mark the device as pending for a rebuild. We won't 9585 * be starting a rebuild in line here as it would block pool 9586 * import. Instead spa_load_impl will hand that off to an 9587 * async task which will call l2arc_spa_rebuild_start. 9588 */ 9589 dev->l2ad_rebuild = B_TRUE; 9590 } else if (spa_writeable(spa)) { 9591 /* 9592 * In this case TRIM the whole device if l2arc_trim_ahead > 0, 9593 * otherwise create a new header. We zero out the memory holding 9594 * the header to reset dh_start_lbps. If we TRIM the whole 9595 * device the new header will be written by 9596 * vdev_trim_l2arc_thread() at the end of the TRIM to update the 9597 * trim_state in the header too. When reading the header, if 9598 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0 9599 * we opt to TRIM the whole device again. 9600 */ 9601 if (l2arc_trim_ahead > 0) { 9602 dev->l2ad_trim_all = B_TRUE; 9603 } else { 9604 bzero(l2dhdr, l2dhdr_asize); 9605 l2arc_dev_hdr_update(dev); 9606 } 9607 } 9608 } 9609 9610 /* 9611 * Remove a vdev from the L2ARC. 9612 */ 9613 void 9614 l2arc_remove_vdev(vdev_t *vd) 9615 { 9616 l2arc_dev_t *remdev = NULL; 9617 9618 /* 9619 * Find the device by vdev 9620 */ 9621 remdev = l2arc_vdev_get(vd); 9622 ASSERT3P(remdev, !=, NULL); 9623 9624 /* 9625 * Cancel any ongoing or scheduled rebuild. 9626 */ 9627 mutex_enter(&l2arc_rebuild_thr_lock); 9628 if (remdev->l2ad_rebuild_began == B_TRUE) { 9629 remdev->l2ad_rebuild_cancel = B_TRUE; 9630 while (remdev->l2ad_rebuild == B_TRUE) 9631 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock); 9632 } 9633 mutex_exit(&l2arc_rebuild_thr_lock); 9634 9635 /* 9636 * Remove device from global list 9637 */ 9638 mutex_enter(&l2arc_dev_mtx); 9639 list_remove(l2arc_dev_list, remdev); 9640 l2arc_dev_last = NULL; /* may have been invalidated */ 9641 atomic_dec_64(&l2arc_ndev); 9642 mutex_exit(&l2arc_dev_mtx); 9643 9644 /* 9645 * Clear all buflists and ARC references. L2ARC device flush. 9646 */ 9647 l2arc_evict(remdev, 0, B_TRUE); 9648 list_destroy(&remdev->l2ad_buflist); 9649 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list)); 9650 list_destroy(&remdev->l2ad_lbptr_list); 9651 mutex_destroy(&remdev->l2ad_mtx); 9652 zfs_refcount_destroy(&remdev->l2ad_alloc); 9653 zfs_refcount_destroy(&remdev->l2ad_lb_asize); 9654 zfs_refcount_destroy(&remdev->l2ad_lb_count); 9655 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize); 9656 vmem_free(remdev, sizeof (l2arc_dev_t)); 9657 } 9658 9659 void 9660 l2arc_init(void) 9661 { 9662 l2arc_thread_exit = 0; 9663 l2arc_ndev = 0; 9664 l2arc_writes_sent = 0; 9665 l2arc_writes_done = 0; 9666 9667 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 9668 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 9669 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL); 9670 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL); 9671 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 9672 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 9673 9674 l2arc_dev_list = &L2ARC_dev_list; 9675 l2arc_free_on_write = &L2ARC_free_on_write; 9676 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 9677 offsetof(l2arc_dev_t, l2ad_node)); 9678 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 9679 offsetof(l2arc_data_free_t, l2df_list_node)); 9680 } 9681 9682 void 9683 l2arc_fini(void) 9684 { 9685 mutex_destroy(&l2arc_feed_thr_lock); 9686 cv_destroy(&l2arc_feed_thr_cv); 9687 mutex_destroy(&l2arc_rebuild_thr_lock); 9688 cv_destroy(&l2arc_rebuild_thr_cv); 9689 mutex_destroy(&l2arc_dev_mtx); 9690 mutex_destroy(&l2arc_free_on_write_mtx); 9691 9692 list_destroy(l2arc_dev_list); 9693 list_destroy(l2arc_free_on_write); 9694 } 9695 9696 void 9697 l2arc_start(void) 9698 { 9699 if (!(spa_mode_global & SPA_MODE_WRITE)) 9700 return; 9701 9702 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 9703 TS_RUN, defclsyspri); 9704 } 9705 9706 void 9707 l2arc_stop(void) 9708 { 9709 if (!(spa_mode_global & SPA_MODE_WRITE)) 9710 return; 9711 9712 mutex_enter(&l2arc_feed_thr_lock); 9713 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 9714 l2arc_thread_exit = 1; 9715 while (l2arc_thread_exit != 0) 9716 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 9717 mutex_exit(&l2arc_feed_thr_lock); 9718 } 9719 9720 /* 9721 * Punches out rebuild threads for the L2ARC devices in a spa. This should 9722 * be called after pool import from the spa async thread, since starting 9723 * these threads directly from spa_import() will make them part of the 9724 * "zpool import" context and delay process exit (and thus pool import). 9725 */ 9726 void 9727 l2arc_spa_rebuild_start(spa_t *spa) 9728 { 9729 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 9730 9731 /* 9732 * Locate the spa's l2arc devices and kick off rebuild threads. 9733 */ 9734 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 9735 l2arc_dev_t *dev = 9736 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]); 9737 if (dev == NULL) { 9738 /* Don't attempt a rebuild if the vdev is UNAVAIL */ 9739 continue; 9740 } 9741 mutex_enter(&l2arc_rebuild_thr_lock); 9742 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) { 9743 dev->l2ad_rebuild_began = B_TRUE; 9744 (void) thread_create(NULL, 0, l2arc_dev_rebuild_thread, 9745 dev, 0, &p0, TS_RUN, minclsyspri); 9746 } 9747 mutex_exit(&l2arc_rebuild_thr_lock); 9748 } 9749 } 9750 9751 /* 9752 * Main entry point for L2ARC rebuilding. 9753 */ 9754 static void 9755 l2arc_dev_rebuild_thread(void *arg) 9756 { 9757 l2arc_dev_t *dev = arg; 9758 9759 VERIFY(!dev->l2ad_rebuild_cancel); 9760 VERIFY(dev->l2ad_rebuild); 9761 (void) l2arc_rebuild(dev); 9762 mutex_enter(&l2arc_rebuild_thr_lock); 9763 dev->l2ad_rebuild_began = B_FALSE; 9764 dev->l2ad_rebuild = B_FALSE; 9765 mutex_exit(&l2arc_rebuild_thr_lock); 9766 9767 thread_exit(); 9768 } 9769 9770 /* 9771 * This function implements the actual L2ARC metadata rebuild. It: 9772 * starts reading the log block chain and restores each block's contents 9773 * to memory (reconstructing arc_buf_hdr_t's). 9774 * 9775 * Operation stops under any of the following conditions: 9776 * 9777 * 1) We reach the end of the log block chain. 9778 * 2) We encounter *any* error condition (cksum errors, io errors) 9779 */ 9780 static int 9781 l2arc_rebuild(l2arc_dev_t *dev) 9782 { 9783 vdev_t *vd = dev->l2ad_vdev; 9784 spa_t *spa = vd->vdev_spa; 9785 int err = 0; 9786 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9787 l2arc_log_blk_phys_t *this_lb, *next_lb; 9788 zio_t *this_io = NULL, *next_io = NULL; 9789 l2arc_log_blkptr_t lbps[2]; 9790 l2arc_lb_ptr_buf_t *lb_ptr_buf; 9791 boolean_t lock_held; 9792 9793 this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP); 9794 next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP); 9795 9796 /* 9797 * We prevent device removal while issuing reads to the device, 9798 * then during the rebuilding phases we drop this lock again so 9799 * that a spa_unload or device remove can be initiated - this is 9800 * safe, because the spa will signal us to stop before removing 9801 * our device and wait for us to stop. 9802 */ 9803 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER); 9804 lock_held = B_TRUE; 9805 9806 /* 9807 * Retrieve the persistent L2ARC device state. 9808 * L2BLK_GET_PSIZE returns aligned size for log blocks. 9809 */ 9810 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start); 9811 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr + 9812 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop), 9813 dev->l2ad_start); 9814 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 9815 9816 vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time; 9817 vd->vdev_trim_state = l2dhdr->dh_trim_state; 9818 9819 /* 9820 * In case the zfs module parameter l2arc_rebuild_enabled is false 9821 * we do not start the rebuild process. 9822 */ 9823 if (!l2arc_rebuild_enabled) 9824 goto out; 9825 9826 /* Prepare the rebuild process */ 9827 bcopy(l2dhdr->dh_start_lbps, lbps, sizeof (lbps)); 9828 9829 /* Start the rebuild process */ 9830 for (;;) { 9831 if (!l2arc_log_blkptr_valid(dev, &lbps[0])) 9832 break; 9833 9834 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1], 9835 this_lb, next_lb, this_io, &next_io)) != 0) 9836 goto out; 9837 9838 /* 9839 * Our memory pressure valve. If the system is running low 9840 * on memory, rather than swamping memory with new ARC buf 9841 * hdrs, we opt not to rebuild the L2ARC. At this point, 9842 * however, we have already set up our L2ARC dev to chain in 9843 * new metadata log blocks, so the user may choose to offline/ 9844 * online the L2ARC dev at a later time (or re-import the pool) 9845 * to reconstruct it (when there's less memory pressure). 9846 */ 9847 if (l2arc_hdr_limit_reached()) { 9848 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem); 9849 cmn_err(CE_NOTE, "System running low on memory, " 9850 "aborting L2ARC rebuild."); 9851 err = SET_ERROR(ENOMEM); 9852 goto out; 9853 } 9854 9855 spa_config_exit(spa, SCL_L2ARC, vd); 9856 lock_held = B_FALSE; 9857 9858 /* 9859 * Now that we know that the next_lb checks out alright, we 9860 * can start reconstruction from this log block. 9861 * L2BLK_GET_PSIZE returns aligned size for log blocks. 9862 */ 9863 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 9864 l2arc_log_blk_restore(dev, this_lb, asize); 9865 9866 /* 9867 * log block restored, include its pointer in the list of 9868 * pointers to log blocks present in the L2ARC device. 9869 */ 9870 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 9871 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), 9872 KM_SLEEP); 9873 bcopy(&lbps[0], lb_ptr_buf->lb_ptr, 9874 sizeof (l2arc_log_blkptr_t)); 9875 mutex_enter(&dev->l2ad_mtx); 9876 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf); 9877 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 9878 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 9879 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 9880 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 9881 mutex_exit(&dev->l2ad_mtx); 9882 vdev_space_update(vd, asize, 0, 0); 9883 9884 /* 9885 * Protection against loops of log blocks: 9886 * 9887 * l2ad_hand l2ad_evict 9888 * V V 9889 * l2ad_start |=======================================| l2ad_end 9890 * -----|||----|||---|||----||| 9891 * (3) (2) (1) (0) 9892 * ---|||---|||----|||---||| 9893 * (7) (6) (5) (4) 9894 * 9895 * In this situation the pointer of log block (4) passes 9896 * l2arc_log_blkptr_valid() but the log block should not be 9897 * restored as it is overwritten by the payload of log block 9898 * (0). Only log blocks (0)-(3) should be restored. We check 9899 * whether l2ad_evict lies in between the payload starting 9900 * offset of the next log block (lbps[1].lbp_payload_start) 9901 * and the payload starting offset of the present log block 9902 * (lbps[0].lbp_payload_start). If true and this isn't the 9903 * first pass, we are looping from the beginning and we should 9904 * stop. 9905 */ 9906 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 9907 lbps[0].lbp_payload_start, dev->l2ad_evict) && 9908 !dev->l2ad_first) 9909 goto out; 9910 9911 cond_resched(); 9912 for (;;) { 9913 mutex_enter(&l2arc_rebuild_thr_lock); 9914 if (dev->l2ad_rebuild_cancel) { 9915 dev->l2ad_rebuild = B_FALSE; 9916 cv_signal(&l2arc_rebuild_thr_cv); 9917 mutex_exit(&l2arc_rebuild_thr_lock); 9918 err = SET_ERROR(ECANCELED); 9919 goto out; 9920 } 9921 mutex_exit(&l2arc_rebuild_thr_lock); 9922 if (spa_config_tryenter(spa, SCL_L2ARC, vd, 9923 RW_READER)) { 9924 lock_held = B_TRUE; 9925 break; 9926 } 9927 /* 9928 * L2ARC config lock held by somebody in writer, 9929 * possibly due to them trying to remove us. They'll 9930 * likely to want us to shut down, so after a little 9931 * delay, we check l2ad_rebuild_cancel and retry 9932 * the lock again. 9933 */ 9934 delay(1); 9935 } 9936 9937 /* 9938 * Continue with the next log block. 9939 */ 9940 lbps[0] = lbps[1]; 9941 lbps[1] = this_lb->lb_prev_lbp; 9942 PTR_SWAP(this_lb, next_lb); 9943 this_io = next_io; 9944 next_io = NULL; 9945 } 9946 9947 if (this_io != NULL) 9948 l2arc_log_blk_fetch_abort(this_io); 9949 out: 9950 if (next_io != NULL) 9951 l2arc_log_blk_fetch_abort(next_io); 9952 vmem_free(this_lb, sizeof (*this_lb)); 9953 vmem_free(next_lb, sizeof (*next_lb)); 9954 9955 if (!l2arc_rebuild_enabled) { 9956 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9957 "disabled"); 9958 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) { 9959 ARCSTAT_BUMP(arcstat_l2_rebuild_success); 9960 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9961 "successful, restored %llu blocks", 9962 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 9963 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) { 9964 /* 9965 * No error but also nothing restored, meaning the lbps array 9966 * in the device header points to invalid/non-present log 9967 * blocks. Reset the header. 9968 */ 9969 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9970 "no valid log blocks"); 9971 bzero(l2dhdr, dev->l2ad_dev_hdr_asize); 9972 l2arc_dev_hdr_update(dev); 9973 } else if (err == ECANCELED) { 9974 /* 9975 * In case the rebuild was canceled do not log to spa history 9976 * log as the pool may be in the process of being removed. 9977 */ 9978 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks", 9979 zfs_refcount_count(&dev->l2ad_lb_count)); 9980 } else if (err != 0) { 9981 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9982 "aborted, restored %llu blocks", 9983 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 9984 } 9985 9986 if (lock_held) 9987 spa_config_exit(spa, SCL_L2ARC, vd); 9988 9989 return (err); 9990 } 9991 9992 /* 9993 * Attempts to read the device header on the provided L2ARC device and writes 9994 * it to `hdr'. On success, this function returns 0, otherwise the appropriate 9995 * error code is returned. 9996 */ 9997 static int 9998 l2arc_dev_hdr_read(l2arc_dev_t *dev) 9999 { 10000 int err; 10001 uint64_t guid; 10002 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10003 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10004 abd_t *abd; 10005 10006 guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10007 10008 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10009 10010 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev, 10011 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, 10012 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 10013 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 10014 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 10015 ZIO_FLAG_SPECULATIVE, B_FALSE)); 10016 10017 abd_free(abd); 10018 10019 if (err != 0) { 10020 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors); 10021 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, " 10022 "vdev guid: %llu", err, dev->l2ad_vdev->vdev_guid); 10023 return (err); 10024 } 10025 10026 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 10027 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr)); 10028 10029 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC || 10030 l2dhdr->dh_spa_guid != guid || 10031 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid || 10032 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION || 10033 l2dhdr->dh_log_entries != dev->l2ad_log_entries || 10034 l2dhdr->dh_end != dev->l2ad_end || 10035 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end, 10036 l2dhdr->dh_evict) || 10037 (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE && 10038 l2arc_trim_ahead > 0)) { 10039 /* 10040 * Attempt to rebuild a device containing no actual dev hdr 10041 * or containing a header from some other pool or from another 10042 * version of persistent L2ARC. 10043 */ 10044 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported); 10045 return (SET_ERROR(ENOTSUP)); 10046 } 10047 10048 return (0); 10049 } 10050 10051 /* 10052 * Reads L2ARC log blocks from storage and validates their contents. 10053 * 10054 * This function implements a simple fetcher to make sure that while 10055 * we're processing one buffer the L2ARC is already fetching the next 10056 * one in the chain. 10057 * 10058 * The arguments this_lp and next_lp point to the current and next log block 10059 * address in the block chain. Similarly, this_lb and next_lb hold the 10060 * l2arc_log_blk_phys_t's of the current and next L2ARC blk. 10061 * 10062 * The `this_io' and `next_io' arguments are used for block fetching. 10063 * When issuing the first blk IO during rebuild, you should pass NULL for 10064 * `this_io'. This function will then issue a sync IO to read the block and 10065 * also issue an async IO to fetch the next block in the block chain. The 10066 * fetched IO is returned in `next_io'. On subsequent calls to this 10067 * function, pass the value returned in `next_io' from the previous call 10068 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO. 10069 * Prior to the call, you should initialize your `next_io' pointer to be 10070 * NULL. If no fetch IO was issued, the pointer is left set at NULL. 10071 * 10072 * On success, this function returns 0, otherwise it returns an appropriate 10073 * error code. On error the fetching IO is aborted and cleared before 10074 * returning from this function. Therefore, if we return `success', the 10075 * caller can assume that we have taken care of cleanup of fetch IOs. 10076 */ 10077 static int 10078 l2arc_log_blk_read(l2arc_dev_t *dev, 10079 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp, 10080 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 10081 zio_t *this_io, zio_t **next_io) 10082 { 10083 int err = 0; 10084 zio_cksum_t cksum; 10085 abd_t *abd = NULL; 10086 uint64_t asize; 10087 10088 ASSERT(this_lbp != NULL && next_lbp != NULL); 10089 ASSERT(this_lb != NULL && next_lb != NULL); 10090 ASSERT(next_io != NULL && *next_io == NULL); 10091 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp)); 10092 10093 /* 10094 * Check to see if we have issued the IO for this log block in a 10095 * previous run. If not, this is the first call, so issue it now. 10096 */ 10097 if (this_io == NULL) { 10098 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp, 10099 this_lb); 10100 } 10101 10102 /* 10103 * Peek to see if we can start issuing the next IO immediately. 10104 */ 10105 if (l2arc_log_blkptr_valid(dev, next_lbp)) { 10106 /* 10107 * Start issuing IO for the next log block early - this 10108 * should help keep the L2ARC device busy while we 10109 * decompress and restore this log block. 10110 */ 10111 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp, 10112 next_lb); 10113 } 10114 10115 /* Wait for the IO to read this log block to complete */ 10116 if ((err = zio_wait(this_io)) != 0) { 10117 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors); 10118 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, " 10119 "offset: %llu, vdev guid: %llu", err, this_lbp->lbp_daddr, 10120 dev->l2ad_vdev->vdev_guid); 10121 goto cleanup; 10122 } 10123 10124 /* 10125 * Make sure the buffer checks out. 10126 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10127 */ 10128 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop); 10129 fletcher_4_native(this_lb, asize, NULL, &cksum); 10130 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) { 10131 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors); 10132 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, " 10133 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu", 10134 this_lbp->lbp_daddr, dev->l2ad_vdev->vdev_guid, 10135 dev->l2ad_hand, dev->l2ad_evict); 10136 err = SET_ERROR(ECKSUM); 10137 goto cleanup; 10138 } 10139 10140 /* Now we can take our time decoding this buffer */ 10141 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) { 10142 case ZIO_COMPRESS_OFF: 10143 break; 10144 case ZIO_COMPRESS_LZ4: 10145 abd = abd_alloc_for_io(asize, B_TRUE); 10146 abd_copy_from_buf_off(abd, this_lb, 0, asize); 10147 if ((err = zio_decompress_data( 10148 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop), 10149 abd, this_lb, asize, sizeof (*this_lb), NULL)) != 0) { 10150 err = SET_ERROR(EINVAL); 10151 goto cleanup; 10152 } 10153 break; 10154 default: 10155 err = SET_ERROR(EINVAL); 10156 goto cleanup; 10157 } 10158 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 10159 byteswap_uint64_array(this_lb, sizeof (*this_lb)); 10160 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) { 10161 err = SET_ERROR(EINVAL); 10162 goto cleanup; 10163 } 10164 cleanup: 10165 /* Abort an in-flight fetch I/O in case of error */ 10166 if (err != 0 && *next_io != NULL) { 10167 l2arc_log_blk_fetch_abort(*next_io); 10168 *next_io = NULL; 10169 } 10170 if (abd != NULL) 10171 abd_free(abd); 10172 return (err); 10173 } 10174 10175 /* 10176 * Restores the payload of a log block to ARC. This creates empty ARC hdr 10177 * entries which only contain an l2arc hdr, essentially restoring the 10178 * buffers to their L2ARC evicted state. This function also updates space 10179 * usage on the L2ARC vdev to make sure it tracks restored buffers. 10180 */ 10181 static void 10182 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb, 10183 uint64_t lb_asize) 10184 { 10185 uint64_t size = 0, asize = 0; 10186 uint64_t log_entries = dev->l2ad_log_entries; 10187 10188 /* 10189 * Usually arc_adapt() is called only for data, not headers, but 10190 * since we may allocate significant amount of memory here, let ARC 10191 * grow its arc_c. 10192 */ 10193 arc_adapt(log_entries * HDR_L2ONLY_SIZE, arc_l2c_only); 10194 10195 for (int i = log_entries - 1; i >= 0; i--) { 10196 /* 10197 * Restore goes in the reverse temporal direction to preserve 10198 * correct temporal ordering of buffers in the l2ad_buflist. 10199 * l2arc_hdr_restore also does a list_insert_tail instead of 10200 * list_insert_head on the l2ad_buflist: 10201 * 10202 * LIST l2ad_buflist LIST 10203 * HEAD <------ (time) ------ TAIL 10204 * direction +-----+-----+-----+-----+-----+ direction 10205 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild 10206 * fill +-----+-----+-----+-----+-----+ 10207 * ^ ^ 10208 * | | 10209 * | | 10210 * l2arc_feed_thread l2arc_rebuild 10211 * will place new bufs here restores bufs here 10212 * 10213 * During l2arc_rebuild() the device is not used by 10214 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true. 10215 */ 10216 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop); 10217 asize += vdev_psize_to_asize(dev->l2ad_vdev, 10218 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop)); 10219 l2arc_hdr_restore(&lb->lb_entries[i], dev); 10220 } 10221 10222 /* 10223 * Record rebuild stats: 10224 * size Logical size of restored buffers in the L2ARC 10225 * asize Aligned size of restored buffers in the L2ARC 10226 */ 10227 ARCSTAT_INCR(arcstat_l2_rebuild_size, size); 10228 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize); 10229 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries); 10230 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize); 10231 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize); 10232 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks); 10233 } 10234 10235 /* 10236 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put 10237 * into a state indicating that it has been evicted to L2ARC. 10238 */ 10239 static void 10240 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev) 10241 { 10242 arc_buf_hdr_t *hdr, *exists; 10243 kmutex_t *hash_lock; 10244 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop); 10245 uint64_t asize; 10246 10247 /* 10248 * Do all the allocation before grabbing any locks, this lets us 10249 * sleep if memory is full and we don't have to deal with failed 10250 * allocations. 10251 */ 10252 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type, 10253 dev, le->le_dva, le->le_daddr, 10254 L2BLK_GET_PSIZE((le)->le_prop), le->le_birth, 10255 L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel, 10256 L2BLK_GET_PROTECTED((le)->le_prop), 10257 L2BLK_GET_PREFETCH((le)->le_prop), 10258 L2BLK_GET_STATE((le)->le_prop)); 10259 asize = vdev_psize_to_asize(dev->l2ad_vdev, 10260 L2BLK_GET_PSIZE((le)->le_prop)); 10261 10262 /* 10263 * vdev_space_update() has to be called before arc_hdr_destroy() to 10264 * avoid underflow since the latter also calls vdev_space_update(). 10265 */ 10266 l2arc_hdr_arcstats_increment(hdr); 10267 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10268 10269 mutex_enter(&dev->l2ad_mtx); 10270 list_insert_tail(&dev->l2ad_buflist, hdr); 10271 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); 10272 mutex_exit(&dev->l2ad_mtx); 10273 10274 exists = buf_hash_insert(hdr, &hash_lock); 10275 if (exists) { 10276 /* Buffer was already cached, no need to restore it. */ 10277 arc_hdr_destroy(hdr); 10278 /* 10279 * If the buffer is already cached, check whether it has 10280 * L2ARC metadata. If not, enter them and update the flag. 10281 * This is important is case of onlining a cache device, since 10282 * we previously evicted all L2ARC metadata from ARC. 10283 */ 10284 if (!HDR_HAS_L2HDR(exists)) { 10285 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR); 10286 exists->b_l2hdr.b_dev = dev; 10287 exists->b_l2hdr.b_daddr = le->le_daddr; 10288 exists->b_l2hdr.b_arcs_state = 10289 L2BLK_GET_STATE((le)->le_prop); 10290 mutex_enter(&dev->l2ad_mtx); 10291 list_insert_tail(&dev->l2ad_buflist, exists); 10292 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 10293 arc_hdr_size(exists), exists); 10294 mutex_exit(&dev->l2ad_mtx); 10295 l2arc_hdr_arcstats_increment(exists); 10296 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10297 } 10298 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached); 10299 } 10300 10301 mutex_exit(hash_lock); 10302 } 10303 10304 /* 10305 * Starts an asynchronous read IO to read a log block. This is used in log 10306 * block reconstruction to start reading the next block before we are done 10307 * decoding and reconstructing the current block, to keep the l2arc device 10308 * nice and hot with read IO to process. 10309 * The returned zio will contain a newly allocated memory buffers for the IO 10310 * data which should then be freed by the caller once the zio is no longer 10311 * needed (i.e. due to it having completed). If you wish to abort this 10312 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes 10313 * care of disposing of the allocated buffers correctly. 10314 */ 10315 static zio_t * 10316 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp, 10317 l2arc_log_blk_phys_t *lb) 10318 { 10319 uint32_t asize; 10320 zio_t *pio; 10321 l2arc_read_callback_t *cb; 10322 10323 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10324 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10325 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t)); 10326 10327 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP); 10328 cb->l2rcb_abd = abd_get_from_buf(lb, asize); 10329 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb, 10330 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | 10331 ZIO_FLAG_DONT_RETRY); 10332 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize, 10333 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10334 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 10335 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE)); 10336 10337 return (pio); 10338 } 10339 10340 /* 10341 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data 10342 * buffers allocated for it. 10343 */ 10344 static void 10345 l2arc_log_blk_fetch_abort(zio_t *zio) 10346 { 10347 (void) zio_wait(zio); 10348 } 10349 10350 /* 10351 * Creates a zio to update the device header on an l2arc device. 10352 */ 10353 void 10354 l2arc_dev_hdr_update(l2arc_dev_t *dev) 10355 { 10356 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10357 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10358 abd_t *abd; 10359 int err; 10360 10361 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER)); 10362 10363 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC; 10364 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION; 10365 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10366 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid; 10367 l2dhdr->dh_log_entries = dev->l2ad_log_entries; 10368 l2dhdr->dh_evict = dev->l2ad_evict; 10369 l2dhdr->dh_start = dev->l2ad_start; 10370 l2dhdr->dh_end = dev->l2ad_end; 10371 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize); 10372 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count); 10373 l2dhdr->dh_flags = 0; 10374 l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time; 10375 l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state; 10376 if (dev->l2ad_first) 10377 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST; 10378 10379 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10380 10381 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev, 10382 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL, 10383 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE)); 10384 10385 abd_free(abd); 10386 10387 if (err != 0) { 10388 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, " 10389 "vdev guid: %llu", err, dev->l2ad_vdev->vdev_guid); 10390 } 10391 } 10392 10393 /* 10394 * Commits a log block to the L2ARC device. This routine is invoked from 10395 * l2arc_write_buffers when the log block fills up. 10396 * This function allocates some memory to temporarily hold the serialized 10397 * buffer to be written. This is then released in l2arc_write_done. 10398 */ 10399 static void 10400 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb) 10401 { 10402 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10403 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10404 uint64_t psize, asize; 10405 zio_t *wzio; 10406 l2arc_lb_abd_buf_t *abd_buf; 10407 uint8_t *tmpbuf; 10408 l2arc_lb_ptr_buf_t *lb_ptr_buf; 10409 10410 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries); 10411 10412 tmpbuf = zio_buf_alloc(sizeof (*lb)); 10413 abd_buf = zio_buf_alloc(sizeof (*abd_buf)); 10414 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb)); 10415 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 10416 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP); 10417 10418 /* link the buffer into the block chain */ 10419 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1]; 10420 lb->lb_magic = L2ARC_LOG_BLK_MAGIC; 10421 10422 /* 10423 * l2arc_log_blk_commit() may be called multiple times during a single 10424 * l2arc_write_buffers() call. Save the allocated abd buffers in a list 10425 * so we can free them in l2arc_write_done() later on. 10426 */ 10427 list_insert_tail(&cb->l2wcb_abd_list, abd_buf); 10428 10429 /* try to compress the buffer */ 10430 psize = zio_compress_data(ZIO_COMPRESS_LZ4, 10431 abd_buf->abd, tmpbuf, sizeof (*lb), 0); 10432 10433 /* a log block is never entirely zero */ 10434 ASSERT(psize != 0); 10435 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 10436 ASSERT(asize <= sizeof (*lb)); 10437 10438 /* 10439 * Update the start log block pointer in the device header to point 10440 * to the log block we're about to write. 10441 */ 10442 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0]; 10443 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand; 10444 l2dhdr->dh_start_lbps[0].lbp_payload_asize = 10445 dev->l2ad_log_blk_payload_asize; 10446 l2dhdr->dh_start_lbps[0].lbp_payload_start = 10447 dev->l2ad_log_blk_payload_start; 10448 _NOTE(CONSTCOND) 10449 L2BLK_SET_LSIZE( 10450 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb)); 10451 L2BLK_SET_PSIZE( 10452 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize); 10453 L2BLK_SET_CHECKSUM( 10454 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10455 ZIO_CHECKSUM_FLETCHER_4); 10456 if (asize < sizeof (*lb)) { 10457 /* compression succeeded */ 10458 bzero(tmpbuf + psize, asize - psize); 10459 L2BLK_SET_COMPRESS( 10460 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10461 ZIO_COMPRESS_LZ4); 10462 } else { 10463 /* compression failed */ 10464 bcopy(lb, tmpbuf, sizeof (*lb)); 10465 L2BLK_SET_COMPRESS( 10466 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10467 ZIO_COMPRESS_OFF); 10468 } 10469 10470 /* checksum what we're about to write */ 10471 fletcher_4_native(tmpbuf, asize, NULL, 10472 &l2dhdr->dh_start_lbps[0].lbp_cksum); 10473 10474 abd_free(abd_buf->abd); 10475 10476 /* perform the write itself */ 10477 abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb)); 10478 abd_take_ownership_of_buf(abd_buf->abd, B_TRUE); 10479 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand, 10480 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10481 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE); 10482 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio); 10483 (void) zio_nowait(wzio); 10484 10485 dev->l2ad_hand += asize; 10486 /* 10487 * Include the committed log block's pointer in the list of pointers 10488 * to log blocks present in the L2ARC device. 10489 */ 10490 bcopy(&l2dhdr->dh_start_lbps[0], lb_ptr_buf->lb_ptr, 10491 sizeof (l2arc_log_blkptr_t)); 10492 mutex_enter(&dev->l2ad_mtx); 10493 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf); 10494 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 10495 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 10496 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 10497 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 10498 mutex_exit(&dev->l2ad_mtx); 10499 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10500 10501 /* bump the kstats */ 10502 ARCSTAT_INCR(arcstat_l2_write_bytes, asize); 10503 ARCSTAT_BUMP(arcstat_l2_log_blk_writes); 10504 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize); 10505 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, 10506 dev->l2ad_log_blk_payload_asize / asize); 10507 10508 /* start a new log block */ 10509 dev->l2ad_log_ent_idx = 0; 10510 dev->l2ad_log_blk_payload_asize = 0; 10511 dev->l2ad_log_blk_payload_start = 0; 10512 } 10513 10514 /* 10515 * Validates an L2ARC log block address to make sure that it can be read 10516 * from the provided L2ARC device. 10517 */ 10518 boolean_t 10519 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp) 10520 { 10521 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10522 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10523 uint64_t end = lbp->lbp_daddr + asize - 1; 10524 uint64_t start = lbp->lbp_payload_start; 10525 boolean_t evicted = B_FALSE; 10526 10527 /* 10528 * A log block is valid if all of the following conditions are true: 10529 * - it fits entirely (including its payload) between l2ad_start and 10530 * l2ad_end 10531 * - it has a valid size 10532 * - neither the log block itself nor part of its payload was evicted 10533 * by l2arc_evict(): 10534 * 10535 * l2ad_hand l2ad_evict 10536 * | | lbp_daddr 10537 * | start | | end 10538 * | | | | | 10539 * V V V V V 10540 * l2ad_start ============================================ l2ad_end 10541 * --------------------------|||| 10542 * ^ ^ 10543 * | log block 10544 * payload 10545 */ 10546 10547 evicted = 10548 l2arc_range_check_overlap(start, end, dev->l2ad_hand) || 10549 l2arc_range_check_overlap(start, end, dev->l2ad_evict) || 10550 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) || 10551 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end); 10552 10553 return (start >= dev->l2ad_start && end <= dev->l2ad_end && 10554 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) && 10555 (!evicted || dev->l2ad_first)); 10556 } 10557 10558 /* 10559 * Inserts ARC buffer header `hdr' into the current L2ARC log block on 10560 * the device. The buffer being inserted must be present in L2ARC. 10561 * Returns B_TRUE if the L2ARC log block is full and needs to be committed 10562 * to L2ARC, or B_FALSE if it still has room for more ARC buffers. 10563 */ 10564 static boolean_t 10565 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr) 10566 { 10567 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10568 l2arc_log_ent_phys_t *le; 10569 10570 if (dev->l2ad_log_entries == 0) 10571 return (B_FALSE); 10572 10573 int index = dev->l2ad_log_ent_idx++; 10574 10575 ASSERT3S(index, <, dev->l2ad_log_entries); 10576 ASSERT(HDR_HAS_L2HDR(hdr)); 10577 10578 le = &lb->lb_entries[index]; 10579 bzero(le, sizeof (*le)); 10580 le->le_dva = hdr->b_dva; 10581 le->le_birth = hdr->b_birth; 10582 le->le_daddr = hdr->b_l2hdr.b_daddr; 10583 if (index == 0) 10584 dev->l2ad_log_blk_payload_start = le->le_daddr; 10585 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr)); 10586 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr)); 10587 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr)); 10588 le->le_complevel = hdr->b_complevel; 10589 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type); 10590 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr))); 10591 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr))); 10592 L2BLK_SET_STATE((le)->le_prop, hdr->b_l1hdr.b_state->arcs_state); 10593 10594 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev, 10595 HDR_GET_PSIZE(hdr)); 10596 10597 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries); 10598 } 10599 10600 /* 10601 * Checks whether a given L2ARC device address sits in a time-sequential 10602 * range. The trick here is that the L2ARC is a rotary buffer, so we can't 10603 * just do a range comparison, we need to handle the situation in which the 10604 * range wraps around the end of the L2ARC device. Arguments: 10605 * bottom -- Lower end of the range to check (written to earlier). 10606 * top -- Upper end of the range to check (written to later). 10607 * check -- The address for which we want to determine if it sits in 10608 * between the top and bottom. 10609 * 10610 * The 3-way conditional below represents the following cases: 10611 * 10612 * bottom < top : Sequentially ordered case: 10613 * <check>--------+-------------------+ 10614 * | (overlap here?) | 10615 * L2ARC dev V V 10616 * |---------------<bottom>============<top>--------------| 10617 * 10618 * bottom > top: Looped-around case: 10619 * <check>--------+------------------+ 10620 * | (overlap here?) | 10621 * L2ARC dev V V 10622 * |===============<top>---------------<bottom>===========| 10623 * ^ ^ 10624 * | (or here?) | 10625 * +---------------+---------<check> 10626 * 10627 * top == bottom : Just a single address comparison. 10628 */ 10629 boolean_t 10630 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check) 10631 { 10632 if (bottom < top) 10633 return (bottom <= check && check <= top); 10634 else if (bottom > top) 10635 return (check <= top || bottom <= check); 10636 else 10637 return (check == top); 10638 } 10639 10640 EXPORT_SYMBOL(arc_buf_size); 10641 EXPORT_SYMBOL(arc_write); 10642 EXPORT_SYMBOL(arc_read); 10643 EXPORT_SYMBOL(arc_buf_info); 10644 EXPORT_SYMBOL(arc_getbuf_func); 10645 EXPORT_SYMBOL(arc_add_prune_callback); 10646 EXPORT_SYMBOL(arc_remove_prune_callback); 10647 10648 /* BEGIN CSTYLED */ 10649 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_long, 10650 param_get_long, ZMOD_RW, "Min arc size"); 10651 10652 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_long, 10653 param_get_long, ZMOD_RW, "Max arc size"); 10654 10655 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit, param_set_arc_long, 10656 param_get_long, ZMOD_RW, "Metadata limit for arc size"); 10657 10658 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit_percent, 10659 param_set_arc_long, param_get_long, ZMOD_RW, 10660 "Percent of arc size for arc meta limit"); 10661 10662 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_min, param_set_arc_long, 10663 param_get_long, ZMOD_RW, "Min arc metadata"); 10664 10665 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_prune, INT, ZMOD_RW, 10666 "Meta objects to scan for prune"); 10667 10668 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_adjust_restarts, INT, ZMOD_RW, 10669 "Limit number of restarts in arc_evict_meta"); 10670 10671 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_strategy, INT, ZMOD_RW, 10672 "Meta reclaim strategy"); 10673 10674 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int, 10675 param_get_int, ZMOD_RW, "Seconds before growing arc size"); 10676 10677 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, p_dampener_disable, INT, ZMOD_RW, 10678 "Disable arc_p adapt dampener"); 10679 10680 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int, 10681 param_get_int, ZMOD_RW, "log2(fraction of arc to reclaim)"); 10682 10683 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW, 10684 "Percent of pagecache to reclaim arc to"); 10685 10686 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, p_min_shift, param_set_arc_int, 10687 param_get_int, ZMOD_RW, "arc_c shift to calc min/max arc_p"); 10688 10689 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, INT, ZMOD_RD, 10690 "Target average block size"); 10691 10692 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW, 10693 "Disable compressed arc buffers"); 10694 10695 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int, 10696 param_get_int, ZMOD_RW, "Min life of prefetch block in ms"); 10697 10698 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms, 10699 param_set_arc_int, param_get_int, ZMOD_RW, 10700 "Min life of prescient prefetched block in ms"); 10701 10702 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, ULONG, ZMOD_RW, 10703 "Max write bytes per interval"); 10704 10705 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, ULONG, ZMOD_RW, 10706 "Extra write bytes during device warmup"); 10707 10708 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, ULONG, ZMOD_RW, 10709 "Number of max device writes to precache"); 10710 10711 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, ULONG, ZMOD_RW, 10712 "Compressed l2arc_headroom multiplier"); 10713 10714 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, ULONG, ZMOD_RW, 10715 "TRIM ahead L2ARC write size multiplier"); 10716 10717 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, ULONG, ZMOD_RW, 10718 "Seconds between L2ARC writing"); 10719 10720 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, ULONG, ZMOD_RW, 10721 "Min feed interval in milliseconds"); 10722 10723 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW, 10724 "Skip caching prefetched buffers"); 10725 10726 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW, 10727 "Turbo L2ARC warmup"); 10728 10729 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW, 10730 "No reads during writes"); 10731 10732 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, INT, ZMOD_RW, 10733 "Percent of ARC size allowed for L2ARC-only headers"); 10734 10735 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW, 10736 "Rebuild the L2ARC when importing a pool"); 10737 10738 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, ULONG, ZMOD_RW, 10739 "Min size in bytes to write rebuild log blocks in L2ARC"); 10740 10741 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW, 10742 "Cache only MFU data from ARC into L2ARC"); 10743 10744 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int, 10745 param_get_int, ZMOD_RW, "System free memory I/O throttle in bytes"); 10746 10747 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_long, 10748 param_get_long, ZMOD_RW, "System free memory target size in bytes"); 10749 10750 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_long, 10751 param_get_long, ZMOD_RW, "Minimum bytes of dnodes in arc"); 10752 10753 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent, 10754 param_set_arc_long, param_get_long, ZMOD_RW, 10755 "Percent of ARC meta buffers for dnodes"); 10756 10757 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, ULONG, ZMOD_RW, 10758 "Percentage of excess dnodes to try to unpin"); 10759 10760 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, INT, ZMOD_RW, 10761 "When full, ARC allocation waits for eviction of this % of alloc size"); 10762 10763 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, INT, ZMOD_RW, 10764 "The number of headers to evict per sublist before moving to the next"); 10765 /* END CSTYLED */ 10766