1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2018, Joyent, Inc. 24 * Copyright (c) 2011, 2020, Delphix. All rights reserved. 25 * Copyright (c) 2014, Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 28 * Copyright (c) 2020, George Amanakis. All rights reserved. 29 * Copyright (c) 2019, Klara Inc. 30 * Copyright (c) 2019, Allan Jude 31 * Copyright (c) 2020, The FreeBSD Foundation [1] 32 * 33 * [1] Portions of this software were developed by Allan Jude 34 * under sponsorship from the FreeBSD Foundation. 35 */ 36 37 /* 38 * DVA-based Adjustable Replacement Cache 39 * 40 * While much of the theory of operation used here is 41 * based on the self-tuning, low overhead replacement cache 42 * presented by Megiddo and Modha at FAST 2003, there are some 43 * significant differences: 44 * 45 * 1. The Megiddo and Modha model assumes any page is evictable. 46 * Pages in its cache cannot be "locked" into memory. This makes 47 * the eviction algorithm simple: evict the last page in the list. 48 * This also make the performance characteristics easy to reason 49 * about. Our cache is not so simple. At any given moment, some 50 * subset of the blocks in the cache are un-evictable because we 51 * have handed out a reference to them. Blocks are only evictable 52 * when there are no external references active. This makes 53 * eviction far more problematic: we choose to evict the evictable 54 * blocks that are the "lowest" in the list. 55 * 56 * There are times when it is not possible to evict the requested 57 * space. In these circumstances we are unable to adjust the cache 58 * size. To prevent the cache growing unbounded at these times we 59 * implement a "cache throttle" that slows the flow of new data 60 * into the cache until we can make space available. 61 * 62 * 2. The Megiddo and Modha model assumes a fixed cache size. 63 * Pages are evicted when the cache is full and there is a cache 64 * miss. Our model has a variable sized cache. It grows with 65 * high use, but also tries to react to memory pressure from the 66 * operating system: decreasing its size when system memory is 67 * tight. 68 * 69 * 3. The Megiddo and Modha model assumes a fixed page size. All 70 * elements of the cache are therefore exactly the same size. So 71 * when adjusting the cache size following a cache miss, its simply 72 * a matter of choosing a single page to evict. In our model, we 73 * have variable sized cache blocks (ranging from 512 bytes to 74 * 128K bytes). We therefore choose a set of blocks to evict to make 75 * space for a cache miss that approximates as closely as possible 76 * the space used by the new block. 77 * 78 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 79 * by N. Megiddo & D. Modha, FAST 2003 80 */ 81 82 /* 83 * The locking model: 84 * 85 * A new reference to a cache buffer can be obtained in two 86 * ways: 1) via a hash table lookup using the DVA as a key, 87 * or 2) via one of the ARC lists. The arc_read() interface 88 * uses method 1, while the internal ARC algorithms for 89 * adjusting the cache use method 2. We therefore provide two 90 * types of locks: 1) the hash table lock array, and 2) the 91 * ARC list locks. 92 * 93 * Buffers do not have their own mutexes, rather they rely on the 94 * hash table mutexes for the bulk of their protection (i.e. most 95 * fields in the arc_buf_hdr_t are protected by these mutexes). 96 * 97 * buf_hash_find() returns the appropriate mutex (held) when it 98 * locates the requested buffer in the hash table. It returns 99 * NULL for the mutex if the buffer was not in the table. 100 * 101 * buf_hash_remove() expects the appropriate hash mutex to be 102 * already held before it is invoked. 103 * 104 * Each ARC state also has a mutex which is used to protect the 105 * buffer list associated with the state. When attempting to 106 * obtain a hash table lock while holding an ARC list lock you 107 * must use: mutex_tryenter() to avoid deadlock. Also note that 108 * the active state mutex must be held before the ghost state mutex. 109 * 110 * It as also possible to register a callback which is run when the 111 * arc_meta_limit is reached and no buffers can be safely evicted. In 112 * this case the arc user should drop a reference on some arc buffers so 113 * they can be reclaimed and the arc_meta_limit honored. For example, 114 * when using the ZPL each dentry holds a references on a znode. These 115 * dentries must be pruned before the arc buffer holding the znode can 116 * be safely evicted. 117 * 118 * Note that the majority of the performance stats are manipulated 119 * with atomic operations. 120 * 121 * The L2ARC uses the l2ad_mtx on each vdev for the following: 122 * 123 * - L2ARC buflist creation 124 * - L2ARC buflist eviction 125 * - L2ARC write completion, which walks L2ARC buflists 126 * - ARC header destruction, as it removes from L2ARC buflists 127 * - ARC header release, as it removes from L2ARC buflists 128 */ 129 130 /* 131 * ARC operation: 132 * 133 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. 134 * This structure can point either to a block that is still in the cache or to 135 * one that is only accessible in an L2 ARC device, or it can provide 136 * information about a block that was recently evicted. If a block is 137 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough 138 * information to retrieve it from the L2ARC device. This information is 139 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block 140 * that is in this state cannot access the data directly. 141 * 142 * Blocks that are actively being referenced or have not been evicted 143 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within 144 * the arc_buf_hdr_t that will point to the data block in memory. A block can 145 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC 146 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and 147 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd). 148 * 149 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the 150 * ability to store the physical data (b_pabd) associated with the DVA of the 151 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block, 152 * it will match its on-disk compression characteristics. This behavior can be 153 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the 154 * compressed ARC functionality is disabled, the b_pabd will point to an 155 * uncompressed version of the on-disk data. 156 * 157 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each 158 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it. 159 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC 160 * consumer. The ARC will provide references to this data and will keep it 161 * cached until it is no longer in use. The ARC caches only the L1ARC's physical 162 * data block and will evict any arc_buf_t that is no longer referenced. The 163 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the 164 * "overhead_size" kstat. 165 * 166 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or 167 * compressed form. The typical case is that consumers will want uncompressed 168 * data, and when that happens a new data buffer is allocated where the data is 169 * decompressed for them to use. Currently the only consumer who wants 170 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it 171 * exists on disk. When this happens, the arc_buf_t's data buffer is shared 172 * with the arc_buf_hdr_t. 173 * 174 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The 175 * first one is owned by a compressed send consumer (and therefore references 176 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be 177 * used by any other consumer (and has its own uncompressed copy of the data 178 * buffer). 179 * 180 * arc_buf_hdr_t 181 * +-----------+ 182 * | fields | 183 * | common to | 184 * | L1- and | 185 * | L2ARC | 186 * +-----------+ 187 * | l2arc_buf_hdr_t 188 * | | 189 * +-----------+ 190 * | l1arc_buf_hdr_t 191 * | | arc_buf_t 192 * | b_buf +------------>+-----------+ arc_buf_t 193 * | b_pabd +-+ |b_next +---->+-----------+ 194 * +-----------+ | |-----------| |b_next +-->NULL 195 * | |b_comp = T | +-----------+ 196 * | |b_data +-+ |b_comp = F | 197 * | +-----------+ | |b_data +-+ 198 * +->+------+ | +-----------+ | 199 * compressed | | | | 200 * data | |<--------------+ | uncompressed 201 * +------+ compressed, | data 202 * shared +-->+------+ 203 * data | | 204 * | | 205 * +------+ 206 * 207 * When a consumer reads a block, the ARC must first look to see if the 208 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new 209 * arc_buf_t and either copies uncompressed data into a new data buffer from an 210 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a 211 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the 212 * hdr is compressed and the desired compression characteristics of the 213 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the 214 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be 215 * the last buffer in the hdr's b_buf list, however a shared compressed buf can 216 * be anywhere in the hdr's list. 217 * 218 * The diagram below shows an example of an uncompressed ARC hdr that is 219 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is 220 * the last element in the buf list): 221 * 222 * arc_buf_hdr_t 223 * +-----------+ 224 * | | 225 * | | 226 * | | 227 * +-----------+ 228 * l2arc_buf_hdr_t| | 229 * | | 230 * +-----------+ 231 * l1arc_buf_hdr_t| | 232 * | | arc_buf_t (shared) 233 * | b_buf +------------>+---------+ arc_buf_t 234 * | | |b_next +---->+---------+ 235 * | b_pabd +-+ |---------| |b_next +-->NULL 236 * +-----------+ | | | +---------+ 237 * | |b_data +-+ | | 238 * | +---------+ | |b_data +-+ 239 * +->+------+ | +---------+ | 240 * | | | | 241 * uncompressed | | | | 242 * data +------+ | | 243 * ^ +->+------+ | 244 * | uncompressed | | | 245 * | data | | | 246 * | +------+ | 247 * +---------------------------------+ 248 * 249 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd 250 * since the physical block is about to be rewritten. The new data contents 251 * will be contained in the arc_buf_t. As the I/O pipeline performs the write, 252 * it may compress the data before writing it to disk. The ARC will be called 253 * with the transformed data and will bcopy the transformed on-disk block into 254 * a newly allocated b_pabd. Writes are always done into buffers which have 255 * either been loaned (and hence are new and don't have other readers) or 256 * buffers which have been released (and hence have their own hdr, if there 257 * were originally other readers of the buf's original hdr). This ensures that 258 * the ARC only needs to update a single buf and its hdr after a write occurs. 259 * 260 * When the L2ARC is in use, it will also take advantage of the b_pabd. The 261 * L2ARC will always write the contents of b_pabd to the L2ARC. This means 262 * that when compressed ARC is enabled that the L2ARC blocks are identical 263 * to the on-disk block in the main data pool. This provides a significant 264 * advantage since the ARC can leverage the bp's checksum when reading from the 265 * L2ARC to determine if the contents are valid. However, if the compressed 266 * ARC is disabled, then the L2ARC's block must be transformed to look 267 * like the physical block in the main data pool before comparing the 268 * checksum and determining its validity. 269 * 270 * The L1ARC has a slightly different system for storing encrypted data. 271 * Raw (encrypted + possibly compressed) data has a few subtle differences from 272 * data that is just compressed. The biggest difference is that it is not 273 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded. 274 * The other difference is that encryption cannot be treated as a suggestion. 275 * If a caller would prefer compressed data, but they actually wind up with 276 * uncompressed data the worst thing that could happen is there might be a 277 * performance hit. If the caller requests encrypted data, however, we must be 278 * sure they actually get it or else secret information could be leaked. Raw 279 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore, 280 * may have both an encrypted version and a decrypted version of its data at 281 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is 282 * copied out of this header. To avoid complications with b_pabd, raw buffers 283 * cannot be shared. 284 */ 285 286 #include <sys/spa.h> 287 #include <sys/zio.h> 288 #include <sys/spa_impl.h> 289 #include <sys/zio_compress.h> 290 #include <sys/zio_checksum.h> 291 #include <sys/zfs_context.h> 292 #include <sys/arc.h> 293 #include <sys/zfs_refcount.h> 294 #include <sys/vdev.h> 295 #include <sys/vdev_impl.h> 296 #include <sys/dsl_pool.h> 297 #include <sys/multilist.h> 298 #include <sys/abd.h> 299 #include <sys/zil.h> 300 #include <sys/fm/fs/zfs.h> 301 #include <sys/callb.h> 302 #include <sys/kstat.h> 303 #include <sys/zthr.h> 304 #include <zfs_fletcher.h> 305 #include <sys/arc_impl.h> 306 #include <sys/trace_zfs.h> 307 #include <sys/aggsum.h> 308 #include <sys/wmsum.h> 309 #include <cityhash.h> 310 #include <sys/vdev_trim.h> 311 #include <sys/zfs_racct.h> 312 #include <sys/zstd/zstd.h> 313 314 #ifndef _KERNEL 315 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 316 boolean_t arc_watch = B_FALSE; 317 #endif 318 319 /* 320 * This thread's job is to keep enough free memory in the system, by 321 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves 322 * arc_available_memory(). 323 */ 324 static zthr_t *arc_reap_zthr; 325 326 /* 327 * This thread's job is to keep arc_size under arc_c, by calling 328 * arc_evict(), which improves arc_is_overflowing(). 329 */ 330 static zthr_t *arc_evict_zthr; 331 332 static kmutex_t arc_evict_lock; 333 static boolean_t arc_evict_needed = B_FALSE; 334 335 /* 336 * Count of bytes evicted since boot. 337 */ 338 static uint64_t arc_evict_count; 339 340 /* 341 * List of arc_evict_waiter_t's, representing threads waiting for the 342 * arc_evict_count to reach specific values. 343 */ 344 static list_t arc_evict_waiters; 345 346 /* 347 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of 348 * the requested amount of data to be evicted. For example, by default for 349 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation. 350 * Since this is above 100%, it ensures that progress is made towards getting 351 * arc_size under arc_c. Since this is finite, it ensures that allocations 352 * can still happen, even during the potentially long time that arc_size is 353 * more than arc_c. 354 */ 355 int zfs_arc_eviction_pct = 200; 356 357 /* 358 * The number of headers to evict in arc_evict_state_impl() before 359 * dropping the sublist lock and evicting from another sublist. A lower 360 * value means we're more likely to evict the "correct" header (i.e. the 361 * oldest header in the arc state), but comes with higher overhead 362 * (i.e. more invocations of arc_evict_state_impl()). 363 */ 364 int zfs_arc_evict_batch_limit = 10; 365 366 /* number of seconds before growing cache again */ 367 int arc_grow_retry = 5; 368 369 /* 370 * Minimum time between calls to arc_kmem_reap_soon(). 371 */ 372 int arc_kmem_cache_reap_retry_ms = 1000; 373 374 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */ 375 int zfs_arc_overflow_shift = 8; 376 377 /* shift of arc_c for calculating both min and max arc_p */ 378 int arc_p_min_shift = 4; 379 380 /* log2(fraction of arc to reclaim) */ 381 int arc_shrink_shift = 7; 382 383 /* percent of pagecache to reclaim arc to */ 384 #ifdef _KERNEL 385 uint_t zfs_arc_pc_percent = 0; 386 #endif 387 388 /* 389 * log2(fraction of ARC which must be free to allow growing). 390 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 391 * when reading a new block into the ARC, we will evict an equal-sized block 392 * from the ARC. 393 * 394 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 395 * we will still not allow it to grow. 396 */ 397 int arc_no_grow_shift = 5; 398 399 400 /* 401 * minimum lifespan of a prefetch block in clock ticks 402 * (initialized in arc_init()) 403 */ 404 static int arc_min_prefetch_ms; 405 static int arc_min_prescient_prefetch_ms; 406 407 /* 408 * If this percent of memory is free, don't throttle. 409 */ 410 int arc_lotsfree_percent = 10; 411 412 /* 413 * The arc has filled available memory and has now warmed up. 414 */ 415 boolean_t arc_warm; 416 417 /* 418 * These tunables are for performance analysis. 419 */ 420 unsigned long zfs_arc_max = 0; 421 unsigned long zfs_arc_min = 0; 422 unsigned long zfs_arc_meta_limit = 0; 423 unsigned long zfs_arc_meta_min = 0; 424 unsigned long zfs_arc_dnode_limit = 0; 425 unsigned long zfs_arc_dnode_reduce_percent = 10; 426 int zfs_arc_grow_retry = 0; 427 int zfs_arc_shrink_shift = 0; 428 int zfs_arc_p_min_shift = 0; 429 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 430 431 /* 432 * ARC dirty data constraints for arc_tempreserve_space() throttle. 433 */ 434 unsigned long zfs_arc_dirty_limit_percent = 50; /* total dirty data limit */ 435 unsigned long zfs_arc_anon_limit_percent = 25; /* anon block dirty limit */ 436 unsigned long zfs_arc_pool_dirty_percent = 20; /* each pool's anon allowance */ 437 438 /* 439 * Enable or disable compressed arc buffers. 440 */ 441 int zfs_compressed_arc_enabled = B_TRUE; 442 443 /* 444 * ARC will evict meta buffers that exceed arc_meta_limit. This 445 * tunable make arc_meta_limit adjustable for different workloads. 446 */ 447 unsigned long zfs_arc_meta_limit_percent = 75; 448 449 /* 450 * Percentage that can be consumed by dnodes of ARC meta buffers. 451 */ 452 unsigned long zfs_arc_dnode_limit_percent = 10; 453 454 /* 455 * These tunables are Linux specific 456 */ 457 unsigned long zfs_arc_sys_free = 0; 458 int zfs_arc_min_prefetch_ms = 0; 459 int zfs_arc_min_prescient_prefetch_ms = 0; 460 int zfs_arc_p_dampener_disable = 1; 461 int zfs_arc_meta_prune = 10000; 462 int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED; 463 int zfs_arc_meta_adjust_restarts = 4096; 464 int zfs_arc_lotsfree_percent = 10; 465 466 /* The 6 states: */ 467 arc_state_t ARC_anon; 468 arc_state_t ARC_mru; 469 arc_state_t ARC_mru_ghost; 470 arc_state_t ARC_mfu; 471 arc_state_t ARC_mfu_ghost; 472 arc_state_t ARC_l2c_only; 473 474 arc_stats_t arc_stats = { 475 { "hits", KSTAT_DATA_UINT64 }, 476 { "misses", KSTAT_DATA_UINT64 }, 477 { "demand_data_hits", KSTAT_DATA_UINT64 }, 478 { "demand_data_misses", KSTAT_DATA_UINT64 }, 479 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 480 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 481 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 482 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 483 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 484 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 485 { "mru_hits", KSTAT_DATA_UINT64 }, 486 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 487 { "mfu_hits", KSTAT_DATA_UINT64 }, 488 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 489 { "deleted", KSTAT_DATA_UINT64 }, 490 { "mutex_miss", KSTAT_DATA_UINT64 }, 491 { "access_skip", KSTAT_DATA_UINT64 }, 492 { "evict_skip", KSTAT_DATA_UINT64 }, 493 { "evict_not_enough", KSTAT_DATA_UINT64 }, 494 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 495 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 496 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64 }, 497 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64 }, 498 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 499 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 500 { "hash_elements", KSTAT_DATA_UINT64 }, 501 { "hash_elements_max", KSTAT_DATA_UINT64 }, 502 { "hash_collisions", KSTAT_DATA_UINT64 }, 503 { "hash_chains", KSTAT_DATA_UINT64 }, 504 { "hash_chain_max", KSTAT_DATA_UINT64 }, 505 { "p", KSTAT_DATA_UINT64 }, 506 { "c", KSTAT_DATA_UINT64 }, 507 { "c_min", KSTAT_DATA_UINT64 }, 508 { "c_max", KSTAT_DATA_UINT64 }, 509 { "size", KSTAT_DATA_UINT64 }, 510 { "compressed_size", KSTAT_DATA_UINT64 }, 511 { "uncompressed_size", KSTAT_DATA_UINT64 }, 512 { "overhead_size", KSTAT_DATA_UINT64 }, 513 { "hdr_size", KSTAT_DATA_UINT64 }, 514 { "data_size", KSTAT_DATA_UINT64 }, 515 { "metadata_size", KSTAT_DATA_UINT64 }, 516 { "dbuf_size", KSTAT_DATA_UINT64 }, 517 { "dnode_size", KSTAT_DATA_UINT64 }, 518 { "bonus_size", KSTAT_DATA_UINT64 }, 519 #if defined(COMPAT_FREEBSD11) 520 { "other_size", KSTAT_DATA_UINT64 }, 521 #endif 522 { "anon_size", KSTAT_DATA_UINT64 }, 523 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 524 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 525 { "mru_size", KSTAT_DATA_UINT64 }, 526 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 527 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 528 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 529 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 530 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 531 { "mfu_size", KSTAT_DATA_UINT64 }, 532 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 533 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 534 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 535 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 536 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 537 { "l2_hits", KSTAT_DATA_UINT64 }, 538 { "l2_misses", KSTAT_DATA_UINT64 }, 539 { "l2_prefetch_asize", KSTAT_DATA_UINT64 }, 540 { "l2_mru_asize", KSTAT_DATA_UINT64 }, 541 { "l2_mfu_asize", KSTAT_DATA_UINT64 }, 542 { "l2_bufc_data_asize", KSTAT_DATA_UINT64 }, 543 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64 }, 544 { "l2_feeds", KSTAT_DATA_UINT64 }, 545 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 546 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 547 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 548 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 549 { "l2_writes_done", KSTAT_DATA_UINT64 }, 550 { "l2_writes_error", KSTAT_DATA_UINT64 }, 551 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 552 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 553 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 554 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 555 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 556 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 557 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 558 { "l2_io_error", KSTAT_DATA_UINT64 }, 559 { "l2_size", KSTAT_DATA_UINT64 }, 560 { "l2_asize", KSTAT_DATA_UINT64 }, 561 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 562 { "l2_log_blk_writes", KSTAT_DATA_UINT64 }, 563 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 }, 564 { "l2_log_blk_asize", KSTAT_DATA_UINT64 }, 565 { "l2_log_blk_count", KSTAT_DATA_UINT64 }, 566 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 }, 567 { "l2_rebuild_success", KSTAT_DATA_UINT64 }, 568 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 }, 569 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 }, 570 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 }, 571 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 }, 572 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 }, 573 { "l2_rebuild_size", KSTAT_DATA_UINT64 }, 574 { "l2_rebuild_asize", KSTAT_DATA_UINT64 }, 575 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 }, 576 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 }, 577 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 }, 578 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 579 { "memory_direct_count", KSTAT_DATA_UINT64 }, 580 { "memory_indirect_count", KSTAT_DATA_UINT64 }, 581 { "memory_all_bytes", KSTAT_DATA_UINT64 }, 582 { "memory_free_bytes", KSTAT_DATA_UINT64 }, 583 { "memory_available_bytes", KSTAT_DATA_INT64 }, 584 { "arc_no_grow", KSTAT_DATA_UINT64 }, 585 { "arc_tempreserve", KSTAT_DATA_UINT64 }, 586 { "arc_loaned_bytes", KSTAT_DATA_UINT64 }, 587 { "arc_prune", KSTAT_DATA_UINT64 }, 588 { "arc_meta_used", KSTAT_DATA_UINT64 }, 589 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 590 { "arc_dnode_limit", KSTAT_DATA_UINT64 }, 591 { "arc_meta_max", KSTAT_DATA_UINT64 }, 592 { "arc_meta_min", KSTAT_DATA_UINT64 }, 593 { "async_upgrade_sync", KSTAT_DATA_UINT64 }, 594 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 }, 595 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 }, 596 { "arc_need_free", KSTAT_DATA_UINT64 }, 597 { "arc_sys_free", KSTAT_DATA_UINT64 }, 598 { "arc_raw_size", KSTAT_DATA_UINT64 }, 599 { "cached_only_in_progress", KSTAT_DATA_UINT64 }, 600 { "abd_chunk_waste_size", KSTAT_DATA_UINT64 }, 601 }; 602 603 arc_sums_t arc_sums; 604 605 #define ARCSTAT_MAX(stat, val) { \ 606 uint64_t m; \ 607 while ((val) > (m = arc_stats.stat.value.ui64) && \ 608 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 609 continue; \ 610 } 611 612 /* 613 * We define a macro to allow ARC hits/misses to be easily broken down by 614 * two separate conditions, giving a total of four different subtypes for 615 * each of hits and misses (so eight statistics total). 616 */ 617 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 618 if (cond1) { \ 619 if (cond2) { \ 620 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 621 } else { \ 622 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 623 } \ 624 } else { \ 625 if (cond2) { \ 626 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 627 } else { \ 628 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 629 } \ 630 } 631 632 /* 633 * This macro allows us to use kstats as floating averages. Each time we 634 * update this kstat, we first factor it and the update value by 635 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall 636 * average. This macro assumes that integer loads and stores are atomic, but 637 * is not safe for multiple writers updating the kstat in parallel (only the 638 * last writer's update will remain). 639 */ 640 #define ARCSTAT_F_AVG_FACTOR 3 641 #define ARCSTAT_F_AVG(stat, value) \ 642 do { \ 643 uint64_t x = ARCSTAT(stat); \ 644 x = x - x / ARCSTAT_F_AVG_FACTOR + \ 645 (value) / ARCSTAT_F_AVG_FACTOR; \ 646 ARCSTAT(stat) = x; \ 647 _NOTE(CONSTCOND) \ 648 } while (0) 649 650 kstat_t *arc_ksp; 651 652 /* 653 * There are several ARC variables that are critical to export as kstats -- 654 * but we don't want to have to grovel around in the kstat whenever we wish to 655 * manipulate them. For these variables, we therefore define them to be in 656 * terms of the statistic variable. This assures that we are not introducing 657 * the possibility of inconsistency by having shadow copies of the variables, 658 * while still allowing the code to be readable. 659 */ 660 #define arc_tempreserve ARCSTAT(arcstat_tempreserve) 661 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes) 662 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 663 /* max size for dnodes */ 664 #define arc_dnode_size_limit ARCSTAT(arcstat_dnode_limit) 665 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */ 666 #define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */ 667 668 hrtime_t arc_growtime; 669 list_t arc_prune_list; 670 kmutex_t arc_prune_mtx; 671 taskq_t *arc_prune_taskq; 672 673 #define GHOST_STATE(state) \ 674 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 675 (state) == arc_l2c_only) 676 677 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 678 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 679 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 680 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 681 #define HDR_PRESCIENT_PREFETCH(hdr) \ 682 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) 683 #define HDR_COMPRESSION_ENABLED(hdr) \ 684 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) 685 686 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 687 #define HDR_L2_READING(hdr) \ 688 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 689 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 690 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 691 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 692 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 693 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED) 694 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH) 695 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) 696 697 #define HDR_ISTYPE_METADATA(hdr) \ 698 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 699 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 700 701 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 702 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 703 #define HDR_HAS_RABD(hdr) \ 704 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \ 705 (hdr)->b_crypt_hdr.b_rabd != NULL) 706 #define HDR_ENCRYPTED(hdr) \ 707 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 708 #define HDR_AUTHENTICATED(hdr) \ 709 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 710 711 /* For storing compression mode in b_flags */ 712 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) 713 714 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ 715 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) 716 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ 717 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); 718 719 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) 720 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED) 721 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED) 722 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED) 723 724 /* 725 * Other sizes 726 */ 727 728 #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 729 #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr)) 730 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 731 732 /* 733 * Hash table routines 734 */ 735 736 #define BUF_LOCKS 2048 737 typedef struct buf_hash_table { 738 uint64_t ht_mask; 739 arc_buf_hdr_t **ht_table; 740 kmutex_t ht_locks[BUF_LOCKS] ____cacheline_aligned; 741 } buf_hash_table_t; 742 743 static buf_hash_table_t buf_hash_table; 744 745 #define BUF_HASH_INDEX(spa, dva, birth) \ 746 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 747 #define BUF_HASH_LOCK(idx) (&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 748 #define HDR_LOCK(hdr) \ 749 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 750 751 uint64_t zfs_crc64_table[256]; 752 753 /* 754 * Level 2 ARC 755 */ 756 757 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 758 #define L2ARC_HEADROOM 2 /* num of writes */ 759 760 /* 761 * If we discover during ARC scan any buffers to be compressed, we boost 762 * our headroom for the next scanning cycle by this percentage multiple. 763 */ 764 #define L2ARC_HEADROOM_BOOST 200 765 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 766 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 767 768 /* 769 * We can feed L2ARC from two states of ARC buffers, mru and mfu, 770 * and each of the state has two types: data and metadata. 771 */ 772 #define L2ARC_FEED_TYPES 4 773 774 /* L2ARC Performance Tunables */ 775 unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */ 776 unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */ 777 unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */ 778 unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 779 unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 780 unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */ 781 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 782 int l2arc_feed_again = B_TRUE; /* turbo warmup */ 783 int l2arc_norw = B_FALSE; /* no reads during writes */ 784 int l2arc_meta_percent = 33; /* limit on headers size */ 785 786 /* 787 * L2ARC Internals 788 */ 789 static list_t L2ARC_dev_list; /* device list */ 790 static list_t *l2arc_dev_list; /* device list pointer */ 791 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 792 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 793 static list_t L2ARC_free_on_write; /* free after write buf list */ 794 static list_t *l2arc_free_on_write; /* free after write list ptr */ 795 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 796 static uint64_t l2arc_ndev; /* number of devices */ 797 798 typedef struct l2arc_read_callback { 799 arc_buf_hdr_t *l2rcb_hdr; /* read header */ 800 blkptr_t l2rcb_bp; /* original blkptr */ 801 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 802 int l2rcb_flags; /* original flags */ 803 abd_t *l2rcb_abd; /* temporary buffer */ 804 } l2arc_read_callback_t; 805 806 typedef struct l2arc_data_free { 807 /* protected by l2arc_free_on_write_mtx */ 808 abd_t *l2df_abd; 809 size_t l2df_size; 810 arc_buf_contents_t l2df_type; 811 list_node_t l2df_list_node; 812 } l2arc_data_free_t; 813 814 typedef enum arc_fill_flags { 815 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */ 816 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */ 817 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */ 818 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */ 819 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */ 820 } arc_fill_flags_t; 821 822 typedef enum arc_ovf_level { 823 ARC_OVF_NONE, /* ARC within target size. */ 824 ARC_OVF_SOME, /* ARC is slightly overflowed. */ 825 ARC_OVF_SEVERE /* ARC is severely overflowed. */ 826 } arc_ovf_level_t; 827 828 static kmutex_t l2arc_feed_thr_lock; 829 static kcondvar_t l2arc_feed_thr_cv; 830 static uint8_t l2arc_thread_exit; 831 832 static kmutex_t l2arc_rebuild_thr_lock; 833 static kcondvar_t l2arc_rebuild_thr_cv; 834 835 enum arc_hdr_alloc_flags { 836 ARC_HDR_ALLOC_RDATA = 0x1, 837 ARC_HDR_DO_ADAPT = 0x2, 838 }; 839 840 841 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *, boolean_t); 842 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *); 843 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *, boolean_t); 844 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *); 845 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *); 846 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag); 847 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t); 848 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int); 849 static void arc_access(arc_buf_hdr_t *, kmutex_t *); 850 static void arc_buf_watch(arc_buf_t *); 851 852 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 853 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 854 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 855 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 856 857 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 858 static void l2arc_read_done(zio_t *); 859 static void l2arc_do_free_on_write(void); 860 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 861 boolean_t state_only); 862 863 #define l2arc_hdr_arcstats_increment(hdr) \ 864 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE) 865 #define l2arc_hdr_arcstats_decrement(hdr) \ 866 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE) 867 #define l2arc_hdr_arcstats_increment_state(hdr) \ 868 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE) 869 #define l2arc_hdr_arcstats_decrement_state(hdr) \ 870 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE) 871 872 /* 873 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU 874 * metadata and data are cached from ARC into L2ARC. 875 */ 876 int l2arc_mfuonly = 0; 877 878 /* 879 * L2ARC TRIM 880 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of 881 * the current write size (l2arc_write_max) we should TRIM if we 882 * have filled the device. It is defined as a percentage of the 883 * write size. If set to 100 we trim twice the space required to 884 * accommodate upcoming writes. A minimum of 64MB will be trimmed. 885 * It also enables TRIM of the whole L2ARC device upon creation or 886 * addition to an existing pool or if the header of the device is 887 * invalid upon importing a pool or onlining a cache device. The 888 * default is 0, which disables TRIM on L2ARC altogether as it can 889 * put significant stress on the underlying storage devices. This 890 * will vary depending of how well the specific device handles 891 * these commands. 892 */ 893 unsigned long l2arc_trim_ahead = 0; 894 895 /* 896 * Performance tuning of L2ARC persistence: 897 * 898 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding 899 * an L2ARC device (either at pool import or later) will attempt 900 * to rebuild L2ARC buffer contents. 901 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls 902 * whether log blocks are written to the L2ARC device. If the L2ARC 903 * device is less than 1GB, the amount of data l2arc_evict() 904 * evicts is significant compared to the amount of restored L2ARC 905 * data. In this case do not write log blocks in L2ARC in order 906 * not to waste space. 907 */ 908 int l2arc_rebuild_enabled = B_TRUE; 909 unsigned long l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024; 910 911 /* L2ARC persistence rebuild control routines. */ 912 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen); 913 static void l2arc_dev_rebuild_thread(void *arg); 914 static int l2arc_rebuild(l2arc_dev_t *dev); 915 916 /* L2ARC persistence read I/O routines. */ 917 static int l2arc_dev_hdr_read(l2arc_dev_t *dev); 918 static int l2arc_log_blk_read(l2arc_dev_t *dev, 919 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp, 920 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 921 zio_t *this_io, zio_t **next_io); 922 static zio_t *l2arc_log_blk_fetch(vdev_t *vd, 923 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb); 924 static void l2arc_log_blk_fetch_abort(zio_t *zio); 925 926 /* L2ARC persistence block restoration routines. */ 927 static void l2arc_log_blk_restore(l2arc_dev_t *dev, 928 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize); 929 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, 930 l2arc_dev_t *dev); 931 932 /* L2ARC persistence write I/O routines. */ 933 static void l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, 934 l2arc_write_callback_t *cb); 935 936 /* L2ARC persistence auxiliary routines. */ 937 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev, 938 const l2arc_log_blkptr_t *lbp); 939 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev, 940 const arc_buf_hdr_t *ab); 941 boolean_t l2arc_range_check_overlap(uint64_t bottom, 942 uint64_t top, uint64_t check); 943 static void l2arc_blk_fetch_done(zio_t *zio); 944 static inline uint64_t 945 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev); 946 947 /* 948 * We use Cityhash for this. It's fast, and has good hash properties without 949 * requiring any large static buffers. 950 */ 951 static uint64_t 952 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 953 { 954 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth)); 955 } 956 957 #define HDR_EMPTY(hdr) \ 958 ((hdr)->b_dva.dva_word[0] == 0 && \ 959 (hdr)->b_dva.dva_word[1] == 0) 960 961 #define HDR_EMPTY_OR_LOCKED(hdr) \ 962 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr))) 963 964 #define HDR_EQUAL(spa, dva, birth, hdr) \ 965 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 966 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 967 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) 968 969 static void 970 buf_discard_identity(arc_buf_hdr_t *hdr) 971 { 972 hdr->b_dva.dva_word[0] = 0; 973 hdr->b_dva.dva_word[1] = 0; 974 hdr->b_birth = 0; 975 } 976 977 static arc_buf_hdr_t * 978 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 979 { 980 const dva_t *dva = BP_IDENTITY(bp); 981 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 982 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 983 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 984 arc_buf_hdr_t *hdr; 985 986 mutex_enter(hash_lock); 987 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 988 hdr = hdr->b_hash_next) { 989 if (HDR_EQUAL(spa, dva, birth, hdr)) { 990 *lockp = hash_lock; 991 return (hdr); 992 } 993 } 994 mutex_exit(hash_lock); 995 *lockp = NULL; 996 return (NULL); 997 } 998 999 /* 1000 * Insert an entry into the hash table. If there is already an element 1001 * equal to elem in the hash table, then the already existing element 1002 * will be returned and the new element will not be inserted. 1003 * Otherwise returns NULL. 1004 * If lockp == NULL, the caller is assumed to already hold the hash lock. 1005 */ 1006 static arc_buf_hdr_t * 1007 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 1008 { 1009 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1010 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1011 arc_buf_hdr_t *fhdr; 1012 uint32_t i; 1013 1014 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 1015 ASSERT(hdr->b_birth != 0); 1016 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1017 1018 if (lockp != NULL) { 1019 *lockp = hash_lock; 1020 mutex_enter(hash_lock); 1021 } else { 1022 ASSERT(MUTEX_HELD(hash_lock)); 1023 } 1024 1025 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 1026 fhdr = fhdr->b_hash_next, i++) { 1027 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 1028 return (fhdr); 1029 } 1030 1031 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 1032 buf_hash_table.ht_table[idx] = hdr; 1033 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1034 1035 /* collect some hash table performance data */ 1036 if (i > 0) { 1037 ARCSTAT_BUMP(arcstat_hash_collisions); 1038 if (i == 1) 1039 ARCSTAT_BUMP(arcstat_hash_chains); 1040 1041 ARCSTAT_MAX(arcstat_hash_chain_max, i); 1042 } 1043 uint64_t he = atomic_inc_64_nv( 1044 &arc_stats.arcstat_hash_elements.value.ui64); 1045 ARCSTAT_MAX(arcstat_hash_elements_max, he); 1046 1047 return (NULL); 1048 } 1049 1050 static void 1051 buf_hash_remove(arc_buf_hdr_t *hdr) 1052 { 1053 arc_buf_hdr_t *fhdr, **hdrp; 1054 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1055 1056 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 1057 ASSERT(HDR_IN_HASH_TABLE(hdr)); 1058 1059 hdrp = &buf_hash_table.ht_table[idx]; 1060 while ((fhdr = *hdrp) != hdr) { 1061 ASSERT3P(fhdr, !=, NULL); 1062 hdrp = &fhdr->b_hash_next; 1063 } 1064 *hdrp = hdr->b_hash_next; 1065 hdr->b_hash_next = NULL; 1066 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1067 1068 /* collect some hash table performance data */ 1069 atomic_dec_64(&arc_stats.arcstat_hash_elements.value.ui64); 1070 1071 if (buf_hash_table.ht_table[idx] && 1072 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 1073 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 1074 } 1075 1076 /* 1077 * Global data structures and functions for the buf kmem cache. 1078 */ 1079 1080 static kmem_cache_t *hdr_full_cache; 1081 static kmem_cache_t *hdr_full_crypt_cache; 1082 static kmem_cache_t *hdr_l2only_cache; 1083 static kmem_cache_t *buf_cache; 1084 1085 static void 1086 buf_fini(void) 1087 { 1088 int i; 1089 1090 #if defined(_KERNEL) 1091 /* 1092 * Large allocations which do not require contiguous pages 1093 * should be using vmem_free() in the linux kernel\ 1094 */ 1095 vmem_free(buf_hash_table.ht_table, 1096 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1097 #else 1098 kmem_free(buf_hash_table.ht_table, 1099 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1100 #endif 1101 for (i = 0; i < BUF_LOCKS; i++) 1102 mutex_destroy(BUF_HASH_LOCK(i)); 1103 kmem_cache_destroy(hdr_full_cache); 1104 kmem_cache_destroy(hdr_full_crypt_cache); 1105 kmem_cache_destroy(hdr_l2only_cache); 1106 kmem_cache_destroy(buf_cache); 1107 } 1108 1109 /* 1110 * Constructor callback - called when the cache is empty 1111 * and a new buf is requested. 1112 */ 1113 /* ARGSUSED */ 1114 static int 1115 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1116 { 1117 arc_buf_hdr_t *hdr = vbuf; 1118 1119 bzero(hdr, HDR_FULL_SIZE); 1120 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 1121 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL); 1122 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt); 1123 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1124 list_link_init(&hdr->b_l1hdr.b_arc_node); 1125 list_link_init(&hdr->b_l2hdr.b_l2node); 1126 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1127 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1128 1129 return (0); 1130 } 1131 1132 /* ARGSUSED */ 1133 static int 1134 hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag) 1135 { 1136 arc_buf_hdr_t *hdr = vbuf; 1137 1138 hdr_full_cons(vbuf, unused, kmflag); 1139 bzero(&hdr->b_crypt_hdr, sizeof (hdr->b_crypt_hdr)); 1140 arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1141 1142 return (0); 1143 } 1144 1145 /* ARGSUSED */ 1146 static int 1147 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1148 { 1149 arc_buf_hdr_t *hdr = vbuf; 1150 1151 bzero(hdr, HDR_L2ONLY_SIZE); 1152 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1153 1154 return (0); 1155 } 1156 1157 /* ARGSUSED */ 1158 static int 1159 buf_cons(void *vbuf, void *unused, int kmflag) 1160 { 1161 arc_buf_t *buf = vbuf; 1162 1163 bzero(buf, sizeof (arc_buf_t)); 1164 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 1165 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1166 1167 return (0); 1168 } 1169 1170 /* 1171 * Destructor callback - called when a cached buf is 1172 * no longer required. 1173 */ 1174 /* ARGSUSED */ 1175 static void 1176 hdr_full_dest(void *vbuf, void *unused) 1177 { 1178 arc_buf_hdr_t *hdr = vbuf; 1179 1180 ASSERT(HDR_EMPTY(hdr)); 1181 cv_destroy(&hdr->b_l1hdr.b_cv); 1182 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1183 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1184 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1185 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1186 } 1187 1188 /* ARGSUSED */ 1189 static void 1190 hdr_full_crypt_dest(void *vbuf, void *unused) 1191 { 1192 arc_buf_hdr_t *hdr = vbuf; 1193 1194 hdr_full_dest(vbuf, unused); 1195 arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1196 } 1197 1198 /* ARGSUSED */ 1199 static void 1200 hdr_l2only_dest(void *vbuf, void *unused) 1201 { 1202 arc_buf_hdr_t *hdr __maybe_unused = vbuf; 1203 1204 ASSERT(HDR_EMPTY(hdr)); 1205 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1206 } 1207 1208 /* ARGSUSED */ 1209 static void 1210 buf_dest(void *vbuf, void *unused) 1211 { 1212 arc_buf_t *buf = vbuf; 1213 1214 mutex_destroy(&buf->b_evict_lock); 1215 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1216 } 1217 1218 static void 1219 buf_init(void) 1220 { 1221 uint64_t *ct = NULL; 1222 uint64_t hsize = 1ULL << 12; 1223 int i, j; 1224 1225 /* 1226 * The hash table is big enough to fill all of physical memory 1227 * with an average block size of zfs_arc_average_blocksize (default 8K). 1228 * By default, the table will take up 1229 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1230 */ 1231 while (hsize * zfs_arc_average_blocksize < arc_all_memory()) 1232 hsize <<= 1; 1233 retry: 1234 buf_hash_table.ht_mask = hsize - 1; 1235 #if defined(_KERNEL) 1236 /* 1237 * Large allocations which do not require contiguous pages 1238 * should be using vmem_alloc() in the linux kernel 1239 */ 1240 buf_hash_table.ht_table = 1241 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP); 1242 #else 1243 buf_hash_table.ht_table = 1244 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1245 #endif 1246 if (buf_hash_table.ht_table == NULL) { 1247 ASSERT(hsize > (1ULL << 8)); 1248 hsize >>= 1; 1249 goto retry; 1250 } 1251 1252 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1253 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, 0); 1254 hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt", 1255 HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest, 1256 NULL, NULL, NULL, 0); 1257 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1258 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL, 1259 NULL, NULL, 0); 1260 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1261 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1262 1263 for (i = 0; i < 256; i++) 1264 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1265 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1266 1267 for (i = 0; i < BUF_LOCKS; i++) 1268 mutex_init(BUF_HASH_LOCK(i), NULL, MUTEX_DEFAULT, NULL); 1269 } 1270 1271 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1272 1273 /* 1274 * This is the size that the buf occupies in memory. If the buf is compressed, 1275 * it will correspond to the compressed size. You should use this method of 1276 * getting the buf size unless you explicitly need the logical size. 1277 */ 1278 uint64_t 1279 arc_buf_size(arc_buf_t *buf) 1280 { 1281 return (ARC_BUF_COMPRESSED(buf) ? 1282 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr)); 1283 } 1284 1285 uint64_t 1286 arc_buf_lsize(arc_buf_t *buf) 1287 { 1288 return (HDR_GET_LSIZE(buf->b_hdr)); 1289 } 1290 1291 /* 1292 * This function will return B_TRUE if the buffer is encrypted in memory. 1293 * This buffer can be decrypted by calling arc_untransform(). 1294 */ 1295 boolean_t 1296 arc_is_encrypted(arc_buf_t *buf) 1297 { 1298 return (ARC_BUF_ENCRYPTED(buf) != 0); 1299 } 1300 1301 /* 1302 * Returns B_TRUE if the buffer represents data that has not had its MAC 1303 * verified yet. 1304 */ 1305 boolean_t 1306 arc_is_unauthenticated(arc_buf_t *buf) 1307 { 1308 return (HDR_NOAUTH(buf->b_hdr) != 0); 1309 } 1310 1311 void 1312 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt, 1313 uint8_t *iv, uint8_t *mac) 1314 { 1315 arc_buf_hdr_t *hdr = buf->b_hdr; 1316 1317 ASSERT(HDR_PROTECTED(hdr)); 1318 1319 bcopy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN); 1320 bcopy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN); 1321 bcopy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN); 1322 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 1323 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 1324 } 1325 1326 /* 1327 * Indicates how this buffer is compressed in memory. If it is not compressed 1328 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with 1329 * arc_untransform() as long as it is also unencrypted. 1330 */ 1331 enum zio_compress 1332 arc_get_compression(arc_buf_t *buf) 1333 { 1334 return (ARC_BUF_COMPRESSED(buf) ? 1335 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF); 1336 } 1337 1338 /* 1339 * Return the compression algorithm used to store this data in the ARC. If ARC 1340 * compression is enabled or this is an encrypted block, this will be the same 1341 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF. 1342 */ 1343 static inline enum zio_compress 1344 arc_hdr_get_compress(arc_buf_hdr_t *hdr) 1345 { 1346 return (HDR_COMPRESSION_ENABLED(hdr) ? 1347 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF); 1348 } 1349 1350 uint8_t 1351 arc_get_complevel(arc_buf_t *buf) 1352 { 1353 return (buf->b_hdr->b_complevel); 1354 } 1355 1356 static inline boolean_t 1357 arc_buf_is_shared(arc_buf_t *buf) 1358 { 1359 boolean_t shared = (buf->b_data != NULL && 1360 buf->b_hdr->b_l1hdr.b_pabd != NULL && 1361 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) && 1362 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd)); 1363 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); 1364 IMPLY(shared, ARC_BUF_SHARED(buf)); 1365 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf)); 1366 1367 /* 1368 * It would be nice to assert arc_can_share() too, but the "hdr isn't 1369 * already being shared" requirement prevents us from doing that. 1370 */ 1371 1372 return (shared); 1373 } 1374 1375 /* 1376 * Free the checksum associated with this header. If there is no checksum, this 1377 * is a no-op. 1378 */ 1379 static inline void 1380 arc_cksum_free(arc_buf_hdr_t *hdr) 1381 { 1382 ASSERT(HDR_HAS_L1HDR(hdr)); 1383 1384 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1385 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1386 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); 1387 hdr->b_l1hdr.b_freeze_cksum = NULL; 1388 } 1389 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1390 } 1391 1392 /* 1393 * Return true iff at least one of the bufs on hdr is not compressed. 1394 * Encrypted buffers count as compressed. 1395 */ 1396 static boolean_t 1397 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr) 1398 { 1399 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr)); 1400 1401 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) { 1402 if (!ARC_BUF_COMPRESSED(b)) { 1403 return (B_TRUE); 1404 } 1405 } 1406 return (B_FALSE); 1407 } 1408 1409 1410 /* 1411 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data 1412 * matches the checksum that is stored in the hdr. If there is no checksum, 1413 * or if the buf is compressed, this is a no-op. 1414 */ 1415 static void 1416 arc_cksum_verify(arc_buf_t *buf) 1417 { 1418 arc_buf_hdr_t *hdr = buf->b_hdr; 1419 zio_cksum_t zc; 1420 1421 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1422 return; 1423 1424 if (ARC_BUF_COMPRESSED(buf)) 1425 return; 1426 1427 ASSERT(HDR_HAS_L1HDR(hdr)); 1428 1429 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1430 1431 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { 1432 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1433 return; 1434 } 1435 1436 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc); 1437 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) 1438 panic("buffer modified while frozen!"); 1439 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1440 } 1441 1442 /* 1443 * This function makes the assumption that data stored in the L2ARC 1444 * will be transformed exactly as it is in the main pool. Because of 1445 * this we can verify the checksum against the reading process's bp. 1446 */ 1447 static boolean_t 1448 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) 1449 { 1450 ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); 1451 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); 1452 1453 /* 1454 * Block pointers always store the checksum for the logical data. 1455 * If the block pointer has the gang bit set, then the checksum 1456 * it represents is for the reconstituted data and not for an 1457 * individual gang member. The zio pipeline, however, must be able to 1458 * determine the checksum of each of the gang constituents so it 1459 * treats the checksum comparison differently than what we need 1460 * for l2arc blocks. This prevents us from using the 1461 * zio_checksum_error() interface directly. Instead we must call the 1462 * zio_checksum_error_impl() so that we can ensure the checksum is 1463 * generated using the correct checksum algorithm and accounts for the 1464 * logical I/O size and not just a gang fragment. 1465 */ 1466 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp, 1467 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size, 1468 zio->io_offset, NULL) == 0); 1469 } 1470 1471 /* 1472 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a 1473 * checksum and attaches it to the buf's hdr so that we can ensure that the buf 1474 * isn't modified later on. If buf is compressed or there is already a checksum 1475 * on the hdr, this is a no-op (we only checksum uncompressed bufs). 1476 */ 1477 static void 1478 arc_cksum_compute(arc_buf_t *buf) 1479 { 1480 arc_buf_hdr_t *hdr = buf->b_hdr; 1481 1482 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1483 return; 1484 1485 ASSERT(HDR_HAS_L1HDR(hdr)); 1486 1487 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1488 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) { 1489 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1490 return; 1491 } 1492 1493 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 1494 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1495 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), 1496 KM_SLEEP); 1497 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, 1498 hdr->b_l1hdr.b_freeze_cksum); 1499 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1500 arc_buf_watch(buf); 1501 } 1502 1503 #ifndef _KERNEL 1504 void 1505 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused) 1506 { 1507 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr); 1508 } 1509 #endif 1510 1511 /* ARGSUSED */ 1512 static void 1513 arc_buf_unwatch(arc_buf_t *buf) 1514 { 1515 #ifndef _KERNEL 1516 if (arc_watch) { 1517 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1518 PROT_READ | PROT_WRITE)); 1519 } 1520 #endif 1521 } 1522 1523 /* ARGSUSED */ 1524 static void 1525 arc_buf_watch(arc_buf_t *buf) 1526 { 1527 #ifndef _KERNEL 1528 if (arc_watch) 1529 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1530 PROT_READ)); 1531 #endif 1532 } 1533 1534 static arc_buf_contents_t 1535 arc_buf_type(arc_buf_hdr_t *hdr) 1536 { 1537 arc_buf_contents_t type; 1538 if (HDR_ISTYPE_METADATA(hdr)) { 1539 type = ARC_BUFC_METADATA; 1540 } else { 1541 type = ARC_BUFC_DATA; 1542 } 1543 VERIFY3U(hdr->b_type, ==, type); 1544 return (type); 1545 } 1546 1547 boolean_t 1548 arc_is_metadata(arc_buf_t *buf) 1549 { 1550 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0); 1551 } 1552 1553 static uint32_t 1554 arc_bufc_to_flags(arc_buf_contents_t type) 1555 { 1556 switch (type) { 1557 case ARC_BUFC_DATA: 1558 /* metadata field is 0 if buffer contains normal data */ 1559 return (0); 1560 case ARC_BUFC_METADATA: 1561 return (ARC_FLAG_BUFC_METADATA); 1562 default: 1563 break; 1564 } 1565 panic("undefined ARC buffer type!"); 1566 return ((uint32_t)-1); 1567 } 1568 1569 void 1570 arc_buf_thaw(arc_buf_t *buf) 1571 { 1572 arc_buf_hdr_t *hdr = buf->b_hdr; 1573 1574 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 1575 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1576 1577 arc_cksum_verify(buf); 1578 1579 /* 1580 * Compressed buffers do not manipulate the b_freeze_cksum. 1581 */ 1582 if (ARC_BUF_COMPRESSED(buf)) 1583 return; 1584 1585 ASSERT(HDR_HAS_L1HDR(hdr)); 1586 arc_cksum_free(hdr); 1587 arc_buf_unwatch(buf); 1588 } 1589 1590 void 1591 arc_buf_freeze(arc_buf_t *buf) 1592 { 1593 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1594 return; 1595 1596 if (ARC_BUF_COMPRESSED(buf)) 1597 return; 1598 1599 ASSERT(HDR_HAS_L1HDR(buf->b_hdr)); 1600 arc_cksum_compute(buf); 1601 } 1602 1603 /* 1604 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, 1605 * the following functions should be used to ensure that the flags are 1606 * updated in a thread-safe way. When manipulating the flags either 1607 * the hash_lock must be held or the hdr must be undiscoverable. This 1608 * ensures that we're not racing with any other threads when updating 1609 * the flags. 1610 */ 1611 static inline void 1612 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1613 { 1614 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1615 hdr->b_flags |= flags; 1616 } 1617 1618 static inline void 1619 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1620 { 1621 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1622 hdr->b_flags &= ~flags; 1623 } 1624 1625 /* 1626 * Setting the compression bits in the arc_buf_hdr_t's b_flags is 1627 * done in a special way since we have to clear and set bits 1628 * at the same time. Consumers that wish to set the compression bits 1629 * must use this function to ensure that the flags are updated in 1630 * thread-safe manner. 1631 */ 1632 static void 1633 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) 1634 { 1635 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1636 1637 /* 1638 * Holes and embedded blocks will always have a psize = 0 so 1639 * we ignore the compression of the blkptr and set the 1640 * want to uncompress them. Mark them as uncompressed. 1641 */ 1642 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { 1643 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1644 ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); 1645 } else { 1646 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1647 ASSERT(HDR_COMPRESSION_ENABLED(hdr)); 1648 } 1649 1650 HDR_SET_COMPRESS(hdr, cmp); 1651 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); 1652 } 1653 1654 /* 1655 * Looks for another buf on the same hdr which has the data decompressed, copies 1656 * from it, and returns true. If no such buf exists, returns false. 1657 */ 1658 static boolean_t 1659 arc_buf_try_copy_decompressed_data(arc_buf_t *buf) 1660 { 1661 arc_buf_hdr_t *hdr = buf->b_hdr; 1662 boolean_t copied = B_FALSE; 1663 1664 ASSERT(HDR_HAS_L1HDR(hdr)); 1665 ASSERT3P(buf->b_data, !=, NULL); 1666 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1667 1668 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL; 1669 from = from->b_next) { 1670 /* can't use our own data buffer */ 1671 if (from == buf) { 1672 continue; 1673 } 1674 1675 if (!ARC_BUF_COMPRESSED(from)) { 1676 bcopy(from->b_data, buf->b_data, arc_buf_size(buf)); 1677 copied = B_TRUE; 1678 break; 1679 } 1680 } 1681 1682 /* 1683 * There were no decompressed bufs, so there should not be a 1684 * checksum on the hdr either. 1685 */ 1686 if (zfs_flags & ZFS_DEBUG_MODIFY) 1687 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL); 1688 1689 return (copied); 1690 } 1691 1692 /* 1693 * Allocates an ARC buf header that's in an evicted & L2-cached state. 1694 * This is used during l2arc reconstruction to make empty ARC buffers 1695 * which circumvent the regular disk->arc->l2arc path and instead come 1696 * into being in the reverse order, i.e. l2arc->arc. 1697 */ 1698 static arc_buf_hdr_t * 1699 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev, 1700 dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth, 1701 enum zio_compress compress, uint8_t complevel, boolean_t protected, 1702 boolean_t prefetch, arc_state_type_t arcs_state) 1703 { 1704 arc_buf_hdr_t *hdr; 1705 1706 ASSERT(size != 0); 1707 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP); 1708 hdr->b_birth = birth; 1709 hdr->b_type = type; 1710 hdr->b_flags = 0; 1711 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR); 1712 HDR_SET_LSIZE(hdr, size); 1713 HDR_SET_PSIZE(hdr, psize); 1714 arc_hdr_set_compress(hdr, compress); 1715 hdr->b_complevel = complevel; 1716 if (protected) 1717 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 1718 if (prefetch) 1719 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 1720 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa); 1721 1722 hdr->b_dva = dva; 1723 1724 hdr->b_l2hdr.b_dev = dev; 1725 hdr->b_l2hdr.b_daddr = daddr; 1726 hdr->b_l2hdr.b_arcs_state = arcs_state; 1727 1728 return (hdr); 1729 } 1730 1731 /* 1732 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t. 1733 */ 1734 static uint64_t 1735 arc_hdr_size(arc_buf_hdr_t *hdr) 1736 { 1737 uint64_t size; 1738 1739 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 1740 HDR_GET_PSIZE(hdr) > 0) { 1741 size = HDR_GET_PSIZE(hdr); 1742 } else { 1743 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); 1744 size = HDR_GET_LSIZE(hdr); 1745 } 1746 return (size); 1747 } 1748 1749 static int 1750 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj) 1751 { 1752 int ret; 1753 uint64_t csize; 1754 uint64_t lsize = HDR_GET_LSIZE(hdr); 1755 uint64_t psize = HDR_GET_PSIZE(hdr); 1756 void *tmpbuf = NULL; 1757 abd_t *abd = hdr->b_l1hdr.b_pabd; 1758 1759 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1760 ASSERT(HDR_AUTHENTICATED(hdr)); 1761 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1762 1763 /* 1764 * The MAC is calculated on the compressed data that is stored on disk. 1765 * However, if compressed arc is disabled we will only have the 1766 * decompressed data available to us now. Compress it into a temporary 1767 * abd so we can verify the MAC. The performance overhead of this will 1768 * be relatively low, since most objects in an encrypted objset will 1769 * be encrypted (instead of authenticated) anyway. 1770 */ 1771 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1772 !HDR_COMPRESSION_ENABLED(hdr)) { 1773 tmpbuf = zio_buf_alloc(lsize); 1774 abd = abd_get_from_buf(tmpbuf, lsize); 1775 abd_take_ownership_of_buf(abd, B_TRUE); 1776 csize = zio_compress_data(HDR_GET_COMPRESS(hdr), 1777 hdr->b_l1hdr.b_pabd, tmpbuf, lsize, hdr->b_complevel); 1778 ASSERT3U(csize, <=, psize); 1779 abd_zero_off(abd, csize, psize - csize); 1780 } 1781 1782 /* 1783 * Authentication is best effort. We authenticate whenever the key is 1784 * available. If we succeed we clear ARC_FLAG_NOAUTH. 1785 */ 1786 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) { 1787 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1788 ASSERT3U(lsize, ==, psize); 1789 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd, 1790 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1791 } else { 1792 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize, 1793 hdr->b_crypt_hdr.b_mac); 1794 } 1795 1796 if (ret == 0) 1797 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH); 1798 else if (ret != ENOENT) 1799 goto error; 1800 1801 if (tmpbuf != NULL) 1802 abd_free(abd); 1803 1804 return (0); 1805 1806 error: 1807 if (tmpbuf != NULL) 1808 abd_free(abd); 1809 1810 return (ret); 1811 } 1812 1813 /* 1814 * This function will take a header that only has raw encrypted data in 1815 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in 1816 * b_l1hdr.b_pabd. If designated in the header flags, this function will 1817 * also decompress the data. 1818 */ 1819 static int 1820 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb) 1821 { 1822 int ret; 1823 abd_t *cabd = NULL; 1824 void *tmp = NULL; 1825 boolean_t no_crypt = B_FALSE; 1826 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1827 1828 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1829 ASSERT(HDR_ENCRYPTED(hdr)); 1830 1831 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 1832 1833 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot, 1834 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv, 1835 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd, 1836 hdr->b_crypt_hdr.b_rabd, &no_crypt); 1837 if (ret != 0) 1838 goto error; 1839 1840 if (no_crypt) { 1841 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd, 1842 HDR_GET_PSIZE(hdr)); 1843 } 1844 1845 /* 1846 * If this header has disabled arc compression but the b_pabd is 1847 * compressed after decrypting it, we need to decompress the newly 1848 * decrypted data. 1849 */ 1850 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1851 !HDR_COMPRESSION_ENABLED(hdr)) { 1852 /* 1853 * We want to make sure that we are correctly honoring the 1854 * zfs_abd_scatter_enabled setting, so we allocate an abd here 1855 * and then loan a buffer from it, rather than allocating a 1856 * linear buffer and wrapping it in an abd later. 1857 */ 1858 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, B_TRUE); 1859 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 1860 1861 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 1862 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 1863 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 1864 if (ret != 0) { 1865 abd_return_buf(cabd, tmp, arc_hdr_size(hdr)); 1866 goto error; 1867 } 1868 1869 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 1870 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 1871 arc_hdr_size(hdr), hdr); 1872 hdr->b_l1hdr.b_pabd = cabd; 1873 } 1874 1875 return (0); 1876 1877 error: 1878 arc_hdr_free_abd(hdr, B_FALSE); 1879 if (cabd != NULL) 1880 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr); 1881 1882 return (ret); 1883 } 1884 1885 /* 1886 * This function is called during arc_buf_fill() to prepare the header's 1887 * abd plaintext pointer for use. This involves authenticated protected 1888 * data and decrypting encrypted data into the plaintext abd. 1889 */ 1890 static int 1891 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa, 1892 const zbookmark_phys_t *zb, boolean_t noauth) 1893 { 1894 int ret; 1895 1896 ASSERT(HDR_PROTECTED(hdr)); 1897 1898 if (hash_lock != NULL) 1899 mutex_enter(hash_lock); 1900 1901 if (HDR_NOAUTH(hdr) && !noauth) { 1902 /* 1903 * The caller requested authenticated data but our data has 1904 * not been authenticated yet. Verify the MAC now if we can. 1905 */ 1906 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset); 1907 if (ret != 0) 1908 goto error; 1909 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) { 1910 /* 1911 * If we only have the encrypted version of the data, but the 1912 * unencrypted version was requested we take this opportunity 1913 * to store the decrypted version in the header for future use. 1914 */ 1915 ret = arc_hdr_decrypt(hdr, spa, zb); 1916 if (ret != 0) 1917 goto error; 1918 } 1919 1920 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1921 1922 if (hash_lock != NULL) 1923 mutex_exit(hash_lock); 1924 1925 return (0); 1926 1927 error: 1928 if (hash_lock != NULL) 1929 mutex_exit(hash_lock); 1930 1931 return (ret); 1932 } 1933 1934 /* 1935 * This function is used by the dbuf code to decrypt bonus buffers in place. 1936 * The dbuf code itself doesn't have any locking for decrypting a shared dnode 1937 * block, so we use the hash lock here to protect against concurrent calls to 1938 * arc_buf_fill(). 1939 */ 1940 static void 1941 arc_buf_untransform_in_place(arc_buf_t *buf, kmutex_t *hash_lock) 1942 { 1943 arc_buf_hdr_t *hdr = buf->b_hdr; 1944 1945 ASSERT(HDR_ENCRYPTED(hdr)); 1946 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 1947 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1948 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1949 1950 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data, 1951 arc_buf_size(buf)); 1952 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 1953 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 1954 hdr->b_crypt_hdr.b_ebufcnt -= 1; 1955 } 1956 1957 /* 1958 * Given a buf that has a data buffer attached to it, this function will 1959 * efficiently fill the buf with data of the specified compression setting from 1960 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr 1961 * are already sharing a data buf, no copy is performed. 1962 * 1963 * If the buf is marked as compressed but uncompressed data was requested, this 1964 * will allocate a new data buffer for the buf, remove that flag, and fill the 1965 * buf with uncompressed data. You can't request a compressed buf on a hdr with 1966 * uncompressed data, and (since we haven't added support for it yet) if you 1967 * want compressed data your buf must already be marked as compressed and have 1968 * the correct-sized data buffer. 1969 */ 1970 static int 1971 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 1972 arc_fill_flags_t flags) 1973 { 1974 int error = 0; 1975 arc_buf_hdr_t *hdr = buf->b_hdr; 1976 boolean_t hdr_compressed = 1977 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 1978 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0; 1979 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0; 1980 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; 1981 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr); 1982 1983 ASSERT3P(buf->b_data, !=, NULL); 1984 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf)); 1985 IMPLY(compressed, ARC_BUF_COMPRESSED(buf)); 1986 IMPLY(encrypted, HDR_ENCRYPTED(hdr)); 1987 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf)); 1988 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf)); 1989 IMPLY(encrypted, !ARC_BUF_SHARED(buf)); 1990 1991 /* 1992 * If the caller wanted encrypted data we just need to copy it from 1993 * b_rabd and potentially byteswap it. We won't be able to do any 1994 * further transforms on it. 1995 */ 1996 if (encrypted) { 1997 ASSERT(HDR_HAS_RABD(hdr)); 1998 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd, 1999 HDR_GET_PSIZE(hdr)); 2000 goto byteswap; 2001 } 2002 2003 /* 2004 * Adjust encrypted and authenticated headers to accommodate 2005 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are 2006 * allowed to fail decryption due to keys not being loaded 2007 * without being marked as an IO error. 2008 */ 2009 if (HDR_PROTECTED(hdr)) { 2010 error = arc_fill_hdr_crypt(hdr, hash_lock, spa, 2011 zb, !!(flags & ARC_FILL_NOAUTH)); 2012 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) { 2013 return (error); 2014 } else if (error != 0) { 2015 if (hash_lock != NULL) 2016 mutex_enter(hash_lock); 2017 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2018 if (hash_lock != NULL) 2019 mutex_exit(hash_lock); 2020 return (error); 2021 } 2022 } 2023 2024 /* 2025 * There is a special case here for dnode blocks which are 2026 * decrypting their bonus buffers. These blocks may request to 2027 * be decrypted in-place. This is necessary because there may 2028 * be many dnodes pointing into this buffer and there is 2029 * currently no method to synchronize replacing the backing 2030 * b_data buffer and updating all of the pointers. Here we use 2031 * the hash lock to ensure there are no races. If the need 2032 * arises for other types to be decrypted in-place, they must 2033 * add handling here as well. 2034 */ 2035 if ((flags & ARC_FILL_IN_PLACE) != 0) { 2036 ASSERT(!hdr_compressed); 2037 ASSERT(!compressed); 2038 ASSERT(!encrypted); 2039 2040 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) { 2041 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 2042 2043 if (hash_lock != NULL) 2044 mutex_enter(hash_lock); 2045 arc_buf_untransform_in_place(buf, hash_lock); 2046 if (hash_lock != NULL) 2047 mutex_exit(hash_lock); 2048 2049 /* Compute the hdr's checksum if necessary */ 2050 arc_cksum_compute(buf); 2051 } 2052 2053 return (0); 2054 } 2055 2056 if (hdr_compressed == compressed) { 2057 if (!arc_buf_is_shared(buf)) { 2058 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd, 2059 arc_buf_size(buf)); 2060 } 2061 } else { 2062 ASSERT(hdr_compressed); 2063 ASSERT(!compressed); 2064 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr)); 2065 2066 /* 2067 * If the buf is sharing its data with the hdr, unlink it and 2068 * allocate a new data buffer for the buf. 2069 */ 2070 if (arc_buf_is_shared(buf)) { 2071 ASSERT(ARC_BUF_COMPRESSED(buf)); 2072 2073 /* We need to give the buf its own b_data */ 2074 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 2075 buf->b_data = 2076 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2077 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2078 2079 /* Previously overhead was 0; just add new overhead */ 2080 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 2081 } else if (ARC_BUF_COMPRESSED(buf)) { 2082 /* We need to reallocate the buf's b_data */ 2083 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr), 2084 buf); 2085 buf->b_data = 2086 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2087 2088 /* We increased the size of b_data; update overhead */ 2089 ARCSTAT_INCR(arcstat_overhead_size, 2090 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr)); 2091 } 2092 2093 /* 2094 * Regardless of the buf's previous compression settings, it 2095 * should not be compressed at the end of this function. 2096 */ 2097 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 2098 2099 /* 2100 * Try copying the data from another buf which already has a 2101 * decompressed version. If that's not possible, it's time to 2102 * bite the bullet and decompress the data from the hdr. 2103 */ 2104 if (arc_buf_try_copy_decompressed_data(buf)) { 2105 /* Skip byteswapping and checksumming (already done) */ 2106 return (0); 2107 } else { 2108 error = zio_decompress_data(HDR_GET_COMPRESS(hdr), 2109 hdr->b_l1hdr.b_pabd, buf->b_data, 2110 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr), 2111 &hdr->b_complevel); 2112 2113 /* 2114 * Absent hardware errors or software bugs, this should 2115 * be impossible, but log it anyway so we can debug it. 2116 */ 2117 if (error != 0) { 2118 zfs_dbgmsg( 2119 "hdr %px, compress %d, psize %d, lsize %d", 2120 hdr, arc_hdr_get_compress(hdr), 2121 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 2122 if (hash_lock != NULL) 2123 mutex_enter(hash_lock); 2124 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2125 if (hash_lock != NULL) 2126 mutex_exit(hash_lock); 2127 return (SET_ERROR(EIO)); 2128 } 2129 } 2130 } 2131 2132 byteswap: 2133 /* Byteswap the buf's data if necessary */ 2134 if (bswap != DMU_BSWAP_NUMFUNCS) { 2135 ASSERT(!HDR_SHARED_DATA(hdr)); 2136 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); 2137 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); 2138 } 2139 2140 /* Compute the hdr's checksum if necessary */ 2141 arc_cksum_compute(buf); 2142 2143 return (0); 2144 } 2145 2146 /* 2147 * If this function is being called to decrypt an encrypted buffer or verify an 2148 * authenticated one, the key must be loaded and a mapping must be made 2149 * available in the keystore via spa_keystore_create_mapping() or one of its 2150 * callers. 2151 */ 2152 int 2153 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 2154 boolean_t in_place) 2155 { 2156 int ret; 2157 arc_fill_flags_t flags = 0; 2158 2159 if (in_place) 2160 flags |= ARC_FILL_IN_PLACE; 2161 2162 ret = arc_buf_fill(buf, spa, zb, flags); 2163 if (ret == ECKSUM) { 2164 /* 2165 * Convert authentication and decryption errors to EIO 2166 * (and generate an ereport) before leaving the ARC. 2167 */ 2168 ret = SET_ERROR(EIO); 2169 spa_log_error(spa, zb); 2170 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 2171 spa, NULL, zb, NULL, 0); 2172 } 2173 2174 return (ret); 2175 } 2176 2177 /* 2178 * Increment the amount of evictable space in the arc_state_t's refcount. 2179 * We account for the space used by the hdr and the arc buf individually 2180 * so that we can add and remove them from the refcount individually. 2181 */ 2182 static void 2183 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) 2184 { 2185 arc_buf_contents_t type = arc_buf_type(hdr); 2186 2187 ASSERT(HDR_HAS_L1HDR(hdr)); 2188 2189 if (GHOST_STATE(state)) { 2190 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2191 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2192 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2193 ASSERT(!HDR_HAS_RABD(hdr)); 2194 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2195 HDR_GET_LSIZE(hdr), hdr); 2196 return; 2197 } 2198 2199 if (hdr->b_l1hdr.b_pabd != NULL) { 2200 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2201 arc_hdr_size(hdr), hdr); 2202 } 2203 if (HDR_HAS_RABD(hdr)) { 2204 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2205 HDR_GET_PSIZE(hdr), hdr); 2206 } 2207 2208 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2209 buf = buf->b_next) { 2210 if (arc_buf_is_shared(buf)) 2211 continue; 2212 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2213 arc_buf_size(buf), buf); 2214 } 2215 } 2216 2217 /* 2218 * Decrement the amount of evictable space in the arc_state_t's refcount. 2219 * We account for the space used by the hdr and the arc buf individually 2220 * so that we can add and remove them from the refcount individually. 2221 */ 2222 static void 2223 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) 2224 { 2225 arc_buf_contents_t type = arc_buf_type(hdr); 2226 2227 ASSERT(HDR_HAS_L1HDR(hdr)); 2228 2229 if (GHOST_STATE(state)) { 2230 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2231 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2232 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2233 ASSERT(!HDR_HAS_RABD(hdr)); 2234 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2235 HDR_GET_LSIZE(hdr), hdr); 2236 return; 2237 } 2238 2239 if (hdr->b_l1hdr.b_pabd != NULL) { 2240 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2241 arc_hdr_size(hdr), hdr); 2242 } 2243 if (HDR_HAS_RABD(hdr)) { 2244 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2245 HDR_GET_PSIZE(hdr), hdr); 2246 } 2247 2248 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2249 buf = buf->b_next) { 2250 if (arc_buf_is_shared(buf)) 2251 continue; 2252 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2253 arc_buf_size(buf), buf); 2254 } 2255 } 2256 2257 /* 2258 * Add a reference to this hdr indicating that someone is actively 2259 * referencing that memory. When the refcount transitions from 0 to 1, 2260 * we remove it from the respective arc_state_t list to indicate that 2261 * it is not evictable. 2262 */ 2263 static void 2264 add_reference(arc_buf_hdr_t *hdr, void *tag) 2265 { 2266 arc_state_t *state; 2267 2268 ASSERT(HDR_HAS_L1HDR(hdr)); 2269 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) { 2270 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 2271 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2272 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2273 } 2274 2275 state = hdr->b_l1hdr.b_state; 2276 2277 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 2278 (state != arc_anon)) { 2279 /* We don't use the L2-only state list. */ 2280 if (state != arc_l2c_only) { 2281 multilist_remove(&state->arcs_list[arc_buf_type(hdr)], 2282 hdr); 2283 arc_evictable_space_decrement(hdr, state); 2284 } 2285 /* remove the prefetch flag if we get a reference */ 2286 if (HDR_HAS_L2HDR(hdr)) 2287 l2arc_hdr_arcstats_decrement_state(hdr); 2288 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 2289 if (HDR_HAS_L2HDR(hdr)) 2290 l2arc_hdr_arcstats_increment_state(hdr); 2291 } 2292 } 2293 2294 /* 2295 * Remove a reference from this hdr. When the reference transitions from 2296 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's 2297 * list making it eligible for eviction. 2298 */ 2299 static int 2300 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 2301 { 2302 int cnt; 2303 arc_state_t *state = hdr->b_l1hdr.b_state; 2304 2305 ASSERT(HDR_HAS_L1HDR(hdr)); 2306 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 2307 ASSERT(!GHOST_STATE(state)); 2308 2309 /* 2310 * arc_l2c_only counts as a ghost state so we don't need to explicitly 2311 * check to prevent usage of the arc_l2c_only list. 2312 */ 2313 if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) && 2314 (state != arc_anon)) { 2315 multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr); 2316 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 2317 arc_evictable_space_increment(hdr, state); 2318 } 2319 return (cnt); 2320 } 2321 2322 /* 2323 * Returns detailed information about a specific arc buffer. When the 2324 * state_index argument is set the function will calculate the arc header 2325 * list position for its arc state. Since this requires a linear traversal 2326 * callers are strongly encourage not to do this. However, it can be helpful 2327 * for targeted analysis so the functionality is provided. 2328 */ 2329 void 2330 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index) 2331 { 2332 arc_buf_hdr_t *hdr = ab->b_hdr; 2333 l1arc_buf_hdr_t *l1hdr = NULL; 2334 l2arc_buf_hdr_t *l2hdr = NULL; 2335 arc_state_t *state = NULL; 2336 2337 memset(abi, 0, sizeof (arc_buf_info_t)); 2338 2339 if (hdr == NULL) 2340 return; 2341 2342 abi->abi_flags = hdr->b_flags; 2343 2344 if (HDR_HAS_L1HDR(hdr)) { 2345 l1hdr = &hdr->b_l1hdr; 2346 state = l1hdr->b_state; 2347 } 2348 if (HDR_HAS_L2HDR(hdr)) 2349 l2hdr = &hdr->b_l2hdr; 2350 2351 if (l1hdr) { 2352 abi->abi_bufcnt = l1hdr->b_bufcnt; 2353 abi->abi_access = l1hdr->b_arc_access; 2354 abi->abi_mru_hits = l1hdr->b_mru_hits; 2355 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits; 2356 abi->abi_mfu_hits = l1hdr->b_mfu_hits; 2357 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits; 2358 abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt); 2359 } 2360 2361 if (l2hdr) { 2362 abi->abi_l2arc_dattr = l2hdr->b_daddr; 2363 abi->abi_l2arc_hits = l2hdr->b_hits; 2364 } 2365 2366 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON; 2367 abi->abi_state_contents = arc_buf_type(hdr); 2368 abi->abi_size = arc_hdr_size(hdr); 2369 } 2370 2371 /* 2372 * Move the supplied buffer to the indicated state. The hash lock 2373 * for the buffer must be held by the caller. 2374 */ 2375 static void 2376 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr, 2377 kmutex_t *hash_lock) 2378 { 2379 arc_state_t *old_state; 2380 int64_t refcnt; 2381 uint32_t bufcnt; 2382 boolean_t update_old, update_new; 2383 arc_buf_contents_t buftype = arc_buf_type(hdr); 2384 2385 /* 2386 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 2387 * in arc_read() when bringing a buffer out of the L2ARC. However, the 2388 * L1 hdr doesn't always exist when we change state to arc_anon before 2389 * destroying a header, in which case reallocating to add the L1 hdr is 2390 * pointless. 2391 */ 2392 if (HDR_HAS_L1HDR(hdr)) { 2393 old_state = hdr->b_l1hdr.b_state; 2394 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt); 2395 bufcnt = hdr->b_l1hdr.b_bufcnt; 2396 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL || 2397 HDR_HAS_RABD(hdr)); 2398 } else { 2399 old_state = arc_l2c_only; 2400 refcnt = 0; 2401 bufcnt = 0; 2402 update_old = B_FALSE; 2403 } 2404 update_new = update_old; 2405 2406 ASSERT(MUTEX_HELD(hash_lock)); 2407 ASSERT3P(new_state, !=, old_state); 2408 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0); 2409 ASSERT(old_state != arc_anon || bufcnt <= 1); 2410 2411 /* 2412 * If this buffer is evictable, transfer it from the 2413 * old state list to the new state list. 2414 */ 2415 if (refcnt == 0) { 2416 if (old_state != arc_anon && old_state != arc_l2c_only) { 2417 ASSERT(HDR_HAS_L1HDR(hdr)); 2418 multilist_remove(&old_state->arcs_list[buftype], hdr); 2419 2420 if (GHOST_STATE(old_state)) { 2421 ASSERT0(bufcnt); 2422 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2423 update_old = B_TRUE; 2424 } 2425 arc_evictable_space_decrement(hdr, old_state); 2426 } 2427 if (new_state != arc_anon && new_state != arc_l2c_only) { 2428 /* 2429 * An L1 header always exists here, since if we're 2430 * moving to some L1-cached state (i.e. not l2c_only or 2431 * anonymous), we realloc the header to add an L1hdr 2432 * beforehand. 2433 */ 2434 ASSERT(HDR_HAS_L1HDR(hdr)); 2435 multilist_insert(&new_state->arcs_list[buftype], hdr); 2436 2437 if (GHOST_STATE(new_state)) { 2438 ASSERT0(bufcnt); 2439 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2440 update_new = B_TRUE; 2441 } 2442 arc_evictable_space_increment(hdr, new_state); 2443 } 2444 } 2445 2446 ASSERT(!HDR_EMPTY(hdr)); 2447 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 2448 buf_hash_remove(hdr); 2449 2450 /* adjust state sizes (ignore arc_l2c_only) */ 2451 2452 if (update_new && new_state != arc_l2c_only) { 2453 ASSERT(HDR_HAS_L1HDR(hdr)); 2454 if (GHOST_STATE(new_state)) { 2455 ASSERT0(bufcnt); 2456 2457 /* 2458 * When moving a header to a ghost state, we first 2459 * remove all arc buffers. Thus, we'll have a 2460 * bufcnt of zero, and no arc buffer to use for 2461 * the reference. As a result, we use the arc 2462 * header pointer for the reference. 2463 */ 2464 (void) zfs_refcount_add_many(&new_state->arcs_size, 2465 HDR_GET_LSIZE(hdr), hdr); 2466 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2467 ASSERT(!HDR_HAS_RABD(hdr)); 2468 } else { 2469 uint32_t buffers = 0; 2470 2471 /* 2472 * Each individual buffer holds a unique reference, 2473 * thus we must remove each of these references one 2474 * at a time. 2475 */ 2476 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2477 buf = buf->b_next) { 2478 ASSERT3U(bufcnt, !=, 0); 2479 buffers++; 2480 2481 /* 2482 * When the arc_buf_t is sharing the data 2483 * block with the hdr, the owner of the 2484 * reference belongs to the hdr. Only 2485 * add to the refcount if the arc_buf_t is 2486 * not shared. 2487 */ 2488 if (arc_buf_is_shared(buf)) 2489 continue; 2490 2491 (void) zfs_refcount_add_many( 2492 &new_state->arcs_size, 2493 arc_buf_size(buf), buf); 2494 } 2495 ASSERT3U(bufcnt, ==, buffers); 2496 2497 if (hdr->b_l1hdr.b_pabd != NULL) { 2498 (void) zfs_refcount_add_many( 2499 &new_state->arcs_size, 2500 arc_hdr_size(hdr), hdr); 2501 } 2502 2503 if (HDR_HAS_RABD(hdr)) { 2504 (void) zfs_refcount_add_many( 2505 &new_state->arcs_size, 2506 HDR_GET_PSIZE(hdr), hdr); 2507 } 2508 } 2509 } 2510 2511 if (update_old && old_state != arc_l2c_only) { 2512 ASSERT(HDR_HAS_L1HDR(hdr)); 2513 if (GHOST_STATE(old_state)) { 2514 ASSERT0(bufcnt); 2515 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2516 ASSERT(!HDR_HAS_RABD(hdr)); 2517 2518 /* 2519 * When moving a header off of a ghost state, 2520 * the header will not contain any arc buffers. 2521 * We use the arc header pointer for the reference 2522 * which is exactly what we did when we put the 2523 * header on the ghost state. 2524 */ 2525 2526 (void) zfs_refcount_remove_many(&old_state->arcs_size, 2527 HDR_GET_LSIZE(hdr), hdr); 2528 } else { 2529 uint32_t buffers = 0; 2530 2531 /* 2532 * Each individual buffer holds a unique reference, 2533 * thus we must remove each of these references one 2534 * at a time. 2535 */ 2536 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2537 buf = buf->b_next) { 2538 ASSERT3U(bufcnt, !=, 0); 2539 buffers++; 2540 2541 /* 2542 * When the arc_buf_t is sharing the data 2543 * block with the hdr, the owner of the 2544 * reference belongs to the hdr. Only 2545 * add to the refcount if the arc_buf_t is 2546 * not shared. 2547 */ 2548 if (arc_buf_is_shared(buf)) 2549 continue; 2550 2551 (void) zfs_refcount_remove_many( 2552 &old_state->arcs_size, arc_buf_size(buf), 2553 buf); 2554 } 2555 ASSERT3U(bufcnt, ==, buffers); 2556 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 2557 HDR_HAS_RABD(hdr)); 2558 2559 if (hdr->b_l1hdr.b_pabd != NULL) { 2560 (void) zfs_refcount_remove_many( 2561 &old_state->arcs_size, arc_hdr_size(hdr), 2562 hdr); 2563 } 2564 2565 if (HDR_HAS_RABD(hdr)) { 2566 (void) zfs_refcount_remove_many( 2567 &old_state->arcs_size, HDR_GET_PSIZE(hdr), 2568 hdr); 2569 } 2570 } 2571 } 2572 2573 if (HDR_HAS_L1HDR(hdr)) { 2574 hdr->b_l1hdr.b_state = new_state; 2575 2576 if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) { 2577 l2arc_hdr_arcstats_decrement_state(hdr); 2578 hdr->b_l2hdr.b_arcs_state = new_state->arcs_state; 2579 l2arc_hdr_arcstats_increment_state(hdr); 2580 } 2581 } 2582 2583 /* 2584 * L2 headers should never be on the L2 state list since they don't 2585 * have L1 headers allocated. 2586 */ 2587 ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) && 2588 multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA])); 2589 } 2590 2591 void 2592 arc_space_consume(uint64_t space, arc_space_type_t type) 2593 { 2594 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2595 2596 switch (type) { 2597 default: 2598 break; 2599 case ARC_SPACE_DATA: 2600 ARCSTAT_INCR(arcstat_data_size, space); 2601 break; 2602 case ARC_SPACE_META: 2603 ARCSTAT_INCR(arcstat_metadata_size, space); 2604 break; 2605 case ARC_SPACE_BONUS: 2606 ARCSTAT_INCR(arcstat_bonus_size, space); 2607 break; 2608 case ARC_SPACE_DNODE: 2609 aggsum_add(&arc_sums.arcstat_dnode_size, space); 2610 break; 2611 case ARC_SPACE_DBUF: 2612 ARCSTAT_INCR(arcstat_dbuf_size, space); 2613 break; 2614 case ARC_SPACE_HDRS: 2615 ARCSTAT_INCR(arcstat_hdr_size, space); 2616 break; 2617 case ARC_SPACE_L2HDRS: 2618 aggsum_add(&arc_sums.arcstat_l2_hdr_size, space); 2619 break; 2620 case ARC_SPACE_ABD_CHUNK_WASTE: 2621 /* 2622 * Note: this includes space wasted by all scatter ABD's, not 2623 * just those allocated by the ARC. But the vast majority of 2624 * scatter ABD's come from the ARC, because other users are 2625 * very short-lived. 2626 */ 2627 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, space); 2628 break; 2629 } 2630 2631 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) 2632 aggsum_add(&arc_sums.arcstat_meta_used, space); 2633 2634 aggsum_add(&arc_sums.arcstat_size, space); 2635 } 2636 2637 void 2638 arc_space_return(uint64_t space, arc_space_type_t type) 2639 { 2640 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2641 2642 switch (type) { 2643 default: 2644 break; 2645 case ARC_SPACE_DATA: 2646 ARCSTAT_INCR(arcstat_data_size, -space); 2647 break; 2648 case ARC_SPACE_META: 2649 ARCSTAT_INCR(arcstat_metadata_size, -space); 2650 break; 2651 case ARC_SPACE_BONUS: 2652 ARCSTAT_INCR(arcstat_bonus_size, -space); 2653 break; 2654 case ARC_SPACE_DNODE: 2655 aggsum_add(&arc_sums.arcstat_dnode_size, -space); 2656 break; 2657 case ARC_SPACE_DBUF: 2658 ARCSTAT_INCR(arcstat_dbuf_size, -space); 2659 break; 2660 case ARC_SPACE_HDRS: 2661 ARCSTAT_INCR(arcstat_hdr_size, -space); 2662 break; 2663 case ARC_SPACE_L2HDRS: 2664 aggsum_add(&arc_sums.arcstat_l2_hdr_size, -space); 2665 break; 2666 case ARC_SPACE_ABD_CHUNK_WASTE: 2667 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, -space); 2668 break; 2669 } 2670 2671 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) { 2672 ASSERT(aggsum_compare(&arc_sums.arcstat_meta_used, 2673 space) >= 0); 2674 ARCSTAT_MAX(arcstat_meta_max, 2675 aggsum_upper_bound(&arc_sums.arcstat_meta_used)); 2676 aggsum_add(&arc_sums.arcstat_meta_used, -space); 2677 } 2678 2679 ASSERT(aggsum_compare(&arc_sums.arcstat_size, space) >= 0); 2680 aggsum_add(&arc_sums.arcstat_size, -space); 2681 } 2682 2683 /* 2684 * Given a hdr and a buf, returns whether that buf can share its b_data buffer 2685 * with the hdr's b_pabd. 2686 */ 2687 static boolean_t 2688 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2689 { 2690 /* 2691 * The criteria for sharing a hdr's data are: 2692 * 1. the buffer is not encrypted 2693 * 2. the hdr's compression matches the buf's compression 2694 * 3. the hdr doesn't need to be byteswapped 2695 * 4. the hdr isn't already being shared 2696 * 5. the buf is either compressed or it is the last buf in the hdr list 2697 * 2698 * Criterion #5 maintains the invariant that shared uncompressed 2699 * bufs must be the final buf in the hdr's b_buf list. Reading this, you 2700 * might ask, "if a compressed buf is allocated first, won't that be the 2701 * last thing in the list?", but in that case it's impossible to create 2702 * a shared uncompressed buf anyway (because the hdr must be compressed 2703 * to have the compressed buf). You might also think that #3 is 2704 * sufficient to make this guarantee, however it's possible 2705 * (specifically in the rare L2ARC write race mentioned in 2706 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that 2707 * is shareable, but wasn't at the time of its allocation. Rather than 2708 * allow a new shared uncompressed buf to be created and then shuffle 2709 * the list around to make it the last element, this simply disallows 2710 * sharing if the new buf isn't the first to be added. 2711 */ 2712 ASSERT3P(buf->b_hdr, ==, hdr); 2713 boolean_t hdr_compressed = 2714 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF; 2715 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0; 2716 return (!ARC_BUF_ENCRYPTED(buf) && 2717 buf_compressed == hdr_compressed && 2718 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && 2719 !HDR_SHARED_DATA(hdr) && 2720 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf))); 2721 } 2722 2723 /* 2724 * Allocate a buf for this hdr. If you care about the data that's in the hdr, 2725 * or if you want a compressed buffer, pass those flags in. Returns 0 if the 2726 * copy was made successfully, or an error code otherwise. 2727 */ 2728 static int 2729 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb, 2730 void *tag, boolean_t encrypted, boolean_t compressed, boolean_t noauth, 2731 boolean_t fill, arc_buf_t **ret) 2732 { 2733 arc_buf_t *buf; 2734 arc_fill_flags_t flags = ARC_FILL_LOCKED; 2735 2736 ASSERT(HDR_HAS_L1HDR(hdr)); 2737 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2738 VERIFY(hdr->b_type == ARC_BUFC_DATA || 2739 hdr->b_type == ARC_BUFC_METADATA); 2740 ASSERT3P(ret, !=, NULL); 2741 ASSERT3P(*ret, ==, NULL); 2742 IMPLY(encrypted, compressed); 2743 2744 hdr->b_l1hdr.b_mru_hits = 0; 2745 hdr->b_l1hdr.b_mru_ghost_hits = 0; 2746 hdr->b_l1hdr.b_mfu_hits = 0; 2747 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 2748 hdr->b_l1hdr.b_l2_hits = 0; 2749 2750 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2751 buf->b_hdr = hdr; 2752 buf->b_data = NULL; 2753 buf->b_next = hdr->b_l1hdr.b_buf; 2754 buf->b_flags = 0; 2755 2756 add_reference(hdr, tag); 2757 2758 /* 2759 * We're about to change the hdr's b_flags. We must either 2760 * hold the hash_lock or be undiscoverable. 2761 */ 2762 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2763 2764 /* 2765 * Only honor requests for compressed bufs if the hdr is actually 2766 * compressed. This must be overridden if the buffer is encrypted since 2767 * encrypted buffers cannot be decompressed. 2768 */ 2769 if (encrypted) { 2770 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2771 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED; 2772 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED; 2773 } else if (compressed && 2774 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 2775 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2776 flags |= ARC_FILL_COMPRESSED; 2777 } 2778 2779 if (noauth) { 2780 ASSERT0(encrypted); 2781 flags |= ARC_FILL_NOAUTH; 2782 } 2783 2784 /* 2785 * If the hdr's data can be shared then we share the data buffer and 2786 * set the appropriate bit in the hdr's b_flags to indicate the hdr is 2787 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new 2788 * buffer to store the buf's data. 2789 * 2790 * There are two additional restrictions here because we're sharing 2791 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be 2792 * actively involved in an L2ARC write, because if this buf is used by 2793 * an arc_write() then the hdr's data buffer will be released when the 2794 * write completes, even though the L2ARC write might still be using it. 2795 * Second, the hdr's ABD must be linear so that the buf's user doesn't 2796 * need to be ABD-aware. It must be allocated via 2797 * zio_[data_]buf_alloc(), not as a page, because we need to be able 2798 * to abd_release_ownership_of_buf(), which isn't allowed on "linear 2799 * page" buffers because the ABD code needs to handle freeing them 2800 * specially. 2801 */ 2802 boolean_t can_share = arc_can_share(hdr, buf) && 2803 !HDR_L2_WRITING(hdr) && 2804 hdr->b_l1hdr.b_pabd != NULL && 2805 abd_is_linear(hdr->b_l1hdr.b_pabd) && 2806 !abd_is_linear_page(hdr->b_l1hdr.b_pabd); 2807 2808 /* Set up b_data and sharing */ 2809 if (can_share) { 2810 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd); 2811 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2812 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2813 } else { 2814 buf->b_data = 2815 arc_get_data_buf(hdr, arc_buf_size(buf), buf); 2816 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2817 } 2818 VERIFY3P(buf->b_data, !=, NULL); 2819 2820 hdr->b_l1hdr.b_buf = buf; 2821 hdr->b_l1hdr.b_bufcnt += 1; 2822 if (encrypted) 2823 hdr->b_crypt_hdr.b_ebufcnt += 1; 2824 2825 /* 2826 * If the user wants the data from the hdr, we need to either copy or 2827 * decompress the data. 2828 */ 2829 if (fill) { 2830 ASSERT3P(zb, !=, NULL); 2831 return (arc_buf_fill(buf, spa, zb, flags)); 2832 } 2833 2834 return (0); 2835 } 2836 2837 static char *arc_onloan_tag = "onloan"; 2838 2839 static inline void 2840 arc_loaned_bytes_update(int64_t delta) 2841 { 2842 atomic_add_64(&arc_loaned_bytes, delta); 2843 2844 /* assert that it did not wrap around */ 2845 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 2846 } 2847 2848 /* 2849 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 2850 * flight data by arc_tempreserve_space() until they are "returned". Loaned 2851 * buffers must be returned to the arc before they can be used by the DMU or 2852 * freed. 2853 */ 2854 arc_buf_t * 2855 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size) 2856 { 2857 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag, 2858 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size); 2859 2860 arc_loaned_bytes_update(arc_buf_size(buf)); 2861 2862 return (buf); 2863 } 2864 2865 arc_buf_t * 2866 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize, 2867 enum zio_compress compression_type, uint8_t complevel) 2868 { 2869 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag, 2870 psize, lsize, compression_type, complevel); 2871 2872 arc_loaned_bytes_update(arc_buf_size(buf)); 2873 2874 return (buf); 2875 } 2876 2877 arc_buf_t * 2878 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder, 2879 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 2880 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 2881 enum zio_compress compression_type, uint8_t complevel) 2882 { 2883 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj, 2884 byteorder, salt, iv, mac, ot, psize, lsize, compression_type, 2885 complevel); 2886 2887 atomic_add_64(&arc_loaned_bytes, psize); 2888 return (buf); 2889 } 2890 2891 2892 /* 2893 * Return a loaned arc buffer to the arc. 2894 */ 2895 void 2896 arc_return_buf(arc_buf_t *buf, void *tag) 2897 { 2898 arc_buf_hdr_t *hdr = buf->b_hdr; 2899 2900 ASSERT3P(buf->b_data, !=, NULL); 2901 ASSERT(HDR_HAS_L1HDR(hdr)); 2902 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 2903 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2904 2905 arc_loaned_bytes_update(-arc_buf_size(buf)); 2906 } 2907 2908 /* Detach an arc_buf from a dbuf (tag) */ 2909 void 2910 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 2911 { 2912 arc_buf_hdr_t *hdr = buf->b_hdr; 2913 2914 ASSERT3P(buf->b_data, !=, NULL); 2915 ASSERT(HDR_HAS_L1HDR(hdr)); 2916 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2917 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 2918 2919 arc_loaned_bytes_update(arc_buf_size(buf)); 2920 } 2921 2922 static void 2923 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type) 2924 { 2925 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); 2926 2927 df->l2df_abd = abd; 2928 df->l2df_size = size; 2929 df->l2df_type = type; 2930 mutex_enter(&l2arc_free_on_write_mtx); 2931 list_insert_head(l2arc_free_on_write, df); 2932 mutex_exit(&l2arc_free_on_write_mtx); 2933 } 2934 2935 static void 2936 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata) 2937 { 2938 arc_state_t *state = hdr->b_l1hdr.b_state; 2939 arc_buf_contents_t type = arc_buf_type(hdr); 2940 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 2941 2942 /* protected by hash lock, if in the hash table */ 2943 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2944 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2945 ASSERT(state != arc_anon && state != arc_l2c_only); 2946 2947 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2948 size, hdr); 2949 } 2950 (void) zfs_refcount_remove_many(&state->arcs_size, size, hdr); 2951 if (type == ARC_BUFC_METADATA) { 2952 arc_space_return(size, ARC_SPACE_META); 2953 } else { 2954 ASSERT(type == ARC_BUFC_DATA); 2955 arc_space_return(size, ARC_SPACE_DATA); 2956 } 2957 2958 if (free_rdata) { 2959 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type); 2960 } else { 2961 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type); 2962 } 2963 } 2964 2965 /* 2966 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the 2967 * data buffer, we transfer the refcount ownership to the hdr and update 2968 * the appropriate kstats. 2969 */ 2970 static void 2971 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2972 { 2973 ASSERT(arc_can_share(hdr, buf)); 2974 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2975 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 2976 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2977 2978 /* 2979 * Start sharing the data buffer. We transfer the 2980 * refcount ownership to the hdr since it always owns 2981 * the refcount whenever an arc_buf_t is shared. 2982 */ 2983 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 2984 arc_hdr_size(hdr), buf, hdr); 2985 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf)); 2986 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd, 2987 HDR_ISTYPE_METADATA(hdr)); 2988 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2989 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2990 2991 /* 2992 * Since we've transferred ownership to the hdr we need 2993 * to increment its compressed and uncompressed kstats and 2994 * decrement the overhead size. 2995 */ 2996 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 2997 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 2998 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf)); 2999 } 3000 3001 static void 3002 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 3003 { 3004 ASSERT(arc_buf_is_shared(buf)); 3005 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3006 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3007 3008 /* 3009 * We are no longer sharing this buffer so we need 3010 * to transfer its ownership to the rightful owner. 3011 */ 3012 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 3013 arc_hdr_size(hdr), hdr, buf); 3014 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3015 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd); 3016 abd_free(hdr->b_l1hdr.b_pabd); 3017 hdr->b_l1hdr.b_pabd = NULL; 3018 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 3019 3020 /* 3021 * Since the buffer is no longer shared between 3022 * the arc buf and the hdr, count it as overhead. 3023 */ 3024 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 3025 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3026 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 3027 } 3028 3029 /* 3030 * Remove an arc_buf_t from the hdr's buf list and return the last 3031 * arc_buf_t on the list. If no buffers remain on the list then return 3032 * NULL. 3033 */ 3034 static arc_buf_t * 3035 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf) 3036 { 3037 ASSERT(HDR_HAS_L1HDR(hdr)); 3038 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3039 3040 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf; 3041 arc_buf_t *lastbuf = NULL; 3042 3043 /* 3044 * Remove the buf from the hdr list and locate the last 3045 * remaining buffer on the list. 3046 */ 3047 while (*bufp != NULL) { 3048 if (*bufp == buf) 3049 *bufp = buf->b_next; 3050 3051 /* 3052 * If we've removed a buffer in the middle of 3053 * the list then update the lastbuf and update 3054 * bufp. 3055 */ 3056 if (*bufp != NULL) { 3057 lastbuf = *bufp; 3058 bufp = &(*bufp)->b_next; 3059 } 3060 } 3061 buf->b_next = NULL; 3062 ASSERT3P(lastbuf, !=, buf); 3063 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL); 3064 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL); 3065 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf)); 3066 3067 return (lastbuf); 3068 } 3069 3070 /* 3071 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's 3072 * list and free it. 3073 */ 3074 static void 3075 arc_buf_destroy_impl(arc_buf_t *buf) 3076 { 3077 arc_buf_hdr_t *hdr = buf->b_hdr; 3078 3079 /* 3080 * Free up the data associated with the buf but only if we're not 3081 * sharing this with the hdr. If we are sharing it with the hdr, the 3082 * hdr is responsible for doing the free. 3083 */ 3084 if (buf->b_data != NULL) { 3085 /* 3086 * We're about to change the hdr's b_flags. We must either 3087 * hold the hash_lock or be undiscoverable. 3088 */ 3089 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3090 3091 arc_cksum_verify(buf); 3092 arc_buf_unwatch(buf); 3093 3094 if (arc_buf_is_shared(buf)) { 3095 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3096 } else { 3097 uint64_t size = arc_buf_size(buf); 3098 arc_free_data_buf(hdr, buf->b_data, size, buf); 3099 ARCSTAT_INCR(arcstat_overhead_size, -size); 3100 } 3101 buf->b_data = NULL; 3102 3103 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3104 hdr->b_l1hdr.b_bufcnt -= 1; 3105 3106 if (ARC_BUF_ENCRYPTED(buf)) { 3107 hdr->b_crypt_hdr.b_ebufcnt -= 1; 3108 3109 /* 3110 * If we have no more encrypted buffers and we've 3111 * already gotten a copy of the decrypted data we can 3112 * free b_rabd to save some space. 3113 */ 3114 if (hdr->b_crypt_hdr.b_ebufcnt == 0 && 3115 HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL && 3116 !HDR_IO_IN_PROGRESS(hdr)) { 3117 arc_hdr_free_abd(hdr, B_TRUE); 3118 } 3119 } 3120 } 3121 3122 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 3123 3124 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 3125 /* 3126 * If the current arc_buf_t is sharing its data buffer with the 3127 * hdr, then reassign the hdr's b_pabd to share it with the new 3128 * buffer at the end of the list. The shared buffer is always 3129 * the last one on the hdr's buffer list. 3130 * 3131 * There is an equivalent case for compressed bufs, but since 3132 * they aren't guaranteed to be the last buf in the list and 3133 * that is an exceedingly rare case, we just allow that space be 3134 * wasted temporarily. We must also be careful not to share 3135 * encrypted buffers, since they cannot be shared. 3136 */ 3137 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) { 3138 /* Only one buf can be shared at once */ 3139 VERIFY(!arc_buf_is_shared(lastbuf)); 3140 /* hdr is uncompressed so can't have compressed buf */ 3141 VERIFY(!ARC_BUF_COMPRESSED(lastbuf)); 3142 3143 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3144 arc_hdr_free_abd(hdr, B_FALSE); 3145 3146 /* 3147 * We must setup a new shared block between the 3148 * last buffer and the hdr. The data would have 3149 * been allocated by the arc buf so we need to transfer 3150 * ownership to the hdr since it's now being shared. 3151 */ 3152 arc_share_buf(hdr, lastbuf); 3153 } 3154 } else if (HDR_SHARED_DATA(hdr)) { 3155 /* 3156 * Uncompressed shared buffers are always at the end 3157 * of the list. Compressed buffers don't have the 3158 * same requirements. This makes it hard to 3159 * simply assert that the lastbuf is shared so 3160 * we rely on the hdr's compression flags to determine 3161 * if we have a compressed, shared buffer. 3162 */ 3163 ASSERT3P(lastbuf, !=, NULL); 3164 ASSERT(arc_buf_is_shared(lastbuf) || 3165 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 3166 } 3167 3168 /* 3169 * Free the checksum if we're removing the last uncompressed buf from 3170 * this hdr. 3171 */ 3172 if (!arc_hdr_has_uncompressed_buf(hdr)) { 3173 arc_cksum_free(hdr); 3174 } 3175 3176 /* clean up the buf */ 3177 buf->b_hdr = NULL; 3178 kmem_cache_free(buf_cache, buf); 3179 } 3180 3181 static void 3182 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags) 3183 { 3184 uint64_t size; 3185 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0); 3186 boolean_t do_adapt = ((alloc_flags & ARC_HDR_DO_ADAPT) != 0); 3187 3188 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 3189 ASSERT(HDR_HAS_L1HDR(hdr)); 3190 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata); 3191 IMPLY(alloc_rdata, HDR_PROTECTED(hdr)); 3192 3193 if (alloc_rdata) { 3194 size = HDR_GET_PSIZE(hdr); 3195 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL); 3196 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr, 3197 do_adapt); 3198 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL); 3199 ARCSTAT_INCR(arcstat_raw_size, size); 3200 } else { 3201 size = arc_hdr_size(hdr); 3202 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3203 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr, 3204 do_adapt); 3205 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3206 } 3207 3208 ARCSTAT_INCR(arcstat_compressed_size, size); 3209 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3210 } 3211 3212 static void 3213 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata) 3214 { 3215 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 3216 3217 ASSERT(HDR_HAS_L1HDR(hdr)); 3218 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 3219 IMPLY(free_rdata, HDR_HAS_RABD(hdr)); 3220 3221 /* 3222 * If the hdr is currently being written to the l2arc then 3223 * we defer freeing the data by adding it to the l2arc_free_on_write 3224 * list. The l2arc will free the data once it's finished 3225 * writing it to the l2arc device. 3226 */ 3227 if (HDR_L2_WRITING(hdr)) { 3228 arc_hdr_free_on_write(hdr, free_rdata); 3229 ARCSTAT_BUMP(arcstat_l2_free_on_write); 3230 } else if (free_rdata) { 3231 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr); 3232 } else { 3233 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr); 3234 } 3235 3236 if (free_rdata) { 3237 hdr->b_crypt_hdr.b_rabd = NULL; 3238 ARCSTAT_INCR(arcstat_raw_size, -size); 3239 } else { 3240 hdr->b_l1hdr.b_pabd = NULL; 3241 } 3242 3243 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr)) 3244 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 3245 3246 ARCSTAT_INCR(arcstat_compressed_size, -size); 3247 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3248 } 3249 3250 static arc_buf_hdr_t * 3251 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, 3252 boolean_t protected, enum zio_compress compression_type, uint8_t complevel, 3253 arc_buf_contents_t type, boolean_t alloc_rdata) 3254 { 3255 arc_buf_hdr_t *hdr; 3256 int flags = ARC_HDR_DO_ADAPT; 3257 3258 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); 3259 if (protected) { 3260 hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE); 3261 } else { 3262 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 3263 } 3264 flags |= alloc_rdata ? ARC_HDR_ALLOC_RDATA : 0; 3265 3266 ASSERT(HDR_EMPTY(hdr)); 3267 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3268 HDR_SET_PSIZE(hdr, psize); 3269 HDR_SET_LSIZE(hdr, lsize); 3270 hdr->b_spa = spa; 3271 hdr->b_type = type; 3272 hdr->b_flags = 0; 3273 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); 3274 arc_hdr_set_compress(hdr, compression_type); 3275 hdr->b_complevel = complevel; 3276 if (protected) 3277 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 3278 3279 hdr->b_l1hdr.b_state = arc_anon; 3280 hdr->b_l1hdr.b_arc_access = 0; 3281 hdr->b_l1hdr.b_bufcnt = 0; 3282 hdr->b_l1hdr.b_buf = NULL; 3283 3284 /* 3285 * Allocate the hdr's buffer. This will contain either 3286 * the compressed or uncompressed data depending on the block 3287 * it references and compressed arc enablement. 3288 */ 3289 arc_hdr_alloc_abd(hdr, flags); 3290 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3291 3292 return (hdr); 3293 } 3294 3295 /* 3296 * Transition between the two allocation states for the arc_buf_hdr struct. 3297 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 3298 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 3299 * version is used when a cache buffer is only in the L2ARC in order to reduce 3300 * memory usage. 3301 */ 3302 static arc_buf_hdr_t * 3303 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 3304 { 3305 ASSERT(HDR_HAS_L2HDR(hdr)); 3306 3307 arc_buf_hdr_t *nhdr; 3308 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3309 3310 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 3311 (old == hdr_l2only_cache && new == hdr_full_cache)); 3312 3313 /* 3314 * if the caller wanted a new full header and the header is to be 3315 * encrypted we will actually allocate the header from the full crypt 3316 * cache instead. The same applies to freeing from the old cache. 3317 */ 3318 if (HDR_PROTECTED(hdr) && new == hdr_full_cache) 3319 new = hdr_full_crypt_cache; 3320 if (HDR_PROTECTED(hdr) && old == hdr_full_cache) 3321 old = hdr_full_crypt_cache; 3322 3323 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 3324 3325 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 3326 buf_hash_remove(hdr); 3327 3328 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE); 3329 3330 if (new == hdr_full_cache || new == hdr_full_crypt_cache) { 3331 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3332 /* 3333 * arc_access and arc_change_state need to be aware that a 3334 * header has just come out of L2ARC, so we set its state to 3335 * l2c_only even though it's about to change. 3336 */ 3337 nhdr->b_l1hdr.b_state = arc_l2c_only; 3338 3339 /* Verify previous threads set to NULL before freeing */ 3340 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL); 3341 ASSERT(!HDR_HAS_RABD(hdr)); 3342 } else { 3343 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3344 ASSERT0(hdr->b_l1hdr.b_bufcnt); 3345 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3346 3347 /* 3348 * If we've reached here, We must have been called from 3349 * arc_evict_hdr(), as such we should have already been 3350 * removed from any ghost list we were previously on 3351 * (which protects us from racing with arc_evict_state), 3352 * thus no locking is needed during this check. 3353 */ 3354 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3355 3356 /* 3357 * A buffer must not be moved into the arc_l2c_only 3358 * state if it's not finished being written out to the 3359 * l2arc device. Otherwise, the b_l1hdr.b_pabd field 3360 * might try to be accessed, even though it was removed. 3361 */ 3362 VERIFY(!HDR_L2_WRITING(hdr)); 3363 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3364 ASSERT(!HDR_HAS_RABD(hdr)); 3365 3366 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3367 } 3368 /* 3369 * The header has been reallocated so we need to re-insert it into any 3370 * lists it was on. 3371 */ 3372 (void) buf_hash_insert(nhdr, NULL); 3373 3374 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 3375 3376 mutex_enter(&dev->l2ad_mtx); 3377 3378 /* 3379 * We must place the realloc'ed header back into the list at 3380 * the same spot. Otherwise, if it's placed earlier in the list, 3381 * l2arc_write_buffers() could find it during the function's 3382 * write phase, and try to write it out to the l2arc. 3383 */ 3384 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 3385 list_remove(&dev->l2ad_buflist, hdr); 3386 3387 mutex_exit(&dev->l2ad_mtx); 3388 3389 /* 3390 * Since we're using the pointer address as the tag when 3391 * incrementing and decrementing the l2ad_alloc refcount, we 3392 * must remove the old pointer (that we're about to destroy) and 3393 * add the new pointer to the refcount. Otherwise we'd remove 3394 * the wrong pointer address when calling arc_hdr_destroy() later. 3395 */ 3396 3397 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 3398 arc_hdr_size(hdr), hdr); 3399 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 3400 arc_hdr_size(nhdr), nhdr); 3401 3402 buf_discard_identity(hdr); 3403 kmem_cache_free(old, hdr); 3404 3405 return (nhdr); 3406 } 3407 3408 /* 3409 * This function allows an L1 header to be reallocated as a crypt 3410 * header and vice versa. If we are going to a crypt header, the 3411 * new fields will be zeroed out. 3412 */ 3413 static arc_buf_hdr_t * 3414 arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt) 3415 { 3416 arc_buf_hdr_t *nhdr; 3417 arc_buf_t *buf; 3418 kmem_cache_t *ncache, *ocache; 3419 3420 /* 3421 * This function requires that hdr is in the arc_anon state. 3422 * Therefore it won't have any L2ARC data for us to worry 3423 * about copying. 3424 */ 3425 ASSERT(HDR_HAS_L1HDR(hdr)); 3426 ASSERT(!HDR_HAS_L2HDR(hdr)); 3427 ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt); 3428 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3429 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3430 ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node)); 3431 ASSERT3P(hdr->b_hash_next, ==, NULL); 3432 3433 if (need_crypt) { 3434 ncache = hdr_full_crypt_cache; 3435 ocache = hdr_full_cache; 3436 } else { 3437 ncache = hdr_full_cache; 3438 ocache = hdr_full_crypt_cache; 3439 } 3440 3441 nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE); 3442 3443 /* 3444 * Copy all members that aren't locks or condvars to the new header. 3445 * No lists are pointing to us (as we asserted above), so we don't 3446 * need to worry about the list nodes. 3447 */ 3448 nhdr->b_dva = hdr->b_dva; 3449 nhdr->b_birth = hdr->b_birth; 3450 nhdr->b_type = hdr->b_type; 3451 nhdr->b_flags = hdr->b_flags; 3452 nhdr->b_psize = hdr->b_psize; 3453 nhdr->b_lsize = hdr->b_lsize; 3454 nhdr->b_spa = hdr->b_spa; 3455 nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum; 3456 nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt; 3457 nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap; 3458 nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state; 3459 nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access; 3460 nhdr->b_l1hdr.b_mru_hits = hdr->b_l1hdr.b_mru_hits; 3461 nhdr->b_l1hdr.b_mru_ghost_hits = hdr->b_l1hdr.b_mru_ghost_hits; 3462 nhdr->b_l1hdr.b_mfu_hits = hdr->b_l1hdr.b_mfu_hits; 3463 nhdr->b_l1hdr.b_mfu_ghost_hits = hdr->b_l1hdr.b_mfu_ghost_hits; 3464 nhdr->b_l1hdr.b_l2_hits = hdr->b_l1hdr.b_l2_hits; 3465 nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb; 3466 nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd; 3467 3468 /* 3469 * This zfs_refcount_add() exists only to ensure that the individual 3470 * arc buffers always point to a header that is referenced, avoiding 3471 * a small race condition that could trigger ASSERTs. 3472 */ 3473 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG); 3474 nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf; 3475 for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) { 3476 mutex_enter(&buf->b_evict_lock); 3477 buf->b_hdr = nhdr; 3478 mutex_exit(&buf->b_evict_lock); 3479 } 3480 3481 zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt); 3482 (void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG); 3483 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3484 3485 if (need_crypt) { 3486 arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED); 3487 } else { 3488 arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED); 3489 } 3490 3491 /* unset all members of the original hdr */ 3492 bzero(&hdr->b_dva, sizeof (dva_t)); 3493 hdr->b_birth = 0; 3494 hdr->b_type = ARC_BUFC_INVALID; 3495 hdr->b_flags = 0; 3496 hdr->b_psize = 0; 3497 hdr->b_lsize = 0; 3498 hdr->b_spa = 0; 3499 hdr->b_l1hdr.b_freeze_cksum = NULL; 3500 hdr->b_l1hdr.b_buf = NULL; 3501 hdr->b_l1hdr.b_bufcnt = 0; 3502 hdr->b_l1hdr.b_byteswap = 0; 3503 hdr->b_l1hdr.b_state = NULL; 3504 hdr->b_l1hdr.b_arc_access = 0; 3505 hdr->b_l1hdr.b_mru_hits = 0; 3506 hdr->b_l1hdr.b_mru_ghost_hits = 0; 3507 hdr->b_l1hdr.b_mfu_hits = 0; 3508 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 3509 hdr->b_l1hdr.b_l2_hits = 0; 3510 hdr->b_l1hdr.b_acb = NULL; 3511 hdr->b_l1hdr.b_pabd = NULL; 3512 3513 if (ocache == hdr_full_crypt_cache) { 3514 ASSERT(!HDR_HAS_RABD(hdr)); 3515 hdr->b_crypt_hdr.b_ot = DMU_OT_NONE; 3516 hdr->b_crypt_hdr.b_ebufcnt = 0; 3517 hdr->b_crypt_hdr.b_dsobj = 0; 3518 bzero(hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3519 bzero(hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3520 bzero(hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3521 } 3522 3523 buf_discard_identity(hdr); 3524 kmem_cache_free(ocache, hdr); 3525 3526 return (nhdr); 3527 } 3528 3529 /* 3530 * This function is used by the send / receive code to convert a newly 3531 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It 3532 * is also used to allow the root objset block to be updated without altering 3533 * its embedded MACs. Both block types will always be uncompressed so we do not 3534 * have to worry about compression type or psize. 3535 */ 3536 void 3537 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder, 3538 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv, 3539 const uint8_t *mac) 3540 { 3541 arc_buf_hdr_t *hdr = buf->b_hdr; 3542 3543 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET); 3544 ASSERT(HDR_HAS_L1HDR(hdr)); 3545 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3546 3547 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED); 3548 if (!HDR_PROTECTED(hdr)) 3549 hdr = arc_hdr_realloc_crypt(hdr, B_TRUE); 3550 hdr->b_crypt_hdr.b_dsobj = dsobj; 3551 hdr->b_crypt_hdr.b_ot = ot; 3552 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3553 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3554 if (!arc_hdr_has_uncompressed_buf(hdr)) 3555 arc_cksum_free(hdr); 3556 3557 if (salt != NULL) 3558 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3559 if (iv != NULL) 3560 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3561 if (mac != NULL) 3562 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3563 } 3564 3565 /* 3566 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. 3567 * The buf is returned thawed since we expect the consumer to modify it. 3568 */ 3569 arc_buf_t * 3570 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size) 3571 { 3572 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, 3573 B_FALSE, ZIO_COMPRESS_OFF, 0, type, B_FALSE); 3574 3575 arc_buf_t *buf = NULL; 3576 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE, 3577 B_FALSE, B_FALSE, &buf)); 3578 arc_buf_thaw(buf); 3579 3580 return (buf); 3581 } 3582 3583 /* 3584 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this 3585 * for bufs containing metadata. 3586 */ 3587 arc_buf_t * 3588 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize, 3589 enum zio_compress compression_type, uint8_t complevel) 3590 { 3591 ASSERT3U(lsize, >, 0); 3592 ASSERT3U(lsize, >=, psize); 3593 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF); 3594 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3595 3596 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 3597 B_FALSE, compression_type, complevel, ARC_BUFC_DATA, B_FALSE); 3598 3599 arc_buf_t *buf = NULL; 3600 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, 3601 B_TRUE, B_FALSE, B_FALSE, &buf)); 3602 arc_buf_thaw(buf); 3603 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3604 3605 if (!arc_buf_is_shared(buf)) { 3606 /* 3607 * To ensure that the hdr has the correct data in it if we call 3608 * arc_untransform() on this buf before it's been written to 3609 * disk, it's easiest if we just set up sharing between the 3610 * buf and the hdr. 3611 */ 3612 arc_hdr_free_abd(hdr, B_FALSE); 3613 arc_share_buf(hdr, buf); 3614 } 3615 3616 return (buf); 3617 } 3618 3619 arc_buf_t * 3620 arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder, 3621 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 3622 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 3623 enum zio_compress compression_type, uint8_t complevel) 3624 { 3625 arc_buf_hdr_t *hdr; 3626 arc_buf_t *buf; 3627 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ? 3628 ARC_BUFC_METADATA : ARC_BUFC_DATA; 3629 3630 ASSERT3U(lsize, >, 0); 3631 ASSERT3U(lsize, >=, psize); 3632 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF); 3633 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3634 3635 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE, 3636 compression_type, complevel, type, B_TRUE); 3637 3638 hdr->b_crypt_hdr.b_dsobj = dsobj; 3639 hdr->b_crypt_hdr.b_ot = ot; 3640 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3641 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3642 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3643 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3644 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3645 3646 /* 3647 * This buffer will be considered encrypted even if the ot is not an 3648 * encrypted type. It will become authenticated instead in 3649 * arc_write_ready(). 3650 */ 3651 buf = NULL; 3652 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE, 3653 B_FALSE, B_FALSE, &buf)); 3654 arc_buf_thaw(buf); 3655 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3656 3657 return (buf); 3658 } 3659 3660 static void 3661 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 3662 boolean_t state_only) 3663 { 3664 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3665 l2arc_dev_t *dev = l2hdr->b_dev; 3666 uint64_t lsize = HDR_GET_LSIZE(hdr); 3667 uint64_t psize = HDR_GET_PSIZE(hdr); 3668 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3669 arc_buf_contents_t type = hdr->b_type; 3670 int64_t lsize_s; 3671 int64_t psize_s; 3672 int64_t asize_s; 3673 3674 if (incr) { 3675 lsize_s = lsize; 3676 psize_s = psize; 3677 asize_s = asize; 3678 } else { 3679 lsize_s = -lsize; 3680 psize_s = -psize; 3681 asize_s = -asize; 3682 } 3683 3684 /* If the buffer is a prefetch, count it as such. */ 3685 if (HDR_PREFETCH(hdr)) { 3686 ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s); 3687 } else { 3688 /* 3689 * We use the value stored in the L2 header upon initial 3690 * caching in L2ARC. This value will be updated in case 3691 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC 3692 * metadata (log entry) cannot currently be updated. Having 3693 * the ARC state in the L2 header solves the problem of a 3694 * possibly absent L1 header (apparent in buffers restored 3695 * from persistent L2ARC). 3696 */ 3697 switch (hdr->b_l2hdr.b_arcs_state) { 3698 case ARC_STATE_MRU_GHOST: 3699 case ARC_STATE_MRU: 3700 ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s); 3701 break; 3702 case ARC_STATE_MFU_GHOST: 3703 case ARC_STATE_MFU: 3704 ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s); 3705 break; 3706 default: 3707 break; 3708 } 3709 } 3710 3711 if (state_only) 3712 return; 3713 3714 ARCSTAT_INCR(arcstat_l2_psize, psize_s); 3715 ARCSTAT_INCR(arcstat_l2_lsize, lsize_s); 3716 3717 switch (type) { 3718 case ARC_BUFC_DATA: 3719 ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s); 3720 break; 3721 case ARC_BUFC_METADATA: 3722 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s); 3723 break; 3724 default: 3725 break; 3726 } 3727 } 3728 3729 3730 static void 3731 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 3732 { 3733 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3734 l2arc_dev_t *dev = l2hdr->b_dev; 3735 uint64_t psize = HDR_GET_PSIZE(hdr); 3736 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3737 3738 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 3739 ASSERT(HDR_HAS_L2HDR(hdr)); 3740 3741 list_remove(&dev->l2ad_buflist, hdr); 3742 3743 l2arc_hdr_arcstats_decrement(hdr); 3744 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); 3745 3746 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), 3747 hdr); 3748 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 3749 } 3750 3751 static void 3752 arc_hdr_destroy(arc_buf_hdr_t *hdr) 3753 { 3754 if (HDR_HAS_L1HDR(hdr)) { 3755 ASSERT(hdr->b_l1hdr.b_buf == NULL || 3756 hdr->b_l1hdr.b_bufcnt > 0); 3757 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3758 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3759 } 3760 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3761 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 3762 3763 if (HDR_HAS_L2HDR(hdr)) { 3764 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3765 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 3766 3767 if (!buflist_held) 3768 mutex_enter(&dev->l2ad_mtx); 3769 3770 /* 3771 * Even though we checked this conditional above, we 3772 * need to check this again now that we have the 3773 * l2ad_mtx. This is because we could be racing with 3774 * another thread calling l2arc_evict() which might have 3775 * destroyed this header's L2 portion as we were waiting 3776 * to acquire the l2ad_mtx. If that happens, we don't 3777 * want to re-destroy the header's L2 portion. 3778 */ 3779 if (HDR_HAS_L2HDR(hdr)) 3780 arc_hdr_l2hdr_destroy(hdr); 3781 3782 if (!buflist_held) 3783 mutex_exit(&dev->l2ad_mtx); 3784 } 3785 3786 /* 3787 * The header's identify can only be safely discarded once it is no 3788 * longer discoverable. This requires removing it from the hash table 3789 * and the l2arc header list. After this point the hash lock can not 3790 * be used to protect the header. 3791 */ 3792 if (!HDR_EMPTY(hdr)) 3793 buf_discard_identity(hdr); 3794 3795 if (HDR_HAS_L1HDR(hdr)) { 3796 arc_cksum_free(hdr); 3797 3798 while (hdr->b_l1hdr.b_buf != NULL) 3799 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf); 3800 3801 if (hdr->b_l1hdr.b_pabd != NULL) 3802 arc_hdr_free_abd(hdr, B_FALSE); 3803 3804 if (HDR_HAS_RABD(hdr)) 3805 arc_hdr_free_abd(hdr, B_TRUE); 3806 } 3807 3808 ASSERT3P(hdr->b_hash_next, ==, NULL); 3809 if (HDR_HAS_L1HDR(hdr)) { 3810 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3811 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 3812 3813 if (!HDR_PROTECTED(hdr)) { 3814 kmem_cache_free(hdr_full_cache, hdr); 3815 } else { 3816 kmem_cache_free(hdr_full_crypt_cache, hdr); 3817 } 3818 } else { 3819 kmem_cache_free(hdr_l2only_cache, hdr); 3820 } 3821 } 3822 3823 void 3824 arc_buf_destroy(arc_buf_t *buf, void* tag) 3825 { 3826 arc_buf_hdr_t *hdr = buf->b_hdr; 3827 3828 if (hdr->b_l1hdr.b_state == arc_anon) { 3829 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 3830 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3831 VERIFY0(remove_reference(hdr, NULL, tag)); 3832 arc_hdr_destroy(hdr); 3833 return; 3834 } 3835 3836 kmutex_t *hash_lock = HDR_LOCK(hdr); 3837 mutex_enter(hash_lock); 3838 3839 ASSERT3P(hdr, ==, buf->b_hdr); 3840 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3841 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3842 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); 3843 ASSERT3P(buf->b_data, !=, NULL); 3844 3845 (void) remove_reference(hdr, hash_lock, tag); 3846 arc_buf_destroy_impl(buf); 3847 mutex_exit(hash_lock); 3848 } 3849 3850 /* 3851 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 3852 * state of the header is dependent on its state prior to entering this 3853 * function. The following transitions are possible: 3854 * 3855 * - arc_mru -> arc_mru_ghost 3856 * - arc_mfu -> arc_mfu_ghost 3857 * - arc_mru_ghost -> arc_l2c_only 3858 * - arc_mru_ghost -> deleted 3859 * - arc_mfu_ghost -> arc_l2c_only 3860 * - arc_mfu_ghost -> deleted 3861 * 3862 * Return total size of evicted data buffers for eviction progress tracking. 3863 * When evicting from ghost states return logical buffer size to make eviction 3864 * progress at the same (or at least comparable) rate as from non-ghost states. 3865 * 3866 * Return *real_evicted for actual ARC size reduction to wake up threads 3867 * waiting for it. For non-ghost states it includes size of evicted data 3868 * buffers (the headers are not freed there). For ghost states it includes 3869 * only the evicted headers size. 3870 */ 3871 static int64_t 3872 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, uint64_t *real_evicted) 3873 { 3874 arc_state_t *evicted_state, *state; 3875 int64_t bytes_evicted = 0; 3876 int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ? 3877 arc_min_prescient_prefetch_ms : arc_min_prefetch_ms; 3878 3879 ASSERT(MUTEX_HELD(hash_lock)); 3880 ASSERT(HDR_HAS_L1HDR(hdr)); 3881 3882 *real_evicted = 0; 3883 state = hdr->b_l1hdr.b_state; 3884 if (GHOST_STATE(state)) { 3885 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3886 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3887 3888 /* 3889 * l2arc_write_buffers() relies on a header's L1 portion 3890 * (i.e. its b_pabd field) during it's write phase. 3891 * Thus, we cannot push a header onto the arc_l2c_only 3892 * state (removing its L1 piece) until the header is 3893 * done being written to the l2arc. 3894 */ 3895 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 3896 ARCSTAT_BUMP(arcstat_evict_l2_skip); 3897 return (bytes_evicted); 3898 } 3899 3900 ARCSTAT_BUMP(arcstat_deleted); 3901 bytes_evicted += HDR_GET_LSIZE(hdr); 3902 3903 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 3904 3905 if (HDR_HAS_L2HDR(hdr)) { 3906 ASSERT(hdr->b_l1hdr.b_pabd == NULL); 3907 ASSERT(!HDR_HAS_RABD(hdr)); 3908 /* 3909 * This buffer is cached on the 2nd Level ARC; 3910 * don't destroy the header. 3911 */ 3912 arc_change_state(arc_l2c_only, hdr, hash_lock); 3913 /* 3914 * dropping from L1+L2 cached to L2-only, 3915 * realloc to remove the L1 header. 3916 */ 3917 hdr = arc_hdr_realloc(hdr, hdr_full_cache, 3918 hdr_l2only_cache); 3919 *real_evicted += HDR_FULL_SIZE - HDR_L2ONLY_SIZE; 3920 } else { 3921 arc_change_state(arc_anon, hdr, hash_lock); 3922 arc_hdr_destroy(hdr); 3923 *real_evicted += HDR_FULL_SIZE; 3924 } 3925 return (bytes_evicted); 3926 } 3927 3928 ASSERT(state == arc_mru || state == arc_mfu); 3929 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3930 3931 /* prefetch buffers have a minimum lifespan */ 3932 if (HDR_IO_IN_PROGRESS(hdr) || 3933 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 3934 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < 3935 MSEC_TO_TICK(min_lifetime))) { 3936 ARCSTAT_BUMP(arcstat_evict_skip); 3937 return (bytes_evicted); 3938 } 3939 3940 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3941 while (hdr->b_l1hdr.b_buf) { 3942 arc_buf_t *buf = hdr->b_l1hdr.b_buf; 3943 if (!mutex_tryenter(&buf->b_evict_lock)) { 3944 ARCSTAT_BUMP(arcstat_mutex_miss); 3945 break; 3946 } 3947 if (buf->b_data != NULL) { 3948 bytes_evicted += HDR_GET_LSIZE(hdr); 3949 *real_evicted += HDR_GET_LSIZE(hdr); 3950 } 3951 mutex_exit(&buf->b_evict_lock); 3952 arc_buf_destroy_impl(buf); 3953 } 3954 3955 if (HDR_HAS_L2HDR(hdr)) { 3956 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); 3957 } else { 3958 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 3959 ARCSTAT_INCR(arcstat_evict_l2_eligible, 3960 HDR_GET_LSIZE(hdr)); 3961 3962 switch (state->arcs_state) { 3963 case ARC_STATE_MRU: 3964 ARCSTAT_INCR( 3965 arcstat_evict_l2_eligible_mru, 3966 HDR_GET_LSIZE(hdr)); 3967 break; 3968 case ARC_STATE_MFU: 3969 ARCSTAT_INCR( 3970 arcstat_evict_l2_eligible_mfu, 3971 HDR_GET_LSIZE(hdr)); 3972 break; 3973 default: 3974 break; 3975 } 3976 } else { 3977 ARCSTAT_INCR(arcstat_evict_l2_ineligible, 3978 HDR_GET_LSIZE(hdr)); 3979 } 3980 } 3981 3982 if (hdr->b_l1hdr.b_bufcnt == 0) { 3983 arc_cksum_free(hdr); 3984 3985 bytes_evicted += arc_hdr_size(hdr); 3986 *real_evicted += arc_hdr_size(hdr); 3987 3988 /* 3989 * If this hdr is being evicted and has a compressed 3990 * buffer then we discard it here before we change states. 3991 * This ensures that the accounting is updated correctly 3992 * in arc_free_data_impl(). 3993 */ 3994 if (hdr->b_l1hdr.b_pabd != NULL) 3995 arc_hdr_free_abd(hdr, B_FALSE); 3996 3997 if (HDR_HAS_RABD(hdr)) 3998 arc_hdr_free_abd(hdr, B_TRUE); 3999 4000 arc_change_state(evicted_state, hdr, hash_lock); 4001 ASSERT(HDR_IN_HASH_TABLE(hdr)); 4002 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 4003 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 4004 } 4005 4006 return (bytes_evicted); 4007 } 4008 4009 static void 4010 arc_set_need_free(void) 4011 { 4012 ASSERT(MUTEX_HELD(&arc_evict_lock)); 4013 int64_t remaining = arc_free_memory() - arc_sys_free / 2; 4014 arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters); 4015 if (aw == NULL) { 4016 arc_need_free = MAX(-remaining, 0); 4017 } else { 4018 arc_need_free = 4019 MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count)); 4020 } 4021 } 4022 4023 static uint64_t 4024 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 4025 uint64_t spa, uint64_t bytes) 4026 { 4027 multilist_sublist_t *mls; 4028 uint64_t bytes_evicted = 0, real_evicted = 0; 4029 arc_buf_hdr_t *hdr; 4030 kmutex_t *hash_lock; 4031 int evict_count = zfs_arc_evict_batch_limit; 4032 4033 ASSERT3P(marker, !=, NULL); 4034 4035 mls = multilist_sublist_lock(ml, idx); 4036 4037 for (hdr = multilist_sublist_prev(mls, marker); likely(hdr != NULL); 4038 hdr = multilist_sublist_prev(mls, marker)) { 4039 if ((evict_count <= 0) || (bytes_evicted >= bytes)) 4040 break; 4041 4042 /* 4043 * To keep our iteration location, move the marker 4044 * forward. Since we're not holding hdr's hash lock, we 4045 * must be very careful and not remove 'hdr' from the 4046 * sublist. Otherwise, other consumers might mistake the 4047 * 'hdr' as not being on a sublist when they call the 4048 * multilist_link_active() function (they all rely on 4049 * the hash lock protecting concurrent insertions and 4050 * removals). multilist_sublist_move_forward() was 4051 * specifically implemented to ensure this is the case 4052 * (only 'marker' will be removed and re-inserted). 4053 */ 4054 multilist_sublist_move_forward(mls, marker); 4055 4056 /* 4057 * The only case where the b_spa field should ever be 4058 * zero, is the marker headers inserted by 4059 * arc_evict_state(). It's possible for multiple threads 4060 * to be calling arc_evict_state() concurrently (e.g. 4061 * dsl_pool_close() and zio_inject_fault()), so we must 4062 * skip any markers we see from these other threads. 4063 */ 4064 if (hdr->b_spa == 0) 4065 continue; 4066 4067 /* we're only interested in evicting buffers of a certain spa */ 4068 if (spa != 0 && hdr->b_spa != spa) { 4069 ARCSTAT_BUMP(arcstat_evict_skip); 4070 continue; 4071 } 4072 4073 hash_lock = HDR_LOCK(hdr); 4074 4075 /* 4076 * We aren't calling this function from any code path 4077 * that would already be holding a hash lock, so we're 4078 * asserting on this assumption to be defensive in case 4079 * this ever changes. Without this check, it would be 4080 * possible to incorrectly increment arcstat_mutex_miss 4081 * below (e.g. if the code changed such that we called 4082 * this function with a hash lock held). 4083 */ 4084 ASSERT(!MUTEX_HELD(hash_lock)); 4085 4086 if (mutex_tryenter(hash_lock)) { 4087 uint64_t revicted; 4088 uint64_t evicted = arc_evict_hdr(hdr, hash_lock, 4089 &revicted); 4090 mutex_exit(hash_lock); 4091 4092 bytes_evicted += evicted; 4093 real_evicted += revicted; 4094 4095 /* 4096 * If evicted is zero, arc_evict_hdr() must have 4097 * decided to skip this header, don't increment 4098 * evict_count in this case. 4099 */ 4100 if (evicted != 0) 4101 evict_count--; 4102 4103 } else { 4104 ARCSTAT_BUMP(arcstat_mutex_miss); 4105 } 4106 } 4107 4108 multilist_sublist_unlock(mls); 4109 4110 /* 4111 * Increment the count of evicted bytes, and wake up any threads that 4112 * are waiting for the count to reach this value. Since the list is 4113 * ordered by ascending aew_count, we pop off the beginning of the 4114 * list until we reach the end, or a waiter that's past the current 4115 * "count". Doing this outside the loop reduces the number of times 4116 * we need to acquire the global arc_evict_lock. 4117 * 4118 * Only wake when there's sufficient free memory in the system 4119 * (specifically, arc_sys_free/2, which by default is a bit more than 4120 * 1/64th of RAM). See the comments in arc_wait_for_eviction(). 4121 */ 4122 mutex_enter(&arc_evict_lock); 4123 arc_evict_count += real_evicted; 4124 4125 if (arc_free_memory() > arc_sys_free / 2) { 4126 arc_evict_waiter_t *aw; 4127 while ((aw = list_head(&arc_evict_waiters)) != NULL && 4128 aw->aew_count <= arc_evict_count) { 4129 list_remove(&arc_evict_waiters, aw); 4130 cv_broadcast(&aw->aew_cv); 4131 } 4132 } 4133 arc_set_need_free(); 4134 mutex_exit(&arc_evict_lock); 4135 4136 /* 4137 * If the ARC size is reduced from arc_c_max to arc_c_min (especially 4138 * if the average cached block is small), eviction can be on-CPU for 4139 * many seconds. To ensure that other threads that may be bound to 4140 * this CPU are able to make progress, make a voluntary preemption 4141 * call here. 4142 */ 4143 cond_resched(); 4144 4145 return (bytes_evicted); 4146 } 4147 4148 /* 4149 * Evict buffers from the given arc state, until we've removed the 4150 * specified number of bytes. Move the removed buffers to the 4151 * appropriate evict state. 4152 * 4153 * This function makes a "best effort". It skips over any buffers 4154 * it can't get a hash_lock on, and so, may not catch all candidates. 4155 * It may also return without evicting as much space as requested. 4156 * 4157 * If bytes is specified using the special value ARC_EVICT_ALL, this 4158 * will evict all available (i.e. unlocked and evictable) buffers from 4159 * the given arc state; which is used by arc_flush(). 4160 */ 4161 static uint64_t 4162 arc_evict_state(arc_state_t *state, uint64_t spa, uint64_t bytes, 4163 arc_buf_contents_t type) 4164 { 4165 uint64_t total_evicted = 0; 4166 multilist_t *ml = &state->arcs_list[type]; 4167 int num_sublists; 4168 arc_buf_hdr_t **markers; 4169 4170 num_sublists = multilist_get_num_sublists(ml); 4171 4172 /* 4173 * If we've tried to evict from each sublist, made some 4174 * progress, but still have not hit the target number of bytes 4175 * to evict, we want to keep trying. The markers allow us to 4176 * pick up where we left off for each individual sublist, rather 4177 * than starting from the tail each time. 4178 */ 4179 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP); 4180 for (int i = 0; i < num_sublists; i++) { 4181 multilist_sublist_t *mls; 4182 4183 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 4184 4185 /* 4186 * A b_spa of 0 is used to indicate that this header is 4187 * a marker. This fact is used in arc_evict_type() and 4188 * arc_evict_state_impl(). 4189 */ 4190 markers[i]->b_spa = 0; 4191 4192 mls = multilist_sublist_lock(ml, i); 4193 multilist_sublist_insert_tail(mls, markers[i]); 4194 multilist_sublist_unlock(mls); 4195 } 4196 4197 /* 4198 * While we haven't hit our target number of bytes to evict, or 4199 * we're evicting all available buffers. 4200 */ 4201 while (total_evicted < bytes) { 4202 int sublist_idx = multilist_get_random_index(ml); 4203 uint64_t scan_evicted = 0; 4204 4205 /* 4206 * Try to reduce pinned dnodes with a floor of arc_dnode_limit. 4207 * Request that 10% of the LRUs be scanned by the superblock 4208 * shrinker. 4209 */ 4210 if (type == ARC_BUFC_DATA && aggsum_compare( 4211 &arc_sums.arcstat_dnode_size, arc_dnode_size_limit) > 0) { 4212 arc_prune_async((aggsum_upper_bound( 4213 &arc_sums.arcstat_dnode_size) - 4214 arc_dnode_size_limit) / sizeof (dnode_t) / 4215 zfs_arc_dnode_reduce_percent); 4216 } 4217 4218 /* 4219 * Start eviction using a randomly selected sublist, 4220 * this is to try and evenly balance eviction across all 4221 * sublists. Always starting at the same sublist 4222 * (e.g. index 0) would cause evictions to favor certain 4223 * sublists over others. 4224 */ 4225 for (int i = 0; i < num_sublists; i++) { 4226 uint64_t bytes_remaining; 4227 uint64_t bytes_evicted; 4228 4229 if (total_evicted < bytes) 4230 bytes_remaining = bytes - total_evicted; 4231 else 4232 break; 4233 4234 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 4235 markers[sublist_idx], spa, bytes_remaining); 4236 4237 scan_evicted += bytes_evicted; 4238 total_evicted += bytes_evicted; 4239 4240 /* we've reached the end, wrap to the beginning */ 4241 if (++sublist_idx >= num_sublists) 4242 sublist_idx = 0; 4243 } 4244 4245 /* 4246 * If we didn't evict anything during this scan, we have 4247 * no reason to believe we'll evict more during another 4248 * scan, so break the loop. 4249 */ 4250 if (scan_evicted == 0) { 4251 /* This isn't possible, let's make that obvious */ 4252 ASSERT3S(bytes, !=, 0); 4253 4254 /* 4255 * When bytes is ARC_EVICT_ALL, the only way to 4256 * break the loop is when scan_evicted is zero. 4257 * In that case, we actually have evicted enough, 4258 * so we don't want to increment the kstat. 4259 */ 4260 if (bytes != ARC_EVICT_ALL) { 4261 ASSERT3S(total_evicted, <, bytes); 4262 ARCSTAT_BUMP(arcstat_evict_not_enough); 4263 } 4264 4265 break; 4266 } 4267 } 4268 4269 for (int i = 0; i < num_sublists; i++) { 4270 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 4271 multilist_sublist_remove(mls, markers[i]); 4272 multilist_sublist_unlock(mls); 4273 4274 kmem_cache_free(hdr_full_cache, markers[i]); 4275 } 4276 kmem_free(markers, sizeof (*markers) * num_sublists); 4277 4278 return (total_evicted); 4279 } 4280 4281 /* 4282 * Flush all "evictable" data of the given type from the arc state 4283 * specified. This will not evict any "active" buffers (i.e. referenced). 4284 * 4285 * When 'retry' is set to B_FALSE, the function will make a single pass 4286 * over the state and evict any buffers that it can. Since it doesn't 4287 * continually retry the eviction, it might end up leaving some buffers 4288 * in the ARC due to lock misses. 4289 * 4290 * When 'retry' is set to B_TRUE, the function will continually retry the 4291 * eviction until *all* evictable buffers have been removed from the 4292 * state. As a result, if concurrent insertions into the state are 4293 * allowed (e.g. if the ARC isn't shutting down), this function might 4294 * wind up in an infinite loop, continually trying to evict buffers. 4295 */ 4296 static uint64_t 4297 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 4298 boolean_t retry) 4299 { 4300 uint64_t evicted = 0; 4301 4302 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) { 4303 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type); 4304 4305 if (!retry) 4306 break; 4307 } 4308 4309 return (evicted); 4310 } 4311 4312 /* 4313 * Evict the specified number of bytes from the state specified, 4314 * restricting eviction to the spa and type given. This function 4315 * prevents us from trying to evict more from a state's list than 4316 * is "evictable", and to skip evicting altogether when passed a 4317 * negative value for "bytes". In contrast, arc_evict_state() will 4318 * evict everything it can, when passed a negative value for "bytes". 4319 */ 4320 static uint64_t 4321 arc_evict_impl(arc_state_t *state, uint64_t spa, int64_t bytes, 4322 arc_buf_contents_t type) 4323 { 4324 uint64_t delta; 4325 4326 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) { 4327 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]), 4328 bytes); 4329 return (arc_evict_state(state, spa, delta, type)); 4330 } 4331 4332 return (0); 4333 } 4334 4335 /* 4336 * The goal of this function is to evict enough meta data buffers from the 4337 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly 4338 * more complicated than it appears because it is common for data buffers 4339 * to have holds on meta data buffers. In addition, dnode meta data buffers 4340 * will be held by the dnodes in the block preventing them from being freed. 4341 * This means we can't simply traverse the ARC and expect to always find 4342 * enough unheld meta data buffer to release. 4343 * 4344 * Therefore, this function has been updated to make alternating passes 4345 * over the ARC releasing data buffers and then newly unheld meta data 4346 * buffers. This ensures forward progress is maintained and meta_used 4347 * will decrease. Normally this is sufficient, but if required the ARC 4348 * will call the registered prune callbacks causing dentry and inodes to 4349 * be dropped from the VFS cache. This will make dnode meta data buffers 4350 * available for reclaim. 4351 */ 4352 static uint64_t 4353 arc_evict_meta_balanced(uint64_t meta_used) 4354 { 4355 int64_t delta, prune = 0, adjustmnt; 4356 uint64_t total_evicted = 0; 4357 arc_buf_contents_t type = ARC_BUFC_DATA; 4358 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0); 4359 4360 restart: 4361 /* 4362 * This slightly differs than the way we evict from the mru in 4363 * arc_evict because we don't have a "target" value (i.e. no 4364 * "meta" arc_p). As a result, I think we can completely 4365 * cannibalize the metadata in the MRU before we evict the 4366 * metadata from the MFU. I think we probably need to implement a 4367 * "metadata arc_p" value to do this properly. 4368 */ 4369 adjustmnt = meta_used - arc_meta_limit; 4370 4371 if (adjustmnt > 0 && 4372 zfs_refcount_count(&arc_mru->arcs_esize[type]) > 0) { 4373 delta = MIN(zfs_refcount_count(&arc_mru->arcs_esize[type]), 4374 adjustmnt); 4375 total_evicted += arc_evict_impl(arc_mru, 0, delta, type); 4376 adjustmnt -= delta; 4377 } 4378 4379 /* 4380 * We can't afford to recalculate adjustmnt here. If we do, 4381 * new metadata buffers can sneak into the MRU or ANON lists, 4382 * thus penalize the MFU metadata. Although the fudge factor is 4383 * small, it has been empirically shown to be significant for 4384 * certain workloads (e.g. creating many empty directories). As 4385 * such, we use the original calculation for adjustmnt, and 4386 * simply decrement the amount of data evicted from the MRU. 4387 */ 4388 4389 if (adjustmnt > 0 && 4390 zfs_refcount_count(&arc_mfu->arcs_esize[type]) > 0) { 4391 delta = MIN(zfs_refcount_count(&arc_mfu->arcs_esize[type]), 4392 adjustmnt); 4393 total_evicted += arc_evict_impl(arc_mfu, 0, delta, type); 4394 } 4395 4396 adjustmnt = meta_used - arc_meta_limit; 4397 4398 if (adjustmnt > 0 && 4399 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) { 4400 delta = MIN(adjustmnt, 4401 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type])); 4402 total_evicted += arc_evict_impl(arc_mru_ghost, 0, delta, type); 4403 adjustmnt -= delta; 4404 } 4405 4406 if (adjustmnt > 0 && 4407 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) { 4408 delta = MIN(adjustmnt, 4409 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type])); 4410 total_evicted += arc_evict_impl(arc_mfu_ghost, 0, delta, type); 4411 } 4412 4413 /* 4414 * If after attempting to make the requested adjustment to the ARC 4415 * the meta limit is still being exceeded then request that the 4416 * higher layers drop some cached objects which have holds on ARC 4417 * meta buffers. Requests to the upper layers will be made with 4418 * increasingly large scan sizes until the ARC is below the limit. 4419 */ 4420 if (meta_used > arc_meta_limit) { 4421 if (type == ARC_BUFC_DATA) { 4422 type = ARC_BUFC_METADATA; 4423 } else { 4424 type = ARC_BUFC_DATA; 4425 4426 if (zfs_arc_meta_prune) { 4427 prune += zfs_arc_meta_prune; 4428 arc_prune_async(prune); 4429 } 4430 } 4431 4432 if (restarts > 0) { 4433 restarts--; 4434 goto restart; 4435 } 4436 } 4437 return (total_evicted); 4438 } 4439 4440 /* 4441 * Evict metadata buffers from the cache, such that arcstat_meta_used is 4442 * capped by the arc_meta_limit tunable. 4443 */ 4444 static uint64_t 4445 arc_evict_meta_only(uint64_t meta_used) 4446 { 4447 uint64_t total_evicted = 0; 4448 int64_t target; 4449 4450 /* 4451 * If we're over the meta limit, we want to evict enough 4452 * metadata to get back under the meta limit. We don't want to 4453 * evict so much that we drop the MRU below arc_p, though. If 4454 * we're over the meta limit more than we're over arc_p, we 4455 * evict some from the MRU here, and some from the MFU below. 4456 */ 4457 target = MIN((int64_t)(meta_used - arc_meta_limit), 4458 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4459 zfs_refcount_count(&arc_mru->arcs_size) - arc_p)); 4460 4461 total_evicted += arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4462 4463 /* 4464 * Similar to the above, we want to evict enough bytes to get us 4465 * below the meta limit, but not so much as to drop us below the 4466 * space allotted to the MFU (which is defined as arc_c - arc_p). 4467 */ 4468 target = MIN((int64_t)(meta_used - arc_meta_limit), 4469 (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) - 4470 (arc_c - arc_p))); 4471 4472 total_evicted += arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4473 4474 return (total_evicted); 4475 } 4476 4477 static uint64_t 4478 arc_evict_meta(uint64_t meta_used) 4479 { 4480 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY) 4481 return (arc_evict_meta_only(meta_used)); 4482 else 4483 return (arc_evict_meta_balanced(meta_used)); 4484 } 4485 4486 /* 4487 * Return the type of the oldest buffer in the given arc state 4488 * 4489 * This function will select a random sublist of type ARC_BUFC_DATA and 4490 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist 4491 * is compared, and the type which contains the "older" buffer will be 4492 * returned. 4493 */ 4494 static arc_buf_contents_t 4495 arc_evict_type(arc_state_t *state) 4496 { 4497 multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA]; 4498 multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA]; 4499 int data_idx = multilist_get_random_index(data_ml); 4500 int meta_idx = multilist_get_random_index(meta_ml); 4501 multilist_sublist_t *data_mls; 4502 multilist_sublist_t *meta_mls; 4503 arc_buf_contents_t type; 4504 arc_buf_hdr_t *data_hdr; 4505 arc_buf_hdr_t *meta_hdr; 4506 4507 /* 4508 * We keep the sublist lock until we're finished, to prevent 4509 * the headers from being destroyed via arc_evict_state(). 4510 */ 4511 data_mls = multilist_sublist_lock(data_ml, data_idx); 4512 meta_mls = multilist_sublist_lock(meta_ml, meta_idx); 4513 4514 /* 4515 * These two loops are to ensure we skip any markers that 4516 * might be at the tail of the lists due to arc_evict_state(). 4517 */ 4518 4519 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL; 4520 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) { 4521 if (data_hdr->b_spa != 0) 4522 break; 4523 } 4524 4525 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL; 4526 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) { 4527 if (meta_hdr->b_spa != 0) 4528 break; 4529 } 4530 4531 if (data_hdr == NULL && meta_hdr == NULL) { 4532 type = ARC_BUFC_DATA; 4533 } else if (data_hdr == NULL) { 4534 ASSERT3P(meta_hdr, !=, NULL); 4535 type = ARC_BUFC_METADATA; 4536 } else if (meta_hdr == NULL) { 4537 ASSERT3P(data_hdr, !=, NULL); 4538 type = ARC_BUFC_DATA; 4539 } else { 4540 ASSERT3P(data_hdr, !=, NULL); 4541 ASSERT3P(meta_hdr, !=, NULL); 4542 4543 /* The headers can't be on the sublist without an L1 header */ 4544 ASSERT(HDR_HAS_L1HDR(data_hdr)); 4545 ASSERT(HDR_HAS_L1HDR(meta_hdr)); 4546 4547 if (data_hdr->b_l1hdr.b_arc_access < 4548 meta_hdr->b_l1hdr.b_arc_access) { 4549 type = ARC_BUFC_DATA; 4550 } else { 4551 type = ARC_BUFC_METADATA; 4552 } 4553 } 4554 4555 multilist_sublist_unlock(meta_mls); 4556 multilist_sublist_unlock(data_mls); 4557 4558 return (type); 4559 } 4560 4561 /* 4562 * Evict buffers from the cache, such that arcstat_size is capped by arc_c. 4563 */ 4564 static uint64_t 4565 arc_evict(void) 4566 { 4567 uint64_t total_evicted = 0; 4568 uint64_t bytes; 4569 int64_t target; 4570 uint64_t asize = aggsum_value(&arc_sums.arcstat_size); 4571 uint64_t ameta = aggsum_value(&arc_sums.arcstat_meta_used); 4572 4573 /* 4574 * If we're over arc_meta_limit, we want to correct that before 4575 * potentially evicting data buffers below. 4576 */ 4577 total_evicted += arc_evict_meta(ameta); 4578 4579 /* 4580 * Adjust MRU size 4581 * 4582 * If we're over the target cache size, we want to evict enough 4583 * from the list to get back to our target size. We don't want 4584 * to evict too much from the MRU, such that it drops below 4585 * arc_p. So, if we're over our target cache size more than 4586 * the MRU is over arc_p, we'll evict enough to get back to 4587 * arc_p here, and then evict more from the MFU below. 4588 */ 4589 target = MIN((int64_t)(asize - arc_c), 4590 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4591 zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p)); 4592 4593 /* 4594 * If we're below arc_meta_min, always prefer to evict data. 4595 * Otherwise, try to satisfy the requested number of bytes to 4596 * evict from the type which contains older buffers; in an 4597 * effort to keep newer buffers in the cache regardless of their 4598 * type. If we cannot satisfy the number of bytes from this 4599 * type, spill over into the next type. 4600 */ 4601 if (arc_evict_type(arc_mru) == ARC_BUFC_METADATA && 4602 ameta > arc_meta_min) { 4603 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4604 total_evicted += bytes; 4605 4606 /* 4607 * If we couldn't evict our target number of bytes from 4608 * metadata, we try to get the rest from data. 4609 */ 4610 target -= bytes; 4611 4612 total_evicted += 4613 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4614 } else { 4615 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4616 total_evicted += bytes; 4617 4618 /* 4619 * If we couldn't evict our target number of bytes from 4620 * data, we try to get the rest from metadata. 4621 */ 4622 target -= bytes; 4623 4624 total_evicted += 4625 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4626 } 4627 4628 /* 4629 * Re-sum ARC stats after the first round of evictions. 4630 */ 4631 asize = aggsum_value(&arc_sums.arcstat_size); 4632 ameta = aggsum_value(&arc_sums.arcstat_meta_used); 4633 4634 4635 /* 4636 * Adjust MFU size 4637 * 4638 * Now that we've tried to evict enough from the MRU to get its 4639 * size back to arc_p, if we're still above the target cache 4640 * size, we evict the rest from the MFU. 4641 */ 4642 target = asize - arc_c; 4643 4644 if (arc_evict_type(arc_mfu) == ARC_BUFC_METADATA && 4645 ameta > arc_meta_min) { 4646 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4647 total_evicted += bytes; 4648 4649 /* 4650 * If we couldn't evict our target number of bytes from 4651 * metadata, we try to get the rest from data. 4652 */ 4653 target -= bytes; 4654 4655 total_evicted += 4656 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4657 } else { 4658 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4659 total_evicted += bytes; 4660 4661 /* 4662 * If we couldn't evict our target number of bytes from 4663 * data, we try to get the rest from data. 4664 */ 4665 target -= bytes; 4666 4667 total_evicted += 4668 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4669 } 4670 4671 /* 4672 * Adjust ghost lists 4673 * 4674 * In addition to the above, the ARC also defines target values 4675 * for the ghost lists. The sum of the mru list and mru ghost 4676 * list should never exceed the target size of the cache, and 4677 * the sum of the mru list, mfu list, mru ghost list, and mfu 4678 * ghost list should never exceed twice the target size of the 4679 * cache. The following logic enforces these limits on the ghost 4680 * caches, and evicts from them as needed. 4681 */ 4682 target = zfs_refcount_count(&arc_mru->arcs_size) + 4683 zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c; 4684 4685 bytes = arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA); 4686 total_evicted += bytes; 4687 4688 target -= bytes; 4689 4690 total_evicted += 4691 arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA); 4692 4693 /* 4694 * We assume the sum of the mru list and mfu list is less than 4695 * or equal to arc_c (we enforced this above), which means we 4696 * can use the simpler of the two equations below: 4697 * 4698 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c 4699 * mru ghost + mfu ghost <= arc_c 4700 */ 4701 target = zfs_refcount_count(&arc_mru_ghost->arcs_size) + 4702 zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c; 4703 4704 bytes = arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA); 4705 total_evicted += bytes; 4706 4707 target -= bytes; 4708 4709 total_evicted += 4710 arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA); 4711 4712 return (total_evicted); 4713 } 4714 4715 void 4716 arc_flush(spa_t *spa, boolean_t retry) 4717 { 4718 uint64_t guid = 0; 4719 4720 /* 4721 * If retry is B_TRUE, a spa must not be specified since we have 4722 * no good way to determine if all of a spa's buffers have been 4723 * evicted from an arc state. 4724 */ 4725 ASSERT(!retry || spa == 0); 4726 4727 if (spa != NULL) 4728 guid = spa_load_guid(spa); 4729 4730 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 4731 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 4732 4733 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 4734 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 4735 4736 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 4737 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 4738 4739 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 4740 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 4741 } 4742 4743 void 4744 arc_reduce_target_size(int64_t to_free) 4745 { 4746 uint64_t asize = aggsum_value(&arc_sums.arcstat_size); 4747 4748 /* 4749 * All callers want the ARC to actually evict (at least) this much 4750 * memory. Therefore we reduce from the lower of the current size and 4751 * the target size. This way, even if arc_c is much higher than 4752 * arc_size (as can be the case after many calls to arc_freed(), we will 4753 * immediately have arc_c < arc_size and therefore the arc_evict_zthr 4754 * will evict. 4755 */ 4756 uint64_t c = MIN(arc_c, asize); 4757 4758 if (c > to_free && c - to_free > arc_c_min) { 4759 arc_c = c - to_free; 4760 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 4761 if (arc_p > arc_c) 4762 arc_p = (arc_c >> 1); 4763 ASSERT(arc_c >= arc_c_min); 4764 ASSERT((int64_t)arc_p >= 0); 4765 } else { 4766 arc_c = arc_c_min; 4767 } 4768 4769 if (asize > arc_c) { 4770 /* See comment in arc_evict_cb_check() on why lock+flag */ 4771 mutex_enter(&arc_evict_lock); 4772 arc_evict_needed = B_TRUE; 4773 mutex_exit(&arc_evict_lock); 4774 zthr_wakeup(arc_evict_zthr); 4775 } 4776 } 4777 4778 /* 4779 * Determine if the system is under memory pressure and is asking 4780 * to reclaim memory. A return value of B_TRUE indicates that the system 4781 * is under memory pressure and that the arc should adjust accordingly. 4782 */ 4783 boolean_t 4784 arc_reclaim_needed(void) 4785 { 4786 return (arc_available_memory() < 0); 4787 } 4788 4789 void 4790 arc_kmem_reap_soon(void) 4791 { 4792 size_t i; 4793 kmem_cache_t *prev_cache = NULL; 4794 kmem_cache_t *prev_data_cache = NULL; 4795 extern kmem_cache_t *zio_buf_cache[]; 4796 extern kmem_cache_t *zio_data_buf_cache[]; 4797 4798 #ifdef _KERNEL 4799 if ((aggsum_compare(&arc_sums.arcstat_meta_used, 4800 arc_meta_limit) >= 0) && zfs_arc_meta_prune) { 4801 /* 4802 * We are exceeding our meta-data cache limit. 4803 * Prune some entries to release holds on meta-data. 4804 */ 4805 arc_prune_async(zfs_arc_meta_prune); 4806 } 4807 #if defined(_ILP32) 4808 /* 4809 * Reclaim unused memory from all kmem caches. 4810 */ 4811 kmem_reap(); 4812 #endif 4813 #endif 4814 4815 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 4816 #if defined(_ILP32) 4817 /* reach upper limit of cache size on 32-bit */ 4818 if (zio_buf_cache[i] == NULL) 4819 break; 4820 #endif 4821 if (zio_buf_cache[i] != prev_cache) { 4822 prev_cache = zio_buf_cache[i]; 4823 kmem_cache_reap_now(zio_buf_cache[i]); 4824 } 4825 if (zio_data_buf_cache[i] != prev_data_cache) { 4826 prev_data_cache = zio_data_buf_cache[i]; 4827 kmem_cache_reap_now(zio_data_buf_cache[i]); 4828 } 4829 } 4830 kmem_cache_reap_now(buf_cache); 4831 kmem_cache_reap_now(hdr_full_cache); 4832 kmem_cache_reap_now(hdr_l2only_cache); 4833 kmem_cache_reap_now(zfs_btree_leaf_cache); 4834 abd_cache_reap_now(); 4835 } 4836 4837 /* ARGSUSED */ 4838 static boolean_t 4839 arc_evict_cb_check(void *arg, zthr_t *zthr) 4840 { 4841 #ifdef ZFS_DEBUG 4842 /* 4843 * This is necessary in order to keep the kstat information 4844 * up to date for tools that display kstat data such as the 4845 * mdb ::arc dcmd and the Linux crash utility. These tools 4846 * typically do not call kstat's update function, but simply 4847 * dump out stats from the most recent update. Without 4848 * this call, these commands may show stale stats for the 4849 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 4850 * with this call, the data might be out of date if the 4851 * evict thread hasn't been woken recently; but that should 4852 * suffice. The arc_state_t structures can be queried 4853 * directly if more accurate information is needed. 4854 */ 4855 if (arc_ksp != NULL) 4856 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 4857 #endif 4858 4859 /* 4860 * We have to rely on arc_wait_for_eviction() to tell us when to 4861 * evict, rather than checking if we are overflowing here, so that we 4862 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv. 4863 * If we have become "not overflowing" since arc_wait_for_eviction() 4864 * checked, we need to wake it up. We could broadcast the CV here, 4865 * but arc_wait_for_eviction() may have not yet gone to sleep. We 4866 * would need to use a mutex to ensure that this function doesn't 4867 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g. 4868 * the arc_evict_lock). However, the lock ordering of such a lock 4869 * would necessarily be incorrect with respect to the zthr_lock, 4870 * which is held before this function is called, and is held by 4871 * arc_wait_for_eviction() when it calls zthr_wakeup(). 4872 */ 4873 return (arc_evict_needed); 4874 } 4875 4876 /* 4877 * Keep arc_size under arc_c by running arc_evict which evicts data 4878 * from the ARC. 4879 */ 4880 /* ARGSUSED */ 4881 static void 4882 arc_evict_cb(void *arg, zthr_t *zthr) 4883 { 4884 uint64_t evicted = 0; 4885 fstrans_cookie_t cookie = spl_fstrans_mark(); 4886 4887 /* Evict from cache */ 4888 evicted = arc_evict(); 4889 4890 /* 4891 * If evicted is zero, we couldn't evict anything 4892 * via arc_evict(). This could be due to hash lock 4893 * collisions, but more likely due to the majority of 4894 * arc buffers being unevictable. Therefore, even if 4895 * arc_size is above arc_c, another pass is unlikely to 4896 * be helpful and could potentially cause us to enter an 4897 * infinite loop. Additionally, zthr_iscancelled() is 4898 * checked here so that if the arc is shutting down, the 4899 * broadcast will wake any remaining arc evict waiters. 4900 */ 4901 mutex_enter(&arc_evict_lock); 4902 arc_evict_needed = !zthr_iscancelled(arc_evict_zthr) && 4903 evicted > 0 && aggsum_compare(&arc_sums.arcstat_size, arc_c) > 0; 4904 if (!arc_evict_needed) { 4905 /* 4906 * We're either no longer overflowing, or we 4907 * can't evict anything more, so we should wake 4908 * arc_get_data_impl() sooner. 4909 */ 4910 arc_evict_waiter_t *aw; 4911 while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) { 4912 cv_broadcast(&aw->aew_cv); 4913 } 4914 arc_set_need_free(); 4915 } 4916 mutex_exit(&arc_evict_lock); 4917 spl_fstrans_unmark(cookie); 4918 } 4919 4920 /* ARGSUSED */ 4921 static boolean_t 4922 arc_reap_cb_check(void *arg, zthr_t *zthr) 4923 { 4924 int64_t free_memory = arc_available_memory(); 4925 static int reap_cb_check_counter = 0; 4926 4927 /* 4928 * If a kmem reap is already active, don't schedule more. We must 4929 * check for this because kmem_cache_reap_soon() won't actually 4930 * block on the cache being reaped (this is to prevent callers from 4931 * becoming implicitly blocked by a system-wide kmem reap -- which, 4932 * on a system with many, many full magazines, can take minutes). 4933 */ 4934 if (!kmem_cache_reap_active() && free_memory < 0) { 4935 4936 arc_no_grow = B_TRUE; 4937 arc_warm = B_TRUE; 4938 /* 4939 * Wait at least zfs_grow_retry (default 5) seconds 4940 * before considering growing. 4941 */ 4942 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry); 4943 return (B_TRUE); 4944 } else if (free_memory < arc_c >> arc_no_grow_shift) { 4945 arc_no_grow = B_TRUE; 4946 } else if (gethrtime() >= arc_growtime) { 4947 arc_no_grow = B_FALSE; 4948 } 4949 4950 /* 4951 * Called unconditionally every 60 seconds to reclaim unused 4952 * zstd compression and decompression context. This is done 4953 * here to avoid the need for an independent thread. 4954 */ 4955 if (!((reap_cb_check_counter++) % 60)) 4956 zfs_zstd_cache_reap_now(); 4957 4958 return (B_FALSE); 4959 } 4960 4961 /* 4962 * Keep enough free memory in the system by reaping the ARC's kmem 4963 * caches. To cause more slabs to be reapable, we may reduce the 4964 * target size of the cache (arc_c), causing the arc_evict_cb() 4965 * to free more buffers. 4966 */ 4967 /* ARGSUSED */ 4968 static void 4969 arc_reap_cb(void *arg, zthr_t *zthr) 4970 { 4971 int64_t free_memory; 4972 fstrans_cookie_t cookie = spl_fstrans_mark(); 4973 4974 /* 4975 * Kick off asynchronous kmem_reap()'s of all our caches. 4976 */ 4977 arc_kmem_reap_soon(); 4978 4979 /* 4980 * Wait at least arc_kmem_cache_reap_retry_ms between 4981 * arc_kmem_reap_soon() calls. Without this check it is possible to 4982 * end up in a situation where we spend lots of time reaping 4983 * caches, while we're near arc_c_min. Waiting here also gives the 4984 * subsequent free memory check a chance of finding that the 4985 * asynchronous reap has already freed enough memory, and we don't 4986 * need to call arc_reduce_target_size(). 4987 */ 4988 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000); 4989 4990 /* 4991 * Reduce the target size as needed to maintain the amount of free 4992 * memory in the system at a fraction of the arc_size (1/128th by 4993 * default). If oversubscribed (free_memory < 0) then reduce the 4994 * target arc_size by the deficit amount plus the fractional 4995 * amount. If free memory is positive but less than the fractional 4996 * amount, reduce by what is needed to hit the fractional amount. 4997 */ 4998 free_memory = arc_available_memory(); 4999 5000 int64_t to_free = 5001 (arc_c >> arc_shrink_shift) - free_memory; 5002 if (to_free > 0) { 5003 arc_reduce_target_size(to_free); 5004 } 5005 spl_fstrans_unmark(cookie); 5006 } 5007 5008 #ifdef _KERNEL 5009 /* 5010 * Determine the amount of memory eligible for eviction contained in the 5011 * ARC. All clean data reported by the ghost lists can always be safely 5012 * evicted. Due to arc_c_min, the same does not hold for all clean data 5013 * contained by the regular mru and mfu lists. 5014 * 5015 * In the case of the regular mru and mfu lists, we need to report as 5016 * much clean data as possible, such that evicting that same reported 5017 * data will not bring arc_size below arc_c_min. Thus, in certain 5018 * circumstances, the total amount of clean data in the mru and mfu 5019 * lists might not actually be evictable. 5020 * 5021 * The following two distinct cases are accounted for: 5022 * 5023 * 1. The sum of the amount of dirty data contained by both the mru and 5024 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 5025 * is greater than or equal to arc_c_min. 5026 * (i.e. amount of dirty data >= arc_c_min) 5027 * 5028 * This is the easy case; all clean data contained by the mru and mfu 5029 * lists is evictable. Evicting all clean data can only drop arc_size 5030 * to the amount of dirty data, which is greater than arc_c_min. 5031 * 5032 * 2. The sum of the amount of dirty data contained by both the mru and 5033 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 5034 * is less than arc_c_min. 5035 * (i.e. arc_c_min > amount of dirty data) 5036 * 5037 * 2.1. arc_size is greater than or equal arc_c_min. 5038 * (i.e. arc_size >= arc_c_min > amount of dirty data) 5039 * 5040 * In this case, not all clean data from the regular mru and mfu 5041 * lists is actually evictable; we must leave enough clean data 5042 * to keep arc_size above arc_c_min. Thus, the maximum amount of 5043 * evictable data from the two lists combined, is exactly the 5044 * difference between arc_size and arc_c_min. 5045 * 5046 * 2.2. arc_size is less than arc_c_min 5047 * (i.e. arc_c_min > arc_size > amount of dirty data) 5048 * 5049 * In this case, none of the data contained in the mru and mfu 5050 * lists is evictable, even if it's clean. Since arc_size is 5051 * already below arc_c_min, evicting any more would only 5052 * increase this negative difference. 5053 */ 5054 5055 #endif /* _KERNEL */ 5056 5057 /* 5058 * Adapt arc info given the number of bytes we are trying to add and 5059 * the state that we are coming from. This function is only called 5060 * when we are adding new content to the cache. 5061 */ 5062 static void 5063 arc_adapt(int bytes, arc_state_t *state) 5064 { 5065 int mult; 5066 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 5067 int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size); 5068 int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size); 5069 5070 ASSERT(bytes > 0); 5071 /* 5072 * Adapt the target size of the MRU list: 5073 * - if we just hit in the MRU ghost list, then increase 5074 * the target size of the MRU list. 5075 * - if we just hit in the MFU ghost list, then increase 5076 * the target size of the MFU list by decreasing the 5077 * target size of the MRU list. 5078 */ 5079 if (state == arc_mru_ghost) { 5080 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size); 5081 if (!zfs_arc_p_dampener_disable) 5082 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 5083 5084 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 5085 } else if (state == arc_mfu_ghost) { 5086 uint64_t delta; 5087 5088 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size); 5089 if (!zfs_arc_p_dampener_disable) 5090 mult = MIN(mult, 10); 5091 5092 delta = MIN(bytes * mult, arc_p); 5093 arc_p = MAX(arc_p_min, arc_p - delta); 5094 } 5095 ASSERT((int64_t)arc_p >= 0); 5096 5097 /* 5098 * Wake reap thread if we do not have any available memory 5099 */ 5100 if (arc_reclaim_needed()) { 5101 zthr_wakeup(arc_reap_zthr); 5102 return; 5103 } 5104 5105 if (arc_no_grow) 5106 return; 5107 5108 if (arc_c >= arc_c_max) 5109 return; 5110 5111 /* 5112 * If we're within (2 * maxblocksize) bytes of the target 5113 * cache size, increment the target cache size 5114 */ 5115 ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT); 5116 if (aggsum_upper_bound(&arc_sums.arcstat_size) >= 5117 arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 5118 atomic_add_64(&arc_c, (int64_t)bytes); 5119 if (arc_c > arc_c_max) 5120 arc_c = arc_c_max; 5121 else if (state == arc_anon) 5122 atomic_add_64(&arc_p, (int64_t)bytes); 5123 if (arc_p > arc_c) 5124 arc_p = arc_c; 5125 } 5126 ASSERT((int64_t)arc_p >= 0); 5127 } 5128 5129 /* 5130 * Check if arc_size has grown past our upper threshold, determined by 5131 * zfs_arc_overflow_shift. 5132 */ 5133 static arc_ovf_level_t 5134 arc_is_overflowing(void) 5135 { 5136 /* Always allow at least one block of overflow */ 5137 int64_t overflow = MAX(SPA_MAXBLOCKSIZE, 5138 arc_c >> zfs_arc_overflow_shift); 5139 5140 /* 5141 * We just compare the lower bound here for performance reasons. Our 5142 * primary goals are to make sure that the arc never grows without 5143 * bound, and that it can reach its maximum size. This check 5144 * accomplishes both goals. The maximum amount we could run over by is 5145 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block 5146 * in the ARC. In practice, that's in the tens of MB, which is low 5147 * enough to be safe. 5148 */ 5149 int64_t over = aggsum_lower_bound(&arc_sums.arcstat_size) - 5150 arc_c - overflow / 2; 5151 return (over < 0 ? ARC_OVF_NONE : 5152 over < overflow ? ARC_OVF_SOME : ARC_OVF_SEVERE); 5153 } 5154 5155 static abd_t * 5156 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 5157 boolean_t do_adapt) 5158 { 5159 arc_buf_contents_t type = arc_buf_type(hdr); 5160 5161 arc_get_data_impl(hdr, size, tag, do_adapt); 5162 if (type == ARC_BUFC_METADATA) { 5163 return (abd_alloc(size, B_TRUE)); 5164 } else { 5165 ASSERT(type == ARC_BUFC_DATA); 5166 return (abd_alloc(size, B_FALSE)); 5167 } 5168 } 5169 5170 static void * 5171 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 5172 { 5173 arc_buf_contents_t type = arc_buf_type(hdr); 5174 5175 arc_get_data_impl(hdr, size, tag, B_TRUE); 5176 if (type == ARC_BUFC_METADATA) { 5177 return (zio_buf_alloc(size)); 5178 } else { 5179 ASSERT(type == ARC_BUFC_DATA); 5180 return (zio_data_buf_alloc(size)); 5181 } 5182 } 5183 5184 /* 5185 * Wait for the specified amount of data (in bytes) to be evicted from the 5186 * ARC, and for there to be sufficient free memory in the system. Waiting for 5187 * eviction ensures that the memory used by the ARC decreases. Waiting for 5188 * free memory ensures that the system won't run out of free pages, regardless 5189 * of ARC behavior and settings. See arc_lowmem_init(). 5190 */ 5191 void 5192 arc_wait_for_eviction(uint64_t amount) 5193 { 5194 switch (arc_is_overflowing()) { 5195 case ARC_OVF_NONE: 5196 return; 5197 case ARC_OVF_SOME: 5198 /* 5199 * This is a bit racy without taking arc_evict_lock, but the 5200 * worst that can happen is we either call zthr_wakeup() extra 5201 * time due to race with other thread here, or the set flag 5202 * get cleared by arc_evict_cb(), which is unlikely due to 5203 * big hysteresis, but also not important since at this level 5204 * of overflow the eviction is purely advisory. Same time 5205 * taking the global lock here every time without waiting for 5206 * the actual eviction creates a significant lock contention. 5207 */ 5208 if (!arc_evict_needed) { 5209 arc_evict_needed = B_TRUE; 5210 zthr_wakeup(arc_evict_zthr); 5211 } 5212 return; 5213 case ARC_OVF_SEVERE: 5214 default: 5215 { 5216 arc_evict_waiter_t aw; 5217 list_link_init(&aw.aew_node); 5218 cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL); 5219 5220 uint64_t last_count = 0; 5221 mutex_enter(&arc_evict_lock); 5222 if (!list_is_empty(&arc_evict_waiters)) { 5223 arc_evict_waiter_t *last = 5224 list_tail(&arc_evict_waiters); 5225 last_count = last->aew_count; 5226 } else if (!arc_evict_needed) { 5227 arc_evict_needed = B_TRUE; 5228 zthr_wakeup(arc_evict_zthr); 5229 } 5230 /* 5231 * Note, the last waiter's count may be less than 5232 * arc_evict_count if we are low on memory in which 5233 * case arc_evict_state_impl() may have deferred 5234 * wakeups (but still incremented arc_evict_count). 5235 */ 5236 aw.aew_count = MAX(last_count, arc_evict_count) + amount; 5237 5238 list_insert_tail(&arc_evict_waiters, &aw); 5239 5240 arc_set_need_free(); 5241 5242 DTRACE_PROBE3(arc__wait__for__eviction, 5243 uint64_t, amount, 5244 uint64_t, arc_evict_count, 5245 uint64_t, aw.aew_count); 5246 5247 /* 5248 * We will be woken up either when arc_evict_count reaches 5249 * aew_count, or when the ARC is no longer overflowing and 5250 * eviction completes. 5251 * In case of "false" wakeup, we will still be on the list. 5252 */ 5253 do { 5254 cv_wait(&aw.aew_cv, &arc_evict_lock); 5255 } while (list_link_active(&aw.aew_node)); 5256 mutex_exit(&arc_evict_lock); 5257 5258 cv_destroy(&aw.aew_cv); 5259 } 5260 } 5261 } 5262 5263 /* 5264 * Allocate a block and return it to the caller. If we are hitting the 5265 * hard limit for the cache size, we must sleep, waiting for the eviction 5266 * thread to catch up. If we're past the target size but below the hard 5267 * limit, we'll only signal the reclaim thread and continue on. 5268 */ 5269 static void 5270 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 5271 boolean_t do_adapt) 5272 { 5273 arc_state_t *state = hdr->b_l1hdr.b_state; 5274 arc_buf_contents_t type = arc_buf_type(hdr); 5275 5276 if (do_adapt) 5277 arc_adapt(size, state); 5278 5279 /* 5280 * If arc_size is currently overflowing, we must be adding data 5281 * faster than we are evicting. To ensure we don't compound the 5282 * problem by adding more data and forcing arc_size to grow even 5283 * further past it's target size, we wait for the eviction thread to 5284 * make some progress. We also wait for there to be sufficient free 5285 * memory in the system, as measured by arc_free_memory(). 5286 * 5287 * Specifically, we wait for zfs_arc_eviction_pct percent of the 5288 * requested size to be evicted. This should be more than 100%, to 5289 * ensure that that progress is also made towards getting arc_size 5290 * under arc_c. See the comment above zfs_arc_eviction_pct. 5291 */ 5292 arc_wait_for_eviction(size * zfs_arc_eviction_pct / 100); 5293 5294 VERIFY3U(hdr->b_type, ==, type); 5295 if (type == ARC_BUFC_METADATA) { 5296 arc_space_consume(size, ARC_SPACE_META); 5297 } else { 5298 arc_space_consume(size, ARC_SPACE_DATA); 5299 } 5300 5301 /* 5302 * Update the state size. Note that ghost states have a 5303 * "ghost size" and so don't need to be updated. 5304 */ 5305 if (!GHOST_STATE(state)) { 5306 5307 (void) zfs_refcount_add_many(&state->arcs_size, size, tag); 5308 5309 /* 5310 * If this is reached via arc_read, the link is 5311 * protected by the hash lock. If reached via 5312 * arc_buf_alloc, the header should not be accessed by 5313 * any other thread. And, if reached via arc_read_done, 5314 * the hash lock will protect it if it's found in the 5315 * hash table; otherwise no other thread should be 5316 * trying to [add|remove]_reference it. 5317 */ 5318 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5319 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5320 (void) zfs_refcount_add_many(&state->arcs_esize[type], 5321 size, tag); 5322 } 5323 5324 /* 5325 * If we are growing the cache, and we are adding anonymous 5326 * data, and we have outgrown arc_p, update arc_p 5327 */ 5328 if (aggsum_upper_bound(&arc_sums.arcstat_size) < arc_c && 5329 hdr->b_l1hdr.b_state == arc_anon && 5330 (zfs_refcount_count(&arc_anon->arcs_size) + 5331 zfs_refcount_count(&arc_mru->arcs_size) > arc_p)) 5332 arc_p = MIN(arc_c, arc_p + size); 5333 } 5334 } 5335 5336 static void 5337 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag) 5338 { 5339 arc_free_data_impl(hdr, size, tag); 5340 abd_free(abd); 5341 } 5342 5343 static void 5344 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag) 5345 { 5346 arc_buf_contents_t type = arc_buf_type(hdr); 5347 5348 arc_free_data_impl(hdr, size, tag); 5349 if (type == ARC_BUFC_METADATA) { 5350 zio_buf_free(buf, size); 5351 } else { 5352 ASSERT(type == ARC_BUFC_DATA); 5353 zio_data_buf_free(buf, size); 5354 } 5355 } 5356 5357 /* 5358 * Free the arc data buffer. 5359 */ 5360 static void 5361 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 5362 { 5363 arc_state_t *state = hdr->b_l1hdr.b_state; 5364 arc_buf_contents_t type = arc_buf_type(hdr); 5365 5366 /* protected by hash lock, if in the hash table */ 5367 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5368 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5369 ASSERT(state != arc_anon && state != arc_l2c_only); 5370 5371 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 5372 size, tag); 5373 } 5374 (void) zfs_refcount_remove_many(&state->arcs_size, size, tag); 5375 5376 VERIFY3U(hdr->b_type, ==, type); 5377 if (type == ARC_BUFC_METADATA) { 5378 arc_space_return(size, ARC_SPACE_META); 5379 } else { 5380 ASSERT(type == ARC_BUFC_DATA); 5381 arc_space_return(size, ARC_SPACE_DATA); 5382 } 5383 } 5384 5385 /* 5386 * This routine is called whenever a buffer is accessed. 5387 * NOTE: the hash lock is dropped in this function. 5388 */ 5389 static void 5390 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 5391 { 5392 clock_t now; 5393 5394 ASSERT(MUTEX_HELD(hash_lock)); 5395 ASSERT(HDR_HAS_L1HDR(hdr)); 5396 5397 if (hdr->b_l1hdr.b_state == arc_anon) { 5398 /* 5399 * This buffer is not in the cache, and does not 5400 * appear in our "ghost" list. Add the new buffer 5401 * to the MRU state. 5402 */ 5403 5404 ASSERT0(hdr->b_l1hdr.b_arc_access); 5405 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5406 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5407 arc_change_state(arc_mru, hdr, hash_lock); 5408 5409 } else if (hdr->b_l1hdr.b_state == arc_mru) { 5410 now = ddi_get_lbolt(); 5411 5412 /* 5413 * If this buffer is here because of a prefetch, then either: 5414 * - clear the flag if this is a "referencing" read 5415 * (any subsequent access will bump this into the MFU state). 5416 * or 5417 * - move the buffer to the head of the list if this is 5418 * another prefetch (to make it less likely to be evicted). 5419 */ 5420 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5421 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 5422 /* link protected by hash lock */ 5423 ASSERT(multilist_link_active( 5424 &hdr->b_l1hdr.b_arc_node)); 5425 } else { 5426 if (HDR_HAS_L2HDR(hdr)) 5427 l2arc_hdr_arcstats_decrement_state(hdr); 5428 arc_hdr_clear_flags(hdr, 5429 ARC_FLAG_PREFETCH | 5430 ARC_FLAG_PRESCIENT_PREFETCH); 5431 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits); 5432 ARCSTAT_BUMP(arcstat_mru_hits); 5433 if (HDR_HAS_L2HDR(hdr)) 5434 l2arc_hdr_arcstats_increment_state(hdr); 5435 } 5436 hdr->b_l1hdr.b_arc_access = now; 5437 return; 5438 } 5439 5440 /* 5441 * This buffer has been "accessed" only once so far, 5442 * but it is still in the cache. Move it to the MFU 5443 * state. 5444 */ 5445 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access + 5446 ARC_MINTIME)) { 5447 /* 5448 * More than 125ms have passed since we 5449 * instantiated this buffer. Move it to the 5450 * most frequently used state. 5451 */ 5452 hdr->b_l1hdr.b_arc_access = now; 5453 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5454 arc_change_state(arc_mfu, hdr, hash_lock); 5455 } 5456 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits); 5457 ARCSTAT_BUMP(arcstat_mru_hits); 5458 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 5459 arc_state_t *new_state; 5460 /* 5461 * This buffer has been "accessed" recently, but 5462 * was evicted from the cache. Move it to the 5463 * MFU state. 5464 */ 5465 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5466 new_state = arc_mru; 5467 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) { 5468 if (HDR_HAS_L2HDR(hdr)) 5469 l2arc_hdr_arcstats_decrement_state(hdr); 5470 arc_hdr_clear_flags(hdr, 5471 ARC_FLAG_PREFETCH | 5472 ARC_FLAG_PRESCIENT_PREFETCH); 5473 if (HDR_HAS_L2HDR(hdr)) 5474 l2arc_hdr_arcstats_increment_state(hdr); 5475 } 5476 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5477 } else { 5478 new_state = arc_mfu; 5479 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5480 } 5481 5482 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5483 arc_change_state(new_state, hdr, hash_lock); 5484 5485 atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits); 5486 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 5487 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 5488 /* 5489 * This buffer has been accessed more than once and is 5490 * still in the cache. Keep it in the MFU state. 5491 * 5492 * NOTE: an add_reference() that occurred when we did 5493 * the arc_read() will have kicked this off the list. 5494 * If it was a prefetch, we will explicitly move it to 5495 * the head of the list now. 5496 */ 5497 5498 atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits); 5499 ARCSTAT_BUMP(arcstat_mfu_hits); 5500 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5501 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 5502 arc_state_t *new_state = arc_mfu; 5503 /* 5504 * This buffer has been accessed more than once but has 5505 * been evicted from the cache. Move it back to the 5506 * MFU state. 5507 */ 5508 5509 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5510 /* 5511 * This is a prefetch access... 5512 * move this block back to the MRU state. 5513 */ 5514 new_state = arc_mru; 5515 } 5516 5517 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5518 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5519 arc_change_state(new_state, hdr, hash_lock); 5520 5521 atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits); 5522 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 5523 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 5524 /* 5525 * This buffer is on the 2nd Level ARC. 5526 */ 5527 5528 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5529 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5530 arc_change_state(arc_mfu, hdr, hash_lock); 5531 } else { 5532 cmn_err(CE_PANIC, "invalid arc state 0x%p", 5533 hdr->b_l1hdr.b_state); 5534 } 5535 } 5536 5537 /* 5538 * This routine is called by dbuf_hold() to update the arc_access() state 5539 * which otherwise would be skipped for entries in the dbuf cache. 5540 */ 5541 void 5542 arc_buf_access(arc_buf_t *buf) 5543 { 5544 mutex_enter(&buf->b_evict_lock); 5545 arc_buf_hdr_t *hdr = buf->b_hdr; 5546 5547 /* 5548 * Avoid taking the hash_lock when possible as an optimization. 5549 * The header must be checked again under the hash_lock in order 5550 * to handle the case where it is concurrently being released. 5551 */ 5552 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5553 mutex_exit(&buf->b_evict_lock); 5554 return; 5555 } 5556 5557 kmutex_t *hash_lock = HDR_LOCK(hdr); 5558 mutex_enter(hash_lock); 5559 5560 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5561 mutex_exit(hash_lock); 5562 mutex_exit(&buf->b_evict_lock); 5563 ARCSTAT_BUMP(arcstat_access_skip); 5564 return; 5565 } 5566 5567 mutex_exit(&buf->b_evict_lock); 5568 5569 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5570 hdr->b_l1hdr.b_state == arc_mfu); 5571 5572 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5573 arc_access(hdr, hash_lock); 5574 mutex_exit(hash_lock); 5575 5576 ARCSTAT_BUMP(arcstat_hits); 5577 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr) && !HDR_PRESCIENT_PREFETCH(hdr), 5578 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits); 5579 } 5580 5581 /* a generic arc_read_done_func_t which you can use */ 5582 /* ARGSUSED */ 5583 void 5584 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5585 arc_buf_t *buf, void *arg) 5586 { 5587 if (buf == NULL) 5588 return; 5589 5590 bcopy(buf->b_data, arg, arc_buf_size(buf)); 5591 arc_buf_destroy(buf, arg); 5592 } 5593 5594 /* a generic arc_read_done_func_t */ 5595 /* ARGSUSED */ 5596 void 5597 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5598 arc_buf_t *buf, void *arg) 5599 { 5600 arc_buf_t **bufp = arg; 5601 5602 if (buf == NULL) { 5603 ASSERT(zio == NULL || zio->io_error != 0); 5604 *bufp = NULL; 5605 } else { 5606 ASSERT(zio == NULL || zio->io_error == 0); 5607 *bufp = buf; 5608 ASSERT(buf->b_data != NULL); 5609 } 5610 } 5611 5612 static void 5613 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp) 5614 { 5615 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 5616 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0); 5617 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF); 5618 } else { 5619 if (HDR_COMPRESSION_ENABLED(hdr)) { 5620 ASSERT3U(arc_hdr_get_compress(hdr), ==, 5621 BP_GET_COMPRESS(bp)); 5622 } 5623 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 5624 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); 5625 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp)); 5626 } 5627 } 5628 5629 static void 5630 arc_read_done(zio_t *zio) 5631 { 5632 blkptr_t *bp = zio->io_bp; 5633 arc_buf_hdr_t *hdr = zio->io_private; 5634 kmutex_t *hash_lock = NULL; 5635 arc_callback_t *callback_list; 5636 arc_callback_t *acb; 5637 boolean_t freeable = B_FALSE; 5638 5639 /* 5640 * The hdr was inserted into hash-table and removed from lists 5641 * prior to starting I/O. We should find this header, since 5642 * it's in the hash table, and it should be legit since it's 5643 * not possible to evict it during the I/O. The only possible 5644 * reason for it not to be found is if we were freed during the 5645 * read. 5646 */ 5647 if (HDR_IN_HASH_TABLE(hdr)) { 5648 arc_buf_hdr_t *found; 5649 5650 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 5651 ASSERT3U(hdr->b_dva.dva_word[0], ==, 5652 BP_IDENTITY(zio->io_bp)->dva_word[0]); 5653 ASSERT3U(hdr->b_dva.dva_word[1], ==, 5654 BP_IDENTITY(zio->io_bp)->dva_word[1]); 5655 5656 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock); 5657 5658 ASSERT((found == hdr && 5659 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 5660 (found == hdr && HDR_L2_READING(hdr))); 5661 ASSERT3P(hash_lock, !=, NULL); 5662 } 5663 5664 if (BP_IS_PROTECTED(bp)) { 5665 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 5666 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 5667 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 5668 hdr->b_crypt_hdr.b_iv); 5669 5670 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) { 5671 void *tmpbuf; 5672 5673 tmpbuf = abd_borrow_buf_copy(zio->io_abd, 5674 sizeof (zil_chain_t)); 5675 zio_crypt_decode_mac_zil(tmpbuf, 5676 hdr->b_crypt_hdr.b_mac); 5677 abd_return_buf(zio->io_abd, tmpbuf, 5678 sizeof (zil_chain_t)); 5679 } else { 5680 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 5681 } 5682 } 5683 5684 if (zio->io_error == 0) { 5685 /* byteswap if necessary */ 5686 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 5687 if (BP_GET_LEVEL(zio->io_bp) > 0) { 5688 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 5689 } else { 5690 hdr->b_l1hdr.b_byteswap = 5691 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 5692 } 5693 } else { 5694 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 5695 } 5696 if (!HDR_L2_READING(hdr)) { 5697 hdr->b_complevel = zio->io_prop.zp_complevel; 5698 } 5699 } 5700 5701 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); 5702 if (l2arc_noprefetch && HDR_PREFETCH(hdr)) 5703 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE); 5704 5705 callback_list = hdr->b_l1hdr.b_acb; 5706 ASSERT3P(callback_list, !=, NULL); 5707 5708 if (hash_lock && zio->io_error == 0 && 5709 hdr->b_l1hdr.b_state == arc_anon) { 5710 /* 5711 * Only call arc_access on anonymous buffers. This is because 5712 * if we've issued an I/O for an evicted buffer, we've already 5713 * called arc_access (to prevent any simultaneous readers from 5714 * getting confused). 5715 */ 5716 arc_access(hdr, hash_lock); 5717 } 5718 5719 /* 5720 * If a read request has a callback (i.e. acb_done is not NULL), then we 5721 * make a buf containing the data according to the parameters which were 5722 * passed in. The implementation of arc_buf_alloc_impl() ensures that we 5723 * aren't needlessly decompressing the data multiple times. 5724 */ 5725 int callback_cnt = 0; 5726 for (acb = callback_list; acb != NULL; acb = acb->acb_next) { 5727 if (!acb->acb_done || acb->acb_nobuf) 5728 continue; 5729 5730 callback_cnt++; 5731 5732 if (zio->io_error != 0) 5733 continue; 5734 5735 int error = arc_buf_alloc_impl(hdr, zio->io_spa, 5736 &acb->acb_zb, acb->acb_private, acb->acb_encrypted, 5737 acb->acb_compressed, acb->acb_noauth, B_TRUE, 5738 &acb->acb_buf); 5739 5740 /* 5741 * Assert non-speculative zios didn't fail because an 5742 * encryption key wasn't loaded 5743 */ 5744 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) || 5745 error != EACCES); 5746 5747 /* 5748 * If we failed to decrypt, report an error now (as the zio 5749 * layer would have done if it had done the transforms). 5750 */ 5751 if (error == ECKSUM) { 5752 ASSERT(BP_IS_PROTECTED(bp)); 5753 error = SET_ERROR(EIO); 5754 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5755 spa_log_error(zio->io_spa, &acb->acb_zb); 5756 (void) zfs_ereport_post( 5757 FM_EREPORT_ZFS_AUTHENTICATION, 5758 zio->io_spa, NULL, &acb->acb_zb, zio, 0); 5759 } 5760 } 5761 5762 if (error != 0) { 5763 /* 5764 * Decompression or decryption failed. Set 5765 * io_error so that when we call acb_done 5766 * (below), we will indicate that the read 5767 * failed. Note that in the unusual case 5768 * where one callback is compressed and another 5769 * uncompressed, we will mark all of them 5770 * as failed, even though the uncompressed 5771 * one can't actually fail. In this case, 5772 * the hdr will not be anonymous, because 5773 * if there are multiple callbacks, it's 5774 * because multiple threads found the same 5775 * arc buf in the hash table. 5776 */ 5777 zio->io_error = error; 5778 } 5779 } 5780 5781 /* 5782 * If there are multiple callbacks, we must have the hash lock, 5783 * because the only way for multiple threads to find this hdr is 5784 * in the hash table. This ensures that if there are multiple 5785 * callbacks, the hdr is not anonymous. If it were anonymous, 5786 * we couldn't use arc_buf_destroy() in the error case below. 5787 */ 5788 ASSERT(callback_cnt < 2 || hash_lock != NULL); 5789 5790 hdr->b_l1hdr.b_acb = NULL; 5791 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5792 if (callback_cnt == 0) 5793 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 5794 5795 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) || 5796 callback_list != NULL); 5797 5798 if (zio->io_error == 0) { 5799 arc_hdr_verify(hdr, zio->io_bp); 5800 } else { 5801 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 5802 if (hdr->b_l1hdr.b_state != arc_anon) 5803 arc_change_state(arc_anon, hdr, hash_lock); 5804 if (HDR_IN_HASH_TABLE(hdr)) 5805 buf_hash_remove(hdr); 5806 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5807 } 5808 5809 /* 5810 * Broadcast before we drop the hash_lock to avoid the possibility 5811 * that the hdr (and hence the cv) might be freed before we get to 5812 * the cv_broadcast(). 5813 */ 5814 cv_broadcast(&hdr->b_l1hdr.b_cv); 5815 5816 if (hash_lock != NULL) { 5817 mutex_exit(hash_lock); 5818 } else { 5819 /* 5820 * This block was freed while we waited for the read to 5821 * complete. It has been removed from the hash table and 5822 * moved to the anonymous state (so that it won't show up 5823 * in the cache). 5824 */ 5825 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 5826 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5827 } 5828 5829 /* execute each callback and free its structure */ 5830 while ((acb = callback_list) != NULL) { 5831 if (acb->acb_done != NULL) { 5832 if (zio->io_error != 0 && acb->acb_buf != NULL) { 5833 /* 5834 * If arc_buf_alloc_impl() fails during 5835 * decompression, the buf will still be 5836 * allocated, and needs to be freed here. 5837 */ 5838 arc_buf_destroy(acb->acb_buf, 5839 acb->acb_private); 5840 acb->acb_buf = NULL; 5841 } 5842 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp, 5843 acb->acb_buf, acb->acb_private); 5844 } 5845 5846 if (acb->acb_zio_dummy != NULL) { 5847 acb->acb_zio_dummy->io_error = zio->io_error; 5848 zio_nowait(acb->acb_zio_dummy); 5849 } 5850 5851 callback_list = acb->acb_next; 5852 kmem_free(acb, sizeof (arc_callback_t)); 5853 } 5854 5855 if (freeable) 5856 arc_hdr_destroy(hdr); 5857 } 5858 5859 /* 5860 * "Read" the block at the specified DVA (in bp) via the 5861 * cache. If the block is found in the cache, invoke the provided 5862 * callback immediately and return. Note that the `zio' parameter 5863 * in the callback will be NULL in this case, since no IO was 5864 * required. If the block is not in the cache pass the read request 5865 * on to the spa with a substitute callback function, so that the 5866 * requested block will be added to the cache. 5867 * 5868 * If a read request arrives for a block that has a read in-progress, 5869 * either wait for the in-progress read to complete (and return the 5870 * results); or, if this is a read with a "done" func, add a record 5871 * to the read to invoke the "done" func when the read completes, 5872 * and return; or just return. 5873 * 5874 * arc_read_done() will invoke all the requested "done" functions 5875 * for readers of this block. 5876 */ 5877 int 5878 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 5879 arc_read_done_func_t *done, void *private, zio_priority_t priority, 5880 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 5881 { 5882 arc_buf_hdr_t *hdr = NULL; 5883 kmutex_t *hash_lock = NULL; 5884 zio_t *rzio; 5885 uint64_t guid = spa_load_guid(spa); 5886 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0; 5887 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) && 5888 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5889 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) && 5890 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5891 boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp); 5892 boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF; 5893 int rc = 0; 5894 5895 ASSERT(!embedded_bp || 5896 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 5897 ASSERT(!BP_IS_HOLE(bp)); 5898 ASSERT(!BP_IS_REDACTED(bp)); 5899 5900 /* 5901 * Normally SPL_FSTRANS will already be set since kernel threads which 5902 * expect to call the DMU interfaces will set it when created. System 5903 * calls are similarly handled by setting/cleaning the bit in the 5904 * registered callback (module/os/.../zfs/zpl_*). 5905 * 5906 * External consumers such as Lustre which call the exported DMU 5907 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock 5908 * on the hash_lock always set and clear the bit. 5909 */ 5910 fstrans_cookie_t cookie = spl_fstrans_mark(); 5911 top: 5912 if (!embedded_bp) { 5913 /* 5914 * Embedded BP's have no DVA and require no I/O to "read". 5915 * Create an anonymous arc buf to back it. 5916 */ 5917 if (!zfs_blkptr_verify(spa, bp, zio_flags & 5918 ZIO_FLAG_CONFIG_WRITER, BLK_VERIFY_LOG)) { 5919 rc = SET_ERROR(ECKSUM); 5920 goto out; 5921 } 5922 5923 hdr = buf_hash_find(guid, bp, &hash_lock); 5924 } 5925 5926 /* 5927 * Determine if we have an L1 cache hit or a cache miss. For simplicity 5928 * we maintain encrypted data separately from compressed / uncompressed 5929 * data. If the user is requesting raw encrypted data and we don't have 5930 * that in the header we will read from disk to guarantee that we can 5931 * get it even if the encryption keys aren't loaded. 5932 */ 5933 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) || 5934 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) { 5935 arc_buf_t *buf = NULL; 5936 *arc_flags |= ARC_FLAG_CACHED; 5937 5938 if (HDR_IO_IN_PROGRESS(hdr)) { 5939 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head; 5940 5941 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 5942 mutex_exit(hash_lock); 5943 ARCSTAT_BUMP(arcstat_cached_only_in_progress); 5944 rc = SET_ERROR(ENOENT); 5945 goto out; 5946 } 5947 5948 ASSERT3P(head_zio, !=, NULL); 5949 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && 5950 priority == ZIO_PRIORITY_SYNC_READ) { 5951 /* 5952 * This is a sync read that needs to wait for 5953 * an in-flight async read. Request that the 5954 * zio have its priority upgraded. 5955 */ 5956 zio_change_priority(head_zio, priority); 5957 DTRACE_PROBE1(arc__async__upgrade__sync, 5958 arc_buf_hdr_t *, hdr); 5959 ARCSTAT_BUMP(arcstat_async_upgrade_sync); 5960 } 5961 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 5962 arc_hdr_clear_flags(hdr, 5963 ARC_FLAG_PREDICTIVE_PREFETCH); 5964 } 5965 5966 if (*arc_flags & ARC_FLAG_WAIT) { 5967 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 5968 mutex_exit(hash_lock); 5969 goto top; 5970 } 5971 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 5972 5973 if (done) { 5974 arc_callback_t *acb = NULL; 5975 5976 acb = kmem_zalloc(sizeof (arc_callback_t), 5977 KM_SLEEP); 5978 acb->acb_done = done; 5979 acb->acb_private = private; 5980 acb->acb_compressed = compressed_read; 5981 acb->acb_encrypted = encrypted_read; 5982 acb->acb_noauth = noauth_read; 5983 acb->acb_nobuf = no_buf; 5984 acb->acb_zb = *zb; 5985 if (pio != NULL) 5986 acb->acb_zio_dummy = zio_null(pio, 5987 spa, NULL, NULL, NULL, zio_flags); 5988 5989 ASSERT3P(acb->acb_done, !=, NULL); 5990 acb->acb_zio_head = head_zio; 5991 acb->acb_next = hdr->b_l1hdr.b_acb; 5992 hdr->b_l1hdr.b_acb = acb; 5993 } 5994 mutex_exit(hash_lock); 5995 goto out; 5996 } 5997 5998 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5999 hdr->b_l1hdr.b_state == arc_mfu); 6000 6001 if (done && !no_buf) { 6002 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 6003 /* 6004 * This is a demand read which does not have to 6005 * wait for i/o because we did a predictive 6006 * prefetch i/o for it, which has completed. 6007 */ 6008 DTRACE_PROBE1( 6009 arc__demand__hit__predictive__prefetch, 6010 arc_buf_hdr_t *, hdr); 6011 ARCSTAT_BUMP( 6012 arcstat_demand_hit_predictive_prefetch); 6013 arc_hdr_clear_flags(hdr, 6014 ARC_FLAG_PREDICTIVE_PREFETCH); 6015 } 6016 6017 if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) { 6018 ARCSTAT_BUMP( 6019 arcstat_demand_hit_prescient_prefetch); 6020 arc_hdr_clear_flags(hdr, 6021 ARC_FLAG_PRESCIENT_PREFETCH); 6022 } 6023 6024 ASSERT(!embedded_bp || !BP_IS_HOLE(bp)); 6025 6026 /* Get a buf with the desired data in it. */ 6027 rc = arc_buf_alloc_impl(hdr, spa, zb, private, 6028 encrypted_read, compressed_read, noauth_read, 6029 B_TRUE, &buf); 6030 if (rc == ECKSUM) { 6031 /* 6032 * Convert authentication and decryption errors 6033 * to EIO (and generate an ereport if needed) 6034 * before leaving the ARC. 6035 */ 6036 rc = SET_ERROR(EIO); 6037 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) { 6038 spa_log_error(spa, zb); 6039 (void) zfs_ereport_post( 6040 FM_EREPORT_ZFS_AUTHENTICATION, 6041 spa, NULL, zb, NULL, 0); 6042 } 6043 } 6044 if (rc != 0) { 6045 (void) remove_reference(hdr, hash_lock, 6046 private); 6047 arc_buf_destroy_impl(buf); 6048 buf = NULL; 6049 } 6050 6051 /* assert any errors weren't due to unloaded keys */ 6052 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) || 6053 rc != EACCES); 6054 } else if (*arc_flags & ARC_FLAG_PREFETCH && 6055 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6056 if (HDR_HAS_L2HDR(hdr)) 6057 l2arc_hdr_arcstats_decrement_state(hdr); 6058 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 6059 if (HDR_HAS_L2HDR(hdr)) 6060 l2arc_hdr_arcstats_increment_state(hdr); 6061 } 6062 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 6063 arc_access(hdr, hash_lock); 6064 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 6065 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 6066 if (*arc_flags & ARC_FLAG_L2CACHE) 6067 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6068 mutex_exit(hash_lock); 6069 ARCSTAT_BUMP(arcstat_hits); 6070 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 6071 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 6072 data, metadata, hits); 6073 6074 if (done) 6075 done(NULL, zb, bp, buf, private); 6076 } else { 6077 uint64_t lsize = BP_GET_LSIZE(bp); 6078 uint64_t psize = BP_GET_PSIZE(bp); 6079 arc_callback_t *acb; 6080 vdev_t *vd = NULL; 6081 uint64_t addr = 0; 6082 boolean_t devw = B_FALSE; 6083 uint64_t size; 6084 abd_t *hdr_abd; 6085 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0; 6086 6087 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 6088 rc = SET_ERROR(ENOENT); 6089 if (hash_lock != NULL) 6090 mutex_exit(hash_lock); 6091 goto out; 6092 } 6093 6094 if (hdr == NULL) { 6095 /* 6096 * This block is not in the cache or it has 6097 * embedded data. 6098 */ 6099 arc_buf_hdr_t *exists = NULL; 6100 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 6101 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 6102 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type, 6103 encrypted_read); 6104 6105 if (!embedded_bp) { 6106 hdr->b_dva = *BP_IDENTITY(bp); 6107 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 6108 exists = buf_hash_insert(hdr, &hash_lock); 6109 } 6110 if (exists != NULL) { 6111 /* somebody beat us to the hash insert */ 6112 mutex_exit(hash_lock); 6113 buf_discard_identity(hdr); 6114 arc_hdr_destroy(hdr); 6115 goto top; /* restart the IO request */ 6116 } 6117 } else { 6118 /* 6119 * This block is in the ghost cache or encrypted data 6120 * was requested and we didn't have it. If it was 6121 * L2-only (and thus didn't have an L1 hdr), 6122 * we realloc the header to add an L1 hdr. 6123 */ 6124 if (!HDR_HAS_L1HDR(hdr)) { 6125 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 6126 hdr_full_cache); 6127 } 6128 6129 if (GHOST_STATE(hdr->b_l1hdr.b_state)) { 6130 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6131 ASSERT(!HDR_HAS_RABD(hdr)); 6132 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6133 ASSERT0(zfs_refcount_count( 6134 &hdr->b_l1hdr.b_refcnt)); 6135 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 6136 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 6137 } else if (HDR_IO_IN_PROGRESS(hdr)) { 6138 /* 6139 * If this header already had an IO in progress 6140 * and we are performing another IO to fetch 6141 * encrypted data we must wait until the first 6142 * IO completes so as not to confuse 6143 * arc_read_done(). This should be very rare 6144 * and so the performance impact shouldn't 6145 * matter. 6146 */ 6147 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 6148 mutex_exit(hash_lock); 6149 goto top; 6150 } 6151 6152 /* 6153 * This is a delicate dance that we play here. 6154 * This hdr might be in the ghost list so we access 6155 * it to move it out of the ghost list before we 6156 * initiate the read. If it's a prefetch then 6157 * it won't have a callback so we'll remove the 6158 * reference that arc_buf_alloc_impl() created. We 6159 * do this after we've called arc_access() to 6160 * avoid hitting an assert in remove_reference(). 6161 */ 6162 arc_adapt(arc_hdr_size(hdr), hdr->b_l1hdr.b_state); 6163 arc_access(hdr, hash_lock); 6164 arc_hdr_alloc_abd(hdr, alloc_flags); 6165 } 6166 6167 if (encrypted_read) { 6168 ASSERT(HDR_HAS_RABD(hdr)); 6169 size = HDR_GET_PSIZE(hdr); 6170 hdr_abd = hdr->b_crypt_hdr.b_rabd; 6171 zio_flags |= ZIO_FLAG_RAW; 6172 } else { 6173 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 6174 size = arc_hdr_size(hdr); 6175 hdr_abd = hdr->b_l1hdr.b_pabd; 6176 6177 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 6178 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 6179 } 6180 6181 /* 6182 * For authenticated bp's, we do not ask the ZIO layer 6183 * to authenticate them since this will cause the entire 6184 * IO to fail if the key isn't loaded. Instead, we 6185 * defer authentication until arc_buf_fill(), which will 6186 * verify the data when the key is available. 6187 */ 6188 if (BP_IS_AUTHENTICATED(bp)) 6189 zio_flags |= ZIO_FLAG_RAW_ENCRYPT; 6190 } 6191 6192 if (*arc_flags & ARC_FLAG_PREFETCH && 6193 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6194 if (HDR_HAS_L2HDR(hdr)) 6195 l2arc_hdr_arcstats_decrement_state(hdr); 6196 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 6197 if (HDR_HAS_L2HDR(hdr)) 6198 l2arc_hdr_arcstats_increment_state(hdr); 6199 } 6200 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 6201 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 6202 if (*arc_flags & ARC_FLAG_L2CACHE) 6203 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6204 if (BP_IS_AUTHENTICATED(bp)) 6205 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6206 if (BP_GET_LEVEL(bp) > 0) 6207 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); 6208 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH) 6209 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH); 6210 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 6211 6212 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 6213 acb->acb_done = done; 6214 acb->acb_private = private; 6215 acb->acb_compressed = compressed_read; 6216 acb->acb_encrypted = encrypted_read; 6217 acb->acb_noauth = noauth_read; 6218 acb->acb_zb = *zb; 6219 6220 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6221 hdr->b_l1hdr.b_acb = acb; 6222 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6223 6224 if (HDR_HAS_L2HDR(hdr) && 6225 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 6226 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 6227 addr = hdr->b_l2hdr.b_daddr; 6228 /* 6229 * Lock out L2ARC device removal. 6230 */ 6231 if (vdev_is_dead(vd) || 6232 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 6233 vd = NULL; 6234 } 6235 6236 /* 6237 * We count both async reads and scrub IOs as asynchronous so 6238 * that both can be upgraded in the event of a cache hit while 6239 * the read IO is still in-flight. 6240 */ 6241 if (priority == ZIO_PRIORITY_ASYNC_READ || 6242 priority == ZIO_PRIORITY_SCRUB) 6243 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6244 else 6245 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6246 6247 /* 6248 * At this point, we have a level 1 cache miss or a blkptr 6249 * with embedded data. Try again in L2ARC if possible. 6250 */ 6251 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); 6252 6253 /* 6254 * Skip ARC stat bump for block pointers with embedded 6255 * data. The data are read from the blkptr itself via 6256 * decode_embedded_bp_compressed(). 6257 */ 6258 if (!embedded_bp) { 6259 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, 6260 blkptr_t *, bp, uint64_t, lsize, 6261 zbookmark_phys_t *, zb); 6262 ARCSTAT_BUMP(arcstat_misses); 6263 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 6264 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, 6265 metadata, misses); 6266 zfs_racct_read(size, 1); 6267 } 6268 6269 /* Check if the spa even has l2 configured */ 6270 const boolean_t spa_has_l2 = l2arc_ndev != 0 && 6271 spa->spa_l2cache.sav_count > 0; 6272 6273 if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) { 6274 /* 6275 * Read from the L2ARC if the following are true: 6276 * 1. The L2ARC vdev was previously cached. 6277 * 2. This buffer still has L2ARC metadata. 6278 * 3. This buffer isn't currently writing to the L2ARC. 6279 * 4. The L2ARC entry wasn't evicted, which may 6280 * also have invalidated the vdev. 6281 * 5. This isn't prefetch or l2arc_noprefetch is 0. 6282 */ 6283 if (HDR_HAS_L2HDR(hdr) && 6284 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 6285 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 6286 l2arc_read_callback_t *cb; 6287 abd_t *abd; 6288 uint64_t asize; 6289 6290 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 6291 ARCSTAT_BUMP(arcstat_l2_hits); 6292 atomic_inc_32(&hdr->b_l2hdr.b_hits); 6293 6294 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 6295 KM_SLEEP); 6296 cb->l2rcb_hdr = hdr; 6297 cb->l2rcb_bp = *bp; 6298 cb->l2rcb_zb = *zb; 6299 cb->l2rcb_flags = zio_flags; 6300 6301 /* 6302 * When Compressed ARC is disabled, but the 6303 * L2ARC block is compressed, arc_hdr_size() 6304 * will have returned LSIZE rather than PSIZE. 6305 */ 6306 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 6307 !HDR_COMPRESSION_ENABLED(hdr) && 6308 HDR_GET_PSIZE(hdr) != 0) { 6309 size = HDR_GET_PSIZE(hdr); 6310 } 6311 6312 asize = vdev_psize_to_asize(vd, size); 6313 if (asize != size) { 6314 abd = abd_alloc_for_io(asize, 6315 HDR_ISTYPE_METADATA(hdr)); 6316 cb->l2rcb_abd = abd; 6317 } else { 6318 abd = hdr_abd; 6319 } 6320 6321 ASSERT(addr >= VDEV_LABEL_START_SIZE && 6322 addr + asize <= vd->vdev_psize - 6323 VDEV_LABEL_END_SIZE); 6324 6325 /* 6326 * l2arc read. The SCL_L2ARC lock will be 6327 * released by l2arc_read_done(). 6328 * Issue a null zio if the underlying buffer 6329 * was squashed to zero size by compression. 6330 */ 6331 ASSERT3U(arc_hdr_get_compress(hdr), !=, 6332 ZIO_COMPRESS_EMPTY); 6333 rzio = zio_read_phys(pio, vd, addr, 6334 asize, abd, 6335 ZIO_CHECKSUM_OFF, 6336 l2arc_read_done, cb, priority, 6337 zio_flags | ZIO_FLAG_DONT_CACHE | 6338 ZIO_FLAG_CANFAIL | 6339 ZIO_FLAG_DONT_PROPAGATE | 6340 ZIO_FLAG_DONT_RETRY, B_FALSE); 6341 acb->acb_zio_head = rzio; 6342 6343 if (hash_lock != NULL) 6344 mutex_exit(hash_lock); 6345 6346 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 6347 zio_t *, rzio); 6348 ARCSTAT_INCR(arcstat_l2_read_bytes, 6349 HDR_GET_PSIZE(hdr)); 6350 6351 if (*arc_flags & ARC_FLAG_NOWAIT) { 6352 zio_nowait(rzio); 6353 goto out; 6354 } 6355 6356 ASSERT(*arc_flags & ARC_FLAG_WAIT); 6357 if (zio_wait(rzio) == 0) 6358 goto out; 6359 6360 /* l2arc read error; goto zio_read() */ 6361 if (hash_lock != NULL) 6362 mutex_enter(hash_lock); 6363 } else { 6364 DTRACE_PROBE1(l2arc__miss, 6365 arc_buf_hdr_t *, hdr); 6366 ARCSTAT_BUMP(arcstat_l2_misses); 6367 if (HDR_L2_WRITING(hdr)) 6368 ARCSTAT_BUMP(arcstat_l2_rw_clash); 6369 spa_config_exit(spa, SCL_L2ARC, vd); 6370 } 6371 } else { 6372 if (vd != NULL) 6373 spa_config_exit(spa, SCL_L2ARC, vd); 6374 6375 /* 6376 * Only a spa with l2 should contribute to l2 6377 * miss stats. (Including the case of having a 6378 * faulted cache device - that's also a miss.) 6379 */ 6380 if (spa_has_l2) { 6381 /* 6382 * Skip ARC stat bump for block pointers with 6383 * embedded data. The data are read from the 6384 * blkptr itself via 6385 * decode_embedded_bp_compressed(). 6386 */ 6387 if (!embedded_bp) { 6388 DTRACE_PROBE1(l2arc__miss, 6389 arc_buf_hdr_t *, hdr); 6390 ARCSTAT_BUMP(arcstat_l2_misses); 6391 } 6392 } 6393 } 6394 6395 rzio = zio_read(pio, spa, bp, hdr_abd, size, 6396 arc_read_done, hdr, priority, zio_flags, zb); 6397 acb->acb_zio_head = rzio; 6398 6399 if (hash_lock != NULL) 6400 mutex_exit(hash_lock); 6401 6402 if (*arc_flags & ARC_FLAG_WAIT) { 6403 rc = zio_wait(rzio); 6404 goto out; 6405 } 6406 6407 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 6408 zio_nowait(rzio); 6409 } 6410 6411 out: 6412 /* embedded bps don't actually go to disk */ 6413 if (!embedded_bp) 6414 spa_read_history_add(spa, zb, *arc_flags); 6415 spl_fstrans_unmark(cookie); 6416 return (rc); 6417 } 6418 6419 arc_prune_t * 6420 arc_add_prune_callback(arc_prune_func_t *func, void *private) 6421 { 6422 arc_prune_t *p; 6423 6424 p = kmem_alloc(sizeof (*p), KM_SLEEP); 6425 p->p_pfunc = func; 6426 p->p_private = private; 6427 list_link_init(&p->p_node); 6428 zfs_refcount_create(&p->p_refcnt); 6429 6430 mutex_enter(&arc_prune_mtx); 6431 zfs_refcount_add(&p->p_refcnt, &arc_prune_list); 6432 list_insert_head(&arc_prune_list, p); 6433 mutex_exit(&arc_prune_mtx); 6434 6435 return (p); 6436 } 6437 6438 void 6439 arc_remove_prune_callback(arc_prune_t *p) 6440 { 6441 boolean_t wait = B_FALSE; 6442 mutex_enter(&arc_prune_mtx); 6443 list_remove(&arc_prune_list, p); 6444 if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0) 6445 wait = B_TRUE; 6446 mutex_exit(&arc_prune_mtx); 6447 6448 /* wait for arc_prune_task to finish */ 6449 if (wait) 6450 taskq_wait_outstanding(arc_prune_taskq, 0); 6451 ASSERT0(zfs_refcount_count(&p->p_refcnt)); 6452 zfs_refcount_destroy(&p->p_refcnt); 6453 kmem_free(p, sizeof (*p)); 6454 } 6455 6456 /* 6457 * Notify the arc that a block was freed, and thus will never be used again. 6458 */ 6459 void 6460 arc_freed(spa_t *spa, const blkptr_t *bp) 6461 { 6462 arc_buf_hdr_t *hdr; 6463 kmutex_t *hash_lock; 6464 uint64_t guid = spa_load_guid(spa); 6465 6466 ASSERT(!BP_IS_EMBEDDED(bp)); 6467 6468 hdr = buf_hash_find(guid, bp, &hash_lock); 6469 if (hdr == NULL) 6470 return; 6471 6472 /* 6473 * We might be trying to free a block that is still doing I/O 6474 * (i.e. prefetch) or has a reference (i.e. a dedup-ed, 6475 * dmu_sync-ed block). If this block is being prefetched, then it 6476 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr 6477 * until the I/O completes. A block may also have a reference if it is 6478 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would 6479 * have written the new block to its final resting place on disk but 6480 * without the dedup flag set. This would have left the hdr in the MRU 6481 * state and discoverable. When the txg finally syncs it detects that 6482 * the block was overridden in open context and issues an override I/O. 6483 * Since this is a dedup block, the override I/O will determine if the 6484 * block is already in the DDT. If so, then it will replace the io_bp 6485 * with the bp from the DDT and allow the I/O to finish. When the I/O 6486 * reaches the done callback, dbuf_write_override_done, it will 6487 * check to see if the io_bp and io_bp_override are identical. 6488 * If they are not, then it indicates that the bp was replaced with 6489 * the bp in the DDT and the override bp is freed. This allows 6490 * us to arrive here with a reference on a block that is being 6491 * freed. So if we have an I/O in progress, or a reference to 6492 * this hdr, then we don't destroy the hdr. 6493 */ 6494 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) && 6495 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) { 6496 arc_change_state(arc_anon, hdr, hash_lock); 6497 arc_hdr_destroy(hdr); 6498 mutex_exit(hash_lock); 6499 } else { 6500 mutex_exit(hash_lock); 6501 } 6502 6503 } 6504 6505 /* 6506 * Release this buffer from the cache, making it an anonymous buffer. This 6507 * must be done after a read and prior to modifying the buffer contents. 6508 * If the buffer has more than one reference, we must make 6509 * a new hdr for the buffer. 6510 */ 6511 void 6512 arc_release(arc_buf_t *buf, void *tag) 6513 { 6514 arc_buf_hdr_t *hdr = buf->b_hdr; 6515 6516 /* 6517 * It would be nice to assert that if its DMU metadata (level > 6518 * 0 || it's the dnode file), then it must be syncing context. 6519 * But we don't know that information at this level. 6520 */ 6521 6522 mutex_enter(&buf->b_evict_lock); 6523 6524 ASSERT(HDR_HAS_L1HDR(hdr)); 6525 6526 /* 6527 * We don't grab the hash lock prior to this check, because if 6528 * the buffer's header is in the arc_anon state, it won't be 6529 * linked into the hash table. 6530 */ 6531 if (hdr->b_l1hdr.b_state == arc_anon) { 6532 mutex_exit(&buf->b_evict_lock); 6533 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6534 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 6535 ASSERT(!HDR_HAS_L2HDR(hdr)); 6536 ASSERT(HDR_EMPTY(hdr)); 6537 6538 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6539 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 6540 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node)); 6541 6542 hdr->b_l1hdr.b_arc_access = 0; 6543 6544 /* 6545 * If the buf is being overridden then it may already 6546 * have a hdr that is not empty. 6547 */ 6548 buf_discard_identity(hdr); 6549 arc_buf_thaw(buf); 6550 6551 return; 6552 } 6553 6554 kmutex_t *hash_lock = HDR_LOCK(hdr); 6555 mutex_enter(hash_lock); 6556 6557 /* 6558 * This assignment is only valid as long as the hash_lock is 6559 * held, we must be careful not to reference state or the 6560 * b_state field after dropping the lock. 6561 */ 6562 arc_state_t *state = hdr->b_l1hdr.b_state; 6563 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 6564 ASSERT3P(state, !=, arc_anon); 6565 6566 /* this buffer is not on any list */ 6567 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0); 6568 6569 if (HDR_HAS_L2HDR(hdr)) { 6570 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6571 6572 /* 6573 * We have to recheck this conditional again now that 6574 * we're holding the l2ad_mtx to prevent a race with 6575 * another thread which might be concurrently calling 6576 * l2arc_evict(). In that case, l2arc_evict() might have 6577 * destroyed the header's L2 portion as we were waiting 6578 * to acquire the l2ad_mtx. 6579 */ 6580 if (HDR_HAS_L2HDR(hdr)) 6581 arc_hdr_l2hdr_destroy(hdr); 6582 6583 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6584 } 6585 6586 /* 6587 * Do we have more than one buf? 6588 */ 6589 if (hdr->b_l1hdr.b_bufcnt > 1) { 6590 arc_buf_hdr_t *nhdr; 6591 uint64_t spa = hdr->b_spa; 6592 uint64_t psize = HDR_GET_PSIZE(hdr); 6593 uint64_t lsize = HDR_GET_LSIZE(hdr); 6594 boolean_t protected = HDR_PROTECTED(hdr); 6595 enum zio_compress compress = arc_hdr_get_compress(hdr); 6596 arc_buf_contents_t type = arc_buf_type(hdr); 6597 VERIFY3U(hdr->b_type, ==, type); 6598 6599 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); 6600 (void) remove_reference(hdr, hash_lock, tag); 6601 6602 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) { 6603 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6604 ASSERT(ARC_BUF_LAST(buf)); 6605 } 6606 6607 /* 6608 * Pull the data off of this hdr and attach it to 6609 * a new anonymous hdr. Also find the last buffer 6610 * in the hdr's buffer list. 6611 */ 6612 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 6613 ASSERT3P(lastbuf, !=, NULL); 6614 6615 /* 6616 * If the current arc_buf_t and the hdr are sharing their data 6617 * buffer, then we must stop sharing that block. 6618 */ 6619 if (arc_buf_is_shared(buf)) { 6620 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6621 VERIFY(!arc_buf_is_shared(lastbuf)); 6622 6623 /* 6624 * First, sever the block sharing relationship between 6625 * buf and the arc_buf_hdr_t. 6626 */ 6627 arc_unshare_buf(hdr, buf); 6628 6629 /* 6630 * Now we need to recreate the hdr's b_pabd. Since we 6631 * have lastbuf handy, we try to share with it, but if 6632 * we can't then we allocate a new b_pabd and copy the 6633 * data from buf into it. 6634 */ 6635 if (arc_can_share(hdr, lastbuf)) { 6636 arc_share_buf(hdr, lastbuf); 6637 } else { 6638 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 6639 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, 6640 buf->b_data, psize); 6641 } 6642 VERIFY3P(lastbuf->b_data, !=, NULL); 6643 } else if (HDR_SHARED_DATA(hdr)) { 6644 /* 6645 * Uncompressed shared buffers are always at the end 6646 * of the list. Compressed buffers don't have the 6647 * same requirements. This makes it hard to 6648 * simply assert that the lastbuf is shared so 6649 * we rely on the hdr's compression flags to determine 6650 * if we have a compressed, shared buffer. 6651 */ 6652 ASSERT(arc_buf_is_shared(lastbuf) || 6653 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 6654 ASSERT(!ARC_BUF_SHARED(buf)); 6655 } 6656 6657 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 6658 ASSERT3P(state, !=, arc_l2c_only); 6659 6660 (void) zfs_refcount_remove_many(&state->arcs_size, 6661 arc_buf_size(buf), buf); 6662 6663 if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6664 ASSERT3P(state, !=, arc_l2c_only); 6665 (void) zfs_refcount_remove_many( 6666 &state->arcs_esize[type], 6667 arc_buf_size(buf), buf); 6668 } 6669 6670 hdr->b_l1hdr.b_bufcnt -= 1; 6671 if (ARC_BUF_ENCRYPTED(buf)) 6672 hdr->b_crypt_hdr.b_ebufcnt -= 1; 6673 6674 arc_cksum_verify(buf); 6675 arc_buf_unwatch(buf); 6676 6677 /* if this is the last uncompressed buf free the checksum */ 6678 if (!arc_hdr_has_uncompressed_buf(hdr)) 6679 arc_cksum_free(hdr); 6680 6681 mutex_exit(hash_lock); 6682 6683 /* 6684 * Allocate a new hdr. The new hdr will contain a b_pabd 6685 * buffer which will be freed in arc_write(). 6686 */ 6687 nhdr = arc_hdr_alloc(spa, psize, lsize, protected, 6688 compress, hdr->b_complevel, type, HDR_HAS_RABD(hdr)); 6689 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL); 6690 ASSERT0(nhdr->b_l1hdr.b_bufcnt); 6691 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt)); 6692 VERIFY3U(nhdr->b_type, ==, type); 6693 ASSERT(!HDR_SHARED_DATA(nhdr)); 6694 6695 nhdr->b_l1hdr.b_buf = buf; 6696 nhdr->b_l1hdr.b_bufcnt = 1; 6697 if (ARC_BUF_ENCRYPTED(buf)) 6698 nhdr->b_crypt_hdr.b_ebufcnt = 1; 6699 nhdr->b_l1hdr.b_mru_hits = 0; 6700 nhdr->b_l1hdr.b_mru_ghost_hits = 0; 6701 nhdr->b_l1hdr.b_mfu_hits = 0; 6702 nhdr->b_l1hdr.b_mfu_ghost_hits = 0; 6703 nhdr->b_l1hdr.b_l2_hits = 0; 6704 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 6705 buf->b_hdr = nhdr; 6706 6707 mutex_exit(&buf->b_evict_lock); 6708 (void) zfs_refcount_add_many(&arc_anon->arcs_size, 6709 arc_buf_size(buf), buf); 6710 } else { 6711 mutex_exit(&buf->b_evict_lock); 6712 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 6713 /* protected by hash lock, or hdr is on arc_anon */ 6714 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 6715 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6716 hdr->b_l1hdr.b_mru_hits = 0; 6717 hdr->b_l1hdr.b_mru_ghost_hits = 0; 6718 hdr->b_l1hdr.b_mfu_hits = 0; 6719 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 6720 hdr->b_l1hdr.b_l2_hits = 0; 6721 arc_change_state(arc_anon, hdr, hash_lock); 6722 hdr->b_l1hdr.b_arc_access = 0; 6723 6724 mutex_exit(hash_lock); 6725 buf_discard_identity(hdr); 6726 arc_buf_thaw(buf); 6727 } 6728 } 6729 6730 int 6731 arc_released(arc_buf_t *buf) 6732 { 6733 int released; 6734 6735 mutex_enter(&buf->b_evict_lock); 6736 released = (buf->b_data != NULL && 6737 buf->b_hdr->b_l1hdr.b_state == arc_anon); 6738 mutex_exit(&buf->b_evict_lock); 6739 return (released); 6740 } 6741 6742 #ifdef ZFS_DEBUG 6743 int 6744 arc_referenced(arc_buf_t *buf) 6745 { 6746 int referenced; 6747 6748 mutex_enter(&buf->b_evict_lock); 6749 referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 6750 mutex_exit(&buf->b_evict_lock); 6751 return (referenced); 6752 } 6753 #endif 6754 6755 static void 6756 arc_write_ready(zio_t *zio) 6757 { 6758 arc_write_callback_t *callback = zio->io_private; 6759 arc_buf_t *buf = callback->awcb_buf; 6760 arc_buf_hdr_t *hdr = buf->b_hdr; 6761 blkptr_t *bp = zio->io_bp; 6762 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp); 6763 fstrans_cookie_t cookie = spl_fstrans_mark(); 6764 6765 ASSERT(HDR_HAS_L1HDR(hdr)); 6766 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 6767 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 6768 6769 /* 6770 * If we're reexecuting this zio because the pool suspended, then 6771 * cleanup any state that was previously set the first time the 6772 * callback was invoked. 6773 */ 6774 if (zio->io_flags & ZIO_FLAG_REEXECUTED) { 6775 arc_cksum_free(hdr); 6776 arc_buf_unwatch(buf); 6777 if (hdr->b_l1hdr.b_pabd != NULL) { 6778 if (arc_buf_is_shared(buf)) { 6779 arc_unshare_buf(hdr, buf); 6780 } else { 6781 arc_hdr_free_abd(hdr, B_FALSE); 6782 } 6783 } 6784 6785 if (HDR_HAS_RABD(hdr)) 6786 arc_hdr_free_abd(hdr, B_TRUE); 6787 } 6788 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6789 ASSERT(!HDR_HAS_RABD(hdr)); 6790 ASSERT(!HDR_SHARED_DATA(hdr)); 6791 ASSERT(!arc_buf_is_shared(buf)); 6792 6793 callback->awcb_ready(zio, buf, callback->awcb_private); 6794 6795 if (HDR_IO_IN_PROGRESS(hdr)) 6796 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); 6797 6798 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6799 6800 if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr)) 6801 hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp)); 6802 6803 if (BP_IS_PROTECTED(bp)) { 6804 /* ZIL blocks are written through zio_rewrite */ 6805 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 6806 ASSERT(HDR_PROTECTED(hdr)); 6807 6808 if (BP_SHOULD_BYTESWAP(bp)) { 6809 if (BP_GET_LEVEL(bp) > 0) { 6810 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 6811 } else { 6812 hdr->b_l1hdr.b_byteswap = 6813 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 6814 } 6815 } else { 6816 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 6817 } 6818 6819 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 6820 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 6821 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 6822 hdr->b_crypt_hdr.b_iv); 6823 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 6824 } 6825 6826 /* 6827 * If this block was written for raw encryption but the zio layer 6828 * ended up only authenticating it, adjust the buffer flags now. 6829 */ 6830 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) { 6831 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6832 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6833 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF) 6834 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6835 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) { 6836 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6837 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6838 } 6839 6840 /* this must be done after the buffer flags are adjusted */ 6841 arc_cksum_compute(buf); 6842 6843 enum zio_compress compress; 6844 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 6845 compress = ZIO_COMPRESS_OFF; 6846 } else { 6847 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 6848 compress = BP_GET_COMPRESS(bp); 6849 } 6850 HDR_SET_PSIZE(hdr, psize); 6851 arc_hdr_set_compress(hdr, compress); 6852 hdr->b_complevel = zio->io_prop.zp_complevel; 6853 6854 if (zio->io_error != 0 || psize == 0) 6855 goto out; 6856 6857 /* 6858 * Fill the hdr with data. If the buffer is encrypted we have no choice 6859 * but to copy the data into b_radb. If the hdr is compressed, the data 6860 * we want is available from the zio, otherwise we can take it from 6861 * the buf. 6862 * 6863 * We might be able to share the buf's data with the hdr here. However, 6864 * doing so would cause the ARC to be full of linear ABDs if we write a 6865 * lot of shareable data. As a compromise, we check whether scattered 6866 * ABDs are allowed, and assume that if they are then the user wants 6867 * the ARC to be primarily filled with them regardless of the data being 6868 * written. Therefore, if they're allowed then we allocate one and copy 6869 * the data into it; otherwise, we share the data directly if we can. 6870 */ 6871 if (ARC_BUF_ENCRYPTED(buf)) { 6872 ASSERT3U(psize, >, 0); 6873 ASSERT(ARC_BUF_COMPRESSED(buf)); 6874 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA); 6875 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6876 } else if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) { 6877 /* 6878 * Ideally, we would always copy the io_abd into b_pabd, but the 6879 * user may have disabled compressed ARC, thus we must check the 6880 * hdr's compression setting rather than the io_bp's. 6881 */ 6882 if (BP_IS_ENCRYPTED(bp)) { 6883 ASSERT3U(psize, >, 0); 6884 arc_hdr_alloc_abd(hdr, 6885 ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA); 6886 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6887 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 6888 !ARC_BUF_COMPRESSED(buf)) { 6889 ASSERT3U(psize, >, 0); 6890 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 6891 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize); 6892 } else { 6893 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr)); 6894 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 6895 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data, 6896 arc_buf_size(buf)); 6897 } 6898 } else { 6899 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd)); 6900 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf)); 6901 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6902 6903 arc_share_buf(hdr, buf); 6904 } 6905 6906 out: 6907 arc_hdr_verify(hdr, bp); 6908 spl_fstrans_unmark(cookie); 6909 } 6910 6911 static void 6912 arc_write_children_ready(zio_t *zio) 6913 { 6914 arc_write_callback_t *callback = zio->io_private; 6915 arc_buf_t *buf = callback->awcb_buf; 6916 6917 callback->awcb_children_ready(zio, buf, callback->awcb_private); 6918 } 6919 6920 /* 6921 * The SPA calls this callback for each physical write that happens on behalf 6922 * of a logical write. See the comment in dbuf_write_physdone() for details. 6923 */ 6924 static void 6925 arc_write_physdone(zio_t *zio) 6926 { 6927 arc_write_callback_t *cb = zio->io_private; 6928 if (cb->awcb_physdone != NULL) 6929 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 6930 } 6931 6932 static void 6933 arc_write_done(zio_t *zio) 6934 { 6935 arc_write_callback_t *callback = zio->io_private; 6936 arc_buf_t *buf = callback->awcb_buf; 6937 arc_buf_hdr_t *hdr = buf->b_hdr; 6938 6939 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6940 6941 if (zio->io_error == 0) { 6942 arc_hdr_verify(hdr, zio->io_bp); 6943 6944 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 6945 buf_discard_identity(hdr); 6946 } else { 6947 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 6948 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 6949 } 6950 } else { 6951 ASSERT(HDR_EMPTY(hdr)); 6952 } 6953 6954 /* 6955 * If the block to be written was all-zero or compressed enough to be 6956 * embedded in the BP, no write was performed so there will be no 6957 * dva/birth/checksum. The buffer must therefore remain anonymous 6958 * (and uncached). 6959 */ 6960 if (!HDR_EMPTY(hdr)) { 6961 arc_buf_hdr_t *exists; 6962 kmutex_t *hash_lock; 6963 6964 ASSERT3U(zio->io_error, ==, 0); 6965 6966 arc_cksum_verify(buf); 6967 6968 exists = buf_hash_insert(hdr, &hash_lock); 6969 if (exists != NULL) { 6970 /* 6971 * This can only happen if we overwrite for 6972 * sync-to-convergence, because we remove 6973 * buffers from the hash table when we arc_free(). 6974 */ 6975 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 6976 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6977 panic("bad overwrite, hdr=%p exists=%p", 6978 (void *)hdr, (void *)exists); 6979 ASSERT(zfs_refcount_is_zero( 6980 &exists->b_l1hdr.b_refcnt)); 6981 arc_change_state(arc_anon, exists, hash_lock); 6982 arc_hdr_destroy(exists); 6983 mutex_exit(hash_lock); 6984 exists = buf_hash_insert(hdr, &hash_lock); 6985 ASSERT3P(exists, ==, NULL); 6986 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 6987 /* nopwrite */ 6988 ASSERT(zio->io_prop.zp_nopwrite); 6989 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6990 panic("bad nopwrite, hdr=%p exists=%p", 6991 (void *)hdr, (void *)exists); 6992 } else { 6993 /* Dedup */ 6994 ASSERT(hdr->b_l1hdr.b_bufcnt == 1); 6995 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 6996 ASSERT(BP_GET_DEDUP(zio->io_bp)); 6997 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 6998 } 6999 } 7000 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 7001 /* if it's not anon, we are doing a scrub */ 7002 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 7003 arc_access(hdr, hash_lock); 7004 mutex_exit(hash_lock); 7005 } else { 7006 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 7007 } 7008 7009 ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 7010 callback->awcb_done(zio, buf, callback->awcb_private); 7011 7012 abd_free(zio->io_abd); 7013 kmem_free(callback, sizeof (arc_write_callback_t)); 7014 } 7015 7016 zio_t * 7017 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 7018 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, 7019 const zio_prop_t *zp, arc_write_done_func_t *ready, 7020 arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone, 7021 arc_write_done_func_t *done, void *private, zio_priority_t priority, 7022 int zio_flags, const zbookmark_phys_t *zb) 7023 { 7024 arc_buf_hdr_t *hdr = buf->b_hdr; 7025 arc_write_callback_t *callback; 7026 zio_t *zio; 7027 zio_prop_t localprop = *zp; 7028 7029 ASSERT3P(ready, !=, NULL); 7030 ASSERT3P(done, !=, NULL); 7031 ASSERT(!HDR_IO_ERROR(hdr)); 7032 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 7033 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 7034 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 7035 if (l2arc) 7036 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 7037 7038 if (ARC_BUF_ENCRYPTED(buf)) { 7039 ASSERT(ARC_BUF_COMPRESSED(buf)); 7040 localprop.zp_encrypt = B_TRUE; 7041 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 7042 localprop.zp_complevel = hdr->b_complevel; 7043 localprop.zp_byteorder = 7044 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 7045 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 7046 bcopy(hdr->b_crypt_hdr.b_salt, localprop.zp_salt, 7047 ZIO_DATA_SALT_LEN); 7048 bcopy(hdr->b_crypt_hdr.b_iv, localprop.zp_iv, 7049 ZIO_DATA_IV_LEN); 7050 bcopy(hdr->b_crypt_hdr.b_mac, localprop.zp_mac, 7051 ZIO_DATA_MAC_LEN); 7052 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) { 7053 localprop.zp_nopwrite = B_FALSE; 7054 localprop.zp_copies = 7055 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1); 7056 } 7057 zio_flags |= ZIO_FLAG_RAW; 7058 } else if (ARC_BUF_COMPRESSED(buf)) { 7059 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf)); 7060 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 7061 localprop.zp_complevel = hdr->b_complevel; 7062 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 7063 } 7064 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 7065 callback->awcb_ready = ready; 7066 callback->awcb_children_ready = children_ready; 7067 callback->awcb_physdone = physdone; 7068 callback->awcb_done = done; 7069 callback->awcb_private = private; 7070 callback->awcb_buf = buf; 7071 7072 /* 7073 * The hdr's b_pabd is now stale, free it now. A new data block 7074 * will be allocated when the zio pipeline calls arc_write_ready(). 7075 */ 7076 if (hdr->b_l1hdr.b_pabd != NULL) { 7077 /* 7078 * If the buf is currently sharing the data block with 7079 * the hdr then we need to break that relationship here. 7080 * The hdr will remain with a NULL data pointer and the 7081 * buf will take sole ownership of the block. 7082 */ 7083 if (arc_buf_is_shared(buf)) { 7084 arc_unshare_buf(hdr, buf); 7085 } else { 7086 arc_hdr_free_abd(hdr, B_FALSE); 7087 } 7088 VERIFY3P(buf->b_data, !=, NULL); 7089 } 7090 7091 if (HDR_HAS_RABD(hdr)) 7092 arc_hdr_free_abd(hdr, B_TRUE); 7093 7094 if (!(zio_flags & ZIO_FLAG_RAW)) 7095 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); 7096 7097 ASSERT(!arc_buf_is_shared(buf)); 7098 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 7099 7100 zio = zio_write(pio, spa, txg, bp, 7101 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)), 7102 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready, 7103 (children_ready != NULL) ? arc_write_children_ready : NULL, 7104 arc_write_physdone, arc_write_done, callback, 7105 priority, zio_flags, zb); 7106 7107 return (zio); 7108 } 7109 7110 void 7111 arc_tempreserve_clear(uint64_t reserve) 7112 { 7113 atomic_add_64(&arc_tempreserve, -reserve); 7114 ASSERT((int64_t)arc_tempreserve >= 0); 7115 } 7116 7117 int 7118 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg) 7119 { 7120 int error; 7121 uint64_t anon_size; 7122 7123 if (!arc_no_grow && 7124 reserve > arc_c/4 && 7125 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT)) 7126 arc_c = MIN(arc_c_max, reserve * 4); 7127 7128 /* 7129 * Throttle when the calculated memory footprint for the TXG 7130 * exceeds the target ARC size. 7131 */ 7132 if (reserve > arc_c) { 7133 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve); 7134 return (SET_ERROR(ERESTART)); 7135 } 7136 7137 /* 7138 * Don't count loaned bufs as in flight dirty data to prevent long 7139 * network delays from blocking transactions that are ready to be 7140 * assigned to a txg. 7141 */ 7142 7143 /* assert that it has not wrapped around */ 7144 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 7145 7146 anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) - 7147 arc_loaned_bytes), 0); 7148 7149 /* 7150 * Writes will, almost always, require additional memory allocations 7151 * in order to compress/encrypt/etc the data. We therefore need to 7152 * make sure that there is sufficient available memory for this. 7153 */ 7154 error = arc_memory_throttle(spa, reserve, txg); 7155 if (error != 0) 7156 return (error); 7157 7158 /* 7159 * Throttle writes when the amount of dirty data in the cache 7160 * gets too large. We try to keep the cache less than half full 7161 * of dirty blocks so that our sync times don't grow too large. 7162 * 7163 * In the case of one pool being built on another pool, we want 7164 * to make sure we don't end up throttling the lower (backing) 7165 * pool when the upper pool is the majority contributor to dirty 7166 * data. To insure we make forward progress during throttling, we 7167 * also check the current pool's net dirty data and only throttle 7168 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty 7169 * data in the cache. 7170 * 7171 * Note: if two requests come in concurrently, we might let them 7172 * both succeed, when one of them should fail. Not a huge deal. 7173 */ 7174 uint64_t total_dirty = reserve + arc_tempreserve + anon_size; 7175 uint64_t spa_dirty_anon = spa_dirty_data(spa); 7176 uint64_t rarc_c = arc_warm ? arc_c : arc_c_max; 7177 if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 && 7178 anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 && 7179 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) { 7180 #ifdef ZFS_DEBUG 7181 uint64_t meta_esize = zfs_refcount_count( 7182 &arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7183 uint64_t data_esize = 7184 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7185 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 7186 "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n", 7187 (u_longlong_t)arc_tempreserve >> 10, 7188 (u_longlong_t)meta_esize >> 10, 7189 (u_longlong_t)data_esize >> 10, 7190 (u_longlong_t)reserve >> 10, 7191 (u_longlong_t)rarc_c >> 10); 7192 #endif 7193 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle); 7194 return (SET_ERROR(ERESTART)); 7195 } 7196 atomic_add_64(&arc_tempreserve, reserve); 7197 return (0); 7198 } 7199 7200 static void 7201 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 7202 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 7203 { 7204 size->value.ui64 = zfs_refcount_count(&state->arcs_size); 7205 evict_data->value.ui64 = 7206 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); 7207 evict_metadata->value.ui64 = 7208 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); 7209 } 7210 7211 static int 7212 arc_kstat_update(kstat_t *ksp, int rw) 7213 { 7214 arc_stats_t *as = ksp->ks_data; 7215 7216 if (rw == KSTAT_WRITE) 7217 return (SET_ERROR(EACCES)); 7218 7219 as->arcstat_hits.value.ui64 = 7220 wmsum_value(&arc_sums.arcstat_hits); 7221 as->arcstat_misses.value.ui64 = 7222 wmsum_value(&arc_sums.arcstat_misses); 7223 as->arcstat_demand_data_hits.value.ui64 = 7224 wmsum_value(&arc_sums.arcstat_demand_data_hits); 7225 as->arcstat_demand_data_misses.value.ui64 = 7226 wmsum_value(&arc_sums.arcstat_demand_data_misses); 7227 as->arcstat_demand_metadata_hits.value.ui64 = 7228 wmsum_value(&arc_sums.arcstat_demand_metadata_hits); 7229 as->arcstat_demand_metadata_misses.value.ui64 = 7230 wmsum_value(&arc_sums.arcstat_demand_metadata_misses); 7231 as->arcstat_prefetch_data_hits.value.ui64 = 7232 wmsum_value(&arc_sums.arcstat_prefetch_data_hits); 7233 as->arcstat_prefetch_data_misses.value.ui64 = 7234 wmsum_value(&arc_sums.arcstat_prefetch_data_misses); 7235 as->arcstat_prefetch_metadata_hits.value.ui64 = 7236 wmsum_value(&arc_sums.arcstat_prefetch_metadata_hits); 7237 as->arcstat_prefetch_metadata_misses.value.ui64 = 7238 wmsum_value(&arc_sums.arcstat_prefetch_metadata_misses); 7239 as->arcstat_mru_hits.value.ui64 = 7240 wmsum_value(&arc_sums.arcstat_mru_hits); 7241 as->arcstat_mru_ghost_hits.value.ui64 = 7242 wmsum_value(&arc_sums.arcstat_mru_ghost_hits); 7243 as->arcstat_mfu_hits.value.ui64 = 7244 wmsum_value(&arc_sums.arcstat_mfu_hits); 7245 as->arcstat_mfu_ghost_hits.value.ui64 = 7246 wmsum_value(&arc_sums.arcstat_mfu_ghost_hits); 7247 as->arcstat_deleted.value.ui64 = 7248 wmsum_value(&arc_sums.arcstat_deleted); 7249 as->arcstat_mutex_miss.value.ui64 = 7250 wmsum_value(&arc_sums.arcstat_mutex_miss); 7251 as->arcstat_access_skip.value.ui64 = 7252 wmsum_value(&arc_sums.arcstat_access_skip); 7253 as->arcstat_evict_skip.value.ui64 = 7254 wmsum_value(&arc_sums.arcstat_evict_skip); 7255 as->arcstat_evict_not_enough.value.ui64 = 7256 wmsum_value(&arc_sums.arcstat_evict_not_enough); 7257 as->arcstat_evict_l2_cached.value.ui64 = 7258 wmsum_value(&arc_sums.arcstat_evict_l2_cached); 7259 as->arcstat_evict_l2_eligible.value.ui64 = 7260 wmsum_value(&arc_sums.arcstat_evict_l2_eligible); 7261 as->arcstat_evict_l2_eligible_mfu.value.ui64 = 7262 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mfu); 7263 as->arcstat_evict_l2_eligible_mru.value.ui64 = 7264 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mru); 7265 as->arcstat_evict_l2_ineligible.value.ui64 = 7266 wmsum_value(&arc_sums.arcstat_evict_l2_ineligible); 7267 as->arcstat_evict_l2_skip.value.ui64 = 7268 wmsum_value(&arc_sums.arcstat_evict_l2_skip); 7269 as->arcstat_hash_collisions.value.ui64 = 7270 wmsum_value(&arc_sums.arcstat_hash_collisions); 7271 as->arcstat_hash_chains.value.ui64 = 7272 wmsum_value(&arc_sums.arcstat_hash_chains); 7273 as->arcstat_size.value.ui64 = 7274 aggsum_value(&arc_sums.arcstat_size); 7275 as->arcstat_compressed_size.value.ui64 = 7276 wmsum_value(&arc_sums.arcstat_compressed_size); 7277 as->arcstat_uncompressed_size.value.ui64 = 7278 wmsum_value(&arc_sums.arcstat_uncompressed_size); 7279 as->arcstat_overhead_size.value.ui64 = 7280 wmsum_value(&arc_sums.arcstat_overhead_size); 7281 as->arcstat_hdr_size.value.ui64 = 7282 wmsum_value(&arc_sums.arcstat_hdr_size); 7283 as->arcstat_data_size.value.ui64 = 7284 wmsum_value(&arc_sums.arcstat_data_size); 7285 as->arcstat_metadata_size.value.ui64 = 7286 wmsum_value(&arc_sums.arcstat_metadata_size); 7287 as->arcstat_dbuf_size.value.ui64 = 7288 wmsum_value(&arc_sums.arcstat_dbuf_size); 7289 #if defined(COMPAT_FREEBSD11) 7290 as->arcstat_other_size.value.ui64 = 7291 wmsum_value(&arc_sums.arcstat_bonus_size) + 7292 aggsum_value(&arc_sums.arcstat_dnode_size) + 7293 wmsum_value(&arc_sums.arcstat_dbuf_size); 7294 #endif 7295 7296 arc_kstat_update_state(arc_anon, 7297 &as->arcstat_anon_size, 7298 &as->arcstat_anon_evictable_data, 7299 &as->arcstat_anon_evictable_metadata); 7300 arc_kstat_update_state(arc_mru, 7301 &as->arcstat_mru_size, 7302 &as->arcstat_mru_evictable_data, 7303 &as->arcstat_mru_evictable_metadata); 7304 arc_kstat_update_state(arc_mru_ghost, 7305 &as->arcstat_mru_ghost_size, 7306 &as->arcstat_mru_ghost_evictable_data, 7307 &as->arcstat_mru_ghost_evictable_metadata); 7308 arc_kstat_update_state(arc_mfu, 7309 &as->arcstat_mfu_size, 7310 &as->arcstat_mfu_evictable_data, 7311 &as->arcstat_mfu_evictable_metadata); 7312 arc_kstat_update_state(arc_mfu_ghost, 7313 &as->arcstat_mfu_ghost_size, 7314 &as->arcstat_mfu_ghost_evictable_data, 7315 &as->arcstat_mfu_ghost_evictable_metadata); 7316 7317 as->arcstat_dnode_size.value.ui64 = 7318 aggsum_value(&arc_sums.arcstat_dnode_size); 7319 as->arcstat_bonus_size.value.ui64 = 7320 wmsum_value(&arc_sums.arcstat_bonus_size); 7321 as->arcstat_l2_hits.value.ui64 = 7322 wmsum_value(&arc_sums.arcstat_l2_hits); 7323 as->arcstat_l2_misses.value.ui64 = 7324 wmsum_value(&arc_sums.arcstat_l2_misses); 7325 as->arcstat_l2_prefetch_asize.value.ui64 = 7326 wmsum_value(&arc_sums.arcstat_l2_prefetch_asize); 7327 as->arcstat_l2_mru_asize.value.ui64 = 7328 wmsum_value(&arc_sums.arcstat_l2_mru_asize); 7329 as->arcstat_l2_mfu_asize.value.ui64 = 7330 wmsum_value(&arc_sums.arcstat_l2_mfu_asize); 7331 as->arcstat_l2_bufc_data_asize.value.ui64 = 7332 wmsum_value(&arc_sums.arcstat_l2_bufc_data_asize); 7333 as->arcstat_l2_bufc_metadata_asize.value.ui64 = 7334 wmsum_value(&arc_sums.arcstat_l2_bufc_metadata_asize); 7335 as->arcstat_l2_feeds.value.ui64 = 7336 wmsum_value(&arc_sums.arcstat_l2_feeds); 7337 as->arcstat_l2_rw_clash.value.ui64 = 7338 wmsum_value(&arc_sums.arcstat_l2_rw_clash); 7339 as->arcstat_l2_read_bytes.value.ui64 = 7340 wmsum_value(&arc_sums.arcstat_l2_read_bytes); 7341 as->arcstat_l2_write_bytes.value.ui64 = 7342 wmsum_value(&arc_sums.arcstat_l2_write_bytes); 7343 as->arcstat_l2_writes_sent.value.ui64 = 7344 wmsum_value(&arc_sums.arcstat_l2_writes_sent); 7345 as->arcstat_l2_writes_done.value.ui64 = 7346 wmsum_value(&arc_sums.arcstat_l2_writes_done); 7347 as->arcstat_l2_writes_error.value.ui64 = 7348 wmsum_value(&arc_sums.arcstat_l2_writes_error); 7349 as->arcstat_l2_writes_lock_retry.value.ui64 = 7350 wmsum_value(&arc_sums.arcstat_l2_writes_lock_retry); 7351 as->arcstat_l2_evict_lock_retry.value.ui64 = 7352 wmsum_value(&arc_sums.arcstat_l2_evict_lock_retry); 7353 as->arcstat_l2_evict_reading.value.ui64 = 7354 wmsum_value(&arc_sums.arcstat_l2_evict_reading); 7355 as->arcstat_l2_evict_l1cached.value.ui64 = 7356 wmsum_value(&arc_sums.arcstat_l2_evict_l1cached); 7357 as->arcstat_l2_free_on_write.value.ui64 = 7358 wmsum_value(&arc_sums.arcstat_l2_free_on_write); 7359 as->arcstat_l2_abort_lowmem.value.ui64 = 7360 wmsum_value(&arc_sums.arcstat_l2_abort_lowmem); 7361 as->arcstat_l2_cksum_bad.value.ui64 = 7362 wmsum_value(&arc_sums.arcstat_l2_cksum_bad); 7363 as->arcstat_l2_io_error.value.ui64 = 7364 wmsum_value(&arc_sums.arcstat_l2_io_error); 7365 as->arcstat_l2_lsize.value.ui64 = 7366 wmsum_value(&arc_sums.arcstat_l2_lsize); 7367 as->arcstat_l2_psize.value.ui64 = 7368 wmsum_value(&arc_sums.arcstat_l2_psize); 7369 as->arcstat_l2_hdr_size.value.ui64 = 7370 aggsum_value(&arc_sums.arcstat_l2_hdr_size); 7371 as->arcstat_l2_log_blk_writes.value.ui64 = 7372 wmsum_value(&arc_sums.arcstat_l2_log_blk_writes); 7373 as->arcstat_l2_log_blk_asize.value.ui64 = 7374 wmsum_value(&arc_sums.arcstat_l2_log_blk_asize); 7375 as->arcstat_l2_log_blk_count.value.ui64 = 7376 wmsum_value(&arc_sums.arcstat_l2_log_blk_count); 7377 as->arcstat_l2_rebuild_success.value.ui64 = 7378 wmsum_value(&arc_sums.arcstat_l2_rebuild_success); 7379 as->arcstat_l2_rebuild_abort_unsupported.value.ui64 = 7380 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_unsupported); 7381 as->arcstat_l2_rebuild_abort_io_errors.value.ui64 = 7382 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_io_errors); 7383 as->arcstat_l2_rebuild_abort_dh_errors.value.ui64 = 7384 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_dh_errors); 7385 as->arcstat_l2_rebuild_abort_cksum_lb_errors.value.ui64 = 7386 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors); 7387 as->arcstat_l2_rebuild_abort_lowmem.value.ui64 = 7388 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_lowmem); 7389 as->arcstat_l2_rebuild_size.value.ui64 = 7390 wmsum_value(&arc_sums.arcstat_l2_rebuild_size); 7391 as->arcstat_l2_rebuild_asize.value.ui64 = 7392 wmsum_value(&arc_sums.arcstat_l2_rebuild_asize); 7393 as->arcstat_l2_rebuild_bufs.value.ui64 = 7394 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs); 7395 as->arcstat_l2_rebuild_bufs_precached.value.ui64 = 7396 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs_precached); 7397 as->arcstat_l2_rebuild_log_blks.value.ui64 = 7398 wmsum_value(&arc_sums.arcstat_l2_rebuild_log_blks); 7399 as->arcstat_memory_throttle_count.value.ui64 = 7400 wmsum_value(&arc_sums.arcstat_memory_throttle_count); 7401 as->arcstat_memory_direct_count.value.ui64 = 7402 wmsum_value(&arc_sums.arcstat_memory_direct_count); 7403 as->arcstat_memory_indirect_count.value.ui64 = 7404 wmsum_value(&arc_sums.arcstat_memory_indirect_count); 7405 7406 as->arcstat_memory_all_bytes.value.ui64 = 7407 arc_all_memory(); 7408 as->arcstat_memory_free_bytes.value.ui64 = 7409 arc_free_memory(); 7410 as->arcstat_memory_available_bytes.value.i64 = 7411 arc_available_memory(); 7412 7413 as->arcstat_prune.value.ui64 = 7414 wmsum_value(&arc_sums.arcstat_prune); 7415 as->arcstat_meta_used.value.ui64 = 7416 aggsum_value(&arc_sums.arcstat_meta_used); 7417 as->arcstat_async_upgrade_sync.value.ui64 = 7418 wmsum_value(&arc_sums.arcstat_async_upgrade_sync); 7419 as->arcstat_demand_hit_predictive_prefetch.value.ui64 = 7420 wmsum_value(&arc_sums.arcstat_demand_hit_predictive_prefetch); 7421 as->arcstat_demand_hit_prescient_prefetch.value.ui64 = 7422 wmsum_value(&arc_sums.arcstat_demand_hit_prescient_prefetch); 7423 as->arcstat_raw_size.value.ui64 = 7424 wmsum_value(&arc_sums.arcstat_raw_size); 7425 as->arcstat_cached_only_in_progress.value.ui64 = 7426 wmsum_value(&arc_sums.arcstat_cached_only_in_progress); 7427 as->arcstat_abd_chunk_waste_size.value.ui64 = 7428 wmsum_value(&arc_sums.arcstat_abd_chunk_waste_size); 7429 7430 return (0); 7431 } 7432 7433 /* 7434 * This function *must* return indices evenly distributed between all 7435 * sublists of the multilist. This is needed due to how the ARC eviction 7436 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 7437 * distributed between all sublists and uses this assumption when 7438 * deciding which sublist to evict from and how much to evict from it. 7439 */ 7440 static unsigned int 7441 arc_state_multilist_index_func(multilist_t *ml, void *obj) 7442 { 7443 arc_buf_hdr_t *hdr = obj; 7444 7445 /* 7446 * We rely on b_dva to generate evenly distributed index 7447 * numbers using buf_hash below. So, as an added precaution, 7448 * let's make sure we never add empty buffers to the arc lists. 7449 */ 7450 ASSERT(!HDR_EMPTY(hdr)); 7451 7452 /* 7453 * The assumption here, is the hash value for a given 7454 * arc_buf_hdr_t will remain constant throughout its lifetime 7455 * (i.e. its b_spa, b_dva, and b_birth fields don't change). 7456 * Thus, we don't need to store the header's sublist index 7457 * on insertion, as this index can be recalculated on removal. 7458 * 7459 * Also, the low order bits of the hash value are thought to be 7460 * distributed evenly. Otherwise, in the case that the multilist 7461 * has a power of two number of sublists, each sublists' usage 7462 * would not be evenly distributed. In this context full 64bit 7463 * division would be a waste of time, so limit it to 32 bits. 7464 */ 7465 return ((unsigned int)buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 7466 multilist_get_num_sublists(ml)); 7467 } 7468 7469 #define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \ 7470 if ((do_warn) && (tuning) && ((tuning) != (value))) { \ 7471 cmn_err(CE_WARN, \ 7472 "ignoring tunable %s (using %llu instead)", \ 7473 (#tuning), (value)); \ 7474 } \ 7475 } while (0) 7476 7477 /* 7478 * Called during module initialization and periodically thereafter to 7479 * apply reasonable changes to the exposed performance tunings. Can also be 7480 * called explicitly by param_set_arc_*() functions when ARC tunables are 7481 * updated manually. Non-zero zfs_* values which differ from the currently set 7482 * values will be applied. 7483 */ 7484 void 7485 arc_tuning_update(boolean_t verbose) 7486 { 7487 uint64_t allmem = arc_all_memory(); 7488 unsigned long limit; 7489 7490 /* Valid range: 32M - <arc_c_max> */ 7491 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) && 7492 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) && 7493 (zfs_arc_min <= arc_c_max)) { 7494 arc_c_min = zfs_arc_min; 7495 arc_c = MAX(arc_c, arc_c_min); 7496 } 7497 WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose); 7498 7499 /* Valid range: 64M - <all physical memory> */ 7500 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) && 7501 (zfs_arc_max >= 64 << 20) && (zfs_arc_max < allmem) && 7502 (zfs_arc_max > arc_c_min)) { 7503 arc_c_max = zfs_arc_max; 7504 arc_c = MIN(arc_c, arc_c_max); 7505 arc_p = (arc_c >> 1); 7506 if (arc_meta_limit > arc_c_max) 7507 arc_meta_limit = arc_c_max; 7508 if (arc_dnode_size_limit > arc_meta_limit) 7509 arc_dnode_size_limit = arc_meta_limit; 7510 } 7511 WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose); 7512 7513 /* Valid range: 16M - <arc_c_max> */ 7514 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) && 7515 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) && 7516 (zfs_arc_meta_min <= arc_c_max)) { 7517 arc_meta_min = zfs_arc_meta_min; 7518 if (arc_meta_limit < arc_meta_min) 7519 arc_meta_limit = arc_meta_min; 7520 if (arc_dnode_size_limit < arc_meta_min) 7521 arc_dnode_size_limit = arc_meta_min; 7522 } 7523 WARN_IF_TUNING_IGNORED(zfs_arc_meta_min, arc_meta_min, verbose); 7524 7525 /* Valid range: <arc_meta_min> - <arc_c_max> */ 7526 limit = zfs_arc_meta_limit ? zfs_arc_meta_limit : 7527 MIN(zfs_arc_meta_limit_percent, 100) * arc_c_max / 100; 7528 if ((limit != arc_meta_limit) && 7529 (limit >= arc_meta_min) && 7530 (limit <= arc_c_max)) 7531 arc_meta_limit = limit; 7532 WARN_IF_TUNING_IGNORED(zfs_arc_meta_limit, arc_meta_limit, verbose); 7533 7534 /* Valid range: <arc_meta_min> - <arc_meta_limit> */ 7535 limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit : 7536 MIN(zfs_arc_dnode_limit_percent, 100) * arc_meta_limit / 100; 7537 if ((limit != arc_dnode_size_limit) && 7538 (limit >= arc_meta_min) && 7539 (limit <= arc_meta_limit)) 7540 arc_dnode_size_limit = limit; 7541 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_size_limit, 7542 verbose); 7543 7544 /* Valid range: 1 - N */ 7545 if (zfs_arc_grow_retry) 7546 arc_grow_retry = zfs_arc_grow_retry; 7547 7548 /* Valid range: 1 - N */ 7549 if (zfs_arc_shrink_shift) { 7550 arc_shrink_shift = zfs_arc_shrink_shift; 7551 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1); 7552 } 7553 7554 /* Valid range: 1 - N */ 7555 if (zfs_arc_p_min_shift) 7556 arc_p_min_shift = zfs_arc_p_min_shift; 7557 7558 /* Valid range: 1 - N ms */ 7559 if (zfs_arc_min_prefetch_ms) 7560 arc_min_prefetch_ms = zfs_arc_min_prefetch_ms; 7561 7562 /* Valid range: 1 - N ms */ 7563 if (zfs_arc_min_prescient_prefetch_ms) { 7564 arc_min_prescient_prefetch_ms = 7565 zfs_arc_min_prescient_prefetch_ms; 7566 } 7567 7568 /* Valid range: 0 - 100 */ 7569 if ((zfs_arc_lotsfree_percent >= 0) && 7570 (zfs_arc_lotsfree_percent <= 100)) 7571 arc_lotsfree_percent = zfs_arc_lotsfree_percent; 7572 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent, 7573 verbose); 7574 7575 /* Valid range: 0 - <all physical memory> */ 7576 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free)) 7577 arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), allmem); 7578 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose); 7579 } 7580 7581 static void 7582 arc_state_init(void) 7583 { 7584 multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 7585 sizeof (arc_buf_hdr_t), 7586 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7587 arc_state_multilist_index_func); 7588 multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 7589 sizeof (arc_buf_hdr_t), 7590 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7591 arc_state_multilist_index_func); 7592 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 7593 sizeof (arc_buf_hdr_t), 7594 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7595 arc_state_multilist_index_func); 7596 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 7597 sizeof (arc_buf_hdr_t), 7598 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7599 arc_state_multilist_index_func); 7600 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 7601 sizeof (arc_buf_hdr_t), 7602 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7603 arc_state_multilist_index_func); 7604 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 7605 sizeof (arc_buf_hdr_t), 7606 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7607 arc_state_multilist_index_func); 7608 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 7609 sizeof (arc_buf_hdr_t), 7610 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7611 arc_state_multilist_index_func); 7612 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 7613 sizeof (arc_buf_hdr_t), 7614 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7615 arc_state_multilist_index_func); 7616 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 7617 sizeof (arc_buf_hdr_t), 7618 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7619 arc_state_multilist_index_func); 7620 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 7621 sizeof (arc_buf_hdr_t), 7622 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7623 arc_state_multilist_index_func); 7624 7625 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7626 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7627 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7628 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7629 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7630 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7631 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7632 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7633 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7634 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7635 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7636 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7637 7638 zfs_refcount_create(&arc_anon->arcs_size); 7639 zfs_refcount_create(&arc_mru->arcs_size); 7640 zfs_refcount_create(&arc_mru_ghost->arcs_size); 7641 zfs_refcount_create(&arc_mfu->arcs_size); 7642 zfs_refcount_create(&arc_mfu_ghost->arcs_size); 7643 zfs_refcount_create(&arc_l2c_only->arcs_size); 7644 7645 wmsum_init(&arc_sums.arcstat_hits, 0); 7646 wmsum_init(&arc_sums.arcstat_misses, 0); 7647 wmsum_init(&arc_sums.arcstat_demand_data_hits, 0); 7648 wmsum_init(&arc_sums.arcstat_demand_data_misses, 0); 7649 wmsum_init(&arc_sums.arcstat_demand_metadata_hits, 0); 7650 wmsum_init(&arc_sums.arcstat_demand_metadata_misses, 0); 7651 wmsum_init(&arc_sums.arcstat_prefetch_data_hits, 0); 7652 wmsum_init(&arc_sums.arcstat_prefetch_data_misses, 0); 7653 wmsum_init(&arc_sums.arcstat_prefetch_metadata_hits, 0); 7654 wmsum_init(&arc_sums.arcstat_prefetch_metadata_misses, 0); 7655 wmsum_init(&arc_sums.arcstat_mru_hits, 0); 7656 wmsum_init(&arc_sums.arcstat_mru_ghost_hits, 0); 7657 wmsum_init(&arc_sums.arcstat_mfu_hits, 0); 7658 wmsum_init(&arc_sums.arcstat_mfu_ghost_hits, 0); 7659 wmsum_init(&arc_sums.arcstat_deleted, 0); 7660 wmsum_init(&arc_sums.arcstat_mutex_miss, 0); 7661 wmsum_init(&arc_sums.arcstat_access_skip, 0); 7662 wmsum_init(&arc_sums.arcstat_evict_skip, 0); 7663 wmsum_init(&arc_sums.arcstat_evict_not_enough, 0); 7664 wmsum_init(&arc_sums.arcstat_evict_l2_cached, 0); 7665 wmsum_init(&arc_sums.arcstat_evict_l2_eligible, 0); 7666 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mfu, 0); 7667 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mru, 0); 7668 wmsum_init(&arc_sums.arcstat_evict_l2_ineligible, 0); 7669 wmsum_init(&arc_sums.arcstat_evict_l2_skip, 0); 7670 wmsum_init(&arc_sums.arcstat_hash_collisions, 0); 7671 wmsum_init(&arc_sums.arcstat_hash_chains, 0); 7672 aggsum_init(&arc_sums.arcstat_size, 0); 7673 wmsum_init(&arc_sums.arcstat_compressed_size, 0); 7674 wmsum_init(&arc_sums.arcstat_uncompressed_size, 0); 7675 wmsum_init(&arc_sums.arcstat_overhead_size, 0); 7676 wmsum_init(&arc_sums.arcstat_hdr_size, 0); 7677 wmsum_init(&arc_sums.arcstat_data_size, 0); 7678 wmsum_init(&arc_sums.arcstat_metadata_size, 0); 7679 wmsum_init(&arc_sums.arcstat_dbuf_size, 0); 7680 aggsum_init(&arc_sums.arcstat_dnode_size, 0); 7681 wmsum_init(&arc_sums.arcstat_bonus_size, 0); 7682 wmsum_init(&arc_sums.arcstat_l2_hits, 0); 7683 wmsum_init(&arc_sums.arcstat_l2_misses, 0); 7684 wmsum_init(&arc_sums.arcstat_l2_prefetch_asize, 0); 7685 wmsum_init(&arc_sums.arcstat_l2_mru_asize, 0); 7686 wmsum_init(&arc_sums.arcstat_l2_mfu_asize, 0); 7687 wmsum_init(&arc_sums.arcstat_l2_bufc_data_asize, 0); 7688 wmsum_init(&arc_sums.arcstat_l2_bufc_metadata_asize, 0); 7689 wmsum_init(&arc_sums.arcstat_l2_feeds, 0); 7690 wmsum_init(&arc_sums.arcstat_l2_rw_clash, 0); 7691 wmsum_init(&arc_sums.arcstat_l2_read_bytes, 0); 7692 wmsum_init(&arc_sums.arcstat_l2_write_bytes, 0); 7693 wmsum_init(&arc_sums.arcstat_l2_writes_sent, 0); 7694 wmsum_init(&arc_sums.arcstat_l2_writes_done, 0); 7695 wmsum_init(&arc_sums.arcstat_l2_writes_error, 0); 7696 wmsum_init(&arc_sums.arcstat_l2_writes_lock_retry, 0); 7697 wmsum_init(&arc_sums.arcstat_l2_evict_lock_retry, 0); 7698 wmsum_init(&arc_sums.arcstat_l2_evict_reading, 0); 7699 wmsum_init(&arc_sums.arcstat_l2_evict_l1cached, 0); 7700 wmsum_init(&arc_sums.arcstat_l2_free_on_write, 0); 7701 wmsum_init(&arc_sums.arcstat_l2_abort_lowmem, 0); 7702 wmsum_init(&arc_sums.arcstat_l2_cksum_bad, 0); 7703 wmsum_init(&arc_sums.arcstat_l2_io_error, 0); 7704 wmsum_init(&arc_sums.arcstat_l2_lsize, 0); 7705 wmsum_init(&arc_sums.arcstat_l2_psize, 0); 7706 aggsum_init(&arc_sums.arcstat_l2_hdr_size, 0); 7707 wmsum_init(&arc_sums.arcstat_l2_log_blk_writes, 0); 7708 wmsum_init(&arc_sums.arcstat_l2_log_blk_asize, 0); 7709 wmsum_init(&arc_sums.arcstat_l2_log_blk_count, 0); 7710 wmsum_init(&arc_sums.arcstat_l2_rebuild_success, 0); 7711 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_unsupported, 0); 7712 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_io_errors, 0); 7713 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_dh_errors, 0); 7714 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors, 0); 7715 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_lowmem, 0); 7716 wmsum_init(&arc_sums.arcstat_l2_rebuild_size, 0); 7717 wmsum_init(&arc_sums.arcstat_l2_rebuild_asize, 0); 7718 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs, 0); 7719 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs_precached, 0); 7720 wmsum_init(&arc_sums.arcstat_l2_rebuild_log_blks, 0); 7721 wmsum_init(&arc_sums.arcstat_memory_throttle_count, 0); 7722 wmsum_init(&arc_sums.arcstat_memory_direct_count, 0); 7723 wmsum_init(&arc_sums.arcstat_memory_indirect_count, 0); 7724 wmsum_init(&arc_sums.arcstat_prune, 0); 7725 aggsum_init(&arc_sums.arcstat_meta_used, 0); 7726 wmsum_init(&arc_sums.arcstat_async_upgrade_sync, 0); 7727 wmsum_init(&arc_sums.arcstat_demand_hit_predictive_prefetch, 0); 7728 wmsum_init(&arc_sums.arcstat_demand_hit_prescient_prefetch, 0); 7729 wmsum_init(&arc_sums.arcstat_raw_size, 0); 7730 wmsum_init(&arc_sums.arcstat_cached_only_in_progress, 0); 7731 wmsum_init(&arc_sums.arcstat_abd_chunk_waste_size, 0); 7732 7733 arc_anon->arcs_state = ARC_STATE_ANON; 7734 arc_mru->arcs_state = ARC_STATE_MRU; 7735 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST; 7736 arc_mfu->arcs_state = ARC_STATE_MFU; 7737 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST; 7738 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY; 7739 } 7740 7741 static void 7742 arc_state_fini(void) 7743 { 7744 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7745 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7746 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7747 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7748 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7749 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7750 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7751 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7752 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7753 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7754 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7755 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7756 7757 zfs_refcount_destroy(&arc_anon->arcs_size); 7758 zfs_refcount_destroy(&arc_mru->arcs_size); 7759 zfs_refcount_destroy(&arc_mru_ghost->arcs_size); 7760 zfs_refcount_destroy(&arc_mfu->arcs_size); 7761 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size); 7762 zfs_refcount_destroy(&arc_l2c_only->arcs_size); 7763 7764 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 7765 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 7766 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 7767 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 7768 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 7769 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 7770 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 7771 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 7772 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]); 7773 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]); 7774 7775 wmsum_fini(&arc_sums.arcstat_hits); 7776 wmsum_fini(&arc_sums.arcstat_misses); 7777 wmsum_fini(&arc_sums.arcstat_demand_data_hits); 7778 wmsum_fini(&arc_sums.arcstat_demand_data_misses); 7779 wmsum_fini(&arc_sums.arcstat_demand_metadata_hits); 7780 wmsum_fini(&arc_sums.arcstat_demand_metadata_misses); 7781 wmsum_fini(&arc_sums.arcstat_prefetch_data_hits); 7782 wmsum_fini(&arc_sums.arcstat_prefetch_data_misses); 7783 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_hits); 7784 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_misses); 7785 wmsum_fini(&arc_sums.arcstat_mru_hits); 7786 wmsum_fini(&arc_sums.arcstat_mru_ghost_hits); 7787 wmsum_fini(&arc_sums.arcstat_mfu_hits); 7788 wmsum_fini(&arc_sums.arcstat_mfu_ghost_hits); 7789 wmsum_fini(&arc_sums.arcstat_deleted); 7790 wmsum_fini(&arc_sums.arcstat_mutex_miss); 7791 wmsum_fini(&arc_sums.arcstat_access_skip); 7792 wmsum_fini(&arc_sums.arcstat_evict_skip); 7793 wmsum_fini(&arc_sums.arcstat_evict_not_enough); 7794 wmsum_fini(&arc_sums.arcstat_evict_l2_cached); 7795 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible); 7796 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mfu); 7797 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mru); 7798 wmsum_fini(&arc_sums.arcstat_evict_l2_ineligible); 7799 wmsum_fini(&arc_sums.arcstat_evict_l2_skip); 7800 wmsum_fini(&arc_sums.arcstat_hash_collisions); 7801 wmsum_fini(&arc_sums.arcstat_hash_chains); 7802 aggsum_fini(&arc_sums.arcstat_size); 7803 wmsum_fini(&arc_sums.arcstat_compressed_size); 7804 wmsum_fini(&arc_sums.arcstat_uncompressed_size); 7805 wmsum_fini(&arc_sums.arcstat_overhead_size); 7806 wmsum_fini(&arc_sums.arcstat_hdr_size); 7807 wmsum_fini(&arc_sums.arcstat_data_size); 7808 wmsum_fini(&arc_sums.arcstat_metadata_size); 7809 wmsum_fini(&arc_sums.arcstat_dbuf_size); 7810 aggsum_fini(&arc_sums.arcstat_dnode_size); 7811 wmsum_fini(&arc_sums.arcstat_bonus_size); 7812 wmsum_fini(&arc_sums.arcstat_l2_hits); 7813 wmsum_fini(&arc_sums.arcstat_l2_misses); 7814 wmsum_fini(&arc_sums.arcstat_l2_prefetch_asize); 7815 wmsum_fini(&arc_sums.arcstat_l2_mru_asize); 7816 wmsum_fini(&arc_sums.arcstat_l2_mfu_asize); 7817 wmsum_fini(&arc_sums.arcstat_l2_bufc_data_asize); 7818 wmsum_fini(&arc_sums.arcstat_l2_bufc_metadata_asize); 7819 wmsum_fini(&arc_sums.arcstat_l2_feeds); 7820 wmsum_fini(&arc_sums.arcstat_l2_rw_clash); 7821 wmsum_fini(&arc_sums.arcstat_l2_read_bytes); 7822 wmsum_fini(&arc_sums.arcstat_l2_write_bytes); 7823 wmsum_fini(&arc_sums.arcstat_l2_writes_sent); 7824 wmsum_fini(&arc_sums.arcstat_l2_writes_done); 7825 wmsum_fini(&arc_sums.arcstat_l2_writes_error); 7826 wmsum_fini(&arc_sums.arcstat_l2_writes_lock_retry); 7827 wmsum_fini(&arc_sums.arcstat_l2_evict_lock_retry); 7828 wmsum_fini(&arc_sums.arcstat_l2_evict_reading); 7829 wmsum_fini(&arc_sums.arcstat_l2_evict_l1cached); 7830 wmsum_fini(&arc_sums.arcstat_l2_free_on_write); 7831 wmsum_fini(&arc_sums.arcstat_l2_abort_lowmem); 7832 wmsum_fini(&arc_sums.arcstat_l2_cksum_bad); 7833 wmsum_fini(&arc_sums.arcstat_l2_io_error); 7834 wmsum_fini(&arc_sums.arcstat_l2_lsize); 7835 wmsum_fini(&arc_sums.arcstat_l2_psize); 7836 aggsum_fini(&arc_sums.arcstat_l2_hdr_size); 7837 wmsum_fini(&arc_sums.arcstat_l2_log_blk_writes); 7838 wmsum_fini(&arc_sums.arcstat_l2_log_blk_asize); 7839 wmsum_fini(&arc_sums.arcstat_l2_log_blk_count); 7840 wmsum_fini(&arc_sums.arcstat_l2_rebuild_success); 7841 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_unsupported); 7842 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_io_errors); 7843 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_dh_errors); 7844 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors); 7845 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_lowmem); 7846 wmsum_fini(&arc_sums.arcstat_l2_rebuild_size); 7847 wmsum_fini(&arc_sums.arcstat_l2_rebuild_asize); 7848 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs); 7849 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs_precached); 7850 wmsum_fini(&arc_sums.arcstat_l2_rebuild_log_blks); 7851 wmsum_fini(&arc_sums.arcstat_memory_throttle_count); 7852 wmsum_fini(&arc_sums.arcstat_memory_direct_count); 7853 wmsum_fini(&arc_sums.arcstat_memory_indirect_count); 7854 wmsum_fini(&arc_sums.arcstat_prune); 7855 aggsum_fini(&arc_sums.arcstat_meta_used); 7856 wmsum_fini(&arc_sums.arcstat_async_upgrade_sync); 7857 wmsum_fini(&arc_sums.arcstat_demand_hit_predictive_prefetch); 7858 wmsum_fini(&arc_sums.arcstat_demand_hit_prescient_prefetch); 7859 wmsum_fini(&arc_sums.arcstat_raw_size); 7860 wmsum_fini(&arc_sums.arcstat_cached_only_in_progress); 7861 wmsum_fini(&arc_sums.arcstat_abd_chunk_waste_size); 7862 } 7863 7864 uint64_t 7865 arc_target_bytes(void) 7866 { 7867 return (arc_c); 7868 } 7869 7870 void 7871 arc_set_limits(uint64_t allmem) 7872 { 7873 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */ 7874 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT); 7875 7876 /* How to set default max varies by platform. */ 7877 arc_c_max = arc_default_max(arc_c_min, allmem); 7878 } 7879 void 7880 arc_init(void) 7881 { 7882 uint64_t percent, allmem = arc_all_memory(); 7883 mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL); 7884 list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t), 7885 offsetof(arc_evict_waiter_t, aew_node)); 7886 7887 arc_min_prefetch_ms = 1000; 7888 arc_min_prescient_prefetch_ms = 6000; 7889 7890 #if defined(_KERNEL) 7891 arc_lowmem_init(); 7892 #endif 7893 7894 arc_set_limits(allmem); 7895 7896 #ifndef _KERNEL 7897 /* 7898 * In userland, there's only the memory pressure that we artificially 7899 * create (see arc_available_memory()). Don't let arc_c get too 7900 * small, because it can cause transactions to be larger than 7901 * arc_c, causing arc_tempreserve_space() to fail. 7902 */ 7903 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT); 7904 #endif 7905 7906 arc_c = arc_c_min; 7907 arc_p = (arc_c >> 1); 7908 7909 /* Set min to 1/2 of arc_c_min */ 7910 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT; 7911 /* 7912 * Set arc_meta_limit to a percent of arc_c_max with a floor of 7913 * arc_meta_min, and a ceiling of arc_c_max. 7914 */ 7915 percent = MIN(zfs_arc_meta_limit_percent, 100); 7916 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100); 7917 percent = MIN(zfs_arc_dnode_limit_percent, 100); 7918 arc_dnode_size_limit = (percent * arc_meta_limit) / 100; 7919 7920 /* Apply user specified tunings */ 7921 arc_tuning_update(B_TRUE); 7922 7923 /* if kmem_flags are set, lets try to use less memory */ 7924 if (kmem_debugging()) 7925 arc_c = arc_c / 2; 7926 if (arc_c < arc_c_min) 7927 arc_c = arc_c_min; 7928 7929 arc_register_hotplug(); 7930 7931 arc_state_init(); 7932 7933 buf_init(); 7934 7935 list_create(&arc_prune_list, sizeof (arc_prune_t), 7936 offsetof(arc_prune_t, p_node)); 7937 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL); 7938 7939 arc_prune_taskq = taskq_create("arc_prune", 100, defclsyspri, 7940 boot_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC | 7941 TASKQ_THREADS_CPU_PCT); 7942 7943 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 7944 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 7945 7946 if (arc_ksp != NULL) { 7947 arc_ksp->ks_data = &arc_stats; 7948 arc_ksp->ks_update = arc_kstat_update; 7949 kstat_install(arc_ksp); 7950 } 7951 7952 arc_evict_zthr = zthr_create("arc_evict", 7953 arc_evict_cb_check, arc_evict_cb, NULL); 7954 arc_reap_zthr = zthr_create_timer("arc_reap", 7955 arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1)); 7956 7957 arc_warm = B_FALSE; 7958 7959 /* 7960 * Calculate maximum amount of dirty data per pool. 7961 * 7962 * If it has been set by a module parameter, take that. 7963 * Otherwise, use a percentage of physical memory defined by 7964 * zfs_dirty_data_max_percent (default 10%) with a cap at 7965 * zfs_dirty_data_max_max (default 4G or 25% of physical memory). 7966 */ 7967 #ifdef __LP64__ 7968 if (zfs_dirty_data_max_max == 0) 7969 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024, 7970 allmem * zfs_dirty_data_max_max_percent / 100); 7971 #else 7972 if (zfs_dirty_data_max_max == 0) 7973 zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024, 7974 allmem * zfs_dirty_data_max_max_percent / 100); 7975 #endif 7976 7977 if (zfs_dirty_data_max == 0) { 7978 zfs_dirty_data_max = allmem * 7979 zfs_dirty_data_max_percent / 100; 7980 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 7981 zfs_dirty_data_max_max); 7982 } 7983 7984 if (zfs_wrlog_data_max == 0) { 7985 7986 /* 7987 * dp_wrlog_total is reduced for each txg at the end of 7988 * spa_sync(). However, dp_dirty_total is reduced every time 7989 * a block is written out. Thus under normal operation, 7990 * dp_wrlog_total could grow 2 times as big as 7991 * zfs_dirty_data_max. 7992 */ 7993 zfs_wrlog_data_max = zfs_dirty_data_max * 2; 7994 } 7995 } 7996 7997 void 7998 arc_fini(void) 7999 { 8000 arc_prune_t *p; 8001 8002 #ifdef _KERNEL 8003 arc_lowmem_fini(); 8004 #endif /* _KERNEL */ 8005 8006 /* Use B_TRUE to ensure *all* buffers are evicted */ 8007 arc_flush(NULL, B_TRUE); 8008 8009 if (arc_ksp != NULL) { 8010 kstat_delete(arc_ksp); 8011 arc_ksp = NULL; 8012 } 8013 8014 taskq_wait(arc_prune_taskq); 8015 taskq_destroy(arc_prune_taskq); 8016 8017 mutex_enter(&arc_prune_mtx); 8018 while ((p = list_head(&arc_prune_list)) != NULL) { 8019 list_remove(&arc_prune_list, p); 8020 zfs_refcount_remove(&p->p_refcnt, &arc_prune_list); 8021 zfs_refcount_destroy(&p->p_refcnt); 8022 kmem_free(p, sizeof (*p)); 8023 } 8024 mutex_exit(&arc_prune_mtx); 8025 8026 list_destroy(&arc_prune_list); 8027 mutex_destroy(&arc_prune_mtx); 8028 8029 (void) zthr_cancel(arc_evict_zthr); 8030 (void) zthr_cancel(arc_reap_zthr); 8031 8032 mutex_destroy(&arc_evict_lock); 8033 list_destroy(&arc_evict_waiters); 8034 8035 /* 8036 * Free any buffers that were tagged for destruction. This needs 8037 * to occur before arc_state_fini() runs and destroys the aggsum 8038 * values which are updated when freeing scatter ABDs. 8039 */ 8040 l2arc_do_free_on_write(); 8041 8042 /* 8043 * buf_fini() must proceed arc_state_fini() because buf_fin() may 8044 * trigger the release of kmem magazines, which can callback to 8045 * arc_space_return() which accesses aggsums freed in act_state_fini(). 8046 */ 8047 buf_fini(); 8048 arc_state_fini(); 8049 8050 arc_unregister_hotplug(); 8051 8052 /* 8053 * We destroy the zthrs after all the ARC state has been 8054 * torn down to avoid the case of them receiving any 8055 * wakeup() signals after they are destroyed. 8056 */ 8057 zthr_destroy(arc_evict_zthr); 8058 zthr_destroy(arc_reap_zthr); 8059 8060 ASSERT0(arc_loaned_bytes); 8061 } 8062 8063 /* 8064 * Level 2 ARC 8065 * 8066 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 8067 * It uses dedicated storage devices to hold cached data, which are populated 8068 * using large infrequent writes. The main role of this cache is to boost 8069 * the performance of random read workloads. The intended L2ARC devices 8070 * include short-stroked disks, solid state disks, and other media with 8071 * substantially faster read latency than disk. 8072 * 8073 * +-----------------------+ 8074 * | ARC | 8075 * +-----------------------+ 8076 * | ^ ^ 8077 * | | | 8078 * l2arc_feed_thread() arc_read() 8079 * | | | 8080 * | l2arc read | 8081 * V | | 8082 * +---------------+ | 8083 * | L2ARC | | 8084 * +---------------+ | 8085 * | ^ | 8086 * l2arc_write() | | 8087 * | | | 8088 * V | | 8089 * +-------+ +-------+ 8090 * | vdev | | vdev | 8091 * | cache | | cache | 8092 * +-------+ +-------+ 8093 * +=========+ .-----. 8094 * : L2ARC : |-_____-| 8095 * : devices : | Disks | 8096 * +=========+ `-_____-' 8097 * 8098 * Read requests are satisfied from the following sources, in order: 8099 * 8100 * 1) ARC 8101 * 2) vdev cache of L2ARC devices 8102 * 3) L2ARC devices 8103 * 4) vdev cache of disks 8104 * 5) disks 8105 * 8106 * Some L2ARC device types exhibit extremely slow write performance. 8107 * To accommodate for this there are some significant differences between 8108 * the L2ARC and traditional cache design: 8109 * 8110 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 8111 * the ARC behave as usual, freeing buffers and placing headers on ghost 8112 * lists. The ARC does not send buffers to the L2ARC during eviction as 8113 * this would add inflated write latencies for all ARC memory pressure. 8114 * 8115 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 8116 * It does this by periodically scanning buffers from the eviction-end of 8117 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 8118 * not already there. It scans until a headroom of buffers is satisfied, 8119 * which itself is a buffer for ARC eviction. If a compressible buffer is 8120 * found during scanning and selected for writing to an L2ARC device, we 8121 * temporarily boost scanning headroom during the next scan cycle to make 8122 * sure we adapt to compression effects (which might significantly reduce 8123 * the data volume we write to L2ARC). The thread that does this is 8124 * l2arc_feed_thread(), illustrated below; example sizes are included to 8125 * provide a better sense of ratio than this diagram: 8126 * 8127 * head --> tail 8128 * +---------------------+----------+ 8129 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 8130 * +---------------------+----------+ | o L2ARC eligible 8131 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 8132 * +---------------------+----------+ | 8133 * 15.9 Gbytes ^ 32 Mbytes | 8134 * headroom | 8135 * l2arc_feed_thread() 8136 * | 8137 * l2arc write hand <--[oooo]--' 8138 * | 8 Mbyte 8139 * | write max 8140 * V 8141 * +==============================+ 8142 * L2ARC dev |####|#|###|###| |####| ... | 8143 * +==============================+ 8144 * 32 Gbytes 8145 * 8146 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 8147 * evicted, then the L2ARC has cached a buffer much sooner than it probably 8148 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 8149 * safe to say that this is an uncommon case, since buffers at the end of 8150 * the ARC lists have moved there due to inactivity. 8151 * 8152 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 8153 * then the L2ARC simply misses copying some buffers. This serves as a 8154 * pressure valve to prevent heavy read workloads from both stalling the ARC 8155 * with waits and clogging the L2ARC with writes. This also helps prevent 8156 * the potential for the L2ARC to churn if it attempts to cache content too 8157 * quickly, such as during backups of the entire pool. 8158 * 8159 * 5. After system boot and before the ARC has filled main memory, there are 8160 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 8161 * lists can remain mostly static. Instead of searching from tail of these 8162 * lists as pictured, the l2arc_feed_thread() will search from the list heads 8163 * for eligible buffers, greatly increasing its chance of finding them. 8164 * 8165 * The L2ARC device write speed is also boosted during this time so that 8166 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 8167 * there are no L2ARC reads, and no fear of degrading read performance 8168 * through increased writes. 8169 * 8170 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 8171 * the vdev queue can aggregate them into larger and fewer writes. Each 8172 * device is written to in a rotor fashion, sweeping writes through 8173 * available space then repeating. 8174 * 8175 * 7. The L2ARC does not store dirty content. It never needs to flush 8176 * write buffers back to disk based storage. 8177 * 8178 * 8. If an ARC buffer is written (and dirtied) which also exists in the 8179 * L2ARC, the now stale L2ARC buffer is immediately dropped. 8180 * 8181 * The performance of the L2ARC can be tweaked by a number of tunables, which 8182 * may be necessary for different workloads: 8183 * 8184 * l2arc_write_max max write bytes per interval 8185 * l2arc_write_boost extra write bytes during device warmup 8186 * l2arc_noprefetch skip caching prefetched buffers 8187 * l2arc_headroom number of max device writes to precache 8188 * l2arc_headroom_boost when we find compressed buffers during ARC 8189 * scanning, we multiply headroom by this 8190 * percentage factor for the next scan cycle, 8191 * since more compressed buffers are likely to 8192 * be present 8193 * l2arc_feed_secs seconds between L2ARC writing 8194 * 8195 * Tunables may be removed or added as future performance improvements are 8196 * integrated, and also may become zpool properties. 8197 * 8198 * There are three key functions that control how the L2ARC warms up: 8199 * 8200 * l2arc_write_eligible() check if a buffer is eligible to cache 8201 * l2arc_write_size() calculate how much to write 8202 * l2arc_write_interval() calculate sleep delay between writes 8203 * 8204 * These three functions determine what to write, how much, and how quickly 8205 * to send writes. 8206 * 8207 * L2ARC persistence: 8208 * 8209 * When writing buffers to L2ARC, we periodically add some metadata to 8210 * make sure we can pick them up after reboot, thus dramatically reducing 8211 * the impact that any downtime has on the performance of storage systems 8212 * with large caches. 8213 * 8214 * The implementation works fairly simply by integrating the following two 8215 * modifications: 8216 * 8217 * *) When writing to the L2ARC, we occasionally write a "l2arc log block", 8218 * which is an additional piece of metadata which describes what's been 8219 * written. This allows us to rebuild the arc_buf_hdr_t structures of the 8220 * main ARC buffers. There are 2 linked-lists of log blocks headed by 8221 * dh_start_lbps[2]. We alternate which chain we append to, so they are 8222 * time-wise and offset-wise interleaved, but that is an optimization rather 8223 * than for correctness. The log block also includes a pointer to the 8224 * previous block in its chain. 8225 * 8226 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device 8227 * for our header bookkeeping purposes. This contains a device header, 8228 * which contains our top-level reference structures. We update it each 8229 * time we write a new log block, so that we're able to locate it in the 8230 * L2ARC device. If this write results in an inconsistent device header 8231 * (e.g. due to power failure), we detect this by verifying the header's 8232 * checksum and simply fail to reconstruct the L2ARC after reboot. 8233 * 8234 * Implementation diagram: 8235 * 8236 * +=== L2ARC device (not to scale) ======================================+ 8237 * | ___two newest log block pointers__.__________ | 8238 * | / \dh_start_lbps[1] | 8239 * | / \ \dh_start_lbps[0]| 8240 * |.___/__. V V | 8241 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---| 8242 * || hdr| ^ /^ /^ / / | 8243 * |+------+ ...--\-------/ \-----/--\------/ / | 8244 * | \--------------/ \--------------/ | 8245 * +======================================================================+ 8246 * 8247 * As can be seen on the diagram, rather than using a simple linked list, 8248 * we use a pair of linked lists with alternating elements. This is a 8249 * performance enhancement due to the fact that we only find out the 8250 * address of the next log block access once the current block has been 8251 * completely read in. Obviously, this hurts performance, because we'd be 8252 * keeping the device's I/O queue at only a 1 operation deep, thus 8253 * incurring a large amount of I/O round-trip latency. Having two lists 8254 * allows us to fetch two log blocks ahead of where we are currently 8255 * rebuilding L2ARC buffers. 8256 * 8257 * On-device data structures: 8258 * 8259 * L2ARC device header: l2arc_dev_hdr_phys_t 8260 * L2ARC log block: l2arc_log_blk_phys_t 8261 * 8262 * L2ARC reconstruction: 8263 * 8264 * When writing data, we simply write in the standard rotary fashion, 8265 * evicting buffers as we go and simply writing new data over them (writing 8266 * a new log block every now and then). This obviously means that once we 8267 * loop around the end of the device, we will start cutting into an already 8268 * committed log block (and its referenced data buffers), like so: 8269 * 8270 * current write head__ __old tail 8271 * \ / 8272 * V V 8273 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |--> 8274 * ^ ^^^^^^^^^___________________________________ 8275 * | \ 8276 * <<nextwrite>> may overwrite this blk and/or its bufs --' 8277 * 8278 * When importing the pool, we detect this situation and use it to stop 8279 * our scanning process (see l2arc_rebuild). 8280 * 8281 * There is one significant caveat to consider when rebuilding ARC contents 8282 * from an L2ARC device: what about invalidated buffers? Given the above 8283 * construction, we cannot update blocks which we've already written to amend 8284 * them to remove buffers which were invalidated. Thus, during reconstruction, 8285 * we might be populating the cache with buffers for data that's not on the 8286 * main pool anymore, or may have been overwritten! 8287 * 8288 * As it turns out, this isn't a problem. Every arc_read request includes 8289 * both the DVA and, crucially, the birth TXG of the BP the caller is 8290 * looking for. So even if the cache were populated by completely rotten 8291 * blocks for data that had been long deleted and/or overwritten, we'll 8292 * never actually return bad data from the cache, since the DVA with the 8293 * birth TXG uniquely identify a block in space and time - once created, 8294 * a block is immutable on disk. The worst thing we have done is wasted 8295 * some time and memory at l2arc rebuild to reconstruct outdated ARC 8296 * entries that will get dropped from the l2arc as it is being updated 8297 * with new blocks. 8298 * 8299 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write 8300 * hand are not restored. This is done by saving the offset (in bytes) 8301 * l2arc_evict() has evicted to in the L2ARC device header and taking it 8302 * into account when restoring buffers. 8303 */ 8304 8305 static boolean_t 8306 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 8307 { 8308 /* 8309 * A buffer is *not* eligible for the L2ARC if it: 8310 * 1. belongs to a different spa. 8311 * 2. is already cached on the L2ARC. 8312 * 3. has an I/O in progress (it may be an incomplete read). 8313 * 4. is flagged not eligible (zfs property). 8314 */ 8315 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || 8316 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr)) 8317 return (B_FALSE); 8318 8319 return (B_TRUE); 8320 } 8321 8322 static uint64_t 8323 l2arc_write_size(l2arc_dev_t *dev) 8324 { 8325 uint64_t size, dev_size, tsize; 8326 8327 /* 8328 * Make sure our globals have meaningful values in case the user 8329 * altered them. 8330 */ 8331 size = l2arc_write_max; 8332 if (size == 0) { 8333 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 8334 "be greater than zero, resetting it to the default (%d)", 8335 L2ARC_WRITE_SIZE); 8336 size = l2arc_write_max = L2ARC_WRITE_SIZE; 8337 } 8338 8339 if (arc_warm == B_FALSE) 8340 size += l2arc_write_boost; 8341 8342 /* 8343 * Make sure the write size does not exceed the size of the cache 8344 * device. This is important in l2arc_evict(), otherwise infinite 8345 * iteration can occur. 8346 */ 8347 dev_size = dev->l2ad_end - dev->l2ad_start; 8348 tsize = size + l2arc_log_blk_overhead(size, dev); 8349 if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) 8350 tsize += MAX(64 * 1024 * 1024, 8351 (tsize * l2arc_trim_ahead) / 100); 8352 8353 if (tsize >= dev_size) { 8354 cmn_err(CE_NOTE, "l2arc_write_max or l2arc_write_boost " 8355 "plus the overhead of log blocks (persistent L2ARC, " 8356 "%llu bytes) exceeds the size of the cache device " 8357 "(guid %llu), resetting them to the default (%d)", 8358 l2arc_log_blk_overhead(size, dev), 8359 dev->l2ad_vdev->vdev_guid, L2ARC_WRITE_SIZE); 8360 size = l2arc_write_max = l2arc_write_boost = L2ARC_WRITE_SIZE; 8361 8362 if (arc_warm == B_FALSE) 8363 size += l2arc_write_boost; 8364 } 8365 8366 return (size); 8367 8368 } 8369 8370 static clock_t 8371 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 8372 { 8373 clock_t interval, next, now; 8374 8375 /* 8376 * If the ARC lists are busy, increase our write rate; if the 8377 * lists are stale, idle back. This is achieved by checking 8378 * how much we previously wrote - if it was more than half of 8379 * what we wanted, schedule the next write much sooner. 8380 */ 8381 if (l2arc_feed_again && wrote > (wanted / 2)) 8382 interval = (hz * l2arc_feed_min_ms) / 1000; 8383 else 8384 interval = hz * l2arc_feed_secs; 8385 8386 now = ddi_get_lbolt(); 8387 next = MAX(now, MIN(now + interval, began + interval)); 8388 8389 return (next); 8390 } 8391 8392 /* 8393 * Cycle through L2ARC devices. This is how L2ARC load balances. 8394 * If a device is returned, this also returns holding the spa config lock. 8395 */ 8396 static l2arc_dev_t * 8397 l2arc_dev_get_next(void) 8398 { 8399 l2arc_dev_t *first, *next = NULL; 8400 8401 /* 8402 * Lock out the removal of spas (spa_namespace_lock), then removal 8403 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 8404 * both locks will be dropped and a spa config lock held instead. 8405 */ 8406 mutex_enter(&spa_namespace_lock); 8407 mutex_enter(&l2arc_dev_mtx); 8408 8409 /* if there are no vdevs, there is nothing to do */ 8410 if (l2arc_ndev == 0) 8411 goto out; 8412 8413 first = NULL; 8414 next = l2arc_dev_last; 8415 do { 8416 /* loop around the list looking for a non-faulted vdev */ 8417 if (next == NULL) { 8418 next = list_head(l2arc_dev_list); 8419 } else { 8420 next = list_next(l2arc_dev_list, next); 8421 if (next == NULL) 8422 next = list_head(l2arc_dev_list); 8423 } 8424 8425 /* if we have come back to the start, bail out */ 8426 if (first == NULL) 8427 first = next; 8428 else if (next == first) 8429 break; 8430 8431 } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || 8432 next->l2ad_trim_all); 8433 8434 /* if we were unable to find any usable vdevs, return NULL */ 8435 if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || 8436 next->l2ad_trim_all) 8437 next = NULL; 8438 8439 l2arc_dev_last = next; 8440 8441 out: 8442 mutex_exit(&l2arc_dev_mtx); 8443 8444 /* 8445 * Grab the config lock to prevent the 'next' device from being 8446 * removed while we are writing to it. 8447 */ 8448 if (next != NULL) 8449 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 8450 mutex_exit(&spa_namespace_lock); 8451 8452 return (next); 8453 } 8454 8455 /* 8456 * Free buffers that were tagged for destruction. 8457 */ 8458 static void 8459 l2arc_do_free_on_write(void) 8460 { 8461 list_t *buflist; 8462 l2arc_data_free_t *df, *df_prev; 8463 8464 mutex_enter(&l2arc_free_on_write_mtx); 8465 buflist = l2arc_free_on_write; 8466 8467 for (df = list_tail(buflist); df; df = df_prev) { 8468 df_prev = list_prev(buflist, df); 8469 ASSERT3P(df->l2df_abd, !=, NULL); 8470 abd_free(df->l2df_abd); 8471 list_remove(buflist, df); 8472 kmem_free(df, sizeof (l2arc_data_free_t)); 8473 } 8474 8475 mutex_exit(&l2arc_free_on_write_mtx); 8476 } 8477 8478 /* 8479 * A write to a cache device has completed. Update all headers to allow 8480 * reads from these buffers to begin. 8481 */ 8482 static void 8483 l2arc_write_done(zio_t *zio) 8484 { 8485 l2arc_write_callback_t *cb; 8486 l2arc_lb_abd_buf_t *abd_buf; 8487 l2arc_lb_ptr_buf_t *lb_ptr_buf; 8488 l2arc_dev_t *dev; 8489 l2arc_dev_hdr_phys_t *l2dhdr; 8490 list_t *buflist; 8491 arc_buf_hdr_t *head, *hdr, *hdr_prev; 8492 kmutex_t *hash_lock; 8493 int64_t bytes_dropped = 0; 8494 8495 cb = zio->io_private; 8496 ASSERT3P(cb, !=, NULL); 8497 dev = cb->l2wcb_dev; 8498 l2dhdr = dev->l2ad_dev_hdr; 8499 ASSERT3P(dev, !=, NULL); 8500 head = cb->l2wcb_head; 8501 ASSERT3P(head, !=, NULL); 8502 buflist = &dev->l2ad_buflist; 8503 ASSERT3P(buflist, !=, NULL); 8504 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 8505 l2arc_write_callback_t *, cb); 8506 8507 /* 8508 * All writes completed, or an error was hit. 8509 */ 8510 top: 8511 mutex_enter(&dev->l2ad_mtx); 8512 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 8513 hdr_prev = list_prev(buflist, hdr); 8514 8515 hash_lock = HDR_LOCK(hdr); 8516 8517 /* 8518 * We cannot use mutex_enter or else we can deadlock 8519 * with l2arc_write_buffers (due to swapping the order 8520 * the hash lock and l2ad_mtx are taken). 8521 */ 8522 if (!mutex_tryenter(hash_lock)) { 8523 /* 8524 * Missed the hash lock. We must retry so we 8525 * don't leave the ARC_FLAG_L2_WRITING bit set. 8526 */ 8527 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 8528 8529 /* 8530 * We don't want to rescan the headers we've 8531 * already marked as having been written out, so 8532 * we reinsert the head node so we can pick up 8533 * where we left off. 8534 */ 8535 list_remove(buflist, head); 8536 list_insert_after(buflist, hdr, head); 8537 8538 mutex_exit(&dev->l2ad_mtx); 8539 8540 /* 8541 * We wait for the hash lock to become available 8542 * to try and prevent busy waiting, and increase 8543 * the chance we'll be able to acquire the lock 8544 * the next time around. 8545 */ 8546 mutex_enter(hash_lock); 8547 mutex_exit(hash_lock); 8548 goto top; 8549 } 8550 8551 /* 8552 * We could not have been moved into the arc_l2c_only 8553 * state while in-flight due to our ARC_FLAG_L2_WRITING 8554 * bit being set. Let's just ensure that's being enforced. 8555 */ 8556 ASSERT(HDR_HAS_L1HDR(hdr)); 8557 8558 /* 8559 * Skipped - drop L2ARC entry and mark the header as no 8560 * longer L2 eligibile. 8561 */ 8562 if (zio->io_error != 0) { 8563 /* 8564 * Error - drop L2ARC entry. 8565 */ 8566 list_remove(buflist, hdr); 8567 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 8568 8569 uint64_t psize = HDR_GET_PSIZE(hdr); 8570 l2arc_hdr_arcstats_decrement(hdr); 8571 8572 bytes_dropped += 8573 vdev_psize_to_asize(dev->l2ad_vdev, psize); 8574 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 8575 arc_hdr_size(hdr), hdr); 8576 } 8577 8578 /* 8579 * Allow ARC to begin reads and ghost list evictions to 8580 * this L2ARC entry. 8581 */ 8582 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); 8583 8584 mutex_exit(hash_lock); 8585 } 8586 8587 /* 8588 * Free the allocated abd buffers for writing the log blocks. 8589 * If the zio failed reclaim the allocated space and remove the 8590 * pointers to these log blocks from the log block pointer list 8591 * of the L2ARC device. 8592 */ 8593 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) { 8594 abd_free(abd_buf->abd); 8595 zio_buf_free(abd_buf, sizeof (*abd_buf)); 8596 if (zio->io_error != 0) { 8597 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list); 8598 /* 8599 * L2BLK_GET_PSIZE returns aligned size for log 8600 * blocks. 8601 */ 8602 uint64_t asize = 8603 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop); 8604 bytes_dropped += asize; 8605 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 8606 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 8607 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 8608 lb_ptr_buf); 8609 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 8610 kmem_free(lb_ptr_buf->lb_ptr, 8611 sizeof (l2arc_log_blkptr_t)); 8612 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 8613 } 8614 } 8615 list_destroy(&cb->l2wcb_abd_list); 8616 8617 if (zio->io_error != 0) { 8618 ARCSTAT_BUMP(arcstat_l2_writes_error); 8619 8620 /* 8621 * Restore the lbps array in the header to its previous state. 8622 * If the list of log block pointers is empty, zero out the 8623 * log block pointers in the device header. 8624 */ 8625 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list); 8626 for (int i = 0; i < 2; i++) { 8627 if (lb_ptr_buf == NULL) { 8628 /* 8629 * If the list is empty zero out the device 8630 * header. Otherwise zero out the second log 8631 * block pointer in the header. 8632 */ 8633 if (i == 0) { 8634 bzero(l2dhdr, dev->l2ad_dev_hdr_asize); 8635 } else { 8636 bzero(&l2dhdr->dh_start_lbps[i], 8637 sizeof (l2arc_log_blkptr_t)); 8638 } 8639 break; 8640 } 8641 bcopy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[i], 8642 sizeof (l2arc_log_blkptr_t)); 8643 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list, 8644 lb_ptr_buf); 8645 } 8646 } 8647 8648 ARCSTAT_BUMP(arcstat_l2_writes_done); 8649 list_remove(buflist, head); 8650 ASSERT(!HDR_HAS_L1HDR(head)); 8651 kmem_cache_free(hdr_l2only_cache, head); 8652 mutex_exit(&dev->l2ad_mtx); 8653 8654 ASSERT(dev->l2ad_vdev != NULL); 8655 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 8656 8657 l2arc_do_free_on_write(); 8658 8659 kmem_free(cb, sizeof (l2arc_write_callback_t)); 8660 } 8661 8662 static int 8663 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb) 8664 { 8665 int ret; 8666 spa_t *spa = zio->io_spa; 8667 arc_buf_hdr_t *hdr = cb->l2rcb_hdr; 8668 blkptr_t *bp = zio->io_bp; 8669 uint8_t salt[ZIO_DATA_SALT_LEN]; 8670 uint8_t iv[ZIO_DATA_IV_LEN]; 8671 uint8_t mac[ZIO_DATA_MAC_LEN]; 8672 boolean_t no_crypt = B_FALSE; 8673 8674 /* 8675 * ZIL data is never be written to the L2ARC, so we don't need 8676 * special handling for its unique MAC storage. 8677 */ 8678 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 8679 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 8680 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8681 8682 /* 8683 * If the data was encrypted, decrypt it now. Note that 8684 * we must check the bp here and not the hdr, since the 8685 * hdr does not have its encryption parameters updated 8686 * until arc_read_done(). 8687 */ 8688 if (BP_IS_ENCRYPTED(bp)) { 8689 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8690 B_TRUE); 8691 8692 zio_crypt_decode_params_bp(bp, salt, iv); 8693 zio_crypt_decode_mac_bp(bp, mac); 8694 8695 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb, 8696 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 8697 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd, 8698 hdr->b_l1hdr.b_pabd, &no_crypt); 8699 if (ret != 0) { 8700 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8701 goto error; 8702 } 8703 8704 /* 8705 * If we actually performed decryption, replace b_pabd 8706 * with the decrypted data. Otherwise we can just throw 8707 * our decryption buffer away. 8708 */ 8709 if (!no_crypt) { 8710 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8711 arc_hdr_size(hdr), hdr); 8712 hdr->b_l1hdr.b_pabd = eabd; 8713 zio->io_abd = eabd; 8714 } else { 8715 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8716 } 8717 } 8718 8719 /* 8720 * If the L2ARC block was compressed, but ARC compression 8721 * is disabled we decompress the data into a new buffer and 8722 * replace the existing data. 8723 */ 8724 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 8725 !HDR_COMPRESSION_ENABLED(hdr)) { 8726 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8727 B_TRUE); 8728 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 8729 8730 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 8731 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 8732 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 8733 if (ret != 0) { 8734 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 8735 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr); 8736 goto error; 8737 } 8738 8739 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 8740 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8741 arc_hdr_size(hdr), hdr); 8742 hdr->b_l1hdr.b_pabd = cabd; 8743 zio->io_abd = cabd; 8744 zio->io_size = HDR_GET_LSIZE(hdr); 8745 } 8746 8747 return (0); 8748 8749 error: 8750 return (ret); 8751 } 8752 8753 8754 /* 8755 * A read to a cache device completed. Validate buffer contents before 8756 * handing over to the regular ARC routines. 8757 */ 8758 static void 8759 l2arc_read_done(zio_t *zio) 8760 { 8761 int tfm_error = 0; 8762 l2arc_read_callback_t *cb = zio->io_private; 8763 arc_buf_hdr_t *hdr; 8764 kmutex_t *hash_lock; 8765 boolean_t valid_cksum; 8766 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) && 8767 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT)); 8768 8769 ASSERT3P(zio->io_vd, !=, NULL); 8770 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 8771 8772 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 8773 8774 ASSERT3P(cb, !=, NULL); 8775 hdr = cb->l2rcb_hdr; 8776 ASSERT3P(hdr, !=, NULL); 8777 8778 hash_lock = HDR_LOCK(hdr); 8779 mutex_enter(hash_lock); 8780 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 8781 8782 /* 8783 * If the data was read into a temporary buffer, 8784 * move it and free the buffer. 8785 */ 8786 if (cb->l2rcb_abd != NULL) { 8787 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size); 8788 if (zio->io_error == 0) { 8789 if (using_rdata) { 8790 abd_copy(hdr->b_crypt_hdr.b_rabd, 8791 cb->l2rcb_abd, arc_hdr_size(hdr)); 8792 } else { 8793 abd_copy(hdr->b_l1hdr.b_pabd, 8794 cb->l2rcb_abd, arc_hdr_size(hdr)); 8795 } 8796 } 8797 8798 /* 8799 * The following must be done regardless of whether 8800 * there was an error: 8801 * - free the temporary buffer 8802 * - point zio to the real ARC buffer 8803 * - set zio size accordingly 8804 * These are required because zio is either re-used for 8805 * an I/O of the block in the case of the error 8806 * or the zio is passed to arc_read_done() and it 8807 * needs real data. 8808 */ 8809 abd_free(cb->l2rcb_abd); 8810 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr); 8811 8812 if (using_rdata) { 8813 ASSERT(HDR_HAS_RABD(hdr)); 8814 zio->io_abd = zio->io_orig_abd = 8815 hdr->b_crypt_hdr.b_rabd; 8816 } else { 8817 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8818 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd; 8819 } 8820 } 8821 8822 ASSERT3P(zio->io_abd, !=, NULL); 8823 8824 /* 8825 * Check this survived the L2ARC journey. 8826 */ 8827 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd || 8828 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd)); 8829 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 8830 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 8831 zio->io_prop.zp_complevel = hdr->b_complevel; 8832 8833 valid_cksum = arc_cksum_is_equal(hdr, zio); 8834 8835 /* 8836 * b_rabd will always match the data as it exists on disk if it is 8837 * being used. Therefore if we are reading into b_rabd we do not 8838 * attempt to untransform the data. 8839 */ 8840 if (valid_cksum && !using_rdata) 8841 tfm_error = l2arc_untransform(zio, cb); 8842 8843 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 && 8844 !HDR_L2_EVICTED(hdr)) { 8845 mutex_exit(hash_lock); 8846 zio->io_private = hdr; 8847 arc_read_done(zio); 8848 } else { 8849 /* 8850 * Buffer didn't survive caching. Increment stats and 8851 * reissue to the original storage device. 8852 */ 8853 if (zio->io_error != 0) { 8854 ARCSTAT_BUMP(arcstat_l2_io_error); 8855 } else { 8856 zio->io_error = SET_ERROR(EIO); 8857 } 8858 if (!valid_cksum || tfm_error != 0) 8859 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 8860 8861 /* 8862 * If there's no waiter, issue an async i/o to the primary 8863 * storage now. If there *is* a waiter, the caller must 8864 * issue the i/o in a context where it's OK to block. 8865 */ 8866 if (zio->io_waiter == NULL) { 8867 zio_t *pio = zio_unique_parent(zio); 8868 void *abd = (using_rdata) ? 8869 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd; 8870 8871 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 8872 8873 zio = zio_read(pio, zio->io_spa, zio->io_bp, 8874 abd, zio->io_size, arc_read_done, 8875 hdr, zio->io_priority, cb->l2rcb_flags, 8876 &cb->l2rcb_zb); 8877 8878 /* 8879 * Original ZIO will be freed, so we need to update 8880 * ARC header with the new ZIO pointer to be used 8881 * by zio_change_priority() in arc_read(). 8882 */ 8883 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb; 8884 acb != NULL; acb = acb->acb_next) 8885 acb->acb_zio_head = zio; 8886 8887 mutex_exit(hash_lock); 8888 zio_nowait(zio); 8889 } else { 8890 mutex_exit(hash_lock); 8891 } 8892 } 8893 8894 kmem_free(cb, sizeof (l2arc_read_callback_t)); 8895 } 8896 8897 /* 8898 * This is the list priority from which the L2ARC will search for pages to 8899 * cache. This is used within loops (0..3) to cycle through lists in the 8900 * desired order. This order can have a significant effect on cache 8901 * performance. 8902 * 8903 * Currently the metadata lists are hit first, MFU then MRU, followed by 8904 * the data lists. This function returns a locked list, and also returns 8905 * the lock pointer. 8906 */ 8907 static multilist_sublist_t * 8908 l2arc_sublist_lock(int list_num) 8909 { 8910 multilist_t *ml = NULL; 8911 unsigned int idx; 8912 8913 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES); 8914 8915 switch (list_num) { 8916 case 0: 8917 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 8918 break; 8919 case 1: 8920 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 8921 break; 8922 case 2: 8923 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 8924 break; 8925 case 3: 8926 ml = &arc_mru->arcs_list[ARC_BUFC_DATA]; 8927 break; 8928 default: 8929 return (NULL); 8930 } 8931 8932 /* 8933 * Return a randomly-selected sublist. This is acceptable 8934 * because the caller feeds only a little bit of data for each 8935 * call (8MB). Subsequent calls will result in different 8936 * sublists being selected. 8937 */ 8938 idx = multilist_get_random_index(ml); 8939 return (multilist_sublist_lock(ml, idx)); 8940 } 8941 8942 /* 8943 * Calculates the maximum overhead of L2ARC metadata log blocks for a given 8944 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this 8945 * overhead in processing to make sure there is enough headroom available 8946 * when writing buffers. 8947 */ 8948 static inline uint64_t 8949 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev) 8950 { 8951 if (dev->l2ad_log_entries == 0) { 8952 return (0); 8953 } else { 8954 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT; 8955 8956 uint64_t log_blocks = (log_entries + 8957 dev->l2ad_log_entries - 1) / 8958 dev->l2ad_log_entries; 8959 8960 return (vdev_psize_to_asize(dev->l2ad_vdev, 8961 sizeof (l2arc_log_blk_phys_t)) * log_blocks); 8962 } 8963 } 8964 8965 /* 8966 * Evict buffers from the device write hand to the distance specified in 8967 * bytes. This distance may span populated buffers, it may span nothing. 8968 * This is clearing a region on the L2ARC device ready for writing. 8969 * If the 'all' boolean is set, every buffer is evicted. 8970 */ 8971 static void 8972 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 8973 { 8974 list_t *buflist; 8975 arc_buf_hdr_t *hdr, *hdr_prev; 8976 kmutex_t *hash_lock; 8977 uint64_t taddr; 8978 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev; 8979 vdev_t *vd = dev->l2ad_vdev; 8980 boolean_t rerun; 8981 8982 buflist = &dev->l2ad_buflist; 8983 8984 /* 8985 * We need to add in the worst case scenario of log block overhead. 8986 */ 8987 distance += l2arc_log_blk_overhead(distance, dev); 8988 if (vd->vdev_has_trim && l2arc_trim_ahead > 0) { 8989 /* 8990 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100) 8991 * times the write size, whichever is greater. 8992 */ 8993 distance += MAX(64 * 1024 * 1024, 8994 (distance * l2arc_trim_ahead) / 100); 8995 } 8996 8997 top: 8998 rerun = B_FALSE; 8999 if (dev->l2ad_hand >= (dev->l2ad_end - distance)) { 9000 /* 9001 * When there is no space to accommodate upcoming writes, 9002 * evict to the end. Then bump the write and evict hands 9003 * to the start and iterate. This iteration does not 9004 * happen indefinitely as we make sure in 9005 * l2arc_write_size() that when the write hand is reset, 9006 * the write size does not exceed the end of the device. 9007 */ 9008 rerun = B_TRUE; 9009 taddr = dev->l2ad_end; 9010 } else { 9011 taddr = dev->l2ad_hand + distance; 9012 } 9013 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 9014 uint64_t, taddr, boolean_t, all); 9015 9016 if (!all) { 9017 /* 9018 * This check has to be placed after deciding whether to 9019 * iterate (rerun). 9020 */ 9021 if (dev->l2ad_first) { 9022 /* 9023 * This is the first sweep through the device. There is 9024 * nothing to evict. We have already trimmmed the 9025 * whole device. 9026 */ 9027 goto out; 9028 } else { 9029 /* 9030 * Trim the space to be evicted. 9031 */ 9032 if (vd->vdev_has_trim && dev->l2ad_evict < taddr && 9033 l2arc_trim_ahead > 0) { 9034 /* 9035 * We have to drop the spa_config lock because 9036 * vdev_trim_range() will acquire it. 9037 * l2ad_evict already accounts for the label 9038 * size. To prevent vdev_trim_ranges() from 9039 * adding it again, we subtract it from 9040 * l2ad_evict. 9041 */ 9042 spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev); 9043 vdev_trim_simple(vd, 9044 dev->l2ad_evict - VDEV_LABEL_START_SIZE, 9045 taddr - dev->l2ad_evict); 9046 spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev, 9047 RW_READER); 9048 } 9049 9050 /* 9051 * When rebuilding L2ARC we retrieve the evict hand 9052 * from the header of the device. Of note, l2arc_evict() 9053 * does not actually delete buffers from the cache 9054 * device, but trimming may do so depending on the 9055 * hardware implementation. Thus keeping track of the 9056 * evict hand is useful. 9057 */ 9058 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr); 9059 } 9060 } 9061 9062 retry: 9063 mutex_enter(&dev->l2ad_mtx); 9064 /* 9065 * We have to account for evicted log blocks. Run vdev_space_update() 9066 * on log blocks whose offset (in bytes) is before the evicted offset 9067 * (in bytes) by searching in the list of pointers to log blocks 9068 * present in the L2ARC device. 9069 */ 9070 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf; 9071 lb_ptr_buf = lb_ptr_buf_prev) { 9072 9073 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf); 9074 9075 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 9076 uint64_t asize = L2BLK_GET_PSIZE( 9077 (lb_ptr_buf->lb_ptr)->lbp_prop); 9078 9079 /* 9080 * We don't worry about log blocks left behind (ie 9081 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers() 9082 * will never write more than l2arc_evict() evicts. 9083 */ 9084 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) { 9085 break; 9086 } else { 9087 vdev_space_update(vd, -asize, 0, 0); 9088 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 9089 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 9090 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 9091 lb_ptr_buf); 9092 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 9093 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf); 9094 kmem_free(lb_ptr_buf->lb_ptr, 9095 sizeof (l2arc_log_blkptr_t)); 9096 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 9097 } 9098 } 9099 9100 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 9101 hdr_prev = list_prev(buflist, hdr); 9102 9103 ASSERT(!HDR_EMPTY(hdr)); 9104 hash_lock = HDR_LOCK(hdr); 9105 9106 /* 9107 * We cannot use mutex_enter or else we can deadlock 9108 * with l2arc_write_buffers (due to swapping the order 9109 * the hash lock and l2ad_mtx are taken). 9110 */ 9111 if (!mutex_tryenter(hash_lock)) { 9112 /* 9113 * Missed the hash lock. Retry. 9114 */ 9115 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 9116 mutex_exit(&dev->l2ad_mtx); 9117 mutex_enter(hash_lock); 9118 mutex_exit(hash_lock); 9119 goto retry; 9120 } 9121 9122 /* 9123 * A header can't be on this list if it doesn't have L2 header. 9124 */ 9125 ASSERT(HDR_HAS_L2HDR(hdr)); 9126 9127 /* Ensure this header has finished being written. */ 9128 ASSERT(!HDR_L2_WRITING(hdr)); 9129 ASSERT(!HDR_L2_WRITE_HEAD(hdr)); 9130 9131 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict || 9132 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 9133 /* 9134 * We've evicted to the target address, 9135 * or the end of the device. 9136 */ 9137 mutex_exit(hash_lock); 9138 break; 9139 } 9140 9141 if (!HDR_HAS_L1HDR(hdr)) { 9142 ASSERT(!HDR_L2_READING(hdr)); 9143 /* 9144 * This doesn't exist in the ARC. Destroy. 9145 * arc_hdr_destroy() will call list_remove() 9146 * and decrement arcstat_l2_lsize. 9147 */ 9148 arc_change_state(arc_anon, hdr, hash_lock); 9149 arc_hdr_destroy(hdr); 9150 } else { 9151 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 9152 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 9153 /* 9154 * Invalidate issued or about to be issued 9155 * reads, since we may be about to write 9156 * over this location. 9157 */ 9158 if (HDR_L2_READING(hdr)) { 9159 ARCSTAT_BUMP(arcstat_l2_evict_reading); 9160 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); 9161 } 9162 9163 arc_hdr_l2hdr_destroy(hdr); 9164 } 9165 mutex_exit(hash_lock); 9166 } 9167 mutex_exit(&dev->l2ad_mtx); 9168 9169 out: 9170 /* 9171 * We need to check if we evict all buffers, otherwise we may iterate 9172 * unnecessarily. 9173 */ 9174 if (!all && rerun) { 9175 /* 9176 * Bump device hand to the device start if it is approaching the 9177 * end. l2arc_evict() has already evicted ahead for this case. 9178 */ 9179 dev->l2ad_hand = dev->l2ad_start; 9180 dev->l2ad_evict = dev->l2ad_start; 9181 dev->l2ad_first = B_FALSE; 9182 goto top; 9183 } 9184 9185 if (!all) { 9186 /* 9187 * In case of cache device removal (all) the following 9188 * assertions may be violated without functional consequences 9189 * as the device is about to be removed. 9190 */ 9191 ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end); 9192 if (!dev->l2ad_first) 9193 ASSERT3U(dev->l2ad_hand, <, dev->l2ad_evict); 9194 } 9195 } 9196 9197 /* 9198 * Handle any abd transforms that might be required for writing to the L2ARC. 9199 * If successful, this function will always return an abd with the data 9200 * transformed as it is on disk in a new abd of asize bytes. 9201 */ 9202 static int 9203 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize, 9204 abd_t **abd_out) 9205 { 9206 int ret; 9207 void *tmp = NULL; 9208 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd; 9209 enum zio_compress compress = HDR_GET_COMPRESS(hdr); 9210 uint64_t psize = HDR_GET_PSIZE(hdr); 9211 uint64_t size = arc_hdr_size(hdr); 9212 boolean_t ismd = HDR_ISTYPE_METADATA(hdr); 9213 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 9214 dsl_crypto_key_t *dck = NULL; 9215 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 }; 9216 boolean_t no_crypt = B_FALSE; 9217 9218 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 9219 !HDR_COMPRESSION_ENABLED(hdr)) || 9220 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize); 9221 ASSERT3U(psize, <=, asize); 9222 9223 /* 9224 * If this data simply needs its own buffer, we simply allocate it 9225 * and copy the data. This may be done to eliminate a dependency on a 9226 * shared buffer or to reallocate the buffer to match asize. 9227 */ 9228 if (HDR_HAS_RABD(hdr) && asize != psize) { 9229 ASSERT3U(asize, >=, psize); 9230 to_write = abd_alloc_for_io(asize, ismd); 9231 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize); 9232 if (psize != asize) 9233 abd_zero_off(to_write, psize, asize - psize); 9234 goto out; 9235 } 9236 9237 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) && 9238 !HDR_ENCRYPTED(hdr)) { 9239 ASSERT3U(size, ==, psize); 9240 to_write = abd_alloc_for_io(asize, ismd); 9241 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 9242 if (size != asize) 9243 abd_zero_off(to_write, size, asize - size); 9244 goto out; 9245 } 9246 9247 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) { 9248 cabd = abd_alloc_for_io(asize, ismd); 9249 tmp = abd_borrow_buf(cabd, asize); 9250 9251 psize = zio_compress_data(compress, to_write, tmp, size, 9252 hdr->b_complevel); 9253 9254 if (psize >= size) { 9255 abd_return_buf(cabd, tmp, asize); 9256 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF); 9257 to_write = cabd; 9258 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 9259 if (size != asize) 9260 abd_zero_off(to_write, size, asize - size); 9261 goto encrypt; 9262 } 9263 ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr)); 9264 if (psize < asize) 9265 bzero((char *)tmp + psize, asize - psize); 9266 psize = HDR_GET_PSIZE(hdr); 9267 abd_return_buf_copy(cabd, tmp, asize); 9268 to_write = cabd; 9269 } 9270 9271 encrypt: 9272 if (HDR_ENCRYPTED(hdr)) { 9273 eabd = abd_alloc_for_io(asize, ismd); 9274 9275 /* 9276 * If the dataset was disowned before the buffer 9277 * made it to this point, the key to re-encrypt 9278 * it won't be available. In this case we simply 9279 * won't write the buffer to the L2ARC. 9280 */ 9281 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj, 9282 FTAG, &dck); 9283 if (ret != 0) 9284 goto error; 9285 9286 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key, 9287 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt, 9288 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd, 9289 &no_crypt); 9290 if (ret != 0) 9291 goto error; 9292 9293 if (no_crypt) 9294 abd_copy(eabd, to_write, psize); 9295 9296 if (psize != asize) 9297 abd_zero_off(eabd, psize, asize - psize); 9298 9299 /* assert that the MAC we got here matches the one we saved */ 9300 ASSERT0(bcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN)); 9301 spa_keystore_dsl_key_rele(spa, dck, FTAG); 9302 9303 if (to_write == cabd) 9304 abd_free(cabd); 9305 9306 to_write = eabd; 9307 } 9308 9309 out: 9310 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd); 9311 *abd_out = to_write; 9312 return (0); 9313 9314 error: 9315 if (dck != NULL) 9316 spa_keystore_dsl_key_rele(spa, dck, FTAG); 9317 if (cabd != NULL) 9318 abd_free(cabd); 9319 if (eabd != NULL) 9320 abd_free(eabd); 9321 9322 *abd_out = NULL; 9323 return (ret); 9324 } 9325 9326 static void 9327 l2arc_blk_fetch_done(zio_t *zio) 9328 { 9329 l2arc_read_callback_t *cb; 9330 9331 cb = zio->io_private; 9332 if (cb->l2rcb_abd != NULL) 9333 abd_free(cb->l2rcb_abd); 9334 kmem_free(cb, sizeof (l2arc_read_callback_t)); 9335 } 9336 9337 /* 9338 * Find and write ARC buffers to the L2ARC device. 9339 * 9340 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 9341 * for reading until they have completed writing. 9342 * The headroom_boost is an in-out parameter used to maintain headroom boost 9343 * state between calls to this function. 9344 * 9345 * Returns the number of bytes actually written (which may be smaller than 9346 * the delta by which the device hand has changed due to alignment and the 9347 * writing of log blocks). 9348 */ 9349 static uint64_t 9350 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 9351 { 9352 arc_buf_hdr_t *hdr, *hdr_prev, *head; 9353 uint64_t write_asize, write_psize, write_lsize, headroom; 9354 boolean_t full; 9355 l2arc_write_callback_t *cb = NULL; 9356 zio_t *pio, *wzio; 9357 uint64_t guid = spa_load_guid(spa); 9358 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9359 9360 ASSERT3P(dev->l2ad_vdev, !=, NULL); 9361 9362 pio = NULL; 9363 write_lsize = write_asize = write_psize = 0; 9364 full = B_FALSE; 9365 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 9366 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); 9367 9368 /* 9369 * Copy buffers for L2ARC writing. 9370 */ 9371 for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) { 9372 /* 9373 * If pass == 1 or 3, we cache MRU metadata and data 9374 * respectively. 9375 */ 9376 if (l2arc_mfuonly) { 9377 if (pass == 1 || pass == 3) 9378 continue; 9379 } 9380 9381 multilist_sublist_t *mls = l2arc_sublist_lock(pass); 9382 uint64_t passed_sz = 0; 9383 9384 VERIFY3P(mls, !=, NULL); 9385 9386 /* 9387 * L2ARC fast warmup. 9388 * 9389 * Until the ARC is warm and starts to evict, read from the 9390 * head of the ARC lists rather than the tail. 9391 */ 9392 if (arc_warm == B_FALSE) 9393 hdr = multilist_sublist_head(mls); 9394 else 9395 hdr = multilist_sublist_tail(mls); 9396 9397 headroom = target_sz * l2arc_headroom; 9398 if (zfs_compressed_arc_enabled) 9399 headroom = (headroom * l2arc_headroom_boost) / 100; 9400 9401 for (; hdr; hdr = hdr_prev) { 9402 kmutex_t *hash_lock; 9403 abd_t *to_write = NULL; 9404 9405 if (arc_warm == B_FALSE) 9406 hdr_prev = multilist_sublist_next(mls, hdr); 9407 else 9408 hdr_prev = multilist_sublist_prev(mls, hdr); 9409 9410 hash_lock = HDR_LOCK(hdr); 9411 if (!mutex_tryenter(hash_lock)) { 9412 /* 9413 * Skip this buffer rather than waiting. 9414 */ 9415 continue; 9416 } 9417 9418 passed_sz += HDR_GET_LSIZE(hdr); 9419 if (l2arc_headroom != 0 && passed_sz > headroom) { 9420 /* 9421 * Searched too far. 9422 */ 9423 mutex_exit(hash_lock); 9424 break; 9425 } 9426 9427 if (!l2arc_write_eligible(guid, hdr)) { 9428 mutex_exit(hash_lock); 9429 continue; 9430 } 9431 9432 /* 9433 * We rely on the L1 portion of the header below, so 9434 * it's invalid for this header to have been evicted out 9435 * of the ghost cache, prior to being written out. The 9436 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 9437 */ 9438 ASSERT(HDR_HAS_L1HDR(hdr)); 9439 9440 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 9441 ASSERT3U(arc_hdr_size(hdr), >, 0); 9442 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 9443 HDR_HAS_RABD(hdr)); 9444 uint64_t psize = HDR_GET_PSIZE(hdr); 9445 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 9446 psize); 9447 9448 if ((write_asize + asize) > target_sz) { 9449 full = B_TRUE; 9450 mutex_exit(hash_lock); 9451 break; 9452 } 9453 9454 /* 9455 * We rely on the L1 portion of the header below, so 9456 * it's invalid for this header to have been evicted out 9457 * of the ghost cache, prior to being written out. The 9458 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 9459 */ 9460 arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING); 9461 ASSERT(HDR_HAS_L1HDR(hdr)); 9462 9463 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 9464 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 9465 HDR_HAS_RABD(hdr)); 9466 ASSERT3U(arc_hdr_size(hdr), >, 0); 9467 9468 /* 9469 * If this header has b_rabd, we can use this since it 9470 * must always match the data exactly as it exists on 9471 * disk. Otherwise, the L2ARC can normally use the 9472 * hdr's data, but if we're sharing data between the 9473 * hdr and one of its bufs, L2ARC needs its own copy of 9474 * the data so that the ZIO below can't race with the 9475 * buf consumer. To ensure that this copy will be 9476 * available for the lifetime of the ZIO and be cleaned 9477 * up afterwards, we add it to the l2arc_free_on_write 9478 * queue. If we need to apply any transforms to the 9479 * data (compression, encryption) we will also need the 9480 * extra buffer. 9481 */ 9482 if (HDR_HAS_RABD(hdr) && psize == asize) { 9483 to_write = hdr->b_crypt_hdr.b_rabd; 9484 } else if ((HDR_COMPRESSION_ENABLED(hdr) || 9485 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) && 9486 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) && 9487 psize == asize) { 9488 to_write = hdr->b_l1hdr.b_pabd; 9489 } else { 9490 int ret; 9491 arc_buf_contents_t type = arc_buf_type(hdr); 9492 9493 ret = l2arc_apply_transforms(spa, hdr, asize, 9494 &to_write); 9495 if (ret != 0) { 9496 arc_hdr_clear_flags(hdr, 9497 ARC_FLAG_L2_WRITING); 9498 mutex_exit(hash_lock); 9499 continue; 9500 } 9501 9502 l2arc_free_abd_on_write(to_write, asize, type); 9503 } 9504 9505 if (pio == NULL) { 9506 /* 9507 * Insert a dummy header on the buflist so 9508 * l2arc_write_done() can find where the 9509 * write buffers begin without searching. 9510 */ 9511 mutex_enter(&dev->l2ad_mtx); 9512 list_insert_head(&dev->l2ad_buflist, head); 9513 mutex_exit(&dev->l2ad_mtx); 9514 9515 cb = kmem_alloc( 9516 sizeof (l2arc_write_callback_t), KM_SLEEP); 9517 cb->l2wcb_dev = dev; 9518 cb->l2wcb_head = head; 9519 /* 9520 * Create a list to save allocated abd buffers 9521 * for l2arc_log_blk_commit(). 9522 */ 9523 list_create(&cb->l2wcb_abd_list, 9524 sizeof (l2arc_lb_abd_buf_t), 9525 offsetof(l2arc_lb_abd_buf_t, node)); 9526 pio = zio_root(spa, l2arc_write_done, cb, 9527 ZIO_FLAG_CANFAIL); 9528 } 9529 9530 hdr->b_l2hdr.b_dev = dev; 9531 hdr->b_l2hdr.b_hits = 0; 9532 9533 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 9534 hdr->b_l2hdr.b_arcs_state = 9535 hdr->b_l1hdr.b_state->arcs_state; 9536 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR); 9537 9538 mutex_enter(&dev->l2ad_mtx); 9539 list_insert_head(&dev->l2ad_buflist, hdr); 9540 mutex_exit(&dev->l2ad_mtx); 9541 9542 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 9543 arc_hdr_size(hdr), hdr); 9544 9545 wzio = zio_write_phys(pio, dev->l2ad_vdev, 9546 hdr->b_l2hdr.b_daddr, asize, to_write, 9547 ZIO_CHECKSUM_OFF, NULL, hdr, 9548 ZIO_PRIORITY_ASYNC_WRITE, 9549 ZIO_FLAG_CANFAIL, B_FALSE); 9550 9551 write_lsize += HDR_GET_LSIZE(hdr); 9552 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 9553 zio_t *, wzio); 9554 9555 write_psize += psize; 9556 write_asize += asize; 9557 dev->l2ad_hand += asize; 9558 l2arc_hdr_arcstats_increment(hdr); 9559 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 9560 9561 mutex_exit(hash_lock); 9562 9563 /* 9564 * Append buf info to current log and commit if full. 9565 * arcstat_l2_{size,asize} kstats are updated 9566 * internally. 9567 */ 9568 if (l2arc_log_blk_insert(dev, hdr)) 9569 l2arc_log_blk_commit(dev, pio, cb); 9570 9571 zio_nowait(wzio); 9572 } 9573 9574 multilist_sublist_unlock(mls); 9575 9576 if (full == B_TRUE) 9577 break; 9578 } 9579 9580 /* No buffers selected for writing? */ 9581 if (pio == NULL) { 9582 ASSERT0(write_lsize); 9583 ASSERT(!HDR_HAS_L1HDR(head)); 9584 kmem_cache_free(hdr_l2only_cache, head); 9585 9586 /* 9587 * Although we did not write any buffers l2ad_evict may 9588 * have advanced. 9589 */ 9590 if (dev->l2ad_evict != l2dhdr->dh_evict) 9591 l2arc_dev_hdr_update(dev); 9592 9593 return (0); 9594 } 9595 9596 if (!dev->l2ad_first) 9597 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict); 9598 9599 ASSERT3U(write_asize, <=, target_sz); 9600 ARCSTAT_BUMP(arcstat_l2_writes_sent); 9601 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize); 9602 9603 dev->l2ad_writing = B_TRUE; 9604 (void) zio_wait(pio); 9605 dev->l2ad_writing = B_FALSE; 9606 9607 /* 9608 * Update the device header after the zio completes as 9609 * l2arc_write_done() may have updated the memory holding the log block 9610 * pointers in the device header. 9611 */ 9612 l2arc_dev_hdr_update(dev); 9613 9614 return (write_asize); 9615 } 9616 9617 static boolean_t 9618 l2arc_hdr_limit_reached(void) 9619 { 9620 int64_t s = aggsum_upper_bound(&arc_sums.arcstat_l2_hdr_size); 9621 9622 return (arc_reclaim_needed() || (s > arc_meta_limit * 3 / 4) || 9623 (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100)); 9624 } 9625 9626 /* 9627 * This thread feeds the L2ARC at regular intervals. This is the beating 9628 * heart of the L2ARC. 9629 */ 9630 /* ARGSUSED */ 9631 static void 9632 l2arc_feed_thread(void *unused) 9633 { 9634 callb_cpr_t cpr; 9635 l2arc_dev_t *dev; 9636 spa_t *spa; 9637 uint64_t size, wrote; 9638 clock_t begin, next = ddi_get_lbolt(); 9639 fstrans_cookie_t cookie; 9640 9641 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 9642 9643 mutex_enter(&l2arc_feed_thr_lock); 9644 9645 cookie = spl_fstrans_mark(); 9646 while (l2arc_thread_exit == 0) { 9647 CALLB_CPR_SAFE_BEGIN(&cpr); 9648 (void) cv_timedwait_idle(&l2arc_feed_thr_cv, 9649 &l2arc_feed_thr_lock, next); 9650 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 9651 next = ddi_get_lbolt() + hz; 9652 9653 /* 9654 * Quick check for L2ARC devices. 9655 */ 9656 mutex_enter(&l2arc_dev_mtx); 9657 if (l2arc_ndev == 0) { 9658 mutex_exit(&l2arc_dev_mtx); 9659 continue; 9660 } 9661 mutex_exit(&l2arc_dev_mtx); 9662 begin = ddi_get_lbolt(); 9663 9664 /* 9665 * This selects the next l2arc device to write to, and in 9666 * doing so the next spa to feed from: dev->l2ad_spa. This 9667 * will return NULL if there are now no l2arc devices or if 9668 * they are all faulted. 9669 * 9670 * If a device is returned, its spa's config lock is also 9671 * held to prevent device removal. l2arc_dev_get_next() 9672 * will grab and release l2arc_dev_mtx. 9673 */ 9674 if ((dev = l2arc_dev_get_next()) == NULL) 9675 continue; 9676 9677 spa = dev->l2ad_spa; 9678 ASSERT3P(spa, !=, NULL); 9679 9680 /* 9681 * If the pool is read-only then force the feed thread to 9682 * sleep a little longer. 9683 */ 9684 if (!spa_writeable(spa)) { 9685 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 9686 spa_config_exit(spa, SCL_L2ARC, dev); 9687 continue; 9688 } 9689 9690 /* 9691 * Avoid contributing to memory pressure. 9692 */ 9693 if (l2arc_hdr_limit_reached()) { 9694 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 9695 spa_config_exit(spa, SCL_L2ARC, dev); 9696 continue; 9697 } 9698 9699 ARCSTAT_BUMP(arcstat_l2_feeds); 9700 9701 size = l2arc_write_size(dev); 9702 9703 /* 9704 * Evict L2ARC buffers that will be overwritten. 9705 */ 9706 l2arc_evict(dev, size, B_FALSE); 9707 9708 /* 9709 * Write ARC buffers. 9710 */ 9711 wrote = l2arc_write_buffers(spa, dev, size); 9712 9713 /* 9714 * Calculate interval between writes. 9715 */ 9716 next = l2arc_write_interval(begin, size, wrote); 9717 spa_config_exit(spa, SCL_L2ARC, dev); 9718 } 9719 spl_fstrans_unmark(cookie); 9720 9721 l2arc_thread_exit = 0; 9722 cv_broadcast(&l2arc_feed_thr_cv); 9723 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 9724 thread_exit(); 9725 } 9726 9727 boolean_t 9728 l2arc_vdev_present(vdev_t *vd) 9729 { 9730 return (l2arc_vdev_get(vd) != NULL); 9731 } 9732 9733 /* 9734 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if 9735 * the vdev_t isn't an L2ARC device. 9736 */ 9737 l2arc_dev_t * 9738 l2arc_vdev_get(vdev_t *vd) 9739 { 9740 l2arc_dev_t *dev; 9741 9742 mutex_enter(&l2arc_dev_mtx); 9743 for (dev = list_head(l2arc_dev_list); dev != NULL; 9744 dev = list_next(l2arc_dev_list, dev)) { 9745 if (dev->l2ad_vdev == vd) 9746 break; 9747 } 9748 mutex_exit(&l2arc_dev_mtx); 9749 9750 return (dev); 9751 } 9752 9753 /* 9754 * Add a vdev for use by the L2ARC. By this point the spa has already 9755 * validated the vdev and opened it. 9756 */ 9757 void 9758 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 9759 { 9760 l2arc_dev_t *adddev; 9761 uint64_t l2dhdr_asize; 9762 9763 ASSERT(!l2arc_vdev_present(vd)); 9764 9765 /* 9766 * Create a new l2arc device entry. 9767 */ 9768 adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 9769 adddev->l2ad_spa = spa; 9770 adddev->l2ad_vdev = vd; 9771 /* leave extra size for an l2arc device header */ 9772 l2dhdr_asize = adddev->l2ad_dev_hdr_asize = 9773 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift); 9774 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize; 9775 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 9776 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end); 9777 adddev->l2ad_hand = adddev->l2ad_start; 9778 adddev->l2ad_evict = adddev->l2ad_start; 9779 adddev->l2ad_first = B_TRUE; 9780 adddev->l2ad_writing = B_FALSE; 9781 adddev->l2ad_trim_all = B_FALSE; 9782 list_link_init(&adddev->l2ad_node); 9783 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP); 9784 9785 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 9786 /* 9787 * This is a list of all ARC buffers that are still valid on the 9788 * device. 9789 */ 9790 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 9791 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 9792 9793 /* 9794 * This is a list of pointers to log blocks that are still present 9795 * on the device. 9796 */ 9797 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t), 9798 offsetof(l2arc_lb_ptr_buf_t, node)); 9799 9800 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 9801 zfs_refcount_create(&adddev->l2ad_alloc); 9802 zfs_refcount_create(&adddev->l2ad_lb_asize); 9803 zfs_refcount_create(&adddev->l2ad_lb_count); 9804 9805 /* 9806 * Add device to global list 9807 */ 9808 mutex_enter(&l2arc_dev_mtx); 9809 list_insert_head(l2arc_dev_list, adddev); 9810 atomic_inc_64(&l2arc_ndev); 9811 mutex_exit(&l2arc_dev_mtx); 9812 9813 /* 9814 * Decide if vdev is eligible for L2ARC rebuild 9815 */ 9816 l2arc_rebuild_vdev(adddev->l2ad_vdev, B_FALSE); 9817 } 9818 9819 void 9820 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen) 9821 { 9822 l2arc_dev_t *dev = NULL; 9823 l2arc_dev_hdr_phys_t *l2dhdr; 9824 uint64_t l2dhdr_asize; 9825 spa_t *spa; 9826 9827 dev = l2arc_vdev_get(vd); 9828 ASSERT3P(dev, !=, NULL); 9829 spa = dev->l2ad_spa; 9830 l2dhdr = dev->l2ad_dev_hdr; 9831 l2dhdr_asize = dev->l2ad_dev_hdr_asize; 9832 9833 /* 9834 * The L2ARC has to hold at least the payload of one log block for 9835 * them to be restored (persistent L2ARC). The payload of a log block 9836 * depends on the amount of its log entries. We always write log blocks 9837 * with 1022 entries. How many of them are committed or restored depends 9838 * on the size of the L2ARC device. Thus the maximum payload of 9839 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device 9840 * is less than that, we reduce the amount of committed and restored 9841 * log entries per block so as to enable persistence. 9842 */ 9843 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) { 9844 dev->l2ad_log_entries = 0; 9845 } else { 9846 dev->l2ad_log_entries = MIN((dev->l2ad_end - 9847 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT, 9848 L2ARC_LOG_BLK_MAX_ENTRIES); 9849 } 9850 9851 /* 9852 * Read the device header, if an error is returned do not rebuild L2ARC. 9853 */ 9854 if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) { 9855 /* 9856 * If we are onlining a cache device (vdev_reopen) that was 9857 * still present (l2arc_vdev_present()) and rebuild is enabled, 9858 * we should evict all ARC buffers and pointers to log blocks 9859 * and reclaim their space before restoring its contents to 9860 * L2ARC. 9861 */ 9862 if (reopen) { 9863 if (!l2arc_rebuild_enabled) { 9864 return; 9865 } else { 9866 l2arc_evict(dev, 0, B_TRUE); 9867 /* start a new log block */ 9868 dev->l2ad_log_ent_idx = 0; 9869 dev->l2ad_log_blk_payload_asize = 0; 9870 dev->l2ad_log_blk_payload_start = 0; 9871 } 9872 } 9873 /* 9874 * Just mark the device as pending for a rebuild. We won't 9875 * be starting a rebuild in line here as it would block pool 9876 * import. Instead spa_load_impl will hand that off to an 9877 * async task which will call l2arc_spa_rebuild_start. 9878 */ 9879 dev->l2ad_rebuild = B_TRUE; 9880 } else if (spa_writeable(spa)) { 9881 /* 9882 * In this case TRIM the whole device if l2arc_trim_ahead > 0, 9883 * otherwise create a new header. We zero out the memory holding 9884 * the header to reset dh_start_lbps. If we TRIM the whole 9885 * device the new header will be written by 9886 * vdev_trim_l2arc_thread() at the end of the TRIM to update the 9887 * trim_state in the header too. When reading the header, if 9888 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0 9889 * we opt to TRIM the whole device again. 9890 */ 9891 if (l2arc_trim_ahead > 0) { 9892 dev->l2ad_trim_all = B_TRUE; 9893 } else { 9894 bzero(l2dhdr, l2dhdr_asize); 9895 l2arc_dev_hdr_update(dev); 9896 } 9897 } 9898 } 9899 9900 /* 9901 * Remove a vdev from the L2ARC. 9902 */ 9903 void 9904 l2arc_remove_vdev(vdev_t *vd) 9905 { 9906 l2arc_dev_t *remdev = NULL; 9907 9908 /* 9909 * Find the device by vdev 9910 */ 9911 remdev = l2arc_vdev_get(vd); 9912 ASSERT3P(remdev, !=, NULL); 9913 9914 /* 9915 * Cancel any ongoing or scheduled rebuild. 9916 */ 9917 mutex_enter(&l2arc_rebuild_thr_lock); 9918 if (remdev->l2ad_rebuild_began == B_TRUE) { 9919 remdev->l2ad_rebuild_cancel = B_TRUE; 9920 while (remdev->l2ad_rebuild == B_TRUE) 9921 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock); 9922 } 9923 mutex_exit(&l2arc_rebuild_thr_lock); 9924 9925 /* 9926 * Remove device from global list 9927 */ 9928 mutex_enter(&l2arc_dev_mtx); 9929 list_remove(l2arc_dev_list, remdev); 9930 l2arc_dev_last = NULL; /* may have been invalidated */ 9931 atomic_dec_64(&l2arc_ndev); 9932 mutex_exit(&l2arc_dev_mtx); 9933 9934 /* 9935 * Clear all buflists and ARC references. L2ARC device flush. 9936 */ 9937 l2arc_evict(remdev, 0, B_TRUE); 9938 list_destroy(&remdev->l2ad_buflist); 9939 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list)); 9940 list_destroy(&remdev->l2ad_lbptr_list); 9941 mutex_destroy(&remdev->l2ad_mtx); 9942 zfs_refcount_destroy(&remdev->l2ad_alloc); 9943 zfs_refcount_destroy(&remdev->l2ad_lb_asize); 9944 zfs_refcount_destroy(&remdev->l2ad_lb_count); 9945 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize); 9946 vmem_free(remdev, sizeof (l2arc_dev_t)); 9947 } 9948 9949 void 9950 l2arc_init(void) 9951 { 9952 l2arc_thread_exit = 0; 9953 l2arc_ndev = 0; 9954 9955 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 9956 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 9957 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL); 9958 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL); 9959 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 9960 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 9961 9962 l2arc_dev_list = &L2ARC_dev_list; 9963 l2arc_free_on_write = &L2ARC_free_on_write; 9964 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 9965 offsetof(l2arc_dev_t, l2ad_node)); 9966 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 9967 offsetof(l2arc_data_free_t, l2df_list_node)); 9968 } 9969 9970 void 9971 l2arc_fini(void) 9972 { 9973 mutex_destroy(&l2arc_feed_thr_lock); 9974 cv_destroy(&l2arc_feed_thr_cv); 9975 mutex_destroy(&l2arc_rebuild_thr_lock); 9976 cv_destroy(&l2arc_rebuild_thr_cv); 9977 mutex_destroy(&l2arc_dev_mtx); 9978 mutex_destroy(&l2arc_free_on_write_mtx); 9979 9980 list_destroy(l2arc_dev_list); 9981 list_destroy(l2arc_free_on_write); 9982 } 9983 9984 void 9985 l2arc_start(void) 9986 { 9987 if (!(spa_mode_global & SPA_MODE_WRITE)) 9988 return; 9989 9990 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 9991 TS_RUN, defclsyspri); 9992 } 9993 9994 void 9995 l2arc_stop(void) 9996 { 9997 if (!(spa_mode_global & SPA_MODE_WRITE)) 9998 return; 9999 10000 mutex_enter(&l2arc_feed_thr_lock); 10001 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 10002 l2arc_thread_exit = 1; 10003 while (l2arc_thread_exit != 0) 10004 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 10005 mutex_exit(&l2arc_feed_thr_lock); 10006 } 10007 10008 /* 10009 * Punches out rebuild threads for the L2ARC devices in a spa. This should 10010 * be called after pool import from the spa async thread, since starting 10011 * these threads directly from spa_import() will make them part of the 10012 * "zpool import" context and delay process exit (and thus pool import). 10013 */ 10014 void 10015 l2arc_spa_rebuild_start(spa_t *spa) 10016 { 10017 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 10018 10019 /* 10020 * Locate the spa's l2arc devices and kick off rebuild threads. 10021 */ 10022 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 10023 l2arc_dev_t *dev = 10024 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]); 10025 if (dev == NULL) { 10026 /* Don't attempt a rebuild if the vdev is UNAVAIL */ 10027 continue; 10028 } 10029 mutex_enter(&l2arc_rebuild_thr_lock); 10030 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) { 10031 dev->l2ad_rebuild_began = B_TRUE; 10032 (void) thread_create(NULL, 0, l2arc_dev_rebuild_thread, 10033 dev, 0, &p0, TS_RUN, minclsyspri); 10034 } 10035 mutex_exit(&l2arc_rebuild_thr_lock); 10036 } 10037 } 10038 10039 /* 10040 * Main entry point for L2ARC rebuilding. 10041 */ 10042 static void 10043 l2arc_dev_rebuild_thread(void *arg) 10044 { 10045 l2arc_dev_t *dev = arg; 10046 10047 VERIFY(!dev->l2ad_rebuild_cancel); 10048 VERIFY(dev->l2ad_rebuild); 10049 (void) l2arc_rebuild(dev); 10050 mutex_enter(&l2arc_rebuild_thr_lock); 10051 dev->l2ad_rebuild_began = B_FALSE; 10052 dev->l2ad_rebuild = B_FALSE; 10053 mutex_exit(&l2arc_rebuild_thr_lock); 10054 10055 thread_exit(); 10056 } 10057 10058 /* 10059 * This function implements the actual L2ARC metadata rebuild. It: 10060 * starts reading the log block chain and restores each block's contents 10061 * to memory (reconstructing arc_buf_hdr_t's). 10062 * 10063 * Operation stops under any of the following conditions: 10064 * 10065 * 1) We reach the end of the log block chain. 10066 * 2) We encounter *any* error condition (cksum errors, io errors) 10067 */ 10068 static int 10069 l2arc_rebuild(l2arc_dev_t *dev) 10070 { 10071 vdev_t *vd = dev->l2ad_vdev; 10072 spa_t *spa = vd->vdev_spa; 10073 int err = 0; 10074 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10075 l2arc_log_blk_phys_t *this_lb, *next_lb; 10076 zio_t *this_io = NULL, *next_io = NULL; 10077 l2arc_log_blkptr_t lbps[2]; 10078 l2arc_lb_ptr_buf_t *lb_ptr_buf; 10079 boolean_t lock_held; 10080 10081 this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP); 10082 next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP); 10083 10084 /* 10085 * We prevent device removal while issuing reads to the device, 10086 * then during the rebuilding phases we drop this lock again so 10087 * that a spa_unload or device remove can be initiated - this is 10088 * safe, because the spa will signal us to stop before removing 10089 * our device and wait for us to stop. 10090 */ 10091 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER); 10092 lock_held = B_TRUE; 10093 10094 /* 10095 * Retrieve the persistent L2ARC device state. 10096 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10097 */ 10098 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start); 10099 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr + 10100 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop), 10101 dev->l2ad_start); 10102 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 10103 10104 vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time; 10105 vd->vdev_trim_state = l2dhdr->dh_trim_state; 10106 10107 /* 10108 * In case the zfs module parameter l2arc_rebuild_enabled is false 10109 * we do not start the rebuild process. 10110 */ 10111 if (!l2arc_rebuild_enabled) 10112 goto out; 10113 10114 /* Prepare the rebuild process */ 10115 bcopy(l2dhdr->dh_start_lbps, lbps, sizeof (lbps)); 10116 10117 /* Start the rebuild process */ 10118 for (;;) { 10119 if (!l2arc_log_blkptr_valid(dev, &lbps[0])) 10120 break; 10121 10122 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1], 10123 this_lb, next_lb, this_io, &next_io)) != 0) 10124 goto out; 10125 10126 /* 10127 * Our memory pressure valve. If the system is running low 10128 * on memory, rather than swamping memory with new ARC buf 10129 * hdrs, we opt not to rebuild the L2ARC. At this point, 10130 * however, we have already set up our L2ARC dev to chain in 10131 * new metadata log blocks, so the user may choose to offline/ 10132 * online the L2ARC dev at a later time (or re-import the pool) 10133 * to reconstruct it (when there's less memory pressure). 10134 */ 10135 if (l2arc_hdr_limit_reached()) { 10136 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem); 10137 cmn_err(CE_NOTE, "System running low on memory, " 10138 "aborting L2ARC rebuild."); 10139 err = SET_ERROR(ENOMEM); 10140 goto out; 10141 } 10142 10143 spa_config_exit(spa, SCL_L2ARC, vd); 10144 lock_held = B_FALSE; 10145 10146 /* 10147 * Now that we know that the next_lb checks out alright, we 10148 * can start reconstruction from this log block. 10149 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10150 */ 10151 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 10152 l2arc_log_blk_restore(dev, this_lb, asize); 10153 10154 /* 10155 * log block restored, include its pointer in the list of 10156 * pointers to log blocks present in the L2ARC device. 10157 */ 10158 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 10159 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), 10160 KM_SLEEP); 10161 bcopy(&lbps[0], lb_ptr_buf->lb_ptr, 10162 sizeof (l2arc_log_blkptr_t)); 10163 mutex_enter(&dev->l2ad_mtx); 10164 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf); 10165 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 10166 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 10167 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 10168 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 10169 mutex_exit(&dev->l2ad_mtx); 10170 vdev_space_update(vd, asize, 0, 0); 10171 10172 /* 10173 * Protection against loops of log blocks: 10174 * 10175 * l2ad_hand l2ad_evict 10176 * V V 10177 * l2ad_start |=======================================| l2ad_end 10178 * -----|||----|||---|||----||| 10179 * (3) (2) (1) (0) 10180 * ---|||---|||----|||---||| 10181 * (7) (6) (5) (4) 10182 * 10183 * In this situation the pointer of log block (4) passes 10184 * l2arc_log_blkptr_valid() but the log block should not be 10185 * restored as it is overwritten by the payload of log block 10186 * (0). Only log blocks (0)-(3) should be restored. We check 10187 * whether l2ad_evict lies in between the payload starting 10188 * offset of the next log block (lbps[1].lbp_payload_start) 10189 * and the payload starting offset of the present log block 10190 * (lbps[0].lbp_payload_start). If true and this isn't the 10191 * first pass, we are looping from the beginning and we should 10192 * stop. 10193 */ 10194 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 10195 lbps[0].lbp_payload_start, dev->l2ad_evict) && 10196 !dev->l2ad_first) 10197 goto out; 10198 10199 cond_resched(); 10200 for (;;) { 10201 mutex_enter(&l2arc_rebuild_thr_lock); 10202 if (dev->l2ad_rebuild_cancel) { 10203 dev->l2ad_rebuild = B_FALSE; 10204 cv_signal(&l2arc_rebuild_thr_cv); 10205 mutex_exit(&l2arc_rebuild_thr_lock); 10206 err = SET_ERROR(ECANCELED); 10207 goto out; 10208 } 10209 mutex_exit(&l2arc_rebuild_thr_lock); 10210 if (spa_config_tryenter(spa, SCL_L2ARC, vd, 10211 RW_READER)) { 10212 lock_held = B_TRUE; 10213 break; 10214 } 10215 /* 10216 * L2ARC config lock held by somebody in writer, 10217 * possibly due to them trying to remove us. They'll 10218 * likely to want us to shut down, so after a little 10219 * delay, we check l2ad_rebuild_cancel and retry 10220 * the lock again. 10221 */ 10222 delay(1); 10223 } 10224 10225 /* 10226 * Continue with the next log block. 10227 */ 10228 lbps[0] = lbps[1]; 10229 lbps[1] = this_lb->lb_prev_lbp; 10230 PTR_SWAP(this_lb, next_lb); 10231 this_io = next_io; 10232 next_io = NULL; 10233 } 10234 10235 if (this_io != NULL) 10236 l2arc_log_blk_fetch_abort(this_io); 10237 out: 10238 if (next_io != NULL) 10239 l2arc_log_blk_fetch_abort(next_io); 10240 vmem_free(this_lb, sizeof (*this_lb)); 10241 vmem_free(next_lb, sizeof (*next_lb)); 10242 10243 if (!l2arc_rebuild_enabled) { 10244 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10245 "disabled"); 10246 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) { 10247 ARCSTAT_BUMP(arcstat_l2_rebuild_success); 10248 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10249 "successful, restored %llu blocks", 10250 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10251 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) { 10252 /* 10253 * No error but also nothing restored, meaning the lbps array 10254 * in the device header points to invalid/non-present log 10255 * blocks. Reset the header. 10256 */ 10257 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10258 "no valid log blocks"); 10259 bzero(l2dhdr, dev->l2ad_dev_hdr_asize); 10260 l2arc_dev_hdr_update(dev); 10261 } else if (err == ECANCELED) { 10262 /* 10263 * In case the rebuild was canceled do not log to spa history 10264 * log as the pool may be in the process of being removed. 10265 */ 10266 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks", 10267 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10268 } else if (err != 0) { 10269 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10270 "aborted, restored %llu blocks", 10271 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10272 } 10273 10274 if (lock_held) 10275 spa_config_exit(spa, SCL_L2ARC, vd); 10276 10277 return (err); 10278 } 10279 10280 /* 10281 * Attempts to read the device header on the provided L2ARC device and writes 10282 * it to `hdr'. On success, this function returns 0, otherwise the appropriate 10283 * error code is returned. 10284 */ 10285 static int 10286 l2arc_dev_hdr_read(l2arc_dev_t *dev) 10287 { 10288 int err; 10289 uint64_t guid; 10290 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10291 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10292 abd_t *abd; 10293 10294 guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10295 10296 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10297 10298 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev, 10299 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, 10300 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 10301 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 10302 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 10303 ZIO_FLAG_SPECULATIVE, B_FALSE)); 10304 10305 abd_free(abd); 10306 10307 if (err != 0) { 10308 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors); 10309 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, " 10310 "vdev guid: %llu", err, 10311 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10312 return (err); 10313 } 10314 10315 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 10316 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr)); 10317 10318 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC || 10319 l2dhdr->dh_spa_guid != guid || 10320 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid || 10321 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION || 10322 l2dhdr->dh_log_entries != dev->l2ad_log_entries || 10323 l2dhdr->dh_end != dev->l2ad_end || 10324 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end, 10325 l2dhdr->dh_evict) || 10326 (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE && 10327 l2arc_trim_ahead > 0)) { 10328 /* 10329 * Attempt to rebuild a device containing no actual dev hdr 10330 * or containing a header from some other pool or from another 10331 * version of persistent L2ARC. 10332 */ 10333 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported); 10334 return (SET_ERROR(ENOTSUP)); 10335 } 10336 10337 return (0); 10338 } 10339 10340 /* 10341 * Reads L2ARC log blocks from storage and validates their contents. 10342 * 10343 * This function implements a simple fetcher to make sure that while 10344 * we're processing one buffer the L2ARC is already fetching the next 10345 * one in the chain. 10346 * 10347 * The arguments this_lp and next_lp point to the current and next log block 10348 * address in the block chain. Similarly, this_lb and next_lb hold the 10349 * l2arc_log_blk_phys_t's of the current and next L2ARC blk. 10350 * 10351 * The `this_io' and `next_io' arguments are used for block fetching. 10352 * When issuing the first blk IO during rebuild, you should pass NULL for 10353 * `this_io'. This function will then issue a sync IO to read the block and 10354 * also issue an async IO to fetch the next block in the block chain. The 10355 * fetched IO is returned in `next_io'. On subsequent calls to this 10356 * function, pass the value returned in `next_io' from the previous call 10357 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO. 10358 * Prior to the call, you should initialize your `next_io' pointer to be 10359 * NULL. If no fetch IO was issued, the pointer is left set at NULL. 10360 * 10361 * On success, this function returns 0, otherwise it returns an appropriate 10362 * error code. On error the fetching IO is aborted and cleared before 10363 * returning from this function. Therefore, if we return `success', the 10364 * caller can assume that we have taken care of cleanup of fetch IOs. 10365 */ 10366 static int 10367 l2arc_log_blk_read(l2arc_dev_t *dev, 10368 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp, 10369 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 10370 zio_t *this_io, zio_t **next_io) 10371 { 10372 int err = 0; 10373 zio_cksum_t cksum; 10374 abd_t *abd = NULL; 10375 uint64_t asize; 10376 10377 ASSERT(this_lbp != NULL && next_lbp != NULL); 10378 ASSERT(this_lb != NULL && next_lb != NULL); 10379 ASSERT(next_io != NULL && *next_io == NULL); 10380 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp)); 10381 10382 /* 10383 * Check to see if we have issued the IO for this log block in a 10384 * previous run. If not, this is the first call, so issue it now. 10385 */ 10386 if (this_io == NULL) { 10387 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp, 10388 this_lb); 10389 } 10390 10391 /* 10392 * Peek to see if we can start issuing the next IO immediately. 10393 */ 10394 if (l2arc_log_blkptr_valid(dev, next_lbp)) { 10395 /* 10396 * Start issuing IO for the next log block early - this 10397 * should help keep the L2ARC device busy while we 10398 * decompress and restore this log block. 10399 */ 10400 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp, 10401 next_lb); 10402 } 10403 10404 /* Wait for the IO to read this log block to complete */ 10405 if ((err = zio_wait(this_io)) != 0) { 10406 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors); 10407 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, " 10408 "offset: %llu, vdev guid: %llu", err, 10409 (u_longlong_t)this_lbp->lbp_daddr, 10410 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10411 goto cleanup; 10412 } 10413 10414 /* 10415 * Make sure the buffer checks out. 10416 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10417 */ 10418 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop); 10419 fletcher_4_native(this_lb, asize, NULL, &cksum); 10420 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) { 10421 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors); 10422 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, " 10423 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu", 10424 (u_longlong_t)this_lbp->lbp_daddr, 10425 (u_longlong_t)dev->l2ad_vdev->vdev_guid, 10426 (u_longlong_t)dev->l2ad_hand, 10427 (u_longlong_t)dev->l2ad_evict); 10428 err = SET_ERROR(ECKSUM); 10429 goto cleanup; 10430 } 10431 10432 /* Now we can take our time decoding this buffer */ 10433 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) { 10434 case ZIO_COMPRESS_OFF: 10435 break; 10436 case ZIO_COMPRESS_LZ4: 10437 abd = abd_alloc_for_io(asize, B_TRUE); 10438 abd_copy_from_buf_off(abd, this_lb, 0, asize); 10439 if ((err = zio_decompress_data( 10440 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop), 10441 abd, this_lb, asize, sizeof (*this_lb), NULL)) != 0) { 10442 err = SET_ERROR(EINVAL); 10443 goto cleanup; 10444 } 10445 break; 10446 default: 10447 err = SET_ERROR(EINVAL); 10448 goto cleanup; 10449 } 10450 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 10451 byteswap_uint64_array(this_lb, sizeof (*this_lb)); 10452 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) { 10453 err = SET_ERROR(EINVAL); 10454 goto cleanup; 10455 } 10456 cleanup: 10457 /* Abort an in-flight fetch I/O in case of error */ 10458 if (err != 0 && *next_io != NULL) { 10459 l2arc_log_blk_fetch_abort(*next_io); 10460 *next_io = NULL; 10461 } 10462 if (abd != NULL) 10463 abd_free(abd); 10464 return (err); 10465 } 10466 10467 /* 10468 * Restores the payload of a log block to ARC. This creates empty ARC hdr 10469 * entries which only contain an l2arc hdr, essentially restoring the 10470 * buffers to their L2ARC evicted state. This function also updates space 10471 * usage on the L2ARC vdev to make sure it tracks restored buffers. 10472 */ 10473 static void 10474 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb, 10475 uint64_t lb_asize) 10476 { 10477 uint64_t size = 0, asize = 0; 10478 uint64_t log_entries = dev->l2ad_log_entries; 10479 10480 /* 10481 * Usually arc_adapt() is called only for data, not headers, but 10482 * since we may allocate significant amount of memory here, let ARC 10483 * grow its arc_c. 10484 */ 10485 arc_adapt(log_entries * HDR_L2ONLY_SIZE, arc_l2c_only); 10486 10487 for (int i = log_entries - 1; i >= 0; i--) { 10488 /* 10489 * Restore goes in the reverse temporal direction to preserve 10490 * correct temporal ordering of buffers in the l2ad_buflist. 10491 * l2arc_hdr_restore also does a list_insert_tail instead of 10492 * list_insert_head on the l2ad_buflist: 10493 * 10494 * LIST l2ad_buflist LIST 10495 * HEAD <------ (time) ------ TAIL 10496 * direction +-----+-----+-----+-----+-----+ direction 10497 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild 10498 * fill +-----+-----+-----+-----+-----+ 10499 * ^ ^ 10500 * | | 10501 * | | 10502 * l2arc_feed_thread l2arc_rebuild 10503 * will place new bufs here restores bufs here 10504 * 10505 * During l2arc_rebuild() the device is not used by 10506 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true. 10507 */ 10508 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop); 10509 asize += vdev_psize_to_asize(dev->l2ad_vdev, 10510 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop)); 10511 l2arc_hdr_restore(&lb->lb_entries[i], dev); 10512 } 10513 10514 /* 10515 * Record rebuild stats: 10516 * size Logical size of restored buffers in the L2ARC 10517 * asize Aligned size of restored buffers in the L2ARC 10518 */ 10519 ARCSTAT_INCR(arcstat_l2_rebuild_size, size); 10520 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize); 10521 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries); 10522 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize); 10523 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize); 10524 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks); 10525 } 10526 10527 /* 10528 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put 10529 * into a state indicating that it has been evicted to L2ARC. 10530 */ 10531 static void 10532 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev) 10533 { 10534 arc_buf_hdr_t *hdr, *exists; 10535 kmutex_t *hash_lock; 10536 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop); 10537 uint64_t asize; 10538 10539 /* 10540 * Do all the allocation before grabbing any locks, this lets us 10541 * sleep if memory is full and we don't have to deal with failed 10542 * allocations. 10543 */ 10544 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type, 10545 dev, le->le_dva, le->le_daddr, 10546 L2BLK_GET_PSIZE((le)->le_prop), le->le_birth, 10547 L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel, 10548 L2BLK_GET_PROTECTED((le)->le_prop), 10549 L2BLK_GET_PREFETCH((le)->le_prop), 10550 L2BLK_GET_STATE((le)->le_prop)); 10551 asize = vdev_psize_to_asize(dev->l2ad_vdev, 10552 L2BLK_GET_PSIZE((le)->le_prop)); 10553 10554 /* 10555 * vdev_space_update() has to be called before arc_hdr_destroy() to 10556 * avoid underflow since the latter also calls vdev_space_update(). 10557 */ 10558 l2arc_hdr_arcstats_increment(hdr); 10559 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10560 10561 mutex_enter(&dev->l2ad_mtx); 10562 list_insert_tail(&dev->l2ad_buflist, hdr); 10563 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); 10564 mutex_exit(&dev->l2ad_mtx); 10565 10566 exists = buf_hash_insert(hdr, &hash_lock); 10567 if (exists) { 10568 /* Buffer was already cached, no need to restore it. */ 10569 arc_hdr_destroy(hdr); 10570 /* 10571 * If the buffer is already cached, check whether it has 10572 * L2ARC metadata. If not, enter them and update the flag. 10573 * This is important is case of onlining a cache device, since 10574 * we previously evicted all L2ARC metadata from ARC. 10575 */ 10576 if (!HDR_HAS_L2HDR(exists)) { 10577 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR); 10578 exists->b_l2hdr.b_dev = dev; 10579 exists->b_l2hdr.b_daddr = le->le_daddr; 10580 exists->b_l2hdr.b_arcs_state = 10581 L2BLK_GET_STATE((le)->le_prop); 10582 mutex_enter(&dev->l2ad_mtx); 10583 list_insert_tail(&dev->l2ad_buflist, exists); 10584 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 10585 arc_hdr_size(exists), exists); 10586 mutex_exit(&dev->l2ad_mtx); 10587 l2arc_hdr_arcstats_increment(exists); 10588 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10589 } 10590 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached); 10591 } 10592 10593 mutex_exit(hash_lock); 10594 } 10595 10596 /* 10597 * Starts an asynchronous read IO to read a log block. This is used in log 10598 * block reconstruction to start reading the next block before we are done 10599 * decoding and reconstructing the current block, to keep the l2arc device 10600 * nice and hot with read IO to process. 10601 * The returned zio will contain a newly allocated memory buffers for the IO 10602 * data which should then be freed by the caller once the zio is no longer 10603 * needed (i.e. due to it having completed). If you wish to abort this 10604 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes 10605 * care of disposing of the allocated buffers correctly. 10606 */ 10607 static zio_t * 10608 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp, 10609 l2arc_log_blk_phys_t *lb) 10610 { 10611 uint32_t asize; 10612 zio_t *pio; 10613 l2arc_read_callback_t *cb; 10614 10615 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10616 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10617 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t)); 10618 10619 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP); 10620 cb->l2rcb_abd = abd_get_from_buf(lb, asize); 10621 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb, 10622 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | 10623 ZIO_FLAG_DONT_RETRY); 10624 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize, 10625 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10626 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 10627 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE)); 10628 10629 return (pio); 10630 } 10631 10632 /* 10633 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data 10634 * buffers allocated for it. 10635 */ 10636 static void 10637 l2arc_log_blk_fetch_abort(zio_t *zio) 10638 { 10639 (void) zio_wait(zio); 10640 } 10641 10642 /* 10643 * Creates a zio to update the device header on an l2arc device. 10644 */ 10645 void 10646 l2arc_dev_hdr_update(l2arc_dev_t *dev) 10647 { 10648 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10649 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10650 abd_t *abd; 10651 int err; 10652 10653 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER)); 10654 10655 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC; 10656 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION; 10657 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10658 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid; 10659 l2dhdr->dh_log_entries = dev->l2ad_log_entries; 10660 l2dhdr->dh_evict = dev->l2ad_evict; 10661 l2dhdr->dh_start = dev->l2ad_start; 10662 l2dhdr->dh_end = dev->l2ad_end; 10663 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize); 10664 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count); 10665 l2dhdr->dh_flags = 0; 10666 l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time; 10667 l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state; 10668 if (dev->l2ad_first) 10669 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST; 10670 10671 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10672 10673 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev, 10674 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL, 10675 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE)); 10676 10677 abd_free(abd); 10678 10679 if (err != 0) { 10680 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, " 10681 "vdev guid: %llu", err, 10682 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10683 } 10684 } 10685 10686 /* 10687 * Commits a log block to the L2ARC device. This routine is invoked from 10688 * l2arc_write_buffers when the log block fills up. 10689 * This function allocates some memory to temporarily hold the serialized 10690 * buffer to be written. This is then released in l2arc_write_done. 10691 */ 10692 static void 10693 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb) 10694 { 10695 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10696 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10697 uint64_t psize, asize; 10698 zio_t *wzio; 10699 l2arc_lb_abd_buf_t *abd_buf; 10700 uint8_t *tmpbuf; 10701 l2arc_lb_ptr_buf_t *lb_ptr_buf; 10702 10703 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries); 10704 10705 tmpbuf = zio_buf_alloc(sizeof (*lb)); 10706 abd_buf = zio_buf_alloc(sizeof (*abd_buf)); 10707 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb)); 10708 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 10709 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP); 10710 10711 /* link the buffer into the block chain */ 10712 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1]; 10713 lb->lb_magic = L2ARC_LOG_BLK_MAGIC; 10714 10715 /* 10716 * l2arc_log_blk_commit() may be called multiple times during a single 10717 * l2arc_write_buffers() call. Save the allocated abd buffers in a list 10718 * so we can free them in l2arc_write_done() later on. 10719 */ 10720 list_insert_tail(&cb->l2wcb_abd_list, abd_buf); 10721 10722 /* try to compress the buffer */ 10723 psize = zio_compress_data(ZIO_COMPRESS_LZ4, 10724 abd_buf->abd, tmpbuf, sizeof (*lb), 0); 10725 10726 /* a log block is never entirely zero */ 10727 ASSERT(psize != 0); 10728 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 10729 ASSERT(asize <= sizeof (*lb)); 10730 10731 /* 10732 * Update the start log block pointer in the device header to point 10733 * to the log block we're about to write. 10734 */ 10735 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0]; 10736 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand; 10737 l2dhdr->dh_start_lbps[0].lbp_payload_asize = 10738 dev->l2ad_log_blk_payload_asize; 10739 l2dhdr->dh_start_lbps[0].lbp_payload_start = 10740 dev->l2ad_log_blk_payload_start; 10741 _NOTE(CONSTCOND) 10742 L2BLK_SET_LSIZE( 10743 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb)); 10744 L2BLK_SET_PSIZE( 10745 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize); 10746 L2BLK_SET_CHECKSUM( 10747 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10748 ZIO_CHECKSUM_FLETCHER_4); 10749 if (asize < sizeof (*lb)) { 10750 /* compression succeeded */ 10751 bzero(tmpbuf + psize, asize - psize); 10752 L2BLK_SET_COMPRESS( 10753 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10754 ZIO_COMPRESS_LZ4); 10755 } else { 10756 /* compression failed */ 10757 bcopy(lb, tmpbuf, sizeof (*lb)); 10758 L2BLK_SET_COMPRESS( 10759 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10760 ZIO_COMPRESS_OFF); 10761 } 10762 10763 /* checksum what we're about to write */ 10764 fletcher_4_native(tmpbuf, asize, NULL, 10765 &l2dhdr->dh_start_lbps[0].lbp_cksum); 10766 10767 abd_free(abd_buf->abd); 10768 10769 /* perform the write itself */ 10770 abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb)); 10771 abd_take_ownership_of_buf(abd_buf->abd, B_TRUE); 10772 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand, 10773 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10774 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE); 10775 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio); 10776 (void) zio_nowait(wzio); 10777 10778 dev->l2ad_hand += asize; 10779 /* 10780 * Include the committed log block's pointer in the list of pointers 10781 * to log blocks present in the L2ARC device. 10782 */ 10783 bcopy(&l2dhdr->dh_start_lbps[0], lb_ptr_buf->lb_ptr, 10784 sizeof (l2arc_log_blkptr_t)); 10785 mutex_enter(&dev->l2ad_mtx); 10786 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf); 10787 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 10788 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 10789 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 10790 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 10791 mutex_exit(&dev->l2ad_mtx); 10792 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10793 10794 /* bump the kstats */ 10795 ARCSTAT_INCR(arcstat_l2_write_bytes, asize); 10796 ARCSTAT_BUMP(arcstat_l2_log_blk_writes); 10797 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize); 10798 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, 10799 dev->l2ad_log_blk_payload_asize / asize); 10800 10801 /* start a new log block */ 10802 dev->l2ad_log_ent_idx = 0; 10803 dev->l2ad_log_blk_payload_asize = 0; 10804 dev->l2ad_log_blk_payload_start = 0; 10805 } 10806 10807 /* 10808 * Validates an L2ARC log block address to make sure that it can be read 10809 * from the provided L2ARC device. 10810 */ 10811 boolean_t 10812 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp) 10813 { 10814 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10815 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10816 uint64_t end = lbp->lbp_daddr + asize - 1; 10817 uint64_t start = lbp->lbp_payload_start; 10818 boolean_t evicted = B_FALSE; 10819 10820 /* 10821 * A log block is valid if all of the following conditions are true: 10822 * - it fits entirely (including its payload) between l2ad_start and 10823 * l2ad_end 10824 * - it has a valid size 10825 * - neither the log block itself nor part of its payload was evicted 10826 * by l2arc_evict(): 10827 * 10828 * l2ad_hand l2ad_evict 10829 * | | lbp_daddr 10830 * | start | | end 10831 * | | | | | 10832 * V V V V V 10833 * l2ad_start ============================================ l2ad_end 10834 * --------------------------|||| 10835 * ^ ^ 10836 * | log block 10837 * payload 10838 */ 10839 10840 evicted = 10841 l2arc_range_check_overlap(start, end, dev->l2ad_hand) || 10842 l2arc_range_check_overlap(start, end, dev->l2ad_evict) || 10843 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) || 10844 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end); 10845 10846 return (start >= dev->l2ad_start && end <= dev->l2ad_end && 10847 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) && 10848 (!evicted || dev->l2ad_first)); 10849 } 10850 10851 /* 10852 * Inserts ARC buffer header `hdr' into the current L2ARC log block on 10853 * the device. The buffer being inserted must be present in L2ARC. 10854 * Returns B_TRUE if the L2ARC log block is full and needs to be committed 10855 * to L2ARC, or B_FALSE if it still has room for more ARC buffers. 10856 */ 10857 static boolean_t 10858 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr) 10859 { 10860 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10861 l2arc_log_ent_phys_t *le; 10862 10863 if (dev->l2ad_log_entries == 0) 10864 return (B_FALSE); 10865 10866 int index = dev->l2ad_log_ent_idx++; 10867 10868 ASSERT3S(index, <, dev->l2ad_log_entries); 10869 ASSERT(HDR_HAS_L2HDR(hdr)); 10870 10871 le = &lb->lb_entries[index]; 10872 bzero(le, sizeof (*le)); 10873 le->le_dva = hdr->b_dva; 10874 le->le_birth = hdr->b_birth; 10875 le->le_daddr = hdr->b_l2hdr.b_daddr; 10876 if (index == 0) 10877 dev->l2ad_log_blk_payload_start = le->le_daddr; 10878 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr)); 10879 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr)); 10880 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr)); 10881 le->le_complevel = hdr->b_complevel; 10882 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type); 10883 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr))); 10884 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr))); 10885 L2BLK_SET_STATE((le)->le_prop, hdr->b_l1hdr.b_state->arcs_state); 10886 10887 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev, 10888 HDR_GET_PSIZE(hdr)); 10889 10890 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries); 10891 } 10892 10893 /* 10894 * Checks whether a given L2ARC device address sits in a time-sequential 10895 * range. The trick here is that the L2ARC is a rotary buffer, so we can't 10896 * just do a range comparison, we need to handle the situation in which the 10897 * range wraps around the end of the L2ARC device. Arguments: 10898 * bottom -- Lower end of the range to check (written to earlier). 10899 * top -- Upper end of the range to check (written to later). 10900 * check -- The address for which we want to determine if it sits in 10901 * between the top and bottom. 10902 * 10903 * The 3-way conditional below represents the following cases: 10904 * 10905 * bottom < top : Sequentially ordered case: 10906 * <check>--------+-------------------+ 10907 * | (overlap here?) | 10908 * L2ARC dev V V 10909 * |---------------<bottom>============<top>--------------| 10910 * 10911 * bottom > top: Looped-around case: 10912 * <check>--------+------------------+ 10913 * | (overlap here?) | 10914 * L2ARC dev V V 10915 * |===============<top>---------------<bottom>===========| 10916 * ^ ^ 10917 * | (or here?) | 10918 * +---------------+---------<check> 10919 * 10920 * top == bottom : Just a single address comparison. 10921 */ 10922 boolean_t 10923 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check) 10924 { 10925 if (bottom < top) 10926 return (bottom <= check && check <= top); 10927 else if (bottom > top) 10928 return (check <= top || bottom <= check); 10929 else 10930 return (check == top); 10931 } 10932 10933 EXPORT_SYMBOL(arc_buf_size); 10934 EXPORT_SYMBOL(arc_write); 10935 EXPORT_SYMBOL(arc_read); 10936 EXPORT_SYMBOL(arc_buf_info); 10937 EXPORT_SYMBOL(arc_getbuf_func); 10938 EXPORT_SYMBOL(arc_add_prune_callback); 10939 EXPORT_SYMBOL(arc_remove_prune_callback); 10940 10941 /* BEGIN CSTYLED */ 10942 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_long, 10943 param_get_long, ZMOD_RW, "Min arc size"); 10944 10945 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_long, 10946 param_get_long, ZMOD_RW, "Max arc size"); 10947 10948 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit, param_set_arc_long, 10949 param_get_long, ZMOD_RW, "Metadata limit for arc size"); 10950 10951 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit_percent, 10952 param_set_arc_long, param_get_long, ZMOD_RW, 10953 "Percent of arc size for arc meta limit"); 10954 10955 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_min, param_set_arc_long, 10956 param_get_long, ZMOD_RW, "Min arc metadata"); 10957 10958 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_prune, INT, ZMOD_RW, 10959 "Meta objects to scan for prune"); 10960 10961 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_adjust_restarts, INT, ZMOD_RW, 10962 "Limit number of restarts in arc_evict_meta"); 10963 10964 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_strategy, INT, ZMOD_RW, 10965 "Meta reclaim strategy"); 10966 10967 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int, 10968 param_get_int, ZMOD_RW, "Seconds before growing arc size"); 10969 10970 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, p_dampener_disable, INT, ZMOD_RW, 10971 "Disable arc_p adapt dampener"); 10972 10973 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int, 10974 param_get_int, ZMOD_RW, "log2(fraction of arc to reclaim)"); 10975 10976 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW, 10977 "Percent of pagecache to reclaim arc to"); 10978 10979 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, p_min_shift, param_set_arc_int, 10980 param_get_int, ZMOD_RW, "arc_c shift to calc min/max arc_p"); 10981 10982 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, INT, ZMOD_RD, 10983 "Target average block size"); 10984 10985 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW, 10986 "Disable compressed arc buffers"); 10987 10988 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int, 10989 param_get_int, ZMOD_RW, "Min life of prefetch block in ms"); 10990 10991 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms, 10992 param_set_arc_int, param_get_int, ZMOD_RW, 10993 "Min life of prescient prefetched block in ms"); 10994 10995 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, ULONG, ZMOD_RW, 10996 "Max write bytes per interval"); 10997 10998 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, ULONG, ZMOD_RW, 10999 "Extra write bytes during device warmup"); 11000 11001 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, ULONG, ZMOD_RW, 11002 "Number of max device writes to precache"); 11003 11004 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, ULONG, ZMOD_RW, 11005 "Compressed l2arc_headroom multiplier"); 11006 11007 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, ULONG, ZMOD_RW, 11008 "TRIM ahead L2ARC write size multiplier"); 11009 11010 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, ULONG, ZMOD_RW, 11011 "Seconds between L2ARC writing"); 11012 11013 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, ULONG, ZMOD_RW, 11014 "Min feed interval in milliseconds"); 11015 11016 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW, 11017 "Skip caching prefetched buffers"); 11018 11019 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW, 11020 "Turbo L2ARC warmup"); 11021 11022 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW, 11023 "No reads during writes"); 11024 11025 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, INT, ZMOD_RW, 11026 "Percent of ARC size allowed for L2ARC-only headers"); 11027 11028 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW, 11029 "Rebuild the L2ARC when importing a pool"); 11030 11031 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, ULONG, ZMOD_RW, 11032 "Min size in bytes to write rebuild log blocks in L2ARC"); 11033 11034 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW, 11035 "Cache only MFU data from ARC into L2ARC"); 11036 11037 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int, 11038 param_get_int, ZMOD_RW, "System free memory I/O throttle in bytes"); 11039 11040 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_long, 11041 param_get_long, ZMOD_RW, "System free memory target size in bytes"); 11042 11043 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_long, 11044 param_get_long, ZMOD_RW, "Minimum bytes of dnodes in arc"); 11045 11046 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent, 11047 param_set_arc_long, param_get_long, ZMOD_RW, 11048 "Percent of ARC meta buffers for dnodes"); 11049 11050 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, ULONG, ZMOD_RW, 11051 "Percentage of excess dnodes to try to unpin"); 11052 11053 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, INT, ZMOD_RW, 11054 "When full, ARC allocation waits for eviction of this % of alloc size"); 11055 11056 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, INT, ZMOD_RW, 11057 "The number of headers to evict per sublist before moving to the next"); 11058 /* END CSTYLED */ 11059