1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2018, Joyent, Inc. 24 * Copyright (c) 2011, 2020, Delphix. All rights reserved. 25 * Copyright (c) 2014, Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 28 * Copyright (c) 2020, George Amanakis. All rights reserved. 29 * Copyright (c) 2019, Klara Inc. 30 * Copyright (c) 2019, Allan Jude 31 * Copyright (c) 2020, The FreeBSD Foundation [1] 32 * 33 * [1] Portions of this software were developed by Allan Jude 34 * under sponsorship from the FreeBSD Foundation. 35 */ 36 37 /* 38 * DVA-based Adjustable Replacement Cache 39 * 40 * While much of the theory of operation used here is 41 * based on the self-tuning, low overhead replacement cache 42 * presented by Megiddo and Modha at FAST 2003, there are some 43 * significant differences: 44 * 45 * 1. The Megiddo and Modha model assumes any page is evictable. 46 * Pages in its cache cannot be "locked" into memory. This makes 47 * the eviction algorithm simple: evict the last page in the list. 48 * This also make the performance characteristics easy to reason 49 * about. Our cache is not so simple. At any given moment, some 50 * subset of the blocks in the cache are un-evictable because we 51 * have handed out a reference to them. Blocks are only evictable 52 * when there are no external references active. This makes 53 * eviction far more problematic: we choose to evict the evictable 54 * blocks that are the "lowest" in the list. 55 * 56 * There are times when it is not possible to evict the requested 57 * space. In these circumstances we are unable to adjust the cache 58 * size. To prevent the cache growing unbounded at these times we 59 * implement a "cache throttle" that slows the flow of new data 60 * into the cache until we can make space available. 61 * 62 * 2. The Megiddo and Modha model assumes a fixed cache size. 63 * Pages are evicted when the cache is full and there is a cache 64 * miss. Our model has a variable sized cache. It grows with 65 * high use, but also tries to react to memory pressure from the 66 * operating system: decreasing its size when system memory is 67 * tight. 68 * 69 * 3. The Megiddo and Modha model assumes a fixed page size. All 70 * elements of the cache are therefore exactly the same size. So 71 * when adjusting the cache size following a cache miss, its simply 72 * a matter of choosing a single page to evict. In our model, we 73 * have variable sized cache blocks (ranging from 512 bytes to 74 * 128K bytes). We therefore choose a set of blocks to evict to make 75 * space for a cache miss that approximates as closely as possible 76 * the space used by the new block. 77 * 78 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 79 * by N. Megiddo & D. Modha, FAST 2003 80 */ 81 82 /* 83 * The locking model: 84 * 85 * A new reference to a cache buffer can be obtained in two 86 * ways: 1) via a hash table lookup using the DVA as a key, 87 * or 2) via one of the ARC lists. The arc_read() interface 88 * uses method 1, while the internal ARC algorithms for 89 * adjusting the cache use method 2. We therefore provide two 90 * types of locks: 1) the hash table lock array, and 2) the 91 * ARC list locks. 92 * 93 * Buffers do not have their own mutexes, rather they rely on the 94 * hash table mutexes for the bulk of their protection (i.e. most 95 * fields in the arc_buf_hdr_t are protected by these mutexes). 96 * 97 * buf_hash_find() returns the appropriate mutex (held) when it 98 * locates the requested buffer in the hash table. It returns 99 * NULL for the mutex if the buffer was not in the table. 100 * 101 * buf_hash_remove() expects the appropriate hash mutex to be 102 * already held before it is invoked. 103 * 104 * Each ARC state also has a mutex which is used to protect the 105 * buffer list associated with the state. When attempting to 106 * obtain a hash table lock while holding an ARC list lock you 107 * must use: mutex_tryenter() to avoid deadlock. Also note that 108 * the active state mutex must be held before the ghost state mutex. 109 * 110 * It as also possible to register a callback which is run when the 111 * arc_meta_limit is reached and no buffers can be safely evicted. In 112 * this case the arc user should drop a reference on some arc buffers so 113 * they can be reclaimed and the arc_meta_limit honored. For example, 114 * when using the ZPL each dentry holds a references on a znode. These 115 * dentries must be pruned before the arc buffer holding the znode can 116 * be safely evicted. 117 * 118 * Note that the majority of the performance stats are manipulated 119 * with atomic operations. 120 * 121 * The L2ARC uses the l2ad_mtx on each vdev for the following: 122 * 123 * - L2ARC buflist creation 124 * - L2ARC buflist eviction 125 * - L2ARC write completion, which walks L2ARC buflists 126 * - ARC header destruction, as it removes from L2ARC buflists 127 * - ARC header release, as it removes from L2ARC buflists 128 */ 129 130 /* 131 * ARC operation: 132 * 133 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. 134 * This structure can point either to a block that is still in the cache or to 135 * one that is only accessible in an L2 ARC device, or it can provide 136 * information about a block that was recently evicted. If a block is 137 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough 138 * information to retrieve it from the L2ARC device. This information is 139 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block 140 * that is in this state cannot access the data directly. 141 * 142 * Blocks that are actively being referenced or have not been evicted 143 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within 144 * the arc_buf_hdr_t that will point to the data block in memory. A block can 145 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC 146 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and 147 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd). 148 * 149 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the 150 * ability to store the physical data (b_pabd) associated with the DVA of the 151 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block, 152 * it will match its on-disk compression characteristics. This behavior can be 153 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the 154 * compressed ARC functionality is disabled, the b_pabd will point to an 155 * uncompressed version of the on-disk data. 156 * 157 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each 158 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it. 159 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC 160 * consumer. The ARC will provide references to this data and will keep it 161 * cached until it is no longer in use. The ARC caches only the L1ARC's physical 162 * data block and will evict any arc_buf_t that is no longer referenced. The 163 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the 164 * "overhead_size" kstat. 165 * 166 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or 167 * compressed form. The typical case is that consumers will want uncompressed 168 * data, and when that happens a new data buffer is allocated where the data is 169 * decompressed for them to use. Currently the only consumer who wants 170 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it 171 * exists on disk. When this happens, the arc_buf_t's data buffer is shared 172 * with the arc_buf_hdr_t. 173 * 174 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The 175 * first one is owned by a compressed send consumer (and therefore references 176 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be 177 * used by any other consumer (and has its own uncompressed copy of the data 178 * buffer). 179 * 180 * arc_buf_hdr_t 181 * +-----------+ 182 * | fields | 183 * | common to | 184 * | L1- and | 185 * | L2ARC | 186 * +-----------+ 187 * | l2arc_buf_hdr_t 188 * | | 189 * +-----------+ 190 * | l1arc_buf_hdr_t 191 * | | arc_buf_t 192 * | b_buf +------------>+-----------+ arc_buf_t 193 * | b_pabd +-+ |b_next +---->+-----------+ 194 * +-----------+ | |-----------| |b_next +-->NULL 195 * | |b_comp = T | +-----------+ 196 * | |b_data +-+ |b_comp = F | 197 * | +-----------+ | |b_data +-+ 198 * +->+------+ | +-----------+ | 199 * compressed | | | | 200 * data | |<--------------+ | uncompressed 201 * +------+ compressed, | data 202 * shared +-->+------+ 203 * data | | 204 * | | 205 * +------+ 206 * 207 * When a consumer reads a block, the ARC must first look to see if the 208 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new 209 * arc_buf_t and either copies uncompressed data into a new data buffer from an 210 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a 211 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the 212 * hdr is compressed and the desired compression characteristics of the 213 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the 214 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be 215 * the last buffer in the hdr's b_buf list, however a shared compressed buf can 216 * be anywhere in the hdr's list. 217 * 218 * The diagram below shows an example of an uncompressed ARC hdr that is 219 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is 220 * the last element in the buf list): 221 * 222 * arc_buf_hdr_t 223 * +-----------+ 224 * | | 225 * | | 226 * | | 227 * +-----------+ 228 * l2arc_buf_hdr_t| | 229 * | | 230 * +-----------+ 231 * l1arc_buf_hdr_t| | 232 * | | arc_buf_t (shared) 233 * | b_buf +------------>+---------+ arc_buf_t 234 * | | |b_next +---->+---------+ 235 * | b_pabd +-+ |---------| |b_next +-->NULL 236 * +-----------+ | | | +---------+ 237 * | |b_data +-+ | | 238 * | +---------+ | |b_data +-+ 239 * +->+------+ | +---------+ | 240 * | | | | 241 * uncompressed | | | | 242 * data +------+ | | 243 * ^ +->+------+ | 244 * | uncompressed | | | 245 * | data | | | 246 * | +------+ | 247 * +---------------------------------+ 248 * 249 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd 250 * since the physical block is about to be rewritten. The new data contents 251 * will be contained in the arc_buf_t. As the I/O pipeline performs the write, 252 * it may compress the data before writing it to disk. The ARC will be called 253 * with the transformed data and will bcopy the transformed on-disk block into 254 * a newly allocated b_pabd. Writes are always done into buffers which have 255 * either been loaned (and hence are new and don't have other readers) or 256 * buffers which have been released (and hence have their own hdr, if there 257 * were originally other readers of the buf's original hdr). This ensures that 258 * the ARC only needs to update a single buf and its hdr after a write occurs. 259 * 260 * When the L2ARC is in use, it will also take advantage of the b_pabd. The 261 * L2ARC will always write the contents of b_pabd to the L2ARC. This means 262 * that when compressed ARC is enabled that the L2ARC blocks are identical 263 * to the on-disk block in the main data pool. This provides a significant 264 * advantage since the ARC can leverage the bp's checksum when reading from the 265 * L2ARC to determine if the contents are valid. However, if the compressed 266 * ARC is disabled, then the L2ARC's block must be transformed to look 267 * like the physical block in the main data pool before comparing the 268 * checksum and determining its validity. 269 * 270 * The L1ARC has a slightly different system for storing encrypted data. 271 * Raw (encrypted + possibly compressed) data has a few subtle differences from 272 * data that is just compressed. The biggest difference is that it is not 273 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded. 274 * The other difference is that encryption cannot be treated as a suggestion. 275 * If a caller would prefer compressed data, but they actually wind up with 276 * uncompressed data the worst thing that could happen is there might be a 277 * performance hit. If the caller requests encrypted data, however, we must be 278 * sure they actually get it or else secret information could be leaked. Raw 279 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore, 280 * may have both an encrypted version and a decrypted version of its data at 281 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is 282 * copied out of this header. To avoid complications with b_pabd, raw buffers 283 * cannot be shared. 284 */ 285 286 #include <sys/spa.h> 287 #include <sys/zio.h> 288 #include <sys/spa_impl.h> 289 #include <sys/zio_compress.h> 290 #include <sys/zio_checksum.h> 291 #include <sys/zfs_context.h> 292 #include <sys/arc.h> 293 #include <sys/zfs_refcount.h> 294 #include <sys/vdev.h> 295 #include <sys/vdev_impl.h> 296 #include <sys/dsl_pool.h> 297 #include <sys/multilist.h> 298 #include <sys/abd.h> 299 #include <sys/zil.h> 300 #include <sys/fm/fs/zfs.h> 301 #include <sys/callb.h> 302 #include <sys/kstat.h> 303 #include <sys/zthr.h> 304 #include <zfs_fletcher.h> 305 #include <sys/arc_impl.h> 306 #include <sys/trace_zfs.h> 307 #include <sys/aggsum.h> 308 #include <sys/wmsum.h> 309 #include <cityhash.h> 310 #include <sys/vdev_trim.h> 311 #include <sys/zfs_racct.h> 312 #include <sys/zstd/zstd.h> 313 314 #ifndef _KERNEL 315 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 316 boolean_t arc_watch = B_FALSE; 317 #endif 318 319 /* 320 * This thread's job is to keep enough free memory in the system, by 321 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves 322 * arc_available_memory(). 323 */ 324 static zthr_t *arc_reap_zthr; 325 326 /* 327 * This thread's job is to keep arc_size under arc_c, by calling 328 * arc_evict(), which improves arc_is_overflowing(). 329 */ 330 static zthr_t *arc_evict_zthr; 331 332 static kmutex_t arc_evict_lock; 333 static boolean_t arc_evict_needed = B_FALSE; 334 335 /* 336 * Count of bytes evicted since boot. 337 */ 338 static uint64_t arc_evict_count; 339 340 /* 341 * List of arc_evict_waiter_t's, representing threads waiting for the 342 * arc_evict_count to reach specific values. 343 */ 344 static list_t arc_evict_waiters; 345 346 /* 347 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of 348 * the requested amount of data to be evicted. For example, by default for 349 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation. 350 * Since this is above 100%, it ensures that progress is made towards getting 351 * arc_size under arc_c. Since this is finite, it ensures that allocations 352 * can still happen, even during the potentially long time that arc_size is 353 * more than arc_c. 354 */ 355 int zfs_arc_eviction_pct = 200; 356 357 /* 358 * The number of headers to evict in arc_evict_state_impl() before 359 * dropping the sublist lock and evicting from another sublist. A lower 360 * value means we're more likely to evict the "correct" header (i.e. the 361 * oldest header in the arc state), but comes with higher overhead 362 * (i.e. more invocations of arc_evict_state_impl()). 363 */ 364 int zfs_arc_evict_batch_limit = 10; 365 366 /* number of seconds before growing cache again */ 367 int arc_grow_retry = 5; 368 369 /* 370 * Minimum time between calls to arc_kmem_reap_soon(). 371 */ 372 int arc_kmem_cache_reap_retry_ms = 1000; 373 374 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */ 375 int zfs_arc_overflow_shift = 8; 376 377 /* shift of arc_c for calculating both min and max arc_p */ 378 int arc_p_min_shift = 4; 379 380 /* log2(fraction of arc to reclaim) */ 381 int arc_shrink_shift = 7; 382 383 /* percent of pagecache to reclaim arc to */ 384 #ifdef _KERNEL 385 uint_t zfs_arc_pc_percent = 0; 386 #endif 387 388 /* 389 * log2(fraction of ARC which must be free to allow growing). 390 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 391 * when reading a new block into the ARC, we will evict an equal-sized block 392 * from the ARC. 393 * 394 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 395 * we will still not allow it to grow. 396 */ 397 int arc_no_grow_shift = 5; 398 399 400 /* 401 * minimum lifespan of a prefetch block in clock ticks 402 * (initialized in arc_init()) 403 */ 404 static int arc_min_prefetch_ms; 405 static int arc_min_prescient_prefetch_ms; 406 407 /* 408 * If this percent of memory is free, don't throttle. 409 */ 410 int arc_lotsfree_percent = 10; 411 412 /* 413 * The arc has filled available memory and has now warmed up. 414 */ 415 boolean_t arc_warm; 416 417 /* 418 * These tunables are for performance analysis. 419 */ 420 unsigned long zfs_arc_max = 0; 421 unsigned long zfs_arc_min = 0; 422 unsigned long zfs_arc_meta_limit = 0; 423 unsigned long zfs_arc_meta_min = 0; 424 unsigned long zfs_arc_dnode_limit = 0; 425 unsigned long zfs_arc_dnode_reduce_percent = 10; 426 int zfs_arc_grow_retry = 0; 427 int zfs_arc_shrink_shift = 0; 428 int zfs_arc_p_min_shift = 0; 429 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 430 431 /* 432 * ARC dirty data constraints for arc_tempreserve_space() throttle. 433 */ 434 unsigned long zfs_arc_dirty_limit_percent = 50; /* total dirty data limit */ 435 unsigned long zfs_arc_anon_limit_percent = 25; /* anon block dirty limit */ 436 unsigned long zfs_arc_pool_dirty_percent = 20; /* each pool's anon allowance */ 437 438 /* 439 * Enable or disable compressed arc buffers. 440 */ 441 int zfs_compressed_arc_enabled = B_TRUE; 442 443 /* 444 * ARC will evict meta buffers that exceed arc_meta_limit. This 445 * tunable make arc_meta_limit adjustable for different workloads. 446 */ 447 unsigned long zfs_arc_meta_limit_percent = 75; 448 449 /* 450 * Percentage that can be consumed by dnodes of ARC meta buffers. 451 */ 452 unsigned long zfs_arc_dnode_limit_percent = 10; 453 454 /* 455 * These tunables are Linux specific 456 */ 457 unsigned long zfs_arc_sys_free = 0; 458 int zfs_arc_min_prefetch_ms = 0; 459 int zfs_arc_min_prescient_prefetch_ms = 0; 460 int zfs_arc_p_dampener_disable = 1; 461 int zfs_arc_meta_prune = 10000; 462 int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED; 463 int zfs_arc_meta_adjust_restarts = 4096; 464 int zfs_arc_lotsfree_percent = 10; 465 466 /* The 6 states: */ 467 arc_state_t ARC_anon; 468 arc_state_t ARC_mru; 469 arc_state_t ARC_mru_ghost; 470 arc_state_t ARC_mfu; 471 arc_state_t ARC_mfu_ghost; 472 arc_state_t ARC_l2c_only; 473 474 arc_stats_t arc_stats = { 475 { "hits", KSTAT_DATA_UINT64 }, 476 { "misses", KSTAT_DATA_UINT64 }, 477 { "demand_data_hits", KSTAT_DATA_UINT64 }, 478 { "demand_data_misses", KSTAT_DATA_UINT64 }, 479 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 480 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 481 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 482 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 483 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 484 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 485 { "mru_hits", KSTAT_DATA_UINT64 }, 486 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 487 { "mfu_hits", KSTAT_DATA_UINT64 }, 488 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 489 { "deleted", KSTAT_DATA_UINT64 }, 490 { "mutex_miss", KSTAT_DATA_UINT64 }, 491 { "access_skip", KSTAT_DATA_UINT64 }, 492 { "evict_skip", KSTAT_DATA_UINT64 }, 493 { "evict_not_enough", KSTAT_DATA_UINT64 }, 494 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 495 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 496 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64 }, 497 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64 }, 498 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 499 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 500 { "hash_elements", KSTAT_DATA_UINT64 }, 501 { "hash_elements_max", KSTAT_DATA_UINT64 }, 502 { "hash_collisions", KSTAT_DATA_UINT64 }, 503 { "hash_chains", KSTAT_DATA_UINT64 }, 504 { "hash_chain_max", KSTAT_DATA_UINT64 }, 505 { "p", KSTAT_DATA_UINT64 }, 506 { "c", KSTAT_DATA_UINT64 }, 507 { "c_min", KSTAT_DATA_UINT64 }, 508 { "c_max", KSTAT_DATA_UINT64 }, 509 { "size", KSTAT_DATA_UINT64 }, 510 { "compressed_size", KSTAT_DATA_UINT64 }, 511 { "uncompressed_size", KSTAT_DATA_UINT64 }, 512 { "overhead_size", KSTAT_DATA_UINT64 }, 513 { "hdr_size", KSTAT_DATA_UINT64 }, 514 { "data_size", KSTAT_DATA_UINT64 }, 515 { "metadata_size", KSTAT_DATA_UINT64 }, 516 { "dbuf_size", KSTAT_DATA_UINT64 }, 517 { "dnode_size", KSTAT_DATA_UINT64 }, 518 { "bonus_size", KSTAT_DATA_UINT64 }, 519 #if defined(COMPAT_FREEBSD11) 520 { "other_size", KSTAT_DATA_UINT64 }, 521 #endif 522 { "anon_size", KSTAT_DATA_UINT64 }, 523 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 524 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 525 { "mru_size", KSTAT_DATA_UINT64 }, 526 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 527 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 528 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 529 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 530 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 531 { "mfu_size", KSTAT_DATA_UINT64 }, 532 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 533 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 534 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 535 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 536 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 537 { "l2_hits", KSTAT_DATA_UINT64 }, 538 { "l2_misses", KSTAT_DATA_UINT64 }, 539 { "l2_prefetch_asize", KSTAT_DATA_UINT64 }, 540 { "l2_mru_asize", KSTAT_DATA_UINT64 }, 541 { "l2_mfu_asize", KSTAT_DATA_UINT64 }, 542 { "l2_bufc_data_asize", KSTAT_DATA_UINT64 }, 543 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64 }, 544 { "l2_feeds", KSTAT_DATA_UINT64 }, 545 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 546 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 547 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 548 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 549 { "l2_writes_done", KSTAT_DATA_UINT64 }, 550 { "l2_writes_error", KSTAT_DATA_UINT64 }, 551 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 552 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 553 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 554 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 555 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 556 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 557 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 558 { "l2_io_error", KSTAT_DATA_UINT64 }, 559 { "l2_size", KSTAT_DATA_UINT64 }, 560 { "l2_asize", KSTAT_DATA_UINT64 }, 561 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 562 { "l2_log_blk_writes", KSTAT_DATA_UINT64 }, 563 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 }, 564 { "l2_log_blk_asize", KSTAT_DATA_UINT64 }, 565 { "l2_log_blk_count", KSTAT_DATA_UINT64 }, 566 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 }, 567 { "l2_rebuild_success", KSTAT_DATA_UINT64 }, 568 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 }, 569 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 }, 570 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 }, 571 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 }, 572 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 }, 573 { "l2_rebuild_size", KSTAT_DATA_UINT64 }, 574 { "l2_rebuild_asize", KSTAT_DATA_UINT64 }, 575 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 }, 576 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 }, 577 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 }, 578 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 579 { "memory_direct_count", KSTAT_DATA_UINT64 }, 580 { "memory_indirect_count", KSTAT_DATA_UINT64 }, 581 { "memory_all_bytes", KSTAT_DATA_UINT64 }, 582 { "memory_free_bytes", KSTAT_DATA_UINT64 }, 583 { "memory_available_bytes", KSTAT_DATA_INT64 }, 584 { "arc_no_grow", KSTAT_DATA_UINT64 }, 585 { "arc_tempreserve", KSTAT_DATA_UINT64 }, 586 { "arc_loaned_bytes", KSTAT_DATA_UINT64 }, 587 { "arc_prune", KSTAT_DATA_UINT64 }, 588 { "arc_meta_used", KSTAT_DATA_UINT64 }, 589 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 590 { "arc_dnode_limit", KSTAT_DATA_UINT64 }, 591 { "arc_meta_max", KSTAT_DATA_UINT64 }, 592 { "arc_meta_min", KSTAT_DATA_UINT64 }, 593 { "async_upgrade_sync", KSTAT_DATA_UINT64 }, 594 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 }, 595 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 }, 596 { "arc_need_free", KSTAT_DATA_UINT64 }, 597 { "arc_sys_free", KSTAT_DATA_UINT64 }, 598 { "arc_raw_size", KSTAT_DATA_UINT64 }, 599 { "cached_only_in_progress", KSTAT_DATA_UINT64 }, 600 { "abd_chunk_waste_size", KSTAT_DATA_UINT64 }, 601 }; 602 603 arc_sums_t arc_sums; 604 605 #define ARCSTAT_MAX(stat, val) { \ 606 uint64_t m; \ 607 while ((val) > (m = arc_stats.stat.value.ui64) && \ 608 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 609 continue; \ 610 } 611 612 /* 613 * We define a macro to allow ARC hits/misses to be easily broken down by 614 * two separate conditions, giving a total of four different subtypes for 615 * each of hits and misses (so eight statistics total). 616 */ 617 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 618 if (cond1) { \ 619 if (cond2) { \ 620 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 621 } else { \ 622 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 623 } \ 624 } else { \ 625 if (cond2) { \ 626 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 627 } else { \ 628 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 629 } \ 630 } 631 632 /* 633 * This macro allows us to use kstats as floating averages. Each time we 634 * update this kstat, we first factor it and the update value by 635 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall 636 * average. This macro assumes that integer loads and stores are atomic, but 637 * is not safe for multiple writers updating the kstat in parallel (only the 638 * last writer's update will remain). 639 */ 640 #define ARCSTAT_F_AVG_FACTOR 3 641 #define ARCSTAT_F_AVG(stat, value) \ 642 do { \ 643 uint64_t x = ARCSTAT(stat); \ 644 x = x - x / ARCSTAT_F_AVG_FACTOR + \ 645 (value) / ARCSTAT_F_AVG_FACTOR; \ 646 ARCSTAT(stat) = x; \ 647 } while (0) 648 649 kstat_t *arc_ksp; 650 651 /* 652 * There are several ARC variables that are critical to export as kstats -- 653 * but we don't want to have to grovel around in the kstat whenever we wish to 654 * manipulate them. For these variables, we therefore define them to be in 655 * terms of the statistic variable. This assures that we are not introducing 656 * the possibility of inconsistency by having shadow copies of the variables, 657 * while still allowing the code to be readable. 658 */ 659 #define arc_tempreserve ARCSTAT(arcstat_tempreserve) 660 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes) 661 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 662 /* max size for dnodes */ 663 #define arc_dnode_size_limit ARCSTAT(arcstat_dnode_limit) 664 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */ 665 #define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */ 666 667 hrtime_t arc_growtime; 668 list_t arc_prune_list; 669 kmutex_t arc_prune_mtx; 670 taskq_t *arc_prune_taskq; 671 672 #define GHOST_STATE(state) \ 673 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 674 (state) == arc_l2c_only) 675 676 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 677 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 678 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 679 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 680 #define HDR_PRESCIENT_PREFETCH(hdr) \ 681 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) 682 #define HDR_COMPRESSION_ENABLED(hdr) \ 683 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) 684 685 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 686 #define HDR_L2_READING(hdr) \ 687 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 688 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 689 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 690 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 691 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 692 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED) 693 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH) 694 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) 695 696 #define HDR_ISTYPE_METADATA(hdr) \ 697 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 698 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 699 700 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 701 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 702 #define HDR_HAS_RABD(hdr) \ 703 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \ 704 (hdr)->b_crypt_hdr.b_rabd != NULL) 705 #define HDR_ENCRYPTED(hdr) \ 706 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 707 #define HDR_AUTHENTICATED(hdr) \ 708 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 709 710 /* For storing compression mode in b_flags */ 711 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) 712 713 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ 714 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) 715 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ 716 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); 717 718 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) 719 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED) 720 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED) 721 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED) 722 723 /* 724 * Other sizes 725 */ 726 727 #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 728 #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr)) 729 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 730 731 /* 732 * Hash table routines 733 */ 734 735 #define BUF_LOCKS 2048 736 typedef struct buf_hash_table { 737 uint64_t ht_mask; 738 arc_buf_hdr_t **ht_table; 739 kmutex_t ht_locks[BUF_LOCKS] ____cacheline_aligned; 740 } buf_hash_table_t; 741 742 static buf_hash_table_t buf_hash_table; 743 744 #define BUF_HASH_INDEX(spa, dva, birth) \ 745 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 746 #define BUF_HASH_LOCK(idx) (&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 747 #define HDR_LOCK(hdr) \ 748 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 749 750 uint64_t zfs_crc64_table[256]; 751 752 /* 753 * Level 2 ARC 754 */ 755 756 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 757 #define L2ARC_HEADROOM 2 /* num of writes */ 758 759 /* 760 * If we discover during ARC scan any buffers to be compressed, we boost 761 * our headroom for the next scanning cycle by this percentage multiple. 762 */ 763 #define L2ARC_HEADROOM_BOOST 200 764 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 765 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 766 767 /* 768 * We can feed L2ARC from two states of ARC buffers, mru and mfu, 769 * and each of the state has two types: data and metadata. 770 */ 771 #define L2ARC_FEED_TYPES 4 772 773 /* L2ARC Performance Tunables */ 774 unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */ 775 unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */ 776 unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */ 777 unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 778 unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 779 unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */ 780 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 781 int l2arc_feed_again = B_TRUE; /* turbo warmup */ 782 int l2arc_norw = B_FALSE; /* no reads during writes */ 783 int l2arc_meta_percent = 33; /* limit on headers size */ 784 785 /* 786 * L2ARC Internals 787 */ 788 static list_t L2ARC_dev_list; /* device list */ 789 static list_t *l2arc_dev_list; /* device list pointer */ 790 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 791 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 792 static list_t L2ARC_free_on_write; /* free after write buf list */ 793 static list_t *l2arc_free_on_write; /* free after write list ptr */ 794 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 795 static uint64_t l2arc_ndev; /* number of devices */ 796 797 typedef struct l2arc_read_callback { 798 arc_buf_hdr_t *l2rcb_hdr; /* read header */ 799 blkptr_t l2rcb_bp; /* original blkptr */ 800 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 801 int l2rcb_flags; /* original flags */ 802 abd_t *l2rcb_abd; /* temporary buffer */ 803 } l2arc_read_callback_t; 804 805 typedef struct l2arc_data_free { 806 /* protected by l2arc_free_on_write_mtx */ 807 abd_t *l2df_abd; 808 size_t l2df_size; 809 arc_buf_contents_t l2df_type; 810 list_node_t l2df_list_node; 811 } l2arc_data_free_t; 812 813 typedef enum arc_fill_flags { 814 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */ 815 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */ 816 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */ 817 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */ 818 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */ 819 } arc_fill_flags_t; 820 821 typedef enum arc_ovf_level { 822 ARC_OVF_NONE, /* ARC within target size. */ 823 ARC_OVF_SOME, /* ARC is slightly overflowed. */ 824 ARC_OVF_SEVERE /* ARC is severely overflowed. */ 825 } arc_ovf_level_t; 826 827 static kmutex_t l2arc_feed_thr_lock; 828 static kcondvar_t l2arc_feed_thr_cv; 829 static uint8_t l2arc_thread_exit; 830 831 static kmutex_t l2arc_rebuild_thr_lock; 832 static kcondvar_t l2arc_rebuild_thr_cv; 833 834 enum arc_hdr_alloc_flags { 835 ARC_HDR_ALLOC_RDATA = 0x1, 836 ARC_HDR_DO_ADAPT = 0x2, 837 ARC_HDR_USE_RESERVE = 0x4, 838 }; 839 840 841 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *, int); 842 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *); 843 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *, int); 844 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *); 845 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *); 846 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag); 847 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t); 848 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int); 849 static void arc_access(arc_buf_hdr_t *, kmutex_t *); 850 static void arc_buf_watch(arc_buf_t *); 851 852 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 853 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 854 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 855 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 856 857 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 858 static void l2arc_read_done(zio_t *); 859 static void l2arc_do_free_on_write(void); 860 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 861 boolean_t state_only); 862 863 #define l2arc_hdr_arcstats_increment(hdr) \ 864 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE) 865 #define l2arc_hdr_arcstats_decrement(hdr) \ 866 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE) 867 #define l2arc_hdr_arcstats_increment_state(hdr) \ 868 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE) 869 #define l2arc_hdr_arcstats_decrement_state(hdr) \ 870 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE) 871 872 /* 873 * l2arc_exclude_special : A zfs module parameter that controls whether buffers 874 * present on special vdevs are eligibile for caching in L2ARC. If 875 * set to 1, exclude dbufs on special vdevs from being cached to 876 * L2ARC. 877 */ 878 int l2arc_exclude_special = 0; 879 880 /* 881 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU 882 * metadata and data are cached from ARC into L2ARC. 883 */ 884 int l2arc_mfuonly = 0; 885 886 /* 887 * L2ARC TRIM 888 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of 889 * the current write size (l2arc_write_max) we should TRIM if we 890 * have filled the device. It is defined as a percentage of the 891 * write size. If set to 100 we trim twice the space required to 892 * accommodate upcoming writes. A minimum of 64MB will be trimmed. 893 * It also enables TRIM of the whole L2ARC device upon creation or 894 * addition to an existing pool or if the header of the device is 895 * invalid upon importing a pool or onlining a cache device. The 896 * default is 0, which disables TRIM on L2ARC altogether as it can 897 * put significant stress on the underlying storage devices. This 898 * will vary depending of how well the specific device handles 899 * these commands. 900 */ 901 unsigned long l2arc_trim_ahead = 0; 902 903 /* 904 * Performance tuning of L2ARC persistence: 905 * 906 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding 907 * an L2ARC device (either at pool import or later) will attempt 908 * to rebuild L2ARC buffer contents. 909 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls 910 * whether log blocks are written to the L2ARC device. If the L2ARC 911 * device is less than 1GB, the amount of data l2arc_evict() 912 * evicts is significant compared to the amount of restored L2ARC 913 * data. In this case do not write log blocks in L2ARC in order 914 * not to waste space. 915 */ 916 int l2arc_rebuild_enabled = B_TRUE; 917 unsigned long l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024; 918 919 /* L2ARC persistence rebuild control routines. */ 920 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen); 921 static void l2arc_dev_rebuild_thread(void *arg); 922 static int l2arc_rebuild(l2arc_dev_t *dev); 923 924 /* L2ARC persistence read I/O routines. */ 925 static int l2arc_dev_hdr_read(l2arc_dev_t *dev); 926 static int l2arc_log_blk_read(l2arc_dev_t *dev, 927 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp, 928 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 929 zio_t *this_io, zio_t **next_io); 930 static zio_t *l2arc_log_blk_fetch(vdev_t *vd, 931 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb); 932 static void l2arc_log_blk_fetch_abort(zio_t *zio); 933 934 /* L2ARC persistence block restoration routines. */ 935 static void l2arc_log_blk_restore(l2arc_dev_t *dev, 936 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize); 937 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, 938 l2arc_dev_t *dev); 939 940 /* L2ARC persistence write I/O routines. */ 941 static void l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, 942 l2arc_write_callback_t *cb); 943 944 /* L2ARC persistence auxiliary routines. */ 945 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev, 946 const l2arc_log_blkptr_t *lbp); 947 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev, 948 const arc_buf_hdr_t *ab); 949 boolean_t l2arc_range_check_overlap(uint64_t bottom, 950 uint64_t top, uint64_t check); 951 static void l2arc_blk_fetch_done(zio_t *zio); 952 static inline uint64_t 953 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev); 954 955 /* 956 * We use Cityhash for this. It's fast, and has good hash properties without 957 * requiring any large static buffers. 958 */ 959 static uint64_t 960 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 961 { 962 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth)); 963 } 964 965 #define HDR_EMPTY(hdr) \ 966 ((hdr)->b_dva.dva_word[0] == 0 && \ 967 (hdr)->b_dva.dva_word[1] == 0) 968 969 #define HDR_EMPTY_OR_LOCKED(hdr) \ 970 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr))) 971 972 #define HDR_EQUAL(spa, dva, birth, hdr) \ 973 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 974 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 975 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) 976 977 static void 978 buf_discard_identity(arc_buf_hdr_t *hdr) 979 { 980 hdr->b_dva.dva_word[0] = 0; 981 hdr->b_dva.dva_word[1] = 0; 982 hdr->b_birth = 0; 983 } 984 985 static arc_buf_hdr_t * 986 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 987 { 988 const dva_t *dva = BP_IDENTITY(bp); 989 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 990 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 991 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 992 arc_buf_hdr_t *hdr; 993 994 mutex_enter(hash_lock); 995 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 996 hdr = hdr->b_hash_next) { 997 if (HDR_EQUAL(spa, dva, birth, hdr)) { 998 *lockp = hash_lock; 999 return (hdr); 1000 } 1001 } 1002 mutex_exit(hash_lock); 1003 *lockp = NULL; 1004 return (NULL); 1005 } 1006 1007 /* 1008 * Insert an entry into the hash table. If there is already an element 1009 * equal to elem in the hash table, then the already existing element 1010 * will be returned and the new element will not be inserted. 1011 * Otherwise returns NULL. 1012 * If lockp == NULL, the caller is assumed to already hold the hash lock. 1013 */ 1014 static arc_buf_hdr_t * 1015 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 1016 { 1017 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1018 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1019 arc_buf_hdr_t *fhdr; 1020 uint32_t i; 1021 1022 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 1023 ASSERT(hdr->b_birth != 0); 1024 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1025 1026 if (lockp != NULL) { 1027 *lockp = hash_lock; 1028 mutex_enter(hash_lock); 1029 } else { 1030 ASSERT(MUTEX_HELD(hash_lock)); 1031 } 1032 1033 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 1034 fhdr = fhdr->b_hash_next, i++) { 1035 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 1036 return (fhdr); 1037 } 1038 1039 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 1040 buf_hash_table.ht_table[idx] = hdr; 1041 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1042 1043 /* collect some hash table performance data */ 1044 if (i > 0) { 1045 ARCSTAT_BUMP(arcstat_hash_collisions); 1046 if (i == 1) 1047 ARCSTAT_BUMP(arcstat_hash_chains); 1048 1049 ARCSTAT_MAX(arcstat_hash_chain_max, i); 1050 } 1051 uint64_t he = atomic_inc_64_nv( 1052 &arc_stats.arcstat_hash_elements.value.ui64); 1053 ARCSTAT_MAX(arcstat_hash_elements_max, he); 1054 1055 return (NULL); 1056 } 1057 1058 static void 1059 buf_hash_remove(arc_buf_hdr_t *hdr) 1060 { 1061 arc_buf_hdr_t *fhdr, **hdrp; 1062 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1063 1064 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 1065 ASSERT(HDR_IN_HASH_TABLE(hdr)); 1066 1067 hdrp = &buf_hash_table.ht_table[idx]; 1068 while ((fhdr = *hdrp) != hdr) { 1069 ASSERT3P(fhdr, !=, NULL); 1070 hdrp = &fhdr->b_hash_next; 1071 } 1072 *hdrp = hdr->b_hash_next; 1073 hdr->b_hash_next = NULL; 1074 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1075 1076 /* collect some hash table performance data */ 1077 atomic_dec_64(&arc_stats.arcstat_hash_elements.value.ui64); 1078 1079 if (buf_hash_table.ht_table[idx] && 1080 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 1081 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 1082 } 1083 1084 /* 1085 * Global data structures and functions for the buf kmem cache. 1086 */ 1087 1088 static kmem_cache_t *hdr_full_cache; 1089 static kmem_cache_t *hdr_full_crypt_cache; 1090 static kmem_cache_t *hdr_l2only_cache; 1091 static kmem_cache_t *buf_cache; 1092 1093 static void 1094 buf_fini(void) 1095 { 1096 int i; 1097 1098 #if defined(_KERNEL) 1099 /* 1100 * Large allocations which do not require contiguous pages 1101 * should be using vmem_free() in the linux kernel\ 1102 */ 1103 vmem_free(buf_hash_table.ht_table, 1104 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1105 #else 1106 kmem_free(buf_hash_table.ht_table, 1107 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1108 #endif 1109 for (i = 0; i < BUF_LOCKS; i++) 1110 mutex_destroy(BUF_HASH_LOCK(i)); 1111 kmem_cache_destroy(hdr_full_cache); 1112 kmem_cache_destroy(hdr_full_crypt_cache); 1113 kmem_cache_destroy(hdr_l2only_cache); 1114 kmem_cache_destroy(buf_cache); 1115 } 1116 1117 /* 1118 * Constructor callback - called when the cache is empty 1119 * and a new buf is requested. 1120 */ 1121 /* ARGSUSED */ 1122 static int 1123 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1124 { 1125 arc_buf_hdr_t *hdr = vbuf; 1126 1127 bzero(hdr, HDR_FULL_SIZE); 1128 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 1129 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL); 1130 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt); 1131 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1132 list_link_init(&hdr->b_l1hdr.b_arc_node); 1133 list_link_init(&hdr->b_l2hdr.b_l2node); 1134 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1135 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1136 1137 return (0); 1138 } 1139 1140 /* ARGSUSED */ 1141 static int 1142 hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag) 1143 { 1144 arc_buf_hdr_t *hdr = vbuf; 1145 1146 hdr_full_cons(vbuf, unused, kmflag); 1147 bzero(&hdr->b_crypt_hdr, sizeof (hdr->b_crypt_hdr)); 1148 arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1149 1150 return (0); 1151 } 1152 1153 /* ARGSUSED */ 1154 static int 1155 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1156 { 1157 arc_buf_hdr_t *hdr = vbuf; 1158 1159 bzero(hdr, HDR_L2ONLY_SIZE); 1160 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1161 1162 return (0); 1163 } 1164 1165 /* ARGSUSED */ 1166 static int 1167 buf_cons(void *vbuf, void *unused, int kmflag) 1168 { 1169 arc_buf_t *buf = vbuf; 1170 1171 bzero(buf, sizeof (arc_buf_t)); 1172 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 1173 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1174 1175 return (0); 1176 } 1177 1178 /* 1179 * Destructor callback - called when a cached buf is 1180 * no longer required. 1181 */ 1182 /* ARGSUSED */ 1183 static void 1184 hdr_full_dest(void *vbuf, void *unused) 1185 { 1186 arc_buf_hdr_t *hdr = vbuf; 1187 1188 ASSERT(HDR_EMPTY(hdr)); 1189 cv_destroy(&hdr->b_l1hdr.b_cv); 1190 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1191 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1192 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1193 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1194 } 1195 1196 /* ARGSUSED */ 1197 static void 1198 hdr_full_crypt_dest(void *vbuf, void *unused) 1199 { 1200 arc_buf_hdr_t *hdr = vbuf; 1201 1202 hdr_full_dest(vbuf, unused); 1203 arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1204 } 1205 1206 /* ARGSUSED */ 1207 static void 1208 hdr_l2only_dest(void *vbuf, void *unused) 1209 { 1210 arc_buf_hdr_t *hdr __maybe_unused = vbuf; 1211 1212 ASSERT(HDR_EMPTY(hdr)); 1213 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1214 } 1215 1216 /* ARGSUSED */ 1217 static void 1218 buf_dest(void *vbuf, void *unused) 1219 { 1220 arc_buf_t *buf = vbuf; 1221 1222 mutex_destroy(&buf->b_evict_lock); 1223 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1224 } 1225 1226 static void 1227 buf_init(void) 1228 { 1229 uint64_t *ct = NULL; 1230 uint64_t hsize = 1ULL << 12; 1231 int i, j; 1232 1233 /* 1234 * The hash table is big enough to fill all of physical memory 1235 * with an average block size of zfs_arc_average_blocksize (default 8K). 1236 * By default, the table will take up 1237 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1238 */ 1239 while (hsize * zfs_arc_average_blocksize < arc_all_memory()) 1240 hsize <<= 1; 1241 retry: 1242 buf_hash_table.ht_mask = hsize - 1; 1243 #if defined(_KERNEL) 1244 /* 1245 * Large allocations which do not require contiguous pages 1246 * should be using vmem_alloc() in the linux kernel 1247 */ 1248 buf_hash_table.ht_table = 1249 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP); 1250 #else 1251 buf_hash_table.ht_table = 1252 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1253 #endif 1254 if (buf_hash_table.ht_table == NULL) { 1255 ASSERT(hsize > (1ULL << 8)); 1256 hsize >>= 1; 1257 goto retry; 1258 } 1259 1260 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1261 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, 0); 1262 hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt", 1263 HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest, 1264 NULL, NULL, NULL, 0); 1265 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1266 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL, 1267 NULL, NULL, 0); 1268 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1269 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1270 1271 for (i = 0; i < 256; i++) 1272 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1273 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1274 1275 for (i = 0; i < BUF_LOCKS; i++) 1276 mutex_init(BUF_HASH_LOCK(i), NULL, MUTEX_DEFAULT, NULL); 1277 } 1278 1279 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1280 1281 /* 1282 * This is the size that the buf occupies in memory. If the buf is compressed, 1283 * it will correspond to the compressed size. You should use this method of 1284 * getting the buf size unless you explicitly need the logical size. 1285 */ 1286 uint64_t 1287 arc_buf_size(arc_buf_t *buf) 1288 { 1289 return (ARC_BUF_COMPRESSED(buf) ? 1290 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr)); 1291 } 1292 1293 uint64_t 1294 arc_buf_lsize(arc_buf_t *buf) 1295 { 1296 return (HDR_GET_LSIZE(buf->b_hdr)); 1297 } 1298 1299 /* 1300 * This function will return B_TRUE if the buffer is encrypted in memory. 1301 * This buffer can be decrypted by calling arc_untransform(). 1302 */ 1303 boolean_t 1304 arc_is_encrypted(arc_buf_t *buf) 1305 { 1306 return (ARC_BUF_ENCRYPTED(buf) != 0); 1307 } 1308 1309 /* 1310 * Returns B_TRUE if the buffer represents data that has not had its MAC 1311 * verified yet. 1312 */ 1313 boolean_t 1314 arc_is_unauthenticated(arc_buf_t *buf) 1315 { 1316 return (HDR_NOAUTH(buf->b_hdr) != 0); 1317 } 1318 1319 void 1320 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt, 1321 uint8_t *iv, uint8_t *mac) 1322 { 1323 arc_buf_hdr_t *hdr = buf->b_hdr; 1324 1325 ASSERT(HDR_PROTECTED(hdr)); 1326 1327 bcopy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN); 1328 bcopy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN); 1329 bcopy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN); 1330 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 1331 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 1332 } 1333 1334 /* 1335 * Indicates how this buffer is compressed in memory. If it is not compressed 1336 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with 1337 * arc_untransform() as long as it is also unencrypted. 1338 */ 1339 enum zio_compress 1340 arc_get_compression(arc_buf_t *buf) 1341 { 1342 return (ARC_BUF_COMPRESSED(buf) ? 1343 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF); 1344 } 1345 1346 /* 1347 * Return the compression algorithm used to store this data in the ARC. If ARC 1348 * compression is enabled or this is an encrypted block, this will be the same 1349 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF. 1350 */ 1351 static inline enum zio_compress 1352 arc_hdr_get_compress(arc_buf_hdr_t *hdr) 1353 { 1354 return (HDR_COMPRESSION_ENABLED(hdr) ? 1355 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF); 1356 } 1357 1358 uint8_t 1359 arc_get_complevel(arc_buf_t *buf) 1360 { 1361 return (buf->b_hdr->b_complevel); 1362 } 1363 1364 static inline boolean_t 1365 arc_buf_is_shared(arc_buf_t *buf) 1366 { 1367 boolean_t shared = (buf->b_data != NULL && 1368 buf->b_hdr->b_l1hdr.b_pabd != NULL && 1369 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) && 1370 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd)); 1371 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); 1372 IMPLY(shared, ARC_BUF_SHARED(buf)); 1373 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf)); 1374 1375 /* 1376 * It would be nice to assert arc_can_share() too, but the "hdr isn't 1377 * already being shared" requirement prevents us from doing that. 1378 */ 1379 1380 return (shared); 1381 } 1382 1383 /* 1384 * Free the checksum associated with this header. If there is no checksum, this 1385 * is a no-op. 1386 */ 1387 static inline void 1388 arc_cksum_free(arc_buf_hdr_t *hdr) 1389 { 1390 ASSERT(HDR_HAS_L1HDR(hdr)); 1391 1392 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1393 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1394 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); 1395 hdr->b_l1hdr.b_freeze_cksum = NULL; 1396 } 1397 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1398 } 1399 1400 /* 1401 * Return true iff at least one of the bufs on hdr is not compressed. 1402 * Encrypted buffers count as compressed. 1403 */ 1404 static boolean_t 1405 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr) 1406 { 1407 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr)); 1408 1409 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) { 1410 if (!ARC_BUF_COMPRESSED(b)) { 1411 return (B_TRUE); 1412 } 1413 } 1414 return (B_FALSE); 1415 } 1416 1417 1418 /* 1419 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data 1420 * matches the checksum that is stored in the hdr. If there is no checksum, 1421 * or if the buf is compressed, this is a no-op. 1422 */ 1423 static void 1424 arc_cksum_verify(arc_buf_t *buf) 1425 { 1426 arc_buf_hdr_t *hdr = buf->b_hdr; 1427 zio_cksum_t zc; 1428 1429 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1430 return; 1431 1432 if (ARC_BUF_COMPRESSED(buf)) 1433 return; 1434 1435 ASSERT(HDR_HAS_L1HDR(hdr)); 1436 1437 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1438 1439 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { 1440 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1441 return; 1442 } 1443 1444 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc); 1445 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) 1446 panic("buffer modified while frozen!"); 1447 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1448 } 1449 1450 /* 1451 * This function makes the assumption that data stored in the L2ARC 1452 * will be transformed exactly as it is in the main pool. Because of 1453 * this we can verify the checksum against the reading process's bp. 1454 */ 1455 static boolean_t 1456 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) 1457 { 1458 ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); 1459 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); 1460 1461 /* 1462 * Block pointers always store the checksum for the logical data. 1463 * If the block pointer has the gang bit set, then the checksum 1464 * it represents is for the reconstituted data and not for an 1465 * individual gang member. The zio pipeline, however, must be able to 1466 * determine the checksum of each of the gang constituents so it 1467 * treats the checksum comparison differently than what we need 1468 * for l2arc blocks. This prevents us from using the 1469 * zio_checksum_error() interface directly. Instead we must call the 1470 * zio_checksum_error_impl() so that we can ensure the checksum is 1471 * generated using the correct checksum algorithm and accounts for the 1472 * logical I/O size and not just a gang fragment. 1473 */ 1474 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp, 1475 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size, 1476 zio->io_offset, NULL) == 0); 1477 } 1478 1479 /* 1480 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a 1481 * checksum and attaches it to the buf's hdr so that we can ensure that the buf 1482 * isn't modified later on. If buf is compressed or there is already a checksum 1483 * on the hdr, this is a no-op (we only checksum uncompressed bufs). 1484 */ 1485 static void 1486 arc_cksum_compute(arc_buf_t *buf) 1487 { 1488 arc_buf_hdr_t *hdr = buf->b_hdr; 1489 1490 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1491 return; 1492 1493 ASSERT(HDR_HAS_L1HDR(hdr)); 1494 1495 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1496 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) { 1497 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1498 return; 1499 } 1500 1501 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 1502 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1503 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), 1504 KM_SLEEP); 1505 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, 1506 hdr->b_l1hdr.b_freeze_cksum); 1507 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1508 arc_buf_watch(buf); 1509 } 1510 1511 #ifndef _KERNEL 1512 void 1513 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused) 1514 { 1515 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr); 1516 } 1517 #endif 1518 1519 /* ARGSUSED */ 1520 static void 1521 arc_buf_unwatch(arc_buf_t *buf) 1522 { 1523 #ifndef _KERNEL 1524 if (arc_watch) { 1525 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1526 PROT_READ | PROT_WRITE)); 1527 } 1528 #endif 1529 } 1530 1531 /* ARGSUSED */ 1532 static void 1533 arc_buf_watch(arc_buf_t *buf) 1534 { 1535 #ifndef _KERNEL 1536 if (arc_watch) 1537 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1538 PROT_READ)); 1539 #endif 1540 } 1541 1542 static arc_buf_contents_t 1543 arc_buf_type(arc_buf_hdr_t *hdr) 1544 { 1545 arc_buf_contents_t type; 1546 if (HDR_ISTYPE_METADATA(hdr)) { 1547 type = ARC_BUFC_METADATA; 1548 } else { 1549 type = ARC_BUFC_DATA; 1550 } 1551 VERIFY3U(hdr->b_type, ==, type); 1552 return (type); 1553 } 1554 1555 boolean_t 1556 arc_is_metadata(arc_buf_t *buf) 1557 { 1558 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0); 1559 } 1560 1561 static uint32_t 1562 arc_bufc_to_flags(arc_buf_contents_t type) 1563 { 1564 switch (type) { 1565 case ARC_BUFC_DATA: 1566 /* metadata field is 0 if buffer contains normal data */ 1567 return (0); 1568 case ARC_BUFC_METADATA: 1569 return (ARC_FLAG_BUFC_METADATA); 1570 default: 1571 break; 1572 } 1573 panic("undefined ARC buffer type!"); 1574 return ((uint32_t)-1); 1575 } 1576 1577 void 1578 arc_buf_thaw(arc_buf_t *buf) 1579 { 1580 arc_buf_hdr_t *hdr = buf->b_hdr; 1581 1582 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 1583 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1584 1585 arc_cksum_verify(buf); 1586 1587 /* 1588 * Compressed buffers do not manipulate the b_freeze_cksum. 1589 */ 1590 if (ARC_BUF_COMPRESSED(buf)) 1591 return; 1592 1593 ASSERT(HDR_HAS_L1HDR(hdr)); 1594 arc_cksum_free(hdr); 1595 arc_buf_unwatch(buf); 1596 } 1597 1598 void 1599 arc_buf_freeze(arc_buf_t *buf) 1600 { 1601 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1602 return; 1603 1604 if (ARC_BUF_COMPRESSED(buf)) 1605 return; 1606 1607 ASSERT(HDR_HAS_L1HDR(buf->b_hdr)); 1608 arc_cksum_compute(buf); 1609 } 1610 1611 /* 1612 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, 1613 * the following functions should be used to ensure that the flags are 1614 * updated in a thread-safe way. When manipulating the flags either 1615 * the hash_lock must be held or the hdr must be undiscoverable. This 1616 * ensures that we're not racing with any other threads when updating 1617 * the flags. 1618 */ 1619 static inline void 1620 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1621 { 1622 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1623 hdr->b_flags |= flags; 1624 } 1625 1626 static inline void 1627 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1628 { 1629 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1630 hdr->b_flags &= ~flags; 1631 } 1632 1633 /* 1634 * Setting the compression bits in the arc_buf_hdr_t's b_flags is 1635 * done in a special way since we have to clear and set bits 1636 * at the same time. Consumers that wish to set the compression bits 1637 * must use this function to ensure that the flags are updated in 1638 * thread-safe manner. 1639 */ 1640 static void 1641 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) 1642 { 1643 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1644 1645 /* 1646 * Holes and embedded blocks will always have a psize = 0 so 1647 * we ignore the compression of the blkptr and set the 1648 * want to uncompress them. Mark them as uncompressed. 1649 */ 1650 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { 1651 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1652 ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); 1653 } else { 1654 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1655 ASSERT(HDR_COMPRESSION_ENABLED(hdr)); 1656 } 1657 1658 HDR_SET_COMPRESS(hdr, cmp); 1659 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); 1660 } 1661 1662 /* 1663 * Looks for another buf on the same hdr which has the data decompressed, copies 1664 * from it, and returns true. If no such buf exists, returns false. 1665 */ 1666 static boolean_t 1667 arc_buf_try_copy_decompressed_data(arc_buf_t *buf) 1668 { 1669 arc_buf_hdr_t *hdr = buf->b_hdr; 1670 boolean_t copied = B_FALSE; 1671 1672 ASSERT(HDR_HAS_L1HDR(hdr)); 1673 ASSERT3P(buf->b_data, !=, NULL); 1674 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1675 1676 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL; 1677 from = from->b_next) { 1678 /* can't use our own data buffer */ 1679 if (from == buf) { 1680 continue; 1681 } 1682 1683 if (!ARC_BUF_COMPRESSED(from)) { 1684 bcopy(from->b_data, buf->b_data, arc_buf_size(buf)); 1685 copied = B_TRUE; 1686 break; 1687 } 1688 } 1689 1690 /* 1691 * There were no decompressed bufs, so there should not be a 1692 * checksum on the hdr either. 1693 */ 1694 if (zfs_flags & ZFS_DEBUG_MODIFY) 1695 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL); 1696 1697 return (copied); 1698 } 1699 1700 /* 1701 * Allocates an ARC buf header that's in an evicted & L2-cached state. 1702 * This is used during l2arc reconstruction to make empty ARC buffers 1703 * which circumvent the regular disk->arc->l2arc path and instead come 1704 * into being in the reverse order, i.e. l2arc->arc. 1705 */ 1706 static arc_buf_hdr_t * 1707 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev, 1708 dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth, 1709 enum zio_compress compress, uint8_t complevel, boolean_t protected, 1710 boolean_t prefetch, arc_state_type_t arcs_state) 1711 { 1712 arc_buf_hdr_t *hdr; 1713 1714 ASSERT(size != 0); 1715 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP); 1716 hdr->b_birth = birth; 1717 hdr->b_type = type; 1718 hdr->b_flags = 0; 1719 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR); 1720 HDR_SET_LSIZE(hdr, size); 1721 HDR_SET_PSIZE(hdr, psize); 1722 arc_hdr_set_compress(hdr, compress); 1723 hdr->b_complevel = complevel; 1724 if (protected) 1725 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 1726 if (prefetch) 1727 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 1728 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa); 1729 1730 hdr->b_dva = dva; 1731 1732 hdr->b_l2hdr.b_dev = dev; 1733 hdr->b_l2hdr.b_daddr = daddr; 1734 hdr->b_l2hdr.b_arcs_state = arcs_state; 1735 1736 return (hdr); 1737 } 1738 1739 /* 1740 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t. 1741 */ 1742 static uint64_t 1743 arc_hdr_size(arc_buf_hdr_t *hdr) 1744 { 1745 uint64_t size; 1746 1747 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 1748 HDR_GET_PSIZE(hdr) > 0) { 1749 size = HDR_GET_PSIZE(hdr); 1750 } else { 1751 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); 1752 size = HDR_GET_LSIZE(hdr); 1753 } 1754 return (size); 1755 } 1756 1757 static int 1758 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj) 1759 { 1760 int ret; 1761 uint64_t csize; 1762 uint64_t lsize = HDR_GET_LSIZE(hdr); 1763 uint64_t psize = HDR_GET_PSIZE(hdr); 1764 void *tmpbuf = NULL; 1765 abd_t *abd = hdr->b_l1hdr.b_pabd; 1766 1767 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1768 ASSERT(HDR_AUTHENTICATED(hdr)); 1769 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1770 1771 /* 1772 * The MAC is calculated on the compressed data that is stored on disk. 1773 * However, if compressed arc is disabled we will only have the 1774 * decompressed data available to us now. Compress it into a temporary 1775 * abd so we can verify the MAC. The performance overhead of this will 1776 * be relatively low, since most objects in an encrypted objset will 1777 * be encrypted (instead of authenticated) anyway. 1778 */ 1779 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1780 !HDR_COMPRESSION_ENABLED(hdr)) { 1781 tmpbuf = zio_buf_alloc(lsize); 1782 abd = abd_get_from_buf(tmpbuf, lsize); 1783 abd_take_ownership_of_buf(abd, B_TRUE); 1784 csize = zio_compress_data(HDR_GET_COMPRESS(hdr), 1785 hdr->b_l1hdr.b_pabd, tmpbuf, lsize, hdr->b_complevel); 1786 ASSERT3U(csize, <=, psize); 1787 abd_zero_off(abd, csize, psize - csize); 1788 } 1789 1790 /* 1791 * Authentication is best effort. We authenticate whenever the key is 1792 * available. If we succeed we clear ARC_FLAG_NOAUTH. 1793 */ 1794 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) { 1795 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1796 ASSERT3U(lsize, ==, psize); 1797 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd, 1798 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1799 } else { 1800 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize, 1801 hdr->b_crypt_hdr.b_mac); 1802 } 1803 1804 if (ret == 0) 1805 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH); 1806 else if (ret != ENOENT) 1807 goto error; 1808 1809 if (tmpbuf != NULL) 1810 abd_free(abd); 1811 1812 return (0); 1813 1814 error: 1815 if (tmpbuf != NULL) 1816 abd_free(abd); 1817 1818 return (ret); 1819 } 1820 1821 /* 1822 * This function will take a header that only has raw encrypted data in 1823 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in 1824 * b_l1hdr.b_pabd. If designated in the header flags, this function will 1825 * also decompress the data. 1826 */ 1827 static int 1828 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb) 1829 { 1830 int ret; 1831 abd_t *cabd = NULL; 1832 void *tmp = NULL; 1833 boolean_t no_crypt = B_FALSE; 1834 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1835 1836 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1837 ASSERT(HDR_ENCRYPTED(hdr)); 1838 1839 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 1840 1841 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot, 1842 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv, 1843 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd, 1844 hdr->b_crypt_hdr.b_rabd, &no_crypt); 1845 if (ret != 0) 1846 goto error; 1847 1848 if (no_crypt) { 1849 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd, 1850 HDR_GET_PSIZE(hdr)); 1851 } 1852 1853 /* 1854 * If this header has disabled arc compression but the b_pabd is 1855 * compressed after decrypting it, we need to decompress the newly 1856 * decrypted data. 1857 */ 1858 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1859 !HDR_COMPRESSION_ENABLED(hdr)) { 1860 /* 1861 * We want to make sure that we are correctly honoring the 1862 * zfs_abd_scatter_enabled setting, so we allocate an abd here 1863 * and then loan a buffer from it, rather than allocating a 1864 * linear buffer and wrapping it in an abd later. 1865 */ 1866 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 1867 ARC_HDR_DO_ADAPT); 1868 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 1869 1870 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 1871 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 1872 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 1873 if (ret != 0) { 1874 abd_return_buf(cabd, tmp, arc_hdr_size(hdr)); 1875 goto error; 1876 } 1877 1878 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 1879 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 1880 arc_hdr_size(hdr), hdr); 1881 hdr->b_l1hdr.b_pabd = cabd; 1882 } 1883 1884 return (0); 1885 1886 error: 1887 arc_hdr_free_abd(hdr, B_FALSE); 1888 if (cabd != NULL) 1889 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr); 1890 1891 return (ret); 1892 } 1893 1894 /* 1895 * This function is called during arc_buf_fill() to prepare the header's 1896 * abd plaintext pointer for use. This involves authenticated protected 1897 * data and decrypting encrypted data into the plaintext abd. 1898 */ 1899 static int 1900 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa, 1901 const zbookmark_phys_t *zb, boolean_t noauth) 1902 { 1903 int ret; 1904 1905 ASSERT(HDR_PROTECTED(hdr)); 1906 1907 if (hash_lock != NULL) 1908 mutex_enter(hash_lock); 1909 1910 if (HDR_NOAUTH(hdr) && !noauth) { 1911 /* 1912 * The caller requested authenticated data but our data has 1913 * not been authenticated yet. Verify the MAC now if we can. 1914 */ 1915 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset); 1916 if (ret != 0) 1917 goto error; 1918 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) { 1919 /* 1920 * If we only have the encrypted version of the data, but the 1921 * unencrypted version was requested we take this opportunity 1922 * to store the decrypted version in the header for future use. 1923 */ 1924 ret = arc_hdr_decrypt(hdr, spa, zb); 1925 if (ret != 0) 1926 goto error; 1927 } 1928 1929 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1930 1931 if (hash_lock != NULL) 1932 mutex_exit(hash_lock); 1933 1934 return (0); 1935 1936 error: 1937 if (hash_lock != NULL) 1938 mutex_exit(hash_lock); 1939 1940 return (ret); 1941 } 1942 1943 /* 1944 * This function is used by the dbuf code to decrypt bonus buffers in place. 1945 * The dbuf code itself doesn't have any locking for decrypting a shared dnode 1946 * block, so we use the hash lock here to protect against concurrent calls to 1947 * arc_buf_fill(). 1948 */ 1949 static void 1950 arc_buf_untransform_in_place(arc_buf_t *buf, kmutex_t *hash_lock) 1951 { 1952 arc_buf_hdr_t *hdr = buf->b_hdr; 1953 1954 ASSERT(HDR_ENCRYPTED(hdr)); 1955 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 1956 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1957 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1958 1959 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data, 1960 arc_buf_size(buf)); 1961 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 1962 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 1963 hdr->b_crypt_hdr.b_ebufcnt -= 1; 1964 } 1965 1966 /* 1967 * Given a buf that has a data buffer attached to it, this function will 1968 * efficiently fill the buf with data of the specified compression setting from 1969 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr 1970 * are already sharing a data buf, no copy is performed. 1971 * 1972 * If the buf is marked as compressed but uncompressed data was requested, this 1973 * will allocate a new data buffer for the buf, remove that flag, and fill the 1974 * buf with uncompressed data. You can't request a compressed buf on a hdr with 1975 * uncompressed data, and (since we haven't added support for it yet) if you 1976 * want compressed data your buf must already be marked as compressed and have 1977 * the correct-sized data buffer. 1978 */ 1979 static int 1980 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 1981 arc_fill_flags_t flags) 1982 { 1983 int error = 0; 1984 arc_buf_hdr_t *hdr = buf->b_hdr; 1985 boolean_t hdr_compressed = 1986 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 1987 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0; 1988 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0; 1989 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; 1990 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr); 1991 1992 ASSERT3P(buf->b_data, !=, NULL); 1993 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf)); 1994 IMPLY(compressed, ARC_BUF_COMPRESSED(buf)); 1995 IMPLY(encrypted, HDR_ENCRYPTED(hdr)); 1996 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf)); 1997 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf)); 1998 IMPLY(encrypted, !ARC_BUF_SHARED(buf)); 1999 2000 /* 2001 * If the caller wanted encrypted data we just need to copy it from 2002 * b_rabd and potentially byteswap it. We won't be able to do any 2003 * further transforms on it. 2004 */ 2005 if (encrypted) { 2006 ASSERT(HDR_HAS_RABD(hdr)); 2007 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd, 2008 HDR_GET_PSIZE(hdr)); 2009 goto byteswap; 2010 } 2011 2012 /* 2013 * Adjust encrypted and authenticated headers to accommodate 2014 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are 2015 * allowed to fail decryption due to keys not being loaded 2016 * without being marked as an IO error. 2017 */ 2018 if (HDR_PROTECTED(hdr)) { 2019 error = arc_fill_hdr_crypt(hdr, hash_lock, spa, 2020 zb, !!(flags & ARC_FILL_NOAUTH)); 2021 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) { 2022 return (error); 2023 } else if (error != 0) { 2024 if (hash_lock != NULL) 2025 mutex_enter(hash_lock); 2026 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2027 if (hash_lock != NULL) 2028 mutex_exit(hash_lock); 2029 return (error); 2030 } 2031 } 2032 2033 /* 2034 * There is a special case here for dnode blocks which are 2035 * decrypting their bonus buffers. These blocks may request to 2036 * be decrypted in-place. This is necessary because there may 2037 * be many dnodes pointing into this buffer and there is 2038 * currently no method to synchronize replacing the backing 2039 * b_data buffer and updating all of the pointers. Here we use 2040 * the hash lock to ensure there are no races. If the need 2041 * arises for other types to be decrypted in-place, they must 2042 * add handling here as well. 2043 */ 2044 if ((flags & ARC_FILL_IN_PLACE) != 0) { 2045 ASSERT(!hdr_compressed); 2046 ASSERT(!compressed); 2047 ASSERT(!encrypted); 2048 2049 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) { 2050 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 2051 2052 if (hash_lock != NULL) 2053 mutex_enter(hash_lock); 2054 arc_buf_untransform_in_place(buf, hash_lock); 2055 if (hash_lock != NULL) 2056 mutex_exit(hash_lock); 2057 2058 /* Compute the hdr's checksum if necessary */ 2059 arc_cksum_compute(buf); 2060 } 2061 2062 return (0); 2063 } 2064 2065 if (hdr_compressed == compressed) { 2066 if (!arc_buf_is_shared(buf)) { 2067 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd, 2068 arc_buf_size(buf)); 2069 } 2070 } else { 2071 ASSERT(hdr_compressed); 2072 ASSERT(!compressed); 2073 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr)); 2074 2075 /* 2076 * If the buf is sharing its data with the hdr, unlink it and 2077 * allocate a new data buffer for the buf. 2078 */ 2079 if (arc_buf_is_shared(buf)) { 2080 ASSERT(ARC_BUF_COMPRESSED(buf)); 2081 2082 /* We need to give the buf its own b_data */ 2083 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 2084 buf->b_data = 2085 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2086 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2087 2088 /* Previously overhead was 0; just add new overhead */ 2089 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 2090 } else if (ARC_BUF_COMPRESSED(buf)) { 2091 /* We need to reallocate the buf's b_data */ 2092 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr), 2093 buf); 2094 buf->b_data = 2095 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2096 2097 /* We increased the size of b_data; update overhead */ 2098 ARCSTAT_INCR(arcstat_overhead_size, 2099 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr)); 2100 } 2101 2102 /* 2103 * Regardless of the buf's previous compression settings, it 2104 * should not be compressed at the end of this function. 2105 */ 2106 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 2107 2108 /* 2109 * Try copying the data from another buf which already has a 2110 * decompressed version. If that's not possible, it's time to 2111 * bite the bullet and decompress the data from the hdr. 2112 */ 2113 if (arc_buf_try_copy_decompressed_data(buf)) { 2114 /* Skip byteswapping and checksumming (already done) */ 2115 return (0); 2116 } else { 2117 error = zio_decompress_data(HDR_GET_COMPRESS(hdr), 2118 hdr->b_l1hdr.b_pabd, buf->b_data, 2119 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr), 2120 &hdr->b_complevel); 2121 2122 /* 2123 * Absent hardware errors or software bugs, this should 2124 * be impossible, but log it anyway so we can debug it. 2125 */ 2126 if (error != 0) { 2127 zfs_dbgmsg( 2128 "hdr %px, compress %d, psize %d, lsize %d", 2129 hdr, arc_hdr_get_compress(hdr), 2130 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 2131 if (hash_lock != NULL) 2132 mutex_enter(hash_lock); 2133 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2134 if (hash_lock != NULL) 2135 mutex_exit(hash_lock); 2136 return (SET_ERROR(EIO)); 2137 } 2138 } 2139 } 2140 2141 byteswap: 2142 /* Byteswap the buf's data if necessary */ 2143 if (bswap != DMU_BSWAP_NUMFUNCS) { 2144 ASSERT(!HDR_SHARED_DATA(hdr)); 2145 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); 2146 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); 2147 } 2148 2149 /* Compute the hdr's checksum if necessary */ 2150 arc_cksum_compute(buf); 2151 2152 return (0); 2153 } 2154 2155 /* 2156 * If this function is being called to decrypt an encrypted buffer or verify an 2157 * authenticated one, the key must be loaded and a mapping must be made 2158 * available in the keystore via spa_keystore_create_mapping() or one of its 2159 * callers. 2160 */ 2161 int 2162 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 2163 boolean_t in_place) 2164 { 2165 int ret; 2166 arc_fill_flags_t flags = 0; 2167 2168 if (in_place) 2169 flags |= ARC_FILL_IN_PLACE; 2170 2171 ret = arc_buf_fill(buf, spa, zb, flags); 2172 if (ret == ECKSUM) { 2173 /* 2174 * Convert authentication and decryption errors to EIO 2175 * (and generate an ereport) before leaving the ARC. 2176 */ 2177 ret = SET_ERROR(EIO); 2178 spa_log_error(spa, zb); 2179 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 2180 spa, NULL, zb, NULL, 0); 2181 } 2182 2183 return (ret); 2184 } 2185 2186 /* 2187 * Increment the amount of evictable space in the arc_state_t's refcount. 2188 * We account for the space used by the hdr and the arc buf individually 2189 * so that we can add and remove them from the refcount individually. 2190 */ 2191 static void 2192 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) 2193 { 2194 arc_buf_contents_t type = arc_buf_type(hdr); 2195 2196 ASSERT(HDR_HAS_L1HDR(hdr)); 2197 2198 if (GHOST_STATE(state)) { 2199 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2200 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2201 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2202 ASSERT(!HDR_HAS_RABD(hdr)); 2203 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2204 HDR_GET_LSIZE(hdr), hdr); 2205 return; 2206 } 2207 2208 if (hdr->b_l1hdr.b_pabd != NULL) { 2209 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2210 arc_hdr_size(hdr), hdr); 2211 } 2212 if (HDR_HAS_RABD(hdr)) { 2213 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2214 HDR_GET_PSIZE(hdr), hdr); 2215 } 2216 2217 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2218 buf = buf->b_next) { 2219 if (arc_buf_is_shared(buf)) 2220 continue; 2221 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2222 arc_buf_size(buf), buf); 2223 } 2224 } 2225 2226 /* 2227 * Decrement the amount of evictable space in the arc_state_t's refcount. 2228 * We account for the space used by the hdr and the arc buf individually 2229 * so that we can add and remove them from the refcount individually. 2230 */ 2231 static void 2232 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) 2233 { 2234 arc_buf_contents_t type = arc_buf_type(hdr); 2235 2236 ASSERT(HDR_HAS_L1HDR(hdr)); 2237 2238 if (GHOST_STATE(state)) { 2239 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2240 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2241 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2242 ASSERT(!HDR_HAS_RABD(hdr)); 2243 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2244 HDR_GET_LSIZE(hdr), hdr); 2245 return; 2246 } 2247 2248 if (hdr->b_l1hdr.b_pabd != NULL) { 2249 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2250 arc_hdr_size(hdr), hdr); 2251 } 2252 if (HDR_HAS_RABD(hdr)) { 2253 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2254 HDR_GET_PSIZE(hdr), hdr); 2255 } 2256 2257 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2258 buf = buf->b_next) { 2259 if (arc_buf_is_shared(buf)) 2260 continue; 2261 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2262 arc_buf_size(buf), buf); 2263 } 2264 } 2265 2266 /* 2267 * Add a reference to this hdr indicating that someone is actively 2268 * referencing that memory. When the refcount transitions from 0 to 1, 2269 * we remove it from the respective arc_state_t list to indicate that 2270 * it is not evictable. 2271 */ 2272 static void 2273 add_reference(arc_buf_hdr_t *hdr, void *tag) 2274 { 2275 arc_state_t *state; 2276 2277 ASSERT(HDR_HAS_L1HDR(hdr)); 2278 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) { 2279 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 2280 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2281 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2282 } 2283 2284 state = hdr->b_l1hdr.b_state; 2285 2286 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 2287 (state != arc_anon)) { 2288 /* We don't use the L2-only state list. */ 2289 if (state != arc_l2c_only) { 2290 multilist_remove(&state->arcs_list[arc_buf_type(hdr)], 2291 hdr); 2292 arc_evictable_space_decrement(hdr, state); 2293 } 2294 /* remove the prefetch flag if we get a reference */ 2295 if (HDR_HAS_L2HDR(hdr)) 2296 l2arc_hdr_arcstats_decrement_state(hdr); 2297 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 2298 if (HDR_HAS_L2HDR(hdr)) 2299 l2arc_hdr_arcstats_increment_state(hdr); 2300 } 2301 } 2302 2303 /* 2304 * Remove a reference from this hdr. When the reference transitions from 2305 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's 2306 * list making it eligible for eviction. 2307 */ 2308 static int 2309 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 2310 { 2311 int cnt; 2312 arc_state_t *state = hdr->b_l1hdr.b_state; 2313 2314 ASSERT(HDR_HAS_L1HDR(hdr)); 2315 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 2316 ASSERT(!GHOST_STATE(state)); 2317 2318 /* 2319 * arc_l2c_only counts as a ghost state so we don't need to explicitly 2320 * check to prevent usage of the arc_l2c_only list. 2321 */ 2322 if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) && 2323 (state != arc_anon)) { 2324 multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr); 2325 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 2326 arc_evictable_space_increment(hdr, state); 2327 } 2328 return (cnt); 2329 } 2330 2331 /* 2332 * Returns detailed information about a specific arc buffer. When the 2333 * state_index argument is set the function will calculate the arc header 2334 * list position for its arc state. Since this requires a linear traversal 2335 * callers are strongly encourage not to do this. However, it can be helpful 2336 * for targeted analysis so the functionality is provided. 2337 */ 2338 void 2339 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index) 2340 { 2341 arc_buf_hdr_t *hdr = ab->b_hdr; 2342 l1arc_buf_hdr_t *l1hdr = NULL; 2343 l2arc_buf_hdr_t *l2hdr = NULL; 2344 arc_state_t *state = NULL; 2345 2346 memset(abi, 0, sizeof (arc_buf_info_t)); 2347 2348 if (hdr == NULL) 2349 return; 2350 2351 abi->abi_flags = hdr->b_flags; 2352 2353 if (HDR_HAS_L1HDR(hdr)) { 2354 l1hdr = &hdr->b_l1hdr; 2355 state = l1hdr->b_state; 2356 } 2357 if (HDR_HAS_L2HDR(hdr)) 2358 l2hdr = &hdr->b_l2hdr; 2359 2360 if (l1hdr) { 2361 abi->abi_bufcnt = l1hdr->b_bufcnt; 2362 abi->abi_access = l1hdr->b_arc_access; 2363 abi->abi_mru_hits = l1hdr->b_mru_hits; 2364 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits; 2365 abi->abi_mfu_hits = l1hdr->b_mfu_hits; 2366 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits; 2367 abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt); 2368 } 2369 2370 if (l2hdr) { 2371 abi->abi_l2arc_dattr = l2hdr->b_daddr; 2372 abi->abi_l2arc_hits = l2hdr->b_hits; 2373 } 2374 2375 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON; 2376 abi->abi_state_contents = arc_buf_type(hdr); 2377 abi->abi_size = arc_hdr_size(hdr); 2378 } 2379 2380 /* 2381 * Move the supplied buffer to the indicated state. The hash lock 2382 * for the buffer must be held by the caller. 2383 */ 2384 static void 2385 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr, 2386 kmutex_t *hash_lock) 2387 { 2388 arc_state_t *old_state; 2389 int64_t refcnt; 2390 uint32_t bufcnt; 2391 boolean_t update_old, update_new; 2392 arc_buf_contents_t buftype = arc_buf_type(hdr); 2393 2394 /* 2395 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 2396 * in arc_read() when bringing a buffer out of the L2ARC. However, the 2397 * L1 hdr doesn't always exist when we change state to arc_anon before 2398 * destroying a header, in which case reallocating to add the L1 hdr is 2399 * pointless. 2400 */ 2401 if (HDR_HAS_L1HDR(hdr)) { 2402 old_state = hdr->b_l1hdr.b_state; 2403 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt); 2404 bufcnt = hdr->b_l1hdr.b_bufcnt; 2405 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL || 2406 HDR_HAS_RABD(hdr)); 2407 } else { 2408 old_state = arc_l2c_only; 2409 refcnt = 0; 2410 bufcnt = 0; 2411 update_old = B_FALSE; 2412 } 2413 update_new = update_old; 2414 2415 ASSERT(MUTEX_HELD(hash_lock)); 2416 ASSERT3P(new_state, !=, old_state); 2417 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0); 2418 ASSERT(old_state != arc_anon || bufcnt <= 1); 2419 2420 /* 2421 * If this buffer is evictable, transfer it from the 2422 * old state list to the new state list. 2423 */ 2424 if (refcnt == 0) { 2425 if (old_state != arc_anon && old_state != arc_l2c_only) { 2426 ASSERT(HDR_HAS_L1HDR(hdr)); 2427 multilist_remove(&old_state->arcs_list[buftype], hdr); 2428 2429 if (GHOST_STATE(old_state)) { 2430 ASSERT0(bufcnt); 2431 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2432 update_old = B_TRUE; 2433 } 2434 arc_evictable_space_decrement(hdr, old_state); 2435 } 2436 if (new_state != arc_anon && new_state != arc_l2c_only) { 2437 /* 2438 * An L1 header always exists here, since if we're 2439 * moving to some L1-cached state (i.e. not l2c_only or 2440 * anonymous), we realloc the header to add an L1hdr 2441 * beforehand. 2442 */ 2443 ASSERT(HDR_HAS_L1HDR(hdr)); 2444 multilist_insert(&new_state->arcs_list[buftype], hdr); 2445 2446 if (GHOST_STATE(new_state)) { 2447 ASSERT0(bufcnt); 2448 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2449 update_new = B_TRUE; 2450 } 2451 arc_evictable_space_increment(hdr, new_state); 2452 } 2453 } 2454 2455 ASSERT(!HDR_EMPTY(hdr)); 2456 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 2457 buf_hash_remove(hdr); 2458 2459 /* adjust state sizes (ignore arc_l2c_only) */ 2460 2461 if (update_new && new_state != arc_l2c_only) { 2462 ASSERT(HDR_HAS_L1HDR(hdr)); 2463 if (GHOST_STATE(new_state)) { 2464 ASSERT0(bufcnt); 2465 2466 /* 2467 * When moving a header to a ghost state, we first 2468 * remove all arc buffers. Thus, we'll have a 2469 * bufcnt of zero, and no arc buffer to use for 2470 * the reference. As a result, we use the arc 2471 * header pointer for the reference. 2472 */ 2473 (void) zfs_refcount_add_many(&new_state->arcs_size, 2474 HDR_GET_LSIZE(hdr), hdr); 2475 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2476 ASSERT(!HDR_HAS_RABD(hdr)); 2477 } else { 2478 uint32_t buffers = 0; 2479 2480 /* 2481 * Each individual buffer holds a unique reference, 2482 * thus we must remove each of these references one 2483 * at a time. 2484 */ 2485 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2486 buf = buf->b_next) { 2487 ASSERT3U(bufcnt, !=, 0); 2488 buffers++; 2489 2490 /* 2491 * When the arc_buf_t is sharing the data 2492 * block with the hdr, the owner of the 2493 * reference belongs to the hdr. Only 2494 * add to the refcount if the arc_buf_t is 2495 * not shared. 2496 */ 2497 if (arc_buf_is_shared(buf)) 2498 continue; 2499 2500 (void) zfs_refcount_add_many( 2501 &new_state->arcs_size, 2502 arc_buf_size(buf), buf); 2503 } 2504 ASSERT3U(bufcnt, ==, buffers); 2505 2506 if (hdr->b_l1hdr.b_pabd != NULL) { 2507 (void) zfs_refcount_add_many( 2508 &new_state->arcs_size, 2509 arc_hdr_size(hdr), hdr); 2510 } 2511 2512 if (HDR_HAS_RABD(hdr)) { 2513 (void) zfs_refcount_add_many( 2514 &new_state->arcs_size, 2515 HDR_GET_PSIZE(hdr), hdr); 2516 } 2517 } 2518 } 2519 2520 if (update_old && old_state != arc_l2c_only) { 2521 ASSERT(HDR_HAS_L1HDR(hdr)); 2522 if (GHOST_STATE(old_state)) { 2523 ASSERT0(bufcnt); 2524 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2525 ASSERT(!HDR_HAS_RABD(hdr)); 2526 2527 /* 2528 * When moving a header off of a ghost state, 2529 * the header will not contain any arc buffers. 2530 * We use the arc header pointer for the reference 2531 * which is exactly what we did when we put the 2532 * header on the ghost state. 2533 */ 2534 2535 (void) zfs_refcount_remove_many(&old_state->arcs_size, 2536 HDR_GET_LSIZE(hdr), hdr); 2537 } else { 2538 uint32_t buffers = 0; 2539 2540 /* 2541 * Each individual buffer holds a unique reference, 2542 * thus we must remove each of these references one 2543 * at a time. 2544 */ 2545 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2546 buf = buf->b_next) { 2547 ASSERT3U(bufcnt, !=, 0); 2548 buffers++; 2549 2550 /* 2551 * When the arc_buf_t is sharing the data 2552 * block with the hdr, the owner of the 2553 * reference belongs to the hdr. Only 2554 * add to the refcount if the arc_buf_t is 2555 * not shared. 2556 */ 2557 if (arc_buf_is_shared(buf)) 2558 continue; 2559 2560 (void) zfs_refcount_remove_many( 2561 &old_state->arcs_size, arc_buf_size(buf), 2562 buf); 2563 } 2564 ASSERT3U(bufcnt, ==, buffers); 2565 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 2566 HDR_HAS_RABD(hdr)); 2567 2568 if (hdr->b_l1hdr.b_pabd != NULL) { 2569 (void) zfs_refcount_remove_many( 2570 &old_state->arcs_size, arc_hdr_size(hdr), 2571 hdr); 2572 } 2573 2574 if (HDR_HAS_RABD(hdr)) { 2575 (void) zfs_refcount_remove_many( 2576 &old_state->arcs_size, HDR_GET_PSIZE(hdr), 2577 hdr); 2578 } 2579 } 2580 } 2581 2582 if (HDR_HAS_L1HDR(hdr)) { 2583 hdr->b_l1hdr.b_state = new_state; 2584 2585 if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) { 2586 l2arc_hdr_arcstats_decrement_state(hdr); 2587 hdr->b_l2hdr.b_arcs_state = new_state->arcs_state; 2588 l2arc_hdr_arcstats_increment_state(hdr); 2589 } 2590 } 2591 } 2592 2593 void 2594 arc_space_consume(uint64_t space, arc_space_type_t type) 2595 { 2596 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2597 2598 switch (type) { 2599 default: 2600 break; 2601 case ARC_SPACE_DATA: 2602 ARCSTAT_INCR(arcstat_data_size, space); 2603 break; 2604 case ARC_SPACE_META: 2605 ARCSTAT_INCR(arcstat_metadata_size, space); 2606 break; 2607 case ARC_SPACE_BONUS: 2608 ARCSTAT_INCR(arcstat_bonus_size, space); 2609 break; 2610 case ARC_SPACE_DNODE: 2611 aggsum_add(&arc_sums.arcstat_dnode_size, space); 2612 break; 2613 case ARC_SPACE_DBUF: 2614 ARCSTAT_INCR(arcstat_dbuf_size, space); 2615 break; 2616 case ARC_SPACE_HDRS: 2617 ARCSTAT_INCR(arcstat_hdr_size, space); 2618 break; 2619 case ARC_SPACE_L2HDRS: 2620 aggsum_add(&arc_sums.arcstat_l2_hdr_size, space); 2621 break; 2622 case ARC_SPACE_ABD_CHUNK_WASTE: 2623 /* 2624 * Note: this includes space wasted by all scatter ABD's, not 2625 * just those allocated by the ARC. But the vast majority of 2626 * scatter ABD's come from the ARC, because other users are 2627 * very short-lived. 2628 */ 2629 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, space); 2630 break; 2631 } 2632 2633 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) 2634 aggsum_add(&arc_sums.arcstat_meta_used, space); 2635 2636 aggsum_add(&arc_sums.arcstat_size, space); 2637 } 2638 2639 void 2640 arc_space_return(uint64_t space, arc_space_type_t type) 2641 { 2642 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2643 2644 switch (type) { 2645 default: 2646 break; 2647 case ARC_SPACE_DATA: 2648 ARCSTAT_INCR(arcstat_data_size, -space); 2649 break; 2650 case ARC_SPACE_META: 2651 ARCSTAT_INCR(arcstat_metadata_size, -space); 2652 break; 2653 case ARC_SPACE_BONUS: 2654 ARCSTAT_INCR(arcstat_bonus_size, -space); 2655 break; 2656 case ARC_SPACE_DNODE: 2657 aggsum_add(&arc_sums.arcstat_dnode_size, -space); 2658 break; 2659 case ARC_SPACE_DBUF: 2660 ARCSTAT_INCR(arcstat_dbuf_size, -space); 2661 break; 2662 case ARC_SPACE_HDRS: 2663 ARCSTAT_INCR(arcstat_hdr_size, -space); 2664 break; 2665 case ARC_SPACE_L2HDRS: 2666 aggsum_add(&arc_sums.arcstat_l2_hdr_size, -space); 2667 break; 2668 case ARC_SPACE_ABD_CHUNK_WASTE: 2669 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, -space); 2670 break; 2671 } 2672 2673 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) { 2674 ASSERT(aggsum_compare(&arc_sums.arcstat_meta_used, 2675 space) >= 0); 2676 ARCSTAT_MAX(arcstat_meta_max, 2677 aggsum_upper_bound(&arc_sums.arcstat_meta_used)); 2678 aggsum_add(&arc_sums.arcstat_meta_used, -space); 2679 } 2680 2681 ASSERT(aggsum_compare(&arc_sums.arcstat_size, space) >= 0); 2682 aggsum_add(&arc_sums.arcstat_size, -space); 2683 } 2684 2685 /* 2686 * Given a hdr and a buf, returns whether that buf can share its b_data buffer 2687 * with the hdr's b_pabd. 2688 */ 2689 static boolean_t 2690 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2691 { 2692 /* 2693 * The criteria for sharing a hdr's data are: 2694 * 1. the buffer is not encrypted 2695 * 2. the hdr's compression matches the buf's compression 2696 * 3. the hdr doesn't need to be byteswapped 2697 * 4. the hdr isn't already being shared 2698 * 5. the buf is either compressed or it is the last buf in the hdr list 2699 * 2700 * Criterion #5 maintains the invariant that shared uncompressed 2701 * bufs must be the final buf in the hdr's b_buf list. Reading this, you 2702 * might ask, "if a compressed buf is allocated first, won't that be the 2703 * last thing in the list?", but in that case it's impossible to create 2704 * a shared uncompressed buf anyway (because the hdr must be compressed 2705 * to have the compressed buf). You might also think that #3 is 2706 * sufficient to make this guarantee, however it's possible 2707 * (specifically in the rare L2ARC write race mentioned in 2708 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that 2709 * is shareable, but wasn't at the time of its allocation. Rather than 2710 * allow a new shared uncompressed buf to be created and then shuffle 2711 * the list around to make it the last element, this simply disallows 2712 * sharing if the new buf isn't the first to be added. 2713 */ 2714 ASSERT3P(buf->b_hdr, ==, hdr); 2715 boolean_t hdr_compressed = 2716 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF; 2717 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0; 2718 return (!ARC_BUF_ENCRYPTED(buf) && 2719 buf_compressed == hdr_compressed && 2720 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && 2721 !HDR_SHARED_DATA(hdr) && 2722 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf))); 2723 } 2724 2725 /* 2726 * Allocate a buf for this hdr. If you care about the data that's in the hdr, 2727 * or if you want a compressed buffer, pass those flags in. Returns 0 if the 2728 * copy was made successfully, or an error code otherwise. 2729 */ 2730 static int 2731 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb, 2732 void *tag, boolean_t encrypted, boolean_t compressed, boolean_t noauth, 2733 boolean_t fill, arc_buf_t **ret) 2734 { 2735 arc_buf_t *buf; 2736 arc_fill_flags_t flags = ARC_FILL_LOCKED; 2737 2738 ASSERT(HDR_HAS_L1HDR(hdr)); 2739 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2740 VERIFY(hdr->b_type == ARC_BUFC_DATA || 2741 hdr->b_type == ARC_BUFC_METADATA); 2742 ASSERT3P(ret, !=, NULL); 2743 ASSERT3P(*ret, ==, NULL); 2744 IMPLY(encrypted, compressed); 2745 2746 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2747 buf->b_hdr = hdr; 2748 buf->b_data = NULL; 2749 buf->b_next = hdr->b_l1hdr.b_buf; 2750 buf->b_flags = 0; 2751 2752 add_reference(hdr, tag); 2753 2754 /* 2755 * We're about to change the hdr's b_flags. We must either 2756 * hold the hash_lock or be undiscoverable. 2757 */ 2758 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2759 2760 /* 2761 * Only honor requests for compressed bufs if the hdr is actually 2762 * compressed. This must be overridden if the buffer is encrypted since 2763 * encrypted buffers cannot be decompressed. 2764 */ 2765 if (encrypted) { 2766 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2767 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED; 2768 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED; 2769 } else if (compressed && 2770 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 2771 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2772 flags |= ARC_FILL_COMPRESSED; 2773 } 2774 2775 if (noauth) { 2776 ASSERT0(encrypted); 2777 flags |= ARC_FILL_NOAUTH; 2778 } 2779 2780 /* 2781 * If the hdr's data can be shared then we share the data buffer and 2782 * set the appropriate bit in the hdr's b_flags to indicate the hdr is 2783 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new 2784 * buffer to store the buf's data. 2785 * 2786 * There are two additional restrictions here because we're sharing 2787 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be 2788 * actively involved in an L2ARC write, because if this buf is used by 2789 * an arc_write() then the hdr's data buffer will be released when the 2790 * write completes, even though the L2ARC write might still be using it. 2791 * Second, the hdr's ABD must be linear so that the buf's user doesn't 2792 * need to be ABD-aware. It must be allocated via 2793 * zio_[data_]buf_alloc(), not as a page, because we need to be able 2794 * to abd_release_ownership_of_buf(), which isn't allowed on "linear 2795 * page" buffers because the ABD code needs to handle freeing them 2796 * specially. 2797 */ 2798 boolean_t can_share = arc_can_share(hdr, buf) && 2799 !HDR_L2_WRITING(hdr) && 2800 hdr->b_l1hdr.b_pabd != NULL && 2801 abd_is_linear(hdr->b_l1hdr.b_pabd) && 2802 !abd_is_linear_page(hdr->b_l1hdr.b_pabd); 2803 2804 /* Set up b_data and sharing */ 2805 if (can_share) { 2806 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd); 2807 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2808 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2809 } else { 2810 buf->b_data = 2811 arc_get_data_buf(hdr, arc_buf_size(buf), buf); 2812 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2813 } 2814 VERIFY3P(buf->b_data, !=, NULL); 2815 2816 hdr->b_l1hdr.b_buf = buf; 2817 hdr->b_l1hdr.b_bufcnt += 1; 2818 if (encrypted) 2819 hdr->b_crypt_hdr.b_ebufcnt += 1; 2820 2821 /* 2822 * If the user wants the data from the hdr, we need to either copy or 2823 * decompress the data. 2824 */ 2825 if (fill) { 2826 ASSERT3P(zb, !=, NULL); 2827 return (arc_buf_fill(buf, spa, zb, flags)); 2828 } 2829 2830 return (0); 2831 } 2832 2833 static char *arc_onloan_tag = "onloan"; 2834 2835 static inline void 2836 arc_loaned_bytes_update(int64_t delta) 2837 { 2838 atomic_add_64(&arc_loaned_bytes, delta); 2839 2840 /* assert that it did not wrap around */ 2841 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 2842 } 2843 2844 /* 2845 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 2846 * flight data by arc_tempreserve_space() until they are "returned". Loaned 2847 * buffers must be returned to the arc before they can be used by the DMU or 2848 * freed. 2849 */ 2850 arc_buf_t * 2851 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size) 2852 { 2853 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag, 2854 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size); 2855 2856 arc_loaned_bytes_update(arc_buf_size(buf)); 2857 2858 return (buf); 2859 } 2860 2861 arc_buf_t * 2862 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize, 2863 enum zio_compress compression_type, uint8_t complevel) 2864 { 2865 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag, 2866 psize, lsize, compression_type, complevel); 2867 2868 arc_loaned_bytes_update(arc_buf_size(buf)); 2869 2870 return (buf); 2871 } 2872 2873 arc_buf_t * 2874 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder, 2875 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 2876 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 2877 enum zio_compress compression_type, uint8_t complevel) 2878 { 2879 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj, 2880 byteorder, salt, iv, mac, ot, psize, lsize, compression_type, 2881 complevel); 2882 2883 atomic_add_64(&arc_loaned_bytes, psize); 2884 return (buf); 2885 } 2886 2887 2888 /* 2889 * Return a loaned arc buffer to the arc. 2890 */ 2891 void 2892 arc_return_buf(arc_buf_t *buf, void *tag) 2893 { 2894 arc_buf_hdr_t *hdr = buf->b_hdr; 2895 2896 ASSERT3P(buf->b_data, !=, NULL); 2897 ASSERT(HDR_HAS_L1HDR(hdr)); 2898 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 2899 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2900 2901 arc_loaned_bytes_update(-arc_buf_size(buf)); 2902 } 2903 2904 /* Detach an arc_buf from a dbuf (tag) */ 2905 void 2906 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 2907 { 2908 arc_buf_hdr_t *hdr = buf->b_hdr; 2909 2910 ASSERT3P(buf->b_data, !=, NULL); 2911 ASSERT(HDR_HAS_L1HDR(hdr)); 2912 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2913 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 2914 2915 arc_loaned_bytes_update(arc_buf_size(buf)); 2916 } 2917 2918 static void 2919 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type) 2920 { 2921 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); 2922 2923 df->l2df_abd = abd; 2924 df->l2df_size = size; 2925 df->l2df_type = type; 2926 mutex_enter(&l2arc_free_on_write_mtx); 2927 list_insert_head(l2arc_free_on_write, df); 2928 mutex_exit(&l2arc_free_on_write_mtx); 2929 } 2930 2931 static void 2932 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata) 2933 { 2934 arc_state_t *state = hdr->b_l1hdr.b_state; 2935 arc_buf_contents_t type = arc_buf_type(hdr); 2936 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 2937 2938 /* protected by hash lock, if in the hash table */ 2939 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2940 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2941 ASSERT(state != arc_anon && state != arc_l2c_only); 2942 2943 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2944 size, hdr); 2945 } 2946 (void) zfs_refcount_remove_many(&state->arcs_size, size, hdr); 2947 if (type == ARC_BUFC_METADATA) { 2948 arc_space_return(size, ARC_SPACE_META); 2949 } else { 2950 ASSERT(type == ARC_BUFC_DATA); 2951 arc_space_return(size, ARC_SPACE_DATA); 2952 } 2953 2954 if (free_rdata) { 2955 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type); 2956 } else { 2957 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type); 2958 } 2959 } 2960 2961 /* 2962 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the 2963 * data buffer, we transfer the refcount ownership to the hdr and update 2964 * the appropriate kstats. 2965 */ 2966 static void 2967 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2968 { 2969 ASSERT(arc_can_share(hdr, buf)); 2970 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2971 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 2972 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2973 2974 /* 2975 * Start sharing the data buffer. We transfer the 2976 * refcount ownership to the hdr since it always owns 2977 * the refcount whenever an arc_buf_t is shared. 2978 */ 2979 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 2980 arc_hdr_size(hdr), buf, hdr); 2981 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf)); 2982 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd, 2983 HDR_ISTYPE_METADATA(hdr)); 2984 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2985 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2986 2987 /* 2988 * Since we've transferred ownership to the hdr we need 2989 * to increment its compressed and uncompressed kstats and 2990 * decrement the overhead size. 2991 */ 2992 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 2993 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 2994 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf)); 2995 } 2996 2997 static void 2998 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2999 { 3000 ASSERT(arc_buf_is_shared(buf)); 3001 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3002 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3003 3004 /* 3005 * We are no longer sharing this buffer so we need 3006 * to transfer its ownership to the rightful owner. 3007 */ 3008 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 3009 arc_hdr_size(hdr), hdr, buf); 3010 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3011 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd); 3012 abd_free(hdr->b_l1hdr.b_pabd); 3013 hdr->b_l1hdr.b_pabd = NULL; 3014 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 3015 3016 /* 3017 * Since the buffer is no longer shared between 3018 * the arc buf and the hdr, count it as overhead. 3019 */ 3020 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 3021 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3022 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 3023 } 3024 3025 /* 3026 * Remove an arc_buf_t from the hdr's buf list and return the last 3027 * arc_buf_t on the list. If no buffers remain on the list then return 3028 * NULL. 3029 */ 3030 static arc_buf_t * 3031 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf) 3032 { 3033 ASSERT(HDR_HAS_L1HDR(hdr)); 3034 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3035 3036 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf; 3037 arc_buf_t *lastbuf = NULL; 3038 3039 /* 3040 * Remove the buf from the hdr list and locate the last 3041 * remaining buffer on the list. 3042 */ 3043 while (*bufp != NULL) { 3044 if (*bufp == buf) 3045 *bufp = buf->b_next; 3046 3047 /* 3048 * If we've removed a buffer in the middle of 3049 * the list then update the lastbuf and update 3050 * bufp. 3051 */ 3052 if (*bufp != NULL) { 3053 lastbuf = *bufp; 3054 bufp = &(*bufp)->b_next; 3055 } 3056 } 3057 buf->b_next = NULL; 3058 ASSERT3P(lastbuf, !=, buf); 3059 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL); 3060 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL); 3061 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf)); 3062 3063 return (lastbuf); 3064 } 3065 3066 /* 3067 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's 3068 * list and free it. 3069 */ 3070 static void 3071 arc_buf_destroy_impl(arc_buf_t *buf) 3072 { 3073 arc_buf_hdr_t *hdr = buf->b_hdr; 3074 3075 /* 3076 * Free up the data associated with the buf but only if we're not 3077 * sharing this with the hdr. If we are sharing it with the hdr, the 3078 * hdr is responsible for doing the free. 3079 */ 3080 if (buf->b_data != NULL) { 3081 /* 3082 * We're about to change the hdr's b_flags. We must either 3083 * hold the hash_lock or be undiscoverable. 3084 */ 3085 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3086 3087 arc_cksum_verify(buf); 3088 arc_buf_unwatch(buf); 3089 3090 if (arc_buf_is_shared(buf)) { 3091 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3092 } else { 3093 uint64_t size = arc_buf_size(buf); 3094 arc_free_data_buf(hdr, buf->b_data, size, buf); 3095 ARCSTAT_INCR(arcstat_overhead_size, -size); 3096 } 3097 buf->b_data = NULL; 3098 3099 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3100 hdr->b_l1hdr.b_bufcnt -= 1; 3101 3102 if (ARC_BUF_ENCRYPTED(buf)) { 3103 hdr->b_crypt_hdr.b_ebufcnt -= 1; 3104 3105 /* 3106 * If we have no more encrypted buffers and we've 3107 * already gotten a copy of the decrypted data we can 3108 * free b_rabd to save some space. 3109 */ 3110 if (hdr->b_crypt_hdr.b_ebufcnt == 0 && 3111 HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL && 3112 !HDR_IO_IN_PROGRESS(hdr)) { 3113 arc_hdr_free_abd(hdr, B_TRUE); 3114 } 3115 } 3116 } 3117 3118 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 3119 3120 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 3121 /* 3122 * If the current arc_buf_t is sharing its data buffer with the 3123 * hdr, then reassign the hdr's b_pabd to share it with the new 3124 * buffer at the end of the list. The shared buffer is always 3125 * the last one on the hdr's buffer list. 3126 * 3127 * There is an equivalent case for compressed bufs, but since 3128 * they aren't guaranteed to be the last buf in the list and 3129 * that is an exceedingly rare case, we just allow that space be 3130 * wasted temporarily. We must also be careful not to share 3131 * encrypted buffers, since they cannot be shared. 3132 */ 3133 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) { 3134 /* Only one buf can be shared at once */ 3135 VERIFY(!arc_buf_is_shared(lastbuf)); 3136 /* hdr is uncompressed so can't have compressed buf */ 3137 VERIFY(!ARC_BUF_COMPRESSED(lastbuf)); 3138 3139 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3140 arc_hdr_free_abd(hdr, B_FALSE); 3141 3142 /* 3143 * We must setup a new shared block between the 3144 * last buffer and the hdr. The data would have 3145 * been allocated by the arc buf so we need to transfer 3146 * ownership to the hdr since it's now being shared. 3147 */ 3148 arc_share_buf(hdr, lastbuf); 3149 } 3150 } else if (HDR_SHARED_DATA(hdr)) { 3151 /* 3152 * Uncompressed shared buffers are always at the end 3153 * of the list. Compressed buffers don't have the 3154 * same requirements. This makes it hard to 3155 * simply assert that the lastbuf is shared so 3156 * we rely on the hdr's compression flags to determine 3157 * if we have a compressed, shared buffer. 3158 */ 3159 ASSERT3P(lastbuf, !=, NULL); 3160 ASSERT(arc_buf_is_shared(lastbuf) || 3161 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 3162 } 3163 3164 /* 3165 * Free the checksum if we're removing the last uncompressed buf from 3166 * this hdr. 3167 */ 3168 if (!arc_hdr_has_uncompressed_buf(hdr)) { 3169 arc_cksum_free(hdr); 3170 } 3171 3172 /* clean up the buf */ 3173 buf->b_hdr = NULL; 3174 kmem_cache_free(buf_cache, buf); 3175 } 3176 3177 static void 3178 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags) 3179 { 3180 uint64_t size; 3181 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0); 3182 3183 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 3184 ASSERT(HDR_HAS_L1HDR(hdr)); 3185 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata); 3186 IMPLY(alloc_rdata, HDR_PROTECTED(hdr)); 3187 3188 if (alloc_rdata) { 3189 size = HDR_GET_PSIZE(hdr); 3190 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL); 3191 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr, 3192 alloc_flags); 3193 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL); 3194 ARCSTAT_INCR(arcstat_raw_size, size); 3195 } else { 3196 size = arc_hdr_size(hdr); 3197 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3198 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr, 3199 alloc_flags); 3200 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3201 } 3202 3203 ARCSTAT_INCR(arcstat_compressed_size, size); 3204 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3205 } 3206 3207 static void 3208 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata) 3209 { 3210 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 3211 3212 ASSERT(HDR_HAS_L1HDR(hdr)); 3213 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 3214 IMPLY(free_rdata, HDR_HAS_RABD(hdr)); 3215 3216 /* 3217 * If the hdr is currently being written to the l2arc then 3218 * we defer freeing the data by adding it to the l2arc_free_on_write 3219 * list. The l2arc will free the data once it's finished 3220 * writing it to the l2arc device. 3221 */ 3222 if (HDR_L2_WRITING(hdr)) { 3223 arc_hdr_free_on_write(hdr, free_rdata); 3224 ARCSTAT_BUMP(arcstat_l2_free_on_write); 3225 } else if (free_rdata) { 3226 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr); 3227 } else { 3228 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr); 3229 } 3230 3231 if (free_rdata) { 3232 hdr->b_crypt_hdr.b_rabd = NULL; 3233 ARCSTAT_INCR(arcstat_raw_size, -size); 3234 } else { 3235 hdr->b_l1hdr.b_pabd = NULL; 3236 } 3237 3238 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr)) 3239 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 3240 3241 ARCSTAT_INCR(arcstat_compressed_size, -size); 3242 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3243 } 3244 3245 /* 3246 * Allocate empty anonymous ARC header. The header will get its identity 3247 * assigned and buffers attached later as part of read or write operations. 3248 * 3249 * In case of read arc_read() assigns header its identify (b_dva + b_birth), 3250 * inserts it into ARC hash to become globally visible and allocates physical 3251 * (b_pabd) or raw (b_rabd) ABD buffer to read into from disk. On disk read 3252 * completion arc_read_done() allocates ARC buffer(s) as needed, potentially 3253 * sharing one of them with the physical ABD buffer. 3254 * 3255 * In case of write arc_alloc_buf() allocates ARC buffer to be filled with 3256 * data. Then after compression and/or encryption arc_write_ready() allocates 3257 * and fills (or potentially shares) physical (b_pabd) or raw (b_rabd) ABD 3258 * buffer. On disk write completion arc_write_done() assigns the header its 3259 * new identity (b_dva + b_birth) and inserts into ARC hash. 3260 * 3261 * In case of partial overwrite the old data is read first as described. Then 3262 * arc_release() either allocates new anonymous ARC header and moves the ARC 3263 * buffer to it, or reuses the old ARC header by discarding its identity and 3264 * removing it from ARC hash. After buffer modification normal write process 3265 * follows as described. 3266 */ 3267 static arc_buf_hdr_t * 3268 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, 3269 boolean_t protected, enum zio_compress compression_type, uint8_t complevel, 3270 arc_buf_contents_t type) 3271 { 3272 arc_buf_hdr_t *hdr; 3273 3274 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); 3275 if (protected) { 3276 hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE); 3277 } else { 3278 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 3279 } 3280 3281 ASSERT(HDR_EMPTY(hdr)); 3282 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3283 HDR_SET_PSIZE(hdr, psize); 3284 HDR_SET_LSIZE(hdr, lsize); 3285 hdr->b_spa = spa; 3286 hdr->b_type = type; 3287 hdr->b_flags = 0; 3288 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); 3289 arc_hdr_set_compress(hdr, compression_type); 3290 hdr->b_complevel = complevel; 3291 if (protected) 3292 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 3293 3294 hdr->b_l1hdr.b_state = arc_anon; 3295 hdr->b_l1hdr.b_arc_access = 0; 3296 hdr->b_l1hdr.b_mru_hits = 0; 3297 hdr->b_l1hdr.b_mru_ghost_hits = 0; 3298 hdr->b_l1hdr.b_mfu_hits = 0; 3299 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 3300 hdr->b_l1hdr.b_bufcnt = 0; 3301 hdr->b_l1hdr.b_buf = NULL; 3302 3303 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3304 3305 return (hdr); 3306 } 3307 3308 /* 3309 * Transition between the two allocation states for the arc_buf_hdr struct. 3310 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 3311 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 3312 * version is used when a cache buffer is only in the L2ARC in order to reduce 3313 * memory usage. 3314 */ 3315 static arc_buf_hdr_t * 3316 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 3317 { 3318 ASSERT(HDR_HAS_L2HDR(hdr)); 3319 3320 arc_buf_hdr_t *nhdr; 3321 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3322 3323 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 3324 (old == hdr_l2only_cache && new == hdr_full_cache)); 3325 3326 /* 3327 * if the caller wanted a new full header and the header is to be 3328 * encrypted we will actually allocate the header from the full crypt 3329 * cache instead. The same applies to freeing from the old cache. 3330 */ 3331 if (HDR_PROTECTED(hdr) && new == hdr_full_cache) 3332 new = hdr_full_crypt_cache; 3333 if (HDR_PROTECTED(hdr) && old == hdr_full_cache) 3334 old = hdr_full_crypt_cache; 3335 3336 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 3337 3338 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 3339 buf_hash_remove(hdr); 3340 3341 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE); 3342 3343 if (new == hdr_full_cache || new == hdr_full_crypt_cache) { 3344 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3345 /* 3346 * arc_access and arc_change_state need to be aware that a 3347 * header has just come out of L2ARC, so we set its state to 3348 * l2c_only even though it's about to change. 3349 */ 3350 nhdr->b_l1hdr.b_state = arc_l2c_only; 3351 3352 /* Verify previous threads set to NULL before freeing */ 3353 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL); 3354 ASSERT(!HDR_HAS_RABD(hdr)); 3355 } else { 3356 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3357 ASSERT0(hdr->b_l1hdr.b_bufcnt); 3358 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3359 3360 /* 3361 * If we've reached here, We must have been called from 3362 * arc_evict_hdr(), as such we should have already been 3363 * removed from any ghost list we were previously on 3364 * (which protects us from racing with arc_evict_state), 3365 * thus no locking is needed during this check. 3366 */ 3367 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3368 3369 /* 3370 * A buffer must not be moved into the arc_l2c_only 3371 * state if it's not finished being written out to the 3372 * l2arc device. Otherwise, the b_l1hdr.b_pabd field 3373 * might try to be accessed, even though it was removed. 3374 */ 3375 VERIFY(!HDR_L2_WRITING(hdr)); 3376 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3377 ASSERT(!HDR_HAS_RABD(hdr)); 3378 3379 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3380 } 3381 /* 3382 * The header has been reallocated so we need to re-insert it into any 3383 * lists it was on. 3384 */ 3385 (void) buf_hash_insert(nhdr, NULL); 3386 3387 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 3388 3389 mutex_enter(&dev->l2ad_mtx); 3390 3391 /* 3392 * We must place the realloc'ed header back into the list at 3393 * the same spot. Otherwise, if it's placed earlier in the list, 3394 * l2arc_write_buffers() could find it during the function's 3395 * write phase, and try to write it out to the l2arc. 3396 */ 3397 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 3398 list_remove(&dev->l2ad_buflist, hdr); 3399 3400 mutex_exit(&dev->l2ad_mtx); 3401 3402 /* 3403 * Since we're using the pointer address as the tag when 3404 * incrementing and decrementing the l2ad_alloc refcount, we 3405 * must remove the old pointer (that we're about to destroy) and 3406 * add the new pointer to the refcount. Otherwise we'd remove 3407 * the wrong pointer address when calling arc_hdr_destroy() later. 3408 */ 3409 3410 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 3411 arc_hdr_size(hdr), hdr); 3412 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 3413 arc_hdr_size(nhdr), nhdr); 3414 3415 buf_discard_identity(hdr); 3416 kmem_cache_free(old, hdr); 3417 3418 return (nhdr); 3419 } 3420 3421 /* 3422 * This function allows an L1 header to be reallocated as a crypt 3423 * header and vice versa. If we are going to a crypt header, the 3424 * new fields will be zeroed out. 3425 */ 3426 static arc_buf_hdr_t * 3427 arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt) 3428 { 3429 arc_buf_hdr_t *nhdr; 3430 arc_buf_t *buf; 3431 kmem_cache_t *ncache, *ocache; 3432 3433 /* 3434 * This function requires that hdr is in the arc_anon state. 3435 * Therefore it won't have any L2ARC data for us to worry 3436 * about copying. 3437 */ 3438 ASSERT(HDR_HAS_L1HDR(hdr)); 3439 ASSERT(!HDR_HAS_L2HDR(hdr)); 3440 ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt); 3441 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3442 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3443 ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node)); 3444 ASSERT3P(hdr->b_hash_next, ==, NULL); 3445 3446 if (need_crypt) { 3447 ncache = hdr_full_crypt_cache; 3448 ocache = hdr_full_cache; 3449 } else { 3450 ncache = hdr_full_cache; 3451 ocache = hdr_full_crypt_cache; 3452 } 3453 3454 nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE); 3455 3456 /* 3457 * Copy all members that aren't locks or condvars to the new header. 3458 * No lists are pointing to us (as we asserted above), so we don't 3459 * need to worry about the list nodes. 3460 */ 3461 nhdr->b_dva = hdr->b_dva; 3462 nhdr->b_birth = hdr->b_birth; 3463 nhdr->b_type = hdr->b_type; 3464 nhdr->b_flags = hdr->b_flags; 3465 nhdr->b_psize = hdr->b_psize; 3466 nhdr->b_lsize = hdr->b_lsize; 3467 nhdr->b_spa = hdr->b_spa; 3468 nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum; 3469 nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt; 3470 nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap; 3471 nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state; 3472 nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access; 3473 nhdr->b_l1hdr.b_mru_hits = hdr->b_l1hdr.b_mru_hits; 3474 nhdr->b_l1hdr.b_mru_ghost_hits = hdr->b_l1hdr.b_mru_ghost_hits; 3475 nhdr->b_l1hdr.b_mfu_hits = hdr->b_l1hdr.b_mfu_hits; 3476 nhdr->b_l1hdr.b_mfu_ghost_hits = hdr->b_l1hdr.b_mfu_ghost_hits; 3477 nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb; 3478 nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd; 3479 3480 /* 3481 * This zfs_refcount_add() exists only to ensure that the individual 3482 * arc buffers always point to a header that is referenced, avoiding 3483 * a small race condition that could trigger ASSERTs. 3484 */ 3485 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG); 3486 nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf; 3487 for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) { 3488 mutex_enter(&buf->b_evict_lock); 3489 buf->b_hdr = nhdr; 3490 mutex_exit(&buf->b_evict_lock); 3491 } 3492 3493 zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt); 3494 (void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG); 3495 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3496 3497 if (need_crypt) { 3498 arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED); 3499 } else { 3500 arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED); 3501 } 3502 3503 /* unset all members of the original hdr */ 3504 bzero(&hdr->b_dva, sizeof (dva_t)); 3505 hdr->b_birth = 0; 3506 hdr->b_type = ARC_BUFC_INVALID; 3507 hdr->b_flags = 0; 3508 hdr->b_psize = 0; 3509 hdr->b_lsize = 0; 3510 hdr->b_spa = 0; 3511 hdr->b_l1hdr.b_freeze_cksum = NULL; 3512 hdr->b_l1hdr.b_buf = NULL; 3513 hdr->b_l1hdr.b_bufcnt = 0; 3514 hdr->b_l1hdr.b_byteswap = 0; 3515 hdr->b_l1hdr.b_state = NULL; 3516 hdr->b_l1hdr.b_arc_access = 0; 3517 hdr->b_l1hdr.b_mru_hits = 0; 3518 hdr->b_l1hdr.b_mru_ghost_hits = 0; 3519 hdr->b_l1hdr.b_mfu_hits = 0; 3520 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 3521 hdr->b_l1hdr.b_acb = NULL; 3522 hdr->b_l1hdr.b_pabd = NULL; 3523 3524 if (ocache == hdr_full_crypt_cache) { 3525 ASSERT(!HDR_HAS_RABD(hdr)); 3526 hdr->b_crypt_hdr.b_ot = DMU_OT_NONE; 3527 hdr->b_crypt_hdr.b_ebufcnt = 0; 3528 hdr->b_crypt_hdr.b_dsobj = 0; 3529 bzero(hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3530 bzero(hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3531 bzero(hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3532 } 3533 3534 buf_discard_identity(hdr); 3535 kmem_cache_free(ocache, hdr); 3536 3537 return (nhdr); 3538 } 3539 3540 /* 3541 * This function is used by the send / receive code to convert a newly 3542 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It 3543 * is also used to allow the root objset block to be updated without altering 3544 * its embedded MACs. Both block types will always be uncompressed so we do not 3545 * have to worry about compression type or psize. 3546 */ 3547 void 3548 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder, 3549 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv, 3550 const uint8_t *mac) 3551 { 3552 arc_buf_hdr_t *hdr = buf->b_hdr; 3553 3554 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET); 3555 ASSERT(HDR_HAS_L1HDR(hdr)); 3556 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3557 3558 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED); 3559 if (!HDR_PROTECTED(hdr)) 3560 hdr = arc_hdr_realloc_crypt(hdr, B_TRUE); 3561 hdr->b_crypt_hdr.b_dsobj = dsobj; 3562 hdr->b_crypt_hdr.b_ot = ot; 3563 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3564 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3565 if (!arc_hdr_has_uncompressed_buf(hdr)) 3566 arc_cksum_free(hdr); 3567 3568 if (salt != NULL) 3569 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3570 if (iv != NULL) 3571 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3572 if (mac != NULL) 3573 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3574 } 3575 3576 /* 3577 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. 3578 * The buf is returned thawed since we expect the consumer to modify it. 3579 */ 3580 arc_buf_t * 3581 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size) 3582 { 3583 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, 3584 B_FALSE, ZIO_COMPRESS_OFF, 0, type); 3585 3586 arc_buf_t *buf = NULL; 3587 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE, 3588 B_FALSE, B_FALSE, &buf)); 3589 arc_buf_thaw(buf); 3590 3591 return (buf); 3592 } 3593 3594 /* 3595 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this 3596 * for bufs containing metadata. 3597 */ 3598 arc_buf_t * 3599 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize, 3600 enum zio_compress compression_type, uint8_t complevel) 3601 { 3602 ASSERT3U(lsize, >, 0); 3603 ASSERT3U(lsize, >=, psize); 3604 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF); 3605 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3606 3607 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 3608 B_FALSE, compression_type, complevel, ARC_BUFC_DATA); 3609 3610 arc_buf_t *buf = NULL; 3611 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, 3612 B_TRUE, B_FALSE, B_FALSE, &buf)); 3613 arc_buf_thaw(buf); 3614 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3615 3616 /* 3617 * To ensure that the hdr has the correct data in it if we call 3618 * arc_untransform() on this buf before it's been written to disk, 3619 * it's easiest if we just set up sharing between the buf and the hdr. 3620 */ 3621 arc_share_buf(hdr, buf); 3622 3623 return (buf); 3624 } 3625 3626 arc_buf_t * 3627 arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder, 3628 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 3629 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 3630 enum zio_compress compression_type, uint8_t complevel) 3631 { 3632 arc_buf_hdr_t *hdr; 3633 arc_buf_t *buf; 3634 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ? 3635 ARC_BUFC_METADATA : ARC_BUFC_DATA; 3636 3637 ASSERT3U(lsize, >, 0); 3638 ASSERT3U(lsize, >=, psize); 3639 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF); 3640 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3641 3642 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE, 3643 compression_type, complevel, type); 3644 3645 hdr->b_crypt_hdr.b_dsobj = dsobj; 3646 hdr->b_crypt_hdr.b_ot = ot; 3647 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3648 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3649 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3650 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3651 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3652 3653 /* 3654 * This buffer will be considered encrypted even if the ot is not an 3655 * encrypted type. It will become authenticated instead in 3656 * arc_write_ready(). 3657 */ 3658 buf = NULL; 3659 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE, 3660 B_FALSE, B_FALSE, &buf)); 3661 arc_buf_thaw(buf); 3662 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3663 3664 return (buf); 3665 } 3666 3667 static void 3668 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 3669 boolean_t state_only) 3670 { 3671 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3672 l2arc_dev_t *dev = l2hdr->b_dev; 3673 uint64_t lsize = HDR_GET_LSIZE(hdr); 3674 uint64_t psize = HDR_GET_PSIZE(hdr); 3675 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3676 arc_buf_contents_t type = hdr->b_type; 3677 int64_t lsize_s; 3678 int64_t psize_s; 3679 int64_t asize_s; 3680 3681 if (incr) { 3682 lsize_s = lsize; 3683 psize_s = psize; 3684 asize_s = asize; 3685 } else { 3686 lsize_s = -lsize; 3687 psize_s = -psize; 3688 asize_s = -asize; 3689 } 3690 3691 /* If the buffer is a prefetch, count it as such. */ 3692 if (HDR_PREFETCH(hdr)) { 3693 ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s); 3694 } else { 3695 /* 3696 * We use the value stored in the L2 header upon initial 3697 * caching in L2ARC. This value will be updated in case 3698 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC 3699 * metadata (log entry) cannot currently be updated. Having 3700 * the ARC state in the L2 header solves the problem of a 3701 * possibly absent L1 header (apparent in buffers restored 3702 * from persistent L2ARC). 3703 */ 3704 switch (hdr->b_l2hdr.b_arcs_state) { 3705 case ARC_STATE_MRU_GHOST: 3706 case ARC_STATE_MRU: 3707 ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s); 3708 break; 3709 case ARC_STATE_MFU_GHOST: 3710 case ARC_STATE_MFU: 3711 ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s); 3712 break; 3713 default: 3714 break; 3715 } 3716 } 3717 3718 if (state_only) 3719 return; 3720 3721 ARCSTAT_INCR(arcstat_l2_psize, psize_s); 3722 ARCSTAT_INCR(arcstat_l2_lsize, lsize_s); 3723 3724 switch (type) { 3725 case ARC_BUFC_DATA: 3726 ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s); 3727 break; 3728 case ARC_BUFC_METADATA: 3729 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s); 3730 break; 3731 default: 3732 break; 3733 } 3734 } 3735 3736 3737 static void 3738 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 3739 { 3740 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3741 l2arc_dev_t *dev = l2hdr->b_dev; 3742 uint64_t psize = HDR_GET_PSIZE(hdr); 3743 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3744 3745 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 3746 ASSERT(HDR_HAS_L2HDR(hdr)); 3747 3748 list_remove(&dev->l2ad_buflist, hdr); 3749 3750 l2arc_hdr_arcstats_decrement(hdr); 3751 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); 3752 3753 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), 3754 hdr); 3755 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 3756 } 3757 3758 static void 3759 arc_hdr_destroy(arc_buf_hdr_t *hdr) 3760 { 3761 if (HDR_HAS_L1HDR(hdr)) { 3762 ASSERT(hdr->b_l1hdr.b_buf == NULL || 3763 hdr->b_l1hdr.b_bufcnt > 0); 3764 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3765 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3766 } 3767 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3768 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 3769 3770 if (HDR_HAS_L2HDR(hdr)) { 3771 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3772 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 3773 3774 if (!buflist_held) 3775 mutex_enter(&dev->l2ad_mtx); 3776 3777 /* 3778 * Even though we checked this conditional above, we 3779 * need to check this again now that we have the 3780 * l2ad_mtx. This is because we could be racing with 3781 * another thread calling l2arc_evict() which might have 3782 * destroyed this header's L2 portion as we were waiting 3783 * to acquire the l2ad_mtx. If that happens, we don't 3784 * want to re-destroy the header's L2 portion. 3785 */ 3786 if (HDR_HAS_L2HDR(hdr)) { 3787 3788 if (!HDR_EMPTY(hdr)) 3789 buf_discard_identity(hdr); 3790 3791 arc_hdr_l2hdr_destroy(hdr); 3792 } 3793 3794 if (!buflist_held) 3795 mutex_exit(&dev->l2ad_mtx); 3796 } 3797 3798 /* 3799 * The header's identify can only be safely discarded once it is no 3800 * longer discoverable. This requires removing it from the hash table 3801 * and the l2arc header list. After this point the hash lock can not 3802 * be used to protect the header. 3803 */ 3804 if (!HDR_EMPTY(hdr)) 3805 buf_discard_identity(hdr); 3806 3807 if (HDR_HAS_L1HDR(hdr)) { 3808 arc_cksum_free(hdr); 3809 3810 while (hdr->b_l1hdr.b_buf != NULL) 3811 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf); 3812 3813 if (hdr->b_l1hdr.b_pabd != NULL) 3814 arc_hdr_free_abd(hdr, B_FALSE); 3815 3816 if (HDR_HAS_RABD(hdr)) 3817 arc_hdr_free_abd(hdr, B_TRUE); 3818 } 3819 3820 ASSERT3P(hdr->b_hash_next, ==, NULL); 3821 if (HDR_HAS_L1HDR(hdr)) { 3822 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3823 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 3824 3825 if (!HDR_PROTECTED(hdr)) { 3826 kmem_cache_free(hdr_full_cache, hdr); 3827 } else { 3828 kmem_cache_free(hdr_full_crypt_cache, hdr); 3829 } 3830 } else { 3831 kmem_cache_free(hdr_l2only_cache, hdr); 3832 } 3833 } 3834 3835 void 3836 arc_buf_destroy(arc_buf_t *buf, void* tag) 3837 { 3838 arc_buf_hdr_t *hdr = buf->b_hdr; 3839 3840 if (hdr->b_l1hdr.b_state == arc_anon) { 3841 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 3842 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3843 VERIFY0(remove_reference(hdr, NULL, tag)); 3844 arc_hdr_destroy(hdr); 3845 return; 3846 } 3847 3848 kmutex_t *hash_lock = HDR_LOCK(hdr); 3849 mutex_enter(hash_lock); 3850 3851 ASSERT3P(hdr, ==, buf->b_hdr); 3852 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3853 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3854 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); 3855 ASSERT3P(buf->b_data, !=, NULL); 3856 3857 (void) remove_reference(hdr, hash_lock, tag); 3858 arc_buf_destroy_impl(buf); 3859 mutex_exit(hash_lock); 3860 } 3861 3862 /* 3863 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 3864 * state of the header is dependent on its state prior to entering this 3865 * function. The following transitions are possible: 3866 * 3867 * - arc_mru -> arc_mru_ghost 3868 * - arc_mfu -> arc_mfu_ghost 3869 * - arc_mru_ghost -> arc_l2c_only 3870 * - arc_mru_ghost -> deleted 3871 * - arc_mfu_ghost -> arc_l2c_only 3872 * - arc_mfu_ghost -> deleted 3873 * 3874 * Return total size of evicted data buffers for eviction progress tracking. 3875 * When evicting from ghost states return logical buffer size to make eviction 3876 * progress at the same (or at least comparable) rate as from non-ghost states. 3877 * 3878 * Return *real_evicted for actual ARC size reduction to wake up threads 3879 * waiting for it. For non-ghost states it includes size of evicted data 3880 * buffers (the headers are not freed there). For ghost states it includes 3881 * only the evicted headers size. 3882 */ 3883 static int64_t 3884 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, uint64_t *real_evicted) 3885 { 3886 arc_state_t *evicted_state, *state; 3887 int64_t bytes_evicted = 0; 3888 int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ? 3889 arc_min_prescient_prefetch_ms : arc_min_prefetch_ms; 3890 3891 ASSERT(MUTEX_HELD(hash_lock)); 3892 ASSERT(HDR_HAS_L1HDR(hdr)); 3893 3894 *real_evicted = 0; 3895 state = hdr->b_l1hdr.b_state; 3896 if (GHOST_STATE(state)) { 3897 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3898 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3899 3900 /* 3901 * l2arc_write_buffers() relies on a header's L1 portion 3902 * (i.e. its b_pabd field) during it's write phase. 3903 * Thus, we cannot push a header onto the arc_l2c_only 3904 * state (removing its L1 piece) until the header is 3905 * done being written to the l2arc. 3906 */ 3907 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 3908 ARCSTAT_BUMP(arcstat_evict_l2_skip); 3909 return (bytes_evicted); 3910 } 3911 3912 ARCSTAT_BUMP(arcstat_deleted); 3913 bytes_evicted += HDR_GET_LSIZE(hdr); 3914 3915 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 3916 3917 if (HDR_HAS_L2HDR(hdr)) { 3918 ASSERT(hdr->b_l1hdr.b_pabd == NULL); 3919 ASSERT(!HDR_HAS_RABD(hdr)); 3920 /* 3921 * This buffer is cached on the 2nd Level ARC; 3922 * don't destroy the header. 3923 */ 3924 arc_change_state(arc_l2c_only, hdr, hash_lock); 3925 /* 3926 * dropping from L1+L2 cached to L2-only, 3927 * realloc to remove the L1 header. 3928 */ 3929 hdr = arc_hdr_realloc(hdr, hdr_full_cache, 3930 hdr_l2only_cache); 3931 *real_evicted += HDR_FULL_SIZE - HDR_L2ONLY_SIZE; 3932 } else { 3933 arc_change_state(arc_anon, hdr, hash_lock); 3934 arc_hdr_destroy(hdr); 3935 *real_evicted += HDR_FULL_SIZE; 3936 } 3937 return (bytes_evicted); 3938 } 3939 3940 ASSERT(state == arc_mru || state == arc_mfu); 3941 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3942 3943 /* prefetch buffers have a minimum lifespan */ 3944 if (HDR_IO_IN_PROGRESS(hdr) || 3945 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 3946 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < 3947 MSEC_TO_TICK(min_lifetime))) { 3948 ARCSTAT_BUMP(arcstat_evict_skip); 3949 return (bytes_evicted); 3950 } 3951 3952 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3953 while (hdr->b_l1hdr.b_buf) { 3954 arc_buf_t *buf = hdr->b_l1hdr.b_buf; 3955 if (!mutex_tryenter(&buf->b_evict_lock)) { 3956 ARCSTAT_BUMP(arcstat_mutex_miss); 3957 break; 3958 } 3959 if (buf->b_data != NULL) { 3960 bytes_evicted += HDR_GET_LSIZE(hdr); 3961 *real_evicted += HDR_GET_LSIZE(hdr); 3962 } 3963 mutex_exit(&buf->b_evict_lock); 3964 arc_buf_destroy_impl(buf); 3965 } 3966 3967 if (HDR_HAS_L2HDR(hdr)) { 3968 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); 3969 } else { 3970 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 3971 ARCSTAT_INCR(arcstat_evict_l2_eligible, 3972 HDR_GET_LSIZE(hdr)); 3973 3974 switch (state->arcs_state) { 3975 case ARC_STATE_MRU: 3976 ARCSTAT_INCR( 3977 arcstat_evict_l2_eligible_mru, 3978 HDR_GET_LSIZE(hdr)); 3979 break; 3980 case ARC_STATE_MFU: 3981 ARCSTAT_INCR( 3982 arcstat_evict_l2_eligible_mfu, 3983 HDR_GET_LSIZE(hdr)); 3984 break; 3985 default: 3986 break; 3987 } 3988 } else { 3989 ARCSTAT_INCR(arcstat_evict_l2_ineligible, 3990 HDR_GET_LSIZE(hdr)); 3991 } 3992 } 3993 3994 if (hdr->b_l1hdr.b_bufcnt == 0) { 3995 arc_cksum_free(hdr); 3996 3997 bytes_evicted += arc_hdr_size(hdr); 3998 *real_evicted += arc_hdr_size(hdr); 3999 4000 /* 4001 * If this hdr is being evicted and has a compressed 4002 * buffer then we discard it here before we change states. 4003 * This ensures that the accounting is updated correctly 4004 * in arc_free_data_impl(). 4005 */ 4006 if (hdr->b_l1hdr.b_pabd != NULL) 4007 arc_hdr_free_abd(hdr, B_FALSE); 4008 4009 if (HDR_HAS_RABD(hdr)) 4010 arc_hdr_free_abd(hdr, B_TRUE); 4011 4012 arc_change_state(evicted_state, hdr, hash_lock); 4013 ASSERT(HDR_IN_HASH_TABLE(hdr)); 4014 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 4015 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 4016 } 4017 4018 return (bytes_evicted); 4019 } 4020 4021 static void 4022 arc_set_need_free(void) 4023 { 4024 ASSERT(MUTEX_HELD(&arc_evict_lock)); 4025 int64_t remaining = arc_free_memory() - arc_sys_free / 2; 4026 arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters); 4027 if (aw == NULL) { 4028 arc_need_free = MAX(-remaining, 0); 4029 } else { 4030 arc_need_free = 4031 MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count)); 4032 } 4033 } 4034 4035 static uint64_t 4036 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 4037 uint64_t spa, uint64_t bytes) 4038 { 4039 multilist_sublist_t *mls; 4040 uint64_t bytes_evicted = 0, real_evicted = 0; 4041 arc_buf_hdr_t *hdr; 4042 kmutex_t *hash_lock; 4043 int evict_count = zfs_arc_evict_batch_limit; 4044 4045 ASSERT3P(marker, !=, NULL); 4046 4047 mls = multilist_sublist_lock(ml, idx); 4048 4049 for (hdr = multilist_sublist_prev(mls, marker); likely(hdr != NULL); 4050 hdr = multilist_sublist_prev(mls, marker)) { 4051 if ((evict_count <= 0) || (bytes_evicted >= bytes)) 4052 break; 4053 4054 /* 4055 * To keep our iteration location, move the marker 4056 * forward. Since we're not holding hdr's hash lock, we 4057 * must be very careful and not remove 'hdr' from the 4058 * sublist. Otherwise, other consumers might mistake the 4059 * 'hdr' as not being on a sublist when they call the 4060 * multilist_link_active() function (they all rely on 4061 * the hash lock protecting concurrent insertions and 4062 * removals). multilist_sublist_move_forward() was 4063 * specifically implemented to ensure this is the case 4064 * (only 'marker' will be removed and re-inserted). 4065 */ 4066 multilist_sublist_move_forward(mls, marker); 4067 4068 /* 4069 * The only case where the b_spa field should ever be 4070 * zero, is the marker headers inserted by 4071 * arc_evict_state(). It's possible for multiple threads 4072 * to be calling arc_evict_state() concurrently (e.g. 4073 * dsl_pool_close() and zio_inject_fault()), so we must 4074 * skip any markers we see from these other threads. 4075 */ 4076 if (hdr->b_spa == 0) 4077 continue; 4078 4079 /* we're only interested in evicting buffers of a certain spa */ 4080 if (spa != 0 && hdr->b_spa != spa) { 4081 ARCSTAT_BUMP(arcstat_evict_skip); 4082 continue; 4083 } 4084 4085 hash_lock = HDR_LOCK(hdr); 4086 4087 /* 4088 * We aren't calling this function from any code path 4089 * that would already be holding a hash lock, so we're 4090 * asserting on this assumption to be defensive in case 4091 * this ever changes. Without this check, it would be 4092 * possible to incorrectly increment arcstat_mutex_miss 4093 * below (e.g. if the code changed such that we called 4094 * this function with a hash lock held). 4095 */ 4096 ASSERT(!MUTEX_HELD(hash_lock)); 4097 4098 if (mutex_tryenter(hash_lock)) { 4099 uint64_t revicted; 4100 uint64_t evicted = arc_evict_hdr(hdr, hash_lock, 4101 &revicted); 4102 mutex_exit(hash_lock); 4103 4104 bytes_evicted += evicted; 4105 real_evicted += revicted; 4106 4107 /* 4108 * If evicted is zero, arc_evict_hdr() must have 4109 * decided to skip this header, don't increment 4110 * evict_count in this case. 4111 */ 4112 if (evicted != 0) 4113 evict_count--; 4114 4115 } else { 4116 ARCSTAT_BUMP(arcstat_mutex_miss); 4117 } 4118 } 4119 4120 multilist_sublist_unlock(mls); 4121 4122 /* 4123 * Increment the count of evicted bytes, and wake up any threads that 4124 * are waiting for the count to reach this value. Since the list is 4125 * ordered by ascending aew_count, we pop off the beginning of the 4126 * list until we reach the end, or a waiter that's past the current 4127 * "count". Doing this outside the loop reduces the number of times 4128 * we need to acquire the global arc_evict_lock. 4129 * 4130 * Only wake when there's sufficient free memory in the system 4131 * (specifically, arc_sys_free/2, which by default is a bit more than 4132 * 1/64th of RAM). See the comments in arc_wait_for_eviction(). 4133 */ 4134 mutex_enter(&arc_evict_lock); 4135 arc_evict_count += real_evicted; 4136 4137 if (arc_free_memory() > arc_sys_free / 2) { 4138 arc_evict_waiter_t *aw; 4139 while ((aw = list_head(&arc_evict_waiters)) != NULL && 4140 aw->aew_count <= arc_evict_count) { 4141 list_remove(&arc_evict_waiters, aw); 4142 cv_broadcast(&aw->aew_cv); 4143 } 4144 } 4145 arc_set_need_free(); 4146 mutex_exit(&arc_evict_lock); 4147 4148 /* 4149 * If the ARC size is reduced from arc_c_max to arc_c_min (especially 4150 * if the average cached block is small), eviction can be on-CPU for 4151 * many seconds. To ensure that other threads that may be bound to 4152 * this CPU are able to make progress, make a voluntary preemption 4153 * call here. 4154 */ 4155 cond_resched(); 4156 4157 return (bytes_evicted); 4158 } 4159 4160 /* 4161 * Evict buffers from the given arc state, until we've removed the 4162 * specified number of bytes. Move the removed buffers to the 4163 * appropriate evict state. 4164 * 4165 * This function makes a "best effort". It skips over any buffers 4166 * it can't get a hash_lock on, and so, may not catch all candidates. 4167 * It may also return without evicting as much space as requested. 4168 * 4169 * If bytes is specified using the special value ARC_EVICT_ALL, this 4170 * will evict all available (i.e. unlocked and evictable) buffers from 4171 * the given arc state; which is used by arc_flush(). 4172 */ 4173 static uint64_t 4174 arc_evict_state(arc_state_t *state, uint64_t spa, uint64_t bytes, 4175 arc_buf_contents_t type) 4176 { 4177 uint64_t total_evicted = 0; 4178 multilist_t *ml = &state->arcs_list[type]; 4179 int num_sublists; 4180 arc_buf_hdr_t **markers; 4181 4182 num_sublists = multilist_get_num_sublists(ml); 4183 4184 /* 4185 * If we've tried to evict from each sublist, made some 4186 * progress, but still have not hit the target number of bytes 4187 * to evict, we want to keep trying. The markers allow us to 4188 * pick up where we left off for each individual sublist, rather 4189 * than starting from the tail each time. 4190 */ 4191 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP); 4192 for (int i = 0; i < num_sublists; i++) { 4193 multilist_sublist_t *mls; 4194 4195 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 4196 4197 /* 4198 * A b_spa of 0 is used to indicate that this header is 4199 * a marker. This fact is used in arc_evict_type() and 4200 * arc_evict_state_impl(). 4201 */ 4202 markers[i]->b_spa = 0; 4203 4204 mls = multilist_sublist_lock(ml, i); 4205 multilist_sublist_insert_tail(mls, markers[i]); 4206 multilist_sublist_unlock(mls); 4207 } 4208 4209 /* 4210 * While we haven't hit our target number of bytes to evict, or 4211 * we're evicting all available buffers. 4212 */ 4213 while (total_evicted < bytes) { 4214 int sublist_idx = multilist_get_random_index(ml); 4215 uint64_t scan_evicted = 0; 4216 4217 /* 4218 * Try to reduce pinned dnodes with a floor of arc_dnode_limit. 4219 * Request that 10% of the LRUs be scanned by the superblock 4220 * shrinker. 4221 */ 4222 if (type == ARC_BUFC_DATA && aggsum_compare( 4223 &arc_sums.arcstat_dnode_size, arc_dnode_size_limit) > 0) { 4224 arc_prune_async((aggsum_upper_bound( 4225 &arc_sums.arcstat_dnode_size) - 4226 arc_dnode_size_limit) / sizeof (dnode_t) / 4227 zfs_arc_dnode_reduce_percent); 4228 } 4229 4230 /* 4231 * Start eviction using a randomly selected sublist, 4232 * this is to try and evenly balance eviction across all 4233 * sublists. Always starting at the same sublist 4234 * (e.g. index 0) would cause evictions to favor certain 4235 * sublists over others. 4236 */ 4237 for (int i = 0; i < num_sublists; i++) { 4238 uint64_t bytes_remaining; 4239 uint64_t bytes_evicted; 4240 4241 if (total_evicted < bytes) 4242 bytes_remaining = bytes - total_evicted; 4243 else 4244 break; 4245 4246 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 4247 markers[sublist_idx], spa, bytes_remaining); 4248 4249 scan_evicted += bytes_evicted; 4250 total_evicted += bytes_evicted; 4251 4252 /* we've reached the end, wrap to the beginning */ 4253 if (++sublist_idx >= num_sublists) 4254 sublist_idx = 0; 4255 } 4256 4257 /* 4258 * If we didn't evict anything during this scan, we have 4259 * no reason to believe we'll evict more during another 4260 * scan, so break the loop. 4261 */ 4262 if (scan_evicted == 0) { 4263 /* This isn't possible, let's make that obvious */ 4264 ASSERT3S(bytes, !=, 0); 4265 4266 /* 4267 * When bytes is ARC_EVICT_ALL, the only way to 4268 * break the loop is when scan_evicted is zero. 4269 * In that case, we actually have evicted enough, 4270 * so we don't want to increment the kstat. 4271 */ 4272 if (bytes != ARC_EVICT_ALL) { 4273 ASSERT3S(total_evicted, <, bytes); 4274 ARCSTAT_BUMP(arcstat_evict_not_enough); 4275 } 4276 4277 break; 4278 } 4279 } 4280 4281 for (int i = 0; i < num_sublists; i++) { 4282 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 4283 multilist_sublist_remove(mls, markers[i]); 4284 multilist_sublist_unlock(mls); 4285 4286 kmem_cache_free(hdr_full_cache, markers[i]); 4287 } 4288 kmem_free(markers, sizeof (*markers) * num_sublists); 4289 4290 return (total_evicted); 4291 } 4292 4293 /* 4294 * Flush all "evictable" data of the given type from the arc state 4295 * specified. This will not evict any "active" buffers (i.e. referenced). 4296 * 4297 * When 'retry' is set to B_FALSE, the function will make a single pass 4298 * over the state and evict any buffers that it can. Since it doesn't 4299 * continually retry the eviction, it might end up leaving some buffers 4300 * in the ARC due to lock misses. 4301 * 4302 * When 'retry' is set to B_TRUE, the function will continually retry the 4303 * eviction until *all* evictable buffers have been removed from the 4304 * state. As a result, if concurrent insertions into the state are 4305 * allowed (e.g. if the ARC isn't shutting down), this function might 4306 * wind up in an infinite loop, continually trying to evict buffers. 4307 */ 4308 static uint64_t 4309 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 4310 boolean_t retry) 4311 { 4312 uint64_t evicted = 0; 4313 4314 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) { 4315 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type); 4316 4317 if (!retry) 4318 break; 4319 } 4320 4321 return (evicted); 4322 } 4323 4324 /* 4325 * Evict the specified number of bytes from the state specified, 4326 * restricting eviction to the spa and type given. This function 4327 * prevents us from trying to evict more from a state's list than 4328 * is "evictable", and to skip evicting altogether when passed a 4329 * negative value for "bytes". In contrast, arc_evict_state() will 4330 * evict everything it can, when passed a negative value for "bytes". 4331 */ 4332 static uint64_t 4333 arc_evict_impl(arc_state_t *state, uint64_t spa, int64_t bytes, 4334 arc_buf_contents_t type) 4335 { 4336 uint64_t delta; 4337 4338 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) { 4339 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]), 4340 bytes); 4341 return (arc_evict_state(state, spa, delta, type)); 4342 } 4343 4344 return (0); 4345 } 4346 4347 /* 4348 * The goal of this function is to evict enough meta data buffers from the 4349 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly 4350 * more complicated than it appears because it is common for data buffers 4351 * to have holds on meta data buffers. In addition, dnode meta data buffers 4352 * will be held by the dnodes in the block preventing them from being freed. 4353 * This means we can't simply traverse the ARC and expect to always find 4354 * enough unheld meta data buffer to release. 4355 * 4356 * Therefore, this function has been updated to make alternating passes 4357 * over the ARC releasing data buffers and then newly unheld meta data 4358 * buffers. This ensures forward progress is maintained and meta_used 4359 * will decrease. Normally this is sufficient, but if required the ARC 4360 * will call the registered prune callbacks causing dentry and inodes to 4361 * be dropped from the VFS cache. This will make dnode meta data buffers 4362 * available for reclaim. 4363 */ 4364 static uint64_t 4365 arc_evict_meta_balanced(uint64_t meta_used) 4366 { 4367 int64_t delta, prune = 0, adjustmnt; 4368 uint64_t total_evicted = 0; 4369 arc_buf_contents_t type = ARC_BUFC_DATA; 4370 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0); 4371 4372 restart: 4373 /* 4374 * This slightly differs than the way we evict from the mru in 4375 * arc_evict because we don't have a "target" value (i.e. no 4376 * "meta" arc_p). As a result, I think we can completely 4377 * cannibalize the metadata in the MRU before we evict the 4378 * metadata from the MFU. I think we probably need to implement a 4379 * "metadata arc_p" value to do this properly. 4380 */ 4381 adjustmnt = meta_used - arc_meta_limit; 4382 4383 if (adjustmnt > 0 && 4384 zfs_refcount_count(&arc_mru->arcs_esize[type]) > 0) { 4385 delta = MIN(zfs_refcount_count(&arc_mru->arcs_esize[type]), 4386 adjustmnt); 4387 total_evicted += arc_evict_impl(arc_mru, 0, delta, type); 4388 adjustmnt -= delta; 4389 } 4390 4391 /* 4392 * We can't afford to recalculate adjustmnt here. If we do, 4393 * new metadata buffers can sneak into the MRU or ANON lists, 4394 * thus penalize the MFU metadata. Although the fudge factor is 4395 * small, it has been empirically shown to be significant for 4396 * certain workloads (e.g. creating many empty directories). As 4397 * such, we use the original calculation for adjustmnt, and 4398 * simply decrement the amount of data evicted from the MRU. 4399 */ 4400 4401 if (adjustmnt > 0 && 4402 zfs_refcount_count(&arc_mfu->arcs_esize[type]) > 0) { 4403 delta = MIN(zfs_refcount_count(&arc_mfu->arcs_esize[type]), 4404 adjustmnt); 4405 total_evicted += arc_evict_impl(arc_mfu, 0, delta, type); 4406 } 4407 4408 adjustmnt = meta_used - arc_meta_limit; 4409 4410 if (adjustmnt > 0 && 4411 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) { 4412 delta = MIN(adjustmnt, 4413 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type])); 4414 total_evicted += arc_evict_impl(arc_mru_ghost, 0, delta, type); 4415 adjustmnt -= delta; 4416 } 4417 4418 if (adjustmnt > 0 && 4419 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) { 4420 delta = MIN(adjustmnt, 4421 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type])); 4422 total_evicted += arc_evict_impl(arc_mfu_ghost, 0, delta, type); 4423 } 4424 4425 /* 4426 * If after attempting to make the requested adjustment to the ARC 4427 * the meta limit is still being exceeded then request that the 4428 * higher layers drop some cached objects which have holds on ARC 4429 * meta buffers. Requests to the upper layers will be made with 4430 * increasingly large scan sizes until the ARC is below the limit. 4431 */ 4432 if (meta_used > arc_meta_limit) { 4433 if (type == ARC_BUFC_DATA) { 4434 type = ARC_BUFC_METADATA; 4435 } else { 4436 type = ARC_BUFC_DATA; 4437 4438 if (zfs_arc_meta_prune) { 4439 prune += zfs_arc_meta_prune; 4440 arc_prune_async(prune); 4441 } 4442 } 4443 4444 if (restarts > 0) { 4445 restarts--; 4446 goto restart; 4447 } 4448 } 4449 return (total_evicted); 4450 } 4451 4452 /* 4453 * Evict metadata buffers from the cache, such that arcstat_meta_used is 4454 * capped by the arc_meta_limit tunable. 4455 */ 4456 static uint64_t 4457 arc_evict_meta_only(uint64_t meta_used) 4458 { 4459 uint64_t total_evicted = 0; 4460 int64_t target; 4461 4462 /* 4463 * If we're over the meta limit, we want to evict enough 4464 * metadata to get back under the meta limit. We don't want to 4465 * evict so much that we drop the MRU below arc_p, though. If 4466 * we're over the meta limit more than we're over arc_p, we 4467 * evict some from the MRU here, and some from the MFU below. 4468 */ 4469 target = MIN((int64_t)(meta_used - arc_meta_limit), 4470 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4471 zfs_refcount_count(&arc_mru->arcs_size) - arc_p)); 4472 4473 total_evicted += arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4474 4475 /* 4476 * Similar to the above, we want to evict enough bytes to get us 4477 * below the meta limit, but not so much as to drop us below the 4478 * space allotted to the MFU (which is defined as arc_c - arc_p). 4479 */ 4480 target = MIN((int64_t)(meta_used - arc_meta_limit), 4481 (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) - 4482 (arc_c - arc_p))); 4483 4484 total_evicted += arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4485 4486 return (total_evicted); 4487 } 4488 4489 static uint64_t 4490 arc_evict_meta(uint64_t meta_used) 4491 { 4492 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY) 4493 return (arc_evict_meta_only(meta_used)); 4494 else 4495 return (arc_evict_meta_balanced(meta_used)); 4496 } 4497 4498 /* 4499 * Return the type of the oldest buffer in the given arc state 4500 * 4501 * This function will select a random sublist of type ARC_BUFC_DATA and 4502 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist 4503 * is compared, and the type which contains the "older" buffer will be 4504 * returned. 4505 */ 4506 static arc_buf_contents_t 4507 arc_evict_type(arc_state_t *state) 4508 { 4509 multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA]; 4510 multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA]; 4511 int data_idx = multilist_get_random_index(data_ml); 4512 int meta_idx = multilist_get_random_index(meta_ml); 4513 multilist_sublist_t *data_mls; 4514 multilist_sublist_t *meta_mls; 4515 arc_buf_contents_t type; 4516 arc_buf_hdr_t *data_hdr; 4517 arc_buf_hdr_t *meta_hdr; 4518 4519 /* 4520 * We keep the sublist lock until we're finished, to prevent 4521 * the headers from being destroyed via arc_evict_state(). 4522 */ 4523 data_mls = multilist_sublist_lock(data_ml, data_idx); 4524 meta_mls = multilist_sublist_lock(meta_ml, meta_idx); 4525 4526 /* 4527 * These two loops are to ensure we skip any markers that 4528 * might be at the tail of the lists due to arc_evict_state(). 4529 */ 4530 4531 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL; 4532 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) { 4533 if (data_hdr->b_spa != 0) 4534 break; 4535 } 4536 4537 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL; 4538 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) { 4539 if (meta_hdr->b_spa != 0) 4540 break; 4541 } 4542 4543 if (data_hdr == NULL && meta_hdr == NULL) { 4544 type = ARC_BUFC_DATA; 4545 } else if (data_hdr == NULL) { 4546 ASSERT3P(meta_hdr, !=, NULL); 4547 type = ARC_BUFC_METADATA; 4548 } else if (meta_hdr == NULL) { 4549 ASSERT3P(data_hdr, !=, NULL); 4550 type = ARC_BUFC_DATA; 4551 } else { 4552 ASSERT3P(data_hdr, !=, NULL); 4553 ASSERT3P(meta_hdr, !=, NULL); 4554 4555 /* The headers can't be on the sublist without an L1 header */ 4556 ASSERT(HDR_HAS_L1HDR(data_hdr)); 4557 ASSERT(HDR_HAS_L1HDR(meta_hdr)); 4558 4559 if (data_hdr->b_l1hdr.b_arc_access < 4560 meta_hdr->b_l1hdr.b_arc_access) { 4561 type = ARC_BUFC_DATA; 4562 } else { 4563 type = ARC_BUFC_METADATA; 4564 } 4565 } 4566 4567 multilist_sublist_unlock(meta_mls); 4568 multilist_sublist_unlock(data_mls); 4569 4570 return (type); 4571 } 4572 4573 /* 4574 * Evict buffers from the cache, such that arcstat_size is capped by arc_c. 4575 */ 4576 static uint64_t 4577 arc_evict(void) 4578 { 4579 uint64_t total_evicted = 0; 4580 uint64_t bytes; 4581 int64_t target; 4582 uint64_t asize = aggsum_value(&arc_sums.arcstat_size); 4583 uint64_t ameta = aggsum_value(&arc_sums.arcstat_meta_used); 4584 4585 /* 4586 * If we're over arc_meta_limit, we want to correct that before 4587 * potentially evicting data buffers below. 4588 */ 4589 total_evicted += arc_evict_meta(ameta); 4590 4591 /* 4592 * Adjust MRU size 4593 * 4594 * If we're over the target cache size, we want to evict enough 4595 * from the list to get back to our target size. We don't want 4596 * to evict too much from the MRU, such that it drops below 4597 * arc_p. So, if we're over our target cache size more than 4598 * the MRU is over arc_p, we'll evict enough to get back to 4599 * arc_p here, and then evict more from the MFU below. 4600 */ 4601 target = MIN((int64_t)(asize - arc_c), 4602 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4603 zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p)); 4604 4605 /* 4606 * If we're below arc_meta_min, always prefer to evict data. 4607 * Otherwise, try to satisfy the requested number of bytes to 4608 * evict from the type which contains older buffers; in an 4609 * effort to keep newer buffers in the cache regardless of their 4610 * type. If we cannot satisfy the number of bytes from this 4611 * type, spill over into the next type. 4612 */ 4613 if (arc_evict_type(arc_mru) == ARC_BUFC_METADATA && 4614 ameta > arc_meta_min) { 4615 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4616 total_evicted += bytes; 4617 4618 /* 4619 * If we couldn't evict our target number of bytes from 4620 * metadata, we try to get the rest from data. 4621 */ 4622 target -= bytes; 4623 4624 total_evicted += 4625 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4626 } else { 4627 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4628 total_evicted += bytes; 4629 4630 /* 4631 * If we couldn't evict our target number of bytes from 4632 * data, we try to get the rest from metadata. 4633 */ 4634 target -= bytes; 4635 4636 total_evicted += 4637 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4638 } 4639 4640 /* 4641 * Re-sum ARC stats after the first round of evictions. 4642 */ 4643 asize = aggsum_value(&arc_sums.arcstat_size); 4644 ameta = aggsum_value(&arc_sums.arcstat_meta_used); 4645 4646 4647 /* 4648 * Adjust MFU size 4649 * 4650 * Now that we've tried to evict enough from the MRU to get its 4651 * size back to arc_p, if we're still above the target cache 4652 * size, we evict the rest from the MFU. 4653 */ 4654 target = asize - arc_c; 4655 4656 if (arc_evict_type(arc_mfu) == ARC_BUFC_METADATA && 4657 ameta > arc_meta_min) { 4658 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4659 total_evicted += bytes; 4660 4661 /* 4662 * If we couldn't evict our target number of bytes from 4663 * metadata, we try to get the rest from data. 4664 */ 4665 target -= bytes; 4666 4667 total_evicted += 4668 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4669 } else { 4670 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4671 total_evicted += bytes; 4672 4673 /* 4674 * If we couldn't evict our target number of bytes from 4675 * data, we try to get the rest from data. 4676 */ 4677 target -= bytes; 4678 4679 total_evicted += 4680 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4681 } 4682 4683 /* 4684 * Adjust ghost lists 4685 * 4686 * In addition to the above, the ARC also defines target values 4687 * for the ghost lists. The sum of the mru list and mru ghost 4688 * list should never exceed the target size of the cache, and 4689 * the sum of the mru list, mfu list, mru ghost list, and mfu 4690 * ghost list should never exceed twice the target size of the 4691 * cache. The following logic enforces these limits on the ghost 4692 * caches, and evicts from them as needed. 4693 */ 4694 target = zfs_refcount_count(&arc_mru->arcs_size) + 4695 zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c; 4696 4697 bytes = arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA); 4698 total_evicted += bytes; 4699 4700 target -= bytes; 4701 4702 total_evicted += 4703 arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA); 4704 4705 /* 4706 * We assume the sum of the mru list and mfu list is less than 4707 * or equal to arc_c (we enforced this above), which means we 4708 * can use the simpler of the two equations below: 4709 * 4710 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c 4711 * mru ghost + mfu ghost <= arc_c 4712 */ 4713 target = zfs_refcount_count(&arc_mru_ghost->arcs_size) + 4714 zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c; 4715 4716 bytes = arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA); 4717 total_evicted += bytes; 4718 4719 target -= bytes; 4720 4721 total_evicted += 4722 arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA); 4723 4724 return (total_evicted); 4725 } 4726 4727 void 4728 arc_flush(spa_t *spa, boolean_t retry) 4729 { 4730 uint64_t guid = 0; 4731 4732 /* 4733 * If retry is B_TRUE, a spa must not be specified since we have 4734 * no good way to determine if all of a spa's buffers have been 4735 * evicted from an arc state. 4736 */ 4737 ASSERT(!retry || spa == 0); 4738 4739 if (spa != NULL) 4740 guid = spa_load_guid(spa); 4741 4742 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 4743 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 4744 4745 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 4746 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 4747 4748 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 4749 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 4750 4751 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 4752 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 4753 } 4754 4755 void 4756 arc_reduce_target_size(int64_t to_free) 4757 { 4758 uint64_t asize = aggsum_value(&arc_sums.arcstat_size); 4759 4760 /* 4761 * All callers want the ARC to actually evict (at least) this much 4762 * memory. Therefore we reduce from the lower of the current size and 4763 * the target size. This way, even if arc_c is much higher than 4764 * arc_size (as can be the case after many calls to arc_freed(), we will 4765 * immediately have arc_c < arc_size and therefore the arc_evict_zthr 4766 * will evict. 4767 */ 4768 uint64_t c = MIN(arc_c, asize); 4769 4770 if (c > to_free && c - to_free > arc_c_min) { 4771 arc_c = c - to_free; 4772 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 4773 if (arc_p > arc_c) 4774 arc_p = (arc_c >> 1); 4775 ASSERT(arc_c >= arc_c_min); 4776 ASSERT((int64_t)arc_p >= 0); 4777 } else { 4778 arc_c = arc_c_min; 4779 } 4780 4781 if (asize > arc_c) { 4782 /* See comment in arc_evict_cb_check() on why lock+flag */ 4783 mutex_enter(&arc_evict_lock); 4784 arc_evict_needed = B_TRUE; 4785 mutex_exit(&arc_evict_lock); 4786 zthr_wakeup(arc_evict_zthr); 4787 } 4788 } 4789 4790 /* 4791 * Determine if the system is under memory pressure and is asking 4792 * to reclaim memory. A return value of B_TRUE indicates that the system 4793 * is under memory pressure and that the arc should adjust accordingly. 4794 */ 4795 boolean_t 4796 arc_reclaim_needed(void) 4797 { 4798 return (arc_available_memory() < 0); 4799 } 4800 4801 void 4802 arc_kmem_reap_soon(void) 4803 { 4804 size_t i; 4805 kmem_cache_t *prev_cache = NULL; 4806 kmem_cache_t *prev_data_cache = NULL; 4807 extern kmem_cache_t *zio_buf_cache[]; 4808 extern kmem_cache_t *zio_data_buf_cache[]; 4809 4810 #ifdef _KERNEL 4811 if ((aggsum_compare(&arc_sums.arcstat_meta_used, 4812 arc_meta_limit) >= 0) && zfs_arc_meta_prune) { 4813 /* 4814 * We are exceeding our meta-data cache limit. 4815 * Prune some entries to release holds on meta-data. 4816 */ 4817 arc_prune_async(zfs_arc_meta_prune); 4818 } 4819 #if defined(_ILP32) 4820 /* 4821 * Reclaim unused memory from all kmem caches. 4822 */ 4823 kmem_reap(); 4824 #endif 4825 #endif 4826 4827 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 4828 #if defined(_ILP32) 4829 /* reach upper limit of cache size on 32-bit */ 4830 if (zio_buf_cache[i] == NULL) 4831 break; 4832 #endif 4833 if (zio_buf_cache[i] != prev_cache) { 4834 prev_cache = zio_buf_cache[i]; 4835 kmem_cache_reap_now(zio_buf_cache[i]); 4836 } 4837 if (zio_data_buf_cache[i] != prev_data_cache) { 4838 prev_data_cache = zio_data_buf_cache[i]; 4839 kmem_cache_reap_now(zio_data_buf_cache[i]); 4840 } 4841 } 4842 kmem_cache_reap_now(buf_cache); 4843 kmem_cache_reap_now(hdr_full_cache); 4844 kmem_cache_reap_now(hdr_l2only_cache); 4845 kmem_cache_reap_now(zfs_btree_leaf_cache); 4846 abd_cache_reap_now(); 4847 } 4848 4849 /* ARGSUSED */ 4850 static boolean_t 4851 arc_evict_cb_check(void *arg, zthr_t *zthr) 4852 { 4853 #ifdef ZFS_DEBUG 4854 /* 4855 * This is necessary in order to keep the kstat information 4856 * up to date for tools that display kstat data such as the 4857 * mdb ::arc dcmd and the Linux crash utility. These tools 4858 * typically do not call kstat's update function, but simply 4859 * dump out stats from the most recent update. Without 4860 * this call, these commands may show stale stats for the 4861 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 4862 * with this call, the data might be out of date if the 4863 * evict thread hasn't been woken recently; but that should 4864 * suffice. The arc_state_t structures can be queried 4865 * directly if more accurate information is needed. 4866 */ 4867 if (arc_ksp != NULL) 4868 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 4869 #endif 4870 4871 /* 4872 * We have to rely on arc_wait_for_eviction() to tell us when to 4873 * evict, rather than checking if we are overflowing here, so that we 4874 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv. 4875 * If we have become "not overflowing" since arc_wait_for_eviction() 4876 * checked, we need to wake it up. We could broadcast the CV here, 4877 * but arc_wait_for_eviction() may have not yet gone to sleep. We 4878 * would need to use a mutex to ensure that this function doesn't 4879 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g. 4880 * the arc_evict_lock). However, the lock ordering of such a lock 4881 * would necessarily be incorrect with respect to the zthr_lock, 4882 * which is held before this function is called, and is held by 4883 * arc_wait_for_eviction() when it calls zthr_wakeup(). 4884 */ 4885 return (arc_evict_needed); 4886 } 4887 4888 /* 4889 * Keep arc_size under arc_c by running arc_evict which evicts data 4890 * from the ARC. 4891 */ 4892 /* ARGSUSED */ 4893 static void 4894 arc_evict_cb(void *arg, zthr_t *zthr) 4895 { 4896 uint64_t evicted = 0; 4897 fstrans_cookie_t cookie = spl_fstrans_mark(); 4898 4899 /* Evict from cache */ 4900 evicted = arc_evict(); 4901 4902 /* 4903 * If evicted is zero, we couldn't evict anything 4904 * via arc_evict(). This could be due to hash lock 4905 * collisions, but more likely due to the majority of 4906 * arc buffers being unevictable. Therefore, even if 4907 * arc_size is above arc_c, another pass is unlikely to 4908 * be helpful and could potentially cause us to enter an 4909 * infinite loop. Additionally, zthr_iscancelled() is 4910 * checked here so that if the arc is shutting down, the 4911 * broadcast will wake any remaining arc evict waiters. 4912 */ 4913 mutex_enter(&arc_evict_lock); 4914 arc_evict_needed = !zthr_iscancelled(arc_evict_zthr) && 4915 evicted > 0 && aggsum_compare(&arc_sums.arcstat_size, arc_c) > 0; 4916 if (!arc_evict_needed) { 4917 /* 4918 * We're either no longer overflowing, or we 4919 * can't evict anything more, so we should wake 4920 * arc_get_data_impl() sooner. 4921 */ 4922 arc_evict_waiter_t *aw; 4923 while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) { 4924 cv_broadcast(&aw->aew_cv); 4925 } 4926 arc_set_need_free(); 4927 } 4928 mutex_exit(&arc_evict_lock); 4929 spl_fstrans_unmark(cookie); 4930 } 4931 4932 /* ARGSUSED */ 4933 static boolean_t 4934 arc_reap_cb_check(void *arg, zthr_t *zthr) 4935 { 4936 int64_t free_memory = arc_available_memory(); 4937 static int reap_cb_check_counter = 0; 4938 4939 /* 4940 * If a kmem reap is already active, don't schedule more. We must 4941 * check for this because kmem_cache_reap_soon() won't actually 4942 * block on the cache being reaped (this is to prevent callers from 4943 * becoming implicitly blocked by a system-wide kmem reap -- which, 4944 * on a system with many, many full magazines, can take minutes). 4945 */ 4946 if (!kmem_cache_reap_active() && free_memory < 0) { 4947 4948 arc_no_grow = B_TRUE; 4949 arc_warm = B_TRUE; 4950 /* 4951 * Wait at least zfs_grow_retry (default 5) seconds 4952 * before considering growing. 4953 */ 4954 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry); 4955 return (B_TRUE); 4956 } else if (free_memory < arc_c >> arc_no_grow_shift) { 4957 arc_no_grow = B_TRUE; 4958 } else if (gethrtime() >= arc_growtime) { 4959 arc_no_grow = B_FALSE; 4960 } 4961 4962 /* 4963 * Called unconditionally every 60 seconds to reclaim unused 4964 * zstd compression and decompression context. This is done 4965 * here to avoid the need for an independent thread. 4966 */ 4967 if (!((reap_cb_check_counter++) % 60)) 4968 zfs_zstd_cache_reap_now(); 4969 4970 return (B_FALSE); 4971 } 4972 4973 /* 4974 * Keep enough free memory in the system by reaping the ARC's kmem 4975 * caches. To cause more slabs to be reapable, we may reduce the 4976 * target size of the cache (arc_c), causing the arc_evict_cb() 4977 * to free more buffers. 4978 */ 4979 /* ARGSUSED */ 4980 static void 4981 arc_reap_cb(void *arg, zthr_t *zthr) 4982 { 4983 int64_t free_memory; 4984 fstrans_cookie_t cookie = spl_fstrans_mark(); 4985 4986 /* 4987 * Kick off asynchronous kmem_reap()'s of all our caches. 4988 */ 4989 arc_kmem_reap_soon(); 4990 4991 /* 4992 * Wait at least arc_kmem_cache_reap_retry_ms between 4993 * arc_kmem_reap_soon() calls. Without this check it is possible to 4994 * end up in a situation where we spend lots of time reaping 4995 * caches, while we're near arc_c_min. Waiting here also gives the 4996 * subsequent free memory check a chance of finding that the 4997 * asynchronous reap has already freed enough memory, and we don't 4998 * need to call arc_reduce_target_size(). 4999 */ 5000 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000); 5001 5002 /* 5003 * Reduce the target size as needed to maintain the amount of free 5004 * memory in the system at a fraction of the arc_size (1/128th by 5005 * default). If oversubscribed (free_memory < 0) then reduce the 5006 * target arc_size by the deficit amount plus the fractional 5007 * amount. If free memory is positive but less than the fractional 5008 * amount, reduce by what is needed to hit the fractional amount. 5009 */ 5010 free_memory = arc_available_memory(); 5011 5012 int64_t to_free = 5013 (arc_c >> arc_shrink_shift) - free_memory; 5014 if (to_free > 0) { 5015 arc_reduce_target_size(to_free); 5016 } 5017 spl_fstrans_unmark(cookie); 5018 } 5019 5020 #ifdef _KERNEL 5021 /* 5022 * Determine the amount of memory eligible for eviction contained in the 5023 * ARC. All clean data reported by the ghost lists can always be safely 5024 * evicted. Due to arc_c_min, the same does not hold for all clean data 5025 * contained by the regular mru and mfu lists. 5026 * 5027 * In the case of the regular mru and mfu lists, we need to report as 5028 * much clean data as possible, such that evicting that same reported 5029 * data will not bring arc_size below arc_c_min. Thus, in certain 5030 * circumstances, the total amount of clean data in the mru and mfu 5031 * lists might not actually be evictable. 5032 * 5033 * The following two distinct cases are accounted for: 5034 * 5035 * 1. The sum of the amount of dirty data contained by both the mru and 5036 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 5037 * is greater than or equal to arc_c_min. 5038 * (i.e. amount of dirty data >= arc_c_min) 5039 * 5040 * This is the easy case; all clean data contained by the mru and mfu 5041 * lists is evictable. Evicting all clean data can only drop arc_size 5042 * to the amount of dirty data, which is greater than arc_c_min. 5043 * 5044 * 2. The sum of the amount of dirty data contained by both the mru and 5045 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 5046 * is less than arc_c_min. 5047 * (i.e. arc_c_min > amount of dirty data) 5048 * 5049 * 2.1. arc_size is greater than or equal arc_c_min. 5050 * (i.e. arc_size >= arc_c_min > amount of dirty data) 5051 * 5052 * In this case, not all clean data from the regular mru and mfu 5053 * lists is actually evictable; we must leave enough clean data 5054 * to keep arc_size above arc_c_min. Thus, the maximum amount of 5055 * evictable data from the two lists combined, is exactly the 5056 * difference between arc_size and arc_c_min. 5057 * 5058 * 2.2. arc_size is less than arc_c_min 5059 * (i.e. arc_c_min > arc_size > amount of dirty data) 5060 * 5061 * In this case, none of the data contained in the mru and mfu 5062 * lists is evictable, even if it's clean. Since arc_size is 5063 * already below arc_c_min, evicting any more would only 5064 * increase this negative difference. 5065 */ 5066 5067 #endif /* _KERNEL */ 5068 5069 /* 5070 * Adapt arc info given the number of bytes we are trying to add and 5071 * the state that we are coming from. This function is only called 5072 * when we are adding new content to the cache. 5073 */ 5074 static void 5075 arc_adapt(int bytes, arc_state_t *state) 5076 { 5077 int mult; 5078 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 5079 int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size); 5080 int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size); 5081 5082 ASSERT(bytes > 0); 5083 /* 5084 * Adapt the target size of the MRU list: 5085 * - if we just hit in the MRU ghost list, then increase 5086 * the target size of the MRU list. 5087 * - if we just hit in the MFU ghost list, then increase 5088 * the target size of the MFU list by decreasing the 5089 * target size of the MRU list. 5090 */ 5091 if (state == arc_mru_ghost) { 5092 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size); 5093 if (!zfs_arc_p_dampener_disable) 5094 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 5095 5096 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 5097 } else if (state == arc_mfu_ghost) { 5098 uint64_t delta; 5099 5100 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size); 5101 if (!zfs_arc_p_dampener_disable) 5102 mult = MIN(mult, 10); 5103 5104 delta = MIN(bytes * mult, arc_p); 5105 arc_p = MAX(arc_p_min, arc_p - delta); 5106 } 5107 ASSERT((int64_t)arc_p >= 0); 5108 5109 /* 5110 * Wake reap thread if we do not have any available memory 5111 */ 5112 if (arc_reclaim_needed()) { 5113 zthr_wakeup(arc_reap_zthr); 5114 return; 5115 } 5116 5117 if (arc_no_grow) 5118 return; 5119 5120 if (arc_c >= arc_c_max) 5121 return; 5122 5123 /* 5124 * If we're within (2 * maxblocksize) bytes of the target 5125 * cache size, increment the target cache size 5126 */ 5127 ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT); 5128 if (aggsum_upper_bound(&arc_sums.arcstat_size) >= 5129 arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 5130 atomic_add_64(&arc_c, (int64_t)bytes); 5131 if (arc_c > arc_c_max) 5132 arc_c = arc_c_max; 5133 else if (state == arc_anon) 5134 atomic_add_64(&arc_p, (int64_t)bytes); 5135 if (arc_p > arc_c) 5136 arc_p = arc_c; 5137 } 5138 ASSERT((int64_t)arc_p >= 0); 5139 } 5140 5141 /* 5142 * Check if arc_size has grown past our upper threshold, determined by 5143 * zfs_arc_overflow_shift. 5144 */ 5145 static arc_ovf_level_t 5146 arc_is_overflowing(boolean_t use_reserve) 5147 { 5148 /* Always allow at least one block of overflow */ 5149 int64_t overflow = MAX(SPA_MAXBLOCKSIZE, 5150 arc_c >> zfs_arc_overflow_shift); 5151 5152 /* 5153 * We just compare the lower bound here for performance reasons. Our 5154 * primary goals are to make sure that the arc never grows without 5155 * bound, and that it can reach its maximum size. This check 5156 * accomplishes both goals. The maximum amount we could run over by is 5157 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block 5158 * in the ARC. In practice, that's in the tens of MB, which is low 5159 * enough to be safe. 5160 */ 5161 int64_t over = aggsum_lower_bound(&arc_sums.arcstat_size) - 5162 arc_c - overflow / 2; 5163 if (!use_reserve) 5164 overflow /= 2; 5165 return (over < 0 ? ARC_OVF_NONE : 5166 over < overflow ? ARC_OVF_SOME : ARC_OVF_SEVERE); 5167 } 5168 5169 static abd_t * 5170 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 5171 int alloc_flags) 5172 { 5173 arc_buf_contents_t type = arc_buf_type(hdr); 5174 5175 arc_get_data_impl(hdr, size, tag, alloc_flags); 5176 if (type == ARC_BUFC_METADATA) { 5177 return (abd_alloc(size, B_TRUE)); 5178 } else { 5179 ASSERT(type == ARC_BUFC_DATA); 5180 return (abd_alloc(size, B_FALSE)); 5181 } 5182 } 5183 5184 static void * 5185 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 5186 { 5187 arc_buf_contents_t type = arc_buf_type(hdr); 5188 5189 arc_get_data_impl(hdr, size, tag, ARC_HDR_DO_ADAPT); 5190 if (type == ARC_BUFC_METADATA) { 5191 return (zio_buf_alloc(size)); 5192 } else { 5193 ASSERT(type == ARC_BUFC_DATA); 5194 return (zio_data_buf_alloc(size)); 5195 } 5196 } 5197 5198 /* 5199 * Wait for the specified amount of data (in bytes) to be evicted from the 5200 * ARC, and for there to be sufficient free memory in the system. Waiting for 5201 * eviction ensures that the memory used by the ARC decreases. Waiting for 5202 * free memory ensures that the system won't run out of free pages, regardless 5203 * of ARC behavior and settings. See arc_lowmem_init(). 5204 */ 5205 void 5206 arc_wait_for_eviction(uint64_t amount, boolean_t use_reserve) 5207 { 5208 switch (arc_is_overflowing(use_reserve)) { 5209 case ARC_OVF_NONE: 5210 return; 5211 case ARC_OVF_SOME: 5212 /* 5213 * This is a bit racy without taking arc_evict_lock, but the 5214 * worst that can happen is we either call zthr_wakeup() extra 5215 * time due to race with other thread here, or the set flag 5216 * get cleared by arc_evict_cb(), which is unlikely due to 5217 * big hysteresis, but also not important since at this level 5218 * of overflow the eviction is purely advisory. Same time 5219 * taking the global lock here every time without waiting for 5220 * the actual eviction creates a significant lock contention. 5221 */ 5222 if (!arc_evict_needed) { 5223 arc_evict_needed = B_TRUE; 5224 zthr_wakeup(arc_evict_zthr); 5225 } 5226 return; 5227 case ARC_OVF_SEVERE: 5228 default: 5229 { 5230 arc_evict_waiter_t aw; 5231 list_link_init(&aw.aew_node); 5232 cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL); 5233 5234 uint64_t last_count = 0; 5235 mutex_enter(&arc_evict_lock); 5236 if (!list_is_empty(&arc_evict_waiters)) { 5237 arc_evict_waiter_t *last = 5238 list_tail(&arc_evict_waiters); 5239 last_count = last->aew_count; 5240 } else if (!arc_evict_needed) { 5241 arc_evict_needed = B_TRUE; 5242 zthr_wakeup(arc_evict_zthr); 5243 } 5244 /* 5245 * Note, the last waiter's count may be less than 5246 * arc_evict_count if we are low on memory in which 5247 * case arc_evict_state_impl() may have deferred 5248 * wakeups (but still incremented arc_evict_count). 5249 */ 5250 aw.aew_count = MAX(last_count, arc_evict_count) + amount; 5251 5252 list_insert_tail(&arc_evict_waiters, &aw); 5253 5254 arc_set_need_free(); 5255 5256 DTRACE_PROBE3(arc__wait__for__eviction, 5257 uint64_t, amount, 5258 uint64_t, arc_evict_count, 5259 uint64_t, aw.aew_count); 5260 5261 /* 5262 * We will be woken up either when arc_evict_count reaches 5263 * aew_count, or when the ARC is no longer overflowing and 5264 * eviction completes. 5265 * In case of "false" wakeup, we will still be on the list. 5266 */ 5267 do { 5268 cv_wait(&aw.aew_cv, &arc_evict_lock); 5269 } while (list_link_active(&aw.aew_node)); 5270 mutex_exit(&arc_evict_lock); 5271 5272 cv_destroy(&aw.aew_cv); 5273 } 5274 } 5275 } 5276 5277 /* 5278 * Allocate a block and return it to the caller. If we are hitting the 5279 * hard limit for the cache size, we must sleep, waiting for the eviction 5280 * thread to catch up. If we're past the target size but below the hard 5281 * limit, we'll only signal the reclaim thread and continue on. 5282 */ 5283 static void 5284 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 5285 int alloc_flags) 5286 { 5287 arc_state_t *state = hdr->b_l1hdr.b_state; 5288 arc_buf_contents_t type = arc_buf_type(hdr); 5289 5290 if (alloc_flags & ARC_HDR_DO_ADAPT) 5291 arc_adapt(size, state); 5292 5293 /* 5294 * If arc_size is currently overflowing, we must be adding data 5295 * faster than we are evicting. To ensure we don't compound the 5296 * problem by adding more data and forcing arc_size to grow even 5297 * further past it's target size, we wait for the eviction thread to 5298 * make some progress. We also wait for there to be sufficient free 5299 * memory in the system, as measured by arc_free_memory(). 5300 * 5301 * Specifically, we wait for zfs_arc_eviction_pct percent of the 5302 * requested size to be evicted. This should be more than 100%, to 5303 * ensure that that progress is also made towards getting arc_size 5304 * under arc_c. See the comment above zfs_arc_eviction_pct. 5305 */ 5306 arc_wait_for_eviction(size * zfs_arc_eviction_pct / 100, 5307 alloc_flags & ARC_HDR_USE_RESERVE); 5308 5309 VERIFY3U(hdr->b_type, ==, type); 5310 if (type == ARC_BUFC_METADATA) { 5311 arc_space_consume(size, ARC_SPACE_META); 5312 } else { 5313 arc_space_consume(size, ARC_SPACE_DATA); 5314 } 5315 5316 /* 5317 * Update the state size. Note that ghost states have a 5318 * "ghost size" and so don't need to be updated. 5319 */ 5320 if (!GHOST_STATE(state)) { 5321 5322 (void) zfs_refcount_add_many(&state->arcs_size, size, tag); 5323 5324 /* 5325 * If this is reached via arc_read, the link is 5326 * protected by the hash lock. If reached via 5327 * arc_buf_alloc, the header should not be accessed by 5328 * any other thread. And, if reached via arc_read_done, 5329 * the hash lock will protect it if it's found in the 5330 * hash table; otherwise no other thread should be 5331 * trying to [add|remove]_reference it. 5332 */ 5333 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5334 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5335 (void) zfs_refcount_add_many(&state->arcs_esize[type], 5336 size, tag); 5337 } 5338 5339 /* 5340 * If we are growing the cache, and we are adding anonymous 5341 * data, and we have outgrown arc_p, update arc_p 5342 */ 5343 if (aggsum_upper_bound(&arc_sums.arcstat_size) < arc_c && 5344 hdr->b_l1hdr.b_state == arc_anon && 5345 (zfs_refcount_count(&arc_anon->arcs_size) + 5346 zfs_refcount_count(&arc_mru->arcs_size) > arc_p)) 5347 arc_p = MIN(arc_c, arc_p + size); 5348 } 5349 } 5350 5351 static void 5352 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag) 5353 { 5354 arc_free_data_impl(hdr, size, tag); 5355 abd_free(abd); 5356 } 5357 5358 static void 5359 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag) 5360 { 5361 arc_buf_contents_t type = arc_buf_type(hdr); 5362 5363 arc_free_data_impl(hdr, size, tag); 5364 if (type == ARC_BUFC_METADATA) { 5365 zio_buf_free(buf, size); 5366 } else { 5367 ASSERT(type == ARC_BUFC_DATA); 5368 zio_data_buf_free(buf, size); 5369 } 5370 } 5371 5372 /* 5373 * Free the arc data buffer. 5374 */ 5375 static void 5376 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 5377 { 5378 arc_state_t *state = hdr->b_l1hdr.b_state; 5379 arc_buf_contents_t type = arc_buf_type(hdr); 5380 5381 /* protected by hash lock, if in the hash table */ 5382 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5383 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5384 ASSERT(state != arc_anon && state != arc_l2c_only); 5385 5386 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 5387 size, tag); 5388 } 5389 (void) zfs_refcount_remove_many(&state->arcs_size, size, tag); 5390 5391 VERIFY3U(hdr->b_type, ==, type); 5392 if (type == ARC_BUFC_METADATA) { 5393 arc_space_return(size, ARC_SPACE_META); 5394 } else { 5395 ASSERT(type == ARC_BUFC_DATA); 5396 arc_space_return(size, ARC_SPACE_DATA); 5397 } 5398 } 5399 5400 /* 5401 * This routine is called whenever a buffer is accessed. 5402 * NOTE: the hash lock is dropped in this function. 5403 */ 5404 static void 5405 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 5406 { 5407 clock_t now; 5408 5409 ASSERT(MUTEX_HELD(hash_lock)); 5410 ASSERT(HDR_HAS_L1HDR(hdr)); 5411 5412 if (hdr->b_l1hdr.b_state == arc_anon) { 5413 /* 5414 * This buffer is not in the cache, and does not 5415 * appear in our "ghost" list. Add the new buffer 5416 * to the MRU state. 5417 */ 5418 5419 ASSERT0(hdr->b_l1hdr.b_arc_access); 5420 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5421 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5422 arc_change_state(arc_mru, hdr, hash_lock); 5423 5424 } else if (hdr->b_l1hdr.b_state == arc_mru) { 5425 now = ddi_get_lbolt(); 5426 5427 /* 5428 * If this buffer is here because of a prefetch, then either: 5429 * - clear the flag if this is a "referencing" read 5430 * (any subsequent access will bump this into the MFU state). 5431 * or 5432 * - move the buffer to the head of the list if this is 5433 * another prefetch (to make it less likely to be evicted). 5434 */ 5435 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5436 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 5437 /* link protected by hash lock */ 5438 ASSERT(multilist_link_active( 5439 &hdr->b_l1hdr.b_arc_node)); 5440 } else { 5441 if (HDR_HAS_L2HDR(hdr)) 5442 l2arc_hdr_arcstats_decrement_state(hdr); 5443 arc_hdr_clear_flags(hdr, 5444 ARC_FLAG_PREFETCH | 5445 ARC_FLAG_PRESCIENT_PREFETCH); 5446 hdr->b_l1hdr.b_mru_hits++; 5447 ARCSTAT_BUMP(arcstat_mru_hits); 5448 if (HDR_HAS_L2HDR(hdr)) 5449 l2arc_hdr_arcstats_increment_state(hdr); 5450 } 5451 hdr->b_l1hdr.b_arc_access = now; 5452 return; 5453 } 5454 5455 /* 5456 * This buffer has been "accessed" only once so far, 5457 * but it is still in the cache. Move it to the MFU 5458 * state. 5459 */ 5460 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access + 5461 ARC_MINTIME)) { 5462 /* 5463 * More than 125ms have passed since we 5464 * instantiated this buffer. Move it to the 5465 * most frequently used state. 5466 */ 5467 hdr->b_l1hdr.b_arc_access = now; 5468 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5469 arc_change_state(arc_mfu, hdr, hash_lock); 5470 } 5471 hdr->b_l1hdr.b_mru_hits++; 5472 ARCSTAT_BUMP(arcstat_mru_hits); 5473 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 5474 arc_state_t *new_state; 5475 /* 5476 * This buffer has been "accessed" recently, but 5477 * was evicted from the cache. Move it to the 5478 * MFU state. 5479 */ 5480 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5481 new_state = arc_mru; 5482 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) { 5483 if (HDR_HAS_L2HDR(hdr)) 5484 l2arc_hdr_arcstats_decrement_state(hdr); 5485 arc_hdr_clear_flags(hdr, 5486 ARC_FLAG_PREFETCH | 5487 ARC_FLAG_PRESCIENT_PREFETCH); 5488 if (HDR_HAS_L2HDR(hdr)) 5489 l2arc_hdr_arcstats_increment_state(hdr); 5490 } 5491 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5492 } else { 5493 new_state = arc_mfu; 5494 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5495 } 5496 5497 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5498 arc_change_state(new_state, hdr, hash_lock); 5499 5500 hdr->b_l1hdr.b_mru_ghost_hits++; 5501 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 5502 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 5503 /* 5504 * This buffer has been accessed more than once and is 5505 * still in the cache. Keep it in the MFU state. 5506 * 5507 * NOTE: an add_reference() that occurred when we did 5508 * the arc_read() will have kicked this off the list. 5509 * If it was a prefetch, we will explicitly move it to 5510 * the head of the list now. 5511 */ 5512 5513 hdr->b_l1hdr.b_mfu_hits++; 5514 ARCSTAT_BUMP(arcstat_mfu_hits); 5515 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5516 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 5517 arc_state_t *new_state = arc_mfu; 5518 /* 5519 * This buffer has been accessed more than once but has 5520 * been evicted from the cache. Move it back to the 5521 * MFU state. 5522 */ 5523 5524 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5525 /* 5526 * This is a prefetch access... 5527 * move this block back to the MRU state. 5528 */ 5529 new_state = arc_mru; 5530 } 5531 5532 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5533 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5534 arc_change_state(new_state, hdr, hash_lock); 5535 5536 hdr->b_l1hdr.b_mfu_ghost_hits++; 5537 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 5538 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 5539 /* 5540 * This buffer is on the 2nd Level ARC. 5541 */ 5542 5543 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5544 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5545 arc_change_state(arc_mfu, hdr, hash_lock); 5546 } else { 5547 cmn_err(CE_PANIC, "invalid arc state 0x%p", 5548 hdr->b_l1hdr.b_state); 5549 } 5550 } 5551 5552 /* 5553 * This routine is called by dbuf_hold() to update the arc_access() state 5554 * which otherwise would be skipped for entries in the dbuf cache. 5555 */ 5556 void 5557 arc_buf_access(arc_buf_t *buf) 5558 { 5559 mutex_enter(&buf->b_evict_lock); 5560 arc_buf_hdr_t *hdr = buf->b_hdr; 5561 5562 /* 5563 * Avoid taking the hash_lock when possible as an optimization. 5564 * The header must be checked again under the hash_lock in order 5565 * to handle the case where it is concurrently being released. 5566 */ 5567 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5568 mutex_exit(&buf->b_evict_lock); 5569 return; 5570 } 5571 5572 kmutex_t *hash_lock = HDR_LOCK(hdr); 5573 mutex_enter(hash_lock); 5574 5575 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5576 mutex_exit(hash_lock); 5577 mutex_exit(&buf->b_evict_lock); 5578 ARCSTAT_BUMP(arcstat_access_skip); 5579 return; 5580 } 5581 5582 mutex_exit(&buf->b_evict_lock); 5583 5584 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5585 hdr->b_l1hdr.b_state == arc_mfu); 5586 5587 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5588 arc_access(hdr, hash_lock); 5589 mutex_exit(hash_lock); 5590 5591 ARCSTAT_BUMP(arcstat_hits); 5592 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr) && !HDR_PRESCIENT_PREFETCH(hdr), 5593 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits); 5594 } 5595 5596 /* a generic arc_read_done_func_t which you can use */ 5597 /* ARGSUSED */ 5598 void 5599 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5600 arc_buf_t *buf, void *arg) 5601 { 5602 if (buf == NULL) 5603 return; 5604 5605 bcopy(buf->b_data, arg, arc_buf_size(buf)); 5606 arc_buf_destroy(buf, arg); 5607 } 5608 5609 /* a generic arc_read_done_func_t */ 5610 /* ARGSUSED */ 5611 void 5612 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5613 arc_buf_t *buf, void *arg) 5614 { 5615 arc_buf_t **bufp = arg; 5616 5617 if (buf == NULL) { 5618 ASSERT(zio == NULL || zio->io_error != 0); 5619 *bufp = NULL; 5620 } else { 5621 ASSERT(zio == NULL || zio->io_error == 0); 5622 *bufp = buf; 5623 ASSERT(buf->b_data != NULL); 5624 } 5625 } 5626 5627 static void 5628 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp) 5629 { 5630 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 5631 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0); 5632 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF); 5633 } else { 5634 if (HDR_COMPRESSION_ENABLED(hdr)) { 5635 ASSERT3U(arc_hdr_get_compress(hdr), ==, 5636 BP_GET_COMPRESS(bp)); 5637 } 5638 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 5639 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); 5640 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp)); 5641 } 5642 } 5643 5644 static void 5645 arc_read_done(zio_t *zio) 5646 { 5647 blkptr_t *bp = zio->io_bp; 5648 arc_buf_hdr_t *hdr = zio->io_private; 5649 kmutex_t *hash_lock = NULL; 5650 arc_callback_t *callback_list; 5651 arc_callback_t *acb; 5652 boolean_t freeable = B_FALSE; 5653 5654 /* 5655 * The hdr was inserted into hash-table and removed from lists 5656 * prior to starting I/O. We should find this header, since 5657 * it's in the hash table, and it should be legit since it's 5658 * not possible to evict it during the I/O. The only possible 5659 * reason for it not to be found is if we were freed during the 5660 * read. 5661 */ 5662 if (HDR_IN_HASH_TABLE(hdr)) { 5663 arc_buf_hdr_t *found; 5664 5665 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 5666 ASSERT3U(hdr->b_dva.dva_word[0], ==, 5667 BP_IDENTITY(zio->io_bp)->dva_word[0]); 5668 ASSERT3U(hdr->b_dva.dva_word[1], ==, 5669 BP_IDENTITY(zio->io_bp)->dva_word[1]); 5670 5671 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock); 5672 5673 ASSERT((found == hdr && 5674 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 5675 (found == hdr && HDR_L2_READING(hdr))); 5676 ASSERT3P(hash_lock, !=, NULL); 5677 } 5678 5679 if (BP_IS_PROTECTED(bp)) { 5680 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 5681 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 5682 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 5683 hdr->b_crypt_hdr.b_iv); 5684 5685 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) { 5686 void *tmpbuf; 5687 5688 tmpbuf = abd_borrow_buf_copy(zio->io_abd, 5689 sizeof (zil_chain_t)); 5690 zio_crypt_decode_mac_zil(tmpbuf, 5691 hdr->b_crypt_hdr.b_mac); 5692 abd_return_buf(zio->io_abd, tmpbuf, 5693 sizeof (zil_chain_t)); 5694 } else { 5695 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 5696 } 5697 } 5698 5699 if (zio->io_error == 0) { 5700 /* byteswap if necessary */ 5701 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 5702 if (BP_GET_LEVEL(zio->io_bp) > 0) { 5703 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 5704 } else { 5705 hdr->b_l1hdr.b_byteswap = 5706 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 5707 } 5708 } else { 5709 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 5710 } 5711 if (!HDR_L2_READING(hdr)) { 5712 hdr->b_complevel = zio->io_prop.zp_complevel; 5713 } 5714 } 5715 5716 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); 5717 if (l2arc_noprefetch && HDR_PREFETCH(hdr)) 5718 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE); 5719 5720 callback_list = hdr->b_l1hdr.b_acb; 5721 ASSERT3P(callback_list, !=, NULL); 5722 5723 if (hash_lock && zio->io_error == 0 && 5724 hdr->b_l1hdr.b_state == arc_anon) { 5725 /* 5726 * Only call arc_access on anonymous buffers. This is because 5727 * if we've issued an I/O for an evicted buffer, we've already 5728 * called arc_access (to prevent any simultaneous readers from 5729 * getting confused). 5730 */ 5731 arc_access(hdr, hash_lock); 5732 } 5733 5734 /* 5735 * If a read request has a callback (i.e. acb_done is not NULL), then we 5736 * make a buf containing the data according to the parameters which were 5737 * passed in. The implementation of arc_buf_alloc_impl() ensures that we 5738 * aren't needlessly decompressing the data multiple times. 5739 */ 5740 int callback_cnt = 0; 5741 for (acb = callback_list; acb != NULL; acb = acb->acb_next) { 5742 if (!acb->acb_done || acb->acb_nobuf) 5743 continue; 5744 5745 callback_cnt++; 5746 5747 if (zio->io_error != 0) 5748 continue; 5749 5750 int error = arc_buf_alloc_impl(hdr, zio->io_spa, 5751 &acb->acb_zb, acb->acb_private, acb->acb_encrypted, 5752 acb->acb_compressed, acb->acb_noauth, B_TRUE, 5753 &acb->acb_buf); 5754 5755 /* 5756 * Assert non-speculative zios didn't fail because an 5757 * encryption key wasn't loaded 5758 */ 5759 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) || 5760 error != EACCES); 5761 5762 /* 5763 * If we failed to decrypt, report an error now (as the zio 5764 * layer would have done if it had done the transforms). 5765 */ 5766 if (error == ECKSUM) { 5767 ASSERT(BP_IS_PROTECTED(bp)); 5768 error = SET_ERROR(EIO); 5769 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5770 spa_log_error(zio->io_spa, &acb->acb_zb); 5771 (void) zfs_ereport_post( 5772 FM_EREPORT_ZFS_AUTHENTICATION, 5773 zio->io_spa, NULL, &acb->acb_zb, zio, 0); 5774 } 5775 } 5776 5777 if (error != 0) { 5778 /* 5779 * Decompression or decryption failed. Set 5780 * io_error so that when we call acb_done 5781 * (below), we will indicate that the read 5782 * failed. Note that in the unusual case 5783 * where one callback is compressed and another 5784 * uncompressed, we will mark all of them 5785 * as failed, even though the uncompressed 5786 * one can't actually fail. In this case, 5787 * the hdr will not be anonymous, because 5788 * if there are multiple callbacks, it's 5789 * because multiple threads found the same 5790 * arc buf in the hash table. 5791 */ 5792 zio->io_error = error; 5793 } 5794 } 5795 5796 /* 5797 * If there are multiple callbacks, we must have the hash lock, 5798 * because the only way for multiple threads to find this hdr is 5799 * in the hash table. This ensures that if there are multiple 5800 * callbacks, the hdr is not anonymous. If it were anonymous, 5801 * we couldn't use arc_buf_destroy() in the error case below. 5802 */ 5803 ASSERT(callback_cnt < 2 || hash_lock != NULL); 5804 5805 hdr->b_l1hdr.b_acb = NULL; 5806 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5807 if (callback_cnt == 0) 5808 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 5809 5810 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) || 5811 callback_list != NULL); 5812 5813 if (zio->io_error == 0) { 5814 arc_hdr_verify(hdr, zio->io_bp); 5815 } else { 5816 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 5817 if (hdr->b_l1hdr.b_state != arc_anon) 5818 arc_change_state(arc_anon, hdr, hash_lock); 5819 if (HDR_IN_HASH_TABLE(hdr)) 5820 buf_hash_remove(hdr); 5821 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5822 } 5823 5824 /* 5825 * Broadcast before we drop the hash_lock to avoid the possibility 5826 * that the hdr (and hence the cv) might be freed before we get to 5827 * the cv_broadcast(). 5828 */ 5829 cv_broadcast(&hdr->b_l1hdr.b_cv); 5830 5831 if (hash_lock != NULL) { 5832 mutex_exit(hash_lock); 5833 } else { 5834 /* 5835 * This block was freed while we waited for the read to 5836 * complete. It has been removed from the hash table and 5837 * moved to the anonymous state (so that it won't show up 5838 * in the cache). 5839 */ 5840 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 5841 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5842 } 5843 5844 /* execute each callback and free its structure */ 5845 while ((acb = callback_list) != NULL) { 5846 if (acb->acb_done != NULL) { 5847 if (zio->io_error != 0 && acb->acb_buf != NULL) { 5848 /* 5849 * If arc_buf_alloc_impl() fails during 5850 * decompression, the buf will still be 5851 * allocated, and needs to be freed here. 5852 */ 5853 arc_buf_destroy(acb->acb_buf, 5854 acb->acb_private); 5855 acb->acb_buf = NULL; 5856 } 5857 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp, 5858 acb->acb_buf, acb->acb_private); 5859 } 5860 5861 if (acb->acb_zio_dummy != NULL) { 5862 acb->acb_zio_dummy->io_error = zio->io_error; 5863 zio_nowait(acb->acb_zio_dummy); 5864 } 5865 5866 callback_list = acb->acb_next; 5867 kmem_free(acb, sizeof (arc_callback_t)); 5868 } 5869 5870 if (freeable) 5871 arc_hdr_destroy(hdr); 5872 } 5873 5874 /* 5875 * "Read" the block at the specified DVA (in bp) via the 5876 * cache. If the block is found in the cache, invoke the provided 5877 * callback immediately and return. Note that the `zio' parameter 5878 * in the callback will be NULL in this case, since no IO was 5879 * required. If the block is not in the cache pass the read request 5880 * on to the spa with a substitute callback function, so that the 5881 * requested block will be added to the cache. 5882 * 5883 * If a read request arrives for a block that has a read in-progress, 5884 * either wait for the in-progress read to complete (and return the 5885 * results); or, if this is a read with a "done" func, add a record 5886 * to the read to invoke the "done" func when the read completes, 5887 * and return; or just return. 5888 * 5889 * arc_read_done() will invoke all the requested "done" functions 5890 * for readers of this block. 5891 */ 5892 int 5893 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 5894 arc_read_done_func_t *done, void *private, zio_priority_t priority, 5895 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 5896 { 5897 arc_buf_hdr_t *hdr = NULL; 5898 kmutex_t *hash_lock = NULL; 5899 zio_t *rzio; 5900 uint64_t guid = spa_load_guid(spa); 5901 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0; 5902 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) && 5903 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5904 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) && 5905 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5906 boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp); 5907 boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF; 5908 int rc = 0; 5909 5910 ASSERT(!embedded_bp || 5911 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 5912 ASSERT(!BP_IS_HOLE(bp)); 5913 ASSERT(!BP_IS_REDACTED(bp)); 5914 5915 /* 5916 * Normally SPL_FSTRANS will already be set since kernel threads which 5917 * expect to call the DMU interfaces will set it when created. System 5918 * calls are similarly handled by setting/cleaning the bit in the 5919 * registered callback (module/os/.../zfs/zpl_*). 5920 * 5921 * External consumers such as Lustre which call the exported DMU 5922 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock 5923 * on the hash_lock always set and clear the bit. 5924 */ 5925 fstrans_cookie_t cookie = spl_fstrans_mark(); 5926 top: 5927 /* 5928 * Verify the block pointer contents are reasonable. This should 5929 * always be the case since the blkptr is protected by a checksum. 5930 * However, if there is damage it's desirable to detect this early 5931 * and treat it as a checksum error. This allows an alternate blkptr 5932 * to be tried when one is available (e.g. ditto blocks). 5933 */ 5934 if (!zfs_blkptr_verify(spa, bp, zio_flags & ZIO_FLAG_CONFIG_WRITER, 5935 BLK_VERIFY_LOG)) { 5936 rc = SET_ERROR(ECKSUM); 5937 goto out; 5938 } 5939 5940 if (!embedded_bp) { 5941 /* 5942 * Embedded BP's have no DVA and require no I/O to "read". 5943 * Create an anonymous arc buf to back it. 5944 */ 5945 hdr = buf_hash_find(guid, bp, &hash_lock); 5946 } 5947 5948 /* 5949 * Determine if we have an L1 cache hit or a cache miss. For simplicity 5950 * we maintain encrypted data separately from compressed / uncompressed 5951 * data. If the user is requesting raw encrypted data and we don't have 5952 * that in the header we will read from disk to guarantee that we can 5953 * get it even if the encryption keys aren't loaded. 5954 */ 5955 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) || 5956 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) { 5957 arc_buf_t *buf = NULL; 5958 *arc_flags |= ARC_FLAG_CACHED; 5959 5960 if (HDR_IO_IN_PROGRESS(hdr)) { 5961 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head; 5962 5963 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 5964 mutex_exit(hash_lock); 5965 ARCSTAT_BUMP(arcstat_cached_only_in_progress); 5966 rc = SET_ERROR(ENOENT); 5967 goto out; 5968 } 5969 5970 ASSERT3P(head_zio, !=, NULL); 5971 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && 5972 priority == ZIO_PRIORITY_SYNC_READ) { 5973 /* 5974 * This is a sync read that needs to wait for 5975 * an in-flight async read. Request that the 5976 * zio have its priority upgraded. 5977 */ 5978 zio_change_priority(head_zio, priority); 5979 DTRACE_PROBE1(arc__async__upgrade__sync, 5980 arc_buf_hdr_t *, hdr); 5981 ARCSTAT_BUMP(arcstat_async_upgrade_sync); 5982 } 5983 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 5984 arc_hdr_clear_flags(hdr, 5985 ARC_FLAG_PREDICTIVE_PREFETCH); 5986 } 5987 5988 if (*arc_flags & ARC_FLAG_WAIT) { 5989 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 5990 mutex_exit(hash_lock); 5991 goto top; 5992 } 5993 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 5994 5995 if (done) { 5996 arc_callback_t *acb = NULL; 5997 5998 acb = kmem_zalloc(sizeof (arc_callback_t), 5999 KM_SLEEP); 6000 acb->acb_done = done; 6001 acb->acb_private = private; 6002 acb->acb_compressed = compressed_read; 6003 acb->acb_encrypted = encrypted_read; 6004 acb->acb_noauth = noauth_read; 6005 acb->acb_nobuf = no_buf; 6006 acb->acb_zb = *zb; 6007 if (pio != NULL) 6008 acb->acb_zio_dummy = zio_null(pio, 6009 spa, NULL, NULL, NULL, zio_flags); 6010 6011 ASSERT3P(acb->acb_done, !=, NULL); 6012 acb->acb_zio_head = head_zio; 6013 acb->acb_next = hdr->b_l1hdr.b_acb; 6014 hdr->b_l1hdr.b_acb = acb; 6015 } 6016 mutex_exit(hash_lock); 6017 goto out; 6018 } 6019 6020 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 6021 hdr->b_l1hdr.b_state == arc_mfu); 6022 6023 if (done && !no_buf) { 6024 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 6025 /* 6026 * This is a demand read which does not have to 6027 * wait for i/o because we did a predictive 6028 * prefetch i/o for it, which has completed. 6029 */ 6030 DTRACE_PROBE1( 6031 arc__demand__hit__predictive__prefetch, 6032 arc_buf_hdr_t *, hdr); 6033 ARCSTAT_BUMP( 6034 arcstat_demand_hit_predictive_prefetch); 6035 arc_hdr_clear_flags(hdr, 6036 ARC_FLAG_PREDICTIVE_PREFETCH); 6037 } 6038 6039 if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) { 6040 ARCSTAT_BUMP( 6041 arcstat_demand_hit_prescient_prefetch); 6042 arc_hdr_clear_flags(hdr, 6043 ARC_FLAG_PRESCIENT_PREFETCH); 6044 } 6045 6046 ASSERT(!embedded_bp || !BP_IS_HOLE(bp)); 6047 6048 /* Get a buf with the desired data in it. */ 6049 rc = arc_buf_alloc_impl(hdr, spa, zb, private, 6050 encrypted_read, compressed_read, noauth_read, 6051 B_TRUE, &buf); 6052 if (rc == ECKSUM) { 6053 /* 6054 * Convert authentication and decryption errors 6055 * to EIO (and generate an ereport if needed) 6056 * before leaving the ARC. 6057 */ 6058 rc = SET_ERROR(EIO); 6059 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) { 6060 spa_log_error(spa, zb); 6061 (void) zfs_ereport_post( 6062 FM_EREPORT_ZFS_AUTHENTICATION, 6063 spa, NULL, zb, NULL, 0); 6064 } 6065 } 6066 if (rc != 0) { 6067 (void) remove_reference(hdr, hash_lock, 6068 private); 6069 arc_buf_destroy_impl(buf); 6070 buf = NULL; 6071 } 6072 6073 /* assert any errors weren't due to unloaded keys */ 6074 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) || 6075 rc != EACCES); 6076 } else if (*arc_flags & ARC_FLAG_PREFETCH && 6077 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6078 if (HDR_HAS_L2HDR(hdr)) 6079 l2arc_hdr_arcstats_decrement_state(hdr); 6080 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 6081 if (HDR_HAS_L2HDR(hdr)) 6082 l2arc_hdr_arcstats_increment_state(hdr); 6083 } 6084 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 6085 arc_access(hdr, hash_lock); 6086 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 6087 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 6088 if (*arc_flags & ARC_FLAG_L2CACHE) 6089 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6090 mutex_exit(hash_lock); 6091 ARCSTAT_BUMP(arcstat_hits); 6092 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 6093 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 6094 data, metadata, hits); 6095 6096 if (done) 6097 done(NULL, zb, bp, buf, private); 6098 } else { 6099 uint64_t lsize = BP_GET_LSIZE(bp); 6100 uint64_t psize = BP_GET_PSIZE(bp); 6101 arc_callback_t *acb; 6102 vdev_t *vd = NULL; 6103 uint64_t addr = 0; 6104 boolean_t devw = B_FALSE; 6105 uint64_t size; 6106 abd_t *hdr_abd; 6107 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0; 6108 6109 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 6110 rc = SET_ERROR(ENOENT); 6111 if (hash_lock != NULL) 6112 mutex_exit(hash_lock); 6113 goto out; 6114 } 6115 6116 if (hdr == NULL) { 6117 /* 6118 * This block is not in the cache or it has 6119 * embedded data. 6120 */ 6121 arc_buf_hdr_t *exists = NULL; 6122 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 6123 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 6124 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type); 6125 6126 if (!embedded_bp) { 6127 hdr->b_dva = *BP_IDENTITY(bp); 6128 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 6129 exists = buf_hash_insert(hdr, &hash_lock); 6130 } 6131 if (exists != NULL) { 6132 /* somebody beat us to the hash insert */ 6133 mutex_exit(hash_lock); 6134 buf_discard_identity(hdr); 6135 arc_hdr_destroy(hdr); 6136 goto top; /* restart the IO request */ 6137 } 6138 alloc_flags |= ARC_HDR_DO_ADAPT; 6139 } else { 6140 /* 6141 * This block is in the ghost cache or encrypted data 6142 * was requested and we didn't have it. If it was 6143 * L2-only (and thus didn't have an L1 hdr), 6144 * we realloc the header to add an L1 hdr. 6145 */ 6146 if (!HDR_HAS_L1HDR(hdr)) { 6147 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 6148 hdr_full_cache); 6149 } 6150 6151 if (GHOST_STATE(hdr->b_l1hdr.b_state)) { 6152 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6153 ASSERT(!HDR_HAS_RABD(hdr)); 6154 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6155 ASSERT0(zfs_refcount_count( 6156 &hdr->b_l1hdr.b_refcnt)); 6157 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 6158 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 6159 } else if (HDR_IO_IN_PROGRESS(hdr)) { 6160 /* 6161 * If this header already had an IO in progress 6162 * and we are performing another IO to fetch 6163 * encrypted data we must wait until the first 6164 * IO completes so as not to confuse 6165 * arc_read_done(). This should be very rare 6166 * and so the performance impact shouldn't 6167 * matter. 6168 */ 6169 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 6170 mutex_exit(hash_lock); 6171 goto top; 6172 } 6173 6174 /* 6175 * This is a delicate dance that we play here. 6176 * This hdr might be in the ghost list so we access 6177 * it to move it out of the ghost list before we 6178 * initiate the read. If it's a prefetch then 6179 * it won't have a callback so we'll remove the 6180 * reference that arc_buf_alloc_impl() created. We 6181 * do this after we've called arc_access() to 6182 * avoid hitting an assert in remove_reference(). 6183 */ 6184 arc_adapt(arc_hdr_size(hdr), hdr->b_l1hdr.b_state); 6185 arc_access(hdr, hash_lock); 6186 } 6187 6188 arc_hdr_alloc_abd(hdr, alloc_flags); 6189 if (encrypted_read) { 6190 ASSERT(HDR_HAS_RABD(hdr)); 6191 size = HDR_GET_PSIZE(hdr); 6192 hdr_abd = hdr->b_crypt_hdr.b_rabd; 6193 zio_flags |= ZIO_FLAG_RAW; 6194 } else { 6195 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 6196 size = arc_hdr_size(hdr); 6197 hdr_abd = hdr->b_l1hdr.b_pabd; 6198 6199 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 6200 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 6201 } 6202 6203 /* 6204 * For authenticated bp's, we do not ask the ZIO layer 6205 * to authenticate them since this will cause the entire 6206 * IO to fail if the key isn't loaded. Instead, we 6207 * defer authentication until arc_buf_fill(), which will 6208 * verify the data when the key is available. 6209 */ 6210 if (BP_IS_AUTHENTICATED(bp)) 6211 zio_flags |= ZIO_FLAG_RAW_ENCRYPT; 6212 } 6213 6214 if (*arc_flags & ARC_FLAG_PREFETCH && 6215 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6216 if (HDR_HAS_L2HDR(hdr)) 6217 l2arc_hdr_arcstats_decrement_state(hdr); 6218 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 6219 if (HDR_HAS_L2HDR(hdr)) 6220 l2arc_hdr_arcstats_increment_state(hdr); 6221 } 6222 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 6223 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 6224 if (*arc_flags & ARC_FLAG_L2CACHE) 6225 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6226 if (BP_IS_AUTHENTICATED(bp)) 6227 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6228 if (BP_GET_LEVEL(bp) > 0) 6229 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); 6230 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH) 6231 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH); 6232 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 6233 6234 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 6235 acb->acb_done = done; 6236 acb->acb_private = private; 6237 acb->acb_compressed = compressed_read; 6238 acb->acb_encrypted = encrypted_read; 6239 acb->acb_noauth = noauth_read; 6240 acb->acb_zb = *zb; 6241 6242 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6243 hdr->b_l1hdr.b_acb = acb; 6244 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6245 6246 if (HDR_HAS_L2HDR(hdr) && 6247 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 6248 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 6249 addr = hdr->b_l2hdr.b_daddr; 6250 /* 6251 * Lock out L2ARC device removal. 6252 */ 6253 if (vdev_is_dead(vd) || 6254 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 6255 vd = NULL; 6256 } 6257 6258 /* 6259 * We count both async reads and scrub IOs as asynchronous so 6260 * that both can be upgraded in the event of a cache hit while 6261 * the read IO is still in-flight. 6262 */ 6263 if (priority == ZIO_PRIORITY_ASYNC_READ || 6264 priority == ZIO_PRIORITY_SCRUB) 6265 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6266 else 6267 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6268 6269 /* 6270 * At this point, we have a level 1 cache miss or a blkptr 6271 * with embedded data. Try again in L2ARC if possible. 6272 */ 6273 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); 6274 6275 /* 6276 * Skip ARC stat bump for block pointers with embedded 6277 * data. The data are read from the blkptr itself via 6278 * decode_embedded_bp_compressed(). 6279 */ 6280 if (!embedded_bp) { 6281 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, 6282 blkptr_t *, bp, uint64_t, lsize, 6283 zbookmark_phys_t *, zb); 6284 ARCSTAT_BUMP(arcstat_misses); 6285 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 6286 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, 6287 metadata, misses); 6288 zfs_racct_read(size, 1); 6289 } 6290 6291 /* Check if the spa even has l2 configured */ 6292 const boolean_t spa_has_l2 = l2arc_ndev != 0 && 6293 spa->spa_l2cache.sav_count > 0; 6294 6295 if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) { 6296 /* 6297 * Read from the L2ARC if the following are true: 6298 * 1. The L2ARC vdev was previously cached. 6299 * 2. This buffer still has L2ARC metadata. 6300 * 3. This buffer isn't currently writing to the L2ARC. 6301 * 4. The L2ARC entry wasn't evicted, which may 6302 * also have invalidated the vdev. 6303 * 5. This isn't prefetch or l2arc_noprefetch is 0. 6304 */ 6305 if (HDR_HAS_L2HDR(hdr) && 6306 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 6307 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 6308 l2arc_read_callback_t *cb; 6309 abd_t *abd; 6310 uint64_t asize; 6311 6312 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 6313 ARCSTAT_BUMP(arcstat_l2_hits); 6314 hdr->b_l2hdr.b_hits++; 6315 6316 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 6317 KM_SLEEP); 6318 cb->l2rcb_hdr = hdr; 6319 cb->l2rcb_bp = *bp; 6320 cb->l2rcb_zb = *zb; 6321 cb->l2rcb_flags = zio_flags; 6322 6323 /* 6324 * When Compressed ARC is disabled, but the 6325 * L2ARC block is compressed, arc_hdr_size() 6326 * will have returned LSIZE rather than PSIZE. 6327 */ 6328 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 6329 !HDR_COMPRESSION_ENABLED(hdr) && 6330 HDR_GET_PSIZE(hdr) != 0) { 6331 size = HDR_GET_PSIZE(hdr); 6332 } 6333 6334 asize = vdev_psize_to_asize(vd, size); 6335 if (asize != size) { 6336 abd = abd_alloc_for_io(asize, 6337 HDR_ISTYPE_METADATA(hdr)); 6338 cb->l2rcb_abd = abd; 6339 } else { 6340 abd = hdr_abd; 6341 } 6342 6343 ASSERT(addr >= VDEV_LABEL_START_SIZE && 6344 addr + asize <= vd->vdev_psize - 6345 VDEV_LABEL_END_SIZE); 6346 6347 /* 6348 * l2arc read. The SCL_L2ARC lock will be 6349 * released by l2arc_read_done(). 6350 * Issue a null zio if the underlying buffer 6351 * was squashed to zero size by compression. 6352 */ 6353 ASSERT3U(arc_hdr_get_compress(hdr), !=, 6354 ZIO_COMPRESS_EMPTY); 6355 rzio = zio_read_phys(pio, vd, addr, 6356 asize, abd, 6357 ZIO_CHECKSUM_OFF, 6358 l2arc_read_done, cb, priority, 6359 zio_flags | ZIO_FLAG_DONT_CACHE | 6360 ZIO_FLAG_CANFAIL | 6361 ZIO_FLAG_DONT_PROPAGATE | 6362 ZIO_FLAG_DONT_RETRY, B_FALSE); 6363 acb->acb_zio_head = rzio; 6364 6365 if (hash_lock != NULL) 6366 mutex_exit(hash_lock); 6367 6368 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 6369 zio_t *, rzio); 6370 ARCSTAT_INCR(arcstat_l2_read_bytes, 6371 HDR_GET_PSIZE(hdr)); 6372 6373 if (*arc_flags & ARC_FLAG_NOWAIT) { 6374 zio_nowait(rzio); 6375 goto out; 6376 } 6377 6378 ASSERT(*arc_flags & ARC_FLAG_WAIT); 6379 if (zio_wait(rzio) == 0) 6380 goto out; 6381 6382 /* l2arc read error; goto zio_read() */ 6383 if (hash_lock != NULL) 6384 mutex_enter(hash_lock); 6385 } else { 6386 DTRACE_PROBE1(l2arc__miss, 6387 arc_buf_hdr_t *, hdr); 6388 ARCSTAT_BUMP(arcstat_l2_misses); 6389 if (HDR_L2_WRITING(hdr)) 6390 ARCSTAT_BUMP(arcstat_l2_rw_clash); 6391 spa_config_exit(spa, SCL_L2ARC, vd); 6392 } 6393 } else { 6394 if (vd != NULL) 6395 spa_config_exit(spa, SCL_L2ARC, vd); 6396 6397 /* 6398 * Only a spa with l2 should contribute to l2 6399 * miss stats. (Including the case of having a 6400 * faulted cache device - that's also a miss.) 6401 */ 6402 if (spa_has_l2) { 6403 /* 6404 * Skip ARC stat bump for block pointers with 6405 * embedded data. The data are read from the 6406 * blkptr itself via 6407 * decode_embedded_bp_compressed(). 6408 */ 6409 if (!embedded_bp) { 6410 DTRACE_PROBE1(l2arc__miss, 6411 arc_buf_hdr_t *, hdr); 6412 ARCSTAT_BUMP(arcstat_l2_misses); 6413 } 6414 } 6415 } 6416 6417 rzio = zio_read(pio, spa, bp, hdr_abd, size, 6418 arc_read_done, hdr, priority, zio_flags, zb); 6419 acb->acb_zio_head = rzio; 6420 6421 if (hash_lock != NULL) 6422 mutex_exit(hash_lock); 6423 6424 if (*arc_flags & ARC_FLAG_WAIT) { 6425 rc = zio_wait(rzio); 6426 goto out; 6427 } 6428 6429 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 6430 zio_nowait(rzio); 6431 } 6432 6433 out: 6434 /* embedded bps don't actually go to disk */ 6435 if (!embedded_bp) 6436 spa_read_history_add(spa, zb, *arc_flags); 6437 spl_fstrans_unmark(cookie); 6438 return (rc); 6439 } 6440 6441 arc_prune_t * 6442 arc_add_prune_callback(arc_prune_func_t *func, void *private) 6443 { 6444 arc_prune_t *p; 6445 6446 p = kmem_alloc(sizeof (*p), KM_SLEEP); 6447 p->p_pfunc = func; 6448 p->p_private = private; 6449 list_link_init(&p->p_node); 6450 zfs_refcount_create(&p->p_refcnt); 6451 6452 mutex_enter(&arc_prune_mtx); 6453 zfs_refcount_add(&p->p_refcnt, &arc_prune_list); 6454 list_insert_head(&arc_prune_list, p); 6455 mutex_exit(&arc_prune_mtx); 6456 6457 return (p); 6458 } 6459 6460 void 6461 arc_remove_prune_callback(arc_prune_t *p) 6462 { 6463 boolean_t wait = B_FALSE; 6464 mutex_enter(&arc_prune_mtx); 6465 list_remove(&arc_prune_list, p); 6466 if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0) 6467 wait = B_TRUE; 6468 mutex_exit(&arc_prune_mtx); 6469 6470 /* wait for arc_prune_task to finish */ 6471 if (wait) 6472 taskq_wait_outstanding(arc_prune_taskq, 0); 6473 ASSERT0(zfs_refcount_count(&p->p_refcnt)); 6474 zfs_refcount_destroy(&p->p_refcnt); 6475 kmem_free(p, sizeof (*p)); 6476 } 6477 6478 /* 6479 * Notify the arc that a block was freed, and thus will never be used again. 6480 */ 6481 void 6482 arc_freed(spa_t *spa, const blkptr_t *bp) 6483 { 6484 arc_buf_hdr_t *hdr; 6485 kmutex_t *hash_lock; 6486 uint64_t guid = spa_load_guid(spa); 6487 6488 ASSERT(!BP_IS_EMBEDDED(bp)); 6489 6490 hdr = buf_hash_find(guid, bp, &hash_lock); 6491 if (hdr == NULL) 6492 return; 6493 6494 /* 6495 * We might be trying to free a block that is still doing I/O 6496 * (i.e. prefetch) or has a reference (i.e. a dedup-ed, 6497 * dmu_sync-ed block). If this block is being prefetched, then it 6498 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr 6499 * until the I/O completes. A block may also have a reference if it is 6500 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would 6501 * have written the new block to its final resting place on disk but 6502 * without the dedup flag set. This would have left the hdr in the MRU 6503 * state and discoverable. When the txg finally syncs it detects that 6504 * the block was overridden in open context and issues an override I/O. 6505 * Since this is a dedup block, the override I/O will determine if the 6506 * block is already in the DDT. If so, then it will replace the io_bp 6507 * with the bp from the DDT and allow the I/O to finish. When the I/O 6508 * reaches the done callback, dbuf_write_override_done, it will 6509 * check to see if the io_bp and io_bp_override are identical. 6510 * If they are not, then it indicates that the bp was replaced with 6511 * the bp in the DDT and the override bp is freed. This allows 6512 * us to arrive here with a reference on a block that is being 6513 * freed. So if we have an I/O in progress, or a reference to 6514 * this hdr, then we don't destroy the hdr. 6515 */ 6516 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) && 6517 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) { 6518 arc_change_state(arc_anon, hdr, hash_lock); 6519 arc_hdr_destroy(hdr); 6520 mutex_exit(hash_lock); 6521 } else { 6522 mutex_exit(hash_lock); 6523 } 6524 6525 } 6526 6527 /* 6528 * Release this buffer from the cache, making it an anonymous buffer. This 6529 * must be done after a read and prior to modifying the buffer contents. 6530 * If the buffer has more than one reference, we must make 6531 * a new hdr for the buffer. 6532 */ 6533 void 6534 arc_release(arc_buf_t *buf, void *tag) 6535 { 6536 arc_buf_hdr_t *hdr = buf->b_hdr; 6537 6538 /* 6539 * It would be nice to assert that if its DMU metadata (level > 6540 * 0 || it's the dnode file), then it must be syncing context. 6541 * But we don't know that information at this level. 6542 */ 6543 6544 mutex_enter(&buf->b_evict_lock); 6545 6546 ASSERT(HDR_HAS_L1HDR(hdr)); 6547 6548 /* 6549 * We don't grab the hash lock prior to this check, because if 6550 * the buffer's header is in the arc_anon state, it won't be 6551 * linked into the hash table. 6552 */ 6553 if (hdr->b_l1hdr.b_state == arc_anon) { 6554 mutex_exit(&buf->b_evict_lock); 6555 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6556 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 6557 ASSERT(!HDR_HAS_L2HDR(hdr)); 6558 6559 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6560 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 6561 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node)); 6562 6563 hdr->b_l1hdr.b_arc_access = 0; 6564 6565 /* 6566 * If the buf is being overridden then it may already 6567 * have a hdr that is not empty. 6568 */ 6569 buf_discard_identity(hdr); 6570 arc_buf_thaw(buf); 6571 6572 return; 6573 } 6574 6575 kmutex_t *hash_lock = HDR_LOCK(hdr); 6576 mutex_enter(hash_lock); 6577 6578 /* 6579 * This assignment is only valid as long as the hash_lock is 6580 * held, we must be careful not to reference state or the 6581 * b_state field after dropping the lock. 6582 */ 6583 arc_state_t *state = hdr->b_l1hdr.b_state; 6584 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 6585 ASSERT3P(state, !=, arc_anon); 6586 6587 /* this buffer is not on any list */ 6588 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0); 6589 6590 if (HDR_HAS_L2HDR(hdr)) { 6591 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6592 6593 /* 6594 * We have to recheck this conditional again now that 6595 * we're holding the l2ad_mtx to prevent a race with 6596 * another thread which might be concurrently calling 6597 * l2arc_evict(). In that case, l2arc_evict() might have 6598 * destroyed the header's L2 portion as we were waiting 6599 * to acquire the l2ad_mtx. 6600 */ 6601 if (HDR_HAS_L2HDR(hdr)) 6602 arc_hdr_l2hdr_destroy(hdr); 6603 6604 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6605 } 6606 6607 /* 6608 * Do we have more than one buf? 6609 */ 6610 if (hdr->b_l1hdr.b_bufcnt > 1) { 6611 arc_buf_hdr_t *nhdr; 6612 uint64_t spa = hdr->b_spa; 6613 uint64_t psize = HDR_GET_PSIZE(hdr); 6614 uint64_t lsize = HDR_GET_LSIZE(hdr); 6615 boolean_t protected = HDR_PROTECTED(hdr); 6616 enum zio_compress compress = arc_hdr_get_compress(hdr); 6617 arc_buf_contents_t type = arc_buf_type(hdr); 6618 VERIFY3U(hdr->b_type, ==, type); 6619 6620 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); 6621 (void) remove_reference(hdr, hash_lock, tag); 6622 6623 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) { 6624 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6625 ASSERT(ARC_BUF_LAST(buf)); 6626 } 6627 6628 /* 6629 * Pull the data off of this hdr and attach it to 6630 * a new anonymous hdr. Also find the last buffer 6631 * in the hdr's buffer list. 6632 */ 6633 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 6634 ASSERT3P(lastbuf, !=, NULL); 6635 6636 /* 6637 * If the current arc_buf_t and the hdr are sharing their data 6638 * buffer, then we must stop sharing that block. 6639 */ 6640 if (arc_buf_is_shared(buf)) { 6641 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6642 VERIFY(!arc_buf_is_shared(lastbuf)); 6643 6644 /* 6645 * First, sever the block sharing relationship between 6646 * buf and the arc_buf_hdr_t. 6647 */ 6648 arc_unshare_buf(hdr, buf); 6649 6650 /* 6651 * Now we need to recreate the hdr's b_pabd. Since we 6652 * have lastbuf handy, we try to share with it, but if 6653 * we can't then we allocate a new b_pabd and copy the 6654 * data from buf into it. 6655 */ 6656 if (arc_can_share(hdr, lastbuf)) { 6657 arc_share_buf(hdr, lastbuf); 6658 } else { 6659 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 6660 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, 6661 buf->b_data, psize); 6662 } 6663 VERIFY3P(lastbuf->b_data, !=, NULL); 6664 } else if (HDR_SHARED_DATA(hdr)) { 6665 /* 6666 * Uncompressed shared buffers are always at the end 6667 * of the list. Compressed buffers don't have the 6668 * same requirements. This makes it hard to 6669 * simply assert that the lastbuf is shared so 6670 * we rely on the hdr's compression flags to determine 6671 * if we have a compressed, shared buffer. 6672 */ 6673 ASSERT(arc_buf_is_shared(lastbuf) || 6674 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 6675 ASSERT(!ARC_BUF_SHARED(buf)); 6676 } 6677 6678 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 6679 ASSERT3P(state, !=, arc_l2c_only); 6680 6681 (void) zfs_refcount_remove_many(&state->arcs_size, 6682 arc_buf_size(buf), buf); 6683 6684 if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6685 ASSERT3P(state, !=, arc_l2c_only); 6686 (void) zfs_refcount_remove_many( 6687 &state->arcs_esize[type], 6688 arc_buf_size(buf), buf); 6689 } 6690 6691 hdr->b_l1hdr.b_bufcnt -= 1; 6692 if (ARC_BUF_ENCRYPTED(buf)) 6693 hdr->b_crypt_hdr.b_ebufcnt -= 1; 6694 6695 arc_cksum_verify(buf); 6696 arc_buf_unwatch(buf); 6697 6698 /* if this is the last uncompressed buf free the checksum */ 6699 if (!arc_hdr_has_uncompressed_buf(hdr)) 6700 arc_cksum_free(hdr); 6701 6702 mutex_exit(hash_lock); 6703 6704 /* 6705 * Allocate a new hdr. The new hdr will contain a b_pabd 6706 * buffer which will be freed in arc_write(). 6707 */ 6708 nhdr = arc_hdr_alloc(spa, psize, lsize, protected, 6709 compress, hdr->b_complevel, type); 6710 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL); 6711 ASSERT0(nhdr->b_l1hdr.b_bufcnt); 6712 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt)); 6713 VERIFY3U(nhdr->b_type, ==, type); 6714 ASSERT(!HDR_SHARED_DATA(nhdr)); 6715 6716 nhdr->b_l1hdr.b_buf = buf; 6717 nhdr->b_l1hdr.b_bufcnt = 1; 6718 if (ARC_BUF_ENCRYPTED(buf)) 6719 nhdr->b_crypt_hdr.b_ebufcnt = 1; 6720 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 6721 buf->b_hdr = nhdr; 6722 6723 mutex_exit(&buf->b_evict_lock); 6724 (void) zfs_refcount_add_many(&arc_anon->arcs_size, 6725 arc_buf_size(buf), buf); 6726 } else { 6727 mutex_exit(&buf->b_evict_lock); 6728 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 6729 /* protected by hash lock, or hdr is on arc_anon */ 6730 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 6731 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6732 hdr->b_l1hdr.b_mru_hits = 0; 6733 hdr->b_l1hdr.b_mru_ghost_hits = 0; 6734 hdr->b_l1hdr.b_mfu_hits = 0; 6735 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 6736 arc_change_state(arc_anon, hdr, hash_lock); 6737 hdr->b_l1hdr.b_arc_access = 0; 6738 6739 mutex_exit(hash_lock); 6740 buf_discard_identity(hdr); 6741 arc_buf_thaw(buf); 6742 } 6743 } 6744 6745 int 6746 arc_released(arc_buf_t *buf) 6747 { 6748 int released; 6749 6750 mutex_enter(&buf->b_evict_lock); 6751 released = (buf->b_data != NULL && 6752 buf->b_hdr->b_l1hdr.b_state == arc_anon); 6753 mutex_exit(&buf->b_evict_lock); 6754 return (released); 6755 } 6756 6757 #ifdef ZFS_DEBUG 6758 int 6759 arc_referenced(arc_buf_t *buf) 6760 { 6761 int referenced; 6762 6763 mutex_enter(&buf->b_evict_lock); 6764 referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 6765 mutex_exit(&buf->b_evict_lock); 6766 return (referenced); 6767 } 6768 #endif 6769 6770 static void 6771 arc_write_ready(zio_t *zio) 6772 { 6773 arc_write_callback_t *callback = zio->io_private; 6774 arc_buf_t *buf = callback->awcb_buf; 6775 arc_buf_hdr_t *hdr = buf->b_hdr; 6776 blkptr_t *bp = zio->io_bp; 6777 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp); 6778 fstrans_cookie_t cookie = spl_fstrans_mark(); 6779 6780 ASSERT(HDR_HAS_L1HDR(hdr)); 6781 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 6782 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 6783 6784 /* 6785 * If we're reexecuting this zio because the pool suspended, then 6786 * cleanup any state that was previously set the first time the 6787 * callback was invoked. 6788 */ 6789 if (zio->io_flags & ZIO_FLAG_REEXECUTED) { 6790 arc_cksum_free(hdr); 6791 arc_buf_unwatch(buf); 6792 if (hdr->b_l1hdr.b_pabd != NULL) { 6793 if (arc_buf_is_shared(buf)) { 6794 arc_unshare_buf(hdr, buf); 6795 } else { 6796 arc_hdr_free_abd(hdr, B_FALSE); 6797 } 6798 } 6799 6800 if (HDR_HAS_RABD(hdr)) 6801 arc_hdr_free_abd(hdr, B_TRUE); 6802 } 6803 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6804 ASSERT(!HDR_HAS_RABD(hdr)); 6805 ASSERT(!HDR_SHARED_DATA(hdr)); 6806 ASSERT(!arc_buf_is_shared(buf)); 6807 6808 callback->awcb_ready(zio, buf, callback->awcb_private); 6809 6810 if (HDR_IO_IN_PROGRESS(hdr)) 6811 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); 6812 6813 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6814 6815 if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr)) 6816 hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp)); 6817 6818 if (BP_IS_PROTECTED(bp)) { 6819 /* ZIL blocks are written through zio_rewrite */ 6820 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 6821 ASSERT(HDR_PROTECTED(hdr)); 6822 6823 if (BP_SHOULD_BYTESWAP(bp)) { 6824 if (BP_GET_LEVEL(bp) > 0) { 6825 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 6826 } else { 6827 hdr->b_l1hdr.b_byteswap = 6828 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 6829 } 6830 } else { 6831 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 6832 } 6833 6834 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 6835 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 6836 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 6837 hdr->b_crypt_hdr.b_iv); 6838 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 6839 } 6840 6841 /* 6842 * If this block was written for raw encryption but the zio layer 6843 * ended up only authenticating it, adjust the buffer flags now. 6844 */ 6845 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) { 6846 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6847 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6848 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF) 6849 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6850 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) { 6851 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6852 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6853 } 6854 6855 /* this must be done after the buffer flags are adjusted */ 6856 arc_cksum_compute(buf); 6857 6858 enum zio_compress compress; 6859 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 6860 compress = ZIO_COMPRESS_OFF; 6861 } else { 6862 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 6863 compress = BP_GET_COMPRESS(bp); 6864 } 6865 HDR_SET_PSIZE(hdr, psize); 6866 arc_hdr_set_compress(hdr, compress); 6867 hdr->b_complevel = zio->io_prop.zp_complevel; 6868 6869 if (zio->io_error != 0 || psize == 0) 6870 goto out; 6871 6872 /* 6873 * Fill the hdr with data. If the buffer is encrypted we have no choice 6874 * but to copy the data into b_radb. If the hdr is compressed, the data 6875 * we want is available from the zio, otherwise we can take it from 6876 * the buf. 6877 * 6878 * We might be able to share the buf's data with the hdr here. However, 6879 * doing so would cause the ARC to be full of linear ABDs if we write a 6880 * lot of shareable data. As a compromise, we check whether scattered 6881 * ABDs are allowed, and assume that if they are then the user wants 6882 * the ARC to be primarily filled with them regardless of the data being 6883 * written. Therefore, if they're allowed then we allocate one and copy 6884 * the data into it; otherwise, we share the data directly if we can. 6885 */ 6886 if (ARC_BUF_ENCRYPTED(buf)) { 6887 ASSERT3U(psize, >, 0); 6888 ASSERT(ARC_BUF_COMPRESSED(buf)); 6889 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT | ARC_HDR_ALLOC_RDATA | 6890 ARC_HDR_USE_RESERVE); 6891 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6892 } else if (!abd_size_alloc_linear(arc_buf_size(buf)) || 6893 !arc_can_share(hdr, buf)) { 6894 /* 6895 * Ideally, we would always copy the io_abd into b_pabd, but the 6896 * user may have disabled compressed ARC, thus we must check the 6897 * hdr's compression setting rather than the io_bp's. 6898 */ 6899 if (BP_IS_ENCRYPTED(bp)) { 6900 ASSERT3U(psize, >, 0); 6901 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT | 6902 ARC_HDR_ALLOC_RDATA | ARC_HDR_USE_RESERVE); 6903 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6904 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 6905 !ARC_BUF_COMPRESSED(buf)) { 6906 ASSERT3U(psize, >, 0); 6907 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT | 6908 ARC_HDR_USE_RESERVE); 6909 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize); 6910 } else { 6911 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr)); 6912 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT | 6913 ARC_HDR_USE_RESERVE); 6914 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data, 6915 arc_buf_size(buf)); 6916 } 6917 } else { 6918 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd)); 6919 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf)); 6920 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6921 6922 arc_share_buf(hdr, buf); 6923 } 6924 6925 out: 6926 arc_hdr_verify(hdr, bp); 6927 spl_fstrans_unmark(cookie); 6928 } 6929 6930 static void 6931 arc_write_children_ready(zio_t *zio) 6932 { 6933 arc_write_callback_t *callback = zio->io_private; 6934 arc_buf_t *buf = callback->awcb_buf; 6935 6936 callback->awcb_children_ready(zio, buf, callback->awcb_private); 6937 } 6938 6939 /* 6940 * The SPA calls this callback for each physical write that happens on behalf 6941 * of a logical write. See the comment in dbuf_write_physdone() for details. 6942 */ 6943 static void 6944 arc_write_physdone(zio_t *zio) 6945 { 6946 arc_write_callback_t *cb = zio->io_private; 6947 if (cb->awcb_physdone != NULL) 6948 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 6949 } 6950 6951 static void 6952 arc_write_done(zio_t *zio) 6953 { 6954 arc_write_callback_t *callback = zio->io_private; 6955 arc_buf_t *buf = callback->awcb_buf; 6956 arc_buf_hdr_t *hdr = buf->b_hdr; 6957 6958 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6959 6960 if (zio->io_error == 0) { 6961 arc_hdr_verify(hdr, zio->io_bp); 6962 6963 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 6964 buf_discard_identity(hdr); 6965 } else { 6966 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 6967 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 6968 } 6969 } else { 6970 ASSERT(HDR_EMPTY(hdr)); 6971 } 6972 6973 /* 6974 * If the block to be written was all-zero or compressed enough to be 6975 * embedded in the BP, no write was performed so there will be no 6976 * dva/birth/checksum. The buffer must therefore remain anonymous 6977 * (and uncached). 6978 */ 6979 if (!HDR_EMPTY(hdr)) { 6980 arc_buf_hdr_t *exists; 6981 kmutex_t *hash_lock; 6982 6983 ASSERT3U(zio->io_error, ==, 0); 6984 6985 arc_cksum_verify(buf); 6986 6987 exists = buf_hash_insert(hdr, &hash_lock); 6988 if (exists != NULL) { 6989 /* 6990 * This can only happen if we overwrite for 6991 * sync-to-convergence, because we remove 6992 * buffers from the hash table when we arc_free(). 6993 */ 6994 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 6995 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6996 panic("bad overwrite, hdr=%p exists=%p", 6997 (void *)hdr, (void *)exists); 6998 ASSERT(zfs_refcount_is_zero( 6999 &exists->b_l1hdr.b_refcnt)); 7000 arc_change_state(arc_anon, exists, hash_lock); 7001 arc_hdr_destroy(exists); 7002 mutex_exit(hash_lock); 7003 exists = buf_hash_insert(hdr, &hash_lock); 7004 ASSERT3P(exists, ==, NULL); 7005 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 7006 /* nopwrite */ 7007 ASSERT(zio->io_prop.zp_nopwrite); 7008 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 7009 panic("bad nopwrite, hdr=%p exists=%p", 7010 (void *)hdr, (void *)exists); 7011 } else { 7012 /* Dedup */ 7013 ASSERT(hdr->b_l1hdr.b_bufcnt == 1); 7014 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 7015 ASSERT(BP_GET_DEDUP(zio->io_bp)); 7016 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 7017 } 7018 } 7019 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 7020 /* if it's not anon, we are doing a scrub */ 7021 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 7022 arc_access(hdr, hash_lock); 7023 mutex_exit(hash_lock); 7024 } else { 7025 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 7026 } 7027 7028 ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 7029 callback->awcb_done(zio, buf, callback->awcb_private); 7030 7031 abd_free(zio->io_abd); 7032 kmem_free(callback, sizeof (arc_write_callback_t)); 7033 } 7034 7035 zio_t * 7036 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 7037 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, 7038 const zio_prop_t *zp, arc_write_done_func_t *ready, 7039 arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone, 7040 arc_write_done_func_t *done, void *private, zio_priority_t priority, 7041 int zio_flags, const zbookmark_phys_t *zb) 7042 { 7043 arc_buf_hdr_t *hdr = buf->b_hdr; 7044 arc_write_callback_t *callback; 7045 zio_t *zio; 7046 zio_prop_t localprop = *zp; 7047 7048 ASSERT3P(ready, !=, NULL); 7049 ASSERT3P(done, !=, NULL); 7050 ASSERT(!HDR_IO_ERROR(hdr)); 7051 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 7052 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 7053 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 7054 if (l2arc) 7055 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 7056 7057 if (ARC_BUF_ENCRYPTED(buf)) { 7058 ASSERT(ARC_BUF_COMPRESSED(buf)); 7059 localprop.zp_encrypt = B_TRUE; 7060 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 7061 localprop.zp_complevel = hdr->b_complevel; 7062 localprop.zp_byteorder = 7063 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 7064 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 7065 bcopy(hdr->b_crypt_hdr.b_salt, localprop.zp_salt, 7066 ZIO_DATA_SALT_LEN); 7067 bcopy(hdr->b_crypt_hdr.b_iv, localprop.zp_iv, 7068 ZIO_DATA_IV_LEN); 7069 bcopy(hdr->b_crypt_hdr.b_mac, localprop.zp_mac, 7070 ZIO_DATA_MAC_LEN); 7071 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) { 7072 localprop.zp_nopwrite = B_FALSE; 7073 localprop.zp_copies = 7074 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1); 7075 } 7076 zio_flags |= ZIO_FLAG_RAW; 7077 } else if (ARC_BUF_COMPRESSED(buf)) { 7078 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf)); 7079 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 7080 localprop.zp_complevel = hdr->b_complevel; 7081 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 7082 } 7083 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 7084 callback->awcb_ready = ready; 7085 callback->awcb_children_ready = children_ready; 7086 callback->awcb_physdone = physdone; 7087 callback->awcb_done = done; 7088 callback->awcb_private = private; 7089 callback->awcb_buf = buf; 7090 7091 /* 7092 * The hdr's b_pabd is now stale, free it now. A new data block 7093 * will be allocated when the zio pipeline calls arc_write_ready(). 7094 */ 7095 if (hdr->b_l1hdr.b_pabd != NULL) { 7096 /* 7097 * If the buf is currently sharing the data block with 7098 * the hdr then we need to break that relationship here. 7099 * The hdr will remain with a NULL data pointer and the 7100 * buf will take sole ownership of the block. 7101 */ 7102 if (arc_buf_is_shared(buf)) { 7103 arc_unshare_buf(hdr, buf); 7104 } else { 7105 arc_hdr_free_abd(hdr, B_FALSE); 7106 } 7107 VERIFY3P(buf->b_data, !=, NULL); 7108 } 7109 7110 if (HDR_HAS_RABD(hdr)) 7111 arc_hdr_free_abd(hdr, B_TRUE); 7112 7113 if (!(zio_flags & ZIO_FLAG_RAW)) 7114 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); 7115 7116 ASSERT(!arc_buf_is_shared(buf)); 7117 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 7118 7119 zio = zio_write(pio, spa, txg, bp, 7120 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)), 7121 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready, 7122 (children_ready != NULL) ? arc_write_children_ready : NULL, 7123 arc_write_physdone, arc_write_done, callback, 7124 priority, zio_flags, zb); 7125 7126 return (zio); 7127 } 7128 7129 void 7130 arc_tempreserve_clear(uint64_t reserve) 7131 { 7132 atomic_add_64(&arc_tempreserve, -reserve); 7133 ASSERT((int64_t)arc_tempreserve >= 0); 7134 } 7135 7136 int 7137 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg) 7138 { 7139 int error; 7140 uint64_t anon_size; 7141 7142 if (!arc_no_grow && 7143 reserve > arc_c/4 && 7144 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT)) 7145 arc_c = MIN(arc_c_max, reserve * 4); 7146 7147 /* 7148 * Throttle when the calculated memory footprint for the TXG 7149 * exceeds the target ARC size. 7150 */ 7151 if (reserve > arc_c) { 7152 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve); 7153 return (SET_ERROR(ERESTART)); 7154 } 7155 7156 /* 7157 * Don't count loaned bufs as in flight dirty data to prevent long 7158 * network delays from blocking transactions that are ready to be 7159 * assigned to a txg. 7160 */ 7161 7162 /* assert that it has not wrapped around */ 7163 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 7164 7165 anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) - 7166 arc_loaned_bytes), 0); 7167 7168 /* 7169 * Writes will, almost always, require additional memory allocations 7170 * in order to compress/encrypt/etc the data. We therefore need to 7171 * make sure that there is sufficient available memory for this. 7172 */ 7173 error = arc_memory_throttle(spa, reserve, txg); 7174 if (error != 0) 7175 return (error); 7176 7177 /* 7178 * Throttle writes when the amount of dirty data in the cache 7179 * gets too large. We try to keep the cache less than half full 7180 * of dirty blocks so that our sync times don't grow too large. 7181 * 7182 * In the case of one pool being built on another pool, we want 7183 * to make sure we don't end up throttling the lower (backing) 7184 * pool when the upper pool is the majority contributor to dirty 7185 * data. To insure we make forward progress during throttling, we 7186 * also check the current pool's net dirty data and only throttle 7187 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty 7188 * data in the cache. 7189 * 7190 * Note: if two requests come in concurrently, we might let them 7191 * both succeed, when one of them should fail. Not a huge deal. 7192 */ 7193 uint64_t total_dirty = reserve + arc_tempreserve + anon_size; 7194 uint64_t spa_dirty_anon = spa_dirty_data(spa); 7195 uint64_t rarc_c = arc_warm ? arc_c : arc_c_max; 7196 if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 && 7197 anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 && 7198 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) { 7199 #ifdef ZFS_DEBUG 7200 uint64_t meta_esize = zfs_refcount_count( 7201 &arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7202 uint64_t data_esize = 7203 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7204 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 7205 "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n", 7206 (u_longlong_t)arc_tempreserve >> 10, 7207 (u_longlong_t)meta_esize >> 10, 7208 (u_longlong_t)data_esize >> 10, 7209 (u_longlong_t)reserve >> 10, 7210 (u_longlong_t)rarc_c >> 10); 7211 #endif 7212 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle); 7213 return (SET_ERROR(ERESTART)); 7214 } 7215 atomic_add_64(&arc_tempreserve, reserve); 7216 return (0); 7217 } 7218 7219 static void 7220 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 7221 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 7222 { 7223 size->value.ui64 = zfs_refcount_count(&state->arcs_size); 7224 evict_data->value.ui64 = 7225 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); 7226 evict_metadata->value.ui64 = 7227 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); 7228 } 7229 7230 static int 7231 arc_kstat_update(kstat_t *ksp, int rw) 7232 { 7233 arc_stats_t *as = ksp->ks_data; 7234 7235 if (rw == KSTAT_WRITE) 7236 return (SET_ERROR(EACCES)); 7237 7238 as->arcstat_hits.value.ui64 = 7239 wmsum_value(&arc_sums.arcstat_hits); 7240 as->arcstat_misses.value.ui64 = 7241 wmsum_value(&arc_sums.arcstat_misses); 7242 as->arcstat_demand_data_hits.value.ui64 = 7243 wmsum_value(&arc_sums.arcstat_demand_data_hits); 7244 as->arcstat_demand_data_misses.value.ui64 = 7245 wmsum_value(&arc_sums.arcstat_demand_data_misses); 7246 as->arcstat_demand_metadata_hits.value.ui64 = 7247 wmsum_value(&arc_sums.arcstat_demand_metadata_hits); 7248 as->arcstat_demand_metadata_misses.value.ui64 = 7249 wmsum_value(&arc_sums.arcstat_demand_metadata_misses); 7250 as->arcstat_prefetch_data_hits.value.ui64 = 7251 wmsum_value(&arc_sums.arcstat_prefetch_data_hits); 7252 as->arcstat_prefetch_data_misses.value.ui64 = 7253 wmsum_value(&arc_sums.arcstat_prefetch_data_misses); 7254 as->arcstat_prefetch_metadata_hits.value.ui64 = 7255 wmsum_value(&arc_sums.arcstat_prefetch_metadata_hits); 7256 as->arcstat_prefetch_metadata_misses.value.ui64 = 7257 wmsum_value(&arc_sums.arcstat_prefetch_metadata_misses); 7258 as->arcstat_mru_hits.value.ui64 = 7259 wmsum_value(&arc_sums.arcstat_mru_hits); 7260 as->arcstat_mru_ghost_hits.value.ui64 = 7261 wmsum_value(&arc_sums.arcstat_mru_ghost_hits); 7262 as->arcstat_mfu_hits.value.ui64 = 7263 wmsum_value(&arc_sums.arcstat_mfu_hits); 7264 as->arcstat_mfu_ghost_hits.value.ui64 = 7265 wmsum_value(&arc_sums.arcstat_mfu_ghost_hits); 7266 as->arcstat_deleted.value.ui64 = 7267 wmsum_value(&arc_sums.arcstat_deleted); 7268 as->arcstat_mutex_miss.value.ui64 = 7269 wmsum_value(&arc_sums.arcstat_mutex_miss); 7270 as->arcstat_access_skip.value.ui64 = 7271 wmsum_value(&arc_sums.arcstat_access_skip); 7272 as->arcstat_evict_skip.value.ui64 = 7273 wmsum_value(&arc_sums.arcstat_evict_skip); 7274 as->arcstat_evict_not_enough.value.ui64 = 7275 wmsum_value(&arc_sums.arcstat_evict_not_enough); 7276 as->arcstat_evict_l2_cached.value.ui64 = 7277 wmsum_value(&arc_sums.arcstat_evict_l2_cached); 7278 as->arcstat_evict_l2_eligible.value.ui64 = 7279 wmsum_value(&arc_sums.arcstat_evict_l2_eligible); 7280 as->arcstat_evict_l2_eligible_mfu.value.ui64 = 7281 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mfu); 7282 as->arcstat_evict_l2_eligible_mru.value.ui64 = 7283 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mru); 7284 as->arcstat_evict_l2_ineligible.value.ui64 = 7285 wmsum_value(&arc_sums.arcstat_evict_l2_ineligible); 7286 as->arcstat_evict_l2_skip.value.ui64 = 7287 wmsum_value(&arc_sums.arcstat_evict_l2_skip); 7288 as->arcstat_hash_collisions.value.ui64 = 7289 wmsum_value(&arc_sums.arcstat_hash_collisions); 7290 as->arcstat_hash_chains.value.ui64 = 7291 wmsum_value(&arc_sums.arcstat_hash_chains); 7292 as->arcstat_size.value.ui64 = 7293 aggsum_value(&arc_sums.arcstat_size); 7294 as->arcstat_compressed_size.value.ui64 = 7295 wmsum_value(&arc_sums.arcstat_compressed_size); 7296 as->arcstat_uncompressed_size.value.ui64 = 7297 wmsum_value(&arc_sums.arcstat_uncompressed_size); 7298 as->arcstat_overhead_size.value.ui64 = 7299 wmsum_value(&arc_sums.arcstat_overhead_size); 7300 as->arcstat_hdr_size.value.ui64 = 7301 wmsum_value(&arc_sums.arcstat_hdr_size); 7302 as->arcstat_data_size.value.ui64 = 7303 wmsum_value(&arc_sums.arcstat_data_size); 7304 as->arcstat_metadata_size.value.ui64 = 7305 wmsum_value(&arc_sums.arcstat_metadata_size); 7306 as->arcstat_dbuf_size.value.ui64 = 7307 wmsum_value(&arc_sums.arcstat_dbuf_size); 7308 #if defined(COMPAT_FREEBSD11) 7309 as->arcstat_other_size.value.ui64 = 7310 wmsum_value(&arc_sums.arcstat_bonus_size) + 7311 aggsum_value(&arc_sums.arcstat_dnode_size) + 7312 wmsum_value(&arc_sums.arcstat_dbuf_size); 7313 #endif 7314 7315 arc_kstat_update_state(arc_anon, 7316 &as->arcstat_anon_size, 7317 &as->arcstat_anon_evictable_data, 7318 &as->arcstat_anon_evictable_metadata); 7319 arc_kstat_update_state(arc_mru, 7320 &as->arcstat_mru_size, 7321 &as->arcstat_mru_evictable_data, 7322 &as->arcstat_mru_evictable_metadata); 7323 arc_kstat_update_state(arc_mru_ghost, 7324 &as->arcstat_mru_ghost_size, 7325 &as->arcstat_mru_ghost_evictable_data, 7326 &as->arcstat_mru_ghost_evictable_metadata); 7327 arc_kstat_update_state(arc_mfu, 7328 &as->arcstat_mfu_size, 7329 &as->arcstat_mfu_evictable_data, 7330 &as->arcstat_mfu_evictable_metadata); 7331 arc_kstat_update_state(arc_mfu_ghost, 7332 &as->arcstat_mfu_ghost_size, 7333 &as->arcstat_mfu_ghost_evictable_data, 7334 &as->arcstat_mfu_ghost_evictable_metadata); 7335 7336 as->arcstat_dnode_size.value.ui64 = 7337 aggsum_value(&arc_sums.arcstat_dnode_size); 7338 as->arcstat_bonus_size.value.ui64 = 7339 wmsum_value(&arc_sums.arcstat_bonus_size); 7340 as->arcstat_l2_hits.value.ui64 = 7341 wmsum_value(&arc_sums.arcstat_l2_hits); 7342 as->arcstat_l2_misses.value.ui64 = 7343 wmsum_value(&arc_sums.arcstat_l2_misses); 7344 as->arcstat_l2_prefetch_asize.value.ui64 = 7345 wmsum_value(&arc_sums.arcstat_l2_prefetch_asize); 7346 as->arcstat_l2_mru_asize.value.ui64 = 7347 wmsum_value(&arc_sums.arcstat_l2_mru_asize); 7348 as->arcstat_l2_mfu_asize.value.ui64 = 7349 wmsum_value(&arc_sums.arcstat_l2_mfu_asize); 7350 as->arcstat_l2_bufc_data_asize.value.ui64 = 7351 wmsum_value(&arc_sums.arcstat_l2_bufc_data_asize); 7352 as->arcstat_l2_bufc_metadata_asize.value.ui64 = 7353 wmsum_value(&arc_sums.arcstat_l2_bufc_metadata_asize); 7354 as->arcstat_l2_feeds.value.ui64 = 7355 wmsum_value(&arc_sums.arcstat_l2_feeds); 7356 as->arcstat_l2_rw_clash.value.ui64 = 7357 wmsum_value(&arc_sums.arcstat_l2_rw_clash); 7358 as->arcstat_l2_read_bytes.value.ui64 = 7359 wmsum_value(&arc_sums.arcstat_l2_read_bytes); 7360 as->arcstat_l2_write_bytes.value.ui64 = 7361 wmsum_value(&arc_sums.arcstat_l2_write_bytes); 7362 as->arcstat_l2_writes_sent.value.ui64 = 7363 wmsum_value(&arc_sums.arcstat_l2_writes_sent); 7364 as->arcstat_l2_writes_done.value.ui64 = 7365 wmsum_value(&arc_sums.arcstat_l2_writes_done); 7366 as->arcstat_l2_writes_error.value.ui64 = 7367 wmsum_value(&arc_sums.arcstat_l2_writes_error); 7368 as->arcstat_l2_writes_lock_retry.value.ui64 = 7369 wmsum_value(&arc_sums.arcstat_l2_writes_lock_retry); 7370 as->arcstat_l2_evict_lock_retry.value.ui64 = 7371 wmsum_value(&arc_sums.arcstat_l2_evict_lock_retry); 7372 as->arcstat_l2_evict_reading.value.ui64 = 7373 wmsum_value(&arc_sums.arcstat_l2_evict_reading); 7374 as->arcstat_l2_evict_l1cached.value.ui64 = 7375 wmsum_value(&arc_sums.arcstat_l2_evict_l1cached); 7376 as->arcstat_l2_free_on_write.value.ui64 = 7377 wmsum_value(&arc_sums.arcstat_l2_free_on_write); 7378 as->arcstat_l2_abort_lowmem.value.ui64 = 7379 wmsum_value(&arc_sums.arcstat_l2_abort_lowmem); 7380 as->arcstat_l2_cksum_bad.value.ui64 = 7381 wmsum_value(&arc_sums.arcstat_l2_cksum_bad); 7382 as->arcstat_l2_io_error.value.ui64 = 7383 wmsum_value(&arc_sums.arcstat_l2_io_error); 7384 as->arcstat_l2_lsize.value.ui64 = 7385 wmsum_value(&arc_sums.arcstat_l2_lsize); 7386 as->arcstat_l2_psize.value.ui64 = 7387 wmsum_value(&arc_sums.arcstat_l2_psize); 7388 as->arcstat_l2_hdr_size.value.ui64 = 7389 aggsum_value(&arc_sums.arcstat_l2_hdr_size); 7390 as->arcstat_l2_log_blk_writes.value.ui64 = 7391 wmsum_value(&arc_sums.arcstat_l2_log_blk_writes); 7392 as->arcstat_l2_log_blk_asize.value.ui64 = 7393 wmsum_value(&arc_sums.arcstat_l2_log_blk_asize); 7394 as->arcstat_l2_log_blk_count.value.ui64 = 7395 wmsum_value(&arc_sums.arcstat_l2_log_blk_count); 7396 as->arcstat_l2_rebuild_success.value.ui64 = 7397 wmsum_value(&arc_sums.arcstat_l2_rebuild_success); 7398 as->arcstat_l2_rebuild_abort_unsupported.value.ui64 = 7399 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_unsupported); 7400 as->arcstat_l2_rebuild_abort_io_errors.value.ui64 = 7401 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_io_errors); 7402 as->arcstat_l2_rebuild_abort_dh_errors.value.ui64 = 7403 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_dh_errors); 7404 as->arcstat_l2_rebuild_abort_cksum_lb_errors.value.ui64 = 7405 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors); 7406 as->arcstat_l2_rebuild_abort_lowmem.value.ui64 = 7407 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_lowmem); 7408 as->arcstat_l2_rebuild_size.value.ui64 = 7409 wmsum_value(&arc_sums.arcstat_l2_rebuild_size); 7410 as->arcstat_l2_rebuild_asize.value.ui64 = 7411 wmsum_value(&arc_sums.arcstat_l2_rebuild_asize); 7412 as->arcstat_l2_rebuild_bufs.value.ui64 = 7413 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs); 7414 as->arcstat_l2_rebuild_bufs_precached.value.ui64 = 7415 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs_precached); 7416 as->arcstat_l2_rebuild_log_blks.value.ui64 = 7417 wmsum_value(&arc_sums.arcstat_l2_rebuild_log_blks); 7418 as->arcstat_memory_throttle_count.value.ui64 = 7419 wmsum_value(&arc_sums.arcstat_memory_throttle_count); 7420 as->arcstat_memory_direct_count.value.ui64 = 7421 wmsum_value(&arc_sums.arcstat_memory_direct_count); 7422 as->arcstat_memory_indirect_count.value.ui64 = 7423 wmsum_value(&arc_sums.arcstat_memory_indirect_count); 7424 7425 as->arcstat_memory_all_bytes.value.ui64 = 7426 arc_all_memory(); 7427 as->arcstat_memory_free_bytes.value.ui64 = 7428 arc_free_memory(); 7429 as->arcstat_memory_available_bytes.value.i64 = 7430 arc_available_memory(); 7431 7432 as->arcstat_prune.value.ui64 = 7433 wmsum_value(&arc_sums.arcstat_prune); 7434 as->arcstat_meta_used.value.ui64 = 7435 aggsum_value(&arc_sums.arcstat_meta_used); 7436 as->arcstat_async_upgrade_sync.value.ui64 = 7437 wmsum_value(&arc_sums.arcstat_async_upgrade_sync); 7438 as->arcstat_demand_hit_predictive_prefetch.value.ui64 = 7439 wmsum_value(&arc_sums.arcstat_demand_hit_predictive_prefetch); 7440 as->arcstat_demand_hit_prescient_prefetch.value.ui64 = 7441 wmsum_value(&arc_sums.arcstat_demand_hit_prescient_prefetch); 7442 as->arcstat_raw_size.value.ui64 = 7443 wmsum_value(&arc_sums.arcstat_raw_size); 7444 as->arcstat_cached_only_in_progress.value.ui64 = 7445 wmsum_value(&arc_sums.arcstat_cached_only_in_progress); 7446 as->arcstat_abd_chunk_waste_size.value.ui64 = 7447 wmsum_value(&arc_sums.arcstat_abd_chunk_waste_size); 7448 7449 return (0); 7450 } 7451 7452 /* 7453 * This function *must* return indices evenly distributed between all 7454 * sublists of the multilist. This is needed due to how the ARC eviction 7455 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 7456 * distributed between all sublists and uses this assumption when 7457 * deciding which sublist to evict from and how much to evict from it. 7458 */ 7459 static unsigned int 7460 arc_state_multilist_index_func(multilist_t *ml, void *obj) 7461 { 7462 arc_buf_hdr_t *hdr = obj; 7463 7464 /* 7465 * We rely on b_dva to generate evenly distributed index 7466 * numbers using buf_hash below. So, as an added precaution, 7467 * let's make sure we never add empty buffers to the arc lists. 7468 */ 7469 ASSERT(!HDR_EMPTY(hdr)); 7470 7471 /* 7472 * The assumption here, is the hash value for a given 7473 * arc_buf_hdr_t will remain constant throughout its lifetime 7474 * (i.e. its b_spa, b_dva, and b_birth fields don't change). 7475 * Thus, we don't need to store the header's sublist index 7476 * on insertion, as this index can be recalculated on removal. 7477 * 7478 * Also, the low order bits of the hash value are thought to be 7479 * distributed evenly. Otherwise, in the case that the multilist 7480 * has a power of two number of sublists, each sublists' usage 7481 * would not be evenly distributed. In this context full 64bit 7482 * division would be a waste of time, so limit it to 32 bits. 7483 */ 7484 return ((unsigned int)buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 7485 multilist_get_num_sublists(ml)); 7486 } 7487 7488 static unsigned int 7489 arc_state_l2c_multilist_index_func(multilist_t *ml, void *obj) 7490 { 7491 panic("Header %p insert into arc_l2c_only %p", obj, ml); 7492 } 7493 7494 #define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \ 7495 if ((do_warn) && (tuning) && ((tuning) != (value))) { \ 7496 cmn_err(CE_WARN, \ 7497 "ignoring tunable %s (using %llu instead)", \ 7498 (#tuning), (u_longlong_t)(value)); \ 7499 } \ 7500 } while (0) 7501 7502 /* 7503 * Called during module initialization and periodically thereafter to 7504 * apply reasonable changes to the exposed performance tunings. Can also be 7505 * called explicitly by param_set_arc_*() functions when ARC tunables are 7506 * updated manually. Non-zero zfs_* values which differ from the currently set 7507 * values will be applied. 7508 */ 7509 void 7510 arc_tuning_update(boolean_t verbose) 7511 { 7512 uint64_t allmem = arc_all_memory(); 7513 unsigned long limit; 7514 7515 /* Valid range: 32M - <arc_c_max> */ 7516 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) && 7517 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) && 7518 (zfs_arc_min <= arc_c_max)) { 7519 arc_c_min = zfs_arc_min; 7520 arc_c = MAX(arc_c, arc_c_min); 7521 } 7522 WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose); 7523 7524 /* Valid range: 64M - <all physical memory> */ 7525 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) && 7526 (zfs_arc_max >= MIN_ARC_MAX) && (zfs_arc_max < allmem) && 7527 (zfs_arc_max > arc_c_min)) { 7528 arc_c_max = zfs_arc_max; 7529 arc_c = MIN(arc_c, arc_c_max); 7530 arc_p = (arc_c >> 1); 7531 if (arc_meta_limit > arc_c_max) 7532 arc_meta_limit = arc_c_max; 7533 if (arc_dnode_size_limit > arc_meta_limit) 7534 arc_dnode_size_limit = arc_meta_limit; 7535 } 7536 WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose); 7537 7538 /* Valid range: 16M - <arc_c_max> */ 7539 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) && 7540 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) && 7541 (zfs_arc_meta_min <= arc_c_max)) { 7542 arc_meta_min = zfs_arc_meta_min; 7543 if (arc_meta_limit < arc_meta_min) 7544 arc_meta_limit = arc_meta_min; 7545 if (arc_dnode_size_limit < arc_meta_min) 7546 arc_dnode_size_limit = arc_meta_min; 7547 } 7548 WARN_IF_TUNING_IGNORED(zfs_arc_meta_min, arc_meta_min, verbose); 7549 7550 /* Valid range: <arc_meta_min> - <arc_c_max> */ 7551 limit = zfs_arc_meta_limit ? zfs_arc_meta_limit : 7552 MIN(zfs_arc_meta_limit_percent, 100) * arc_c_max / 100; 7553 if ((limit != arc_meta_limit) && 7554 (limit >= arc_meta_min) && 7555 (limit <= arc_c_max)) 7556 arc_meta_limit = limit; 7557 WARN_IF_TUNING_IGNORED(zfs_arc_meta_limit, arc_meta_limit, verbose); 7558 7559 /* Valid range: <arc_meta_min> - <arc_meta_limit> */ 7560 limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit : 7561 MIN(zfs_arc_dnode_limit_percent, 100) * arc_meta_limit / 100; 7562 if ((limit != arc_dnode_size_limit) && 7563 (limit >= arc_meta_min) && 7564 (limit <= arc_meta_limit)) 7565 arc_dnode_size_limit = limit; 7566 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_size_limit, 7567 verbose); 7568 7569 /* Valid range: 1 - N */ 7570 if (zfs_arc_grow_retry) 7571 arc_grow_retry = zfs_arc_grow_retry; 7572 7573 /* Valid range: 1 - N */ 7574 if (zfs_arc_shrink_shift) { 7575 arc_shrink_shift = zfs_arc_shrink_shift; 7576 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1); 7577 } 7578 7579 /* Valid range: 1 - N */ 7580 if (zfs_arc_p_min_shift) 7581 arc_p_min_shift = zfs_arc_p_min_shift; 7582 7583 /* Valid range: 1 - N ms */ 7584 if (zfs_arc_min_prefetch_ms) 7585 arc_min_prefetch_ms = zfs_arc_min_prefetch_ms; 7586 7587 /* Valid range: 1 - N ms */ 7588 if (zfs_arc_min_prescient_prefetch_ms) { 7589 arc_min_prescient_prefetch_ms = 7590 zfs_arc_min_prescient_prefetch_ms; 7591 } 7592 7593 /* Valid range: 0 - 100 */ 7594 if ((zfs_arc_lotsfree_percent >= 0) && 7595 (zfs_arc_lotsfree_percent <= 100)) 7596 arc_lotsfree_percent = zfs_arc_lotsfree_percent; 7597 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent, 7598 verbose); 7599 7600 /* Valid range: 0 - <all physical memory> */ 7601 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free)) 7602 arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), allmem); 7603 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose); 7604 } 7605 7606 static void 7607 arc_state_init(void) 7608 { 7609 multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 7610 sizeof (arc_buf_hdr_t), 7611 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7612 arc_state_multilist_index_func); 7613 multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 7614 sizeof (arc_buf_hdr_t), 7615 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7616 arc_state_multilist_index_func); 7617 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 7618 sizeof (arc_buf_hdr_t), 7619 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7620 arc_state_multilist_index_func); 7621 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 7622 sizeof (arc_buf_hdr_t), 7623 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7624 arc_state_multilist_index_func); 7625 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 7626 sizeof (arc_buf_hdr_t), 7627 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7628 arc_state_multilist_index_func); 7629 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 7630 sizeof (arc_buf_hdr_t), 7631 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7632 arc_state_multilist_index_func); 7633 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 7634 sizeof (arc_buf_hdr_t), 7635 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7636 arc_state_multilist_index_func); 7637 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 7638 sizeof (arc_buf_hdr_t), 7639 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7640 arc_state_multilist_index_func); 7641 /* 7642 * L2 headers should never be on the L2 state list since they don't 7643 * have L1 headers allocated. Special index function asserts that. 7644 */ 7645 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 7646 sizeof (arc_buf_hdr_t), 7647 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7648 arc_state_l2c_multilist_index_func); 7649 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 7650 sizeof (arc_buf_hdr_t), 7651 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7652 arc_state_l2c_multilist_index_func); 7653 7654 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7655 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7656 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7657 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7658 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7659 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7660 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7661 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7662 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7663 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7664 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7665 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7666 7667 zfs_refcount_create(&arc_anon->arcs_size); 7668 zfs_refcount_create(&arc_mru->arcs_size); 7669 zfs_refcount_create(&arc_mru_ghost->arcs_size); 7670 zfs_refcount_create(&arc_mfu->arcs_size); 7671 zfs_refcount_create(&arc_mfu_ghost->arcs_size); 7672 zfs_refcount_create(&arc_l2c_only->arcs_size); 7673 7674 wmsum_init(&arc_sums.arcstat_hits, 0); 7675 wmsum_init(&arc_sums.arcstat_misses, 0); 7676 wmsum_init(&arc_sums.arcstat_demand_data_hits, 0); 7677 wmsum_init(&arc_sums.arcstat_demand_data_misses, 0); 7678 wmsum_init(&arc_sums.arcstat_demand_metadata_hits, 0); 7679 wmsum_init(&arc_sums.arcstat_demand_metadata_misses, 0); 7680 wmsum_init(&arc_sums.arcstat_prefetch_data_hits, 0); 7681 wmsum_init(&arc_sums.arcstat_prefetch_data_misses, 0); 7682 wmsum_init(&arc_sums.arcstat_prefetch_metadata_hits, 0); 7683 wmsum_init(&arc_sums.arcstat_prefetch_metadata_misses, 0); 7684 wmsum_init(&arc_sums.arcstat_mru_hits, 0); 7685 wmsum_init(&arc_sums.arcstat_mru_ghost_hits, 0); 7686 wmsum_init(&arc_sums.arcstat_mfu_hits, 0); 7687 wmsum_init(&arc_sums.arcstat_mfu_ghost_hits, 0); 7688 wmsum_init(&arc_sums.arcstat_deleted, 0); 7689 wmsum_init(&arc_sums.arcstat_mutex_miss, 0); 7690 wmsum_init(&arc_sums.arcstat_access_skip, 0); 7691 wmsum_init(&arc_sums.arcstat_evict_skip, 0); 7692 wmsum_init(&arc_sums.arcstat_evict_not_enough, 0); 7693 wmsum_init(&arc_sums.arcstat_evict_l2_cached, 0); 7694 wmsum_init(&arc_sums.arcstat_evict_l2_eligible, 0); 7695 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mfu, 0); 7696 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mru, 0); 7697 wmsum_init(&arc_sums.arcstat_evict_l2_ineligible, 0); 7698 wmsum_init(&arc_sums.arcstat_evict_l2_skip, 0); 7699 wmsum_init(&arc_sums.arcstat_hash_collisions, 0); 7700 wmsum_init(&arc_sums.arcstat_hash_chains, 0); 7701 aggsum_init(&arc_sums.arcstat_size, 0); 7702 wmsum_init(&arc_sums.arcstat_compressed_size, 0); 7703 wmsum_init(&arc_sums.arcstat_uncompressed_size, 0); 7704 wmsum_init(&arc_sums.arcstat_overhead_size, 0); 7705 wmsum_init(&arc_sums.arcstat_hdr_size, 0); 7706 wmsum_init(&arc_sums.arcstat_data_size, 0); 7707 wmsum_init(&arc_sums.arcstat_metadata_size, 0); 7708 wmsum_init(&arc_sums.arcstat_dbuf_size, 0); 7709 aggsum_init(&arc_sums.arcstat_dnode_size, 0); 7710 wmsum_init(&arc_sums.arcstat_bonus_size, 0); 7711 wmsum_init(&arc_sums.arcstat_l2_hits, 0); 7712 wmsum_init(&arc_sums.arcstat_l2_misses, 0); 7713 wmsum_init(&arc_sums.arcstat_l2_prefetch_asize, 0); 7714 wmsum_init(&arc_sums.arcstat_l2_mru_asize, 0); 7715 wmsum_init(&arc_sums.arcstat_l2_mfu_asize, 0); 7716 wmsum_init(&arc_sums.arcstat_l2_bufc_data_asize, 0); 7717 wmsum_init(&arc_sums.arcstat_l2_bufc_metadata_asize, 0); 7718 wmsum_init(&arc_sums.arcstat_l2_feeds, 0); 7719 wmsum_init(&arc_sums.arcstat_l2_rw_clash, 0); 7720 wmsum_init(&arc_sums.arcstat_l2_read_bytes, 0); 7721 wmsum_init(&arc_sums.arcstat_l2_write_bytes, 0); 7722 wmsum_init(&arc_sums.arcstat_l2_writes_sent, 0); 7723 wmsum_init(&arc_sums.arcstat_l2_writes_done, 0); 7724 wmsum_init(&arc_sums.arcstat_l2_writes_error, 0); 7725 wmsum_init(&arc_sums.arcstat_l2_writes_lock_retry, 0); 7726 wmsum_init(&arc_sums.arcstat_l2_evict_lock_retry, 0); 7727 wmsum_init(&arc_sums.arcstat_l2_evict_reading, 0); 7728 wmsum_init(&arc_sums.arcstat_l2_evict_l1cached, 0); 7729 wmsum_init(&arc_sums.arcstat_l2_free_on_write, 0); 7730 wmsum_init(&arc_sums.arcstat_l2_abort_lowmem, 0); 7731 wmsum_init(&arc_sums.arcstat_l2_cksum_bad, 0); 7732 wmsum_init(&arc_sums.arcstat_l2_io_error, 0); 7733 wmsum_init(&arc_sums.arcstat_l2_lsize, 0); 7734 wmsum_init(&arc_sums.arcstat_l2_psize, 0); 7735 aggsum_init(&arc_sums.arcstat_l2_hdr_size, 0); 7736 wmsum_init(&arc_sums.arcstat_l2_log_blk_writes, 0); 7737 wmsum_init(&arc_sums.arcstat_l2_log_blk_asize, 0); 7738 wmsum_init(&arc_sums.arcstat_l2_log_blk_count, 0); 7739 wmsum_init(&arc_sums.arcstat_l2_rebuild_success, 0); 7740 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_unsupported, 0); 7741 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_io_errors, 0); 7742 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_dh_errors, 0); 7743 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors, 0); 7744 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_lowmem, 0); 7745 wmsum_init(&arc_sums.arcstat_l2_rebuild_size, 0); 7746 wmsum_init(&arc_sums.arcstat_l2_rebuild_asize, 0); 7747 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs, 0); 7748 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs_precached, 0); 7749 wmsum_init(&arc_sums.arcstat_l2_rebuild_log_blks, 0); 7750 wmsum_init(&arc_sums.arcstat_memory_throttle_count, 0); 7751 wmsum_init(&arc_sums.arcstat_memory_direct_count, 0); 7752 wmsum_init(&arc_sums.arcstat_memory_indirect_count, 0); 7753 wmsum_init(&arc_sums.arcstat_prune, 0); 7754 aggsum_init(&arc_sums.arcstat_meta_used, 0); 7755 wmsum_init(&arc_sums.arcstat_async_upgrade_sync, 0); 7756 wmsum_init(&arc_sums.arcstat_demand_hit_predictive_prefetch, 0); 7757 wmsum_init(&arc_sums.arcstat_demand_hit_prescient_prefetch, 0); 7758 wmsum_init(&arc_sums.arcstat_raw_size, 0); 7759 wmsum_init(&arc_sums.arcstat_cached_only_in_progress, 0); 7760 wmsum_init(&arc_sums.arcstat_abd_chunk_waste_size, 0); 7761 7762 arc_anon->arcs_state = ARC_STATE_ANON; 7763 arc_mru->arcs_state = ARC_STATE_MRU; 7764 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST; 7765 arc_mfu->arcs_state = ARC_STATE_MFU; 7766 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST; 7767 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY; 7768 } 7769 7770 static void 7771 arc_state_fini(void) 7772 { 7773 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7774 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7775 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7776 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7777 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7778 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7779 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7780 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7781 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7782 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7783 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7784 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7785 7786 zfs_refcount_destroy(&arc_anon->arcs_size); 7787 zfs_refcount_destroy(&arc_mru->arcs_size); 7788 zfs_refcount_destroy(&arc_mru_ghost->arcs_size); 7789 zfs_refcount_destroy(&arc_mfu->arcs_size); 7790 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size); 7791 zfs_refcount_destroy(&arc_l2c_only->arcs_size); 7792 7793 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 7794 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 7795 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 7796 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 7797 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 7798 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 7799 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 7800 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 7801 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]); 7802 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]); 7803 7804 wmsum_fini(&arc_sums.arcstat_hits); 7805 wmsum_fini(&arc_sums.arcstat_misses); 7806 wmsum_fini(&arc_sums.arcstat_demand_data_hits); 7807 wmsum_fini(&arc_sums.arcstat_demand_data_misses); 7808 wmsum_fini(&arc_sums.arcstat_demand_metadata_hits); 7809 wmsum_fini(&arc_sums.arcstat_demand_metadata_misses); 7810 wmsum_fini(&arc_sums.arcstat_prefetch_data_hits); 7811 wmsum_fini(&arc_sums.arcstat_prefetch_data_misses); 7812 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_hits); 7813 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_misses); 7814 wmsum_fini(&arc_sums.arcstat_mru_hits); 7815 wmsum_fini(&arc_sums.arcstat_mru_ghost_hits); 7816 wmsum_fini(&arc_sums.arcstat_mfu_hits); 7817 wmsum_fini(&arc_sums.arcstat_mfu_ghost_hits); 7818 wmsum_fini(&arc_sums.arcstat_deleted); 7819 wmsum_fini(&arc_sums.arcstat_mutex_miss); 7820 wmsum_fini(&arc_sums.arcstat_access_skip); 7821 wmsum_fini(&arc_sums.arcstat_evict_skip); 7822 wmsum_fini(&arc_sums.arcstat_evict_not_enough); 7823 wmsum_fini(&arc_sums.arcstat_evict_l2_cached); 7824 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible); 7825 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mfu); 7826 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mru); 7827 wmsum_fini(&arc_sums.arcstat_evict_l2_ineligible); 7828 wmsum_fini(&arc_sums.arcstat_evict_l2_skip); 7829 wmsum_fini(&arc_sums.arcstat_hash_collisions); 7830 wmsum_fini(&arc_sums.arcstat_hash_chains); 7831 aggsum_fini(&arc_sums.arcstat_size); 7832 wmsum_fini(&arc_sums.arcstat_compressed_size); 7833 wmsum_fini(&arc_sums.arcstat_uncompressed_size); 7834 wmsum_fini(&arc_sums.arcstat_overhead_size); 7835 wmsum_fini(&arc_sums.arcstat_hdr_size); 7836 wmsum_fini(&arc_sums.arcstat_data_size); 7837 wmsum_fini(&arc_sums.arcstat_metadata_size); 7838 wmsum_fini(&arc_sums.arcstat_dbuf_size); 7839 aggsum_fini(&arc_sums.arcstat_dnode_size); 7840 wmsum_fini(&arc_sums.arcstat_bonus_size); 7841 wmsum_fini(&arc_sums.arcstat_l2_hits); 7842 wmsum_fini(&arc_sums.arcstat_l2_misses); 7843 wmsum_fini(&arc_sums.arcstat_l2_prefetch_asize); 7844 wmsum_fini(&arc_sums.arcstat_l2_mru_asize); 7845 wmsum_fini(&arc_sums.arcstat_l2_mfu_asize); 7846 wmsum_fini(&arc_sums.arcstat_l2_bufc_data_asize); 7847 wmsum_fini(&arc_sums.arcstat_l2_bufc_metadata_asize); 7848 wmsum_fini(&arc_sums.arcstat_l2_feeds); 7849 wmsum_fini(&arc_sums.arcstat_l2_rw_clash); 7850 wmsum_fini(&arc_sums.arcstat_l2_read_bytes); 7851 wmsum_fini(&arc_sums.arcstat_l2_write_bytes); 7852 wmsum_fini(&arc_sums.arcstat_l2_writes_sent); 7853 wmsum_fini(&arc_sums.arcstat_l2_writes_done); 7854 wmsum_fini(&arc_sums.arcstat_l2_writes_error); 7855 wmsum_fini(&arc_sums.arcstat_l2_writes_lock_retry); 7856 wmsum_fini(&arc_sums.arcstat_l2_evict_lock_retry); 7857 wmsum_fini(&arc_sums.arcstat_l2_evict_reading); 7858 wmsum_fini(&arc_sums.arcstat_l2_evict_l1cached); 7859 wmsum_fini(&arc_sums.arcstat_l2_free_on_write); 7860 wmsum_fini(&arc_sums.arcstat_l2_abort_lowmem); 7861 wmsum_fini(&arc_sums.arcstat_l2_cksum_bad); 7862 wmsum_fini(&arc_sums.arcstat_l2_io_error); 7863 wmsum_fini(&arc_sums.arcstat_l2_lsize); 7864 wmsum_fini(&arc_sums.arcstat_l2_psize); 7865 aggsum_fini(&arc_sums.arcstat_l2_hdr_size); 7866 wmsum_fini(&arc_sums.arcstat_l2_log_blk_writes); 7867 wmsum_fini(&arc_sums.arcstat_l2_log_blk_asize); 7868 wmsum_fini(&arc_sums.arcstat_l2_log_blk_count); 7869 wmsum_fini(&arc_sums.arcstat_l2_rebuild_success); 7870 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_unsupported); 7871 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_io_errors); 7872 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_dh_errors); 7873 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors); 7874 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_lowmem); 7875 wmsum_fini(&arc_sums.arcstat_l2_rebuild_size); 7876 wmsum_fini(&arc_sums.arcstat_l2_rebuild_asize); 7877 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs); 7878 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs_precached); 7879 wmsum_fini(&arc_sums.arcstat_l2_rebuild_log_blks); 7880 wmsum_fini(&arc_sums.arcstat_memory_throttle_count); 7881 wmsum_fini(&arc_sums.arcstat_memory_direct_count); 7882 wmsum_fini(&arc_sums.arcstat_memory_indirect_count); 7883 wmsum_fini(&arc_sums.arcstat_prune); 7884 aggsum_fini(&arc_sums.arcstat_meta_used); 7885 wmsum_fini(&arc_sums.arcstat_async_upgrade_sync); 7886 wmsum_fini(&arc_sums.arcstat_demand_hit_predictive_prefetch); 7887 wmsum_fini(&arc_sums.arcstat_demand_hit_prescient_prefetch); 7888 wmsum_fini(&arc_sums.arcstat_raw_size); 7889 wmsum_fini(&arc_sums.arcstat_cached_only_in_progress); 7890 wmsum_fini(&arc_sums.arcstat_abd_chunk_waste_size); 7891 } 7892 7893 uint64_t 7894 arc_target_bytes(void) 7895 { 7896 return (arc_c); 7897 } 7898 7899 void 7900 arc_set_limits(uint64_t allmem) 7901 { 7902 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */ 7903 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT); 7904 7905 /* How to set default max varies by platform. */ 7906 arc_c_max = arc_default_max(arc_c_min, allmem); 7907 } 7908 void 7909 arc_init(void) 7910 { 7911 uint64_t percent, allmem = arc_all_memory(); 7912 mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL); 7913 list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t), 7914 offsetof(arc_evict_waiter_t, aew_node)); 7915 7916 arc_min_prefetch_ms = 1000; 7917 arc_min_prescient_prefetch_ms = 6000; 7918 7919 #if defined(_KERNEL) 7920 arc_lowmem_init(); 7921 #endif 7922 7923 arc_set_limits(allmem); 7924 7925 #ifdef _KERNEL 7926 /* 7927 * If zfs_arc_max is non-zero at init, meaning it was set in the kernel 7928 * environment before the module was loaded, don't block setting the 7929 * maximum because it is less than arc_c_min, instead, reset arc_c_min 7930 * to a lower value. 7931 * zfs_arc_min will be handled by arc_tuning_update(). 7932 */ 7933 if (zfs_arc_max != 0 && zfs_arc_max >= MIN_ARC_MAX && 7934 zfs_arc_max < allmem) { 7935 arc_c_max = zfs_arc_max; 7936 if (arc_c_min >= arc_c_max) { 7937 arc_c_min = MAX(zfs_arc_max / 2, 7938 2ULL << SPA_MAXBLOCKSHIFT); 7939 } 7940 } 7941 #else 7942 /* 7943 * In userland, there's only the memory pressure that we artificially 7944 * create (see arc_available_memory()). Don't let arc_c get too 7945 * small, because it can cause transactions to be larger than 7946 * arc_c, causing arc_tempreserve_space() to fail. 7947 */ 7948 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT); 7949 #endif 7950 7951 arc_c = arc_c_min; 7952 arc_p = (arc_c >> 1); 7953 7954 /* Set min to 1/2 of arc_c_min */ 7955 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT; 7956 /* 7957 * Set arc_meta_limit to a percent of arc_c_max with a floor of 7958 * arc_meta_min, and a ceiling of arc_c_max. 7959 */ 7960 percent = MIN(zfs_arc_meta_limit_percent, 100); 7961 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100); 7962 percent = MIN(zfs_arc_dnode_limit_percent, 100); 7963 arc_dnode_size_limit = (percent * arc_meta_limit) / 100; 7964 7965 /* Apply user specified tunings */ 7966 arc_tuning_update(B_TRUE); 7967 7968 /* if kmem_flags are set, lets try to use less memory */ 7969 if (kmem_debugging()) 7970 arc_c = arc_c / 2; 7971 if (arc_c < arc_c_min) 7972 arc_c = arc_c_min; 7973 7974 arc_register_hotplug(); 7975 7976 arc_state_init(); 7977 7978 buf_init(); 7979 7980 list_create(&arc_prune_list, sizeof (arc_prune_t), 7981 offsetof(arc_prune_t, p_node)); 7982 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL); 7983 7984 arc_prune_taskq = taskq_create("arc_prune", 100, defclsyspri, 7985 boot_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC | 7986 TASKQ_THREADS_CPU_PCT); 7987 7988 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 7989 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 7990 7991 if (arc_ksp != NULL) { 7992 arc_ksp->ks_data = &arc_stats; 7993 arc_ksp->ks_update = arc_kstat_update; 7994 kstat_install(arc_ksp); 7995 } 7996 7997 arc_evict_zthr = zthr_create("arc_evict", 7998 arc_evict_cb_check, arc_evict_cb, NULL, defclsyspri); 7999 arc_reap_zthr = zthr_create_timer("arc_reap", 8000 arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1), minclsyspri); 8001 8002 arc_warm = B_FALSE; 8003 8004 /* 8005 * Calculate maximum amount of dirty data per pool. 8006 * 8007 * If it has been set by a module parameter, take that. 8008 * Otherwise, use a percentage of physical memory defined by 8009 * zfs_dirty_data_max_percent (default 10%) with a cap at 8010 * zfs_dirty_data_max_max (default 4G or 25% of physical memory). 8011 */ 8012 #ifdef __LP64__ 8013 if (zfs_dirty_data_max_max == 0) 8014 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024, 8015 allmem * zfs_dirty_data_max_max_percent / 100); 8016 #else 8017 if (zfs_dirty_data_max_max == 0) 8018 zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024, 8019 allmem * zfs_dirty_data_max_max_percent / 100); 8020 #endif 8021 8022 if (zfs_dirty_data_max == 0) { 8023 zfs_dirty_data_max = allmem * 8024 zfs_dirty_data_max_percent / 100; 8025 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 8026 zfs_dirty_data_max_max); 8027 } 8028 8029 if (zfs_wrlog_data_max == 0) { 8030 8031 /* 8032 * dp_wrlog_total is reduced for each txg at the end of 8033 * spa_sync(). However, dp_dirty_total is reduced every time 8034 * a block is written out. Thus under normal operation, 8035 * dp_wrlog_total could grow 2 times as big as 8036 * zfs_dirty_data_max. 8037 */ 8038 zfs_wrlog_data_max = zfs_dirty_data_max * 2; 8039 } 8040 } 8041 8042 void 8043 arc_fini(void) 8044 { 8045 arc_prune_t *p; 8046 8047 #ifdef _KERNEL 8048 arc_lowmem_fini(); 8049 #endif /* _KERNEL */ 8050 8051 /* Use B_TRUE to ensure *all* buffers are evicted */ 8052 arc_flush(NULL, B_TRUE); 8053 8054 if (arc_ksp != NULL) { 8055 kstat_delete(arc_ksp); 8056 arc_ksp = NULL; 8057 } 8058 8059 taskq_wait(arc_prune_taskq); 8060 taskq_destroy(arc_prune_taskq); 8061 8062 mutex_enter(&arc_prune_mtx); 8063 while ((p = list_head(&arc_prune_list)) != NULL) { 8064 list_remove(&arc_prune_list, p); 8065 zfs_refcount_remove(&p->p_refcnt, &arc_prune_list); 8066 zfs_refcount_destroy(&p->p_refcnt); 8067 kmem_free(p, sizeof (*p)); 8068 } 8069 mutex_exit(&arc_prune_mtx); 8070 8071 list_destroy(&arc_prune_list); 8072 mutex_destroy(&arc_prune_mtx); 8073 8074 (void) zthr_cancel(arc_evict_zthr); 8075 (void) zthr_cancel(arc_reap_zthr); 8076 8077 mutex_destroy(&arc_evict_lock); 8078 list_destroy(&arc_evict_waiters); 8079 8080 /* 8081 * Free any buffers that were tagged for destruction. This needs 8082 * to occur before arc_state_fini() runs and destroys the aggsum 8083 * values which are updated when freeing scatter ABDs. 8084 */ 8085 l2arc_do_free_on_write(); 8086 8087 /* 8088 * buf_fini() must proceed arc_state_fini() because buf_fin() may 8089 * trigger the release of kmem magazines, which can callback to 8090 * arc_space_return() which accesses aggsums freed in act_state_fini(). 8091 */ 8092 buf_fini(); 8093 arc_state_fini(); 8094 8095 arc_unregister_hotplug(); 8096 8097 /* 8098 * We destroy the zthrs after all the ARC state has been 8099 * torn down to avoid the case of them receiving any 8100 * wakeup() signals after they are destroyed. 8101 */ 8102 zthr_destroy(arc_evict_zthr); 8103 zthr_destroy(arc_reap_zthr); 8104 8105 ASSERT0(arc_loaned_bytes); 8106 } 8107 8108 /* 8109 * Level 2 ARC 8110 * 8111 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 8112 * It uses dedicated storage devices to hold cached data, which are populated 8113 * using large infrequent writes. The main role of this cache is to boost 8114 * the performance of random read workloads. The intended L2ARC devices 8115 * include short-stroked disks, solid state disks, and other media with 8116 * substantially faster read latency than disk. 8117 * 8118 * +-----------------------+ 8119 * | ARC | 8120 * +-----------------------+ 8121 * | ^ ^ 8122 * | | | 8123 * l2arc_feed_thread() arc_read() 8124 * | | | 8125 * | l2arc read | 8126 * V | | 8127 * +---------------+ | 8128 * | L2ARC | | 8129 * +---------------+ | 8130 * | ^ | 8131 * l2arc_write() | | 8132 * | | | 8133 * V | | 8134 * +-------+ +-------+ 8135 * | vdev | | vdev | 8136 * | cache | | cache | 8137 * +-------+ +-------+ 8138 * +=========+ .-----. 8139 * : L2ARC : |-_____-| 8140 * : devices : | Disks | 8141 * +=========+ `-_____-' 8142 * 8143 * Read requests are satisfied from the following sources, in order: 8144 * 8145 * 1) ARC 8146 * 2) vdev cache of L2ARC devices 8147 * 3) L2ARC devices 8148 * 4) vdev cache of disks 8149 * 5) disks 8150 * 8151 * Some L2ARC device types exhibit extremely slow write performance. 8152 * To accommodate for this there are some significant differences between 8153 * the L2ARC and traditional cache design: 8154 * 8155 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 8156 * the ARC behave as usual, freeing buffers and placing headers on ghost 8157 * lists. The ARC does not send buffers to the L2ARC during eviction as 8158 * this would add inflated write latencies for all ARC memory pressure. 8159 * 8160 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 8161 * It does this by periodically scanning buffers from the eviction-end of 8162 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 8163 * not already there. It scans until a headroom of buffers is satisfied, 8164 * which itself is a buffer for ARC eviction. If a compressible buffer is 8165 * found during scanning and selected for writing to an L2ARC device, we 8166 * temporarily boost scanning headroom during the next scan cycle to make 8167 * sure we adapt to compression effects (which might significantly reduce 8168 * the data volume we write to L2ARC). The thread that does this is 8169 * l2arc_feed_thread(), illustrated below; example sizes are included to 8170 * provide a better sense of ratio than this diagram: 8171 * 8172 * head --> tail 8173 * +---------------------+----------+ 8174 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 8175 * +---------------------+----------+ | o L2ARC eligible 8176 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 8177 * +---------------------+----------+ | 8178 * 15.9 Gbytes ^ 32 Mbytes | 8179 * headroom | 8180 * l2arc_feed_thread() 8181 * | 8182 * l2arc write hand <--[oooo]--' 8183 * | 8 Mbyte 8184 * | write max 8185 * V 8186 * +==============================+ 8187 * L2ARC dev |####|#|###|###| |####| ... | 8188 * +==============================+ 8189 * 32 Gbytes 8190 * 8191 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 8192 * evicted, then the L2ARC has cached a buffer much sooner than it probably 8193 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 8194 * safe to say that this is an uncommon case, since buffers at the end of 8195 * the ARC lists have moved there due to inactivity. 8196 * 8197 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 8198 * then the L2ARC simply misses copying some buffers. This serves as a 8199 * pressure valve to prevent heavy read workloads from both stalling the ARC 8200 * with waits and clogging the L2ARC with writes. This also helps prevent 8201 * the potential for the L2ARC to churn if it attempts to cache content too 8202 * quickly, such as during backups of the entire pool. 8203 * 8204 * 5. After system boot and before the ARC has filled main memory, there are 8205 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 8206 * lists can remain mostly static. Instead of searching from tail of these 8207 * lists as pictured, the l2arc_feed_thread() will search from the list heads 8208 * for eligible buffers, greatly increasing its chance of finding them. 8209 * 8210 * The L2ARC device write speed is also boosted during this time so that 8211 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 8212 * there are no L2ARC reads, and no fear of degrading read performance 8213 * through increased writes. 8214 * 8215 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 8216 * the vdev queue can aggregate them into larger and fewer writes. Each 8217 * device is written to in a rotor fashion, sweeping writes through 8218 * available space then repeating. 8219 * 8220 * 7. The L2ARC does not store dirty content. It never needs to flush 8221 * write buffers back to disk based storage. 8222 * 8223 * 8. If an ARC buffer is written (and dirtied) which also exists in the 8224 * L2ARC, the now stale L2ARC buffer is immediately dropped. 8225 * 8226 * The performance of the L2ARC can be tweaked by a number of tunables, which 8227 * may be necessary for different workloads: 8228 * 8229 * l2arc_write_max max write bytes per interval 8230 * l2arc_write_boost extra write bytes during device warmup 8231 * l2arc_noprefetch skip caching prefetched buffers 8232 * l2arc_headroom number of max device writes to precache 8233 * l2arc_headroom_boost when we find compressed buffers during ARC 8234 * scanning, we multiply headroom by this 8235 * percentage factor for the next scan cycle, 8236 * since more compressed buffers are likely to 8237 * be present 8238 * l2arc_feed_secs seconds between L2ARC writing 8239 * 8240 * Tunables may be removed or added as future performance improvements are 8241 * integrated, and also may become zpool properties. 8242 * 8243 * There are three key functions that control how the L2ARC warms up: 8244 * 8245 * l2arc_write_eligible() check if a buffer is eligible to cache 8246 * l2arc_write_size() calculate how much to write 8247 * l2arc_write_interval() calculate sleep delay between writes 8248 * 8249 * These three functions determine what to write, how much, and how quickly 8250 * to send writes. 8251 * 8252 * L2ARC persistence: 8253 * 8254 * When writing buffers to L2ARC, we periodically add some metadata to 8255 * make sure we can pick them up after reboot, thus dramatically reducing 8256 * the impact that any downtime has on the performance of storage systems 8257 * with large caches. 8258 * 8259 * The implementation works fairly simply by integrating the following two 8260 * modifications: 8261 * 8262 * *) When writing to the L2ARC, we occasionally write a "l2arc log block", 8263 * which is an additional piece of metadata which describes what's been 8264 * written. This allows us to rebuild the arc_buf_hdr_t structures of the 8265 * main ARC buffers. There are 2 linked-lists of log blocks headed by 8266 * dh_start_lbps[2]. We alternate which chain we append to, so they are 8267 * time-wise and offset-wise interleaved, but that is an optimization rather 8268 * than for correctness. The log block also includes a pointer to the 8269 * previous block in its chain. 8270 * 8271 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device 8272 * for our header bookkeeping purposes. This contains a device header, 8273 * which contains our top-level reference structures. We update it each 8274 * time we write a new log block, so that we're able to locate it in the 8275 * L2ARC device. If this write results in an inconsistent device header 8276 * (e.g. due to power failure), we detect this by verifying the header's 8277 * checksum and simply fail to reconstruct the L2ARC after reboot. 8278 * 8279 * Implementation diagram: 8280 * 8281 * +=== L2ARC device (not to scale) ======================================+ 8282 * | ___two newest log block pointers__.__________ | 8283 * | / \dh_start_lbps[1] | 8284 * | / \ \dh_start_lbps[0]| 8285 * |.___/__. V V | 8286 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---| 8287 * || hdr| ^ /^ /^ / / | 8288 * |+------+ ...--\-------/ \-----/--\------/ / | 8289 * | \--------------/ \--------------/ | 8290 * +======================================================================+ 8291 * 8292 * As can be seen on the diagram, rather than using a simple linked list, 8293 * we use a pair of linked lists with alternating elements. This is a 8294 * performance enhancement due to the fact that we only find out the 8295 * address of the next log block access once the current block has been 8296 * completely read in. Obviously, this hurts performance, because we'd be 8297 * keeping the device's I/O queue at only a 1 operation deep, thus 8298 * incurring a large amount of I/O round-trip latency. Having two lists 8299 * allows us to fetch two log blocks ahead of where we are currently 8300 * rebuilding L2ARC buffers. 8301 * 8302 * On-device data structures: 8303 * 8304 * L2ARC device header: l2arc_dev_hdr_phys_t 8305 * L2ARC log block: l2arc_log_blk_phys_t 8306 * 8307 * L2ARC reconstruction: 8308 * 8309 * When writing data, we simply write in the standard rotary fashion, 8310 * evicting buffers as we go and simply writing new data over them (writing 8311 * a new log block every now and then). This obviously means that once we 8312 * loop around the end of the device, we will start cutting into an already 8313 * committed log block (and its referenced data buffers), like so: 8314 * 8315 * current write head__ __old tail 8316 * \ / 8317 * V V 8318 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |--> 8319 * ^ ^^^^^^^^^___________________________________ 8320 * | \ 8321 * <<nextwrite>> may overwrite this blk and/or its bufs --' 8322 * 8323 * When importing the pool, we detect this situation and use it to stop 8324 * our scanning process (see l2arc_rebuild). 8325 * 8326 * There is one significant caveat to consider when rebuilding ARC contents 8327 * from an L2ARC device: what about invalidated buffers? Given the above 8328 * construction, we cannot update blocks which we've already written to amend 8329 * them to remove buffers which were invalidated. Thus, during reconstruction, 8330 * we might be populating the cache with buffers for data that's not on the 8331 * main pool anymore, or may have been overwritten! 8332 * 8333 * As it turns out, this isn't a problem. Every arc_read request includes 8334 * both the DVA and, crucially, the birth TXG of the BP the caller is 8335 * looking for. So even if the cache were populated by completely rotten 8336 * blocks for data that had been long deleted and/or overwritten, we'll 8337 * never actually return bad data from the cache, since the DVA with the 8338 * birth TXG uniquely identify a block in space and time - once created, 8339 * a block is immutable on disk. The worst thing we have done is wasted 8340 * some time and memory at l2arc rebuild to reconstruct outdated ARC 8341 * entries that will get dropped from the l2arc as it is being updated 8342 * with new blocks. 8343 * 8344 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write 8345 * hand are not restored. This is done by saving the offset (in bytes) 8346 * l2arc_evict() has evicted to in the L2ARC device header and taking it 8347 * into account when restoring buffers. 8348 */ 8349 8350 static boolean_t 8351 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 8352 { 8353 /* 8354 * A buffer is *not* eligible for the L2ARC if it: 8355 * 1. belongs to a different spa. 8356 * 2. is already cached on the L2ARC. 8357 * 3. has an I/O in progress (it may be an incomplete read). 8358 * 4. is flagged not eligible (zfs property). 8359 */ 8360 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || 8361 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr)) 8362 return (B_FALSE); 8363 8364 return (B_TRUE); 8365 } 8366 8367 static uint64_t 8368 l2arc_write_size(l2arc_dev_t *dev) 8369 { 8370 uint64_t size, dev_size, tsize; 8371 8372 /* 8373 * Make sure our globals have meaningful values in case the user 8374 * altered them. 8375 */ 8376 size = l2arc_write_max; 8377 if (size == 0) { 8378 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 8379 "be greater than zero, resetting it to the default (%d)", 8380 L2ARC_WRITE_SIZE); 8381 size = l2arc_write_max = L2ARC_WRITE_SIZE; 8382 } 8383 8384 if (arc_warm == B_FALSE) 8385 size += l2arc_write_boost; 8386 8387 /* 8388 * Make sure the write size does not exceed the size of the cache 8389 * device. This is important in l2arc_evict(), otherwise infinite 8390 * iteration can occur. 8391 */ 8392 dev_size = dev->l2ad_end - dev->l2ad_start; 8393 tsize = size + l2arc_log_blk_overhead(size, dev); 8394 if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) 8395 tsize += MAX(64 * 1024 * 1024, 8396 (tsize * l2arc_trim_ahead) / 100); 8397 8398 if (tsize >= dev_size) { 8399 cmn_err(CE_NOTE, "l2arc_write_max or l2arc_write_boost " 8400 "plus the overhead of log blocks (persistent L2ARC, " 8401 "%llu bytes) exceeds the size of the cache device " 8402 "(guid %llu), resetting them to the default (%d)", 8403 (u_longlong_t)l2arc_log_blk_overhead(size, dev), 8404 (u_longlong_t)dev->l2ad_vdev->vdev_guid, L2ARC_WRITE_SIZE); 8405 size = l2arc_write_max = l2arc_write_boost = L2ARC_WRITE_SIZE; 8406 8407 if (arc_warm == B_FALSE) 8408 size += l2arc_write_boost; 8409 } 8410 8411 return (size); 8412 8413 } 8414 8415 static clock_t 8416 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 8417 { 8418 clock_t interval, next, now; 8419 8420 /* 8421 * If the ARC lists are busy, increase our write rate; if the 8422 * lists are stale, idle back. This is achieved by checking 8423 * how much we previously wrote - if it was more than half of 8424 * what we wanted, schedule the next write much sooner. 8425 */ 8426 if (l2arc_feed_again && wrote > (wanted / 2)) 8427 interval = (hz * l2arc_feed_min_ms) / 1000; 8428 else 8429 interval = hz * l2arc_feed_secs; 8430 8431 now = ddi_get_lbolt(); 8432 next = MAX(now, MIN(now + interval, began + interval)); 8433 8434 return (next); 8435 } 8436 8437 /* 8438 * Cycle through L2ARC devices. This is how L2ARC load balances. 8439 * If a device is returned, this also returns holding the spa config lock. 8440 */ 8441 static l2arc_dev_t * 8442 l2arc_dev_get_next(void) 8443 { 8444 l2arc_dev_t *first, *next = NULL; 8445 8446 /* 8447 * Lock out the removal of spas (spa_namespace_lock), then removal 8448 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 8449 * both locks will be dropped and a spa config lock held instead. 8450 */ 8451 mutex_enter(&spa_namespace_lock); 8452 mutex_enter(&l2arc_dev_mtx); 8453 8454 /* if there are no vdevs, there is nothing to do */ 8455 if (l2arc_ndev == 0) 8456 goto out; 8457 8458 first = NULL; 8459 next = l2arc_dev_last; 8460 do { 8461 /* loop around the list looking for a non-faulted vdev */ 8462 if (next == NULL) { 8463 next = list_head(l2arc_dev_list); 8464 } else { 8465 next = list_next(l2arc_dev_list, next); 8466 if (next == NULL) 8467 next = list_head(l2arc_dev_list); 8468 } 8469 8470 /* if we have come back to the start, bail out */ 8471 if (first == NULL) 8472 first = next; 8473 else if (next == first) 8474 break; 8475 8476 } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || 8477 next->l2ad_trim_all); 8478 8479 /* if we were unable to find any usable vdevs, return NULL */ 8480 if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || 8481 next->l2ad_trim_all) 8482 next = NULL; 8483 8484 l2arc_dev_last = next; 8485 8486 out: 8487 mutex_exit(&l2arc_dev_mtx); 8488 8489 /* 8490 * Grab the config lock to prevent the 'next' device from being 8491 * removed while we are writing to it. 8492 */ 8493 if (next != NULL) 8494 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 8495 mutex_exit(&spa_namespace_lock); 8496 8497 return (next); 8498 } 8499 8500 /* 8501 * Free buffers that were tagged for destruction. 8502 */ 8503 static void 8504 l2arc_do_free_on_write(void) 8505 { 8506 list_t *buflist; 8507 l2arc_data_free_t *df, *df_prev; 8508 8509 mutex_enter(&l2arc_free_on_write_mtx); 8510 buflist = l2arc_free_on_write; 8511 8512 for (df = list_tail(buflist); df; df = df_prev) { 8513 df_prev = list_prev(buflist, df); 8514 ASSERT3P(df->l2df_abd, !=, NULL); 8515 abd_free(df->l2df_abd); 8516 list_remove(buflist, df); 8517 kmem_free(df, sizeof (l2arc_data_free_t)); 8518 } 8519 8520 mutex_exit(&l2arc_free_on_write_mtx); 8521 } 8522 8523 /* 8524 * A write to a cache device has completed. Update all headers to allow 8525 * reads from these buffers to begin. 8526 */ 8527 static void 8528 l2arc_write_done(zio_t *zio) 8529 { 8530 l2arc_write_callback_t *cb; 8531 l2arc_lb_abd_buf_t *abd_buf; 8532 l2arc_lb_ptr_buf_t *lb_ptr_buf; 8533 l2arc_dev_t *dev; 8534 l2arc_dev_hdr_phys_t *l2dhdr; 8535 list_t *buflist; 8536 arc_buf_hdr_t *head, *hdr, *hdr_prev; 8537 kmutex_t *hash_lock; 8538 int64_t bytes_dropped = 0; 8539 8540 cb = zio->io_private; 8541 ASSERT3P(cb, !=, NULL); 8542 dev = cb->l2wcb_dev; 8543 l2dhdr = dev->l2ad_dev_hdr; 8544 ASSERT3P(dev, !=, NULL); 8545 head = cb->l2wcb_head; 8546 ASSERT3P(head, !=, NULL); 8547 buflist = &dev->l2ad_buflist; 8548 ASSERT3P(buflist, !=, NULL); 8549 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 8550 l2arc_write_callback_t *, cb); 8551 8552 /* 8553 * All writes completed, or an error was hit. 8554 */ 8555 top: 8556 mutex_enter(&dev->l2ad_mtx); 8557 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 8558 hdr_prev = list_prev(buflist, hdr); 8559 8560 hash_lock = HDR_LOCK(hdr); 8561 8562 /* 8563 * We cannot use mutex_enter or else we can deadlock 8564 * with l2arc_write_buffers (due to swapping the order 8565 * the hash lock and l2ad_mtx are taken). 8566 */ 8567 if (!mutex_tryenter(hash_lock)) { 8568 /* 8569 * Missed the hash lock. We must retry so we 8570 * don't leave the ARC_FLAG_L2_WRITING bit set. 8571 */ 8572 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 8573 8574 /* 8575 * We don't want to rescan the headers we've 8576 * already marked as having been written out, so 8577 * we reinsert the head node so we can pick up 8578 * where we left off. 8579 */ 8580 list_remove(buflist, head); 8581 list_insert_after(buflist, hdr, head); 8582 8583 mutex_exit(&dev->l2ad_mtx); 8584 8585 /* 8586 * We wait for the hash lock to become available 8587 * to try and prevent busy waiting, and increase 8588 * the chance we'll be able to acquire the lock 8589 * the next time around. 8590 */ 8591 mutex_enter(hash_lock); 8592 mutex_exit(hash_lock); 8593 goto top; 8594 } 8595 8596 /* 8597 * We could not have been moved into the arc_l2c_only 8598 * state while in-flight due to our ARC_FLAG_L2_WRITING 8599 * bit being set. Let's just ensure that's being enforced. 8600 */ 8601 ASSERT(HDR_HAS_L1HDR(hdr)); 8602 8603 /* 8604 * Skipped - drop L2ARC entry and mark the header as no 8605 * longer L2 eligibile. 8606 */ 8607 if (zio->io_error != 0) { 8608 /* 8609 * Error - drop L2ARC entry. 8610 */ 8611 list_remove(buflist, hdr); 8612 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 8613 8614 uint64_t psize = HDR_GET_PSIZE(hdr); 8615 l2arc_hdr_arcstats_decrement(hdr); 8616 8617 bytes_dropped += 8618 vdev_psize_to_asize(dev->l2ad_vdev, psize); 8619 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 8620 arc_hdr_size(hdr), hdr); 8621 } 8622 8623 /* 8624 * Allow ARC to begin reads and ghost list evictions to 8625 * this L2ARC entry. 8626 */ 8627 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); 8628 8629 mutex_exit(hash_lock); 8630 } 8631 8632 /* 8633 * Free the allocated abd buffers for writing the log blocks. 8634 * If the zio failed reclaim the allocated space and remove the 8635 * pointers to these log blocks from the log block pointer list 8636 * of the L2ARC device. 8637 */ 8638 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) { 8639 abd_free(abd_buf->abd); 8640 zio_buf_free(abd_buf, sizeof (*abd_buf)); 8641 if (zio->io_error != 0) { 8642 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list); 8643 /* 8644 * L2BLK_GET_PSIZE returns aligned size for log 8645 * blocks. 8646 */ 8647 uint64_t asize = 8648 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop); 8649 bytes_dropped += asize; 8650 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 8651 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 8652 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 8653 lb_ptr_buf); 8654 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 8655 kmem_free(lb_ptr_buf->lb_ptr, 8656 sizeof (l2arc_log_blkptr_t)); 8657 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 8658 } 8659 } 8660 list_destroy(&cb->l2wcb_abd_list); 8661 8662 if (zio->io_error != 0) { 8663 ARCSTAT_BUMP(arcstat_l2_writes_error); 8664 8665 /* 8666 * Restore the lbps array in the header to its previous state. 8667 * If the list of log block pointers is empty, zero out the 8668 * log block pointers in the device header. 8669 */ 8670 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list); 8671 for (int i = 0; i < 2; i++) { 8672 if (lb_ptr_buf == NULL) { 8673 /* 8674 * If the list is empty zero out the device 8675 * header. Otherwise zero out the second log 8676 * block pointer in the header. 8677 */ 8678 if (i == 0) { 8679 bzero(l2dhdr, dev->l2ad_dev_hdr_asize); 8680 } else { 8681 bzero(&l2dhdr->dh_start_lbps[i], 8682 sizeof (l2arc_log_blkptr_t)); 8683 } 8684 break; 8685 } 8686 bcopy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[i], 8687 sizeof (l2arc_log_blkptr_t)); 8688 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list, 8689 lb_ptr_buf); 8690 } 8691 } 8692 8693 ARCSTAT_BUMP(arcstat_l2_writes_done); 8694 list_remove(buflist, head); 8695 ASSERT(!HDR_HAS_L1HDR(head)); 8696 kmem_cache_free(hdr_l2only_cache, head); 8697 mutex_exit(&dev->l2ad_mtx); 8698 8699 ASSERT(dev->l2ad_vdev != NULL); 8700 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 8701 8702 l2arc_do_free_on_write(); 8703 8704 kmem_free(cb, sizeof (l2arc_write_callback_t)); 8705 } 8706 8707 static int 8708 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb) 8709 { 8710 int ret; 8711 spa_t *spa = zio->io_spa; 8712 arc_buf_hdr_t *hdr = cb->l2rcb_hdr; 8713 blkptr_t *bp = zio->io_bp; 8714 uint8_t salt[ZIO_DATA_SALT_LEN]; 8715 uint8_t iv[ZIO_DATA_IV_LEN]; 8716 uint8_t mac[ZIO_DATA_MAC_LEN]; 8717 boolean_t no_crypt = B_FALSE; 8718 8719 /* 8720 * ZIL data is never be written to the L2ARC, so we don't need 8721 * special handling for its unique MAC storage. 8722 */ 8723 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 8724 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 8725 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8726 8727 /* 8728 * If the data was encrypted, decrypt it now. Note that 8729 * we must check the bp here and not the hdr, since the 8730 * hdr does not have its encryption parameters updated 8731 * until arc_read_done(). 8732 */ 8733 if (BP_IS_ENCRYPTED(bp)) { 8734 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8735 ARC_HDR_DO_ADAPT | ARC_HDR_USE_RESERVE); 8736 8737 zio_crypt_decode_params_bp(bp, salt, iv); 8738 zio_crypt_decode_mac_bp(bp, mac); 8739 8740 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb, 8741 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 8742 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd, 8743 hdr->b_l1hdr.b_pabd, &no_crypt); 8744 if (ret != 0) { 8745 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8746 goto error; 8747 } 8748 8749 /* 8750 * If we actually performed decryption, replace b_pabd 8751 * with the decrypted data. Otherwise we can just throw 8752 * our decryption buffer away. 8753 */ 8754 if (!no_crypt) { 8755 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8756 arc_hdr_size(hdr), hdr); 8757 hdr->b_l1hdr.b_pabd = eabd; 8758 zio->io_abd = eabd; 8759 } else { 8760 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8761 } 8762 } 8763 8764 /* 8765 * If the L2ARC block was compressed, but ARC compression 8766 * is disabled we decompress the data into a new buffer and 8767 * replace the existing data. 8768 */ 8769 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 8770 !HDR_COMPRESSION_ENABLED(hdr)) { 8771 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8772 ARC_HDR_DO_ADAPT | ARC_HDR_USE_RESERVE); 8773 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 8774 8775 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 8776 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 8777 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 8778 if (ret != 0) { 8779 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 8780 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr); 8781 goto error; 8782 } 8783 8784 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 8785 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8786 arc_hdr_size(hdr), hdr); 8787 hdr->b_l1hdr.b_pabd = cabd; 8788 zio->io_abd = cabd; 8789 zio->io_size = HDR_GET_LSIZE(hdr); 8790 } 8791 8792 return (0); 8793 8794 error: 8795 return (ret); 8796 } 8797 8798 8799 /* 8800 * A read to a cache device completed. Validate buffer contents before 8801 * handing over to the regular ARC routines. 8802 */ 8803 static void 8804 l2arc_read_done(zio_t *zio) 8805 { 8806 int tfm_error = 0; 8807 l2arc_read_callback_t *cb = zio->io_private; 8808 arc_buf_hdr_t *hdr; 8809 kmutex_t *hash_lock; 8810 boolean_t valid_cksum; 8811 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) && 8812 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT)); 8813 8814 ASSERT3P(zio->io_vd, !=, NULL); 8815 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 8816 8817 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 8818 8819 ASSERT3P(cb, !=, NULL); 8820 hdr = cb->l2rcb_hdr; 8821 ASSERT3P(hdr, !=, NULL); 8822 8823 hash_lock = HDR_LOCK(hdr); 8824 mutex_enter(hash_lock); 8825 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 8826 8827 /* 8828 * If the data was read into a temporary buffer, 8829 * move it and free the buffer. 8830 */ 8831 if (cb->l2rcb_abd != NULL) { 8832 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size); 8833 if (zio->io_error == 0) { 8834 if (using_rdata) { 8835 abd_copy(hdr->b_crypt_hdr.b_rabd, 8836 cb->l2rcb_abd, arc_hdr_size(hdr)); 8837 } else { 8838 abd_copy(hdr->b_l1hdr.b_pabd, 8839 cb->l2rcb_abd, arc_hdr_size(hdr)); 8840 } 8841 } 8842 8843 /* 8844 * The following must be done regardless of whether 8845 * there was an error: 8846 * - free the temporary buffer 8847 * - point zio to the real ARC buffer 8848 * - set zio size accordingly 8849 * These are required because zio is either re-used for 8850 * an I/O of the block in the case of the error 8851 * or the zio is passed to arc_read_done() and it 8852 * needs real data. 8853 */ 8854 abd_free(cb->l2rcb_abd); 8855 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr); 8856 8857 if (using_rdata) { 8858 ASSERT(HDR_HAS_RABD(hdr)); 8859 zio->io_abd = zio->io_orig_abd = 8860 hdr->b_crypt_hdr.b_rabd; 8861 } else { 8862 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8863 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd; 8864 } 8865 } 8866 8867 ASSERT3P(zio->io_abd, !=, NULL); 8868 8869 /* 8870 * Check this survived the L2ARC journey. 8871 */ 8872 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd || 8873 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd)); 8874 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 8875 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 8876 zio->io_prop.zp_complevel = hdr->b_complevel; 8877 8878 valid_cksum = arc_cksum_is_equal(hdr, zio); 8879 8880 /* 8881 * b_rabd will always match the data as it exists on disk if it is 8882 * being used. Therefore if we are reading into b_rabd we do not 8883 * attempt to untransform the data. 8884 */ 8885 if (valid_cksum && !using_rdata) 8886 tfm_error = l2arc_untransform(zio, cb); 8887 8888 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 && 8889 !HDR_L2_EVICTED(hdr)) { 8890 mutex_exit(hash_lock); 8891 zio->io_private = hdr; 8892 arc_read_done(zio); 8893 } else { 8894 /* 8895 * Buffer didn't survive caching. Increment stats and 8896 * reissue to the original storage device. 8897 */ 8898 if (zio->io_error != 0) { 8899 ARCSTAT_BUMP(arcstat_l2_io_error); 8900 } else { 8901 zio->io_error = SET_ERROR(EIO); 8902 } 8903 if (!valid_cksum || tfm_error != 0) 8904 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 8905 8906 /* 8907 * If there's no waiter, issue an async i/o to the primary 8908 * storage now. If there *is* a waiter, the caller must 8909 * issue the i/o in a context where it's OK to block. 8910 */ 8911 if (zio->io_waiter == NULL) { 8912 zio_t *pio = zio_unique_parent(zio); 8913 void *abd = (using_rdata) ? 8914 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd; 8915 8916 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 8917 8918 zio = zio_read(pio, zio->io_spa, zio->io_bp, 8919 abd, zio->io_size, arc_read_done, 8920 hdr, zio->io_priority, cb->l2rcb_flags, 8921 &cb->l2rcb_zb); 8922 8923 /* 8924 * Original ZIO will be freed, so we need to update 8925 * ARC header with the new ZIO pointer to be used 8926 * by zio_change_priority() in arc_read(). 8927 */ 8928 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb; 8929 acb != NULL; acb = acb->acb_next) 8930 acb->acb_zio_head = zio; 8931 8932 mutex_exit(hash_lock); 8933 zio_nowait(zio); 8934 } else { 8935 mutex_exit(hash_lock); 8936 } 8937 } 8938 8939 kmem_free(cb, sizeof (l2arc_read_callback_t)); 8940 } 8941 8942 /* 8943 * This is the list priority from which the L2ARC will search for pages to 8944 * cache. This is used within loops (0..3) to cycle through lists in the 8945 * desired order. This order can have a significant effect on cache 8946 * performance. 8947 * 8948 * Currently the metadata lists are hit first, MFU then MRU, followed by 8949 * the data lists. This function returns a locked list, and also returns 8950 * the lock pointer. 8951 */ 8952 static multilist_sublist_t * 8953 l2arc_sublist_lock(int list_num) 8954 { 8955 multilist_t *ml = NULL; 8956 unsigned int idx; 8957 8958 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES); 8959 8960 switch (list_num) { 8961 case 0: 8962 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 8963 break; 8964 case 1: 8965 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 8966 break; 8967 case 2: 8968 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 8969 break; 8970 case 3: 8971 ml = &arc_mru->arcs_list[ARC_BUFC_DATA]; 8972 break; 8973 default: 8974 return (NULL); 8975 } 8976 8977 /* 8978 * Return a randomly-selected sublist. This is acceptable 8979 * because the caller feeds only a little bit of data for each 8980 * call (8MB). Subsequent calls will result in different 8981 * sublists being selected. 8982 */ 8983 idx = multilist_get_random_index(ml); 8984 return (multilist_sublist_lock(ml, idx)); 8985 } 8986 8987 /* 8988 * Calculates the maximum overhead of L2ARC metadata log blocks for a given 8989 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this 8990 * overhead in processing to make sure there is enough headroom available 8991 * when writing buffers. 8992 */ 8993 static inline uint64_t 8994 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev) 8995 { 8996 if (dev->l2ad_log_entries == 0) { 8997 return (0); 8998 } else { 8999 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT; 9000 9001 uint64_t log_blocks = (log_entries + 9002 dev->l2ad_log_entries - 1) / 9003 dev->l2ad_log_entries; 9004 9005 return (vdev_psize_to_asize(dev->l2ad_vdev, 9006 sizeof (l2arc_log_blk_phys_t)) * log_blocks); 9007 } 9008 } 9009 9010 /* 9011 * Evict buffers from the device write hand to the distance specified in 9012 * bytes. This distance may span populated buffers, it may span nothing. 9013 * This is clearing a region on the L2ARC device ready for writing. 9014 * If the 'all' boolean is set, every buffer is evicted. 9015 */ 9016 static void 9017 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 9018 { 9019 list_t *buflist; 9020 arc_buf_hdr_t *hdr, *hdr_prev; 9021 kmutex_t *hash_lock; 9022 uint64_t taddr; 9023 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev; 9024 vdev_t *vd = dev->l2ad_vdev; 9025 boolean_t rerun; 9026 9027 buflist = &dev->l2ad_buflist; 9028 9029 /* 9030 * We need to add in the worst case scenario of log block overhead. 9031 */ 9032 distance += l2arc_log_blk_overhead(distance, dev); 9033 if (vd->vdev_has_trim && l2arc_trim_ahead > 0) { 9034 /* 9035 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100) 9036 * times the write size, whichever is greater. 9037 */ 9038 distance += MAX(64 * 1024 * 1024, 9039 (distance * l2arc_trim_ahead) / 100); 9040 } 9041 9042 top: 9043 rerun = B_FALSE; 9044 if (dev->l2ad_hand >= (dev->l2ad_end - distance)) { 9045 /* 9046 * When there is no space to accommodate upcoming writes, 9047 * evict to the end. Then bump the write and evict hands 9048 * to the start and iterate. This iteration does not 9049 * happen indefinitely as we make sure in 9050 * l2arc_write_size() that when the write hand is reset, 9051 * the write size does not exceed the end of the device. 9052 */ 9053 rerun = B_TRUE; 9054 taddr = dev->l2ad_end; 9055 } else { 9056 taddr = dev->l2ad_hand + distance; 9057 } 9058 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 9059 uint64_t, taddr, boolean_t, all); 9060 9061 if (!all) { 9062 /* 9063 * This check has to be placed after deciding whether to 9064 * iterate (rerun). 9065 */ 9066 if (dev->l2ad_first) { 9067 /* 9068 * This is the first sweep through the device. There is 9069 * nothing to evict. We have already trimmmed the 9070 * whole device. 9071 */ 9072 goto out; 9073 } else { 9074 /* 9075 * Trim the space to be evicted. 9076 */ 9077 if (vd->vdev_has_trim && dev->l2ad_evict < taddr && 9078 l2arc_trim_ahead > 0) { 9079 /* 9080 * We have to drop the spa_config lock because 9081 * vdev_trim_range() will acquire it. 9082 * l2ad_evict already accounts for the label 9083 * size. To prevent vdev_trim_ranges() from 9084 * adding it again, we subtract it from 9085 * l2ad_evict. 9086 */ 9087 spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev); 9088 vdev_trim_simple(vd, 9089 dev->l2ad_evict - VDEV_LABEL_START_SIZE, 9090 taddr - dev->l2ad_evict); 9091 spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev, 9092 RW_READER); 9093 } 9094 9095 /* 9096 * When rebuilding L2ARC we retrieve the evict hand 9097 * from the header of the device. Of note, l2arc_evict() 9098 * does not actually delete buffers from the cache 9099 * device, but trimming may do so depending on the 9100 * hardware implementation. Thus keeping track of the 9101 * evict hand is useful. 9102 */ 9103 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr); 9104 } 9105 } 9106 9107 retry: 9108 mutex_enter(&dev->l2ad_mtx); 9109 /* 9110 * We have to account for evicted log blocks. Run vdev_space_update() 9111 * on log blocks whose offset (in bytes) is before the evicted offset 9112 * (in bytes) by searching in the list of pointers to log blocks 9113 * present in the L2ARC device. 9114 */ 9115 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf; 9116 lb_ptr_buf = lb_ptr_buf_prev) { 9117 9118 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf); 9119 9120 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 9121 uint64_t asize = L2BLK_GET_PSIZE( 9122 (lb_ptr_buf->lb_ptr)->lbp_prop); 9123 9124 /* 9125 * We don't worry about log blocks left behind (ie 9126 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers() 9127 * will never write more than l2arc_evict() evicts. 9128 */ 9129 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) { 9130 break; 9131 } else { 9132 vdev_space_update(vd, -asize, 0, 0); 9133 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 9134 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 9135 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 9136 lb_ptr_buf); 9137 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 9138 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf); 9139 kmem_free(lb_ptr_buf->lb_ptr, 9140 sizeof (l2arc_log_blkptr_t)); 9141 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 9142 } 9143 } 9144 9145 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 9146 hdr_prev = list_prev(buflist, hdr); 9147 9148 ASSERT(!HDR_EMPTY(hdr)); 9149 hash_lock = HDR_LOCK(hdr); 9150 9151 /* 9152 * We cannot use mutex_enter or else we can deadlock 9153 * with l2arc_write_buffers (due to swapping the order 9154 * the hash lock and l2ad_mtx are taken). 9155 */ 9156 if (!mutex_tryenter(hash_lock)) { 9157 /* 9158 * Missed the hash lock. Retry. 9159 */ 9160 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 9161 mutex_exit(&dev->l2ad_mtx); 9162 mutex_enter(hash_lock); 9163 mutex_exit(hash_lock); 9164 goto retry; 9165 } 9166 9167 /* 9168 * A header can't be on this list if it doesn't have L2 header. 9169 */ 9170 ASSERT(HDR_HAS_L2HDR(hdr)); 9171 9172 /* Ensure this header has finished being written. */ 9173 ASSERT(!HDR_L2_WRITING(hdr)); 9174 ASSERT(!HDR_L2_WRITE_HEAD(hdr)); 9175 9176 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict || 9177 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 9178 /* 9179 * We've evicted to the target address, 9180 * or the end of the device. 9181 */ 9182 mutex_exit(hash_lock); 9183 break; 9184 } 9185 9186 if (!HDR_HAS_L1HDR(hdr)) { 9187 ASSERT(!HDR_L2_READING(hdr)); 9188 /* 9189 * This doesn't exist in the ARC. Destroy. 9190 * arc_hdr_destroy() will call list_remove() 9191 * and decrement arcstat_l2_lsize. 9192 */ 9193 arc_change_state(arc_anon, hdr, hash_lock); 9194 arc_hdr_destroy(hdr); 9195 } else { 9196 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 9197 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 9198 /* 9199 * Invalidate issued or about to be issued 9200 * reads, since we may be about to write 9201 * over this location. 9202 */ 9203 if (HDR_L2_READING(hdr)) { 9204 ARCSTAT_BUMP(arcstat_l2_evict_reading); 9205 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); 9206 } 9207 9208 arc_hdr_l2hdr_destroy(hdr); 9209 } 9210 mutex_exit(hash_lock); 9211 } 9212 mutex_exit(&dev->l2ad_mtx); 9213 9214 out: 9215 /* 9216 * We need to check if we evict all buffers, otherwise we may iterate 9217 * unnecessarily. 9218 */ 9219 if (!all && rerun) { 9220 /* 9221 * Bump device hand to the device start if it is approaching the 9222 * end. l2arc_evict() has already evicted ahead for this case. 9223 */ 9224 dev->l2ad_hand = dev->l2ad_start; 9225 dev->l2ad_evict = dev->l2ad_start; 9226 dev->l2ad_first = B_FALSE; 9227 goto top; 9228 } 9229 9230 if (!all) { 9231 /* 9232 * In case of cache device removal (all) the following 9233 * assertions may be violated without functional consequences 9234 * as the device is about to be removed. 9235 */ 9236 ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end); 9237 if (!dev->l2ad_first) 9238 ASSERT3U(dev->l2ad_hand, <, dev->l2ad_evict); 9239 } 9240 } 9241 9242 /* 9243 * Handle any abd transforms that might be required for writing to the L2ARC. 9244 * If successful, this function will always return an abd with the data 9245 * transformed as it is on disk in a new abd of asize bytes. 9246 */ 9247 static int 9248 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize, 9249 abd_t **abd_out) 9250 { 9251 int ret; 9252 void *tmp = NULL; 9253 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd; 9254 enum zio_compress compress = HDR_GET_COMPRESS(hdr); 9255 uint64_t psize = HDR_GET_PSIZE(hdr); 9256 uint64_t size = arc_hdr_size(hdr); 9257 boolean_t ismd = HDR_ISTYPE_METADATA(hdr); 9258 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 9259 dsl_crypto_key_t *dck = NULL; 9260 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 }; 9261 boolean_t no_crypt = B_FALSE; 9262 9263 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 9264 !HDR_COMPRESSION_ENABLED(hdr)) || 9265 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize); 9266 ASSERT3U(psize, <=, asize); 9267 9268 /* 9269 * If this data simply needs its own buffer, we simply allocate it 9270 * and copy the data. This may be done to eliminate a dependency on a 9271 * shared buffer or to reallocate the buffer to match asize. 9272 */ 9273 if (HDR_HAS_RABD(hdr) && asize != psize) { 9274 ASSERT3U(asize, >=, psize); 9275 to_write = abd_alloc_for_io(asize, ismd); 9276 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize); 9277 if (psize != asize) 9278 abd_zero_off(to_write, psize, asize - psize); 9279 goto out; 9280 } 9281 9282 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) && 9283 !HDR_ENCRYPTED(hdr)) { 9284 ASSERT3U(size, ==, psize); 9285 to_write = abd_alloc_for_io(asize, ismd); 9286 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 9287 if (size != asize) 9288 abd_zero_off(to_write, size, asize - size); 9289 goto out; 9290 } 9291 9292 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) { 9293 cabd = abd_alloc_for_io(asize, ismd); 9294 tmp = abd_borrow_buf(cabd, asize); 9295 9296 psize = zio_compress_data(compress, to_write, tmp, size, 9297 hdr->b_complevel); 9298 9299 if (psize >= size) { 9300 abd_return_buf(cabd, tmp, asize); 9301 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF); 9302 to_write = cabd; 9303 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 9304 if (size != asize) 9305 abd_zero_off(to_write, size, asize - size); 9306 goto encrypt; 9307 } 9308 ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr)); 9309 if (psize < asize) 9310 bzero((char *)tmp + psize, asize - psize); 9311 psize = HDR_GET_PSIZE(hdr); 9312 abd_return_buf_copy(cabd, tmp, asize); 9313 to_write = cabd; 9314 } 9315 9316 encrypt: 9317 if (HDR_ENCRYPTED(hdr)) { 9318 eabd = abd_alloc_for_io(asize, ismd); 9319 9320 /* 9321 * If the dataset was disowned before the buffer 9322 * made it to this point, the key to re-encrypt 9323 * it won't be available. In this case we simply 9324 * won't write the buffer to the L2ARC. 9325 */ 9326 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj, 9327 FTAG, &dck); 9328 if (ret != 0) 9329 goto error; 9330 9331 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key, 9332 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt, 9333 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd, 9334 &no_crypt); 9335 if (ret != 0) 9336 goto error; 9337 9338 if (no_crypt) 9339 abd_copy(eabd, to_write, psize); 9340 9341 if (psize != asize) 9342 abd_zero_off(eabd, psize, asize - psize); 9343 9344 /* assert that the MAC we got here matches the one we saved */ 9345 ASSERT0(bcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN)); 9346 spa_keystore_dsl_key_rele(spa, dck, FTAG); 9347 9348 if (to_write == cabd) 9349 abd_free(cabd); 9350 9351 to_write = eabd; 9352 } 9353 9354 out: 9355 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd); 9356 *abd_out = to_write; 9357 return (0); 9358 9359 error: 9360 if (dck != NULL) 9361 spa_keystore_dsl_key_rele(spa, dck, FTAG); 9362 if (cabd != NULL) 9363 abd_free(cabd); 9364 if (eabd != NULL) 9365 abd_free(eabd); 9366 9367 *abd_out = NULL; 9368 return (ret); 9369 } 9370 9371 static void 9372 l2arc_blk_fetch_done(zio_t *zio) 9373 { 9374 l2arc_read_callback_t *cb; 9375 9376 cb = zio->io_private; 9377 if (cb->l2rcb_abd != NULL) 9378 abd_free(cb->l2rcb_abd); 9379 kmem_free(cb, sizeof (l2arc_read_callback_t)); 9380 } 9381 9382 /* 9383 * Find and write ARC buffers to the L2ARC device. 9384 * 9385 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 9386 * for reading until they have completed writing. 9387 * The headroom_boost is an in-out parameter used to maintain headroom boost 9388 * state between calls to this function. 9389 * 9390 * Returns the number of bytes actually written (which may be smaller than 9391 * the delta by which the device hand has changed due to alignment and the 9392 * writing of log blocks). 9393 */ 9394 static uint64_t 9395 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 9396 { 9397 arc_buf_hdr_t *hdr, *hdr_prev, *head; 9398 uint64_t write_asize, write_psize, write_lsize, headroom; 9399 boolean_t full; 9400 l2arc_write_callback_t *cb = NULL; 9401 zio_t *pio, *wzio; 9402 uint64_t guid = spa_load_guid(spa); 9403 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9404 9405 ASSERT3P(dev->l2ad_vdev, !=, NULL); 9406 9407 pio = NULL; 9408 write_lsize = write_asize = write_psize = 0; 9409 full = B_FALSE; 9410 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 9411 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); 9412 9413 /* 9414 * Copy buffers for L2ARC writing. 9415 */ 9416 for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) { 9417 /* 9418 * If pass == 1 or 3, we cache MRU metadata and data 9419 * respectively. 9420 */ 9421 if (l2arc_mfuonly) { 9422 if (pass == 1 || pass == 3) 9423 continue; 9424 } 9425 9426 multilist_sublist_t *mls = l2arc_sublist_lock(pass); 9427 uint64_t passed_sz = 0; 9428 9429 VERIFY3P(mls, !=, NULL); 9430 9431 /* 9432 * L2ARC fast warmup. 9433 * 9434 * Until the ARC is warm and starts to evict, read from the 9435 * head of the ARC lists rather than the tail. 9436 */ 9437 if (arc_warm == B_FALSE) 9438 hdr = multilist_sublist_head(mls); 9439 else 9440 hdr = multilist_sublist_tail(mls); 9441 9442 headroom = target_sz * l2arc_headroom; 9443 if (zfs_compressed_arc_enabled) 9444 headroom = (headroom * l2arc_headroom_boost) / 100; 9445 9446 for (; hdr; hdr = hdr_prev) { 9447 kmutex_t *hash_lock; 9448 abd_t *to_write = NULL; 9449 9450 if (arc_warm == B_FALSE) 9451 hdr_prev = multilist_sublist_next(mls, hdr); 9452 else 9453 hdr_prev = multilist_sublist_prev(mls, hdr); 9454 9455 hash_lock = HDR_LOCK(hdr); 9456 if (!mutex_tryenter(hash_lock)) { 9457 /* 9458 * Skip this buffer rather than waiting. 9459 */ 9460 continue; 9461 } 9462 9463 passed_sz += HDR_GET_LSIZE(hdr); 9464 if (l2arc_headroom != 0 && passed_sz > headroom) { 9465 /* 9466 * Searched too far. 9467 */ 9468 mutex_exit(hash_lock); 9469 break; 9470 } 9471 9472 if (!l2arc_write_eligible(guid, hdr)) { 9473 mutex_exit(hash_lock); 9474 continue; 9475 } 9476 9477 /* 9478 * We rely on the L1 portion of the header below, so 9479 * it's invalid for this header to have been evicted out 9480 * of the ghost cache, prior to being written out. The 9481 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 9482 */ 9483 ASSERT(HDR_HAS_L1HDR(hdr)); 9484 9485 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 9486 ASSERT3U(arc_hdr_size(hdr), >, 0); 9487 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 9488 HDR_HAS_RABD(hdr)); 9489 uint64_t psize = HDR_GET_PSIZE(hdr); 9490 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 9491 psize); 9492 9493 if ((write_asize + asize) > target_sz) { 9494 full = B_TRUE; 9495 mutex_exit(hash_lock); 9496 break; 9497 } 9498 9499 /* 9500 * We rely on the L1 portion of the header below, so 9501 * it's invalid for this header to have been evicted out 9502 * of the ghost cache, prior to being written out. The 9503 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 9504 */ 9505 arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING); 9506 ASSERT(HDR_HAS_L1HDR(hdr)); 9507 9508 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 9509 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 9510 HDR_HAS_RABD(hdr)); 9511 ASSERT3U(arc_hdr_size(hdr), >, 0); 9512 9513 /* 9514 * If this header has b_rabd, we can use this since it 9515 * must always match the data exactly as it exists on 9516 * disk. Otherwise, the L2ARC can normally use the 9517 * hdr's data, but if we're sharing data between the 9518 * hdr and one of its bufs, L2ARC needs its own copy of 9519 * the data so that the ZIO below can't race with the 9520 * buf consumer. To ensure that this copy will be 9521 * available for the lifetime of the ZIO and be cleaned 9522 * up afterwards, we add it to the l2arc_free_on_write 9523 * queue. If we need to apply any transforms to the 9524 * data (compression, encryption) we will also need the 9525 * extra buffer. 9526 */ 9527 if (HDR_HAS_RABD(hdr) && psize == asize) { 9528 to_write = hdr->b_crypt_hdr.b_rabd; 9529 } else if ((HDR_COMPRESSION_ENABLED(hdr) || 9530 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) && 9531 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) && 9532 psize == asize) { 9533 to_write = hdr->b_l1hdr.b_pabd; 9534 } else { 9535 int ret; 9536 arc_buf_contents_t type = arc_buf_type(hdr); 9537 9538 ret = l2arc_apply_transforms(spa, hdr, asize, 9539 &to_write); 9540 if (ret != 0) { 9541 arc_hdr_clear_flags(hdr, 9542 ARC_FLAG_L2_WRITING); 9543 mutex_exit(hash_lock); 9544 continue; 9545 } 9546 9547 l2arc_free_abd_on_write(to_write, asize, type); 9548 } 9549 9550 if (pio == NULL) { 9551 /* 9552 * Insert a dummy header on the buflist so 9553 * l2arc_write_done() can find where the 9554 * write buffers begin without searching. 9555 */ 9556 mutex_enter(&dev->l2ad_mtx); 9557 list_insert_head(&dev->l2ad_buflist, head); 9558 mutex_exit(&dev->l2ad_mtx); 9559 9560 cb = kmem_alloc( 9561 sizeof (l2arc_write_callback_t), KM_SLEEP); 9562 cb->l2wcb_dev = dev; 9563 cb->l2wcb_head = head; 9564 /* 9565 * Create a list to save allocated abd buffers 9566 * for l2arc_log_blk_commit(). 9567 */ 9568 list_create(&cb->l2wcb_abd_list, 9569 sizeof (l2arc_lb_abd_buf_t), 9570 offsetof(l2arc_lb_abd_buf_t, node)); 9571 pio = zio_root(spa, l2arc_write_done, cb, 9572 ZIO_FLAG_CANFAIL); 9573 } 9574 9575 hdr->b_l2hdr.b_dev = dev; 9576 hdr->b_l2hdr.b_hits = 0; 9577 9578 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 9579 hdr->b_l2hdr.b_arcs_state = 9580 hdr->b_l1hdr.b_state->arcs_state; 9581 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR); 9582 9583 mutex_enter(&dev->l2ad_mtx); 9584 list_insert_head(&dev->l2ad_buflist, hdr); 9585 mutex_exit(&dev->l2ad_mtx); 9586 9587 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 9588 arc_hdr_size(hdr), hdr); 9589 9590 wzio = zio_write_phys(pio, dev->l2ad_vdev, 9591 hdr->b_l2hdr.b_daddr, asize, to_write, 9592 ZIO_CHECKSUM_OFF, NULL, hdr, 9593 ZIO_PRIORITY_ASYNC_WRITE, 9594 ZIO_FLAG_CANFAIL, B_FALSE); 9595 9596 write_lsize += HDR_GET_LSIZE(hdr); 9597 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 9598 zio_t *, wzio); 9599 9600 write_psize += psize; 9601 write_asize += asize; 9602 dev->l2ad_hand += asize; 9603 l2arc_hdr_arcstats_increment(hdr); 9604 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 9605 9606 mutex_exit(hash_lock); 9607 9608 /* 9609 * Append buf info to current log and commit if full. 9610 * arcstat_l2_{size,asize} kstats are updated 9611 * internally. 9612 */ 9613 if (l2arc_log_blk_insert(dev, hdr)) 9614 l2arc_log_blk_commit(dev, pio, cb); 9615 9616 zio_nowait(wzio); 9617 } 9618 9619 multilist_sublist_unlock(mls); 9620 9621 if (full == B_TRUE) 9622 break; 9623 } 9624 9625 /* No buffers selected for writing? */ 9626 if (pio == NULL) { 9627 ASSERT0(write_lsize); 9628 ASSERT(!HDR_HAS_L1HDR(head)); 9629 kmem_cache_free(hdr_l2only_cache, head); 9630 9631 /* 9632 * Although we did not write any buffers l2ad_evict may 9633 * have advanced. 9634 */ 9635 if (dev->l2ad_evict != l2dhdr->dh_evict) 9636 l2arc_dev_hdr_update(dev); 9637 9638 return (0); 9639 } 9640 9641 if (!dev->l2ad_first) 9642 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict); 9643 9644 ASSERT3U(write_asize, <=, target_sz); 9645 ARCSTAT_BUMP(arcstat_l2_writes_sent); 9646 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize); 9647 9648 dev->l2ad_writing = B_TRUE; 9649 (void) zio_wait(pio); 9650 dev->l2ad_writing = B_FALSE; 9651 9652 /* 9653 * Update the device header after the zio completes as 9654 * l2arc_write_done() may have updated the memory holding the log block 9655 * pointers in the device header. 9656 */ 9657 l2arc_dev_hdr_update(dev); 9658 9659 return (write_asize); 9660 } 9661 9662 static boolean_t 9663 l2arc_hdr_limit_reached(void) 9664 { 9665 int64_t s = aggsum_upper_bound(&arc_sums.arcstat_l2_hdr_size); 9666 9667 return (arc_reclaim_needed() || (s > arc_meta_limit * 3 / 4) || 9668 (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100)); 9669 } 9670 9671 /* 9672 * This thread feeds the L2ARC at regular intervals. This is the beating 9673 * heart of the L2ARC. 9674 */ 9675 /* ARGSUSED */ 9676 static void 9677 l2arc_feed_thread(void *unused) 9678 { 9679 callb_cpr_t cpr; 9680 l2arc_dev_t *dev; 9681 spa_t *spa; 9682 uint64_t size, wrote; 9683 clock_t begin, next = ddi_get_lbolt(); 9684 fstrans_cookie_t cookie; 9685 9686 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 9687 9688 mutex_enter(&l2arc_feed_thr_lock); 9689 9690 cookie = spl_fstrans_mark(); 9691 while (l2arc_thread_exit == 0) { 9692 CALLB_CPR_SAFE_BEGIN(&cpr); 9693 (void) cv_timedwait_idle(&l2arc_feed_thr_cv, 9694 &l2arc_feed_thr_lock, next); 9695 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 9696 next = ddi_get_lbolt() + hz; 9697 9698 /* 9699 * Quick check for L2ARC devices. 9700 */ 9701 mutex_enter(&l2arc_dev_mtx); 9702 if (l2arc_ndev == 0) { 9703 mutex_exit(&l2arc_dev_mtx); 9704 continue; 9705 } 9706 mutex_exit(&l2arc_dev_mtx); 9707 begin = ddi_get_lbolt(); 9708 9709 /* 9710 * This selects the next l2arc device to write to, and in 9711 * doing so the next spa to feed from: dev->l2ad_spa. This 9712 * will return NULL if there are now no l2arc devices or if 9713 * they are all faulted. 9714 * 9715 * If a device is returned, its spa's config lock is also 9716 * held to prevent device removal. l2arc_dev_get_next() 9717 * will grab and release l2arc_dev_mtx. 9718 */ 9719 if ((dev = l2arc_dev_get_next()) == NULL) 9720 continue; 9721 9722 spa = dev->l2ad_spa; 9723 ASSERT3P(spa, !=, NULL); 9724 9725 /* 9726 * If the pool is read-only then force the feed thread to 9727 * sleep a little longer. 9728 */ 9729 if (!spa_writeable(spa)) { 9730 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 9731 spa_config_exit(spa, SCL_L2ARC, dev); 9732 continue; 9733 } 9734 9735 /* 9736 * Avoid contributing to memory pressure. 9737 */ 9738 if (l2arc_hdr_limit_reached()) { 9739 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 9740 spa_config_exit(spa, SCL_L2ARC, dev); 9741 continue; 9742 } 9743 9744 ARCSTAT_BUMP(arcstat_l2_feeds); 9745 9746 size = l2arc_write_size(dev); 9747 9748 /* 9749 * Evict L2ARC buffers that will be overwritten. 9750 */ 9751 l2arc_evict(dev, size, B_FALSE); 9752 9753 /* 9754 * Write ARC buffers. 9755 */ 9756 wrote = l2arc_write_buffers(spa, dev, size); 9757 9758 /* 9759 * Calculate interval between writes. 9760 */ 9761 next = l2arc_write_interval(begin, size, wrote); 9762 spa_config_exit(spa, SCL_L2ARC, dev); 9763 } 9764 spl_fstrans_unmark(cookie); 9765 9766 l2arc_thread_exit = 0; 9767 cv_broadcast(&l2arc_feed_thr_cv); 9768 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 9769 thread_exit(); 9770 } 9771 9772 boolean_t 9773 l2arc_vdev_present(vdev_t *vd) 9774 { 9775 return (l2arc_vdev_get(vd) != NULL); 9776 } 9777 9778 /* 9779 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if 9780 * the vdev_t isn't an L2ARC device. 9781 */ 9782 l2arc_dev_t * 9783 l2arc_vdev_get(vdev_t *vd) 9784 { 9785 l2arc_dev_t *dev; 9786 9787 mutex_enter(&l2arc_dev_mtx); 9788 for (dev = list_head(l2arc_dev_list); dev != NULL; 9789 dev = list_next(l2arc_dev_list, dev)) { 9790 if (dev->l2ad_vdev == vd) 9791 break; 9792 } 9793 mutex_exit(&l2arc_dev_mtx); 9794 9795 return (dev); 9796 } 9797 9798 static void 9799 l2arc_rebuild_dev(l2arc_dev_t *dev, boolean_t reopen) 9800 { 9801 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9802 uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 9803 spa_t *spa = dev->l2ad_spa; 9804 9805 /* 9806 * The L2ARC has to hold at least the payload of one log block for 9807 * them to be restored (persistent L2ARC). The payload of a log block 9808 * depends on the amount of its log entries. We always write log blocks 9809 * with 1022 entries. How many of them are committed or restored depends 9810 * on the size of the L2ARC device. Thus the maximum payload of 9811 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device 9812 * is less than that, we reduce the amount of committed and restored 9813 * log entries per block so as to enable persistence. 9814 */ 9815 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) { 9816 dev->l2ad_log_entries = 0; 9817 } else { 9818 dev->l2ad_log_entries = MIN((dev->l2ad_end - 9819 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT, 9820 L2ARC_LOG_BLK_MAX_ENTRIES); 9821 } 9822 9823 /* 9824 * Read the device header, if an error is returned do not rebuild L2ARC. 9825 */ 9826 if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) { 9827 /* 9828 * If we are onlining a cache device (vdev_reopen) that was 9829 * still present (l2arc_vdev_present()) and rebuild is enabled, 9830 * we should evict all ARC buffers and pointers to log blocks 9831 * and reclaim their space before restoring its contents to 9832 * L2ARC. 9833 */ 9834 if (reopen) { 9835 if (!l2arc_rebuild_enabled) { 9836 return; 9837 } else { 9838 l2arc_evict(dev, 0, B_TRUE); 9839 /* start a new log block */ 9840 dev->l2ad_log_ent_idx = 0; 9841 dev->l2ad_log_blk_payload_asize = 0; 9842 dev->l2ad_log_blk_payload_start = 0; 9843 } 9844 } 9845 /* 9846 * Just mark the device as pending for a rebuild. We won't 9847 * be starting a rebuild in line here as it would block pool 9848 * import. Instead spa_load_impl will hand that off to an 9849 * async task which will call l2arc_spa_rebuild_start. 9850 */ 9851 dev->l2ad_rebuild = B_TRUE; 9852 } else if (spa_writeable(spa)) { 9853 /* 9854 * In this case TRIM the whole device if l2arc_trim_ahead > 0, 9855 * otherwise create a new header. We zero out the memory holding 9856 * the header to reset dh_start_lbps. If we TRIM the whole 9857 * device the new header will be written by 9858 * vdev_trim_l2arc_thread() at the end of the TRIM to update the 9859 * trim_state in the header too. When reading the header, if 9860 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0 9861 * we opt to TRIM the whole device again. 9862 */ 9863 if (l2arc_trim_ahead > 0) { 9864 dev->l2ad_trim_all = B_TRUE; 9865 } else { 9866 bzero(l2dhdr, l2dhdr_asize); 9867 l2arc_dev_hdr_update(dev); 9868 } 9869 } 9870 } 9871 9872 /* 9873 * Add a vdev for use by the L2ARC. By this point the spa has already 9874 * validated the vdev and opened it. 9875 */ 9876 void 9877 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 9878 { 9879 l2arc_dev_t *adddev; 9880 uint64_t l2dhdr_asize; 9881 9882 ASSERT(!l2arc_vdev_present(vd)); 9883 9884 /* 9885 * Create a new l2arc device entry. 9886 */ 9887 adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 9888 adddev->l2ad_spa = spa; 9889 adddev->l2ad_vdev = vd; 9890 /* leave extra size for an l2arc device header */ 9891 l2dhdr_asize = adddev->l2ad_dev_hdr_asize = 9892 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift); 9893 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize; 9894 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 9895 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end); 9896 adddev->l2ad_hand = adddev->l2ad_start; 9897 adddev->l2ad_evict = adddev->l2ad_start; 9898 adddev->l2ad_first = B_TRUE; 9899 adddev->l2ad_writing = B_FALSE; 9900 adddev->l2ad_trim_all = B_FALSE; 9901 list_link_init(&adddev->l2ad_node); 9902 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP); 9903 9904 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 9905 /* 9906 * This is a list of all ARC buffers that are still valid on the 9907 * device. 9908 */ 9909 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 9910 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 9911 9912 /* 9913 * This is a list of pointers to log blocks that are still present 9914 * on the device. 9915 */ 9916 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t), 9917 offsetof(l2arc_lb_ptr_buf_t, node)); 9918 9919 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 9920 zfs_refcount_create(&adddev->l2ad_alloc); 9921 zfs_refcount_create(&adddev->l2ad_lb_asize); 9922 zfs_refcount_create(&adddev->l2ad_lb_count); 9923 9924 /* 9925 * Decide if dev is eligible for L2ARC rebuild or whole device 9926 * trimming. This has to happen before the device is added in the 9927 * cache device list and l2arc_dev_mtx is released. Otherwise 9928 * l2arc_feed_thread() might already start writing on the 9929 * device. 9930 */ 9931 l2arc_rebuild_dev(adddev, B_FALSE); 9932 9933 /* 9934 * Add device to global list 9935 */ 9936 mutex_enter(&l2arc_dev_mtx); 9937 list_insert_head(l2arc_dev_list, adddev); 9938 atomic_inc_64(&l2arc_ndev); 9939 mutex_exit(&l2arc_dev_mtx); 9940 } 9941 9942 /* 9943 * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen() 9944 * in case of onlining a cache device. 9945 */ 9946 void 9947 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen) 9948 { 9949 l2arc_dev_t *dev = NULL; 9950 9951 dev = l2arc_vdev_get(vd); 9952 ASSERT3P(dev, !=, NULL); 9953 9954 /* 9955 * In contrast to l2arc_add_vdev() we do not have to worry about 9956 * l2arc_feed_thread() invalidating previous content when onlining a 9957 * cache device. The device parameters (l2ad*) are not cleared when 9958 * offlining the device and writing new buffers will not invalidate 9959 * all previous content. In worst case only buffers that have not had 9960 * their log block written to the device will be lost. 9961 * When onlining the cache device (ie offline->online without exporting 9962 * the pool in between) this happens: 9963 * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev() 9964 * | | 9965 * vdev_is_dead() = B_FALSE l2ad_rebuild = B_TRUE 9966 * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild 9967 * is set to B_TRUE we might write additional buffers to the device. 9968 */ 9969 l2arc_rebuild_dev(dev, reopen); 9970 } 9971 9972 /* 9973 * Remove a vdev from the L2ARC. 9974 */ 9975 void 9976 l2arc_remove_vdev(vdev_t *vd) 9977 { 9978 l2arc_dev_t *remdev = NULL; 9979 9980 /* 9981 * Find the device by vdev 9982 */ 9983 remdev = l2arc_vdev_get(vd); 9984 ASSERT3P(remdev, !=, NULL); 9985 9986 /* 9987 * Cancel any ongoing or scheduled rebuild. 9988 */ 9989 mutex_enter(&l2arc_rebuild_thr_lock); 9990 if (remdev->l2ad_rebuild_began == B_TRUE) { 9991 remdev->l2ad_rebuild_cancel = B_TRUE; 9992 while (remdev->l2ad_rebuild == B_TRUE) 9993 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock); 9994 } 9995 mutex_exit(&l2arc_rebuild_thr_lock); 9996 9997 /* 9998 * Remove device from global list 9999 */ 10000 mutex_enter(&l2arc_dev_mtx); 10001 list_remove(l2arc_dev_list, remdev); 10002 l2arc_dev_last = NULL; /* may have been invalidated */ 10003 atomic_dec_64(&l2arc_ndev); 10004 mutex_exit(&l2arc_dev_mtx); 10005 10006 /* 10007 * Clear all buflists and ARC references. L2ARC device flush. 10008 */ 10009 l2arc_evict(remdev, 0, B_TRUE); 10010 list_destroy(&remdev->l2ad_buflist); 10011 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list)); 10012 list_destroy(&remdev->l2ad_lbptr_list); 10013 mutex_destroy(&remdev->l2ad_mtx); 10014 zfs_refcount_destroy(&remdev->l2ad_alloc); 10015 zfs_refcount_destroy(&remdev->l2ad_lb_asize); 10016 zfs_refcount_destroy(&remdev->l2ad_lb_count); 10017 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize); 10018 vmem_free(remdev, sizeof (l2arc_dev_t)); 10019 } 10020 10021 void 10022 l2arc_init(void) 10023 { 10024 l2arc_thread_exit = 0; 10025 l2arc_ndev = 0; 10026 10027 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 10028 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 10029 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL); 10030 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL); 10031 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 10032 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 10033 10034 l2arc_dev_list = &L2ARC_dev_list; 10035 l2arc_free_on_write = &L2ARC_free_on_write; 10036 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 10037 offsetof(l2arc_dev_t, l2ad_node)); 10038 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 10039 offsetof(l2arc_data_free_t, l2df_list_node)); 10040 } 10041 10042 void 10043 l2arc_fini(void) 10044 { 10045 mutex_destroy(&l2arc_feed_thr_lock); 10046 cv_destroy(&l2arc_feed_thr_cv); 10047 mutex_destroy(&l2arc_rebuild_thr_lock); 10048 cv_destroy(&l2arc_rebuild_thr_cv); 10049 mutex_destroy(&l2arc_dev_mtx); 10050 mutex_destroy(&l2arc_free_on_write_mtx); 10051 10052 list_destroy(l2arc_dev_list); 10053 list_destroy(l2arc_free_on_write); 10054 } 10055 10056 void 10057 l2arc_start(void) 10058 { 10059 if (!(spa_mode_global & SPA_MODE_WRITE)) 10060 return; 10061 10062 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 10063 TS_RUN, defclsyspri); 10064 } 10065 10066 void 10067 l2arc_stop(void) 10068 { 10069 if (!(spa_mode_global & SPA_MODE_WRITE)) 10070 return; 10071 10072 mutex_enter(&l2arc_feed_thr_lock); 10073 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 10074 l2arc_thread_exit = 1; 10075 while (l2arc_thread_exit != 0) 10076 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 10077 mutex_exit(&l2arc_feed_thr_lock); 10078 } 10079 10080 /* 10081 * Punches out rebuild threads for the L2ARC devices in a spa. This should 10082 * be called after pool import from the spa async thread, since starting 10083 * these threads directly from spa_import() will make them part of the 10084 * "zpool import" context and delay process exit (and thus pool import). 10085 */ 10086 void 10087 l2arc_spa_rebuild_start(spa_t *spa) 10088 { 10089 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 10090 10091 /* 10092 * Locate the spa's l2arc devices and kick off rebuild threads. 10093 */ 10094 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 10095 l2arc_dev_t *dev = 10096 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]); 10097 if (dev == NULL) { 10098 /* Don't attempt a rebuild if the vdev is UNAVAIL */ 10099 continue; 10100 } 10101 mutex_enter(&l2arc_rebuild_thr_lock); 10102 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) { 10103 dev->l2ad_rebuild_began = B_TRUE; 10104 (void) thread_create(NULL, 0, l2arc_dev_rebuild_thread, 10105 dev, 0, &p0, TS_RUN, minclsyspri); 10106 } 10107 mutex_exit(&l2arc_rebuild_thr_lock); 10108 } 10109 } 10110 10111 /* 10112 * Main entry point for L2ARC rebuilding. 10113 */ 10114 static void 10115 l2arc_dev_rebuild_thread(void *arg) 10116 { 10117 l2arc_dev_t *dev = arg; 10118 10119 VERIFY(!dev->l2ad_rebuild_cancel); 10120 VERIFY(dev->l2ad_rebuild); 10121 (void) l2arc_rebuild(dev); 10122 mutex_enter(&l2arc_rebuild_thr_lock); 10123 dev->l2ad_rebuild_began = B_FALSE; 10124 dev->l2ad_rebuild = B_FALSE; 10125 mutex_exit(&l2arc_rebuild_thr_lock); 10126 10127 thread_exit(); 10128 } 10129 10130 /* 10131 * This function implements the actual L2ARC metadata rebuild. It: 10132 * starts reading the log block chain and restores each block's contents 10133 * to memory (reconstructing arc_buf_hdr_t's). 10134 * 10135 * Operation stops under any of the following conditions: 10136 * 10137 * 1) We reach the end of the log block chain. 10138 * 2) We encounter *any* error condition (cksum errors, io errors) 10139 */ 10140 static int 10141 l2arc_rebuild(l2arc_dev_t *dev) 10142 { 10143 vdev_t *vd = dev->l2ad_vdev; 10144 spa_t *spa = vd->vdev_spa; 10145 int err = 0; 10146 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10147 l2arc_log_blk_phys_t *this_lb, *next_lb; 10148 zio_t *this_io = NULL, *next_io = NULL; 10149 l2arc_log_blkptr_t lbps[2]; 10150 l2arc_lb_ptr_buf_t *lb_ptr_buf; 10151 boolean_t lock_held; 10152 10153 this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP); 10154 next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP); 10155 10156 /* 10157 * We prevent device removal while issuing reads to the device, 10158 * then during the rebuilding phases we drop this lock again so 10159 * that a spa_unload or device remove can be initiated - this is 10160 * safe, because the spa will signal us to stop before removing 10161 * our device and wait for us to stop. 10162 */ 10163 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER); 10164 lock_held = B_TRUE; 10165 10166 /* 10167 * Retrieve the persistent L2ARC device state. 10168 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10169 */ 10170 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start); 10171 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr + 10172 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop), 10173 dev->l2ad_start); 10174 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 10175 10176 vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time; 10177 vd->vdev_trim_state = l2dhdr->dh_trim_state; 10178 10179 /* 10180 * In case the zfs module parameter l2arc_rebuild_enabled is false 10181 * we do not start the rebuild process. 10182 */ 10183 if (!l2arc_rebuild_enabled) 10184 goto out; 10185 10186 /* Prepare the rebuild process */ 10187 bcopy(l2dhdr->dh_start_lbps, lbps, sizeof (lbps)); 10188 10189 /* Start the rebuild process */ 10190 for (;;) { 10191 if (!l2arc_log_blkptr_valid(dev, &lbps[0])) 10192 break; 10193 10194 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1], 10195 this_lb, next_lb, this_io, &next_io)) != 0) 10196 goto out; 10197 10198 /* 10199 * Our memory pressure valve. If the system is running low 10200 * on memory, rather than swamping memory with new ARC buf 10201 * hdrs, we opt not to rebuild the L2ARC. At this point, 10202 * however, we have already set up our L2ARC dev to chain in 10203 * new metadata log blocks, so the user may choose to offline/ 10204 * online the L2ARC dev at a later time (or re-import the pool) 10205 * to reconstruct it (when there's less memory pressure). 10206 */ 10207 if (l2arc_hdr_limit_reached()) { 10208 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem); 10209 cmn_err(CE_NOTE, "System running low on memory, " 10210 "aborting L2ARC rebuild."); 10211 err = SET_ERROR(ENOMEM); 10212 goto out; 10213 } 10214 10215 spa_config_exit(spa, SCL_L2ARC, vd); 10216 lock_held = B_FALSE; 10217 10218 /* 10219 * Now that we know that the next_lb checks out alright, we 10220 * can start reconstruction from this log block. 10221 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10222 */ 10223 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 10224 l2arc_log_blk_restore(dev, this_lb, asize); 10225 10226 /* 10227 * log block restored, include its pointer in the list of 10228 * pointers to log blocks present in the L2ARC device. 10229 */ 10230 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 10231 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), 10232 KM_SLEEP); 10233 bcopy(&lbps[0], lb_ptr_buf->lb_ptr, 10234 sizeof (l2arc_log_blkptr_t)); 10235 mutex_enter(&dev->l2ad_mtx); 10236 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf); 10237 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 10238 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 10239 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 10240 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 10241 mutex_exit(&dev->l2ad_mtx); 10242 vdev_space_update(vd, asize, 0, 0); 10243 10244 /* 10245 * Protection against loops of log blocks: 10246 * 10247 * l2ad_hand l2ad_evict 10248 * V V 10249 * l2ad_start |=======================================| l2ad_end 10250 * -----|||----|||---|||----||| 10251 * (3) (2) (1) (0) 10252 * ---|||---|||----|||---||| 10253 * (7) (6) (5) (4) 10254 * 10255 * In this situation the pointer of log block (4) passes 10256 * l2arc_log_blkptr_valid() but the log block should not be 10257 * restored as it is overwritten by the payload of log block 10258 * (0). Only log blocks (0)-(3) should be restored. We check 10259 * whether l2ad_evict lies in between the payload starting 10260 * offset of the next log block (lbps[1].lbp_payload_start) 10261 * and the payload starting offset of the present log block 10262 * (lbps[0].lbp_payload_start). If true and this isn't the 10263 * first pass, we are looping from the beginning and we should 10264 * stop. 10265 */ 10266 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 10267 lbps[0].lbp_payload_start, dev->l2ad_evict) && 10268 !dev->l2ad_first) 10269 goto out; 10270 10271 cond_resched(); 10272 for (;;) { 10273 mutex_enter(&l2arc_rebuild_thr_lock); 10274 if (dev->l2ad_rebuild_cancel) { 10275 dev->l2ad_rebuild = B_FALSE; 10276 cv_signal(&l2arc_rebuild_thr_cv); 10277 mutex_exit(&l2arc_rebuild_thr_lock); 10278 err = SET_ERROR(ECANCELED); 10279 goto out; 10280 } 10281 mutex_exit(&l2arc_rebuild_thr_lock); 10282 if (spa_config_tryenter(spa, SCL_L2ARC, vd, 10283 RW_READER)) { 10284 lock_held = B_TRUE; 10285 break; 10286 } 10287 /* 10288 * L2ARC config lock held by somebody in writer, 10289 * possibly due to them trying to remove us. They'll 10290 * likely to want us to shut down, so after a little 10291 * delay, we check l2ad_rebuild_cancel and retry 10292 * the lock again. 10293 */ 10294 delay(1); 10295 } 10296 10297 /* 10298 * Continue with the next log block. 10299 */ 10300 lbps[0] = lbps[1]; 10301 lbps[1] = this_lb->lb_prev_lbp; 10302 PTR_SWAP(this_lb, next_lb); 10303 this_io = next_io; 10304 next_io = NULL; 10305 } 10306 10307 if (this_io != NULL) 10308 l2arc_log_blk_fetch_abort(this_io); 10309 out: 10310 if (next_io != NULL) 10311 l2arc_log_blk_fetch_abort(next_io); 10312 vmem_free(this_lb, sizeof (*this_lb)); 10313 vmem_free(next_lb, sizeof (*next_lb)); 10314 10315 if (!l2arc_rebuild_enabled) { 10316 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10317 "disabled"); 10318 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) { 10319 ARCSTAT_BUMP(arcstat_l2_rebuild_success); 10320 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10321 "successful, restored %llu blocks", 10322 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10323 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) { 10324 /* 10325 * No error but also nothing restored, meaning the lbps array 10326 * in the device header points to invalid/non-present log 10327 * blocks. Reset the header. 10328 */ 10329 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10330 "no valid log blocks"); 10331 bzero(l2dhdr, dev->l2ad_dev_hdr_asize); 10332 l2arc_dev_hdr_update(dev); 10333 } else if (err == ECANCELED) { 10334 /* 10335 * In case the rebuild was canceled do not log to spa history 10336 * log as the pool may be in the process of being removed. 10337 */ 10338 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks", 10339 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10340 } else if (err != 0) { 10341 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10342 "aborted, restored %llu blocks", 10343 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10344 } 10345 10346 if (lock_held) 10347 spa_config_exit(spa, SCL_L2ARC, vd); 10348 10349 return (err); 10350 } 10351 10352 /* 10353 * Attempts to read the device header on the provided L2ARC device and writes 10354 * it to `hdr'. On success, this function returns 0, otherwise the appropriate 10355 * error code is returned. 10356 */ 10357 static int 10358 l2arc_dev_hdr_read(l2arc_dev_t *dev) 10359 { 10360 int err; 10361 uint64_t guid; 10362 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10363 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10364 abd_t *abd; 10365 10366 guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10367 10368 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10369 10370 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev, 10371 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, 10372 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 10373 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 10374 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 10375 ZIO_FLAG_SPECULATIVE, B_FALSE)); 10376 10377 abd_free(abd); 10378 10379 if (err != 0) { 10380 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors); 10381 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, " 10382 "vdev guid: %llu", err, 10383 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10384 return (err); 10385 } 10386 10387 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 10388 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr)); 10389 10390 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC || 10391 l2dhdr->dh_spa_guid != guid || 10392 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid || 10393 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION || 10394 l2dhdr->dh_log_entries != dev->l2ad_log_entries || 10395 l2dhdr->dh_end != dev->l2ad_end || 10396 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end, 10397 l2dhdr->dh_evict) || 10398 (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE && 10399 l2arc_trim_ahead > 0)) { 10400 /* 10401 * Attempt to rebuild a device containing no actual dev hdr 10402 * or containing a header from some other pool or from another 10403 * version of persistent L2ARC. 10404 */ 10405 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported); 10406 return (SET_ERROR(ENOTSUP)); 10407 } 10408 10409 return (0); 10410 } 10411 10412 /* 10413 * Reads L2ARC log blocks from storage and validates their contents. 10414 * 10415 * This function implements a simple fetcher to make sure that while 10416 * we're processing one buffer the L2ARC is already fetching the next 10417 * one in the chain. 10418 * 10419 * The arguments this_lp and next_lp point to the current and next log block 10420 * address in the block chain. Similarly, this_lb and next_lb hold the 10421 * l2arc_log_blk_phys_t's of the current and next L2ARC blk. 10422 * 10423 * The `this_io' and `next_io' arguments are used for block fetching. 10424 * When issuing the first blk IO during rebuild, you should pass NULL for 10425 * `this_io'. This function will then issue a sync IO to read the block and 10426 * also issue an async IO to fetch the next block in the block chain. The 10427 * fetched IO is returned in `next_io'. On subsequent calls to this 10428 * function, pass the value returned in `next_io' from the previous call 10429 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO. 10430 * Prior to the call, you should initialize your `next_io' pointer to be 10431 * NULL. If no fetch IO was issued, the pointer is left set at NULL. 10432 * 10433 * On success, this function returns 0, otherwise it returns an appropriate 10434 * error code. On error the fetching IO is aborted and cleared before 10435 * returning from this function. Therefore, if we return `success', the 10436 * caller can assume that we have taken care of cleanup of fetch IOs. 10437 */ 10438 static int 10439 l2arc_log_blk_read(l2arc_dev_t *dev, 10440 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp, 10441 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 10442 zio_t *this_io, zio_t **next_io) 10443 { 10444 int err = 0; 10445 zio_cksum_t cksum; 10446 abd_t *abd = NULL; 10447 uint64_t asize; 10448 10449 ASSERT(this_lbp != NULL && next_lbp != NULL); 10450 ASSERT(this_lb != NULL && next_lb != NULL); 10451 ASSERT(next_io != NULL && *next_io == NULL); 10452 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp)); 10453 10454 /* 10455 * Check to see if we have issued the IO for this log block in a 10456 * previous run. If not, this is the first call, so issue it now. 10457 */ 10458 if (this_io == NULL) { 10459 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp, 10460 this_lb); 10461 } 10462 10463 /* 10464 * Peek to see if we can start issuing the next IO immediately. 10465 */ 10466 if (l2arc_log_blkptr_valid(dev, next_lbp)) { 10467 /* 10468 * Start issuing IO for the next log block early - this 10469 * should help keep the L2ARC device busy while we 10470 * decompress and restore this log block. 10471 */ 10472 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp, 10473 next_lb); 10474 } 10475 10476 /* Wait for the IO to read this log block to complete */ 10477 if ((err = zio_wait(this_io)) != 0) { 10478 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors); 10479 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, " 10480 "offset: %llu, vdev guid: %llu", err, 10481 (u_longlong_t)this_lbp->lbp_daddr, 10482 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10483 goto cleanup; 10484 } 10485 10486 /* 10487 * Make sure the buffer checks out. 10488 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10489 */ 10490 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop); 10491 fletcher_4_native(this_lb, asize, NULL, &cksum); 10492 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) { 10493 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors); 10494 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, " 10495 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu", 10496 (u_longlong_t)this_lbp->lbp_daddr, 10497 (u_longlong_t)dev->l2ad_vdev->vdev_guid, 10498 (u_longlong_t)dev->l2ad_hand, 10499 (u_longlong_t)dev->l2ad_evict); 10500 err = SET_ERROR(ECKSUM); 10501 goto cleanup; 10502 } 10503 10504 /* Now we can take our time decoding this buffer */ 10505 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) { 10506 case ZIO_COMPRESS_OFF: 10507 break; 10508 case ZIO_COMPRESS_LZ4: 10509 abd = abd_alloc_for_io(asize, B_TRUE); 10510 abd_copy_from_buf_off(abd, this_lb, 0, asize); 10511 if ((err = zio_decompress_data( 10512 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop), 10513 abd, this_lb, asize, sizeof (*this_lb), NULL)) != 0) { 10514 err = SET_ERROR(EINVAL); 10515 goto cleanup; 10516 } 10517 break; 10518 default: 10519 err = SET_ERROR(EINVAL); 10520 goto cleanup; 10521 } 10522 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 10523 byteswap_uint64_array(this_lb, sizeof (*this_lb)); 10524 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) { 10525 err = SET_ERROR(EINVAL); 10526 goto cleanup; 10527 } 10528 cleanup: 10529 /* Abort an in-flight fetch I/O in case of error */ 10530 if (err != 0 && *next_io != NULL) { 10531 l2arc_log_blk_fetch_abort(*next_io); 10532 *next_io = NULL; 10533 } 10534 if (abd != NULL) 10535 abd_free(abd); 10536 return (err); 10537 } 10538 10539 /* 10540 * Restores the payload of a log block to ARC. This creates empty ARC hdr 10541 * entries which only contain an l2arc hdr, essentially restoring the 10542 * buffers to their L2ARC evicted state. This function also updates space 10543 * usage on the L2ARC vdev to make sure it tracks restored buffers. 10544 */ 10545 static void 10546 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb, 10547 uint64_t lb_asize) 10548 { 10549 uint64_t size = 0, asize = 0; 10550 uint64_t log_entries = dev->l2ad_log_entries; 10551 10552 /* 10553 * Usually arc_adapt() is called only for data, not headers, but 10554 * since we may allocate significant amount of memory here, let ARC 10555 * grow its arc_c. 10556 */ 10557 arc_adapt(log_entries * HDR_L2ONLY_SIZE, arc_l2c_only); 10558 10559 for (int i = log_entries - 1; i >= 0; i--) { 10560 /* 10561 * Restore goes in the reverse temporal direction to preserve 10562 * correct temporal ordering of buffers in the l2ad_buflist. 10563 * l2arc_hdr_restore also does a list_insert_tail instead of 10564 * list_insert_head on the l2ad_buflist: 10565 * 10566 * LIST l2ad_buflist LIST 10567 * HEAD <------ (time) ------ TAIL 10568 * direction +-----+-----+-----+-----+-----+ direction 10569 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild 10570 * fill +-----+-----+-----+-----+-----+ 10571 * ^ ^ 10572 * | | 10573 * | | 10574 * l2arc_feed_thread l2arc_rebuild 10575 * will place new bufs here restores bufs here 10576 * 10577 * During l2arc_rebuild() the device is not used by 10578 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true. 10579 */ 10580 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop); 10581 asize += vdev_psize_to_asize(dev->l2ad_vdev, 10582 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop)); 10583 l2arc_hdr_restore(&lb->lb_entries[i], dev); 10584 } 10585 10586 /* 10587 * Record rebuild stats: 10588 * size Logical size of restored buffers in the L2ARC 10589 * asize Aligned size of restored buffers in the L2ARC 10590 */ 10591 ARCSTAT_INCR(arcstat_l2_rebuild_size, size); 10592 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize); 10593 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries); 10594 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize); 10595 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize); 10596 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks); 10597 } 10598 10599 /* 10600 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put 10601 * into a state indicating that it has been evicted to L2ARC. 10602 */ 10603 static void 10604 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev) 10605 { 10606 arc_buf_hdr_t *hdr, *exists; 10607 kmutex_t *hash_lock; 10608 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop); 10609 uint64_t asize; 10610 10611 /* 10612 * Do all the allocation before grabbing any locks, this lets us 10613 * sleep if memory is full and we don't have to deal with failed 10614 * allocations. 10615 */ 10616 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type, 10617 dev, le->le_dva, le->le_daddr, 10618 L2BLK_GET_PSIZE((le)->le_prop), le->le_birth, 10619 L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel, 10620 L2BLK_GET_PROTECTED((le)->le_prop), 10621 L2BLK_GET_PREFETCH((le)->le_prop), 10622 L2BLK_GET_STATE((le)->le_prop)); 10623 asize = vdev_psize_to_asize(dev->l2ad_vdev, 10624 L2BLK_GET_PSIZE((le)->le_prop)); 10625 10626 /* 10627 * vdev_space_update() has to be called before arc_hdr_destroy() to 10628 * avoid underflow since the latter also calls vdev_space_update(). 10629 */ 10630 l2arc_hdr_arcstats_increment(hdr); 10631 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10632 10633 mutex_enter(&dev->l2ad_mtx); 10634 list_insert_tail(&dev->l2ad_buflist, hdr); 10635 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); 10636 mutex_exit(&dev->l2ad_mtx); 10637 10638 exists = buf_hash_insert(hdr, &hash_lock); 10639 if (exists) { 10640 /* Buffer was already cached, no need to restore it. */ 10641 arc_hdr_destroy(hdr); 10642 /* 10643 * If the buffer is already cached, check whether it has 10644 * L2ARC metadata. If not, enter them and update the flag. 10645 * This is important is case of onlining a cache device, since 10646 * we previously evicted all L2ARC metadata from ARC. 10647 */ 10648 if (!HDR_HAS_L2HDR(exists)) { 10649 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR); 10650 exists->b_l2hdr.b_dev = dev; 10651 exists->b_l2hdr.b_daddr = le->le_daddr; 10652 exists->b_l2hdr.b_arcs_state = 10653 L2BLK_GET_STATE((le)->le_prop); 10654 mutex_enter(&dev->l2ad_mtx); 10655 list_insert_tail(&dev->l2ad_buflist, exists); 10656 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 10657 arc_hdr_size(exists), exists); 10658 mutex_exit(&dev->l2ad_mtx); 10659 l2arc_hdr_arcstats_increment(exists); 10660 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10661 } 10662 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached); 10663 } 10664 10665 mutex_exit(hash_lock); 10666 } 10667 10668 /* 10669 * Starts an asynchronous read IO to read a log block. This is used in log 10670 * block reconstruction to start reading the next block before we are done 10671 * decoding and reconstructing the current block, to keep the l2arc device 10672 * nice and hot with read IO to process. 10673 * The returned zio will contain a newly allocated memory buffers for the IO 10674 * data which should then be freed by the caller once the zio is no longer 10675 * needed (i.e. due to it having completed). If you wish to abort this 10676 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes 10677 * care of disposing of the allocated buffers correctly. 10678 */ 10679 static zio_t * 10680 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp, 10681 l2arc_log_blk_phys_t *lb) 10682 { 10683 uint32_t asize; 10684 zio_t *pio; 10685 l2arc_read_callback_t *cb; 10686 10687 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10688 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10689 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t)); 10690 10691 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP); 10692 cb->l2rcb_abd = abd_get_from_buf(lb, asize); 10693 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb, 10694 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | 10695 ZIO_FLAG_DONT_RETRY); 10696 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize, 10697 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10698 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 10699 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE)); 10700 10701 return (pio); 10702 } 10703 10704 /* 10705 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data 10706 * buffers allocated for it. 10707 */ 10708 static void 10709 l2arc_log_blk_fetch_abort(zio_t *zio) 10710 { 10711 (void) zio_wait(zio); 10712 } 10713 10714 /* 10715 * Creates a zio to update the device header on an l2arc device. 10716 */ 10717 void 10718 l2arc_dev_hdr_update(l2arc_dev_t *dev) 10719 { 10720 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10721 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10722 abd_t *abd; 10723 int err; 10724 10725 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER)); 10726 10727 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC; 10728 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION; 10729 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10730 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid; 10731 l2dhdr->dh_log_entries = dev->l2ad_log_entries; 10732 l2dhdr->dh_evict = dev->l2ad_evict; 10733 l2dhdr->dh_start = dev->l2ad_start; 10734 l2dhdr->dh_end = dev->l2ad_end; 10735 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize); 10736 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count); 10737 l2dhdr->dh_flags = 0; 10738 l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time; 10739 l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state; 10740 if (dev->l2ad_first) 10741 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST; 10742 10743 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10744 10745 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev, 10746 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL, 10747 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE)); 10748 10749 abd_free(abd); 10750 10751 if (err != 0) { 10752 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, " 10753 "vdev guid: %llu", err, 10754 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10755 } 10756 } 10757 10758 /* 10759 * Commits a log block to the L2ARC device. This routine is invoked from 10760 * l2arc_write_buffers when the log block fills up. 10761 * This function allocates some memory to temporarily hold the serialized 10762 * buffer to be written. This is then released in l2arc_write_done. 10763 */ 10764 static void 10765 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb) 10766 { 10767 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10768 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10769 uint64_t psize, asize; 10770 zio_t *wzio; 10771 l2arc_lb_abd_buf_t *abd_buf; 10772 uint8_t *tmpbuf; 10773 l2arc_lb_ptr_buf_t *lb_ptr_buf; 10774 10775 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries); 10776 10777 tmpbuf = zio_buf_alloc(sizeof (*lb)); 10778 abd_buf = zio_buf_alloc(sizeof (*abd_buf)); 10779 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb)); 10780 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 10781 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP); 10782 10783 /* link the buffer into the block chain */ 10784 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1]; 10785 lb->lb_magic = L2ARC_LOG_BLK_MAGIC; 10786 10787 /* 10788 * l2arc_log_blk_commit() may be called multiple times during a single 10789 * l2arc_write_buffers() call. Save the allocated abd buffers in a list 10790 * so we can free them in l2arc_write_done() later on. 10791 */ 10792 list_insert_tail(&cb->l2wcb_abd_list, abd_buf); 10793 10794 /* try to compress the buffer */ 10795 psize = zio_compress_data(ZIO_COMPRESS_LZ4, 10796 abd_buf->abd, tmpbuf, sizeof (*lb), 0); 10797 10798 /* a log block is never entirely zero */ 10799 ASSERT(psize != 0); 10800 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 10801 ASSERT(asize <= sizeof (*lb)); 10802 10803 /* 10804 * Update the start log block pointer in the device header to point 10805 * to the log block we're about to write. 10806 */ 10807 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0]; 10808 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand; 10809 l2dhdr->dh_start_lbps[0].lbp_payload_asize = 10810 dev->l2ad_log_blk_payload_asize; 10811 l2dhdr->dh_start_lbps[0].lbp_payload_start = 10812 dev->l2ad_log_blk_payload_start; 10813 L2BLK_SET_LSIZE( 10814 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb)); 10815 L2BLK_SET_PSIZE( 10816 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize); 10817 L2BLK_SET_CHECKSUM( 10818 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10819 ZIO_CHECKSUM_FLETCHER_4); 10820 if (asize < sizeof (*lb)) { 10821 /* compression succeeded */ 10822 bzero(tmpbuf + psize, asize - psize); 10823 L2BLK_SET_COMPRESS( 10824 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10825 ZIO_COMPRESS_LZ4); 10826 } else { 10827 /* compression failed */ 10828 bcopy(lb, tmpbuf, sizeof (*lb)); 10829 L2BLK_SET_COMPRESS( 10830 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10831 ZIO_COMPRESS_OFF); 10832 } 10833 10834 /* checksum what we're about to write */ 10835 fletcher_4_native(tmpbuf, asize, NULL, 10836 &l2dhdr->dh_start_lbps[0].lbp_cksum); 10837 10838 abd_free(abd_buf->abd); 10839 10840 /* perform the write itself */ 10841 abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb)); 10842 abd_take_ownership_of_buf(abd_buf->abd, B_TRUE); 10843 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand, 10844 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10845 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE); 10846 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio); 10847 (void) zio_nowait(wzio); 10848 10849 dev->l2ad_hand += asize; 10850 /* 10851 * Include the committed log block's pointer in the list of pointers 10852 * to log blocks present in the L2ARC device. 10853 */ 10854 bcopy(&l2dhdr->dh_start_lbps[0], lb_ptr_buf->lb_ptr, 10855 sizeof (l2arc_log_blkptr_t)); 10856 mutex_enter(&dev->l2ad_mtx); 10857 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf); 10858 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 10859 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 10860 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 10861 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 10862 mutex_exit(&dev->l2ad_mtx); 10863 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10864 10865 /* bump the kstats */ 10866 ARCSTAT_INCR(arcstat_l2_write_bytes, asize); 10867 ARCSTAT_BUMP(arcstat_l2_log_blk_writes); 10868 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize); 10869 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, 10870 dev->l2ad_log_blk_payload_asize / asize); 10871 10872 /* start a new log block */ 10873 dev->l2ad_log_ent_idx = 0; 10874 dev->l2ad_log_blk_payload_asize = 0; 10875 dev->l2ad_log_blk_payload_start = 0; 10876 } 10877 10878 /* 10879 * Validates an L2ARC log block address to make sure that it can be read 10880 * from the provided L2ARC device. 10881 */ 10882 boolean_t 10883 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp) 10884 { 10885 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10886 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10887 uint64_t end = lbp->lbp_daddr + asize - 1; 10888 uint64_t start = lbp->lbp_payload_start; 10889 boolean_t evicted = B_FALSE; 10890 10891 /* 10892 * A log block is valid if all of the following conditions are true: 10893 * - it fits entirely (including its payload) between l2ad_start and 10894 * l2ad_end 10895 * - it has a valid size 10896 * - neither the log block itself nor part of its payload was evicted 10897 * by l2arc_evict(): 10898 * 10899 * l2ad_hand l2ad_evict 10900 * | | lbp_daddr 10901 * | start | | end 10902 * | | | | | 10903 * V V V V V 10904 * l2ad_start ============================================ l2ad_end 10905 * --------------------------|||| 10906 * ^ ^ 10907 * | log block 10908 * payload 10909 */ 10910 10911 evicted = 10912 l2arc_range_check_overlap(start, end, dev->l2ad_hand) || 10913 l2arc_range_check_overlap(start, end, dev->l2ad_evict) || 10914 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) || 10915 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end); 10916 10917 return (start >= dev->l2ad_start && end <= dev->l2ad_end && 10918 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) && 10919 (!evicted || dev->l2ad_first)); 10920 } 10921 10922 /* 10923 * Inserts ARC buffer header `hdr' into the current L2ARC log block on 10924 * the device. The buffer being inserted must be present in L2ARC. 10925 * Returns B_TRUE if the L2ARC log block is full and needs to be committed 10926 * to L2ARC, or B_FALSE if it still has room for more ARC buffers. 10927 */ 10928 static boolean_t 10929 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr) 10930 { 10931 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10932 l2arc_log_ent_phys_t *le; 10933 10934 if (dev->l2ad_log_entries == 0) 10935 return (B_FALSE); 10936 10937 int index = dev->l2ad_log_ent_idx++; 10938 10939 ASSERT3S(index, <, dev->l2ad_log_entries); 10940 ASSERT(HDR_HAS_L2HDR(hdr)); 10941 10942 le = &lb->lb_entries[index]; 10943 bzero(le, sizeof (*le)); 10944 le->le_dva = hdr->b_dva; 10945 le->le_birth = hdr->b_birth; 10946 le->le_daddr = hdr->b_l2hdr.b_daddr; 10947 if (index == 0) 10948 dev->l2ad_log_blk_payload_start = le->le_daddr; 10949 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr)); 10950 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr)); 10951 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr)); 10952 le->le_complevel = hdr->b_complevel; 10953 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type); 10954 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr))); 10955 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr))); 10956 L2BLK_SET_STATE((le)->le_prop, hdr->b_l1hdr.b_state->arcs_state); 10957 10958 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev, 10959 HDR_GET_PSIZE(hdr)); 10960 10961 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries); 10962 } 10963 10964 /* 10965 * Checks whether a given L2ARC device address sits in a time-sequential 10966 * range. The trick here is that the L2ARC is a rotary buffer, so we can't 10967 * just do a range comparison, we need to handle the situation in which the 10968 * range wraps around the end of the L2ARC device. Arguments: 10969 * bottom -- Lower end of the range to check (written to earlier). 10970 * top -- Upper end of the range to check (written to later). 10971 * check -- The address for which we want to determine if it sits in 10972 * between the top and bottom. 10973 * 10974 * The 3-way conditional below represents the following cases: 10975 * 10976 * bottom < top : Sequentially ordered case: 10977 * <check>--------+-------------------+ 10978 * | (overlap here?) | 10979 * L2ARC dev V V 10980 * |---------------<bottom>============<top>--------------| 10981 * 10982 * bottom > top: Looped-around case: 10983 * <check>--------+------------------+ 10984 * | (overlap here?) | 10985 * L2ARC dev V V 10986 * |===============<top>---------------<bottom>===========| 10987 * ^ ^ 10988 * | (or here?) | 10989 * +---------------+---------<check> 10990 * 10991 * top == bottom : Just a single address comparison. 10992 */ 10993 boolean_t 10994 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check) 10995 { 10996 if (bottom < top) 10997 return (bottom <= check && check <= top); 10998 else if (bottom > top) 10999 return (check <= top || bottom <= check); 11000 else 11001 return (check == top); 11002 } 11003 11004 EXPORT_SYMBOL(arc_buf_size); 11005 EXPORT_SYMBOL(arc_write); 11006 EXPORT_SYMBOL(arc_read); 11007 EXPORT_SYMBOL(arc_buf_info); 11008 EXPORT_SYMBOL(arc_getbuf_func); 11009 EXPORT_SYMBOL(arc_add_prune_callback); 11010 EXPORT_SYMBOL(arc_remove_prune_callback); 11011 11012 /* BEGIN CSTYLED */ 11013 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_min, 11014 param_get_long, ZMOD_RW, "Min arc size"); 11015 11016 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_max, 11017 param_get_long, ZMOD_RW, "Max arc size"); 11018 11019 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit, param_set_arc_long, 11020 param_get_long, ZMOD_RW, "Metadata limit for arc size"); 11021 11022 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit_percent, 11023 param_set_arc_long, param_get_long, ZMOD_RW, 11024 "Percent of arc size for arc meta limit"); 11025 11026 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_min, param_set_arc_long, 11027 param_get_long, ZMOD_RW, "Min arc metadata"); 11028 11029 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_prune, INT, ZMOD_RW, 11030 "Meta objects to scan for prune"); 11031 11032 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_adjust_restarts, INT, ZMOD_RW, 11033 "Limit number of restarts in arc_evict_meta"); 11034 11035 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_strategy, INT, ZMOD_RW, 11036 "Meta reclaim strategy"); 11037 11038 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int, 11039 param_get_int, ZMOD_RW, "Seconds before growing arc size"); 11040 11041 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, p_dampener_disable, INT, ZMOD_RW, 11042 "Disable arc_p adapt dampener"); 11043 11044 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int, 11045 param_get_int, ZMOD_RW, "log2(fraction of arc to reclaim)"); 11046 11047 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW, 11048 "Percent of pagecache to reclaim arc to"); 11049 11050 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, p_min_shift, param_set_arc_int, 11051 param_get_int, ZMOD_RW, "arc_c shift to calc min/max arc_p"); 11052 11053 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, INT, ZMOD_RD, 11054 "Target average block size"); 11055 11056 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW, 11057 "Disable compressed arc buffers"); 11058 11059 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int, 11060 param_get_int, ZMOD_RW, "Min life of prefetch block in ms"); 11061 11062 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms, 11063 param_set_arc_int, param_get_int, ZMOD_RW, 11064 "Min life of prescient prefetched block in ms"); 11065 11066 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, ULONG, ZMOD_RW, 11067 "Max write bytes per interval"); 11068 11069 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, ULONG, ZMOD_RW, 11070 "Extra write bytes during device warmup"); 11071 11072 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, ULONG, ZMOD_RW, 11073 "Number of max device writes to precache"); 11074 11075 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, ULONG, ZMOD_RW, 11076 "Compressed l2arc_headroom multiplier"); 11077 11078 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, ULONG, ZMOD_RW, 11079 "TRIM ahead L2ARC write size multiplier"); 11080 11081 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, ULONG, ZMOD_RW, 11082 "Seconds between L2ARC writing"); 11083 11084 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, ULONG, ZMOD_RW, 11085 "Min feed interval in milliseconds"); 11086 11087 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW, 11088 "Skip caching prefetched buffers"); 11089 11090 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW, 11091 "Turbo L2ARC warmup"); 11092 11093 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW, 11094 "No reads during writes"); 11095 11096 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, INT, ZMOD_RW, 11097 "Percent of ARC size allowed for L2ARC-only headers"); 11098 11099 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW, 11100 "Rebuild the L2ARC when importing a pool"); 11101 11102 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, ULONG, ZMOD_RW, 11103 "Min size in bytes to write rebuild log blocks in L2ARC"); 11104 11105 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW, 11106 "Cache only MFU data from ARC into L2ARC"); 11107 11108 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, exclude_special, INT, ZMOD_RW, 11109 "If set to 1 exclude dbufs on special vdevs from being cached to " 11110 "L2ARC."); 11111 11112 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int, 11113 param_get_int, ZMOD_RW, "System free memory I/O throttle in bytes"); 11114 11115 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_long, 11116 param_get_long, ZMOD_RW, "System free memory target size in bytes"); 11117 11118 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_long, 11119 param_get_long, ZMOD_RW, "Minimum bytes of dnodes in arc"); 11120 11121 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent, 11122 param_set_arc_long, param_get_long, ZMOD_RW, 11123 "Percent of ARC meta buffers for dnodes"); 11124 11125 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, ULONG, ZMOD_RW, 11126 "Percentage of excess dnodes to try to unpin"); 11127 11128 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, INT, ZMOD_RW, 11129 "When full, ARC allocation waits for eviction of this % of alloc size"); 11130 11131 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, INT, ZMOD_RW, 11132 "The number of headers to evict per sublist before moving to the next"); 11133 /* END CSTYLED */ 11134