xref: /freebsd/sys/contrib/openzfs/module/zfs/arc.c (revision 2f9966ff63d65bd474478888c9088eeae3f9c669)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2018, Joyent, Inc.
24  * Copyright (c) 2011, 2020, Delphix. All rights reserved.
25  * Copyright (c) 2014, Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2017, Nexenta Systems, Inc.  All rights reserved.
27  * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
28  * Copyright (c) 2020, George Amanakis. All rights reserved.
29  * Copyright (c) 2019, Klara Inc.
30  * Copyright (c) 2019, Allan Jude
31  * Copyright (c) 2020, The FreeBSD Foundation [1]
32  *
33  * [1] Portions of this software were developed by Allan Jude
34  *     under sponsorship from the FreeBSD Foundation.
35  */
36 
37 /*
38  * DVA-based Adjustable Replacement Cache
39  *
40  * While much of the theory of operation used here is
41  * based on the self-tuning, low overhead replacement cache
42  * presented by Megiddo and Modha at FAST 2003, there are some
43  * significant differences:
44  *
45  * 1. The Megiddo and Modha model assumes any page is evictable.
46  * Pages in its cache cannot be "locked" into memory.  This makes
47  * the eviction algorithm simple: evict the last page in the list.
48  * This also make the performance characteristics easy to reason
49  * about.  Our cache is not so simple.  At any given moment, some
50  * subset of the blocks in the cache are un-evictable because we
51  * have handed out a reference to them.  Blocks are only evictable
52  * when there are no external references active.  This makes
53  * eviction far more problematic:  we choose to evict the evictable
54  * blocks that are the "lowest" in the list.
55  *
56  * There are times when it is not possible to evict the requested
57  * space.  In these circumstances we are unable to adjust the cache
58  * size.  To prevent the cache growing unbounded at these times we
59  * implement a "cache throttle" that slows the flow of new data
60  * into the cache until we can make space available.
61  *
62  * 2. The Megiddo and Modha model assumes a fixed cache size.
63  * Pages are evicted when the cache is full and there is a cache
64  * miss.  Our model has a variable sized cache.  It grows with
65  * high use, but also tries to react to memory pressure from the
66  * operating system: decreasing its size when system memory is
67  * tight.
68  *
69  * 3. The Megiddo and Modha model assumes a fixed page size. All
70  * elements of the cache are therefore exactly the same size.  So
71  * when adjusting the cache size following a cache miss, its simply
72  * a matter of choosing a single page to evict.  In our model, we
73  * have variable sized cache blocks (ranging from 512 bytes to
74  * 128K bytes).  We therefore choose a set of blocks to evict to make
75  * space for a cache miss that approximates as closely as possible
76  * the space used by the new block.
77  *
78  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
79  * by N. Megiddo & D. Modha, FAST 2003
80  */
81 
82 /*
83  * The locking model:
84  *
85  * A new reference to a cache buffer can be obtained in two
86  * ways: 1) via a hash table lookup using the DVA as a key,
87  * or 2) via one of the ARC lists.  The arc_read() interface
88  * uses method 1, while the internal ARC algorithms for
89  * adjusting the cache use method 2.  We therefore provide two
90  * types of locks: 1) the hash table lock array, and 2) the
91  * ARC list locks.
92  *
93  * Buffers do not have their own mutexes, rather they rely on the
94  * hash table mutexes for the bulk of their protection (i.e. most
95  * fields in the arc_buf_hdr_t are protected by these mutexes).
96  *
97  * buf_hash_find() returns the appropriate mutex (held) when it
98  * locates the requested buffer in the hash table.  It returns
99  * NULL for the mutex if the buffer was not in the table.
100  *
101  * buf_hash_remove() expects the appropriate hash mutex to be
102  * already held before it is invoked.
103  *
104  * Each ARC state also has a mutex which is used to protect the
105  * buffer list associated with the state.  When attempting to
106  * obtain a hash table lock while holding an ARC list lock you
107  * must use: mutex_tryenter() to avoid deadlock.  Also note that
108  * the active state mutex must be held before the ghost state mutex.
109  *
110  * It as also possible to register a callback which is run when the
111  * metadata limit is reached and no buffers can be safely evicted.  In
112  * this case the arc user should drop a reference on some arc buffers so
113  * they can be reclaimed.  For example, when using the ZPL each dentry
114  * holds a references on a znode.  These dentries must be pruned before
115  * the arc buffer holding the znode can be safely evicted.
116  *
117  * Note that the majority of the performance stats are manipulated
118  * with atomic operations.
119  *
120  * The L2ARC uses the l2ad_mtx on each vdev for the following:
121  *
122  *	- L2ARC buflist creation
123  *	- L2ARC buflist eviction
124  *	- L2ARC write completion, which walks L2ARC buflists
125  *	- ARC header destruction, as it removes from L2ARC buflists
126  *	- ARC header release, as it removes from L2ARC buflists
127  */
128 
129 /*
130  * ARC operation:
131  *
132  * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
133  * This structure can point either to a block that is still in the cache or to
134  * one that is only accessible in an L2 ARC device, or it can provide
135  * information about a block that was recently evicted. If a block is
136  * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
137  * information to retrieve it from the L2ARC device. This information is
138  * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
139  * that is in this state cannot access the data directly.
140  *
141  * Blocks that are actively being referenced or have not been evicted
142  * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
143  * the arc_buf_hdr_t that will point to the data block in memory. A block can
144  * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
145  * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
146  * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
147  *
148  * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
149  * ability to store the physical data (b_pabd) associated with the DVA of the
150  * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
151  * it will match its on-disk compression characteristics. This behavior can be
152  * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
153  * compressed ARC functionality is disabled, the b_pabd will point to an
154  * uncompressed version of the on-disk data.
155  *
156  * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
157  * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
158  * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
159  * consumer. The ARC will provide references to this data and will keep it
160  * cached until it is no longer in use. The ARC caches only the L1ARC's physical
161  * data block and will evict any arc_buf_t that is no longer referenced. The
162  * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
163  * "overhead_size" kstat.
164  *
165  * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
166  * compressed form. The typical case is that consumers will want uncompressed
167  * data, and when that happens a new data buffer is allocated where the data is
168  * decompressed for them to use. Currently the only consumer who wants
169  * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
170  * exists on disk. When this happens, the arc_buf_t's data buffer is shared
171  * with the arc_buf_hdr_t.
172  *
173  * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
174  * first one is owned by a compressed send consumer (and therefore references
175  * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
176  * used by any other consumer (and has its own uncompressed copy of the data
177  * buffer).
178  *
179  *   arc_buf_hdr_t
180  *   +-----------+
181  *   | fields    |
182  *   | common to |
183  *   | L1- and   |
184  *   | L2ARC     |
185  *   +-----------+
186  *   | l2arc_buf_hdr_t
187  *   |           |
188  *   +-----------+
189  *   | l1arc_buf_hdr_t
190  *   |           |              arc_buf_t
191  *   | b_buf     +------------>+-----------+      arc_buf_t
192  *   | b_pabd    +-+           |b_next     +---->+-----------+
193  *   +-----------+ |           |-----------|     |b_next     +-->NULL
194  *                 |           |b_comp = T |     +-----------+
195  *                 |           |b_data     +-+   |b_comp = F |
196  *                 |           +-----------+ |   |b_data     +-+
197  *                 +->+------+               |   +-----------+ |
198  *        compressed  |      |               |                 |
199  *           data     |      |<--------------+                 | uncompressed
200  *                    +------+          compressed,            |     data
201  *                                        shared               +-->+------+
202  *                                         data                    |      |
203  *                                                                 |      |
204  *                                                                 +------+
205  *
206  * When a consumer reads a block, the ARC must first look to see if the
207  * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
208  * arc_buf_t and either copies uncompressed data into a new data buffer from an
209  * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
210  * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
211  * hdr is compressed and the desired compression characteristics of the
212  * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
213  * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
214  * the last buffer in the hdr's b_buf list, however a shared compressed buf can
215  * be anywhere in the hdr's list.
216  *
217  * The diagram below shows an example of an uncompressed ARC hdr that is
218  * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
219  * the last element in the buf list):
220  *
221  *                arc_buf_hdr_t
222  *                +-----------+
223  *                |           |
224  *                |           |
225  *                |           |
226  *                +-----------+
227  * l2arc_buf_hdr_t|           |
228  *                |           |
229  *                +-----------+
230  * l1arc_buf_hdr_t|           |
231  *                |           |                 arc_buf_t    (shared)
232  *                |    b_buf  +------------>+---------+      arc_buf_t
233  *                |           |             |b_next   +---->+---------+
234  *                |  b_pabd   +-+           |---------|     |b_next   +-->NULL
235  *                +-----------+ |           |         |     +---------+
236  *                              |           |b_data   +-+   |         |
237  *                              |           +---------+ |   |b_data   +-+
238  *                              +->+------+             |   +---------+ |
239  *                                 |      |             |               |
240  *                   uncompressed  |      |             |               |
241  *                        data     +------+             |               |
242  *                                    ^                 +->+------+     |
243  *                                    |       uncompressed |      |     |
244  *                                    |           data     |      |     |
245  *                                    |                    +------+     |
246  *                                    +---------------------------------+
247  *
248  * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
249  * since the physical block is about to be rewritten. The new data contents
250  * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
251  * it may compress the data before writing it to disk. The ARC will be called
252  * with the transformed data and will memcpy the transformed on-disk block into
253  * a newly allocated b_pabd. Writes are always done into buffers which have
254  * either been loaned (and hence are new and don't have other readers) or
255  * buffers which have been released (and hence have their own hdr, if there
256  * were originally other readers of the buf's original hdr). This ensures that
257  * the ARC only needs to update a single buf and its hdr after a write occurs.
258  *
259  * When the L2ARC is in use, it will also take advantage of the b_pabd. The
260  * L2ARC will always write the contents of b_pabd to the L2ARC. This means
261  * that when compressed ARC is enabled that the L2ARC blocks are identical
262  * to the on-disk block in the main data pool. This provides a significant
263  * advantage since the ARC can leverage the bp's checksum when reading from the
264  * L2ARC to determine if the contents are valid. However, if the compressed
265  * ARC is disabled, then the L2ARC's block must be transformed to look
266  * like the physical block in the main data pool before comparing the
267  * checksum and determining its validity.
268  *
269  * The L1ARC has a slightly different system for storing encrypted data.
270  * Raw (encrypted + possibly compressed) data has a few subtle differences from
271  * data that is just compressed. The biggest difference is that it is not
272  * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded.
273  * The other difference is that encryption cannot be treated as a suggestion.
274  * If a caller would prefer compressed data, but they actually wind up with
275  * uncompressed data the worst thing that could happen is there might be a
276  * performance hit. If the caller requests encrypted data, however, we must be
277  * sure they actually get it or else secret information could be leaked. Raw
278  * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
279  * may have both an encrypted version and a decrypted version of its data at
280  * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
281  * copied out of this header. To avoid complications with b_pabd, raw buffers
282  * cannot be shared.
283  */
284 
285 #include <sys/spa.h>
286 #include <sys/zio.h>
287 #include <sys/spa_impl.h>
288 #include <sys/zio_compress.h>
289 #include <sys/zio_checksum.h>
290 #include <sys/zfs_context.h>
291 #include <sys/arc.h>
292 #include <sys/zfs_refcount.h>
293 #include <sys/vdev.h>
294 #include <sys/vdev_impl.h>
295 #include <sys/dsl_pool.h>
296 #include <sys/multilist.h>
297 #include <sys/abd.h>
298 #include <sys/zil.h>
299 #include <sys/fm/fs/zfs.h>
300 #include <sys/callb.h>
301 #include <sys/kstat.h>
302 #include <sys/zthr.h>
303 #include <zfs_fletcher.h>
304 #include <sys/arc_impl.h>
305 #include <sys/trace_zfs.h>
306 #include <sys/aggsum.h>
307 #include <sys/wmsum.h>
308 #include <cityhash.h>
309 #include <sys/vdev_trim.h>
310 #include <sys/zfs_racct.h>
311 #include <sys/zstd/zstd.h>
312 
313 #ifndef _KERNEL
314 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
315 boolean_t arc_watch = B_FALSE;
316 #endif
317 
318 /*
319  * This thread's job is to keep enough free memory in the system, by
320  * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves
321  * arc_available_memory().
322  */
323 static zthr_t *arc_reap_zthr;
324 
325 /*
326  * This thread's job is to keep arc_size under arc_c, by calling
327  * arc_evict(), which improves arc_is_overflowing().
328  */
329 static zthr_t *arc_evict_zthr;
330 static arc_buf_hdr_t **arc_state_evict_markers;
331 static int arc_state_evict_marker_count;
332 
333 static kmutex_t arc_evict_lock;
334 static boolean_t arc_evict_needed = B_FALSE;
335 static clock_t arc_last_uncached_flush;
336 
337 /*
338  * Count of bytes evicted since boot.
339  */
340 static uint64_t arc_evict_count;
341 
342 /*
343  * List of arc_evict_waiter_t's, representing threads waiting for the
344  * arc_evict_count to reach specific values.
345  */
346 static list_t arc_evict_waiters;
347 
348 /*
349  * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of
350  * the requested amount of data to be evicted.  For example, by default for
351  * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation.
352  * Since this is above 100%, it ensures that progress is made towards getting
353  * arc_size under arc_c.  Since this is finite, it ensures that allocations
354  * can still happen, even during the potentially long time that arc_size is
355  * more than arc_c.
356  */
357 static uint_t zfs_arc_eviction_pct = 200;
358 
359 /*
360  * The number of headers to evict in arc_evict_state_impl() before
361  * dropping the sublist lock and evicting from another sublist. A lower
362  * value means we're more likely to evict the "correct" header (i.e. the
363  * oldest header in the arc state), but comes with higher overhead
364  * (i.e. more invocations of arc_evict_state_impl()).
365  */
366 static uint_t zfs_arc_evict_batch_limit = 10;
367 
368 /* number of seconds before growing cache again */
369 uint_t arc_grow_retry = 5;
370 
371 /*
372  * Minimum time between calls to arc_kmem_reap_soon().
373  */
374 static const int arc_kmem_cache_reap_retry_ms = 1000;
375 
376 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
377 static int zfs_arc_overflow_shift = 8;
378 
379 /* log2(fraction of arc to reclaim) */
380 uint_t arc_shrink_shift = 7;
381 
382 /* percent of pagecache to reclaim arc to */
383 #ifdef _KERNEL
384 uint_t zfs_arc_pc_percent = 0;
385 #endif
386 
387 /*
388  * log2(fraction of ARC which must be free to allow growing).
389  * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
390  * when reading a new block into the ARC, we will evict an equal-sized block
391  * from the ARC.
392  *
393  * This must be less than arc_shrink_shift, so that when we shrink the ARC,
394  * we will still not allow it to grow.
395  */
396 uint_t		arc_no_grow_shift = 5;
397 
398 
399 /*
400  * minimum lifespan of a prefetch block in clock ticks
401  * (initialized in arc_init())
402  */
403 static uint_t		arc_min_prefetch_ms;
404 static uint_t		arc_min_prescient_prefetch_ms;
405 
406 /*
407  * If this percent of memory is free, don't throttle.
408  */
409 uint_t arc_lotsfree_percent = 10;
410 
411 /*
412  * The arc has filled available memory and has now warmed up.
413  */
414 boolean_t arc_warm;
415 
416 /*
417  * These tunables are for performance analysis.
418  */
419 uint64_t zfs_arc_max = 0;
420 uint64_t zfs_arc_min = 0;
421 static uint64_t zfs_arc_dnode_limit = 0;
422 static uint_t zfs_arc_dnode_reduce_percent = 10;
423 static uint_t zfs_arc_grow_retry = 0;
424 static uint_t zfs_arc_shrink_shift = 0;
425 uint_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
426 
427 /*
428  * ARC dirty data constraints for arc_tempreserve_space() throttle:
429  * * total dirty data limit
430  * * anon block dirty limit
431  * * each pool's anon allowance
432  */
433 static const unsigned long zfs_arc_dirty_limit_percent = 50;
434 static const unsigned long zfs_arc_anon_limit_percent = 25;
435 static const unsigned long zfs_arc_pool_dirty_percent = 20;
436 
437 /*
438  * Enable or disable compressed arc buffers.
439  */
440 int zfs_compressed_arc_enabled = B_TRUE;
441 
442 /*
443  * Balance between metadata and data on ghost hits.  Values above 100
444  * increase metadata caching by proportionally reducing effect of ghost
445  * data hits on target data/metadata rate.
446  */
447 static uint_t zfs_arc_meta_balance = 500;
448 
449 /*
450  * Percentage that can be consumed by dnodes of ARC meta buffers.
451  */
452 static uint_t zfs_arc_dnode_limit_percent = 10;
453 
454 /*
455  * These tunables are Linux-specific
456  */
457 static uint64_t zfs_arc_sys_free = 0;
458 static uint_t zfs_arc_min_prefetch_ms = 0;
459 static uint_t zfs_arc_min_prescient_prefetch_ms = 0;
460 static uint_t zfs_arc_lotsfree_percent = 10;
461 
462 /*
463  * Number of arc_prune threads
464  */
465 static int zfs_arc_prune_task_threads = 1;
466 
467 /* The 7 states: */
468 arc_state_t ARC_anon;
469 arc_state_t ARC_mru;
470 arc_state_t ARC_mru_ghost;
471 arc_state_t ARC_mfu;
472 arc_state_t ARC_mfu_ghost;
473 arc_state_t ARC_l2c_only;
474 arc_state_t ARC_uncached;
475 
476 arc_stats_t arc_stats = {
477 	{ "hits",			KSTAT_DATA_UINT64 },
478 	{ "iohits",			KSTAT_DATA_UINT64 },
479 	{ "misses",			KSTAT_DATA_UINT64 },
480 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
481 	{ "demand_data_iohits",		KSTAT_DATA_UINT64 },
482 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
483 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
484 	{ "demand_metadata_iohits",	KSTAT_DATA_UINT64 },
485 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
486 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
487 	{ "prefetch_data_iohits",	KSTAT_DATA_UINT64 },
488 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
489 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
490 	{ "prefetch_metadata_iohits",	KSTAT_DATA_UINT64 },
491 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
492 	{ "mru_hits",			KSTAT_DATA_UINT64 },
493 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
494 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
495 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
496 	{ "uncached_hits",		KSTAT_DATA_UINT64 },
497 	{ "deleted",			KSTAT_DATA_UINT64 },
498 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
499 	{ "access_skip",		KSTAT_DATA_UINT64 },
500 	{ "evict_skip",			KSTAT_DATA_UINT64 },
501 	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
502 	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
503 	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
504 	{ "evict_l2_eligible_mfu",	KSTAT_DATA_UINT64 },
505 	{ "evict_l2_eligible_mru",	KSTAT_DATA_UINT64 },
506 	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
507 	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
508 	{ "hash_elements",		KSTAT_DATA_UINT64 },
509 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
510 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
511 	{ "hash_chains",		KSTAT_DATA_UINT64 },
512 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
513 	{ "meta",			KSTAT_DATA_UINT64 },
514 	{ "pd",				KSTAT_DATA_UINT64 },
515 	{ "pm",				KSTAT_DATA_UINT64 },
516 	{ "c",				KSTAT_DATA_UINT64 },
517 	{ "c_min",			KSTAT_DATA_UINT64 },
518 	{ "c_max",			KSTAT_DATA_UINT64 },
519 	{ "size",			KSTAT_DATA_UINT64 },
520 	{ "compressed_size",		KSTAT_DATA_UINT64 },
521 	{ "uncompressed_size",		KSTAT_DATA_UINT64 },
522 	{ "overhead_size",		KSTAT_DATA_UINT64 },
523 	{ "hdr_size",			KSTAT_DATA_UINT64 },
524 	{ "data_size",			KSTAT_DATA_UINT64 },
525 	{ "metadata_size",		KSTAT_DATA_UINT64 },
526 	{ "dbuf_size",			KSTAT_DATA_UINT64 },
527 	{ "dnode_size",			KSTAT_DATA_UINT64 },
528 	{ "bonus_size",			KSTAT_DATA_UINT64 },
529 #if defined(COMPAT_FREEBSD11)
530 	{ "other_size",			KSTAT_DATA_UINT64 },
531 #endif
532 	{ "anon_size",			KSTAT_DATA_UINT64 },
533 	{ "anon_data",			KSTAT_DATA_UINT64 },
534 	{ "anon_metadata",		KSTAT_DATA_UINT64 },
535 	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
536 	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
537 	{ "mru_size",			KSTAT_DATA_UINT64 },
538 	{ "mru_data",			KSTAT_DATA_UINT64 },
539 	{ "mru_metadata",		KSTAT_DATA_UINT64 },
540 	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
541 	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
542 	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
543 	{ "mru_ghost_data",		KSTAT_DATA_UINT64 },
544 	{ "mru_ghost_metadata",		KSTAT_DATA_UINT64 },
545 	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
546 	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
547 	{ "mfu_size",			KSTAT_DATA_UINT64 },
548 	{ "mfu_data",			KSTAT_DATA_UINT64 },
549 	{ "mfu_metadata",		KSTAT_DATA_UINT64 },
550 	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
551 	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
552 	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
553 	{ "mfu_ghost_data",		KSTAT_DATA_UINT64 },
554 	{ "mfu_ghost_metadata",		KSTAT_DATA_UINT64 },
555 	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
556 	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
557 	{ "uncached_size",		KSTAT_DATA_UINT64 },
558 	{ "uncached_data",		KSTAT_DATA_UINT64 },
559 	{ "uncached_metadata",		KSTAT_DATA_UINT64 },
560 	{ "uncached_evictable_data",	KSTAT_DATA_UINT64 },
561 	{ "uncached_evictable_metadata", KSTAT_DATA_UINT64 },
562 	{ "l2_hits",			KSTAT_DATA_UINT64 },
563 	{ "l2_misses",			KSTAT_DATA_UINT64 },
564 	{ "l2_prefetch_asize",		KSTAT_DATA_UINT64 },
565 	{ "l2_mru_asize",		KSTAT_DATA_UINT64 },
566 	{ "l2_mfu_asize",		KSTAT_DATA_UINT64 },
567 	{ "l2_bufc_data_asize",		KSTAT_DATA_UINT64 },
568 	{ "l2_bufc_metadata_asize",	KSTAT_DATA_UINT64 },
569 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
570 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
571 	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
572 	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
573 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
574 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
575 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
576 	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
577 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
578 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
579 	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
580 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
581 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
582 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
583 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
584 	{ "l2_size",			KSTAT_DATA_UINT64 },
585 	{ "l2_asize",			KSTAT_DATA_UINT64 },
586 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
587 	{ "l2_log_blk_writes",		KSTAT_DATA_UINT64 },
588 	{ "l2_log_blk_avg_asize",	KSTAT_DATA_UINT64 },
589 	{ "l2_log_blk_asize",		KSTAT_DATA_UINT64 },
590 	{ "l2_log_blk_count",		KSTAT_DATA_UINT64 },
591 	{ "l2_data_to_meta_ratio",	KSTAT_DATA_UINT64 },
592 	{ "l2_rebuild_success",		KSTAT_DATA_UINT64 },
593 	{ "l2_rebuild_unsupported",	KSTAT_DATA_UINT64 },
594 	{ "l2_rebuild_io_errors",	KSTAT_DATA_UINT64 },
595 	{ "l2_rebuild_dh_errors",	KSTAT_DATA_UINT64 },
596 	{ "l2_rebuild_cksum_lb_errors",	KSTAT_DATA_UINT64 },
597 	{ "l2_rebuild_lowmem",		KSTAT_DATA_UINT64 },
598 	{ "l2_rebuild_size",		KSTAT_DATA_UINT64 },
599 	{ "l2_rebuild_asize",		KSTAT_DATA_UINT64 },
600 	{ "l2_rebuild_bufs",		KSTAT_DATA_UINT64 },
601 	{ "l2_rebuild_bufs_precached",	KSTAT_DATA_UINT64 },
602 	{ "l2_rebuild_log_blks",	KSTAT_DATA_UINT64 },
603 	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
604 	{ "memory_direct_count",	KSTAT_DATA_UINT64 },
605 	{ "memory_indirect_count",	KSTAT_DATA_UINT64 },
606 	{ "memory_all_bytes",		KSTAT_DATA_UINT64 },
607 	{ "memory_free_bytes",		KSTAT_DATA_UINT64 },
608 	{ "memory_available_bytes",	KSTAT_DATA_INT64 },
609 	{ "arc_no_grow",		KSTAT_DATA_UINT64 },
610 	{ "arc_tempreserve",		KSTAT_DATA_UINT64 },
611 	{ "arc_loaned_bytes",		KSTAT_DATA_UINT64 },
612 	{ "arc_prune",			KSTAT_DATA_UINT64 },
613 	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
614 	{ "arc_dnode_limit",		KSTAT_DATA_UINT64 },
615 	{ "async_upgrade_sync",		KSTAT_DATA_UINT64 },
616 	{ "predictive_prefetch", KSTAT_DATA_UINT64 },
617 	{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
618 	{ "demand_iohit_predictive_prefetch", KSTAT_DATA_UINT64 },
619 	{ "prescient_prefetch", KSTAT_DATA_UINT64 },
620 	{ "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
621 	{ "demand_iohit_prescient_prefetch", KSTAT_DATA_UINT64 },
622 	{ "arc_need_free",		KSTAT_DATA_UINT64 },
623 	{ "arc_sys_free",		KSTAT_DATA_UINT64 },
624 	{ "arc_raw_size",		KSTAT_DATA_UINT64 },
625 	{ "cached_only_in_progress",	KSTAT_DATA_UINT64 },
626 	{ "abd_chunk_waste_size",	KSTAT_DATA_UINT64 },
627 };
628 
629 arc_sums_t arc_sums;
630 
631 #define	ARCSTAT_MAX(stat, val) {					\
632 	uint64_t m;							\
633 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
634 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
635 		continue;						\
636 }
637 
638 /*
639  * We define a macro to allow ARC hits/misses to be easily broken down by
640  * two separate conditions, giving a total of four different subtypes for
641  * each of hits and misses (so eight statistics total).
642  */
643 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
644 	if (cond1) {							\
645 		if (cond2) {						\
646 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
647 		} else {						\
648 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
649 		}							\
650 	} else {							\
651 		if (cond2) {						\
652 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
653 		} else {						\
654 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
655 		}							\
656 	}
657 
658 /*
659  * This macro allows us to use kstats as floating averages. Each time we
660  * update this kstat, we first factor it and the update value by
661  * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall
662  * average. This macro assumes that integer loads and stores are atomic, but
663  * is not safe for multiple writers updating the kstat in parallel (only the
664  * last writer's update will remain).
665  */
666 #define	ARCSTAT_F_AVG_FACTOR	3
667 #define	ARCSTAT_F_AVG(stat, value) \
668 	do { \
669 		uint64_t x = ARCSTAT(stat); \
670 		x = x - x / ARCSTAT_F_AVG_FACTOR + \
671 		    (value) / ARCSTAT_F_AVG_FACTOR; \
672 		ARCSTAT(stat) = x; \
673 	} while (0)
674 
675 static kstat_t			*arc_ksp;
676 
677 /*
678  * There are several ARC variables that are critical to export as kstats --
679  * but we don't want to have to grovel around in the kstat whenever we wish to
680  * manipulate them.  For these variables, we therefore define them to be in
681  * terms of the statistic variable.  This assures that we are not introducing
682  * the possibility of inconsistency by having shadow copies of the variables,
683  * while still allowing the code to be readable.
684  */
685 #define	arc_tempreserve	ARCSTAT(arcstat_tempreserve)
686 #define	arc_loaned_bytes	ARCSTAT(arcstat_loaned_bytes)
687 #define	arc_dnode_limit	ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */
688 #define	arc_need_free	ARCSTAT(arcstat_need_free) /* waiting to be evicted */
689 
690 hrtime_t arc_growtime;
691 list_t arc_prune_list;
692 kmutex_t arc_prune_mtx;
693 taskq_t *arc_prune_taskq;
694 
695 #define	GHOST_STATE(state)	\
696 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
697 	(state) == arc_l2c_only)
698 
699 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
700 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
701 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
702 #define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
703 #define	HDR_PRESCIENT_PREFETCH(hdr)	\
704 	((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
705 #define	HDR_COMPRESSION_ENABLED(hdr)	\
706 	((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
707 
708 #define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
709 #define	HDR_UNCACHED(hdr)	((hdr)->b_flags & ARC_FLAG_UNCACHED)
710 #define	HDR_L2_READING(hdr)	\
711 	(((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
712 	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
713 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
714 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
715 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
716 #define	HDR_PROTECTED(hdr)	((hdr)->b_flags & ARC_FLAG_PROTECTED)
717 #define	HDR_NOAUTH(hdr)		((hdr)->b_flags & ARC_FLAG_NOAUTH)
718 #define	HDR_SHARED_DATA(hdr)	((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
719 
720 #define	HDR_ISTYPE_METADATA(hdr)	\
721 	((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
722 #define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
723 
724 #define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
725 #define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
726 #define	HDR_HAS_RABD(hdr)	\
727 	(HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) &&	\
728 	(hdr)->b_crypt_hdr.b_rabd != NULL)
729 #define	HDR_ENCRYPTED(hdr)	\
730 	(HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
731 #define	HDR_AUTHENTICATED(hdr)	\
732 	(HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
733 
734 /* For storing compression mode in b_flags */
735 #define	HDR_COMPRESS_OFFSET	(highbit64(ARC_FLAG_COMPRESS_0) - 1)
736 
737 #define	HDR_GET_COMPRESS(hdr)	((enum zio_compress)BF32_GET((hdr)->b_flags, \
738 	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
739 #define	HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
740 	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
741 
742 #define	ARC_BUF_LAST(buf)	((buf)->b_next == NULL)
743 #define	ARC_BUF_SHARED(buf)	((buf)->b_flags & ARC_BUF_FLAG_SHARED)
744 #define	ARC_BUF_COMPRESSED(buf)	((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
745 #define	ARC_BUF_ENCRYPTED(buf)	((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
746 
747 /*
748  * Other sizes
749  */
750 
751 #define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
752 #define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
753 
754 /*
755  * Hash table routines
756  */
757 
758 #define	BUF_LOCKS 2048
759 typedef struct buf_hash_table {
760 	uint64_t ht_mask;
761 	arc_buf_hdr_t **ht_table;
762 	kmutex_t ht_locks[BUF_LOCKS] ____cacheline_aligned;
763 } buf_hash_table_t;
764 
765 static buf_hash_table_t buf_hash_table;
766 
767 #define	BUF_HASH_INDEX(spa, dva, birth) \
768 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
769 #define	BUF_HASH_LOCK(idx)	(&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
770 #define	HDR_LOCK(hdr) \
771 	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
772 
773 uint64_t zfs_crc64_table[256];
774 
775 /*
776  * Level 2 ARC
777  */
778 
779 #define	L2ARC_WRITE_SIZE	(32 * 1024 * 1024)	/* initial write max */
780 #define	L2ARC_HEADROOM		8			/* num of writes */
781 
782 /*
783  * If we discover during ARC scan any buffers to be compressed, we boost
784  * our headroom for the next scanning cycle by this percentage multiple.
785  */
786 #define	L2ARC_HEADROOM_BOOST	200
787 #define	L2ARC_FEED_SECS		1		/* caching interval secs */
788 #define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
789 
790 /*
791  * We can feed L2ARC from two states of ARC buffers, mru and mfu,
792  * and each of the state has two types: data and metadata.
793  */
794 #define	L2ARC_FEED_TYPES	4
795 
796 /* L2ARC Performance Tunables */
797 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* def max write size */
798 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra warmup write */
799 uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* # of dev writes */
800 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
801 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
802 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval msecs */
803 int l2arc_noprefetch = B_TRUE;			/* don't cache prefetch bufs */
804 int l2arc_feed_again = B_TRUE;			/* turbo warmup */
805 int l2arc_norw = B_FALSE;			/* no reads during writes */
806 static uint_t l2arc_meta_percent = 33;	/* limit on headers size */
807 
808 /*
809  * L2ARC Internals
810  */
811 static list_t L2ARC_dev_list;			/* device list */
812 static list_t *l2arc_dev_list;			/* device list pointer */
813 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
814 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
815 static list_t L2ARC_free_on_write;		/* free after write buf list */
816 static list_t *l2arc_free_on_write;		/* free after write list ptr */
817 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
818 static uint64_t l2arc_ndev;			/* number of devices */
819 
820 typedef struct l2arc_read_callback {
821 	arc_buf_hdr_t		*l2rcb_hdr;		/* read header */
822 	blkptr_t		l2rcb_bp;		/* original blkptr */
823 	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
824 	int			l2rcb_flags;		/* original flags */
825 	abd_t			*l2rcb_abd;		/* temporary buffer */
826 } l2arc_read_callback_t;
827 
828 typedef struct l2arc_data_free {
829 	/* protected by l2arc_free_on_write_mtx */
830 	abd_t		*l2df_abd;
831 	size_t		l2df_size;
832 	arc_buf_contents_t l2df_type;
833 	list_node_t	l2df_list_node;
834 } l2arc_data_free_t;
835 
836 typedef enum arc_fill_flags {
837 	ARC_FILL_LOCKED		= 1 << 0, /* hdr lock is held */
838 	ARC_FILL_COMPRESSED	= 1 << 1, /* fill with compressed data */
839 	ARC_FILL_ENCRYPTED	= 1 << 2, /* fill with encrypted data */
840 	ARC_FILL_NOAUTH		= 1 << 3, /* don't attempt to authenticate */
841 	ARC_FILL_IN_PLACE	= 1 << 4  /* fill in place (special case) */
842 } arc_fill_flags_t;
843 
844 typedef enum arc_ovf_level {
845 	ARC_OVF_NONE,			/* ARC within target size. */
846 	ARC_OVF_SOME,			/* ARC is slightly overflowed. */
847 	ARC_OVF_SEVERE			/* ARC is severely overflowed. */
848 } arc_ovf_level_t;
849 
850 static kmutex_t l2arc_feed_thr_lock;
851 static kcondvar_t l2arc_feed_thr_cv;
852 static uint8_t l2arc_thread_exit;
853 
854 static kmutex_t l2arc_rebuild_thr_lock;
855 static kcondvar_t l2arc_rebuild_thr_cv;
856 
857 enum arc_hdr_alloc_flags {
858 	ARC_HDR_ALLOC_RDATA = 0x1,
859 	ARC_HDR_USE_RESERVE = 0x4,
860 	ARC_HDR_ALLOC_LINEAR = 0x8,
861 };
862 
863 
864 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, const void *, int);
865 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, const void *);
866 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, const void *, int);
867 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, const void *);
868 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, const void *);
869 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size,
870     const void *tag);
871 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t);
872 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int);
873 static void arc_hdr_destroy(arc_buf_hdr_t *);
874 static void arc_access(arc_buf_hdr_t *, arc_flags_t, boolean_t);
875 static void arc_buf_watch(arc_buf_t *);
876 static void arc_change_state(arc_state_t *, arc_buf_hdr_t *);
877 
878 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
879 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
880 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
881 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
882 
883 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
884 static void l2arc_read_done(zio_t *);
885 static void l2arc_do_free_on_write(void);
886 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
887     boolean_t state_only);
888 
889 static void arc_prune_async(uint64_t adjust);
890 
891 #define	l2arc_hdr_arcstats_increment(hdr) \
892 	l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE)
893 #define	l2arc_hdr_arcstats_decrement(hdr) \
894 	l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE)
895 #define	l2arc_hdr_arcstats_increment_state(hdr) \
896 	l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE)
897 #define	l2arc_hdr_arcstats_decrement_state(hdr) \
898 	l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE)
899 
900 /*
901  * l2arc_exclude_special : A zfs module parameter that controls whether buffers
902  * 		present on special vdevs are eligibile for caching in L2ARC. If
903  * 		set to 1, exclude dbufs on special vdevs from being cached to
904  * 		L2ARC.
905  */
906 int l2arc_exclude_special = 0;
907 
908 /*
909  * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU
910  * 		metadata and data are cached from ARC into L2ARC.
911  */
912 static int l2arc_mfuonly = 0;
913 
914 /*
915  * L2ARC TRIM
916  * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of
917  * 		the current write size (l2arc_write_max) we should TRIM if we
918  * 		have filled the device. It is defined as a percentage of the
919  * 		write size. If set to 100 we trim twice the space required to
920  * 		accommodate upcoming writes. A minimum of 64MB will be trimmed.
921  * 		It also enables TRIM of the whole L2ARC device upon creation or
922  * 		addition to an existing pool or if the header of the device is
923  * 		invalid upon importing a pool or onlining a cache device. The
924  * 		default is 0, which disables TRIM on L2ARC altogether as it can
925  * 		put significant stress on the underlying storage devices. This
926  * 		will vary depending of how well the specific device handles
927  * 		these commands.
928  */
929 static uint64_t l2arc_trim_ahead = 0;
930 
931 /*
932  * Performance tuning of L2ARC persistence:
933  *
934  * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding
935  * 		an L2ARC device (either at pool import or later) will attempt
936  * 		to rebuild L2ARC buffer contents.
937  * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls
938  * 		whether log blocks are written to the L2ARC device. If the L2ARC
939  * 		device is less than 1GB, the amount of data l2arc_evict()
940  * 		evicts is significant compared to the amount of restored L2ARC
941  * 		data. In this case do not write log blocks in L2ARC in order
942  * 		not to waste space.
943  */
944 static int l2arc_rebuild_enabled = B_TRUE;
945 static uint64_t l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024;
946 
947 /* L2ARC persistence rebuild control routines. */
948 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen);
949 static __attribute__((noreturn)) void l2arc_dev_rebuild_thread(void *arg);
950 static int l2arc_rebuild(l2arc_dev_t *dev);
951 
952 /* L2ARC persistence read I/O routines. */
953 static int l2arc_dev_hdr_read(l2arc_dev_t *dev);
954 static int l2arc_log_blk_read(l2arc_dev_t *dev,
955     const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp,
956     l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
957     zio_t *this_io, zio_t **next_io);
958 static zio_t *l2arc_log_blk_fetch(vdev_t *vd,
959     const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb);
960 static void l2arc_log_blk_fetch_abort(zio_t *zio);
961 
962 /* L2ARC persistence block restoration routines. */
963 static void l2arc_log_blk_restore(l2arc_dev_t *dev,
964     const l2arc_log_blk_phys_t *lb, uint64_t lb_asize);
965 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le,
966     l2arc_dev_t *dev);
967 
968 /* L2ARC persistence write I/O routines. */
969 static uint64_t l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio,
970     l2arc_write_callback_t *cb);
971 
972 /* L2ARC persistence auxiliary routines. */
973 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev,
974     const l2arc_log_blkptr_t *lbp);
975 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev,
976     const arc_buf_hdr_t *ab);
977 boolean_t l2arc_range_check_overlap(uint64_t bottom,
978     uint64_t top, uint64_t check);
979 static void l2arc_blk_fetch_done(zio_t *zio);
980 static inline uint64_t
981     l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev);
982 
983 /*
984  * We use Cityhash for this. It's fast, and has good hash properties without
985  * requiring any large static buffers.
986  */
987 static uint64_t
988 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
989 {
990 	return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
991 }
992 
993 #define	HDR_EMPTY(hdr)						\
994 	((hdr)->b_dva.dva_word[0] == 0 &&			\
995 	(hdr)->b_dva.dva_word[1] == 0)
996 
997 #define	HDR_EMPTY_OR_LOCKED(hdr)				\
998 	(HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr)))
999 
1000 #define	HDR_EQUAL(spa, dva, birth, hdr)				\
1001 	((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1002 	((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1003 	((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1004 
1005 static void
1006 buf_discard_identity(arc_buf_hdr_t *hdr)
1007 {
1008 	hdr->b_dva.dva_word[0] = 0;
1009 	hdr->b_dva.dva_word[1] = 0;
1010 	hdr->b_birth = 0;
1011 }
1012 
1013 static arc_buf_hdr_t *
1014 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1015 {
1016 	const dva_t *dva = BP_IDENTITY(bp);
1017 	uint64_t birth = BP_GET_BIRTH(bp);
1018 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1019 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1020 	arc_buf_hdr_t *hdr;
1021 
1022 	mutex_enter(hash_lock);
1023 	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1024 	    hdr = hdr->b_hash_next) {
1025 		if (HDR_EQUAL(spa, dva, birth, hdr)) {
1026 			*lockp = hash_lock;
1027 			return (hdr);
1028 		}
1029 	}
1030 	mutex_exit(hash_lock);
1031 	*lockp = NULL;
1032 	return (NULL);
1033 }
1034 
1035 /*
1036  * Insert an entry into the hash table.  If there is already an element
1037  * equal to elem in the hash table, then the already existing element
1038  * will be returned and the new element will not be inserted.
1039  * Otherwise returns NULL.
1040  * If lockp == NULL, the caller is assumed to already hold the hash lock.
1041  */
1042 static arc_buf_hdr_t *
1043 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1044 {
1045 	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1046 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1047 	arc_buf_hdr_t *fhdr;
1048 	uint32_t i;
1049 
1050 	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1051 	ASSERT(hdr->b_birth != 0);
1052 	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1053 
1054 	if (lockp != NULL) {
1055 		*lockp = hash_lock;
1056 		mutex_enter(hash_lock);
1057 	} else {
1058 		ASSERT(MUTEX_HELD(hash_lock));
1059 	}
1060 
1061 	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1062 	    fhdr = fhdr->b_hash_next, i++) {
1063 		if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1064 			return (fhdr);
1065 	}
1066 
1067 	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1068 	buf_hash_table.ht_table[idx] = hdr;
1069 	arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1070 
1071 	/* collect some hash table performance data */
1072 	if (i > 0) {
1073 		ARCSTAT_BUMP(arcstat_hash_collisions);
1074 		if (i == 1)
1075 			ARCSTAT_BUMP(arcstat_hash_chains);
1076 
1077 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1078 	}
1079 	uint64_t he = atomic_inc_64_nv(
1080 	    &arc_stats.arcstat_hash_elements.value.ui64);
1081 	ARCSTAT_MAX(arcstat_hash_elements_max, he);
1082 
1083 	return (NULL);
1084 }
1085 
1086 static void
1087 buf_hash_remove(arc_buf_hdr_t *hdr)
1088 {
1089 	arc_buf_hdr_t *fhdr, **hdrp;
1090 	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1091 
1092 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1093 	ASSERT(HDR_IN_HASH_TABLE(hdr));
1094 
1095 	hdrp = &buf_hash_table.ht_table[idx];
1096 	while ((fhdr = *hdrp) != hdr) {
1097 		ASSERT3P(fhdr, !=, NULL);
1098 		hdrp = &fhdr->b_hash_next;
1099 	}
1100 	*hdrp = hdr->b_hash_next;
1101 	hdr->b_hash_next = NULL;
1102 	arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1103 
1104 	/* collect some hash table performance data */
1105 	atomic_dec_64(&arc_stats.arcstat_hash_elements.value.ui64);
1106 
1107 	if (buf_hash_table.ht_table[idx] &&
1108 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1109 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1110 }
1111 
1112 /*
1113  * Global data structures and functions for the buf kmem cache.
1114  */
1115 
1116 static kmem_cache_t *hdr_full_cache;
1117 static kmem_cache_t *hdr_l2only_cache;
1118 static kmem_cache_t *buf_cache;
1119 
1120 static void
1121 buf_fini(void)
1122 {
1123 #if defined(_KERNEL)
1124 	/*
1125 	 * Large allocations which do not require contiguous pages
1126 	 * should be using vmem_free() in the linux kernel\
1127 	 */
1128 	vmem_free(buf_hash_table.ht_table,
1129 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1130 #else
1131 	kmem_free(buf_hash_table.ht_table,
1132 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1133 #endif
1134 	for (int i = 0; i < BUF_LOCKS; i++)
1135 		mutex_destroy(BUF_HASH_LOCK(i));
1136 	kmem_cache_destroy(hdr_full_cache);
1137 	kmem_cache_destroy(hdr_l2only_cache);
1138 	kmem_cache_destroy(buf_cache);
1139 }
1140 
1141 /*
1142  * Constructor callback - called when the cache is empty
1143  * and a new buf is requested.
1144  */
1145 static int
1146 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1147 {
1148 	(void) unused, (void) kmflag;
1149 	arc_buf_hdr_t *hdr = vbuf;
1150 
1151 	memset(hdr, 0, HDR_FULL_SIZE);
1152 	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
1153 	zfs_refcount_create(&hdr->b_l1hdr.b_refcnt);
1154 #ifdef ZFS_DEBUG
1155 	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1156 #endif
1157 	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1158 	list_link_init(&hdr->b_l2hdr.b_l2node);
1159 	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1160 
1161 	return (0);
1162 }
1163 
1164 static int
1165 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1166 {
1167 	(void) unused, (void) kmflag;
1168 	arc_buf_hdr_t *hdr = vbuf;
1169 
1170 	memset(hdr, 0, HDR_L2ONLY_SIZE);
1171 	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1172 
1173 	return (0);
1174 }
1175 
1176 static int
1177 buf_cons(void *vbuf, void *unused, int kmflag)
1178 {
1179 	(void) unused, (void) kmflag;
1180 	arc_buf_t *buf = vbuf;
1181 
1182 	memset(buf, 0, sizeof (arc_buf_t));
1183 	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1184 
1185 	return (0);
1186 }
1187 
1188 /*
1189  * Destructor callback - called when a cached buf is
1190  * no longer required.
1191  */
1192 static void
1193 hdr_full_dest(void *vbuf, void *unused)
1194 {
1195 	(void) unused;
1196 	arc_buf_hdr_t *hdr = vbuf;
1197 
1198 	ASSERT(HDR_EMPTY(hdr));
1199 	zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1200 #ifdef ZFS_DEBUG
1201 	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1202 #endif
1203 	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1204 	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1205 }
1206 
1207 static void
1208 hdr_l2only_dest(void *vbuf, void *unused)
1209 {
1210 	(void) unused;
1211 	arc_buf_hdr_t *hdr = vbuf;
1212 
1213 	ASSERT(HDR_EMPTY(hdr));
1214 	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1215 }
1216 
1217 static void
1218 buf_dest(void *vbuf, void *unused)
1219 {
1220 	(void) unused;
1221 	(void) vbuf;
1222 
1223 	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1224 }
1225 
1226 static void
1227 buf_init(void)
1228 {
1229 	uint64_t *ct = NULL;
1230 	uint64_t hsize = 1ULL << 12;
1231 	int i, j;
1232 
1233 	/*
1234 	 * The hash table is big enough to fill all of physical memory
1235 	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1236 	 * By default, the table will take up
1237 	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1238 	 */
1239 	while (hsize * zfs_arc_average_blocksize < arc_all_memory())
1240 		hsize <<= 1;
1241 retry:
1242 	buf_hash_table.ht_mask = hsize - 1;
1243 #if defined(_KERNEL)
1244 	/*
1245 	 * Large allocations which do not require contiguous pages
1246 	 * should be using vmem_alloc() in the linux kernel
1247 	 */
1248 	buf_hash_table.ht_table =
1249 	    vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1250 #else
1251 	buf_hash_table.ht_table =
1252 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1253 #endif
1254 	if (buf_hash_table.ht_table == NULL) {
1255 		ASSERT(hsize > (1ULL << 8));
1256 		hsize >>= 1;
1257 		goto retry;
1258 	}
1259 
1260 	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1261 	    0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, 0);
1262 	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1263 	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL,
1264 	    NULL, NULL, 0);
1265 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1266 	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1267 
1268 	for (i = 0; i < 256; i++)
1269 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1270 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1271 
1272 	for (i = 0; i < BUF_LOCKS; i++)
1273 		mutex_init(BUF_HASH_LOCK(i), NULL, MUTEX_DEFAULT, NULL);
1274 }
1275 
1276 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
1277 
1278 /*
1279  * This is the size that the buf occupies in memory. If the buf is compressed,
1280  * it will correspond to the compressed size. You should use this method of
1281  * getting the buf size unless you explicitly need the logical size.
1282  */
1283 uint64_t
1284 arc_buf_size(arc_buf_t *buf)
1285 {
1286 	return (ARC_BUF_COMPRESSED(buf) ?
1287 	    HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1288 }
1289 
1290 uint64_t
1291 arc_buf_lsize(arc_buf_t *buf)
1292 {
1293 	return (HDR_GET_LSIZE(buf->b_hdr));
1294 }
1295 
1296 /*
1297  * This function will return B_TRUE if the buffer is encrypted in memory.
1298  * This buffer can be decrypted by calling arc_untransform().
1299  */
1300 boolean_t
1301 arc_is_encrypted(arc_buf_t *buf)
1302 {
1303 	return (ARC_BUF_ENCRYPTED(buf) != 0);
1304 }
1305 
1306 /*
1307  * Returns B_TRUE if the buffer represents data that has not had its MAC
1308  * verified yet.
1309  */
1310 boolean_t
1311 arc_is_unauthenticated(arc_buf_t *buf)
1312 {
1313 	return (HDR_NOAUTH(buf->b_hdr) != 0);
1314 }
1315 
1316 void
1317 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt,
1318     uint8_t *iv, uint8_t *mac)
1319 {
1320 	arc_buf_hdr_t *hdr = buf->b_hdr;
1321 
1322 	ASSERT(HDR_PROTECTED(hdr));
1323 
1324 	memcpy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
1325 	memcpy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
1326 	memcpy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
1327 	*byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
1328 	    ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
1329 }
1330 
1331 /*
1332  * Indicates how this buffer is compressed in memory. If it is not compressed
1333  * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1334  * arc_untransform() as long as it is also unencrypted.
1335  */
1336 enum zio_compress
1337 arc_get_compression(arc_buf_t *buf)
1338 {
1339 	return (ARC_BUF_COMPRESSED(buf) ?
1340 	    HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1341 }
1342 
1343 /*
1344  * Return the compression algorithm used to store this data in the ARC. If ARC
1345  * compression is enabled or this is an encrypted block, this will be the same
1346  * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1347  */
1348 static inline enum zio_compress
1349 arc_hdr_get_compress(arc_buf_hdr_t *hdr)
1350 {
1351 	return (HDR_COMPRESSION_ENABLED(hdr) ?
1352 	    HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF);
1353 }
1354 
1355 uint8_t
1356 arc_get_complevel(arc_buf_t *buf)
1357 {
1358 	return (buf->b_hdr->b_complevel);
1359 }
1360 
1361 static inline boolean_t
1362 arc_buf_is_shared(arc_buf_t *buf)
1363 {
1364 	boolean_t shared = (buf->b_data != NULL &&
1365 	    buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1366 	    abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1367 	    buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1368 	IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1369 	EQUIV(shared, ARC_BUF_SHARED(buf));
1370 	IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1371 
1372 	/*
1373 	 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1374 	 * already being shared" requirement prevents us from doing that.
1375 	 */
1376 
1377 	return (shared);
1378 }
1379 
1380 /*
1381  * Free the checksum associated with this header. If there is no checksum, this
1382  * is a no-op.
1383  */
1384 static inline void
1385 arc_cksum_free(arc_buf_hdr_t *hdr)
1386 {
1387 #ifdef ZFS_DEBUG
1388 	ASSERT(HDR_HAS_L1HDR(hdr));
1389 
1390 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1391 	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1392 		kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1393 		hdr->b_l1hdr.b_freeze_cksum = NULL;
1394 	}
1395 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1396 #endif
1397 }
1398 
1399 /*
1400  * Return true iff at least one of the bufs on hdr is not compressed.
1401  * Encrypted buffers count as compressed.
1402  */
1403 static boolean_t
1404 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1405 {
1406 	ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr));
1407 
1408 	for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1409 		if (!ARC_BUF_COMPRESSED(b)) {
1410 			return (B_TRUE);
1411 		}
1412 	}
1413 	return (B_FALSE);
1414 }
1415 
1416 
1417 /*
1418  * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1419  * matches the checksum that is stored in the hdr. If there is no checksum,
1420  * or if the buf is compressed, this is a no-op.
1421  */
1422 static void
1423 arc_cksum_verify(arc_buf_t *buf)
1424 {
1425 #ifdef ZFS_DEBUG
1426 	arc_buf_hdr_t *hdr = buf->b_hdr;
1427 	zio_cksum_t zc;
1428 
1429 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1430 		return;
1431 
1432 	if (ARC_BUF_COMPRESSED(buf))
1433 		return;
1434 
1435 	ASSERT(HDR_HAS_L1HDR(hdr));
1436 
1437 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1438 
1439 	if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1440 		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1441 		return;
1442 	}
1443 
1444 	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1445 	if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1446 		panic("buffer modified while frozen!");
1447 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1448 #endif
1449 }
1450 
1451 /*
1452  * This function makes the assumption that data stored in the L2ARC
1453  * will be transformed exactly as it is in the main pool. Because of
1454  * this we can verify the checksum against the reading process's bp.
1455  */
1456 static boolean_t
1457 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1458 {
1459 	ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1460 	VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1461 
1462 	/*
1463 	 * Block pointers always store the checksum for the logical data.
1464 	 * If the block pointer has the gang bit set, then the checksum
1465 	 * it represents is for the reconstituted data and not for an
1466 	 * individual gang member. The zio pipeline, however, must be able to
1467 	 * determine the checksum of each of the gang constituents so it
1468 	 * treats the checksum comparison differently than what we need
1469 	 * for l2arc blocks. This prevents us from using the
1470 	 * zio_checksum_error() interface directly. Instead we must call the
1471 	 * zio_checksum_error_impl() so that we can ensure the checksum is
1472 	 * generated using the correct checksum algorithm and accounts for the
1473 	 * logical I/O size and not just a gang fragment.
1474 	 */
1475 	return (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1476 	    BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1477 	    zio->io_offset, NULL) == 0);
1478 }
1479 
1480 /*
1481  * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1482  * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1483  * isn't modified later on. If buf is compressed or there is already a checksum
1484  * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1485  */
1486 static void
1487 arc_cksum_compute(arc_buf_t *buf)
1488 {
1489 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1490 		return;
1491 
1492 #ifdef ZFS_DEBUG
1493 	arc_buf_hdr_t *hdr = buf->b_hdr;
1494 	ASSERT(HDR_HAS_L1HDR(hdr));
1495 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1496 	if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) {
1497 		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1498 		return;
1499 	}
1500 
1501 	ASSERT(!ARC_BUF_ENCRYPTED(buf));
1502 	ASSERT(!ARC_BUF_COMPRESSED(buf));
1503 	hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1504 	    KM_SLEEP);
1505 	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1506 	    hdr->b_l1hdr.b_freeze_cksum);
1507 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1508 #endif
1509 	arc_buf_watch(buf);
1510 }
1511 
1512 #ifndef _KERNEL
1513 void
1514 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1515 {
1516 	(void) sig, (void) unused;
1517 	panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr);
1518 }
1519 #endif
1520 
1521 static void
1522 arc_buf_unwatch(arc_buf_t *buf)
1523 {
1524 #ifndef _KERNEL
1525 	if (arc_watch) {
1526 		ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1527 		    PROT_READ | PROT_WRITE));
1528 	}
1529 #else
1530 	(void) buf;
1531 #endif
1532 }
1533 
1534 static void
1535 arc_buf_watch(arc_buf_t *buf)
1536 {
1537 #ifndef _KERNEL
1538 	if (arc_watch)
1539 		ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1540 		    PROT_READ));
1541 #else
1542 	(void) buf;
1543 #endif
1544 }
1545 
1546 static arc_buf_contents_t
1547 arc_buf_type(arc_buf_hdr_t *hdr)
1548 {
1549 	arc_buf_contents_t type;
1550 	if (HDR_ISTYPE_METADATA(hdr)) {
1551 		type = ARC_BUFC_METADATA;
1552 	} else {
1553 		type = ARC_BUFC_DATA;
1554 	}
1555 	VERIFY3U(hdr->b_type, ==, type);
1556 	return (type);
1557 }
1558 
1559 boolean_t
1560 arc_is_metadata(arc_buf_t *buf)
1561 {
1562 	return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1563 }
1564 
1565 static uint32_t
1566 arc_bufc_to_flags(arc_buf_contents_t type)
1567 {
1568 	switch (type) {
1569 	case ARC_BUFC_DATA:
1570 		/* metadata field is 0 if buffer contains normal data */
1571 		return (0);
1572 	case ARC_BUFC_METADATA:
1573 		return (ARC_FLAG_BUFC_METADATA);
1574 	default:
1575 		break;
1576 	}
1577 	panic("undefined ARC buffer type!");
1578 	return ((uint32_t)-1);
1579 }
1580 
1581 void
1582 arc_buf_thaw(arc_buf_t *buf)
1583 {
1584 	arc_buf_hdr_t *hdr = buf->b_hdr;
1585 
1586 	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1587 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1588 
1589 	arc_cksum_verify(buf);
1590 
1591 	/*
1592 	 * Compressed buffers do not manipulate the b_freeze_cksum.
1593 	 */
1594 	if (ARC_BUF_COMPRESSED(buf))
1595 		return;
1596 
1597 	ASSERT(HDR_HAS_L1HDR(hdr));
1598 	arc_cksum_free(hdr);
1599 	arc_buf_unwatch(buf);
1600 }
1601 
1602 void
1603 arc_buf_freeze(arc_buf_t *buf)
1604 {
1605 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1606 		return;
1607 
1608 	if (ARC_BUF_COMPRESSED(buf))
1609 		return;
1610 
1611 	ASSERT(HDR_HAS_L1HDR(buf->b_hdr));
1612 	arc_cksum_compute(buf);
1613 }
1614 
1615 /*
1616  * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1617  * the following functions should be used to ensure that the flags are
1618  * updated in a thread-safe way. When manipulating the flags either
1619  * the hash_lock must be held or the hdr must be undiscoverable. This
1620  * ensures that we're not racing with any other threads when updating
1621  * the flags.
1622  */
1623 static inline void
1624 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1625 {
1626 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1627 	hdr->b_flags |= flags;
1628 }
1629 
1630 static inline void
1631 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1632 {
1633 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1634 	hdr->b_flags &= ~flags;
1635 }
1636 
1637 /*
1638  * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1639  * done in a special way since we have to clear and set bits
1640  * at the same time. Consumers that wish to set the compression bits
1641  * must use this function to ensure that the flags are updated in
1642  * thread-safe manner.
1643  */
1644 static void
1645 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1646 {
1647 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1648 
1649 	/*
1650 	 * Holes and embedded blocks will always have a psize = 0 so
1651 	 * we ignore the compression of the blkptr and set the
1652 	 * want to uncompress them. Mark them as uncompressed.
1653 	 */
1654 	if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1655 		arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1656 		ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1657 	} else {
1658 		arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1659 		ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1660 	}
1661 
1662 	HDR_SET_COMPRESS(hdr, cmp);
1663 	ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1664 }
1665 
1666 /*
1667  * Looks for another buf on the same hdr which has the data decompressed, copies
1668  * from it, and returns true. If no such buf exists, returns false.
1669  */
1670 static boolean_t
1671 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1672 {
1673 	arc_buf_hdr_t *hdr = buf->b_hdr;
1674 	boolean_t copied = B_FALSE;
1675 
1676 	ASSERT(HDR_HAS_L1HDR(hdr));
1677 	ASSERT3P(buf->b_data, !=, NULL);
1678 	ASSERT(!ARC_BUF_COMPRESSED(buf));
1679 
1680 	for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1681 	    from = from->b_next) {
1682 		/* can't use our own data buffer */
1683 		if (from == buf) {
1684 			continue;
1685 		}
1686 
1687 		if (!ARC_BUF_COMPRESSED(from)) {
1688 			memcpy(buf->b_data, from->b_data, arc_buf_size(buf));
1689 			copied = B_TRUE;
1690 			break;
1691 		}
1692 	}
1693 
1694 #ifdef ZFS_DEBUG
1695 	/*
1696 	 * There were no decompressed bufs, so there should not be a
1697 	 * checksum on the hdr either.
1698 	 */
1699 	if (zfs_flags & ZFS_DEBUG_MODIFY)
1700 		EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1701 #endif
1702 
1703 	return (copied);
1704 }
1705 
1706 /*
1707  * Allocates an ARC buf header that's in an evicted & L2-cached state.
1708  * This is used during l2arc reconstruction to make empty ARC buffers
1709  * which circumvent the regular disk->arc->l2arc path and instead come
1710  * into being in the reverse order, i.e. l2arc->arc.
1711  */
1712 static arc_buf_hdr_t *
1713 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev,
1714     dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth,
1715     enum zio_compress compress, uint8_t complevel, boolean_t protected,
1716     boolean_t prefetch, arc_state_type_t arcs_state)
1717 {
1718 	arc_buf_hdr_t	*hdr;
1719 
1720 	ASSERT(size != 0);
1721 	hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP);
1722 	hdr->b_birth = birth;
1723 	hdr->b_type = type;
1724 	hdr->b_flags = 0;
1725 	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR);
1726 	HDR_SET_LSIZE(hdr, size);
1727 	HDR_SET_PSIZE(hdr, psize);
1728 	arc_hdr_set_compress(hdr, compress);
1729 	hdr->b_complevel = complevel;
1730 	if (protected)
1731 		arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
1732 	if (prefetch)
1733 		arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
1734 	hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa);
1735 
1736 	hdr->b_dva = dva;
1737 
1738 	hdr->b_l2hdr.b_dev = dev;
1739 	hdr->b_l2hdr.b_daddr = daddr;
1740 	hdr->b_l2hdr.b_arcs_state = arcs_state;
1741 
1742 	return (hdr);
1743 }
1744 
1745 /*
1746  * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1747  */
1748 static uint64_t
1749 arc_hdr_size(arc_buf_hdr_t *hdr)
1750 {
1751 	uint64_t size;
1752 
1753 	if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
1754 	    HDR_GET_PSIZE(hdr) > 0) {
1755 		size = HDR_GET_PSIZE(hdr);
1756 	} else {
1757 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1758 		size = HDR_GET_LSIZE(hdr);
1759 	}
1760 	return (size);
1761 }
1762 
1763 static int
1764 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
1765 {
1766 	int ret;
1767 	uint64_t csize;
1768 	uint64_t lsize = HDR_GET_LSIZE(hdr);
1769 	uint64_t psize = HDR_GET_PSIZE(hdr);
1770 	void *tmpbuf = NULL;
1771 	abd_t *abd = hdr->b_l1hdr.b_pabd;
1772 
1773 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1774 	ASSERT(HDR_AUTHENTICATED(hdr));
1775 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1776 
1777 	/*
1778 	 * The MAC is calculated on the compressed data that is stored on disk.
1779 	 * However, if compressed arc is disabled we will only have the
1780 	 * decompressed data available to us now. Compress it into a temporary
1781 	 * abd so we can verify the MAC. The performance overhead of this will
1782 	 * be relatively low, since most objects in an encrypted objset will
1783 	 * be encrypted (instead of authenticated) anyway.
1784 	 */
1785 	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1786 	    !HDR_COMPRESSION_ENABLED(hdr)) {
1787 
1788 		csize = zio_compress_data(HDR_GET_COMPRESS(hdr),
1789 		    hdr->b_l1hdr.b_pabd, &tmpbuf, lsize, hdr->b_complevel);
1790 		ASSERT3P(tmpbuf, !=, NULL);
1791 		ASSERT3U(csize, <=, psize);
1792 		abd = abd_get_from_buf(tmpbuf, lsize);
1793 		abd_take_ownership_of_buf(abd, B_TRUE);
1794 		abd_zero_off(abd, csize, psize - csize);
1795 	}
1796 
1797 	/*
1798 	 * Authentication is best effort. We authenticate whenever the key is
1799 	 * available. If we succeed we clear ARC_FLAG_NOAUTH.
1800 	 */
1801 	if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) {
1802 		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1803 		ASSERT3U(lsize, ==, psize);
1804 		ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd,
1805 		    psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1806 	} else {
1807 		ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize,
1808 		    hdr->b_crypt_hdr.b_mac);
1809 	}
1810 
1811 	if (ret == 0)
1812 		arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH);
1813 	else if (ret != ENOENT)
1814 		goto error;
1815 
1816 	if (tmpbuf != NULL)
1817 		abd_free(abd);
1818 
1819 	return (0);
1820 
1821 error:
1822 	if (tmpbuf != NULL)
1823 		abd_free(abd);
1824 
1825 	return (ret);
1826 }
1827 
1828 /*
1829  * This function will take a header that only has raw encrypted data in
1830  * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1831  * b_l1hdr.b_pabd. If designated in the header flags, this function will
1832  * also decompress the data.
1833  */
1834 static int
1835 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb)
1836 {
1837 	int ret;
1838 	abd_t *cabd = NULL;
1839 	void *tmp = NULL;
1840 	boolean_t no_crypt = B_FALSE;
1841 	boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1842 
1843 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1844 	ASSERT(HDR_ENCRYPTED(hdr));
1845 
1846 	arc_hdr_alloc_abd(hdr, 0);
1847 
1848 	ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot,
1849 	    B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv,
1850 	    hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd,
1851 	    hdr->b_crypt_hdr.b_rabd, &no_crypt);
1852 	if (ret != 0)
1853 		goto error;
1854 
1855 	if (no_crypt) {
1856 		abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd,
1857 		    HDR_GET_PSIZE(hdr));
1858 	}
1859 
1860 	/*
1861 	 * If this header has disabled arc compression but the b_pabd is
1862 	 * compressed after decrypting it, we need to decompress the newly
1863 	 * decrypted data.
1864 	 */
1865 	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1866 	    !HDR_COMPRESSION_ENABLED(hdr)) {
1867 		/*
1868 		 * We want to make sure that we are correctly honoring the
1869 		 * zfs_abd_scatter_enabled setting, so we allocate an abd here
1870 		 * and then loan a buffer from it, rather than allocating a
1871 		 * linear buffer and wrapping it in an abd later.
1872 		 */
1873 		cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 0);
1874 		tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
1875 
1876 		ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1877 		    hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
1878 		    HDR_GET_LSIZE(hdr), &hdr->b_complevel);
1879 		if (ret != 0) {
1880 			abd_return_buf(cabd, tmp, arc_hdr_size(hdr));
1881 			goto error;
1882 		}
1883 
1884 		abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
1885 		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
1886 		    arc_hdr_size(hdr), hdr);
1887 		hdr->b_l1hdr.b_pabd = cabd;
1888 	}
1889 
1890 	return (0);
1891 
1892 error:
1893 	arc_hdr_free_abd(hdr, B_FALSE);
1894 	if (cabd != NULL)
1895 		arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr);
1896 
1897 	return (ret);
1898 }
1899 
1900 /*
1901  * This function is called during arc_buf_fill() to prepare the header's
1902  * abd plaintext pointer for use. This involves authenticated protected
1903  * data and decrypting encrypted data into the plaintext abd.
1904  */
1905 static int
1906 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa,
1907     const zbookmark_phys_t *zb, boolean_t noauth)
1908 {
1909 	int ret;
1910 
1911 	ASSERT(HDR_PROTECTED(hdr));
1912 
1913 	if (hash_lock != NULL)
1914 		mutex_enter(hash_lock);
1915 
1916 	if (HDR_NOAUTH(hdr) && !noauth) {
1917 		/*
1918 		 * The caller requested authenticated data but our data has
1919 		 * not been authenticated yet. Verify the MAC now if we can.
1920 		 */
1921 		ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset);
1922 		if (ret != 0)
1923 			goto error;
1924 	} else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) {
1925 		/*
1926 		 * If we only have the encrypted version of the data, but the
1927 		 * unencrypted version was requested we take this opportunity
1928 		 * to store the decrypted version in the header for future use.
1929 		 */
1930 		ret = arc_hdr_decrypt(hdr, spa, zb);
1931 		if (ret != 0)
1932 			goto error;
1933 	}
1934 
1935 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1936 
1937 	if (hash_lock != NULL)
1938 		mutex_exit(hash_lock);
1939 
1940 	return (0);
1941 
1942 error:
1943 	if (hash_lock != NULL)
1944 		mutex_exit(hash_lock);
1945 
1946 	return (ret);
1947 }
1948 
1949 /*
1950  * This function is used by the dbuf code to decrypt bonus buffers in place.
1951  * The dbuf code itself doesn't have any locking for decrypting a shared dnode
1952  * block, so we use the hash lock here to protect against concurrent calls to
1953  * arc_buf_fill().
1954  */
1955 static void
1956 arc_buf_untransform_in_place(arc_buf_t *buf)
1957 {
1958 	arc_buf_hdr_t *hdr = buf->b_hdr;
1959 
1960 	ASSERT(HDR_ENCRYPTED(hdr));
1961 	ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
1962 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1963 	ASSERT3PF(hdr->b_l1hdr.b_pabd, !=, NULL, "hdr %px buf %px", hdr, buf);
1964 
1965 	zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data,
1966 	    arc_buf_size(buf));
1967 	buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
1968 	buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1969 }
1970 
1971 /*
1972  * Given a buf that has a data buffer attached to it, this function will
1973  * efficiently fill the buf with data of the specified compression setting from
1974  * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1975  * are already sharing a data buf, no copy is performed.
1976  *
1977  * If the buf is marked as compressed but uncompressed data was requested, this
1978  * will allocate a new data buffer for the buf, remove that flag, and fill the
1979  * buf with uncompressed data. You can't request a compressed buf on a hdr with
1980  * uncompressed data, and (since we haven't added support for it yet) if you
1981  * want compressed data your buf must already be marked as compressed and have
1982  * the correct-sized data buffer.
1983  */
1984 static int
1985 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
1986     arc_fill_flags_t flags)
1987 {
1988 	int error = 0;
1989 	arc_buf_hdr_t *hdr = buf->b_hdr;
1990 	boolean_t hdr_compressed =
1991 	    (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
1992 	boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0;
1993 	boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0;
1994 	dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
1995 	kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr);
1996 
1997 	ASSERT3P(buf->b_data, !=, NULL);
1998 	IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf));
1999 	IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
2000 	IMPLY(encrypted, HDR_ENCRYPTED(hdr));
2001 	IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf));
2002 	IMPLY(encrypted, ARC_BUF_COMPRESSED(buf));
2003 	IMPLY(encrypted, !arc_buf_is_shared(buf));
2004 
2005 	/*
2006 	 * If the caller wanted encrypted data we just need to copy it from
2007 	 * b_rabd and potentially byteswap it. We won't be able to do any
2008 	 * further transforms on it.
2009 	 */
2010 	if (encrypted) {
2011 		ASSERT(HDR_HAS_RABD(hdr));
2012 		abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd,
2013 		    HDR_GET_PSIZE(hdr));
2014 		goto byteswap;
2015 	}
2016 
2017 	/*
2018 	 * Adjust encrypted and authenticated headers to accommodate
2019 	 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are
2020 	 * allowed to fail decryption due to keys not being loaded
2021 	 * without being marked as an IO error.
2022 	 */
2023 	if (HDR_PROTECTED(hdr)) {
2024 		error = arc_fill_hdr_crypt(hdr, hash_lock, spa,
2025 		    zb, !!(flags & ARC_FILL_NOAUTH));
2026 		if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) {
2027 			return (error);
2028 		} else if (error != 0) {
2029 			if (hash_lock != NULL)
2030 				mutex_enter(hash_lock);
2031 			arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2032 			if (hash_lock != NULL)
2033 				mutex_exit(hash_lock);
2034 			return (error);
2035 		}
2036 	}
2037 
2038 	/*
2039 	 * There is a special case here for dnode blocks which are
2040 	 * decrypting their bonus buffers. These blocks may request to
2041 	 * be decrypted in-place. This is necessary because there may
2042 	 * be many dnodes pointing into this buffer and there is
2043 	 * currently no method to synchronize replacing the backing
2044 	 * b_data buffer and updating all of the pointers. Here we use
2045 	 * the hash lock to ensure there are no races. If the need
2046 	 * arises for other types to be decrypted in-place, they must
2047 	 * add handling here as well.
2048 	 */
2049 	if ((flags & ARC_FILL_IN_PLACE) != 0) {
2050 		ASSERT(!hdr_compressed);
2051 		ASSERT(!compressed);
2052 		ASSERT(!encrypted);
2053 
2054 		if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) {
2055 			ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
2056 
2057 			if (hash_lock != NULL)
2058 				mutex_enter(hash_lock);
2059 			arc_buf_untransform_in_place(buf);
2060 			if (hash_lock != NULL)
2061 				mutex_exit(hash_lock);
2062 
2063 			/* Compute the hdr's checksum if necessary */
2064 			arc_cksum_compute(buf);
2065 		}
2066 
2067 		return (0);
2068 	}
2069 
2070 	if (hdr_compressed == compressed) {
2071 		if (ARC_BUF_SHARED(buf)) {
2072 			ASSERT(arc_buf_is_shared(buf));
2073 		} else {
2074 			abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
2075 			    arc_buf_size(buf));
2076 		}
2077 	} else {
2078 		ASSERT(hdr_compressed);
2079 		ASSERT(!compressed);
2080 
2081 		/*
2082 		 * If the buf is sharing its data with the hdr, unlink it and
2083 		 * allocate a new data buffer for the buf.
2084 		 */
2085 		if (ARC_BUF_SHARED(buf)) {
2086 			ASSERTF(ARC_BUF_COMPRESSED(buf),
2087 			"buf %p was uncompressed", buf);
2088 
2089 			/* We need to give the buf its own b_data */
2090 			buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2091 			buf->b_data =
2092 			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2093 			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2094 
2095 			/* Previously overhead was 0; just add new overhead */
2096 			ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2097 		} else if (ARC_BUF_COMPRESSED(buf)) {
2098 			ASSERT(!arc_buf_is_shared(buf));
2099 
2100 			/* We need to reallocate the buf's b_data */
2101 			arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
2102 			    buf);
2103 			buf->b_data =
2104 			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2105 
2106 			/* We increased the size of b_data; update overhead */
2107 			ARCSTAT_INCR(arcstat_overhead_size,
2108 			    HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2109 		}
2110 
2111 		/*
2112 		 * Regardless of the buf's previous compression settings, it
2113 		 * should not be compressed at the end of this function.
2114 		 */
2115 		buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2116 
2117 		/*
2118 		 * Try copying the data from another buf which already has a
2119 		 * decompressed version. If that's not possible, it's time to
2120 		 * bite the bullet and decompress the data from the hdr.
2121 		 */
2122 		if (arc_buf_try_copy_decompressed_data(buf)) {
2123 			/* Skip byteswapping and checksumming (already done) */
2124 			return (0);
2125 		} else {
2126 			error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2127 			    hdr->b_l1hdr.b_pabd, buf->b_data,
2128 			    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr),
2129 			    &hdr->b_complevel);
2130 
2131 			/*
2132 			 * Absent hardware errors or software bugs, this should
2133 			 * be impossible, but log it anyway so we can debug it.
2134 			 */
2135 			if (error != 0) {
2136 				zfs_dbgmsg(
2137 				    "hdr %px, compress %d, psize %d, lsize %d",
2138 				    hdr, arc_hdr_get_compress(hdr),
2139 				    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2140 				if (hash_lock != NULL)
2141 					mutex_enter(hash_lock);
2142 				arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2143 				if (hash_lock != NULL)
2144 					mutex_exit(hash_lock);
2145 				return (SET_ERROR(EIO));
2146 			}
2147 		}
2148 	}
2149 
2150 byteswap:
2151 	/* Byteswap the buf's data if necessary */
2152 	if (bswap != DMU_BSWAP_NUMFUNCS) {
2153 		ASSERT(!HDR_SHARED_DATA(hdr));
2154 		ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2155 		dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2156 	}
2157 
2158 	/* Compute the hdr's checksum if necessary */
2159 	arc_cksum_compute(buf);
2160 
2161 	return (0);
2162 }
2163 
2164 /*
2165  * If this function is being called to decrypt an encrypted buffer or verify an
2166  * authenticated one, the key must be loaded and a mapping must be made
2167  * available in the keystore via spa_keystore_create_mapping() or one of its
2168  * callers.
2169  */
2170 int
2171 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2172     boolean_t in_place)
2173 {
2174 	int ret;
2175 	arc_fill_flags_t flags = 0;
2176 
2177 	if (in_place)
2178 		flags |= ARC_FILL_IN_PLACE;
2179 
2180 	ret = arc_buf_fill(buf, spa, zb, flags);
2181 	if (ret == ECKSUM) {
2182 		/*
2183 		 * Convert authentication and decryption errors to EIO
2184 		 * (and generate an ereport) before leaving the ARC.
2185 		 */
2186 		ret = SET_ERROR(EIO);
2187 		spa_log_error(spa, zb, buf->b_hdr->b_birth);
2188 		(void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
2189 		    spa, NULL, zb, NULL, 0);
2190 	}
2191 
2192 	return (ret);
2193 }
2194 
2195 /*
2196  * Increment the amount of evictable space in the arc_state_t's refcount.
2197  * We account for the space used by the hdr and the arc buf individually
2198  * so that we can add and remove them from the refcount individually.
2199  */
2200 static void
2201 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2202 {
2203 	arc_buf_contents_t type = arc_buf_type(hdr);
2204 
2205 	ASSERT(HDR_HAS_L1HDR(hdr));
2206 
2207 	if (GHOST_STATE(state)) {
2208 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2209 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2210 		ASSERT(!HDR_HAS_RABD(hdr));
2211 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2212 		    HDR_GET_LSIZE(hdr), hdr);
2213 		return;
2214 	}
2215 
2216 	if (hdr->b_l1hdr.b_pabd != NULL) {
2217 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2218 		    arc_hdr_size(hdr), hdr);
2219 	}
2220 	if (HDR_HAS_RABD(hdr)) {
2221 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2222 		    HDR_GET_PSIZE(hdr), hdr);
2223 	}
2224 
2225 	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2226 	    buf = buf->b_next) {
2227 		if (ARC_BUF_SHARED(buf))
2228 			continue;
2229 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2230 		    arc_buf_size(buf), buf);
2231 	}
2232 }
2233 
2234 /*
2235  * Decrement the amount of evictable space in the arc_state_t's refcount.
2236  * We account for the space used by the hdr and the arc buf individually
2237  * so that we can add and remove them from the refcount individually.
2238  */
2239 static void
2240 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2241 {
2242 	arc_buf_contents_t type = arc_buf_type(hdr);
2243 
2244 	ASSERT(HDR_HAS_L1HDR(hdr));
2245 
2246 	if (GHOST_STATE(state)) {
2247 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2248 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2249 		ASSERT(!HDR_HAS_RABD(hdr));
2250 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2251 		    HDR_GET_LSIZE(hdr), hdr);
2252 		return;
2253 	}
2254 
2255 	if (hdr->b_l1hdr.b_pabd != NULL) {
2256 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2257 		    arc_hdr_size(hdr), hdr);
2258 	}
2259 	if (HDR_HAS_RABD(hdr)) {
2260 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2261 		    HDR_GET_PSIZE(hdr), hdr);
2262 	}
2263 
2264 	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2265 	    buf = buf->b_next) {
2266 		if (ARC_BUF_SHARED(buf))
2267 			continue;
2268 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2269 		    arc_buf_size(buf), buf);
2270 	}
2271 }
2272 
2273 /*
2274  * Add a reference to this hdr indicating that someone is actively
2275  * referencing that memory. When the refcount transitions from 0 to 1,
2276  * we remove it from the respective arc_state_t list to indicate that
2277  * it is not evictable.
2278  */
2279 static void
2280 add_reference(arc_buf_hdr_t *hdr, const void *tag)
2281 {
2282 	arc_state_t *state = hdr->b_l1hdr.b_state;
2283 
2284 	ASSERT(HDR_HAS_L1HDR(hdr));
2285 	if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) {
2286 		ASSERT(state == arc_anon);
2287 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2288 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2289 	}
2290 
2291 	if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2292 	    state != arc_anon && state != arc_l2c_only) {
2293 		/* We don't use the L2-only state list. */
2294 		multilist_remove(&state->arcs_list[arc_buf_type(hdr)], hdr);
2295 		arc_evictable_space_decrement(hdr, state);
2296 	}
2297 }
2298 
2299 /*
2300  * Remove a reference from this hdr. When the reference transitions from
2301  * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2302  * list making it eligible for eviction.
2303  */
2304 static int
2305 remove_reference(arc_buf_hdr_t *hdr, const void *tag)
2306 {
2307 	int cnt;
2308 	arc_state_t *state = hdr->b_l1hdr.b_state;
2309 
2310 	ASSERT(HDR_HAS_L1HDR(hdr));
2311 	ASSERT(state == arc_anon || MUTEX_HELD(HDR_LOCK(hdr)));
2312 	ASSERT(!GHOST_STATE(state));	/* arc_l2c_only counts as a ghost. */
2313 
2314 	if ((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) != 0)
2315 		return (cnt);
2316 
2317 	if (state == arc_anon) {
2318 		arc_hdr_destroy(hdr);
2319 		return (0);
2320 	}
2321 	if (state == arc_uncached && !HDR_PREFETCH(hdr)) {
2322 		arc_change_state(arc_anon, hdr);
2323 		arc_hdr_destroy(hdr);
2324 		return (0);
2325 	}
2326 	multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr);
2327 	arc_evictable_space_increment(hdr, state);
2328 	return (0);
2329 }
2330 
2331 /*
2332  * Returns detailed information about a specific arc buffer.  When the
2333  * state_index argument is set the function will calculate the arc header
2334  * list position for its arc state.  Since this requires a linear traversal
2335  * callers are strongly encourage not to do this.  However, it can be helpful
2336  * for targeted analysis so the functionality is provided.
2337  */
2338 void
2339 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
2340 {
2341 	(void) state_index;
2342 	arc_buf_hdr_t *hdr = ab->b_hdr;
2343 	l1arc_buf_hdr_t *l1hdr = NULL;
2344 	l2arc_buf_hdr_t *l2hdr = NULL;
2345 	arc_state_t *state = NULL;
2346 
2347 	memset(abi, 0, sizeof (arc_buf_info_t));
2348 
2349 	if (hdr == NULL)
2350 		return;
2351 
2352 	abi->abi_flags = hdr->b_flags;
2353 
2354 	if (HDR_HAS_L1HDR(hdr)) {
2355 		l1hdr = &hdr->b_l1hdr;
2356 		state = l1hdr->b_state;
2357 	}
2358 	if (HDR_HAS_L2HDR(hdr))
2359 		l2hdr = &hdr->b_l2hdr;
2360 
2361 	if (l1hdr) {
2362 		abi->abi_bufcnt = 0;
2363 		for (arc_buf_t *buf = l1hdr->b_buf; buf; buf = buf->b_next)
2364 			abi->abi_bufcnt++;
2365 		abi->abi_access = l1hdr->b_arc_access;
2366 		abi->abi_mru_hits = l1hdr->b_mru_hits;
2367 		abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
2368 		abi->abi_mfu_hits = l1hdr->b_mfu_hits;
2369 		abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
2370 		abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt);
2371 	}
2372 
2373 	if (l2hdr) {
2374 		abi->abi_l2arc_dattr = l2hdr->b_daddr;
2375 		abi->abi_l2arc_hits = l2hdr->b_hits;
2376 	}
2377 
2378 	abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
2379 	abi->abi_state_contents = arc_buf_type(hdr);
2380 	abi->abi_size = arc_hdr_size(hdr);
2381 }
2382 
2383 /*
2384  * Move the supplied buffer to the indicated state. The hash lock
2385  * for the buffer must be held by the caller.
2386  */
2387 static void
2388 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr)
2389 {
2390 	arc_state_t *old_state;
2391 	int64_t refcnt;
2392 	boolean_t update_old, update_new;
2393 	arc_buf_contents_t type = arc_buf_type(hdr);
2394 
2395 	/*
2396 	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2397 	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
2398 	 * L1 hdr doesn't always exist when we change state to arc_anon before
2399 	 * destroying a header, in which case reallocating to add the L1 hdr is
2400 	 * pointless.
2401 	 */
2402 	if (HDR_HAS_L1HDR(hdr)) {
2403 		old_state = hdr->b_l1hdr.b_state;
2404 		refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt);
2405 		update_old = (hdr->b_l1hdr.b_buf != NULL ||
2406 		    hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
2407 
2408 		IMPLY(GHOST_STATE(old_state), hdr->b_l1hdr.b_buf == NULL);
2409 		IMPLY(GHOST_STATE(new_state), hdr->b_l1hdr.b_buf == NULL);
2410 		IMPLY(old_state == arc_anon, hdr->b_l1hdr.b_buf == NULL ||
2411 		    ARC_BUF_LAST(hdr->b_l1hdr.b_buf));
2412 	} else {
2413 		old_state = arc_l2c_only;
2414 		refcnt = 0;
2415 		update_old = B_FALSE;
2416 	}
2417 	update_new = update_old;
2418 	if (GHOST_STATE(old_state))
2419 		update_old = B_TRUE;
2420 	if (GHOST_STATE(new_state))
2421 		update_new = B_TRUE;
2422 
2423 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
2424 	ASSERT3P(new_state, !=, old_state);
2425 
2426 	/*
2427 	 * If this buffer is evictable, transfer it from the
2428 	 * old state list to the new state list.
2429 	 */
2430 	if (refcnt == 0) {
2431 		if (old_state != arc_anon && old_state != arc_l2c_only) {
2432 			ASSERT(HDR_HAS_L1HDR(hdr));
2433 			/* remove_reference() saves on insert. */
2434 			if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2435 				multilist_remove(&old_state->arcs_list[type],
2436 				    hdr);
2437 				arc_evictable_space_decrement(hdr, old_state);
2438 			}
2439 		}
2440 		if (new_state != arc_anon && new_state != arc_l2c_only) {
2441 			/*
2442 			 * An L1 header always exists here, since if we're
2443 			 * moving to some L1-cached state (i.e. not l2c_only or
2444 			 * anonymous), we realloc the header to add an L1hdr
2445 			 * beforehand.
2446 			 */
2447 			ASSERT(HDR_HAS_L1HDR(hdr));
2448 			multilist_insert(&new_state->arcs_list[type], hdr);
2449 			arc_evictable_space_increment(hdr, new_state);
2450 		}
2451 	}
2452 
2453 	ASSERT(!HDR_EMPTY(hdr));
2454 	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2455 		buf_hash_remove(hdr);
2456 
2457 	/* adjust state sizes (ignore arc_l2c_only) */
2458 
2459 	if (update_new && new_state != arc_l2c_only) {
2460 		ASSERT(HDR_HAS_L1HDR(hdr));
2461 		if (GHOST_STATE(new_state)) {
2462 
2463 			/*
2464 			 * When moving a header to a ghost state, we first
2465 			 * remove all arc buffers. Thus, we'll have no arc
2466 			 * buffer to use for the reference. As a result, we
2467 			 * use the arc header pointer for the reference.
2468 			 */
2469 			(void) zfs_refcount_add_many(
2470 			    &new_state->arcs_size[type],
2471 			    HDR_GET_LSIZE(hdr), hdr);
2472 			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2473 			ASSERT(!HDR_HAS_RABD(hdr));
2474 		} else {
2475 
2476 			/*
2477 			 * Each individual buffer holds a unique reference,
2478 			 * thus we must remove each of these references one
2479 			 * at a time.
2480 			 */
2481 			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2482 			    buf = buf->b_next) {
2483 
2484 				/*
2485 				 * When the arc_buf_t is sharing the data
2486 				 * block with the hdr, the owner of the
2487 				 * reference belongs to the hdr. Only
2488 				 * add to the refcount if the arc_buf_t is
2489 				 * not shared.
2490 				 */
2491 				if (ARC_BUF_SHARED(buf))
2492 					continue;
2493 
2494 				(void) zfs_refcount_add_many(
2495 				    &new_state->arcs_size[type],
2496 				    arc_buf_size(buf), buf);
2497 			}
2498 
2499 			if (hdr->b_l1hdr.b_pabd != NULL) {
2500 				(void) zfs_refcount_add_many(
2501 				    &new_state->arcs_size[type],
2502 				    arc_hdr_size(hdr), hdr);
2503 			}
2504 
2505 			if (HDR_HAS_RABD(hdr)) {
2506 				(void) zfs_refcount_add_many(
2507 				    &new_state->arcs_size[type],
2508 				    HDR_GET_PSIZE(hdr), hdr);
2509 			}
2510 		}
2511 	}
2512 
2513 	if (update_old && old_state != arc_l2c_only) {
2514 		ASSERT(HDR_HAS_L1HDR(hdr));
2515 		if (GHOST_STATE(old_state)) {
2516 			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2517 			ASSERT(!HDR_HAS_RABD(hdr));
2518 
2519 			/*
2520 			 * When moving a header off of a ghost state,
2521 			 * the header will not contain any arc buffers.
2522 			 * We use the arc header pointer for the reference
2523 			 * which is exactly what we did when we put the
2524 			 * header on the ghost state.
2525 			 */
2526 
2527 			(void) zfs_refcount_remove_many(
2528 			    &old_state->arcs_size[type],
2529 			    HDR_GET_LSIZE(hdr), hdr);
2530 		} else {
2531 
2532 			/*
2533 			 * Each individual buffer holds a unique reference,
2534 			 * thus we must remove each of these references one
2535 			 * at a time.
2536 			 */
2537 			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2538 			    buf = buf->b_next) {
2539 
2540 				/*
2541 				 * When the arc_buf_t is sharing the data
2542 				 * block with the hdr, the owner of the
2543 				 * reference belongs to the hdr. Only
2544 				 * add to the refcount if the arc_buf_t is
2545 				 * not shared.
2546 				 */
2547 				if (ARC_BUF_SHARED(buf))
2548 					continue;
2549 
2550 				(void) zfs_refcount_remove_many(
2551 				    &old_state->arcs_size[type],
2552 				    arc_buf_size(buf), buf);
2553 			}
2554 			ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
2555 			    HDR_HAS_RABD(hdr));
2556 
2557 			if (hdr->b_l1hdr.b_pabd != NULL) {
2558 				(void) zfs_refcount_remove_many(
2559 				    &old_state->arcs_size[type],
2560 				    arc_hdr_size(hdr), hdr);
2561 			}
2562 
2563 			if (HDR_HAS_RABD(hdr)) {
2564 				(void) zfs_refcount_remove_many(
2565 				    &old_state->arcs_size[type],
2566 				    HDR_GET_PSIZE(hdr), hdr);
2567 			}
2568 		}
2569 	}
2570 
2571 	if (HDR_HAS_L1HDR(hdr)) {
2572 		hdr->b_l1hdr.b_state = new_state;
2573 
2574 		if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) {
2575 			l2arc_hdr_arcstats_decrement_state(hdr);
2576 			hdr->b_l2hdr.b_arcs_state = new_state->arcs_state;
2577 			l2arc_hdr_arcstats_increment_state(hdr);
2578 		}
2579 	}
2580 }
2581 
2582 void
2583 arc_space_consume(uint64_t space, arc_space_type_t type)
2584 {
2585 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2586 
2587 	switch (type) {
2588 	default:
2589 		break;
2590 	case ARC_SPACE_DATA:
2591 		ARCSTAT_INCR(arcstat_data_size, space);
2592 		break;
2593 	case ARC_SPACE_META:
2594 		ARCSTAT_INCR(arcstat_metadata_size, space);
2595 		break;
2596 	case ARC_SPACE_BONUS:
2597 		ARCSTAT_INCR(arcstat_bonus_size, space);
2598 		break;
2599 	case ARC_SPACE_DNODE:
2600 		ARCSTAT_INCR(arcstat_dnode_size, space);
2601 		break;
2602 	case ARC_SPACE_DBUF:
2603 		ARCSTAT_INCR(arcstat_dbuf_size, space);
2604 		break;
2605 	case ARC_SPACE_HDRS:
2606 		ARCSTAT_INCR(arcstat_hdr_size, space);
2607 		break;
2608 	case ARC_SPACE_L2HDRS:
2609 		aggsum_add(&arc_sums.arcstat_l2_hdr_size, space);
2610 		break;
2611 	case ARC_SPACE_ABD_CHUNK_WASTE:
2612 		/*
2613 		 * Note: this includes space wasted by all scatter ABD's, not
2614 		 * just those allocated by the ARC.  But the vast majority of
2615 		 * scatter ABD's come from the ARC, because other users are
2616 		 * very short-lived.
2617 		 */
2618 		ARCSTAT_INCR(arcstat_abd_chunk_waste_size, space);
2619 		break;
2620 	}
2621 
2622 	if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE)
2623 		ARCSTAT_INCR(arcstat_meta_used, space);
2624 
2625 	aggsum_add(&arc_sums.arcstat_size, space);
2626 }
2627 
2628 void
2629 arc_space_return(uint64_t space, arc_space_type_t type)
2630 {
2631 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2632 
2633 	switch (type) {
2634 	default:
2635 		break;
2636 	case ARC_SPACE_DATA:
2637 		ARCSTAT_INCR(arcstat_data_size, -space);
2638 		break;
2639 	case ARC_SPACE_META:
2640 		ARCSTAT_INCR(arcstat_metadata_size, -space);
2641 		break;
2642 	case ARC_SPACE_BONUS:
2643 		ARCSTAT_INCR(arcstat_bonus_size, -space);
2644 		break;
2645 	case ARC_SPACE_DNODE:
2646 		ARCSTAT_INCR(arcstat_dnode_size, -space);
2647 		break;
2648 	case ARC_SPACE_DBUF:
2649 		ARCSTAT_INCR(arcstat_dbuf_size, -space);
2650 		break;
2651 	case ARC_SPACE_HDRS:
2652 		ARCSTAT_INCR(arcstat_hdr_size, -space);
2653 		break;
2654 	case ARC_SPACE_L2HDRS:
2655 		aggsum_add(&arc_sums.arcstat_l2_hdr_size, -space);
2656 		break;
2657 	case ARC_SPACE_ABD_CHUNK_WASTE:
2658 		ARCSTAT_INCR(arcstat_abd_chunk_waste_size, -space);
2659 		break;
2660 	}
2661 
2662 	if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE)
2663 		ARCSTAT_INCR(arcstat_meta_used, -space);
2664 
2665 	ASSERT(aggsum_compare(&arc_sums.arcstat_size, space) >= 0);
2666 	aggsum_add(&arc_sums.arcstat_size, -space);
2667 }
2668 
2669 /*
2670  * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2671  * with the hdr's b_pabd.
2672  */
2673 static boolean_t
2674 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2675 {
2676 	/*
2677 	 * The criteria for sharing a hdr's data are:
2678 	 * 1. the buffer is not encrypted
2679 	 * 2. the hdr's compression matches the buf's compression
2680 	 * 3. the hdr doesn't need to be byteswapped
2681 	 * 4. the hdr isn't already being shared
2682 	 * 5. the buf is either compressed or it is the last buf in the hdr list
2683 	 *
2684 	 * Criterion #5 maintains the invariant that shared uncompressed
2685 	 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2686 	 * might ask, "if a compressed buf is allocated first, won't that be the
2687 	 * last thing in the list?", but in that case it's impossible to create
2688 	 * a shared uncompressed buf anyway (because the hdr must be compressed
2689 	 * to have the compressed buf). You might also think that #3 is
2690 	 * sufficient to make this guarantee, however it's possible
2691 	 * (specifically in the rare L2ARC write race mentioned in
2692 	 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2693 	 * is shareable, but wasn't at the time of its allocation. Rather than
2694 	 * allow a new shared uncompressed buf to be created and then shuffle
2695 	 * the list around to make it the last element, this simply disallows
2696 	 * sharing if the new buf isn't the first to be added.
2697 	 */
2698 	ASSERT3P(buf->b_hdr, ==, hdr);
2699 	boolean_t hdr_compressed =
2700 	    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF;
2701 	boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2702 	return (!ARC_BUF_ENCRYPTED(buf) &&
2703 	    buf_compressed == hdr_compressed &&
2704 	    hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2705 	    !HDR_SHARED_DATA(hdr) &&
2706 	    (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2707 }
2708 
2709 /*
2710  * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2711  * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2712  * copy was made successfully, or an error code otherwise.
2713  */
2714 static int
2715 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb,
2716     const void *tag, boolean_t encrypted, boolean_t compressed,
2717     boolean_t noauth, boolean_t fill, arc_buf_t **ret)
2718 {
2719 	arc_buf_t *buf;
2720 	arc_fill_flags_t flags = ARC_FILL_LOCKED;
2721 
2722 	ASSERT(HDR_HAS_L1HDR(hdr));
2723 	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2724 	VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2725 	    hdr->b_type == ARC_BUFC_METADATA);
2726 	ASSERT3P(ret, !=, NULL);
2727 	ASSERT3P(*ret, ==, NULL);
2728 	IMPLY(encrypted, compressed);
2729 
2730 	buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2731 	buf->b_hdr = hdr;
2732 	buf->b_data = NULL;
2733 	buf->b_next = hdr->b_l1hdr.b_buf;
2734 	buf->b_flags = 0;
2735 
2736 	add_reference(hdr, tag);
2737 
2738 	/*
2739 	 * We're about to change the hdr's b_flags. We must either
2740 	 * hold the hash_lock or be undiscoverable.
2741 	 */
2742 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2743 
2744 	/*
2745 	 * Only honor requests for compressed bufs if the hdr is actually
2746 	 * compressed. This must be overridden if the buffer is encrypted since
2747 	 * encrypted buffers cannot be decompressed.
2748 	 */
2749 	if (encrypted) {
2750 		buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2751 		buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED;
2752 		flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED;
2753 	} else if (compressed &&
2754 	    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
2755 		buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2756 		flags |= ARC_FILL_COMPRESSED;
2757 	}
2758 
2759 	if (noauth) {
2760 		ASSERT0(encrypted);
2761 		flags |= ARC_FILL_NOAUTH;
2762 	}
2763 
2764 	/*
2765 	 * If the hdr's data can be shared then we share the data buffer and
2766 	 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2767 	 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2768 	 * buffer to store the buf's data.
2769 	 *
2770 	 * There are two additional restrictions here because we're sharing
2771 	 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2772 	 * actively involved in an L2ARC write, because if this buf is used by
2773 	 * an arc_write() then the hdr's data buffer will be released when the
2774 	 * write completes, even though the L2ARC write might still be using it.
2775 	 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2776 	 * need to be ABD-aware.  It must be allocated via
2777 	 * zio_[data_]buf_alloc(), not as a page, because we need to be able
2778 	 * to abd_release_ownership_of_buf(), which isn't allowed on "linear
2779 	 * page" buffers because the ABD code needs to handle freeing them
2780 	 * specially.
2781 	 */
2782 	boolean_t can_share = arc_can_share(hdr, buf) &&
2783 	    !HDR_L2_WRITING(hdr) &&
2784 	    hdr->b_l1hdr.b_pabd != NULL &&
2785 	    abd_is_linear(hdr->b_l1hdr.b_pabd) &&
2786 	    !abd_is_linear_page(hdr->b_l1hdr.b_pabd);
2787 
2788 	/* Set up b_data and sharing */
2789 	if (can_share) {
2790 		buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2791 		buf->b_flags |= ARC_BUF_FLAG_SHARED;
2792 		arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2793 	} else {
2794 		buf->b_data =
2795 		    arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2796 		ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2797 	}
2798 	VERIFY3P(buf->b_data, !=, NULL);
2799 
2800 	hdr->b_l1hdr.b_buf = buf;
2801 
2802 	/*
2803 	 * If the user wants the data from the hdr, we need to either copy or
2804 	 * decompress the data.
2805 	 */
2806 	if (fill) {
2807 		ASSERT3P(zb, !=, NULL);
2808 		return (arc_buf_fill(buf, spa, zb, flags));
2809 	}
2810 
2811 	return (0);
2812 }
2813 
2814 static const char *arc_onloan_tag = "onloan";
2815 
2816 static inline void
2817 arc_loaned_bytes_update(int64_t delta)
2818 {
2819 	atomic_add_64(&arc_loaned_bytes, delta);
2820 
2821 	/* assert that it did not wrap around */
2822 	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2823 }
2824 
2825 /*
2826  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2827  * flight data by arc_tempreserve_space() until they are "returned". Loaned
2828  * buffers must be returned to the arc before they can be used by the DMU or
2829  * freed.
2830  */
2831 arc_buf_t *
2832 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2833 {
2834 	arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2835 	    is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2836 
2837 	arc_loaned_bytes_update(arc_buf_size(buf));
2838 
2839 	return (buf);
2840 }
2841 
2842 arc_buf_t *
2843 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2844     enum zio_compress compression_type, uint8_t complevel)
2845 {
2846 	arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2847 	    psize, lsize, compression_type, complevel);
2848 
2849 	arc_loaned_bytes_update(arc_buf_size(buf));
2850 
2851 	return (buf);
2852 }
2853 
2854 arc_buf_t *
2855 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder,
2856     const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
2857     dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
2858     enum zio_compress compression_type, uint8_t complevel)
2859 {
2860 	arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj,
2861 	    byteorder, salt, iv, mac, ot, psize, lsize, compression_type,
2862 	    complevel);
2863 
2864 	atomic_add_64(&arc_loaned_bytes, psize);
2865 	return (buf);
2866 }
2867 
2868 
2869 /*
2870  * Return a loaned arc buffer to the arc.
2871  */
2872 void
2873 arc_return_buf(arc_buf_t *buf, const void *tag)
2874 {
2875 	arc_buf_hdr_t *hdr = buf->b_hdr;
2876 
2877 	ASSERT3P(buf->b_data, !=, NULL);
2878 	ASSERT(HDR_HAS_L1HDR(hdr));
2879 	(void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2880 	(void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2881 
2882 	arc_loaned_bytes_update(-arc_buf_size(buf));
2883 }
2884 
2885 /* Detach an arc_buf from a dbuf (tag) */
2886 void
2887 arc_loan_inuse_buf(arc_buf_t *buf, const void *tag)
2888 {
2889 	arc_buf_hdr_t *hdr = buf->b_hdr;
2890 
2891 	ASSERT3P(buf->b_data, !=, NULL);
2892 	ASSERT(HDR_HAS_L1HDR(hdr));
2893 	(void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2894 	(void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2895 
2896 	arc_loaned_bytes_update(arc_buf_size(buf));
2897 }
2898 
2899 static void
2900 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2901 {
2902 	l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2903 
2904 	df->l2df_abd = abd;
2905 	df->l2df_size = size;
2906 	df->l2df_type = type;
2907 	mutex_enter(&l2arc_free_on_write_mtx);
2908 	list_insert_head(l2arc_free_on_write, df);
2909 	mutex_exit(&l2arc_free_on_write_mtx);
2910 }
2911 
2912 static void
2913 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata)
2914 {
2915 	arc_state_t *state = hdr->b_l1hdr.b_state;
2916 	arc_buf_contents_t type = arc_buf_type(hdr);
2917 	uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
2918 
2919 	/* protected by hash lock, if in the hash table */
2920 	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2921 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2922 		ASSERT(state != arc_anon && state != arc_l2c_only);
2923 
2924 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2925 		    size, hdr);
2926 	}
2927 	(void) zfs_refcount_remove_many(&state->arcs_size[type], size, hdr);
2928 	if (type == ARC_BUFC_METADATA) {
2929 		arc_space_return(size, ARC_SPACE_META);
2930 	} else {
2931 		ASSERT(type == ARC_BUFC_DATA);
2932 		arc_space_return(size, ARC_SPACE_DATA);
2933 	}
2934 
2935 	if (free_rdata) {
2936 		l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type);
2937 	} else {
2938 		l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2939 	}
2940 }
2941 
2942 /*
2943  * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2944  * data buffer, we transfer the refcount ownership to the hdr and update
2945  * the appropriate kstats.
2946  */
2947 static void
2948 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2949 {
2950 	ASSERT(arc_can_share(hdr, buf));
2951 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2952 	ASSERT(!ARC_BUF_ENCRYPTED(buf));
2953 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2954 
2955 	/*
2956 	 * Start sharing the data buffer. We transfer the
2957 	 * refcount ownership to the hdr since it always owns
2958 	 * the refcount whenever an arc_buf_t is shared.
2959 	 */
2960 	zfs_refcount_transfer_ownership_many(
2961 	    &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)],
2962 	    arc_hdr_size(hdr), buf, hdr);
2963 	hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2964 	abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2965 	    HDR_ISTYPE_METADATA(hdr));
2966 	arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2967 	buf->b_flags |= ARC_BUF_FLAG_SHARED;
2968 
2969 	/*
2970 	 * Since we've transferred ownership to the hdr we need
2971 	 * to increment its compressed and uncompressed kstats and
2972 	 * decrement the overhead size.
2973 	 */
2974 	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2975 	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2976 	ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
2977 }
2978 
2979 static void
2980 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2981 {
2982 	ASSERT(arc_buf_is_shared(buf));
2983 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2984 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2985 
2986 	/*
2987 	 * We are no longer sharing this buffer so we need
2988 	 * to transfer its ownership to the rightful owner.
2989 	 */
2990 	zfs_refcount_transfer_ownership_many(
2991 	    &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)],
2992 	    arc_hdr_size(hdr), hdr, buf);
2993 	arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2994 	abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
2995 	abd_free(hdr->b_l1hdr.b_pabd);
2996 	hdr->b_l1hdr.b_pabd = NULL;
2997 	buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2998 
2999 	/*
3000 	 * Since the buffer is no longer shared between
3001 	 * the arc buf and the hdr, count it as overhead.
3002 	 */
3003 	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3004 	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3005 	ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
3006 }
3007 
3008 /*
3009  * Remove an arc_buf_t from the hdr's buf list and return the last
3010  * arc_buf_t on the list. If no buffers remain on the list then return
3011  * NULL.
3012  */
3013 static arc_buf_t *
3014 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3015 {
3016 	ASSERT(HDR_HAS_L1HDR(hdr));
3017 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3018 
3019 	arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
3020 	arc_buf_t *lastbuf = NULL;
3021 
3022 	/*
3023 	 * Remove the buf from the hdr list and locate the last
3024 	 * remaining buffer on the list.
3025 	 */
3026 	while (*bufp != NULL) {
3027 		if (*bufp == buf)
3028 			*bufp = buf->b_next;
3029 
3030 		/*
3031 		 * If we've removed a buffer in the middle of
3032 		 * the list then update the lastbuf and update
3033 		 * bufp.
3034 		 */
3035 		if (*bufp != NULL) {
3036 			lastbuf = *bufp;
3037 			bufp = &(*bufp)->b_next;
3038 		}
3039 	}
3040 	buf->b_next = NULL;
3041 	ASSERT3P(lastbuf, !=, buf);
3042 	IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
3043 
3044 	return (lastbuf);
3045 }
3046 
3047 /*
3048  * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's
3049  * list and free it.
3050  */
3051 static void
3052 arc_buf_destroy_impl(arc_buf_t *buf)
3053 {
3054 	arc_buf_hdr_t *hdr = buf->b_hdr;
3055 
3056 	/*
3057 	 * Free up the data associated with the buf but only if we're not
3058 	 * sharing this with the hdr. If we are sharing it with the hdr, the
3059 	 * hdr is responsible for doing the free.
3060 	 */
3061 	if (buf->b_data != NULL) {
3062 		/*
3063 		 * We're about to change the hdr's b_flags. We must either
3064 		 * hold the hash_lock or be undiscoverable.
3065 		 */
3066 		ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3067 
3068 		arc_cksum_verify(buf);
3069 		arc_buf_unwatch(buf);
3070 
3071 		if (ARC_BUF_SHARED(buf)) {
3072 			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3073 		} else {
3074 			ASSERT(!arc_buf_is_shared(buf));
3075 			uint64_t size = arc_buf_size(buf);
3076 			arc_free_data_buf(hdr, buf->b_data, size, buf);
3077 			ARCSTAT_INCR(arcstat_overhead_size, -size);
3078 		}
3079 		buf->b_data = NULL;
3080 
3081 		/*
3082 		 * If we have no more encrypted buffers and we've already
3083 		 * gotten a copy of the decrypted data we can free b_rabd
3084 		 * to save some space.
3085 		 */
3086 		if (ARC_BUF_ENCRYPTED(buf) && HDR_HAS_RABD(hdr) &&
3087 		    hdr->b_l1hdr.b_pabd != NULL && !HDR_IO_IN_PROGRESS(hdr)) {
3088 			arc_buf_t *b;
3089 			for (b = hdr->b_l1hdr.b_buf; b; b = b->b_next) {
3090 				if (b != buf && ARC_BUF_ENCRYPTED(b))
3091 					break;
3092 			}
3093 			if (b == NULL)
3094 				arc_hdr_free_abd(hdr, B_TRUE);
3095 		}
3096 	}
3097 
3098 	arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
3099 
3100 	if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
3101 		/*
3102 		 * If the current arc_buf_t is sharing its data buffer with the
3103 		 * hdr, then reassign the hdr's b_pabd to share it with the new
3104 		 * buffer at the end of the list. The shared buffer is always
3105 		 * the last one on the hdr's buffer list.
3106 		 *
3107 		 * There is an equivalent case for compressed bufs, but since
3108 		 * they aren't guaranteed to be the last buf in the list and
3109 		 * that is an exceedingly rare case, we just allow that space be
3110 		 * wasted temporarily. We must also be careful not to share
3111 		 * encrypted buffers, since they cannot be shared.
3112 		 */
3113 		if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) {
3114 			/* Only one buf can be shared at once */
3115 			ASSERT(!arc_buf_is_shared(lastbuf));
3116 			/* hdr is uncompressed so can't have compressed buf */
3117 			ASSERT(!ARC_BUF_COMPRESSED(lastbuf));
3118 
3119 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3120 			arc_hdr_free_abd(hdr, B_FALSE);
3121 
3122 			/*
3123 			 * We must setup a new shared block between the
3124 			 * last buffer and the hdr. The data would have
3125 			 * been allocated by the arc buf so we need to transfer
3126 			 * ownership to the hdr since it's now being shared.
3127 			 */
3128 			arc_share_buf(hdr, lastbuf);
3129 		}
3130 	} else if (HDR_SHARED_DATA(hdr)) {
3131 		/*
3132 		 * Uncompressed shared buffers are always at the end
3133 		 * of the list. Compressed buffers don't have the
3134 		 * same requirements. This makes it hard to
3135 		 * simply assert that the lastbuf is shared so
3136 		 * we rely on the hdr's compression flags to determine
3137 		 * if we have a compressed, shared buffer.
3138 		 */
3139 		ASSERT3P(lastbuf, !=, NULL);
3140 		ASSERT(arc_buf_is_shared(lastbuf) ||
3141 		    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
3142 	}
3143 
3144 	/*
3145 	 * Free the checksum if we're removing the last uncompressed buf from
3146 	 * this hdr.
3147 	 */
3148 	if (!arc_hdr_has_uncompressed_buf(hdr)) {
3149 		arc_cksum_free(hdr);
3150 	}
3151 
3152 	/* clean up the buf */
3153 	buf->b_hdr = NULL;
3154 	kmem_cache_free(buf_cache, buf);
3155 }
3156 
3157 static void
3158 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags)
3159 {
3160 	uint64_t size;
3161 	boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0);
3162 
3163 	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3164 	ASSERT(HDR_HAS_L1HDR(hdr));
3165 	ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata);
3166 	IMPLY(alloc_rdata, HDR_PROTECTED(hdr));
3167 
3168 	if (alloc_rdata) {
3169 		size = HDR_GET_PSIZE(hdr);
3170 		ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL);
3171 		hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr,
3172 		    alloc_flags);
3173 		ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL);
3174 		ARCSTAT_INCR(arcstat_raw_size, size);
3175 	} else {
3176 		size = arc_hdr_size(hdr);
3177 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3178 		hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr,
3179 		    alloc_flags);
3180 		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3181 	}
3182 
3183 	ARCSTAT_INCR(arcstat_compressed_size, size);
3184 	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3185 }
3186 
3187 static void
3188 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata)
3189 {
3190 	uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
3191 
3192 	ASSERT(HDR_HAS_L1HDR(hdr));
3193 	ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
3194 	IMPLY(free_rdata, HDR_HAS_RABD(hdr));
3195 
3196 	/*
3197 	 * If the hdr is currently being written to the l2arc then
3198 	 * we defer freeing the data by adding it to the l2arc_free_on_write
3199 	 * list. The l2arc will free the data once it's finished
3200 	 * writing it to the l2arc device.
3201 	 */
3202 	if (HDR_L2_WRITING(hdr)) {
3203 		arc_hdr_free_on_write(hdr, free_rdata);
3204 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
3205 	} else if (free_rdata) {
3206 		arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr);
3207 	} else {
3208 		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr);
3209 	}
3210 
3211 	if (free_rdata) {
3212 		hdr->b_crypt_hdr.b_rabd = NULL;
3213 		ARCSTAT_INCR(arcstat_raw_size, -size);
3214 	} else {
3215 		hdr->b_l1hdr.b_pabd = NULL;
3216 	}
3217 
3218 	if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr))
3219 		hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3220 
3221 	ARCSTAT_INCR(arcstat_compressed_size, -size);
3222 	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3223 }
3224 
3225 /*
3226  * Allocate empty anonymous ARC header.  The header will get its identity
3227  * assigned and buffers attached later as part of read or write operations.
3228  *
3229  * In case of read arc_read() assigns header its identify (b_dva + b_birth),
3230  * inserts it into ARC hash to become globally visible and allocates physical
3231  * (b_pabd) or raw (b_rabd) ABD buffer to read into from disk.  On disk read
3232  * completion arc_read_done() allocates ARC buffer(s) as needed, potentially
3233  * sharing one of them with the physical ABD buffer.
3234  *
3235  * In case of write arc_alloc_buf() allocates ARC buffer to be filled with
3236  * data.  Then after compression and/or encryption arc_write_ready() allocates
3237  * and fills (or potentially shares) physical (b_pabd) or raw (b_rabd) ABD
3238  * buffer.  On disk write completion arc_write_done() assigns the header its
3239  * new identity (b_dva + b_birth) and inserts into ARC hash.
3240  *
3241  * In case of partial overwrite the old data is read first as described. Then
3242  * arc_release() either allocates new anonymous ARC header and moves the ARC
3243  * buffer to it, or reuses the old ARC header by discarding its identity and
3244  * removing it from ARC hash.  After buffer modification normal write process
3245  * follows as described.
3246  */
3247 static arc_buf_hdr_t *
3248 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
3249     boolean_t protected, enum zio_compress compression_type, uint8_t complevel,
3250     arc_buf_contents_t type)
3251 {
3252 	arc_buf_hdr_t *hdr;
3253 
3254 	VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
3255 	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3256 
3257 	ASSERT(HDR_EMPTY(hdr));
3258 #ifdef ZFS_DEBUG
3259 	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3260 #endif
3261 	HDR_SET_PSIZE(hdr, psize);
3262 	HDR_SET_LSIZE(hdr, lsize);
3263 	hdr->b_spa = spa;
3264 	hdr->b_type = type;
3265 	hdr->b_flags = 0;
3266 	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
3267 	arc_hdr_set_compress(hdr, compression_type);
3268 	hdr->b_complevel = complevel;
3269 	if (protected)
3270 		arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3271 
3272 	hdr->b_l1hdr.b_state = arc_anon;
3273 	hdr->b_l1hdr.b_arc_access = 0;
3274 	hdr->b_l1hdr.b_mru_hits = 0;
3275 	hdr->b_l1hdr.b_mru_ghost_hits = 0;
3276 	hdr->b_l1hdr.b_mfu_hits = 0;
3277 	hdr->b_l1hdr.b_mfu_ghost_hits = 0;
3278 	hdr->b_l1hdr.b_buf = NULL;
3279 
3280 	ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3281 
3282 	return (hdr);
3283 }
3284 
3285 /*
3286  * Transition between the two allocation states for the arc_buf_hdr struct.
3287  * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3288  * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3289  * version is used when a cache buffer is only in the L2ARC in order to reduce
3290  * memory usage.
3291  */
3292 static arc_buf_hdr_t *
3293 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
3294 {
3295 	ASSERT(HDR_HAS_L2HDR(hdr));
3296 
3297 	arc_buf_hdr_t *nhdr;
3298 	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3299 
3300 	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3301 	    (old == hdr_l2only_cache && new == hdr_full_cache));
3302 
3303 	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
3304 
3305 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3306 	buf_hash_remove(hdr);
3307 
3308 	memcpy(nhdr, hdr, HDR_L2ONLY_SIZE);
3309 
3310 	if (new == hdr_full_cache) {
3311 		arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3312 		/*
3313 		 * arc_access and arc_change_state need to be aware that a
3314 		 * header has just come out of L2ARC, so we set its state to
3315 		 * l2c_only even though it's about to change.
3316 		 */
3317 		nhdr->b_l1hdr.b_state = arc_l2c_only;
3318 
3319 		/* Verify previous threads set to NULL before freeing */
3320 		ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
3321 		ASSERT(!HDR_HAS_RABD(hdr));
3322 	} else {
3323 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3324 #ifdef ZFS_DEBUG
3325 		ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3326 #endif
3327 
3328 		/*
3329 		 * If we've reached here, We must have been called from
3330 		 * arc_evict_hdr(), as such we should have already been
3331 		 * removed from any ghost list we were previously on
3332 		 * (which protects us from racing with arc_evict_state),
3333 		 * thus no locking is needed during this check.
3334 		 */
3335 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3336 
3337 		/*
3338 		 * A buffer must not be moved into the arc_l2c_only
3339 		 * state if it's not finished being written out to the
3340 		 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3341 		 * might try to be accessed, even though it was removed.
3342 		 */
3343 		VERIFY(!HDR_L2_WRITING(hdr));
3344 		VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3345 		ASSERT(!HDR_HAS_RABD(hdr));
3346 
3347 		arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3348 	}
3349 	/*
3350 	 * The header has been reallocated so we need to re-insert it into any
3351 	 * lists it was on.
3352 	 */
3353 	(void) buf_hash_insert(nhdr, NULL);
3354 
3355 	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3356 
3357 	mutex_enter(&dev->l2ad_mtx);
3358 
3359 	/*
3360 	 * We must place the realloc'ed header back into the list at
3361 	 * the same spot. Otherwise, if it's placed earlier in the list,
3362 	 * l2arc_write_buffers() could find it during the function's
3363 	 * write phase, and try to write it out to the l2arc.
3364 	 */
3365 	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3366 	list_remove(&dev->l2ad_buflist, hdr);
3367 
3368 	mutex_exit(&dev->l2ad_mtx);
3369 
3370 	/*
3371 	 * Since we're using the pointer address as the tag when
3372 	 * incrementing and decrementing the l2ad_alloc refcount, we
3373 	 * must remove the old pointer (that we're about to destroy) and
3374 	 * add the new pointer to the refcount. Otherwise we'd remove
3375 	 * the wrong pointer address when calling arc_hdr_destroy() later.
3376 	 */
3377 
3378 	(void) zfs_refcount_remove_many(&dev->l2ad_alloc,
3379 	    arc_hdr_size(hdr), hdr);
3380 	(void) zfs_refcount_add_many(&dev->l2ad_alloc,
3381 	    arc_hdr_size(nhdr), nhdr);
3382 
3383 	buf_discard_identity(hdr);
3384 	kmem_cache_free(old, hdr);
3385 
3386 	return (nhdr);
3387 }
3388 
3389 /*
3390  * This function is used by the send / receive code to convert a newly
3391  * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3392  * is also used to allow the root objset block to be updated without altering
3393  * its embedded MACs. Both block types will always be uncompressed so we do not
3394  * have to worry about compression type or psize.
3395  */
3396 void
3397 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder,
3398     dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv,
3399     const uint8_t *mac)
3400 {
3401 	arc_buf_hdr_t *hdr = buf->b_hdr;
3402 
3403 	ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET);
3404 	ASSERT(HDR_HAS_L1HDR(hdr));
3405 	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3406 
3407 	buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED);
3408 	arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3409 	hdr->b_crypt_hdr.b_dsobj = dsobj;
3410 	hdr->b_crypt_hdr.b_ot = ot;
3411 	hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3412 	    DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3413 	if (!arc_hdr_has_uncompressed_buf(hdr))
3414 		arc_cksum_free(hdr);
3415 
3416 	if (salt != NULL)
3417 		memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
3418 	if (iv != NULL)
3419 		memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
3420 	if (mac != NULL)
3421 		memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
3422 }
3423 
3424 /*
3425  * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3426  * The buf is returned thawed since we expect the consumer to modify it.
3427  */
3428 arc_buf_t *
3429 arc_alloc_buf(spa_t *spa, const void *tag, arc_buf_contents_t type,
3430     int32_t size)
3431 {
3432 	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3433 	    B_FALSE, ZIO_COMPRESS_OFF, 0, type);
3434 
3435 	arc_buf_t *buf = NULL;
3436 	VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE,
3437 	    B_FALSE, B_FALSE, &buf));
3438 	arc_buf_thaw(buf);
3439 
3440 	return (buf);
3441 }
3442 
3443 /*
3444  * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3445  * for bufs containing metadata.
3446  */
3447 arc_buf_t *
3448 arc_alloc_compressed_buf(spa_t *spa, const void *tag, uint64_t psize,
3449     uint64_t lsize, enum zio_compress compression_type, uint8_t complevel)
3450 {
3451 	ASSERT3U(lsize, >, 0);
3452 	ASSERT3U(lsize, >=, psize);
3453 	ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF);
3454 	ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3455 
3456 	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3457 	    B_FALSE, compression_type, complevel, ARC_BUFC_DATA);
3458 
3459 	arc_buf_t *buf = NULL;
3460 	VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE,
3461 	    B_TRUE, B_FALSE, B_FALSE, &buf));
3462 	arc_buf_thaw(buf);
3463 
3464 	/*
3465 	 * To ensure that the hdr has the correct data in it if we call
3466 	 * arc_untransform() on this buf before it's been written to disk,
3467 	 * it's easiest if we just set up sharing between the buf and the hdr.
3468 	 */
3469 	arc_share_buf(hdr, buf);
3470 
3471 	return (buf);
3472 }
3473 
3474 arc_buf_t *
3475 arc_alloc_raw_buf(spa_t *spa, const void *tag, uint64_t dsobj,
3476     boolean_t byteorder, const uint8_t *salt, const uint8_t *iv,
3477     const uint8_t *mac, dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
3478     enum zio_compress compression_type, uint8_t complevel)
3479 {
3480 	arc_buf_hdr_t *hdr;
3481 	arc_buf_t *buf;
3482 	arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ?
3483 	    ARC_BUFC_METADATA : ARC_BUFC_DATA;
3484 
3485 	ASSERT3U(lsize, >, 0);
3486 	ASSERT3U(lsize, >=, psize);
3487 	ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF);
3488 	ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3489 
3490 	hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE,
3491 	    compression_type, complevel, type);
3492 
3493 	hdr->b_crypt_hdr.b_dsobj = dsobj;
3494 	hdr->b_crypt_hdr.b_ot = ot;
3495 	hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3496 	    DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3497 	memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
3498 	memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
3499 	memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
3500 
3501 	/*
3502 	 * This buffer will be considered encrypted even if the ot is not an
3503 	 * encrypted type. It will become authenticated instead in
3504 	 * arc_write_ready().
3505 	 */
3506 	buf = NULL;
3507 	VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE,
3508 	    B_FALSE, B_FALSE, &buf));
3509 	arc_buf_thaw(buf);
3510 
3511 	return (buf);
3512 }
3513 
3514 static void
3515 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
3516     boolean_t state_only)
3517 {
3518 	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3519 	l2arc_dev_t *dev = l2hdr->b_dev;
3520 	uint64_t lsize = HDR_GET_LSIZE(hdr);
3521 	uint64_t psize = HDR_GET_PSIZE(hdr);
3522 	uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
3523 	arc_buf_contents_t type = hdr->b_type;
3524 	int64_t lsize_s;
3525 	int64_t psize_s;
3526 	int64_t asize_s;
3527 
3528 	if (incr) {
3529 		lsize_s = lsize;
3530 		psize_s = psize;
3531 		asize_s = asize;
3532 	} else {
3533 		lsize_s = -lsize;
3534 		psize_s = -psize;
3535 		asize_s = -asize;
3536 	}
3537 
3538 	/* If the buffer is a prefetch, count it as such. */
3539 	if (HDR_PREFETCH(hdr)) {
3540 		ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s);
3541 	} else {
3542 		/*
3543 		 * We use the value stored in the L2 header upon initial
3544 		 * caching in L2ARC. This value will be updated in case
3545 		 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC
3546 		 * metadata (log entry) cannot currently be updated. Having
3547 		 * the ARC state in the L2 header solves the problem of a
3548 		 * possibly absent L1 header (apparent in buffers restored
3549 		 * from persistent L2ARC).
3550 		 */
3551 		switch (hdr->b_l2hdr.b_arcs_state) {
3552 			case ARC_STATE_MRU_GHOST:
3553 			case ARC_STATE_MRU:
3554 				ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s);
3555 				break;
3556 			case ARC_STATE_MFU_GHOST:
3557 			case ARC_STATE_MFU:
3558 				ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s);
3559 				break;
3560 			default:
3561 				break;
3562 		}
3563 	}
3564 
3565 	if (state_only)
3566 		return;
3567 
3568 	ARCSTAT_INCR(arcstat_l2_psize, psize_s);
3569 	ARCSTAT_INCR(arcstat_l2_lsize, lsize_s);
3570 
3571 	switch (type) {
3572 		case ARC_BUFC_DATA:
3573 			ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s);
3574 			break;
3575 		case ARC_BUFC_METADATA:
3576 			ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s);
3577 			break;
3578 		default:
3579 			break;
3580 	}
3581 }
3582 
3583 
3584 static void
3585 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3586 {
3587 	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3588 	l2arc_dev_t *dev = l2hdr->b_dev;
3589 	uint64_t psize = HDR_GET_PSIZE(hdr);
3590 	uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
3591 
3592 	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3593 	ASSERT(HDR_HAS_L2HDR(hdr));
3594 
3595 	list_remove(&dev->l2ad_buflist, hdr);
3596 
3597 	l2arc_hdr_arcstats_decrement(hdr);
3598 	vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
3599 
3600 	(void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3601 	    hdr);
3602 	arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3603 }
3604 
3605 static void
3606 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3607 {
3608 	if (HDR_HAS_L1HDR(hdr)) {
3609 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3610 		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3611 	}
3612 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3613 	ASSERT(!HDR_IN_HASH_TABLE(hdr));
3614 
3615 	if (HDR_HAS_L2HDR(hdr)) {
3616 		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3617 		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3618 
3619 		if (!buflist_held)
3620 			mutex_enter(&dev->l2ad_mtx);
3621 
3622 		/*
3623 		 * Even though we checked this conditional above, we
3624 		 * need to check this again now that we have the
3625 		 * l2ad_mtx. This is because we could be racing with
3626 		 * another thread calling l2arc_evict() which might have
3627 		 * destroyed this header's L2 portion as we were waiting
3628 		 * to acquire the l2ad_mtx. If that happens, we don't
3629 		 * want to re-destroy the header's L2 portion.
3630 		 */
3631 		if (HDR_HAS_L2HDR(hdr)) {
3632 
3633 			if (!HDR_EMPTY(hdr))
3634 				buf_discard_identity(hdr);
3635 
3636 			arc_hdr_l2hdr_destroy(hdr);
3637 		}
3638 
3639 		if (!buflist_held)
3640 			mutex_exit(&dev->l2ad_mtx);
3641 	}
3642 
3643 	/*
3644 	 * The header's identify can only be safely discarded once it is no
3645 	 * longer discoverable.  This requires removing it from the hash table
3646 	 * and the l2arc header list.  After this point the hash lock can not
3647 	 * be used to protect the header.
3648 	 */
3649 	if (!HDR_EMPTY(hdr))
3650 		buf_discard_identity(hdr);
3651 
3652 	if (HDR_HAS_L1HDR(hdr)) {
3653 		arc_cksum_free(hdr);
3654 
3655 		while (hdr->b_l1hdr.b_buf != NULL)
3656 			arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3657 
3658 		if (hdr->b_l1hdr.b_pabd != NULL)
3659 			arc_hdr_free_abd(hdr, B_FALSE);
3660 
3661 		if (HDR_HAS_RABD(hdr))
3662 			arc_hdr_free_abd(hdr, B_TRUE);
3663 	}
3664 
3665 	ASSERT3P(hdr->b_hash_next, ==, NULL);
3666 	if (HDR_HAS_L1HDR(hdr)) {
3667 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3668 		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3669 #ifdef ZFS_DEBUG
3670 		ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3671 #endif
3672 		kmem_cache_free(hdr_full_cache, hdr);
3673 	} else {
3674 		kmem_cache_free(hdr_l2only_cache, hdr);
3675 	}
3676 }
3677 
3678 void
3679 arc_buf_destroy(arc_buf_t *buf, const void *tag)
3680 {
3681 	arc_buf_hdr_t *hdr = buf->b_hdr;
3682 
3683 	if (hdr->b_l1hdr.b_state == arc_anon) {
3684 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
3685 		ASSERT(ARC_BUF_LAST(buf));
3686 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3687 		VERIFY0(remove_reference(hdr, tag));
3688 		return;
3689 	}
3690 
3691 	kmutex_t *hash_lock = HDR_LOCK(hdr);
3692 	mutex_enter(hash_lock);
3693 
3694 	ASSERT3P(hdr, ==, buf->b_hdr);
3695 	ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
3696 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3697 	ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3698 	ASSERT3P(buf->b_data, !=, NULL);
3699 
3700 	arc_buf_destroy_impl(buf);
3701 	(void) remove_reference(hdr, tag);
3702 	mutex_exit(hash_lock);
3703 }
3704 
3705 /*
3706  * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3707  * state of the header is dependent on its state prior to entering this
3708  * function. The following transitions are possible:
3709  *
3710  *    - arc_mru -> arc_mru_ghost
3711  *    - arc_mfu -> arc_mfu_ghost
3712  *    - arc_mru_ghost -> arc_l2c_only
3713  *    - arc_mru_ghost -> deleted
3714  *    - arc_mfu_ghost -> arc_l2c_only
3715  *    - arc_mfu_ghost -> deleted
3716  *    - arc_uncached -> deleted
3717  *
3718  * Return total size of evicted data buffers for eviction progress tracking.
3719  * When evicting from ghost states return logical buffer size to make eviction
3720  * progress at the same (or at least comparable) rate as from non-ghost states.
3721  *
3722  * Return *real_evicted for actual ARC size reduction to wake up threads
3723  * waiting for it.  For non-ghost states it includes size of evicted data
3724  * buffers (the headers are not freed there).  For ghost states it includes
3725  * only the evicted headers size.
3726  */
3727 static int64_t
3728 arc_evict_hdr(arc_buf_hdr_t *hdr, uint64_t *real_evicted)
3729 {
3730 	arc_state_t *evicted_state, *state;
3731 	int64_t bytes_evicted = 0;
3732 	uint_t min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
3733 	    arc_min_prescient_prefetch_ms : arc_min_prefetch_ms;
3734 
3735 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3736 	ASSERT(HDR_HAS_L1HDR(hdr));
3737 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3738 	ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3739 	ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3740 
3741 	*real_evicted = 0;
3742 	state = hdr->b_l1hdr.b_state;
3743 	if (GHOST_STATE(state)) {
3744 
3745 		/*
3746 		 * l2arc_write_buffers() relies on a header's L1 portion
3747 		 * (i.e. its b_pabd field) during it's write phase.
3748 		 * Thus, we cannot push a header onto the arc_l2c_only
3749 		 * state (removing its L1 piece) until the header is
3750 		 * done being written to the l2arc.
3751 		 */
3752 		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3753 			ARCSTAT_BUMP(arcstat_evict_l2_skip);
3754 			return (bytes_evicted);
3755 		}
3756 
3757 		ARCSTAT_BUMP(arcstat_deleted);
3758 		bytes_evicted += HDR_GET_LSIZE(hdr);
3759 
3760 		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3761 
3762 		if (HDR_HAS_L2HDR(hdr)) {
3763 			ASSERT(hdr->b_l1hdr.b_pabd == NULL);
3764 			ASSERT(!HDR_HAS_RABD(hdr));
3765 			/*
3766 			 * This buffer is cached on the 2nd Level ARC;
3767 			 * don't destroy the header.
3768 			 */
3769 			arc_change_state(arc_l2c_only, hdr);
3770 			/*
3771 			 * dropping from L1+L2 cached to L2-only,
3772 			 * realloc to remove the L1 header.
3773 			 */
3774 			(void) arc_hdr_realloc(hdr, hdr_full_cache,
3775 			    hdr_l2only_cache);
3776 			*real_evicted += HDR_FULL_SIZE - HDR_L2ONLY_SIZE;
3777 		} else {
3778 			arc_change_state(arc_anon, hdr);
3779 			arc_hdr_destroy(hdr);
3780 			*real_evicted += HDR_FULL_SIZE;
3781 		}
3782 		return (bytes_evicted);
3783 	}
3784 
3785 	ASSERT(state == arc_mru || state == arc_mfu || state == arc_uncached);
3786 	evicted_state = (state == arc_uncached) ? arc_anon :
3787 	    ((state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost);
3788 
3789 	/* prefetch buffers have a minimum lifespan */
3790 	if ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3791 	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3792 	    MSEC_TO_TICK(min_lifetime)) {
3793 		ARCSTAT_BUMP(arcstat_evict_skip);
3794 		return (bytes_evicted);
3795 	}
3796 
3797 	if (HDR_HAS_L2HDR(hdr)) {
3798 		ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3799 	} else {
3800 		if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3801 			ARCSTAT_INCR(arcstat_evict_l2_eligible,
3802 			    HDR_GET_LSIZE(hdr));
3803 
3804 			switch (state->arcs_state) {
3805 				case ARC_STATE_MRU:
3806 					ARCSTAT_INCR(
3807 					    arcstat_evict_l2_eligible_mru,
3808 					    HDR_GET_LSIZE(hdr));
3809 					break;
3810 				case ARC_STATE_MFU:
3811 					ARCSTAT_INCR(
3812 					    arcstat_evict_l2_eligible_mfu,
3813 					    HDR_GET_LSIZE(hdr));
3814 					break;
3815 				default:
3816 					break;
3817 			}
3818 		} else {
3819 			ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3820 			    HDR_GET_LSIZE(hdr));
3821 		}
3822 	}
3823 
3824 	bytes_evicted += arc_hdr_size(hdr);
3825 	*real_evicted += arc_hdr_size(hdr);
3826 
3827 	/*
3828 	 * If this hdr is being evicted and has a compressed buffer then we
3829 	 * discard it here before we change states.  This ensures that the
3830 	 * accounting is updated correctly in arc_free_data_impl().
3831 	 */
3832 	if (hdr->b_l1hdr.b_pabd != NULL)
3833 		arc_hdr_free_abd(hdr, B_FALSE);
3834 
3835 	if (HDR_HAS_RABD(hdr))
3836 		arc_hdr_free_abd(hdr, B_TRUE);
3837 
3838 	arc_change_state(evicted_state, hdr);
3839 	DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3840 	if (evicted_state == arc_anon) {
3841 		arc_hdr_destroy(hdr);
3842 		*real_evicted += HDR_FULL_SIZE;
3843 	} else {
3844 		ASSERT(HDR_IN_HASH_TABLE(hdr));
3845 	}
3846 
3847 	return (bytes_evicted);
3848 }
3849 
3850 static void
3851 arc_set_need_free(void)
3852 {
3853 	ASSERT(MUTEX_HELD(&arc_evict_lock));
3854 	int64_t remaining = arc_free_memory() - arc_sys_free / 2;
3855 	arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters);
3856 	if (aw == NULL) {
3857 		arc_need_free = MAX(-remaining, 0);
3858 	} else {
3859 		arc_need_free =
3860 		    MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count));
3861 	}
3862 }
3863 
3864 static uint64_t
3865 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3866     uint64_t spa, uint64_t bytes)
3867 {
3868 	multilist_sublist_t *mls;
3869 	uint64_t bytes_evicted = 0, real_evicted = 0;
3870 	arc_buf_hdr_t *hdr;
3871 	kmutex_t *hash_lock;
3872 	uint_t evict_count = zfs_arc_evict_batch_limit;
3873 
3874 	ASSERT3P(marker, !=, NULL);
3875 
3876 	mls = multilist_sublist_lock_idx(ml, idx);
3877 
3878 	for (hdr = multilist_sublist_prev(mls, marker); likely(hdr != NULL);
3879 	    hdr = multilist_sublist_prev(mls, marker)) {
3880 		if ((evict_count == 0) || (bytes_evicted >= bytes))
3881 			break;
3882 
3883 		/*
3884 		 * To keep our iteration location, move the marker
3885 		 * forward. Since we're not holding hdr's hash lock, we
3886 		 * must be very careful and not remove 'hdr' from the
3887 		 * sublist. Otherwise, other consumers might mistake the
3888 		 * 'hdr' as not being on a sublist when they call the
3889 		 * multilist_link_active() function (they all rely on
3890 		 * the hash lock protecting concurrent insertions and
3891 		 * removals). multilist_sublist_move_forward() was
3892 		 * specifically implemented to ensure this is the case
3893 		 * (only 'marker' will be removed and re-inserted).
3894 		 */
3895 		multilist_sublist_move_forward(mls, marker);
3896 
3897 		/*
3898 		 * The only case where the b_spa field should ever be
3899 		 * zero, is the marker headers inserted by
3900 		 * arc_evict_state(). It's possible for multiple threads
3901 		 * to be calling arc_evict_state() concurrently (e.g.
3902 		 * dsl_pool_close() and zio_inject_fault()), so we must
3903 		 * skip any markers we see from these other threads.
3904 		 */
3905 		if (hdr->b_spa == 0)
3906 			continue;
3907 
3908 		/* we're only interested in evicting buffers of a certain spa */
3909 		if (spa != 0 && hdr->b_spa != spa) {
3910 			ARCSTAT_BUMP(arcstat_evict_skip);
3911 			continue;
3912 		}
3913 
3914 		hash_lock = HDR_LOCK(hdr);
3915 
3916 		/*
3917 		 * We aren't calling this function from any code path
3918 		 * that would already be holding a hash lock, so we're
3919 		 * asserting on this assumption to be defensive in case
3920 		 * this ever changes. Without this check, it would be
3921 		 * possible to incorrectly increment arcstat_mutex_miss
3922 		 * below (e.g. if the code changed such that we called
3923 		 * this function with a hash lock held).
3924 		 */
3925 		ASSERT(!MUTEX_HELD(hash_lock));
3926 
3927 		if (mutex_tryenter(hash_lock)) {
3928 			uint64_t revicted;
3929 			uint64_t evicted = arc_evict_hdr(hdr, &revicted);
3930 			mutex_exit(hash_lock);
3931 
3932 			bytes_evicted += evicted;
3933 			real_evicted += revicted;
3934 
3935 			/*
3936 			 * If evicted is zero, arc_evict_hdr() must have
3937 			 * decided to skip this header, don't increment
3938 			 * evict_count in this case.
3939 			 */
3940 			if (evicted != 0)
3941 				evict_count--;
3942 
3943 		} else {
3944 			ARCSTAT_BUMP(arcstat_mutex_miss);
3945 		}
3946 	}
3947 
3948 	multilist_sublist_unlock(mls);
3949 
3950 	/*
3951 	 * Increment the count of evicted bytes, and wake up any threads that
3952 	 * are waiting for the count to reach this value.  Since the list is
3953 	 * ordered by ascending aew_count, we pop off the beginning of the
3954 	 * list until we reach the end, or a waiter that's past the current
3955 	 * "count".  Doing this outside the loop reduces the number of times
3956 	 * we need to acquire the global arc_evict_lock.
3957 	 *
3958 	 * Only wake when there's sufficient free memory in the system
3959 	 * (specifically, arc_sys_free/2, which by default is a bit more than
3960 	 * 1/64th of RAM).  See the comments in arc_wait_for_eviction().
3961 	 */
3962 	mutex_enter(&arc_evict_lock);
3963 	arc_evict_count += real_evicted;
3964 
3965 	if (arc_free_memory() > arc_sys_free / 2) {
3966 		arc_evict_waiter_t *aw;
3967 		while ((aw = list_head(&arc_evict_waiters)) != NULL &&
3968 		    aw->aew_count <= arc_evict_count) {
3969 			list_remove(&arc_evict_waiters, aw);
3970 			cv_broadcast(&aw->aew_cv);
3971 		}
3972 	}
3973 	arc_set_need_free();
3974 	mutex_exit(&arc_evict_lock);
3975 
3976 	/*
3977 	 * If the ARC size is reduced from arc_c_max to arc_c_min (especially
3978 	 * if the average cached block is small), eviction can be on-CPU for
3979 	 * many seconds.  To ensure that other threads that may be bound to
3980 	 * this CPU are able to make progress, make a voluntary preemption
3981 	 * call here.
3982 	 */
3983 	kpreempt(KPREEMPT_SYNC);
3984 
3985 	return (bytes_evicted);
3986 }
3987 
3988 static arc_buf_hdr_t *
3989 arc_state_alloc_marker(void)
3990 {
3991 	arc_buf_hdr_t *marker = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
3992 
3993 	/*
3994 	 * A b_spa of 0 is used to indicate that this header is
3995 	 * a marker. This fact is used in arc_evict_state_impl().
3996 	 */
3997 	marker->b_spa = 0;
3998 
3999 	return (marker);
4000 }
4001 
4002 static void
4003 arc_state_free_marker(arc_buf_hdr_t *marker)
4004 {
4005 	kmem_cache_free(hdr_full_cache, marker);
4006 }
4007 
4008 /*
4009  * Allocate an array of buffer headers used as placeholders during arc state
4010  * eviction.
4011  */
4012 static arc_buf_hdr_t **
4013 arc_state_alloc_markers(int count)
4014 {
4015 	arc_buf_hdr_t **markers;
4016 
4017 	markers = kmem_zalloc(sizeof (*markers) * count, KM_SLEEP);
4018 	for (int i = 0; i < count; i++)
4019 		markers[i] = arc_state_alloc_marker();
4020 	return (markers);
4021 }
4022 
4023 static void
4024 arc_state_free_markers(arc_buf_hdr_t **markers, int count)
4025 {
4026 	for (int i = 0; i < count; i++)
4027 		arc_state_free_marker(markers[i]);
4028 	kmem_free(markers, sizeof (*markers) * count);
4029 }
4030 
4031 /*
4032  * Evict buffers from the given arc state, until we've removed the
4033  * specified number of bytes. Move the removed buffers to the
4034  * appropriate evict state.
4035  *
4036  * This function makes a "best effort". It skips over any buffers
4037  * it can't get a hash_lock on, and so, may not catch all candidates.
4038  * It may also return without evicting as much space as requested.
4039  *
4040  * If bytes is specified using the special value ARC_EVICT_ALL, this
4041  * will evict all available (i.e. unlocked and evictable) buffers from
4042  * the given arc state; which is used by arc_flush().
4043  */
4044 static uint64_t
4045 arc_evict_state(arc_state_t *state, arc_buf_contents_t type, uint64_t spa,
4046     uint64_t bytes)
4047 {
4048 	uint64_t total_evicted = 0;
4049 	multilist_t *ml = &state->arcs_list[type];
4050 	int num_sublists;
4051 	arc_buf_hdr_t **markers;
4052 
4053 	num_sublists = multilist_get_num_sublists(ml);
4054 
4055 	/*
4056 	 * If we've tried to evict from each sublist, made some
4057 	 * progress, but still have not hit the target number of bytes
4058 	 * to evict, we want to keep trying. The markers allow us to
4059 	 * pick up where we left off for each individual sublist, rather
4060 	 * than starting from the tail each time.
4061 	 */
4062 	if (zthr_iscurthread(arc_evict_zthr)) {
4063 		markers = arc_state_evict_markers;
4064 		ASSERT3S(num_sublists, <=, arc_state_evict_marker_count);
4065 	} else {
4066 		markers = arc_state_alloc_markers(num_sublists);
4067 	}
4068 	for (int i = 0; i < num_sublists; i++) {
4069 		multilist_sublist_t *mls;
4070 
4071 		mls = multilist_sublist_lock_idx(ml, i);
4072 		multilist_sublist_insert_tail(mls, markers[i]);
4073 		multilist_sublist_unlock(mls);
4074 	}
4075 
4076 	/*
4077 	 * While we haven't hit our target number of bytes to evict, or
4078 	 * we're evicting all available buffers.
4079 	 */
4080 	while (total_evicted < bytes) {
4081 		int sublist_idx = multilist_get_random_index(ml);
4082 		uint64_t scan_evicted = 0;
4083 
4084 		/*
4085 		 * Start eviction using a randomly selected sublist,
4086 		 * this is to try and evenly balance eviction across all
4087 		 * sublists. Always starting at the same sublist
4088 		 * (e.g. index 0) would cause evictions to favor certain
4089 		 * sublists over others.
4090 		 */
4091 		for (int i = 0; i < num_sublists; i++) {
4092 			uint64_t bytes_remaining;
4093 			uint64_t bytes_evicted;
4094 
4095 			if (total_evicted < bytes)
4096 				bytes_remaining = bytes - total_evicted;
4097 			else
4098 				break;
4099 
4100 			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
4101 			    markers[sublist_idx], spa, bytes_remaining);
4102 
4103 			scan_evicted += bytes_evicted;
4104 			total_evicted += bytes_evicted;
4105 
4106 			/* we've reached the end, wrap to the beginning */
4107 			if (++sublist_idx >= num_sublists)
4108 				sublist_idx = 0;
4109 		}
4110 
4111 		/*
4112 		 * If we didn't evict anything during this scan, we have
4113 		 * no reason to believe we'll evict more during another
4114 		 * scan, so break the loop.
4115 		 */
4116 		if (scan_evicted == 0) {
4117 			/* This isn't possible, let's make that obvious */
4118 			ASSERT3S(bytes, !=, 0);
4119 
4120 			/*
4121 			 * When bytes is ARC_EVICT_ALL, the only way to
4122 			 * break the loop is when scan_evicted is zero.
4123 			 * In that case, we actually have evicted enough,
4124 			 * so we don't want to increment the kstat.
4125 			 */
4126 			if (bytes != ARC_EVICT_ALL) {
4127 				ASSERT3S(total_evicted, <, bytes);
4128 				ARCSTAT_BUMP(arcstat_evict_not_enough);
4129 			}
4130 
4131 			break;
4132 		}
4133 	}
4134 
4135 	for (int i = 0; i < num_sublists; i++) {
4136 		multilist_sublist_t *mls = multilist_sublist_lock_idx(ml, i);
4137 		multilist_sublist_remove(mls, markers[i]);
4138 		multilist_sublist_unlock(mls);
4139 	}
4140 	if (markers != arc_state_evict_markers)
4141 		arc_state_free_markers(markers, num_sublists);
4142 
4143 	return (total_evicted);
4144 }
4145 
4146 /*
4147  * Flush all "evictable" data of the given type from the arc state
4148  * specified. This will not evict any "active" buffers (i.e. referenced).
4149  *
4150  * When 'retry' is set to B_FALSE, the function will make a single pass
4151  * over the state and evict any buffers that it can. Since it doesn't
4152  * continually retry the eviction, it might end up leaving some buffers
4153  * in the ARC due to lock misses.
4154  *
4155  * When 'retry' is set to B_TRUE, the function will continually retry the
4156  * eviction until *all* evictable buffers have been removed from the
4157  * state. As a result, if concurrent insertions into the state are
4158  * allowed (e.g. if the ARC isn't shutting down), this function might
4159  * wind up in an infinite loop, continually trying to evict buffers.
4160  */
4161 static uint64_t
4162 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
4163     boolean_t retry)
4164 {
4165 	uint64_t evicted = 0;
4166 
4167 	while (zfs_refcount_count(&state->arcs_esize[type]) != 0) {
4168 		evicted += arc_evict_state(state, type, spa, ARC_EVICT_ALL);
4169 
4170 		if (!retry)
4171 			break;
4172 	}
4173 
4174 	return (evicted);
4175 }
4176 
4177 /*
4178  * Evict the specified number of bytes from the state specified. This
4179  * function prevents us from trying to evict more from a state's list
4180  * than is "evictable", and to skip evicting altogether when passed a
4181  * negative value for "bytes". In contrast, arc_evict_state() will
4182  * evict everything it can, when passed a negative value for "bytes".
4183  */
4184 static uint64_t
4185 arc_evict_impl(arc_state_t *state, arc_buf_contents_t type, int64_t bytes)
4186 {
4187 	uint64_t delta;
4188 
4189 	if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) {
4190 		delta = MIN(zfs_refcount_count(&state->arcs_esize[type]),
4191 		    bytes);
4192 		return (arc_evict_state(state, type, 0, delta));
4193 	}
4194 
4195 	return (0);
4196 }
4197 
4198 /*
4199  * Adjust specified fraction, taking into account initial ghost state(s) size,
4200  * ghost hit bytes towards increasing the fraction, ghost hit bytes towards
4201  * decreasing it, plus a balance factor, controlling the decrease rate, used
4202  * to balance metadata vs data.
4203  */
4204 static uint64_t
4205 arc_evict_adj(uint64_t frac, uint64_t total, uint64_t up, uint64_t down,
4206     uint_t balance)
4207 {
4208 	if (total < 8 || up + down == 0)
4209 		return (frac);
4210 
4211 	/*
4212 	 * We should not have more ghost hits than ghost size, but they
4213 	 * may get close.  Restrict maximum adjustment in that case.
4214 	 */
4215 	if (up + down >= total / 4) {
4216 		uint64_t scale = (up + down) / (total / 8);
4217 		up /= scale;
4218 		down /= scale;
4219 	}
4220 
4221 	/* Get maximal dynamic range by choosing optimal shifts. */
4222 	int s = highbit64(total);
4223 	s = MIN(64 - s, 32);
4224 
4225 	uint64_t ofrac = (1ULL << 32) - frac;
4226 
4227 	if (frac >= 4 * ofrac)
4228 		up /= frac / (2 * ofrac + 1);
4229 	up = (up << s) / (total >> (32 - s));
4230 	if (ofrac >= 4 * frac)
4231 		down /= ofrac / (2 * frac + 1);
4232 	down = (down << s) / (total >> (32 - s));
4233 	down = down * 100 / balance;
4234 
4235 	return (frac + up - down);
4236 }
4237 
4238 /*
4239  * Evict buffers from the cache, such that arcstat_size is capped by arc_c.
4240  */
4241 static uint64_t
4242 arc_evict(void)
4243 {
4244 	uint64_t asize, bytes, total_evicted = 0;
4245 	int64_t e, mrud, mrum, mfud, mfum, w;
4246 	static uint64_t ogrd, ogrm, ogfd, ogfm;
4247 	static uint64_t gsrd, gsrm, gsfd, gsfm;
4248 	uint64_t ngrd, ngrm, ngfd, ngfm;
4249 
4250 	/* Get current size of ARC states we can evict from. */
4251 	mrud = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_DATA]) +
4252 	    zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]);
4253 	mrum = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA]) +
4254 	    zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
4255 	mfud = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
4256 	mfum = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
4257 	uint64_t d = mrud + mfud;
4258 	uint64_t m = mrum + mfum;
4259 	uint64_t t = d + m;
4260 
4261 	/* Get ARC ghost hits since last eviction. */
4262 	ngrd = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]);
4263 	uint64_t grd = ngrd - ogrd;
4264 	ogrd = ngrd;
4265 	ngrm = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]);
4266 	uint64_t grm = ngrm - ogrm;
4267 	ogrm = ngrm;
4268 	ngfd = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]);
4269 	uint64_t gfd = ngfd - ogfd;
4270 	ogfd = ngfd;
4271 	ngfm = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]);
4272 	uint64_t gfm = ngfm - ogfm;
4273 	ogfm = ngfm;
4274 
4275 	/* Adjust ARC states balance based on ghost hits. */
4276 	arc_meta = arc_evict_adj(arc_meta, gsrd + gsrm + gsfd + gsfm,
4277 	    grm + gfm, grd + gfd, zfs_arc_meta_balance);
4278 	arc_pd = arc_evict_adj(arc_pd, gsrd + gsfd, grd, gfd, 100);
4279 	arc_pm = arc_evict_adj(arc_pm, gsrm + gsfm, grm, gfm, 100);
4280 
4281 	asize = aggsum_value(&arc_sums.arcstat_size);
4282 	int64_t wt = t - (asize - arc_c);
4283 
4284 	/*
4285 	 * Try to reduce pinned dnodes if more than 3/4 of wanted metadata
4286 	 * target is not evictable or if they go over arc_dnode_limit.
4287 	 */
4288 	int64_t prune = 0;
4289 	int64_t dn = wmsum_value(&arc_sums.arcstat_dnode_size);
4290 	w = wt * (int64_t)(arc_meta >> 16) >> 16;
4291 	if (zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA]) +
4292 	    zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA]) -
4293 	    zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA]) -
4294 	    zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]) >
4295 	    w * 3 / 4) {
4296 		prune = dn / sizeof (dnode_t) *
4297 		    zfs_arc_dnode_reduce_percent / 100;
4298 	} else if (dn > arc_dnode_limit) {
4299 		prune = (dn - arc_dnode_limit) / sizeof (dnode_t) *
4300 		    zfs_arc_dnode_reduce_percent / 100;
4301 	}
4302 	if (prune > 0)
4303 		arc_prune_async(prune);
4304 
4305 	/* Evict MRU metadata. */
4306 	w = wt * (int64_t)(arc_meta * arc_pm >> 48) >> 16;
4307 	e = MIN((int64_t)(asize - arc_c), (int64_t)(mrum - w));
4308 	bytes = arc_evict_impl(arc_mru, ARC_BUFC_METADATA, e);
4309 	total_evicted += bytes;
4310 	mrum -= bytes;
4311 	asize -= bytes;
4312 
4313 	/* Evict MFU metadata. */
4314 	w = wt * (int64_t)(arc_meta >> 16) >> 16;
4315 	e = MIN((int64_t)(asize - arc_c), (int64_t)(m - w));
4316 	bytes = arc_evict_impl(arc_mfu, ARC_BUFC_METADATA, e);
4317 	total_evicted += bytes;
4318 	mfum -= bytes;
4319 	asize -= bytes;
4320 
4321 	/* Evict MRU data. */
4322 	wt -= m - total_evicted;
4323 	w = wt * (int64_t)(arc_pd >> 16) >> 16;
4324 	e = MIN((int64_t)(asize - arc_c), (int64_t)(mrud - w));
4325 	bytes = arc_evict_impl(arc_mru, ARC_BUFC_DATA, e);
4326 	total_evicted += bytes;
4327 	mrud -= bytes;
4328 	asize -= bytes;
4329 
4330 	/* Evict MFU data. */
4331 	e = asize - arc_c;
4332 	bytes = arc_evict_impl(arc_mfu, ARC_BUFC_DATA, e);
4333 	mfud -= bytes;
4334 	total_evicted += bytes;
4335 
4336 	/*
4337 	 * Evict ghost lists
4338 	 *
4339 	 * Size of each state's ghost list represents how much that state
4340 	 * may grow by shrinking the other states.  Would it need to shrink
4341 	 * other states to zero (that is unlikely), its ghost size would be
4342 	 * equal to sum of other three state sizes.  But excessive ghost
4343 	 * size may result in false ghost hits (too far back), that may
4344 	 * never result in real cache hits if several states are competing.
4345 	 * So choose some arbitraty point of 1/2 of other state sizes.
4346 	 */
4347 	gsrd = (mrum + mfud + mfum) / 2;
4348 	e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]) -
4349 	    gsrd;
4350 	(void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_DATA, e);
4351 
4352 	gsrm = (mrud + mfud + mfum) / 2;
4353 	e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]) -
4354 	    gsrm;
4355 	(void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_METADATA, e);
4356 
4357 	gsfd = (mrud + mrum + mfum) / 2;
4358 	e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]) -
4359 	    gsfd;
4360 	(void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_DATA, e);
4361 
4362 	gsfm = (mrud + mrum + mfud) / 2;
4363 	e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]) -
4364 	    gsfm;
4365 	(void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_METADATA, e);
4366 
4367 	return (total_evicted);
4368 }
4369 
4370 void
4371 arc_flush(spa_t *spa, boolean_t retry)
4372 {
4373 	uint64_t guid = 0;
4374 
4375 	/*
4376 	 * If retry is B_TRUE, a spa must not be specified since we have
4377 	 * no good way to determine if all of a spa's buffers have been
4378 	 * evicted from an arc state.
4379 	 */
4380 	ASSERT(!retry || spa == NULL);
4381 
4382 	if (spa != NULL)
4383 		guid = spa_load_guid(spa);
4384 
4385 	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4386 	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4387 
4388 	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4389 	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4390 
4391 	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4392 	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
4393 
4394 	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4395 	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
4396 
4397 	(void) arc_flush_state(arc_uncached, guid, ARC_BUFC_DATA, retry);
4398 	(void) arc_flush_state(arc_uncached, guid, ARC_BUFC_METADATA, retry);
4399 }
4400 
4401 void
4402 arc_reduce_target_size(int64_t to_free)
4403 {
4404 	uint64_t c = arc_c;
4405 
4406 	if (c <= arc_c_min)
4407 		return;
4408 
4409 	/*
4410 	 * All callers want the ARC to actually evict (at least) this much
4411 	 * memory.  Therefore we reduce from the lower of the current size and
4412 	 * the target size.  This way, even if arc_c is much higher than
4413 	 * arc_size (as can be the case after many calls to arc_freed(), we will
4414 	 * immediately have arc_c < arc_size and therefore the arc_evict_zthr
4415 	 * will evict.
4416 	 */
4417 	uint64_t asize = aggsum_value(&arc_sums.arcstat_size);
4418 	if (asize < c)
4419 		to_free += c - asize;
4420 	arc_c = MAX((int64_t)c - to_free, (int64_t)arc_c_min);
4421 
4422 	/* See comment in arc_evict_cb_check() on why lock+flag */
4423 	mutex_enter(&arc_evict_lock);
4424 	arc_evict_needed = B_TRUE;
4425 	mutex_exit(&arc_evict_lock);
4426 	zthr_wakeup(arc_evict_zthr);
4427 }
4428 
4429 /*
4430  * Determine if the system is under memory pressure and is asking
4431  * to reclaim memory. A return value of B_TRUE indicates that the system
4432  * is under memory pressure and that the arc should adjust accordingly.
4433  */
4434 boolean_t
4435 arc_reclaim_needed(void)
4436 {
4437 	return (arc_available_memory() < 0);
4438 }
4439 
4440 void
4441 arc_kmem_reap_soon(void)
4442 {
4443 	size_t			i;
4444 	kmem_cache_t		*prev_cache = NULL;
4445 	kmem_cache_t		*prev_data_cache = NULL;
4446 
4447 #ifdef _KERNEL
4448 #if defined(_ILP32)
4449 	/*
4450 	 * Reclaim unused memory from all kmem caches.
4451 	 */
4452 	kmem_reap();
4453 #endif
4454 #endif
4455 
4456 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4457 #if defined(_ILP32)
4458 		/* reach upper limit of cache size on 32-bit */
4459 		if (zio_buf_cache[i] == NULL)
4460 			break;
4461 #endif
4462 		if (zio_buf_cache[i] != prev_cache) {
4463 			prev_cache = zio_buf_cache[i];
4464 			kmem_cache_reap_now(zio_buf_cache[i]);
4465 		}
4466 		if (zio_data_buf_cache[i] != prev_data_cache) {
4467 			prev_data_cache = zio_data_buf_cache[i];
4468 			kmem_cache_reap_now(zio_data_buf_cache[i]);
4469 		}
4470 	}
4471 	kmem_cache_reap_now(buf_cache);
4472 	kmem_cache_reap_now(hdr_full_cache);
4473 	kmem_cache_reap_now(hdr_l2only_cache);
4474 	kmem_cache_reap_now(zfs_btree_leaf_cache);
4475 	abd_cache_reap_now();
4476 }
4477 
4478 static boolean_t
4479 arc_evict_cb_check(void *arg, zthr_t *zthr)
4480 {
4481 	(void) arg, (void) zthr;
4482 
4483 #ifdef ZFS_DEBUG
4484 	/*
4485 	 * This is necessary in order to keep the kstat information
4486 	 * up to date for tools that display kstat data such as the
4487 	 * mdb ::arc dcmd and the Linux crash utility.  These tools
4488 	 * typically do not call kstat's update function, but simply
4489 	 * dump out stats from the most recent update.  Without
4490 	 * this call, these commands may show stale stats for the
4491 	 * anon, mru, mru_ghost, mfu, and mfu_ghost lists.  Even
4492 	 * with this call, the data might be out of date if the
4493 	 * evict thread hasn't been woken recently; but that should
4494 	 * suffice.  The arc_state_t structures can be queried
4495 	 * directly if more accurate information is needed.
4496 	 */
4497 	if (arc_ksp != NULL)
4498 		arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4499 #endif
4500 
4501 	/*
4502 	 * We have to rely on arc_wait_for_eviction() to tell us when to
4503 	 * evict, rather than checking if we are overflowing here, so that we
4504 	 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv.
4505 	 * If we have become "not overflowing" since arc_wait_for_eviction()
4506 	 * checked, we need to wake it up.  We could broadcast the CV here,
4507 	 * but arc_wait_for_eviction() may have not yet gone to sleep.  We
4508 	 * would need to use a mutex to ensure that this function doesn't
4509 	 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g.
4510 	 * the arc_evict_lock).  However, the lock ordering of such a lock
4511 	 * would necessarily be incorrect with respect to the zthr_lock,
4512 	 * which is held before this function is called, and is held by
4513 	 * arc_wait_for_eviction() when it calls zthr_wakeup().
4514 	 */
4515 	if (arc_evict_needed)
4516 		return (B_TRUE);
4517 
4518 	/*
4519 	 * If we have buffers in uncached state, evict them periodically.
4520 	 */
4521 	return ((zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_DATA]) +
4522 	    zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]) &&
4523 	    ddi_get_lbolt() - arc_last_uncached_flush >
4524 	    MSEC_TO_TICK(arc_min_prefetch_ms / 2)));
4525 }
4526 
4527 /*
4528  * Keep arc_size under arc_c by running arc_evict which evicts data
4529  * from the ARC.
4530  */
4531 static void
4532 arc_evict_cb(void *arg, zthr_t *zthr)
4533 {
4534 	(void) arg;
4535 
4536 	uint64_t evicted = 0;
4537 	fstrans_cookie_t cookie = spl_fstrans_mark();
4538 
4539 	/* Always try to evict from uncached state. */
4540 	arc_last_uncached_flush = ddi_get_lbolt();
4541 	evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_DATA, B_FALSE);
4542 	evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_METADATA, B_FALSE);
4543 
4544 	/* Evict from other states only if told to. */
4545 	if (arc_evict_needed)
4546 		evicted += arc_evict();
4547 
4548 	/*
4549 	 * If evicted is zero, we couldn't evict anything
4550 	 * via arc_evict(). This could be due to hash lock
4551 	 * collisions, but more likely due to the majority of
4552 	 * arc buffers being unevictable. Therefore, even if
4553 	 * arc_size is above arc_c, another pass is unlikely to
4554 	 * be helpful and could potentially cause us to enter an
4555 	 * infinite loop.  Additionally, zthr_iscancelled() is
4556 	 * checked here so that if the arc is shutting down, the
4557 	 * broadcast will wake any remaining arc evict waiters.
4558 	 *
4559 	 * Note we cancel using zthr instead of arc_evict_zthr
4560 	 * because the latter may not yet be initializd when the
4561 	 * callback is first invoked.
4562 	 */
4563 	mutex_enter(&arc_evict_lock);
4564 	arc_evict_needed = !zthr_iscancelled(zthr) &&
4565 	    evicted > 0 && aggsum_compare(&arc_sums.arcstat_size, arc_c) > 0;
4566 	if (!arc_evict_needed) {
4567 		/*
4568 		 * We're either no longer overflowing, or we
4569 		 * can't evict anything more, so we should wake
4570 		 * arc_get_data_impl() sooner.
4571 		 */
4572 		arc_evict_waiter_t *aw;
4573 		while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) {
4574 			cv_broadcast(&aw->aew_cv);
4575 		}
4576 		arc_set_need_free();
4577 	}
4578 	mutex_exit(&arc_evict_lock);
4579 	spl_fstrans_unmark(cookie);
4580 }
4581 
4582 static boolean_t
4583 arc_reap_cb_check(void *arg, zthr_t *zthr)
4584 {
4585 	(void) arg, (void) zthr;
4586 
4587 	int64_t free_memory = arc_available_memory();
4588 	static int reap_cb_check_counter = 0;
4589 
4590 	/*
4591 	 * If a kmem reap is already active, don't schedule more.  We must
4592 	 * check for this because kmem_cache_reap_soon() won't actually
4593 	 * block on the cache being reaped (this is to prevent callers from
4594 	 * becoming implicitly blocked by a system-wide kmem reap -- which,
4595 	 * on a system with many, many full magazines, can take minutes).
4596 	 */
4597 	if (!kmem_cache_reap_active() && free_memory < 0) {
4598 
4599 		arc_no_grow = B_TRUE;
4600 		arc_warm = B_TRUE;
4601 		/*
4602 		 * Wait at least zfs_grow_retry (default 5) seconds
4603 		 * before considering growing.
4604 		 */
4605 		arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4606 		return (B_TRUE);
4607 	} else if (free_memory < arc_c >> arc_no_grow_shift) {
4608 		arc_no_grow = B_TRUE;
4609 	} else if (gethrtime() >= arc_growtime) {
4610 		arc_no_grow = B_FALSE;
4611 	}
4612 
4613 	/*
4614 	 * Called unconditionally every 60 seconds to reclaim unused
4615 	 * zstd compression and decompression context. This is done
4616 	 * here to avoid the need for an independent thread.
4617 	 */
4618 	if (!((reap_cb_check_counter++) % 60))
4619 		zfs_zstd_cache_reap_now();
4620 
4621 	return (B_FALSE);
4622 }
4623 
4624 /*
4625  * Keep enough free memory in the system by reaping the ARC's kmem
4626  * caches.  To cause more slabs to be reapable, we may reduce the
4627  * target size of the cache (arc_c), causing the arc_evict_cb()
4628  * to free more buffers.
4629  */
4630 static void
4631 arc_reap_cb(void *arg, zthr_t *zthr)
4632 {
4633 	(void) arg, (void) zthr;
4634 
4635 	int64_t free_memory;
4636 	fstrans_cookie_t cookie = spl_fstrans_mark();
4637 
4638 	/*
4639 	 * Kick off asynchronous kmem_reap()'s of all our caches.
4640 	 */
4641 	arc_kmem_reap_soon();
4642 
4643 	/*
4644 	 * Wait at least arc_kmem_cache_reap_retry_ms between
4645 	 * arc_kmem_reap_soon() calls. Without this check it is possible to
4646 	 * end up in a situation where we spend lots of time reaping
4647 	 * caches, while we're near arc_c_min.  Waiting here also gives the
4648 	 * subsequent free memory check a chance of finding that the
4649 	 * asynchronous reap has already freed enough memory, and we don't
4650 	 * need to call arc_reduce_target_size().
4651 	 */
4652 	delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000);
4653 
4654 	/*
4655 	 * Reduce the target size as needed to maintain the amount of free
4656 	 * memory in the system at a fraction of the arc_size (1/128th by
4657 	 * default).  If oversubscribed (free_memory < 0) then reduce the
4658 	 * target arc_size by the deficit amount plus the fractional
4659 	 * amount.  If free memory is positive but less than the fractional
4660 	 * amount, reduce by what is needed to hit the fractional amount.
4661 	 */
4662 	free_memory = arc_available_memory();
4663 
4664 	int64_t can_free = arc_c - arc_c_min;
4665 	if (can_free > 0) {
4666 		int64_t to_free = (can_free >> arc_shrink_shift) - free_memory;
4667 		if (to_free > 0)
4668 			arc_reduce_target_size(to_free);
4669 	}
4670 	spl_fstrans_unmark(cookie);
4671 }
4672 
4673 #ifdef _KERNEL
4674 /*
4675  * Determine the amount of memory eligible for eviction contained in the
4676  * ARC. All clean data reported by the ghost lists can always be safely
4677  * evicted. Due to arc_c_min, the same does not hold for all clean data
4678  * contained by the regular mru and mfu lists.
4679  *
4680  * In the case of the regular mru and mfu lists, we need to report as
4681  * much clean data as possible, such that evicting that same reported
4682  * data will not bring arc_size below arc_c_min. Thus, in certain
4683  * circumstances, the total amount of clean data in the mru and mfu
4684  * lists might not actually be evictable.
4685  *
4686  * The following two distinct cases are accounted for:
4687  *
4688  * 1. The sum of the amount of dirty data contained by both the mru and
4689  *    mfu lists, plus the ARC's other accounting (e.g. the anon list),
4690  *    is greater than or equal to arc_c_min.
4691  *    (i.e. amount of dirty data >= arc_c_min)
4692  *
4693  *    This is the easy case; all clean data contained by the mru and mfu
4694  *    lists is evictable. Evicting all clean data can only drop arc_size
4695  *    to the amount of dirty data, which is greater than arc_c_min.
4696  *
4697  * 2. The sum of the amount of dirty data contained by both the mru and
4698  *    mfu lists, plus the ARC's other accounting (e.g. the anon list),
4699  *    is less than arc_c_min.
4700  *    (i.e. arc_c_min > amount of dirty data)
4701  *
4702  *    2.1. arc_size is greater than or equal arc_c_min.
4703  *         (i.e. arc_size >= arc_c_min > amount of dirty data)
4704  *
4705  *         In this case, not all clean data from the regular mru and mfu
4706  *         lists is actually evictable; we must leave enough clean data
4707  *         to keep arc_size above arc_c_min. Thus, the maximum amount of
4708  *         evictable data from the two lists combined, is exactly the
4709  *         difference between arc_size and arc_c_min.
4710  *
4711  *    2.2. arc_size is less than arc_c_min
4712  *         (i.e. arc_c_min > arc_size > amount of dirty data)
4713  *
4714  *         In this case, none of the data contained in the mru and mfu
4715  *         lists is evictable, even if it's clean. Since arc_size is
4716  *         already below arc_c_min, evicting any more would only
4717  *         increase this negative difference.
4718  */
4719 
4720 #endif /* _KERNEL */
4721 
4722 /*
4723  * Adapt arc info given the number of bytes we are trying to add and
4724  * the state that we are coming from.  This function is only called
4725  * when we are adding new content to the cache.
4726  */
4727 static void
4728 arc_adapt(uint64_t bytes)
4729 {
4730 	/*
4731 	 * Wake reap thread if we do not have any available memory
4732 	 */
4733 	if (arc_reclaim_needed()) {
4734 		zthr_wakeup(arc_reap_zthr);
4735 		return;
4736 	}
4737 
4738 	if (arc_no_grow)
4739 		return;
4740 
4741 	if (arc_c >= arc_c_max)
4742 		return;
4743 
4744 	/*
4745 	 * If we're within (2 * maxblocksize) bytes of the target
4746 	 * cache size, increment the target cache size
4747 	 */
4748 	if (aggsum_upper_bound(&arc_sums.arcstat_size) +
4749 	    2 * SPA_MAXBLOCKSIZE >= arc_c) {
4750 		uint64_t dc = MAX(bytes, SPA_OLD_MAXBLOCKSIZE);
4751 		if (atomic_add_64_nv(&arc_c, dc) > arc_c_max)
4752 			arc_c = arc_c_max;
4753 	}
4754 }
4755 
4756 /*
4757  * Check if arc_size has grown past our upper threshold, determined by
4758  * zfs_arc_overflow_shift.
4759  */
4760 static arc_ovf_level_t
4761 arc_is_overflowing(boolean_t use_reserve)
4762 {
4763 	/* Always allow at least one block of overflow */
4764 	int64_t overflow = MAX(SPA_MAXBLOCKSIZE,
4765 	    arc_c >> zfs_arc_overflow_shift);
4766 
4767 	/*
4768 	 * We just compare the lower bound here for performance reasons. Our
4769 	 * primary goals are to make sure that the arc never grows without
4770 	 * bound, and that it can reach its maximum size. This check
4771 	 * accomplishes both goals. The maximum amount we could run over by is
4772 	 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
4773 	 * in the ARC. In practice, that's in the tens of MB, which is low
4774 	 * enough to be safe.
4775 	 */
4776 	int64_t over = aggsum_lower_bound(&arc_sums.arcstat_size) -
4777 	    arc_c - overflow / 2;
4778 	if (!use_reserve)
4779 		overflow /= 2;
4780 	return (over < 0 ? ARC_OVF_NONE :
4781 	    over < overflow ? ARC_OVF_SOME : ARC_OVF_SEVERE);
4782 }
4783 
4784 static abd_t *
4785 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, const void *tag,
4786     int alloc_flags)
4787 {
4788 	arc_buf_contents_t type = arc_buf_type(hdr);
4789 
4790 	arc_get_data_impl(hdr, size, tag, alloc_flags);
4791 	if (alloc_flags & ARC_HDR_ALLOC_LINEAR)
4792 		return (abd_alloc_linear(size, type == ARC_BUFC_METADATA));
4793 	else
4794 		return (abd_alloc(size, type == ARC_BUFC_METADATA));
4795 }
4796 
4797 static void *
4798 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, const void *tag)
4799 {
4800 	arc_buf_contents_t type = arc_buf_type(hdr);
4801 
4802 	arc_get_data_impl(hdr, size, tag, 0);
4803 	if (type == ARC_BUFC_METADATA) {
4804 		return (zio_buf_alloc(size));
4805 	} else {
4806 		ASSERT(type == ARC_BUFC_DATA);
4807 		return (zio_data_buf_alloc(size));
4808 	}
4809 }
4810 
4811 /*
4812  * Wait for the specified amount of data (in bytes) to be evicted from the
4813  * ARC, and for there to be sufficient free memory in the system.  Waiting for
4814  * eviction ensures that the memory used by the ARC decreases.  Waiting for
4815  * free memory ensures that the system won't run out of free pages, regardless
4816  * of ARC behavior and settings.  See arc_lowmem_init().
4817  */
4818 void
4819 arc_wait_for_eviction(uint64_t amount, boolean_t use_reserve)
4820 {
4821 	switch (arc_is_overflowing(use_reserve)) {
4822 	case ARC_OVF_NONE:
4823 		return;
4824 	case ARC_OVF_SOME:
4825 		/*
4826 		 * This is a bit racy without taking arc_evict_lock, but the
4827 		 * worst that can happen is we either call zthr_wakeup() extra
4828 		 * time due to race with other thread here, or the set flag
4829 		 * get cleared by arc_evict_cb(), which is unlikely due to
4830 		 * big hysteresis, but also not important since at this level
4831 		 * of overflow the eviction is purely advisory.  Same time
4832 		 * taking the global lock here every time without waiting for
4833 		 * the actual eviction creates a significant lock contention.
4834 		 */
4835 		if (!arc_evict_needed) {
4836 			arc_evict_needed = B_TRUE;
4837 			zthr_wakeup(arc_evict_zthr);
4838 		}
4839 		return;
4840 	case ARC_OVF_SEVERE:
4841 	default:
4842 	{
4843 		arc_evict_waiter_t aw;
4844 		list_link_init(&aw.aew_node);
4845 		cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL);
4846 
4847 		uint64_t last_count = 0;
4848 		mutex_enter(&arc_evict_lock);
4849 		if (!list_is_empty(&arc_evict_waiters)) {
4850 			arc_evict_waiter_t *last =
4851 			    list_tail(&arc_evict_waiters);
4852 			last_count = last->aew_count;
4853 		} else if (!arc_evict_needed) {
4854 			arc_evict_needed = B_TRUE;
4855 			zthr_wakeup(arc_evict_zthr);
4856 		}
4857 		/*
4858 		 * Note, the last waiter's count may be less than
4859 		 * arc_evict_count if we are low on memory in which
4860 		 * case arc_evict_state_impl() may have deferred
4861 		 * wakeups (but still incremented arc_evict_count).
4862 		 */
4863 		aw.aew_count = MAX(last_count, arc_evict_count) + amount;
4864 
4865 		list_insert_tail(&arc_evict_waiters, &aw);
4866 
4867 		arc_set_need_free();
4868 
4869 		DTRACE_PROBE3(arc__wait__for__eviction,
4870 		    uint64_t, amount,
4871 		    uint64_t, arc_evict_count,
4872 		    uint64_t, aw.aew_count);
4873 
4874 		/*
4875 		 * We will be woken up either when arc_evict_count reaches
4876 		 * aew_count, or when the ARC is no longer overflowing and
4877 		 * eviction completes.
4878 		 * In case of "false" wakeup, we will still be on the list.
4879 		 */
4880 		do {
4881 			cv_wait(&aw.aew_cv, &arc_evict_lock);
4882 		} while (list_link_active(&aw.aew_node));
4883 		mutex_exit(&arc_evict_lock);
4884 
4885 		cv_destroy(&aw.aew_cv);
4886 	}
4887 	}
4888 }
4889 
4890 /*
4891  * Allocate a block and return it to the caller. If we are hitting the
4892  * hard limit for the cache size, we must sleep, waiting for the eviction
4893  * thread to catch up. If we're past the target size but below the hard
4894  * limit, we'll only signal the reclaim thread and continue on.
4895  */
4896 static void
4897 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag,
4898     int alloc_flags)
4899 {
4900 	arc_adapt(size);
4901 
4902 	/*
4903 	 * If arc_size is currently overflowing, we must be adding data
4904 	 * faster than we are evicting.  To ensure we don't compound the
4905 	 * problem by adding more data and forcing arc_size to grow even
4906 	 * further past it's target size, we wait for the eviction thread to
4907 	 * make some progress.  We also wait for there to be sufficient free
4908 	 * memory in the system, as measured by arc_free_memory().
4909 	 *
4910 	 * Specifically, we wait for zfs_arc_eviction_pct percent of the
4911 	 * requested size to be evicted.  This should be more than 100%, to
4912 	 * ensure that that progress is also made towards getting arc_size
4913 	 * under arc_c.  See the comment above zfs_arc_eviction_pct.
4914 	 */
4915 	arc_wait_for_eviction(size * zfs_arc_eviction_pct / 100,
4916 	    alloc_flags & ARC_HDR_USE_RESERVE);
4917 
4918 	arc_buf_contents_t type = arc_buf_type(hdr);
4919 	if (type == ARC_BUFC_METADATA) {
4920 		arc_space_consume(size, ARC_SPACE_META);
4921 	} else {
4922 		arc_space_consume(size, ARC_SPACE_DATA);
4923 	}
4924 
4925 	/*
4926 	 * Update the state size.  Note that ghost states have a
4927 	 * "ghost size" and so don't need to be updated.
4928 	 */
4929 	arc_state_t *state = hdr->b_l1hdr.b_state;
4930 	if (!GHOST_STATE(state)) {
4931 
4932 		(void) zfs_refcount_add_many(&state->arcs_size[type], size,
4933 		    tag);
4934 
4935 		/*
4936 		 * If this is reached via arc_read, the link is
4937 		 * protected by the hash lock. If reached via
4938 		 * arc_buf_alloc, the header should not be accessed by
4939 		 * any other thread. And, if reached via arc_read_done,
4940 		 * the hash lock will protect it if it's found in the
4941 		 * hash table; otherwise no other thread should be
4942 		 * trying to [add|remove]_reference it.
4943 		 */
4944 		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4945 			ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4946 			(void) zfs_refcount_add_many(&state->arcs_esize[type],
4947 			    size, tag);
4948 		}
4949 	}
4950 }
4951 
4952 static void
4953 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size,
4954     const void *tag)
4955 {
4956 	arc_free_data_impl(hdr, size, tag);
4957 	abd_free(abd);
4958 }
4959 
4960 static void
4961 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, const void *tag)
4962 {
4963 	arc_buf_contents_t type = arc_buf_type(hdr);
4964 
4965 	arc_free_data_impl(hdr, size, tag);
4966 	if (type == ARC_BUFC_METADATA) {
4967 		zio_buf_free(buf, size);
4968 	} else {
4969 		ASSERT(type == ARC_BUFC_DATA);
4970 		zio_data_buf_free(buf, size);
4971 	}
4972 }
4973 
4974 /*
4975  * Free the arc data buffer.
4976  */
4977 static void
4978 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag)
4979 {
4980 	arc_state_t *state = hdr->b_l1hdr.b_state;
4981 	arc_buf_contents_t type = arc_buf_type(hdr);
4982 
4983 	/* protected by hash lock, if in the hash table */
4984 	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4985 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4986 		ASSERT(state != arc_anon && state != arc_l2c_only);
4987 
4988 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
4989 		    size, tag);
4990 	}
4991 	(void) zfs_refcount_remove_many(&state->arcs_size[type], size, tag);
4992 
4993 	VERIFY3U(hdr->b_type, ==, type);
4994 	if (type == ARC_BUFC_METADATA) {
4995 		arc_space_return(size, ARC_SPACE_META);
4996 	} else {
4997 		ASSERT(type == ARC_BUFC_DATA);
4998 		arc_space_return(size, ARC_SPACE_DATA);
4999 	}
5000 }
5001 
5002 /*
5003  * This routine is called whenever a buffer is accessed.
5004  */
5005 static void
5006 arc_access(arc_buf_hdr_t *hdr, arc_flags_t arc_flags, boolean_t hit)
5007 {
5008 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
5009 	ASSERT(HDR_HAS_L1HDR(hdr));
5010 
5011 	/*
5012 	 * Update buffer prefetch status.
5013 	 */
5014 	boolean_t was_prefetch = HDR_PREFETCH(hdr);
5015 	boolean_t now_prefetch = arc_flags & ARC_FLAG_PREFETCH;
5016 	if (was_prefetch != now_prefetch) {
5017 		if (was_prefetch) {
5018 			ARCSTAT_CONDSTAT(hit, demand_hit, demand_iohit,
5019 			    HDR_PRESCIENT_PREFETCH(hdr), prescient, predictive,
5020 			    prefetch);
5021 		}
5022 		if (HDR_HAS_L2HDR(hdr))
5023 			l2arc_hdr_arcstats_decrement_state(hdr);
5024 		if (was_prefetch) {
5025 			arc_hdr_clear_flags(hdr,
5026 			    ARC_FLAG_PREFETCH | ARC_FLAG_PRESCIENT_PREFETCH);
5027 		} else {
5028 			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5029 		}
5030 		if (HDR_HAS_L2HDR(hdr))
5031 			l2arc_hdr_arcstats_increment_state(hdr);
5032 	}
5033 	if (now_prefetch) {
5034 		if (arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
5035 			arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
5036 			ARCSTAT_BUMP(arcstat_prescient_prefetch);
5037 		} else {
5038 			ARCSTAT_BUMP(arcstat_predictive_prefetch);
5039 		}
5040 	}
5041 	if (arc_flags & ARC_FLAG_L2CACHE)
5042 		arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5043 
5044 	clock_t now = ddi_get_lbolt();
5045 	if (hdr->b_l1hdr.b_state == arc_anon) {
5046 		arc_state_t	*new_state;
5047 		/*
5048 		 * This buffer is not in the cache, and does not appear in
5049 		 * our "ghost" lists.  Add it to the MRU or uncached state.
5050 		 */
5051 		ASSERT0(hdr->b_l1hdr.b_arc_access);
5052 		hdr->b_l1hdr.b_arc_access = now;
5053 		if (HDR_UNCACHED(hdr)) {
5054 			new_state = arc_uncached;
5055 			DTRACE_PROBE1(new_state__uncached, arc_buf_hdr_t *,
5056 			    hdr);
5057 		} else {
5058 			new_state = arc_mru;
5059 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5060 		}
5061 		arc_change_state(new_state, hdr);
5062 	} else if (hdr->b_l1hdr.b_state == arc_mru) {
5063 		/*
5064 		 * This buffer has been accessed once recently and either
5065 		 * its read is still in progress or it is in the cache.
5066 		 */
5067 		if (HDR_IO_IN_PROGRESS(hdr)) {
5068 			hdr->b_l1hdr.b_arc_access = now;
5069 			return;
5070 		}
5071 		hdr->b_l1hdr.b_mru_hits++;
5072 		ARCSTAT_BUMP(arcstat_mru_hits);
5073 
5074 		/*
5075 		 * If the previous access was a prefetch, then it already
5076 		 * handled possible promotion, so nothing more to do for now.
5077 		 */
5078 		if (was_prefetch) {
5079 			hdr->b_l1hdr.b_arc_access = now;
5080 			return;
5081 		}
5082 
5083 		/*
5084 		 * If more than ARC_MINTIME have passed from the previous
5085 		 * hit, promote the buffer to the MFU state.
5086 		 */
5087 		if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
5088 		    ARC_MINTIME)) {
5089 			hdr->b_l1hdr.b_arc_access = now;
5090 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5091 			arc_change_state(arc_mfu, hdr);
5092 		}
5093 	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
5094 		arc_state_t	*new_state;
5095 		/*
5096 		 * This buffer has been accessed once recently, but was
5097 		 * evicted from the cache.  Would we have bigger MRU, it
5098 		 * would be an MRU hit, so handle it the same way, except
5099 		 * we don't need to check the previous access time.
5100 		 */
5101 		hdr->b_l1hdr.b_mru_ghost_hits++;
5102 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
5103 		hdr->b_l1hdr.b_arc_access = now;
5104 		wmsum_add(&arc_mru_ghost->arcs_hits[arc_buf_type(hdr)],
5105 		    arc_hdr_size(hdr));
5106 		if (was_prefetch) {
5107 			new_state = arc_mru;
5108 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5109 		} else {
5110 			new_state = arc_mfu;
5111 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5112 		}
5113 		arc_change_state(new_state, hdr);
5114 	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
5115 		/*
5116 		 * This buffer has been accessed more than once and either
5117 		 * still in the cache or being restored from one of ghosts.
5118 		 */
5119 		if (!HDR_IO_IN_PROGRESS(hdr)) {
5120 			hdr->b_l1hdr.b_mfu_hits++;
5121 			ARCSTAT_BUMP(arcstat_mfu_hits);
5122 		}
5123 		hdr->b_l1hdr.b_arc_access = now;
5124 	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
5125 		/*
5126 		 * This buffer has been accessed more than once recently, but
5127 		 * has been evicted from the cache.  Would we have bigger MFU
5128 		 * it would stay in cache, so move it back to MFU state.
5129 		 */
5130 		hdr->b_l1hdr.b_mfu_ghost_hits++;
5131 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
5132 		hdr->b_l1hdr.b_arc_access = now;
5133 		wmsum_add(&arc_mfu_ghost->arcs_hits[arc_buf_type(hdr)],
5134 		    arc_hdr_size(hdr));
5135 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5136 		arc_change_state(arc_mfu, hdr);
5137 	} else if (hdr->b_l1hdr.b_state == arc_uncached) {
5138 		/*
5139 		 * This buffer is uncacheable, but we got a hit.  Probably
5140 		 * a demand read after prefetch.  Nothing more to do here.
5141 		 */
5142 		if (!HDR_IO_IN_PROGRESS(hdr))
5143 			ARCSTAT_BUMP(arcstat_uncached_hits);
5144 		hdr->b_l1hdr.b_arc_access = now;
5145 	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
5146 		/*
5147 		 * This buffer is on the 2nd Level ARC and was not accessed
5148 		 * for a long time, so treat it as new and put into MRU.
5149 		 */
5150 		hdr->b_l1hdr.b_arc_access = now;
5151 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5152 		arc_change_state(arc_mru, hdr);
5153 	} else {
5154 		cmn_err(CE_PANIC, "invalid arc state 0x%p",
5155 		    hdr->b_l1hdr.b_state);
5156 	}
5157 }
5158 
5159 /*
5160  * This routine is called by dbuf_hold() to update the arc_access() state
5161  * which otherwise would be skipped for entries in the dbuf cache.
5162  */
5163 void
5164 arc_buf_access(arc_buf_t *buf)
5165 {
5166 	arc_buf_hdr_t *hdr = buf->b_hdr;
5167 
5168 	/*
5169 	 * Avoid taking the hash_lock when possible as an optimization.
5170 	 * The header must be checked again under the hash_lock in order
5171 	 * to handle the case where it is concurrently being released.
5172 	 */
5173 	if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr))
5174 		return;
5175 
5176 	kmutex_t *hash_lock = HDR_LOCK(hdr);
5177 	mutex_enter(hash_lock);
5178 
5179 	if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5180 		mutex_exit(hash_lock);
5181 		ARCSTAT_BUMP(arcstat_access_skip);
5182 		return;
5183 	}
5184 
5185 	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5186 	    hdr->b_l1hdr.b_state == arc_mfu ||
5187 	    hdr->b_l1hdr.b_state == arc_uncached);
5188 
5189 	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5190 	arc_access(hdr, 0, B_TRUE);
5191 	mutex_exit(hash_lock);
5192 
5193 	ARCSTAT_BUMP(arcstat_hits);
5194 	ARCSTAT_CONDSTAT(B_TRUE /* demand */, demand, prefetch,
5195 	    !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
5196 }
5197 
5198 /* a generic arc_read_done_func_t which you can use */
5199 void
5200 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5201     arc_buf_t *buf, void *arg)
5202 {
5203 	(void) zio, (void) zb, (void) bp;
5204 
5205 	if (buf == NULL)
5206 		return;
5207 
5208 	memcpy(arg, buf->b_data, arc_buf_size(buf));
5209 	arc_buf_destroy(buf, arg);
5210 }
5211 
5212 /* a generic arc_read_done_func_t */
5213 void
5214 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5215     arc_buf_t *buf, void *arg)
5216 {
5217 	(void) zb, (void) bp;
5218 	arc_buf_t **bufp = arg;
5219 
5220 	if (buf == NULL) {
5221 		ASSERT(zio == NULL || zio->io_error != 0);
5222 		*bufp = NULL;
5223 	} else {
5224 		ASSERT(zio == NULL || zio->io_error == 0);
5225 		*bufp = buf;
5226 		ASSERT(buf->b_data != NULL);
5227 	}
5228 }
5229 
5230 static void
5231 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
5232 {
5233 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5234 		ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
5235 		ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF);
5236 	} else {
5237 		if (HDR_COMPRESSION_ENABLED(hdr)) {
5238 			ASSERT3U(arc_hdr_get_compress(hdr), ==,
5239 			    BP_GET_COMPRESS(bp));
5240 		}
5241 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5242 		ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
5243 		ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp));
5244 	}
5245 }
5246 
5247 static void
5248 arc_read_done(zio_t *zio)
5249 {
5250 	blkptr_t 	*bp = zio->io_bp;
5251 	arc_buf_hdr_t	*hdr = zio->io_private;
5252 	kmutex_t	*hash_lock = NULL;
5253 	arc_callback_t	*callback_list;
5254 	arc_callback_t	*acb;
5255 
5256 	/*
5257 	 * The hdr was inserted into hash-table and removed from lists
5258 	 * prior to starting I/O.  We should find this header, since
5259 	 * it's in the hash table, and it should be legit since it's
5260 	 * not possible to evict it during the I/O.  The only possible
5261 	 * reason for it not to be found is if we were freed during the
5262 	 * read.
5263 	 */
5264 	if (HDR_IN_HASH_TABLE(hdr)) {
5265 		arc_buf_hdr_t *found;
5266 
5267 		ASSERT3U(hdr->b_birth, ==, BP_GET_BIRTH(zio->io_bp));
5268 		ASSERT3U(hdr->b_dva.dva_word[0], ==,
5269 		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
5270 		ASSERT3U(hdr->b_dva.dva_word[1], ==,
5271 		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
5272 
5273 		found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock);
5274 
5275 		ASSERT((found == hdr &&
5276 		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5277 		    (found == hdr && HDR_L2_READING(hdr)));
5278 		ASSERT3P(hash_lock, !=, NULL);
5279 	}
5280 
5281 	if (BP_IS_PROTECTED(bp)) {
5282 		hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
5283 		hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
5284 		zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
5285 		    hdr->b_crypt_hdr.b_iv);
5286 
5287 		if (zio->io_error == 0) {
5288 			if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) {
5289 				void *tmpbuf;
5290 
5291 				tmpbuf = abd_borrow_buf_copy(zio->io_abd,
5292 				    sizeof (zil_chain_t));
5293 				zio_crypt_decode_mac_zil(tmpbuf,
5294 				    hdr->b_crypt_hdr.b_mac);
5295 				abd_return_buf(zio->io_abd, tmpbuf,
5296 				    sizeof (zil_chain_t));
5297 			} else {
5298 				zio_crypt_decode_mac_bp(bp,
5299 				    hdr->b_crypt_hdr.b_mac);
5300 			}
5301 		}
5302 	}
5303 
5304 	if (zio->io_error == 0) {
5305 		/* byteswap if necessary */
5306 		if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5307 			if (BP_GET_LEVEL(zio->io_bp) > 0) {
5308 				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5309 			} else {
5310 				hdr->b_l1hdr.b_byteswap =
5311 				    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5312 			}
5313 		} else {
5314 			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5315 		}
5316 		if (!HDR_L2_READING(hdr)) {
5317 			hdr->b_complevel = zio->io_prop.zp_complevel;
5318 		}
5319 	}
5320 
5321 	arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
5322 	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
5323 		arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
5324 
5325 	callback_list = hdr->b_l1hdr.b_acb;
5326 	ASSERT3P(callback_list, !=, NULL);
5327 	hdr->b_l1hdr.b_acb = NULL;
5328 
5329 	/*
5330 	 * If a read request has a callback (i.e. acb_done is not NULL), then we
5331 	 * make a buf containing the data according to the parameters which were
5332 	 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5333 	 * aren't needlessly decompressing the data multiple times.
5334 	 */
5335 	int callback_cnt = 0;
5336 	for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5337 
5338 		/* We need the last one to call below in original order. */
5339 		callback_list = acb;
5340 
5341 		if (!acb->acb_done || acb->acb_nobuf)
5342 			continue;
5343 
5344 		callback_cnt++;
5345 
5346 		if (zio->io_error != 0)
5347 			continue;
5348 
5349 		int error = arc_buf_alloc_impl(hdr, zio->io_spa,
5350 		    &acb->acb_zb, acb->acb_private, acb->acb_encrypted,
5351 		    acb->acb_compressed, acb->acb_noauth, B_TRUE,
5352 		    &acb->acb_buf);
5353 
5354 		/*
5355 		 * Assert non-speculative zios didn't fail because an
5356 		 * encryption key wasn't loaded
5357 		 */
5358 		ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) ||
5359 		    error != EACCES);
5360 
5361 		/*
5362 		 * If we failed to decrypt, report an error now (as the zio
5363 		 * layer would have done if it had done the transforms).
5364 		 */
5365 		if (error == ECKSUM) {
5366 			ASSERT(BP_IS_PROTECTED(bp));
5367 			error = SET_ERROR(EIO);
5368 			if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5369 				spa_log_error(zio->io_spa, &acb->acb_zb,
5370 				    BP_GET_LOGICAL_BIRTH(zio->io_bp));
5371 				(void) zfs_ereport_post(
5372 				    FM_EREPORT_ZFS_AUTHENTICATION,
5373 				    zio->io_spa, NULL, &acb->acb_zb, zio, 0);
5374 			}
5375 		}
5376 
5377 		if (error != 0) {
5378 			/*
5379 			 * Decompression or decryption failed.  Set
5380 			 * io_error so that when we call acb_done
5381 			 * (below), we will indicate that the read
5382 			 * failed. Note that in the unusual case
5383 			 * where one callback is compressed and another
5384 			 * uncompressed, we will mark all of them
5385 			 * as failed, even though the uncompressed
5386 			 * one can't actually fail.  In this case,
5387 			 * the hdr will not be anonymous, because
5388 			 * if there are multiple callbacks, it's
5389 			 * because multiple threads found the same
5390 			 * arc buf in the hash table.
5391 			 */
5392 			zio->io_error = error;
5393 		}
5394 	}
5395 
5396 	/*
5397 	 * If there are multiple callbacks, we must have the hash lock,
5398 	 * because the only way for multiple threads to find this hdr is
5399 	 * in the hash table.  This ensures that if there are multiple
5400 	 * callbacks, the hdr is not anonymous.  If it were anonymous,
5401 	 * we couldn't use arc_buf_destroy() in the error case below.
5402 	 */
5403 	ASSERT(callback_cnt < 2 || hash_lock != NULL);
5404 
5405 	if (zio->io_error == 0) {
5406 		arc_hdr_verify(hdr, zio->io_bp);
5407 	} else {
5408 		arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5409 		if (hdr->b_l1hdr.b_state != arc_anon)
5410 			arc_change_state(arc_anon, hdr);
5411 		if (HDR_IN_HASH_TABLE(hdr))
5412 			buf_hash_remove(hdr);
5413 	}
5414 
5415 	arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5416 	(void) remove_reference(hdr, hdr);
5417 
5418 	if (hash_lock != NULL)
5419 		mutex_exit(hash_lock);
5420 
5421 	/* execute each callback and free its structure */
5422 	while ((acb = callback_list) != NULL) {
5423 		if (acb->acb_done != NULL) {
5424 			if (zio->io_error != 0 && acb->acb_buf != NULL) {
5425 				/*
5426 				 * If arc_buf_alloc_impl() fails during
5427 				 * decompression, the buf will still be
5428 				 * allocated, and needs to be freed here.
5429 				 */
5430 				arc_buf_destroy(acb->acb_buf,
5431 				    acb->acb_private);
5432 				acb->acb_buf = NULL;
5433 			}
5434 			acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
5435 			    acb->acb_buf, acb->acb_private);
5436 		}
5437 
5438 		if (acb->acb_zio_dummy != NULL) {
5439 			acb->acb_zio_dummy->io_error = zio->io_error;
5440 			zio_nowait(acb->acb_zio_dummy);
5441 		}
5442 
5443 		callback_list = acb->acb_prev;
5444 		if (acb->acb_wait) {
5445 			mutex_enter(&acb->acb_wait_lock);
5446 			acb->acb_wait_error = zio->io_error;
5447 			acb->acb_wait = B_FALSE;
5448 			cv_signal(&acb->acb_wait_cv);
5449 			mutex_exit(&acb->acb_wait_lock);
5450 			/* acb will be freed by the waiting thread. */
5451 		} else {
5452 			kmem_free(acb, sizeof (arc_callback_t));
5453 		}
5454 	}
5455 }
5456 
5457 /*
5458  * "Read" the block at the specified DVA (in bp) via the
5459  * cache.  If the block is found in the cache, invoke the provided
5460  * callback immediately and return.  Note that the `zio' parameter
5461  * in the callback will be NULL in this case, since no IO was
5462  * required.  If the block is not in the cache pass the read request
5463  * on to the spa with a substitute callback function, so that the
5464  * requested block will be added to the cache.
5465  *
5466  * If a read request arrives for a block that has a read in-progress,
5467  * either wait for the in-progress read to complete (and return the
5468  * results); or, if this is a read with a "done" func, add a record
5469  * to the read to invoke the "done" func when the read completes,
5470  * and return; or just return.
5471  *
5472  * arc_read_done() will invoke all the requested "done" functions
5473  * for readers of this block.
5474  */
5475 int
5476 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
5477     arc_read_done_func_t *done, void *private, zio_priority_t priority,
5478     int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5479 {
5480 	arc_buf_hdr_t *hdr = NULL;
5481 	kmutex_t *hash_lock = NULL;
5482 	zio_t *rzio;
5483 	uint64_t guid = spa_load_guid(spa);
5484 	boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0;
5485 	boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) &&
5486 	    (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5487 	boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) &&
5488 	    (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5489 	boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp);
5490 	boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF;
5491 	arc_buf_t *buf = NULL;
5492 	int rc = 0;
5493 
5494 	ASSERT(!embedded_bp ||
5495 	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5496 	ASSERT(!BP_IS_HOLE(bp));
5497 	ASSERT(!BP_IS_REDACTED(bp));
5498 
5499 	/*
5500 	 * Normally SPL_FSTRANS will already be set since kernel threads which
5501 	 * expect to call the DMU interfaces will set it when created.  System
5502 	 * calls are similarly handled by setting/cleaning the bit in the
5503 	 * registered callback (module/os/.../zfs/zpl_*).
5504 	 *
5505 	 * External consumers such as Lustre which call the exported DMU
5506 	 * interfaces may not have set SPL_FSTRANS.  To avoid a deadlock
5507 	 * on the hash_lock always set and clear the bit.
5508 	 */
5509 	fstrans_cookie_t cookie = spl_fstrans_mark();
5510 top:
5511 	/*
5512 	 * Verify the block pointer contents are reasonable.  This should
5513 	 * always be the case since the blkptr is protected by a checksum.
5514 	 * However, if there is damage it's desirable to detect this early
5515 	 * and treat it as a checksum error.  This allows an alternate blkptr
5516 	 * to be tried when one is available (e.g. ditto blocks).
5517 	 */
5518 	if (!zfs_blkptr_verify(spa, bp, (zio_flags & ZIO_FLAG_CONFIG_WRITER) ?
5519 	    BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
5520 		rc = SET_ERROR(ECKSUM);
5521 		goto done;
5522 	}
5523 
5524 	if (!embedded_bp) {
5525 		/*
5526 		 * Embedded BP's have no DVA and require no I/O to "read".
5527 		 * Create an anonymous arc buf to back it.
5528 		 */
5529 		hdr = buf_hash_find(guid, bp, &hash_lock);
5530 	}
5531 
5532 	/*
5533 	 * Determine if we have an L1 cache hit or a cache miss. For simplicity
5534 	 * we maintain encrypted data separately from compressed / uncompressed
5535 	 * data. If the user is requesting raw encrypted data and we don't have
5536 	 * that in the header we will read from disk to guarantee that we can
5537 	 * get it even if the encryption keys aren't loaded.
5538 	 */
5539 	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) ||
5540 	    (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) {
5541 		boolean_t is_data = !HDR_ISTYPE_METADATA(hdr);
5542 
5543 		if (HDR_IO_IN_PROGRESS(hdr)) {
5544 			if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
5545 				mutex_exit(hash_lock);
5546 				ARCSTAT_BUMP(arcstat_cached_only_in_progress);
5547 				rc = SET_ERROR(ENOENT);
5548 				goto done;
5549 			}
5550 
5551 			zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
5552 			ASSERT3P(head_zio, !=, NULL);
5553 			if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5554 			    priority == ZIO_PRIORITY_SYNC_READ) {
5555 				/*
5556 				 * This is a sync read that needs to wait for
5557 				 * an in-flight async read. Request that the
5558 				 * zio have its priority upgraded.
5559 				 */
5560 				zio_change_priority(head_zio, priority);
5561 				DTRACE_PROBE1(arc__async__upgrade__sync,
5562 				    arc_buf_hdr_t *, hdr);
5563 				ARCSTAT_BUMP(arcstat_async_upgrade_sync);
5564 			}
5565 
5566 			DTRACE_PROBE1(arc__iohit, arc_buf_hdr_t *, hdr);
5567 			arc_access(hdr, *arc_flags, B_FALSE);
5568 
5569 			/*
5570 			 * If there are multiple threads reading the same block
5571 			 * and that block is not yet in the ARC, then only one
5572 			 * thread will do the physical I/O and all other
5573 			 * threads will wait until that I/O completes.
5574 			 * Synchronous reads use the acb_wait_cv whereas nowait
5575 			 * reads register a callback. Both are signalled/called
5576 			 * in arc_read_done.
5577 			 *
5578 			 * Errors of the physical I/O may need to be propagated.
5579 			 * Synchronous read errors are returned here from
5580 			 * arc_read_done via acb_wait_error.  Nowait reads
5581 			 * attach the acb_zio_dummy zio to pio and
5582 			 * arc_read_done propagates the physical I/O's io_error
5583 			 * to acb_zio_dummy, and thereby to pio.
5584 			 */
5585 			arc_callback_t *acb = NULL;
5586 			if (done || pio || *arc_flags & ARC_FLAG_WAIT) {
5587 				acb = kmem_zalloc(sizeof (arc_callback_t),
5588 				    KM_SLEEP);
5589 				acb->acb_done = done;
5590 				acb->acb_private = private;
5591 				acb->acb_compressed = compressed_read;
5592 				acb->acb_encrypted = encrypted_read;
5593 				acb->acb_noauth = noauth_read;
5594 				acb->acb_nobuf = no_buf;
5595 				if (*arc_flags & ARC_FLAG_WAIT) {
5596 					acb->acb_wait = B_TRUE;
5597 					mutex_init(&acb->acb_wait_lock, NULL,
5598 					    MUTEX_DEFAULT, NULL);
5599 					cv_init(&acb->acb_wait_cv, NULL,
5600 					    CV_DEFAULT, NULL);
5601 				}
5602 				acb->acb_zb = *zb;
5603 				if (pio != NULL) {
5604 					acb->acb_zio_dummy = zio_null(pio,
5605 					    spa, NULL, NULL, NULL, zio_flags);
5606 				}
5607 				acb->acb_zio_head = head_zio;
5608 				acb->acb_next = hdr->b_l1hdr.b_acb;
5609 				hdr->b_l1hdr.b_acb->acb_prev = acb;
5610 				hdr->b_l1hdr.b_acb = acb;
5611 			}
5612 			mutex_exit(hash_lock);
5613 
5614 			ARCSTAT_BUMP(arcstat_iohits);
5615 			ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
5616 			    demand, prefetch, is_data, data, metadata, iohits);
5617 
5618 			if (*arc_flags & ARC_FLAG_WAIT) {
5619 				mutex_enter(&acb->acb_wait_lock);
5620 				while (acb->acb_wait) {
5621 					cv_wait(&acb->acb_wait_cv,
5622 					    &acb->acb_wait_lock);
5623 				}
5624 				rc = acb->acb_wait_error;
5625 				mutex_exit(&acb->acb_wait_lock);
5626 				mutex_destroy(&acb->acb_wait_lock);
5627 				cv_destroy(&acb->acb_wait_cv);
5628 				kmem_free(acb, sizeof (arc_callback_t));
5629 			}
5630 			goto out;
5631 		}
5632 
5633 		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5634 		    hdr->b_l1hdr.b_state == arc_mfu ||
5635 		    hdr->b_l1hdr.b_state == arc_uncached);
5636 
5637 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5638 		arc_access(hdr, *arc_flags, B_TRUE);
5639 
5640 		if (done && !no_buf) {
5641 			ASSERT(!embedded_bp || !BP_IS_HOLE(bp));
5642 
5643 			/* Get a buf with the desired data in it. */
5644 			rc = arc_buf_alloc_impl(hdr, spa, zb, private,
5645 			    encrypted_read, compressed_read, noauth_read,
5646 			    B_TRUE, &buf);
5647 			if (rc == ECKSUM) {
5648 				/*
5649 				 * Convert authentication and decryption errors
5650 				 * to EIO (and generate an ereport if needed)
5651 				 * before leaving the ARC.
5652 				 */
5653 				rc = SET_ERROR(EIO);
5654 				if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5655 					spa_log_error(spa, zb, hdr->b_birth);
5656 					(void) zfs_ereport_post(
5657 					    FM_EREPORT_ZFS_AUTHENTICATION,
5658 					    spa, NULL, zb, NULL, 0);
5659 				}
5660 			}
5661 			if (rc != 0) {
5662 				arc_buf_destroy_impl(buf);
5663 				buf = NULL;
5664 				(void) remove_reference(hdr, private);
5665 			}
5666 
5667 			/* assert any errors weren't due to unloaded keys */
5668 			ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
5669 			    rc != EACCES);
5670 		}
5671 		mutex_exit(hash_lock);
5672 		ARCSTAT_BUMP(arcstat_hits);
5673 		ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
5674 		    demand, prefetch, is_data, data, metadata, hits);
5675 		*arc_flags |= ARC_FLAG_CACHED;
5676 		goto done;
5677 	} else {
5678 		uint64_t lsize = BP_GET_LSIZE(bp);
5679 		uint64_t psize = BP_GET_PSIZE(bp);
5680 		arc_callback_t *acb;
5681 		vdev_t *vd = NULL;
5682 		uint64_t addr = 0;
5683 		boolean_t devw = B_FALSE;
5684 		uint64_t size;
5685 		abd_t *hdr_abd;
5686 		int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0;
5687 		arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
5688 
5689 		if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
5690 			if (hash_lock != NULL)
5691 				mutex_exit(hash_lock);
5692 			rc = SET_ERROR(ENOENT);
5693 			goto done;
5694 		}
5695 
5696 		if (hdr == NULL) {
5697 			/*
5698 			 * This block is not in the cache or it has
5699 			 * embedded data.
5700 			 */
5701 			arc_buf_hdr_t *exists = NULL;
5702 			hdr = arc_hdr_alloc(guid, psize, lsize,
5703 			    BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type);
5704 
5705 			if (!embedded_bp) {
5706 				hdr->b_dva = *BP_IDENTITY(bp);
5707 				hdr->b_birth = BP_GET_BIRTH(bp);
5708 				exists = buf_hash_insert(hdr, &hash_lock);
5709 			}
5710 			if (exists != NULL) {
5711 				/* somebody beat us to the hash insert */
5712 				mutex_exit(hash_lock);
5713 				buf_discard_identity(hdr);
5714 				arc_hdr_destroy(hdr);
5715 				goto top; /* restart the IO request */
5716 			}
5717 		} else {
5718 			/*
5719 			 * This block is in the ghost cache or encrypted data
5720 			 * was requested and we didn't have it. If it was
5721 			 * L2-only (and thus didn't have an L1 hdr),
5722 			 * we realloc the header to add an L1 hdr.
5723 			 */
5724 			if (!HDR_HAS_L1HDR(hdr)) {
5725 				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
5726 				    hdr_full_cache);
5727 			}
5728 
5729 			if (GHOST_STATE(hdr->b_l1hdr.b_state)) {
5730 				ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5731 				ASSERT(!HDR_HAS_RABD(hdr));
5732 				ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5733 				ASSERT0(zfs_refcount_count(
5734 				    &hdr->b_l1hdr.b_refcnt));
5735 				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
5736 #ifdef ZFS_DEBUG
5737 				ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
5738 #endif
5739 			} else if (HDR_IO_IN_PROGRESS(hdr)) {
5740 				/*
5741 				 * If this header already had an IO in progress
5742 				 * and we are performing another IO to fetch
5743 				 * encrypted data we must wait until the first
5744 				 * IO completes so as not to confuse
5745 				 * arc_read_done(). This should be very rare
5746 				 * and so the performance impact shouldn't
5747 				 * matter.
5748 				 */
5749 				arc_callback_t *acb = kmem_zalloc(
5750 				    sizeof (arc_callback_t), KM_SLEEP);
5751 				acb->acb_wait = B_TRUE;
5752 				mutex_init(&acb->acb_wait_lock, NULL,
5753 				    MUTEX_DEFAULT, NULL);
5754 				cv_init(&acb->acb_wait_cv, NULL, CV_DEFAULT,
5755 				    NULL);
5756 				acb->acb_zio_head =
5757 				    hdr->b_l1hdr.b_acb->acb_zio_head;
5758 				acb->acb_next = hdr->b_l1hdr.b_acb;
5759 				hdr->b_l1hdr.b_acb->acb_prev = acb;
5760 				hdr->b_l1hdr.b_acb = acb;
5761 				mutex_exit(hash_lock);
5762 				mutex_enter(&acb->acb_wait_lock);
5763 				while (acb->acb_wait) {
5764 					cv_wait(&acb->acb_wait_cv,
5765 					    &acb->acb_wait_lock);
5766 				}
5767 				mutex_exit(&acb->acb_wait_lock);
5768 				mutex_destroy(&acb->acb_wait_lock);
5769 				cv_destroy(&acb->acb_wait_cv);
5770 				kmem_free(acb, sizeof (arc_callback_t));
5771 				goto top;
5772 			}
5773 		}
5774 		if (*arc_flags & ARC_FLAG_UNCACHED) {
5775 			arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED);
5776 			if (!encrypted_read)
5777 				alloc_flags |= ARC_HDR_ALLOC_LINEAR;
5778 		}
5779 
5780 		/*
5781 		 * Take additional reference for IO_IN_PROGRESS.  It stops
5782 		 * arc_access() from putting this header without any buffers
5783 		 * and so other references but obviously nonevictable onto
5784 		 * the evictable list of MRU or MFU state.
5785 		 */
5786 		add_reference(hdr, hdr);
5787 		if (!embedded_bp)
5788 			arc_access(hdr, *arc_flags, B_FALSE);
5789 		arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5790 		arc_hdr_alloc_abd(hdr, alloc_flags);
5791 		if (encrypted_read) {
5792 			ASSERT(HDR_HAS_RABD(hdr));
5793 			size = HDR_GET_PSIZE(hdr);
5794 			hdr_abd = hdr->b_crypt_hdr.b_rabd;
5795 			zio_flags |= ZIO_FLAG_RAW;
5796 		} else {
5797 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5798 			size = arc_hdr_size(hdr);
5799 			hdr_abd = hdr->b_l1hdr.b_pabd;
5800 
5801 			if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
5802 				zio_flags |= ZIO_FLAG_RAW_COMPRESS;
5803 			}
5804 
5805 			/*
5806 			 * For authenticated bp's, we do not ask the ZIO layer
5807 			 * to authenticate them since this will cause the entire
5808 			 * IO to fail if the key isn't loaded. Instead, we
5809 			 * defer authentication until arc_buf_fill(), which will
5810 			 * verify the data when the key is available.
5811 			 */
5812 			if (BP_IS_AUTHENTICATED(bp))
5813 				zio_flags |= ZIO_FLAG_RAW_ENCRYPT;
5814 		}
5815 
5816 		if (BP_IS_AUTHENTICATED(bp))
5817 			arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
5818 		if (BP_GET_LEVEL(bp) > 0)
5819 			arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
5820 		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
5821 
5822 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
5823 		acb->acb_done = done;
5824 		acb->acb_private = private;
5825 		acb->acb_compressed = compressed_read;
5826 		acb->acb_encrypted = encrypted_read;
5827 		acb->acb_noauth = noauth_read;
5828 		acb->acb_zb = *zb;
5829 
5830 		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5831 		hdr->b_l1hdr.b_acb = acb;
5832 
5833 		if (HDR_HAS_L2HDR(hdr) &&
5834 		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
5835 			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
5836 			addr = hdr->b_l2hdr.b_daddr;
5837 			/*
5838 			 * Lock out L2ARC device removal.
5839 			 */
5840 			if (vdev_is_dead(vd) ||
5841 			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
5842 				vd = NULL;
5843 		}
5844 
5845 		/*
5846 		 * We count both async reads and scrub IOs as asynchronous so
5847 		 * that both can be upgraded in the event of a cache hit while
5848 		 * the read IO is still in-flight.
5849 		 */
5850 		if (priority == ZIO_PRIORITY_ASYNC_READ ||
5851 		    priority == ZIO_PRIORITY_SCRUB)
5852 			arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5853 		else
5854 			arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5855 
5856 		/*
5857 		 * At this point, we have a level 1 cache miss or a blkptr
5858 		 * with embedded data.  Try again in L2ARC if possible.
5859 		 */
5860 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
5861 
5862 		/*
5863 		 * Skip ARC stat bump for block pointers with embedded
5864 		 * data. The data are read from the blkptr itself via
5865 		 * decode_embedded_bp_compressed().
5866 		 */
5867 		if (!embedded_bp) {
5868 			DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr,
5869 			    blkptr_t *, bp, uint64_t, lsize,
5870 			    zbookmark_phys_t *, zb);
5871 			ARCSTAT_BUMP(arcstat_misses);
5872 			ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
5873 			    demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data,
5874 			    metadata, misses);
5875 			zfs_racct_read(size, 1);
5876 		}
5877 
5878 		/* Check if the spa even has l2 configured */
5879 		const boolean_t spa_has_l2 = l2arc_ndev != 0 &&
5880 		    spa->spa_l2cache.sav_count > 0;
5881 
5882 		if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) {
5883 			/*
5884 			 * Read from the L2ARC if the following are true:
5885 			 * 1. The L2ARC vdev was previously cached.
5886 			 * 2. This buffer still has L2ARC metadata.
5887 			 * 3. This buffer isn't currently writing to the L2ARC.
5888 			 * 4. The L2ARC entry wasn't evicted, which may
5889 			 *    also have invalidated the vdev.
5890 			 */
5891 			if (HDR_HAS_L2HDR(hdr) &&
5892 			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr)) {
5893 				l2arc_read_callback_t *cb;
5894 				abd_t *abd;
5895 				uint64_t asize;
5896 
5897 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
5898 				ARCSTAT_BUMP(arcstat_l2_hits);
5899 				hdr->b_l2hdr.b_hits++;
5900 
5901 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
5902 				    KM_SLEEP);
5903 				cb->l2rcb_hdr = hdr;
5904 				cb->l2rcb_bp = *bp;
5905 				cb->l2rcb_zb = *zb;
5906 				cb->l2rcb_flags = zio_flags;
5907 
5908 				/*
5909 				 * When Compressed ARC is disabled, but the
5910 				 * L2ARC block is compressed, arc_hdr_size()
5911 				 * will have returned LSIZE rather than PSIZE.
5912 				 */
5913 				if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
5914 				    !HDR_COMPRESSION_ENABLED(hdr) &&
5915 				    HDR_GET_PSIZE(hdr) != 0) {
5916 					size = HDR_GET_PSIZE(hdr);
5917 				}
5918 
5919 				asize = vdev_psize_to_asize(vd, size);
5920 				if (asize != size) {
5921 					abd = abd_alloc_for_io(asize,
5922 					    HDR_ISTYPE_METADATA(hdr));
5923 					cb->l2rcb_abd = abd;
5924 				} else {
5925 					abd = hdr_abd;
5926 				}
5927 
5928 				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
5929 				    addr + asize <= vd->vdev_psize -
5930 				    VDEV_LABEL_END_SIZE);
5931 
5932 				/*
5933 				 * l2arc read.  The SCL_L2ARC lock will be
5934 				 * released by l2arc_read_done().
5935 				 * Issue a null zio if the underlying buffer
5936 				 * was squashed to zero size by compression.
5937 				 */
5938 				ASSERT3U(arc_hdr_get_compress(hdr), !=,
5939 				    ZIO_COMPRESS_EMPTY);
5940 				rzio = zio_read_phys(pio, vd, addr,
5941 				    asize, abd,
5942 				    ZIO_CHECKSUM_OFF,
5943 				    l2arc_read_done, cb, priority,
5944 				    zio_flags | ZIO_FLAG_CANFAIL |
5945 				    ZIO_FLAG_DONT_PROPAGATE |
5946 				    ZIO_FLAG_DONT_RETRY, B_FALSE);
5947 				acb->acb_zio_head = rzio;
5948 
5949 				if (hash_lock != NULL)
5950 					mutex_exit(hash_lock);
5951 
5952 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
5953 				    zio_t *, rzio);
5954 				ARCSTAT_INCR(arcstat_l2_read_bytes,
5955 				    HDR_GET_PSIZE(hdr));
5956 
5957 				if (*arc_flags & ARC_FLAG_NOWAIT) {
5958 					zio_nowait(rzio);
5959 					goto out;
5960 				}
5961 
5962 				ASSERT(*arc_flags & ARC_FLAG_WAIT);
5963 				if (zio_wait(rzio) == 0)
5964 					goto out;
5965 
5966 				/* l2arc read error; goto zio_read() */
5967 				if (hash_lock != NULL)
5968 					mutex_enter(hash_lock);
5969 			} else {
5970 				DTRACE_PROBE1(l2arc__miss,
5971 				    arc_buf_hdr_t *, hdr);
5972 				ARCSTAT_BUMP(arcstat_l2_misses);
5973 				if (HDR_L2_WRITING(hdr))
5974 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
5975 				spa_config_exit(spa, SCL_L2ARC, vd);
5976 			}
5977 		} else {
5978 			if (vd != NULL)
5979 				spa_config_exit(spa, SCL_L2ARC, vd);
5980 
5981 			/*
5982 			 * Only a spa with l2 should contribute to l2
5983 			 * miss stats.  (Including the case of having a
5984 			 * faulted cache device - that's also a miss.)
5985 			 */
5986 			if (spa_has_l2) {
5987 				/*
5988 				 * Skip ARC stat bump for block pointers with
5989 				 * embedded data. The data are read from the
5990 				 * blkptr itself via
5991 				 * decode_embedded_bp_compressed().
5992 				 */
5993 				if (!embedded_bp) {
5994 					DTRACE_PROBE1(l2arc__miss,
5995 					    arc_buf_hdr_t *, hdr);
5996 					ARCSTAT_BUMP(arcstat_l2_misses);
5997 				}
5998 			}
5999 		}
6000 
6001 		rzio = zio_read(pio, spa, bp, hdr_abd, size,
6002 		    arc_read_done, hdr, priority, zio_flags, zb);
6003 		acb->acb_zio_head = rzio;
6004 
6005 		if (hash_lock != NULL)
6006 			mutex_exit(hash_lock);
6007 
6008 		if (*arc_flags & ARC_FLAG_WAIT) {
6009 			rc = zio_wait(rzio);
6010 			goto out;
6011 		}
6012 
6013 		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
6014 		zio_nowait(rzio);
6015 	}
6016 
6017 out:
6018 	/* embedded bps don't actually go to disk */
6019 	if (!embedded_bp)
6020 		spa_read_history_add(spa, zb, *arc_flags);
6021 	spl_fstrans_unmark(cookie);
6022 	return (rc);
6023 
6024 done:
6025 	if (done)
6026 		done(NULL, zb, bp, buf, private);
6027 	if (pio && rc != 0) {
6028 		zio_t *zio = zio_null(pio, spa, NULL, NULL, NULL, zio_flags);
6029 		zio->io_error = rc;
6030 		zio_nowait(zio);
6031 	}
6032 	goto out;
6033 }
6034 
6035 arc_prune_t *
6036 arc_add_prune_callback(arc_prune_func_t *func, void *private)
6037 {
6038 	arc_prune_t *p;
6039 
6040 	p = kmem_alloc(sizeof (*p), KM_SLEEP);
6041 	p->p_pfunc = func;
6042 	p->p_private = private;
6043 	list_link_init(&p->p_node);
6044 	zfs_refcount_create(&p->p_refcnt);
6045 
6046 	mutex_enter(&arc_prune_mtx);
6047 	zfs_refcount_add(&p->p_refcnt, &arc_prune_list);
6048 	list_insert_head(&arc_prune_list, p);
6049 	mutex_exit(&arc_prune_mtx);
6050 
6051 	return (p);
6052 }
6053 
6054 void
6055 arc_remove_prune_callback(arc_prune_t *p)
6056 {
6057 	boolean_t wait = B_FALSE;
6058 	mutex_enter(&arc_prune_mtx);
6059 	list_remove(&arc_prune_list, p);
6060 	if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
6061 		wait = B_TRUE;
6062 	mutex_exit(&arc_prune_mtx);
6063 
6064 	/* wait for arc_prune_task to finish */
6065 	if (wait)
6066 		taskq_wait_outstanding(arc_prune_taskq, 0);
6067 	ASSERT0(zfs_refcount_count(&p->p_refcnt));
6068 	zfs_refcount_destroy(&p->p_refcnt);
6069 	kmem_free(p, sizeof (*p));
6070 }
6071 
6072 /*
6073  * Helper function for arc_prune_async() it is responsible for safely
6074  * handling the execution of a registered arc_prune_func_t.
6075  */
6076 static void
6077 arc_prune_task(void *ptr)
6078 {
6079 	arc_prune_t *ap = (arc_prune_t *)ptr;
6080 	arc_prune_func_t *func = ap->p_pfunc;
6081 
6082 	if (func != NULL)
6083 		func(ap->p_adjust, ap->p_private);
6084 
6085 	(void) zfs_refcount_remove(&ap->p_refcnt, func);
6086 }
6087 
6088 /*
6089  * Notify registered consumers they must drop holds on a portion of the ARC
6090  * buffers they reference.  This provides a mechanism to ensure the ARC can
6091  * honor the metadata limit and reclaim otherwise pinned ARC buffers.
6092  *
6093  * This operation is performed asynchronously so it may be safely called
6094  * in the context of the arc_reclaim_thread().  A reference is taken here
6095  * for each registered arc_prune_t and the arc_prune_task() is responsible
6096  * for releasing it once the registered arc_prune_func_t has completed.
6097  */
6098 static void
6099 arc_prune_async(uint64_t adjust)
6100 {
6101 	arc_prune_t *ap;
6102 
6103 	mutex_enter(&arc_prune_mtx);
6104 	for (ap = list_head(&arc_prune_list); ap != NULL;
6105 	    ap = list_next(&arc_prune_list, ap)) {
6106 
6107 		if (zfs_refcount_count(&ap->p_refcnt) >= 2)
6108 			continue;
6109 
6110 		zfs_refcount_add(&ap->p_refcnt, ap->p_pfunc);
6111 		ap->p_adjust = adjust;
6112 		if (taskq_dispatch(arc_prune_taskq, arc_prune_task,
6113 		    ap, TQ_SLEEP) == TASKQID_INVALID) {
6114 			(void) zfs_refcount_remove(&ap->p_refcnt, ap->p_pfunc);
6115 			continue;
6116 		}
6117 		ARCSTAT_BUMP(arcstat_prune);
6118 	}
6119 	mutex_exit(&arc_prune_mtx);
6120 }
6121 
6122 /*
6123  * Notify the arc that a block was freed, and thus will never be used again.
6124  */
6125 void
6126 arc_freed(spa_t *spa, const blkptr_t *bp)
6127 {
6128 	arc_buf_hdr_t *hdr;
6129 	kmutex_t *hash_lock;
6130 	uint64_t guid = spa_load_guid(spa);
6131 
6132 	ASSERT(!BP_IS_EMBEDDED(bp));
6133 
6134 	hdr = buf_hash_find(guid, bp, &hash_lock);
6135 	if (hdr == NULL)
6136 		return;
6137 
6138 	/*
6139 	 * We might be trying to free a block that is still doing I/O
6140 	 * (i.e. prefetch) or has some other reference (i.e. a dedup-ed,
6141 	 * dmu_sync-ed block). A block may also have a reference if it is
6142 	 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6143 	 * have written the new block to its final resting place on disk but
6144 	 * without the dedup flag set. This would have left the hdr in the MRU
6145 	 * state and discoverable. When the txg finally syncs it detects that
6146 	 * the block was overridden in open context and issues an override I/O.
6147 	 * Since this is a dedup block, the override I/O will determine if the
6148 	 * block is already in the DDT. If so, then it will replace the io_bp
6149 	 * with the bp from the DDT and allow the I/O to finish. When the I/O
6150 	 * reaches the done callback, dbuf_write_override_done, it will
6151 	 * check to see if the io_bp and io_bp_override are identical.
6152 	 * If they are not, then it indicates that the bp was replaced with
6153 	 * the bp in the DDT and the override bp is freed. This allows
6154 	 * us to arrive here with a reference on a block that is being
6155 	 * freed. So if we have an I/O in progress, or a reference to
6156 	 * this hdr, then we don't destroy the hdr.
6157 	 */
6158 	if (!HDR_HAS_L1HDR(hdr) ||
6159 	    zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6160 		arc_change_state(arc_anon, hdr);
6161 		arc_hdr_destroy(hdr);
6162 		mutex_exit(hash_lock);
6163 	} else {
6164 		mutex_exit(hash_lock);
6165 	}
6166 
6167 }
6168 
6169 /*
6170  * Release this buffer from the cache, making it an anonymous buffer.  This
6171  * must be done after a read and prior to modifying the buffer contents.
6172  * If the buffer has more than one reference, we must make
6173  * a new hdr for the buffer.
6174  */
6175 void
6176 arc_release(arc_buf_t *buf, const void *tag)
6177 {
6178 	arc_buf_hdr_t *hdr = buf->b_hdr;
6179 
6180 	/*
6181 	 * It would be nice to assert that if its DMU metadata (level >
6182 	 * 0 || it's the dnode file), then it must be syncing context.
6183 	 * But we don't know that information at this level.
6184 	 */
6185 
6186 	ASSERT(HDR_HAS_L1HDR(hdr));
6187 
6188 	/*
6189 	 * We don't grab the hash lock prior to this check, because if
6190 	 * the buffer's header is in the arc_anon state, it won't be
6191 	 * linked into the hash table.
6192 	 */
6193 	if (hdr->b_l1hdr.b_state == arc_anon) {
6194 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6195 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
6196 		ASSERT(!HDR_HAS_L2HDR(hdr));
6197 
6198 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
6199 		ASSERT(ARC_BUF_LAST(buf));
6200 		ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
6201 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6202 
6203 		hdr->b_l1hdr.b_arc_access = 0;
6204 
6205 		/*
6206 		 * If the buf is being overridden then it may already
6207 		 * have a hdr that is not empty.
6208 		 */
6209 		buf_discard_identity(hdr);
6210 		arc_buf_thaw(buf);
6211 
6212 		return;
6213 	}
6214 
6215 	kmutex_t *hash_lock = HDR_LOCK(hdr);
6216 	mutex_enter(hash_lock);
6217 
6218 	/*
6219 	 * This assignment is only valid as long as the hash_lock is
6220 	 * held, we must be careful not to reference state or the
6221 	 * b_state field after dropping the lock.
6222 	 */
6223 	arc_state_t *state = hdr->b_l1hdr.b_state;
6224 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6225 	ASSERT3P(state, !=, arc_anon);
6226 
6227 	/* this buffer is not on any list */
6228 	ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
6229 
6230 	if (HDR_HAS_L2HDR(hdr)) {
6231 		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6232 
6233 		/*
6234 		 * We have to recheck this conditional again now that
6235 		 * we're holding the l2ad_mtx to prevent a race with
6236 		 * another thread which might be concurrently calling
6237 		 * l2arc_evict(). In that case, l2arc_evict() might have
6238 		 * destroyed the header's L2 portion as we were waiting
6239 		 * to acquire the l2ad_mtx.
6240 		 */
6241 		if (HDR_HAS_L2HDR(hdr))
6242 			arc_hdr_l2hdr_destroy(hdr);
6243 
6244 		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6245 	}
6246 
6247 	/*
6248 	 * Do we have more than one buf?
6249 	 */
6250 	if (hdr->b_l1hdr.b_buf != buf || !ARC_BUF_LAST(buf)) {
6251 		arc_buf_hdr_t *nhdr;
6252 		uint64_t spa = hdr->b_spa;
6253 		uint64_t psize = HDR_GET_PSIZE(hdr);
6254 		uint64_t lsize = HDR_GET_LSIZE(hdr);
6255 		boolean_t protected = HDR_PROTECTED(hdr);
6256 		enum zio_compress compress = arc_hdr_get_compress(hdr);
6257 		arc_buf_contents_t type = arc_buf_type(hdr);
6258 		VERIFY3U(hdr->b_type, ==, type);
6259 
6260 		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
6261 		VERIFY3S(remove_reference(hdr, tag), >, 0);
6262 
6263 		if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
6264 			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6265 			ASSERT(ARC_BUF_LAST(buf));
6266 		}
6267 
6268 		/*
6269 		 * Pull the data off of this hdr and attach it to
6270 		 * a new anonymous hdr. Also find the last buffer
6271 		 * in the hdr's buffer list.
6272 		 */
6273 		arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
6274 		ASSERT3P(lastbuf, !=, NULL);
6275 
6276 		/*
6277 		 * If the current arc_buf_t and the hdr are sharing their data
6278 		 * buffer, then we must stop sharing that block.
6279 		 */
6280 		if (ARC_BUF_SHARED(buf)) {
6281 			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6282 			ASSERT(!arc_buf_is_shared(lastbuf));
6283 
6284 			/*
6285 			 * First, sever the block sharing relationship between
6286 			 * buf and the arc_buf_hdr_t.
6287 			 */
6288 			arc_unshare_buf(hdr, buf);
6289 
6290 			/*
6291 			 * Now we need to recreate the hdr's b_pabd. Since we
6292 			 * have lastbuf handy, we try to share with it, but if
6293 			 * we can't then we allocate a new b_pabd and copy the
6294 			 * data from buf into it.
6295 			 */
6296 			if (arc_can_share(hdr, lastbuf)) {
6297 				arc_share_buf(hdr, lastbuf);
6298 			} else {
6299 				arc_hdr_alloc_abd(hdr, 0);
6300 				abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
6301 				    buf->b_data, psize);
6302 			}
6303 			VERIFY3P(lastbuf->b_data, !=, NULL);
6304 		} else if (HDR_SHARED_DATA(hdr)) {
6305 			/*
6306 			 * Uncompressed shared buffers are always at the end
6307 			 * of the list. Compressed buffers don't have the
6308 			 * same requirements. This makes it hard to
6309 			 * simply assert that the lastbuf is shared so
6310 			 * we rely on the hdr's compression flags to determine
6311 			 * if we have a compressed, shared buffer.
6312 			 */
6313 			ASSERT(arc_buf_is_shared(lastbuf) ||
6314 			    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
6315 			ASSERT(!arc_buf_is_shared(buf));
6316 		}
6317 
6318 		ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
6319 		ASSERT3P(state, !=, arc_l2c_only);
6320 
6321 		(void) zfs_refcount_remove_many(&state->arcs_size[type],
6322 		    arc_buf_size(buf), buf);
6323 
6324 		if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6325 			ASSERT3P(state, !=, arc_l2c_only);
6326 			(void) zfs_refcount_remove_many(
6327 			    &state->arcs_esize[type],
6328 			    arc_buf_size(buf), buf);
6329 		}
6330 
6331 		arc_cksum_verify(buf);
6332 		arc_buf_unwatch(buf);
6333 
6334 		/* if this is the last uncompressed buf free the checksum */
6335 		if (!arc_hdr_has_uncompressed_buf(hdr))
6336 			arc_cksum_free(hdr);
6337 
6338 		mutex_exit(hash_lock);
6339 
6340 		nhdr = arc_hdr_alloc(spa, psize, lsize, protected,
6341 		    compress, hdr->b_complevel, type);
6342 		ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
6343 		ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt));
6344 		VERIFY3U(nhdr->b_type, ==, type);
6345 		ASSERT(!HDR_SHARED_DATA(nhdr));
6346 
6347 		nhdr->b_l1hdr.b_buf = buf;
6348 		(void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
6349 		buf->b_hdr = nhdr;
6350 
6351 		(void) zfs_refcount_add_many(&arc_anon->arcs_size[type],
6352 		    arc_buf_size(buf), buf);
6353 	} else {
6354 		ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
6355 		/* protected by hash lock, or hdr is on arc_anon */
6356 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6357 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6358 		hdr->b_l1hdr.b_mru_hits = 0;
6359 		hdr->b_l1hdr.b_mru_ghost_hits = 0;
6360 		hdr->b_l1hdr.b_mfu_hits = 0;
6361 		hdr->b_l1hdr.b_mfu_ghost_hits = 0;
6362 		arc_change_state(arc_anon, hdr);
6363 		hdr->b_l1hdr.b_arc_access = 0;
6364 
6365 		mutex_exit(hash_lock);
6366 		buf_discard_identity(hdr);
6367 		arc_buf_thaw(buf);
6368 	}
6369 }
6370 
6371 int
6372 arc_released(arc_buf_t *buf)
6373 {
6374 	return (buf->b_data != NULL &&
6375 	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
6376 }
6377 
6378 #ifdef ZFS_DEBUG
6379 int
6380 arc_referenced(arc_buf_t *buf)
6381 {
6382 	return (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
6383 }
6384 #endif
6385 
6386 static void
6387 arc_write_ready(zio_t *zio)
6388 {
6389 	arc_write_callback_t *callback = zio->io_private;
6390 	arc_buf_t *buf = callback->awcb_buf;
6391 	arc_buf_hdr_t *hdr = buf->b_hdr;
6392 	blkptr_t *bp = zio->io_bp;
6393 	uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp);
6394 	fstrans_cookie_t cookie = spl_fstrans_mark();
6395 
6396 	ASSERT(HDR_HAS_L1HDR(hdr));
6397 	ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
6398 	ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
6399 
6400 	/*
6401 	 * If we're reexecuting this zio because the pool suspended, then
6402 	 * cleanup any state that was previously set the first time the
6403 	 * callback was invoked.
6404 	 */
6405 	if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
6406 		arc_cksum_free(hdr);
6407 		arc_buf_unwatch(buf);
6408 		if (hdr->b_l1hdr.b_pabd != NULL) {
6409 			if (ARC_BUF_SHARED(buf)) {
6410 				arc_unshare_buf(hdr, buf);
6411 			} else {
6412 				ASSERT(!arc_buf_is_shared(buf));
6413 				arc_hdr_free_abd(hdr, B_FALSE);
6414 			}
6415 		}
6416 
6417 		if (HDR_HAS_RABD(hdr))
6418 			arc_hdr_free_abd(hdr, B_TRUE);
6419 	}
6420 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6421 	ASSERT(!HDR_HAS_RABD(hdr));
6422 	ASSERT(!HDR_SHARED_DATA(hdr));
6423 	ASSERT(!arc_buf_is_shared(buf));
6424 
6425 	callback->awcb_ready(zio, buf, callback->awcb_private);
6426 
6427 	if (HDR_IO_IN_PROGRESS(hdr)) {
6428 		ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
6429 	} else {
6430 		arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6431 		add_reference(hdr, hdr); /* For IO_IN_PROGRESS. */
6432 	}
6433 
6434 	if (BP_IS_PROTECTED(bp)) {
6435 		/* ZIL blocks are written through zio_rewrite */
6436 		ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
6437 
6438 		if (BP_SHOULD_BYTESWAP(bp)) {
6439 			if (BP_GET_LEVEL(bp) > 0) {
6440 				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
6441 			} else {
6442 				hdr->b_l1hdr.b_byteswap =
6443 				    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
6444 			}
6445 		} else {
6446 			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
6447 		}
6448 
6449 		arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
6450 		hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
6451 		hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
6452 		zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
6453 		    hdr->b_crypt_hdr.b_iv);
6454 		zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
6455 	} else {
6456 		arc_hdr_clear_flags(hdr, ARC_FLAG_PROTECTED);
6457 	}
6458 
6459 	/*
6460 	 * If this block was written for raw encryption but the zio layer
6461 	 * ended up only authenticating it, adjust the buffer flags now.
6462 	 */
6463 	if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) {
6464 		arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6465 		buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6466 		if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF)
6467 			buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6468 	} else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) {
6469 		buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6470 		buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6471 	}
6472 
6473 	/* this must be done after the buffer flags are adjusted */
6474 	arc_cksum_compute(buf);
6475 
6476 	enum zio_compress compress;
6477 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
6478 		compress = ZIO_COMPRESS_OFF;
6479 	} else {
6480 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
6481 		compress = BP_GET_COMPRESS(bp);
6482 	}
6483 	HDR_SET_PSIZE(hdr, psize);
6484 	arc_hdr_set_compress(hdr, compress);
6485 	hdr->b_complevel = zio->io_prop.zp_complevel;
6486 
6487 	if (zio->io_error != 0 || psize == 0)
6488 		goto out;
6489 
6490 	/*
6491 	 * Fill the hdr with data. If the buffer is encrypted we have no choice
6492 	 * but to copy the data into b_radb. If the hdr is compressed, the data
6493 	 * we want is available from the zio, otherwise we can take it from
6494 	 * the buf.
6495 	 *
6496 	 * We might be able to share the buf's data with the hdr here. However,
6497 	 * doing so would cause the ARC to be full of linear ABDs if we write a
6498 	 * lot of shareable data. As a compromise, we check whether scattered
6499 	 * ABDs are allowed, and assume that if they are then the user wants
6500 	 * the ARC to be primarily filled with them regardless of the data being
6501 	 * written. Therefore, if they're allowed then we allocate one and copy
6502 	 * the data into it; otherwise, we share the data directly if we can.
6503 	 */
6504 	if (ARC_BUF_ENCRYPTED(buf)) {
6505 		ASSERT3U(psize, >, 0);
6506 		ASSERT(ARC_BUF_COMPRESSED(buf));
6507 		arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA |
6508 		    ARC_HDR_USE_RESERVE);
6509 		abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6510 	} else if (!(HDR_UNCACHED(hdr) ||
6511 	    abd_size_alloc_linear(arc_buf_size(buf))) ||
6512 	    !arc_can_share(hdr, buf)) {
6513 		/*
6514 		 * Ideally, we would always copy the io_abd into b_pabd, but the
6515 		 * user may have disabled compressed ARC, thus we must check the
6516 		 * hdr's compression setting rather than the io_bp's.
6517 		 */
6518 		if (BP_IS_ENCRYPTED(bp)) {
6519 			ASSERT3U(psize, >, 0);
6520 			arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA |
6521 			    ARC_HDR_USE_RESERVE);
6522 			abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6523 		} else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
6524 		    !ARC_BUF_COMPRESSED(buf)) {
6525 			ASSERT3U(psize, >, 0);
6526 			arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE);
6527 			abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
6528 		} else {
6529 			ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
6530 			arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE);
6531 			abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
6532 			    arc_buf_size(buf));
6533 		}
6534 	} else {
6535 		ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
6536 		ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
6537 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
6538 		ASSERT(ARC_BUF_LAST(buf));
6539 
6540 		arc_share_buf(hdr, buf);
6541 	}
6542 
6543 out:
6544 	arc_hdr_verify(hdr, bp);
6545 	spl_fstrans_unmark(cookie);
6546 }
6547 
6548 static void
6549 arc_write_children_ready(zio_t *zio)
6550 {
6551 	arc_write_callback_t *callback = zio->io_private;
6552 	arc_buf_t *buf = callback->awcb_buf;
6553 
6554 	callback->awcb_children_ready(zio, buf, callback->awcb_private);
6555 }
6556 
6557 static void
6558 arc_write_done(zio_t *zio)
6559 {
6560 	arc_write_callback_t *callback = zio->io_private;
6561 	arc_buf_t *buf = callback->awcb_buf;
6562 	arc_buf_hdr_t *hdr = buf->b_hdr;
6563 
6564 	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6565 
6566 	if (zio->io_error == 0) {
6567 		arc_hdr_verify(hdr, zio->io_bp);
6568 
6569 		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
6570 			buf_discard_identity(hdr);
6571 		} else {
6572 			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
6573 			hdr->b_birth = BP_GET_BIRTH(zio->io_bp);
6574 		}
6575 	} else {
6576 		ASSERT(HDR_EMPTY(hdr));
6577 	}
6578 
6579 	/*
6580 	 * If the block to be written was all-zero or compressed enough to be
6581 	 * embedded in the BP, no write was performed so there will be no
6582 	 * dva/birth/checksum.  The buffer must therefore remain anonymous
6583 	 * (and uncached).
6584 	 */
6585 	if (!HDR_EMPTY(hdr)) {
6586 		arc_buf_hdr_t *exists;
6587 		kmutex_t *hash_lock;
6588 
6589 		ASSERT3U(zio->io_error, ==, 0);
6590 
6591 		arc_cksum_verify(buf);
6592 
6593 		exists = buf_hash_insert(hdr, &hash_lock);
6594 		if (exists != NULL) {
6595 			/*
6596 			 * This can only happen if we overwrite for
6597 			 * sync-to-convergence, because we remove
6598 			 * buffers from the hash table when we arc_free().
6599 			 */
6600 			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
6601 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6602 					panic("bad overwrite, hdr=%p exists=%p",
6603 					    (void *)hdr, (void *)exists);
6604 				ASSERT(zfs_refcount_is_zero(
6605 				    &exists->b_l1hdr.b_refcnt));
6606 				arc_change_state(arc_anon, exists);
6607 				arc_hdr_destroy(exists);
6608 				mutex_exit(hash_lock);
6609 				exists = buf_hash_insert(hdr, &hash_lock);
6610 				ASSERT3P(exists, ==, NULL);
6611 			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
6612 				/* nopwrite */
6613 				ASSERT(zio->io_prop.zp_nopwrite);
6614 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6615 					panic("bad nopwrite, hdr=%p exists=%p",
6616 					    (void *)hdr, (void *)exists);
6617 			} else {
6618 				/* Dedup */
6619 				ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
6620 				ASSERT(ARC_BUF_LAST(hdr->b_l1hdr.b_buf));
6621 				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
6622 				ASSERT(BP_GET_DEDUP(zio->io_bp));
6623 				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
6624 			}
6625 		}
6626 		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6627 		VERIFY3S(remove_reference(hdr, hdr), >, 0);
6628 		/* if it's not anon, we are doing a scrub */
6629 		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
6630 			arc_access(hdr, 0, B_FALSE);
6631 		mutex_exit(hash_lock);
6632 	} else {
6633 		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6634 		VERIFY3S(remove_reference(hdr, hdr), >, 0);
6635 	}
6636 
6637 	callback->awcb_done(zio, buf, callback->awcb_private);
6638 
6639 	abd_free(zio->io_abd);
6640 	kmem_free(callback, sizeof (arc_write_callback_t));
6641 }
6642 
6643 zio_t *
6644 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
6645     blkptr_t *bp, arc_buf_t *buf, boolean_t uncached, boolean_t l2arc,
6646     const zio_prop_t *zp, arc_write_done_func_t *ready,
6647     arc_write_done_func_t *children_ready, arc_write_done_func_t *done,
6648     void *private, zio_priority_t priority, int zio_flags,
6649     const zbookmark_phys_t *zb)
6650 {
6651 	arc_buf_hdr_t *hdr = buf->b_hdr;
6652 	arc_write_callback_t *callback;
6653 	zio_t *zio;
6654 	zio_prop_t localprop = *zp;
6655 
6656 	ASSERT3P(ready, !=, NULL);
6657 	ASSERT3P(done, !=, NULL);
6658 	ASSERT(!HDR_IO_ERROR(hdr));
6659 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6660 	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6661 	ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
6662 	if (uncached)
6663 		arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED);
6664 	else if (l2arc)
6665 		arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6666 
6667 	if (ARC_BUF_ENCRYPTED(buf)) {
6668 		ASSERT(ARC_BUF_COMPRESSED(buf));
6669 		localprop.zp_encrypt = B_TRUE;
6670 		localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6671 		localprop.zp_complevel = hdr->b_complevel;
6672 		localprop.zp_byteorder =
6673 		    (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
6674 		    ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
6675 		memcpy(localprop.zp_salt, hdr->b_crypt_hdr.b_salt,
6676 		    ZIO_DATA_SALT_LEN);
6677 		memcpy(localprop.zp_iv, hdr->b_crypt_hdr.b_iv,
6678 		    ZIO_DATA_IV_LEN);
6679 		memcpy(localprop.zp_mac, hdr->b_crypt_hdr.b_mac,
6680 		    ZIO_DATA_MAC_LEN);
6681 		if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) {
6682 			localprop.zp_nopwrite = B_FALSE;
6683 			localprop.zp_copies =
6684 			    MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1);
6685 		}
6686 		zio_flags |= ZIO_FLAG_RAW;
6687 	} else if (ARC_BUF_COMPRESSED(buf)) {
6688 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
6689 		localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6690 		localprop.zp_complevel = hdr->b_complevel;
6691 		zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6692 	}
6693 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
6694 	callback->awcb_ready = ready;
6695 	callback->awcb_children_ready = children_ready;
6696 	callback->awcb_done = done;
6697 	callback->awcb_private = private;
6698 	callback->awcb_buf = buf;
6699 
6700 	/*
6701 	 * The hdr's b_pabd is now stale, free it now. A new data block
6702 	 * will be allocated when the zio pipeline calls arc_write_ready().
6703 	 */
6704 	if (hdr->b_l1hdr.b_pabd != NULL) {
6705 		/*
6706 		 * If the buf is currently sharing the data block with
6707 		 * the hdr then we need to break that relationship here.
6708 		 * The hdr will remain with a NULL data pointer and the
6709 		 * buf will take sole ownership of the block.
6710 		 */
6711 		if (ARC_BUF_SHARED(buf)) {
6712 			arc_unshare_buf(hdr, buf);
6713 		} else {
6714 			ASSERT(!arc_buf_is_shared(buf));
6715 			arc_hdr_free_abd(hdr, B_FALSE);
6716 		}
6717 		VERIFY3P(buf->b_data, !=, NULL);
6718 	}
6719 
6720 	if (HDR_HAS_RABD(hdr))
6721 		arc_hdr_free_abd(hdr, B_TRUE);
6722 
6723 	if (!(zio_flags & ZIO_FLAG_RAW))
6724 		arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
6725 
6726 	ASSERT(!arc_buf_is_shared(buf));
6727 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6728 
6729 	zio = zio_write(pio, spa, txg, bp,
6730 	    abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
6731 	    HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
6732 	    (children_ready != NULL) ? arc_write_children_ready : NULL,
6733 	    arc_write_done, callback, priority, zio_flags, zb);
6734 
6735 	return (zio);
6736 }
6737 
6738 void
6739 arc_tempreserve_clear(uint64_t reserve)
6740 {
6741 	atomic_add_64(&arc_tempreserve, -reserve);
6742 	ASSERT((int64_t)arc_tempreserve >= 0);
6743 }
6744 
6745 int
6746 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg)
6747 {
6748 	int error;
6749 	uint64_t anon_size;
6750 
6751 	if (!arc_no_grow &&
6752 	    reserve > arc_c/4 &&
6753 	    reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
6754 		arc_c = MIN(arc_c_max, reserve * 4);
6755 
6756 	/*
6757 	 * Throttle when the calculated memory footprint for the TXG
6758 	 * exceeds the target ARC size.
6759 	 */
6760 	if (reserve > arc_c) {
6761 		DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
6762 		return (SET_ERROR(ERESTART));
6763 	}
6764 
6765 	/*
6766 	 * Don't count loaned bufs as in flight dirty data to prevent long
6767 	 * network delays from blocking transactions that are ready to be
6768 	 * assigned to a txg.
6769 	 */
6770 
6771 	/* assert that it has not wrapped around */
6772 	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
6773 
6774 	anon_size = MAX((int64_t)
6775 	    (zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]) +
6776 	    zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]) -
6777 	    arc_loaned_bytes), 0);
6778 
6779 	/*
6780 	 * Writes will, almost always, require additional memory allocations
6781 	 * in order to compress/encrypt/etc the data.  We therefore need to
6782 	 * make sure that there is sufficient available memory for this.
6783 	 */
6784 	error = arc_memory_throttle(spa, reserve, txg);
6785 	if (error != 0)
6786 		return (error);
6787 
6788 	/*
6789 	 * Throttle writes when the amount of dirty data in the cache
6790 	 * gets too large.  We try to keep the cache less than half full
6791 	 * of dirty blocks so that our sync times don't grow too large.
6792 	 *
6793 	 * In the case of one pool being built on another pool, we want
6794 	 * to make sure we don't end up throttling the lower (backing)
6795 	 * pool when the upper pool is the majority contributor to dirty
6796 	 * data. To insure we make forward progress during throttling, we
6797 	 * also check the current pool's net dirty data and only throttle
6798 	 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
6799 	 * data in the cache.
6800 	 *
6801 	 * Note: if two requests come in concurrently, we might let them
6802 	 * both succeed, when one of them should fail.  Not a huge deal.
6803 	 */
6804 	uint64_t total_dirty = reserve + arc_tempreserve + anon_size;
6805 	uint64_t spa_dirty_anon = spa_dirty_data(spa);
6806 	uint64_t rarc_c = arc_warm ? arc_c : arc_c_max;
6807 	if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 &&
6808 	    anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 &&
6809 	    spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) {
6810 #ifdef ZFS_DEBUG
6811 		uint64_t meta_esize = zfs_refcount_count(
6812 		    &arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6813 		uint64_t data_esize =
6814 		    zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6815 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
6816 		    "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n",
6817 		    (u_longlong_t)arc_tempreserve >> 10,
6818 		    (u_longlong_t)meta_esize >> 10,
6819 		    (u_longlong_t)data_esize >> 10,
6820 		    (u_longlong_t)reserve >> 10,
6821 		    (u_longlong_t)rarc_c >> 10);
6822 #endif
6823 		DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
6824 		return (SET_ERROR(ERESTART));
6825 	}
6826 	atomic_add_64(&arc_tempreserve, reserve);
6827 	return (0);
6828 }
6829 
6830 static void
6831 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
6832     kstat_named_t *data, kstat_named_t *metadata,
6833     kstat_named_t *evict_data, kstat_named_t *evict_metadata)
6834 {
6835 	data->value.ui64 =
6836 	    zfs_refcount_count(&state->arcs_size[ARC_BUFC_DATA]);
6837 	metadata->value.ui64 =
6838 	    zfs_refcount_count(&state->arcs_size[ARC_BUFC_METADATA]);
6839 	size->value.ui64 = data->value.ui64 + metadata->value.ui64;
6840 	evict_data->value.ui64 =
6841 	    zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
6842 	evict_metadata->value.ui64 =
6843 	    zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
6844 }
6845 
6846 static int
6847 arc_kstat_update(kstat_t *ksp, int rw)
6848 {
6849 	arc_stats_t *as = ksp->ks_data;
6850 
6851 	if (rw == KSTAT_WRITE)
6852 		return (SET_ERROR(EACCES));
6853 
6854 	as->arcstat_hits.value.ui64 =
6855 	    wmsum_value(&arc_sums.arcstat_hits);
6856 	as->arcstat_iohits.value.ui64 =
6857 	    wmsum_value(&arc_sums.arcstat_iohits);
6858 	as->arcstat_misses.value.ui64 =
6859 	    wmsum_value(&arc_sums.arcstat_misses);
6860 	as->arcstat_demand_data_hits.value.ui64 =
6861 	    wmsum_value(&arc_sums.arcstat_demand_data_hits);
6862 	as->arcstat_demand_data_iohits.value.ui64 =
6863 	    wmsum_value(&arc_sums.arcstat_demand_data_iohits);
6864 	as->arcstat_demand_data_misses.value.ui64 =
6865 	    wmsum_value(&arc_sums.arcstat_demand_data_misses);
6866 	as->arcstat_demand_metadata_hits.value.ui64 =
6867 	    wmsum_value(&arc_sums.arcstat_demand_metadata_hits);
6868 	as->arcstat_demand_metadata_iohits.value.ui64 =
6869 	    wmsum_value(&arc_sums.arcstat_demand_metadata_iohits);
6870 	as->arcstat_demand_metadata_misses.value.ui64 =
6871 	    wmsum_value(&arc_sums.arcstat_demand_metadata_misses);
6872 	as->arcstat_prefetch_data_hits.value.ui64 =
6873 	    wmsum_value(&arc_sums.arcstat_prefetch_data_hits);
6874 	as->arcstat_prefetch_data_iohits.value.ui64 =
6875 	    wmsum_value(&arc_sums.arcstat_prefetch_data_iohits);
6876 	as->arcstat_prefetch_data_misses.value.ui64 =
6877 	    wmsum_value(&arc_sums.arcstat_prefetch_data_misses);
6878 	as->arcstat_prefetch_metadata_hits.value.ui64 =
6879 	    wmsum_value(&arc_sums.arcstat_prefetch_metadata_hits);
6880 	as->arcstat_prefetch_metadata_iohits.value.ui64 =
6881 	    wmsum_value(&arc_sums.arcstat_prefetch_metadata_iohits);
6882 	as->arcstat_prefetch_metadata_misses.value.ui64 =
6883 	    wmsum_value(&arc_sums.arcstat_prefetch_metadata_misses);
6884 	as->arcstat_mru_hits.value.ui64 =
6885 	    wmsum_value(&arc_sums.arcstat_mru_hits);
6886 	as->arcstat_mru_ghost_hits.value.ui64 =
6887 	    wmsum_value(&arc_sums.arcstat_mru_ghost_hits);
6888 	as->arcstat_mfu_hits.value.ui64 =
6889 	    wmsum_value(&arc_sums.arcstat_mfu_hits);
6890 	as->arcstat_mfu_ghost_hits.value.ui64 =
6891 	    wmsum_value(&arc_sums.arcstat_mfu_ghost_hits);
6892 	as->arcstat_uncached_hits.value.ui64 =
6893 	    wmsum_value(&arc_sums.arcstat_uncached_hits);
6894 	as->arcstat_deleted.value.ui64 =
6895 	    wmsum_value(&arc_sums.arcstat_deleted);
6896 	as->arcstat_mutex_miss.value.ui64 =
6897 	    wmsum_value(&arc_sums.arcstat_mutex_miss);
6898 	as->arcstat_access_skip.value.ui64 =
6899 	    wmsum_value(&arc_sums.arcstat_access_skip);
6900 	as->arcstat_evict_skip.value.ui64 =
6901 	    wmsum_value(&arc_sums.arcstat_evict_skip);
6902 	as->arcstat_evict_not_enough.value.ui64 =
6903 	    wmsum_value(&arc_sums.arcstat_evict_not_enough);
6904 	as->arcstat_evict_l2_cached.value.ui64 =
6905 	    wmsum_value(&arc_sums.arcstat_evict_l2_cached);
6906 	as->arcstat_evict_l2_eligible.value.ui64 =
6907 	    wmsum_value(&arc_sums.arcstat_evict_l2_eligible);
6908 	as->arcstat_evict_l2_eligible_mfu.value.ui64 =
6909 	    wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mfu);
6910 	as->arcstat_evict_l2_eligible_mru.value.ui64 =
6911 	    wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mru);
6912 	as->arcstat_evict_l2_ineligible.value.ui64 =
6913 	    wmsum_value(&arc_sums.arcstat_evict_l2_ineligible);
6914 	as->arcstat_evict_l2_skip.value.ui64 =
6915 	    wmsum_value(&arc_sums.arcstat_evict_l2_skip);
6916 	as->arcstat_hash_collisions.value.ui64 =
6917 	    wmsum_value(&arc_sums.arcstat_hash_collisions);
6918 	as->arcstat_hash_chains.value.ui64 =
6919 	    wmsum_value(&arc_sums.arcstat_hash_chains);
6920 	as->arcstat_size.value.ui64 =
6921 	    aggsum_value(&arc_sums.arcstat_size);
6922 	as->arcstat_compressed_size.value.ui64 =
6923 	    wmsum_value(&arc_sums.arcstat_compressed_size);
6924 	as->arcstat_uncompressed_size.value.ui64 =
6925 	    wmsum_value(&arc_sums.arcstat_uncompressed_size);
6926 	as->arcstat_overhead_size.value.ui64 =
6927 	    wmsum_value(&arc_sums.arcstat_overhead_size);
6928 	as->arcstat_hdr_size.value.ui64 =
6929 	    wmsum_value(&arc_sums.arcstat_hdr_size);
6930 	as->arcstat_data_size.value.ui64 =
6931 	    wmsum_value(&arc_sums.arcstat_data_size);
6932 	as->arcstat_metadata_size.value.ui64 =
6933 	    wmsum_value(&arc_sums.arcstat_metadata_size);
6934 	as->arcstat_dbuf_size.value.ui64 =
6935 	    wmsum_value(&arc_sums.arcstat_dbuf_size);
6936 #if defined(COMPAT_FREEBSD11)
6937 	as->arcstat_other_size.value.ui64 =
6938 	    wmsum_value(&arc_sums.arcstat_bonus_size) +
6939 	    wmsum_value(&arc_sums.arcstat_dnode_size) +
6940 	    wmsum_value(&arc_sums.arcstat_dbuf_size);
6941 #endif
6942 
6943 	arc_kstat_update_state(arc_anon,
6944 	    &as->arcstat_anon_size,
6945 	    &as->arcstat_anon_data,
6946 	    &as->arcstat_anon_metadata,
6947 	    &as->arcstat_anon_evictable_data,
6948 	    &as->arcstat_anon_evictable_metadata);
6949 	arc_kstat_update_state(arc_mru,
6950 	    &as->arcstat_mru_size,
6951 	    &as->arcstat_mru_data,
6952 	    &as->arcstat_mru_metadata,
6953 	    &as->arcstat_mru_evictable_data,
6954 	    &as->arcstat_mru_evictable_metadata);
6955 	arc_kstat_update_state(arc_mru_ghost,
6956 	    &as->arcstat_mru_ghost_size,
6957 	    &as->arcstat_mru_ghost_data,
6958 	    &as->arcstat_mru_ghost_metadata,
6959 	    &as->arcstat_mru_ghost_evictable_data,
6960 	    &as->arcstat_mru_ghost_evictable_metadata);
6961 	arc_kstat_update_state(arc_mfu,
6962 	    &as->arcstat_mfu_size,
6963 	    &as->arcstat_mfu_data,
6964 	    &as->arcstat_mfu_metadata,
6965 	    &as->arcstat_mfu_evictable_data,
6966 	    &as->arcstat_mfu_evictable_metadata);
6967 	arc_kstat_update_state(arc_mfu_ghost,
6968 	    &as->arcstat_mfu_ghost_size,
6969 	    &as->arcstat_mfu_ghost_data,
6970 	    &as->arcstat_mfu_ghost_metadata,
6971 	    &as->arcstat_mfu_ghost_evictable_data,
6972 	    &as->arcstat_mfu_ghost_evictable_metadata);
6973 	arc_kstat_update_state(arc_uncached,
6974 	    &as->arcstat_uncached_size,
6975 	    &as->arcstat_uncached_data,
6976 	    &as->arcstat_uncached_metadata,
6977 	    &as->arcstat_uncached_evictable_data,
6978 	    &as->arcstat_uncached_evictable_metadata);
6979 
6980 	as->arcstat_dnode_size.value.ui64 =
6981 	    wmsum_value(&arc_sums.arcstat_dnode_size);
6982 	as->arcstat_bonus_size.value.ui64 =
6983 	    wmsum_value(&arc_sums.arcstat_bonus_size);
6984 	as->arcstat_l2_hits.value.ui64 =
6985 	    wmsum_value(&arc_sums.arcstat_l2_hits);
6986 	as->arcstat_l2_misses.value.ui64 =
6987 	    wmsum_value(&arc_sums.arcstat_l2_misses);
6988 	as->arcstat_l2_prefetch_asize.value.ui64 =
6989 	    wmsum_value(&arc_sums.arcstat_l2_prefetch_asize);
6990 	as->arcstat_l2_mru_asize.value.ui64 =
6991 	    wmsum_value(&arc_sums.arcstat_l2_mru_asize);
6992 	as->arcstat_l2_mfu_asize.value.ui64 =
6993 	    wmsum_value(&arc_sums.arcstat_l2_mfu_asize);
6994 	as->arcstat_l2_bufc_data_asize.value.ui64 =
6995 	    wmsum_value(&arc_sums.arcstat_l2_bufc_data_asize);
6996 	as->arcstat_l2_bufc_metadata_asize.value.ui64 =
6997 	    wmsum_value(&arc_sums.arcstat_l2_bufc_metadata_asize);
6998 	as->arcstat_l2_feeds.value.ui64 =
6999 	    wmsum_value(&arc_sums.arcstat_l2_feeds);
7000 	as->arcstat_l2_rw_clash.value.ui64 =
7001 	    wmsum_value(&arc_sums.arcstat_l2_rw_clash);
7002 	as->arcstat_l2_read_bytes.value.ui64 =
7003 	    wmsum_value(&arc_sums.arcstat_l2_read_bytes);
7004 	as->arcstat_l2_write_bytes.value.ui64 =
7005 	    wmsum_value(&arc_sums.arcstat_l2_write_bytes);
7006 	as->arcstat_l2_writes_sent.value.ui64 =
7007 	    wmsum_value(&arc_sums.arcstat_l2_writes_sent);
7008 	as->arcstat_l2_writes_done.value.ui64 =
7009 	    wmsum_value(&arc_sums.arcstat_l2_writes_done);
7010 	as->arcstat_l2_writes_error.value.ui64 =
7011 	    wmsum_value(&arc_sums.arcstat_l2_writes_error);
7012 	as->arcstat_l2_writes_lock_retry.value.ui64 =
7013 	    wmsum_value(&arc_sums.arcstat_l2_writes_lock_retry);
7014 	as->arcstat_l2_evict_lock_retry.value.ui64 =
7015 	    wmsum_value(&arc_sums.arcstat_l2_evict_lock_retry);
7016 	as->arcstat_l2_evict_reading.value.ui64 =
7017 	    wmsum_value(&arc_sums.arcstat_l2_evict_reading);
7018 	as->arcstat_l2_evict_l1cached.value.ui64 =
7019 	    wmsum_value(&arc_sums.arcstat_l2_evict_l1cached);
7020 	as->arcstat_l2_free_on_write.value.ui64 =
7021 	    wmsum_value(&arc_sums.arcstat_l2_free_on_write);
7022 	as->arcstat_l2_abort_lowmem.value.ui64 =
7023 	    wmsum_value(&arc_sums.arcstat_l2_abort_lowmem);
7024 	as->arcstat_l2_cksum_bad.value.ui64 =
7025 	    wmsum_value(&arc_sums.arcstat_l2_cksum_bad);
7026 	as->arcstat_l2_io_error.value.ui64 =
7027 	    wmsum_value(&arc_sums.arcstat_l2_io_error);
7028 	as->arcstat_l2_lsize.value.ui64 =
7029 	    wmsum_value(&arc_sums.arcstat_l2_lsize);
7030 	as->arcstat_l2_psize.value.ui64 =
7031 	    wmsum_value(&arc_sums.arcstat_l2_psize);
7032 	as->arcstat_l2_hdr_size.value.ui64 =
7033 	    aggsum_value(&arc_sums.arcstat_l2_hdr_size);
7034 	as->arcstat_l2_log_blk_writes.value.ui64 =
7035 	    wmsum_value(&arc_sums.arcstat_l2_log_blk_writes);
7036 	as->arcstat_l2_log_blk_asize.value.ui64 =
7037 	    wmsum_value(&arc_sums.arcstat_l2_log_blk_asize);
7038 	as->arcstat_l2_log_blk_count.value.ui64 =
7039 	    wmsum_value(&arc_sums.arcstat_l2_log_blk_count);
7040 	as->arcstat_l2_rebuild_success.value.ui64 =
7041 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_success);
7042 	as->arcstat_l2_rebuild_abort_unsupported.value.ui64 =
7043 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7044 	as->arcstat_l2_rebuild_abort_io_errors.value.ui64 =
7045 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7046 	as->arcstat_l2_rebuild_abort_dh_errors.value.ui64 =
7047 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7048 	as->arcstat_l2_rebuild_abort_cksum_lb_errors.value.ui64 =
7049 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7050 	as->arcstat_l2_rebuild_abort_lowmem.value.ui64 =
7051 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7052 	as->arcstat_l2_rebuild_size.value.ui64 =
7053 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_size);
7054 	as->arcstat_l2_rebuild_asize.value.ui64 =
7055 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_asize);
7056 	as->arcstat_l2_rebuild_bufs.value.ui64 =
7057 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs);
7058 	as->arcstat_l2_rebuild_bufs_precached.value.ui64 =
7059 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7060 	as->arcstat_l2_rebuild_log_blks.value.ui64 =
7061 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_log_blks);
7062 	as->arcstat_memory_throttle_count.value.ui64 =
7063 	    wmsum_value(&arc_sums.arcstat_memory_throttle_count);
7064 	as->arcstat_memory_direct_count.value.ui64 =
7065 	    wmsum_value(&arc_sums.arcstat_memory_direct_count);
7066 	as->arcstat_memory_indirect_count.value.ui64 =
7067 	    wmsum_value(&arc_sums.arcstat_memory_indirect_count);
7068 
7069 	as->arcstat_memory_all_bytes.value.ui64 =
7070 	    arc_all_memory();
7071 	as->arcstat_memory_free_bytes.value.ui64 =
7072 	    arc_free_memory();
7073 	as->arcstat_memory_available_bytes.value.i64 =
7074 	    arc_available_memory();
7075 
7076 	as->arcstat_prune.value.ui64 =
7077 	    wmsum_value(&arc_sums.arcstat_prune);
7078 	as->arcstat_meta_used.value.ui64 =
7079 	    wmsum_value(&arc_sums.arcstat_meta_used);
7080 	as->arcstat_async_upgrade_sync.value.ui64 =
7081 	    wmsum_value(&arc_sums.arcstat_async_upgrade_sync);
7082 	as->arcstat_predictive_prefetch.value.ui64 =
7083 	    wmsum_value(&arc_sums.arcstat_predictive_prefetch);
7084 	as->arcstat_demand_hit_predictive_prefetch.value.ui64 =
7085 	    wmsum_value(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7086 	as->arcstat_demand_iohit_predictive_prefetch.value.ui64 =
7087 	    wmsum_value(&arc_sums.arcstat_demand_iohit_predictive_prefetch);
7088 	as->arcstat_prescient_prefetch.value.ui64 =
7089 	    wmsum_value(&arc_sums.arcstat_prescient_prefetch);
7090 	as->arcstat_demand_hit_prescient_prefetch.value.ui64 =
7091 	    wmsum_value(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7092 	as->arcstat_demand_iohit_prescient_prefetch.value.ui64 =
7093 	    wmsum_value(&arc_sums.arcstat_demand_iohit_prescient_prefetch);
7094 	as->arcstat_raw_size.value.ui64 =
7095 	    wmsum_value(&arc_sums.arcstat_raw_size);
7096 	as->arcstat_cached_only_in_progress.value.ui64 =
7097 	    wmsum_value(&arc_sums.arcstat_cached_only_in_progress);
7098 	as->arcstat_abd_chunk_waste_size.value.ui64 =
7099 	    wmsum_value(&arc_sums.arcstat_abd_chunk_waste_size);
7100 
7101 	return (0);
7102 }
7103 
7104 /*
7105  * This function *must* return indices evenly distributed between all
7106  * sublists of the multilist. This is needed due to how the ARC eviction
7107  * code is laid out; arc_evict_state() assumes ARC buffers are evenly
7108  * distributed between all sublists and uses this assumption when
7109  * deciding which sublist to evict from and how much to evict from it.
7110  */
7111 static unsigned int
7112 arc_state_multilist_index_func(multilist_t *ml, void *obj)
7113 {
7114 	arc_buf_hdr_t *hdr = obj;
7115 
7116 	/*
7117 	 * We rely on b_dva to generate evenly distributed index
7118 	 * numbers using buf_hash below. So, as an added precaution,
7119 	 * let's make sure we never add empty buffers to the arc lists.
7120 	 */
7121 	ASSERT(!HDR_EMPTY(hdr));
7122 
7123 	/*
7124 	 * The assumption here, is the hash value for a given
7125 	 * arc_buf_hdr_t will remain constant throughout its lifetime
7126 	 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
7127 	 * Thus, we don't need to store the header's sublist index
7128 	 * on insertion, as this index can be recalculated on removal.
7129 	 *
7130 	 * Also, the low order bits of the hash value are thought to be
7131 	 * distributed evenly. Otherwise, in the case that the multilist
7132 	 * has a power of two number of sublists, each sublists' usage
7133 	 * would not be evenly distributed. In this context full 64bit
7134 	 * division would be a waste of time, so limit it to 32 bits.
7135 	 */
7136 	return ((unsigned int)buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
7137 	    multilist_get_num_sublists(ml));
7138 }
7139 
7140 static unsigned int
7141 arc_state_l2c_multilist_index_func(multilist_t *ml, void *obj)
7142 {
7143 	panic("Header %p insert into arc_l2c_only %p", obj, ml);
7144 }
7145 
7146 #define	WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do {	\
7147 	if ((do_warn) && (tuning) && ((tuning) != (value))) {	\
7148 		cmn_err(CE_WARN,				\
7149 		    "ignoring tunable %s (using %llu instead)",	\
7150 		    (#tuning), (u_longlong_t)(value));	\
7151 	}							\
7152 } while (0)
7153 
7154 /*
7155  * Called during module initialization and periodically thereafter to
7156  * apply reasonable changes to the exposed performance tunings.  Can also be
7157  * called explicitly by param_set_arc_*() functions when ARC tunables are
7158  * updated manually.  Non-zero zfs_* values which differ from the currently set
7159  * values will be applied.
7160  */
7161 void
7162 arc_tuning_update(boolean_t verbose)
7163 {
7164 	uint64_t allmem = arc_all_memory();
7165 
7166 	/* Valid range: 32M - <arc_c_max> */
7167 	if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
7168 	    (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
7169 	    (zfs_arc_min <= arc_c_max)) {
7170 		arc_c_min = zfs_arc_min;
7171 		arc_c = MAX(arc_c, arc_c_min);
7172 	}
7173 	WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose);
7174 
7175 	/* Valid range: 64M - <all physical memory> */
7176 	if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
7177 	    (zfs_arc_max >= MIN_ARC_MAX) && (zfs_arc_max < allmem) &&
7178 	    (zfs_arc_max > arc_c_min)) {
7179 		arc_c_max = zfs_arc_max;
7180 		arc_c = MIN(arc_c, arc_c_max);
7181 		if (arc_dnode_limit > arc_c_max)
7182 			arc_dnode_limit = arc_c_max;
7183 	}
7184 	WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose);
7185 
7186 	/* Valid range: 0 - <all physical memory> */
7187 	arc_dnode_limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit :
7188 	    MIN(zfs_arc_dnode_limit_percent, 100) * arc_c_max / 100;
7189 	WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_limit, verbose);
7190 
7191 	/* Valid range: 1 - N */
7192 	if (zfs_arc_grow_retry)
7193 		arc_grow_retry = zfs_arc_grow_retry;
7194 
7195 	/* Valid range: 1 - N */
7196 	if (zfs_arc_shrink_shift) {
7197 		arc_shrink_shift = zfs_arc_shrink_shift;
7198 		arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
7199 	}
7200 
7201 	/* Valid range: 1 - N ms */
7202 	if (zfs_arc_min_prefetch_ms)
7203 		arc_min_prefetch_ms = zfs_arc_min_prefetch_ms;
7204 
7205 	/* Valid range: 1 - N ms */
7206 	if (zfs_arc_min_prescient_prefetch_ms) {
7207 		arc_min_prescient_prefetch_ms =
7208 		    zfs_arc_min_prescient_prefetch_ms;
7209 	}
7210 
7211 	/* Valid range: 0 - 100 */
7212 	if (zfs_arc_lotsfree_percent <= 100)
7213 		arc_lotsfree_percent = zfs_arc_lotsfree_percent;
7214 	WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent,
7215 	    verbose);
7216 
7217 	/* Valid range: 0 - <all physical memory> */
7218 	if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
7219 		arc_sys_free = MIN(zfs_arc_sys_free, allmem);
7220 	WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose);
7221 }
7222 
7223 static void
7224 arc_state_multilist_init(multilist_t *ml,
7225     multilist_sublist_index_func_t *index_func, int *maxcountp)
7226 {
7227 	multilist_create(ml, sizeof (arc_buf_hdr_t),
7228 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), index_func);
7229 	*maxcountp = MAX(*maxcountp, multilist_get_num_sublists(ml));
7230 }
7231 
7232 static void
7233 arc_state_init(void)
7234 {
7235 	int num_sublists = 0;
7236 
7237 	arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_METADATA],
7238 	    arc_state_multilist_index_func, &num_sublists);
7239 	arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_DATA],
7240 	    arc_state_multilist_index_func, &num_sublists);
7241 	arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
7242 	    arc_state_multilist_index_func, &num_sublists);
7243 	arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
7244 	    arc_state_multilist_index_func, &num_sublists);
7245 	arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
7246 	    arc_state_multilist_index_func, &num_sublists);
7247 	arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_DATA],
7248 	    arc_state_multilist_index_func, &num_sublists);
7249 	arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
7250 	    arc_state_multilist_index_func, &num_sublists);
7251 	arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
7252 	    arc_state_multilist_index_func, &num_sublists);
7253 	arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_METADATA],
7254 	    arc_state_multilist_index_func, &num_sublists);
7255 	arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_DATA],
7256 	    arc_state_multilist_index_func, &num_sublists);
7257 
7258 	/*
7259 	 * L2 headers should never be on the L2 state list since they don't
7260 	 * have L1 headers allocated.  Special index function asserts that.
7261 	 */
7262 	arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
7263 	    arc_state_l2c_multilist_index_func, &num_sublists);
7264 	arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
7265 	    arc_state_l2c_multilist_index_func, &num_sublists);
7266 
7267 	/*
7268 	 * Keep track of the number of markers needed to reclaim buffers from
7269 	 * any ARC state.  The markers will be pre-allocated so as to minimize
7270 	 * the number of memory allocations performed by the eviction thread.
7271 	 */
7272 	arc_state_evict_marker_count = num_sublists;
7273 
7274 	zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7275 	zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7276 	zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7277 	zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7278 	zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7279 	zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7280 	zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7281 	zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7282 	zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7283 	zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7284 	zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7285 	zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7286 	zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]);
7287 	zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_DATA]);
7288 
7289 	zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_DATA]);
7290 	zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
7291 	zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_DATA]);
7292 	zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_METADATA]);
7293 	zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]);
7294 	zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]);
7295 	zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
7296 	zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
7297 	zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]);
7298 	zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]);
7299 	zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]);
7300 	zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]);
7301 	zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_DATA]);
7302 	zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_METADATA]);
7303 
7304 	wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA], 0);
7305 	wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA], 0);
7306 	wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA], 0);
7307 	wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA], 0);
7308 
7309 	wmsum_init(&arc_sums.arcstat_hits, 0);
7310 	wmsum_init(&arc_sums.arcstat_iohits, 0);
7311 	wmsum_init(&arc_sums.arcstat_misses, 0);
7312 	wmsum_init(&arc_sums.arcstat_demand_data_hits, 0);
7313 	wmsum_init(&arc_sums.arcstat_demand_data_iohits, 0);
7314 	wmsum_init(&arc_sums.arcstat_demand_data_misses, 0);
7315 	wmsum_init(&arc_sums.arcstat_demand_metadata_hits, 0);
7316 	wmsum_init(&arc_sums.arcstat_demand_metadata_iohits, 0);
7317 	wmsum_init(&arc_sums.arcstat_demand_metadata_misses, 0);
7318 	wmsum_init(&arc_sums.arcstat_prefetch_data_hits, 0);
7319 	wmsum_init(&arc_sums.arcstat_prefetch_data_iohits, 0);
7320 	wmsum_init(&arc_sums.arcstat_prefetch_data_misses, 0);
7321 	wmsum_init(&arc_sums.arcstat_prefetch_metadata_hits, 0);
7322 	wmsum_init(&arc_sums.arcstat_prefetch_metadata_iohits, 0);
7323 	wmsum_init(&arc_sums.arcstat_prefetch_metadata_misses, 0);
7324 	wmsum_init(&arc_sums.arcstat_mru_hits, 0);
7325 	wmsum_init(&arc_sums.arcstat_mru_ghost_hits, 0);
7326 	wmsum_init(&arc_sums.arcstat_mfu_hits, 0);
7327 	wmsum_init(&arc_sums.arcstat_mfu_ghost_hits, 0);
7328 	wmsum_init(&arc_sums.arcstat_uncached_hits, 0);
7329 	wmsum_init(&arc_sums.arcstat_deleted, 0);
7330 	wmsum_init(&arc_sums.arcstat_mutex_miss, 0);
7331 	wmsum_init(&arc_sums.arcstat_access_skip, 0);
7332 	wmsum_init(&arc_sums.arcstat_evict_skip, 0);
7333 	wmsum_init(&arc_sums.arcstat_evict_not_enough, 0);
7334 	wmsum_init(&arc_sums.arcstat_evict_l2_cached, 0);
7335 	wmsum_init(&arc_sums.arcstat_evict_l2_eligible, 0);
7336 	wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mfu, 0);
7337 	wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mru, 0);
7338 	wmsum_init(&arc_sums.arcstat_evict_l2_ineligible, 0);
7339 	wmsum_init(&arc_sums.arcstat_evict_l2_skip, 0);
7340 	wmsum_init(&arc_sums.arcstat_hash_collisions, 0);
7341 	wmsum_init(&arc_sums.arcstat_hash_chains, 0);
7342 	aggsum_init(&arc_sums.arcstat_size, 0);
7343 	wmsum_init(&arc_sums.arcstat_compressed_size, 0);
7344 	wmsum_init(&arc_sums.arcstat_uncompressed_size, 0);
7345 	wmsum_init(&arc_sums.arcstat_overhead_size, 0);
7346 	wmsum_init(&arc_sums.arcstat_hdr_size, 0);
7347 	wmsum_init(&arc_sums.arcstat_data_size, 0);
7348 	wmsum_init(&arc_sums.arcstat_metadata_size, 0);
7349 	wmsum_init(&arc_sums.arcstat_dbuf_size, 0);
7350 	wmsum_init(&arc_sums.arcstat_dnode_size, 0);
7351 	wmsum_init(&arc_sums.arcstat_bonus_size, 0);
7352 	wmsum_init(&arc_sums.arcstat_l2_hits, 0);
7353 	wmsum_init(&arc_sums.arcstat_l2_misses, 0);
7354 	wmsum_init(&arc_sums.arcstat_l2_prefetch_asize, 0);
7355 	wmsum_init(&arc_sums.arcstat_l2_mru_asize, 0);
7356 	wmsum_init(&arc_sums.arcstat_l2_mfu_asize, 0);
7357 	wmsum_init(&arc_sums.arcstat_l2_bufc_data_asize, 0);
7358 	wmsum_init(&arc_sums.arcstat_l2_bufc_metadata_asize, 0);
7359 	wmsum_init(&arc_sums.arcstat_l2_feeds, 0);
7360 	wmsum_init(&arc_sums.arcstat_l2_rw_clash, 0);
7361 	wmsum_init(&arc_sums.arcstat_l2_read_bytes, 0);
7362 	wmsum_init(&arc_sums.arcstat_l2_write_bytes, 0);
7363 	wmsum_init(&arc_sums.arcstat_l2_writes_sent, 0);
7364 	wmsum_init(&arc_sums.arcstat_l2_writes_done, 0);
7365 	wmsum_init(&arc_sums.arcstat_l2_writes_error, 0);
7366 	wmsum_init(&arc_sums.arcstat_l2_writes_lock_retry, 0);
7367 	wmsum_init(&arc_sums.arcstat_l2_evict_lock_retry, 0);
7368 	wmsum_init(&arc_sums.arcstat_l2_evict_reading, 0);
7369 	wmsum_init(&arc_sums.arcstat_l2_evict_l1cached, 0);
7370 	wmsum_init(&arc_sums.arcstat_l2_free_on_write, 0);
7371 	wmsum_init(&arc_sums.arcstat_l2_abort_lowmem, 0);
7372 	wmsum_init(&arc_sums.arcstat_l2_cksum_bad, 0);
7373 	wmsum_init(&arc_sums.arcstat_l2_io_error, 0);
7374 	wmsum_init(&arc_sums.arcstat_l2_lsize, 0);
7375 	wmsum_init(&arc_sums.arcstat_l2_psize, 0);
7376 	aggsum_init(&arc_sums.arcstat_l2_hdr_size, 0);
7377 	wmsum_init(&arc_sums.arcstat_l2_log_blk_writes, 0);
7378 	wmsum_init(&arc_sums.arcstat_l2_log_blk_asize, 0);
7379 	wmsum_init(&arc_sums.arcstat_l2_log_blk_count, 0);
7380 	wmsum_init(&arc_sums.arcstat_l2_rebuild_success, 0);
7381 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_unsupported, 0);
7382 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_io_errors, 0);
7383 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_dh_errors, 0);
7384 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors, 0);
7385 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_lowmem, 0);
7386 	wmsum_init(&arc_sums.arcstat_l2_rebuild_size, 0);
7387 	wmsum_init(&arc_sums.arcstat_l2_rebuild_asize, 0);
7388 	wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs, 0);
7389 	wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs_precached, 0);
7390 	wmsum_init(&arc_sums.arcstat_l2_rebuild_log_blks, 0);
7391 	wmsum_init(&arc_sums.arcstat_memory_throttle_count, 0);
7392 	wmsum_init(&arc_sums.arcstat_memory_direct_count, 0);
7393 	wmsum_init(&arc_sums.arcstat_memory_indirect_count, 0);
7394 	wmsum_init(&arc_sums.arcstat_prune, 0);
7395 	wmsum_init(&arc_sums.arcstat_meta_used, 0);
7396 	wmsum_init(&arc_sums.arcstat_async_upgrade_sync, 0);
7397 	wmsum_init(&arc_sums.arcstat_predictive_prefetch, 0);
7398 	wmsum_init(&arc_sums.arcstat_demand_hit_predictive_prefetch, 0);
7399 	wmsum_init(&arc_sums.arcstat_demand_iohit_predictive_prefetch, 0);
7400 	wmsum_init(&arc_sums.arcstat_prescient_prefetch, 0);
7401 	wmsum_init(&arc_sums.arcstat_demand_hit_prescient_prefetch, 0);
7402 	wmsum_init(&arc_sums.arcstat_demand_iohit_prescient_prefetch, 0);
7403 	wmsum_init(&arc_sums.arcstat_raw_size, 0);
7404 	wmsum_init(&arc_sums.arcstat_cached_only_in_progress, 0);
7405 	wmsum_init(&arc_sums.arcstat_abd_chunk_waste_size, 0);
7406 
7407 	arc_anon->arcs_state = ARC_STATE_ANON;
7408 	arc_mru->arcs_state = ARC_STATE_MRU;
7409 	arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
7410 	arc_mfu->arcs_state = ARC_STATE_MFU;
7411 	arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
7412 	arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
7413 	arc_uncached->arcs_state = ARC_STATE_UNCACHED;
7414 }
7415 
7416 static void
7417 arc_state_fini(void)
7418 {
7419 	zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7420 	zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7421 	zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7422 	zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7423 	zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7424 	zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7425 	zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7426 	zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7427 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7428 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7429 	zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7430 	zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7431 	zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]);
7432 	zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_DATA]);
7433 
7434 	zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_DATA]);
7435 	zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
7436 	zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_DATA]);
7437 	zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_METADATA]);
7438 	zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]);
7439 	zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]);
7440 	zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
7441 	zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
7442 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]);
7443 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]);
7444 	zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]);
7445 	zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]);
7446 	zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_DATA]);
7447 	zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_METADATA]);
7448 
7449 	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
7450 	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
7451 	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
7452 	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
7453 	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
7454 	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
7455 	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
7456 	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
7457 	multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
7458 	multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
7459 	multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_METADATA]);
7460 	multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_DATA]);
7461 
7462 	wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]);
7463 	wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]);
7464 	wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]);
7465 	wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]);
7466 
7467 	wmsum_fini(&arc_sums.arcstat_hits);
7468 	wmsum_fini(&arc_sums.arcstat_iohits);
7469 	wmsum_fini(&arc_sums.arcstat_misses);
7470 	wmsum_fini(&arc_sums.arcstat_demand_data_hits);
7471 	wmsum_fini(&arc_sums.arcstat_demand_data_iohits);
7472 	wmsum_fini(&arc_sums.arcstat_demand_data_misses);
7473 	wmsum_fini(&arc_sums.arcstat_demand_metadata_hits);
7474 	wmsum_fini(&arc_sums.arcstat_demand_metadata_iohits);
7475 	wmsum_fini(&arc_sums.arcstat_demand_metadata_misses);
7476 	wmsum_fini(&arc_sums.arcstat_prefetch_data_hits);
7477 	wmsum_fini(&arc_sums.arcstat_prefetch_data_iohits);
7478 	wmsum_fini(&arc_sums.arcstat_prefetch_data_misses);
7479 	wmsum_fini(&arc_sums.arcstat_prefetch_metadata_hits);
7480 	wmsum_fini(&arc_sums.arcstat_prefetch_metadata_iohits);
7481 	wmsum_fini(&arc_sums.arcstat_prefetch_metadata_misses);
7482 	wmsum_fini(&arc_sums.arcstat_mru_hits);
7483 	wmsum_fini(&arc_sums.arcstat_mru_ghost_hits);
7484 	wmsum_fini(&arc_sums.arcstat_mfu_hits);
7485 	wmsum_fini(&arc_sums.arcstat_mfu_ghost_hits);
7486 	wmsum_fini(&arc_sums.arcstat_uncached_hits);
7487 	wmsum_fini(&arc_sums.arcstat_deleted);
7488 	wmsum_fini(&arc_sums.arcstat_mutex_miss);
7489 	wmsum_fini(&arc_sums.arcstat_access_skip);
7490 	wmsum_fini(&arc_sums.arcstat_evict_skip);
7491 	wmsum_fini(&arc_sums.arcstat_evict_not_enough);
7492 	wmsum_fini(&arc_sums.arcstat_evict_l2_cached);
7493 	wmsum_fini(&arc_sums.arcstat_evict_l2_eligible);
7494 	wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mfu);
7495 	wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mru);
7496 	wmsum_fini(&arc_sums.arcstat_evict_l2_ineligible);
7497 	wmsum_fini(&arc_sums.arcstat_evict_l2_skip);
7498 	wmsum_fini(&arc_sums.arcstat_hash_collisions);
7499 	wmsum_fini(&arc_sums.arcstat_hash_chains);
7500 	aggsum_fini(&arc_sums.arcstat_size);
7501 	wmsum_fini(&arc_sums.arcstat_compressed_size);
7502 	wmsum_fini(&arc_sums.arcstat_uncompressed_size);
7503 	wmsum_fini(&arc_sums.arcstat_overhead_size);
7504 	wmsum_fini(&arc_sums.arcstat_hdr_size);
7505 	wmsum_fini(&arc_sums.arcstat_data_size);
7506 	wmsum_fini(&arc_sums.arcstat_metadata_size);
7507 	wmsum_fini(&arc_sums.arcstat_dbuf_size);
7508 	wmsum_fini(&arc_sums.arcstat_dnode_size);
7509 	wmsum_fini(&arc_sums.arcstat_bonus_size);
7510 	wmsum_fini(&arc_sums.arcstat_l2_hits);
7511 	wmsum_fini(&arc_sums.arcstat_l2_misses);
7512 	wmsum_fini(&arc_sums.arcstat_l2_prefetch_asize);
7513 	wmsum_fini(&arc_sums.arcstat_l2_mru_asize);
7514 	wmsum_fini(&arc_sums.arcstat_l2_mfu_asize);
7515 	wmsum_fini(&arc_sums.arcstat_l2_bufc_data_asize);
7516 	wmsum_fini(&arc_sums.arcstat_l2_bufc_metadata_asize);
7517 	wmsum_fini(&arc_sums.arcstat_l2_feeds);
7518 	wmsum_fini(&arc_sums.arcstat_l2_rw_clash);
7519 	wmsum_fini(&arc_sums.arcstat_l2_read_bytes);
7520 	wmsum_fini(&arc_sums.arcstat_l2_write_bytes);
7521 	wmsum_fini(&arc_sums.arcstat_l2_writes_sent);
7522 	wmsum_fini(&arc_sums.arcstat_l2_writes_done);
7523 	wmsum_fini(&arc_sums.arcstat_l2_writes_error);
7524 	wmsum_fini(&arc_sums.arcstat_l2_writes_lock_retry);
7525 	wmsum_fini(&arc_sums.arcstat_l2_evict_lock_retry);
7526 	wmsum_fini(&arc_sums.arcstat_l2_evict_reading);
7527 	wmsum_fini(&arc_sums.arcstat_l2_evict_l1cached);
7528 	wmsum_fini(&arc_sums.arcstat_l2_free_on_write);
7529 	wmsum_fini(&arc_sums.arcstat_l2_abort_lowmem);
7530 	wmsum_fini(&arc_sums.arcstat_l2_cksum_bad);
7531 	wmsum_fini(&arc_sums.arcstat_l2_io_error);
7532 	wmsum_fini(&arc_sums.arcstat_l2_lsize);
7533 	wmsum_fini(&arc_sums.arcstat_l2_psize);
7534 	aggsum_fini(&arc_sums.arcstat_l2_hdr_size);
7535 	wmsum_fini(&arc_sums.arcstat_l2_log_blk_writes);
7536 	wmsum_fini(&arc_sums.arcstat_l2_log_blk_asize);
7537 	wmsum_fini(&arc_sums.arcstat_l2_log_blk_count);
7538 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_success);
7539 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7540 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7541 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7542 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7543 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7544 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_size);
7545 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_asize);
7546 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs);
7547 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7548 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_log_blks);
7549 	wmsum_fini(&arc_sums.arcstat_memory_throttle_count);
7550 	wmsum_fini(&arc_sums.arcstat_memory_direct_count);
7551 	wmsum_fini(&arc_sums.arcstat_memory_indirect_count);
7552 	wmsum_fini(&arc_sums.arcstat_prune);
7553 	wmsum_fini(&arc_sums.arcstat_meta_used);
7554 	wmsum_fini(&arc_sums.arcstat_async_upgrade_sync);
7555 	wmsum_fini(&arc_sums.arcstat_predictive_prefetch);
7556 	wmsum_fini(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7557 	wmsum_fini(&arc_sums.arcstat_demand_iohit_predictive_prefetch);
7558 	wmsum_fini(&arc_sums.arcstat_prescient_prefetch);
7559 	wmsum_fini(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7560 	wmsum_fini(&arc_sums.arcstat_demand_iohit_prescient_prefetch);
7561 	wmsum_fini(&arc_sums.arcstat_raw_size);
7562 	wmsum_fini(&arc_sums.arcstat_cached_only_in_progress);
7563 	wmsum_fini(&arc_sums.arcstat_abd_chunk_waste_size);
7564 }
7565 
7566 uint64_t
7567 arc_target_bytes(void)
7568 {
7569 	return (arc_c);
7570 }
7571 
7572 void
7573 arc_set_limits(uint64_t allmem)
7574 {
7575 	/* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */
7576 	arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT);
7577 
7578 	/* How to set default max varies by platform. */
7579 	arc_c_max = arc_default_max(arc_c_min, allmem);
7580 }
7581 void
7582 arc_init(void)
7583 {
7584 	uint64_t percent, allmem = arc_all_memory();
7585 	mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL);
7586 	list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t),
7587 	    offsetof(arc_evict_waiter_t, aew_node));
7588 
7589 	arc_min_prefetch_ms = 1000;
7590 	arc_min_prescient_prefetch_ms = 6000;
7591 
7592 #if defined(_KERNEL)
7593 	arc_lowmem_init();
7594 #endif
7595 
7596 	arc_set_limits(allmem);
7597 
7598 #ifdef _KERNEL
7599 	/*
7600 	 * If zfs_arc_max is non-zero at init, meaning it was set in the kernel
7601 	 * environment before the module was loaded, don't block setting the
7602 	 * maximum because it is less than arc_c_min, instead, reset arc_c_min
7603 	 * to a lower value.
7604 	 * zfs_arc_min will be handled by arc_tuning_update().
7605 	 */
7606 	if (zfs_arc_max != 0 && zfs_arc_max >= MIN_ARC_MAX &&
7607 	    zfs_arc_max < allmem) {
7608 		arc_c_max = zfs_arc_max;
7609 		if (arc_c_min >= arc_c_max) {
7610 			arc_c_min = MAX(zfs_arc_max / 2,
7611 			    2ULL << SPA_MAXBLOCKSHIFT);
7612 		}
7613 	}
7614 #else
7615 	/*
7616 	 * In userland, there's only the memory pressure that we artificially
7617 	 * create (see arc_available_memory()).  Don't let arc_c get too
7618 	 * small, because it can cause transactions to be larger than
7619 	 * arc_c, causing arc_tempreserve_space() to fail.
7620 	 */
7621 	arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT);
7622 #endif
7623 
7624 	arc_c = arc_c_min;
7625 	/*
7626 	 * 32-bit fixed point fractions of metadata from total ARC size,
7627 	 * MRU data from all data and MRU metadata from all metadata.
7628 	 */
7629 	arc_meta = (1ULL << 32) / 4;	/* Metadata is 25% of arc_c. */
7630 	arc_pd = (1ULL << 32) / 2;	/* Data MRU is 50% of data. */
7631 	arc_pm = (1ULL << 32) / 2;	/* Metadata MRU is 50% of metadata. */
7632 
7633 	percent = MIN(zfs_arc_dnode_limit_percent, 100);
7634 	arc_dnode_limit = arc_c_max * percent / 100;
7635 
7636 	/* Apply user specified tunings */
7637 	arc_tuning_update(B_TRUE);
7638 
7639 	/* if kmem_flags are set, lets try to use less memory */
7640 	if (kmem_debugging())
7641 		arc_c = arc_c / 2;
7642 	if (arc_c < arc_c_min)
7643 		arc_c = arc_c_min;
7644 
7645 	arc_register_hotplug();
7646 
7647 	arc_state_init();
7648 
7649 	buf_init();
7650 
7651 	list_create(&arc_prune_list, sizeof (arc_prune_t),
7652 	    offsetof(arc_prune_t, p_node));
7653 	mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
7654 
7655 	arc_prune_taskq = taskq_create("arc_prune", zfs_arc_prune_task_threads,
7656 	    defclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
7657 
7658 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
7659 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
7660 
7661 	if (arc_ksp != NULL) {
7662 		arc_ksp->ks_data = &arc_stats;
7663 		arc_ksp->ks_update = arc_kstat_update;
7664 		kstat_install(arc_ksp);
7665 	}
7666 
7667 	arc_state_evict_markers =
7668 	    arc_state_alloc_markers(arc_state_evict_marker_count);
7669 	arc_evict_zthr = zthr_create_timer("arc_evict",
7670 	    arc_evict_cb_check, arc_evict_cb, NULL, SEC2NSEC(1), defclsyspri);
7671 	arc_reap_zthr = zthr_create_timer("arc_reap",
7672 	    arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1), minclsyspri);
7673 
7674 	arc_warm = B_FALSE;
7675 
7676 	/*
7677 	 * Calculate maximum amount of dirty data per pool.
7678 	 *
7679 	 * If it has been set by a module parameter, take that.
7680 	 * Otherwise, use a percentage of physical memory defined by
7681 	 * zfs_dirty_data_max_percent (default 10%) with a cap at
7682 	 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
7683 	 */
7684 #ifdef __LP64__
7685 	if (zfs_dirty_data_max_max == 0)
7686 		zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
7687 		    allmem * zfs_dirty_data_max_max_percent / 100);
7688 #else
7689 	if (zfs_dirty_data_max_max == 0)
7690 		zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024,
7691 		    allmem * zfs_dirty_data_max_max_percent / 100);
7692 #endif
7693 
7694 	if (zfs_dirty_data_max == 0) {
7695 		zfs_dirty_data_max = allmem *
7696 		    zfs_dirty_data_max_percent / 100;
7697 		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
7698 		    zfs_dirty_data_max_max);
7699 	}
7700 
7701 	if (zfs_wrlog_data_max == 0) {
7702 
7703 		/*
7704 		 * dp_wrlog_total is reduced for each txg at the end of
7705 		 * spa_sync(). However, dp_dirty_total is reduced every time
7706 		 * a block is written out. Thus under normal operation,
7707 		 * dp_wrlog_total could grow 2 times as big as
7708 		 * zfs_dirty_data_max.
7709 		 */
7710 		zfs_wrlog_data_max = zfs_dirty_data_max * 2;
7711 	}
7712 }
7713 
7714 void
7715 arc_fini(void)
7716 {
7717 	arc_prune_t *p;
7718 
7719 #ifdef _KERNEL
7720 	arc_lowmem_fini();
7721 #endif /* _KERNEL */
7722 
7723 	/* Use B_TRUE to ensure *all* buffers are evicted */
7724 	arc_flush(NULL, B_TRUE);
7725 
7726 	if (arc_ksp != NULL) {
7727 		kstat_delete(arc_ksp);
7728 		arc_ksp = NULL;
7729 	}
7730 
7731 	taskq_wait(arc_prune_taskq);
7732 	taskq_destroy(arc_prune_taskq);
7733 
7734 	mutex_enter(&arc_prune_mtx);
7735 	while ((p = list_remove_head(&arc_prune_list)) != NULL) {
7736 		(void) zfs_refcount_remove(&p->p_refcnt, &arc_prune_list);
7737 		zfs_refcount_destroy(&p->p_refcnt);
7738 		kmem_free(p, sizeof (*p));
7739 	}
7740 	mutex_exit(&arc_prune_mtx);
7741 
7742 	list_destroy(&arc_prune_list);
7743 	mutex_destroy(&arc_prune_mtx);
7744 
7745 	(void) zthr_cancel(arc_evict_zthr);
7746 	(void) zthr_cancel(arc_reap_zthr);
7747 	arc_state_free_markers(arc_state_evict_markers,
7748 	    arc_state_evict_marker_count);
7749 
7750 	mutex_destroy(&arc_evict_lock);
7751 	list_destroy(&arc_evict_waiters);
7752 
7753 	/*
7754 	 * Free any buffers that were tagged for destruction.  This needs
7755 	 * to occur before arc_state_fini() runs and destroys the aggsum
7756 	 * values which are updated when freeing scatter ABDs.
7757 	 */
7758 	l2arc_do_free_on_write();
7759 
7760 	/*
7761 	 * buf_fini() must proceed arc_state_fini() because buf_fin() may
7762 	 * trigger the release of kmem magazines, which can callback to
7763 	 * arc_space_return() which accesses aggsums freed in act_state_fini().
7764 	 */
7765 	buf_fini();
7766 	arc_state_fini();
7767 
7768 	arc_unregister_hotplug();
7769 
7770 	/*
7771 	 * We destroy the zthrs after all the ARC state has been
7772 	 * torn down to avoid the case of them receiving any
7773 	 * wakeup() signals after they are destroyed.
7774 	 */
7775 	zthr_destroy(arc_evict_zthr);
7776 	zthr_destroy(arc_reap_zthr);
7777 
7778 	ASSERT0(arc_loaned_bytes);
7779 }
7780 
7781 /*
7782  * Level 2 ARC
7783  *
7784  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
7785  * It uses dedicated storage devices to hold cached data, which are populated
7786  * using large infrequent writes.  The main role of this cache is to boost
7787  * the performance of random read workloads.  The intended L2ARC devices
7788  * include short-stroked disks, solid state disks, and other media with
7789  * substantially faster read latency than disk.
7790  *
7791  *                 +-----------------------+
7792  *                 |         ARC           |
7793  *                 +-----------------------+
7794  *                    |         ^     ^
7795  *                    |         |     |
7796  *      l2arc_feed_thread()    arc_read()
7797  *                    |         |     |
7798  *                    |  l2arc read   |
7799  *                    V         |     |
7800  *               +---------------+    |
7801  *               |     L2ARC     |    |
7802  *               +---------------+    |
7803  *                   |    ^           |
7804  *          l2arc_write() |           |
7805  *                   |    |           |
7806  *                   V    |           |
7807  *                 +-------+      +-------+
7808  *                 | vdev  |      | vdev  |
7809  *                 | cache |      | cache |
7810  *                 +-------+      +-------+
7811  *                 +=========+     .-----.
7812  *                 :  L2ARC  :    |-_____-|
7813  *                 : devices :    | Disks |
7814  *                 +=========+    `-_____-'
7815  *
7816  * Read requests are satisfied from the following sources, in order:
7817  *
7818  *	1) ARC
7819  *	2) vdev cache of L2ARC devices
7820  *	3) L2ARC devices
7821  *	4) vdev cache of disks
7822  *	5) disks
7823  *
7824  * Some L2ARC device types exhibit extremely slow write performance.
7825  * To accommodate for this there are some significant differences between
7826  * the L2ARC and traditional cache design:
7827  *
7828  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
7829  * the ARC behave as usual, freeing buffers and placing headers on ghost
7830  * lists.  The ARC does not send buffers to the L2ARC during eviction as
7831  * this would add inflated write latencies for all ARC memory pressure.
7832  *
7833  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
7834  * It does this by periodically scanning buffers from the eviction-end of
7835  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
7836  * not already there. It scans until a headroom of buffers is satisfied,
7837  * which itself is a buffer for ARC eviction. If a compressible buffer is
7838  * found during scanning and selected for writing to an L2ARC device, we
7839  * temporarily boost scanning headroom during the next scan cycle to make
7840  * sure we adapt to compression effects (which might significantly reduce
7841  * the data volume we write to L2ARC). The thread that does this is
7842  * l2arc_feed_thread(), illustrated below; example sizes are included to
7843  * provide a better sense of ratio than this diagram:
7844  *
7845  *	       head -->                        tail
7846  *	        +---------------------+----------+
7847  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
7848  *	        +---------------------+----------+   |   o L2ARC eligible
7849  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
7850  *	        +---------------------+----------+   |
7851  *	             15.9 Gbytes      ^ 32 Mbytes    |
7852  *	                           headroom          |
7853  *	                                      l2arc_feed_thread()
7854  *	                                             |
7855  *	                 l2arc write hand <--[oooo]--'
7856  *	                         |           8 Mbyte
7857  *	                         |          write max
7858  *	                         V
7859  *		  +==============================+
7860  *	L2ARC dev |####|#|###|###|    |####| ... |
7861  *	          +==============================+
7862  *	                     32 Gbytes
7863  *
7864  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
7865  * evicted, then the L2ARC has cached a buffer much sooner than it probably
7866  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
7867  * safe to say that this is an uncommon case, since buffers at the end of
7868  * the ARC lists have moved there due to inactivity.
7869  *
7870  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
7871  * then the L2ARC simply misses copying some buffers.  This serves as a
7872  * pressure valve to prevent heavy read workloads from both stalling the ARC
7873  * with waits and clogging the L2ARC with writes.  This also helps prevent
7874  * the potential for the L2ARC to churn if it attempts to cache content too
7875  * quickly, such as during backups of the entire pool.
7876  *
7877  * 5. After system boot and before the ARC has filled main memory, there are
7878  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
7879  * lists can remain mostly static.  Instead of searching from tail of these
7880  * lists as pictured, the l2arc_feed_thread() will search from the list heads
7881  * for eligible buffers, greatly increasing its chance of finding them.
7882  *
7883  * The L2ARC device write speed is also boosted during this time so that
7884  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
7885  * there are no L2ARC reads, and no fear of degrading read performance
7886  * through increased writes.
7887  *
7888  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
7889  * the vdev queue can aggregate them into larger and fewer writes.  Each
7890  * device is written to in a rotor fashion, sweeping writes through
7891  * available space then repeating.
7892  *
7893  * 7. The L2ARC does not store dirty content.  It never needs to flush
7894  * write buffers back to disk based storage.
7895  *
7896  * 8. If an ARC buffer is written (and dirtied) which also exists in the
7897  * L2ARC, the now stale L2ARC buffer is immediately dropped.
7898  *
7899  * The performance of the L2ARC can be tweaked by a number of tunables, which
7900  * may be necessary for different workloads:
7901  *
7902  *	l2arc_write_max		max write bytes per interval
7903  *	l2arc_write_boost	extra write bytes during device warmup
7904  *	l2arc_noprefetch	skip caching prefetched buffers
7905  *	l2arc_headroom		number of max device writes to precache
7906  *	l2arc_headroom_boost	when we find compressed buffers during ARC
7907  *				scanning, we multiply headroom by this
7908  *				percentage factor for the next scan cycle,
7909  *				since more compressed buffers are likely to
7910  *				be present
7911  *	l2arc_feed_secs		seconds between L2ARC writing
7912  *
7913  * Tunables may be removed or added as future performance improvements are
7914  * integrated, and also may become zpool properties.
7915  *
7916  * There are three key functions that control how the L2ARC warms up:
7917  *
7918  *	l2arc_write_eligible()	check if a buffer is eligible to cache
7919  *	l2arc_write_size()	calculate how much to write
7920  *	l2arc_write_interval()	calculate sleep delay between writes
7921  *
7922  * These three functions determine what to write, how much, and how quickly
7923  * to send writes.
7924  *
7925  * L2ARC persistence:
7926  *
7927  * When writing buffers to L2ARC, we periodically add some metadata to
7928  * make sure we can pick them up after reboot, thus dramatically reducing
7929  * the impact that any downtime has on the performance of storage systems
7930  * with large caches.
7931  *
7932  * The implementation works fairly simply by integrating the following two
7933  * modifications:
7934  *
7935  * *) When writing to the L2ARC, we occasionally write a "l2arc log block",
7936  *    which is an additional piece of metadata which describes what's been
7937  *    written. This allows us to rebuild the arc_buf_hdr_t structures of the
7938  *    main ARC buffers. There are 2 linked-lists of log blocks headed by
7939  *    dh_start_lbps[2]. We alternate which chain we append to, so they are
7940  *    time-wise and offset-wise interleaved, but that is an optimization rather
7941  *    than for correctness. The log block also includes a pointer to the
7942  *    previous block in its chain.
7943  *
7944  * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device
7945  *    for our header bookkeeping purposes. This contains a device header,
7946  *    which contains our top-level reference structures. We update it each
7947  *    time we write a new log block, so that we're able to locate it in the
7948  *    L2ARC device. If this write results in an inconsistent device header
7949  *    (e.g. due to power failure), we detect this by verifying the header's
7950  *    checksum and simply fail to reconstruct the L2ARC after reboot.
7951  *
7952  * Implementation diagram:
7953  *
7954  * +=== L2ARC device (not to scale) ======================================+
7955  * |       ___two newest log block pointers__.__________                  |
7956  * |      /                                   \dh_start_lbps[1]           |
7957  * |	 /				       \         \dh_start_lbps[0]|
7958  * |.___/__.                                    V         V               |
7959  * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---|
7960  * ||   hdr|      ^         /^       /^        /         /                |
7961  * |+------+  ...--\-------/  \-----/--\------/         /                 |
7962  * |                \--------------/    \--------------/                  |
7963  * +======================================================================+
7964  *
7965  * As can be seen on the diagram, rather than using a simple linked list,
7966  * we use a pair of linked lists with alternating elements. This is a
7967  * performance enhancement due to the fact that we only find out the
7968  * address of the next log block access once the current block has been
7969  * completely read in. Obviously, this hurts performance, because we'd be
7970  * keeping the device's I/O queue at only a 1 operation deep, thus
7971  * incurring a large amount of I/O round-trip latency. Having two lists
7972  * allows us to fetch two log blocks ahead of where we are currently
7973  * rebuilding L2ARC buffers.
7974  *
7975  * On-device data structures:
7976  *
7977  * L2ARC device header:	l2arc_dev_hdr_phys_t
7978  * L2ARC log block:	l2arc_log_blk_phys_t
7979  *
7980  * L2ARC reconstruction:
7981  *
7982  * When writing data, we simply write in the standard rotary fashion,
7983  * evicting buffers as we go and simply writing new data over them (writing
7984  * a new log block every now and then). This obviously means that once we
7985  * loop around the end of the device, we will start cutting into an already
7986  * committed log block (and its referenced data buffers), like so:
7987  *
7988  *    current write head__       __old tail
7989  *                        \     /
7990  *                        V    V
7991  * <--|bufs |lb |bufs |lb |    |bufs |lb |bufs |lb |-->
7992  *                         ^    ^^^^^^^^^___________________________________
7993  *                         |                                                \
7994  *                   <<nextwrite>> may overwrite this blk and/or its bufs --'
7995  *
7996  * When importing the pool, we detect this situation and use it to stop
7997  * our scanning process (see l2arc_rebuild).
7998  *
7999  * There is one significant caveat to consider when rebuilding ARC contents
8000  * from an L2ARC device: what about invalidated buffers? Given the above
8001  * construction, we cannot update blocks which we've already written to amend
8002  * them to remove buffers which were invalidated. Thus, during reconstruction,
8003  * we might be populating the cache with buffers for data that's not on the
8004  * main pool anymore, or may have been overwritten!
8005  *
8006  * As it turns out, this isn't a problem. Every arc_read request includes
8007  * both the DVA and, crucially, the birth TXG of the BP the caller is
8008  * looking for. So even if the cache were populated by completely rotten
8009  * blocks for data that had been long deleted and/or overwritten, we'll
8010  * never actually return bad data from the cache, since the DVA with the
8011  * birth TXG uniquely identify a block in space and time - once created,
8012  * a block is immutable on disk. The worst thing we have done is wasted
8013  * some time and memory at l2arc rebuild to reconstruct outdated ARC
8014  * entries that will get dropped from the l2arc as it is being updated
8015  * with new blocks.
8016  *
8017  * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write
8018  * hand are not restored. This is done by saving the offset (in bytes)
8019  * l2arc_evict() has evicted to in the L2ARC device header and taking it
8020  * into account when restoring buffers.
8021  */
8022 
8023 static boolean_t
8024 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
8025 {
8026 	/*
8027 	 * A buffer is *not* eligible for the L2ARC if it:
8028 	 * 1. belongs to a different spa.
8029 	 * 2. is already cached on the L2ARC.
8030 	 * 3. has an I/O in progress (it may be an incomplete read).
8031 	 * 4. is flagged not eligible (zfs property).
8032 	 */
8033 	if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
8034 	    HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
8035 		return (B_FALSE);
8036 
8037 	return (B_TRUE);
8038 }
8039 
8040 static uint64_t
8041 l2arc_write_size(l2arc_dev_t *dev)
8042 {
8043 	uint64_t size;
8044 
8045 	/*
8046 	 * Make sure our globals have meaningful values in case the user
8047 	 * altered them.
8048 	 */
8049 	size = l2arc_write_max;
8050 	if (size == 0) {
8051 		cmn_err(CE_NOTE, "l2arc_write_max must be greater than zero, "
8052 		    "resetting it to the default (%d)", L2ARC_WRITE_SIZE);
8053 		size = l2arc_write_max = L2ARC_WRITE_SIZE;
8054 	}
8055 
8056 	if (arc_warm == B_FALSE)
8057 		size += l2arc_write_boost;
8058 
8059 	/* We need to add in the worst case scenario of log block overhead. */
8060 	size += l2arc_log_blk_overhead(size, dev);
8061 	if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) {
8062 		/*
8063 		 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100)
8064 		 * times the writesize, whichever is greater.
8065 		 */
8066 		size += MAX(64 * 1024 * 1024,
8067 		    (size * l2arc_trim_ahead) / 100);
8068 	}
8069 
8070 	/*
8071 	 * Make sure the write size does not exceed the size of the cache
8072 	 * device. This is important in l2arc_evict(), otherwise infinite
8073 	 * iteration can occur.
8074 	 */
8075 	size = MIN(size, (dev->l2ad_end - dev->l2ad_start) / 4);
8076 
8077 	size = P2ROUNDUP(size, 1ULL << dev->l2ad_vdev->vdev_ashift);
8078 
8079 	return (size);
8080 
8081 }
8082 
8083 static clock_t
8084 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
8085 {
8086 	clock_t interval, next, now;
8087 
8088 	/*
8089 	 * If the ARC lists are busy, increase our write rate; if the
8090 	 * lists are stale, idle back.  This is achieved by checking
8091 	 * how much we previously wrote - if it was more than half of
8092 	 * what we wanted, schedule the next write much sooner.
8093 	 */
8094 	if (l2arc_feed_again && wrote > (wanted / 2))
8095 		interval = (hz * l2arc_feed_min_ms) / 1000;
8096 	else
8097 		interval = hz * l2arc_feed_secs;
8098 
8099 	now = ddi_get_lbolt();
8100 	next = MAX(now, MIN(now + interval, began + interval));
8101 
8102 	return (next);
8103 }
8104 
8105 /*
8106  * Cycle through L2ARC devices.  This is how L2ARC load balances.
8107  * If a device is returned, this also returns holding the spa config lock.
8108  */
8109 static l2arc_dev_t *
8110 l2arc_dev_get_next(void)
8111 {
8112 	l2arc_dev_t *first, *next = NULL;
8113 
8114 	/*
8115 	 * Lock out the removal of spas (spa_namespace_lock), then removal
8116 	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
8117 	 * both locks will be dropped and a spa config lock held instead.
8118 	 */
8119 	mutex_enter(&spa_namespace_lock);
8120 	mutex_enter(&l2arc_dev_mtx);
8121 
8122 	/* if there are no vdevs, there is nothing to do */
8123 	if (l2arc_ndev == 0)
8124 		goto out;
8125 
8126 	first = NULL;
8127 	next = l2arc_dev_last;
8128 	do {
8129 		/* loop around the list looking for a non-faulted vdev */
8130 		if (next == NULL) {
8131 			next = list_head(l2arc_dev_list);
8132 		} else {
8133 			next = list_next(l2arc_dev_list, next);
8134 			if (next == NULL)
8135 				next = list_head(l2arc_dev_list);
8136 		}
8137 
8138 		/* if we have come back to the start, bail out */
8139 		if (first == NULL)
8140 			first = next;
8141 		else if (next == first)
8142 			break;
8143 
8144 		ASSERT3P(next, !=, NULL);
8145 	} while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild ||
8146 	    next->l2ad_trim_all);
8147 
8148 	/* if we were unable to find any usable vdevs, return NULL */
8149 	if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild ||
8150 	    next->l2ad_trim_all)
8151 		next = NULL;
8152 
8153 	l2arc_dev_last = next;
8154 
8155 out:
8156 	mutex_exit(&l2arc_dev_mtx);
8157 
8158 	/*
8159 	 * Grab the config lock to prevent the 'next' device from being
8160 	 * removed while we are writing to it.
8161 	 */
8162 	if (next != NULL)
8163 		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
8164 	mutex_exit(&spa_namespace_lock);
8165 
8166 	return (next);
8167 }
8168 
8169 /*
8170  * Free buffers that were tagged for destruction.
8171  */
8172 static void
8173 l2arc_do_free_on_write(void)
8174 {
8175 	l2arc_data_free_t *df;
8176 
8177 	mutex_enter(&l2arc_free_on_write_mtx);
8178 	while ((df = list_remove_head(l2arc_free_on_write)) != NULL) {
8179 		ASSERT3P(df->l2df_abd, !=, NULL);
8180 		abd_free(df->l2df_abd);
8181 		kmem_free(df, sizeof (l2arc_data_free_t));
8182 	}
8183 	mutex_exit(&l2arc_free_on_write_mtx);
8184 }
8185 
8186 /*
8187  * A write to a cache device has completed.  Update all headers to allow
8188  * reads from these buffers to begin.
8189  */
8190 static void
8191 l2arc_write_done(zio_t *zio)
8192 {
8193 	l2arc_write_callback_t	*cb;
8194 	l2arc_lb_abd_buf_t	*abd_buf;
8195 	l2arc_lb_ptr_buf_t	*lb_ptr_buf;
8196 	l2arc_dev_t		*dev;
8197 	l2arc_dev_hdr_phys_t	*l2dhdr;
8198 	list_t			*buflist;
8199 	arc_buf_hdr_t		*head, *hdr, *hdr_prev;
8200 	kmutex_t		*hash_lock;
8201 	int64_t			bytes_dropped = 0;
8202 
8203 	cb = zio->io_private;
8204 	ASSERT3P(cb, !=, NULL);
8205 	dev = cb->l2wcb_dev;
8206 	l2dhdr = dev->l2ad_dev_hdr;
8207 	ASSERT3P(dev, !=, NULL);
8208 	head = cb->l2wcb_head;
8209 	ASSERT3P(head, !=, NULL);
8210 	buflist = &dev->l2ad_buflist;
8211 	ASSERT3P(buflist, !=, NULL);
8212 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
8213 	    l2arc_write_callback_t *, cb);
8214 
8215 	/*
8216 	 * All writes completed, or an error was hit.
8217 	 */
8218 top:
8219 	mutex_enter(&dev->l2ad_mtx);
8220 	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
8221 		hdr_prev = list_prev(buflist, hdr);
8222 
8223 		hash_lock = HDR_LOCK(hdr);
8224 
8225 		/*
8226 		 * We cannot use mutex_enter or else we can deadlock
8227 		 * with l2arc_write_buffers (due to swapping the order
8228 		 * the hash lock and l2ad_mtx are taken).
8229 		 */
8230 		if (!mutex_tryenter(hash_lock)) {
8231 			/*
8232 			 * Missed the hash lock. We must retry so we
8233 			 * don't leave the ARC_FLAG_L2_WRITING bit set.
8234 			 */
8235 			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
8236 
8237 			/*
8238 			 * We don't want to rescan the headers we've
8239 			 * already marked as having been written out, so
8240 			 * we reinsert the head node so we can pick up
8241 			 * where we left off.
8242 			 */
8243 			list_remove(buflist, head);
8244 			list_insert_after(buflist, hdr, head);
8245 
8246 			mutex_exit(&dev->l2ad_mtx);
8247 
8248 			/*
8249 			 * We wait for the hash lock to become available
8250 			 * to try and prevent busy waiting, and increase
8251 			 * the chance we'll be able to acquire the lock
8252 			 * the next time around.
8253 			 */
8254 			mutex_enter(hash_lock);
8255 			mutex_exit(hash_lock);
8256 			goto top;
8257 		}
8258 
8259 		/*
8260 		 * We could not have been moved into the arc_l2c_only
8261 		 * state while in-flight due to our ARC_FLAG_L2_WRITING
8262 		 * bit being set. Let's just ensure that's being enforced.
8263 		 */
8264 		ASSERT(HDR_HAS_L1HDR(hdr));
8265 
8266 		/*
8267 		 * Skipped - drop L2ARC entry and mark the header as no
8268 		 * longer L2 eligibile.
8269 		 */
8270 		if (zio->io_error != 0) {
8271 			/*
8272 			 * Error - drop L2ARC entry.
8273 			 */
8274 			list_remove(buflist, hdr);
8275 			arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
8276 
8277 			uint64_t psize = HDR_GET_PSIZE(hdr);
8278 			l2arc_hdr_arcstats_decrement(hdr);
8279 
8280 			bytes_dropped +=
8281 			    vdev_psize_to_asize(dev->l2ad_vdev, psize);
8282 			(void) zfs_refcount_remove_many(&dev->l2ad_alloc,
8283 			    arc_hdr_size(hdr), hdr);
8284 		}
8285 
8286 		/*
8287 		 * Allow ARC to begin reads and ghost list evictions to
8288 		 * this L2ARC entry.
8289 		 */
8290 		arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
8291 
8292 		mutex_exit(hash_lock);
8293 	}
8294 
8295 	/*
8296 	 * Free the allocated abd buffers for writing the log blocks.
8297 	 * If the zio failed reclaim the allocated space and remove the
8298 	 * pointers to these log blocks from the log block pointer list
8299 	 * of the L2ARC device.
8300 	 */
8301 	while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) {
8302 		abd_free(abd_buf->abd);
8303 		zio_buf_free(abd_buf, sizeof (*abd_buf));
8304 		if (zio->io_error != 0) {
8305 			lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list);
8306 			/*
8307 			 * L2BLK_GET_PSIZE returns aligned size for log
8308 			 * blocks.
8309 			 */
8310 			uint64_t asize =
8311 			    L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop);
8312 			bytes_dropped += asize;
8313 			ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
8314 			ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
8315 			zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
8316 			    lb_ptr_buf);
8317 			(void) zfs_refcount_remove(&dev->l2ad_lb_count,
8318 			    lb_ptr_buf);
8319 			kmem_free(lb_ptr_buf->lb_ptr,
8320 			    sizeof (l2arc_log_blkptr_t));
8321 			kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
8322 		}
8323 	}
8324 	list_destroy(&cb->l2wcb_abd_list);
8325 
8326 	if (zio->io_error != 0) {
8327 		ARCSTAT_BUMP(arcstat_l2_writes_error);
8328 
8329 		/*
8330 		 * Restore the lbps array in the header to its previous state.
8331 		 * If the list of log block pointers is empty, zero out the
8332 		 * log block pointers in the device header.
8333 		 */
8334 		lb_ptr_buf = list_head(&dev->l2ad_lbptr_list);
8335 		for (int i = 0; i < 2; i++) {
8336 			if (lb_ptr_buf == NULL) {
8337 				/*
8338 				 * If the list is empty zero out the device
8339 				 * header. Otherwise zero out the second log
8340 				 * block pointer in the header.
8341 				 */
8342 				if (i == 0) {
8343 					memset(l2dhdr, 0,
8344 					    dev->l2ad_dev_hdr_asize);
8345 				} else {
8346 					memset(&l2dhdr->dh_start_lbps[i], 0,
8347 					    sizeof (l2arc_log_blkptr_t));
8348 				}
8349 				break;
8350 			}
8351 			memcpy(&l2dhdr->dh_start_lbps[i], lb_ptr_buf->lb_ptr,
8352 			    sizeof (l2arc_log_blkptr_t));
8353 			lb_ptr_buf = list_next(&dev->l2ad_lbptr_list,
8354 			    lb_ptr_buf);
8355 		}
8356 	}
8357 
8358 	ARCSTAT_BUMP(arcstat_l2_writes_done);
8359 	list_remove(buflist, head);
8360 	ASSERT(!HDR_HAS_L1HDR(head));
8361 	kmem_cache_free(hdr_l2only_cache, head);
8362 	mutex_exit(&dev->l2ad_mtx);
8363 
8364 	ASSERT(dev->l2ad_vdev != NULL);
8365 	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
8366 
8367 	l2arc_do_free_on_write();
8368 
8369 	kmem_free(cb, sizeof (l2arc_write_callback_t));
8370 }
8371 
8372 static int
8373 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb)
8374 {
8375 	int ret;
8376 	spa_t *spa = zio->io_spa;
8377 	arc_buf_hdr_t *hdr = cb->l2rcb_hdr;
8378 	blkptr_t *bp = zio->io_bp;
8379 	uint8_t salt[ZIO_DATA_SALT_LEN];
8380 	uint8_t iv[ZIO_DATA_IV_LEN];
8381 	uint8_t mac[ZIO_DATA_MAC_LEN];
8382 	boolean_t no_crypt = B_FALSE;
8383 
8384 	/*
8385 	 * ZIL data is never be written to the L2ARC, so we don't need
8386 	 * special handling for its unique MAC storage.
8387 	 */
8388 	ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
8389 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
8390 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8391 
8392 	/*
8393 	 * If the data was encrypted, decrypt it now. Note that
8394 	 * we must check the bp here and not the hdr, since the
8395 	 * hdr does not have its encryption parameters updated
8396 	 * until arc_read_done().
8397 	 */
8398 	if (BP_IS_ENCRYPTED(bp)) {
8399 		abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8400 		    ARC_HDR_USE_RESERVE);
8401 
8402 		zio_crypt_decode_params_bp(bp, salt, iv);
8403 		zio_crypt_decode_mac_bp(bp, mac);
8404 
8405 		ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb,
8406 		    BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
8407 		    salt, iv, mac, HDR_GET_PSIZE(hdr), eabd,
8408 		    hdr->b_l1hdr.b_pabd, &no_crypt);
8409 		if (ret != 0) {
8410 			arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8411 			goto error;
8412 		}
8413 
8414 		/*
8415 		 * If we actually performed decryption, replace b_pabd
8416 		 * with the decrypted data. Otherwise we can just throw
8417 		 * our decryption buffer away.
8418 		 */
8419 		if (!no_crypt) {
8420 			arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8421 			    arc_hdr_size(hdr), hdr);
8422 			hdr->b_l1hdr.b_pabd = eabd;
8423 			zio->io_abd = eabd;
8424 		} else {
8425 			arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8426 		}
8427 	}
8428 
8429 	/*
8430 	 * If the L2ARC block was compressed, but ARC compression
8431 	 * is disabled we decompress the data into a new buffer and
8432 	 * replace the existing data.
8433 	 */
8434 	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8435 	    !HDR_COMPRESSION_ENABLED(hdr)) {
8436 		abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8437 		    ARC_HDR_USE_RESERVE);
8438 		void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
8439 
8440 		ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
8441 		    hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
8442 		    HDR_GET_LSIZE(hdr), &hdr->b_complevel);
8443 		if (ret != 0) {
8444 			abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8445 			arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
8446 			goto error;
8447 		}
8448 
8449 		abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8450 		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8451 		    arc_hdr_size(hdr), hdr);
8452 		hdr->b_l1hdr.b_pabd = cabd;
8453 		zio->io_abd = cabd;
8454 		zio->io_size = HDR_GET_LSIZE(hdr);
8455 	}
8456 
8457 	return (0);
8458 
8459 error:
8460 	return (ret);
8461 }
8462 
8463 
8464 /*
8465  * A read to a cache device completed.  Validate buffer contents before
8466  * handing over to the regular ARC routines.
8467  */
8468 static void
8469 l2arc_read_done(zio_t *zio)
8470 {
8471 	int tfm_error = 0;
8472 	l2arc_read_callback_t *cb = zio->io_private;
8473 	arc_buf_hdr_t *hdr;
8474 	kmutex_t *hash_lock;
8475 	boolean_t valid_cksum;
8476 	boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) &&
8477 	    (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT));
8478 
8479 	ASSERT3P(zio->io_vd, !=, NULL);
8480 	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
8481 
8482 	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
8483 
8484 	ASSERT3P(cb, !=, NULL);
8485 	hdr = cb->l2rcb_hdr;
8486 	ASSERT3P(hdr, !=, NULL);
8487 
8488 	hash_lock = HDR_LOCK(hdr);
8489 	mutex_enter(hash_lock);
8490 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
8491 
8492 	/*
8493 	 * If the data was read into a temporary buffer,
8494 	 * move it and free the buffer.
8495 	 */
8496 	if (cb->l2rcb_abd != NULL) {
8497 		ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
8498 		if (zio->io_error == 0) {
8499 			if (using_rdata) {
8500 				abd_copy(hdr->b_crypt_hdr.b_rabd,
8501 				    cb->l2rcb_abd, arc_hdr_size(hdr));
8502 			} else {
8503 				abd_copy(hdr->b_l1hdr.b_pabd,
8504 				    cb->l2rcb_abd, arc_hdr_size(hdr));
8505 			}
8506 		}
8507 
8508 		/*
8509 		 * The following must be done regardless of whether
8510 		 * there was an error:
8511 		 * - free the temporary buffer
8512 		 * - point zio to the real ARC buffer
8513 		 * - set zio size accordingly
8514 		 * These are required because zio is either re-used for
8515 		 * an I/O of the block in the case of the error
8516 		 * or the zio is passed to arc_read_done() and it
8517 		 * needs real data.
8518 		 */
8519 		abd_free(cb->l2rcb_abd);
8520 		zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
8521 
8522 		if (using_rdata) {
8523 			ASSERT(HDR_HAS_RABD(hdr));
8524 			zio->io_abd = zio->io_orig_abd =
8525 			    hdr->b_crypt_hdr.b_rabd;
8526 		} else {
8527 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8528 			zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
8529 		}
8530 	}
8531 
8532 	ASSERT3P(zio->io_abd, !=, NULL);
8533 
8534 	/*
8535 	 * Check this survived the L2ARC journey.
8536 	 */
8537 	ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd ||
8538 	    (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd));
8539 	zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
8540 	zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
8541 	zio->io_prop.zp_complevel = hdr->b_complevel;
8542 
8543 	valid_cksum = arc_cksum_is_equal(hdr, zio);
8544 
8545 	/*
8546 	 * b_rabd will always match the data as it exists on disk if it is
8547 	 * being used. Therefore if we are reading into b_rabd we do not
8548 	 * attempt to untransform the data.
8549 	 */
8550 	if (valid_cksum && !using_rdata)
8551 		tfm_error = l2arc_untransform(zio, cb);
8552 
8553 	if (valid_cksum && tfm_error == 0 && zio->io_error == 0 &&
8554 	    !HDR_L2_EVICTED(hdr)) {
8555 		mutex_exit(hash_lock);
8556 		zio->io_private = hdr;
8557 		arc_read_done(zio);
8558 	} else {
8559 		/*
8560 		 * Buffer didn't survive caching.  Increment stats and
8561 		 * reissue to the original storage device.
8562 		 */
8563 		if (zio->io_error != 0) {
8564 			ARCSTAT_BUMP(arcstat_l2_io_error);
8565 		} else {
8566 			zio->io_error = SET_ERROR(EIO);
8567 		}
8568 		if (!valid_cksum || tfm_error != 0)
8569 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
8570 
8571 		/*
8572 		 * If there's no waiter, issue an async i/o to the primary
8573 		 * storage now.  If there *is* a waiter, the caller must
8574 		 * issue the i/o in a context where it's OK to block.
8575 		 */
8576 		if (zio->io_waiter == NULL) {
8577 			zio_t *pio = zio_unique_parent(zio);
8578 			void *abd = (using_rdata) ?
8579 			    hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd;
8580 
8581 			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
8582 
8583 			zio = zio_read(pio, zio->io_spa, zio->io_bp,
8584 			    abd, zio->io_size, arc_read_done,
8585 			    hdr, zio->io_priority, cb->l2rcb_flags,
8586 			    &cb->l2rcb_zb);
8587 
8588 			/*
8589 			 * Original ZIO will be freed, so we need to update
8590 			 * ARC header with the new ZIO pointer to be used
8591 			 * by zio_change_priority() in arc_read().
8592 			 */
8593 			for (struct arc_callback *acb = hdr->b_l1hdr.b_acb;
8594 			    acb != NULL; acb = acb->acb_next)
8595 				acb->acb_zio_head = zio;
8596 
8597 			mutex_exit(hash_lock);
8598 			zio_nowait(zio);
8599 		} else {
8600 			mutex_exit(hash_lock);
8601 		}
8602 	}
8603 
8604 	kmem_free(cb, sizeof (l2arc_read_callback_t));
8605 }
8606 
8607 /*
8608  * This is the list priority from which the L2ARC will search for pages to
8609  * cache.  This is used within loops (0..3) to cycle through lists in the
8610  * desired order.  This order can have a significant effect on cache
8611  * performance.
8612  *
8613  * Currently the metadata lists are hit first, MFU then MRU, followed by
8614  * the data lists.  This function returns a locked list, and also returns
8615  * the lock pointer.
8616  */
8617 static multilist_sublist_t *
8618 l2arc_sublist_lock(int list_num)
8619 {
8620 	multilist_t *ml = NULL;
8621 	unsigned int idx;
8622 
8623 	ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES);
8624 
8625 	switch (list_num) {
8626 	case 0:
8627 		ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
8628 		break;
8629 	case 1:
8630 		ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
8631 		break;
8632 	case 2:
8633 		ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
8634 		break;
8635 	case 3:
8636 		ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
8637 		break;
8638 	default:
8639 		return (NULL);
8640 	}
8641 
8642 	/*
8643 	 * Return a randomly-selected sublist. This is acceptable
8644 	 * because the caller feeds only a little bit of data for each
8645 	 * call (8MB). Subsequent calls will result in different
8646 	 * sublists being selected.
8647 	 */
8648 	idx = multilist_get_random_index(ml);
8649 	return (multilist_sublist_lock_idx(ml, idx));
8650 }
8651 
8652 /*
8653  * Calculates the maximum overhead of L2ARC metadata log blocks for a given
8654  * L2ARC write size. l2arc_evict and l2arc_write_size need to include this
8655  * overhead in processing to make sure there is enough headroom available
8656  * when writing buffers.
8657  */
8658 static inline uint64_t
8659 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev)
8660 {
8661 	if (dev->l2ad_log_entries == 0) {
8662 		return (0);
8663 	} else {
8664 		uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT;
8665 
8666 		uint64_t log_blocks = (log_entries +
8667 		    dev->l2ad_log_entries - 1) /
8668 		    dev->l2ad_log_entries;
8669 
8670 		return (vdev_psize_to_asize(dev->l2ad_vdev,
8671 		    sizeof (l2arc_log_blk_phys_t)) * log_blocks);
8672 	}
8673 }
8674 
8675 /*
8676  * Evict buffers from the device write hand to the distance specified in
8677  * bytes. This distance may span populated buffers, it may span nothing.
8678  * This is clearing a region on the L2ARC device ready for writing.
8679  * If the 'all' boolean is set, every buffer is evicted.
8680  */
8681 static void
8682 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
8683 {
8684 	list_t *buflist;
8685 	arc_buf_hdr_t *hdr, *hdr_prev;
8686 	kmutex_t *hash_lock;
8687 	uint64_t taddr;
8688 	l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev;
8689 	vdev_t *vd = dev->l2ad_vdev;
8690 	boolean_t rerun;
8691 
8692 	buflist = &dev->l2ad_buflist;
8693 
8694 top:
8695 	rerun = B_FALSE;
8696 	if (dev->l2ad_hand + distance > dev->l2ad_end) {
8697 		/*
8698 		 * When there is no space to accommodate upcoming writes,
8699 		 * evict to the end. Then bump the write and evict hands
8700 		 * to the start and iterate. This iteration does not
8701 		 * happen indefinitely as we make sure in
8702 		 * l2arc_write_size() that when the write hand is reset,
8703 		 * the write size does not exceed the end of the device.
8704 		 */
8705 		rerun = B_TRUE;
8706 		taddr = dev->l2ad_end;
8707 	} else {
8708 		taddr = dev->l2ad_hand + distance;
8709 	}
8710 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
8711 	    uint64_t, taddr, boolean_t, all);
8712 
8713 	if (!all) {
8714 		/*
8715 		 * This check has to be placed after deciding whether to
8716 		 * iterate (rerun).
8717 		 */
8718 		if (dev->l2ad_first) {
8719 			/*
8720 			 * This is the first sweep through the device. There is
8721 			 * nothing to evict. We have already trimmmed the
8722 			 * whole device.
8723 			 */
8724 			goto out;
8725 		} else {
8726 			/*
8727 			 * Trim the space to be evicted.
8728 			 */
8729 			if (vd->vdev_has_trim && dev->l2ad_evict < taddr &&
8730 			    l2arc_trim_ahead > 0) {
8731 				/*
8732 				 * We have to drop the spa_config lock because
8733 				 * vdev_trim_range() will acquire it.
8734 				 * l2ad_evict already accounts for the label
8735 				 * size. To prevent vdev_trim_ranges() from
8736 				 * adding it again, we subtract it from
8737 				 * l2ad_evict.
8738 				 */
8739 				spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev);
8740 				vdev_trim_simple(vd,
8741 				    dev->l2ad_evict - VDEV_LABEL_START_SIZE,
8742 				    taddr - dev->l2ad_evict);
8743 				spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev,
8744 				    RW_READER);
8745 			}
8746 
8747 			/*
8748 			 * When rebuilding L2ARC we retrieve the evict hand
8749 			 * from the header of the device. Of note, l2arc_evict()
8750 			 * does not actually delete buffers from the cache
8751 			 * device, but trimming may do so depending on the
8752 			 * hardware implementation. Thus keeping track of the
8753 			 * evict hand is useful.
8754 			 */
8755 			dev->l2ad_evict = MAX(dev->l2ad_evict, taddr);
8756 		}
8757 	}
8758 
8759 retry:
8760 	mutex_enter(&dev->l2ad_mtx);
8761 	/*
8762 	 * We have to account for evicted log blocks. Run vdev_space_update()
8763 	 * on log blocks whose offset (in bytes) is before the evicted offset
8764 	 * (in bytes) by searching in the list of pointers to log blocks
8765 	 * present in the L2ARC device.
8766 	 */
8767 	for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf;
8768 	    lb_ptr_buf = lb_ptr_buf_prev) {
8769 
8770 		lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf);
8771 
8772 		/* L2BLK_GET_PSIZE returns aligned size for log blocks */
8773 		uint64_t asize = L2BLK_GET_PSIZE(
8774 		    (lb_ptr_buf->lb_ptr)->lbp_prop);
8775 
8776 		/*
8777 		 * We don't worry about log blocks left behind (ie
8778 		 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers()
8779 		 * will never write more than l2arc_evict() evicts.
8780 		 */
8781 		if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) {
8782 			break;
8783 		} else {
8784 			vdev_space_update(vd, -asize, 0, 0);
8785 			ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
8786 			ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
8787 			zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
8788 			    lb_ptr_buf);
8789 			(void) zfs_refcount_remove(&dev->l2ad_lb_count,
8790 			    lb_ptr_buf);
8791 			list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf);
8792 			kmem_free(lb_ptr_buf->lb_ptr,
8793 			    sizeof (l2arc_log_blkptr_t));
8794 			kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
8795 		}
8796 	}
8797 
8798 	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
8799 		hdr_prev = list_prev(buflist, hdr);
8800 
8801 		ASSERT(!HDR_EMPTY(hdr));
8802 		hash_lock = HDR_LOCK(hdr);
8803 
8804 		/*
8805 		 * We cannot use mutex_enter or else we can deadlock
8806 		 * with l2arc_write_buffers (due to swapping the order
8807 		 * the hash lock and l2ad_mtx are taken).
8808 		 */
8809 		if (!mutex_tryenter(hash_lock)) {
8810 			/*
8811 			 * Missed the hash lock.  Retry.
8812 			 */
8813 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
8814 			mutex_exit(&dev->l2ad_mtx);
8815 			mutex_enter(hash_lock);
8816 			mutex_exit(hash_lock);
8817 			goto retry;
8818 		}
8819 
8820 		/*
8821 		 * A header can't be on this list if it doesn't have L2 header.
8822 		 */
8823 		ASSERT(HDR_HAS_L2HDR(hdr));
8824 
8825 		/* Ensure this header has finished being written. */
8826 		ASSERT(!HDR_L2_WRITING(hdr));
8827 		ASSERT(!HDR_L2_WRITE_HEAD(hdr));
8828 
8829 		if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict ||
8830 		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
8831 			/*
8832 			 * We've evicted to the target address,
8833 			 * or the end of the device.
8834 			 */
8835 			mutex_exit(hash_lock);
8836 			break;
8837 		}
8838 
8839 		if (!HDR_HAS_L1HDR(hdr)) {
8840 			ASSERT(!HDR_L2_READING(hdr));
8841 			/*
8842 			 * This doesn't exist in the ARC.  Destroy.
8843 			 * arc_hdr_destroy() will call list_remove()
8844 			 * and decrement arcstat_l2_lsize.
8845 			 */
8846 			arc_change_state(arc_anon, hdr);
8847 			arc_hdr_destroy(hdr);
8848 		} else {
8849 			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
8850 			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
8851 			/*
8852 			 * Invalidate issued or about to be issued
8853 			 * reads, since we may be about to write
8854 			 * over this location.
8855 			 */
8856 			if (HDR_L2_READING(hdr)) {
8857 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
8858 				arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
8859 			}
8860 
8861 			arc_hdr_l2hdr_destroy(hdr);
8862 		}
8863 		mutex_exit(hash_lock);
8864 	}
8865 	mutex_exit(&dev->l2ad_mtx);
8866 
8867 out:
8868 	/*
8869 	 * We need to check if we evict all buffers, otherwise we may iterate
8870 	 * unnecessarily.
8871 	 */
8872 	if (!all && rerun) {
8873 		/*
8874 		 * Bump device hand to the device start if it is approaching the
8875 		 * end. l2arc_evict() has already evicted ahead for this case.
8876 		 */
8877 		dev->l2ad_hand = dev->l2ad_start;
8878 		dev->l2ad_evict = dev->l2ad_start;
8879 		dev->l2ad_first = B_FALSE;
8880 		goto top;
8881 	}
8882 
8883 	if (!all) {
8884 		/*
8885 		 * In case of cache device removal (all) the following
8886 		 * assertions may be violated without functional consequences
8887 		 * as the device is about to be removed.
8888 		 */
8889 		ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end);
8890 		if (!dev->l2ad_first)
8891 			ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
8892 	}
8893 }
8894 
8895 /*
8896  * Handle any abd transforms that might be required for writing to the L2ARC.
8897  * If successful, this function will always return an abd with the data
8898  * transformed as it is on disk in a new abd of asize bytes.
8899  */
8900 static int
8901 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize,
8902     abd_t **abd_out)
8903 {
8904 	int ret;
8905 	abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd;
8906 	enum zio_compress compress = HDR_GET_COMPRESS(hdr);
8907 	uint64_t psize = HDR_GET_PSIZE(hdr);
8908 	uint64_t size = arc_hdr_size(hdr);
8909 	boolean_t ismd = HDR_ISTYPE_METADATA(hdr);
8910 	boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
8911 	dsl_crypto_key_t *dck = NULL;
8912 	uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 };
8913 	boolean_t no_crypt = B_FALSE;
8914 
8915 	ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8916 	    !HDR_COMPRESSION_ENABLED(hdr)) ||
8917 	    HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize);
8918 	ASSERT3U(psize, <=, asize);
8919 
8920 	/*
8921 	 * If this data simply needs its own buffer, we simply allocate it
8922 	 * and copy the data. This may be done to eliminate a dependency on a
8923 	 * shared buffer or to reallocate the buffer to match asize.
8924 	 */
8925 	if (HDR_HAS_RABD(hdr)) {
8926 		ASSERT3U(asize, >, psize);
8927 		to_write = abd_alloc_for_io(asize, ismd);
8928 		abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize);
8929 		abd_zero_off(to_write, psize, asize - psize);
8930 		goto out;
8931 	}
8932 
8933 	if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) &&
8934 	    !HDR_ENCRYPTED(hdr)) {
8935 		ASSERT3U(size, ==, psize);
8936 		to_write = abd_alloc_for_io(asize, ismd);
8937 		abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
8938 		if (asize > size)
8939 			abd_zero_off(to_write, size, asize - size);
8940 		goto out;
8941 	}
8942 
8943 	if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) {
8944 		size_t bufsize = MAX(size, asize);
8945 		void *buf = zio_buf_alloc(bufsize);
8946 		uint64_t csize = zio_compress_data(compress, to_write, &buf,
8947 		    size, hdr->b_complevel);
8948 		if (csize > psize) {
8949 			/*
8950 			 * We can't re-compress the block into the original
8951 			 * psize.  Even if it fits into asize, it does not
8952 			 * matter, since checksum will never match on read.
8953 			 */
8954 			zio_buf_free(buf, bufsize);
8955 			return (SET_ERROR(EIO));
8956 		}
8957 		if (asize > csize)
8958 			memset((char *)buf + csize, 0, asize - csize);
8959 		to_write = cabd = abd_get_from_buf(buf, bufsize);
8960 		abd_take_ownership_of_buf(cabd, B_TRUE);
8961 	}
8962 
8963 	if (HDR_ENCRYPTED(hdr)) {
8964 		eabd = abd_alloc_for_io(asize, ismd);
8965 
8966 		/*
8967 		 * If the dataset was disowned before the buffer
8968 		 * made it to this point, the key to re-encrypt
8969 		 * it won't be available. In this case we simply
8970 		 * won't write the buffer to the L2ARC.
8971 		 */
8972 		ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj,
8973 		    FTAG, &dck);
8974 		if (ret != 0)
8975 			goto error;
8976 
8977 		ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
8978 		    hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt,
8979 		    hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd,
8980 		    &no_crypt);
8981 		if (ret != 0)
8982 			goto error;
8983 
8984 		if (no_crypt)
8985 			abd_copy(eabd, to_write, psize);
8986 
8987 		if (psize != asize)
8988 			abd_zero_off(eabd, psize, asize - psize);
8989 
8990 		/* assert that the MAC we got here matches the one we saved */
8991 		ASSERT0(memcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN));
8992 		spa_keystore_dsl_key_rele(spa, dck, FTAG);
8993 
8994 		if (to_write == cabd)
8995 			abd_free(cabd);
8996 
8997 		to_write = eabd;
8998 	}
8999 
9000 out:
9001 	ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd);
9002 	*abd_out = to_write;
9003 	return (0);
9004 
9005 error:
9006 	if (dck != NULL)
9007 		spa_keystore_dsl_key_rele(spa, dck, FTAG);
9008 	if (cabd != NULL)
9009 		abd_free(cabd);
9010 	if (eabd != NULL)
9011 		abd_free(eabd);
9012 
9013 	*abd_out = NULL;
9014 	return (ret);
9015 }
9016 
9017 static void
9018 l2arc_blk_fetch_done(zio_t *zio)
9019 {
9020 	l2arc_read_callback_t *cb;
9021 
9022 	cb = zio->io_private;
9023 	if (cb->l2rcb_abd != NULL)
9024 		abd_free(cb->l2rcb_abd);
9025 	kmem_free(cb, sizeof (l2arc_read_callback_t));
9026 }
9027 
9028 /*
9029  * Find and write ARC buffers to the L2ARC device.
9030  *
9031  * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
9032  * for reading until they have completed writing.
9033  * The headroom_boost is an in-out parameter used to maintain headroom boost
9034  * state between calls to this function.
9035  *
9036  * Returns the number of bytes actually written (which may be smaller than
9037  * the delta by which the device hand has changed due to alignment and the
9038  * writing of log blocks).
9039  */
9040 static uint64_t
9041 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
9042 {
9043 	arc_buf_hdr_t 		*hdr, *head, *marker;
9044 	uint64_t 		write_asize, write_psize, headroom;
9045 	boolean_t		full, from_head = !arc_warm;
9046 	l2arc_write_callback_t	*cb = NULL;
9047 	zio_t 			*pio, *wzio;
9048 	uint64_t 		guid = spa_load_guid(spa);
9049 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
9050 
9051 	ASSERT3P(dev->l2ad_vdev, !=, NULL);
9052 
9053 	pio = NULL;
9054 	write_asize = write_psize = 0;
9055 	full = B_FALSE;
9056 	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
9057 	arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
9058 	marker = arc_state_alloc_marker();
9059 
9060 	/*
9061 	 * Copy buffers for L2ARC writing.
9062 	 */
9063 	for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) {
9064 		/*
9065 		 * If pass == 1 or 3, we cache MRU metadata and data
9066 		 * respectively.
9067 		 */
9068 		if (l2arc_mfuonly) {
9069 			if (pass == 1 || pass == 3)
9070 				continue;
9071 		}
9072 
9073 		uint64_t passed_sz = 0;
9074 		headroom = target_sz * l2arc_headroom;
9075 		if (zfs_compressed_arc_enabled)
9076 			headroom = (headroom * l2arc_headroom_boost) / 100;
9077 
9078 		/*
9079 		 * Until the ARC is warm and starts to evict, read from the
9080 		 * head of the ARC lists rather than the tail.
9081 		 */
9082 		multilist_sublist_t *mls = l2arc_sublist_lock(pass);
9083 		ASSERT3P(mls, !=, NULL);
9084 		if (from_head)
9085 			hdr = multilist_sublist_head(mls);
9086 		else
9087 			hdr = multilist_sublist_tail(mls);
9088 
9089 		while (hdr != NULL) {
9090 			kmutex_t *hash_lock;
9091 			abd_t *to_write = NULL;
9092 
9093 			hash_lock = HDR_LOCK(hdr);
9094 			if (!mutex_tryenter(hash_lock)) {
9095 skip:
9096 				/* Skip this buffer rather than waiting. */
9097 				if (from_head)
9098 					hdr = multilist_sublist_next(mls, hdr);
9099 				else
9100 					hdr = multilist_sublist_prev(mls, hdr);
9101 				continue;
9102 			}
9103 
9104 			passed_sz += HDR_GET_LSIZE(hdr);
9105 			if (l2arc_headroom != 0 && passed_sz > headroom) {
9106 				/*
9107 				 * Searched too far.
9108 				 */
9109 				mutex_exit(hash_lock);
9110 				break;
9111 			}
9112 
9113 			if (!l2arc_write_eligible(guid, hdr)) {
9114 				mutex_exit(hash_lock);
9115 				goto skip;
9116 			}
9117 
9118 			ASSERT(HDR_HAS_L1HDR(hdr));
9119 			ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
9120 			ASSERT3U(arc_hdr_size(hdr), >, 0);
9121 			ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
9122 			    HDR_HAS_RABD(hdr));
9123 			uint64_t psize = HDR_GET_PSIZE(hdr);
9124 			uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
9125 			    psize);
9126 
9127 			/*
9128 			 * If the allocated size of this buffer plus the max
9129 			 * size for the pending log block exceeds the evicted
9130 			 * target size, terminate writing buffers for this run.
9131 			 */
9132 			if (write_asize + asize +
9133 			    sizeof (l2arc_log_blk_phys_t) > target_sz) {
9134 				full = B_TRUE;
9135 				mutex_exit(hash_lock);
9136 				break;
9137 			}
9138 
9139 			/*
9140 			 * We should not sleep with sublist lock held or it
9141 			 * may block ARC eviction.  Insert a marker to save
9142 			 * the position and drop the lock.
9143 			 */
9144 			if (from_head) {
9145 				multilist_sublist_insert_after(mls, hdr,
9146 				    marker);
9147 			} else {
9148 				multilist_sublist_insert_before(mls, hdr,
9149 				    marker);
9150 			}
9151 			multilist_sublist_unlock(mls);
9152 
9153 			/*
9154 			 * If this header has b_rabd, we can use this since it
9155 			 * must always match the data exactly as it exists on
9156 			 * disk. Otherwise, the L2ARC can normally use the
9157 			 * hdr's data, but if we're sharing data between the
9158 			 * hdr and one of its bufs, L2ARC needs its own copy of
9159 			 * the data so that the ZIO below can't race with the
9160 			 * buf consumer. To ensure that this copy will be
9161 			 * available for the lifetime of the ZIO and be cleaned
9162 			 * up afterwards, we add it to the l2arc_free_on_write
9163 			 * queue. If we need to apply any transforms to the
9164 			 * data (compression, encryption) we will also need the
9165 			 * extra buffer.
9166 			 */
9167 			if (HDR_HAS_RABD(hdr) && psize == asize) {
9168 				to_write = hdr->b_crypt_hdr.b_rabd;
9169 			} else if ((HDR_COMPRESSION_ENABLED(hdr) ||
9170 			    HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) &&
9171 			    !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) &&
9172 			    psize == asize) {
9173 				to_write = hdr->b_l1hdr.b_pabd;
9174 			} else {
9175 				int ret;
9176 				arc_buf_contents_t type = arc_buf_type(hdr);
9177 
9178 				ret = l2arc_apply_transforms(spa, hdr, asize,
9179 				    &to_write);
9180 				if (ret != 0) {
9181 					arc_hdr_clear_flags(hdr,
9182 					    ARC_FLAG_L2CACHE);
9183 					mutex_exit(hash_lock);
9184 					goto next;
9185 				}
9186 
9187 				l2arc_free_abd_on_write(to_write, asize, type);
9188 			}
9189 
9190 			hdr->b_l2hdr.b_dev = dev;
9191 			hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
9192 			hdr->b_l2hdr.b_hits = 0;
9193 			hdr->b_l2hdr.b_arcs_state =
9194 			    hdr->b_l1hdr.b_state->arcs_state;
9195 			mutex_enter(&dev->l2ad_mtx);
9196 			if (pio == NULL) {
9197 				/*
9198 				 * Insert a dummy header on the buflist so
9199 				 * l2arc_write_done() can find where the
9200 				 * write buffers begin without searching.
9201 				 */
9202 				list_insert_head(&dev->l2ad_buflist, head);
9203 			}
9204 			list_insert_head(&dev->l2ad_buflist, hdr);
9205 			mutex_exit(&dev->l2ad_mtx);
9206 			arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR |
9207 			    ARC_FLAG_L2_WRITING);
9208 
9209 			(void) zfs_refcount_add_many(&dev->l2ad_alloc,
9210 			    arc_hdr_size(hdr), hdr);
9211 			l2arc_hdr_arcstats_increment(hdr);
9212 
9213 			boolean_t commit = l2arc_log_blk_insert(dev, hdr);
9214 			mutex_exit(hash_lock);
9215 
9216 			if (pio == NULL) {
9217 				cb = kmem_alloc(
9218 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
9219 				cb->l2wcb_dev = dev;
9220 				cb->l2wcb_head = head;
9221 				list_create(&cb->l2wcb_abd_list,
9222 				    sizeof (l2arc_lb_abd_buf_t),
9223 				    offsetof(l2arc_lb_abd_buf_t, node));
9224 				pio = zio_root(spa, l2arc_write_done, cb,
9225 				    ZIO_FLAG_CANFAIL);
9226 			}
9227 
9228 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
9229 			    dev->l2ad_hand, asize, to_write,
9230 			    ZIO_CHECKSUM_OFF, NULL, hdr,
9231 			    ZIO_PRIORITY_ASYNC_WRITE,
9232 			    ZIO_FLAG_CANFAIL, B_FALSE);
9233 
9234 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
9235 			    zio_t *, wzio);
9236 			zio_nowait(wzio);
9237 
9238 			write_psize += psize;
9239 			write_asize += asize;
9240 			dev->l2ad_hand += asize;
9241 			vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
9242 
9243 			if (commit) {
9244 				/* l2ad_hand will be adjusted inside. */
9245 				write_asize +=
9246 				    l2arc_log_blk_commit(dev, pio, cb);
9247 			}
9248 
9249 next:
9250 			multilist_sublist_lock(mls);
9251 			if (from_head)
9252 				hdr = multilist_sublist_next(mls, marker);
9253 			else
9254 				hdr = multilist_sublist_prev(mls, marker);
9255 			multilist_sublist_remove(mls, marker);
9256 		}
9257 
9258 		multilist_sublist_unlock(mls);
9259 
9260 		if (full == B_TRUE)
9261 			break;
9262 	}
9263 
9264 	arc_state_free_marker(marker);
9265 
9266 	/* No buffers selected for writing? */
9267 	if (pio == NULL) {
9268 		ASSERT0(write_psize);
9269 		ASSERT(!HDR_HAS_L1HDR(head));
9270 		kmem_cache_free(hdr_l2only_cache, head);
9271 
9272 		/*
9273 		 * Although we did not write any buffers l2ad_evict may
9274 		 * have advanced.
9275 		 */
9276 		if (dev->l2ad_evict != l2dhdr->dh_evict)
9277 			l2arc_dev_hdr_update(dev);
9278 
9279 		return (0);
9280 	}
9281 
9282 	if (!dev->l2ad_first)
9283 		ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
9284 
9285 	ASSERT3U(write_asize, <=, target_sz);
9286 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
9287 	ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
9288 
9289 	dev->l2ad_writing = B_TRUE;
9290 	(void) zio_wait(pio);
9291 	dev->l2ad_writing = B_FALSE;
9292 
9293 	/*
9294 	 * Update the device header after the zio completes as
9295 	 * l2arc_write_done() may have updated the memory holding the log block
9296 	 * pointers in the device header.
9297 	 */
9298 	l2arc_dev_hdr_update(dev);
9299 
9300 	return (write_asize);
9301 }
9302 
9303 static boolean_t
9304 l2arc_hdr_limit_reached(void)
9305 {
9306 	int64_t s = aggsum_upper_bound(&arc_sums.arcstat_l2_hdr_size);
9307 
9308 	return (arc_reclaim_needed() ||
9309 	    (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100));
9310 }
9311 
9312 /*
9313  * This thread feeds the L2ARC at regular intervals.  This is the beating
9314  * heart of the L2ARC.
9315  */
9316 static  __attribute__((noreturn)) void
9317 l2arc_feed_thread(void *unused)
9318 {
9319 	(void) unused;
9320 	callb_cpr_t cpr;
9321 	l2arc_dev_t *dev;
9322 	spa_t *spa;
9323 	uint64_t size, wrote;
9324 	clock_t begin, next = ddi_get_lbolt();
9325 	fstrans_cookie_t cookie;
9326 
9327 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
9328 
9329 	mutex_enter(&l2arc_feed_thr_lock);
9330 
9331 	cookie = spl_fstrans_mark();
9332 	while (l2arc_thread_exit == 0) {
9333 		CALLB_CPR_SAFE_BEGIN(&cpr);
9334 		(void) cv_timedwait_idle(&l2arc_feed_thr_cv,
9335 		    &l2arc_feed_thr_lock, next);
9336 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
9337 		next = ddi_get_lbolt() + hz;
9338 
9339 		/*
9340 		 * Quick check for L2ARC devices.
9341 		 */
9342 		mutex_enter(&l2arc_dev_mtx);
9343 		if (l2arc_ndev == 0) {
9344 			mutex_exit(&l2arc_dev_mtx);
9345 			continue;
9346 		}
9347 		mutex_exit(&l2arc_dev_mtx);
9348 		begin = ddi_get_lbolt();
9349 
9350 		/*
9351 		 * This selects the next l2arc device to write to, and in
9352 		 * doing so the next spa to feed from: dev->l2ad_spa.   This
9353 		 * will return NULL if there are now no l2arc devices or if
9354 		 * they are all faulted.
9355 		 *
9356 		 * If a device is returned, its spa's config lock is also
9357 		 * held to prevent device removal.  l2arc_dev_get_next()
9358 		 * will grab and release l2arc_dev_mtx.
9359 		 */
9360 		if ((dev = l2arc_dev_get_next()) == NULL)
9361 			continue;
9362 
9363 		spa = dev->l2ad_spa;
9364 		ASSERT3P(spa, !=, NULL);
9365 
9366 		/*
9367 		 * If the pool is read-only then force the feed thread to
9368 		 * sleep a little longer.
9369 		 */
9370 		if (!spa_writeable(spa)) {
9371 			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
9372 			spa_config_exit(spa, SCL_L2ARC, dev);
9373 			continue;
9374 		}
9375 
9376 		/*
9377 		 * Avoid contributing to memory pressure.
9378 		 */
9379 		if (l2arc_hdr_limit_reached()) {
9380 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
9381 			spa_config_exit(spa, SCL_L2ARC, dev);
9382 			continue;
9383 		}
9384 
9385 		ARCSTAT_BUMP(arcstat_l2_feeds);
9386 
9387 		size = l2arc_write_size(dev);
9388 
9389 		/*
9390 		 * Evict L2ARC buffers that will be overwritten.
9391 		 */
9392 		l2arc_evict(dev, size, B_FALSE);
9393 
9394 		/*
9395 		 * Write ARC buffers.
9396 		 */
9397 		wrote = l2arc_write_buffers(spa, dev, size);
9398 
9399 		/*
9400 		 * Calculate interval between writes.
9401 		 */
9402 		next = l2arc_write_interval(begin, size, wrote);
9403 		spa_config_exit(spa, SCL_L2ARC, dev);
9404 	}
9405 	spl_fstrans_unmark(cookie);
9406 
9407 	l2arc_thread_exit = 0;
9408 	cv_broadcast(&l2arc_feed_thr_cv);
9409 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
9410 	thread_exit();
9411 }
9412 
9413 boolean_t
9414 l2arc_vdev_present(vdev_t *vd)
9415 {
9416 	return (l2arc_vdev_get(vd) != NULL);
9417 }
9418 
9419 /*
9420  * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if
9421  * the vdev_t isn't an L2ARC device.
9422  */
9423 l2arc_dev_t *
9424 l2arc_vdev_get(vdev_t *vd)
9425 {
9426 	l2arc_dev_t	*dev;
9427 
9428 	mutex_enter(&l2arc_dev_mtx);
9429 	for (dev = list_head(l2arc_dev_list); dev != NULL;
9430 	    dev = list_next(l2arc_dev_list, dev)) {
9431 		if (dev->l2ad_vdev == vd)
9432 			break;
9433 	}
9434 	mutex_exit(&l2arc_dev_mtx);
9435 
9436 	return (dev);
9437 }
9438 
9439 static void
9440 l2arc_rebuild_dev(l2arc_dev_t *dev, boolean_t reopen)
9441 {
9442 	l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
9443 	uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
9444 	spa_t *spa = dev->l2ad_spa;
9445 
9446 	/*
9447 	 * The L2ARC has to hold at least the payload of one log block for
9448 	 * them to be restored (persistent L2ARC). The payload of a log block
9449 	 * depends on the amount of its log entries. We always write log blocks
9450 	 * with 1022 entries. How many of them are committed or restored depends
9451 	 * on the size of the L2ARC device. Thus the maximum payload of
9452 	 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device
9453 	 * is less than that, we reduce the amount of committed and restored
9454 	 * log entries per block so as to enable persistence.
9455 	 */
9456 	if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) {
9457 		dev->l2ad_log_entries = 0;
9458 	} else {
9459 		dev->l2ad_log_entries = MIN((dev->l2ad_end -
9460 		    dev->l2ad_start) >> SPA_MAXBLOCKSHIFT,
9461 		    L2ARC_LOG_BLK_MAX_ENTRIES);
9462 	}
9463 
9464 	/*
9465 	 * Read the device header, if an error is returned do not rebuild L2ARC.
9466 	 */
9467 	if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) {
9468 		/*
9469 		 * If we are onlining a cache device (vdev_reopen) that was
9470 		 * still present (l2arc_vdev_present()) and rebuild is enabled,
9471 		 * we should evict all ARC buffers and pointers to log blocks
9472 		 * and reclaim their space before restoring its contents to
9473 		 * L2ARC.
9474 		 */
9475 		if (reopen) {
9476 			if (!l2arc_rebuild_enabled) {
9477 				return;
9478 			} else {
9479 				l2arc_evict(dev, 0, B_TRUE);
9480 				/* start a new log block */
9481 				dev->l2ad_log_ent_idx = 0;
9482 				dev->l2ad_log_blk_payload_asize = 0;
9483 				dev->l2ad_log_blk_payload_start = 0;
9484 			}
9485 		}
9486 		/*
9487 		 * Just mark the device as pending for a rebuild. We won't
9488 		 * be starting a rebuild in line here as it would block pool
9489 		 * import. Instead spa_load_impl will hand that off to an
9490 		 * async task which will call l2arc_spa_rebuild_start.
9491 		 */
9492 		dev->l2ad_rebuild = B_TRUE;
9493 	} else if (spa_writeable(spa)) {
9494 		/*
9495 		 * In this case TRIM the whole device if l2arc_trim_ahead > 0,
9496 		 * otherwise create a new header. We zero out the memory holding
9497 		 * the header to reset dh_start_lbps. If we TRIM the whole
9498 		 * device the new header will be written by
9499 		 * vdev_trim_l2arc_thread() at the end of the TRIM to update the
9500 		 * trim_state in the header too. When reading the header, if
9501 		 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0
9502 		 * we opt to TRIM the whole device again.
9503 		 */
9504 		if (l2arc_trim_ahead > 0) {
9505 			dev->l2ad_trim_all = B_TRUE;
9506 		} else {
9507 			memset(l2dhdr, 0, l2dhdr_asize);
9508 			l2arc_dev_hdr_update(dev);
9509 		}
9510 	}
9511 }
9512 
9513 /*
9514  * Add a vdev for use by the L2ARC.  By this point the spa has already
9515  * validated the vdev and opened it.
9516  */
9517 void
9518 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
9519 {
9520 	l2arc_dev_t		*adddev;
9521 	uint64_t		l2dhdr_asize;
9522 
9523 	ASSERT(!l2arc_vdev_present(vd));
9524 
9525 	/*
9526 	 * Create a new l2arc device entry.
9527 	 */
9528 	adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
9529 	adddev->l2ad_spa = spa;
9530 	adddev->l2ad_vdev = vd;
9531 	/* leave extra size for an l2arc device header */
9532 	l2dhdr_asize = adddev->l2ad_dev_hdr_asize =
9533 	    MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift);
9534 	adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize;
9535 	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
9536 	ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end);
9537 	adddev->l2ad_hand = adddev->l2ad_start;
9538 	adddev->l2ad_evict = adddev->l2ad_start;
9539 	adddev->l2ad_first = B_TRUE;
9540 	adddev->l2ad_writing = B_FALSE;
9541 	adddev->l2ad_trim_all = B_FALSE;
9542 	list_link_init(&adddev->l2ad_node);
9543 	adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP);
9544 
9545 	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
9546 	/*
9547 	 * This is a list of all ARC buffers that are still valid on the
9548 	 * device.
9549 	 */
9550 	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
9551 	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
9552 
9553 	/*
9554 	 * This is a list of pointers to log blocks that are still present
9555 	 * on the device.
9556 	 */
9557 	list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t),
9558 	    offsetof(l2arc_lb_ptr_buf_t, node));
9559 
9560 	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
9561 	zfs_refcount_create(&adddev->l2ad_alloc);
9562 	zfs_refcount_create(&adddev->l2ad_lb_asize);
9563 	zfs_refcount_create(&adddev->l2ad_lb_count);
9564 
9565 	/*
9566 	 * Decide if dev is eligible for L2ARC rebuild or whole device
9567 	 * trimming. This has to happen before the device is added in the
9568 	 * cache device list and l2arc_dev_mtx is released. Otherwise
9569 	 * l2arc_feed_thread() might already start writing on the
9570 	 * device.
9571 	 */
9572 	l2arc_rebuild_dev(adddev, B_FALSE);
9573 
9574 	/*
9575 	 * Add device to global list
9576 	 */
9577 	mutex_enter(&l2arc_dev_mtx);
9578 	list_insert_head(l2arc_dev_list, adddev);
9579 	atomic_inc_64(&l2arc_ndev);
9580 	mutex_exit(&l2arc_dev_mtx);
9581 }
9582 
9583 /*
9584  * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen()
9585  * in case of onlining a cache device.
9586  */
9587 void
9588 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen)
9589 {
9590 	l2arc_dev_t		*dev = NULL;
9591 
9592 	dev = l2arc_vdev_get(vd);
9593 	ASSERT3P(dev, !=, NULL);
9594 
9595 	/*
9596 	 * In contrast to l2arc_add_vdev() we do not have to worry about
9597 	 * l2arc_feed_thread() invalidating previous content when onlining a
9598 	 * cache device. The device parameters (l2ad*) are not cleared when
9599 	 * offlining the device and writing new buffers will not invalidate
9600 	 * all previous content. In worst case only buffers that have not had
9601 	 * their log block written to the device will be lost.
9602 	 * When onlining the cache device (ie offline->online without exporting
9603 	 * the pool in between) this happens:
9604 	 * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev()
9605 	 * 			|			|
9606 	 * 		vdev_is_dead() = B_FALSE	l2ad_rebuild = B_TRUE
9607 	 * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild
9608 	 * is set to B_TRUE we might write additional buffers to the device.
9609 	 */
9610 	l2arc_rebuild_dev(dev, reopen);
9611 }
9612 
9613 /*
9614  * Remove a vdev from the L2ARC.
9615  */
9616 void
9617 l2arc_remove_vdev(vdev_t *vd)
9618 {
9619 	l2arc_dev_t *remdev = NULL;
9620 
9621 	/*
9622 	 * Find the device by vdev
9623 	 */
9624 	remdev = l2arc_vdev_get(vd);
9625 	ASSERT3P(remdev, !=, NULL);
9626 
9627 	/*
9628 	 * Cancel any ongoing or scheduled rebuild.
9629 	 */
9630 	mutex_enter(&l2arc_rebuild_thr_lock);
9631 	if (remdev->l2ad_rebuild_began == B_TRUE) {
9632 		remdev->l2ad_rebuild_cancel = B_TRUE;
9633 		while (remdev->l2ad_rebuild == B_TRUE)
9634 			cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock);
9635 	}
9636 	mutex_exit(&l2arc_rebuild_thr_lock);
9637 
9638 	/*
9639 	 * Remove device from global list
9640 	 */
9641 	mutex_enter(&l2arc_dev_mtx);
9642 	list_remove(l2arc_dev_list, remdev);
9643 	l2arc_dev_last = NULL;		/* may have been invalidated */
9644 	atomic_dec_64(&l2arc_ndev);
9645 	mutex_exit(&l2arc_dev_mtx);
9646 
9647 	/*
9648 	 * Clear all buflists and ARC references.  L2ARC device flush.
9649 	 */
9650 	l2arc_evict(remdev, 0, B_TRUE);
9651 	list_destroy(&remdev->l2ad_buflist);
9652 	ASSERT(list_is_empty(&remdev->l2ad_lbptr_list));
9653 	list_destroy(&remdev->l2ad_lbptr_list);
9654 	mutex_destroy(&remdev->l2ad_mtx);
9655 	zfs_refcount_destroy(&remdev->l2ad_alloc);
9656 	zfs_refcount_destroy(&remdev->l2ad_lb_asize);
9657 	zfs_refcount_destroy(&remdev->l2ad_lb_count);
9658 	kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize);
9659 	vmem_free(remdev, sizeof (l2arc_dev_t));
9660 }
9661 
9662 void
9663 l2arc_init(void)
9664 {
9665 	l2arc_thread_exit = 0;
9666 	l2arc_ndev = 0;
9667 
9668 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
9669 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
9670 	mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL);
9671 	cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL);
9672 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
9673 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
9674 
9675 	l2arc_dev_list = &L2ARC_dev_list;
9676 	l2arc_free_on_write = &L2ARC_free_on_write;
9677 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
9678 	    offsetof(l2arc_dev_t, l2ad_node));
9679 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
9680 	    offsetof(l2arc_data_free_t, l2df_list_node));
9681 }
9682 
9683 void
9684 l2arc_fini(void)
9685 {
9686 	mutex_destroy(&l2arc_feed_thr_lock);
9687 	cv_destroy(&l2arc_feed_thr_cv);
9688 	mutex_destroy(&l2arc_rebuild_thr_lock);
9689 	cv_destroy(&l2arc_rebuild_thr_cv);
9690 	mutex_destroy(&l2arc_dev_mtx);
9691 	mutex_destroy(&l2arc_free_on_write_mtx);
9692 
9693 	list_destroy(l2arc_dev_list);
9694 	list_destroy(l2arc_free_on_write);
9695 }
9696 
9697 void
9698 l2arc_start(void)
9699 {
9700 	if (!(spa_mode_global & SPA_MODE_WRITE))
9701 		return;
9702 
9703 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
9704 	    TS_RUN, defclsyspri);
9705 }
9706 
9707 void
9708 l2arc_stop(void)
9709 {
9710 	if (!(spa_mode_global & SPA_MODE_WRITE))
9711 		return;
9712 
9713 	mutex_enter(&l2arc_feed_thr_lock);
9714 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
9715 	l2arc_thread_exit = 1;
9716 	while (l2arc_thread_exit != 0)
9717 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
9718 	mutex_exit(&l2arc_feed_thr_lock);
9719 }
9720 
9721 /*
9722  * Punches out rebuild threads for the L2ARC devices in a spa. This should
9723  * be called after pool import from the spa async thread, since starting
9724  * these threads directly from spa_import() will make them part of the
9725  * "zpool import" context and delay process exit (and thus pool import).
9726  */
9727 void
9728 l2arc_spa_rebuild_start(spa_t *spa)
9729 {
9730 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
9731 
9732 	/*
9733 	 * Locate the spa's l2arc devices and kick off rebuild threads.
9734 	 */
9735 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
9736 		l2arc_dev_t *dev =
9737 		    l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
9738 		if (dev == NULL) {
9739 			/* Don't attempt a rebuild if the vdev is UNAVAIL */
9740 			continue;
9741 		}
9742 		mutex_enter(&l2arc_rebuild_thr_lock);
9743 		if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) {
9744 			dev->l2ad_rebuild_began = B_TRUE;
9745 			(void) thread_create(NULL, 0, l2arc_dev_rebuild_thread,
9746 			    dev, 0, &p0, TS_RUN, minclsyspri);
9747 		}
9748 		mutex_exit(&l2arc_rebuild_thr_lock);
9749 	}
9750 }
9751 
9752 /*
9753  * Main entry point for L2ARC rebuilding.
9754  */
9755 static __attribute__((noreturn)) void
9756 l2arc_dev_rebuild_thread(void *arg)
9757 {
9758 	l2arc_dev_t *dev = arg;
9759 
9760 	VERIFY(!dev->l2ad_rebuild_cancel);
9761 	VERIFY(dev->l2ad_rebuild);
9762 	(void) l2arc_rebuild(dev);
9763 	mutex_enter(&l2arc_rebuild_thr_lock);
9764 	dev->l2ad_rebuild_began = B_FALSE;
9765 	dev->l2ad_rebuild = B_FALSE;
9766 	mutex_exit(&l2arc_rebuild_thr_lock);
9767 
9768 	thread_exit();
9769 }
9770 
9771 /*
9772  * This function implements the actual L2ARC metadata rebuild. It:
9773  * starts reading the log block chain and restores each block's contents
9774  * to memory (reconstructing arc_buf_hdr_t's).
9775  *
9776  * Operation stops under any of the following conditions:
9777  *
9778  * 1) We reach the end of the log block chain.
9779  * 2) We encounter *any* error condition (cksum errors, io errors)
9780  */
9781 static int
9782 l2arc_rebuild(l2arc_dev_t *dev)
9783 {
9784 	vdev_t			*vd = dev->l2ad_vdev;
9785 	spa_t			*spa = vd->vdev_spa;
9786 	int			err = 0;
9787 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
9788 	l2arc_log_blk_phys_t	*this_lb, *next_lb;
9789 	zio_t			*this_io = NULL, *next_io = NULL;
9790 	l2arc_log_blkptr_t	lbps[2];
9791 	l2arc_lb_ptr_buf_t	*lb_ptr_buf;
9792 	boolean_t		lock_held;
9793 
9794 	this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP);
9795 	next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP);
9796 
9797 	/*
9798 	 * We prevent device removal while issuing reads to the device,
9799 	 * then during the rebuilding phases we drop this lock again so
9800 	 * that a spa_unload or device remove can be initiated - this is
9801 	 * safe, because the spa will signal us to stop before removing
9802 	 * our device and wait for us to stop.
9803 	 */
9804 	spa_config_enter(spa, SCL_L2ARC, vd, RW_READER);
9805 	lock_held = B_TRUE;
9806 
9807 	/*
9808 	 * Retrieve the persistent L2ARC device state.
9809 	 * L2BLK_GET_PSIZE returns aligned size for log blocks.
9810 	 */
9811 	dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start);
9812 	dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr +
9813 	    L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop),
9814 	    dev->l2ad_start);
9815 	dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
9816 
9817 	vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time;
9818 	vd->vdev_trim_state = l2dhdr->dh_trim_state;
9819 
9820 	/*
9821 	 * In case the zfs module parameter l2arc_rebuild_enabled is false
9822 	 * we do not start the rebuild process.
9823 	 */
9824 	if (!l2arc_rebuild_enabled)
9825 		goto out;
9826 
9827 	/* Prepare the rebuild process */
9828 	memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps));
9829 
9830 	/* Start the rebuild process */
9831 	for (;;) {
9832 		if (!l2arc_log_blkptr_valid(dev, &lbps[0]))
9833 			break;
9834 
9835 		if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1],
9836 		    this_lb, next_lb, this_io, &next_io)) != 0)
9837 			goto out;
9838 
9839 		/*
9840 		 * Our memory pressure valve. If the system is running low
9841 		 * on memory, rather than swamping memory with new ARC buf
9842 		 * hdrs, we opt not to rebuild the L2ARC. At this point,
9843 		 * however, we have already set up our L2ARC dev to chain in
9844 		 * new metadata log blocks, so the user may choose to offline/
9845 		 * online the L2ARC dev at a later time (or re-import the pool)
9846 		 * to reconstruct it (when there's less memory pressure).
9847 		 */
9848 		if (l2arc_hdr_limit_reached()) {
9849 			ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem);
9850 			cmn_err(CE_NOTE, "System running low on memory, "
9851 			    "aborting L2ARC rebuild.");
9852 			err = SET_ERROR(ENOMEM);
9853 			goto out;
9854 		}
9855 
9856 		spa_config_exit(spa, SCL_L2ARC, vd);
9857 		lock_held = B_FALSE;
9858 
9859 		/*
9860 		 * Now that we know that the next_lb checks out alright, we
9861 		 * can start reconstruction from this log block.
9862 		 * L2BLK_GET_PSIZE returns aligned size for log blocks.
9863 		 */
9864 		uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
9865 		l2arc_log_blk_restore(dev, this_lb, asize);
9866 
9867 		/*
9868 		 * log block restored, include its pointer in the list of
9869 		 * pointers to log blocks present in the L2ARC device.
9870 		 */
9871 		lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
9872 		lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t),
9873 		    KM_SLEEP);
9874 		memcpy(lb_ptr_buf->lb_ptr, &lbps[0],
9875 		    sizeof (l2arc_log_blkptr_t));
9876 		mutex_enter(&dev->l2ad_mtx);
9877 		list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf);
9878 		ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
9879 		ARCSTAT_BUMP(arcstat_l2_log_blk_count);
9880 		zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
9881 		zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
9882 		mutex_exit(&dev->l2ad_mtx);
9883 		vdev_space_update(vd, asize, 0, 0);
9884 
9885 		/*
9886 		 * Protection against loops of log blocks:
9887 		 *
9888 		 *				       l2ad_hand  l2ad_evict
9889 		 *                                         V	      V
9890 		 * l2ad_start |=======================================| l2ad_end
9891 		 *             -----|||----|||---|||----|||
9892 		 *                  (3)    (2)   (1)    (0)
9893 		 *             ---|||---|||----|||---|||
9894 		 *		  (7)   (6)    (5)   (4)
9895 		 *
9896 		 * In this situation the pointer of log block (4) passes
9897 		 * l2arc_log_blkptr_valid() but the log block should not be
9898 		 * restored as it is overwritten by the payload of log block
9899 		 * (0). Only log blocks (0)-(3) should be restored. We check
9900 		 * whether l2ad_evict lies in between the payload starting
9901 		 * offset of the next log block (lbps[1].lbp_payload_start)
9902 		 * and the payload starting offset of the present log block
9903 		 * (lbps[0].lbp_payload_start). If true and this isn't the
9904 		 * first pass, we are looping from the beginning and we should
9905 		 * stop.
9906 		 */
9907 		if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
9908 		    lbps[0].lbp_payload_start, dev->l2ad_evict) &&
9909 		    !dev->l2ad_first)
9910 			goto out;
9911 
9912 		kpreempt(KPREEMPT_SYNC);
9913 		for (;;) {
9914 			mutex_enter(&l2arc_rebuild_thr_lock);
9915 			if (dev->l2ad_rebuild_cancel) {
9916 				dev->l2ad_rebuild = B_FALSE;
9917 				cv_signal(&l2arc_rebuild_thr_cv);
9918 				mutex_exit(&l2arc_rebuild_thr_lock);
9919 				err = SET_ERROR(ECANCELED);
9920 				goto out;
9921 			}
9922 			mutex_exit(&l2arc_rebuild_thr_lock);
9923 			if (spa_config_tryenter(spa, SCL_L2ARC, vd,
9924 			    RW_READER)) {
9925 				lock_held = B_TRUE;
9926 				break;
9927 			}
9928 			/*
9929 			 * L2ARC config lock held by somebody in writer,
9930 			 * possibly due to them trying to remove us. They'll
9931 			 * likely to want us to shut down, so after a little
9932 			 * delay, we check l2ad_rebuild_cancel and retry
9933 			 * the lock again.
9934 			 */
9935 			delay(1);
9936 		}
9937 
9938 		/*
9939 		 * Continue with the next log block.
9940 		 */
9941 		lbps[0] = lbps[1];
9942 		lbps[1] = this_lb->lb_prev_lbp;
9943 		PTR_SWAP(this_lb, next_lb);
9944 		this_io = next_io;
9945 		next_io = NULL;
9946 	}
9947 
9948 	if (this_io != NULL)
9949 		l2arc_log_blk_fetch_abort(this_io);
9950 out:
9951 	if (next_io != NULL)
9952 		l2arc_log_blk_fetch_abort(next_io);
9953 	vmem_free(this_lb, sizeof (*this_lb));
9954 	vmem_free(next_lb, sizeof (*next_lb));
9955 
9956 	if (!l2arc_rebuild_enabled) {
9957 		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9958 		    "disabled");
9959 	} else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) {
9960 		ARCSTAT_BUMP(arcstat_l2_rebuild_success);
9961 		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9962 		    "successful, restored %llu blocks",
9963 		    (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
9964 	} else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) {
9965 		/*
9966 		 * No error but also nothing restored, meaning the lbps array
9967 		 * in the device header points to invalid/non-present log
9968 		 * blocks. Reset the header.
9969 		 */
9970 		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9971 		    "no valid log blocks");
9972 		memset(l2dhdr, 0, dev->l2ad_dev_hdr_asize);
9973 		l2arc_dev_hdr_update(dev);
9974 	} else if (err == ECANCELED) {
9975 		/*
9976 		 * In case the rebuild was canceled do not log to spa history
9977 		 * log as the pool may be in the process of being removed.
9978 		 */
9979 		zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks",
9980 		    (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
9981 	} else if (err != 0) {
9982 		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9983 		    "aborted, restored %llu blocks",
9984 		    (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
9985 	}
9986 
9987 	if (lock_held)
9988 		spa_config_exit(spa, SCL_L2ARC, vd);
9989 
9990 	return (err);
9991 }
9992 
9993 /*
9994  * Attempts to read the device header on the provided L2ARC device and writes
9995  * it to `hdr'. On success, this function returns 0, otherwise the appropriate
9996  * error code is returned.
9997  */
9998 static int
9999 l2arc_dev_hdr_read(l2arc_dev_t *dev)
10000 {
10001 	int			err;
10002 	uint64_t		guid;
10003 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
10004 	const uint64_t		l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10005 	abd_t 			*abd;
10006 
10007 	guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10008 
10009 	abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10010 
10011 	err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev,
10012 	    VDEV_LABEL_START_SIZE, l2dhdr_asize, abd,
10013 	    ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
10014 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
10015 	    ZIO_FLAG_SPECULATIVE, B_FALSE));
10016 
10017 	abd_free(abd);
10018 
10019 	if (err != 0) {
10020 		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors);
10021 		zfs_dbgmsg("L2ARC IO error (%d) while reading device header, "
10022 		    "vdev guid: %llu", err,
10023 		    (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10024 		return (err);
10025 	}
10026 
10027 	if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
10028 		byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr));
10029 
10030 	if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC ||
10031 	    l2dhdr->dh_spa_guid != guid ||
10032 	    l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid ||
10033 	    l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION ||
10034 	    l2dhdr->dh_log_entries != dev->l2ad_log_entries ||
10035 	    l2dhdr->dh_end != dev->l2ad_end ||
10036 	    !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end,
10037 	    l2dhdr->dh_evict) ||
10038 	    (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE &&
10039 	    l2arc_trim_ahead > 0)) {
10040 		/*
10041 		 * Attempt to rebuild a device containing no actual dev hdr
10042 		 * or containing a header from some other pool or from another
10043 		 * version of persistent L2ARC.
10044 		 */
10045 		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported);
10046 		return (SET_ERROR(ENOTSUP));
10047 	}
10048 
10049 	return (0);
10050 }
10051 
10052 /*
10053  * Reads L2ARC log blocks from storage and validates their contents.
10054  *
10055  * This function implements a simple fetcher to make sure that while
10056  * we're processing one buffer the L2ARC is already fetching the next
10057  * one in the chain.
10058  *
10059  * The arguments this_lp and next_lp point to the current and next log block
10060  * address in the block chain. Similarly, this_lb and next_lb hold the
10061  * l2arc_log_blk_phys_t's of the current and next L2ARC blk.
10062  *
10063  * The `this_io' and `next_io' arguments are used for block fetching.
10064  * When issuing the first blk IO during rebuild, you should pass NULL for
10065  * `this_io'. This function will then issue a sync IO to read the block and
10066  * also issue an async IO to fetch the next block in the block chain. The
10067  * fetched IO is returned in `next_io'. On subsequent calls to this
10068  * function, pass the value returned in `next_io' from the previous call
10069  * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO.
10070  * Prior to the call, you should initialize your `next_io' pointer to be
10071  * NULL. If no fetch IO was issued, the pointer is left set at NULL.
10072  *
10073  * On success, this function returns 0, otherwise it returns an appropriate
10074  * error code. On error the fetching IO is aborted and cleared before
10075  * returning from this function. Therefore, if we return `success', the
10076  * caller can assume that we have taken care of cleanup of fetch IOs.
10077  */
10078 static int
10079 l2arc_log_blk_read(l2arc_dev_t *dev,
10080     const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp,
10081     l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
10082     zio_t *this_io, zio_t **next_io)
10083 {
10084 	int		err = 0;
10085 	zio_cksum_t	cksum;
10086 	abd_t		*abd = NULL;
10087 	uint64_t	asize;
10088 
10089 	ASSERT(this_lbp != NULL && next_lbp != NULL);
10090 	ASSERT(this_lb != NULL && next_lb != NULL);
10091 	ASSERT(next_io != NULL && *next_io == NULL);
10092 	ASSERT(l2arc_log_blkptr_valid(dev, this_lbp));
10093 
10094 	/*
10095 	 * Check to see if we have issued the IO for this log block in a
10096 	 * previous run. If not, this is the first call, so issue it now.
10097 	 */
10098 	if (this_io == NULL) {
10099 		this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp,
10100 		    this_lb);
10101 	}
10102 
10103 	/*
10104 	 * Peek to see if we can start issuing the next IO immediately.
10105 	 */
10106 	if (l2arc_log_blkptr_valid(dev, next_lbp)) {
10107 		/*
10108 		 * Start issuing IO for the next log block early - this
10109 		 * should help keep the L2ARC device busy while we
10110 		 * decompress and restore this log block.
10111 		 */
10112 		*next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp,
10113 		    next_lb);
10114 	}
10115 
10116 	/* Wait for the IO to read this log block to complete */
10117 	if ((err = zio_wait(this_io)) != 0) {
10118 		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors);
10119 		zfs_dbgmsg("L2ARC IO error (%d) while reading log block, "
10120 		    "offset: %llu, vdev guid: %llu", err,
10121 		    (u_longlong_t)this_lbp->lbp_daddr,
10122 		    (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10123 		goto cleanup;
10124 	}
10125 
10126 	/*
10127 	 * Make sure the buffer checks out.
10128 	 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10129 	 */
10130 	asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop);
10131 	fletcher_4_native(this_lb, asize, NULL, &cksum);
10132 	if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) {
10133 		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors);
10134 		zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, "
10135 		    "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu",
10136 		    (u_longlong_t)this_lbp->lbp_daddr,
10137 		    (u_longlong_t)dev->l2ad_vdev->vdev_guid,
10138 		    (u_longlong_t)dev->l2ad_hand,
10139 		    (u_longlong_t)dev->l2ad_evict);
10140 		err = SET_ERROR(ECKSUM);
10141 		goto cleanup;
10142 	}
10143 
10144 	/* Now we can take our time decoding this buffer */
10145 	switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) {
10146 	case ZIO_COMPRESS_OFF:
10147 		break;
10148 	case ZIO_COMPRESS_LZ4:
10149 		abd = abd_alloc_for_io(asize, B_TRUE);
10150 		abd_copy_from_buf_off(abd, this_lb, 0, asize);
10151 		if ((err = zio_decompress_data(
10152 		    L2BLK_GET_COMPRESS((this_lbp)->lbp_prop),
10153 		    abd, this_lb, asize, sizeof (*this_lb), NULL)) != 0) {
10154 			err = SET_ERROR(EINVAL);
10155 			goto cleanup;
10156 		}
10157 		break;
10158 	default:
10159 		err = SET_ERROR(EINVAL);
10160 		goto cleanup;
10161 	}
10162 	if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
10163 		byteswap_uint64_array(this_lb, sizeof (*this_lb));
10164 	if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) {
10165 		err = SET_ERROR(EINVAL);
10166 		goto cleanup;
10167 	}
10168 cleanup:
10169 	/* Abort an in-flight fetch I/O in case of error */
10170 	if (err != 0 && *next_io != NULL) {
10171 		l2arc_log_blk_fetch_abort(*next_io);
10172 		*next_io = NULL;
10173 	}
10174 	if (abd != NULL)
10175 		abd_free(abd);
10176 	return (err);
10177 }
10178 
10179 /*
10180  * Restores the payload of a log block to ARC. This creates empty ARC hdr
10181  * entries which only contain an l2arc hdr, essentially restoring the
10182  * buffers to their L2ARC evicted state. This function also updates space
10183  * usage on the L2ARC vdev to make sure it tracks restored buffers.
10184  */
10185 static void
10186 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb,
10187     uint64_t lb_asize)
10188 {
10189 	uint64_t	size = 0, asize = 0;
10190 	uint64_t	log_entries = dev->l2ad_log_entries;
10191 
10192 	/*
10193 	 * Usually arc_adapt() is called only for data, not headers, but
10194 	 * since we may allocate significant amount of memory here, let ARC
10195 	 * grow its arc_c.
10196 	 */
10197 	arc_adapt(log_entries * HDR_L2ONLY_SIZE);
10198 
10199 	for (int i = log_entries - 1; i >= 0; i--) {
10200 		/*
10201 		 * Restore goes in the reverse temporal direction to preserve
10202 		 * correct temporal ordering of buffers in the l2ad_buflist.
10203 		 * l2arc_hdr_restore also does a list_insert_tail instead of
10204 		 * list_insert_head on the l2ad_buflist:
10205 		 *
10206 		 *		LIST	l2ad_buflist		LIST
10207 		 *		HEAD  <------ (time) ------	TAIL
10208 		 * direction	+-----+-----+-----+-----+-----+    direction
10209 		 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild
10210 		 * fill		+-----+-----+-----+-----+-----+
10211 		 *		^				^
10212 		 *		|				|
10213 		 *		|				|
10214 		 *	l2arc_feed_thread		l2arc_rebuild
10215 		 *	will place new bufs here	restores bufs here
10216 		 *
10217 		 * During l2arc_rebuild() the device is not used by
10218 		 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true.
10219 		 */
10220 		size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop);
10221 		asize += vdev_psize_to_asize(dev->l2ad_vdev,
10222 		    L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop));
10223 		l2arc_hdr_restore(&lb->lb_entries[i], dev);
10224 	}
10225 
10226 	/*
10227 	 * Record rebuild stats:
10228 	 *	size		Logical size of restored buffers in the L2ARC
10229 	 *	asize		Aligned size of restored buffers in the L2ARC
10230 	 */
10231 	ARCSTAT_INCR(arcstat_l2_rebuild_size, size);
10232 	ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize);
10233 	ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries);
10234 	ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize);
10235 	ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize);
10236 	ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks);
10237 }
10238 
10239 /*
10240  * Restores a single ARC buf hdr from a log entry. The ARC buffer is put
10241  * into a state indicating that it has been evicted to L2ARC.
10242  */
10243 static void
10244 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev)
10245 {
10246 	arc_buf_hdr_t		*hdr, *exists;
10247 	kmutex_t		*hash_lock;
10248 	arc_buf_contents_t	type = L2BLK_GET_TYPE((le)->le_prop);
10249 	uint64_t		asize;
10250 
10251 	/*
10252 	 * Do all the allocation before grabbing any locks, this lets us
10253 	 * sleep if memory is full and we don't have to deal with failed
10254 	 * allocations.
10255 	 */
10256 	hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type,
10257 	    dev, le->le_dva, le->le_daddr,
10258 	    L2BLK_GET_PSIZE((le)->le_prop), le->le_birth,
10259 	    L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel,
10260 	    L2BLK_GET_PROTECTED((le)->le_prop),
10261 	    L2BLK_GET_PREFETCH((le)->le_prop),
10262 	    L2BLK_GET_STATE((le)->le_prop));
10263 	asize = vdev_psize_to_asize(dev->l2ad_vdev,
10264 	    L2BLK_GET_PSIZE((le)->le_prop));
10265 
10266 	/*
10267 	 * vdev_space_update() has to be called before arc_hdr_destroy() to
10268 	 * avoid underflow since the latter also calls vdev_space_update().
10269 	 */
10270 	l2arc_hdr_arcstats_increment(hdr);
10271 	vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10272 
10273 	mutex_enter(&dev->l2ad_mtx);
10274 	list_insert_tail(&dev->l2ad_buflist, hdr);
10275 	(void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
10276 	mutex_exit(&dev->l2ad_mtx);
10277 
10278 	exists = buf_hash_insert(hdr, &hash_lock);
10279 	if (exists) {
10280 		/* Buffer was already cached, no need to restore it. */
10281 		arc_hdr_destroy(hdr);
10282 		/*
10283 		 * If the buffer is already cached, check whether it has
10284 		 * L2ARC metadata. If not, enter them and update the flag.
10285 		 * This is important is case of onlining a cache device, since
10286 		 * we previously evicted all L2ARC metadata from ARC.
10287 		 */
10288 		if (!HDR_HAS_L2HDR(exists)) {
10289 			arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR);
10290 			exists->b_l2hdr.b_dev = dev;
10291 			exists->b_l2hdr.b_daddr = le->le_daddr;
10292 			exists->b_l2hdr.b_arcs_state =
10293 			    L2BLK_GET_STATE((le)->le_prop);
10294 			mutex_enter(&dev->l2ad_mtx);
10295 			list_insert_tail(&dev->l2ad_buflist, exists);
10296 			(void) zfs_refcount_add_many(&dev->l2ad_alloc,
10297 			    arc_hdr_size(exists), exists);
10298 			mutex_exit(&dev->l2ad_mtx);
10299 			l2arc_hdr_arcstats_increment(exists);
10300 			vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10301 		}
10302 		ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached);
10303 	}
10304 
10305 	mutex_exit(hash_lock);
10306 }
10307 
10308 /*
10309  * Starts an asynchronous read IO to read a log block. This is used in log
10310  * block reconstruction to start reading the next block before we are done
10311  * decoding and reconstructing the current block, to keep the l2arc device
10312  * nice and hot with read IO to process.
10313  * The returned zio will contain a newly allocated memory buffers for the IO
10314  * data which should then be freed by the caller once the zio is no longer
10315  * needed (i.e. due to it having completed). If you wish to abort this
10316  * zio, you should do so using l2arc_log_blk_fetch_abort, which takes
10317  * care of disposing of the allocated buffers correctly.
10318  */
10319 static zio_t *
10320 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp,
10321     l2arc_log_blk_phys_t *lb)
10322 {
10323 	uint32_t		asize;
10324 	zio_t			*pio;
10325 	l2arc_read_callback_t	*cb;
10326 
10327 	/* L2BLK_GET_PSIZE returns aligned size for log blocks */
10328 	asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10329 	ASSERT(asize <= sizeof (l2arc_log_blk_phys_t));
10330 
10331 	cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP);
10332 	cb->l2rcb_abd = abd_get_from_buf(lb, asize);
10333 	pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb,
10334 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY);
10335 	(void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize,
10336 	    cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL,
10337 	    ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL |
10338 	    ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE));
10339 
10340 	return (pio);
10341 }
10342 
10343 /*
10344  * Aborts a zio returned from l2arc_log_blk_fetch and frees the data
10345  * buffers allocated for it.
10346  */
10347 static void
10348 l2arc_log_blk_fetch_abort(zio_t *zio)
10349 {
10350 	(void) zio_wait(zio);
10351 }
10352 
10353 /*
10354  * Creates a zio to update the device header on an l2arc device.
10355  */
10356 void
10357 l2arc_dev_hdr_update(l2arc_dev_t *dev)
10358 {
10359 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
10360 	const uint64_t		l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10361 	abd_t			*abd;
10362 	int			err;
10363 
10364 	VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER));
10365 
10366 	l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC;
10367 	l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION;
10368 	l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10369 	l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid;
10370 	l2dhdr->dh_log_entries = dev->l2ad_log_entries;
10371 	l2dhdr->dh_evict = dev->l2ad_evict;
10372 	l2dhdr->dh_start = dev->l2ad_start;
10373 	l2dhdr->dh_end = dev->l2ad_end;
10374 	l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize);
10375 	l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count);
10376 	l2dhdr->dh_flags = 0;
10377 	l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time;
10378 	l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state;
10379 	if (dev->l2ad_first)
10380 		l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST;
10381 
10382 	abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10383 
10384 	err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev,
10385 	    VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL,
10386 	    NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE));
10387 
10388 	abd_free(abd);
10389 
10390 	if (err != 0) {
10391 		zfs_dbgmsg("L2ARC IO error (%d) while writing device header, "
10392 		    "vdev guid: %llu", err,
10393 		    (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10394 	}
10395 }
10396 
10397 /*
10398  * Commits a log block to the L2ARC device. This routine is invoked from
10399  * l2arc_write_buffers when the log block fills up.
10400  * This function allocates some memory to temporarily hold the serialized
10401  * buffer to be written. This is then released in l2arc_write_done.
10402  */
10403 static uint64_t
10404 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb)
10405 {
10406 	l2arc_log_blk_phys_t	*lb = &dev->l2ad_log_blk;
10407 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
10408 	uint64_t		psize, asize;
10409 	zio_t			*wzio;
10410 	l2arc_lb_abd_buf_t	*abd_buf;
10411 	uint8_t			*tmpbuf = NULL;
10412 	l2arc_lb_ptr_buf_t	*lb_ptr_buf;
10413 
10414 	VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries);
10415 
10416 	abd_buf = zio_buf_alloc(sizeof (*abd_buf));
10417 	abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb));
10418 	lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
10419 	lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP);
10420 
10421 	/* link the buffer into the block chain */
10422 	lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1];
10423 	lb->lb_magic = L2ARC_LOG_BLK_MAGIC;
10424 
10425 	/*
10426 	 * l2arc_log_blk_commit() may be called multiple times during a single
10427 	 * l2arc_write_buffers() call. Save the allocated abd buffers in a list
10428 	 * so we can free them in l2arc_write_done() later on.
10429 	 */
10430 	list_insert_tail(&cb->l2wcb_abd_list, abd_buf);
10431 
10432 	/* try to compress the buffer */
10433 	psize = zio_compress_data(ZIO_COMPRESS_LZ4,
10434 	    abd_buf->abd, (void **) &tmpbuf, sizeof (*lb), 0);
10435 
10436 	/* a log block is never entirely zero */
10437 	ASSERT(psize != 0);
10438 	asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
10439 	ASSERT(asize <= sizeof (*lb));
10440 
10441 	/*
10442 	 * Update the start log block pointer in the device header to point
10443 	 * to the log block we're about to write.
10444 	 */
10445 	l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0];
10446 	l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand;
10447 	l2dhdr->dh_start_lbps[0].lbp_payload_asize =
10448 	    dev->l2ad_log_blk_payload_asize;
10449 	l2dhdr->dh_start_lbps[0].lbp_payload_start =
10450 	    dev->l2ad_log_blk_payload_start;
10451 	L2BLK_SET_LSIZE(
10452 	    (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb));
10453 	L2BLK_SET_PSIZE(
10454 	    (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize);
10455 	L2BLK_SET_CHECKSUM(
10456 	    (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10457 	    ZIO_CHECKSUM_FLETCHER_4);
10458 	if (asize < sizeof (*lb)) {
10459 		/* compression succeeded */
10460 		memset(tmpbuf + psize, 0, asize - psize);
10461 		L2BLK_SET_COMPRESS(
10462 		    (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10463 		    ZIO_COMPRESS_LZ4);
10464 	} else {
10465 		/* compression failed */
10466 		memcpy(tmpbuf, lb, sizeof (*lb));
10467 		L2BLK_SET_COMPRESS(
10468 		    (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10469 		    ZIO_COMPRESS_OFF);
10470 	}
10471 
10472 	/* checksum what we're about to write */
10473 	fletcher_4_native(tmpbuf, asize, NULL,
10474 	    &l2dhdr->dh_start_lbps[0].lbp_cksum);
10475 
10476 	abd_free(abd_buf->abd);
10477 
10478 	/* perform the write itself */
10479 	abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb));
10480 	abd_take_ownership_of_buf(abd_buf->abd, B_TRUE);
10481 	wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand,
10482 	    asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL,
10483 	    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE);
10484 	DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio);
10485 	(void) zio_nowait(wzio);
10486 
10487 	dev->l2ad_hand += asize;
10488 	/*
10489 	 * Include the committed log block's pointer  in the list of pointers
10490 	 * to log blocks present in the L2ARC device.
10491 	 */
10492 	memcpy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[0],
10493 	    sizeof (l2arc_log_blkptr_t));
10494 	mutex_enter(&dev->l2ad_mtx);
10495 	list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf);
10496 	ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
10497 	ARCSTAT_BUMP(arcstat_l2_log_blk_count);
10498 	zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
10499 	zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
10500 	mutex_exit(&dev->l2ad_mtx);
10501 	vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10502 
10503 	/* bump the kstats */
10504 	ARCSTAT_INCR(arcstat_l2_write_bytes, asize);
10505 	ARCSTAT_BUMP(arcstat_l2_log_blk_writes);
10506 	ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize);
10507 	ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio,
10508 	    dev->l2ad_log_blk_payload_asize / asize);
10509 
10510 	/* start a new log block */
10511 	dev->l2ad_log_ent_idx = 0;
10512 	dev->l2ad_log_blk_payload_asize = 0;
10513 	dev->l2ad_log_blk_payload_start = 0;
10514 
10515 	return (asize);
10516 }
10517 
10518 /*
10519  * Validates an L2ARC log block address to make sure that it can be read
10520  * from the provided L2ARC device.
10521  */
10522 boolean_t
10523 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp)
10524 {
10525 	/* L2BLK_GET_PSIZE returns aligned size for log blocks */
10526 	uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10527 	uint64_t end = lbp->lbp_daddr + asize - 1;
10528 	uint64_t start = lbp->lbp_payload_start;
10529 	boolean_t evicted = B_FALSE;
10530 
10531 	/*
10532 	 * A log block is valid if all of the following conditions are true:
10533 	 * - it fits entirely (including its payload) between l2ad_start and
10534 	 *   l2ad_end
10535 	 * - it has a valid size
10536 	 * - neither the log block itself nor part of its payload was evicted
10537 	 *   by l2arc_evict():
10538 	 *
10539 	 *		l2ad_hand          l2ad_evict
10540 	 *		|			 |	lbp_daddr
10541 	 *		|     start		 |	|  end
10542 	 *		|     |			 |	|  |
10543 	 *		V     V		         V	V  V
10544 	 *   l2ad_start ============================================ l2ad_end
10545 	 *                    --------------------------||||
10546 	 *				^		 ^
10547 	 *				|		log block
10548 	 *				payload
10549 	 */
10550 
10551 	evicted =
10552 	    l2arc_range_check_overlap(start, end, dev->l2ad_hand) ||
10553 	    l2arc_range_check_overlap(start, end, dev->l2ad_evict) ||
10554 	    l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) ||
10555 	    l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end);
10556 
10557 	return (start >= dev->l2ad_start && end <= dev->l2ad_end &&
10558 	    asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) &&
10559 	    (!evicted || dev->l2ad_first));
10560 }
10561 
10562 /*
10563  * Inserts ARC buffer header `hdr' into the current L2ARC log block on
10564  * the device. The buffer being inserted must be present in L2ARC.
10565  * Returns B_TRUE if the L2ARC log block is full and needs to be committed
10566  * to L2ARC, or B_FALSE if it still has room for more ARC buffers.
10567  */
10568 static boolean_t
10569 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr)
10570 {
10571 	l2arc_log_blk_phys_t	*lb = &dev->l2ad_log_blk;
10572 	l2arc_log_ent_phys_t	*le;
10573 
10574 	if (dev->l2ad_log_entries == 0)
10575 		return (B_FALSE);
10576 
10577 	int index = dev->l2ad_log_ent_idx++;
10578 
10579 	ASSERT3S(index, <, dev->l2ad_log_entries);
10580 	ASSERT(HDR_HAS_L2HDR(hdr));
10581 
10582 	le = &lb->lb_entries[index];
10583 	memset(le, 0, sizeof (*le));
10584 	le->le_dva = hdr->b_dva;
10585 	le->le_birth = hdr->b_birth;
10586 	le->le_daddr = hdr->b_l2hdr.b_daddr;
10587 	if (index == 0)
10588 		dev->l2ad_log_blk_payload_start = le->le_daddr;
10589 	L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr));
10590 	L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr));
10591 	L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr));
10592 	le->le_complevel = hdr->b_complevel;
10593 	L2BLK_SET_TYPE((le)->le_prop, hdr->b_type);
10594 	L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr)));
10595 	L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr)));
10596 	L2BLK_SET_STATE((le)->le_prop, hdr->b_l2hdr.b_arcs_state);
10597 
10598 	dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev,
10599 	    HDR_GET_PSIZE(hdr));
10600 
10601 	return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries);
10602 }
10603 
10604 /*
10605  * Checks whether a given L2ARC device address sits in a time-sequential
10606  * range. The trick here is that the L2ARC is a rotary buffer, so we can't
10607  * just do a range comparison, we need to handle the situation in which the
10608  * range wraps around the end of the L2ARC device. Arguments:
10609  *	bottom -- Lower end of the range to check (written to earlier).
10610  *	top    -- Upper end of the range to check (written to later).
10611  *	check  -- The address for which we want to determine if it sits in
10612  *		  between the top and bottom.
10613  *
10614  * The 3-way conditional below represents the following cases:
10615  *
10616  *	bottom < top : Sequentially ordered case:
10617  *	  <check>--------+-------------------+
10618  *	                 |  (overlap here?)  |
10619  *	 L2ARC dev       V                   V
10620  *	 |---------------<bottom>============<top>--------------|
10621  *
10622  *	bottom > top: Looped-around case:
10623  *	                      <check>--------+------------------+
10624  *	                                     |  (overlap here?) |
10625  *	 L2ARC dev                           V                  V
10626  *	 |===============<top>---------------<bottom>===========|
10627  *	 ^               ^
10628  *	 |  (or here?)   |
10629  *	 +---------------+---------<check>
10630  *
10631  *	top == bottom : Just a single address comparison.
10632  */
10633 boolean_t
10634 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check)
10635 {
10636 	if (bottom < top)
10637 		return (bottom <= check && check <= top);
10638 	else if (bottom > top)
10639 		return (check <= top || bottom <= check);
10640 	else
10641 		return (check == top);
10642 }
10643 
10644 EXPORT_SYMBOL(arc_buf_size);
10645 EXPORT_SYMBOL(arc_write);
10646 EXPORT_SYMBOL(arc_read);
10647 EXPORT_SYMBOL(arc_buf_info);
10648 EXPORT_SYMBOL(arc_getbuf_func);
10649 EXPORT_SYMBOL(arc_add_prune_callback);
10650 EXPORT_SYMBOL(arc_remove_prune_callback);
10651 
10652 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_min,
10653 	spl_param_get_u64, ZMOD_RW, "Minimum ARC size in bytes");
10654 
10655 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_max,
10656 	spl_param_get_u64, ZMOD_RW, "Maximum ARC size in bytes");
10657 
10658 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_balance, UINT, ZMOD_RW,
10659 	"Balance between metadata and data on ghost hits.");
10660 
10661 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int,
10662 	param_get_uint, ZMOD_RW, "Seconds before growing ARC size");
10663 
10664 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int,
10665 	param_get_uint, ZMOD_RW, "log2(fraction of ARC to reclaim)");
10666 
10667 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW,
10668 	"Percent of pagecache to reclaim ARC to");
10669 
10670 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, UINT, ZMOD_RD,
10671 	"Target average block size");
10672 
10673 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW,
10674 	"Disable compressed ARC buffers");
10675 
10676 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int,
10677 	param_get_uint, ZMOD_RW, "Min life of prefetch block in ms");
10678 
10679 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms,
10680     param_set_arc_int, param_get_uint, ZMOD_RW,
10681 	"Min life of prescient prefetched block in ms");
10682 
10683 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, U64, ZMOD_RW,
10684 	"Max write bytes per interval");
10685 
10686 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, U64, ZMOD_RW,
10687 	"Extra write bytes during device warmup");
10688 
10689 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, U64, ZMOD_RW,
10690 	"Number of max device writes to precache");
10691 
10692 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, U64, ZMOD_RW,
10693 	"Compressed l2arc_headroom multiplier");
10694 
10695 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, U64, ZMOD_RW,
10696 	"TRIM ahead L2ARC write size multiplier");
10697 
10698 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, U64, ZMOD_RW,
10699 	"Seconds between L2ARC writing");
10700 
10701 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, U64, ZMOD_RW,
10702 	"Min feed interval in milliseconds");
10703 
10704 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW,
10705 	"Skip caching prefetched buffers");
10706 
10707 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW,
10708 	"Turbo L2ARC warmup");
10709 
10710 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW,
10711 	"No reads during writes");
10712 
10713 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, UINT, ZMOD_RW,
10714 	"Percent of ARC size allowed for L2ARC-only headers");
10715 
10716 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW,
10717 	"Rebuild the L2ARC when importing a pool");
10718 
10719 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, U64, ZMOD_RW,
10720 	"Min size in bytes to write rebuild log blocks in L2ARC");
10721 
10722 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW,
10723 	"Cache only MFU data from ARC into L2ARC");
10724 
10725 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, exclude_special, INT, ZMOD_RW,
10726 	"Exclude dbufs on special vdevs from being cached to L2ARC if set.");
10727 
10728 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int,
10729 	param_get_uint, ZMOD_RW, "System free memory I/O throttle in bytes");
10730 
10731 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_u64,
10732 	spl_param_get_u64, ZMOD_RW, "System free memory target size in bytes");
10733 
10734 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_u64,
10735 	spl_param_get_u64, ZMOD_RW, "Minimum bytes of dnodes in ARC");
10736 
10737 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent,
10738     param_set_arc_int, param_get_uint, ZMOD_RW,
10739 	"Percent of ARC meta buffers for dnodes");
10740 
10741 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, UINT, ZMOD_RW,
10742 	"Percentage of excess dnodes to try to unpin");
10743 
10744 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, UINT, ZMOD_RW,
10745 	"When full, ARC allocation waits for eviction of this % of alloc size");
10746 
10747 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, UINT, ZMOD_RW,
10748 	"The number of headers to evict per sublist before moving to the next");
10749 
10750 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, prune_task_threads, INT, ZMOD_RW,
10751 	"Number of arc_prune threads");
10752