1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2018, Joyent, Inc. 24 * Copyright (c) 2011, 2020, Delphix. All rights reserved. 25 * Copyright (c) 2014, Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 28 * Copyright (c) 2020, George Amanakis. All rights reserved. 29 * Copyright (c) 2019, Klara Inc. 30 * Copyright (c) 2019, Allan Jude 31 * Copyright (c) 2020, The FreeBSD Foundation [1] 32 * 33 * [1] Portions of this software were developed by Allan Jude 34 * under sponsorship from the FreeBSD Foundation. 35 */ 36 37 /* 38 * DVA-based Adjustable Replacement Cache 39 * 40 * While much of the theory of operation used here is 41 * based on the self-tuning, low overhead replacement cache 42 * presented by Megiddo and Modha at FAST 2003, there are some 43 * significant differences: 44 * 45 * 1. The Megiddo and Modha model assumes any page is evictable. 46 * Pages in its cache cannot be "locked" into memory. This makes 47 * the eviction algorithm simple: evict the last page in the list. 48 * This also make the performance characteristics easy to reason 49 * about. Our cache is not so simple. At any given moment, some 50 * subset of the blocks in the cache are un-evictable because we 51 * have handed out a reference to them. Blocks are only evictable 52 * when there are no external references active. This makes 53 * eviction far more problematic: we choose to evict the evictable 54 * blocks that are the "lowest" in the list. 55 * 56 * There are times when it is not possible to evict the requested 57 * space. In these circumstances we are unable to adjust the cache 58 * size. To prevent the cache growing unbounded at these times we 59 * implement a "cache throttle" that slows the flow of new data 60 * into the cache until we can make space available. 61 * 62 * 2. The Megiddo and Modha model assumes a fixed cache size. 63 * Pages are evicted when the cache is full and there is a cache 64 * miss. Our model has a variable sized cache. It grows with 65 * high use, but also tries to react to memory pressure from the 66 * operating system: decreasing its size when system memory is 67 * tight. 68 * 69 * 3. The Megiddo and Modha model assumes a fixed page size. All 70 * elements of the cache are therefore exactly the same size. So 71 * when adjusting the cache size following a cache miss, its simply 72 * a matter of choosing a single page to evict. In our model, we 73 * have variable sized cache blocks (ranging from 512 bytes to 74 * 128K bytes). We therefore choose a set of blocks to evict to make 75 * space for a cache miss that approximates as closely as possible 76 * the space used by the new block. 77 * 78 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 79 * by N. Megiddo & D. Modha, FAST 2003 80 */ 81 82 /* 83 * The locking model: 84 * 85 * A new reference to a cache buffer can be obtained in two 86 * ways: 1) via a hash table lookup using the DVA as a key, 87 * or 2) via one of the ARC lists. The arc_read() interface 88 * uses method 1, while the internal ARC algorithms for 89 * adjusting the cache use method 2. We therefore provide two 90 * types of locks: 1) the hash table lock array, and 2) the 91 * ARC list locks. 92 * 93 * Buffers do not have their own mutexes, rather they rely on the 94 * hash table mutexes for the bulk of their protection (i.e. most 95 * fields in the arc_buf_hdr_t are protected by these mutexes). 96 * 97 * buf_hash_find() returns the appropriate mutex (held) when it 98 * locates the requested buffer in the hash table. It returns 99 * NULL for the mutex if the buffer was not in the table. 100 * 101 * buf_hash_remove() expects the appropriate hash mutex to be 102 * already held before it is invoked. 103 * 104 * Each ARC state also has a mutex which is used to protect the 105 * buffer list associated with the state. When attempting to 106 * obtain a hash table lock while holding an ARC list lock you 107 * must use: mutex_tryenter() to avoid deadlock. Also note that 108 * the active state mutex must be held before the ghost state mutex. 109 * 110 * It as also possible to register a callback which is run when the 111 * arc_meta_limit is reached and no buffers can be safely evicted. In 112 * this case the arc user should drop a reference on some arc buffers so 113 * they can be reclaimed and the arc_meta_limit honored. For example, 114 * when using the ZPL each dentry holds a references on a znode. These 115 * dentries must be pruned before the arc buffer holding the znode can 116 * be safely evicted. 117 * 118 * Note that the majority of the performance stats are manipulated 119 * with atomic operations. 120 * 121 * The L2ARC uses the l2ad_mtx on each vdev for the following: 122 * 123 * - L2ARC buflist creation 124 * - L2ARC buflist eviction 125 * - L2ARC write completion, which walks L2ARC buflists 126 * - ARC header destruction, as it removes from L2ARC buflists 127 * - ARC header release, as it removes from L2ARC buflists 128 */ 129 130 /* 131 * ARC operation: 132 * 133 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. 134 * This structure can point either to a block that is still in the cache or to 135 * one that is only accessible in an L2 ARC device, or it can provide 136 * information about a block that was recently evicted. If a block is 137 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough 138 * information to retrieve it from the L2ARC device. This information is 139 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block 140 * that is in this state cannot access the data directly. 141 * 142 * Blocks that are actively being referenced or have not been evicted 143 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within 144 * the arc_buf_hdr_t that will point to the data block in memory. A block can 145 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC 146 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and 147 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd). 148 * 149 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the 150 * ability to store the physical data (b_pabd) associated with the DVA of the 151 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block, 152 * it will match its on-disk compression characteristics. This behavior can be 153 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the 154 * compressed ARC functionality is disabled, the b_pabd will point to an 155 * uncompressed version of the on-disk data. 156 * 157 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each 158 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it. 159 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC 160 * consumer. The ARC will provide references to this data and will keep it 161 * cached until it is no longer in use. The ARC caches only the L1ARC's physical 162 * data block and will evict any arc_buf_t that is no longer referenced. The 163 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the 164 * "overhead_size" kstat. 165 * 166 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or 167 * compressed form. The typical case is that consumers will want uncompressed 168 * data, and when that happens a new data buffer is allocated where the data is 169 * decompressed for them to use. Currently the only consumer who wants 170 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it 171 * exists on disk. When this happens, the arc_buf_t's data buffer is shared 172 * with the arc_buf_hdr_t. 173 * 174 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The 175 * first one is owned by a compressed send consumer (and therefore references 176 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be 177 * used by any other consumer (and has its own uncompressed copy of the data 178 * buffer). 179 * 180 * arc_buf_hdr_t 181 * +-----------+ 182 * | fields | 183 * | common to | 184 * | L1- and | 185 * | L2ARC | 186 * +-----------+ 187 * | l2arc_buf_hdr_t 188 * | | 189 * +-----------+ 190 * | l1arc_buf_hdr_t 191 * | | arc_buf_t 192 * | b_buf +------------>+-----------+ arc_buf_t 193 * | b_pabd +-+ |b_next +---->+-----------+ 194 * +-----------+ | |-----------| |b_next +-->NULL 195 * | |b_comp = T | +-----------+ 196 * | |b_data +-+ |b_comp = F | 197 * | +-----------+ | |b_data +-+ 198 * +->+------+ | +-----------+ | 199 * compressed | | | | 200 * data | |<--------------+ | uncompressed 201 * +------+ compressed, | data 202 * shared +-->+------+ 203 * data | | 204 * | | 205 * +------+ 206 * 207 * When a consumer reads a block, the ARC must first look to see if the 208 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new 209 * arc_buf_t and either copies uncompressed data into a new data buffer from an 210 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a 211 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the 212 * hdr is compressed and the desired compression characteristics of the 213 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the 214 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be 215 * the last buffer in the hdr's b_buf list, however a shared compressed buf can 216 * be anywhere in the hdr's list. 217 * 218 * The diagram below shows an example of an uncompressed ARC hdr that is 219 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is 220 * the last element in the buf list): 221 * 222 * arc_buf_hdr_t 223 * +-----------+ 224 * | | 225 * | | 226 * | | 227 * +-----------+ 228 * l2arc_buf_hdr_t| | 229 * | | 230 * +-----------+ 231 * l1arc_buf_hdr_t| | 232 * | | arc_buf_t (shared) 233 * | b_buf +------------>+---------+ arc_buf_t 234 * | | |b_next +---->+---------+ 235 * | b_pabd +-+ |---------| |b_next +-->NULL 236 * +-----------+ | | | +---------+ 237 * | |b_data +-+ | | 238 * | +---------+ | |b_data +-+ 239 * +->+------+ | +---------+ | 240 * | | | | 241 * uncompressed | | | | 242 * data +------+ | | 243 * ^ +->+------+ | 244 * | uncompressed | | | 245 * | data | | | 246 * | +------+ | 247 * +---------------------------------+ 248 * 249 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd 250 * since the physical block is about to be rewritten. The new data contents 251 * will be contained in the arc_buf_t. As the I/O pipeline performs the write, 252 * it may compress the data before writing it to disk. The ARC will be called 253 * with the transformed data and will bcopy the transformed on-disk block into 254 * a newly allocated b_pabd. Writes are always done into buffers which have 255 * either been loaned (and hence are new and don't have other readers) or 256 * buffers which have been released (and hence have their own hdr, if there 257 * were originally other readers of the buf's original hdr). This ensures that 258 * the ARC only needs to update a single buf and its hdr after a write occurs. 259 * 260 * When the L2ARC is in use, it will also take advantage of the b_pabd. The 261 * L2ARC will always write the contents of b_pabd to the L2ARC. This means 262 * that when compressed ARC is enabled that the L2ARC blocks are identical 263 * to the on-disk block in the main data pool. This provides a significant 264 * advantage since the ARC can leverage the bp's checksum when reading from the 265 * L2ARC to determine if the contents are valid. However, if the compressed 266 * ARC is disabled, then the L2ARC's block must be transformed to look 267 * like the physical block in the main data pool before comparing the 268 * checksum and determining its validity. 269 * 270 * The L1ARC has a slightly different system for storing encrypted data. 271 * Raw (encrypted + possibly compressed) data has a few subtle differences from 272 * data that is just compressed. The biggest difference is that it is not 273 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded. 274 * The other difference is that encryption cannot be treated as a suggestion. 275 * If a caller would prefer compressed data, but they actually wind up with 276 * uncompressed data the worst thing that could happen is there might be a 277 * performance hit. If the caller requests encrypted data, however, we must be 278 * sure they actually get it or else secret information could be leaked. Raw 279 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore, 280 * may have both an encrypted version and a decrypted version of its data at 281 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is 282 * copied out of this header. To avoid complications with b_pabd, raw buffers 283 * cannot be shared. 284 */ 285 286 #include <sys/spa.h> 287 #include <sys/zio.h> 288 #include <sys/spa_impl.h> 289 #include <sys/zio_compress.h> 290 #include <sys/zio_checksum.h> 291 #include <sys/zfs_context.h> 292 #include <sys/arc.h> 293 #include <sys/zfs_refcount.h> 294 #include <sys/vdev.h> 295 #include <sys/vdev_impl.h> 296 #include <sys/dsl_pool.h> 297 #include <sys/multilist.h> 298 #include <sys/abd.h> 299 #include <sys/zil.h> 300 #include <sys/fm/fs/zfs.h> 301 #include <sys/callb.h> 302 #include <sys/kstat.h> 303 #include <sys/zthr.h> 304 #include <zfs_fletcher.h> 305 #include <sys/arc_impl.h> 306 #include <sys/trace_zfs.h> 307 #include <sys/aggsum.h> 308 #include <sys/wmsum.h> 309 #include <cityhash.h> 310 #include <sys/vdev_trim.h> 311 #include <sys/zfs_racct.h> 312 #include <sys/zstd/zstd.h> 313 314 #ifndef _KERNEL 315 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 316 boolean_t arc_watch = B_FALSE; 317 #endif 318 319 /* 320 * This thread's job is to keep enough free memory in the system, by 321 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves 322 * arc_available_memory(). 323 */ 324 static zthr_t *arc_reap_zthr; 325 326 /* 327 * This thread's job is to keep arc_size under arc_c, by calling 328 * arc_evict(), which improves arc_is_overflowing(). 329 */ 330 static zthr_t *arc_evict_zthr; 331 332 static kmutex_t arc_evict_lock; 333 static boolean_t arc_evict_needed = B_FALSE; 334 335 /* 336 * Count of bytes evicted since boot. 337 */ 338 static uint64_t arc_evict_count; 339 340 /* 341 * List of arc_evict_waiter_t's, representing threads waiting for the 342 * arc_evict_count to reach specific values. 343 */ 344 static list_t arc_evict_waiters; 345 346 /* 347 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of 348 * the requested amount of data to be evicted. For example, by default for 349 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation. 350 * Since this is above 100%, it ensures that progress is made towards getting 351 * arc_size under arc_c. Since this is finite, it ensures that allocations 352 * can still happen, even during the potentially long time that arc_size is 353 * more than arc_c. 354 */ 355 int zfs_arc_eviction_pct = 200; 356 357 /* 358 * The number of headers to evict in arc_evict_state_impl() before 359 * dropping the sublist lock and evicting from another sublist. A lower 360 * value means we're more likely to evict the "correct" header (i.e. the 361 * oldest header in the arc state), but comes with higher overhead 362 * (i.e. more invocations of arc_evict_state_impl()). 363 */ 364 int zfs_arc_evict_batch_limit = 10; 365 366 /* number of seconds before growing cache again */ 367 int arc_grow_retry = 5; 368 369 /* 370 * Minimum time between calls to arc_kmem_reap_soon(). 371 */ 372 int arc_kmem_cache_reap_retry_ms = 1000; 373 374 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */ 375 int zfs_arc_overflow_shift = 8; 376 377 /* shift of arc_c for calculating both min and max arc_p */ 378 int arc_p_min_shift = 4; 379 380 /* log2(fraction of arc to reclaim) */ 381 int arc_shrink_shift = 7; 382 383 /* percent of pagecache to reclaim arc to */ 384 #ifdef _KERNEL 385 uint_t zfs_arc_pc_percent = 0; 386 #endif 387 388 /* 389 * log2(fraction of ARC which must be free to allow growing). 390 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 391 * when reading a new block into the ARC, we will evict an equal-sized block 392 * from the ARC. 393 * 394 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 395 * we will still not allow it to grow. 396 */ 397 int arc_no_grow_shift = 5; 398 399 400 /* 401 * minimum lifespan of a prefetch block in clock ticks 402 * (initialized in arc_init()) 403 */ 404 static int arc_min_prefetch_ms; 405 static int arc_min_prescient_prefetch_ms; 406 407 /* 408 * If this percent of memory is free, don't throttle. 409 */ 410 int arc_lotsfree_percent = 10; 411 412 /* 413 * The arc has filled available memory and has now warmed up. 414 */ 415 boolean_t arc_warm; 416 417 /* 418 * These tunables are for performance analysis. 419 */ 420 unsigned long zfs_arc_max = 0; 421 unsigned long zfs_arc_min = 0; 422 unsigned long zfs_arc_meta_limit = 0; 423 unsigned long zfs_arc_meta_min = 0; 424 unsigned long zfs_arc_dnode_limit = 0; 425 unsigned long zfs_arc_dnode_reduce_percent = 10; 426 int zfs_arc_grow_retry = 0; 427 int zfs_arc_shrink_shift = 0; 428 int zfs_arc_p_min_shift = 0; 429 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 430 431 /* 432 * ARC dirty data constraints for arc_tempreserve_space() throttle. 433 */ 434 unsigned long zfs_arc_dirty_limit_percent = 50; /* total dirty data limit */ 435 unsigned long zfs_arc_anon_limit_percent = 25; /* anon block dirty limit */ 436 unsigned long zfs_arc_pool_dirty_percent = 20; /* each pool's anon allowance */ 437 438 /* 439 * Enable or disable compressed arc buffers. 440 */ 441 int zfs_compressed_arc_enabled = B_TRUE; 442 443 /* 444 * ARC will evict meta buffers that exceed arc_meta_limit. This 445 * tunable make arc_meta_limit adjustable for different workloads. 446 */ 447 unsigned long zfs_arc_meta_limit_percent = 75; 448 449 /* 450 * Percentage that can be consumed by dnodes of ARC meta buffers. 451 */ 452 unsigned long zfs_arc_dnode_limit_percent = 10; 453 454 /* 455 * These tunables are Linux specific 456 */ 457 unsigned long zfs_arc_sys_free = 0; 458 int zfs_arc_min_prefetch_ms = 0; 459 int zfs_arc_min_prescient_prefetch_ms = 0; 460 int zfs_arc_p_dampener_disable = 1; 461 int zfs_arc_meta_prune = 10000; 462 int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED; 463 int zfs_arc_meta_adjust_restarts = 4096; 464 int zfs_arc_lotsfree_percent = 10; 465 466 /* The 6 states: */ 467 arc_state_t ARC_anon; 468 arc_state_t ARC_mru; 469 arc_state_t ARC_mru_ghost; 470 arc_state_t ARC_mfu; 471 arc_state_t ARC_mfu_ghost; 472 arc_state_t ARC_l2c_only; 473 474 arc_stats_t arc_stats = { 475 { "hits", KSTAT_DATA_UINT64 }, 476 { "misses", KSTAT_DATA_UINT64 }, 477 { "demand_data_hits", KSTAT_DATA_UINT64 }, 478 { "demand_data_misses", KSTAT_DATA_UINT64 }, 479 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 480 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 481 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 482 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 483 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 484 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 485 { "mru_hits", KSTAT_DATA_UINT64 }, 486 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 487 { "mfu_hits", KSTAT_DATA_UINT64 }, 488 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 489 { "deleted", KSTAT_DATA_UINT64 }, 490 { "mutex_miss", KSTAT_DATA_UINT64 }, 491 { "access_skip", KSTAT_DATA_UINT64 }, 492 { "evict_skip", KSTAT_DATA_UINT64 }, 493 { "evict_not_enough", KSTAT_DATA_UINT64 }, 494 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 495 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 496 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64 }, 497 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64 }, 498 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 499 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 500 { "hash_elements", KSTAT_DATA_UINT64 }, 501 { "hash_elements_max", KSTAT_DATA_UINT64 }, 502 { "hash_collisions", KSTAT_DATA_UINT64 }, 503 { "hash_chains", KSTAT_DATA_UINT64 }, 504 { "hash_chain_max", KSTAT_DATA_UINT64 }, 505 { "p", KSTAT_DATA_UINT64 }, 506 { "c", KSTAT_DATA_UINT64 }, 507 { "c_min", KSTAT_DATA_UINT64 }, 508 { "c_max", KSTAT_DATA_UINT64 }, 509 { "size", KSTAT_DATA_UINT64 }, 510 { "compressed_size", KSTAT_DATA_UINT64 }, 511 { "uncompressed_size", KSTAT_DATA_UINT64 }, 512 { "overhead_size", KSTAT_DATA_UINT64 }, 513 { "hdr_size", KSTAT_DATA_UINT64 }, 514 { "data_size", KSTAT_DATA_UINT64 }, 515 { "metadata_size", KSTAT_DATA_UINT64 }, 516 { "dbuf_size", KSTAT_DATA_UINT64 }, 517 { "dnode_size", KSTAT_DATA_UINT64 }, 518 { "bonus_size", KSTAT_DATA_UINT64 }, 519 #if defined(COMPAT_FREEBSD11) 520 { "other_size", KSTAT_DATA_UINT64 }, 521 #endif 522 { "anon_size", KSTAT_DATA_UINT64 }, 523 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 524 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 525 { "mru_size", KSTAT_DATA_UINT64 }, 526 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 527 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 528 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 529 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 530 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 531 { "mfu_size", KSTAT_DATA_UINT64 }, 532 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 533 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 534 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 535 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 536 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 537 { "l2_hits", KSTAT_DATA_UINT64 }, 538 { "l2_misses", KSTAT_DATA_UINT64 }, 539 { "l2_prefetch_asize", KSTAT_DATA_UINT64 }, 540 { "l2_mru_asize", KSTAT_DATA_UINT64 }, 541 { "l2_mfu_asize", KSTAT_DATA_UINT64 }, 542 { "l2_bufc_data_asize", KSTAT_DATA_UINT64 }, 543 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64 }, 544 { "l2_feeds", KSTAT_DATA_UINT64 }, 545 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 546 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 547 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 548 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 549 { "l2_writes_done", KSTAT_DATA_UINT64 }, 550 { "l2_writes_error", KSTAT_DATA_UINT64 }, 551 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 552 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 553 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 554 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 555 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 556 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 557 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 558 { "l2_io_error", KSTAT_DATA_UINT64 }, 559 { "l2_size", KSTAT_DATA_UINT64 }, 560 { "l2_asize", KSTAT_DATA_UINT64 }, 561 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 562 { "l2_log_blk_writes", KSTAT_DATA_UINT64 }, 563 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 }, 564 { "l2_log_blk_asize", KSTAT_DATA_UINT64 }, 565 { "l2_log_blk_count", KSTAT_DATA_UINT64 }, 566 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 }, 567 { "l2_rebuild_success", KSTAT_DATA_UINT64 }, 568 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 }, 569 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 }, 570 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 }, 571 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 }, 572 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 }, 573 { "l2_rebuild_size", KSTAT_DATA_UINT64 }, 574 { "l2_rebuild_asize", KSTAT_DATA_UINT64 }, 575 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 }, 576 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 }, 577 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 }, 578 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 579 { "memory_direct_count", KSTAT_DATA_UINT64 }, 580 { "memory_indirect_count", KSTAT_DATA_UINT64 }, 581 { "memory_all_bytes", KSTAT_DATA_UINT64 }, 582 { "memory_free_bytes", KSTAT_DATA_UINT64 }, 583 { "memory_available_bytes", KSTAT_DATA_INT64 }, 584 { "arc_no_grow", KSTAT_DATA_UINT64 }, 585 { "arc_tempreserve", KSTAT_DATA_UINT64 }, 586 { "arc_loaned_bytes", KSTAT_DATA_UINT64 }, 587 { "arc_prune", KSTAT_DATA_UINT64 }, 588 { "arc_meta_used", KSTAT_DATA_UINT64 }, 589 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 590 { "arc_dnode_limit", KSTAT_DATA_UINT64 }, 591 { "arc_meta_max", KSTAT_DATA_UINT64 }, 592 { "arc_meta_min", KSTAT_DATA_UINT64 }, 593 { "async_upgrade_sync", KSTAT_DATA_UINT64 }, 594 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 }, 595 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 }, 596 { "arc_need_free", KSTAT_DATA_UINT64 }, 597 { "arc_sys_free", KSTAT_DATA_UINT64 }, 598 { "arc_raw_size", KSTAT_DATA_UINT64 }, 599 { "cached_only_in_progress", KSTAT_DATA_UINT64 }, 600 { "abd_chunk_waste_size", KSTAT_DATA_UINT64 }, 601 }; 602 603 arc_sums_t arc_sums; 604 605 #define ARCSTAT_MAX(stat, val) { \ 606 uint64_t m; \ 607 while ((val) > (m = arc_stats.stat.value.ui64) && \ 608 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 609 continue; \ 610 } 611 612 /* 613 * We define a macro to allow ARC hits/misses to be easily broken down by 614 * two separate conditions, giving a total of four different subtypes for 615 * each of hits and misses (so eight statistics total). 616 */ 617 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 618 if (cond1) { \ 619 if (cond2) { \ 620 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 621 } else { \ 622 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 623 } \ 624 } else { \ 625 if (cond2) { \ 626 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 627 } else { \ 628 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 629 } \ 630 } 631 632 /* 633 * This macro allows us to use kstats as floating averages. Each time we 634 * update this kstat, we first factor it and the update value by 635 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall 636 * average. This macro assumes that integer loads and stores are atomic, but 637 * is not safe for multiple writers updating the kstat in parallel (only the 638 * last writer's update will remain). 639 */ 640 #define ARCSTAT_F_AVG_FACTOR 3 641 #define ARCSTAT_F_AVG(stat, value) \ 642 do { \ 643 uint64_t x = ARCSTAT(stat); \ 644 x = x - x / ARCSTAT_F_AVG_FACTOR + \ 645 (value) / ARCSTAT_F_AVG_FACTOR; \ 646 ARCSTAT(stat) = x; \ 647 _NOTE(CONSTCOND) \ 648 } while (0) 649 650 kstat_t *arc_ksp; 651 static arc_state_t *arc_anon; 652 static arc_state_t *arc_mru_ghost; 653 static arc_state_t *arc_mfu_ghost; 654 static arc_state_t *arc_l2c_only; 655 656 arc_state_t *arc_mru; 657 arc_state_t *arc_mfu; 658 659 /* 660 * There are several ARC variables that are critical to export as kstats -- 661 * but we don't want to have to grovel around in the kstat whenever we wish to 662 * manipulate them. For these variables, we therefore define them to be in 663 * terms of the statistic variable. This assures that we are not introducing 664 * the possibility of inconsistency by having shadow copies of the variables, 665 * while still allowing the code to be readable. 666 */ 667 #define arc_tempreserve ARCSTAT(arcstat_tempreserve) 668 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes) 669 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 670 /* max size for dnodes */ 671 #define arc_dnode_size_limit ARCSTAT(arcstat_dnode_limit) 672 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */ 673 #define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */ 674 675 hrtime_t arc_growtime; 676 list_t arc_prune_list; 677 kmutex_t arc_prune_mtx; 678 taskq_t *arc_prune_taskq; 679 680 #define GHOST_STATE(state) \ 681 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 682 (state) == arc_l2c_only) 683 684 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 685 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 686 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 687 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 688 #define HDR_PRESCIENT_PREFETCH(hdr) \ 689 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) 690 #define HDR_COMPRESSION_ENABLED(hdr) \ 691 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) 692 693 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 694 #define HDR_L2_READING(hdr) \ 695 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 696 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 697 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 698 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 699 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 700 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED) 701 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH) 702 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) 703 704 #define HDR_ISTYPE_METADATA(hdr) \ 705 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 706 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 707 708 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 709 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 710 #define HDR_HAS_RABD(hdr) \ 711 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \ 712 (hdr)->b_crypt_hdr.b_rabd != NULL) 713 #define HDR_ENCRYPTED(hdr) \ 714 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 715 #define HDR_AUTHENTICATED(hdr) \ 716 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 717 718 /* For storing compression mode in b_flags */ 719 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) 720 721 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ 722 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) 723 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ 724 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); 725 726 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) 727 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED) 728 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED) 729 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED) 730 731 /* 732 * Other sizes 733 */ 734 735 #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 736 #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr)) 737 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 738 739 /* 740 * Hash table routines 741 */ 742 743 #define HT_LOCK_ALIGN 64 744 #define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN))) 745 746 struct ht_lock { 747 kmutex_t ht_lock; 748 #ifdef _KERNEL 749 unsigned char pad[HT_LOCK_PAD]; 750 #endif 751 }; 752 753 #define BUF_LOCKS 8192 754 typedef struct buf_hash_table { 755 uint64_t ht_mask; 756 arc_buf_hdr_t **ht_table; 757 struct ht_lock ht_locks[BUF_LOCKS]; 758 } buf_hash_table_t; 759 760 static buf_hash_table_t buf_hash_table; 761 762 #define BUF_HASH_INDEX(spa, dva, birth) \ 763 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 764 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 765 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 766 #define HDR_LOCK(hdr) \ 767 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 768 769 uint64_t zfs_crc64_table[256]; 770 771 /* 772 * Level 2 ARC 773 */ 774 775 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 776 #define L2ARC_HEADROOM 2 /* num of writes */ 777 778 /* 779 * If we discover during ARC scan any buffers to be compressed, we boost 780 * our headroom for the next scanning cycle by this percentage multiple. 781 */ 782 #define L2ARC_HEADROOM_BOOST 200 783 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 784 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 785 786 /* 787 * We can feed L2ARC from two states of ARC buffers, mru and mfu, 788 * and each of the state has two types: data and metadata. 789 */ 790 #define L2ARC_FEED_TYPES 4 791 792 /* L2ARC Performance Tunables */ 793 unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */ 794 unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */ 795 unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */ 796 unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 797 unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 798 unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */ 799 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 800 int l2arc_feed_again = B_TRUE; /* turbo warmup */ 801 int l2arc_norw = B_FALSE; /* no reads during writes */ 802 int l2arc_meta_percent = 33; /* limit on headers size */ 803 804 /* 805 * L2ARC Internals 806 */ 807 static list_t L2ARC_dev_list; /* device list */ 808 static list_t *l2arc_dev_list; /* device list pointer */ 809 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 810 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 811 static list_t L2ARC_free_on_write; /* free after write buf list */ 812 static list_t *l2arc_free_on_write; /* free after write list ptr */ 813 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 814 static uint64_t l2arc_ndev; /* number of devices */ 815 816 typedef struct l2arc_read_callback { 817 arc_buf_hdr_t *l2rcb_hdr; /* read header */ 818 blkptr_t l2rcb_bp; /* original blkptr */ 819 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 820 int l2rcb_flags; /* original flags */ 821 abd_t *l2rcb_abd; /* temporary buffer */ 822 } l2arc_read_callback_t; 823 824 typedef struct l2arc_data_free { 825 /* protected by l2arc_free_on_write_mtx */ 826 abd_t *l2df_abd; 827 size_t l2df_size; 828 arc_buf_contents_t l2df_type; 829 list_node_t l2df_list_node; 830 } l2arc_data_free_t; 831 832 typedef enum arc_fill_flags { 833 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */ 834 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */ 835 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */ 836 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */ 837 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */ 838 } arc_fill_flags_t; 839 840 static kmutex_t l2arc_feed_thr_lock; 841 static kcondvar_t l2arc_feed_thr_cv; 842 static uint8_t l2arc_thread_exit; 843 844 static kmutex_t l2arc_rebuild_thr_lock; 845 static kcondvar_t l2arc_rebuild_thr_cv; 846 847 enum arc_hdr_alloc_flags { 848 ARC_HDR_ALLOC_RDATA = 0x1, 849 ARC_HDR_DO_ADAPT = 0x2, 850 }; 851 852 853 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *, boolean_t); 854 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *); 855 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *, boolean_t); 856 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *); 857 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *); 858 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag); 859 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t); 860 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int); 861 static void arc_access(arc_buf_hdr_t *, kmutex_t *); 862 static void arc_buf_watch(arc_buf_t *); 863 864 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 865 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 866 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 867 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 868 869 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 870 static void l2arc_read_done(zio_t *); 871 static void l2arc_do_free_on_write(void); 872 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 873 boolean_t state_only); 874 875 #define l2arc_hdr_arcstats_increment(hdr) \ 876 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE) 877 #define l2arc_hdr_arcstats_decrement(hdr) \ 878 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE) 879 #define l2arc_hdr_arcstats_increment_state(hdr) \ 880 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE) 881 #define l2arc_hdr_arcstats_decrement_state(hdr) \ 882 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE) 883 884 /* 885 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU 886 * metadata and data are cached from ARC into L2ARC. 887 */ 888 int l2arc_mfuonly = 0; 889 890 /* 891 * L2ARC TRIM 892 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of 893 * the current write size (l2arc_write_max) we should TRIM if we 894 * have filled the device. It is defined as a percentage of the 895 * write size. If set to 100 we trim twice the space required to 896 * accommodate upcoming writes. A minimum of 64MB will be trimmed. 897 * It also enables TRIM of the whole L2ARC device upon creation or 898 * addition to an existing pool or if the header of the device is 899 * invalid upon importing a pool or onlining a cache device. The 900 * default is 0, which disables TRIM on L2ARC altogether as it can 901 * put significant stress on the underlying storage devices. This 902 * will vary depending of how well the specific device handles 903 * these commands. 904 */ 905 unsigned long l2arc_trim_ahead = 0; 906 907 /* 908 * Performance tuning of L2ARC persistence: 909 * 910 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding 911 * an L2ARC device (either at pool import or later) will attempt 912 * to rebuild L2ARC buffer contents. 913 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls 914 * whether log blocks are written to the L2ARC device. If the L2ARC 915 * device is less than 1GB, the amount of data l2arc_evict() 916 * evicts is significant compared to the amount of restored L2ARC 917 * data. In this case do not write log blocks in L2ARC in order 918 * not to waste space. 919 */ 920 int l2arc_rebuild_enabled = B_TRUE; 921 unsigned long l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024; 922 923 /* L2ARC persistence rebuild control routines. */ 924 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen); 925 static void l2arc_dev_rebuild_thread(void *arg); 926 static int l2arc_rebuild(l2arc_dev_t *dev); 927 928 /* L2ARC persistence read I/O routines. */ 929 static int l2arc_dev_hdr_read(l2arc_dev_t *dev); 930 static int l2arc_log_blk_read(l2arc_dev_t *dev, 931 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp, 932 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 933 zio_t *this_io, zio_t **next_io); 934 static zio_t *l2arc_log_blk_fetch(vdev_t *vd, 935 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb); 936 static void l2arc_log_blk_fetch_abort(zio_t *zio); 937 938 /* L2ARC persistence block restoration routines. */ 939 static void l2arc_log_blk_restore(l2arc_dev_t *dev, 940 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize); 941 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, 942 l2arc_dev_t *dev); 943 944 /* L2ARC persistence write I/O routines. */ 945 static void l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, 946 l2arc_write_callback_t *cb); 947 948 /* L2ARC persistence auxiliary routines. */ 949 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev, 950 const l2arc_log_blkptr_t *lbp); 951 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev, 952 const arc_buf_hdr_t *ab); 953 boolean_t l2arc_range_check_overlap(uint64_t bottom, 954 uint64_t top, uint64_t check); 955 static void l2arc_blk_fetch_done(zio_t *zio); 956 static inline uint64_t 957 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev); 958 959 /* 960 * We use Cityhash for this. It's fast, and has good hash properties without 961 * requiring any large static buffers. 962 */ 963 static uint64_t 964 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 965 { 966 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth)); 967 } 968 969 #define HDR_EMPTY(hdr) \ 970 ((hdr)->b_dva.dva_word[0] == 0 && \ 971 (hdr)->b_dva.dva_word[1] == 0) 972 973 #define HDR_EMPTY_OR_LOCKED(hdr) \ 974 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr))) 975 976 #define HDR_EQUAL(spa, dva, birth, hdr) \ 977 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 978 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 979 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) 980 981 static void 982 buf_discard_identity(arc_buf_hdr_t *hdr) 983 { 984 hdr->b_dva.dva_word[0] = 0; 985 hdr->b_dva.dva_word[1] = 0; 986 hdr->b_birth = 0; 987 } 988 989 static arc_buf_hdr_t * 990 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 991 { 992 const dva_t *dva = BP_IDENTITY(bp); 993 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 994 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 995 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 996 arc_buf_hdr_t *hdr; 997 998 mutex_enter(hash_lock); 999 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 1000 hdr = hdr->b_hash_next) { 1001 if (HDR_EQUAL(spa, dva, birth, hdr)) { 1002 *lockp = hash_lock; 1003 return (hdr); 1004 } 1005 } 1006 mutex_exit(hash_lock); 1007 *lockp = NULL; 1008 return (NULL); 1009 } 1010 1011 /* 1012 * Insert an entry into the hash table. If there is already an element 1013 * equal to elem in the hash table, then the already existing element 1014 * will be returned and the new element will not be inserted. 1015 * Otherwise returns NULL. 1016 * If lockp == NULL, the caller is assumed to already hold the hash lock. 1017 */ 1018 static arc_buf_hdr_t * 1019 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 1020 { 1021 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1022 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1023 arc_buf_hdr_t *fhdr; 1024 uint32_t i; 1025 1026 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 1027 ASSERT(hdr->b_birth != 0); 1028 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1029 1030 if (lockp != NULL) { 1031 *lockp = hash_lock; 1032 mutex_enter(hash_lock); 1033 } else { 1034 ASSERT(MUTEX_HELD(hash_lock)); 1035 } 1036 1037 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 1038 fhdr = fhdr->b_hash_next, i++) { 1039 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 1040 return (fhdr); 1041 } 1042 1043 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 1044 buf_hash_table.ht_table[idx] = hdr; 1045 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1046 1047 /* collect some hash table performance data */ 1048 if (i > 0) { 1049 ARCSTAT_BUMP(arcstat_hash_collisions); 1050 if (i == 1) 1051 ARCSTAT_BUMP(arcstat_hash_chains); 1052 1053 ARCSTAT_MAX(arcstat_hash_chain_max, i); 1054 } 1055 uint64_t he = atomic_inc_64_nv( 1056 &arc_stats.arcstat_hash_elements.value.ui64); 1057 ARCSTAT_MAX(arcstat_hash_elements_max, he); 1058 1059 return (NULL); 1060 } 1061 1062 static void 1063 buf_hash_remove(arc_buf_hdr_t *hdr) 1064 { 1065 arc_buf_hdr_t *fhdr, **hdrp; 1066 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1067 1068 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 1069 ASSERT(HDR_IN_HASH_TABLE(hdr)); 1070 1071 hdrp = &buf_hash_table.ht_table[idx]; 1072 while ((fhdr = *hdrp) != hdr) { 1073 ASSERT3P(fhdr, !=, NULL); 1074 hdrp = &fhdr->b_hash_next; 1075 } 1076 *hdrp = hdr->b_hash_next; 1077 hdr->b_hash_next = NULL; 1078 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1079 1080 /* collect some hash table performance data */ 1081 atomic_dec_64(&arc_stats.arcstat_hash_elements.value.ui64); 1082 1083 if (buf_hash_table.ht_table[idx] && 1084 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 1085 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 1086 } 1087 1088 /* 1089 * Global data structures and functions for the buf kmem cache. 1090 */ 1091 1092 static kmem_cache_t *hdr_full_cache; 1093 static kmem_cache_t *hdr_full_crypt_cache; 1094 static kmem_cache_t *hdr_l2only_cache; 1095 static kmem_cache_t *buf_cache; 1096 1097 static void 1098 buf_fini(void) 1099 { 1100 int i; 1101 1102 #if defined(_KERNEL) 1103 /* 1104 * Large allocations which do not require contiguous pages 1105 * should be using vmem_free() in the linux kernel\ 1106 */ 1107 vmem_free(buf_hash_table.ht_table, 1108 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1109 #else 1110 kmem_free(buf_hash_table.ht_table, 1111 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1112 #endif 1113 for (i = 0; i < BUF_LOCKS; i++) 1114 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 1115 kmem_cache_destroy(hdr_full_cache); 1116 kmem_cache_destroy(hdr_full_crypt_cache); 1117 kmem_cache_destroy(hdr_l2only_cache); 1118 kmem_cache_destroy(buf_cache); 1119 } 1120 1121 /* 1122 * Constructor callback - called when the cache is empty 1123 * and a new buf is requested. 1124 */ 1125 /* ARGSUSED */ 1126 static int 1127 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1128 { 1129 arc_buf_hdr_t *hdr = vbuf; 1130 1131 bzero(hdr, HDR_FULL_SIZE); 1132 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 1133 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL); 1134 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt); 1135 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1136 list_link_init(&hdr->b_l1hdr.b_arc_node); 1137 list_link_init(&hdr->b_l2hdr.b_l2node); 1138 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1139 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1140 1141 return (0); 1142 } 1143 1144 /* ARGSUSED */ 1145 static int 1146 hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag) 1147 { 1148 arc_buf_hdr_t *hdr = vbuf; 1149 1150 hdr_full_cons(vbuf, unused, kmflag); 1151 bzero(&hdr->b_crypt_hdr, sizeof (hdr->b_crypt_hdr)); 1152 arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1153 1154 return (0); 1155 } 1156 1157 /* ARGSUSED */ 1158 static int 1159 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1160 { 1161 arc_buf_hdr_t *hdr = vbuf; 1162 1163 bzero(hdr, HDR_L2ONLY_SIZE); 1164 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1165 1166 return (0); 1167 } 1168 1169 /* ARGSUSED */ 1170 static int 1171 buf_cons(void *vbuf, void *unused, int kmflag) 1172 { 1173 arc_buf_t *buf = vbuf; 1174 1175 bzero(buf, sizeof (arc_buf_t)); 1176 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 1177 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1178 1179 return (0); 1180 } 1181 1182 /* 1183 * Destructor callback - called when a cached buf is 1184 * no longer required. 1185 */ 1186 /* ARGSUSED */ 1187 static void 1188 hdr_full_dest(void *vbuf, void *unused) 1189 { 1190 arc_buf_hdr_t *hdr = vbuf; 1191 1192 ASSERT(HDR_EMPTY(hdr)); 1193 cv_destroy(&hdr->b_l1hdr.b_cv); 1194 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1195 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1196 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1197 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1198 } 1199 1200 /* ARGSUSED */ 1201 static void 1202 hdr_full_crypt_dest(void *vbuf, void *unused) 1203 { 1204 arc_buf_hdr_t *hdr = vbuf; 1205 1206 hdr_full_dest(vbuf, unused); 1207 arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1208 } 1209 1210 /* ARGSUSED */ 1211 static void 1212 hdr_l2only_dest(void *vbuf, void *unused) 1213 { 1214 arc_buf_hdr_t *hdr __maybe_unused = vbuf; 1215 1216 ASSERT(HDR_EMPTY(hdr)); 1217 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1218 } 1219 1220 /* ARGSUSED */ 1221 static void 1222 buf_dest(void *vbuf, void *unused) 1223 { 1224 arc_buf_t *buf = vbuf; 1225 1226 mutex_destroy(&buf->b_evict_lock); 1227 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1228 } 1229 1230 static void 1231 buf_init(void) 1232 { 1233 uint64_t *ct = NULL; 1234 uint64_t hsize = 1ULL << 12; 1235 int i, j; 1236 1237 /* 1238 * The hash table is big enough to fill all of physical memory 1239 * with an average block size of zfs_arc_average_blocksize (default 8K). 1240 * By default, the table will take up 1241 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1242 */ 1243 while (hsize * zfs_arc_average_blocksize < arc_all_memory()) 1244 hsize <<= 1; 1245 retry: 1246 buf_hash_table.ht_mask = hsize - 1; 1247 #if defined(_KERNEL) 1248 /* 1249 * Large allocations which do not require contiguous pages 1250 * should be using vmem_alloc() in the linux kernel 1251 */ 1252 buf_hash_table.ht_table = 1253 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP); 1254 #else 1255 buf_hash_table.ht_table = 1256 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1257 #endif 1258 if (buf_hash_table.ht_table == NULL) { 1259 ASSERT(hsize > (1ULL << 8)); 1260 hsize >>= 1; 1261 goto retry; 1262 } 1263 1264 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1265 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, 0); 1266 hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt", 1267 HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest, 1268 NULL, NULL, NULL, 0); 1269 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1270 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL, 1271 NULL, NULL, 0); 1272 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1273 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1274 1275 for (i = 0; i < 256; i++) 1276 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1277 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1278 1279 for (i = 0; i < BUF_LOCKS; i++) { 1280 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 1281 NULL, MUTEX_DEFAULT, NULL); 1282 } 1283 } 1284 1285 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1286 1287 /* 1288 * This is the size that the buf occupies in memory. If the buf is compressed, 1289 * it will correspond to the compressed size. You should use this method of 1290 * getting the buf size unless you explicitly need the logical size. 1291 */ 1292 uint64_t 1293 arc_buf_size(arc_buf_t *buf) 1294 { 1295 return (ARC_BUF_COMPRESSED(buf) ? 1296 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr)); 1297 } 1298 1299 uint64_t 1300 arc_buf_lsize(arc_buf_t *buf) 1301 { 1302 return (HDR_GET_LSIZE(buf->b_hdr)); 1303 } 1304 1305 /* 1306 * This function will return B_TRUE if the buffer is encrypted in memory. 1307 * This buffer can be decrypted by calling arc_untransform(). 1308 */ 1309 boolean_t 1310 arc_is_encrypted(arc_buf_t *buf) 1311 { 1312 return (ARC_BUF_ENCRYPTED(buf) != 0); 1313 } 1314 1315 /* 1316 * Returns B_TRUE if the buffer represents data that has not had its MAC 1317 * verified yet. 1318 */ 1319 boolean_t 1320 arc_is_unauthenticated(arc_buf_t *buf) 1321 { 1322 return (HDR_NOAUTH(buf->b_hdr) != 0); 1323 } 1324 1325 void 1326 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt, 1327 uint8_t *iv, uint8_t *mac) 1328 { 1329 arc_buf_hdr_t *hdr = buf->b_hdr; 1330 1331 ASSERT(HDR_PROTECTED(hdr)); 1332 1333 bcopy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN); 1334 bcopy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN); 1335 bcopy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN); 1336 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 1337 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 1338 } 1339 1340 /* 1341 * Indicates how this buffer is compressed in memory. If it is not compressed 1342 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with 1343 * arc_untransform() as long as it is also unencrypted. 1344 */ 1345 enum zio_compress 1346 arc_get_compression(arc_buf_t *buf) 1347 { 1348 return (ARC_BUF_COMPRESSED(buf) ? 1349 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF); 1350 } 1351 1352 /* 1353 * Return the compression algorithm used to store this data in the ARC. If ARC 1354 * compression is enabled or this is an encrypted block, this will be the same 1355 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF. 1356 */ 1357 static inline enum zio_compress 1358 arc_hdr_get_compress(arc_buf_hdr_t *hdr) 1359 { 1360 return (HDR_COMPRESSION_ENABLED(hdr) ? 1361 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF); 1362 } 1363 1364 uint8_t 1365 arc_get_complevel(arc_buf_t *buf) 1366 { 1367 return (buf->b_hdr->b_complevel); 1368 } 1369 1370 static inline boolean_t 1371 arc_buf_is_shared(arc_buf_t *buf) 1372 { 1373 boolean_t shared = (buf->b_data != NULL && 1374 buf->b_hdr->b_l1hdr.b_pabd != NULL && 1375 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) && 1376 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd)); 1377 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); 1378 IMPLY(shared, ARC_BUF_SHARED(buf)); 1379 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf)); 1380 1381 /* 1382 * It would be nice to assert arc_can_share() too, but the "hdr isn't 1383 * already being shared" requirement prevents us from doing that. 1384 */ 1385 1386 return (shared); 1387 } 1388 1389 /* 1390 * Free the checksum associated with this header. If there is no checksum, this 1391 * is a no-op. 1392 */ 1393 static inline void 1394 arc_cksum_free(arc_buf_hdr_t *hdr) 1395 { 1396 ASSERT(HDR_HAS_L1HDR(hdr)); 1397 1398 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1399 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1400 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); 1401 hdr->b_l1hdr.b_freeze_cksum = NULL; 1402 } 1403 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1404 } 1405 1406 /* 1407 * Return true iff at least one of the bufs on hdr is not compressed. 1408 * Encrypted buffers count as compressed. 1409 */ 1410 static boolean_t 1411 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr) 1412 { 1413 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr)); 1414 1415 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) { 1416 if (!ARC_BUF_COMPRESSED(b)) { 1417 return (B_TRUE); 1418 } 1419 } 1420 return (B_FALSE); 1421 } 1422 1423 1424 /* 1425 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data 1426 * matches the checksum that is stored in the hdr. If there is no checksum, 1427 * or if the buf is compressed, this is a no-op. 1428 */ 1429 static void 1430 arc_cksum_verify(arc_buf_t *buf) 1431 { 1432 arc_buf_hdr_t *hdr = buf->b_hdr; 1433 zio_cksum_t zc; 1434 1435 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1436 return; 1437 1438 if (ARC_BUF_COMPRESSED(buf)) 1439 return; 1440 1441 ASSERT(HDR_HAS_L1HDR(hdr)); 1442 1443 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1444 1445 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { 1446 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1447 return; 1448 } 1449 1450 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc); 1451 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) 1452 panic("buffer modified while frozen!"); 1453 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1454 } 1455 1456 /* 1457 * This function makes the assumption that data stored in the L2ARC 1458 * will be transformed exactly as it is in the main pool. Because of 1459 * this we can verify the checksum against the reading process's bp. 1460 */ 1461 static boolean_t 1462 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) 1463 { 1464 ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); 1465 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); 1466 1467 /* 1468 * Block pointers always store the checksum for the logical data. 1469 * If the block pointer has the gang bit set, then the checksum 1470 * it represents is for the reconstituted data and not for an 1471 * individual gang member. The zio pipeline, however, must be able to 1472 * determine the checksum of each of the gang constituents so it 1473 * treats the checksum comparison differently than what we need 1474 * for l2arc blocks. This prevents us from using the 1475 * zio_checksum_error() interface directly. Instead we must call the 1476 * zio_checksum_error_impl() so that we can ensure the checksum is 1477 * generated using the correct checksum algorithm and accounts for the 1478 * logical I/O size and not just a gang fragment. 1479 */ 1480 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp, 1481 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size, 1482 zio->io_offset, NULL) == 0); 1483 } 1484 1485 /* 1486 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a 1487 * checksum and attaches it to the buf's hdr so that we can ensure that the buf 1488 * isn't modified later on. If buf is compressed or there is already a checksum 1489 * on the hdr, this is a no-op (we only checksum uncompressed bufs). 1490 */ 1491 static void 1492 arc_cksum_compute(arc_buf_t *buf) 1493 { 1494 arc_buf_hdr_t *hdr = buf->b_hdr; 1495 1496 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1497 return; 1498 1499 ASSERT(HDR_HAS_L1HDR(hdr)); 1500 1501 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1502 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) { 1503 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1504 return; 1505 } 1506 1507 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 1508 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1509 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), 1510 KM_SLEEP); 1511 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, 1512 hdr->b_l1hdr.b_freeze_cksum); 1513 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1514 arc_buf_watch(buf); 1515 } 1516 1517 #ifndef _KERNEL 1518 void 1519 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused) 1520 { 1521 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr); 1522 } 1523 #endif 1524 1525 /* ARGSUSED */ 1526 static void 1527 arc_buf_unwatch(arc_buf_t *buf) 1528 { 1529 #ifndef _KERNEL 1530 if (arc_watch) { 1531 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1532 PROT_READ | PROT_WRITE)); 1533 } 1534 #endif 1535 } 1536 1537 /* ARGSUSED */ 1538 static void 1539 arc_buf_watch(arc_buf_t *buf) 1540 { 1541 #ifndef _KERNEL 1542 if (arc_watch) 1543 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1544 PROT_READ)); 1545 #endif 1546 } 1547 1548 static arc_buf_contents_t 1549 arc_buf_type(arc_buf_hdr_t *hdr) 1550 { 1551 arc_buf_contents_t type; 1552 if (HDR_ISTYPE_METADATA(hdr)) { 1553 type = ARC_BUFC_METADATA; 1554 } else { 1555 type = ARC_BUFC_DATA; 1556 } 1557 VERIFY3U(hdr->b_type, ==, type); 1558 return (type); 1559 } 1560 1561 boolean_t 1562 arc_is_metadata(arc_buf_t *buf) 1563 { 1564 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0); 1565 } 1566 1567 static uint32_t 1568 arc_bufc_to_flags(arc_buf_contents_t type) 1569 { 1570 switch (type) { 1571 case ARC_BUFC_DATA: 1572 /* metadata field is 0 if buffer contains normal data */ 1573 return (0); 1574 case ARC_BUFC_METADATA: 1575 return (ARC_FLAG_BUFC_METADATA); 1576 default: 1577 break; 1578 } 1579 panic("undefined ARC buffer type!"); 1580 return ((uint32_t)-1); 1581 } 1582 1583 void 1584 arc_buf_thaw(arc_buf_t *buf) 1585 { 1586 arc_buf_hdr_t *hdr = buf->b_hdr; 1587 1588 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 1589 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1590 1591 arc_cksum_verify(buf); 1592 1593 /* 1594 * Compressed buffers do not manipulate the b_freeze_cksum. 1595 */ 1596 if (ARC_BUF_COMPRESSED(buf)) 1597 return; 1598 1599 ASSERT(HDR_HAS_L1HDR(hdr)); 1600 arc_cksum_free(hdr); 1601 arc_buf_unwatch(buf); 1602 } 1603 1604 void 1605 arc_buf_freeze(arc_buf_t *buf) 1606 { 1607 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1608 return; 1609 1610 if (ARC_BUF_COMPRESSED(buf)) 1611 return; 1612 1613 ASSERT(HDR_HAS_L1HDR(buf->b_hdr)); 1614 arc_cksum_compute(buf); 1615 } 1616 1617 /* 1618 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, 1619 * the following functions should be used to ensure that the flags are 1620 * updated in a thread-safe way. When manipulating the flags either 1621 * the hash_lock must be held or the hdr must be undiscoverable. This 1622 * ensures that we're not racing with any other threads when updating 1623 * the flags. 1624 */ 1625 static inline void 1626 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1627 { 1628 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1629 hdr->b_flags |= flags; 1630 } 1631 1632 static inline void 1633 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1634 { 1635 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1636 hdr->b_flags &= ~flags; 1637 } 1638 1639 /* 1640 * Setting the compression bits in the arc_buf_hdr_t's b_flags is 1641 * done in a special way since we have to clear and set bits 1642 * at the same time. Consumers that wish to set the compression bits 1643 * must use this function to ensure that the flags are updated in 1644 * thread-safe manner. 1645 */ 1646 static void 1647 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) 1648 { 1649 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1650 1651 /* 1652 * Holes and embedded blocks will always have a psize = 0 so 1653 * we ignore the compression of the blkptr and set the 1654 * want to uncompress them. Mark them as uncompressed. 1655 */ 1656 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { 1657 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1658 ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); 1659 } else { 1660 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1661 ASSERT(HDR_COMPRESSION_ENABLED(hdr)); 1662 } 1663 1664 HDR_SET_COMPRESS(hdr, cmp); 1665 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); 1666 } 1667 1668 /* 1669 * Looks for another buf on the same hdr which has the data decompressed, copies 1670 * from it, and returns true. If no such buf exists, returns false. 1671 */ 1672 static boolean_t 1673 arc_buf_try_copy_decompressed_data(arc_buf_t *buf) 1674 { 1675 arc_buf_hdr_t *hdr = buf->b_hdr; 1676 boolean_t copied = B_FALSE; 1677 1678 ASSERT(HDR_HAS_L1HDR(hdr)); 1679 ASSERT3P(buf->b_data, !=, NULL); 1680 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1681 1682 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL; 1683 from = from->b_next) { 1684 /* can't use our own data buffer */ 1685 if (from == buf) { 1686 continue; 1687 } 1688 1689 if (!ARC_BUF_COMPRESSED(from)) { 1690 bcopy(from->b_data, buf->b_data, arc_buf_size(buf)); 1691 copied = B_TRUE; 1692 break; 1693 } 1694 } 1695 1696 /* 1697 * There were no decompressed bufs, so there should not be a 1698 * checksum on the hdr either. 1699 */ 1700 if (zfs_flags & ZFS_DEBUG_MODIFY) 1701 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL); 1702 1703 return (copied); 1704 } 1705 1706 /* 1707 * Allocates an ARC buf header that's in an evicted & L2-cached state. 1708 * This is used during l2arc reconstruction to make empty ARC buffers 1709 * which circumvent the regular disk->arc->l2arc path and instead come 1710 * into being in the reverse order, i.e. l2arc->arc. 1711 */ 1712 static arc_buf_hdr_t * 1713 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev, 1714 dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth, 1715 enum zio_compress compress, uint8_t complevel, boolean_t protected, 1716 boolean_t prefetch, arc_state_type_t arcs_state) 1717 { 1718 arc_buf_hdr_t *hdr; 1719 1720 ASSERT(size != 0); 1721 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP); 1722 hdr->b_birth = birth; 1723 hdr->b_type = type; 1724 hdr->b_flags = 0; 1725 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR); 1726 HDR_SET_LSIZE(hdr, size); 1727 HDR_SET_PSIZE(hdr, psize); 1728 arc_hdr_set_compress(hdr, compress); 1729 hdr->b_complevel = complevel; 1730 if (protected) 1731 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 1732 if (prefetch) 1733 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 1734 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa); 1735 1736 hdr->b_dva = dva; 1737 1738 hdr->b_l2hdr.b_dev = dev; 1739 hdr->b_l2hdr.b_daddr = daddr; 1740 hdr->b_l2hdr.b_arcs_state = arcs_state; 1741 1742 return (hdr); 1743 } 1744 1745 /* 1746 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t. 1747 */ 1748 static uint64_t 1749 arc_hdr_size(arc_buf_hdr_t *hdr) 1750 { 1751 uint64_t size; 1752 1753 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 1754 HDR_GET_PSIZE(hdr) > 0) { 1755 size = HDR_GET_PSIZE(hdr); 1756 } else { 1757 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); 1758 size = HDR_GET_LSIZE(hdr); 1759 } 1760 return (size); 1761 } 1762 1763 static int 1764 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj) 1765 { 1766 int ret; 1767 uint64_t csize; 1768 uint64_t lsize = HDR_GET_LSIZE(hdr); 1769 uint64_t psize = HDR_GET_PSIZE(hdr); 1770 void *tmpbuf = NULL; 1771 abd_t *abd = hdr->b_l1hdr.b_pabd; 1772 1773 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1774 ASSERT(HDR_AUTHENTICATED(hdr)); 1775 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1776 1777 /* 1778 * The MAC is calculated on the compressed data that is stored on disk. 1779 * However, if compressed arc is disabled we will only have the 1780 * decompressed data available to us now. Compress it into a temporary 1781 * abd so we can verify the MAC. The performance overhead of this will 1782 * be relatively low, since most objects in an encrypted objset will 1783 * be encrypted (instead of authenticated) anyway. 1784 */ 1785 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1786 !HDR_COMPRESSION_ENABLED(hdr)) { 1787 tmpbuf = zio_buf_alloc(lsize); 1788 abd = abd_get_from_buf(tmpbuf, lsize); 1789 abd_take_ownership_of_buf(abd, B_TRUE); 1790 csize = zio_compress_data(HDR_GET_COMPRESS(hdr), 1791 hdr->b_l1hdr.b_pabd, tmpbuf, lsize, hdr->b_complevel); 1792 ASSERT3U(csize, <=, psize); 1793 abd_zero_off(abd, csize, psize - csize); 1794 } 1795 1796 /* 1797 * Authentication is best effort. We authenticate whenever the key is 1798 * available. If we succeed we clear ARC_FLAG_NOAUTH. 1799 */ 1800 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) { 1801 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1802 ASSERT3U(lsize, ==, psize); 1803 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd, 1804 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1805 } else { 1806 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize, 1807 hdr->b_crypt_hdr.b_mac); 1808 } 1809 1810 if (ret == 0) 1811 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH); 1812 else if (ret != ENOENT) 1813 goto error; 1814 1815 if (tmpbuf != NULL) 1816 abd_free(abd); 1817 1818 return (0); 1819 1820 error: 1821 if (tmpbuf != NULL) 1822 abd_free(abd); 1823 1824 return (ret); 1825 } 1826 1827 /* 1828 * This function will take a header that only has raw encrypted data in 1829 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in 1830 * b_l1hdr.b_pabd. If designated in the header flags, this function will 1831 * also decompress the data. 1832 */ 1833 static int 1834 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb) 1835 { 1836 int ret; 1837 abd_t *cabd = NULL; 1838 void *tmp = NULL; 1839 boolean_t no_crypt = B_FALSE; 1840 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1841 1842 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1843 ASSERT(HDR_ENCRYPTED(hdr)); 1844 1845 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 1846 1847 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot, 1848 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv, 1849 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd, 1850 hdr->b_crypt_hdr.b_rabd, &no_crypt); 1851 if (ret != 0) 1852 goto error; 1853 1854 if (no_crypt) { 1855 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd, 1856 HDR_GET_PSIZE(hdr)); 1857 } 1858 1859 /* 1860 * If this header has disabled arc compression but the b_pabd is 1861 * compressed after decrypting it, we need to decompress the newly 1862 * decrypted data. 1863 */ 1864 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1865 !HDR_COMPRESSION_ENABLED(hdr)) { 1866 /* 1867 * We want to make sure that we are correctly honoring the 1868 * zfs_abd_scatter_enabled setting, so we allocate an abd here 1869 * and then loan a buffer from it, rather than allocating a 1870 * linear buffer and wrapping it in an abd later. 1871 */ 1872 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, B_TRUE); 1873 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 1874 1875 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 1876 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 1877 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 1878 if (ret != 0) { 1879 abd_return_buf(cabd, tmp, arc_hdr_size(hdr)); 1880 goto error; 1881 } 1882 1883 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 1884 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 1885 arc_hdr_size(hdr), hdr); 1886 hdr->b_l1hdr.b_pabd = cabd; 1887 } 1888 1889 return (0); 1890 1891 error: 1892 arc_hdr_free_abd(hdr, B_FALSE); 1893 if (cabd != NULL) 1894 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr); 1895 1896 return (ret); 1897 } 1898 1899 /* 1900 * This function is called during arc_buf_fill() to prepare the header's 1901 * abd plaintext pointer for use. This involves authenticated protected 1902 * data and decrypting encrypted data into the plaintext abd. 1903 */ 1904 static int 1905 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa, 1906 const zbookmark_phys_t *zb, boolean_t noauth) 1907 { 1908 int ret; 1909 1910 ASSERT(HDR_PROTECTED(hdr)); 1911 1912 if (hash_lock != NULL) 1913 mutex_enter(hash_lock); 1914 1915 if (HDR_NOAUTH(hdr) && !noauth) { 1916 /* 1917 * The caller requested authenticated data but our data has 1918 * not been authenticated yet. Verify the MAC now if we can. 1919 */ 1920 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset); 1921 if (ret != 0) 1922 goto error; 1923 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) { 1924 /* 1925 * If we only have the encrypted version of the data, but the 1926 * unencrypted version was requested we take this opportunity 1927 * to store the decrypted version in the header for future use. 1928 */ 1929 ret = arc_hdr_decrypt(hdr, spa, zb); 1930 if (ret != 0) 1931 goto error; 1932 } 1933 1934 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1935 1936 if (hash_lock != NULL) 1937 mutex_exit(hash_lock); 1938 1939 return (0); 1940 1941 error: 1942 if (hash_lock != NULL) 1943 mutex_exit(hash_lock); 1944 1945 return (ret); 1946 } 1947 1948 /* 1949 * This function is used by the dbuf code to decrypt bonus buffers in place. 1950 * The dbuf code itself doesn't have any locking for decrypting a shared dnode 1951 * block, so we use the hash lock here to protect against concurrent calls to 1952 * arc_buf_fill(). 1953 */ 1954 static void 1955 arc_buf_untransform_in_place(arc_buf_t *buf, kmutex_t *hash_lock) 1956 { 1957 arc_buf_hdr_t *hdr = buf->b_hdr; 1958 1959 ASSERT(HDR_ENCRYPTED(hdr)); 1960 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 1961 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1962 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1963 1964 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data, 1965 arc_buf_size(buf)); 1966 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 1967 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 1968 hdr->b_crypt_hdr.b_ebufcnt -= 1; 1969 } 1970 1971 /* 1972 * Given a buf that has a data buffer attached to it, this function will 1973 * efficiently fill the buf with data of the specified compression setting from 1974 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr 1975 * are already sharing a data buf, no copy is performed. 1976 * 1977 * If the buf is marked as compressed but uncompressed data was requested, this 1978 * will allocate a new data buffer for the buf, remove that flag, and fill the 1979 * buf with uncompressed data. You can't request a compressed buf on a hdr with 1980 * uncompressed data, and (since we haven't added support for it yet) if you 1981 * want compressed data your buf must already be marked as compressed and have 1982 * the correct-sized data buffer. 1983 */ 1984 static int 1985 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 1986 arc_fill_flags_t flags) 1987 { 1988 int error = 0; 1989 arc_buf_hdr_t *hdr = buf->b_hdr; 1990 boolean_t hdr_compressed = 1991 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 1992 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0; 1993 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0; 1994 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; 1995 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr); 1996 1997 ASSERT3P(buf->b_data, !=, NULL); 1998 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf)); 1999 IMPLY(compressed, ARC_BUF_COMPRESSED(buf)); 2000 IMPLY(encrypted, HDR_ENCRYPTED(hdr)); 2001 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf)); 2002 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf)); 2003 IMPLY(encrypted, !ARC_BUF_SHARED(buf)); 2004 2005 /* 2006 * If the caller wanted encrypted data we just need to copy it from 2007 * b_rabd and potentially byteswap it. We won't be able to do any 2008 * further transforms on it. 2009 */ 2010 if (encrypted) { 2011 ASSERT(HDR_HAS_RABD(hdr)); 2012 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd, 2013 HDR_GET_PSIZE(hdr)); 2014 goto byteswap; 2015 } 2016 2017 /* 2018 * Adjust encrypted and authenticated headers to accommodate 2019 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are 2020 * allowed to fail decryption due to keys not being loaded 2021 * without being marked as an IO error. 2022 */ 2023 if (HDR_PROTECTED(hdr)) { 2024 error = arc_fill_hdr_crypt(hdr, hash_lock, spa, 2025 zb, !!(flags & ARC_FILL_NOAUTH)); 2026 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) { 2027 return (error); 2028 } else if (error != 0) { 2029 if (hash_lock != NULL) 2030 mutex_enter(hash_lock); 2031 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2032 if (hash_lock != NULL) 2033 mutex_exit(hash_lock); 2034 return (error); 2035 } 2036 } 2037 2038 /* 2039 * There is a special case here for dnode blocks which are 2040 * decrypting their bonus buffers. These blocks may request to 2041 * be decrypted in-place. This is necessary because there may 2042 * be many dnodes pointing into this buffer and there is 2043 * currently no method to synchronize replacing the backing 2044 * b_data buffer and updating all of the pointers. Here we use 2045 * the hash lock to ensure there are no races. If the need 2046 * arises for other types to be decrypted in-place, they must 2047 * add handling here as well. 2048 */ 2049 if ((flags & ARC_FILL_IN_PLACE) != 0) { 2050 ASSERT(!hdr_compressed); 2051 ASSERT(!compressed); 2052 ASSERT(!encrypted); 2053 2054 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) { 2055 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 2056 2057 if (hash_lock != NULL) 2058 mutex_enter(hash_lock); 2059 arc_buf_untransform_in_place(buf, hash_lock); 2060 if (hash_lock != NULL) 2061 mutex_exit(hash_lock); 2062 2063 /* Compute the hdr's checksum if necessary */ 2064 arc_cksum_compute(buf); 2065 } 2066 2067 return (0); 2068 } 2069 2070 if (hdr_compressed == compressed) { 2071 if (!arc_buf_is_shared(buf)) { 2072 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd, 2073 arc_buf_size(buf)); 2074 } 2075 } else { 2076 ASSERT(hdr_compressed); 2077 ASSERT(!compressed); 2078 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr)); 2079 2080 /* 2081 * If the buf is sharing its data with the hdr, unlink it and 2082 * allocate a new data buffer for the buf. 2083 */ 2084 if (arc_buf_is_shared(buf)) { 2085 ASSERT(ARC_BUF_COMPRESSED(buf)); 2086 2087 /* We need to give the buf its own b_data */ 2088 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 2089 buf->b_data = 2090 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2091 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2092 2093 /* Previously overhead was 0; just add new overhead */ 2094 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 2095 } else if (ARC_BUF_COMPRESSED(buf)) { 2096 /* We need to reallocate the buf's b_data */ 2097 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr), 2098 buf); 2099 buf->b_data = 2100 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2101 2102 /* We increased the size of b_data; update overhead */ 2103 ARCSTAT_INCR(arcstat_overhead_size, 2104 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr)); 2105 } 2106 2107 /* 2108 * Regardless of the buf's previous compression settings, it 2109 * should not be compressed at the end of this function. 2110 */ 2111 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 2112 2113 /* 2114 * Try copying the data from another buf which already has a 2115 * decompressed version. If that's not possible, it's time to 2116 * bite the bullet and decompress the data from the hdr. 2117 */ 2118 if (arc_buf_try_copy_decompressed_data(buf)) { 2119 /* Skip byteswapping and checksumming (already done) */ 2120 return (0); 2121 } else { 2122 error = zio_decompress_data(HDR_GET_COMPRESS(hdr), 2123 hdr->b_l1hdr.b_pabd, buf->b_data, 2124 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr), 2125 &hdr->b_complevel); 2126 2127 /* 2128 * Absent hardware errors or software bugs, this should 2129 * be impossible, but log it anyway so we can debug it. 2130 */ 2131 if (error != 0) { 2132 zfs_dbgmsg( 2133 "hdr %px, compress %d, psize %d, lsize %d", 2134 hdr, arc_hdr_get_compress(hdr), 2135 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 2136 if (hash_lock != NULL) 2137 mutex_enter(hash_lock); 2138 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2139 if (hash_lock != NULL) 2140 mutex_exit(hash_lock); 2141 return (SET_ERROR(EIO)); 2142 } 2143 } 2144 } 2145 2146 byteswap: 2147 /* Byteswap the buf's data if necessary */ 2148 if (bswap != DMU_BSWAP_NUMFUNCS) { 2149 ASSERT(!HDR_SHARED_DATA(hdr)); 2150 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); 2151 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); 2152 } 2153 2154 /* Compute the hdr's checksum if necessary */ 2155 arc_cksum_compute(buf); 2156 2157 return (0); 2158 } 2159 2160 /* 2161 * If this function is being called to decrypt an encrypted buffer or verify an 2162 * authenticated one, the key must be loaded and a mapping must be made 2163 * available in the keystore via spa_keystore_create_mapping() or one of its 2164 * callers. 2165 */ 2166 int 2167 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 2168 boolean_t in_place) 2169 { 2170 int ret; 2171 arc_fill_flags_t flags = 0; 2172 2173 if (in_place) 2174 flags |= ARC_FILL_IN_PLACE; 2175 2176 ret = arc_buf_fill(buf, spa, zb, flags); 2177 if (ret == ECKSUM) { 2178 /* 2179 * Convert authentication and decryption errors to EIO 2180 * (and generate an ereport) before leaving the ARC. 2181 */ 2182 ret = SET_ERROR(EIO); 2183 spa_log_error(spa, zb); 2184 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 2185 spa, NULL, zb, NULL, 0); 2186 } 2187 2188 return (ret); 2189 } 2190 2191 /* 2192 * Increment the amount of evictable space in the arc_state_t's refcount. 2193 * We account for the space used by the hdr and the arc buf individually 2194 * so that we can add and remove them from the refcount individually. 2195 */ 2196 static void 2197 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) 2198 { 2199 arc_buf_contents_t type = arc_buf_type(hdr); 2200 2201 ASSERT(HDR_HAS_L1HDR(hdr)); 2202 2203 if (GHOST_STATE(state)) { 2204 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2205 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2206 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2207 ASSERT(!HDR_HAS_RABD(hdr)); 2208 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2209 HDR_GET_LSIZE(hdr), hdr); 2210 return; 2211 } 2212 2213 ASSERT(!GHOST_STATE(state)); 2214 if (hdr->b_l1hdr.b_pabd != NULL) { 2215 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2216 arc_hdr_size(hdr), hdr); 2217 } 2218 if (HDR_HAS_RABD(hdr)) { 2219 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2220 HDR_GET_PSIZE(hdr), hdr); 2221 } 2222 2223 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2224 buf = buf->b_next) { 2225 if (arc_buf_is_shared(buf)) 2226 continue; 2227 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2228 arc_buf_size(buf), buf); 2229 } 2230 } 2231 2232 /* 2233 * Decrement the amount of evictable space in the arc_state_t's refcount. 2234 * We account for the space used by the hdr and the arc buf individually 2235 * so that we can add and remove them from the refcount individually. 2236 */ 2237 static void 2238 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) 2239 { 2240 arc_buf_contents_t type = arc_buf_type(hdr); 2241 2242 ASSERT(HDR_HAS_L1HDR(hdr)); 2243 2244 if (GHOST_STATE(state)) { 2245 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2246 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2247 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2248 ASSERT(!HDR_HAS_RABD(hdr)); 2249 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2250 HDR_GET_LSIZE(hdr), hdr); 2251 return; 2252 } 2253 2254 ASSERT(!GHOST_STATE(state)); 2255 if (hdr->b_l1hdr.b_pabd != NULL) { 2256 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2257 arc_hdr_size(hdr), hdr); 2258 } 2259 if (HDR_HAS_RABD(hdr)) { 2260 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2261 HDR_GET_PSIZE(hdr), hdr); 2262 } 2263 2264 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2265 buf = buf->b_next) { 2266 if (arc_buf_is_shared(buf)) 2267 continue; 2268 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2269 arc_buf_size(buf), buf); 2270 } 2271 } 2272 2273 /* 2274 * Add a reference to this hdr indicating that someone is actively 2275 * referencing that memory. When the refcount transitions from 0 to 1, 2276 * we remove it from the respective arc_state_t list to indicate that 2277 * it is not evictable. 2278 */ 2279 static void 2280 add_reference(arc_buf_hdr_t *hdr, void *tag) 2281 { 2282 arc_state_t *state; 2283 2284 ASSERT(HDR_HAS_L1HDR(hdr)); 2285 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) { 2286 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 2287 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2288 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2289 } 2290 2291 state = hdr->b_l1hdr.b_state; 2292 2293 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 2294 (state != arc_anon)) { 2295 /* We don't use the L2-only state list. */ 2296 if (state != arc_l2c_only) { 2297 multilist_remove(&state->arcs_list[arc_buf_type(hdr)], 2298 hdr); 2299 arc_evictable_space_decrement(hdr, state); 2300 } 2301 /* remove the prefetch flag if we get a reference */ 2302 if (HDR_HAS_L2HDR(hdr)) 2303 l2arc_hdr_arcstats_decrement_state(hdr); 2304 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 2305 if (HDR_HAS_L2HDR(hdr)) 2306 l2arc_hdr_arcstats_increment_state(hdr); 2307 } 2308 } 2309 2310 /* 2311 * Remove a reference from this hdr. When the reference transitions from 2312 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's 2313 * list making it eligible for eviction. 2314 */ 2315 static int 2316 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 2317 { 2318 int cnt; 2319 arc_state_t *state = hdr->b_l1hdr.b_state; 2320 2321 ASSERT(HDR_HAS_L1HDR(hdr)); 2322 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 2323 ASSERT(!GHOST_STATE(state)); 2324 2325 /* 2326 * arc_l2c_only counts as a ghost state so we don't need to explicitly 2327 * check to prevent usage of the arc_l2c_only list. 2328 */ 2329 if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) && 2330 (state != arc_anon)) { 2331 multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr); 2332 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 2333 arc_evictable_space_increment(hdr, state); 2334 } 2335 return (cnt); 2336 } 2337 2338 /* 2339 * Returns detailed information about a specific arc buffer. When the 2340 * state_index argument is set the function will calculate the arc header 2341 * list position for its arc state. Since this requires a linear traversal 2342 * callers are strongly encourage not to do this. However, it can be helpful 2343 * for targeted analysis so the functionality is provided. 2344 */ 2345 void 2346 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index) 2347 { 2348 arc_buf_hdr_t *hdr = ab->b_hdr; 2349 l1arc_buf_hdr_t *l1hdr = NULL; 2350 l2arc_buf_hdr_t *l2hdr = NULL; 2351 arc_state_t *state = NULL; 2352 2353 memset(abi, 0, sizeof (arc_buf_info_t)); 2354 2355 if (hdr == NULL) 2356 return; 2357 2358 abi->abi_flags = hdr->b_flags; 2359 2360 if (HDR_HAS_L1HDR(hdr)) { 2361 l1hdr = &hdr->b_l1hdr; 2362 state = l1hdr->b_state; 2363 } 2364 if (HDR_HAS_L2HDR(hdr)) 2365 l2hdr = &hdr->b_l2hdr; 2366 2367 if (l1hdr) { 2368 abi->abi_bufcnt = l1hdr->b_bufcnt; 2369 abi->abi_access = l1hdr->b_arc_access; 2370 abi->abi_mru_hits = l1hdr->b_mru_hits; 2371 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits; 2372 abi->abi_mfu_hits = l1hdr->b_mfu_hits; 2373 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits; 2374 abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt); 2375 } 2376 2377 if (l2hdr) { 2378 abi->abi_l2arc_dattr = l2hdr->b_daddr; 2379 abi->abi_l2arc_hits = l2hdr->b_hits; 2380 } 2381 2382 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON; 2383 abi->abi_state_contents = arc_buf_type(hdr); 2384 abi->abi_size = arc_hdr_size(hdr); 2385 } 2386 2387 /* 2388 * Move the supplied buffer to the indicated state. The hash lock 2389 * for the buffer must be held by the caller. 2390 */ 2391 static void 2392 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr, 2393 kmutex_t *hash_lock) 2394 { 2395 arc_state_t *old_state; 2396 int64_t refcnt; 2397 uint32_t bufcnt; 2398 boolean_t update_old, update_new; 2399 arc_buf_contents_t buftype = arc_buf_type(hdr); 2400 2401 /* 2402 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 2403 * in arc_read() when bringing a buffer out of the L2ARC. However, the 2404 * L1 hdr doesn't always exist when we change state to arc_anon before 2405 * destroying a header, in which case reallocating to add the L1 hdr is 2406 * pointless. 2407 */ 2408 if (HDR_HAS_L1HDR(hdr)) { 2409 old_state = hdr->b_l1hdr.b_state; 2410 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt); 2411 bufcnt = hdr->b_l1hdr.b_bufcnt; 2412 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL || 2413 HDR_HAS_RABD(hdr)); 2414 } else { 2415 old_state = arc_l2c_only; 2416 refcnt = 0; 2417 bufcnt = 0; 2418 update_old = B_FALSE; 2419 } 2420 update_new = update_old; 2421 2422 ASSERT(MUTEX_HELD(hash_lock)); 2423 ASSERT3P(new_state, !=, old_state); 2424 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0); 2425 ASSERT(old_state != arc_anon || bufcnt <= 1); 2426 2427 /* 2428 * If this buffer is evictable, transfer it from the 2429 * old state list to the new state list. 2430 */ 2431 if (refcnt == 0) { 2432 if (old_state != arc_anon && old_state != arc_l2c_only) { 2433 ASSERT(HDR_HAS_L1HDR(hdr)); 2434 multilist_remove(&old_state->arcs_list[buftype], hdr); 2435 2436 if (GHOST_STATE(old_state)) { 2437 ASSERT0(bufcnt); 2438 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2439 update_old = B_TRUE; 2440 } 2441 arc_evictable_space_decrement(hdr, old_state); 2442 } 2443 if (new_state != arc_anon && new_state != arc_l2c_only) { 2444 /* 2445 * An L1 header always exists here, since if we're 2446 * moving to some L1-cached state (i.e. not l2c_only or 2447 * anonymous), we realloc the header to add an L1hdr 2448 * beforehand. 2449 */ 2450 ASSERT(HDR_HAS_L1HDR(hdr)); 2451 multilist_insert(&new_state->arcs_list[buftype], hdr); 2452 2453 if (GHOST_STATE(new_state)) { 2454 ASSERT0(bufcnt); 2455 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2456 update_new = B_TRUE; 2457 } 2458 arc_evictable_space_increment(hdr, new_state); 2459 } 2460 } 2461 2462 ASSERT(!HDR_EMPTY(hdr)); 2463 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 2464 buf_hash_remove(hdr); 2465 2466 /* adjust state sizes (ignore arc_l2c_only) */ 2467 2468 if (update_new && new_state != arc_l2c_only) { 2469 ASSERT(HDR_HAS_L1HDR(hdr)); 2470 if (GHOST_STATE(new_state)) { 2471 ASSERT0(bufcnt); 2472 2473 /* 2474 * When moving a header to a ghost state, we first 2475 * remove all arc buffers. Thus, we'll have a 2476 * bufcnt of zero, and no arc buffer to use for 2477 * the reference. As a result, we use the arc 2478 * header pointer for the reference. 2479 */ 2480 (void) zfs_refcount_add_many(&new_state->arcs_size, 2481 HDR_GET_LSIZE(hdr), hdr); 2482 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2483 ASSERT(!HDR_HAS_RABD(hdr)); 2484 } else { 2485 uint32_t buffers = 0; 2486 2487 /* 2488 * Each individual buffer holds a unique reference, 2489 * thus we must remove each of these references one 2490 * at a time. 2491 */ 2492 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2493 buf = buf->b_next) { 2494 ASSERT3U(bufcnt, !=, 0); 2495 buffers++; 2496 2497 /* 2498 * When the arc_buf_t is sharing the data 2499 * block with the hdr, the owner of the 2500 * reference belongs to the hdr. Only 2501 * add to the refcount if the arc_buf_t is 2502 * not shared. 2503 */ 2504 if (arc_buf_is_shared(buf)) 2505 continue; 2506 2507 (void) zfs_refcount_add_many( 2508 &new_state->arcs_size, 2509 arc_buf_size(buf), buf); 2510 } 2511 ASSERT3U(bufcnt, ==, buffers); 2512 2513 if (hdr->b_l1hdr.b_pabd != NULL) { 2514 (void) zfs_refcount_add_many( 2515 &new_state->arcs_size, 2516 arc_hdr_size(hdr), hdr); 2517 } 2518 2519 if (HDR_HAS_RABD(hdr)) { 2520 (void) zfs_refcount_add_many( 2521 &new_state->arcs_size, 2522 HDR_GET_PSIZE(hdr), hdr); 2523 } 2524 } 2525 } 2526 2527 if (update_old && old_state != arc_l2c_only) { 2528 ASSERT(HDR_HAS_L1HDR(hdr)); 2529 if (GHOST_STATE(old_state)) { 2530 ASSERT0(bufcnt); 2531 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2532 ASSERT(!HDR_HAS_RABD(hdr)); 2533 2534 /* 2535 * When moving a header off of a ghost state, 2536 * the header will not contain any arc buffers. 2537 * We use the arc header pointer for the reference 2538 * which is exactly what we did when we put the 2539 * header on the ghost state. 2540 */ 2541 2542 (void) zfs_refcount_remove_many(&old_state->arcs_size, 2543 HDR_GET_LSIZE(hdr), hdr); 2544 } else { 2545 uint32_t buffers = 0; 2546 2547 /* 2548 * Each individual buffer holds a unique reference, 2549 * thus we must remove each of these references one 2550 * at a time. 2551 */ 2552 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2553 buf = buf->b_next) { 2554 ASSERT3U(bufcnt, !=, 0); 2555 buffers++; 2556 2557 /* 2558 * When the arc_buf_t is sharing the data 2559 * block with the hdr, the owner of the 2560 * reference belongs to the hdr. Only 2561 * add to the refcount if the arc_buf_t is 2562 * not shared. 2563 */ 2564 if (arc_buf_is_shared(buf)) 2565 continue; 2566 2567 (void) zfs_refcount_remove_many( 2568 &old_state->arcs_size, arc_buf_size(buf), 2569 buf); 2570 } 2571 ASSERT3U(bufcnt, ==, buffers); 2572 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 2573 HDR_HAS_RABD(hdr)); 2574 2575 if (hdr->b_l1hdr.b_pabd != NULL) { 2576 (void) zfs_refcount_remove_many( 2577 &old_state->arcs_size, arc_hdr_size(hdr), 2578 hdr); 2579 } 2580 2581 if (HDR_HAS_RABD(hdr)) { 2582 (void) zfs_refcount_remove_many( 2583 &old_state->arcs_size, HDR_GET_PSIZE(hdr), 2584 hdr); 2585 } 2586 } 2587 } 2588 2589 if (HDR_HAS_L1HDR(hdr)) { 2590 hdr->b_l1hdr.b_state = new_state; 2591 2592 if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) { 2593 l2arc_hdr_arcstats_decrement_state(hdr); 2594 hdr->b_l2hdr.b_arcs_state = new_state->arcs_state; 2595 l2arc_hdr_arcstats_increment_state(hdr); 2596 } 2597 } 2598 2599 /* 2600 * L2 headers should never be on the L2 state list since they don't 2601 * have L1 headers allocated. 2602 */ 2603 ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) && 2604 multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA])); 2605 } 2606 2607 void 2608 arc_space_consume(uint64_t space, arc_space_type_t type) 2609 { 2610 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2611 2612 switch (type) { 2613 default: 2614 break; 2615 case ARC_SPACE_DATA: 2616 ARCSTAT_INCR(arcstat_data_size, space); 2617 break; 2618 case ARC_SPACE_META: 2619 ARCSTAT_INCR(arcstat_metadata_size, space); 2620 break; 2621 case ARC_SPACE_BONUS: 2622 ARCSTAT_INCR(arcstat_bonus_size, space); 2623 break; 2624 case ARC_SPACE_DNODE: 2625 aggsum_add(&arc_sums.arcstat_dnode_size, space); 2626 break; 2627 case ARC_SPACE_DBUF: 2628 ARCSTAT_INCR(arcstat_dbuf_size, space); 2629 break; 2630 case ARC_SPACE_HDRS: 2631 ARCSTAT_INCR(arcstat_hdr_size, space); 2632 break; 2633 case ARC_SPACE_L2HDRS: 2634 aggsum_add(&arc_sums.arcstat_l2_hdr_size, space); 2635 break; 2636 case ARC_SPACE_ABD_CHUNK_WASTE: 2637 /* 2638 * Note: this includes space wasted by all scatter ABD's, not 2639 * just those allocated by the ARC. But the vast majority of 2640 * scatter ABD's come from the ARC, because other users are 2641 * very short-lived. 2642 */ 2643 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, space); 2644 break; 2645 } 2646 2647 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) 2648 aggsum_add(&arc_sums.arcstat_meta_used, space); 2649 2650 aggsum_add(&arc_sums.arcstat_size, space); 2651 } 2652 2653 void 2654 arc_space_return(uint64_t space, arc_space_type_t type) 2655 { 2656 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2657 2658 switch (type) { 2659 default: 2660 break; 2661 case ARC_SPACE_DATA: 2662 ARCSTAT_INCR(arcstat_data_size, -space); 2663 break; 2664 case ARC_SPACE_META: 2665 ARCSTAT_INCR(arcstat_metadata_size, -space); 2666 break; 2667 case ARC_SPACE_BONUS: 2668 ARCSTAT_INCR(arcstat_bonus_size, -space); 2669 break; 2670 case ARC_SPACE_DNODE: 2671 aggsum_add(&arc_sums.arcstat_dnode_size, -space); 2672 break; 2673 case ARC_SPACE_DBUF: 2674 ARCSTAT_INCR(arcstat_dbuf_size, -space); 2675 break; 2676 case ARC_SPACE_HDRS: 2677 ARCSTAT_INCR(arcstat_hdr_size, -space); 2678 break; 2679 case ARC_SPACE_L2HDRS: 2680 aggsum_add(&arc_sums.arcstat_l2_hdr_size, -space); 2681 break; 2682 case ARC_SPACE_ABD_CHUNK_WASTE: 2683 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, -space); 2684 break; 2685 } 2686 2687 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) { 2688 ASSERT(aggsum_compare(&arc_sums.arcstat_meta_used, 2689 space) >= 0); 2690 ARCSTAT_MAX(arcstat_meta_max, 2691 aggsum_upper_bound(&arc_sums.arcstat_meta_used)); 2692 aggsum_add(&arc_sums.arcstat_meta_used, -space); 2693 } 2694 2695 ASSERT(aggsum_compare(&arc_sums.arcstat_size, space) >= 0); 2696 aggsum_add(&arc_sums.arcstat_size, -space); 2697 } 2698 2699 /* 2700 * Given a hdr and a buf, returns whether that buf can share its b_data buffer 2701 * with the hdr's b_pabd. 2702 */ 2703 static boolean_t 2704 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2705 { 2706 /* 2707 * The criteria for sharing a hdr's data are: 2708 * 1. the buffer is not encrypted 2709 * 2. the hdr's compression matches the buf's compression 2710 * 3. the hdr doesn't need to be byteswapped 2711 * 4. the hdr isn't already being shared 2712 * 5. the buf is either compressed or it is the last buf in the hdr list 2713 * 2714 * Criterion #5 maintains the invariant that shared uncompressed 2715 * bufs must be the final buf in the hdr's b_buf list. Reading this, you 2716 * might ask, "if a compressed buf is allocated first, won't that be the 2717 * last thing in the list?", but in that case it's impossible to create 2718 * a shared uncompressed buf anyway (because the hdr must be compressed 2719 * to have the compressed buf). You might also think that #3 is 2720 * sufficient to make this guarantee, however it's possible 2721 * (specifically in the rare L2ARC write race mentioned in 2722 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that 2723 * is shareable, but wasn't at the time of its allocation. Rather than 2724 * allow a new shared uncompressed buf to be created and then shuffle 2725 * the list around to make it the last element, this simply disallows 2726 * sharing if the new buf isn't the first to be added. 2727 */ 2728 ASSERT3P(buf->b_hdr, ==, hdr); 2729 boolean_t hdr_compressed = 2730 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF; 2731 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0; 2732 return (!ARC_BUF_ENCRYPTED(buf) && 2733 buf_compressed == hdr_compressed && 2734 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && 2735 !HDR_SHARED_DATA(hdr) && 2736 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf))); 2737 } 2738 2739 /* 2740 * Allocate a buf for this hdr. If you care about the data that's in the hdr, 2741 * or if you want a compressed buffer, pass those flags in. Returns 0 if the 2742 * copy was made successfully, or an error code otherwise. 2743 */ 2744 static int 2745 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb, 2746 void *tag, boolean_t encrypted, boolean_t compressed, boolean_t noauth, 2747 boolean_t fill, arc_buf_t **ret) 2748 { 2749 arc_buf_t *buf; 2750 arc_fill_flags_t flags = ARC_FILL_LOCKED; 2751 2752 ASSERT(HDR_HAS_L1HDR(hdr)); 2753 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2754 VERIFY(hdr->b_type == ARC_BUFC_DATA || 2755 hdr->b_type == ARC_BUFC_METADATA); 2756 ASSERT3P(ret, !=, NULL); 2757 ASSERT3P(*ret, ==, NULL); 2758 IMPLY(encrypted, compressed); 2759 2760 hdr->b_l1hdr.b_mru_hits = 0; 2761 hdr->b_l1hdr.b_mru_ghost_hits = 0; 2762 hdr->b_l1hdr.b_mfu_hits = 0; 2763 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 2764 hdr->b_l1hdr.b_l2_hits = 0; 2765 2766 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2767 buf->b_hdr = hdr; 2768 buf->b_data = NULL; 2769 buf->b_next = hdr->b_l1hdr.b_buf; 2770 buf->b_flags = 0; 2771 2772 add_reference(hdr, tag); 2773 2774 /* 2775 * We're about to change the hdr's b_flags. We must either 2776 * hold the hash_lock or be undiscoverable. 2777 */ 2778 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2779 2780 /* 2781 * Only honor requests for compressed bufs if the hdr is actually 2782 * compressed. This must be overridden if the buffer is encrypted since 2783 * encrypted buffers cannot be decompressed. 2784 */ 2785 if (encrypted) { 2786 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2787 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED; 2788 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED; 2789 } else if (compressed && 2790 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 2791 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2792 flags |= ARC_FILL_COMPRESSED; 2793 } 2794 2795 if (noauth) { 2796 ASSERT0(encrypted); 2797 flags |= ARC_FILL_NOAUTH; 2798 } 2799 2800 /* 2801 * If the hdr's data can be shared then we share the data buffer and 2802 * set the appropriate bit in the hdr's b_flags to indicate the hdr is 2803 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new 2804 * buffer to store the buf's data. 2805 * 2806 * There are two additional restrictions here because we're sharing 2807 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be 2808 * actively involved in an L2ARC write, because if this buf is used by 2809 * an arc_write() then the hdr's data buffer will be released when the 2810 * write completes, even though the L2ARC write might still be using it. 2811 * Second, the hdr's ABD must be linear so that the buf's user doesn't 2812 * need to be ABD-aware. It must be allocated via 2813 * zio_[data_]buf_alloc(), not as a page, because we need to be able 2814 * to abd_release_ownership_of_buf(), which isn't allowed on "linear 2815 * page" buffers because the ABD code needs to handle freeing them 2816 * specially. 2817 */ 2818 boolean_t can_share = arc_can_share(hdr, buf) && 2819 !HDR_L2_WRITING(hdr) && 2820 hdr->b_l1hdr.b_pabd != NULL && 2821 abd_is_linear(hdr->b_l1hdr.b_pabd) && 2822 !abd_is_linear_page(hdr->b_l1hdr.b_pabd); 2823 2824 /* Set up b_data and sharing */ 2825 if (can_share) { 2826 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd); 2827 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2828 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2829 } else { 2830 buf->b_data = 2831 arc_get_data_buf(hdr, arc_buf_size(buf), buf); 2832 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2833 } 2834 VERIFY3P(buf->b_data, !=, NULL); 2835 2836 hdr->b_l1hdr.b_buf = buf; 2837 hdr->b_l1hdr.b_bufcnt += 1; 2838 if (encrypted) 2839 hdr->b_crypt_hdr.b_ebufcnt += 1; 2840 2841 /* 2842 * If the user wants the data from the hdr, we need to either copy or 2843 * decompress the data. 2844 */ 2845 if (fill) { 2846 ASSERT3P(zb, !=, NULL); 2847 return (arc_buf_fill(buf, spa, zb, flags)); 2848 } 2849 2850 return (0); 2851 } 2852 2853 static char *arc_onloan_tag = "onloan"; 2854 2855 static inline void 2856 arc_loaned_bytes_update(int64_t delta) 2857 { 2858 atomic_add_64(&arc_loaned_bytes, delta); 2859 2860 /* assert that it did not wrap around */ 2861 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 2862 } 2863 2864 /* 2865 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 2866 * flight data by arc_tempreserve_space() until they are "returned". Loaned 2867 * buffers must be returned to the arc before they can be used by the DMU or 2868 * freed. 2869 */ 2870 arc_buf_t * 2871 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size) 2872 { 2873 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag, 2874 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size); 2875 2876 arc_loaned_bytes_update(arc_buf_size(buf)); 2877 2878 return (buf); 2879 } 2880 2881 arc_buf_t * 2882 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize, 2883 enum zio_compress compression_type, uint8_t complevel) 2884 { 2885 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag, 2886 psize, lsize, compression_type, complevel); 2887 2888 arc_loaned_bytes_update(arc_buf_size(buf)); 2889 2890 return (buf); 2891 } 2892 2893 arc_buf_t * 2894 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder, 2895 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 2896 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 2897 enum zio_compress compression_type, uint8_t complevel) 2898 { 2899 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj, 2900 byteorder, salt, iv, mac, ot, psize, lsize, compression_type, 2901 complevel); 2902 2903 atomic_add_64(&arc_loaned_bytes, psize); 2904 return (buf); 2905 } 2906 2907 2908 /* 2909 * Return a loaned arc buffer to the arc. 2910 */ 2911 void 2912 arc_return_buf(arc_buf_t *buf, void *tag) 2913 { 2914 arc_buf_hdr_t *hdr = buf->b_hdr; 2915 2916 ASSERT3P(buf->b_data, !=, NULL); 2917 ASSERT(HDR_HAS_L1HDR(hdr)); 2918 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 2919 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2920 2921 arc_loaned_bytes_update(-arc_buf_size(buf)); 2922 } 2923 2924 /* Detach an arc_buf from a dbuf (tag) */ 2925 void 2926 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 2927 { 2928 arc_buf_hdr_t *hdr = buf->b_hdr; 2929 2930 ASSERT3P(buf->b_data, !=, NULL); 2931 ASSERT(HDR_HAS_L1HDR(hdr)); 2932 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2933 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 2934 2935 arc_loaned_bytes_update(arc_buf_size(buf)); 2936 } 2937 2938 static void 2939 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type) 2940 { 2941 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); 2942 2943 df->l2df_abd = abd; 2944 df->l2df_size = size; 2945 df->l2df_type = type; 2946 mutex_enter(&l2arc_free_on_write_mtx); 2947 list_insert_head(l2arc_free_on_write, df); 2948 mutex_exit(&l2arc_free_on_write_mtx); 2949 } 2950 2951 static void 2952 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata) 2953 { 2954 arc_state_t *state = hdr->b_l1hdr.b_state; 2955 arc_buf_contents_t type = arc_buf_type(hdr); 2956 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 2957 2958 /* protected by hash lock, if in the hash table */ 2959 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2960 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2961 ASSERT(state != arc_anon && state != arc_l2c_only); 2962 2963 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2964 size, hdr); 2965 } 2966 (void) zfs_refcount_remove_many(&state->arcs_size, size, hdr); 2967 if (type == ARC_BUFC_METADATA) { 2968 arc_space_return(size, ARC_SPACE_META); 2969 } else { 2970 ASSERT(type == ARC_BUFC_DATA); 2971 arc_space_return(size, ARC_SPACE_DATA); 2972 } 2973 2974 if (free_rdata) { 2975 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type); 2976 } else { 2977 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type); 2978 } 2979 } 2980 2981 /* 2982 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the 2983 * data buffer, we transfer the refcount ownership to the hdr and update 2984 * the appropriate kstats. 2985 */ 2986 static void 2987 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2988 { 2989 ASSERT(arc_can_share(hdr, buf)); 2990 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2991 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 2992 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2993 2994 /* 2995 * Start sharing the data buffer. We transfer the 2996 * refcount ownership to the hdr since it always owns 2997 * the refcount whenever an arc_buf_t is shared. 2998 */ 2999 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 3000 arc_hdr_size(hdr), buf, hdr); 3001 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf)); 3002 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd, 3003 HDR_ISTYPE_METADATA(hdr)); 3004 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 3005 buf->b_flags |= ARC_BUF_FLAG_SHARED; 3006 3007 /* 3008 * Since we've transferred ownership to the hdr we need 3009 * to increment its compressed and uncompressed kstats and 3010 * decrement the overhead size. 3011 */ 3012 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 3013 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3014 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf)); 3015 } 3016 3017 static void 3018 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 3019 { 3020 ASSERT(arc_buf_is_shared(buf)); 3021 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3022 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3023 3024 /* 3025 * We are no longer sharing this buffer so we need 3026 * to transfer its ownership to the rightful owner. 3027 */ 3028 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 3029 arc_hdr_size(hdr), hdr, buf); 3030 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3031 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd); 3032 abd_free(hdr->b_l1hdr.b_pabd); 3033 hdr->b_l1hdr.b_pabd = NULL; 3034 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 3035 3036 /* 3037 * Since the buffer is no longer shared between 3038 * the arc buf and the hdr, count it as overhead. 3039 */ 3040 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 3041 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3042 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 3043 } 3044 3045 /* 3046 * Remove an arc_buf_t from the hdr's buf list and return the last 3047 * arc_buf_t on the list. If no buffers remain on the list then return 3048 * NULL. 3049 */ 3050 static arc_buf_t * 3051 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf) 3052 { 3053 ASSERT(HDR_HAS_L1HDR(hdr)); 3054 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3055 3056 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf; 3057 arc_buf_t *lastbuf = NULL; 3058 3059 /* 3060 * Remove the buf from the hdr list and locate the last 3061 * remaining buffer on the list. 3062 */ 3063 while (*bufp != NULL) { 3064 if (*bufp == buf) 3065 *bufp = buf->b_next; 3066 3067 /* 3068 * If we've removed a buffer in the middle of 3069 * the list then update the lastbuf and update 3070 * bufp. 3071 */ 3072 if (*bufp != NULL) { 3073 lastbuf = *bufp; 3074 bufp = &(*bufp)->b_next; 3075 } 3076 } 3077 buf->b_next = NULL; 3078 ASSERT3P(lastbuf, !=, buf); 3079 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL); 3080 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL); 3081 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf)); 3082 3083 return (lastbuf); 3084 } 3085 3086 /* 3087 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's 3088 * list and free it. 3089 */ 3090 static void 3091 arc_buf_destroy_impl(arc_buf_t *buf) 3092 { 3093 arc_buf_hdr_t *hdr = buf->b_hdr; 3094 3095 /* 3096 * Free up the data associated with the buf but only if we're not 3097 * sharing this with the hdr. If we are sharing it with the hdr, the 3098 * hdr is responsible for doing the free. 3099 */ 3100 if (buf->b_data != NULL) { 3101 /* 3102 * We're about to change the hdr's b_flags. We must either 3103 * hold the hash_lock or be undiscoverable. 3104 */ 3105 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3106 3107 arc_cksum_verify(buf); 3108 arc_buf_unwatch(buf); 3109 3110 if (arc_buf_is_shared(buf)) { 3111 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3112 } else { 3113 uint64_t size = arc_buf_size(buf); 3114 arc_free_data_buf(hdr, buf->b_data, size, buf); 3115 ARCSTAT_INCR(arcstat_overhead_size, -size); 3116 } 3117 buf->b_data = NULL; 3118 3119 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3120 hdr->b_l1hdr.b_bufcnt -= 1; 3121 3122 if (ARC_BUF_ENCRYPTED(buf)) { 3123 hdr->b_crypt_hdr.b_ebufcnt -= 1; 3124 3125 /* 3126 * If we have no more encrypted buffers and we've 3127 * already gotten a copy of the decrypted data we can 3128 * free b_rabd to save some space. 3129 */ 3130 if (hdr->b_crypt_hdr.b_ebufcnt == 0 && 3131 HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL && 3132 !HDR_IO_IN_PROGRESS(hdr)) { 3133 arc_hdr_free_abd(hdr, B_TRUE); 3134 } 3135 } 3136 } 3137 3138 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 3139 3140 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 3141 /* 3142 * If the current arc_buf_t is sharing its data buffer with the 3143 * hdr, then reassign the hdr's b_pabd to share it with the new 3144 * buffer at the end of the list. The shared buffer is always 3145 * the last one on the hdr's buffer list. 3146 * 3147 * There is an equivalent case for compressed bufs, but since 3148 * they aren't guaranteed to be the last buf in the list and 3149 * that is an exceedingly rare case, we just allow that space be 3150 * wasted temporarily. We must also be careful not to share 3151 * encrypted buffers, since they cannot be shared. 3152 */ 3153 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) { 3154 /* Only one buf can be shared at once */ 3155 VERIFY(!arc_buf_is_shared(lastbuf)); 3156 /* hdr is uncompressed so can't have compressed buf */ 3157 VERIFY(!ARC_BUF_COMPRESSED(lastbuf)); 3158 3159 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3160 arc_hdr_free_abd(hdr, B_FALSE); 3161 3162 /* 3163 * We must setup a new shared block between the 3164 * last buffer and the hdr. The data would have 3165 * been allocated by the arc buf so we need to transfer 3166 * ownership to the hdr since it's now being shared. 3167 */ 3168 arc_share_buf(hdr, lastbuf); 3169 } 3170 } else if (HDR_SHARED_DATA(hdr)) { 3171 /* 3172 * Uncompressed shared buffers are always at the end 3173 * of the list. Compressed buffers don't have the 3174 * same requirements. This makes it hard to 3175 * simply assert that the lastbuf is shared so 3176 * we rely on the hdr's compression flags to determine 3177 * if we have a compressed, shared buffer. 3178 */ 3179 ASSERT3P(lastbuf, !=, NULL); 3180 ASSERT(arc_buf_is_shared(lastbuf) || 3181 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 3182 } 3183 3184 /* 3185 * Free the checksum if we're removing the last uncompressed buf from 3186 * this hdr. 3187 */ 3188 if (!arc_hdr_has_uncompressed_buf(hdr)) { 3189 arc_cksum_free(hdr); 3190 } 3191 3192 /* clean up the buf */ 3193 buf->b_hdr = NULL; 3194 kmem_cache_free(buf_cache, buf); 3195 } 3196 3197 static void 3198 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags) 3199 { 3200 uint64_t size; 3201 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0); 3202 boolean_t do_adapt = ((alloc_flags & ARC_HDR_DO_ADAPT) != 0); 3203 3204 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 3205 ASSERT(HDR_HAS_L1HDR(hdr)); 3206 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata); 3207 IMPLY(alloc_rdata, HDR_PROTECTED(hdr)); 3208 3209 if (alloc_rdata) { 3210 size = HDR_GET_PSIZE(hdr); 3211 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL); 3212 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr, 3213 do_adapt); 3214 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL); 3215 ARCSTAT_INCR(arcstat_raw_size, size); 3216 } else { 3217 size = arc_hdr_size(hdr); 3218 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3219 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr, 3220 do_adapt); 3221 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3222 } 3223 3224 ARCSTAT_INCR(arcstat_compressed_size, size); 3225 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3226 } 3227 3228 static void 3229 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata) 3230 { 3231 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 3232 3233 ASSERT(HDR_HAS_L1HDR(hdr)); 3234 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 3235 IMPLY(free_rdata, HDR_HAS_RABD(hdr)); 3236 3237 /* 3238 * If the hdr is currently being written to the l2arc then 3239 * we defer freeing the data by adding it to the l2arc_free_on_write 3240 * list. The l2arc will free the data once it's finished 3241 * writing it to the l2arc device. 3242 */ 3243 if (HDR_L2_WRITING(hdr)) { 3244 arc_hdr_free_on_write(hdr, free_rdata); 3245 ARCSTAT_BUMP(arcstat_l2_free_on_write); 3246 } else if (free_rdata) { 3247 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr); 3248 } else { 3249 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr); 3250 } 3251 3252 if (free_rdata) { 3253 hdr->b_crypt_hdr.b_rabd = NULL; 3254 ARCSTAT_INCR(arcstat_raw_size, -size); 3255 } else { 3256 hdr->b_l1hdr.b_pabd = NULL; 3257 } 3258 3259 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr)) 3260 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 3261 3262 ARCSTAT_INCR(arcstat_compressed_size, -size); 3263 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3264 } 3265 3266 static arc_buf_hdr_t * 3267 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, 3268 boolean_t protected, enum zio_compress compression_type, uint8_t complevel, 3269 arc_buf_contents_t type, boolean_t alloc_rdata) 3270 { 3271 arc_buf_hdr_t *hdr; 3272 int flags = ARC_HDR_DO_ADAPT; 3273 3274 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); 3275 if (protected) { 3276 hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE); 3277 } else { 3278 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 3279 } 3280 flags |= alloc_rdata ? ARC_HDR_ALLOC_RDATA : 0; 3281 3282 ASSERT(HDR_EMPTY(hdr)); 3283 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3284 HDR_SET_PSIZE(hdr, psize); 3285 HDR_SET_LSIZE(hdr, lsize); 3286 hdr->b_spa = spa; 3287 hdr->b_type = type; 3288 hdr->b_flags = 0; 3289 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); 3290 arc_hdr_set_compress(hdr, compression_type); 3291 hdr->b_complevel = complevel; 3292 if (protected) 3293 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 3294 3295 hdr->b_l1hdr.b_state = arc_anon; 3296 hdr->b_l1hdr.b_arc_access = 0; 3297 hdr->b_l1hdr.b_bufcnt = 0; 3298 hdr->b_l1hdr.b_buf = NULL; 3299 3300 /* 3301 * Allocate the hdr's buffer. This will contain either 3302 * the compressed or uncompressed data depending on the block 3303 * it references and compressed arc enablement. 3304 */ 3305 arc_hdr_alloc_abd(hdr, flags); 3306 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3307 3308 return (hdr); 3309 } 3310 3311 /* 3312 * Transition between the two allocation states for the arc_buf_hdr struct. 3313 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 3314 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 3315 * version is used when a cache buffer is only in the L2ARC in order to reduce 3316 * memory usage. 3317 */ 3318 static arc_buf_hdr_t * 3319 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 3320 { 3321 ASSERT(HDR_HAS_L2HDR(hdr)); 3322 3323 arc_buf_hdr_t *nhdr; 3324 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3325 3326 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 3327 (old == hdr_l2only_cache && new == hdr_full_cache)); 3328 3329 /* 3330 * if the caller wanted a new full header and the header is to be 3331 * encrypted we will actually allocate the header from the full crypt 3332 * cache instead. The same applies to freeing from the old cache. 3333 */ 3334 if (HDR_PROTECTED(hdr) && new == hdr_full_cache) 3335 new = hdr_full_crypt_cache; 3336 if (HDR_PROTECTED(hdr) && old == hdr_full_cache) 3337 old = hdr_full_crypt_cache; 3338 3339 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 3340 3341 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 3342 buf_hash_remove(hdr); 3343 3344 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE); 3345 3346 if (new == hdr_full_cache || new == hdr_full_crypt_cache) { 3347 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3348 /* 3349 * arc_access and arc_change_state need to be aware that a 3350 * header has just come out of L2ARC, so we set its state to 3351 * l2c_only even though it's about to change. 3352 */ 3353 nhdr->b_l1hdr.b_state = arc_l2c_only; 3354 3355 /* Verify previous threads set to NULL before freeing */ 3356 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL); 3357 ASSERT(!HDR_HAS_RABD(hdr)); 3358 } else { 3359 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3360 ASSERT0(hdr->b_l1hdr.b_bufcnt); 3361 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3362 3363 /* 3364 * If we've reached here, We must have been called from 3365 * arc_evict_hdr(), as such we should have already been 3366 * removed from any ghost list we were previously on 3367 * (which protects us from racing with arc_evict_state), 3368 * thus no locking is needed during this check. 3369 */ 3370 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3371 3372 /* 3373 * A buffer must not be moved into the arc_l2c_only 3374 * state if it's not finished being written out to the 3375 * l2arc device. Otherwise, the b_l1hdr.b_pabd field 3376 * might try to be accessed, even though it was removed. 3377 */ 3378 VERIFY(!HDR_L2_WRITING(hdr)); 3379 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3380 ASSERT(!HDR_HAS_RABD(hdr)); 3381 3382 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3383 } 3384 /* 3385 * The header has been reallocated so we need to re-insert it into any 3386 * lists it was on. 3387 */ 3388 (void) buf_hash_insert(nhdr, NULL); 3389 3390 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 3391 3392 mutex_enter(&dev->l2ad_mtx); 3393 3394 /* 3395 * We must place the realloc'ed header back into the list at 3396 * the same spot. Otherwise, if it's placed earlier in the list, 3397 * l2arc_write_buffers() could find it during the function's 3398 * write phase, and try to write it out to the l2arc. 3399 */ 3400 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 3401 list_remove(&dev->l2ad_buflist, hdr); 3402 3403 mutex_exit(&dev->l2ad_mtx); 3404 3405 /* 3406 * Since we're using the pointer address as the tag when 3407 * incrementing and decrementing the l2ad_alloc refcount, we 3408 * must remove the old pointer (that we're about to destroy) and 3409 * add the new pointer to the refcount. Otherwise we'd remove 3410 * the wrong pointer address when calling arc_hdr_destroy() later. 3411 */ 3412 3413 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 3414 arc_hdr_size(hdr), hdr); 3415 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 3416 arc_hdr_size(nhdr), nhdr); 3417 3418 buf_discard_identity(hdr); 3419 kmem_cache_free(old, hdr); 3420 3421 return (nhdr); 3422 } 3423 3424 /* 3425 * This function allows an L1 header to be reallocated as a crypt 3426 * header and vice versa. If we are going to a crypt header, the 3427 * new fields will be zeroed out. 3428 */ 3429 static arc_buf_hdr_t * 3430 arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt) 3431 { 3432 arc_buf_hdr_t *nhdr; 3433 arc_buf_t *buf; 3434 kmem_cache_t *ncache, *ocache; 3435 3436 /* 3437 * This function requires that hdr is in the arc_anon state. 3438 * Therefore it won't have any L2ARC data for us to worry 3439 * about copying. 3440 */ 3441 ASSERT(HDR_HAS_L1HDR(hdr)); 3442 ASSERT(!HDR_HAS_L2HDR(hdr)); 3443 ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt); 3444 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3445 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3446 ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node)); 3447 ASSERT3P(hdr->b_hash_next, ==, NULL); 3448 3449 if (need_crypt) { 3450 ncache = hdr_full_crypt_cache; 3451 ocache = hdr_full_cache; 3452 } else { 3453 ncache = hdr_full_cache; 3454 ocache = hdr_full_crypt_cache; 3455 } 3456 3457 nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE); 3458 3459 /* 3460 * Copy all members that aren't locks or condvars to the new header. 3461 * No lists are pointing to us (as we asserted above), so we don't 3462 * need to worry about the list nodes. 3463 */ 3464 nhdr->b_dva = hdr->b_dva; 3465 nhdr->b_birth = hdr->b_birth; 3466 nhdr->b_type = hdr->b_type; 3467 nhdr->b_flags = hdr->b_flags; 3468 nhdr->b_psize = hdr->b_psize; 3469 nhdr->b_lsize = hdr->b_lsize; 3470 nhdr->b_spa = hdr->b_spa; 3471 nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum; 3472 nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt; 3473 nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap; 3474 nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state; 3475 nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access; 3476 nhdr->b_l1hdr.b_mru_hits = hdr->b_l1hdr.b_mru_hits; 3477 nhdr->b_l1hdr.b_mru_ghost_hits = hdr->b_l1hdr.b_mru_ghost_hits; 3478 nhdr->b_l1hdr.b_mfu_hits = hdr->b_l1hdr.b_mfu_hits; 3479 nhdr->b_l1hdr.b_mfu_ghost_hits = hdr->b_l1hdr.b_mfu_ghost_hits; 3480 nhdr->b_l1hdr.b_l2_hits = hdr->b_l1hdr.b_l2_hits; 3481 nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb; 3482 nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd; 3483 3484 /* 3485 * This zfs_refcount_add() exists only to ensure that the individual 3486 * arc buffers always point to a header that is referenced, avoiding 3487 * a small race condition that could trigger ASSERTs. 3488 */ 3489 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG); 3490 nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf; 3491 for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) { 3492 mutex_enter(&buf->b_evict_lock); 3493 buf->b_hdr = nhdr; 3494 mutex_exit(&buf->b_evict_lock); 3495 } 3496 3497 zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt); 3498 (void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG); 3499 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3500 3501 if (need_crypt) { 3502 arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED); 3503 } else { 3504 arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED); 3505 } 3506 3507 /* unset all members of the original hdr */ 3508 bzero(&hdr->b_dva, sizeof (dva_t)); 3509 hdr->b_birth = 0; 3510 hdr->b_type = ARC_BUFC_INVALID; 3511 hdr->b_flags = 0; 3512 hdr->b_psize = 0; 3513 hdr->b_lsize = 0; 3514 hdr->b_spa = 0; 3515 hdr->b_l1hdr.b_freeze_cksum = NULL; 3516 hdr->b_l1hdr.b_buf = NULL; 3517 hdr->b_l1hdr.b_bufcnt = 0; 3518 hdr->b_l1hdr.b_byteswap = 0; 3519 hdr->b_l1hdr.b_state = NULL; 3520 hdr->b_l1hdr.b_arc_access = 0; 3521 hdr->b_l1hdr.b_mru_hits = 0; 3522 hdr->b_l1hdr.b_mru_ghost_hits = 0; 3523 hdr->b_l1hdr.b_mfu_hits = 0; 3524 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 3525 hdr->b_l1hdr.b_l2_hits = 0; 3526 hdr->b_l1hdr.b_acb = NULL; 3527 hdr->b_l1hdr.b_pabd = NULL; 3528 3529 if (ocache == hdr_full_crypt_cache) { 3530 ASSERT(!HDR_HAS_RABD(hdr)); 3531 hdr->b_crypt_hdr.b_ot = DMU_OT_NONE; 3532 hdr->b_crypt_hdr.b_ebufcnt = 0; 3533 hdr->b_crypt_hdr.b_dsobj = 0; 3534 bzero(hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3535 bzero(hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3536 bzero(hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3537 } 3538 3539 buf_discard_identity(hdr); 3540 kmem_cache_free(ocache, hdr); 3541 3542 return (nhdr); 3543 } 3544 3545 /* 3546 * This function is used by the send / receive code to convert a newly 3547 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It 3548 * is also used to allow the root objset block to be updated without altering 3549 * its embedded MACs. Both block types will always be uncompressed so we do not 3550 * have to worry about compression type or psize. 3551 */ 3552 void 3553 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder, 3554 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv, 3555 const uint8_t *mac) 3556 { 3557 arc_buf_hdr_t *hdr = buf->b_hdr; 3558 3559 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET); 3560 ASSERT(HDR_HAS_L1HDR(hdr)); 3561 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3562 3563 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED); 3564 if (!HDR_PROTECTED(hdr)) 3565 hdr = arc_hdr_realloc_crypt(hdr, B_TRUE); 3566 hdr->b_crypt_hdr.b_dsobj = dsobj; 3567 hdr->b_crypt_hdr.b_ot = ot; 3568 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3569 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3570 if (!arc_hdr_has_uncompressed_buf(hdr)) 3571 arc_cksum_free(hdr); 3572 3573 if (salt != NULL) 3574 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3575 if (iv != NULL) 3576 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3577 if (mac != NULL) 3578 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3579 } 3580 3581 /* 3582 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. 3583 * The buf is returned thawed since we expect the consumer to modify it. 3584 */ 3585 arc_buf_t * 3586 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size) 3587 { 3588 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, 3589 B_FALSE, ZIO_COMPRESS_OFF, 0, type, B_FALSE); 3590 3591 arc_buf_t *buf = NULL; 3592 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE, 3593 B_FALSE, B_FALSE, &buf)); 3594 arc_buf_thaw(buf); 3595 3596 return (buf); 3597 } 3598 3599 /* 3600 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this 3601 * for bufs containing metadata. 3602 */ 3603 arc_buf_t * 3604 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize, 3605 enum zio_compress compression_type, uint8_t complevel) 3606 { 3607 ASSERT3U(lsize, >, 0); 3608 ASSERT3U(lsize, >=, psize); 3609 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF); 3610 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3611 3612 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 3613 B_FALSE, compression_type, complevel, ARC_BUFC_DATA, B_FALSE); 3614 3615 arc_buf_t *buf = NULL; 3616 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, 3617 B_TRUE, B_FALSE, B_FALSE, &buf)); 3618 arc_buf_thaw(buf); 3619 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3620 3621 if (!arc_buf_is_shared(buf)) { 3622 /* 3623 * To ensure that the hdr has the correct data in it if we call 3624 * arc_untransform() on this buf before it's been written to 3625 * disk, it's easiest if we just set up sharing between the 3626 * buf and the hdr. 3627 */ 3628 arc_hdr_free_abd(hdr, B_FALSE); 3629 arc_share_buf(hdr, buf); 3630 } 3631 3632 return (buf); 3633 } 3634 3635 arc_buf_t * 3636 arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder, 3637 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 3638 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 3639 enum zio_compress compression_type, uint8_t complevel) 3640 { 3641 arc_buf_hdr_t *hdr; 3642 arc_buf_t *buf; 3643 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ? 3644 ARC_BUFC_METADATA : ARC_BUFC_DATA; 3645 3646 ASSERT3U(lsize, >, 0); 3647 ASSERT3U(lsize, >=, psize); 3648 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF); 3649 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3650 3651 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE, 3652 compression_type, complevel, type, B_TRUE); 3653 3654 hdr->b_crypt_hdr.b_dsobj = dsobj; 3655 hdr->b_crypt_hdr.b_ot = ot; 3656 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3657 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3658 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3659 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3660 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3661 3662 /* 3663 * This buffer will be considered encrypted even if the ot is not an 3664 * encrypted type. It will become authenticated instead in 3665 * arc_write_ready(). 3666 */ 3667 buf = NULL; 3668 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE, 3669 B_FALSE, B_FALSE, &buf)); 3670 arc_buf_thaw(buf); 3671 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3672 3673 return (buf); 3674 } 3675 3676 static void 3677 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 3678 boolean_t state_only) 3679 { 3680 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3681 l2arc_dev_t *dev = l2hdr->b_dev; 3682 uint64_t lsize = HDR_GET_LSIZE(hdr); 3683 uint64_t psize = HDR_GET_PSIZE(hdr); 3684 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3685 arc_buf_contents_t type = hdr->b_type; 3686 int64_t lsize_s; 3687 int64_t psize_s; 3688 int64_t asize_s; 3689 3690 if (incr) { 3691 lsize_s = lsize; 3692 psize_s = psize; 3693 asize_s = asize; 3694 } else { 3695 lsize_s = -lsize; 3696 psize_s = -psize; 3697 asize_s = -asize; 3698 } 3699 3700 /* If the buffer is a prefetch, count it as such. */ 3701 if (HDR_PREFETCH(hdr)) { 3702 ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s); 3703 } else { 3704 /* 3705 * We use the value stored in the L2 header upon initial 3706 * caching in L2ARC. This value will be updated in case 3707 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC 3708 * metadata (log entry) cannot currently be updated. Having 3709 * the ARC state in the L2 header solves the problem of a 3710 * possibly absent L1 header (apparent in buffers restored 3711 * from persistent L2ARC). 3712 */ 3713 switch (hdr->b_l2hdr.b_arcs_state) { 3714 case ARC_STATE_MRU_GHOST: 3715 case ARC_STATE_MRU: 3716 ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s); 3717 break; 3718 case ARC_STATE_MFU_GHOST: 3719 case ARC_STATE_MFU: 3720 ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s); 3721 break; 3722 default: 3723 break; 3724 } 3725 } 3726 3727 if (state_only) 3728 return; 3729 3730 ARCSTAT_INCR(arcstat_l2_psize, psize_s); 3731 ARCSTAT_INCR(arcstat_l2_lsize, lsize_s); 3732 3733 switch (type) { 3734 case ARC_BUFC_DATA: 3735 ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s); 3736 break; 3737 case ARC_BUFC_METADATA: 3738 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s); 3739 break; 3740 default: 3741 break; 3742 } 3743 } 3744 3745 3746 static void 3747 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 3748 { 3749 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3750 l2arc_dev_t *dev = l2hdr->b_dev; 3751 uint64_t psize = HDR_GET_PSIZE(hdr); 3752 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3753 3754 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 3755 ASSERT(HDR_HAS_L2HDR(hdr)); 3756 3757 list_remove(&dev->l2ad_buflist, hdr); 3758 3759 l2arc_hdr_arcstats_decrement(hdr); 3760 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); 3761 3762 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), 3763 hdr); 3764 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 3765 } 3766 3767 static void 3768 arc_hdr_destroy(arc_buf_hdr_t *hdr) 3769 { 3770 if (HDR_HAS_L1HDR(hdr)) { 3771 ASSERT(hdr->b_l1hdr.b_buf == NULL || 3772 hdr->b_l1hdr.b_bufcnt > 0); 3773 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3774 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3775 } 3776 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3777 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 3778 3779 if (HDR_HAS_L2HDR(hdr)) { 3780 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3781 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 3782 3783 if (!buflist_held) 3784 mutex_enter(&dev->l2ad_mtx); 3785 3786 /* 3787 * Even though we checked this conditional above, we 3788 * need to check this again now that we have the 3789 * l2ad_mtx. This is because we could be racing with 3790 * another thread calling l2arc_evict() which might have 3791 * destroyed this header's L2 portion as we were waiting 3792 * to acquire the l2ad_mtx. If that happens, we don't 3793 * want to re-destroy the header's L2 portion. 3794 */ 3795 if (HDR_HAS_L2HDR(hdr)) 3796 arc_hdr_l2hdr_destroy(hdr); 3797 3798 if (!buflist_held) 3799 mutex_exit(&dev->l2ad_mtx); 3800 } 3801 3802 /* 3803 * The header's identify can only be safely discarded once it is no 3804 * longer discoverable. This requires removing it from the hash table 3805 * and the l2arc header list. After this point the hash lock can not 3806 * be used to protect the header. 3807 */ 3808 if (!HDR_EMPTY(hdr)) 3809 buf_discard_identity(hdr); 3810 3811 if (HDR_HAS_L1HDR(hdr)) { 3812 arc_cksum_free(hdr); 3813 3814 while (hdr->b_l1hdr.b_buf != NULL) 3815 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf); 3816 3817 if (hdr->b_l1hdr.b_pabd != NULL) 3818 arc_hdr_free_abd(hdr, B_FALSE); 3819 3820 if (HDR_HAS_RABD(hdr)) 3821 arc_hdr_free_abd(hdr, B_TRUE); 3822 } 3823 3824 ASSERT3P(hdr->b_hash_next, ==, NULL); 3825 if (HDR_HAS_L1HDR(hdr)) { 3826 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3827 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 3828 3829 if (!HDR_PROTECTED(hdr)) { 3830 kmem_cache_free(hdr_full_cache, hdr); 3831 } else { 3832 kmem_cache_free(hdr_full_crypt_cache, hdr); 3833 } 3834 } else { 3835 kmem_cache_free(hdr_l2only_cache, hdr); 3836 } 3837 } 3838 3839 void 3840 arc_buf_destroy(arc_buf_t *buf, void* tag) 3841 { 3842 arc_buf_hdr_t *hdr = buf->b_hdr; 3843 3844 if (hdr->b_l1hdr.b_state == arc_anon) { 3845 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 3846 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3847 VERIFY0(remove_reference(hdr, NULL, tag)); 3848 arc_hdr_destroy(hdr); 3849 return; 3850 } 3851 3852 kmutex_t *hash_lock = HDR_LOCK(hdr); 3853 mutex_enter(hash_lock); 3854 3855 ASSERT3P(hdr, ==, buf->b_hdr); 3856 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3857 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3858 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); 3859 ASSERT3P(buf->b_data, !=, NULL); 3860 3861 (void) remove_reference(hdr, hash_lock, tag); 3862 arc_buf_destroy_impl(buf); 3863 mutex_exit(hash_lock); 3864 } 3865 3866 /* 3867 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 3868 * state of the header is dependent on its state prior to entering this 3869 * function. The following transitions are possible: 3870 * 3871 * - arc_mru -> arc_mru_ghost 3872 * - arc_mfu -> arc_mfu_ghost 3873 * - arc_mru_ghost -> arc_l2c_only 3874 * - arc_mru_ghost -> deleted 3875 * - arc_mfu_ghost -> arc_l2c_only 3876 * - arc_mfu_ghost -> deleted 3877 */ 3878 static int64_t 3879 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 3880 { 3881 arc_state_t *evicted_state, *state; 3882 int64_t bytes_evicted = 0; 3883 int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ? 3884 arc_min_prescient_prefetch_ms : arc_min_prefetch_ms; 3885 3886 ASSERT(MUTEX_HELD(hash_lock)); 3887 ASSERT(HDR_HAS_L1HDR(hdr)); 3888 3889 state = hdr->b_l1hdr.b_state; 3890 if (GHOST_STATE(state)) { 3891 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3892 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3893 3894 /* 3895 * l2arc_write_buffers() relies on a header's L1 portion 3896 * (i.e. its b_pabd field) during it's write phase. 3897 * Thus, we cannot push a header onto the arc_l2c_only 3898 * state (removing its L1 piece) until the header is 3899 * done being written to the l2arc. 3900 */ 3901 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 3902 ARCSTAT_BUMP(arcstat_evict_l2_skip); 3903 return (bytes_evicted); 3904 } 3905 3906 ARCSTAT_BUMP(arcstat_deleted); 3907 bytes_evicted += HDR_GET_LSIZE(hdr); 3908 3909 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 3910 3911 if (HDR_HAS_L2HDR(hdr)) { 3912 ASSERT(hdr->b_l1hdr.b_pabd == NULL); 3913 ASSERT(!HDR_HAS_RABD(hdr)); 3914 /* 3915 * This buffer is cached on the 2nd Level ARC; 3916 * don't destroy the header. 3917 */ 3918 arc_change_state(arc_l2c_only, hdr, hash_lock); 3919 /* 3920 * dropping from L1+L2 cached to L2-only, 3921 * realloc to remove the L1 header. 3922 */ 3923 hdr = arc_hdr_realloc(hdr, hdr_full_cache, 3924 hdr_l2only_cache); 3925 } else { 3926 arc_change_state(arc_anon, hdr, hash_lock); 3927 arc_hdr_destroy(hdr); 3928 } 3929 return (bytes_evicted); 3930 } 3931 3932 ASSERT(state == arc_mru || state == arc_mfu); 3933 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3934 3935 /* prefetch buffers have a minimum lifespan */ 3936 if (HDR_IO_IN_PROGRESS(hdr) || 3937 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 3938 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < 3939 MSEC_TO_TICK(min_lifetime))) { 3940 ARCSTAT_BUMP(arcstat_evict_skip); 3941 return (bytes_evicted); 3942 } 3943 3944 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3945 while (hdr->b_l1hdr.b_buf) { 3946 arc_buf_t *buf = hdr->b_l1hdr.b_buf; 3947 if (!mutex_tryenter(&buf->b_evict_lock)) { 3948 ARCSTAT_BUMP(arcstat_mutex_miss); 3949 break; 3950 } 3951 if (buf->b_data != NULL) 3952 bytes_evicted += HDR_GET_LSIZE(hdr); 3953 mutex_exit(&buf->b_evict_lock); 3954 arc_buf_destroy_impl(buf); 3955 } 3956 3957 if (HDR_HAS_L2HDR(hdr)) { 3958 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); 3959 } else { 3960 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 3961 ARCSTAT_INCR(arcstat_evict_l2_eligible, 3962 HDR_GET_LSIZE(hdr)); 3963 3964 switch (state->arcs_state) { 3965 case ARC_STATE_MRU: 3966 ARCSTAT_INCR( 3967 arcstat_evict_l2_eligible_mru, 3968 HDR_GET_LSIZE(hdr)); 3969 break; 3970 case ARC_STATE_MFU: 3971 ARCSTAT_INCR( 3972 arcstat_evict_l2_eligible_mfu, 3973 HDR_GET_LSIZE(hdr)); 3974 break; 3975 default: 3976 break; 3977 } 3978 } else { 3979 ARCSTAT_INCR(arcstat_evict_l2_ineligible, 3980 HDR_GET_LSIZE(hdr)); 3981 } 3982 } 3983 3984 if (hdr->b_l1hdr.b_bufcnt == 0) { 3985 arc_cksum_free(hdr); 3986 3987 bytes_evicted += arc_hdr_size(hdr); 3988 3989 /* 3990 * If this hdr is being evicted and has a compressed 3991 * buffer then we discard it here before we change states. 3992 * This ensures that the accounting is updated correctly 3993 * in arc_free_data_impl(). 3994 */ 3995 if (hdr->b_l1hdr.b_pabd != NULL) 3996 arc_hdr_free_abd(hdr, B_FALSE); 3997 3998 if (HDR_HAS_RABD(hdr)) 3999 arc_hdr_free_abd(hdr, B_TRUE); 4000 4001 arc_change_state(evicted_state, hdr, hash_lock); 4002 ASSERT(HDR_IN_HASH_TABLE(hdr)); 4003 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 4004 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 4005 } 4006 4007 return (bytes_evicted); 4008 } 4009 4010 static void 4011 arc_set_need_free(void) 4012 { 4013 ASSERT(MUTEX_HELD(&arc_evict_lock)); 4014 int64_t remaining = arc_free_memory() - arc_sys_free / 2; 4015 arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters); 4016 if (aw == NULL) { 4017 arc_need_free = MAX(-remaining, 0); 4018 } else { 4019 arc_need_free = 4020 MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count)); 4021 } 4022 } 4023 4024 static uint64_t 4025 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 4026 uint64_t spa, int64_t bytes) 4027 { 4028 multilist_sublist_t *mls; 4029 uint64_t bytes_evicted = 0; 4030 arc_buf_hdr_t *hdr; 4031 kmutex_t *hash_lock; 4032 int evict_count = 0; 4033 4034 ASSERT3P(marker, !=, NULL); 4035 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 4036 4037 mls = multilist_sublist_lock(ml, idx); 4038 4039 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL; 4040 hdr = multilist_sublist_prev(mls, marker)) { 4041 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) || 4042 (evict_count >= zfs_arc_evict_batch_limit)) 4043 break; 4044 4045 /* 4046 * To keep our iteration location, move the marker 4047 * forward. Since we're not holding hdr's hash lock, we 4048 * must be very careful and not remove 'hdr' from the 4049 * sublist. Otherwise, other consumers might mistake the 4050 * 'hdr' as not being on a sublist when they call the 4051 * multilist_link_active() function (they all rely on 4052 * the hash lock protecting concurrent insertions and 4053 * removals). multilist_sublist_move_forward() was 4054 * specifically implemented to ensure this is the case 4055 * (only 'marker' will be removed and re-inserted). 4056 */ 4057 multilist_sublist_move_forward(mls, marker); 4058 4059 /* 4060 * The only case where the b_spa field should ever be 4061 * zero, is the marker headers inserted by 4062 * arc_evict_state(). It's possible for multiple threads 4063 * to be calling arc_evict_state() concurrently (e.g. 4064 * dsl_pool_close() and zio_inject_fault()), so we must 4065 * skip any markers we see from these other threads. 4066 */ 4067 if (hdr->b_spa == 0) 4068 continue; 4069 4070 /* we're only interested in evicting buffers of a certain spa */ 4071 if (spa != 0 && hdr->b_spa != spa) { 4072 ARCSTAT_BUMP(arcstat_evict_skip); 4073 continue; 4074 } 4075 4076 hash_lock = HDR_LOCK(hdr); 4077 4078 /* 4079 * We aren't calling this function from any code path 4080 * that would already be holding a hash lock, so we're 4081 * asserting on this assumption to be defensive in case 4082 * this ever changes. Without this check, it would be 4083 * possible to incorrectly increment arcstat_mutex_miss 4084 * below (e.g. if the code changed such that we called 4085 * this function with a hash lock held). 4086 */ 4087 ASSERT(!MUTEX_HELD(hash_lock)); 4088 4089 if (mutex_tryenter(hash_lock)) { 4090 uint64_t evicted = arc_evict_hdr(hdr, hash_lock); 4091 mutex_exit(hash_lock); 4092 4093 bytes_evicted += evicted; 4094 4095 /* 4096 * If evicted is zero, arc_evict_hdr() must have 4097 * decided to skip this header, don't increment 4098 * evict_count in this case. 4099 */ 4100 if (evicted != 0) 4101 evict_count++; 4102 4103 } else { 4104 ARCSTAT_BUMP(arcstat_mutex_miss); 4105 } 4106 } 4107 4108 multilist_sublist_unlock(mls); 4109 4110 /* 4111 * Increment the count of evicted bytes, and wake up any threads that 4112 * are waiting for the count to reach this value. Since the list is 4113 * ordered by ascending aew_count, we pop off the beginning of the 4114 * list until we reach the end, or a waiter that's past the current 4115 * "count". Doing this outside the loop reduces the number of times 4116 * we need to acquire the global arc_evict_lock. 4117 * 4118 * Only wake when there's sufficient free memory in the system 4119 * (specifically, arc_sys_free/2, which by default is a bit more than 4120 * 1/64th of RAM). See the comments in arc_wait_for_eviction(). 4121 */ 4122 mutex_enter(&arc_evict_lock); 4123 arc_evict_count += bytes_evicted; 4124 4125 if (arc_free_memory() > arc_sys_free / 2) { 4126 arc_evict_waiter_t *aw; 4127 while ((aw = list_head(&arc_evict_waiters)) != NULL && 4128 aw->aew_count <= arc_evict_count) { 4129 list_remove(&arc_evict_waiters, aw); 4130 cv_broadcast(&aw->aew_cv); 4131 } 4132 } 4133 arc_set_need_free(); 4134 mutex_exit(&arc_evict_lock); 4135 4136 /* 4137 * If the ARC size is reduced from arc_c_max to arc_c_min (especially 4138 * if the average cached block is small), eviction can be on-CPU for 4139 * many seconds. To ensure that other threads that may be bound to 4140 * this CPU are able to make progress, make a voluntary preemption 4141 * call here. 4142 */ 4143 cond_resched(); 4144 4145 return (bytes_evicted); 4146 } 4147 4148 /* 4149 * Evict buffers from the given arc state, until we've removed the 4150 * specified number of bytes. Move the removed buffers to the 4151 * appropriate evict state. 4152 * 4153 * This function makes a "best effort". It skips over any buffers 4154 * it can't get a hash_lock on, and so, may not catch all candidates. 4155 * It may also return without evicting as much space as requested. 4156 * 4157 * If bytes is specified using the special value ARC_EVICT_ALL, this 4158 * will evict all available (i.e. unlocked and evictable) buffers from 4159 * the given arc state; which is used by arc_flush(). 4160 */ 4161 static uint64_t 4162 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes, 4163 arc_buf_contents_t type) 4164 { 4165 uint64_t total_evicted = 0; 4166 multilist_t *ml = &state->arcs_list[type]; 4167 int num_sublists; 4168 arc_buf_hdr_t **markers; 4169 4170 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 4171 4172 num_sublists = multilist_get_num_sublists(ml); 4173 4174 /* 4175 * If we've tried to evict from each sublist, made some 4176 * progress, but still have not hit the target number of bytes 4177 * to evict, we want to keep trying. The markers allow us to 4178 * pick up where we left off for each individual sublist, rather 4179 * than starting from the tail each time. 4180 */ 4181 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP); 4182 for (int i = 0; i < num_sublists; i++) { 4183 multilist_sublist_t *mls; 4184 4185 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 4186 4187 /* 4188 * A b_spa of 0 is used to indicate that this header is 4189 * a marker. This fact is used in arc_evict_type() and 4190 * arc_evict_state_impl(). 4191 */ 4192 markers[i]->b_spa = 0; 4193 4194 mls = multilist_sublist_lock(ml, i); 4195 multilist_sublist_insert_tail(mls, markers[i]); 4196 multilist_sublist_unlock(mls); 4197 } 4198 4199 /* 4200 * While we haven't hit our target number of bytes to evict, or 4201 * we're evicting all available buffers. 4202 */ 4203 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) { 4204 int sublist_idx = multilist_get_random_index(ml); 4205 uint64_t scan_evicted = 0; 4206 4207 /* 4208 * Try to reduce pinned dnodes with a floor of arc_dnode_limit. 4209 * Request that 10% of the LRUs be scanned by the superblock 4210 * shrinker. 4211 */ 4212 if (type == ARC_BUFC_DATA && aggsum_compare( 4213 &arc_sums.arcstat_dnode_size, arc_dnode_size_limit) > 0) { 4214 arc_prune_async((aggsum_upper_bound( 4215 &arc_sums.arcstat_dnode_size) - 4216 arc_dnode_size_limit) / sizeof (dnode_t) / 4217 zfs_arc_dnode_reduce_percent); 4218 } 4219 4220 /* 4221 * Start eviction using a randomly selected sublist, 4222 * this is to try and evenly balance eviction across all 4223 * sublists. Always starting at the same sublist 4224 * (e.g. index 0) would cause evictions to favor certain 4225 * sublists over others. 4226 */ 4227 for (int i = 0; i < num_sublists; i++) { 4228 uint64_t bytes_remaining; 4229 uint64_t bytes_evicted; 4230 4231 if (bytes == ARC_EVICT_ALL) 4232 bytes_remaining = ARC_EVICT_ALL; 4233 else if (total_evicted < bytes) 4234 bytes_remaining = bytes - total_evicted; 4235 else 4236 break; 4237 4238 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 4239 markers[sublist_idx], spa, bytes_remaining); 4240 4241 scan_evicted += bytes_evicted; 4242 total_evicted += bytes_evicted; 4243 4244 /* we've reached the end, wrap to the beginning */ 4245 if (++sublist_idx >= num_sublists) 4246 sublist_idx = 0; 4247 } 4248 4249 /* 4250 * If we didn't evict anything during this scan, we have 4251 * no reason to believe we'll evict more during another 4252 * scan, so break the loop. 4253 */ 4254 if (scan_evicted == 0) { 4255 /* This isn't possible, let's make that obvious */ 4256 ASSERT3S(bytes, !=, 0); 4257 4258 /* 4259 * When bytes is ARC_EVICT_ALL, the only way to 4260 * break the loop is when scan_evicted is zero. 4261 * In that case, we actually have evicted enough, 4262 * so we don't want to increment the kstat. 4263 */ 4264 if (bytes != ARC_EVICT_ALL) { 4265 ASSERT3S(total_evicted, <, bytes); 4266 ARCSTAT_BUMP(arcstat_evict_not_enough); 4267 } 4268 4269 break; 4270 } 4271 } 4272 4273 for (int i = 0; i < num_sublists; i++) { 4274 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 4275 multilist_sublist_remove(mls, markers[i]); 4276 multilist_sublist_unlock(mls); 4277 4278 kmem_cache_free(hdr_full_cache, markers[i]); 4279 } 4280 kmem_free(markers, sizeof (*markers) * num_sublists); 4281 4282 return (total_evicted); 4283 } 4284 4285 /* 4286 * Flush all "evictable" data of the given type from the arc state 4287 * specified. This will not evict any "active" buffers (i.e. referenced). 4288 * 4289 * When 'retry' is set to B_FALSE, the function will make a single pass 4290 * over the state and evict any buffers that it can. Since it doesn't 4291 * continually retry the eviction, it might end up leaving some buffers 4292 * in the ARC due to lock misses. 4293 * 4294 * When 'retry' is set to B_TRUE, the function will continually retry the 4295 * eviction until *all* evictable buffers have been removed from the 4296 * state. As a result, if concurrent insertions into the state are 4297 * allowed (e.g. if the ARC isn't shutting down), this function might 4298 * wind up in an infinite loop, continually trying to evict buffers. 4299 */ 4300 static uint64_t 4301 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 4302 boolean_t retry) 4303 { 4304 uint64_t evicted = 0; 4305 4306 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) { 4307 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type); 4308 4309 if (!retry) 4310 break; 4311 } 4312 4313 return (evicted); 4314 } 4315 4316 /* 4317 * Evict the specified number of bytes from the state specified, 4318 * restricting eviction to the spa and type given. This function 4319 * prevents us from trying to evict more from a state's list than 4320 * is "evictable", and to skip evicting altogether when passed a 4321 * negative value for "bytes". In contrast, arc_evict_state() will 4322 * evict everything it can, when passed a negative value for "bytes". 4323 */ 4324 static uint64_t 4325 arc_evict_impl(arc_state_t *state, uint64_t spa, int64_t bytes, 4326 arc_buf_contents_t type) 4327 { 4328 int64_t delta; 4329 4330 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) { 4331 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]), 4332 bytes); 4333 return (arc_evict_state(state, spa, delta, type)); 4334 } 4335 4336 return (0); 4337 } 4338 4339 /* 4340 * The goal of this function is to evict enough meta data buffers from the 4341 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly 4342 * more complicated than it appears because it is common for data buffers 4343 * to have holds on meta data buffers. In addition, dnode meta data buffers 4344 * will be held by the dnodes in the block preventing them from being freed. 4345 * This means we can't simply traverse the ARC and expect to always find 4346 * enough unheld meta data buffer to release. 4347 * 4348 * Therefore, this function has been updated to make alternating passes 4349 * over the ARC releasing data buffers and then newly unheld meta data 4350 * buffers. This ensures forward progress is maintained and meta_used 4351 * will decrease. Normally this is sufficient, but if required the ARC 4352 * will call the registered prune callbacks causing dentry and inodes to 4353 * be dropped from the VFS cache. This will make dnode meta data buffers 4354 * available for reclaim. 4355 */ 4356 static uint64_t 4357 arc_evict_meta_balanced(uint64_t meta_used) 4358 { 4359 int64_t delta, prune = 0, adjustmnt; 4360 uint64_t total_evicted = 0; 4361 arc_buf_contents_t type = ARC_BUFC_DATA; 4362 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0); 4363 4364 restart: 4365 /* 4366 * This slightly differs than the way we evict from the mru in 4367 * arc_evict because we don't have a "target" value (i.e. no 4368 * "meta" arc_p). As a result, I think we can completely 4369 * cannibalize the metadata in the MRU before we evict the 4370 * metadata from the MFU. I think we probably need to implement a 4371 * "metadata arc_p" value to do this properly. 4372 */ 4373 adjustmnt = meta_used - arc_meta_limit; 4374 4375 if (adjustmnt > 0 && 4376 zfs_refcount_count(&arc_mru->arcs_esize[type]) > 0) { 4377 delta = MIN(zfs_refcount_count(&arc_mru->arcs_esize[type]), 4378 adjustmnt); 4379 total_evicted += arc_evict_impl(arc_mru, 0, delta, type); 4380 adjustmnt -= delta; 4381 } 4382 4383 /* 4384 * We can't afford to recalculate adjustmnt here. If we do, 4385 * new metadata buffers can sneak into the MRU or ANON lists, 4386 * thus penalize the MFU metadata. Although the fudge factor is 4387 * small, it has been empirically shown to be significant for 4388 * certain workloads (e.g. creating many empty directories). As 4389 * such, we use the original calculation for adjustmnt, and 4390 * simply decrement the amount of data evicted from the MRU. 4391 */ 4392 4393 if (adjustmnt > 0 && 4394 zfs_refcount_count(&arc_mfu->arcs_esize[type]) > 0) { 4395 delta = MIN(zfs_refcount_count(&arc_mfu->arcs_esize[type]), 4396 adjustmnt); 4397 total_evicted += arc_evict_impl(arc_mfu, 0, delta, type); 4398 } 4399 4400 adjustmnt = meta_used - arc_meta_limit; 4401 4402 if (adjustmnt > 0 && 4403 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) { 4404 delta = MIN(adjustmnt, 4405 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type])); 4406 total_evicted += arc_evict_impl(arc_mru_ghost, 0, delta, type); 4407 adjustmnt -= delta; 4408 } 4409 4410 if (adjustmnt > 0 && 4411 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) { 4412 delta = MIN(adjustmnt, 4413 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type])); 4414 total_evicted += arc_evict_impl(arc_mfu_ghost, 0, delta, type); 4415 } 4416 4417 /* 4418 * If after attempting to make the requested adjustment to the ARC 4419 * the meta limit is still being exceeded then request that the 4420 * higher layers drop some cached objects which have holds on ARC 4421 * meta buffers. Requests to the upper layers will be made with 4422 * increasingly large scan sizes until the ARC is below the limit. 4423 */ 4424 if (meta_used > arc_meta_limit) { 4425 if (type == ARC_BUFC_DATA) { 4426 type = ARC_BUFC_METADATA; 4427 } else { 4428 type = ARC_BUFC_DATA; 4429 4430 if (zfs_arc_meta_prune) { 4431 prune += zfs_arc_meta_prune; 4432 arc_prune_async(prune); 4433 } 4434 } 4435 4436 if (restarts > 0) { 4437 restarts--; 4438 goto restart; 4439 } 4440 } 4441 return (total_evicted); 4442 } 4443 4444 /* 4445 * Evict metadata buffers from the cache, such that arcstat_meta_used is 4446 * capped by the arc_meta_limit tunable. 4447 */ 4448 static uint64_t 4449 arc_evict_meta_only(uint64_t meta_used) 4450 { 4451 uint64_t total_evicted = 0; 4452 int64_t target; 4453 4454 /* 4455 * If we're over the meta limit, we want to evict enough 4456 * metadata to get back under the meta limit. We don't want to 4457 * evict so much that we drop the MRU below arc_p, though. If 4458 * we're over the meta limit more than we're over arc_p, we 4459 * evict some from the MRU here, and some from the MFU below. 4460 */ 4461 target = MIN((int64_t)(meta_used - arc_meta_limit), 4462 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4463 zfs_refcount_count(&arc_mru->arcs_size) - arc_p)); 4464 4465 total_evicted += arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4466 4467 /* 4468 * Similar to the above, we want to evict enough bytes to get us 4469 * below the meta limit, but not so much as to drop us below the 4470 * space allotted to the MFU (which is defined as arc_c - arc_p). 4471 */ 4472 target = MIN((int64_t)(meta_used - arc_meta_limit), 4473 (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) - 4474 (arc_c - arc_p))); 4475 4476 total_evicted += arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4477 4478 return (total_evicted); 4479 } 4480 4481 static uint64_t 4482 arc_evict_meta(uint64_t meta_used) 4483 { 4484 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY) 4485 return (arc_evict_meta_only(meta_used)); 4486 else 4487 return (arc_evict_meta_balanced(meta_used)); 4488 } 4489 4490 /* 4491 * Return the type of the oldest buffer in the given arc state 4492 * 4493 * This function will select a random sublist of type ARC_BUFC_DATA and 4494 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist 4495 * is compared, and the type which contains the "older" buffer will be 4496 * returned. 4497 */ 4498 static arc_buf_contents_t 4499 arc_evict_type(arc_state_t *state) 4500 { 4501 multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA]; 4502 multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA]; 4503 int data_idx = multilist_get_random_index(data_ml); 4504 int meta_idx = multilist_get_random_index(meta_ml); 4505 multilist_sublist_t *data_mls; 4506 multilist_sublist_t *meta_mls; 4507 arc_buf_contents_t type; 4508 arc_buf_hdr_t *data_hdr; 4509 arc_buf_hdr_t *meta_hdr; 4510 4511 /* 4512 * We keep the sublist lock until we're finished, to prevent 4513 * the headers from being destroyed via arc_evict_state(). 4514 */ 4515 data_mls = multilist_sublist_lock(data_ml, data_idx); 4516 meta_mls = multilist_sublist_lock(meta_ml, meta_idx); 4517 4518 /* 4519 * These two loops are to ensure we skip any markers that 4520 * might be at the tail of the lists due to arc_evict_state(). 4521 */ 4522 4523 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL; 4524 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) { 4525 if (data_hdr->b_spa != 0) 4526 break; 4527 } 4528 4529 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL; 4530 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) { 4531 if (meta_hdr->b_spa != 0) 4532 break; 4533 } 4534 4535 if (data_hdr == NULL && meta_hdr == NULL) { 4536 type = ARC_BUFC_DATA; 4537 } else if (data_hdr == NULL) { 4538 ASSERT3P(meta_hdr, !=, NULL); 4539 type = ARC_BUFC_METADATA; 4540 } else if (meta_hdr == NULL) { 4541 ASSERT3P(data_hdr, !=, NULL); 4542 type = ARC_BUFC_DATA; 4543 } else { 4544 ASSERT3P(data_hdr, !=, NULL); 4545 ASSERT3P(meta_hdr, !=, NULL); 4546 4547 /* The headers can't be on the sublist without an L1 header */ 4548 ASSERT(HDR_HAS_L1HDR(data_hdr)); 4549 ASSERT(HDR_HAS_L1HDR(meta_hdr)); 4550 4551 if (data_hdr->b_l1hdr.b_arc_access < 4552 meta_hdr->b_l1hdr.b_arc_access) { 4553 type = ARC_BUFC_DATA; 4554 } else { 4555 type = ARC_BUFC_METADATA; 4556 } 4557 } 4558 4559 multilist_sublist_unlock(meta_mls); 4560 multilist_sublist_unlock(data_mls); 4561 4562 return (type); 4563 } 4564 4565 /* 4566 * Evict buffers from the cache, such that arcstat_size is capped by arc_c. 4567 */ 4568 static uint64_t 4569 arc_evict(void) 4570 { 4571 uint64_t total_evicted = 0; 4572 uint64_t bytes; 4573 int64_t target; 4574 uint64_t asize = aggsum_value(&arc_sums.arcstat_size); 4575 uint64_t ameta = aggsum_value(&arc_sums.arcstat_meta_used); 4576 4577 /* 4578 * If we're over arc_meta_limit, we want to correct that before 4579 * potentially evicting data buffers below. 4580 */ 4581 total_evicted += arc_evict_meta(ameta); 4582 4583 /* 4584 * Adjust MRU size 4585 * 4586 * If we're over the target cache size, we want to evict enough 4587 * from the list to get back to our target size. We don't want 4588 * to evict too much from the MRU, such that it drops below 4589 * arc_p. So, if we're over our target cache size more than 4590 * the MRU is over arc_p, we'll evict enough to get back to 4591 * arc_p here, and then evict more from the MFU below. 4592 */ 4593 target = MIN((int64_t)(asize - arc_c), 4594 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4595 zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p)); 4596 4597 /* 4598 * If we're below arc_meta_min, always prefer to evict data. 4599 * Otherwise, try to satisfy the requested number of bytes to 4600 * evict from the type which contains older buffers; in an 4601 * effort to keep newer buffers in the cache regardless of their 4602 * type. If we cannot satisfy the number of bytes from this 4603 * type, spill over into the next type. 4604 */ 4605 if (arc_evict_type(arc_mru) == ARC_BUFC_METADATA && 4606 ameta > arc_meta_min) { 4607 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4608 total_evicted += bytes; 4609 4610 /* 4611 * If we couldn't evict our target number of bytes from 4612 * metadata, we try to get the rest from data. 4613 */ 4614 target -= bytes; 4615 4616 total_evicted += 4617 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4618 } else { 4619 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4620 total_evicted += bytes; 4621 4622 /* 4623 * If we couldn't evict our target number of bytes from 4624 * data, we try to get the rest from metadata. 4625 */ 4626 target -= bytes; 4627 4628 total_evicted += 4629 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4630 } 4631 4632 /* 4633 * Re-sum ARC stats after the first round of evictions. 4634 */ 4635 asize = aggsum_value(&arc_sums.arcstat_size); 4636 ameta = aggsum_value(&arc_sums.arcstat_meta_used); 4637 4638 4639 /* 4640 * Adjust MFU size 4641 * 4642 * Now that we've tried to evict enough from the MRU to get its 4643 * size back to arc_p, if we're still above the target cache 4644 * size, we evict the rest from the MFU. 4645 */ 4646 target = asize - arc_c; 4647 4648 if (arc_evict_type(arc_mfu) == ARC_BUFC_METADATA && 4649 ameta > arc_meta_min) { 4650 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4651 total_evicted += bytes; 4652 4653 /* 4654 * If we couldn't evict our target number of bytes from 4655 * metadata, we try to get the rest from data. 4656 */ 4657 target -= bytes; 4658 4659 total_evicted += 4660 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4661 } else { 4662 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4663 total_evicted += bytes; 4664 4665 /* 4666 * If we couldn't evict our target number of bytes from 4667 * data, we try to get the rest from data. 4668 */ 4669 target -= bytes; 4670 4671 total_evicted += 4672 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4673 } 4674 4675 /* 4676 * Adjust ghost lists 4677 * 4678 * In addition to the above, the ARC also defines target values 4679 * for the ghost lists. The sum of the mru list and mru ghost 4680 * list should never exceed the target size of the cache, and 4681 * the sum of the mru list, mfu list, mru ghost list, and mfu 4682 * ghost list should never exceed twice the target size of the 4683 * cache. The following logic enforces these limits on the ghost 4684 * caches, and evicts from them as needed. 4685 */ 4686 target = zfs_refcount_count(&arc_mru->arcs_size) + 4687 zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c; 4688 4689 bytes = arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA); 4690 total_evicted += bytes; 4691 4692 target -= bytes; 4693 4694 total_evicted += 4695 arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA); 4696 4697 /* 4698 * We assume the sum of the mru list and mfu list is less than 4699 * or equal to arc_c (we enforced this above), which means we 4700 * can use the simpler of the two equations below: 4701 * 4702 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c 4703 * mru ghost + mfu ghost <= arc_c 4704 */ 4705 target = zfs_refcount_count(&arc_mru_ghost->arcs_size) + 4706 zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c; 4707 4708 bytes = arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA); 4709 total_evicted += bytes; 4710 4711 target -= bytes; 4712 4713 total_evicted += 4714 arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA); 4715 4716 return (total_evicted); 4717 } 4718 4719 void 4720 arc_flush(spa_t *spa, boolean_t retry) 4721 { 4722 uint64_t guid = 0; 4723 4724 /* 4725 * If retry is B_TRUE, a spa must not be specified since we have 4726 * no good way to determine if all of a spa's buffers have been 4727 * evicted from an arc state. 4728 */ 4729 ASSERT(!retry || spa == 0); 4730 4731 if (spa != NULL) 4732 guid = spa_load_guid(spa); 4733 4734 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 4735 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 4736 4737 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 4738 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 4739 4740 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 4741 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 4742 4743 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 4744 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 4745 } 4746 4747 void 4748 arc_reduce_target_size(int64_t to_free) 4749 { 4750 uint64_t asize = aggsum_value(&arc_sums.arcstat_size); 4751 4752 /* 4753 * All callers want the ARC to actually evict (at least) this much 4754 * memory. Therefore we reduce from the lower of the current size and 4755 * the target size. This way, even if arc_c is much higher than 4756 * arc_size (as can be the case after many calls to arc_freed(), we will 4757 * immediately have arc_c < arc_size and therefore the arc_evict_zthr 4758 * will evict. 4759 */ 4760 uint64_t c = MIN(arc_c, asize); 4761 4762 if (c > to_free && c - to_free > arc_c_min) { 4763 arc_c = c - to_free; 4764 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 4765 if (arc_p > arc_c) 4766 arc_p = (arc_c >> 1); 4767 ASSERT(arc_c >= arc_c_min); 4768 ASSERT((int64_t)arc_p >= 0); 4769 } else { 4770 arc_c = arc_c_min; 4771 } 4772 4773 if (asize > arc_c) { 4774 /* See comment in arc_evict_cb_check() on why lock+flag */ 4775 mutex_enter(&arc_evict_lock); 4776 arc_evict_needed = B_TRUE; 4777 mutex_exit(&arc_evict_lock); 4778 zthr_wakeup(arc_evict_zthr); 4779 } 4780 } 4781 4782 /* 4783 * Determine if the system is under memory pressure and is asking 4784 * to reclaim memory. A return value of B_TRUE indicates that the system 4785 * is under memory pressure and that the arc should adjust accordingly. 4786 */ 4787 boolean_t 4788 arc_reclaim_needed(void) 4789 { 4790 return (arc_available_memory() < 0); 4791 } 4792 4793 void 4794 arc_kmem_reap_soon(void) 4795 { 4796 size_t i; 4797 kmem_cache_t *prev_cache = NULL; 4798 kmem_cache_t *prev_data_cache = NULL; 4799 extern kmem_cache_t *zio_buf_cache[]; 4800 extern kmem_cache_t *zio_data_buf_cache[]; 4801 4802 #ifdef _KERNEL 4803 if ((aggsum_compare(&arc_sums.arcstat_meta_used, 4804 arc_meta_limit) >= 0) && zfs_arc_meta_prune) { 4805 /* 4806 * We are exceeding our meta-data cache limit. 4807 * Prune some entries to release holds on meta-data. 4808 */ 4809 arc_prune_async(zfs_arc_meta_prune); 4810 } 4811 #if defined(_ILP32) 4812 /* 4813 * Reclaim unused memory from all kmem caches. 4814 */ 4815 kmem_reap(); 4816 #endif 4817 #endif 4818 4819 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 4820 #if defined(_ILP32) 4821 /* reach upper limit of cache size on 32-bit */ 4822 if (zio_buf_cache[i] == NULL) 4823 break; 4824 #endif 4825 if (zio_buf_cache[i] != prev_cache) { 4826 prev_cache = zio_buf_cache[i]; 4827 kmem_cache_reap_now(zio_buf_cache[i]); 4828 } 4829 if (zio_data_buf_cache[i] != prev_data_cache) { 4830 prev_data_cache = zio_data_buf_cache[i]; 4831 kmem_cache_reap_now(zio_data_buf_cache[i]); 4832 } 4833 } 4834 kmem_cache_reap_now(buf_cache); 4835 kmem_cache_reap_now(hdr_full_cache); 4836 kmem_cache_reap_now(hdr_l2only_cache); 4837 kmem_cache_reap_now(zfs_btree_leaf_cache); 4838 abd_cache_reap_now(); 4839 } 4840 4841 /* ARGSUSED */ 4842 static boolean_t 4843 arc_evict_cb_check(void *arg, zthr_t *zthr) 4844 { 4845 #ifdef ZFS_DEBUG 4846 /* 4847 * This is necessary in order to keep the kstat information 4848 * up to date for tools that display kstat data such as the 4849 * mdb ::arc dcmd and the Linux crash utility. These tools 4850 * typically do not call kstat's update function, but simply 4851 * dump out stats from the most recent update. Without 4852 * this call, these commands may show stale stats for the 4853 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 4854 * with this call, the data might be out of date if the 4855 * evict thread hasn't been woken recently; but that should 4856 * suffice. The arc_state_t structures can be queried 4857 * directly if more accurate information is needed. 4858 */ 4859 if (arc_ksp != NULL) 4860 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 4861 #endif 4862 4863 /* 4864 * We have to rely on arc_wait_for_eviction() to tell us when to 4865 * evict, rather than checking if we are overflowing here, so that we 4866 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv. 4867 * If we have become "not overflowing" since arc_wait_for_eviction() 4868 * checked, we need to wake it up. We could broadcast the CV here, 4869 * but arc_wait_for_eviction() may have not yet gone to sleep. We 4870 * would need to use a mutex to ensure that this function doesn't 4871 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g. 4872 * the arc_evict_lock). However, the lock ordering of such a lock 4873 * would necessarily be incorrect with respect to the zthr_lock, 4874 * which is held before this function is called, and is held by 4875 * arc_wait_for_eviction() when it calls zthr_wakeup(). 4876 */ 4877 return (arc_evict_needed); 4878 } 4879 4880 /* 4881 * Keep arc_size under arc_c by running arc_evict which evicts data 4882 * from the ARC. 4883 */ 4884 /* ARGSUSED */ 4885 static void 4886 arc_evict_cb(void *arg, zthr_t *zthr) 4887 { 4888 uint64_t evicted = 0; 4889 fstrans_cookie_t cookie = spl_fstrans_mark(); 4890 4891 /* Evict from cache */ 4892 evicted = arc_evict(); 4893 4894 /* 4895 * If evicted is zero, we couldn't evict anything 4896 * via arc_evict(). This could be due to hash lock 4897 * collisions, but more likely due to the majority of 4898 * arc buffers being unevictable. Therefore, even if 4899 * arc_size is above arc_c, another pass is unlikely to 4900 * be helpful and could potentially cause us to enter an 4901 * infinite loop. Additionally, zthr_iscancelled() is 4902 * checked here so that if the arc is shutting down, the 4903 * broadcast will wake any remaining arc evict waiters. 4904 */ 4905 mutex_enter(&arc_evict_lock); 4906 arc_evict_needed = !zthr_iscancelled(arc_evict_zthr) && 4907 evicted > 0 && aggsum_compare(&arc_sums.arcstat_size, arc_c) > 0; 4908 if (!arc_evict_needed) { 4909 /* 4910 * We're either no longer overflowing, or we 4911 * can't evict anything more, so we should wake 4912 * arc_get_data_impl() sooner. 4913 */ 4914 arc_evict_waiter_t *aw; 4915 while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) { 4916 cv_broadcast(&aw->aew_cv); 4917 } 4918 arc_set_need_free(); 4919 } 4920 mutex_exit(&arc_evict_lock); 4921 spl_fstrans_unmark(cookie); 4922 } 4923 4924 /* ARGSUSED */ 4925 static boolean_t 4926 arc_reap_cb_check(void *arg, zthr_t *zthr) 4927 { 4928 int64_t free_memory = arc_available_memory(); 4929 static int reap_cb_check_counter = 0; 4930 4931 /* 4932 * If a kmem reap is already active, don't schedule more. We must 4933 * check for this because kmem_cache_reap_soon() won't actually 4934 * block on the cache being reaped (this is to prevent callers from 4935 * becoming implicitly blocked by a system-wide kmem reap -- which, 4936 * on a system with many, many full magazines, can take minutes). 4937 */ 4938 if (!kmem_cache_reap_active() && free_memory < 0) { 4939 4940 arc_no_grow = B_TRUE; 4941 arc_warm = B_TRUE; 4942 /* 4943 * Wait at least zfs_grow_retry (default 5) seconds 4944 * before considering growing. 4945 */ 4946 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry); 4947 return (B_TRUE); 4948 } else if (free_memory < arc_c >> arc_no_grow_shift) { 4949 arc_no_grow = B_TRUE; 4950 } else if (gethrtime() >= arc_growtime) { 4951 arc_no_grow = B_FALSE; 4952 } 4953 4954 /* 4955 * Called unconditionally every 60 seconds to reclaim unused 4956 * zstd compression and decompression context. This is done 4957 * here to avoid the need for an independent thread. 4958 */ 4959 if (!((reap_cb_check_counter++) % 60)) 4960 zfs_zstd_cache_reap_now(); 4961 4962 return (B_FALSE); 4963 } 4964 4965 /* 4966 * Keep enough free memory in the system by reaping the ARC's kmem 4967 * caches. To cause more slabs to be reapable, we may reduce the 4968 * target size of the cache (arc_c), causing the arc_evict_cb() 4969 * to free more buffers. 4970 */ 4971 /* ARGSUSED */ 4972 static void 4973 arc_reap_cb(void *arg, zthr_t *zthr) 4974 { 4975 int64_t free_memory; 4976 fstrans_cookie_t cookie = spl_fstrans_mark(); 4977 4978 /* 4979 * Kick off asynchronous kmem_reap()'s of all our caches. 4980 */ 4981 arc_kmem_reap_soon(); 4982 4983 /* 4984 * Wait at least arc_kmem_cache_reap_retry_ms between 4985 * arc_kmem_reap_soon() calls. Without this check it is possible to 4986 * end up in a situation where we spend lots of time reaping 4987 * caches, while we're near arc_c_min. Waiting here also gives the 4988 * subsequent free memory check a chance of finding that the 4989 * asynchronous reap has already freed enough memory, and we don't 4990 * need to call arc_reduce_target_size(). 4991 */ 4992 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000); 4993 4994 /* 4995 * Reduce the target size as needed to maintain the amount of free 4996 * memory in the system at a fraction of the arc_size (1/128th by 4997 * default). If oversubscribed (free_memory < 0) then reduce the 4998 * target arc_size by the deficit amount plus the fractional 4999 * amount. If free memory is positive but less than the fractional 5000 * amount, reduce by what is needed to hit the fractional amount. 5001 */ 5002 free_memory = arc_available_memory(); 5003 5004 int64_t to_free = 5005 (arc_c >> arc_shrink_shift) - free_memory; 5006 if (to_free > 0) { 5007 arc_reduce_target_size(to_free); 5008 } 5009 spl_fstrans_unmark(cookie); 5010 } 5011 5012 #ifdef _KERNEL 5013 /* 5014 * Determine the amount of memory eligible for eviction contained in the 5015 * ARC. All clean data reported by the ghost lists can always be safely 5016 * evicted. Due to arc_c_min, the same does not hold for all clean data 5017 * contained by the regular mru and mfu lists. 5018 * 5019 * In the case of the regular mru and mfu lists, we need to report as 5020 * much clean data as possible, such that evicting that same reported 5021 * data will not bring arc_size below arc_c_min. Thus, in certain 5022 * circumstances, the total amount of clean data in the mru and mfu 5023 * lists might not actually be evictable. 5024 * 5025 * The following two distinct cases are accounted for: 5026 * 5027 * 1. The sum of the amount of dirty data contained by both the mru and 5028 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 5029 * is greater than or equal to arc_c_min. 5030 * (i.e. amount of dirty data >= arc_c_min) 5031 * 5032 * This is the easy case; all clean data contained by the mru and mfu 5033 * lists is evictable. Evicting all clean data can only drop arc_size 5034 * to the amount of dirty data, which is greater than arc_c_min. 5035 * 5036 * 2. The sum of the amount of dirty data contained by both the mru and 5037 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 5038 * is less than arc_c_min. 5039 * (i.e. arc_c_min > amount of dirty data) 5040 * 5041 * 2.1. arc_size is greater than or equal arc_c_min. 5042 * (i.e. arc_size >= arc_c_min > amount of dirty data) 5043 * 5044 * In this case, not all clean data from the regular mru and mfu 5045 * lists is actually evictable; we must leave enough clean data 5046 * to keep arc_size above arc_c_min. Thus, the maximum amount of 5047 * evictable data from the two lists combined, is exactly the 5048 * difference between arc_size and arc_c_min. 5049 * 5050 * 2.2. arc_size is less than arc_c_min 5051 * (i.e. arc_c_min > arc_size > amount of dirty data) 5052 * 5053 * In this case, none of the data contained in the mru and mfu 5054 * lists is evictable, even if it's clean. Since arc_size is 5055 * already below arc_c_min, evicting any more would only 5056 * increase this negative difference. 5057 */ 5058 5059 #endif /* _KERNEL */ 5060 5061 /* 5062 * Adapt arc info given the number of bytes we are trying to add and 5063 * the state that we are coming from. This function is only called 5064 * when we are adding new content to the cache. 5065 */ 5066 static void 5067 arc_adapt(int bytes, arc_state_t *state) 5068 { 5069 int mult; 5070 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 5071 int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size); 5072 int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size); 5073 5074 ASSERT(bytes > 0); 5075 /* 5076 * Adapt the target size of the MRU list: 5077 * - if we just hit in the MRU ghost list, then increase 5078 * the target size of the MRU list. 5079 * - if we just hit in the MFU ghost list, then increase 5080 * the target size of the MFU list by decreasing the 5081 * target size of the MRU list. 5082 */ 5083 if (state == arc_mru_ghost) { 5084 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size); 5085 if (!zfs_arc_p_dampener_disable) 5086 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 5087 5088 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 5089 } else if (state == arc_mfu_ghost) { 5090 uint64_t delta; 5091 5092 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size); 5093 if (!zfs_arc_p_dampener_disable) 5094 mult = MIN(mult, 10); 5095 5096 delta = MIN(bytes * mult, arc_p); 5097 arc_p = MAX(arc_p_min, arc_p - delta); 5098 } 5099 ASSERT((int64_t)arc_p >= 0); 5100 5101 /* 5102 * Wake reap thread if we do not have any available memory 5103 */ 5104 if (arc_reclaim_needed()) { 5105 zthr_wakeup(arc_reap_zthr); 5106 return; 5107 } 5108 5109 if (arc_no_grow) 5110 return; 5111 5112 if (arc_c >= arc_c_max) 5113 return; 5114 5115 /* 5116 * If we're within (2 * maxblocksize) bytes of the target 5117 * cache size, increment the target cache size 5118 */ 5119 ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT); 5120 if (aggsum_upper_bound(&arc_sums.arcstat_size) >= 5121 arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 5122 atomic_add_64(&arc_c, (int64_t)bytes); 5123 if (arc_c > arc_c_max) 5124 arc_c = arc_c_max; 5125 else if (state == arc_anon) 5126 atomic_add_64(&arc_p, (int64_t)bytes); 5127 if (arc_p > arc_c) 5128 arc_p = arc_c; 5129 } 5130 ASSERT((int64_t)arc_p >= 0); 5131 } 5132 5133 /* 5134 * Check if arc_size has grown past our upper threshold, determined by 5135 * zfs_arc_overflow_shift. 5136 */ 5137 boolean_t 5138 arc_is_overflowing(void) 5139 { 5140 /* Always allow at least one block of overflow */ 5141 int64_t overflow = MAX(SPA_MAXBLOCKSIZE, 5142 arc_c >> zfs_arc_overflow_shift); 5143 5144 /* 5145 * We just compare the lower bound here for performance reasons. Our 5146 * primary goals are to make sure that the arc never grows without 5147 * bound, and that it can reach its maximum size. This check 5148 * accomplishes both goals. The maximum amount we could run over by is 5149 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block 5150 * in the ARC. In practice, that's in the tens of MB, which is low 5151 * enough to be safe. 5152 */ 5153 return (aggsum_lower_bound(&arc_sums.arcstat_size) >= 5154 (int64_t)arc_c + overflow); 5155 } 5156 5157 static abd_t * 5158 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 5159 boolean_t do_adapt) 5160 { 5161 arc_buf_contents_t type = arc_buf_type(hdr); 5162 5163 arc_get_data_impl(hdr, size, tag, do_adapt); 5164 if (type == ARC_BUFC_METADATA) { 5165 return (abd_alloc(size, B_TRUE)); 5166 } else { 5167 ASSERT(type == ARC_BUFC_DATA); 5168 return (abd_alloc(size, B_FALSE)); 5169 } 5170 } 5171 5172 static void * 5173 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 5174 { 5175 arc_buf_contents_t type = arc_buf_type(hdr); 5176 5177 arc_get_data_impl(hdr, size, tag, B_TRUE); 5178 if (type == ARC_BUFC_METADATA) { 5179 return (zio_buf_alloc(size)); 5180 } else { 5181 ASSERT(type == ARC_BUFC_DATA); 5182 return (zio_data_buf_alloc(size)); 5183 } 5184 } 5185 5186 /* 5187 * Wait for the specified amount of data (in bytes) to be evicted from the 5188 * ARC, and for there to be sufficient free memory in the system. Waiting for 5189 * eviction ensures that the memory used by the ARC decreases. Waiting for 5190 * free memory ensures that the system won't run out of free pages, regardless 5191 * of ARC behavior and settings. See arc_lowmem_init(). 5192 */ 5193 void 5194 arc_wait_for_eviction(uint64_t amount) 5195 { 5196 mutex_enter(&arc_evict_lock); 5197 if (arc_is_overflowing()) { 5198 arc_evict_needed = B_TRUE; 5199 zthr_wakeup(arc_evict_zthr); 5200 5201 if (amount != 0) { 5202 arc_evict_waiter_t aw; 5203 list_link_init(&aw.aew_node); 5204 cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL); 5205 5206 uint64_t last_count = 0; 5207 if (!list_is_empty(&arc_evict_waiters)) { 5208 arc_evict_waiter_t *last = 5209 list_tail(&arc_evict_waiters); 5210 last_count = last->aew_count; 5211 } 5212 /* 5213 * Note, the last waiter's count may be less than 5214 * arc_evict_count if we are low on memory in which 5215 * case arc_evict_state_impl() may have deferred 5216 * wakeups (but still incremented arc_evict_count). 5217 */ 5218 aw.aew_count = 5219 MAX(last_count, arc_evict_count) + amount; 5220 5221 list_insert_tail(&arc_evict_waiters, &aw); 5222 5223 arc_set_need_free(); 5224 5225 DTRACE_PROBE3(arc__wait__for__eviction, 5226 uint64_t, amount, 5227 uint64_t, arc_evict_count, 5228 uint64_t, aw.aew_count); 5229 5230 /* 5231 * We will be woken up either when arc_evict_count 5232 * reaches aew_count, or when the ARC is no longer 5233 * overflowing and eviction completes. 5234 */ 5235 cv_wait(&aw.aew_cv, &arc_evict_lock); 5236 5237 /* 5238 * In case of "false" wakeup, we will still be on the 5239 * list. 5240 */ 5241 if (list_link_active(&aw.aew_node)) 5242 list_remove(&arc_evict_waiters, &aw); 5243 5244 cv_destroy(&aw.aew_cv); 5245 } 5246 } 5247 mutex_exit(&arc_evict_lock); 5248 } 5249 5250 /* 5251 * Allocate a block and return it to the caller. If we are hitting the 5252 * hard limit for the cache size, we must sleep, waiting for the eviction 5253 * thread to catch up. If we're past the target size but below the hard 5254 * limit, we'll only signal the reclaim thread and continue on. 5255 */ 5256 static void 5257 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 5258 boolean_t do_adapt) 5259 { 5260 arc_state_t *state = hdr->b_l1hdr.b_state; 5261 arc_buf_contents_t type = arc_buf_type(hdr); 5262 5263 if (do_adapt) 5264 arc_adapt(size, state); 5265 5266 /* 5267 * If arc_size is currently overflowing, we must be adding data 5268 * faster than we are evicting. To ensure we don't compound the 5269 * problem by adding more data and forcing arc_size to grow even 5270 * further past it's target size, we wait for the eviction thread to 5271 * make some progress. We also wait for there to be sufficient free 5272 * memory in the system, as measured by arc_free_memory(). 5273 * 5274 * Specifically, we wait for zfs_arc_eviction_pct percent of the 5275 * requested size to be evicted. This should be more than 100%, to 5276 * ensure that that progress is also made towards getting arc_size 5277 * under arc_c. See the comment above zfs_arc_eviction_pct. 5278 * 5279 * We do the overflowing check without holding the arc_evict_lock to 5280 * reduce lock contention in this hot path. Note that 5281 * arc_wait_for_eviction() will acquire the lock and check again to 5282 * ensure we are truly overflowing before blocking. 5283 */ 5284 if (arc_is_overflowing()) { 5285 arc_wait_for_eviction(size * 5286 zfs_arc_eviction_pct / 100); 5287 } 5288 5289 VERIFY3U(hdr->b_type, ==, type); 5290 if (type == ARC_BUFC_METADATA) { 5291 arc_space_consume(size, ARC_SPACE_META); 5292 } else { 5293 arc_space_consume(size, ARC_SPACE_DATA); 5294 } 5295 5296 /* 5297 * Update the state size. Note that ghost states have a 5298 * "ghost size" and so don't need to be updated. 5299 */ 5300 if (!GHOST_STATE(state)) { 5301 5302 (void) zfs_refcount_add_many(&state->arcs_size, size, tag); 5303 5304 /* 5305 * If this is reached via arc_read, the link is 5306 * protected by the hash lock. If reached via 5307 * arc_buf_alloc, the header should not be accessed by 5308 * any other thread. And, if reached via arc_read_done, 5309 * the hash lock will protect it if it's found in the 5310 * hash table; otherwise no other thread should be 5311 * trying to [add|remove]_reference it. 5312 */ 5313 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5314 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5315 (void) zfs_refcount_add_many(&state->arcs_esize[type], 5316 size, tag); 5317 } 5318 5319 /* 5320 * If we are growing the cache, and we are adding anonymous 5321 * data, and we have outgrown arc_p, update arc_p 5322 */ 5323 if (aggsum_upper_bound(&arc_sums.arcstat_size) < arc_c && 5324 hdr->b_l1hdr.b_state == arc_anon && 5325 (zfs_refcount_count(&arc_anon->arcs_size) + 5326 zfs_refcount_count(&arc_mru->arcs_size) > arc_p)) 5327 arc_p = MIN(arc_c, arc_p + size); 5328 } 5329 } 5330 5331 static void 5332 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag) 5333 { 5334 arc_free_data_impl(hdr, size, tag); 5335 abd_free(abd); 5336 } 5337 5338 static void 5339 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag) 5340 { 5341 arc_buf_contents_t type = arc_buf_type(hdr); 5342 5343 arc_free_data_impl(hdr, size, tag); 5344 if (type == ARC_BUFC_METADATA) { 5345 zio_buf_free(buf, size); 5346 } else { 5347 ASSERT(type == ARC_BUFC_DATA); 5348 zio_data_buf_free(buf, size); 5349 } 5350 } 5351 5352 /* 5353 * Free the arc data buffer. 5354 */ 5355 static void 5356 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 5357 { 5358 arc_state_t *state = hdr->b_l1hdr.b_state; 5359 arc_buf_contents_t type = arc_buf_type(hdr); 5360 5361 /* protected by hash lock, if in the hash table */ 5362 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5363 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5364 ASSERT(state != arc_anon && state != arc_l2c_only); 5365 5366 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 5367 size, tag); 5368 } 5369 (void) zfs_refcount_remove_many(&state->arcs_size, size, tag); 5370 5371 VERIFY3U(hdr->b_type, ==, type); 5372 if (type == ARC_BUFC_METADATA) { 5373 arc_space_return(size, ARC_SPACE_META); 5374 } else { 5375 ASSERT(type == ARC_BUFC_DATA); 5376 arc_space_return(size, ARC_SPACE_DATA); 5377 } 5378 } 5379 5380 /* 5381 * This routine is called whenever a buffer is accessed. 5382 * NOTE: the hash lock is dropped in this function. 5383 */ 5384 static void 5385 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 5386 { 5387 clock_t now; 5388 5389 ASSERT(MUTEX_HELD(hash_lock)); 5390 ASSERT(HDR_HAS_L1HDR(hdr)); 5391 5392 if (hdr->b_l1hdr.b_state == arc_anon) { 5393 /* 5394 * This buffer is not in the cache, and does not 5395 * appear in our "ghost" list. Add the new buffer 5396 * to the MRU state. 5397 */ 5398 5399 ASSERT0(hdr->b_l1hdr.b_arc_access); 5400 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5401 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5402 arc_change_state(arc_mru, hdr, hash_lock); 5403 5404 } else if (hdr->b_l1hdr.b_state == arc_mru) { 5405 now = ddi_get_lbolt(); 5406 5407 /* 5408 * If this buffer is here because of a prefetch, then either: 5409 * - clear the flag if this is a "referencing" read 5410 * (any subsequent access will bump this into the MFU state). 5411 * or 5412 * - move the buffer to the head of the list if this is 5413 * another prefetch (to make it less likely to be evicted). 5414 */ 5415 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5416 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 5417 /* link protected by hash lock */ 5418 ASSERT(multilist_link_active( 5419 &hdr->b_l1hdr.b_arc_node)); 5420 } else { 5421 if (HDR_HAS_L2HDR(hdr)) 5422 l2arc_hdr_arcstats_decrement_state(hdr); 5423 arc_hdr_clear_flags(hdr, 5424 ARC_FLAG_PREFETCH | 5425 ARC_FLAG_PRESCIENT_PREFETCH); 5426 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits); 5427 ARCSTAT_BUMP(arcstat_mru_hits); 5428 if (HDR_HAS_L2HDR(hdr)) 5429 l2arc_hdr_arcstats_increment_state(hdr); 5430 } 5431 hdr->b_l1hdr.b_arc_access = now; 5432 return; 5433 } 5434 5435 /* 5436 * This buffer has been "accessed" only once so far, 5437 * but it is still in the cache. Move it to the MFU 5438 * state. 5439 */ 5440 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access + 5441 ARC_MINTIME)) { 5442 /* 5443 * More than 125ms have passed since we 5444 * instantiated this buffer. Move it to the 5445 * most frequently used state. 5446 */ 5447 hdr->b_l1hdr.b_arc_access = now; 5448 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5449 arc_change_state(arc_mfu, hdr, hash_lock); 5450 } 5451 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits); 5452 ARCSTAT_BUMP(arcstat_mru_hits); 5453 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 5454 arc_state_t *new_state; 5455 /* 5456 * This buffer has been "accessed" recently, but 5457 * was evicted from the cache. Move it to the 5458 * MFU state. 5459 */ 5460 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5461 new_state = arc_mru; 5462 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) { 5463 if (HDR_HAS_L2HDR(hdr)) 5464 l2arc_hdr_arcstats_decrement_state(hdr); 5465 arc_hdr_clear_flags(hdr, 5466 ARC_FLAG_PREFETCH | 5467 ARC_FLAG_PRESCIENT_PREFETCH); 5468 if (HDR_HAS_L2HDR(hdr)) 5469 l2arc_hdr_arcstats_increment_state(hdr); 5470 } 5471 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5472 } else { 5473 new_state = arc_mfu; 5474 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5475 } 5476 5477 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5478 arc_change_state(new_state, hdr, hash_lock); 5479 5480 atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits); 5481 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 5482 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 5483 /* 5484 * This buffer has been accessed more than once and is 5485 * still in the cache. Keep it in the MFU state. 5486 * 5487 * NOTE: an add_reference() that occurred when we did 5488 * the arc_read() will have kicked this off the list. 5489 * If it was a prefetch, we will explicitly move it to 5490 * the head of the list now. 5491 */ 5492 5493 atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits); 5494 ARCSTAT_BUMP(arcstat_mfu_hits); 5495 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5496 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 5497 arc_state_t *new_state = arc_mfu; 5498 /* 5499 * This buffer has been accessed more than once but has 5500 * been evicted from the cache. Move it back to the 5501 * MFU state. 5502 */ 5503 5504 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5505 /* 5506 * This is a prefetch access... 5507 * move this block back to the MRU state. 5508 */ 5509 new_state = arc_mru; 5510 } 5511 5512 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5513 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5514 arc_change_state(new_state, hdr, hash_lock); 5515 5516 atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits); 5517 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 5518 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 5519 /* 5520 * This buffer is on the 2nd Level ARC. 5521 */ 5522 5523 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5524 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5525 arc_change_state(arc_mfu, hdr, hash_lock); 5526 } else { 5527 cmn_err(CE_PANIC, "invalid arc state 0x%p", 5528 hdr->b_l1hdr.b_state); 5529 } 5530 } 5531 5532 /* 5533 * This routine is called by dbuf_hold() to update the arc_access() state 5534 * which otherwise would be skipped for entries in the dbuf cache. 5535 */ 5536 void 5537 arc_buf_access(arc_buf_t *buf) 5538 { 5539 mutex_enter(&buf->b_evict_lock); 5540 arc_buf_hdr_t *hdr = buf->b_hdr; 5541 5542 /* 5543 * Avoid taking the hash_lock when possible as an optimization. 5544 * The header must be checked again under the hash_lock in order 5545 * to handle the case where it is concurrently being released. 5546 */ 5547 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5548 mutex_exit(&buf->b_evict_lock); 5549 return; 5550 } 5551 5552 kmutex_t *hash_lock = HDR_LOCK(hdr); 5553 mutex_enter(hash_lock); 5554 5555 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5556 mutex_exit(hash_lock); 5557 mutex_exit(&buf->b_evict_lock); 5558 ARCSTAT_BUMP(arcstat_access_skip); 5559 return; 5560 } 5561 5562 mutex_exit(&buf->b_evict_lock); 5563 5564 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5565 hdr->b_l1hdr.b_state == arc_mfu); 5566 5567 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5568 arc_access(hdr, hash_lock); 5569 mutex_exit(hash_lock); 5570 5571 ARCSTAT_BUMP(arcstat_hits); 5572 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr) && !HDR_PRESCIENT_PREFETCH(hdr), 5573 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits); 5574 } 5575 5576 /* a generic arc_read_done_func_t which you can use */ 5577 /* ARGSUSED */ 5578 void 5579 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5580 arc_buf_t *buf, void *arg) 5581 { 5582 if (buf == NULL) 5583 return; 5584 5585 bcopy(buf->b_data, arg, arc_buf_size(buf)); 5586 arc_buf_destroy(buf, arg); 5587 } 5588 5589 /* a generic arc_read_done_func_t */ 5590 /* ARGSUSED */ 5591 void 5592 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5593 arc_buf_t *buf, void *arg) 5594 { 5595 arc_buf_t **bufp = arg; 5596 5597 if (buf == NULL) { 5598 ASSERT(zio == NULL || zio->io_error != 0); 5599 *bufp = NULL; 5600 } else { 5601 ASSERT(zio == NULL || zio->io_error == 0); 5602 *bufp = buf; 5603 ASSERT(buf->b_data != NULL); 5604 } 5605 } 5606 5607 static void 5608 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp) 5609 { 5610 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 5611 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0); 5612 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF); 5613 } else { 5614 if (HDR_COMPRESSION_ENABLED(hdr)) { 5615 ASSERT3U(arc_hdr_get_compress(hdr), ==, 5616 BP_GET_COMPRESS(bp)); 5617 } 5618 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 5619 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); 5620 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp)); 5621 } 5622 } 5623 5624 static void 5625 arc_read_done(zio_t *zio) 5626 { 5627 blkptr_t *bp = zio->io_bp; 5628 arc_buf_hdr_t *hdr = zio->io_private; 5629 kmutex_t *hash_lock = NULL; 5630 arc_callback_t *callback_list; 5631 arc_callback_t *acb; 5632 boolean_t freeable = B_FALSE; 5633 5634 /* 5635 * The hdr was inserted into hash-table and removed from lists 5636 * prior to starting I/O. We should find this header, since 5637 * it's in the hash table, and it should be legit since it's 5638 * not possible to evict it during the I/O. The only possible 5639 * reason for it not to be found is if we were freed during the 5640 * read. 5641 */ 5642 if (HDR_IN_HASH_TABLE(hdr)) { 5643 arc_buf_hdr_t *found; 5644 5645 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 5646 ASSERT3U(hdr->b_dva.dva_word[0], ==, 5647 BP_IDENTITY(zio->io_bp)->dva_word[0]); 5648 ASSERT3U(hdr->b_dva.dva_word[1], ==, 5649 BP_IDENTITY(zio->io_bp)->dva_word[1]); 5650 5651 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock); 5652 5653 ASSERT((found == hdr && 5654 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 5655 (found == hdr && HDR_L2_READING(hdr))); 5656 ASSERT3P(hash_lock, !=, NULL); 5657 } 5658 5659 if (BP_IS_PROTECTED(bp)) { 5660 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 5661 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 5662 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 5663 hdr->b_crypt_hdr.b_iv); 5664 5665 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) { 5666 void *tmpbuf; 5667 5668 tmpbuf = abd_borrow_buf_copy(zio->io_abd, 5669 sizeof (zil_chain_t)); 5670 zio_crypt_decode_mac_zil(tmpbuf, 5671 hdr->b_crypt_hdr.b_mac); 5672 abd_return_buf(zio->io_abd, tmpbuf, 5673 sizeof (zil_chain_t)); 5674 } else { 5675 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 5676 } 5677 } 5678 5679 if (zio->io_error == 0) { 5680 /* byteswap if necessary */ 5681 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 5682 if (BP_GET_LEVEL(zio->io_bp) > 0) { 5683 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 5684 } else { 5685 hdr->b_l1hdr.b_byteswap = 5686 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 5687 } 5688 } else { 5689 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 5690 } 5691 if (!HDR_L2_READING(hdr)) { 5692 hdr->b_complevel = zio->io_prop.zp_complevel; 5693 } 5694 } 5695 5696 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); 5697 if (l2arc_noprefetch && HDR_PREFETCH(hdr)) 5698 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE); 5699 5700 callback_list = hdr->b_l1hdr.b_acb; 5701 ASSERT3P(callback_list, !=, NULL); 5702 5703 if (hash_lock && zio->io_error == 0 && 5704 hdr->b_l1hdr.b_state == arc_anon) { 5705 /* 5706 * Only call arc_access on anonymous buffers. This is because 5707 * if we've issued an I/O for an evicted buffer, we've already 5708 * called arc_access (to prevent any simultaneous readers from 5709 * getting confused). 5710 */ 5711 arc_access(hdr, hash_lock); 5712 } 5713 5714 /* 5715 * If a read request has a callback (i.e. acb_done is not NULL), then we 5716 * make a buf containing the data according to the parameters which were 5717 * passed in. The implementation of arc_buf_alloc_impl() ensures that we 5718 * aren't needlessly decompressing the data multiple times. 5719 */ 5720 int callback_cnt = 0; 5721 for (acb = callback_list; acb != NULL; acb = acb->acb_next) { 5722 if (!acb->acb_done || acb->acb_nobuf) 5723 continue; 5724 5725 callback_cnt++; 5726 5727 if (zio->io_error != 0) 5728 continue; 5729 5730 int error = arc_buf_alloc_impl(hdr, zio->io_spa, 5731 &acb->acb_zb, acb->acb_private, acb->acb_encrypted, 5732 acb->acb_compressed, acb->acb_noauth, B_TRUE, 5733 &acb->acb_buf); 5734 5735 /* 5736 * Assert non-speculative zios didn't fail because an 5737 * encryption key wasn't loaded 5738 */ 5739 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) || 5740 error != EACCES); 5741 5742 /* 5743 * If we failed to decrypt, report an error now (as the zio 5744 * layer would have done if it had done the transforms). 5745 */ 5746 if (error == ECKSUM) { 5747 ASSERT(BP_IS_PROTECTED(bp)); 5748 error = SET_ERROR(EIO); 5749 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5750 spa_log_error(zio->io_spa, &acb->acb_zb); 5751 (void) zfs_ereport_post( 5752 FM_EREPORT_ZFS_AUTHENTICATION, 5753 zio->io_spa, NULL, &acb->acb_zb, zio, 0); 5754 } 5755 } 5756 5757 if (error != 0) { 5758 /* 5759 * Decompression or decryption failed. Set 5760 * io_error so that when we call acb_done 5761 * (below), we will indicate that the read 5762 * failed. Note that in the unusual case 5763 * where one callback is compressed and another 5764 * uncompressed, we will mark all of them 5765 * as failed, even though the uncompressed 5766 * one can't actually fail. In this case, 5767 * the hdr will not be anonymous, because 5768 * if there are multiple callbacks, it's 5769 * because multiple threads found the same 5770 * arc buf in the hash table. 5771 */ 5772 zio->io_error = error; 5773 } 5774 } 5775 5776 /* 5777 * If there are multiple callbacks, we must have the hash lock, 5778 * because the only way for multiple threads to find this hdr is 5779 * in the hash table. This ensures that if there are multiple 5780 * callbacks, the hdr is not anonymous. If it were anonymous, 5781 * we couldn't use arc_buf_destroy() in the error case below. 5782 */ 5783 ASSERT(callback_cnt < 2 || hash_lock != NULL); 5784 5785 hdr->b_l1hdr.b_acb = NULL; 5786 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5787 if (callback_cnt == 0) 5788 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 5789 5790 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) || 5791 callback_list != NULL); 5792 5793 if (zio->io_error == 0) { 5794 arc_hdr_verify(hdr, zio->io_bp); 5795 } else { 5796 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 5797 if (hdr->b_l1hdr.b_state != arc_anon) 5798 arc_change_state(arc_anon, hdr, hash_lock); 5799 if (HDR_IN_HASH_TABLE(hdr)) 5800 buf_hash_remove(hdr); 5801 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5802 } 5803 5804 /* 5805 * Broadcast before we drop the hash_lock to avoid the possibility 5806 * that the hdr (and hence the cv) might be freed before we get to 5807 * the cv_broadcast(). 5808 */ 5809 cv_broadcast(&hdr->b_l1hdr.b_cv); 5810 5811 if (hash_lock != NULL) { 5812 mutex_exit(hash_lock); 5813 } else { 5814 /* 5815 * This block was freed while we waited for the read to 5816 * complete. It has been removed from the hash table and 5817 * moved to the anonymous state (so that it won't show up 5818 * in the cache). 5819 */ 5820 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 5821 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5822 } 5823 5824 /* execute each callback and free its structure */ 5825 while ((acb = callback_list) != NULL) { 5826 if (acb->acb_done != NULL) { 5827 if (zio->io_error != 0 && acb->acb_buf != NULL) { 5828 /* 5829 * If arc_buf_alloc_impl() fails during 5830 * decompression, the buf will still be 5831 * allocated, and needs to be freed here. 5832 */ 5833 arc_buf_destroy(acb->acb_buf, 5834 acb->acb_private); 5835 acb->acb_buf = NULL; 5836 } 5837 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp, 5838 acb->acb_buf, acb->acb_private); 5839 } 5840 5841 if (acb->acb_zio_dummy != NULL) { 5842 acb->acb_zio_dummy->io_error = zio->io_error; 5843 zio_nowait(acb->acb_zio_dummy); 5844 } 5845 5846 callback_list = acb->acb_next; 5847 kmem_free(acb, sizeof (arc_callback_t)); 5848 } 5849 5850 if (freeable) 5851 arc_hdr_destroy(hdr); 5852 } 5853 5854 /* 5855 * "Read" the block at the specified DVA (in bp) via the 5856 * cache. If the block is found in the cache, invoke the provided 5857 * callback immediately and return. Note that the `zio' parameter 5858 * in the callback will be NULL in this case, since no IO was 5859 * required. If the block is not in the cache pass the read request 5860 * on to the spa with a substitute callback function, so that the 5861 * requested block will be added to the cache. 5862 * 5863 * If a read request arrives for a block that has a read in-progress, 5864 * either wait for the in-progress read to complete (and return the 5865 * results); or, if this is a read with a "done" func, add a record 5866 * to the read to invoke the "done" func when the read completes, 5867 * and return; or just return. 5868 * 5869 * arc_read_done() will invoke all the requested "done" functions 5870 * for readers of this block. 5871 */ 5872 int 5873 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 5874 arc_read_done_func_t *done, void *private, zio_priority_t priority, 5875 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 5876 { 5877 arc_buf_hdr_t *hdr = NULL; 5878 kmutex_t *hash_lock = NULL; 5879 zio_t *rzio; 5880 uint64_t guid = spa_load_guid(spa); 5881 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0; 5882 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) && 5883 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5884 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) && 5885 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5886 boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp); 5887 boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF; 5888 int rc = 0; 5889 5890 ASSERT(!embedded_bp || 5891 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 5892 ASSERT(!BP_IS_HOLE(bp)); 5893 ASSERT(!BP_IS_REDACTED(bp)); 5894 5895 /* 5896 * Normally SPL_FSTRANS will already be set since kernel threads which 5897 * expect to call the DMU interfaces will set it when created. System 5898 * calls are similarly handled by setting/cleaning the bit in the 5899 * registered callback (module/os/.../zfs/zpl_*). 5900 * 5901 * External consumers such as Lustre which call the exported DMU 5902 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock 5903 * on the hash_lock always set and clear the bit. 5904 */ 5905 fstrans_cookie_t cookie = spl_fstrans_mark(); 5906 top: 5907 if (!embedded_bp) { 5908 /* 5909 * Embedded BP's have no DVA and require no I/O to "read". 5910 * Create an anonymous arc buf to back it. 5911 */ 5912 if (!zfs_blkptr_verify(spa, bp, zio_flags & 5913 ZIO_FLAG_CONFIG_WRITER, BLK_VERIFY_LOG)) { 5914 rc = SET_ERROR(ECKSUM); 5915 goto out; 5916 } 5917 5918 hdr = buf_hash_find(guid, bp, &hash_lock); 5919 } 5920 5921 /* 5922 * Determine if we have an L1 cache hit or a cache miss. For simplicity 5923 * we maintain encrypted data separately from compressed / uncompressed 5924 * data. If the user is requesting raw encrypted data and we don't have 5925 * that in the header we will read from disk to guarantee that we can 5926 * get it even if the encryption keys aren't loaded. 5927 */ 5928 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) || 5929 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) { 5930 arc_buf_t *buf = NULL; 5931 *arc_flags |= ARC_FLAG_CACHED; 5932 5933 if (HDR_IO_IN_PROGRESS(hdr)) { 5934 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head; 5935 5936 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 5937 mutex_exit(hash_lock); 5938 ARCSTAT_BUMP(arcstat_cached_only_in_progress); 5939 rc = SET_ERROR(ENOENT); 5940 goto out; 5941 } 5942 5943 ASSERT3P(head_zio, !=, NULL); 5944 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && 5945 priority == ZIO_PRIORITY_SYNC_READ) { 5946 /* 5947 * This is a sync read that needs to wait for 5948 * an in-flight async read. Request that the 5949 * zio have its priority upgraded. 5950 */ 5951 zio_change_priority(head_zio, priority); 5952 DTRACE_PROBE1(arc__async__upgrade__sync, 5953 arc_buf_hdr_t *, hdr); 5954 ARCSTAT_BUMP(arcstat_async_upgrade_sync); 5955 } 5956 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 5957 arc_hdr_clear_flags(hdr, 5958 ARC_FLAG_PREDICTIVE_PREFETCH); 5959 } 5960 5961 if (*arc_flags & ARC_FLAG_WAIT) { 5962 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 5963 mutex_exit(hash_lock); 5964 goto top; 5965 } 5966 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 5967 5968 if (done) { 5969 arc_callback_t *acb = NULL; 5970 5971 acb = kmem_zalloc(sizeof (arc_callback_t), 5972 KM_SLEEP); 5973 acb->acb_done = done; 5974 acb->acb_private = private; 5975 acb->acb_compressed = compressed_read; 5976 acb->acb_encrypted = encrypted_read; 5977 acb->acb_noauth = noauth_read; 5978 acb->acb_nobuf = no_buf; 5979 acb->acb_zb = *zb; 5980 if (pio != NULL) 5981 acb->acb_zio_dummy = zio_null(pio, 5982 spa, NULL, NULL, NULL, zio_flags); 5983 5984 ASSERT3P(acb->acb_done, !=, NULL); 5985 acb->acb_zio_head = head_zio; 5986 acb->acb_next = hdr->b_l1hdr.b_acb; 5987 hdr->b_l1hdr.b_acb = acb; 5988 } 5989 mutex_exit(hash_lock); 5990 goto out; 5991 } 5992 5993 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5994 hdr->b_l1hdr.b_state == arc_mfu); 5995 5996 if (done && !no_buf) { 5997 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 5998 /* 5999 * This is a demand read which does not have to 6000 * wait for i/o because we did a predictive 6001 * prefetch i/o for it, which has completed. 6002 */ 6003 DTRACE_PROBE1( 6004 arc__demand__hit__predictive__prefetch, 6005 arc_buf_hdr_t *, hdr); 6006 ARCSTAT_BUMP( 6007 arcstat_demand_hit_predictive_prefetch); 6008 arc_hdr_clear_flags(hdr, 6009 ARC_FLAG_PREDICTIVE_PREFETCH); 6010 } 6011 6012 if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) { 6013 ARCSTAT_BUMP( 6014 arcstat_demand_hit_prescient_prefetch); 6015 arc_hdr_clear_flags(hdr, 6016 ARC_FLAG_PRESCIENT_PREFETCH); 6017 } 6018 6019 ASSERT(!embedded_bp || !BP_IS_HOLE(bp)); 6020 6021 /* Get a buf with the desired data in it. */ 6022 rc = arc_buf_alloc_impl(hdr, spa, zb, private, 6023 encrypted_read, compressed_read, noauth_read, 6024 B_TRUE, &buf); 6025 if (rc == ECKSUM) { 6026 /* 6027 * Convert authentication and decryption errors 6028 * to EIO (and generate an ereport if needed) 6029 * before leaving the ARC. 6030 */ 6031 rc = SET_ERROR(EIO); 6032 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) { 6033 spa_log_error(spa, zb); 6034 (void) zfs_ereport_post( 6035 FM_EREPORT_ZFS_AUTHENTICATION, 6036 spa, NULL, zb, NULL, 0); 6037 } 6038 } 6039 if (rc != 0) { 6040 (void) remove_reference(hdr, hash_lock, 6041 private); 6042 arc_buf_destroy_impl(buf); 6043 buf = NULL; 6044 } 6045 6046 /* assert any errors weren't due to unloaded keys */ 6047 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) || 6048 rc != EACCES); 6049 } else if (*arc_flags & ARC_FLAG_PREFETCH && 6050 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6051 if (HDR_HAS_L2HDR(hdr)) 6052 l2arc_hdr_arcstats_decrement_state(hdr); 6053 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 6054 if (HDR_HAS_L2HDR(hdr)) 6055 l2arc_hdr_arcstats_increment_state(hdr); 6056 } 6057 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 6058 arc_access(hdr, hash_lock); 6059 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 6060 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 6061 if (*arc_flags & ARC_FLAG_L2CACHE) 6062 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6063 mutex_exit(hash_lock); 6064 ARCSTAT_BUMP(arcstat_hits); 6065 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 6066 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 6067 data, metadata, hits); 6068 6069 if (done) 6070 done(NULL, zb, bp, buf, private); 6071 } else { 6072 uint64_t lsize = BP_GET_LSIZE(bp); 6073 uint64_t psize = BP_GET_PSIZE(bp); 6074 arc_callback_t *acb; 6075 vdev_t *vd = NULL; 6076 uint64_t addr = 0; 6077 boolean_t devw = B_FALSE; 6078 uint64_t size; 6079 abd_t *hdr_abd; 6080 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0; 6081 6082 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 6083 rc = SET_ERROR(ENOENT); 6084 if (hash_lock != NULL) 6085 mutex_exit(hash_lock); 6086 goto out; 6087 } 6088 6089 if (hdr == NULL) { 6090 /* 6091 * This block is not in the cache or it has 6092 * embedded data. 6093 */ 6094 arc_buf_hdr_t *exists = NULL; 6095 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 6096 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 6097 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type, 6098 encrypted_read); 6099 6100 if (!embedded_bp) { 6101 hdr->b_dva = *BP_IDENTITY(bp); 6102 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 6103 exists = buf_hash_insert(hdr, &hash_lock); 6104 } 6105 if (exists != NULL) { 6106 /* somebody beat us to the hash insert */ 6107 mutex_exit(hash_lock); 6108 buf_discard_identity(hdr); 6109 arc_hdr_destroy(hdr); 6110 goto top; /* restart the IO request */ 6111 } 6112 } else { 6113 /* 6114 * This block is in the ghost cache or encrypted data 6115 * was requested and we didn't have it. If it was 6116 * L2-only (and thus didn't have an L1 hdr), 6117 * we realloc the header to add an L1 hdr. 6118 */ 6119 if (!HDR_HAS_L1HDR(hdr)) { 6120 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 6121 hdr_full_cache); 6122 } 6123 6124 if (GHOST_STATE(hdr->b_l1hdr.b_state)) { 6125 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6126 ASSERT(!HDR_HAS_RABD(hdr)); 6127 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6128 ASSERT0(zfs_refcount_count( 6129 &hdr->b_l1hdr.b_refcnt)); 6130 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 6131 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 6132 } else if (HDR_IO_IN_PROGRESS(hdr)) { 6133 /* 6134 * If this header already had an IO in progress 6135 * and we are performing another IO to fetch 6136 * encrypted data we must wait until the first 6137 * IO completes so as not to confuse 6138 * arc_read_done(). This should be very rare 6139 * and so the performance impact shouldn't 6140 * matter. 6141 */ 6142 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 6143 mutex_exit(hash_lock); 6144 goto top; 6145 } 6146 6147 /* 6148 * This is a delicate dance that we play here. 6149 * This hdr might be in the ghost list so we access 6150 * it to move it out of the ghost list before we 6151 * initiate the read. If it's a prefetch then 6152 * it won't have a callback so we'll remove the 6153 * reference that arc_buf_alloc_impl() created. We 6154 * do this after we've called arc_access() to 6155 * avoid hitting an assert in remove_reference(). 6156 */ 6157 arc_adapt(arc_hdr_size(hdr), hdr->b_l1hdr.b_state); 6158 arc_access(hdr, hash_lock); 6159 arc_hdr_alloc_abd(hdr, alloc_flags); 6160 } 6161 6162 if (encrypted_read) { 6163 ASSERT(HDR_HAS_RABD(hdr)); 6164 size = HDR_GET_PSIZE(hdr); 6165 hdr_abd = hdr->b_crypt_hdr.b_rabd; 6166 zio_flags |= ZIO_FLAG_RAW; 6167 } else { 6168 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 6169 size = arc_hdr_size(hdr); 6170 hdr_abd = hdr->b_l1hdr.b_pabd; 6171 6172 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 6173 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 6174 } 6175 6176 /* 6177 * For authenticated bp's, we do not ask the ZIO layer 6178 * to authenticate them since this will cause the entire 6179 * IO to fail if the key isn't loaded. Instead, we 6180 * defer authentication until arc_buf_fill(), which will 6181 * verify the data when the key is available. 6182 */ 6183 if (BP_IS_AUTHENTICATED(bp)) 6184 zio_flags |= ZIO_FLAG_RAW_ENCRYPT; 6185 } 6186 6187 if (*arc_flags & ARC_FLAG_PREFETCH && 6188 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6189 if (HDR_HAS_L2HDR(hdr)) 6190 l2arc_hdr_arcstats_decrement_state(hdr); 6191 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 6192 if (HDR_HAS_L2HDR(hdr)) 6193 l2arc_hdr_arcstats_increment_state(hdr); 6194 } 6195 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 6196 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 6197 if (*arc_flags & ARC_FLAG_L2CACHE) 6198 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6199 if (BP_IS_AUTHENTICATED(bp)) 6200 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6201 if (BP_GET_LEVEL(bp) > 0) 6202 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); 6203 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH) 6204 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH); 6205 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 6206 6207 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 6208 acb->acb_done = done; 6209 acb->acb_private = private; 6210 acb->acb_compressed = compressed_read; 6211 acb->acb_encrypted = encrypted_read; 6212 acb->acb_noauth = noauth_read; 6213 acb->acb_zb = *zb; 6214 6215 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6216 hdr->b_l1hdr.b_acb = acb; 6217 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6218 6219 if (HDR_HAS_L2HDR(hdr) && 6220 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 6221 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 6222 addr = hdr->b_l2hdr.b_daddr; 6223 /* 6224 * Lock out L2ARC device removal. 6225 */ 6226 if (vdev_is_dead(vd) || 6227 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 6228 vd = NULL; 6229 } 6230 6231 /* 6232 * We count both async reads and scrub IOs as asynchronous so 6233 * that both can be upgraded in the event of a cache hit while 6234 * the read IO is still in-flight. 6235 */ 6236 if (priority == ZIO_PRIORITY_ASYNC_READ || 6237 priority == ZIO_PRIORITY_SCRUB) 6238 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6239 else 6240 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6241 6242 /* 6243 * At this point, we have a level 1 cache miss or a blkptr 6244 * with embedded data. Try again in L2ARC if possible. 6245 */ 6246 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); 6247 6248 /* 6249 * Skip ARC stat bump for block pointers with embedded 6250 * data. The data are read from the blkptr itself via 6251 * decode_embedded_bp_compressed(). 6252 */ 6253 if (!embedded_bp) { 6254 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, 6255 blkptr_t *, bp, uint64_t, lsize, 6256 zbookmark_phys_t *, zb); 6257 ARCSTAT_BUMP(arcstat_misses); 6258 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 6259 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, 6260 metadata, misses); 6261 zfs_racct_read(size, 1); 6262 } 6263 6264 /* Check if the spa even has l2 configured */ 6265 const boolean_t spa_has_l2 = l2arc_ndev != 0 && 6266 spa->spa_l2cache.sav_count > 0; 6267 6268 if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) { 6269 /* 6270 * Read from the L2ARC if the following are true: 6271 * 1. The L2ARC vdev was previously cached. 6272 * 2. This buffer still has L2ARC metadata. 6273 * 3. This buffer isn't currently writing to the L2ARC. 6274 * 4. The L2ARC entry wasn't evicted, which may 6275 * also have invalidated the vdev. 6276 * 5. This isn't prefetch or l2arc_noprefetch is 0. 6277 */ 6278 if (HDR_HAS_L2HDR(hdr) && 6279 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 6280 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 6281 l2arc_read_callback_t *cb; 6282 abd_t *abd; 6283 uint64_t asize; 6284 6285 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 6286 ARCSTAT_BUMP(arcstat_l2_hits); 6287 atomic_inc_32(&hdr->b_l2hdr.b_hits); 6288 6289 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 6290 KM_SLEEP); 6291 cb->l2rcb_hdr = hdr; 6292 cb->l2rcb_bp = *bp; 6293 cb->l2rcb_zb = *zb; 6294 cb->l2rcb_flags = zio_flags; 6295 6296 /* 6297 * When Compressed ARC is disabled, but the 6298 * L2ARC block is compressed, arc_hdr_size() 6299 * will have returned LSIZE rather than PSIZE. 6300 */ 6301 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 6302 !HDR_COMPRESSION_ENABLED(hdr) && 6303 HDR_GET_PSIZE(hdr) != 0) { 6304 size = HDR_GET_PSIZE(hdr); 6305 } 6306 6307 asize = vdev_psize_to_asize(vd, size); 6308 if (asize != size) { 6309 abd = abd_alloc_for_io(asize, 6310 HDR_ISTYPE_METADATA(hdr)); 6311 cb->l2rcb_abd = abd; 6312 } else { 6313 abd = hdr_abd; 6314 } 6315 6316 ASSERT(addr >= VDEV_LABEL_START_SIZE && 6317 addr + asize <= vd->vdev_psize - 6318 VDEV_LABEL_END_SIZE); 6319 6320 /* 6321 * l2arc read. The SCL_L2ARC lock will be 6322 * released by l2arc_read_done(). 6323 * Issue a null zio if the underlying buffer 6324 * was squashed to zero size by compression. 6325 */ 6326 ASSERT3U(arc_hdr_get_compress(hdr), !=, 6327 ZIO_COMPRESS_EMPTY); 6328 rzio = zio_read_phys(pio, vd, addr, 6329 asize, abd, 6330 ZIO_CHECKSUM_OFF, 6331 l2arc_read_done, cb, priority, 6332 zio_flags | ZIO_FLAG_DONT_CACHE | 6333 ZIO_FLAG_CANFAIL | 6334 ZIO_FLAG_DONT_PROPAGATE | 6335 ZIO_FLAG_DONT_RETRY, B_FALSE); 6336 acb->acb_zio_head = rzio; 6337 6338 if (hash_lock != NULL) 6339 mutex_exit(hash_lock); 6340 6341 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 6342 zio_t *, rzio); 6343 ARCSTAT_INCR(arcstat_l2_read_bytes, 6344 HDR_GET_PSIZE(hdr)); 6345 6346 if (*arc_flags & ARC_FLAG_NOWAIT) { 6347 zio_nowait(rzio); 6348 goto out; 6349 } 6350 6351 ASSERT(*arc_flags & ARC_FLAG_WAIT); 6352 if (zio_wait(rzio) == 0) 6353 goto out; 6354 6355 /* l2arc read error; goto zio_read() */ 6356 if (hash_lock != NULL) 6357 mutex_enter(hash_lock); 6358 } else { 6359 DTRACE_PROBE1(l2arc__miss, 6360 arc_buf_hdr_t *, hdr); 6361 ARCSTAT_BUMP(arcstat_l2_misses); 6362 if (HDR_L2_WRITING(hdr)) 6363 ARCSTAT_BUMP(arcstat_l2_rw_clash); 6364 spa_config_exit(spa, SCL_L2ARC, vd); 6365 } 6366 } else { 6367 if (vd != NULL) 6368 spa_config_exit(spa, SCL_L2ARC, vd); 6369 6370 /* 6371 * Only a spa with l2 should contribute to l2 6372 * miss stats. (Including the case of having a 6373 * faulted cache device - that's also a miss.) 6374 */ 6375 if (spa_has_l2) { 6376 /* 6377 * Skip ARC stat bump for block pointers with 6378 * embedded data. The data are read from the 6379 * blkptr itself via 6380 * decode_embedded_bp_compressed(). 6381 */ 6382 if (!embedded_bp) { 6383 DTRACE_PROBE1(l2arc__miss, 6384 arc_buf_hdr_t *, hdr); 6385 ARCSTAT_BUMP(arcstat_l2_misses); 6386 } 6387 } 6388 } 6389 6390 rzio = zio_read(pio, spa, bp, hdr_abd, size, 6391 arc_read_done, hdr, priority, zio_flags, zb); 6392 acb->acb_zio_head = rzio; 6393 6394 if (hash_lock != NULL) 6395 mutex_exit(hash_lock); 6396 6397 if (*arc_flags & ARC_FLAG_WAIT) { 6398 rc = zio_wait(rzio); 6399 goto out; 6400 } 6401 6402 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 6403 zio_nowait(rzio); 6404 } 6405 6406 out: 6407 /* embedded bps don't actually go to disk */ 6408 if (!embedded_bp) 6409 spa_read_history_add(spa, zb, *arc_flags); 6410 spl_fstrans_unmark(cookie); 6411 return (rc); 6412 } 6413 6414 arc_prune_t * 6415 arc_add_prune_callback(arc_prune_func_t *func, void *private) 6416 { 6417 arc_prune_t *p; 6418 6419 p = kmem_alloc(sizeof (*p), KM_SLEEP); 6420 p->p_pfunc = func; 6421 p->p_private = private; 6422 list_link_init(&p->p_node); 6423 zfs_refcount_create(&p->p_refcnt); 6424 6425 mutex_enter(&arc_prune_mtx); 6426 zfs_refcount_add(&p->p_refcnt, &arc_prune_list); 6427 list_insert_head(&arc_prune_list, p); 6428 mutex_exit(&arc_prune_mtx); 6429 6430 return (p); 6431 } 6432 6433 void 6434 arc_remove_prune_callback(arc_prune_t *p) 6435 { 6436 boolean_t wait = B_FALSE; 6437 mutex_enter(&arc_prune_mtx); 6438 list_remove(&arc_prune_list, p); 6439 if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0) 6440 wait = B_TRUE; 6441 mutex_exit(&arc_prune_mtx); 6442 6443 /* wait for arc_prune_task to finish */ 6444 if (wait) 6445 taskq_wait_outstanding(arc_prune_taskq, 0); 6446 ASSERT0(zfs_refcount_count(&p->p_refcnt)); 6447 zfs_refcount_destroy(&p->p_refcnt); 6448 kmem_free(p, sizeof (*p)); 6449 } 6450 6451 /* 6452 * Notify the arc that a block was freed, and thus will never be used again. 6453 */ 6454 void 6455 arc_freed(spa_t *spa, const blkptr_t *bp) 6456 { 6457 arc_buf_hdr_t *hdr; 6458 kmutex_t *hash_lock; 6459 uint64_t guid = spa_load_guid(spa); 6460 6461 ASSERT(!BP_IS_EMBEDDED(bp)); 6462 6463 hdr = buf_hash_find(guid, bp, &hash_lock); 6464 if (hdr == NULL) 6465 return; 6466 6467 /* 6468 * We might be trying to free a block that is still doing I/O 6469 * (i.e. prefetch) or has a reference (i.e. a dedup-ed, 6470 * dmu_sync-ed block). If this block is being prefetched, then it 6471 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr 6472 * until the I/O completes. A block may also have a reference if it is 6473 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would 6474 * have written the new block to its final resting place on disk but 6475 * without the dedup flag set. This would have left the hdr in the MRU 6476 * state and discoverable. When the txg finally syncs it detects that 6477 * the block was overridden in open context and issues an override I/O. 6478 * Since this is a dedup block, the override I/O will determine if the 6479 * block is already in the DDT. If so, then it will replace the io_bp 6480 * with the bp from the DDT and allow the I/O to finish. When the I/O 6481 * reaches the done callback, dbuf_write_override_done, it will 6482 * check to see if the io_bp and io_bp_override are identical. 6483 * If they are not, then it indicates that the bp was replaced with 6484 * the bp in the DDT and the override bp is freed. This allows 6485 * us to arrive here with a reference on a block that is being 6486 * freed. So if we have an I/O in progress, or a reference to 6487 * this hdr, then we don't destroy the hdr. 6488 */ 6489 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) && 6490 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) { 6491 arc_change_state(arc_anon, hdr, hash_lock); 6492 arc_hdr_destroy(hdr); 6493 mutex_exit(hash_lock); 6494 } else { 6495 mutex_exit(hash_lock); 6496 } 6497 6498 } 6499 6500 /* 6501 * Release this buffer from the cache, making it an anonymous buffer. This 6502 * must be done after a read and prior to modifying the buffer contents. 6503 * If the buffer has more than one reference, we must make 6504 * a new hdr for the buffer. 6505 */ 6506 void 6507 arc_release(arc_buf_t *buf, void *tag) 6508 { 6509 arc_buf_hdr_t *hdr = buf->b_hdr; 6510 6511 /* 6512 * It would be nice to assert that if its DMU metadata (level > 6513 * 0 || it's the dnode file), then it must be syncing context. 6514 * But we don't know that information at this level. 6515 */ 6516 6517 mutex_enter(&buf->b_evict_lock); 6518 6519 ASSERT(HDR_HAS_L1HDR(hdr)); 6520 6521 /* 6522 * We don't grab the hash lock prior to this check, because if 6523 * the buffer's header is in the arc_anon state, it won't be 6524 * linked into the hash table. 6525 */ 6526 if (hdr->b_l1hdr.b_state == arc_anon) { 6527 mutex_exit(&buf->b_evict_lock); 6528 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6529 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 6530 ASSERT(!HDR_HAS_L2HDR(hdr)); 6531 ASSERT(HDR_EMPTY(hdr)); 6532 6533 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6534 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 6535 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node)); 6536 6537 hdr->b_l1hdr.b_arc_access = 0; 6538 6539 /* 6540 * If the buf is being overridden then it may already 6541 * have a hdr that is not empty. 6542 */ 6543 buf_discard_identity(hdr); 6544 arc_buf_thaw(buf); 6545 6546 return; 6547 } 6548 6549 kmutex_t *hash_lock = HDR_LOCK(hdr); 6550 mutex_enter(hash_lock); 6551 6552 /* 6553 * This assignment is only valid as long as the hash_lock is 6554 * held, we must be careful not to reference state or the 6555 * b_state field after dropping the lock. 6556 */ 6557 arc_state_t *state = hdr->b_l1hdr.b_state; 6558 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 6559 ASSERT3P(state, !=, arc_anon); 6560 6561 /* this buffer is not on any list */ 6562 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0); 6563 6564 if (HDR_HAS_L2HDR(hdr)) { 6565 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6566 6567 /* 6568 * We have to recheck this conditional again now that 6569 * we're holding the l2ad_mtx to prevent a race with 6570 * another thread which might be concurrently calling 6571 * l2arc_evict(). In that case, l2arc_evict() might have 6572 * destroyed the header's L2 portion as we were waiting 6573 * to acquire the l2ad_mtx. 6574 */ 6575 if (HDR_HAS_L2HDR(hdr)) 6576 arc_hdr_l2hdr_destroy(hdr); 6577 6578 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6579 } 6580 6581 /* 6582 * Do we have more than one buf? 6583 */ 6584 if (hdr->b_l1hdr.b_bufcnt > 1) { 6585 arc_buf_hdr_t *nhdr; 6586 uint64_t spa = hdr->b_spa; 6587 uint64_t psize = HDR_GET_PSIZE(hdr); 6588 uint64_t lsize = HDR_GET_LSIZE(hdr); 6589 boolean_t protected = HDR_PROTECTED(hdr); 6590 enum zio_compress compress = arc_hdr_get_compress(hdr); 6591 arc_buf_contents_t type = arc_buf_type(hdr); 6592 VERIFY3U(hdr->b_type, ==, type); 6593 6594 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); 6595 (void) remove_reference(hdr, hash_lock, tag); 6596 6597 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) { 6598 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6599 ASSERT(ARC_BUF_LAST(buf)); 6600 } 6601 6602 /* 6603 * Pull the data off of this hdr and attach it to 6604 * a new anonymous hdr. Also find the last buffer 6605 * in the hdr's buffer list. 6606 */ 6607 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 6608 ASSERT3P(lastbuf, !=, NULL); 6609 6610 /* 6611 * If the current arc_buf_t and the hdr are sharing their data 6612 * buffer, then we must stop sharing that block. 6613 */ 6614 if (arc_buf_is_shared(buf)) { 6615 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6616 VERIFY(!arc_buf_is_shared(lastbuf)); 6617 6618 /* 6619 * First, sever the block sharing relationship between 6620 * buf and the arc_buf_hdr_t. 6621 */ 6622 arc_unshare_buf(hdr, buf); 6623 6624 /* 6625 * Now we need to recreate the hdr's b_pabd. Since we 6626 * have lastbuf handy, we try to share with it, but if 6627 * we can't then we allocate a new b_pabd and copy the 6628 * data from buf into it. 6629 */ 6630 if (arc_can_share(hdr, lastbuf)) { 6631 arc_share_buf(hdr, lastbuf); 6632 } else { 6633 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 6634 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, 6635 buf->b_data, psize); 6636 } 6637 VERIFY3P(lastbuf->b_data, !=, NULL); 6638 } else if (HDR_SHARED_DATA(hdr)) { 6639 /* 6640 * Uncompressed shared buffers are always at the end 6641 * of the list. Compressed buffers don't have the 6642 * same requirements. This makes it hard to 6643 * simply assert that the lastbuf is shared so 6644 * we rely on the hdr's compression flags to determine 6645 * if we have a compressed, shared buffer. 6646 */ 6647 ASSERT(arc_buf_is_shared(lastbuf) || 6648 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 6649 ASSERT(!ARC_BUF_SHARED(buf)); 6650 } 6651 6652 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 6653 ASSERT3P(state, !=, arc_l2c_only); 6654 6655 (void) zfs_refcount_remove_many(&state->arcs_size, 6656 arc_buf_size(buf), buf); 6657 6658 if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6659 ASSERT3P(state, !=, arc_l2c_only); 6660 (void) zfs_refcount_remove_many( 6661 &state->arcs_esize[type], 6662 arc_buf_size(buf), buf); 6663 } 6664 6665 hdr->b_l1hdr.b_bufcnt -= 1; 6666 if (ARC_BUF_ENCRYPTED(buf)) 6667 hdr->b_crypt_hdr.b_ebufcnt -= 1; 6668 6669 arc_cksum_verify(buf); 6670 arc_buf_unwatch(buf); 6671 6672 /* if this is the last uncompressed buf free the checksum */ 6673 if (!arc_hdr_has_uncompressed_buf(hdr)) 6674 arc_cksum_free(hdr); 6675 6676 mutex_exit(hash_lock); 6677 6678 /* 6679 * Allocate a new hdr. The new hdr will contain a b_pabd 6680 * buffer which will be freed in arc_write(). 6681 */ 6682 nhdr = arc_hdr_alloc(spa, psize, lsize, protected, 6683 compress, hdr->b_complevel, type, HDR_HAS_RABD(hdr)); 6684 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL); 6685 ASSERT0(nhdr->b_l1hdr.b_bufcnt); 6686 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt)); 6687 VERIFY3U(nhdr->b_type, ==, type); 6688 ASSERT(!HDR_SHARED_DATA(nhdr)); 6689 6690 nhdr->b_l1hdr.b_buf = buf; 6691 nhdr->b_l1hdr.b_bufcnt = 1; 6692 if (ARC_BUF_ENCRYPTED(buf)) 6693 nhdr->b_crypt_hdr.b_ebufcnt = 1; 6694 nhdr->b_l1hdr.b_mru_hits = 0; 6695 nhdr->b_l1hdr.b_mru_ghost_hits = 0; 6696 nhdr->b_l1hdr.b_mfu_hits = 0; 6697 nhdr->b_l1hdr.b_mfu_ghost_hits = 0; 6698 nhdr->b_l1hdr.b_l2_hits = 0; 6699 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 6700 buf->b_hdr = nhdr; 6701 6702 mutex_exit(&buf->b_evict_lock); 6703 (void) zfs_refcount_add_many(&arc_anon->arcs_size, 6704 arc_buf_size(buf), buf); 6705 } else { 6706 mutex_exit(&buf->b_evict_lock); 6707 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 6708 /* protected by hash lock, or hdr is on arc_anon */ 6709 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 6710 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6711 hdr->b_l1hdr.b_mru_hits = 0; 6712 hdr->b_l1hdr.b_mru_ghost_hits = 0; 6713 hdr->b_l1hdr.b_mfu_hits = 0; 6714 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 6715 hdr->b_l1hdr.b_l2_hits = 0; 6716 arc_change_state(arc_anon, hdr, hash_lock); 6717 hdr->b_l1hdr.b_arc_access = 0; 6718 6719 mutex_exit(hash_lock); 6720 buf_discard_identity(hdr); 6721 arc_buf_thaw(buf); 6722 } 6723 } 6724 6725 int 6726 arc_released(arc_buf_t *buf) 6727 { 6728 int released; 6729 6730 mutex_enter(&buf->b_evict_lock); 6731 released = (buf->b_data != NULL && 6732 buf->b_hdr->b_l1hdr.b_state == arc_anon); 6733 mutex_exit(&buf->b_evict_lock); 6734 return (released); 6735 } 6736 6737 #ifdef ZFS_DEBUG 6738 int 6739 arc_referenced(arc_buf_t *buf) 6740 { 6741 int referenced; 6742 6743 mutex_enter(&buf->b_evict_lock); 6744 referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 6745 mutex_exit(&buf->b_evict_lock); 6746 return (referenced); 6747 } 6748 #endif 6749 6750 static void 6751 arc_write_ready(zio_t *zio) 6752 { 6753 arc_write_callback_t *callback = zio->io_private; 6754 arc_buf_t *buf = callback->awcb_buf; 6755 arc_buf_hdr_t *hdr = buf->b_hdr; 6756 blkptr_t *bp = zio->io_bp; 6757 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp); 6758 fstrans_cookie_t cookie = spl_fstrans_mark(); 6759 6760 ASSERT(HDR_HAS_L1HDR(hdr)); 6761 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 6762 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 6763 6764 /* 6765 * If we're reexecuting this zio because the pool suspended, then 6766 * cleanup any state that was previously set the first time the 6767 * callback was invoked. 6768 */ 6769 if (zio->io_flags & ZIO_FLAG_REEXECUTED) { 6770 arc_cksum_free(hdr); 6771 arc_buf_unwatch(buf); 6772 if (hdr->b_l1hdr.b_pabd != NULL) { 6773 if (arc_buf_is_shared(buf)) { 6774 arc_unshare_buf(hdr, buf); 6775 } else { 6776 arc_hdr_free_abd(hdr, B_FALSE); 6777 } 6778 } 6779 6780 if (HDR_HAS_RABD(hdr)) 6781 arc_hdr_free_abd(hdr, B_TRUE); 6782 } 6783 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6784 ASSERT(!HDR_HAS_RABD(hdr)); 6785 ASSERT(!HDR_SHARED_DATA(hdr)); 6786 ASSERT(!arc_buf_is_shared(buf)); 6787 6788 callback->awcb_ready(zio, buf, callback->awcb_private); 6789 6790 if (HDR_IO_IN_PROGRESS(hdr)) 6791 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); 6792 6793 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6794 6795 if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr)) 6796 hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp)); 6797 6798 if (BP_IS_PROTECTED(bp)) { 6799 /* ZIL blocks are written through zio_rewrite */ 6800 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 6801 ASSERT(HDR_PROTECTED(hdr)); 6802 6803 if (BP_SHOULD_BYTESWAP(bp)) { 6804 if (BP_GET_LEVEL(bp) > 0) { 6805 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 6806 } else { 6807 hdr->b_l1hdr.b_byteswap = 6808 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 6809 } 6810 } else { 6811 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 6812 } 6813 6814 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 6815 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 6816 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 6817 hdr->b_crypt_hdr.b_iv); 6818 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 6819 } 6820 6821 /* 6822 * If this block was written for raw encryption but the zio layer 6823 * ended up only authenticating it, adjust the buffer flags now. 6824 */ 6825 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) { 6826 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6827 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6828 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF) 6829 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6830 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) { 6831 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6832 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6833 } 6834 6835 /* this must be done after the buffer flags are adjusted */ 6836 arc_cksum_compute(buf); 6837 6838 enum zio_compress compress; 6839 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 6840 compress = ZIO_COMPRESS_OFF; 6841 } else { 6842 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 6843 compress = BP_GET_COMPRESS(bp); 6844 } 6845 HDR_SET_PSIZE(hdr, psize); 6846 arc_hdr_set_compress(hdr, compress); 6847 hdr->b_complevel = zio->io_prop.zp_complevel; 6848 6849 if (zio->io_error != 0 || psize == 0) 6850 goto out; 6851 6852 /* 6853 * Fill the hdr with data. If the buffer is encrypted we have no choice 6854 * but to copy the data into b_radb. If the hdr is compressed, the data 6855 * we want is available from the zio, otherwise we can take it from 6856 * the buf. 6857 * 6858 * We might be able to share the buf's data with the hdr here. However, 6859 * doing so would cause the ARC to be full of linear ABDs if we write a 6860 * lot of shareable data. As a compromise, we check whether scattered 6861 * ABDs are allowed, and assume that if they are then the user wants 6862 * the ARC to be primarily filled with them regardless of the data being 6863 * written. Therefore, if they're allowed then we allocate one and copy 6864 * the data into it; otherwise, we share the data directly if we can. 6865 */ 6866 if (ARC_BUF_ENCRYPTED(buf)) { 6867 ASSERT3U(psize, >, 0); 6868 ASSERT(ARC_BUF_COMPRESSED(buf)); 6869 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA); 6870 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6871 } else if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) { 6872 /* 6873 * Ideally, we would always copy the io_abd into b_pabd, but the 6874 * user may have disabled compressed ARC, thus we must check the 6875 * hdr's compression setting rather than the io_bp's. 6876 */ 6877 if (BP_IS_ENCRYPTED(bp)) { 6878 ASSERT3U(psize, >, 0); 6879 arc_hdr_alloc_abd(hdr, 6880 ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA); 6881 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6882 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 6883 !ARC_BUF_COMPRESSED(buf)) { 6884 ASSERT3U(psize, >, 0); 6885 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 6886 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize); 6887 } else { 6888 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr)); 6889 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 6890 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data, 6891 arc_buf_size(buf)); 6892 } 6893 } else { 6894 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd)); 6895 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf)); 6896 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6897 6898 arc_share_buf(hdr, buf); 6899 } 6900 6901 out: 6902 arc_hdr_verify(hdr, bp); 6903 spl_fstrans_unmark(cookie); 6904 } 6905 6906 static void 6907 arc_write_children_ready(zio_t *zio) 6908 { 6909 arc_write_callback_t *callback = zio->io_private; 6910 arc_buf_t *buf = callback->awcb_buf; 6911 6912 callback->awcb_children_ready(zio, buf, callback->awcb_private); 6913 } 6914 6915 /* 6916 * The SPA calls this callback for each physical write that happens on behalf 6917 * of a logical write. See the comment in dbuf_write_physdone() for details. 6918 */ 6919 static void 6920 arc_write_physdone(zio_t *zio) 6921 { 6922 arc_write_callback_t *cb = zio->io_private; 6923 if (cb->awcb_physdone != NULL) 6924 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 6925 } 6926 6927 static void 6928 arc_write_done(zio_t *zio) 6929 { 6930 arc_write_callback_t *callback = zio->io_private; 6931 arc_buf_t *buf = callback->awcb_buf; 6932 arc_buf_hdr_t *hdr = buf->b_hdr; 6933 6934 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6935 6936 if (zio->io_error == 0) { 6937 arc_hdr_verify(hdr, zio->io_bp); 6938 6939 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 6940 buf_discard_identity(hdr); 6941 } else { 6942 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 6943 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 6944 } 6945 } else { 6946 ASSERT(HDR_EMPTY(hdr)); 6947 } 6948 6949 /* 6950 * If the block to be written was all-zero or compressed enough to be 6951 * embedded in the BP, no write was performed so there will be no 6952 * dva/birth/checksum. The buffer must therefore remain anonymous 6953 * (and uncached). 6954 */ 6955 if (!HDR_EMPTY(hdr)) { 6956 arc_buf_hdr_t *exists; 6957 kmutex_t *hash_lock; 6958 6959 ASSERT3U(zio->io_error, ==, 0); 6960 6961 arc_cksum_verify(buf); 6962 6963 exists = buf_hash_insert(hdr, &hash_lock); 6964 if (exists != NULL) { 6965 /* 6966 * This can only happen if we overwrite for 6967 * sync-to-convergence, because we remove 6968 * buffers from the hash table when we arc_free(). 6969 */ 6970 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 6971 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6972 panic("bad overwrite, hdr=%p exists=%p", 6973 (void *)hdr, (void *)exists); 6974 ASSERT(zfs_refcount_is_zero( 6975 &exists->b_l1hdr.b_refcnt)); 6976 arc_change_state(arc_anon, exists, hash_lock); 6977 arc_hdr_destroy(exists); 6978 mutex_exit(hash_lock); 6979 exists = buf_hash_insert(hdr, &hash_lock); 6980 ASSERT3P(exists, ==, NULL); 6981 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 6982 /* nopwrite */ 6983 ASSERT(zio->io_prop.zp_nopwrite); 6984 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6985 panic("bad nopwrite, hdr=%p exists=%p", 6986 (void *)hdr, (void *)exists); 6987 } else { 6988 /* Dedup */ 6989 ASSERT(hdr->b_l1hdr.b_bufcnt == 1); 6990 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 6991 ASSERT(BP_GET_DEDUP(zio->io_bp)); 6992 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 6993 } 6994 } 6995 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6996 /* if it's not anon, we are doing a scrub */ 6997 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 6998 arc_access(hdr, hash_lock); 6999 mutex_exit(hash_lock); 7000 } else { 7001 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 7002 } 7003 7004 ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 7005 callback->awcb_done(zio, buf, callback->awcb_private); 7006 7007 abd_free(zio->io_abd); 7008 kmem_free(callback, sizeof (arc_write_callback_t)); 7009 } 7010 7011 zio_t * 7012 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 7013 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, 7014 const zio_prop_t *zp, arc_write_done_func_t *ready, 7015 arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone, 7016 arc_write_done_func_t *done, void *private, zio_priority_t priority, 7017 int zio_flags, const zbookmark_phys_t *zb) 7018 { 7019 arc_buf_hdr_t *hdr = buf->b_hdr; 7020 arc_write_callback_t *callback; 7021 zio_t *zio; 7022 zio_prop_t localprop = *zp; 7023 7024 ASSERT3P(ready, !=, NULL); 7025 ASSERT3P(done, !=, NULL); 7026 ASSERT(!HDR_IO_ERROR(hdr)); 7027 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 7028 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 7029 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 7030 if (l2arc) 7031 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 7032 7033 if (ARC_BUF_ENCRYPTED(buf)) { 7034 ASSERT(ARC_BUF_COMPRESSED(buf)); 7035 localprop.zp_encrypt = B_TRUE; 7036 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 7037 localprop.zp_complevel = hdr->b_complevel; 7038 localprop.zp_byteorder = 7039 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 7040 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 7041 bcopy(hdr->b_crypt_hdr.b_salt, localprop.zp_salt, 7042 ZIO_DATA_SALT_LEN); 7043 bcopy(hdr->b_crypt_hdr.b_iv, localprop.zp_iv, 7044 ZIO_DATA_IV_LEN); 7045 bcopy(hdr->b_crypt_hdr.b_mac, localprop.zp_mac, 7046 ZIO_DATA_MAC_LEN); 7047 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) { 7048 localprop.zp_nopwrite = B_FALSE; 7049 localprop.zp_copies = 7050 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1); 7051 } 7052 zio_flags |= ZIO_FLAG_RAW; 7053 } else if (ARC_BUF_COMPRESSED(buf)) { 7054 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf)); 7055 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 7056 localprop.zp_complevel = hdr->b_complevel; 7057 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 7058 } 7059 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 7060 callback->awcb_ready = ready; 7061 callback->awcb_children_ready = children_ready; 7062 callback->awcb_physdone = physdone; 7063 callback->awcb_done = done; 7064 callback->awcb_private = private; 7065 callback->awcb_buf = buf; 7066 7067 /* 7068 * The hdr's b_pabd is now stale, free it now. A new data block 7069 * will be allocated when the zio pipeline calls arc_write_ready(). 7070 */ 7071 if (hdr->b_l1hdr.b_pabd != NULL) { 7072 /* 7073 * If the buf is currently sharing the data block with 7074 * the hdr then we need to break that relationship here. 7075 * The hdr will remain with a NULL data pointer and the 7076 * buf will take sole ownership of the block. 7077 */ 7078 if (arc_buf_is_shared(buf)) { 7079 arc_unshare_buf(hdr, buf); 7080 } else { 7081 arc_hdr_free_abd(hdr, B_FALSE); 7082 } 7083 VERIFY3P(buf->b_data, !=, NULL); 7084 } 7085 7086 if (HDR_HAS_RABD(hdr)) 7087 arc_hdr_free_abd(hdr, B_TRUE); 7088 7089 if (!(zio_flags & ZIO_FLAG_RAW)) 7090 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); 7091 7092 ASSERT(!arc_buf_is_shared(buf)); 7093 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 7094 7095 zio = zio_write(pio, spa, txg, bp, 7096 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)), 7097 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready, 7098 (children_ready != NULL) ? arc_write_children_ready : NULL, 7099 arc_write_physdone, arc_write_done, callback, 7100 priority, zio_flags, zb); 7101 7102 return (zio); 7103 } 7104 7105 void 7106 arc_tempreserve_clear(uint64_t reserve) 7107 { 7108 atomic_add_64(&arc_tempreserve, -reserve); 7109 ASSERT((int64_t)arc_tempreserve >= 0); 7110 } 7111 7112 int 7113 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg) 7114 { 7115 int error; 7116 uint64_t anon_size; 7117 7118 if (!arc_no_grow && 7119 reserve > arc_c/4 && 7120 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT)) 7121 arc_c = MIN(arc_c_max, reserve * 4); 7122 7123 /* 7124 * Throttle when the calculated memory footprint for the TXG 7125 * exceeds the target ARC size. 7126 */ 7127 if (reserve > arc_c) { 7128 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve); 7129 return (SET_ERROR(ERESTART)); 7130 } 7131 7132 /* 7133 * Don't count loaned bufs as in flight dirty data to prevent long 7134 * network delays from blocking transactions that are ready to be 7135 * assigned to a txg. 7136 */ 7137 7138 /* assert that it has not wrapped around */ 7139 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 7140 7141 anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) - 7142 arc_loaned_bytes), 0); 7143 7144 /* 7145 * Writes will, almost always, require additional memory allocations 7146 * in order to compress/encrypt/etc the data. We therefore need to 7147 * make sure that there is sufficient available memory for this. 7148 */ 7149 error = arc_memory_throttle(spa, reserve, txg); 7150 if (error != 0) 7151 return (error); 7152 7153 /* 7154 * Throttle writes when the amount of dirty data in the cache 7155 * gets too large. We try to keep the cache less than half full 7156 * of dirty blocks so that our sync times don't grow too large. 7157 * 7158 * In the case of one pool being built on another pool, we want 7159 * to make sure we don't end up throttling the lower (backing) 7160 * pool when the upper pool is the majority contributor to dirty 7161 * data. To insure we make forward progress during throttling, we 7162 * also check the current pool's net dirty data and only throttle 7163 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty 7164 * data in the cache. 7165 * 7166 * Note: if two requests come in concurrently, we might let them 7167 * both succeed, when one of them should fail. Not a huge deal. 7168 */ 7169 uint64_t total_dirty = reserve + arc_tempreserve + anon_size; 7170 uint64_t spa_dirty_anon = spa_dirty_data(spa); 7171 uint64_t rarc_c = arc_warm ? arc_c : arc_c_max; 7172 if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 && 7173 anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 && 7174 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) { 7175 #ifdef ZFS_DEBUG 7176 uint64_t meta_esize = zfs_refcount_count( 7177 &arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7178 uint64_t data_esize = 7179 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7180 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 7181 "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n", 7182 (u_longlong_t)arc_tempreserve >> 10, 7183 (u_longlong_t)meta_esize >> 10, 7184 (u_longlong_t)data_esize >> 10, 7185 (u_longlong_t)reserve >> 10, 7186 (u_longlong_t)rarc_c >> 10); 7187 #endif 7188 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle); 7189 return (SET_ERROR(ERESTART)); 7190 } 7191 atomic_add_64(&arc_tempreserve, reserve); 7192 return (0); 7193 } 7194 7195 static void 7196 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 7197 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 7198 { 7199 size->value.ui64 = zfs_refcount_count(&state->arcs_size); 7200 evict_data->value.ui64 = 7201 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); 7202 evict_metadata->value.ui64 = 7203 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); 7204 } 7205 7206 static int 7207 arc_kstat_update(kstat_t *ksp, int rw) 7208 { 7209 arc_stats_t *as = ksp->ks_data; 7210 7211 if (rw == KSTAT_WRITE) 7212 return (SET_ERROR(EACCES)); 7213 7214 as->arcstat_hits.value.ui64 = 7215 wmsum_value(&arc_sums.arcstat_hits); 7216 as->arcstat_misses.value.ui64 = 7217 wmsum_value(&arc_sums.arcstat_misses); 7218 as->arcstat_demand_data_hits.value.ui64 = 7219 wmsum_value(&arc_sums.arcstat_demand_data_hits); 7220 as->arcstat_demand_data_misses.value.ui64 = 7221 wmsum_value(&arc_sums.arcstat_demand_data_misses); 7222 as->arcstat_demand_metadata_hits.value.ui64 = 7223 wmsum_value(&arc_sums.arcstat_demand_metadata_hits); 7224 as->arcstat_demand_metadata_misses.value.ui64 = 7225 wmsum_value(&arc_sums.arcstat_demand_metadata_misses); 7226 as->arcstat_prefetch_data_hits.value.ui64 = 7227 wmsum_value(&arc_sums.arcstat_prefetch_data_hits); 7228 as->arcstat_prefetch_data_misses.value.ui64 = 7229 wmsum_value(&arc_sums.arcstat_prefetch_data_misses); 7230 as->arcstat_prefetch_metadata_hits.value.ui64 = 7231 wmsum_value(&arc_sums.arcstat_prefetch_metadata_hits); 7232 as->arcstat_prefetch_metadata_misses.value.ui64 = 7233 wmsum_value(&arc_sums.arcstat_prefetch_metadata_misses); 7234 as->arcstat_mru_hits.value.ui64 = 7235 wmsum_value(&arc_sums.arcstat_mru_hits); 7236 as->arcstat_mru_ghost_hits.value.ui64 = 7237 wmsum_value(&arc_sums.arcstat_mru_ghost_hits); 7238 as->arcstat_mfu_hits.value.ui64 = 7239 wmsum_value(&arc_sums.arcstat_mfu_hits); 7240 as->arcstat_mfu_ghost_hits.value.ui64 = 7241 wmsum_value(&arc_sums.arcstat_mfu_ghost_hits); 7242 as->arcstat_deleted.value.ui64 = 7243 wmsum_value(&arc_sums.arcstat_deleted); 7244 as->arcstat_mutex_miss.value.ui64 = 7245 wmsum_value(&arc_sums.arcstat_mutex_miss); 7246 as->arcstat_access_skip.value.ui64 = 7247 wmsum_value(&arc_sums.arcstat_access_skip); 7248 as->arcstat_evict_skip.value.ui64 = 7249 wmsum_value(&arc_sums.arcstat_evict_skip); 7250 as->arcstat_evict_not_enough.value.ui64 = 7251 wmsum_value(&arc_sums.arcstat_evict_not_enough); 7252 as->arcstat_evict_l2_cached.value.ui64 = 7253 wmsum_value(&arc_sums.arcstat_evict_l2_cached); 7254 as->arcstat_evict_l2_eligible.value.ui64 = 7255 wmsum_value(&arc_sums.arcstat_evict_l2_eligible); 7256 as->arcstat_evict_l2_eligible_mfu.value.ui64 = 7257 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mfu); 7258 as->arcstat_evict_l2_eligible_mru.value.ui64 = 7259 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mru); 7260 as->arcstat_evict_l2_ineligible.value.ui64 = 7261 wmsum_value(&arc_sums.arcstat_evict_l2_ineligible); 7262 as->arcstat_evict_l2_skip.value.ui64 = 7263 wmsum_value(&arc_sums.arcstat_evict_l2_skip); 7264 as->arcstat_hash_collisions.value.ui64 = 7265 wmsum_value(&arc_sums.arcstat_hash_collisions); 7266 as->arcstat_hash_chains.value.ui64 = 7267 wmsum_value(&arc_sums.arcstat_hash_chains); 7268 as->arcstat_size.value.ui64 = 7269 aggsum_value(&arc_sums.arcstat_size); 7270 as->arcstat_compressed_size.value.ui64 = 7271 wmsum_value(&arc_sums.arcstat_compressed_size); 7272 as->arcstat_uncompressed_size.value.ui64 = 7273 wmsum_value(&arc_sums.arcstat_uncompressed_size); 7274 as->arcstat_overhead_size.value.ui64 = 7275 wmsum_value(&arc_sums.arcstat_overhead_size); 7276 as->arcstat_hdr_size.value.ui64 = 7277 wmsum_value(&arc_sums.arcstat_hdr_size); 7278 as->arcstat_data_size.value.ui64 = 7279 wmsum_value(&arc_sums.arcstat_data_size); 7280 as->arcstat_metadata_size.value.ui64 = 7281 wmsum_value(&arc_sums.arcstat_metadata_size); 7282 as->arcstat_dbuf_size.value.ui64 = 7283 wmsum_value(&arc_sums.arcstat_dbuf_size); 7284 #if defined(COMPAT_FREEBSD11) 7285 as->arcstat_other_size.value.ui64 = 7286 wmsum_value(&arc_sums.arcstat_bonus_size) + 7287 aggsum_value(&arc_sums.arcstat_dnode_size) + 7288 wmsum_value(&arc_sums.arcstat_dbuf_size); 7289 #endif 7290 7291 arc_kstat_update_state(arc_anon, 7292 &as->arcstat_anon_size, 7293 &as->arcstat_anon_evictable_data, 7294 &as->arcstat_anon_evictable_metadata); 7295 arc_kstat_update_state(arc_mru, 7296 &as->arcstat_mru_size, 7297 &as->arcstat_mru_evictable_data, 7298 &as->arcstat_mru_evictable_metadata); 7299 arc_kstat_update_state(arc_mru_ghost, 7300 &as->arcstat_mru_ghost_size, 7301 &as->arcstat_mru_ghost_evictable_data, 7302 &as->arcstat_mru_ghost_evictable_metadata); 7303 arc_kstat_update_state(arc_mfu, 7304 &as->arcstat_mfu_size, 7305 &as->arcstat_mfu_evictable_data, 7306 &as->arcstat_mfu_evictable_metadata); 7307 arc_kstat_update_state(arc_mfu_ghost, 7308 &as->arcstat_mfu_ghost_size, 7309 &as->arcstat_mfu_ghost_evictable_data, 7310 &as->arcstat_mfu_ghost_evictable_metadata); 7311 7312 as->arcstat_dnode_size.value.ui64 = 7313 aggsum_value(&arc_sums.arcstat_dnode_size); 7314 as->arcstat_bonus_size.value.ui64 = 7315 wmsum_value(&arc_sums.arcstat_bonus_size); 7316 as->arcstat_l2_hits.value.ui64 = 7317 wmsum_value(&arc_sums.arcstat_l2_hits); 7318 as->arcstat_l2_misses.value.ui64 = 7319 wmsum_value(&arc_sums.arcstat_l2_misses); 7320 as->arcstat_l2_prefetch_asize.value.ui64 = 7321 wmsum_value(&arc_sums.arcstat_l2_prefetch_asize); 7322 as->arcstat_l2_mru_asize.value.ui64 = 7323 wmsum_value(&arc_sums.arcstat_l2_mru_asize); 7324 as->arcstat_l2_mfu_asize.value.ui64 = 7325 wmsum_value(&arc_sums.arcstat_l2_mfu_asize); 7326 as->arcstat_l2_bufc_data_asize.value.ui64 = 7327 wmsum_value(&arc_sums.arcstat_l2_bufc_data_asize); 7328 as->arcstat_l2_bufc_metadata_asize.value.ui64 = 7329 wmsum_value(&arc_sums.arcstat_l2_bufc_metadata_asize); 7330 as->arcstat_l2_feeds.value.ui64 = 7331 wmsum_value(&arc_sums.arcstat_l2_feeds); 7332 as->arcstat_l2_rw_clash.value.ui64 = 7333 wmsum_value(&arc_sums.arcstat_l2_rw_clash); 7334 as->arcstat_l2_read_bytes.value.ui64 = 7335 wmsum_value(&arc_sums.arcstat_l2_read_bytes); 7336 as->arcstat_l2_write_bytes.value.ui64 = 7337 wmsum_value(&arc_sums.arcstat_l2_write_bytes); 7338 as->arcstat_l2_writes_sent.value.ui64 = 7339 wmsum_value(&arc_sums.arcstat_l2_writes_sent); 7340 as->arcstat_l2_writes_done.value.ui64 = 7341 wmsum_value(&arc_sums.arcstat_l2_writes_done); 7342 as->arcstat_l2_writes_error.value.ui64 = 7343 wmsum_value(&arc_sums.arcstat_l2_writes_error); 7344 as->arcstat_l2_writes_lock_retry.value.ui64 = 7345 wmsum_value(&arc_sums.arcstat_l2_writes_lock_retry); 7346 as->arcstat_l2_evict_lock_retry.value.ui64 = 7347 wmsum_value(&arc_sums.arcstat_l2_evict_lock_retry); 7348 as->arcstat_l2_evict_reading.value.ui64 = 7349 wmsum_value(&arc_sums.arcstat_l2_evict_reading); 7350 as->arcstat_l2_evict_l1cached.value.ui64 = 7351 wmsum_value(&arc_sums.arcstat_l2_evict_l1cached); 7352 as->arcstat_l2_free_on_write.value.ui64 = 7353 wmsum_value(&arc_sums.arcstat_l2_free_on_write); 7354 as->arcstat_l2_abort_lowmem.value.ui64 = 7355 wmsum_value(&arc_sums.arcstat_l2_abort_lowmem); 7356 as->arcstat_l2_cksum_bad.value.ui64 = 7357 wmsum_value(&arc_sums.arcstat_l2_cksum_bad); 7358 as->arcstat_l2_io_error.value.ui64 = 7359 wmsum_value(&arc_sums.arcstat_l2_io_error); 7360 as->arcstat_l2_lsize.value.ui64 = 7361 wmsum_value(&arc_sums.arcstat_l2_lsize); 7362 as->arcstat_l2_psize.value.ui64 = 7363 wmsum_value(&arc_sums.arcstat_l2_psize); 7364 as->arcstat_l2_hdr_size.value.ui64 = 7365 aggsum_value(&arc_sums.arcstat_l2_hdr_size); 7366 as->arcstat_l2_log_blk_writes.value.ui64 = 7367 wmsum_value(&arc_sums.arcstat_l2_log_blk_writes); 7368 as->arcstat_l2_log_blk_asize.value.ui64 = 7369 wmsum_value(&arc_sums.arcstat_l2_log_blk_asize); 7370 as->arcstat_l2_log_blk_count.value.ui64 = 7371 wmsum_value(&arc_sums.arcstat_l2_log_blk_count); 7372 as->arcstat_l2_rebuild_success.value.ui64 = 7373 wmsum_value(&arc_sums.arcstat_l2_rebuild_success); 7374 as->arcstat_l2_rebuild_abort_unsupported.value.ui64 = 7375 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_unsupported); 7376 as->arcstat_l2_rebuild_abort_io_errors.value.ui64 = 7377 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_io_errors); 7378 as->arcstat_l2_rebuild_abort_dh_errors.value.ui64 = 7379 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_dh_errors); 7380 as->arcstat_l2_rebuild_abort_cksum_lb_errors.value.ui64 = 7381 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors); 7382 as->arcstat_l2_rebuild_abort_lowmem.value.ui64 = 7383 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_lowmem); 7384 as->arcstat_l2_rebuild_size.value.ui64 = 7385 wmsum_value(&arc_sums.arcstat_l2_rebuild_size); 7386 as->arcstat_l2_rebuild_asize.value.ui64 = 7387 wmsum_value(&arc_sums.arcstat_l2_rebuild_asize); 7388 as->arcstat_l2_rebuild_bufs.value.ui64 = 7389 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs); 7390 as->arcstat_l2_rebuild_bufs_precached.value.ui64 = 7391 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs_precached); 7392 as->arcstat_l2_rebuild_log_blks.value.ui64 = 7393 wmsum_value(&arc_sums.arcstat_l2_rebuild_log_blks); 7394 as->arcstat_memory_throttle_count.value.ui64 = 7395 wmsum_value(&arc_sums.arcstat_memory_throttle_count); 7396 as->arcstat_memory_direct_count.value.ui64 = 7397 wmsum_value(&arc_sums.arcstat_memory_direct_count); 7398 as->arcstat_memory_indirect_count.value.ui64 = 7399 wmsum_value(&arc_sums.arcstat_memory_indirect_count); 7400 7401 as->arcstat_memory_all_bytes.value.ui64 = 7402 arc_all_memory(); 7403 as->arcstat_memory_free_bytes.value.ui64 = 7404 arc_free_memory(); 7405 as->arcstat_memory_available_bytes.value.i64 = 7406 arc_available_memory(); 7407 7408 as->arcstat_prune.value.ui64 = 7409 wmsum_value(&arc_sums.arcstat_prune); 7410 as->arcstat_meta_used.value.ui64 = 7411 aggsum_value(&arc_sums.arcstat_meta_used); 7412 as->arcstat_async_upgrade_sync.value.ui64 = 7413 wmsum_value(&arc_sums.arcstat_async_upgrade_sync); 7414 as->arcstat_demand_hit_predictive_prefetch.value.ui64 = 7415 wmsum_value(&arc_sums.arcstat_demand_hit_predictive_prefetch); 7416 as->arcstat_demand_hit_prescient_prefetch.value.ui64 = 7417 wmsum_value(&arc_sums.arcstat_demand_hit_prescient_prefetch); 7418 as->arcstat_raw_size.value.ui64 = 7419 wmsum_value(&arc_sums.arcstat_raw_size); 7420 as->arcstat_cached_only_in_progress.value.ui64 = 7421 wmsum_value(&arc_sums.arcstat_cached_only_in_progress); 7422 as->arcstat_abd_chunk_waste_size.value.ui64 = 7423 wmsum_value(&arc_sums.arcstat_abd_chunk_waste_size); 7424 7425 return (0); 7426 } 7427 7428 /* 7429 * This function *must* return indices evenly distributed between all 7430 * sublists of the multilist. This is needed due to how the ARC eviction 7431 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 7432 * distributed between all sublists and uses this assumption when 7433 * deciding which sublist to evict from and how much to evict from it. 7434 */ 7435 static unsigned int 7436 arc_state_multilist_index_func(multilist_t *ml, void *obj) 7437 { 7438 arc_buf_hdr_t *hdr = obj; 7439 7440 /* 7441 * We rely on b_dva to generate evenly distributed index 7442 * numbers using buf_hash below. So, as an added precaution, 7443 * let's make sure we never add empty buffers to the arc lists. 7444 */ 7445 ASSERT(!HDR_EMPTY(hdr)); 7446 7447 /* 7448 * The assumption here, is the hash value for a given 7449 * arc_buf_hdr_t will remain constant throughout its lifetime 7450 * (i.e. its b_spa, b_dva, and b_birth fields don't change). 7451 * Thus, we don't need to store the header's sublist index 7452 * on insertion, as this index can be recalculated on removal. 7453 * 7454 * Also, the low order bits of the hash value are thought to be 7455 * distributed evenly. Otherwise, in the case that the multilist 7456 * has a power of two number of sublists, each sublists' usage 7457 * would not be evenly distributed. In this context full 64bit 7458 * division would be a waste of time, so limit it to 32 bits. 7459 */ 7460 return ((unsigned int)buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 7461 multilist_get_num_sublists(ml)); 7462 } 7463 7464 #define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \ 7465 if ((do_warn) && (tuning) && ((tuning) != (value))) { \ 7466 cmn_err(CE_WARN, \ 7467 "ignoring tunable %s (using %llu instead)", \ 7468 (#tuning), (value)); \ 7469 } \ 7470 } while (0) 7471 7472 /* 7473 * Called during module initialization and periodically thereafter to 7474 * apply reasonable changes to the exposed performance tunings. Can also be 7475 * called explicitly by param_set_arc_*() functions when ARC tunables are 7476 * updated manually. Non-zero zfs_* values which differ from the currently set 7477 * values will be applied. 7478 */ 7479 void 7480 arc_tuning_update(boolean_t verbose) 7481 { 7482 uint64_t allmem = arc_all_memory(); 7483 unsigned long limit; 7484 7485 /* Valid range: 32M - <arc_c_max> */ 7486 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) && 7487 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) && 7488 (zfs_arc_min <= arc_c_max)) { 7489 arc_c_min = zfs_arc_min; 7490 arc_c = MAX(arc_c, arc_c_min); 7491 } 7492 WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose); 7493 7494 /* Valid range: 64M - <all physical memory> */ 7495 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) && 7496 (zfs_arc_max >= 64 << 20) && (zfs_arc_max < allmem) && 7497 (zfs_arc_max > arc_c_min)) { 7498 arc_c_max = zfs_arc_max; 7499 arc_c = MIN(arc_c, arc_c_max); 7500 arc_p = (arc_c >> 1); 7501 if (arc_meta_limit > arc_c_max) 7502 arc_meta_limit = arc_c_max; 7503 if (arc_dnode_size_limit > arc_meta_limit) 7504 arc_dnode_size_limit = arc_meta_limit; 7505 } 7506 WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose); 7507 7508 /* Valid range: 16M - <arc_c_max> */ 7509 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) && 7510 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) && 7511 (zfs_arc_meta_min <= arc_c_max)) { 7512 arc_meta_min = zfs_arc_meta_min; 7513 if (arc_meta_limit < arc_meta_min) 7514 arc_meta_limit = arc_meta_min; 7515 if (arc_dnode_size_limit < arc_meta_min) 7516 arc_dnode_size_limit = arc_meta_min; 7517 } 7518 WARN_IF_TUNING_IGNORED(zfs_arc_meta_min, arc_meta_min, verbose); 7519 7520 /* Valid range: <arc_meta_min> - <arc_c_max> */ 7521 limit = zfs_arc_meta_limit ? zfs_arc_meta_limit : 7522 MIN(zfs_arc_meta_limit_percent, 100) * arc_c_max / 100; 7523 if ((limit != arc_meta_limit) && 7524 (limit >= arc_meta_min) && 7525 (limit <= arc_c_max)) 7526 arc_meta_limit = limit; 7527 WARN_IF_TUNING_IGNORED(zfs_arc_meta_limit, arc_meta_limit, verbose); 7528 7529 /* Valid range: <arc_meta_min> - <arc_meta_limit> */ 7530 limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit : 7531 MIN(zfs_arc_dnode_limit_percent, 100) * arc_meta_limit / 100; 7532 if ((limit != arc_dnode_size_limit) && 7533 (limit >= arc_meta_min) && 7534 (limit <= arc_meta_limit)) 7535 arc_dnode_size_limit = limit; 7536 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_size_limit, 7537 verbose); 7538 7539 /* Valid range: 1 - N */ 7540 if (zfs_arc_grow_retry) 7541 arc_grow_retry = zfs_arc_grow_retry; 7542 7543 /* Valid range: 1 - N */ 7544 if (zfs_arc_shrink_shift) { 7545 arc_shrink_shift = zfs_arc_shrink_shift; 7546 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1); 7547 } 7548 7549 /* Valid range: 1 - N */ 7550 if (zfs_arc_p_min_shift) 7551 arc_p_min_shift = zfs_arc_p_min_shift; 7552 7553 /* Valid range: 1 - N ms */ 7554 if (zfs_arc_min_prefetch_ms) 7555 arc_min_prefetch_ms = zfs_arc_min_prefetch_ms; 7556 7557 /* Valid range: 1 - N ms */ 7558 if (zfs_arc_min_prescient_prefetch_ms) { 7559 arc_min_prescient_prefetch_ms = 7560 zfs_arc_min_prescient_prefetch_ms; 7561 } 7562 7563 /* Valid range: 0 - 100 */ 7564 if ((zfs_arc_lotsfree_percent >= 0) && 7565 (zfs_arc_lotsfree_percent <= 100)) 7566 arc_lotsfree_percent = zfs_arc_lotsfree_percent; 7567 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent, 7568 verbose); 7569 7570 /* Valid range: 0 - <all physical memory> */ 7571 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free)) 7572 arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), allmem); 7573 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose); 7574 } 7575 7576 static void 7577 arc_state_init(void) 7578 { 7579 arc_anon = &ARC_anon; 7580 arc_mru = &ARC_mru; 7581 arc_mru_ghost = &ARC_mru_ghost; 7582 arc_mfu = &ARC_mfu; 7583 arc_mfu_ghost = &ARC_mfu_ghost; 7584 arc_l2c_only = &ARC_l2c_only; 7585 7586 multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 7587 sizeof (arc_buf_hdr_t), 7588 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7589 arc_state_multilist_index_func); 7590 multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 7591 sizeof (arc_buf_hdr_t), 7592 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7593 arc_state_multilist_index_func); 7594 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 7595 sizeof (arc_buf_hdr_t), 7596 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7597 arc_state_multilist_index_func); 7598 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 7599 sizeof (arc_buf_hdr_t), 7600 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7601 arc_state_multilist_index_func); 7602 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 7603 sizeof (arc_buf_hdr_t), 7604 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7605 arc_state_multilist_index_func); 7606 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 7607 sizeof (arc_buf_hdr_t), 7608 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7609 arc_state_multilist_index_func); 7610 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 7611 sizeof (arc_buf_hdr_t), 7612 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7613 arc_state_multilist_index_func); 7614 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 7615 sizeof (arc_buf_hdr_t), 7616 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7617 arc_state_multilist_index_func); 7618 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 7619 sizeof (arc_buf_hdr_t), 7620 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7621 arc_state_multilist_index_func); 7622 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 7623 sizeof (arc_buf_hdr_t), 7624 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7625 arc_state_multilist_index_func); 7626 7627 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7628 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7629 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7630 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7631 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7632 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7633 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7634 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7635 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7636 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7637 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7638 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7639 7640 zfs_refcount_create(&arc_anon->arcs_size); 7641 zfs_refcount_create(&arc_mru->arcs_size); 7642 zfs_refcount_create(&arc_mru_ghost->arcs_size); 7643 zfs_refcount_create(&arc_mfu->arcs_size); 7644 zfs_refcount_create(&arc_mfu_ghost->arcs_size); 7645 zfs_refcount_create(&arc_l2c_only->arcs_size); 7646 7647 wmsum_init(&arc_sums.arcstat_hits, 0); 7648 wmsum_init(&arc_sums.arcstat_misses, 0); 7649 wmsum_init(&arc_sums.arcstat_demand_data_hits, 0); 7650 wmsum_init(&arc_sums.arcstat_demand_data_misses, 0); 7651 wmsum_init(&arc_sums.arcstat_demand_metadata_hits, 0); 7652 wmsum_init(&arc_sums.arcstat_demand_metadata_misses, 0); 7653 wmsum_init(&arc_sums.arcstat_prefetch_data_hits, 0); 7654 wmsum_init(&arc_sums.arcstat_prefetch_data_misses, 0); 7655 wmsum_init(&arc_sums.arcstat_prefetch_metadata_hits, 0); 7656 wmsum_init(&arc_sums.arcstat_prefetch_metadata_misses, 0); 7657 wmsum_init(&arc_sums.arcstat_mru_hits, 0); 7658 wmsum_init(&arc_sums.arcstat_mru_ghost_hits, 0); 7659 wmsum_init(&arc_sums.arcstat_mfu_hits, 0); 7660 wmsum_init(&arc_sums.arcstat_mfu_ghost_hits, 0); 7661 wmsum_init(&arc_sums.arcstat_deleted, 0); 7662 wmsum_init(&arc_sums.arcstat_mutex_miss, 0); 7663 wmsum_init(&arc_sums.arcstat_access_skip, 0); 7664 wmsum_init(&arc_sums.arcstat_evict_skip, 0); 7665 wmsum_init(&arc_sums.arcstat_evict_not_enough, 0); 7666 wmsum_init(&arc_sums.arcstat_evict_l2_cached, 0); 7667 wmsum_init(&arc_sums.arcstat_evict_l2_eligible, 0); 7668 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mfu, 0); 7669 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mru, 0); 7670 wmsum_init(&arc_sums.arcstat_evict_l2_ineligible, 0); 7671 wmsum_init(&arc_sums.arcstat_evict_l2_skip, 0); 7672 wmsum_init(&arc_sums.arcstat_hash_collisions, 0); 7673 wmsum_init(&arc_sums.arcstat_hash_chains, 0); 7674 aggsum_init(&arc_sums.arcstat_size, 0); 7675 wmsum_init(&arc_sums.arcstat_compressed_size, 0); 7676 wmsum_init(&arc_sums.arcstat_uncompressed_size, 0); 7677 wmsum_init(&arc_sums.arcstat_overhead_size, 0); 7678 wmsum_init(&arc_sums.arcstat_hdr_size, 0); 7679 wmsum_init(&arc_sums.arcstat_data_size, 0); 7680 wmsum_init(&arc_sums.arcstat_metadata_size, 0); 7681 wmsum_init(&arc_sums.arcstat_dbuf_size, 0); 7682 aggsum_init(&arc_sums.arcstat_dnode_size, 0); 7683 wmsum_init(&arc_sums.arcstat_bonus_size, 0); 7684 wmsum_init(&arc_sums.arcstat_l2_hits, 0); 7685 wmsum_init(&arc_sums.arcstat_l2_misses, 0); 7686 wmsum_init(&arc_sums.arcstat_l2_prefetch_asize, 0); 7687 wmsum_init(&arc_sums.arcstat_l2_mru_asize, 0); 7688 wmsum_init(&arc_sums.arcstat_l2_mfu_asize, 0); 7689 wmsum_init(&arc_sums.arcstat_l2_bufc_data_asize, 0); 7690 wmsum_init(&arc_sums.arcstat_l2_bufc_metadata_asize, 0); 7691 wmsum_init(&arc_sums.arcstat_l2_feeds, 0); 7692 wmsum_init(&arc_sums.arcstat_l2_rw_clash, 0); 7693 wmsum_init(&arc_sums.arcstat_l2_read_bytes, 0); 7694 wmsum_init(&arc_sums.arcstat_l2_write_bytes, 0); 7695 wmsum_init(&arc_sums.arcstat_l2_writes_sent, 0); 7696 wmsum_init(&arc_sums.arcstat_l2_writes_done, 0); 7697 wmsum_init(&arc_sums.arcstat_l2_writes_error, 0); 7698 wmsum_init(&arc_sums.arcstat_l2_writes_lock_retry, 0); 7699 wmsum_init(&arc_sums.arcstat_l2_evict_lock_retry, 0); 7700 wmsum_init(&arc_sums.arcstat_l2_evict_reading, 0); 7701 wmsum_init(&arc_sums.arcstat_l2_evict_l1cached, 0); 7702 wmsum_init(&arc_sums.arcstat_l2_free_on_write, 0); 7703 wmsum_init(&arc_sums.arcstat_l2_abort_lowmem, 0); 7704 wmsum_init(&arc_sums.arcstat_l2_cksum_bad, 0); 7705 wmsum_init(&arc_sums.arcstat_l2_io_error, 0); 7706 wmsum_init(&arc_sums.arcstat_l2_lsize, 0); 7707 wmsum_init(&arc_sums.arcstat_l2_psize, 0); 7708 aggsum_init(&arc_sums.arcstat_l2_hdr_size, 0); 7709 wmsum_init(&arc_sums.arcstat_l2_log_blk_writes, 0); 7710 wmsum_init(&arc_sums.arcstat_l2_log_blk_asize, 0); 7711 wmsum_init(&arc_sums.arcstat_l2_log_blk_count, 0); 7712 wmsum_init(&arc_sums.arcstat_l2_rebuild_success, 0); 7713 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_unsupported, 0); 7714 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_io_errors, 0); 7715 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_dh_errors, 0); 7716 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors, 0); 7717 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_lowmem, 0); 7718 wmsum_init(&arc_sums.arcstat_l2_rebuild_size, 0); 7719 wmsum_init(&arc_sums.arcstat_l2_rebuild_asize, 0); 7720 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs, 0); 7721 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs_precached, 0); 7722 wmsum_init(&arc_sums.arcstat_l2_rebuild_log_blks, 0); 7723 wmsum_init(&arc_sums.arcstat_memory_throttle_count, 0); 7724 wmsum_init(&arc_sums.arcstat_memory_direct_count, 0); 7725 wmsum_init(&arc_sums.arcstat_memory_indirect_count, 0); 7726 wmsum_init(&arc_sums.arcstat_prune, 0); 7727 aggsum_init(&arc_sums.arcstat_meta_used, 0); 7728 wmsum_init(&arc_sums.arcstat_async_upgrade_sync, 0); 7729 wmsum_init(&arc_sums.arcstat_demand_hit_predictive_prefetch, 0); 7730 wmsum_init(&arc_sums.arcstat_demand_hit_prescient_prefetch, 0); 7731 wmsum_init(&arc_sums.arcstat_raw_size, 0); 7732 wmsum_init(&arc_sums.arcstat_cached_only_in_progress, 0); 7733 wmsum_init(&arc_sums.arcstat_abd_chunk_waste_size, 0); 7734 7735 arc_anon->arcs_state = ARC_STATE_ANON; 7736 arc_mru->arcs_state = ARC_STATE_MRU; 7737 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST; 7738 arc_mfu->arcs_state = ARC_STATE_MFU; 7739 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST; 7740 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY; 7741 } 7742 7743 static void 7744 arc_state_fini(void) 7745 { 7746 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7747 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7748 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7749 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7750 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7751 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7752 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7753 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7754 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7755 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7756 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7757 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7758 7759 zfs_refcount_destroy(&arc_anon->arcs_size); 7760 zfs_refcount_destroy(&arc_mru->arcs_size); 7761 zfs_refcount_destroy(&arc_mru_ghost->arcs_size); 7762 zfs_refcount_destroy(&arc_mfu->arcs_size); 7763 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size); 7764 zfs_refcount_destroy(&arc_l2c_only->arcs_size); 7765 7766 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 7767 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 7768 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 7769 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 7770 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 7771 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 7772 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 7773 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 7774 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]); 7775 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]); 7776 7777 wmsum_fini(&arc_sums.arcstat_hits); 7778 wmsum_fini(&arc_sums.arcstat_misses); 7779 wmsum_fini(&arc_sums.arcstat_demand_data_hits); 7780 wmsum_fini(&arc_sums.arcstat_demand_data_misses); 7781 wmsum_fini(&arc_sums.arcstat_demand_metadata_hits); 7782 wmsum_fini(&arc_sums.arcstat_demand_metadata_misses); 7783 wmsum_fini(&arc_sums.arcstat_prefetch_data_hits); 7784 wmsum_fini(&arc_sums.arcstat_prefetch_data_misses); 7785 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_hits); 7786 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_misses); 7787 wmsum_fini(&arc_sums.arcstat_mru_hits); 7788 wmsum_fini(&arc_sums.arcstat_mru_ghost_hits); 7789 wmsum_fini(&arc_sums.arcstat_mfu_hits); 7790 wmsum_fini(&arc_sums.arcstat_mfu_ghost_hits); 7791 wmsum_fini(&arc_sums.arcstat_deleted); 7792 wmsum_fini(&arc_sums.arcstat_mutex_miss); 7793 wmsum_fini(&arc_sums.arcstat_access_skip); 7794 wmsum_fini(&arc_sums.arcstat_evict_skip); 7795 wmsum_fini(&arc_sums.arcstat_evict_not_enough); 7796 wmsum_fini(&arc_sums.arcstat_evict_l2_cached); 7797 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible); 7798 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mfu); 7799 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mru); 7800 wmsum_fini(&arc_sums.arcstat_evict_l2_ineligible); 7801 wmsum_fini(&arc_sums.arcstat_evict_l2_skip); 7802 wmsum_fini(&arc_sums.arcstat_hash_collisions); 7803 wmsum_fini(&arc_sums.arcstat_hash_chains); 7804 aggsum_fini(&arc_sums.arcstat_size); 7805 wmsum_fini(&arc_sums.arcstat_compressed_size); 7806 wmsum_fini(&arc_sums.arcstat_uncompressed_size); 7807 wmsum_fini(&arc_sums.arcstat_overhead_size); 7808 wmsum_fini(&arc_sums.arcstat_hdr_size); 7809 wmsum_fini(&arc_sums.arcstat_data_size); 7810 wmsum_fini(&arc_sums.arcstat_metadata_size); 7811 wmsum_fini(&arc_sums.arcstat_dbuf_size); 7812 aggsum_fini(&arc_sums.arcstat_dnode_size); 7813 wmsum_fini(&arc_sums.arcstat_bonus_size); 7814 wmsum_fini(&arc_sums.arcstat_l2_hits); 7815 wmsum_fini(&arc_sums.arcstat_l2_misses); 7816 wmsum_fini(&arc_sums.arcstat_l2_prefetch_asize); 7817 wmsum_fini(&arc_sums.arcstat_l2_mru_asize); 7818 wmsum_fini(&arc_sums.arcstat_l2_mfu_asize); 7819 wmsum_fini(&arc_sums.arcstat_l2_bufc_data_asize); 7820 wmsum_fini(&arc_sums.arcstat_l2_bufc_metadata_asize); 7821 wmsum_fini(&arc_sums.arcstat_l2_feeds); 7822 wmsum_fini(&arc_sums.arcstat_l2_rw_clash); 7823 wmsum_fini(&arc_sums.arcstat_l2_read_bytes); 7824 wmsum_fini(&arc_sums.arcstat_l2_write_bytes); 7825 wmsum_fini(&arc_sums.arcstat_l2_writes_sent); 7826 wmsum_fini(&arc_sums.arcstat_l2_writes_done); 7827 wmsum_fini(&arc_sums.arcstat_l2_writes_error); 7828 wmsum_fini(&arc_sums.arcstat_l2_writes_lock_retry); 7829 wmsum_fini(&arc_sums.arcstat_l2_evict_lock_retry); 7830 wmsum_fini(&arc_sums.arcstat_l2_evict_reading); 7831 wmsum_fini(&arc_sums.arcstat_l2_evict_l1cached); 7832 wmsum_fini(&arc_sums.arcstat_l2_free_on_write); 7833 wmsum_fini(&arc_sums.arcstat_l2_abort_lowmem); 7834 wmsum_fini(&arc_sums.arcstat_l2_cksum_bad); 7835 wmsum_fini(&arc_sums.arcstat_l2_io_error); 7836 wmsum_fini(&arc_sums.arcstat_l2_lsize); 7837 wmsum_fini(&arc_sums.arcstat_l2_psize); 7838 aggsum_fini(&arc_sums.arcstat_l2_hdr_size); 7839 wmsum_fini(&arc_sums.arcstat_l2_log_blk_writes); 7840 wmsum_fini(&arc_sums.arcstat_l2_log_blk_asize); 7841 wmsum_fini(&arc_sums.arcstat_l2_log_blk_count); 7842 wmsum_fini(&arc_sums.arcstat_l2_rebuild_success); 7843 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_unsupported); 7844 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_io_errors); 7845 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_dh_errors); 7846 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors); 7847 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_lowmem); 7848 wmsum_fini(&arc_sums.arcstat_l2_rebuild_size); 7849 wmsum_fini(&arc_sums.arcstat_l2_rebuild_asize); 7850 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs); 7851 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs_precached); 7852 wmsum_fini(&arc_sums.arcstat_l2_rebuild_log_blks); 7853 wmsum_fini(&arc_sums.arcstat_memory_throttle_count); 7854 wmsum_fini(&arc_sums.arcstat_memory_direct_count); 7855 wmsum_fini(&arc_sums.arcstat_memory_indirect_count); 7856 wmsum_fini(&arc_sums.arcstat_prune); 7857 aggsum_fini(&arc_sums.arcstat_meta_used); 7858 wmsum_fini(&arc_sums.arcstat_async_upgrade_sync); 7859 wmsum_fini(&arc_sums.arcstat_demand_hit_predictive_prefetch); 7860 wmsum_fini(&arc_sums.arcstat_demand_hit_prescient_prefetch); 7861 wmsum_fini(&arc_sums.arcstat_raw_size); 7862 wmsum_fini(&arc_sums.arcstat_cached_only_in_progress); 7863 wmsum_fini(&arc_sums.arcstat_abd_chunk_waste_size); 7864 } 7865 7866 uint64_t 7867 arc_target_bytes(void) 7868 { 7869 return (arc_c); 7870 } 7871 7872 void 7873 arc_set_limits(uint64_t allmem) 7874 { 7875 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */ 7876 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT); 7877 7878 /* How to set default max varies by platform. */ 7879 arc_c_max = arc_default_max(arc_c_min, allmem); 7880 } 7881 void 7882 arc_init(void) 7883 { 7884 uint64_t percent, allmem = arc_all_memory(); 7885 mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL); 7886 list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t), 7887 offsetof(arc_evict_waiter_t, aew_node)); 7888 7889 arc_min_prefetch_ms = 1000; 7890 arc_min_prescient_prefetch_ms = 6000; 7891 7892 #if defined(_KERNEL) 7893 arc_lowmem_init(); 7894 #endif 7895 7896 arc_set_limits(allmem); 7897 7898 #ifndef _KERNEL 7899 /* 7900 * In userland, there's only the memory pressure that we artificially 7901 * create (see arc_available_memory()). Don't let arc_c get too 7902 * small, because it can cause transactions to be larger than 7903 * arc_c, causing arc_tempreserve_space() to fail. 7904 */ 7905 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT); 7906 #endif 7907 7908 arc_c = arc_c_min; 7909 arc_p = (arc_c >> 1); 7910 7911 /* Set min to 1/2 of arc_c_min */ 7912 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT; 7913 /* 7914 * Set arc_meta_limit to a percent of arc_c_max with a floor of 7915 * arc_meta_min, and a ceiling of arc_c_max. 7916 */ 7917 percent = MIN(zfs_arc_meta_limit_percent, 100); 7918 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100); 7919 percent = MIN(zfs_arc_dnode_limit_percent, 100); 7920 arc_dnode_size_limit = (percent * arc_meta_limit) / 100; 7921 7922 /* Apply user specified tunings */ 7923 arc_tuning_update(B_TRUE); 7924 7925 /* if kmem_flags are set, lets try to use less memory */ 7926 if (kmem_debugging()) 7927 arc_c = arc_c / 2; 7928 if (arc_c < arc_c_min) 7929 arc_c = arc_c_min; 7930 7931 arc_register_hotplug(); 7932 7933 arc_state_init(); 7934 7935 buf_init(); 7936 7937 list_create(&arc_prune_list, sizeof (arc_prune_t), 7938 offsetof(arc_prune_t, p_node)); 7939 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL); 7940 7941 arc_prune_taskq = taskq_create("arc_prune", 100, defclsyspri, 7942 boot_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC | 7943 TASKQ_THREADS_CPU_PCT); 7944 7945 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 7946 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 7947 7948 if (arc_ksp != NULL) { 7949 arc_ksp->ks_data = &arc_stats; 7950 arc_ksp->ks_update = arc_kstat_update; 7951 kstat_install(arc_ksp); 7952 } 7953 7954 arc_evict_zthr = zthr_create("arc_evict", 7955 arc_evict_cb_check, arc_evict_cb, NULL); 7956 arc_reap_zthr = zthr_create_timer("arc_reap", 7957 arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1)); 7958 7959 arc_warm = B_FALSE; 7960 7961 /* 7962 * Calculate maximum amount of dirty data per pool. 7963 * 7964 * If it has been set by a module parameter, take that. 7965 * Otherwise, use a percentage of physical memory defined by 7966 * zfs_dirty_data_max_percent (default 10%) with a cap at 7967 * zfs_dirty_data_max_max (default 4G or 25% of physical memory). 7968 */ 7969 #ifdef __LP64__ 7970 if (zfs_dirty_data_max_max == 0) 7971 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024, 7972 allmem * zfs_dirty_data_max_max_percent / 100); 7973 #else 7974 if (zfs_dirty_data_max_max == 0) 7975 zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024, 7976 allmem * zfs_dirty_data_max_max_percent / 100); 7977 #endif 7978 7979 if (zfs_dirty_data_max == 0) { 7980 zfs_dirty_data_max = allmem * 7981 zfs_dirty_data_max_percent / 100; 7982 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 7983 zfs_dirty_data_max_max); 7984 } 7985 } 7986 7987 void 7988 arc_fini(void) 7989 { 7990 arc_prune_t *p; 7991 7992 #ifdef _KERNEL 7993 arc_lowmem_fini(); 7994 #endif /* _KERNEL */ 7995 7996 /* Use B_TRUE to ensure *all* buffers are evicted */ 7997 arc_flush(NULL, B_TRUE); 7998 7999 if (arc_ksp != NULL) { 8000 kstat_delete(arc_ksp); 8001 arc_ksp = NULL; 8002 } 8003 8004 taskq_wait(arc_prune_taskq); 8005 taskq_destroy(arc_prune_taskq); 8006 8007 mutex_enter(&arc_prune_mtx); 8008 while ((p = list_head(&arc_prune_list)) != NULL) { 8009 list_remove(&arc_prune_list, p); 8010 zfs_refcount_remove(&p->p_refcnt, &arc_prune_list); 8011 zfs_refcount_destroy(&p->p_refcnt); 8012 kmem_free(p, sizeof (*p)); 8013 } 8014 mutex_exit(&arc_prune_mtx); 8015 8016 list_destroy(&arc_prune_list); 8017 mutex_destroy(&arc_prune_mtx); 8018 8019 (void) zthr_cancel(arc_evict_zthr); 8020 (void) zthr_cancel(arc_reap_zthr); 8021 8022 mutex_destroy(&arc_evict_lock); 8023 list_destroy(&arc_evict_waiters); 8024 8025 /* 8026 * Free any buffers that were tagged for destruction. This needs 8027 * to occur before arc_state_fini() runs and destroys the aggsum 8028 * values which are updated when freeing scatter ABDs. 8029 */ 8030 l2arc_do_free_on_write(); 8031 8032 /* 8033 * buf_fini() must proceed arc_state_fini() because buf_fin() may 8034 * trigger the release of kmem magazines, which can callback to 8035 * arc_space_return() which accesses aggsums freed in act_state_fini(). 8036 */ 8037 buf_fini(); 8038 arc_state_fini(); 8039 8040 arc_unregister_hotplug(); 8041 8042 /* 8043 * We destroy the zthrs after all the ARC state has been 8044 * torn down to avoid the case of them receiving any 8045 * wakeup() signals after they are destroyed. 8046 */ 8047 zthr_destroy(arc_evict_zthr); 8048 zthr_destroy(arc_reap_zthr); 8049 8050 ASSERT0(arc_loaned_bytes); 8051 } 8052 8053 /* 8054 * Level 2 ARC 8055 * 8056 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 8057 * It uses dedicated storage devices to hold cached data, which are populated 8058 * using large infrequent writes. The main role of this cache is to boost 8059 * the performance of random read workloads. The intended L2ARC devices 8060 * include short-stroked disks, solid state disks, and other media with 8061 * substantially faster read latency than disk. 8062 * 8063 * +-----------------------+ 8064 * | ARC | 8065 * +-----------------------+ 8066 * | ^ ^ 8067 * | | | 8068 * l2arc_feed_thread() arc_read() 8069 * | | | 8070 * | l2arc read | 8071 * V | | 8072 * +---------------+ | 8073 * | L2ARC | | 8074 * +---------------+ | 8075 * | ^ | 8076 * l2arc_write() | | 8077 * | | | 8078 * V | | 8079 * +-------+ +-------+ 8080 * | vdev | | vdev | 8081 * | cache | | cache | 8082 * +-------+ +-------+ 8083 * +=========+ .-----. 8084 * : L2ARC : |-_____-| 8085 * : devices : | Disks | 8086 * +=========+ `-_____-' 8087 * 8088 * Read requests are satisfied from the following sources, in order: 8089 * 8090 * 1) ARC 8091 * 2) vdev cache of L2ARC devices 8092 * 3) L2ARC devices 8093 * 4) vdev cache of disks 8094 * 5) disks 8095 * 8096 * Some L2ARC device types exhibit extremely slow write performance. 8097 * To accommodate for this there are some significant differences between 8098 * the L2ARC and traditional cache design: 8099 * 8100 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 8101 * the ARC behave as usual, freeing buffers and placing headers on ghost 8102 * lists. The ARC does not send buffers to the L2ARC during eviction as 8103 * this would add inflated write latencies for all ARC memory pressure. 8104 * 8105 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 8106 * It does this by periodically scanning buffers from the eviction-end of 8107 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 8108 * not already there. It scans until a headroom of buffers is satisfied, 8109 * which itself is a buffer for ARC eviction. If a compressible buffer is 8110 * found during scanning and selected for writing to an L2ARC device, we 8111 * temporarily boost scanning headroom during the next scan cycle to make 8112 * sure we adapt to compression effects (which might significantly reduce 8113 * the data volume we write to L2ARC). The thread that does this is 8114 * l2arc_feed_thread(), illustrated below; example sizes are included to 8115 * provide a better sense of ratio than this diagram: 8116 * 8117 * head --> tail 8118 * +---------------------+----------+ 8119 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 8120 * +---------------------+----------+ | o L2ARC eligible 8121 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 8122 * +---------------------+----------+ | 8123 * 15.9 Gbytes ^ 32 Mbytes | 8124 * headroom | 8125 * l2arc_feed_thread() 8126 * | 8127 * l2arc write hand <--[oooo]--' 8128 * | 8 Mbyte 8129 * | write max 8130 * V 8131 * +==============================+ 8132 * L2ARC dev |####|#|###|###| |####| ... | 8133 * +==============================+ 8134 * 32 Gbytes 8135 * 8136 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 8137 * evicted, then the L2ARC has cached a buffer much sooner than it probably 8138 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 8139 * safe to say that this is an uncommon case, since buffers at the end of 8140 * the ARC lists have moved there due to inactivity. 8141 * 8142 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 8143 * then the L2ARC simply misses copying some buffers. This serves as a 8144 * pressure valve to prevent heavy read workloads from both stalling the ARC 8145 * with waits and clogging the L2ARC with writes. This also helps prevent 8146 * the potential for the L2ARC to churn if it attempts to cache content too 8147 * quickly, such as during backups of the entire pool. 8148 * 8149 * 5. After system boot and before the ARC has filled main memory, there are 8150 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 8151 * lists can remain mostly static. Instead of searching from tail of these 8152 * lists as pictured, the l2arc_feed_thread() will search from the list heads 8153 * for eligible buffers, greatly increasing its chance of finding them. 8154 * 8155 * The L2ARC device write speed is also boosted during this time so that 8156 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 8157 * there are no L2ARC reads, and no fear of degrading read performance 8158 * through increased writes. 8159 * 8160 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 8161 * the vdev queue can aggregate them into larger and fewer writes. Each 8162 * device is written to in a rotor fashion, sweeping writes through 8163 * available space then repeating. 8164 * 8165 * 7. The L2ARC does not store dirty content. It never needs to flush 8166 * write buffers back to disk based storage. 8167 * 8168 * 8. If an ARC buffer is written (and dirtied) which also exists in the 8169 * L2ARC, the now stale L2ARC buffer is immediately dropped. 8170 * 8171 * The performance of the L2ARC can be tweaked by a number of tunables, which 8172 * may be necessary for different workloads: 8173 * 8174 * l2arc_write_max max write bytes per interval 8175 * l2arc_write_boost extra write bytes during device warmup 8176 * l2arc_noprefetch skip caching prefetched buffers 8177 * l2arc_headroom number of max device writes to precache 8178 * l2arc_headroom_boost when we find compressed buffers during ARC 8179 * scanning, we multiply headroom by this 8180 * percentage factor for the next scan cycle, 8181 * since more compressed buffers are likely to 8182 * be present 8183 * l2arc_feed_secs seconds between L2ARC writing 8184 * 8185 * Tunables may be removed or added as future performance improvements are 8186 * integrated, and also may become zpool properties. 8187 * 8188 * There are three key functions that control how the L2ARC warms up: 8189 * 8190 * l2arc_write_eligible() check if a buffer is eligible to cache 8191 * l2arc_write_size() calculate how much to write 8192 * l2arc_write_interval() calculate sleep delay between writes 8193 * 8194 * These three functions determine what to write, how much, and how quickly 8195 * to send writes. 8196 * 8197 * L2ARC persistence: 8198 * 8199 * When writing buffers to L2ARC, we periodically add some metadata to 8200 * make sure we can pick them up after reboot, thus dramatically reducing 8201 * the impact that any downtime has on the performance of storage systems 8202 * with large caches. 8203 * 8204 * The implementation works fairly simply by integrating the following two 8205 * modifications: 8206 * 8207 * *) When writing to the L2ARC, we occasionally write a "l2arc log block", 8208 * which is an additional piece of metadata which describes what's been 8209 * written. This allows us to rebuild the arc_buf_hdr_t structures of the 8210 * main ARC buffers. There are 2 linked-lists of log blocks headed by 8211 * dh_start_lbps[2]. We alternate which chain we append to, so they are 8212 * time-wise and offset-wise interleaved, but that is an optimization rather 8213 * than for correctness. The log block also includes a pointer to the 8214 * previous block in its chain. 8215 * 8216 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device 8217 * for our header bookkeeping purposes. This contains a device header, 8218 * which contains our top-level reference structures. We update it each 8219 * time we write a new log block, so that we're able to locate it in the 8220 * L2ARC device. If this write results in an inconsistent device header 8221 * (e.g. due to power failure), we detect this by verifying the header's 8222 * checksum and simply fail to reconstruct the L2ARC after reboot. 8223 * 8224 * Implementation diagram: 8225 * 8226 * +=== L2ARC device (not to scale) ======================================+ 8227 * | ___two newest log block pointers__.__________ | 8228 * | / \dh_start_lbps[1] | 8229 * | / \ \dh_start_lbps[0]| 8230 * |.___/__. V V | 8231 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---| 8232 * || hdr| ^ /^ /^ / / | 8233 * |+------+ ...--\-------/ \-----/--\------/ / | 8234 * | \--------------/ \--------------/ | 8235 * +======================================================================+ 8236 * 8237 * As can be seen on the diagram, rather than using a simple linked list, 8238 * we use a pair of linked lists with alternating elements. This is a 8239 * performance enhancement due to the fact that we only find out the 8240 * address of the next log block access once the current block has been 8241 * completely read in. Obviously, this hurts performance, because we'd be 8242 * keeping the device's I/O queue at only a 1 operation deep, thus 8243 * incurring a large amount of I/O round-trip latency. Having two lists 8244 * allows us to fetch two log blocks ahead of where we are currently 8245 * rebuilding L2ARC buffers. 8246 * 8247 * On-device data structures: 8248 * 8249 * L2ARC device header: l2arc_dev_hdr_phys_t 8250 * L2ARC log block: l2arc_log_blk_phys_t 8251 * 8252 * L2ARC reconstruction: 8253 * 8254 * When writing data, we simply write in the standard rotary fashion, 8255 * evicting buffers as we go and simply writing new data over them (writing 8256 * a new log block every now and then). This obviously means that once we 8257 * loop around the end of the device, we will start cutting into an already 8258 * committed log block (and its referenced data buffers), like so: 8259 * 8260 * current write head__ __old tail 8261 * \ / 8262 * V V 8263 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |--> 8264 * ^ ^^^^^^^^^___________________________________ 8265 * | \ 8266 * <<nextwrite>> may overwrite this blk and/or its bufs --' 8267 * 8268 * When importing the pool, we detect this situation and use it to stop 8269 * our scanning process (see l2arc_rebuild). 8270 * 8271 * There is one significant caveat to consider when rebuilding ARC contents 8272 * from an L2ARC device: what about invalidated buffers? Given the above 8273 * construction, we cannot update blocks which we've already written to amend 8274 * them to remove buffers which were invalidated. Thus, during reconstruction, 8275 * we might be populating the cache with buffers for data that's not on the 8276 * main pool anymore, or may have been overwritten! 8277 * 8278 * As it turns out, this isn't a problem. Every arc_read request includes 8279 * both the DVA and, crucially, the birth TXG of the BP the caller is 8280 * looking for. So even if the cache were populated by completely rotten 8281 * blocks for data that had been long deleted and/or overwritten, we'll 8282 * never actually return bad data from the cache, since the DVA with the 8283 * birth TXG uniquely identify a block in space and time - once created, 8284 * a block is immutable on disk. The worst thing we have done is wasted 8285 * some time and memory at l2arc rebuild to reconstruct outdated ARC 8286 * entries that will get dropped from the l2arc as it is being updated 8287 * with new blocks. 8288 * 8289 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write 8290 * hand are not restored. This is done by saving the offset (in bytes) 8291 * l2arc_evict() has evicted to in the L2ARC device header and taking it 8292 * into account when restoring buffers. 8293 */ 8294 8295 static boolean_t 8296 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 8297 { 8298 /* 8299 * A buffer is *not* eligible for the L2ARC if it: 8300 * 1. belongs to a different spa. 8301 * 2. is already cached on the L2ARC. 8302 * 3. has an I/O in progress (it may be an incomplete read). 8303 * 4. is flagged not eligible (zfs property). 8304 */ 8305 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || 8306 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr)) 8307 return (B_FALSE); 8308 8309 return (B_TRUE); 8310 } 8311 8312 static uint64_t 8313 l2arc_write_size(l2arc_dev_t *dev) 8314 { 8315 uint64_t size, dev_size, tsize; 8316 8317 /* 8318 * Make sure our globals have meaningful values in case the user 8319 * altered them. 8320 */ 8321 size = l2arc_write_max; 8322 if (size == 0) { 8323 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 8324 "be greater than zero, resetting it to the default (%d)", 8325 L2ARC_WRITE_SIZE); 8326 size = l2arc_write_max = L2ARC_WRITE_SIZE; 8327 } 8328 8329 if (arc_warm == B_FALSE) 8330 size += l2arc_write_boost; 8331 8332 /* 8333 * Make sure the write size does not exceed the size of the cache 8334 * device. This is important in l2arc_evict(), otherwise infinite 8335 * iteration can occur. 8336 */ 8337 dev_size = dev->l2ad_end - dev->l2ad_start; 8338 tsize = size + l2arc_log_blk_overhead(size, dev); 8339 if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) 8340 tsize += MAX(64 * 1024 * 1024, 8341 (tsize * l2arc_trim_ahead) / 100); 8342 8343 if (tsize >= dev_size) { 8344 cmn_err(CE_NOTE, "l2arc_write_max or l2arc_write_boost " 8345 "plus the overhead of log blocks (persistent L2ARC, " 8346 "%llu bytes) exceeds the size of the cache device " 8347 "(guid %llu), resetting them to the default (%d)", 8348 l2arc_log_blk_overhead(size, dev), 8349 dev->l2ad_vdev->vdev_guid, L2ARC_WRITE_SIZE); 8350 size = l2arc_write_max = l2arc_write_boost = L2ARC_WRITE_SIZE; 8351 8352 if (arc_warm == B_FALSE) 8353 size += l2arc_write_boost; 8354 } 8355 8356 return (size); 8357 8358 } 8359 8360 static clock_t 8361 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 8362 { 8363 clock_t interval, next, now; 8364 8365 /* 8366 * If the ARC lists are busy, increase our write rate; if the 8367 * lists are stale, idle back. This is achieved by checking 8368 * how much we previously wrote - if it was more than half of 8369 * what we wanted, schedule the next write much sooner. 8370 */ 8371 if (l2arc_feed_again && wrote > (wanted / 2)) 8372 interval = (hz * l2arc_feed_min_ms) / 1000; 8373 else 8374 interval = hz * l2arc_feed_secs; 8375 8376 now = ddi_get_lbolt(); 8377 next = MAX(now, MIN(now + interval, began + interval)); 8378 8379 return (next); 8380 } 8381 8382 /* 8383 * Cycle through L2ARC devices. This is how L2ARC load balances. 8384 * If a device is returned, this also returns holding the spa config lock. 8385 */ 8386 static l2arc_dev_t * 8387 l2arc_dev_get_next(void) 8388 { 8389 l2arc_dev_t *first, *next = NULL; 8390 8391 /* 8392 * Lock out the removal of spas (spa_namespace_lock), then removal 8393 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 8394 * both locks will be dropped and a spa config lock held instead. 8395 */ 8396 mutex_enter(&spa_namespace_lock); 8397 mutex_enter(&l2arc_dev_mtx); 8398 8399 /* if there are no vdevs, there is nothing to do */ 8400 if (l2arc_ndev == 0) 8401 goto out; 8402 8403 first = NULL; 8404 next = l2arc_dev_last; 8405 do { 8406 /* loop around the list looking for a non-faulted vdev */ 8407 if (next == NULL) { 8408 next = list_head(l2arc_dev_list); 8409 } else { 8410 next = list_next(l2arc_dev_list, next); 8411 if (next == NULL) 8412 next = list_head(l2arc_dev_list); 8413 } 8414 8415 /* if we have come back to the start, bail out */ 8416 if (first == NULL) 8417 first = next; 8418 else if (next == first) 8419 break; 8420 8421 } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || 8422 next->l2ad_trim_all); 8423 8424 /* if we were unable to find any usable vdevs, return NULL */ 8425 if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || 8426 next->l2ad_trim_all) 8427 next = NULL; 8428 8429 l2arc_dev_last = next; 8430 8431 out: 8432 mutex_exit(&l2arc_dev_mtx); 8433 8434 /* 8435 * Grab the config lock to prevent the 'next' device from being 8436 * removed while we are writing to it. 8437 */ 8438 if (next != NULL) 8439 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 8440 mutex_exit(&spa_namespace_lock); 8441 8442 return (next); 8443 } 8444 8445 /* 8446 * Free buffers that were tagged for destruction. 8447 */ 8448 static void 8449 l2arc_do_free_on_write(void) 8450 { 8451 list_t *buflist; 8452 l2arc_data_free_t *df, *df_prev; 8453 8454 mutex_enter(&l2arc_free_on_write_mtx); 8455 buflist = l2arc_free_on_write; 8456 8457 for (df = list_tail(buflist); df; df = df_prev) { 8458 df_prev = list_prev(buflist, df); 8459 ASSERT3P(df->l2df_abd, !=, NULL); 8460 abd_free(df->l2df_abd); 8461 list_remove(buflist, df); 8462 kmem_free(df, sizeof (l2arc_data_free_t)); 8463 } 8464 8465 mutex_exit(&l2arc_free_on_write_mtx); 8466 } 8467 8468 /* 8469 * A write to a cache device has completed. Update all headers to allow 8470 * reads from these buffers to begin. 8471 */ 8472 static void 8473 l2arc_write_done(zio_t *zio) 8474 { 8475 l2arc_write_callback_t *cb; 8476 l2arc_lb_abd_buf_t *abd_buf; 8477 l2arc_lb_ptr_buf_t *lb_ptr_buf; 8478 l2arc_dev_t *dev; 8479 l2arc_dev_hdr_phys_t *l2dhdr; 8480 list_t *buflist; 8481 arc_buf_hdr_t *head, *hdr, *hdr_prev; 8482 kmutex_t *hash_lock; 8483 int64_t bytes_dropped = 0; 8484 8485 cb = zio->io_private; 8486 ASSERT3P(cb, !=, NULL); 8487 dev = cb->l2wcb_dev; 8488 l2dhdr = dev->l2ad_dev_hdr; 8489 ASSERT3P(dev, !=, NULL); 8490 head = cb->l2wcb_head; 8491 ASSERT3P(head, !=, NULL); 8492 buflist = &dev->l2ad_buflist; 8493 ASSERT3P(buflist, !=, NULL); 8494 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 8495 l2arc_write_callback_t *, cb); 8496 8497 /* 8498 * All writes completed, or an error was hit. 8499 */ 8500 top: 8501 mutex_enter(&dev->l2ad_mtx); 8502 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 8503 hdr_prev = list_prev(buflist, hdr); 8504 8505 hash_lock = HDR_LOCK(hdr); 8506 8507 /* 8508 * We cannot use mutex_enter or else we can deadlock 8509 * with l2arc_write_buffers (due to swapping the order 8510 * the hash lock and l2ad_mtx are taken). 8511 */ 8512 if (!mutex_tryenter(hash_lock)) { 8513 /* 8514 * Missed the hash lock. We must retry so we 8515 * don't leave the ARC_FLAG_L2_WRITING bit set. 8516 */ 8517 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 8518 8519 /* 8520 * We don't want to rescan the headers we've 8521 * already marked as having been written out, so 8522 * we reinsert the head node so we can pick up 8523 * where we left off. 8524 */ 8525 list_remove(buflist, head); 8526 list_insert_after(buflist, hdr, head); 8527 8528 mutex_exit(&dev->l2ad_mtx); 8529 8530 /* 8531 * We wait for the hash lock to become available 8532 * to try and prevent busy waiting, and increase 8533 * the chance we'll be able to acquire the lock 8534 * the next time around. 8535 */ 8536 mutex_enter(hash_lock); 8537 mutex_exit(hash_lock); 8538 goto top; 8539 } 8540 8541 /* 8542 * We could not have been moved into the arc_l2c_only 8543 * state while in-flight due to our ARC_FLAG_L2_WRITING 8544 * bit being set. Let's just ensure that's being enforced. 8545 */ 8546 ASSERT(HDR_HAS_L1HDR(hdr)); 8547 8548 /* 8549 * Skipped - drop L2ARC entry and mark the header as no 8550 * longer L2 eligibile. 8551 */ 8552 if (zio->io_error != 0) { 8553 /* 8554 * Error - drop L2ARC entry. 8555 */ 8556 list_remove(buflist, hdr); 8557 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 8558 8559 uint64_t psize = HDR_GET_PSIZE(hdr); 8560 l2arc_hdr_arcstats_decrement(hdr); 8561 8562 bytes_dropped += 8563 vdev_psize_to_asize(dev->l2ad_vdev, psize); 8564 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 8565 arc_hdr_size(hdr), hdr); 8566 } 8567 8568 /* 8569 * Allow ARC to begin reads and ghost list evictions to 8570 * this L2ARC entry. 8571 */ 8572 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); 8573 8574 mutex_exit(hash_lock); 8575 } 8576 8577 /* 8578 * Free the allocated abd buffers for writing the log blocks. 8579 * If the zio failed reclaim the allocated space and remove the 8580 * pointers to these log blocks from the log block pointer list 8581 * of the L2ARC device. 8582 */ 8583 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) { 8584 abd_free(abd_buf->abd); 8585 zio_buf_free(abd_buf, sizeof (*abd_buf)); 8586 if (zio->io_error != 0) { 8587 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list); 8588 /* 8589 * L2BLK_GET_PSIZE returns aligned size for log 8590 * blocks. 8591 */ 8592 uint64_t asize = 8593 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop); 8594 bytes_dropped += asize; 8595 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 8596 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 8597 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 8598 lb_ptr_buf); 8599 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 8600 kmem_free(lb_ptr_buf->lb_ptr, 8601 sizeof (l2arc_log_blkptr_t)); 8602 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 8603 } 8604 } 8605 list_destroy(&cb->l2wcb_abd_list); 8606 8607 if (zio->io_error != 0) { 8608 ARCSTAT_BUMP(arcstat_l2_writes_error); 8609 8610 /* 8611 * Restore the lbps array in the header to its previous state. 8612 * If the list of log block pointers is empty, zero out the 8613 * log block pointers in the device header. 8614 */ 8615 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list); 8616 for (int i = 0; i < 2; i++) { 8617 if (lb_ptr_buf == NULL) { 8618 /* 8619 * If the list is empty zero out the device 8620 * header. Otherwise zero out the second log 8621 * block pointer in the header. 8622 */ 8623 if (i == 0) { 8624 bzero(l2dhdr, dev->l2ad_dev_hdr_asize); 8625 } else { 8626 bzero(&l2dhdr->dh_start_lbps[i], 8627 sizeof (l2arc_log_blkptr_t)); 8628 } 8629 break; 8630 } 8631 bcopy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[i], 8632 sizeof (l2arc_log_blkptr_t)); 8633 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list, 8634 lb_ptr_buf); 8635 } 8636 } 8637 8638 ARCSTAT_BUMP(arcstat_l2_writes_done); 8639 list_remove(buflist, head); 8640 ASSERT(!HDR_HAS_L1HDR(head)); 8641 kmem_cache_free(hdr_l2only_cache, head); 8642 mutex_exit(&dev->l2ad_mtx); 8643 8644 ASSERT(dev->l2ad_vdev != NULL); 8645 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 8646 8647 l2arc_do_free_on_write(); 8648 8649 kmem_free(cb, sizeof (l2arc_write_callback_t)); 8650 } 8651 8652 static int 8653 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb) 8654 { 8655 int ret; 8656 spa_t *spa = zio->io_spa; 8657 arc_buf_hdr_t *hdr = cb->l2rcb_hdr; 8658 blkptr_t *bp = zio->io_bp; 8659 uint8_t salt[ZIO_DATA_SALT_LEN]; 8660 uint8_t iv[ZIO_DATA_IV_LEN]; 8661 uint8_t mac[ZIO_DATA_MAC_LEN]; 8662 boolean_t no_crypt = B_FALSE; 8663 8664 /* 8665 * ZIL data is never be written to the L2ARC, so we don't need 8666 * special handling for its unique MAC storage. 8667 */ 8668 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 8669 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 8670 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8671 8672 /* 8673 * If the data was encrypted, decrypt it now. Note that 8674 * we must check the bp here and not the hdr, since the 8675 * hdr does not have its encryption parameters updated 8676 * until arc_read_done(). 8677 */ 8678 if (BP_IS_ENCRYPTED(bp)) { 8679 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8680 B_TRUE); 8681 8682 zio_crypt_decode_params_bp(bp, salt, iv); 8683 zio_crypt_decode_mac_bp(bp, mac); 8684 8685 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb, 8686 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 8687 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd, 8688 hdr->b_l1hdr.b_pabd, &no_crypt); 8689 if (ret != 0) { 8690 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8691 goto error; 8692 } 8693 8694 /* 8695 * If we actually performed decryption, replace b_pabd 8696 * with the decrypted data. Otherwise we can just throw 8697 * our decryption buffer away. 8698 */ 8699 if (!no_crypt) { 8700 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8701 arc_hdr_size(hdr), hdr); 8702 hdr->b_l1hdr.b_pabd = eabd; 8703 zio->io_abd = eabd; 8704 } else { 8705 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8706 } 8707 } 8708 8709 /* 8710 * If the L2ARC block was compressed, but ARC compression 8711 * is disabled we decompress the data into a new buffer and 8712 * replace the existing data. 8713 */ 8714 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 8715 !HDR_COMPRESSION_ENABLED(hdr)) { 8716 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8717 B_TRUE); 8718 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 8719 8720 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 8721 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 8722 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 8723 if (ret != 0) { 8724 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 8725 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr); 8726 goto error; 8727 } 8728 8729 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 8730 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8731 arc_hdr_size(hdr), hdr); 8732 hdr->b_l1hdr.b_pabd = cabd; 8733 zio->io_abd = cabd; 8734 zio->io_size = HDR_GET_LSIZE(hdr); 8735 } 8736 8737 return (0); 8738 8739 error: 8740 return (ret); 8741 } 8742 8743 8744 /* 8745 * A read to a cache device completed. Validate buffer contents before 8746 * handing over to the regular ARC routines. 8747 */ 8748 static void 8749 l2arc_read_done(zio_t *zio) 8750 { 8751 int tfm_error = 0; 8752 l2arc_read_callback_t *cb = zio->io_private; 8753 arc_buf_hdr_t *hdr; 8754 kmutex_t *hash_lock; 8755 boolean_t valid_cksum; 8756 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) && 8757 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT)); 8758 8759 ASSERT3P(zio->io_vd, !=, NULL); 8760 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 8761 8762 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 8763 8764 ASSERT3P(cb, !=, NULL); 8765 hdr = cb->l2rcb_hdr; 8766 ASSERT3P(hdr, !=, NULL); 8767 8768 hash_lock = HDR_LOCK(hdr); 8769 mutex_enter(hash_lock); 8770 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 8771 8772 /* 8773 * If the data was read into a temporary buffer, 8774 * move it and free the buffer. 8775 */ 8776 if (cb->l2rcb_abd != NULL) { 8777 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size); 8778 if (zio->io_error == 0) { 8779 if (using_rdata) { 8780 abd_copy(hdr->b_crypt_hdr.b_rabd, 8781 cb->l2rcb_abd, arc_hdr_size(hdr)); 8782 } else { 8783 abd_copy(hdr->b_l1hdr.b_pabd, 8784 cb->l2rcb_abd, arc_hdr_size(hdr)); 8785 } 8786 } 8787 8788 /* 8789 * The following must be done regardless of whether 8790 * there was an error: 8791 * - free the temporary buffer 8792 * - point zio to the real ARC buffer 8793 * - set zio size accordingly 8794 * These are required because zio is either re-used for 8795 * an I/O of the block in the case of the error 8796 * or the zio is passed to arc_read_done() and it 8797 * needs real data. 8798 */ 8799 abd_free(cb->l2rcb_abd); 8800 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr); 8801 8802 if (using_rdata) { 8803 ASSERT(HDR_HAS_RABD(hdr)); 8804 zio->io_abd = zio->io_orig_abd = 8805 hdr->b_crypt_hdr.b_rabd; 8806 } else { 8807 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8808 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd; 8809 } 8810 } 8811 8812 ASSERT3P(zio->io_abd, !=, NULL); 8813 8814 /* 8815 * Check this survived the L2ARC journey. 8816 */ 8817 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd || 8818 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd)); 8819 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 8820 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 8821 zio->io_prop.zp_complevel = hdr->b_complevel; 8822 8823 valid_cksum = arc_cksum_is_equal(hdr, zio); 8824 8825 /* 8826 * b_rabd will always match the data as it exists on disk if it is 8827 * being used. Therefore if we are reading into b_rabd we do not 8828 * attempt to untransform the data. 8829 */ 8830 if (valid_cksum && !using_rdata) 8831 tfm_error = l2arc_untransform(zio, cb); 8832 8833 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 && 8834 !HDR_L2_EVICTED(hdr)) { 8835 mutex_exit(hash_lock); 8836 zio->io_private = hdr; 8837 arc_read_done(zio); 8838 } else { 8839 /* 8840 * Buffer didn't survive caching. Increment stats and 8841 * reissue to the original storage device. 8842 */ 8843 if (zio->io_error != 0) { 8844 ARCSTAT_BUMP(arcstat_l2_io_error); 8845 } else { 8846 zio->io_error = SET_ERROR(EIO); 8847 } 8848 if (!valid_cksum || tfm_error != 0) 8849 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 8850 8851 /* 8852 * If there's no waiter, issue an async i/o to the primary 8853 * storage now. If there *is* a waiter, the caller must 8854 * issue the i/o in a context where it's OK to block. 8855 */ 8856 if (zio->io_waiter == NULL) { 8857 zio_t *pio = zio_unique_parent(zio); 8858 void *abd = (using_rdata) ? 8859 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd; 8860 8861 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 8862 8863 zio = zio_read(pio, zio->io_spa, zio->io_bp, 8864 abd, zio->io_size, arc_read_done, 8865 hdr, zio->io_priority, cb->l2rcb_flags, 8866 &cb->l2rcb_zb); 8867 8868 /* 8869 * Original ZIO will be freed, so we need to update 8870 * ARC header with the new ZIO pointer to be used 8871 * by zio_change_priority() in arc_read(). 8872 */ 8873 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb; 8874 acb != NULL; acb = acb->acb_next) 8875 acb->acb_zio_head = zio; 8876 8877 mutex_exit(hash_lock); 8878 zio_nowait(zio); 8879 } else { 8880 mutex_exit(hash_lock); 8881 } 8882 } 8883 8884 kmem_free(cb, sizeof (l2arc_read_callback_t)); 8885 } 8886 8887 /* 8888 * This is the list priority from which the L2ARC will search for pages to 8889 * cache. This is used within loops (0..3) to cycle through lists in the 8890 * desired order. This order can have a significant effect on cache 8891 * performance. 8892 * 8893 * Currently the metadata lists are hit first, MFU then MRU, followed by 8894 * the data lists. This function returns a locked list, and also returns 8895 * the lock pointer. 8896 */ 8897 static multilist_sublist_t * 8898 l2arc_sublist_lock(int list_num) 8899 { 8900 multilist_t *ml = NULL; 8901 unsigned int idx; 8902 8903 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES); 8904 8905 switch (list_num) { 8906 case 0: 8907 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 8908 break; 8909 case 1: 8910 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 8911 break; 8912 case 2: 8913 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 8914 break; 8915 case 3: 8916 ml = &arc_mru->arcs_list[ARC_BUFC_DATA]; 8917 break; 8918 default: 8919 return (NULL); 8920 } 8921 8922 /* 8923 * Return a randomly-selected sublist. This is acceptable 8924 * because the caller feeds only a little bit of data for each 8925 * call (8MB). Subsequent calls will result in different 8926 * sublists being selected. 8927 */ 8928 idx = multilist_get_random_index(ml); 8929 return (multilist_sublist_lock(ml, idx)); 8930 } 8931 8932 /* 8933 * Calculates the maximum overhead of L2ARC metadata log blocks for a given 8934 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this 8935 * overhead in processing to make sure there is enough headroom available 8936 * when writing buffers. 8937 */ 8938 static inline uint64_t 8939 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev) 8940 { 8941 if (dev->l2ad_log_entries == 0) { 8942 return (0); 8943 } else { 8944 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT; 8945 8946 uint64_t log_blocks = (log_entries + 8947 dev->l2ad_log_entries - 1) / 8948 dev->l2ad_log_entries; 8949 8950 return (vdev_psize_to_asize(dev->l2ad_vdev, 8951 sizeof (l2arc_log_blk_phys_t)) * log_blocks); 8952 } 8953 } 8954 8955 /* 8956 * Evict buffers from the device write hand to the distance specified in 8957 * bytes. This distance may span populated buffers, it may span nothing. 8958 * This is clearing a region on the L2ARC device ready for writing. 8959 * If the 'all' boolean is set, every buffer is evicted. 8960 */ 8961 static void 8962 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 8963 { 8964 list_t *buflist; 8965 arc_buf_hdr_t *hdr, *hdr_prev; 8966 kmutex_t *hash_lock; 8967 uint64_t taddr; 8968 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev; 8969 vdev_t *vd = dev->l2ad_vdev; 8970 boolean_t rerun; 8971 8972 buflist = &dev->l2ad_buflist; 8973 8974 /* 8975 * We need to add in the worst case scenario of log block overhead. 8976 */ 8977 distance += l2arc_log_blk_overhead(distance, dev); 8978 if (vd->vdev_has_trim && l2arc_trim_ahead > 0) { 8979 /* 8980 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100) 8981 * times the write size, whichever is greater. 8982 */ 8983 distance += MAX(64 * 1024 * 1024, 8984 (distance * l2arc_trim_ahead) / 100); 8985 } 8986 8987 top: 8988 rerun = B_FALSE; 8989 if (dev->l2ad_hand >= (dev->l2ad_end - distance)) { 8990 /* 8991 * When there is no space to accommodate upcoming writes, 8992 * evict to the end. Then bump the write and evict hands 8993 * to the start and iterate. This iteration does not 8994 * happen indefinitely as we make sure in 8995 * l2arc_write_size() that when the write hand is reset, 8996 * the write size does not exceed the end of the device. 8997 */ 8998 rerun = B_TRUE; 8999 taddr = dev->l2ad_end; 9000 } else { 9001 taddr = dev->l2ad_hand + distance; 9002 } 9003 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 9004 uint64_t, taddr, boolean_t, all); 9005 9006 if (!all) { 9007 /* 9008 * This check has to be placed after deciding whether to 9009 * iterate (rerun). 9010 */ 9011 if (dev->l2ad_first) { 9012 /* 9013 * This is the first sweep through the device. There is 9014 * nothing to evict. We have already trimmmed the 9015 * whole device. 9016 */ 9017 goto out; 9018 } else { 9019 /* 9020 * Trim the space to be evicted. 9021 */ 9022 if (vd->vdev_has_trim && dev->l2ad_evict < taddr && 9023 l2arc_trim_ahead > 0) { 9024 /* 9025 * We have to drop the spa_config lock because 9026 * vdev_trim_range() will acquire it. 9027 * l2ad_evict already accounts for the label 9028 * size. To prevent vdev_trim_ranges() from 9029 * adding it again, we subtract it from 9030 * l2ad_evict. 9031 */ 9032 spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev); 9033 vdev_trim_simple(vd, 9034 dev->l2ad_evict - VDEV_LABEL_START_SIZE, 9035 taddr - dev->l2ad_evict); 9036 spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev, 9037 RW_READER); 9038 } 9039 9040 /* 9041 * When rebuilding L2ARC we retrieve the evict hand 9042 * from the header of the device. Of note, l2arc_evict() 9043 * does not actually delete buffers from the cache 9044 * device, but trimming may do so depending on the 9045 * hardware implementation. Thus keeping track of the 9046 * evict hand is useful. 9047 */ 9048 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr); 9049 } 9050 } 9051 9052 retry: 9053 mutex_enter(&dev->l2ad_mtx); 9054 /* 9055 * We have to account for evicted log blocks. Run vdev_space_update() 9056 * on log blocks whose offset (in bytes) is before the evicted offset 9057 * (in bytes) by searching in the list of pointers to log blocks 9058 * present in the L2ARC device. 9059 */ 9060 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf; 9061 lb_ptr_buf = lb_ptr_buf_prev) { 9062 9063 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf); 9064 9065 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 9066 uint64_t asize = L2BLK_GET_PSIZE( 9067 (lb_ptr_buf->lb_ptr)->lbp_prop); 9068 9069 /* 9070 * We don't worry about log blocks left behind (ie 9071 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers() 9072 * will never write more than l2arc_evict() evicts. 9073 */ 9074 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) { 9075 break; 9076 } else { 9077 vdev_space_update(vd, -asize, 0, 0); 9078 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 9079 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 9080 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 9081 lb_ptr_buf); 9082 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 9083 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf); 9084 kmem_free(lb_ptr_buf->lb_ptr, 9085 sizeof (l2arc_log_blkptr_t)); 9086 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 9087 } 9088 } 9089 9090 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 9091 hdr_prev = list_prev(buflist, hdr); 9092 9093 ASSERT(!HDR_EMPTY(hdr)); 9094 hash_lock = HDR_LOCK(hdr); 9095 9096 /* 9097 * We cannot use mutex_enter or else we can deadlock 9098 * with l2arc_write_buffers (due to swapping the order 9099 * the hash lock and l2ad_mtx are taken). 9100 */ 9101 if (!mutex_tryenter(hash_lock)) { 9102 /* 9103 * Missed the hash lock. Retry. 9104 */ 9105 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 9106 mutex_exit(&dev->l2ad_mtx); 9107 mutex_enter(hash_lock); 9108 mutex_exit(hash_lock); 9109 goto retry; 9110 } 9111 9112 /* 9113 * A header can't be on this list if it doesn't have L2 header. 9114 */ 9115 ASSERT(HDR_HAS_L2HDR(hdr)); 9116 9117 /* Ensure this header has finished being written. */ 9118 ASSERT(!HDR_L2_WRITING(hdr)); 9119 ASSERT(!HDR_L2_WRITE_HEAD(hdr)); 9120 9121 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict || 9122 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 9123 /* 9124 * We've evicted to the target address, 9125 * or the end of the device. 9126 */ 9127 mutex_exit(hash_lock); 9128 break; 9129 } 9130 9131 if (!HDR_HAS_L1HDR(hdr)) { 9132 ASSERT(!HDR_L2_READING(hdr)); 9133 /* 9134 * This doesn't exist in the ARC. Destroy. 9135 * arc_hdr_destroy() will call list_remove() 9136 * and decrement arcstat_l2_lsize. 9137 */ 9138 arc_change_state(arc_anon, hdr, hash_lock); 9139 arc_hdr_destroy(hdr); 9140 } else { 9141 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 9142 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 9143 /* 9144 * Invalidate issued or about to be issued 9145 * reads, since we may be about to write 9146 * over this location. 9147 */ 9148 if (HDR_L2_READING(hdr)) { 9149 ARCSTAT_BUMP(arcstat_l2_evict_reading); 9150 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); 9151 } 9152 9153 arc_hdr_l2hdr_destroy(hdr); 9154 } 9155 mutex_exit(hash_lock); 9156 } 9157 mutex_exit(&dev->l2ad_mtx); 9158 9159 out: 9160 /* 9161 * We need to check if we evict all buffers, otherwise we may iterate 9162 * unnecessarily. 9163 */ 9164 if (!all && rerun) { 9165 /* 9166 * Bump device hand to the device start if it is approaching the 9167 * end. l2arc_evict() has already evicted ahead for this case. 9168 */ 9169 dev->l2ad_hand = dev->l2ad_start; 9170 dev->l2ad_evict = dev->l2ad_start; 9171 dev->l2ad_first = B_FALSE; 9172 goto top; 9173 } 9174 9175 if (!all) { 9176 /* 9177 * In case of cache device removal (all) the following 9178 * assertions may be violated without functional consequences 9179 * as the device is about to be removed. 9180 */ 9181 ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end); 9182 if (!dev->l2ad_first) 9183 ASSERT3U(dev->l2ad_hand, <, dev->l2ad_evict); 9184 } 9185 } 9186 9187 /* 9188 * Handle any abd transforms that might be required for writing to the L2ARC. 9189 * If successful, this function will always return an abd with the data 9190 * transformed as it is on disk in a new abd of asize bytes. 9191 */ 9192 static int 9193 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize, 9194 abd_t **abd_out) 9195 { 9196 int ret; 9197 void *tmp = NULL; 9198 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd; 9199 enum zio_compress compress = HDR_GET_COMPRESS(hdr); 9200 uint64_t psize = HDR_GET_PSIZE(hdr); 9201 uint64_t size = arc_hdr_size(hdr); 9202 boolean_t ismd = HDR_ISTYPE_METADATA(hdr); 9203 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 9204 dsl_crypto_key_t *dck = NULL; 9205 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 }; 9206 boolean_t no_crypt = B_FALSE; 9207 9208 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 9209 !HDR_COMPRESSION_ENABLED(hdr)) || 9210 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize); 9211 ASSERT3U(psize, <=, asize); 9212 9213 /* 9214 * If this data simply needs its own buffer, we simply allocate it 9215 * and copy the data. This may be done to eliminate a dependency on a 9216 * shared buffer or to reallocate the buffer to match asize. 9217 */ 9218 if (HDR_HAS_RABD(hdr) && asize != psize) { 9219 ASSERT3U(asize, >=, psize); 9220 to_write = abd_alloc_for_io(asize, ismd); 9221 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize); 9222 if (psize != asize) 9223 abd_zero_off(to_write, psize, asize - psize); 9224 goto out; 9225 } 9226 9227 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) && 9228 !HDR_ENCRYPTED(hdr)) { 9229 ASSERT3U(size, ==, psize); 9230 to_write = abd_alloc_for_io(asize, ismd); 9231 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 9232 if (size != asize) 9233 abd_zero_off(to_write, size, asize - size); 9234 goto out; 9235 } 9236 9237 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) { 9238 cabd = abd_alloc_for_io(asize, ismd); 9239 tmp = abd_borrow_buf(cabd, asize); 9240 9241 psize = zio_compress_data(compress, to_write, tmp, size, 9242 hdr->b_complevel); 9243 9244 if (psize >= size) { 9245 abd_return_buf(cabd, tmp, asize); 9246 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF); 9247 to_write = cabd; 9248 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 9249 if (size != asize) 9250 abd_zero_off(to_write, size, asize - size); 9251 goto encrypt; 9252 } 9253 ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr)); 9254 if (psize < asize) 9255 bzero((char *)tmp + psize, asize - psize); 9256 psize = HDR_GET_PSIZE(hdr); 9257 abd_return_buf_copy(cabd, tmp, asize); 9258 to_write = cabd; 9259 } 9260 9261 encrypt: 9262 if (HDR_ENCRYPTED(hdr)) { 9263 eabd = abd_alloc_for_io(asize, ismd); 9264 9265 /* 9266 * If the dataset was disowned before the buffer 9267 * made it to this point, the key to re-encrypt 9268 * it won't be available. In this case we simply 9269 * won't write the buffer to the L2ARC. 9270 */ 9271 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj, 9272 FTAG, &dck); 9273 if (ret != 0) 9274 goto error; 9275 9276 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key, 9277 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt, 9278 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd, 9279 &no_crypt); 9280 if (ret != 0) 9281 goto error; 9282 9283 if (no_crypt) 9284 abd_copy(eabd, to_write, psize); 9285 9286 if (psize != asize) 9287 abd_zero_off(eabd, psize, asize - psize); 9288 9289 /* assert that the MAC we got here matches the one we saved */ 9290 ASSERT0(bcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN)); 9291 spa_keystore_dsl_key_rele(spa, dck, FTAG); 9292 9293 if (to_write == cabd) 9294 abd_free(cabd); 9295 9296 to_write = eabd; 9297 } 9298 9299 out: 9300 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd); 9301 *abd_out = to_write; 9302 return (0); 9303 9304 error: 9305 if (dck != NULL) 9306 spa_keystore_dsl_key_rele(spa, dck, FTAG); 9307 if (cabd != NULL) 9308 abd_free(cabd); 9309 if (eabd != NULL) 9310 abd_free(eabd); 9311 9312 *abd_out = NULL; 9313 return (ret); 9314 } 9315 9316 static void 9317 l2arc_blk_fetch_done(zio_t *zio) 9318 { 9319 l2arc_read_callback_t *cb; 9320 9321 cb = zio->io_private; 9322 if (cb->l2rcb_abd != NULL) 9323 abd_free(cb->l2rcb_abd); 9324 kmem_free(cb, sizeof (l2arc_read_callback_t)); 9325 } 9326 9327 /* 9328 * Find and write ARC buffers to the L2ARC device. 9329 * 9330 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 9331 * for reading until they have completed writing. 9332 * The headroom_boost is an in-out parameter used to maintain headroom boost 9333 * state between calls to this function. 9334 * 9335 * Returns the number of bytes actually written (which may be smaller than 9336 * the delta by which the device hand has changed due to alignment and the 9337 * writing of log blocks). 9338 */ 9339 static uint64_t 9340 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 9341 { 9342 arc_buf_hdr_t *hdr, *hdr_prev, *head; 9343 uint64_t write_asize, write_psize, write_lsize, headroom; 9344 boolean_t full; 9345 l2arc_write_callback_t *cb = NULL; 9346 zio_t *pio, *wzio; 9347 uint64_t guid = spa_load_guid(spa); 9348 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9349 9350 ASSERT3P(dev->l2ad_vdev, !=, NULL); 9351 9352 pio = NULL; 9353 write_lsize = write_asize = write_psize = 0; 9354 full = B_FALSE; 9355 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 9356 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); 9357 9358 /* 9359 * Copy buffers for L2ARC writing. 9360 */ 9361 for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) { 9362 /* 9363 * If pass == 1 or 3, we cache MRU metadata and data 9364 * respectively. 9365 */ 9366 if (l2arc_mfuonly) { 9367 if (pass == 1 || pass == 3) 9368 continue; 9369 } 9370 9371 multilist_sublist_t *mls = l2arc_sublist_lock(pass); 9372 uint64_t passed_sz = 0; 9373 9374 VERIFY3P(mls, !=, NULL); 9375 9376 /* 9377 * L2ARC fast warmup. 9378 * 9379 * Until the ARC is warm and starts to evict, read from the 9380 * head of the ARC lists rather than the tail. 9381 */ 9382 if (arc_warm == B_FALSE) 9383 hdr = multilist_sublist_head(mls); 9384 else 9385 hdr = multilist_sublist_tail(mls); 9386 9387 headroom = target_sz * l2arc_headroom; 9388 if (zfs_compressed_arc_enabled) 9389 headroom = (headroom * l2arc_headroom_boost) / 100; 9390 9391 for (; hdr; hdr = hdr_prev) { 9392 kmutex_t *hash_lock; 9393 abd_t *to_write = NULL; 9394 9395 if (arc_warm == B_FALSE) 9396 hdr_prev = multilist_sublist_next(mls, hdr); 9397 else 9398 hdr_prev = multilist_sublist_prev(mls, hdr); 9399 9400 hash_lock = HDR_LOCK(hdr); 9401 if (!mutex_tryenter(hash_lock)) { 9402 /* 9403 * Skip this buffer rather than waiting. 9404 */ 9405 continue; 9406 } 9407 9408 passed_sz += HDR_GET_LSIZE(hdr); 9409 if (l2arc_headroom != 0 && passed_sz > headroom) { 9410 /* 9411 * Searched too far. 9412 */ 9413 mutex_exit(hash_lock); 9414 break; 9415 } 9416 9417 if (!l2arc_write_eligible(guid, hdr)) { 9418 mutex_exit(hash_lock); 9419 continue; 9420 } 9421 9422 /* 9423 * We rely on the L1 portion of the header below, so 9424 * it's invalid for this header to have been evicted out 9425 * of the ghost cache, prior to being written out. The 9426 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 9427 */ 9428 ASSERT(HDR_HAS_L1HDR(hdr)); 9429 9430 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 9431 ASSERT3U(arc_hdr_size(hdr), >, 0); 9432 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 9433 HDR_HAS_RABD(hdr)); 9434 uint64_t psize = HDR_GET_PSIZE(hdr); 9435 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 9436 psize); 9437 9438 if ((write_asize + asize) > target_sz) { 9439 full = B_TRUE; 9440 mutex_exit(hash_lock); 9441 break; 9442 } 9443 9444 /* 9445 * We rely on the L1 portion of the header below, so 9446 * it's invalid for this header to have been evicted out 9447 * of the ghost cache, prior to being written out. The 9448 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 9449 */ 9450 arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING); 9451 ASSERT(HDR_HAS_L1HDR(hdr)); 9452 9453 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 9454 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 9455 HDR_HAS_RABD(hdr)); 9456 ASSERT3U(arc_hdr_size(hdr), >, 0); 9457 9458 /* 9459 * If this header has b_rabd, we can use this since it 9460 * must always match the data exactly as it exists on 9461 * disk. Otherwise, the L2ARC can normally use the 9462 * hdr's data, but if we're sharing data between the 9463 * hdr and one of its bufs, L2ARC needs its own copy of 9464 * the data so that the ZIO below can't race with the 9465 * buf consumer. To ensure that this copy will be 9466 * available for the lifetime of the ZIO and be cleaned 9467 * up afterwards, we add it to the l2arc_free_on_write 9468 * queue. If we need to apply any transforms to the 9469 * data (compression, encryption) we will also need the 9470 * extra buffer. 9471 */ 9472 if (HDR_HAS_RABD(hdr) && psize == asize) { 9473 to_write = hdr->b_crypt_hdr.b_rabd; 9474 } else if ((HDR_COMPRESSION_ENABLED(hdr) || 9475 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) && 9476 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) && 9477 psize == asize) { 9478 to_write = hdr->b_l1hdr.b_pabd; 9479 } else { 9480 int ret; 9481 arc_buf_contents_t type = arc_buf_type(hdr); 9482 9483 ret = l2arc_apply_transforms(spa, hdr, asize, 9484 &to_write); 9485 if (ret != 0) { 9486 arc_hdr_clear_flags(hdr, 9487 ARC_FLAG_L2_WRITING); 9488 mutex_exit(hash_lock); 9489 continue; 9490 } 9491 9492 l2arc_free_abd_on_write(to_write, asize, type); 9493 } 9494 9495 if (pio == NULL) { 9496 /* 9497 * Insert a dummy header on the buflist so 9498 * l2arc_write_done() can find where the 9499 * write buffers begin without searching. 9500 */ 9501 mutex_enter(&dev->l2ad_mtx); 9502 list_insert_head(&dev->l2ad_buflist, head); 9503 mutex_exit(&dev->l2ad_mtx); 9504 9505 cb = kmem_alloc( 9506 sizeof (l2arc_write_callback_t), KM_SLEEP); 9507 cb->l2wcb_dev = dev; 9508 cb->l2wcb_head = head; 9509 /* 9510 * Create a list to save allocated abd buffers 9511 * for l2arc_log_blk_commit(). 9512 */ 9513 list_create(&cb->l2wcb_abd_list, 9514 sizeof (l2arc_lb_abd_buf_t), 9515 offsetof(l2arc_lb_abd_buf_t, node)); 9516 pio = zio_root(spa, l2arc_write_done, cb, 9517 ZIO_FLAG_CANFAIL); 9518 } 9519 9520 hdr->b_l2hdr.b_dev = dev; 9521 hdr->b_l2hdr.b_hits = 0; 9522 9523 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 9524 hdr->b_l2hdr.b_arcs_state = 9525 hdr->b_l1hdr.b_state->arcs_state; 9526 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR); 9527 9528 mutex_enter(&dev->l2ad_mtx); 9529 list_insert_head(&dev->l2ad_buflist, hdr); 9530 mutex_exit(&dev->l2ad_mtx); 9531 9532 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 9533 arc_hdr_size(hdr), hdr); 9534 9535 wzio = zio_write_phys(pio, dev->l2ad_vdev, 9536 hdr->b_l2hdr.b_daddr, asize, to_write, 9537 ZIO_CHECKSUM_OFF, NULL, hdr, 9538 ZIO_PRIORITY_ASYNC_WRITE, 9539 ZIO_FLAG_CANFAIL, B_FALSE); 9540 9541 write_lsize += HDR_GET_LSIZE(hdr); 9542 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 9543 zio_t *, wzio); 9544 9545 write_psize += psize; 9546 write_asize += asize; 9547 dev->l2ad_hand += asize; 9548 l2arc_hdr_arcstats_increment(hdr); 9549 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 9550 9551 mutex_exit(hash_lock); 9552 9553 /* 9554 * Append buf info to current log and commit if full. 9555 * arcstat_l2_{size,asize} kstats are updated 9556 * internally. 9557 */ 9558 if (l2arc_log_blk_insert(dev, hdr)) 9559 l2arc_log_blk_commit(dev, pio, cb); 9560 9561 zio_nowait(wzio); 9562 } 9563 9564 multilist_sublist_unlock(mls); 9565 9566 if (full == B_TRUE) 9567 break; 9568 } 9569 9570 /* No buffers selected for writing? */ 9571 if (pio == NULL) { 9572 ASSERT0(write_lsize); 9573 ASSERT(!HDR_HAS_L1HDR(head)); 9574 kmem_cache_free(hdr_l2only_cache, head); 9575 9576 /* 9577 * Although we did not write any buffers l2ad_evict may 9578 * have advanced. 9579 */ 9580 if (dev->l2ad_evict != l2dhdr->dh_evict) 9581 l2arc_dev_hdr_update(dev); 9582 9583 return (0); 9584 } 9585 9586 if (!dev->l2ad_first) 9587 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict); 9588 9589 ASSERT3U(write_asize, <=, target_sz); 9590 ARCSTAT_BUMP(arcstat_l2_writes_sent); 9591 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize); 9592 9593 dev->l2ad_writing = B_TRUE; 9594 (void) zio_wait(pio); 9595 dev->l2ad_writing = B_FALSE; 9596 9597 /* 9598 * Update the device header after the zio completes as 9599 * l2arc_write_done() may have updated the memory holding the log block 9600 * pointers in the device header. 9601 */ 9602 l2arc_dev_hdr_update(dev); 9603 9604 return (write_asize); 9605 } 9606 9607 static boolean_t 9608 l2arc_hdr_limit_reached(void) 9609 { 9610 int64_t s = aggsum_upper_bound(&arc_sums.arcstat_l2_hdr_size); 9611 9612 return (arc_reclaim_needed() || (s > arc_meta_limit * 3 / 4) || 9613 (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100)); 9614 } 9615 9616 /* 9617 * This thread feeds the L2ARC at regular intervals. This is the beating 9618 * heart of the L2ARC. 9619 */ 9620 /* ARGSUSED */ 9621 static void 9622 l2arc_feed_thread(void *unused) 9623 { 9624 callb_cpr_t cpr; 9625 l2arc_dev_t *dev; 9626 spa_t *spa; 9627 uint64_t size, wrote; 9628 clock_t begin, next = ddi_get_lbolt(); 9629 fstrans_cookie_t cookie; 9630 9631 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 9632 9633 mutex_enter(&l2arc_feed_thr_lock); 9634 9635 cookie = spl_fstrans_mark(); 9636 while (l2arc_thread_exit == 0) { 9637 CALLB_CPR_SAFE_BEGIN(&cpr); 9638 (void) cv_timedwait_idle(&l2arc_feed_thr_cv, 9639 &l2arc_feed_thr_lock, next); 9640 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 9641 next = ddi_get_lbolt() + hz; 9642 9643 /* 9644 * Quick check for L2ARC devices. 9645 */ 9646 mutex_enter(&l2arc_dev_mtx); 9647 if (l2arc_ndev == 0) { 9648 mutex_exit(&l2arc_dev_mtx); 9649 continue; 9650 } 9651 mutex_exit(&l2arc_dev_mtx); 9652 begin = ddi_get_lbolt(); 9653 9654 /* 9655 * This selects the next l2arc device to write to, and in 9656 * doing so the next spa to feed from: dev->l2ad_spa. This 9657 * will return NULL if there are now no l2arc devices or if 9658 * they are all faulted. 9659 * 9660 * If a device is returned, its spa's config lock is also 9661 * held to prevent device removal. l2arc_dev_get_next() 9662 * will grab and release l2arc_dev_mtx. 9663 */ 9664 if ((dev = l2arc_dev_get_next()) == NULL) 9665 continue; 9666 9667 spa = dev->l2ad_spa; 9668 ASSERT3P(spa, !=, NULL); 9669 9670 /* 9671 * If the pool is read-only then force the feed thread to 9672 * sleep a little longer. 9673 */ 9674 if (!spa_writeable(spa)) { 9675 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 9676 spa_config_exit(spa, SCL_L2ARC, dev); 9677 continue; 9678 } 9679 9680 /* 9681 * Avoid contributing to memory pressure. 9682 */ 9683 if (l2arc_hdr_limit_reached()) { 9684 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 9685 spa_config_exit(spa, SCL_L2ARC, dev); 9686 continue; 9687 } 9688 9689 ARCSTAT_BUMP(arcstat_l2_feeds); 9690 9691 size = l2arc_write_size(dev); 9692 9693 /* 9694 * Evict L2ARC buffers that will be overwritten. 9695 */ 9696 l2arc_evict(dev, size, B_FALSE); 9697 9698 /* 9699 * Write ARC buffers. 9700 */ 9701 wrote = l2arc_write_buffers(spa, dev, size); 9702 9703 /* 9704 * Calculate interval between writes. 9705 */ 9706 next = l2arc_write_interval(begin, size, wrote); 9707 spa_config_exit(spa, SCL_L2ARC, dev); 9708 } 9709 spl_fstrans_unmark(cookie); 9710 9711 l2arc_thread_exit = 0; 9712 cv_broadcast(&l2arc_feed_thr_cv); 9713 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 9714 thread_exit(); 9715 } 9716 9717 boolean_t 9718 l2arc_vdev_present(vdev_t *vd) 9719 { 9720 return (l2arc_vdev_get(vd) != NULL); 9721 } 9722 9723 /* 9724 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if 9725 * the vdev_t isn't an L2ARC device. 9726 */ 9727 l2arc_dev_t * 9728 l2arc_vdev_get(vdev_t *vd) 9729 { 9730 l2arc_dev_t *dev; 9731 9732 mutex_enter(&l2arc_dev_mtx); 9733 for (dev = list_head(l2arc_dev_list); dev != NULL; 9734 dev = list_next(l2arc_dev_list, dev)) { 9735 if (dev->l2ad_vdev == vd) 9736 break; 9737 } 9738 mutex_exit(&l2arc_dev_mtx); 9739 9740 return (dev); 9741 } 9742 9743 /* 9744 * Add a vdev for use by the L2ARC. By this point the spa has already 9745 * validated the vdev and opened it. 9746 */ 9747 void 9748 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 9749 { 9750 l2arc_dev_t *adddev; 9751 uint64_t l2dhdr_asize; 9752 9753 ASSERT(!l2arc_vdev_present(vd)); 9754 9755 /* 9756 * Create a new l2arc device entry. 9757 */ 9758 adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 9759 adddev->l2ad_spa = spa; 9760 adddev->l2ad_vdev = vd; 9761 /* leave extra size for an l2arc device header */ 9762 l2dhdr_asize = adddev->l2ad_dev_hdr_asize = 9763 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift); 9764 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize; 9765 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 9766 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end); 9767 adddev->l2ad_hand = adddev->l2ad_start; 9768 adddev->l2ad_evict = adddev->l2ad_start; 9769 adddev->l2ad_first = B_TRUE; 9770 adddev->l2ad_writing = B_FALSE; 9771 adddev->l2ad_trim_all = B_FALSE; 9772 list_link_init(&adddev->l2ad_node); 9773 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP); 9774 9775 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 9776 /* 9777 * This is a list of all ARC buffers that are still valid on the 9778 * device. 9779 */ 9780 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 9781 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 9782 9783 /* 9784 * This is a list of pointers to log blocks that are still present 9785 * on the device. 9786 */ 9787 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t), 9788 offsetof(l2arc_lb_ptr_buf_t, node)); 9789 9790 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 9791 zfs_refcount_create(&adddev->l2ad_alloc); 9792 zfs_refcount_create(&adddev->l2ad_lb_asize); 9793 zfs_refcount_create(&adddev->l2ad_lb_count); 9794 9795 /* 9796 * Add device to global list 9797 */ 9798 mutex_enter(&l2arc_dev_mtx); 9799 list_insert_head(l2arc_dev_list, adddev); 9800 atomic_inc_64(&l2arc_ndev); 9801 mutex_exit(&l2arc_dev_mtx); 9802 9803 /* 9804 * Decide if vdev is eligible for L2ARC rebuild 9805 */ 9806 l2arc_rebuild_vdev(adddev->l2ad_vdev, B_FALSE); 9807 } 9808 9809 void 9810 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen) 9811 { 9812 l2arc_dev_t *dev = NULL; 9813 l2arc_dev_hdr_phys_t *l2dhdr; 9814 uint64_t l2dhdr_asize; 9815 spa_t *spa; 9816 9817 dev = l2arc_vdev_get(vd); 9818 ASSERT3P(dev, !=, NULL); 9819 spa = dev->l2ad_spa; 9820 l2dhdr = dev->l2ad_dev_hdr; 9821 l2dhdr_asize = dev->l2ad_dev_hdr_asize; 9822 9823 /* 9824 * The L2ARC has to hold at least the payload of one log block for 9825 * them to be restored (persistent L2ARC). The payload of a log block 9826 * depends on the amount of its log entries. We always write log blocks 9827 * with 1022 entries. How many of them are committed or restored depends 9828 * on the size of the L2ARC device. Thus the maximum payload of 9829 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device 9830 * is less than that, we reduce the amount of committed and restored 9831 * log entries per block so as to enable persistence. 9832 */ 9833 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) { 9834 dev->l2ad_log_entries = 0; 9835 } else { 9836 dev->l2ad_log_entries = MIN((dev->l2ad_end - 9837 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT, 9838 L2ARC_LOG_BLK_MAX_ENTRIES); 9839 } 9840 9841 /* 9842 * Read the device header, if an error is returned do not rebuild L2ARC. 9843 */ 9844 if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) { 9845 /* 9846 * If we are onlining a cache device (vdev_reopen) that was 9847 * still present (l2arc_vdev_present()) and rebuild is enabled, 9848 * we should evict all ARC buffers and pointers to log blocks 9849 * and reclaim their space before restoring its contents to 9850 * L2ARC. 9851 */ 9852 if (reopen) { 9853 if (!l2arc_rebuild_enabled) { 9854 return; 9855 } else { 9856 l2arc_evict(dev, 0, B_TRUE); 9857 /* start a new log block */ 9858 dev->l2ad_log_ent_idx = 0; 9859 dev->l2ad_log_blk_payload_asize = 0; 9860 dev->l2ad_log_blk_payload_start = 0; 9861 } 9862 } 9863 /* 9864 * Just mark the device as pending for a rebuild. We won't 9865 * be starting a rebuild in line here as it would block pool 9866 * import. Instead spa_load_impl will hand that off to an 9867 * async task which will call l2arc_spa_rebuild_start. 9868 */ 9869 dev->l2ad_rebuild = B_TRUE; 9870 } else if (spa_writeable(spa)) { 9871 /* 9872 * In this case TRIM the whole device if l2arc_trim_ahead > 0, 9873 * otherwise create a new header. We zero out the memory holding 9874 * the header to reset dh_start_lbps. If we TRIM the whole 9875 * device the new header will be written by 9876 * vdev_trim_l2arc_thread() at the end of the TRIM to update the 9877 * trim_state in the header too. When reading the header, if 9878 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0 9879 * we opt to TRIM the whole device again. 9880 */ 9881 if (l2arc_trim_ahead > 0) { 9882 dev->l2ad_trim_all = B_TRUE; 9883 } else { 9884 bzero(l2dhdr, l2dhdr_asize); 9885 l2arc_dev_hdr_update(dev); 9886 } 9887 } 9888 } 9889 9890 /* 9891 * Remove a vdev from the L2ARC. 9892 */ 9893 void 9894 l2arc_remove_vdev(vdev_t *vd) 9895 { 9896 l2arc_dev_t *remdev = NULL; 9897 9898 /* 9899 * Find the device by vdev 9900 */ 9901 remdev = l2arc_vdev_get(vd); 9902 ASSERT3P(remdev, !=, NULL); 9903 9904 /* 9905 * Cancel any ongoing or scheduled rebuild. 9906 */ 9907 mutex_enter(&l2arc_rebuild_thr_lock); 9908 if (remdev->l2ad_rebuild_began == B_TRUE) { 9909 remdev->l2ad_rebuild_cancel = B_TRUE; 9910 while (remdev->l2ad_rebuild == B_TRUE) 9911 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock); 9912 } 9913 mutex_exit(&l2arc_rebuild_thr_lock); 9914 9915 /* 9916 * Remove device from global list 9917 */ 9918 mutex_enter(&l2arc_dev_mtx); 9919 list_remove(l2arc_dev_list, remdev); 9920 l2arc_dev_last = NULL; /* may have been invalidated */ 9921 atomic_dec_64(&l2arc_ndev); 9922 mutex_exit(&l2arc_dev_mtx); 9923 9924 /* 9925 * Clear all buflists and ARC references. L2ARC device flush. 9926 */ 9927 l2arc_evict(remdev, 0, B_TRUE); 9928 list_destroy(&remdev->l2ad_buflist); 9929 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list)); 9930 list_destroy(&remdev->l2ad_lbptr_list); 9931 mutex_destroy(&remdev->l2ad_mtx); 9932 zfs_refcount_destroy(&remdev->l2ad_alloc); 9933 zfs_refcount_destroy(&remdev->l2ad_lb_asize); 9934 zfs_refcount_destroy(&remdev->l2ad_lb_count); 9935 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize); 9936 vmem_free(remdev, sizeof (l2arc_dev_t)); 9937 } 9938 9939 void 9940 l2arc_init(void) 9941 { 9942 l2arc_thread_exit = 0; 9943 l2arc_ndev = 0; 9944 9945 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 9946 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 9947 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL); 9948 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL); 9949 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 9950 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 9951 9952 l2arc_dev_list = &L2ARC_dev_list; 9953 l2arc_free_on_write = &L2ARC_free_on_write; 9954 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 9955 offsetof(l2arc_dev_t, l2ad_node)); 9956 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 9957 offsetof(l2arc_data_free_t, l2df_list_node)); 9958 } 9959 9960 void 9961 l2arc_fini(void) 9962 { 9963 mutex_destroy(&l2arc_feed_thr_lock); 9964 cv_destroy(&l2arc_feed_thr_cv); 9965 mutex_destroy(&l2arc_rebuild_thr_lock); 9966 cv_destroy(&l2arc_rebuild_thr_cv); 9967 mutex_destroy(&l2arc_dev_mtx); 9968 mutex_destroy(&l2arc_free_on_write_mtx); 9969 9970 list_destroy(l2arc_dev_list); 9971 list_destroy(l2arc_free_on_write); 9972 } 9973 9974 void 9975 l2arc_start(void) 9976 { 9977 if (!(spa_mode_global & SPA_MODE_WRITE)) 9978 return; 9979 9980 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 9981 TS_RUN, defclsyspri); 9982 } 9983 9984 void 9985 l2arc_stop(void) 9986 { 9987 if (!(spa_mode_global & SPA_MODE_WRITE)) 9988 return; 9989 9990 mutex_enter(&l2arc_feed_thr_lock); 9991 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 9992 l2arc_thread_exit = 1; 9993 while (l2arc_thread_exit != 0) 9994 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 9995 mutex_exit(&l2arc_feed_thr_lock); 9996 } 9997 9998 /* 9999 * Punches out rebuild threads for the L2ARC devices in a spa. This should 10000 * be called after pool import from the spa async thread, since starting 10001 * these threads directly from spa_import() will make them part of the 10002 * "zpool import" context and delay process exit (and thus pool import). 10003 */ 10004 void 10005 l2arc_spa_rebuild_start(spa_t *spa) 10006 { 10007 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 10008 10009 /* 10010 * Locate the spa's l2arc devices and kick off rebuild threads. 10011 */ 10012 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 10013 l2arc_dev_t *dev = 10014 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]); 10015 if (dev == NULL) { 10016 /* Don't attempt a rebuild if the vdev is UNAVAIL */ 10017 continue; 10018 } 10019 mutex_enter(&l2arc_rebuild_thr_lock); 10020 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) { 10021 dev->l2ad_rebuild_began = B_TRUE; 10022 (void) thread_create(NULL, 0, l2arc_dev_rebuild_thread, 10023 dev, 0, &p0, TS_RUN, minclsyspri); 10024 } 10025 mutex_exit(&l2arc_rebuild_thr_lock); 10026 } 10027 } 10028 10029 /* 10030 * Main entry point for L2ARC rebuilding. 10031 */ 10032 static void 10033 l2arc_dev_rebuild_thread(void *arg) 10034 { 10035 l2arc_dev_t *dev = arg; 10036 10037 VERIFY(!dev->l2ad_rebuild_cancel); 10038 VERIFY(dev->l2ad_rebuild); 10039 (void) l2arc_rebuild(dev); 10040 mutex_enter(&l2arc_rebuild_thr_lock); 10041 dev->l2ad_rebuild_began = B_FALSE; 10042 dev->l2ad_rebuild = B_FALSE; 10043 mutex_exit(&l2arc_rebuild_thr_lock); 10044 10045 thread_exit(); 10046 } 10047 10048 /* 10049 * This function implements the actual L2ARC metadata rebuild. It: 10050 * starts reading the log block chain and restores each block's contents 10051 * to memory (reconstructing arc_buf_hdr_t's). 10052 * 10053 * Operation stops under any of the following conditions: 10054 * 10055 * 1) We reach the end of the log block chain. 10056 * 2) We encounter *any* error condition (cksum errors, io errors) 10057 */ 10058 static int 10059 l2arc_rebuild(l2arc_dev_t *dev) 10060 { 10061 vdev_t *vd = dev->l2ad_vdev; 10062 spa_t *spa = vd->vdev_spa; 10063 int err = 0; 10064 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10065 l2arc_log_blk_phys_t *this_lb, *next_lb; 10066 zio_t *this_io = NULL, *next_io = NULL; 10067 l2arc_log_blkptr_t lbps[2]; 10068 l2arc_lb_ptr_buf_t *lb_ptr_buf; 10069 boolean_t lock_held; 10070 10071 this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP); 10072 next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP); 10073 10074 /* 10075 * We prevent device removal while issuing reads to the device, 10076 * then during the rebuilding phases we drop this lock again so 10077 * that a spa_unload or device remove can be initiated - this is 10078 * safe, because the spa will signal us to stop before removing 10079 * our device and wait for us to stop. 10080 */ 10081 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER); 10082 lock_held = B_TRUE; 10083 10084 /* 10085 * Retrieve the persistent L2ARC device state. 10086 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10087 */ 10088 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start); 10089 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr + 10090 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop), 10091 dev->l2ad_start); 10092 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 10093 10094 vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time; 10095 vd->vdev_trim_state = l2dhdr->dh_trim_state; 10096 10097 /* 10098 * In case the zfs module parameter l2arc_rebuild_enabled is false 10099 * we do not start the rebuild process. 10100 */ 10101 if (!l2arc_rebuild_enabled) 10102 goto out; 10103 10104 /* Prepare the rebuild process */ 10105 bcopy(l2dhdr->dh_start_lbps, lbps, sizeof (lbps)); 10106 10107 /* Start the rebuild process */ 10108 for (;;) { 10109 if (!l2arc_log_blkptr_valid(dev, &lbps[0])) 10110 break; 10111 10112 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1], 10113 this_lb, next_lb, this_io, &next_io)) != 0) 10114 goto out; 10115 10116 /* 10117 * Our memory pressure valve. If the system is running low 10118 * on memory, rather than swamping memory with new ARC buf 10119 * hdrs, we opt not to rebuild the L2ARC. At this point, 10120 * however, we have already set up our L2ARC dev to chain in 10121 * new metadata log blocks, so the user may choose to offline/ 10122 * online the L2ARC dev at a later time (or re-import the pool) 10123 * to reconstruct it (when there's less memory pressure). 10124 */ 10125 if (l2arc_hdr_limit_reached()) { 10126 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem); 10127 cmn_err(CE_NOTE, "System running low on memory, " 10128 "aborting L2ARC rebuild."); 10129 err = SET_ERROR(ENOMEM); 10130 goto out; 10131 } 10132 10133 spa_config_exit(spa, SCL_L2ARC, vd); 10134 lock_held = B_FALSE; 10135 10136 /* 10137 * Now that we know that the next_lb checks out alright, we 10138 * can start reconstruction from this log block. 10139 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10140 */ 10141 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 10142 l2arc_log_blk_restore(dev, this_lb, asize); 10143 10144 /* 10145 * log block restored, include its pointer in the list of 10146 * pointers to log blocks present in the L2ARC device. 10147 */ 10148 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 10149 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), 10150 KM_SLEEP); 10151 bcopy(&lbps[0], lb_ptr_buf->lb_ptr, 10152 sizeof (l2arc_log_blkptr_t)); 10153 mutex_enter(&dev->l2ad_mtx); 10154 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf); 10155 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 10156 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 10157 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 10158 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 10159 mutex_exit(&dev->l2ad_mtx); 10160 vdev_space_update(vd, asize, 0, 0); 10161 10162 /* 10163 * Protection against loops of log blocks: 10164 * 10165 * l2ad_hand l2ad_evict 10166 * V V 10167 * l2ad_start |=======================================| l2ad_end 10168 * -----|||----|||---|||----||| 10169 * (3) (2) (1) (0) 10170 * ---|||---|||----|||---||| 10171 * (7) (6) (5) (4) 10172 * 10173 * In this situation the pointer of log block (4) passes 10174 * l2arc_log_blkptr_valid() but the log block should not be 10175 * restored as it is overwritten by the payload of log block 10176 * (0). Only log blocks (0)-(3) should be restored. We check 10177 * whether l2ad_evict lies in between the payload starting 10178 * offset of the next log block (lbps[1].lbp_payload_start) 10179 * and the payload starting offset of the present log block 10180 * (lbps[0].lbp_payload_start). If true and this isn't the 10181 * first pass, we are looping from the beginning and we should 10182 * stop. 10183 */ 10184 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 10185 lbps[0].lbp_payload_start, dev->l2ad_evict) && 10186 !dev->l2ad_first) 10187 goto out; 10188 10189 cond_resched(); 10190 for (;;) { 10191 mutex_enter(&l2arc_rebuild_thr_lock); 10192 if (dev->l2ad_rebuild_cancel) { 10193 dev->l2ad_rebuild = B_FALSE; 10194 cv_signal(&l2arc_rebuild_thr_cv); 10195 mutex_exit(&l2arc_rebuild_thr_lock); 10196 err = SET_ERROR(ECANCELED); 10197 goto out; 10198 } 10199 mutex_exit(&l2arc_rebuild_thr_lock); 10200 if (spa_config_tryenter(spa, SCL_L2ARC, vd, 10201 RW_READER)) { 10202 lock_held = B_TRUE; 10203 break; 10204 } 10205 /* 10206 * L2ARC config lock held by somebody in writer, 10207 * possibly due to them trying to remove us. They'll 10208 * likely to want us to shut down, so after a little 10209 * delay, we check l2ad_rebuild_cancel and retry 10210 * the lock again. 10211 */ 10212 delay(1); 10213 } 10214 10215 /* 10216 * Continue with the next log block. 10217 */ 10218 lbps[0] = lbps[1]; 10219 lbps[1] = this_lb->lb_prev_lbp; 10220 PTR_SWAP(this_lb, next_lb); 10221 this_io = next_io; 10222 next_io = NULL; 10223 } 10224 10225 if (this_io != NULL) 10226 l2arc_log_blk_fetch_abort(this_io); 10227 out: 10228 if (next_io != NULL) 10229 l2arc_log_blk_fetch_abort(next_io); 10230 vmem_free(this_lb, sizeof (*this_lb)); 10231 vmem_free(next_lb, sizeof (*next_lb)); 10232 10233 if (!l2arc_rebuild_enabled) { 10234 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10235 "disabled"); 10236 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) { 10237 ARCSTAT_BUMP(arcstat_l2_rebuild_success); 10238 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10239 "successful, restored %llu blocks", 10240 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10241 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) { 10242 /* 10243 * No error but also nothing restored, meaning the lbps array 10244 * in the device header points to invalid/non-present log 10245 * blocks. Reset the header. 10246 */ 10247 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10248 "no valid log blocks"); 10249 bzero(l2dhdr, dev->l2ad_dev_hdr_asize); 10250 l2arc_dev_hdr_update(dev); 10251 } else if (err == ECANCELED) { 10252 /* 10253 * In case the rebuild was canceled do not log to spa history 10254 * log as the pool may be in the process of being removed. 10255 */ 10256 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks", 10257 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10258 } else if (err != 0) { 10259 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10260 "aborted, restored %llu blocks", 10261 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10262 } 10263 10264 if (lock_held) 10265 spa_config_exit(spa, SCL_L2ARC, vd); 10266 10267 return (err); 10268 } 10269 10270 /* 10271 * Attempts to read the device header on the provided L2ARC device and writes 10272 * it to `hdr'. On success, this function returns 0, otherwise the appropriate 10273 * error code is returned. 10274 */ 10275 static int 10276 l2arc_dev_hdr_read(l2arc_dev_t *dev) 10277 { 10278 int err; 10279 uint64_t guid; 10280 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10281 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10282 abd_t *abd; 10283 10284 guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10285 10286 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10287 10288 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev, 10289 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, 10290 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 10291 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 10292 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 10293 ZIO_FLAG_SPECULATIVE, B_FALSE)); 10294 10295 abd_free(abd); 10296 10297 if (err != 0) { 10298 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors); 10299 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, " 10300 "vdev guid: %llu", err, 10301 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10302 return (err); 10303 } 10304 10305 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 10306 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr)); 10307 10308 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC || 10309 l2dhdr->dh_spa_guid != guid || 10310 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid || 10311 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION || 10312 l2dhdr->dh_log_entries != dev->l2ad_log_entries || 10313 l2dhdr->dh_end != dev->l2ad_end || 10314 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end, 10315 l2dhdr->dh_evict) || 10316 (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE && 10317 l2arc_trim_ahead > 0)) { 10318 /* 10319 * Attempt to rebuild a device containing no actual dev hdr 10320 * or containing a header from some other pool or from another 10321 * version of persistent L2ARC. 10322 */ 10323 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported); 10324 return (SET_ERROR(ENOTSUP)); 10325 } 10326 10327 return (0); 10328 } 10329 10330 /* 10331 * Reads L2ARC log blocks from storage and validates their contents. 10332 * 10333 * This function implements a simple fetcher to make sure that while 10334 * we're processing one buffer the L2ARC is already fetching the next 10335 * one in the chain. 10336 * 10337 * The arguments this_lp and next_lp point to the current and next log block 10338 * address in the block chain. Similarly, this_lb and next_lb hold the 10339 * l2arc_log_blk_phys_t's of the current and next L2ARC blk. 10340 * 10341 * The `this_io' and `next_io' arguments are used for block fetching. 10342 * When issuing the first blk IO during rebuild, you should pass NULL for 10343 * `this_io'. This function will then issue a sync IO to read the block and 10344 * also issue an async IO to fetch the next block in the block chain. The 10345 * fetched IO is returned in `next_io'. On subsequent calls to this 10346 * function, pass the value returned in `next_io' from the previous call 10347 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO. 10348 * Prior to the call, you should initialize your `next_io' pointer to be 10349 * NULL. If no fetch IO was issued, the pointer is left set at NULL. 10350 * 10351 * On success, this function returns 0, otherwise it returns an appropriate 10352 * error code. On error the fetching IO is aborted and cleared before 10353 * returning from this function. Therefore, if we return `success', the 10354 * caller can assume that we have taken care of cleanup of fetch IOs. 10355 */ 10356 static int 10357 l2arc_log_blk_read(l2arc_dev_t *dev, 10358 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp, 10359 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 10360 zio_t *this_io, zio_t **next_io) 10361 { 10362 int err = 0; 10363 zio_cksum_t cksum; 10364 abd_t *abd = NULL; 10365 uint64_t asize; 10366 10367 ASSERT(this_lbp != NULL && next_lbp != NULL); 10368 ASSERT(this_lb != NULL && next_lb != NULL); 10369 ASSERT(next_io != NULL && *next_io == NULL); 10370 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp)); 10371 10372 /* 10373 * Check to see if we have issued the IO for this log block in a 10374 * previous run. If not, this is the first call, so issue it now. 10375 */ 10376 if (this_io == NULL) { 10377 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp, 10378 this_lb); 10379 } 10380 10381 /* 10382 * Peek to see if we can start issuing the next IO immediately. 10383 */ 10384 if (l2arc_log_blkptr_valid(dev, next_lbp)) { 10385 /* 10386 * Start issuing IO for the next log block early - this 10387 * should help keep the L2ARC device busy while we 10388 * decompress and restore this log block. 10389 */ 10390 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp, 10391 next_lb); 10392 } 10393 10394 /* Wait for the IO to read this log block to complete */ 10395 if ((err = zio_wait(this_io)) != 0) { 10396 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors); 10397 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, " 10398 "offset: %llu, vdev guid: %llu", err, 10399 (u_longlong_t)this_lbp->lbp_daddr, 10400 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10401 goto cleanup; 10402 } 10403 10404 /* 10405 * Make sure the buffer checks out. 10406 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10407 */ 10408 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop); 10409 fletcher_4_native(this_lb, asize, NULL, &cksum); 10410 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) { 10411 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors); 10412 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, " 10413 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu", 10414 (u_longlong_t)this_lbp->lbp_daddr, 10415 (u_longlong_t)dev->l2ad_vdev->vdev_guid, 10416 (u_longlong_t)dev->l2ad_hand, 10417 (u_longlong_t)dev->l2ad_evict); 10418 err = SET_ERROR(ECKSUM); 10419 goto cleanup; 10420 } 10421 10422 /* Now we can take our time decoding this buffer */ 10423 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) { 10424 case ZIO_COMPRESS_OFF: 10425 break; 10426 case ZIO_COMPRESS_LZ4: 10427 abd = abd_alloc_for_io(asize, B_TRUE); 10428 abd_copy_from_buf_off(abd, this_lb, 0, asize); 10429 if ((err = zio_decompress_data( 10430 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop), 10431 abd, this_lb, asize, sizeof (*this_lb), NULL)) != 0) { 10432 err = SET_ERROR(EINVAL); 10433 goto cleanup; 10434 } 10435 break; 10436 default: 10437 err = SET_ERROR(EINVAL); 10438 goto cleanup; 10439 } 10440 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 10441 byteswap_uint64_array(this_lb, sizeof (*this_lb)); 10442 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) { 10443 err = SET_ERROR(EINVAL); 10444 goto cleanup; 10445 } 10446 cleanup: 10447 /* Abort an in-flight fetch I/O in case of error */ 10448 if (err != 0 && *next_io != NULL) { 10449 l2arc_log_blk_fetch_abort(*next_io); 10450 *next_io = NULL; 10451 } 10452 if (abd != NULL) 10453 abd_free(abd); 10454 return (err); 10455 } 10456 10457 /* 10458 * Restores the payload of a log block to ARC. This creates empty ARC hdr 10459 * entries which only contain an l2arc hdr, essentially restoring the 10460 * buffers to their L2ARC evicted state. This function also updates space 10461 * usage on the L2ARC vdev to make sure it tracks restored buffers. 10462 */ 10463 static void 10464 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb, 10465 uint64_t lb_asize) 10466 { 10467 uint64_t size = 0, asize = 0; 10468 uint64_t log_entries = dev->l2ad_log_entries; 10469 10470 /* 10471 * Usually arc_adapt() is called only for data, not headers, but 10472 * since we may allocate significant amount of memory here, let ARC 10473 * grow its arc_c. 10474 */ 10475 arc_adapt(log_entries * HDR_L2ONLY_SIZE, arc_l2c_only); 10476 10477 for (int i = log_entries - 1; i >= 0; i--) { 10478 /* 10479 * Restore goes in the reverse temporal direction to preserve 10480 * correct temporal ordering of buffers in the l2ad_buflist. 10481 * l2arc_hdr_restore also does a list_insert_tail instead of 10482 * list_insert_head on the l2ad_buflist: 10483 * 10484 * LIST l2ad_buflist LIST 10485 * HEAD <------ (time) ------ TAIL 10486 * direction +-----+-----+-----+-----+-----+ direction 10487 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild 10488 * fill +-----+-----+-----+-----+-----+ 10489 * ^ ^ 10490 * | | 10491 * | | 10492 * l2arc_feed_thread l2arc_rebuild 10493 * will place new bufs here restores bufs here 10494 * 10495 * During l2arc_rebuild() the device is not used by 10496 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true. 10497 */ 10498 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop); 10499 asize += vdev_psize_to_asize(dev->l2ad_vdev, 10500 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop)); 10501 l2arc_hdr_restore(&lb->lb_entries[i], dev); 10502 } 10503 10504 /* 10505 * Record rebuild stats: 10506 * size Logical size of restored buffers in the L2ARC 10507 * asize Aligned size of restored buffers in the L2ARC 10508 */ 10509 ARCSTAT_INCR(arcstat_l2_rebuild_size, size); 10510 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize); 10511 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries); 10512 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize); 10513 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize); 10514 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks); 10515 } 10516 10517 /* 10518 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put 10519 * into a state indicating that it has been evicted to L2ARC. 10520 */ 10521 static void 10522 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev) 10523 { 10524 arc_buf_hdr_t *hdr, *exists; 10525 kmutex_t *hash_lock; 10526 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop); 10527 uint64_t asize; 10528 10529 /* 10530 * Do all the allocation before grabbing any locks, this lets us 10531 * sleep if memory is full and we don't have to deal with failed 10532 * allocations. 10533 */ 10534 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type, 10535 dev, le->le_dva, le->le_daddr, 10536 L2BLK_GET_PSIZE((le)->le_prop), le->le_birth, 10537 L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel, 10538 L2BLK_GET_PROTECTED((le)->le_prop), 10539 L2BLK_GET_PREFETCH((le)->le_prop), 10540 L2BLK_GET_STATE((le)->le_prop)); 10541 asize = vdev_psize_to_asize(dev->l2ad_vdev, 10542 L2BLK_GET_PSIZE((le)->le_prop)); 10543 10544 /* 10545 * vdev_space_update() has to be called before arc_hdr_destroy() to 10546 * avoid underflow since the latter also calls vdev_space_update(). 10547 */ 10548 l2arc_hdr_arcstats_increment(hdr); 10549 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10550 10551 mutex_enter(&dev->l2ad_mtx); 10552 list_insert_tail(&dev->l2ad_buflist, hdr); 10553 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); 10554 mutex_exit(&dev->l2ad_mtx); 10555 10556 exists = buf_hash_insert(hdr, &hash_lock); 10557 if (exists) { 10558 /* Buffer was already cached, no need to restore it. */ 10559 arc_hdr_destroy(hdr); 10560 /* 10561 * If the buffer is already cached, check whether it has 10562 * L2ARC metadata. If not, enter them and update the flag. 10563 * This is important is case of onlining a cache device, since 10564 * we previously evicted all L2ARC metadata from ARC. 10565 */ 10566 if (!HDR_HAS_L2HDR(exists)) { 10567 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR); 10568 exists->b_l2hdr.b_dev = dev; 10569 exists->b_l2hdr.b_daddr = le->le_daddr; 10570 exists->b_l2hdr.b_arcs_state = 10571 L2BLK_GET_STATE((le)->le_prop); 10572 mutex_enter(&dev->l2ad_mtx); 10573 list_insert_tail(&dev->l2ad_buflist, exists); 10574 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 10575 arc_hdr_size(exists), exists); 10576 mutex_exit(&dev->l2ad_mtx); 10577 l2arc_hdr_arcstats_increment(exists); 10578 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10579 } 10580 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached); 10581 } 10582 10583 mutex_exit(hash_lock); 10584 } 10585 10586 /* 10587 * Starts an asynchronous read IO to read a log block. This is used in log 10588 * block reconstruction to start reading the next block before we are done 10589 * decoding and reconstructing the current block, to keep the l2arc device 10590 * nice and hot with read IO to process. 10591 * The returned zio will contain a newly allocated memory buffers for the IO 10592 * data which should then be freed by the caller once the zio is no longer 10593 * needed (i.e. due to it having completed). If you wish to abort this 10594 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes 10595 * care of disposing of the allocated buffers correctly. 10596 */ 10597 static zio_t * 10598 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp, 10599 l2arc_log_blk_phys_t *lb) 10600 { 10601 uint32_t asize; 10602 zio_t *pio; 10603 l2arc_read_callback_t *cb; 10604 10605 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10606 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10607 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t)); 10608 10609 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP); 10610 cb->l2rcb_abd = abd_get_from_buf(lb, asize); 10611 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb, 10612 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | 10613 ZIO_FLAG_DONT_RETRY); 10614 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize, 10615 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10616 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 10617 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE)); 10618 10619 return (pio); 10620 } 10621 10622 /* 10623 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data 10624 * buffers allocated for it. 10625 */ 10626 static void 10627 l2arc_log_blk_fetch_abort(zio_t *zio) 10628 { 10629 (void) zio_wait(zio); 10630 } 10631 10632 /* 10633 * Creates a zio to update the device header on an l2arc device. 10634 */ 10635 void 10636 l2arc_dev_hdr_update(l2arc_dev_t *dev) 10637 { 10638 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10639 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10640 abd_t *abd; 10641 int err; 10642 10643 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER)); 10644 10645 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC; 10646 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION; 10647 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10648 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid; 10649 l2dhdr->dh_log_entries = dev->l2ad_log_entries; 10650 l2dhdr->dh_evict = dev->l2ad_evict; 10651 l2dhdr->dh_start = dev->l2ad_start; 10652 l2dhdr->dh_end = dev->l2ad_end; 10653 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize); 10654 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count); 10655 l2dhdr->dh_flags = 0; 10656 l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time; 10657 l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state; 10658 if (dev->l2ad_first) 10659 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST; 10660 10661 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10662 10663 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev, 10664 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL, 10665 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE)); 10666 10667 abd_free(abd); 10668 10669 if (err != 0) { 10670 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, " 10671 "vdev guid: %llu", err, 10672 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10673 } 10674 } 10675 10676 /* 10677 * Commits a log block to the L2ARC device. This routine is invoked from 10678 * l2arc_write_buffers when the log block fills up. 10679 * This function allocates some memory to temporarily hold the serialized 10680 * buffer to be written. This is then released in l2arc_write_done. 10681 */ 10682 static void 10683 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb) 10684 { 10685 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10686 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10687 uint64_t psize, asize; 10688 zio_t *wzio; 10689 l2arc_lb_abd_buf_t *abd_buf; 10690 uint8_t *tmpbuf; 10691 l2arc_lb_ptr_buf_t *lb_ptr_buf; 10692 10693 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries); 10694 10695 tmpbuf = zio_buf_alloc(sizeof (*lb)); 10696 abd_buf = zio_buf_alloc(sizeof (*abd_buf)); 10697 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb)); 10698 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 10699 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP); 10700 10701 /* link the buffer into the block chain */ 10702 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1]; 10703 lb->lb_magic = L2ARC_LOG_BLK_MAGIC; 10704 10705 /* 10706 * l2arc_log_blk_commit() may be called multiple times during a single 10707 * l2arc_write_buffers() call. Save the allocated abd buffers in a list 10708 * so we can free them in l2arc_write_done() later on. 10709 */ 10710 list_insert_tail(&cb->l2wcb_abd_list, abd_buf); 10711 10712 /* try to compress the buffer */ 10713 psize = zio_compress_data(ZIO_COMPRESS_LZ4, 10714 abd_buf->abd, tmpbuf, sizeof (*lb), 0); 10715 10716 /* a log block is never entirely zero */ 10717 ASSERT(psize != 0); 10718 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 10719 ASSERT(asize <= sizeof (*lb)); 10720 10721 /* 10722 * Update the start log block pointer in the device header to point 10723 * to the log block we're about to write. 10724 */ 10725 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0]; 10726 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand; 10727 l2dhdr->dh_start_lbps[0].lbp_payload_asize = 10728 dev->l2ad_log_blk_payload_asize; 10729 l2dhdr->dh_start_lbps[0].lbp_payload_start = 10730 dev->l2ad_log_blk_payload_start; 10731 _NOTE(CONSTCOND) 10732 L2BLK_SET_LSIZE( 10733 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb)); 10734 L2BLK_SET_PSIZE( 10735 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize); 10736 L2BLK_SET_CHECKSUM( 10737 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10738 ZIO_CHECKSUM_FLETCHER_4); 10739 if (asize < sizeof (*lb)) { 10740 /* compression succeeded */ 10741 bzero(tmpbuf + psize, asize - psize); 10742 L2BLK_SET_COMPRESS( 10743 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10744 ZIO_COMPRESS_LZ4); 10745 } else { 10746 /* compression failed */ 10747 bcopy(lb, tmpbuf, sizeof (*lb)); 10748 L2BLK_SET_COMPRESS( 10749 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10750 ZIO_COMPRESS_OFF); 10751 } 10752 10753 /* checksum what we're about to write */ 10754 fletcher_4_native(tmpbuf, asize, NULL, 10755 &l2dhdr->dh_start_lbps[0].lbp_cksum); 10756 10757 abd_free(abd_buf->abd); 10758 10759 /* perform the write itself */ 10760 abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb)); 10761 abd_take_ownership_of_buf(abd_buf->abd, B_TRUE); 10762 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand, 10763 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10764 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE); 10765 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio); 10766 (void) zio_nowait(wzio); 10767 10768 dev->l2ad_hand += asize; 10769 /* 10770 * Include the committed log block's pointer in the list of pointers 10771 * to log blocks present in the L2ARC device. 10772 */ 10773 bcopy(&l2dhdr->dh_start_lbps[0], lb_ptr_buf->lb_ptr, 10774 sizeof (l2arc_log_blkptr_t)); 10775 mutex_enter(&dev->l2ad_mtx); 10776 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf); 10777 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 10778 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 10779 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 10780 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 10781 mutex_exit(&dev->l2ad_mtx); 10782 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10783 10784 /* bump the kstats */ 10785 ARCSTAT_INCR(arcstat_l2_write_bytes, asize); 10786 ARCSTAT_BUMP(arcstat_l2_log_blk_writes); 10787 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize); 10788 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, 10789 dev->l2ad_log_blk_payload_asize / asize); 10790 10791 /* start a new log block */ 10792 dev->l2ad_log_ent_idx = 0; 10793 dev->l2ad_log_blk_payload_asize = 0; 10794 dev->l2ad_log_blk_payload_start = 0; 10795 } 10796 10797 /* 10798 * Validates an L2ARC log block address to make sure that it can be read 10799 * from the provided L2ARC device. 10800 */ 10801 boolean_t 10802 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp) 10803 { 10804 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10805 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10806 uint64_t end = lbp->lbp_daddr + asize - 1; 10807 uint64_t start = lbp->lbp_payload_start; 10808 boolean_t evicted = B_FALSE; 10809 10810 /* 10811 * A log block is valid if all of the following conditions are true: 10812 * - it fits entirely (including its payload) between l2ad_start and 10813 * l2ad_end 10814 * - it has a valid size 10815 * - neither the log block itself nor part of its payload was evicted 10816 * by l2arc_evict(): 10817 * 10818 * l2ad_hand l2ad_evict 10819 * | | lbp_daddr 10820 * | start | | end 10821 * | | | | | 10822 * V V V V V 10823 * l2ad_start ============================================ l2ad_end 10824 * --------------------------|||| 10825 * ^ ^ 10826 * | log block 10827 * payload 10828 */ 10829 10830 evicted = 10831 l2arc_range_check_overlap(start, end, dev->l2ad_hand) || 10832 l2arc_range_check_overlap(start, end, dev->l2ad_evict) || 10833 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) || 10834 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end); 10835 10836 return (start >= dev->l2ad_start && end <= dev->l2ad_end && 10837 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) && 10838 (!evicted || dev->l2ad_first)); 10839 } 10840 10841 /* 10842 * Inserts ARC buffer header `hdr' into the current L2ARC log block on 10843 * the device. The buffer being inserted must be present in L2ARC. 10844 * Returns B_TRUE if the L2ARC log block is full and needs to be committed 10845 * to L2ARC, or B_FALSE if it still has room for more ARC buffers. 10846 */ 10847 static boolean_t 10848 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr) 10849 { 10850 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10851 l2arc_log_ent_phys_t *le; 10852 10853 if (dev->l2ad_log_entries == 0) 10854 return (B_FALSE); 10855 10856 int index = dev->l2ad_log_ent_idx++; 10857 10858 ASSERT3S(index, <, dev->l2ad_log_entries); 10859 ASSERT(HDR_HAS_L2HDR(hdr)); 10860 10861 le = &lb->lb_entries[index]; 10862 bzero(le, sizeof (*le)); 10863 le->le_dva = hdr->b_dva; 10864 le->le_birth = hdr->b_birth; 10865 le->le_daddr = hdr->b_l2hdr.b_daddr; 10866 if (index == 0) 10867 dev->l2ad_log_blk_payload_start = le->le_daddr; 10868 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr)); 10869 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr)); 10870 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr)); 10871 le->le_complevel = hdr->b_complevel; 10872 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type); 10873 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr))); 10874 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr))); 10875 L2BLK_SET_STATE((le)->le_prop, hdr->b_l1hdr.b_state->arcs_state); 10876 10877 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev, 10878 HDR_GET_PSIZE(hdr)); 10879 10880 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries); 10881 } 10882 10883 /* 10884 * Checks whether a given L2ARC device address sits in a time-sequential 10885 * range. The trick here is that the L2ARC is a rotary buffer, so we can't 10886 * just do a range comparison, we need to handle the situation in which the 10887 * range wraps around the end of the L2ARC device. Arguments: 10888 * bottom -- Lower end of the range to check (written to earlier). 10889 * top -- Upper end of the range to check (written to later). 10890 * check -- The address for which we want to determine if it sits in 10891 * between the top and bottom. 10892 * 10893 * The 3-way conditional below represents the following cases: 10894 * 10895 * bottom < top : Sequentially ordered case: 10896 * <check>--------+-------------------+ 10897 * | (overlap here?) | 10898 * L2ARC dev V V 10899 * |---------------<bottom>============<top>--------------| 10900 * 10901 * bottom > top: Looped-around case: 10902 * <check>--------+------------------+ 10903 * | (overlap here?) | 10904 * L2ARC dev V V 10905 * |===============<top>---------------<bottom>===========| 10906 * ^ ^ 10907 * | (or here?) | 10908 * +---------------+---------<check> 10909 * 10910 * top == bottom : Just a single address comparison. 10911 */ 10912 boolean_t 10913 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check) 10914 { 10915 if (bottom < top) 10916 return (bottom <= check && check <= top); 10917 else if (bottom > top) 10918 return (check <= top || bottom <= check); 10919 else 10920 return (check == top); 10921 } 10922 10923 EXPORT_SYMBOL(arc_buf_size); 10924 EXPORT_SYMBOL(arc_write); 10925 EXPORT_SYMBOL(arc_read); 10926 EXPORT_SYMBOL(arc_buf_info); 10927 EXPORT_SYMBOL(arc_getbuf_func); 10928 EXPORT_SYMBOL(arc_add_prune_callback); 10929 EXPORT_SYMBOL(arc_remove_prune_callback); 10930 10931 /* BEGIN CSTYLED */ 10932 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_long, 10933 param_get_long, ZMOD_RW, "Min arc size"); 10934 10935 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_long, 10936 param_get_long, ZMOD_RW, "Max arc size"); 10937 10938 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit, param_set_arc_long, 10939 param_get_long, ZMOD_RW, "Metadata limit for arc size"); 10940 10941 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit_percent, 10942 param_set_arc_long, param_get_long, ZMOD_RW, 10943 "Percent of arc size for arc meta limit"); 10944 10945 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_min, param_set_arc_long, 10946 param_get_long, ZMOD_RW, "Min arc metadata"); 10947 10948 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_prune, INT, ZMOD_RW, 10949 "Meta objects to scan for prune"); 10950 10951 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_adjust_restarts, INT, ZMOD_RW, 10952 "Limit number of restarts in arc_evict_meta"); 10953 10954 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_strategy, INT, ZMOD_RW, 10955 "Meta reclaim strategy"); 10956 10957 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int, 10958 param_get_int, ZMOD_RW, "Seconds before growing arc size"); 10959 10960 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, p_dampener_disable, INT, ZMOD_RW, 10961 "Disable arc_p adapt dampener"); 10962 10963 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int, 10964 param_get_int, ZMOD_RW, "log2(fraction of arc to reclaim)"); 10965 10966 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW, 10967 "Percent of pagecache to reclaim arc to"); 10968 10969 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, p_min_shift, param_set_arc_int, 10970 param_get_int, ZMOD_RW, "arc_c shift to calc min/max arc_p"); 10971 10972 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, INT, ZMOD_RD, 10973 "Target average block size"); 10974 10975 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW, 10976 "Disable compressed arc buffers"); 10977 10978 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int, 10979 param_get_int, ZMOD_RW, "Min life of prefetch block in ms"); 10980 10981 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms, 10982 param_set_arc_int, param_get_int, ZMOD_RW, 10983 "Min life of prescient prefetched block in ms"); 10984 10985 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, ULONG, ZMOD_RW, 10986 "Max write bytes per interval"); 10987 10988 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, ULONG, ZMOD_RW, 10989 "Extra write bytes during device warmup"); 10990 10991 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, ULONG, ZMOD_RW, 10992 "Number of max device writes to precache"); 10993 10994 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, ULONG, ZMOD_RW, 10995 "Compressed l2arc_headroom multiplier"); 10996 10997 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, ULONG, ZMOD_RW, 10998 "TRIM ahead L2ARC write size multiplier"); 10999 11000 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, ULONG, ZMOD_RW, 11001 "Seconds between L2ARC writing"); 11002 11003 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, ULONG, ZMOD_RW, 11004 "Min feed interval in milliseconds"); 11005 11006 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW, 11007 "Skip caching prefetched buffers"); 11008 11009 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW, 11010 "Turbo L2ARC warmup"); 11011 11012 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW, 11013 "No reads during writes"); 11014 11015 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, INT, ZMOD_RW, 11016 "Percent of ARC size allowed for L2ARC-only headers"); 11017 11018 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW, 11019 "Rebuild the L2ARC when importing a pool"); 11020 11021 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, ULONG, ZMOD_RW, 11022 "Min size in bytes to write rebuild log blocks in L2ARC"); 11023 11024 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW, 11025 "Cache only MFU data from ARC into L2ARC"); 11026 11027 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int, 11028 param_get_int, ZMOD_RW, "System free memory I/O throttle in bytes"); 11029 11030 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_long, 11031 param_get_long, ZMOD_RW, "System free memory target size in bytes"); 11032 11033 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_long, 11034 param_get_long, ZMOD_RW, "Minimum bytes of dnodes in arc"); 11035 11036 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent, 11037 param_set_arc_long, param_get_long, ZMOD_RW, 11038 "Percent of ARC meta buffers for dnodes"); 11039 11040 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, ULONG, ZMOD_RW, 11041 "Percentage of excess dnodes to try to unpin"); 11042 11043 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, INT, ZMOD_RW, 11044 "When full, ARC allocation waits for eviction of this % of alloc size"); 11045 11046 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, INT, ZMOD_RW, 11047 "The number of headers to evict per sublist before moving to the next"); 11048 /* END CSTYLED */ 11049