1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2018, Joyent, Inc. 24 * Copyright (c) 2011, 2020, Delphix. All rights reserved. 25 * Copyright (c) 2014, Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 28 * Copyright (c) 2020, George Amanakis. All rights reserved. 29 * Copyright (c) 2019, Klara Inc. 30 * Copyright (c) 2019, Allan Jude 31 * Copyright (c) 2020, The FreeBSD Foundation [1] 32 * 33 * [1] Portions of this software were developed by Allan Jude 34 * under sponsorship from the FreeBSD Foundation. 35 */ 36 37 /* 38 * DVA-based Adjustable Replacement Cache 39 * 40 * While much of the theory of operation used here is 41 * based on the self-tuning, low overhead replacement cache 42 * presented by Megiddo and Modha at FAST 2003, there are some 43 * significant differences: 44 * 45 * 1. The Megiddo and Modha model assumes any page is evictable. 46 * Pages in its cache cannot be "locked" into memory. This makes 47 * the eviction algorithm simple: evict the last page in the list. 48 * This also make the performance characteristics easy to reason 49 * about. Our cache is not so simple. At any given moment, some 50 * subset of the blocks in the cache are un-evictable because we 51 * have handed out a reference to them. Blocks are only evictable 52 * when there are no external references active. This makes 53 * eviction far more problematic: we choose to evict the evictable 54 * blocks that are the "lowest" in the list. 55 * 56 * There are times when it is not possible to evict the requested 57 * space. In these circumstances we are unable to adjust the cache 58 * size. To prevent the cache growing unbounded at these times we 59 * implement a "cache throttle" that slows the flow of new data 60 * into the cache until we can make space available. 61 * 62 * 2. The Megiddo and Modha model assumes a fixed cache size. 63 * Pages are evicted when the cache is full and there is a cache 64 * miss. Our model has a variable sized cache. It grows with 65 * high use, but also tries to react to memory pressure from the 66 * operating system: decreasing its size when system memory is 67 * tight. 68 * 69 * 3. The Megiddo and Modha model assumes a fixed page size. All 70 * elements of the cache are therefore exactly the same size. So 71 * when adjusting the cache size following a cache miss, its simply 72 * a matter of choosing a single page to evict. In our model, we 73 * have variable sized cache blocks (ranging from 512 bytes to 74 * 128K bytes). We therefore choose a set of blocks to evict to make 75 * space for a cache miss that approximates as closely as possible 76 * the space used by the new block. 77 * 78 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 79 * by N. Megiddo & D. Modha, FAST 2003 80 */ 81 82 /* 83 * The locking model: 84 * 85 * A new reference to a cache buffer can be obtained in two 86 * ways: 1) via a hash table lookup using the DVA as a key, 87 * or 2) via one of the ARC lists. The arc_read() interface 88 * uses method 1, while the internal ARC algorithms for 89 * adjusting the cache use method 2. We therefore provide two 90 * types of locks: 1) the hash table lock array, and 2) the 91 * ARC list locks. 92 * 93 * Buffers do not have their own mutexes, rather they rely on the 94 * hash table mutexes for the bulk of their protection (i.e. most 95 * fields in the arc_buf_hdr_t are protected by these mutexes). 96 * 97 * buf_hash_find() returns the appropriate mutex (held) when it 98 * locates the requested buffer in the hash table. It returns 99 * NULL for the mutex if the buffer was not in the table. 100 * 101 * buf_hash_remove() expects the appropriate hash mutex to be 102 * already held before it is invoked. 103 * 104 * Each ARC state also has a mutex which is used to protect the 105 * buffer list associated with the state. When attempting to 106 * obtain a hash table lock while holding an ARC list lock you 107 * must use: mutex_tryenter() to avoid deadlock. Also note that 108 * the active state mutex must be held before the ghost state mutex. 109 * 110 * It as also possible to register a callback which is run when the 111 * arc_meta_limit is reached and no buffers can be safely evicted. In 112 * this case the arc user should drop a reference on some arc buffers so 113 * they can be reclaimed and the arc_meta_limit honored. For example, 114 * when using the ZPL each dentry holds a references on a znode. These 115 * dentries must be pruned before the arc buffer holding the znode can 116 * be safely evicted. 117 * 118 * Note that the majority of the performance stats are manipulated 119 * with atomic operations. 120 * 121 * The L2ARC uses the l2ad_mtx on each vdev for the following: 122 * 123 * - L2ARC buflist creation 124 * - L2ARC buflist eviction 125 * - L2ARC write completion, which walks L2ARC buflists 126 * - ARC header destruction, as it removes from L2ARC buflists 127 * - ARC header release, as it removes from L2ARC buflists 128 */ 129 130 /* 131 * ARC operation: 132 * 133 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. 134 * This structure can point either to a block that is still in the cache or to 135 * one that is only accessible in an L2 ARC device, or it can provide 136 * information about a block that was recently evicted. If a block is 137 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough 138 * information to retrieve it from the L2ARC device. This information is 139 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block 140 * that is in this state cannot access the data directly. 141 * 142 * Blocks that are actively being referenced or have not been evicted 143 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within 144 * the arc_buf_hdr_t that will point to the data block in memory. A block can 145 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC 146 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and 147 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd). 148 * 149 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the 150 * ability to store the physical data (b_pabd) associated with the DVA of the 151 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block, 152 * it will match its on-disk compression characteristics. This behavior can be 153 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the 154 * compressed ARC functionality is disabled, the b_pabd will point to an 155 * uncompressed version of the on-disk data. 156 * 157 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each 158 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it. 159 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC 160 * consumer. The ARC will provide references to this data and will keep it 161 * cached until it is no longer in use. The ARC caches only the L1ARC's physical 162 * data block and will evict any arc_buf_t that is no longer referenced. The 163 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the 164 * "overhead_size" kstat. 165 * 166 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or 167 * compressed form. The typical case is that consumers will want uncompressed 168 * data, and when that happens a new data buffer is allocated where the data is 169 * decompressed for them to use. Currently the only consumer who wants 170 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it 171 * exists on disk. When this happens, the arc_buf_t's data buffer is shared 172 * with the arc_buf_hdr_t. 173 * 174 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The 175 * first one is owned by a compressed send consumer (and therefore references 176 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be 177 * used by any other consumer (and has its own uncompressed copy of the data 178 * buffer). 179 * 180 * arc_buf_hdr_t 181 * +-----------+ 182 * | fields | 183 * | common to | 184 * | L1- and | 185 * | L2ARC | 186 * +-----------+ 187 * | l2arc_buf_hdr_t 188 * | | 189 * +-----------+ 190 * | l1arc_buf_hdr_t 191 * | | arc_buf_t 192 * | b_buf +------------>+-----------+ arc_buf_t 193 * | b_pabd +-+ |b_next +---->+-----------+ 194 * +-----------+ | |-----------| |b_next +-->NULL 195 * | |b_comp = T | +-----------+ 196 * | |b_data +-+ |b_comp = F | 197 * | +-----------+ | |b_data +-+ 198 * +->+------+ | +-----------+ | 199 * compressed | | | | 200 * data | |<--------------+ | uncompressed 201 * +------+ compressed, | data 202 * shared +-->+------+ 203 * data | | 204 * | | 205 * +------+ 206 * 207 * When a consumer reads a block, the ARC must first look to see if the 208 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new 209 * arc_buf_t and either copies uncompressed data into a new data buffer from an 210 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a 211 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the 212 * hdr is compressed and the desired compression characteristics of the 213 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the 214 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be 215 * the last buffer in the hdr's b_buf list, however a shared compressed buf can 216 * be anywhere in the hdr's list. 217 * 218 * The diagram below shows an example of an uncompressed ARC hdr that is 219 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is 220 * the last element in the buf list): 221 * 222 * arc_buf_hdr_t 223 * +-----------+ 224 * | | 225 * | | 226 * | | 227 * +-----------+ 228 * l2arc_buf_hdr_t| | 229 * | | 230 * +-----------+ 231 * l1arc_buf_hdr_t| | 232 * | | arc_buf_t (shared) 233 * | b_buf +------------>+---------+ arc_buf_t 234 * | | |b_next +---->+---------+ 235 * | b_pabd +-+ |---------| |b_next +-->NULL 236 * +-----------+ | | | +---------+ 237 * | |b_data +-+ | | 238 * | +---------+ | |b_data +-+ 239 * +->+------+ | +---------+ | 240 * | | | | 241 * uncompressed | | | | 242 * data +------+ | | 243 * ^ +->+------+ | 244 * | uncompressed | | | 245 * | data | | | 246 * | +------+ | 247 * +---------------------------------+ 248 * 249 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd 250 * since the physical block is about to be rewritten. The new data contents 251 * will be contained in the arc_buf_t. As the I/O pipeline performs the write, 252 * it may compress the data before writing it to disk. The ARC will be called 253 * with the transformed data and will memcpy the transformed on-disk block into 254 * a newly allocated b_pabd. Writes are always done into buffers which have 255 * either been loaned (and hence are new and don't have other readers) or 256 * buffers which have been released (and hence have their own hdr, if there 257 * were originally other readers of the buf's original hdr). This ensures that 258 * the ARC only needs to update a single buf and its hdr after a write occurs. 259 * 260 * When the L2ARC is in use, it will also take advantage of the b_pabd. The 261 * L2ARC will always write the contents of b_pabd to the L2ARC. This means 262 * that when compressed ARC is enabled that the L2ARC blocks are identical 263 * to the on-disk block in the main data pool. This provides a significant 264 * advantage since the ARC can leverage the bp's checksum when reading from the 265 * L2ARC to determine if the contents are valid. However, if the compressed 266 * ARC is disabled, then the L2ARC's block must be transformed to look 267 * like the physical block in the main data pool before comparing the 268 * checksum and determining its validity. 269 * 270 * The L1ARC has a slightly different system for storing encrypted data. 271 * Raw (encrypted + possibly compressed) data has a few subtle differences from 272 * data that is just compressed. The biggest difference is that it is not 273 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded. 274 * The other difference is that encryption cannot be treated as a suggestion. 275 * If a caller would prefer compressed data, but they actually wind up with 276 * uncompressed data the worst thing that could happen is there might be a 277 * performance hit. If the caller requests encrypted data, however, we must be 278 * sure they actually get it or else secret information could be leaked. Raw 279 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore, 280 * may have both an encrypted version and a decrypted version of its data at 281 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is 282 * copied out of this header. To avoid complications with b_pabd, raw buffers 283 * cannot be shared. 284 */ 285 286 #include <sys/spa.h> 287 #include <sys/zio.h> 288 #include <sys/spa_impl.h> 289 #include <sys/zio_compress.h> 290 #include <sys/zio_checksum.h> 291 #include <sys/zfs_context.h> 292 #include <sys/arc.h> 293 #include <sys/zfs_refcount.h> 294 #include <sys/vdev.h> 295 #include <sys/vdev_impl.h> 296 #include <sys/dsl_pool.h> 297 #include <sys/multilist.h> 298 #include <sys/abd.h> 299 #include <sys/zil.h> 300 #include <sys/fm/fs/zfs.h> 301 #include <sys/callb.h> 302 #include <sys/kstat.h> 303 #include <sys/zthr.h> 304 #include <zfs_fletcher.h> 305 #include <sys/arc_impl.h> 306 #include <sys/trace_zfs.h> 307 #include <sys/aggsum.h> 308 #include <sys/wmsum.h> 309 #include <cityhash.h> 310 #include <sys/vdev_trim.h> 311 #include <sys/zfs_racct.h> 312 #include <sys/zstd/zstd.h> 313 314 #ifndef _KERNEL 315 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 316 boolean_t arc_watch = B_FALSE; 317 #endif 318 319 /* 320 * This thread's job is to keep enough free memory in the system, by 321 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves 322 * arc_available_memory(). 323 */ 324 static zthr_t *arc_reap_zthr; 325 326 /* 327 * This thread's job is to keep arc_size under arc_c, by calling 328 * arc_evict(), which improves arc_is_overflowing(). 329 */ 330 static zthr_t *arc_evict_zthr; 331 static arc_buf_hdr_t **arc_state_evict_markers; 332 static int arc_state_evict_marker_count; 333 334 static kmutex_t arc_evict_lock; 335 static boolean_t arc_evict_needed = B_FALSE; 336 337 /* 338 * Count of bytes evicted since boot. 339 */ 340 static uint64_t arc_evict_count; 341 342 /* 343 * List of arc_evict_waiter_t's, representing threads waiting for the 344 * arc_evict_count to reach specific values. 345 */ 346 static list_t arc_evict_waiters; 347 348 /* 349 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of 350 * the requested amount of data to be evicted. For example, by default for 351 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation. 352 * Since this is above 100%, it ensures that progress is made towards getting 353 * arc_size under arc_c. Since this is finite, it ensures that allocations 354 * can still happen, even during the potentially long time that arc_size is 355 * more than arc_c. 356 */ 357 static int zfs_arc_eviction_pct = 200; 358 359 /* 360 * The number of headers to evict in arc_evict_state_impl() before 361 * dropping the sublist lock and evicting from another sublist. A lower 362 * value means we're more likely to evict the "correct" header (i.e. the 363 * oldest header in the arc state), but comes with higher overhead 364 * (i.e. more invocations of arc_evict_state_impl()). 365 */ 366 static int zfs_arc_evict_batch_limit = 10; 367 368 /* number of seconds before growing cache again */ 369 int arc_grow_retry = 5; 370 371 /* 372 * Minimum time between calls to arc_kmem_reap_soon(). 373 */ 374 static const int arc_kmem_cache_reap_retry_ms = 1000; 375 376 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */ 377 static int zfs_arc_overflow_shift = 8; 378 379 /* shift of arc_c for calculating both min and max arc_p */ 380 static int arc_p_min_shift = 4; 381 382 /* log2(fraction of arc to reclaim) */ 383 int arc_shrink_shift = 7; 384 385 /* percent of pagecache to reclaim arc to */ 386 #ifdef _KERNEL 387 uint_t zfs_arc_pc_percent = 0; 388 #endif 389 390 /* 391 * log2(fraction of ARC which must be free to allow growing). 392 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 393 * when reading a new block into the ARC, we will evict an equal-sized block 394 * from the ARC. 395 * 396 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 397 * we will still not allow it to grow. 398 */ 399 int arc_no_grow_shift = 5; 400 401 402 /* 403 * minimum lifespan of a prefetch block in clock ticks 404 * (initialized in arc_init()) 405 */ 406 static int arc_min_prefetch_ms; 407 static int arc_min_prescient_prefetch_ms; 408 409 /* 410 * If this percent of memory is free, don't throttle. 411 */ 412 int arc_lotsfree_percent = 10; 413 414 /* 415 * The arc has filled available memory and has now warmed up. 416 */ 417 boolean_t arc_warm; 418 419 /* 420 * These tunables are for performance analysis. 421 */ 422 unsigned long zfs_arc_max = 0; 423 unsigned long zfs_arc_min = 0; 424 unsigned long zfs_arc_meta_limit = 0; 425 unsigned long zfs_arc_meta_min = 0; 426 static unsigned long zfs_arc_dnode_limit = 0; 427 static unsigned long zfs_arc_dnode_reduce_percent = 10; 428 static int zfs_arc_grow_retry = 0; 429 static int zfs_arc_shrink_shift = 0; 430 static int zfs_arc_p_min_shift = 0; 431 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 432 433 /* 434 * ARC dirty data constraints for arc_tempreserve_space() throttle: 435 * * total dirty data limit 436 * * anon block dirty limit 437 * * each pool's anon allowance 438 */ 439 static const unsigned long zfs_arc_dirty_limit_percent = 50; 440 static const unsigned long zfs_arc_anon_limit_percent = 25; 441 static const unsigned long zfs_arc_pool_dirty_percent = 20; 442 443 /* 444 * Enable or disable compressed arc buffers. 445 */ 446 int zfs_compressed_arc_enabled = B_TRUE; 447 448 /* 449 * ARC will evict meta buffers that exceed arc_meta_limit. This 450 * tunable make arc_meta_limit adjustable for different workloads. 451 */ 452 static unsigned long zfs_arc_meta_limit_percent = 75; 453 454 /* 455 * Percentage that can be consumed by dnodes of ARC meta buffers. 456 */ 457 static unsigned long zfs_arc_dnode_limit_percent = 10; 458 459 /* 460 * These tunables are Linux-specific 461 */ 462 static unsigned long zfs_arc_sys_free = 0; 463 static int zfs_arc_min_prefetch_ms = 0; 464 static int zfs_arc_min_prescient_prefetch_ms = 0; 465 static int zfs_arc_p_dampener_disable = 1; 466 static int zfs_arc_meta_prune = 10000; 467 static int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED; 468 static int zfs_arc_meta_adjust_restarts = 4096; 469 static int zfs_arc_lotsfree_percent = 10; 470 471 /* 472 * Number of arc_prune threads 473 */ 474 static int zfs_arc_prune_task_threads = 1; 475 476 /* The 6 states: */ 477 arc_state_t ARC_anon; 478 arc_state_t ARC_mru; 479 arc_state_t ARC_mru_ghost; 480 arc_state_t ARC_mfu; 481 arc_state_t ARC_mfu_ghost; 482 arc_state_t ARC_l2c_only; 483 484 arc_stats_t arc_stats = { 485 { "hits", KSTAT_DATA_UINT64 }, 486 { "misses", KSTAT_DATA_UINT64 }, 487 { "demand_data_hits", KSTAT_DATA_UINT64 }, 488 { "demand_data_misses", KSTAT_DATA_UINT64 }, 489 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 490 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 491 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 492 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 493 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 494 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 495 { "mru_hits", KSTAT_DATA_UINT64 }, 496 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 497 { "mfu_hits", KSTAT_DATA_UINT64 }, 498 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 499 { "deleted", KSTAT_DATA_UINT64 }, 500 { "mutex_miss", KSTAT_DATA_UINT64 }, 501 { "access_skip", KSTAT_DATA_UINT64 }, 502 { "evict_skip", KSTAT_DATA_UINT64 }, 503 { "evict_not_enough", KSTAT_DATA_UINT64 }, 504 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 505 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 506 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64 }, 507 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64 }, 508 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 509 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 510 { "hash_elements", KSTAT_DATA_UINT64 }, 511 { "hash_elements_max", KSTAT_DATA_UINT64 }, 512 { "hash_collisions", KSTAT_DATA_UINT64 }, 513 { "hash_chains", KSTAT_DATA_UINT64 }, 514 { "hash_chain_max", KSTAT_DATA_UINT64 }, 515 { "p", KSTAT_DATA_UINT64 }, 516 { "c", KSTAT_DATA_UINT64 }, 517 { "c_min", KSTAT_DATA_UINT64 }, 518 { "c_max", KSTAT_DATA_UINT64 }, 519 { "size", KSTAT_DATA_UINT64 }, 520 { "compressed_size", KSTAT_DATA_UINT64 }, 521 { "uncompressed_size", KSTAT_DATA_UINT64 }, 522 { "overhead_size", KSTAT_DATA_UINT64 }, 523 { "hdr_size", KSTAT_DATA_UINT64 }, 524 { "data_size", KSTAT_DATA_UINT64 }, 525 { "metadata_size", KSTAT_DATA_UINT64 }, 526 { "dbuf_size", KSTAT_DATA_UINT64 }, 527 { "dnode_size", KSTAT_DATA_UINT64 }, 528 { "bonus_size", KSTAT_DATA_UINT64 }, 529 #if defined(COMPAT_FREEBSD11) 530 { "other_size", KSTAT_DATA_UINT64 }, 531 #endif 532 { "anon_size", KSTAT_DATA_UINT64 }, 533 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 534 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 535 { "mru_size", KSTAT_DATA_UINT64 }, 536 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 537 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 538 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 539 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 540 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 541 { "mfu_size", KSTAT_DATA_UINT64 }, 542 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 543 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 544 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 545 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 546 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 547 { "l2_hits", KSTAT_DATA_UINT64 }, 548 { "l2_misses", KSTAT_DATA_UINT64 }, 549 { "l2_prefetch_asize", KSTAT_DATA_UINT64 }, 550 { "l2_mru_asize", KSTAT_DATA_UINT64 }, 551 { "l2_mfu_asize", KSTAT_DATA_UINT64 }, 552 { "l2_bufc_data_asize", KSTAT_DATA_UINT64 }, 553 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64 }, 554 { "l2_feeds", KSTAT_DATA_UINT64 }, 555 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 556 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 557 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 558 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 559 { "l2_writes_done", KSTAT_DATA_UINT64 }, 560 { "l2_writes_error", KSTAT_DATA_UINT64 }, 561 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 562 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 563 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 564 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 565 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 566 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 567 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 568 { "l2_io_error", KSTAT_DATA_UINT64 }, 569 { "l2_size", KSTAT_DATA_UINT64 }, 570 { "l2_asize", KSTAT_DATA_UINT64 }, 571 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 572 { "l2_log_blk_writes", KSTAT_DATA_UINT64 }, 573 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 }, 574 { "l2_log_blk_asize", KSTAT_DATA_UINT64 }, 575 { "l2_log_blk_count", KSTAT_DATA_UINT64 }, 576 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 }, 577 { "l2_rebuild_success", KSTAT_DATA_UINT64 }, 578 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 }, 579 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 }, 580 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 }, 581 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 }, 582 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 }, 583 { "l2_rebuild_size", KSTAT_DATA_UINT64 }, 584 { "l2_rebuild_asize", KSTAT_DATA_UINT64 }, 585 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 }, 586 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 }, 587 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 }, 588 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 589 { "memory_direct_count", KSTAT_DATA_UINT64 }, 590 { "memory_indirect_count", KSTAT_DATA_UINT64 }, 591 { "memory_all_bytes", KSTAT_DATA_UINT64 }, 592 { "memory_free_bytes", KSTAT_DATA_UINT64 }, 593 { "memory_available_bytes", KSTAT_DATA_INT64 }, 594 { "arc_no_grow", KSTAT_DATA_UINT64 }, 595 { "arc_tempreserve", KSTAT_DATA_UINT64 }, 596 { "arc_loaned_bytes", KSTAT_DATA_UINT64 }, 597 { "arc_prune", KSTAT_DATA_UINT64 }, 598 { "arc_meta_used", KSTAT_DATA_UINT64 }, 599 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 600 { "arc_dnode_limit", KSTAT_DATA_UINT64 }, 601 { "arc_meta_max", KSTAT_DATA_UINT64 }, 602 { "arc_meta_min", KSTAT_DATA_UINT64 }, 603 { "async_upgrade_sync", KSTAT_DATA_UINT64 }, 604 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 }, 605 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 }, 606 { "arc_need_free", KSTAT_DATA_UINT64 }, 607 { "arc_sys_free", KSTAT_DATA_UINT64 }, 608 { "arc_raw_size", KSTAT_DATA_UINT64 }, 609 { "cached_only_in_progress", KSTAT_DATA_UINT64 }, 610 { "abd_chunk_waste_size", KSTAT_DATA_UINT64 }, 611 }; 612 613 arc_sums_t arc_sums; 614 615 #define ARCSTAT_MAX(stat, val) { \ 616 uint64_t m; \ 617 while ((val) > (m = arc_stats.stat.value.ui64) && \ 618 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 619 continue; \ 620 } 621 622 /* 623 * We define a macro to allow ARC hits/misses to be easily broken down by 624 * two separate conditions, giving a total of four different subtypes for 625 * each of hits and misses (so eight statistics total). 626 */ 627 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 628 if (cond1) { \ 629 if (cond2) { \ 630 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 631 } else { \ 632 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 633 } \ 634 } else { \ 635 if (cond2) { \ 636 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 637 } else { \ 638 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 639 } \ 640 } 641 642 /* 643 * This macro allows us to use kstats as floating averages. Each time we 644 * update this kstat, we first factor it and the update value by 645 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall 646 * average. This macro assumes that integer loads and stores are atomic, but 647 * is not safe for multiple writers updating the kstat in parallel (only the 648 * last writer's update will remain). 649 */ 650 #define ARCSTAT_F_AVG_FACTOR 3 651 #define ARCSTAT_F_AVG(stat, value) \ 652 do { \ 653 uint64_t x = ARCSTAT(stat); \ 654 x = x - x / ARCSTAT_F_AVG_FACTOR + \ 655 (value) / ARCSTAT_F_AVG_FACTOR; \ 656 ARCSTAT(stat) = x; \ 657 } while (0) 658 659 static kstat_t *arc_ksp; 660 661 /* 662 * There are several ARC variables that are critical to export as kstats -- 663 * but we don't want to have to grovel around in the kstat whenever we wish to 664 * manipulate them. For these variables, we therefore define them to be in 665 * terms of the statistic variable. This assures that we are not introducing 666 * the possibility of inconsistency by having shadow copies of the variables, 667 * while still allowing the code to be readable. 668 */ 669 #define arc_tempreserve ARCSTAT(arcstat_tempreserve) 670 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes) 671 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 672 /* max size for dnodes */ 673 #define arc_dnode_size_limit ARCSTAT(arcstat_dnode_limit) 674 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */ 675 #define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */ 676 677 hrtime_t arc_growtime; 678 list_t arc_prune_list; 679 kmutex_t arc_prune_mtx; 680 taskq_t *arc_prune_taskq; 681 682 #define GHOST_STATE(state) \ 683 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 684 (state) == arc_l2c_only) 685 686 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 687 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 688 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 689 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 690 #define HDR_PRESCIENT_PREFETCH(hdr) \ 691 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) 692 #define HDR_COMPRESSION_ENABLED(hdr) \ 693 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) 694 695 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 696 #define HDR_L2_READING(hdr) \ 697 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 698 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 699 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 700 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 701 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 702 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED) 703 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH) 704 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) 705 706 #define HDR_ISTYPE_METADATA(hdr) \ 707 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 708 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 709 710 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 711 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 712 #define HDR_HAS_RABD(hdr) \ 713 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \ 714 (hdr)->b_crypt_hdr.b_rabd != NULL) 715 #define HDR_ENCRYPTED(hdr) \ 716 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 717 #define HDR_AUTHENTICATED(hdr) \ 718 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 719 720 /* For storing compression mode in b_flags */ 721 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) 722 723 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ 724 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) 725 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ 726 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); 727 728 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) 729 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED) 730 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED) 731 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED) 732 733 /* 734 * Other sizes 735 */ 736 737 #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 738 #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr)) 739 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 740 741 /* 742 * Hash table routines 743 */ 744 745 #define BUF_LOCKS 2048 746 typedef struct buf_hash_table { 747 uint64_t ht_mask; 748 arc_buf_hdr_t **ht_table; 749 kmutex_t ht_locks[BUF_LOCKS] ____cacheline_aligned; 750 } buf_hash_table_t; 751 752 static buf_hash_table_t buf_hash_table; 753 754 #define BUF_HASH_INDEX(spa, dva, birth) \ 755 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 756 #define BUF_HASH_LOCK(idx) (&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 757 #define HDR_LOCK(hdr) \ 758 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 759 760 uint64_t zfs_crc64_table[256]; 761 762 /* 763 * Level 2 ARC 764 */ 765 766 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 767 #define L2ARC_HEADROOM 2 /* num of writes */ 768 769 /* 770 * If we discover during ARC scan any buffers to be compressed, we boost 771 * our headroom for the next scanning cycle by this percentage multiple. 772 */ 773 #define L2ARC_HEADROOM_BOOST 200 774 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 775 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 776 777 /* 778 * We can feed L2ARC from two states of ARC buffers, mru and mfu, 779 * and each of the state has two types: data and metadata. 780 */ 781 #define L2ARC_FEED_TYPES 4 782 783 /* L2ARC Performance Tunables */ 784 unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */ 785 unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */ 786 unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */ 787 unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 788 unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 789 unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */ 790 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 791 int l2arc_feed_again = B_TRUE; /* turbo warmup */ 792 int l2arc_norw = B_FALSE; /* no reads during writes */ 793 static int l2arc_meta_percent = 33; /* limit on headers size */ 794 795 /* 796 * L2ARC Internals 797 */ 798 static list_t L2ARC_dev_list; /* device list */ 799 static list_t *l2arc_dev_list; /* device list pointer */ 800 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 801 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 802 static list_t L2ARC_free_on_write; /* free after write buf list */ 803 static list_t *l2arc_free_on_write; /* free after write list ptr */ 804 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 805 static uint64_t l2arc_ndev; /* number of devices */ 806 807 typedef struct l2arc_read_callback { 808 arc_buf_hdr_t *l2rcb_hdr; /* read header */ 809 blkptr_t l2rcb_bp; /* original blkptr */ 810 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 811 int l2rcb_flags; /* original flags */ 812 abd_t *l2rcb_abd; /* temporary buffer */ 813 } l2arc_read_callback_t; 814 815 typedef struct l2arc_data_free { 816 /* protected by l2arc_free_on_write_mtx */ 817 abd_t *l2df_abd; 818 size_t l2df_size; 819 arc_buf_contents_t l2df_type; 820 list_node_t l2df_list_node; 821 } l2arc_data_free_t; 822 823 typedef enum arc_fill_flags { 824 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */ 825 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */ 826 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */ 827 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */ 828 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */ 829 } arc_fill_flags_t; 830 831 typedef enum arc_ovf_level { 832 ARC_OVF_NONE, /* ARC within target size. */ 833 ARC_OVF_SOME, /* ARC is slightly overflowed. */ 834 ARC_OVF_SEVERE /* ARC is severely overflowed. */ 835 } arc_ovf_level_t; 836 837 static kmutex_t l2arc_feed_thr_lock; 838 static kcondvar_t l2arc_feed_thr_cv; 839 static uint8_t l2arc_thread_exit; 840 841 static kmutex_t l2arc_rebuild_thr_lock; 842 static kcondvar_t l2arc_rebuild_thr_cv; 843 844 enum arc_hdr_alloc_flags { 845 ARC_HDR_ALLOC_RDATA = 0x1, 846 ARC_HDR_DO_ADAPT = 0x2, 847 ARC_HDR_USE_RESERVE = 0x4, 848 }; 849 850 851 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *, int); 852 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *); 853 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *, int); 854 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *); 855 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *); 856 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag); 857 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t); 858 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int); 859 static void arc_access(arc_buf_hdr_t *, kmutex_t *); 860 static void arc_buf_watch(arc_buf_t *); 861 862 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 863 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 864 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 865 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 866 867 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 868 static void l2arc_read_done(zio_t *); 869 static void l2arc_do_free_on_write(void); 870 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 871 boolean_t state_only); 872 873 #define l2arc_hdr_arcstats_increment(hdr) \ 874 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE) 875 #define l2arc_hdr_arcstats_decrement(hdr) \ 876 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE) 877 #define l2arc_hdr_arcstats_increment_state(hdr) \ 878 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE) 879 #define l2arc_hdr_arcstats_decrement_state(hdr) \ 880 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE) 881 882 /* 883 * l2arc_exclude_special : A zfs module parameter that controls whether buffers 884 * present on special vdevs are eligibile for caching in L2ARC. If 885 * set to 1, exclude dbufs on special vdevs from being cached to 886 * L2ARC. 887 */ 888 int l2arc_exclude_special = 0; 889 890 /* 891 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU 892 * metadata and data are cached from ARC into L2ARC. 893 */ 894 static int l2arc_mfuonly = 0; 895 896 /* 897 * L2ARC TRIM 898 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of 899 * the current write size (l2arc_write_max) we should TRIM if we 900 * have filled the device. It is defined as a percentage of the 901 * write size. If set to 100 we trim twice the space required to 902 * accommodate upcoming writes. A minimum of 64MB will be trimmed. 903 * It also enables TRIM of the whole L2ARC device upon creation or 904 * addition to an existing pool or if the header of the device is 905 * invalid upon importing a pool or onlining a cache device. The 906 * default is 0, which disables TRIM on L2ARC altogether as it can 907 * put significant stress on the underlying storage devices. This 908 * will vary depending of how well the specific device handles 909 * these commands. 910 */ 911 static unsigned long l2arc_trim_ahead = 0; 912 913 /* 914 * Performance tuning of L2ARC persistence: 915 * 916 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding 917 * an L2ARC device (either at pool import or later) will attempt 918 * to rebuild L2ARC buffer contents. 919 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls 920 * whether log blocks are written to the L2ARC device. If the L2ARC 921 * device is less than 1GB, the amount of data l2arc_evict() 922 * evicts is significant compared to the amount of restored L2ARC 923 * data. In this case do not write log blocks in L2ARC in order 924 * not to waste space. 925 */ 926 static int l2arc_rebuild_enabled = B_TRUE; 927 static unsigned long l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024; 928 929 /* L2ARC persistence rebuild control routines. */ 930 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen); 931 static __attribute__((noreturn)) void l2arc_dev_rebuild_thread(void *arg); 932 static int l2arc_rebuild(l2arc_dev_t *dev); 933 934 /* L2ARC persistence read I/O routines. */ 935 static int l2arc_dev_hdr_read(l2arc_dev_t *dev); 936 static int l2arc_log_blk_read(l2arc_dev_t *dev, 937 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp, 938 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 939 zio_t *this_io, zio_t **next_io); 940 static zio_t *l2arc_log_blk_fetch(vdev_t *vd, 941 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb); 942 static void l2arc_log_blk_fetch_abort(zio_t *zio); 943 944 /* L2ARC persistence block restoration routines. */ 945 static void l2arc_log_blk_restore(l2arc_dev_t *dev, 946 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize); 947 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, 948 l2arc_dev_t *dev); 949 950 /* L2ARC persistence write I/O routines. */ 951 static void l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, 952 l2arc_write_callback_t *cb); 953 954 /* L2ARC persistence auxiliary routines. */ 955 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev, 956 const l2arc_log_blkptr_t *lbp); 957 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev, 958 const arc_buf_hdr_t *ab); 959 boolean_t l2arc_range_check_overlap(uint64_t bottom, 960 uint64_t top, uint64_t check); 961 static void l2arc_blk_fetch_done(zio_t *zio); 962 static inline uint64_t 963 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev); 964 965 /* 966 * We use Cityhash for this. It's fast, and has good hash properties without 967 * requiring any large static buffers. 968 */ 969 static uint64_t 970 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 971 { 972 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth)); 973 } 974 975 #define HDR_EMPTY(hdr) \ 976 ((hdr)->b_dva.dva_word[0] == 0 && \ 977 (hdr)->b_dva.dva_word[1] == 0) 978 979 #define HDR_EMPTY_OR_LOCKED(hdr) \ 980 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr))) 981 982 #define HDR_EQUAL(spa, dva, birth, hdr) \ 983 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 984 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 985 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) 986 987 static void 988 buf_discard_identity(arc_buf_hdr_t *hdr) 989 { 990 hdr->b_dva.dva_word[0] = 0; 991 hdr->b_dva.dva_word[1] = 0; 992 hdr->b_birth = 0; 993 } 994 995 static arc_buf_hdr_t * 996 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 997 { 998 const dva_t *dva = BP_IDENTITY(bp); 999 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 1000 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 1001 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1002 arc_buf_hdr_t *hdr; 1003 1004 mutex_enter(hash_lock); 1005 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 1006 hdr = hdr->b_hash_next) { 1007 if (HDR_EQUAL(spa, dva, birth, hdr)) { 1008 *lockp = hash_lock; 1009 return (hdr); 1010 } 1011 } 1012 mutex_exit(hash_lock); 1013 *lockp = NULL; 1014 return (NULL); 1015 } 1016 1017 /* 1018 * Insert an entry into the hash table. If there is already an element 1019 * equal to elem in the hash table, then the already existing element 1020 * will be returned and the new element will not be inserted. 1021 * Otherwise returns NULL. 1022 * If lockp == NULL, the caller is assumed to already hold the hash lock. 1023 */ 1024 static arc_buf_hdr_t * 1025 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 1026 { 1027 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1028 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1029 arc_buf_hdr_t *fhdr; 1030 uint32_t i; 1031 1032 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 1033 ASSERT(hdr->b_birth != 0); 1034 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1035 1036 if (lockp != NULL) { 1037 *lockp = hash_lock; 1038 mutex_enter(hash_lock); 1039 } else { 1040 ASSERT(MUTEX_HELD(hash_lock)); 1041 } 1042 1043 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 1044 fhdr = fhdr->b_hash_next, i++) { 1045 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 1046 return (fhdr); 1047 } 1048 1049 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 1050 buf_hash_table.ht_table[idx] = hdr; 1051 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1052 1053 /* collect some hash table performance data */ 1054 if (i > 0) { 1055 ARCSTAT_BUMP(arcstat_hash_collisions); 1056 if (i == 1) 1057 ARCSTAT_BUMP(arcstat_hash_chains); 1058 1059 ARCSTAT_MAX(arcstat_hash_chain_max, i); 1060 } 1061 uint64_t he = atomic_inc_64_nv( 1062 &arc_stats.arcstat_hash_elements.value.ui64); 1063 ARCSTAT_MAX(arcstat_hash_elements_max, he); 1064 1065 return (NULL); 1066 } 1067 1068 static void 1069 buf_hash_remove(arc_buf_hdr_t *hdr) 1070 { 1071 arc_buf_hdr_t *fhdr, **hdrp; 1072 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1073 1074 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 1075 ASSERT(HDR_IN_HASH_TABLE(hdr)); 1076 1077 hdrp = &buf_hash_table.ht_table[idx]; 1078 while ((fhdr = *hdrp) != hdr) { 1079 ASSERT3P(fhdr, !=, NULL); 1080 hdrp = &fhdr->b_hash_next; 1081 } 1082 *hdrp = hdr->b_hash_next; 1083 hdr->b_hash_next = NULL; 1084 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1085 1086 /* collect some hash table performance data */ 1087 atomic_dec_64(&arc_stats.arcstat_hash_elements.value.ui64); 1088 1089 if (buf_hash_table.ht_table[idx] && 1090 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 1091 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 1092 } 1093 1094 /* 1095 * Global data structures and functions for the buf kmem cache. 1096 */ 1097 1098 static kmem_cache_t *hdr_full_cache; 1099 static kmem_cache_t *hdr_full_crypt_cache; 1100 static kmem_cache_t *hdr_l2only_cache; 1101 static kmem_cache_t *buf_cache; 1102 1103 static void 1104 buf_fini(void) 1105 { 1106 #if defined(_KERNEL) 1107 /* 1108 * Large allocations which do not require contiguous pages 1109 * should be using vmem_free() in the linux kernel\ 1110 */ 1111 vmem_free(buf_hash_table.ht_table, 1112 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1113 #else 1114 kmem_free(buf_hash_table.ht_table, 1115 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1116 #endif 1117 for (int i = 0; i < BUF_LOCKS; i++) 1118 mutex_destroy(BUF_HASH_LOCK(i)); 1119 kmem_cache_destroy(hdr_full_cache); 1120 kmem_cache_destroy(hdr_full_crypt_cache); 1121 kmem_cache_destroy(hdr_l2only_cache); 1122 kmem_cache_destroy(buf_cache); 1123 } 1124 1125 /* 1126 * Constructor callback - called when the cache is empty 1127 * and a new buf is requested. 1128 */ 1129 static int 1130 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1131 { 1132 (void) unused, (void) kmflag; 1133 arc_buf_hdr_t *hdr = vbuf; 1134 1135 memset(hdr, 0, HDR_FULL_SIZE); 1136 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 1137 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL); 1138 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt); 1139 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1140 list_link_init(&hdr->b_l1hdr.b_arc_node); 1141 list_link_init(&hdr->b_l2hdr.b_l2node); 1142 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1143 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1144 1145 return (0); 1146 } 1147 1148 static int 1149 hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag) 1150 { 1151 (void) unused; 1152 arc_buf_hdr_t *hdr = vbuf; 1153 1154 hdr_full_cons(vbuf, unused, kmflag); 1155 memset(&hdr->b_crypt_hdr, 0, sizeof (hdr->b_crypt_hdr)); 1156 arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1157 1158 return (0); 1159 } 1160 1161 static int 1162 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1163 { 1164 (void) unused, (void) kmflag; 1165 arc_buf_hdr_t *hdr = vbuf; 1166 1167 memset(hdr, 0, HDR_L2ONLY_SIZE); 1168 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1169 1170 return (0); 1171 } 1172 1173 static int 1174 buf_cons(void *vbuf, void *unused, int kmflag) 1175 { 1176 (void) unused, (void) kmflag; 1177 arc_buf_t *buf = vbuf; 1178 1179 memset(buf, 0, sizeof (arc_buf_t)); 1180 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 1181 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1182 1183 return (0); 1184 } 1185 1186 /* 1187 * Destructor callback - called when a cached buf is 1188 * no longer required. 1189 */ 1190 static void 1191 hdr_full_dest(void *vbuf, void *unused) 1192 { 1193 (void) unused; 1194 arc_buf_hdr_t *hdr = vbuf; 1195 1196 ASSERT(HDR_EMPTY(hdr)); 1197 cv_destroy(&hdr->b_l1hdr.b_cv); 1198 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1199 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1200 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1201 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1202 } 1203 1204 static void 1205 hdr_full_crypt_dest(void *vbuf, void *unused) 1206 { 1207 (void) vbuf, (void) unused; 1208 1209 hdr_full_dest(vbuf, unused); 1210 arc_space_return(sizeof (((arc_buf_hdr_t *)NULL)->b_crypt_hdr), 1211 ARC_SPACE_HDRS); 1212 } 1213 1214 static void 1215 hdr_l2only_dest(void *vbuf, void *unused) 1216 { 1217 (void) unused; 1218 arc_buf_hdr_t *hdr = vbuf; 1219 1220 ASSERT(HDR_EMPTY(hdr)); 1221 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1222 } 1223 1224 static void 1225 buf_dest(void *vbuf, void *unused) 1226 { 1227 (void) unused; 1228 arc_buf_t *buf = vbuf; 1229 1230 mutex_destroy(&buf->b_evict_lock); 1231 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1232 } 1233 1234 static void 1235 buf_init(void) 1236 { 1237 uint64_t *ct = NULL; 1238 uint64_t hsize = 1ULL << 12; 1239 int i, j; 1240 1241 /* 1242 * The hash table is big enough to fill all of physical memory 1243 * with an average block size of zfs_arc_average_blocksize (default 8K). 1244 * By default, the table will take up 1245 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1246 */ 1247 while (hsize * zfs_arc_average_blocksize < arc_all_memory()) 1248 hsize <<= 1; 1249 retry: 1250 buf_hash_table.ht_mask = hsize - 1; 1251 #if defined(_KERNEL) 1252 /* 1253 * Large allocations which do not require contiguous pages 1254 * should be using vmem_alloc() in the linux kernel 1255 */ 1256 buf_hash_table.ht_table = 1257 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP); 1258 #else 1259 buf_hash_table.ht_table = 1260 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1261 #endif 1262 if (buf_hash_table.ht_table == NULL) { 1263 ASSERT(hsize > (1ULL << 8)); 1264 hsize >>= 1; 1265 goto retry; 1266 } 1267 1268 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1269 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, 0); 1270 hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt", 1271 HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest, 1272 NULL, NULL, NULL, 0); 1273 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1274 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL, 1275 NULL, NULL, 0); 1276 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1277 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1278 1279 for (i = 0; i < 256; i++) 1280 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1281 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1282 1283 for (i = 0; i < BUF_LOCKS; i++) 1284 mutex_init(BUF_HASH_LOCK(i), NULL, MUTEX_DEFAULT, NULL); 1285 } 1286 1287 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1288 1289 /* 1290 * This is the size that the buf occupies in memory. If the buf is compressed, 1291 * it will correspond to the compressed size. You should use this method of 1292 * getting the buf size unless you explicitly need the logical size. 1293 */ 1294 uint64_t 1295 arc_buf_size(arc_buf_t *buf) 1296 { 1297 return (ARC_BUF_COMPRESSED(buf) ? 1298 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr)); 1299 } 1300 1301 uint64_t 1302 arc_buf_lsize(arc_buf_t *buf) 1303 { 1304 return (HDR_GET_LSIZE(buf->b_hdr)); 1305 } 1306 1307 /* 1308 * This function will return B_TRUE if the buffer is encrypted in memory. 1309 * This buffer can be decrypted by calling arc_untransform(). 1310 */ 1311 boolean_t 1312 arc_is_encrypted(arc_buf_t *buf) 1313 { 1314 return (ARC_BUF_ENCRYPTED(buf) != 0); 1315 } 1316 1317 /* 1318 * Returns B_TRUE if the buffer represents data that has not had its MAC 1319 * verified yet. 1320 */ 1321 boolean_t 1322 arc_is_unauthenticated(arc_buf_t *buf) 1323 { 1324 return (HDR_NOAUTH(buf->b_hdr) != 0); 1325 } 1326 1327 void 1328 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt, 1329 uint8_t *iv, uint8_t *mac) 1330 { 1331 arc_buf_hdr_t *hdr = buf->b_hdr; 1332 1333 ASSERT(HDR_PROTECTED(hdr)); 1334 1335 memcpy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 1336 memcpy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 1337 memcpy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 1338 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 1339 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 1340 } 1341 1342 /* 1343 * Indicates how this buffer is compressed in memory. If it is not compressed 1344 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with 1345 * arc_untransform() as long as it is also unencrypted. 1346 */ 1347 enum zio_compress 1348 arc_get_compression(arc_buf_t *buf) 1349 { 1350 return (ARC_BUF_COMPRESSED(buf) ? 1351 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF); 1352 } 1353 1354 /* 1355 * Return the compression algorithm used to store this data in the ARC. If ARC 1356 * compression is enabled or this is an encrypted block, this will be the same 1357 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF. 1358 */ 1359 static inline enum zio_compress 1360 arc_hdr_get_compress(arc_buf_hdr_t *hdr) 1361 { 1362 return (HDR_COMPRESSION_ENABLED(hdr) ? 1363 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF); 1364 } 1365 1366 uint8_t 1367 arc_get_complevel(arc_buf_t *buf) 1368 { 1369 return (buf->b_hdr->b_complevel); 1370 } 1371 1372 static inline boolean_t 1373 arc_buf_is_shared(arc_buf_t *buf) 1374 { 1375 boolean_t shared = (buf->b_data != NULL && 1376 buf->b_hdr->b_l1hdr.b_pabd != NULL && 1377 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) && 1378 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd)); 1379 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); 1380 IMPLY(shared, ARC_BUF_SHARED(buf)); 1381 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf)); 1382 1383 /* 1384 * It would be nice to assert arc_can_share() too, but the "hdr isn't 1385 * already being shared" requirement prevents us from doing that. 1386 */ 1387 1388 return (shared); 1389 } 1390 1391 /* 1392 * Free the checksum associated with this header. If there is no checksum, this 1393 * is a no-op. 1394 */ 1395 static inline void 1396 arc_cksum_free(arc_buf_hdr_t *hdr) 1397 { 1398 ASSERT(HDR_HAS_L1HDR(hdr)); 1399 1400 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1401 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1402 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); 1403 hdr->b_l1hdr.b_freeze_cksum = NULL; 1404 } 1405 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1406 } 1407 1408 /* 1409 * Return true iff at least one of the bufs on hdr is not compressed. 1410 * Encrypted buffers count as compressed. 1411 */ 1412 static boolean_t 1413 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr) 1414 { 1415 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr)); 1416 1417 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) { 1418 if (!ARC_BUF_COMPRESSED(b)) { 1419 return (B_TRUE); 1420 } 1421 } 1422 return (B_FALSE); 1423 } 1424 1425 1426 /* 1427 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data 1428 * matches the checksum that is stored in the hdr. If there is no checksum, 1429 * or if the buf is compressed, this is a no-op. 1430 */ 1431 static void 1432 arc_cksum_verify(arc_buf_t *buf) 1433 { 1434 arc_buf_hdr_t *hdr = buf->b_hdr; 1435 zio_cksum_t zc; 1436 1437 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1438 return; 1439 1440 if (ARC_BUF_COMPRESSED(buf)) 1441 return; 1442 1443 ASSERT(HDR_HAS_L1HDR(hdr)); 1444 1445 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1446 1447 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { 1448 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1449 return; 1450 } 1451 1452 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc); 1453 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) 1454 panic("buffer modified while frozen!"); 1455 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1456 } 1457 1458 /* 1459 * This function makes the assumption that data stored in the L2ARC 1460 * will be transformed exactly as it is in the main pool. Because of 1461 * this we can verify the checksum against the reading process's bp. 1462 */ 1463 static boolean_t 1464 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) 1465 { 1466 ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); 1467 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); 1468 1469 /* 1470 * Block pointers always store the checksum for the logical data. 1471 * If the block pointer has the gang bit set, then the checksum 1472 * it represents is for the reconstituted data and not for an 1473 * individual gang member. The zio pipeline, however, must be able to 1474 * determine the checksum of each of the gang constituents so it 1475 * treats the checksum comparison differently than what we need 1476 * for l2arc blocks. This prevents us from using the 1477 * zio_checksum_error() interface directly. Instead we must call the 1478 * zio_checksum_error_impl() so that we can ensure the checksum is 1479 * generated using the correct checksum algorithm and accounts for the 1480 * logical I/O size and not just a gang fragment. 1481 */ 1482 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp, 1483 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size, 1484 zio->io_offset, NULL) == 0); 1485 } 1486 1487 /* 1488 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a 1489 * checksum and attaches it to the buf's hdr so that we can ensure that the buf 1490 * isn't modified later on. If buf is compressed or there is already a checksum 1491 * on the hdr, this is a no-op (we only checksum uncompressed bufs). 1492 */ 1493 static void 1494 arc_cksum_compute(arc_buf_t *buf) 1495 { 1496 arc_buf_hdr_t *hdr = buf->b_hdr; 1497 1498 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1499 return; 1500 1501 ASSERT(HDR_HAS_L1HDR(hdr)); 1502 1503 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1504 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) { 1505 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1506 return; 1507 } 1508 1509 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 1510 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1511 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), 1512 KM_SLEEP); 1513 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, 1514 hdr->b_l1hdr.b_freeze_cksum); 1515 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1516 arc_buf_watch(buf); 1517 } 1518 1519 #ifndef _KERNEL 1520 void 1521 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused) 1522 { 1523 (void) sig, (void) unused; 1524 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr); 1525 } 1526 #endif 1527 1528 static void 1529 arc_buf_unwatch(arc_buf_t *buf) 1530 { 1531 #ifndef _KERNEL 1532 if (arc_watch) { 1533 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1534 PROT_READ | PROT_WRITE)); 1535 } 1536 #else 1537 (void) buf; 1538 #endif 1539 } 1540 1541 static void 1542 arc_buf_watch(arc_buf_t *buf) 1543 { 1544 #ifndef _KERNEL 1545 if (arc_watch) 1546 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1547 PROT_READ)); 1548 #else 1549 (void) buf; 1550 #endif 1551 } 1552 1553 static arc_buf_contents_t 1554 arc_buf_type(arc_buf_hdr_t *hdr) 1555 { 1556 arc_buf_contents_t type; 1557 if (HDR_ISTYPE_METADATA(hdr)) { 1558 type = ARC_BUFC_METADATA; 1559 } else { 1560 type = ARC_BUFC_DATA; 1561 } 1562 VERIFY3U(hdr->b_type, ==, type); 1563 return (type); 1564 } 1565 1566 boolean_t 1567 arc_is_metadata(arc_buf_t *buf) 1568 { 1569 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0); 1570 } 1571 1572 static uint32_t 1573 arc_bufc_to_flags(arc_buf_contents_t type) 1574 { 1575 switch (type) { 1576 case ARC_BUFC_DATA: 1577 /* metadata field is 0 if buffer contains normal data */ 1578 return (0); 1579 case ARC_BUFC_METADATA: 1580 return (ARC_FLAG_BUFC_METADATA); 1581 default: 1582 break; 1583 } 1584 panic("undefined ARC buffer type!"); 1585 return ((uint32_t)-1); 1586 } 1587 1588 void 1589 arc_buf_thaw(arc_buf_t *buf) 1590 { 1591 arc_buf_hdr_t *hdr = buf->b_hdr; 1592 1593 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 1594 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1595 1596 arc_cksum_verify(buf); 1597 1598 /* 1599 * Compressed buffers do not manipulate the b_freeze_cksum. 1600 */ 1601 if (ARC_BUF_COMPRESSED(buf)) 1602 return; 1603 1604 ASSERT(HDR_HAS_L1HDR(hdr)); 1605 arc_cksum_free(hdr); 1606 arc_buf_unwatch(buf); 1607 } 1608 1609 void 1610 arc_buf_freeze(arc_buf_t *buf) 1611 { 1612 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1613 return; 1614 1615 if (ARC_BUF_COMPRESSED(buf)) 1616 return; 1617 1618 ASSERT(HDR_HAS_L1HDR(buf->b_hdr)); 1619 arc_cksum_compute(buf); 1620 } 1621 1622 /* 1623 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, 1624 * the following functions should be used to ensure that the flags are 1625 * updated in a thread-safe way. When manipulating the flags either 1626 * the hash_lock must be held or the hdr must be undiscoverable. This 1627 * ensures that we're not racing with any other threads when updating 1628 * the flags. 1629 */ 1630 static inline void 1631 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1632 { 1633 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1634 hdr->b_flags |= flags; 1635 } 1636 1637 static inline void 1638 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1639 { 1640 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1641 hdr->b_flags &= ~flags; 1642 } 1643 1644 /* 1645 * Setting the compression bits in the arc_buf_hdr_t's b_flags is 1646 * done in a special way since we have to clear and set bits 1647 * at the same time. Consumers that wish to set the compression bits 1648 * must use this function to ensure that the flags are updated in 1649 * thread-safe manner. 1650 */ 1651 static void 1652 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) 1653 { 1654 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1655 1656 /* 1657 * Holes and embedded blocks will always have a psize = 0 so 1658 * we ignore the compression of the blkptr and set the 1659 * want to uncompress them. Mark them as uncompressed. 1660 */ 1661 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { 1662 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1663 ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); 1664 } else { 1665 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1666 ASSERT(HDR_COMPRESSION_ENABLED(hdr)); 1667 } 1668 1669 HDR_SET_COMPRESS(hdr, cmp); 1670 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); 1671 } 1672 1673 /* 1674 * Looks for another buf on the same hdr which has the data decompressed, copies 1675 * from it, and returns true. If no such buf exists, returns false. 1676 */ 1677 static boolean_t 1678 arc_buf_try_copy_decompressed_data(arc_buf_t *buf) 1679 { 1680 arc_buf_hdr_t *hdr = buf->b_hdr; 1681 boolean_t copied = B_FALSE; 1682 1683 ASSERT(HDR_HAS_L1HDR(hdr)); 1684 ASSERT3P(buf->b_data, !=, NULL); 1685 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1686 1687 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL; 1688 from = from->b_next) { 1689 /* can't use our own data buffer */ 1690 if (from == buf) { 1691 continue; 1692 } 1693 1694 if (!ARC_BUF_COMPRESSED(from)) { 1695 memcpy(buf->b_data, from->b_data, arc_buf_size(buf)); 1696 copied = B_TRUE; 1697 break; 1698 } 1699 } 1700 1701 /* 1702 * There were no decompressed bufs, so there should not be a 1703 * checksum on the hdr either. 1704 */ 1705 if (zfs_flags & ZFS_DEBUG_MODIFY) 1706 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL); 1707 1708 return (copied); 1709 } 1710 1711 /* 1712 * Allocates an ARC buf header that's in an evicted & L2-cached state. 1713 * This is used during l2arc reconstruction to make empty ARC buffers 1714 * which circumvent the regular disk->arc->l2arc path and instead come 1715 * into being in the reverse order, i.e. l2arc->arc. 1716 */ 1717 static arc_buf_hdr_t * 1718 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev, 1719 dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth, 1720 enum zio_compress compress, uint8_t complevel, boolean_t protected, 1721 boolean_t prefetch, arc_state_type_t arcs_state) 1722 { 1723 arc_buf_hdr_t *hdr; 1724 1725 ASSERT(size != 0); 1726 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP); 1727 hdr->b_birth = birth; 1728 hdr->b_type = type; 1729 hdr->b_flags = 0; 1730 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR); 1731 HDR_SET_LSIZE(hdr, size); 1732 HDR_SET_PSIZE(hdr, psize); 1733 arc_hdr_set_compress(hdr, compress); 1734 hdr->b_complevel = complevel; 1735 if (protected) 1736 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 1737 if (prefetch) 1738 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 1739 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa); 1740 1741 hdr->b_dva = dva; 1742 1743 hdr->b_l2hdr.b_dev = dev; 1744 hdr->b_l2hdr.b_daddr = daddr; 1745 hdr->b_l2hdr.b_arcs_state = arcs_state; 1746 1747 return (hdr); 1748 } 1749 1750 /* 1751 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t. 1752 */ 1753 static uint64_t 1754 arc_hdr_size(arc_buf_hdr_t *hdr) 1755 { 1756 uint64_t size; 1757 1758 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 1759 HDR_GET_PSIZE(hdr) > 0) { 1760 size = HDR_GET_PSIZE(hdr); 1761 } else { 1762 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); 1763 size = HDR_GET_LSIZE(hdr); 1764 } 1765 return (size); 1766 } 1767 1768 static int 1769 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj) 1770 { 1771 int ret; 1772 uint64_t csize; 1773 uint64_t lsize = HDR_GET_LSIZE(hdr); 1774 uint64_t psize = HDR_GET_PSIZE(hdr); 1775 void *tmpbuf = NULL; 1776 abd_t *abd = hdr->b_l1hdr.b_pabd; 1777 1778 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1779 ASSERT(HDR_AUTHENTICATED(hdr)); 1780 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1781 1782 /* 1783 * The MAC is calculated on the compressed data that is stored on disk. 1784 * However, if compressed arc is disabled we will only have the 1785 * decompressed data available to us now. Compress it into a temporary 1786 * abd so we can verify the MAC. The performance overhead of this will 1787 * be relatively low, since most objects in an encrypted objset will 1788 * be encrypted (instead of authenticated) anyway. 1789 */ 1790 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1791 !HDR_COMPRESSION_ENABLED(hdr)) { 1792 tmpbuf = zio_buf_alloc(lsize); 1793 abd = abd_get_from_buf(tmpbuf, lsize); 1794 abd_take_ownership_of_buf(abd, B_TRUE); 1795 csize = zio_compress_data(HDR_GET_COMPRESS(hdr), 1796 hdr->b_l1hdr.b_pabd, tmpbuf, lsize, hdr->b_complevel); 1797 ASSERT3U(csize, <=, psize); 1798 abd_zero_off(abd, csize, psize - csize); 1799 } 1800 1801 /* 1802 * Authentication is best effort. We authenticate whenever the key is 1803 * available. If we succeed we clear ARC_FLAG_NOAUTH. 1804 */ 1805 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) { 1806 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1807 ASSERT3U(lsize, ==, psize); 1808 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd, 1809 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1810 } else { 1811 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize, 1812 hdr->b_crypt_hdr.b_mac); 1813 } 1814 1815 if (ret == 0) 1816 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH); 1817 else if (ret != ENOENT) 1818 goto error; 1819 1820 if (tmpbuf != NULL) 1821 abd_free(abd); 1822 1823 return (0); 1824 1825 error: 1826 if (tmpbuf != NULL) 1827 abd_free(abd); 1828 1829 return (ret); 1830 } 1831 1832 /* 1833 * This function will take a header that only has raw encrypted data in 1834 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in 1835 * b_l1hdr.b_pabd. If designated in the header flags, this function will 1836 * also decompress the data. 1837 */ 1838 static int 1839 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb) 1840 { 1841 int ret; 1842 abd_t *cabd = NULL; 1843 void *tmp = NULL; 1844 boolean_t no_crypt = B_FALSE; 1845 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1846 1847 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1848 ASSERT(HDR_ENCRYPTED(hdr)); 1849 1850 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 1851 1852 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot, 1853 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv, 1854 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd, 1855 hdr->b_crypt_hdr.b_rabd, &no_crypt); 1856 if (ret != 0) 1857 goto error; 1858 1859 if (no_crypt) { 1860 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd, 1861 HDR_GET_PSIZE(hdr)); 1862 } 1863 1864 /* 1865 * If this header has disabled arc compression but the b_pabd is 1866 * compressed after decrypting it, we need to decompress the newly 1867 * decrypted data. 1868 */ 1869 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1870 !HDR_COMPRESSION_ENABLED(hdr)) { 1871 /* 1872 * We want to make sure that we are correctly honoring the 1873 * zfs_abd_scatter_enabled setting, so we allocate an abd here 1874 * and then loan a buffer from it, rather than allocating a 1875 * linear buffer and wrapping it in an abd later. 1876 */ 1877 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 1878 ARC_HDR_DO_ADAPT); 1879 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 1880 1881 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 1882 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 1883 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 1884 if (ret != 0) { 1885 abd_return_buf(cabd, tmp, arc_hdr_size(hdr)); 1886 goto error; 1887 } 1888 1889 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 1890 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 1891 arc_hdr_size(hdr), hdr); 1892 hdr->b_l1hdr.b_pabd = cabd; 1893 } 1894 1895 return (0); 1896 1897 error: 1898 arc_hdr_free_abd(hdr, B_FALSE); 1899 if (cabd != NULL) 1900 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr); 1901 1902 return (ret); 1903 } 1904 1905 /* 1906 * This function is called during arc_buf_fill() to prepare the header's 1907 * abd plaintext pointer for use. This involves authenticated protected 1908 * data and decrypting encrypted data into the plaintext abd. 1909 */ 1910 static int 1911 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa, 1912 const zbookmark_phys_t *zb, boolean_t noauth) 1913 { 1914 int ret; 1915 1916 ASSERT(HDR_PROTECTED(hdr)); 1917 1918 if (hash_lock != NULL) 1919 mutex_enter(hash_lock); 1920 1921 if (HDR_NOAUTH(hdr) && !noauth) { 1922 /* 1923 * The caller requested authenticated data but our data has 1924 * not been authenticated yet. Verify the MAC now if we can. 1925 */ 1926 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset); 1927 if (ret != 0) 1928 goto error; 1929 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) { 1930 /* 1931 * If we only have the encrypted version of the data, but the 1932 * unencrypted version was requested we take this opportunity 1933 * to store the decrypted version in the header for future use. 1934 */ 1935 ret = arc_hdr_decrypt(hdr, spa, zb); 1936 if (ret != 0) 1937 goto error; 1938 } 1939 1940 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1941 1942 if (hash_lock != NULL) 1943 mutex_exit(hash_lock); 1944 1945 return (0); 1946 1947 error: 1948 if (hash_lock != NULL) 1949 mutex_exit(hash_lock); 1950 1951 return (ret); 1952 } 1953 1954 /* 1955 * This function is used by the dbuf code to decrypt bonus buffers in place. 1956 * The dbuf code itself doesn't have any locking for decrypting a shared dnode 1957 * block, so we use the hash lock here to protect against concurrent calls to 1958 * arc_buf_fill(). 1959 */ 1960 static void 1961 arc_buf_untransform_in_place(arc_buf_t *buf) 1962 { 1963 arc_buf_hdr_t *hdr = buf->b_hdr; 1964 1965 ASSERT(HDR_ENCRYPTED(hdr)); 1966 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 1967 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1968 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1969 1970 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data, 1971 arc_buf_size(buf)); 1972 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 1973 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 1974 hdr->b_crypt_hdr.b_ebufcnt -= 1; 1975 } 1976 1977 /* 1978 * Given a buf that has a data buffer attached to it, this function will 1979 * efficiently fill the buf with data of the specified compression setting from 1980 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr 1981 * are already sharing a data buf, no copy is performed. 1982 * 1983 * If the buf is marked as compressed but uncompressed data was requested, this 1984 * will allocate a new data buffer for the buf, remove that flag, and fill the 1985 * buf with uncompressed data. You can't request a compressed buf on a hdr with 1986 * uncompressed data, and (since we haven't added support for it yet) if you 1987 * want compressed data your buf must already be marked as compressed and have 1988 * the correct-sized data buffer. 1989 */ 1990 static int 1991 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 1992 arc_fill_flags_t flags) 1993 { 1994 int error = 0; 1995 arc_buf_hdr_t *hdr = buf->b_hdr; 1996 boolean_t hdr_compressed = 1997 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 1998 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0; 1999 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0; 2000 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; 2001 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr); 2002 2003 ASSERT3P(buf->b_data, !=, NULL); 2004 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf)); 2005 IMPLY(compressed, ARC_BUF_COMPRESSED(buf)); 2006 IMPLY(encrypted, HDR_ENCRYPTED(hdr)); 2007 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf)); 2008 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf)); 2009 IMPLY(encrypted, !ARC_BUF_SHARED(buf)); 2010 2011 /* 2012 * If the caller wanted encrypted data we just need to copy it from 2013 * b_rabd and potentially byteswap it. We won't be able to do any 2014 * further transforms on it. 2015 */ 2016 if (encrypted) { 2017 ASSERT(HDR_HAS_RABD(hdr)); 2018 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd, 2019 HDR_GET_PSIZE(hdr)); 2020 goto byteswap; 2021 } 2022 2023 /* 2024 * Adjust encrypted and authenticated headers to accommodate 2025 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are 2026 * allowed to fail decryption due to keys not being loaded 2027 * without being marked as an IO error. 2028 */ 2029 if (HDR_PROTECTED(hdr)) { 2030 error = arc_fill_hdr_crypt(hdr, hash_lock, spa, 2031 zb, !!(flags & ARC_FILL_NOAUTH)); 2032 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) { 2033 return (error); 2034 } else if (error != 0) { 2035 if (hash_lock != NULL) 2036 mutex_enter(hash_lock); 2037 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2038 if (hash_lock != NULL) 2039 mutex_exit(hash_lock); 2040 return (error); 2041 } 2042 } 2043 2044 /* 2045 * There is a special case here for dnode blocks which are 2046 * decrypting their bonus buffers. These blocks may request to 2047 * be decrypted in-place. This is necessary because there may 2048 * be many dnodes pointing into this buffer and there is 2049 * currently no method to synchronize replacing the backing 2050 * b_data buffer and updating all of the pointers. Here we use 2051 * the hash lock to ensure there are no races. If the need 2052 * arises for other types to be decrypted in-place, they must 2053 * add handling here as well. 2054 */ 2055 if ((flags & ARC_FILL_IN_PLACE) != 0) { 2056 ASSERT(!hdr_compressed); 2057 ASSERT(!compressed); 2058 ASSERT(!encrypted); 2059 2060 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) { 2061 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 2062 2063 if (hash_lock != NULL) 2064 mutex_enter(hash_lock); 2065 arc_buf_untransform_in_place(buf); 2066 if (hash_lock != NULL) 2067 mutex_exit(hash_lock); 2068 2069 /* Compute the hdr's checksum if necessary */ 2070 arc_cksum_compute(buf); 2071 } 2072 2073 return (0); 2074 } 2075 2076 if (hdr_compressed == compressed) { 2077 if (!arc_buf_is_shared(buf)) { 2078 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd, 2079 arc_buf_size(buf)); 2080 } 2081 } else { 2082 ASSERT(hdr_compressed); 2083 ASSERT(!compressed); 2084 2085 /* 2086 * If the buf is sharing its data with the hdr, unlink it and 2087 * allocate a new data buffer for the buf. 2088 */ 2089 if (arc_buf_is_shared(buf)) { 2090 ASSERT(ARC_BUF_COMPRESSED(buf)); 2091 2092 /* We need to give the buf its own b_data */ 2093 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 2094 buf->b_data = 2095 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2096 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2097 2098 /* Previously overhead was 0; just add new overhead */ 2099 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 2100 } else if (ARC_BUF_COMPRESSED(buf)) { 2101 /* We need to reallocate the buf's b_data */ 2102 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr), 2103 buf); 2104 buf->b_data = 2105 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2106 2107 /* We increased the size of b_data; update overhead */ 2108 ARCSTAT_INCR(arcstat_overhead_size, 2109 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr)); 2110 } 2111 2112 /* 2113 * Regardless of the buf's previous compression settings, it 2114 * should not be compressed at the end of this function. 2115 */ 2116 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 2117 2118 /* 2119 * Try copying the data from another buf which already has a 2120 * decompressed version. If that's not possible, it's time to 2121 * bite the bullet and decompress the data from the hdr. 2122 */ 2123 if (arc_buf_try_copy_decompressed_data(buf)) { 2124 /* Skip byteswapping and checksumming (already done) */ 2125 return (0); 2126 } else { 2127 error = zio_decompress_data(HDR_GET_COMPRESS(hdr), 2128 hdr->b_l1hdr.b_pabd, buf->b_data, 2129 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr), 2130 &hdr->b_complevel); 2131 2132 /* 2133 * Absent hardware errors or software bugs, this should 2134 * be impossible, but log it anyway so we can debug it. 2135 */ 2136 if (error != 0) { 2137 zfs_dbgmsg( 2138 "hdr %px, compress %d, psize %d, lsize %d", 2139 hdr, arc_hdr_get_compress(hdr), 2140 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 2141 if (hash_lock != NULL) 2142 mutex_enter(hash_lock); 2143 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2144 if (hash_lock != NULL) 2145 mutex_exit(hash_lock); 2146 return (SET_ERROR(EIO)); 2147 } 2148 } 2149 } 2150 2151 byteswap: 2152 /* Byteswap the buf's data if necessary */ 2153 if (bswap != DMU_BSWAP_NUMFUNCS) { 2154 ASSERT(!HDR_SHARED_DATA(hdr)); 2155 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); 2156 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); 2157 } 2158 2159 /* Compute the hdr's checksum if necessary */ 2160 arc_cksum_compute(buf); 2161 2162 return (0); 2163 } 2164 2165 /* 2166 * If this function is being called to decrypt an encrypted buffer or verify an 2167 * authenticated one, the key must be loaded and a mapping must be made 2168 * available in the keystore via spa_keystore_create_mapping() or one of its 2169 * callers. 2170 */ 2171 int 2172 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 2173 boolean_t in_place) 2174 { 2175 int ret; 2176 arc_fill_flags_t flags = 0; 2177 2178 if (in_place) 2179 flags |= ARC_FILL_IN_PLACE; 2180 2181 ret = arc_buf_fill(buf, spa, zb, flags); 2182 if (ret == ECKSUM) { 2183 /* 2184 * Convert authentication and decryption errors to EIO 2185 * (and generate an ereport) before leaving the ARC. 2186 */ 2187 ret = SET_ERROR(EIO); 2188 spa_log_error(spa, zb); 2189 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 2190 spa, NULL, zb, NULL, 0); 2191 } 2192 2193 return (ret); 2194 } 2195 2196 /* 2197 * Increment the amount of evictable space in the arc_state_t's refcount. 2198 * We account for the space used by the hdr and the arc buf individually 2199 * so that we can add and remove them from the refcount individually. 2200 */ 2201 static void 2202 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) 2203 { 2204 arc_buf_contents_t type = arc_buf_type(hdr); 2205 2206 ASSERT(HDR_HAS_L1HDR(hdr)); 2207 2208 if (GHOST_STATE(state)) { 2209 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2210 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2211 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2212 ASSERT(!HDR_HAS_RABD(hdr)); 2213 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2214 HDR_GET_LSIZE(hdr), hdr); 2215 return; 2216 } 2217 2218 if (hdr->b_l1hdr.b_pabd != NULL) { 2219 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2220 arc_hdr_size(hdr), hdr); 2221 } 2222 if (HDR_HAS_RABD(hdr)) { 2223 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2224 HDR_GET_PSIZE(hdr), hdr); 2225 } 2226 2227 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2228 buf = buf->b_next) { 2229 if (arc_buf_is_shared(buf)) 2230 continue; 2231 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2232 arc_buf_size(buf), buf); 2233 } 2234 } 2235 2236 /* 2237 * Decrement the amount of evictable space in the arc_state_t's refcount. 2238 * We account for the space used by the hdr and the arc buf individually 2239 * so that we can add and remove them from the refcount individually. 2240 */ 2241 static void 2242 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) 2243 { 2244 arc_buf_contents_t type = arc_buf_type(hdr); 2245 2246 ASSERT(HDR_HAS_L1HDR(hdr)); 2247 2248 if (GHOST_STATE(state)) { 2249 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2250 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2251 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2252 ASSERT(!HDR_HAS_RABD(hdr)); 2253 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2254 HDR_GET_LSIZE(hdr), hdr); 2255 return; 2256 } 2257 2258 if (hdr->b_l1hdr.b_pabd != NULL) { 2259 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2260 arc_hdr_size(hdr), hdr); 2261 } 2262 if (HDR_HAS_RABD(hdr)) { 2263 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2264 HDR_GET_PSIZE(hdr), hdr); 2265 } 2266 2267 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2268 buf = buf->b_next) { 2269 if (arc_buf_is_shared(buf)) 2270 continue; 2271 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2272 arc_buf_size(buf), buf); 2273 } 2274 } 2275 2276 /* 2277 * Add a reference to this hdr indicating that someone is actively 2278 * referencing that memory. When the refcount transitions from 0 to 1, 2279 * we remove it from the respective arc_state_t list to indicate that 2280 * it is not evictable. 2281 */ 2282 static void 2283 add_reference(arc_buf_hdr_t *hdr, void *tag) 2284 { 2285 arc_state_t *state; 2286 2287 ASSERT(HDR_HAS_L1HDR(hdr)); 2288 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) { 2289 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 2290 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2291 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2292 } 2293 2294 state = hdr->b_l1hdr.b_state; 2295 2296 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 2297 (state != arc_anon)) { 2298 /* We don't use the L2-only state list. */ 2299 if (state != arc_l2c_only) { 2300 multilist_remove(&state->arcs_list[arc_buf_type(hdr)], 2301 hdr); 2302 arc_evictable_space_decrement(hdr, state); 2303 } 2304 /* remove the prefetch flag if we get a reference */ 2305 if (HDR_HAS_L2HDR(hdr)) 2306 l2arc_hdr_arcstats_decrement_state(hdr); 2307 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 2308 if (HDR_HAS_L2HDR(hdr)) 2309 l2arc_hdr_arcstats_increment_state(hdr); 2310 } 2311 } 2312 2313 /* 2314 * Remove a reference from this hdr. When the reference transitions from 2315 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's 2316 * list making it eligible for eviction. 2317 */ 2318 static int 2319 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 2320 { 2321 int cnt; 2322 arc_state_t *state = hdr->b_l1hdr.b_state; 2323 2324 ASSERT(HDR_HAS_L1HDR(hdr)); 2325 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 2326 ASSERT(!GHOST_STATE(state)); 2327 2328 /* 2329 * arc_l2c_only counts as a ghost state so we don't need to explicitly 2330 * check to prevent usage of the arc_l2c_only list. 2331 */ 2332 if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) && 2333 (state != arc_anon)) { 2334 multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr); 2335 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 2336 arc_evictable_space_increment(hdr, state); 2337 } 2338 return (cnt); 2339 } 2340 2341 /* 2342 * Returns detailed information about a specific arc buffer. When the 2343 * state_index argument is set the function will calculate the arc header 2344 * list position for its arc state. Since this requires a linear traversal 2345 * callers are strongly encourage not to do this. However, it can be helpful 2346 * for targeted analysis so the functionality is provided. 2347 */ 2348 void 2349 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index) 2350 { 2351 (void) state_index; 2352 arc_buf_hdr_t *hdr = ab->b_hdr; 2353 l1arc_buf_hdr_t *l1hdr = NULL; 2354 l2arc_buf_hdr_t *l2hdr = NULL; 2355 arc_state_t *state = NULL; 2356 2357 memset(abi, 0, sizeof (arc_buf_info_t)); 2358 2359 if (hdr == NULL) 2360 return; 2361 2362 abi->abi_flags = hdr->b_flags; 2363 2364 if (HDR_HAS_L1HDR(hdr)) { 2365 l1hdr = &hdr->b_l1hdr; 2366 state = l1hdr->b_state; 2367 } 2368 if (HDR_HAS_L2HDR(hdr)) 2369 l2hdr = &hdr->b_l2hdr; 2370 2371 if (l1hdr) { 2372 abi->abi_bufcnt = l1hdr->b_bufcnt; 2373 abi->abi_access = l1hdr->b_arc_access; 2374 abi->abi_mru_hits = l1hdr->b_mru_hits; 2375 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits; 2376 abi->abi_mfu_hits = l1hdr->b_mfu_hits; 2377 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits; 2378 abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt); 2379 } 2380 2381 if (l2hdr) { 2382 abi->abi_l2arc_dattr = l2hdr->b_daddr; 2383 abi->abi_l2arc_hits = l2hdr->b_hits; 2384 } 2385 2386 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON; 2387 abi->abi_state_contents = arc_buf_type(hdr); 2388 abi->abi_size = arc_hdr_size(hdr); 2389 } 2390 2391 /* 2392 * Move the supplied buffer to the indicated state. The hash lock 2393 * for the buffer must be held by the caller. 2394 */ 2395 static void 2396 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr, 2397 kmutex_t *hash_lock) 2398 { 2399 arc_state_t *old_state; 2400 int64_t refcnt; 2401 uint32_t bufcnt; 2402 boolean_t update_old, update_new; 2403 arc_buf_contents_t buftype = arc_buf_type(hdr); 2404 2405 /* 2406 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 2407 * in arc_read() when bringing a buffer out of the L2ARC. However, the 2408 * L1 hdr doesn't always exist when we change state to arc_anon before 2409 * destroying a header, in which case reallocating to add the L1 hdr is 2410 * pointless. 2411 */ 2412 if (HDR_HAS_L1HDR(hdr)) { 2413 old_state = hdr->b_l1hdr.b_state; 2414 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt); 2415 bufcnt = hdr->b_l1hdr.b_bufcnt; 2416 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL || 2417 HDR_HAS_RABD(hdr)); 2418 } else { 2419 old_state = arc_l2c_only; 2420 refcnt = 0; 2421 bufcnt = 0; 2422 update_old = B_FALSE; 2423 } 2424 update_new = update_old; 2425 2426 ASSERT(MUTEX_HELD(hash_lock)); 2427 ASSERT3P(new_state, !=, old_state); 2428 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0); 2429 ASSERT(old_state != arc_anon || bufcnt <= 1); 2430 2431 /* 2432 * If this buffer is evictable, transfer it from the 2433 * old state list to the new state list. 2434 */ 2435 if (refcnt == 0) { 2436 if (old_state != arc_anon && old_state != arc_l2c_only) { 2437 ASSERT(HDR_HAS_L1HDR(hdr)); 2438 multilist_remove(&old_state->arcs_list[buftype], hdr); 2439 2440 if (GHOST_STATE(old_state)) { 2441 ASSERT0(bufcnt); 2442 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2443 update_old = B_TRUE; 2444 } 2445 arc_evictable_space_decrement(hdr, old_state); 2446 } 2447 if (new_state != arc_anon && new_state != arc_l2c_only) { 2448 /* 2449 * An L1 header always exists here, since if we're 2450 * moving to some L1-cached state (i.e. not l2c_only or 2451 * anonymous), we realloc the header to add an L1hdr 2452 * beforehand. 2453 */ 2454 ASSERT(HDR_HAS_L1HDR(hdr)); 2455 multilist_insert(&new_state->arcs_list[buftype], hdr); 2456 2457 if (GHOST_STATE(new_state)) { 2458 ASSERT0(bufcnt); 2459 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2460 update_new = B_TRUE; 2461 } 2462 arc_evictable_space_increment(hdr, new_state); 2463 } 2464 } 2465 2466 ASSERT(!HDR_EMPTY(hdr)); 2467 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 2468 buf_hash_remove(hdr); 2469 2470 /* adjust state sizes (ignore arc_l2c_only) */ 2471 2472 if (update_new && new_state != arc_l2c_only) { 2473 ASSERT(HDR_HAS_L1HDR(hdr)); 2474 if (GHOST_STATE(new_state)) { 2475 ASSERT0(bufcnt); 2476 2477 /* 2478 * When moving a header to a ghost state, we first 2479 * remove all arc buffers. Thus, we'll have a 2480 * bufcnt of zero, and no arc buffer to use for 2481 * the reference. As a result, we use the arc 2482 * header pointer for the reference. 2483 */ 2484 (void) zfs_refcount_add_many(&new_state->arcs_size, 2485 HDR_GET_LSIZE(hdr), hdr); 2486 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2487 ASSERT(!HDR_HAS_RABD(hdr)); 2488 } else { 2489 uint32_t buffers = 0; 2490 2491 /* 2492 * Each individual buffer holds a unique reference, 2493 * thus we must remove each of these references one 2494 * at a time. 2495 */ 2496 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2497 buf = buf->b_next) { 2498 ASSERT3U(bufcnt, !=, 0); 2499 buffers++; 2500 2501 /* 2502 * When the arc_buf_t is sharing the data 2503 * block with the hdr, the owner of the 2504 * reference belongs to the hdr. Only 2505 * add to the refcount if the arc_buf_t is 2506 * not shared. 2507 */ 2508 if (arc_buf_is_shared(buf)) 2509 continue; 2510 2511 (void) zfs_refcount_add_many( 2512 &new_state->arcs_size, 2513 arc_buf_size(buf), buf); 2514 } 2515 ASSERT3U(bufcnt, ==, buffers); 2516 2517 if (hdr->b_l1hdr.b_pabd != NULL) { 2518 (void) zfs_refcount_add_many( 2519 &new_state->arcs_size, 2520 arc_hdr_size(hdr), hdr); 2521 } 2522 2523 if (HDR_HAS_RABD(hdr)) { 2524 (void) zfs_refcount_add_many( 2525 &new_state->arcs_size, 2526 HDR_GET_PSIZE(hdr), hdr); 2527 } 2528 } 2529 } 2530 2531 if (update_old && old_state != arc_l2c_only) { 2532 ASSERT(HDR_HAS_L1HDR(hdr)); 2533 if (GHOST_STATE(old_state)) { 2534 ASSERT0(bufcnt); 2535 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2536 ASSERT(!HDR_HAS_RABD(hdr)); 2537 2538 /* 2539 * When moving a header off of a ghost state, 2540 * the header will not contain any arc buffers. 2541 * We use the arc header pointer for the reference 2542 * which is exactly what we did when we put the 2543 * header on the ghost state. 2544 */ 2545 2546 (void) zfs_refcount_remove_many(&old_state->arcs_size, 2547 HDR_GET_LSIZE(hdr), hdr); 2548 } else { 2549 uint32_t buffers = 0; 2550 2551 /* 2552 * Each individual buffer holds a unique reference, 2553 * thus we must remove each of these references one 2554 * at a time. 2555 */ 2556 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2557 buf = buf->b_next) { 2558 ASSERT3U(bufcnt, !=, 0); 2559 buffers++; 2560 2561 /* 2562 * When the arc_buf_t is sharing the data 2563 * block with the hdr, the owner of the 2564 * reference belongs to the hdr. Only 2565 * add to the refcount if the arc_buf_t is 2566 * not shared. 2567 */ 2568 if (arc_buf_is_shared(buf)) 2569 continue; 2570 2571 (void) zfs_refcount_remove_many( 2572 &old_state->arcs_size, arc_buf_size(buf), 2573 buf); 2574 } 2575 ASSERT3U(bufcnt, ==, buffers); 2576 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 2577 HDR_HAS_RABD(hdr)); 2578 2579 if (hdr->b_l1hdr.b_pabd != NULL) { 2580 (void) zfs_refcount_remove_many( 2581 &old_state->arcs_size, arc_hdr_size(hdr), 2582 hdr); 2583 } 2584 2585 if (HDR_HAS_RABD(hdr)) { 2586 (void) zfs_refcount_remove_many( 2587 &old_state->arcs_size, HDR_GET_PSIZE(hdr), 2588 hdr); 2589 } 2590 } 2591 } 2592 2593 if (HDR_HAS_L1HDR(hdr)) { 2594 hdr->b_l1hdr.b_state = new_state; 2595 2596 if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) { 2597 l2arc_hdr_arcstats_decrement_state(hdr); 2598 hdr->b_l2hdr.b_arcs_state = new_state->arcs_state; 2599 l2arc_hdr_arcstats_increment_state(hdr); 2600 } 2601 } 2602 } 2603 2604 void 2605 arc_space_consume(uint64_t space, arc_space_type_t type) 2606 { 2607 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2608 2609 switch (type) { 2610 default: 2611 break; 2612 case ARC_SPACE_DATA: 2613 ARCSTAT_INCR(arcstat_data_size, space); 2614 break; 2615 case ARC_SPACE_META: 2616 ARCSTAT_INCR(arcstat_metadata_size, space); 2617 break; 2618 case ARC_SPACE_BONUS: 2619 ARCSTAT_INCR(arcstat_bonus_size, space); 2620 break; 2621 case ARC_SPACE_DNODE: 2622 aggsum_add(&arc_sums.arcstat_dnode_size, space); 2623 break; 2624 case ARC_SPACE_DBUF: 2625 ARCSTAT_INCR(arcstat_dbuf_size, space); 2626 break; 2627 case ARC_SPACE_HDRS: 2628 ARCSTAT_INCR(arcstat_hdr_size, space); 2629 break; 2630 case ARC_SPACE_L2HDRS: 2631 aggsum_add(&arc_sums.arcstat_l2_hdr_size, space); 2632 break; 2633 case ARC_SPACE_ABD_CHUNK_WASTE: 2634 /* 2635 * Note: this includes space wasted by all scatter ABD's, not 2636 * just those allocated by the ARC. But the vast majority of 2637 * scatter ABD's come from the ARC, because other users are 2638 * very short-lived. 2639 */ 2640 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, space); 2641 break; 2642 } 2643 2644 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) 2645 aggsum_add(&arc_sums.arcstat_meta_used, space); 2646 2647 aggsum_add(&arc_sums.arcstat_size, space); 2648 } 2649 2650 void 2651 arc_space_return(uint64_t space, arc_space_type_t type) 2652 { 2653 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2654 2655 switch (type) { 2656 default: 2657 break; 2658 case ARC_SPACE_DATA: 2659 ARCSTAT_INCR(arcstat_data_size, -space); 2660 break; 2661 case ARC_SPACE_META: 2662 ARCSTAT_INCR(arcstat_metadata_size, -space); 2663 break; 2664 case ARC_SPACE_BONUS: 2665 ARCSTAT_INCR(arcstat_bonus_size, -space); 2666 break; 2667 case ARC_SPACE_DNODE: 2668 aggsum_add(&arc_sums.arcstat_dnode_size, -space); 2669 break; 2670 case ARC_SPACE_DBUF: 2671 ARCSTAT_INCR(arcstat_dbuf_size, -space); 2672 break; 2673 case ARC_SPACE_HDRS: 2674 ARCSTAT_INCR(arcstat_hdr_size, -space); 2675 break; 2676 case ARC_SPACE_L2HDRS: 2677 aggsum_add(&arc_sums.arcstat_l2_hdr_size, -space); 2678 break; 2679 case ARC_SPACE_ABD_CHUNK_WASTE: 2680 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, -space); 2681 break; 2682 } 2683 2684 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) { 2685 ASSERT(aggsum_compare(&arc_sums.arcstat_meta_used, 2686 space) >= 0); 2687 ARCSTAT_MAX(arcstat_meta_max, 2688 aggsum_upper_bound(&arc_sums.arcstat_meta_used)); 2689 aggsum_add(&arc_sums.arcstat_meta_used, -space); 2690 } 2691 2692 ASSERT(aggsum_compare(&arc_sums.arcstat_size, space) >= 0); 2693 aggsum_add(&arc_sums.arcstat_size, -space); 2694 } 2695 2696 /* 2697 * Given a hdr and a buf, returns whether that buf can share its b_data buffer 2698 * with the hdr's b_pabd. 2699 */ 2700 static boolean_t 2701 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2702 { 2703 /* 2704 * The criteria for sharing a hdr's data are: 2705 * 1. the buffer is not encrypted 2706 * 2. the hdr's compression matches the buf's compression 2707 * 3. the hdr doesn't need to be byteswapped 2708 * 4. the hdr isn't already being shared 2709 * 5. the buf is either compressed or it is the last buf in the hdr list 2710 * 2711 * Criterion #5 maintains the invariant that shared uncompressed 2712 * bufs must be the final buf in the hdr's b_buf list. Reading this, you 2713 * might ask, "if a compressed buf is allocated first, won't that be the 2714 * last thing in the list?", but in that case it's impossible to create 2715 * a shared uncompressed buf anyway (because the hdr must be compressed 2716 * to have the compressed buf). You might also think that #3 is 2717 * sufficient to make this guarantee, however it's possible 2718 * (specifically in the rare L2ARC write race mentioned in 2719 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that 2720 * is shareable, but wasn't at the time of its allocation. Rather than 2721 * allow a new shared uncompressed buf to be created and then shuffle 2722 * the list around to make it the last element, this simply disallows 2723 * sharing if the new buf isn't the first to be added. 2724 */ 2725 ASSERT3P(buf->b_hdr, ==, hdr); 2726 boolean_t hdr_compressed = 2727 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF; 2728 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0; 2729 return (!ARC_BUF_ENCRYPTED(buf) && 2730 buf_compressed == hdr_compressed && 2731 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && 2732 !HDR_SHARED_DATA(hdr) && 2733 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf))); 2734 } 2735 2736 /* 2737 * Allocate a buf for this hdr. If you care about the data that's in the hdr, 2738 * or if you want a compressed buffer, pass those flags in. Returns 0 if the 2739 * copy was made successfully, or an error code otherwise. 2740 */ 2741 static int 2742 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb, 2743 void *tag, boolean_t encrypted, boolean_t compressed, boolean_t noauth, 2744 boolean_t fill, arc_buf_t **ret) 2745 { 2746 arc_buf_t *buf; 2747 arc_fill_flags_t flags = ARC_FILL_LOCKED; 2748 2749 ASSERT(HDR_HAS_L1HDR(hdr)); 2750 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2751 VERIFY(hdr->b_type == ARC_BUFC_DATA || 2752 hdr->b_type == ARC_BUFC_METADATA); 2753 ASSERT3P(ret, !=, NULL); 2754 ASSERT3P(*ret, ==, NULL); 2755 IMPLY(encrypted, compressed); 2756 2757 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2758 buf->b_hdr = hdr; 2759 buf->b_data = NULL; 2760 buf->b_next = hdr->b_l1hdr.b_buf; 2761 buf->b_flags = 0; 2762 2763 add_reference(hdr, tag); 2764 2765 /* 2766 * We're about to change the hdr's b_flags. We must either 2767 * hold the hash_lock or be undiscoverable. 2768 */ 2769 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2770 2771 /* 2772 * Only honor requests for compressed bufs if the hdr is actually 2773 * compressed. This must be overridden if the buffer is encrypted since 2774 * encrypted buffers cannot be decompressed. 2775 */ 2776 if (encrypted) { 2777 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2778 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED; 2779 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED; 2780 } else if (compressed && 2781 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 2782 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2783 flags |= ARC_FILL_COMPRESSED; 2784 } 2785 2786 if (noauth) { 2787 ASSERT0(encrypted); 2788 flags |= ARC_FILL_NOAUTH; 2789 } 2790 2791 /* 2792 * If the hdr's data can be shared then we share the data buffer and 2793 * set the appropriate bit in the hdr's b_flags to indicate the hdr is 2794 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new 2795 * buffer to store the buf's data. 2796 * 2797 * There are two additional restrictions here because we're sharing 2798 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be 2799 * actively involved in an L2ARC write, because if this buf is used by 2800 * an arc_write() then the hdr's data buffer will be released when the 2801 * write completes, even though the L2ARC write might still be using it. 2802 * Second, the hdr's ABD must be linear so that the buf's user doesn't 2803 * need to be ABD-aware. It must be allocated via 2804 * zio_[data_]buf_alloc(), not as a page, because we need to be able 2805 * to abd_release_ownership_of_buf(), which isn't allowed on "linear 2806 * page" buffers because the ABD code needs to handle freeing them 2807 * specially. 2808 */ 2809 boolean_t can_share = arc_can_share(hdr, buf) && 2810 !HDR_L2_WRITING(hdr) && 2811 hdr->b_l1hdr.b_pabd != NULL && 2812 abd_is_linear(hdr->b_l1hdr.b_pabd) && 2813 !abd_is_linear_page(hdr->b_l1hdr.b_pabd); 2814 2815 /* Set up b_data and sharing */ 2816 if (can_share) { 2817 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd); 2818 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2819 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2820 } else { 2821 buf->b_data = 2822 arc_get_data_buf(hdr, arc_buf_size(buf), buf); 2823 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2824 } 2825 VERIFY3P(buf->b_data, !=, NULL); 2826 2827 hdr->b_l1hdr.b_buf = buf; 2828 hdr->b_l1hdr.b_bufcnt += 1; 2829 if (encrypted) 2830 hdr->b_crypt_hdr.b_ebufcnt += 1; 2831 2832 /* 2833 * If the user wants the data from the hdr, we need to either copy or 2834 * decompress the data. 2835 */ 2836 if (fill) { 2837 ASSERT3P(zb, !=, NULL); 2838 return (arc_buf_fill(buf, spa, zb, flags)); 2839 } 2840 2841 return (0); 2842 } 2843 2844 static char *arc_onloan_tag = "onloan"; 2845 2846 static inline void 2847 arc_loaned_bytes_update(int64_t delta) 2848 { 2849 atomic_add_64(&arc_loaned_bytes, delta); 2850 2851 /* assert that it did not wrap around */ 2852 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 2853 } 2854 2855 /* 2856 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 2857 * flight data by arc_tempreserve_space() until they are "returned". Loaned 2858 * buffers must be returned to the arc before they can be used by the DMU or 2859 * freed. 2860 */ 2861 arc_buf_t * 2862 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size) 2863 { 2864 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag, 2865 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size); 2866 2867 arc_loaned_bytes_update(arc_buf_size(buf)); 2868 2869 return (buf); 2870 } 2871 2872 arc_buf_t * 2873 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize, 2874 enum zio_compress compression_type, uint8_t complevel) 2875 { 2876 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag, 2877 psize, lsize, compression_type, complevel); 2878 2879 arc_loaned_bytes_update(arc_buf_size(buf)); 2880 2881 return (buf); 2882 } 2883 2884 arc_buf_t * 2885 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder, 2886 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 2887 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 2888 enum zio_compress compression_type, uint8_t complevel) 2889 { 2890 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj, 2891 byteorder, salt, iv, mac, ot, psize, lsize, compression_type, 2892 complevel); 2893 2894 atomic_add_64(&arc_loaned_bytes, psize); 2895 return (buf); 2896 } 2897 2898 2899 /* 2900 * Return a loaned arc buffer to the arc. 2901 */ 2902 void 2903 arc_return_buf(arc_buf_t *buf, void *tag) 2904 { 2905 arc_buf_hdr_t *hdr = buf->b_hdr; 2906 2907 ASSERT3P(buf->b_data, !=, NULL); 2908 ASSERT(HDR_HAS_L1HDR(hdr)); 2909 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 2910 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2911 2912 arc_loaned_bytes_update(-arc_buf_size(buf)); 2913 } 2914 2915 /* Detach an arc_buf from a dbuf (tag) */ 2916 void 2917 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 2918 { 2919 arc_buf_hdr_t *hdr = buf->b_hdr; 2920 2921 ASSERT3P(buf->b_data, !=, NULL); 2922 ASSERT(HDR_HAS_L1HDR(hdr)); 2923 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2924 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 2925 2926 arc_loaned_bytes_update(arc_buf_size(buf)); 2927 } 2928 2929 static void 2930 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type) 2931 { 2932 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); 2933 2934 df->l2df_abd = abd; 2935 df->l2df_size = size; 2936 df->l2df_type = type; 2937 mutex_enter(&l2arc_free_on_write_mtx); 2938 list_insert_head(l2arc_free_on_write, df); 2939 mutex_exit(&l2arc_free_on_write_mtx); 2940 } 2941 2942 static void 2943 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata) 2944 { 2945 arc_state_t *state = hdr->b_l1hdr.b_state; 2946 arc_buf_contents_t type = arc_buf_type(hdr); 2947 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 2948 2949 /* protected by hash lock, if in the hash table */ 2950 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2951 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2952 ASSERT(state != arc_anon && state != arc_l2c_only); 2953 2954 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2955 size, hdr); 2956 } 2957 (void) zfs_refcount_remove_many(&state->arcs_size, size, hdr); 2958 if (type == ARC_BUFC_METADATA) { 2959 arc_space_return(size, ARC_SPACE_META); 2960 } else { 2961 ASSERT(type == ARC_BUFC_DATA); 2962 arc_space_return(size, ARC_SPACE_DATA); 2963 } 2964 2965 if (free_rdata) { 2966 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type); 2967 } else { 2968 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type); 2969 } 2970 } 2971 2972 /* 2973 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the 2974 * data buffer, we transfer the refcount ownership to the hdr and update 2975 * the appropriate kstats. 2976 */ 2977 static void 2978 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2979 { 2980 ASSERT(arc_can_share(hdr, buf)); 2981 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2982 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 2983 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2984 2985 /* 2986 * Start sharing the data buffer. We transfer the 2987 * refcount ownership to the hdr since it always owns 2988 * the refcount whenever an arc_buf_t is shared. 2989 */ 2990 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 2991 arc_hdr_size(hdr), buf, hdr); 2992 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf)); 2993 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd, 2994 HDR_ISTYPE_METADATA(hdr)); 2995 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2996 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2997 2998 /* 2999 * Since we've transferred ownership to the hdr we need 3000 * to increment its compressed and uncompressed kstats and 3001 * decrement the overhead size. 3002 */ 3003 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 3004 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3005 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf)); 3006 } 3007 3008 static void 3009 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 3010 { 3011 ASSERT(arc_buf_is_shared(buf)); 3012 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3013 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3014 3015 /* 3016 * We are no longer sharing this buffer so we need 3017 * to transfer its ownership to the rightful owner. 3018 */ 3019 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 3020 arc_hdr_size(hdr), hdr, buf); 3021 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3022 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd); 3023 abd_free(hdr->b_l1hdr.b_pabd); 3024 hdr->b_l1hdr.b_pabd = NULL; 3025 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 3026 3027 /* 3028 * Since the buffer is no longer shared between 3029 * the arc buf and the hdr, count it as overhead. 3030 */ 3031 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 3032 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3033 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 3034 } 3035 3036 /* 3037 * Remove an arc_buf_t from the hdr's buf list and return the last 3038 * arc_buf_t on the list. If no buffers remain on the list then return 3039 * NULL. 3040 */ 3041 static arc_buf_t * 3042 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf) 3043 { 3044 ASSERT(HDR_HAS_L1HDR(hdr)); 3045 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3046 3047 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf; 3048 arc_buf_t *lastbuf = NULL; 3049 3050 /* 3051 * Remove the buf from the hdr list and locate the last 3052 * remaining buffer on the list. 3053 */ 3054 while (*bufp != NULL) { 3055 if (*bufp == buf) 3056 *bufp = buf->b_next; 3057 3058 /* 3059 * If we've removed a buffer in the middle of 3060 * the list then update the lastbuf and update 3061 * bufp. 3062 */ 3063 if (*bufp != NULL) { 3064 lastbuf = *bufp; 3065 bufp = &(*bufp)->b_next; 3066 } 3067 } 3068 buf->b_next = NULL; 3069 ASSERT3P(lastbuf, !=, buf); 3070 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL); 3071 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL); 3072 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf)); 3073 3074 return (lastbuf); 3075 } 3076 3077 /* 3078 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's 3079 * list and free it. 3080 */ 3081 static void 3082 arc_buf_destroy_impl(arc_buf_t *buf) 3083 { 3084 arc_buf_hdr_t *hdr = buf->b_hdr; 3085 3086 /* 3087 * Free up the data associated with the buf but only if we're not 3088 * sharing this with the hdr. If we are sharing it with the hdr, the 3089 * hdr is responsible for doing the free. 3090 */ 3091 if (buf->b_data != NULL) { 3092 /* 3093 * We're about to change the hdr's b_flags. We must either 3094 * hold the hash_lock or be undiscoverable. 3095 */ 3096 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3097 3098 arc_cksum_verify(buf); 3099 arc_buf_unwatch(buf); 3100 3101 if (arc_buf_is_shared(buf)) { 3102 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3103 } else { 3104 uint64_t size = arc_buf_size(buf); 3105 arc_free_data_buf(hdr, buf->b_data, size, buf); 3106 ARCSTAT_INCR(arcstat_overhead_size, -size); 3107 } 3108 buf->b_data = NULL; 3109 3110 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3111 hdr->b_l1hdr.b_bufcnt -= 1; 3112 3113 if (ARC_BUF_ENCRYPTED(buf)) { 3114 hdr->b_crypt_hdr.b_ebufcnt -= 1; 3115 3116 /* 3117 * If we have no more encrypted buffers and we've 3118 * already gotten a copy of the decrypted data we can 3119 * free b_rabd to save some space. 3120 */ 3121 if (hdr->b_crypt_hdr.b_ebufcnt == 0 && 3122 HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL && 3123 !HDR_IO_IN_PROGRESS(hdr)) { 3124 arc_hdr_free_abd(hdr, B_TRUE); 3125 } 3126 } 3127 } 3128 3129 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 3130 3131 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 3132 /* 3133 * If the current arc_buf_t is sharing its data buffer with the 3134 * hdr, then reassign the hdr's b_pabd to share it with the new 3135 * buffer at the end of the list. The shared buffer is always 3136 * the last one on the hdr's buffer list. 3137 * 3138 * There is an equivalent case for compressed bufs, but since 3139 * they aren't guaranteed to be the last buf in the list and 3140 * that is an exceedingly rare case, we just allow that space be 3141 * wasted temporarily. We must also be careful not to share 3142 * encrypted buffers, since they cannot be shared. 3143 */ 3144 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) { 3145 /* Only one buf can be shared at once */ 3146 VERIFY(!arc_buf_is_shared(lastbuf)); 3147 /* hdr is uncompressed so can't have compressed buf */ 3148 VERIFY(!ARC_BUF_COMPRESSED(lastbuf)); 3149 3150 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3151 arc_hdr_free_abd(hdr, B_FALSE); 3152 3153 /* 3154 * We must setup a new shared block between the 3155 * last buffer and the hdr. The data would have 3156 * been allocated by the arc buf so we need to transfer 3157 * ownership to the hdr since it's now being shared. 3158 */ 3159 arc_share_buf(hdr, lastbuf); 3160 } 3161 } else if (HDR_SHARED_DATA(hdr)) { 3162 /* 3163 * Uncompressed shared buffers are always at the end 3164 * of the list. Compressed buffers don't have the 3165 * same requirements. This makes it hard to 3166 * simply assert that the lastbuf is shared so 3167 * we rely on the hdr's compression flags to determine 3168 * if we have a compressed, shared buffer. 3169 */ 3170 ASSERT3P(lastbuf, !=, NULL); 3171 ASSERT(arc_buf_is_shared(lastbuf) || 3172 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 3173 } 3174 3175 /* 3176 * Free the checksum if we're removing the last uncompressed buf from 3177 * this hdr. 3178 */ 3179 if (!arc_hdr_has_uncompressed_buf(hdr)) { 3180 arc_cksum_free(hdr); 3181 } 3182 3183 /* clean up the buf */ 3184 buf->b_hdr = NULL; 3185 kmem_cache_free(buf_cache, buf); 3186 } 3187 3188 static void 3189 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags) 3190 { 3191 uint64_t size; 3192 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0); 3193 3194 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 3195 ASSERT(HDR_HAS_L1HDR(hdr)); 3196 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata); 3197 IMPLY(alloc_rdata, HDR_PROTECTED(hdr)); 3198 3199 if (alloc_rdata) { 3200 size = HDR_GET_PSIZE(hdr); 3201 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL); 3202 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr, 3203 alloc_flags); 3204 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL); 3205 ARCSTAT_INCR(arcstat_raw_size, size); 3206 } else { 3207 size = arc_hdr_size(hdr); 3208 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3209 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr, 3210 alloc_flags); 3211 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3212 } 3213 3214 ARCSTAT_INCR(arcstat_compressed_size, size); 3215 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3216 } 3217 3218 static void 3219 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata) 3220 { 3221 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 3222 3223 ASSERT(HDR_HAS_L1HDR(hdr)); 3224 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 3225 IMPLY(free_rdata, HDR_HAS_RABD(hdr)); 3226 3227 /* 3228 * If the hdr is currently being written to the l2arc then 3229 * we defer freeing the data by adding it to the l2arc_free_on_write 3230 * list. The l2arc will free the data once it's finished 3231 * writing it to the l2arc device. 3232 */ 3233 if (HDR_L2_WRITING(hdr)) { 3234 arc_hdr_free_on_write(hdr, free_rdata); 3235 ARCSTAT_BUMP(arcstat_l2_free_on_write); 3236 } else if (free_rdata) { 3237 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr); 3238 } else { 3239 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr); 3240 } 3241 3242 if (free_rdata) { 3243 hdr->b_crypt_hdr.b_rabd = NULL; 3244 ARCSTAT_INCR(arcstat_raw_size, -size); 3245 } else { 3246 hdr->b_l1hdr.b_pabd = NULL; 3247 } 3248 3249 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr)) 3250 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 3251 3252 ARCSTAT_INCR(arcstat_compressed_size, -size); 3253 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3254 } 3255 3256 /* 3257 * Allocate empty anonymous ARC header. The header will get its identity 3258 * assigned and buffers attached later as part of read or write operations. 3259 * 3260 * In case of read arc_read() assigns header its identify (b_dva + b_birth), 3261 * inserts it into ARC hash to become globally visible and allocates physical 3262 * (b_pabd) or raw (b_rabd) ABD buffer to read into from disk. On disk read 3263 * completion arc_read_done() allocates ARC buffer(s) as needed, potentially 3264 * sharing one of them with the physical ABD buffer. 3265 * 3266 * In case of write arc_alloc_buf() allocates ARC buffer to be filled with 3267 * data. Then after compression and/or encryption arc_write_ready() allocates 3268 * and fills (or potentially shares) physical (b_pabd) or raw (b_rabd) ABD 3269 * buffer. On disk write completion arc_write_done() assigns the header its 3270 * new identity (b_dva + b_birth) and inserts into ARC hash. 3271 * 3272 * In case of partial overwrite the old data is read first as described. Then 3273 * arc_release() either allocates new anonymous ARC header and moves the ARC 3274 * buffer to it, or reuses the old ARC header by discarding its identity and 3275 * removing it from ARC hash. After buffer modification normal write process 3276 * follows as described. 3277 */ 3278 static arc_buf_hdr_t * 3279 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, 3280 boolean_t protected, enum zio_compress compression_type, uint8_t complevel, 3281 arc_buf_contents_t type) 3282 { 3283 arc_buf_hdr_t *hdr; 3284 3285 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); 3286 if (protected) { 3287 hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE); 3288 } else { 3289 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 3290 } 3291 3292 ASSERT(HDR_EMPTY(hdr)); 3293 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3294 HDR_SET_PSIZE(hdr, psize); 3295 HDR_SET_LSIZE(hdr, lsize); 3296 hdr->b_spa = spa; 3297 hdr->b_type = type; 3298 hdr->b_flags = 0; 3299 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); 3300 arc_hdr_set_compress(hdr, compression_type); 3301 hdr->b_complevel = complevel; 3302 if (protected) 3303 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 3304 3305 hdr->b_l1hdr.b_state = arc_anon; 3306 hdr->b_l1hdr.b_arc_access = 0; 3307 hdr->b_l1hdr.b_mru_hits = 0; 3308 hdr->b_l1hdr.b_mru_ghost_hits = 0; 3309 hdr->b_l1hdr.b_mfu_hits = 0; 3310 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 3311 hdr->b_l1hdr.b_bufcnt = 0; 3312 hdr->b_l1hdr.b_buf = NULL; 3313 3314 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3315 3316 return (hdr); 3317 } 3318 3319 /* 3320 * Transition between the two allocation states for the arc_buf_hdr struct. 3321 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 3322 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 3323 * version is used when a cache buffer is only in the L2ARC in order to reduce 3324 * memory usage. 3325 */ 3326 static arc_buf_hdr_t * 3327 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 3328 { 3329 ASSERT(HDR_HAS_L2HDR(hdr)); 3330 3331 arc_buf_hdr_t *nhdr; 3332 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3333 3334 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 3335 (old == hdr_l2only_cache && new == hdr_full_cache)); 3336 3337 /* 3338 * if the caller wanted a new full header and the header is to be 3339 * encrypted we will actually allocate the header from the full crypt 3340 * cache instead. The same applies to freeing from the old cache. 3341 */ 3342 if (HDR_PROTECTED(hdr) && new == hdr_full_cache) 3343 new = hdr_full_crypt_cache; 3344 if (HDR_PROTECTED(hdr) && old == hdr_full_cache) 3345 old = hdr_full_crypt_cache; 3346 3347 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 3348 3349 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 3350 buf_hash_remove(hdr); 3351 3352 memcpy(nhdr, hdr, HDR_L2ONLY_SIZE); 3353 3354 if (new == hdr_full_cache || new == hdr_full_crypt_cache) { 3355 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3356 /* 3357 * arc_access and arc_change_state need to be aware that a 3358 * header has just come out of L2ARC, so we set its state to 3359 * l2c_only even though it's about to change. 3360 */ 3361 nhdr->b_l1hdr.b_state = arc_l2c_only; 3362 3363 /* Verify previous threads set to NULL before freeing */ 3364 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL); 3365 ASSERT(!HDR_HAS_RABD(hdr)); 3366 } else { 3367 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3368 ASSERT0(hdr->b_l1hdr.b_bufcnt); 3369 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3370 3371 /* 3372 * If we've reached here, We must have been called from 3373 * arc_evict_hdr(), as such we should have already been 3374 * removed from any ghost list we were previously on 3375 * (which protects us from racing with arc_evict_state), 3376 * thus no locking is needed during this check. 3377 */ 3378 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3379 3380 /* 3381 * A buffer must not be moved into the arc_l2c_only 3382 * state if it's not finished being written out to the 3383 * l2arc device. Otherwise, the b_l1hdr.b_pabd field 3384 * might try to be accessed, even though it was removed. 3385 */ 3386 VERIFY(!HDR_L2_WRITING(hdr)); 3387 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3388 ASSERT(!HDR_HAS_RABD(hdr)); 3389 3390 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3391 } 3392 /* 3393 * The header has been reallocated so we need to re-insert it into any 3394 * lists it was on. 3395 */ 3396 (void) buf_hash_insert(nhdr, NULL); 3397 3398 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 3399 3400 mutex_enter(&dev->l2ad_mtx); 3401 3402 /* 3403 * We must place the realloc'ed header back into the list at 3404 * the same spot. Otherwise, if it's placed earlier in the list, 3405 * l2arc_write_buffers() could find it during the function's 3406 * write phase, and try to write it out to the l2arc. 3407 */ 3408 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 3409 list_remove(&dev->l2ad_buflist, hdr); 3410 3411 mutex_exit(&dev->l2ad_mtx); 3412 3413 /* 3414 * Since we're using the pointer address as the tag when 3415 * incrementing and decrementing the l2ad_alloc refcount, we 3416 * must remove the old pointer (that we're about to destroy) and 3417 * add the new pointer to the refcount. Otherwise we'd remove 3418 * the wrong pointer address when calling arc_hdr_destroy() later. 3419 */ 3420 3421 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 3422 arc_hdr_size(hdr), hdr); 3423 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 3424 arc_hdr_size(nhdr), nhdr); 3425 3426 buf_discard_identity(hdr); 3427 kmem_cache_free(old, hdr); 3428 3429 return (nhdr); 3430 } 3431 3432 /* 3433 * This function allows an L1 header to be reallocated as a crypt 3434 * header and vice versa. If we are going to a crypt header, the 3435 * new fields will be zeroed out. 3436 */ 3437 static arc_buf_hdr_t * 3438 arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt) 3439 { 3440 arc_buf_hdr_t *nhdr; 3441 arc_buf_t *buf; 3442 kmem_cache_t *ncache, *ocache; 3443 3444 /* 3445 * This function requires that hdr is in the arc_anon state. 3446 * Therefore it won't have any L2ARC data for us to worry 3447 * about copying. 3448 */ 3449 ASSERT(HDR_HAS_L1HDR(hdr)); 3450 ASSERT(!HDR_HAS_L2HDR(hdr)); 3451 ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt); 3452 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3453 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3454 ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node)); 3455 ASSERT3P(hdr->b_hash_next, ==, NULL); 3456 3457 if (need_crypt) { 3458 ncache = hdr_full_crypt_cache; 3459 ocache = hdr_full_cache; 3460 } else { 3461 ncache = hdr_full_cache; 3462 ocache = hdr_full_crypt_cache; 3463 } 3464 3465 nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE); 3466 3467 /* 3468 * Copy all members that aren't locks or condvars to the new header. 3469 * No lists are pointing to us (as we asserted above), so we don't 3470 * need to worry about the list nodes. 3471 */ 3472 nhdr->b_dva = hdr->b_dva; 3473 nhdr->b_birth = hdr->b_birth; 3474 nhdr->b_type = hdr->b_type; 3475 nhdr->b_flags = hdr->b_flags; 3476 nhdr->b_psize = hdr->b_psize; 3477 nhdr->b_lsize = hdr->b_lsize; 3478 nhdr->b_spa = hdr->b_spa; 3479 nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum; 3480 nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt; 3481 nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap; 3482 nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state; 3483 nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access; 3484 nhdr->b_l1hdr.b_mru_hits = hdr->b_l1hdr.b_mru_hits; 3485 nhdr->b_l1hdr.b_mru_ghost_hits = hdr->b_l1hdr.b_mru_ghost_hits; 3486 nhdr->b_l1hdr.b_mfu_hits = hdr->b_l1hdr.b_mfu_hits; 3487 nhdr->b_l1hdr.b_mfu_ghost_hits = hdr->b_l1hdr.b_mfu_ghost_hits; 3488 nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb; 3489 nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd; 3490 3491 /* 3492 * This zfs_refcount_add() exists only to ensure that the individual 3493 * arc buffers always point to a header that is referenced, avoiding 3494 * a small race condition that could trigger ASSERTs. 3495 */ 3496 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG); 3497 nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf; 3498 for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) { 3499 mutex_enter(&buf->b_evict_lock); 3500 buf->b_hdr = nhdr; 3501 mutex_exit(&buf->b_evict_lock); 3502 } 3503 3504 zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt); 3505 (void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG); 3506 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3507 3508 if (need_crypt) { 3509 arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED); 3510 } else { 3511 arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED); 3512 } 3513 3514 /* unset all members of the original hdr */ 3515 memset(&hdr->b_dva, 0, sizeof (dva_t)); 3516 hdr->b_birth = 0; 3517 hdr->b_type = ARC_BUFC_INVALID; 3518 hdr->b_flags = 0; 3519 hdr->b_psize = 0; 3520 hdr->b_lsize = 0; 3521 hdr->b_spa = 0; 3522 hdr->b_l1hdr.b_freeze_cksum = NULL; 3523 hdr->b_l1hdr.b_buf = NULL; 3524 hdr->b_l1hdr.b_bufcnt = 0; 3525 hdr->b_l1hdr.b_byteswap = 0; 3526 hdr->b_l1hdr.b_state = NULL; 3527 hdr->b_l1hdr.b_arc_access = 0; 3528 hdr->b_l1hdr.b_mru_hits = 0; 3529 hdr->b_l1hdr.b_mru_ghost_hits = 0; 3530 hdr->b_l1hdr.b_mfu_hits = 0; 3531 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 3532 hdr->b_l1hdr.b_acb = NULL; 3533 hdr->b_l1hdr.b_pabd = NULL; 3534 3535 if (ocache == hdr_full_crypt_cache) { 3536 ASSERT(!HDR_HAS_RABD(hdr)); 3537 hdr->b_crypt_hdr.b_ot = DMU_OT_NONE; 3538 hdr->b_crypt_hdr.b_ebufcnt = 0; 3539 hdr->b_crypt_hdr.b_dsobj = 0; 3540 memset(hdr->b_crypt_hdr.b_salt, 0, ZIO_DATA_SALT_LEN); 3541 memset(hdr->b_crypt_hdr.b_iv, 0, ZIO_DATA_IV_LEN); 3542 memset(hdr->b_crypt_hdr.b_mac, 0, ZIO_DATA_MAC_LEN); 3543 } 3544 3545 buf_discard_identity(hdr); 3546 kmem_cache_free(ocache, hdr); 3547 3548 return (nhdr); 3549 } 3550 3551 /* 3552 * This function is used by the send / receive code to convert a newly 3553 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It 3554 * is also used to allow the root objset block to be updated without altering 3555 * its embedded MACs. Both block types will always be uncompressed so we do not 3556 * have to worry about compression type or psize. 3557 */ 3558 void 3559 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder, 3560 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv, 3561 const uint8_t *mac) 3562 { 3563 arc_buf_hdr_t *hdr = buf->b_hdr; 3564 3565 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET); 3566 ASSERT(HDR_HAS_L1HDR(hdr)); 3567 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3568 3569 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED); 3570 if (!HDR_PROTECTED(hdr)) 3571 hdr = arc_hdr_realloc_crypt(hdr, B_TRUE); 3572 hdr->b_crypt_hdr.b_dsobj = dsobj; 3573 hdr->b_crypt_hdr.b_ot = ot; 3574 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3575 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3576 if (!arc_hdr_has_uncompressed_buf(hdr)) 3577 arc_cksum_free(hdr); 3578 3579 if (salt != NULL) 3580 memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN); 3581 if (iv != NULL) 3582 memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN); 3583 if (mac != NULL) 3584 memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN); 3585 } 3586 3587 /* 3588 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. 3589 * The buf is returned thawed since we expect the consumer to modify it. 3590 */ 3591 arc_buf_t * 3592 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size) 3593 { 3594 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, 3595 B_FALSE, ZIO_COMPRESS_OFF, 0, type); 3596 3597 arc_buf_t *buf = NULL; 3598 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE, 3599 B_FALSE, B_FALSE, &buf)); 3600 arc_buf_thaw(buf); 3601 3602 return (buf); 3603 } 3604 3605 /* 3606 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this 3607 * for bufs containing metadata. 3608 */ 3609 arc_buf_t * 3610 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize, 3611 enum zio_compress compression_type, uint8_t complevel) 3612 { 3613 ASSERT3U(lsize, >, 0); 3614 ASSERT3U(lsize, >=, psize); 3615 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF); 3616 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3617 3618 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 3619 B_FALSE, compression_type, complevel, ARC_BUFC_DATA); 3620 3621 arc_buf_t *buf = NULL; 3622 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, 3623 B_TRUE, B_FALSE, B_FALSE, &buf)); 3624 arc_buf_thaw(buf); 3625 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3626 3627 /* 3628 * To ensure that the hdr has the correct data in it if we call 3629 * arc_untransform() on this buf before it's been written to disk, 3630 * it's easiest if we just set up sharing between the buf and the hdr. 3631 */ 3632 arc_share_buf(hdr, buf); 3633 3634 return (buf); 3635 } 3636 3637 arc_buf_t * 3638 arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder, 3639 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 3640 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 3641 enum zio_compress compression_type, uint8_t complevel) 3642 { 3643 arc_buf_hdr_t *hdr; 3644 arc_buf_t *buf; 3645 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ? 3646 ARC_BUFC_METADATA : ARC_BUFC_DATA; 3647 3648 ASSERT3U(lsize, >, 0); 3649 ASSERT3U(lsize, >=, psize); 3650 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF); 3651 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3652 3653 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE, 3654 compression_type, complevel, type); 3655 3656 hdr->b_crypt_hdr.b_dsobj = dsobj; 3657 hdr->b_crypt_hdr.b_ot = ot; 3658 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3659 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3660 memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN); 3661 memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN); 3662 memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN); 3663 3664 /* 3665 * This buffer will be considered encrypted even if the ot is not an 3666 * encrypted type. It will become authenticated instead in 3667 * arc_write_ready(). 3668 */ 3669 buf = NULL; 3670 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE, 3671 B_FALSE, B_FALSE, &buf)); 3672 arc_buf_thaw(buf); 3673 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3674 3675 return (buf); 3676 } 3677 3678 static void 3679 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 3680 boolean_t state_only) 3681 { 3682 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3683 l2arc_dev_t *dev = l2hdr->b_dev; 3684 uint64_t lsize = HDR_GET_LSIZE(hdr); 3685 uint64_t psize = HDR_GET_PSIZE(hdr); 3686 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3687 arc_buf_contents_t type = hdr->b_type; 3688 int64_t lsize_s; 3689 int64_t psize_s; 3690 int64_t asize_s; 3691 3692 if (incr) { 3693 lsize_s = lsize; 3694 psize_s = psize; 3695 asize_s = asize; 3696 } else { 3697 lsize_s = -lsize; 3698 psize_s = -psize; 3699 asize_s = -asize; 3700 } 3701 3702 /* If the buffer is a prefetch, count it as such. */ 3703 if (HDR_PREFETCH(hdr)) { 3704 ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s); 3705 } else { 3706 /* 3707 * We use the value stored in the L2 header upon initial 3708 * caching in L2ARC. This value will be updated in case 3709 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC 3710 * metadata (log entry) cannot currently be updated. Having 3711 * the ARC state in the L2 header solves the problem of a 3712 * possibly absent L1 header (apparent in buffers restored 3713 * from persistent L2ARC). 3714 */ 3715 switch (hdr->b_l2hdr.b_arcs_state) { 3716 case ARC_STATE_MRU_GHOST: 3717 case ARC_STATE_MRU: 3718 ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s); 3719 break; 3720 case ARC_STATE_MFU_GHOST: 3721 case ARC_STATE_MFU: 3722 ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s); 3723 break; 3724 default: 3725 break; 3726 } 3727 } 3728 3729 if (state_only) 3730 return; 3731 3732 ARCSTAT_INCR(arcstat_l2_psize, psize_s); 3733 ARCSTAT_INCR(arcstat_l2_lsize, lsize_s); 3734 3735 switch (type) { 3736 case ARC_BUFC_DATA: 3737 ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s); 3738 break; 3739 case ARC_BUFC_METADATA: 3740 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s); 3741 break; 3742 default: 3743 break; 3744 } 3745 } 3746 3747 3748 static void 3749 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 3750 { 3751 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3752 l2arc_dev_t *dev = l2hdr->b_dev; 3753 uint64_t psize = HDR_GET_PSIZE(hdr); 3754 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3755 3756 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 3757 ASSERT(HDR_HAS_L2HDR(hdr)); 3758 3759 list_remove(&dev->l2ad_buflist, hdr); 3760 3761 l2arc_hdr_arcstats_decrement(hdr); 3762 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); 3763 3764 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), 3765 hdr); 3766 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 3767 } 3768 3769 static void 3770 arc_hdr_destroy(arc_buf_hdr_t *hdr) 3771 { 3772 if (HDR_HAS_L1HDR(hdr)) { 3773 ASSERT(hdr->b_l1hdr.b_buf == NULL || 3774 hdr->b_l1hdr.b_bufcnt > 0); 3775 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3776 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3777 } 3778 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3779 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 3780 3781 if (HDR_HAS_L2HDR(hdr)) { 3782 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3783 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 3784 3785 if (!buflist_held) 3786 mutex_enter(&dev->l2ad_mtx); 3787 3788 /* 3789 * Even though we checked this conditional above, we 3790 * need to check this again now that we have the 3791 * l2ad_mtx. This is because we could be racing with 3792 * another thread calling l2arc_evict() which might have 3793 * destroyed this header's L2 portion as we were waiting 3794 * to acquire the l2ad_mtx. If that happens, we don't 3795 * want to re-destroy the header's L2 portion. 3796 */ 3797 if (HDR_HAS_L2HDR(hdr)) { 3798 3799 if (!HDR_EMPTY(hdr)) 3800 buf_discard_identity(hdr); 3801 3802 arc_hdr_l2hdr_destroy(hdr); 3803 } 3804 3805 if (!buflist_held) 3806 mutex_exit(&dev->l2ad_mtx); 3807 } 3808 3809 /* 3810 * The header's identify can only be safely discarded once it is no 3811 * longer discoverable. This requires removing it from the hash table 3812 * and the l2arc header list. After this point the hash lock can not 3813 * be used to protect the header. 3814 */ 3815 if (!HDR_EMPTY(hdr)) 3816 buf_discard_identity(hdr); 3817 3818 if (HDR_HAS_L1HDR(hdr)) { 3819 arc_cksum_free(hdr); 3820 3821 while (hdr->b_l1hdr.b_buf != NULL) 3822 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf); 3823 3824 if (hdr->b_l1hdr.b_pabd != NULL) 3825 arc_hdr_free_abd(hdr, B_FALSE); 3826 3827 if (HDR_HAS_RABD(hdr)) 3828 arc_hdr_free_abd(hdr, B_TRUE); 3829 } 3830 3831 ASSERT3P(hdr->b_hash_next, ==, NULL); 3832 if (HDR_HAS_L1HDR(hdr)) { 3833 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3834 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 3835 3836 if (!HDR_PROTECTED(hdr)) { 3837 kmem_cache_free(hdr_full_cache, hdr); 3838 } else { 3839 kmem_cache_free(hdr_full_crypt_cache, hdr); 3840 } 3841 } else { 3842 kmem_cache_free(hdr_l2only_cache, hdr); 3843 } 3844 } 3845 3846 void 3847 arc_buf_destroy(arc_buf_t *buf, void* tag) 3848 { 3849 arc_buf_hdr_t *hdr = buf->b_hdr; 3850 3851 if (hdr->b_l1hdr.b_state == arc_anon) { 3852 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 3853 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3854 VERIFY0(remove_reference(hdr, NULL, tag)); 3855 arc_hdr_destroy(hdr); 3856 return; 3857 } 3858 3859 kmutex_t *hash_lock = HDR_LOCK(hdr); 3860 mutex_enter(hash_lock); 3861 3862 ASSERT3P(hdr, ==, buf->b_hdr); 3863 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3864 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3865 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); 3866 ASSERT3P(buf->b_data, !=, NULL); 3867 3868 (void) remove_reference(hdr, hash_lock, tag); 3869 arc_buf_destroy_impl(buf); 3870 mutex_exit(hash_lock); 3871 } 3872 3873 /* 3874 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 3875 * state of the header is dependent on its state prior to entering this 3876 * function. The following transitions are possible: 3877 * 3878 * - arc_mru -> arc_mru_ghost 3879 * - arc_mfu -> arc_mfu_ghost 3880 * - arc_mru_ghost -> arc_l2c_only 3881 * - arc_mru_ghost -> deleted 3882 * - arc_mfu_ghost -> arc_l2c_only 3883 * - arc_mfu_ghost -> deleted 3884 * 3885 * Return total size of evicted data buffers for eviction progress tracking. 3886 * When evicting from ghost states return logical buffer size to make eviction 3887 * progress at the same (or at least comparable) rate as from non-ghost states. 3888 * 3889 * Return *real_evicted for actual ARC size reduction to wake up threads 3890 * waiting for it. For non-ghost states it includes size of evicted data 3891 * buffers (the headers are not freed there). For ghost states it includes 3892 * only the evicted headers size. 3893 */ 3894 static int64_t 3895 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, uint64_t *real_evicted) 3896 { 3897 arc_state_t *evicted_state, *state; 3898 int64_t bytes_evicted = 0; 3899 int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ? 3900 arc_min_prescient_prefetch_ms : arc_min_prefetch_ms; 3901 3902 ASSERT(MUTEX_HELD(hash_lock)); 3903 ASSERT(HDR_HAS_L1HDR(hdr)); 3904 3905 *real_evicted = 0; 3906 state = hdr->b_l1hdr.b_state; 3907 if (GHOST_STATE(state)) { 3908 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3909 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3910 3911 /* 3912 * l2arc_write_buffers() relies on a header's L1 portion 3913 * (i.e. its b_pabd field) during it's write phase. 3914 * Thus, we cannot push a header onto the arc_l2c_only 3915 * state (removing its L1 piece) until the header is 3916 * done being written to the l2arc. 3917 */ 3918 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 3919 ARCSTAT_BUMP(arcstat_evict_l2_skip); 3920 return (bytes_evicted); 3921 } 3922 3923 ARCSTAT_BUMP(arcstat_deleted); 3924 bytes_evicted += HDR_GET_LSIZE(hdr); 3925 3926 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 3927 3928 if (HDR_HAS_L2HDR(hdr)) { 3929 ASSERT(hdr->b_l1hdr.b_pabd == NULL); 3930 ASSERT(!HDR_HAS_RABD(hdr)); 3931 /* 3932 * This buffer is cached on the 2nd Level ARC; 3933 * don't destroy the header. 3934 */ 3935 arc_change_state(arc_l2c_only, hdr, hash_lock); 3936 /* 3937 * dropping from L1+L2 cached to L2-only, 3938 * realloc to remove the L1 header. 3939 */ 3940 hdr = arc_hdr_realloc(hdr, hdr_full_cache, 3941 hdr_l2only_cache); 3942 *real_evicted += HDR_FULL_SIZE - HDR_L2ONLY_SIZE; 3943 } else { 3944 arc_change_state(arc_anon, hdr, hash_lock); 3945 arc_hdr_destroy(hdr); 3946 *real_evicted += HDR_FULL_SIZE; 3947 } 3948 return (bytes_evicted); 3949 } 3950 3951 ASSERT(state == arc_mru || state == arc_mfu); 3952 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3953 3954 /* prefetch buffers have a minimum lifespan */ 3955 if (HDR_IO_IN_PROGRESS(hdr) || 3956 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 3957 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < 3958 MSEC_TO_TICK(min_lifetime))) { 3959 ARCSTAT_BUMP(arcstat_evict_skip); 3960 return (bytes_evicted); 3961 } 3962 3963 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3964 while (hdr->b_l1hdr.b_buf) { 3965 arc_buf_t *buf = hdr->b_l1hdr.b_buf; 3966 if (!mutex_tryenter(&buf->b_evict_lock)) { 3967 ARCSTAT_BUMP(arcstat_mutex_miss); 3968 break; 3969 } 3970 if (buf->b_data != NULL) { 3971 bytes_evicted += HDR_GET_LSIZE(hdr); 3972 *real_evicted += HDR_GET_LSIZE(hdr); 3973 } 3974 mutex_exit(&buf->b_evict_lock); 3975 arc_buf_destroy_impl(buf); 3976 } 3977 3978 if (HDR_HAS_L2HDR(hdr)) { 3979 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); 3980 } else { 3981 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 3982 ARCSTAT_INCR(arcstat_evict_l2_eligible, 3983 HDR_GET_LSIZE(hdr)); 3984 3985 switch (state->arcs_state) { 3986 case ARC_STATE_MRU: 3987 ARCSTAT_INCR( 3988 arcstat_evict_l2_eligible_mru, 3989 HDR_GET_LSIZE(hdr)); 3990 break; 3991 case ARC_STATE_MFU: 3992 ARCSTAT_INCR( 3993 arcstat_evict_l2_eligible_mfu, 3994 HDR_GET_LSIZE(hdr)); 3995 break; 3996 default: 3997 break; 3998 } 3999 } else { 4000 ARCSTAT_INCR(arcstat_evict_l2_ineligible, 4001 HDR_GET_LSIZE(hdr)); 4002 } 4003 } 4004 4005 if (hdr->b_l1hdr.b_bufcnt == 0) { 4006 arc_cksum_free(hdr); 4007 4008 bytes_evicted += arc_hdr_size(hdr); 4009 *real_evicted += arc_hdr_size(hdr); 4010 4011 /* 4012 * If this hdr is being evicted and has a compressed 4013 * buffer then we discard it here before we change states. 4014 * This ensures that the accounting is updated correctly 4015 * in arc_free_data_impl(). 4016 */ 4017 if (hdr->b_l1hdr.b_pabd != NULL) 4018 arc_hdr_free_abd(hdr, B_FALSE); 4019 4020 if (HDR_HAS_RABD(hdr)) 4021 arc_hdr_free_abd(hdr, B_TRUE); 4022 4023 arc_change_state(evicted_state, hdr, hash_lock); 4024 ASSERT(HDR_IN_HASH_TABLE(hdr)); 4025 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 4026 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 4027 } 4028 4029 return (bytes_evicted); 4030 } 4031 4032 static void 4033 arc_set_need_free(void) 4034 { 4035 ASSERT(MUTEX_HELD(&arc_evict_lock)); 4036 int64_t remaining = arc_free_memory() - arc_sys_free / 2; 4037 arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters); 4038 if (aw == NULL) { 4039 arc_need_free = MAX(-remaining, 0); 4040 } else { 4041 arc_need_free = 4042 MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count)); 4043 } 4044 } 4045 4046 static uint64_t 4047 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 4048 uint64_t spa, uint64_t bytes) 4049 { 4050 multilist_sublist_t *mls; 4051 uint64_t bytes_evicted = 0, real_evicted = 0; 4052 arc_buf_hdr_t *hdr; 4053 kmutex_t *hash_lock; 4054 int evict_count = zfs_arc_evict_batch_limit; 4055 4056 ASSERT3P(marker, !=, NULL); 4057 4058 mls = multilist_sublist_lock(ml, idx); 4059 4060 for (hdr = multilist_sublist_prev(mls, marker); likely(hdr != NULL); 4061 hdr = multilist_sublist_prev(mls, marker)) { 4062 if ((evict_count <= 0) || (bytes_evicted >= bytes)) 4063 break; 4064 4065 /* 4066 * To keep our iteration location, move the marker 4067 * forward. Since we're not holding hdr's hash lock, we 4068 * must be very careful and not remove 'hdr' from the 4069 * sublist. Otherwise, other consumers might mistake the 4070 * 'hdr' as not being on a sublist when they call the 4071 * multilist_link_active() function (they all rely on 4072 * the hash lock protecting concurrent insertions and 4073 * removals). multilist_sublist_move_forward() was 4074 * specifically implemented to ensure this is the case 4075 * (only 'marker' will be removed and re-inserted). 4076 */ 4077 multilist_sublist_move_forward(mls, marker); 4078 4079 /* 4080 * The only case where the b_spa field should ever be 4081 * zero, is the marker headers inserted by 4082 * arc_evict_state(). It's possible for multiple threads 4083 * to be calling arc_evict_state() concurrently (e.g. 4084 * dsl_pool_close() and zio_inject_fault()), so we must 4085 * skip any markers we see from these other threads. 4086 */ 4087 if (hdr->b_spa == 0) 4088 continue; 4089 4090 /* we're only interested in evicting buffers of a certain spa */ 4091 if (spa != 0 && hdr->b_spa != spa) { 4092 ARCSTAT_BUMP(arcstat_evict_skip); 4093 continue; 4094 } 4095 4096 hash_lock = HDR_LOCK(hdr); 4097 4098 /* 4099 * We aren't calling this function from any code path 4100 * that would already be holding a hash lock, so we're 4101 * asserting on this assumption to be defensive in case 4102 * this ever changes. Without this check, it would be 4103 * possible to incorrectly increment arcstat_mutex_miss 4104 * below (e.g. if the code changed such that we called 4105 * this function with a hash lock held). 4106 */ 4107 ASSERT(!MUTEX_HELD(hash_lock)); 4108 4109 if (mutex_tryenter(hash_lock)) { 4110 uint64_t revicted; 4111 uint64_t evicted = arc_evict_hdr(hdr, hash_lock, 4112 &revicted); 4113 mutex_exit(hash_lock); 4114 4115 bytes_evicted += evicted; 4116 real_evicted += revicted; 4117 4118 /* 4119 * If evicted is zero, arc_evict_hdr() must have 4120 * decided to skip this header, don't increment 4121 * evict_count in this case. 4122 */ 4123 if (evicted != 0) 4124 evict_count--; 4125 4126 } else { 4127 ARCSTAT_BUMP(arcstat_mutex_miss); 4128 } 4129 } 4130 4131 multilist_sublist_unlock(mls); 4132 4133 /* 4134 * Increment the count of evicted bytes, and wake up any threads that 4135 * are waiting for the count to reach this value. Since the list is 4136 * ordered by ascending aew_count, we pop off the beginning of the 4137 * list until we reach the end, or a waiter that's past the current 4138 * "count". Doing this outside the loop reduces the number of times 4139 * we need to acquire the global arc_evict_lock. 4140 * 4141 * Only wake when there's sufficient free memory in the system 4142 * (specifically, arc_sys_free/2, which by default is a bit more than 4143 * 1/64th of RAM). See the comments in arc_wait_for_eviction(). 4144 */ 4145 mutex_enter(&arc_evict_lock); 4146 arc_evict_count += real_evicted; 4147 4148 if (arc_free_memory() > arc_sys_free / 2) { 4149 arc_evict_waiter_t *aw; 4150 while ((aw = list_head(&arc_evict_waiters)) != NULL && 4151 aw->aew_count <= arc_evict_count) { 4152 list_remove(&arc_evict_waiters, aw); 4153 cv_broadcast(&aw->aew_cv); 4154 } 4155 } 4156 arc_set_need_free(); 4157 mutex_exit(&arc_evict_lock); 4158 4159 /* 4160 * If the ARC size is reduced from arc_c_max to arc_c_min (especially 4161 * if the average cached block is small), eviction can be on-CPU for 4162 * many seconds. To ensure that other threads that may be bound to 4163 * this CPU are able to make progress, make a voluntary preemption 4164 * call here. 4165 */ 4166 cond_resched(); 4167 4168 return (bytes_evicted); 4169 } 4170 4171 /* 4172 * Allocate an array of buffer headers used as placeholders during arc state 4173 * eviction. 4174 */ 4175 static arc_buf_hdr_t ** 4176 arc_state_alloc_markers(int count) 4177 { 4178 arc_buf_hdr_t **markers; 4179 4180 markers = kmem_zalloc(sizeof (*markers) * count, KM_SLEEP); 4181 for (int i = 0; i < count; i++) { 4182 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 4183 4184 /* 4185 * A b_spa of 0 is used to indicate that this header is 4186 * a marker. This fact is used in arc_evict_type() and 4187 * arc_evict_state_impl(). 4188 */ 4189 markers[i]->b_spa = 0; 4190 4191 } 4192 return (markers); 4193 } 4194 4195 static void 4196 arc_state_free_markers(arc_buf_hdr_t **markers, int count) 4197 { 4198 for (int i = 0; i < count; i++) 4199 kmem_cache_free(hdr_full_cache, markers[i]); 4200 kmem_free(markers, sizeof (*markers) * count); 4201 } 4202 4203 /* 4204 * Evict buffers from the given arc state, until we've removed the 4205 * specified number of bytes. Move the removed buffers to the 4206 * appropriate evict state. 4207 * 4208 * This function makes a "best effort". It skips over any buffers 4209 * it can't get a hash_lock on, and so, may not catch all candidates. 4210 * It may also return without evicting as much space as requested. 4211 * 4212 * If bytes is specified using the special value ARC_EVICT_ALL, this 4213 * will evict all available (i.e. unlocked and evictable) buffers from 4214 * the given arc state; which is used by arc_flush(). 4215 */ 4216 static uint64_t 4217 arc_evict_state(arc_state_t *state, uint64_t spa, uint64_t bytes, 4218 arc_buf_contents_t type) 4219 { 4220 uint64_t total_evicted = 0; 4221 multilist_t *ml = &state->arcs_list[type]; 4222 int num_sublists; 4223 arc_buf_hdr_t **markers; 4224 4225 num_sublists = multilist_get_num_sublists(ml); 4226 4227 /* 4228 * If we've tried to evict from each sublist, made some 4229 * progress, but still have not hit the target number of bytes 4230 * to evict, we want to keep trying. The markers allow us to 4231 * pick up where we left off for each individual sublist, rather 4232 * than starting from the tail each time. 4233 */ 4234 if (zthr_iscurthread(arc_evict_zthr)) { 4235 markers = arc_state_evict_markers; 4236 ASSERT3S(num_sublists, <=, arc_state_evict_marker_count); 4237 } else { 4238 markers = arc_state_alloc_markers(num_sublists); 4239 } 4240 for (int i = 0; i < num_sublists; i++) { 4241 multilist_sublist_t *mls; 4242 4243 mls = multilist_sublist_lock(ml, i); 4244 multilist_sublist_insert_tail(mls, markers[i]); 4245 multilist_sublist_unlock(mls); 4246 } 4247 4248 /* 4249 * While we haven't hit our target number of bytes to evict, or 4250 * we're evicting all available buffers. 4251 */ 4252 while (total_evicted < bytes) { 4253 int sublist_idx = multilist_get_random_index(ml); 4254 uint64_t scan_evicted = 0; 4255 4256 /* 4257 * Try to reduce pinned dnodes with a floor of arc_dnode_limit. 4258 * Request that 10% of the LRUs be scanned by the superblock 4259 * shrinker. 4260 */ 4261 if (type == ARC_BUFC_DATA && aggsum_compare( 4262 &arc_sums.arcstat_dnode_size, arc_dnode_size_limit) > 0) { 4263 arc_prune_async((aggsum_upper_bound( 4264 &arc_sums.arcstat_dnode_size) - 4265 arc_dnode_size_limit) / sizeof (dnode_t) / 4266 zfs_arc_dnode_reduce_percent); 4267 } 4268 4269 /* 4270 * Start eviction using a randomly selected sublist, 4271 * this is to try and evenly balance eviction across all 4272 * sublists. Always starting at the same sublist 4273 * (e.g. index 0) would cause evictions to favor certain 4274 * sublists over others. 4275 */ 4276 for (int i = 0; i < num_sublists; i++) { 4277 uint64_t bytes_remaining; 4278 uint64_t bytes_evicted; 4279 4280 if (total_evicted < bytes) 4281 bytes_remaining = bytes - total_evicted; 4282 else 4283 break; 4284 4285 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 4286 markers[sublist_idx], spa, bytes_remaining); 4287 4288 scan_evicted += bytes_evicted; 4289 total_evicted += bytes_evicted; 4290 4291 /* we've reached the end, wrap to the beginning */ 4292 if (++sublist_idx >= num_sublists) 4293 sublist_idx = 0; 4294 } 4295 4296 /* 4297 * If we didn't evict anything during this scan, we have 4298 * no reason to believe we'll evict more during another 4299 * scan, so break the loop. 4300 */ 4301 if (scan_evicted == 0) { 4302 /* This isn't possible, let's make that obvious */ 4303 ASSERT3S(bytes, !=, 0); 4304 4305 /* 4306 * When bytes is ARC_EVICT_ALL, the only way to 4307 * break the loop is when scan_evicted is zero. 4308 * In that case, we actually have evicted enough, 4309 * so we don't want to increment the kstat. 4310 */ 4311 if (bytes != ARC_EVICT_ALL) { 4312 ASSERT3S(total_evicted, <, bytes); 4313 ARCSTAT_BUMP(arcstat_evict_not_enough); 4314 } 4315 4316 break; 4317 } 4318 } 4319 4320 for (int i = 0; i < num_sublists; i++) { 4321 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 4322 multilist_sublist_remove(mls, markers[i]); 4323 multilist_sublist_unlock(mls); 4324 } 4325 if (markers != arc_state_evict_markers) 4326 arc_state_free_markers(markers, num_sublists); 4327 4328 return (total_evicted); 4329 } 4330 4331 /* 4332 * Flush all "evictable" data of the given type from the arc state 4333 * specified. This will not evict any "active" buffers (i.e. referenced). 4334 * 4335 * When 'retry' is set to B_FALSE, the function will make a single pass 4336 * over the state and evict any buffers that it can. Since it doesn't 4337 * continually retry the eviction, it might end up leaving some buffers 4338 * in the ARC due to lock misses. 4339 * 4340 * When 'retry' is set to B_TRUE, the function will continually retry the 4341 * eviction until *all* evictable buffers have been removed from the 4342 * state. As a result, if concurrent insertions into the state are 4343 * allowed (e.g. if the ARC isn't shutting down), this function might 4344 * wind up in an infinite loop, continually trying to evict buffers. 4345 */ 4346 static uint64_t 4347 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 4348 boolean_t retry) 4349 { 4350 uint64_t evicted = 0; 4351 4352 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) { 4353 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type); 4354 4355 if (!retry) 4356 break; 4357 } 4358 4359 return (evicted); 4360 } 4361 4362 /* 4363 * Evict the specified number of bytes from the state specified, 4364 * restricting eviction to the spa and type given. This function 4365 * prevents us from trying to evict more from a state's list than 4366 * is "evictable", and to skip evicting altogether when passed a 4367 * negative value for "bytes". In contrast, arc_evict_state() will 4368 * evict everything it can, when passed a negative value for "bytes". 4369 */ 4370 static uint64_t 4371 arc_evict_impl(arc_state_t *state, uint64_t spa, int64_t bytes, 4372 arc_buf_contents_t type) 4373 { 4374 uint64_t delta; 4375 4376 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) { 4377 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]), 4378 bytes); 4379 return (arc_evict_state(state, spa, delta, type)); 4380 } 4381 4382 return (0); 4383 } 4384 4385 /* 4386 * The goal of this function is to evict enough meta data buffers from the 4387 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly 4388 * more complicated than it appears because it is common for data buffers 4389 * to have holds on meta data buffers. In addition, dnode meta data buffers 4390 * will be held by the dnodes in the block preventing them from being freed. 4391 * This means we can't simply traverse the ARC and expect to always find 4392 * enough unheld meta data buffer to release. 4393 * 4394 * Therefore, this function has been updated to make alternating passes 4395 * over the ARC releasing data buffers and then newly unheld meta data 4396 * buffers. This ensures forward progress is maintained and meta_used 4397 * will decrease. Normally this is sufficient, but if required the ARC 4398 * will call the registered prune callbacks causing dentry and inodes to 4399 * be dropped from the VFS cache. This will make dnode meta data buffers 4400 * available for reclaim. 4401 */ 4402 static uint64_t 4403 arc_evict_meta_balanced(uint64_t meta_used) 4404 { 4405 int64_t delta, prune = 0, adjustmnt; 4406 uint64_t total_evicted = 0; 4407 arc_buf_contents_t type = ARC_BUFC_DATA; 4408 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0); 4409 4410 restart: 4411 /* 4412 * This slightly differs than the way we evict from the mru in 4413 * arc_evict because we don't have a "target" value (i.e. no 4414 * "meta" arc_p). As a result, I think we can completely 4415 * cannibalize the metadata in the MRU before we evict the 4416 * metadata from the MFU. I think we probably need to implement a 4417 * "metadata arc_p" value to do this properly. 4418 */ 4419 adjustmnt = meta_used - arc_meta_limit; 4420 4421 if (adjustmnt > 0 && 4422 zfs_refcount_count(&arc_mru->arcs_esize[type]) > 0) { 4423 delta = MIN(zfs_refcount_count(&arc_mru->arcs_esize[type]), 4424 adjustmnt); 4425 total_evicted += arc_evict_impl(arc_mru, 0, delta, type); 4426 adjustmnt -= delta; 4427 } 4428 4429 /* 4430 * We can't afford to recalculate adjustmnt here. If we do, 4431 * new metadata buffers can sneak into the MRU or ANON lists, 4432 * thus penalize the MFU metadata. Although the fudge factor is 4433 * small, it has been empirically shown to be significant for 4434 * certain workloads (e.g. creating many empty directories). As 4435 * such, we use the original calculation for adjustmnt, and 4436 * simply decrement the amount of data evicted from the MRU. 4437 */ 4438 4439 if (adjustmnt > 0 && 4440 zfs_refcount_count(&arc_mfu->arcs_esize[type]) > 0) { 4441 delta = MIN(zfs_refcount_count(&arc_mfu->arcs_esize[type]), 4442 adjustmnt); 4443 total_evicted += arc_evict_impl(arc_mfu, 0, delta, type); 4444 } 4445 4446 adjustmnt = meta_used - arc_meta_limit; 4447 4448 if (adjustmnt > 0 && 4449 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) { 4450 delta = MIN(adjustmnt, 4451 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type])); 4452 total_evicted += arc_evict_impl(arc_mru_ghost, 0, delta, type); 4453 adjustmnt -= delta; 4454 } 4455 4456 if (adjustmnt > 0 && 4457 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) { 4458 delta = MIN(adjustmnt, 4459 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type])); 4460 total_evicted += arc_evict_impl(arc_mfu_ghost, 0, delta, type); 4461 } 4462 4463 /* 4464 * If after attempting to make the requested adjustment to the ARC 4465 * the meta limit is still being exceeded then request that the 4466 * higher layers drop some cached objects which have holds on ARC 4467 * meta buffers. Requests to the upper layers will be made with 4468 * increasingly large scan sizes until the ARC is below the limit. 4469 */ 4470 if (meta_used > arc_meta_limit) { 4471 if (type == ARC_BUFC_DATA) { 4472 type = ARC_BUFC_METADATA; 4473 } else { 4474 type = ARC_BUFC_DATA; 4475 4476 if (zfs_arc_meta_prune) { 4477 prune += zfs_arc_meta_prune; 4478 arc_prune_async(prune); 4479 } 4480 } 4481 4482 if (restarts > 0) { 4483 restarts--; 4484 goto restart; 4485 } 4486 } 4487 return (total_evicted); 4488 } 4489 4490 /* 4491 * Evict metadata buffers from the cache, such that arcstat_meta_used is 4492 * capped by the arc_meta_limit tunable. 4493 */ 4494 static uint64_t 4495 arc_evict_meta_only(uint64_t meta_used) 4496 { 4497 uint64_t total_evicted = 0; 4498 int64_t target; 4499 4500 /* 4501 * If we're over the meta limit, we want to evict enough 4502 * metadata to get back under the meta limit. We don't want to 4503 * evict so much that we drop the MRU below arc_p, though. If 4504 * we're over the meta limit more than we're over arc_p, we 4505 * evict some from the MRU here, and some from the MFU below. 4506 */ 4507 target = MIN((int64_t)(meta_used - arc_meta_limit), 4508 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4509 zfs_refcount_count(&arc_mru->arcs_size) - arc_p)); 4510 4511 total_evicted += arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4512 4513 /* 4514 * Similar to the above, we want to evict enough bytes to get us 4515 * below the meta limit, but not so much as to drop us below the 4516 * space allotted to the MFU (which is defined as arc_c - arc_p). 4517 */ 4518 target = MIN((int64_t)(meta_used - arc_meta_limit), 4519 (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) - 4520 (arc_c - arc_p))); 4521 4522 total_evicted += arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4523 4524 return (total_evicted); 4525 } 4526 4527 static uint64_t 4528 arc_evict_meta(uint64_t meta_used) 4529 { 4530 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY) 4531 return (arc_evict_meta_only(meta_used)); 4532 else 4533 return (arc_evict_meta_balanced(meta_used)); 4534 } 4535 4536 /* 4537 * Return the type of the oldest buffer in the given arc state 4538 * 4539 * This function will select a random sublist of type ARC_BUFC_DATA and 4540 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist 4541 * is compared, and the type which contains the "older" buffer will be 4542 * returned. 4543 */ 4544 static arc_buf_contents_t 4545 arc_evict_type(arc_state_t *state) 4546 { 4547 multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA]; 4548 multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA]; 4549 int data_idx = multilist_get_random_index(data_ml); 4550 int meta_idx = multilist_get_random_index(meta_ml); 4551 multilist_sublist_t *data_mls; 4552 multilist_sublist_t *meta_mls; 4553 arc_buf_contents_t type; 4554 arc_buf_hdr_t *data_hdr; 4555 arc_buf_hdr_t *meta_hdr; 4556 4557 /* 4558 * We keep the sublist lock until we're finished, to prevent 4559 * the headers from being destroyed via arc_evict_state(). 4560 */ 4561 data_mls = multilist_sublist_lock(data_ml, data_idx); 4562 meta_mls = multilist_sublist_lock(meta_ml, meta_idx); 4563 4564 /* 4565 * These two loops are to ensure we skip any markers that 4566 * might be at the tail of the lists due to arc_evict_state(). 4567 */ 4568 4569 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL; 4570 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) { 4571 if (data_hdr->b_spa != 0) 4572 break; 4573 } 4574 4575 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL; 4576 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) { 4577 if (meta_hdr->b_spa != 0) 4578 break; 4579 } 4580 4581 if (data_hdr == NULL && meta_hdr == NULL) { 4582 type = ARC_BUFC_DATA; 4583 } else if (data_hdr == NULL) { 4584 ASSERT3P(meta_hdr, !=, NULL); 4585 type = ARC_BUFC_METADATA; 4586 } else if (meta_hdr == NULL) { 4587 ASSERT3P(data_hdr, !=, NULL); 4588 type = ARC_BUFC_DATA; 4589 } else { 4590 ASSERT3P(data_hdr, !=, NULL); 4591 ASSERT3P(meta_hdr, !=, NULL); 4592 4593 /* The headers can't be on the sublist without an L1 header */ 4594 ASSERT(HDR_HAS_L1HDR(data_hdr)); 4595 ASSERT(HDR_HAS_L1HDR(meta_hdr)); 4596 4597 if (data_hdr->b_l1hdr.b_arc_access < 4598 meta_hdr->b_l1hdr.b_arc_access) { 4599 type = ARC_BUFC_DATA; 4600 } else { 4601 type = ARC_BUFC_METADATA; 4602 } 4603 } 4604 4605 multilist_sublist_unlock(meta_mls); 4606 multilist_sublist_unlock(data_mls); 4607 4608 return (type); 4609 } 4610 4611 /* 4612 * Evict buffers from the cache, such that arcstat_size is capped by arc_c. 4613 */ 4614 static uint64_t 4615 arc_evict(void) 4616 { 4617 uint64_t total_evicted = 0; 4618 uint64_t bytes; 4619 int64_t target; 4620 uint64_t asize = aggsum_value(&arc_sums.arcstat_size); 4621 uint64_t ameta = aggsum_value(&arc_sums.arcstat_meta_used); 4622 4623 /* 4624 * If we're over arc_meta_limit, we want to correct that before 4625 * potentially evicting data buffers below. 4626 */ 4627 total_evicted += arc_evict_meta(ameta); 4628 4629 /* 4630 * Adjust MRU size 4631 * 4632 * If we're over the target cache size, we want to evict enough 4633 * from the list to get back to our target size. We don't want 4634 * to evict too much from the MRU, such that it drops below 4635 * arc_p. So, if we're over our target cache size more than 4636 * the MRU is over arc_p, we'll evict enough to get back to 4637 * arc_p here, and then evict more from the MFU below. 4638 */ 4639 target = MIN((int64_t)(asize - arc_c), 4640 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4641 zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p)); 4642 4643 /* 4644 * If we're below arc_meta_min, always prefer to evict data. 4645 * Otherwise, try to satisfy the requested number of bytes to 4646 * evict from the type which contains older buffers; in an 4647 * effort to keep newer buffers in the cache regardless of their 4648 * type. If we cannot satisfy the number of bytes from this 4649 * type, spill over into the next type. 4650 */ 4651 if (arc_evict_type(arc_mru) == ARC_BUFC_METADATA && 4652 ameta > arc_meta_min) { 4653 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4654 total_evicted += bytes; 4655 4656 /* 4657 * If we couldn't evict our target number of bytes from 4658 * metadata, we try to get the rest from data. 4659 */ 4660 target -= bytes; 4661 4662 total_evicted += 4663 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4664 } else { 4665 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4666 total_evicted += bytes; 4667 4668 /* 4669 * If we couldn't evict our target number of bytes from 4670 * data, we try to get the rest from metadata. 4671 */ 4672 target -= bytes; 4673 4674 total_evicted += 4675 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4676 } 4677 4678 /* 4679 * Re-sum ARC stats after the first round of evictions. 4680 */ 4681 asize = aggsum_value(&arc_sums.arcstat_size); 4682 ameta = aggsum_value(&arc_sums.arcstat_meta_used); 4683 4684 4685 /* 4686 * Adjust MFU size 4687 * 4688 * Now that we've tried to evict enough from the MRU to get its 4689 * size back to arc_p, if we're still above the target cache 4690 * size, we evict the rest from the MFU. 4691 */ 4692 target = asize - arc_c; 4693 4694 if (arc_evict_type(arc_mfu) == ARC_BUFC_METADATA && 4695 ameta > arc_meta_min) { 4696 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4697 total_evicted += bytes; 4698 4699 /* 4700 * If we couldn't evict our target number of bytes from 4701 * metadata, we try to get the rest from data. 4702 */ 4703 target -= bytes; 4704 4705 total_evicted += 4706 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4707 } else { 4708 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4709 total_evicted += bytes; 4710 4711 /* 4712 * If we couldn't evict our target number of bytes from 4713 * data, we try to get the rest from data. 4714 */ 4715 target -= bytes; 4716 4717 total_evicted += 4718 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4719 } 4720 4721 /* 4722 * Adjust ghost lists 4723 * 4724 * In addition to the above, the ARC also defines target values 4725 * for the ghost lists. The sum of the mru list and mru ghost 4726 * list should never exceed the target size of the cache, and 4727 * the sum of the mru list, mfu list, mru ghost list, and mfu 4728 * ghost list should never exceed twice the target size of the 4729 * cache. The following logic enforces these limits on the ghost 4730 * caches, and evicts from them as needed. 4731 */ 4732 target = zfs_refcount_count(&arc_mru->arcs_size) + 4733 zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c; 4734 4735 bytes = arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA); 4736 total_evicted += bytes; 4737 4738 target -= bytes; 4739 4740 total_evicted += 4741 arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA); 4742 4743 /* 4744 * We assume the sum of the mru list and mfu list is less than 4745 * or equal to arc_c (we enforced this above), which means we 4746 * can use the simpler of the two equations below: 4747 * 4748 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c 4749 * mru ghost + mfu ghost <= arc_c 4750 */ 4751 target = zfs_refcount_count(&arc_mru_ghost->arcs_size) + 4752 zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c; 4753 4754 bytes = arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA); 4755 total_evicted += bytes; 4756 4757 target -= bytes; 4758 4759 total_evicted += 4760 arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA); 4761 4762 return (total_evicted); 4763 } 4764 4765 void 4766 arc_flush(spa_t *spa, boolean_t retry) 4767 { 4768 uint64_t guid = 0; 4769 4770 /* 4771 * If retry is B_TRUE, a spa must not be specified since we have 4772 * no good way to determine if all of a spa's buffers have been 4773 * evicted from an arc state. 4774 */ 4775 ASSERT(!retry || spa == 0); 4776 4777 if (spa != NULL) 4778 guid = spa_load_guid(spa); 4779 4780 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 4781 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 4782 4783 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 4784 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 4785 4786 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 4787 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 4788 4789 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 4790 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 4791 } 4792 4793 void 4794 arc_reduce_target_size(int64_t to_free) 4795 { 4796 uint64_t asize = aggsum_value(&arc_sums.arcstat_size); 4797 4798 /* 4799 * All callers want the ARC to actually evict (at least) this much 4800 * memory. Therefore we reduce from the lower of the current size and 4801 * the target size. This way, even if arc_c is much higher than 4802 * arc_size (as can be the case after many calls to arc_freed(), we will 4803 * immediately have arc_c < arc_size and therefore the arc_evict_zthr 4804 * will evict. 4805 */ 4806 uint64_t c = MIN(arc_c, asize); 4807 4808 if (c > to_free && c - to_free > arc_c_min) { 4809 arc_c = c - to_free; 4810 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 4811 if (arc_p > arc_c) 4812 arc_p = (arc_c >> 1); 4813 ASSERT(arc_c >= arc_c_min); 4814 ASSERT((int64_t)arc_p >= 0); 4815 } else { 4816 arc_c = arc_c_min; 4817 } 4818 4819 if (asize > arc_c) { 4820 /* See comment in arc_evict_cb_check() on why lock+flag */ 4821 mutex_enter(&arc_evict_lock); 4822 arc_evict_needed = B_TRUE; 4823 mutex_exit(&arc_evict_lock); 4824 zthr_wakeup(arc_evict_zthr); 4825 } 4826 } 4827 4828 /* 4829 * Determine if the system is under memory pressure and is asking 4830 * to reclaim memory. A return value of B_TRUE indicates that the system 4831 * is under memory pressure and that the arc should adjust accordingly. 4832 */ 4833 boolean_t 4834 arc_reclaim_needed(void) 4835 { 4836 return (arc_available_memory() < 0); 4837 } 4838 4839 void 4840 arc_kmem_reap_soon(void) 4841 { 4842 size_t i; 4843 kmem_cache_t *prev_cache = NULL; 4844 kmem_cache_t *prev_data_cache = NULL; 4845 4846 #ifdef _KERNEL 4847 if ((aggsum_compare(&arc_sums.arcstat_meta_used, 4848 arc_meta_limit) >= 0) && zfs_arc_meta_prune) { 4849 /* 4850 * We are exceeding our meta-data cache limit. 4851 * Prune some entries to release holds on meta-data. 4852 */ 4853 arc_prune_async(zfs_arc_meta_prune); 4854 } 4855 #if defined(_ILP32) 4856 /* 4857 * Reclaim unused memory from all kmem caches. 4858 */ 4859 kmem_reap(); 4860 #endif 4861 #endif 4862 4863 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 4864 #if defined(_ILP32) 4865 /* reach upper limit of cache size on 32-bit */ 4866 if (zio_buf_cache[i] == NULL) 4867 break; 4868 #endif 4869 if (zio_buf_cache[i] != prev_cache) { 4870 prev_cache = zio_buf_cache[i]; 4871 kmem_cache_reap_now(zio_buf_cache[i]); 4872 } 4873 if (zio_data_buf_cache[i] != prev_data_cache) { 4874 prev_data_cache = zio_data_buf_cache[i]; 4875 kmem_cache_reap_now(zio_data_buf_cache[i]); 4876 } 4877 } 4878 kmem_cache_reap_now(buf_cache); 4879 kmem_cache_reap_now(hdr_full_cache); 4880 kmem_cache_reap_now(hdr_l2only_cache); 4881 kmem_cache_reap_now(zfs_btree_leaf_cache); 4882 abd_cache_reap_now(); 4883 } 4884 4885 static boolean_t 4886 arc_evict_cb_check(void *arg, zthr_t *zthr) 4887 { 4888 (void) arg, (void) zthr; 4889 4890 #ifdef ZFS_DEBUG 4891 /* 4892 * This is necessary in order to keep the kstat information 4893 * up to date for tools that display kstat data such as the 4894 * mdb ::arc dcmd and the Linux crash utility. These tools 4895 * typically do not call kstat's update function, but simply 4896 * dump out stats from the most recent update. Without 4897 * this call, these commands may show stale stats for the 4898 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 4899 * with this call, the data might be out of date if the 4900 * evict thread hasn't been woken recently; but that should 4901 * suffice. The arc_state_t structures can be queried 4902 * directly if more accurate information is needed. 4903 */ 4904 if (arc_ksp != NULL) 4905 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 4906 #endif 4907 4908 /* 4909 * We have to rely on arc_wait_for_eviction() to tell us when to 4910 * evict, rather than checking if we are overflowing here, so that we 4911 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv. 4912 * If we have become "not overflowing" since arc_wait_for_eviction() 4913 * checked, we need to wake it up. We could broadcast the CV here, 4914 * but arc_wait_for_eviction() may have not yet gone to sleep. We 4915 * would need to use a mutex to ensure that this function doesn't 4916 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g. 4917 * the arc_evict_lock). However, the lock ordering of such a lock 4918 * would necessarily be incorrect with respect to the zthr_lock, 4919 * which is held before this function is called, and is held by 4920 * arc_wait_for_eviction() when it calls zthr_wakeup(). 4921 */ 4922 return (arc_evict_needed); 4923 } 4924 4925 /* 4926 * Keep arc_size under arc_c by running arc_evict which evicts data 4927 * from the ARC. 4928 */ 4929 static void 4930 arc_evict_cb(void *arg, zthr_t *zthr) 4931 { 4932 (void) arg, (void) zthr; 4933 4934 uint64_t evicted = 0; 4935 fstrans_cookie_t cookie = spl_fstrans_mark(); 4936 4937 /* Evict from cache */ 4938 evicted = arc_evict(); 4939 4940 /* 4941 * If evicted is zero, we couldn't evict anything 4942 * via arc_evict(). This could be due to hash lock 4943 * collisions, but more likely due to the majority of 4944 * arc buffers being unevictable. Therefore, even if 4945 * arc_size is above arc_c, another pass is unlikely to 4946 * be helpful and could potentially cause us to enter an 4947 * infinite loop. Additionally, zthr_iscancelled() is 4948 * checked here so that if the arc is shutting down, the 4949 * broadcast will wake any remaining arc evict waiters. 4950 */ 4951 mutex_enter(&arc_evict_lock); 4952 arc_evict_needed = !zthr_iscancelled(arc_evict_zthr) && 4953 evicted > 0 && aggsum_compare(&arc_sums.arcstat_size, arc_c) > 0; 4954 if (!arc_evict_needed) { 4955 /* 4956 * We're either no longer overflowing, or we 4957 * can't evict anything more, so we should wake 4958 * arc_get_data_impl() sooner. 4959 */ 4960 arc_evict_waiter_t *aw; 4961 while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) { 4962 cv_broadcast(&aw->aew_cv); 4963 } 4964 arc_set_need_free(); 4965 } 4966 mutex_exit(&arc_evict_lock); 4967 spl_fstrans_unmark(cookie); 4968 } 4969 4970 static boolean_t 4971 arc_reap_cb_check(void *arg, zthr_t *zthr) 4972 { 4973 (void) arg, (void) zthr; 4974 4975 int64_t free_memory = arc_available_memory(); 4976 static int reap_cb_check_counter = 0; 4977 4978 /* 4979 * If a kmem reap is already active, don't schedule more. We must 4980 * check for this because kmem_cache_reap_soon() won't actually 4981 * block on the cache being reaped (this is to prevent callers from 4982 * becoming implicitly blocked by a system-wide kmem reap -- which, 4983 * on a system with many, many full magazines, can take minutes). 4984 */ 4985 if (!kmem_cache_reap_active() && free_memory < 0) { 4986 4987 arc_no_grow = B_TRUE; 4988 arc_warm = B_TRUE; 4989 /* 4990 * Wait at least zfs_grow_retry (default 5) seconds 4991 * before considering growing. 4992 */ 4993 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry); 4994 return (B_TRUE); 4995 } else if (free_memory < arc_c >> arc_no_grow_shift) { 4996 arc_no_grow = B_TRUE; 4997 } else if (gethrtime() >= arc_growtime) { 4998 arc_no_grow = B_FALSE; 4999 } 5000 5001 /* 5002 * Called unconditionally every 60 seconds to reclaim unused 5003 * zstd compression and decompression context. This is done 5004 * here to avoid the need for an independent thread. 5005 */ 5006 if (!((reap_cb_check_counter++) % 60)) 5007 zfs_zstd_cache_reap_now(); 5008 5009 return (B_FALSE); 5010 } 5011 5012 /* 5013 * Keep enough free memory in the system by reaping the ARC's kmem 5014 * caches. To cause more slabs to be reapable, we may reduce the 5015 * target size of the cache (arc_c), causing the arc_evict_cb() 5016 * to free more buffers. 5017 */ 5018 static void 5019 arc_reap_cb(void *arg, zthr_t *zthr) 5020 { 5021 (void) arg, (void) zthr; 5022 5023 int64_t free_memory; 5024 fstrans_cookie_t cookie = spl_fstrans_mark(); 5025 5026 /* 5027 * Kick off asynchronous kmem_reap()'s of all our caches. 5028 */ 5029 arc_kmem_reap_soon(); 5030 5031 /* 5032 * Wait at least arc_kmem_cache_reap_retry_ms between 5033 * arc_kmem_reap_soon() calls. Without this check it is possible to 5034 * end up in a situation where we spend lots of time reaping 5035 * caches, while we're near arc_c_min. Waiting here also gives the 5036 * subsequent free memory check a chance of finding that the 5037 * asynchronous reap has already freed enough memory, and we don't 5038 * need to call arc_reduce_target_size(). 5039 */ 5040 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000); 5041 5042 /* 5043 * Reduce the target size as needed to maintain the amount of free 5044 * memory in the system at a fraction of the arc_size (1/128th by 5045 * default). If oversubscribed (free_memory < 0) then reduce the 5046 * target arc_size by the deficit amount plus the fractional 5047 * amount. If free memory is positive but less than the fractional 5048 * amount, reduce by what is needed to hit the fractional amount. 5049 */ 5050 free_memory = arc_available_memory(); 5051 5052 int64_t to_free = 5053 (arc_c >> arc_shrink_shift) - free_memory; 5054 if (to_free > 0) { 5055 arc_reduce_target_size(to_free); 5056 } 5057 spl_fstrans_unmark(cookie); 5058 } 5059 5060 #ifdef _KERNEL 5061 /* 5062 * Determine the amount of memory eligible for eviction contained in the 5063 * ARC. All clean data reported by the ghost lists can always be safely 5064 * evicted. Due to arc_c_min, the same does not hold for all clean data 5065 * contained by the regular mru and mfu lists. 5066 * 5067 * In the case of the regular mru and mfu lists, we need to report as 5068 * much clean data as possible, such that evicting that same reported 5069 * data will not bring arc_size below arc_c_min. Thus, in certain 5070 * circumstances, the total amount of clean data in the mru and mfu 5071 * lists might not actually be evictable. 5072 * 5073 * The following two distinct cases are accounted for: 5074 * 5075 * 1. The sum of the amount of dirty data contained by both the mru and 5076 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 5077 * is greater than or equal to arc_c_min. 5078 * (i.e. amount of dirty data >= arc_c_min) 5079 * 5080 * This is the easy case; all clean data contained by the mru and mfu 5081 * lists is evictable. Evicting all clean data can only drop arc_size 5082 * to the amount of dirty data, which is greater than arc_c_min. 5083 * 5084 * 2. The sum of the amount of dirty data contained by both the mru and 5085 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 5086 * is less than arc_c_min. 5087 * (i.e. arc_c_min > amount of dirty data) 5088 * 5089 * 2.1. arc_size is greater than or equal arc_c_min. 5090 * (i.e. arc_size >= arc_c_min > amount of dirty data) 5091 * 5092 * In this case, not all clean data from the regular mru and mfu 5093 * lists is actually evictable; we must leave enough clean data 5094 * to keep arc_size above arc_c_min. Thus, the maximum amount of 5095 * evictable data from the two lists combined, is exactly the 5096 * difference between arc_size and arc_c_min. 5097 * 5098 * 2.2. arc_size is less than arc_c_min 5099 * (i.e. arc_c_min > arc_size > amount of dirty data) 5100 * 5101 * In this case, none of the data contained in the mru and mfu 5102 * lists is evictable, even if it's clean. Since arc_size is 5103 * already below arc_c_min, evicting any more would only 5104 * increase this negative difference. 5105 */ 5106 5107 #endif /* _KERNEL */ 5108 5109 /* 5110 * Adapt arc info given the number of bytes we are trying to add and 5111 * the state that we are coming from. This function is only called 5112 * when we are adding new content to the cache. 5113 */ 5114 static void 5115 arc_adapt(int bytes, arc_state_t *state) 5116 { 5117 int mult; 5118 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 5119 int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size); 5120 int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size); 5121 5122 ASSERT(bytes > 0); 5123 /* 5124 * Adapt the target size of the MRU list: 5125 * - if we just hit in the MRU ghost list, then increase 5126 * the target size of the MRU list. 5127 * - if we just hit in the MFU ghost list, then increase 5128 * the target size of the MFU list by decreasing the 5129 * target size of the MRU list. 5130 */ 5131 if (state == arc_mru_ghost) { 5132 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size); 5133 if (!zfs_arc_p_dampener_disable) 5134 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 5135 5136 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 5137 } else if (state == arc_mfu_ghost) { 5138 uint64_t delta; 5139 5140 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size); 5141 if (!zfs_arc_p_dampener_disable) 5142 mult = MIN(mult, 10); 5143 5144 delta = MIN(bytes * mult, arc_p); 5145 arc_p = MAX(arc_p_min, arc_p - delta); 5146 } 5147 ASSERT((int64_t)arc_p >= 0); 5148 5149 /* 5150 * Wake reap thread if we do not have any available memory 5151 */ 5152 if (arc_reclaim_needed()) { 5153 zthr_wakeup(arc_reap_zthr); 5154 return; 5155 } 5156 5157 if (arc_no_grow) 5158 return; 5159 5160 if (arc_c >= arc_c_max) 5161 return; 5162 5163 /* 5164 * If we're within (2 * maxblocksize) bytes of the target 5165 * cache size, increment the target cache size 5166 */ 5167 ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT); 5168 if (aggsum_upper_bound(&arc_sums.arcstat_size) >= 5169 arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 5170 atomic_add_64(&arc_c, (int64_t)bytes); 5171 if (arc_c > arc_c_max) 5172 arc_c = arc_c_max; 5173 else if (state == arc_anon) 5174 atomic_add_64(&arc_p, (int64_t)bytes); 5175 if (arc_p > arc_c) 5176 arc_p = arc_c; 5177 } 5178 ASSERT((int64_t)arc_p >= 0); 5179 } 5180 5181 /* 5182 * Check if arc_size has grown past our upper threshold, determined by 5183 * zfs_arc_overflow_shift. 5184 */ 5185 static arc_ovf_level_t 5186 arc_is_overflowing(boolean_t use_reserve) 5187 { 5188 /* Always allow at least one block of overflow */ 5189 int64_t overflow = MAX(SPA_MAXBLOCKSIZE, 5190 arc_c >> zfs_arc_overflow_shift); 5191 5192 /* 5193 * We just compare the lower bound here for performance reasons. Our 5194 * primary goals are to make sure that the arc never grows without 5195 * bound, and that it can reach its maximum size. This check 5196 * accomplishes both goals. The maximum amount we could run over by is 5197 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block 5198 * in the ARC. In practice, that's in the tens of MB, which is low 5199 * enough to be safe. 5200 */ 5201 int64_t over = aggsum_lower_bound(&arc_sums.arcstat_size) - 5202 arc_c - overflow / 2; 5203 if (!use_reserve) 5204 overflow /= 2; 5205 return (over < 0 ? ARC_OVF_NONE : 5206 over < overflow ? ARC_OVF_SOME : ARC_OVF_SEVERE); 5207 } 5208 5209 static abd_t * 5210 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 5211 int alloc_flags) 5212 { 5213 arc_buf_contents_t type = arc_buf_type(hdr); 5214 5215 arc_get_data_impl(hdr, size, tag, alloc_flags); 5216 if (type == ARC_BUFC_METADATA) { 5217 return (abd_alloc(size, B_TRUE)); 5218 } else { 5219 ASSERT(type == ARC_BUFC_DATA); 5220 return (abd_alloc(size, B_FALSE)); 5221 } 5222 } 5223 5224 static void * 5225 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 5226 { 5227 arc_buf_contents_t type = arc_buf_type(hdr); 5228 5229 arc_get_data_impl(hdr, size, tag, ARC_HDR_DO_ADAPT); 5230 if (type == ARC_BUFC_METADATA) { 5231 return (zio_buf_alloc(size)); 5232 } else { 5233 ASSERT(type == ARC_BUFC_DATA); 5234 return (zio_data_buf_alloc(size)); 5235 } 5236 } 5237 5238 /* 5239 * Wait for the specified amount of data (in bytes) to be evicted from the 5240 * ARC, and for there to be sufficient free memory in the system. Waiting for 5241 * eviction ensures that the memory used by the ARC decreases. Waiting for 5242 * free memory ensures that the system won't run out of free pages, regardless 5243 * of ARC behavior and settings. See arc_lowmem_init(). 5244 */ 5245 void 5246 arc_wait_for_eviction(uint64_t amount, boolean_t use_reserve) 5247 { 5248 switch (arc_is_overflowing(use_reserve)) { 5249 case ARC_OVF_NONE: 5250 return; 5251 case ARC_OVF_SOME: 5252 /* 5253 * This is a bit racy without taking arc_evict_lock, but the 5254 * worst that can happen is we either call zthr_wakeup() extra 5255 * time due to race with other thread here, or the set flag 5256 * get cleared by arc_evict_cb(), which is unlikely due to 5257 * big hysteresis, but also not important since at this level 5258 * of overflow the eviction is purely advisory. Same time 5259 * taking the global lock here every time without waiting for 5260 * the actual eviction creates a significant lock contention. 5261 */ 5262 if (!arc_evict_needed) { 5263 arc_evict_needed = B_TRUE; 5264 zthr_wakeup(arc_evict_zthr); 5265 } 5266 return; 5267 case ARC_OVF_SEVERE: 5268 default: 5269 { 5270 arc_evict_waiter_t aw; 5271 list_link_init(&aw.aew_node); 5272 cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL); 5273 5274 uint64_t last_count = 0; 5275 mutex_enter(&arc_evict_lock); 5276 if (!list_is_empty(&arc_evict_waiters)) { 5277 arc_evict_waiter_t *last = 5278 list_tail(&arc_evict_waiters); 5279 last_count = last->aew_count; 5280 } else if (!arc_evict_needed) { 5281 arc_evict_needed = B_TRUE; 5282 zthr_wakeup(arc_evict_zthr); 5283 } 5284 /* 5285 * Note, the last waiter's count may be less than 5286 * arc_evict_count if we are low on memory in which 5287 * case arc_evict_state_impl() may have deferred 5288 * wakeups (but still incremented arc_evict_count). 5289 */ 5290 aw.aew_count = MAX(last_count, arc_evict_count) + amount; 5291 5292 list_insert_tail(&arc_evict_waiters, &aw); 5293 5294 arc_set_need_free(); 5295 5296 DTRACE_PROBE3(arc__wait__for__eviction, 5297 uint64_t, amount, 5298 uint64_t, arc_evict_count, 5299 uint64_t, aw.aew_count); 5300 5301 /* 5302 * We will be woken up either when arc_evict_count reaches 5303 * aew_count, or when the ARC is no longer overflowing and 5304 * eviction completes. 5305 * In case of "false" wakeup, we will still be on the list. 5306 */ 5307 do { 5308 cv_wait(&aw.aew_cv, &arc_evict_lock); 5309 } while (list_link_active(&aw.aew_node)); 5310 mutex_exit(&arc_evict_lock); 5311 5312 cv_destroy(&aw.aew_cv); 5313 } 5314 } 5315 } 5316 5317 /* 5318 * Allocate a block and return it to the caller. If we are hitting the 5319 * hard limit for the cache size, we must sleep, waiting for the eviction 5320 * thread to catch up. If we're past the target size but below the hard 5321 * limit, we'll only signal the reclaim thread and continue on. 5322 */ 5323 static void 5324 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 5325 int alloc_flags) 5326 { 5327 arc_state_t *state = hdr->b_l1hdr.b_state; 5328 arc_buf_contents_t type = arc_buf_type(hdr); 5329 5330 if (alloc_flags & ARC_HDR_DO_ADAPT) 5331 arc_adapt(size, state); 5332 5333 /* 5334 * If arc_size is currently overflowing, we must be adding data 5335 * faster than we are evicting. To ensure we don't compound the 5336 * problem by adding more data and forcing arc_size to grow even 5337 * further past it's target size, we wait for the eviction thread to 5338 * make some progress. We also wait for there to be sufficient free 5339 * memory in the system, as measured by arc_free_memory(). 5340 * 5341 * Specifically, we wait for zfs_arc_eviction_pct percent of the 5342 * requested size to be evicted. This should be more than 100%, to 5343 * ensure that that progress is also made towards getting arc_size 5344 * under arc_c. See the comment above zfs_arc_eviction_pct. 5345 */ 5346 arc_wait_for_eviction(size * zfs_arc_eviction_pct / 100, 5347 alloc_flags & ARC_HDR_USE_RESERVE); 5348 5349 VERIFY3U(hdr->b_type, ==, type); 5350 if (type == ARC_BUFC_METADATA) { 5351 arc_space_consume(size, ARC_SPACE_META); 5352 } else { 5353 arc_space_consume(size, ARC_SPACE_DATA); 5354 } 5355 5356 /* 5357 * Update the state size. Note that ghost states have a 5358 * "ghost size" and so don't need to be updated. 5359 */ 5360 if (!GHOST_STATE(state)) { 5361 5362 (void) zfs_refcount_add_many(&state->arcs_size, size, tag); 5363 5364 /* 5365 * If this is reached via arc_read, the link is 5366 * protected by the hash lock. If reached via 5367 * arc_buf_alloc, the header should not be accessed by 5368 * any other thread. And, if reached via arc_read_done, 5369 * the hash lock will protect it if it's found in the 5370 * hash table; otherwise no other thread should be 5371 * trying to [add|remove]_reference it. 5372 */ 5373 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5374 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5375 (void) zfs_refcount_add_many(&state->arcs_esize[type], 5376 size, tag); 5377 } 5378 5379 /* 5380 * If we are growing the cache, and we are adding anonymous 5381 * data, and we have outgrown arc_p, update arc_p 5382 */ 5383 if (aggsum_upper_bound(&arc_sums.arcstat_size) < arc_c && 5384 hdr->b_l1hdr.b_state == arc_anon && 5385 (zfs_refcount_count(&arc_anon->arcs_size) + 5386 zfs_refcount_count(&arc_mru->arcs_size) > arc_p)) 5387 arc_p = MIN(arc_c, arc_p + size); 5388 } 5389 } 5390 5391 static void 5392 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag) 5393 { 5394 arc_free_data_impl(hdr, size, tag); 5395 abd_free(abd); 5396 } 5397 5398 static void 5399 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag) 5400 { 5401 arc_buf_contents_t type = arc_buf_type(hdr); 5402 5403 arc_free_data_impl(hdr, size, tag); 5404 if (type == ARC_BUFC_METADATA) { 5405 zio_buf_free(buf, size); 5406 } else { 5407 ASSERT(type == ARC_BUFC_DATA); 5408 zio_data_buf_free(buf, size); 5409 } 5410 } 5411 5412 /* 5413 * Free the arc data buffer. 5414 */ 5415 static void 5416 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 5417 { 5418 arc_state_t *state = hdr->b_l1hdr.b_state; 5419 arc_buf_contents_t type = arc_buf_type(hdr); 5420 5421 /* protected by hash lock, if in the hash table */ 5422 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5423 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5424 ASSERT(state != arc_anon && state != arc_l2c_only); 5425 5426 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 5427 size, tag); 5428 } 5429 (void) zfs_refcount_remove_many(&state->arcs_size, size, tag); 5430 5431 VERIFY3U(hdr->b_type, ==, type); 5432 if (type == ARC_BUFC_METADATA) { 5433 arc_space_return(size, ARC_SPACE_META); 5434 } else { 5435 ASSERT(type == ARC_BUFC_DATA); 5436 arc_space_return(size, ARC_SPACE_DATA); 5437 } 5438 } 5439 5440 /* 5441 * This routine is called whenever a buffer is accessed. 5442 * NOTE: the hash lock is dropped in this function. 5443 */ 5444 static void 5445 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 5446 { 5447 clock_t now; 5448 5449 ASSERT(MUTEX_HELD(hash_lock)); 5450 ASSERT(HDR_HAS_L1HDR(hdr)); 5451 5452 if (hdr->b_l1hdr.b_state == arc_anon) { 5453 /* 5454 * This buffer is not in the cache, and does not 5455 * appear in our "ghost" list. Add the new buffer 5456 * to the MRU state. 5457 */ 5458 5459 ASSERT0(hdr->b_l1hdr.b_arc_access); 5460 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5461 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5462 arc_change_state(arc_mru, hdr, hash_lock); 5463 5464 } else if (hdr->b_l1hdr.b_state == arc_mru) { 5465 now = ddi_get_lbolt(); 5466 5467 /* 5468 * If this buffer is here because of a prefetch, then either: 5469 * - clear the flag if this is a "referencing" read 5470 * (any subsequent access will bump this into the MFU state). 5471 * or 5472 * - move the buffer to the head of the list if this is 5473 * another prefetch (to make it less likely to be evicted). 5474 */ 5475 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5476 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 5477 /* link protected by hash lock */ 5478 ASSERT(multilist_link_active( 5479 &hdr->b_l1hdr.b_arc_node)); 5480 } else { 5481 if (HDR_HAS_L2HDR(hdr)) 5482 l2arc_hdr_arcstats_decrement_state(hdr); 5483 arc_hdr_clear_flags(hdr, 5484 ARC_FLAG_PREFETCH | 5485 ARC_FLAG_PRESCIENT_PREFETCH); 5486 hdr->b_l1hdr.b_mru_hits++; 5487 ARCSTAT_BUMP(arcstat_mru_hits); 5488 if (HDR_HAS_L2HDR(hdr)) 5489 l2arc_hdr_arcstats_increment_state(hdr); 5490 } 5491 hdr->b_l1hdr.b_arc_access = now; 5492 return; 5493 } 5494 5495 /* 5496 * This buffer has been "accessed" only once so far, 5497 * but it is still in the cache. Move it to the MFU 5498 * state. 5499 */ 5500 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access + 5501 ARC_MINTIME)) { 5502 /* 5503 * More than 125ms have passed since we 5504 * instantiated this buffer. Move it to the 5505 * most frequently used state. 5506 */ 5507 hdr->b_l1hdr.b_arc_access = now; 5508 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5509 arc_change_state(arc_mfu, hdr, hash_lock); 5510 } 5511 hdr->b_l1hdr.b_mru_hits++; 5512 ARCSTAT_BUMP(arcstat_mru_hits); 5513 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 5514 arc_state_t *new_state; 5515 /* 5516 * This buffer has been "accessed" recently, but 5517 * was evicted from the cache. Move it to the 5518 * MFU state. 5519 */ 5520 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5521 new_state = arc_mru; 5522 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) { 5523 if (HDR_HAS_L2HDR(hdr)) 5524 l2arc_hdr_arcstats_decrement_state(hdr); 5525 arc_hdr_clear_flags(hdr, 5526 ARC_FLAG_PREFETCH | 5527 ARC_FLAG_PRESCIENT_PREFETCH); 5528 if (HDR_HAS_L2HDR(hdr)) 5529 l2arc_hdr_arcstats_increment_state(hdr); 5530 } 5531 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5532 } else { 5533 new_state = arc_mfu; 5534 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5535 } 5536 5537 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5538 arc_change_state(new_state, hdr, hash_lock); 5539 5540 hdr->b_l1hdr.b_mru_ghost_hits++; 5541 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 5542 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 5543 /* 5544 * This buffer has been accessed more than once and is 5545 * still in the cache. Keep it in the MFU state. 5546 * 5547 * NOTE: an add_reference() that occurred when we did 5548 * the arc_read() will have kicked this off the list. 5549 * If it was a prefetch, we will explicitly move it to 5550 * the head of the list now. 5551 */ 5552 5553 hdr->b_l1hdr.b_mfu_hits++; 5554 ARCSTAT_BUMP(arcstat_mfu_hits); 5555 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5556 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 5557 arc_state_t *new_state = arc_mfu; 5558 /* 5559 * This buffer has been accessed more than once but has 5560 * been evicted from the cache. Move it back to the 5561 * MFU state. 5562 */ 5563 5564 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5565 /* 5566 * This is a prefetch access... 5567 * move this block back to the MRU state. 5568 */ 5569 new_state = arc_mru; 5570 } 5571 5572 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5573 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5574 arc_change_state(new_state, hdr, hash_lock); 5575 5576 hdr->b_l1hdr.b_mfu_ghost_hits++; 5577 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 5578 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 5579 /* 5580 * This buffer is on the 2nd Level ARC. 5581 */ 5582 5583 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5584 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5585 arc_change_state(arc_mfu, hdr, hash_lock); 5586 } else { 5587 cmn_err(CE_PANIC, "invalid arc state 0x%p", 5588 hdr->b_l1hdr.b_state); 5589 } 5590 } 5591 5592 /* 5593 * This routine is called by dbuf_hold() to update the arc_access() state 5594 * which otherwise would be skipped for entries in the dbuf cache. 5595 */ 5596 void 5597 arc_buf_access(arc_buf_t *buf) 5598 { 5599 mutex_enter(&buf->b_evict_lock); 5600 arc_buf_hdr_t *hdr = buf->b_hdr; 5601 5602 /* 5603 * Avoid taking the hash_lock when possible as an optimization. 5604 * The header must be checked again under the hash_lock in order 5605 * to handle the case where it is concurrently being released. 5606 */ 5607 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5608 mutex_exit(&buf->b_evict_lock); 5609 return; 5610 } 5611 5612 kmutex_t *hash_lock = HDR_LOCK(hdr); 5613 mutex_enter(hash_lock); 5614 5615 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5616 mutex_exit(hash_lock); 5617 mutex_exit(&buf->b_evict_lock); 5618 ARCSTAT_BUMP(arcstat_access_skip); 5619 return; 5620 } 5621 5622 mutex_exit(&buf->b_evict_lock); 5623 5624 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5625 hdr->b_l1hdr.b_state == arc_mfu); 5626 5627 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5628 arc_access(hdr, hash_lock); 5629 mutex_exit(hash_lock); 5630 5631 ARCSTAT_BUMP(arcstat_hits); 5632 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr) && !HDR_PRESCIENT_PREFETCH(hdr), 5633 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits); 5634 } 5635 5636 /* a generic arc_read_done_func_t which you can use */ 5637 void 5638 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5639 arc_buf_t *buf, void *arg) 5640 { 5641 (void) zio, (void) zb, (void) bp; 5642 5643 if (buf == NULL) 5644 return; 5645 5646 memcpy(arg, buf->b_data, arc_buf_size(buf)); 5647 arc_buf_destroy(buf, arg); 5648 } 5649 5650 /* a generic arc_read_done_func_t */ 5651 void 5652 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5653 arc_buf_t *buf, void *arg) 5654 { 5655 (void) zb, (void) bp; 5656 arc_buf_t **bufp = arg; 5657 5658 if (buf == NULL) { 5659 ASSERT(zio == NULL || zio->io_error != 0); 5660 *bufp = NULL; 5661 } else { 5662 ASSERT(zio == NULL || zio->io_error == 0); 5663 *bufp = buf; 5664 ASSERT(buf->b_data != NULL); 5665 } 5666 } 5667 5668 static void 5669 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp) 5670 { 5671 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 5672 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0); 5673 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF); 5674 } else { 5675 if (HDR_COMPRESSION_ENABLED(hdr)) { 5676 ASSERT3U(arc_hdr_get_compress(hdr), ==, 5677 BP_GET_COMPRESS(bp)); 5678 } 5679 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 5680 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); 5681 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp)); 5682 } 5683 } 5684 5685 static void 5686 arc_read_done(zio_t *zio) 5687 { 5688 blkptr_t *bp = zio->io_bp; 5689 arc_buf_hdr_t *hdr = zio->io_private; 5690 kmutex_t *hash_lock = NULL; 5691 arc_callback_t *callback_list; 5692 arc_callback_t *acb; 5693 boolean_t freeable = B_FALSE; 5694 5695 /* 5696 * The hdr was inserted into hash-table and removed from lists 5697 * prior to starting I/O. We should find this header, since 5698 * it's in the hash table, and it should be legit since it's 5699 * not possible to evict it during the I/O. The only possible 5700 * reason for it not to be found is if we were freed during the 5701 * read. 5702 */ 5703 if (HDR_IN_HASH_TABLE(hdr)) { 5704 arc_buf_hdr_t *found; 5705 5706 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 5707 ASSERT3U(hdr->b_dva.dva_word[0], ==, 5708 BP_IDENTITY(zio->io_bp)->dva_word[0]); 5709 ASSERT3U(hdr->b_dva.dva_word[1], ==, 5710 BP_IDENTITY(zio->io_bp)->dva_word[1]); 5711 5712 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock); 5713 5714 ASSERT((found == hdr && 5715 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 5716 (found == hdr && HDR_L2_READING(hdr))); 5717 ASSERT3P(hash_lock, !=, NULL); 5718 } 5719 5720 if (BP_IS_PROTECTED(bp)) { 5721 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 5722 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 5723 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 5724 hdr->b_crypt_hdr.b_iv); 5725 5726 if (zio->io_error == 0) { 5727 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) { 5728 void *tmpbuf; 5729 5730 tmpbuf = abd_borrow_buf_copy(zio->io_abd, 5731 sizeof (zil_chain_t)); 5732 zio_crypt_decode_mac_zil(tmpbuf, 5733 hdr->b_crypt_hdr.b_mac); 5734 abd_return_buf(zio->io_abd, tmpbuf, 5735 sizeof (zil_chain_t)); 5736 } else { 5737 zio_crypt_decode_mac_bp(bp, 5738 hdr->b_crypt_hdr.b_mac); 5739 } 5740 } 5741 } 5742 5743 if (zio->io_error == 0) { 5744 /* byteswap if necessary */ 5745 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 5746 if (BP_GET_LEVEL(zio->io_bp) > 0) { 5747 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 5748 } else { 5749 hdr->b_l1hdr.b_byteswap = 5750 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 5751 } 5752 } else { 5753 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 5754 } 5755 if (!HDR_L2_READING(hdr)) { 5756 hdr->b_complevel = zio->io_prop.zp_complevel; 5757 } 5758 } 5759 5760 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); 5761 if (l2arc_noprefetch && HDR_PREFETCH(hdr)) 5762 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE); 5763 5764 callback_list = hdr->b_l1hdr.b_acb; 5765 ASSERT3P(callback_list, !=, NULL); 5766 5767 if (hash_lock && zio->io_error == 0 && 5768 hdr->b_l1hdr.b_state == arc_anon) { 5769 /* 5770 * Only call arc_access on anonymous buffers. This is because 5771 * if we've issued an I/O for an evicted buffer, we've already 5772 * called arc_access (to prevent any simultaneous readers from 5773 * getting confused). 5774 */ 5775 arc_access(hdr, hash_lock); 5776 } 5777 5778 /* 5779 * If a read request has a callback (i.e. acb_done is not NULL), then we 5780 * make a buf containing the data according to the parameters which were 5781 * passed in. The implementation of arc_buf_alloc_impl() ensures that we 5782 * aren't needlessly decompressing the data multiple times. 5783 */ 5784 int callback_cnt = 0; 5785 for (acb = callback_list; acb != NULL; acb = acb->acb_next) { 5786 if (!acb->acb_done || acb->acb_nobuf) 5787 continue; 5788 5789 callback_cnt++; 5790 5791 if (zio->io_error != 0) 5792 continue; 5793 5794 int error = arc_buf_alloc_impl(hdr, zio->io_spa, 5795 &acb->acb_zb, acb->acb_private, acb->acb_encrypted, 5796 acb->acb_compressed, acb->acb_noauth, B_TRUE, 5797 &acb->acb_buf); 5798 5799 /* 5800 * Assert non-speculative zios didn't fail because an 5801 * encryption key wasn't loaded 5802 */ 5803 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) || 5804 error != EACCES); 5805 5806 /* 5807 * If we failed to decrypt, report an error now (as the zio 5808 * layer would have done if it had done the transforms). 5809 */ 5810 if (error == ECKSUM) { 5811 ASSERT(BP_IS_PROTECTED(bp)); 5812 error = SET_ERROR(EIO); 5813 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5814 spa_log_error(zio->io_spa, &acb->acb_zb); 5815 (void) zfs_ereport_post( 5816 FM_EREPORT_ZFS_AUTHENTICATION, 5817 zio->io_spa, NULL, &acb->acb_zb, zio, 0); 5818 } 5819 } 5820 5821 if (error != 0) { 5822 /* 5823 * Decompression or decryption failed. Set 5824 * io_error so that when we call acb_done 5825 * (below), we will indicate that the read 5826 * failed. Note that in the unusual case 5827 * where one callback is compressed and another 5828 * uncompressed, we will mark all of them 5829 * as failed, even though the uncompressed 5830 * one can't actually fail. In this case, 5831 * the hdr will not be anonymous, because 5832 * if there are multiple callbacks, it's 5833 * because multiple threads found the same 5834 * arc buf in the hash table. 5835 */ 5836 zio->io_error = error; 5837 } 5838 } 5839 5840 /* 5841 * If there are multiple callbacks, we must have the hash lock, 5842 * because the only way for multiple threads to find this hdr is 5843 * in the hash table. This ensures that if there are multiple 5844 * callbacks, the hdr is not anonymous. If it were anonymous, 5845 * we couldn't use arc_buf_destroy() in the error case below. 5846 */ 5847 ASSERT(callback_cnt < 2 || hash_lock != NULL); 5848 5849 hdr->b_l1hdr.b_acb = NULL; 5850 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5851 if (callback_cnt == 0) 5852 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 5853 5854 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) || 5855 callback_list != NULL); 5856 5857 if (zio->io_error == 0) { 5858 arc_hdr_verify(hdr, zio->io_bp); 5859 } else { 5860 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 5861 if (hdr->b_l1hdr.b_state != arc_anon) 5862 arc_change_state(arc_anon, hdr, hash_lock); 5863 if (HDR_IN_HASH_TABLE(hdr)) 5864 buf_hash_remove(hdr); 5865 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5866 } 5867 5868 /* 5869 * Broadcast before we drop the hash_lock to avoid the possibility 5870 * that the hdr (and hence the cv) might be freed before we get to 5871 * the cv_broadcast(). 5872 */ 5873 cv_broadcast(&hdr->b_l1hdr.b_cv); 5874 5875 if (hash_lock != NULL) { 5876 mutex_exit(hash_lock); 5877 } else { 5878 /* 5879 * This block was freed while we waited for the read to 5880 * complete. It has been removed from the hash table and 5881 * moved to the anonymous state (so that it won't show up 5882 * in the cache). 5883 */ 5884 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 5885 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5886 } 5887 5888 /* execute each callback and free its structure */ 5889 while ((acb = callback_list) != NULL) { 5890 if (acb->acb_done != NULL) { 5891 if (zio->io_error != 0 && acb->acb_buf != NULL) { 5892 /* 5893 * If arc_buf_alloc_impl() fails during 5894 * decompression, the buf will still be 5895 * allocated, and needs to be freed here. 5896 */ 5897 arc_buf_destroy(acb->acb_buf, 5898 acb->acb_private); 5899 acb->acb_buf = NULL; 5900 } 5901 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp, 5902 acb->acb_buf, acb->acb_private); 5903 } 5904 5905 if (acb->acb_zio_dummy != NULL) { 5906 acb->acb_zio_dummy->io_error = zio->io_error; 5907 zio_nowait(acb->acb_zio_dummy); 5908 } 5909 5910 callback_list = acb->acb_next; 5911 kmem_free(acb, sizeof (arc_callback_t)); 5912 } 5913 5914 if (freeable) 5915 arc_hdr_destroy(hdr); 5916 } 5917 5918 /* 5919 * "Read" the block at the specified DVA (in bp) via the 5920 * cache. If the block is found in the cache, invoke the provided 5921 * callback immediately and return. Note that the `zio' parameter 5922 * in the callback will be NULL in this case, since no IO was 5923 * required. If the block is not in the cache pass the read request 5924 * on to the spa with a substitute callback function, so that the 5925 * requested block will be added to the cache. 5926 * 5927 * If a read request arrives for a block that has a read in-progress, 5928 * either wait for the in-progress read to complete (and return the 5929 * results); or, if this is a read with a "done" func, add a record 5930 * to the read to invoke the "done" func when the read completes, 5931 * and return; or just return. 5932 * 5933 * arc_read_done() will invoke all the requested "done" functions 5934 * for readers of this block. 5935 */ 5936 int 5937 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 5938 arc_read_done_func_t *done, void *private, zio_priority_t priority, 5939 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 5940 { 5941 arc_buf_hdr_t *hdr = NULL; 5942 kmutex_t *hash_lock = NULL; 5943 zio_t *rzio; 5944 uint64_t guid = spa_load_guid(spa); 5945 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0; 5946 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) && 5947 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5948 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) && 5949 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5950 boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp); 5951 boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF; 5952 int rc = 0; 5953 5954 ASSERT(!embedded_bp || 5955 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 5956 ASSERT(!BP_IS_HOLE(bp)); 5957 ASSERT(!BP_IS_REDACTED(bp)); 5958 5959 /* 5960 * Normally SPL_FSTRANS will already be set since kernel threads which 5961 * expect to call the DMU interfaces will set it when created. System 5962 * calls are similarly handled by setting/cleaning the bit in the 5963 * registered callback (module/os/.../zfs/zpl_*). 5964 * 5965 * External consumers such as Lustre which call the exported DMU 5966 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock 5967 * on the hash_lock always set and clear the bit. 5968 */ 5969 fstrans_cookie_t cookie = spl_fstrans_mark(); 5970 top: 5971 /* 5972 * Verify the block pointer contents are reasonable. This should 5973 * always be the case since the blkptr is protected by a checksum. 5974 * However, if there is damage it's desirable to detect this early 5975 * and treat it as a checksum error. This allows an alternate blkptr 5976 * to be tried when one is available (e.g. ditto blocks). 5977 */ 5978 if (!zfs_blkptr_verify(spa, bp, zio_flags & ZIO_FLAG_CONFIG_WRITER, 5979 BLK_VERIFY_LOG)) { 5980 rc = SET_ERROR(ECKSUM); 5981 goto out; 5982 } 5983 5984 if (!embedded_bp) { 5985 /* 5986 * Embedded BP's have no DVA and require no I/O to "read". 5987 * Create an anonymous arc buf to back it. 5988 */ 5989 hdr = buf_hash_find(guid, bp, &hash_lock); 5990 } 5991 5992 /* 5993 * Determine if we have an L1 cache hit or a cache miss. For simplicity 5994 * we maintain encrypted data separately from compressed / uncompressed 5995 * data. If the user is requesting raw encrypted data and we don't have 5996 * that in the header we will read from disk to guarantee that we can 5997 * get it even if the encryption keys aren't loaded. 5998 */ 5999 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) || 6000 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) { 6001 arc_buf_t *buf = NULL; 6002 *arc_flags |= ARC_FLAG_CACHED; 6003 6004 if (HDR_IO_IN_PROGRESS(hdr)) { 6005 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head; 6006 6007 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 6008 mutex_exit(hash_lock); 6009 ARCSTAT_BUMP(arcstat_cached_only_in_progress); 6010 rc = SET_ERROR(ENOENT); 6011 goto out; 6012 } 6013 6014 ASSERT3P(head_zio, !=, NULL); 6015 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && 6016 priority == ZIO_PRIORITY_SYNC_READ) { 6017 /* 6018 * This is a sync read that needs to wait for 6019 * an in-flight async read. Request that the 6020 * zio have its priority upgraded. 6021 */ 6022 zio_change_priority(head_zio, priority); 6023 DTRACE_PROBE1(arc__async__upgrade__sync, 6024 arc_buf_hdr_t *, hdr); 6025 ARCSTAT_BUMP(arcstat_async_upgrade_sync); 6026 } 6027 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 6028 arc_hdr_clear_flags(hdr, 6029 ARC_FLAG_PREDICTIVE_PREFETCH); 6030 } 6031 6032 if (*arc_flags & ARC_FLAG_WAIT) { 6033 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 6034 mutex_exit(hash_lock); 6035 goto top; 6036 } 6037 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 6038 6039 if (done) { 6040 arc_callback_t *acb = NULL; 6041 6042 acb = kmem_zalloc(sizeof (arc_callback_t), 6043 KM_SLEEP); 6044 acb->acb_done = done; 6045 acb->acb_private = private; 6046 acb->acb_compressed = compressed_read; 6047 acb->acb_encrypted = encrypted_read; 6048 acb->acb_noauth = noauth_read; 6049 acb->acb_nobuf = no_buf; 6050 acb->acb_zb = *zb; 6051 if (pio != NULL) 6052 acb->acb_zio_dummy = zio_null(pio, 6053 spa, NULL, NULL, NULL, zio_flags); 6054 6055 ASSERT3P(acb->acb_done, !=, NULL); 6056 acb->acb_zio_head = head_zio; 6057 acb->acb_next = hdr->b_l1hdr.b_acb; 6058 hdr->b_l1hdr.b_acb = acb; 6059 } 6060 mutex_exit(hash_lock); 6061 goto out; 6062 } 6063 6064 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 6065 hdr->b_l1hdr.b_state == arc_mfu); 6066 6067 if (done && !no_buf) { 6068 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 6069 /* 6070 * This is a demand read which does not have to 6071 * wait for i/o because we did a predictive 6072 * prefetch i/o for it, which has completed. 6073 */ 6074 DTRACE_PROBE1( 6075 arc__demand__hit__predictive__prefetch, 6076 arc_buf_hdr_t *, hdr); 6077 ARCSTAT_BUMP( 6078 arcstat_demand_hit_predictive_prefetch); 6079 arc_hdr_clear_flags(hdr, 6080 ARC_FLAG_PREDICTIVE_PREFETCH); 6081 } 6082 6083 if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) { 6084 ARCSTAT_BUMP( 6085 arcstat_demand_hit_prescient_prefetch); 6086 arc_hdr_clear_flags(hdr, 6087 ARC_FLAG_PRESCIENT_PREFETCH); 6088 } 6089 6090 ASSERT(!embedded_bp || !BP_IS_HOLE(bp)); 6091 6092 /* Get a buf with the desired data in it. */ 6093 rc = arc_buf_alloc_impl(hdr, spa, zb, private, 6094 encrypted_read, compressed_read, noauth_read, 6095 B_TRUE, &buf); 6096 if (rc == ECKSUM) { 6097 /* 6098 * Convert authentication and decryption errors 6099 * to EIO (and generate an ereport if needed) 6100 * before leaving the ARC. 6101 */ 6102 rc = SET_ERROR(EIO); 6103 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) { 6104 spa_log_error(spa, zb); 6105 (void) zfs_ereport_post( 6106 FM_EREPORT_ZFS_AUTHENTICATION, 6107 spa, NULL, zb, NULL, 0); 6108 } 6109 } 6110 if (rc != 0) { 6111 (void) remove_reference(hdr, hash_lock, 6112 private); 6113 arc_buf_destroy_impl(buf); 6114 buf = NULL; 6115 } 6116 6117 /* assert any errors weren't due to unloaded keys */ 6118 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) || 6119 rc != EACCES); 6120 } else if (*arc_flags & ARC_FLAG_PREFETCH && 6121 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6122 if (HDR_HAS_L2HDR(hdr)) 6123 l2arc_hdr_arcstats_decrement_state(hdr); 6124 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 6125 if (HDR_HAS_L2HDR(hdr)) 6126 l2arc_hdr_arcstats_increment_state(hdr); 6127 } 6128 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 6129 arc_access(hdr, hash_lock); 6130 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 6131 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 6132 if (*arc_flags & ARC_FLAG_L2CACHE) 6133 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6134 mutex_exit(hash_lock); 6135 ARCSTAT_BUMP(arcstat_hits); 6136 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 6137 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 6138 data, metadata, hits); 6139 6140 if (done) 6141 done(NULL, zb, bp, buf, private); 6142 } else { 6143 uint64_t lsize = BP_GET_LSIZE(bp); 6144 uint64_t psize = BP_GET_PSIZE(bp); 6145 arc_callback_t *acb; 6146 vdev_t *vd = NULL; 6147 uint64_t addr = 0; 6148 boolean_t devw = B_FALSE; 6149 uint64_t size; 6150 abd_t *hdr_abd; 6151 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0; 6152 6153 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 6154 rc = SET_ERROR(ENOENT); 6155 if (hash_lock != NULL) 6156 mutex_exit(hash_lock); 6157 goto out; 6158 } 6159 6160 if (hdr == NULL) { 6161 /* 6162 * This block is not in the cache or it has 6163 * embedded data. 6164 */ 6165 arc_buf_hdr_t *exists = NULL; 6166 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 6167 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 6168 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type); 6169 6170 if (!embedded_bp) { 6171 hdr->b_dva = *BP_IDENTITY(bp); 6172 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 6173 exists = buf_hash_insert(hdr, &hash_lock); 6174 } 6175 if (exists != NULL) { 6176 /* somebody beat us to the hash insert */ 6177 mutex_exit(hash_lock); 6178 buf_discard_identity(hdr); 6179 arc_hdr_destroy(hdr); 6180 goto top; /* restart the IO request */ 6181 } 6182 alloc_flags |= ARC_HDR_DO_ADAPT; 6183 } else { 6184 /* 6185 * This block is in the ghost cache or encrypted data 6186 * was requested and we didn't have it. If it was 6187 * L2-only (and thus didn't have an L1 hdr), 6188 * we realloc the header to add an L1 hdr. 6189 */ 6190 if (!HDR_HAS_L1HDR(hdr)) { 6191 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 6192 hdr_full_cache); 6193 } 6194 6195 if (GHOST_STATE(hdr->b_l1hdr.b_state)) { 6196 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6197 ASSERT(!HDR_HAS_RABD(hdr)); 6198 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6199 ASSERT0(zfs_refcount_count( 6200 &hdr->b_l1hdr.b_refcnt)); 6201 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 6202 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 6203 } else if (HDR_IO_IN_PROGRESS(hdr)) { 6204 /* 6205 * If this header already had an IO in progress 6206 * and we are performing another IO to fetch 6207 * encrypted data we must wait until the first 6208 * IO completes so as not to confuse 6209 * arc_read_done(). This should be very rare 6210 * and so the performance impact shouldn't 6211 * matter. 6212 */ 6213 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 6214 mutex_exit(hash_lock); 6215 goto top; 6216 } 6217 6218 /* 6219 * This is a delicate dance that we play here. 6220 * This hdr might be in the ghost list so we access 6221 * it to move it out of the ghost list before we 6222 * initiate the read. If it's a prefetch then 6223 * it won't have a callback so we'll remove the 6224 * reference that arc_buf_alloc_impl() created. We 6225 * do this after we've called arc_access() to 6226 * avoid hitting an assert in remove_reference(). 6227 */ 6228 arc_adapt(arc_hdr_size(hdr), hdr->b_l1hdr.b_state); 6229 arc_access(hdr, hash_lock); 6230 } 6231 6232 arc_hdr_alloc_abd(hdr, alloc_flags); 6233 if (encrypted_read) { 6234 ASSERT(HDR_HAS_RABD(hdr)); 6235 size = HDR_GET_PSIZE(hdr); 6236 hdr_abd = hdr->b_crypt_hdr.b_rabd; 6237 zio_flags |= ZIO_FLAG_RAW; 6238 } else { 6239 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 6240 size = arc_hdr_size(hdr); 6241 hdr_abd = hdr->b_l1hdr.b_pabd; 6242 6243 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 6244 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 6245 } 6246 6247 /* 6248 * For authenticated bp's, we do not ask the ZIO layer 6249 * to authenticate them since this will cause the entire 6250 * IO to fail if the key isn't loaded. Instead, we 6251 * defer authentication until arc_buf_fill(), which will 6252 * verify the data when the key is available. 6253 */ 6254 if (BP_IS_AUTHENTICATED(bp)) 6255 zio_flags |= ZIO_FLAG_RAW_ENCRYPT; 6256 } 6257 6258 if (*arc_flags & ARC_FLAG_PREFETCH && 6259 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6260 if (HDR_HAS_L2HDR(hdr)) 6261 l2arc_hdr_arcstats_decrement_state(hdr); 6262 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 6263 if (HDR_HAS_L2HDR(hdr)) 6264 l2arc_hdr_arcstats_increment_state(hdr); 6265 } 6266 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 6267 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 6268 if (*arc_flags & ARC_FLAG_L2CACHE) 6269 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6270 if (BP_IS_AUTHENTICATED(bp)) 6271 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6272 if (BP_GET_LEVEL(bp) > 0) 6273 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); 6274 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH) 6275 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH); 6276 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 6277 6278 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 6279 acb->acb_done = done; 6280 acb->acb_private = private; 6281 acb->acb_compressed = compressed_read; 6282 acb->acb_encrypted = encrypted_read; 6283 acb->acb_noauth = noauth_read; 6284 acb->acb_zb = *zb; 6285 6286 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6287 hdr->b_l1hdr.b_acb = acb; 6288 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6289 6290 if (HDR_HAS_L2HDR(hdr) && 6291 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 6292 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 6293 addr = hdr->b_l2hdr.b_daddr; 6294 /* 6295 * Lock out L2ARC device removal. 6296 */ 6297 if (vdev_is_dead(vd) || 6298 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 6299 vd = NULL; 6300 } 6301 6302 /* 6303 * We count both async reads and scrub IOs as asynchronous so 6304 * that both can be upgraded in the event of a cache hit while 6305 * the read IO is still in-flight. 6306 */ 6307 if (priority == ZIO_PRIORITY_ASYNC_READ || 6308 priority == ZIO_PRIORITY_SCRUB) 6309 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6310 else 6311 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6312 6313 /* 6314 * At this point, we have a level 1 cache miss or a blkptr 6315 * with embedded data. Try again in L2ARC if possible. 6316 */ 6317 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); 6318 6319 /* 6320 * Skip ARC stat bump for block pointers with embedded 6321 * data. The data are read from the blkptr itself via 6322 * decode_embedded_bp_compressed(). 6323 */ 6324 if (!embedded_bp) { 6325 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, 6326 blkptr_t *, bp, uint64_t, lsize, 6327 zbookmark_phys_t *, zb); 6328 ARCSTAT_BUMP(arcstat_misses); 6329 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 6330 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, 6331 metadata, misses); 6332 zfs_racct_read(size, 1); 6333 } 6334 6335 /* Check if the spa even has l2 configured */ 6336 const boolean_t spa_has_l2 = l2arc_ndev != 0 && 6337 spa->spa_l2cache.sav_count > 0; 6338 6339 if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) { 6340 /* 6341 * Read from the L2ARC if the following are true: 6342 * 1. The L2ARC vdev was previously cached. 6343 * 2. This buffer still has L2ARC metadata. 6344 * 3. This buffer isn't currently writing to the L2ARC. 6345 * 4. The L2ARC entry wasn't evicted, which may 6346 * also have invalidated the vdev. 6347 * 5. This isn't prefetch or l2arc_noprefetch is 0. 6348 */ 6349 if (HDR_HAS_L2HDR(hdr) && 6350 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 6351 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 6352 l2arc_read_callback_t *cb; 6353 abd_t *abd; 6354 uint64_t asize; 6355 6356 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 6357 ARCSTAT_BUMP(arcstat_l2_hits); 6358 hdr->b_l2hdr.b_hits++; 6359 6360 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 6361 KM_SLEEP); 6362 cb->l2rcb_hdr = hdr; 6363 cb->l2rcb_bp = *bp; 6364 cb->l2rcb_zb = *zb; 6365 cb->l2rcb_flags = zio_flags; 6366 6367 /* 6368 * When Compressed ARC is disabled, but the 6369 * L2ARC block is compressed, arc_hdr_size() 6370 * will have returned LSIZE rather than PSIZE. 6371 */ 6372 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 6373 !HDR_COMPRESSION_ENABLED(hdr) && 6374 HDR_GET_PSIZE(hdr) != 0) { 6375 size = HDR_GET_PSIZE(hdr); 6376 } 6377 6378 asize = vdev_psize_to_asize(vd, size); 6379 if (asize != size) { 6380 abd = abd_alloc_for_io(asize, 6381 HDR_ISTYPE_METADATA(hdr)); 6382 cb->l2rcb_abd = abd; 6383 } else { 6384 abd = hdr_abd; 6385 } 6386 6387 ASSERT(addr >= VDEV_LABEL_START_SIZE && 6388 addr + asize <= vd->vdev_psize - 6389 VDEV_LABEL_END_SIZE); 6390 6391 /* 6392 * l2arc read. The SCL_L2ARC lock will be 6393 * released by l2arc_read_done(). 6394 * Issue a null zio if the underlying buffer 6395 * was squashed to zero size by compression. 6396 */ 6397 ASSERT3U(arc_hdr_get_compress(hdr), !=, 6398 ZIO_COMPRESS_EMPTY); 6399 rzio = zio_read_phys(pio, vd, addr, 6400 asize, abd, 6401 ZIO_CHECKSUM_OFF, 6402 l2arc_read_done, cb, priority, 6403 zio_flags | ZIO_FLAG_DONT_CACHE | 6404 ZIO_FLAG_CANFAIL | 6405 ZIO_FLAG_DONT_PROPAGATE | 6406 ZIO_FLAG_DONT_RETRY, B_FALSE); 6407 acb->acb_zio_head = rzio; 6408 6409 if (hash_lock != NULL) 6410 mutex_exit(hash_lock); 6411 6412 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 6413 zio_t *, rzio); 6414 ARCSTAT_INCR(arcstat_l2_read_bytes, 6415 HDR_GET_PSIZE(hdr)); 6416 6417 if (*arc_flags & ARC_FLAG_NOWAIT) { 6418 zio_nowait(rzio); 6419 goto out; 6420 } 6421 6422 ASSERT(*arc_flags & ARC_FLAG_WAIT); 6423 if (zio_wait(rzio) == 0) 6424 goto out; 6425 6426 /* l2arc read error; goto zio_read() */ 6427 if (hash_lock != NULL) 6428 mutex_enter(hash_lock); 6429 } else { 6430 DTRACE_PROBE1(l2arc__miss, 6431 arc_buf_hdr_t *, hdr); 6432 ARCSTAT_BUMP(arcstat_l2_misses); 6433 if (HDR_L2_WRITING(hdr)) 6434 ARCSTAT_BUMP(arcstat_l2_rw_clash); 6435 spa_config_exit(spa, SCL_L2ARC, vd); 6436 } 6437 } else { 6438 if (vd != NULL) 6439 spa_config_exit(spa, SCL_L2ARC, vd); 6440 6441 /* 6442 * Only a spa with l2 should contribute to l2 6443 * miss stats. (Including the case of having a 6444 * faulted cache device - that's also a miss.) 6445 */ 6446 if (spa_has_l2) { 6447 /* 6448 * Skip ARC stat bump for block pointers with 6449 * embedded data. The data are read from the 6450 * blkptr itself via 6451 * decode_embedded_bp_compressed(). 6452 */ 6453 if (!embedded_bp) { 6454 DTRACE_PROBE1(l2arc__miss, 6455 arc_buf_hdr_t *, hdr); 6456 ARCSTAT_BUMP(arcstat_l2_misses); 6457 } 6458 } 6459 } 6460 6461 rzio = zio_read(pio, spa, bp, hdr_abd, size, 6462 arc_read_done, hdr, priority, zio_flags, zb); 6463 acb->acb_zio_head = rzio; 6464 6465 if (hash_lock != NULL) 6466 mutex_exit(hash_lock); 6467 6468 if (*arc_flags & ARC_FLAG_WAIT) { 6469 rc = zio_wait(rzio); 6470 goto out; 6471 } 6472 6473 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 6474 zio_nowait(rzio); 6475 } 6476 6477 out: 6478 /* embedded bps don't actually go to disk */ 6479 if (!embedded_bp) 6480 spa_read_history_add(spa, zb, *arc_flags); 6481 spl_fstrans_unmark(cookie); 6482 return (rc); 6483 } 6484 6485 arc_prune_t * 6486 arc_add_prune_callback(arc_prune_func_t *func, void *private) 6487 { 6488 arc_prune_t *p; 6489 6490 p = kmem_alloc(sizeof (*p), KM_SLEEP); 6491 p->p_pfunc = func; 6492 p->p_private = private; 6493 list_link_init(&p->p_node); 6494 zfs_refcount_create(&p->p_refcnt); 6495 6496 mutex_enter(&arc_prune_mtx); 6497 zfs_refcount_add(&p->p_refcnt, &arc_prune_list); 6498 list_insert_head(&arc_prune_list, p); 6499 mutex_exit(&arc_prune_mtx); 6500 6501 return (p); 6502 } 6503 6504 void 6505 arc_remove_prune_callback(arc_prune_t *p) 6506 { 6507 boolean_t wait = B_FALSE; 6508 mutex_enter(&arc_prune_mtx); 6509 list_remove(&arc_prune_list, p); 6510 if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0) 6511 wait = B_TRUE; 6512 mutex_exit(&arc_prune_mtx); 6513 6514 /* wait for arc_prune_task to finish */ 6515 if (wait) 6516 taskq_wait_outstanding(arc_prune_taskq, 0); 6517 ASSERT0(zfs_refcount_count(&p->p_refcnt)); 6518 zfs_refcount_destroy(&p->p_refcnt); 6519 kmem_free(p, sizeof (*p)); 6520 } 6521 6522 /* 6523 * Notify the arc that a block was freed, and thus will never be used again. 6524 */ 6525 void 6526 arc_freed(spa_t *spa, const blkptr_t *bp) 6527 { 6528 arc_buf_hdr_t *hdr; 6529 kmutex_t *hash_lock; 6530 uint64_t guid = spa_load_guid(spa); 6531 6532 ASSERT(!BP_IS_EMBEDDED(bp)); 6533 6534 hdr = buf_hash_find(guid, bp, &hash_lock); 6535 if (hdr == NULL) 6536 return; 6537 6538 /* 6539 * We might be trying to free a block that is still doing I/O 6540 * (i.e. prefetch) or has a reference (i.e. a dedup-ed, 6541 * dmu_sync-ed block). If this block is being prefetched, then it 6542 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr 6543 * until the I/O completes. A block may also have a reference if it is 6544 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would 6545 * have written the new block to its final resting place on disk but 6546 * without the dedup flag set. This would have left the hdr in the MRU 6547 * state and discoverable. When the txg finally syncs it detects that 6548 * the block was overridden in open context and issues an override I/O. 6549 * Since this is a dedup block, the override I/O will determine if the 6550 * block is already in the DDT. If so, then it will replace the io_bp 6551 * with the bp from the DDT and allow the I/O to finish. When the I/O 6552 * reaches the done callback, dbuf_write_override_done, it will 6553 * check to see if the io_bp and io_bp_override are identical. 6554 * If they are not, then it indicates that the bp was replaced with 6555 * the bp in the DDT and the override bp is freed. This allows 6556 * us to arrive here with a reference on a block that is being 6557 * freed. So if we have an I/O in progress, or a reference to 6558 * this hdr, then we don't destroy the hdr. 6559 */ 6560 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) && 6561 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) { 6562 arc_change_state(arc_anon, hdr, hash_lock); 6563 arc_hdr_destroy(hdr); 6564 mutex_exit(hash_lock); 6565 } else { 6566 mutex_exit(hash_lock); 6567 } 6568 6569 } 6570 6571 /* 6572 * Release this buffer from the cache, making it an anonymous buffer. This 6573 * must be done after a read and prior to modifying the buffer contents. 6574 * If the buffer has more than one reference, we must make 6575 * a new hdr for the buffer. 6576 */ 6577 void 6578 arc_release(arc_buf_t *buf, void *tag) 6579 { 6580 arc_buf_hdr_t *hdr = buf->b_hdr; 6581 6582 /* 6583 * It would be nice to assert that if its DMU metadata (level > 6584 * 0 || it's the dnode file), then it must be syncing context. 6585 * But we don't know that information at this level. 6586 */ 6587 6588 mutex_enter(&buf->b_evict_lock); 6589 6590 ASSERT(HDR_HAS_L1HDR(hdr)); 6591 6592 /* 6593 * We don't grab the hash lock prior to this check, because if 6594 * the buffer's header is in the arc_anon state, it won't be 6595 * linked into the hash table. 6596 */ 6597 if (hdr->b_l1hdr.b_state == arc_anon) { 6598 mutex_exit(&buf->b_evict_lock); 6599 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6600 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 6601 ASSERT(!HDR_HAS_L2HDR(hdr)); 6602 6603 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6604 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 6605 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node)); 6606 6607 hdr->b_l1hdr.b_arc_access = 0; 6608 6609 /* 6610 * If the buf is being overridden then it may already 6611 * have a hdr that is not empty. 6612 */ 6613 buf_discard_identity(hdr); 6614 arc_buf_thaw(buf); 6615 6616 return; 6617 } 6618 6619 kmutex_t *hash_lock = HDR_LOCK(hdr); 6620 mutex_enter(hash_lock); 6621 6622 /* 6623 * This assignment is only valid as long as the hash_lock is 6624 * held, we must be careful not to reference state or the 6625 * b_state field after dropping the lock. 6626 */ 6627 arc_state_t *state = hdr->b_l1hdr.b_state; 6628 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 6629 ASSERT3P(state, !=, arc_anon); 6630 6631 /* this buffer is not on any list */ 6632 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0); 6633 6634 if (HDR_HAS_L2HDR(hdr)) { 6635 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6636 6637 /* 6638 * We have to recheck this conditional again now that 6639 * we're holding the l2ad_mtx to prevent a race with 6640 * another thread which might be concurrently calling 6641 * l2arc_evict(). In that case, l2arc_evict() might have 6642 * destroyed the header's L2 portion as we were waiting 6643 * to acquire the l2ad_mtx. 6644 */ 6645 if (HDR_HAS_L2HDR(hdr)) 6646 arc_hdr_l2hdr_destroy(hdr); 6647 6648 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6649 } 6650 6651 /* 6652 * Do we have more than one buf? 6653 */ 6654 if (hdr->b_l1hdr.b_bufcnt > 1) { 6655 arc_buf_hdr_t *nhdr; 6656 uint64_t spa = hdr->b_spa; 6657 uint64_t psize = HDR_GET_PSIZE(hdr); 6658 uint64_t lsize = HDR_GET_LSIZE(hdr); 6659 boolean_t protected = HDR_PROTECTED(hdr); 6660 enum zio_compress compress = arc_hdr_get_compress(hdr); 6661 arc_buf_contents_t type = arc_buf_type(hdr); 6662 VERIFY3U(hdr->b_type, ==, type); 6663 6664 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); 6665 (void) remove_reference(hdr, hash_lock, tag); 6666 6667 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) { 6668 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6669 ASSERT(ARC_BUF_LAST(buf)); 6670 } 6671 6672 /* 6673 * Pull the data off of this hdr and attach it to 6674 * a new anonymous hdr. Also find the last buffer 6675 * in the hdr's buffer list. 6676 */ 6677 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 6678 ASSERT3P(lastbuf, !=, NULL); 6679 6680 /* 6681 * If the current arc_buf_t and the hdr are sharing their data 6682 * buffer, then we must stop sharing that block. 6683 */ 6684 if (arc_buf_is_shared(buf)) { 6685 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6686 VERIFY(!arc_buf_is_shared(lastbuf)); 6687 6688 /* 6689 * First, sever the block sharing relationship between 6690 * buf and the arc_buf_hdr_t. 6691 */ 6692 arc_unshare_buf(hdr, buf); 6693 6694 /* 6695 * Now we need to recreate the hdr's b_pabd. Since we 6696 * have lastbuf handy, we try to share with it, but if 6697 * we can't then we allocate a new b_pabd and copy the 6698 * data from buf into it. 6699 */ 6700 if (arc_can_share(hdr, lastbuf)) { 6701 arc_share_buf(hdr, lastbuf); 6702 } else { 6703 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 6704 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, 6705 buf->b_data, psize); 6706 } 6707 VERIFY3P(lastbuf->b_data, !=, NULL); 6708 } else if (HDR_SHARED_DATA(hdr)) { 6709 /* 6710 * Uncompressed shared buffers are always at the end 6711 * of the list. Compressed buffers don't have the 6712 * same requirements. This makes it hard to 6713 * simply assert that the lastbuf is shared so 6714 * we rely on the hdr's compression flags to determine 6715 * if we have a compressed, shared buffer. 6716 */ 6717 ASSERT(arc_buf_is_shared(lastbuf) || 6718 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 6719 ASSERT(!ARC_BUF_SHARED(buf)); 6720 } 6721 6722 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 6723 ASSERT3P(state, !=, arc_l2c_only); 6724 6725 (void) zfs_refcount_remove_many(&state->arcs_size, 6726 arc_buf_size(buf), buf); 6727 6728 if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6729 ASSERT3P(state, !=, arc_l2c_only); 6730 (void) zfs_refcount_remove_many( 6731 &state->arcs_esize[type], 6732 arc_buf_size(buf), buf); 6733 } 6734 6735 hdr->b_l1hdr.b_bufcnt -= 1; 6736 if (ARC_BUF_ENCRYPTED(buf)) 6737 hdr->b_crypt_hdr.b_ebufcnt -= 1; 6738 6739 arc_cksum_verify(buf); 6740 arc_buf_unwatch(buf); 6741 6742 /* if this is the last uncompressed buf free the checksum */ 6743 if (!arc_hdr_has_uncompressed_buf(hdr)) 6744 arc_cksum_free(hdr); 6745 6746 mutex_exit(hash_lock); 6747 6748 /* 6749 * Allocate a new hdr. The new hdr will contain a b_pabd 6750 * buffer which will be freed in arc_write(). 6751 */ 6752 nhdr = arc_hdr_alloc(spa, psize, lsize, protected, 6753 compress, hdr->b_complevel, type); 6754 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL); 6755 ASSERT0(nhdr->b_l1hdr.b_bufcnt); 6756 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt)); 6757 VERIFY3U(nhdr->b_type, ==, type); 6758 ASSERT(!HDR_SHARED_DATA(nhdr)); 6759 6760 nhdr->b_l1hdr.b_buf = buf; 6761 nhdr->b_l1hdr.b_bufcnt = 1; 6762 if (ARC_BUF_ENCRYPTED(buf)) 6763 nhdr->b_crypt_hdr.b_ebufcnt = 1; 6764 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 6765 buf->b_hdr = nhdr; 6766 6767 mutex_exit(&buf->b_evict_lock); 6768 (void) zfs_refcount_add_many(&arc_anon->arcs_size, 6769 arc_buf_size(buf), buf); 6770 } else { 6771 mutex_exit(&buf->b_evict_lock); 6772 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 6773 /* protected by hash lock, or hdr is on arc_anon */ 6774 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 6775 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6776 hdr->b_l1hdr.b_mru_hits = 0; 6777 hdr->b_l1hdr.b_mru_ghost_hits = 0; 6778 hdr->b_l1hdr.b_mfu_hits = 0; 6779 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 6780 arc_change_state(arc_anon, hdr, hash_lock); 6781 hdr->b_l1hdr.b_arc_access = 0; 6782 6783 mutex_exit(hash_lock); 6784 buf_discard_identity(hdr); 6785 arc_buf_thaw(buf); 6786 } 6787 } 6788 6789 int 6790 arc_released(arc_buf_t *buf) 6791 { 6792 int released; 6793 6794 mutex_enter(&buf->b_evict_lock); 6795 released = (buf->b_data != NULL && 6796 buf->b_hdr->b_l1hdr.b_state == arc_anon); 6797 mutex_exit(&buf->b_evict_lock); 6798 return (released); 6799 } 6800 6801 #ifdef ZFS_DEBUG 6802 int 6803 arc_referenced(arc_buf_t *buf) 6804 { 6805 int referenced; 6806 6807 mutex_enter(&buf->b_evict_lock); 6808 referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 6809 mutex_exit(&buf->b_evict_lock); 6810 return (referenced); 6811 } 6812 #endif 6813 6814 static void 6815 arc_write_ready(zio_t *zio) 6816 { 6817 arc_write_callback_t *callback = zio->io_private; 6818 arc_buf_t *buf = callback->awcb_buf; 6819 arc_buf_hdr_t *hdr = buf->b_hdr; 6820 blkptr_t *bp = zio->io_bp; 6821 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp); 6822 fstrans_cookie_t cookie = spl_fstrans_mark(); 6823 6824 ASSERT(HDR_HAS_L1HDR(hdr)); 6825 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 6826 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 6827 6828 /* 6829 * If we're reexecuting this zio because the pool suspended, then 6830 * cleanup any state that was previously set the first time the 6831 * callback was invoked. 6832 */ 6833 if (zio->io_flags & ZIO_FLAG_REEXECUTED) { 6834 arc_cksum_free(hdr); 6835 arc_buf_unwatch(buf); 6836 if (hdr->b_l1hdr.b_pabd != NULL) { 6837 if (arc_buf_is_shared(buf)) { 6838 arc_unshare_buf(hdr, buf); 6839 } else { 6840 arc_hdr_free_abd(hdr, B_FALSE); 6841 } 6842 } 6843 6844 if (HDR_HAS_RABD(hdr)) 6845 arc_hdr_free_abd(hdr, B_TRUE); 6846 } 6847 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6848 ASSERT(!HDR_HAS_RABD(hdr)); 6849 ASSERT(!HDR_SHARED_DATA(hdr)); 6850 ASSERT(!arc_buf_is_shared(buf)); 6851 6852 callback->awcb_ready(zio, buf, callback->awcb_private); 6853 6854 if (HDR_IO_IN_PROGRESS(hdr)) 6855 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); 6856 6857 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6858 6859 if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr)) 6860 hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp)); 6861 6862 if (BP_IS_PROTECTED(bp)) { 6863 /* ZIL blocks are written through zio_rewrite */ 6864 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 6865 ASSERT(HDR_PROTECTED(hdr)); 6866 6867 if (BP_SHOULD_BYTESWAP(bp)) { 6868 if (BP_GET_LEVEL(bp) > 0) { 6869 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 6870 } else { 6871 hdr->b_l1hdr.b_byteswap = 6872 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 6873 } 6874 } else { 6875 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 6876 } 6877 6878 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 6879 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 6880 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 6881 hdr->b_crypt_hdr.b_iv); 6882 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 6883 } 6884 6885 /* 6886 * If this block was written for raw encryption but the zio layer 6887 * ended up only authenticating it, adjust the buffer flags now. 6888 */ 6889 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) { 6890 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6891 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6892 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF) 6893 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6894 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) { 6895 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6896 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6897 } 6898 6899 /* this must be done after the buffer flags are adjusted */ 6900 arc_cksum_compute(buf); 6901 6902 enum zio_compress compress; 6903 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 6904 compress = ZIO_COMPRESS_OFF; 6905 } else { 6906 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 6907 compress = BP_GET_COMPRESS(bp); 6908 } 6909 HDR_SET_PSIZE(hdr, psize); 6910 arc_hdr_set_compress(hdr, compress); 6911 hdr->b_complevel = zio->io_prop.zp_complevel; 6912 6913 if (zio->io_error != 0 || psize == 0) 6914 goto out; 6915 6916 /* 6917 * Fill the hdr with data. If the buffer is encrypted we have no choice 6918 * but to copy the data into b_radb. If the hdr is compressed, the data 6919 * we want is available from the zio, otherwise we can take it from 6920 * the buf. 6921 * 6922 * We might be able to share the buf's data with the hdr here. However, 6923 * doing so would cause the ARC to be full of linear ABDs if we write a 6924 * lot of shareable data. As a compromise, we check whether scattered 6925 * ABDs are allowed, and assume that if they are then the user wants 6926 * the ARC to be primarily filled with them regardless of the data being 6927 * written. Therefore, if they're allowed then we allocate one and copy 6928 * the data into it; otherwise, we share the data directly if we can. 6929 */ 6930 if (ARC_BUF_ENCRYPTED(buf)) { 6931 ASSERT3U(psize, >, 0); 6932 ASSERT(ARC_BUF_COMPRESSED(buf)); 6933 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT | ARC_HDR_ALLOC_RDATA | 6934 ARC_HDR_USE_RESERVE); 6935 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6936 } else if (!abd_size_alloc_linear(arc_buf_size(buf)) || 6937 !arc_can_share(hdr, buf)) { 6938 /* 6939 * Ideally, we would always copy the io_abd into b_pabd, but the 6940 * user may have disabled compressed ARC, thus we must check the 6941 * hdr's compression setting rather than the io_bp's. 6942 */ 6943 if (BP_IS_ENCRYPTED(bp)) { 6944 ASSERT3U(psize, >, 0); 6945 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT | 6946 ARC_HDR_ALLOC_RDATA | ARC_HDR_USE_RESERVE); 6947 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6948 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 6949 !ARC_BUF_COMPRESSED(buf)) { 6950 ASSERT3U(psize, >, 0); 6951 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT | 6952 ARC_HDR_USE_RESERVE); 6953 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize); 6954 } else { 6955 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr)); 6956 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT | 6957 ARC_HDR_USE_RESERVE); 6958 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data, 6959 arc_buf_size(buf)); 6960 } 6961 } else { 6962 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd)); 6963 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf)); 6964 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6965 6966 arc_share_buf(hdr, buf); 6967 } 6968 6969 out: 6970 arc_hdr_verify(hdr, bp); 6971 spl_fstrans_unmark(cookie); 6972 } 6973 6974 static void 6975 arc_write_children_ready(zio_t *zio) 6976 { 6977 arc_write_callback_t *callback = zio->io_private; 6978 arc_buf_t *buf = callback->awcb_buf; 6979 6980 callback->awcb_children_ready(zio, buf, callback->awcb_private); 6981 } 6982 6983 /* 6984 * The SPA calls this callback for each physical write that happens on behalf 6985 * of a logical write. See the comment in dbuf_write_physdone() for details. 6986 */ 6987 static void 6988 arc_write_physdone(zio_t *zio) 6989 { 6990 arc_write_callback_t *cb = zio->io_private; 6991 if (cb->awcb_physdone != NULL) 6992 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 6993 } 6994 6995 static void 6996 arc_write_done(zio_t *zio) 6997 { 6998 arc_write_callback_t *callback = zio->io_private; 6999 arc_buf_t *buf = callback->awcb_buf; 7000 arc_buf_hdr_t *hdr = buf->b_hdr; 7001 7002 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 7003 7004 if (zio->io_error == 0) { 7005 arc_hdr_verify(hdr, zio->io_bp); 7006 7007 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 7008 buf_discard_identity(hdr); 7009 } else { 7010 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 7011 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 7012 } 7013 } else { 7014 ASSERT(HDR_EMPTY(hdr)); 7015 } 7016 7017 /* 7018 * If the block to be written was all-zero or compressed enough to be 7019 * embedded in the BP, no write was performed so there will be no 7020 * dva/birth/checksum. The buffer must therefore remain anonymous 7021 * (and uncached). 7022 */ 7023 if (!HDR_EMPTY(hdr)) { 7024 arc_buf_hdr_t *exists; 7025 kmutex_t *hash_lock; 7026 7027 ASSERT3U(zio->io_error, ==, 0); 7028 7029 arc_cksum_verify(buf); 7030 7031 exists = buf_hash_insert(hdr, &hash_lock); 7032 if (exists != NULL) { 7033 /* 7034 * This can only happen if we overwrite for 7035 * sync-to-convergence, because we remove 7036 * buffers from the hash table when we arc_free(). 7037 */ 7038 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 7039 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 7040 panic("bad overwrite, hdr=%p exists=%p", 7041 (void *)hdr, (void *)exists); 7042 ASSERT(zfs_refcount_is_zero( 7043 &exists->b_l1hdr.b_refcnt)); 7044 arc_change_state(arc_anon, exists, hash_lock); 7045 arc_hdr_destroy(exists); 7046 mutex_exit(hash_lock); 7047 exists = buf_hash_insert(hdr, &hash_lock); 7048 ASSERT3P(exists, ==, NULL); 7049 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 7050 /* nopwrite */ 7051 ASSERT(zio->io_prop.zp_nopwrite); 7052 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 7053 panic("bad nopwrite, hdr=%p exists=%p", 7054 (void *)hdr, (void *)exists); 7055 } else { 7056 /* Dedup */ 7057 ASSERT(hdr->b_l1hdr.b_bufcnt == 1); 7058 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 7059 ASSERT(BP_GET_DEDUP(zio->io_bp)); 7060 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 7061 } 7062 } 7063 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 7064 /* if it's not anon, we are doing a scrub */ 7065 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 7066 arc_access(hdr, hash_lock); 7067 mutex_exit(hash_lock); 7068 } else { 7069 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 7070 } 7071 7072 ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 7073 callback->awcb_done(zio, buf, callback->awcb_private); 7074 7075 abd_free(zio->io_abd); 7076 kmem_free(callback, sizeof (arc_write_callback_t)); 7077 } 7078 7079 zio_t * 7080 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 7081 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, 7082 const zio_prop_t *zp, arc_write_done_func_t *ready, 7083 arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone, 7084 arc_write_done_func_t *done, void *private, zio_priority_t priority, 7085 int zio_flags, const zbookmark_phys_t *zb) 7086 { 7087 arc_buf_hdr_t *hdr = buf->b_hdr; 7088 arc_write_callback_t *callback; 7089 zio_t *zio; 7090 zio_prop_t localprop = *zp; 7091 7092 ASSERT3P(ready, !=, NULL); 7093 ASSERT3P(done, !=, NULL); 7094 ASSERT(!HDR_IO_ERROR(hdr)); 7095 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 7096 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 7097 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 7098 if (l2arc) 7099 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 7100 7101 if (ARC_BUF_ENCRYPTED(buf)) { 7102 ASSERT(ARC_BUF_COMPRESSED(buf)); 7103 localprop.zp_encrypt = B_TRUE; 7104 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 7105 localprop.zp_complevel = hdr->b_complevel; 7106 localprop.zp_byteorder = 7107 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 7108 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 7109 memcpy(localprop.zp_salt, hdr->b_crypt_hdr.b_salt, 7110 ZIO_DATA_SALT_LEN); 7111 memcpy(localprop.zp_iv, hdr->b_crypt_hdr.b_iv, 7112 ZIO_DATA_IV_LEN); 7113 memcpy(localprop.zp_mac, hdr->b_crypt_hdr.b_mac, 7114 ZIO_DATA_MAC_LEN); 7115 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) { 7116 localprop.zp_nopwrite = B_FALSE; 7117 localprop.zp_copies = 7118 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1); 7119 } 7120 zio_flags |= ZIO_FLAG_RAW; 7121 } else if (ARC_BUF_COMPRESSED(buf)) { 7122 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf)); 7123 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 7124 localprop.zp_complevel = hdr->b_complevel; 7125 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 7126 } 7127 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 7128 callback->awcb_ready = ready; 7129 callback->awcb_children_ready = children_ready; 7130 callback->awcb_physdone = physdone; 7131 callback->awcb_done = done; 7132 callback->awcb_private = private; 7133 callback->awcb_buf = buf; 7134 7135 /* 7136 * The hdr's b_pabd is now stale, free it now. A new data block 7137 * will be allocated when the zio pipeline calls arc_write_ready(). 7138 */ 7139 if (hdr->b_l1hdr.b_pabd != NULL) { 7140 /* 7141 * If the buf is currently sharing the data block with 7142 * the hdr then we need to break that relationship here. 7143 * The hdr will remain with a NULL data pointer and the 7144 * buf will take sole ownership of the block. 7145 */ 7146 if (arc_buf_is_shared(buf)) { 7147 arc_unshare_buf(hdr, buf); 7148 } else { 7149 arc_hdr_free_abd(hdr, B_FALSE); 7150 } 7151 VERIFY3P(buf->b_data, !=, NULL); 7152 } 7153 7154 if (HDR_HAS_RABD(hdr)) 7155 arc_hdr_free_abd(hdr, B_TRUE); 7156 7157 if (!(zio_flags & ZIO_FLAG_RAW)) 7158 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); 7159 7160 ASSERT(!arc_buf_is_shared(buf)); 7161 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 7162 7163 zio = zio_write(pio, spa, txg, bp, 7164 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)), 7165 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready, 7166 (children_ready != NULL) ? arc_write_children_ready : NULL, 7167 arc_write_physdone, arc_write_done, callback, 7168 priority, zio_flags, zb); 7169 7170 return (zio); 7171 } 7172 7173 void 7174 arc_tempreserve_clear(uint64_t reserve) 7175 { 7176 atomic_add_64(&arc_tempreserve, -reserve); 7177 ASSERT((int64_t)arc_tempreserve >= 0); 7178 } 7179 7180 int 7181 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg) 7182 { 7183 int error; 7184 uint64_t anon_size; 7185 7186 if (!arc_no_grow && 7187 reserve > arc_c/4 && 7188 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT)) 7189 arc_c = MIN(arc_c_max, reserve * 4); 7190 7191 /* 7192 * Throttle when the calculated memory footprint for the TXG 7193 * exceeds the target ARC size. 7194 */ 7195 if (reserve > arc_c) { 7196 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve); 7197 return (SET_ERROR(ERESTART)); 7198 } 7199 7200 /* 7201 * Don't count loaned bufs as in flight dirty data to prevent long 7202 * network delays from blocking transactions that are ready to be 7203 * assigned to a txg. 7204 */ 7205 7206 /* assert that it has not wrapped around */ 7207 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 7208 7209 anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) - 7210 arc_loaned_bytes), 0); 7211 7212 /* 7213 * Writes will, almost always, require additional memory allocations 7214 * in order to compress/encrypt/etc the data. We therefore need to 7215 * make sure that there is sufficient available memory for this. 7216 */ 7217 error = arc_memory_throttle(spa, reserve, txg); 7218 if (error != 0) 7219 return (error); 7220 7221 /* 7222 * Throttle writes when the amount of dirty data in the cache 7223 * gets too large. We try to keep the cache less than half full 7224 * of dirty blocks so that our sync times don't grow too large. 7225 * 7226 * In the case of one pool being built on another pool, we want 7227 * to make sure we don't end up throttling the lower (backing) 7228 * pool when the upper pool is the majority contributor to dirty 7229 * data. To insure we make forward progress during throttling, we 7230 * also check the current pool's net dirty data and only throttle 7231 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty 7232 * data in the cache. 7233 * 7234 * Note: if two requests come in concurrently, we might let them 7235 * both succeed, when one of them should fail. Not a huge deal. 7236 */ 7237 uint64_t total_dirty = reserve + arc_tempreserve + anon_size; 7238 uint64_t spa_dirty_anon = spa_dirty_data(spa); 7239 uint64_t rarc_c = arc_warm ? arc_c : arc_c_max; 7240 if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 && 7241 anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 && 7242 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) { 7243 #ifdef ZFS_DEBUG 7244 uint64_t meta_esize = zfs_refcount_count( 7245 &arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7246 uint64_t data_esize = 7247 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7248 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 7249 "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n", 7250 (u_longlong_t)arc_tempreserve >> 10, 7251 (u_longlong_t)meta_esize >> 10, 7252 (u_longlong_t)data_esize >> 10, 7253 (u_longlong_t)reserve >> 10, 7254 (u_longlong_t)rarc_c >> 10); 7255 #endif 7256 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle); 7257 return (SET_ERROR(ERESTART)); 7258 } 7259 atomic_add_64(&arc_tempreserve, reserve); 7260 return (0); 7261 } 7262 7263 static void 7264 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 7265 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 7266 { 7267 size->value.ui64 = zfs_refcount_count(&state->arcs_size); 7268 evict_data->value.ui64 = 7269 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); 7270 evict_metadata->value.ui64 = 7271 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); 7272 } 7273 7274 static int 7275 arc_kstat_update(kstat_t *ksp, int rw) 7276 { 7277 arc_stats_t *as = ksp->ks_data; 7278 7279 if (rw == KSTAT_WRITE) 7280 return (SET_ERROR(EACCES)); 7281 7282 as->arcstat_hits.value.ui64 = 7283 wmsum_value(&arc_sums.arcstat_hits); 7284 as->arcstat_misses.value.ui64 = 7285 wmsum_value(&arc_sums.arcstat_misses); 7286 as->arcstat_demand_data_hits.value.ui64 = 7287 wmsum_value(&arc_sums.arcstat_demand_data_hits); 7288 as->arcstat_demand_data_misses.value.ui64 = 7289 wmsum_value(&arc_sums.arcstat_demand_data_misses); 7290 as->arcstat_demand_metadata_hits.value.ui64 = 7291 wmsum_value(&arc_sums.arcstat_demand_metadata_hits); 7292 as->arcstat_demand_metadata_misses.value.ui64 = 7293 wmsum_value(&arc_sums.arcstat_demand_metadata_misses); 7294 as->arcstat_prefetch_data_hits.value.ui64 = 7295 wmsum_value(&arc_sums.arcstat_prefetch_data_hits); 7296 as->arcstat_prefetch_data_misses.value.ui64 = 7297 wmsum_value(&arc_sums.arcstat_prefetch_data_misses); 7298 as->arcstat_prefetch_metadata_hits.value.ui64 = 7299 wmsum_value(&arc_sums.arcstat_prefetch_metadata_hits); 7300 as->arcstat_prefetch_metadata_misses.value.ui64 = 7301 wmsum_value(&arc_sums.arcstat_prefetch_metadata_misses); 7302 as->arcstat_mru_hits.value.ui64 = 7303 wmsum_value(&arc_sums.arcstat_mru_hits); 7304 as->arcstat_mru_ghost_hits.value.ui64 = 7305 wmsum_value(&arc_sums.arcstat_mru_ghost_hits); 7306 as->arcstat_mfu_hits.value.ui64 = 7307 wmsum_value(&arc_sums.arcstat_mfu_hits); 7308 as->arcstat_mfu_ghost_hits.value.ui64 = 7309 wmsum_value(&arc_sums.arcstat_mfu_ghost_hits); 7310 as->arcstat_deleted.value.ui64 = 7311 wmsum_value(&arc_sums.arcstat_deleted); 7312 as->arcstat_mutex_miss.value.ui64 = 7313 wmsum_value(&arc_sums.arcstat_mutex_miss); 7314 as->arcstat_access_skip.value.ui64 = 7315 wmsum_value(&arc_sums.arcstat_access_skip); 7316 as->arcstat_evict_skip.value.ui64 = 7317 wmsum_value(&arc_sums.arcstat_evict_skip); 7318 as->arcstat_evict_not_enough.value.ui64 = 7319 wmsum_value(&arc_sums.arcstat_evict_not_enough); 7320 as->arcstat_evict_l2_cached.value.ui64 = 7321 wmsum_value(&arc_sums.arcstat_evict_l2_cached); 7322 as->arcstat_evict_l2_eligible.value.ui64 = 7323 wmsum_value(&arc_sums.arcstat_evict_l2_eligible); 7324 as->arcstat_evict_l2_eligible_mfu.value.ui64 = 7325 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mfu); 7326 as->arcstat_evict_l2_eligible_mru.value.ui64 = 7327 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mru); 7328 as->arcstat_evict_l2_ineligible.value.ui64 = 7329 wmsum_value(&arc_sums.arcstat_evict_l2_ineligible); 7330 as->arcstat_evict_l2_skip.value.ui64 = 7331 wmsum_value(&arc_sums.arcstat_evict_l2_skip); 7332 as->arcstat_hash_collisions.value.ui64 = 7333 wmsum_value(&arc_sums.arcstat_hash_collisions); 7334 as->arcstat_hash_chains.value.ui64 = 7335 wmsum_value(&arc_sums.arcstat_hash_chains); 7336 as->arcstat_size.value.ui64 = 7337 aggsum_value(&arc_sums.arcstat_size); 7338 as->arcstat_compressed_size.value.ui64 = 7339 wmsum_value(&arc_sums.arcstat_compressed_size); 7340 as->arcstat_uncompressed_size.value.ui64 = 7341 wmsum_value(&arc_sums.arcstat_uncompressed_size); 7342 as->arcstat_overhead_size.value.ui64 = 7343 wmsum_value(&arc_sums.arcstat_overhead_size); 7344 as->arcstat_hdr_size.value.ui64 = 7345 wmsum_value(&arc_sums.arcstat_hdr_size); 7346 as->arcstat_data_size.value.ui64 = 7347 wmsum_value(&arc_sums.arcstat_data_size); 7348 as->arcstat_metadata_size.value.ui64 = 7349 wmsum_value(&arc_sums.arcstat_metadata_size); 7350 as->arcstat_dbuf_size.value.ui64 = 7351 wmsum_value(&arc_sums.arcstat_dbuf_size); 7352 #if defined(COMPAT_FREEBSD11) 7353 as->arcstat_other_size.value.ui64 = 7354 wmsum_value(&arc_sums.arcstat_bonus_size) + 7355 aggsum_value(&arc_sums.arcstat_dnode_size) + 7356 wmsum_value(&arc_sums.arcstat_dbuf_size); 7357 #endif 7358 7359 arc_kstat_update_state(arc_anon, 7360 &as->arcstat_anon_size, 7361 &as->arcstat_anon_evictable_data, 7362 &as->arcstat_anon_evictable_metadata); 7363 arc_kstat_update_state(arc_mru, 7364 &as->arcstat_mru_size, 7365 &as->arcstat_mru_evictable_data, 7366 &as->arcstat_mru_evictable_metadata); 7367 arc_kstat_update_state(arc_mru_ghost, 7368 &as->arcstat_mru_ghost_size, 7369 &as->arcstat_mru_ghost_evictable_data, 7370 &as->arcstat_mru_ghost_evictable_metadata); 7371 arc_kstat_update_state(arc_mfu, 7372 &as->arcstat_mfu_size, 7373 &as->arcstat_mfu_evictable_data, 7374 &as->arcstat_mfu_evictable_metadata); 7375 arc_kstat_update_state(arc_mfu_ghost, 7376 &as->arcstat_mfu_ghost_size, 7377 &as->arcstat_mfu_ghost_evictable_data, 7378 &as->arcstat_mfu_ghost_evictable_metadata); 7379 7380 as->arcstat_dnode_size.value.ui64 = 7381 aggsum_value(&arc_sums.arcstat_dnode_size); 7382 as->arcstat_bonus_size.value.ui64 = 7383 wmsum_value(&arc_sums.arcstat_bonus_size); 7384 as->arcstat_l2_hits.value.ui64 = 7385 wmsum_value(&arc_sums.arcstat_l2_hits); 7386 as->arcstat_l2_misses.value.ui64 = 7387 wmsum_value(&arc_sums.arcstat_l2_misses); 7388 as->arcstat_l2_prefetch_asize.value.ui64 = 7389 wmsum_value(&arc_sums.arcstat_l2_prefetch_asize); 7390 as->arcstat_l2_mru_asize.value.ui64 = 7391 wmsum_value(&arc_sums.arcstat_l2_mru_asize); 7392 as->arcstat_l2_mfu_asize.value.ui64 = 7393 wmsum_value(&arc_sums.arcstat_l2_mfu_asize); 7394 as->arcstat_l2_bufc_data_asize.value.ui64 = 7395 wmsum_value(&arc_sums.arcstat_l2_bufc_data_asize); 7396 as->arcstat_l2_bufc_metadata_asize.value.ui64 = 7397 wmsum_value(&arc_sums.arcstat_l2_bufc_metadata_asize); 7398 as->arcstat_l2_feeds.value.ui64 = 7399 wmsum_value(&arc_sums.arcstat_l2_feeds); 7400 as->arcstat_l2_rw_clash.value.ui64 = 7401 wmsum_value(&arc_sums.arcstat_l2_rw_clash); 7402 as->arcstat_l2_read_bytes.value.ui64 = 7403 wmsum_value(&arc_sums.arcstat_l2_read_bytes); 7404 as->arcstat_l2_write_bytes.value.ui64 = 7405 wmsum_value(&arc_sums.arcstat_l2_write_bytes); 7406 as->arcstat_l2_writes_sent.value.ui64 = 7407 wmsum_value(&arc_sums.arcstat_l2_writes_sent); 7408 as->arcstat_l2_writes_done.value.ui64 = 7409 wmsum_value(&arc_sums.arcstat_l2_writes_done); 7410 as->arcstat_l2_writes_error.value.ui64 = 7411 wmsum_value(&arc_sums.arcstat_l2_writes_error); 7412 as->arcstat_l2_writes_lock_retry.value.ui64 = 7413 wmsum_value(&arc_sums.arcstat_l2_writes_lock_retry); 7414 as->arcstat_l2_evict_lock_retry.value.ui64 = 7415 wmsum_value(&arc_sums.arcstat_l2_evict_lock_retry); 7416 as->arcstat_l2_evict_reading.value.ui64 = 7417 wmsum_value(&arc_sums.arcstat_l2_evict_reading); 7418 as->arcstat_l2_evict_l1cached.value.ui64 = 7419 wmsum_value(&arc_sums.arcstat_l2_evict_l1cached); 7420 as->arcstat_l2_free_on_write.value.ui64 = 7421 wmsum_value(&arc_sums.arcstat_l2_free_on_write); 7422 as->arcstat_l2_abort_lowmem.value.ui64 = 7423 wmsum_value(&arc_sums.arcstat_l2_abort_lowmem); 7424 as->arcstat_l2_cksum_bad.value.ui64 = 7425 wmsum_value(&arc_sums.arcstat_l2_cksum_bad); 7426 as->arcstat_l2_io_error.value.ui64 = 7427 wmsum_value(&arc_sums.arcstat_l2_io_error); 7428 as->arcstat_l2_lsize.value.ui64 = 7429 wmsum_value(&arc_sums.arcstat_l2_lsize); 7430 as->arcstat_l2_psize.value.ui64 = 7431 wmsum_value(&arc_sums.arcstat_l2_psize); 7432 as->arcstat_l2_hdr_size.value.ui64 = 7433 aggsum_value(&arc_sums.arcstat_l2_hdr_size); 7434 as->arcstat_l2_log_blk_writes.value.ui64 = 7435 wmsum_value(&arc_sums.arcstat_l2_log_blk_writes); 7436 as->arcstat_l2_log_blk_asize.value.ui64 = 7437 wmsum_value(&arc_sums.arcstat_l2_log_blk_asize); 7438 as->arcstat_l2_log_blk_count.value.ui64 = 7439 wmsum_value(&arc_sums.arcstat_l2_log_blk_count); 7440 as->arcstat_l2_rebuild_success.value.ui64 = 7441 wmsum_value(&arc_sums.arcstat_l2_rebuild_success); 7442 as->arcstat_l2_rebuild_abort_unsupported.value.ui64 = 7443 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_unsupported); 7444 as->arcstat_l2_rebuild_abort_io_errors.value.ui64 = 7445 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_io_errors); 7446 as->arcstat_l2_rebuild_abort_dh_errors.value.ui64 = 7447 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_dh_errors); 7448 as->arcstat_l2_rebuild_abort_cksum_lb_errors.value.ui64 = 7449 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors); 7450 as->arcstat_l2_rebuild_abort_lowmem.value.ui64 = 7451 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_lowmem); 7452 as->arcstat_l2_rebuild_size.value.ui64 = 7453 wmsum_value(&arc_sums.arcstat_l2_rebuild_size); 7454 as->arcstat_l2_rebuild_asize.value.ui64 = 7455 wmsum_value(&arc_sums.arcstat_l2_rebuild_asize); 7456 as->arcstat_l2_rebuild_bufs.value.ui64 = 7457 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs); 7458 as->arcstat_l2_rebuild_bufs_precached.value.ui64 = 7459 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs_precached); 7460 as->arcstat_l2_rebuild_log_blks.value.ui64 = 7461 wmsum_value(&arc_sums.arcstat_l2_rebuild_log_blks); 7462 as->arcstat_memory_throttle_count.value.ui64 = 7463 wmsum_value(&arc_sums.arcstat_memory_throttle_count); 7464 as->arcstat_memory_direct_count.value.ui64 = 7465 wmsum_value(&arc_sums.arcstat_memory_direct_count); 7466 as->arcstat_memory_indirect_count.value.ui64 = 7467 wmsum_value(&arc_sums.arcstat_memory_indirect_count); 7468 7469 as->arcstat_memory_all_bytes.value.ui64 = 7470 arc_all_memory(); 7471 as->arcstat_memory_free_bytes.value.ui64 = 7472 arc_free_memory(); 7473 as->arcstat_memory_available_bytes.value.i64 = 7474 arc_available_memory(); 7475 7476 as->arcstat_prune.value.ui64 = 7477 wmsum_value(&arc_sums.arcstat_prune); 7478 as->arcstat_meta_used.value.ui64 = 7479 aggsum_value(&arc_sums.arcstat_meta_used); 7480 as->arcstat_async_upgrade_sync.value.ui64 = 7481 wmsum_value(&arc_sums.arcstat_async_upgrade_sync); 7482 as->arcstat_demand_hit_predictive_prefetch.value.ui64 = 7483 wmsum_value(&arc_sums.arcstat_demand_hit_predictive_prefetch); 7484 as->arcstat_demand_hit_prescient_prefetch.value.ui64 = 7485 wmsum_value(&arc_sums.arcstat_demand_hit_prescient_prefetch); 7486 as->arcstat_raw_size.value.ui64 = 7487 wmsum_value(&arc_sums.arcstat_raw_size); 7488 as->arcstat_cached_only_in_progress.value.ui64 = 7489 wmsum_value(&arc_sums.arcstat_cached_only_in_progress); 7490 as->arcstat_abd_chunk_waste_size.value.ui64 = 7491 wmsum_value(&arc_sums.arcstat_abd_chunk_waste_size); 7492 7493 return (0); 7494 } 7495 7496 /* 7497 * This function *must* return indices evenly distributed between all 7498 * sublists of the multilist. This is needed due to how the ARC eviction 7499 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 7500 * distributed between all sublists and uses this assumption when 7501 * deciding which sublist to evict from and how much to evict from it. 7502 */ 7503 static unsigned int 7504 arc_state_multilist_index_func(multilist_t *ml, void *obj) 7505 { 7506 arc_buf_hdr_t *hdr = obj; 7507 7508 /* 7509 * We rely on b_dva to generate evenly distributed index 7510 * numbers using buf_hash below. So, as an added precaution, 7511 * let's make sure we never add empty buffers to the arc lists. 7512 */ 7513 ASSERT(!HDR_EMPTY(hdr)); 7514 7515 /* 7516 * The assumption here, is the hash value for a given 7517 * arc_buf_hdr_t will remain constant throughout its lifetime 7518 * (i.e. its b_spa, b_dva, and b_birth fields don't change). 7519 * Thus, we don't need to store the header's sublist index 7520 * on insertion, as this index can be recalculated on removal. 7521 * 7522 * Also, the low order bits of the hash value are thought to be 7523 * distributed evenly. Otherwise, in the case that the multilist 7524 * has a power of two number of sublists, each sublists' usage 7525 * would not be evenly distributed. In this context full 64bit 7526 * division would be a waste of time, so limit it to 32 bits. 7527 */ 7528 return ((unsigned int)buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 7529 multilist_get_num_sublists(ml)); 7530 } 7531 7532 static unsigned int 7533 arc_state_l2c_multilist_index_func(multilist_t *ml, void *obj) 7534 { 7535 panic("Header %p insert into arc_l2c_only %p", obj, ml); 7536 } 7537 7538 #define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \ 7539 if ((do_warn) && (tuning) && ((tuning) != (value))) { \ 7540 cmn_err(CE_WARN, \ 7541 "ignoring tunable %s (using %llu instead)", \ 7542 (#tuning), (u_longlong_t)(value)); \ 7543 } \ 7544 } while (0) 7545 7546 /* 7547 * Called during module initialization and periodically thereafter to 7548 * apply reasonable changes to the exposed performance tunings. Can also be 7549 * called explicitly by param_set_arc_*() functions when ARC tunables are 7550 * updated manually. Non-zero zfs_* values which differ from the currently set 7551 * values will be applied. 7552 */ 7553 void 7554 arc_tuning_update(boolean_t verbose) 7555 { 7556 uint64_t allmem = arc_all_memory(); 7557 unsigned long limit; 7558 7559 /* Valid range: 32M - <arc_c_max> */ 7560 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) && 7561 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) && 7562 (zfs_arc_min <= arc_c_max)) { 7563 arc_c_min = zfs_arc_min; 7564 arc_c = MAX(arc_c, arc_c_min); 7565 } 7566 WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose); 7567 7568 /* Valid range: 64M - <all physical memory> */ 7569 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) && 7570 (zfs_arc_max >= MIN_ARC_MAX) && (zfs_arc_max < allmem) && 7571 (zfs_arc_max > arc_c_min)) { 7572 arc_c_max = zfs_arc_max; 7573 arc_c = MIN(arc_c, arc_c_max); 7574 arc_p = (arc_c >> 1); 7575 if (arc_meta_limit > arc_c_max) 7576 arc_meta_limit = arc_c_max; 7577 if (arc_dnode_size_limit > arc_meta_limit) 7578 arc_dnode_size_limit = arc_meta_limit; 7579 } 7580 WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose); 7581 7582 /* Valid range: 16M - <arc_c_max> */ 7583 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) && 7584 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) && 7585 (zfs_arc_meta_min <= arc_c_max)) { 7586 arc_meta_min = zfs_arc_meta_min; 7587 if (arc_meta_limit < arc_meta_min) 7588 arc_meta_limit = arc_meta_min; 7589 if (arc_dnode_size_limit < arc_meta_min) 7590 arc_dnode_size_limit = arc_meta_min; 7591 } 7592 WARN_IF_TUNING_IGNORED(zfs_arc_meta_min, arc_meta_min, verbose); 7593 7594 /* Valid range: <arc_meta_min> - <arc_c_max> */ 7595 limit = zfs_arc_meta_limit ? zfs_arc_meta_limit : 7596 MIN(zfs_arc_meta_limit_percent, 100) * arc_c_max / 100; 7597 if ((limit != arc_meta_limit) && 7598 (limit >= arc_meta_min) && 7599 (limit <= arc_c_max)) 7600 arc_meta_limit = limit; 7601 WARN_IF_TUNING_IGNORED(zfs_arc_meta_limit, arc_meta_limit, verbose); 7602 7603 /* Valid range: <arc_meta_min> - <arc_meta_limit> */ 7604 limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit : 7605 MIN(zfs_arc_dnode_limit_percent, 100) * arc_meta_limit / 100; 7606 if ((limit != arc_dnode_size_limit) && 7607 (limit >= arc_meta_min) && 7608 (limit <= arc_meta_limit)) 7609 arc_dnode_size_limit = limit; 7610 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_size_limit, 7611 verbose); 7612 7613 /* Valid range: 1 - N */ 7614 if (zfs_arc_grow_retry) 7615 arc_grow_retry = zfs_arc_grow_retry; 7616 7617 /* Valid range: 1 - N */ 7618 if (zfs_arc_shrink_shift) { 7619 arc_shrink_shift = zfs_arc_shrink_shift; 7620 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1); 7621 } 7622 7623 /* Valid range: 1 - N */ 7624 if (zfs_arc_p_min_shift) 7625 arc_p_min_shift = zfs_arc_p_min_shift; 7626 7627 /* Valid range: 1 - N ms */ 7628 if (zfs_arc_min_prefetch_ms) 7629 arc_min_prefetch_ms = zfs_arc_min_prefetch_ms; 7630 7631 /* Valid range: 1 - N ms */ 7632 if (zfs_arc_min_prescient_prefetch_ms) { 7633 arc_min_prescient_prefetch_ms = 7634 zfs_arc_min_prescient_prefetch_ms; 7635 } 7636 7637 /* Valid range: 0 - 100 */ 7638 if ((zfs_arc_lotsfree_percent >= 0) && 7639 (zfs_arc_lotsfree_percent <= 100)) 7640 arc_lotsfree_percent = zfs_arc_lotsfree_percent; 7641 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent, 7642 verbose); 7643 7644 /* Valid range: 0 - <all physical memory> */ 7645 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free)) 7646 arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), allmem); 7647 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose); 7648 } 7649 7650 static void 7651 arc_state_multilist_init(multilist_t *ml, 7652 multilist_sublist_index_func_t *index_func, int *maxcountp) 7653 { 7654 multilist_create(ml, sizeof (arc_buf_hdr_t), 7655 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), index_func); 7656 *maxcountp = MAX(*maxcountp, multilist_get_num_sublists(ml)); 7657 } 7658 7659 static void 7660 arc_state_init(void) 7661 { 7662 int num_sublists = 0; 7663 7664 arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_METADATA], 7665 arc_state_multilist_index_func, &num_sublists); 7666 arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_DATA], 7667 arc_state_multilist_index_func, &num_sublists); 7668 arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 7669 arc_state_multilist_index_func, &num_sublists); 7670 arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 7671 arc_state_multilist_index_func, &num_sublists); 7672 arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 7673 arc_state_multilist_index_func, &num_sublists); 7674 arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_DATA], 7675 arc_state_multilist_index_func, &num_sublists); 7676 arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 7677 arc_state_multilist_index_func, &num_sublists); 7678 arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 7679 arc_state_multilist_index_func, &num_sublists); 7680 7681 /* 7682 * L2 headers should never be on the L2 state list since they don't 7683 * have L1 headers allocated. Special index function asserts that. 7684 */ 7685 arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 7686 arc_state_l2c_multilist_index_func, &num_sublists); 7687 arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 7688 arc_state_l2c_multilist_index_func, &num_sublists); 7689 7690 /* 7691 * Keep track of the number of markers needed to reclaim buffers from 7692 * any ARC state. The markers will be pre-allocated so as to minimize 7693 * the number of memory allocations performed by the eviction thread. 7694 */ 7695 arc_state_evict_marker_count = num_sublists; 7696 7697 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7698 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7699 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7700 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7701 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7702 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7703 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7704 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7705 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7706 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7707 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7708 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7709 7710 zfs_refcount_create(&arc_anon->arcs_size); 7711 zfs_refcount_create(&arc_mru->arcs_size); 7712 zfs_refcount_create(&arc_mru_ghost->arcs_size); 7713 zfs_refcount_create(&arc_mfu->arcs_size); 7714 zfs_refcount_create(&arc_mfu_ghost->arcs_size); 7715 zfs_refcount_create(&arc_l2c_only->arcs_size); 7716 7717 wmsum_init(&arc_sums.arcstat_hits, 0); 7718 wmsum_init(&arc_sums.arcstat_misses, 0); 7719 wmsum_init(&arc_sums.arcstat_demand_data_hits, 0); 7720 wmsum_init(&arc_sums.arcstat_demand_data_misses, 0); 7721 wmsum_init(&arc_sums.arcstat_demand_metadata_hits, 0); 7722 wmsum_init(&arc_sums.arcstat_demand_metadata_misses, 0); 7723 wmsum_init(&arc_sums.arcstat_prefetch_data_hits, 0); 7724 wmsum_init(&arc_sums.arcstat_prefetch_data_misses, 0); 7725 wmsum_init(&arc_sums.arcstat_prefetch_metadata_hits, 0); 7726 wmsum_init(&arc_sums.arcstat_prefetch_metadata_misses, 0); 7727 wmsum_init(&arc_sums.arcstat_mru_hits, 0); 7728 wmsum_init(&arc_sums.arcstat_mru_ghost_hits, 0); 7729 wmsum_init(&arc_sums.arcstat_mfu_hits, 0); 7730 wmsum_init(&arc_sums.arcstat_mfu_ghost_hits, 0); 7731 wmsum_init(&arc_sums.arcstat_deleted, 0); 7732 wmsum_init(&arc_sums.arcstat_mutex_miss, 0); 7733 wmsum_init(&arc_sums.arcstat_access_skip, 0); 7734 wmsum_init(&arc_sums.arcstat_evict_skip, 0); 7735 wmsum_init(&arc_sums.arcstat_evict_not_enough, 0); 7736 wmsum_init(&arc_sums.arcstat_evict_l2_cached, 0); 7737 wmsum_init(&arc_sums.arcstat_evict_l2_eligible, 0); 7738 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mfu, 0); 7739 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mru, 0); 7740 wmsum_init(&arc_sums.arcstat_evict_l2_ineligible, 0); 7741 wmsum_init(&arc_sums.arcstat_evict_l2_skip, 0); 7742 wmsum_init(&arc_sums.arcstat_hash_collisions, 0); 7743 wmsum_init(&arc_sums.arcstat_hash_chains, 0); 7744 aggsum_init(&arc_sums.arcstat_size, 0); 7745 wmsum_init(&arc_sums.arcstat_compressed_size, 0); 7746 wmsum_init(&arc_sums.arcstat_uncompressed_size, 0); 7747 wmsum_init(&arc_sums.arcstat_overhead_size, 0); 7748 wmsum_init(&arc_sums.arcstat_hdr_size, 0); 7749 wmsum_init(&arc_sums.arcstat_data_size, 0); 7750 wmsum_init(&arc_sums.arcstat_metadata_size, 0); 7751 wmsum_init(&arc_sums.arcstat_dbuf_size, 0); 7752 aggsum_init(&arc_sums.arcstat_dnode_size, 0); 7753 wmsum_init(&arc_sums.arcstat_bonus_size, 0); 7754 wmsum_init(&arc_sums.arcstat_l2_hits, 0); 7755 wmsum_init(&arc_sums.arcstat_l2_misses, 0); 7756 wmsum_init(&arc_sums.arcstat_l2_prefetch_asize, 0); 7757 wmsum_init(&arc_sums.arcstat_l2_mru_asize, 0); 7758 wmsum_init(&arc_sums.arcstat_l2_mfu_asize, 0); 7759 wmsum_init(&arc_sums.arcstat_l2_bufc_data_asize, 0); 7760 wmsum_init(&arc_sums.arcstat_l2_bufc_metadata_asize, 0); 7761 wmsum_init(&arc_sums.arcstat_l2_feeds, 0); 7762 wmsum_init(&arc_sums.arcstat_l2_rw_clash, 0); 7763 wmsum_init(&arc_sums.arcstat_l2_read_bytes, 0); 7764 wmsum_init(&arc_sums.arcstat_l2_write_bytes, 0); 7765 wmsum_init(&arc_sums.arcstat_l2_writes_sent, 0); 7766 wmsum_init(&arc_sums.arcstat_l2_writes_done, 0); 7767 wmsum_init(&arc_sums.arcstat_l2_writes_error, 0); 7768 wmsum_init(&arc_sums.arcstat_l2_writes_lock_retry, 0); 7769 wmsum_init(&arc_sums.arcstat_l2_evict_lock_retry, 0); 7770 wmsum_init(&arc_sums.arcstat_l2_evict_reading, 0); 7771 wmsum_init(&arc_sums.arcstat_l2_evict_l1cached, 0); 7772 wmsum_init(&arc_sums.arcstat_l2_free_on_write, 0); 7773 wmsum_init(&arc_sums.arcstat_l2_abort_lowmem, 0); 7774 wmsum_init(&arc_sums.arcstat_l2_cksum_bad, 0); 7775 wmsum_init(&arc_sums.arcstat_l2_io_error, 0); 7776 wmsum_init(&arc_sums.arcstat_l2_lsize, 0); 7777 wmsum_init(&arc_sums.arcstat_l2_psize, 0); 7778 aggsum_init(&arc_sums.arcstat_l2_hdr_size, 0); 7779 wmsum_init(&arc_sums.arcstat_l2_log_blk_writes, 0); 7780 wmsum_init(&arc_sums.arcstat_l2_log_blk_asize, 0); 7781 wmsum_init(&arc_sums.arcstat_l2_log_blk_count, 0); 7782 wmsum_init(&arc_sums.arcstat_l2_rebuild_success, 0); 7783 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_unsupported, 0); 7784 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_io_errors, 0); 7785 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_dh_errors, 0); 7786 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors, 0); 7787 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_lowmem, 0); 7788 wmsum_init(&arc_sums.arcstat_l2_rebuild_size, 0); 7789 wmsum_init(&arc_sums.arcstat_l2_rebuild_asize, 0); 7790 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs, 0); 7791 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs_precached, 0); 7792 wmsum_init(&arc_sums.arcstat_l2_rebuild_log_blks, 0); 7793 wmsum_init(&arc_sums.arcstat_memory_throttle_count, 0); 7794 wmsum_init(&arc_sums.arcstat_memory_direct_count, 0); 7795 wmsum_init(&arc_sums.arcstat_memory_indirect_count, 0); 7796 wmsum_init(&arc_sums.arcstat_prune, 0); 7797 aggsum_init(&arc_sums.arcstat_meta_used, 0); 7798 wmsum_init(&arc_sums.arcstat_async_upgrade_sync, 0); 7799 wmsum_init(&arc_sums.arcstat_demand_hit_predictive_prefetch, 0); 7800 wmsum_init(&arc_sums.arcstat_demand_hit_prescient_prefetch, 0); 7801 wmsum_init(&arc_sums.arcstat_raw_size, 0); 7802 wmsum_init(&arc_sums.arcstat_cached_only_in_progress, 0); 7803 wmsum_init(&arc_sums.arcstat_abd_chunk_waste_size, 0); 7804 7805 arc_anon->arcs_state = ARC_STATE_ANON; 7806 arc_mru->arcs_state = ARC_STATE_MRU; 7807 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST; 7808 arc_mfu->arcs_state = ARC_STATE_MFU; 7809 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST; 7810 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY; 7811 } 7812 7813 static void 7814 arc_state_fini(void) 7815 { 7816 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7817 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7818 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7819 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7820 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7821 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7822 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7823 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7824 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7825 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7826 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7827 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7828 7829 zfs_refcount_destroy(&arc_anon->arcs_size); 7830 zfs_refcount_destroy(&arc_mru->arcs_size); 7831 zfs_refcount_destroy(&arc_mru_ghost->arcs_size); 7832 zfs_refcount_destroy(&arc_mfu->arcs_size); 7833 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size); 7834 zfs_refcount_destroy(&arc_l2c_only->arcs_size); 7835 7836 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 7837 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 7838 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 7839 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 7840 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 7841 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 7842 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 7843 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 7844 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]); 7845 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]); 7846 7847 wmsum_fini(&arc_sums.arcstat_hits); 7848 wmsum_fini(&arc_sums.arcstat_misses); 7849 wmsum_fini(&arc_sums.arcstat_demand_data_hits); 7850 wmsum_fini(&arc_sums.arcstat_demand_data_misses); 7851 wmsum_fini(&arc_sums.arcstat_demand_metadata_hits); 7852 wmsum_fini(&arc_sums.arcstat_demand_metadata_misses); 7853 wmsum_fini(&arc_sums.arcstat_prefetch_data_hits); 7854 wmsum_fini(&arc_sums.arcstat_prefetch_data_misses); 7855 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_hits); 7856 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_misses); 7857 wmsum_fini(&arc_sums.arcstat_mru_hits); 7858 wmsum_fini(&arc_sums.arcstat_mru_ghost_hits); 7859 wmsum_fini(&arc_sums.arcstat_mfu_hits); 7860 wmsum_fini(&arc_sums.arcstat_mfu_ghost_hits); 7861 wmsum_fini(&arc_sums.arcstat_deleted); 7862 wmsum_fini(&arc_sums.arcstat_mutex_miss); 7863 wmsum_fini(&arc_sums.arcstat_access_skip); 7864 wmsum_fini(&arc_sums.arcstat_evict_skip); 7865 wmsum_fini(&arc_sums.arcstat_evict_not_enough); 7866 wmsum_fini(&arc_sums.arcstat_evict_l2_cached); 7867 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible); 7868 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mfu); 7869 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mru); 7870 wmsum_fini(&arc_sums.arcstat_evict_l2_ineligible); 7871 wmsum_fini(&arc_sums.arcstat_evict_l2_skip); 7872 wmsum_fini(&arc_sums.arcstat_hash_collisions); 7873 wmsum_fini(&arc_sums.arcstat_hash_chains); 7874 aggsum_fini(&arc_sums.arcstat_size); 7875 wmsum_fini(&arc_sums.arcstat_compressed_size); 7876 wmsum_fini(&arc_sums.arcstat_uncompressed_size); 7877 wmsum_fini(&arc_sums.arcstat_overhead_size); 7878 wmsum_fini(&arc_sums.arcstat_hdr_size); 7879 wmsum_fini(&arc_sums.arcstat_data_size); 7880 wmsum_fini(&arc_sums.arcstat_metadata_size); 7881 wmsum_fini(&arc_sums.arcstat_dbuf_size); 7882 aggsum_fini(&arc_sums.arcstat_dnode_size); 7883 wmsum_fini(&arc_sums.arcstat_bonus_size); 7884 wmsum_fini(&arc_sums.arcstat_l2_hits); 7885 wmsum_fini(&arc_sums.arcstat_l2_misses); 7886 wmsum_fini(&arc_sums.arcstat_l2_prefetch_asize); 7887 wmsum_fini(&arc_sums.arcstat_l2_mru_asize); 7888 wmsum_fini(&arc_sums.arcstat_l2_mfu_asize); 7889 wmsum_fini(&arc_sums.arcstat_l2_bufc_data_asize); 7890 wmsum_fini(&arc_sums.arcstat_l2_bufc_metadata_asize); 7891 wmsum_fini(&arc_sums.arcstat_l2_feeds); 7892 wmsum_fini(&arc_sums.arcstat_l2_rw_clash); 7893 wmsum_fini(&arc_sums.arcstat_l2_read_bytes); 7894 wmsum_fini(&arc_sums.arcstat_l2_write_bytes); 7895 wmsum_fini(&arc_sums.arcstat_l2_writes_sent); 7896 wmsum_fini(&arc_sums.arcstat_l2_writes_done); 7897 wmsum_fini(&arc_sums.arcstat_l2_writes_error); 7898 wmsum_fini(&arc_sums.arcstat_l2_writes_lock_retry); 7899 wmsum_fini(&arc_sums.arcstat_l2_evict_lock_retry); 7900 wmsum_fini(&arc_sums.arcstat_l2_evict_reading); 7901 wmsum_fini(&arc_sums.arcstat_l2_evict_l1cached); 7902 wmsum_fini(&arc_sums.arcstat_l2_free_on_write); 7903 wmsum_fini(&arc_sums.arcstat_l2_abort_lowmem); 7904 wmsum_fini(&arc_sums.arcstat_l2_cksum_bad); 7905 wmsum_fini(&arc_sums.arcstat_l2_io_error); 7906 wmsum_fini(&arc_sums.arcstat_l2_lsize); 7907 wmsum_fini(&arc_sums.arcstat_l2_psize); 7908 aggsum_fini(&arc_sums.arcstat_l2_hdr_size); 7909 wmsum_fini(&arc_sums.arcstat_l2_log_blk_writes); 7910 wmsum_fini(&arc_sums.arcstat_l2_log_blk_asize); 7911 wmsum_fini(&arc_sums.arcstat_l2_log_blk_count); 7912 wmsum_fini(&arc_sums.arcstat_l2_rebuild_success); 7913 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_unsupported); 7914 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_io_errors); 7915 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_dh_errors); 7916 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors); 7917 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_lowmem); 7918 wmsum_fini(&arc_sums.arcstat_l2_rebuild_size); 7919 wmsum_fini(&arc_sums.arcstat_l2_rebuild_asize); 7920 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs); 7921 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs_precached); 7922 wmsum_fini(&arc_sums.arcstat_l2_rebuild_log_blks); 7923 wmsum_fini(&arc_sums.arcstat_memory_throttle_count); 7924 wmsum_fini(&arc_sums.arcstat_memory_direct_count); 7925 wmsum_fini(&arc_sums.arcstat_memory_indirect_count); 7926 wmsum_fini(&arc_sums.arcstat_prune); 7927 aggsum_fini(&arc_sums.arcstat_meta_used); 7928 wmsum_fini(&arc_sums.arcstat_async_upgrade_sync); 7929 wmsum_fini(&arc_sums.arcstat_demand_hit_predictive_prefetch); 7930 wmsum_fini(&arc_sums.arcstat_demand_hit_prescient_prefetch); 7931 wmsum_fini(&arc_sums.arcstat_raw_size); 7932 wmsum_fini(&arc_sums.arcstat_cached_only_in_progress); 7933 wmsum_fini(&arc_sums.arcstat_abd_chunk_waste_size); 7934 } 7935 7936 uint64_t 7937 arc_target_bytes(void) 7938 { 7939 return (arc_c); 7940 } 7941 7942 void 7943 arc_set_limits(uint64_t allmem) 7944 { 7945 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */ 7946 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT); 7947 7948 /* How to set default max varies by platform. */ 7949 arc_c_max = arc_default_max(arc_c_min, allmem); 7950 } 7951 void 7952 arc_init(void) 7953 { 7954 uint64_t percent, allmem = arc_all_memory(); 7955 mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL); 7956 list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t), 7957 offsetof(arc_evict_waiter_t, aew_node)); 7958 7959 arc_min_prefetch_ms = 1000; 7960 arc_min_prescient_prefetch_ms = 6000; 7961 7962 #if defined(_KERNEL) 7963 arc_lowmem_init(); 7964 #endif 7965 7966 arc_set_limits(allmem); 7967 7968 #ifdef _KERNEL 7969 /* 7970 * If zfs_arc_max is non-zero at init, meaning it was set in the kernel 7971 * environment before the module was loaded, don't block setting the 7972 * maximum because it is less than arc_c_min, instead, reset arc_c_min 7973 * to a lower value. 7974 * zfs_arc_min will be handled by arc_tuning_update(). 7975 */ 7976 if (zfs_arc_max != 0 && zfs_arc_max >= MIN_ARC_MAX && 7977 zfs_arc_max < allmem) { 7978 arc_c_max = zfs_arc_max; 7979 if (arc_c_min >= arc_c_max) { 7980 arc_c_min = MAX(zfs_arc_max / 2, 7981 2ULL << SPA_MAXBLOCKSHIFT); 7982 } 7983 } 7984 #else 7985 /* 7986 * In userland, there's only the memory pressure that we artificially 7987 * create (see arc_available_memory()). Don't let arc_c get too 7988 * small, because it can cause transactions to be larger than 7989 * arc_c, causing arc_tempreserve_space() to fail. 7990 */ 7991 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT); 7992 #endif 7993 7994 arc_c = arc_c_min; 7995 arc_p = (arc_c >> 1); 7996 7997 /* Set min to 1/2 of arc_c_min */ 7998 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT; 7999 /* 8000 * Set arc_meta_limit to a percent of arc_c_max with a floor of 8001 * arc_meta_min, and a ceiling of arc_c_max. 8002 */ 8003 percent = MIN(zfs_arc_meta_limit_percent, 100); 8004 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100); 8005 percent = MIN(zfs_arc_dnode_limit_percent, 100); 8006 arc_dnode_size_limit = (percent * arc_meta_limit) / 100; 8007 8008 /* Apply user specified tunings */ 8009 arc_tuning_update(B_TRUE); 8010 8011 /* if kmem_flags are set, lets try to use less memory */ 8012 if (kmem_debugging()) 8013 arc_c = arc_c / 2; 8014 if (arc_c < arc_c_min) 8015 arc_c = arc_c_min; 8016 8017 arc_register_hotplug(); 8018 8019 arc_state_init(); 8020 8021 buf_init(); 8022 8023 list_create(&arc_prune_list, sizeof (arc_prune_t), 8024 offsetof(arc_prune_t, p_node)); 8025 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL); 8026 8027 arc_prune_taskq = taskq_create("arc_prune", zfs_arc_prune_task_threads, 8028 defclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC); 8029 8030 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 8031 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 8032 8033 if (arc_ksp != NULL) { 8034 arc_ksp->ks_data = &arc_stats; 8035 arc_ksp->ks_update = arc_kstat_update; 8036 kstat_install(arc_ksp); 8037 } 8038 8039 arc_state_evict_markers = 8040 arc_state_alloc_markers(arc_state_evict_marker_count); 8041 arc_evict_zthr = zthr_create("arc_evict", 8042 arc_evict_cb_check, arc_evict_cb, NULL, defclsyspri); 8043 arc_reap_zthr = zthr_create_timer("arc_reap", 8044 arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1), minclsyspri); 8045 8046 arc_warm = B_FALSE; 8047 8048 /* 8049 * Calculate maximum amount of dirty data per pool. 8050 * 8051 * If it has been set by a module parameter, take that. 8052 * Otherwise, use a percentage of physical memory defined by 8053 * zfs_dirty_data_max_percent (default 10%) with a cap at 8054 * zfs_dirty_data_max_max (default 4G or 25% of physical memory). 8055 */ 8056 #ifdef __LP64__ 8057 if (zfs_dirty_data_max_max == 0) 8058 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024, 8059 allmem * zfs_dirty_data_max_max_percent / 100); 8060 #else 8061 if (zfs_dirty_data_max_max == 0) 8062 zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024, 8063 allmem * zfs_dirty_data_max_max_percent / 100); 8064 #endif 8065 8066 if (zfs_dirty_data_max == 0) { 8067 zfs_dirty_data_max = allmem * 8068 zfs_dirty_data_max_percent / 100; 8069 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 8070 zfs_dirty_data_max_max); 8071 } 8072 8073 if (zfs_wrlog_data_max == 0) { 8074 8075 /* 8076 * dp_wrlog_total is reduced for each txg at the end of 8077 * spa_sync(). However, dp_dirty_total is reduced every time 8078 * a block is written out. Thus under normal operation, 8079 * dp_wrlog_total could grow 2 times as big as 8080 * zfs_dirty_data_max. 8081 */ 8082 zfs_wrlog_data_max = zfs_dirty_data_max * 2; 8083 } 8084 } 8085 8086 void 8087 arc_fini(void) 8088 { 8089 arc_prune_t *p; 8090 8091 #ifdef _KERNEL 8092 arc_lowmem_fini(); 8093 #endif /* _KERNEL */ 8094 8095 /* Use B_TRUE to ensure *all* buffers are evicted */ 8096 arc_flush(NULL, B_TRUE); 8097 8098 if (arc_ksp != NULL) { 8099 kstat_delete(arc_ksp); 8100 arc_ksp = NULL; 8101 } 8102 8103 taskq_wait(arc_prune_taskq); 8104 taskq_destroy(arc_prune_taskq); 8105 8106 mutex_enter(&arc_prune_mtx); 8107 while ((p = list_head(&arc_prune_list)) != NULL) { 8108 list_remove(&arc_prune_list, p); 8109 zfs_refcount_remove(&p->p_refcnt, &arc_prune_list); 8110 zfs_refcount_destroy(&p->p_refcnt); 8111 kmem_free(p, sizeof (*p)); 8112 } 8113 mutex_exit(&arc_prune_mtx); 8114 8115 list_destroy(&arc_prune_list); 8116 mutex_destroy(&arc_prune_mtx); 8117 8118 (void) zthr_cancel(arc_evict_zthr); 8119 (void) zthr_cancel(arc_reap_zthr); 8120 arc_state_free_markers(arc_state_evict_markers, 8121 arc_state_evict_marker_count); 8122 8123 mutex_destroy(&arc_evict_lock); 8124 list_destroy(&arc_evict_waiters); 8125 8126 /* 8127 * Free any buffers that were tagged for destruction. This needs 8128 * to occur before arc_state_fini() runs and destroys the aggsum 8129 * values which are updated when freeing scatter ABDs. 8130 */ 8131 l2arc_do_free_on_write(); 8132 8133 /* 8134 * buf_fini() must proceed arc_state_fini() because buf_fin() may 8135 * trigger the release of kmem magazines, which can callback to 8136 * arc_space_return() which accesses aggsums freed in act_state_fini(). 8137 */ 8138 buf_fini(); 8139 arc_state_fini(); 8140 8141 arc_unregister_hotplug(); 8142 8143 /* 8144 * We destroy the zthrs after all the ARC state has been 8145 * torn down to avoid the case of them receiving any 8146 * wakeup() signals after they are destroyed. 8147 */ 8148 zthr_destroy(arc_evict_zthr); 8149 zthr_destroy(arc_reap_zthr); 8150 8151 ASSERT0(arc_loaned_bytes); 8152 } 8153 8154 /* 8155 * Level 2 ARC 8156 * 8157 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 8158 * It uses dedicated storage devices to hold cached data, which are populated 8159 * using large infrequent writes. The main role of this cache is to boost 8160 * the performance of random read workloads. The intended L2ARC devices 8161 * include short-stroked disks, solid state disks, and other media with 8162 * substantially faster read latency than disk. 8163 * 8164 * +-----------------------+ 8165 * | ARC | 8166 * +-----------------------+ 8167 * | ^ ^ 8168 * | | | 8169 * l2arc_feed_thread() arc_read() 8170 * | | | 8171 * | l2arc read | 8172 * V | | 8173 * +---------------+ | 8174 * | L2ARC | | 8175 * +---------------+ | 8176 * | ^ | 8177 * l2arc_write() | | 8178 * | | | 8179 * V | | 8180 * +-------+ +-------+ 8181 * | vdev | | vdev | 8182 * | cache | | cache | 8183 * +-------+ +-------+ 8184 * +=========+ .-----. 8185 * : L2ARC : |-_____-| 8186 * : devices : | Disks | 8187 * +=========+ `-_____-' 8188 * 8189 * Read requests are satisfied from the following sources, in order: 8190 * 8191 * 1) ARC 8192 * 2) vdev cache of L2ARC devices 8193 * 3) L2ARC devices 8194 * 4) vdev cache of disks 8195 * 5) disks 8196 * 8197 * Some L2ARC device types exhibit extremely slow write performance. 8198 * To accommodate for this there are some significant differences between 8199 * the L2ARC and traditional cache design: 8200 * 8201 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 8202 * the ARC behave as usual, freeing buffers and placing headers on ghost 8203 * lists. The ARC does not send buffers to the L2ARC during eviction as 8204 * this would add inflated write latencies for all ARC memory pressure. 8205 * 8206 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 8207 * It does this by periodically scanning buffers from the eviction-end of 8208 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 8209 * not already there. It scans until a headroom of buffers is satisfied, 8210 * which itself is a buffer for ARC eviction. If a compressible buffer is 8211 * found during scanning and selected for writing to an L2ARC device, we 8212 * temporarily boost scanning headroom during the next scan cycle to make 8213 * sure we adapt to compression effects (which might significantly reduce 8214 * the data volume we write to L2ARC). The thread that does this is 8215 * l2arc_feed_thread(), illustrated below; example sizes are included to 8216 * provide a better sense of ratio than this diagram: 8217 * 8218 * head --> tail 8219 * +---------------------+----------+ 8220 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 8221 * +---------------------+----------+ | o L2ARC eligible 8222 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 8223 * +---------------------+----------+ | 8224 * 15.9 Gbytes ^ 32 Mbytes | 8225 * headroom | 8226 * l2arc_feed_thread() 8227 * | 8228 * l2arc write hand <--[oooo]--' 8229 * | 8 Mbyte 8230 * | write max 8231 * V 8232 * +==============================+ 8233 * L2ARC dev |####|#|###|###| |####| ... | 8234 * +==============================+ 8235 * 32 Gbytes 8236 * 8237 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 8238 * evicted, then the L2ARC has cached a buffer much sooner than it probably 8239 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 8240 * safe to say that this is an uncommon case, since buffers at the end of 8241 * the ARC lists have moved there due to inactivity. 8242 * 8243 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 8244 * then the L2ARC simply misses copying some buffers. This serves as a 8245 * pressure valve to prevent heavy read workloads from both stalling the ARC 8246 * with waits and clogging the L2ARC with writes. This also helps prevent 8247 * the potential for the L2ARC to churn if it attempts to cache content too 8248 * quickly, such as during backups of the entire pool. 8249 * 8250 * 5. After system boot and before the ARC has filled main memory, there are 8251 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 8252 * lists can remain mostly static. Instead of searching from tail of these 8253 * lists as pictured, the l2arc_feed_thread() will search from the list heads 8254 * for eligible buffers, greatly increasing its chance of finding them. 8255 * 8256 * The L2ARC device write speed is also boosted during this time so that 8257 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 8258 * there are no L2ARC reads, and no fear of degrading read performance 8259 * through increased writes. 8260 * 8261 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 8262 * the vdev queue can aggregate them into larger and fewer writes. Each 8263 * device is written to in a rotor fashion, sweeping writes through 8264 * available space then repeating. 8265 * 8266 * 7. The L2ARC does not store dirty content. It never needs to flush 8267 * write buffers back to disk based storage. 8268 * 8269 * 8. If an ARC buffer is written (and dirtied) which also exists in the 8270 * L2ARC, the now stale L2ARC buffer is immediately dropped. 8271 * 8272 * The performance of the L2ARC can be tweaked by a number of tunables, which 8273 * may be necessary for different workloads: 8274 * 8275 * l2arc_write_max max write bytes per interval 8276 * l2arc_write_boost extra write bytes during device warmup 8277 * l2arc_noprefetch skip caching prefetched buffers 8278 * l2arc_headroom number of max device writes to precache 8279 * l2arc_headroom_boost when we find compressed buffers during ARC 8280 * scanning, we multiply headroom by this 8281 * percentage factor for the next scan cycle, 8282 * since more compressed buffers are likely to 8283 * be present 8284 * l2arc_feed_secs seconds between L2ARC writing 8285 * 8286 * Tunables may be removed or added as future performance improvements are 8287 * integrated, and also may become zpool properties. 8288 * 8289 * There are three key functions that control how the L2ARC warms up: 8290 * 8291 * l2arc_write_eligible() check if a buffer is eligible to cache 8292 * l2arc_write_size() calculate how much to write 8293 * l2arc_write_interval() calculate sleep delay between writes 8294 * 8295 * These three functions determine what to write, how much, and how quickly 8296 * to send writes. 8297 * 8298 * L2ARC persistence: 8299 * 8300 * When writing buffers to L2ARC, we periodically add some metadata to 8301 * make sure we can pick them up after reboot, thus dramatically reducing 8302 * the impact that any downtime has on the performance of storage systems 8303 * with large caches. 8304 * 8305 * The implementation works fairly simply by integrating the following two 8306 * modifications: 8307 * 8308 * *) When writing to the L2ARC, we occasionally write a "l2arc log block", 8309 * which is an additional piece of metadata which describes what's been 8310 * written. This allows us to rebuild the arc_buf_hdr_t structures of the 8311 * main ARC buffers. There are 2 linked-lists of log blocks headed by 8312 * dh_start_lbps[2]. We alternate which chain we append to, so they are 8313 * time-wise and offset-wise interleaved, but that is an optimization rather 8314 * than for correctness. The log block also includes a pointer to the 8315 * previous block in its chain. 8316 * 8317 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device 8318 * for our header bookkeeping purposes. This contains a device header, 8319 * which contains our top-level reference structures. We update it each 8320 * time we write a new log block, so that we're able to locate it in the 8321 * L2ARC device. If this write results in an inconsistent device header 8322 * (e.g. due to power failure), we detect this by verifying the header's 8323 * checksum and simply fail to reconstruct the L2ARC after reboot. 8324 * 8325 * Implementation diagram: 8326 * 8327 * +=== L2ARC device (not to scale) ======================================+ 8328 * | ___two newest log block pointers__.__________ | 8329 * | / \dh_start_lbps[1] | 8330 * | / \ \dh_start_lbps[0]| 8331 * |.___/__. V V | 8332 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---| 8333 * || hdr| ^ /^ /^ / / | 8334 * |+------+ ...--\-------/ \-----/--\------/ / | 8335 * | \--------------/ \--------------/ | 8336 * +======================================================================+ 8337 * 8338 * As can be seen on the diagram, rather than using a simple linked list, 8339 * we use a pair of linked lists with alternating elements. This is a 8340 * performance enhancement due to the fact that we only find out the 8341 * address of the next log block access once the current block has been 8342 * completely read in. Obviously, this hurts performance, because we'd be 8343 * keeping the device's I/O queue at only a 1 operation deep, thus 8344 * incurring a large amount of I/O round-trip latency. Having two lists 8345 * allows us to fetch two log blocks ahead of where we are currently 8346 * rebuilding L2ARC buffers. 8347 * 8348 * On-device data structures: 8349 * 8350 * L2ARC device header: l2arc_dev_hdr_phys_t 8351 * L2ARC log block: l2arc_log_blk_phys_t 8352 * 8353 * L2ARC reconstruction: 8354 * 8355 * When writing data, we simply write in the standard rotary fashion, 8356 * evicting buffers as we go and simply writing new data over them (writing 8357 * a new log block every now and then). This obviously means that once we 8358 * loop around the end of the device, we will start cutting into an already 8359 * committed log block (and its referenced data buffers), like so: 8360 * 8361 * current write head__ __old tail 8362 * \ / 8363 * V V 8364 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |--> 8365 * ^ ^^^^^^^^^___________________________________ 8366 * | \ 8367 * <<nextwrite>> may overwrite this blk and/or its bufs --' 8368 * 8369 * When importing the pool, we detect this situation and use it to stop 8370 * our scanning process (see l2arc_rebuild). 8371 * 8372 * There is one significant caveat to consider when rebuilding ARC contents 8373 * from an L2ARC device: what about invalidated buffers? Given the above 8374 * construction, we cannot update blocks which we've already written to amend 8375 * them to remove buffers which were invalidated. Thus, during reconstruction, 8376 * we might be populating the cache with buffers for data that's not on the 8377 * main pool anymore, or may have been overwritten! 8378 * 8379 * As it turns out, this isn't a problem. Every arc_read request includes 8380 * both the DVA and, crucially, the birth TXG of the BP the caller is 8381 * looking for. So even if the cache were populated by completely rotten 8382 * blocks for data that had been long deleted and/or overwritten, we'll 8383 * never actually return bad data from the cache, since the DVA with the 8384 * birth TXG uniquely identify a block in space and time - once created, 8385 * a block is immutable on disk. The worst thing we have done is wasted 8386 * some time and memory at l2arc rebuild to reconstruct outdated ARC 8387 * entries that will get dropped from the l2arc as it is being updated 8388 * with new blocks. 8389 * 8390 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write 8391 * hand are not restored. This is done by saving the offset (in bytes) 8392 * l2arc_evict() has evicted to in the L2ARC device header and taking it 8393 * into account when restoring buffers. 8394 */ 8395 8396 static boolean_t 8397 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 8398 { 8399 /* 8400 * A buffer is *not* eligible for the L2ARC if it: 8401 * 1. belongs to a different spa. 8402 * 2. is already cached on the L2ARC. 8403 * 3. has an I/O in progress (it may be an incomplete read). 8404 * 4. is flagged not eligible (zfs property). 8405 */ 8406 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || 8407 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr)) 8408 return (B_FALSE); 8409 8410 return (B_TRUE); 8411 } 8412 8413 static uint64_t 8414 l2arc_write_size(l2arc_dev_t *dev) 8415 { 8416 uint64_t size, dev_size, tsize; 8417 8418 /* 8419 * Make sure our globals have meaningful values in case the user 8420 * altered them. 8421 */ 8422 size = l2arc_write_max; 8423 if (size == 0) { 8424 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 8425 "be greater than zero, resetting it to the default (%d)", 8426 L2ARC_WRITE_SIZE); 8427 size = l2arc_write_max = L2ARC_WRITE_SIZE; 8428 } 8429 8430 if (arc_warm == B_FALSE) 8431 size += l2arc_write_boost; 8432 8433 /* 8434 * Make sure the write size does not exceed the size of the cache 8435 * device. This is important in l2arc_evict(), otherwise infinite 8436 * iteration can occur. 8437 */ 8438 dev_size = dev->l2ad_end - dev->l2ad_start; 8439 tsize = size + l2arc_log_blk_overhead(size, dev); 8440 if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) 8441 tsize += MAX(64 * 1024 * 1024, 8442 (tsize * l2arc_trim_ahead) / 100); 8443 8444 if (tsize >= dev_size) { 8445 cmn_err(CE_NOTE, "l2arc_write_max or l2arc_write_boost " 8446 "plus the overhead of log blocks (persistent L2ARC, " 8447 "%llu bytes) exceeds the size of the cache device " 8448 "(guid %llu), resetting them to the default (%d)", 8449 (u_longlong_t)l2arc_log_blk_overhead(size, dev), 8450 (u_longlong_t)dev->l2ad_vdev->vdev_guid, L2ARC_WRITE_SIZE); 8451 size = l2arc_write_max = l2arc_write_boost = L2ARC_WRITE_SIZE; 8452 8453 if (arc_warm == B_FALSE) 8454 size += l2arc_write_boost; 8455 } 8456 8457 return (size); 8458 8459 } 8460 8461 static clock_t 8462 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 8463 { 8464 clock_t interval, next, now; 8465 8466 /* 8467 * If the ARC lists are busy, increase our write rate; if the 8468 * lists are stale, idle back. This is achieved by checking 8469 * how much we previously wrote - if it was more than half of 8470 * what we wanted, schedule the next write much sooner. 8471 */ 8472 if (l2arc_feed_again && wrote > (wanted / 2)) 8473 interval = (hz * l2arc_feed_min_ms) / 1000; 8474 else 8475 interval = hz * l2arc_feed_secs; 8476 8477 now = ddi_get_lbolt(); 8478 next = MAX(now, MIN(now + interval, began + interval)); 8479 8480 return (next); 8481 } 8482 8483 /* 8484 * Cycle through L2ARC devices. This is how L2ARC load balances. 8485 * If a device is returned, this also returns holding the spa config lock. 8486 */ 8487 static l2arc_dev_t * 8488 l2arc_dev_get_next(void) 8489 { 8490 l2arc_dev_t *first, *next = NULL; 8491 8492 /* 8493 * Lock out the removal of spas (spa_namespace_lock), then removal 8494 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 8495 * both locks will be dropped and a spa config lock held instead. 8496 */ 8497 mutex_enter(&spa_namespace_lock); 8498 mutex_enter(&l2arc_dev_mtx); 8499 8500 /* if there are no vdevs, there is nothing to do */ 8501 if (l2arc_ndev == 0) 8502 goto out; 8503 8504 first = NULL; 8505 next = l2arc_dev_last; 8506 do { 8507 /* loop around the list looking for a non-faulted vdev */ 8508 if (next == NULL) { 8509 next = list_head(l2arc_dev_list); 8510 } else { 8511 next = list_next(l2arc_dev_list, next); 8512 if (next == NULL) 8513 next = list_head(l2arc_dev_list); 8514 } 8515 8516 /* if we have come back to the start, bail out */ 8517 if (first == NULL) 8518 first = next; 8519 else if (next == first) 8520 break; 8521 8522 } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || 8523 next->l2ad_trim_all); 8524 8525 /* if we were unable to find any usable vdevs, return NULL */ 8526 if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || 8527 next->l2ad_trim_all) 8528 next = NULL; 8529 8530 l2arc_dev_last = next; 8531 8532 out: 8533 mutex_exit(&l2arc_dev_mtx); 8534 8535 /* 8536 * Grab the config lock to prevent the 'next' device from being 8537 * removed while we are writing to it. 8538 */ 8539 if (next != NULL) 8540 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 8541 mutex_exit(&spa_namespace_lock); 8542 8543 return (next); 8544 } 8545 8546 /* 8547 * Free buffers that were tagged for destruction. 8548 */ 8549 static void 8550 l2arc_do_free_on_write(void) 8551 { 8552 list_t *buflist; 8553 l2arc_data_free_t *df, *df_prev; 8554 8555 mutex_enter(&l2arc_free_on_write_mtx); 8556 buflist = l2arc_free_on_write; 8557 8558 for (df = list_tail(buflist); df; df = df_prev) { 8559 df_prev = list_prev(buflist, df); 8560 ASSERT3P(df->l2df_abd, !=, NULL); 8561 abd_free(df->l2df_abd); 8562 list_remove(buflist, df); 8563 kmem_free(df, sizeof (l2arc_data_free_t)); 8564 } 8565 8566 mutex_exit(&l2arc_free_on_write_mtx); 8567 } 8568 8569 /* 8570 * A write to a cache device has completed. Update all headers to allow 8571 * reads from these buffers to begin. 8572 */ 8573 static void 8574 l2arc_write_done(zio_t *zio) 8575 { 8576 l2arc_write_callback_t *cb; 8577 l2arc_lb_abd_buf_t *abd_buf; 8578 l2arc_lb_ptr_buf_t *lb_ptr_buf; 8579 l2arc_dev_t *dev; 8580 l2arc_dev_hdr_phys_t *l2dhdr; 8581 list_t *buflist; 8582 arc_buf_hdr_t *head, *hdr, *hdr_prev; 8583 kmutex_t *hash_lock; 8584 int64_t bytes_dropped = 0; 8585 8586 cb = zio->io_private; 8587 ASSERT3P(cb, !=, NULL); 8588 dev = cb->l2wcb_dev; 8589 l2dhdr = dev->l2ad_dev_hdr; 8590 ASSERT3P(dev, !=, NULL); 8591 head = cb->l2wcb_head; 8592 ASSERT3P(head, !=, NULL); 8593 buflist = &dev->l2ad_buflist; 8594 ASSERT3P(buflist, !=, NULL); 8595 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 8596 l2arc_write_callback_t *, cb); 8597 8598 /* 8599 * All writes completed, or an error was hit. 8600 */ 8601 top: 8602 mutex_enter(&dev->l2ad_mtx); 8603 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 8604 hdr_prev = list_prev(buflist, hdr); 8605 8606 hash_lock = HDR_LOCK(hdr); 8607 8608 /* 8609 * We cannot use mutex_enter or else we can deadlock 8610 * with l2arc_write_buffers (due to swapping the order 8611 * the hash lock and l2ad_mtx are taken). 8612 */ 8613 if (!mutex_tryenter(hash_lock)) { 8614 /* 8615 * Missed the hash lock. We must retry so we 8616 * don't leave the ARC_FLAG_L2_WRITING bit set. 8617 */ 8618 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 8619 8620 /* 8621 * We don't want to rescan the headers we've 8622 * already marked as having been written out, so 8623 * we reinsert the head node so we can pick up 8624 * where we left off. 8625 */ 8626 list_remove(buflist, head); 8627 list_insert_after(buflist, hdr, head); 8628 8629 mutex_exit(&dev->l2ad_mtx); 8630 8631 /* 8632 * We wait for the hash lock to become available 8633 * to try and prevent busy waiting, and increase 8634 * the chance we'll be able to acquire the lock 8635 * the next time around. 8636 */ 8637 mutex_enter(hash_lock); 8638 mutex_exit(hash_lock); 8639 goto top; 8640 } 8641 8642 /* 8643 * We could not have been moved into the arc_l2c_only 8644 * state while in-flight due to our ARC_FLAG_L2_WRITING 8645 * bit being set. Let's just ensure that's being enforced. 8646 */ 8647 ASSERT(HDR_HAS_L1HDR(hdr)); 8648 8649 /* 8650 * Skipped - drop L2ARC entry and mark the header as no 8651 * longer L2 eligibile. 8652 */ 8653 if (zio->io_error != 0) { 8654 /* 8655 * Error - drop L2ARC entry. 8656 */ 8657 list_remove(buflist, hdr); 8658 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 8659 8660 uint64_t psize = HDR_GET_PSIZE(hdr); 8661 l2arc_hdr_arcstats_decrement(hdr); 8662 8663 bytes_dropped += 8664 vdev_psize_to_asize(dev->l2ad_vdev, psize); 8665 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 8666 arc_hdr_size(hdr), hdr); 8667 } 8668 8669 /* 8670 * Allow ARC to begin reads and ghost list evictions to 8671 * this L2ARC entry. 8672 */ 8673 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); 8674 8675 mutex_exit(hash_lock); 8676 } 8677 8678 /* 8679 * Free the allocated abd buffers for writing the log blocks. 8680 * If the zio failed reclaim the allocated space and remove the 8681 * pointers to these log blocks from the log block pointer list 8682 * of the L2ARC device. 8683 */ 8684 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) { 8685 abd_free(abd_buf->abd); 8686 zio_buf_free(abd_buf, sizeof (*abd_buf)); 8687 if (zio->io_error != 0) { 8688 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list); 8689 /* 8690 * L2BLK_GET_PSIZE returns aligned size for log 8691 * blocks. 8692 */ 8693 uint64_t asize = 8694 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop); 8695 bytes_dropped += asize; 8696 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 8697 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 8698 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 8699 lb_ptr_buf); 8700 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 8701 kmem_free(lb_ptr_buf->lb_ptr, 8702 sizeof (l2arc_log_blkptr_t)); 8703 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 8704 } 8705 } 8706 list_destroy(&cb->l2wcb_abd_list); 8707 8708 if (zio->io_error != 0) { 8709 ARCSTAT_BUMP(arcstat_l2_writes_error); 8710 8711 /* 8712 * Restore the lbps array in the header to its previous state. 8713 * If the list of log block pointers is empty, zero out the 8714 * log block pointers in the device header. 8715 */ 8716 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list); 8717 for (int i = 0; i < 2; i++) { 8718 if (lb_ptr_buf == NULL) { 8719 /* 8720 * If the list is empty zero out the device 8721 * header. Otherwise zero out the second log 8722 * block pointer in the header. 8723 */ 8724 if (i == 0) { 8725 memset(l2dhdr, 0, 8726 dev->l2ad_dev_hdr_asize); 8727 } else { 8728 memset(&l2dhdr->dh_start_lbps[i], 0, 8729 sizeof (l2arc_log_blkptr_t)); 8730 } 8731 break; 8732 } 8733 memcpy(&l2dhdr->dh_start_lbps[i], lb_ptr_buf->lb_ptr, 8734 sizeof (l2arc_log_blkptr_t)); 8735 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list, 8736 lb_ptr_buf); 8737 } 8738 } 8739 8740 ARCSTAT_BUMP(arcstat_l2_writes_done); 8741 list_remove(buflist, head); 8742 ASSERT(!HDR_HAS_L1HDR(head)); 8743 kmem_cache_free(hdr_l2only_cache, head); 8744 mutex_exit(&dev->l2ad_mtx); 8745 8746 ASSERT(dev->l2ad_vdev != NULL); 8747 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 8748 8749 l2arc_do_free_on_write(); 8750 8751 kmem_free(cb, sizeof (l2arc_write_callback_t)); 8752 } 8753 8754 static int 8755 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb) 8756 { 8757 int ret; 8758 spa_t *spa = zio->io_spa; 8759 arc_buf_hdr_t *hdr = cb->l2rcb_hdr; 8760 blkptr_t *bp = zio->io_bp; 8761 uint8_t salt[ZIO_DATA_SALT_LEN]; 8762 uint8_t iv[ZIO_DATA_IV_LEN]; 8763 uint8_t mac[ZIO_DATA_MAC_LEN]; 8764 boolean_t no_crypt = B_FALSE; 8765 8766 /* 8767 * ZIL data is never be written to the L2ARC, so we don't need 8768 * special handling for its unique MAC storage. 8769 */ 8770 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 8771 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 8772 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8773 8774 /* 8775 * If the data was encrypted, decrypt it now. Note that 8776 * we must check the bp here and not the hdr, since the 8777 * hdr does not have its encryption parameters updated 8778 * until arc_read_done(). 8779 */ 8780 if (BP_IS_ENCRYPTED(bp)) { 8781 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8782 ARC_HDR_DO_ADAPT | ARC_HDR_USE_RESERVE); 8783 8784 zio_crypt_decode_params_bp(bp, salt, iv); 8785 zio_crypt_decode_mac_bp(bp, mac); 8786 8787 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb, 8788 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 8789 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd, 8790 hdr->b_l1hdr.b_pabd, &no_crypt); 8791 if (ret != 0) { 8792 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8793 goto error; 8794 } 8795 8796 /* 8797 * If we actually performed decryption, replace b_pabd 8798 * with the decrypted data. Otherwise we can just throw 8799 * our decryption buffer away. 8800 */ 8801 if (!no_crypt) { 8802 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8803 arc_hdr_size(hdr), hdr); 8804 hdr->b_l1hdr.b_pabd = eabd; 8805 zio->io_abd = eabd; 8806 } else { 8807 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8808 } 8809 } 8810 8811 /* 8812 * If the L2ARC block was compressed, but ARC compression 8813 * is disabled we decompress the data into a new buffer and 8814 * replace the existing data. 8815 */ 8816 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 8817 !HDR_COMPRESSION_ENABLED(hdr)) { 8818 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8819 ARC_HDR_DO_ADAPT | ARC_HDR_USE_RESERVE); 8820 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 8821 8822 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 8823 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 8824 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 8825 if (ret != 0) { 8826 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 8827 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr); 8828 goto error; 8829 } 8830 8831 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 8832 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8833 arc_hdr_size(hdr), hdr); 8834 hdr->b_l1hdr.b_pabd = cabd; 8835 zio->io_abd = cabd; 8836 zio->io_size = HDR_GET_LSIZE(hdr); 8837 } 8838 8839 return (0); 8840 8841 error: 8842 return (ret); 8843 } 8844 8845 8846 /* 8847 * A read to a cache device completed. Validate buffer contents before 8848 * handing over to the regular ARC routines. 8849 */ 8850 static void 8851 l2arc_read_done(zio_t *zio) 8852 { 8853 int tfm_error = 0; 8854 l2arc_read_callback_t *cb = zio->io_private; 8855 arc_buf_hdr_t *hdr; 8856 kmutex_t *hash_lock; 8857 boolean_t valid_cksum; 8858 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) && 8859 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT)); 8860 8861 ASSERT3P(zio->io_vd, !=, NULL); 8862 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 8863 8864 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 8865 8866 ASSERT3P(cb, !=, NULL); 8867 hdr = cb->l2rcb_hdr; 8868 ASSERT3P(hdr, !=, NULL); 8869 8870 hash_lock = HDR_LOCK(hdr); 8871 mutex_enter(hash_lock); 8872 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 8873 8874 /* 8875 * If the data was read into a temporary buffer, 8876 * move it and free the buffer. 8877 */ 8878 if (cb->l2rcb_abd != NULL) { 8879 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size); 8880 if (zio->io_error == 0) { 8881 if (using_rdata) { 8882 abd_copy(hdr->b_crypt_hdr.b_rabd, 8883 cb->l2rcb_abd, arc_hdr_size(hdr)); 8884 } else { 8885 abd_copy(hdr->b_l1hdr.b_pabd, 8886 cb->l2rcb_abd, arc_hdr_size(hdr)); 8887 } 8888 } 8889 8890 /* 8891 * The following must be done regardless of whether 8892 * there was an error: 8893 * - free the temporary buffer 8894 * - point zio to the real ARC buffer 8895 * - set zio size accordingly 8896 * These are required because zio is either re-used for 8897 * an I/O of the block in the case of the error 8898 * or the zio is passed to arc_read_done() and it 8899 * needs real data. 8900 */ 8901 abd_free(cb->l2rcb_abd); 8902 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr); 8903 8904 if (using_rdata) { 8905 ASSERT(HDR_HAS_RABD(hdr)); 8906 zio->io_abd = zio->io_orig_abd = 8907 hdr->b_crypt_hdr.b_rabd; 8908 } else { 8909 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8910 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd; 8911 } 8912 } 8913 8914 ASSERT3P(zio->io_abd, !=, NULL); 8915 8916 /* 8917 * Check this survived the L2ARC journey. 8918 */ 8919 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd || 8920 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd)); 8921 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 8922 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 8923 zio->io_prop.zp_complevel = hdr->b_complevel; 8924 8925 valid_cksum = arc_cksum_is_equal(hdr, zio); 8926 8927 /* 8928 * b_rabd will always match the data as it exists on disk if it is 8929 * being used. Therefore if we are reading into b_rabd we do not 8930 * attempt to untransform the data. 8931 */ 8932 if (valid_cksum && !using_rdata) 8933 tfm_error = l2arc_untransform(zio, cb); 8934 8935 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 && 8936 !HDR_L2_EVICTED(hdr)) { 8937 mutex_exit(hash_lock); 8938 zio->io_private = hdr; 8939 arc_read_done(zio); 8940 } else { 8941 /* 8942 * Buffer didn't survive caching. Increment stats and 8943 * reissue to the original storage device. 8944 */ 8945 if (zio->io_error != 0) { 8946 ARCSTAT_BUMP(arcstat_l2_io_error); 8947 } else { 8948 zio->io_error = SET_ERROR(EIO); 8949 } 8950 if (!valid_cksum || tfm_error != 0) 8951 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 8952 8953 /* 8954 * If there's no waiter, issue an async i/o to the primary 8955 * storage now. If there *is* a waiter, the caller must 8956 * issue the i/o in a context where it's OK to block. 8957 */ 8958 if (zio->io_waiter == NULL) { 8959 zio_t *pio = zio_unique_parent(zio); 8960 void *abd = (using_rdata) ? 8961 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd; 8962 8963 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 8964 8965 zio = zio_read(pio, zio->io_spa, zio->io_bp, 8966 abd, zio->io_size, arc_read_done, 8967 hdr, zio->io_priority, cb->l2rcb_flags, 8968 &cb->l2rcb_zb); 8969 8970 /* 8971 * Original ZIO will be freed, so we need to update 8972 * ARC header with the new ZIO pointer to be used 8973 * by zio_change_priority() in arc_read(). 8974 */ 8975 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb; 8976 acb != NULL; acb = acb->acb_next) 8977 acb->acb_zio_head = zio; 8978 8979 mutex_exit(hash_lock); 8980 zio_nowait(zio); 8981 } else { 8982 mutex_exit(hash_lock); 8983 } 8984 } 8985 8986 kmem_free(cb, sizeof (l2arc_read_callback_t)); 8987 } 8988 8989 /* 8990 * This is the list priority from which the L2ARC will search for pages to 8991 * cache. This is used within loops (0..3) to cycle through lists in the 8992 * desired order. This order can have a significant effect on cache 8993 * performance. 8994 * 8995 * Currently the metadata lists are hit first, MFU then MRU, followed by 8996 * the data lists. This function returns a locked list, and also returns 8997 * the lock pointer. 8998 */ 8999 static multilist_sublist_t * 9000 l2arc_sublist_lock(int list_num) 9001 { 9002 multilist_t *ml = NULL; 9003 unsigned int idx; 9004 9005 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES); 9006 9007 switch (list_num) { 9008 case 0: 9009 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 9010 break; 9011 case 1: 9012 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 9013 break; 9014 case 2: 9015 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 9016 break; 9017 case 3: 9018 ml = &arc_mru->arcs_list[ARC_BUFC_DATA]; 9019 break; 9020 default: 9021 return (NULL); 9022 } 9023 9024 /* 9025 * Return a randomly-selected sublist. This is acceptable 9026 * because the caller feeds only a little bit of data for each 9027 * call (8MB). Subsequent calls will result in different 9028 * sublists being selected. 9029 */ 9030 idx = multilist_get_random_index(ml); 9031 return (multilist_sublist_lock(ml, idx)); 9032 } 9033 9034 /* 9035 * Calculates the maximum overhead of L2ARC metadata log blocks for a given 9036 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this 9037 * overhead in processing to make sure there is enough headroom available 9038 * when writing buffers. 9039 */ 9040 static inline uint64_t 9041 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev) 9042 { 9043 if (dev->l2ad_log_entries == 0) { 9044 return (0); 9045 } else { 9046 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT; 9047 9048 uint64_t log_blocks = (log_entries + 9049 dev->l2ad_log_entries - 1) / 9050 dev->l2ad_log_entries; 9051 9052 return (vdev_psize_to_asize(dev->l2ad_vdev, 9053 sizeof (l2arc_log_blk_phys_t)) * log_blocks); 9054 } 9055 } 9056 9057 /* 9058 * Evict buffers from the device write hand to the distance specified in 9059 * bytes. This distance may span populated buffers, it may span nothing. 9060 * This is clearing a region on the L2ARC device ready for writing. 9061 * If the 'all' boolean is set, every buffer is evicted. 9062 */ 9063 static void 9064 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 9065 { 9066 list_t *buflist; 9067 arc_buf_hdr_t *hdr, *hdr_prev; 9068 kmutex_t *hash_lock; 9069 uint64_t taddr; 9070 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev; 9071 vdev_t *vd = dev->l2ad_vdev; 9072 boolean_t rerun; 9073 9074 buflist = &dev->l2ad_buflist; 9075 9076 /* 9077 * We need to add in the worst case scenario of log block overhead. 9078 */ 9079 distance += l2arc_log_blk_overhead(distance, dev); 9080 if (vd->vdev_has_trim && l2arc_trim_ahead > 0) { 9081 /* 9082 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100) 9083 * times the write size, whichever is greater. 9084 */ 9085 distance += MAX(64 * 1024 * 1024, 9086 (distance * l2arc_trim_ahead) / 100); 9087 } 9088 9089 top: 9090 rerun = B_FALSE; 9091 if (dev->l2ad_hand >= (dev->l2ad_end - distance)) { 9092 /* 9093 * When there is no space to accommodate upcoming writes, 9094 * evict to the end. Then bump the write and evict hands 9095 * to the start and iterate. This iteration does not 9096 * happen indefinitely as we make sure in 9097 * l2arc_write_size() that when the write hand is reset, 9098 * the write size does not exceed the end of the device. 9099 */ 9100 rerun = B_TRUE; 9101 taddr = dev->l2ad_end; 9102 } else { 9103 taddr = dev->l2ad_hand + distance; 9104 } 9105 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 9106 uint64_t, taddr, boolean_t, all); 9107 9108 if (!all) { 9109 /* 9110 * This check has to be placed after deciding whether to 9111 * iterate (rerun). 9112 */ 9113 if (dev->l2ad_first) { 9114 /* 9115 * This is the first sweep through the device. There is 9116 * nothing to evict. We have already trimmmed the 9117 * whole device. 9118 */ 9119 goto out; 9120 } else { 9121 /* 9122 * Trim the space to be evicted. 9123 */ 9124 if (vd->vdev_has_trim && dev->l2ad_evict < taddr && 9125 l2arc_trim_ahead > 0) { 9126 /* 9127 * We have to drop the spa_config lock because 9128 * vdev_trim_range() will acquire it. 9129 * l2ad_evict already accounts for the label 9130 * size. To prevent vdev_trim_ranges() from 9131 * adding it again, we subtract it from 9132 * l2ad_evict. 9133 */ 9134 spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev); 9135 vdev_trim_simple(vd, 9136 dev->l2ad_evict - VDEV_LABEL_START_SIZE, 9137 taddr - dev->l2ad_evict); 9138 spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev, 9139 RW_READER); 9140 } 9141 9142 /* 9143 * When rebuilding L2ARC we retrieve the evict hand 9144 * from the header of the device. Of note, l2arc_evict() 9145 * does not actually delete buffers from the cache 9146 * device, but trimming may do so depending on the 9147 * hardware implementation. Thus keeping track of the 9148 * evict hand is useful. 9149 */ 9150 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr); 9151 } 9152 } 9153 9154 retry: 9155 mutex_enter(&dev->l2ad_mtx); 9156 /* 9157 * We have to account for evicted log blocks. Run vdev_space_update() 9158 * on log blocks whose offset (in bytes) is before the evicted offset 9159 * (in bytes) by searching in the list of pointers to log blocks 9160 * present in the L2ARC device. 9161 */ 9162 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf; 9163 lb_ptr_buf = lb_ptr_buf_prev) { 9164 9165 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf); 9166 9167 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 9168 uint64_t asize = L2BLK_GET_PSIZE( 9169 (lb_ptr_buf->lb_ptr)->lbp_prop); 9170 9171 /* 9172 * We don't worry about log blocks left behind (ie 9173 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers() 9174 * will never write more than l2arc_evict() evicts. 9175 */ 9176 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) { 9177 break; 9178 } else { 9179 vdev_space_update(vd, -asize, 0, 0); 9180 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 9181 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 9182 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 9183 lb_ptr_buf); 9184 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 9185 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf); 9186 kmem_free(lb_ptr_buf->lb_ptr, 9187 sizeof (l2arc_log_blkptr_t)); 9188 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 9189 } 9190 } 9191 9192 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 9193 hdr_prev = list_prev(buflist, hdr); 9194 9195 ASSERT(!HDR_EMPTY(hdr)); 9196 hash_lock = HDR_LOCK(hdr); 9197 9198 /* 9199 * We cannot use mutex_enter or else we can deadlock 9200 * with l2arc_write_buffers (due to swapping the order 9201 * the hash lock and l2ad_mtx are taken). 9202 */ 9203 if (!mutex_tryenter(hash_lock)) { 9204 /* 9205 * Missed the hash lock. Retry. 9206 */ 9207 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 9208 mutex_exit(&dev->l2ad_mtx); 9209 mutex_enter(hash_lock); 9210 mutex_exit(hash_lock); 9211 goto retry; 9212 } 9213 9214 /* 9215 * A header can't be on this list if it doesn't have L2 header. 9216 */ 9217 ASSERT(HDR_HAS_L2HDR(hdr)); 9218 9219 /* Ensure this header has finished being written. */ 9220 ASSERT(!HDR_L2_WRITING(hdr)); 9221 ASSERT(!HDR_L2_WRITE_HEAD(hdr)); 9222 9223 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict || 9224 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 9225 /* 9226 * We've evicted to the target address, 9227 * or the end of the device. 9228 */ 9229 mutex_exit(hash_lock); 9230 break; 9231 } 9232 9233 if (!HDR_HAS_L1HDR(hdr)) { 9234 ASSERT(!HDR_L2_READING(hdr)); 9235 /* 9236 * This doesn't exist in the ARC. Destroy. 9237 * arc_hdr_destroy() will call list_remove() 9238 * and decrement arcstat_l2_lsize. 9239 */ 9240 arc_change_state(arc_anon, hdr, hash_lock); 9241 arc_hdr_destroy(hdr); 9242 } else { 9243 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 9244 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 9245 /* 9246 * Invalidate issued or about to be issued 9247 * reads, since we may be about to write 9248 * over this location. 9249 */ 9250 if (HDR_L2_READING(hdr)) { 9251 ARCSTAT_BUMP(arcstat_l2_evict_reading); 9252 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); 9253 } 9254 9255 arc_hdr_l2hdr_destroy(hdr); 9256 } 9257 mutex_exit(hash_lock); 9258 } 9259 mutex_exit(&dev->l2ad_mtx); 9260 9261 out: 9262 /* 9263 * We need to check if we evict all buffers, otherwise we may iterate 9264 * unnecessarily. 9265 */ 9266 if (!all && rerun) { 9267 /* 9268 * Bump device hand to the device start if it is approaching the 9269 * end. l2arc_evict() has already evicted ahead for this case. 9270 */ 9271 dev->l2ad_hand = dev->l2ad_start; 9272 dev->l2ad_evict = dev->l2ad_start; 9273 dev->l2ad_first = B_FALSE; 9274 goto top; 9275 } 9276 9277 if (!all) { 9278 /* 9279 * In case of cache device removal (all) the following 9280 * assertions may be violated without functional consequences 9281 * as the device is about to be removed. 9282 */ 9283 ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end); 9284 if (!dev->l2ad_first) 9285 ASSERT3U(dev->l2ad_hand, <, dev->l2ad_evict); 9286 } 9287 } 9288 9289 /* 9290 * Handle any abd transforms that might be required for writing to the L2ARC. 9291 * If successful, this function will always return an abd with the data 9292 * transformed as it is on disk in a new abd of asize bytes. 9293 */ 9294 static int 9295 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize, 9296 abd_t **abd_out) 9297 { 9298 int ret; 9299 void *tmp = NULL; 9300 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd; 9301 enum zio_compress compress = HDR_GET_COMPRESS(hdr); 9302 uint64_t psize = HDR_GET_PSIZE(hdr); 9303 uint64_t size = arc_hdr_size(hdr); 9304 boolean_t ismd = HDR_ISTYPE_METADATA(hdr); 9305 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 9306 dsl_crypto_key_t *dck = NULL; 9307 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 }; 9308 boolean_t no_crypt = B_FALSE; 9309 9310 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 9311 !HDR_COMPRESSION_ENABLED(hdr)) || 9312 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize); 9313 ASSERT3U(psize, <=, asize); 9314 9315 /* 9316 * If this data simply needs its own buffer, we simply allocate it 9317 * and copy the data. This may be done to eliminate a dependency on a 9318 * shared buffer or to reallocate the buffer to match asize. 9319 */ 9320 if (HDR_HAS_RABD(hdr) && asize != psize) { 9321 ASSERT3U(asize, >=, psize); 9322 to_write = abd_alloc_for_io(asize, ismd); 9323 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize); 9324 if (psize != asize) 9325 abd_zero_off(to_write, psize, asize - psize); 9326 goto out; 9327 } 9328 9329 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) && 9330 !HDR_ENCRYPTED(hdr)) { 9331 ASSERT3U(size, ==, psize); 9332 to_write = abd_alloc_for_io(asize, ismd); 9333 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 9334 if (size != asize) 9335 abd_zero_off(to_write, size, asize - size); 9336 goto out; 9337 } 9338 9339 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) { 9340 /* 9341 * In some cases, we can wind up with size > asize, so 9342 * we need to opt for the larger allocation option here. 9343 * 9344 * (We also need abd_return_buf_copy in all cases because 9345 * it's an ASSERT() to modify the buffer before returning it 9346 * with arc_return_buf(), and all the compressors 9347 * write things before deciding to fail compression in nearly 9348 * every case.) 9349 */ 9350 cabd = abd_alloc_for_io(size, ismd); 9351 tmp = abd_borrow_buf(cabd, size); 9352 9353 psize = zio_compress_data(compress, to_write, tmp, size, 9354 hdr->b_complevel); 9355 9356 if (psize >= asize) { 9357 psize = HDR_GET_PSIZE(hdr); 9358 abd_return_buf_copy(cabd, tmp, size); 9359 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF); 9360 to_write = cabd; 9361 abd_copy(to_write, hdr->b_l1hdr.b_pabd, psize); 9362 if (psize != asize) 9363 abd_zero_off(to_write, psize, asize - psize); 9364 goto encrypt; 9365 } 9366 ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr)); 9367 if (psize < asize) 9368 memset((char *)tmp + psize, 0, asize - psize); 9369 psize = HDR_GET_PSIZE(hdr); 9370 abd_return_buf_copy(cabd, tmp, size); 9371 to_write = cabd; 9372 } 9373 9374 encrypt: 9375 if (HDR_ENCRYPTED(hdr)) { 9376 eabd = abd_alloc_for_io(asize, ismd); 9377 9378 /* 9379 * If the dataset was disowned before the buffer 9380 * made it to this point, the key to re-encrypt 9381 * it won't be available. In this case we simply 9382 * won't write the buffer to the L2ARC. 9383 */ 9384 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj, 9385 FTAG, &dck); 9386 if (ret != 0) 9387 goto error; 9388 9389 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key, 9390 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt, 9391 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd, 9392 &no_crypt); 9393 if (ret != 0) 9394 goto error; 9395 9396 if (no_crypt) 9397 abd_copy(eabd, to_write, psize); 9398 9399 if (psize != asize) 9400 abd_zero_off(eabd, psize, asize - psize); 9401 9402 /* assert that the MAC we got here matches the one we saved */ 9403 ASSERT0(memcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN)); 9404 spa_keystore_dsl_key_rele(spa, dck, FTAG); 9405 9406 if (to_write == cabd) 9407 abd_free(cabd); 9408 9409 to_write = eabd; 9410 } 9411 9412 out: 9413 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd); 9414 *abd_out = to_write; 9415 return (0); 9416 9417 error: 9418 if (dck != NULL) 9419 spa_keystore_dsl_key_rele(spa, dck, FTAG); 9420 if (cabd != NULL) 9421 abd_free(cabd); 9422 if (eabd != NULL) 9423 abd_free(eabd); 9424 9425 *abd_out = NULL; 9426 return (ret); 9427 } 9428 9429 static void 9430 l2arc_blk_fetch_done(zio_t *zio) 9431 { 9432 l2arc_read_callback_t *cb; 9433 9434 cb = zio->io_private; 9435 if (cb->l2rcb_abd != NULL) 9436 abd_free(cb->l2rcb_abd); 9437 kmem_free(cb, sizeof (l2arc_read_callback_t)); 9438 } 9439 9440 /* 9441 * Find and write ARC buffers to the L2ARC device. 9442 * 9443 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 9444 * for reading until they have completed writing. 9445 * The headroom_boost is an in-out parameter used to maintain headroom boost 9446 * state between calls to this function. 9447 * 9448 * Returns the number of bytes actually written (which may be smaller than 9449 * the delta by which the device hand has changed due to alignment and the 9450 * writing of log blocks). 9451 */ 9452 static uint64_t 9453 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 9454 { 9455 arc_buf_hdr_t *hdr, *hdr_prev, *head; 9456 uint64_t write_asize, write_psize, write_lsize, headroom; 9457 boolean_t full; 9458 l2arc_write_callback_t *cb = NULL; 9459 zio_t *pio, *wzio; 9460 uint64_t guid = spa_load_guid(spa); 9461 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9462 9463 ASSERT3P(dev->l2ad_vdev, !=, NULL); 9464 9465 pio = NULL; 9466 write_lsize = write_asize = write_psize = 0; 9467 full = B_FALSE; 9468 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 9469 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); 9470 9471 /* 9472 * Copy buffers for L2ARC writing. 9473 */ 9474 for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) { 9475 /* 9476 * If pass == 1 or 3, we cache MRU metadata and data 9477 * respectively. 9478 */ 9479 if (l2arc_mfuonly) { 9480 if (pass == 1 || pass == 3) 9481 continue; 9482 } 9483 9484 multilist_sublist_t *mls = l2arc_sublist_lock(pass); 9485 uint64_t passed_sz = 0; 9486 9487 VERIFY3P(mls, !=, NULL); 9488 9489 /* 9490 * L2ARC fast warmup. 9491 * 9492 * Until the ARC is warm and starts to evict, read from the 9493 * head of the ARC lists rather than the tail. 9494 */ 9495 if (arc_warm == B_FALSE) 9496 hdr = multilist_sublist_head(mls); 9497 else 9498 hdr = multilist_sublist_tail(mls); 9499 9500 headroom = target_sz * l2arc_headroom; 9501 if (zfs_compressed_arc_enabled) 9502 headroom = (headroom * l2arc_headroom_boost) / 100; 9503 9504 for (; hdr; hdr = hdr_prev) { 9505 kmutex_t *hash_lock; 9506 abd_t *to_write = NULL; 9507 9508 if (arc_warm == B_FALSE) 9509 hdr_prev = multilist_sublist_next(mls, hdr); 9510 else 9511 hdr_prev = multilist_sublist_prev(mls, hdr); 9512 9513 hash_lock = HDR_LOCK(hdr); 9514 if (!mutex_tryenter(hash_lock)) { 9515 /* 9516 * Skip this buffer rather than waiting. 9517 */ 9518 continue; 9519 } 9520 9521 passed_sz += HDR_GET_LSIZE(hdr); 9522 if (l2arc_headroom != 0 && passed_sz > headroom) { 9523 /* 9524 * Searched too far. 9525 */ 9526 mutex_exit(hash_lock); 9527 break; 9528 } 9529 9530 if (!l2arc_write_eligible(guid, hdr)) { 9531 mutex_exit(hash_lock); 9532 continue; 9533 } 9534 9535 ASSERT(HDR_HAS_L1HDR(hdr)); 9536 9537 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 9538 ASSERT3U(arc_hdr_size(hdr), >, 0); 9539 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 9540 HDR_HAS_RABD(hdr)); 9541 uint64_t psize = HDR_GET_PSIZE(hdr); 9542 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 9543 psize); 9544 9545 if ((write_asize + asize) > target_sz) { 9546 full = B_TRUE; 9547 mutex_exit(hash_lock); 9548 break; 9549 } 9550 9551 /* 9552 * We rely on the L1 portion of the header below, so 9553 * it's invalid for this header to have been evicted out 9554 * of the ghost cache, prior to being written out. The 9555 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 9556 */ 9557 arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING); 9558 9559 /* 9560 * If this header has b_rabd, we can use this since it 9561 * must always match the data exactly as it exists on 9562 * disk. Otherwise, the L2ARC can normally use the 9563 * hdr's data, but if we're sharing data between the 9564 * hdr and one of its bufs, L2ARC needs its own copy of 9565 * the data so that the ZIO below can't race with the 9566 * buf consumer. To ensure that this copy will be 9567 * available for the lifetime of the ZIO and be cleaned 9568 * up afterwards, we add it to the l2arc_free_on_write 9569 * queue. If we need to apply any transforms to the 9570 * data (compression, encryption) we will also need the 9571 * extra buffer. 9572 */ 9573 if (HDR_HAS_RABD(hdr) && psize == asize) { 9574 to_write = hdr->b_crypt_hdr.b_rabd; 9575 } else if ((HDR_COMPRESSION_ENABLED(hdr) || 9576 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) && 9577 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) && 9578 psize == asize) { 9579 to_write = hdr->b_l1hdr.b_pabd; 9580 } else { 9581 int ret; 9582 arc_buf_contents_t type = arc_buf_type(hdr); 9583 9584 ret = l2arc_apply_transforms(spa, hdr, asize, 9585 &to_write); 9586 if (ret != 0) { 9587 arc_hdr_clear_flags(hdr, 9588 ARC_FLAG_L2_WRITING); 9589 mutex_exit(hash_lock); 9590 continue; 9591 } 9592 9593 l2arc_free_abd_on_write(to_write, asize, type); 9594 } 9595 9596 if (pio == NULL) { 9597 /* 9598 * Insert a dummy header on the buflist so 9599 * l2arc_write_done() can find where the 9600 * write buffers begin without searching. 9601 */ 9602 mutex_enter(&dev->l2ad_mtx); 9603 list_insert_head(&dev->l2ad_buflist, head); 9604 mutex_exit(&dev->l2ad_mtx); 9605 9606 cb = kmem_alloc( 9607 sizeof (l2arc_write_callback_t), KM_SLEEP); 9608 cb->l2wcb_dev = dev; 9609 cb->l2wcb_head = head; 9610 /* 9611 * Create a list to save allocated abd buffers 9612 * for l2arc_log_blk_commit(). 9613 */ 9614 list_create(&cb->l2wcb_abd_list, 9615 sizeof (l2arc_lb_abd_buf_t), 9616 offsetof(l2arc_lb_abd_buf_t, node)); 9617 pio = zio_root(spa, l2arc_write_done, cb, 9618 ZIO_FLAG_CANFAIL); 9619 } 9620 9621 hdr->b_l2hdr.b_dev = dev; 9622 hdr->b_l2hdr.b_hits = 0; 9623 9624 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 9625 hdr->b_l2hdr.b_arcs_state = 9626 hdr->b_l1hdr.b_state->arcs_state; 9627 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR); 9628 9629 mutex_enter(&dev->l2ad_mtx); 9630 list_insert_head(&dev->l2ad_buflist, hdr); 9631 mutex_exit(&dev->l2ad_mtx); 9632 9633 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 9634 arc_hdr_size(hdr), hdr); 9635 9636 wzio = zio_write_phys(pio, dev->l2ad_vdev, 9637 hdr->b_l2hdr.b_daddr, asize, to_write, 9638 ZIO_CHECKSUM_OFF, NULL, hdr, 9639 ZIO_PRIORITY_ASYNC_WRITE, 9640 ZIO_FLAG_CANFAIL, B_FALSE); 9641 9642 write_lsize += HDR_GET_LSIZE(hdr); 9643 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 9644 zio_t *, wzio); 9645 9646 write_psize += psize; 9647 write_asize += asize; 9648 dev->l2ad_hand += asize; 9649 l2arc_hdr_arcstats_increment(hdr); 9650 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 9651 9652 mutex_exit(hash_lock); 9653 9654 /* 9655 * Append buf info to current log and commit if full. 9656 * arcstat_l2_{size,asize} kstats are updated 9657 * internally. 9658 */ 9659 if (l2arc_log_blk_insert(dev, hdr)) 9660 l2arc_log_blk_commit(dev, pio, cb); 9661 9662 zio_nowait(wzio); 9663 } 9664 9665 multilist_sublist_unlock(mls); 9666 9667 if (full == B_TRUE) 9668 break; 9669 } 9670 9671 /* No buffers selected for writing? */ 9672 if (pio == NULL) { 9673 ASSERT0(write_lsize); 9674 ASSERT(!HDR_HAS_L1HDR(head)); 9675 kmem_cache_free(hdr_l2only_cache, head); 9676 9677 /* 9678 * Although we did not write any buffers l2ad_evict may 9679 * have advanced. 9680 */ 9681 if (dev->l2ad_evict != l2dhdr->dh_evict) 9682 l2arc_dev_hdr_update(dev); 9683 9684 return (0); 9685 } 9686 9687 if (!dev->l2ad_first) 9688 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict); 9689 9690 ASSERT3U(write_asize, <=, target_sz); 9691 ARCSTAT_BUMP(arcstat_l2_writes_sent); 9692 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize); 9693 9694 dev->l2ad_writing = B_TRUE; 9695 (void) zio_wait(pio); 9696 dev->l2ad_writing = B_FALSE; 9697 9698 /* 9699 * Update the device header after the zio completes as 9700 * l2arc_write_done() may have updated the memory holding the log block 9701 * pointers in the device header. 9702 */ 9703 l2arc_dev_hdr_update(dev); 9704 9705 return (write_asize); 9706 } 9707 9708 static boolean_t 9709 l2arc_hdr_limit_reached(void) 9710 { 9711 int64_t s = aggsum_upper_bound(&arc_sums.arcstat_l2_hdr_size); 9712 9713 return (arc_reclaim_needed() || (s > arc_meta_limit * 3 / 4) || 9714 (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100)); 9715 } 9716 9717 /* 9718 * This thread feeds the L2ARC at regular intervals. This is the beating 9719 * heart of the L2ARC. 9720 */ 9721 static __attribute__((noreturn)) void 9722 l2arc_feed_thread(void *unused) 9723 { 9724 (void) unused; 9725 callb_cpr_t cpr; 9726 l2arc_dev_t *dev; 9727 spa_t *spa; 9728 uint64_t size, wrote; 9729 clock_t begin, next = ddi_get_lbolt(); 9730 fstrans_cookie_t cookie; 9731 9732 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 9733 9734 mutex_enter(&l2arc_feed_thr_lock); 9735 9736 cookie = spl_fstrans_mark(); 9737 while (l2arc_thread_exit == 0) { 9738 CALLB_CPR_SAFE_BEGIN(&cpr); 9739 (void) cv_timedwait_idle(&l2arc_feed_thr_cv, 9740 &l2arc_feed_thr_lock, next); 9741 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 9742 next = ddi_get_lbolt() + hz; 9743 9744 /* 9745 * Quick check for L2ARC devices. 9746 */ 9747 mutex_enter(&l2arc_dev_mtx); 9748 if (l2arc_ndev == 0) { 9749 mutex_exit(&l2arc_dev_mtx); 9750 continue; 9751 } 9752 mutex_exit(&l2arc_dev_mtx); 9753 begin = ddi_get_lbolt(); 9754 9755 /* 9756 * This selects the next l2arc device to write to, and in 9757 * doing so the next spa to feed from: dev->l2ad_spa. This 9758 * will return NULL if there are now no l2arc devices or if 9759 * they are all faulted. 9760 * 9761 * If a device is returned, its spa's config lock is also 9762 * held to prevent device removal. l2arc_dev_get_next() 9763 * will grab and release l2arc_dev_mtx. 9764 */ 9765 if ((dev = l2arc_dev_get_next()) == NULL) 9766 continue; 9767 9768 spa = dev->l2ad_spa; 9769 ASSERT3P(spa, !=, NULL); 9770 9771 /* 9772 * If the pool is read-only then force the feed thread to 9773 * sleep a little longer. 9774 */ 9775 if (!spa_writeable(spa)) { 9776 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 9777 spa_config_exit(spa, SCL_L2ARC, dev); 9778 continue; 9779 } 9780 9781 /* 9782 * Avoid contributing to memory pressure. 9783 */ 9784 if (l2arc_hdr_limit_reached()) { 9785 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 9786 spa_config_exit(spa, SCL_L2ARC, dev); 9787 continue; 9788 } 9789 9790 ARCSTAT_BUMP(arcstat_l2_feeds); 9791 9792 size = l2arc_write_size(dev); 9793 9794 /* 9795 * Evict L2ARC buffers that will be overwritten. 9796 */ 9797 l2arc_evict(dev, size, B_FALSE); 9798 9799 /* 9800 * Write ARC buffers. 9801 */ 9802 wrote = l2arc_write_buffers(spa, dev, size); 9803 9804 /* 9805 * Calculate interval between writes. 9806 */ 9807 next = l2arc_write_interval(begin, size, wrote); 9808 spa_config_exit(spa, SCL_L2ARC, dev); 9809 } 9810 spl_fstrans_unmark(cookie); 9811 9812 l2arc_thread_exit = 0; 9813 cv_broadcast(&l2arc_feed_thr_cv); 9814 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 9815 thread_exit(); 9816 } 9817 9818 boolean_t 9819 l2arc_vdev_present(vdev_t *vd) 9820 { 9821 return (l2arc_vdev_get(vd) != NULL); 9822 } 9823 9824 /* 9825 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if 9826 * the vdev_t isn't an L2ARC device. 9827 */ 9828 l2arc_dev_t * 9829 l2arc_vdev_get(vdev_t *vd) 9830 { 9831 l2arc_dev_t *dev; 9832 9833 mutex_enter(&l2arc_dev_mtx); 9834 for (dev = list_head(l2arc_dev_list); dev != NULL; 9835 dev = list_next(l2arc_dev_list, dev)) { 9836 if (dev->l2ad_vdev == vd) 9837 break; 9838 } 9839 mutex_exit(&l2arc_dev_mtx); 9840 9841 return (dev); 9842 } 9843 9844 static void 9845 l2arc_rebuild_dev(l2arc_dev_t *dev, boolean_t reopen) 9846 { 9847 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9848 uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 9849 spa_t *spa = dev->l2ad_spa; 9850 9851 /* 9852 * The L2ARC has to hold at least the payload of one log block for 9853 * them to be restored (persistent L2ARC). The payload of a log block 9854 * depends on the amount of its log entries. We always write log blocks 9855 * with 1022 entries. How many of them are committed or restored depends 9856 * on the size of the L2ARC device. Thus the maximum payload of 9857 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device 9858 * is less than that, we reduce the amount of committed and restored 9859 * log entries per block so as to enable persistence. 9860 */ 9861 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) { 9862 dev->l2ad_log_entries = 0; 9863 } else { 9864 dev->l2ad_log_entries = MIN((dev->l2ad_end - 9865 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT, 9866 L2ARC_LOG_BLK_MAX_ENTRIES); 9867 } 9868 9869 /* 9870 * Read the device header, if an error is returned do not rebuild L2ARC. 9871 */ 9872 if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) { 9873 /* 9874 * If we are onlining a cache device (vdev_reopen) that was 9875 * still present (l2arc_vdev_present()) and rebuild is enabled, 9876 * we should evict all ARC buffers and pointers to log blocks 9877 * and reclaim their space before restoring its contents to 9878 * L2ARC. 9879 */ 9880 if (reopen) { 9881 if (!l2arc_rebuild_enabled) { 9882 return; 9883 } else { 9884 l2arc_evict(dev, 0, B_TRUE); 9885 /* start a new log block */ 9886 dev->l2ad_log_ent_idx = 0; 9887 dev->l2ad_log_blk_payload_asize = 0; 9888 dev->l2ad_log_blk_payload_start = 0; 9889 } 9890 } 9891 /* 9892 * Just mark the device as pending for a rebuild. We won't 9893 * be starting a rebuild in line here as it would block pool 9894 * import. Instead spa_load_impl will hand that off to an 9895 * async task which will call l2arc_spa_rebuild_start. 9896 */ 9897 dev->l2ad_rebuild = B_TRUE; 9898 } else if (spa_writeable(spa)) { 9899 /* 9900 * In this case TRIM the whole device if l2arc_trim_ahead > 0, 9901 * otherwise create a new header. We zero out the memory holding 9902 * the header to reset dh_start_lbps. If we TRIM the whole 9903 * device the new header will be written by 9904 * vdev_trim_l2arc_thread() at the end of the TRIM to update the 9905 * trim_state in the header too. When reading the header, if 9906 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0 9907 * we opt to TRIM the whole device again. 9908 */ 9909 if (l2arc_trim_ahead > 0) { 9910 dev->l2ad_trim_all = B_TRUE; 9911 } else { 9912 memset(l2dhdr, 0, l2dhdr_asize); 9913 l2arc_dev_hdr_update(dev); 9914 } 9915 } 9916 } 9917 9918 /* 9919 * Add a vdev for use by the L2ARC. By this point the spa has already 9920 * validated the vdev and opened it. 9921 */ 9922 void 9923 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 9924 { 9925 l2arc_dev_t *adddev; 9926 uint64_t l2dhdr_asize; 9927 9928 ASSERT(!l2arc_vdev_present(vd)); 9929 9930 /* 9931 * Create a new l2arc device entry. 9932 */ 9933 adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 9934 adddev->l2ad_spa = spa; 9935 adddev->l2ad_vdev = vd; 9936 /* leave extra size for an l2arc device header */ 9937 l2dhdr_asize = adddev->l2ad_dev_hdr_asize = 9938 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift); 9939 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize; 9940 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 9941 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end); 9942 adddev->l2ad_hand = adddev->l2ad_start; 9943 adddev->l2ad_evict = adddev->l2ad_start; 9944 adddev->l2ad_first = B_TRUE; 9945 adddev->l2ad_writing = B_FALSE; 9946 adddev->l2ad_trim_all = B_FALSE; 9947 list_link_init(&adddev->l2ad_node); 9948 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP); 9949 9950 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 9951 /* 9952 * This is a list of all ARC buffers that are still valid on the 9953 * device. 9954 */ 9955 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 9956 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 9957 9958 /* 9959 * This is a list of pointers to log blocks that are still present 9960 * on the device. 9961 */ 9962 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t), 9963 offsetof(l2arc_lb_ptr_buf_t, node)); 9964 9965 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 9966 zfs_refcount_create(&adddev->l2ad_alloc); 9967 zfs_refcount_create(&adddev->l2ad_lb_asize); 9968 zfs_refcount_create(&adddev->l2ad_lb_count); 9969 9970 /* 9971 * Decide if dev is eligible for L2ARC rebuild or whole device 9972 * trimming. This has to happen before the device is added in the 9973 * cache device list and l2arc_dev_mtx is released. Otherwise 9974 * l2arc_feed_thread() might already start writing on the 9975 * device. 9976 */ 9977 l2arc_rebuild_dev(adddev, B_FALSE); 9978 9979 /* 9980 * Add device to global list 9981 */ 9982 mutex_enter(&l2arc_dev_mtx); 9983 list_insert_head(l2arc_dev_list, adddev); 9984 atomic_inc_64(&l2arc_ndev); 9985 mutex_exit(&l2arc_dev_mtx); 9986 } 9987 9988 /* 9989 * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen() 9990 * in case of onlining a cache device. 9991 */ 9992 void 9993 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen) 9994 { 9995 l2arc_dev_t *dev = NULL; 9996 9997 dev = l2arc_vdev_get(vd); 9998 ASSERT3P(dev, !=, NULL); 9999 10000 /* 10001 * In contrast to l2arc_add_vdev() we do not have to worry about 10002 * l2arc_feed_thread() invalidating previous content when onlining a 10003 * cache device. The device parameters (l2ad*) are not cleared when 10004 * offlining the device and writing new buffers will not invalidate 10005 * all previous content. In worst case only buffers that have not had 10006 * their log block written to the device will be lost. 10007 * When onlining the cache device (ie offline->online without exporting 10008 * the pool in between) this happens: 10009 * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev() 10010 * | | 10011 * vdev_is_dead() = B_FALSE l2ad_rebuild = B_TRUE 10012 * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild 10013 * is set to B_TRUE we might write additional buffers to the device. 10014 */ 10015 l2arc_rebuild_dev(dev, reopen); 10016 } 10017 10018 /* 10019 * Remove a vdev from the L2ARC. 10020 */ 10021 void 10022 l2arc_remove_vdev(vdev_t *vd) 10023 { 10024 l2arc_dev_t *remdev = NULL; 10025 10026 /* 10027 * Find the device by vdev 10028 */ 10029 remdev = l2arc_vdev_get(vd); 10030 ASSERT3P(remdev, !=, NULL); 10031 10032 /* 10033 * Cancel any ongoing or scheduled rebuild. 10034 */ 10035 mutex_enter(&l2arc_rebuild_thr_lock); 10036 if (remdev->l2ad_rebuild_began == B_TRUE) { 10037 remdev->l2ad_rebuild_cancel = B_TRUE; 10038 while (remdev->l2ad_rebuild == B_TRUE) 10039 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock); 10040 } 10041 mutex_exit(&l2arc_rebuild_thr_lock); 10042 10043 /* 10044 * Remove device from global list 10045 */ 10046 mutex_enter(&l2arc_dev_mtx); 10047 list_remove(l2arc_dev_list, remdev); 10048 l2arc_dev_last = NULL; /* may have been invalidated */ 10049 atomic_dec_64(&l2arc_ndev); 10050 mutex_exit(&l2arc_dev_mtx); 10051 10052 /* 10053 * Clear all buflists and ARC references. L2ARC device flush. 10054 */ 10055 l2arc_evict(remdev, 0, B_TRUE); 10056 list_destroy(&remdev->l2ad_buflist); 10057 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list)); 10058 list_destroy(&remdev->l2ad_lbptr_list); 10059 mutex_destroy(&remdev->l2ad_mtx); 10060 zfs_refcount_destroy(&remdev->l2ad_alloc); 10061 zfs_refcount_destroy(&remdev->l2ad_lb_asize); 10062 zfs_refcount_destroy(&remdev->l2ad_lb_count); 10063 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize); 10064 vmem_free(remdev, sizeof (l2arc_dev_t)); 10065 } 10066 10067 void 10068 l2arc_init(void) 10069 { 10070 l2arc_thread_exit = 0; 10071 l2arc_ndev = 0; 10072 10073 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 10074 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 10075 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL); 10076 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL); 10077 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 10078 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 10079 10080 l2arc_dev_list = &L2ARC_dev_list; 10081 l2arc_free_on_write = &L2ARC_free_on_write; 10082 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 10083 offsetof(l2arc_dev_t, l2ad_node)); 10084 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 10085 offsetof(l2arc_data_free_t, l2df_list_node)); 10086 } 10087 10088 void 10089 l2arc_fini(void) 10090 { 10091 mutex_destroy(&l2arc_feed_thr_lock); 10092 cv_destroy(&l2arc_feed_thr_cv); 10093 mutex_destroy(&l2arc_rebuild_thr_lock); 10094 cv_destroy(&l2arc_rebuild_thr_cv); 10095 mutex_destroy(&l2arc_dev_mtx); 10096 mutex_destroy(&l2arc_free_on_write_mtx); 10097 10098 list_destroy(l2arc_dev_list); 10099 list_destroy(l2arc_free_on_write); 10100 } 10101 10102 void 10103 l2arc_start(void) 10104 { 10105 if (!(spa_mode_global & SPA_MODE_WRITE)) 10106 return; 10107 10108 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 10109 TS_RUN, defclsyspri); 10110 } 10111 10112 void 10113 l2arc_stop(void) 10114 { 10115 if (!(spa_mode_global & SPA_MODE_WRITE)) 10116 return; 10117 10118 mutex_enter(&l2arc_feed_thr_lock); 10119 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 10120 l2arc_thread_exit = 1; 10121 while (l2arc_thread_exit != 0) 10122 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 10123 mutex_exit(&l2arc_feed_thr_lock); 10124 } 10125 10126 /* 10127 * Punches out rebuild threads for the L2ARC devices in a spa. This should 10128 * be called after pool import from the spa async thread, since starting 10129 * these threads directly from spa_import() will make them part of the 10130 * "zpool import" context and delay process exit (and thus pool import). 10131 */ 10132 void 10133 l2arc_spa_rebuild_start(spa_t *spa) 10134 { 10135 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 10136 10137 /* 10138 * Locate the spa's l2arc devices and kick off rebuild threads. 10139 */ 10140 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 10141 l2arc_dev_t *dev = 10142 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]); 10143 if (dev == NULL) { 10144 /* Don't attempt a rebuild if the vdev is UNAVAIL */ 10145 continue; 10146 } 10147 mutex_enter(&l2arc_rebuild_thr_lock); 10148 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) { 10149 dev->l2ad_rebuild_began = B_TRUE; 10150 (void) thread_create(NULL, 0, l2arc_dev_rebuild_thread, 10151 dev, 0, &p0, TS_RUN, minclsyspri); 10152 } 10153 mutex_exit(&l2arc_rebuild_thr_lock); 10154 } 10155 } 10156 10157 /* 10158 * Main entry point for L2ARC rebuilding. 10159 */ 10160 static __attribute__((noreturn)) void 10161 l2arc_dev_rebuild_thread(void *arg) 10162 { 10163 l2arc_dev_t *dev = arg; 10164 10165 VERIFY(!dev->l2ad_rebuild_cancel); 10166 VERIFY(dev->l2ad_rebuild); 10167 (void) l2arc_rebuild(dev); 10168 mutex_enter(&l2arc_rebuild_thr_lock); 10169 dev->l2ad_rebuild_began = B_FALSE; 10170 dev->l2ad_rebuild = B_FALSE; 10171 mutex_exit(&l2arc_rebuild_thr_lock); 10172 10173 thread_exit(); 10174 } 10175 10176 /* 10177 * This function implements the actual L2ARC metadata rebuild. It: 10178 * starts reading the log block chain and restores each block's contents 10179 * to memory (reconstructing arc_buf_hdr_t's). 10180 * 10181 * Operation stops under any of the following conditions: 10182 * 10183 * 1) We reach the end of the log block chain. 10184 * 2) We encounter *any* error condition (cksum errors, io errors) 10185 */ 10186 static int 10187 l2arc_rebuild(l2arc_dev_t *dev) 10188 { 10189 vdev_t *vd = dev->l2ad_vdev; 10190 spa_t *spa = vd->vdev_spa; 10191 int err = 0; 10192 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10193 l2arc_log_blk_phys_t *this_lb, *next_lb; 10194 zio_t *this_io = NULL, *next_io = NULL; 10195 l2arc_log_blkptr_t lbps[2]; 10196 l2arc_lb_ptr_buf_t *lb_ptr_buf; 10197 boolean_t lock_held; 10198 10199 this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP); 10200 next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP); 10201 10202 /* 10203 * We prevent device removal while issuing reads to the device, 10204 * then during the rebuilding phases we drop this lock again so 10205 * that a spa_unload or device remove can be initiated - this is 10206 * safe, because the spa will signal us to stop before removing 10207 * our device and wait for us to stop. 10208 */ 10209 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER); 10210 lock_held = B_TRUE; 10211 10212 /* 10213 * Retrieve the persistent L2ARC device state. 10214 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10215 */ 10216 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start); 10217 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr + 10218 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop), 10219 dev->l2ad_start); 10220 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 10221 10222 vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time; 10223 vd->vdev_trim_state = l2dhdr->dh_trim_state; 10224 10225 /* 10226 * In case the zfs module parameter l2arc_rebuild_enabled is false 10227 * we do not start the rebuild process. 10228 */ 10229 if (!l2arc_rebuild_enabled) 10230 goto out; 10231 10232 /* Prepare the rebuild process */ 10233 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps)); 10234 10235 /* Start the rebuild process */ 10236 for (;;) { 10237 if (!l2arc_log_blkptr_valid(dev, &lbps[0])) 10238 break; 10239 10240 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1], 10241 this_lb, next_lb, this_io, &next_io)) != 0) 10242 goto out; 10243 10244 /* 10245 * Our memory pressure valve. If the system is running low 10246 * on memory, rather than swamping memory with new ARC buf 10247 * hdrs, we opt not to rebuild the L2ARC. At this point, 10248 * however, we have already set up our L2ARC dev to chain in 10249 * new metadata log blocks, so the user may choose to offline/ 10250 * online the L2ARC dev at a later time (or re-import the pool) 10251 * to reconstruct it (when there's less memory pressure). 10252 */ 10253 if (l2arc_hdr_limit_reached()) { 10254 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem); 10255 cmn_err(CE_NOTE, "System running low on memory, " 10256 "aborting L2ARC rebuild."); 10257 err = SET_ERROR(ENOMEM); 10258 goto out; 10259 } 10260 10261 spa_config_exit(spa, SCL_L2ARC, vd); 10262 lock_held = B_FALSE; 10263 10264 /* 10265 * Now that we know that the next_lb checks out alright, we 10266 * can start reconstruction from this log block. 10267 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10268 */ 10269 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 10270 l2arc_log_blk_restore(dev, this_lb, asize); 10271 10272 /* 10273 * log block restored, include its pointer in the list of 10274 * pointers to log blocks present in the L2ARC device. 10275 */ 10276 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 10277 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), 10278 KM_SLEEP); 10279 memcpy(lb_ptr_buf->lb_ptr, &lbps[0], 10280 sizeof (l2arc_log_blkptr_t)); 10281 mutex_enter(&dev->l2ad_mtx); 10282 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf); 10283 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 10284 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 10285 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 10286 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 10287 mutex_exit(&dev->l2ad_mtx); 10288 vdev_space_update(vd, asize, 0, 0); 10289 10290 /* 10291 * Protection against loops of log blocks: 10292 * 10293 * l2ad_hand l2ad_evict 10294 * V V 10295 * l2ad_start |=======================================| l2ad_end 10296 * -----|||----|||---|||----||| 10297 * (3) (2) (1) (0) 10298 * ---|||---|||----|||---||| 10299 * (7) (6) (5) (4) 10300 * 10301 * In this situation the pointer of log block (4) passes 10302 * l2arc_log_blkptr_valid() but the log block should not be 10303 * restored as it is overwritten by the payload of log block 10304 * (0). Only log blocks (0)-(3) should be restored. We check 10305 * whether l2ad_evict lies in between the payload starting 10306 * offset of the next log block (lbps[1].lbp_payload_start) 10307 * and the payload starting offset of the present log block 10308 * (lbps[0].lbp_payload_start). If true and this isn't the 10309 * first pass, we are looping from the beginning and we should 10310 * stop. 10311 */ 10312 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 10313 lbps[0].lbp_payload_start, dev->l2ad_evict) && 10314 !dev->l2ad_first) 10315 goto out; 10316 10317 cond_resched(); 10318 for (;;) { 10319 mutex_enter(&l2arc_rebuild_thr_lock); 10320 if (dev->l2ad_rebuild_cancel) { 10321 dev->l2ad_rebuild = B_FALSE; 10322 cv_signal(&l2arc_rebuild_thr_cv); 10323 mutex_exit(&l2arc_rebuild_thr_lock); 10324 err = SET_ERROR(ECANCELED); 10325 goto out; 10326 } 10327 mutex_exit(&l2arc_rebuild_thr_lock); 10328 if (spa_config_tryenter(spa, SCL_L2ARC, vd, 10329 RW_READER)) { 10330 lock_held = B_TRUE; 10331 break; 10332 } 10333 /* 10334 * L2ARC config lock held by somebody in writer, 10335 * possibly due to them trying to remove us. They'll 10336 * likely to want us to shut down, so after a little 10337 * delay, we check l2ad_rebuild_cancel and retry 10338 * the lock again. 10339 */ 10340 delay(1); 10341 } 10342 10343 /* 10344 * Continue with the next log block. 10345 */ 10346 lbps[0] = lbps[1]; 10347 lbps[1] = this_lb->lb_prev_lbp; 10348 PTR_SWAP(this_lb, next_lb); 10349 this_io = next_io; 10350 next_io = NULL; 10351 } 10352 10353 if (this_io != NULL) 10354 l2arc_log_blk_fetch_abort(this_io); 10355 out: 10356 if (next_io != NULL) 10357 l2arc_log_blk_fetch_abort(next_io); 10358 vmem_free(this_lb, sizeof (*this_lb)); 10359 vmem_free(next_lb, sizeof (*next_lb)); 10360 10361 if (!l2arc_rebuild_enabled) { 10362 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10363 "disabled"); 10364 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) { 10365 ARCSTAT_BUMP(arcstat_l2_rebuild_success); 10366 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10367 "successful, restored %llu blocks", 10368 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10369 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) { 10370 /* 10371 * No error but also nothing restored, meaning the lbps array 10372 * in the device header points to invalid/non-present log 10373 * blocks. Reset the header. 10374 */ 10375 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10376 "no valid log blocks"); 10377 memset(l2dhdr, 0, dev->l2ad_dev_hdr_asize); 10378 l2arc_dev_hdr_update(dev); 10379 } else if (err == ECANCELED) { 10380 /* 10381 * In case the rebuild was canceled do not log to spa history 10382 * log as the pool may be in the process of being removed. 10383 */ 10384 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks", 10385 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10386 } else if (err != 0) { 10387 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10388 "aborted, restored %llu blocks", 10389 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10390 } 10391 10392 if (lock_held) 10393 spa_config_exit(spa, SCL_L2ARC, vd); 10394 10395 return (err); 10396 } 10397 10398 /* 10399 * Attempts to read the device header on the provided L2ARC device and writes 10400 * it to `hdr'. On success, this function returns 0, otherwise the appropriate 10401 * error code is returned. 10402 */ 10403 static int 10404 l2arc_dev_hdr_read(l2arc_dev_t *dev) 10405 { 10406 int err; 10407 uint64_t guid; 10408 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10409 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10410 abd_t *abd; 10411 10412 guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10413 10414 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10415 10416 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev, 10417 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, 10418 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 10419 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 10420 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 10421 ZIO_FLAG_SPECULATIVE, B_FALSE)); 10422 10423 abd_free(abd); 10424 10425 if (err != 0) { 10426 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors); 10427 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, " 10428 "vdev guid: %llu", err, 10429 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10430 return (err); 10431 } 10432 10433 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 10434 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr)); 10435 10436 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC || 10437 l2dhdr->dh_spa_guid != guid || 10438 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid || 10439 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION || 10440 l2dhdr->dh_log_entries != dev->l2ad_log_entries || 10441 l2dhdr->dh_end != dev->l2ad_end || 10442 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end, 10443 l2dhdr->dh_evict) || 10444 (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE && 10445 l2arc_trim_ahead > 0)) { 10446 /* 10447 * Attempt to rebuild a device containing no actual dev hdr 10448 * or containing a header from some other pool or from another 10449 * version of persistent L2ARC. 10450 */ 10451 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported); 10452 return (SET_ERROR(ENOTSUP)); 10453 } 10454 10455 return (0); 10456 } 10457 10458 /* 10459 * Reads L2ARC log blocks from storage and validates their contents. 10460 * 10461 * This function implements a simple fetcher to make sure that while 10462 * we're processing one buffer the L2ARC is already fetching the next 10463 * one in the chain. 10464 * 10465 * The arguments this_lp and next_lp point to the current and next log block 10466 * address in the block chain. Similarly, this_lb and next_lb hold the 10467 * l2arc_log_blk_phys_t's of the current and next L2ARC blk. 10468 * 10469 * The `this_io' and `next_io' arguments are used for block fetching. 10470 * When issuing the first blk IO during rebuild, you should pass NULL for 10471 * `this_io'. This function will then issue a sync IO to read the block and 10472 * also issue an async IO to fetch the next block in the block chain. The 10473 * fetched IO is returned in `next_io'. On subsequent calls to this 10474 * function, pass the value returned in `next_io' from the previous call 10475 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO. 10476 * Prior to the call, you should initialize your `next_io' pointer to be 10477 * NULL. If no fetch IO was issued, the pointer is left set at NULL. 10478 * 10479 * On success, this function returns 0, otherwise it returns an appropriate 10480 * error code. On error the fetching IO is aborted and cleared before 10481 * returning from this function. Therefore, if we return `success', the 10482 * caller can assume that we have taken care of cleanup of fetch IOs. 10483 */ 10484 static int 10485 l2arc_log_blk_read(l2arc_dev_t *dev, 10486 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp, 10487 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 10488 zio_t *this_io, zio_t **next_io) 10489 { 10490 int err = 0; 10491 zio_cksum_t cksum; 10492 abd_t *abd = NULL; 10493 uint64_t asize; 10494 10495 ASSERT(this_lbp != NULL && next_lbp != NULL); 10496 ASSERT(this_lb != NULL && next_lb != NULL); 10497 ASSERT(next_io != NULL && *next_io == NULL); 10498 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp)); 10499 10500 /* 10501 * Check to see if we have issued the IO for this log block in a 10502 * previous run. If not, this is the first call, so issue it now. 10503 */ 10504 if (this_io == NULL) { 10505 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp, 10506 this_lb); 10507 } 10508 10509 /* 10510 * Peek to see if we can start issuing the next IO immediately. 10511 */ 10512 if (l2arc_log_blkptr_valid(dev, next_lbp)) { 10513 /* 10514 * Start issuing IO for the next log block early - this 10515 * should help keep the L2ARC device busy while we 10516 * decompress and restore this log block. 10517 */ 10518 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp, 10519 next_lb); 10520 } 10521 10522 /* Wait for the IO to read this log block to complete */ 10523 if ((err = zio_wait(this_io)) != 0) { 10524 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors); 10525 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, " 10526 "offset: %llu, vdev guid: %llu", err, 10527 (u_longlong_t)this_lbp->lbp_daddr, 10528 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10529 goto cleanup; 10530 } 10531 10532 /* 10533 * Make sure the buffer checks out. 10534 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10535 */ 10536 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop); 10537 fletcher_4_native(this_lb, asize, NULL, &cksum); 10538 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) { 10539 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors); 10540 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, " 10541 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu", 10542 (u_longlong_t)this_lbp->lbp_daddr, 10543 (u_longlong_t)dev->l2ad_vdev->vdev_guid, 10544 (u_longlong_t)dev->l2ad_hand, 10545 (u_longlong_t)dev->l2ad_evict); 10546 err = SET_ERROR(ECKSUM); 10547 goto cleanup; 10548 } 10549 10550 /* Now we can take our time decoding this buffer */ 10551 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) { 10552 case ZIO_COMPRESS_OFF: 10553 break; 10554 case ZIO_COMPRESS_LZ4: 10555 abd = abd_alloc_for_io(asize, B_TRUE); 10556 abd_copy_from_buf_off(abd, this_lb, 0, asize); 10557 if ((err = zio_decompress_data( 10558 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop), 10559 abd, this_lb, asize, sizeof (*this_lb), NULL)) != 0) { 10560 err = SET_ERROR(EINVAL); 10561 goto cleanup; 10562 } 10563 break; 10564 default: 10565 err = SET_ERROR(EINVAL); 10566 goto cleanup; 10567 } 10568 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 10569 byteswap_uint64_array(this_lb, sizeof (*this_lb)); 10570 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) { 10571 err = SET_ERROR(EINVAL); 10572 goto cleanup; 10573 } 10574 cleanup: 10575 /* Abort an in-flight fetch I/O in case of error */ 10576 if (err != 0 && *next_io != NULL) { 10577 l2arc_log_blk_fetch_abort(*next_io); 10578 *next_io = NULL; 10579 } 10580 if (abd != NULL) 10581 abd_free(abd); 10582 return (err); 10583 } 10584 10585 /* 10586 * Restores the payload of a log block to ARC. This creates empty ARC hdr 10587 * entries which only contain an l2arc hdr, essentially restoring the 10588 * buffers to their L2ARC evicted state. This function also updates space 10589 * usage on the L2ARC vdev to make sure it tracks restored buffers. 10590 */ 10591 static void 10592 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb, 10593 uint64_t lb_asize) 10594 { 10595 uint64_t size = 0, asize = 0; 10596 uint64_t log_entries = dev->l2ad_log_entries; 10597 10598 /* 10599 * Usually arc_adapt() is called only for data, not headers, but 10600 * since we may allocate significant amount of memory here, let ARC 10601 * grow its arc_c. 10602 */ 10603 arc_adapt(log_entries * HDR_L2ONLY_SIZE, arc_l2c_only); 10604 10605 for (int i = log_entries - 1; i >= 0; i--) { 10606 /* 10607 * Restore goes in the reverse temporal direction to preserve 10608 * correct temporal ordering of buffers in the l2ad_buflist. 10609 * l2arc_hdr_restore also does a list_insert_tail instead of 10610 * list_insert_head on the l2ad_buflist: 10611 * 10612 * LIST l2ad_buflist LIST 10613 * HEAD <------ (time) ------ TAIL 10614 * direction +-----+-----+-----+-----+-----+ direction 10615 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild 10616 * fill +-----+-----+-----+-----+-----+ 10617 * ^ ^ 10618 * | | 10619 * | | 10620 * l2arc_feed_thread l2arc_rebuild 10621 * will place new bufs here restores bufs here 10622 * 10623 * During l2arc_rebuild() the device is not used by 10624 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true. 10625 */ 10626 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop); 10627 asize += vdev_psize_to_asize(dev->l2ad_vdev, 10628 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop)); 10629 l2arc_hdr_restore(&lb->lb_entries[i], dev); 10630 } 10631 10632 /* 10633 * Record rebuild stats: 10634 * size Logical size of restored buffers in the L2ARC 10635 * asize Aligned size of restored buffers in the L2ARC 10636 */ 10637 ARCSTAT_INCR(arcstat_l2_rebuild_size, size); 10638 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize); 10639 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries); 10640 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize); 10641 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize); 10642 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks); 10643 } 10644 10645 /* 10646 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put 10647 * into a state indicating that it has been evicted to L2ARC. 10648 */ 10649 static void 10650 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev) 10651 { 10652 arc_buf_hdr_t *hdr, *exists; 10653 kmutex_t *hash_lock; 10654 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop); 10655 uint64_t asize; 10656 10657 /* 10658 * Do all the allocation before grabbing any locks, this lets us 10659 * sleep if memory is full and we don't have to deal with failed 10660 * allocations. 10661 */ 10662 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type, 10663 dev, le->le_dva, le->le_daddr, 10664 L2BLK_GET_PSIZE((le)->le_prop), le->le_birth, 10665 L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel, 10666 L2BLK_GET_PROTECTED((le)->le_prop), 10667 L2BLK_GET_PREFETCH((le)->le_prop), 10668 L2BLK_GET_STATE((le)->le_prop)); 10669 asize = vdev_psize_to_asize(dev->l2ad_vdev, 10670 L2BLK_GET_PSIZE((le)->le_prop)); 10671 10672 /* 10673 * vdev_space_update() has to be called before arc_hdr_destroy() to 10674 * avoid underflow since the latter also calls vdev_space_update(). 10675 */ 10676 l2arc_hdr_arcstats_increment(hdr); 10677 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10678 10679 mutex_enter(&dev->l2ad_mtx); 10680 list_insert_tail(&dev->l2ad_buflist, hdr); 10681 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); 10682 mutex_exit(&dev->l2ad_mtx); 10683 10684 exists = buf_hash_insert(hdr, &hash_lock); 10685 if (exists) { 10686 /* Buffer was already cached, no need to restore it. */ 10687 arc_hdr_destroy(hdr); 10688 /* 10689 * If the buffer is already cached, check whether it has 10690 * L2ARC metadata. If not, enter them and update the flag. 10691 * This is important is case of onlining a cache device, since 10692 * we previously evicted all L2ARC metadata from ARC. 10693 */ 10694 if (!HDR_HAS_L2HDR(exists)) { 10695 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR); 10696 exists->b_l2hdr.b_dev = dev; 10697 exists->b_l2hdr.b_daddr = le->le_daddr; 10698 exists->b_l2hdr.b_arcs_state = 10699 L2BLK_GET_STATE((le)->le_prop); 10700 mutex_enter(&dev->l2ad_mtx); 10701 list_insert_tail(&dev->l2ad_buflist, exists); 10702 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 10703 arc_hdr_size(exists), exists); 10704 mutex_exit(&dev->l2ad_mtx); 10705 l2arc_hdr_arcstats_increment(exists); 10706 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10707 } 10708 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached); 10709 } 10710 10711 mutex_exit(hash_lock); 10712 } 10713 10714 /* 10715 * Starts an asynchronous read IO to read a log block. This is used in log 10716 * block reconstruction to start reading the next block before we are done 10717 * decoding and reconstructing the current block, to keep the l2arc device 10718 * nice and hot with read IO to process. 10719 * The returned zio will contain a newly allocated memory buffers for the IO 10720 * data which should then be freed by the caller once the zio is no longer 10721 * needed (i.e. due to it having completed). If you wish to abort this 10722 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes 10723 * care of disposing of the allocated buffers correctly. 10724 */ 10725 static zio_t * 10726 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp, 10727 l2arc_log_blk_phys_t *lb) 10728 { 10729 uint32_t asize; 10730 zio_t *pio; 10731 l2arc_read_callback_t *cb; 10732 10733 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10734 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10735 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t)); 10736 10737 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP); 10738 cb->l2rcb_abd = abd_get_from_buf(lb, asize); 10739 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb, 10740 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | 10741 ZIO_FLAG_DONT_RETRY); 10742 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize, 10743 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10744 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 10745 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE)); 10746 10747 return (pio); 10748 } 10749 10750 /* 10751 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data 10752 * buffers allocated for it. 10753 */ 10754 static void 10755 l2arc_log_blk_fetch_abort(zio_t *zio) 10756 { 10757 (void) zio_wait(zio); 10758 } 10759 10760 /* 10761 * Creates a zio to update the device header on an l2arc device. 10762 */ 10763 void 10764 l2arc_dev_hdr_update(l2arc_dev_t *dev) 10765 { 10766 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10767 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10768 abd_t *abd; 10769 int err; 10770 10771 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER)); 10772 10773 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC; 10774 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION; 10775 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10776 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid; 10777 l2dhdr->dh_log_entries = dev->l2ad_log_entries; 10778 l2dhdr->dh_evict = dev->l2ad_evict; 10779 l2dhdr->dh_start = dev->l2ad_start; 10780 l2dhdr->dh_end = dev->l2ad_end; 10781 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize); 10782 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count); 10783 l2dhdr->dh_flags = 0; 10784 l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time; 10785 l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state; 10786 if (dev->l2ad_first) 10787 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST; 10788 10789 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10790 10791 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev, 10792 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL, 10793 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE)); 10794 10795 abd_free(abd); 10796 10797 if (err != 0) { 10798 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, " 10799 "vdev guid: %llu", err, 10800 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10801 } 10802 } 10803 10804 /* 10805 * Commits a log block to the L2ARC device. This routine is invoked from 10806 * l2arc_write_buffers when the log block fills up. 10807 * This function allocates some memory to temporarily hold the serialized 10808 * buffer to be written. This is then released in l2arc_write_done. 10809 */ 10810 static void 10811 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb) 10812 { 10813 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10814 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10815 uint64_t psize, asize; 10816 zio_t *wzio; 10817 l2arc_lb_abd_buf_t *abd_buf; 10818 uint8_t *tmpbuf; 10819 l2arc_lb_ptr_buf_t *lb_ptr_buf; 10820 10821 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries); 10822 10823 tmpbuf = zio_buf_alloc(sizeof (*lb)); 10824 abd_buf = zio_buf_alloc(sizeof (*abd_buf)); 10825 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb)); 10826 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 10827 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP); 10828 10829 /* link the buffer into the block chain */ 10830 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1]; 10831 lb->lb_magic = L2ARC_LOG_BLK_MAGIC; 10832 10833 /* 10834 * l2arc_log_blk_commit() may be called multiple times during a single 10835 * l2arc_write_buffers() call. Save the allocated abd buffers in a list 10836 * so we can free them in l2arc_write_done() later on. 10837 */ 10838 list_insert_tail(&cb->l2wcb_abd_list, abd_buf); 10839 10840 /* try to compress the buffer */ 10841 psize = zio_compress_data(ZIO_COMPRESS_LZ4, 10842 abd_buf->abd, tmpbuf, sizeof (*lb), 0); 10843 10844 /* a log block is never entirely zero */ 10845 ASSERT(psize != 0); 10846 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 10847 ASSERT(asize <= sizeof (*lb)); 10848 10849 /* 10850 * Update the start log block pointer in the device header to point 10851 * to the log block we're about to write. 10852 */ 10853 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0]; 10854 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand; 10855 l2dhdr->dh_start_lbps[0].lbp_payload_asize = 10856 dev->l2ad_log_blk_payload_asize; 10857 l2dhdr->dh_start_lbps[0].lbp_payload_start = 10858 dev->l2ad_log_blk_payload_start; 10859 L2BLK_SET_LSIZE( 10860 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb)); 10861 L2BLK_SET_PSIZE( 10862 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize); 10863 L2BLK_SET_CHECKSUM( 10864 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10865 ZIO_CHECKSUM_FLETCHER_4); 10866 if (asize < sizeof (*lb)) { 10867 /* compression succeeded */ 10868 memset(tmpbuf + psize, 0, asize - psize); 10869 L2BLK_SET_COMPRESS( 10870 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10871 ZIO_COMPRESS_LZ4); 10872 } else { 10873 /* compression failed */ 10874 memcpy(tmpbuf, lb, sizeof (*lb)); 10875 L2BLK_SET_COMPRESS( 10876 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10877 ZIO_COMPRESS_OFF); 10878 } 10879 10880 /* checksum what we're about to write */ 10881 fletcher_4_native(tmpbuf, asize, NULL, 10882 &l2dhdr->dh_start_lbps[0].lbp_cksum); 10883 10884 abd_free(abd_buf->abd); 10885 10886 /* perform the write itself */ 10887 abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb)); 10888 abd_take_ownership_of_buf(abd_buf->abd, B_TRUE); 10889 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand, 10890 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10891 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE); 10892 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio); 10893 (void) zio_nowait(wzio); 10894 10895 dev->l2ad_hand += asize; 10896 /* 10897 * Include the committed log block's pointer in the list of pointers 10898 * to log blocks present in the L2ARC device. 10899 */ 10900 memcpy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[0], 10901 sizeof (l2arc_log_blkptr_t)); 10902 mutex_enter(&dev->l2ad_mtx); 10903 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf); 10904 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 10905 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 10906 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 10907 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 10908 mutex_exit(&dev->l2ad_mtx); 10909 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10910 10911 /* bump the kstats */ 10912 ARCSTAT_INCR(arcstat_l2_write_bytes, asize); 10913 ARCSTAT_BUMP(arcstat_l2_log_blk_writes); 10914 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize); 10915 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, 10916 dev->l2ad_log_blk_payload_asize / asize); 10917 10918 /* start a new log block */ 10919 dev->l2ad_log_ent_idx = 0; 10920 dev->l2ad_log_blk_payload_asize = 0; 10921 dev->l2ad_log_blk_payload_start = 0; 10922 } 10923 10924 /* 10925 * Validates an L2ARC log block address to make sure that it can be read 10926 * from the provided L2ARC device. 10927 */ 10928 boolean_t 10929 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp) 10930 { 10931 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10932 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10933 uint64_t end = lbp->lbp_daddr + asize - 1; 10934 uint64_t start = lbp->lbp_payload_start; 10935 boolean_t evicted = B_FALSE; 10936 10937 /* 10938 * A log block is valid if all of the following conditions are true: 10939 * - it fits entirely (including its payload) between l2ad_start and 10940 * l2ad_end 10941 * - it has a valid size 10942 * - neither the log block itself nor part of its payload was evicted 10943 * by l2arc_evict(): 10944 * 10945 * l2ad_hand l2ad_evict 10946 * | | lbp_daddr 10947 * | start | | end 10948 * | | | | | 10949 * V V V V V 10950 * l2ad_start ============================================ l2ad_end 10951 * --------------------------|||| 10952 * ^ ^ 10953 * | log block 10954 * payload 10955 */ 10956 10957 evicted = 10958 l2arc_range_check_overlap(start, end, dev->l2ad_hand) || 10959 l2arc_range_check_overlap(start, end, dev->l2ad_evict) || 10960 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) || 10961 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end); 10962 10963 return (start >= dev->l2ad_start && end <= dev->l2ad_end && 10964 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) && 10965 (!evicted || dev->l2ad_first)); 10966 } 10967 10968 /* 10969 * Inserts ARC buffer header `hdr' into the current L2ARC log block on 10970 * the device. The buffer being inserted must be present in L2ARC. 10971 * Returns B_TRUE if the L2ARC log block is full and needs to be committed 10972 * to L2ARC, or B_FALSE if it still has room for more ARC buffers. 10973 */ 10974 static boolean_t 10975 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr) 10976 { 10977 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10978 l2arc_log_ent_phys_t *le; 10979 10980 if (dev->l2ad_log_entries == 0) 10981 return (B_FALSE); 10982 10983 int index = dev->l2ad_log_ent_idx++; 10984 10985 ASSERT3S(index, <, dev->l2ad_log_entries); 10986 ASSERT(HDR_HAS_L2HDR(hdr)); 10987 10988 le = &lb->lb_entries[index]; 10989 memset(le, 0, sizeof (*le)); 10990 le->le_dva = hdr->b_dva; 10991 le->le_birth = hdr->b_birth; 10992 le->le_daddr = hdr->b_l2hdr.b_daddr; 10993 if (index == 0) 10994 dev->l2ad_log_blk_payload_start = le->le_daddr; 10995 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr)); 10996 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr)); 10997 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr)); 10998 le->le_complevel = hdr->b_complevel; 10999 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type); 11000 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr))); 11001 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr))); 11002 L2BLK_SET_STATE((le)->le_prop, hdr->b_l1hdr.b_state->arcs_state); 11003 11004 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev, 11005 HDR_GET_PSIZE(hdr)); 11006 11007 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries); 11008 } 11009 11010 /* 11011 * Checks whether a given L2ARC device address sits in a time-sequential 11012 * range. The trick here is that the L2ARC is a rotary buffer, so we can't 11013 * just do a range comparison, we need to handle the situation in which the 11014 * range wraps around the end of the L2ARC device. Arguments: 11015 * bottom -- Lower end of the range to check (written to earlier). 11016 * top -- Upper end of the range to check (written to later). 11017 * check -- The address for which we want to determine if it sits in 11018 * between the top and bottom. 11019 * 11020 * The 3-way conditional below represents the following cases: 11021 * 11022 * bottom < top : Sequentially ordered case: 11023 * <check>--------+-------------------+ 11024 * | (overlap here?) | 11025 * L2ARC dev V V 11026 * |---------------<bottom>============<top>--------------| 11027 * 11028 * bottom > top: Looped-around case: 11029 * <check>--------+------------------+ 11030 * | (overlap here?) | 11031 * L2ARC dev V V 11032 * |===============<top>---------------<bottom>===========| 11033 * ^ ^ 11034 * | (or here?) | 11035 * +---------------+---------<check> 11036 * 11037 * top == bottom : Just a single address comparison. 11038 */ 11039 boolean_t 11040 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check) 11041 { 11042 if (bottom < top) 11043 return (bottom <= check && check <= top); 11044 else if (bottom > top) 11045 return (check <= top || bottom <= check); 11046 else 11047 return (check == top); 11048 } 11049 11050 EXPORT_SYMBOL(arc_buf_size); 11051 EXPORT_SYMBOL(arc_write); 11052 EXPORT_SYMBOL(arc_read); 11053 EXPORT_SYMBOL(arc_buf_info); 11054 EXPORT_SYMBOL(arc_getbuf_func); 11055 EXPORT_SYMBOL(arc_add_prune_callback); 11056 EXPORT_SYMBOL(arc_remove_prune_callback); 11057 11058 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_min, 11059 param_get_long, ZMOD_RW, "Minimum ARC size in bytes"); 11060 11061 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_max, 11062 param_get_long, ZMOD_RW, "Maximum ARC size in bytes"); 11063 11064 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit, param_set_arc_long, 11065 param_get_long, ZMOD_RW, "Metadata limit for ARC size in bytes"); 11066 11067 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit_percent, 11068 param_set_arc_long, param_get_long, ZMOD_RW, 11069 "Percent of ARC size for ARC meta limit"); 11070 11071 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_min, param_set_arc_long, 11072 param_get_long, ZMOD_RW, "Minimum ARC metadata size in bytes"); 11073 11074 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_prune, INT, ZMOD_RW, 11075 "Meta objects to scan for prune"); 11076 11077 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_adjust_restarts, INT, ZMOD_RW, 11078 "Limit number of restarts in arc_evict_meta"); 11079 11080 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_strategy, INT, ZMOD_RW, 11081 "Meta reclaim strategy"); 11082 11083 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int, 11084 param_get_int, ZMOD_RW, "Seconds before growing ARC size"); 11085 11086 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, p_dampener_disable, INT, ZMOD_RW, 11087 "Disable arc_p adapt dampener"); 11088 11089 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int, 11090 param_get_int, ZMOD_RW, "log2(fraction of ARC to reclaim)"); 11091 11092 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW, 11093 "Percent of pagecache to reclaim ARC to"); 11094 11095 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, p_min_shift, param_set_arc_int, 11096 param_get_int, ZMOD_RW, "arc_c shift to calc min/max arc_p"); 11097 11098 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, INT, ZMOD_RD, 11099 "Target average block size"); 11100 11101 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW, 11102 "Disable compressed ARC buffers"); 11103 11104 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int, 11105 param_get_int, ZMOD_RW, "Min life of prefetch block in ms"); 11106 11107 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms, 11108 param_set_arc_int, param_get_int, ZMOD_RW, 11109 "Min life of prescient prefetched block in ms"); 11110 11111 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, ULONG, ZMOD_RW, 11112 "Max write bytes per interval"); 11113 11114 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, ULONG, ZMOD_RW, 11115 "Extra write bytes during device warmup"); 11116 11117 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, ULONG, ZMOD_RW, 11118 "Number of max device writes to precache"); 11119 11120 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, ULONG, ZMOD_RW, 11121 "Compressed l2arc_headroom multiplier"); 11122 11123 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, ULONG, ZMOD_RW, 11124 "TRIM ahead L2ARC write size multiplier"); 11125 11126 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, ULONG, ZMOD_RW, 11127 "Seconds between L2ARC writing"); 11128 11129 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, ULONG, ZMOD_RW, 11130 "Min feed interval in milliseconds"); 11131 11132 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW, 11133 "Skip caching prefetched buffers"); 11134 11135 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW, 11136 "Turbo L2ARC warmup"); 11137 11138 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW, 11139 "No reads during writes"); 11140 11141 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, INT, ZMOD_RW, 11142 "Percent of ARC size allowed for L2ARC-only headers"); 11143 11144 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW, 11145 "Rebuild the L2ARC when importing a pool"); 11146 11147 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, ULONG, ZMOD_RW, 11148 "Min size in bytes to write rebuild log blocks in L2ARC"); 11149 11150 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW, 11151 "Cache only MFU data from ARC into L2ARC"); 11152 11153 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, exclude_special, INT, ZMOD_RW, 11154 "Exclude dbufs on special vdevs from being cached to L2ARC if set."); 11155 11156 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int, 11157 param_get_int, ZMOD_RW, "System free memory I/O throttle in bytes"); 11158 11159 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_long, 11160 param_get_long, ZMOD_RW, "System free memory target size in bytes"); 11161 11162 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_long, 11163 param_get_long, ZMOD_RW, "Minimum bytes of dnodes in ARC"); 11164 11165 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent, 11166 param_set_arc_long, param_get_long, ZMOD_RW, 11167 "Percent of ARC meta buffers for dnodes"); 11168 11169 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, ULONG, ZMOD_RW, 11170 "Percentage of excess dnodes to try to unpin"); 11171 11172 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, INT, ZMOD_RW, 11173 "When full, ARC allocation waits for eviction of this % of alloc size"); 11174 11175 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, INT, ZMOD_RW, 11176 "The number of headers to evict per sublist before moving to the next"); 11177 11178 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, prune_task_threads, INT, ZMOD_RW, 11179 "Number of arc_prune threads"); 11180