xref: /freebsd/sys/contrib/openzfs/module/zfs/arc.c (revision 0e8011faf58b743cc652e3b2ad0f7671227610df)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2018, Joyent, Inc.
24  * Copyright (c) 2011, 2020, Delphix. All rights reserved.
25  * Copyright (c) 2014, Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2017, Nexenta Systems, Inc.  All rights reserved.
27  * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
28  * Copyright (c) 2020, George Amanakis. All rights reserved.
29  * Copyright (c) 2019, 2024, Klara Inc.
30  * Copyright (c) 2019, Allan Jude
31  * Copyright (c) 2020, The FreeBSD Foundation [1]
32  * Copyright (c) 2021, 2024 by George Melikov. All rights reserved.
33  *
34  * [1] Portions of this software were developed by Allan Jude
35  *     under sponsorship from the FreeBSD Foundation.
36  */
37 
38 /*
39  * DVA-based Adjustable Replacement Cache
40  *
41  * While much of the theory of operation used here is
42  * based on the self-tuning, low overhead replacement cache
43  * presented by Megiddo and Modha at FAST 2003, there are some
44  * significant differences:
45  *
46  * 1. The Megiddo and Modha model assumes any page is evictable.
47  * Pages in its cache cannot be "locked" into memory.  This makes
48  * the eviction algorithm simple: evict the last page in the list.
49  * This also make the performance characteristics easy to reason
50  * about.  Our cache is not so simple.  At any given moment, some
51  * subset of the blocks in the cache are un-evictable because we
52  * have handed out a reference to them.  Blocks are only evictable
53  * when there are no external references active.  This makes
54  * eviction far more problematic:  we choose to evict the evictable
55  * blocks that are the "lowest" in the list.
56  *
57  * There are times when it is not possible to evict the requested
58  * space.  In these circumstances we are unable to adjust the cache
59  * size.  To prevent the cache growing unbounded at these times we
60  * implement a "cache throttle" that slows the flow of new data
61  * into the cache until we can make space available.
62  *
63  * 2. The Megiddo and Modha model assumes a fixed cache size.
64  * Pages are evicted when the cache is full and there is a cache
65  * miss.  Our model has a variable sized cache.  It grows with
66  * high use, but also tries to react to memory pressure from the
67  * operating system: decreasing its size when system memory is
68  * tight.
69  *
70  * 3. The Megiddo and Modha model assumes a fixed page size. All
71  * elements of the cache are therefore exactly the same size.  So
72  * when adjusting the cache size following a cache miss, its simply
73  * a matter of choosing a single page to evict.  In our model, we
74  * have variable sized cache blocks (ranging from 512 bytes to
75  * 128K bytes).  We therefore choose a set of blocks to evict to make
76  * space for a cache miss that approximates as closely as possible
77  * the space used by the new block.
78  *
79  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
80  * by N. Megiddo & D. Modha, FAST 2003
81  */
82 
83 /*
84  * The locking model:
85  *
86  * A new reference to a cache buffer can be obtained in two
87  * ways: 1) via a hash table lookup using the DVA as a key,
88  * or 2) via one of the ARC lists.  The arc_read() interface
89  * uses method 1, while the internal ARC algorithms for
90  * adjusting the cache use method 2.  We therefore provide two
91  * types of locks: 1) the hash table lock array, and 2) the
92  * ARC list locks.
93  *
94  * Buffers do not have their own mutexes, rather they rely on the
95  * hash table mutexes for the bulk of their protection (i.e. most
96  * fields in the arc_buf_hdr_t are protected by these mutexes).
97  *
98  * buf_hash_find() returns the appropriate mutex (held) when it
99  * locates the requested buffer in the hash table.  It returns
100  * NULL for the mutex if the buffer was not in the table.
101  *
102  * buf_hash_remove() expects the appropriate hash mutex to be
103  * already held before it is invoked.
104  *
105  * Each ARC state also has a mutex which is used to protect the
106  * buffer list associated with the state.  When attempting to
107  * obtain a hash table lock while holding an ARC list lock you
108  * must use: mutex_tryenter() to avoid deadlock.  Also note that
109  * the active state mutex must be held before the ghost state mutex.
110  *
111  * It as also possible to register a callback which is run when the
112  * metadata limit is reached and no buffers can be safely evicted.  In
113  * this case the arc user should drop a reference on some arc buffers so
114  * they can be reclaimed.  For example, when using the ZPL each dentry
115  * holds a references on a znode.  These dentries must be pruned before
116  * the arc buffer holding the znode can be safely evicted.
117  *
118  * Note that the majority of the performance stats are manipulated
119  * with atomic operations.
120  *
121  * The L2ARC uses the l2ad_mtx on each vdev for the following:
122  *
123  *	- L2ARC buflist creation
124  *	- L2ARC buflist eviction
125  *	- L2ARC write completion, which walks L2ARC buflists
126  *	- ARC header destruction, as it removes from L2ARC buflists
127  *	- ARC header release, as it removes from L2ARC buflists
128  */
129 
130 /*
131  * ARC operation:
132  *
133  * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
134  * This structure can point either to a block that is still in the cache or to
135  * one that is only accessible in an L2 ARC device, or it can provide
136  * information about a block that was recently evicted. If a block is
137  * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
138  * information to retrieve it from the L2ARC device. This information is
139  * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
140  * that is in this state cannot access the data directly.
141  *
142  * Blocks that are actively being referenced or have not been evicted
143  * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
144  * the arc_buf_hdr_t that will point to the data block in memory. A block can
145  * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
146  * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
147  * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
148  *
149  * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
150  * ability to store the physical data (b_pabd) associated with the DVA of the
151  * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
152  * it will match its on-disk compression characteristics. This behavior can be
153  * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
154  * compressed ARC functionality is disabled, the b_pabd will point to an
155  * uncompressed version of the on-disk data.
156  *
157  * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
158  * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
159  * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
160  * consumer. The ARC will provide references to this data and will keep it
161  * cached until it is no longer in use. The ARC caches only the L1ARC's physical
162  * data block and will evict any arc_buf_t that is no longer referenced. The
163  * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
164  * "overhead_size" kstat.
165  *
166  * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
167  * compressed form. The typical case is that consumers will want uncompressed
168  * data, and when that happens a new data buffer is allocated where the data is
169  * decompressed for them to use. Currently the only consumer who wants
170  * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
171  * exists on disk. When this happens, the arc_buf_t's data buffer is shared
172  * with the arc_buf_hdr_t.
173  *
174  * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
175  * first one is owned by a compressed send consumer (and therefore references
176  * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
177  * used by any other consumer (and has its own uncompressed copy of the data
178  * buffer).
179  *
180  *   arc_buf_hdr_t
181  *   +-----------+
182  *   | fields    |
183  *   | common to |
184  *   | L1- and   |
185  *   | L2ARC     |
186  *   +-----------+
187  *   | l2arc_buf_hdr_t
188  *   |           |
189  *   +-----------+
190  *   | l1arc_buf_hdr_t
191  *   |           |              arc_buf_t
192  *   | b_buf     +------------>+-----------+      arc_buf_t
193  *   | b_pabd    +-+           |b_next     +---->+-----------+
194  *   +-----------+ |           |-----------|     |b_next     +-->NULL
195  *                 |           |b_comp = T |     +-----------+
196  *                 |           |b_data     +-+   |b_comp = F |
197  *                 |           +-----------+ |   |b_data     +-+
198  *                 +->+------+               |   +-----------+ |
199  *        compressed  |      |               |                 |
200  *           data     |      |<--------------+                 | uncompressed
201  *                    +------+          compressed,            |     data
202  *                                        shared               +-->+------+
203  *                                         data                    |      |
204  *                                                                 |      |
205  *                                                                 +------+
206  *
207  * When a consumer reads a block, the ARC must first look to see if the
208  * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
209  * arc_buf_t and either copies uncompressed data into a new data buffer from an
210  * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
211  * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
212  * hdr is compressed and the desired compression characteristics of the
213  * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
214  * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
215  * the last buffer in the hdr's b_buf list, however a shared compressed buf can
216  * be anywhere in the hdr's list.
217  *
218  * The diagram below shows an example of an uncompressed ARC hdr that is
219  * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
220  * the last element in the buf list):
221  *
222  *                arc_buf_hdr_t
223  *                +-----------+
224  *                |           |
225  *                |           |
226  *                |           |
227  *                +-----------+
228  * l2arc_buf_hdr_t|           |
229  *                |           |
230  *                +-----------+
231  * l1arc_buf_hdr_t|           |
232  *                |           |                 arc_buf_t    (shared)
233  *                |    b_buf  +------------>+---------+      arc_buf_t
234  *                |           |             |b_next   +---->+---------+
235  *                |  b_pabd   +-+           |---------|     |b_next   +-->NULL
236  *                +-----------+ |           |         |     +---------+
237  *                              |           |b_data   +-+   |         |
238  *                              |           +---------+ |   |b_data   +-+
239  *                              +->+------+             |   +---------+ |
240  *                                 |      |             |               |
241  *                   uncompressed  |      |             |               |
242  *                        data     +------+             |               |
243  *                                    ^                 +->+------+     |
244  *                                    |       uncompressed |      |     |
245  *                                    |           data     |      |     |
246  *                                    |                    +------+     |
247  *                                    +---------------------------------+
248  *
249  * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
250  * since the physical block is about to be rewritten. The new data contents
251  * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
252  * it may compress the data before writing it to disk. The ARC will be called
253  * with the transformed data and will memcpy the transformed on-disk block into
254  * a newly allocated b_pabd. Writes are always done into buffers which have
255  * either been loaned (and hence are new and don't have other readers) or
256  * buffers which have been released (and hence have their own hdr, if there
257  * were originally other readers of the buf's original hdr). This ensures that
258  * the ARC only needs to update a single buf and its hdr after a write occurs.
259  *
260  * When the L2ARC is in use, it will also take advantage of the b_pabd. The
261  * L2ARC will always write the contents of b_pabd to the L2ARC. This means
262  * that when compressed ARC is enabled that the L2ARC blocks are identical
263  * to the on-disk block in the main data pool. This provides a significant
264  * advantage since the ARC can leverage the bp's checksum when reading from the
265  * L2ARC to determine if the contents are valid. However, if the compressed
266  * ARC is disabled, then the L2ARC's block must be transformed to look
267  * like the physical block in the main data pool before comparing the
268  * checksum and determining its validity.
269  *
270  * The L1ARC has a slightly different system for storing encrypted data.
271  * Raw (encrypted + possibly compressed) data has a few subtle differences from
272  * data that is just compressed. The biggest difference is that it is not
273  * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded.
274  * The other difference is that encryption cannot be treated as a suggestion.
275  * If a caller would prefer compressed data, but they actually wind up with
276  * uncompressed data the worst thing that could happen is there might be a
277  * performance hit. If the caller requests encrypted data, however, we must be
278  * sure they actually get it or else secret information could be leaked. Raw
279  * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
280  * may have both an encrypted version and a decrypted version of its data at
281  * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
282  * copied out of this header. To avoid complications with b_pabd, raw buffers
283  * cannot be shared.
284  */
285 
286 #include <sys/spa.h>
287 #include <sys/zio.h>
288 #include <sys/spa_impl.h>
289 #include <sys/zio_compress.h>
290 #include <sys/zio_checksum.h>
291 #include <sys/zfs_context.h>
292 #include <sys/arc.h>
293 #include <sys/zfs_refcount.h>
294 #include <sys/vdev.h>
295 #include <sys/vdev_impl.h>
296 #include <sys/dsl_pool.h>
297 #include <sys/multilist.h>
298 #include <sys/abd.h>
299 #include <sys/zil.h>
300 #include <sys/fm/fs/zfs.h>
301 #include <sys/callb.h>
302 #include <sys/kstat.h>
303 #include <sys/zthr.h>
304 #include <zfs_fletcher.h>
305 #include <sys/arc_impl.h>
306 #include <sys/trace_zfs.h>
307 #include <sys/aggsum.h>
308 #include <sys/wmsum.h>
309 #include <cityhash.h>
310 #include <sys/vdev_trim.h>
311 #include <sys/zfs_racct.h>
312 #include <sys/zstd/zstd.h>
313 
314 #ifndef _KERNEL
315 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
316 boolean_t arc_watch = B_FALSE;
317 #endif
318 
319 /*
320  * This thread's job is to keep enough free memory in the system, by
321  * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves
322  * arc_available_memory().
323  */
324 static zthr_t *arc_reap_zthr;
325 
326 /*
327  * This thread's job is to keep arc_size under arc_c, by calling
328  * arc_evict(), which improves arc_is_overflowing().
329  */
330 static zthr_t *arc_evict_zthr;
331 static arc_buf_hdr_t **arc_state_evict_markers;
332 static int arc_state_evict_marker_count;
333 
334 static kmutex_t arc_evict_lock;
335 static boolean_t arc_evict_needed = B_FALSE;
336 static clock_t arc_last_uncached_flush;
337 
338 /*
339  * Count of bytes evicted since boot.
340  */
341 static uint64_t arc_evict_count;
342 
343 /*
344  * List of arc_evict_waiter_t's, representing threads waiting for the
345  * arc_evict_count to reach specific values.
346  */
347 static list_t arc_evict_waiters;
348 
349 /*
350  * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of
351  * the requested amount of data to be evicted.  For example, by default for
352  * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation.
353  * Since this is above 100%, it ensures that progress is made towards getting
354  * arc_size under arc_c.  Since this is finite, it ensures that allocations
355  * can still happen, even during the potentially long time that arc_size is
356  * more than arc_c.
357  */
358 static uint_t zfs_arc_eviction_pct = 200;
359 
360 /*
361  * The number of headers to evict in arc_evict_state_impl() before
362  * dropping the sublist lock and evicting from another sublist. A lower
363  * value means we're more likely to evict the "correct" header (i.e. the
364  * oldest header in the arc state), but comes with higher overhead
365  * (i.e. more invocations of arc_evict_state_impl()).
366  */
367 static uint_t zfs_arc_evict_batch_limit = 10;
368 
369 /* number of seconds before growing cache again */
370 uint_t arc_grow_retry = 5;
371 
372 /*
373  * Minimum time between calls to arc_kmem_reap_soon().
374  */
375 static const int arc_kmem_cache_reap_retry_ms = 1000;
376 
377 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
378 static int zfs_arc_overflow_shift = 8;
379 
380 /* log2(fraction of arc to reclaim) */
381 uint_t arc_shrink_shift = 7;
382 
383 /* percent of pagecache to reclaim arc to */
384 #ifdef _KERNEL
385 uint_t zfs_arc_pc_percent = 0;
386 #endif
387 
388 /*
389  * log2(fraction of ARC which must be free to allow growing).
390  * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
391  * when reading a new block into the ARC, we will evict an equal-sized block
392  * from the ARC.
393  *
394  * This must be less than arc_shrink_shift, so that when we shrink the ARC,
395  * we will still not allow it to grow.
396  */
397 uint_t		arc_no_grow_shift = 5;
398 
399 
400 /*
401  * minimum lifespan of a prefetch block in clock ticks
402  * (initialized in arc_init())
403  */
404 static uint_t		arc_min_prefetch_ms;
405 static uint_t		arc_min_prescient_prefetch_ms;
406 
407 /*
408  * If this percent of memory is free, don't throttle.
409  */
410 uint_t arc_lotsfree_percent = 10;
411 
412 /*
413  * The arc has filled available memory and has now warmed up.
414  */
415 boolean_t arc_warm;
416 
417 /*
418  * These tunables are for performance analysis.
419  */
420 uint64_t zfs_arc_max = 0;
421 uint64_t zfs_arc_min = 0;
422 static uint64_t zfs_arc_dnode_limit = 0;
423 static uint_t zfs_arc_dnode_reduce_percent = 10;
424 static uint_t zfs_arc_grow_retry = 0;
425 static uint_t zfs_arc_shrink_shift = 0;
426 uint_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
427 
428 /*
429  * ARC dirty data constraints for arc_tempreserve_space() throttle:
430  * * total dirty data limit
431  * * anon block dirty limit
432  * * each pool's anon allowance
433  */
434 static const unsigned long zfs_arc_dirty_limit_percent = 50;
435 static const unsigned long zfs_arc_anon_limit_percent = 25;
436 static const unsigned long zfs_arc_pool_dirty_percent = 20;
437 
438 /*
439  * Enable or disable compressed arc buffers.
440  */
441 int zfs_compressed_arc_enabled = B_TRUE;
442 
443 /*
444  * Balance between metadata and data on ghost hits.  Values above 100
445  * increase metadata caching by proportionally reducing effect of ghost
446  * data hits on target data/metadata rate.
447  */
448 static uint_t zfs_arc_meta_balance = 500;
449 
450 /*
451  * Percentage that can be consumed by dnodes of ARC meta buffers.
452  */
453 static uint_t zfs_arc_dnode_limit_percent = 10;
454 
455 /*
456  * These tunables are Linux-specific
457  */
458 static uint64_t zfs_arc_sys_free = 0;
459 static uint_t zfs_arc_min_prefetch_ms = 0;
460 static uint_t zfs_arc_min_prescient_prefetch_ms = 0;
461 static uint_t zfs_arc_lotsfree_percent = 10;
462 
463 /*
464  * Number of arc_prune threads
465  */
466 static int zfs_arc_prune_task_threads = 1;
467 
468 /* Used by spa_export/spa_destroy to flush the arc asynchronously */
469 static taskq_t *arc_flush_taskq;
470 
471 /* The 7 states: */
472 arc_state_t ARC_anon;
473 arc_state_t ARC_mru;
474 arc_state_t ARC_mru_ghost;
475 arc_state_t ARC_mfu;
476 arc_state_t ARC_mfu_ghost;
477 arc_state_t ARC_l2c_only;
478 arc_state_t ARC_uncached;
479 
480 arc_stats_t arc_stats = {
481 	{ "hits",			KSTAT_DATA_UINT64 },
482 	{ "iohits",			KSTAT_DATA_UINT64 },
483 	{ "misses",			KSTAT_DATA_UINT64 },
484 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
485 	{ "demand_data_iohits",		KSTAT_DATA_UINT64 },
486 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
487 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
488 	{ "demand_metadata_iohits",	KSTAT_DATA_UINT64 },
489 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
490 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
491 	{ "prefetch_data_iohits",	KSTAT_DATA_UINT64 },
492 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
493 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
494 	{ "prefetch_metadata_iohits",	KSTAT_DATA_UINT64 },
495 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
496 	{ "mru_hits",			KSTAT_DATA_UINT64 },
497 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
498 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
499 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
500 	{ "uncached_hits",		KSTAT_DATA_UINT64 },
501 	{ "deleted",			KSTAT_DATA_UINT64 },
502 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
503 	{ "access_skip",		KSTAT_DATA_UINT64 },
504 	{ "evict_skip",			KSTAT_DATA_UINT64 },
505 	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
506 	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
507 	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
508 	{ "evict_l2_eligible_mfu",	KSTAT_DATA_UINT64 },
509 	{ "evict_l2_eligible_mru",	KSTAT_DATA_UINT64 },
510 	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
511 	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
512 	{ "hash_elements",		KSTAT_DATA_UINT64 },
513 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
514 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
515 	{ "hash_chains",		KSTAT_DATA_UINT64 },
516 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
517 	{ "meta",			KSTAT_DATA_UINT64 },
518 	{ "pd",				KSTAT_DATA_UINT64 },
519 	{ "pm",				KSTAT_DATA_UINT64 },
520 	{ "c",				KSTAT_DATA_UINT64 },
521 	{ "c_min",			KSTAT_DATA_UINT64 },
522 	{ "c_max",			KSTAT_DATA_UINT64 },
523 	{ "size",			KSTAT_DATA_UINT64 },
524 	{ "compressed_size",		KSTAT_DATA_UINT64 },
525 	{ "uncompressed_size",		KSTAT_DATA_UINT64 },
526 	{ "overhead_size",		KSTAT_DATA_UINT64 },
527 	{ "hdr_size",			KSTAT_DATA_UINT64 },
528 	{ "data_size",			KSTAT_DATA_UINT64 },
529 	{ "metadata_size",		KSTAT_DATA_UINT64 },
530 	{ "dbuf_size",			KSTAT_DATA_UINT64 },
531 	{ "dnode_size",			KSTAT_DATA_UINT64 },
532 	{ "bonus_size",			KSTAT_DATA_UINT64 },
533 #if defined(COMPAT_FREEBSD11)
534 	{ "other_size",			KSTAT_DATA_UINT64 },
535 #endif
536 	{ "anon_size",			KSTAT_DATA_UINT64 },
537 	{ "anon_data",			KSTAT_DATA_UINT64 },
538 	{ "anon_metadata",		KSTAT_DATA_UINT64 },
539 	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
540 	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
541 	{ "mru_size",			KSTAT_DATA_UINT64 },
542 	{ "mru_data",			KSTAT_DATA_UINT64 },
543 	{ "mru_metadata",		KSTAT_DATA_UINT64 },
544 	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
545 	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
546 	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
547 	{ "mru_ghost_data",		KSTAT_DATA_UINT64 },
548 	{ "mru_ghost_metadata",		KSTAT_DATA_UINT64 },
549 	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
550 	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
551 	{ "mfu_size",			KSTAT_DATA_UINT64 },
552 	{ "mfu_data",			KSTAT_DATA_UINT64 },
553 	{ "mfu_metadata",		KSTAT_DATA_UINT64 },
554 	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
555 	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
556 	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
557 	{ "mfu_ghost_data",		KSTAT_DATA_UINT64 },
558 	{ "mfu_ghost_metadata",		KSTAT_DATA_UINT64 },
559 	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
560 	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
561 	{ "uncached_size",		KSTAT_DATA_UINT64 },
562 	{ "uncached_data",		KSTAT_DATA_UINT64 },
563 	{ "uncached_metadata",		KSTAT_DATA_UINT64 },
564 	{ "uncached_evictable_data",	KSTAT_DATA_UINT64 },
565 	{ "uncached_evictable_metadata", KSTAT_DATA_UINT64 },
566 	{ "l2_hits",			KSTAT_DATA_UINT64 },
567 	{ "l2_misses",			KSTAT_DATA_UINT64 },
568 	{ "l2_prefetch_asize",		KSTAT_DATA_UINT64 },
569 	{ "l2_mru_asize",		KSTAT_DATA_UINT64 },
570 	{ "l2_mfu_asize",		KSTAT_DATA_UINT64 },
571 	{ "l2_bufc_data_asize",		KSTAT_DATA_UINT64 },
572 	{ "l2_bufc_metadata_asize",	KSTAT_DATA_UINT64 },
573 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
574 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
575 	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
576 	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
577 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
578 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
579 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
580 	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
581 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
582 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
583 	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
584 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
585 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
586 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
587 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
588 	{ "l2_size",			KSTAT_DATA_UINT64 },
589 	{ "l2_asize",			KSTAT_DATA_UINT64 },
590 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
591 	{ "l2_log_blk_writes",		KSTAT_DATA_UINT64 },
592 	{ "l2_log_blk_avg_asize",	KSTAT_DATA_UINT64 },
593 	{ "l2_log_blk_asize",		KSTAT_DATA_UINT64 },
594 	{ "l2_log_blk_count",		KSTAT_DATA_UINT64 },
595 	{ "l2_data_to_meta_ratio",	KSTAT_DATA_UINT64 },
596 	{ "l2_rebuild_success",		KSTAT_DATA_UINT64 },
597 	{ "l2_rebuild_unsupported",	KSTAT_DATA_UINT64 },
598 	{ "l2_rebuild_io_errors",	KSTAT_DATA_UINT64 },
599 	{ "l2_rebuild_dh_errors",	KSTAT_DATA_UINT64 },
600 	{ "l2_rebuild_cksum_lb_errors",	KSTAT_DATA_UINT64 },
601 	{ "l2_rebuild_lowmem",		KSTAT_DATA_UINT64 },
602 	{ "l2_rebuild_size",		KSTAT_DATA_UINT64 },
603 	{ "l2_rebuild_asize",		KSTAT_DATA_UINT64 },
604 	{ "l2_rebuild_bufs",		KSTAT_DATA_UINT64 },
605 	{ "l2_rebuild_bufs_precached",	KSTAT_DATA_UINT64 },
606 	{ "l2_rebuild_log_blks",	KSTAT_DATA_UINT64 },
607 	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
608 	{ "memory_direct_count",	KSTAT_DATA_UINT64 },
609 	{ "memory_indirect_count",	KSTAT_DATA_UINT64 },
610 	{ "memory_all_bytes",		KSTAT_DATA_UINT64 },
611 	{ "memory_free_bytes",		KSTAT_DATA_UINT64 },
612 	{ "memory_available_bytes",	KSTAT_DATA_INT64 },
613 	{ "arc_no_grow",		KSTAT_DATA_UINT64 },
614 	{ "arc_tempreserve",		KSTAT_DATA_UINT64 },
615 	{ "arc_loaned_bytes",		KSTAT_DATA_UINT64 },
616 	{ "arc_prune",			KSTAT_DATA_UINT64 },
617 	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
618 	{ "arc_dnode_limit",		KSTAT_DATA_UINT64 },
619 	{ "async_upgrade_sync",		KSTAT_DATA_UINT64 },
620 	{ "predictive_prefetch", KSTAT_DATA_UINT64 },
621 	{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
622 	{ "demand_iohit_predictive_prefetch", KSTAT_DATA_UINT64 },
623 	{ "prescient_prefetch", KSTAT_DATA_UINT64 },
624 	{ "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
625 	{ "demand_iohit_prescient_prefetch", KSTAT_DATA_UINT64 },
626 	{ "arc_need_free",		KSTAT_DATA_UINT64 },
627 	{ "arc_sys_free",		KSTAT_DATA_UINT64 },
628 	{ "arc_raw_size",		KSTAT_DATA_UINT64 },
629 	{ "cached_only_in_progress",	KSTAT_DATA_UINT64 },
630 	{ "abd_chunk_waste_size",	KSTAT_DATA_UINT64 },
631 };
632 
633 arc_sums_t arc_sums;
634 
635 #define	ARCSTAT_MAX(stat, val) {					\
636 	uint64_t m;							\
637 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
638 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
639 		continue;						\
640 }
641 
642 /*
643  * We define a macro to allow ARC hits/misses to be easily broken down by
644  * two separate conditions, giving a total of four different subtypes for
645  * each of hits and misses (so eight statistics total).
646  */
647 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
648 	if (cond1) {							\
649 		if (cond2) {						\
650 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
651 		} else {						\
652 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
653 		}							\
654 	} else {							\
655 		if (cond2) {						\
656 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
657 		} else {						\
658 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
659 		}							\
660 	}
661 
662 /*
663  * This macro allows us to use kstats as floating averages. Each time we
664  * update this kstat, we first factor it and the update value by
665  * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall
666  * average. This macro assumes that integer loads and stores are atomic, but
667  * is not safe for multiple writers updating the kstat in parallel (only the
668  * last writer's update will remain).
669  */
670 #define	ARCSTAT_F_AVG_FACTOR	3
671 #define	ARCSTAT_F_AVG(stat, value) \
672 	do { \
673 		uint64_t x = ARCSTAT(stat); \
674 		x = x - x / ARCSTAT_F_AVG_FACTOR + \
675 		    (value) / ARCSTAT_F_AVG_FACTOR; \
676 		ARCSTAT(stat) = x; \
677 	} while (0)
678 
679 static kstat_t			*arc_ksp;
680 
681 /*
682  * There are several ARC variables that are critical to export as kstats --
683  * but we don't want to have to grovel around in the kstat whenever we wish to
684  * manipulate them.  For these variables, we therefore define them to be in
685  * terms of the statistic variable.  This assures that we are not introducing
686  * the possibility of inconsistency by having shadow copies of the variables,
687  * while still allowing the code to be readable.
688  */
689 #define	arc_tempreserve	ARCSTAT(arcstat_tempreserve)
690 #define	arc_loaned_bytes	ARCSTAT(arcstat_loaned_bytes)
691 #define	arc_dnode_limit	ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */
692 #define	arc_need_free	ARCSTAT(arcstat_need_free) /* waiting to be evicted */
693 
694 hrtime_t arc_growtime;
695 list_t arc_prune_list;
696 kmutex_t arc_prune_mtx;
697 taskq_t *arc_prune_taskq;
698 
699 #define	GHOST_STATE(state)	\
700 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
701 	(state) == arc_l2c_only)
702 
703 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
704 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
705 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
706 #define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
707 #define	HDR_PRESCIENT_PREFETCH(hdr)	\
708 	((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
709 #define	HDR_COMPRESSION_ENABLED(hdr)	\
710 	((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
711 
712 #define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
713 #define	HDR_UNCACHED(hdr)	((hdr)->b_flags & ARC_FLAG_UNCACHED)
714 #define	HDR_L2_READING(hdr)	\
715 	(((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
716 	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
717 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
718 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
719 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
720 #define	HDR_PROTECTED(hdr)	((hdr)->b_flags & ARC_FLAG_PROTECTED)
721 #define	HDR_NOAUTH(hdr)		((hdr)->b_flags & ARC_FLAG_NOAUTH)
722 #define	HDR_SHARED_DATA(hdr)	((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
723 
724 #define	HDR_ISTYPE_METADATA(hdr)	\
725 	((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
726 #define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
727 
728 #define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
729 #define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
730 #define	HDR_HAS_RABD(hdr)	\
731 	(HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) &&	\
732 	(hdr)->b_crypt_hdr.b_rabd != NULL)
733 #define	HDR_ENCRYPTED(hdr)	\
734 	(HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
735 #define	HDR_AUTHENTICATED(hdr)	\
736 	(HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
737 
738 /* For storing compression mode in b_flags */
739 #define	HDR_COMPRESS_OFFSET	(highbit64(ARC_FLAG_COMPRESS_0) - 1)
740 
741 #define	HDR_GET_COMPRESS(hdr)	((enum zio_compress)BF32_GET((hdr)->b_flags, \
742 	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
743 #define	HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
744 	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
745 
746 #define	ARC_BUF_LAST(buf)	((buf)->b_next == NULL)
747 #define	ARC_BUF_SHARED(buf)	((buf)->b_flags & ARC_BUF_FLAG_SHARED)
748 #define	ARC_BUF_COMPRESSED(buf)	((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
749 #define	ARC_BUF_ENCRYPTED(buf)	((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
750 
751 /*
752  * Other sizes
753  */
754 
755 #define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
756 #define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
757 
758 /*
759  * Hash table routines
760  */
761 
762 #define	BUF_LOCKS 2048
763 typedef struct buf_hash_table {
764 	uint64_t ht_mask;
765 	arc_buf_hdr_t **ht_table;
766 	kmutex_t ht_locks[BUF_LOCKS] ____cacheline_aligned;
767 } buf_hash_table_t;
768 
769 static buf_hash_table_t buf_hash_table;
770 
771 #define	BUF_HASH_INDEX(spa, dva, birth) \
772 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
773 #define	BUF_HASH_LOCK(idx)	(&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
774 #define	HDR_LOCK(hdr) \
775 	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
776 
777 uint64_t zfs_crc64_table[256];
778 
779 /*
780  * Asynchronous ARC flush
781  *
782  * We track these in a list for arc_async_flush_guid_inuse().
783  * Used for both L1 and L2 async teardown.
784  */
785 static list_t arc_async_flush_list;
786 static kmutex_t	arc_async_flush_lock;
787 
788 typedef struct arc_async_flush {
789 	uint64_t	af_spa_guid;
790 	taskq_ent_t	af_tqent;
791 	uint_t		af_cache_level;	/* 1 or 2 to differentiate node */
792 	list_node_t	af_node;
793 } arc_async_flush_t;
794 
795 
796 /*
797  * Level 2 ARC
798  */
799 
800 #define	L2ARC_WRITE_SIZE	(32 * 1024 * 1024)	/* initial write max */
801 #define	L2ARC_HEADROOM		8			/* num of writes */
802 
803 /*
804  * If we discover during ARC scan any buffers to be compressed, we boost
805  * our headroom for the next scanning cycle by this percentage multiple.
806  */
807 #define	L2ARC_HEADROOM_BOOST	200
808 #define	L2ARC_FEED_SECS		1		/* caching interval secs */
809 #define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
810 
811 /*
812  * We can feed L2ARC from two states of ARC buffers, mru and mfu,
813  * and each of the state has two types: data and metadata.
814  */
815 #define	L2ARC_FEED_TYPES	4
816 
817 /* L2ARC Performance Tunables */
818 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* def max write size */
819 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra warmup write */
820 uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* # of dev writes */
821 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
822 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
823 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval msecs */
824 int l2arc_noprefetch = B_TRUE;			/* don't cache prefetch bufs */
825 int l2arc_feed_again = B_TRUE;			/* turbo warmup */
826 int l2arc_norw = B_FALSE;			/* no reads during writes */
827 static uint_t l2arc_meta_percent = 33;	/* limit on headers size */
828 
829 /*
830  * L2ARC Internals
831  */
832 static list_t L2ARC_dev_list;			/* device list */
833 static list_t *l2arc_dev_list;			/* device list pointer */
834 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
835 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
836 static list_t L2ARC_free_on_write;		/* free after write buf list */
837 static list_t *l2arc_free_on_write;		/* free after write list ptr */
838 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
839 static uint64_t l2arc_ndev;			/* number of devices */
840 
841 typedef struct l2arc_read_callback {
842 	arc_buf_hdr_t		*l2rcb_hdr;		/* read header */
843 	blkptr_t		l2rcb_bp;		/* original blkptr */
844 	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
845 	int			l2rcb_flags;		/* original flags */
846 	abd_t			*l2rcb_abd;		/* temporary buffer */
847 } l2arc_read_callback_t;
848 
849 typedef struct l2arc_data_free {
850 	/* protected by l2arc_free_on_write_mtx */
851 	abd_t		*l2df_abd;
852 	size_t		l2df_size;
853 	arc_buf_contents_t l2df_type;
854 	list_node_t	l2df_list_node;
855 } l2arc_data_free_t;
856 
857 typedef enum arc_fill_flags {
858 	ARC_FILL_LOCKED		= 1 << 0, /* hdr lock is held */
859 	ARC_FILL_COMPRESSED	= 1 << 1, /* fill with compressed data */
860 	ARC_FILL_ENCRYPTED	= 1 << 2, /* fill with encrypted data */
861 	ARC_FILL_NOAUTH		= 1 << 3, /* don't attempt to authenticate */
862 	ARC_FILL_IN_PLACE	= 1 << 4  /* fill in place (special case) */
863 } arc_fill_flags_t;
864 
865 typedef enum arc_ovf_level {
866 	ARC_OVF_NONE,			/* ARC within target size. */
867 	ARC_OVF_SOME,			/* ARC is slightly overflowed. */
868 	ARC_OVF_SEVERE			/* ARC is severely overflowed. */
869 } arc_ovf_level_t;
870 
871 static kmutex_t l2arc_feed_thr_lock;
872 static kcondvar_t l2arc_feed_thr_cv;
873 static uint8_t l2arc_thread_exit;
874 
875 static kmutex_t l2arc_rebuild_thr_lock;
876 static kcondvar_t l2arc_rebuild_thr_cv;
877 
878 enum arc_hdr_alloc_flags {
879 	ARC_HDR_ALLOC_RDATA = 0x1,
880 	ARC_HDR_USE_RESERVE = 0x4,
881 	ARC_HDR_ALLOC_LINEAR = 0x8,
882 };
883 
884 
885 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, const void *, int);
886 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, const void *);
887 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, const void *, int);
888 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, const void *);
889 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, const void *);
890 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size,
891     const void *tag);
892 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t);
893 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int);
894 static void arc_hdr_destroy(arc_buf_hdr_t *);
895 static void arc_access(arc_buf_hdr_t *, arc_flags_t, boolean_t);
896 static void arc_buf_watch(arc_buf_t *);
897 static void arc_change_state(arc_state_t *, arc_buf_hdr_t *);
898 
899 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
900 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
901 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
902 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
903 
904 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
905 static void l2arc_read_done(zio_t *);
906 static void l2arc_do_free_on_write(void);
907 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
908     boolean_t state_only);
909 
910 static void arc_prune_async(uint64_t adjust);
911 
912 #define	l2arc_hdr_arcstats_increment(hdr) \
913 	l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE)
914 #define	l2arc_hdr_arcstats_decrement(hdr) \
915 	l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE)
916 #define	l2arc_hdr_arcstats_increment_state(hdr) \
917 	l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE)
918 #define	l2arc_hdr_arcstats_decrement_state(hdr) \
919 	l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE)
920 
921 /*
922  * l2arc_exclude_special : A zfs module parameter that controls whether buffers
923  * 		present on special vdevs are eligibile for caching in L2ARC. If
924  * 		set to 1, exclude dbufs on special vdevs from being cached to
925  * 		L2ARC.
926  */
927 int l2arc_exclude_special = 0;
928 
929 /*
930  * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU
931  * 		metadata and data are cached from ARC into L2ARC.
932  */
933 static int l2arc_mfuonly = 0;
934 
935 /*
936  * L2ARC TRIM
937  * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of
938  * 		the current write size (l2arc_write_max) we should TRIM if we
939  * 		have filled the device. It is defined as a percentage of the
940  * 		write size. If set to 100 we trim twice the space required to
941  * 		accommodate upcoming writes. A minimum of 64MB will be trimmed.
942  * 		It also enables TRIM of the whole L2ARC device upon creation or
943  * 		addition to an existing pool or if the header of the device is
944  * 		invalid upon importing a pool or onlining a cache device. The
945  * 		default is 0, which disables TRIM on L2ARC altogether as it can
946  * 		put significant stress on the underlying storage devices. This
947  * 		will vary depending of how well the specific device handles
948  * 		these commands.
949  */
950 static uint64_t l2arc_trim_ahead = 0;
951 
952 /*
953  * Performance tuning of L2ARC persistence:
954  *
955  * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding
956  * 		an L2ARC device (either at pool import or later) will attempt
957  * 		to rebuild L2ARC buffer contents.
958  * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls
959  * 		whether log blocks are written to the L2ARC device. If the L2ARC
960  * 		device is less than 1GB, the amount of data l2arc_evict()
961  * 		evicts is significant compared to the amount of restored L2ARC
962  * 		data. In this case do not write log blocks in L2ARC in order
963  * 		not to waste space.
964  */
965 static int l2arc_rebuild_enabled = B_TRUE;
966 static uint64_t l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024;
967 
968 /* L2ARC persistence rebuild control routines. */
969 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen);
970 static __attribute__((noreturn)) void l2arc_dev_rebuild_thread(void *arg);
971 static int l2arc_rebuild(l2arc_dev_t *dev);
972 
973 /* L2ARC persistence read I/O routines. */
974 static int l2arc_dev_hdr_read(l2arc_dev_t *dev);
975 static int l2arc_log_blk_read(l2arc_dev_t *dev,
976     const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp,
977     l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
978     zio_t *this_io, zio_t **next_io);
979 static zio_t *l2arc_log_blk_fetch(vdev_t *vd,
980     const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb);
981 static void l2arc_log_blk_fetch_abort(zio_t *zio);
982 
983 /* L2ARC persistence block restoration routines. */
984 static void l2arc_log_blk_restore(l2arc_dev_t *dev,
985     const l2arc_log_blk_phys_t *lb, uint64_t lb_asize);
986 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le,
987     l2arc_dev_t *dev);
988 
989 /* L2ARC persistence write I/O routines. */
990 static uint64_t l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio,
991     l2arc_write_callback_t *cb);
992 
993 /* L2ARC persistence auxiliary routines. */
994 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev,
995     const l2arc_log_blkptr_t *lbp);
996 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev,
997     const arc_buf_hdr_t *ab);
998 boolean_t l2arc_range_check_overlap(uint64_t bottom,
999     uint64_t top, uint64_t check);
1000 static void l2arc_blk_fetch_done(zio_t *zio);
1001 static inline uint64_t
1002     l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev);
1003 
1004 /*
1005  * We use Cityhash for this. It's fast, and has good hash properties without
1006  * requiring any large static buffers.
1007  */
1008 static uint64_t
1009 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1010 {
1011 	return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
1012 }
1013 
1014 #define	HDR_EMPTY(hdr)						\
1015 	((hdr)->b_dva.dva_word[0] == 0 &&			\
1016 	(hdr)->b_dva.dva_word[1] == 0)
1017 
1018 #define	HDR_EMPTY_OR_LOCKED(hdr)				\
1019 	(HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr)))
1020 
1021 #define	HDR_EQUAL(spa, dva, birth, hdr)				\
1022 	((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1023 	((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1024 	((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1025 
1026 static void
1027 buf_discard_identity(arc_buf_hdr_t *hdr)
1028 {
1029 	hdr->b_dva.dva_word[0] = 0;
1030 	hdr->b_dva.dva_word[1] = 0;
1031 	hdr->b_birth = 0;
1032 }
1033 
1034 static arc_buf_hdr_t *
1035 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1036 {
1037 	const dva_t *dva = BP_IDENTITY(bp);
1038 	uint64_t birth = BP_GET_BIRTH(bp);
1039 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1040 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1041 	arc_buf_hdr_t *hdr;
1042 
1043 	mutex_enter(hash_lock);
1044 	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1045 	    hdr = hdr->b_hash_next) {
1046 		if (HDR_EQUAL(spa, dva, birth, hdr)) {
1047 			*lockp = hash_lock;
1048 			return (hdr);
1049 		}
1050 	}
1051 	mutex_exit(hash_lock);
1052 	*lockp = NULL;
1053 	return (NULL);
1054 }
1055 
1056 /*
1057  * Insert an entry into the hash table.  If there is already an element
1058  * equal to elem in the hash table, then the already existing element
1059  * will be returned and the new element will not be inserted.
1060  * Otherwise returns NULL.
1061  * If lockp == NULL, the caller is assumed to already hold the hash lock.
1062  */
1063 static arc_buf_hdr_t *
1064 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1065 {
1066 	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1067 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1068 	arc_buf_hdr_t *fhdr;
1069 	uint32_t i;
1070 
1071 	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1072 	ASSERT(hdr->b_birth != 0);
1073 	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1074 
1075 	if (lockp != NULL) {
1076 		*lockp = hash_lock;
1077 		mutex_enter(hash_lock);
1078 	} else {
1079 		ASSERT(MUTEX_HELD(hash_lock));
1080 	}
1081 
1082 	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1083 	    fhdr = fhdr->b_hash_next, i++) {
1084 		if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1085 			return (fhdr);
1086 	}
1087 
1088 	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1089 	buf_hash_table.ht_table[idx] = hdr;
1090 	arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1091 
1092 	/* collect some hash table performance data */
1093 	if (i > 0) {
1094 		ARCSTAT_BUMP(arcstat_hash_collisions);
1095 		if (i == 1)
1096 			ARCSTAT_BUMP(arcstat_hash_chains);
1097 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1098 	}
1099 	ARCSTAT_BUMP(arcstat_hash_elements);
1100 
1101 	return (NULL);
1102 }
1103 
1104 static void
1105 buf_hash_remove(arc_buf_hdr_t *hdr)
1106 {
1107 	arc_buf_hdr_t *fhdr, **hdrp;
1108 	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1109 
1110 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1111 	ASSERT(HDR_IN_HASH_TABLE(hdr));
1112 
1113 	hdrp = &buf_hash_table.ht_table[idx];
1114 	while ((fhdr = *hdrp) != hdr) {
1115 		ASSERT3P(fhdr, !=, NULL);
1116 		hdrp = &fhdr->b_hash_next;
1117 	}
1118 	*hdrp = hdr->b_hash_next;
1119 	hdr->b_hash_next = NULL;
1120 	arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1121 
1122 	/* collect some hash table performance data */
1123 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1124 	if (buf_hash_table.ht_table[idx] &&
1125 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1126 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1127 }
1128 
1129 /*
1130  * Global data structures and functions for the buf kmem cache.
1131  */
1132 
1133 static kmem_cache_t *hdr_full_cache;
1134 static kmem_cache_t *hdr_l2only_cache;
1135 static kmem_cache_t *buf_cache;
1136 
1137 static void
1138 buf_fini(void)
1139 {
1140 #if defined(_KERNEL)
1141 	/*
1142 	 * Large allocations which do not require contiguous pages
1143 	 * should be using vmem_free() in the linux kernel\
1144 	 */
1145 	vmem_free(buf_hash_table.ht_table,
1146 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1147 #else
1148 	kmem_free(buf_hash_table.ht_table,
1149 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1150 #endif
1151 	for (int i = 0; i < BUF_LOCKS; i++)
1152 		mutex_destroy(BUF_HASH_LOCK(i));
1153 	kmem_cache_destroy(hdr_full_cache);
1154 	kmem_cache_destroy(hdr_l2only_cache);
1155 	kmem_cache_destroy(buf_cache);
1156 }
1157 
1158 /*
1159  * Constructor callback - called when the cache is empty
1160  * and a new buf is requested.
1161  */
1162 static int
1163 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1164 {
1165 	(void) unused, (void) kmflag;
1166 	arc_buf_hdr_t *hdr = vbuf;
1167 
1168 	memset(hdr, 0, HDR_FULL_SIZE);
1169 	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
1170 	zfs_refcount_create(&hdr->b_l1hdr.b_refcnt);
1171 #ifdef ZFS_DEBUG
1172 	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1173 #endif
1174 	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1175 	list_link_init(&hdr->b_l2hdr.b_l2node);
1176 	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1177 
1178 	return (0);
1179 }
1180 
1181 static int
1182 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1183 {
1184 	(void) unused, (void) kmflag;
1185 	arc_buf_hdr_t *hdr = vbuf;
1186 
1187 	memset(hdr, 0, HDR_L2ONLY_SIZE);
1188 	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1189 
1190 	return (0);
1191 }
1192 
1193 static int
1194 buf_cons(void *vbuf, void *unused, int kmflag)
1195 {
1196 	(void) unused, (void) kmflag;
1197 	arc_buf_t *buf = vbuf;
1198 
1199 	memset(buf, 0, sizeof (arc_buf_t));
1200 	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1201 
1202 	return (0);
1203 }
1204 
1205 /*
1206  * Destructor callback - called when a cached buf is
1207  * no longer required.
1208  */
1209 static void
1210 hdr_full_dest(void *vbuf, void *unused)
1211 {
1212 	(void) unused;
1213 	arc_buf_hdr_t *hdr = vbuf;
1214 
1215 	ASSERT(HDR_EMPTY(hdr));
1216 	zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1217 #ifdef ZFS_DEBUG
1218 	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1219 #endif
1220 	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1221 	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1222 }
1223 
1224 static void
1225 hdr_l2only_dest(void *vbuf, void *unused)
1226 {
1227 	(void) unused;
1228 	arc_buf_hdr_t *hdr = vbuf;
1229 
1230 	ASSERT(HDR_EMPTY(hdr));
1231 	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1232 }
1233 
1234 static void
1235 buf_dest(void *vbuf, void *unused)
1236 {
1237 	(void) unused;
1238 	(void) vbuf;
1239 
1240 	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1241 }
1242 
1243 static void
1244 buf_init(void)
1245 {
1246 	uint64_t *ct = NULL;
1247 	uint64_t hsize = 1ULL << 12;
1248 	int i, j;
1249 
1250 	/*
1251 	 * The hash table is big enough to fill all of physical memory
1252 	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1253 	 * By default, the table will take up
1254 	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1255 	 */
1256 	while (hsize * zfs_arc_average_blocksize < arc_all_memory())
1257 		hsize <<= 1;
1258 retry:
1259 	buf_hash_table.ht_mask = hsize - 1;
1260 #if defined(_KERNEL)
1261 	/*
1262 	 * Large allocations which do not require contiguous pages
1263 	 * should be using vmem_alloc() in the linux kernel
1264 	 */
1265 	buf_hash_table.ht_table =
1266 	    vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1267 #else
1268 	buf_hash_table.ht_table =
1269 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1270 #endif
1271 	if (buf_hash_table.ht_table == NULL) {
1272 		ASSERT(hsize > (1ULL << 8));
1273 		hsize >>= 1;
1274 		goto retry;
1275 	}
1276 
1277 	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1278 	    0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, KMC_RECLAIMABLE);
1279 	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1280 	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL,
1281 	    NULL, NULL, 0);
1282 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1283 	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1284 
1285 	for (i = 0; i < 256; i++)
1286 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1287 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1288 
1289 	for (i = 0; i < BUF_LOCKS; i++)
1290 		mutex_init(BUF_HASH_LOCK(i), NULL, MUTEX_DEFAULT, NULL);
1291 }
1292 
1293 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
1294 
1295 /*
1296  * This is the size that the buf occupies in memory. If the buf is compressed,
1297  * it will correspond to the compressed size. You should use this method of
1298  * getting the buf size unless you explicitly need the logical size.
1299  */
1300 uint64_t
1301 arc_buf_size(arc_buf_t *buf)
1302 {
1303 	return (ARC_BUF_COMPRESSED(buf) ?
1304 	    HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1305 }
1306 
1307 uint64_t
1308 arc_buf_lsize(arc_buf_t *buf)
1309 {
1310 	return (HDR_GET_LSIZE(buf->b_hdr));
1311 }
1312 
1313 /*
1314  * This function will return B_TRUE if the buffer is encrypted in memory.
1315  * This buffer can be decrypted by calling arc_untransform().
1316  */
1317 boolean_t
1318 arc_is_encrypted(arc_buf_t *buf)
1319 {
1320 	return (ARC_BUF_ENCRYPTED(buf) != 0);
1321 }
1322 
1323 /*
1324  * Returns B_TRUE if the buffer represents data that has not had its MAC
1325  * verified yet.
1326  */
1327 boolean_t
1328 arc_is_unauthenticated(arc_buf_t *buf)
1329 {
1330 	return (HDR_NOAUTH(buf->b_hdr) != 0);
1331 }
1332 
1333 void
1334 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt,
1335     uint8_t *iv, uint8_t *mac)
1336 {
1337 	arc_buf_hdr_t *hdr = buf->b_hdr;
1338 
1339 	ASSERT(HDR_PROTECTED(hdr));
1340 
1341 	memcpy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
1342 	memcpy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
1343 	memcpy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
1344 	*byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
1345 	    ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
1346 }
1347 
1348 /*
1349  * Indicates how this buffer is compressed in memory. If it is not compressed
1350  * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1351  * arc_untransform() as long as it is also unencrypted.
1352  */
1353 enum zio_compress
1354 arc_get_compression(arc_buf_t *buf)
1355 {
1356 	return (ARC_BUF_COMPRESSED(buf) ?
1357 	    HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1358 }
1359 
1360 /*
1361  * Return the compression algorithm used to store this data in the ARC. If ARC
1362  * compression is enabled or this is an encrypted block, this will be the same
1363  * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1364  */
1365 static inline enum zio_compress
1366 arc_hdr_get_compress(arc_buf_hdr_t *hdr)
1367 {
1368 	return (HDR_COMPRESSION_ENABLED(hdr) ?
1369 	    HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF);
1370 }
1371 
1372 uint8_t
1373 arc_get_complevel(arc_buf_t *buf)
1374 {
1375 	return (buf->b_hdr->b_complevel);
1376 }
1377 
1378 static inline boolean_t
1379 arc_buf_is_shared(arc_buf_t *buf)
1380 {
1381 	boolean_t shared = (buf->b_data != NULL &&
1382 	    buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1383 	    abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1384 	    buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1385 	IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1386 	EQUIV(shared, ARC_BUF_SHARED(buf));
1387 	IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1388 
1389 	/*
1390 	 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1391 	 * already being shared" requirement prevents us from doing that.
1392 	 */
1393 
1394 	return (shared);
1395 }
1396 
1397 /*
1398  * Free the checksum associated with this header. If there is no checksum, this
1399  * is a no-op.
1400  */
1401 static inline void
1402 arc_cksum_free(arc_buf_hdr_t *hdr)
1403 {
1404 #ifdef ZFS_DEBUG
1405 	ASSERT(HDR_HAS_L1HDR(hdr));
1406 
1407 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1408 	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1409 		kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1410 		hdr->b_l1hdr.b_freeze_cksum = NULL;
1411 	}
1412 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1413 #endif
1414 }
1415 
1416 /*
1417  * Return true iff at least one of the bufs on hdr is not compressed.
1418  * Encrypted buffers count as compressed.
1419  */
1420 static boolean_t
1421 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1422 {
1423 	ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr));
1424 
1425 	for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1426 		if (!ARC_BUF_COMPRESSED(b)) {
1427 			return (B_TRUE);
1428 		}
1429 	}
1430 	return (B_FALSE);
1431 }
1432 
1433 
1434 /*
1435  * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1436  * matches the checksum that is stored in the hdr. If there is no checksum,
1437  * or if the buf is compressed, this is a no-op.
1438  */
1439 static void
1440 arc_cksum_verify(arc_buf_t *buf)
1441 {
1442 #ifdef ZFS_DEBUG
1443 	arc_buf_hdr_t *hdr = buf->b_hdr;
1444 	zio_cksum_t zc;
1445 
1446 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1447 		return;
1448 
1449 	if (ARC_BUF_COMPRESSED(buf))
1450 		return;
1451 
1452 	ASSERT(HDR_HAS_L1HDR(hdr));
1453 
1454 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1455 
1456 	if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1457 		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1458 		return;
1459 	}
1460 
1461 	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1462 	if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1463 		panic("buffer modified while frozen!");
1464 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1465 #endif
1466 }
1467 
1468 /*
1469  * This function makes the assumption that data stored in the L2ARC
1470  * will be transformed exactly as it is in the main pool. Because of
1471  * this we can verify the checksum against the reading process's bp.
1472  */
1473 static boolean_t
1474 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1475 {
1476 	ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1477 	VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1478 
1479 	/*
1480 	 * Block pointers always store the checksum for the logical data.
1481 	 * If the block pointer has the gang bit set, then the checksum
1482 	 * it represents is for the reconstituted data and not for an
1483 	 * individual gang member. The zio pipeline, however, must be able to
1484 	 * determine the checksum of each of the gang constituents so it
1485 	 * treats the checksum comparison differently than what we need
1486 	 * for l2arc blocks. This prevents us from using the
1487 	 * zio_checksum_error() interface directly. Instead we must call the
1488 	 * zio_checksum_error_impl() so that we can ensure the checksum is
1489 	 * generated using the correct checksum algorithm and accounts for the
1490 	 * logical I/O size and not just a gang fragment.
1491 	 */
1492 	return (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1493 	    BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1494 	    zio->io_offset, NULL) == 0);
1495 }
1496 
1497 /*
1498  * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1499  * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1500  * isn't modified later on. If buf is compressed or there is already a checksum
1501  * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1502  */
1503 static void
1504 arc_cksum_compute(arc_buf_t *buf)
1505 {
1506 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1507 		return;
1508 
1509 #ifdef ZFS_DEBUG
1510 	arc_buf_hdr_t *hdr = buf->b_hdr;
1511 	ASSERT(HDR_HAS_L1HDR(hdr));
1512 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1513 	if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) {
1514 		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1515 		return;
1516 	}
1517 
1518 	ASSERT(!ARC_BUF_ENCRYPTED(buf));
1519 	ASSERT(!ARC_BUF_COMPRESSED(buf));
1520 	hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1521 	    KM_SLEEP);
1522 	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1523 	    hdr->b_l1hdr.b_freeze_cksum);
1524 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1525 #endif
1526 	arc_buf_watch(buf);
1527 }
1528 
1529 #ifndef _KERNEL
1530 void
1531 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1532 {
1533 	(void) sig, (void) unused;
1534 	panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr);
1535 }
1536 #endif
1537 
1538 static void
1539 arc_buf_unwatch(arc_buf_t *buf)
1540 {
1541 #ifndef _KERNEL
1542 	if (arc_watch) {
1543 		ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1544 		    PROT_READ | PROT_WRITE));
1545 	}
1546 #else
1547 	(void) buf;
1548 #endif
1549 }
1550 
1551 static void
1552 arc_buf_watch(arc_buf_t *buf)
1553 {
1554 #ifndef _KERNEL
1555 	if (arc_watch)
1556 		ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1557 		    PROT_READ));
1558 #else
1559 	(void) buf;
1560 #endif
1561 }
1562 
1563 static arc_buf_contents_t
1564 arc_buf_type(arc_buf_hdr_t *hdr)
1565 {
1566 	arc_buf_contents_t type;
1567 	if (HDR_ISTYPE_METADATA(hdr)) {
1568 		type = ARC_BUFC_METADATA;
1569 	} else {
1570 		type = ARC_BUFC_DATA;
1571 	}
1572 	VERIFY3U(hdr->b_type, ==, type);
1573 	return (type);
1574 }
1575 
1576 boolean_t
1577 arc_is_metadata(arc_buf_t *buf)
1578 {
1579 	return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1580 }
1581 
1582 static uint32_t
1583 arc_bufc_to_flags(arc_buf_contents_t type)
1584 {
1585 	switch (type) {
1586 	case ARC_BUFC_DATA:
1587 		/* metadata field is 0 if buffer contains normal data */
1588 		return (0);
1589 	case ARC_BUFC_METADATA:
1590 		return (ARC_FLAG_BUFC_METADATA);
1591 	default:
1592 		break;
1593 	}
1594 	panic("undefined ARC buffer type!");
1595 	return ((uint32_t)-1);
1596 }
1597 
1598 void
1599 arc_buf_thaw(arc_buf_t *buf)
1600 {
1601 	arc_buf_hdr_t *hdr = buf->b_hdr;
1602 
1603 	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1604 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1605 
1606 	arc_cksum_verify(buf);
1607 
1608 	/*
1609 	 * Compressed buffers do not manipulate the b_freeze_cksum.
1610 	 */
1611 	if (ARC_BUF_COMPRESSED(buf))
1612 		return;
1613 
1614 	ASSERT(HDR_HAS_L1HDR(hdr));
1615 	arc_cksum_free(hdr);
1616 	arc_buf_unwatch(buf);
1617 }
1618 
1619 void
1620 arc_buf_freeze(arc_buf_t *buf)
1621 {
1622 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1623 		return;
1624 
1625 	if (ARC_BUF_COMPRESSED(buf))
1626 		return;
1627 
1628 	ASSERT(HDR_HAS_L1HDR(buf->b_hdr));
1629 	arc_cksum_compute(buf);
1630 }
1631 
1632 /*
1633  * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1634  * the following functions should be used to ensure that the flags are
1635  * updated in a thread-safe way. When manipulating the flags either
1636  * the hash_lock must be held or the hdr must be undiscoverable. This
1637  * ensures that we're not racing with any other threads when updating
1638  * the flags.
1639  */
1640 static inline void
1641 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1642 {
1643 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1644 	hdr->b_flags |= flags;
1645 }
1646 
1647 static inline void
1648 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1649 {
1650 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1651 	hdr->b_flags &= ~flags;
1652 }
1653 
1654 /*
1655  * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1656  * done in a special way since we have to clear and set bits
1657  * at the same time. Consumers that wish to set the compression bits
1658  * must use this function to ensure that the flags are updated in
1659  * thread-safe manner.
1660  */
1661 static void
1662 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1663 {
1664 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1665 
1666 	/*
1667 	 * Holes and embedded blocks will always have a psize = 0 so
1668 	 * we ignore the compression of the blkptr and set the
1669 	 * want to uncompress them. Mark them as uncompressed.
1670 	 */
1671 	if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1672 		arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1673 		ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1674 	} else {
1675 		arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1676 		ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1677 	}
1678 
1679 	HDR_SET_COMPRESS(hdr, cmp);
1680 	ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1681 }
1682 
1683 /*
1684  * Looks for another buf on the same hdr which has the data decompressed, copies
1685  * from it, and returns true. If no such buf exists, returns false.
1686  */
1687 static boolean_t
1688 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1689 {
1690 	arc_buf_hdr_t *hdr = buf->b_hdr;
1691 	boolean_t copied = B_FALSE;
1692 
1693 	ASSERT(HDR_HAS_L1HDR(hdr));
1694 	ASSERT3P(buf->b_data, !=, NULL);
1695 	ASSERT(!ARC_BUF_COMPRESSED(buf));
1696 
1697 	for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1698 	    from = from->b_next) {
1699 		/* can't use our own data buffer */
1700 		if (from == buf) {
1701 			continue;
1702 		}
1703 
1704 		if (!ARC_BUF_COMPRESSED(from)) {
1705 			memcpy(buf->b_data, from->b_data, arc_buf_size(buf));
1706 			copied = B_TRUE;
1707 			break;
1708 		}
1709 	}
1710 
1711 #ifdef ZFS_DEBUG
1712 	/*
1713 	 * There were no decompressed bufs, so there should not be a
1714 	 * checksum on the hdr either.
1715 	 */
1716 	if (zfs_flags & ZFS_DEBUG_MODIFY)
1717 		EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1718 #endif
1719 
1720 	return (copied);
1721 }
1722 
1723 /*
1724  * Allocates an ARC buf header that's in an evicted & L2-cached state.
1725  * This is used during l2arc reconstruction to make empty ARC buffers
1726  * which circumvent the regular disk->arc->l2arc path and instead come
1727  * into being in the reverse order, i.e. l2arc->arc.
1728  */
1729 static arc_buf_hdr_t *
1730 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev,
1731     dva_t dva, uint64_t daddr, int32_t psize, uint64_t asize, uint64_t birth,
1732     enum zio_compress compress, uint8_t complevel, boolean_t protected,
1733     boolean_t prefetch, arc_state_type_t arcs_state)
1734 {
1735 	arc_buf_hdr_t	*hdr;
1736 
1737 	ASSERT(size != 0);
1738 	ASSERT(dev->l2ad_vdev != NULL);
1739 
1740 	hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP);
1741 	hdr->b_birth = birth;
1742 	hdr->b_type = type;
1743 	hdr->b_flags = 0;
1744 	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR);
1745 	HDR_SET_LSIZE(hdr, size);
1746 	HDR_SET_PSIZE(hdr, psize);
1747 	HDR_SET_L2SIZE(hdr, asize);
1748 	arc_hdr_set_compress(hdr, compress);
1749 	hdr->b_complevel = complevel;
1750 	if (protected)
1751 		arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
1752 	if (prefetch)
1753 		arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
1754 	hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa);
1755 
1756 	hdr->b_dva = dva;
1757 
1758 	hdr->b_l2hdr.b_dev = dev;
1759 	hdr->b_l2hdr.b_daddr = daddr;
1760 	hdr->b_l2hdr.b_arcs_state = arcs_state;
1761 
1762 	return (hdr);
1763 }
1764 
1765 /*
1766  * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1767  */
1768 static uint64_t
1769 arc_hdr_size(arc_buf_hdr_t *hdr)
1770 {
1771 	uint64_t size;
1772 
1773 	if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
1774 	    HDR_GET_PSIZE(hdr) > 0) {
1775 		size = HDR_GET_PSIZE(hdr);
1776 	} else {
1777 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1778 		size = HDR_GET_LSIZE(hdr);
1779 	}
1780 	return (size);
1781 }
1782 
1783 static int
1784 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
1785 {
1786 	int ret;
1787 	uint64_t csize;
1788 	uint64_t lsize = HDR_GET_LSIZE(hdr);
1789 	uint64_t psize = HDR_GET_PSIZE(hdr);
1790 	abd_t *abd = hdr->b_l1hdr.b_pabd;
1791 	boolean_t free_abd = B_FALSE;
1792 
1793 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1794 	ASSERT(HDR_AUTHENTICATED(hdr));
1795 	ASSERT3P(abd, !=, NULL);
1796 
1797 	/*
1798 	 * The MAC is calculated on the compressed data that is stored on disk.
1799 	 * However, if compressed arc is disabled we will only have the
1800 	 * decompressed data available to us now. Compress it into a temporary
1801 	 * abd so we can verify the MAC. The performance overhead of this will
1802 	 * be relatively low, since most objects in an encrypted objset will
1803 	 * be encrypted (instead of authenticated) anyway.
1804 	 */
1805 	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1806 	    !HDR_COMPRESSION_ENABLED(hdr)) {
1807 		abd = NULL;
1808 		csize = zio_compress_data(HDR_GET_COMPRESS(hdr),
1809 		    hdr->b_l1hdr.b_pabd, &abd, lsize, MIN(lsize, psize),
1810 		    hdr->b_complevel);
1811 		if (csize >= lsize || csize > psize) {
1812 			ret = SET_ERROR(EIO);
1813 			return (ret);
1814 		}
1815 		ASSERT3P(abd, !=, NULL);
1816 		abd_zero_off(abd, csize, psize - csize);
1817 		free_abd = B_TRUE;
1818 	}
1819 
1820 	/*
1821 	 * Authentication is best effort. We authenticate whenever the key is
1822 	 * available. If we succeed we clear ARC_FLAG_NOAUTH.
1823 	 */
1824 	if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) {
1825 		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1826 		ASSERT3U(lsize, ==, psize);
1827 		ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd,
1828 		    psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1829 	} else {
1830 		ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize,
1831 		    hdr->b_crypt_hdr.b_mac);
1832 	}
1833 
1834 	if (ret == 0)
1835 		arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH);
1836 	else if (ret == ENOENT)
1837 		ret = 0;
1838 
1839 	if (free_abd)
1840 		abd_free(abd);
1841 
1842 	return (ret);
1843 }
1844 
1845 /*
1846  * This function will take a header that only has raw encrypted data in
1847  * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1848  * b_l1hdr.b_pabd. If designated in the header flags, this function will
1849  * also decompress the data.
1850  */
1851 static int
1852 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb)
1853 {
1854 	int ret;
1855 	abd_t *cabd = NULL;
1856 	boolean_t no_crypt = B_FALSE;
1857 	boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1858 
1859 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1860 	ASSERT(HDR_ENCRYPTED(hdr));
1861 
1862 	arc_hdr_alloc_abd(hdr, 0);
1863 
1864 	ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot,
1865 	    B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv,
1866 	    hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd,
1867 	    hdr->b_crypt_hdr.b_rabd, &no_crypt);
1868 	if (ret != 0)
1869 		goto error;
1870 
1871 	if (no_crypt) {
1872 		abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd,
1873 		    HDR_GET_PSIZE(hdr));
1874 	}
1875 
1876 	/*
1877 	 * If this header has disabled arc compression but the b_pabd is
1878 	 * compressed after decrypting it, we need to decompress the newly
1879 	 * decrypted data.
1880 	 */
1881 	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1882 	    !HDR_COMPRESSION_ENABLED(hdr)) {
1883 		/*
1884 		 * We want to make sure that we are correctly honoring the
1885 		 * zfs_abd_scatter_enabled setting, so we allocate an abd here
1886 		 * and then loan a buffer from it, rather than allocating a
1887 		 * linear buffer and wrapping it in an abd later.
1888 		 */
1889 		cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 0);
1890 
1891 		ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1892 		    hdr->b_l1hdr.b_pabd, cabd, HDR_GET_PSIZE(hdr),
1893 		    HDR_GET_LSIZE(hdr), &hdr->b_complevel);
1894 		if (ret != 0) {
1895 			goto error;
1896 		}
1897 
1898 		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
1899 		    arc_hdr_size(hdr), hdr);
1900 		hdr->b_l1hdr.b_pabd = cabd;
1901 	}
1902 
1903 	return (0);
1904 
1905 error:
1906 	arc_hdr_free_abd(hdr, B_FALSE);
1907 	if (cabd != NULL)
1908 		arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr);
1909 
1910 	return (ret);
1911 }
1912 
1913 /*
1914  * This function is called during arc_buf_fill() to prepare the header's
1915  * abd plaintext pointer for use. This involves authenticated protected
1916  * data and decrypting encrypted data into the plaintext abd.
1917  */
1918 static int
1919 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa,
1920     const zbookmark_phys_t *zb, boolean_t noauth)
1921 {
1922 	int ret;
1923 
1924 	ASSERT(HDR_PROTECTED(hdr));
1925 
1926 	if (hash_lock != NULL)
1927 		mutex_enter(hash_lock);
1928 
1929 	if (HDR_NOAUTH(hdr) && !noauth) {
1930 		/*
1931 		 * The caller requested authenticated data but our data has
1932 		 * not been authenticated yet. Verify the MAC now if we can.
1933 		 */
1934 		ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset);
1935 		if (ret != 0)
1936 			goto error;
1937 	} else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) {
1938 		/*
1939 		 * If we only have the encrypted version of the data, but the
1940 		 * unencrypted version was requested we take this opportunity
1941 		 * to store the decrypted version in the header for future use.
1942 		 */
1943 		ret = arc_hdr_decrypt(hdr, spa, zb);
1944 		if (ret != 0)
1945 			goto error;
1946 	}
1947 
1948 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1949 
1950 	if (hash_lock != NULL)
1951 		mutex_exit(hash_lock);
1952 
1953 	return (0);
1954 
1955 error:
1956 	if (hash_lock != NULL)
1957 		mutex_exit(hash_lock);
1958 
1959 	return (ret);
1960 }
1961 
1962 /*
1963  * This function is used by the dbuf code to decrypt bonus buffers in place.
1964  * The dbuf code itself doesn't have any locking for decrypting a shared dnode
1965  * block, so we use the hash lock here to protect against concurrent calls to
1966  * arc_buf_fill().
1967  */
1968 static void
1969 arc_buf_untransform_in_place(arc_buf_t *buf)
1970 {
1971 	arc_buf_hdr_t *hdr = buf->b_hdr;
1972 
1973 	ASSERT(HDR_ENCRYPTED(hdr));
1974 	ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
1975 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1976 	ASSERT3PF(hdr->b_l1hdr.b_pabd, !=, NULL, "hdr %px buf %px", hdr, buf);
1977 
1978 	zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data,
1979 	    arc_buf_size(buf));
1980 	buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
1981 	buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1982 }
1983 
1984 /*
1985  * Given a buf that has a data buffer attached to it, this function will
1986  * efficiently fill the buf with data of the specified compression setting from
1987  * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1988  * are already sharing a data buf, no copy is performed.
1989  *
1990  * If the buf is marked as compressed but uncompressed data was requested, this
1991  * will allocate a new data buffer for the buf, remove that flag, and fill the
1992  * buf with uncompressed data. You can't request a compressed buf on a hdr with
1993  * uncompressed data, and (since we haven't added support for it yet) if you
1994  * want compressed data your buf must already be marked as compressed and have
1995  * the correct-sized data buffer.
1996  */
1997 static int
1998 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
1999     arc_fill_flags_t flags)
2000 {
2001 	int error = 0;
2002 	arc_buf_hdr_t *hdr = buf->b_hdr;
2003 	boolean_t hdr_compressed =
2004 	    (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
2005 	boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0;
2006 	boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0;
2007 	dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
2008 	kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr);
2009 
2010 	ASSERT3P(buf->b_data, !=, NULL);
2011 	IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf));
2012 	IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
2013 	IMPLY(encrypted, HDR_ENCRYPTED(hdr));
2014 	IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf));
2015 	IMPLY(encrypted, ARC_BUF_COMPRESSED(buf));
2016 	IMPLY(encrypted, !arc_buf_is_shared(buf));
2017 
2018 	/*
2019 	 * If the caller wanted encrypted data we just need to copy it from
2020 	 * b_rabd and potentially byteswap it. We won't be able to do any
2021 	 * further transforms on it.
2022 	 */
2023 	if (encrypted) {
2024 		ASSERT(HDR_HAS_RABD(hdr));
2025 		abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd,
2026 		    HDR_GET_PSIZE(hdr));
2027 		goto byteswap;
2028 	}
2029 
2030 	/*
2031 	 * Adjust encrypted and authenticated headers to accommodate
2032 	 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are
2033 	 * allowed to fail decryption due to keys not being loaded
2034 	 * without being marked as an IO error.
2035 	 */
2036 	if (HDR_PROTECTED(hdr)) {
2037 		error = arc_fill_hdr_crypt(hdr, hash_lock, spa,
2038 		    zb, !!(flags & ARC_FILL_NOAUTH));
2039 		if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) {
2040 			return (error);
2041 		} else if (error != 0) {
2042 			if (hash_lock != NULL)
2043 				mutex_enter(hash_lock);
2044 			arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2045 			if (hash_lock != NULL)
2046 				mutex_exit(hash_lock);
2047 			return (error);
2048 		}
2049 	}
2050 
2051 	/*
2052 	 * There is a special case here for dnode blocks which are
2053 	 * decrypting their bonus buffers. These blocks may request to
2054 	 * be decrypted in-place. This is necessary because there may
2055 	 * be many dnodes pointing into this buffer and there is
2056 	 * currently no method to synchronize replacing the backing
2057 	 * b_data buffer and updating all of the pointers. Here we use
2058 	 * the hash lock to ensure there are no races. If the need
2059 	 * arises for other types to be decrypted in-place, they must
2060 	 * add handling here as well.
2061 	 */
2062 	if ((flags & ARC_FILL_IN_PLACE) != 0) {
2063 		ASSERT(!hdr_compressed);
2064 		ASSERT(!compressed);
2065 		ASSERT(!encrypted);
2066 
2067 		if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) {
2068 			ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
2069 
2070 			if (hash_lock != NULL)
2071 				mutex_enter(hash_lock);
2072 			arc_buf_untransform_in_place(buf);
2073 			if (hash_lock != NULL)
2074 				mutex_exit(hash_lock);
2075 
2076 			/* Compute the hdr's checksum if necessary */
2077 			arc_cksum_compute(buf);
2078 		}
2079 
2080 		return (0);
2081 	}
2082 
2083 	if (hdr_compressed == compressed) {
2084 		if (ARC_BUF_SHARED(buf)) {
2085 			ASSERT(arc_buf_is_shared(buf));
2086 		} else {
2087 			abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
2088 			    arc_buf_size(buf));
2089 		}
2090 	} else {
2091 		ASSERT(hdr_compressed);
2092 		ASSERT(!compressed);
2093 
2094 		/*
2095 		 * If the buf is sharing its data with the hdr, unlink it and
2096 		 * allocate a new data buffer for the buf.
2097 		 */
2098 		if (ARC_BUF_SHARED(buf)) {
2099 			ASSERTF(ARC_BUF_COMPRESSED(buf),
2100 			"buf %p was uncompressed", buf);
2101 
2102 			/* We need to give the buf its own b_data */
2103 			buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2104 			buf->b_data =
2105 			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2106 			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2107 
2108 			/* Previously overhead was 0; just add new overhead */
2109 			ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2110 		} else if (ARC_BUF_COMPRESSED(buf)) {
2111 			ASSERT(!arc_buf_is_shared(buf));
2112 
2113 			/* We need to reallocate the buf's b_data */
2114 			arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
2115 			    buf);
2116 			buf->b_data =
2117 			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2118 
2119 			/* We increased the size of b_data; update overhead */
2120 			ARCSTAT_INCR(arcstat_overhead_size,
2121 			    HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2122 		}
2123 
2124 		/*
2125 		 * Regardless of the buf's previous compression settings, it
2126 		 * should not be compressed at the end of this function.
2127 		 */
2128 		buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2129 
2130 		/*
2131 		 * Try copying the data from another buf which already has a
2132 		 * decompressed version. If that's not possible, it's time to
2133 		 * bite the bullet and decompress the data from the hdr.
2134 		 */
2135 		if (arc_buf_try_copy_decompressed_data(buf)) {
2136 			/* Skip byteswapping and checksumming (already done) */
2137 			return (0);
2138 		} else {
2139 			abd_t dabd;
2140 			abd_get_from_buf_struct(&dabd, buf->b_data,
2141 			    HDR_GET_LSIZE(hdr));
2142 			error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2143 			    hdr->b_l1hdr.b_pabd, &dabd,
2144 			    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr),
2145 			    &hdr->b_complevel);
2146 			abd_free(&dabd);
2147 
2148 			/*
2149 			 * Absent hardware errors or software bugs, this should
2150 			 * be impossible, but log it anyway so we can debug it.
2151 			 */
2152 			if (error != 0) {
2153 				zfs_dbgmsg(
2154 				    "hdr %px, compress %d, psize %d, lsize %d",
2155 				    hdr, arc_hdr_get_compress(hdr),
2156 				    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2157 				if (hash_lock != NULL)
2158 					mutex_enter(hash_lock);
2159 				arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2160 				if (hash_lock != NULL)
2161 					mutex_exit(hash_lock);
2162 				return (SET_ERROR(EIO));
2163 			}
2164 		}
2165 	}
2166 
2167 byteswap:
2168 	/* Byteswap the buf's data if necessary */
2169 	if (bswap != DMU_BSWAP_NUMFUNCS) {
2170 		ASSERT(!HDR_SHARED_DATA(hdr));
2171 		ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2172 		dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2173 	}
2174 
2175 	/* Compute the hdr's checksum if necessary */
2176 	arc_cksum_compute(buf);
2177 
2178 	return (0);
2179 }
2180 
2181 /*
2182  * If this function is being called to decrypt an encrypted buffer or verify an
2183  * authenticated one, the key must be loaded and a mapping must be made
2184  * available in the keystore via spa_keystore_create_mapping() or one of its
2185  * callers.
2186  */
2187 int
2188 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2189     boolean_t in_place)
2190 {
2191 	int ret;
2192 	arc_fill_flags_t flags = 0;
2193 
2194 	if (in_place)
2195 		flags |= ARC_FILL_IN_PLACE;
2196 
2197 	ret = arc_buf_fill(buf, spa, zb, flags);
2198 	if (ret == ECKSUM) {
2199 		/*
2200 		 * Convert authentication and decryption errors to EIO
2201 		 * (and generate an ereport) before leaving the ARC.
2202 		 */
2203 		ret = SET_ERROR(EIO);
2204 		spa_log_error(spa, zb, buf->b_hdr->b_birth);
2205 		(void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
2206 		    spa, NULL, zb, NULL, 0);
2207 	}
2208 
2209 	return (ret);
2210 }
2211 
2212 /*
2213  * Increment the amount of evictable space in the arc_state_t's refcount.
2214  * We account for the space used by the hdr and the arc buf individually
2215  * so that we can add and remove them from the refcount individually.
2216  */
2217 static void
2218 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2219 {
2220 	arc_buf_contents_t type = arc_buf_type(hdr);
2221 
2222 	ASSERT(HDR_HAS_L1HDR(hdr));
2223 
2224 	if (GHOST_STATE(state)) {
2225 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2226 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2227 		ASSERT(!HDR_HAS_RABD(hdr));
2228 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2229 		    HDR_GET_LSIZE(hdr), hdr);
2230 		return;
2231 	}
2232 
2233 	if (hdr->b_l1hdr.b_pabd != NULL) {
2234 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2235 		    arc_hdr_size(hdr), hdr);
2236 	}
2237 	if (HDR_HAS_RABD(hdr)) {
2238 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2239 		    HDR_GET_PSIZE(hdr), hdr);
2240 	}
2241 
2242 	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2243 	    buf = buf->b_next) {
2244 		if (ARC_BUF_SHARED(buf))
2245 			continue;
2246 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2247 		    arc_buf_size(buf), buf);
2248 	}
2249 }
2250 
2251 /*
2252  * Decrement the amount of evictable space in the arc_state_t's refcount.
2253  * We account for the space used by the hdr and the arc buf individually
2254  * so that we can add and remove them from the refcount individually.
2255  */
2256 static void
2257 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2258 {
2259 	arc_buf_contents_t type = arc_buf_type(hdr);
2260 
2261 	ASSERT(HDR_HAS_L1HDR(hdr));
2262 
2263 	if (GHOST_STATE(state)) {
2264 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2265 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2266 		ASSERT(!HDR_HAS_RABD(hdr));
2267 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2268 		    HDR_GET_LSIZE(hdr), hdr);
2269 		return;
2270 	}
2271 
2272 	if (hdr->b_l1hdr.b_pabd != NULL) {
2273 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2274 		    arc_hdr_size(hdr), hdr);
2275 	}
2276 	if (HDR_HAS_RABD(hdr)) {
2277 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2278 		    HDR_GET_PSIZE(hdr), hdr);
2279 	}
2280 
2281 	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2282 	    buf = buf->b_next) {
2283 		if (ARC_BUF_SHARED(buf))
2284 			continue;
2285 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2286 		    arc_buf_size(buf), buf);
2287 	}
2288 }
2289 
2290 /*
2291  * Add a reference to this hdr indicating that someone is actively
2292  * referencing that memory. When the refcount transitions from 0 to 1,
2293  * we remove it from the respective arc_state_t list to indicate that
2294  * it is not evictable.
2295  */
2296 static void
2297 add_reference(arc_buf_hdr_t *hdr, const void *tag)
2298 {
2299 	arc_state_t *state = hdr->b_l1hdr.b_state;
2300 
2301 	ASSERT(HDR_HAS_L1HDR(hdr));
2302 	if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) {
2303 		ASSERT(state == arc_anon);
2304 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2305 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2306 	}
2307 
2308 	if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2309 	    state != arc_anon && state != arc_l2c_only) {
2310 		/* We don't use the L2-only state list. */
2311 		multilist_remove(&state->arcs_list[arc_buf_type(hdr)], hdr);
2312 		arc_evictable_space_decrement(hdr, state);
2313 	}
2314 }
2315 
2316 /*
2317  * Remove a reference from this hdr. When the reference transitions from
2318  * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2319  * list making it eligible for eviction.
2320  */
2321 static int
2322 remove_reference(arc_buf_hdr_t *hdr, const void *tag)
2323 {
2324 	int cnt;
2325 	arc_state_t *state = hdr->b_l1hdr.b_state;
2326 
2327 	ASSERT(HDR_HAS_L1HDR(hdr));
2328 	ASSERT(state == arc_anon || MUTEX_HELD(HDR_LOCK(hdr)));
2329 	ASSERT(!GHOST_STATE(state));	/* arc_l2c_only counts as a ghost. */
2330 
2331 	if ((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) != 0)
2332 		return (cnt);
2333 
2334 	if (state == arc_anon) {
2335 		arc_hdr_destroy(hdr);
2336 		return (0);
2337 	}
2338 	if (state == arc_uncached && !HDR_PREFETCH(hdr)) {
2339 		arc_change_state(arc_anon, hdr);
2340 		arc_hdr_destroy(hdr);
2341 		return (0);
2342 	}
2343 	multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr);
2344 	arc_evictable_space_increment(hdr, state);
2345 	return (0);
2346 }
2347 
2348 /*
2349  * Returns detailed information about a specific arc buffer.  When the
2350  * state_index argument is set the function will calculate the arc header
2351  * list position for its arc state.  Since this requires a linear traversal
2352  * callers are strongly encourage not to do this.  However, it can be helpful
2353  * for targeted analysis so the functionality is provided.
2354  */
2355 void
2356 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
2357 {
2358 	(void) state_index;
2359 	arc_buf_hdr_t *hdr = ab->b_hdr;
2360 	l1arc_buf_hdr_t *l1hdr = NULL;
2361 	l2arc_buf_hdr_t *l2hdr = NULL;
2362 	arc_state_t *state = NULL;
2363 
2364 	memset(abi, 0, sizeof (arc_buf_info_t));
2365 
2366 	if (hdr == NULL)
2367 		return;
2368 
2369 	abi->abi_flags = hdr->b_flags;
2370 
2371 	if (HDR_HAS_L1HDR(hdr)) {
2372 		l1hdr = &hdr->b_l1hdr;
2373 		state = l1hdr->b_state;
2374 	}
2375 	if (HDR_HAS_L2HDR(hdr))
2376 		l2hdr = &hdr->b_l2hdr;
2377 
2378 	if (l1hdr) {
2379 		abi->abi_bufcnt = 0;
2380 		for (arc_buf_t *buf = l1hdr->b_buf; buf; buf = buf->b_next)
2381 			abi->abi_bufcnt++;
2382 		abi->abi_access = l1hdr->b_arc_access;
2383 		abi->abi_mru_hits = l1hdr->b_mru_hits;
2384 		abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
2385 		abi->abi_mfu_hits = l1hdr->b_mfu_hits;
2386 		abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
2387 		abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt);
2388 	}
2389 
2390 	if (l2hdr) {
2391 		abi->abi_l2arc_dattr = l2hdr->b_daddr;
2392 		abi->abi_l2arc_hits = l2hdr->b_hits;
2393 	}
2394 
2395 	abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
2396 	abi->abi_state_contents = arc_buf_type(hdr);
2397 	abi->abi_size = arc_hdr_size(hdr);
2398 }
2399 
2400 /*
2401  * Move the supplied buffer to the indicated state. The hash lock
2402  * for the buffer must be held by the caller.
2403  */
2404 static void
2405 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr)
2406 {
2407 	arc_state_t *old_state;
2408 	int64_t refcnt;
2409 	boolean_t update_old, update_new;
2410 	arc_buf_contents_t type = arc_buf_type(hdr);
2411 
2412 	/*
2413 	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2414 	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
2415 	 * L1 hdr doesn't always exist when we change state to arc_anon before
2416 	 * destroying a header, in which case reallocating to add the L1 hdr is
2417 	 * pointless.
2418 	 */
2419 	if (HDR_HAS_L1HDR(hdr)) {
2420 		old_state = hdr->b_l1hdr.b_state;
2421 		refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt);
2422 		update_old = (hdr->b_l1hdr.b_buf != NULL ||
2423 		    hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
2424 
2425 		IMPLY(GHOST_STATE(old_state), hdr->b_l1hdr.b_buf == NULL);
2426 		IMPLY(GHOST_STATE(new_state), hdr->b_l1hdr.b_buf == NULL);
2427 		IMPLY(old_state == arc_anon, hdr->b_l1hdr.b_buf == NULL ||
2428 		    ARC_BUF_LAST(hdr->b_l1hdr.b_buf));
2429 	} else {
2430 		old_state = arc_l2c_only;
2431 		refcnt = 0;
2432 		update_old = B_FALSE;
2433 	}
2434 	update_new = update_old;
2435 	if (GHOST_STATE(old_state))
2436 		update_old = B_TRUE;
2437 	if (GHOST_STATE(new_state))
2438 		update_new = B_TRUE;
2439 
2440 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
2441 	ASSERT3P(new_state, !=, old_state);
2442 
2443 	/*
2444 	 * If this buffer is evictable, transfer it from the
2445 	 * old state list to the new state list.
2446 	 */
2447 	if (refcnt == 0) {
2448 		if (old_state != arc_anon && old_state != arc_l2c_only) {
2449 			ASSERT(HDR_HAS_L1HDR(hdr));
2450 			/* remove_reference() saves on insert. */
2451 			if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2452 				multilist_remove(&old_state->arcs_list[type],
2453 				    hdr);
2454 				arc_evictable_space_decrement(hdr, old_state);
2455 			}
2456 		}
2457 		if (new_state != arc_anon && new_state != arc_l2c_only) {
2458 			/*
2459 			 * An L1 header always exists here, since if we're
2460 			 * moving to some L1-cached state (i.e. not l2c_only or
2461 			 * anonymous), we realloc the header to add an L1hdr
2462 			 * beforehand.
2463 			 */
2464 			ASSERT(HDR_HAS_L1HDR(hdr));
2465 			multilist_insert(&new_state->arcs_list[type], hdr);
2466 			arc_evictable_space_increment(hdr, new_state);
2467 		}
2468 	}
2469 
2470 	ASSERT(!HDR_EMPTY(hdr));
2471 	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2472 		buf_hash_remove(hdr);
2473 
2474 	/* adjust state sizes (ignore arc_l2c_only) */
2475 
2476 	if (update_new && new_state != arc_l2c_only) {
2477 		ASSERT(HDR_HAS_L1HDR(hdr));
2478 		if (GHOST_STATE(new_state)) {
2479 
2480 			/*
2481 			 * When moving a header to a ghost state, we first
2482 			 * remove all arc buffers. Thus, we'll have no arc
2483 			 * buffer to use for the reference. As a result, we
2484 			 * use the arc header pointer for the reference.
2485 			 */
2486 			(void) zfs_refcount_add_many(
2487 			    &new_state->arcs_size[type],
2488 			    HDR_GET_LSIZE(hdr), hdr);
2489 			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2490 			ASSERT(!HDR_HAS_RABD(hdr));
2491 		} else {
2492 
2493 			/*
2494 			 * Each individual buffer holds a unique reference,
2495 			 * thus we must remove each of these references one
2496 			 * at a time.
2497 			 */
2498 			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2499 			    buf = buf->b_next) {
2500 
2501 				/*
2502 				 * When the arc_buf_t is sharing the data
2503 				 * block with the hdr, the owner of the
2504 				 * reference belongs to the hdr. Only
2505 				 * add to the refcount if the arc_buf_t is
2506 				 * not shared.
2507 				 */
2508 				if (ARC_BUF_SHARED(buf))
2509 					continue;
2510 
2511 				(void) zfs_refcount_add_many(
2512 				    &new_state->arcs_size[type],
2513 				    arc_buf_size(buf), buf);
2514 			}
2515 
2516 			if (hdr->b_l1hdr.b_pabd != NULL) {
2517 				(void) zfs_refcount_add_many(
2518 				    &new_state->arcs_size[type],
2519 				    arc_hdr_size(hdr), hdr);
2520 			}
2521 
2522 			if (HDR_HAS_RABD(hdr)) {
2523 				(void) zfs_refcount_add_many(
2524 				    &new_state->arcs_size[type],
2525 				    HDR_GET_PSIZE(hdr), hdr);
2526 			}
2527 		}
2528 	}
2529 
2530 	if (update_old && old_state != arc_l2c_only) {
2531 		ASSERT(HDR_HAS_L1HDR(hdr));
2532 		if (GHOST_STATE(old_state)) {
2533 			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2534 			ASSERT(!HDR_HAS_RABD(hdr));
2535 
2536 			/*
2537 			 * When moving a header off of a ghost state,
2538 			 * the header will not contain any arc buffers.
2539 			 * We use the arc header pointer for the reference
2540 			 * which is exactly what we did when we put the
2541 			 * header on the ghost state.
2542 			 */
2543 
2544 			(void) zfs_refcount_remove_many(
2545 			    &old_state->arcs_size[type],
2546 			    HDR_GET_LSIZE(hdr), hdr);
2547 		} else {
2548 
2549 			/*
2550 			 * Each individual buffer holds a unique reference,
2551 			 * thus we must remove each of these references one
2552 			 * at a time.
2553 			 */
2554 			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2555 			    buf = buf->b_next) {
2556 
2557 				/*
2558 				 * When the arc_buf_t is sharing the data
2559 				 * block with the hdr, the owner of the
2560 				 * reference belongs to the hdr. Only
2561 				 * add to the refcount if the arc_buf_t is
2562 				 * not shared.
2563 				 */
2564 				if (ARC_BUF_SHARED(buf))
2565 					continue;
2566 
2567 				(void) zfs_refcount_remove_many(
2568 				    &old_state->arcs_size[type],
2569 				    arc_buf_size(buf), buf);
2570 			}
2571 			ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
2572 			    HDR_HAS_RABD(hdr));
2573 
2574 			if (hdr->b_l1hdr.b_pabd != NULL) {
2575 				(void) zfs_refcount_remove_many(
2576 				    &old_state->arcs_size[type],
2577 				    arc_hdr_size(hdr), hdr);
2578 			}
2579 
2580 			if (HDR_HAS_RABD(hdr)) {
2581 				(void) zfs_refcount_remove_many(
2582 				    &old_state->arcs_size[type],
2583 				    HDR_GET_PSIZE(hdr), hdr);
2584 			}
2585 		}
2586 	}
2587 
2588 	if (HDR_HAS_L1HDR(hdr)) {
2589 		hdr->b_l1hdr.b_state = new_state;
2590 
2591 		if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) {
2592 			l2arc_hdr_arcstats_decrement_state(hdr);
2593 			hdr->b_l2hdr.b_arcs_state = new_state->arcs_state;
2594 			l2arc_hdr_arcstats_increment_state(hdr);
2595 		}
2596 	}
2597 }
2598 
2599 void
2600 arc_space_consume(uint64_t space, arc_space_type_t type)
2601 {
2602 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2603 
2604 	switch (type) {
2605 	default:
2606 		break;
2607 	case ARC_SPACE_DATA:
2608 		ARCSTAT_INCR(arcstat_data_size, space);
2609 		break;
2610 	case ARC_SPACE_META:
2611 		ARCSTAT_INCR(arcstat_metadata_size, space);
2612 		break;
2613 	case ARC_SPACE_BONUS:
2614 		ARCSTAT_INCR(arcstat_bonus_size, space);
2615 		break;
2616 	case ARC_SPACE_DNODE:
2617 		ARCSTAT_INCR(arcstat_dnode_size, space);
2618 		break;
2619 	case ARC_SPACE_DBUF:
2620 		ARCSTAT_INCR(arcstat_dbuf_size, space);
2621 		break;
2622 	case ARC_SPACE_HDRS:
2623 		ARCSTAT_INCR(arcstat_hdr_size, space);
2624 		break;
2625 	case ARC_SPACE_L2HDRS:
2626 		aggsum_add(&arc_sums.arcstat_l2_hdr_size, space);
2627 		break;
2628 	case ARC_SPACE_ABD_CHUNK_WASTE:
2629 		/*
2630 		 * Note: this includes space wasted by all scatter ABD's, not
2631 		 * just those allocated by the ARC.  But the vast majority of
2632 		 * scatter ABD's come from the ARC, because other users are
2633 		 * very short-lived.
2634 		 */
2635 		ARCSTAT_INCR(arcstat_abd_chunk_waste_size, space);
2636 		break;
2637 	}
2638 
2639 	if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE)
2640 		ARCSTAT_INCR(arcstat_meta_used, space);
2641 
2642 	aggsum_add(&arc_sums.arcstat_size, space);
2643 }
2644 
2645 void
2646 arc_space_return(uint64_t space, arc_space_type_t type)
2647 {
2648 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2649 
2650 	switch (type) {
2651 	default:
2652 		break;
2653 	case ARC_SPACE_DATA:
2654 		ARCSTAT_INCR(arcstat_data_size, -space);
2655 		break;
2656 	case ARC_SPACE_META:
2657 		ARCSTAT_INCR(arcstat_metadata_size, -space);
2658 		break;
2659 	case ARC_SPACE_BONUS:
2660 		ARCSTAT_INCR(arcstat_bonus_size, -space);
2661 		break;
2662 	case ARC_SPACE_DNODE:
2663 		ARCSTAT_INCR(arcstat_dnode_size, -space);
2664 		break;
2665 	case ARC_SPACE_DBUF:
2666 		ARCSTAT_INCR(arcstat_dbuf_size, -space);
2667 		break;
2668 	case ARC_SPACE_HDRS:
2669 		ARCSTAT_INCR(arcstat_hdr_size, -space);
2670 		break;
2671 	case ARC_SPACE_L2HDRS:
2672 		aggsum_add(&arc_sums.arcstat_l2_hdr_size, -space);
2673 		break;
2674 	case ARC_SPACE_ABD_CHUNK_WASTE:
2675 		ARCSTAT_INCR(arcstat_abd_chunk_waste_size, -space);
2676 		break;
2677 	}
2678 
2679 	if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE)
2680 		ARCSTAT_INCR(arcstat_meta_used, -space);
2681 
2682 	ASSERT(aggsum_compare(&arc_sums.arcstat_size, space) >= 0);
2683 	aggsum_add(&arc_sums.arcstat_size, -space);
2684 }
2685 
2686 /*
2687  * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2688  * with the hdr's b_pabd.
2689  */
2690 static boolean_t
2691 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2692 {
2693 	/*
2694 	 * The criteria for sharing a hdr's data are:
2695 	 * 1. the buffer is not encrypted
2696 	 * 2. the hdr's compression matches the buf's compression
2697 	 * 3. the hdr doesn't need to be byteswapped
2698 	 * 4. the hdr isn't already being shared
2699 	 * 5. the buf is either compressed or it is the last buf in the hdr list
2700 	 *
2701 	 * Criterion #5 maintains the invariant that shared uncompressed
2702 	 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2703 	 * might ask, "if a compressed buf is allocated first, won't that be the
2704 	 * last thing in the list?", but in that case it's impossible to create
2705 	 * a shared uncompressed buf anyway (because the hdr must be compressed
2706 	 * to have the compressed buf). You might also think that #3 is
2707 	 * sufficient to make this guarantee, however it's possible
2708 	 * (specifically in the rare L2ARC write race mentioned in
2709 	 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2710 	 * is shareable, but wasn't at the time of its allocation. Rather than
2711 	 * allow a new shared uncompressed buf to be created and then shuffle
2712 	 * the list around to make it the last element, this simply disallows
2713 	 * sharing if the new buf isn't the first to be added.
2714 	 */
2715 	ASSERT3P(buf->b_hdr, ==, hdr);
2716 	boolean_t hdr_compressed =
2717 	    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF;
2718 	boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2719 	return (!ARC_BUF_ENCRYPTED(buf) &&
2720 	    buf_compressed == hdr_compressed &&
2721 	    hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2722 	    !HDR_SHARED_DATA(hdr) &&
2723 	    (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2724 }
2725 
2726 /*
2727  * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2728  * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2729  * copy was made successfully, or an error code otherwise.
2730  */
2731 static int
2732 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb,
2733     const void *tag, boolean_t encrypted, boolean_t compressed,
2734     boolean_t noauth, boolean_t fill, arc_buf_t **ret)
2735 {
2736 	arc_buf_t *buf;
2737 	arc_fill_flags_t flags = ARC_FILL_LOCKED;
2738 
2739 	ASSERT(HDR_HAS_L1HDR(hdr));
2740 	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2741 	VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2742 	    hdr->b_type == ARC_BUFC_METADATA);
2743 	ASSERT3P(ret, !=, NULL);
2744 	ASSERT3P(*ret, ==, NULL);
2745 	IMPLY(encrypted, compressed);
2746 
2747 	buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2748 	buf->b_hdr = hdr;
2749 	buf->b_data = NULL;
2750 	buf->b_next = hdr->b_l1hdr.b_buf;
2751 	buf->b_flags = 0;
2752 
2753 	add_reference(hdr, tag);
2754 
2755 	/*
2756 	 * We're about to change the hdr's b_flags. We must either
2757 	 * hold the hash_lock or be undiscoverable.
2758 	 */
2759 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2760 
2761 	/*
2762 	 * Only honor requests for compressed bufs if the hdr is actually
2763 	 * compressed. This must be overridden if the buffer is encrypted since
2764 	 * encrypted buffers cannot be decompressed.
2765 	 */
2766 	if (encrypted) {
2767 		buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2768 		buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED;
2769 		flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED;
2770 	} else if (compressed &&
2771 	    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
2772 		buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2773 		flags |= ARC_FILL_COMPRESSED;
2774 	}
2775 
2776 	if (noauth) {
2777 		ASSERT0(encrypted);
2778 		flags |= ARC_FILL_NOAUTH;
2779 	}
2780 
2781 	/*
2782 	 * If the hdr's data can be shared then we share the data buffer and
2783 	 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2784 	 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2785 	 * buffer to store the buf's data.
2786 	 *
2787 	 * There are two additional restrictions here because we're sharing
2788 	 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2789 	 * actively involved in an L2ARC write, because if this buf is used by
2790 	 * an arc_write() then the hdr's data buffer will be released when the
2791 	 * write completes, even though the L2ARC write might still be using it.
2792 	 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2793 	 * need to be ABD-aware.  It must be allocated via
2794 	 * zio_[data_]buf_alloc(), not as a page, because we need to be able
2795 	 * to abd_release_ownership_of_buf(), which isn't allowed on "linear
2796 	 * page" buffers because the ABD code needs to handle freeing them
2797 	 * specially.
2798 	 */
2799 	boolean_t can_share = arc_can_share(hdr, buf) &&
2800 	    !HDR_L2_WRITING(hdr) &&
2801 	    hdr->b_l1hdr.b_pabd != NULL &&
2802 	    abd_is_linear(hdr->b_l1hdr.b_pabd) &&
2803 	    !abd_is_linear_page(hdr->b_l1hdr.b_pabd);
2804 
2805 	/* Set up b_data and sharing */
2806 	if (can_share) {
2807 		buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2808 		buf->b_flags |= ARC_BUF_FLAG_SHARED;
2809 		arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2810 	} else {
2811 		buf->b_data =
2812 		    arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2813 		ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2814 	}
2815 	VERIFY3P(buf->b_data, !=, NULL);
2816 
2817 	hdr->b_l1hdr.b_buf = buf;
2818 
2819 	/*
2820 	 * If the user wants the data from the hdr, we need to either copy or
2821 	 * decompress the data.
2822 	 */
2823 	if (fill) {
2824 		ASSERT3P(zb, !=, NULL);
2825 		return (arc_buf_fill(buf, spa, zb, flags));
2826 	}
2827 
2828 	return (0);
2829 }
2830 
2831 static const char *arc_onloan_tag = "onloan";
2832 
2833 static inline void
2834 arc_loaned_bytes_update(int64_t delta)
2835 {
2836 	atomic_add_64(&arc_loaned_bytes, delta);
2837 
2838 	/* assert that it did not wrap around */
2839 	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2840 }
2841 
2842 /*
2843  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2844  * flight data by arc_tempreserve_space() until they are "returned". Loaned
2845  * buffers must be returned to the arc before they can be used by the DMU or
2846  * freed.
2847  */
2848 arc_buf_t *
2849 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2850 {
2851 	arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2852 	    is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2853 
2854 	arc_loaned_bytes_update(arc_buf_size(buf));
2855 
2856 	return (buf);
2857 }
2858 
2859 arc_buf_t *
2860 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2861     enum zio_compress compression_type, uint8_t complevel)
2862 {
2863 	arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2864 	    psize, lsize, compression_type, complevel);
2865 
2866 	arc_loaned_bytes_update(arc_buf_size(buf));
2867 
2868 	return (buf);
2869 }
2870 
2871 arc_buf_t *
2872 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder,
2873     const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
2874     dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
2875     enum zio_compress compression_type, uint8_t complevel)
2876 {
2877 	arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj,
2878 	    byteorder, salt, iv, mac, ot, psize, lsize, compression_type,
2879 	    complevel);
2880 
2881 	atomic_add_64(&arc_loaned_bytes, psize);
2882 	return (buf);
2883 }
2884 
2885 
2886 /*
2887  * Return a loaned arc buffer to the arc.
2888  */
2889 void
2890 arc_return_buf(arc_buf_t *buf, const void *tag)
2891 {
2892 	arc_buf_hdr_t *hdr = buf->b_hdr;
2893 
2894 	ASSERT3P(buf->b_data, !=, NULL);
2895 	ASSERT(HDR_HAS_L1HDR(hdr));
2896 	(void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2897 	(void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2898 
2899 	arc_loaned_bytes_update(-arc_buf_size(buf));
2900 }
2901 
2902 /* Detach an arc_buf from a dbuf (tag) */
2903 void
2904 arc_loan_inuse_buf(arc_buf_t *buf, const void *tag)
2905 {
2906 	arc_buf_hdr_t *hdr = buf->b_hdr;
2907 
2908 	ASSERT3P(buf->b_data, !=, NULL);
2909 	ASSERT(HDR_HAS_L1HDR(hdr));
2910 	(void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2911 	(void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2912 
2913 	arc_loaned_bytes_update(arc_buf_size(buf));
2914 }
2915 
2916 static void
2917 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2918 {
2919 	l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2920 
2921 	df->l2df_abd = abd;
2922 	df->l2df_size = size;
2923 	df->l2df_type = type;
2924 	mutex_enter(&l2arc_free_on_write_mtx);
2925 	list_insert_head(l2arc_free_on_write, df);
2926 	mutex_exit(&l2arc_free_on_write_mtx);
2927 }
2928 
2929 static void
2930 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata)
2931 {
2932 	arc_state_t *state = hdr->b_l1hdr.b_state;
2933 	arc_buf_contents_t type = arc_buf_type(hdr);
2934 	uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
2935 
2936 	/* protected by hash lock, if in the hash table */
2937 	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2938 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2939 		ASSERT(state != arc_anon && state != arc_l2c_only);
2940 
2941 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2942 		    size, hdr);
2943 	}
2944 	(void) zfs_refcount_remove_many(&state->arcs_size[type], size, hdr);
2945 	if (type == ARC_BUFC_METADATA) {
2946 		arc_space_return(size, ARC_SPACE_META);
2947 	} else {
2948 		ASSERT(type == ARC_BUFC_DATA);
2949 		arc_space_return(size, ARC_SPACE_DATA);
2950 	}
2951 
2952 	if (free_rdata) {
2953 		l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type);
2954 	} else {
2955 		l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2956 	}
2957 }
2958 
2959 /*
2960  * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2961  * data buffer, we transfer the refcount ownership to the hdr and update
2962  * the appropriate kstats.
2963  */
2964 static void
2965 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2966 {
2967 	ASSERT(arc_can_share(hdr, buf));
2968 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2969 	ASSERT(!ARC_BUF_ENCRYPTED(buf));
2970 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2971 
2972 	/*
2973 	 * Start sharing the data buffer. We transfer the
2974 	 * refcount ownership to the hdr since it always owns
2975 	 * the refcount whenever an arc_buf_t is shared.
2976 	 */
2977 	zfs_refcount_transfer_ownership_many(
2978 	    &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)],
2979 	    arc_hdr_size(hdr), buf, hdr);
2980 	hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2981 	abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2982 	    HDR_ISTYPE_METADATA(hdr));
2983 	arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2984 	buf->b_flags |= ARC_BUF_FLAG_SHARED;
2985 
2986 	/*
2987 	 * Since we've transferred ownership to the hdr we need
2988 	 * to increment its compressed and uncompressed kstats and
2989 	 * decrement the overhead size.
2990 	 */
2991 	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2992 	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2993 	ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
2994 }
2995 
2996 static void
2997 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2998 {
2999 	ASSERT(arc_buf_is_shared(buf));
3000 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3001 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3002 
3003 	/*
3004 	 * We are no longer sharing this buffer so we need
3005 	 * to transfer its ownership to the rightful owner.
3006 	 */
3007 	zfs_refcount_transfer_ownership_many(
3008 	    &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)],
3009 	    arc_hdr_size(hdr), hdr, buf);
3010 	arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3011 	abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
3012 	abd_free(hdr->b_l1hdr.b_pabd);
3013 	hdr->b_l1hdr.b_pabd = NULL;
3014 	buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
3015 
3016 	/*
3017 	 * Since the buffer is no longer shared between
3018 	 * the arc buf and the hdr, count it as overhead.
3019 	 */
3020 	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3021 	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3022 	ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
3023 }
3024 
3025 /*
3026  * Remove an arc_buf_t from the hdr's buf list and return the last
3027  * arc_buf_t on the list. If no buffers remain on the list then return
3028  * NULL.
3029  */
3030 static arc_buf_t *
3031 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3032 {
3033 	ASSERT(HDR_HAS_L1HDR(hdr));
3034 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3035 
3036 	arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
3037 	arc_buf_t *lastbuf = NULL;
3038 
3039 	/*
3040 	 * Remove the buf from the hdr list and locate the last
3041 	 * remaining buffer on the list.
3042 	 */
3043 	while (*bufp != NULL) {
3044 		if (*bufp == buf)
3045 			*bufp = buf->b_next;
3046 
3047 		/*
3048 		 * If we've removed a buffer in the middle of
3049 		 * the list then update the lastbuf and update
3050 		 * bufp.
3051 		 */
3052 		if (*bufp != NULL) {
3053 			lastbuf = *bufp;
3054 			bufp = &(*bufp)->b_next;
3055 		}
3056 	}
3057 	buf->b_next = NULL;
3058 	ASSERT3P(lastbuf, !=, buf);
3059 	IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
3060 
3061 	return (lastbuf);
3062 }
3063 
3064 /*
3065  * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's
3066  * list and free it.
3067  */
3068 static void
3069 arc_buf_destroy_impl(arc_buf_t *buf)
3070 {
3071 	arc_buf_hdr_t *hdr = buf->b_hdr;
3072 
3073 	/*
3074 	 * Free up the data associated with the buf but only if we're not
3075 	 * sharing this with the hdr. If we are sharing it with the hdr, the
3076 	 * hdr is responsible for doing the free.
3077 	 */
3078 	if (buf->b_data != NULL) {
3079 		/*
3080 		 * We're about to change the hdr's b_flags. We must either
3081 		 * hold the hash_lock or be undiscoverable.
3082 		 */
3083 		ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3084 
3085 		arc_cksum_verify(buf);
3086 		arc_buf_unwatch(buf);
3087 
3088 		if (ARC_BUF_SHARED(buf)) {
3089 			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3090 		} else {
3091 			ASSERT(!arc_buf_is_shared(buf));
3092 			uint64_t size = arc_buf_size(buf);
3093 			arc_free_data_buf(hdr, buf->b_data, size, buf);
3094 			ARCSTAT_INCR(arcstat_overhead_size, -size);
3095 		}
3096 		buf->b_data = NULL;
3097 
3098 		/*
3099 		 * If we have no more encrypted buffers and we've already
3100 		 * gotten a copy of the decrypted data we can free b_rabd
3101 		 * to save some space.
3102 		 */
3103 		if (ARC_BUF_ENCRYPTED(buf) && HDR_HAS_RABD(hdr) &&
3104 		    hdr->b_l1hdr.b_pabd != NULL && !HDR_IO_IN_PROGRESS(hdr)) {
3105 			arc_buf_t *b;
3106 			for (b = hdr->b_l1hdr.b_buf; b; b = b->b_next) {
3107 				if (b != buf && ARC_BUF_ENCRYPTED(b))
3108 					break;
3109 			}
3110 			if (b == NULL)
3111 				arc_hdr_free_abd(hdr, B_TRUE);
3112 		}
3113 	}
3114 
3115 	arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
3116 
3117 	if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
3118 		/*
3119 		 * If the current arc_buf_t is sharing its data buffer with the
3120 		 * hdr, then reassign the hdr's b_pabd to share it with the new
3121 		 * buffer at the end of the list. The shared buffer is always
3122 		 * the last one on the hdr's buffer list.
3123 		 *
3124 		 * There is an equivalent case for compressed bufs, but since
3125 		 * they aren't guaranteed to be the last buf in the list and
3126 		 * that is an exceedingly rare case, we just allow that space be
3127 		 * wasted temporarily. We must also be careful not to share
3128 		 * encrypted buffers, since they cannot be shared.
3129 		 */
3130 		if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) {
3131 			/* Only one buf can be shared at once */
3132 			ASSERT(!arc_buf_is_shared(lastbuf));
3133 			/* hdr is uncompressed so can't have compressed buf */
3134 			ASSERT(!ARC_BUF_COMPRESSED(lastbuf));
3135 
3136 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3137 			arc_hdr_free_abd(hdr, B_FALSE);
3138 
3139 			/*
3140 			 * We must setup a new shared block between the
3141 			 * last buffer and the hdr. The data would have
3142 			 * been allocated by the arc buf so we need to transfer
3143 			 * ownership to the hdr since it's now being shared.
3144 			 */
3145 			arc_share_buf(hdr, lastbuf);
3146 		}
3147 	} else if (HDR_SHARED_DATA(hdr)) {
3148 		/*
3149 		 * Uncompressed shared buffers are always at the end
3150 		 * of the list. Compressed buffers don't have the
3151 		 * same requirements. This makes it hard to
3152 		 * simply assert that the lastbuf is shared so
3153 		 * we rely on the hdr's compression flags to determine
3154 		 * if we have a compressed, shared buffer.
3155 		 */
3156 		ASSERT3P(lastbuf, !=, NULL);
3157 		ASSERT(arc_buf_is_shared(lastbuf) ||
3158 		    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
3159 	}
3160 
3161 	/*
3162 	 * Free the checksum if we're removing the last uncompressed buf from
3163 	 * this hdr.
3164 	 */
3165 	if (!arc_hdr_has_uncompressed_buf(hdr)) {
3166 		arc_cksum_free(hdr);
3167 	}
3168 
3169 	/* clean up the buf */
3170 	buf->b_hdr = NULL;
3171 	kmem_cache_free(buf_cache, buf);
3172 }
3173 
3174 static void
3175 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags)
3176 {
3177 	uint64_t size;
3178 	boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0);
3179 
3180 	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3181 	ASSERT(HDR_HAS_L1HDR(hdr));
3182 	ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata);
3183 	IMPLY(alloc_rdata, HDR_PROTECTED(hdr));
3184 
3185 	if (alloc_rdata) {
3186 		size = HDR_GET_PSIZE(hdr);
3187 		ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL);
3188 		hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr,
3189 		    alloc_flags);
3190 		ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL);
3191 		ARCSTAT_INCR(arcstat_raw_size, size);
3192 	} else {
3193 		size = arc_hdr_size(hdr);
3194 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3195 		hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr,
3196 		    alloc_flags);
3197 		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3198 	}
3199 
3200 	ARCSTAT_INCR(arcstat_compressed_size, size);
3201 	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3202 }
3203 
3204 static void
3205 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata)
3206 {
3207 	uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
3208 
3209 	ASSERT(HDR_HAS_L1HDR(hdr));
3210 	ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
3211 	IMPLY(free_rdata, HDR_HAS_RABD(hdr));
3212 
3213 	/*
3214 	 * If the hdr is currently being written to the l2arc then
3215 	 * we defer freeing the data by adding it to the l2arc_free_on_write
3216 	 * list. The l2arc will free the data once it's finished
3217 	 * writing it to the l2arc device.
3218 	 */
3219 	if (HDR_L2_WRITING(hdr)) {
3220 		arc_hdr_free_on_write(hdr, free_rdata);
3221 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
3222 	} else if (free_rdata) {
3223 		arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr);
3224 	} else {
3225 		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr);
3226 	}
3227 
3228 	if (free_rdata) {
3229 		hdr->b_crypt_hdr.b_rabd = NULL;
3230 		ARCSTAT_INCR(arcstat_raw_size, -size);
3231 	} else {
3232 		hdr->b_l1hdr.b_pabd = NULL;
3233 	}
3234 
3235 	if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr))
3236 		hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3237 
3238 	ARCSTAT_INCR(arcstat_compressed_size, -size);
3239 	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3240 }
3241 
3242 /*
3243  * Allocate empty anonymous ARC header.  The header will get its identity
3244  * assigned and buffers attached later as part of read or write operations.
3245  *
3246  * In case of read arc_read() assigns header its identify (b_dva + b_birth),
3247  * inserts it into ARC hash to become globally visible and allocates physical
3248  * (b_pabd) or raw (b_rabd) ABD buffer to read into from disk.  On disk read
3249  * completion arc_read_done() allocates ARC buffer(s) as needed, potentially
3250  * sharing one of them with the physical ABD buffer.
3251  *
3252  * In case of write arc_alloc_buf() allocates ARC buffer to be filled with
3253  * data.  Then after compression and/or encryption arc_write_ready() allocates
3254  * and fills (or potentially shares) physical (b_pabd) or raw (b_rabd) ABD
3255  * buffer.  On disk write completion arc_write_done() assigns the header its
3256  * new identity (b_dva + b_birth) and inserts into ARC hash.
3257  *
3258  * In case of partial overwrite the old data is read first as described. Then
3259  * arc_release() either allocates new anonymous ARC header and moves the ARC
3260  * buffer to it, or reuses the old ARC header by discarding its identity and
3261  * removing it from ARC hash.  After buffer modification normal write process
3262  * follows as described.
3263  */
3264 static arc_buf_hdr_t *
3265 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
3266     boolean_t protected, enum zio_compress compression_type, uint8_t complevel,
3267     arc_buf_contents_t type)
3268 {
3269 	arc_buf_hdr_t *hdr;
3270 
3271 	VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
3272 	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3273 
3274 	ASSERT(HDR_EMPTY(hdr));
3275 #ifdef ZFS_DEBUG
3276 	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3277 #endif
3278 	HDR_SET_PSIZE(hdr, psize);
3279 	HDR_SET_LSIZE(hdr, lsize);
3280 	hdr->b_spa = spa;
3281 	hdr->b_type = type;
3282 	hdr->b_flags = 0;
3283 	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
3284 	arc_hdr_set_compress(hdr, compression_type);
3285 	hdr->b_complevel = complevel;
3286 	if (protected)
3287 		arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3288 
3289 	hdr->b_l1hdr.b_state = arc_anon;
3290 	hdr->b_l1hdr.b_arc_access = 0;
3291 	hdr->b_l1hdr.b_mru_hits = 0;
3292 	hdr->b_l1hdr.b_mru_ghost_hits = 0;
3293 	hdr->b_l1hdr.b_mfu_hits = 0;
3294 	hdr->b_l1hdr.b_mfu_ghost_hits = 0;
3295 	hdr->b_l1hdr.b_buf = NULL;
3296 
3297 	ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3298 
3299 	return (hdr);
3300 }
3301 
3302 /*
3303  * Transition between the two allocation states for the arc_buf_hdr struct.
3304  * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3305  * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3306  * version is used when a cache buffer is only in the L2ARC in order to reduce
3307  * memory usage.
3308  */
3309 static arc_buf_hdr_t *
3310 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
3311 {
3312 	ASSERT(HDR_HAS_L2HDR(hdr));
3313 
3314 	arc_buf_hdr_t *nhdr;
3315 	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3316 
3317 	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3318 	    (old == hdr_l2only_cache && new == hdr_full_cache));
3319 
3320 	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
3321 
3322 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3323 	buf_hash_remove(hdr);
3324 
3325 	memcpy(nhdr, hdr, HDR_L2ONLY_SIZE);
3326 
3327 	if (new == hdr_full_cache) {
3328 		arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3329 		/*
3330 		 * arc_access and arc_change_state need to be aware that a
3331 		 * header has just come out of L2ARC, so we set its state to
3332 		 * l2c_only even though it's about to change.
3333 		 */
3334 		nhdr->b_l1hdr.b_state = arc_l2c_only;
3335 
3336 		/* Verify previous threads set to NULL before freeing */
3337 		ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
3338 		ASSERT(!HDR_HAS_RABD(hdr));
3339 	} else {
3340 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3341 #ifdef ZFS_DEBUG
3342 		ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3343 #endif
3344 
3345 		/*
3346 		 * If we've reached here, We must have been called from
3347 		 * arc_evict_hdr(), as such we should have already been
3348 		 * removed from any ghost list we were previously on
3349 		 * (which protects us from racing with arc_evict_state),
3350 		 * thus no locking is needed during this check.
3351 		 */
3352 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3353 
3354 		/*
3355 		 * A buffer must not be moved into the arc_l2c_only
3356 		 * state if it's not finished being written out to the
3357 		 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3358 		 * might try to be accessed, even though it was removed.
3359 		 */
3360 		VERIFY(!HDR_L2_WRITING(hdr));
3361 		VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3362 		ASSERT(!HDR_HAS_RABD(hdr));
3363 
3364 		arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3365 	}
3366 	/*
3367 	 * The header has been reallocated so we need to re-insert it into any
3368 	 * lists it was on.
3369 	 */
3370 	(void) buf_hash_insert(nhdr, NULL);
3371 
3372 	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3373 
3374 	mutex_enter(&dev->l2ad_mtx);
3375 
3376 	/*
3377 	 * We must place the realloc'ed header back into the list at
3378 	 * the same spot. Otherwise, if it's placed earlier in the list,
3379 	 * l2arc_write_buffers() could find it during the function's
3380 	 * write phase, and try to write it out to the l2arc.
3381 	 */
3382 	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3383 	list_remove(&dev->l2ad_buflist, hdr);
3384 
3385 	mutex_exit(&dev->l2ad_mtx);
3386 
3387 	/*
3388 	 * Since we're using the pointer address as the tag when
3389 	 * incrementing and decrementing the l2ad_alloc refcount, we
3390 	 * must remove the old pointer (that we're about to destroy) and
3391 	 * add the new pointer to the refcount. Otherwise we'd remove
3392 	 * the wrong pointer address when calling arc_hdr_destroy() later.
3393 	 */
3394 
3395 	(void) zfs_refcount_remove_many(&dev->l2ad_alloc,
3396 	    arc_hdr_size(hdr), hdr);
3397 	(void) zfs_refcount_add_many(&dev->l2ad_alloc,
3398 	    arc_hdr_size(nhdr), nhdr);
3399 
3400 	buf_discard_identity(hdr);
3401 	kmem_cache_free(old, hdr);
3402 
3403 	return (nhdr);
3404 }
3405 
3406 /*
3407  * This function is used by the send / receive code to convert a newly
3408  * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3409  * is also used to allow the root objset block to be updated without altering
3410  * its embedded MACs. Both block types will always be uncompressed so we do not
3411  * have to worry about compression type or psize.
3412  */
3413 void
3414 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder,
3415     dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv,
3416     const uint8_t *mac)
3417 {
3418 	arc_buf_hdr_t *hdr = buf->b_hdr;
3419 
3420 	ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET);
3421 	ASSERT(HDR_HAS_L1HDR(hdr));
3422 	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3423 
3424 	buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED);
3425 	arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3426 	hdr->b_crypt_hdr.b_dsobj = dsobj;
3427 	hdr->b_crypt_hdr.b_ot = ot;
3428 	hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3429 	    DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3430 	if (!arc_hdr_has_uncompressed_buf(hdr))
3431 		arc_cksum_free(hdr);
3432 
3433 	if (salt != NULL)
3434 		memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
3435 	if (iv != NULL)
3436 		memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
3437 	if (mac != NULL)
3438 		memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
3439 }
3440 
3441 /*
3442  * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3443  * The buf is returned thawed since we expect the consumer to modify it.
3444  */
3445 arc_buf_t *
3446 arc_alloc_buf(spa_t *spa, const void *tag, arc_buf_contents_t type,
3447     int32_t size)
3448 {
3449 	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3450 	    B_FALSE, ZIO_COMPRESS_OFF, 0, type);
3451 
3452 	arc_buf_t *buf = NULL;
3453 	VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE,
3454 	    B_FALSE, B_FALSE, &buf));
3455 	arc_buf_thaw(buf);
3456 
3457 	return (buf);
3458 }
3459 
3460 /*
3461  * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3462  * for bufs containing metadata.
3463  */
3464 arc_buf_t *
3465 arc_alloc_compressed_buf(spa_t *spa, const void *tag, uint64_t psize,
3466     uint64_t lsize, enum zio_compress compression_type, uint8_t complevel)
3467 {
3468 	ASSERT3U(lsize, >, 0);
3469 	ASSERT3U(lsize, >=, psize);
3470 	ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF);
3471 	ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3472 
3473 	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3474 	    B_FALSE, compression_type, complevel, ARC_BUFC_DATA);
3475 
3476 	arc_buf_t *buf = NULL;
3477 	VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE,
3478 	    B_TRUE, B_FALSE, B_FALSE, &buf));
3479 	arc_buf_thaw(buf);
3480 
3481 	/*
3482 	 * To ensure that the hdr has the correct data in it if we call
3483 	 * arc_untransform() on this buf before it's been written to disk,
3484 	 * it's easiest if we just set up sharing between the buf and the hdr.
3485 	 */
3486 	arc_share_buf(hdr, buf);
3487 
3488 	return (buf);
3489 }
3490 
3491 arc_buf_t *
3492 arc_alloc_raw_buf(spa_t *spa, const void *tag, uint64_t dsobj,
3493     boolean_t byteorder, const uint8_t *salt, const uint8_t *iv,
3494     const uint8_t *mac, dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
3495     enum zio_compress compression_type, uint8_t complevel)
3496 {
3497 	arc_buf_hdr_t *hdr;
3498 	arc_buf_t *buf;
3499 	arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ?
3500 	    ARC_BUFC_METADATA : ARC_BUFC_DATA;
3501 
3502 	ASSERT3U(lsize, >, 0);
3503 	ASSERT3U(lsize, >=, psize);
3504 	ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF);
3505 	ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3506 
3507 	hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE,
3508 	    compression_type, complevel, type);
3509 
3510 	hdr->b_crypt_hdr.b_dsobj = dsobj;
3511 	hdr->b_crypt_hdr.b_ot = ot;
3512 	hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3513 	    DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3514 	memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
3515 	memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
3516 	memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
3517 
3518 	/*
3519 	 * This buffer will be considered encrypted even if the ot is not an
3520 	 * encrypted type. It will become authenticated instead in
3521 	 * arc_write_ready().
3522 	 */
3523 	buf = NULL;
3524 	VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE,
3525 	    B_FALSE, B_FALSE, &buf));
3526 	arc_buf_thaw(buf);
3527 
3528 	return (buf);
3529 }
3530 
3531 static void
3532 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
3533     boolean_t state_only)
3534 {
3535 	uint64_t lsize = HDR_GET_LSIZE(hdr);
3536 	uint64_t psize = HDR_GET_PSIZE(hdr);
3537 	uint64_t asize = HDR_GET_L2SIZE(hdr);
3538 	arc_buf_contents_t type = hdr->b_type;
3539 	int64_t lsize_s;
3540 	int64_t psize_s;
3541 	int64_t asize_s;
3542 
3543 	/* For L2 we expect the header's b_l2size to be valid */
3544 	ASSERT3U(asize, >=, psize);
3545 
3546 	if (incr) {
3547 		lsize_s = lsize;
3548 		psize_s = psize;
3549 		asize_s = asize;
3550 	} else {
3551 		lsize_s = -lsize;
3552 		psize_s = -psize;
3553 		asize_s = -asize;
3554 	}
3555 
3556 	/* If the buffer is a prefetch, count it as such. */
3557 	if (HDR_PREFETCH(hdr)) {
3558 		ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s);
3559 	} else {
3560 		/*
3561 		 * We use the value stored in the L2 header upon initial
3562 		 * caching in L2ARC. This value will be updated in case
3563 		 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC
3564 		 * metadata (log entry) cannot currently be updated. Having
3565 		 * the ARC state in the L2 header solves the problem of a
3566 		 * possibly absent L1 header (apparent in buffers restored
3567 		 * from persistent L2ARC).
3568 		 */
3569 		switch (hdr->b_l2hdr.b_arcs_state) {
3570 			case ARC_STATE_MRU_GHOST:
3571 			case ARC_STATE_MRU:
3572 				ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s);
3573 				break;
3574 			case ARC_STATE_MFU_GHOST:
3575 			case ARC_STATE_MFU:
3576 				ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s);
3577 				break;
3578 			default:
3579 				break;
3580 		}
3581 	}
3582 
3583 	if (state_only)
3584 		return;
3585 
3586 	ARCSTAT_INCR(arcstat_l2_psize, psize_s);
3587 	ARCSTAT_INCR(arcstat_l2_lsize, lsize_s);
3588 
3589 	switch (type) {
3590 		case ARC_BUFC_DATA:
3591 			ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s);
3592 			break;
3593 		case ARC_BUFC_METADATA:
3594 			ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s);
3595 			break;
3596 		default:
3597 			break;
3598 	}
3599 }
3600 
3601 
3602 static void
3603 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3604 {
3605 	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3606 	l2arc_dev_t *dev = l2hdr->b_dev;
3607 
3608 	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3609 	ASSERT(HDR_HAS_L2HDR(hdr));
3610 
3611 	list_remove(&dev->l2ad_buflist, hdr);
3612 
3613 	l2arc_hdr_arcstats_decrement(hdr);
3614 	if (dev->l2ad_vdev != NULL) {
3615 		uint64_t asize = HDR_GET_L2SIZE(hdr);
3616 		vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
3617 	}
3618 
3619 	(void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3620 	    hdr);
3621 	arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3622 }
3623 
3624 static void
3625 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3626 {
3627 	if (HDR_HAS_L1HDR(hdr)) {
3628 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3629 		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3630 	}
3631 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3632 	ASSERT(!HDR_IN_HASH_TABLE(hdr));
3633 
3634 	if (HDR_HAS_L2HDR(hdr)) {
3635 		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3636 		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3637 
3638 		if (!buflist_held)
3639 			mutex_enter(&dev->l2ad_mtx);
3640 
3641 		/*
3642 		 * Even though we checked this conditional above, we
3643 		 * need to check this again now that we have the
3644 		 * l2ad_mtx. This is because we could be racing with
3645 		 * another thread calling l2arc_evict() which might have
3646 		 * destroyed this header's L2 portion as we were waiting
3647 		 * to acquire the l2ad_mtx. If that happens, we don't
3648 		 * want to re-destroy the header's L2 portion.
3649 		 */
3650 		if (HDR_HAS_L2HDR(hdr)) {
3651 
3652 			if (!HDR_EMPTY(hdr))
3653 				buf_discard_identity(hdr);
3654 
3655 			arc_hdr_l2hdr_destroy(hdr);
3656 		}
3657 
3658 		if (!buflist_held)
3659 			mutex_exit(&dev->l2ad_mtx);
3660 	}
3661 
3662 	/*
3663 	 * The header's identify can only be safely discarded once it is no
3664 	 * longer discoverable.  This requires removing it from the hash table
3665 	 * and the l2arc header list.  After this point the hash lock can not
3666 	 * be used to protect the header.
3667 	 */
3668 	if (!HDR_EMPTY(hdr))
3669 		buf_discard_identity(hdr);
3670 
3671 	if (HDR_HAS_L1HDR(hdr)) {
3672 		arc_cksum_free(hdr);
3673 
3674 		while (hdr->b_l1hdr.b_buf != NULL)
3675 			arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3676 
3677 		if (hdr->b_l1hdr.b_pabd != NULL)
3678 			arc_hdr_free_abd(hdr, B_FALSE);
3679 
3680 		if (HDR_HAS_RABD(hdr))
3681 			arc_hdr_free_abd(hdr, B_TRUE);
3682 	}
3683 
3684 	ASSERT3P(hdr->b_hash_next, ==, NULL);
3685 	if (HDR_HAS_L1HDR(hdr)) {
3686 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3687 		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3688 #ifdef ZFS_DEBUG
3689 		ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3690 #endif
3691 		kmem_cache_free(hdr_full_cache, hdr);
3692 	} else {
3693 		kmem_cache_free(hdr_l2only_cache, hdr);
3694 	}
3695 }
3696 
3697 void
3698 arc_buf_destroy(arc_buf_t *buf, const void *tag)
3699 {
3700 	arc_buf_hdr_t *hdr = buf->b_hdr;
3701 
3702 	if (hdr->b_l1hdr.b_state == arc_anon) {
3703 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
3704 		ASSERT(ARC_BUF_LAST(buf));
3705 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3706 		VERIFY0(remove_reference(hdr, tag));
3707 		return;
3708 	}
3709 
3710 	kmutex_t *hash_lock = HDR_LOCK(hdr);
3711 	mutex_enter(hash_lock);
3712 
3713 	ASSERT3P(hdr, ==, buf->b_hdr);
3714 	ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
3715 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3716 	ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3717 	ASSERT3P(buf->b_data, !=, NULL);
3718 
3719 	arc_buf_destroy_impl(buf);
3720 	(void) remove_reference(hdr, tag);
3721 	mutex_exit(hash_lock);
3722 }
3723 
3724 /*
3725  * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3726  * state of the header is dependent on its state prior to entering this
3727  * function. The following transitions are possible:
3728  *
3729  *    - arc_mru -> arc_mru_ghost
3730  *    - arc_mfu -> arc_mfu_ghost
3731  *    - arc_mru_ghost -> arc_l2c_only
3732  *    - arc_mru_ghost -> deleted
3733  *    - arc_mfu_ghost -> arc_l2c_only
3734  *    - arc_mfu_ghost -> deleted
3735  *    - arc_uncached -> deleted
3736  *
3737  * Return total size of evicted data buffers for eviction progress tracking.
3738  * When evicting from ghost states return logical buffer size to make eviction
3739  * progress at the same (or at least comparable) rate as from non-ghost states.
3740  *
3741  * Return *real_evicted for actual ARC size reduction to wake up threads
3742  * waiting for it.  For non-ghost states it includes size of evicted data
3743  * buffers (the headers are not freed there).  For ghost states it includes
3744  * only the evicted headers size.
3745  */
3746 static int64_t
3747 arc_evict_hdr(arc_buf_hdr_t *hdr, uint64_t *real_evicted)
3748 {
3749 	arc_state_t *evicted_state, *state;
3750 	int64_t bytes_evicted = 0;
3751 	uint_t min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
3752 	    arc_min_prescient_prefetch_ms : arc_min_prefetch_ms;
3753 
3754 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3755 	ASSERT(HDR_HAS_L1HDR(hdr));
3756 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3757 	ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3758 	ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3759 
3760 	*real_evicted = 0;
3761 	state = hdr->b_l1hdr.b_state;
3762 	if (GHOST_STATE(state)) {
3763 
3764 		/*
3765 		 * l2arc_write_buffers() relies on a header's L1 portion
3766 		 * (i.e. its b_pabd field) during it's write phase.
3767 		 * Thus, we cannot push a header onto the arc_l2c_only
3768 		 * state (removing its L1 piece) until the header is
3769 		 * done being written to the l2arc.
3770 		 */
3771 		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3772 			ARCSTAT_BUMP(arcstat_evict_l2_skip);
3773 			return (bytes_evicted);
3774 		}
3775 
3776 		ARCSTAT_BUMP(arcstat_deleted);
3777 		bytes_evicted += HDR_GET_LSIZE(hdr);
3778 
3779 		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3780 
3781 		if (HDR_HAS_L2HDR(hdr)) {
3782 			ASSERT(hdr->b_l1hdr.b_pabd == NULL);
3783 			ASSERT(!HDR_HAS_RABD(hdr));
3784 			/*
3785 			 * This buffer is cached on the 2nd Level ARC;
3786 			 * don't destroy the header.
3787 			 */
3788 			arc_change_state(arc_l2c_only, hdr);
3789 			/*
3790 			 * dropping from L1+L2 cached to L2-only,
3791 			 * realloc to remove the L1 header.
3792 			 */
3793 			(void) arc_hdr_realloc(hdr, hdr_full_cache,
3794 			    hdr_l2only_cache);
3795 			*real_evicted += HDR_FULL_SIZE - HDR_L2ONLY_SIZE;
3796 		} else {
3797 			arc_change_state(arc_anon, hdr);
3798 			arc_hdr_destroy(hdr);
3799 			*real_evicted += HDR_FULL_SIZE;
3800 		}
3801 		return (bytes_evicted);
3802 	}
3803 
3804 	ASSERT(state == arc_mru || state == arc_mfu || state == arc_uncached);
3805 	evicted_state = (state == arc_uncached) ? arc_anon :
3806 	    ((state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost);
3807 
3808 	/* prefetch buffers have a minimum lifespan */
3809 	if ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3810 	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3811 	    MSEC_TO_TICK(min_lifetime)) {
3812 		ARCSTAT_BUMP(arcstat_evict_skip);
3813 		return (bytes_evicted);
3814 	}
3815 
3816 	if (HDR_HAS_L2HDR(hdr)) {
3817 		ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3818 	} else {
3819 		if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3820 			ARCSTAT_INCR(arcstat_evict_l2_eligible,
3821 			    HDR_GET_LSIZE(hdr));
3822 
3823 			switch (state->arcs_state) {
3824 				case ARC_STATE_MRU:
3825 					ARCSTAT_INCR(
3826 					    arcstat_evict_l2_eligible_mru,
3827 					    HDR_GET_LSIZE(hdr));
3828 					break;
3829 				case ARC_STATE_MFU:
3830 					ARCSTAT_INCR(
3831 					    arcstat_evict_l2_eligible_mfu,
3832 					    HDR_GET_LSIZE(hdr));
3833 					break;
3834 				default:
3835 					break;
3836 			}
3837 		} else {
3838 			ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3839 			    HDR_GET_LSIZE(hdr));
3840 		}
3841 	}
3842 
3843 	bytes_evicted += arc_hdr_size(hdr);
3844 	*real_evicted += arc_hdr_size(hdr);
3845 
3846 	/*
3847 	 * If this hdr is being evicted and has a compressed buffer then we
3848 	 * discard it here before we change states.  This ensures that the
3849 	 * accounting is updated correctly in arc_free_data_impl().
3850 	 */
3851 	if (hdr->b_l1hdr.b_pabd != NULL)
3852 		arc_hdr_free_abd(hdr, B_FALSE);
3853 
3854 	if (HDR_HAS_RABD(hdr))
3855 		arc_hdr_free_abd(hdr, B_TRUE);
3856 
3857 	arc_change_state(evicted_state, hdr);
3858 	DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3859 	if (evicted_state == arc_anon) {
3860 		arc_hdr_destroy(hdr);
3861 		*real_evicted += HDR_FULL_SIZE;
3862 	} else {
3863 		ASSERT(HDR_IN_HASH_TABLE(hdr));
3864 	}
3865 
3866 	return (bytes_evicted);
3867 }
3868 
3869 static void
3870 arc_set_need_free(void)
3871 {
3872 	ASSERT(MUTEX_HELD(&arc_evict_lock));
3873 	int64_t remaining = arc_free_memory() - arc_sys_free / 2;
3874 	arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters);
3875 	if (aw == NULL) {
3876 		arc_need_free = MAX(-remaining, 0);
3877 	} else {
3878 		arc_need_free =
3879 		    MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count));
3880 	}
3881 }
3882 
3883 static uint64_t
3884 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3885     uint64_t spa, uint64_t bytes)
3886 {
3887 	multilist_sublist_t *mls;
3888 	uint64_t bytes_evicted = 0, real_evicted = 0;
3889 	arc_buf_hdr_t *hdr;
3890 	kmutex_t *hash_lock;
3891 	uint_t evict_count = zfs_arc_evict_batch_limit;
3892 
3893 	ASSERT3P(marker, !=, NULL);
3894 
3895 	mls = multilist_sublist_lock_idx(ml, idx);
3896 
3897 	for (hdr = multilist_sublist_prev(mls, marker); likely(hdr != NULL);
3898 	    hdr = multilist_sublist_prev(mls, marker)) {
3899 		if ((evict_count == 0) || (bytes_evicted >= bytes))
3900 			break;
3901 
3902 		/*
3903 		 * To keep our iteration location, move the marker
3904 		 * forward. Since we're not holding hdr's hash lock, we
3905 		 * must be very careful and not remove 'hdr' from the
3906 		 * sublist. Otherwise, other consumers might mistake the
3907 		 * 'hdr' as not being on a sublist when they call the
3908 		 * multilist_link_active() function (they all rely on
3909 		 * the hash lock protecting concurrent insertions and
3910 		 * removals). multilist_sublist_move_forward() was
3911 		 * specifically implemented to ensure this is the case
3912 		 * (only 'marker' will be removed and re-inserted).
3913 		 */
3914 		multilist_sublist_move_forward(mls, marker);
3915 
3916 		/*
3917 		 * The only case where the b_spa field should ever be
3918 		 * zero, is the marker headers inserted by
3919 		 * arc_evict_state(). It's possible for multiple threads
3920 		 * to be calling arc_evict_state() concurrently (e.g.
3921 		 * dsl_pool_close() and zio_inject_fault()), so we must
3922 		 * skip any markers we see from these other threads.
3923 		 */
3924 		if (hdr->b_spa == 0)
3925 			continue;
3926 
3927 		/* we're only interested in evicting buffers of a certain spa */
3928 		if (spa != 0 && hdr->b_spa != spa) {
3929 			ARCSTAT_BUMP(arcstat_evict_skip);
3930 			continue;
3931 		}
3932 
3933 		hash_lock = HDR_LOCK(hdr);
3934 
3935 		/*
3936 		 * We aren't calling this function from any code path
3937 		 * that would already be holding a hash lock, so we're
3938 		 * asserting on this assumption to be defensive in case
3939 		 * this ever changes. Without this check, it would be
3940 		 * possible to incorrectly increment arcstat_mutex_miss
3941 		 * below (e.g. if the code changed such that we called
3942 		 * this function with a hash lock held).
3943 		 */
3944 		ASSERT(!MUTEX_HELD(hash_lock));
3945 
3946 		if (mutex_tryenter(hash_lock)) {
3947 			uint64_t revicted;
3948 			uint64_t evicted = arc_evict_hdr(hdr, &revicted);
3949 			mutex_exit(hash_lock);
3950 
3951 			bytes_evicted += evicted;
3952 			real_evicted += revicted;
3953 
3954 			/*
3955 			 * If evicted is zero, arc_evict_hdr() must have
3956 			 * decided to skip this header, don't increment
3957 			 * evict_count in this case.
3958 			 */
3959 			if (evicted != 0)
3960 				evict_count--;
3961 
3962 		} else {
3963 			ARCSTAT_BUMP(arcstat_mutex_miss);
3964 		}
3965 	}
3966 
3967 	multilist_sublist_unlock(mls);
3968 
3969 	/*
3970 	 * Increment the count of evicted bytes, and wake up any threads that
3971 	 * are waiting for the count to reach this value.  Since the list is
3972 	 * ordered by ascending aew_count, we pop off the beginning of the
3973 	 * list until we reach the end, or a waiter that's past the current
3974 	 * "count".  Doing this outside the loop reduces the number of times
3975 	 * we need to acquire the global arc_evict_lock.
3976 	 *
3977 	 * Only wake when there's sufficient free memory in the system
3978 	 * (specifically, arc_sys_free/2, which by default is a bit more than
3979 	 * 1/64th of RAM).  See the comments in arc_wait_for_eviction().
3980 	 */
3981 	mutex_enter(&arc_evict_lock);
3982 	arc_evict_count += real_evicted;
3983 
3984 	if (arc_free_memory() > arc_sys_free / 2) {
3985 		arc_evict_waiter_t *aw;
3986 		while ((aw = list_head(&arc_evict_waiters)) != NULL &&
3987 		    aw->aew_count <= arc_evict_count) {
3988 			list_remove(&arc_evict_waiters, aw);
3989 			cv_broadcast(&aw->aew_cv);
3990 		}
3991 	}
3992 	arc_set_need_free();
3993 	mutex_exit(&arc_evict_lock);
3994 
3995 	/*
3996 	 * If the ARC size is reduced from arc_c_max to arc_c_min (especially
3997 	 * if the average cached block is small), eviction can be on-CPU for
3998 	 * many seconds.  To ensure that other threads that may be bound to
3999 	 * this CPU are able to make progress, make a voluntary preemption
4000 	 * call here.
4001 	 */
4002 	kpreempt(KPREEMPT_SYNC);
4003 
4004 	return (bytes_evicted);
4005 }
4006 
4007 static arc_buf_hdr_t *
4008 arc_state_alloc_marker(void)
4009 {
4010 	arc_buf_hdr_t *marker = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
4011 
4012 	/*
4013 	 * A b_spa of 0 is used to indicate that this header is
4014 	 * a marker. This fact is used in arc_evict_state_impl().
4015 	 */
4016 	marker->b_spa = 0;
4017 
4018 	return (marker);
4019 }
4020 
4021 static void
4022 arc_state_free_marker(arc_buf_hdr_t *marker)
4023 {
4024 	kmem_cache_free(hdr_full_cache, marker);
4025 }
4026 
4027 /*
4028  * Allocate an array of buffer headers used as placeholders during arc state
4029  * eviction.
4030  */
4031 static arc_buf_hdr_t **
4032 arc_state_alloc_markers(int count)
4033 {
4034 	arc_buf_hdr_t **markers;
4035 
4036 	markers = kmem_zalloc(sizeof (*markers) * count, KM_SLEEP);
4037 	for (int i = 0; i < count; i++)
4038 		markers[i] = arc_state_alloc_marker();
4039 	return (markers);
4040 }
4041 
4042 static void
4043 arc_state_free_markers(arc_buf_hdr_t **markers, int count)
4044 {
4045 	for (int i = 0; i < count; i++)
4046 		arc_state_free_marker(markers[i]);
4047 	kmem_free(markers, sizeof (*markers) * count);
4048 }
4049 
4050 /*
4051  * Evict buffers from the given arc state, until we've removed the
4052  * specified number of bytes. Move the removed buffers to the
4053  * appropriate evict state.
4054  *
4055  * This function makes a "best effort". It skips over any buffers
4056  * it can't get a hash_lock on, and so, may not catch all candidates.
4057  * It may also return without evicting as much space as requested.
4058  *
4059  * If bytes is specified using the special value ARC_EVICT_ALL, this
4060  * will evict all available (i.e. unlocked and evictable) buffers from
4061  * the given arc state; which is used by arc_flush().
4062  */
4063 static uint64_t
4064 arc_evict_state(arc_state_t *state, arc_buf_contents_t type, uint64_t spa,
4065     uint64_t bytes)
4066 {
4067 	uint64_t total_evicted = 0;
4068 	multilist_t *ml = &state->arcs_list[type];
4069 	int num_sublists;
4070 	arc_buf_hdr_t **markers;
4071 
4072 	num_sublists = multilist_get_num_sublists(ml);
4073 
4074 	/*
4075 	 * If we've tried to evict from each sublist, made some
4076 	 * progress, but still have not hit the target number of bytes
4077 	 * to evict, we want to keep trying. The markers allow us to
4078 	 * pick up where we left off for each individual sublist, rather
4079 	 * than starting from the tail each time.
4080 	 */
4081 	if (zthr_iscurthread(arc_evict_zthr)) {
4082 		markers = arc_state_evict_markers;
4083 		ASSERT3S(num_sublists, <=, arc_state_evict_marker_count);
4084 	} else {
4085 		markers = arc_state_alloc_markers(num_sublists);
4086 	}
4087 	for (int i = 0; i < num_sublists; i++) {
4088 		multilist_sublist_t *mls;
4089 
4090 		mls = multilist_sublist_lock_idx(ml, i);
4091 		multilist_sublist_insert_tail(mls, markers[i]);
4092 		multilist_sublist_unlock(mls);
4093 	}
4094 
4095 	/*
4096 	 * While we haven't hit our target number of bytes to evict, or
4097 	 * we're evicting all available buffers.
4098 	 */
4099 	while (total_evicted < bytes) {
4100 		int sublist_idx = multilist_get_random_index(ml);
4101 		uint64_t scan_evicted = 0;
4102 
4103 		/*
4104 		 * Start eviction using a randomly selected sublist,
4105 		 * this is to try and evenly balance eviction across all
4106 		 * sublists. Always starting at the same sublist
4107 		 * (e.g. index 0) would cause evictions to favor certain
4108 		 * sublists over others.
4109 		 */
4110 		for (int i = 0; i < num_sublists; i++) {
4111 			uint64_t bytes_remaining;
4112 			uint64_t bytes_evicted;
4113 
4114 			if (total_evicted < bytes)
4115 				bytes_remaining = bytes - total_evicted;
4116 			else
4117 				break;
4118 
4119 			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
4120 			    markers[sublist_idx], spa, bytes_remaining);
4121 
4122 			scan_evicted += bytes_evicted;
4123 			total_evicted += bytes_evicted;
4124 
4125 			/* we've reached the end, wrap to the beginning */
4126 			if (++sublist_idx >= num_sublists)
4127 				sublist_idx = 0;
4128 		}
4129 
4130 		/*
4131 		 * If we didn't evict anything during this scan, we have
4132 		 * no reason to believe we'll evict more during another
4133 		 * scan, so break the loop.
4134 		 */
4135 		if (scan_evicted == 0) {
4136 			/* This isn't possible, let's make that obvious */
4137 			ASSERT3S(bytes, !=, 0);
4138 
4139 			/*
4140 			 * When bytes is ARC_EVICT_ALL, the only way to
4141 			 * break the loop is when scan_evicted is zero.
4142 			 * In that case, we actually have evicted enough,
4143 			 * so we don't want to increment the kstat.
4144 			 */
4145 			if (bytes != ARC_EVICT_ALL) {
4146 				ASSERT3S(total_evicted, <, bytes);
4147 				ARCSTAT_BUMP(arcstat_evict_not_enough);
4148 			}
4149 
4150 			break;
4151 		}
4152 	}
4153 
4154 	for (int i = 0; i < num_sublists; i++) {
4155 		multilist_sublist_t *mls = multilist_sublist_lock_idx(ml, i);
4156 		multilist_sublist_remove(mls, markers[i]);
4157 		multilist_sublist_unlock(mls);
4158 	}
4159 	if (markers != arc_state_evict_markers)
4160 		arc_state_free_markers(markers, num_sublists);
4161 
4162 	return (total_evicted);
4163 }
4164 
4165 /*
4166  * Flush all "evictable" data of the given type from the arc state
4167  * specified. This will not evict any "active" buffers (i.e. referenced).
4168  *
4169  * When 'retry' is set to B_FALSE, the function will make a single pass
4170  * over the state and evict any buffers that it can. Since it doesn't
4171  * continually retry the eviction, it might end up leaving some buffers
4172  * in the ARC due to lock misses.
4173  *
4174  * When 'retry' is set to B_TRUE, the function will continually retry the
4175  * eviction until *all* evictable buffers have been removed from the
4176  * state. As a result, if concurrent insertions into the state are
4177  * allowed (e.g. if the ARC isn't shutting down), this function might
4178  * wind up in an infinite loop, continually trying to evict buffers.
4179  */
4180 static uint64_t
4181 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
4182     boolean_t retry)
4183 {
4184 	uint64_t evicted = 0;
4185 
4186 	while (zfs_refcount_count(&state->arcs_esize[type]) != 0) {
4187 		evicted += arc_evict_state(state, type, spa, ARC_EVICT_ALL);
4188 
4189 		if (!retry)
4190 			break;
4191 	}
4192 
4193 	return (evicted);
4194 }
4195 
4196 /*
4197  * Evict the specified number of bytes from the state specified. This
4198  * function prevents us from trying to evict more from a state's list
4199  * than is "evictable", and to skip evicting altogether when passed a
4200  * negative value for "bytes". In contrast, arc_evict_state() will
4201  * evict everything it can, when passed a negative value for "bytes".
4202  */
4203 static uint64_t
4204 arc_evict_impl(arc_state_t *state, arc_buf_contents_t type, int64_t bytes)
4205 {
4206 	uint64_t delta;
4207 
4208 	if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) {
4209 		delta = MIN(zfs_refcount_count(&state->arcs_esize[type]),
4210 		    bytes);
4211 		return (arc_evict_state(state, type, 0, delta));
4212 	}
4213 
4214 	return (0);
4215 }
4216 
4217 /*
4218  * Adjust specified fraction, taking into account initial ghost state(s) size,
4219  * ghost hit bytes towards increasing the fraction, ghost hit bytes towards
4220  * decreasing it, plus a balance factor, controlling the decrease rate, used
4221  * to balance metadata vs data.
4222  */
4223 static uint64_t
4224 arc_evict_adj(uint64_t frac, uint64_t total, uint64_t up, uint64_t down,
4225     uint_t balance)
4226 {
4227 	if (total < 8 || up + down == 0)
4228 		return (frac);
4229 
4230 	/*
4231 	 * We should not have more ghost hits than ghost size, but they
4232 	 * may get close.  Restrict maximum adjustment in that case.
4233 	 */
4234 	if (up + down >= total / 4) {
4235 		uint64_t scale = (up + down) / (total / 8);
4236 		up /= scale;
4237 		down /= scale;
4238 	}
4239 
4240 	/* Get maximal dynamic range by choosing optimal shifts. */
4241 	int s = highbit64(total);
4242 	s = MIN(64 - s, 32);
4243 
4244 	uint64_t ofrac = (1ULL << 32) - frac;
4245 
4246 	if (frac >= 4 * ofrac)
4247 		up /= frac / (2 * ofrac + 1);
4248 	up = (up << s) / (total >> (32 - s));
4249 	if (ofrac >= 4 * frac)
4250 		down /= ofrac / (2 * frac + 1);
4251 	down = (down << s) / (total >> (32 - s));
4252 	down = down * 100 / balance;
4253 
4254 	return (frac + up - down);
4255 }
4256 
4257 /*
4258  * Calculate (x * multiplier / divisor) without unnecesary overflows.
4259  */
4260 static uint64_t
4261 arc_mf(uint64_t x, uint64_t multiplier, uint64_t divisor)
4262 {
4263 	uint64_t q = (x / divisor);
4264 	uint64_t r = (x % divisor);
4265 
4266 	return ((q * multiplier) + ((r * multiplier) / divisor));
4267 }
4268 
4269 /*
4270  * Evict buffers from the cache, such that arcstat_size is capped by arc_c.
4271  */
4272 static uint64_t
4273 arc_evict(void)
4274 {
4275 	uint64_t bytes, total_evicted = 0;
4276 	int64_t e, mrud, mrum, mfud, mfum, w;
4277 	static uint64_t ogrd, ogrm, ogfd, ogfm;
4278 	static uint64_t gsrd, gsrm, gsfd, gsfm;
4279 	uint64_t ngrd, ngrm, ngfd, ngfm;
4280 
4281 	/* Get current size of ARC states we can evict from. */
4282 	mrud = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_DATA]) +
4283 	    zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]);
4284 	mrum = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA]) +
4285 	    zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
4286 	mfud = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
4287 	mfum = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
4288 	uint64_t d = mrud + mfud;
4289 	uint64_t m = mrum + mfum;
4290 	uint64_t t = d + m;
4291 
4292 	/* Get ARC ghost hits since last eviction. */
4293 	ngrd = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]);
4294 	uint64_t grd = ngrd - ogrd;
4295 	ogrd = ngrd;
4296 	ngrm = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]);
4297 	uint64_t grm = ngrm - ogrm;
4298 	ogrm = ngrm;
4299 	ngfd = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]);
4300 	uint64_t gfd = ngfd - ogfd;
4301 	ogfd = ngfd;
4302 	ngfm = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]);
4303 	uint64_t gfm = ngfm - ogfm;
4304 	ogfm = ngfm;
4305 
4306 	/* Adjust ARC states balance based on ghost hits. */
4307 	arc_meta = arc_evict_adj(arc_meta, gsrd + gsrm + gsfd + gsfm,
4308 	    grm + gfm, grd + gfd, zfs_arc_meta_balance);
4309 	arc_pd = arc_evict_adj(arc_pd, gsrd + gsfd, grd, gfd, 100);
4310 	arc_pm = arc_evict_adj(arc_pm, gsrm + gsfm, grm, gfm, 100);
4311 
4312 	uint64_t asize = aggsum_value(&arc_sums.arcstat_size);
4313 	uint64_t ac = arc_c;
4314 	int64_t wt = t - (asize - ac);
4315 
4316 	/*
4317 	 * Try to reduce pinned dnodes if more than 3/4 of wanted metadata
4318 	 * target is not evictable or if they go over arc_dnode_limit.
4319 	 */
4320 	int64_t prune = 0;
4321 	int64_t dn = wmsum_value(&arc_sums.arcstat_dnode_size);
4322 	int64_t nem = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA])
4323 	    + zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA])
4324 	    - zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA])
4325 	    - zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
4326 	w = wt * (int64_t)(arc_meta >> 16) >> 16;
4327 	if (nem > w * 3 / 4) {
4328 		prune = dn / sizeof (dnode_t) *
4329 		    zfs_arc_dnode_reduce_percent / 100;
4330 		if (nem < w && w > 4)
4331 			prune = arc_mf(prune, nem - w * 3 / 4, w / 4);
4332 	}
4333 	if (dn > arc_dnode_limit) {
4334 		prune = MAX(prune, (dn - arc_dnode_limit) / sizeof (dnode_t) *
4335 		    zfs_arc_dnode_reduce_percent / 100);
4336 	}
4337 	if (prune > 0)
4338 		arc_prune_async(prune);
4339 
4340 	/* Evict MRU metadata. */
4341 	w = wt * (int64_t)(arc_meta * arc_pm >> 48) >> 16;
4342 	e = MIN((int64_t)(asize - ac), (int64_t)(mrum - w));
4343 	bytes = arc_evict_impl(arc_mru, ARC_BUFC_METADATA, e);
4344 	total_evicted += bytes;
4345 	mrum -= bytes;
4346 	asize -= bytes;
4347 
4348 	/* Evict MFU metadata. */
4349 	w = wt * (int64_t)(arc_meta >> 16) >> 16;
4350 	e = MIN((int64_t)(asize - ac), (int64_t)(m - bytes - w));
4351 	bytes = arc_evict_impl(arc_mfu, ARC_BUFC_METADATA, e);
4352 	total_evicted += bytes;
4353 	mfum -= bytes;
4354 	asize -= bytes;
4355 
4356 	/* Evict MRU data. */
4357 	wt -= m - total_evicted;
4358 	w = wt * (int64_t)(arc_pd >> 16) >> 16;
4359 	e = MIN((int64_t)(asize - ac), (int64_t)(mrud - w));
4360 	bytes = arc_evict_impl(arc_mru, ARC_BUFC_DATA, e);
4361 	total_evicted += bytes;
4362 	mrud -= bytes;
4363 	asize -= bytes;
4364 
4365 	/* Evict MFU data. */
4366 	e = asize - ac;
4367 	bytes = arc_evict_impl(arc_mfu, ARC_BUFC_DATA, e);
4368 	mfud -= bytes;
4369 	total_evicted += bytes;
4370 
4371 	/*
4372 	 * Evict ghost lists
4373 	 *
4374 	 * Size of each state's ghost list represents how much that state
4375 	 * may grow by shrinking the other states.  Would it need to shrink
4376 	 * other states to zero (that is unlikely), its ghost size would be
4377 	 * equal to sum of other three state sizes.  But excessive ghost
4378 	 * size may result in false ghost hits (too far back), that may
4379 	 * never result in real cache hits if several states are competing.
4380 	 * So choose some arbitraty point of 1/2 of other state sizes.
4381 	 */
4382 	gsrd = (mrum + mfud + mfum) / 2;
4383 	e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]) -
4384 	    gsrd;
4385 	(void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_DATA, e);
4386 
4387 	gsrm = (mrud + mfud + mfum) / 2;
4388 	e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]) -
4389 	    gsrm;
4390 	(void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_METADATA, e);
4391 
4392 	gsfd = (mrud + mrum + mfum) / 2;
4393 	e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]) -
4394 	    gsfd;
4395 	(void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_DATA, e);
4396 
4397 	gsfm = (mrud + mrum + mfud) / 2;
4398 	e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]) -
4399 	    gsfm;
4400 	(void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_METADATA, e);
4401 
4402 	return (total_evicted);
4403 }
4404 
4405 static void
4406 arc_flush_impl(uint64_t guid, boolean_t retry)
4407 {
4408 	ASSERT(!retry || guid == 0);
4409 
4410 	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4411 	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4412 
4413 	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4414 	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4415 
4416 	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4417 	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
4418 
4419 	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4420 	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
4421 
4422 	(void) arc_flush_state(arc_uncached, guid, ARC_BUFC_DATA, retry);
4423 	(void) arc_flush_state(arc_uncached, guid, ARC_BUFC_METADATA, retry);
4424 }
4425 
4426 void
4427 arc_flush(spa_t *spa, boolean_t retry)
4428 {
4429 	/*
4430 	 * If retry is B_TRUE, a spa must not be specified since we have
4431 	 * no good way to determine if all of a spa's buffers have been
4432 	 * evicted from an arc state.
4433 	 */
4434 	ASSERT(!retry || spa == NULL);
4435 
4436 	arc_flush_impl(spa != NULL ? spa_load_guid(spa) : 0, retry);
4437 }
4438 
4439 static arc_async_flush_t *
4440 arc_async_flush_add(uint64_t spa_guid, uint_t level)
4441 {
4442 	arc_async_flush_t *af = kmem_alloc(sizeof (*af), KM_SLEEP);
4443 	af->af_spa_guid = spa_guid;
4444 	af->af_cache_level = level;
4445 	taskq_init_ent(&af->af_tqent);
4446 	list_link_init(&af->af_node);
4447 
4448 	mutex_enter(&arc_async_flush_lock);
4449 	list_insert_tail(&arc_async_flush_list, af);
4450 	mutex_exit(&arc_async_flush_lock);
4451 
4452 	return (af);
4453 }
4454 
4455 static void
4456 arc_async_flush_remove(uint64_t spa_guid, uint_t level)
4457 {
4458 	mutex_enter(&arc_async_flush_lock);
4459 	for (arc_async_flush_t *af = list_head(&arc_async_flush_list);
4460 	    af != NULL; af = list_next(&arc_async_flush_list, af)) {
4461 		if (af->af_spa_guid == spa_guid &&
4462 		    af->af_cache_level == level) {
4463 			list_remove(&arc_async_flush_list, af);
4464 			kmem_free(af, sizeof (*af));
4465 			break;
4466 		}
4467 	}
4468 	mutex_exit(&arc_async_flush_lock);
4469 }
4470 
4471 static void
4472 arc_flush_task(void *arg)
4473 {
4474 	arc_async_flush_t *af = arg;
4475 	hrtime_t start_time = gethrtime();
4476 	uint64_t spa_guid = af->af_spa_guid;
4477 
4478 	arc_flush_impl(spa_guid, B_FALSE);
4479 	arc_async_flush_remove(spa_guid, af->af_cache_level);
4480 
4481 	uint64_t elaspsed = NSEC2MSEC(gethrtime() - start_time);
4482 	if (elaspsed > 0) {
4483 		zfs_dbgmsg("spa %llu arc flushed in %llu ms",
4484 		    (u_longlong_t)spa_guid, (u_longlong_t)elaspsed);
4485 	}
4486 }
4487 
4488 /*
4489  * ARC buffers use the spa's load guid and can continue to exist after
4490  * the spa_t is gone (exported). The blocks are orphaned since each
4491  * spa import has a different load guid.
4492  *
4493  * It's OK if the spa is re-imported while this asynchronous flush is
4494  * still in progress. The new spa_load_guid will be different.
4495  *
4496  * Also, arc_fini will wait for any arc_flush_task to finish.
4497  */
4498 void
4499 arc_flush_async(spa_t *spa)
4500 {
4501 	uint64_t spa_guid = spa_load_guid(spa);
4502 	arc_async_flush_t *af = arc_async_flush_add(spa_guid, 1);
4503 
4504 	taskq_dispatch_ent(arc_flush_taskq, arc_flush_task,
4505 	    af, TQ_SLEEP, &af->af_tqent);
4506 }
4507 
4508 /*
4509  * Check if a guid is still in-use as part of an async teardown task
4510  */
4511 boolean_t
4512 arc_async_flush_guid_inuse(uint64_t spa_guid)
4513 {
4514 	mutex_enter(&arc_async_flush_lock);
4515 	for (arc_async_flush_t *af = list_head(&arc_async_flush_list);
4516 	    af != NULL; af = list_next(&arc_async_flush_list, af)) {
4517 		if (af->af_spa_guid == spa_guid) {
4518 			mutex_exit(&arc_async_flush_lock);
4519 			return (B_TRUE);
4520 		}
4521 	}
4522 	mutex_exit(&arc_async_flush_lock);
4523 	return (B_FALSE);
4524 }
4525 
4526 uint64_t
4527 arc_reduce_target_size(uint64_t to_free)
4528 {
4529 	/*
4530 	 * Get the actual arc size.  Even if we don't need it, this updates
4531 	 * the aggsum lower bound estimate for arc_is_overflowing().
4532 	 */
4533 	uint64_t asize = aggsum_value(&arc_sums.arcstat_size);
4534 
4535 	/*
4536 	 * All callers want the ARC to actually evict (at least) this much
4537 	 * memory.  Therefore we reduce from the lower of the current size and
4538 	 * the target size.  This way, even if arc_c is much higher than
4539 	 * arc_size (as can be the case after many calls to arc_freed(), we will
4540 	 * immediately have arc_c < arc_size and therefore the arc_evict_zthr
4541 	 * will evict.
4542 	 */
4543 	uint64_t c = arc_c;
4544 	if (c > arc_c_min) {
4545 		c = MIN(c, MAX(asize, arc_c_min));
4546 		to_free = MIN(to_free, c - arc_c_min);
4547 		arc_c = c - to_free;
4548 	} else {
4549 		to_free = 0;
4550 	}
4551 
4552 	/*
4553 	 * Whether or not we reduced the target size, request eviction if the
4554 	 * current size is over it now, since caller obviously wants some RAM.
4555 	 */
4556 	if (asize > arc_c) {
4557 		/* See comment in arc_evict_cb_check() on why lock+flag */
4558 		mutex_enter(&arc_evict_lock);
4559 		arc_evict_needed = B_TRUE;
4560 		mutex_exit(&arc_evict_lock);
4561 		zthr_wakeup(arc_evict_zthr);
4562 	}
4563 
4564 	return (to_free);
4565 }
4566 
4567 /*
4568  * Determine if the system is under memory pressure and is asking
4569  * to reclaim memory. A return value of B_TRUE indicates that the system
4570  * is under memory pressure and that the arc should adjust accordingly.
4571  */
4572 boolean_t
4573 arc_reclaim_needed(void)
4574 {
4575 	return (arc_available_memory() < 0);
4576 }
4577 
4578 void
4579 arc_kmem_reap_soon(void)
4580 {
4581 	size_t			i;
4582 	kmem_cache_t		*prev_cache = NULL;
4583 	kmem_cache_t		*prev_data_cache = NULL;
4584 
4585 #ifdef _KERNEL
4586 #if defined(_ILP32)
4587 	/*
4588 	 * Reclaim unused memory from all kmem caches.
4589 	 */
4590 	kmem_reap();
4591 #endif
4592 #endif
4593 
4594 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4595 #if defined(_ILP32)
4596 		/* reach upper limit of cache size on 32-bit */
4597 		if (zio_buf_cache[i] == NULL)
4598 			break;
4599 #endif
4600 		if (zio_buf_cache[i] != prev_cache) {
4601 			prev_cache = zio_buf_cache[i];
4602 			kmem_cache_reap_now(zio_buf_cache[i]);
4603 		}
4604 		if (zio_data_buf_cache[i] != prev_data_cache) {
4605 			prev_data_cache = zio_data_buf_cache[i];
4606 			kmem_cache_reap_now(zio_data_buf_cache[i]);
4607 		}
4608 	}
4609 	kmem_cache_reap_now(buf_cache);
4610 	kmem_cache_reap_now(hdr_full_cache);
4611 	kmem_cache_reap_now(hdr_l2only_cache);
4612 	kmem_cache_reap_now(zfs_btree_leaf_cache);
4613 	abd_cache_reap_now();
4614 }
4615 
4616 static boolean_t
4617 arc_evict_cb_check(void *arg, zthr_t *zthr)
4618 {
4619 	(void) arg, (void) zthr;
4620 
4621 #ifdef ZFS_DEBUG
4622 	/*
4623 	 * This is necessary in order to keep the kstat information
4624 	 * up to date for tools that display kstat data such as the
4625 	 * mdb ::arc dcmd and the Linux crash utility.  These tools
4626 	 * typically do not call kstat's update function, but simply
4627 	 * dump out stats from the most recent update.  Without
4628 	 * this call, these commands may show stale stats for the
4629 	 * anon, mru, mru_ghost, mfu, and mfu_ghost lists.  Even
4630 	 * with this call, the data might be out of date if the
4631 	 * evict thread hasn't been woken recently; but that should
4632 	 * suffice.  The arc_state_t structures can be queried
4633 	 * directly if more accurate information is needed.
4634 	 */
4635 	if (arc_ksp != NULL)
4636 		arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4637 #endif
4638 
4639 	/*
4640 	 * We have to rely on arc_wait_for_eviction() to tell us when to
4641 	 * evict, rather than checking if we are overflowing here, so that we
4642 	 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv.
4643 	 * If we have become "not overflowing" since arc_wait_for_eviction()
4644 	 * checked, we need to wake it up.  We could broadcast the CV here,
4645 	 * but arc_wait_for_eviction() may have not yet gone to sleep.  We
4646 	 * would need to use a mutex to ensure that this function doesn't
4647 	 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g.
4648 	 * the arc_evict_lock).  However, the lock ordering of such a lock
4649 	 * would necessarily be incorrect with respect to the zthr_lock,
4650 	 * which is held before this function is called, and is held by
4651 	 * arc_wait_for_eviction() when it calls zthr_wakeup().
4652 	 */
4653 	if (arc_evict_needed)
4654 		return (B_TRUE);
4655 
4656 	/*
4657 	 * If we have buffers in uncached state, evict them periodically.
4658 	 */
4659 	return ((zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_DATA]) +
4660 	    zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]) &&
4661 	    ddi_get_lbolt() - arc_last_uncached_flush >
4662 	    MSEC_TO_TICK(arc_min_prefetch_ms / 2)));
4663 }
4664 
4665 /*
4666  * Keep arc_size under arc_c by running arc_evict which evicts data
4667  * from the ARC.
4668  */
4669 static void
4670 arc_evict_cb(void *arg, zthr_t *zthr)
4671 {
4672 	(void) arg;
4673 
4674 	uint64_t evicted = 0;
4675 	fstrans_cookie_t cookie = spl_fstrans_mark();
4676 
4677 	/* Always try to evict from uncached state. */
4678 	arc_last_uncached_flush = ddi_get_lbolt();
4679 	evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_DATA, B_FALSE);
4680 	evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_METADATA, B_FALSE);
4681 
4682 	/* Evict from other states only if told to. */
4683 	if (arc_evict_needed)
4684 		evicted += arc_evict();
4685 
4686 	/*
4687 	 * If evicted is zero, we couldn't evict anything
4688 	 * via arc_evict(). This could be due to hash lock
4689 	 * collisions, but more likely due to the majority of
4690 	 * arc buffers being unevictable. Therefore, even if
4691 	 * arc_size is above arc_c, another pass is unlikely to
4692 	 * be helpful and could potentially cause us to enter an
4693 	 * infinite loop.  Additionally, zthr_iscancelled() is
4694 	 * checked here so that if the arc is shutting down, the
4695 	 * broadcast will wake any remaining arc evict waiters.
4696 	 *
4697 	 * Note we cancel using zthr instead of arc_evict_zthr
4698 	 * because the latter may not yet be initializd when the
4699 	 * callback is first invoked.
4700 	 */
4701 	mutex_enter(&arc_evict_lock);
4702 	arc_evict_needed = !zthr_iscancelled(zthr) &&
4703 	    evicted > 0 && aggsum_compare(&arc_sums.arcstat_size, arc_c) > 0;
4704 	if (!arc_evict_needed) {
4705 		/*
4706 		 * We're either no longer overflowing, or we
4707 		 * can't evict anything more, so we should wake
4708 		 * arc_get_data_impl() sooner.
4709 		 */
4710 		arc_evict_waiter_t *aw;
4711 		while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) {
4712 			cv_broadcast(&aw->aew_cv);
4713 		}
4714 		arc_set_need_free();
4715 	}
4716 	mutex_exit(&arc_evict_lock);
4717 	spl_fstrans_unmark(cookie);
4718 }
4719 
4720 static boolean_t
4721 arc_reap_cb_check(void *arg, zthr_t *zthr)
4722 {
4723 	(void) arg, (void) zthr;
4724 
4725 	int64_t free_memory = arc_available_memory();
4726 	static int reap_cb_check_counter = 0;
4727 
4728 	/*
4729 	 * If a kmem reap is already active, don't schedule more.  We must
4730 	 * check for this because kmem_cache_reap_soon() won't actually
4731 	 * block on the cache being reaped (this is to prevent callers from
4732 	 * becoming implicitly blocked by a system-wide kmem reap -- which,
4733 	 * on a system with many, many full magazines, can take minutes).
4734 	 */
4735 	if (!kmem_cache_reap_active() && free_memory < 0) {
4736 
4737 		arc_no_grow = B_TRUE;
4738 		arc_warm = B_TRUE;
4739 		/*
4740 		 * Wait at least zfs_grow_retry (default 5) seconds
4741 		 * before considering growing.
4742 		 */
4743 		arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4744 		return (B_TRUE);
4745 	} else if (free_memory < arc_c >> arc_no_grow_shift) {
4746 		arc_no_grow = B_TRUE;
4747 	} else if (gethrtime() >= arc_growtime) {
4748 		arc_no_grow = B_FALSE;
4749 	}
4750 
4751 	/*
4752 	 * Called unconditionally every 60 seconds to reclaim unused
4753 	 * zstd compression and decompression context. This is done
4754 	 * here to avoid the need for an independent thread.
4755 	 */
4756 	if (!((reap_cb_check_counter++) % 60))
4757 		zfs_zstd_cache_reap_now();
4758 
4759 	return (B_FALSE);
4760 }
4761 
4762 /*
4763  * Keep enough free memory in the system by reaping the ARC's kmem
4764  * caches.  To cause more slabs to be reapable, we may reduce the
4765  * target size of the cache (arc_c), causing the arc_evict_cb()
4766  * to free more buffers.
4767  */
4768 static void
4769 arc_reap_cb(void *arg, zthr_t *zthr)
4770 {
4771 	int64_t can_free, free_memory, to_free;
4772 
4773 	(void) arg, (void) zthr;
4774 	fstrans_cookie_t cookie = spl_fstrans_mark();
4775 
4776 	/*
4777 	 * Kick off asynchronous kmem_reap()'s of all our caches.
4778 	 */
4779 	arc_kmem_reap_soon();
4780 
4781 	/*
4782 	 * Wait at least arc_kmem_cache_reap_retry_ms between
4783 	 * arc_kmem_reap_soon() calls. Without this check it is possible to
4784 	 * end up in a situation where we spend lots of time reaping
4785 	 * caches, while we're near arc_c_min.  Waiting here also gives the
4786 	 * subsequent free memory check a chance of finding that the
4787 	 * asynchronous reap has already freed enough memory, and we don't
4788 	 * need to call arc_reduce_target_size().
4789 	 */
4790 	delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000);
4791 
4792 	/*
4793 	 * Reduce the target size as needed to maintain the amount of free
4794 	 * memory in the system at a fraction of the arc_size (1/128th by
4795 	 * default).  If oversubscribed (free_memory < 0) then reduce the
4796 	 * target arc_size by the deficit amount plus the fractional
4797 	 * amount.  If free memory is positive but less than the fractional
4798 	 * amount, reduce by what is needed to hit the fractional amount.
4799 	 */
4800 	free_memory = arc_available_memory();
4801 	can_free = arc_c - arc_c_min;
4802 	to_free = (MAX(can_free, 0) >> arc_shrink_shift) - free_memory;
4803 	if (to_free > 0)
4804 		arc_reduce_target_size(to_free);
4805 	spl_fstrans_unmark(cookie);
4806 }
4807 
4808 #ifdef _KERNEL
4809 /*
4810  * Determine the amount of memory eligible for eviction contained in the
4811  * ARC. All clean data reported by the ghost lists can always be safely
4812  * evicted. Due to arc_c_min, the same does not hold for all clean data
4813  * contained by the regular mru and mfu lists.
4814  *
4815  * In the case of the regular mru and mfu lists, we need to report as
4816  * much clean data as possible, such that evicting that same reported
4817  * data will not bring arc_size below arc_c_min. Thus, in certain
4818  * circumstances, the total amount of clean data in the mru and mfu
4819  * lists might not actually be evictable.
4820  *
4821  * The following two distinct cases are accounted for:
4822  *
4823  * 1. The sum of the amount of dirty data contained by both the mru and
4824  *    mfu lists, plus the ARC's other accounting (e.g. the anon list),
4825  *    is greater than or equal to arc_c_min.
4826  *    (i.e. amount of dirty data >= arc_c_min)
4827  *
4828  *    This is the easy case; all clean data contained by the mru and mfu
4829  *    lists is evictable. Evicting all clean data can only drop arc_size
4830  *    to the amount of dirty data, which is greater than arc_c_min.
4831  *
4832  * 2. The sum of the amount of dirty data contained by both the mru and
4833  *    mfu lists, plus the ARC's other accounting (e.g. the anon list),
4834  *    is less than arc_c_min.
4835  *    (i.e. arc_c_min > amount of dirty data)
4836  *
4837  *    2.1. arc_size is greater than or equal arc_c_min.
4838  *         (i.e. arc_size >= arc_c_min > amount of dirty data)
4839  *
4840  *         In this case, not all clean data from the regular mru and mfu
4841  *         lists is actually evictable; we must leave enough clean data
4842  *         to keep arc_size above arc_c_min. Thus, the maximum amount of
4843  *         evictable data from the two lists combined, is exactly the
4844  *         difference between arc_size and arc_c_min.
4845  *
4846  *    2.2. arc_size is less than arc_c_min
4847  *         (i.e. arc_c_min > arc_size > amount of dirty data)
4848  *
4849  *         In this case, none of the data contained in the mru and mfu
4850  *         lists is evictable, even if it's clean. Since arc_size is
4851  *         already below arc_c_min, evicting any more would only
4852  *         increase this negative difference.
4853  */
4854 
4855 #endif /* _KERNEL */
4856 
4857 /*
4858  * Adapt arc info given the number of bytes we are trying to add and
4859  * the state that we are coming from.  This function is only called
4860  * when we are adding new content to the cache.
4861  */
4862 static void
4863 arc_adapt(uint64_t bytes)
4864 {
4865 	/*
4866 	 * Wake reap thread if we do not have any available memory
4867 	 */
4868 	if (arc_reclaim_needed()) {
4869 		zthr_wakeup(arc_reap_zthr);
4870 		return;
4871 	}
4872 
4873 	if (arc_no_grow)
4874 		return;
4875 
4876 	if (arc_c >= arc_c_max)
4877 		return;
4878 
4879 	/*
4880 	 * If we're within (2 * maxblocksize) bytes of the target
4881 	 * cache size, increment the target cache size
4882 	 */
4883 	if (aggsum_upper_bound(&arc_sums.arcstat_size) +
4884 	    2 * SPA_MAXBLOCKSIZE >= arc_c) {
4885 		uint64_t dc = MAX(bytes, SPA_OLD_MAXBLOCKSIZE);
4886 		if (atomic_add_64_nv(&arc_c, dc) > arc_c_max)
4887 			arc_c = arc_c_max;
4888 	}
4889 }
4890 
4891 /*
4892  * Check if ARC current size has grown past our upper thresholds.
4893  */
4894 static arc_ovf_level_t
4895 arc_is_overflowing(boolean_t lax, boolean_t use_reserve)
4896 {
4897 	/*
4898 	 * We just compare the lower bound here for performance reasons. Our
4899 	 * primary goals are to make sure that the arc never grows without
4900 	 * bound, and that it can reach its maximum size. This check
4901 	 * accomplishes both goals. The maximum amount we could run over by is
4902 	 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
4903 	 * in the ARC. In practice, that's in the tens of MB, which is low
4904 	 * enough to be safe.
4905 	 */
4906 	int64_t over = aggsum_lower_bound(&arc_sums.arcstat_size) - arc_c -
4907 	    zfs_max_recordsize;
4908 
4909 	/* Always allow at least one block of overflow. */
4910 	if (over < 0)
4911 		return (ARC_OVF_NONE);
4912 
4913 	/* If we are under memory pressure, report severe overflow. */
4914 	if (!lax)
4915 		return (ARC_OVF_SEVERE);
4916 
4917 	/* We are not under pressure, so be more or less relaxed. */
4918 	int64_t overflow = (arc_c >> zfs_arc_overflow_shift) / 2;
4919 	if (use_reserve)
4920 		overflow *= 3;
4921 	return (over < overflow ? ARC_OVF_SOME : ARC_OVF_SEVERE);
4922 }
4923 
4924 static abd_t *
4925 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, const void *tag,
4926     int alloc_flags)
4927 {
4928 	arc_buf_contents_t type = arc_buf_type(hdr);
4929 
4930 	arc_get_data_impl(hdr, size, tag, alloc_flags);
4931 	if (alloc_flags & ARC_HDR_ALLOC_LINEAR)
4932 		return (abd_alloc_linear(size, type == ARC_BUFC_METADATA));
4933 	else
4934 		return (abd_alloc(size, type == ARC_BUFC_METADATA));
4935 }
4936 
4937 static void *
4938 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, const void *tag)
4939 {
4940 	arc_buf_contents_t type = arc_buf_type(hdr);
4941 
4942 	arc_get_data_impl(hdr, size, tag, 0);
4943 	if (type == ARC_BUFC_METADATA) {
4944 		return (zio_buf_alloc(size));
4945 	} else {
4946 		ASSERT(type == ARC_BUFC_DATA);
4947 		return (zio_data_buf_alloc(size));
4948 	}
4949 }
4950 
4951 /*
4952  * Wait for the specified amount of data (in bytes) to be evicted from the
4953  * ARC, and for there to be sufficient free memory in the system.
4954  * The lax argument specifies that caller does not have a specific reason
4955  * to wait, not aware of any memory pressure.  Low memory handlers though
4956  * should set it to B_FALSE to wait for all required evictions to complete.
4957  * The use_reserve argument allows some callers to wait less than others
4958  * to not block critical code paths, possibly blocking other resources.
4959  */
4960 void
4961 arc_wait_for_eviction(uint64_t amount, boolean_t lax, boolean_t use_reserve)
4962 {
4963 	switch (arc_is_overflowing(lax, use_reserve)) {
4964 	case ARC_OVF_NONE:
4965 		return;
4966 	case ARC_OVF_SOME:
4967 		/*
4968 		 * This is a bit racy without taking arc_evict_lock, but the
4969 		 * worst that can happen is we either call zthr_wakeup() extra
4970 		 * time due to race with other thread here, or the set flag
4971 		 * get cleared by arc_evict_cb(), which is unlikely due to
4972 		 * big hysteresis, but also not important since at this level
4973 		 * of overflow the eviction is purely advisory.  Same time
4974 		 * taking the global lock here every time without waiting for
4975 		 * the actual eviction creates a significant lock contention.
4976 		 */
4977 		if (!arc_evict_needed) {
4978 			arc_evict_needed = B_TRUE;
4979 			zthr_wakeup(arc_evict_zthr);
4980 		}
4981 		return;
4982 	case ARC_OVF_SEVERE:
4983 	default:
4984 	{
4985 		arc_evict_waiter_t aw;
4986 		list_link_init(&aw.aew_node);
4987 		cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL);
4988 
4989 		uint64_t last_count = 0;
4990 		mutex_enter(&arc_evict_lock);
4991 		if (!list_is_empty(&arc_evict_waiters)) {
4992 			arc_evict_waiter_t *last =
4993 			    list_tail(&arc_evict_waiters);
4994 			last_count = last->aew_count;
4995 		} else if (!arc_evict_needed) {
4996 			arc_evict_needed = B_TRUE;
4997 			zthr_wakeup(arc_evict_zthr);
4998 		}
4999 		/*
5000 		 * Note, the last waiter's count may be less than
5001 		 * arc_evict_count if we are low on memory in which
5002 		 * case arc_evict_state_impl() may have deferred
5003 		 * wakeups (but still incremented arc_evict_count).
5004 		 */
5005 		aw.aew_count = MAX(last_count, arc_evict_count) + amount;
5006 
5007 		list_insert_tail(&arc_evict_waiters, &aw);
5008 
5009 		arc_set_need_free();
5010 
5011 		DTRACE_PROBE3(arc__wait__for__eviction,
5012 		    uint64_t, amount,
5013 		    uint64_t, arc_evict_count,
5014 		    uint64_t, aw.aew_count);
5015 
5016 		/*
5017 		 * We will be woken up either when arc_evict_count reaches
5018 		 * aew_count, or when the ARC is no longer overflowing and
5019 		 * eviction completes.
5020 		 * In case of "false" wakeup, we will still be on the list.
5021 		 */
5022 		do {
5023 			cv_wait(&aw.aew_cv, &arc_evict_lock);
5024 		} while (list_link_active(&aw.aew_node));
5025 		mutex_exit(&arc_evict_lock);
5026 
5027 		cv_destroy(&aw.aew_cv);
5028 	}
5029 	}
5030 }
5031 
5032 /*
5033  * Allocate a block and return it to the caller. If we are hitting the
5034  * hard limit for the cache size, we must sleep, waiting for the eviction
5035  * thread to catch up. If we're past the target size but below the hard
5036  * limit, we'll only signal the reclaim thread and continue on.
5037  */
5038 static void
5039 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag,
5040     int alloc_flags)
5041 {
5042 	arc_adapt(size);
5043 
5044 	/*
5045 	 * If arc_size is currently overflowing, we must be adding data
5046 	 * faster than we are evicting.  To ensure we don't compound the
5047 	 * problem by adding more data and forcing arc_size to grow even
5048 	 * further past it's target size, we wait for the eviction thread to
5049 	 * make some progress.  We also wait for there to be sufficient free
5050 	 * memory in the system, as measured by arc_free_memory().
5051 	 *
5052 	 * Specifically, we wait for zfs_arc_eviction_pct percent of the
5053 	 * requested size to be evicted.  This should be more than 100%, to
5054 	 * ensure that that progress is also made towards getting arc_size
5055 	 * under arc_c.  See the comment above zfs_arc_eviction_pct.
5056 	 */
5057 	arc_wait_for_eviction(size * zfs_arc_eviction_pct / 100,
5058 	    B_TRUE, alloc_flags & ARC_HDR_USE_RESERVE);
5059 
5060 	arc_buf_contents_t type = arc_buf_type(hdr);
5061 	if (type == ARC_BUFC_METADATA) {
5062 		arc_space_consume(size, ARC_SPACE_META);
5063 	} else {
5064 		arc_space_consume(size, ARC_SPACE_DATA);
5065 	}
5066 
5067 	/*
5068 	 * Update the state size.  Note that ghost states have a
5069 	 * "ghost size" and so don't need to be updated.
5070 	 */
5071 	arc_state_t *state = hdr->b_l1hdr.b_state;
5072 	if (!GHOST_STATE(state)) {
5073 
5074 		(void) zfs_refcount_add_many(&state->arcs_size[type], size,
5075 		    tag);
5076 
5077 		/*
5078 		 * If this is reached via arc_read, the link is
5079 		 * protected by the hash lock. If reached via
5080 		 * arc_buf_alloc, the header should not be accessed by
5081 		 * any other thread. And, if reached via arc_read_done,
5082 		 * the hash lock will protect it if it's found in the
5083 		 * hash table; otherwise no other thread should be
5084 		 * trying to [add|remove]_reference it.
5085 		 */
5086 		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5087 			ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5088 			(void) zfs_refcount_add_many(&state->arcs_esize[type],
5089 			    size, tag);
5090 		}
5091 	}
5092 }
5093 
5094 static void
5095 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size,
5096     const void *tag)
5097 {
5098 	arc_free_data_impl(hdr, size, tag);
5099 	abd_free(abd);
5100 }
5101 
5102 static void
5103 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, const void *tag)
5104 {
5105 	arc_buf_contents_t type = arc_buf_type(hdr);
5106 
5107 	arc_free_data_impl(hdr, size, tag);
5108 	if (type == ARC_BUFC_METADATA) {
5109 		zio_buf_free(buf, size);
5110 	} else {
5111 		ASSERT(type == ARC_BUFC_DATA);
5112 		zio_data_buf_free(buf, size);
5113 	}
5114 }
5115 
5116 /*
5117  * Free the arc data buffer.
5118  */
5119 static void
5120 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag)
5121 {
5122 	arc_state_t *state = hdr->b_l1hdr.b_state;
5123 	arc_buf_contents_t type = arc_buf_type(hdr);
5124 
5125 	/* protected by hash lock, if in the hash table */
5126 	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5127 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5128 		ASSERT(state != arc_anon && state != arc_l2c_only);
5129 
5130 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
5131 		    size, tag);
5132 	}
5133 	(void) zfs_refcount_remove_many(&state->arcs_size[type], size, tag);
5134 
5135 	VERIFY3U(hdr->b_type, ==, type);
5136 	if (type == ARC_BUFC_METADATA) {
5137 		arc_space_return(size, ARC_SPACE_META);
5138 	} else {
5139 		ASSERT(type == ARC_BUFC_DATA);
5140 		arc_space_return(size, ARC_SPACE_DATA);
5141 	}
5142 }
5143 
5144 /*
5145  * This routine is called whenever a buffer is accessed.
5146  */
5147 static void
5148 arc_access(arc_buf_hdr_t *hdr, arc_flags_t arc_flags, boolean_t hit)
5149 {
5150 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
5151 	ASSERT(HDR_HAS_L1HDR(hdr));
5152 
5153 	/*
5154 	 * Update buffer prefetch status.
5155 	 */
5156 	boolean_t was_prefetch = HDR_PREFETCH(hdr);
5157 	boolean_t now_prefetch = arc_flags & ARC_FLAG_PREFETCH;
5158 	if (was_prefetch != now_prefetch) {
5159 		if (was_prefetch) {
5160 			ARCSTAT_CONDSTAT(hit, demand_hit, demand_iohit,
5161 			    HDR_PRESCIENT_PREFETCH(hdr), prescient, predictive,
5162 			    prefetch);
5163 		}
5164 		if (HDR_HAS_L2HDR(hdr))
5165 			l2arc_hdr_arcstats_decrement_state(hdr);
5166 		if (was_prefetch) {
5167 			arc_hdr_clear_flags(hdr,
5168 			    ARC_FLAG_PREFETCH | ARC_FLAG_PRESCIENT_PREFETCH);
5169 		} else {
5170 			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5171 		}
5172 		if (HDR_HAS_L2HDR(hdr))
5173 			l2arc_hdr_arcstats_increment_state(hdr);
5174 	}
5175 	if (now_prefetch) {
5176 		if (arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
5177 			arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
5178 			ARCSTAT_BUMP(arcstat_prescient_prefetch);
5179 		} else {
5180 			ARCSTAT_BUMP(arcstat_predictive_prefetch);
5181 		}
5182 	}
5183 	if (arc_flags & ARC_FLAG_L2CACHE)
5184 		arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5185 
5186 	clock_t now = ddi_get_lbolt();
5187 	if (hdr->b_l1hdr.b_state == arc_anon) {
5188 		arc_state_t	*new_state;
5189 		/*
5190 		 * This buffer is not in the cache, and does not appear in
5191 		 * our "ghost" lists.  Add it to the MRU or uncached state.
5192 		 */
5193 		ASSERT0(hdr->b_l1hdr.b_arc_access);
5194 		hdr->b_l1hdr.b_arc_access = now;
5195 		if (HDR_UNCACHED(hdr)) {
5196 			new_state = arc_uncached;
5197 			DTRACE_PROBE1(new_state__uncached, arc_buf_hdr_t *,
5198 			    hdr);
5199 		} else {
5200 			new_state = arc_mru;
5201 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5202 		}
5203 		arc_change_state(new_state, hdr);
5204 	} else if (hdr->b_l1hdr.b_state == arc_mru) {
5205 		/*
5206 		 * This buffer has been accessed once recently and either
5207 		 * its read is still in progress or it is in the cache.
5208 		 */
5209 		if (HDR_IO_IN_PROGRESS(hdr)) {
5210 			hdr->b_l1hdr.b_arc_access = now;
5211 			return;
5212 		}
5213 		hdr->b_l1hdr.b_mru_hits++;
5214 		ARCSTAT_BUMP(arcstat_mru_hits);
5215 
5216 		/*
5217 		 * If the previous access was a prefetch, then it already
5218 		 * handled possible promotion, so nothing more to do for now.
5219 		 */
5220 		if (was_prefetch) {
5221 			hdr->b_l1hdr.b_arc_access = now;
5222 			return;
5223 		}
5224 
5225 		/*
5226 		 * If more than ARC_MINTIME have passed from the previous
5227 		 * hit, promote the buffer to the MFU state.
5228 		 */
5229 		if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
5230 		    ARC_MINTIME)) {
5231 			hdr->b_l1hdr.b_arc_access = now;
5232 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5233 			arc_change_state(arc_mfu, hdr);
5234 		}
5235 	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
5236 		arc_state_t	*new_state;
5237 		/*
5238 		 * This buffer has been accessed once recently, but was
5239 		 * evicted from the cache.  Would we have bigger MRU, it
5240 		 * would be an MRU hit, so handle it the same way, except
5241 		 * we don't need to check the previous access time.
5242 		 */
5243 		hdr->b_l1hdr.b_mru_ghost_hits++;
5244 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
5245 		hdr->b_l1hdr.b_arc_access = now;
5246 		wmsum_add(&arc_mru_ghost->arcs_hits[arc_buf_type(hdr)],
5247 		    arc_hdr_size(hdr));
5248 		if (was_prefetch) {
5249 			new_state = arc_mru;
5250 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5251 		} else {
5252 			new_state = arc_mfu;
5253 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5254 		}
5255 		arc_change_state(new_state, hdr);
5256 	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
5257 		/*
5258 		 * This buffer has been accessed more than once and either
5259 		 * still in the cache or being restored from one of ghosts.
5260 		 */
5261 		if (!HDR_IO_IN_PROGRESS(hdr)) {
5262 			hdr->b_l1hdr.b_mfu_hits++;
5263 			ARCSTAT_BUMP(arcstat_mfu_hits);
5264 		}
5265 		hdr->b_l1hdr.b_arc_access = now;
5266 	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
5267 		/*
5268 		 * This buffer has been accessed more than once recently, but
5269 		 * has been evicted from the cache.  Would we have bigger MFU
5270 		 * it would stay in cache, so move it back to MFU state.
5271 		 */
5272 		hdr->b_l1hdr.b_mfu_ghost_hits++;
5273 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
5274 		hdr->b_l1hdr.b_arc_access = now;
5275 		wmsum_add(&arc_mfu_ghost->arcs_hits[arc_buf_type(hdr)],
5276 		    arc_hdr_size(hdr));
5277 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5278 		arc_change_state(arc_mfu, hdr);
5279 	} else if (hdr->b_l1hdr.b_state == arc_uncached) {
5280 		/*
5281 		 * This buffer is uncacheable, but we got a hit.  Probably
5282 		 * a demand read after prefetch.  Nothing more to do here.
5283 		 */
5284 		if (!HDR_IO_IN_PROGRESS(hdr))
5285 			ARCSTAT_BUMP(arcstat_uncached_hits);
5286 		hdr->b_l1hdr.b_arc_access = now;
5287 	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
5288 		/*
5289 		 * This buffer is on the 2nd Level ARC and was not accessed
5290 		 * for a long time, so treat it as new and put into MRU.
5291 		 */
5292 		hdr->b_l1hdr.b_arc_access = now;
5293 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5294 		arc_change_state(arc_mru, hdr);
5295 	} else {
5296 		cmn_err(CE_PANIC, "invalid arc state 0x%p",
5297 		    hdr->b_l1hdr.b_state);
5298 	}
5299 }
5300 
5301 /*
5302  * This routine is called by dbuf_hold() to update the arc_access() state
5303  * which otherwise would be skipped for entries in the dbuf cache.
5304  */
5305 void
5306 arc_buf_access(arc_buf_t *buf)
5307 {
5308 	arc_buf_hdr_t *hdr = buf->b_hdr;
5309 
5310 	/*
5311 	 * Avoid taking the hash_lock when possible as an optimization.
5312 	 * The header must be checked again under the hash_lock in order
5313 	 * to handle the case where it is concurrently being released.
5314 	 */
5315 	if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr))
5316 		return;
5317 
5318 	kmutex_t *hash_lock = HDR_LOCK(hdr);
5319 	mutex_enter(hash_lock);
5320 
5321 	if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5322 		mutex_exit(hash_lock);
5323 		ARCSTAT_BUMP(arcstat_access_skip);
5324 		return;
5325 	}
5326 
5327 	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5328 	    hdr->b_l1hdr.b_state == arc_mfu ||
5329 	    hdr->b_l1hdr.b_state == arc_uncached);
5330 
5331 	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5332 	arc_access(hdr, 0, B_TRUE);
5333 	mutex_exit(hash_lock);
5334 
5335 	ARCSTAT_BUMP(arcstat_hits);
5336 	ARCSTAT_CONDSTAT(B_TRUE /* demand */, demand, prefetch,
5337 	    !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
5338 }
5339 
5340 /* a generic arc_read_done_func_t which you can use */
5341 void
5342 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5343     arc_buf_t *buf, void *arg)
5344 {
5345 	(void) zio, (void) zb, (void) bp;
5346 
5347 	if (buf == NULL)
5348 		return;
5349 
5350 	memcpy(arg, buf->b_data, arc_buf_size(buf));
5351 	arc_buf_destroy(buf, arg);
5352 }
5353 
5354 /* a generic arc_read_done_func_t */
5355 void
5356 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5357     arc_buf_t *buf, void *arg)
5358 {
5359 	(void) zb, (void) bp;
5360 	arc_buf_t **bufp = arg;
5361 
5362 	if (buf == NULL) {
5363 		ASSERT(zio == NULL || zio->io_error != 0);
5364 		*bufp = NULL;
5365 	} else {
5366 		ASSERT(zio == NULL || zio->io_error == 0);
5367 		*bufp = buf;
5368 		ASSERT(buf->b_data != NULL);
5369 	}
5370 }
5371 
5372 static void
5373 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
5374 {
5375 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5376 		ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
5377 		ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF);
5378 	} else {
5379 		if (HDR_COMPRESSION_ENABLED(hdr)) {
5380 			ASSERT3U(arc_hdr_get_compress(hdr), ==,
5381 			    BP_GET_COMPRESS(bp));
5382 		}
5383 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5384 		ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
5385 		ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp));
5386 	}
5387 }
5388 
5389 static void
5390 arc_read_done(zio_t *zio)
5391 {
5392 	blkptr_t 	*bp = zio->io_bp;
5393 	arc_buf_hdr_t	*hdr = zio->io_private;
5394 	kmutex_t	*hash_lock = NULL;
5395 	arc_callback_t	*callback_list;
5396 	arc_callback_t	*acb;
5397 
5398 	/*
5399 	 * The hdr was inserted into hash-table and removed from lists
5400 	 * prior to starting I/O.  We should find this header, since
5401 	 * it's in the hash table, and it should be legit since it's
5402 	 * not possible to evict it during the I/O.  The only possible
5403 	 * reason for it not to be found is if we were freed during the
5404 	 * read.
5405 	 */
5406 	if (HDR_IN_HASH_TABLE(hdr)) {
5407 		arc_buf_hdr_t *found;
5408 
5409 		ASSERT3U(hdr->b_birth, ==, BP_GET_BIRTH(zio->io_bp));
5410 		ASSERT3U(hdr->b_dva.dva_word[0], ==,
5411 		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
5412 		ASSERT3U(hdr->b_dva.dva_word[1], ==,
5413 		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
5414 
5415 		found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock);
5416 
5417 		ASSERT((found == hdr &&
5418 		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5419 		    (found == hdr && HDR_L2_READING(hdr)));
5420 		ASSERT3P(hash_lock, !=, NULL);
5421 	}
5422 
5423 	if (BP_IS_PROTECTED(bp)) {
5424 		hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
5425 		hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
5426 		zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
5427 		    hdr->b_crypt_hdr.b_iv);
5428 
5429 		if (zio->io_error == 0) {
5430 			if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) {
5431 				void *tmpbuf;
5432 
5433 				tmpbuf = abd_borrow_buf_copy(zio->io_abd,
5434 				    sizeof (zil_chain_t));
5435 				zio_crypt_decode_mac_zil(tmpbuf,
5436 				    hdr->b_crypt_hdr.b_mac);
5437 				abd_return_buf(zio->io_abd, tmpbuf,
5438 				    sizeof (zil_chain_t));
5439 			} else {
5440 				zio_crypt_decode_mac_bp(bp,
5441 				    hdr->b_crypt_hdr.b_mac);
5442 			}
5443 		}
5444 	}
5445 
5446 	if (zio->io_error == 0) {
5447 		/* byteswap if necessary */
5448 		if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5449 			if (BP_GET_LEVEL(zio->io_bp) > 0) {
5450 				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5451 			} else {
5452 				hdr->b_l1hdr.b_byteswap =
5453 				    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5454 			}
5455 		} else {
5456 			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5457 		}
5458 		if (!HDR_L2_READING(hdr)) {
5459 			hdr->b_complevel = zio->io_prop.zp_complevel;
5460 		}
5461 	}
5462 
5463 	arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
5464 	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
5465 		arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
5466 
5467 	callback_list = hdr->b_l1hdr.b_acb;
5468 	ASSERT3P(callback_list, !=, NULL);
5469 	hdr->b_l1hdr.b_acb = NULL;
5470 
5471 	/*
5472 	 * If a read request has a callback (i.e. acb_done is not NULL), then we
5473 	 * make a buf containing the data according to the parameters which were
5474 	 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5475 	 * aren't needlessly decompressing the data multiple times.
5476 	 */
5477 	int callback_cnt = 0;
5478 	for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5479 
5480 		/* We need the last one to call below in original order. */
5481 		callback_list = acb;
5482 
5483 		if (!acb->acb_done || acb->acb_nobuf)
5484 			continue;
5485 
5486 		callback_cnt++;
5487 
5488 		if (zio->io_error != 0)
5489 			continue;
5490 
5491 		int error = arc_buf_alloc_impl(hdr, zio->io_spa,
5492 		    &acb->acb_zb, acb->acb_private, acb->acb_encrypted,
5493 		    acb->acb_compressed, acb->acb_noauth, B_TRUE,
5494 		    &acb->acb_buf);
5495 
5496 		/*
5497 		 * Assert non-speculative zios didn't fail because an
5498 		 * encryption key wasn't loaded
5499 		 */
5500 		ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) ||
5501 		    error != EACCES);
5502 
5503 		/*
5504 		 * If we failed to decrypt, report an error now (as the zio
5505 		 * layer would have done if it had done the transforms).
5506 		 */
5507 		if (error == ECKSUM) {
5508 			ASSERT(BP_IS_PROTECTED(bp));
5509 			error = SET_ERROR(EIO);
5510 			if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5511 				spa_log_error(zio->io_spa, &acb->acb_zb,
5512 				    BP_GET_LOGICAL_BIRTH(zio->io_bp));
5513 				(void) zfs_ereport_post(
5514 				    FM_EREPORT_ZFS_AUTHENTICATION,
5515 				    zio->io_spa, NULL, &acb->acb_zb, zio, 0);
5516 			}
5517 		}
5518 
5519 		if (error != 0) {
5520 			/*
5521 			 * Decompression or decryption failed.  Set
5522 			 * io_error so that when we call acb_done
5523 			 * (below), we will indicate that the read
5524 			 * failed. Note that in the unusual case
5525 			 * where one callback is compressed and another
5526 			 * uncompressed, we will mark all of them
5527 			 * as failed, even though the uncompressed
5528 			 * one can't actually fail.  In this case,
5529 			 * the hdr will not be anonymous, because
5530 			 * if there are multiple callbacks, it's
5531 			 * because multiple threads found the same
5532 			 * arc buf in the hash table.
5533 			 */
5534 			zio->io_error = error;
5535 		}
5536 	}
5537 
5538 	/*
5539 	 * If there are multiple callbacks, we must have the hash lock,
5540 	 * because the only way for multiple threads to find this hdr is
5541 	 * in the hash table.  This ensures that if there are multiple
5542 	 * callbacks, the hdr is not anonymous.  If it were anonymous,
5543 	 * we couldn't use arc_buf_destroy() in the error case below.
5544 	 */
5545 	ASSERT(callback_cnt < 2 || hash_lock != NULL);
5546 
5547 	if (zio->io_error == 0) {
5548 		arc_hdr_verify(hdr, zio->io_bp);
5549 	} else {
5550 		arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5551 		if (hdr->b_l1hdr.b_state != arc_anon)
5552 			arc_change_state(arc_anon, hdr);
5553 		if (HDR_IN_HASH_TABLE(hdr))
5554 			buf_hash_remove(hdr);
5555 	}
5556 
5557 	arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5558 	(void) remove_reference(hdr, hdr);
5559 
5560 	if (hash_lock != NULL)
5561 		mutex_exit(hash_lock);
5562 
5563 	/* execute each callback and free its structure */
5564 	while ((acb = callback_list) != NULL) {
5565 		if (acb->acb_done != NULL) {
5566 			if (zio->io_error != 0 && acb->acb_buf != NULL) {
5567 				/*
5568 				 * If arc_buf_alloc_impl() fails during
5569 				 * decompression, the buf will still be
5570 				 * allocated, and needs to be freed here.
5571 				 */
5572 				arc_buf_destroy(acb->acb_buf,
5573 				    acb->acb_private);
5574 				acb->acb_buf = NULL;
5575 			}
5576 			acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
5577 			    acb->acb_buf, acb->acb_private);
5578 		}
5579 
5580 		if (acb->acb_zio_dummy != NULL) {
5581 			acb->acb_zio_dummy->io_error = zio->io_error;
5582 			zio_nowait(acb->acb_zio_dummy);
5583 		}
5584 
5585 		callback_list = acb->acb_prev;
5586 		if (acb->acb_wait) {
5587 			mutex_enter(&acb->acb_wait_lock);
5588 			acb->acb_wait_error = zio->io_error;
5589 			acb->acb_wait = B_FALSE;
5590 			cv_signal(&acb->acb_wait_cv);
5591 			mutex_exit(&acb->acb_wait_lock);
5592 			/* acb will be freed by the waiting thread. */
5593 		} else {
5594 			kmem_free(acb, sizeof (arc_callback_t));
5595 		}
5596 	}
5597 }
5598 
5599 /*
5600  * Lookup the block at the specified DVA (in bp), and return the manner in
5601  * which the block is cached. A zero return indicates not cached.
5602  */
5603 int
5604 arc_cached(spa_t *spa, const blkptr_t *bp)
5605 {
5606 	arc_buf_hdr_t *hdr = NULL;
5607 	kmutex_t *hash_lock = NULL;
5608 	uint64_t guid = spa_load_guid(spa);
5609 	int flags = 0;
5610 
5611 	if (BP_IS_EMBEDDED(bp))
5612 		return (ARC_CACHED_EMBEDDED);
5613 
5614 	hdr = buf_hash_find(guid, bp, &hash_lock);
5615 	if (hdr == NULL)
5616 		return (0);
5617 
5618 	if (HDR_HAS_L1HDR(hdr)) {
5619 		arc_state_t *state = hdr->b_l1hdr.b_state;
5620 		/*
5621 		 * We switch to ensure that any future arc_state_type_t
5622 		 * changes are handled. This is just a shift to promote
5623 		 * more compile-time checking.
5624 		 */
5625 		switch (state->arcs_state) {
5626 		case ARC_STATE_ANON:
5627 			break;
5628 		case ARC_STATE_MRU:
5629 			flags |= ARC_CACHED_IN_MRU | ARC_CACHED_IN_L1;
5630 			break;
5631 		case ARC_STATE_MFU:
5632 			flags |= ARC_CACHED_IN_MFU | ARC_CACHED_IN_L1;
5633 			break;
5634 		case ARC_STATE_UNCACHED:
5635 			/* The header is still in L1, probably not for long */
5636 			flags |= ARC_CACHED_IN_L1;
5637 			break;
5638 		default:
5639 			break;
5640 		}
5641 	}
5642 	if (HDR_HAS_L2HDR(hdr))
5643 		flags |= ARC_CACHED_IN_L2;
5644 
5645 	mutex_exit(hash_lock);
5646 
5647 	return (flags);
5648 }
5649 
5650 /*
5651  * "Read" the block at the specified DVA (in bp) via the
5652  * cache.  If the block is found in the cache, invoke the provided
5653  * callback immediately and return.  Note that the `zio' parameter
5654  * in the callback will be NULL in this case, since no IO was
5655  * required.  If the block is not in the cache pass the read request
5656  * on to the spa with a substitute callback function, so that the
5657  * requested block will be added to the cache.
5658  *
5659  * If a read request arrives for a block that has a read in-progress,
5660  * either wait for the in-progress read to complete (and return the
5661  * results); or, if this is a read with a "done" func, add a record
5662  * to the read to invoke the "done" func when the read completes,
5663  * and return; or just return.
5664  *
5665  * arc_read_done() will invoke all the requested "done" functions
5666  * for readers of this block.
5667  */
5668 int
5669 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
5670     arc_read_done_func_t *done, void *private, zio_priority_t priority,
5671     int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5672 {
5673 	arc_buf_hdr_t *hdr = NULL;
5674 	kmutex_t *hash_lock = NULL;
5675 	zio_t *rzio;
5676 	uint64_t guid = spa_load_guid(spa);
5677 	boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0;
5678 	boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) &&
5679 	    (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5680 	boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) &&
5681 	    (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5682 	boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp);
5683 	boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF;
5684 	arc_buf_t *buf = NULL;
5685 	int rc = 0;
5686 
5687 	ASSERT(!embedded_bp ||
5688 	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5689 	ASSERT(!BP_IS_HOLE(bp));
5690 	ASSERT(!BP_IS_REDACTED(bp));
5691 
5692 	/*
5693 	 * Normally SPL_FSTRANS will already be set since kernel threads which
5694 	 * expect to call the DMU interfaces will set it when created.  System
5695 	 * calls are similarly handled by setting/cleaning the bit in the
5696 	 * registered callback (module/os/.../zfs/zpl_*).
5697 	 *
5698 	 * External consumers such as Lustre which call the exported DMU
5699 	 * interfaces may not have set SPL_FSTRANS.  To avoid a deadlock
5700 	 * on the hash_lock always set and clear the bit.
5701 	 */
5702 	fstrans_cookie_t cookie = spl_fstrans_mark();
5703 top:
5704 	if (!embedded_bp) {
5705 		/*
5706 		 * Embedded BP's have no DVA and require no I/O to "read".
5707 		 * Create an anonymous arc buf to back it.
5708 		 */
5709 		hdr = buf_hash_find(guid, bp, &hash_lock);
5710 	}
5711 
5712 	/*
5713 	 * Determine if we have an L1 cache hit or a cache miss. For simplicity
5714 	 * we maintain encrypted data separately from compressed / uncompressed
5715 	 * data. If the user is requesting raw encrypted data and we don't have
5716 	 * that in the header we will read from disk to guarantee that we can
5717 	 * get it even if the encryption keys aren't loaded.
5718 	 */
5719 	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) ||
5720 	    (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) {
5721 		boolean_t is_data = !HDR_ISTYPE_METADATA(hdr);
5722 
5723 		/*
5724 		 * Verify the block pointer contents are reasonable.  This
5725 		 * should always be the case since the blkptr is protected by
5726 		 * a checksum.
5727 		 */
5728 		if (!zfs_blkptr_verify(spa, bp, BLK_CONFIG_SKIP,
5729 		    BLK_VERIFY_LOG)) {
5730 			mutex_exit(hash_lock);
5731 			rc = SET_ERROR(ECKSUM);
5732 			goto done;
5733 		}
5734 
5735 		if (HDR_IO_IN_PROGRESS(hdr)) {
5736 			if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
5737 				mutex_exit(hash_lock);
5738 				ARCSTAT_BUMP(arcstat_cached_only_in_progress);
5739 				rc = SET_ERROR(ENOENT);
5740 				goto done;
5741 			}
5742 
5743 			zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
5744 			ASSERT3P(head_zio, !=, NULL);
5745 			if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5746 			    priority == ZIO_PRIORITY_SYNC_READ) {
5747 				/*
5748 				 * This is a sync read that needs to wait for
5749 				 * an in-flight async read. Request that the
5750 				 * zio have its priority upgraded.
5751 				 */
5752 				zio_change_priority(head_zio, priority);
5753 				DTRACE_PROBE1(arc__async__upgrade__sync,
5754 				    arc_buf_hdr_t *, hdr);
5755 				ARCSTAT_BUMP(arcstat_async_upgrade_sync);
5756 			}
5757 
5758 			DTRACE_PROBE1(arc__iohit, arc_buf_hdr_t *, hdr);
5759 			arc_access(hdr, *arc_flags, B_FALSE);
5760 
5761 			/*
5762 			 * If there are multiple threads reading the same block
5763 			 * and that block is not yet in the ARC, then only one
5764 			 * thread will do the physical I/O and all other
5765 			 * threads will wait until that I/O completes.
5766 			 * Synchronous reads use the acb_wait_cv whereas nowait
5767 			 * reads register a callback. Both are signalled/called
5768 			 * in arc_read_done.
5769 			 *
5770 			 * Errors of the physical I/O may need to be propagated.
5771 			 * Synchronous read errors are returned here from
5772 			 * arc_read_done via acb_wait_error.  Nowait reads
5773 			 * attach the acb_zio_dummy zio to pio and
5774 			 * arc_read_done propagates the physical I/O's io_error
5775 			 * to acb_zio_dummy, and thereby to pio.
5776 			 */
5777 			arc_callback_t *acb = NULL;
5778 			if (done || pio || *arc_flags & ARC_FLAG_WAIT) {
5779 				acb = kmem_zalloc(sizeof (arc_callback_t),
5780 				    KM_SLEEP);
5781 				acb->acb_done = done;
5782 				acb->acb_private = private;
5783 				acb->acb_compressed = compressed_read;
5784 				acb->acb_encrypted = encrypted_read;
5785 				acb->acb_noauth = noauth_read;
5786 				acb->acb_nobuf = no_buf;
5787 				if (*arc_flags & ARC_FLAG_WAIT) {
5788 					acb->acb_wait = B_TRUE;
5789 					mutex_init(&acb->acb_wait_lock, NULL,
5790 					    MUTEX_DEFAULT, NULL);
5791 					cv_init(&acb->acb_wait_cv, NULL,
5792 					    CV_DEFAULT, NULL);
5793 				}
5794 				acb->acb_zb = *zb;
5795 				if (pio != NULL) {
5796 					acb->acb_zio_dummy = zio_null(pio,
5797 					    spa, NULL, NULL, NULL, zio_flags);
5798 				}
5799 				acb->acb_zio_head = head_zio;
5800 				acb->acb_next = hdr->b_l1hdr.b_acb;
5801 				hdr->b_l1hdr.b_acb->acb_prev = acb;
5802 				hdr->b_l1hdr.b_acb = acb;
5803 			}
5804 			mutex_exit(hash_lock);
5805 
5806 			ARCSTAT_BUMP(arcstat_iohits);
5807 			ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
5808 			    demand, prefetch, is_data, data, metadata, iohits);
5809 
5810 			if (*arc_flags & ARC_FLAG_WAIT) {
5811 				mutex_enter(&acb->acb_wait_lock);
5812 				while (acb->acb_wait) {
5813 					cv_wait(&acb->acb_wait_cv,
5814 					    &acb->acb_wait_lock);
5815 				}
5816 				rc = acb->acb_wait_error;
5817 				mutex_exit(&acb->acb_wait_lock);
5818 				mutex_destroy(&acb->acb_wait_lock);
5819 				cv_destroy(&acb->acb_wait_cv);
5820 				kmem_free(acb, sizeof (arc_callback_t));
5821 			}
5822 			goto out;
5823 		}
5824 
5825 		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5826 		    hdr->b_l1hdr.b_state == arc_mfu ||
5827 		    hdr->b_l1hdr.b_state == arc_uncached);
5828 
5829 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5830 		arc_access(hdr, *arc_flags, B_TRUE);
5831 
5832 		if (done && !no_buf) {
5833 			ASSERT(!embedded_bp || !BP_IS_HOLE(bp));
5834 
5835 			/* Get a buf with the desired data in it. */
5836 			rc = arc_buf_alloc_impl(hdr, spa, zb, private,
5837 			    encrypted_read, compressed_read, noauth_read,
5838 			    B_TRUE, &buf);
5839 			if (rc == ECKSUM) {
5840 				/*
5841 				 * Convert authentication and decryption errors
5842 				 * to EIO (and generate an ereport if needed)
5843 				 * before leaving the ARC.
5844 				 */
5845 				rc = SET_ERROR(EIO);
5846 				if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5847 					spa_log_error(spa, zb, hdr->b_birth);
5848 					(void) zfs_ereport_post(
5849 					    FM_EREPORT_ZFS_AUTHENTICATION,
5850 					    spa, NULL, zb, NULL, 0);
5851 				}
5852 			}
5853 			if (rc != 0) {
5854 				arc_buf_destroy_impl(buf);
5855 				buf = NULL;
5856 				(void) remove_reference(hdr, private);
5857 			}
5858 
5859 			/* assert any errors weren't due to unloaded keys */
5860 			ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
5861 			    rc != EACCES);
5862 		}
5863 		mutex_exit(hash_lock);
5864 		ARCSTAT_BUMP(arcstat_hits);
5865 		ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
5866 		    demand, prefetch, is_data, data, metadata, hits);
5867 		*arc_flags |= ARC_FLAG_CACHED;
5868 		goto done;
5869 	} else {
5870 		uint64_t lsize = BP_GET_LSIZE(bp);
5871 		uint64_t psize = BP_GET_PSIZE(bp);
5872 		arc_callback_t *acb;
5873 		vdev_t *vd = NULL;
5874 		uint64_t addr = 0;
5875 		boolean_t devw = B_FALSE;
5876 		uint64_t size;
5877 		abd_t *hdr_abd;
5878 		int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0;
5879 		arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
5880 
5881 		if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
5882 			if (hash_lock != NULL)
5883 				mutex_exit(hash_lock);
5884 			rc = SET_ERROR(ENOENT);
5885 			goto done;
5886 		}
5887 
5888 		/*
5889 		 * Verify the block pointer contents are reasonable.  This
5890 		 * should always be the case since the blkptr is protected by
5891 		 * a checksum.
5892 		 */
5893 		if (!zfs_blkptr_verify(spa, bp,
5894 		    (zio_flags & ZIO_FLAG_CONFIG_WRITER) ?
5895 		    BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
5896 			if (hash_lock != NULL)
5897 				mutex_exit(hash_lock);
5898 			rc = SET_ERROR(ECKSUM);
5899 			goto done;
5900 		}
5901 
5902 		if (hdr == NULL) {
5903 			/*
5904 			 * This block is not in the cache or it has
5905 			 * embedded data.
5906 			 */
5907 			arc_buf_hdr_t *exists = NULL;
5908 			hdr = arc_hdr_alloc(guid, psize, lsize,
5909 			    BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type);
5910 
5911 			if (!embedded_bp) {
5912 				hdr->b_dva = *BP_IDENTITY(bp);
5913 				hdr->b_birth = BP_GET_BIRTH(bp);
5914 				exists = buf_hash_insert(hdr, &hash_lock);
5915 			}
5916 			if (exists != NULL) {
5917 				/* somebody beat us to the hash insert */
5918 				mutex_exit(hash_lock);
5919 				buf_discard_identity(hdr);
5920 				arc_hdr_destroy(hdr);
5921 				goto top; /* restart the IO request */
5922 			}
5923 		} else {
5924 			/*
5925 			 * This block is in the ghost cache or encrypted data
5926 			 * was requested and we didn't have it. If it was
5927 			 * L2-only (and thus didn't have an L1 hdr),
5928 			 * we realloc the header to add an L1 hdr.
5929 			 */
5930 			if (!HDR_HAS_L1HDR(hdr)) {
5931 				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
5932 				    hdr_full_cache);
5933 			}
5934 
5935 			if (GHOST_STATE(hdr->b_l1hdr.b_state)) {
5936 				ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5937 				ASSERT(!HDR_HAS_RABD(hdr));
5938 				ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5939 				ASSERT0(zfs_refcount_count(
5940 				    &hdr->b_l1hdr.b_refcnt));
5941 				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
5942 #ifdef ZFS_DEBUG
5943 				ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
5944 #endif
5945 			} else if (HDR_IO_IN_PROGRESS(hdr)) {
5946 				/*
5947 				 * If this header already had an IO in progress
5948 				 * and we are performing another IO to fetch
5949 				 * encrypted data we must wait until the first
5950 				 * IO completes so as not to confuse
5951 				 * arc_read_done(). This should be very rare
5952 				 * and so the performance impact shouldn't
5953 				 * matter.
5954 				 */
5955 				arc_callback_t *acb = kmem_zalloc(
5956 				    sizeof (arc_callback_t), KM_SLEEP);
5957 				acb->acb_wait = B_TRUE;
5958 				mutex_init(&acb->acb_wait_lock, NULL,
5959 				    MUTEX_DEFAULT, NULL);
5960 				cv_init(&acb->acb_wait_cv, NULL, CV_DEFAULT,
5961 				    NULL);
5962 				acb->acb_zio_head =
5963 				    hdr->b_l1hdr.b_acb->acb_zio_head;
5964 				acb->acb_next = hdr->b_l1hdr.b_acb;
5965 				hdr->b_l1hdr.b_acb->acb_prev = acb;
5966 				hdr->b_l1hdr.b_acb = acb;
5967 				mutex_exit(hash_lock);
5968 				mutex_enter(&acb->acb_wait_lock);
5969 				while (acb->acb_wait) {
5970 					cv_wait(&acb->acb_wait_cv,
5971 					    &acb->acb_wait_lock);
5972 				}
5973 				mutex_exit(&acb->acb_wait_lock);
5974 				mutex_destroy(&acb->acb_wait_lock);
5975 				cv_destroy(&acb->acb_wait_cv);
5976 				kmem_free(acb, sizeof (arc_callback_t));
5977 				goto top;
5978 			}
5979 		}
5980 		if (*arc_flags & ARC_FLAG_UNCACHED) {
5981 			arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED);
5982 			if (!encrypted_read)
5983 				alloc_flags |= ARC_HDR_ALLOC_LINEAR;
5984 		}
5985 
5986 		/*
5987 		 * Take additional reference for IO_IN_PROGRESS.  It stops
5988 		 * arc_access() from putting this header without any buffers
5989 		 * and so other references but obviously nonevictable onto
5990 		 * the evictable list of MRU or MFU state.
5991 		 */
5992 		add_reference(hdr, hdr);
5993 		if (!embedded_bp)
5994 			arc_access(hdr, *arc_flags, B_FALSE);
5995 		arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5996 		arc_hdr_alloc_abd(hdr, alloc_flags);
5997 		if (encrypted_read) {
5998 			ASSERT(HDR_HAS_RABD(hdr));
5999 			size = HDR_GET_PSIZE(hdr);
6000 			hdr_abd = hdr->b_crypt_hdr.b_rabd;
6001 			zio_flags |= ZIO_FLAG_RAW;
6002 		} else {
6003 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
6004 			size = arc_hdr_size(hdr);
6005 			hdr_abd = hdr->b_l1hdr.b_pabd;
6006 
6007 			if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
6008 				zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6009 			}
6010 
6011 			/*
6012 			 * For authenticated bp's, we do not ask the ZIO layer
6013 			 * to authenticate them since this will cause the entire
6014 			 * IO to fail if the key isn't loaded. Instead, we
6015 			 * defer authentication until arc_buf_fill(), which will
6016 			 * verify the data when the key is available.
6017 			 */
6018 			if (BP_IS_AUTHENTICATED(bp))
6019 				zio_flags |= ZIO_FLAG_RAW_ENCRYPT;
6020 		}
6021 
6022 		if (BP_IS_AUTHENTICATED(bp))
6023 			arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6024 		if (BP_GET_LEVEL(bp) > 0)
6025 			arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
6026 		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
6027 
6028 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
6029 		acb->acb_done = done;
6030 		acb->acb_private = private;
6031 		acb->acb_compressed = compressed_read;
6032 		acb->acb_encrypted = encrypted_read;
6033 		acb->acb_noauth = noauth_read;
6034 		acb->acb_zb = *zb;
6035 
6036 		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6037 		hdr->b_l1hdr.b_acb = acb;
6038 
6039 		if (HDR_HAS_L2HDR(hdr) &&
6040 		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
6041 			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
6042 			addr = hdr->b_l2hdr.b_daddr;
6043 			/*
6044 			 * Lock out L2ARC device removal.
6045 			 */
6046 			if (vdev_is_dead(vd) ||
6047 			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
6048 				vd = NULL;
6049 		}
6050 
6051 		/*
6052 		 * We count both async reads and scrub IOs as asynchronous so
6053 		 * that both can be upgraded in the event of a cache hit while
6054 		 * the read IO is still in-flight.
6055 		 */
6056 		if (priority == ZIO_PRIORITY_ASYNC_READ ||
6057 		    priority == ZIO_PRIORITY_SCRUB)
6058 			arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6059 		else
6060 			arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6061 
6062 		/*
6063 		 * At this point, we have a level 1 cache miss or a blkptr
6064 		 * with embedded data.  Try again in L2ARC if possible.
6065 		 */
6066 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
6067 
6068 		/*
6069 		 * Skip ARC stat bump for block pointers with embedded
6070 		 * data. The data are read from the blkptr itself via
6071 		 * decode_embedded_bp_compressed().
6072 		 */
6073 		if (!embedded_bp) {
6074 			DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr,
6075 			    blkptr_t *, bp, uint64_t, lsize,
6076 			    zbookmark_phys_t *, zb);
6077 			ARCSTAT_BUMP(arcstat_misses);
6078 			ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
6079 			    demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data,
6080 			    metadata, misses);
6081 			zfs_racct_read(spa, size, 1, 0);
6082 		}
6083 
6084 		/* Check if the spa even has l2 configured */
6085 		const boolean_t spa_has_l2 = l2arc_ndev != 0 &&
6086 		    spa->spa_l2cache.sav_count > 0;
6087 
6088 		if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) {
6089 			/*
6090 			 * Read from the L2ARC if the following are true:
6091 			 * 1. The L2ARC vdev was previously cached.
6092 			 * 2. This buffer still has L2ARC metadata.
6093 			 * 3. This buffer isn't currently writing to the L2ARC.
6094 			 * 4. The L2ARC entry wasn't evicted, which may
6095 			 *    also have invalidated the vdev.
6096 			 */
6097 			if (HDR_HAS_L2HDR(hdr) &&
6098 			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr)) {
6099 				l2arc_read_callback_t *cb;
6100 				abd_t *abd;
6101 				uint64_t asize;
6102 
6103 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
6104 				ARCSTAT_BUMP(arcstat_l2_hits);
6105 				hdr->b_l2hdr.b_hits++;
6106 
6107 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
6108 				    KM_SLEEP);
6109 				cb->l2rcb_hdr = hdr;
6110 				cb->l2rcb_bp = *bp;
6111 				cb->l2rcb_zb = *zb;
6112 				cb->l2rcb_flags = zio_flags;
6113 
6114 				/*
6115 				 * When Compressed ARC is disabled, but the
6116 				 * L2ARC block is compressed, arc_hdr_size()
6117 				 * will have returned LSIZE rather than PSIZE.
6118 				 */
6119 				if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
6120 				    !HDR_COMPRESSION_ENABLED(hdr) &&
6121 				    HDR_GET_PSIZE(hdr) != 0) {
6122 					size = HDR_GET_PSIZE(hdr);
6123 				}
6124 
6125 				asize = vdev_psize_to_asize(vd, size);
6126 				if (asize != size) {
6127 					abd = abd_alloc_for_io(asize,
6128 					    HDR_ISTYPE_METADATA(hdr));
6129 					cb->l2rcb_abd = abd;
6130 				} else {
6131 					abd = hdr_abd;
6132 				}
6133 
6134 				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
6135 				    addr + asize <= vd->vdev_psize -
6136 				    VDEV_LABEL_END_SIZE);
6137 
6138 				/*
6139 				 * l2arc read.  The SCL_L2ARC lock will be
6140 				 * released by l2arc_read_done().
6141 				 * Issue a null zio if the underlying buffer
6142 				 * was squashed to zero size by compression.
6143 				 */
6144 				ASSERT3U(arc_hdr_get_compress(hdr), !=,
6145 				    ZIO_COMPRESS_EMPTY);
6146 				rzio = zio_read_phys(pio, vd, addr,
6147 				    asize, abd,
6148 				    ZIO_CHECKSUM_OFF,
6149 				    l2arc_read_done, cb, priority,
6150 				    zio_flags | ZIO_FLAG_CANFAIL |
6151 				    ZIO_FLAG_DONT_PROPAGATE |
6152 				    ZIO_FLAG_DONT_RETRY, B_FALSE);
6153 				acb->acb_zio_head = rzio;
6154 
6155 				if (hash_lock != NULL)
6156 					mutex_exit(hash_lock);
6157 
6158 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
6159 				    zio_t *, rzio);
6160 				ARCSTAT_INCR(arcstat_l2_read_bytes,
6161 				    HDR_GET_PSIZE(hdr));
6162 
6163 				if (*arc_flags & ARC_FLAG_NOWAIT) {
6164 					zio_nowait(rzio);
6165 					goto out;
6166 				}
6167 
6168 				ASSERT(*arc_flags & ARC_FLAG_WAIT);
6169 				if (zio_wait(rzio) == 0)
6170 					goto out;
6171 
6172 				/* l2arc read error; goto zio_read() */
6173 				if (hash_lock != NULL)
6174 					mutex_enter(hash_lock);
6175 			} else {
6176 				DTRACE_PROBE1(l2arc__miss,
6177 				    arc_buf_hdr_t *, hdr);
6178 				ARCSTAT_BUMP(arcstat_l2_misses);
6179 				if (HDR_L2_WRITING(hdr))
6180 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
6181 				spa_config_exit(spa, SCL_L2ARC, vd);
6182 			}
6183 		} else {
6184 			if (vd != NULL)
6185 				spa_config_exit(spa, SCL_L2ARC, vd);
6186 
6187 			/*
6188 			 * Only a spa with l2 should contribute to l2
6189 			 * miss stats.  (Including the case of having a
6190 			 * faulted cache device - that's also a miss.)
6191 			 */
6192 			if (spa_has_l2) {
6193 				/*
6194 				 * Skip ARC stat bump for block pointers with
6195 				 * embedded data. The data are read from the
6196 				 * blkptr itself via
6197 				 * decode_embedded_bp_compressed().
6198 				 */
6199 				if (!embedded_bp) {
6200 					DTRACE_PROBE1(l2arc__miss,
6201 					    arc_buf_hdr_t *, hdr);
6202 					ARCSTAT_BUMP(arcstat_l2_misses);
6203 				}
6204 			}
6205 		}
6206 
6207 		rzio = zio_read(pio, spa, bp, hdr_abd, size,
6208 		    arc_read_done, hdr, priority, zio_flags, zb);
6209 		acb->acb_zio_head = rzio;
6210 
6211 		if (hash_lock != NULL)
6212 			mutex_exit(hash_lock);
6213 
6214 		if (*arc_flags & ARC_FLAG_WAIT) {
6215 			rc = zio_wait(rzio);
6216 			goto out;
6217 		}
6218 
6219 		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
6220 		zio_nowait(rzio);
6221 	}
6222 
6223 out:
6224 	/* embedded bps don't actually go to disk */
6225 	if (!embedded_bp)
6226 		spa_read_history_add(spa, zb, *arc_flags);
6227 	spl_fstrans_unmark(cookie);
6228 	return (rc);
6229 
6230 done:
6231 	if (done)
6232 		done(NULL, zb, bp, buf, private);
6233 	if (pio && rc != 0) {
6234 		zio_t *zio = zio_null(pio, spa, NULL, NULL, NULL, zio_flags);
6235 		zio->io_error = rc;
6236 		zio_nowait(zio);
6237 	}
6238 	goto out;
6239 }
6240 
6241 arc_prune_t *
6242 arc_add_prune_callback(arc_prune_func_t *func, void *private)
6243 {
6244 	arc_prune_t *p;
6245 
6246 	p = kmem_alloc(sizeof (*p), KM_SLEEP);
6247 	p->p_pfunc = func;
6248 	p->p_private = private;
6249 	list_link_init(&p->p_node);
6250 	zfs_refcount_create(&p->p_refcnt);
6251 
6252 	mutex_enter(&arc_prune_mtx);
6253 	zfs_refcount_add(&p->p_refcnt, &arc_prune_list);
6254 	list_insert_head(&arc_prune_list, p);
6255 	mutex_exit(&arc_prune_mtx);
6256 
6257 	return (p);
6258 }
6259 
6260 void
6261 arc_remove_prune_callback(arc_prune_t *p)
6262 {
6263 	boolean_t wait = B_FALSE;
6264 	mutex_enter(&arc_prune_mtx);
6265 	list_remove(&arc_prune_list, p);
6266 	if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
6267 		wait = B_TRUE;
6268 	mutex_exit(&arc_prune_mtx);
6269 
6270 	/* wait for arc_prune_task to finish */
6271 	if (wait)
6272 		taskq_wait_outstanding(arc_prune_taskq, 0);
6273 	ASSERT0(zfs_refcount_count(&p->p_refcnt));
6274 	zfs_refcount_destroy(&p->p_refcnt);
6275 	kmem_free(p, sizeof (*p));
6276 }
6277 
6278 /*
6279  * Helper function for arc_prune_async() it is responsible for safely
6280  * handling the execution of a registered arc_prune_func_t.
6281  */
6282 static void
6283 arc_prune_task(void *ptr)
6284 {
6285 	arc_prune_t *ap = (arc_prune_t *)ptr;
6286 	arc_prune_func_t *func = ap->p_pfunc;
6287 
6288 	if (func != NULL)
6289 		func(ap->p_adjust, ap->p_private);
6290 
6291 	(void) zfs_refcount_remove(&ap->p_refcnt, func);
6292 }
6293 
6294 /*
6295  * Notify registered consumers they must drop holds on a portion of the ARC
6296  * buffers they reference.  This provides a mechanism to ensure the ARC can
6297  * honor the metadata limit and reclaim otherwise pinned ARC buffers.
6298  *
6299  * This operation is performed asynchronously so it may be safely called
6300  * in the context of the arc_reclaim_thread().  A reference is taken here
6301  * for each registered arc_prune_t and the arc_prune_task() is responsible
6302  * for releasing it once the registered arc_prune_func_t has completed.
6303  */
6304 static void
6305 arc_prune_async(uint64_t adjust)
6306 {
6307 	arc_prune_t *ap;
6308 
6309 	mutex_enter(&arc_prune_mtx);
6310 	for (ap = list_head(&arc_prune_list); ap != NULL;
6311 	    ap = list_next(&arc_prune_list, ap)) {
6312 
6313 		if (zfs_refcount_count(&ap->p_refcnt) >= 2)
6314 			continue;
6315 
6316 		zfs_refcount_add(&ap->p_refcnt, ap->p_pfunc);
6317 		ap->p_adjust = adjust;
6318 		if (taskq_dispatch(arc_prune_taskq, arc_prune_task,
6319 		    ap, TQ_SLEEP) == TASKQID_INVALID) {
6320 			(void) zfs_refcount_remove(&ap->p_refcnt, ap->p_pfunc);
6321 			continue;
6322 		}
6323 		ARCSTAT_BUMP(arcstat_prune);
6324 	}
6325 	mutex_exit(&arc_prune_mtx);
6326 }
6327 
6328 /*
6329  * Notify the arc that a block was freed, and thus will never be used again.
6330  */
6331 void
6332 arc_freed(spa_t *spa, const blkptr_t *bp)
6333 {
6334 	arc_buf_hdr_t *hdr;
6335 	kmutex_t *hash_lock;
6336 	uint64_t guid = spa_load_guid(spa);
6337 
6338 	ASSERT(!BP_IS_EMBEDDED(bp));
6339 
6340 	hdr = buf_hash_find(guid, bp, &hash_lock);
6341 	if (hdr == NULL)
6342 		return;
6343 
6344 	/*
6345 	 * We might be trying to free a block that is still doing I/O
6346 	 * (i.e. prefetch) or has some other reference (i.e. a dedup-ed,
6347 	 * dmu_sync-ed block). A block may also have a reference if it is
6348 	 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6349 	 * have written the new block to its final resting place on disk but
6350 	 * without the dedup flag set. This would have left the hdr in the MRU
6351 	 * state and discoverable. When the txg finally syncs it detects that
6352 	 * the block was overridden in open context and issues an override I/O.
6353 	 * Since this is a dedup block, the override I/O will determine if the
6354 	 * block is already in the DDT. If so, then it will replace the io_bp
6355 	 * with the bp from the DDT and allow the I/O to finish. When the I/O
6356 	 * reaches the done callback, dbuf_write_override_done, it will
6357 	 * check to see if the io_bp and io_bp_override are identical.
6358 	 * If they are not, then it indicates that the bp was replaced with
6359 	 * the bp in the DDT and the override bp is freed. This allows
6360 	 * us to arrive here with a reference on a block that is being
6361 	 * freed. So if we have an I/O in progress, or a reference to
6362 	 * this hdr, then we don't destroy the hdr.
6363 	 */
6364 	if (!HDR_HAS_L1HDR(hdr) ||
6365 	    zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6366 		arc_change_state(arc_anon, hdr);
6367 		arc_hdr_destroy(hdr);
6368 		mutex_exit(hash_lock);
6369 	} else {
6370 		mutex_exit(hash_lock);
6371 	}
6372 
6373 }
6374 
6375 /*
6376  * Release this buffer from the cache, making it an anonymous buffer.  This
6377  * must be done after a read and prior to modifying the buffer contents.
6378  * If the buffer has more than one reference, we must make
6379  * a new hdr for the buffer.
6380  */
6381 void
6382 arc_release(arc_buf_t *buf, const void *tag)
6383 {
6384 	arc_buf_hdr_t *hdr = buf->b_hdr;
6385 
6386 	/*
6387 	 * It would be nice to assert that if its DMU metadata (level >
6388 	 * 0 || it's the dnode file), then it must be syncing context.
6389 	 * But we don't know that information at this level.
6390 	 */
6391 
6392 	ASSERT(HDR_HAS_L1HDR(hdr));
6393 
6394 	/*
6395 	 * We don't grab the hash lock prior to this check, because if
6396 	 * the buffer's header is in the arc_anon state, it won't be
6397 	 * linked into the hash table.
6398 	 */
6399 	if (hdr->b_l1hdr.b_state == arc_anon) {
6400 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6401 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
6402 		ASSERT(!HDR_HAS_L2HDR(hdr));
6403 
6404 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
6405 		ASSERT(ARC_BUF_LAST(buf));
6406 		ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
6407 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6408 
6409 		hdr->b_l1hdr.b_arc_access = 0;
6410 
6411 		/*
6412 		 * If the buf is being overridden then it may already
6413 		 * have a hdr that is not empty.
6414 		 */
6415 		buf_discard_identity(hdr);
6416 		arc_buf_thaw(buf);
6417 
6418 		return;
6419 	}
6420 
6421 	kmutex_t *hash_lock = HDR_LOCK(hdr);
6422 	mutex_enter(hash_lock);
6423 
6424 	/*
6425 	 * This assignment is only valid as long as the hash_lock is
6426 	 * held, we must be careful not to reference state or the
6427 	 * b_state field after dropping the lock.
6428 	 */
6429 	arc_state_t *state = hdr->b_l1hdr.b_state;
6430 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6431 	ASSERT3P(state, !=, arc_anon);
6432 
6433 	/* this buffer is not on any list */
6434 	ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
6435 
6436 	if (HDR_HAS_L2HDR(hdr)) {
6437 		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6438 
6439 		/*
6440 		 * We have to recheck this conditional again now that
6441 		 * we're holding the l2ad_mtx to prevent a race with
6442 		 * another thread which might be concurrently calling
6443 		 * l2arc_evict(). In that case, l2arc_evict() might have
6444 		 * destroyed the header's L2 portion as we were waiting
6445 		 * to acquire the l2ad_mtx.
6446 		 */
6447 		if (HDR_HAS_L2HDR(hdr))
6448 			arc_hdr_l2hdr_destroy(hdr);
6449 
6450 		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6451 	}
6452 
6453 	/*
6454 	 * Do we have more than one buf?
6455 	 */
6456 	if (hdr->b_l1hdr.b_buf != buf || !ARC_BUF_LAST(buf)) {
6457 		arc_buf_hdr_t *nhdr;
6458 		uint64_t spa = hdr->b_spa;
6459 		uint64_t psize = HDR_GET_PSIZE(hdr);
6460 		uint64_t lsize = HDR_GET_LSIZE(hdr);
6461 		boolean_t protected = HDR_PROTECTED(hdr);
6462 		enum zio_compress compress = arc_hdr_get_compress(hdr);
6463 		arc_buf_contents_t type = arc_buf_type(hdr);
6464 		VERIFY3U(hdr->b_type, ==, type);
6465 
6466 		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
6467 		VERIFY3S(remove_reference(hdr, tag), >, 0);
6468 
6469 		if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
6470 			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6471 			ASSERT(ARC_BUF_LAST(buf));
6472 		}
6473 
6474 		/*
6475 		 * Pull the data off of this hdr and attach it to
6476 		 * a new anonymous hdr. Also find the last buffer
6477 		 * in the hdr's buffer list.
6478 		 */
6479 		arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
6480 		ASSERT3P(lastbuf, !=, NULL);
6481 
6482 		/*
6483 		 * If the current arc_buf_t and the hdr are sharing their data
6484 		 * buffer, then we must stop sharing that block.
6485 		 */
6486 		if (ARC_BUF_SHARED(buf)) {
6487 			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6488 			ASSERT(!arc_buf_is_shared(lastbuf));
6489 
6490 			/*
6491 			 * First, sever the block sharing relationship between
6492 			 * buf and the arc_buf_hdr_t.
6493 			 */
6494 			arc_unshare_buf(hdr, buf);
6495 
6496 			/*
6497 			 * Now we need to recreate the hdr's b_pabd. Since we
6498 			 * have lastbuf handy, we try to share with it, but if
6499 			 * we can't then we allocate a new b_pabd and copy the
6500 			 * data from buf into it.
6501 			 */
6502 			if (arc_can_share(hdr, lastbuf)) {
6503 				arc_share_buf(hdr, lastbuf);
6504 			} else {
6505 				arc_hdr_alloc_abd(hdr, 0);
6506 				abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
6507 				    buf->b_data, psize);
6508 			}
6509 			VERIFY3P(lastbuf->b_data, !=, NULL);
6510 		} else if (HDR_SHARED_DATA(hdr)) {
6511 			/*
6512 			 * Uncompressed shared buffers are always at the end
6513 			 * of the list. Compressed buffers don't have the
6514 			 * same requirements. This makes it hard to
6515 			 * simply assert that the lastbuf is shared so
6516 			 * we rely on the hdr's compression flags to determine
6517 			 * if we have a compressed, shared buffer.
6518 			 */
6519 			ASSERT(arc_buf_is_shared(lastbuf) ||
6520 			    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
6521 			ASSERT(!arc_buf_is_shared(buf));
6522 		}
6523 
6524 		ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
6525 		ASSERT3P(state, !=, arc_l2c_only);
6526 
6527 		(void) zfs_refcount_remove_many(&state->arcs_size[type],
6528 		    arc_buf_size(buf), buf);
6529 
6530 		if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6531 			ASSERT3P(state, !=, arc_l2c_only);
6532 			(void) zfs_refcount_remove_many(
6533 			    &state->arcs_esize[type],
6534 			    arc_buf_size(buf), buf);
6535 		}
6536 
6537 		arc_cksum_verify(buf);
6538 		arc_buf_unwatch(buf);
6539 
6540 		/* if this is the last uncompressed buf free the checksum */
6541 		if (!arc_hdr_has_uncompressed_buf(hdr))
6542 			arc_cksum_free(hdr);
6543 
6544 		mutex_exit(hash_lock);
6545 
6546 		nhdr = arc_hdr_alloc(spa, psize, lsize, protected,
6547 		    compress, hdr->b_complevel, type);
6548 		ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
6549 		ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt));
6550 		VERIFY3U(nhdr->b_type, ==, type);
6551 		ASSERT(!HDR_SHARED_DATA(nhdr));
6552 
6553 		nhdr->b_l1hdr.b_buf = buf;
6554 		(void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
6555 		buf->b_hdr = nhdr;
6556 
6557 		(void) zfs_refcount_add_many(&arc_anon->arcs_size[type],
6558 		    arc_buf_size(buf), buf);
6559 	} else {
6560 		ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
6561 		/* protected by hash lock, or hdr is on arc_anon */
6562 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6563 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6564 		hdr->b_l1hdr.b_mru_hits = 0;
6565 		hdr->b_l1hdr.b_mru_ghost_hits = 0;
6566 		hdr->b_l1hdr.b_mfu_hits = 0;
6567 		hdr->b_l1hdr.b_mfu_ghost_hits = 0;
6568 		arc_change_state(arc_anon, hdr);
6569 		hdr->b_l1hdr.b_arc_access = 0;
6570 
6571 		mutex_exit(hash_lock);
6572 		buf_discard_identity(hdr);
6573 		arc_buf_thaw(buf);
6574 	}
6575 }
6576 
6577 int
6578 arc_released(arc_buf_t *buf)
6579 {
6580 	return (buf->b_data != NULL &&
6581 	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
6582 }
6583 
6584 #ifdef ZFS_DEBUG
6585 int
6586 arc_referenced(arc_buf_t *buf)
6587 {
6588 	return (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
6589 }
6590 #endif
6591 
6592 static void
6593 arc_write_ready(zio_t *zio)
6594 {
6595 	arc_write_callback_t *callback = zio->io_private;
6596 	arc_buf_t *buf = callback->awcb_buf;
6597 	arc_buf_hdr_t *hdr = buf->b_hdr;
6598 	blkptr_t *bp = zio->io_bp;
6599 	uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp);
6600 	fstrans_cookie_t cookie = spl_fstrans_mark();
6601 
6602 	ASSERT(HDR_HAS_L1HDR(hdr));
6603 	ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
6604 	ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
6605 
6606 	/*
6607 	 * If we're reexecuting this zio because the pool suspended, then
6608 	 * cleanup any state that was previously set the first time the
6609 	 * callback was invoked.
6610 	 */
6611 	if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
6612 		arc_cksum_free(hdr);
6613 		arc_buf_unwatch(buf);
6614 		if (hdr->b_l1hdr.b_pabd != NULL) {
6615 			if (ARC_BUF_SHARED(buf)) {
6616 				arc_unshare_buf(hdr, buf);
6617 			} else {
6618 				ASSERT(!arc_buf_is_shared(buf));
6619 				arc_hdr_free_abd(hdr, B_FALSE);
6620 			}
6621 		}
6622 
6623 		if (HDR_HAS_RABD(hdr))
6624 			arc_hdr_free_abd(hdr, B_TRUE);
6625 	}
6626 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6627 	ASSERT(!HDR_HAS_RABD(hdr));
6628 	ASSERT(!HDR_SHARED_DATA(hdr));
6629 	ASSERT(!arc_buf_is_shared(buf));
6630 
6631 	callback->awcb_ready(zio, buf, callback->awcb_private);
6632 
6633 	if (HDR_IO_IN_PROGRESS(hdr)) {
6634 		ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
6635 	} else {
6636 		arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6637 		add_reference(hdr, hdr); /* For IO_IN_PROGRESS. */
6638 	}
6639 
6640 	if (BP_IS_PROTECTED(bp)) {
6641 		/* ZIL blocks are written through zio_rewrite */
6642 		ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
6643 
6644 		if (BP_SHOULD_BYTESWAP(bp)) {
6645 			if (BP_GET_LEVEL(bp) > 0) {
6646 				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
6647 			} else {
6648 				hdr->b_l1hdr.b_byteswap =
6649 				    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
6650 			}
6651 		} else {
6652 			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
6653 		}
6654 
6655 		arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
6656 		hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
6657 		hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
6658 		zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
6659 		    hdr->b_crypt_hdr.b_iv);
6660 		zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
6661 	} else {
6662 		arc_hdr_clear_flags(hdr, ARC_FLAG_PROTECTED);
6663 	}
6664 
6665 	/*
6666 	 * If this block was written for raw encryption but the zio layer
6667 	 * ended up only authenticating it, adjust the buffer flags now.
6668 	 */
6669 	if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) {
6670 		arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6671 		buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6672 		if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF)
6673 			buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6674 	} else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) {
6675 		buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6676 		buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6677 	}
6678 
6679 	/* this must be done after the buffer flags are adjusted */
6680 	arc_cksum_compute(buf);
6681 
6682 	enum zio_compress compress;
6683 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
6684 		compress = ZIO_COMPRESS_OFF;
6685 	} else {
6686 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
6687 		compress = BP_GET_COMPRESS(bp);
6688 	}
6689 	HDR_SET_PSIZE(hdr, psize);
6690 	arc_hdr_set_compress(hdr, compress);
6691 	hdr->b_complevel = zio->io_prop.zp_complevel;
6692 
6693 	if (zio->io_error != 0 || psize == 0)
6694 		goto out;
6695 
6696 	/*
6697 	 * Fill the hdr with data. If the buffer is encrypted we have no choice
6698 	 * but to copy the data into b_radb. If the hdr is compressed, the data
6699 	 * we want is available from the zio, otherwise we can take it from
6700 	 * the buf.
6701 	 *
6702 	 * We might be able to share the buf's data with the hdr here. However,
6703 	 * doing so would cause the ARC to be full of linear ABDs if we write a
6704 	 * lot of shareable data. As a compromise, we check whether scattered
6705 	 * ABDs are allowed, and assume that if they are then the user wants
6706 	 * the ARC to be primarily filled with them regardless of the data being
6707 	 * written. Therefore, if they're allowed then we allocate one and copy
6708 	 * the data into it; otherwise, we share the data directly if we can.
6709 	 */
6710 	if (ARC_BUF_ENCRYPTED(buf)) {
6711 		ASSERT3U(psize, >, 0);
6712 		ASSERT(ARC_BUF_COMPRESSED(buf));
6713 		arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA |
6714 		    ARC_HDR_USE_RESERVE);
6715 		abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6716 	} else if (!(HDR_UNCACHED(hdr) ||
6717 	    abd_size_alloc_linear(arc_buf_size(buf))) ||
6718 	    !arc_can_share(hdr, buf)) {
6719 		/*
6720 		 * Ideally, we would always copy the io_abd into b_pabd, but the
6721 		 * user may have disabled compressed ARC, thus we must check the
6722 		 * hdr's compression setting rather than the io_bp's.
6723 		 */
6724 		if (BP_IS_ENCRYPTED(bp)) {
6725 			ASSERT3U(psize, >, 0);
6726 			arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA |
6727 			    ARC_HDR_USE_RESERVE);
6728 			abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6729 		} else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
6730 		    !ARC_BUF_COMPRESSED(buf)) {
6731 			ASSERT3U(psize, >, 0);
6732 			arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE);
6733 			abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
6734 		} else {
6735 			ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
6736 			arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE);
6737 			abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
6738 			    arc_buf_size(buf));
6739 		}
6740 	} else {
6741 		ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
6742 		ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
6743 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
6744 		ASSERT(ARC_BUF_LAST(buf));
6745 
6746 		arc_share_buf(hdr, buf);
6747 	}
6748 
6749 out:
6750 	arc_hdr_verify(hdr, bp);
6751 	spl_fstrans_unmark(cookie);
6752 }
6753 
6754 static void
6755 arc_write_children_ready(zio_t *zio)
6756 {
6757 	arc_write_callback_t *callback = zio->io_private;
6758 	arc_buf_t *buf = callback->awcb_buf;
6759 
6760 	callback->awcb_children_ready(zio, buf, callback->awcb_private);
6761 }
6762 
6763 static void
6764 arc_write_done(zio_t *zio)
6765 {
6766 	arc_write_callback_t *callback = zio->io_private;
6767 	arc_buf_t *buf = callback->awcb_buf;
6768 	arc_buf_hdr_t *hdr = buf->b_hdr;
6769 
6770 	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6771 
6772 	if (zio->io_error == 0) {
6773 		arc_hdr_verify(hdr, zio->io_bp);
6774 
6775 		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
6776 			buf_discard_identity(hdr);
6777 		} else {
6778 			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
6779 			hdr->b_birth = BP_GET_BIRTH(zio->io_bp);
6780 		}
6781 	} else {
6782 		ASSERT(HDR_EMPTY(hdr));
6783 	}
6784 
6785 	/*
6786 	 * If the block to be written was all-zero or compressed enough to be
6787 	 * embedded in the BP, no write was performed so there will be no
6788 	 * dva/birth/checksum.  The buffer must therefore remain anonymous
6789 	 * (and uncached).
6790 	 */
6791 	if (!HDR_EMPTY(hdr)) {
6792 		arc_buf_hdr_t *exists;
6793 		kmutex_t *hash_lock;
6794 
6795 		ASSERT3U(zio->io_error, ==, 0);
6796 
6797 		arc_cksum_verify(buf);
6798 
6799 		exists = buf_hash_insert(hdr, &hash_lock);
6800 		if (exists != NULL) {
6801 			/*
6802 			 * This can only happen if we overwrite for
6803 			 * sync-to-convergence, because we remove
6804 			 * buffers from the hash table when we arc_free().
6805 			 */
6806 			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
6807 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6808 					panic("bad overwrite, hdr=%p exists=%p",
6809 					    (void *)hdr, (void *)exists);
6810 				ASSERT(zfs_refcount_is_zero(
6811 				    &exists->b_l1hdr.b_refcnt));
6812 				arc_change_state(arc_anon, exists);
6813 				arc_hdr_destroy(exists);
6814 				mutex_exit(hash_lock);
6815 				exists = buf_hash_insert(hdr, &hash_lock);
6816 				ASSERT3P(exists, ==, NULL);
6817 			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
6818 				/* nopwrite */
6819 				ASSERT(zio->io_prop.zp_nopwrite);
6820 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6821 					panic("bad nopwrite, hdr=%p exists=%p",
6822 					    (void *)hdr, (void *)exists);
6823 			} else {
6824 				/* Dedup */
6825 				ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
6826 				ASSERT(ARC_BUF_LAST(hdr->b_l1hdr.b_buf));
6827 				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
6828 				ASSERT(BP_GET_DEDUP(zio->io_bp));
6829 				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
6830 			}
6831 		}
6832 		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6833 		VERIFY3S(remove_reference(hdr, hdr), >, 0);
6834 		/* if it's not anon, we are doing a scrub */
6835 		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
6836 			arc_access(hdr, 0, B_FALSE);
6837 		mutex_exit(hash_lock);
6838 	} else {
6839 		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6840 		VERIFY3S(remove_reference(hdr, hdr), >, 0);
6841 	}
6842 
6843 	callback->awcb_done(zio, buf, callback->awcb_private);
6844 
6845 	abd_free(zio->io_abd);
6846 	kmem_free(callback, sizeof (arc_write_callback_t));
6847 }
6848 
6849 zio_t *
6850 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
6851     blkptr_t *bp, arc_buf_t *buf, boolean_t uncached, boolean_t l2arc,
6852     const zio_prop_t *zp, arc_write_done_func_t *ready,
6853     arc_write_done_func_t *children_ready, arc_write_done_func_t *done,
6854     void *private, zio_priority_t priority, int zio_flags,
6855     const zbookmark_phys_t *zb)
6856 {
6857 	arc_buf_hdr_t *hdr = buf->b_hdr;
6858 	arc_write_callback_t *callback;
6859 	zio_t *zio;
6860 	zio_prop_t localprop = *zp;
6861 
6862 	ASSERT3P(ready, !=, NULL);
6863 	ASSERT3P(done, !=, NULL);
6864 	ASSERT(!HDR_IO_ERROR(hdr));
6865 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6866 	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6867 	ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
6868 	if (uncached)
6869 		arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED);
6870 	else if (l2arc)
6871 		arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6872 
6873 	if (ARC_BUF_ENCRYPTED(buf)) {
6874 		ASSERT(ARC_BUF_COMPRESSED(buf));
6875 		localprop.zp_encrypt = B_TRUE;
6876 		localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6877 		localprop.zp_complevel = hdr->b_complevel;
6878 		localprop.zp_byteorder =
6879 		    (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
6880 		    ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
6881 		memcpy(localprop.zp_salt, hdr->b_crypt_hdr.b_salt,
6882 		    ZIO_DATA_SALT_LEN);
6883 		memcpy(localprop.zp_iv, hdr->b_crypt_hdr.b_iv,
6884 		    ZIO_DATA_IV_LEN);
6885 		memcpy(localprop.zp_mac, hdr->b_crypt_hdr.b_mac,
6886 		    ZIO_DATA_MAC_LEN);
6887 		if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) {
6888 			localprop.zp_nopwrite = B_FALSE;
6889 			localprop.zp_copies =
6890 			    MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1);
6891 		}
6892 		zio_flags |= ZIO_FLAG_RAW;
6893 	} else if (ARC_BUF_COMPRESSED(buf)) {
6894 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
6895 		localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6896 		localprop.zp_complevel = hdr->b_complevel;
6897 		zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6898 	}
6899 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
6900 	callback->awcb_ready = ready;
6901 	callback->awcb_children_ready = children_ready;
6902 	callback->awcb_done = done;
6903 	callback->awcb_private = private;
6904 	callback->awcb_buf = buf;
6905 
6906 	/*
6907 	 * The hdr's b_pabd is now stale, free it now. A new data block
6908 	 * will be allocated when the zio pipeline calls arc_write_ready().
6909 	 */
6910 	if (hdr->b_l1hdr.b_pabd != NULL) {
6911 		/*
6912 		 * If the buf is currently sharing the data block with
6913 		 * the hdr then we need to break that relationship here.
6914 		 * The hdr will remain with a NULL data pointer and the
6915 		 * buf will take sole ownership of the block.
6916 		 */
6917 		if (ARC_BUF_SHARED(buf)) {
6918 			arc_unshare_buf(hdr, buf);
6919 		} else {
6920 			ASSERT(!arc_buf_is_shared(buf));
6921 			arc_hdr_free_abd(hdr, B_FALSE);
6922 		}
6923 		VERIFY3P(buf->b_data, !=, NULL);
6924 	}
6925 
6926 	if (HDR_HAS_RABD(hdr))
6927 		arc_hdr_free_abd(hdr, B_TRUE);
6928 
6929 	if (!(zio_flags & ZIO_FLAG_RAW))
6930 		arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
6931 
6932 	ASSERT(!arc_buf_is_shared(buf));
6933 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6934 
6935 	zio = zio_write(pio, spa, txg, bp,
6936 	    abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
6937 	    HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
6938 	    (children_ready != NULL) ? arc_write_children_ready : NULL,
6939 	    arc_write_done, callback, priority, zio_flags, zb);
6940 
6941 	return (zio);
6942 }
6943 
6944 void
6945 arc_tempreserve_clear(uint64_t reserve)
6946 {
6947 	atomic_add_64(&arc_tempreserve, -reserve);
6948 	ASSERT((int64_t)arc_tempreserve >= 0);
6949 }
6950 
6951 int
6952 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg)
6953 {
6954 	int error;
6955 	uint64_t anon_size;
6956 
6957 	if (!arc_no_grow &&
6958 	    reserve > arc_c/4 &&
6959 	    reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
6960 		arc_c = MIN(arc_c_max, reserve * 4);
6961 
6962 	/*
6963 	 * Throttle when the calculated memory footprint for the TXG
6964 	 * exceeds the target ARC size.
6965 	 */
6966 	if (reserve > arc_c) {
6967 		DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
6968 		return (SET_ERROR(ERESTART));
6969 	}
6970 
6971 	/*
6972 	 * Don't count loaned bufs as in flight dirty data to prevent long
6973 	 * network delays from blocking transactions that are ready to be
6974 	 * assigned to a txg.
6975 	 */
6976 
6977 	/* assert that it has not wrapped around */
6978 	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
6979 
6980 	anon_size = MAX((int64_t)
6981 	    (zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]) +
6982 	    zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]) -
6983 	    arc_loaned_bytes), 0);
6984 
6985 	/*
6986 	 * Writes will, almost always, require additional memory allocations
6987 	 * in order to compress/encrypt/etc the data.  We therefore need to
6988 	 * make sure that there is sufficient available memory for this.
6989 	 */
6990 	error = arc_memory_throttle(spa, reserve, txg);
6991 	if (error != 0)
6992 		return (error);
6993 
6994 	/*
6995 	 * Throttle writes when the amount of dirty data in the cache
6996 	 * gets too large.  We try to keep the cache less than half full
6997 	 * of dirty blocks so that our sync times don't grow too large.
6998 	 *
6999 	 * In the case of one pool being built on another pool, we want
7000 	 * to make sure we don't end up throttling the lower (backing)
7001 	 * pool when the upper pool is the majority contributor to dirty
7002 	 * data. To insure we make forward progress during throttling, we
7003 	 * also check the current pool's net dirty data and only throttle
7004 	 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
7005 	 * data in the cache.
7006 	 *
7007 	 * Note: if two requests come in concurrently, we might let them
7008 	 * both succeed, when one of them should fail.  Not a huge deal.
7009 	 */
7010 	uint64_t total_dirty = reserve + arc_tempreserve + anon_size;
7011 	uint64_t spa_dirty_anon = spa_dirty_data(spa);
7012 	uint64_t rarc_c = arc_warm ? arc_c : arc_c_max;
7013 	if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 &&
7014 	    anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 &&
7015 	    spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) {
7016 #ifdef ZFS_DEBUG
7017 		uint64_t meta_esize = zfs_refcount_count(
7018 		    &arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7019 		uint64_t data_esize =
7020 		    zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7021 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
7022 		    "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n",
7023 		    (u_longlong_t)arc_tempreserve >> 10,
7024 		    (u_longlong_t)meta_esize >> 10,
7025 		    (u_longlong_t)data_esize >> 10,
7026 		    (u_longlong_t)reserve >> 10,
7027 		    (u_longlong_t)rarc_c >> 10);
7028 #endif
7029 		DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
7030 		return (SET_ERROR(ERESTART));
7031 	}
7032 	atomic_add_64(&arc_tempreserve, reserve);
7033 	return (0);
7034 }
7035 
7036 static void
7037 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
7038     kstat_named_t *data, kstat_named_t *metadata,
7039     kstat_named_t *evict_data, kstat_named_t *evict_metadata)
7040 {
7041 	data->value.ui64 =
7042 	    zfs_refcount_count(&state->arcs_size[ARC_BUFC_DATA]);
7043 	metadata->value.ui64 =
7044 	    zfs_refcount_count(&state->arcs_size[ARC_BUFC_METADATA]);
7045 	size->value.ui64 = data->value.ui64 + metadata->value.ui64;
7046 	evict_data->value.ui64 =
7047 	    zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
7048 	evict_metadata->value.ui64 =
7049 	    zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
7050 }
7051 
7052 static int
7053 arc_kstat_update(kstat_t *ksp, int rw)
7054 {
7055 	arc_stats_t *as = ksp->ks_data;
7056 
7057 	if (rw == KSTAT_WRITE)
7058 		return (SET_ERROR(EACCES));
7059 
7060 	as->arcstat_hits.value.ui64 =
7061 	    wmsum_value(&arc_sums.arcstat_hits);
7062 	as->arcstat_iohits.value.ui64 =
7063 	    wmsum_value(&arc_sums.arcstat_iohits);
7064 	as->arcstat_misses.value.ui64 =
7065 	    wmsum_value(&arc_sums.arcstat_misses);
7066 	as->arcstat_demand_data_hits.value.ui64 =
7067 	    wmsum_value(&arc_sums.arcstat_demand_data_hits);
7068 	as->arcstat_demand_data_iohits.value.ui64 =
7069 	    wmsum_value(&arc_sums.arcstat_demand_data_iohits);
7070 	as->arcstat_demand_data_misses.value.ui64 =
7071 	    wmsum_value(&arc_sums.arcstat_demand_data_misses);
7072 	as->arcstat_demand_metadata_hits.value.ui64 =
7073 	    wmsum_value(&arc_sums.arcstat_demand_metadata_hits);
7074 	as->arcstat_demand_metadata_iohits.value.ui64 =
7075 	    wmsum_value(&arc_sums.arcstat_demand_metadata_iohits);
7076 	as->arcstat_demand_metadata_misses.value.ui64 =
7077 	    wmsum_value(&arc_sums.arcstat_demand_metadata_misses);
7078 	as->arcstat_prefetch_data_hits.value.ui64 =
7079 	    wmsum_value(&arc_sums.arcstat_prefetch_data_hits);
7080 	as->arcstat_prefetch_data_iohits.value.ui64 =
7081 	    wmsum_value(&arc_sums.arcstat_prefetch_data_iohits);
7082 	as->arcstat_prefetch_data_misses.value.ui64 =
7083 	    wmsum_value(&arc_sums.arcstat_prefetch_data_misses);
7084 	as->arcstat_prefetch_metadata_hits.value.ui64 =
7085 	    wmsum_value(&arc_sums.arcstat_prefetch_metadata_hits);
7086 	as->arcstat_prefetch_metadata_iohits.value.ui64 =
7087 	    wmsum_value(&arc_sums.arcstat_prefetch_metadata_iohits);
7088 	as->arcstat_prefetch_metadata_misses.value.ui64 =
7089 	    wmsum_value(&arc_sums.arcstat_prefetch_metadata_misses);
7090 	as->arcstat_mru_hits.value.ui64 =
7091 	    wmsum_value(&arc_sums.arcstat_mru_hits);
7092 	as->arcstat_mru_ghost_hits.value.ui64 =
7093 	    wmsum_value(&arc_sums.arcstat_mru_ghost_hits);
7094 	as->arcstat_mfu_hits.value.ui64 =
7095 	    wmsum_value(&arc_sums.arcstat_mfu_hits);
7096 	as->arcstat_mfu_ghost_hits.value.ui64 =
7097 	    wmsum_value(&arc_sums.arcstat_mfu_ghost_hits);
7098 	as->arcstat_uncached_hits.value.ui64 =
7099 	    wmsum_value(&arc_sums.arcstat_uncached_hits);
7100 	as->arcstat_deleted.value.ui64 =
7101 	    wmsum_value(&arc_sums.arcstat_deleted);
7102 	as->arcstat_mutex_miss.value.ui64 =
7103 	    wmsum_value(&arc_sums.arcstat_mutex_miss);
7104 	as->arcstat_access_skip.value.ui64 =
7105 	    wmsum_value(&arc_sums.arcstat_access_skip);
7106 	as->arcstat_evict_skip.value.ui64 =
7107 	    wmsum_value(&arc_sums.arcstat_evict_skip);
7108 	as->arcstat_evict_not_enough.value.ui64 =
7109 	    wmsum_value(&arc_sums.arcstat_evict_not_enough);
7110 	as->arcstat_evict_l2_cached.value.ui64 =
7111 	    wmsum_value(&arc_sums.arcstat_evict_l2_cached);
7112 	as->arcstat_evict_l2_eligible.value.ui64 =
7113 	    wmsum_value(&arc_sums.arcstat_evict_l2_eligible);
7114 	as->arcstat_evict_l2_eligible_mfu.value.ui64 =
7115 	    wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mfu);
7116 	as->arcstat_evict_l2_eligible_mru.value.ui64 =
7117 	    wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mru);
7118 	as->arcstat_evict_l2_ineligible.value.ui64 =
7119 	    wmsum_value(&arc_sums.arcstat_evict_l2_ineligible);
7120 	as->arcstat_evict_l2_skip.value.ui64 =
7121 	    wmsum_value(&arc_sums.arcstat_evict_l2_skip);
7122 	as->arcstat_hash_elements.value.ui64 =
7123 	    as->arcstat_hash_elements_max.value.ui64 =
7124 	    wmsum_value(&arc_sums.arcstat_hash_elements);
7125 	as->arcstat_hash_collisions.value.ui64 =
7126 	    wmsum_value(&arc_sums.arcstat_hash_collisions);
7127 	as->arcstat_hash_chains.value.ui64 =
7128 	    wmsum_value(&arc_sums.arcstat_hash_chains);
7129 	as->arcstat_size.value.ui64 =
7130 	    aggsum_value(&arc_sums.arcstat_size);
7131 	as->arcstat_compressed_size.value.ui64 =
7132 	    wmsum_value(&arc_sums.arcstat_compressed_size);
7133 	as->arcstat_uncompressed_size.value.ui64 =
7134 	    wmsum_value(&arc_sums.arcstat_uncompressed_size);
7135 	as->arcstat_overhead_size.value.ui64 =
7136 	    wmsum_value(&arc_sums.arcstat_overhead_size);
7137 	as->arcstat_hdr_size.value.ui64 =
7138 	    wmsum_value(&arc_sums.arcstat_hdr_size);
7139 	as->arcstat_data_size.value.ui64 =
7140 	    wmsum_value(&arc_sums.arcstat_data_size);
7141 	as->arcstat_metadata_size.value.ui64 =
7142 	    wmsum_value(&arc_sums.arcstat_metadata_size);
7143 	as->arcstat_dbuf_size.value.ui64 =
7144 	    wmsum_value(&arc_sums.arcstat_dbuf_size);
7145 #if defined(COMPAT_FREEBSD11)
7146 	as->arcstat_other_size.value.ui64 =
7147 	    wmsum_value(&arc_sums.arcstat_bonus_size) +
7148 	    wmsum_value(&arc_sums.arcstat_dnode_size) +
7149 	    wmsum_value(&arc_sums.arcstat_dbuf_size);
7150 #endif
7151 
7152 	arc_kstat_update_state(arc_anon,
7153 	    &as->arcstat_anon_size,
7154 	    &as->arcstat_anon_data,
7155 	    &as->arcstat_anon_metadata,
7156 	    &as->arcstat_anon_evictable_data,
7157 	    &as->arcstat_anon_evictable_metadata);
7158 	arc_kstat_update_state(arc_mru,
7159 	    &as->arcstat_mru_size,
7160 	    &as->arcstat_mru_data,
7161 	    &as->arcstat_mru_metadata,
7162 	    &as->arcstat_mru_evictable_data,
7163 	    &as->arcstat_mru_evictable_metadata);
7164 	arc_kstat_update_state(arc_mru_ghost,
7165 	    &as->arcstat_mru_ghost_size,
7166 	    &as->arcstat_mru_ghost_data,
7167 	    &as->arcstat_mru_ghost_metadata,
7168 	    &as->arcstat_mru_ghost_evictable_data,
7169 	    &as->arcstat_mru_ghost_evictable_metadata);
7170 	arc_kstat_update_state(arc_mfu,
7171 	    &as->arcstat_mfu_size,
7172 	    &as->arcstat_mfu_data,
7173 	    &as->arcstat_mfu_metadata,
7174 	    &as->arcstat_mfu_evictable_data,
7175 	    &as->arcstat_mfu_evictable_metadata);
7176 	arc_kstat_update_state(arc_mfu_ghost,
7177 	    &as->arcstat_mfu_ghost_size,
7178 	    &as->arcstat_mfu_ghost_data,
7179 	    &as->arcstat_mfu_ghost_metadata,
7180 	    &as->arcstat_mfu_ghost_evictable_data,
7181 	    &as->arcstat_mfu_ghost_evictable_metadata);
7182 	arc_kstat_update_state(arc_uncached,
7183 	    &as->arcstat_uncached_size,
7184 	    &as->arcstat_uncached_data,
7185 	    &as->arcstat_uncached_metadata,
7186 	    &as->arcstat_uncached_evictable_data,
7187 	    &as->arcstat_uncached_evictable_metadata);
7188 
7189 	as->arcstat_dnode_size.value.ui64 =
7190 	    wmsum_value(&arc_sums.arcstat_dnode_size);
7191 	as->arcstat_bonus_size.value.ui64 =
7192 	    wmsum_value(&arc_sums.arcstat_bonus_size);
7193 	as->arcstat_l2_hits.value.ui64 =
7194 	    wmsum_value(&arc_sums.arcstat_l2_hits);
7195 	as->arcstat_l2_misses.value.ui64 =
7196 	    wmsum_value(&arc_sums.arcstat_l2_misses);
7197 	as->arcstat_l2_prefetch_asize.value.ui64 =
7198 	    wmsum_value(&arc_sums.arcstat_l2_prefetch_asize);
7199 	as->arcstat_l2_mru_asize.value.ui64 =
7200 	    wmsum_value(&arc_sums.arcstat_l2_mru_asize);
7201 	as->arcstat_l2_mfu_asize.value.ui64 =
7202 	    wmsum_value(&arc_sums.arcstat_l2_mfu_asize);
7203 	as->arcstat_l2_bufc_data_asize.value.ui64 =
7204 	    wmsum_value(&arc_sums.arcstat_l2_bufc_data_asize);
7205 	as->arcstat_l2_bufc_metadata_asize.value.ui64 =
7206 	    wmsum_value(&arc_sums.arcstat_l2_bufc_metadata_asize);
7207 	as->arcstat_l2_feeds.value.ui64 =
7208 	    wmsum_value(&arc_sums.arcstat_l2_feeds);
7209 	as->arcstat_l2_rw_clash.value.ui64 =
7210 	    wmsum_value(&arc_sums.arcstat_l2_rw_clash);
7211 	as->arcstat_l2_read_bytes.value.ui64 =
7212 	    wmsum_value(&arc_sums.arcstat_l2_read_bytes);
7213 	as->arcstat_l2_write_bytes.value.ui64 =
7214 	    wmsum_value(&arc_sums.arcstat_l2_write_bytes);
7215 	as->arcstat_l2_writes_sent.value.ui64 =
7216 	    wmsum_value(&arc_sums.arcstat_l2_writes_sent);
7217 	as->arcstat_l2_writes_done.value.ui64 =
7218 	    wmsum_value(&arc_sums.arcstat_l2_writes_done);
7219 	as->arcstat_l2_writes_error.value.ui64 =
7220 	    wmsum_value(&arc_sums.arcstat_l2_writes_error);
7221 	as->arcstat_l2_writes_lock_retry.value.ui64 =
7222 	    wmsum_value(&arc_sums.arcstat_l2_writes_lock_retry);
7223 	as->arcstat_l2_evict_lock_retry.value.ui64 =
7224 	    wmsum_value(&arc_sums.arcstat_l2_evict_lock_retry);
7225 	as->arcstat_l2_evict_reading.value.ui64 =
7226 	    wmsum_value(&arc_sums.arcstat_l2_evict_reading);
7227 	as->arcstat_l2_evict_l1cached.value.ui64 =
7228 	    wmsum_value(&arc_sums.arcstat_l2_evict_l1cached);
7229 	as->arcstat_l2_free_on_write.value.ui64 =
7230 	    wmsum_value(&arc_sums.arcstat_l2_free_on_write);
7231 	as->arcstat_l2_abort_lowmem.value.ui64 =
7232 	    wmsum_value(&arc_sums.arcstat_l2_abort_lowmem);
7233 	as->arcstat_l2_cksum_bad.value.ui64 =
7234 	    wmsum_value(&arc_sums.arcstat_l2_cksum_bad);
7235 	as->arcstat_l2_io_error.value.ui64 =
7236 	    wmsum_value(&arc_sums.arcstat_l2_io_error);
7237 	as->arcstat_l2_lsize.value.ui64 =
7238 	    wmsum_value(&arc_sums.arcstat_l2_lsize);
7239 	as->arcstat_l2_psize.value.ui64 =
7240 	    wmsum_value(&arc_sums.arcstat_l2_psize);
7241 	as->arcstat_l2_hdr_size.value.ui64 =
7242 	    aggsum_value(&arc_sums.arcstat_l2_hdr_size);
7243 	as->arcstat_l2_log_blk_writes.value.ui64 =
7244 	    wmsum_value(&arc_sums.arcstat_l2_log_blk_writes);
7245 	as->arcstat_l2_log_blk_asize.value.ui64 =
7246 	    wmsum_value(&arc_sums.arcstat_l2_log_blk_asize);
7247 	as->arcstat_l2_log_blk_count.value.ui64 =
7248 	    wmsum_value(&arc_sums.arcstat_l2_log_blk_count);
7249 	as->arcstat_l2_rebuild_success.value.ui64 =
7250 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_success);
7251 	as->arcstat_l2_rebuild_abort_unsupported.value.ui64 =
7252 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7253 	as->arcstat_l2_rebuild_abort_io_errors.value.ui64 =
7254 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7255 	as->arcstat_l2_rebuild_abort_dh_errors.value.ui64 =
7256 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7257 	as->arcstat_l2_rebuild_abort_cksum_lb_errors.value.ui64 =
7258 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7259 	as->arcstat_l2_rebuild_abort_lowmem.value.ui64 =
7260 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7261 	as->arcstat_l2_rebuild_size.value.ui64 =
7262 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_size);
7263 	as->arcstat_l2_rebuild_asize.value.ui64 =
7264 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_asize);
7265 	as->arcstat_l2_rebuild_bufs.value.ui64 =
7266 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs);
7267 	as->arcstat_l2_rebuild_bufs_precached.value.ui64 =
7268 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7269 	as->arcstat_l2_rebuild_log_blks.value.ui64 =
7270 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_log_blks);
7271 	as->arcstat_memory_throttle_count.value.ui64 =
7272 	    wmsum_value(&arc_sums.arcstat_memory_throttle_count);
7273 	as->arcstat_memory_direct_count.value.ui64 =
7274 	    wmsum_value(&arc_sums.arcstat_memory_direct_count);
7275 	as->arcstat_memory_indirect_count.value.ui64 =
7276 	    wmsum_value(&arc_sums.arcstat_memory_indirect_count);
7277 
7278 	as->arcstat_memory_all_bytes.value.ui64 =
7279 	    arc_all_memory();
7280 	as->arcstat_memory_free_bytes.value.ui64 =
7281 	    arc_free_memory();
7282 	as->arcstat_memory_available_bytes.value.i64 =
7283 	    arc_available_memory();
7284 
7285 	as->arcstat_prune.value.ui64 =
7286 	    wmsum_value(&arc_sums.arcstat_prune);
7287 	as->arcstat_meta_used.value.ui64 =
7288 	    wmsum_value(&arc_sums.arcstat_meta_used);
7289 	as->arcstat_async_upgrade_sync.value.ui64 =
7290 	    wmsum_value(&arc_sums.arcstat_async_upgrade_sync);
7291 	as->arcstat_predictive_prefetch.value.ui64 =
7292 	    wmsum_value(&arc_sums.arcstat_predictive_prefetch);
7293 	as->arcstat_demand_hit_predictive_prefetch.value.ui64 =
7294 	    wmsum_value(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7295 	as->arcstat_demand_iohit_predictive_prefetch.value.ui64 =
7296 	    wmsum_value(&arc_sums.arcstat_demand_iohit_predictive_prefetch);
7297 	as->arcstat_prescient_prefetch.value.ui64 =
7298 	    wmsum_value(&arc_sums.arcstat_prescient_prefetch);
7299 	as->arcstat_demand_hit_prescient_prefetch.value.ui64 =
7300 	    wmsum_value(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7301 	as->arcstat_demand_iohit_prescient_prefetch.value.ui64 =
7302 	    wmsum_value(&arc_sums.arcstat_demand_iohit_prescient_prefetch);
7303 	as->arcstat_raw_size.value.ui64 =
7304 	    wmsum_value(&arc_sums.arcstat_raw_size);
7305 	as->arcstat_cached_only_in_progress.value.ui64 =
7306 	    wmsum_value(&arc_sums.arcstat_cached_only_in_progress);
7307 	as->arcstat_abd_chunk_waste_size.value.ui64 =
7308 	    wmsum_value(&arc_sums.arcstat_abd_chunk_waste_size);
7309 
7310 	return (0);
7311 }
7312 
7313 /*
7314  * This function *must* return indices evenly distributed between all
7315  * sublists of the multilist. This is needed due to how the ARC eviction
7316  * code is laid out; arc_evict_state() assumes ARC buffers are evenly
7317  * distributed between all sublists and uses this assumption when
7318  * deciding which sublist to evict from and how much to evict from it.
7319  */
7320 static unsigned int
7321 arc_state_multilist_index_func(multilist_t *ml, void *obj)
7322 {
7323 	arc_buf_hdr_t *hdr = obj;
7324 
7325 	/*
7326 	 * We rely on b_dva to generate evenly distributed index
7327 	 * numbers using buf_hash below. So, as an added precaution,
7328 	 * let's make sure we never add empty buffers to the arc lists.
7329 	 */
7330 	ASSERT(!HDR_EMPTY(hdr));
7331 
7332 	/*
7333 	 * The assumption here, is the hash value for a given
7334 	 * arc_buf_hdr_t will remain constant throughout its lifetime
7335 	 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
7336 	 * Thus, we don't need to store the header's sublist index
7337 	 * on insertion, as this index can be recalculated on removal.
7338 	 *
7339 	 * Also, the low order bits of the hash value are thought to be
7340 	 * distributed evenly. Otherwise, in the case that the multilist
7341 	 * has a power of two number of sublists, each sublists' usage
7342 	 * would not be evenly distributed. In this context full 64bit
7343 	 * division would be a waste of time, so limit it to 32 bits.
7344 	 */
7345 	return ((unsigned int)buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
7346 	    multilist_get_num_sublists(ml));
7347 }
7348 
7349 static unsigned int
7350 arc_state_l2c_multilist_index_func(multilist_t *ml, void *obj)
7351 {
7352 	panic("Header %p insert into arc_l2c_only %p", obj, ml);
7353 }
7354 
7355 #define	WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do {	\
7356 	if ((do_warn) && (tuning) && ((tuning) != (value))) {	\
7357 		cmn_err(CE_WARN,				\
7358 		    "ignoring tunable %s (using %llu instead)",	\
7359 		    (#tuning), (u_longlong_t)(value));	\
7360 	}							\
7361 } while (0)
7362 
7363 /*
7364  * Called during module initialization and periodically thereafter to
7365  * apply reasonable changes to the exposed performance tunings.  Can also be
7366  * called explicitly by param_set_arc_*() functions when ARC tunables are
7367  * updated manually.  Non-zero zfs_* values which differ from the currently set
7368  * values will be applied.
7369  */
7370 void
7371 arc_tuning_update(boolean_t verbose)
7372 {
7373 	uint64_t allmem = arc_all_memory();
7374 
7375 	/* Valid range: 32M - <arc_c_max> */
7376 	if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
7377 	    (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
7378 	    (zfs_arc_min <= arc_c_max)) {
7379 		arc_c_min = zfs_arc_min;
7380 		arc_c = MAX(arc_c, arc_c_min);
7381 	}
7382 	WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose);
7383 
7384 	/* Valid range: 64M - <all physical memory> */
7385 	if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
7386 	    (zfs_arc_max >= MIN_ARC_MAX) && (zfs_arc_max < allmem) &&
7387 	    (zfs_arc_max > arc_c_min)) {
7388 		arc_c_max = zfs_arc_max;
7389 		arc_c = MIN(arc_c, arc_c_max);
7390 		if (arc_dnode_limit > arc_c_max)
7391 			arc_dnode_limit = arc_c_max;
7392 	}
7393 	WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose);
7394 
7395 	/* Valid range: 0 - <all physical memory> */
7396 	arc_dnode_limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit :
7397 	    MIN(zfs_arc_dnode_limit_percent, 100) * arc_c_max / 100;
7398 	WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_limit, verbose);
7399 
7400 	/* Valid range: 1 - N */
7401 	if (zfs_arc_grow_retry)
7402 		arc_grow_retry = zfs_arc_grow_retry;
7403 
7404 	/* Valid range: 1 - N */
7405 	if (zfs_arc_shrink_shift) {
7406 		arc_shrink_shift = zfs_arc_shrink_shift;
7407 		arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
7408 	}
7409 
7410 	/* Valid range: 1 - N ms */
7411 	if (zfs_arc_min_prefetch_ms)
7412 		arc_min_prefetch_ms = zfs_arc_min_prefetch_ms;
7413 
7414 	/* Valid range: 1 - N ms */
7415 	if (zfs_arc_min_prescient_prefetch_ms) {
7416 		arc_min_prescient_prefetch_ms =
7417 		    zfs_arc_min_prescient_prefetch_ms;
7418 	}
7419 
7420 	/* Valid range: 0 - 100 */
7421 	if (zfs_arc_lotsfree_percent <= 100)
7422 		arc_lotsfree_percent = zfs_arc_lotsfree_percent;
7423 	WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent,
7424 	    verbose);
7425 
7426 	/* Valid range: 0 - <all physical memory> */
7427 	if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
7428 		arc_sys_free = MIN(zfs_arc_sys_free, allmem);
7429 	WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose);
7430 }
7431 
7432 static void
7433 arc_state_multilist_init(multilist_t *ml,
7434     multilist_sublist_index_func_t *index_func, int *maxcountp)
7435 {
7436 	multilist_create(ml, sizeof (arc_buf_hdr_t),
7437 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), index_func);
7438 	*maxcountp = MAX(*maxcountp, multilist_get_num_sublists(ml));
7439 }
7440 
7441 static void
7442 arc_state_init(void)
7443 {
7444 	int num_sublists = 0;
7445 
7446 	arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_METADATA],
7447 	    arc_state_multilist_index_func, &num_sublists);
7448 	arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_DATA],
7449 	    arc_state_multilist_index_func, &num_sublists);
7450 	arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
7451 	    arc_state_multilist_index_func, &num_sublists);
7452 	arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
7453 	    arc_state_multilist_index_func, &num_sublists);
7454 	arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
7455 	    arc_state_multilist_index_func, &num_sublists);
7456 	arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_DATA],
7457 	    arc_state_multilist_index_func, &num_sublists);
7458 	arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
7459 	    arc_state_multilist_index_func, &num_sublists);
7460 	arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
7461 	    arc_state_multilist_index_func, &num_sublists);
7462 	arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_METADATA],
7463 	    arc_state_multilist_index_func, &num_sublists);
7464 	arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_DATA],
7465 	    arc_state_multilist_index_func, &num_sublists);
7466 
7467 	/*
7468 	 * L2 headers should never be on the L2 state list since they don't
7469 	 * have L1 headers allocated.  Special index function asserts that.
7470 	 */
7471 	arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
7472 	    arc_state_l2c_multilist_index_func, &num_sublists);
7473 	arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
7474 	    arc_state_l2c_multilist_index_func, &num_sublists);
7475 
7476 	/*
7477 	 * Keep track of the number of markers needed to reclaim buffers from
7478 	 * any ARC state.  The markers will be pre-allocated so as to minimize
7479 	 * the number of memory allocations performed by the eviction thread.
7480 	 */
7481 	arc_state_evict_marker_count = num_sublists;
7482 
7483 	zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7484 	zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7485 	zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7486 	zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7487 	zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7488 	zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7489 	zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7490 	zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7491 	zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7492 	zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7493 	zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7494 	zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7495 	zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]);
7496 	zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_DATA]);
7497 
7498 	zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_DATA]);
7499 	zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
7500 	zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_DATA]);
7501 	zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_METADATA]);
7502 	zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]);
7503 	zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]);
7504 	zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
7505 	zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
7506 	zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]);
7507 	zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]);
7508 	zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]);
7509 	zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]);
7510 	zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_DATA]);
7511 	zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_METADATA]);
7512 
7513 	wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA], 0);
7514 	wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA], 0);
7515 	wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA], 0);
7516 	wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA], 0);
7517 
7518 	wmsum_init(&arc_sums.arcstat_hits, 0);
7519 	wmsum_init(&arc_sums.arcstat_iohits, 0);
7520 	wmsum_init(&arc_sums.arcstat_misses, 0);
7521 	wmsum_init(&arc_sums.arcstat_demand_data_hits, 0);
7522 	wmsum_init(&arc_sums.arcstat_demand_data_iohits, 0);
7523 	wmsum_init(&arc_sums.arcstat_demand_data_misses, 0);
7524 	wmsum_init(&arc_sums.arcstat_demand_metadata_hits, 0);
7525 	wmsum_init(&arc_sums.arcstat_demand_metadata_iohits, 0);
7526 	wmsum_init(&arc_sums.arcstat_demand_metadata_misses, 0);
7527 	wmsum_init(&arc_sums.arcstat_prefetch_data_hits, 0);
7528 	wmsum_init(&arc_sums.arcstat_prefetch_data_iohits, 0);
7529 	wmsum_init(&arc_sums.arcstat_prefetch_data_misses, 0);
7530 	wmsum_init(&arc_sums.arcstat_prefetch_metadata_hits, 0);
7531 	wmsum_init(&arc_sums.arcstat_prefetch_metadata_iohits, 0);
7532 	wmsum_init(&arc_sums.arcstat_prefetch_metadata_misses, 0);
7533 	wmsum_init(&arc_sums.arcstat_mru_hits, 0);
7534 	wmsum_init(&arc_sums.arcstat_mru_ghost_hits, 0);
7535 	wmsum_init(&arc_sums.arcstat_mfu_hits, 0);
7536 	wmsum_init(&arc_sums.arcstat_mfu_ghost_hits, 0);
7537 	wmsum_init(&arc_sums.arcstat_uncached_hits, 0);
7538 	wmsum_init(&arc_sums.arcstat_deleted, 0);
7539 	wmsum_init(&arc_sums.arcstat_mutex_miss, 0);
7540 	wmsum_init(&arc_sums.arcstat_access_skip, 0);
7541 	wmsum_init(&arc_sums.arcstat_evict_skip, 0);
7542 	wmsum_init(&arc_sums.arcstat_evict_not_enough, 0);
7543 	wmsum_init(&arc_sums.arcstat_evict_l2_cached, 0);
7544 	wmsum_init(&arc_sums.arcstat_evict_l2_eligible, 0);
7545 	wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mfu, 0);
7546 	wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mru, 0);
7547 	wmsum_init(&arc_sums.arcstat_evict_l2_ineligible, 0);
7548 	wmsum_init(&arc_sums.arcstat_evict_l2_skip, 0);
7549 	wmsum_init(&arc_sums.arcstat_hash_elements, 0);
7550 	wmsum_init(&arc_sums.arcstat_hash_collisions, 0);
7551 	wmsum_init(&arc_sums.arcstat_hash_chains, 0);
7552 	aggsum_init(&arc_sums.arcstat_size, 0);
7553 	wmsum_init(&arc_sums.arcstat_compressed_size, 0);
7554 	wmsum_init(&arc_sums.arcstat_uncompressed_size, 0);
7555 	wmsum_init(&arc_sums.arcstat_overhead_size, 0);
7556 	wmsum_init(&arc_sums.arcstat_hdr_size, 0);
7557 	wmsum_init(&arc_sums.arcstat_data_size, 0);
7558 	wmsum_init(&arc_sums.arcstat_metadata_size, 0);
7559 	wmsum_init(&arc_sums.arcstat_dbuf_size, 0);
7560 	wmsum_init(&arc_sums.arcstat_dnode_size, 0);
7561 	wmsum_init(&arc_sums.arcstat_bonus_size, 0);
7562 	wmsum_init(&arc_sums.arcstat_l2_hits, 0);
7563 	wmsum_init(&arc_sums.arcstat_l2_misses, 0);
7564 	wmsum_init(&arc_sums.arcstat_l2_prefetch_asize, 0);
7565 	wmsum_init(&arc_sums.arcstat_l2_mru_asize, 0);
7566 	wmsum_init(&arc_sums.arcstat_l2_mfu_asize, 0);
7567 	wmsum_init(&arc_sums.arcstat_l2_bufc_data_asize, 0);
7568 	wmsum_init(&arc_sums.arcstat_l2_bufc_metadata_asize, 0);
7569 	wmsum_init(&arc_sums.arcstat_l2_feeds, 0);
7570 	wmsum_init(&arc_sums.arcstat_l2_rw_clash, 0);
7571 	wmsum_init(&arc_sums.arcstat_l2_read_bytes, 0);
7572 	wmsum_init(&arc_sums.arcstat_l2_write_bytes, 0);
7573 	wmsum_init(&arc_sums.arcstat_l2_writes_sent, 0);
7574 	wmsum_init(&arc_sums.arcstat_l2_writes_done, 0);
7575 	wmsum_init(&arc_sums.arcstat_l2_writes_error, 0);
7576 	wmsum_init(&arc_sums.arcstat_l2_writes_lock_retry, 0);
7577 	wmsum_init(&arc_sums.arcstat_l2_evict_lock_retry, 0);
7578 	wmsum_init(&arc_sums.arcstat_l2_evict_reading, 0);
7579 	wmsum_init(&arc_sums.arcstat_l2_evict_l1cached, 0);
7580 	wmsum_init(&arc_sums.arcstat_l2_free_on_write, 0);
7581 	wmsum_init(&arc_sums.arcstat_l2_abort_lowmem, 0);
7582 	wmsum_init(&arc_sums.arcstat_l2_cksum_bad, 0);
7583 	wmsum_init(&arc_sums.arcstat_l2_io_error, 0);
7584 	wmsum_init(&arc_sums.arcstat_l2_lsize, 0);
7585 	wmsum_init(&arc_sums.arcstat_l2_psize, 0);
7586 	aggsum_init(&arc_sums.arcstat_l2_hdr_size, 0);
7587 	wmsum_init(&arc_sums.arcstat_l2_log_blk_writes, 0);
7588 	wmsum_init(&arc_sums.arcstat_l2_log_blk_asize, 0);
7589 	wmsum_init(&arc_sums.arcstat_l2_log_blk_count, 0);
7590 	wmsum_init(&arc_sums.arcstat_l2_rebuild_success, 0);
7591 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_unsupported, 0);
7592 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_io_errors, 0);
7593 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_dh_errors, 0);
7594 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors, 0);
7595 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_lowmem, 0);
7596 	wmsum_init(&arc_sums.arcstat_l2_rebuild_size, 0);
7597 	wmsum_init(&arc_sums.arcstat_l2_rebuild_asize, 0);
7598 	wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs, 0);
7599 	wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs_precached, 0);
7600 	wmsum_init(&arc_sums.arcstat_l2_rebuild_log_blks, 0);
7601 	wmsum_init(&arc_sums.arcstat_memory_throttle_count, 0);
7602 	wmsum_init(&arc_sums.arcstat_memory_direct_count, 0);
7603 	wmsum_init(&arc_sums.arcstat_memory_indirect_count, 0);
7604 	wmsum_init(&arc_sums.arcstat_prune, 0);
7605 	wmsum_init(&arc_sums.arcstat_meta_used, 0);
7606 	wmsum_init(&arc_sums.arcstat_async_upgrade_sync, 0);
7607 	wmsum_init(&arc_sums.arcstat_predictive_prefetch, 0);
7608 	wmsum_init(&arc_sums.arcstat_demand_hit_predictive_prefetch, 0);
7609 	wmsum_init(&arc_sums.arcstat_demand_iohit_predictive_prefetch, 0);
7610 	wmsum_init(&arc_sums.arcstat_prescient_prefetch, 0);
7611 	wmsum_init(&arc_sums.arcstat_demand_hit_prescient_prefetch, 0);
7612 	wmsum_init(&arc_sums.arcstat_demand_iohit_prescient_prefetch, 0);
7613 	wmsum_init(&arc_sums.arcstat_raw_size, 0);
7614 	wmsum_init(&arc_sums.arcstat_cached_only_in_progress, 0);
7615 	wmsum_init(&arc_sums.arcstat_abd_chunk_waste_size, 0);
7616 
7617 	arc_anon->arcs_state = ARC_STATE_ANON;
7618 	arc_mru->arcs_state = ARC_STATE_MRU;
7619 	arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
7620 	arc_mfu->arcs_state = ARC_STATE_MFU;
7621 	arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
7622 	arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
7623 	arc_uncached->arcs_state = ARC_STATE_UNCACHED;
7624 }
7625 
7626 static void
7627 arc_state_fini(void)
7628 {
7629 	zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7630 	zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7631 	zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7632 	zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7633 	zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7634 	zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7635 	zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7636 	zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7637 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7638 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7639 	zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7640 	zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7641 	zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]);
7642 	zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_DATA]);
7643 
7644 	zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_DATA]);
7645 	zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
7646 	zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_DATA]);
7647 	zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_METADATA]);
7648 	zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]);
7649 	zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]);
7650 	zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
7651 	zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
7652 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]);
7653 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]);
7654 	zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]);
7655 	zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]);
7656 	zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_DATA]);
7657 	zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_METADATA]);
7658 
7659 	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
7660 	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
7661 	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
7662 	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
7663 	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
7664 	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
7665 	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
7666 	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
7667 	multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
7668 	multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
7669 	multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_METADATA]);
7670 	multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_DATA]);
7671 
7672 	wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]);
7673 	wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]);
7674 	wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]);
7675 	wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]);
7676 
7677 	wmsum_fini(&arc_sums.arcstat_hits);
7678 	wmsum_fini(&arc_sums.arcstat_iohits);
7679 	wmsum_fini(&arc_sums.arcstat_misses);
7680 	wmsum_fini(&arc_sums.arcstat_demand_data_hits);
7681 	wmsum_fini(&arc_sums.arcstat_demand_data_iohits);
7682 	wmsum_fini(&arc_sums.arcstat_demand_data_misses);
7683 	wmsum_fini(&arc_sums.arcstat_demand_metadata_hits);
7684 	wmsum_fini(&arc_sums.arcstat_demand_metadata_iohits);
7685 	wmsum_fini(&arc_sums.arcstat_demand_metadata_misses);
7686 	wmsum_fini(&arc_sums.arcstat_prefetch_data_hits);
7687 	wmsum_fini(&arc_sums.arcstat_prefetch_data_iohits);
7688 	wmsum_fini(&arc_sums.arcstat_prefetch_data_misses);
7689 	wmsum_fini(&arc_sums.arcstat_prefetch_metadata_hits);
7690 	wmsum_fini(&arc_sums.arcstat_prefetch_metadata_iohits);
7691 	wmsum_fini(&arc_sums.arcstat_prefetch_metadata_misses);
7692 	wmsum_fini(&arc_sums.arcstat_mru_hits);
7693 	wmsum_fini(&arc_sums.arcstat_mru_ghost_hits);
7694 	wmsum_fini(&arc_sums.arcstat_mfu_hits);
7695 	wmsum_fini(&arc_sums.arcstat_mfu_ghost_hits);
7696 	wmsum_fini(&arc_sums.arcstat_uncached_hits);
7697 	wmsum_fini(&arc_sums.arcstat_deleted);
7698 	wmsum_fini(&arc_sums.arcstat_mutex_miss);
7699 	wmsum_fini(&arc_sums.arcstat_access_skip);
7700 	wmsum_fini(&arc_sums.arcstat_evict_skip);
7701 	wmsum_fini(&arc_sums.arcstat_evict_not_enough);
7702 	wmsum_fini(&arc_sums.arcstat_evict_l2_cached);
7703 	wmsum_fini(&arc_sums.arcstat_evict_l2_eligible);
7704 	wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mfu);
7705 	wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mru);
7706 	wmsum_fini(&arc_sums.arcstat_evict_l2_ineligible);
7707 	wmsum_fini(&arc_sums.arcstat_evict_l2_skip);
7708 	wmsum_fini(&arc_sums.arcstat_hash_elements);
7709 	wmsum_fini(&arc_sums.arcstat_hash_collisions);
7710 	wmsum_fini(&arc_sums.arcstat_hash_chains);
7711 	aggsum_fini(&arc_sums.arcstat_size);
7712 	wmsum_fini(&arc_sums.arcstat_compressed_size);
7713 	wmsum_fini(&arc_sums.arcstat_uncompressed_size);
7714 	wmsum_fini(&arc_sums.arcstat_overhead_size);
7715 	wmsum_fini(&arc_sums.arcstat_hdr_size);
7716 	wmsum_fini(&arc_sums.arcstat_data_size);
7717 	wmsum_fini(&arc_sums.arcstat_metadata_size);
7718 	wmsum_fini(&arc_sums.arcstat_dbuf_size);
7719 	wmsum_fini(&arc_sums.arcstat_dnode_size);
7720 	wmsum_fini(&arc_sums.arcstat_bonus_size);
7721 	wmsum_fini(&arc_sums.arcstat_l2_hits);
7722 	wmsum_fini(&arc_sums.arcstat_l2_misses);
7723 	wmsum_fini(&arc_sums.arcstat_l2_prefetch_asize);
7724 	wmsum_fini(&arc_sums.arcstat_l2_mru_asize);
7725 	wmsum_fini(&arc_sums.arcstat_l2_mfu_asize);
7726 	wmsum_fini(&arc_sums.arcstat_l2_bufc_data_asize);
7727 	wmsum_fini(&arc_sums.arcstat_l2_bufc_metadata_asize);
7728 	wmsum_fini(&arc_sums.arcstat_l2_feeds);
7729 	wmsum_fini(&arc_sums.arcstat_l2_rw_clash);
7730 	wmsum_fini(&arc_sums.arcstat_l2_read_bytes);
7731 	wmsum_fini(&arc_sums.arcstat_l2_write_bytes);
7732 	wmsum_fini(&arc_sums.arcstat_l2_writes_sent);
7733 	wmsum_fini(&arc_sums.arcstat_l2_writes_done);
7734 	wmsum_fini(&arc_sums.arcstat_l2_writes_error);
7735 	wmsum_fini(&arc_sums.arcstat_l2_writes_lock_retry);
7736 	wmsum_fini(&arc_sums.arcstat_l2_evict_lock_retry);
7737 	wmsum_fini(&arc_sums.arcstat_l2_evict_reading);
7738 	wmsum_fini(&arc_sums.arcstat_l2_evict_l1cached);
7739 	wmsum_fini(&arc_sums.arcstat_l2_free_on_write);
7740 	wmsum_fini(&arc_sums.arcstat_l2_abort_lowmem);
7741 	wmsum_fini(&arc_sums.arcstat_l2_cksum_bad);
7742 	wmsum_fini(&arc_sums.arcstat_l2_io_error);
7743 	wmsum_fini(&arc_sums.arcstat_l2_lsize);
7744 	wmsum_fini(&arc_sums.arcstat_l2_psize);
7745 	aggsum_fini(&arc_sums.arcstat_l2_hdr_size);
7746 	wmsum_fini(&arc_sums.arcstat_l2_log_blk_writes);
7747 	wmsum_fini(&arc_sums.arcstat_l2_log_blk_asize);
7748 	wmsum_fini(&arc_sums.arcstat_l2_log_blk_count);
7749 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_success);
7750 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7751 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7752 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7753 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7754 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7755 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_size);
7756 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_asize);
7757 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs);
7758 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7759 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_log_blks);
7760 	wmsum_fini(&arc_sums.arcstat_memory_throttle_count);
7761 	wmsum_fini(&arc_sums.arcstat_memory_direct_count);
7762 	wmsum_fini(&arc_sums.arcstat_memory_indirect_count);
7763 	wmsum_fini(&arc_sums.arcstat_prune);
7764 	wmsum_fini(&arc_sums.arcstat_meta_used);
7765 	wmsum_fini(&arc_sums.arcstat_async_upgrade_sync);
7766 	wmsum_fini(&arc_sums.arcstat_predictive_prefetch);
7767 	wmsum_fini(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7768 	wmsum_fini(&arc_sums.arcstat_demand_iohit_predictive_prefetch);
7769 	wmsum_fini(&arc_sums.arcstat_prescient_prefetch);
7770 	wmsum_fini(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7771 	wmsum_fini(&arc_sums.arcstat_demand_iohit_prescient_prefetch);
7772 	wmsum_fini(&arc_sums.arcstat_raw_size);
7773 	wmsum_fini(&arc_sums.arcstat_cached_only_in_progress);
7774 	wmsum_fini(&arc_sums.arcstat_abd_chunk_waste_size);
7775 }
7776 
7777 uint64_t
7778 arc_target_bytes(void)
7779 {
7780 	return (arc_c);
7781 }
7782 
7783 void
7784 arc_set_limits(uint64_t allmem)
7785 {
7786 	/* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */
7787 	arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT);
7788 
7789 	/* How to set default max varies by platform. */
7790 	arc_c_max = arc_default_max(arc_c_min, allmem);
7791 }
7792 void
7793 arc_init(void)
7794 {
7795 	uint64_t percent, allmem = arc_all_memory();
7796 	mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL);
7797 	list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t),
7798 	    offsetof(arc_evict_waiter_t, aew_node));
7799 
7800 	arc_min_prefetch_ms = 1000;
7801 	arc_min_prescient_prefetch_ms = 6000;
7802 
7803 #if defined(_KERNEL)
7804 	arc_lowmem_init();
7805 #endif
7806 
7807 	arc_set_limits(allmem);
7808 
7809 #ifdef _KERNEL
7810 	/*
7811 	 * If zfs_arc_max is non-zero at init, meaning it was set in the kernel
7812 	 * environment before the module was loaded, don't block setting the
7813 	 * maximum because it is less than arc_c_min, instead, reset arc_c_min
7814 	 * to a lower value.
7815 	 * zfs_arc_min will be handled by arc_tuning_update().
7816 	 */
7817 	if (zfs_arc_max != 0 && zfs_arc_max >= MIN_ARC_MAX &&
7818 	    zfs_arc_max < allmem) {
7819 		arc_c_max = zfs_arc_max;
7820 		if (arc_c_min >= arc_c_max) {
7821 			arc_c_min = MAX(zfs_arc_max / 2,
7822 			    2ULL << SPA_MAXBLOCKSHIFT);
7823 		}
7824 	}
7825 #else
7826 	/*
7827 	 * In userland, there's only the memory pressure that we artificially
7828 	 * create (see arc_available_memory()).  Don't let arc_c get too
7829 	 * small, because it can cause transactions to be larger than
7830 	 * arc_c, causing arc_tempreserve_space() to fail.
7831 	 */
7832 	arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT);
7833 #endif
7834 
7835 	arc_c = arc_c_min;
7836 	/*
7837 	 * 32-bit fixed point fractions of metadata from total ARC size,
7838 	 * MRU data from all data and MRU metadata from all metadata.
7839 	 */
7840 	arc_meta = (1ULL << 32) / 4;	/* Metadata is 25% of arc_c. */
7841 	arc_pd = (1ULL << 32) / 2;	/* Data MRU is 50% of data. */
7842 	arc_pm = (1ULL << 32) / 2;	/* Metadata MRU is 50% of metadata. */
7843 
7844 	percent = MIN(zfs_arc_dnode_limit_percent, 100);
7845 	arc_dnode_limit = arc_c_max * percent / 100;
7846 
7847 	/* Apply user specified tunings */
7848 	arc_tuning_update(B_TRUE);
7849 
7850 	/* if kmem_flags are set, lets try to use less memory */
7851 	if (kmem_debugging())
7852 		arc_c = arc_c / 2;
7853 	if (arc_c < arc_c_min)
7854 		arc_c = arc_c_min;
7855 
7856 	arc_register_hotplug();
7857 
7858 	arc_state_init();
7859 
7860 	buf_init();
7861 
7862 	list_create(&arc_prune_list, sizeof (arc_prune_t),
7863 	    offsetof(arc_prune_t, p_node));
7864 	mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
7865 
7866 	arc_prune_taskq = taskq_create("arc_prune", zfs_arc_prune_task_threads,
7867 	    defclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
7868 
7869 	list_create(&arc_async_flush_list, sizeof (arc_async_flush_t),
7870 	    offsetof(arc_async_flush_t, af_node));
7871 	mutex_init(&arc_async_flush_lock, NULL, MUTEX_DEFAULT, NULL);
7872 	arc_flush_taskq = taskq_create("arc_flush", MIN(boot_ncpus, 4),
7873 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
7874 
7875 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
7876 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
7877 
7878 	if (arc_ksp != NULL) {
7879 		arc_ksp->ks_data = &arc_stats;
7880 		arc_ksp->ks_update = arc_kstat_update;
7881 		kstat_install(arc_ksp);
7882 	}
7883 
7884 	arc_state_evict_markers =
7885 	    arc_state_alloc_markers(arc_state_evict_marker_count);
7886 	arc_evict_zthr = zthr_create_timer("arc_evict",
7887 	    arc_evict_cb_check, arc_evict_cb, NULL, SEC2NSEC(1), defclsyspri);
7888 	arc_reap_zthr = zthr_create_timer("arc_reap",
7889 	    arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1), minclsyspri);
7890 
7891 	arc_warm = B_FALSE;
7892 
7893 	/*
7894 	 * Calculate maximum amount of dirty data per pool.
7895 	 *
7896 	 * If it has been set by a module parameter, take that.
7897 	 * Otherwise, use a percentage of physical memory defined by
7898 	 * zfs_dirty_data_max_percent (default 10%) with a cap at
7899 	 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
7900 	 */
7901 #ifdef __LP64__
7902 	if (zfs_dirty_data_max_max == 0)
7903 		zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
7904 		    allmem * zfs_dirty_data_max_max_percent / 100);
7905 #else
7906 	if (zfs_dirty_data_max_max == 0)
7907 		zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024,
7908 		    allmem * zfs_dirty_data_max_max_percent / 100);
7909 #endif
7910 
7911 	if (zfs_dirty_data_max == 0) {
7912 		zfs_dirty_data_max = allmem *
7913 		    zfs_dirty_data_max_percent / 100;
7914 		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
7915 		    zfs_dirty_data_max_max);
7916 	}
7917 
7918 	if (zfs_wrlog_data_max == 0) {
7919 
7920 		/*
7921 		 * dp_wrlog_total is reduced for each txg at the end of
7922 		 * spa_sync(). However, dp_dirty_total is reduced every time
7923 		 * a block is written out. Thus under normal operation,
7924 		 * dp_wrlog_total could grow 2 times as big as
7925 		 * zfs_dirty_data_max.
7926 		 */
7927 		zfs_wrlog_data_max = zfs_dirty_data_max * 2;
7928 	}
7929 }
7930 
7931 void
7932 arc_fini(void)
7933 {
7934 	arc_prune_t *p;
7935 
7936 #ifdef _KERNEL
7937 	arc_lowmem_fini();
7938 #endif /* _KERNEL */
7939 
7940 	/* Wait for any background flushes */
7941 	taskq_wait(arc_flush_taskq);
7942 	taskq_destroy(arc_flush_taskq);
7943 
7944 	/* Use B_TRUE to ensure *all* buffers are evicted */
7945 	arc_flush(NULL, B_TRUE);
7946 
7947 	if (arc_ksp != NULL) {
7948 		kstat_delete(arc_ksp);
7949 		arc_ksp = NULL;
7950 	}
7951 
7952 	taskq_wait(arc_prune_taskq);
7953 	taskq_destroy(arc_prune_taskq);
7954 
7955 	list_destroy(&arc_async_flush_list);
7956 	mutex_destroy(&arc_async_flush_lock);
7957 
7958 	mutex_enter(&arc_prune_mtx);
7959 	while ((p = list_remove_head(&arc_prune_list)) != NULL) {
7960 		(void) zfs_refcount_remove(&p->p_refcnt, &arc_prune_list);
7961 		zfs_refcount_destroy(&p->p_refcnt);
7962 		kmem_free(p, sizeof (*p));
7963 	}
7964 	mutex_exit(&arc_prune_mtx);
7965 
7966 	list_destroy(&arc_prune_list);
7967 	mutex_destroy(&arc_prune_mtx);
7968 
7969 	(void) zthr_cancel(arc_evict_zthr);
7970 	(void) zthr_cancel(arc_reap_zthr);
7971 	arc_state_free_markers(arc_state_evict_markers,
7972 	    arc_state_evict_marker_count);
7973 
7974 	mutex_destroy(&arc_evict_lock);
7975 	list_destroy(&arc_evict_waiters);
7976 
7977 	/*
7978 	 * Free any buffers that were tagged for destruction.  This needs
7979 	 * to occur before arc_state_fini() runs and destroys the aggsum
7980 	 * values which are updated when freeing scatter ABDs.
7981 	 */
7982 	l2arc_do_free_on_write();
7983 
7984 	/*
7985 	 * buf_fini() must proceed arc_state_fini() because buf_fin() may
7986 	 * trigger the release of kmem magazines, which can callback to
7987 	 * arc_space_return() which accesses aggsums freed in act_state_fini().
7988 	 */
7989 	buf_fini();
7990 	arc_state_fini();
7991 
7992 	arc_unregister_hotplug();
7993 
7994 	/*
7995 	 * We destroy the zthrs after all the ARC state has been
7996 	 * torn down to avoid the case of them receiving any
7997 	 * wakeup() signals after they are destroyed.
7998 	 */
7999 	zthr_destroy(arc_evict_zthr);
8000 	zthr_destroy(arc_reap_zthr);
8001 
8002 	ASSERT0(arc_loaned_bytes);
8003 }
8004 
8005 /*
8006  * Level 2 ARC
8007  *
8008  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
8009  * It uses dedicated storage devices to hold cached data, which are populated
8010  * using large infrequent writes.  The main role of this cache is to boost
8011  * the performance of random read workloads.  The intended L2ARC devices
8012  * include short-stroked disks, solid state disks, and other media with
8013  * substantially faster read latency than disk.
8014  *
8015  *                 +-----------------------+
8016  *                 |         ARC           |
8017  *                 +-----------------------+
8018  *                    |         ^     ^
8019  *                    |         |     |
8020  *      l2arc_feed_thread()    arc_read()
8021  *                    |         |     |
8022  *                    |  l2arc read   |
8023  *                    V         |     |
8024  *               +---------------+    |
8025  *               |     L2ARC     |    |
8026  *               +---------------+    |
8027  *                   |    ^           |
8028  *          l2arc_write() |           |
8029  *                   |    |           |
8030  *                   V    |           |
8031  *                 +-------+      +-------+
8032  *                 | vdev  |      | vdev  |
8033  *                 | cache |      | cache |
8034  *                 +-------+      +-------+
8035  *                 +=========+     .-----.
8036  *                 :  L2ARC  :    |-_____-|
8037  *                 : devices :    | Disks |
8038  *                 +=========+    `-_____-'
8039  *
8040  * Read requests are satisfied from the following sources, in order:
8041  *
8042  *	1) ARC
8043  *	2) vdev cache of L2ARC devices
8044  *	3) L2ARC devices
8045  *	4) vdev cache of disks
8046  *	5) disks
8047  *
8048  * Some L2ARC device types exhibit extremely slow write performance.
8049  * To accommodate for this there are some significant differences between
8050  * the L2ARC and traditional cache design:
8051  *
8052  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
8053  * the ARC behave as usual, freeing buffers and placing headers on ghost
8054  * lists.  The ARC does not send buffers to the L2ARC during eviction as
8055  * this would add inflated write latencies for all ARC memory pressure.
8056  *
8057  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
8058  * It does this by periodically scanning buffers from the eviction-end of
8059  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
8060  * not already there. It scans until a headroom of buffers is satisfied,
8061  * which itself is a buffer for ARC eviction. If a compressible buffer is
8062  * found during scanning and selected for writing to an L2ARC device, we
8063  * temporarily boost scanning headroom during the next scan cycle to make
8064  * sure we adapt to compression effects (which might significantly reduce
8065  * the data volume we write to L2ARC). The thread that does this is
8066  * l2arc_feed_thread(), illustrated below; example sizes are included to
8067  * provide a better sense of ratio than this diagram:
8068  *
8069  *	       head -->                        tail
8070  *	        +---------------------+----------+
8071  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
8072  *	        +---------------------+----------+   |   o L2ARC eligible
8073  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
8074  *	        +---------------------+----------+   |
8075  *	             15.9 Gbytes      ^ 32 Mbytes    |
8076  *	                           headroom          |
8077  *	                                      l2arc_feed_thread()
8078  *	                                             |
8079  *	                 l2arc write hand <--[oooo]--'
8080  *	                         |           8 Mbyte
8081  *	                         |          write max
8082  *	                         V
8083  *		  +==============================+
8084  *	L2ARC dev |####|#|###|###|    |####| ... |
8085  *	          +==============================+
8086  *	                     32 Gbytes
8087  *
8088  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
8089  * evicted, then the L2ARC has cached a buffer much sooner than it probably
8090  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
8091  * safe to say that this is an uncommon case, since buffers at the end of
8092  * the ARC lists have moved there due to inactivity.
8093  *
8094  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
8095  * then the L2ARC simply misses copying some buffers.  This serves as a
8096  * pressure valve to prevent heavy read workloads from both stalling the ARC
8097  * with waits and clogging the L2ARC with writes.  This also helps prevent
8098  * the potential for the L2ARC to churn if it attempts to cache content too
8099  * quickly, such as during backups of the entire pool.
8100  *
8101  * 5. After system boot and before the ARC has filled main memory, there are
8102  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
8103  * lists can remain mostly static.  Instead of searching from tail of these
8104  * lists as pictured, the l2arc_feed_thread() will search from the list heads
8105  * for eligible buffers, greatly increasing its chance of finding them.
8106  *
8107  * The L2ARC device write speed is also boosted during this time so that
8108  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
8109  * there are no L2ARC reads, and no fear of degrading read performance
8110  * through increased writes.
8111  *
8112  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
8113  * the vdev queue can aggregate them into larger and fewer writes.  Each
8114  * device is written to in a rotor fashion, sweeping writes through
8115  * available space then repeating.
8116  *
8117  * 7. The L2ARC does not store dirty content.  It never needs to flush
8118  * write buffers back to disk based storage.
8119  *
8120  * 8. If an ARC buffer is written (and dirtied) which also exists in the
8121  * L2ARC, the now stale L2ARC buffer is immediately dropped.
8122  *
8123  * The performance of the L2ARC can be tweaked by a number of tunables, which
8124  * may be necessary for different workloads:
8125  *
8126  *	l2arc_write_max		max write bytes per interval
8127  *	l2arc_write_boost	extra write bytes during device warmup
8128  *	l2arc_noprefetch	skip caching prefetched buffers
8129  *	l2arc_headroom		number of max device writes to precache
8130  *	l2arc_headroom_boost	when we find compressed buffers during ARC
8131  *				scanning, we multiply headroom by this
8132  *				percentage factor for the next scan cycle,
8133  *				since more compressed buffers are likely to
8134  *				be present
8135  *	l2arc_feed_secs		seconds between L2ARC writing
8136  *
8137  * Tunables may be removed or added as future performance improvements are
8138  * integrated, and also may become zpool properties.
8139  *
8140  * There are three key functions that control how the L2ARC warms up:
8141  *
8142  *	l2arc_write_eligible()	check if a buffer is eligible to cache
8143  *	l2arc_write_size()	calculate how much to write
8144  *	l2arc_write_interval()	calculate sleep delay between writes
8145  *
8146  * These three functions determine what to write, how much, and how quickly
8147  * to send writes.
8148  *
8149  * L2ARC persistence:
8150  *
8151  * When writing buffers to L2ARC, we periodically add some metadata to
8152  * make sure we can pick them up after reboot, thus dramatically reducing
8153  * the impact that any downtime has on the performance of storage systems
8154  * with large caches.
8155  *
8156  * The implementation works fairly simply by integrating the following two
8157  * modifications:
8158  *
8159  * *) When writing to the L2ARC, we occasionally write a "l2arc log block",
8160  *    which is an additional piece of metadata which describes what's been
8161  *    written. This allows us to rebuild the arc_buf_hdr_t structures of the
8162  *    main ARC buffers. There are 2 linked-lists of log blocks headed by
8163  *    dh_start_lbps[2]. We alternate which chain we append to, so they are
8164  *    time-wise and offset-wise interleaved, but that is an optimization rather
8165  *    than for correctness. The log block also includes a pointer to the
8166  *    previous block in its chain.
8167  *
8168  * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device
8169  *    for our header bookkeeping purposes. This contains a device header,
8170  *    which contains our top-level reference structures. We update it each
8171  *    time we write a new log block, so that we're able to locate it in the
8172  *    L2ARC device. If this write results in an inconsistent device header
8173  *    (e.g. due to power failure), we detect this by verifying the header's
8174  *    checksum and simply fail to reconstruct the L2ARC after reboot.
8175  *
8176  * Implementation diagram:
8177  *
8178  * +=== L2ARC device (not to scale) ======================================+
8179  * |       ___two newest log block pointers__.__________                  |
8180  * |      /                                   \dh_start_lbps[1]           |
8181  * |	 /				       \         \dh_start_lbps[0]|
8182  * |.___/__.                                    V         V               |
8183  * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---|
8184  * ||   hdr|      ^         /^       /^        /         /                |
8185  * |+------+  ...--\-------/  \-----/--\------/         /                 |
8186  * |                \--------------/    \--------------/                  |
8187  * +======================================================================+
8188  *
8189  * As can be seen on the diagram, rather than using a simple linked list,
8190  * we use a pair of linked lists with alternating elements. This is a
8191  * performance enhancement due to the fact that we only find out the
8192  * address of the next log block access once the current block has been
8193  * completely read in. Obviously, this hurts performance, because we'd be
8194  * keeping the device's I/O queue at only a 1 operation deep, thus
8195  * incurring a large amount of I/O round-trip latency. Having two lists
8196  * allows us to fetch two log blocks ahead of where we are currently
8197  * rebuilding L2ARC buffers.
8198  *
8199  * On-device data structures:
8200  *
8201  * L2ARC device header:	l2arc_dev_hdr_phys_t
8202  * L2ARC log block:	l2arc_log_blk_phys_t
8203  *
8204  * L2ARC reconstruction:
8205  *
8206  * When writing data, we simply write in the standard rotary fashion,
8207  * evicting buffers as we go and simply writing new data over them (writing
8208  * a new log block every now and then). This obviously means that once we
8209  * loop around the end of the device, we will start cutting into an already
8210  * committed log block (and its referenced data buffers), like so:
8211  *
8212  *    current write head__       __old tail
8213  *                        \     /
8214  *                        V    V
8215  * <--|bufs |lb |bufs |lb |    |bufs |lb |bufs |lb |-->
8216  *                         ^    ^^^^^^^^^___________________________________
8217  *                         |                                                \
8218  *                   <<nextwrite>> may overwrite this blk and/or its bufs --'
8219  *
8220  * When importing the pool, we detect this situation and use it to stop
8221  * our scanning process (see l2arc_rebuild).
8222  *
8223  * There is one significant caveat to consider when rebuilding ARC contents
8224  * from an L2ARC device: what about invalidated buffers? Given the above
8225  * construction, we cannot update blocks which we've already written to amend
8226  * them to remove buffers which were invalidated. Thus, during reconstruction,
8227  * we might be populating the cache with buffers for data that's not on the
8228  * main pool anymore, or may have been overwritten!
8229  *
8230  * As it turns out, this isn't a problem. Every arc_read request includes
8231  * both the DVA and, crucially, the birth TXG of the BP the caller is
8232  * looking for. So even if the cache were populated by completely rotten
8233  * blocks for data that had been long deleted and/or overwritten, we'll
8234  * never actually return bad data from the cache, since the DVA with the
8235  * birth TXG uniquely identify a block in space and time - once created,
8236  * a block is immutable on disk. The worst thing we have done is wasted
8237  * some time and memory at l2arc rebuild to reconstruct outdated ARC
8238  * entries that will get dropped from the l2arc as it is being updated
8239  * with new blocks.
8240  *
8241  * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write
8242  * hand are not restored. This is done by saving the offset (in bytes)
8243  * l2arc_evict() has evicted to in the L2ARC device header and taking it
8244  * into account when restoring buffers.
8245  */
8246 
8247 static boolean_t
8248 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
8249 {
8250 	/*
8251 	 * A buffer is *not* eligible for the L2ARC if it:
8252 	 * 1. belongs to a different spa.
8253 	 * 2. is already cached on the L2ARC.
8254 	 * 3. has an I/O in progress (it may be an incomplete read).
8255 	 * 4. is flagged not eligible (zfs property).
8256 	 */
8257 	if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
8258 	    HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
8259 		return (B_FALSE);
8260 
8261 	return (B_TRUE);
8262 }
8263 
8264 static uint64_t
8265 l2arc_write_size(l2arc_dev_t *dev)
8266 {
8267 	uint64_t size;
8268 
8269 	/*
8270 	 * Make sure our globals have meaningful values in case the user
8271 	 * altered them.
8272 	 */
8273 	size = l2arc_write_max;
8274 	if (size == 0) {
8275 		cmn_err(CE_NOTE, "l2arc_write_max must be greater than zero, "
8276 		    "resetting it to the default (%d)", L2ARC_WRITE_SIZE);
8277 		size = l2arc_write_max = L2ARC_WRITE_SIZE;
8278 	}
8279 
8280 	if (arc_warm == B_FALSE)
8281 		size += l2arc_write_boost;
8282 
8283 	/* We need to add in the worst case scenario of log block overhead. */
8284 	size += l2arc_log_blk_overhead(size, dev);
8285 	if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) {
8286 		/*
8287 		 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100)
8288 		 * times the writesize, whichever is greater.
8289 		 */
8290 		size += MAX(64 * 1024 * 1024,
8291 		    (size * l2arc_trim_ahead) / 100);
8292 	}
8293 
8294 	/*
8295 	 * Make sure the write size does not exceed the size of the cache
8296 	 * device. This is important in l2arc_evict(), otherwise infinite
8297 	 * iteration can occur.
8298 	 */
8299 	size = MIN(size, (dev->l2ad_end - dev->l2ad_start) / 4);
8300 
8301 	size = P2ROUNDUP(size, 1ULL << dev->l2ad_vdev->vdev_ashift);
8302 
8303 	return (size);
8304 
8305 }
8306 
8307 static clock_t
8308 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
8309 {
8310 	clock_t interval, next, now;
8311 
8312 	/*
8313 	 * If the ARC lists are busy, increase our write rate; if the
8314 	 * lists are stale, idle back.  This is achieved by checking
8315 	 * how much we previously wrote - if it was more than half of
8316 	 * what we wanted, schedule the next write much sooner.
8317 	 */
8318 	if (l2arc_feed_again && wrote > (wanted / 2))
8319 		interval = (hz * l2arc_feed_min_ms) / 1000;
8320 	else
8321 		interval = hz * l2arc_feed_secs;
8322 
8323 	now = ddi_get_lbolt();
8324 	next = MAX(now, MIN(now + interval, began + interval));
8325 
8326 	return (next);
8327 }
8328 
8329 static boolean_t
8330 l2arc_dev_invalid(const l2arc_dev_t *dev)
8331 {
8332 	/*
8333 	 * We want to skip devices that are being rebuilt, trimmed,
8334 	 * removed, or belong to a spa that is being exported.
8335 	 */
8336 	return (dev->l2ad_vdev == NULL || vdev_is_dead(dev->l2ad_vdev) ||
8337 	    dev->l2ad_rebuild || dev->l2ad_trim_all ||
8338 	    dev->l2ad_spa == NULL || dev->l2ad_spa->spa_is_exporting);
8339 }
8340 
8341 /*
8342  * Cycle through L2ARC devices.  This is how L2ARC load balances.
8343  * If a device is returned, this also returns holding the spa config lock.
8344  */
8345 static l2arc_dev_t *
8346 l2arc_dev_get_next(void)
8347 {
8348 	l2arc_dev_t *first, *next = NULL;
8349 
8350 	/*
8351 	 * Lock out the removal of spas (spa_namespace_lock), then removal
8352 	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
8353 	 * both locks will be dropped and a spa config lock held instead.
8354 	 */
8355 	mutex_enter(&spa_namespace_lock);
8356 	mutex_enter(&l2arc_dev_mtx);
8357 
8358 	/* if there are no vdevs, there is nothing to do */
8359 	if (l2arc_ndev == 0)
8360 		goto out;
8361 
8362 	first = NULL;
8363 	next = l2arc_dev_last;
8364 	do {
8365 		/* loop around the list looking for a non-faulted vdev */
8366 		if (next == NULL) {
8367 			next = list_head(l2arc_dev_list);
8368 		} else {
8369 			next = list_next(l2arc_dev_list, next);
8370 			if (next == NULL)
8371 				next = list_head(l2arc_dev_list);
8372 		}
8373 
8374 		/* if we have come back to the start, bail out */
8375 		if (first == NULL)
8376 			first = next;
8377 		else if (next == first)
8378 			break;
8379 
8380 		ASSERT3P(next, !=, NULL);
8381 	} while (l2arc_dev_invalid(next));
8382 
8383 	/* if we were unable to find any usable vdevs, return NULL */
8384 	if (l2arc_dev_invalid(next))
8385 		next = NULL;
8386 
8387 	l2arc_dev_last = next;
8388 
8389 out:
8390 	mutex_exit(&l2arc_dev_mtx);
8391 
8392 	/*
8393 	 * Grab the config lock to prevent the 'next' device from being
8394 	 * removed while we are writing to it.
8395 	 */
8396 	if (next != NULL)
8397 		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
8398 	mutex_exit(&spa_namespace_lock);
8399 
8400 	return (next);
8401 }
8402 
8403 /*
8404  * Free buffers that were tagged for destruction.
8405  */
8406 static void
8407 l2arc_do_free_on_write(void)
8408 {
8409 	l2arc_data_free_t *df;
8410 
8411 	mutex_enter(&l2arc_free_on_write_mtx);
8412 	while ((df = list_remove_head(l2arc_free_on_write)) != NULL) {
8413 		ASSERT3P(df->l2df_abd, !=, NULL);
8414 		abd_free(df->l2df_abd);
8415 		kmem_free(df, sizeof (l2arc_data_free_t));
8416 	}
8417 	mutex_exit(&l2arc_free_on_write_mtx);
8418 }
8419 
8420 /*
8421  * A write to a cache device has completed.  Update all headers to allow
8422  * reads from these buffers to begin.
8423  */
8424 static void
8425 l2arc_write_done(zio_t *zio)
8426 {
8427 	l2arc_write_callback_t	*cb;
8428 	l2arc_lb_abd_buf_t	*abd_buf;
8429 	l2arc_lb_ptr_buf_t	*lb_ptr_buf;
8430 	l2arc_dev_t		*dev;
8431 	l2arc_dev_hdr_phys_t	*l2dhdr;
8432 	list_t			*buflist;
8433 	arc_buf_hdr_t		*head, *hdr, *hdr_prev;
8434 	kmutex_t		*hash_lock;
8435 	int64_t			bytes_dropped = 0;
8436 
8437 	cb = zio->io_private;
8438 	ASSERT3P(cb, !=, NULL);
8439 	dev = cb->l2wcb_dev;
8440 	l2dhdr = dev->l2ad_dev_hdr;
8441 	ASSERT3P(dev, !=, NULL);
8442 	head = cb->l2wcb_head;
8443 	ASSERT3P(head, !=, NULL);
8444 	buflist = &dev->l2ad_buflist;
8445 	ASSERT3P(buflist, !=, NULL);
8446 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
8447 	    l2arc_write_callback_t *, cb);
8448 
8449 	/*
8450 	 * All writes completed, or an error was hit.
8451 	 */
8452 top:
8453 	mutex_enter(&dev->l2ad_mtx);
8454 	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
8455 		hdr_prev = list_prev(buflist, hdr);
8456 
8457 		hash_lock = HDR_LOCK(hdr);
8458 
8459 		/*
8460 		 * We cannot use mutex_enter or else we can deadlock
8461 		 * with l2arc_write_buffers (due to swapping the order
8462 		 * the hash lock and l2ad_mtx are taken).
8463 		 */
8464 		if (!mutex_tryenter(hash_lock)) {
8465 			/*
8466 			 * Missed the hash lock. We must retry so we
8467 			 * don't leave the ARC_FLAG_L2_WRITING bit set.
8468 			 */
8469 			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
8470 
8471 			/*
8472 			 * We don't want to rescan the headers we've
8473 			 * already marked as having been written out, so
8474 			 * we reinsert the head node so we can pick up
8475 			 * where we left off.
8476 			 */
8477 			list_remove(buflist, head);
8478 			list_insert_after(buflist, hdr, head);
8479 
8480 			mutex_exit(&dev->l2ad_mtx);
8481 
8482 			/*
8483 			 * We wait for the hash lock to become available
8484 			 * to try and prevent busy waiting, and increase
8485 			 * the chance we'll be able to acquire the lock
8486 			 * the next time around.
8487 			 */
8488 			mutex_enter(hash_lock);
8489 			mutex_exit(hash_lock);
8490 			goto top;
8491 		}
8492 
8493 		/*
8494 		 * We could not have been moved into the arc_l2c_only
8495 		 * state while in-flight due to our ARC_FLAG_L2_WRITING
8496 		 * bit being set. Let's just ensure that's being enforced.
8497 		 */
8498 		ASSERT(HDR_HAS_L1HDR(hdr));
8499 
8500 		/*
8501 		 * Skipped - drop L2ARC entry and mark the header as no
8502 		 * longer L2 eligibile.
8503 		 */
8504 		if (zio->io_error != 0) {
8505 			/*
8506 			 * Error - drop L2ARC entry.
8507 			 */
8508 			list_remove(buflist, hdr);
8509 			arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
8510 
8511 			uint64_t psize = HDR_GET_PSIZE(hdr);
8512 			l2arc_hdr_arcstats_decrement(hdr);
8513 
8514 			ASSERT(dev->l2ad_vdev != NULL);
8515 
8516 			bytes_dropped +=
8517 			    vdev_psize_to_asize(dev->l2ad_vdev, psize);
8518 			(void) zfs_refcount_remove_many(&dev->l2ad_alloc,
8519 			    arc_hdr_size(hdr), hdr);
8520 		}
8521 
8522 		/*
8523 		 * Allow ARC to begin reads and ghost list evictions to
8524 		 * this L2ARC entry.
8525 		 */
8526 		arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
8527 
8528 		mutex_exit(hash_lock);
8529 	}
8530 
8531 	/*
8532 	 * Free the allocated abd buffers for writing the log blocks.
8533 	 * If the zio failed reclaim the allocated space and remove the
8534 	 * pointers to these log blocks from the log block pointer list
8535 	 * of the L2ARC device.
8536 	 */
8537 	while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) {
8538 		abd_free(abd_buf->abd);
8539 		zio_buf_free(abd_buf, sizeof (*abd_buf));
8540 		if (zio->io_error != 0) {
8541 			lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list);
8542 			/*
8543 			 * L2BLK_GET_PSIZE returns aligned size for log
8544 			 * blocks.
8545 			 */
8546 			uint64_t asize =
8547 			    L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop);
8548 			bytes_dropped += asize;
8549 			ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
8550 			ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
8551 			zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
8552 			    lb_ptr_buf);
8553 			(void) zfs_refcount_remove(&dev->l2ad_lb_count,
8554 			    lb_ptr_buf);
8555 			kmem_free(lb_ptr_buf->lb_ptr,
8556 			    sizeof (l2arc_log_blkptr_t));
8557 			kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
8558 		}
8559 	}
8560 	list_destroy(&cb->l2wcb_abd_list);
8561 
8562 	if (zio->io_error != 0) {
8563 		ARCSTAT_BUMP(arcstat_l2_writes_error);
8564 
8565 		/*
8566 		 * Restore the lbps array in the header to its previous state.
8567 		 * If the list of log block pointers is empty, zero out the
8568 		 * log block pointers in the device header.
8569 		 */
8570 		lb_ptr_buf = list_head(&dev->l2ad_lbptr_list);
8571 		for (int i = 0; i < 2; i++) {
8572 			if (lb_ptr_buf == NULL) {
8573 				/*
8574 				 * If the list is empty zero out the device
8575 				 * header. Otherwise zero out the second log
8576 				 * block pointer in the header.
8577 				 */
8578 				if (i == 0) {
8579 					memset(l2dhdr, 0,
8580 					    dev->l2ad_dev_hdr_asize);
8581 				} else {
8582 					memset(&l2dhdr->dh_start_lbps[i], 0,
8583 					    sizeof (l2arc_log_blkptr_t));
8584 				}
8585 				break;
8586 			}
8587 			memcpy(&l2dhdr->dh_start_lbps[i], lb_ptr_buf->lb_ptr,
8588 			    sizeof (l2arc_log_blkptr_t));
8589 			lb_ptr_buf = list_next(&dev->l2ad_lbptr_list,
8590 			    lb_ptr_buf);
8591 		}
8592 	}
8593 
8594 	ARCSTAT_BUMP(arcstat_l2_writes_done);
8595 	list_remove(buflist, head);
8596 	ASSERT(!HDR_HAS_L1HDR(head));
8597 	kmem_cache_free(hdr_l2only_cache, head);
8598 	mutex_exit(&dev->l2ad_mtx);
8599 
8600 	ASSERT(dev->l2ad_vdev != NULL);
8601 	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
8602 
8603 	l2arc_do_free_on_write();
8604 
8605 	kmem_free(cb, sizeof (l2arc_write_callback_t));
8606 }
8607 
8608 static int
8609 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb)
8610 {
8611 	int ret;
8612 	spa_t *spa = zio->io_spa;
8613 	arc_buf_hdr_t *hdr = cb->l2rcb_hdr;
8614 	blkptr_t *bp = zio->io_bp;
8615 	uint8_t salt[ZIO_DATA_SALT_LEN];
8616 	uint8_t iv[ZIO_DATA_IV_LEN];
8617 	uint8_t mac[ZIO_DATA_MAC_LEN];
8618 	boolean_t no_crypt = B_FALSE;
8619 
8620 	/*
8621 	 * ZIL data is never be written to the L2ARC, so we don't need
8622 	 * special handling for its unique MAC storage.
8623 	 */
8624 	ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
8625 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
8626 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8627 
8628 	/*
8629 	 * If the data was encrypted, decrypt it now. Note that
8630 	 * we must check the bp here and not the hdr, since the
8631 	 * hdr does not have its encryption parameters updated
8632 	 * until arc_read_done().
8633 	 */
8634 	if (BP_IS_ENCRYPTED(bp)) {
8635 		abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8636 		    ARC_HDR_USE_RESERVE);
8637 
8638 		zio_crypt_decode_params_bp(bp, salt, iv);
8639 		zio_crypt_decode_mac_bp(bp, mac);
8640 
8641 		ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb,
8642 		    BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
8643 		    salt, iv, mac, HDR_GET_PSIZE(hdr), eabd,
8644 		    hdr->b_l1hdr.b_pabd, &no_crypt);
8645 		if (ret != 0) {
8646 			arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8647 			goto error;
8648 		}
8649 
8650 		/*
8651 		 * If we actually performed decryption, replace b_pabd
8652 		 * with the decrypted data. Otherwise we can just throw
8653 		 * our decryption buffer away.
8654 		 */
8655 		if (!no_crypt) {
8656 			arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8657 			    arc_hdr_size(hdr), hdr);
8658 			hdr->b_l1hdr.b_pabd = eabd;
8659 			zio->io_abd = eabd;
8660 		} else {
8661 			arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8662 		}
8663 	}
8664 
8665 	/*
8666 	 * If the L2ARC block was compressed, but ARC compression
8667 	 * is disabled we decompress the data into a new buffer and
8668 	 * replace the existing data.
8669 	 */
8670 	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8671 	    !HDR_COMPRESSION_ENABLED(hdr)) {
8672 		abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8673 		    ARC_HDR_USE_RESERVE);
8674 
8675 		ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
8676 		    hdr->b_l1hdr.b_pabd, cabd, HDR_GET_PSIZE(hdr),
8677 		    HDR_GET_LSIZE(hdr), &hdr->b_complevel);
8678 		if (ret != 0) {
8679 			arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
8680 			goto error;
8681 		}
8682 
8683 		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8684 		    arc_hdr_size(hdr), hdr);
8685 		hdr->b_l1hdr.b_pabd = cabd;
8686 		zio->io_abd = cabd;
8687 		zio->io_size = HDR_GET_LSIZE(hdr);
8688 	}
8689 
8690 	return (0);
8691 
8692 error:
8693 	return (ret);
8694 }
8695 
8696 
8697 /*
8698  * A read to a cache device completed.  Validate buffer contents before
8699  * handing over to the regular ARC routines.
8700  */
8701 static void
8702 l2arc_read_done(zio_t *zio)
8703 {
8704 	int tfm_error = 0;
8705 	l2arc_read_callback_t *cb = zio->io_private;
8706 	arc_buf_hdr_t *hdr;
8707 	kmutex_t *hash_lock;
8708 	boolean_t valid_cksum;
8709 	boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) &&
8710 	    (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT));
8711 
8712 	ASSERT3P(zio->io_vd, !=, NULL);
8713 	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
8714 
8715 	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
8716 
8717 	ASSERT3P(cb, !=, NULL);
8718 	hdr = cb->l2rcb_hdr;
8719 	ASSERT3P(hdr, !=, NULL);
8720 
8721 	hash_lock = HDR_LOCK(hdr);
8722 	mutex_enter(hash_lock);
8723 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
8724 
8725 	/*
8726 	 * If the data was read into a temporary buffer,
8727 	 * move it and free the buffer.
8728 	 */
8729 	if (cb->l2rcb_abd != NULL) {
8730 		ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
8731 		if (zio->io_error == 0) {
8732 			if (using_rdata) {
8733 				abd_copy(hdr->b_crypt_hdr.b_rabd,
8734 				    cb->l2rcb_abd, arc_hdr_size(hdr));
8735 			} else {
8736 				abd_copy(hdr->b_l1hdr.b_pabd,
8737 				    cb->l2rcb_abd, arc_hdr_size(hdr));
8738 			}
8739 		}
8740 
8741 		/*
8742 		 * The following must be done regardless of whether
8743 		 * there was an error:
8744 		 * - free the temporary buffer
8745 		 * - point zio to the real ARC buffer
8746 		 * - set zio size accordingly
8747 		 * These are required because zio is either re-used for
8748 		 * an I/O of the block in the case of the error
8749 		 * or the zio is passed to arc_read_done() and it
8750 		 * needs real data.
8751 		 */
8752 		abd_free(cb->l2rcb_abd);
8753 		zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
8754 
8755 		if (using_rdata) {
8756 			ASSERT(HDR_HAS_RABD(hdr));
8757 			zio->io_abd = zio->io_orig_abd =
8758 			    hdr->b_crypt_hdr.b_rabd;
8759 		} else {
8760 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8761 			zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
8762 		}
8763 	}
8764 
8765 	ASSERT3P(zio->io_abd, !=, NULL);
8766 
8767 	/*
8768 	 * Check this survived the L2ARC journey.
8769 	 */
8770 	ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd ||
8771 	    (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd));
8772 	zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
8773 	zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
8774 	zio->io_prop.zp_complevel = hdr->b_complevel;
8775 
8776 	valid_cksum = arc_cksum_is_equal(hdr, zio);
8777 
8778 	/*
8779 	 * b_rabd will always match the data as it exists on disk if it is
8780 	 * being used. Therefore if we are reading into b_rabd we do not
8781 	 * attempt to untransform the data.
8782 	 */
8783 	if (valid_cksum && !using_rdata)
8784 		tfm_error = l2arc_untransform(zio, cb);
8785 
8786 	if (valid_cksum && tfm_error == 0 && zio->io_error == 0 &&
8787 	    !HDR_L2_EVICTED(hdr)) {
8788 		mutex_exit(hash_lock);
8789 		zio->io_private = hdr;
8790 		arc_read_done(zio);
8791 	} else {
8792 		/*
8793 		 * Buffer didn't survive caching.  Increment stats and
8794 		 * reissue to the original storage device.
8795 		 */
8796 		if (zio->io_error != 0) {
8797 			ARCSTAT_BUMP(arcstat_l2_io_error);
8798 		} else {
8799 			zio->io_error = SET_ERROR(EIO);
8800 		}
8801 		if (!valid_cksum || tfm_error != 0)
8802 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
8803 
8804 		/*
8805 		 * If there's no waiter, issue an async i/o to the primary
8806 		 * storage now.  If there *is* a waiter, the caller must
8807 		 * issue the i/o in a context where it's OK to block.
8808 		 */
8809 		if (zio->io_waiter == NULL) {
8810 			zio_t *pio = zio_unique_parent(zio);
8811 			void *abd = (using_rdata) ?
8812 			    hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd;
8813 
8814 			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
8815 
8816 			zio = zio_read(pio, zio->io_spa, zio->io_bp,
8817 			    abd, zio->io_size, arc_read_done,
8818 			    hdr, zio->io_priority, cb->l2rcb_flags,
8819 			    &cb->l2rcb_zb);
8820 
8821 			/*
8822 			 * Original ZIO will be freed, so we need to update
8823 			 * ARC header with the new ZIO pointer to be used
8824 			 * by zio_change_priority() in arc_read().
8825 			 */
8826 			for (struct arc_callback *acb = hdr->b_l1hdr.b_acb;
8827 			    acb != NULL; acb = acb->acb_next)
8828 				acb->acb_zio_head = zio;
8829 
8830 			mutex_exit(hash_lock);
8831 			zio_nowait(zio);
8832 		} else {
8833 			mutex_exit(hash_lock);
8834 		}
8835 	}
8836 
8837 	kmem_free(cb, sizeof (l2arc_read_callback_t));
8838 }
8839 
8840 /*
8841  * This is the list priority from which the L2ARC will search for pages to
8842  * cache.  This is used within loops (0..3) to cycle through lists in the
8843  * desired order.  This order can have a significant effect on cache
8844  * performance.
8845  *
8846  * Currently the metadata lists are hit first, MFU then MRU, followed by
8847  * the data lists.  This function returns a locked list, and also returns
8848  * the lock pointer.
8849  */
8850 static multilist_sublist_t *
8851 l2arc_sublist_lock(int list_num)
8852 {
8853 	multilist_t *ml = NULL;
8854 	unsigned int idx;
8855 
8856 	ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES);
8857 
8858 	switch (list_num) {
8859 	case 0:
8860 		ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
8861 		break;
8862 	case 1:
8863 		ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
8864 		break;
8865 	case 2:
8866 		ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
8867 		break;
8868 	case 3:
8869 		ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
8870 		break;
8871 	default:
8872 		return (NULL);
8873 	}
8874 
8875 	/*
8876 	 * Return a randomly-selected sublist. This is acceptable
8877 	 * because the caller feeds only a little bit of data for each
8878 	 * call (8MB). Subsequent calls will result in different
8879 	 * sublists being selected.
8880 	 */
8881 	idx = multilist_get_random_index(ml);
8882 	return (multilist_sublist_lock_idx(ml, idx));
8883 }
8884 
8885 /*
8886  * Calculates the maximum overhead of L2ARC metadata log blocks for a given
8887  * L2ARC write size. l2arc_evict and l2arc_write_size need to include this
8888  * overhead in processing to make sure there is enough headroom available
8889  * when writing buffers.
8890  */
8891 static inline uint64_t
8892 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev)
8893 {
8894 	if (dev->l2ad_log_entries == 0) {
8895 		return (0);
8896 	} else {
8897 		ASSERT(dev->l2ad_vdev != NULL);
8898 
8899 		uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT;
8900 
8901 		uint64_t log_blocks = (log_entries +
8902 		    dev->l2ad_log_entries - 1) /
8903 		    dev->l2ad_log_entries;
8904 
8905 		return (vdev_psize_to_asize(dev->l2ad_vdev,
8906 		    sizeof (l2arc_log_blk_phys_t)) * log_blocks);
8907 	}
8908 }
8909 
8910 /*
8911  * Evict buffers from the device write hand to the distance specified in
8912  * bytes. This distance may span populated buffers, it may span nothing.
8913  * This is clearing a region on the L2ARC device ready for writing.
8914  * If the 'all' boolean is set, every buffer is evicted.
8915  */
8916 static void
8917 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
8918 {
8919 	list_t *buflist;
8920 	arc_buf_hdr_t *hdr, *hdr_prev;
8921 	kmutex_t *hash_lock;
8922 	uint64_t taddr;
8923 	l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev;
8924 	vdev_t *vd = dev->l2ad_vdev;
8925 	boolean_t rerun;
8926 
8927 	ASSERT(vd != NULL || all);
8928 	ASSERT(dev->l2ad_spa != NULL || all);
8929 
8930 	buflist = &dev->l2ad_buflist;
8931 
8932 top:
8933 	rerun = B_FALSE;
8934 	if (dev->l2ad_hand + distance > dev->l2ad_end) {
8935 		/*
8936 		 * When there is no space to accommodate upcoming writes,
8937 		 * evict to the end. Then bump the write and evict hands
8938 		 * to the start and iterate. This iteration does not
8939 		 * happen indefinitely as we make sure in
8940 		 * l2arc_write_size() that when the write hand is reset,
8941 		 * the write size does not exceed the end of the device.
8942 		 */
8943 		rerun = B_TRUE;
8944 		taddr = dev->l2ad_end;
8945 	} else {
8946 		taddr = dev->l2ad_hand + distance;
8947 	}
8948 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
8949 	    uint64_t, taddr, boolean_t, all);
8950 
8951 	if (!all) {
8952 		/*
8953 		 * This check has to be placed after deciding whether to
8954 		 * iterate (rerun).
8955 		 */
8956 		if (dev->l2ad_first) {
8957 			/*
8958 			 * This is the first sweep through the device. There is
8959 			 * nothing to evict. We have already trimmmed the
8960 			 * whole device.
8961 			 */
8962 			goto out;
8963 		} else {
8964 			/*
8965 			 * Trim the space to be evicted.
8966 			 */
8967 			if (vd->vdev_has_trim && dev->l2ad_evict < taddr &&
8968 			    l2arc_trim_ahead > 0) {
8969 				/*
8970 				 * We have to drop the spa_config lock because
8971 				 * vdev_trim_range() will acquire it.
8972 				 * l2ad_evict already accounts for the label
8973 				 * size. To prevent vdev_trim_ranges() from
8974 				 * adding it again, we subtract it from
8975 				 * l2ad_evict.
8976 				 */
8977 				spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev);
8978 				vdev_trim_simple(vd,
8979 				    dev->l2ad_evict - VDEV_LABEL_START_SIZE,
8980 				    taddr - dev->l2ad_evict);
8981 				spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev,
8982 				    RW_READER);
8983 			}
8984 
8985 			/*
8986 			 * When rebuilding L2ARC we retrieve the evict hand
8987 			 * from the header of the device. Of note, l2arc_evict()
8988 			 * does not actually delete buffers from the cache
8989 			 * device, but trimming may do so depending on the
8990 			 * hardware implementation. Thus keeping track of the
8991 			 * evict hand is useful.
8992 			 */
8993 			dev->l2ad_evict = MAX(dev->l2ad_evict, taddr);
8994 		}
8995 	}
8996 
8997 retry:
8998 	mutex_enter(&dev->l2ad_mtx);
8999 	/*
9000 	 * We have to account for evicted log blocks. Run vdev_space_update()
9001 	 * on log blocks whose offset (in bytes) is before the evicted offset
9002 	 * (in bytes) by searching in the list of pointers to log blocks
9003 	 * present in the L2ARC device.
9004 	 */
9005 	for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf;
9006 	    lb_ptr_buf = lb_ptr_buf_prev) {
9007 
9008 		lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf);
9009 
9010 		/* L2BLK_GET_PSIZE returns aligned size for log blocks */
9011 		uint64_t asize = L2BLK_GET_PSIZE(
9012 		    (lb_ptr_buf->lb_ptr)->lbp_prop);
9013 
9014 		/*
9015 		 * We don't worry about log blocks left behind (ie
9016 		 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers()
9017 		 * will never write more than l2arc_evict() evicts.
9018 		 */
9019 		if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) {
9020 			break;
9021 		} else {
9022 			if (vd != NULL)
9023 				vdev_space_update(vd, -asize, 0, 0);
9024 			ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
9025 			ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
9026 			zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
9027 			    lb_ptr_buf);
9028 			(void) zfs_refcount_remove(&dev->l2ad_lb_count,
9029 			    lb_ptr_buf);
9030 			list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf);
9031 			kmem_free(lb_ptr_buf->lb_ptr,
9032 			    sizeof (l2arc_log_blkptr_t));
9033 			kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
9034 		}
9035 	}
9036 
9037 	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
9038 		hdr_prev = list_prev(buflist, hdr);
9039 
9040 		ASSERT(!HDR_EMPTY(hdr));
9041 		hash_lock = HDR_LOCK(hdr);
9042 
9043 		/*
9044 		 * We cannot use mutex_enter or else we can deadlock
9045 		 * with l2arc_write_buffers (due to swapping the order
9046 		 * the hash lock and l2ad_mtx are taken).
9047 		 */
9048 		if (!mutex_tryenter(hash_lock)) {
9049 			/*
9050 			 * Missed the hash lock.  Retry.
9051 			 */
9052 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
9053 			mutex_exit(&dev->l2ad_mtx);
9054 			mutex_enter(hash_lock);
9055 			mutex_exit(hash_lock);
9056 			goto retry;
9057 		}
9058 
9059 		/*
9060 		 * A header can't be on this list if it doesn't have L2 header.
9061 		 */
9062 		ASSERT(HDR_HAS_L2HDR(hdr));
9063 
9064 		/* Ensure this header has finished being written. */
9065 		ASSERT(!HDR_L2_WRITING(hdr));
9066 		ASSERT(!HDR_L2_WRITE_HEAD(hdr));
9067 
9068 		if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict ||
9069 		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
9070 			/*
9071 			 * We've evicted to the target address,
9072 			 * or the end of the device.
9073 			 */
9074 			mutex_exit(hash_lock);
9075 			break;
9076 		}
9077 
9078 		if (!HDR_HAS_L1HDR(hdr)) {
9079 			ASSERT(!HDR_L2_READING(hdr));
9080 			/*
9081 			 * This doesn't exist in the ARC.  Destroy.
9082 			 * arc_hdr_destroy() will call list_remove()
9083 			 * and decrement arcstat_l2_lsize.
9084 			 */
9085 			arc_change_state(arc_anon, hdr);
9086 			arc_hdr_destroy(hdr);
9087 		} else {
9088 			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
9089 			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
9090 			/*
9091 			 * Invalidate issued or about to be issued
9092 			 * reads, since we may be about to write
9093 			 * over this location.
9094 			 */
9095 			if (HDR_L2_READING(hdr)) {
9096 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
9097 				arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
9098 			}
9099 
9100 			arc_hdr_l2hdr_destroy(hdr);
9101 		}
9102 		mutex_exit(hash_lock);
9103 	}
9104 	mutex_exit(&dev->l2ad_mtx);
9105 
9106 out:
9107 	/*
9108 	 * We need to check if we evict all buffers, otherwise we may iterate
9109 	 * unnecessarily.
9110 	 */
9111 	if (!all && rerun) {
9112 		/*
9113 		 * Bump device hand to the device start if it is approaching the
9114 		 * end. l2arc_evict() has already evicted ahead for this case.
9115 		 */
9116 		dev->l2ad_hand = dev->l2ad_start;
9117 		dev->l2ad_evict = dev->l2ad_start;
9118 		dev->l2ad_first = B_FALSE;
9119 		goto top;
9120 	}
9121 
9122 	if (!all) {
9123 		/*
9124 		 * In case of cache device removal (all) the following
9125 		 * assertions may be violated without functional consequences
9126 		 * as the device is about to be removed.
9127 		 */
9128 		ASSERT3U(dev->l2ad_hand + distance, <=, dev->l2ad_end);
9129 		if (!dev->l2ad_first)
9130 			ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
9131 	}
9132 }
9133 
9134 /*
9135  * Handle any abd transforms that might be required for writing to the L2ARC.
9136  * If successful, this function will always return an abd with the data
9137  * transformed as it is on disk in a new abd of asize bytes.
9138  */
9139 static int
9140 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize,
9141     abd_t **abd_out)
9142 {
9143 	int ret;
9144 	abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd;
9145 	enum zio_compress compress = HDR_GET_COMPRESS(hdr);
9146 	uint64_t psize = HDR_GET_PSIZE(hdr);
9147 	uint64_t size = arc_hdr_size(hdr);
9148 	boolean_t ismd = HDR_ISTYPE_METADATA(hdr);
9149 	boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
9150 	dsl_crypto_key_t *dck = NULL;
9151 	uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 };
9152 	boolean_t no_crypt = B_FALSE;
9153 
9154 	ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
9155 	    !HDR_COMPRESSION_ENABLED(hdr)) ||
9156 	    HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize);
9157 	ASSERT3U(psize, <=, asize);
9158 
9159 	/*
9160 	 * If this data simply needs its own buffer, we simply allocate it
9161 	 * and copy the data. This may be done to eliminate a dependency on a
9162 	 * shared buffer or to reallocate the buffer to match asize.
9163 	 */
9164 	if (HDR_HAS_RABD(hdr)) {
9165 		ASSERT3U(asize, >, psize);
9166 		to_write = abd_alloc_for_io(asize, ismd);
9167 		abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize);
9168 		abd_zero_off(to_write, psize, asize - psize);
9169 		goto out;
9170 	}
9171 
9172 	if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) &&
9173 	    !HDR_ENCRYPTED(hdr)) {
9174 		ASSERT3U(size, ==, psize);
9175 		to_write = abd_alloc_for_io(asize, ismd);
9176 		abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
9177 		if (asize > size)
9178 			abd_zero_off(to_write, size, asize - size);
9179 		goto out;
9180 	}
9181 
9182 	if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) {
9183 		cabd = abd_alloc_for_io(MAX(size, asize), ismd);
9184 		uint64_t csize = zio_compress_data(compress, to_write, &cabd,
9185 		    size, MIN(size, psize), hdr->b_complevel);
9186 		if (csize >= size || csize > psize) {
9187 			/*
9188 			 * We can't re-compress the block into the original
9189 			 * psize.  Even if it fits into asize, it does not
9190 			 * matter, since checksum will never match on read.
9191 			 */
9192 			abd_free(cabd);
9193 			return (SET_ERROR(EIO));
9194 		}
9195 		if (asize > csize)
9196 			abd_zero_off(cabd, csize, asize - csize);
9197 		to_write = cabd;
9198 	}
9199 
9200 	if (HDR_ENCRYPTED(hdr)) {
9201 		eabd = abd_alloc_for_io(asize, ismd);
9202 
9203 		/*
9204 		 * If the dataset was disowned before the buffer
9205 		 * made it to this point, the key to re-encrypt
9206 		 * it won't be available. In this case we simply
9207 		 * won't write the buffer to the L2ARC.
9208 		 */
9209 		ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj,
9210 		    FTAG, &dck);
9211 		if (ret != 0)
9212 			goto error;
9213 
9214 		ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
9215 		    hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt,
9216 		    hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd,
9217 		    &no_crypt);
9218 		if (ret != 0)
9219 			goto error;
9220 
9221 		if (no_crypt)
9222 			abd_copy(eabd, to_write, psize);
9223 
9224 		if (psize != asize)
9225 			abd_zero_off(eabd, psize, asize - psize);
9226 
9227 		/* assert that the MAC we got here matches the one we saved */
9228 		ASSERT0(memcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN));
9229 		spa_keystore_dsl_key_rele(spa, dck, FTAG);
9230 
9231 		if (to_write == cabd)
9232 			abd_free(cabd);
9233 
9234 		to_write = eabd;
9235 	}
9236 
9237 out:
9238 	ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd);
9239 	*abd_out = to_write;
9240 	return (0);
9241 
9242 error:
9243 	if (dck != NULL)
9244 		spa_keystore_dsl_key_rele(spa, dck, FTAG);
9245 	if (cabd != NULL)
9246 		abd_free(cabd);
9247 	if (eabd != NULL)
9248 		abd_free(eabd);
9249 
9250 	*abd_out = NULL;
9251 	return (ret);
9252 }
9253 
9254 static void
9255 l2arc_blk_fetch_done(zio_t *zio)
9256 {
9257 	l2arc_read_callback_t *cb;
9258 
9259 	cb = zio->io_private;
9260 	if (cb->l2rcb_abd != NULL)
9261 		abd_free(cb->l2rcb_abd);
9262 	kmem_free(cb, sizeof (l2arc_read_callback_t));
9263 }
9264 
9265 /*
9266  * Find and write ARC buffers to the L2ARC device.
9267  *
9268  * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
9269  * for reading until they have completed writing.
9270  * The headroom_boost is an in-out parameter used to maintain headroom boost
9271  * state between calls to this function.
9272  *
9273  * Returns the number of bytes actually written (which may be smaller than
9274  * the delta by which the device hand has changed due to alignment and the
9275  * writing of log blocks).
9276  */
9277 static uint64_t
9278 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
9279 {
9280 	arc_buf_hdr_t 		*hdr, *head, *marker;
9281 	uint64_t 		write_asize, write_psize, headroom;
9282 	boolean_t		full, from_head = !arc_warm;
9283 	l2arc_write_callback_t	*cb = NULL;
9284 	zio_t 			*pio, *wzio;
9285 	uint64_t 		guid = spa_load_guid(spa);
9286 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
9287 
9288 	ASSERT3P(dev->l2ad_vdev, !=, NULL);
9289 
9290 	pio = NULL;
9291 	write_asize = write_psize = 0;
9292 	full = B_FALSE;
9293 	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
9294 	arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
9295 	marker = arc_state_alloc_marker();
9296 
9297 	/*
9298 	 * Copy buffers for L2ARC writing.
9299 	 */
9300 	for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) {
9301 		/*
9302 		 * pass == 0: MFU meta
9303 		 * pass == 1: MRU meta
9304 		 * pass == 2: MFU data
9305 		 * pass == 3: MRU data
9306 		 */
9307 		if (l2arc_mfuonly == 1) {
9308 			if (pass == 1 || pass == 3)
9309 				continue;
9310 		} else if (l2arc_mfuonly > 1) {
9311 			if (pass == 3)
9312 				continue;
9313 		}
9314 
9315 		uint64_t passed_sz = 0;
9316 		headroom = target_sz * l2arc_headroom;
9317 		if (zfs_compressed_arc_enabled)
9318 			headroom = (headroom * l2arc_headroom_boost) / 100;
9319 
9320 		/*
9321 		 * Until the ARC is warm and starts to evict, read from the
9322 		 * head of the ARC lists rather than the tail.
9323 		 */
9324 		multilist_sublist_t *mls = l2arc_sublist_lock(pass);
9325 		ASSERT3P(mls, !=, NULL);
9326 		if (from_head)
9327 			hdr = multilist_sublist_head(mls);
9328 		else
9329 			hdr = multilist_sublist_tail(mls);
9330 
9331 		while (hdr != NULL) {
9332 			kmutex_t *hash_lock;
9333 			abd_t *to_write = NULL;
9334 
9335 			hash_lock = HDR_LOCK(hdr);
9336 			if (!mutex_tryenter(hash_lock)) {
9337 skip:
9338 				/* Skip this buffer rather than waiting. */
9339 				if (from_head)
9340 					hdr = multilist_sublist_next(mls, hdr);
9341 				else
9342 					hdr = multilist_sublist_prev(mls, hdr);
9343 				continue;
9344 			}
9345 
9346 			passed_sz += HDR_GET_LSIZE(hdr);
9347 			if (l2arc_headroom != 0 && passed_sz > headroom) {
9348 				/*
9349 				 * Searched too far.
9350 				 */
9351 				mutex_exit(hash_lock);
9352 				break;
9353 			}
9354 
9355 			if (!l2arc_write_eligible(guid, hdr)) {
9356 				mutex_exit(hash_lock);
9357 				goto skip;
9358 			}
9359 
9360 			ASSERT(HDR_HAS_L1HDR(hdr));
9361 			ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
9362 			ASSERT3U(arc_hdr_size(hdr), >, 0);
9363 			ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
9364 			    HDR_HAS_RABD(hdr));
9365 			uint64_t psize = HDR_GET_PSIZE(hdr);
9366 			uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
9367 			    psize);
9368 
9369 			/*
9370 			 * If the allocated size of this buffer plus the max
9371 			 * size for the pending log block exceeds the evicted
9372 			 * target size, terminate writing buffers for this run.
9373 			 */
9374 			if (write_asize + asize +
9375 			    sizeof (l2arc_log_blk_phys_t) > target_sz) {
9376 				full = B_TRUE;
9377 				mutex_exit(hash_lock);
9378 				break;
9379 			}
9380 
9381 			/*
9382 			 * We should not sleep with sublist lock held or it
9383 			 * may block ARC eviction.  Insert a marker to save
9384 			 * the position and drop the lock.
9385 			 */
9386 			if (from_head) {
9387 				multilist_sublist_insert_after(mls, hdr,
9388 				    marker);
9389 			} else {
9390 				multilist_sublist_insert_before(mls, hdr,
9391 				    marker);
9392 			}
9393 			multilist_sublist_unlock(mls);
9394 
9395 			/*
9396 			 * If this header has b_rabd, we can use this since it
9397 			 * must always match the data exactly as it exists on
9398 			 * disk. Otherwise, the L2ARC can normally use the
9399 			 * hdr's data, but if we're sharing data between the
9400 			 * hdr and one of its bufs, L2ARC needs its own copy of
9401 			 * the data so that the ZIO below can't race with the
9402 			 * buf consumer. To ensure that this copy will be
9403 			 * available for the lifetime of the ZIO and be cleaned
9404 			 * up afterwards, we add it to the l2arc_free_on_write
9405 			 * queue. If we need to apply any transforms to the
9406 			 * data (compression, encryption) we will also need the
9407 			 * extra buffer.
9408 			 */
9409 			if (HDR_HAS_RABD(hdr) && psize == asize) {
9410 				to_write = hdr->b_crypt_hdr.b_rabd;
9411 			} else if ((HDR_COMPRESSION_ENABLED(hdr) ||
9412 			    HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) &&
9413 			    !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) &&
9414 			    psize == asize) {
9415 				to_write = hdr->b_l1hdr.b_pabd;
9416 			} else {
9417 				int ret;
9418 				arc_buf_contents_t type = arc_buf_type(hdr);
9419 
9420 				ret = l2arc_apply_transforms(spa, hdr, asize,
9421 				    &to_write);
9422 				if (ret != 0) {
9423 					arc_hdr_clear_flags(hdr,
9424 					    ARC_FLAG_L2CACHE);
9425 					mutex_exit(hash_lock);
9426 					goto next;
9427 				}
9428 
9429 				l2arc_free_abd_on_write(to_write, asize, type);
9430 			}
9431 
9432 			hdr->b_l2hdr.b_dev = dev;
9433 			hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
9434 			hdr->b_l2hdr.b_hits = 0;
9435 			hdr->b_l2hdr.b_arcs_state =
9436 			    hdr->b_l1hdr.b_state->arcs_state;
9437 			/* l2arc_hdr_arcstats_update() expects a valid asize */
9438 			HDR_SET_L2SIZE(hdr, asize);
9439 			arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR |
9440 			    ARC_FLAG_L2_WRITING);
9441 
9442 			(void) zfs_refcount_add_many(&dev->l2ad_alloc,
9443 			    arc_hdr_size(hdr), hdr);
9444 			l2arc_hdr_arcstats_increment(hdr);
9445 			vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
9446 
9447 			mutex_enter(&dev->l2ad_mtx);
9448 			if (pio == NULL) {
9449 				/*
9450 				 * Insert a dummy header on the buflist so
9451 				 * l2arc_write_done() can find where the
9452 				 * write buffers begin without searching.
9453 				 */
9454 				list_insert_head(&dev->l2ad_buflist, head);
9455 			}
9456 			list_insert_head(&dev->l2ad_buflist, hdr);
9457 			mutex_exit(&dev->l2ad_mtx);
9458 
9459 			boolean_t commit = l2arc_log_blk_insert(dev, hdr);
9460 			mutex_exit(hash_lock);
9461 
9462 			if (pio == NULL) {
9463 				cb = kmem_alloc(
9464 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
9465 				cb->l2wcb_dev = dev;
9466 				cb->l2wcb_head = head;
9467 				list_create(&cb->l2wcb_abd_list,
9468 				    sizeof (l2arc_lb_abd_buf_t),
9469 				    offsetof(l2arc_lb_abd_buf_t, node));
9470 				pio = zio_root(spa, l2arc_write_done, cb,
9471 				    ZIO_FLAG_CANFAIL);
9472 			}
9473 
9474 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
9475 			    dev->l2ad_hand, asize, to_write,
9476 			    ZIO_CHECKSUM_OFF, NULL, hdr,
9477 			    ZIO_PRIORITY_ASYNC_WRITE,
9478 			    ZIO_FLAG_CANFAIL, B_FALSE);
9479 
9480 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
9481 			    zio_t *, wzio);
9482 			zio_nowait(wzio);
9483 
9484 			write_psize += psize;
9485 			write_asize += asize;
9486 			dev->l2ad_hand += asize;
9487 
9488 			if (commit) {
9489 				/* l2ad_hand will be adjusted inside. */
9490 				write_asize +=
9491 				    l2arc_log_blk_commit(dev, pio, cb);
9492 			}
9493 
9494 next:
9495 			multilist_sublist_lock(mls);
9496 			if (from_head)
9497 				hdr = multilist_sublist_next(mls, marker);
9498 			else
9499 				hdr = multilist_sublist_prev(mls, marker);
9500 			multilist_sublist_remove(mls, marker);
9501 		}
9502 
9503 		multilist_sublist_unlock(mls);
9504 
9505 		if (full == B_TRUE)
9506 			break;
9507 	}
9508 
9509 	arc_state_free_marker(marker);
9510 
9511 	/* No buffers selected for writing? */
9512 	if (pio == NULL) {
9513 		ASSERT0(write_psize);
9514 		ASSERT(!HDR_HAS_L1HDR(head));
9515 		kmem_cache_free(hdr_l2only_cache, head);
9516 
9517 		/*
9518 		 * Although we did not write any buffers l2ad_evict may
9519 		 * have advanced.
9520 		 */
9521 		if (dev->l2ad_evict != l2dhdr->dh_evict)
9522 			l2arc_dev_hdr_update(dev);
9523 
9524 		return (0);
9525 	}
9526 
9527 	if (!dev->l2ad_first)
9528 		ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
9529 
9530 	ASSERT3U(write_asize, <=, target_sz);
9531 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
9532 	ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
9533 
9534 	dev->l2ad_writing = B_TRUE;
9535 	(void) zio_wait(pio);
9536 	dev->l2ad_writing = B_FALSE;
9537 
9538 	/*
9539 	 * Update the device header after the zio completes as
9540 	 * l2arc_write_done() may have updated the memory holding the log block
9541 	 * pointers in the device header.
9542 	 */
9543 	l2arc_dev_hdr_update(dev);
9544 
9545 	return (write_asize);
9546 }
9547 
9548 static boolean_t
9549 l2arc_hdr_limit_reached(void)
9550 {
9551 	int64_t s = aggsum_upper_bound(&arc_sums.arcstat_l2_hdr_size);
9552 
9553 	return (arc_reclaim_needed() ||
9554 	    (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100));
9555 }
9556 
9557 /*
9558  * This thread feeds the L2ARC at regular intervals.  This is the beating
9559  * heart of the L2ARC.
9560  */
9561 static  __attribute__((noreturn)) void
9562 l2arc_feed_thread(void *unused)
9563 {
9564 	(void) unused;
9565 	callb_cpr_t cpr;
9566 	l2arc_dev_t *dev;
9567 	spa_t *spa;
9568 	uint64_t size, wrote;
9569 	clock_t begin, next = ddi_get_lbolt();
9570 	fstrans_cookie_t cookie;
9571 
9572 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
9573 
9574 	mutex_enter(&l2arc_feed_thr_lock);
9575 
9576 	cookie = spl_fstrans_mark();
9577 	while (l2arc_thread_exit == 0) {
9578 		CALLB_CPR_SAFE_BEGIN(&cpr);
9579 		(void) cv_timedwait_idle(&l2arc_feed_thr_cv,
9580 		    &l2arc_feed_thr_lock, next);
9581 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
9582 		next = ddi_get_lbolt() + hz;
9583 
9584 		/*
9585 		 * Quick check for L2ARC devices.
9586 		 */
9587 		mutex_enter(&l2arc_dev_mtx);
9588 		if (l2arc_ndev == 0) {
9589 			mutex_exit(&l2arc_dev_mtx);
9590 			continue;
9591 		}
9592 		mutex_exit(&l2arc_dev_mtx);
9593 		begin = ddi_get_lbolt();
9594 
9595 		/*
9596 		 * This selects the next l2arc device to write to, and in
9597 		 * doing so the next spa to feed from: dev->l2ad_spa.   This
9598 		 * will return NULL if there are now no l2arc devices or if
9599 		 * they are all faulted.
9600 		 *
9601 		 * If a device is returned, its spa's config lock is also
9602 		 * held to prevent device removal.  l2arc_dev_get_next()
9603 		 * will grab and release l2arc_dev_mtx.
9604 		 */
9605 		if ((dev = l2arc_dev_get_next()) == NULL)
9606 			continue;
9607 
9608 		spa = dev->l2ad_spa;
9609 		ASSERT3P(spa, !=, NULL);
9610 
9611 		/*
9612 		 * If the pool is read-only then force the feed thread to
9613 		 * sleep a little longer.
9614 		 */
9615 		if (!spa_writeable(spa)) {
9616 			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
9617 			spa_config_exit(spa, SCL_L2ARC, dev);
9618 			continue;
9619 		}
9620 
9621 		/*
9622 		 * Avoid contributing to memory pressure.
9623 		 */
9624 		if (l2arc_hdr_limit_reached()) {
9625 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
9626 			spa_config_exit(spa, SCL_L2ARC, dev);
9627 			continue;
9628 		}
9629 
9630 		ARCSTAT_BUMP(arcstat_l2_feeds);
9631 
9632 		size = l2arc_write_size(dev);
9633 
9634 		/*
9635 		 * Evict L2ARC buffers that will be overwritten.
9636 		 */
9637 		l2arc_evict(dev, size, B_FALSE);
9638 
9639 		/*
9640 		 * Write ARC buffers.
9641 		 */
9642 		wrote = l2arc_write_buffers(spa, dev, size);
9643 
9644 		/*
9645 		 * Calculate interval between writes.
9646 		 */
9647 		next = l2arc_write_interval(begin, size, wrote);
9648 		spa_config_exit(spa, SCL_L2ARC, dev);
9649 	}
9650 	spl_fstrans_unmark(cookie);
9651 
9652 	l2arc_thread_exit = 0;
9653 	cv_broadcast(&l2arc_feed_thr_cv);
9654 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
9655 	thread_exit();
9656 }
9657 
9658 boolean_t
9659 l2arc_vdev_present(vdev_t *vd)
9660 {
9661 	return (l2arc_vdev_get(vd) != NULL);
9662 }
9663 
9664 /*
9665  * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if
9666  * the vdev_t isn't an L2ARC device.
9667  */
9668 l2arc_dev_t *
9669 l2arc_vdev_get(vdev_t *vd)
9670 {
9671 	l2arc_dev_t	*dev;
9672 
9673 	mutex_enter(&l2arc_dev_mtx);
9674 	for (dev = list_head(l2arc_dev_list); dev != NULL;
9675 	    dev = list_next(l2arc_dev_list, dev)) {
9676 		if (dev->l2ad_vdev == vd)
9677 			break;
9678 	}
9679 	mutex_exit(&l2arc_dev_mtx);
9680 
9681 	return (dev);
9682 }
9683 
9684 static void
9685 l2arc_rebuild_dev(l2arc_dev_t *dev, boolean_t reopen)
9686 {
9687 	l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
9688 	uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
9689 	spa_t *spa = dev->l2ad_spa;
9690 
9691 	/*
9692 	 * After a l2arc_remove_vdev(), the spa_t will no longer be valid
9693 	 */
9694 	if (spa == NULL)
9695 		return;
9696 
9697 	/*
9698 	 * The L2ARC has to hold at least the payload of one log block for
9699 	 * them to be restored (persistent L2ARC). The payload of a log block
9700 	 * depends on the amount of its log entries. We always write log blocks
9701 	 * with 1022 entries. How many of them are committed or restored depends
9702 	 * on the size of the L2ARC device. Thus the maximum payload of
9703 	 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device
9704 	 * is less than that, we reduce the amount of committed and restored
9705 	 * log entries per block so as to enable persistence.
9706 	 */
9707 	if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) {
9708 		dev->l2ad_log_entries = 0;
9709 	} else {
9710 		dev->l2ad_log_entries = MIN((dev->l2ad_end -
9711 		    dev->l2ad_start) >> SPA_MAXBLOCKSHIFT,
9712 		    L2ARC_LOG_BLK_MAX_ENTRIES);
9713 	}
9714 
9715 	/*
9716 	 * Read the device header, if an error is returned do not rebuild L2ARC.
9717 	 */
9718 	if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) {
9719 		/*
9720 		 * If we are onlining a cache device (vdev_reopen) that was
9721 		 * still present (l2arc_vdev_present()) and rebuild is enabled,
9722 		 * we should evict all ARC buffers and pointers to log blocks
9723 		 * and reclaim their space before restoring its contents to
9724 		 * L2ARC.
9725 		 */
9726 		if (reopen) {
9727 			if (!l2arc_rebuild_enabled) {
9728 				return;
9729 			} else {
9730 				l2arc_evict(dev, 0, B_TRUE);
9731 				/* start a new log block */
9732 				dev->l2ad_log_ent_idx = 0;
9733 				dev->l2ad_log_blk_payload_asize = 0;
9734 				dev->l2ad_log_blk_payload_start = 0;
9735 			}
9736 		}
9737 		/*
9738 		 * Just mark the device as pending for a rebuild. We won't
9739 		 * be starting a rebuild in line here as it would block pool
9740 		 * import. Instead spa_load_impl will hand that off to an
9741 		 * async task which will call l2arc_spa_rebuild_start.
9742 		 */
9743 		dev->l2ad_rebuild = B_TRUE;
9744 	} else if (spa_writeable(spa)) {
9745 		/*
9746 		 * In this case TRIM the whole device if l2arc_trim_ahead > 0,
9747 		 * otherwise create a new header. We zero out the memory holding
9748 		 * the header to reset dh_start_lbps. If we TRIM the whole
9749 		 * device the new header will be written by
9750 		 * vdev_trim_l2arc_thread() at the end of the TRIM to update the
9751 		 * trim_state in the header too. When reading the header, if
9752 		 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0
9753 		 * we opt to TRIM the whole device again.
9754 		 */
9755 		if (l2arc_trim_ahead > 0) {
9756 			dev->l2ad_trim_all = B_TRUE;
9757 		} else {
9758 			memset(l2dhdr, 0, l2dhdr_asize);
9759 			l2arc_dev_hdr_update(dev);
9760 		}
9761 	}
9762 }
9763 
9764 /*
9765  * Add a vdev for use by the L2ARC.  By this point the spa has already
9766  * validated the vdev and opened it.
9767  */
9768 void
9769 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
9770 {
9771 	l2arc_dev_t		*adddev;
9772 	uint64_t		l2dhdr_asize;
9773 
9774 	ASSERT(!l2arc_vdev_present(vd));
9775 
9776 	/*
9777 	 * Create a new l2arc device entry.
9778 	 */
9779 	adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
9780 	adddev->l2ad_spa = spa;
9781 	adddev->l2ad_vdev = vd;
9782 	/* leave extra size for an l2arc device header */
9783 	l2dhdr_asize = adddev->l2ad_dev_hdr_asize =
9784 	    MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift);
9785 	adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize;
9786 	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
9787 	ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end);
9788 	adddev->l2ad_hand = adddev->l2ad_start;
9789 	adddev->l2ad_evict = adddev->l2ad_start;
9790 	adddev->l2ad_first = B_TRUE;
9791 	adddev->l2ad_writing = B_FALSE;
9792 	adddev->l2ad_trim_all = B_FALSE;
9793 	list_link_init(&adddev->l2ad_node);
9794 	adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP);
9795 
9796 	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
9797 	/*
9798 	 * This is a list of all ARC buffers that are still valid on the
9799 	 * device.
9800 	 */
9801 	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
9802 	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
9803 
9804 	/*
9805 	 * This is a list of pointers to log blocks that are still present
9806 	 * on the device.
9807 	 */
9808 	list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t),
9809 	    offsetof(l2arc_lb_ptr_buf_t, node));
9810 
9811 	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
9812 	zfs_refcount_create(&adddev->l2ad_alloc);
9813 	zfs_refcount_create(&adddev->l2ad_lb_asize);
9814 	zfs_refcount_create(&adddev->l2ad_lb_count);
9815 
9816 	/*
9817 	 * Decide if dev is eligible for L2ARC rebuild or whole device
9818 	 * trimming. This has to happen before the device is added in the
9819 	 * cache device list and l2arc_dev_mtx is released. Otherwise
9820 	 * l2arc_feed_thread() might already start writing on the
9821 	 * device.
9822 	 */
9823 	l2arc_rebuild_dev(adddev, B_FALSE);
9824 
9825 	/*
9826 	 * Add device to global list
9827 	 */
9828 	mutex_enter(&l2arc_dev_mtx);
9829 	list_insert_head(l2arc_dev_list, adddev);
9830 	atomic_inc_64(&l2arc_ndev);
9831 	mutex_exit(&l2arc_dev_mtx);
9832 }
9833 
9834 /*
9835  * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen()
9836  * in case of onlining a cache device.
9837  */
9838 void
9839 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen)
9840 {
9841 	l2arc_dev_t		*dev = NULL;
9842 
9843 	dev = l2arc_vdev_get(vd);
9844 	ASSERT3P(dev, !=, NULL);
9845 
9846 	/*
9847 	 * In contrast to l2arc_add_vdev() we do not have to worry about
9848 	 * l2arc_feed_thread() invalidating previous content when onlining a
9849 	 * cache device. The device parameters (l2ad*) are not cleared when
9850 	 * offlining the device and writing new buffers will not invalidate
9851 	 * all previous content. In worst case only buffers that have not had
9852 	 * their log block written to the device will be lost.
9853 	 * When onlining the cache device (ie offline->online without exporting
9854 	 * the pool in between) this happens:
9855 	 * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev()
9856 	 * 			|			|
9857 	 * 		vdev_is_dead() = B_FALSE	l2ad_rebuild = B_TRUE
9858 	 * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild
9859 	 * is set to B_TRUE we might write additional buffers to the device.
9860 	 */
9861 	l2arc_rebuild_dev(dev, reopen);
9862 }
9863 
9864 typedef struct {
9865 	l2arc_dev_t	*rva_l2arc_dev;
9866 	uint64_t	rva_spa_gid;
9867 	uint64_t	rva_vdev_gid;
9868 	boolean_t	rva_async;
9869 
9870 } remove_vdev_args_t;
9871 
9872 static void
9873 l2arc_device_teardown(void *arg)
9874 {
9875 	remove_vdev_args_t *rva = arg;
9876 	l2arc_dev_t *remdev = rva->rva_l2arc_dev;
9877 	hrtime_t start_time = gethrtime();
9878 
9879 	/*
9880 	 * Clear all buflists and ARC references.  L2ARC device flush.
9881 	 */
9882 	l2arc_evict(remdev, 0, B_TRUE);
9883 	list_destroy(&remdev->l2ad_buflist);
9884 	ASSERT(list_is_empty(&remdev->l2ad_lbptr_list));
9885 	list_destroy(&remdev->l2ad_lbptr_list);
9886 	mutex_destroy(&remdev->l2ad_mtx);
9887 	zfs_refcount_destroy(&remdev->l2ad_alloc);
9888 	zfs_refcount_destroy(&remdev->l2ad_lb_asize);
9889 	zfs_refcount_destroy(&remdev->l2ad_lb_count);
9890 	kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize);
9891 	vmem_free(remdev, sizeof (l2arc_dev_t));
9892 
9893 	uint64_t elaspsed = NSEC2MSEC(gethrtime() - start_time);
9894 	if (elaspsed > 0) {
9895 		zfs_dbgmsg("spa %llu, vdev %llu removed in %llu ms",
9896 		    (u_longlong_t)rva->rva_spa_gid,
9897 		    (u_longlong_t)rva->rva_vdev_gid,
9898 		    (u_longlong_t)elaspsed);
9899 	}
9900 
9901 	if (rva->rva_async)
9902 		arc_async_flush_remove(rva->rva_spa_gid, 2);
9903 	kmem_free(rva, sizeof (remove_vdev_args_t));
9904 }
9905 
9906 /*
9907  * Remove a vdev from the L2ARC.
9908  */
9909 void
9910 l2arc_remove_vdev(vdev_t *vd)
9911 {
9912 	spa_t *spa = vd->vdev_spa;
9913 	boolean_t asynchronous = spa->spa_state == POOL_STATE_EXPORTED ||
9914 	    spa->spa_state == POOL_STATE_DESTROYED;
9915 
9916 	/*
9917 	 * Find the device by vdev
9918 	 */
9919 	l2arc_dev_t *remdev = l2arc_vdev_get(vd);
9920 	ASSERT3P(remdev, !=, NULL);
9921 
9922 	/*
9923 	 * Save info for final teardown
9924 	 */
9925 	remove_vdev_args_t *rva = kmem_alloc(sizeof (remove_vdev_args_t),
9926 	    KM_SLEEP);
9927 	rva->rva_l2arc_dev = remdev;
9928 	rva->rva_spa_gid = spa_load_guid(spa);
9929 	rva->rva_vdev_gid = remdev->l2ad_vdev->vdev_guid;
9930 
9931 	/*
9932 	 * Cancel any ongoing or scheduled rebuild.
9933 	 */
9934 	mutex_enter(&l2arc_rebuild_thr_lock);
9935 	remdev->l2ad_rebuild_cancel = B_TRUE;
9936 	if (remdev->l2ad_rebuild_began == B_TRUE) {
9937 		while (remdev->l2ad_rebuild == B_TRUE)
9938 			cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock);
9939 	}
9940 	mutex_exit(&l2arc_rebuild_thr_lock);
9941 	rva->rva_async = asynchronous;
9942 
9943 	/*
9944 	 * Remove device from global list
9945 	 */
9946 	ASSERT(spa_config_held(spa, SCL_L2ARC, RW_WRITER) & SCL_L2ARC);
9947 	mutex_enter(&l2arc_dev_mtx);
9948 	list_remove(l2arc_dev_list, remdev);
9949 	l2arc_dev_last = NULL;		/* may have been invalidated */
9950 	atomic_dec_64(&l2arc_ndev);
9951 
9952 	/* During a pool export spa & vdev will no longer be valid */
9953 	if (asynchronous) {
9954 		remdev->l2ad_spa = NULL;
9955 		remdev->l2ad_vdev = NULL;
9956 	}
9957 	mutex_exit(&l2arc_dev_mtx);
9958 
9959 	if (!asynchronous) {
9960 		l2arc_device_teardown(rva);
9961 		return;
9962 	}
9963 
9964 	arc_async_flush_t *af = arc_async_flush_add(rva->rva_spa_gid, 2);
9965 
9966 	taskq_dispatch_ent(arc_flush_taskq, l2arc_device_teardown, rva,
9967 	    TQ_SLEEP, &af->af_tqent);
9968 }
9969 
9970 void
9971 l2arc_init(void)
9972 {
9973 	l2arc_thread_exit = 0;
9974 	l2arc_ndev = 0;
9975 
9976 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
9977 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
9978 	mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL);
9979 	cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL);
9980 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
9981 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
9982 
9983 	l2arc_dev_list = &L2ARC_dev_list;
9984 	l2arc_free_on_write = &L2ARC_free_on_write;
9985 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
9986 	    offsetof(l2arc_dev_t, l2ad_node));
9987 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
9988 	    offsetof(l2arc_data_free_t, l2df_list_node));
9989 }
9990 
9991 void
9992 l2arc_fini(void)
9993 {
9994 	mutex_destroy(&l2arc_feed_thr_lock);
9995 	cv_destroy(&l2arc_feed_thr_cv);
9996 	mutex_destroy(&l2arc_rebuild_thr_lock);
9997 	cv_destroy(&l2arc_rebuild_thr_cv);
9998 	mutex_destroy(&l2arc_dev_mtx);
9999 	mutex_destroy(&l2arc_free_on_write_mtx);
10000 
10001 	list_destroy(l2arc_dev_list);
10002 	list_destroy(l2arc_free_on_write);
10003 }
10004 
10005 void
10006 l2arc_start(void)
10007 {
10008 	if (!(spa_mode_global & SPA_MODE_WRITE))
10009 		return;
10010 
10011 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
10012 	    TS_RUN, defclsyspri);
10013 }
10014 
10015 void
10016 l2arc_stop(void)
10017 {
10018 	if (!(spa_mode_global & SPA_MODE_WRITE))
10019 		return;
10020 
10021 	mutex_enter(&l2arc_feed_thr_lock);
10022 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
10023 	l2arc_thread_exit = 1;
10024 	while (l2arc_thread_exit != 0)
10025 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
10026 	mutex_exit(&l2arc_feed_thr_lock);
10027 }
10028 
10029 /*
10030  * Punches out rebuild threads for the L2ARC devices in a spa. This should
10031  * be called after pool import from the spa async thread, since starting
10032  * these threads directly from spa_import() will make them part of the
10033  * "zpool import" context and delay process exit (and thus pool import).
10034  */
10035 void
10036 l2arc_spa_rebuild_start(spa_t *spa)
10037 {
10038 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
10039 
10040 	/*
10041 	 * Locate the spa's l2arc devices and kick off rebuild threads.
10042 	 */
10043 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
10044 		l2arc_dev_t *dev =
10045 		    l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
10046 		if (dev == NULL) {
10047 			/* Don't attempt a rebuild if the vdev is UNAVAIL */
10048 			continue;
10049 		}
10050 		mutex_enter(&l2arc_rebuild_thr_lock);
10051 		if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) {
10052 			dev->l2ad_rebuild_began = B_TRUE;
10053 			(void) thread_create(NULL, 0, l2arc_dev_rebuild_thread,
10054 			    dev, 0, &p0, TS_RUN, minclsyspri);
10055 		}
10056 		mutex_exit(&l2arc_rebuild_thr_lock);
10057 	}
10058 }
10059 
10060 void
10061 l2arc_spa_rebuild_stop(spa_t *spa)
10062 {
10063 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
10064 	    spa->spa_export_thread == curthread);
10065 
10066 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
10067 		l2arc_dev_t *dev =
10068 		    l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
10069 		if (dev == NULL)
10070 			continue;
10071 		mutex_enter(&l2arc_rebuild_thr_lock);
10072 		dev->l2ad_rebuild_cancel = B_TRUE;
10073 		mutex_exit(&l2arc_rebuild_thr_lock);
10074 	}
10075 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
10076 		l2arc_dev_t *dev =
10077 		    l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
10078 		if (dev == NULL)
10079 			continue;
10080 		mutex_enter(&l2arc_rebuild_thr_lock);
10081 		if (dev->l2ad_rebuild_began == B_TRUE) {
10082 			while (dev->l2ad_rebuild == B_TRUE) {
10083 				cv_wait(&l2arc_rebuild_thr_cv,
10084 				    &l2arc_rebuild_thr_lock);
10085 			}
10086 		}
10087 		mutex_exit(&l2arc_rebuild_thr_lock);
10088 	}
10089 }
10090 
10091 /*
10092  * Main entry point for L2ARC rebuilding.
10093  */
10094 static __attribute__((noreturn)) void
10095 l2arc_dev_rebuild_thread(void *arg)
10096 {
10097 	l2arc_dev_t *dev = arg;
10098 
10099 	VERIFY(dev->l2ad_rebuild);
10100 	(void) l2arc_rebuild(dev);
10101 	mutex_enter(&l2arc_rebuild_thr_lock);
10102 	dev->l2ad_rebuild_began = B_FALSE;
10103 	dev->l2ad_rebuild = B_FALSE;
10104 	cv_signal(&l2arc_rebuild_thr_cv);
10105 	mutex_exit(&l2arc_rebuild_thr_lock);
10106 
10107 	thread_exit();
10108 }
10109 
10110 /*
10111  * This function implements the actual L2ARC metadata rebuild. It:
10112  * starts reading the log block chain and restores each block's contents
10113  * to memory (reconstructing arc_buf_hdr_t's).
10114  *
10115  * Operation stops under any of the following conditions:
10116  *
10117  * 1) We reach the end of the log block chain.
10118  * 2) We encounter *any* error condition (cksum errors, io errors)
10119  */
10120 static int
10121 l2arc_rebuild(l2arc_dev_t *dev)
10122 {
10123 	vdev_t			*vd = dev->l2ad_vdev;
10124 	spa_t			*spa = vd->vdev_spa;
10125 	int			err = 0;
10126 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
10127 	l2arc_log_blk_phys_t	*this_lb, *next_lb;
10128 	zio_t			*this_io = NULL, *next_io = NULL;
10129 	l2arc_log_blkptr_t	lbps[2];
10130 	l2arc_lb_ptr_buf_t	*lb_ptr_buf;
10131 	boolean_t		lock_held;
10132 
10133 	this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP);
10134 	next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP);
10135 
10136 	/*
10137 	 * We prevent device removal while issuing reads to the device,
10138 	 * then during the rebuilding phases we drop this lock again so
10139 	 * that a spa_unload or device remove can be initiated - this is
10140 	 * safe, because the spa will signal us to stop before removing
10141 	 * our device and wait for us to stop.
10142 	 */
10143 	spa_config_enter(spa, SCL_L2ARC, vd, RW_READER);
10144 	lock_held = B_TRUE;
10145 
10146 	/*
10147 	 * Retrieve the persistent L2ARC device state.
10148 	 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10149 	 */
10150 	dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start);
10151 	dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr +
10152 	    L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop),
10153 	    dev->l2ad_start);
10154 	dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
10155 
10156 	vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time;
10157 	vd->vdev_trim_state = l2dhdr->dh_trim_state;
10158 
10159 	/*
10160 	 * In case the zfs module parameter l2arc_rebuild_enabled is false
10161 	 * we do not start the rebuild process.
10162 	 */
10163 	if (!l2arc_rebuild_enabled)
10164 		goto out;
10165 
10166 	/* Prepare the rebuild process */
10167 	memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps));
10168 
10169 	/* Start the rebuild process */
10170 	for (;;) {
10171 		if (!l2arc_log_blkptr_valid(dev, &lbps[0]))
10172 			break;
10173 
10174 		if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1],
10175 		    this_lb, next_lb, this_io, &next_io)) != 0)
10176 			goto out;
10177 
10178 		/*
10179 		 * Our memory pressure valve. If the system is running low
10180 		 * on memory, rather than swamping memory with new ARC buf
10181 		 * hdrs, we opt not to rebuild the L2ARC. At this point,
10182 		 * however, we have already set up our L2ARC dev to chain in
10183 		 * new metadata log blocks, so the user may choose to offline/
10184 		 * online the L2ARC dev at a later time (or re-import the pool)
10185 		 * to reconstruct it (when there's less memory pressure).
10186 		 */
10187 		if (l2arc_hdr_limit_reached()) {
10188 			ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem);
10189 			cmn_err(CE_NOTE, "System running low on memory, "
10190 			    "aborting L2ARC rebuild.");
10191 			err = SET_ERROR(ENOMEM);
10192 			goto out;
10193 		}
10194 
10195 		spa_config_exit(spa, SCL_L2ARC, vd);
10196 		lock_held = B_FALSE;
10197 
10198 		/*
10199 		 * Now that we know that the next_lb checks out alright, we
10200 		 * can start reconstruction from this log block.
10201 		 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10202 		 */
10203 		uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
10204 		l2arc_log_blk_restore(dev, this_lb, asize);
10205 
10206 		/*
10207 		 * log block restored, include its pointer in the list of
10208 		 * pointers to log blocks present in the L2ARC device.
10209 		 */
10210 		lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
10211 		lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t),
10212 		    KM_SLEEP);
10213 		memcpy(lb_ptr_buf->lb_ptr, &lbps[0],
10214 		    sizeof (l2arc_log_blkptr_t));
10215 		mutex_enter(&dev->l2ad_mtx);
10216 		list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf);
10217 		ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
10218 		ARCSTAT_BUMP(arcstat_l2_log_blk_count);
10219 		zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
10220 		zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
10221 		mutex_exit(&dev->l2ad_mtx);
10222 		vdev_space_update(vd, asize, 0, 0);
10223 
10224 		/*
10225 		 * Protection against loops of log blocks:
10226 		 *
10227 		 *				       l2ad_hand  l2ad_evict
10228 		 *                                         V	      V
10229 		 * l2ad_start |=======================================| l2ad_end
10230 		 *             -----|||----|||---|||----|||
10231 		 *                  (3)    (2)   (1)    (0)
10232 		 *             ---|||---|||----|||---|||
10233 		 *		  (7)   (6)    (5)   (4)
10234 		 *
10235 		 * In this situation the pointer of log block (4) passes
10236 		 * l2arc_log_blkptr_valid() but the log block should not be
10237 		 * restored as it is overwritten by the payload of log block
10238 		 * (0). Only log blocks (0)-(3) should be restored. We check
10239 		 * whether l2ad_evict lies in between the payload starting
10240 		 * offset of the next log block (lbps[1].lbp_payload_start)
10241 		 * and the payload starting offset of the present log block
10242 		 * (lbps[0].lbp_payload_start). If true and this isn't the
10243 		 * first pass, we are looping from the beginning and we should
10244 		 * stop.
10245 		 */
10246 		if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
10247 		    lbps[0].lbp_payload_start, dev->l2ad_evict) &&
10248 		    !dev->l2ad_first)
10249 			goto out;
10250 
10251 		kpreempt(KPREEMPT_SYNC);
10252 		for (;;) {
10253 			mutex_enter(&l2arc_rebuild_thr_lock);
10254 			if (dev->l2ad_rebuild_cancel) {
10255 				mutex_exit(&l2arc_rebuild_thr_lock);
10256 				err = SET_ERROR(ECANCELED);
10257 				goto out;
10258 			}
10259 			mutex_exit(&l2arc_rebuild_thr_lock);
10260 			if (spa_config_tryenter(spa, SCL_L2ARC, vd,
10261 			    RW_READER)) {
10262 				lock_held = B_TRUE;
10263 				break;
10264 			}
10265 			/*
10266 			 * L2ARC config lock held by somebody in writer,
10267 			 * possibly due to them trying to remove us. They'll
10268 			 * likely to want us to shut down, so after a little
10269 			 * delay, we check l2ad_rebuild_cancel and retry
10270 			 * the lock again.
10271 			 */
10272 			delay(1);
10273 		}
10274 
10275 		/*
10276 		 * Continue with the next log block.
10277 		 */
10278 		lbps[0] = lbps[1];
10279 		lbps[1] = this_lb->lb_prev_lbp;
10280 		PTR_SWAP(this_lb, next_lb);
10281 		this_io = next_io;
10282 		next_io = NULL;
10283 	}
10284 
10285 	if (this_io != NULL)
10286 		l2arc_log_blk_fetch_abort(this_io);
10287 out:
10288 	if (next_io != NULL)
10289 		l2arc_log_blk_fetch_abort(next_io);
10290 	vmem_free(this_lb, sizeof (*this_lb));
10291 	vmem_free(next_lb, sizeof (*next_lb));
10292 
10293 	if (err == ECANCELED) {
10294 		/*
10295 		 * In case the rebuild was canceled do not log to spa history
10296 		 * log as the pool may be in the process of being removed.
10297 		 */
10298 		zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks",
10299 		    (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10300 		return (err);
10301 	} else if (!l2arc_rebuild_enabled) {
10302 		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10303 		    "disabled");
10304 	} else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) {
10305 		ARCSTAT_BUMP(arcstat_l2_rebuild_success);
10306 		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10307 		    "successful, restored %llu blocks",
10308 		    (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10309 	} else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) {
10310 		/*
10311 		 * No error but also nothing restored, meaning the lbps array
10312 		 * in the device header points to invalid/non-present log
10313 		 * blocks. Reset the header.
10314 		 */
10315 		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10316 		    "no valid log blocks");
10317 		memset(l2dhdr, 0, dev->l2ad_dev_hdr_asize);
10318 		l2arc_dev_hdr_update(dev);
10319 	} else if (err != 0) {
10320 		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10321 		    "aborted, restored %llu blocks",
10322 		    (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10323 	}
10324 
10325 	if (lock_held)
10326 		spa_config_exit(spa, SCL_L2ARC, vd);
10327 
10328 	return (err);
10329 }
10330 
10331 /*
10332  * Attempts to read the device header on the provided L2ARC device and writes
10333  * it to `hdr'. On success, this function returns 0, otherwise the appropriate
10334  * error code is returned.
10335  */
10336 static int
10337 l2arc_dev_hdr_read(l2arc_dev_t *dev)
10338 {
10339 	int			err;
10340 	uint64_t		guid;
10341 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
10342 	const uint64_t		l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10343 	abd_t 			*abd;
10344 
10345 	guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10346 
10347 	abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10348 
10349 	err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev,
10350 	    VDEV_LABEL_START_SIZE, l2dhdr_asize, abd,
10351 	    ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
10352 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
10353 	    ZIO_FLAG_SPECULATIVE, B_FALSE));
10354 
10355 	abd_free(abd);
10356 
10357 	if (err != 0) {
10358 		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors);
10359 		zfs_dbgmsg("L2ARC IO error (%d) while reading device header, "
10360 		    "vdev guid: %llu", err,
10361 		    (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10362 		return (err);
10363 	}
10364 
10365 	if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
10366 		byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr));
10367 
10368 	if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC ||
10369 	    l2dhdr->dh_spa_guid != guid ||
10370 	    l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid ||
10371 	    l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION ||
10372 	    l2dhdr->dh_log_entries != dev->l2ad_log_entries ||
10373 	    l2dhdr->dh_end != dev->l2ad_end ||
10374 	    !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end,
10375 	    l2dhdr->dh_evict) ||
10376 	    (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE &&
10377 	    l2arc_trim_ahead > 0)) {
10378 		/*
10379 		 * Attempt to rebuild a device containing no actual dev hdr
10380 		 * or containing a header from some other pool or from another
10381 		 * version of persistent L2ARC.
10382 		 */
10383 		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported);
10384 		return (SET_ERROR(ENOTSUP));
10385 	}
10386 
10387 	return (0);
10388 }
10389 
10390 /*
10391  * Reads L2ARC log blocks from storage and validates their contents.
10392  *
10393  * This function implements a simple fetcher to make sure that while
10394  * we're processing one buffer the L2ARC is already fetching the next
10395  * one in the chain.
10396  *
10397  * The arguments this_lp and next_lp point to the current and next log block
10398  * address in the block chain. Similarly, this_lb and next_lb hold the
10399  * l2arc_log_blk_phys_t's of the current and next L2ARC blk.
10400  *
10401  * The `this_io' and `next_io' arguments are used for block fetching.
10402  * When issuing the first blk IO during rebuild, you should pass NULL for
10403  * `this_io'. This function will then issue a sync IO to read the block and
10404  * also issue an async IO to fetch the next block in the block chain. The
10405  * fetched IO is returned in `next_io'. On subsequent calls to this
10406  * function, pass the value returned in `next_io' from the previous call
10407  * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO.
10408  * Prior to the call, you should initialize your `next_io' pointer to be
10409  * NULL. If no fetch IO was issued, the pointer is left set at NULL.
10410  *
10411  * On success, this function returns 0, otherwise it returns an appropriate
10412  * error code. On error the fetching IO is aborted and cleared before
10413  * returning from this function. Therefore, if we return `success', the
10414  * caller can assume that we have taken care of cleanup of fetch IOs.
10415  */
10416 static int
10417 l2arc_log_blk_read(l2arc_dev_t *dev,
10418     const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp,
10419     l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
10420     zio_t *this_io, zio_t **next_io)
10421 {
10422 	int		err = 0;
10423 	zio_cksum_t	cksum;
10424 	uint64_t	asize;
10425 
10426 	ASSERT(this_lbp != NULL && next_lbp != NULL);
10427 	ASSERT(this_lb != NULL && next_lb != NULL);
10428 	ASSERT(next_io != NULL && *next_io == NULL);
10429 	ASSERT(l2arc_log_blkptr_valid(dev, this_lbp));
10430 
10431 	/*
10432 	 * Check to see if we have issued the IO for this log block in a
10433 	 * previous run. If not, this is the first call, so issue it now.
10434 	 */
10435 	if (this_io == NULL) {
10436 		this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp,
10437 		    this_lb);
10438 	}
10439 
10440 	/*
10441 	 * Peek to see if we can start issuing the next IO immediately.
10442 	 */
10443 	if (l2arc_log_blkptr_valid(dev, next_lbp)) {
10444 		/*
10445 		 * Start issuing IO for the next log block early - this
10446 		 * should help keep the L2ARC device busy while we
10447 		 * decompress and restore this log block.
10448 		 */
10449 		*next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp,
10450 		    next_lb);
10451 	}
10452 
10453 	/* Wait for the IO to read this log block to complete */
10454 	if ((err = zio_wait(this_io)) != 0) {
10455 		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors);
10456 		zfs_dbgmsg("L2ARC IO error (%d) while reading log block, "
10457 		    "offset: %llu, vdev guid: %llu", err,
10458 		    (u_longlong_t)this_lbp->lbp_daddr,
10459 		    (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10460 		goto cleanup;
10461 	}
10462 
10463 	/*
10464 	 * Make sure the buffer checks out.
10465 	 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10466 	 */
10467 	asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop);
10468 	fletcher_4_native(this_lb, asize, NULL, &cksum);
10469 	if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) {
10470 		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors);
10471 		zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, "
10472 		    "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu",
10473 		    (u_longlong_t)this_lbp->lbp_daddr,
10474 		    (u_longlong_t)dev->l2ad_vdev->vdev_guid,
10475 		    (u_longlong_t)dev->l2ad_hand,
10476 		    (u_longlong_t)dev->l2ad_evict);
10477 		err = SET_ERROR(ECKSUM);
10478 		goto cleanup;
10479 	}
10480 
10481 	/* Now we can take our time decoding this buffer */
10482 	switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) {
10483 	case ZIO_COMPRESS_OFF:
10484 		break;
10485 	case ZIO_COMPRESS_LZ4: {
10486 		abd_t *abd = abd_alloc_linear(asize, B_TRUE);
10487 		abd_copy_from_buf_off(abd, this_lb, 0, asize);
10488 		abd_t dabd;
10489 		abd_get_from_buf_struct(&dabd, this_lb, sizeof (*this_lb));
10490 		err = zio_decompress_data(
10491 		    L2BLK_GET_COMPRESS((this_lbp)->lbp_prop),
10492 		    abd, &dabd, asize, sizeof (*this_lb), NULL);
10493 		abd_free(&dabd);
10494 		abd_free(abd);
10495 		if (err != 0) {
10496 			err = SET_ERROR(EINVAL);
10497 			goto cleanup;
10498 		}
10499 		break;
10500 	}
10501 	default:
10502 		err = SET_ERROR(EINVAL);
10503 		goto cleanup;
10504 	}
10505 	if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
10506 		byteswap_uint64_array(this_lb, sizeof (*this_lb));
10507 	if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) {
10508 		err = SET_ERROR(EINVAL);
10509 		goto cleanup;
10510 	}
10511 cleanup:
10512 	/* Abort an in-flight fetch I/O in case of error */
10513 	if (err != 0 && *next_io != NULL) {
10514 		l2arc_log_blk_fetch_abort(*next_io);
10515 		*next_io = NULL;
10516 	}
10517 	return (err);
10518 }
10519 
10520 /*
10521  * Restores the payload of a log block to ARC. This creates empty ARC hdr
10522  * entries which only contain an l2arc hdr, essentially restoring the
10523  * buffers to their L2ARC evicted state. This function also updates space
10524  * usage on the L2ARC vdev to make sure it tracks restored buffers.
10525  */
10526 static void
10527 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb,
10528     uint64_t lb_asize)
10529 {
10530 	uint64_t	size = 0, asize = 0;
10531 	uint64_t	log_entries = dev->l2ad_log_entries;
10532 
10533 	/*
10534 	 * Usually arc_adapt() is called only for data, not headers, but
10535 	 * since we may allocate significant amount of memory here, let ARC
10536 	 * grow its arc_c.
10537 	 */
10538 	arc_adapt(log_entries * HDR_L2ONLY_SIZE);
10539 
10540 	for (int i = log_entries - 1; i >= 0; i--) {
10541 		/*
10542 		 * Restore goes in the reverse temporal direction to preserve
10543 		 * correct temporal ordering of buffers in the l2ad_buflist.
10544 		 * l2arc_hdr_restore also does a list_insert_tail instead of
10545 		 * list_insert_head on the l2ad_buflist:
10546 		 *
10547 		 *		LIST	l2ad_buflist		LIST
10548 		 *		HEAD  <------ (time) ------	TAIL
10549 		 * direction	+-----+-----+-----+-----+-----+    direction
10550 		 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild
10551 		 * fill		+-----+-----+-----+-----+-----+
10552 		 *		^				^
10553 		 *		|				|
10554 		 *		|				|
10555 		 *	l2arc_feed_thread		l2arc_rebuild
10556 		 *	will place new bufs here	restores bufs here
10557 		 *
10558 		 * During l2arc_rebuild() the device is not used by
10559 		 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true.
10560 		 */
10561 		size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop);
10562 		asize += vdev_psize_to_asize(dev->l2ad_vdev,
10563 		    L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop));
10564 		l2arc_hdr_restore(&lb->lb_entries[i], dev);
10565 	}
10566 
10567 	/*
10568 	 * Record rebuild stats:
10569 	 *	size		Logical size of restored buffers in the L2ARC
10570 	 *	asize		Aligned size of restored buffers in the L2ARC
10571 	 */
10572 	ARCSTAT_INCR(arcstat_l2_rebuild_size, size);
10573 	ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize);
10574 	ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries);
10575 	ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize);
10576 	ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize);
10577 	ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks);
10578 }
10579 
10580 /*
10581  * Restores a single ARC buf hdr from a log entry. The ARC buffer is put
10582  * into a state indicating that it has been evicted to L2ARC.
10583  */
10584 static void
10585 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev)
10586 {
10587 	arc_buf_hdr_t		*hdr, *exists;
10588 	kmutex_t		*hash_lock;
10589 	arc_buf_contents_t	type = L2BLK_GET_TYPE((le)->le_prop);
10590 	uint64_t		asize = vdev_psize_to_asize(dev->l2ad_vdev,
10591 	    L2BLK_GET_PSIZE((le)->le_prop));
10592 
10593 	/*
10594 	 * Do all the allocation before grabbing any locks, this lets us
10595 	 * sleep if memory is full and we don't have to deal with failed
10596 	 * allocations.
10597 	 */
10598 	hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type,
10599 	    dev, le->le_dva, le->le_daddr,
10600 	    L2BLK_GET_PSIZE((le)->le_prop), asize, le->le_birth,
10601 	    L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel,
10602 	    L2BLK_GET_PROTECTED((le)->le_prop),
10603 	    L2BLK_GET_PREFETCH((le)->le_prop),
10604 	    L2BLK_GET_STATE((le)->le_prop));
10605 
10606 	/*
10607 	 * vdev_space_update() has to be called before arc_hdr_destroy() to
10608 	 * avoid underflow since the latter also calls vdev_space_update().
10609 	 */
10610 	l2arc_hdr_arcstats_increment(hdr);
10611 	vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10612 
10613 	mutex_enter(&dev->l2ad_mtx);
10614 	list_insert_tail(&dev->l2ad_buflist, hdr);
10615 	(void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
10616 	mutex_exit(&dev->l2ad_mtx);
10617 
10618 	exists = buf_hash_insert(hdr, &hash_lock);
10619 	if (exists) {
10620 		/* Buffer was already cached, no need to restore it. */
10621 		arc_hdr_destroy(hdr);
10622 		/*
10623 		 * If the buffer is already cached, check whether it has
10624 		 * L2ARC metadata. If not, enter them and update the flag.
10625 		 * This is important is case of onlining a cache device, since
10626 		 * we previously evicted all L2ARC metadata from ARC.
10627 		 */
10628 		if (!HDR_HAS_L2HDR(exists)) {
10629 			arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR);
10630 			exists->b_l2hdr.b_dev = dev;
10631 			exists->b_l2hdr.b_daddr = le->le_daddr;
10632 			exists->b_l2hdr.b_arcs_state =
10633 			    L2BLK_GET_STATE((le)->le_prop);
10634 			/* l2arc_hdr_arcstats_update() expects a valid asize */
10635 			HDR_SET_L2SIZE(exists, asize);
10636 			mutex_enter(&dev->l2ad_mtx);
10637 			list_insert_tail(&dev->l2ad_buflist, exists);
10638 			(void) zfs_refcount_add_many(&dev->l2ad_alloc,
10639 			    arc_hdr_size(exists), exists);
10640 			mutex_exit(&dev->l2ad_mtx);
10641 			l2arc_hdr_arcstats_increment(exists);
10642 			vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10643 		}
10644 		ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached);
10645 	}
10646 
10647 	mutex_exit(hash_lock);
10648 }
10649 
10650 /*
10651  * Starts an asynchronous read IO to read a log block. This is used in log
10652  * block reconstruction to start reading the next block before we are done
10653  * decoding and reconstructing the current block, to keep the l2arc device
10654  * nice and hot with read IO to process.
10655  * The returned zio will contain a newly allocated memory buffers for the IO
10656  * data which should then be freed by the caller once the zio is no longer
10657  * needed (i.e. due to it having completed). If you wish to abort this
10658  * zio, you should do so using l2arc_log_blk_fetch_abort, which takes
10659  * care of disposing of the allocated buffers correctly.
10660  */
10661 static zio_t *
10662 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp,
10663     l2arc_log_blk_phys_t *lb)
10664 {
10665 	uint32_t		asize;
10666 	zio_t			*pio;
10667 	l2arc_read_callback_t	*cb;
10668 
10669 	/* L2BLK_GET_PSIZE returns aligned size for log blocks */
10670 	asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10671 	ASSERT(asize <= sizeof (l2arc_log_blk_phys_t));
10672 
10673 	cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP);
10674 	cb->l2rcb_abd = abd_get_from_buf(lb, asize);
10675 	pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb,
10676 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY);
10677 	(void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize,
10678 	    cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL,
10679 	    ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL |
10680 	    ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE));
10681 
10682 	return (pio);
10683 }
10684 
10685 /*
10686  * Aborts a zio returned from l2arc_log_blk_fetch and frees the data
10687  * buffers allocated for it.
10688  */
10689 static void
10690 l2arc_log_blk_fetch_abort(zio_t *zio)
10691 {
10692 	(void) zio_wait(zio);
10693 }
10694 
10695 /*
10696  * Creates a zio to update the device header on an l2arc device.
10697  */
10698 void
10699 l2arc_dev_hdr_update(l2arc_dev_t *dev)
10700 {
10701 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
10702 	const uint64_t		l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10703 	abd_t			*abd;
10704 	int			err;
10705 
10706 	VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER));
10707 
10708 	l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC;
10709 	l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION;
10710 	l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10711 	l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid;
10712 	l2dhdr->dh_log_entries = dev->l2ad_log_entries;
10713 	l2dhdr->dh_evict = dev->l2ad_evict;
10714 	l2dhdr->dh_start = dev->l2ad_start;
10715 	l2dhdr->dh_end = dev->l2ad_end;
10716 	l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize);
10717 	l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count);
10718 	l2dhdr->dh_flags = 0;
10719 	l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time;
10720 	l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state;
10721 	if (dev->l2ad_first)
10722 		l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST;
10723 
10724 	abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10725 
10726 	err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev,
10727 	    VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL,
10728 	    NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE));
10729 
10730 	abd_free(abd);
10731 
10732 	if (err != 0) {
10733 		zfs_dbgmsg("L2ARC IO error (%d) while writing device header, "
10734 		    "vdev guid: %llu", err,
10735 		    (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10736 	}
10737 }
10738 
10739 /*
10740  * Commits a log block to the L2ARC device. This routine is invoked from
10741  * l2arc_write_buffers when the log block fills up.
10742  * This function allocates some memory to temporarily hold the serialized
10743  * buffer to be written. This is then released in l2arc_write_done.
10744  */
10745 static uint64_t
10746 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb)
10747 {
10748 	l2arc_log_blk_phys_t	*lb = &dev->l2ad_log_blk;
10749 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
10750 	uint64_t		psize, asize;
10751 	zio_t			*wzio;
10752 	l2arc_lb_abd_buf_t	*abd_buf;
10753 	abd_t			*abd = NULL;
10754 	l2arc_lb_ptr_buf_t	*lb_ptr_buf;
10755 
10756 	VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries);
10757 
10758 	abd_buf = zio_buf_alloc(sizeof (*abd_buf));
10759 	abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb));
10760 	lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
10761 	lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP);
10762 
10763 	/* link the buffer into the block chain */
10764 	lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1];
10765 	lb->lb_magic = L2ARC_LOG_BLK_MAGIC;
10766 
10767 	/*
10768 	 * l2arc_log_blk_commit() may be called multiple times during a single
10769 	 * l2arc_write_buffers() call. Save the allocated abd buffers in a list
10770 	 * so we can free them in l2arc_write_done() later on.
10771 	 */
10772 	list_insert_tail(&cb->l2wcb_abd_list, abd_buf);
10773 
10774 	/* try to compress the buffer, at least one sector to save */
10775 	psize = zio_compress_data(ZIO_COMPRESS_LZ4,
10776 	    abd_buf->abd, &abd, sizeof (*lb),
10777 	    zio_get_compression_max_size(ZIO_COMPRESS_LZ4,
10778 	    dev->l2ad_vdev->vdev_ashift,
10779 	    dev->l2ad_vdev->vdev_ashift, sizeof (*lb)), 0);
10780 
10781 	/* a log block is never entirely zero */
10782 	ASSERT(psize != 0);
10783 	asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
10784 	ASSERT(asize <= sizeof (*lb));
10785 
10786 	/*
10787 	 * Update the start log block pointer in the device header to point
10788 	 * to the log block we're about to write.
10789 	 */
10790 	l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0];
10791 	l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand;
10792 	l2dhdr->dh_start_lbps[0].lbp_payload_asize =
10793 	    dev->l2ad_log_blk_payload_asize;
10794 	l2dhdr->dh_start_lbps[0].lbp_payload_start =
10795 	    dev->l2ad_log_blk_payload_start;
10796 	L2BLK_SET_LSIZE(
10797 	    (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb));
10798 	L2BLK_SET_PSIZE(
10799 	    (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize);
10800 	L2BLK_SET_CHECKSUM(
10801 	    (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10802 	    ZIO_CHECKSUM_FLETCHER_4);
10803 	if (asize < sizeof (*lb)) {
10804 		/* compression succeeded */
10805 		abd_zero_off(abd, psize, asize - psize);
10806 		L2BLK_SET_COMPRESS(
10807 		    (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10808 		    ZIO_COMPRESS_LZ4);
10809 	} else {
10810 		/* compression failed */
10811 		abd_copy_from_buf_off(abd, lb, 0, sizeof (*lb));
10812 		L2BLK_SET_COMPRESS(
10813 		    (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10814 		    ZIO_COMPRESS_OFF);
10815 	}
10816 
10817 	/* checksum what we're about to write */
10818 	abd_fletcher_4_native(abd, asize, NULL,
10819 	    &l2dhdr->dh_start_lbps[0].lbp_cksum);
10820 
10821 	abd_free(abd_buf->abd);
10822 
10823 	/* perform the write itself */
10824 	abd_buf->abd = abd;
10825 	wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand,
10826 	    asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL,
10827 	    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE);
10828 	DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio);
10829 	(void) zio_nowait(wzio);
10830 
10831 	dev->l2ad_hand += asize;
10832 	vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10833 
10834 	/*
10835 	 * Include the committed log block's pointer  in the list of pointers
10836 	 * to log blocks present in the L2ARC device.
10837 	 */
10838 	memcpy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[0],
10839 	    sizeof (l2arc_log_blkptr_t));
10840 	mutex_enter(&dev->l2ad_mtx);
10841 	list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf);
10842 	ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
10843 	ARCSTAT_BUMP(arcstat_l2_log_blk_count);
10844 	zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
10845 	zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
10846 	mutex_exit(&dev->l2ad_mtx);
10847 
10848 	/* bump the kstats */
10849 	ARCSTAT_INCR(arcstat_l2_write_bytes, asize);
10850 	ARCSTAT_BUMP(arcstat_l2_log_blk_writes);
10851 	ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize);
10852 	ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio,
10853 	    dev->l2ad_log_blk_payload_asize / asize);
10854 
10855 	/* start a new log block */
10856 	dev->l2ad_log_ent_idx = 0;
10857 	dev->l2ad_log_blk_payload_asize = 0;
10858 	dev->l2ad_log_blk_payload_start = 0;
10859 
10860 	return (asize);
10861 }
10862 
10863 /*
10864  * Validates an L2ARC log block address to make sure that it can be read
10865  * from the provided L2ARC device.
10866  */
10867 boolean_t
10868 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp)
10869 {
10870 	/* L2BLK_GET_PSIZE returns aligned size for log blocks */
10871 	uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10872 	uint64_t end = lbp->lbp_daddr + asize - 1;
10873 	uint64_t start = lbp->lbp_payload_start;
10874 	boolean_t evicted = B_FALSE;
10875 
10876 	/*
10877 	 * A log block is valid if all of the following conditions are true:
10878 	 * - it fits entirely (including its payload) between l2ad_start and
10879 	 *   l2ad_end
10880 	 * - it has a valid size
10881 	 * - neither the log block itself nor part of its payload was evicted
10882 	 *   by l2arc_evict():
10883 	 *
10884 	 *		l2ad_hand          l2ad_evict
10885 	 *		|			 |	lbp_daddr
10886 	 *		|     start		 |	|  end
10887 	 *		|     |			 |	|  |
10888 	 *		V     V		         V	V  V
10889 	 *   l2ad_start ============================================ l2ad_end
10890 	 *                    --------------------------||||
10891 	 *				^		 ^
10892 	 *				|		log block
10893 	 *				payload
10894 	 */
10895 
10896 	evicted =
10897 	    l2arc_range_check_overlap(start, end, dev->l2ad_hand) ||
10898 	    l2arc_range_check_overlap(start, end, dev->l2ad_evict) ||
10899 	    l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) ||
10900 	    l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end);
10901 
10902 	return (start >= dev->l2ad_start && end <= dev->l2ad_end &&
10903 	    asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) &&
10904 	    (!evicted || dev->l2ad_first));
10905 }
10906 
10907 /*
10908  * Inserts ARC buffer header `hdr' into the current L2ARC log block on
10909  * the device. The buffer being inserted must be present in L2ARC.
10910  * Returns B_TRUE if the L2ARC log block is full and needs to be committed
10911  * to L2ARC, or B_FALSE if it still has room for more ARC buffers.
10912  */
10913 static boolean_t
10914 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr)
10915 {
10916 	l2arc_log_blk_phys_t	*lb = &dev->l2ad_log_blk;
10917 	l2arc_log_ent_phys_t	*le;
10918 
10919 	if (dev->l2ad_log_entries == 0)
10920 		return (B_FALSE);
10921 
10922 	int index = dev->l2ad_log_ent_idx++;
10923 
10924 	ASSERT3S(index, <, dev->l2ad_log_entries);
10925 	ASSERT(HDR_HAS_L2HDR(hdr));
10926 
10927 	le = &lb->lb_entries[index];
10928 	memset(le, 0, sizeof (*le));
10929 	le->le_dva = hdr->b_dva;
10930 	le->le_birth = hdr->b_birth;
10931 	le->le_daddr = hdr->b_l2hdr.b_daddr;
10932 	if (index == 0)
10933 		dev->l2ad_log_blk_payload_start = le->le_daddr;
10934 	L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr));
10935 	L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr));
10936 	L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr));
10937 	le->le_complevel = hdr->b_complevel;
10938 	L2BLK_SET_TYPE((le)->le_prop, hdr->b_type);
10939 	L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr)));
10940 	L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr)));
10941 	L2BLK_SET_STATE((le)->le_prop, hdr->b_l2hdr.b_arcs_state);
10942 
10943 	dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev,
10944 	    HDR_GET_PSIZE(hdr));
10945 
10946 	return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries);
10947 }
10948 
10949 /*
10950  * Checks whether a given L2ARC device address sits in a time-sequential
10951  * range. The trick here is that the L2ARC is a rotary buffer, so we can't
10952  * just do a range comparison, we need to handle the situation in which the
10953  * range wraps around the end of the L2ARC device. Arguments:
10954  *	bottom -- Lower end of the range to check (written to earlier).
10955  *	top    -- Upper end of the range to check (written to later).
10956  *	check  -- The address for which we want to determine if it sits in
10957  *		  between the top and bottom.
10958  *
10959  * The 3-way conditional below represents the following cases:
10960  *
10961  *	bottom < top : Sequentially ordered case:
10962  *	  <check>--------+-------------------+
10963  *	                 |  (overlap here?)  |
10964  *	 L2ARC dev       V                   V
10965  *	 |---------------<bottom>============<top>--------------|
10966  *
10967  *	bottom > top: Looped-around case:
10968  *	                      <check>--------+------------------+
10969  *	                                     |  (overlap here?) |
10970  *	 L2ARC dev                           V                  V
10971  *	 |===============<top>---------------<bottom>===========|
10972  *	 ^               ^
10973  *	 |  (or here?)   |
10974  *	 +---------------+---------<check>
10975  *
10976  *	top == bottom : Just a single address comparison.
10977  */
10978 boolean_t
10979 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check)
10980 {
10981 	if (bottom < top)
10982 		return (bottom <= check && check <= top);
10983 	else if (bottom > top)
10984 		return (check <= top || bottom <= check);
10985 	else
10986 		return (check == top);
10987 }
10988 
10989 EXPORT_SYMBOL(arc_buf_size);
10990 EXPORT_SYMBOL(arc_write);
10991 EXPORT_SYMBOL(arc_read);
10992 EXPORT_SYMBOL(arc_buf_info);
10993 EXPORT_SYMBOL(arc_getbuf_func);
10994 EXPORT_SYMBOL(arc_add_prune_callback);
10995 EXPORT_SYMBOL(arc_remove_prune_callback);
10996 
10997 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_min,
10998 	spl_param_get_u64, ZMOD_RW, "Minimum ARC size in bytes");
10999 
11000 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_max,
11001 	spl_param_get_u64, ZMOD_RW, "Maximum ARC size in bytes");
11002 
11003 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_balance, UINT, ZMOD_RW,
11004 	"Balance between metadata and data on ghost hits.");
11005 
11006 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int,
11007 	param_get_uint, ZMOD_RW, "Seconds before growing ARC size");
11008 
11009 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int,
11010 	param_get_uint, ZMOD_RW, "log2(fraction of ARC to reclaim)");
11011 
11012 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW,
11013 	"Percent of pagecache to reclaim ARC to");
11014 
11015 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, UINT, ZMOD_RD,
11016 	"Target average block size");
11017 
11018 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW,
11019 	"Disable compressed ARC buffers");
11020 
11021 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int,
11022 	param_get_uint, ZMOD_RW, "Min life of prefetch block in ms");
11023 
11024 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms,
11025     param_set_arc_int, param_get_uint, ZMOD_RW,
11026 	"Min life of prescient prefetched block in ms");
11027 
11028 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, U64, ZMOD_RW,
11029 	"Max write bytes per interval");
11030 
11031 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, U64, ZMOD_RW,
11032 	"Extra write bytes during device warmup");
11033 
11034 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, U64, ZMOD_RW,
11035 	"Number of max device writes to precache");
11036 
11037 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, U64, ZMOD_RW,
11038 	"Compressed l2arc_headroom multiplier");
11039 
11040 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, U64, ZMOD_RW,
11041 	"TRIM ahead L2ARC write size multiplier");
11042 
11043 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, U64, ZMOD_RW,
11044 	"Seconds between L2ARC writing");
11045 
11046 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, U64, ZMOD_RW,
11047 	"Min feed interval in milliseconds");
11048 
11049 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW,
11050 	"Skip caching prefetched buffers");
11051 
11052 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW,
11053 	"Turbo L2ARC warmup");
11054 
11055 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW,
11056 	"No reads during writes");
11057 
11058 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, UINT, ZMOD_RW,
11059 	"Percent of ARC size allowed for L2ARC-only headers");
11060 
11061 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW,
11062 	"Rebuild the L2ARC when importing a pool");
11063 
11064 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, U64, ZMOD_RW,
11065 	"Min size in bytes to write rebuild log blocks in L2ARC");
11066 
11067 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW,
11068 	"Cache only MFU data from ARC into L2ARC");
11069 
11070 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, exclude_special, INT, ZMOD_RW,
11071 	"Exclude dbufs on special vdevs from being cached to L2ARC if set.");
11072 
11073 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int,
11074 	param_get_uint, ZMOD_RW, "System free memory I/O throttle in bytes");
11075 
11076 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_u64,
11077 	spl_param_get_u64, ZMOD_RW, "System free memory target size in bytes");
11078 
11079 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_u64,
11080 	spl_param_get_u64, ZMOD_RW, "Minimum bytes of dnodes in ARC");
11081 
11082 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent,
11083     param_set_arc_int, param_get_uint, ZMOD_RW,
11084 	"Percent of ARC meta buffers for dnodes");
11085 
11086 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, UINT, ZMOD_RW,
11087 	"Percentage of excess dnodes to try to unpin");
11088 
11089 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, UINT, ZMOD_RW,
11090 	"When full, ARC allocation waits for eviction of this % of alloc size");
11091 
11092 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, UINT, ZMOD_RW,
11093 	"The number of headers to evict per sublist before moving to the next");
11094 
11095 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, prune_task_threads, INT, ZMOD_RW,
11096 	"Number of arc_prune threads");
11097