xref: /freebsd/sys/contrib/openzfs/module/zfs/arc.c (revision 546d3d08e5993cbe2d6141b256e8c2ebad5aa102)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2018, Joyent, Inc.
25  * Copyright (c) 2011, 2020, Delphix. All rights reserved.
26  * Copyright (c) 2014, Saso Kiselkov. All rights reserved.
27  * Copyright (c) 2017, Nexenta Systems, Inc.  All rights reserved.
28  * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
29  * Copyright (c) 2020, George Amanakis. All rights reserved.
30  * Copyright (c) 2019, 2024, 2025, Klara, Inc.
31  * Copyright (c) 2019, Allan Jude
32  * Copyright (c) 2020, The FreeBSD Foundation [1]
33  * Copyright (c) 2021, 2024 by George Melikov. All rights reserved.
34  *
35  * [1] Portions of this software were developed by Allan Jude
36  *     under sponsorship from the FreeBSD Foundation.
37  */
38 
39 /*
40  * DVA-based Adjustable Replacement Cache
41  *
42  * While much of the theory of operation used here is
43  * based on the self-tuning, low overhead replacement cache
44  * presented by Megiddo and Modha at FAST 2003, there are some
45  * significant differences:
46  *
47  * 1. The Megiddo and Modha model assumes any page is evictable.
48  * Pages in its cache cannot be "locked" into memory.  This makes
49  * the eviction algorithm simple: evict the last page in the list.
50  * This also make the performance characteristics easy to reason
51  * about.  Our cache is not so simple.  At any given moment, some
52  * subset of the blocks in the cache are un-evictable because we
53  * have handed out a reference to them.  Blocks are only evictable
54  * when there are no external references active.  This makes
55  * eviction far more problematic:  we choose to evict the evictable
56  * blocks that are the "lowest" in the list.
57  *
58  * There are times when it is not possible to evict the requested
59  * space.  In these circumstances we are unable to adjust the cache
60  * size.  To prevent the cache growing unbounded at these times we
61  * implement a "cache throttle" that slows the flow of new data
62  * into the cache until we can make space available.
63  *
64  * 2. The Megiddo and Modha model assumes a fixed cache size.
65  * Pages are evicted when the cache is full and there is a cache
66  * miss.  Our model has a variable sized cache.  It grows with
67  * high use, but also tries to react to memory pressure from the
68  * operating system: decreasing its size when system memory is
69  * tight.
70  *
71  * 3. The Megiddo and Modha model assumes a fixed page size. All
72  * elements of the cache are therefore exactly the same size.  So
73  * when adjusting the cache size following a cache miss, its simply
74  * a matter of choosing a single page to evict.  In our model, we
75  * have variable sized cache blocks (ranging from 512 bytes to
76  * 128K bytes).  We therefore choose a set of blocks to evict to make
77  * space for a cache miss that approximates as closely as possible
78  * the space used by the new block.
79  *
80  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
81  * by N. Megiddo & D. Modha, FAST 2003
82  */
83 
84 /*
85  * The locking model:
86  *
87  * A new reference to a cache buffer can be obtained in two
88  * ways: 1) via a hash table lookup using the DVA as a key,
89  * or 2) via one of the ARC lists.  The arc_read() interface
90  * uses method 1, while the internal ARC algorithms for
91  * adjusting the cache use method 2.  We therefore provide two
92  * types of locks: 1) the hash table lock array, and 2) the
93  * ARC list locks.
94  *
95  * Buffers do not have their own mutexes, rather they rely on the
96  * hash table mutexes for the bulk of their protection (i.e. most
97  * fields in the arc_buf_hdr_t are protected by these mutexes).
98  *
99  * buf_hash_find() returns the appropriate mutex (held) when it
100  * locates the requested buffer in the hash table.  It returns
101  * NULL for the mutex if the buffer was not in the table.
102  *
103  * buf_hash_remove() expects the appropriate hash mutex to be
104  * already held before it is invoked.
105  *
106  * Each ARC state also has a mutex which is used to protect the
107  * buffer list associated with the state.  When attempting to
108  * obtain a hash table lock while holding an ARC list lock you
109  * must use: mutex_tryenter() to avoid deadlock.  Also note that
110  * the active state mutex must be held before the ghost state mutex.
111  *
112  * It as also possible to register a callback which is run when the
113  * metadata limit is reached and no buffers can be safely evicted.  In
114  * this case the arc user should drop a reference on some arc buffers so
115  * they can be reclaimed.  For example, when using the ZPL each dentry
116  * holds a references on a znode.  These dentries must be pruned before
117  * the arc buffer holding the znode can be safely evicted.
118  *
119  * Note that the majority of the performance stats are manipulated
120  * with atomic operations.
121  *
122  * The L2ARC uses the l2ad_mtx on each vdev for the following:
123  *
124  *	- L2ARC buflist creation
125  *	- L2ARC buflist eviction
126  *	- L2ARC write completion, which walks L2ARC buflists
127  *	- ARC header destruction, as it removes from L2ARC buflists
128  *	- ARC header release, as it removes from L2ARC buflists
129  */
130 
131 /*
132  * ARC operation:
133  *
134  * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
135  * This structure can point either to a block that is still in the cache or to
136  * one that is only accessible in an L2 ARC device, or it can provide
137  * information about a block that was recently evicted. If a block is
138  * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
139  * information to retrieve it from the L2ARC device. This information is
140  * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
141  * that is in this state cannot access the data directly.
142  *
143  * Blocks that are actively being referenced or have not been evicted
144  * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
145  * the arc_buf_hdr_t that will point to the data block in memory. A block can
146  * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
147  * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
148  * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
149  *
150  * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
151  * ability to store the physical data (b_pabd) associated with the DVA of the
152  * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
153  * it will match its on-disk compression characteristics. This behavior can be
154  * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
155  * compressed ARC functionality is disabled, the b_pabd will point to an
156  * uncompressed version of the on-disk data.
157  *
158  * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
159  * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
160  * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
161  * consumer. The ARC will provide references to this data and will keep it
162  * cached until it is no longer in use. The ARC caches only the L1ARC's physical
163  * data block and will evict any arc_buf_t that is no longer referenced. The
164  * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
165  * "overhead_size" kstat.
166  *
167  * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
168  * compressed form. The typical case is that consumers will want uncompressed
169  * data, and when that happens a new data buffer is allocated where the data is
170  * decompressed for them to use. Currently the only consumer who wants
171  * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
172  * exists on disk. When this happens, the arc_buf_t's data buffer is shared
173  * with the arc_buf_hdr_t.
174  *
175  * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
176  * first one is owned by a compressed send consumer (and therefore references
177  * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
178  * used by any other consumer (and has its own uncompressed copy of the data
179  * buffer).
180  *
181  *   arc_buf_hdr_t
182  *   +-----------+
183  *   | fields    |
184  *   | common to |
185  *   | L1- and   |
186  *   | L2ARC     |
187  *   +-----------+
188  *   | l2arc_buf_hdr_t
189  *   |           |
190  *   +-----------+
191  *   | l1arc_buf_hdr_t
192  *   |           |              arc_buf_t
193  *   | b_buf     +------------>+-----------+      arc_buf_t
194  *   | b_pabd    +-+           |b_next     +---->+-----------+
195  *   +-----------+ |           |-----------|     |b_next     +-->NULL
196  *                 |           |b_comp = T |     +-----------+
197  *                 |           |b_data     +-+   |b_comp = F |
198  *                 |           +-----------+ |   |b_data     +-+
199  *                 +->+------+               |   +-----------+ |
200  *        compressed  |      |               |                 |
201  *           data     |      |<--------------+                 | uncompressed
202  *                    +------+          compressed,            |     data
203  *                                        shared               +-->+------+
204  *                                         data                    |      |
205  *                                                                 |      |
206  *                                                                 +------+
207  *
208  * When a consumer reads a block, the ARC must first look to see if the
209  * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
210  * arc_buf_t and either copies uncompressed data into a new data buffer from an
211  * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
212  * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
213  * hdr is compressed and the desired compression characteristics of the
214  * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
215  * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
216  * the last buffer in the hdr's b_buf list, however a shared compressed buf can
217  * be anywhere in the hdr's list.
218  *
219  * The diagram below shows an example of an uncompressed ARC hdr that is
220  * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
221  * the last element in the buf list):
222  *
223  *                arc_buf_hdr_t
224  *                +-----------+
225  *                |           |
226  *                |           |
227  *                |           |
228  *                +-----------+
229  * l2arc_buf_hdr_t|           |
230  *                |           |
231  *                +-----------+
232  * l1arc_buf_hdr_t|           |
233  *                |           |                 arc_buf_t    (shared)
234  *                |    b_buf  +------------>+---------+      arc_buf_t
235  *                |           |             |b_next   +---->+---------+
236  *                |  b_pabd   +-+           |---------|     |b_next   +-->NULL
237  *                +-----------+ |           |         |     +---------+
238  *                              |           |b_data   +-+   |         |
239  *                              |           +---------+ |   |b_data   +-+
240  *                              +->+------+             |   +---------+ |
241  *                                 |      |             |               |
242  *                   uncompressed  |      |             |               |
243  *                        data     +------+             |               |
244  *                                    ^                 +->+------+     |
245  *                                    |       uncompressed |      |     |
246  *                                    |           data     |      |     |
247  *                                    |                    +------+     |
248  *                                    +---------------------------------+
249  *
250  * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
251  * since the physical block is about to be rewritten. The new data contents
252  * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
253  * it may compress the data before writing it to disk. The ARC will be called
254  * with the transformed data and will memcpy the transformed on-disk block into
255  * a newly allocated b_pabd. Writes are always done into buffers which have
256  * either been loaned (and hence are new and don't have other readers) or
257  * buffers which have been released (and hence have their own hdr, if there
258  * were originally other readers of the buf's original hdr). This ensures that
259  * the ARC only needs to update a single buf and its hdr after a write occurs.
260  *
261  * When the L2ARC is in use, it will also take advantage of the b_pabd. The
262  * L2ARC will always write the contents of b_pabd to the L2ARC. This means
263  * that when compressed ARC is enabled that the L2ARC blocks are identical
264  * to the on-disk block in the main data pool. This provides a significant
265  * advantage since the ARC can leverage the bp's checksum when reading from the
266  * L2ARC to determine if the contents are valid. However, if the compressed
267  * ARC is disabled, then the L2ARC's block must be transformed to look
268  * like the physical block in the main data pool before comparing the
269  * checksum and determining its validity.
270  *
271  * The L1ARC has a slightly different system for storing encrypted data.
272  * Raw (encrypted + possibly compressed) data has a few subtle differences from
273  * data that is just compressed. The biggest difference is that it is not
274  * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded.
275  * The other difference is that encryption cannot be treated as a suggestion.
276  * If a caller would prefer compressed data, but they actually wind up with
277  * uncompressed data the worst thing that could happen is there might be a
278  * performance hit. If the caller requests encrypted data, however, we must be
279  * sure they actually get it or else secret information could be leaked. Raw
280  * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
281  * may have both an encrypted version and a decrypted version of its data at
282  * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
283  * copied out of this header. To avoid complications with b_pabd, raw buffers
284  * cannot be shared.
285  */
286 
287 #include <sys/spa.h>
288 #include <sys/zio.h>
289 #include <sys/spa_impl.h>
290 #include <sys/zio_compress.h>
291 #include <sys/zio_checksum.h>
292 #include <sys/zfs_context.h>
293 #include <sys/arc.h>
294 #include <sys/zfs_refcount.h>
295 #include <sys/vdev.h>
296 #include <sys/vdev_impl.h>
297 #include <sys/dsl_pool.h>
298 #include <sys/multilist.h>
299 #include <sys/abd.h>
300 #include <sys/dbuf.h>
301 #include <sys/zil.h>
302 #include <sys/fm/fs/zfs.h>
303 #include <sys/callb.h>
304 #include <sys/kstat.h>
305 #include <sys/zthr.h>
306 #include <zfs_fletcher.h>
307 #include <sys/arc_impl.h>
308 #include <sys/trace_zfs.h>
309 #include <sys/aggsum.h>
310 #include <sys/wmsum.h>
311 #include <cityhash.h>
312 #include <sys/vdev_trim.h>
313 #include <sys/zfs_racct.h>
314 #include <sys/zstd/zstd.h>
315 
316 #ifndef _KERNEL
317 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
318 boolean_t arc_watch = B_FALSE;
319 #endif
320 
321 /*
322  * This thread's job is to keep enough free memory in the system, by
323  * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves
324  * arc_available_memory().
325  */
326 static zthr_t *arc_reap_zthr;
327 
328 /*
329  * This thread's job is to keep arc_size under arc_c, by calling
330  * arc_evict(), which improves arc_is_overflowing().
331  */
332 static zthr_t *arc_evict_zthr;
333 static arc_buf_hdr_t **arc_state_evict_markers;
334 static int arc_state_evict_marker_count;
335 
336 static kmutex_t arc_evict_lock;
337 static boolean_t arc_evict_needed = B_FALSE;
338 static clock_t arc_last_uncached_flush;
339 
340 static taskq_t *arc_evict_taskq;
341 static struct evict_arg *arc_evict_arg;
342 
343 /*
344  * Count of bytes evicted since boot.
345  */
346 static uint64_t arc_evict_count;
347 
348 /*
349  * List of arc_evict_waiter_t's, representing threads waiting for the
350  * arc_evict_count to reach specific values.
351  */
352 static list_t arc_evict_waiters;
353 
354 /*
355  * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of
356  * the requested amount of data to be evicted.  For example, by default for
357  * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation.
358  * Since this is above 100%, it ensures that progress is made towards getting
359  * arc_size under arc_c.  Since this is finite, it ensures that allocations
360  * can still happen, even during the potentially long time that arc_size is
361  * more than arc_c.
362  */
363 static uint_t zfs_arc_eviction_pct = 200;
364 
365 /*
366  * The number of headers to evict in arc_evict_state_impl() before
367  * dropping the sublist lock and evicting from another sublist. A lower
368  * value means we're more likely to evict the "correct" header (i.e. the
369  * oldest header in the arc state), but comes with higher overhead
370  * (i.e. more invocations of arc_evict_state_impl()).
371  */
372 static uint_t zfs_arc_evict_batch_limit = 10;
373 
374 /*
375  * Number batches to process per parallel eviction task under heavy load to
376  * reduce number of context switches.
377  */
378 static uint_t zfs_arc_evict_batches_limit = 5;
379 
380 /* number of seconds before growing cache again */
381 uint_t arc_grow_retry = 5;
382 
383 /*
384  * Minimum time between calls to arc_kmem_reap_soon().
385  */
386 static const int arc_kmem_cache_reap_retry_ms = 1000;
387 
388 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
389 static int zfs_arc_overflow_shift = 8;
390 
391 /* log2(fraction of arc to reclaim) */
392 uint_t arc_shrink_shift = 7;
393 
394 #ifdef _KERNEL
395 /* percent of pagecache to reclaim arc to */
396 uint_t zfs_arc_pc_percent = 0;
397 #endif
398 
399 /*
400  * log2(fraction of ARC which must be free to allow growing).
401  * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
402  * when reading a new block into the ARC, we will evict an equal-sized block
403  * from the ARC.
404  *
405  * This must be less than arc_shrink_shift, so that when we shrink the ARC,
406  * we will still not allow it to grow.
407  */
408 uint_t		arc_no_grow_shift = 5;
409 
410 
411 /*
412  * minimum lifespan of a prefetch block in clock ticks
413  * (initialized in arc_init())
414  */
415 static uint_t		arc_min_prefetch;
416 static uint_t		arc_min_prescient_prefetch;
417 
418 /*
419  * If this percent of memory is free, don't throttle.
420  */
421 uint_t arc_lotsfree_percent = 10;
422 
423 /*
424  * The arc has filled available memory and has now warmed up.
425  */
426 boolean_t arc_warm;
427 
428 /*
429  * These tunables are for performance analysis.
430  */
431 uint64_t zfs_arc_max = 0;
432 uint64_t zfs_arc_min = 0;
433 static uint64_t zfs_arc_dnode_limit = 0;
434 static uint_t zfs_arc_dnode_reduce_percent = 10;
435 static uint_t zfs_arc_grow_retry = 0;
436 static uint_t zfs_arc_shrink_shift = 0;
437 uint_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
438 
439 /*
440  * ARC dirty data constraints for arc_tempreserve_space() throttle:
441  * * total dirty data limit
442  * * anon block dirty limit
443  * * each pool's anon allowance
444  */
445 static const unsigned long zfs_arc_dirty_limit_percent = 50;
446 static const unsigned long zfs_arc_anon_limit_percent = 25;
447 static const unsigned long zfs_arc_pool_dirty_percent = 20;
448 
449 /*
450  * Enable or disable compressed arc buffers.
451  */
452 int zfs_compressed_arc_enabled = B_TRUE;
453 
454 /*
455  * Balance between metadata and data on ghost hits.  Values above 100
456  * increase metadata caching by proportionally reducing effect of ghost
457  * data hits on target data/metadata rate.
458  */
459 static uint_t zfs_arc_meta_balance = 500;
460 
461 /*
462  * Percentage that can be consumed by dnodes of ARC meta buffers.
463  */
464 static uint_t zfs_arc_dnode_limit_percent = 10;
465 
466 /*
467  * These tunables are Linux-specific
468  */
469 static uint64_t zfs_arc_sys_free = 0;
470 static uint_t zfs_arc_min_prefetch_ms = 0;
471 static uint_t zfs_arc_min_prescient_prefetch_ms = 0;
472 static uint_t zfs_arc_lotsfree_percent = 10;
473 
474 /*
475  * Number of arc_prune threads
476  */
477 static int zfs_arc_prune_task_threads = 1;
478 
479 /* Used by spa_export/spa_destroy to flush the arc asynchronously */
480 static taskq_t *arc_flush_taskq;
481 
482 /*
483  * Controls the number of ARC eviction threads to dispatch sublists to.
484  *
485  * Possible values:
486  * 0  (auto) compute the number of threads using a logarithmic formula.
487  * 1  (disabled) one thread - parallel eviction is disabled.
488  * 2+ (manual) set the number manually.
489  *
490  * See arc_evict_thread_init() for how "auto" is computed.
491  */
492 static uint_t zfs_arc_evict_threads = 0;
493 
494 /* The 7 states: */
495 arc_state_t ARC_anon;
496 arc_state_t ARC_mru;
497 arc_state_t ARC_mru_ghost;
498 arc_state_t ARC_mfu;
499 arc_state_t ARC_mfu_ghost;
500 arc_state_t ARC_l2c_only;
501 arc_state_t ARC_uncached;
502 
503 arc_stats_t arc_stats = {
504 	{ "hits",			KSTAT_DATA_UINT64 },
505 	{ "iohits",			KSTAT_DATA_UINT64 },
506 	{ "misses",			KSTAT_DATA_UINT64 },
507 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
508 	{ "demand_data_iohits",		KSTAT_DATA_UINT64 },
509 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
510 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
511 	{ "demand_metadata_iohits",	KSTAT_DATA_UINT64 },
512 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
513 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
514 	{ "prefetch_data_iohits",	KSTAT_DATA_UINT64 },
515 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
516 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
517 	{ "prefetch_metadata_iohits",	KSTAT_DATA_UINT64 },
518 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
519 	{ "mru_hits",			KSTAT_DATA_UINT64 },
520 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
521 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
522 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
523 	{ "uncached_hits",		KSTAT_DATA_UINT64 },
524 	{ "deleted",			KSTAT_DATA_UINT64 },
525 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
526 	{ "access_skip",		KSTAT_DATA_UINT64 },
527 	{ "evict_skip",			KSTAT_DATA_UINT64 },
528 	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
529 	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
530 	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
531 	{ "evict_l2_eligible_mfu",	KSTAT_DATA_UINT64 },
532 	{ "evict_l2_eligible_mru",	KSTAT_DATA_UINT64 },
533 	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
534 	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
535 	{ "hash_elements",		KSTAT_DATA_UINT64 },
536 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
537 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
538 	{ "hash_chains",		KSTAT_DATA_UINT64 },
539 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
540 	{ "meta",			KSTAT_DATA_UINT64 },
541 	{ "pd",				KSTAT_DATA_UINT64 },
542 	{ "pm",				KSTAT_DATA_UINT64 },
543 	{ "c",				KSTAT_DATA_UINT64 },
544 	{ "c_min",			KSTAT_DATA_UINT64 },
545 	{ "c_max",			KSTAT_DATA_UINT64 },
546 	{ "size",			KSTAT_DATA_UINT64 },
547 	{ "compressed_size",		KSTAT_DATA_UINT64 },
548 	{ "uncompressed_size",		KSTAT_DATA_UINT64 },
549 	{ "overhead_size",		KSTAT_DATA_UINT64 },
550 	{ "hdr_size",			KSTAT_DATA_UINT64 },
551 	{ "data_size",			KSTAT_DATA_UINT64 },
552 	{ "metadata_size",		KSTAT_DATA_UINT64 },
553 	{ "dbuf_size",			KSTAT_DATA_UINT64 },
554 	{ "dnode_size",			KSTAT_DATA_UINT64 },
555 	{ "bonus_size",			KSTAT_DATA_UINT64 },
556 #if defined(COMPAT_FREEBSD11)
557 	{ "other_size",			KSTAT_DATA_UINT64 },
558 #endif
559 	{ "anon_size",			KSTAT_DATA_UINT64 },
560 	{ "anon_data",			KSTAT_DATA_UINT64 },
561 	{ "anon_metadata",		KSTAT_DATA_UINT64 },
562 	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
563 	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
564 	{ "mru_size",			KSTAT_DATA_UINT64 },
565 	{ "mru_data",			KSTAT_DATA_UINT64 },
566 	{ "mru_metadata",		KSTAT_DATA_UINT64 },
567 	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
568 	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
569 	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
570 	{ "mru_ghost_data",		KSTAT_DATA_UINT64 },
571 	{ "mru_ghost_metadata",		KSTAT_DATA_UINT64 },
572 	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
573 	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
574 	{ "mfu_size",			KSTAT_DATA_UINT64 },
575 	{ "mfu_data",			KSTAT_DATA_UINT64 },
576 	{ "mfu_metadata",		KSTAT_DATA_UINT64 },
577 	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
578 	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
579 	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
580 	{ "mfu_ghost_data",		KSTAT_DATA_UINT64 },
581 	{ "mfu_ghost_metadata",		KSTAT_DATA_UINT64 },
582 	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
583 	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
584 	{ "uncached_size",		KSTAT_DATA_UINT64 },
585 	{ "uncached_data",		KSTAT_DATA_UINT64 },
586 	{ "uncached_metadata",		KSTAT_DATA_UINT64 },
587 	{ "uncached_evictable_data",	KSTAT_DATA_UINT64 },
588 	{ "uncached_evictable_metadata", KSTAT_DATA_UINT64 },
589 	{ "l2_hits",			KSTAT_DATA_UINT64 },
590 	{ "l2_misses",			KSTAT_DATA_UINT64 },
591 	{ "l2_prefetch_asize",		KSTAT_DATA_UINT64 },
592 	{ "l2_mru_asize",		KSTAT_DATA_UINT64 },
593 	{ "l2_mfu_asize",		KSTAT_DATA_UINT64 },
594 	{ "l2_bufc_data_asize",		KSTAT_DATA_UINT64 },
595 	{ "l2_bufc_metadata_asize",	KSTAT_DATA_UINT64 },
596 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
597 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
598 	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
599 	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
600 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
601 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
602 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
603 	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
604 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
605 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
606 	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
607 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
608 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
609 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
610 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
611 	{ "l2_size",			KSTAT_DATA_UINT64 },
612 	{ "l2_asize",			KSTAT_DATA_UINT64 },
613 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
614 	{ "l2_log_blk_writes",		KSTAT_DATA_UINT64 },
615 	{ "l2_log_blk_avg_asize",	KSTAT_DATA_UINT64 },
616 	{ "l2_log_blk_asize",		KSTAT_DATA_UINT64 },
617 	{ "l2_log_blk_count",		KSTAT_DATA_UINT64 },
618 	{ "l2_data_to_meta_ratio",	KSTAT_DATA_UINT64 },
619 	{ "l2_rebuild_success",		KSTAT_DATA_UINT64 },
620 	{ "l2_rebuild_unsupported",	KSTAT_DATA_UINT64 },
621 	{ "l2_rebuild_io_errors",	KSTAT_DATA_UINT64 },
622 	{ "l2_rebuild_dh_errors",	KSTAT_DATA_UINT64 },
623 	{ "l2_rebuild_cksum_lb_errors",	KSTAT_DATA_UINT64 },
624 	{ "l2_rebuild_lowmem",		KSTAT_DATA_UINT64 },
625 	{ "l2_rebuild_size",		KSTAT_DATA_UINT64 },
626 	{ "l2_rebuild_asize",		KSTAT_DATA_UINT64 },
627 	{ "l2_rebuild_bufs",		KSTAT_DATA_UINT64 },
628 	{ "l2_rebuild_bufs_precached",	KSTAT_DATA_UINT64 },
629 	{ "l2_rebuild_log_blks",	KSTAT_DATA_UINT64 },
630 	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
631 	{ "memory_direct_count",	KSTAT_DATA_UINT64 },
632 	{ "memory_indirect_count",	KSTAT_DATA_UINT64 },
633 	{ "memory_all_bytes",		KSTAT_DATA_UINT64 },
634 	{ "memory_free_bytes",		KSTAT_DATA_UINT64 },
635 	{ "memory_available_bytes",	KSTAT_DATA_INT64 },
636 	{ "arc_no_grow",		KSTAT_DATA_UINT64 },
637 	{ "arc_tempreserve",		KSTAT_DATA_UINT64 },
638 	{ "arc_loaned_bytes",		KSTAT_DATA_UINT64 },
639 	{ "arc_prune",			KSTAT_DATA_UINT64 },
640 	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
641 	{ "arc_dnode_limit",		KSTAT_DATA_UINT64 },
642 	{ "async_upgrade_sync",		KSTAT_DATA_UINT64 },
643 	{ "predictive_prefetch", KSTAT_DATA_UINT64 },
644 	{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
645 	{ "demand_iohit_predictive_prefetch", KSTAT_DATA_UINT64 },
646 	{ "prescient_prefetch", KSTAT_DATA_UINT64 },
647 	{ "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
648 	{ "demand_iohit_prescient_prefetch", KSTAT_DATA_UINT64 },
649 	{ "arc_need_free",		KSTAT_DATA_UINT64 },
650 	{ "arc_sys_free",		KSTAT_DATA_UINT64 },
651 	{ "arc_raw_size",		KSTAT_DATA_UINT64 },
652 	{ "cached_only_in_progress",	KSTAT_DATA_UINT64 },
653 	{ "abd_chunk_waste_size",	KSTAT_DATA_UINT64 },
654 };
655 
656 arc_sums_t arc_sums;
657 
658 #define	ARCSTAT_MAX(stat, val) {					\
659 	uint64_t m;							\
660 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
661 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
662 		continue;						\
663 }
664 
665 /*
666  * We define a macro to allow ARC hits/misses to be easily broken down by
667  * two separate conditions, giving a total of four different subtypes for
668  * each of hits and misses (so eight statistics total).
669  */
670 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
671 	if (cond1) {							\
672 		if (cond2) {						\
673 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
674 		} else {						\
675 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
676 		}							\
677 	} else {							\
678 		if (cond2) {						\
679 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
680 		} else {						\
681 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
682 		}							\
683 	}
684 
685 /*
686  * This macro allows us to use kstats as floating averages. Each time we
687  * update this kstat, we first factor it and the update value by
688  * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall
689  * average. This macro assumes that integer loads and stores are atomic, but
690  * is not safe for multiple writers updating the kstat in parallel (only the
691  * last writer's update will remain).
692  */
693 #define	ARCSTAT_F_AVG_FACTOR	3
694 #define	ARCSTAT_F_AVG(stat, value) \
695 	do { \
696 		uint64_t x = ARCSTAT(stat); \
697 		x = x - x / ARCSTAT_F_AVG_FACTOR + \
698 		    (value) / ARCSTAT_F_AVG_FACTOR; \
699 		ARCSTAT(stat) = x; \
700 	} while (0)
701 
702 static kstat_t			*arc_ksp;
703 
704 /*
705  * There are several ARC variables that are critical to export as kstats --
706  * but we don't want to have to grovel around in the kstat whenever we wish to
707  * manipulate them.  For these variables, we therefore define them to be in
708  * terms of the statistic variable.  This assures that we are not introducing
709  * the possibility of inconsistency by having shadow copies of the variables,
710  * while still allowing the code to be readable.
711  */
712 #define	arc_tempreserve	ARCSTAT(arcstat_tempreserve)
713 #define	arc_loaned_bytes	ARCSTAT(arcstat_loaned_bytes)
714 #define	arc_dnode_limit	ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */
715 #define	arc_need_free	ARCSTAT(arcstat_need_free) /* waiting to be evicted */
716 
717 hrtime_t arc_growtime;
718 list_t arc_prune_list;
719 kmutex_t arc_prune_mtx;
720 taskq_t *arc_prune_taskq;
721 
722 #define	GHOST_STATE(state)	\
723 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
724 	(state) == arc_l2c_only)
725 
726 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
727 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
728 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
729 #define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
730 #define	HDR_PRESCIENT_PREFETCH(hdr)	\
731 	((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
732 #define	HDR_COMPRESSION_ENABLED(hdr)	\
733 	((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
734 
735 #define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
736 #define	HDR_UNCACHED(hdr)	((hdr)->b_flags & ARC_FLAG_UNCACHED)
737 #define	HDR_L2_READING(hdr)	\
738 	(((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
739 	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
740 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
741 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
742 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
743 #define	HDR_PROTECTED(hdr)	((hdr)->b_flags & ARC_FLAG_PROTECTED)
744 #define	HDR_NOAUTH(hdr)		((hdr)->b_flags & ARC_FLAG_NOAUTH)
745 #define	HDR_SHARED_DATA(hdr)	((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
746 
747 #define	HDR_ISTYPE_METADATA(hdr)	\
748 	((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
749 #define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
750 
751 #define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
752 #define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
753 #define	HDR_HAS_RABD(hdr)	\
754 	(HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) &&	\
755 	(hdr)->b_crypt_hdr.b_rabd != NULL)
756 #define	HDR_ENCRYPTED(hdr)	\
757 	(HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
758 #define	HDR_AUTHENTICATED(hdr)	\
759 	(HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
760 
761 /* For storing compression mode in b_flags */
762 #define	HDR_COMPRESS_OFFSET	(highbit64(ARC_FLAG_COMPRESS_0) - 1)
763 
764 #define	HDR_GET_COMPRESS(hdr)	((enum zio_compress)BF32_GET((hdr)->b_flags, \
765 	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
766 #define	HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
767 	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
768 
769 #define	ARC_BUF_LAST(buf)	((buf)->b_next == NULL)
770 #define	ARC_BUF_SHARED(buf)	((buf)->b_flags & ARC_BUF_FLAG_SHARED)
771 #define	ARC_BUF_COMPRESSED(buf)	((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
772 #define	ARC_BUF_ENCRYPTED(buf)	((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
773 
774 /*
775  * Other sizes
776  */
777 
778 #define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
779 #define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
780 
781 /*
782  * Hash table routines
783  */
784 
785 #define	BUF_LOCKS 2048
786 typedef struct buf_hash_table {
787 	uint64_t ht_mask;
788 	arc_buf_hdr_t **ht_table;
789 	kmutex_t ht_locks[BUF_LOCKS] ____cacheline_aligned;
790 } buf_hash_table_t;
791 
792 static buf_hash_table_t buf_hash_table;
793 
794 #define	BUF_HASH_INDEX(spa, dva, birth) \
795 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
796 #define	BUF_HASH_LOCK(idx)	(&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
797 #define	HDR_LOCK(hdr) \
798 	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
799 
800 uint64_t zfs_crc64_table[256];
801 
802 /*
803  * Asynchronous ARC flush
804  *
805  * We track these in a list for arc_async_flush_guid_inuse().
806  * Used for both L1 and L2 async teardown.
807  */
808 static list_t arc_async_flush_list;
809 static kmutex_t	arc_async_flush_lock;
810 
811 typedef struct arc_async_flush {
812 	uint64_t	af_spa_guid;
813 	taskq_ent_t	af_tqent;
814 	uint_t		af_cache_level;	/* 1 or 2 to differentiate node */
815 	list_node_t	af_node;
816 } arc_async_flush_t;
817 
818 
819 /*
820  * Level 2 ARC
821  */
822 
823 #define	L2ARC_WRITE_SIZE	(32 * 1024 * 1024)	/* initial write max */
824 #define	L2ARC_HEADROOM		8			/* num of writes */
825 
826 /*
827  * If we discover during ARC scan any buffers to be compressed, we boost
828  * our headroom for the next scanning cycle by this percentage multiple.
829  */
830 #define	L2ARC_HEADROOM_BOOST	200
831 #define	L2ARC_FEED_SECS		1		/* caching interval secs */
832 #define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
833 
834 /*
835  * We can feed L2ARC from two states of ARC buffers, mru and mfu,
836  * and each of the state has two types: data and metadata.
837  */
838 #define	L2ARC_FEED_TYPES	4
839 
840 /* L2ARC Performance Tunables */
841 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* def max write size */
842 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra warmup write */
843 uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* # of dev writes */
844 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
845 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
846 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval msecs */
847 int l2arc_noprefetch = B_TRUE;			/* don't cache prefetch bufs */
848 int l2arc_feed_again = B_TRUE;			/* turbo warmup */
849 int l2arc_norw = B_FALSE;			/* no reads during writes */
850 static uint_t l2arc_meta_percent = 33;	/* limit on headers size */
851 
852 /*
853  * L2ARC Internals
854  */
855 static list_t L2ARC_dev_list;			/* device list */
856 static list_t *l2arc_dev_list;			/* device list pointer */
857 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
858 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
859 static list_t L2ARC_free_on_write;		/* free after write buf list */
860 static list_t *l2arc_free_on_write;		/* free after write list ptr */
861 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
862 static uint64_t l2arc_ndev;			/* number of devices */
863 
864 typedef struct l2arc_read_callback {
865 	arc_buf_hdr_t		*l2rcb_hdr;		/* read header */
866 	blkptr_t		l2rcb_bp;		/* original blkptr */
867 	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
868 	int			l2rcb_flags;		/* original flags */
869 	abd_t			*l2rcb_abd;		/* temporary buffer */
870 } l2arc_read_callback_t;
871 
872 typedef struct l2arc_data_free {
873 	/* protected by l2arc_free_on_write_mtx */
874 	abd_t		*l2df_abd;
875 	size_t		l2df_size;
876 	arc_buf_contents_t l2df_type;
877 	list_node_t	l2df_list_node;
878 } l2arc_data_free_t;
879 
880 typedef enum arc_fill_flags {
881 	ARC_FILL_LOCKED		= 1 << 0, /* hdr lock is held */
882 	ARC_FILL_COMPRESSED	= 1 << 1, /* fill with compressed data */
883 	ARC_FILL_ENCRYPTED	= 1 << 2, /* fill with encrypted data */
884 	ARC_FILL_NOAUTH		= 1 << 3, /* don't attempt to authenticate */
885 	ARC_FILL_IN_PLACE	= 1 << 4  /* fill in place (special case) */
886 } arc_fill_flags_t;
887 
888 typedef enum arc_ovf_level {
889 	ARC_OVF_NONE,			/* ARC within target size. */
890 	ARC_OVF_SOME,			/* ARC is slightly overflowed. */
891 	ARC_OVF_SEVERE			/* ARC is severely overflowed. */
892 } arc_ovf_level_t;
893 
894 static kmutex_t l2arc_feed_thr_lock;
895 static kcondvar_t l2arc_feed_thr_cv;
896 static uint8_t l2arc_thread_exit;
897 
898 static kmutex_t l2arc_rebuild_thr_lock;
899 static kcondvar_t l2arc_rebuild_thr_cv;
900 
901 enum arc_hdr_alloc_flags {
902 	ARC_HDR_ALLOC_RDATA = 0x1,
903 	ARC_HDR_USE_RESERVE = 0x4,
904 	ARC_HDR_ALLOC_LINEAR = 0x8,
905 };
906 
907 
908 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, const void *, int);
909 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, const void *);
910 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, const void *, int);
911 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, const void *);
912 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, const void *);
913 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size,
914     const void *tag);
915 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t);
916 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int);
917 static void arc_hdr_destroy(arc_buf_hdr_t *);
918 static void arc_access(arc_buf_hdr_t *, arc_flags_t, boolean_t);
919 static void arc_buf_watch(arc_buf_t *);
920 static void arc_change_state(arc_state_t *, arc_buf_hdr_t *);
921 
922 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
923 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
924 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
925 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
926 
927 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
928 static void l2arc_read_done(zio_t *);
929 static void l2arc_do_free_on_write(void);
930 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
931     boolean_t state_only);
932 
933 static void arc_prune_async(uint64_t adjust);
934 
935 #define	l2arc_hdr_arcstats_increment(hdr) \
936 	l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE)
937 #define	l2arc_hdr_arcstats_decrement(hdr) \
938 	l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE)
939 #define	l2arc_hdr_arcstats_increment_state(hdr) \
940 	l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE)
941 #define	l2arc_hdr_arcstats_decrement_state(hdr) \
942 	l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE)
943 
944 /*
945  * l2arc_exclude_special : A zfs module parameter that controls whether buffers
946  * 		present on special vdevs are eligibile for caching in L2ARC. If
947  * 		set to 1, exclude dbufs on special vdevs from being cached to
948  * 		L2ARC.
949  */
950 int l2arc_exclude_special = 0;
951 
952 /*
953  * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU
954  * 		metadata and data are cached from ARC into L2ARC.
955  */
956 static int l2arc_mfuonly = 0;
957 
958 /*
959  * L2ARC TRIM
960  * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of
961  * 		the current write size (l2arc_write_max) we should TRIM if we
962  * 		have filled the device. It is defined as a percentage of the
963  * 		write size. If set to 100 we trim twice the space required to
964  * 		accommodate upcoming writes. A minimum of 64MB will be trimmed.
965  * 		It also enables TRIM of the whole L2ARC device upon creation or
966  * 		addition to an existing pool or if the header of the device is
967  * 		invalid upon importing a pool or onlining a cache device. The
968  * 		default is 0, which disables TRIM on L2ARC altogether as it can
969  * 		put significant stress on the underlying storage devices. This
970  * 		will vary depending of how well the specific device handles
971  * 		these commands.
972  */
973 static uint64_t l2arc_trim_ahead = 0;
974 
975 /*
976  * Performance tuning of L2ARC persistence:
977  *
978  * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding
979  * 		an L2ARC device (either at pool import or later) will attempt
980  * 		to rebuild L2ARC buffer contents.
981  * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls
982  * 		whether log blocks are written to the L2ARC device. If the L2ARC
983  * 		device is less than 1GB, the amount of data l2arc_evict()
984  * 		evicts is significant compared to the amount of restored L2ARC
985  * 		data. In this case do not write log blocks in L2ARC in order
986  * 		not to waste space.
987  */
988 static int l2arc_rebuild_enabled = B_TRUE;
989 static uint64_t l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024;
990 
991 /* L2ARC persistence rebuild control routines. */
992 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen);
993 static __attribute__((noreturn)) void l2arc_dev_rebuild_thread(void *arg);
994 static int l2arc_rebuild(l2arc_dev_t *dev);
995 
996 /* L2ARC persistence read I/O routines. */
997 static int l2arc_dev_hdr_read(l2arc_dev_t *dev);
998 static int l2arc_log_blk_read(l2arc_dev_t *dev,
999     const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp,
1000     l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
1001     zio_t *this_io, zio_t **next_io);
1002 static zio_t *l2arc_log_blk_fetch(vdev_t *vd,
1003     const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb);
1004 static void l2arc_log_blk_fetch_abort(zio_t *zio);
1005 
1006 /* L2ARC persistence block restoration routines. */
1007 static void l2arc_log_blk_restore(l2arc_dev_t *dev,
1008     const l2arc_log_blk_phys_t *lb, uint64_t lb_asize);
1009 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le,
1010     l2arc_dev_t *dev);
1011 
1012 /* L2ARC persistence write I/O routines. */
1013 static uint64_t l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio,
1014     l2arc_write_callback_t *cb);
1015 
1016 /* L2ARC persistence auxiliary routines. */
1017 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev,
1018     const l2arc_log_blkptr_t *lbp);
1019 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev,
1020     const arc_buf_hdr_t *ab);
1021 boolean_t l2arc_range_check_overlap(uint64_t bottom,
1022     uint64_t top, uint64_t check);
1023 static void l2arc_blk_fetch_done(zio_t *zio);
1024 static inline uint64_t
1025     l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev);
1026 
1027 /*
1028  * We use Cityhash for this. It's fast, and has good hash properties without
1029  * requiring any large static buffers.
1030  */
1031 static uint64_t
buf_hash(uint64_t spa,const dva_t * dva,uint64_t birth)1032 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1033 {
1034 	return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
1035 }
1036 
1037 #define	HDR_EMPTY(hdr)						\
1038 	((hdr)->b_dva.dva_word[0] == 0 &&			\
1039 	(hdr)->b_dva.dva_word[1] == 0)
1040 
1041 #define	HDR_EMPTY_OR_LOCKED(hdr)				\
1042 	(HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr)))
1043 
1044 #define	HDR_EQUAL(spa, dva, birth, hdr)				\
1045 	((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1046 	((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1047 	((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1048 
1049 static void
buf_discard_identity(arc_buf_hdr_t * hdr)1050 buf_discard_identity(arc_buf_hdr_t *hdr)
1051 {
1052 	hdr->b_dva.dva_word[0] = 0;
1053 	hdr->b_dva.dva_word[1] = 0;
1054 	hdr->b_birth = 0;
1055 }
1056 
1057 static arc_buf_hdr_t *
buf_hash_find(uint64_t spa,const blkptr_t * bp,kmutex_t ** lockp)1058 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1059 {
1060 	const dva_t *dva = BP_IDENTITY(bp);
1061 	uint64_t birth = BP_GET_PHYSICAL_BIRTH(bp);
1062 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1063 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1064 	arc_buf_hdr_t *hdr;
1065 
1066 	mutex_enter(hash_lock);
1067 	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1068 	    hdr = hdr->b_hash_next) {
1069 		if (HDR_EQUAL(spa, dva, birth, hdr)) {
1070 			*lockp = hash_lock;
1071 			return (hdr);
1072 		}
1073 	}
1074 	mutex_exit(hash_lock);
1075 	*lockp = NULL;
1076 	return (NULL);
1077 }
1078 
1079 /*
1080  * Insert an entry into the hash table.  If there is already an element
1081  * equal to elem in the hash table, then the already existing element
1082  * will be returned and the new element will not be inserted.
1083  * Otherwise returns NULL.
1084  * If lockp == NULL, the caller is assumed to already hold the hash lock.
1085  */
1086 static arc_buf_hdr_t *
buf_hash_insert(arc_buf_hdr_t * hdr,kmutex_t ** lockp)1087 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1088 {
1089 	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1090 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1091 	arc_buf_hdr_t *fhdr;
1092 	uint32_t i;
1093 
1094 	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1095 	ASSERT(hdr->b_birth != 0);
1096 	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1097 
1098 	if (lockp != NULL) {
1099 		*lockp = hash_lock;
1100 		mutex_enter(hash_lock);
1101 	} else {
1102 		ASSERT(MUTEX_HELD(hash_lock));
1103 	}
1104 
1105 	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1106 	    fhdr = fhdr->b_hash_next, i++) {
1107 		if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1108 			return (fhdr);
1109 	}
1110 
1111 	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1112 	buf_hash_table.ht_table[idx] = hdr;
1113 	arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1114 
1115 	/* collect some hash table performance data */
1116 	if (i > 0) {
1117 		ARCSTAT_BUMP(arcstat_hash_collisions);
1118 		if (i == 1)
1119 			ARCSTAT_BUMP(arcstat_hash_chains);
1120 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1121 	}
1122 	ARCSTAT_BUMP(arcstat_hash_elements);
1123 
1124 	return (NULL);
1125 }
1126 
1127 static void
buf_hash_remove(arc_buf_hdr_t * hdr)1128 buf_hash_remove(arc_buf_hdr_t *hdr)
1129 {
1130 	arc_buf_hdr_t *fhdr, **hdrp;
1131 	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1132 
1133 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1134 	ASSERT(HDR_IN_HASH_TABLE(hdr));
1135 
1136 	hdrp = &buf_hash_table.ht_table[idx];
1137 	while ((fhdr = *hdrp) != hdr) {
1138 		ASSERT3P(fhdr, !=, NULL);
1139 		hdrp = &fhdr->b_hash_next;
1140 	}
1141 	*hdrp = hdr->b_hash_next;
1142 	hdr->b_hash_next = NULL;
1143 	arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1144 
1145 	/* collect some hash table performance data */
1146 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1147 	if (buf_hash_table.ht_table[idx] &&
1148 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1149 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1150 }
1151 
1152 /*
1153  * Global data structures and functions for the buf kmem cache.
1154  */
1155 
1156 static kmem_cache_t *hdr_full_cache;
1157 static kmem_cache_t *hdr_l2only_cache;
1158 static kmem_cache_t *buf_cache;
1159 
1160 static void
buf_fini(void)1161 buf_fini(void)
1162 {
1163 #if defined(_KERNEL)
1164 	/*
1165 	 * Large allocations which do not require contiguous pages
1166 	 * should be using vmem_free() in the linux kernel.
1167 	 */
1168 	vmem_free(buf_hash_table.ht_table,
1169 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1170 #else
1171 	kmem_free(buf_hash_table.ht_table,
1172 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1173 #endif
1174 	for (int i = 0; i < BUF_LOCKS; i++)
1175 		mutex_destroy(BUF_HASH_LOCK(i));
1176 	kmem_cache_destroy(hdr_full_cache);
1177 	kmem_cache_destroy(hdr_l2only_cache);
1178 	kmem_cache_destroy(buf_cache);
1179 }
1180 
1181 /*
1182  * Constructor callback - called when the cache is empty
1183  * and a new buf is requested.
1184  */
1185 static int
hdr_full_cons(void * vbuf,void * unused,int kmflag)1186 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1187 {
1188 	(void) unused, (void) kmflag;
1189 	arc_buf_hdr_t *hdr = vbuf;
1190 
1191 	memset(hdr, 0, HDR_FULL_SIZE);
1192 	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
1193 	zfs_refcount_create(&hdr->b_l1hdr.b_refcnt);
1194 #ifdef ZFS_DEBUG
1195 	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1196 #endif
1197 	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1198 	list_link_init(&hdr->b_l2hdr.b_l2node);
1199 	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1200 
1201 	return (0);
1202 }
1203 
1204 static int
hdr_l2only_cons(void * vbuf,void * unused,int kmflag)1205 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1206 {
1207 	(void) unused, (void) kmflag;
1208 	arc_buf_hdr_t *hdr = vbuf;
1209 
1210 	memset(hdr, 0, HDR_L2ONLY_SIZE);
1211 	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1212 
1213 	return (0);
1214 }
1215 
1216 static int
buf_cons(void * vbuf,void * unused,int kmflag)1217 buf_cons(void *vbuf, void *unused, int kmflag)
1218 {
1219 	(void) unused, (void) kmflag;
1220 	arc_buf_t *buf = vbuf;
1221 
1222 	memset(buf, 0, sizeof (arc_buf_t));
1223 	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1224 
1225 	return (0);
1226 }
1227 
1228 /*
1229  * Destructor callback - called when a cached buf is
1230  * no longer required.
1231  */
1232 static void
hdr_full_dest(void * vbuf,void * unused)1233 hdr_full_dest(void *vbuf, void *unused)
1234 {
1235 	(void) unused;
1236 	arc_buf_hdr_t *hdr = vbuf;
1237 
1238 	ASSERT(HDR_EMPTY(hdr));
1239 	zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1240 #ifdef ZFS_DEBUG
1241 	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1242 #endif
1243 	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1244 	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1245 }
1246 
1247 static void
hdr_l2only_dest(void * vbuf,void * unused)1248 hdr_l2only_dest(void *vbuf, void *unused)
1249 {
1250 	(void) unused;
1251 	arc_buf_hdr_t *hdr = vbuf;
1252 
1253 	ASSERT(HDR_EMPTY(hdr));
1254 	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1255 }
1256 
1257 static void
buf_dest(void * vbuf,void * unused)1258 buf_dest(void *vbuf, void *unused)
1259 {
1260 	(void) unused;
1261 	(void) vbuf;
1262 
1263 	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1264 }
1265 
1266 static void
buf_init(void)1267 buf_init(void)
1268 {
1269 	uint64_t *ct = NULL;
1270 	uint64_t hsize = 1ULL << 12;
1271 	int i, j;
1272 
1273 	/*
1274 	 * The hash table is big enough to fill all of physical memory
1275 	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1276 	 * By default, the table will take up
1277 	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1278 	 */
1279 	while (hsize * zfs_arc_average_blocksize < arc_all_memory())
1280 		hsize <<= 1;
1281 retry:
1282 	buf_hash_table.ht_mask = hsize - 1;
1283 #if defined(_KERNEL)
1284 	/*
1285 	 * Large allocations which do not require contiguous pages
1286 	 * should be using vmem_alloc() in the linux kernel
1287 	 */
1288 	buf_hash_table.ht_table =
1289 	    vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1290 #else
1291 	buf_hash_table.ht_table =
1292 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1293 #endif
1294 	if (buf_hash_table.ht_table == NULL) {
1295 		ASSERT(hsize > (1ULL << 8));
1296 		hsize >>= 1;
1297 		goto retry;
1298 	}
1299 
1300 	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1301 	    0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, KMC_RECLAIMABLE);
1302 	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1303 	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL,
1304 	    NULL, NULL, 0);
1305 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1306 	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1307 
1308 	for (i = 0; i < 256; i++)
1309 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1310 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1311 
1312 	for (i = 0; i < BUF_LOCKS; i++)
1313 		mutex_init(BUF_HASH_LOCK(i), NULL, MUTEX_DEFAULT, NULL);
1314 }
1315 
1316 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
1317 
1318 /*
1319  * This is the size that the buf occupies in memory. If the buf is compressed,
1320  * it will correspond to the compressed size. You should use this method of
1321  * getting the buf size unless you explicitly need the logical size.
1322  */
1323 uint64_t
arc_buf_size(arc_buf_t * buf)1324 arc_buf_size(arc_buf_t *buf)
1325 {
1326 	return (ARC_BUF_COMPRESSED(buf) ?
1327 	    HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1328 }
1329 
1330 uint64_t
arc_buf_lsize(arc_buf_t * buf)1331 arc_buf_lsize(arc_buf_t *buf)
1332 {
1333 	return (HDR_GET_LSIZE(buf->b_hdr));
1334 }
1335 
1336 /*
1337  * This function will return B_TRUE if the buffer is encrypted in memory.
1338  * This buffer can be decrypted by calling arc_untransform().
1339  */
1340 boolean_t
arc_is_encrypted(arc_buf_t * buf)1341 arc_is_encrypted(arc_buf_t *buf)
1342 {
1343 	return (ARC_BUF_ENCRYPTED(buf) != 0);
1344 }
1345 
1346 /*
1347  * Returns B_TRUE if the buffer represents data that has not had its MAC
1348  * verified yet.
1349  */
1350 boolean_t
arc_is_unauthenticated(arc_buf_t * buf)1351 arc_is_unauthenticated(arc_buf_t *buf)
1352 {
1353 	return (HDR_NOAUTH(buf->b_hdr) != 0);
1354 }
1355 
1356 void
arc_get_raw_params(arc_buf_t * buf,boolean_t * byteorder,uint8_t * salt,uint8_t * iv,uint8_t * mac)1357 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt,
1358     uint8_t *iv, uint8_t *mac)
1359 {
1360 	arc_buf_hdr_t *hdr = buf->b_hdr;
1361 
1362 	ASSERT(HDR_PROTECTED(hdr));
1363 
1364 	memcpy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
1365 	memcpy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
1366 	memcpy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
1367 	*byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
1368 	    ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
1369 }
1370 
1371 /*
1372  * Indicates how this buffer is compressed in memory. If it is not compressed
1373  * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1374  * arc_untransform() as long as it is also unencrypted.
1375  */
1376 enum zio_compress
arc_get_compression(arc_buf_t * buf)1377 arc_get_compression(arc_buf_t *buf)
1378 {
1379 	return (ARC_BUF_COMPRESSED(buf) ?
1380 	    HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1381 }
1382 
1383 /*
1384  * Return the compression algorithm used to store this data in the ARC. If ARC
1385  * compression is enabled or this is an encrypted block, this will be the same
1386  * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1387  */
1388 static inline enum zio_compress
arc_hdr_get_compress(arc_buf_hdr_t * hdr)1389 arc_hdr_get_compress(arc_buf_hdr_t *hdr)
1390 {
1391 	return (HDR_COMPRESSION_ENABLED(hdr) ?
1392 	    HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF);
1393 }
1394 
1395 uint8_t
arc_get_complevel(arc_buf_t * buf)1396 arc_get_complevel(arc_buf_t *buf)
1397 {
1398 	return (buf->b_hdr->b_complevel);
1399 }
1400 
1401 __maybe_unused
1402 static inline boolean_t
arc_buf_is_shared(arc_buf_t * buf)1403 arc_buf_is_shared(arc_buf_t *buf)
1404 {
1405 	boolean_t shared = (buf->b_data != NULL &&
1406 	    buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1407 	    abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1408 	    buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1409 	IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1410 	EQUIV(shared, ARC_BUF_SHARED(buf));
1411 	IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1412 
1413 	/*
1414 	 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1415 	 * already being shared" requirement prevents us from doing that.
1416 	 */
1417 
1418 	return (shared);
1419 }
1420 
1421 /*
1422  * Free the checksum associated with this header. If there is no checksum, this
1423  * is a no-op.
1424  */
1425 static inline void
arc_cksum_free(arc_buf_hdr_t * hdr)1426 arc_cksum_free(arc_buf_hdr_t *hdr)
1427 {
1428 #ifdef ZFS_DEBUG
1429 	ASSERT(HDR_HAS_L1HDR(hdr));
1430 
1431 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1432 	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1433 		kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1434 		hdr->b_l1hdr.b_freeze_cksum = NULL;
1435 	}
1436 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1437 #endif
1438 }
1439 
1440 /*
1441  * Return true iff at least one of the bufs on hdr is not compressed.
1442  * Encrypted buffers count as compressed.
1443  */
1444 static boolean_t
arc_hdr_has_uncompressed_buf(arc_buf_hdr_t * hdr)1445 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1446 {
1447 	ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr));
1448 
1449 	for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1450 		if (!ARC_BUF_COMPRESSED(b)) {
1451 			return (B_TRUE);
1452 		}
1453 	}
1454 	return (B_FALSE);
1455 }
1456 
1457 
1458 /*
1459  * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1460  * matches the checksum that is stored in the hdr. If there is no checksum,
1461  * or if the buf is compressed, this is a no-op.
1462  */
1463 static void
arc_cksum_verify(arc_buf_t * buf)1464 arc_cksum_verify(arc_buf_t *buf)
1465 {
1466 #ifdef ZFS_DEBUG
1467 	arc_buf_hdr_t *hdr = buf->b_hdr;
1468 	zio_cksum_t zc;
1469 
1470 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1471 		return;
1472 
1473 	if (ARC_BUF_COMPRESSED(buf))
1474 		return;
1475 
1476 	ASSERT(HDR_HAS_L1HDR(hdr));
1477 
1478 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1479 
1480 	if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1481 		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1482 		return;
1483 	}
1484 
1485 	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1486 	if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1487 		panic("buffer modified while frozen!");
1488 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1489 #endif
1490 }
1491 
1492 /*
1493  * This function makes the assumption that data stored in the L2ARC
1494  * will be transformed exactly as it is in the main pool. Because of
1495  * this we can verify the checksum against the reading process's bp.
1496  */
1497 static boolean_t
arc_cksum_is_equal(arc_buf_hdr_t * hdr,zio_t * zio)1498 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1499 {
1500 	ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1501 	VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1502 
1503 	/*
1504 	 * Block pointers always store the checksum for the logical data.
1505 	 * If the block pointer has the gang bit set, then the checksum
1506 	 * it represents is for the reconstituted data and not for an
1507 	 * individual gang member. The zio pipeline, however, must be able to
1508 	 * determine the checksum of each of the gang constituents so it
1509 	 * treats the checksum comparison differently than what we need
1510 	 * for l2arc blocks. This prevents us from using the
1511 	 * zio_checksum_error() interface directly. Instead we must call the
1512 	 * zio_checksum_error_impl() so that we can ensure the checksum is
1513 	 * generated using the correct checksum algorithm and accounts for the
1514 	 * logical I/O size and not just a gang fragment.
1515 	 */
1516 	return (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1517 	    BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1518 	    zio->io_offset, NULL) == 0);
1519 }
1520 
1521 /*
1522  * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1523  * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1524  * isn't modified later on. If buf is compressed or there is already a checksum
1525  * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1526  */
1527 static void
arc_cksum_compute(arc_buf_t * buf)1528 arc_cksum_compute(arc_buf_t *buf)
1529 {
1530 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1531 		return;
1532 
1533 #ifdef ZFS_DEBUG
1534 	arc_buf_hdr_t *hdr = buf->b_hdr;
1535 	ASSERT(HDR_HAS_L1HDR(hdr));
1536 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1537 	if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) {
1538 		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1539 		return;
1540 	}
1541 
1542 	ASSERT(!ARC_BUF_ENCRYPTED(buf));
1543 	ASSERT(!ARC_BUF_COMPRESSED(buf));
1544 	hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1545 	    KM_SLEEP);
1546 	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1547 	    hdr->b_l1hdr.b_freeze_cksum);
1548 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1549 #endif
1550 	arc_buf_watch(buf);
1551 }
1552 
1553 #ifndef _KERNEL
1554 void
arc_buf_sigsegv(int sig,siginfo_t * si,void * unused)1555 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1556 {
1557 	(void) sig, (void) unused;
1558 	panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr);
1559 }
1560 #endif
1561 
1562 static void
arc_buf_unwatch(arc_buf_t * buf)1563 arc_buf_unwatch(arc_buf_t *buf)
1564 {
1565 #ifndef _KERNEL
1566 	if (arc_watch) {
1567 		ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1568 		    PROT_READ | PROT_WRITE));
1569 	}
1570 #else
1571 	(void) buf;
1572 #endif
1573 }
1574 
1575 static void
arc_buf_watch(arc_buf_t * buf)1576 arc_buf_watch(arc_buf_t *buf)
1577 {
1578 #ifndef _KERNEL
1579 	if (arc_watch)
1580 		ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1581 		    PROT_READ));
1582 #else
1583 	(void) buf;
1584 #endif
1585 }
1586 
1587 static arc_buf_contents_t
arc_buf_type(arc_buf_hdr_t * hdr)1588 arc_buf_type(arc_buf_hdr_t *hdr)
1589 {
1590 	arc_buf_contents_t type;
1591 	if (HDR_ISTYPE_METADATA(hdr)) {
1592 		type = ARC_BUFC_METADATA;
1593 	} else {
1594 		type = ARC_BUFC_DATA;
1595 	}
1596 	VERIFY3U(hdr->b_type, ==, type);
1597 	return (type);
1598 }
1599 
1600 boolean_t
arc_is_metadata(arc_buf_t * buf)1601 arc_is_metadata(arc_buf_t *buf)
1602 {
1603 	return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1604 }
1605 
1606 static uint32_t
arc_bufc_to_flags(arc_buf_contents_t type)1607 arc_bufc_to_flags(arc_buf_contents_t type)
1608 {
1609 	switch (type) {
1610 	case ARC_BUFC_DATA:
1611 		/* metadata field is 0 if buffer contains normal data */
1612 		return (0);
1613 	case ARC_BUFC_METADATA:
1614 		return (ARC_FLAG_BUFC_METADATA);
1615 	default:
1616 		break;
1617 	}
1618 	panic("undefined ARC buffer type!");
1619 	return ((uint32_t)-1);
1620 }
1621 
1622 void
arc_buf_thaw(arc_buf_t * buf)1623 arc_buf_thaw(arc_buf_t *buf)
1624 {
1625 	arc_buf_hdr_t *hdr = buf->b_hdr;
1626 
1627 	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1628 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1629 
1630 	arc_cksum_verify(buf);
1631 
1632 	/*
1633 	 * Compressed buffers do not manipulate the b_freeze_cksum.
1634 	 */
1635 	if (ARC_BUF_COMPRESSED(buf))
1636 		return;
1637 
1638 	ASSERT(HDR_HAS_L1HDR(hdr));
1639 	arc_cksum_free(hdr);
1640 	arc_buf_unwatch(buf);
1641 }
1642 
1643 void
arc_buf_freeze(arc_buf_t * buf)1644 arc_buf_freeze(arc_buf_t *buf)
1645 {
1646 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1647 		return;
1648 
1649 	if (ARC_BUF_COMPRESSED(buf))
1650 		return;
1651 
1652 	ASSERT(HDR_HAS_L1HDR(buf->b_hdr));
1653 	arc_cksum_compute(buf);
1654 }
1655 
1656 /*
1657  * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1658  * the following functions should be used to ensure that the flags are
1659  * updated in a thread-safe way. When manipulating the flags either
1660  * the hash_lock must be held or the hdr must be undiscoverable. This
1661  * ensures that we're not racing with any other threads when updating
1662  * the flags.
1663  */
1664 static inline void
arc_hdr_set_flags(arc_buf_hdr_t * hdr,arc_flags_t flags)1665 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1666 {
1667 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1668 	hdr->b_flags |= flags;
1669 }
1670 
1671 static inline void
arc_hdr_clear_flags(arc_buf_hdr_t * hdr,arc_flags_t flags)1672 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1673 {
1674 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1675 	hdr->b_flags &= ~flags;
1676 }
1677 
1678 /*
1679  * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1680  * done in a special way since we have to clear and set bits
1681  * at the same time. Consumers that wish to set the compression bits
1682  * must use this function to ensure that the flags are updated in
1683  * thread-safe manner.
1684  */
1685 static void
arc_hdr_set_compress(arc_buf_hdr_t * hdr,enum zio_compress cmp)1686 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1687 {
1688 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1689 
1690 	/*
1691 	 * Holes and embedded blocks will always have a psize = 0 so
1692 	 * we ignore the compression of the blkptr and set the
1693 	 * want to uncompress them. Mark them as uncompressed.
1694 	 */
1695 	if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1696 		arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1697 		ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1698 	} else {
1699 		arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1700 		ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1701 	}
1702 
1703 	HDR_SET_COMPRESS(hdr, cmp);
1704 	ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1705 }
1706 
1707 /*
1708  * Looks for another buf on the same hdr which has the data decompressed, copies
1709  * from it, and returns true. If no such buf exists, returns false.
1710  */
1711 static boolean_t
arc_buf_try_copy_decompressed_data(arc_buf_t * buf)1712 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1713 {
1714 	arc_buf_hdr_t *hdr = buf->b_hdr;
1715 	boolean_t copied = B_FALSE;
1716 
1717 	ASSERT(HDR_HAS_L1HDR(hdr));
1718 	ASSERT3P(buf->b_data, !=, NULL);
1719 	ASSERT(!ARC_BUF_COMPRESSED(buf));
1720 
1721 	for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1722 	    from = from->b_next) {
1723 		/* can't use our own data buffer */
1724 		if (from == buf) {
1725 			continue;
1726 		}
1727 
1728 		if (!ARC_BUF_COMPRESSED(from)) {
1729 			memcpy(buf->b_data, from->b_data, arc_buf_size(buf));
1730 			copied = B_TRUE;
1731 			break;
1732 		}
1733 	}
1734 
1735 #ifdef ZFS_DEBUG
1736 	/*
1737 	 * There were no decompressed bufs, so there should not be a
1738 	 * checksum on the hdr either.
1739 	 */
1740 	if (zfs_flags & ZFS_DEBUG_MODIFY)
1741 		EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1742 #endif
1743 
1744 	return (copied);
1745 }
1746 
1747 /*
1748  * Allocates an ARC buf header that's in an evicted & L2-cached state.
1749  * This is used during l2arc reconstruction to make empty ARC buffers
1750  * which circumvent the regular disk->arc->l2arc path and instead come
1751  * into being in the reverse order, i.e. l2arc->arc.
1752  */
1753 static arc_buf_hdr_t *
arc_buf_alloc_l2only(size_t size,arc_buf_contents_t type,l2arc_dev_t * dev,dva_t dva,uint64_t daddr,int32_t psize,uint64_t asize,uint64_t birth,enum zio_compress compress,uint8_t complevel,boolean_t protected,boolean_t prefetch,arc_state_type_t arcs_state)1754 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev,
1755     dva_t dva, uint64_t daddr, int32_t psize, uint64_t asize, uint64_t birth,
1756     enum zio_compress compress, uint8_t complevel, boolean_t protected,
1757     boolean_t prefetch, arc_state_type_t arcs_state)
1758 {
1759 	arc_buf_hdr_t	*hdr;
1760 
1761 	ASSERT(size != 0);
1762 	ASSERT(dev->l2ad_vdev != NULL);
1763 
1764 	hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP);
1765 	hdr->b_birth = birth;
1766 	hdr->b_type = type;
1767 	hdr->b_flags = 0;
1768 	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR);
1769 	HDR_SET_LSIZE(hdr, size);
1770 	HDR_SET_PSIZE(hdr, psize);
1771 	HDR_SET_L2SIZE(hdr, asize);
1772 	arc_hdr_set_compress(hdr, compress);
1773 	hdr->b_complevel = complevel;
1774 	if (protected)
1775 		arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
1776 	if (prefetch)
1777 		arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
1778 	hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa);
1779 
1780 	hdr->b_dva = dva;
1781 
1782 	hdr->b_l2hdr.b_dev = dev;
1783 	hdr->b_l2hdr.b_daddr = daddr;
1784 	hdr->b_l2hdr.b_arcs_state = arcs_state;
1785 
1786 	return (hdr);
1787 }
1788 
1789 /*
1790  * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1791  */
1792 static uint64_t
arc_hdr_size(arc_buf_hdr_t * hdr)1793 arc_hdr_size(arc_buf_hdr_t *hdr)
1794 {
1795 	uint64_t size;
1796 
1797 	if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
1798 	    HDR_GET_PSIZE(hdr) > 0) {
1799 		size = HDR_GET_PSIZE(hdr);
1800 	} else {
1801 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1802 		size = HDR_GET_LSIZE(hdr);
1803 	}
1804 	return (size);
1805 }
1806 
1807 static int
arc_hdr_authenticate(arc_buf_hdr_t * hdr,spa_t * spa,uint64_t dsobj)1808 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
1809 {
1810 	int ret;
1811 	uint64_t csize;
1812 	uint64_t lsize = HDR_GET_LSIZE(hdr);
1813 	uint64_t psize = HDR_GET_PSIZE(hdr);
1814 	abd_t *abd = hdr->b_l1hdr.b_pabd;
1815 	boolean_t free_abd = B_FALSE;
1816 
1817 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1818 	ASSERT(HDR_AUTHENTICATED(hdr));
1819 	ASSERT3P(abd, !=, NULL);
1820 
1821 	/*
1822 	 * The MAC is calculated on the compressed data that is stored on disk.
1823 	 * However, if compressed arc is disabled we will only have the
1824 	 * decompressed data available to us now. Compress it into a temporary
1825 	 * abd so we can verify the MAC. The performance overhead of this will
1826 	 * be relatively low, since most objects in an encrypted objset will
1827 	 * be encrypted (instead of authenticated) anyway.
1828 	 */
1829 	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1830 	    !HDR_COMPRESSION_ENABLED(hdr)) {
1831 		abd = NULL;
1832 		csize = zio_compress_data(HDR_GET_COMPRESS(hdr),
1833 		    hdr->b_l1hdr.b_pabd, &abd, lsize, MIN(lsize, psize),
1834 		    hdr->b_complevel);
1835 		if (csize >= lsize || csize > psize) {
1836 			ret = SET_ERROR(EIO);
1837 			return (ret);
1838 		}
1839 		ASSERT3P(abd, !=, NULL);
1840 		abd_zero_off(abd, csize, psize - csize);
1841 		free_abd = B_TRUE;
1842 	}
1843 
1844 	/*
1845 	 * Authentication is best effort. We authenticate whenever the key is
1846 	 * available. If we succeed we clear ARC_FLAG_NOAUTH.
1847 	 */
1848 	if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) {
1849 		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1850 		ASSERT3U(lsize, ==, psize);
1851 		ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd,
1852 		    psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1853 	} else {
1854 		ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize,
1855 		    hdr->b_crypt_hdr.b_mac);
1856 	}
1857 
1858 	if (ret == 0)
1859 		arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH);
1860 	else if (ret == ENOENT)
1861 		ret = 0;
1862 
1863 	if (free_abd)
1864 		abd_free(abd);
1865 
1866 	return (ret);
1867 }
1868 
1869 /*
1870  * This function will take a header that only has raw encrypted data in
1871  * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1872  * b_l1hdr.b_pabd. If designated in the header flags, this function will
1873  * also decompress the data.
1874  */
1875 static int
arc_hdr_decrypt(arc_buf_hdr_t * hdr,spa_t * spa,const zbookmark_phys_t * zb)1876 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb)
1877 {
1878 	int ret;
1879 	abd_t *cabd = NULL;
1880 	boolean_t no_crypt = B_FALSE;
1881 	boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1882 
1883 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1884 	ASSERT(HDR_ENCRYPTED(hdr));
1885 
1886 	arc_hdr_alloc_abd(hdr, 0);
1887 
1888 	ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot,
1889 	    B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv,
1890 	    hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd,
1891 	    hdr->b_crypt_hdr.b_rabd, &no_crypt);
1892 	if (ret != 0)
1893 		goto error;
1894 
1895 	if (no_crypt) {
1896 		abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd,
1897 		    HDR_GET_PSIZE(hdr));
1898 	}
1899 
1900 	/*
1901 	 * If this header has disabled arc compression but the b_pabd is
1902 	 * compressed after decrypting it, we need to decompress the newly
1903 	 * decrypted data.
1904 	 */
1905 	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1906 	    !HDR_COMPRESSION_ENABLED(hdr)) {
1907 		/*
1908 		 * We want to make sure that we are correctly honoring the
1909 		 * zfs_abd_scatter_enabled setting, so we allocate an abd here
1910 		 * and then loan a buffer from it, rather than allocating a
1911 		 * linear buffer and wrapping it in an abd later.
1912 		 */
1913 		cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 0);
1914 
1915 		ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1916 		    hdr->b_l1hdr.b_pabd, cabd, HDR_GET_PSIZE(hdr),
1917 		    HDR_GET_LSIZE(hdr), &hdr->b_complevel);
1918 		if (ret != 0) {
1919 			goto error;
1920 		}
1921 
1922 		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
1923 		    arc_hdr_size(hdr), hdr);
1924 		hdr->b_l1hdr.b_pabd = cabd;
1925 	}
1926 
1927 	return (0);
1928 
1929 error:
1930 	arc_hdr_free_abd(hdr, B_FALSE);
1931 	if (cabd != NULL)
1932 		arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
1933 
1934 	return (ret);
1935 }
1936 
1937 /*
1938  * This function is called during arc_buf_fill() to prepare the header's
1939  * abd plaintext pointer for use. This involves authenticated protected
1940  * data and decrypting encrypted data into the plaintext abd.
1941  */
1942 static int
arc_fill_hdr_crypt(arc_buf_hdr_t * hdr,kmutex_t * hash_lock,spa_t * spa,const zbookmark_phys_t * zb,boolean_t noauth)1943 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa,
1944     const zbookmark_phys_t *zb, boolean_t noauth)
1945 {
1946 	int ret;
1947 
1948 	ASSERT(HDR_PROTECTED(hdr));
1949 
1950 	if (hash_lock != NULL)
1951 		mutex_enter(hash_lock);
1952 
1953 	if (HDR_NOAUTH(hdr) && !noauth) {
1954 		/*
1955 		 * The caller requested authenticated data but our data has
1956 		 * not been authenticated yet. Verify the MAC now if we can.
1957 		 */
1958 		ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset);
1959 		if (ret != 0)
1960 			goto error;
1961 	} else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) {
1962 		/*
1963 		 * If we only have the encrypted version of the data, but the
1964 		 * unencrypted version was requested we take this opportunity
1965 		 * to store the decrypted version in the header for future use.
1966 		 */
1967 		ret = arc_hdr_decrypt(hdr, spa, zb);
1968 		if (ret != 0)
1969 			goto error;
1970 	}
1971 
1972 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1973 
1974 	if (hash_lock != NULL)
1975 		mutex_exit(hash_lock);
1976 
1977 	return (0);
1978 
1979 error:
1980 	if (hash_lock != NULL)
1981 		mutex_exit(hash_lock);
1982 
1983 	return (ret);
1984 }
1985 
1986 /*
1987  * This function is used by the dbuf code to decrypt bonus buffers in place.
1988  * The dbuf code itself doesn't have any locking for decrypting a shared dnode
1989  * block, so we use the hash lock here to protect against concurrent calls to
1990  * arc_buf_fill().
1991  */
1992 static void
arc_buf_untransform_in_place(arc_buf_t * buf)1993 arc_buf_untransform_in_place(arc_buf_t *buf)
1994 {
1995 	arc_buf_hdr_t *hdr = buf->b_hdr;
1996 
1997 	ASSERT(HDR_ENCRYPTED(hdr));
1998 	ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
1999 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2000 	ASSERT3PF(hdr->b_l1hdr.b_pabd, !=, NULL, "hdr %px buf %px", hdr, buf);
2001 
2002 	zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data,
2003 	    arc_buf_size(buf));
2004 	buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
2005 	buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2006 }
2007 
2008 /*
2009  * Given a buf that has a data buffer attached to it, this function will
2010  * efficiently fill the buf with data of the specified compression setting from
2011  * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
2012  * are already sharing a data buf, no copy is performed.
2013  *
2014  * If the buf is marked as compressed but uncompressed data was requested, this
2015  * will allocate a new data buffer for the buf, remove that flag, and fill the
2016  * buf with uncompressed data. You can't request a compressed buf on a hdr with
2017  * uncompressed data, and (since we haven't added support for it yet) if you
2018  * want compressed data your buf must already be marked as compressed and have
2019  * the correct-sized data buffer.
2020  */
2021 static int
arc_buf_fill(arc_buf_t * buf,spa_t * spa,const zbookmark_phys_t * zb,arc_fill_flags_t flags)2022 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2023     arc_fill_flags_t flags)
2024 {
2025 	int error = 0;
2026 	arc_buf_hdr_t *hdr = buf->b_hdr;
2027 	boolean_t hdr_compressed =
2028 	    (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
2029 	boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0;
2030 	boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0;
2031 	dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
2032 	kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr);
2033 
2034 	ASSERT3P(buf->b_data, !=, NULL);
2035 	IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf));
2036 	IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
2037 	IMPLY(encrypted, HDR_ENCRYPTED(hdr));
2038 	IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf));
2039 	IMPLY(encrypted, ARC_BUF_COMPRESSED(buf));
2040 	IMPLY(encrypted, !arc_buf_is_shared(buf));
2041 
2042 	/*
2043 	 * If the caller wanted encrypted data we just need to copy it from
2044 	 * b_rabd and potentially byteswap it. We won't be able to do any
2045 	 * further transforms on it.
2046 	 */
2047 	if (encrypted) {
2048 		ASSERT(HDR_HAS_RABD(hdr));
2049 		abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd,
2050 		    HDR_GET_PSIZE(hdr));
2051 		goto byteswap;
2052 	}
2053 
2054 	/*
2055 	 * Adjust encrypted and authenticated headers to accommodate
2056 	 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are
2057 	 * allowed to fail decryption due to keys not being loaded
2058 	 * without being marked as an IO error.
2059 	 */
2060 	if (HDR_PROTECTED(hdr)) {
2061 		error = arc_fill_hdr_crypt(hdr, hash_lock, spa,
2062 		    zb, !!(flags & ARC_FILL_NOAUTH));
2063 		if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) {
2064 			return (error);
2065 		} else if (error != 0) {
2066 			if (hash_lock != NULL)
2067 				mutex_enter(hash_lock);
2068 			arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2069 			if (hash_lock != NULL)
2070 				mutex_exit(hash_lock);
2071 			return (error);
2072 		}
2073 	}
2074 
2075 	/*
2076 	 * There is a special case here for dnode blocks which are
2077 	 * decrypting their bonus buffers. These blocks may request to
2078 	 * be decrypted in-place. This is necessary because there may
2079 	 * be many dnodes pointing into this buffer and there is
2080 	 * currently no method to synchronize replacing the backing
2081 	 * b_data buffer and updating all of the pointers. Here we use
2082 	 * the hash lock to ensure there are no races. If the need
2083 	 * arises for other types to be decrypted in-place, they must
2084 	 * add handling here as well.
2085 	 */
2086 	if ((flags & ARC_FILL_IN_PLACE) != 0) {
2087 		ASSERT(!hdr_compressed);
2088 		ASSERT(!compressed);
2089 		ASSERT(!encrypted);
2090 
2091 		if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) {
2092 			ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
2093 
2094 			if (hash_lock != NULL)
2095 				mutex_enter(hash_lock);
2096 			arc_buf_untransform_in_place(buf);
2097 			if (hash_lock != NULL)
2098 				mutex_exit(hash_lock);
2099 
2100 			/* Compute the hdr's checksum if necessary */
2101 			arc_cksum_compute(buf);
2102 		}
2103 
2104 		return (0);
2105 	}
2106 
2107 	if (hdr_compressed == compressed) {
2108 		if (ARC_BUF_SHARED(buf)) {
2109 			ASSERT(arc_buf_is_shared(buf));
2110 		} else {
2111 			abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
2112 			    arc_buf_size(buf));
2113 		}
2114 	} else {
2115 		ASSERT(hdr_compressed);
2116 		ASSERT(!compressed);
2117 
2118 		/*
2119 		 * If the buf is sharing its data with the hdr, unlink it and
2120 		 * allocate a new data buffer for the buf.
2121 		 */
2122 		if (ARC_BUF_SHARED(buf)) {
2123 			ASSERTF(ARC_BUF_COMPRESSED(buf),
2124 			"buf %p was uncompressed", buf);
2125 
2126 			/* We need to give the buf its own b_data */
2127 			buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2128 			buf->b_data =
2129 			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2130 			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2131 
2132 			/* Previously overhead was 0; just add new overhead */
2133 			ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2134 		} else if (ARC_BUF_COMPRESSED(buf)) {
2135 			ASSERT(!arc_buf_is_shared(buf));
2136 
2137 			/* We need to reallocate the buf's b_data */
2138 			arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
2139 			    buf);
2140 			buf->b_data =
2141 			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2142 
2143 			/* We increased the size of b_data; update overhead */
2144 			ARCSTAT_INCR(arcstat_overhead_size,
2145 			    HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2146 		}
2147 
2148 		/*
2149 		 * Regardless of the buf's previous compression settings, it
2150 		 * should not be compressed at the end of this function.
2151 		 */
2152 		buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2153 
2154 		/*
2155 		 * Try copying the data from another buf which already has a
2156 		 * decompressed version. If that's not possible, it's time to
2157 		 * bite the bullet and decompress the data from the hdr.
2158 		 */
2159 		if (arc_buf_try_copy_decompressed_data(buf)) {
2160 			/* Skip byteswapping and checksumming (already done) */
2161 			return (0);
2162 		} else {
2163 			abd_t dabd;
2164 			abd_get_from_buf_struct(&dabd, buf->b_data,
2165 			    HDR_GET_LSIZE(hdr));
2166 			error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2167 			    hdr->b_l1hdr.b_pabd, &dabd,
2168 			    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr),
2169 			    &hdr->b_complevel);
2170 			abd_free(&dabd);
2171 
2172 			/*
2173 			 * Absent hardware errors or software bugs, this should
2174 			 * be impossible, but log it anyway so we can debug it.
2175 			 */
2176 			if (error != 0) {
2177 				zfs_dbgmsg(
2178 				    "hdr %px, compress %d, psize %d, lsize %d",
2179 				    hdr, arc_hdr_get_compress(hdr),
2180 				    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2181 				if (hash_lock != NULL)
2182 					mutex_enter(hash_lock);
2183 				arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2184 				if (hash_lock != NULL)
2185 					mutex_exit(hash_lock);
2186 				return (SET_ERROR(EIO));
2187 			}
2188 		}
2189 	}
2190 
2191 byteswap:
2192 	/* Byteswap the buf's data if necessary */
2193 	if (bswap != DMU_BSWAP_NUMFUNCS) {
2194 		ASSERT(!HDR_SHARED_DATA(hdr));
2195 		ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2196 		dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2197 	}
2198 
2199 	/* Compute the hdr's checksum if necessary */
2200 	arc_cksum_compute(buf);
2201 
2202 	return (0);
2203 }
2204 
2205 /*
2206  * If this function is being called to decrypt an encrypted buffer or verify an
2207  * authenticated one, the key must be loaded and a mapping must be made
2208  * available in the keystore via spa_keystore_create_mapping() or one of its
2209  * callers.
2210  */
2211 int
arc_untransform(arc_buf_t * buf,spa_t * spa,const zbookmark_phys_t * zb,boolean_t in_place)2212 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2213     boolean_t in_place)
2214 {
2215 	int ret;
2216 	arc_fill_flags_t flags = 0;
2217 
2218 	if (in_place)
2219 		flags |= ARC_FILL_IN_PLACE;
2220 
2221 	ret = arc_buf_fill(buf, spa, zb, flags);
2222 	if (ret == ECKSUM) {
2223 		/*
2224 		 * Convert authentication and decryption errors to EIO
2225 		 * (and generate an ereport) before leaving the ARC.
2226 		 */
2227 		ret = SET_ERROR(EIO);
2228 		spa_log_error(spa, zb, buf->b_hdr->b_birth);
2229 		(void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
2230 		    spa, NULL, zb, NULL, 0);
2231 	}
2232 
2233 	return (ret);
2234 }
2235 
2236 /*
2237  * Increment the amount of evictable space in the arc_state_t's refcount.
2238  * We account for the space used by the hdr and the arc buf individually
2239  * so that we can add and remove them from the refcount individually.
2240  */
2241 static void
arc_evictable_space_increment(arc_buf_hdr_t * hdr,arc_state_t * state)2242 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2243 {
2244 	arc_buf_contents_t type = arc_buf_type(hdr);
2245 
2246 	ASSERT(HDR_HAS_L1HDR(hdr));
2247 
2248 	if (GHOST_STATE(state)) {
2249 		ASSERT0P(hdr->b_l1hdr.b_buf);
2250 		ASSERT0P(hdr->b_l1hdr.b_pabd);
2251 		ASSERT(!HDR_HAS_RABD(hdr));
2252 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2253 		    HDR_GET_LSIZE(hdr), hdr);
2254 		return;
2255 	}
2256 
2257 	if (hdr->b_l1hdr.b_pabd != NULL) {
2258 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2259 		    arc_hdr_size(hdr), hdr);
2260 	}
2261 	if (HDR_HAS_RABD(hdr)) {
2262 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2263 		    HDR_GET_PSIZE(hdr), hdr);
2264 	}
2265 
2266 	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2267 	    buf = buf->b_next) {
2268 		if (ARC_BUF_SHARED(buf))
2269 			continue;
2270 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2271 		    arc_buf_size(buf), buf);
2272 	}
2273 }
2274 
2275 /*
2276  * Decrement the amount of evictable space in the arc_state_t's refcount.
2277  * We account for the space used by the hdr and the arc buf individually
2278  * so that we can add and remove them from the refcount individually.
2279  */
2280 static void
arc_evictable_space_decrement(arc_buf_hdr_t * hdr,arc_state_t * state)2281 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2282 {
2283 	arc_buf_contents_t type = arc_buf_type(hdr);
2284 
2285 	ASSERT(HDR_HAS_L1HDR(hdr));
2286 
2287 	if (GHOST_STATE(state)) {
2288 		ASSERT0P(hdr->b_l1hdr.b_buf);
2289 		ASSERT0P(hdr->b_l1hdr.b_pabd);
2290 		ASSERT(!HDR_HAS_RABD(hdr));
2291 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2292 		    HDR_GET_LSIZE(hdr), hdr);
2293 		return;
2294 	}
2295 
2296 	if (hdr->b_l1hdr.b_pabd != NULL) {
2297 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2298 		    arc_hdr_size(hdr), hdr);
2299 	}
2300 	if (HDR_HAS_RABD(hdr)) {
2301 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2302 		    HDR_GET_PSIZE(hdr), hdr);
2303 	}
2304 
2305 	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2306 	    buf = buf->b_next) {
2307 		if (ARC_BUF_SHARED(buf))
2308 			continue;
2309 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2310 		    arc_buf_size(buf), buf);
2311 	}
2312 }
2313 
2314 /*
2315  * Add a reference to this hdr indicating that someone is actively
2316  * referencing that memory. When the refcount transitions from 0 to 1,
2317  * we remove it from the respective arc_state_t list to indicate that
2318  * it is not evictable.
2319  */
2320 static void
add_reference(arc_buf_hdr_t * hdr,const void * tag)2321 add_reference(arc_buf_hdr_t *hdr, const void *tag)
2322 {
2323 	arc_state_t *state = hdr->b_l1hdr.b_state;
2324 
2325 	ASSERT(HDR_HAS_L1HDR(hdr));
2326 	if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) {
2327 		ASSERT(state == arc_anon);
2328 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2329 		ASSERT0P(hdr->b_l1hdr.b_buf);
2330 	}
2331 
2332 	if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2333 	    state != arc_anon && state != arc_l2c_only) {
2334 		/* We don't use the L2-only state list. */
2335 		multilist_remove(&state->arcs_list[arc_buf_type(hdr)], hdr);
2336 		arc_evictable_space_decrement(hdr, state);
2337 	}
2338 }
2339 
2340 /*
2341  * Remove a reference from this hdr. When the reference transitions from
2342  * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2343  * list making it eligible for eviction.
2344  */
2345 static int
remove_reference(arc_buf_hdr_t * hdr,const void * tag)2346 remove_reference(arc_buf_hdr_t *hdr, const void *tag)
2347 {
2348 	int cnt;
2349 	arc_state_t *state = hdr->b_l1hdr.b_state;
2350 
2351 	ASSERT(HDR_HAS_L1HDR(hdr));
2352 	ASSERT(state == arc_anon || MUTEX_HELD(HDR_LOCK(hdr)));
2353 	ASSERT(!GHOST_STATE(state));	/* arc_l2c_only counts as a ghost. */
2354 
2355 	if ((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) != 0)
2356 		return (cnt);
2357 
2358 	if (state == arc_anon) {
2359 		arc_hdr_destroy(hdr);
2360 		return (0);
2361 	}
2362 	if (state == arc_uncached && !HDR_PREFETCH(hdr)) {
2363 		arc_change_state(arc_anon, hdr);
2364 		arc_hdr_destroy(hdr);
2365 		return (0);
2366 	}
2367 	multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr);
2368 	arc_evictable_space_increment(hdr, state);
2369 	return (0);
2370 }
2371 
2372 /*
2373  * Returns detailed information about a specific arc buffer.  When the
2374  * state_index argument is set the function will calculate the arc header
2375  * list position for its arc state.  Since this requires a linear traversal
2376  * callers are strongly encourage not to do this.  However, it can be helpful
2377  * for targeted analysis so the functionality is provided.
2378  */
2379 void
arc_buf_info(arc_buf_t * ab,arc_buf_info_t * abi,int state_index)2380 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
2381 {
2382 	(void) state_index;
2383 	arc_buf_hdr_t *hdr = ab->b_hdr;
2384 	l1arc_buf_hdr_t *l1hdr = NULL;
2385 	l2arc_buf_hdr_t *l2hdr = NULL;
2386 	arc_state_t *state = NULL;
2387 
2388 	memset(abi, 0, sizeof (arc_buf_info_t));
2389 
2390 	if (hdr == NULL)
2391 		return;
2392 
2393 	abi->abi_flags = hdr->b_flags;
2394 
2395 	if (HDR_HAS_L1HDR(hdr)) {
2396 		l1hdr = &hdr->b_l1hdr;
2397 		state = l1hdr->b_state;
2398 	}
2399 	if (HDR_HAS_L2HDR(hdr))
2400 		l2hdr = &hdr->b_l2hdr;
2401 
2402 	if (l1hdr) {
2403 		abi->abi_bufcnt = 0;
2404 		for (arc_buf_t *buf = l1hdr->b_buf; buf; buf = buf->b_next)
2405 			abi->abi_bufcnt++;
2406 		abi->abi_access = l1hdr->b_arc_access;
2407 		abi->abi_mru_hits = l1hdr->b_mru_hits;
2408 		abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
2409 		abi->abi_mfu_hits = l1hdr->b_mfu_hits;
2410 		abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
2411 		abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt);
2412 	}
2413 
2414 	if (l2hdr) {
2415 		abi->abi_l2arc_dattr = l2hdr->b_daddr;
2416 		abi->abi_l2arc_hits = l2hdr->b_hits;
2417 	}
2418 
2419 	abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
2420 	abi->abi_state_contents = arc_buf_type(hdr);
2421 	abi->abi_size = arc_hdr_size(hdr);
2422 }
2423 
2424 /*
2425  * Move the supplied buffer to the indicated state. The hash lock
2426  * for the buffer must be held by the caller.
2427  */
2428 static void
arc_change_state(arc_state_t * new_state,arc_buf_hdr_t * hdr)2429 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr)
2430 {
2431 	arc_state_t *old_state;
2432 	int64_t refcnt;
2433 	boolean_t update_old, update_new;
2434 	arc_buf_contents_t type = arc_buf_type(hdr);
2435 
2436 	/*
2437 	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2438 	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
2439 	 * L1 hdr doesn't always exist when we change state to arc_anon before
2440 	 * destroying a header, in which case reallocating to add the L1 hdr is
2441 	 * pointless.
2442 	 */
2443 	if (HDR_HAS_L1HDR(hdr)) {
2444 		old_state = hdr->b_l1hdr.b_state;
2445 		refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt);
2446 		update_old = (hdr->b_l1hdr.b_buf != NULL ||
2447 		    hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
2448 
2449 		IMPLY(GHOST_STATE(old_state), hdr->b_l1hdr.b_buf == NULL);
2450 		IMPLY(GHOST_STATE(new_state), hdr->b_l1hdr.b_buf == NULL);
2451 		IMPLY(old_state == arc_anon, hdr->b_l1hdr.b_buf == NULL ||
2452 		    ARC_BUF_LAST(hdr->b_l1hdr.b_buf));
2453 	} else {
2454 		old_state = arc_l2c_only;
2455 		refcnt = 0;
2456 		update_old = B_FALSE;
2457 	}
2458 	update_new = update_old;
2459 	if (GHOST_STATE(old_state))
2460 		update_old = B_TRUE;
2461 	if (GHOST_STATE(new_state))
2462 		update_new = B_TRUE;
2463 
2464 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
2465 	ASSERT3P(new_state, !=, old_state);
2466 
2467 	/*
2468 	 * If this buffer is evictable, transfer it from the
2469 	 * old state list to the new state list.
2470 	 */
2471 	if (refcnt == 0) {
2472 		if (old_state != arc_anon && old_state != arc_l2c_only) {
2473 			ASSERT(HDR_HAS_L1HDR(hdr));
2474 			/* remove_reference() saves on insert. */
2475 			if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2476 				multilist_remove(&old_state->arcs_list[type],
2477 				    hdr);
2478 				arc_evictable_space_decrement(hdr, old_state);
2479 			}
2480 		}
2481 		if (new_state != arc_anon && new_state != arc_l2c_only) {
2482 			/*
2483 			 * An L1 header always exists here, since if we're
2484 			 * moving to some L1-cached state (i.e. not l2c_only or
2485 			 * anonymous), we realloc the header to add an L1hdr
2486 			 * beforehand.
2487 			 */
2488 			ASSERT(HDR_HAS_L1HDR(hdr));
2489 			multilist_insert(&new_state->arcs_list[type], hdr);
2490 			arc_evictable_space_increment(hdr, new_state);
2491 		}
2492 	}
2493 
2494 	ASSERT(!HDR_EMPTY(hdr));
2495 	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2496 		buf_hash_remove(hdr);
2497 
2498 	/* adjust state sizes (ignore arc_l2c_only) */
2499 
2500 	if (update_new && new_state != arc_l2c_only) {
2501 		ASSERT(HDR_HAS_L1HDR(hdr));
2502 		if (GHOST_STATE(new_state)) {
2503 
2504 			/*
2505 			 * When moving a header to a ghost state, we first
2506 			 * remove all arc buffers. Thus, we'll have no arc
2507 			 * buffer to use for the reference. As a result, we
2508 			 * use the arc header pointer for the reference.
2509 			 */
2510 			(void) zfs_refcount_add_many(
2511 			    &new_state->arcs_size[type],
2512 			    HDR_GET_LSIZE(hdr), hdr);
2513 			ASSERT0P(hdr->b_l1hdr.b_pabd);
2514 			ASSERT(!HDR_HAS_RABD(hdr));
2515 		} else {
2516 
2517 			/*
2518 			 * Each individual buffer holds a unique reference,
2519 			 * thus we must remove each of these references one
2520 			 * at a time.
2521 			 */
2522 			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2523 			    buf = buf->b_next) {
2524 
2525 				/*
2526 				 * When the arc_buf_t is sharing the data
2527 				 * block with the hdr, the owner of the
2528 				 * reference belongs to the hdr. Only
2529 				 * add to the refcount if the arc_buf_t is
2530 				 * not shared.
2531 				 */
2532 				if (ARC_BUF_SHARED(buf))
2533 					continue;
2534 
2535 				(void) zfs_refcount_add_many(
2536 				    &new_state->arcs_size[type],
2537 				    arc_buf_size(buf), buf);
2538 			}
2539 
2540 			if (hdr->b_l1hdr.b_pabd != NULL) {
2541 				(void) zfs_refcount_add_many(
2542 				    &new_state->arcs_size[type],
2543 				    arc_hdr_size(hdr), hdr);
2544 			}
2545 
2546 			if (HDR_HAS_RABD(hdr)) {
2547 				(void) zfs_refcount_add_many(
2548 				    &new_state->arcs_size[type],
2549 				    HDR_GET_PSIZE(hdr), hdr);
2550 			}
2551 		}
2552 	}
2553 
2554 	if (update_old && old_state != arc_l2c_only) {
2555 		ASSERT(HDR_HAS_L1HDR(hdr));
2556 		if (GHOST_STATE(old_state)) {
2557 			ASSERT0P(hdr->b_l1hdr.b_pabd);
2558 			ASSERT(!HDR_HAS_RABD(hdr));
2559 
2560 			/*
2561 			 * When moving a header off of a ghost state,
2562 			 * the header will not contain any arc buffers.
2563 			 * We use the arc header pointer for the reference
2564 			 * which is exactly what we did when we put the
2565 			 * header on the ghost state.
2566 			 */
2567 
2568 			(void) zfs_refcount_remove_many(
2569 			    &old_state->arcs_size[type],
2570 			    HDR_GET_LSIZE(hdr), hdr);
2571 		} else {
2572 
2573 			/*
2574 			 * Each individual buffer holds a unique reference,
2575 			 * thus we must remove each of these references one
2576 			 * at a time.
2577 			 */
2578 			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2579 			    buf = buf->b_next) {
2580 
2581 				/*
2582 				 * When the arc_buf_t is sharing the data
2583 				 * block with the hdr, the owner of the
2584 				 * reference belongs to the hdr. Only
2585 				 * add to the refcount if the arc_buf_t is
2586 				 * not shared.
2587 				 */
2588 				if (ARC_BUF_SHARED(buf))
2589 					continue;
2590 
2591 				(void) zfs_refcount_remove_many(
2592 				    &old_state->arcs_size[type],
2593 				    arc_buf_size(buf), buf);
2594 			}
2595 			ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
2596 			    HDR_HAS_RABD(hdr));
2597 
2598 			if (hdr->b_l1hdr.b_pabd != NULL) {
2599 				(void) zfs_refcount_remove_many(
2600 				    &old_state->arcs_size[type],
2601 				    arc_hdr_size(hdr), hdr);
2602 			}
2603 
2604 			if (HDR_HAS_RABD(hdr)) {
2605 				(void) zfs_refcount_remove_many(
2606 				    &old_state->arcs_size[type],
2607 				    HDR_GET_PSIZE(hdr), hdr);
2608 			}
2609 		}
2610 	}
2611 
2612 	if (HDR_HAS_L1HDR(hdr)) {
2613 		hdr->b_l1hdr.b_state = new_state;
2614 
2615 		if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) {
2616 			l2arc_hdr_arcstats_decrement_state(hdr);
2617 			hdr->b_l2hdr.b_arcs_state = new_state->arcs_state;
2618 			l2arc_hdr_arcstats_increment_state(hdr);
2619 		}
2620 	}
2621 }
2622 
2623 void
arc_space_consume(uint64_t space,arc_space_type_t type)2624 arc_space_consume(uint64_t space, arc_space_type_t type)
2625 {
2626 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2627 
2628 	switch (type) {
2629 	default:
2630 		break;
2631 	case ARC_SPACE_DATA:
2632 		ARCSTAT_INCR(arcstat_data_size, space);
2633 		break;
2634 	case ARC_SPACE_META:
2635 		ARCSTAT_INCR(arcstat_metadata_size, space);
2636 		break;
2637 	case ARC_SPACE_BONUS:
2638 		ARCSTAT_INCR(arcstat_bonus_size, space);
2639 		break;
2640 	case ARC_SPACE_DNODE:
2641 		aggsum_add(&arc_sums.arcstat_dnode_size, space);
2642 		break;
2643 	case ARC_SPACE_DBUF:
2644 		ARCSTAT_INCR(arcstat_dbuf_size, space);
2645 		break;
2646 	case ARC_SPACE_HDRS:
2647 		ARCSTAT_INCR(arcstat_hdr_size, space);
2648 		break;
2649 	case ARC_SPACE_L2HDRS:
2650 		aggsum_add(&arc_sums.arcstat_l2_hdr_size, space);
2651 		break;
2652 	case ARC_SPACE_ABD_CHUNK_WASTE:
2653 		/*
2654 		 * Note: this includes space wasted by all scatter ABD's, not
2655 		 * just those allocated by the ARC.  But the vast majority of
2656 		 * scatter ABD's come from the ARC, because other users are
2657 		 * very short-lived.
2658 		 */
2659 		ARCSTAT_INCR(arcstat_abd_chunk_waste_size, space);
2660 		break;
2661 	}
2662 
2663 	if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE)
2664 		ARCSTAT_INCR(arcstat_meta_used, space);
2665 
2666 	aggsum_add(&arc_sums.arcstat_size, space);
2667 }
2668 
2669 void
arc_space_return(uint64_t space,arc_space_type_t type)2670 arc_space_return(uint64_t space, arc_space_type_t type)
2671 {
2672 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2673 
2674 	switch (type) {
2675 	default:
2676 		break;
2677 	case ARC_SPACE_DATA:
2678 		ARCSTAT_INCR(arcstat_data_size, -space);
2679 		break;
2680 	case ARC_SPACE_META:
2681 		ARCSTAT_INCR(arcstat_metadata_size, -space);
2682 		break;
2683 	case ARC_SPACE_BONUS:
2684 		ARCSTAT_INCR(arcstat_bonus_size, -space);
2685 		break;
2686 	case ARC_SPACE_DNODE:
2687 		aggsum_add(&arc_sums.arcstat_dnode_size, -space);
2688 		break;
2689 	case ARC_SPACE_DBUF:
2690 		ARCSTAT_INCR(arcstat_dbuf_size, -space);
2691 		break;
2692 	case ARC_SPACE_HDRS:
2693 		ARCSTAT_INCR(arcstat_hdr_size, -space);
2694 		break;
2695 	case ARC_SPACE_L2HDRS:
2696 		aggsum_add(&arc_sums.arcstat_l2_hdr_size, -space);
2697 		break;
2698 	case ARC_SPACE_ABD_CHUNK_WASTE:
2699 		ARCSTAT_INCR(arcstat_abd_chunk_waste_size, -space);
2700 		break;
2701 	}
2702 
2703 	if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE)
2704 		ARCSTAT_INCR(arcstat_meta_used, -space);
2705 
2706 	ASSERT(aggsum_compare(&arc_sums.arcstat_size, space) >= 0);
2707 	aggsum_add(&arc_sums.arcstat_size, -space);
2708 }
2709 
2710 /*
2711  * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2712  * with the hdr's b_pabd.
2713  */
2714 static boolean_t
arc_can_share(arc_buf_hdr_t * hdr,arc_buf_t * buf)2715 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2716 {
2717 	/*
2718 	 * The criteria for sharing a hdr's data are:
2719 	 * 1. the buffer is not encrypted
2720 	 * 2. the hdr's compression matches the buf's compression
2721 	 * 3. the hdr doesn't need to be byteswapped
2722 	 * 4. the hdr isn't already being shared
2723 	 * 5. the buf is either compressed or it is the last buf in the hdr list
2724 	 *
2725 	 * Criterion #5 maintains the invariant that shared uncompressed
2726 	 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2727 	 * might ask, "if a compressed buf is allocated first, won't that be the
2728 	 * last thing in the list?", but in that case it's impossible to create
2729 	 * a shared uncompressed buf anyway (because the hdr must be compressed
2730 	 * to have the compressed buf). You might also think that #3 is
2731 	 * sufficient to make this guarantee, however it's possible
2732 	 * (specifically in the rare L2ARC write race mentioned in
2733 	 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2734 	 * is shareable, but wasn't at the time of its allocation. Rather than
2735 	 * allow a new shared uncompressed buf to be created and then shuffle
2736 	 * the list around to make it the last element, this simply disallows
2737 	 * sharing if the new buf isn't the first to be added.
2738 	 */
2739 	ASSERT3P(buf->b_hdr, ==, hdr);
2740 	boolean_t hdr_compressed =
2741 	    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF;
2742 	boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2743 	return (!ARC_BUF_ENCRYPTED(buf) &&
2744 	    buf_compressed == hdr_compressed &&
2745 	    hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2746 	    !HDR_SHARED_DATA(hdr) &&
2747 	    (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2748 }
2749 
2750 /*
2751  * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2752  * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2753  * copy was made successfully, or an error code otherwise.
2754  */
2755 static int
arc_buf_alloc_impl(arc_buf_hdr_t * hdr,spa_t * spa,const zbookmark_phys_t * zb,const void * tag,boolean_t encrypted,boolean_t compressed,boolean_t noauth,boolean_t fill,arc_buf_t ** ret)2756 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb,
2757     const void *tag, boolean_t encrypted, boolean_t compressed,
2758     boolean_t noauth, boolean_t fill, arc_buf_t **ret)
2759 {
2760 	arc_buf_t *buf;
2761 	arc_fill_flags_t flags = ARC_FILL_LOCKED;
2762 
2763 	ASSERT(HDR_HAS_L1HDR(hdr));
2764 	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2765 	VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2766 	    hdr->b_type == ARC_BUFC_METADATA);
2767 	ASSERT3P(ret, !=, NULL);
2768 	ASSERT0P(*ret);
2769 	IMPLY(encrypted, compressed);
2770 
2771 	buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2772 	buf->b_hdr = hdr;
2773 	buf->b_data = NULL;
2774 	buf->b_next = hdr->b_l1hdr.b_buf;
2775 	buf->b_flags = 0;
2776 
2777 	add_reference(hdr, tag);
2778 
2779 	/*
2780 	 * We're about to change the hdr's b_flags. We must either
2781 	 * hold the hash_lock or be undiscoverable.
2782 	 */
2783 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2784 
2785 	/*
2786 	 * Only honor requests for compressed bufs if the hdr is actually
2787 	 * compressed. This must be overridden if the buffer is encrypted since
2788 	 * encrypted buffers cannot be decompressed.
2789 	 */
2790 	if (encrypted) {
2791 		buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2792 		buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED;
2793 		flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED;
2794 	} else if (compressed &&
2795 	    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
2796 		buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2797 		flags |= ARC_FILL_COMPRESSED;
2798 	}
2799 
2800 	if (noauth) {
2801 		ASSERT0(encrypted);
2802 		flags |= ARC_FILL_NOAUTH;
2803 	}
2804 
2805 	/*
2806 	 * If the hdr's data can be shared then we share the data buffer and
2807 	 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2808 	 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2809 	 * buffer to store the buf's data.
2810 	 *
2811 	 * There are two additional restrictions here because we're sharing
2812 	 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2813 	 * actively involved in an L2ARC write, because if this buf is used by
2814 	 * an arc_write() then the hdr's data buffer will be released when the
2815 	 * write completes, even though the L2ARC write might still be using it.
2816 	 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2817 	 * need to be ABD-aware.  It must be allocated via
2818 	 * zio_[data_]buf_alloc(), not as a page, because we need to be able
2819 	 * to abd_release_ownership_of_buf(), which isn't allowed on "linear
2820 	 * page" buffers because the ABD code needs to handle freeing them
2821 	 * specially.
2822 	 */
2823 	boolean_t can_share = arc_can_share(hdr, buf) &&
2824 	    !HDR_L2_WRITING(hdr) &&
2825 	    hdr->b_l1hdr.b_pabd != NULL &&
2826 	    abd_is_linear(hdr->b_l1hdr.b_pabd) &&
2827 	    !abd_is_linear_page(hdr->b_l1hdr.b_pabd);
2828 
2829 	/* Set up b_data and sharing */
2830 	if (can_share) {
2831 		buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2832 		buf->b_flags |= ARC_BUF_FLAG_SHARED;
2833 		arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2834 	} else {
2835 		buf->b_data =
2836 		    arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2837 		ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2838 	}
2839 	VERIFY3P(buf->b_data, !=, NULL);
2840 
2841 	hdr->b_l1hdr.b_buf = buf;
2842 
2843 	/*
2844 	 * If the user wants the data from the hdr, we need to either copy or
2845 	 * decompress the data.
2846 	 */
2847 	if (fill) {
2848 		ASSERT3P(zb, !=, NULL);
2849 		return (arc_buf_fill(buf, spa, zb, flags));
2850 	}
2851 
2852 	return (0);
2853 }
2854 
2855 static const char *arc_onloan_tag = "onloan";
2856 
2857 static inline void
arc_loaned_bytes_update(int64_t delta)2858 arc_loaned_bytes_update(int64_t delta)
2859 {
2860 	atomic_add_64(&arc_loaned_bytes, delta);
2861 
2862 	/* assert that it did not wrap around */
2863 	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2864 }
2865 
2866 /*
2867  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2868  * flight data by arc_tempreserve_space() until they are "returned". Loaned
2869  * buffers must be returned to the arc before they can be used by the DMU or
2870  * freed.
2871  */
2872 arc_buf_t *
arc_loan_buf(spa_t * spa,boolean_t is_metadata,int size)2873 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2874 {
2875 	arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2876 	    is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2877 
2878 	arc_loaned_bytes_update(arc_buf_size(buf));
2879 
2880 	return (buf);
2881 }
2882 
2883 arc_buf_t *
arc_loan_compressed_buf(spa_t * spa,uint64_t psize,uint64_t lsize,enum zio_compress compression_type,uint8_t complevel)2884 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2885     enum zio_compress compression_type, uint8_t complevel)
2886 {
2887 	arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2888 	    psize, lsize, compression_type, complevel);
2889 
2890 	arc_loaned_bytes_update(arc_buf_size(buf));
2891 
2892 	return (buf);
2893 }
2894 
2895 arc_buf_t *
arc_loan_raw_buf(spa_t * spa,uint64_t dsobj,boolean_t byteorder,const uint8_t * salt,const uint8_t * iv,const uint8_t * mac,dmu_object_type_t ot,uint64_t psize,uint64_t lsize,enum zio_compress compression_type,uint8_t complevel)2896 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder,
2897     const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
2898     dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
2899     enum zio_compress compression_type, uint8_t complevel)
2900 {
2901 	arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj,
2902 	    byteorder, salt, iv, mac, ot, psize, lsize, compression_type,
2903 	    complevel);
2904 
2905 	atomic_add_64(&arc_loaned_bytes, psize);
2906 	return (buf);
2907 }
2908 
2909 
2910 /*
2911  * Return a loaned arc buffer to the arc.
2912  */
2913 void
arc_return_buf(arc_buf_t * buf,const void * tag)2914 arc_return_buf(arc_buf_t *buf, const void *tag)
2915 {
2916 	arc_buf_hdr_t *hdr = buf->b_hdr;
2917 
2918 	ASSERT3P(buf->b_data, !=, NULL);
2919 	ASSERT(HDR_HAS_L1HDR(hdr));
2920 	(void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2921 	(void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2922 
2923 	arc_loaned_bytes_update(-arc_buf_size(buf));
2924 }
2925 
2926 /* Detach an arc_buf from a dbuf (tag) */
2927 void
arc_loan_inuse_buf(arc_buf_t * buf,const void * tag)2928 arc_loan_inuse_buf(arc_buf_t *buf, const void *tag)
2929 {
2930 	arc_buf_hdr_t *hdr = buf->b_hdr;
2931 
2932 	ASSERT3P(buf->b_data, !=, NULL);
2933 	ASSERT(HDR_HAS_L1HDR(hdr));
2934 	(void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2935 	(void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2936 
2937 	arc_loaned_bytes_update(arc_buf_size(buf));
2938 }
2939 
2940 static void
l2arc_free_abd_on_write(abd_t * abd,size_t size,arc_buf_contents_t type)2941 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2942 {
2943 	l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2944 
2945 	df->l2df_abd = abd;
2946 	df->l2df_size = size;
2947 	df->l2df_type = type;
2948 	mutex_enter(&l2arc_free_on_write_mtx);
2949 	list_insert_head(l2arc_free_on_write, df);
2950 	mutex_exit(&l2arc_free_on_write_mtx);
2951 }
2952 
2953 static void
arc_hdr_free_on_write(arc_buf_hdr_t * hdr,boolean_t free_rdata)2954 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata)
2955 {
2956 	arc_state_t *state = hdr->b_l1hdr.b_state;
2957 	arc_buf_contents_t type = arc_buf_type(hdr);
2958 	uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
2959 
2960 	/* protected by hash lock, if in the hash table */
2961 	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2962 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2963 		ASSERT(state != arc_anon && state != arc_l2c_only);
2964 
2965 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2966 		    size, hdr);
2967 	}
2968 	(void) zfs_refcount_remove_many(&state->arcs_size[type], size, hdr);
2969 	if (type == ARC_BUFC_METADATA) {
2970 		arc_space_return(size, ARC_SPACE_META);
2971 	} else {
2972 		ASSERT(type == ARC_BUFC_DATA);
2973 		arc_space_return(size, ARC_SPACE_DATA);
2974 	}
2975 
2976 	if (free_rdata) {
2977 		l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type);
2978 	} else {
2979 		l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2980 	}
2981 }
2982 
2983 /*
2984  * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2985  * data buffer, we transfer the refcount ownership to the hdr and update
2986  * the appropriate kstats.
2987  */
2988 static void
arc_share_buf(arc_buf_hdr_t * hdr,arc_buf_t * buf)2989 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2990 {
2991 	ASSERT(arc_can_share(hdr, buf));
2992 	ASSERT0P(hdr->b_l1hdr.b_pabd);
2993 	ASSERT(!ARC_BUF_ENCRYPTED(buf));
2994 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2995 
2996 	/*
2997 	 * Start sharing the data buffer. We transfer the
2998 	 * refcount ownership to the hdr since it always owns
2999 	 * the refcount whenever an arc_buf_t is shared.
3000 	 */
3001 	zfs_refcount_transfer_ownership_many(
3002 	    &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)],
3003 	    arc_hdr_size(hdr), buf, hdr);
3004 	hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
3005 	abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
3006 	    HDR_ISTYPE_METADATA(hdr));
3007 	arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
3008 	buf->b_flags |= ARC_BUF_FLAG_SHARED;
3009 
3010 	/*
3011 	 * Since we've transferred ownership to the hdr we need
3012 	 * to increment its compressed and uncompressed kstats and
3013 	 * decrement the overhead size.
3014 	 */
3015 	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
3016 	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3017 	ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
3018 }
3019 
3020 static void
arc_unshare_buf(arc_buf_hdr_t * hdr,arc_buf_t * buf)3021 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3022 {
3023 	ASSERT(arc_buf_is_shared(buf));
3024 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3025 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3026 
3027 	/*
3028 	 * We are no longer sharing this buffer so we need
3029 	 * to transfer its ownership to the rightful owner.
3030 	 */
3031 	zfs_refcount_transfer_ownership_many(
3032 	    &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)],
3033 	    arc_hdr_size(hdr), hdr, buf);
3034 	arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3035 	abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
3036 	abd_free(hdr->b_l1hdr.b_pabd);
3037 	hdr->b_l1hdr.b_pabd = NULL;
3038 	buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
3039 
3040 	/*
3041 	 * Since the buffer is no longer shared between
3042 	 * the arc buf and the hdr, count it as overhead.
3043 	 */
3044 	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3045 	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3046 	ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
3047 }
3048 
3049 /*
3050  * Remove an arc_buf_t from the hdr's buf list and return the last
3051  * arc_buf_t on the list. If no buffers remain on the list then return
3052  * NULL.
3053  */
3054 static arc_buf_t *
arc_buf_remove(arc_buf_hdr_t * hdr,arc_buf_t * buf)3055 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3056 {
3057 	ASSERT(HDR_HAS_L1HDR(hdr));
3058 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3059 
3060 	arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
3061 	arc_buf_t *lastbuf = NULL;
3062 
3063 	/*
3064 	 * Remove the buf from the hdr list and locate the last
3065 	 * remaining buffer on the list.
3066 	 */
3067 	while (*bufp != NULL) {
3068 		if (*bufp == buf)
3069 			*bufp = buf->b_next;
3070 
3071 		/*
3072 		 * If we've removed a buffer in the middle of
3073 		 * the list then update the lastbuf and update
3074 		 * bufp.
3075 		 */
3076 		if (*bufp != NULL) {
3077 			lastbuf = *bufp;
3078 			bufp = &(*bufp)->b_next;
3079 		}
3080 	}
3081 	buf->b_next = NULL;
3082 	ASSERT3P(lastbuf, !=, buf);
3083 	IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
3084 
3085 	return (lastbuf);
3086 }
3087 
3088 /*
3089  * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's
3090  * list and free it.
3091  */
3092 static void
arc_buf_destroy_impl(arc_buf_t * buf)3093 arc_buf_destroy_impl(arc_buf_t *buf)
3094 {
3095 	arc_buf_hdr_t *hdr = buf->b_hdr;
3096 
3097 	/*
3098 	 * Free up the data associated with the buf but only if we're not
3099 	 * sharing this with the hdr. If we are sharing it with the hdr, the
3100 	 * hdr is responsible for doing the free.
3101 	 */
3102 	if (buf->b_data != NULL) {
3103 		/*
3104 		 * We're about to change the hdr's b_flags. We must either
3105 		 * hold the hash_lock or be undiscoverable.
3106 		 */
3107 		ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3108 
3109 		arc_cksum_verify(buf);
3110 		arc_buf_unwatch(buf);
3111 
3112 		if (ARC_BUF_SHARED(buf)) {
3113 			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3114 		} else {
3115 			ASSERT(!arc_buf_is_shared(buf));
3116 			uint64_t size = arc_buf_size(buf);
3117 			arc_free_data_buf(hdr, buf->b_data, size, buf);
3118 			ARCSTAT_INCR(arcstat_overhead_size, -size);
3119 		}
3120 		buf->b_data = NULL;
3121 
3122 		/*
3123 		 * If we have no more encrypted buffers and we've already
3124 		 * gotten a copy of the decrypted data we can free b_rabd
3125 		 * to save some space.
3126 		 */
3127 		if (ARC_BUF_ENCRYPTED(buf) && HDR_HAS_RABD(hdr) &&
3128 		    hdr->b_l1hdr.b_pabd != NULL && !HDR_IO_IN_PROGRESS(hdr)) {
3129 			arc_buf_t *b;
3130 			for (b = hdr->b_l1hdr.b_buf; b; b = b->b_next) {
3131 				if (b != buf && ARC_BUF_ENCRYPTED(b))
3132 					break;
3133 			}
3134 			if (b == NULL)
3135 				arc_hdr_free_abd(hdr, B_TRUE);
3136 		}
3137 	}
3138 
3139 	arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
3140 
3141 	if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
3142 		/*
3143 		 * If the current arc_buf_t is sharing its data buffer with the
3144 		 * hdr, then reassign the hdr's b_pabd to share it with the new
3145 		 * buffer at the end of the list. The shared buffer is always
3146 		 * the last one on the hdr's buffer list.
3147 		 *
3148 		 * There is an equivalent case for compressed bufs, but since
3149 		 * they aren't guaranteed to be the last buf in the list and
3150 		 * that is an exceedingly rare case, we just allow that space be
3151 		 * wasted temporarily. We must also be careful not to share
3152 		 * encrypted buffers, since they cannot be shared.
3153 		 */
3154 		if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) {
3155 			/* Only one buf can be shared at once */
3156 			ASSERT(!arc_buf_is_shared(lastbuf));
3157 			/* hdr is uncompressed so can't have compressed buf */
3158 			ASSERT(!ARC_BUF_COMPRESSED(lastbuf));
3159 
3160 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3161 			arc_hdr_free_abd(hdr, B_FALSE);
3162 
3163 			/*
3164 			 * We must setup a new shared block between the
3165 			 * last buffer and the hdr. The data would have
3166 			 * been allocated by the arc buf so we need to transfer
3167 			 * ownership to the hdr since it's now being shared.
3168 			 */
3169 			arc_share_buf(hdr, lastbuf);
3170 		}
3171 	} else if (HDR_SHARED_DATA(hdr)) {
3172 		/*
3173 		 * Uncompressed shared buffers are always at the end
3174 		 * of the list. Compressed buffers don't have the
3175 		 * same requirements. This makes it hard to
3176 		 * simply assert that the lastbuf is shared so
3177 		 * we rely on the hdr's compression flags to determine
3178 		 * if we have a compressed, shared buffer.
3179 		 */
3180 		ASSERT3P(lastbuf, !=, NULL);
3181 		ASSERT(arc_buf_is_shared(lastbuf) ||
3182 		    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
3183 	}
3184 
3185 	/*
3186 	 * Free the checksum if we're removing the last uncompressed buf from
3187 	 * this hdr.
3188 	 */
3189 	if (!arc_hdr_has_uncompressed_buf(hdr)) {
3190 		arc_cksum_free(hdr);
3191 	}
3192 
3193 	/* clean up the buf */
3194 	buf->b_hdr = NULL;
3195 	kmem_cache_free(buf_cache, buf);
3196 }
3197 
3198 static void
arc_hdr_alloc_abd(arc_buf_hdr_t * hdr,int alloc_flags)3199 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags)
3200 {
3201 	uint64_t size;
3202 	boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0);
3203 
3204 	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3205 	ASSERT(HDR_HAS_L1HDR(hdr));
3206 	ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata);
3207 	IMPLY(alloc_rdata, HDR_PROTECTED(hdr));
3208 
3209 	if (alloc_rdata) {
3210 		size = HDR_GET_PSIZE(hdr);
3211 		ASSERT0P(hdr->b_crypt_hdr.b_rabd);
3212 		hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr,
3213 		    alloc_flags);
3214 		ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL);
3215 		ARCSTAT_INCR(arcstat_raw_size, size);
3216 	} else {
3217 		size = arc_hdr_size(hdr);
3218 		ASSERT0P(hdr->b_l1hdr.b_pabd);
3219 		hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr,
3220 		    alloc_flags);
3221 		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3222 	}
3223 
3224 	ARCSTAT_INCR(arcstat_compressed_size, size);
3225 	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3226 }
3227 
3228 static void
arc_hdr_free_abd(arc_buf_hdr_t * hdr,boolean_t free_rdata)3229 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata)
3230 {
3231 	uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
3232 
3233 	ASSERT(HDR_HAS_L1HDR(hdr));
3234 	ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
3235 	IMPLY(free_rdata, HDR_HAS_RABD(hdr));
3236 
3237 	/*
3238 	 * If the hdr is currently being written to the l2arc then
3239 	 * we defer freeing the data by adding it to the l2arc_free_on_write
3240 	 * list. The l2arc will free the data once it's finished
3241 	 * writing it to the l2arc device.
3242 	 */
3243 	if (HDR_L2_WRITING(hdr)) {
3244 		arc_hdr_free_on_write(hdr, free_rdata);
3245 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
3246 	} else if (free_rdata) {
3247 		arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr);
3248 	} else {
3249 		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr);
3250 	}
3251 
3252 	if (free_rdata) {
3253 		hdr->b_crypt_hdr.b_rabd = NULL;
3254 		ARCSTAT_INCR(arcstat_raw_size, -size);
3255 	} else {
3256 		hdr->b_l1hdr.b_pabd = NULL;
3257 	}
3258 
3259 	if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr))
3260 		hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3261 
3262 	ARCSTAT_INCR(arcstat_compressed_size, -size);
3263 	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3264 }
3265 
3266 /*
3267  * Allocate empty anonymous ARC header.  The header will get its identity
3268  * assigned and buffers attached later as part of read or write operations.
3269  *
3270  * In case of read arc_read() assigns header its identify (b_dva + b_birth),
3271  * inserts it into ARC hash to become globally visible and allocates physical
3272  * (b_pabd) or raw (b_rabd) ABD buffer to read into from disk.  On disk read
3273  * completion arc_read_done() allocates ARC buffer(s) as needed, potentially
3274  * sharing one of them with the physical ABD buffer.
3275  *
3276  * In case of write arc_alloc_buf() allocates ARC buffer to be filled with
3277  * data.  Then after compression and/or encryption arc_write_ready() allocates
3278  * and fills (or potentially shares) physical (b_pabd) or raw (b_rabd) ABD
3279  * buffer.  On disk write completion arc_write_done() assigns the header its
3280  * new identity (b_dva + b_birth) and inserts into ARC hash.
3281  *
3282  * In case of partial overwrite the old data is read first as described. Then
3283  * arc_release() either allocates new anonymous ARC header and moves the ARC
3284  * buffer to it, or reuses the old ARC header by discarding its identity and
3285  * removing it from ARC hash.  After buffer modification normal write process
3286  * follows as described.
3287  */
3288 static arc_buf_hdr_t *
arc_hdr_alloc(uint64_t spa,int32_t psize,int32_t lsize,boolean_t protected,enum zio_compress compression_type,uint8_t complevel,arc_buf_contents_t type)3289 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
3290     boolean_t protected, enum zio_compress compression_type, uint8_t complevel,
3291     arc_buf_contents_t type)
3292 {
3293 	arc_buf_hdr_t *hdr;
3294 
3295 	VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
3296 	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3297 
3298 	ASSERT(HDR_EMPTY(hdr));
3299 #ifdef ZFS_DEBUG
3300 	ASSERT0P(hdr->b_l1hdr.b_freeze_cksum);
3301 #endif
3302 	HDR_SET_PSIZE(hdr, psize);
3303 	HDR_SET_LSIZE(hdr, lsize);
3304 	hdr->b_spa = spa;
3305 	hdr->b_type = type;
3306 	hdr->b_flags = 0;
3307 	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
3308 	arc_hdr_set_compress(hdr, compression_type);
3309 	hdr->b_complevel = complevel;
3310 	if (protected)
3311 		arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3312 
3313 	hdr->b_l1hdr.b_state = arc_anon;
3314 	hdr->b_l1hdr.b_arc_access = 0;
3315 	hdr->b_l1hdr.b_mru_hits = 0;
3316 	hdr->b_l1hdr.b_mru_ghost_hits = 0;
3317 	hdr->b_l1hdr.b_mfu_hits = 0;
3318 	hdr->b_l1hdr.b_mfu_ghost_hits = 0;
3319 	hdr->b_l1hdr.b_buf = NULL;
3320 
3321 	ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3322 
3323 	return (hdr);
3324 }
3325 
3326 /*
3327  * Transition between the two allocation states for the arc_buf_hdr struct.
3328  * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3329  * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3330  * version is used when a cache buffer is only in the L2ARC in order to reduce
3331  * memory usage.
3332  */
3333 static arc_buf_hdr_t *
arc_hdr_realloc(arc_buf_hdr_t * hdr,kmem_cache_t * old,kmem_cache_t * new)3334 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
3335 {
3336 	ASSERT(HDR_HAS_L2HDR(hdr));
3337 
3338 	arc_buf_hdr_t *nhdr;
3339 	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3340 
3341 	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3342 	    (old == hdr_l2only_cache && new == hdr_full_cache));
3343 
3344 	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
3345 
3346 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3347 	buf_hash_remove(hdr);
3348 
3349 	memcpy(nhdr, hdr, HDR_L2ONLY_SIZE);
3350 
3351 	if (new == hdr_full_cache) {
3352 		arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3353 		/*
3354 		 * arc_access and arc_change_state need to be aware that a
3355 		 * header has just come out of L2ARC, so we set its state to
3356 		 * l2c_only even though it's about to change.
3357 		 */
3358 		nhdr->b_l1hdr.b_state = arc_l2c_only;
3359 
3360 		/* Verify previous threads set to NULL before freeing */
3361 		ASSERT0P(nhdr->b_l1hdr.b_pabd);
3362 		ASSERT(!HDR_HAS_RABD(hdr));
3363 	} else {
3364 		ASSERT0P(hdr->b_l1hdr.b_buf);
3365 #ifdef ZFS_DEBUG
3366 		ASSERT0P(hdr->b_l1hdr.b_freeze_cksum);
3367 #endif
3368 
3369 		/*
3370 		 * If we've reached here, We must have been called from
3371 		 * arc_evict_hdr(), as such we should have already been
3372 		 * removed from any ghost list we were previously on
3373 		 * (which protects us from racing with arc_evict_state),
3374 		 * thus no locking is needed during this check.
3375 		 */
3376 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3377 
3378 		/*
3379 		 * A buffer must not be moved into the arc_l2c_only
3380 		 * state if it's not finished being written out to the
3381 		 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3382 		 * might try to be accessed, even though it was removed.
3383 		 */
3384 		VERIFY(!HDR_L2_WRITING(hdr));
3385 		VERIFY0P(hdr->b_l1hdr.b_pabd);
3386 		ASSERT(!HDR_HAS_RABD(hdr));
3387 
3388 		arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3389 	}
3390 	/*
3391 	 * The header has been reallocated so we need to re-insert it into any
3392 	 * lists it was on.
3393 	 */
3394 	(void) buf_hash_insert(nhdr, NULL);
3395 
3396 	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3397 
3398 	mutex_enter(&dev->l2ad_mtx);
3399 
3400 	/*
3401 	 * We must place the realloc'ed header back into the list at
3402 	 * the same spot. Otherwise, if it's placed earlier in the list,
3403 	 * l2arc_write_buffers() could find it during the function's
3404 	 * write phase, and try to write it out to the l2arc.
3405 	 */
3406 	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3407 	list_remove(&dev->l2ad_buflist, hdr);
3408 
3409 	mutex_exit(&dev->l2ad_mtx);
3410 
3411 	/*
3412 	 * Since we're using the pointer address as the tag when
3413 	 * incrementing and decrementing the l2ad_alloc refcount, we
3414 	 * must remove the old pointer (that we're about to destroy) and
3415 	 * add the new pointer to the refcount. Otherwise we'd remove
3416 	 * the wrong pointer address when calling arc_hdr_destroy() later.
3417 	 */
3418 
3419 	(void) zfs_refcount_remove_many(&dev->l2ad_alloc,
3420 	    arc_hdr_size(hdr), hdr);
3421 	(void) zfs_refcount_add_many(&dev->l2ad_alloc,
3422 	    arc_hdr_size(nhdr), nhdr);
3423 
3424 	buf_discard_identity(hdr);
3425 	kmem_cache_free(old, hdr);
3426 
3427 	return (nhdr);
3428 }
3429 
3430 /*
3431  * This function is used by the send / receive code to convert a newly
3432  * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3433  * is also used to allow the root objset block to be updated without altering
3434  * its embedded MACs. Both block types will always be uncompressed so we do not
3435  * have to worry about compression type or psize.
3436  */
3437 void
arc_convert_to_raw(arc_buf_t * buf,uint64_t dsobj,boolean_t byteorder,dmu_object_type_t ot,const uint8_t * salt,const uint8_t * iv,const uint8_t * mac)3438 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder,
3439     dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv,
3440     const uint8_t *mac)
3441 {
3442 	arc_buf_hdr_t *hdr = buf->b_hdr;
3443 
3444 	ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET);
3445 	ASSERT(HDR_HAS_L1HDR(hdr));
3446 	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3447 
3448 	buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED);
3449 	arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3450 	hdr->b_crypt_hdr.b_dsobj = dsobj;
3451 	hdr->b_crypt_hdr.b_ot = ot;
3452 	hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3453 	    DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3454 	if (!arc_hdr_has_uncompressed_buf(hdr))
3455 		arc_cksum_free(hdr);
3456 
3457 	if (salt != NULL)
3458 		memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
3459 	if (iv != NULL)
3460 		memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
3461 	if (mac != NULL)
3462 		memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
3463 }
3464 
3465 /*
3466  * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3467  * The buf is returned thawed since we expect the consumer to modify it.
3468  */
3469 arc_buf_t *
arc_alloc_buf(spa_t * spa,const void * tag,arc_buf_contents_t type,int32_t size)3470 arc_alloc_buf(spa_t *spa, const void *tag, arc_buf_contents_t type,
3471     int32_t size)
3472 {
3473 	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3474 	    B_FALSE, ZIO_COMPRESS_OFF, 0, type);
3475 
3476 	arc_buf_t *buf = NULL;
3477 	VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE,
3478 	    B_FALSE, B_FALSE, &buf));
3479 	arc_buf_thaw(buf);
3480 
3481 	return (buf);
3482 }
3483 
3484 /*
3485  * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3486  * for bufs containing metadata.
3487  */
3488 arc_buf_t *
arc_alloc_compressed_buf(spa_t * spa,const void * tag,uint64_t psize,uint64_t lsize,enum zio_compress compression_type,uint8_t complevel)3489 arc_alloc_compressed_buf(spa_t *spa, const void *tag, uint64_t psize,
3490     uint64_t lsize, enum zio_compress compression_type, uint8_t complevel)
3491 {
3492 	ASSERT3U(lsize, >, 0);
3493 	ASSERT3U(lsize, >=, psize);
3494 	ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF);
3495 	ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3496 
3497 	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3498 	    B_FALSE, compression_type, complevel, ARC_BUFC_DATA);
3499 
3500 	arc_buf_t *buf = NULL;
3501 	VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE,
3502 	    B_TRUE, B_FALSE, B_FALSE, &buf));
3503 	arc_buf_thaw(buf);
3504 
3505 	/*
3506 	 * To ensure that the hdr has the correct data in it if we call
3507 	 * arc_untransform() on this buf before it's been written to disk,
3508 	 * it's easiest if we just set up sharing between the buf and the hdr.
3509 	 */
3510 	arc_share_buf(hdr, buf);
3511 
3512 	return (buf);
3513 }
3514 
3515 arc_buf_t *
arc_alloc_raw_buf(spa_t * spa,const void * tag,uint64_t dsobj,boolean_t byteorder,const uint8_t * salt,const uint8_t * iv,const uint8_t * mac,dmu_object_type_t ot,uint64_t psize,uint64_t lsize,enum zio_compress compression_type,uint8_t complevel)3516 arc_alloc_raw_buf(spa_t *spa, const void *tag, uint64_t dsobj,
3517     boolean_t byteorder, const uint8_t *salt, const uint8_t *iv,
3518     const uint8_t *mac, dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
3519     enum zio_compress compression_type, uint8_t complevel)
3520 {
3521 	arc_buf_hdr_t *hdr;
3522 	arc_buf_t *buf;
3523 	arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ?
3524 	    ARC_BUFC_METADATA : ARC_BUFC_DATA;
3525 
3526 	ASSERT3U(lsize, >, 0);
3527 	ASSERT3U(lsize, >=, psize);
3528 	ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF);
3529 	ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3530 
3531 	hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE,
3532 	    compression_type, complevel, type);
3533 
3534 	hdr->b_crypt_hdr.b_dsobj = dsobj;
3535 	hdr->b_crypt_hdr.b_ot = ot;
3536 	hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3537 	    DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3538 	memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
3539 	memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
3540 	memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
3541 
3542 	/*
3543 	 * This buffer will be considered encrypted even if the ot is not an
3544 	 * encrypted type. It will become authenticated instead in
3545 	 * arc_write_ready().
3546 	 */
3547 	buf = NULL;
3548 	VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE,
3549 	    B_FALSE, B_FALSE, &buf));
3550 	arc_buf_thaw(buf);
3551 
3552 	return (buf);
3553 }
3554 
3555 static void
l2arc_hdr_arcstats_update(arc_buf_hdr_t * hdr,boolean_t incr,boolean_t state_only)3556 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
3557     boolean_t state_only)
3558 {
3559 	uint64_t lsize = HDR_GET_LSIZE(hdr);
3560 	uint64_t psize = HDR_GET_PSIZE(hdr);
3561 	uint64_t asize = HDR_GET_L2SIZE(hdr);
3562 	arc_buf_contents_t type = hdr->b_type;
3563 	int64_t lsize_s;
3564 	int64_t psize_s;
3565 	int64_t asize_s;
3566 
3567 	/* For L2 we expect the header's b_l2size to be valid */
3568 	ASSERT3U(asize, >=, psize);
3569 
3570 	if (incr) {
3571 		lsize_s = lsize;
3572 		psize_s = psize;
3573 		asize_s = asize;
3574 	} else {
3575 		lsize_s = -lsize;
3576 		psize_s = -psize;
3577 		asize_s = -asize;
3578 	}
3579 
3580 	/* If the buffer is a prefetch, count it as such. */
3581 	if (HDR_PREFETCH(hdr)) {
3582 		ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s);
3583 	} else {
3584 		/*
3585 		 * We use the value stored in the L2 header upon initial
3586 		 * caching in L2ARC. This value will be updated in case
3587 		 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC
3588 		 * metadata (log entry) cannot currently be updated. Having
3589 		 * the ARC state in the L2 header solves the problem of a
3590 		 * possibly absent L1 header (apparent in buffers restored
3591 		 * from persistent L2ARC).
3592 		 */
3593 		switch (hdr->b_l2hdr.b_arcs_state) {
3594 			case ARC_STATE_MRU_GHOST:
3595 			case ARC_STATE_MRU:
3596 				ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s);
3597 				break;
3598 			case ARC_STATE_MFU_GHOST:
3599 			case ARC_STATE_MFU:
3600 				ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s);
3601 				break;
3602 			default:
3603 				break;
3604 		}
3605 	}
3606 
3607 	if (state_only)
3608 		return;
3609 
3610 	ARCSTAT_INCR(arcstat_l2_psize, psize_s);
3611 	ARCSTAT_INCR(arcstat_l2_lsize, lsize_s);
3612 
3613 	switch (type) {
3614 		case ARC_BUFC_DATA:
3615 			ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s);
3616 			break;
3617 		case ARC_BUFC_METADATA:
3618 			ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s);
3619 			break;
3620 		default:
3621 			break;
3622 	}
3623 }
3624 
3625 
3626 static void
arc_hdr_l2hdr_destroy(arc_buf_hdr_t * hdr)3627 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3628 {
3629 	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3630 	l2arc_dev_t *dev = l2hdr->b_dev;
3631 
3632 	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3633 	ASSERT(HDR_HAS_L2HDR(hdr));
3634 
3635 	list_remove(&dev->l2ad_buflist, hdr);
3636 
3637 	l2arc_hdr_arcstats_decrement(hdr);
3638 	if (dev->l2ad_vdev != NULL) {
3639 		uint64_t asize = HDR_GET_L2SIZE(hdr);
3640 		vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
3641 	}
3642 
3643 	(void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3644 	    hdr);
3645 	arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3646 }
3647 
3648 static void
arc_hdr_destroy(arc_buf_hdr_t * hdr)3649 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3650 {
3651 	if (HDR_HAS_L1HDR(hdr)) {
3652 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3653 		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3654 	}
3655 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3656 	ASSERT(!HDR_IN_HASH_TABLE(hdr));
3657 
3658 	if (HDR_HAS_L2HDR(hdr)) {
3659 		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3660 		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3661 
3662 		if (!buflist_held)
3663 			mutex_enter(&dev->l2ad_mtx);
3664 
3665 		/*
3666 		 * Even though we checked this conditional above, we
3667 		 * need to check this again now that we have the
3668 		 * l2ad_mtx. This is because we could be racing with
3669 		 * another thread calling l2arc_evict() which might have
3670 		 * destroyed this header's L2 portion as we were waiting
3671 		 * to acquire the l2ad_mtx. If that happens, we don't
3672 		 * want to re-destroy the header's L2 portion.
3673 		 */
3674 		if (HDR_HAS_L2HDR(hdr)) {
3675 
3676 			if (!HDR_EMPTY(hdr))
3677 				buf_discard_identity(hdr);
3678 
3679 			arc_hdr_l2hdr_destroy(hdr);
3680 		}
3681 
3682 		if (!buflist_held)
3683 			mutex_exit(&dev->l2ad_mtx);
3684 	}
3685 
3686 	/*
3687 	 * The header's identify can only be safely discarded once it is no
3688 	 * longer discoverable.  This requires removing it from the hash table
3689 	 * and the l2arc header list.  After this point the hash lock can not
3690 	 * be used to protect the header.
3691 	 */
3692 	if (!HDR_EMPTY(hdr))
3693 		buf_discard_identity(hdr);
3694 
3695 	if (HDR_HAS_L1HDR(hdr)) {
3696 		arc_cksum_free(hdr);
3697 
3698 		while (hdr->b_l1hdr.b_buf != NULL)
3699 			arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3700 
3701 		if (hdr->b_l1hdr.b_pabd != NULL)
3702 			arc_hdr_free_abd(hdr, B_FALSE);
3703 
3704 		if (HDR_HAS_RABD(hdr))
3705 			arc_hdr_free_abd(hdr, B_TRUE);
3706 	}
3707 
3708 	ASSERT0P(hdr->b_hash_next);
3709 	if (HDR_HAS_L1HDR(hdr)) {
3710 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3711 		ASSERT0P(hdr->b_l1hdr.b_acb);
3712 #ifdef ZFS_DEBUG
3713 		ASSERT0P(hdr->b_l1hdr.b_freeze_cksum);
3714 #endif
3715 		kmem_cache_free(hdr_full_cache, hdr);
3716 	} else {
3717 		kmem_cache_free(hdr_l2only_cache, hdr);
3718 	}
3719 }
3720 
3721 void
arc_buf_destroy(arc_buf_t * buf,const void * tag)3722 arc_buf_destroy(arc_buf_t *buf, const void *tag)
3723 {
3724 	arc_buf_hdr_t *hdr = buf->b_hdr;
3725 
3726 	if (hdr->b_l1hdr.b_state == arc_anon) {
3727 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
3728 		ASSERT(ARC_BUF_LAST(buf));
3729 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3730 		VERIFY0(remove_reference(hdr, tag));
3731 		return;
3732 	}
3733 
3734 	kmutex_t *hash_lock = HDR_LOCK(hdr);
3735 	mutex_enter(hash_lock);
3736 
3737 	ASSERT3P(hdr, ==, buf->b_hdr);
3738 	ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
3739 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3740 	ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3741 	ASSERT3P(buf->b_data, !=, NULL);
3742 
3743 	arc_buf_destroy_impl(buf);
3744 	(void) remove_reference(hdr, tag);
3745 	mutex_exit(hash_lock);
3746 }
3747 
3748 /*
3749  * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3750  * state of the header is dependent on its state prior to entering this
3751  * function. The following transitions are possible:
3752  *
3753  *    - arc_mru -> arc_mru_ghost
3754  *    - arc_mfu -> arc_mfu_ghost
3755  *    - arc_mru_ghost -> arc_l2c_only
3756  *    - arc_mru_ghost -> deleted
3757  *    - arc_mfu_ghost -> arc_l2c_only
3758  *    - arc_mfu_ghost -> deleted
3759  *    - arc_uncached -> deleted
3760  *
3761  * Return total size of evicted data buffers for eviction progress tracking.
3762  * When evicting from ghost states return logical buffer size to make eviction
3763  * progress at the same (or at least comparable) rate as from non-ghost states.
3764  *
3765  * Return *real_evicted for actual ARC size reduction to wake up threads
3766  * waiting for it.  For non-ghost states it includes size of evicted data
3767  * buffers (the headers are not freed there).  For ghost states it includes
3768  * only the evicted headers size.
3769  */
3770 static int64_t
arc_evict_hdr(arc_buf_hdr_t * hdr,uint64_t * real_evicted)3771 arc_evict_hdr(arc_buf_hdr_t *hdr, uint64_t *real_evicted)
3772 {
3773 	arc_state_t *evicted_state, *state;
3774 	int64_t bytes_evicted = 0;
3775 
3776 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3777 	ASSERT(HDR_HAS_L1HDR(hdr));
3778 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3779 	ASSERT0P(hdr->b_l1hdr.b_buf);
3780 	ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3781 
3782 	*real_evicted = 0;
3783 	state = hdr->b_l1hdr.b_state;
3784 	if (GHOST_STATE(state)) {
3785 
3786 		/*
3787 		 * l2arc_write_buffers() relies on a header's L1 portion
3788 		 * (i.e. its b_pabd field) during it's write phase.
3789 		 * Thus, we cannot push a header onto the arc_l2c_only
3790 		 * state (removing its L1 piece) until the header is
3791 		 * done being written to the l2arc.
3792 		 */
3793 		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3794 			ARCSTAT_BUMP(arcstat_evict_l2_skip);
3795 			return (bytes_evicted);
3796 		}
3797 
3798 		ARCSTAT_BUMP(arcstat_deleted);
3799 		bytes_evicted += HDR_GET_LSIZE(hdr);
3800 
3801 		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3802 
3803 		if (HDR_HAS_L2HDR(hdr)) {
3804 			ASSERT0P(hdr->b_l1hdr.b_pabd);
3805 			ASSERT(!HDR_HAS_RABD(hdr));
3806 			/*
3807 			 * This buffer is cached on the 2nd Level ARC;
3808 			 * don't destroy the header.
3809 			 */
3810 			arc_change_state(arc_l2c_only, hdr);
3811 			/*
3812 			 * dropping from L1+L2 cached to L2-only,
3813 			 * realloc to remove the L1 header.
3814 			 */
3815 			(void) arc_hdr_realloc(hdr, hdr_full_cache,
3816 			    hdr_l2only_cache);
3817 			*real_evicted += HDR_FULL_SIZE - HDR_L2ONLY_SIZE;
3818 		} else {
3819 			arc_change_state(arc_anon, hdr);
3820 			arc_hdr_destroy(hdr);
3821 			*real_evicted += HDR_FULL_SIZE;
3822 		}
3823 		return (bytes_evicted);
3824 	}
3825 
3826 	ASSERT(state == arc_mru || state == arc_mfu || state == arc_uncached);
3827 	evicted_state = (state == arc_uncached) ? arc_anon :
3828 	    ((state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost);
3829 
3830 	/* prefetch buffers have a minimum lifespan */
3831 	uint_t min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
3832 	    arc_min_prescient_prefetch : arc_min_prefetch;
3833 	if ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3834 	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < min_lifetime) {
3835 		ARCSTAT_BUMP(arcstat_evict_skip);
3836 		return (bytes_evicted);
3837 	}
3838 
3839 	if (HDR_HAS_L2HDR(hdr)) {
3840 		ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3841 	} else {
3842 		if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3843 			ARCSTAT_INCR(arcstat_evict_l2_eligible,
3844 			    HDR_GET_LSIZE(hdr));
3845 
3846 			switch (state->arcs_state) {
3847 				case ARC_STATE_MRU:
3848 					ARCSTAT_INCR(
3849 					    arcstat_evict_l2_eligible_mru,
3850 					    HDR_GET_LSIZE(hdr));
3851 					break;
3852 				case ARC_STATE_MFU:
3853 					ARCSTAT_INCR(
3854 					    arcstat_evict_l2_eligible_mfu,
3855 					    HDR_GET_LSIZE(hdr));
3856 					break;
3857 				default:
3858 					break;
3859 			}
3860 		} else {
3861 			ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3862 			    HDR_GET_LSIZE(hdr));
3863 		}
3864 	}
3865 
3866 	bytes_evicted += arc_hdr_size(hdr);
3867 	*real_evicted += arc_hdr_size(hdr);
3868 
3869 	/*
3870 	 * If this hdr is being evicted and has a compressed buffer then we
3871 	 * discard it here before we change states.  This ensures that the
3872 	 * accounting is updated correctly in arc_free_data_impl().
3873 	 */
3874 	if (hdr->b_l1hdr.b_pabd != NULL)
3875 		arc_hdr_free_abd(hdr, B_FALSE);
3876 
3877 	if (HDR_HAS_RABD(hdr))
3878 		arc_hdr_free_abd(hdr, B_TRUE);
3879 
3880 	arc_change_state(evicted_state, hdr);
3881 	DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3882 	if (evicted_state == arc_anon) {
3883 		arc_hdr_destroy(hdr);
3884 		*real_evicted += HDR_FULL_SIZE;
3885 	} else {
3886 		ASSERT(HDR_IN_HASH_TABLE(hdr));
3887 	}
3888 
3889 	return (bytes_evicted);
3890 }
3891 
3892 static void
arc_set_need_free(void)3893 arc_set_need_free(void)
3894 {
3895 	ASSERT(MUTEX_HELD(&arc_evict_lock));
3896 	int64_t remaining = arc_free_memory() - arc_sys_free / 2;
3897 	arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters);
3898 	if (aw == NULL) {
3899 		arc_need_free = MAX(-remaining, 0);
3900 	} else {
3901 		arc_need_free =
3902 		    MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count));
3903 	}
3904 }
3905 
3906 static uint64_t
arc_evict_state_impl(multilist_t * ml,int idx,arc_buf_hdr_t * marker,uint64_t spa,uint64_t bytes,boolean_t * more)3907 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3908     uint64_t spa, uint64_t bytes, boolean_t *more)
3909 {
3910 	multilist_sublist_t *mls;
3911 	uint64_t bytes_evicted = 0, real_evicted = 0;
3912 	arc_buf_hdr_t *hdr;
3913 	kmutex_t *hash_lock;
3914 	uint_t evict_count = zfs_arc_evict_batch_limit;
3915 
3916 	ASSERT3P(marker, !=, NULL);
3917 
3918 	mls = multilist_sublist_lock_idx(ml, idx);
3919 
3920 	for (hdr = multilist_sublist_prev(mls, marker); likely(hdr != NULL);
3921 	    hdr = multilist_sublist_prev(mls, marker)) {
3922 		if ((evict_count == 0) || (bytes_evicted >= bytes))
3923 			break;
3924 
3925 		/*
3926 		 * To keep our iteration location, move the marker
3927 		 * forward. Since we're not holding hdr's hash lock, we
3928 		 * must be very careful and not remove 'hdr' from the
3929 		 * sublist. Otherwise, other consumers might mistake the
3930 		 * 'hdr' as not being on a sublist when they call the
3931 		 * multilist_link_active() function (they all rely on
3932 		 * the hash lock protecting concurrent insertions and
3933 		 * removals). multilist_sublist_move_forward() was
3934 		 * specifically implemented to ensure this is the case
3935 		 * (only 'marker' will be removed and re-inserted).
3936 		 */
3937 		multilist_sublist_move_forward(mls, marker);
3938 
3939 		/*
3940 		 * The only case where the b_spa field should ever be
3941 		 * zero, is the marker headers inserted by
3942 		 * arc_evict_state(). It's possible for multiple threads
3943 		 * to be calling arc_evict_state() concurrently (e.g.
3944 		 * dsl_pool_close() and zio_inject_fault()), so we must
3945 		 * skip any markers we see from these other threads.
3946 		 */
3947 		if (hdr->b_spa == 0)
3948 			continue;
3949 
3950 		/* we're only interested in evicting buffers of a certain spa */
3951 		if (spa != 0 && hdr->b_spa != spa) {
3952 			ARCSTAT_BUMP(arcstat_evict_skip);
3953 			continue;
3954 		}
3955 
3956 		hash_lock = HDR_LOCK(hdr);
3957 
3958 		/*
3959 		 * We aren't calling this function from any code path
3960 		 * that would already be holding a hash lock, so we're
3961 		 * asserting on this assumption to be defensive in case
3962 		 * this ever changes. Without this check, it would be
3963 		 * possible to incorrectly increment arcstat_mutex_miss
3964 		 * below (e.g. if the code changed such that we called
3965 		 * this function with a hash lock held).
3966 		 */
3967 		ASSERT(!MUTEX_HELD(hash_lock));
3968 
3969 		if (mutex_tryenter(hash_lock)) {
3970 			uint64_t revicted;
3971 			uint64_t evicted = arc_evict_hdr(hdr, &revicted);
3972 			mutex_exit(hash_lock);
3973 
3974 			bytes_evicted += evicted;
3975 			real_evicted += revicted;
3976 
3977 			/*
3978 			 * If evicted is zero, arc_evict_hdr() must have
3979 			 * decided to skip this header, don't increment
3980 			 * evict_count in this case.
3981 			 */
3982 			if (evicted != 0)
3983 				evict_count--;
3984 
3985 		} else {
3986 			ARCSTAT_BUMP(arcstat_mutex_miss);
3987 		}
3988 	}
3989 
3990 	multilist_sublist_unlock(mls);
3991 
3992 	/* Indicate if another iteration may be productive. */
3993 	if (more)
3994 		*more = (hdr != NULL);
3995 
3996 	/*
3997 	 * Increment the count of evicted bytes, and wake up any threads that
3998 	 * are waiting for the count to reach this value.  Since the list is
3999 	 * ordered by ascending aew_count, we pop off the beginning of the
4000 	 * list until we reach the end, or a waiter that's past the current
4001 	 * "count".  Doing this outside the loop reduces the number of times
4002 	 * we need to acquire the global arc_evict_lock.
4003 	 *
4004 	 * Only wake when there's sufficient free memory in the system
4005 	 * (specifically, arc_sys_free/2, which by default is a bit more than
4006 	 * 1/64th of RAM).  See the comments in arc_wait_for_eviction().
4007 	 */
4008 	mutex_enter(&arc_evict_lock);
4009 	arc_evict_count += real_evicted;
4010 
4011 	if (arc_free_memory() > arc_sys_free / 2) {
4012 		arc_evict_waiter_t *aw;
4013 		while ((aw = list_head(&arc_evict_waiters)) != NULL &&
4014 		    aw->aew_count <= arc_evict_count) {
4015 			list_remove(&arc_evict_waiters, aw);
4016 			cv_signal(&aw->aew_cv);
4017 		}
4018 	}
4019 	arc_set_need_free();
4020 	mutex_exit(&arc_evict_lock);
4021 
4022 	return (bytes_evicted);
4023 }
4024 
4025 static arc_buf_hdr_t *
arc_state_alloc_marker(void)4026 arc_state_alloc_marker(void)
4027 {
4028 	arc_buf_hdr_t *marker = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
4029 
4030 	/*
4031 	 * A b_spa of 0 is used to indicate that this header is
4032 	 * a marker. This fact is used in arc_evict_state_impl().
4033 	 */
4034 	marker->b_spa = 0;
4035 
4036 	return (marker);
4037 }
4038 
4039 static void
arc_state_free_marker(arc_buf_hdr_t * marker)4040 arc_state_free_marker(arc_buf_hdr_t *marker)
4041 {
4042 	kmem_cache_free(hdr_full_cache, marker);
4043 }
4044 
4045 /*
4046  * Allocate an array of buffer headers used as placeholders during arc state
4047  * eviction.
4048  */
4049 static arc_buf_hdr_t **
arc_state_alloc_markers(int count)4050 arc_state_alloc_markers(int count)
4051 {
4052 	arc_buf_hdr_t **markers;
4053 
4054 	markers = kmem_zalloc(sizeof (*markers) * count, KM_SLEEP);
4055 	for (int i = 0; i < count; i++)
4056 		markers[i] = arc_state_alloc_marker();
4057 	return (markers);
4058 }
4059 
4060 static void
arc_state_free_markers(arc_buf_hdr_t ** markers,int count)4061 arc_state_free_markers(arc_buf_hdr_t **markers, int count)
4062 {
4063 	for (int i = 0; i < count; i++)
4064 		arc_state_free_marker(markers[i]);
4065 	kmem_free(markers, sizeof (*markers) * count);
4066 }
4067 
4068 typedef struct evict_arg {
4069 	taskq_ent_t		eva_tqent;
4070 	multilist_t		*eva_ml;
4071 	arc_buf_hdr_t		*eva_marker;
4072 	int			eva_idx;
4073 	uint64_t		eva_spa;
4074 	uint64_t		eva_bytes;
4075 	uint64_t		eva_evicted;
4076 } evict_arg_t;
4077 
4078 static void
arc_evict_task(void * arg)4079 arc_evict_task(void *arg)
4080 {
4081 	evict_arg_t *eva = arg;
4082 	uint64_t total_evicted = 0;
4083 	boolean_t more;
4084 	uint_t batches = zfs_arc_evict_batches_limit;
4085 
4086 	/* Process multiple batches to amortize taskq dispatch overhead. */
4087 	do {
4088 		total_evicted += arc_evict_state_impl(eva->eva_ml,
4089 		    eva->eva_idx, eva->eva_marker, eva->eva_spa,
4090 		    eva->eva_bytes - total_evicted, &more);
4091 	} while (total_evicted < eva->eva_bytes && --batches > 0 && more);
4092 
4093 	eva->eva_evicted = total_evicted;
4094 }
4095 
4096 static void
arc_evict_thread_init(void)4097 arc_evict_thread_init(void)
4098 {
4099 	if (zfs_arc_evict_threads == 0) {
4100 		/*
4101 		 * Compute number of threads we want to use for eviction.
4102 		 *
4103 		 * Normally, it's log2(ncpus) + ncpus/32, which gets us to the
4104 		 * default max of 16 threads at ~256 CPUs.
4105 		 *
4106 		 * However, that formula goes to two threads at 4 CPUs, which
4107 		 * is still rather to low to be really useful, so we just go
4108 		 * with 1 thread at fewer than 6 cores.
4109 		 */
4110 		if (max_ncpus < 6)
4111 			zfs_arc_evict_threads = 1;
4112 		else
4113 			zfs_arc_evict_threads =
4114 			    (highbit64(max_ncpus) - 1) + max_ncpus / 32;
4115 	} else if (zfs_arc_evict_threads > max_ncpus)
4116 		zfs_arc_evict_threads = max_ncpus;
4117 
4118 	if (zfs_arc_evict_threads > 1) {
4119 		arc_evict_taskq = taskq_create("arc_evict",
4120 		    zfs_arc_evict_threads, defclsyspri, 0, INT_MAX,
4121 		    TASKQ_PREPOPULATE);
4122 		arc_evict_arg = kmem_zalloc(
4123 		    sizeof (evict_arg_t) * zfs_arc_evict_threads, KM_SLEEP);
4124 	}
4125 }
4126 
4127 /*
4128  * The minimum number of bytes we can evict at once is a block size.
4129  * So, SPA_MAXBLOCKSIZE is a reasonable minimal value per an eviction task.
4130  * We use this value to compute a scaling factor for the eviction tasks.
4131  */
4132 #define	MIN_EVICT_SIZE	(SPA_MAXBLOCKSIZE)
4133 
4134 /*
4135  * Evict buffers from the given arc state, until we've removed the
4136  * specified number of bytes. Move the removed buffers to the
4137  * appropriate evict state.
4138  *
4139  * This function makes a "best effort". It skips over any buffers
4140  * it can't get a hash_lock on, and so, may not catch all candidates.
4141  * It may also return without evicting as much space as requested.
4142  *
4143  * If bytes is specified using the special value ARC_EVICT_ALL, this
4144  * will evict all available (i.e. unlocked and evictable) buffers from
4145  * the given arc state; which is used by arc_flush().
4146  */
4147 static uint64_t
arc_evict_state(arc_state_t * state,arc_buf_contents_t type,uint64_t spa,uint64_t bytes)4148 arc_evict_state(arc_state_t *state, arc_buf_contents_t type, uint64_t spa,
4149     uint64_t bytes)
4150 {
4151 	uint64_t total_evicted = 0;
4152 	multilist_t *ml = &state->arcs_list[type];
4153 	int num_sublists;
4154 	arc_buf_hdr_t **markers;
4155 	evict_arg_t *eva = NULL;
4156 
4157 	num_sublists = multilist_get_num_sublists(ml);
4158 
4159 	boolean_t use_evcttq = zfs_arc_evict_threads > 1;
4160 
4161 	/*
4162 	 * If we've tried to evict from each sublist, made some
4163 	 * progress, but still have not hit the target number of bytes
4164 	 * to evict, we want to keep trying. The markers allow us to
4165 	 * pick up where we left off for each individual sublist, rather
4166 	 * than starting from the tail each time.
4167 	 */
4168 	if (zthr_iscurthread(arc_evict_zthr)) {
4169 		markers = arc_state_evict_markers;
4170 		ASSERT3S(num_sublists, <=, arc_state_evict_marker_count);
4171 	} else {
4172 		markers = arc_state_alloc_markers(num_sublists);
4173 	}
4174 	for (int i = 0; i < num_sublists; i++) {
4175 		multilist_sublist_t *mls;
4176 
4177 		mls = multilist_sublist_lock_idx(ml, i);
4178 		multilist_sublist_insert_tail(mls, markers[i]);
4179 		multilist_sublist_unlock(mls);
4180 	}
4181 
4182 	if (use_evcttq) {
4183 		if (zthr_iscurthread(arc_evict_zthr))
4184 			eva = arc_evict_arg;
4185 		else
4186 			eva = kmem_alloc(sizeof (evict_arg_t) *
4187 			    zfs_arc_evict_threads, KM_NOSLEEP);
4188 		if (eva) {
4189 			for (int i = 0; i < zfs_arc_evict_threads; i++) {
4190 				taskq_init_ent(&eva[i].eva_tqent);
4191 				eva[i].eva_ml = ml;
4192 				eva[i].eva_spa = spa;
4193 			}
4194 		} else {
4195 			/*
4196 			 * Fall back to the regular single evict if it is not
4197 			 * possible to allocate memory for the taskq entries.
4198 			 */
4199 			use_evcttq = B_FALSE;
4200 		}
4201 	}
4202 
4203 	/*
4204 	 * Start eviction using a randomly selected sublist, this is to try and
4205 	 * evenly balance eviction across all sublists. Always starting at the
4206 	 * same sublist (e.g. index 0) would cause evictions to favor certain
4207 	 * sublists over others.
4208 	 */
4209 	uint64_t scan_evicted = 0;
4210 	int sublists_left = num_sublists;
4211 	int sublist_idx = multilist_get_random_index(ml);
4212 
4213 	/*
4214 	 * While we haven't hit our target number of bytes to evict, or
4215 	 * we're evicting all available buffers.
4216 	 */
4217 	while (total_evicted < bytes) {
4218 		uint64_t evict = MIN_EVICT_SIZE;
4219 		uint_t ntasks = zfs_arc_evict_threads;
4220 
4221 		if (use_evcttq) {
4222 			if (sublists_left < ntasks)
4223 				ntasks = sublists_left;
4224 
4225 			if (ntasks < 2)
4226 				use_evcttq = B_FALSE;
4227 		}
4228 
4229 		if (use_evcttq) {
4230 			uint64_t left = bytes - total_evicted;
4231 
4232 			if (bytes == ARC_EVICT_ALL) {
4233 				evict = bytes;
4234 			} else if (left >= ntasks * MIN_EVICT_SIZE) {
4235 				evict = DIV_ROUND_UP(left, ntasks);
4236 			} else {
4237 				ntasks = left / MIN_EVICT_SIZE;
4238 				if (ntasks < 2)
4239 					use_evcttq = B_FALSE;
4240 				else
4241 					evict = DIV_ROUND_UP(left, ntasks);
4242 			}
4243 		}
4244 
4245 		for (int i = 0; sublists_left > 0; i++, sublist_idx++,
4246 		    sublists_left--) {
4247 			uint64_t bytes_evicted;
4248 
4249 			/* we've reached the end, wrap to the beginning */
4250 			if (sublist_idx >= num_sublists)
4251 				sublist_idx = 0;
4252 
4253 			if (use_evcttq) {
4254 				if (i == ntasks)
4255 					break;
4256 
4257 				eva[i].eva_marker = markers[sublist_idx];
4258 				eva[i].eva_idx = sublist_idx;
4259 				eva[i].eva_bytes = evict;
4260 
4261 				taskq_dispatch_ent(arc_evict_taskq,
4262 				    arc_evict_task, &eva[i], 0,
4263 				    &eva[i].eva_tqent);
4264 
4265 				continue;
4266 			}
4267 
4268 			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
4269 			    markers[sublist_idx], spa, bytes - total_evicted,
4270 			    NULL);
4271 
4272 			scan_evicted += bytes_evicted;
4273 			total_evicted += bytes_evicted;
4274 
4275 			if (total_evicted < bytes)
4276 				kpreempt(KPREEMPT_SYNC);
4277 			else
4278 				break;
4279 		}
4280 
4281 		if (use_evcttq) {
4282 			taskq_wait(arc_evict_taskq);
4283 
4284 			for (int i = 0; i < ntasks; i++) {
4285 				scan_evicted += eva[i].eva_evicted;
4286 				total_evicted += eva[i].eva_evicted;
4287 			}
4288 		}
4289 
4290 		/*
4291 		 * If we scanned all sublists and didn't evict anything, we
4292 		 * have no reason to believe we'll evict more during another
4293 		 * scan, so break the loop.
4294 		 */
4295 		if (scan_evicted == 0 && sublists_left == 0) {
4296 			/* This isn't possible, let's make that obvious */
4297 			ASSERT3S(bytes, !=, 0);
4298 
4299 			/*
4300 			 * When bytes is ARC_EVICT_ALL, the only way to
4301 			 * break the loop is when scan_evicted is zero.
4302 			 * In that case, we actually have evicted enough,
4303 			 * so we don't want to increment the kstat.
4304 			 */
4305 			if (bytes != ARC_EVICT_ALL) {
4306 				ASSERT3S(total_evicted, <, bytes);
4307 				ARCSTAT_BUMP(arcstat_evict_not_enough);
4308 			}
4309 
4310 			break;
4311 		}
4312 
4313 		/*
4314 		 * If we scanned all sublists but still have more to do,
4315 		 * reset the counts so we can go around again.
4316 		 */
4317 		if (sublists_left == 0) {
4318 			sublists_left = num_sublists;
4319 			sublist_idx = multilist_get_random_index(ml);
4320 			scan_evicted = 0;
4321 
4322 			/*
4323 			 * Since we're about to reconsider all sublists,
4324 			 * re-enable use of the evict threads if available.
4325 			 */
4326 			use_evcttq = (zfs_arc_evict_threads > 1 && eva != NULL);
4327 		}
4328 	}
4329 
4330 	if (eva != NULL && eva != arc_evict_arg)
4331 		kmem_free(eva, sizeof (evict_arg_t) * zfs_arc_evict_threads);
4332 
4333 	for (int i = 0; i < num_sublists; i++) {
4334 		multilist_sublist_t *mls = multilist_sublist_lock_idx(ml, i);
4335 		multilist_sublist_remove(mls, markers[i]);
4336 		multilist_sublist_unlock(mls);
4337 	}
4338 
4339 	if (markers != arc_state_evict_markers)
4340 		arc_state_free_markers(markers, num_sublists);
4341 
4342 	return (total_evicted);
4343 }
4344 
4345 /*
4346  * Flush all "evictable" data of the given type from the arc state
4347  * specified. This will not evict any "active" buffers (i.e. referenced).
4348  *
4349  * When 'retry' is set to B_FALSE, the function will make a single pass
4350  * over the state and evict any buffers that it can. Since it doesn't
4351  * continually retry the eviction, it might end up leaving some buffers
4352  * in the ARC due to lock misses.
4353  *
4354  * When 'retry' is set to B_TRUE, the function will continually retry the
4355  * eviction until *all* evictable buffers have been removed from the
4356  * state. As a result, if concurrent insertions into the state are
4357  * allowed (e.g. if the ARC isn't shutting down), this function might
4358  * wind up in an infinite loop, continually trying to evict buffers.
4359  */
4360 static uint64_t
arc_flush_state(arc_state_t * state,uint64_t spa,arc_buf_contents_t type,boolean_t retry)4361 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
4362     boolean_t retry)
4363 {
4364 	uint64_t evicted = 0;
4365 
4366 	while (zfs_refcount_count(&state->arcs_esize[type]) != 0) {
4367 		evicted += arc_evict_state(state, type, spa, ARC_EVICT_ALL);
4368 
4369 		if (!retry)
4370 			break;
4371 	}
4372 
4373 	return (evicted);
4374 }
4375 
4376 /*
4377  * Evict the specified number of bytes from the state specified. This
4378  * function prevents us from trying to evict more from a state's list
4379  * than is "evictable", and to skip evicting altogether when passed a
4380  * negative value for "bytes". In contrast, arc_evict_state() will
4381  * evict everything it can, when passed a negative value for "bytes".
4382  */
4383 static uint64_t
arc_evict_impl(arc_state_t * state,arc_buf_contents_t type,int64_t bytes)4384 arc_evict_impl(arc_state_t *state, arc_buf_contents_t type, int64_t bytes)
4385 {
4386 	uint64_t delta;
4387 
4388 	if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) {
4389 		delta = MIN(zfs_refcount_count(&state->arcs_esize[type]),
4390 		    bytes);
4391 		return (arc_evict_state(state, type, 0, delta));
4392 	}
4393 
4394 	return (0);
4395 }
4396 
4397 /*
4398  * Adjust specified fraction, taking into account initial ghost state(s) size,
4399  * ghost hit bytes towards increasing the fraction, ghost hit bytes towards
4400  * decreasing it, plus a balance factor, controlling the decrease rate, used
4401  * to balance metadata vs data.
4402  */
4403 static uint64_t
arc_evict_adj(uint64_t frac,uint64_t total,uint64_t up,uint64_t down,uint_t balance)4404 arc_evict_adj(uint64_t frac, uint64_t total, uint64_t up, uint64_t down,
4405     uint_t balance)
4406 {
4407 	if (total < 32 || up + down == 0)
4408 		return (frac);
4409 
4410 	/*
4411 	 * We should not have more ghost hits than ghost size, but they may
4412 	 * get close.  To avoid overflows below up/down should not be bigger
4413 	 * than 1/5 of total.  But to limit maximum adjustment speed restrict
4414 	 * it some more.
4415 	 */
4416 	if (up + down >= total / 16) {
4417 		uint64_t scale = (up + down) / (total / 32);
4418 		up /= scale;
4419 		down /= scale;
4420 	}
4421 
4422 	/* Get maximal dynamic range by choosing optimal shifts. */
4423 	int s = highbit64(total);
4424 	s = MIN(64 - s, 32);
4425 
4426 	ASSERT3U(frac, <=, 1ULL << 32);
4427 	uint64_t ofrac = (1ULL << 32) - frac;
4428 
4429 	if (frac >= 4 * ofrac)
4430 		up /= frac / (2 * ofrac + 1);
4431 	up = (up << s) / (total >> (32 - s));
4432 	if (ofrac >= 4 * frac)
4433 		down /= ofrac / (2 * frac + 1);
4434 	down = (down << s) / (total >> (32 - s));
4435 	down = down * 100 / balance;
4436 
4437 	ASSERT3U(up, <=, (1ULL << 32) - frac);
4438 	ASSERT3U(down, <=, frac);
4439 	return (frac + up - down);
4440 }
4441 
4442 /*
4443  * Calculate (x * multiplier / divisor) without unnecesary overflows.
4444  */
4445 static uint64_t
arc_mf(uint64_t x,uint64_t multiplier,uint64_t divisor)4446 arc_mf(uint64_t x, uint64_t multiplier, uint64_t divisor)
4447 {
4448 	uint64_t q = (x / divisor);
4449 	uint64_t r = (x % divisor);
4450 
4451 	return ((q * multiplier) + ((r * multiplier) / divisor));
4452 }
4453 
4454 /*
4455  * Evict buffers from the cache, such that arcstat_size is capped by arc_c.
4456  */
4457 static uint64_t
arc_evict(void)4458 arc_evict(void)
4459 {
4460 	uint64_t bytes, total_evicted = 0;
4461 	int64_t e, mrud, mrum, mfud, mfum, w;
4462 	static uint64_t ogrd, ogrm, ogfd, ogfm;
4463 	static uint64_t gsrd, gsrm, gsfd, gsfm;
4464 	uint64_t ngrd, ngrm, ngfd, ngfm;
4465 
4466 	/* Get current size of ARC states we can evict from. */
4467 	mrud = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_DATA]) +
4468 	    zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]);
4469 	mrum = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA]) +
4470 	    zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
4471 	mfud = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
4472 	mfum = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
4473 	uint64_t d = mrud + mfud;
4474 	uint64_t m = mrum + mfum;
4475 	uint64_t t = d + m;
4476 
4477 	/* Get ARC ghost hits since last eviction. */
4478 	ngrd = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]);
4479 	uint64_t grd = ngrd - ogrd;
4480 	ogrd = ngrd;
4481 	ngrm = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]);
4482 	uint64_t grm = ngrm - ogrm;
4483 	ogrm = ngrm;
4484 	ngfd = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]);
4485 	uint64_t gfd = ngfd - ogfd;
4486 	ogfd = ngfd;
4487 	ngfm = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]);
4488 	uint64_t gfm = ngfm - ogfm;
4489 	ogfm = ngfm;
4490 
4491 	/* Adjust ARC states balance based on ghost hits. */
4492 	arc_meta = arc_evict_adj(arc_meta, gsrd + gsrm + gsfd + gsfm,
4493 	    grm + gfm, grd + gfd, zfs_arc_meta_balance);
4494 	arc_pd = arc_evict_adj(arc_pd, gsrd + gsfd, grd, gfd, 100);
4495 	arc_pm = arc_evict_adj(arc_pm, gsrm + gsfm, grm, gfm, 100);
4496 
4497 	uint64_t asize = aggsum_value(&arc_sums.arcstat_size);
4498 	uint64_t ac = arc_c;
4499 	int64_t wt = t - (asize - ac);
4500 
4501 	/*
4502 	 * Try to reduce pinned dnodes if more than 3/4 of wanted metadata
4503 	 * target is not evictable or if they go over arc_dnode_limit.
4504 	 */
4505 	int64_t prune = 0;
4506 	int64_t dn = aggsum_value(&arc_sums.arcstat_dnode_size);
4507 	int64_t nem = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA])
4508 	    + zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA])
4509 	    - zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA])
4510 	    - zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
4511 	w = wt * (int64_t)(arc_meta >> 16) >> 16;
4512 	if (nem > w * 3 / 4) {
4513 		prune = dn / sizeof (dnode_t) *
4514 		    zfs_arc_dnode_reduce_percent / 100;
4515 		if (nem < w && w > 4)
4516 			prune = arc_mf(prune, nem - w * 3 / 4, w / 4);
4517 	}
4518 	if (dn > arc_dnode_limit) {
4519 		prune = MAX(prune, (dn - arc_dnode_limit) / sizeof (dnode_t) *
4520 		    zfs_arc_dnode_reduce_percent / 100);
4521 	}
4522 	if (prune > 0)
4523 		arc_prune_async(prune);
4524 
4525 	/* Evict MRU metadata. */
4526 	w = wt * (int64_t)(arc_meta * arc_pm >> 48) >> 16;
4527 	e = MIN((int64_t)(asize - ac), (int64_t)(mrum - w));
4528 	bytes = arc_evict_impl(arc_mru, ARC_BUFC_METADATA, e);
4529 	total_evicted += bytes;
4530 	mrum -= bytes;
4531 	asize -= bytes;
4532 
4533 	/* Evict MFU metadata. */
4534 	w = wt * (int64_t)(arc_meta >> 16) >> 16;
4535 	e = MIN((int64_t)(asize - ac), (int64_t)(m - bytes - w));
4536 	bytes = arc_evict_impl(arc_mfu, ARC_BUFC_METADATA, e);
4537 	total_evicted += bytes;
4538 	mfum -= bytes;
4539 	asize -= bytes;
4540 
4541 	/* Evict MRU data. */
4542 	wt -= m - total_evicted;
4543 	w = wt * (int64_t)(arc_pd >> 16) >> 16;
4544 	e = MIN((int64_t)(asize - ac), (int64_t)(mrud - w));
4545 	bytes = arc_evict_impl(arc_mru, ARC_BUFC_DATA, e);
4546 	total_evicted += bytes;
4547 	mrud -= bytes;
4548 	asize -= bytes;
4549 
4550 	/* Evict MFU data. */
4551 	e = asize - ac;
4552 	bytes = arc_evict_impl(arc_mfu, ARC_BUFC_DATA, e);
4553 	mfud -= bytes;
4554 	total_evicted += bytes;
4555 
4556 	/*
4557 	 * Evict ghost lists
4558 	 *
4559 	 * Size of each state's ghost list represents how much that state
4560 	 * may grow by shrinking the other states.  Would it need to shrink
4561 	 * other states to zero (that is unlikely), its ghost size would be
4562 	 * equal to sum of other three state sizes.  But excessive ghost
4563 	 * size may result in false ghost hits (too far back), that may
4564 	 * never result in real cache hits if several states are competing.
4565 	 * So choose some arbitraty point of 1/2 of other state sizes.
4566 	 */
4567 	gsrd = (mrum + mfud + mfum) / 2;
4568 	e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]) -
4569 	    gsrd;
4570 	(void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_DATA, e);
4571 
4572 	gsrm = (mrud + mfud + mfum) / 2;
4573 	e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]) -
4574 	    gsrm;
4575 	(void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_METADATA, e);
4576 
4577 	gsfd = (mrud + mrum + mfum) / 2;
4578 	e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]) -
4579 	    gsfd;
4580 	(void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_DATA, e);
4581 
4582 	gsfm = (mrud + mrum + mfud) / 2;
4583 	e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]) -
4584 	    gsfm;
4585 	(void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_METADATA, e);
4586 
4587 	return (total_evicted);
4588 }
4589 
4590 static void
arc_flush_impl(uint64_t guid,boolean_t retry)4591 arc_flush_impl(uint64_t guid, boolean_t retry)
4592 {
4593 	ASSERT(!retry || guid == 0);
4594 
4595 	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4596 	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4597 
4598 	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4599 	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4600 
4601 	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4602 	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
4603 
4604 	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4605 	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
4606 
4607 	(void) arc_flush_state(arc_uncached, guid, ARC_BUFC_DATA, retry);
4608 	(void) arc_flush_state(arc_uncached, guid, ARC_BUFC_METADATA, retry);
4609 }
4610 
4611 void
arc_flush(spa_t * spa,boolean_t retry)4612 arc_flush(spa_t *spa, boolean_t retry)
4613 {
4614 	/*
4615 	 * If retry is B_TRUE, a spa must not be specified since we have
4616 	 * no good way to determine if all of a spa's buffers have been
4617 	 * evicted from an arc state.
4618 	 */
4619 	ASSERT(!retry || spa == NULL);
4620 
4621 	arc_flush_impl(spa != NULL ? spa_load_guid(spa) : 0, retry);
4622 }
4623 
4624 static arc_async_flush_t *
arc_async_flush_add(uint64_t spa_guid,uint_t level)4625 arc_async_flush_add(uint64_t spa_guid, uint_t level)
4626 {
4627 	arc_async_flush_t *af = kmem_alloc(sizeof (*af), KM_SLEEP);
4628 	af->af_spa_guid = spa_guid;
4629 	af->af_cache_level = level;
4630 	taskq_init_ent(&af->af_tqent);
4631 	list_link_init(&af->af_node);
4632 
4633 	mutex_enter(&arc_async_flush_lock);
4634 	list_insert_tail(&arc_async_flush_list, af);
4635 	mutex_exit(&arc_async_flush_lock);
4636 
4637 	return (af);
4638 }
4639 
4640 static void
arc_async_flush_remove(uint64_t spa_guid,uint_t level)4641 arc_async_flush_remove(uint64_t spa_guid, uint_t level)
4642 {
4643 	mutex_enter(&arc_async_flush_lock);
4644 	for (arc_async_flush_t *af = list_head(&arc_async_flush_list);
4645 	    af != NULL; af = list_next(&arc_async_flush_list, af)) {
4646 		if (af->af_spa_guid == spa_guid &&
4647 		    af->af_cache_level == level) {
4648 			list_remove(&arc_async_flush_list, af);
4649 			kmem_free(af, sizeof (*af));
4650 			break;
4651 		}
4652 	}
4653 	mutex_exit(&arc_async_flush_lock);
4654 }
4655 
4656 static void
arc_flush_task(void * arg)4657 arc_flush_task(void *arg)
4658 {
4659 	arc_async_flush_t *af = arg;
4660 	hrtime_t start_time = gethrtime();
4661 	uint64_t spa_guid = af->af_spa_guid;
4662 
4663 	arc_flush_impl(spa_guid, B_FALSE);
4664 	arc_async_flush_remove(spa_guid, af->af_cache_level);
4665 
4666 	uint64_t elapsed = NSEC2MSEC(gethrtime() - start_time);
4667 	if (elapsed > 0) {
4668 		zfs_dbgmsg("spa %llu arc flushed in %llu ms",
4669 		    (u_longlong_t)spa_guid, (u_longlong_t)elapsed);
4670 	}
4671 }
4672 
4673 /*
4674  * ARC buffers use the spa's load guid and can continue to exist after
4675  * the spa_t is gone (exported). The blocks are orphaned since each
4676  * spa import has a different load guid.
4677  *
4678  * It's OK if the spa is re-imported while this asynchronous flush is
4679  * still in progress. The new spa_load_guid will be different.
4680  *
4681  * Also, arc_fini will wait for any arc_flush_task to finish.
4682  */
4683 void
arc_flush_async(spa_t * spa)4684 arc_flush_async(spa_t *spa)
4685 {
4686 	uint64_t spa_guid = spa_load_guid(spa);
4687 	arc_async_flush_t *af = arc_async_flush_add(spa_guid, 1);
4688 
4689 	taskq_dispatch_ent(arc_flush_taskq, arc_flush_task,
4690 	    af, TQ_SLEEP, &af->af_tqent);
4691 }
4692 
4693 /*
4694  * Check if a guid is still in-use as part of an async teardown task
4695  */
4696 boolean_t
arc_async_flush_guid_inuse(uint64_t spa_guid)4697 arc_async_flush_guid_inuse(uint64_t spa_guid)
4698 {
4699 	mutex_enter(&arc_async_flush_lock);
4700 	for (arc_async_flush_t *af = list_head(&arc_async_flush_list);
4701 	    af != NULL; af = list_next(&arc_async_flush_list, af)) {
4702 		if (af->af_spa_guid == spa_guid) {
4703 			mutex_exit(&arc_async_flush_lock);
4704 			return (B_TRUE);
4705 		}
4706 	}
4707 	mutex_exit(&arc_async_flush_lock);
4708 	return (B_FALSE);
4709 }
4710 
4711 uint64_t
arc_reduce_target_size(uint64_t to_free)4712 arc_reduce_target_size(uint64_t to_free)
4713 {
4714 	/*
4715 	 * Get the actual arc size.  Even if we don't need it, this updates
4716 	 * the aggsum lower bound estimate for arc_is_overflowing().
4717 	 */
4718 	uint64_t asize = aggsum_value(&arc_sums.arcstat_size);
4719 
4720 	/*
4721 	 * All callers want the ARC to actually evict (at least) this much
4722 	 * memory.  Therefore we reduce from the lower of the current size and
4723 	 * the target size.  This way, even if arc_c is much higher than
4724 	 * arc_size (as can be the case after many calls to arc_freed(), we will
4725 	 * immediately have arc_c < arc_size and therefore the arc_evict_zthr
4726 	 * will evict.
4727 	 */
4728 	uint64_t c = arc_c;
4729 	if (c > arc_c_min) {
4730 		c = MIN(c, MAX(asize, arc_c_min));
4731 		to_free = MIN(to_free, c - arc_c_min);
4732 		arc_c = c - to_free;
4733 	} else {
4734 		to_free = 0;
4735 	}
4736 
4737 	/*
4738 	 * Since dbuf cache size is a fraction of target ARC size, we should
4739 	 * notify dbuf about the reduction, which might be significant,
4740 	 * especially if current ARC size was much smaller than the target.
4741 	 */
4742 	dbuf_cache_reduce_target_size();
4743 
4744 	/*
4745 	 * Whether or not we reduced the target size, request eviction if the
4746 	 * current size is over it now, since caller obviously wants some RAM.
4747 	 */
4748 	if (asize > arc_c) {
4749 		/* See comment in arc_evict_cb_check() on why lock+flag */
4750 		mutex_enter(&arc_evict_lock);
4751 		arc_evict_needed = B_TRUE;
4752 		mutex_exit(&arc_evict_lock);
4753 		zthr_wakeup(arc_evict_zthr);
4754 	}
4755 
4756 	return (to_free);
4757 }
4758 
4759 /*
4760  * Determine if the system is under memory pressure and is asking
4761  * to reclaim memory. A return value of B_TRUE indicates that the system
4762  * is under memory pressure and that the arc should adjust accordingly.
4763  */
4764 boolean_t
arc_reclaim_needed(void)4765 arc_reclaim_needed(void)
4766 {
4767 	return (arc_available_memory() < 0);
4768 }
4769 
4770 void
arc_kmem_reap_soon(void)4771 arc_kmem_reap_soon(void)
4772 {
4773 	size_t			i;
4774 	kmem_cache_t		*prev_cache = NULL;
4775 	kmem_cache_t		*prev_data_cache = NULL;
4776 
4777 #ifdef _KERNEL
4778 #if defined(_ILP32)
4779 	/*
4780 	 * Reclaim unused memory from all kmem caches.
4781 	 */
4782 	kmem_reap();
4783 #endif
4784 #endif
4785 
4786 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4787 #if defined(_ILP32)
4788 		/* reach upper limit of cache size on 32-bit */
4789 		if (zio_buf_cache[i] == NULL)
4790 			break;
4791 #endif
4792 		if (zio_buf_cache[i] != prev_cache) {
4793 			prev_cache = zio_buf_cache[i];
4794 			kmem_cache_reap_now(zio_buf_cache[i]);
4795 		}
4796 		if (zio_data_buf_cache[i] != prev_data_cache) {
4797 			prev_data_cache = zio_data_buf_cache[i];
4798 			kmem_cache_reap_now(zio_data_buf_cache[i]);
4799 		}
4800 	}
4801 	kmem_cache_reap_now(buf_cache);
4802 	kmem_cache_reap_now(hdr_full_cache);
4803 	kmem_cache_reap_now(hdr_l2only_cache);
4804 	kmem_cache_reap_now(zfs_btree_leaf_cache);
4805 	abd_cache_reap_now();
4806 }
4807 
4808 static boolean_t
arc_evict_cb_check(void * arg,zthr_t * zthr)4809 arc_evict_cb_check(void *arg, zthr_t *zthr)
4810 {
4811 	(void) arg, (void) zthr;
4812 
4813 #ifdef ZFS_DEBUG
4814 	/*
4815 	 * This is necessary in order to keep the kstat information
4816 	 * up to date for tools that display kstat data such as the
4817 	 * mdb ::arc dcmd and the Linux crash utility.  These tools
4818 	 * typically do not call kstat's update function, but simply
4819 	 * dump out stats from the most recent update.  Without
4820 	 * this call, these commands may show stale stats for the
4821 	 * anon, mru, mru_ghost, mfu, and mfu_ghost lists.  Even
4822 	 * with this call, the data might be out of date if the
4823 	 * evict thread hasn't been woken recently; but that should
4824 	 * suffice.  The arc_state_t structures can be queried
4825 	 * directly if more accurate information is needed.
4826 	 */
4827 	if (arc_ksp != NULL)
4828 		arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4829 #endif
4830 
4831 	/*
4832 	 * We have to rely on arc_wait_for_eviction() to tell us when to
4833 	 * evict, rather than checking if we are overflowing here, so that we
4834 	 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv.
4835 	 * If we have become "not overflowing" since arc_wait_for_eviction()
4836 	 * checked, we need to wake it up.  We could broadcast the CV here,
4837 	 * but arc_wait_for_eviction() may have not yet gone to sleep.  We
4838 	 * would need to use a mutex to ensure that this function doesn't
4839 	 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g.
4840 	 * the arc_evict_lock).  However, the lock ordering of such a lock
4841 	 * would necessarily be incorrect with respect to the zthr_lock,
4842 	 * which is held before this function is called, and is held by
4843 	 * arc_wait_for_eviction() when it calls zthr_wakeup().
4844 	 */
4845 	if (arc_evict_needed)
4846 		return (B_TRUE);
4847 
4848 	/*
4849 	 * If we have buffers in uncached state, evict them periodically.
4850 	 */
4851 	return ((zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_DATA]) +
4852 	    zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]) &&
4853 	    ddi_get_lbolt() - arc_last_uncached_flush > arc_min_prefetch / 2));
4854 }
4855 
4856 /*
4857  * Keep arc_size under arc_c by running arc_evict which evicts data
4858  * from the ARC.
4859  */
4860 static void
arc_evict_cb(void * arg,zthr_t * zthr)4861 arc_evict_cb(void *arg, zthr_t *zthr)
4862 {
4863 	(void) arg;
4864 
4865 	uint64_t evicted = 0;
4866 	fstrans_cookie_t cookie = spl_fstrans_mark();
4867 
4868 	/* Always try to evict from uncached state. */
4869 	arc_last_uncached_flush = ddi_get_lbolt();
4870 	evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_DATA, B_FALSE);
4871 	evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_METADATA, B_FALSE);
4872 
4873 	/* Evict from other states only if told to. */
4874 	if (arc_evict_needed)
4875 		evicted += arc_evict();
4876 
4877 	/*
4878 	 * If evicted is zero, we couldn't evict anything
4879 	 * via arc_evict(). This could be due to hash lock
4880 	 * collisions, but more likely due to the majority of
4881 	 * arc buffers being unevictable. Therefore, even if
4882 	 * arc_size is above arc_c, another pass is unlikely to
4883 	 * be helpful and could potentially cause us to enter an
4884 	 * infinite loop.  Additionally, zthr_iscancelled() is
4885 	 * checked here so that if the arc is shutting down, the
4886 	 * broadcast will wake any remaining arc evict waiters.
4887 	 *
4888 	 * Note we cancel using zthr instead of arc_evict_zthr
4889 	 * because the latter may not yet be initializd when the
4890 	 * callback is first invoked.
4891 	 */
4892 	mutex_enter(&arc_evict_lock);
4893 	arc_evict_needed = !zthr_iscancelled(zthr) &&
4894 	    evicted > 0 && aggsum_compare(&arc_sums.arcstat_size, arc_c) > 0;
4895 	if (!arc_evict_needed) {
4896 		/*
4897 		 * We're either no longer overflowing, or we
4898 		 * can't evict anything more, so we should wake
4899 		 * arc_get_data_impl() sooner.
4900 		 */
4901 		arc_evict_waiter_t *aw;
4902 		while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) {
4903 			cv_signal(&aw->aew_cv);
4904 		}
4905 		arc_set_need_free();
4906 	}
4907 	mutex_exit(&arc_evict_lock);
4908 	spl_fstrans_unmark(cookie);
4909 }
4910 
4911 static boolean_t
arc_reap_cb_check(void * arg,zthr_t * zthr)4912 arc_reap_cb_check(void *arg, zthr_t *zthr)
4913 {
4914 	(void) arg, (void) zthr;
4915 
4916 	int64_t free_memory = arc_available_memory();
4917 	static int reap_cb_check_counter = 0;
4918 
4919 	/*
4920 	 * If a kmem reap is already active, don't schedule more.  We must
4921 	 * check for this because kmem_cache_reap_soon() won't actually
4922 	 * block on the cache being reaped (this is to prevent callers from
4923 	 * becoming implicitly blocked by a system-wide kmem reap -- which,
4924 	 * on a system with many, many full magazines, can take minutes).
4925 	 */
4926 	if (!kmem_cache_reap_active() && free_memory < 0) {
4927 
4928 		arc_no_grow = B_TRUE;
4929 		arc_warm = B_TRUE;
4930 		/*
4931 		 * Wait at least zfs_grow_retry (default 5) seconds
4932 		 * before considering growing.
4933 		 */
4934 		arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4935 		return (B_TRUE);
4936 	} else if (free_memory < arc_c >> arc_no_grow_shift) {
4937 		arc_no_grow = B_TRUE;
4938 	} else if (gethrtime() >= arc_growtime) {
4939 		arc_no_grow = B_FALSE;
4940 	}
4941 
4942 	/*
4943 	 * Called unconditionally every 60 seconds to reclaim unused
4944 	 * zstd compression and decompression context. This is done
4945 	 * here to avoid the need for an independent thread.
4946 	 */
4947 	if (!((reap_cb_check_counter++) % 60))
4948 		zfs_zstd_cache_reap_now();
4949 
4950 	return (B_FALSE);
4951 }
4952 
4953 /*
4954  * Keep enough free memory in the system by reaping the ARC's kmem
4955  * caches.  To cause more slabs to be reapable, we may reduce the
4956  * target size of the cache (arc_c), causing the arc_evict_cb()
4957  * to free more buffers.
4958  */
4959 static void
arc_reap_cb(void * arg,zthr_t * zthr)4960 arc_reap_cb(void *arg, zthr_t *zthr)
4961 {
4962 	int64_t can_free, free_memory, to_free;
4963 
4964 	(void) arg, (void) zthr;
4965 	fstrans_cookie_t cookie = spl_fstrans_mark();
4966 
4967 	/*
4968 	 * Kick off asynchronous kmem_reap()'s of all our caches.
4969 	 */
4970 	arc_kmem_reap_soon();
4971 
4972 	/*
4973 	 * Wait at least arc_kmem_cache_reap_retry_ms between
4974 	 * arc_kmem_reap_soon() calls. Without this check it is possible to
4975 	 * end up in a situation where we spend lots of time reaping
4976 	 * caches, while we're near arc_c_min.  Waiting here also gives the
4977 	 * subsequent free memory check a chance of finding that the
4978 	 * asynchronous reap has already freed enough memory, and we don't
4979 	 * need to call arc_reduce_target_size().
4980 	 */
4981 	delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000);
4982 
4983 	/*
4984 	 * Reduce the target size as needed to maintain the amount of free
4985 	 * memory in the system at a fraction of the arc_size (1/128th by
4986 	 * default).  If oversubscribed (free_memory < 0) then reduce the
4987 	 * target arc_size by the deficit amount plus the fractional
4988 	 * amount.  If free memory is positive but less than the fractional
4989 	 * amount, reduce by what is needed to hit the fractional amount.
4990 	 */
4991 	free_memory = arc_available_memory();
4992 	can_free = arc_c - arc_c_min;
4993 	to_free = (MAX(can_free, 0) >> arc_shrink_shift) - free_memory;
4994 	if (to_free > 0)
4995 		arc_reduce_target_size(to_free);
4996 	spl_fstrans_unmark(cookie);
4997 }
4998 
4999 #ifdef _KERNEL
5000 /*
5001  * Determine the amount of memory eligible for eviction contained in the
5002  * ARC. All clean data reported by the ghost lists can always be safely
5003  * evicted. Due to arc_c_min, the same does not hold for all clean data
5004  * contained by the regular mru and mfu lists.
5005  *
5006  * In the case of the regular mru and mfu lists, we need to report as
5007  * much clean data as possible, such that evicting that same reported
5008  * data will not bring arc_size below arc_c_min. Thus, in certain
5009  * circumstances, the total amount of clean data in the mru and mfu
5010  * lists might not actually be evictable.
5011  *
5012  * The following two distinct cases are accounted for:
5013  *
5014  * 1. The sum of the amount of dirty data contained by both the mru and
5015  *    mfu lists, plus the ARC's other accounting (e.g. the anon list),
5016  *    is greater than or equal to arc_c_min.
5017  *    (i.e. amount of dirty data >= arc_c_min)
5018  *
5019  *    This is the easy case; all clean data contained by the mru and mfu
5020  *    lists is evictable. Evicting all clean data can only drop arc_size
5021  *    to the amount of dirty data, which is greater than arc_c_min.
5022  *
5023  * 2. The sum of the amount of dirty data contained by both the mru and
5024  *    mfu lists, plus the ARC's other accounting (e.g. the anon list),
5025  *    is less than arc_c_min.
5026  *    (i.e. arc_c_min > amount of dirty data)
5027  *
5028  *    2.1. arc_size is greater than or equal arc_c_min.
5029  *         (i.e. arc_size >= arc_c_min > amount of dirty data)
5030  *
5031  *         In this case, not all clean data from the regular mru and mfu
5032  *         lists is actually evictable; we must leave enough clean data
5033  *         to keep arc_size above arc_c_min. Thus, the maximum amount of
5034  *         evictable data from the two lists combined, is exactly the
5035  *         difference between arc_size and arc_c_min.
5036  *
5037  *    2.2. arc_size is less than arc_c_min
5038  *         (i.e. arc_c_min > arc_size > amount of dirty data)
5039  *
5040  *         In this case, none of the data contained in the mru and mfu
5041  *         lists is evictable, even if it's clean. Since arc_size is
5042  *         already below arc_c_min, evicting any more would only
5043  *         increase this negative difference.
5044  */
5045 
5046 #endif /* _KERNEL */
5047 
5048 /*
5049  * Adapt arc info given the number of bytes we are trying to add and
5050  * the state that we are coming from.  This function is only called
5051  * when we are adding new content to the cache.
5052  */
5053 static void
arc_adapt(uint64_t bytes)5054 arc_adapt(uint64_t bytes)
5055 {
5056 	/*
5057 	 * Wake reap thread if we do not have any available memory
5058 	 */
5059 	if (arc_reclaim_needed()) {
5060 		zthr_wakeup(arc_reap_zthr);
5061 		return;
5062 	}
5063 
5064 	if (arc_no_grow)
5065 		return;
5066 
5067 	if (arc_c >= arc_c_max)
5068 		return;
5069 
5070 	/*
5071 	 * If we're within (2 * maxblocksize) bytes of the target
5072 	 * cache size, increment the target cache size
5073 	 */
5074 	if (aggsum_upper_bound(&arc_sums.arcstat_size) +
5075 	    2 * SPA_MAXBLOCKSIZE >= arc_c) {
5076 		uint64_t dc = MAX(bytes, SPA_OLD_MAXBLOCKSIZE);
5077 		if (atomic_add_64_nv(&arc_c, dc) > arc_c_max)
5078 			arc_c = arc_c_max;
5079 	}
5080 }
5081 
5082 /*
5083  * Check if ARC current size has grown past our upper thresholds.
5084  */
5085 static arc_ovf_level_t
arc_is_overflowing(boolean_t lax,boolean_t use_reserve)5086 arc_is_overflowing(boolean_t lax, boolean_t use_reserve)
5087 {
5088 	/*
5089 	 * We just compare the lower bound here for performance reasons. Our
5090 	 * primary goals are to make sure that the arc never grows without
5091 	 * bound, and that it can reach its maximum size. This check
5092 	 * accomplishes both goals. The maximum amount we could run over by is
5093 	 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
5094 	 * in the ARC. In practice, that's in the tens of MB, which is low
5095 	 * enough to be safe.
5096 	 */
5097 	int64_t arc_over = aggsum_lower_bound(&arc_sums.arcstat_size) - arc_c -
5098 	    zfs_max_recordsize;
5099 	int64_t dn_over = aggsum_lower_bound(&arc_sums.arcstat_dnode_size) -
5100 	    arc_dnode_limit;
5101 
5102 	/* Always allow at least one block of overflow. */
5103 	if (arc_over < 0 && dn_over <= 0)
5104 		return (ARC_OVF_NONE);
5105 
5106 	/* If we are under memory pressure, report severe overflow. */
5107 	if (!lax)
5108 		return (ARC_OVF_SEVERE);
5109 
5110 	/* We are not under pressure, so be more or less relaxed. */
5111 	int64_t overflow = (arc_c >> zfs_arc_overflow_shift) / 2;
5112 	if (use_reserve)
5113 		overflow *= 3;
5114 	return (arc_over < overflow ? ARC_OVF_SOME : ARC_OVF_SEVERE);
5115 }
5116 
5117 static abd_t *
arc_get_data_abd(arc_buf_hdr_t * hdr,uint64_t size,const void * tag,int alloc_flags)5118 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, const void *tag,
5119     int alloc_flags)
5120 {
5121 	arc_buf_contents_t type = arc_buf_type(hdr);
5122 
5123 	arc_get_data_impl(hdr, size, tag, alloc_flags);
5124 	if (alloc_flags & ARC_HDR_ALLOC_LINEAR)
5125 		return (abd_alloc_linear(size, type == ARC_BUFC_METADATA));
5126 	else
5127 		return (abd_alloc(size, type == ARC_BUFC_METADATA));
5128 }
5129 
5130 static void *
arc_get_data_buf(arc_buf_hdr_t * hdr,uint64_t size,const void * tag)5131 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, const void *tag)
5132 {
5133 	arc_buf_contents_t type = arc_buf_type(hdr);
5134 
5135 	arc_get_data_impl(hdr, size, tag, 0);
5136 	if (type == ARC_BUFC_METADATA) {
5137 		return (zio_buf_alloc(size));
5138 	} else {
5139 		ASSERT(type == ARC_BUFC_DATA);
5140 		return (zio_data_buf_alloc(size));
5141 	}
5142 }
5143 
5144 /*
5145  * Wait for the specified amount of data (in bytes) to be evicted from the
5146  * ARC, and for there to be sufficient free memory in the system.
5147  * The lax argument specifies that caller does not have a specific reason
5148  * to wait, not aware of any memory pressure.  Low memory handlers though
5149  * should set it to B_FALSE to wait for all required evictions to complete.
5150  * The use_reserve argument allows some callers to wait less than others
5151  * to not block critical code paths, possibly blocking other resources.
5152  */
5153 void
arc_wait_for_eviction(uint64_t amount,boolean_t lax,boolean_t use_reserve)5154 arc_wait_for_eviction(uint64_t amount, boolean_t lax, boolean_t use_reserve)
5155 {
5156 	switch (arc_is_overflowing(lax, use_reserve)) {
5157 	case ARC_OVF_NONE:
5158 		return;
5159 	case ARC_OVF_SOME:
5160 		/*
5161 		 * This is a bit racy without taking arc_evict_lock, but the
5162 		 * worst that can happen is we either call zthr_wakeup() extra
5163 		 * time due to race with other thread here, or the set flag
5164 		 * get cleared by arc_evict_cb(), which is unlikely due to
5165 		 * big hysteresis, but also not important since at this level
5166 		 * of overflow the eviction is purely advisory.  Same time
5167 		 * taking the global lock here every time without waiting for
5168 		 * the actual eviction creates a significant lock contention.
5169 		 */
5170 		if (!arc_evict_needed) {
5171 			arc_evict_needed = B_TRUE;
5172 			zthr_wakeup(arc_evict_zthr);
5173 		}
5174 		return;
5175 	case ARC_OVF_SEVERE:
5176 	default:
5177 	{
5178 		arc_evict_waiter_t aw;
5179 		list_link_init(&aw.aew_node);
5180 		cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL);
5181 
5182 		uint64_t last_count = 0;
5183 		mutex_enter(&arc_evict_lock);
5184 		arc_evict_waiter_t *last;
5185 		if ((last = list_tail(&arc_evict_waiters)) != NULL) {
5186 			last_count = last->aew_count;
5187 		} else if (!arc_evict_needed) {
5188 			arc_evict_needed = B_TRUE;
5189 			zthr_wakeup(arc_evict_zthr);
5190 		}
5191 		/*
5192 		 * Note, the last waiter's count may be less than
5193 		 * arc_evict_count if we are low on memory in which
5194 		 * case arc_evict_state_impl() may have deferred
5195 		 * wakeups (but still incremented arc_evict_count).
5196 		 */
5197 		aw.aew_count = MAX(last_count, arc_evict_count) + amount;
5198 
5199 		list_insert_tail(&arc_evict_waiters, &aw);
5200 
5201 		arc_set_need_free();
5202 
5203 		DTRACE_PROBE3(arc__wait__for__eviction,
5204 		    uint64_t, amount,
5205 		    uint64_t, arc_evict_count,
5206 		    uint64_t, aw.aew_count);
5207 
5208 		/*
5209 		 * We will be woken up either when arc_evict_count reaches
5210 		 * aew_count, or when the ARC is no longer overflowing and
5211 		 * eviction completes.
5212 		 * In case of "false" wakeup, we will still be on the list.
5213 		 */
5214 		do {
5215 			cv_wait(&aw.aew_cv, &arc_evict_lock);
5216 		} while (list_link_active(&aw.aew_node));
5217 		mutex_exit(&arc_evict_lock);
5218 
5219 		cv_destroy(&aw.aew_cv);
5220 	}
5221 	}
5222 }
5223 
5224 /*
5225  * Allocate a block and return it to the caller. If we are hitting the
5226  * hard limit for the cache size, we must sleep, waiting for the eviction
5227  * thread to catch up. If we're past the target size but below the hard
5228  * limit, we'll only signal the reclaim thread and continue on.
5229  */
5230 static void
arc_get_data_impl(arc_buf_hdr_t * hdr,uint64_t size,const void * tag,int alloc_flags)5231 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag,
5232     int alloc_flags)
5233 {
5234 	arc_adapt(size);
5235 
5236 	/*
5237 	 * If arc_size is currently overflowing, we must be adding data
5238 	 * faster than we are evicting.  To ensure we don't compound the
5239 	 * problem by adding more data and forcing arc_size to grow even
5240 	 * further past it's target size, we wait for the eviction thread to
5241 	 * make some progress.  We also wait for there to be sufficient free
5242 	 * memory in the system, as measured by arc_free_memory().
5243 	 *
5244 	 * Specifically, we wait for zfs_arc_eviction_pct percent of the
5245 	 * requested size to be evicted.  This should be more than 100%, to
5246 	 * ensure that that progress is also made towards getting arc_size
5247 	 * under arc_c.  See the comment above zfs_arc_eviction_pct.
5248 	 */
5249 	arc_wait_for_eviction(size * zfs_arc_eviction_pct / 100,
5250 	    B_TRUE, alloc_flags & ARC_HDR_USE_RESERVE);
5251 
5252 	arc_buf_contents_t type = arc_buf_type(hdr);
5253 	if (type == ARC_BUFC_METADATA) {
5254 		arc_space_consume(size, ARC_SPACE_META);
5255 	} else {
5256 		arc_space_consume(size, ARC_SPACE_DATA);
5257 	}
5258 
5259 	/*
5260 	 * Update the state size.  Note that ghost states have a
5261 	 * "ghost size" and so don't need to be updated.
5262 	 */
5263 	arc_state_t *state = hdr->b_l1hdr.b_state;
5264 	if (!GHOST_STATE(state)) {
5265 
5266 		(void) zfs_refcount_add_many(&state->arcs_size[type], size,
5267 		    tag);
5268 
5269 		/*
5270 		 * If this is reached via arc_read, the link is
5271 		 * protected by the hash lock. If reached via
5272 		 * arc_buf_alloc, the header should not be accessed by
5273 		 * any other thread. And, if reached via arc_read_done,
5274 		 * the hash lock will protect it if it's found in the
5275 		 * hash table; otherwise no other thread should be
5276 		 * trying to [add|remove]_reference it.
5277 		 */
5278 		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5279 			ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5280 			(void) zfs_refcount_add_many(&state->arcs_esize[type],
5281 			    size, tag);
5282 		}
5283 	}
5284 }
5285 
5286 static void
arc_free_data_abd(arc_buf_hdr_t * hdr,abd_t * abd,uint64_t size,const void * tag)5287 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size,
5288     const void *tag)
5289 {
5290 	arc_free_data_impl(hdr, size, tag);
5291 	abd_free(abd);
5292 }
5293 
5294 static void
arc_free_data_buf(arc_buf_hdr_t * hdr,void * buf,uint64_t size,const void * tag)5295 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, const void *tag)
5296 {
5297 	arc_buf_contents_t type = arc_buf_type(hdr);
5298 
5299 	arc_free_data_impl(hdr, size, tag);
5300 	if (type == ARC_BUFC_METADATA) {
5301 		zio_buf_free(buf, size);
5302 	} else {
5303 		ASSERT(type == ARC_BUFC_DATA);
5304 		zio_data_buf_free(buf, size);
5305 	}
5306 }
5307 
5308 /*
5309  * Free the arc data buffer.
5310  */
5311 static void
arc_free_data_impl(arc_buf_hdr_t * hdr,uint64_t size,const void * tag)5312 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag)
5313 {
5314 	arc_state_t *state = hdr->b_l1hdr.b_state;
5315 	arc_buf_contents_t type = arc_buf_type(hdr);
5316 
5317 	/* protected by hash lock, if in the hash table */
5318 	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5319 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5320 		ASSERT(state != arc_anon && state != arc_l2c_only);
5321 
5322 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
5323 		    size, tag);
5324 	}
5325 	(void) zfs_refcount_remove_many(&state->arcs_size[type], size, tag);
5326 
5327 	VERIFY3U(hdr->b_type, ==, type);
5328 	if (type == ARC_BUFC_METADATA) {
5329 		arc_space_return(size, ARC_SPACE_META);
5330 	} else {
5331 		ASSERT(type == ARC_BUFC_DATA);
5332 		arc_space_return(size, ARC_SPACE_DATA);
5333 	}
5334 }
5335 
5336 /*
5337  * This routine is called whenever a buffer is accessed.
5338  */
5339 static void
arc_access(arc_buf_hdr_t * hdr,arc_flags_t arc_flags,boolean_t hit)5340 arc_access(arc_buf_hdr_t *hdr, arc_flags_t arc_flags, boolean_t hit)
5341 {
5342 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
5343 	ASSERT(HDR_HAS_L1HDR(hdr));
5344 
5345 	/*
5346 	 * Update buffer prefetch status.
5347 	 */
5348 	boolean_t was_prefetch = HDR_PREFETCH(hdr);
5349 	boolean_t now_prefetch = arc_flags & ARC_FLAG_PREFETCH;
5350 	if (was_prefetch != now_prefetch) {
5351 		if (was_prefetch) {
5352 			ARCSTAT_CONDSTAT(hit, demand_hit, demand_iohit,
5353 			    HDR_PRESCIENT_PREFETCH(hdr), prescient, predictive,
5354 			    prefetch);
5355 		}
5356 		if (HDR_HAS_L2HDR(hdr))
5357 			l2arc_hdr_arcstats_decrement_state(hdr);
5358 		if (was_prefetch) {
5359 			arc_hdr_clear_flags(hdr,
5360 			    ARC_FLAG_PREFETCH | ARC_FLAG_PRESCIENT_PREFETCH);
5361 		} else {
5362 			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5363 		}
5364 		if (HDR_HAS_L2HDR(hdr))
5365 			l2arc_hdr_arcstats_increment_state(hdr);
5366 	}
5367 	if (now_prefetch) {
5368 		if (arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
5369 			arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
5370 			ARCSTAT_BUMP(arcstat_prescient_prefetch);
5371 		} else {
5372 			ARCSTAT_BUMP(arcstat_predictive_prefetch);
5373 		}
5374 	}
5375 	if (arc_flags & ARC_FLAG_L2CACHE)
5376 		arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5377 
5378 	clock_t now = ddi_get_lbolt();
5379 	if (hdr->b_l1hdr.b_state == arc_anon) {
5380 		arc_state_t	*new_state;
5381 		/*
5382 		 * This buffer is not in the cache, and does not appear in
5383 		 * our "ghost" lists.  Add it to the MRU or uncached state.
5384 		 */
5385 		ASSERT0(hdr->b_l1hdr.b_arc_access);
5386 		hdr->b_l1hdr.b_arc_access = now;
5387 		if (HDR_UNCACHED(hdr)) {
5388 			new_state = arc_uncached;
5389 			DTRACE_PROBE1(new_state__uncached, arc_buf_hdr_t *,
5390 			    hdr);
5391 		} else {
5392 			new_state = arc_mru;
5393 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5394 		}
5395 		arc_change_state(new_state, hdr);
5396 	} else if (hdr->b_l1hdr.b_state == arc_mru) {
5397 		/*
5398 		 * This buffer has been accessed once recently and either
5399 		 * its read is still in progress or it is in the cache.
5400 		 */
5401 		if (HDR_IO_IN_PROGRESS(hdr)) {
5402 			hdr->b_l1hdr.b_arc_access = now;
5403 			return;
5404 		}
5405 		hdr->b_l1hdr.b_mru_hits++;
5406 		ARCSTAT_BUMP(arcstat_mru_hits);
5407 
5408 		/*
5409 		 * If the previous access was a prefetch, then it already
5410 		 * handled possible promotion, so nothing more to do for now.
5411 		 */
5412 		if (was_prefetch) {
5413 			hdr->b_l1hdr.b_arc_access = now;
5414 			return;
5415 		}
5416 
5417 		/*
5418 		 * If more than ARC_MINTIME have passed from the previous
5419 		 * hit, promote the buffer to the MFU state.
5420 		 */
5421 		if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
5422 		    ARC_MINTIME)) {
5423 			hdr->b_l1hdr.b_arc_access = now;
5424 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5425 			arc_change_state(arc_mfu, hdr);
5426 		}
5427 	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
5428 		arc_state_t	*new_state;
5429 		/*
5430 		 * This buffer has been accessed once recently, but was
5431 		 * evicted from the cache.  Would we have bigger MRU, it
5432 		 * would be an MRU hit, so handle it the same way, except
5433 		 * we don't need to check the previous access time.
5434 		 */
5435 		hdr->b_l1hdr.b_mru_ghost_hits++;
5436 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
5437 		hdr->b_l1hdr.b_arc_access = now;
5438 		wmsum_add(&arc_mru_ghost->arcs_hits[arc_buf_type(hdr)],
5439 		    arc_hdr_size(hdr));
5440 		if (was_prefetch) {
5441 			new_state = arc_mru;
5442 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5443 		} else {
5444 			new_state = arc_mfu;
5445 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5446 		}
5447 		arc_change_state(new_state, hdr);
5448 	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
5449 		/*
5450 		 * This buffer has been accessed more than once and either
5451 		 * still in the cache or being restored from one of ghosts.
5452 		 */
5453 		if (!HDR_IO_IN_PROGRESS(hdr)) {
5454 			hdr->b_l1hdr.b_mfu_hits++;
5455 			ARCSTAT_BUMP(arcstat_mfu_hits);
5456 		}
5457 		hdr->b_l1hdr.b_arc_access = now;
5458 	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
5459 		/*
5460 		 * This buffer has been accessed more than once recently, but
5461 		 * has been evicted from the cache.  Would we have bigger MFU
5462 		 * it would stay in cache, so move it back to MFU state.
5463 		 */
5464 		hdr->b_l1hdr.b_mfu_ghost_hits++;
5465 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
5466 		hdr->b_l1hdr.b_arc_access = now;
5467 		wmsum_add(&arc_mfu_ghost->arcs_hits[arc_buf_type(hdr)],
5468 		    arc_hdr_size(hdr));
5469 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5470 		arc_change_state(arc_mfu, hdr);
5471 	} else if (hdr->b_l1hdr.b_state == arc_uncached) {
5472 		/*
5473 		 * This buffer is uncacheable, but we got a hit.  Probably
5474 		 * a demand read after prefetch.  Nothing more to do here.
5475 		 */
5476 		if (!HDR_IO_IN_PROGRESS(hdr))
5477 			ARCSTAT_BUMP(arcstat_uncached_hits);
5478 		hdr->b_l1hdr.b_arc_access = now;
5479 	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
5480 		/*
5481 		 * This buffer is on the 2nd Level ARC and was not accessed
5482 		 * for a long time, so treat it as new and put into MRU.
5483 		 */
5484 		hdr->b_l1hdr.b_arc_access = now;
5485 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5486 		arc_change_state(arc_mru, hdr);
5487 	} else {
5488 		cmn_err(CE_PANIC, "invalid arc state 0x%p",
5489 		    hdr->b_l1hdr.b_state);
5490 	}
5491 }
5492 
5493 /*
5494  * This routine is called by dbuf_hold() to update the arc_access() state
5495  * which otherwise would be skipped for entries in the dbuf cache.
5496  */
5497 void
arc_buf_access(arc_buf_t * buf)5498 arc_buf_access(arc_buf_t *buf)
5499 {
5500 	arc_buf_hdr_t *hdr = buf->b_hdr;
5501 
5502 	/*
5503 	 * Avoid taking the hash_lock when possible as an optimization.
5504 	 * The header must be checked again under the hash_lock in order
5505 	 * to handle the case where it is concurrently being released.
5506 	 */
5507 	if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr))
5508 		return;
5509 
5510 	kmutex_t *hash_lock = HDR_LOCK(hdr);
5511 	mutex_enter(hash_lock);
5512 
5513 	if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5514 		mutex_exit(hash_lock);
5515 		ARCSTAT_BUMP(arcstat_access_skip);
5516 		return;
5517 	}
5518 
5519 	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5520 	    hdr->b_l1hdr.b_state == arc_mfu ||
5521 	    hdr->b_l1hdr.b_state == arc_uncached);
5522 
5523 	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5524 	arc_access(hdr, 0, B_TRUE);
5525 	mutex_exit(hash_lock);
5526 
5527 	ARCSTAT_BUMP(arcstat_hits);
5528 	ARCSTAT_CONDSTAT(B_TRUE /* demand */, demand, prefetch,
5529 	    !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
5530 }
5531 
5532 /* a generic arc_read_done_func_t which you can use */
5533 void
arc_bcopy_func(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * bp,arc_buf_t * buf,void * arg)5534 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5535     arc_buf_t *buf, void *arg)
5536 {
5537 	(void) zio, (void) zb, (void) bp;
5538 
5539 	if (buf == NULL)
5540 		return;
5541 
5542 	memcpy(arg, buf->b_data, arc_buf_size(buf));
5543 	arc_buf_destroy(buf, arg);
5544 }
5545 
5546 /* a generic arc_read_done_func_t */
5547 void
arc_getbuf_func(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * bp,arc_buf_t * buf,void * arg)5548 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5549     arc_buf_t *buf, void *arg)
5550 {
5551 	(void) zb, (void) bp;
5552 	arc_buf_t **bufp = arg;
5553 
5554 	if (buf == NULL) {
5555 		ASSERT(zio == NULL || zio->io_error != 0);
5556 		*bufp = NULL;
5557 	} else {
5558 		ASSERT(zio == NULL || zio->io_error == 0);
5559 		*bufp = buf;
5560 		ASSERT(buf->b_data != NULL);
5561 	}
5562 }
5563 
5564 static void
arc_hdr_verify(arc_buf_hdr_t * hdr,blkptr_t * bp)5565 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
5566 {
5567 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5568 		ASSERT0(HDR_GET_PSIZE(hdr));
5569 		ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF);
5570 	} else {
5571 		if (HDR_COMPRESSION_ENABLED(hdr)) {
5572 			ASSERT3U(arc_hdr_get_compress(hdr), ==,
5573 			    BP_GET_COMPRESS(bp));
5574 		}
5575 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5576 		ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
5577 		ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp));
5578 	}
5579 }
5580 
5581 static void
arc_read_done(zio_t * zio)5582 arc_read_done(zio_t *zio)
5583 {
5584 	blkptr_t 	*bp = zio->io_bp;
5585 	arc_buf_hdr_t	*hdr = zio->io_private;
5586 	kmutex_t	*hash_lock = NULL;
5587 	arc_callback_t	*callback_list;
5588 	arc_callback_t	*acb;
5589 
5590 	/*
5591 	 * The hdr was inserted into hash-table and removed from lists
5592 	 * prior to starting I/O.  We should find this header, since
5593 	 * it's in the hash table, and it should be legit since it's
5594 	 * not possible to evict it during the I/O.  The only possible
5595 	 * reason for it not to be found is if we were freed during the
5596 	 * read.
5597 	 */
5598 	if (HDR_IN_HASH_TABLE(hdr)) {
5599 		arc_buf_hdr_t *found;
5600 
5601 		ASSERT3U(hdr->b_birth, ==, BP_GET_PHYSICAL_BIRTH(zio->io_bp));
5602 		ASSERT3U(hdr->b_dva.dva_word[0], ==,
5603 		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
5604 		ASSERT3U(hdr->b_dva.dva_word[1], ==,
5605 		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
5606 
5607 		found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock);
5608 
5609 		ASSERT((found == hdr &&
5610 		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5611 		    (found == hdr && HDR_L2_READING(hdr)));
5612 		ASSERT3P(hash_lock, !=, NULL);
5613 	}
5614 
5615 	if (BP_IS_PROTECTED(bp)) {
5616 		hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
5617 		hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
5618 		zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
5619 		    hdr->b_crypt_hdr.b_iv);
5620 
5621 		if (zio->io_error == 0) {
5622 			if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) {
5623 				void *tmpbuf;
5624 
5625 				tmpbuf = abd_borrow_buf_copy(zio->io_abd,
5626 				    sizeof (zil_chain_t));
5627 				zio_crypt_decode_mac_zil(tmpbuf,
5628 				    hdr->b_crypt_hdr.b_mac);
5629 				abd_return_buf(zio->io_abd, tmpbuf,
5630 				    sizeof (zil_chain_t));
5631 			} else {
5632 				zio_crypt_decode_mac_bp(bp,
5633 				    hdr->b_crypt_hdr.b_mac);
5634 			}
5635 		}
5636 	}
5637 
5638 	if (zio->io_error == 0) {
5639 		/* byteswap if necessary */
5640 		if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5641 			if (BP_GET_LEVEL(zio->io_bp) > 0) {
5642 				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5643 			} else {
5644 				hdr->b_l1hdr.b_byteswap =
5645 				    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5646 			}
5647 		} else {
5648 			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5649 		}
5650 		if (!HDR_L2_READING(hdr)) {
5651 			hdr->b_complevel = zio->io_prop.zp_complevel;
5652 		}
5653 	}
5654 
5655 	arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
5656 	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
5657 		arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
5658 
5659 	callback_list = hdr->b_l1hdr.b_acb;
5660 	ASSERT3P(callback_list, !=, NULL);
5661 	hdr->b_l1hdr.b_acb = NULL;
5662 
5663 	/*
5664 	 * If a read request has a callback (i.e. acb_done is not NULL), then we
5665 	 * make a buf containing the data according to the parameters which were
5666 	 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5667 	 * aren't needlessly decompressing the data multiple times.
5668 	 */
5669 	int callback_cnt = 0;
5670 	for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5671 
5672 		/* We need the last one to call below in original order. */
5673 		callback_list = acb;
5674 
5675 		if (!acb->acb_done || acb->acb_nobuf)
5676 			continue;
5677 
5678 		callback_cnt++;
5679 
5680 		if (zio->io_error != 0)
5681 			continue;
5682 
5683 		int error = arc_buf_alloc_impl(hdr, zio->io_spa,
5684 		    &acb->acb_zb, acb->acb_private, acb->acb_encrypted,
5685 		    acb->acb_compressed, acb->acb_noauth, B_TRUE,
5686 		    &acb->acb_buf);
5687 
5688 		/*
5689 		 * Assert non-speculative zios didn't fail because an
5690 		 * encryption key wasn't loaded
5691 		 */
5692 		ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) ||
5693 		    error != EACCES);
5694 
5695 		/*
5696 		 * If we failed to decrypt, report an error now (as the zio
5697 		 * layer would have done if it had done the transforms).
5698 		 */
5699 		if (error == ECKSUM) {
5700 			ASSERT(BP_IS_PROTECTED(bp));
5701 			error = SET_ERROR(EIO);
5702 			if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5703 				spa_log_error(zio->io_spa, &acb->acb_zb,
5704 				    BP_GET_PHYSICAL_BIRTH(zio->io_bp));
5705 				(void) zfs_ereport_post(
5706 				    FM_EREPORT_ZFS_AUTHENTICATION,
5707 				    zio->io_spa, NULL, &acb->acb_zb, zio, 0);
5708 			}
5709 		}
5710 
5711 		if (error != 0) {
5712 			/*
5713 			 * Decompression or decryption failed.  Set
5714 			 * io_error so that when we call acb_done
5715 			 * (below), we will indicate that the read
5716 			 * failed. Note that in the unusual case
5717 			 * where one callback is compressed and another
5718 			 * uncompressed, we will mark all of them
5719 			 * as failed, even though the uncompressed
5720 			 * one can't actually fail.  In this case,
5721 			 * the hdr will not be anonymous, because
5722 			 * if there are multiple callbacks, it's
5723 			 * because multiple threads found the same
5724 			 * arc buf in the hash table.
5725 			 */
5726 			zio->io_error = error;
5727 		}
5728 	}
5729 
5730 	/*
5731 	 * If there are multiple callbacks, we must have the hash lock,
5732 	 * because the only way for multiple threads to find this hdr is
5733 	 * in the hash table.  This ensures that if there are multiple
5734 	 * callbacks, the hdr is not anonymous.  If it were anonymous,
5735 	 * we couldn't use arc_buf_destroy() in the error case below.
5736 	 */
5737 	ASSERT(callback_cnt < 2 || hash_lock != NULL);
5738 
5739 	if (zio->io_error == 0) {
5740 		arc_hdr_verify(hdr, zio->io_bp);
5741 	} else {
5742 		arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5743 		if (hdr->b_l1hdr.b_state != arc_anon)
5744 			arc_change_state(arc_anon, hdr);
5745 		if (HDR_IN_HASH_TABLE(hdr))
5746 			buf_hash_remove(hdr);
5747 	}
5748 
5749 	arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5750 	(void) remove_reference(hdr, hdr);
5751 
5752 	if (hash_lock != NULL)
5753 		mutex_exit(hash_lock);
5754 
5755 	/* execute each callback and free its structure */
5756 	while ((acb = callback_list) != NULL) {
5757 		if (acb->acb_done != NULL) {
5758 			if (zio->io_error != 0 && acb->acb_buf != NULL) {
5759 				/*
5760 				 * If arc_buf_alloc_impl() fails during
5761 				 * decompression, the buf will still be
5762 				 * allocated, and needs to be freed here.
5763 				 */
5764 				arc_buf_destroy(acb->acb_buf,
5765 				    acb->acb_private);
5766 				acb->acb_buf = NULL;
5767 			}
5768 			acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
5769 			    acb->acb_buf, acb->acb_private);
5770 		}
5771 
5772 		if (acb->acb_zio_dummy != NULL) {
5773 			acb->acb_zio_dummy->io_error = zio->io_error;
5774 			zio_nowait(acb->acb_zio_dummy);
5775 		}
5776 
5777 		callback_list = acb->acb_prev;
5778 		if (acb->acb_wait) {
5779 			mutex_enter(&acb->acb_wait_lock);
5780 			acb->acb_wait_error = zio->io_error;
5781 			acb->acb_wait = B_FALSE;
5782 			cv_signal(&acb->acb_wait_cv);
5783 			mutex_exit(&acb->acb_wait_lock);
5784 			/* acb will be freed by the waiting thread. */
5785 		} else {
5786 			kmem_free(acb, sizeof (arc_callback_t));
5787 		}
5788 	}
5789 }
5790 
5791 /*
5792  * Lookup the block at the specified DVA (in bp), and return the manner in
5793  * which the block is cached. A zero return indicates not cached.
5794  */
5795 int
arc_cached(spa_t * spa,const blkptr_t * bp)5796 arc_cached(spa_t *spa, const blkptr_t *bp)
5797 {
5798 	arc_buf_hdr_t *hdr = NULL;
5799 	kmutex_t *hash_lock = NULL;
5800 	uint64_t guid = spa_load_guid(spa);
5801 	int flags = 0;
5802 
5803 	if (BP_IS_EMBEDDED(bp))
5804 		return (ARC_CACHED_EMBEDDED);
5805 
5806 	hdr = buf_hash_find(guid, bp, &hash_lock);
5807 	if (hdr == NULL)
5808 		return (0);
5809 
5810 	if (HDR_HAS_L1HDR(hdr)) {
5811 		arc_state_t *state = hdr->b_l1hdr.b_state;
5812 		/*
5813 		 * We switch to ensure that any future arc_state_type_t
5814 		 * changes are handled. This is just a shift to promote
5815 		 * more compile-time checking.
5816 		 */
5817 		switch (state->arcs_state) {
5818 		case ARC_STATE_ANON:
5819 			break;
5820 		case ARC_STATE_MRU:
5821 			flags |= ARC_CACHED_IN_MRU | ARC_CACHED_IN_L1;
5822 			break;
5823 		case ARC_STATE_MFU:
5824 			flags |= ARC_CACHED_IN_MFU | ARC_CACHED_IN_L1;
5825 			break;
5826 		case ARC_STATE_UNCACHED:
5827 			/* The header is still in L1, probably not for long */
5828 			flags |= ARC_CACHED_IN_L1;
5829 			break;
5830 		default:
5831 			break;
5832 		}
5833 	}
5834 	if (HDR_HAS_L2HDR(hdr))
5835 		flags |= ARC_CACHED_IN_L2;
5836 
5837 	mutex_exit(hash_lock);
5838 
5839 	return (flags);
5840 }
5841 
5842 /*
5843  * "Read" the block at the specified DVA (in bp) via the
5844  * cache.  If the block is found in the cache, invoke the provided
5845  * callback immediately and return.  Note that the `zio' parameter
5846  * in the callback will be NULL in this case, since no IO was
5847  * required.  If the block is not in the cache pass the read request
5848  * on to the spa with a substitute callback function, so that the
5849  * requested block will be added to the cache.
5850  *
5851  * If a read request arrives for a block that has a read in-progress,
5852  * either wait for the in-progress read to complete (and return the
5853  * results); or, if this is a read with a "done" func, add a record
5854  * to the read to invoke the "done" func when the read completes,
5855  * and return; or just return.
5856  *
5857  * arc_read_done() will invoke all the requested "done" functions
5858  * for readers of this block.
5859  */
5860 int
arc_read(zio_t * pio,spa_t * spa,const blkptr_t * bp,arc_read_done_func_t * done,void * private,zio_priority_t priority,int zio_flags,arc_flags_t * arc_flags,const zbookmark_phys_t * zb)5861 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
5862     arc_read_done_func_t *done, void *private, zio_priority_t priority,
5863     int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5864 {
5865 	arc_buf_hdr_t *hdr = NULL;
5866 	kmutex_t *hash_lock = NULL;
5867 	zio_t *rzio;
5868 	uint64_t guid = spa_load_guid(spa);
5869 	boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0;
5870 	boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) &&
5871 	    (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5872 	boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) &&
5873 	    (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5874 	boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp);
5875 	boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF;
5876 	arc_buf_t *buf = NULL;
5877 	int rc = 0;
5878 	boolean_t bp_validation = B_FALSE;
5879 
5880 	ASSERT(!embedded_bp ||
5881 	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5882 	ASSERT(!BP_IS_HOLE(bp));
5883 	ASSERT(!BP_IS_REDACTED(bp));
5884 
5885 	/*
5886 	 * Normally SPL_FSTRANS will already be set since kernel threads which
5887 	 * expect to call the DMU interfaces will set it when created.  System
5888 	 * calls are similarly handled by setting/cleaning the bit in the
5889 	 * registered callback (module/os/.../zfs/zpl_*).
5890 	 *
5891 	 * External consumers such as Lustre which call the exported DMU
5892 	 * interfaces may not have set SPL_FSTRANS.  To avoid a deadlock
5893 	 * on the hash_lock always set and clear the bit.
5894 	 */
5895 	fstrans_cookie_t cookie = spl_fstrans_mark();
5896 top:
5897 	if (!embedded_bp) {
5898 		/*
5899 		 * Embedded BP's have no DVA and require no I/O to "read".
5900 		 * Create an anonymous arc buf to back it.
5901 		 */
5902 		hdr = buf_hash_find(guid, bp, &hash_lock);
5903 	}
5904 
5905 	/*
5906 	 * Determine if we have an L1 cache hit or a cache miss. For simplicity
5907 	 * we maintain encrypted data separately from compressed / uncompressed
5908 	 * data. If the user is requesting raw encrypted data and we don't have
5909 	 * that in the header we will read from disk to guarantee that we can
5910 	 * get it even if the encryption keys aren't loaded.
5911 	 */
5912 	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) ||
5913 	    (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) {
5914 		boolean_t is_data = !HDR_ISTYPE_METADATA(hdr);
5915 
5916 		/*
5917 		 * Verify the block pointer contents are reasonable.  This
5918 		 * should always be the case since the blkptr is protected by
5919 		 * a checksum.
5920 		 */
5921 		if (zfs_blkptr_verify(spa, bp, BLK_CONFIG_SKIP,
5922 		    BLK_VERIFY_LOG)) {
5923 			mutex_exit(hash_lock);
5924 			rc = SET_ERROR(ECKSUM);
5925 			goto done;
5926 		}
5927 
5928 		if (HDR_IO_IN_PROGRESS(hdr)) {
5929 			if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
5930 				mutex_exit(hash_lock);
5931 				ARCSTAT_BUMP(arcstat_cached_only_in_progress);
5932 				rc = SET_ERROR(ENOENT);
5933 				goto done;
5934 			}
5935 
5936 			zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
5937 			ASSERT3P(head_zio, !=, NULL);
5938 			if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5939 			    priority == ZIO_PRIORITY_SYNC_READ) {
5940 				/*
5941 				 * This is a sync read that needs to wait for
5942 				 * an in-flight async read. Request that the
5943 				 * zio have its priority upgraded.
5944 				 */
5945 				zio_change_priority(head_zio, priority);
5946 				DTRACE_PROBE1(arc__async__upgrade__sync,
5947 				    arc_buf_hdr_t *, hdr);
5948 				ARCSTAT_BUMP(arcstat_async_upgrade_sync);
5949 			}
5950 
5951 			DTRACE_PROBE1(arc__iohit, arc_buf_hdr_t *, hdr);
5952 			arc_access(hdr, *arc_flags, B_FALSE);
5953 
5954 			/*
5955 			 * If there are multiple threads reading the same block
5956 			 * and that block is not yet in the ARC, then only one
5957 			 * thread will do the physical I/O and all other
5958 			 * threads will wait until that I/O completes.
5959 			 * Synchronous reads use the acb_wait_cv whereas nowait
5960 			 * reads register a callback. Both are signalled/called
5961 			 * in arc_read_done.
5962 			 *
5963 			 * Errors of the physical I/O may need to be propagated.
5964 			 * Synchronous read errors are returned here from
5965 			 * arc_read_done via acb_wait_error.  Nowait reads
5966 			 * attach the acb_zio_dummy zio to pio and
5967 			 * arc_read_done propagates the physical I/O's io_error
5968 			 * to acb_zio_dummy, and thereby to pio.
5969 			 */
5970 			arc_callback_t *acb = NULL;
5971 			if (done || pio || *arc_flags & ARC_FLAG_WAIT) {
5972 				acb = kmem_zalloc(sizeof (arc_callback_t),
5973 				    KM_SLEEP);
5974 				acb->acb_done = done;
5975 				acb->acb_private = private;
5976 				acb->acb_compressed = compressed_read;
5977 				acb->acb_encrypted = encrypted_read;
5978 				acb->acb_noauth = noauth_read;
5979 				acb->acb_nobuf = no_buf;
5980 				if (*arc_flags & ARC_FLAG_WAIT) {
5981 					acb->acb_wait = B_TRUE;
5982 					mutex_init(&acb->acb_wait_lock, NULL,
5983 					    MUTEX_DEFAULT, NULL);
5984 					cv_init(&acb->acb_wait_cv, NULL,
5985 					    CV_DEFAULT, NULL);
5986 				}
5987 				acb->acb_zb = *zb;
5988 				if (pio != NULL) {
5989 					acb->acb_zio_dummy = zio_null(pio,
5990 					    spa, NULL, NULL, NULL, zio_flags);
5991 				}
5992 				acb->acb_zio_head = head_zio;
5993 				acb->acb_next = hdr->b_l1hdr.b_acb;
5994 				hdr->b_l1hdr.b_acb->acb_prev = acb;
5995 				hdr->b_l1hdr.b_acb = acb;
5996 			}
5997 			mutex_exit(hash_lock);
5998 
5999 			ARCSTAT_BUMP(arcstat_iohits);
6000 			ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
6001 			    demand, prefetch, is_data, data, metadata, iohits);
6002 
6003 			if (*arc_flags & ARC_FLAG_WAIT) {
6004 				mutex_enter(&acb->acb_wait_lock);
6005 				while (acb->acb_wait) {
6006 					cv_wait(&acb->acb_wait_cv,
6007 					    &acb->acb_wait_lock);
6008 				}
6009 				rc = acb->acb_wait_error;
6010 				mutex_exit(&acb->acb_wait_lock);
6011 				mutex_destroy(&acb->acb_wait_lock);
6012 				cv_destroy(&acb->acb_wait_cv);
6013 				kmem_free(acb, sizeof (arc_callback_t));
6014 			}
6015 			goto out;
6016 		}
6017 
6018 		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
6019 		    hdr->b_l1hdr.b_state == arc_mfu ||
6020 		    hdr->b_l1hdr.b_state == arc_uncached);
6021 
6022 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
6023 		arc_access(hdr, *arc_flags, B_TRUE);
6024 
6025 		if (done && !no_buf) {
6026 			ASSERT(!embedded_bp || !BP_IS_HOLE(bp));
6027 
6028 			/* Get a buf with the desired data in it. */
6029 			rc = arc_buf_alloc_impl(hdr, spa, zb, private,
6030 			    encrypted_read, compressed_read, noauth_read,
6031 			    B_TRUE, &buf);
6032 			if (rc == ECKSUM) {
6033 				/*
6034 				 * Convert authentication and decryption errors
6035 				 * to EIO (and generate an ereport if needed)
6036 				 * before leaving the ARC.
6037 				 */
6038 				rc = SET_ERROR(EIO);
6039 				if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) {
6040 					spa_log_error(spa, zb, hdr->b_birth);
6041 					(void) zfs_ereport_post(
6042 					    FM_EREPORT_ZFS_AUTHENTICATION,
6043 					    spa, NULL, zb, NULL, 0);
6044 				}
6045 			}
6046 			if (rc != 0) {
6047 				arc_buf_destroy_impl(buf);
6048 				buf = NULL;
6049 				(void) remove_reference(hdr, private);
6050 			}
6051 
6052 			/* assert any errors weren't due to unloaded keys */
6053 			ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
6054 			    rc != EACCES);
6055 		}
6056 		mutex_exit(hash_lock);
6057 		ARCSTAT_BUMP(arcstat_hits);
6058 		ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
6059 		    demand, prefetch, is_data, data, metadata, hits);
6060 		*arc_flags |= ARC_FLAG_CACHED;
6061 		goto done;
6062 	} else {
6063 		uint64_t lsize = BP_GET_LSIZE(bp);
6064 		uint64_t psize = BP_GET_PSIZE(bp);
6065 		arc_callback_t *acb;
6066 		vdev_t *vd = NULL;
6067 		uint64_t addr = 0;
6068 		boolean_t devw = B_FALSE;
6069 		uint64_t size;
6070 		abd_t *hdr_abd;
6071 		int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0;
6072 		arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
6073 		int config_lock;
6074 		int error;
6075 
6076 		if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
6077 			if (hash_lock != NULL)
6078 				mutex_exit(hash_lock);
6079 			rc = SET_ERROR(ENOENT);
6080 			goto done;
6081 		}
6082 
6083 		if (zio_flags & ZIO_FLAG_CONFIG_WRITER) {
6084 			config_lock = BLK_CONFIG_HELD;
6085 		} else if (hash_lock != NULL) {
6086 			/*
6087 			 * Prevent lock order reversal
6088 			 */
6089 			config_lock = BLK_CONFIG_NEEDED_TRY;
6090 		} else {
6091 			config_lock = BLK_CONFIG_NEEDED;
6092 		}
6093 
6094 		/*
6095 		 * Verify the block pointer contents are reasonable.  This
6096 		 * should always be the case since the blkptr is protected by
6097 		 * a checksum.
6098 		 */
6099 		if (!bp_validation && (error = zfs_blkptr_verify(spa, bp,
6100 		    config_lock, BLK_VERIFY_LOG))) {
6101 			if (hash_lock != NULL)
6102 				mutex_exit(hash_lock);
6103 			if (error == EBUSY && !zfs_blkptr_verify(spa, bp,
6104 			    BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
6105 				bp_validation = B_TRUE;
6106 				goto top;
6107 			}
6108 			rc = SET_ERROR(ECKSUM);
6109 			goto done;
6110 		}
6111 
6112 		if (hdr == NULL) {
6113 			/*
6114 			 * This block is not in the cache or it has
6115 			 * embedded data.
6116 			 */
6117 			arc_buf_hdr_t *exists = NULL;
6118 			hdr = arc_hdr_alloc(guid, psize, lsize,
6119 			    BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type);
6120 
6121 			if (!embedded_bp) {
6122 				hdr->b_dva = *BP_IDENTITY(bp);
6123 				hdr->b_birth = BP_GET_PHYSICAL_BIRTH(bp);
6124 				exists = buf_hash_insert(hdr, &hash_lock);
6125 			}
6126 			if (exists != NULL) {
6127 				/* somebody beat us to the hash insert */
6128 				mutex_exit(hash_lock);
6129 				buf_discard_identity(hdr);
6130 				arc_hdr_destroy(hdr);
6131 				goto top; /* restart the IO request */
6132 			}
6133 		} else {
6134 			/*
6135 			 * This block is in the ghost cache or encrypted data
6136 			 * was requested and we didn't have it. If it was
6137 			 * L2-only (and thus didn't have an L1 hdr),
6138 			 * we realloc the header to add an L1 hdr.
6139 			 */
6140 			if (!HDR_HAS_L1HDR(hdr)) {
6141 				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
6142 				    hdr_full_cache);
6143 			}
6144 
6145 			if (GHOST_STATE(hdr->b_l1hdr.b_state)) {
6146 				ASSERT0P(hdr->b_l1hdr.b_pabd);
6147 				ASSERT(!HDR_HAS_RABD(hdr));
6148 				ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6149 				ASSERT0(zfs_refcount_count(
6150 				    &hdr->b_l1hdr.b_refcnt));
6151 				ASSERT0P(hdr->b_l1hdr.b_buf);
6152 #ifdef ZFS_DEBUG
6153 				ASSERT0P(hdr->b_l1hdr.b_freeze_cksum);
6154 #endif
6155 			} else if (HDR_IO_IN_PROGRESS(hdr)) {
6156 				/*
6157 				 * If this header already had an IO in progress
6158 				 * and we are performing another IO to fetch
6159 				 * encrypted data we must wait until the first
6160 				 * IO completes so as not to confuse
6161 				 * arc_read_done(). This should be very rare
6162 				 * and so the performance impact shouldn't
6163 				 * matter.
6164 				 */
6165 				arc_callback_t *acb = kmem_zalloc(
6166 				    sizeof (arc_callback_t), KM_SLEEP);
6167 				acb->acb_wait = B_TRUE;
6168 				mutex_init(&acb->acb_wait_lock, NULL,
6169 				    MUTEX_DEFAULT, NULL);
6170 				cv_init(&acb->acb_wait_cv, NULL, CV_DEFAULT,
6171 				    NULL);
6172 				acb->acb_zio_head =
6173 				    hdr->b_l1hdr.b_acb->acb_zio_head;
6174 				acb->acb_next = hdr->b_l1hdr.b_acb;
6175 				hdr->b_l1hdr.b_acb->acb_prev = acb;
6176 				hdr->b_l1hdr.b_acb = acb;
6177 				mutex_exit(hash_lock);
6178 				mutex_enter(&acb->acb_wait_lock);
6179 				while (acb->acb_wait) {
6180 					cv_wait(&acb->acb_wait_cv,
6181 					    &acb->acb_wait_lock);
6182 				}
6183 				mutex_exit(&acb->acb_wait_lock);
6184 				mutex_destroy(&acb->acb_wait_lock);
6185 				cv_destroy(&acb->acb_wait_cv);
6186 				kmem_free(acb, sizeof (arc_callback_t));
6187 				goto top;
6188 			}
6189 		}
6190 		if (*arc_flags & ARC_FLAG_UNCACHED) {
6191 			arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED);
6192 			if (!encrypted_read)
6193 				alloc_flags |= ARC_HDR_ALLOC_LINEAR;
6194 		}
6195 
6196 		/*
6197 		 * Take additional reference for IO_IN_PROGRESS.  It stops
6198 		 * arc_access() from putting this header without any buffers
6199 		 * and so other references but obviously nonevictable onto
6200 		 * the evictable list of MRU or MFU state.
6201 		 */
6202 		add_reference(hdr, hdr);
6203 		if (!embedded_bp)
6204 			arc_access(hdr, *arc_flags, B_FALSE);
6205 		arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6206 		arc_hdr_alloc_abd(hdr, alloc_flags);
6207 		if (encrypted_read) {
6208 			ASSERT(HDR_HAS_RABD(hdr));
6209 			size = HDR_GET_PSIZE(hdr);
6210 			hdr_abd = hdr->b_crypt_hdr.b_rabd;
6211 			zio_flags |= ZIO_FLAG_RAW;
6212 		} else {
6213 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
6214 			size = arc_hdr_size(hdr);
6215 			hdr_abd = hdr->b_l1hdr.b_pabd;
6216 
6217 			if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
6218 				zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6219 			}
6220 
6221 			/*
6222 			 * For authenticated bp's, we do not ask the ZIO layer
6223 			 * to authenticate them since this will cause the entire
6224 			 * IO to fail if the key isn't loaded. Instead, we
6225 			 * defer authentication until arc_buf_fill(), which will
6226 			 * verify the data when the key is available.
6227 			 */
6228 			if (BP_IS_AUTHENTICATED(bp))
6229 				zio_flags |= ZIO_FLAG_RAW_ENCRYPT;
6230 		}
6231 
6232 		if (BP_IS_AUTHENTICATED(bp))
6233 			arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6234 		if (BP_GET_LEVEL(bp) > 0)
6235 			arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
6236 		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
6237 
6238 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
6239 		acb->acb_done = done;
6240 		acb->acb_private = private;
6241 		acb->acb_compressed = compressed_read;
6242 		acb->acb_encrypted = encrypted_read;
6243 		acb->acb_noauth = noauth_read;
6244 		acb->acb_nobuf = no_buf;
6245 		acb->acb_zb = *zb;
6246 
6247 		ASSERT0P(hdr->b_l1hdr.b_acb);
6248 		hdr->b_l1hdr.b_acb = acb;
6249 
6250 		if (HDR_HAS_L2HDR(hdr) &&
6251 		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
6252 			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
6253 			addr = hdr->b_l2hdr.b_daddr;
6254 			/*
6255 			 * Lock out L2ARC device removal.
6256 			 */
6257 			if (vdev_is_dead(vd) ||
6258 			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
6259 				vd = NULL;
6260 		}
6261 
6262 		/*
6263 		 * We count both async reads and scrub IOs as asynchronous so
6264 		 * that both can be upgraded in the event of a cache hit while
6265 		 * the read IO is still in-flight.
6266 		 */
6267 		if (priority == ZIO_PRIORITY_ASYNC_READ ||
6268 		    priority == ZIO_PRIORITY_SCRUB)
6269 			arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6270 		else
6271 			arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6272 
6273 		/*
6274 		 * At this point, we have a level 1 cache miss or a blkptr
6275 		 * with embedded data.  Try again in L2ARC if possible.
6276 		 */
6277 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
6278 
6279 		/*
6280 		 * Skip ARC stat bump for block pointers with embedded
6281 		 * data. The data are read from the blkptr itself via
6282 		 * decode_embedded_bp_compressed().
6283 		 */
6284 		if (!embedded_bp) {
6285 			DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr,
6286 			    blkptr_t *, bp, uint64_t, lsize,
6287 			    zbookmark_phys_t *, zb);
6288 			ARCSTAT_BUMP(arcstat_misses);
6289 			ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
6290 			    demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data,
6291 			    metadata, misses);
6292 			zfs_racct_read(spa, size, 1,
6293 			    (*arc_flags & ARC_FLAG_UNCACHED) ?
6294 			    DMU_UNCACHEDIO : 0);
6295 		}
6296 
6297 		/* Check if the spa even has l2 configured */
6298 		const boolean_t spa_has_l2 = l2arc_ndev != 0 &&
6299 		    spa->spa_l2cache.sav_count > 0;
6300 
6301 		if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) {
6302 			/*
6303 			 * Read from the L2ARC if the following are true:
6304 			 * 1. The L2ARC vdev was previously cached.
6305 			 * 2. This buffer still has L2ARC metadata.
6306 			 * 3. This buffer isn't currently writing to the L2ARC.
6307 			 * 4. The L2ARC entry wasn't evicted, which may
6308 			 *    also have invalidated the vdev.
6309 			 */
6310 			if (HDR_HAS_L2HDR(hdr) &&
6311 			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr)) {
6312 				l2arc_read_callback_t *cb;
6313 				abd_t *abd;
6314 				uint64_t asize;
6315 
6316 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
6317 				ARCSTAT_BUMP(arcstat_l2_hits);
6318 				hdr->b_l2hdr.b_hits++;
6319 
6320 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
6321 				    KM_SLEEP);
6322 				cb->l2rcb_hdr = hdr;
6323 				cb->l2rcb_bp = *bp;
6324 				cb->l2rcb_zb = *zb;
6325 				cb->l2rcb_flags = zio_flags;
6326 
6327 				/*
6328 				 * When Compressed ARC is disabled, but the
6329 				 * L2ARC block is compressed, arc_hdr_size()
6330 				 * will have returned LSIZE rather than PSIZE.
6331 				 */
6332 				if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
6333 				    !HDR_COMPRESSION_ENABLED(hdr) &&
6334 				    HDR_GET_PSIZE(hdr) != 0) {
6335 					size = HDR_GET_PSIZE(hdr);
6336 				}
6337 
6338 				asize = vdev_psize_to_asize(vd, size);
6339 				if (asize != size) {
6340 					abd = abd_alloc_for_io(asize,
6341 					    HDR_ISTYPE_METADATA(hdr));
6342 					cb->l2rcb_abd = abd;
6343 				} else {
6344 					abd = hdr_abd;
6345 				}
6346 
6347 				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
6348 				    addr + asize <= vd->vdev_psize -
6349 				    VDEV_LABEL_END_SIZE);
6350 
6351 				/*
6352 				 * l2arc read.  The SCL_L2ARC lock will be
6353 				 * released by l2arc_read_done().
6354 				 * Issue a null zio if the underlying buffer
6355 				 * was squashed to zero size by compression.
6356 				 */
6357 				ASSERT3U(arc_hdr_get_compress(hdr), !=,
6358 				    ZIO_COMPRESS_EMPTY);
6359 				rzio = zio_read_phys(pio, vd, addr,
6360 				    asize, abd,
6361 				    ZIO_CHECKSUM_OFF,
6362 				    l2arc_read_done, cb, priority,
6363 				    zio_flags | ZIO_FLAG_CANFAIL |
6364 				    ZIO_FLAG_DONT_PROPAGATE |
6365 				    ZIO_FLAG_DONT_RETRY, B_FALSE);
6366 				acb->acb_zio_head = rzio;
6367 
6368 				if (hash_lock != NULL)
6369 					mutex_exit(hash_lock);
6370 
6371 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
6372 				    zio_t *, rzio);
6373 				ARCSTAT_INCR(arcstat_l2_read_bytes,
6374 				    HDR_GET_PSIZE(hdr));
6375 
6376 				if (*arc_flags & ARC_FLAG_NOWAIT) {
6377 					zio_nowait(rzio);
6378 					goto out;
6379 				}
6380 
6381 				ASSERT(*arc_flags & ARC_FLAG_WAIT);
6382 				if (zio_wait(rzio) == 0)
6383 					goto out;
6384 
6385 				/* l2arc read error; goto zio_read() */
6386 				if (hash_lock != NULL)
6387 					mutex_enter(hash_lock);
6388 			} else {
6389 				DTRACE_PROBE1(l2arc__miss,
6390 				    arc_buf_hdr_t *, hdr);
6391 				ARCSTAT_BUMP(arcstat_l2_misses);
6392 				if (HDR_L2_WRITING(hdr))
6393 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
6394 				spa_config_exit(spa, SCL_L2ARC, vd);
6395 			}
6396 		} else {
6397 			if (vd != NULL)
6398 				spa_config_exit(spa, SCL_L2ARC, vd);
6399 
6400 			/*
6401 			 * Only a spa with l2 should contribute to l2
6402 			 * miss stats.  (Including the case of having a
6403 			 * faulted cache device - that's also a miss.)
6404 			 */
6405 			if (spa_has_l2) {
6406 				/*
6407 				 * Skip ARC stat bump for block pointers with
6408 				 * embedded data. The data are read from the
6409 				 * blkptr itself via
6410 				 * decode_embedded_bp_compressed().
6411 				 */
6412 				if (!embedded_bp) {
6413 					DTRACE_PROBE1(l2arc__miss,
6414 					    arc_buf_hdr_t *, hdr);
6415 					ARCSTAT_BUMP(arcstat_l2_misses);
6416 				}
6417 			}
6418 		}
6419 
6420 		rzio = zio_read(pio, spa, bp, hdr_abd, size,
6421 		    arc_read_done, hdr, priority, zio_flags, zb);
6422 		acb->acb_zio_head = rzio;
6423 
6424 		if (hash_lock != NULL)
6425 			mutex_exit(hash_lock);
6426 
6427 		if (*arc_flags & ARC_FLAG_WAIT) {
6428 			rc = zio_wait(rzio);
6429 			goto out;
6430 		}
6431 
6432 		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
6433 		zio_nowait(rzio);
6434 	}
6435 
6436 out:
6437 	/* embedded bps don't actually go to disk */
6438 	if (!embedded_bp)
6439 		spa_read_history_add(spa, zb, *arc_flags);
6440 	spl_fstrans_unmark(cookie);
6441 	return (rc);
6442 
6443 done:
6444 	if (done)
6445 		done(NULL, zb, bp, buf, private);
6446 	if (pio && rc != 0) {
6447 		zio_t *zio = zio_null(pio, spa, NULL, NULL, NULL, zio_flags);
6448 		zio->io_error = rc;
6449 		zio_nowait(zio);
6450 	}
6451 	goto out;
6452 }
6453 
6454 arc_prune_t *
arc_add_prune_callback(arc_prune_func_t * func,void * private)6455 arc_add_prune_callback(arc_prune_func_t *func, void *private)
6456 {
6457 	arc_prune_t *p;
6458 
6459 	p = kmem_alloc(sizeof (*p), KM_SLEEP);
6460 	p->p_pfunc = func;
6461 	p->p_private = private;
6462 	list_link_init(&p->p_node);
6463 	zfs_refcount_create(&p->p_refcnt);
6464 
6465 	mutex_enter(&arc_prune_mtx);
6466 	zfs_refcount_add(&p->p_refcnt, &arc_prune_list);
6467 	list_insert_head(&arc_prune_list, p);
6468 	mutex_exit(&arc_prune_mtx);
6469 
6470 	return (p);
6471 }
6472 
6473 void
arc_remove_prune_callback(arc_prune_t * p)6474 arc_remove_prune_callback(arc_prune_t *p)
6475 {
6476 	boolean_t wait = B_FALSE;
6477 	mutex_enter(&arc_prune_mtx);
6478 	list_remove(&arc_prune_list, p);
6479 	if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
6480 		wait = B_TRUE;
6481 	mutex_exit(&arc_prune_mtx);
6482 
6483 	/* wait for arc_prune_task to finish */
6484 	if (wait)
6485 		taskq_wait_outstanding(arc_prune_taskq, 0);
6486 	ASSERT0(zfs_refcount_count(&p->p_refcnt));
6487 	zfs_refcount_destroy(&p->p_refcnt);
6488 	kmem_free(p, sizeof (*p));
6489 }
6490 
6491 /*
6492  * Helper function for arc_prune_async() it is responsible for safely
6493  * handling the execution of a registered arc_prune_func_t.
6494  */
6495 static void
arc_prune_task(void * ptr)6496 arc_prune_task(void *ptr)
6497 {
6498 	arc_prune_t *ap = (arc_prune_t *)ptr;
6499 	arc_prune_func_t *func = ap->p_pfunc;
6500 
6501 	if (func != NULL)
6502 		func(ap->p_adjust, ap->p_private);
6503 
6504 	(void) zfs_refcount_remove(&ap->p_refcnt, func);
6505 }
6506 
6507 /*
6508  * Notify registered consumers they must drop holds on a portion of the ARC
6509  * buffers they reference.  This provides a mechanism to ensure the ARC can
6510  * honor the metadata limit and reclaim otherwise pinned ARC buffers.
6511  *
6512  * This operation is performed asynchronously so it may be safely called
6513  * in the context of the arc_reclaim_thread().  A reference is taken here
6514  * for each registered arc_prune_t and the arc_prune_task() is responsible
6515  * for releasing it once the registered arc_prune_func_t has completed.
6516  */
6517 static void
arc_prune_async(uint64_t adjust)6518 arc_prune_async(uint64_t adjust)
6519 {
6520 	arc_prune_t *ap;
6521 
6522 	mutex_enter(&arc_prune_mtx);
6523 	for (ap = list_head(&arc_prune_list); ap != NULL;
6524 	    ap = list_next(&arc_prune_list, ap)) {
6525 
6526 		if (zfs_refcount_count(&ap->p_refcnt) >= 2)
6527 			continue;
6528 
6529 		zfs_refcount_add(&ap->p_refcnt, ap->p_pfunc);
6530 		ap->p_adjust = adjust;
6531 		if (taskq_dispatch(arc_prune_taskq, arc_prune_task,
6532 		    ap, TQ_SLEEP) == TASKQID_INVALID) {
6533 			(void) zfs_refcount_remove(&ap->p_refcnt, ap->p_pfunc);
6534 			continue;
6535 		}
6536 		ARCSTAT_BUMP(arcstat_prune);
6537 	}
6538 	mutex_exit(&arc_prune_mtx);
6539 }
6540 
6541 /*
6542  * Notify the arc that a block was freed, and thus will never be used again.
6543  */
6544 void
arc_freed(spa_t * spa,const blkptr_t * bp)6545 arc_freed(spa_t *spa, const blkptr_t *bp)
6546 {
6547 	arc_buf_hdr_t *hdr;
6548 	kmutex_t *hash_lock;
6549 	uint64_t guid = spa_load_guid(spa);
6550 
6551 	ASSERT(!BP_IS_EMBEDDED(bp));
6552 
6553 	hdr = buf_hash_find(guid, bp, &hash_lock);
6554 	if (hdr == NULL)
6555 		return;
6556 
6557 	/*
6558 	 * We might be trying to free a block that is still doing I/O
6559 	 * (i.e. prefetch) or has some other reference (i.e. a dedup-ed,
6560 	 * dmu_sync-ed block). A block may also have a reference if it is
6561 	 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6562 	 * have written the new block to its final resting place on disk but
6563 	 * without the dedup flag set. This would have left the hdr in the MRU
6564 	 * state and discoverable. When the txg finally syncs it detects that
6565 	 * the block was overridden in open context and issues an override I/O.
6566 	 * Since this is a dedup block, the override I/O will determine if the
6567 	 * block is already in the DDT. If so, then it will replace the io_bp
6568 	 * with the bp from the DDT and allow the I/O to finish. When the I/O
6569 	 * reaches the done callback, dbuf_write_override_done, it will
6570 	 * check to see if the io_bp and io_bp_override are identical.
6571 	 * If they are not, then it indicates that the bp was replaced with
6572 	 * the bp in the DDT and the override bp is freed. This allows
6573 	 * us to arrive here with a reference on a block that is being
6574 	 * freed. So if we have an I/O in progress, or a reference to
6575 	 * this hdr, then we don't destroy the hdr.
6576 	 */
6577 	if (!HDR_HAS_L1HDR(hdr) ||
6578 	    zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6579 		arc_change_state(arc_anon, hdr);
6580 		arc_hdr_destroy(hdr);
6581 		mutex_exit(hash_lock);
6582 	} else {
6583 		mutex_exit(hash_lock);
6584 	}
6585 
6586 }
6587 
6588 /*
6589  * Release this buffer from the cache, making it an anonymous buffer.  This
6590  * must be done after a read and prior to modifying the buffer contents.
6591  * If the buffer has more than one reference, we must make
6592  * a new hdr for the buffer.
6593  */
6594 void
arc_release(arc_buf_t * buf,const void * tag)6595 arc_release(arc_buf_t *buf, const void *tag)
6596 {
6597 	arc_buf_hdr_t *hdr = buf->b_hdr;
6598 
6599 	/*
6600 	 * It would be nice to assert that if its DMU metadata (level >
6601 	 * 0 || it's the dnode file), then it must be syncing context.
6602 	 * But we don't know that information at this level.
6603 	 */
6604 
6605 	ASSERT(HDR_HAS_L1HDR(hdr));
6606 
6607 	/*
6608 	 * We don't grab the hash lock prior to this check, because if
6609 	 * the buffer's header is in the arc_anon state, it won't be
6610 	 * linked into the hash table.
6611 	 */
6612 	if (hdr->b_l1hdr.b_state == arc_anon) {
6613 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6614 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
6615 		ASSERT(!HDR_HAS_L2HDR(hdr));
6616 
6617 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
6618 		ASSERT(ARC_BUF_LAST(buf));
6619 		ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
6620 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6621 
6622 		hdr->b_l1hdr.b_arc_access = 0;
6623 
6624 		/*
6625 		 * If the buf is being overridden then it may already
6626 		 * have a hdr that is not empty.
6627 		 */
6628 		buf_discard_identity(hdr);
6629 		arc_buf_thaw(buf);
6630 
6631 		return;
6632 	}
6633 
6634 	kmutex_t *hash_lock = HDR_LOCK(hdr);
6635 	mutex_enter(hash_lock);
6636 
6637 	/*
6638 	 * This assignment is only valid as long as the hash_lock is
6639 	 * held, we must be careful not to reference state or the
6640 	 * b_state field after dropping the lock.
6641 	 */
6642 	arc_state_t *state = hdr->b_l1hdr.b_state;
6643 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6644 	ASSERT3P(state, !=, arc_anon);
6645 	ASSERT3P(state, !=, arc_l2c_only);
6646 
6647 	/* this buffer is not on any list */
6648 	ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
6649 
6650 	/*
6651 	 * Do we have more than one buf?
6652 	 */
6653 	if (hdr->b_l1hdr.b_buf != buf || !ARC_BUF_LAST(buf)) {
6654 		arc_buf_hdr_t *nhdr;
6655 		uint64_t spa = hdr->b_spa;
6656 		uint64_t psize = HDR_GET_PSIZE(hdr);
6657 		uint64_t lsize = HDR_GET_LSIZE(hdr);
6658 		boolean_t protected = HDR_PROTECTED(hdr);
6659 		enum zio_compress compress = arc_hdr_get_compress(hdr);
6660 		arc_buf_contents_t type = arc_buf_type(hdr);
6661 
6662 		if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
6663 			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6664 			ASSERT(ARC_BUF_LAST(buf));
6665 		}
6666 
6667 		/*
6668 		 * Pull the buffer off of this hdr and find the last buffer
6669 		 * in the hdr's buffer list.
6670 		 */
6671 		VERIFY3S(remove_reference(hdr, tag), >, 0);
6672 		arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
6673 		ASSERT3P(lastbuf, !=, NULL);
6674 
6675 		/*
6676 		 * If the current arc_buf_t and the hdr are sharing their data
6677 		 * buffer, then we must stop sharing that block.
6678 		 */
6679 		if (ARC_BUF_SHARED(buf)) {
6680 			ASSERT(!arc_buf_is_shared(lastbuf));
6681 
6682 			/*
6683 			 * First, sever the block sharing relationship between
6684 			 * buf and the arc_buf_hdr_t.
6685 			 */
6686 			arc_unshare_buf(hdr, buf);
6687 
6688 			/*
6689 			 * Now we need to recreate the hdr's b_pabd. Since we
6690 			 * have lastbuf handy, we try to share with it, but if
6691 			 * we can't then we allocate a new b_pabd and copy the
6692 			 * data from buf into it.
6693 			 */
6694 			if (arc_can_share(hdr, lastbuf)) {
6695 				arc_share_buf(hdr, lastbuf);
6696 			} else {
6697 				arc_hdr_alloc_abd(hdr, 0);
6698 				abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
6699 				    buf->b_data, psize);
6700 			}
6701 		} else if (HDR_SHARED_DATA(hdr)) {
6702 			/*
6703 			 * Uncompressed shared buffers are always at the end
6704 			 * of the list. Compressed buffers don't have the
6705 			 * same requirements. This makes it hard to
6706 			 * simply assert that the lastbuf is shared so
6707 			 * we rely on the hdr's compression flags to determine
6708 			 * if we have a compressed, shared buffer.
6709 			 */
6710 			ASSERT(arc_buf_is_shared(lastbuf) ||
6711 			    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
6712 			ASSERT(!arc_buf_is_shared(buf));
6713 		}
6714 
6715 		ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
6716 
6717 		(void) zfs_refcount_remove_many(&state->arcs_size[type],
6718 		    arc_buf_size(buf), buf);
6719 
6720 		arc_cksum_verify(buf);
6721 		arc_buf_unwatch(buf);
6722 
6723 		/* if this is the last uncompressed buf free the checksum */
6724 		if (!arc_hdr_has_uncompressed_buf(hdr))
6725 			arc_cksum_free(hdr);
6726 
6727 		mutex_exit(hash_lock);
6728 
6729 		nhdr = arc_hdr_alloc(spa, psize, lsize, protected,
6730 		    compress, hdr->b_complevel, type);
6731 		ASSERT0P(nhdr->b_l1hdr.b_buf);
6732 		ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt));
6733 		VERIFY3U(nhdr->b_type, ==, type);
6734 		ASSERT(!HDR_SHARED_DATA(nhdr));
6735 
6736 		nhdr->b_l1hdr.b_buf = buf;
6737 		(void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
6738 		buf->b_hdr = nhdr;
6739 
6740 		(void) zfs_refcount_add_many(&arc_anon->arcs_size[type],
6741 		    arc_buf_size(buf), buf);
6742 	} else {
6743 		ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
6744 		/* protected by hash lock, or hdr is on arc_anon */
6745 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6746 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6747 
6748 		if (HDR_HAS_L2HDR(hdr)) {
6749 			mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6750 			/* Recheck to prevent race with l2arc_evict(). */
6751 			if (HDR_HAS_L2HDR(hdr))
6752 				arc_hdr_l2hdr_destroy(hdr);
6753 			mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6754 		}
6755 
6756 		hdr->b_l1hdr.b_mru_hits = 0;
6757 		hdr->b_l1hdr.b_mru_ghost_hits = 0;
6758 		hdr->b_l1hdr.b_mfu_hits = 0;
6759 		hdr->b_l1hdr.b_mfu_ghost_hits = 0;
6760 		arc_change_state(arc_anon, hdr);
6761 		hdr->b_l1hdr.b_arc_access = 0;
6762 
6763 		mutex_exit(hash_lock);
6764 		buf_discard_identity(hdr);
6765 		arc_buf_thaw(buf);
6766 	}
6767 }
6768 
6769 int
arc_released(arc_buf_t * buf)6770 arc_released(arc_buf_t *buf)
6771 {
6772 	return (buf->b_data != NULL &&
6773 	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
6774 }
6775 
6776 #ifdef ZFS_DEBUG
6777 int
arc_referenced(arc_buf_t * buf)6778 arc_referenced(arc_buf_t *buf)
6779 {
6780 	return (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
6781 }
6782 #endif
6783 
6784 static void
arc_write_ready(zio_t * zio)6785 arc_write_ready(zio_t *zio)
6786 {
6787 	arc_write_callback_t *callback = zio->io_private;
6788 	arc_buf_t *buf = callback->awcb_buf;
6789 	arc_buf_hdr_t *hdr = buf->b_hdr;
6790 	blkptr_t *bp = zio->io_bp;
6791 	uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp);
6792 	fstrans_cookie_t cookie = spl_fstrans_mark();
6793 
6794 	ASSERT(HDR_HAS_L1HDR(hdr));
6795 	ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
6796 	ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
6797 
6798 	/*
6799 	 * If we're reexecuting this zio because the pool suspended, then
6800 	 * cleanup any state that was previously set the first time the
6801 	 * callback was invoked.
6802 	 */
6803 	if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
6804 		arc_cksum_free(hdr);
6805 		arc_buf_unwatch(buf);
6806 		if (hdr->b_l1hdr.b_pabd != NULL) {
6807 			if (ARC_BUF_SHARED(buf)) {
6808 				arc_unshare_buf(hdr, buf);
6809 			} else {
6810 				ASSERT(!arc_buf_is_shared(buf));
6811 				arc_hdr_free_abd(hdr, B_FALSE);
6812 			}
6813 		}
6814 
6815 		if (HDR_HAS_RABD(hdr))
6816 			arc_hdr_free_abd(hdr, B_TRUE);
6817 	}
6818 	ASSERT0P(hdr->b_l1hdr.b_pabd);
6819 	ASSERT(!HDR_HAS_RABD(hdr));
6820 	ASSERT(!HDR_SHARED_DATA(hdr));
6821 	ASSERT(!arc_buf_is_shared(buf));
6822 
6823 	callback->awcb_ready(zio, buf, callback->awcb_private);
6824 
6825 	if (HDR_IO_IN_PROGRESS(hdr)) {
6826 		ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
6827 	} else {
6828 		arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6829 		add_reference(hdr, hdr); /* For IO_IN_PROGRESS. */
6830 	}
6831 
6832 	if (BP_IS_PROTECTED(bp)) {
6833 		/* ZIL blocks are written through zio_rewrite */
6834 		ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
6835 
6836 		if (BP_SHOULD_BYTESWAP(bp)) {
6837 			if (BP_GET_LEVEL(bp) > 0) {
6838 				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
6839 			} else {
6840 				hdr->b_l1hdr.b_byteswap =
6841 				    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
6842 			}
6843 		} else {
6844 			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
6845 		}
6846 
6847 		arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
6848 		hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
6849 		hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
6850 		zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
6851 		    hdr->b_crypt_hdr.b_iv);
6852 		zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
6853 	} else {
6854 		arc_hdr_clear_flags(hdr, ARC_FLAG_PROTECTED);
6855 	}
6856 
6857 	/*
6858 	 * If this block was written for raw encryption but the zio layer
6859 	 * ended up only authenticating it, adjust the buffer flags now.
6860 	 */
6861 	if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) {
6862 		arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6863 		buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6864 		if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF)
6865 			buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6866 	} else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) {
6867 		buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6868 		buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6869 	}
6870 
6871 	/* this must be done after the buffer flags are adjusted */
6872 	arc_cksum_compute(buf);
6873 
6874 	enum zio_compress compress;
6875 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
6876 		compress = ZIO_COMPRESS_OFF;
6877 	} else {
6878 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
6879 		compress = BP_GET_COMPRESS(bp);
6880 	}
6881 	HDR_SET_PSIZE(hdr, psize);
6882 	arc_hdr_set_compress(hdr, compress);
6883 	hdr->b_complevel = zio->io_prop.zp_complevel;
6884 
6885 	if (zio->io_error != 0 || psize == 0)
6886 		goto out;
6887 
6888 	/*
6889 	 * Fill the hdr with data. If the buffer is encrypted we have no choice
6890 	 * but to copy the data into b_radb. If the hdr is compressed, the data
6891 	 * we want is available from the zio, otherwise we can take it from
6892 	 * the buf.
6893 	 *
6894 	 * We might be able to share the buf's data with the hdr here. However,
6895 	 * doing so would cause the ARC to be full of linear ABDs if we write a
6896 	 * lot of shareable data. As a compromise, we check whether scattered
6897 	 * ABDs are allowed, and assume that if they are then the user wants
6898 	 * the ARC to be primarily filled with them regardless of the data being
6899 	 * written. Therefore, if they're allowed then we allocate one and copy
6900 	 * the data into it; otherwise, we share the data directly if we can.
6901 	 */
6902 	if (ARC_BUF_ENCRYPTED(buf)) {
6903 		ASSERT3U(psize, >, 0);
6904 		ASSERT(ARC_BUF_COMPRESSED(buf));
6905 		arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA |
6906 		    ARC_HDR_USE_RESERVE);
6907 		abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6908 	} else if (!(HDR_UNCACHED(hdr) ||
6909 	    abd_size_alloc_linear(arc_buf_size(buf))) ||
6910 	    !arc_can_share(hdr, buf)) {
6911 		/*
6912 		 * Ideally, we would always copy the io_abd into b_pabd, but the
6913 		 * user may have disabled compressed ARC, thus we must check the
6914 		 * hdr's compression setting rather than the io_bp's.
6915 		 */
6916 		if (BP_IS_ENCRYPTED(bp)) {
6917 			ASSERT3U(psize, >, 0);
6918 			arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA |
6919 			    ARC_HDR_USE_RESERVE);
6920 			abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6921 		} else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
6922 		    !ARC_BUF_COMPRESSED(buf)) {
6923 			ASSERT3U(psize, >, 0);
6924 			arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE);
6925 			abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
6926 		} else {
6927 			ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
6928 			arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE);
6929 			abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
6930 			    arc_buf_size(buf));
6931 		}
6932 	} else {
6933 		ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
6934 		ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
6935 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
6936 		ASSERT(ARC_BUF_LAST(buf));
6937 
6938 		arc_share_buf(hdr, buf);
6939 	}
6940 
6941 out:
6942 	arc_hdr_verify(hdr, bp);
6943 	spl_fstrans_unmark(cookie);
6944 }
6945 
6946 static void
arc_write_children_ready(zio_t * zio)6947 arc_write_children_ready(zio_t *zio)
6948 {
6949 	arc_write_callback_t *callback = zio->io_private;
6950 	arc_buf_t *buf = callback->awcb_buf;
6951 
6952 	callback->awcb_children_ready(zio, buf, callback->awcb_private);
6953 }
6954 
6955 static void
arc_write_done(zio_t * zio)6956 arc_write_done(zio_t *zio)
6957 {
6958 	arc_write_callback_t *callback = zio->io_private;
6959 	arc_buf_t *buf = callback->awcb_buf;
6960 	arc_buf_hdr_t *hdr = buf->b_hdr;
6961 
6962 	ASSERT0P(hdr->b_l1hdr.b_acb);
6963 
6964 	if (zio->io_error == 0) {
6965 		arc_hdr_verify(hdr, zio->io_bp);
6966 
6967 		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
6968 			buf_discard_identity(hdr);
6969 		} else {
6970 			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
6971 			hdr->b_birth = BP_GET_PHYSICAL_BIRTH(zio->io_bp);
6972 		}
6973 	} else {
6974 		ASSERT(HDR_EMPTY(hdr));
6975 	}
6976 
6977 	/*
6978 	 * If the block to be written was all-zero or compressed enough to be
6979 	 * embedded in the BP, no write was performed so there will be no
6980 	 * dva/birth/checksum.  The buffer must therefore remain anonymous
6981 	 * (and uncached).
6982 	 */
6983 	if (!HDR_EMPTY(hdr)) {
6984 		arc_buf_hdr_t *exists;
6985 		kmutex_t *hash_lock;
6986 
6987 		ASSERT0(zio->io_error);
6988 
6989 		arc_cksum_verify(buf);
6990 
6991 		exists = buf_hash_insert(hdr, &hash_lock);
6992 		if (exists != NULL) {
6993 			/*
6994 			 * This can only happen if we overwrite for
6995 			 * sync-to-convergence, because we remove
6996 			 * buffers from the hash table when we arc_free().
6997 			 */
6998 			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
6999 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
7000 					panic("bad overwrite, hdr=%p exists=%p",
7001 					    (void *)hdr, (void *)exists);
7002 				ASSERT(zfs_refcount_is_zero(
7003 				    &exists->b_l1hdr.b_refcnt));
7004 				arc_change_state(arc_anon, exists);
7005 				arc_hdr_destroy(exists);
7006 				mutex_exit(hash_lock);
7007 				exists = buf_hash_insert(hdr, &hash_lock);
7008 				ASSERT0P(exists);
7009 			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
7010 				/* nopwrite */
7011 				ASSERT(zio->io_prop.zp_nopwrite);
7012 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
7013 					panic("bad nopwrite, hdr=%p exists=%p",
7014 					    (void *)hdr, (void *)exists);
7015 			} else {
7016 				/* Dedup */
7017 				ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
7018 				ASSERT(ARC_BUF_LAST(hdr->b_l1hdr.b_buf));
7019 				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
7020 				ASSERT(BP_GET_DEDUP(zio->io_bp));
7021 				ASSERT0(BP_GET_LEVEL(zio->io_bp));
7022 			}
7023 		}
7024 		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
7025 		VERIFY3S(remove_reference(hdr, hdr), >, 0);
7026 		/* if it's not anon, we are doing a scrub */
7027 		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
7028 			arc_access(hdr, 0, B_FALSE);
7029 		mutex_exit(hash_lock);
7030 	} else {
7031 		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
7032 		VERIFY3S(remove_reference(hdr, hdr), >, 0);
7033 	}
7034 
7035 	callback->awcb_done(zio, buf, callback->awcb_private);
7036 
7037 	abd_free(zio->io_abd);
7038 	kmem_free(callback, sizeof (arc_write_callback_t));
7039 }
7040 
7041 zio_t *
arc_write(zio_t * pio,spa_t * spa,uint64_t txg,blkptr_t * bp,arc_buf_t * buf,boolean_t uncached,boolean_t l2arc,const zio_prop_t * zp,arc_write_done_func_t * ready,arc_write_done_func_t * children_ready,arc_write_done_func_t * done,void * private,zio_priority_t priority,int zio_flags,const zbookmark_phys_t * zb)7042 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
7043     blkptr_t *bp, arc_buf_t *buf, boolean_t uncached, boolean_t l2arc,
7044     const zio_prop_t *zp, arc_write_done_func_t *ready,
7045     arc_write_done_func_t *children_ready, arc_write_done_func_t *done,
7046     void *private, zio_priority_t priority, int zio_flags,
7047     const zbookmark_phys_t *zb)
7048 {
7049 	arc_buf_hdr_t *hdr = buf->b_hdr;
7050 	arc_write_callback_t *callback;
7051 	zio_t *zio;
7052 	zio_prop_t localprop = *zp;
7053 
7054 	ASSERT3P(ready, !=, NULL);
7055 	ASSERT3P(done, !=, NULL);
7056 	ASSERT(!HDR_IO_ERROR(hdr));
7057 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
7058 	ASSERT0P(hdr->b_l1hdr.b_acb);
7059 	ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
7060 	if (uncached)
7061 		arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED);
7062 	else if (l2arc)
7063 		arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
7064 
7065 	if (ARC_BUF_ENCRYPTED(buf)) {
7066 		ASSERT(ARC_BUF_COMPRESSED(buf));
7067 		localprop.zp_encrypt = B_TRUE;
7068 		localprop.zp_compress = HDR_GET_COMPRESS(hdr);
7069 		localprop.zp_complevel = hdr->b_complevel;
7070 		localprop.zp_byteorder =
7071 		    (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
7072 		    ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
7073 		memcpy(localprop.zp_salt, hdr->b_crypt_hdr.b_salt,
7074 		    ZIO_DATA_SALT_LEN);
7075 		memcpy(localprop.zp_iv, hdr->b_crypt_hdr.b_iv,
7076 		    ZIO_DATA_IV_LEN);
7077 		memcpy(localprop.zp_mac, hdr->b_crypt_hdr.b_mac,
7078 		    ZIO_DATA_MAC_LEN);
7079 		if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) {
7080 			localprop.zp_nopwrite = B_FALSE;
7081 			localprop.zp_copies =
7082 			    MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1);
7083 			localprop.zp_gang_copies =
7084 			    MIN(localprop.zp_gang_copies, SPA_DVAS_PER_BP - 1);
7085 		}
7086 		zio_flags |= ZIO_FLAG_RAW;
7087 	} else if (ARC_BUF_COMPRESSED(buf)) {
7088 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
7089 		localprop.zp_compress = HDR_GET_COMPRESS(hdr);
7090 		localprop.zp_complevel = hdr->b_complevel;
7091 		zio_flags |= ZIO_FLAG_RAW_COMPRESS;
7092 	}
7093 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
7094 	callback->awcb_ready = ready;
7095 	callback->awcb_children_ready = children_ready;
7096 	callback->awcb_done = done;
7097 	callback->awcb_private = private;
7098 	callback->awcb_buf = buf;
7099 
7100 	/*
7101 	 * The hdr's b_pabd is now stale, free it now. A new data block
7102 	 * will be allocated when the zio pipeline calls arc_write_ready().
7103 	 */
7104 	if (hdr->b_l1hdr.b_pabd != NULL) {
7105 		/*
7106 		 * If the buf is currently sharing the data block with
7107 		 * the hdr then we need to break that relationship here.
7108 		 * The hdr will remain with a NULL data pointer and the
7109 		 * buf will take sole ownership of the block.
7110 		 */
7111 		if (ARC_BUF_SHARED(buf)) {
7112 			arc_unshare_buf(hdr, buf);
7113 		} else {
7114 			ASSERT(!arc_buf_is_shared(buf));
7115 			arc_hdr_free_abd(hdr, B_FALSE);
7116 		}
7117 		VERIFY3P(buf->b_data, !=, NULL);
7118 	}
7119 
7120 	if (HDR_HAS_RABD(hdr))
7121 		arc_hdr_free_abd(hdr, B_TRUE);
7122 
7123 	if (!(zio_flags & ZIO_FLAG_RAW))
7124 		arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
7125 
7126 	ASSERT(!arc_buf_is_shared(buf));
7127 	ASSERT0P(hdr->b_l1hdr.b_pabd);
7128 
7129 	zio = zio_write(pio, spa, txg, bp,
7130 	    abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
7131 	    HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
7132 	    (children_ready != NULL) ? arc_write_children_ready : NULL,
7133 	    arc_write_done, callback, priority, zio_flags, zb);
7134 
7135 	return (zio);
7136 }
7137 
7138 void
arc_tempreserve_clear(uint64_t reserve)7139 arc_tempreserve_clear(uint64_t reserve)
7140 {
7141 	atomic_add_64(&arc_tempreserve, -reserve);
7142 	ASSERT((int64_t)arc_tempreserve >= 0);
7143 }
7144 
7145 int
arc_tempreserve_space(spa_t * spa,uint64_t reserve,uint64_t txg)7146 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg)
7147 {
7148 	int error;
7149 	uint64_t anon_size;
7150 
7151 	if (!arc_no_grow &&
7152 	    reserve > arc_c/4 &&
7153 	    reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
7154 		arc_c = MIN(arc_c_max, reserve * 4);
7155 
7156 	/*
7157 	 * Throttle when the calculated memory footprint for the TXG
7158 	 * exceeds the target ARC size.
7159 	 */
7160 	if (reserve > arc_c) {
7161 		DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
7162 		return (SET_ERROR(ERESTART));
7163 	}
7164 
7165 	/*
7166 	 * Don't count loaned bufs as in flight dirty data to prevent long
7167 	 * network delays from blocking transactions that are ready to be
7168 	 * assigned to a txg.
7169 	 */
7170 
7171 	/* assert that it has not wrapped around */
7172 	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
7173 
7174 	anon_size = MAX((int64_t)
7175 	    (zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]) +
7176 	    zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]) -
7177 	    arc_loaned_bytes), 0);
7178 
7179 	/*
7180 	 * Writes will, almost always, require additional memory allocations
7181 	 * in order to compress/encrypt/etc the data.  We therefore need to
7182 	 * make sure that there is sufficient available memory for this.
7183 	 */
7184 	error = arc_memory_throttle(spa, reserve, txg);
7185 	if (error != 0)
7186 		return (error);
7187 
7188 	/*
7189 	 * Throttle writes when the amount of dirty data in the cache
7190 	 * gets too large.  We try to keep the cache less than half full
7191 	 * of dirty blocks so that our sync times don't grow too large.
7192 	 *
7193 	 * In the case of one pool being built on another pool, we want
7194 	 * to make sure we don't end up throttling the lower (backing)
7195 	 * pool when the upper pool is the majority contributor to dirty
7196 	 * data. To insure we make forward progress during throttling, we
7197 	 * also check the current pool's net dirty data and only throttle
7198 	 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
7199 	 * data in the cache.
7200 	 *
7201 	 * Note: if two requests come in concurrently, we might let them
7202 	 * both succeed, when one of them should fail.  Not a huge deal.
7203 	 */
7204 	uint64_t total_dirty = reserve + arc_tempreserve + anon_size;
7205 	uint64_t spa_dirty_anon = spa_dirty_data(spa);
7206 	uint64_t rarc_c = arc_warm ? arc_c : arc_c_max;
7207 	if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 &&
7208 	    anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 &&
7209 	    spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) {
7210 #ifdef ZFS_DEBUG
7211 		uint64_t meta_esize = zfs_refcount_count(
7212 		    &arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7213 		uint64_t data_esize =
7214 		    zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7215 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
7216 		    "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n",
7217 		    (u_longlong_t)arc_tempreserve >> 10,
7218 		    (u_longlong_t)meta_esize >> 10,
7219 		    (u_longlong_t)data_esize >> 10,
7220 		    (u_longlong_t)reserve >> 10,
7221 		    (u_longlong_t)rarc_c >> 10);
7222 #endif
7223 		DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
7224 		return (SET_ERROR(ERESTART));
7225 	}
7226 	atomic_add_64(&arc_tempreserve, reserve);
7227 	return (0);
7228 }
7229 
7230 static void
arc_kstat_update_state(arc_state_t * state,kstat_named_t * size,kstat_named_t * data,kstat_named_t * metadata,kstat_named_t * evict_data,kstat_named_t * evict_metadata)7231 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
7232     kstat_named_t *data, kstat_named_t *metadata,
7233     kstat_named_t *evict_data, kstat_named_t *evict_metadata)
7234 {
7235 	data->value.ui64 =
7236 	    zfs_refcount_count(&state->arcs_size[ARC_BUFC_DATA]);
7237 	metadata->value.ui64 =
7238 	    zfs_refcount_count(&state->arcs_size[ARC_BUFC_METADATA]);
7239 	size->value.ui64 = data->value.ui64 + metadata->value.ui64;
7240 	evict_data->value.ui64 =
7241 	    zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
7242 	evict_metadata->value.ui64 =
7243 	    zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
7244 }
7245 
7246 static int
arc_kstat_update(kstat_t * ksp,int rw)7247 arc_kstat_update(kstat_t *ksp, int rw)
7248 {
7249 	arc_stats_t *as = ksp->ks_data;
7250 
7251 	if (rw == KSTAT_WRITE)
7252 		return (SET_ERROR(EACCES));
7253 
7254 	as->arcstat_hits.value.ui64 =
7255 	    wmsum_value(&arc_sums.arcstat_hits);
7256 	as->arcstat_iohits.value.ui64 =
7257 	    wmsum_value(&arc_sums.arcstat_iohits);
7258 	as->arcstat_misses.value.ui64 =
7259 	    wmsum_value(&arc_sums.arcstat_misses);
7260 	as->arcstat_demand_data_hits.value.ui64 =
7261 	    wmsum_value(&arc_sums.arcstat_demand_data_hits);
7262 	as->arcstat_demand_data_iohits.value.ui64 =
7263 	    wmsum_value(&arc_sums.arcstat_demand_data_iohits);
7264 	as->arcstat_demand_data_misses.value.ui64 =
7265 	    wmsum_value(&arc_sums.arcstat_demand_data_misses);
7266 	as->arcstat_demand_metadata_hits.value.ui64 =
7267 	    wmsum_value(&arc_sums.arcstat_demand_metadata_hits);
7268 	as->arcstat_demand_metadata_iohits.value.ui64 =
7269 	    wmsum_value(&arc_sums.arcstat_demand_metadata_iohits);
7270 	as->arcstat_demand_metadata_misses.value.ui64 =
7271 	    wmsum_value(&arc_sums.arcstat_demand_metadata_misses);
7272 	as->arcstat_prefetch_data_hits.value.ui64 =
7273 	    wmsum_value(&arc_sums.arcstat_prefetch_data_hits);
7274 	as->arcstat_prefetch_data_iohits.value.ui64 =
7275 	    wmsum_value(&arc_sums.arcstat_prefetch_data_iohits);
7276 	as->arcstat_prefetch_data_misses.value.ui64 =
7277 	    wmsum_value(&arc_sums.arcstat_prefetch_data_misses);
7278 	as->arcstat_prefetch_metadata_hits.value.ui64 =
7279 	    wmsum_value(&arc_sums.arcstat_prefetch_metadata_hits);
7280 	as->arcstat_prefetch_metadata_iohits.value.ui64 =
7281 	    wmsum_value(&arc_sums.arcstat_prefetch_metadata_iohits);
7282 	as->arcstat_prefetch_metadata_misses.value.ui64 =
7283 	    wmsum_value(&arc_sums.arcstat_prefetch_metadata_misses);
7284 	as->arcstat_mru_hits.value.ui64 =
7285 	    wmsum_value(&arc_sums.arcstat_mru_hits);
7286 	as->arcstat_mru_ghost_hits.value.ui64 =
7287 	    wmsum_value(&arc_sums.arcstat_mru_ghost_hits);
7288 	as->arcstat_mfu_hits.value.ui64 =
7289 	    wmsum_value(&arc_sums.arcstat_mfu_hits);
7290 	as->arcstat_mfu_ghost_hits.value.ui64 =
7291 	    wmsum_value(&arc_sums.arcstat_mfu_ghost_hits);
7292 	as->arcstat_uncached_hits.value.ui64 =
7293 	    wmsum_value(&arc_sums.arcstat_uncached_hits);
7294 	as->arcstat_deleted.value.ui64 =
7295 	    wmsum_value(&arc_sums.arcstat_deleted);
7296 	as->arcstat_mutex_miss.value.ui64 =
7297 	    wmsum_value(&arc_sums.arcstat_mutex_miss);
7298 	as->arcstat_access_skip.value.ui64 =
7299 	    wmsum_value(&arc_sums.arcstat_access_skip);
7300 	as->arcstat_evict_skip.value.ui64 =
7301 	    wmsum_value(&arc_sums.arcstat_evict_skip);
7302 	as->arcstat_evict_not_enough.value.ui64 =
7303 	    wmsum_value(&arc_sums.arcstat_evict_not_enough);
7304 	as->arcstat_evict_l2_cached.value.ui64 =
7305 	    wmsum_value(&arc_sums.arcstat_evict_l2_cached);
7306 	as->arcstat_evict_l2_eligible.value.ui64 =
7307 	    wmsum_value(&arc_sums.arcstat_evict_l2_eligible);
7308 	as->arcstat_evict_l2_eligible_mfu.value.ui64 =
7309 	    wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mfu);
7310 	as->arcstat_evict_l2_eligible_mru.value.ui64 =
7311 	    wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mru);
7312 	as->arcstat_evict_l2_ineligible.value.ui64 =
7313 	    wmsum_value(&arc_sums.arcstat_evict_l2_ineligible);
7314 	as->arcstat_evict_l2_skip.value.ui64 =
7315 	    wmsum_value(&arc_sums.arcstat_evict_l2_skip);
7316 	as->arcstat_hash_elements.value.ui64 =
7317 	    as->arcstat_hash_elements_max.value.ui64 =
7318 	    wmsum_value(&arc_sums.arcstat_hash_elements);
7319 	as->arcstat_hash_collisions.value.ui64 =
7320 	    wmsum_value(&arc_sums.arcstat_hash_collisions);
7321 	as->arcstat_hash_chains.value.ui64 =
7322 	    wmsum_value(&arc_sums.arcstat_hash_chains);
7323 	as->arcstat_size.value.ui64 =
7324 	    aggsum_value(&arc_sums.arcstat_size);
7325 	as->arcstat_compressed_size.value.ui64 =
7326 	    wmsum_value(&arc_sums.arcstat_compressed_size);
7327 	as->arcstat_uncompressed_size.value.ui64 =
7328 	    wmsum_value(&arc_sums.arcstat_uncompressed_size);
7329 	as->arcstat_overhead_size.value.ui64 =
7330 	    wmsum_value(&arc_sums.arcstat_overhead_size);
7331 	as->arcstat_hdr_size.value.ui64 =
7332 	    wmsum_value(&arc_sums.arcstat_hdr_size);
7333 	as->arcstat_data_size.value.ui64 =
7334 	    wmsum_value(&arc_sums.arcstat_data_size);
7335 	as->arcstat_metadata_size.value.ui64 =
7336 	    wmsum_value(&arc_sums.arcstat_metadata_size);
7337 	as->arcstat_dbuf_size.value.ui64 =
7338 	    wmsum_value(&arc_sums.arcstat_dbuf_size);
7339 #if defined(COMPAT_FREEBSD11)
7340 	as->arcstat_other_size.value.ui64 =
7341 	    wmsum_value(&arc_sums.arcstat_bonus_size) +
7342 	    aggsum_value(&arc_sums.arcstat_dnode_size) +
7343 	    wmsum_value(&arc_sums.arcstat_dbuf_size);
7344 #endif
7345 
7346 	arc_kstat_update_state(arc_anon,
7347 	    &as->arcstat_anon_size,
7348 	    &as->arcstat_anon_data,
7349 	    &as->arcstat_anon_metadata,
7350 	    &as->arcstat_anon_evictable_data,
7351 	    &as->arcstat_anon_evictable_metadata);
7352 	arc_kstat_update_state(arc_mru,
7353 	    &as->arcstat_mru_size,
7354 	    &as->arcstat_mru_data,
7355 	    &as->arcstat_mru_metadata,
7356 	    &as->arcstat_mru_evictable_data,
7357 	    &as->arcstat_mru_evictable_metadata);
7358 	arc_kstat_update_state(arc_mru_ghost,
7359 	    &as->arcstat_mru_ghost_size,
7360 	    &as->arcstat_mru_ghost_data,
7361 	    &as->arcstat_mru_ghost_metadata,
7362 	    &as->arcstat_mru_ghost_evictable_data,
7363 	    &as->arcstat_mru_ghost_evictable_metadata);
7364 	arc_kstat_update_state(arc_mfu,
7365 	    &as->arcstat_mfu_size,
7366 	    &as->arcstat_mfu_data,
7367 	    &as->arcstat_mfu_metadata,
7368 	    &as->arcstat_mfu_evictable_data,
7369 	    &as->arcstat_mfu_evictable_metadata);
7370 	arc_kstat_update_state(arc_mfu_ghost,
7371 	    &as->arcstat_mfu_ghost_size,
7372 	    &as->arcstat_mfu_ghost_data,
7373 	    &as->arcstat_mfu_ghost_metadata,
7374 	    &as->arcstat_mfu_ghost_evictable_data,
7375 	    &as->arcstat_mfu_ghost_evictable_metadata);
7376 	arc_kstat_update_state(arc_uncached,
7377 	    &as->arcstat_uncached_size,
7378 	    &as->arcstat_uncached_data,
7379 	    &as->arcstat_uncached_metadata,
7380 	    &as->arcstat_uncached_evictable_data,
7381 	    &as->arcstat_uncached_evictable_metadata);
7382 
7383 	as->arcstat_dnode_size.value.ui64 =
7384 	    aggsum_value(&arc_sums.arcstat_dnode_size);
7385 	as->arcstat_bonus_size.value.ui64 =
7386 	    wmsum_value(&arc_sums.arcstat_bonus_size);
7387 	as->arcstat_l2_hits.value.ui64 =
7388 	    wmsum_value(&arc_sums.arcstat_l2_hits);
7389 	as->arcstat_l2_misses.value.ui64 =
7390 	    wmsum_value(&arc_sums.arcstat_l2_misses);
7391 	as->arcstat_l2_prefetch_asize.value.ui64 =
7392 	    wmsum_value(&arc_sums.arcstat_l2_prefetch_asize);
7393 	as->arcstat_l2_mru_asize.value.ui64 =
7394 	    wmsum_value(&arc_sums.arcstat_l2_mru_asize);
7395 	as->arcstat_l2_mfu_asize.value.ui64 =
7396 	    wmsum_value(&arc_sums.arcstat_l2_mfu_asize);
7397 	as->arcstat_l2_bufc_data_asize.value.ui64 =
7398 	    wmsum_value(&arc_sums.arcstat_l2_bufc_data_asize);
7399 	as->arcstat_l2_bufc_metadata_asize.value.ui64 =
7400 	    wmsum_value(&arc_sums.arcstat_l2_bufc_metadata_asize);
7401 	as->arcstat_l2_feeds.value.ui64 =
7402 	    wmsum_value(&arc_sums.arcstat_l2_feeds);
7403 	as->arcstat_l2_rw_clash.value.ui64 =
7404 	    wmsum_value(&arc_sums.arcstat_l2_rw_clash);
7405 	as->arcstat_l2_read_bytes.value.ui64 =
7406 	    wmsum_value(&arc_sums.arcstat_l2_read_bytes);
7407 	as->arcstat_l2_write_bytes.value.ui64 =
7408 	    wmsum_value(&arc_sums.arcstat_l2_write_bytes);
7409 	as->arcstat_l2_writes_sent.value.ui64 =
7410 	    wmsum_value(&arc_sums.arcstat_l2_writes_sent);
7411 	as->arcstat_l2_writes_done.value.ui64 =
7412 	    wmsum_value(&arc_sums.arcstat_l2_writes_done);
7413 	as->arcstat_l2_writes_error.value.ui64 =
7414 	    wmsum_value(&arc_sums.arcstat_l2_writes_error);
7415 	as->arcstat_l2_writes_lock_retry.value.ui64 =
7416 	    wmsum_value(&arc_sums.arcstat_l2_writes_lock_retry);
7417 	as->arcstat_l2_evict_lock_retry.value.ui64 =
7418 	    wmsum_value(&arc_sums.arcstat_l2_evict_lock_retry);
7419 	as->arcstat_l2_evict_reading.value.ui64 =
7420 	    wmsum_value(&arc_sums.arcstat_l2_evict_reading);
7421 	as->arcstat_l2_evict_l1cached.value.ui64 =
7422 	    wmsum_value(&arc_sums.arcstat_l2_evict_l1cached);
7423 	as->arcstat_l2_free_on_write.value.ui64 =
7424 	    wmsum_value(&arc_sums.arcstat_l2_free_on_write);
7425 	as->arcstat_l2_abort_lowmem.value.ui64 =
7426 	    wmsum_value(&arc_sums.arcstat_l2_abort_lowmem);
7427 	as->arcstat_l2_cksum_bad.value.ui64 =
7428 	    wmsum_value(&arc_sums.arcstat_l2_cksum_bad);
7429 	as->arcstat_l2_io_error.value.ui64 =
7430 	    wmsum_value(&arc_sums.arcstat_l2_io_error);
7431 	as->arcstat_l2_lsize.value.ui64 =
7432 	    wmsum_value(&arc_sums.arcstat_l2_lsize);
7433 	as->arcstat_l2_psize.value.ui64 =
7434 	    wmsum_value(&arc_sums.arcstat_l2_psize);
7435 	as->arcstat_l2_hdr_size.value.ui64 =
7436 	    aggsum_value(&arc_sums.arcstat_l2_hdr_size);
7437 	as->arcstat_l2_log_blk_writes.value.ui64 =
7438 	    wmsum_value(&arc_sums.arcstat_l2_log_blk_writes);
7439 	as->arcstat_l2_log_blk_asize.value.ui64 =
7440 	    wmsum_value(&arc_sums.arcstat_l2_log_blk_asize);
7441 	as->arcstat_l2_log_blk_count.value.ui64 =
7442 	    wmsum_value(&arc_sums.arcstat_l2_log_blk_count);
7443 	as->arcstat_l2_rebuild_success.value.ui64 =
7444 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_success);
7445 	as->arcstat_l2_rebuild_abort_unsupported.value.ui64 =
7446 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7447 	as->arcstat_l2_rebuild_abort_io_errors.value.ui64 =
7448 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7449 	as->arcstat_l2_rebuild_abort_dh_errors.value.ui64 =
7450 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7451 	as->arcstat_l2_rebuild_abort_cksum_lb_errors.value.ui64 =
7452 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7453 	as->arcstat_l2_rebuild_abort_lowmem.value.ui64 =
7454 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7455 	as->arcstat_l2_rebuild_size.value.ui64 =
7456 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_size);
7457 	as->arcstat_l2_rebuild_asize.value.ui64 =
7458 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_asize);
7459 	as->arcstat_l2_rebuild_bufs.value.ui64 =
7460 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs);
7461 	as->arcstat_l2_rebuild_bufs_precached.value.ui64 =
7462 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7463 	as->arcstat_l2_rebuild_log_blks.value.ui64 =
7464 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_log_blks);
7465 	as->arcstat_memory_throttle_count.value.ui64 =
7466 	    wmsum_value(&arc_sums.arcstat_memory_throttle_count);
7467 	as->arcstat_memory_direct_count.value.ui64 =
7468 	    wmsum_value(&arc_sums.arcstat_memory_direct_count);
7469 	as->arcstat_memory_indirect_count.value.ui64 =
7470 	    wmsum_value(&arc_sums.arcstat_memory_indirect_count);
7471 
7472 	as->arcstat_memory_all_bytes.value.ui64 =
7473 	    arc_all_memory();
7474 	as->arcstat_memory_free_bytes.value.ui64 =
7475 	    arc_free_memory();
7476 	as->arcstat_memory_available_bytes.value.i64 =
7477 	    arc_available_memory();
7478 
7479 	as->arcstat_prune.value.ui64 =
7480 	    wmsum_value(&arc_sums.arcstat_prune);
7481 	as->arcstat_meta_used.value.ui64 =
7482 	    wmsum_value(&arc_sums.arcstat_meta_used);
7483 	as->arcstat_async_upgrade_sync.value.ui64 =
7484 	    wmsum_value(&arc_sums.arcstat_async_upgrade_sync);
7485 	as->arcstat_predictive_prefetch.value.ui64 =
7486 	    wmsum_value(&arc_sums.arcstat_predictive_prefetch);
7487 	as->arcstat_demand_hit_predictive_prefetch.value.ui64 =
7488 	    wmsum_value(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7489 	as->arcstat_demand_iohit_predictive_prefetch.value.ui64 =
7490 	    wmsum_value(&arc_sums.arcstat_demand_iohit_predictive_prefetch);
7491 	as->arcstat_prescient_prefetch.value.ui64 =
7492 	    wmsum_value(&arc_sums.arcstat_prescient_prefetch);
7493 	as->arcstat_demand_hit_prescient_prefetch.value.ui64 =
7494 	    wmsum_value(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7495 	as->arcstat_demand_iohit_prescient_prefetch.value.ui64 =
7496 	    wmsum_value(&arc_sums.arcstat_demand_iohit_prescient_prefetch);
7497 	as->arcstat_raw_size.value.ui64 =
7498 	    wmsum_value(&arc_sums.arcstat_raw_size);
7499 	as->arcstat_cached_only_in_progress.value.ui64 =
7500 	    wmsum_value(&arc_sums.arcstat_cached_only_in_progress);
7501 	as->arcstat_abd_chunk_waste_size.value.ui64 =
7502 	    wmsum_value(&arc_sums.arcstat_abd_chunk_waste_size);
7503 
7504 	return (0);
7505 }
7506 
7507 /*
7508  * This function *must* return indices evenly distributed between all
7509  * sublists of the multilist. This is needed due to how the ARC eviction
7510  * code is laid out; arc_evict_state() assumes ARC buffers are evenly
7511  * distributed between all sublists and uses this assumption when
7512  * deciding which sublist to evict from and how much to evict from it.
7513  */
7514 static unsigned int
arc_state_multilist_index_func(multilist_t * ml,void * obj)7515 arc_state_multilist_index_func(multilist_t *ml, void *obj)
7516 {
7517 	arc_buf_hdr_t *hdr = obj;
7518 
7519 	/*
7520 	 * We rely on b_dva to generate evenly distributed index
7521 	 * numbers using buf_hash below. So, as an added precaution,
7522 	 * let's make sure we never add empty buffers to the arc lists.
7523 	 */
7524 	ASSERT(!HDR_EMPTY(hdr));
7525 
7526 	/*
7527 	 * The assumption here, is the hash value for a given
7528 	 * arc_buf_hdr_t will remain constant throughout its lifetime
7529 	 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
7530 	 * Thus, we don't need to store the header's sublist index
7531 	 * on insertion, as this index can be recalculated on removal.
7532 	 *
7533 	 * Also, the low order bits of the hash value are thought to be
7534 	 * distributed evenly. Otherwise, in the case that the multilist
7535 	 * has a power of two number of sublists, each sublists' usage
7536 	 * would not be evenly distributed. In this context full 64bit
7537 	 * division would be a waste of time, so limit it to 32 bits.
7538 	 */
7539 	return ((unsigned int)buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
7540 	    multilist_get_num_sublists(ml));
7541 }
7542 
7543 static unsigned int
arc_state_l2c_multilist_index_func(multilist_t * ml,void * obj)7544 arc_state_l2c_multilist_index_func(multilist_t *ml, void *obj)
7545 {
7546 	panic("Header %p insert into arc_l2c_only %p", obj, ml);
7547 }
7548 
7549 #define	WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do {	\
7550 	if ((do_warn) && (tuning) && ((tuning) != (value))) {	\
7551 		cmn_err(CE_WARN,				\
7552 		    "ignoring tunable %s (using %llu instead)",	\
7553 		    (#tuning), (u_longlong_t)(value));	\
7554 	}							\
7555 } while (0)
7556 
7557 /*
7558  * Called during module initialization and periodically thereafter to
7559  * apply reasonable changes to the exposed performance tunings.  Can also be
7560  * called explicitly by param_set_arc_*() functions when ARC tunables are
7561  * updated manually.  Non-zero zfs_* values which differ from the currently set
7562  * values will be applied.
7563  */
7564 void
arc_tuning_update(boolean_t verbose)7565 arc_tuning_update(boolean_t verbose)
7566 {
7567 	uint64_t allmem = arc_all_memory();
7568 
7569 	/* Valid range: 32M - <arc_c_max> */
7570 	if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
7571 	    (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
7572 	    (zfs_arc_min <= arc_c_max)) {
7573 		arc_c_min = zfs_arc_min;
7574 		arc_c = MAX(arc_c, arc_c_min);
7575 	}
7576 	WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose);
7577 
7578 	/* Valid range: 64M - <all physical memory> */
7579 	if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
7580 	    (zfs_arc_max >= MIN_ARC_MAX) && (zfs_arc_max < allmem) &&
7581 	    (zfs_arc_max > arc_c_min)) {
7582 		arc_c_max = zfs_arc_max;
7583 		arc_c = MIN(arc_c, arc_c_max);
7584 		if (arc_dnode_limit > arc_c_max)
7585 			arc_dnode_limit = arc_c_max;
7586 	}
7587 	WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose);
7588 
7589 	/* Valid range: 0 - <all physical memory> */
7590 	arc_dnode_limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit :
7591 	    MIN(zfs_arc_dnode_limit_percent, 100) * arc_c_max / 100;
7592 	WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_limit, verbose);
7593 
7594 	/* Valid range: 1 - N */
7595 	if (zfs_arc_grow_retry)
7596 		arc_grow_retry = zfs_arc_grow_retry;
7597 
7598 	/* Valid range: 1 - N */
7599 	if (zfs_arc_shrink_shift) {
7600 		arc_shrink_shift = zfs_arc_shrink_shift;
7601 		arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
7602 	}
7603 
7604 	/* Valid range: 1 - N ms */
7605 	if (zfs_arc_min_prefetch_ms)
7606 		arc_min_prefetch = MSEC_TO_TICK(zfs_arc_min_prefetch_ms);
7607 
7608 	/* Valid range: 1 - N ms */
7609 	if (zfs_arc_min_prescient_prefetch_ms) {
7610 		arc_min_prescient_prefetch =
7611 		    MSEC_TO_TICK(zfs_arc_min_prescient_prefetch_ms);
7612 	}
7613 
7614 	/* Valid range: 0 - 100 */
7615 	if (zfs_arc_lotsfree_percent <= 100)
7616 		arc_lotsfree_percent = zfs_arc_lotsfree_percent;
7617 	WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent,
7618 	    verbose);
7619 
7620 	/* Valid range: 0 - <all physical memory> */
7621 	if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
7622 		arc_sys_free = MIN(zfs_arc_sys_free, allmem);
7623 	WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose);
7624 }
7625 
7626 static void
arc_state_multilist_init(multilist_t * ml,multilist_sublist_index_func_t * index_func,int * maxcountp)7627 arc_state_multilist_init(multilist_t *ml,
7628     multilist_sublist_index_func_t *index_func, int *maxcountp)
7629 {
7630 	multilist_create(ml, sizeof (arc_buf_hdr_t),
7631 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), index_func);
7632 	*maxcountp = MAX(*maxcountp, multilist_get_num_sublists(ml));
7633 }
7634 
7635 static void
arc_state_init(void)7636 arc_state_init(void)
7637 {
7638 	int num_sublists = 0;
7639 
7640 	arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_METADATA],
7641 	    arc_state_multilist_index_func, &num_sublists);
7642 	arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_DATA],
7643 	    arc_state_multilist_index_func, &num_sublists);
7644 	arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
7645 	    arc_state_multilist_index_func, &num_sublists);
7646 	arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
7647 	    arc_state_multilist_index_func, &num_sublists);
7648 	arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
7649 	    arc_state_multilist_index_func, &num_sublists);
7650 	arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_DATA],
7651 	    arc_state_multilist_index_func, &num_sublists);
7652 	arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
7653 	    arc_state_multilist_index_func, &num_sublists);
7654 	arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
7655 	    arc_state_multilist_index_func, &num_sublists);
7656 	arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_METADATA],
7657 	    arc_state_multilist_index_func, &num_sublists);
7658 	arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_DATA],
7659 	    arc_state_multilist_index_func, &num_sublists);
7660 
7661 	/*
7662 	 * L2 headers should never be on the L2 state list since they don't
7663 	 * have L1 headers allocated.  Special index function asserts that.
7664 	 */
7665 	arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
7666 	    arc_state_l2c_multilist_index_func, &num_sublists);
7667 	arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
7668 	    arc_state_l2c_multilist_index_func, &num_sublists);
7669 
7670 	/*
7671 	 * Keep track of the number of markers needed to reclaim buffers from
7672 	 * any ARC state.  The markers will be pre-allocated so as to minimize
7673 	 * the number of memory allocations performed by the eviction thread.
7674 	 */
7675 	arc_state_evict_marker_count = num_sublists;
7676 
7677 	zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7678 	zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7679 	zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7680 	zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7681 	zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7682 	zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7683 	zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7684 	zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7685 	zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7686 	zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7687 	zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7688 	zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7689 	zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]);
7690 	zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_DATA]);
7691 
7692 	zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_DATA]);
7693 	zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
7694 	zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_DATA]);
7695 	zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_METADATA]);
7696 	zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]);
7697 	zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]);
7698 	zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
7699 	zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
7700 	zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]);
7701 	zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]);
7702 	zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]);
7703 	zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]);
7704 	zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_DATA]);
7705 	zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_METADATA]);
7706 
7707 	wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA], 0);
7708 	wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA], 0);
7709 	wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA], 0);
7710 	wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA], 0);
7711 
7712 	wmsum_init(&arc_sums.arcstat_hits, 0);
7713 	wmsum_init(&arc_sums.arcstat_iohits, 0);
7714 	wmsum_init(&arc_sums.arcstat_misses, 0);
7715 	wmsum_init(&arc_sums.arcstat_demand_data_hits, 0);
7716 	wmsum_init(&arc_sums.arcstat_demand_data_iohits, 0);
7717 	wmsum_init(&arc_sums.arcstat_demand_data_misses, 0);
7718 	wmsum_init(&arc_sums.arcstat_demand_metadata_hits, 0);
7719 	wmsum_init(&arc_sums.arcstat_demand_metadata_iohits, 0);
7720 	wmsum_init(&arc_sums.arcstat_demand_metadata_misses, 0);
7721 	wmsum_init(&arc_sums.arcstat_prefetch_data_hits, 0);
7722 	wmsum_init(&arc_sums.arcstat_prefetch_data_iohits, 0);
7723 	wmsum_init(&arc_sums.arcstat_prefetch_data_misses, 0);
7724 	wmsum_init(&arc_sums.arcstat_prefetch_metadata_hits, 0);
7725 	wmsum_init(&arc_sums.arcstat_prefetch_metadata_iohits, 0);
7726 	wmsum_init(&arc_sums.arcstat_prefetch_metadata_misses, 0);
7727 	wmsum_init(&arc_sums.arcstat_mru_hits, 0);
7728 	wmsum_init(&arc_sums.arcstat_mru_ghost_hits, 0);
7729 	wmsum_init(&arc_sums.arcstat_mfu_hits, 0);
7730 	wmsum_init(&arc_sums.arcstat_mfu_ghost_hits, 0);
7731 	wmsum_init(&arc_sums.arcstat_uncached_hits, 0);
7732 	wmsum_init(&arc_sums.arcstat_deleted, 0);
7733 	wmsum_init(&arc_sums.arcstat_mutex_miss, 0);
7734 	wmsum_init(&arc_sums.arcstat_access_skip, 0);
7735 	wmsum_init(&arc_sums.arcstat_evict_skip, 0);
7736 	wmsum_init(&arc_sums.arcstat_evict_not_enough, 0);
7737 	wmsum_init(&arc_sums.arcstat_evict_l2_cached, 0);
7738 	wmsum_init(&arc_sums.arcstat_evict_l2_eligible, 0);
7739 	wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mfu, 0);
7740 	wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mru, 0);
7741 	wmsum_init(&arc_sums.arcstat_evict_l2_ineligible, 0);
7742 	wmsum_init(&arc_sums.arcstat_evict_l2_skip, 0);
7743 	wmsum_init(&arc_sums.arcstat_hash_elements, 0);
7744 	wmsum_init(&arc_sums.arcstat_hash_collisions, 0);
7745 	wmsum_init(&arc_sums.arcstat_hash_chains, 0);
7746 	aggsum_init(&arc_sums.arcstat_size, 0);
7747 	wmsum_init(&arc_sums.arcstat_compressed_size, 0);
7748 	wmsum_init(&arc_sums.arcstat_uncompressed_size, 0);
7749 	wmsum_init(&arc_sums.arcstat_overhead_size, 0);
7750 	wmsum_init(&arc_sums.arcstat_hdr_size, 0);
7751 	wmsum_init(&arc_sums.arcstat_data_size, 0);
7752 	wmsum_init(&arc_sums.arcstat_metadata_size, 0);
7753 	wmsum_init(&arc_sums.arcstat_dbuf_size, 0);
7754 	aggsum_init(&arc_sums.arcstat_dnode_size, 0);
7755 	wmsum_init(&arc_sums.arcstat_bonus_size, 0);
7756 	wmsum_init(&arc_sums.arcstat_l2_hits, 0);
7757 	wmsum_init(&arc_sums.arcstat_l2_misses, 0);
7758 	wmsum_init(&arc_sums.arcstat_l2_prefetch_asize, 0);
7759 	wmsum_init(&arc_sums.arcstat_l2_mru_asize, 0);
7760 	wmsum_init(&arc_sums.arcstat_l2_mfu_asize, 0);
7761 	wmsum_init(&arc_sums.arcstat_l2_bufc_data_asize, 0);
7762 	wmsum_init(&arc_sums.arcstat_l2_bufc_metadata_asize, 0);
7763 	wmsum_init(&arc_sums.arcstat_l2_feeds, 0);
7764 	wmsum_init(&arc_sums.arcstat_l2_rw_clash, 0);
7765 	wmsum_init(&arc_sums.arcstat_l2_read_bytes, 0);
7766 	wmsum_init(&arc_sums.arcstat_l2_write_bytes, 0);
7767 	wmsum_init(&arc_sums.arcstat_l2_writes_sent, 0);
7768 	wmsum_init(&arc_sums.arcstat_l2_writes_done, 0);
7769 	wmsum_init(&arc_sums.arcstat_l2_writes_error, 0);
7770 	wmsum_init(&arc_sums.arcstat_l2_writes_lock_retry, 0);
7771 	wmsum_init(&arc_sums.arcstat_l2_evict_lock_retry, 0);
7772 	wmsum_init(&arc_sums.arcstat_l2_evict_reading, 0);
7773 	wmsum_init(&arc_sums.arcstat_l2_evict_l1cached, 0);
7774 	wmsum_init(&arc_sums.arcstat_l2_free_on_write, 0);
7775 	wmsum_init(&arc_sums.arcstat_l2_abort_lowmem, 0);
7776 	wmsum_init(&arc_sums.arcstat_l2_cksum_bad, 0);
7777 	wmsum_init(&arc_sums.arcstat_l2_io_error, 0);
7778 	wmsum_init(&arc_sums.arcstat_l2_lsize, 0);
7779 	wmsum_init(&arc_sums.arcstat_l2_psize, 0);
7780 	aggsum_init(&arc_sums.arcstat_l2_hdr_size, 0);
7781 	wmsum_init(&arc_sums.arcstat_l2_log_blk_writes, 0);
7782 	wmsum_init(&arc_sums.arcstat_l2_log_blk_asize, 0);
7783 	wmsum_init(&arc_sums.arcstat_l2_log_blk_count, 0);
7784 	wmsum_init(&arc_sums.arcstat_l2_rebuild_success, 0);
7785 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_unsupported, 0);
7786 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_io_errors, 0);
7787 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_dh_errors, 0);
7788 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors, 0);
7789 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_lowmem, 0);
7790 	wmsum_init(&arc_sums.arcstat_l2_rebuild_size, 0);
7791 	wmsum_init(&arc_sums.arcstat_l2_rebuild_asize, 0);
7792 	wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs, 0);
7793 	wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs_precached, 0);
7794 	wmsum_init(&arc_sums.arcstat_l2_rebuild_log_blks, 0);
7795 	wmsum_init(&arc_sums.arcstat_memory_throttle_count, 0);
7796 	wmsum_init(&arc_sums.arcstat_memory_direct_count, 0);
7797 	wmsum_init(&arc_sums.arcstat_memory_indirect_count, 0);
7798 	wmsum_init(&arc_sums.arcstat_prune, 0);
7799 	wmsum_init(&arc_sums.arcstat_meta_used, 0);
7800 	wmsum_init(&arc_sums.arcstat_async_upgrade_sync, 0);
7801 	wmsum_init(&arc_sums.arcstat_predictive_prefetch, 0);
7802 	wmsum_init(&arc_sums.arcstat_demand_hit_predictive_prefetch, 0);
7803 	wmsum_init(&arc_sums.arcstat_demand_iohit_predictive_prefetch, 0);
7804 	wmsum_init(&arc_sums.arcstat_prescient_prefetch, 0);
7805 	wmsum_init(&arc_sums.arcstat_demand_hit_prescient_prefetch, 0);
7806 	wmsum_init(&arc_sums.arcstat_demand_iohit_prescient_prefetch, 0);
7807 	wmsum_init(&arc_sums.arcstat_raw_size, 0);
7808 	wmsum_init(&arc_sums.arcstat_cached_only_in_progress, 0);
7809 	wmsum_init(&arc_sums.arcstat_abd_chunk_waste_size, 0);
7810 
7811 	arc_anon->arcs_state = ARC_STATE_ANON;
7812 	arc_mru->arcs_state = ARC_STATE_MRU;
7813 	arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
7814 	arc_mfu->arcs_state = ARC_STATE_MFU;
7815 	arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
7816 	arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
7817 	arc_uncached->arcs_state = ARC_STATE_UNCACHED;
7818 }
7819 
7820 static void
arc_state_fini(void)7821 arc_state_fini(void)
7822 {
7823 	zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7824 	zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7825 	zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7826 	zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7827 	zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7828 	zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7829 	zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7830 	zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7831 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7832 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7833 	zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7834 	zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7835 	zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]);
7836 	zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_DATA]);
7837 
7838 	zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_DATA]);
7839 	zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
7840 	zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_DATA]);
7841 	zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_METADATA]);
7842 	zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]);
7843 	zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]);
7844 	zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
7845 	zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
7846 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]);
7847 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]);
7848 	zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]);
7849 	zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]);
7850 	zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_DATA]);
7851 	zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_METADATA]);
7852 
7853 	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
7854 	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
7855 	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
7856 	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
7857 	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
7858 	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
7859 	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
7860 	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
7861 	multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
7862 	multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
7863 	multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_METADATA]);
7864 	multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_DATA]);
7865 
7866 	wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]);
7867 	wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]);
7868 	wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]);
7869 	wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]);
7870 
7871 	wmsum_fini(&arc_sums.arcstat_hits);
7872 	wmsum_fini(&arc_sums.arcstat_iohits);
7873 	wmsum_fini(&arc_sums.arcstat_misses);
7874 	wmsum_fini(&arc_sums.arcstat_demand_data_hits);
7875 	wmsum_fini(&arc_sums.arcstat_demand_data_iohits);
7876 	wmsum_fini(&arc_sums.arcstat_demand_data_misses);
7877 	wmsum_fini(&arc_sums.arcstat_demand_metadata_hits);
7878 	wmsum_fini(&arc_sums.arcstat_demand_metadata_iohits);
7879 	wmsum_fini(&arc_sums.arcstat_demand_metadata_misses);
7880 	wmsum_fini(&arc_sums.arcstat_prefetch_data_hits);
7881 	wmsum_fini(&arc_sums.arcstat_prefetch_data_iohits);
7882 	wmsum_fini(&arc_sums.arcstat_prefetch_data_misses);
7883 	wmsum_fini(&arc_sums.arcstat_prefetch_metadata_hits);
7884 	wmsum_fini(&arc_sums.arcstat_prefetch_metadata_iohits);
7885 	wmsum_fini(&arc_sums.arcstat_prefetch_metadata_misses);
7886 	wmsum_fini(&arc_sums.arcstat_mru_hits);
7887 	wmsum_fini(&arc_sums.arcstat_mru_ghost_hits);
7888 	wmsum_fini(&arc_sums.arcstat_mfu_hits);
7889 	wmsum_fini(&arc_sums.arcstat_mfu_ghost_hits);
7890 	wmsum_fini(&arc_sums.arcstat_uncached_hits);
7891 	wmsum_fini(&arc_sums.arcstat_deleted);
7892 	wmsum_fini(&arc_sums.arcstat_mutex_miss);
7893 	wmsum_fini(&arc_sums.arcstat_access_skip);
7894 	wmsum_fini(&arc_sums.arcstat_evict_skip);
7895 	wmsum_fini(&arc_sums.arcstat_evict_not_enough);
7896 	wmsum_fini(&arc_sums.arcstat_evict_l2_cached);
7897 	wmsum_fini(&arc_sums.arcstat_evict_l2_eligible);
7898 	wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mfu);
7899 	wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mru);
7900 	wmsum_fini(&arc_sums.arcstat_evict_l2_ineligible);
7901 	wmsum_fini(&arc_sums.arcstat_evict_l2_skip);
7902 	wmsum_fini(&arc_sums.arcstat_hash_elements);
7903 	wmsum_fini(&arc_sums.arcstat_hash_collisions);
7904 	wmsum_fini(&arc_sums.arcstat_hash_chains);
7905 	aggsum_fini(&arc_sums.arcstat_size);
7906 	wmsum_fini(&arc_sums.arcstat_compressed_size);
7907 	wmsum_fini(&arc_sums.arcstat_uncompressed_size);
7908 	wmsum_fini(&arc_sums.arcstat_overhead_size);
7909 	wmsum_fini(&arc_sums.arcstat_hdr_size);
7910 	wmsum_fini(&arc_sums.arcstat_data_size);
7911 	wmsum_fini(&arc_sums.arcstat_metadata_size);
7912 	wmsum_fini(&arc_sums.arcstat_dbuf_size);
7913 	aggsum_fini(&arc_sums.arcstat_dnode_size);
7914 	wmsum_fini(&arc_sums.arcstat_bonus_size);
7915 	wmsum_fini(&arc_sums.arcstat_l2_hits);
7916 	wmsum_fini(&arc_sums.arcstat_l2_misses);
7917 	wmsum_fini(&arc_sums.arcstat_l2_prefetch_asize);
7918 	wmsum_fini(&arc_sums.arcstat_l2_mru_asize);
7919 	wmsum_fini(&arc_sums.arcstat_l2_mfu_asize);
7920 	wmsum_fini(&arc_sums.arcstat_l2_bufc_data_asize);
7921 	wmsum_fini(&arc_sums.arcstat_l2_bufc_metadata_asize);
7922 	wmsum_fini(&arc_sums.arcstat_l2_feeds);
7923 	wmsum_fini(&arc_sums.arcstat_l2_rw_clash);
7924 	wmsum_fini(&arc_sums.arcstat_l2_read_bytes);
7925 	wmsum_fini(&arc_sums.arcstat_l2_write_bytes);
7926 	wmsum_fini(&arc_sums.arcstat_l2_writes_sent);
7927 	wmsum_fini(&arc_sums.arcstat_l2_writes_done);
7928 	wmsum_fini(&arc_sums.arcstat_l2_writes_error);
7929 	wmsum_fini(&arc_sums.arcstat_l2_writes_lock_retry);
7930 	wmsum_fini(&arc_sums.arcstat_l2_evict_lock_retry);
7931 	wmsum_fini(&arc_sums.arcstat_l2_evict_reading);
7932 	wmsum_fini(&arc_sums.arcstat_l2_evict_l1cached);
7933 	wmsum_fini(&arc_sums.arcstat_l2_free_on_write);
7934 	wmsum_fini(&arc_sums.arcstat_l2_abort_lowmem);
7935 	wmsum_fini(&arc_sums.arcstat_l2_cksum_bad);
7936 	wmsum_fini(&arc_sums.arcstat_l2_io_error);
7937 	wmsum_fini(&arc_sums.arcstat_l2_lsize);
7938 	wmsum_fini(&arc_sums.arcstat_l2_psize);
7939 	aggsum_fini(&arc_sums.arcstat_l2_hdr_size);
7940 	wmsum_fini(&arc_sums.arcstat_l2_log_blk_writes);
7941 	wmsum_fini(&arc_sums.arcstat_l2_log_blk_asize);
7942 	wmsum_fini(&arc_sums.arcstat_l2_log_blk_count);
7943 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_success);
7944 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7945 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7946 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7947 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7948 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7949 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_size);
7950 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_asize);
7951 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs);
7952 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7953 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_log_blks);
7954 	wmsum_fini(&arc_sums.arcstat_memory_throttle_count);
7955 	wmsum_fini(&arc_sums.arcstat_memory_direct_count);
7956 	wmsum_fini(&arc_sums.arcstat_memory_indirect_count);
7957 	wmsum_fini(&arc_sums.arcstat_prune);
7958 	wmsum_fini(&arc_sums.arcstat_meta_used);
7959 	wmsum_fini(&arc_sums.arcstat_async_upgrade_sync);
7960 	wmsum_fini(&arc_sums.arcstat_predictive_prefetch);
7961 	wmsum_fini(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7962 	wmsum_fini(&arc_sums.arcstat_demand_iohit_predictive_prefetch);
7963 	wmsum_fini(&arc_sums.arcstat_prescient_prefetch);
7964 	wmsum_fini(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7965 	wmsum_fini(&arc_sums.arcstat_demand_iohit_prescient_prefetch);
7966 	wmsum_fini(&arc_sums.arcstat_raw_size);
7967 	wmsum_fini(&arc_sums.arcstat_cached_only_in_progress);
7968 	wmsum_fini(&arc_sums.arcstat_abd_chunk_waste_size);
7969 }
7970 
7971 uint64_t
arc_target_bytes(void)7972 arc_target_bytes(void)
7973 {
7974 	return (arc_c);
7975 }
7976 
7977 void
arc_set_limits(uint64_t allmem)7978 arc_set_limits(uint64_t allmem)
7979 {
7980 	/* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */
7981 	arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT);
7982 
7983 	/* How to set default max varies by platform. */
7984 	arc_c_max = arc_default_max(arc_c_min, allmem);
7985 }
7986 
7987 void
arc_init(void)7988 arc_init(void)
7989 {
7990 	uint64_t percent, allmem = arc_all_memory();
7991 	mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL);
7992 	list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t),
7993 	    offsetof(arc_evict_waiter_t, aew_node));
7994 
7995 	arc_min_prefetch = MSEC_TO_TICK(1000);
7996 	arc_min_prescient_prefetch = MSEC_TO_TICK(6000);
7997 
7998 #if defined(_KERNEL)
7999 	arc_lowmem_init();
8000 #endif
8001 
8002 	arc_set_limits(allmem);
8003 
8004 #ifdef _KERNEL
8005 	/*
8006 	 * If zfs_arc_max is non-zero at init, meaning it was set in the kernel
8007 	 * environment before the module was loaded, don't block setting the
8008 	 * maximum because it is less than arc_c_min, instead, reset arc_c_min
8009 	 * to a lower value.
8010 	 * zfs_arc_min will be handled by arc_tuning_update().
8011 	 */
8012 	if (zfs_arc_max != 0 && zfs_arc_max >= MIN_ARC_MAX &&
8013 	    zfs_arc_max < allmem) {
8014 		arc_c_max = zfs_arc_max;
8015 		if (arc_c_min >= arc_c_max) {
8016 			arc_c_min = MAX(zfs_arc_max / 2,
8017 			    2ULL << SPA_MAXBLOCKSHIFT);
8018 		}
8019 	}
8020 #else
8021 	/*
8022 	 * In userland, there's only the memory pressure that we artificially
8023 	 * create (see arc_available_memory()).  Don't let arc_c get too
8024 	 * small, because it can cause transactions to be larger than
8025 	 * arc_c, causing arc_tempreserve_space() to fail.
8026 	 */
8027 	arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT);
8028 #endif
8029 
8030 	arc_c = arc_c_min;
8031 	/*
8032 	 * 32-bit fixed point fractions of metadata from total ARC size,
8033 	 * MRU data from all data and MRU metadata from all metadata.
8034 	 */
8035 	arc_meta = (1ULL << 32) / 4;	/* Metadata is 25% of arc_c. */
8036 	arc_pd = (1ULL << 32) / 2;	/* Data MRU is 50% of data. */
8037 	arc_pm = (1ULL << 32) / 2;	/* Metadata MRU is 50% of metadata. */
8038 
8039 	percent = MIN(zfs_arc_dnode_limit_percent, 100);
8040 	arc_dnode_limit = arc_c_max * percent / 100;
8041 
8042 	/* Apply user specified tunings */
8043 	arc_tuning_update(B_TRUE);
8044 
8045 	/* if kmem_flags are set, lets try to use less memory */
8046 	if (kmem_debugging())
8047 		arc_c = arc_c / 2;
8048 	if (arc_c < arc_c_min)
8049 		arc_c = arc_c_min;
8050 
8051 	arc_register_hotplug();
8052 
8053 	arc_state_init();
8054 
8055 	buf_init();
8056 
8057 	list_create(&arc_prune_list, sizeof (arc_prune_t),
8058 	    offsetof(arc_prune_t, p_node));
8059 	mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
8060 
8061 	arc_prune_taskq = taskq_create("arc_prune", zfs_arc_prune_task_threads,
8062 	    defclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
8063 
8064 	arc_evict_thread_init();
8065 
8066 	list_create(&arc_async_flush_list, sizeof (arc_async_flush_t),
8067 	    offsetof(arc_async_flush_t, af_node));
8068 	mutex_init(&arc_async_flush_lock, NULL, MUTEX_DEFAULT, NULL);
8069 	arc_flush_taskq = taskq_create("arc_flush", MIN(boot_ncpus, 4),
8070 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
8071 
8072 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
8073 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
8074 
8075 	if (arc_ksp != NULL) {
8076 		arc_ksp->ks_data = &arc_stats;
8077 		arc_ksp->ks_update = arc_kstat_update;
8078 		kstat_install(arc_ksp);
8079 	}
8080 
8081 	arc_state_evict_markers =
8082 	    arc_state_alloc_markers(arc_state_evict_marker_count);
8083 	arc_evict_zthr = zthr_create_timer("arc_evict",
8084 	    arc_evict_cb_check, arc_evict_cb, NULL, SEC2NSEC(1), defclsyspri);
8085 	arc_reap_zthr = zthr_create_timer("arc_reap",
8086 	    arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1), minclsyspri);
8087 
8088 	arc_warm = B_FALSE;
8089 
8090 	/*
8091 	 * Calculate maximum amount of dirty data per pool.
8092 	 *
8093 	 * If it has been set by a module parameter, take that.
8094 	 * Otherwise, use a percentage of physical memory defined by
8095 	 * zfs_dirty_data_max_percent (default 10%) with a cap at
8096 	 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
8097 	 */
8098 #ifdef __LP64__
8099 	if (zfs_dirty_data_max_max == 0)
8100 		zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
8101 		    allmem * zfs_dirty_data_max_max_percent / 100);
8102 #else
8103 	if (zfs_dirty_data_max_max == 0)
8104 		zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024,
8105 		    allmem * zfs_dirty_data_max_max_percent / 100);
8106 #endif
8107 
8108 	if (zfs_dirty_data_max == 0) {
8109 		zfs_dirty_data_max = allmem *
8110 		    zfs_dirty_data_max_percent / 100;
8111 		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
8112 		    zfs_dirty_data_max_max);
8113 	}
8114 
8115 	if (zfs_wrlog_data_max == 0) {
8116 
8117 		/*
8118 		 * dp_wrlog_total is reduced for each txg at the end of
8119 		 * spa_sync(). However, dp_dirty_total is reduced every time
8120 		 * a block is written out. Thus under normal operation,
8121 		 * dp_wrlog_total could grow 2 times as big as
8122 		 * zfs_dirty_data_max.
8123 		 */
8124 		zfs_wrlog_data_max = zfs_dirty_data_max * 2;
8125 	}
8126 }
8127 
8128 void
arc_fini(void)8129 arc_fini(void)
8130 {
8131 	arc_prune_t *p;
8132 
8133 #ifdef _KERNEL
8134 	arc_lowmem_fini();
8135 #endif /* _KERNEL */
8136 
8137 	/* Wait for any background flushes */
8138 	taskq_wait(arc_flush_taskq);
8139 	taskq_destroy(arc_flush_taskq);
8140 
8141 	/* Use B_TRUE to ensure *all* buffers are evicted */
8142 	arc_flush(NULL, B_TRUE);
8143 
8144 	if (arc_ksp != NULL) {
8145 		kstat_delete(arc_ksp);
8146 		arc_ksp = NULL;
8147 	}
8148 
8149 	taskq_wait(arc_prune_taskq);
8150 	taskq_destroy(arc_prune_taskq);
8151 
8152 	list_destroy(&arc_async_flush_list);
8153 	mutex_destroy(&arc_async_flush_lock);
8154 
8155 	mutex_enter(&arc_prune_mtx);
8156 	while ((p = list_remove_head(&arc_prune_list)) != NULL) {
8157 		(void) zfs_refcount_remove(&p->p_refcnt, &arc_prune_list);
8158 		zfs_refcount_destroy(&p->p_refcnt);
8159 		kmem_free(p, sizeof (*p));
8160 	}
8161 	mutex_exit(&arc_prune_mtx);
8162 
8163 	list_destroy(&arc_prune_list);
8164 	mutex_destroy(&arc_prune_mtx);
8165 
8166 	if (arc_evict_taskq != NULL)
8167 		taskq_wait(arc_evict_taskq);
8168 
8169 	(void) zthr_cancel(arc_evict_zthr);
8170 	(void) zthr_cancel(arc_reap_zthr);
8171 	arc_state_free_markers(arc_state_evict_markers,
8172 	    arc_state_evict_marker_count);
8173 
8174 	if (arc_evict_taskq != NULL) {
8175 		taskq_destroy(arc_evict_taskq);
8176 		kmem_free(arc_evict_arg,
8177 		    sizeof (evict_arg_t) * zfs_arc_evict_threads);
8178 	}
8179 
8180 	mutex_destroy(&arc_evict_lock);
8181 	list_destroy(&arc_evict_waiters);
8182 
8183 	/*
8184 	 * Free any buffers that were tagged for destruction.  This needs
8185 	 * to occur before arc_state_fini() runs and destroys the aggsum
8186 	 * values which are updated when freeing scatter ABDs.
8187 	 */
8188 	l2arc_do_free_on_write();
8189 
8190 	/*
8191 	 * buf_fini() must proceed arc_state_fini() because buf_fin() may
8192 	 * trigger the release of kmem magazines, which can callback to
8193 	 * arc_space_return() which accesses aggsums freed in act_state_fini().
8194 	 */
8195 	buf_fini();
8196 	arc_state_fini();
8197 
8198 	arc_unregister_hotplug();
8199 
8200 	/*
8201 	 * We destroy the zthrs after all the ARC state has been
8202 	 * torn down to avoid the case of them receiving any
8203 	 * wakeup() signals after they are destroyed.
8204 	 */
8205 	zthr_destroy(arc_evict_zthr);
8206 	zthr_destroy(arc_reap_zthr);
8207 
8208 	ASSERT0(arc_loaned_bytes);
8209 }
8210 
8211 /*
8212  * Level 2 ARC
8213  *
8214  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
8215  * It uses dedicated storage devices to hold cached data, which are populated
8216  * using large infrequent writes.  The main role of this cache is to boost
8217  * the performance of random read workloads.  The intended L2ARC devices
8218  * include short-stroked disks, solid state disks, and other media with
8219  * substantially faster read latency than disk.
8220  *
8221  *                 +-----------------------+
8222  *                 |         ARC           |
8223  *                 +-----------------------+
8224  *                    |         ^     ^
8225  *                    |         |     |
8226  *      l2arc_feed_thread()    arc_read()
8227  *                    |         |     |
8228  *                    |  l2arc read   |
8229  *                    V         |     |
8230  *               +---------------+    |
8231  *               |     L2ARC     |    |
8232  *               +---------------+    |
8233  *                   |    ^           |
8234  *          l2arc_write() |           |
8235  *                   |    |           |
8236  *                   V    |           |
8237  *                 +-------+      +-------+
8238  *                 | vdev  |      | vdev  |
8239  *                 | cache |      | cache |
8240  *                 +-------+      +-------+
8241  *                 +=========+     .-----.
8242  *                 :  L2ARC  :    |-_____-|
8243  *                 : devices :    | Disks |
8244  *                 +=========+    `-_____-'
8245  *
8246  * Read requests are satisfied from the following sources, in order:
8247  *
8248  *	1) ARC
8249  *	2) vdev cache of L2ARC devices
8250  *	3) L2ARC devices
8251  *	4) vdev cache of disks
8252  *	5) disks
8253  *
8254  * Some L2ARC device types exhibit extremely slow write performance.
8255  * To accommodate for this there are some significant differences between
8256  * the L2ARC and traditional cache design:
8257  *
8258  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
8259  * the ARC behave as usual, freeing buffers and placing headers on ghost
8260  * lists.  The ARC does not send buffers to the L2ARC during eviction as
8261  * this would add inflated write latencies for all ARC memory pressure.
8262  *
8263  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
8264  * It does this by periodically scanning buffers from the eviction-end of
8265  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
8266  * not already there. It scans until a headroom of buffers is satisfied,
8267  * which itself is a buffer for ARC eviction. If a compressible buffer is
8268  * found during scanning and selected for writing to an L2ARC device, we
8269  * temporarily boost scanning headroom during the next scan cycle to make
8270  * sure we adapt to compression effects (which might significantly reduce
8271  * the data volume we write to L2ARC). The thread that does this is
8272  * l2arc_feed_thread(), illustrated below; example sizes are included to
8273  * provide a better sense of ratio than this diagram:
8274  *
8275  *	       head -->                        tail
8276  *	        +---------------------+----------+
8277  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
8278  *	        +---------------------+----------+   |   o L2ARC eligible
8279  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
8280  *	        +---------------------+----------+   |
8281  *	             15.9 Gbytes      ^ 32 Mbytes    |
8282  *	                           headroom          |
8283  *	                                      l2arc_feed_thread()
8284  *	                                             |
8285  *	                 l2arc write hand <--[oooo]--'
8286  *	                         |           8 Mbyte
8287  *	                         |          write max
8288  *	                         V
8289  *		  +==============================+
8290  *	L2ARC dev |####|#|###|###|    |####| ... |
8291  *	          +==============================+
8292  *	                     32 Gbytes
8293  *
8294  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
8295  * evicted, then the L2ARC has cached a buffer much sooner than it probably
8296  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
8297  * safe to say that this is an uncommon case, since buffers at the end of
8298  * the ARC lists have moved there due to inactivity.
8299  *
8300  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
8301  * then the L2ARC simply misses copying some buffers.  This serves as a
8302  * pressure valve to prevent heavy read workloads from both stalling the ARC
8303  * with waits and clogging the L2ARC with writes.  This also helps prevent
8304  * the potential for the L2ARC to churn if it attempts to cache content too
8305  * quickly, such as during backups of the entire pool.
8306  *
8307  * 5. After system boot and before the ARC has filled main memory, there are
8308  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
8309  * lists can remain mostly static.  Instead of searching from tail of these
8310  * lists as pictured, the l2arc_feed_thread() will search from the list heads
8311  * for eligible buffers, greatly increasing its chance of finding them.
8312  *
8313  * The L2ARC device write speed is also boosted during this time so that
8314  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
8315  * there are no L2ARC reads, and no fear of degrading read performance
8316  * through increased writes.
8317  *
8318  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
8319  * the vdev queue can aggregate them into larger and fewer writes.  Each
8320  * device is written to in a rotor fashion, sweeping writes through
8321  * available space then repeating.
8322  *
8323  * 7. The L2ARC does not store dirty content.  It never needs to flush
8324  * write buffers back to disk based storage.
8325  *
8326  * 8. If an ARC buffer is written (and dirtied) which also exists in the
8327  * L2ARC, the now stale L2ARC buffer is immediately dropped.
8328  *
8329  * The performance of the L2ARC can be tweaked by a number of tunables, which
8330  * may be necessary for different workloads:
8331  *
8332  *	l2arc_write_max		max write bytes per interval
8333  *	l2arc_write_boost	extra write bytes during device warmup
8334  *	l2arc_noprefetch	skip caching prefetched buffers
8335  *	l2arc_headroom		number of max device writes to precache
8336  *	l2arc_headroom_boost	when we find compressed buffers during ARC
8337  *				scanning, we multiply headroom by this
8338  *				percentage factor for the next scan cycle,
8339  *				since more compressed buffers are likely to
8340  *				be present
8341  *	l2arc_feed_secs		seconds between L2ARC writing
8342  *
8343  * Tunables may be removed or added as future performance improvements are
8344  * integrated, and also may become zpool properties.
8345  *
8346  * There are three key functions that control how the L2ARC warms up:
8347  *
8348  *	l2arc_write_eligible()	check if a buffer is eligible to cache
8349  *	l2arc_write_size()	calculate how much to write
8350  *	l2arc_write_interval()	calculate sleep delay between writes
8351  *
8352  * These three functions determine what to write, how much, and how quickly
8353  * to send writes.
8354  *
8355  * L2ARC persistence:
8356  *
8357  * When writing buffers to L2ARC, we periodically add some metadata to
8358  * make sure we can pick them up after reboot, thus dramatically reducing
8359  * the impact that any downtime has on the performance of storage systems
8360  * with large caches.
8361  *
8362  * The implementation works fairly simply by integrating the following two
8363  * modifications:
8364  *
8365  * *) When writing to the L2ARC, we occasionally write a "l2arc log block",
8366  *    which is an additional piece of metadata which describes what's been
8367  *    written. This allows us to rebuild the arc_buf_hdr_t structures of the
8368  *    main ARC buffers. There are 2 linked-lists of log blocks headed by
8369  *    dh_start_lbps[2]. We alternate which chain we append to, so they are
8370  *    time-wise and offset-wise interleaved, but that is an optimization rather
8371  *    than for correctness. The log block also includes a pointer to the
8372  *    previous block in its chain.
8373  *
8374  * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device
8375  *    for our header bookkeeping purposes. This contains a device header,
8376  *    which contains our top-level reference structures. We update it each
8377  *    time we write a new log block, so that we're able to locate it in the
8378  *    L2ARC device. If this write results in an inconsistent device header
8379  *    (e.g. due to power failure), we detect this by verifying the header's
8380  *    checksum and simply fail to reconstruct the L2ARC after reboot.
8381  *
8382  * Implementation diagram:
8383  *
8384  * +=== L2ARC device (not to scale) ======================================+
8385  * |       ___two newest log block pointers__.__________                  |
8386  * |      /                                   \dh_start_lbps[1]           |
8387  * |	 /				       \         \dh_start_lbps[0]|
8388  * |.___/__.                                    V         V               |
8389  * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---|
8390  * ||   hdr|      ^         /^       /^        /         /                |
8391  * |+------+  ...--\-------/  \-----/--\------/         /                 |
8392  * |                \--------------/    \--------------/                  |
8393  * +======================================================================+
8394  *
8395  * As can be seen on the diagram, rather than using a simple linked list,
8396  * we use a pair of linked lists with alternating elements. This is a
8397  * performance enhancement due to the fact that we only find out the
8398  * address of the next log block access once the current block has been
8399  * completely read in. Obviously, this hurts performance, because we'd be
8400  * keeping the device's I/O queue at only a 1 operation deep, thus
8401  * incurring a large amount of I/O round-trip latency. Having two lists
8402  * allows us to fetch two log blocks ahead of where we are currently
8403  * rebuilding L2ARC buffers.
8404  *
8405  * On-device data structures:
8406  *
8407  * L2ARC device header:	l2arc_dev_hdr_phys_t
8408  * L2ARC log block:	l2arc_log_blk_phys_t
8409  *
8410  * L2ARC reconstruction:
8411  *
8412  * When writing data, we simply write in the standard rotary fashion,
8413  * evicting buffers as we go and simply writing new data over them (writing
8414  * a new log block every now and then). This obviously means that once we
8415  * loop around the end of the device, we will start cutting into an already
8416  * committed log block (and its referenced data buffers), like so:
8417  *
8418  *    current write head__       __old tail
8419  *                        \     /
8420  *                        V    V
8421  * <--|bufs |lb |bufs |lb |    |bufs |lb |bufs |lb |-->
8422  *                         ^    ^^^^^^^^^___________________________________
8423  *                         |                                                \
8424  *                   <<nextwrite>> may overwrite this blk and/or its bufs --'
8425  *
8426  * When importing the pool, we detect this situation and use it to stop
8427  * our scanning process (see l2arc_rebuild).
8428  *
8429  * There is one significant caveat to consider when rebuilding ARC contents
8430  * from an L2ARC device: what about invalidated buffers? Given the above
8431  * construction, we cannot update blocks which we've already written to amend
8432  * them to remove buffers which were invalidated. Thus, during reconstruction,
8433  * we might be populating the cache with buffers for data that's not on the
8434  * main pool anymore, or may have been overwritten!
8435  *
8436  * As it turns out, this isn't a problem. Every arc_read request includes
8437  * both the DVA and, crucially, the birth TXG of the BP the caller is
8438  * looking for. So even if the cache were populated by completely rotten
8439  * blocks for data that had been long deleted and/or overwritten, we'll
8440  * never actually return bad data from the cache, since the DVA with the
8441  * birth TXG uniquely identify a block in space and time - once created,
8442  * a block is immutable on disk. The worst thing we have done is wasted
8443  * some time and memory at l2arc rebuild to reconstruct outdated ARC
8444  * entries that will get dropped from the l2arc as it is being updated
8445  * with new blocks.
8446  *
8447  * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write
8448  * hand are not restored. This is done by saving the offset (in bytes)
8449  * l2arc_evict() has evicted to in the L2ARC device header and taking it
8450  * into account when restoring buffers.
8451  */
8452 
8453 static boolean_t
l2arc_write_eligible(uint64_t spa_guid,arc_buf_hdr_t * hdr)8454 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
8455 {
8456 	/*
8457 	 * A buffer is *not* eligible for the L2ARC if it:
8458 	 * 1. belongs to a different spa.
8459 	 * 2. is already cached on the L2ARC.
8460 	 * 3. has an I/O in progress (it may be an incomplete read).
8461 	 * 4. is flagged not eligible (zfs property).
8462 	 */
8463 	if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
8464 	    HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
8465 		return (B_FALSE);
8466 
8467 	return (B_TRUE);
8468 }
8469 
8470 static uint64_t
l2arc_write_size(l2arc_dev_t * dev)8471 l2arc_write_size(l2arc_dev_t *dev)
8472 {
8473 	uint64_t size;
8474 
8475 	/*
8476 	 * Make sure our globals have meaningful values in case the user
8477 	 * altered them.
8478 	 */
8479 	size = l2arc_write_max;
8480 	if (size == 0) {
8481 		cmn_err(CE_NOTE, "l2arc_write_max must be greater than zero, "
8482 		    "resetting it to the default (%d)", L2ARC_WRITE_SIZE);
8483 		size = l2arc_write_max = L2ARC_WRITE_SIZE;
8484 	}
8485 
8486 	if (arc_warm == B_FALSE)
8487 		size += l2arc_write_boost;
8488 
8489 	/* We need to add in the worst case scenario of log block overhead. */
8490 	size += l2arc_log_blk_overhead(size, dev);
8491 	if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) {
8492 		/*
8493 		 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100)
8494 		 * times the writesize, whichever is greater.
8495 		 */
8496 		size += MAX(64 * 1024 * 1024,
8497 		    (size * l2arc_trim_ahead) / 100);
8498 	}
8499 
8500 	/*
8501 	 * Make sure the write size does not exceed the size of the cache
8502 	 * device. This is important in l2arc_evict(), otherwise infinite
8503 	 * iteration can occur.
8504 	 */
8505 	size = MIN(size, (dev->l2ad_end - dev->l2ad_start) / 4);
8506 
8507 	size = P2ROUNDUP(size, 1ULL << dev->l2ad_vdev->vdev_ashift);
8508 
8509 	return (size);
8510 
8511 }
8512 
8513 static clock_t
l2arc_write_interval(clock_t began,uint64_t wanted,uint64_t wrote)8514 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
8515 {
8516 	clock_t interval, next, now;
8517 
8518 	/*
8519 	 * If the ARC lists are busy, increase our write rate; if the
8520 	 * lists are stale, idle back.  This is achieved by checking
8521 	 * how much we previously wrote - if it was more than half of
8522 	 * what we wanted, schedule the next write much sooner.
8523 	 */
8524 	if (l2arc_feed_again && wrote > (wanted / 2))
8525 		interval = (hz * l2arc_feed_min_ms) / 1000;
8526 	else
8527 		interval = hz * l2arc_feed_secs;
8528 
8529 	now = ddi_get_lbolt();
8530 	next = MAX(now, MIN(now + interval, began + interval));
8531 
8532 	return (next);
8533 }
8534 
8535 static boolean_t
l2arc_dev_invalid(const l2arc_dev_t * dev)8536 l2arc_dev_invalid(const l2arc_dev_t *dev)
8537 {
8538 	/*
8539 	 * We want to skip devices that are being rebuilt, trimmed,
8540 	 * removed, or belong to a spa that is being exported.
8541 	 */
8542 	return (dev->l2ad_vdev == NULL || vdev_is_dead(dev->l2ad_vdev) ||
8543 	    dev->l2ad_rebuild || dev->l2ad_trim_all ||
8544 	    dev->l2ad_spa == NULL || dev->l2ad_spa->spa_is_exporting);
8545 }
8546 
8547 /*
8548  * Cycle through L2ARC devices.  This is how L2ARC load balances.
8549  * If a device is returned, this also returns holding the spa config lock.
8550  */
8551 static l2arc_dev_t *
l2arc_dev_get_next(void)8552 l2arc_dev_get_next(void)
8553 {
8554 	l2arc_dev_t *first, *next = NULL;
8555 
8556 	/*
8557 	 * Lock out the removal of spas (spa_namespace_lock), then removal
8558 	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
8559 	 * both locks will be dropped and a spa config lock held instead.
8560 	 */
8561 	spa_namespace_enter(FTAG);
8562 	mutex_enter(&l2arc_dev_mtx);
8563 
8564 	/* if there are no vdevs, there is nothing to do */
8565 	if (l2arc_ndev == 0)
8566 		goto out;
8567 
8568 	first = NULL;
8569 	next = l2arc_dev_last;
8570 	do {
8571 		/* loop around the list looking for a non-faulted vdev */
8572 		if (next == NULL) {
8573 			next = list_head(l2arc_dev_list);
8574 		} else {
8575 			next = list_next(l2arc_dev_list, next);
8576 			if (next == NULL)
8577 				next = list_head(l2arc_dev_list);
8578 		}
8579 
8580 		/* if we have come back to the start, bail out */
8581 		if (first == NULL)
8582 			first = next;
8583 		else if (next == first)
8584 			break;
8585 
8586 		ASSERT3P(next, !=, NULL);
8587 	} while (l2arc_dev_invalid(next));
8588 
8589 	/* if we were unable to find any usable vdevs, return NULL */
8590 	if (l2arc_dev_invalid(next))
8591 		next = NULL;
8592 
8593 	l2arc_dev_last = next;
8594 
8595 out:
8596 	mutex_exit(&l2arc_dev_mtx);
8597 
8598 	/*
8599 	 * Grab the config lock to prevent the 'next' device from being
8600 	 * removed while we are writing to it.
8601 	 */
8602 	if (next != NULL)
8603 		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
8604 	spa_namespace_exit(FTAG);
8605 
8606 	return (next);
8607 }
8608 
8609 /*
8610  * Free buffers that were tagged for destruction.
8611  */
8612 static void
l2arc_do_free_on_write(void)8613 l2arc_do_free_on_write(void)
8614 {
8615 	l2arc_data_free_t *df;
8616 
8617 	mutex_enter(&l2arc_free_on_write_mtx);
8618 	while ((df = list_remove_head(l2arc_free_on_write)) != NULL) {
8619 		ASSERT3P(df->l2df_abd, !=, NULL);
8620 		abd_free(df->l2df_abd);
8621 		kmem_free(df, sizeof (l2arc_data_free_t));
8622 	}
8623 	mutex_exit(&l2arc_free_on_write_mtx);
8624 }
8625 
8626 /*
8627  * A write to a cache device has completed.  Update all headers to allow
8628  * reads from these buffers to begin.
8629  */
8630 static void
l2arc_write_done(zio_t * zio)8631 l2arc_write_done(zio_t *zio)
8632 {
8633 	l2arc_write_callback_t	*cb;
8634 	l2arc_lb_abd_buf_t	*abd_buf;
8635 	l2arc_lb_ptr_buf_t	*lb_ptr_buf;
8636 	l2arc_dev_t		*dev;
8637 	l2arc_dev_hdr_phys_t	*l2dhdr;
8638 	list_t			*buflist;
8639 	arc_buf_hdr_t		*head, *hdr, *hdr_prev;
8640 	kmutex_t		*hash_lock;
8641 	int64_t			bytes_dropped = 0;
8642 
8643 	cb = zio->io_private;
8644 	ASSERT3P(cb, !=, NULL);
8645 	dev = cb->l2wcb_dev;
8646 	l2dhdr = dev->l2ad_dev_hdr;
8647 	ASSERT3P(dev, !=, NULL);
8648 	head = cb->l2wcb_head;
8649 	ASSERT3P(head, !=, NULL);
8650 	buflist = &dev->l2ad_buflist;
8651 	ASSERT3P(buflist, !=, NULL);
8652 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
8653 	    l2arc_write_callback_t *, cb);
8654 
8655 	/*
8656 	 * All writes completed, or an error was hit.
8657 	 */
8658 top:
8659 	mutex_enter(&dev->l2ad_mtx);
8660 	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
8661 		hdr_prev = list_prev(buflist, hdr);
8662 
8663 		hash_lock = HDR_LOCK(hdr);
8664 
8665 		/*
8666 		 * We cannot use mutex_enter or else we can deadlock
8667 		 * with l2arc_write_buffers (due to swapping the order
8668 		 * the hash lock and l2ad_mtx are taken).
8669 		 */
8670 		if (!mutex_tryenter(hash_lock)) {
8671 			/*
8672 			 * Missed the hash lock. We must retry so we
8673 			 * don't leave the ARC_FLAG_L2_WRITING bit set.
8674 			 */
8675 			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
8676 
8677 			/*
8678 			 * We don't want to rescan the headers we've
8679 			 * already marked as having been written out, so
8680 			 * we reinsert the head node so we can pick up
8681 			 * where we left off.
8682 			 */
8683 			list_remove(buflist, head);
8684 			list_insert_after(buflist, hdr, head);
8685 
8686 			mutex_exit(&dev->l2ad_mtx);
8687 
8688 			/*
8689 			 * We wait for the hash lock to become available
8690 			 * to try and prevent busy waiting, and increase
8691 			 * the chance we'll be able to acquire the lock
8692 			 * the next time around.
8693 			 */
8694 			mutex_enter(hash_lock);
8695 			mutex_exit(hash_lock);
8696 			goto top;
8697 		}
8698 
8699 		/*
8700 		 * We could not have been moved into the arc_l2c_only
8701 		 * state while in-flight due to our ARC_FLAG_L2_WRITING
8702 		 * bit being set. Let's just ensure that's being enforced.
8703 		 */
8704 		ASSERT(HDR_HAS_L1HDR(hdr));
8705 
8706 		/*
8707 		 * Skipped - drop L2ARC entry and mark the header as no
8708 		 * longer L2 eligibile.
8709 		 */
8710 		if (zio->io_error != 0) {
8711 			/*
8712 			 * Error - drop L2ARC entry.
8713 			 */
8714 			list_remove(buflist, hdr);
8715 			arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
8716 
8717 			uint64_t psize = HDR_GET_PSIZE(hdr);
8718 			l2arc_hdr_arcstats_decrement(hdr);
8719 
8720 			ASSERT(dev->l2ad_vdev != NULL);
8721 
8722 			bytes_dropped +=
8723 			    vdev_psize_to_asize(dev->l2ad_vdev, psize);
8724 			(void) zfs_refcount_remove_many(&dev->l2ad_alloc,
8725 			    arc_hdr_size(hdr), hdr);
8726 		}
8727 
8728 		/*
8729 		 * Allow ARC to begin reads and ghost list evictions to
8730 		 * this L2ARC entry.
8731 		 */
8732 		arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
8733 
8734 		mutex_exit(hash_lock);
8735 	}
8736 
8737 	/*
8738 	 * Free the allocated abd buffers for writing the log blocks.
8739 	 * If the zio failed reclaim the allocated space and remove the
8740 	 * pointers to these log blocks from the log block pointer list
8741 	 * of the L2ARC device.
8742 	 */
8743 	while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) {
8744 		abd_free(abd_buf->abd);
8745 		zio_buf_free(abd_buf, sizeof (*abd_buf));
8746 		if (zio->io_error != 0) {
8747 			lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list);
8748 			/*
8749 			 * L2BLK_GET_PSIZE returns aligned size for log
8750 			 * blocks.
8751 			 */
8752 			uint64_t asize =
8753 			    L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop);
8754 			bytes_dropped += asize;
8755 			ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
8756 			ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
8757 			zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
8758 			    lb_ptr_buf);
8759 			(void) zfs_refcount_remove(&dev->l2ad_lb_count,
8760 			    lb_ptr_buf);
8761 			kmem_free(lb_ptr_buf->lb_ptr,
8762 			    sizeof (l2arc_log_blkptr_t));
8763 			kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
8764 		}
8765 	}
8766 	list_destroy(&cb->l2wcb_abd_list);
8767 
8768 	if (zio->io_error != 0) {
8769 		ARCSTAT_BUMP(arcstat_l2_writes_error);
8770 
8771 		/*
8772 		 * Restore the lbps array in the header to its previous state.
8773 		 * If the list of log block pointers is empty, zero out the
8774 		 * log block pointers in the device header.
8775 		 */
8776 		lb_ptr_buf = list_head(&dev->l2ad_lbptr_list);
8777 		for (int i = 0; i < 2; i++) {
8778 			if (lb_ptr_buf == NULL) {
8779 				/*
8780 				 * If the list is empty zero out the device
8781 				 * header. Otherwise zero out the second log
8782 				 * block pointer in the header.
8783 				 */
8784 				if (i == 0) {
8785 					memset(l2dhdr, 0,
8786 					    dev->l2ad_dev_hdr_asize);
8787 				} else {
8788 					memset(&l2dhdr->dh_start_lbps[i], 0,
8789 					    sizeof (l2arc_log_blkptr_t));
8790 				}
8791 				break;
8792 			}
8793 			memcpy(&l2dhdr->dh_start_lbps[i], lb_ptr_buf->lb_ptr,
8794 			    sizeof (l2arc_log_blkptr_t));
8795 			lb_ptr_buf = list_next(&dev->l2ad_lbptr_list,
8796 			    lb_ptr_buf);
8797 		}
8798 	}
8799 
8800 	ARCSTAT_BUMP(arcstat_l2_writes_done);
8801 	list_remove(buflist, head);
8802 	ASSERT(!HDR_HAS_L1HDR(head));
8803 	kmem_cache_free(hdr_l2only_cache, head);
8804 	mutex_exit(&dev->l2ad_mtx);
8805 
8806 	ASSERT(dev->l2ad_vdev != NULL);
8807 	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
8808 
8809 	l2arc_do_free_on_write();
8810 
8811 	kmem_free(cb, sizeof (l2arc_write_callback_t));
8812 }
8813 
8814 static int
l2arc_untransform(zio_t * zio,l2arc_read_callback_t * cb)8815 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb)
8816 {
8817 	int ret;
8818 	spa_t *spa = zio->io_spa;
8819 	arc_buf_hdr_t *hdr = cb->l2rcb_hdr;
8820 	blkptr_t *bp = zio->io_bp;
8821 	uint8_t salt[ZIO_DATA_SALT_LEN];
8822 	uint8_t iv[ZIO_DATA_IV_LEN];
8823 	uint8_t mac[ZIO_DATA_MAC_LEN];
8824 	boolean_t no_crypt = B_FALSE;
8825 
8826 	/*
8827 	 * ZIL data is never be written to the L2ARC, so we don't need
8828 	 * special handling for its unique MAC storage.
8829 	 */
8830 	ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
8831 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
8832 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8833 
8834 	/*
8835 	 * If the data was encrypted, decrypt it now. Note that
8836 	 * we must check the bp here and not the hdr, since the
8837 	 * hdr does not have its encryption parameters updated
8838 	 * until arc_read_done().
8839 	 */
8840 	if (BP_IS_ENCRYPTED(bp)) {
8841 		abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8842 		    ARC_HDR_USE_RESERVE);
8843 
8844 		zio_crypt_decode_params_bp(bp, salt, iv);
8845 		zio_crypt_decode_mac_bp(bp, mac);
8846 
8847 		ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb,
8848 		    BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
8849 		    salt, iv, mac, HDR_GET_PSIZE(hdr), eabd,
8850 		    hdr->b_l1hdr.b_pabd, &no_crypt);
8851 		if (ret != 0) {
8852 			arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8853 			goto error;
8854 		}
8855 
8856 		/*
8857 		 * If we actually performed decryption, replace b_pabd
8858 		 * with the decrypted data. Otherwise we can just throw
8859 		 * our decryption buffer away.
8860 		 */
8861 		if (!no_crypt) {
8862 			arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8863 			    arc_hdr_size(hdr), hdr);
8864 			hdr->b_l1hdr.b_pabd = eabd;
8865 			zio->io_abd = eabd;
8866 		} else {
8867 			arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8868 		}
8869 	}
8870 
8871 	/*
8872 	 * If the L2ARC block was compressed, but ARC compression
8873 	 * is disabled we decompress the data into a new buffer and
8874 	 * replace the existing data.
8875 	 */
8876 	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8877 	    !HDR_COMPRESSION_ENABLED(hdr)) {
8878 		abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8879 		    ARC_HDR_USE_RESERVE);
8880 
8881 		ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
8882 		    hdr->b_l1hdr.b_pabd, cabd, HDR_GET_PSIZE(hdr),
8883 		    HDR_GET_LSIZE(hdr), &hdr->b_complevel);
8884 		if (ret != 0) {
8885 			arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
8886 			goto error;
8887 		}
8888 
8889 		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8890 		    arc_hdr_size(hdr), hdr);
8891 		hdr->b_l1hdr.b_pabd = cabd;
8892 		zio->io_abd = cabd;
8893 		zio->io_size = HDR_GET_LSIZE(hdr);
8894 	}
8895 
8896 	return (0);
8897 
8898 error:
8899 	return (ret);
8900 }
8901 
8902 
8903 /*
8904  * A read to a cache device completed.  Validate buffer contents before
8905  * handing over to the regular ARC routines.
8906  */
8907 static void
l2arc_read_done(zio_t * zio)8908 l2arc_read_done(zio_t *zio)
8909 {
8910 	int tfm_error = 0;
8911 	l2arc_read_callback_t *cb = zio->io_private;
8912 	arc_buf_hdr_t *hdr;
8913 	kmutex_t *hash_lock;
8914 	boolean_t valid_cksum;
8915 	boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) &&
8916 	    (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT));
8917 
8918 	ASSERT3P(zio->io_vd, !=, NULL);
8919 	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
8920 
8921 	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
8922 
8923 	ASSERT3P(cb, !=, NULL);
8924 	hdr = cb->l2rcb_hdr;
8925 	ASSERT3P(hdr, !=, NULL);
8926 
8927 	hash_lock = HDR_LOCK(hdr);
8928 	mutex_enter(hash_lock);
8929 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
8930 
8931 	/*
8932 	 * If the data was read into a temporary buffer,
8933 	 * move it and free the buffer.
8934 	 */
8935 	if (cb->l2rcb_abd != NULL) {
8936 		ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
8937 		if (zio->io_error == 0) {
8938 			if (using_rdata) {
8939 				abd_copy(hdr->b_crypt_hdr.b_rabd,
8940 				    cb->l2rcb_abd, arc_hdr_size(hdr));
8941 			} else {
8942 				abd_copy(hdr->b_l1hdr.b_pabd,
8943 				    cb->l2rcb_abd, arc_hdr_size(hdr));
8944 			}
8945 		}
8946 
8947 		/*
8948 		 * The following must be done regardless of whether
8949 		 * there was an error:
8950 		 * - free the temporary buffer
8951 		 * - point zio to the real ARC buffer
8952 		 * - set zio size accordingly
8953 		 * These are required because zio is either re-used for
8954 		 * an I/O of the block in the case of the error
8955 		 * or the zio is passed to arc_read_done() and it
8956 		 * needs real data.
8957 		 */
8958 		abd_free(cb->l2rcb_abd);
8959 		zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
8960 
8961 		if (using_rdata) {
8962 			ASSERT(HDR_HAS_RABD(hdr));
8963 			zio->io_abd = zio->io_orig_abd =
8964 			    hdr->b_crypt_hdr.b_rabd;
8965 		} else {
8966 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8967 			zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
8968 		}
8969 	}
8970 
8971 	ASSERT3P(zio->io_abd, !=, NULL);
8972 
8973 	/*
8974 	 * Check this survived the L2ARC journey.
8975 	 */
8976 	ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd ||
8977 	    (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd));
8978 	zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
8979 	zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
8980 	zio->io_prop.zp_complevel = hdr->b_complevel;
8981 
8982 	valid_cksum = arc_cksum_is_equal(hdr, zio);
8983 
8984 	/*
8985 	 * b_rabd will always match the data as it exists on disk if it is
8986 	 * being used. Therefore if we are reading into b_rabd we do not
8987 	 * attempt to untransform the data.
8988 	 */
8989 	if (valid_cksum && !using_rdata)
8990 		tfm_error = l2arc_untransform(zio, cb);
8991 
8992 	if (valid_cksum && tfm_error == 0 && zio->io_error == 0 &&
8993 	    !HDR_L2_EVICTED(hdr)) {
8994 		mutex_exit(hash_lock);
8995 		zio->io_private = hdr;
8996 		arc_read_done(zio);
8997 	} else {
8998 		/*
8999 		 * Buffer didn't survive caching.  Increment stats and
9000 		 * reissue to the original storage device.
9001 		 */
9002 		if (zio->io_error != 0) {
9003 			ARCSTAT_BUMP(arcstat_l2_io_error);
9004 		} else {
9005 			zio->io_error = SET_ERROR(EIO);
9006 		}
9007 		if (!valid_cksum || tfm_error != 0)
9008 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
9009 
9010 		/*
9011 		 * If there's no waiter, issue an async i/o to the primary
9012 		 * storage now.  If there *is* a waiter, the caller must
9013 		 * issue the i/o in a context where it's OK to block.
9014 		 */
9015 		if (zio->io_waiter == NULL) {
9016 			zio_t *pio = zio_unique_parent(zio);
9017 			void *abd = (using_rdata) ?
9018 			    hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd;
9019 
9020 			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
9021 
9022 			zio = zio_read(pio, zio->io_spa, zio->io_bp,
9023 			    abd, zio->io_size, arc_read_done,
9024 			    hdr, zio->io_priority, cb->l2rcb_flags,
9025 			    &cb->l2rcb_zb);
9026 
9027 			/*
9028 			 * Original ZIO will be freed, so we need to update
9029 			 * ARC header with the new ZIO pointer to be used
9030 			 * by zio_change_priority() in arc_read().
9031 			 */
9032 			for (struct arc_callback *acb = hdr->b_l1hdr.b_acb;
9033 			    acb != NULL; acb = acb->acb_next)
9034 				acb->acb_zio_head = zio;
9035 
9036 			mutex_exit(hash_lock);
9037 			zio_nowait(zio);
9038 		} else {
9039 			mutex_exit(hash_lock);
9040 		}
9041 	}
9042 
9043 	kmem_free(cb, sizeof (l2arc_read_callback_t));
9044 }
9045 
9046 /*
9047  * This is the list priority from which the L2ARC will search for pages to
9048  * cache.  This is used within loops (0..3) to cycle through lists in the
9049  * desired order.  This order can have a significant effect on cache
9050  * performance.
9051  *
9052  * Currently the metadata lists are hit first, MFU then MRU, followed by
9053  * the data lists.  This function returns a locked list, and also returns
9054  * the lock pointer.
9055  */
9056 static multilist_sublist_t *
l2arc_sublist_lock(int list_num)9057 l2arc_sublist_lock(int list_num)
9058 {
9059 	multilist_t *ml = NULL;
9060 	unsigned int idx;
9061 
9062 	ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES);
9063 
9064 	switch (list_num) {
9065 	case 0:
9066 		ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
9067 		break;
9068 	case 1:
9069 		ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
9070 		break;
9071 	case 2:
9072 		ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
9073 		break;
9074 	case 3:
9075 		ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
9076 		break;
9077 	default:
9078 		return (NULL);
9079 	}
9080 
9081 	/*
9082 	 * Return a randomly-selected sublist. This is acceptable
9083 	 * because the caller feeds only a little bit of data for each
9084 	 * call (8MB). Subsequent calls will result in different
9085 	 * sublists being selected.
9086 	 */
9087 	idx = multilist_get_random_index(ml);
9088 	return (multilist_sublist_lock_idx(ml, idx));
9089 }
9090 
9091 /*
9092  * Calculates the maximum overhead of L2ARC metadata log blocks for a given
9093  * L2ARC write size. l2arc_evict and l2arc_write_size need to include this
9094  * overhead in processing to make sure there is enough headroom available
9095  * when writing buffers.
9096  */
9097 static inline uint64_t
l2arc_log_blk_overhead(uint64_t write_sz,l2arc_dev_t * dev)9098 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev)
9099 {
9100 	if (dev->l2ad_log_entries == 0) {
9101 		return (0);
9102 	} else {
9103 		ASSERT(dev->l2ad_vdev != NULL);
9104 
9105 		uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT;
9106 
9107 		uint64_t log_blocks = (log_entries +
9108 		    dev->l2ad_log_entries - 1) /
9109 		    dev->l2ad_log_entries;
9110 
9111 		return (vdev_psize_to_asize(dev->l2ad_vdev,
9112 		    sizeof (l2arc_log_blk_phys_t)) * log_blocks);
9113 	}
9114 }
9115 
9116 /*
9117  * Evict buffers from the device write hand to the distance specified in
9118  * bytes. This distance may span populated buffers, it may span nothing.
9119  * This is clearing a region on the L2ARC device ready for writing.
9120  * If the 'all' boolean is set, every buffer is evicted.
9121  */
9122 static void
l2arc_evict(l2arc_dev_t * dev,uint64_t distance,boolean_t all)9123 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
9124 {
9125 	list_t *buflist;
9126 	arc_buf_hdr_t *hdr, *hdr_prev;
9127 	kmutex_t *hash_lock;
9128 	uint64_t taddr;
9129 	l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev;
9130 	vdev_t *vd = dev->l2ad_vdev;
9131 	boolean_t rerun;
9132 
9133 	ASSERT(vd != NULL || all);
9134 	ASSERT(dev->l2ad_spa != NULL || all);
9135 
9136 	buflist = &dev->l2ad_buflist;
9137 
9138 top:
9139 	rerun = B_FALSE;
9140 	if (dev->l2ad_hand + distance > dev->l2ad_end) {
9141 		/*
9142 		 * When there is no space to accommodate upcoming writes,
9143 		 * evict to the end. Then bump the write and evict hands
9144 		 * to the start and iterate. This iteration does not
9145 		 * happen indefinitely as we make sure in
9146 		 * l2arc_write_size() that when the write hand is reset,
9147 		 * the write size does not exceed the end of the device.
9148 		 */
9149 		rerun = B_TRUE;
9150 		taddr = dev->l2ad_end;
9151 	} else {
9152 		taddr = dev->l2ad_hand + distance;
9153 	}
9154 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
9155 	    uint64_t, taddr, boolean_t, all);
9156 
9157 	if (!all) {
9158 		/*
9159 		 * This check has to be placed after deciding whether to
9160 		 * iterate (rerun).
9161 		 */
9162 		if (dev->l2ad_first) {
9163 			/*
9164 			 * This is the first sweep through the device. There is
9165 			 * nothing to evict. We have already trimmed the
9166 			 * whole device.
9167 			 */
9168 			goto out;
9169 		} else {
9170 			/*
9171 			 * Trim the space to be evicted.
9172 			 */
9173 			if (vd->vdev_has_trim && dev->l2ad_evict < taddr &&
9174 			    l2arc_trim_ahead > 0) {
9175 				/*
9176 				 * We have to drop the spa_config lock because
9177 				 * vdev_trim_range() will acquire it.
9178 				 * l2ad_evict already accounts for the label
9179 				 * size. To prevent vdev_trim_ranges() from
9180 				 * adding it again, we subtract it from
9181 				 * l2ad_evict.
9182 				 */
9183 				spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev);
9184 				vdev_trim_simple(vd,
9185 				    dev->l2ad_evict - VDEV_LABEL_START_SIZE,
9186 				    taddr - dev->l2ad_evict);
9187 				spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev,
9188 				    RW_READER);
9189 			}
9190 
9191 			/*
9192 			 * When rebuilding L2ARC we retrieve the evict hand
9193 			 * from the header of the device. Of note, l2arc_evict()
9194 			 * does not actually delete buffers from the cache
9195 			 * device, but trimming may do so depending on the
9196 			 * hardware implementation. Thus keeping track of the
9197 			 * evict hand is useful.
9198 			 */
9199 			dev->l2ad_evict = MAX(dev->l2ad_evict, taddr);
9200 		}
9201 	}
9202 
9203 retry:
9204 	mutex_enter(&dev->l2ad_mtx);
9205 	/*
9206 	 * We have to account for evicted log blocks. Run vdev_space_update()
9207 	 * on log blocks whose offset (in bytes) is before the evicted offset
9208 	 * (in bytes) by searching in the list of pointers to log blocks
9209 	 * present in the L2ARC device.
9210 	 */
9211 	for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf;
9212 	    lb_ptr_buf = lb_ptr_buf_prev) {
9213 
9214 		lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf);
9215 
9216 		/* L2BLK_GET_PSIZE returns aligned size for log blocks */
9217 		uint64_t asize = L2BLK_GET_PSIZE(
9218 		    (lb_ptr_buf->lb_ptr)->lbp_prop);
9219 
9220 		/*
9221 		 * We don't worry about log blocks left behind (ie
9222 		 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers()
9223 		 * will never write more than l2arc_evict() evicts.
9224 		 */
9225 		if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) {
9226 			break;
9227 		} else {
9228 			if (vd != NULL)
9229 				vdev_space_update(vd, -asize, 0, 0);
9230 			ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
9231 			ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
9232 			zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
9233 			    lb_ptr_buf);
9234 			(void) zfs_refcount_remove(&dev->l2ad_lb_count,
9235 			    lb_ptr_buf);
9236 			list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf);
9237 			kmem_free(lb_ptr_buf->lb_ptr,
9238 			    sizeof (l2arc_log_blkptr_t));
9239 			kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
9240 		}
9241 	}
9242 
9243 	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
9244 		hdr_prev = list_prev(buflist, hdr);
9245 
9246 		ASSERT(!HDR_EMPTY(hdr));
9247 		hash_lock = HDR_LOCK(hdr);
9248 
9249 		/*
9250 		 * We cannot use mutex_enter or else we can deadlock
9251 		 * with l2arc_write_buffers (due to swapping the order
9252 		 * the hash lock and l2ad_mtx are taken).
9253 		 */
9254 		if (!mutex_tryenter(hash_lock)) {
9255 			/*
9256 			 * Missed the hash lock.  Retry.
9257 			 */
9258 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
9259 			mutex_exit(&dev->l2ad_mtx);
9260 			mutex_enter(hash_lock);
9261 			mutex_exit(hash_lock);
9262 			goto retry;
9263 		}
9264 
9265 		/*
9266 		 * A header can't be on this list if it doesn't have L2 header.
9267 		 */
9268 		ASSERT(HDR_HAS_L2HDR(hdr));
9269 
9270 		/* Ensure this header has finished being written. */
9271 		ASSERT(!HDR_L2_WRITING(hdr));
9272 		ASSERT(!HDR_L2_WRITE_HEAD(hdr));
9273 
9274 		if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict ||
9275 		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
9276 			/*
9277 			 * We've evicted to the target address,
9278 			 * or the end of the device.
9279 			 */
9280 			mutex_exit(hash_lock);
9281 			break;
9282 		}
9283 
9284 		if (!HDR_HAS_L1HDR(hdr)) {
9285 			ASSERT(!HDR_L2_READING(hdr));
9286 			/*
9287 			 * This doesn't exist in the ARC.  Destroy.
9288 			 * arc_hdr_destroy() will call list_remove()
9289 			 * and decrement arcstat_l2_lsize.
9290 			 */
9291 			arc_change_state(arc_anon, hdr);
9292 			arc_hdr_destroy(hdr);
9293 		} else {
9294 			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
9295 			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
9296 			/*
9297 			 * Invalidate issued or about to be issued
9298 			 * reads, since we may be about to write
9299 			 * over this location.
9300 			 */
9301 			if (HDR_L2_READING(hdr)) {
9302 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
9303 				arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
9304 			}
9305 
9306 			arc_hdr_l2hdr_destroy(hdr);
9307 		}
9308 		mutex_exit(hash_lock);
9309 	}
9310 	mutex_exit(&dev->l2ad_mtx);
9311 
9312 out:
9313 	/*
9314 	 * We need to check if we evict all buffers, otherwise we may iterate
9315 	 * unnecessarily.
9316 	 */
9317 	if (!all && rerun) {
9318 		/*
9319 		 * Bump device hand to the device start if it is approaching the
9320 		 * end. l2arc_evict() has already evicted ahead for this case.
9321 		 */
9322 		dev->l2ad_hand = dev->l2ad_start;
9323 		dev->l2ad_evict = dev->l2ad_start;
9324 		dev->l2ad_first = B_FALSE;
9325 		goto top;
9326 	}
9327 
9328 	if (!all) {
9329 		/*
9330 		 * In case of cache device removal (all) the following
9331 		 * assertions may be violated without functional consequences
9332 		 * as the device is about to be removed.
9333 		 */
9334 		ASSERT3U(dev->l2ad_hand + distance, <=, dev->l2ad_end);
9335 		if (!dev->l2ad_first)
9336 			ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
9337 	}
9338 }
9339 
9340 /*
9341  * Handle any abd transforms that might be required for writing to the L2ARC.
9342  * If successful, this function will always return an abd with the data
9343  * transformed as it is on disk in a new abd of asize bytes.
9344  */
9345 static int
l2arc_apply_transforms(spa_t * spa,arc_buf_hdr_t * hdr,uint64_t asize,abd_t ** abd_out)9346 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize,
9347     abd_t **abd_out)
9348 {
9349 	int ret;
9350 	abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd;
9351 	enum zio_compress compress = HDR_GET_COMPRESS(hdr);
9352 	uint64_t psize = HDR_GET_PSIZE(hdr);
9353 	uint64_t size = arc_hdr_size(hdr);
9354 	boolean_t ismd = HDR_ISTYPE_METADATA(hdr);
9355 	boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
9356 	dsl_crypto_key_t *dck = NULL;
9357 	uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 };
9358 	boolean_t no_crypt = B_FALSE;
9359 
9360 	ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
9361 	    !HDR_COMPRESSION_ENABLED(hdr)) ||
9362 	    HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize);
9363 	ASSERT3U(psize, <=, asize);
9364 
9365 	/*
9366 	 * If this data simply needs its own buffer, we simply allocate it
9367 	 * and copy the data. This may be done to eliminate a dependency on a
9368 	 * shared buffer or to reallocate the buffer to match asize.
9369 	 */
9370 	if (HDR_HAS_RABD(hdr)) {
9371 		ASSERT3U(asize, >, psize);
9372 		to_write = abd_alloc_for_io(asize, ismd);
9373 		abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize);
9374 		abd_zero_off(to_write, psize, asize - psize);
9375 		goto out;
9376 	}
9377 
9378 	if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) &&
9379 	    !HDR_ENCRYPTED(hdr)) {
9380 		ASSERT3U(size, ==, psize);
9381 		to_write = abd_alloc_for_io(asize, ismd);
9382 		abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
9383 		if (asize > size)
9384 			abd_zero_off(to_write, size, asize - size);
9385 		goto out;
9386 	}
9387 
9388 	if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) {
9389 		cabd = abd_alloc_for_io(MAX(size, asize), ismd);
9390 		uint64_t csize = zio_compress_data(compress, to_write, &cabd,
9391 		    size, MIN(size, psize), hdr->b_complevel);
9392 		if (csize >= size || csize > psize) {
9393 			/*
9394 			 * We can't re-compress the block into the original
9395 			 * psize.  Even if it fits into asize, it does not
9396 			 * matter, since checksum will never match on read.
9397 			 */
9398 			abd_free(cabd);
9399 			return (SET_ERROR(EIO));
9400 		}
9401 		if (asize > csize)
9402 			abd_zero_off(cabd, csize, asize - csize);
9403 		to_write = cabd;
9404 	}
9405 
9406 	if (HDR_ENCRYPTED(hdr)) {
9407 		eabd = abd_alloc_for_io(asize, ismd);
9408 
9409 		/*
9410 		 * If the dataset was disowned before the buffer
9411 		 * made it to this point, the key to re-encrypt
9412 		 * it won't be available. In this case we simply
9413 		 * won't write the buffer to the L2ARC.
9414 		 */
9415 		ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj,
9416 		    FTAG, &dck);
9417 		if (ret != 0)
9418 			goto error;
9419 
9420 		ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
9421 		    hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt,
9422 		    hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd,
9423 		    &no_crypt);
9424 		if (ret != 0)
9425 			goto error;
9426 
9427 		if (no_crypt)
9428 			abd_copy(eabd, to_write, psize);
9429 
9430 		if (psize != asize)
9431 			abd_zero_off(eabd, psize, asize - psize);
9432 
9433 		/* assert that the MAC we got here matches the one we saved */
9434 		ASSERT0(memcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN));
9435 		spa_keystore_dsl_key_rele(spa, dck, FTAG);
9436 
9437 		if (to_write == cabd)
9438 			abd_free(cabd);
9439 
9440 		to_write = eabd;
9441 	}
9442 
9443 out:
9444 	ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd);
9445 	*abd_out = to_write;
9446 	return (0);
9447 
9448 error:
9449 	if (dck != NULL)
9450 		spa_keystore_dsl_key_rele(spa, dck, FTAG);
9451 	if (cabd != NULL)
9452 		abd_free(cabd);
9453 	if (eabd != NULL)
9454 		abd_free(eabd);
9455 
9456 	*abd_out = NULL;
9457 	return (ret);
9458 }
9459 
9460 static void
l2arc_blk_fetch_done(zio_t * zio)9461 l2arc_blk_fetch_done(zio_t *zio)
9462 {
9463 	l2arc_read_callback_t *cb;
9464 
9465 	cb = zio->io_private;
9466 	if (cb->l2rcb_abd != NULL)
9467 		abd_free(cb->l2rcb_abd);
9468 	kmem_free(cb, sizeof (l2arc_read_callback_t));
9469 }
9470 
9471 /*
9472  * Find and write ARC buffers to the L2ARC device.
9473  *
9474  * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
9475  * for reading until they have completed writing.
9476  * The headroom_boost is an in-out parameter used to maintain headroom boost
9477  * state between calls to this function.
9478  *
9479  * Returns the number of bytes actually written (which may be smaller than
9480  * the delta by which the device hand has changed due to alignment and the
9481  * writing of log blocks).
9482  */
9483 static uint64_t
l2arc_write_buffers(spa_t * spa,l2arc_dev_t * dev,uint64_t target_sz)9484 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
9485 {
9486 	arc_buf_hdr_t 		*hdr, *head, *marker;
9487 	uint64_t 		write_asize, write_psize, headroom;
9488 	boolean_t		full, from_head = !arc_warm;
9489 	l2arc_write_callback_t	*cb = NULL;
9490 	zio_t 			*pio, *wzio;
9491 	uint64_t 		guid = spa_load_guid(spa);
9492 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
9493 
9494 	ASSERT3P(dev->l2ad_vdev, !=, NULL);
9495 
9496 	pio = NULL;
9497 	write_asize = write_psize = 0;
9498 	full = B_FALSE;
9499 	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
9500 	arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
9501 	marker = arc_state_alloc_marker();
9502 
9503 	/*
9504 	 * Copy buffers for L2ARC writing.
9505 	 */
9506 	for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) {
9507 		/*
9508 		 * pass == 0: MFU meta
9509 		 * pass == 1: MRU meta
9510 		 * pass == 2: MFU data
9511 		 * pass == 3: MRU data
9512 		 */
9513 		if (l2arc_mfuonly == 1) {
9514 			if (pass == 1 || pass == 3)
9515 				continue;
9516 		} else if (l2arc_mfuonly > 1) {
9517 			if (pass == 3)
9518 				continue;
9519 		}
9520 
9521 		uint64_t passed_sz = 0;
9522 		headroom = target_sz * l2arc_headroom;
9523 		if (zfs_compressed_arc_enabled)
9524 			headroom = (headroom * l2arc_headroom_boost) / 100;
9525 
9526 		/*
9527 		 * Until the ARC is warm and starts to evict, read from the
9528 		 * head of the ARC lists rather than the tail.
9529 		 */
9530 		multilist_sublist_t *mls = l2arc_sublist_lock(pass);
9531 		ASSERT3P(mls, !=, NULL);
9532 		if (from_head)
9533 			hdr = multilist_sublist_head(mls);
9534 		else
9535 			hdr = multilist_sublist_tail(mls);
9536 
9537 		while (hdr != NULL) {
9538 			kmutex_t *hash_lock;
9539 			abd_t *to_write = NULL;
9540 
9541 			hash_lock = HDR_LOCK(hdr);
9542 			if (!mutex_tryenter(hash_lock)) {
9543 skip:
9544 				/* Skip this buffer rather than waiting. */
9545 				if (from_head)
9546 					hdr = multilist_sublist_next(mls, hdr);
9547 				else
9548 					hdr = multilist_sublist_prev(mls, hdr);
9549 				continue;
9550 			}
9551 
9552 			passed_sz += HDR_GET_LSIZE(hdr);
9553 			if (l2arc_headroom != 0 && passed_sz > headroom) {
9554 				/*
9555 				 * Searched too far.
9556 				 */
9557 				mutex_exit(hash_lock);
9558 				break;
9559 			}
9560 
9561 			if (!l2arc_write_eligible(guid, hdr)) {
9562 				mutex_exit(hash_lock);
9563 				goto skip;
9564 			}
9565 
9566 			ASSERT(HDR_HAS_L1HDR(hdr));
9567 			ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
9568 			ASSERT3U(arc_hdr_size(hdr), >, 0);
9569 			ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
9570 			    HDR_HAS_RABD(hdr));
9571 			uint64_t psize = HDR_GET_PSIZE(hdr);
9572 			uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
9573 			    psize);
9574 
9575 			/*
9576 			 * If the allocated size of this buffer plus the max
9577 			 * size for the pending log block exceeds the evicted
9578 			 * target size, terminate writing buffers for this run.
9579 			 */
9580 			if (write_asize + asize +
9581 			    sizeof (l2arc_log_blk_phys_t) > target_sz) {
9582 				full = B_TRUE;
9583 				mutex_exit(hash_lock);
9584 				break;
9585 			}
9586 
9587 			/*
9588 			 * We should not sleep with sublist lock held or it
9589 			 * may block ARC eviction.  Insert a marker to save
9590 			 * the position and drop the lock.
9591 			 */
9592 			if (from_head) {
9593 				multilist_sublist_insert_after(mls, hdr,
9594 				    marker);
9595 			} else {
9596 				multilist_sublist_insert_before(mls, hdr,
9597 				    marker);
9598 			}
9599 			multilist_sublist_unlock(mls);
9600 
9601 			/*
9602 			 * If this header has b_rabd, we can use this since it
9603 			 * must always match the data exactly as it exists on
9604 			 * disk. Otherwise, the L2ARC can normally use the
9605 			 * hdr's data, but if we're sharing data between the
9606 			 * hdr and one of its bufs, L2ARC needs its own copy of
9607 			 * the data so that the ZIO below can't race with the
9608 			 * buf consumer. To ensure that this copy will be
9609 			 * available for the lifetime of the ZIO and be cleaned
9610 			 * up afterwards, we add it to the l2arc_free_on_write
9611 			 * queue. If we need to apply any transforms to the
9612 			 * data (compression, encryption) we will also need the
9613 			 * extra buffer.
9614 			 */
9615 			if (HDR_HAS_RABD(hdr) && psize == asize) {
9616 				to_write = hdr->b_crypt_hdr.b_rabd;
9617 			} else if ((HDR_COMPRESSION_ENABLED(hdr) ||
9618 			    HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) &&
9619 			    !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) &&
9620 			    psize == asize) {
9621 				to_write = hdr->b_l1hdr.b_pabd;
9622 			} else {
9623 				int ret;
9624 				arc_buf_contents_t type = arc_buf_type(hdr);
9625 
9626 				ret = l2arc_apply_transforms(spa, hdr, asize,
9627 				    &to_write);
9628 				if (ret != 0) {
9629 					arc_hdr_clear_flags(hdr,
9630 					    ARC_FLAG_L2CACHE);
9631 					mutex_exit(hash_lock);
9632 					goto next;
9633 				}
9634 
9635 				l2arc_free_abd_on_write(to_write, asize, type);
9636 			}
9637 
9638 			hdr->b_l2hdr.b_dev = dev;
9639 			hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
9640 			hdr->b_l2hdr.b_hits = 0;
9641 			hdr->b_l2hdr.b_arcs_state =
9642 			    hdr->b_l1hdr.b_state->arcs_state;
9643 			/* l2arc_hdr_arcstats_update() expects a valid asize */
9644 			HDR_SET_L2SIZE(hdr, asize);
9645 			arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR |
9646 			    ARC_FLAG_L2_WRITING);
9647 
9648 			(void) zfs_refcount_add_many(&dev->l2ad_alloc,
9649 			    arc_hdr_size(hdr), hdr);
9650 			l2arc_hdr_arcstats_increment(hdr);
9651 			vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
9652 
9653 			mutex_enter(&dev->l2ad_mtx);
9654 			if (pio == NULL) {
9655 				/*
9656 				 * Insert a dummy header on the buflist so
9657 				 * l2arc_write_done() can find where the
9658 				 * write buffers begin without searching.
9659 				 */
9660 				list_insert_head(&dev->l2ad_buflist, head);
9661 			}
9662 			list_insert_head(&dev->l2ad_buflist, hdr);
9663 			mutex_exit(&dev->l2ad_mtx);
9664 
9665 			boolean_t commit = l2arc_log_blk_insert(dev, hdr);
9666 			mutex_exit(hash_lock);
9667 
9668 			if (pio == NULL) {
9669 				cb = kmem_alloc(
9670 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
9671 				cb->l2wcb_dev = dev;
9672 				cb->l2wcb_head = head;
9673 				list_create(&cb->l2wcb_abd_list,
9674 				    sizeof (l2arc_lb_abd_buf_t),
9675 				    offsetof(l2arc_lb_abd_buf_t, node));
9676 				pio = zio_root(spa, l2arc_write_done, cb,
9677 				    ZIO_FLAG_CANFAIL);
9678 			}
9679 
9680 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
9681 			    dev->l2ad_hand, asize, to_write,
9682 			    ZIO_CHECKSUM_OFF, NULL, hdr,
9683 			    ZIO_PRIORITY_ASYNC_WRITE,
9684 			    ZIO_FLAG_CANFAIL, B_FALSE);
9685 
9686 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
9687 			    zio_t *, wzio);
9688 			zio_nowait(wzio);
9689 
9690 			write_psize += psize;
9691 			write_asize += asize;
9692 			dev->l2ad_hand += asize;
9693 
9694 			if (commit) {
9695 				/* l2ad_hand will be adjusted inside. */
9696 				write_asize +=
9697 				    l2arc_log_blk_commit(dev, pio, cb);
9698 			}
9699 
9700 next:
9701 			multilist_sublist_lock(mls);
9702 			if (from_head)
9703 				hdr = multilist_sublist_next(mls, marker);
9704 			else
9705 				hdr = multilist_sublist_prev(mls, marker);
9706 			multilist_sublist_remove(mls, marker);
9707 		}
9708 
9709 		multilist_sublist_unlock(mls);
9710 
9711 		if (full == B_TRUE)
9712 			break;
9713 	}
9714 
9715 	arc_state_free_marker(marker);
9716 
9717 	/* No buffers selected for writing? */
9718 	if (pio == NULL) {
9719 		ASSERT0(write_psize);
9720 		ASSERT(!HDR_HAS_L1HDR(head));
9721 		kmem_cache_free(hdr_l2only_cache, head);
9722 
9723 		/*
9724 		 * Although we did not write any buffers l2ad_evict may
9725 		 * have advanced.
9726 		 */
9727 		if (dev->l2ad_evict != l2dhdr->dh_evict)
9728 			l2arc_dev_hdr_update(dev);
9729 
9730 		return (0);
9731 	}
9732 
9733 	if (!dev->l2ad_first)
9734 		ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
9735 
9736 	ASSERT3U(write_asize, <=, target_sz);
9737 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
9738 	ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
9739 
9740 	dev->l2ad_writing = B_TRUE;
9741 	(void) zio_wait(pio);
9742 	dev->l2ad_writing = B_FALSE;
9743 
9744 	/*
9745 	 * Update the device header after the zio completes as
9746 	 * l2arc_write_done() may have updated the memory holding the log block
9747 	 * pointers in the device header.
9748 	 */
9749 	l2arc_dev_hdr_update(dev);
9750 
9751 	return (write_asize);
9752 }
9753 
9754 static boolean_t
l2arc_hdr_limit_reached(void)9755 l2arc_hdr_limit_reached(void)
9756 {
9757 	int64_t s = aggsum_upper_bound(&arc_sums.arcstat_l2_hdr_size);
9758 
9759 	return (arc_reclaim_needed() ||
9760 	    (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100));
9761 }
9762 
9763 /*
9764  * This thread feeds the L2ARC at regular intervals.  This is the beating
9765  * heart of the L2ARC.
9766  */
9767 static  __attribute__((noreturn)) void
l2arc_feed_thread(void * unused)9768 l2arc_feed_thread(void *unused)
9769 {
9770 	(void) unused;
9771 	callb_cpr_t cpr;
9772 	l2arc_dev_t *dev;
9773 	spa_t *spa;
9774 	uint64_t size, wrote;
9775 	clock_t begin, next = ddi_get_lbolt();
9776 	fstrans_cookie_t cookie;
9777 
9778 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
9779 
9780 	mutex_enter(&l2arc_feed_thr_lock);
9781 
9782 	cookie = spl_fstrans_mark();
9783 	while (l2arc_thread_exit == 0) {
9784 		CALLB_CPR_SAFE_BEGIN(&cpr);
9785 		(void) cv_timedwait_idle(&l2arc_feed_thr_cv,
9786 		    &l2arc_feed_thr_lock, next);
9787 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
9788 		next = ddi_get_lbolt() + hz;
9789 
9790 		/*
9791 		 * Quick check for L2ARC devices.
9792 		 */
9793 		mutex_enter(&l2arc_dev_mtx);
9794 		if (l2arc_ndev == 0) {
9795 			mutex_exit(&l2arc_dev_mtx);
9796 			continue;
9797 		}
9798 		mutex_exit(&l2arc_dev_mtx);
9799 		begin = ddi_get_lbolt();
9800 
9801 		/*
9802 		 * This selects the next l2arc device to write to, and in
9803 		 * doing so the next spa to feed from: dev->l2ad_spa.   This
9804 		 * will return NULL if there are now no l2arc devices or if
9805 		 * they are all faulted.
9806 		 *
9807 		 * If a device is returned, its spa's config lock is also
9808 		 * held to prevent device removal.  l2arc_dev_get_next()
9809 		 * will grab and release l2arc_dev_mtx.
9810 		 */
9811 		if ((dev = l2arc_dev_get_next()) == NULL)
9812 			continue;
9813 
9814 		spa = dev->l2ad_spa;
9815 		ASSERT3P(spa, !=, NULL);
9816 
9817 		/*
9818 		 * If the pool is read-only then force the feed thread to
9819 		 * sleep a little longer.
9820 		 */
9821 		if (!spa_writeable(spa)) {
9822 			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
9823 			spa_config_exit(spa, SCL_L2ARC, dev);
9824 			continue;
9825 		}
9826 
9827 		/*
9828 		 * Avoid contributing to memory pressure.
9829 		 */
9830 		if (l2arc_hdr_limit_reached()) {
9831 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
9832 			spa_config_exit(spa, SCL_L2ARC, dev);
9833 			continue;
9834 		}
9835 
9836 		ARCSTAT_BUMP(arcstat_l2_feeds);
9837 
9838 		size = l2arc_write_size(dev);
9839 
9840 		/*
9841 		 * Evict L2ARC buffers that will be overwritten.
9842 		 */
9843 		l2arc_evict(dev, size, B_FALSE);
9844 
9845 		/*
9846 		 * Write ARC buffers.
9847 		 */
9848 		wrote = l2arc_write_buffers(spa, dev, size);
9849 
9850 		/*
9851 		 * Calculate interval between writes.
9852 		 */
9853 		next = l2arc_write_interval(begin, size, wrote);
9854 		spa_config_exit(spa, SCL_L2ARC, dev);
9855 	}
9856 	spl_fstrans_unmark(cookie);
9857 
9858 	l2arc_thread_exit = 0;
9859 	cv_broadcast(&l2arc_feed_thr_cv);
9860 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
9861 	thread_exit();
9862 }
9863 
9864 boolean_t
l2arc_vdev_present(vdev_t * vd)9865 l2arc_vdev_present(vdev_t *vd)
9866 {
9867 	return (l2arc_vdev_get(vd) != NULL);
9868 }
9869 
9870 /*
9871  * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if
9872  * the vdev_t isn't an L2ARC device.
9873  */
9874 l2arc_dev_t *
l2arc_vdev_get(vdev_t * vd)9875 l2arc_vdev_get(vdev_t *vd)
9876 {
9877 	l2arc_dev_t	*dev;
9878 
9879 	mutex_enter(&l2arc_dev_mtx);
9880 	for (dev = list_head(l2arc_dev_list); dev != NULL;
9881 	    dev = list_next(l2arc_dev_list, dev)) {
9882 		if (dev->l2ad_vdev == vd)
9883 			break;
9884 	}
9885 	mutex_exit(&l2arc_dev_mtx);
9886 
9887 	return (dev);
9888 }
9889 
9890 static void
l2arc_rebuild_dev(l2arc_dev_t * dev,boolean_t reopen)9891 l2arc_rebuild_dev(l2arc_dev_t *dev, boolean_t reopen)
9892 {
9893 	l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
9894 	uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
9895 	spa_t *spa = dev->l2ad_spa;
9896 
9897 	/*
9898 	 * After a l2arc_remove_vdev(), the spa_t will no longer be valid
9899 	 */
9900 	if (spa == NULL)
9901 		return;
9902 
9903 	/*
9904 	 * The L2ARC has to hold at least the payload of one log block for
9905 	 * them to be restored (persistent L2ARC). The payload of a log block
9906 	 * depends on the amount of its log entries. We always write log blocks
9907 	 * with 1022 entries. How many of them are committed or restored depends
9908 	 * on the size of the L2ARC device. Thus the maximum payload of
9909 	 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device
9910 	 * is less than that, we reduce the amount of committed and restored
9911 	 * log entries per block so as to enable persistence.
9912 	 */
9913 	if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) {
9914 		dev->l2ad_log_entries = 0;
9915 	} else {
9916 		dev->l2ad_log_entries = MIN((dev->l2ad_end -
9917 		    dev->l2ad_start) >> SPA_MAXBLOCKSHIFT,
9918 		    L2ARC_LOG_BLK_MAX_ENTRIES);
9919 	}
9920 
9921 	/*
9922 	 * Read the device header, if an error is returned do not rebuild L2ARC.
9923 	 */
9924 	if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) {
9925 		/*
9926 		 * If we are onlining a cache device (vdev_reopen) that was
9927 		 * still present (l2arc_vdev_present()) and rebuild is enabled,
9928 		 * we should evict all ARC buffers and pointers to log blocks
9929 		 * and reclaim their space before restoring its contents to
9930 		 * L2ARC.
9931 		 */
9932 		if (reopen) {
9933 			if (!l2arc_rebuild_enabled) {
9934 				return;
9935 			} else {
9936 				l2arc_evict(dev, 0, B_TRUE);
9937 				/* start a new log block */
9938 				dev->l2ad_log_ent_idx = 0;
9939 				dev->l2ad_log_blk_payload_asize = 0;
9940 				dev->l2ad_log_blk_payload_start = 0;
9941 			}
9942 		}
9943 		/*
9944 		 * Just mark the device as pending for a rebuild. We won't
9945 		 * be starting a rebuild in line here as it would block pool
9946 		 * import. Instead spa_load_impl will hand that off to an
9947 		 * async task which will call l2arc_spa_rebuild_start.
9948 		 */
9949 		dev->l2ad_rebuild = B_TRUE;
9950 	} else if (spa_writeable(spa)) {
9951 		/*
9952 		 * In this case TRIM the whole device if l2arc_trim_ahead > 0,
9953 		 * otherwise create a new header. We zero out the memory holding
9954 		 * the header to reset dh_start_lbps. If we TRIM the whole
9955 		 * device the new header will be written by
9956 		 * vdev_trim_l2arc_thread() at the end of the TRIM to update the
9957 		 * trim_state in the header too. When reading the header, if
9958 		 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0
9959 		 * we opt to TRIM the whole device again.
9960 		 */
9961 		if (l2arc_trim_ahead > 0) {
9962 			dev->l2ad_trim_all = B_TRUE;
9963 		} else {
9964 			memset(l2dhdr, 0, l2dhdr_asize);
9965 			l2arc_dev_hdr_update(dev);
9966 		}
9967 	}
9968 }
9969 
9970 /*
9971  * Add a vdev for use by the L2ARC.  By this point the spa has already
9972  * validated the vdev and opened it.
9973  */
9974 void
l2arc_add_vdev(spa_t * spa,vdev_t * vd)9975 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
9976 {
9977 	l2arc_dev_t		*adddev;
9978 	uint64_t		l2dhdr_asize;
9979 
9980 	ASSERT(!l2arc_vdev_present(vd));
9981 
9982 	/*
9983 	 * Create a new l2arc device entry.
9984 	 */
9985 	adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
9986 	adddev->l2ad_spa = spa;
9987 	adddev->l2ad_vdev = vd;
9988 	/* leave extra size for an l2arc device header */
9989 	l2dhdr_asize = adddev->l2ad_dev_hdr_asize =
9990 	    MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift);
9991 	adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize;
9992 	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
9993 	ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end);
9994 	adddev->l2ad_hand = adddev->l2ad_start;
9995 	adddev->l2ad_evict = adddev->l2ad_start;
9996 	adddev->l2ad_first = B_TRUE;
9997 	adddev->l2ad_writing = B_FALSE;
9998 	adddev->l2ad_trim_all = B_FALSE;
9999 	list_link_init(&adddev->l2ad_node);
10000 	adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP);
10001 
10002 	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
10003 	/*
10004 	 * This is a list of all ARC buffers that are still valid on the
10005 	 * device.
10006 	 */
10007 	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
10008 	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
10009 
10010 	/*
10011 	 * This is a list of pointers to log blocks that are still present
10012 	 * on the device.
10013 	 */
10014 	list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t),
10015 	    offsetof(l2arc_lb_ptr_buf_t, node));
10016 
10017 	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
10018 	zfs_refcount_create(&adddev->l2ad_alloc);
10019 	zfs_refcount_create(&adddev->l2ad_lb_asize);
10020 	zfs_refcount_create(&adddev->l2ad_lb_count);
10021 
10022 	/*
10023 	 * Decide if dev is eligible for L2ARC rebuild or whole device
10024 	 * trimming. This has to happen before the device is added in the
10025 	 * cache device list and l2arc_dev_mtx is released. Otherwise
10026 	 * l2arc_feed_thread() might already start writing on the
10027 	 * device.
10028 	 */
10029 	l2arc_rebuild_dev(adddev, B_FALSE);
10030 
10031 	/*
10032 	 * Add device to global list
10033 	 */
10034 	mutex_enter(&l2arc_dev_mtx);
10035 	list_insert_head(l2arc_dev_list, adddev);
10036 	atomic_inc_64(&l2arc_ndev);
10037 	mutex_exit(&l2arc_dev_mtx);
10038 }
10039 
10040 /*
10041  * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen()
10042  * in case of onlining a cache device.
10043  */
10044 void
l2arc_rebuild_vdev(vdev_t * vd,boolean_t reopen)10045 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen)
10046 {
10047 	l2arc_dev_t		*dev = NULL;
10048 
10049 	dev = l2arc_vdev_get(vd);
10050 	ASSERT3P(dev, !=, NULL);
10051 
10052 	/*
10053 	 * In contrast to l2arc_add_vdev() we do not have to worry about
10054 	 * l2arc_feed_thread() invalidating previous content when onlining a
10055 	 * cache device. The device parameters (l2ad*) are not cleared when
10056 	 * offlining the device and writing new buffers will not invalidate
10057 	 * all previous content. In worst case only buffers that have not had
10058 	 * their log block written to the device will be lost.
10059 	 * When onlining the cache device (ie offline->online without exporting
10060 	 * the pool in between) this happens:
10061 	 * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev()
10062 	 * 			|			|
10063 	 * 		vdev_is_dead() = B_FALSE	l2ad_rebuild = B_TRUE
10064 	 * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild
10065 	 * is set to B_TRUE we might write additional buffers to the device.
10066 	 */
10067 	l2arc_rebuild_dev(dev, reopen);
10068 }
10069 
10070 typedef struct {
10071 	l2arc_dev_t	*rva_l2arc_dev;
10072 	uint64_t	rva_spa_gid;
10073 	uint64_t	rva_vdev_gid;
10074 	boolean_t	rva_async;
10075 
10076 } remove_vdev_args_t;
10077 
10078 static void
l2arc_device_teardown(void * arg)10079 l2arc_device_teardown(void *arg)
10080 {
10081 	remove_vdev_args_t *rva = arg;
10082 	l2arc_dev_t *remdev = rva->rva_l2arc_dev;
10083 	hrtime_t start_time = gethrtime();
10084 
10085 	/*
10086 	 * Clear all buflists and ARC references.  L2ARC device flush.
10087 	 */
10088 	l2arc_evict(remdev, 0, B_TRUE);
10089 	list_destroy(&remdev->l2ad_buflist);
10090 	ASSERT(list_is_empty(&remdev->l2ad_lbptr_list));
10091 	list_destroy(&remdev->l2ad_lbptr_list);
10092 	mutex_destroy(&remdev->l2ad_mtx);
10093 	zfs_refcount_destroy(&remdev->l2ad_alloc);
10094 	zfs_refcount_destroy(&remdev->l2ad_lb_asize);
10095 	zfs_refcount_destroy(&remdev->l2ad_lb_count);
10096 	kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize);
10097 	vmem_free(remdev, sizeof (l2arc_dev_t));
10098 
10099 	uint64_t elapsed = NSEC2MSEC(gethrtime() - start_time);
10100 	if (elapsed > 0) {
10101 		zfs_dbgmsg("spa %llu, vdev %llu removed in %llu ms",
10102 		    (u_longlong_t)rva->rva_spa_gid,
10103 		    (u_longlong_t)rva->rva_vdev_gid,
10104 		    (u_longlong_t)elapsed);
10105 	}
10106 
10107 	if (rva->rva_async)
10108 		arc_async_flush_remove(rva->rva_spa_gid, 2);
10109 	kmem_free(rva, sizeof (remove_vdev_args_t));
10110 }
10111 
10112 /*
10113  * Remove a vdev from the L2ARC.
10114  */
10115 void
l2arc_remove_vdev(vdev_t * vd)10116 l2arc_remove_vdev(vdev_t *vd)
10117 {
10118 	spa_t *spa = vd->vdev_spa;
10119 	boolean_t asynchronous = spa->spa_state == POOL_STATE_EXPORTED ||
10120 	    spa->spa_state == POOL_STATE_DESTROYED;
10121 
10122 	/*
10123 	 * Find the device by vdev
10124 	 */
10125 	l2arc_dev_t *remdev = l2arc_vdev_get(vd);
10126 	ASSERT3P(remdev, !=, NULL);
10127 
10128 	/*
10129 	 * Save info for final teardown
10130 	 */
10131 	remove_vdev_args_t *rva = kmem_alloc(sizeof (remove_vdev_args_t),
10132 	    KM_SLEEP);
10133 	rva->rva_l2arc_dev = remdev;
10134 	rva->rva_spa_gid = spa_load_guid(spa);
10135 	rva->rva_vdev_gid = remdev->l2ad_vdev->vdev_guid;
10136 
10137 	/*
10138 	 * Cancel any ongoing or scheduled rebuild.
10139 	 */
10140 	mutex_enter(&l2arc_rebuild_thr_lock);
10141 	remdev->l2ad_rebuild_cancel = B_TRUE;
10142 	if (remdev->l2ad_rebuild_began == B_TRUE) {
10143 		while (remdev->l2ad_rebuild == B_TRUE)
10144 			cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock);
10145 	}
10146 	mutex_exit(&l2arc_rebuild_thr_lock);
10147 	rva->rva_async = asynchronous;
10148 
10149 	/*
10150 	 * Remove device from global list
10151 	 */
10152 	ASSERT(spa_config_held(spa, SCL_L2ARC, RW_WRITER) & SCL_L2ARC);
10153 	mutex_enter(&l2arc_dev_mtx);
10154 	list_remove(l2arc_dev_list, remdev);
10155 	l2arc_dev_last = NULL;		/* may have been invalidated */
10156 	atomic_dec_64(&l2arc_ndev);
10157 
10158 	/* During a pool export spa & vdev will no longer be valid */
10159 	if (asynchronous) {
10160 		remdev->l2ad_spa = NULL;
10161 		remdev->l2ad_vdev = NULL;
10162 	}
10163 	mutex_exit(&l2arc_dev_mtx);
10164 
10165 	if (!asynchronous) {
10166 		l2arc_device_teardown(rva);
10167 		return;
10168 	}
10169 
10170 	arc_async_flush_t *af = arc_async_flush_add(rva->rva_spa_gid, 2);
10171 
10172 	taskq_dispatch_ent(arc_flush_taskq, l2arc_device_teardown, rva,
10173 	    TQ_SLEEP, &af->af_tqent);
10174 }
10175 
10176 void
l2arc_init(void)10177 l2arc_init(void)
10178 {
10179 	l2arc_thread_exit = 0;
10180 	l2arc_ndev = 0;
10181 
10182 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
10183 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
10184 	mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL);
10185 	cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL);
10186 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
10187 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
10188 
10189 	l2arc_dev_list = &L2ARC_dev_list;
10190 	l2arc_free_on_write = &L2ARC_free_on_write;
10191 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
10192 	    offsetof(l2arc_dev_t, l2ad_node));
10193 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
10194 	    offsetof(l2arc_data_free_t, l2df_list_node));
10195 }
10196 
10197 void
l2arc_fini(void)10198 l2arc_fini(void)
10199 {
10200 	mutex_destroy(&l2arc_feed_thr_lock);
10201 	cv_destroy(&l2arc_feed_thr_cv);
10202 	mutex_destroy(&l2arc_rebuild_thr_lock);
10203 	cv_destroy(&l2arc_rebuild_thr_cv);
10204 	mutex_destroy(&l2arc_dev_mtx);
10205 	mutex_destroy(&l2arc_free_on_write_mtx);
10206 
10207 	list_destroy(l2arc_dev_list);
10208 	list_destroy(l2arc_free_on_write);
10209 }
10210 
10211 void
l2arc_start(void)10212 l2arc_start(void)
10213 {
10214 	if (!(spa_mode_global & SPA_MODE_WRITE))
10215 		return;
10216 
10217 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
10218 	    TS_RUN, defclsyspri);
10219 }
10220 
10221 void
l2arc_stop(void)10222 l2arc_stop(void)
10223 {
10224 	if (!(spa_mode_global & SPA_MODE_WRITE))
10225 		return;
10226 
10227 	mutex_enter(&l2arc_feed_thr_lock);
10228 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
10229 	l2arc_thread_exit = 1;
10230 	while (l2arc_thread_exit != 0)
10231 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
10232 	mutex_exit(&l2arc_feed_thr_lock);
10233 }
10234 
10235 /*
10236  * Punches out rebuild threads for the L2ARC devices in a spa. This should
10237  * be called after pool import from the spa async thread, since starting
10238  * these threads directly from spa_import() will make them part of the
10239  * "zpool import" context and delay process exit (and thus pool import).
10240  */
10241 void
l2arc_spa_rebuild_start(spa_t * spa)10242 l2arc_spa_rebuild_start(spa_t *spa)
10243 {
10244 	ASSERT(spa_namespace_held());
10245 
10246 	/*
10247 	 * Locate the spa's l2arc devices and kick off rebuild threads.
10248 	 */
10249 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
10250 		l2arc_dev_t *dev =
10251 		    l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
10252 		if (dev == NULL) {
10253 			/* Don't attempt a rebuild if the vdev is UNAVAIL */
10254 			continue;
10255 		}
10256 		mutex_enter(&l2arc_rebuild_thr_lock);
10257 		if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) {
10258 			dev->l2ad_rebuild_began = B_TRUE;
10259 			(void) thread_create(NULL, 0, l2arc_dev_rebuild_thread,
10260 			    dev, 0, &p0, TS_RUN, minclsyspri);
10261 		}
10262 		mutex_exit(&l2arc_rebuild_thr_lock);
10263 	}
10264 }
10265 
10266 void
l2arc_spa_rebuild_stop(spa_t * spa)10267 l2arc_spa_rebuild_stop(spa_t *spa)
10268 {
10269 	ASSERT(spa_namespace_held() ||
10270 	    spa->spa_export_thread == curthread);
10271 
10272 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
10273 		l2arc_dev_t *dev =
10274 		    l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
10275 		if (dev == NULL)
10276 			continue;
10277 		mutex_enter(&l2arc_rebuild_thr_lock);
10278 		dev->l2ad_rebuild_cancel = B_TRUE;
10279 		mutex_exit(&l2arc_rebuild_thr_lock);
10280 	}
10281 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
10282 		l2arc_dev_t *dev =
10283 		    l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
10284 		if (dev == NULL)
10285 			continue;
10286 		mutex_enter(&l2arc_rebuild_thr_lock);
10287 		if (dev->l2ad_rebuild_began == B_TRUE) {
10288 			while (dev->l2ad_rebuild == B_TRUE) {
10289 				cv_wait(&l2arc_rebuild_thr_cv,
10290 				    &l2arc_rebuild_thr_lock);
10291 			}
10292 		}
10293 		mutex_exit(&l2arc_rebuild_thr_lock);
10294 	}
10295 }
10296 
10297 /*
10298  * Main entry point for L2ARC rebuilding.
10299  */
10300 static __attribute__((noreturn)) void
l2arc_dev_rebuild_thread(void * arg)10301 l2arc_dev_rebuild_thread(void *arg)
10302 {
10303 	l2arc_dev_t *dev = arg;
10304 
10305 	VERIFY(dev->l2ad_rebuild);
10306 	(void) l2arc_rebuild(dev);
10307 	mutex_enter(&l2arc_rebuild_thr_lock);
10308 	dev->l2ad_rebuild_began = B_FALSE;
10309 	dev->l2ad_rebuild = B_FALSE;
10310 	cv_signal(&l2arc_rebuild_thr_cv);
10311 	mutex_exit(&l2arc_rebuild_thr_lock);
10312 
10313 	thread_exit();
10314 }
10315 
10316 /*
10317  * This function implements the actual L2ARC metadata rebuild. It:
10318  * starts reading the log block chain and restores each block's contents
10319  * to memory (reconstructing arc_buf_hdr_t's).
10320  *
10321  * Operation stops under any of the following conditions:
10322  *
10323  * 1) We reach the end of the log block chain.
10324  * 2) We encounter *any* error condition (cksum errors, io errors)
10325  */
10326 static int
l2arc_rebuild(l2arc_dev_t * dev)10327 l2arc_rebuild(l2arc_dev_t *dev)
10328 {
10329 	vdev_t			*vd = dev->l2ad_vdev;
10330 	spa_t			*spa = vd->vdev_spa;
10331 	int			err = 0;
10332 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
10333 	l2arc_log_blk_phys_t	*this_lb, *next_lb;
10334 	zio_t			*this_io = NULL, *next_io = NULL;
10335 	l2arc_log_blkptr_t	lbps[2];
10336 	l2arc_lb_ptr_buf_t	*lb_ptr_buf;
10337 	boolean_t		lock_held;
10338 
10339 	this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP);
10340 	next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP);
10341 
10342 	/*
10343 	 * We prevent device removal while issuing reads to the device,
10344 	 * then during the rebuilding phases we drop this lock again so
10345 	 * that a spa_unload or device remove can be initiated - this is
10346 	 * safe, because the spa will signal us to stop before removing
10347 	 * our device and wait for us to stop.
10348 	 */
10349 	spa_config_enter(spa, SCL_L2ARC, vd, RW_READER);
10350 	lock_held = B_TRUE;
10351 
10352 	/*
10353 	 * Retrieve the persistent L2ARC device state.
10354 	 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10355 	 */
10356 	dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start);
10357 	dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr +
10358 	    L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop),
10359 	    dev->l2ad_start);
10360 	dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
10361 
10362 	vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time;
10363 	vd->vdev_trim_state = l2dhdr->dh_trim_state;
10364 
10365 	/*
10366 	 * In case the zfs module parameter l2arc_rebuild_enabled is false
10367 	 * we do not start the rebuild process.
10368 	 */
10369 	if (!l2arc_rebuild_enabled)
10370 		goto out;
10371 
10372 	/* Prepare the rebuild process */
10373 	memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps));
10374 
10375 	/* Start the rebuild process */
10376 	for (;;) {
10377 		if (!l2arc_log_blkptr_valid(dev, &lbps[0]))
10378 			break;
10379 
10380 		if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1],
10381 		    this_lb, next_lb, this_io, &next_io)) != 0)
10382 			goto out;
10383 
10384 		/*
10385 		 * Our memory pressure valve. If the system is running low
10386 		 * on memory, rather than swamping memory with new ARC buf
10387 		 * hdrs, we opt not to rebuild the L2ARC. At this point,
10388 		 * however, we have already set up our L2ARC dev to chain in
10389 		 * new metadata log blocks, so the user may choose to offline/
10390 		 * online the L2ARC dev at a later time (or re-import the pool)
10391 		 * to reconstruct it (when there's less memory pressure).
10392 		 */
10393 		if (l2arc_hdr_limit_reached()) {
10394 			ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem);
10395 			cmn_err(CE_NOTE, "System running low on memory, "
10396 			    "aborting L2ARC rebuild.");
10397 			err = SET_ERROR(ENOMEM);
10398 			goto out;
10399 		}
10400 
10401 		spa_config_exit(spa, SCL_L2ARC, vd);
10402 		lock_held = B_FALSE;
10403 
10404 		/*
10405 		 * Now that we know that the next_lb checks out alright, we
10406 		 * can start reconstruction from this log block.
10407 		 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10408 		 */
10409 		uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
10410 		l2arc_log_blk_restore(dev, this_lb, asize);
10411 
10412 		/*
10413 		 * log block restored, include its pointer in the list of
10414 		 * pointers to log blocks present in the L2ARC device.
10415 		 */
10416 		lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
10417 		lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t),
10418 		    KM_SLEEP);
10419 		memcpy(lb_ptr_buf->lb_ptr, &lbps[0],
10420 		    sizeof (l2arc_log_blkptr_t));
10421 		mutex_enter(&dev->l2ad_mtx);
10422 		list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf);
10423 		ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
10424 		ARCSTAT_BUMP(arcstat_l2_log_blk_count);
10425 		zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
10426 		zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
10427 		mutex_exit(&dev->l2ad_mtx);
10428 		vdev_space_update(vd, asize, 0, 0);
10429 
10430 		/*
10431 		 * Protection against loops of log blocks:
10432 		 *
10433 		 *				       l2ad_hand  l2ad_evict
10434 		 *                                         V	      V
10435 		 * l2ad_start |=======================================| l2ad_end
10436 		 *             -----|||----|||---|||----|||
10437 		 *                  (3)    (2)   (1)    (0)
10438 		 *             ---|||---|||----|||---|||
10439 		 *		  (7)   (6)    (5)   (4)
10440 		 *
10441 		 * In this situation the pointer of log block (4) passes
10442 		 * l2arc_log_blkptr_valid() but the log block should not be
10443 		 * restored as it is overwritten by the payload of log block
10444 		 * (0). Only log blocks (0)-(3) should be restored. We check
10445 		 * whether l2ad_evict lies in between the payload starting
10446 		 * offset of the next log block (lbps[1].lbp_payload_start)
10447 		 * and the payload starting offset of the present log block
10448 		 * (lbps[0].lbp_payload_start). If true and this isn't the
10449 		 * first pass, we are looping from the beginning and we should
10450 		 * stop.
10451 		 */
10452 		if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
10453 		    lbps[0].lbp_payload_start, dev->l2ad_evict) &&
10454 		    !dev->l2ad_first)
10455 			goto out;
10456 
10457 		kpreempt(KPREEMPT_SYNC);
10458 		for (;;) {
10459 			mutex_enter(&l2arc_rebuild_thr_lock);
10460 			if (dev->l2ad_rebuild_cancel) {
10461 				mutex_exit(&l2arc_rebuild_thr_lock);
10462 				err = SET_ERROR(ECANCELED);
10463 				goto out;
10464 			}
10465 			mutex_exit(&l2arc_rebuild_thr_lock);
10466 			if (spa_config_tryenter(spa, SCL_L2ARC, vd,
10467 			    RW_READER)) {
10468 				lock_held = B_TRUE;
10469 				break;
10470 			}
10471 			/*
10472 			 * L2ARC config lock held by somebody in writer,
10473 			 * possibly due to them trying to remove us. They'll
10474 			 * likely to want us to shut down, so after a little
10475 			 * delay, we check l2ad_rebuild_cancel and retry
10476 			 * the lock again.
10477 			 */
10478 			delay(1);
10479 		}
10480 
10481 		/*
10482 		 * Continue with the next log block.
10483 		 */
10484 		lbps[0] = lbps[1];
10485 		lbps[1] = this_lb->lb_prev_lbp;
10486 		PTR_SWAP(this_lb, next_lb);
10487 		this_io = next_io;
10488 		next_io = NULL;
10489 	}
10490 
10491 	if (this_io != NULL)
10492 		l2arc_log_blk_fetch_abort(this_io);
10493 out:
10494 	if (next_io != NULL)
10495 		l2arc_log_blk_fetch_abort(next_io);
10496 	vmem_free(this_lb, sizeof (*this_lb));
10497 	vmem_free(next_lb, sizeof (*next_lb));
10498 
10499 	if (err == ECANCELED) {
10500 		/*
10501 		 * In case the rebuild was canceled do not log to spa history
10502 		 * log as the pool may be in the process of being removed.
10503 		 */
10504 		zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks",
10505 		    (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10506 		return (err);
10507 	} else if (!l2arc_rebuild_enabled) {
10508 		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10509 		    "disabled");
10510 	} else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) {
10511 		ARCSTAT_BUMP(arcstat_l2_rebuild_success);
10512 		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10513 		    "successful, restored %llu blocks",
10514 		    (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10515 	} else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) {
10516 		/*
10517 		 * No error but also nothing restored, meaning the lbps array
10518 		 * in the device header points to invalid/non-present log
10519 		 * blocks. Reset the header.
10520 		 */
10521 		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10522 		    "no valid log blocks");
10523 		memset(l2dhdr, 0, dev->l2ad_dev_hdr_asize);
10524 		l2arc_dev_hdr_update(dev);
10525 	} else if (err != 0) {
10526 		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10527 		    "aborted, restored %llu blocks",
10528 		    (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10529 	}
10530 
10531 	if (lock_held)
10532 		spa_config_exit(spa, SCL_L2ARC, vd);
10533 
10534 	return (err);
10535 }
10536 
10537 /*
10538  * Attempts to read the device header on the provided L2ARC device and writes
10539  * it to `hdr'. On success, this function returns 0, otherwise the appropriate
10540  * error code is returned.
10541  */
10542 static int
l2arc_dev_hdr_read(l2arc_dev_t * dev)10543 l2arc_dev_hdr_read(l2arc_dev_t *dev)
10544 {
10545 	int			err;
10546 	uint64_t		guid;
10547 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
10548 	const uint64_t		l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10549 	abd_t 			*abd;
10550 
10551 	guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10552 
10553 	abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10554 
10555 	err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev,
10556 	    VDEV_LABEL_START_SIZE, l2dhdr_asize, abd,
10557 	    ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
10558 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
10559 	    ZIO_FLAG_SPECULATIVE, B_FALSE));
10560 
10561 	abd_free(abd);
10562 
10563 	if (err != 0) {
10564 		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors);
10565 		zfs_dbgmsg("L2ARC IO error (%d) while reading device header, "
10566 		    "vdev guid: %llu", err,
10567 		    (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10568 		return (err);
10569 	}
10570 
10571 	if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
10572 		byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr));
10573 
10574 	if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC ||
10575 	    l2dhdr->dh_spa_guid != guid ||
10576 	    l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid ||
10577 	    l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION ||
10578 	    l2dhdr->dh_log_entries != dev->l2ad_log_entries ||
10579 	    l2dhdr->dh_end != dev->l2ad_end ||
10580 	    !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end,
10581 	    l2dhdr->dh_evict) ||
10582 	    (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE &&
10583 	    l2arc_trim_ahead > 0)) {
10584 		/*
10585 		 * Attempt to rebuild a device containing no actual dev hdr
10586 		 * or containing a header from some other pool or from another
10587 		 * version of persistent L2ARC.
10588 		 */
10589 		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported);
10590 		return (SET_ERROR(ENOTSUP));
10591 	}
10592 
10593 	return (0);
10594 }
10595 
10596 /*
10597  * Reads L2ARC log blocks from storage and validates their contents.
10598  *
10599  * This function implements a simple fetcher to make sure that while
10600  * we're processing one buffer the L2ARC is already fetching the next
10601  * one in the chain.
10602  *
10603  * The arguments this_lp and next_lp point to the current and next log block
10604  * address in the block chain. Similarly, this_lb and next_lb hold the
10605  * l2arc_log_blk_phys_t's of the current and next L2ARC blk.
10606  *
10607  * The `this_io' and `next_io' arguments are used for block fetching.
10608  * When issuing the first blk IO during rebuild, you should pass NULL for
10609  * `this_io'. This function will then issue a sync IO to read the block and
10610  * also issue an async IO to fetch the next block in the block chain. The
10611  * fetched IO is returned in `next_io'. On subsequent calls to this
10612  * function, pass the value returned in `next_io' from the previous call
10613  * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO.
10614  * Prior to the call, you should initialize your `next_io' pointer to be
10615  * NULL. If no fetch IO was issued, the pointer is left set at NULL.
10616  *
10617  * On success, this function returns 0, otherwise it returns an appropriate
10618  * error code. On error the fetching IO is aborted and cleared before
10619  * returning from this function. Therefore, if we return `success', the
10620  * caller can assume that we have taken care of cleanup of fetch IOs.
10621  */
10622 static int
l2arc_log_blk_read(l2arc_dev_t * dev,const l2arc_log_blkptr_t * this_lbp,const l2arc_log_blkptr_t * next_lbp,l2arc_log_blk_phys_t * this_lb,l2arc_log_blk_phys_t * next_lb,zio_t * this_io,zio_t ** next_io)10623 l2arc_log_blk_read(l2arc_dev_t *dev,
10624     const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp,
10625     l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
10626     zio_t *this_io, zio_t **next_io)
10627 {
10628 	int		err = 0;
10629 	zio_cksum_t	cksum;
10630 	uint64_t	asize;
10631 
10632 	ASSERT(this_lbp != NULL && next_lbp != NULL);
10633 	ASSERT(this_lb != NULL && next_lb != NULL);
10634 	ASSERT(next_io != NULL && *next_io == NULL);
10635 	ASSERT(l2arc_log_blkptr_valid(dev, this_lbp));
10636 
10637 	/*
10638 	 * Check to see if we have issued the IO for this log block in a
10639 	 * previous run. If not, this is the first call, so issue it now.
10640 	 */
10641 	if (this_io == NULL) {
10642 		this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp,
10643 		    this_lb);
10644 	}
10645 
10646 	/*
10647 	 * Peek to see if we can start issuing the next IO immediately.
10648 	 */
10649 	if (l2arc_log_blkptr_valid(dev, next_lbp)) {
10650 		/*
10651 		 * Start issuing IO for the next log block early - this
10652 		 * should help keep the L2ARC device busy while we
10653 		 * decompress and restore this log block.
10654 		 */
10655 		*next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp,
10656 		    next_lb);
10657 	}
10658 
10659 	/* Wait for the IO to read this log block to complete */
10660 	if ((err = zio_wait(this_io)) != 0) {
10661 		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors);
10662 		zfs_dbgmsg("L2ARC IO error (%d) while reading log block, "
10663 		    "offset: %llu, vdev guid: %llu", err,
10664 		    (u_longlong_t)this_lbp->lbp_daddr,
10665 		    (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10666 		goto cleanup;
10667 	}
10668 
10669 	/*
10670 	 * Make sure the buffer checks out.
10671 	 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10672 	 */
10673 	asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop);
10674 	fletcher_4_native(this_lb, asize, NULL, &cksum);
10675 	if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) {
10676 		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors);
10677 		zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, "
10678 		    "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu",
10679 		    (u_longlong_t)this_lbp->lbp_daddr,
10680 		    (u_longlong_t)dev->l2ad_vdev->vdev_guid,
10681 		    (u_longlong_t)dev->l2ad_hand,
10682 		    (u_longlong_t)dev->l2ad_evict);
10683 		err = SET_ERROR(ECKSUM);
10684 		goto cleanup;
10685 	}
10686 
10687 	/* Now we can take our time decoding this buffer */
10688 	switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) {
10689 	case ZIO_COMPRESS_OFF:
10690 		break;
10691 	case ZIO_COMPRESS_LZ4: {
10692 		abd_t *abd = abd_alloc_linear(asize, B_TRUE);
10693 		abd_copy_from_buf_off(abd, this_lb, 0, asize);
10694 		abd_t dabd;
10695 		abd_get_from_buf_struct(&dabd, this_lb, sizeof (*this_lb));
10696 		err = zio_decompress_data(
10697 		    L2BLK_GET_COMPRESS((this_lbp)->lbp_prop),
10698 		    abd, &dabd, asize, sizeof (*this_lb), NULL);
10699 		abd_free(&dabd);
10700 		abd_free(abd);
10701 		if (err != 0) {
10702 			err = SET_ERROR(EINVAL);
10703 			goto cleanup;
10704 		}
10705 		break;
10706 	}
10707 	default:
10708 		err = SET_ERROR(EINVAL);
10709 		goto cleanup;
10710 	}
10711 	if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
10712 		byteswap_uint64_array(this_lb, sizeof (*this_lb));
10713 	if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) {
10714 		err = SET_ERROR(EINVAL);
10715 		goto cleanup;
10716 	}
10717 cleanup:
10718 	/* Abort an in-flight fetch I/O in case of error */
10719 	if (err != 0 && *next_io != NULL) {
10720 		l2arc_log_blk_fetch_abort(*next_io);
10721 		*next_io = NULL;
10722 	}
10723 	return (err);
10724 }
10725 
10726 /*
10727  * Restores the payload of a log block to ARC. This creates empty ARC hdr
10728  * entries which only contain an l2arc hdr, essentially restoring the
10729  * buffers to their L2ARC evicted state. This function also updates space
10730  * usage on the L2ARC vdev to make sure it tracks restored buffers.
10731  */
10732 static void
l2arc_log_blk_restore(l2arc_dev_t * dev,const l2arc_log_blk_phys_t * lb,uint64_t lb_asize)10733 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb,
10734     uint64_t lb_asize)
10735 {
10736 	uint64_t	size = 0, asize = 0;
10737 	uint64_t	log_entries = dev->l2ad_log_entries;
10738 
10739 	/*
10740 	 * Usually arc_adapt() is called only for data, not headers, but
10741 	 * since we may allocate significant amount of memory here, let ARC
10742 	 * grow its arc_c.
10743 	 */
10744 	arc_adapt(log_entries * HDR_L2ONLY_SIZE);
10745 
10746 	for (int i = log_entries - 1; i >= 0; i--) {
10747 		/*
10748 		 * Restore goes in the reverse temporal direction to preserve
10749 		 * correct temporal ordering of buffers in the l2ad_buflist.
10750 		 * l2arc_hdr_restore also does a list_insert_tail instead of
10751 		 * list_insert_head on the l2ad_buflist:
10752 		 *
10753 		 *		LIST	l2ad_buflist		LIST
10754 		 *		HEAD  <------ (time) ------	TAIL
10755 		 * direction	+-----+-----+-----+-----+-----+    direction
10756 		 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild
10757 		 * fill		+-----+-----+-----+-----+-----+
10758 		 *		^				^
10759 		 *		|				|
10760 		 *		|				|
10761 		 *	l2arc_feed_thread		l2arc_rebuild
10762 		 *	will place new bufs here	restores bufs here
10763 		 *
10764 		 * During l2arc_rebuild() the device is not used by
10765 		 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true.
10766 		 */
10767 		size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop);
10768 		asize += vdev_psize_to_asize(dev->l2ad_vdev,
10769 		    L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop));
10770 		l2arc_hdr_restore(&lb->lb_entries[i], dev);
10771 	}
10772 
10773 	/*
10774 	 * Record rebuild stats:
10775 	 *	size		Logical size of restored buffers in the L2ARC
10776 	 *	asize		Aligned size of restored buffers in the L2ARC
10777 	 */
10778 	ARCSTAT_INCR(arcstat_l2_rebuild_size, size);
10779 	ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize);
10780 	ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries);
10781 	ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize);
10782 	ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize);
10783 	ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks);
10784 }
10785 
10786 /*
10787  * Restores a single ARC buf hdr from a log entry. The ARC buffer is put
10788  * into a state indicating that it has been evicted to L2ARC.
10789  */
10790 static void
l2arc_hdr_restore(const l2arc_log_ent_phys_t * le,l2arc_dev_t * dev)10791 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev)
10792 {
10793 	arc_buf_hdr_t		*hdr, *exists;
10794 	kmutex_t		*hash_lock;
10795 	arc_buf_contents_t	type = L2BLK_GET_TYPE((le)->le_prop);
10796 	uint64_t		asize = vdev_psize_to_asize(dev->l2ad_vdev,
10797 	    L2BLK_GET_PSIZE((le)->le_prop));
10798 
10799 	/*
10800 	 * Do all the allocation before grabbing any locks, this lets us
10801 	 * sleep if memory is full and we don't have to deal with failed
10802 	 * allocations.
10803 	 */
10804 	hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type,
10805 	    dev, le->le_dva, le->le_daddr,
10806 	    L2BLK_GET_PSIZE((le)->le_prop), asize, le->le_birth,
10807 	    L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel,
10808 	    L2BLK_GET_PROTECTED((le)->le_prop),
10809 	    L2BLK_GET_PREFETCH((le)->le_prop),
10810 	    L2BLK_GET_STATE((le)->le_prop));
10811 
10812 	/*
10813 	 * vdev_space_update() has to be called before arc_hdr_destroy() to
10814 	 * avoid underflow since the latter also calls vdev_space_update().
10815 	 */
10816 	l2arc_hdr_arcstats_increment(hdr);
10817 	vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10818 
10819 	mutex_enter(&dev->l2ad_mtx);
10820 	list_insert_tail(&dev->l2ad_buflist, hdr);
10821 	(void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
10822 	mutex_exit(&dev->l2ad_mtx);
10823 
10824 	exists = buf_hash_insert(hdr, &hash_lock);
10825 	if (exists) {
10826 		/* Buffer was already cached, no need to restore it. */
10827 		arc_hdr_destroy(hdr);
10828 		/*
10829 		 * If the buffer is already cached, check whether it has
10830 		 * L2ARC metadata. If not, enter them and update the flag.
10831 		 * This is important is case of onlining a cache device, since
10832 		 * we previously evicted all L2ARC metadata from ARC.
10833 		 */
10834 		if (!HDR_HAS_L2HDR(exists)) {
10835 			arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR);
10836 			exists->b_l2hdr.b_dev = dev;
10837 			exists->b_l2hdr.b_daddr = le->le_daddr;
10838 			exists->b_l2hdr.b_arcs_state =
10839 			    L2BLK_GET_STATE((le)->le_prop);
10840 			/* l2arc_hdr_arcstats_update() expects a valid asize */
10841 			HDR_SET_L2SIZE(exists, asize);
10842 			mutex_enter(&dev->l2ad_mtx);
10843 			list_insert_tail(&dev->l2ad_buflist, exists);
10844 			(void) zfs_refcount_add_many(&dev->l2ad_alloc,
10845 			    arc_hdr_size(exists), exists);
10846 			mutex_exit(&dev->l2ad_mtx);
10847 			l2arc_hdr_arcstats_increment(exists);
10848 			vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10849 		}
10850 		ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached);
10851 	}
10852 
10853 	mutex_exit(hash_lock);
10854 }
10855 
10856 /*
10857  * Starts an asynchronous read IO to read a log block. This is used in log
10858  * block reconstruction to start reading the next block before we are done
10859  * decoding and reconstructing the current block, to keep the l2arc device
10860  * nice and hot with read IO to process.
10861  * The returned zio will contain a newly allocated memory buffers for the IO
10862  * data which should then be freed by the caller once the zio is no longer
10863  * needed (i.e. due to it having completed). If you wish to abort this
10864  * zio, you should do so using l2arc_log_blk_fetch_abort, which takes
10865  * care of disposing of the allocated buffers correctly.
10866  */
10867 static zio_t *
l2arc_log_blk_fetch(vdev_t * vd,const l2arc_log_blkptr_t * lbp,l2arc_log_blk_phys_t * lb)10868 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp,
10869     l2arc_log_blk_phys_t *lb)
10870 {
10871 	uint32_t		asize;
10872 	zio_t			*pio;
10873 	l2arc_read_callback_t	*cb;
10874 
10875 	/* L2BLK_GET_PSIZE returns aligned size for log blocks */
10876 	asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10877 	ASSERT(asize <= sizeof (l2arc_log_blk_phys_t));
10878 
10879 	cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP);
10880 	cb->l2rcb_abd = abd_get_from_buf(lb, asize);
10881 	pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb,
10882 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY);
10883 	(void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize,
10884 	    cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL,
10885 	    ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL |
10886 	    ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE));
10887 
10888 	return (pio);
10889 }
10890 
10891 /*
10892  * Aborts a zio returned from l2arc_log_blk_fetch and frees the data
10893  * buffers allocated for it.
10894  */
10895 static void
l2arc_log_blk_fetch_abort(zio_t * zio)10896 l2arc_log_blk_fetch_abort(zio_t *zio)
10897 {
10898 	(void) zio_wait(zio);
10899 }
10900 
10901 /*
10902  * Creates a zio to update the device header on an l2arc device.
10903  */
10904 void
l2arc_dev_hdr_update(l2arc_dev_t * dev)10905 l2arc_dev_hdr_update(l2arc_dev_t *dev)
10906 {
10907 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
10908 	const uint64_t		l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10909 	abd_t			*abd;
10910 	int			err;
10911 
10912 	VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER));
10913 
10914 	l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC;
10915 	l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION;
10916 	l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10917 	l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid;
10918 	l2dhdr->dh_log_entries = dev->l2ad_log_entries;
10919 	l2dhdr->dh_evict = dev->l2ad_evict;
10920 	l2dhdr->dh_start = dev->l2ad_start;
10921 	l2dhdr->dh_end = dev->l2ad_end;
10922 	l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize);
10923 	l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count);
10924 	l2dhdr->dh_flags = 0;
10925 	l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time;
10926 	l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state;
10927 	if (dev->l2ad_first)
10928 		l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST;
10929 
10930 	abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10931 
10932 	err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev,
10933 	    VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL,
10934 	    NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE));
10935 
10936 	abd_free(abd);
10937 
10938 	if (err != 0) {
10939 		zfs_dbgmsg("L2ARC IO error (%d) while writing device header, "
10940 		    "vdev guid: %llu", err,
10941 		    (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10942 	}
10943 }
10944 
10945 /*
10946  * Commits a log block to the L2ARC device. This routine is invoked from
10947  * l2arc_write_buffers when the log block fills up.
10948  * This function allocates some memory to temporarily hold the serialized
10949  * buffer to be written. This is then released in l2arc_write_done.
10950  */
10951 static uint64_t
l2arc_log_blk_commit(l2arc_dev_t * dev,zio_t * pio,l2arc_write_callback_t * cb)10952 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb)
10953 {
10954 	l2arc_log_blk_phys_t	*lb = &dev->l2ad_log_blk;
10955 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
10956 	uint64_t		psize, asize;
10957 	zio_t			*wzio;
10958 	l2arc_lb_abd_buf_t	*abd_buf;
10959 	abd_t			*abd = NULL;
10960 	l2arc_lb_ptr_buf_t	*lb_ptr_buf;
10961 
10962 	VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries);
10963 
10964 	abd_buf = zio_buf_alloc(sizeof (*abd_buf));
10965 	abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb));
10966 	lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
10967 	lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP);
10968 
10969 	/* link the buffer into the block chain */
10970 	lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1];
10971 	lb->lb_magic = L2ARC_LOG_BLK_MAGIC;
10972 
10973 	/*
10974 	 * l2arc_log_blk_commit() may be called multiple times during a single
10975 	 * l2arc_write_buffers() call. Save the allocated abd buffers in a list
10976 	 * so we can free them in l2arc_write_done() later on.
10977 	 */
10978 	list_insert_tail(&cb->l2wcb_abd_list, abd_buf);
10979 
10980 	/* try to compress the buffer, at least one sector to save */
10981 	psize = zio_compress_data(ZIO_COMPRESS_LZ4,
10982 	    abd_buf->abd, &abd, sizeof (*lb),
10983 	    zio_get_compression_max_size(ZIO_COMPRESS_LZ4,
10984 	    dev->l2ad_vdev->vdev_ashift,
10985 	    dev->l2ad_vdev->vdev_ashift, sizeof (*lb)), 0);
10986 
10987 	/* a log block is never entirely zero */
10988 	ASSERT(psize != 0);
10989 	asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
10990 	ASSERT(asize <= sizeof (*lb));
10991 
10992 	/*
10993 	 * Update the start log block pointer in the device header to point
10994 	 * to the log block we're about to write.
10995 	 */
10996 	l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0];
10997 	l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand;
10998 	l2dhdr->dh_start_lbps[0].lbp_payload_asize =
10999 	    dev->l2ad_log_blk_payload_asize;
11000 	l2dhdr->dh_start_lbps[0].lbp_payload_start =
11001 	    dev->l2ad_log_blk_payload_start;
11002 	L2BLK_SET_LSIZE(
11003 	    (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb));
11004 	L2BLK_SET_PSIZE(
11005 	    (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize);
11006 	L2BLK_SET_CHECKSUM(
11007 	    (&l2dhdr->dh_start_lbps[0])->lbp_prop,
11008 	    ZIO_CHECKSUM_FLETCHER_4);
11009 	if (asize < sizeof (*lb)) {
11010 		/* compression succeeded */
11011 		abd_zero_off(abd, psize, asize - psize);
11012 		L2BLK_SET_COMPRESS(
11013 		    (&l2dhdr->dh_start_lbps[0])->lbp_prop,
11014 		    ZIO_COMPRESS_LZ4);
11015 	} else {
11016 		/* compression failed */
11017 		abd_copy_from_buf_off(abd, lb, 0, sizeof (*lb));
11018 		L2BLK_SET_COMPRESS(
11019 		    (&l2dhdr->dh_start_lbps[0])->lbp_prop,
11020 		    ZIO_COMPRESS_OFF);
11021 	}
11022 
11023 	/* checksum what we're about to write */
11024 	abd_fletcher_4_native(abd, asize, NULL,
11025 	    &l2dhdr->dh_start_lbps[0].lbp_cksum);
11026 
11027 	abd_free(abd_buf->abd);
11028 
11029 	/* perform the write itself */
11030 	abd_buf->abd = abd;
11031 	wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand,
11032 	    asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL,
11033 	    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE);
11034 	DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio);
11035 	(void) zio_nowait(wzio);
11036 
11037 	dev->l2ad_hand += asize;
11038 	vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
11039 
11040 	/*
11041 	 * Include the committed log block's pointer  in the list of pointers
11042 	 * to log blocks present in the L2ARC device.
11043 	 */
11044 	memcpy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[0],
11045 	    sizeof (l2arc_log_blkptr_t));
11046 	mutex_enter(&dev->l2ad_mtx);
11047 	list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf);
11048 	ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
11049 	ARCSTAT_BUMP(arcstat_l2_log_blk_count);
11050 	zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
11051 	zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
11052 	mutex_exit(&dev->l2ad_mtx);
11053 
11054 	/* bump the kstats */
11055 	ARCSTAT_INCR(arcstat_l2_write_bytes, asize);
11056 	ARCSTAT_BUMP(arcstat_l2_log_blk_writes);
11057 	ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize);
11058 	ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio,
11059 	    dev->l2ad_log_blk_payload_asize / asize);
11060 
11061 	/* start a new log block */
11062 	dev->l2ad_log_ent_idx = 0;
11063 	dev->l2ad_log_blk_payload_asize = 0;
11064 	dev->l2ad_log_blk_payload_start = 0;
11065 
11066 	return (asize);
11067 }
11068 
11069 /*
11070  * Validates an L2ARC log block address to make sure that it can be read
11071  * from the provided L2ARC device.
11072  */
11073 boolean_t
l2arc_log_blkptr_valid(l2arc_dev_t * dev,const l2arc_log_blkptr_t * lbp)11074 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp)
11075 {
11076 	/* L2BLK_GET_PSIZE returns aligned size for log blocks */
11077 	uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
11078 	uint64_t end = lbp->lbp_daddr + asize - 1;
11079 	uint64_t start = lbp->lbp_payload_start;
11080 	boolean_t evicted = B_FALSE;
11081 
11082 	/*
11083 	 * A log block is valid if all of the following conditions are true:
11084 	 * - it fits entirely (including its payload) between l2ad_start and
11085 	 *   l2ad_end
11086 	 * - it has a valid size
11087 	 * - neither the log block itself nor part of its payload was evicted
11088 	 *   by l2arc_evict():
11089 	 *
11090 	 *		l2ad_hand          l2ad_evict
11091 	 *		|			 |	lbp_daddr
11092 	 *		|     start		 |	|  end
11093 	 *		|     |			 |	|  |
11094 	 *		V     V		         V	V  V
11095 	 *   l2ad_start ============================================ l2ad_end
11096 	 *                    --------------------------||||
11097 	 *				^		 ^
11098 	 *				|		log block
11099 	 *				payload
11100 	 */
11101 
11102 	evicted =
11103 	    l2arc_range_check_overlap(start, end, dev->l2ad_hand) ||
11104 	    l2arc_range_check_overlap(start, end, dev->l2ad_evict) ||
11105 	    l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) ||
11106 	    l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end);
11107 
11108 	return (start >= dev->l2ad_start && end <= dev->l2ad_end &&
11109 	    asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) &&
11110 	    (!evicted || dev->l2ad_first));
11111 }
11112 
11113 /*
11114  * Inserts ARC buffer header `hdr' into the current L2ARC log block on
11115  * the device. The buffer being inserted must be present in L2ARC.
11116  * Returns B_TRUE if the L2ARC log block is full and needs to be committed
11117  * to L2ARC, or B_FALSE if it still has room for more ARC buffers.
11118  */
11119 static boolean_t
l2arc_log_blk_insert(l2arc_dev_t * dev,const arc_buf_hdr_t * hdr)11120 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr)
11121 {
11122 	l2arc_log_blk_phys_t	*lb = &dev->l2ad_log_blk;
11123 	l2arc_log_ent_phys_t	*le;
11124 
11125 	if (dev->l2ad_log_entries == 0)
11126 		return (B_FALSE);
11127 
11128 	int index = dev->l2ad_log_ent_idx++;
11129 
11130 	ASSERT3S(index, <, dev->l2ad_log_entries);
11131 	ASSERT(HDR_HAS_L2HDR(hdr));
11132 
11133 	le = &lb->lb_entries[index];
11134 	memset(le, 0, sizeof (*le));
11135 	le->le_dva = hdr->b_dva;
11136 	le->le_birth = hdr->b_birth;
11137 	le->le_daddr = hdr->b_l2hdr.b_daddr;
11138 	if (index == 0)
11139 		dev->l2ad_log_blk_payload_start = le->le_daddr;
11140 	L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr));
11141 	L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr));
11142 	L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr));
11143 	le->le_complevel = hdr->b_complevel;
11144 	L2BLK_SET_TYPE((le)->le_prop, hdr->b_type);
11145 	L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr)));
11146 	L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr)));
11147 	L2BLK_SET_STATE((le)->le_prop, hdr->b_l2hdr.b_arcs_state);
11148 
11149 	dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev,
11150 	    HDR_GET_PSIZE(hdr));
11151 
11152 	return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries);
11153 }
11154 
11155 /*
11156  * Checks whether a given L2ARC device address sits in a time-sequential
11157  * range. The trick here is that the L2ARC is a rotary buffer, so we can't
11158  * just do a range comparison, we need to handle the situation in which the
11159  * range wraps around the end of the L2ARC device. Arguments:
11160  *	bottom -- Lower end of the range to check (written to earlier).
11161  *	top    -- Upper end of the range to check (written to later).
11162  *	check  -- The address for which we want to determine if it sits in
11163  *		  between the top and bottom.
11164  *
11165  * The 3-way conditional below represents the following cases:
11166  *
11167  *	bottom < top : Sequentially ordered case:
11168  *	  <check>--------+-------------------+
11169  *	                 |  (overlap here?)  |
11170  *	 L2ARC dev       V                   V
11171  *	 |---------------<bottom>============<top>--------------|
11172  *
11173  *	bottom > top: Looped-around case:
11174  *	                      <check>--------+------------------+
11175  *	                                     |  (overlap here?) |
11176  *	 L2ARC dev                           V                  V
11177  *	 |===============<top>---------------<bottom>===========|
11178  *	 ^               ^
11179  *	 |  (or here?)   |
11180  *	 +---------------+---------<check>
11181  *
11182  *	top == bottom : Just a single address comparison.
11183  */
11184 boolean_t
l2arc_range_check_overlap(uint64_t bottom,uint64_t top,uint64_t check)11185 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check)
11186 {
11187 	if (bottom < top)
11188 		return (bottom <= check && check <= top);
11189 	else if (bottom > top)
11190 		return (check <= top || bottom <= check);
11191 	else
11192 		return (check == top);
11193 }
11194 
11195 EXPORT_SYMBOL(arc_buf_size);
11196 EXPORT_SYMBOL(arc_write);
11197 EXPORT_SYMBOL(arc_read);
11198 EXPORT_SYMBOL(arc_buf_info);
11199 EXPORT_SYMBOL(arc_getbuf_func);
11200 EXPORT_SYMBOL(arc_add_prune_callback);
11201 EXPORT_SYMBOL(arc_remove_prune_callback);
11202 
11203 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_min,
11204 	spl_param_get_u64, ZMOD_RW, "Minimum ARC size in bytes");
11205 
11206 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_max,
11207 	spl_param_get_u64, ZMOD_RW, "Maximum ARC size in bytes");
11208 
11209 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_balance, UINT, ZMOD_RW,
11210 	"Balance between metadata and data on ghost hits.");
11211 
11212 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int,
11213 	param_get_uint, ZMOD_RW, "Seconds before growing ARC size");
11214 
11215 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int,
11216 	param_get_uint, ZMOD_RW, "log2(fraction of ARC to reclaim)");
11217 
11218 #ifdef _KERNEL
11219 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW,
11220 	"Percent of pagecache to reclaim ARC to");
11221 #endif
11222 
11223 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, UINT, ZMOD_RD,
11224 	"Target average block size");
11225 
11226 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW,
11227 	"Disable compressed ARC buffers");
11228 
11229 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int,
11230 	param_get_uint, ZMOD_RW, "Min life of prefetch block in ms");
11231 
11232 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms,
11233     param_set_arc_int, param_get_uint, ZMOD_RW,
11234 	"Min life of prescient prefetched block in ms");
11235 
11236 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, U64, ZMOD_RW,
11237 	"Max write bytes per interval");
11238 
11239 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, U64, ZMOD_RW,
11240 	"Extra write bytes during device warmup");
11241 
11242 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, U64, ZMOD_RW,
11243 	"Number of max device writes to precache");
11244 
11245 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, U64, ZMOD_RW,
11246 	"Compressed l2arc_headroom multiplier");
11247 
11248 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, U64, ZMOD_RW,
11249 	"TRIM ahead L2ARC write size multiplier");
11250 
11251 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, U64, ZMOD_RW,
11252 	"Seconds between L2ARC writing");
11253 
11254 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, U64, ZMOD_RW,
11255 	"Min feed interval in milliseconds");
11256 
11257 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW,
11258 	"Skip caching prefetched buffers");
11259 
11260 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW,
11261 	"Turbo L2ARC warmup");
11262 
11263 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW,
11264 	"No reads during writes");
11265 
11266 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, UINT, ZMOD_RW,
11267 	"Percent of ARC size allowed for L2ARC-only headers");
11268 
11269 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW,
11270 	"Rebuild the L2ARC when importing a pool");
11271 
11272 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, U64, ZMOD_RW,
11273 	"Min size in bytes to write rebuild log blocks in L2ARC");
11274 
11275 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW,
11276 	"Cache only MFU data from ARC into L2ARC");
11277 
11278 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, exclude_special, INT, ZMOD_RW,
11279 	"Exclude dbufs on special vdevs from being cached to L2ARC if set.");
11280 
11281 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int,
11282 	param_get_uint, ZMOD_RW, "System free memory I/O throttle in bytes");
11283 
11284 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_u64,
11285 	spl_param_get_u64, ZMOD_RW, "System free memory target size in bytes");
11286 
11287 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_u64,
11288 	spl_param_get_u64, ZMOD_RW, "Minimum bytes of dnodes in ARC");
11289 
11290 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent,
11291     param_set_arc_int, param_get_uint, ZMOD_RW,
11292 	"Percent of ARC meta buffers for dnodes");
11293 
11294 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, UINT, ZMOD_RW,
11295 	"Percentage of excess dnodes to try to unpin");
11296 
11297 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, UINT, ZMOD_RW,
11298 	"When full, ARC allocation waits for eviction of this % of alloc size");
11299 
11300 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, UINT, ZMOD_RW,
11301 	"The number of headers to evict per sublist before moving to the next");
11302 
11303 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batches_limit, UINT, ZMOD_RW,
11304 	"The number of batches to run per parallel eviction task");
11305 
11306 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, prune_task_threads, INT, ZMOD_RW,
11307 	"Number of arc_prune threads");
11308 
11309 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_threads, UINT, ZMOD_RD,
11310 	"Number of threads to use for ARC eviction.");
11311