1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2018, Joyent, Inc. 25 * Copyright (c) 2011, 2020, Delphix. All rights reserved. 26 * Copyright (c) 2014, Saso Kiselkov. All rights reserved. 27 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved. 28 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 29 * Copyright (c) 2020, George Amanakis. All rights reserved. 30 * Copyright (c) 2019, 2024, 2025, Klara, Inc. 31 * Copyright (c) 2019, Allan Jude 32 * Copyright (c) 2020, The FreeBSD Foundation [1] 33 * Copyright (c) 2021, 2024 by George Melikov. All rights reserved. 34 * 35 * [1] Portions of this software were developed by Allan Jude 36 * under sponsorship from the FreeBSD Foundation. 37 */ 38 39 /* 40 * DVA-based Adjustable Replacement Cache 41 * 42 * While much of the theory of operation used here is 43 * based on the self-tuning, low overhead replacement cache 44 * presented by Megiddo and Modha at FAST 2003, there are some 45 * significant differences: 46 * 47 * 1. The Megiddo and Modha model assumes any page is evictable. 48 * Pages in its cache cannot be "locked" into memory. This makes 49 * the eviction algorithm simple: evict the last page in the list. 50 * This also make the performance characteristics easy to reason 51 * about. Our cache is not so simple. At any given moment, some 52 * subset of the blocks in the cache are un-evictable because we 53 * have handed out a reference to them. Blocks are only evictable 54 * when there are no external references active. This makes 55 * eviction far more problematic: we choose to evict the evictable 56 * blocks that are the "lowest" in the list. 57 * 58 * There are times when it is not possible to evict the requested 59 * space. In these circumstances we are unable to adjust the cache 60 * size. To prevent the cache growing unbounded at these times we 61 * implement a "cache throttle" that slows the flow of new data 62 * into the cache until we can make space available. 63 * 64 * 2. The Megiddo and Modha model assumes a fixed cache size. 65 * Pages are evicted when the cache is full and there is a cache 66 * miss. Our model has a variable sized cache. It grows with 67 * high use, but also tries to react to memory pressure from the 68 * operating system: decreasing its size when system memory is 69 * tight. 70 * 71 * 3. The Megiddo and Modha model assumes a fixed page size. All 72 * elements of the cache are therefore exactly the same size. So 73 * when adjusting the cache size following a cache miss, its simply 74 * a matter of choosing a single page to evict. In our model, we 75 * have variable sized cache blocks (ranging from 512 bytes to 76 * 128K bytes). We therefore choose a set of blocks to evict to make 77 * space for a cache miss that approximates as closely as possible 78 * the space used by the new block. 79 * 80 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 81 * by N. Megiddo & D. Modha, FAST 2003 82 */ 83 84 /* 85 * The locking model: 86 * 87 * A new reference to a cache buffer can be obtained in two 88 * ways: 1) via a hash table lookup using the DVA as a key, 89 * or 2) via one of the ARC lists. The arc_read() interface 90 * uses method 1, while the internal ARC algorithms for 91 * adjusting the cache use method 2. We therefore provide two 92 * types of locks: 1) the hash table lock array, and 2) the 93 * ARC list locks. 94 * 95 * Buffers do not have their own mutexes, rather they rely on the 96 * hash table mutexes for the bulk of their protection (i.e. most 97 * fields in the arc_buf_hdr_t are protected by these mutexes). 98 * 99 * buf_hash_find() returns the appropriate mutex (held) when it 100 * locates the requested buffer in the hash table. It returns 101 * NULL for the mutex if the buffer was not in the table. 102 * 103 * buf_hash_remove() expects the appropriate hash mutex to be 104 * already held before it is invoked. 105 * 106 * Each ARC state also has a mutex which is used to protect the 107 * buffer list associated with the state. When attempting to 108 * obtain a hash table lock while holding an ARC list lock you 109 * must use: mutex_tryenter() to avoid deadlock. Also note that 110 * the active state mutex must be held before the ghost state mutex. 111 * 112 * It as also possible to register a callback which is run when the 113 * metadata limit is reached and no buffers can be safely evicted. In 114 * this case the arc user should drop a reference on some arc buffers so 115 * they can be reclaimed. For example, when using the ZPL each dentry 116 * holds a references on a znode. These dentries must be pruned before 117 * the arc buffer holding the znode can be safely evicted. 118 * 119 * Note that the majority of the performance stats are manipulated 120 * with atomic operations. 121 * 122 * The L2ARC uses the l2ad_mtx on each vdev for the following: 123 * 124 * - L2ARC buflist creation 125 * - L2ARC buflist eviction 126 * - L2ARC write completion, which walks L2ARC buflists 127 * - ARC header destruction, as it removes from L2ARC buflists 128 * - ARC header release, as it removes from L2ARC buflists 129 */ 130 131 /* 132 * ARC operation: 133 * 134 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. 135 * This structure can point either to a block that is still in the cache or to 136 * one that is only accessible in an L2 ARC device, or it can provide 137 * information about a block that was recently evicted. If a block is 138 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough 139 * information to retrieve it from the L2ARC device. This information is 140 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block 141 * that is in this state cannot access the data directly. 142 * 143 * Blocks that are actively being referenced or have not been evicted 144 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within 145 * the arc_buf_hdr_t that will point to the data block in memory. A block can 146 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC 147 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and 148 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd). 149 * 150 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the 151 * ability to store the physical data (b_pabd) associated with the DVA of the 152 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block, 153 * it will match its on-disk compression characteristics. This behavior can be 154 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the 155 * compressed ARC functionality is disabled, the b_pabd will point to an 156 * uncompressed version of the on-disk data. 157 * 158 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each 159 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it. 160 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC 161 * consumer. The ARC will provide references to this data and will keep it 162 * cached until it is no longer in use. The ARC caches only the L1ARC's physical 163 * data block and will evict any arc_buf_t that is no longer referenced. The 164 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the 165 * "overhead_size" kstat. 166 * 167 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or 168 * compressed form. The typical case is that consumers will want uncompressed 169 * data, and when that happens a new data buffer is allocated where the data is 170 * decompressed for them to use. Currently the only consumer who wants 171 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it 172 * exists on disk. When this happens, the arc_buf_t's data buffer is shared 173 * with the arc_buf_hdr_t. 174 * 175 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The 176 * first one is owned by a compressed send consumer (and therefore references 177 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be 178 * used by any other consumer (and has its own uncompressed copy of the data 179 * buffer). 180 * 181 * arc_buf_hdr_t 182 * +-----------+ 183 * | fields | 184 * | common to | 185 * | L1- and | 186 * | L2ARC | 187 * +-----------+ 188 * | l2arc_buf_hdr_t 189 * | | 190 * +-----------+ 191 * | l1arc_buf_hdr_t 192 * | | arc_buf_t 193 * | b_buf +------------>+-----------+ arc_buf_t 194 * | b_pabd +-+ |b_next +---->+-----------+ 195 * +-----------+ | |-----------| |b_next +-->NULL 196 * | |b_comp = T | +-----------+ 197 * | |b_data +-+ |b_comp = F | 198 * | +-----------+ | |b_data +-+ 199 * +->+------+ | +-----------+ | 200 * compressed | | | | 201 * data | |<--------------+ | uncompressed 202 * +------+ compressed, | data 203 * shared +-->+------+ 204 * data | | 205 * | | 206 * +------+ 207 * 208 * When a consumer reads a block, the ARC must first look to see if the 209 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new 210 * arc_buf_t and either copies uncompressed data into a new data buffer from an 211 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a 212 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the 213 * hdr is compressed and the desired compression characteristics of the 214 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the 215 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be 216 * the last buffer in the hdr's b_buf list, however a shared compressed buf can 217 * be anywhere in the hdr's list. 218 * 219 * The diagram below shows an example of an uncompressed ARC hdr that is 220 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is 221 * the last element in the buf list): 222 * 223 * arc_buf_hdr_t 224 * +-----------+ 225 * | | 226 * | | 227 * | | 228 * +-----------+ 229 * l2arc_buf_hdr_t| | 230 * | | 231 * +-----------+ 232 * l1arc_buf_hdr_t| | 233 * | | arc_buf_t (shared) 234 * | b_buf +------------>+---------+ arc_buf_t 235 * | | |b_next +---->+---------+ 236 * | b_pabd +-+ |---------| |b_next +-->NULL 237 * +-----------+ | | | +---------+ 238 * | |b_data +-+ | | 239 * | +---------+ | |b_data +-+ 240 * +->+------+ | +---------+ | 241 * | | | | 242 * uncompressed | | | | 243 * data +------+ | | 244 * ^ +->+------+ | 245 * | uncompressed | | | 246 * | data | | | 247 * | +------+ | 248 * +---------------------------------+ 249 * 250 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd 251 * since the physical block is about to be rewritten. The new data contents 252 * will be contained in the arc_buf_t. As the I/O pipeline performs the write, 253 * it may compress the data before writing it to disk. The ARC will be called 254 * with the transformed data and will memcpy the transformed on-disk block into 255 * a newly allocated b_pabd. Writes are always done into buffers which have 256 * either been loaned (and hence are new and don't have other readers) or 257 * buffers which have been released (and hence have their own hdr, if there 258 * were originally other readers of the buf's original hdr). This ensures that 259 * the ARC only needs to update a single buf and its hdr after a write occurs. 260 * 261 * When the L2ARC is in use, it will also take advantage of the b_pabd. The 262 * L2ARC will always write the contents of b_pabd to the L2ARC. This means 263 * that when compressed ARC is enabled that the L2ARC blocks are identical 264 * to the on-disk block in the main data pool. This provides a significant 265 * advantage since the ARC can leverage the bp's checksum when reading from the 266 * L2ARC to determine if the contents are valid. However, if the compressed 267 * ARC is disabled, then the L2ARC's block must be transformed to look 268 * like the physical block in the main data pool before comparing the 269 * checksum and determining its validity. 270 * 271 * The L1ARC has a slightly different system for storing encrypted data. 272 * Raw (encrypted + possibly compressed) data has a few subtle differences from 273 * data that is just compressed. The biggest difference is that it is not 274 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded. 275 * The other difference is that encryption cannot be treated as a suggestion. 276 * If a caller would prefer compressed data, but they actually wind up with 277 * uncompressed data the worst thing that could happen is there might be a 278 * performance hit. If the caller requests encrypted data, however, we must be 279 * sure they actually get it or else secret information could be leaked. Raw 280 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore, 281 * may have both an encrypted version and a decrypted version of its data at 282 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is 283 * copied out of this header. To avoid complications with b_pabd, raw buffers 284 * cannot be shared. 285 */ 286 287 #include <sys/spa.h> 288 #include <sys/zio.h> 289 #include <sys/spa_impl.h> 290 #include <sys/zio_compress.h> 291 #include <sys/zio_checksum.h> 292 #include <sys/zfs_context.h> 293 #include <sys/arc.h> 294 #include <sys/zfs_refcount.h> 295 #include <sys/vdev.h> 296 #include <sys/vdev_impl.h> 297 #include <sys/dsl_pool.h> 298 #include <sys/multilist.h> 299 #include <sys/abd.h> 300 #include <sys/dbuf.h> 301 #include <sys/zil.h> 302 #include <sys/fm/fs/zfs.h> 303 #include <sys/callb.h> 304 #include <sys/kstat.h> 305 #include <sys/zthr.h> 306 #include <zfs_fletcher.h> 307 #include <sys/arc_impl.h> 308 #include <sys/trace_zfs.h> 309 #include <sys/aggsum.h> 310 #include <sys/wmsum.h> 311 #include <cityhash.h> 312 #include <sys/vdev_trim.h> 313 #include <sys/zfs_racct.h> 314 #include <sys/zstd/zstd.h> 315 316 #ifndef _KERNEL 317 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 318 boolean_t arc_watch = B_FALSE; 319 #endif 320 321 /* 322 * This thread's job is to keep enough free memory in the system, by 323 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves 324 * arc_available_memory(). 325 */ 326 static zthr_t *arc_reap_zthr; 327 328 /* 329 * This thread's job is to keep arc_size under arc_c, by calling 330 * arc_evict(), which improves arc_is_overflowing(). 331 */ 332 static zthr_t *arc_evict_zthr; 333 static arc_buf_hdr_t **arc_state_evict_markers; 334 static int arc_state_evict_marker_count; 335 336 static kmutex_t arc_evict_lock; 337 static boolean_t arc_evict_needed = B_FALSE; 338 static clock_t arc_last_uncached_flush; 339 340 static taskq_t *arc_evict_taskq; 341 static struct evict_arg *arc_evict_arg; 342 343 /* 344 * Count of bytes evicted since boot. 345 */ 346 static uint64_t arc_evict_count; 347 348 /* 349 * List of arc_evict_waiter_t's, representing threads waiting for the 350 * arc_evict_count to reach specific values. 351 */ 352 static list_t arc_evict_waiters; 353 354 /* 355 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of 356 * the requested amount of data to be evicted. For example, by default for 357 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation. 358 * Since this is above 100%, it ensures that progress is made towards getting 359 * arc_size under arc_c. Since this is finite, it ensures that allocations 360 * can still happen, even during the potentially long time that arc_size is 361 * more than arc_c. 362 */ 363 static uint_t zfs_arc_eviction_pct = 200; 364 365 /* 366 * The number of headers to evict in arc_evict_state_impl() before 367 * dropping the sublist lock and evicting from another sublist. A lower 368 * value means we're more likely to evict the "correct" header (i.e. the 369 * oldest header in the arc state), but comes with higher overhead 370 * (i.e. more invocations of arc_evict_state_impl()). 371 */ 372 static uint_t zfs_arc_evict_batch_limit = 10; 373 374 /* number of seconds before growing cache again */ 375 uint_t arc_grow_retry = 5; 376 377 /* 378 * Minimum time between calls to arc_kmem_reap_soon(). 379 */ 380 static const int arc_kmem_cache_reap_retry_ms = 1000; 381 382 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */ 383 static int zfs_arc_overflow_shift = 8; 384 385 /* log2(fraction of arc to reclaim) */ 386 uint_t arc_shrink_shift = 7; 387 388 #ifdef _KERNEL 389 /* percent of pagecache to reclaim arc to */ 390 uint_t zfs_arc_pc_percent = 0; 391 #endif 392 393 /* 394 * log2(fraction of ARC which must be free to allow growing). 395 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 396 * when reading a new block into the ARC, we will evict an equal-sized block 397 * from the ARC. 398 * 399 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 400 * we will still not allow it to grow. 401 */ 402 uint_t arc_no_grow_shift = 5; 403 404 405 /* 406 * minimum lifespan of a prefetch block in clock ticks 407 * (initialized in arc_init()) 408 */ 409 static uint_t arc_min_prefetch_ms; 410 static uint_t arc_min_prescient_prefetch_ms; 411 412 /* 413 * If this percent of memory is free, don't throttle. 414 */ 415 uint_t arc_lotsfree_percent = 10; 416 417 /* 418 * The arc has filled available memory and has now warmed up. 419 */ 420 boolean_t arc_warm; 421 422 /* 423 * These tunables are for performance analysis. 424 */ 425 uint64_t zfs_arc_max = 0; 426 uint64_t zfs_arc_min = 0; 427 static uint64_t zfs_arc_dnode_limit = 0; 428 static uint_t zfs_arc_dnode_reduce_percent = 10; 429 static uint_t zfs_arc_grow_retry = 0; 430 static uint_t zfs_arc_shrink_shift = 0; 431 uint_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 432 433 /* 434 * ARC dirty data constraints for arc_tempreserve_space() throttle: 435 * * total dirty data limit 436 * * anon block dirty limit 437 * * each pool's anon allowance 438 */ 439 static const unsigned long zfs_arc_dirty_limit_percent = 50; 440 static const unsigned long zfs_arc_anon_limit_percent = 25; 441 static const unsigned long zfs_arc_pool_dirty_percent = 20; 442 443 /* 444 * Enable or disable compressed arc buffers. 445 */ 446 int zfs_compressed_arc_enabled = B_TRUE; 447 448 /* 449 * Balance between metadata and data on ghost hits. Values above 100 450 * increase metadata caching by proportionally reducing effect of ghost 451 * data hits on target data/metadata rate. 452 */ 453 static uint_t zfs_arc_meta_balance = 500; 454 455 /* 456 * Percentage that can be consumed by dnodes of ARC meta buffers. 457 */ 458 static uint_t zfs_arc_dnode_limit_percent = 10; 459 460 /* 461 * These tunables are Linux-specific 462 */ 463 static uint64_t zfs_arc_sys_free = 0; 464 static uint_t zfs_arc_min_prefetch_ms = 0; 465 static uint_t zfs_arc_min_prescient_prefetch_ms = 0; 466 static uint_t zfs_arc_lotsfree_percent = 10; 467 468 /* 469 * Number of arc_prune threads 470 */ 471 static int zfs_arc_prune_task_threads = 1; 472 473 /* Used by spa_export/spa_destroy to flush the arc asynchronously */ 474 static taskq_t *arc_flush_taskq; 475 476 /* 477 * Controls the number of ARC eviction threads to dispatch sublists to. 478 * 479 * Possible values: 480 * 0 (auto) compute the number of threads using a logarithmic formula. 481 * 1 (disabled) one thread - parallel eviction is disabled. 482 * 2+ (manual) set the number manually. 483 * 484 * See arc_evict_thread_init() for how "auto" is computed. 485 */ 486 static uint_t zfs_arc_evict_threads = 0; 487 488 /* The 7 states: */ 489 static arc_state_t ARC_anon; 490 /* */ arc_state_t ARC_mru; 491 static arc_state_t ARC_mru_ghost; 492 /* */ arc_state_t ARC_mfu; 493 static arc_state_t ARC_mfu_ghost; 494 static arc_state_t ARC_l2c_only; 495 static arc_state_t ARC_uncached; 496 497 arc_stats_t arc_stats = { 498 { "hits", KSTAT_DATA_UINT64 }, 499 { "iohits", KSTAT_DATA_UINT64 }, 500 { "misses", KSTAT_DATA_UINT64 }, 501 { "demand_data_hits", KSTAT_DATA_UINT64 }, 502 { "demand_data_iohits", KSTAT_DATA_UINT64 }, 503 { "demand_data_misses", KSTAT_DATA_UINT64 }, 504 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 505 { "demand_metadata_iohits", KSTAT_DATA_UINT64 }, 506 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 507 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 508 { "prefetch_data_iohits", KSTAT_DATA_UINT64 }, 509 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 510 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 511 { "prefetch_metadata_iohits", KSTAT_DATA_UINT64 }, 512 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 513 { "mru_hits", KSTAT_DATA_UINT64 }, 514 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 515 { "mfu_hits", KSTAT_DATA_UINT64 }, 516 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 517 { "uncached_hits", KSTAT_DATA_UINT64 }, 518 { "deleted", KSTAT_DATA_UINT64 }, 519 { "mutex_miss", KSTAT_DATA_UINT64 }, 520 { "access_skip", KSTAT_DATA_UINT64 }, 521 { "evict_skip", KSTAT_DATA_UINT64 }, 522 { "evict_not_enough", KSTAT_DATA_UINT64 }, 523 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 524 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 525 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64 }, 526 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64 }, 527 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 528 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 529 { "hash_elements", KSTAT_DATA_UINT64 }, 530 { "hash_elements_max", KSTAT_DATA_UINT64 }, 531 { "hash_collisions", KSTAT_DATA_UINT64 }, 532 { "hash_chains", KSTAT_DATA_UINT64 }, 533 { "hash_chain_max", KSTAT_DATA_UINT64 }, 534 { "meta", KSTAT_DATA_UINT64 }, 535 { "pd", KSTAT_DATA_UINT64 }, 536 { "pm", KSTAT_DATA_UINT64 }, 537 { "c", KSTAT_DATA_UINT64 }, 538 { "c_min", KSTAT_DATA_UINT64 }, 539 { "c_max", KSTAT_DATA_UINT64 }, 540 { "size", KSTAT_DATA_UINT64 }, 541 { "compressed_size", KSTAT_DATA_UINT64 }, 542 { "uncompressed_size", KSTAT_DATA_UINT64 }, 543 { "overhead_size", KSTAT_DATA_UINT64 }, 544 { "hdr_size", KSTAT_DATA_UINT64 }, 545 { "data_size", KSTAT_DATA_UINT64 }, 546 { "metadata_size", KSTAT_DATA_UINT64 }, 547 { "dbuf_size", KSTAT_DATA_UINT64 }, 548 { "dnode_size", KSTAT_DATA_UINT64 }, 549 { "bonus_size", KSTAT_DATA_UINT64 }, 550 #if defined(COMPAT_FREEBSD11) 551 { "other_size", KSTAT_DATA_UINT64 }, 552 #endif 553 { "anon_size", KSTAT_DATA_UINT64 }, 554 { "anon_data", KSTAT_DATA_UINT64 }, 555 { "anon_metadata", KSTAT_DATA_UINT64 }, 556 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 557 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 558 { "mru_size", KSTAT_DATA_UINT64 }, 559 { "mru_data", KSTAT_DATA_UINT64 }, 560 { "mru_metadata", KSTAT_DATA_UINT64 }, 561 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 562 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 563 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 564 { "mru_ghost_data", KSTAT_DATA_UINT64 }, 565 { "mru_ghost_metadata", KSTAT_DATA_UINT64 }, 566 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 567 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 568 { "mfu_size", KSTAT_DATA_UINT64 }, 569 { "mfu_data", KSTAT_DATA_UINT64 }, 570 { "mfu_metadata", KSTAT_DATA_UINT64 }, 571 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 572 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 573 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 574 { "mfu_ghost_data", KSTAT_DATA_UINT64 }, 575 { "mfu_ghost_metadata", KSTAT_DATA_UINT64 }, 576 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 577 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 578 { "uncached_size", KSTAT_DATA_UINT64 }, 579 { "uncached_data", KSTAT_DATA_UINT64 }, 580 { "uncached_metadata", KSTAT_DATA_UINT64 }, 581 { "uncached_evictable_data", KSTAT_DATA_UINT64 }, 582 { "uncached_evictable_metadata", KSTAT_DATA_UINT64 }, 583 { "l2_hits", KSTAT_DATA_UINT64 }, 584 { "l2_misses", KSTAT_DATA_UINT64 }, 585 { "l2_prefetch_asize", KSTAT_DATA_UINT64 }, 586 { "l2_mru_asize", KSTAT_DATA_UINT64 }, 587 { "l2_mfu_asize", KSTAT_DATA_UINT64 }, 588 { "l2_bufc_data_asize", KSTAT_DATA_UINT64 }, 589 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64 }, 590 { "l2_feeds", KSTAT_DATA_UINT64 }, 591 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 592 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 593 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 594 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 595 { "l2_writes_done", KSTAT_DATA_UINT64 }, 596 { "l2_writes_error", KSTAT_DATA_UINT64 }, 597 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 598 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 599 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 600 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 601 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 602 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 603 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 604 { "l2_io_error", KSTAT_DATA_UINT64 }, 605 { "l2_size", KSTAT_DATA_UINT64 }, 606 { "l2_asize", KSTAT_DATA_UINT64 }, 607 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 608 { "l2_log_blk_writes", KSTAT_DATA_UINT64 }, 609 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 }, 610 { "l2_log_blk_asize", KSTAT_DATA_UINT64 }, 611 { "l2_log_blk_count", KSTAT_DATA_UINT64 }, 612 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 }, 613 { "l2_rebuild_success", KSTAT_DATA_UINT64 }, 614 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 }, 615 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 }, 616 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 }, 617 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 }, 618 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 }, 619 { "l2_rebuild_size", KSTAT_DATA_UINT64 }, 620 { "l2_rebuild_asize", KSTAT_DATA_UINT64 }, 621 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 }, 622 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 }, 623 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 }, 624 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 625 { "memory_direct_count", KSTAT_DATA_UINT64 }, 626 { "memory_indirect_count", KSTAT_DATA_UINT64 }, 627 { "memory_all_bytes", KSTAT_DATA_UINT64 }, 628 { "memory_free_bytes", KSTAT_DATA_UINT64 }, 629 { "memory_available_bytes", KSTAT_DATA_INT64 }, 630 { "arc_no_grow", KSTAT_DATA_UINT64 }, 631 { "arc_tempreserve", KSTAT_DATA_UINT64 }, 632 { "arc_loaned_bytes", KSTAT_DATA_UINT64 }, 633 { "arc_prune", KSTAT_DATA_UINT64 }, 634 { "arc_meta_used", KSTAT_DATA_UINT64 }, 635 { "arc_dnode_limit", KSTAT_DATA_UINT64 }, 636 { "async_upgrade_sync", KSTAT_DATA_UINT64 }, 637 { "predictive_prefetch", KSTAT_DATA_UINT64 }, 638 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 }, 639 { "demand_iohit_predictive_prefetch", KSTAT_DATA_UINT64 }, 640 { "prescient_prefetch", KSTAT_DATA_UINT64 }, 641 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 }, 642 { "demand_iohit_prescient_prefetch", KSTAT_DATA_UINT64 }, 643 { "arc_need_free", KSTAT_DATA_UINT64 }, 644 { "arc_sys_free", KSTAT_DATA_UINT64 }, 645 { "arc_raw_size", KSTAT_DATA_UINT64 }, 646 { "cached_only_in_progress", KSTAT_DATA_UINT64 }, 647 { "abd_chunk_waste_size", KSTAT_DATA_UINT64 }, 648 }; 649 650 arc_sums_t arc_sums; 651 652 #define ARCSTAT_MAX(stat, val) { \ 653 uint64_t m; \ 654 while ((val) > (m = arc_stats.stat.value.ui64) && \ 655 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 656 continue; \ 657 } 658 659 /* 660 * We define a macro to allow ARC hits/misses to be easily broken down by 661 * two separate conditions, giving a total of four different subtypes for 662 * each of hits and misses (so eight statistics total). 663 */ 664 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 665 if (cond1) { \ 666 if (cond2) { \ 667 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 668 } else { \ 669 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 670 } \ 671 } else { \ 672 if (cond2) { \ 673 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 674 } else { \ 675 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 676 } \ 677 } 678 679 /* 680 * This macro allows us to use kstats as floating averages. Each time we 681 * update this kstat, we first factor it and the update value by 682 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall 683 * average. This macro assumes that integer loads and stores are atomic, but 684 * is not safe for multiple writers updating the kstat in parallel (only the 685 * last writer's update will remain). 686 */ 687 #define ARCSTAT_F_AVG_FACTOR 3 688 #define ARCSTAT_F_AVG(stat, value) \ 689 do { \ 690 uint64_t x = ARCSTAT(stat); \ 691 x = x - x / ARCSTAT_F_AVG_FACTOR + \ 692 (value) / ARCSTAT_F_AVG_FACTOR; \ 693 ARCSTAT(stat) = x; \ 694 } while (0) 695 696 static kstat_t *arc_ksp; 697 698 /* 699 * There are several ARC variables that are critical to export as kstats -- 700 * but we don't want to have to grovel around in the kstat whenever we wish to 701 * manipulate them. For these variables, we therefore define them to be in 702 * terms of the statistic variable. This assures that we are not introducing 703 * the possibility of inconsistency by having shadow copies of the variables, 704 * while still allowing the code to be readable. 705 */ 706 #define arc_tempreserve ARCSTAT(arcstat_tempreserve) 707 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes) 708 #define arc_dnode_limit ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */ 709 #define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */ 710 711 hrtime_t arc_growtime; 712 list_t arc_prune_list; 713 kmutex_t arc_prune_mtx; 714 taskq_t *arc_prune_taskq; 715 716 #define GHOST_STATE(state) \ 717 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 718 (state) == arc_l2c_only) 719 720 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 721 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 722 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 723 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 724 #define HDR_PRESCIENT_PREFETCH(hdr) \ 725 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) 726 #define HDR_COMPRESSION_ENABLED(hdr) \ 727 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) 728 729 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 730 #define HDR_UNCACHED(hdr) ((hdr)->b_flags & ARC_FLAG_UNCACHED) 731 #define HDR_L2_READING(hdr) \ 732 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 733 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 734 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 735 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 736 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 737 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED) 738 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH) 739 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) 740 741 #define HDR_ISTYPE_METADATA(hdr) \ 742 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 743 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 744 745 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 746 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 747 #define HDR_HAS_RABD(hdr) \ 748 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \ 749 (hdr)->b_crypt_hdr.b_rabd != NULL) 750 #define HDR_ENCRYPTED(hdr) \ 751 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 752 #define HDR_AUTHENTICATED(hdr) \ 753 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 754 755 /* For storing compression mode in b_flags */ 756 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) 757 758 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ 759 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) 760 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ 761 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); 762 763 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) 764 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED) 765 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED) 766 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED) 767 768 /* 769 * Other sizes 770 */ 771 772 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 773 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 774 775 /* 776 * Hash table routines 777 */ 778 779 #define BUF_LOCKS 2048 780 typedef struct buf_hash_table { 781 uint64_t ht_mask; 782 arc_buf_hdr_t **ht_table; 783 kmutex_t ht_locks[BUF_LOCKS] ____cacheline_aligned; 784 } buf_hash_table_t; 785 786 static buf_hash_table_t buf_hash_table; 787 788 #define BUF_HASH_INDEX(spa, dva, birth) \ 789 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 790 #define BUF_HASH_LOCK(idx) (&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 791 #define HDR_LOCK(hdr) \ 792 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 793 794 uint64_t zfs_crc64_table[256]; 795 796 /* 797 * Asynchronous ARC flush 798 * 799 * We track these in a list for arc_async_flush_guid_inuse(). 800 * Used for both L1 and L2 async teardown. 801 */ 802 static list_t arc_async_flush_list; 803 static kmutex_t arc_async_flush_lock; 804 805 typedef struct arc_async_flush { 806 uint64_t af_spa_guid; 807 taskq_ent_t af_tqent; 808 uint_t af_cache_level; /* 1 or 2 to differentiate node */ 809 list_node_t af_node; 810 } arc_async_flush_t; 811 812 813 /* 814 * Level 2 ARC 815 */ 816 817 #define L2ARC_WRITE_SIZE (32 * 1024 * 1024) /* initial write max */ 818 #define L2ARC_HEADROOM 8 /* num of writes */ 819 820 /* 821 * If we discover during ARC scan any buffers to be compressed, we boost 822 * our headroom for the next scanning cycle by this percentage multiple. 823 */ 824 #define L2ARC_HEADROOM_BOOST 200 825 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 826 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 827 828 /* 829 * We can feed L2ARC from two states of ARC buffers, mru and mfu, 830 * and each of the state has two types: data and metadata. 831 */ 832 #define L2ARC_FEED_TYPES 4 833 834 /* L2ARC Performance Tunables */ 835 static uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */ 836 static uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */ 837 static uint64_t l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */ 838 static uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 839 static uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 840 static uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */ 841 static int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 842 static int l2arc_feed_again = B_TRUE; /* turbo warmup */ 843 static int l2arc_norw = B_FALSE; /* no reads during writes */ 844 static uint_t l2arc_meta_percent = 33; /* limit on headers size */ 845 846 /* 847 * L2ARC Internals 848 */ 849 static list_t L2ARC_dev_list; /* device list */ 850 static list_t *l2arc_dev_list; /* device list pointer */ 851 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 852 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 853 static list_t L2ARC_free_on_write; /* free after write buf list */ 854 static list_t *l2arc_free_on_write; /* free after write list ptr */ 855 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 856 static uint64_t l2arc_ndev; /* number of devices */ 857 858 typedef struct l2arc_read_callback { 859 arc_buf_hdr_t *l2rcb_hdr; /* read header */ 860 blkptr_t l2rcb_bp; /* original blkptr */ 861 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 862 int l2rcb_flags; /* original flags */ 863 abd_t *l2rcb_abd; /* temporary buffer */ 864 } l2arc_read_callback_t; 865 866 typedef struct l2arc_data_free { 867 /* protected by l2arc_free_on_write_mtx */ 868 abd_t *l2df_abd; 869 size_t l2df_size; 870 arc_buf_contents_t l2df_type; 871 list_node_t l2df_list_node; 872 } l2arc_data_free_t; 873 874 typedef enum arc_fill_flags { 875 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */ 876 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */ 877 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */ 878 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */ 879 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */ 880 } arc_fill_flags_t; 881 882 typedef enum arc_ovf_level { 883 ARC_OVF_NONE, /* ARC within target size. */ 884 ARC_OVF_SOME, /* ARC is slightly overflowed. */ 885 ARC_OVF_SEVERE /* ARC is severely overflowed. */ 886 } arc_ovf_level_t; 887 888 static kmutex_t l2arc_feed_thr_lock; 889 static kcondvar_t l2arc_feed_thr_cv; 890 static uint8_t l2arc_thread_exit; 891 892 static kmutex_t l2arc_rebuild_thr_lock; 893 static kcondvar_t l2arc_rebuild_thr_cv; 894 895 enum arc_hdr_alloc_flags { 896 ARC_HDR_ALLOC_RDATA = 0x1, 897 ARC_HDR_USE_RESERVE = 0x4, 898 ARC_HDR_ALLOC_LINEAR = 0x8, 899 }; 900 901 902 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, const void *, int); 903 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, const void *); 904 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, const void *, int); 905 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, const void *); 906 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, const void *); 907 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, 908 const void *tag); 909 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t); 910 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int); 911 static void arc_hdr_destroy(arc_buf_hdr_t *); 912 static void arc_access(arc_buf_hdr_t *, arc_flags_t, boolean_t); 913 static void arc_buf_watch(arc_buf_t *); 914 static void arc_change_state(arc_state_t *, arc_buf_hdr_t *); 915 916 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 917 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 918 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 919 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 920 921 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 922 static void l2arc_read_done(zio_t *); 923 static void l2arc_do_free_on_write(void); 924 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 925 boolean_t state_only); 926 927 static void arc_prune_async(uint64_t adjust); 928 929 #define l2arc_hdr_arcstats_increment(hdr) \ 930 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE) 931 #define l2arc_hdr_arcstats_decrement(hdr) \ 932 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE) 933 #define l2arc_hdr_arcstats_increment_state(hdr) \ 934 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE) 935 #define l2arc_hdr_arcstats_decrement_state(hdr) \ 936 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE) 937 938 /* 939 * l2arc_exclude_special : A zfs module parameter that controls whether buffers 940 * present on special vdevs are eligibile for caching in L2ARC. If 941 * set to 1, exclude dbufs on special vdevs from being cached to 942 * L2ARC. 943 */ 944 int l2arc_exclude_special = 0; 945 946 /* 947 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU 948 * metadata and data are cached from ARC into L2ARC. 949 */ 950 static int l2arc_mfuonly = 0; 951 952 /* 953 * L2ARC TRIM 954 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of 955 * the current write size (l2arc_write_max) we should TRIM if we 956 * have filled the device. It is defined as a percentage of the 957 * write size. If set to 100 we trim twice the space required to 958 * accommodate upcoming writes. A minimum of 64MB will be trimmed. 959 * It also enables TRIM of the whole L2ARC device upon creation or 960 * addition to an existing pool or if the header of the device is 961 * invalid upon importing a pool or onlining a cache device. The 962 * default is 0, which disables TRIM on L2ARC altogether as it can 963 * put significant stress on the underlying storage devices. This 964 * will vary depending of how well the specific device handles 965 * these commands. 966 */ 967 static uint64_t l2arc_trim_ahead = 0; 968 969 /* 970 * Performance tuning of L2ARC persistence: 971 * 972 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding 973 * an L2ARC device (either at pool import or later) will attempt 974 * to rebuild L2ARC buffer contents. 975 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls 976 * whether log blocks are written to the L2ARC device. If the L2ARC 977 * device is less than 1GB, the amount of data l2arc_evict() 978 * evicts is significant compared to the amount of restored L2ARC 979 * data. In this case do not write log blocks in L2ARC in order 980 * not to waste space. 981 */ 982 static int l2arc_rebuild_enabled = B_TRUE; 983 static uint64_t l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024; 984 985 /* L2ARC persistence rebuild control routines. */ 986 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen); 987 static __attribute__((noreturn)) void l2arc_dev_rebuild_thread(void *arg); 988 static int l2arc_rebuild(l2arc_dev_t *dev); 989 990 /* L2ARC persistence read I/O routines. */ 991 static int l2arc_dev_hdr_read(l2arc_dev_t *dev); 992 static int l2arc_log_blk_read(l2arc_dev_t *dev, 993 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp, 994 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 995 zio_t *this_io, zio_t **next_io); 996 static zio_t *l2arc_log_blk_fetch(vdev_t *vd, 997 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb); 998 static void l2arc_log_blk_fetch_abort(zio_t *zio); 999 1000 /* L2ARC persistence block restoration routines. */ 1001 static void l2arc_log_blk_restore(l2arc_dev_t *dev, 1002 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize); 1003 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, 1004 l2arc_dev_t *dev); 1005 1006 /* L2ARC persistence write I/O routines. */ 1007 static uint64_t l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, 1008 l2arc_write_callback_t *cb); 1009 1010 /* L2ARC persistence auxiliary routines. */ 1011 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev, 1012 const l2arc_log_blkptr_t *lbp); 1013 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev, 1014 const arc_buf_hdr_t *ab); 1015 boolean_t l2arc_range_check_overlap(uint64_t bottom, 1016 uint64_t top, uint64_t check); 1017 static void l2arc_blk_fetch_done(zio_t *zio); 1018 static inline uint64_t 1019 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev); 1020 1021 /* 1022 * We use Cityhash for this. It's fast, and has good hash properties without 1023 * requiring any large static buffers. 1024 */ 1025 static uint64_t 1026 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 1027 { 1028 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth)); 1029 } 1030 1031 #define HDR_EMPTY(hdr) \ 1032 ((hdr)->b_dva.dva_word[0] == 0 && \ 1033 (hdr)->b_dva.dva_word[1] == 0) 1034 1035 #define HDR_EMPTY_OR_LOCKED(hdr) \ 1036 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr))) 1037 1038 #define HDR_EQUAL(spa, dva, birth, hdr) \ 1039 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 1040 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 1041 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) 1042 1043 static void 1044 buf_discard_identity(arc_buf_hdr_t *hdr) 1045 { 1046 hdr->b_dva.dva_word[0] = 0; 1047 hdr->b_dva.dva_word[1] = 0; 1048 hdr->b_birth = 0; 1049 } 1050 1051 static arc_buf_hdr_t * 1052 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 1053 { 1054 const dva_t *dva = BP_IDENTITY(bp); 1055 uint64_t birth = BP_GET_PHYSICAL_BIRTH(bp); 1056 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 1057 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1058 arc_buf_hdr_t *hdr; 1059 1060 mutex_enter(hash_lock); 1061 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 1062 hdr = hdr->b_hash_next) { 1063 if (HDR_EQUAL(spa, dva, birth, hdr)) { 1064 *lockp = hash_lock; 1065 return (hdr); 1066 } 1067 } 1068 mutex_exit(hash_lock); 1069 *lockp = NULL; 1070 return (NULL); 1071 } 1072 1073 /* 1074 * Insert an entry into the hash table. If there is already an element 1075 * equal to elem in the hash table, then the already existing element 1076 * will be returned and the new element will not be inserted. 1077 * Otherwise returns NULL. 1078 * If lockp == NULL, the caller is assumed to already hold the hash lock. 1079 */ 1080 static arc_buf_hdr_t * 1081 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 1082 { 1083 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1084 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1085 arc_buf_hdr_t *fhdr; 1086 uint32_t i; 1087 1088 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 1089 ASSERT(hdr->b_birth != 0); 1090 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1091 1092 if (lockp != NULL) { 1093 *lockp = hash_lock; 1094 mutex_enter(hash_lock); 1095 } else { 1096 ASSERT(MUTEX_HELD(hash_lock)); 1097 } 1098 1099 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 1100 fhdr = fhdr->b_hash_next, i++) { 1101 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 1102 return (fhdr); 1103 } 1104 1105 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 1106 buf_hash_table.ht_table[idx] = hdr; 1107 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1108 1109 /* collect some hash table performance data */ 1110 if (i > 0) { 1111 ARCSTAT_BUMP(arcstat_hash_collisions); 1112 if (i == 1) 1113 ARCSTAT_BUMP(arcstat_hash_chains); 1114 ARCSTAT_MAX(arcstat_hash_chain_max, i); 1115 } 1116 ARCSTAT_BUMP(arcstat_hash_elements); 1117 1118 return (NULL); 1119 } 1120 1121 static void 1122 buf_hash_remove(arc_buf_hdr_t *hdr) 1123 { 1124 arc_buf_hdr_t *fhdr, **hdrp; 1125 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1126 1127 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 1128 ASSERT(HDR_IN_HASH_TABLE(hdr)); 1129 1130 hdrp = &buf_hash_table.ht_table[idx]; 1131 while ((fhdr = *hdrp) != hdr) { 1132 ASSERT3P(fhdr, !=, NULL); 1133 hdrp = &fhdr->b_hash_next; 1134 } 1135 *hdrp = hdr->b_hash_next; 1136 hdr->b_hash_next = NULL; 1137 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1138 1139 /* collect some hash table performance data */ 1140 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 1141 if (buf_hash_table.ht_table[idx] && 1142 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 1143 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 1144 } 1145 1146 /* 1147 * Global data structures and functions for the buf kmem cache. 1148 */ 1149 1150 static kmem_cache_t *hdr_full_cache; 1151 static kmem_cache_t *hdr_l2only_cache; 1152 static kmem_cache_t *buf_cache; 1153 1154 static void 1155 buf_fini(void) 1156 { 1157 #if defined(_KERNEL) 1158 /* 1159 * Large allocations which do not require contiguous pages 1160 * should be using vmem_free() in the linux kernel\ 1161 */ 1162 vmem_free(buf_hash_table.ht_table, 1163 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1164 #else 1165 kmem_free(buf_hash_table.ht_table, 1166 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1167 #endif 1168 for (int i = 0; i < BUF_LOCKS; i++) 1169 mutex_destroy(BUF_HASH_LOCK(i)); 1170 kmem_cache_destroy(hdr_full_cache); 1171 kmem_cache_destroy(hdr_l2only_cache); 1172 kmem_cache_destroy(buf_cache); 1173 } 1174 1175 /* 1176 * Constructor callback - called when the cache is empty 1177 * and a new buf is requested. 1178 */ 1179 static int 1180 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1181 { 1182 (void) unused, (void) kmflag; 1183 arc_buf_hdr_t *hdr = vbuf; 1184 1185 memset(hdr, 0, HDR_FULL_SIZE); 1186 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 1187 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt); 1188 #ifdef ZFS_DEBUG 1189 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1190 #endif 1191 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1192 list_link_init(&hdr->b_l2hdr.b_l2node); 1193 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1194 1195 return (0); 1196 } 1197 1198 static int 1199 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1200 { 1201 (void) unused, (void) kmflag; 1202 arc_buf_hdr_t *hdr = vbuf; 1203 1204 memset(hdr, 0, HDR_L2ONLY_SIZE); 1205 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1206 1207 return (0); 1208 } 1209 1210 static int 1211 buf_cons(void *vbuf, void *unused, int kmflag) 1212 { 1213 (void) unused, (void) kmflag; 1214 arc_buf_t *buf = vbuf; 1215 1216 memset(buf, 0, sizeof (arc_buf_t)); 1217 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1218 1219 return (0); 1220 } 1221 1222 /* 1223 * Destructor callback - called when a cached buf is 1224 * no longer required. 1225 */ 1226 static void 1227 hdr_full_dest(void *vbuf, void *unused) 1228 { 1229 (void) unused; 1230 arc_buf_hdr_t *hdr = vbuf; 1231 1232 ASSERT(HDR_EMPTY(hdr)); 1233 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1234 #ifdef ZFS_DEBUG 1235 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1236 #endif 1237 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1238 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1239 } 1240 1241 static void 1242 hdr_l2only_dest(void *vbuf, void *unused) 1243 { 1244 (void) unused; 1245 arc_buf_hdr_t *hdr = vbuf; 1246 1247 ASSERT(HDR_EMPTY(hdr)); 1248 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1249 } 1250 1251 static void 1252 buf_dest(void *vbuf, void *unused) 1253 { 1254 (void) unused; 1255 (void) vbuf; 1256 1257 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1258 } 1259 1260 static void 1261 buf_init(void) 1262 { 1263 uint64_t *ct = NULL; 1264 uint64_t hsize = 1ULL << 12; 1265 int i, j; 1266 1267 /* 1268 * The hash table is big enough to fill all of physical memory 1269 * with an average block size of zfs_arc_average_blocksize (default 8K). 1270 * By default, the table will take up 1271 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1272 */ 1273 while (hsize * zfs_arc_average_blocksize < arc_all_memory()) 1274 hsize <<= 1; 1275 retry: 1276 buf_hash_table.ht_mask = hsize - 1; 1277 #if defined(_KERNEL) 1278 /* 1279 * Large allocations which do not require contiguous pages 1280 * should be using vmem_alloc() in the linux kernel 1281 */ 1282 buf_hash_table.ht_table = 1283 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP); 1284 #else 1285 buf_hash_table.ht_table = 1286 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1287 #endif 1288 if (buf_hash_table.ht_table == NULL) { 1289 ASSERT(hsize > (1ULL << 8)); 1290 hsize >>= 1; 1291 goto retry; 1292 } 1293 1294 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1295 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, KMC_RECLAIMABLE); 1296 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1297 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL, 1298 NULL, NULL, 0); 1299 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1300 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1301 1302 for (i = 0; i < 256; i++) 1303 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1304 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1305 1306 for (i = 0; i < BUF_LOCKS; i++) 1307 mutex_init(BUF_HASH_LOCK(i), NULL, MUTEX_DEFAULT, NULL); 1308 } 1309 1310 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1311 1312 /* 1313 * This is the size that the buf occupies in memory. If the buf is compressed, 1314 * it will correspond to the compressed size. You should use this method of 1315 * getting the buf size unless you explicitly need the logical size. 1316 */ 1317 uint64_t 1318 arc_buf_size(arc_buf_t *buf) 1319 { 1320 return (ARC_BUF_COMPRESSED(buf) ? 1321 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr)); 1322 } 1323 1324 uint64_t 1325 arc_buf_lsize(arc_buf_t *buf) 1326 { 1327 return (HDR_GET_LSIZE(buf->b_hdr)); 1328 } 1329 1330 /* 1331 * This function will return B_TRUE if the buffer is encrypted in memory. 1332 * This buffer can be decrypted by calling arc_untransform(). 1333 */ 1334 boolean_t 1335 arc_is_encrypted(arc_buf_t *buf) 1336 { 1337 return (ARC_BUF_ENCRYPTED(buf) != 0); 1338 } 1339 1340 /* 1341 * Returns B_TRUE if the buffer represents data that has not had its MAC 1342 * verified yet. 1343 */ 1344 boolean_t 1345 arc_is_unauthenticated(arc_buf_t *buf) 1346 { 1347 return (HDR_NOAUTH(buf->b_hdr) != 0); 1348 } 1349 1350 void 1351 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt, 1352 uint8_t *iv, uint8_t *mac) 1353 { 1354 arc_buf_hdr_t *hdr = buf->b_hdr; 1355 1356 ASSERT(HDR_PROTECTED(hdr)); 1357 1358 memcpy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 1359 memcpy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 1360 memcpy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 1361 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 1362 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 1363 } 1364 1365 /* 1366 * Indicates how this buffer is compressed in memory. If it is not compressed 1367 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with 1368 * arc_untransform() as long as it is also unencrypted. 1369 */ 1370 enum zio_compress 1371 arc_get_compression(arc_buf_t *buf) 1372 { 1373 return (ARC_BUF_COMPRESSED(buf) ? 1374 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF); 1375 } 1376 1377 /* 1378 * Return the compression algorithm used to store this data in the ARC. If ARC 1379 * compression is enabled or this is an encrypted block, this will be the same 1380 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF. 1381 */ 1382 static inline enum zio_compress 1383 arc_hdr_get_compress(arc_buf_hdr_t *hdr) 1384 { 1385 return (HDR_COMPRESSION_ENABLED(hdr) ? 1386 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF); 1387 } 1388 1389 uint8_t 1390 arc_get_complevel(arc_buf_t *buf) 1391 { 1392 return (buf->b_hdr->b_complevel); 1393 } 1394 1395 __maybe_unused 1396 static inline boolean_t 1397 arc_buf_is_shared(arc_buf_t *buf) 1398 { 1399 boolean_t shared = (buf->b_data != NULL && 1400 buf->b_hdr->b_l1hdr.b_pabd != NULL && 1401 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) && 1402 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd)); 1403 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); 1404 EQUIV(shared, ARC_BUF_SHARED(buf)); 1405 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf)); 1406 1407 /* 1408 * It would be nice to assert arc_can_share() too, but the "hdr isn't 1409 * already being shared" requirement prevents us from doing that. 1410 */ 1411 1412 return (shared); 1413 } 1414 1415 /* 1416 * Free the checksum associated with this header. If there is no checksum, this 1417 * is a no-op. 1418 */ 1419 static inline void 1420 arc_cksum_free(arc_buf_hdr_t *hdr) 1421 { 1422 #ifdef ZFS_DEBUG 1423 ASSERT(HDR_HAS_L1HDR(hdr)); 1424 1425 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1426 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1427 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); 1428 hdr->b_l1hdr.b_freeze_cksum = NULL; 1429 } 1430 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1431 #endif 1432 } 1433 1434 /* 1435 * Return true iff at least one of the bufs on hdr is not compressed. 1436 * Encrypted buffers count as compressed. 1437 */ 1438 static boolean_t 1439 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr) 1440 { 1441 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr)); 1442 1443 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) { 1444 if (!ARC_BUF_COMPRESSED(b)) { 1445 return (B_TRUE); 1446 } 1447 } 1448 return (B_FALSE); 1449 } 1450 1451 1452 /* 1453 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data 1454 * matches the checksum that is stored in the hdr. If there is no checksum, 1455 * or if the buf is compressed, this is a no-op. 1456 */ 1457 static void 1458 arc_cksum_verify(arc_buf_t *buf) 1459 { 1460 #ifdef ZFS_DEBUG 1461 arc_buf_hdr_t *hdr = buf->b_hdr; 1462 zio_cksum_t zc; 1463 1464 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1465 return; 1466 1467 if (ARC_BUF_COMPRESSED(buf)) 1468 return; 1469 1470 ASSERT(HDR_HAS_L1HDR(hdr)); 1471 1472 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1473 1474 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { 1475 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1476 return; 1477 } 1478 1479 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc); 1480 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) 1481 panic("buffer modified while frozen!"); 1482 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1483 #endif 1484 } 1485 1486 /* 1487 * This function makes the assumption that data stored in the L2ARC 1488 * will be transformed exactly as it is in the main pool. Because of 1489 * this we can verify the checksum against the reading process's bp. 1490 */ 1491 static boolean_t 1492 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) 1493 { 1494 ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); 1495 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); 1496 1497 /* 1498 * Block pointers always store the checksum for the logical data. 1499 * If the block pointer has the gang bit set, then the checksum 1500 * it represents is for the reconstituted data and not for an 1501 * individual gang member. The zio pipeline, however, must be able to 1502 * determine the checksum of each of the gang constituents so it 1503 * treats the checksum comparison differently than what we need 1504 * for l2arc blocks. This prevents us from using the 1505 * zio_checksum_error() interface directly. Instead we must call the 1506 * zio_checksum_error_impl() so that we can ensure the checksum is 1507 * generated using the correct checksum algorithm and accounts for the 1508 * logical I/O size and not just a gang fragment. 1509 */ 1510 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp, 1511 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size, 1512 zio->io_offset, NULL) == 0); 1513 } 1514 1515 /* 1516 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a 1517 * checksum and attaches it to the buf's hdr so that we can ensure that the buf 1518 * isn't modified later on. If buf is compressed or there is already a checksum 1519 * on the hdr, this is a no-op (we only checksum uncompressed bufs). 1520 */ 1521 static void 1522 arc_cksum_compute(arc_buf_t *buf) 1523 { 1524 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1525 return; 1526 1527 #ifdef ZFS_DEBUG 1528 arc_buf_hdr_t *hdr = buf->b_hdr; 1529 ASSERT(HDR_HAS_L1HDR(hdr)); 1530 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1531 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) { 1532 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1533 return; 1534 } 1535 1536 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 1537 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1538 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), 1539 KM_SLEEP); 1540 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, 1541 hdr->b_l1hdr.b_freeze_cksum); 1542 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1543 #endif 1544 arc_buf_watch(buf); 1545 } 1546 1547 #ifndef _KERNEL 1548 void 1549 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused) 1550 { 1551 (void) sig, (void) unused; 1552 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr); 1553 } 1554 #endif 1555 1556 static void 1557 arc_buf_unwatch(arc_buf_t *buf) 1558 { 1559 #ifndef _KERNEL 1560 if (arc_watch) { 1561 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1562 PROT_READ | PROT_WRITE)); 1563 } 1564 #else 1565 (void) buf; 1566 #endif 1567 } 1568 1569 static void 1570 arc_buf_watch(arc_buf_t *buf) 1571 { 1572 #ifndef _KERNEL 1573 if (arc_watch) 1574 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1575 PROT_READ)); 1576 #else 1577 (void) buf; 1578 #endif 1579 } 1580 1581 static arc_buf_contents_t 1582 arc_buf_type(arc_buf_hdr_t *hdr) 1583 { 1584 arc_buf_contents_t type; 1585 if (HDR_ISTYPE_METADATA(hdr)) { 1586 type = ARC_BUFC_METADATA; 1587 } else { 1588 type = ARC_BUFC_DATA; 1589 } 1590 VERIFY3U(hdr->b_type, ==, type); 1591 return (type); 1592 } 1593 1594 boolean_t 1595 arc_is_metadata(arc_buf_t *buf) 1596 { 1597 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0); 1598 } 1599 1600 static uint32_t 1601 arc_bufc_to_flags(arc_buf_contents_t type) 1602 { 1603 switch (type) { 1604 case ARC_BUFC_DATA: 1605 /* metadata field is 0 if buffer contains normal data */ 1606 return (0); 1607 case ARC_BUFC_METADATA: 1608 return (ARC_FLAG_BUFC_METADATA); 1609 default: 1610 break; 1611 } 1612 panic("undefined ARC buffer type!"); 1613 return ((uint32_t)-1); 1614 } 1615 1616 void 1617 arc_buf_thaw(arc_buf_t *buf) 1618 { 1619 arc_buf_hdr_t *hdr = buf->b_hdr; 1620 1621 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 1622 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1623 1624 arc_cksum_verify(buf); 1625 1626 /* 1627 * Compressed buffers do not manipulate the b_freeze_cksum. 1628 */ 1629 if (ARC_BUF_COMPRESSED(buf)) 1630 return; 1631 1632 ASSERT(HDR_HAS_L1HDR(hdr)); 1633 arc_cksum_free(hdr); 1634 arc_buf_unwatch(buf); 1635 } 1636 1637 void 1638 arc_buf_freeze(arc_buf_t *buf) 1639 { 1640 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1641 return; 1642 1643 if (ARC_BUF_COMPRESSED(buf)) 1644 return; 1645 1646 ASSERT(HDR_HAS_L1HDR(buf->b_hdr)); 1647 arc_cksum_compute(buf); 1648 } 1649 1650 /* 1651 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, 1652 * the following functions should be used to ensure that the flags are 1653 * updated in a thread-safe way. When manipulating the flags either 1654 * the hash_lock must be held or the hdr must be undiscoverable. This 1655 * ensures that we're not racing with any other threads when updating 1656 * the flags. 1657 */ 1658 static inline void 1659 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1660 { 1661 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1662 hdr->b_flags |= flags; 1663 } 1664 1665 static inline void 1666 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1667 { 1668 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1669 hdr->b_flags &= ~flags; 1670 } 1671 1672 /* 1673 * Setting the compression bits in the arc_buf_hdr_t's b_flags is 1674 * done in a special way since we have to clear and set bits 1675 * at the same time. Consumers that wish to set the compression bits 1676 * must use this function to ensure that the flags are updated in 1677 * thread-safe manner. 1678 */ 1679 static void 1680 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) 1681 { 1682 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1683 1684 /* 1685 * Holes and embedded blocks will always have a psize = 0 so 1686 * we ignore the compression of the blkptr and set the 1687 * want to uncompress them. Mark them as uncompressed. 1688 */ 1689 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { 1690 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1691 ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); 1692 } else { 1693 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1694 ASSERT(HDR_COMPRESSION_ENABLED(hdr)); 1695 } 1696 1697 HDR_SET_COMPRESS(hdr, cmp); 1698 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); 1699 } 1700 1701 /* 1702 * Looks for another buf on the same hdr which has the data decompressed, copies 1703 * from it, and returns true. If no such buf exists, returns false. 1704 */ 1705 static boolean_t 1706 arc_buf_try_copy_decompressed_data(arc_buf_t *buf) 1707 { 1708 arc_buf_hdr_t *hdr = buf->b_hdr; 1709 boolean_t copied = B_FALSE; 1710 1711 ASSERT(HDR_HAS_L1HDR(hdr)); 1712 ASSERT3P(buf->b_data, !=, NULL); 1713 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1714 1715 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL; 1716 from = from->b_next) { 1717 /* can't use our own data buffer */ 1718 if (from == buf) { 1719 continue; 1720 } 1721 1722 if (!ARC_BUF_COMPRESSED(from)) { 1723 memcpy(buf->b_data, from->b_data, arc_buf_size(buf)); 1724 copied = B_TRUE; 1725 break; 1726 } 1727 } 1728 1729 #ifdef ZFS_DEBUG 1730 /* 1731 * There were no decompressed bufs, so there should not be a 1732 * checksum on the hdr either. 1733 */ 1734 if (zfs_flags & ZFS_DEBUG_MODIFY) 1735 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL); 1736 #endif 1737 1738 return (copied); 1739 } 1740 1741 /* 1742 * Allocates an ARC buf header that's in an evicted & L2-cached state. 1743 * This is used during l2arc reconstruction to make empty ARC buffers 1744 * which circumvent the regular disk->arc->l2arc path and instead come 1745 * into being in the reverse order, i.e. l2arc->arc. 1746 */ 1747 static arc_buf_hdr_t * 1748 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev, 1749 dva_t dva, uint64_t daddr, int32_t psize, uint64_t asize, uint64_t birth, 1750 enum zio_compress compress, uint8_t complevel, boolean_t protected, 1751 boolean_t prefetch, arc_state_type_t arcs_state) 1752 { 1753 arc_buf_hdr_t *hdr; 1754 1755 ASSERT(size != 0); 1756 ASSERT(dev->l2ad_vdev != NULL); 1757 1758 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP); 1759 hdr->b_birth = birth; 1760 hdr->b_type = type; 1761 hdr->b_flags = 0; 1762 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR); 1763 HDR_SET_LSIZE(hdr, size); 1764 HDR_SET_PSIZE(hdr, psize); 1765 HDR_SET_L2SIZE(hdr, asize); 1766 arc_hdr_set_compress(hdr, compress); 1767 hdr->b_complevel = complevel; 1768 if (protected) 1769 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 1770 if (prefetch) 1771 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 1772 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa); 1773 1774 hdr->b_dva = dva; 1775 1776 hdr->b_l2hdr.b_dev = dev; 1777 hdr->b_l2hdr.b_daddr = daddr; 1778 hdr->b_l2hdr.b_arcs_state = arcs_state; 1779 1780 return (hdr); 1781 } 1782 1783 /* 1784 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t. 1785 */ 1786 static uint64_t 1787 arc_hdr_size(arc_buf_hdr_t *hdr) 1788 { 1789 uint64_t size; 1790 1791 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 1792 HDR_GET_PSIZE(hdr) > 0) { 1793 size = HDR_GET_PSIZE(hdr); 1794 } else { 1795 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); 1796 size = HDR_GET_LSIZE(hdr); 1797 } 1798 return (size); 1799 } 1800 1801 static int 1802 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj) 1803 { 1804 int ret; 1805 uint64_t csize; 1806 uint64_t lsize = HDR_GET_LSIZE(hdr); 1807 uint64_t psize = HDR_GET_PSIZE(hdr); 1808 abd_t *abd = hdr->b_l1hdr.b_pabd; 1809 boolean_t free_abd = B_FALSE; 1810 1811 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1812 ASSERT(HDR_AUTHENTICATED(hdr)); 1813 ASSERT3P(abd, !=, NULL); 1814 1815 /* 1816 * The MAC is calculated on the compressed data that is stored on disk. 1817 * However, if compressed arc is disabled we will only have the 1818 * decompressed data available to us now. Compress it into a temporary 1819 * abd so we can verify the MAC. The performance overhead of this will 1820 * be relatively low, since most objects in an encrypted objset will 1821 * be encrypted (instead of authenticated) anyway. 1822 */ 1823 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1824 !HDR_COMPRESSION_ENABLED(hdr)) { 1825 abd = NULL; 1826 csize = zio_compress_data(HDR_GET_COMPRESS(hdr), 1827 hdr->b_l1hdr.b_pabd, &abd, lsize, MIN(lsize, psize), 1828 hdr->b_complevel); 1829 if (csize >= lsize || csize > psize) { 1830 ret = SET_ERROR(EIO); 1831 return (ret); 1832 } 1833 ASSERT3P(abd, !=, NULL); 1834 abd_zero_off(abd, csize, psize - csize); 1835 free_abd = B_TRUE; 1836 } 1837 1838 /* 1839 * Authentication is best effort. We authenticate whenever the key is 1840 * available. If we succeed we clear ARC_FLAG_NOAUTH. 1841 */ 1842 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) { 1843 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1844 ASSERT3U(lsize, ==, psize); 1845 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd, 1846 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1847 } else { 1848 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize, 1849 hdr->b_crypt_hdr.b_mac); 1850 } 1851 1852 if (ret == 0) 1853 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH); 1854 else if (ret == ENOENT) 1855 ret = 0; 1856 1857 if (free_abd) 1858 abd_free(abd); 1859 1860 return (ret); 1861 } 1862 1863 /* 1864 * This function will take a header that only has raw encrypted data in 1865 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in 1866 * b_l1hdr.b_pabd. If designated in the header flags, this function will 1867 * also decompress the data. 1868 */ 1869 static int 1870 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb) 1871 { 1872 int ret; 1873 abd_t *cabd = NULL; 1874 boolean_t no_crypt = B_FALSE; 1875 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1876 1877 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1878 ASSERT(HDR_ENCRYPTED(hdr)); 1879 1880 arc_hdr_alloc_abd(hdr, 0); 1881 1882 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot, 1883 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv, 1884 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd, 1885 hdr->b_crypt_hdr.b_rabd, &no_crypt); 1886 if (ret != 0) 1887 goto error; 1888 1889 if (no_crypt) { 1890 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd, 1891 HDR_GET_PSIZE(hdr)); 1892 } 1893 1894 /* 1895 * If this header has disabled arc compression but the b_pabd is 1896 * compressed after decrypting it, we need to decompress the newly 1897 * decrypted data. 1898 */ 1899 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1900 !HDR_COMPRESSION_ENABLED(hdr)) { 1901 /* 1902 * We want to make sure that we are correctly honoring the 1903 * zfs_abd_scatter_enabled setting, so we allocate an abd here 1904 * and then loan a buffer from it, rather than allocating a 1905 * linear buffer and wrapping it in an abd later. 1906 */ 1907 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 0); 1908 1909 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 1910 hdr->b_l1hdr.b_pabd, cabd, HDR_GET_PSIZE(hdr), 1911 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 1912 if (ret != 0) { 1913 goto error; 1914 } 1915 1916 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 1917 arc_hdr_size(hdr), hdr); 1918 hdr->b_l1hdr.b_pabd = cabd; 1919 } 1920 1921 return (0); 1922 1923 error: 1924 arc_hdr_free_abd(hdr, B_FALSE); 1925 if (cabd != NULL) 1926 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr); 1927 1928 return (ret); 1929 } 1930 1931 /* 1932 * This function is called during arc_buf_fill() to prepare the header's 1933 * abd plaintext pointer for use. This involves authenticated protected 1934 * data and decrypting encrypted data into the plaintext abd. 1935 */ 1936 static int 1937 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa, 1938 const zbookmark_phys_t *zb, boolean_t noauth) 1939 { 1940 int ret; 1941 1942 ASSERT(HDR_PROTECTED(hdr)); 1943 1944 if (hash_lock != NULL) 1945 mutex_enter(hash_lock); 1946 1947 if (HDR_NOAUTH(hdr) && !noauth) { 1948 /* 1949 * The caller requested authenticated data but our data has 1950 * not been authenticated yet. Verify the MAC now if we can. 1951 */ 1952 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset); 1953 if (ret != 0) 1954 goto error; 1955 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) { 1956 /* 1957 * If we only have the encrypted version of the data, but the 1958 * unencrypted version was requested we take this opportunity 1959 * to store the decrypted version in the header for future use. 1960 */ 1961 ret = arc_hdr_decrypt(hdr, spa, zb); 1962 if (ret != 0) 1963 goto error; 1964 } 1965 1966 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1967 1968 if (hash_lock != NULL) 1969 mutex_exit(hash_lock); 1970 1971 return (0); 1972 1973 error: 1974 if (hash_lock != NULL) 1975 mutex_exit(hash_lock); 1976 1977 return (ret); 1978 } 1979 1980 /* 1981 * This function is used by the dbuf code to decrypt bonus buffers in place. 1982 * The dbuf code itself doesn't have any locking for decrypting a shared dnode 1983 * block, so we use the hash lock here to protect against concurrent calls to 1984 * arc_buf_fill(). 1985 */ 1986 static void 1987 arc_buf_untransform_in_place(arc_buf_t *buf) 1988 { 1989 arc_buf_hdr_t *hdr = buf->b_hdr; 1990 1991 ASSERT(HDR_ENCRYPTED(hdr)); 1992 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 1993 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1994 ASSERT3PF(hdr->b_l1hdr.b_pabd, !=, NULL, "hdr %px buf %px", hdr, buf); 1995 1996 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data, 1997 arc_buf_size(buf)); 1998 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 1999 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 2000 } 2001 2002 /* 2003 * Given a buf that has a data buffer attached to it, this function will 2004 * efficiently fill the buf with data of the specified compression setting from 2005 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr 2006 * are already sharing a data buf, no copy is performed. 2007 * 2008 * If the buf is marked as compressed but uncompressed data was requested, this 2009 * will allocate a new data buffer for the buf, remove that flag, and fill the 2010 * buf with uncompressed data. You can't request a compressed buf on a hdr with 2011 * uncompressed data, and (since we haven't added support for it yet) if you 2012 * want compressed data your buf must already be marked as compressed and have 2013 * the correct-sized data buffer. 2014 */ 2015 static int 2016 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 2017 arc_fill_flags_t flags) 2018 { 2019 int error = 0; 2020 arc_buf_hdr_t *hdr = buf->b_hdr; 2021 boolean_t hdr_compressed = 2022 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 2023 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0; 2024 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0; 2025 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; 2026 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr); 2027 2028 ASSERT3P(buf->b_data, !=, NULL); 2029 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf)); 2030 IMPLY(compressed, ARC_BUF_COMPRESSED(buf)); 2031 IMPLY(encrypted, HDR_ENCRYPTED(hdr)); 2032 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf)); 2033 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf)); 2034 IMPLY(encrypted, !arc_buf_is_shared(buf)); 2035 2036 /* 2037 * If the caller wanted encrypted data we just need to copy it from 2038 * b_rabd and potentially byteswap it. We won't be able to do any 2039 * further transforms on it. 2040 */ 2041 if (encrypted) { 2042 ASSERT(HDR_HAS_RABD(hdr)); 2043 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd, 2044 HDR_GET_PSIZE(hdr)); 2045 goto byteswap; 2046 } 2047 2048 /* 2049 * Adjust encrypted and authenticated headers to accommodate 2050 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are 2051 * allowed to fail decryption due to keys not being loaded 2052 * without being marked as an IO error. 2053 */ 2054 if (HDR_PROTECTED(hdr)) { 2055 error = arc_fill_hdr_crypt(hdr, hash_lock, spa, 2056 zb, !!(flags & ARC_FILL_NOAUTH)); 2057 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) { 2058 return (error); 2059 } else if (error != 0) { 2060 if (hash_lock != NULL) 2061 mutex_enter(hash_lock); 2062 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2063 if (hash_lock != NULL) 2064 mutex_exit(hash_lock); 2065 return (error); 2066 } 2067 } 2068 2069 /* 2070 * There is a special case here for dnode blocks which are 2071 * decrypting their bonus buffers. These blocks may request to 2072 * be decrypted in-place. This is necessary because there may 2073 * be many dnodes pointing into this buffer and there is 2074 * currently no method to synchronize replacing the backing 2075 * b_data buffer and updating all of the pointers. Here we use 2076 * the hash lock to ensure there are no races. If the need 2077 * arises for other types to be decrypted in-place, they must 2078 * add handling here as well. 2079 */ 2080 if ((flags & ARC_FILL_IN_PLACE) != 0) { 2081 ASSERT(!hdr_compressed); 2082 ASSERT(!compressed); 2083 ASSERT(!encrypted); 2084 2085 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) { 2086 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 2087 2088 if (hash_lock != NULL) 2089 mutex_enter(hash_lock); 2090 arc_buf_untransform_in_place(buf); 2091 if (hash_lock != NULL) 2092 mutex_exit(hash_lock); 2093 2094 /* Compute the hdr's checksum if necessary */ 2095 arc_cksum_compute(buf); 2096 } 2097 2098 return (0); 2099 } 2100 2101 if (hdr_compressed == compressed) { 2102 if (ARC_BUF_SHARED(buf)) { 2103 ASSERT(arc_buf_is_shared(buf)); 2104 } else { 2105 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd, 2106 arc_buf_size(buf)); 2107 } 2108 } else { 2109 ASSERT(hdr_compressed); 2110 ASSERT(!compressed); 2111 2112 /* 2113 * If the buf is sharing its data with the hdr, unlink it and 2114 * allocate a new data buffer for the buf. 2115 */ 2116 if (ARC_BUF_SHARED(buf)) { 2117 ASSERTF(ARC_BUF_COMPRESSED(buf), 2118 "buf %p was uncompressed", buf); 2119 2120 /* We need to give the buf its own b_data */ 2121 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 2122 buf->b_data = 2123 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2124 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2125 2126 /* Previously overhead was 0; just add new overhead */ 2127 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 2128 } else if (ARC_BUF_COMPRESSED(buf)) { 2129 ASSERT(!arc_buf_is_shared(buf)); 2130 2131 /* We need to reallocate the buf's b_data */ 2132 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr), 2133 buf); 2134 buf->b_data = 2135 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2136 2137 /* We increased the size of b_data; update overhead */ 2138 ARCSTAT_INCR(arcstat_overhead_size, 2139 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr)); 2140 } 2141 2142 /* 2143 * Regardless of the buf's previous compression settings, it 2144 * should not be compressed at the end of this function. 2145 */ 2146 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 2147 2148 /* 2149 * Try copying the data from another buf which already has a 2150 * decompressed version. If that's not possible, it's time to 2151 * bite the bullet and decompress the data from the hdr. 2152 */ 2153 if (arc_buf_try_copy_decompressed_data(buf)) { 2154 /* Skip byteswapping and checksumming (already done) */ 2155 return (0); 2156 } else { 2157 abd_t dabd; 2158 abd_get_from_buf_struct(&dabd, buf->b_data, 2159 HDR_GET_LSIZE(hdr)); 2160 error = zio_decompress_data(HDR_GET_COMPRESS(hdr), 2161 hdr->b_l1hdr.b_pabd, &dabd, 2162 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr), 2163 &hdr->b_complevel); 2164 abd_free(&dabd); 2165 2166 /* 2167 * Absent hardware errors or software bugs, this should 2168 * be impossible, but log it anyway so we can debug it. 2169 */ 2170 if (error != 0) { 2171 zfs_dbgmsg( 2172 "hdr %px, compress %d, psize %d, lsize %d", 2173 hdr, arc_hdr_get_compress(hdr), 2174 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 2175 if (hash_lock != NULL) 2176 mutex_enter(hash_lock); 2177 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2178 if (hash_lock != NULL) 2179 mutex_exit(hash_lock); 2180 return (SET_ERROR(EIO)); 2181 } 2182 } 2183 } 2184 2185 byteswap: 2186 /* Byteswap the buf's data if necessary */ 2187 if (bswap != DMU_BSWAP_NUMFUNCS) { 2188 ASSERT(!HDR_SHARED_DATA(hdr)); 2189 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); 2190 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); 2191 } 2192 2193 /* Compute the hdr's checksum if necessary */ 2194 arc_cksum_compute(buf); 2195 2196 return (0); 2197 } 2198 2199 /* 2200 * If this function is being called to decrypt an encrypted buffer or verify an 2201 * authenticated one, the key must be loaded and a mapping must be made 2202 * available in the keystore via spa_keystore_create_mapping() or one of its 2203 * callers. 2204 */ 2205 int 2206 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 2207 boolean_t in_place) 2208 { 2209 int ret; 2210 arc_fill_flags_t flags = 0; 2211 2212 if (in_place) 2213 flags |= ARC_FILL_IN_PLACE; 2214 2215 ret = arc_buf_fill(buf, spa, zb, flags); 2216 if (ret == ECKSUM) { 2217 /* 2218 * Convert authentication and decryption errors to EIO 2219 * (and generate an ereport) before leaving the ARC. 2220 */ 2221 ret = SET_ERROR(EIO); 2222 spa_log_error(spa, zb, buf->b_hdr->b_birth); 2223 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 2224 spa, NULL, zb, NULL, 0); 2225 } 2226 2227 return (ret); 2228 } 2229 2230 /* 2231 * Increment the amount of evictable space in the arc_state_t's refcount. 2232 * We account for the space used by the hdr and the arc buf individually 2233 * so that we can add and remove them from the refcount individually. 2234 */ 2235 static void 2236 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) 2237 { 2238 arc_buf_contents_t type = arc_buf_type(hdr); 2239 2240 ASSERT(HDR_HAS_L1HDR(hdr)); 2241 2242 if (GHOST_STATE(state)) { 2243 ASSERT0P(hdr->b_l1hdr.b_buf); 2244 ASSERT0P(hdr->b_l1hdr.b_pabd); 2245 ASSERT(!HDR_HAS_RABD(hdr)); 2246 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2247 HDR_GET_LSIZE(hdr), hdr); 2248 return; 2249 } 2250 2251 if (hdr->b_l1hdr.b_pabd != NULL) { 2252 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2253 arc_hdr_size(hdr), hdr); 2254 } 2255 if (HDR_HAS_RABD(hdr)) { 2256 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2257 HDR_GET_PSIZE(hdr), hdr); 2258 } 2259 2260 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2261 buf = buf->b_next) { 2262 if (ARC_BUF_SHARED(buf)) 2263 continue; 2264 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2265 arc_buf_size(buf), buf); 2266 } 2267 } 2268 2269 /* 2270 * Decrement the amount of evictable space in the arc_state_t's refcount. 2271 * We account for the space used by the hdr and the arc buf individually 2272 * so that we can add and remove them from the refcount individually. 2273 */ 2274 static void 2275 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) 2276 { 2277 arc_buf_contents_t type = arc_buf_type(hdr); 2278 2279 ASSERT(HDR_HAS_L1HDR(hdr)); 2280 2281 if (GHOST_STATE(state)) { 2282 ASSERT0P(hdr->b_l1hdr.b_buf); 2283 ASSERT0P(hdr->b_l1hdr.b_pabd); 2284 ASSERT(!HDR_HAS_RABD(hdr)); 2285 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2286 HDR_GET_LSIZE(hdr), hdr); 2287 return; 2288 } 2289 2290 if (hdr->b_l1hdr.b_pabd != NULL) { 2291 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2292 arc_hdr_size(hdr), hdr); 2293 } 2294 if (HDR_HAS_RABD(hdr)) { 2295 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2296 HDR_GET_PSIZE(hdr), hdr); 2297 } 2298 2299 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2300 buf = buf->b_next) { 2301 if (ARC_BUF_SHARED(buf)) 2302 continue; 2303 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2304 arc_buf_size(buf), buf); 2305 } 2306 } 2307 2308 /* 2309 * Add a reference to this hdr indicating that someone is actively 2310 * referencing that memory. When the refcount transitions from 0 to 1, 2311 * we remove it from the respective arc_state_t list to indicate that 2312 * it is not evictable. 2313 */ 2314 static void 2315 add_reference(arc_buf_hdr_t *hdr, const void *tag) 2316 { 2317 arc_state_t *state = hdr->b_l1hdr.b_state; 2318 2319 ASSERT(HDR_HAS_L1HDR(hdr)); 2320 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) { 2321 ASSERT(state == arc_anon); 2322 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2323 ASSERT0P(hdr->b_l1hdr.b_buf); 2324 } 2325 2326 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 2327 state != arc_anon && state != arc_l2c_only) { 2328 /* We don't use the L2-only state list. */ 2329 multilist_remove(&state->arcs_list[arc_buf_type(hdr)], hdr); 2330 arc_evictable_space_decrement(hdr, state); 2331 } 2332 } 2333 2334 /* 2335 * Remove a reference from this hdr. When the reference transitions from 2336 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's 2337 * list making it eligible for eviction. 2338 */ 2339 static int 2340 remove_reference(arc_buf_hdr_t *hdr, const void *tag) 2341 { 2342 int cnt; 2343 arc_state_t *state = hdr->b_l1hdr.b_state; 2344 2345 ASSERT(HDR_HAS_L1HDR(hdr)); 2346 ASSERT(state == arc_anon || MUTEX_HELD(HDR_LOCK(hdr))); 2347 ASSERT(!GHOST_STATE(state)); /* arc_l2c_only counts as a ghost. */ 2348 2349 if ((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) != 0) 2350 return (cnt); 2351 2352 if (state == arc_anon) { 2353 arc_hdr_destroy(hdr); 2354 return (0); 2355 } 2356 if (state == arc_uncached && !HDR_PREFETCH(hdr)) { 2357 arc_change_state(arc_anon, hdr); 2358 arc_hdr_destroy(hdr); 2359 return (0); 2360 } 2361 multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr); 2362 arc_evictable_space_increment(hdr, state); 2363 return (0); 2364 } 2365 2366 /* 2367 * Returns detailed information about a specific arc buffer. When the 2368 * state_index argument is set the function will calculate the arc header 2369 * list position for its arc state. Since this requires a linear traversal 2370 * callers are strongly encourage not to do this. However, it can be helpful 2371 * for targeted analysis so the functionality is provided. 2372 */ 2373 void 2374 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index) 2375 { 2376 (void) state_index; 2377 arc_buf_hdr_t *hdr = ab->b_hdr; 2378 l1arc_buf_hdr_t *l1hdr = NULL; 2379 l2arc_buf_hdr_t *l2hdr = NULL; 2380 arc_state_t *state = NULL; 2381 2382 memset(abi, 0, sizeof (arc_buf_info_t)); 2383 2384 if (hdr == NULL) 2385 return; 2386 2387 abi->abi_flags = hdr->b_flags; 2388 2389 if (HDR_HAS_L1HDR(hdr)) { 2390 l1hdr = &hdr->b_l1hdr; 2391 state = l1hdr->b_state; 2392 } 2393 if (HDR_HAS_L2HDR(hdr)) 2394 l2hdr = &hdr->b_l2hdr; 2395 2396 if (l1hdr) { 2397 abi->abi_bufcnt = 0; 2398 for (arc_buf_t *buf = l1hdr->b_buf; buf; buf = buf->b_next) 2399 abi->abi_bufcnt++; 2400 abi->abi_access = l1hdr->b_arc_access; 2401 abi->abi_mru_hits = l1hdr->b_mru_hits; 2402 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits; 2403 abi->abi_mfu_hits = l1hdr->b_mfu_hits; 2404 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits; 2405 abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt); 2406 } 2407 2408 if (l2hdr) { 2409 abi->abi_l2arc_dattr = l2hdr->b_daddr; 2410 abi->abi_l2arc_hits = l2hdr->b_hits; 2411 } 2412 2413 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON; 2414 abi->abi_state_contents = arc_buf_type(hdr); 2415 abi->abi_size = arc_hdr_size(hdr); 2416 } 2417 2418 /* 2419 * Move the supplied buffer to the indicated state. The hash lock 2420 * for the buffer must be held by the caller. 2421 */ 2422 static void 2423 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr) 2424 { 2425 arc_state_t *old_state; 2426 int64_t refcnt; 2427 boolean_t update_old, update_new; 2428 arc_buf_contents_t type = arc_buf_type(hdr); 2429 2430 /* 2431 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 2432 * in arc_read() when bringing a buffer out of the L2ARC. However, the 2433 * L1 hdr doesn't always exist when we change state to arc_anon before 2434 * destroying a header, in which case reallocating to add the L1 hdr is 2435 * pointless. 2436 */ 2437 if (HDR_HAS_L1HDR(hdr)) { 2438 old_state = hdr->b_l1hdr.b_state; 2439 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt); 2440 update_old = (hdr->b_l1hdr.b_buf != NULL || 2441 hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 2442 2443 IMPLY(GHOST_STATE(old_state), hdr->b_l1hdr.b_buf == NULL); 2444 IMPLY(GHOST_STATE(new_state), hdr->b_l1hdr.b_buf == NULL); 2445 IMPLY(old_state == arc_anon, hdr->b_l1hdr.b_buf == NULL || 2446 ARC_BUF_LAST(hdr->b_l1hdr.b_buf)); 2447 } else { 2448 old_state = arc_l2c_only; 2449 refcnt = 0; 2450 update_old = B_FALSE; 2451 } 2452 update_new = update_old; 2453 if (GHOST_STATE(old_state)) 2454 update_old = B_TRUE; 2455 if (GHOST_STATE(new_state)) 2456 update_new = B_TRUE; 2457 2458 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 2459 ASSERT3P(new_state, !=, old_state); 2460 2461 /* 2462 * If this buffer is evictable, transfer it from the 2463 * old state list to the new state list. 2464 */ 2465 if (refcnt == 0) { 2466 if (old_state != arc_anon && old_state != arc_l2c_only) { 2467 ASSERT(HDR_HAS_L1HDR(hdr)); 2468 /* remove_reference() saves on insert. */ 2469 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2470 multilist_remove(&old_state->arcs_list[type], 2471 hdr); 2472 arc_evictable_space_decrement(hdr, old_state); 2473 } 2474 } 2475 if (new_state != arc_anon && new_state != arc_l2c_only) { 2476 /* 2477 * An L1 header always exists here, since if we're 2478 * moving to some L1-cached state (i.e. not l2c_only or 2479 * anonymous), we realloc the header to add an L1hdr 2480 * beforehand. 2481 */ 2482 ASSERT(HDR_HAS_L1HDR(hdr)); 2483 multilist_insert(&new_state->arcs_list[type], hdr); 2484 arc_evictable_space_increment(hdr, new_state); 2485 } 2486 } 2487 2488 ASSERT(!HDR_EMPTY(hdr)); 2489 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 2490 buf_hash_remove(hdr); 2491 2492 /* adjust state sizes (ignore arc_l2c_only) */ 2493 2494 if (update_new && new_state != arc_l2c_only) { 2495 ASSERT(HDR_HAS_L1HDR(hdr)); 2496 if (GHOST_STATE(new_state)) { 2497 2498 /* 2499 * When moving a header to a ghost state, we first 2500 * remove all arc buffers. Thus, we'll have no arc 2501 * buffer to use for the reference. As a result, we 2502 * use the arc header pointer for the reference. 2503 */ 2504 (void) zfs_refcount_add_many( 2505 &new_state->arcs_size[type], 2506 HDR_GET_LSIZE(hdr), hdr); 2507 ASSERT0P(hdr->b_l1hdr.b_pabd); 2508 ASSERT(!HDR_HAS_RABD(hdr)); 2509 } else { 2510 2511 /* 2512 * Each individual buffer holds a unique reference, 2513 * thus we must remove each of these references one 2514 * at a time. 2515 */ 2516 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2517 buf = buf->b_next) { 2518 2519 /* 2520 * When the arc_buf_t is sharing the data 2521 * block with the hdr, the owner of the 2522 * reference belongs to the hdr. Only 2523 * add to the refcount if the arc_buf_t is 2524 * not shared. 2525 */ 2526 if (ARC_BUF_SHARED(buf)) 2527 continue; 2528 2529 (void) zfs_refcount_add_many( 2530 &new_state->arcs_size[type], 2531 arc_buf_size(buf), buf); 2532 } 2533 2534 if (hdr->b_l1hdr.b_pabd != NULL) { 2535 (void) zfs_refcount_add_many( 2536 &new_state->arcs_size[type], 2537 arc_hdr_size(hdr), hdr); 2538 } 2539 2540 if (HDR_HAS_RABD(hdr)) { 2541 (void) zfs_refcount_add_many( 2542 &new_state->arcs_size[type], 2543 HDR_GET_PSIZE(hdr), hdr); 2544 } 2545 } 2546 } 2547 2548 if (update_old && old_state != arc_l2c_only) { 2549 ASSERT(HDR_HAS_L1HDR(hdr)); 2550 if (GHOST_STATE(old_state)) { 2551 ASSERT0P(hdr->b_l1hdr.b_pabd); 2552 ASSERT(!HDR_HAS_RABD(hdr)); 2553 2554 /* 2555 * When moving a header off of a ghost state, 2556 * the header will not contain any arc buffers. 2557 * We use the arc header pointer for the reference 2558 * which is exactly what we did when we put the 2559 * header on the ghost state. 2560 */ 2561 2562 (void) zfs_refcount_remove_many( 2563 &old_state->arcs_size[type], 2564 HDR_GET_LSIZE(hdr), hdr); 2565 } else { 2566 2567 /* 2568 * Each individual buffer holds a unique reference, 2569 * thus we must remove each of these references one 2570 * at a time. 2571 */ 2572 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2573 buf = buf->b_next) { 2574 2575 /* 2576 * When the arc_buf_t is sharing the data 2577 * block with the hdr, the owner of the 2578 * reference belongs to the hdr. Only 2579 * add to the refcount if the arc_buf_t is 2580 * not shared. 2581 */ 2582 if (ARC_BUF_SHARED(buf)) 2583 continue; 2584 2585 (void) zfs_refcount_remove_many( 2586 &old_state->arcs_size[type], 2587 arc_buf_size(buf), buf); 2588 } 2589 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 2590 HDR_HAS_RABD(hdr)); 2591 2592 if (hdr->b_l1hdr.b_pabd != NULL) { 2593 (void) zfs_refcount_remove_many( 2594 &old_state->arcs_size[type], 2595 arc_hdr_size(hdr), hdr); 2596 } 2597 2598 if (HDR_HAS_RABD(hdr)) { 2599 (void) zfs_refcount_remove_many( 2600 &old_state->arcs_size[type], 2601 HDR_GET_PSIZE(hdr), hdr); 2602 } 2603 } 2604 } 2605 2606 if (HDR_HAS_L1HDR(hdr)) { 2607 hdr->b_l1hdr.b_state = new_state; 2608 2609 if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) { 2610 l2arc_hdr_arcstats_decrement_state(hdr); 2611 hdr->b_l2hdr.b_arcs_state = new_state->arcs_state; 2612 l2arc_hdr_arcstats_increment_state(hdr); 2613 } 2614 } 2615 } 2616 2617 void 2618 arc_space_consume(uint64_t space, arc_space_type_t type) 2619 { 2620 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2621 2622 switch (type) { 2623 default: 2624 break; 2625 case ARC_SPACE_DATA: 2626 ARCSTAT_INCR(arcstat_data_size, space); 2627 break; 2628 case ARC_SPACE_META: 2629 ARCSTAT_INCR(arcstat_metadata_size, space); 2630 break; 2631 case ARC_SPACE_BONUS: 2632 ARCSTAT_INCR(arcstat_bonus_size, space); 2633 break; 2634 case ARC_SPACE_DNODE: 2635 aggsum_add(&arc_sums.arcstat_dnode_size, space); 2636 break; 2637 case ARC_SPACE_DBUF: 2638 ARCSTAT_INCR(arcstat_dbuf_size, space); 2639 break; 2640 case ARC_SPACE_HDRS: 2641 ARCSTAT_INCR(arcstat_hdr_size, space); 2642 break; 2643 case ARC_SPACE_L2HDRS: 2644 aggsum_add(&arc_sums.arcstat_l2_hdr_size, space); 2645 break; 2646 case ARC_SPACE_ABD_CHUNK_WASTE: 2647 /* 2648 * Note: this includes space wasted by all scatter ABD's, not 2649 * just those allocated by the ARC. But the vast majority of 2650 * scatter ABD's come from the ARC, because other users are 2651 * very short-lived. 2652 */ 2653 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, space); 2654 break; 2655 } 2656 2657 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) 2658 ARCSTAT_INCR(arcstat_meta_used, space); 2659 2660 aggsum_add(&arc_sums.arcstat_size, space); 2661 } 2662 2663 void 2664 arc_space_return(uint64_t space, arc_space_type_t type) 2665 { 2666 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2667 2668 switch (type) { 2669 default: 2670 break; 2671 case ARC_SPACE_DATA: 2672 ARCSTAT_INCR(arcstat_data_size, -space); 2673 break; 2674 case ARC_SPACE_META: 2675 ARCSTAT_INCR(arcstat_metadata_size, -space); 2676 break; 2677 case ARC_SPACE_BONUS: 2678 ARCSTAT_INCR(arcstat_bonus_size, -space); 2679 break; 2680 case ARC_SPACE_DNODE: 2681 aggsum_add(&arc_sums.arcstat_dnode_size, -space); 2682 break; 2683 case ARC_SPACE_DBUF: 2684 ARCSTAT_INCR(arcstat_dbuf_size, -space); 2685 break; 2686 case ARC_SPACE_HDRS: 2687 ARCSTAT_INCR(arcstat_hdr_size, -space); 2688 break; 2689 case ARC_SPACE_L2HDRS: 2690 aggsum_add(&arc_sums.arcstat_l2_hdr_size, -space); 2691 break; 2692 case ARC_SPACE_ABD_CHUNK_WASTE: 2693 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, -space); 2694 break; 2695 } 2696 2697 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) 2698 ARCSTAT_INCR(arcstat_meta_used, -space); 2699 2700 ASSERT(aggsum_compare(&arc_sums.arcstat_size, space) >= 0); 2701 aggsum_add(&arc_sums.arcstat_size, -space); 2702 } 2703 2704 /* 2705 * Given a hdr and a buf, returns whether that buf can share its b_data buffer 2706 * with the hdr's b_pabd. 2707 */ 2708 static boolean_t 2709 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2710 { 2711 /* 2712 * The criteria for sharing a hdr's data are: 2713 * 1. the buffer is not encrypted 2714 * 2. the hdr's compression matches the buf's compression 2715 * 3. the hdr doesn't need to be byteswapped 2716 * 4. the hdr isn't already being shared 2717 * 5. the buf is either compressed or it is the last buf in the hdr list 2718 * 2719 * Criterion #5 maintains the invariant that shared uncompressed 2720 * bufs must be the final buf in the hdr's b_buf list. Reading this, you 2721 * might ask, "if a compressed buf is allocated first, won't that be the 2722 * last thing in the list?", but in that case it's impossible to create 2723 * a shared uncompressed buf anyway (because the hdr must be compressed 2724 * to have the compressed buf). You might also think that #3 is 2725 * sufficient to make this guarantee, however it's possible 2726 * (specifically in the rare L2ARC write race mentioned in 2727 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that 2728 * is shareable, but wasn't at the time of its allocation. Rather than 2729 * allow a new shared uncompressed buf to be created and then shuffle 2730 * the list around to make it the last element, this simply disallows 2731 * sharing if the new buf isn't the first to be added. 2732 */ 2733 ASSERT3P(buf->b_hdr, ==, hdr); 2734 boolean_t hdr_compressed = 2735 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF; 2736 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0; 2737 return (!ARC_BUF_ENCRYPTED(buf) && 2738 buf_compressed == hdr_compressed && 2739 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && 2740 !HDR_SHARED_DATA(hdr) && 2741 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf))); 2742 } 2743 2744 /* 2745 * Allocate a buf for this hdr. If you care about the data that's in the hdr, 2746 * or if you want a compressed buffer, pass those flags in. Returns 0 if the 2747 * copy was made successfully, or an error code otherwise. 2748 */ 2749 static int 2750 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb, 2751 const void *tag, boolean_t encrypted, boolean_t compressed, 2752 boolean_t noauth, boolean_t fill, arc_buf_t **ret) 2753 { 2754 arc_buf_t *buf; 2755 arc_fill_flags_t flags = ARC_FILL_LOCKED; 2756 2757 ASSERT(HDR_HAS_L1HDR(hdr)); 2758 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2759 VERIFY(hdr->b_type == ARC_BUFC_DATA || 2760 hdr->b_type == ARC_BUFC_METADATA); 2761 ASSERT3P(ret, !=, NULL); 2762 ASSERT0P(*ret); 2763 IMPLY(encrypted, compressed); 2764 2765 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2766 buf->b_hdr = hdr; 2767 buf->b_data = NULL; 2768 buf->b_next = hdr->b_l1hdr.b_buf; 2769 buf->b_flags = 0; 2770 2771 add_reference(hdr, tag); 2772 2773 /* 2774 * We're about to change the hdr's b_flags. We must either 2775 * hold the hash_lock or be undiscoverable. 2776 */ 2777 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2778 2779 /* 2780 * Only honor requests for compressed bufs if the hdr is actually 2781 * compressed. This must be overridden if the buffer is encrypted since 2782 * encrypted buffers cannot be decompressed. 2783 */ 2784 if (encrypted) { 2785 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2786 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED; 2787 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED; 2788 } else if (compressed && 2789 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 2790 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2791 flags |= ARC_FILL_COMPRESSED; 2792 } 2793 2794 if (noauth) { 2795 ASSERT0(encrypted); 2796 flags |= ARC_FILL_NOAUTH; 2797 } 2798 2799 /* 2800 * If the hdr's data can be shared then we share the data buffer and 2801 * set the appropriate bit in the hdr's b_flags to indicate the hdr is 2802 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new 2803 * buffer to store the buf's data. 2804 * 2805 * There are two additional restrictions here because we're sharing 2806 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be 2807 * actively involved in an L2ARC write, because if this buf is used by 2808 * an arc_write() then the hdr's data buffer will be released when the 2809 * write completes, even though the L2ARC write might still be using it. 2810 * Second, the hdr's ABD must be linear so that the buf's user doesn't 2811 * need to be ABD-aware. It must be allocated via 2812 * zio_[data_]buf_alloc(), not as a page, because we need to be able 2813 * to abd_release_ownership_of_buf(), which isn't allowed on "linear 2814 * page" buffers because the ABD code needs to handle freeing them 2815 * specially. 2816 */ 2817 boolean_t can_share = arc_can_share(hdr, buf) && 2818 !HDR_L2_WRITING(hdr) && 2819 hdr->b_l1hdr.b_pabd != NULL && 2820 abd_is_linear(hdr->b_l1hdr.b_pabd) && 2821 !abd_is_linear_page(hdr->b_l1hdr.b_pabd); 2822 2823 /* Set up b_data and sharing */ 2824 if (can_share) { 2825 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd); 2826 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2827 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2828 } else { 2829 buf->b_data = 2830 arc_get_data_buf(hdr, arc_buf_size(buf), buf); 2831 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2832 } 2833 VERIFY3P(buf->b_data, !=, NULL); 2834 2835 hdr->b_l1hdr.b_buf = buf; 2836 2837 /* 2838 * If the user wants the data from the hdr, we need to either copy or 2839 * decompress the data. 2840 */ 2841 if (fill) { 2842 ASSERT3P(zb, !=, NULL); 2843 return (arc_buf_fill(buf, spa, zb, flags)); 2844 } 2845 2846 return (0); 2847 } 2848 2849 static const char *arc_onloan_tag = "onloan"; 2850 2851 static inline void 2852 arc_loaned_bytes_update(int64_t delta) 2853 { 2854 atomic_add_64(&arc_loaned_bytes, delta); 2855 2856 /* assert that it did not wrap around */ 2857 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 2858 } 2859 2860 /* 2861 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 2862 * flight data by arc_tempreserve_space() until they are "returned". Loaned 2863 * buffers must be returned to the arc before they can be used by the DMU or 2864 * freed. 2865 */ 2866 arc_buf_t * 2867 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size) 2868 { 2869 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag, 2870 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size); 2871 2872 arc_loaned_bytes_update(arc_buf_size(buf)); 2873 2874 return (buf); 2875 } 2876 2877 arc_buf_t * 2878 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize, 2879 enum zio_compress compression_type, uint8_t complevel) 2880 { 2881 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag, 2882 psize, lsize, compression_type, complevel); 2883 2884 arc_loaned_bytes_update(arc_buf_size(buf)); 2885 2886 return (buf); 2887 } 2888 2889 arc_buf_t * 2890 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder, 2891 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 2892 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 2893 enum zio_compress compression_type, uint8_t complevel) 2894 { 2895 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj, 2896 byteorder, salt, iv, mac, ot, psize, lsize, compression_type, 2897 complevel); 2898 2899 atomic_add_64(&arc_loaned_bytes, psize); 2900 return (buf); 2901 } 2902 2903 2904 /* 2905 * Return a loaned arc buffer to the arc. 2906 */ 2907 void 2908 arc_return_buf(arc_buf_t *buf, const void *tag) 2909 { 2910 arc_buf_hdr_t *hdr = buf->b_hdr; 2911 2912 ASSERT3P(buf->b_data, !=, NULL); 2913 ASSERT(HDR_HAS_L1HDR(hdr)); 2914 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 2915 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2916 2917 arc_loaned_bytes_update(-arc_buf_size(buf)); 2918 } 2919 2920 /* Detach an arc_buf from a dbuf (tag) */ 2921 void 2922 arc_loan_inuse_buf(arc_buf_t *buf, const void *tag) 2923 { 2924 arc_buf_hdr_t *hdr = buf->b_hdr; 2925 2926 ASSERT3P(buf->b_data, !=, NULL); 2927 ASSERT(HDR_HAS_L1HDR(hdr)); 2928 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2929 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 2930 2931 arc_loaned_bytes_update(arc_buf_size(buf)); 2932 } 2933 2934 static void 2935 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type) 2936 { 2937 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); 2938 2939 df->l2df_abd = abd; 2940 df->l2df_size = size; 2941 df->l2df_type = type; 2942 mutex_enter(&l2arc_free_on_write_mtx); 2943 list_insert_head(l2arc_free_on_write, df); 2944 mutex_exit(&l2arc_free_on_write_mtx); 2945 } 2946 2947 static void 2948 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata) 2949 { 2950 arc_state_t *state = hdr->b_l1hdr.b_state; 2951 arc_buf_contents_t type = arc_buf_type(hdr); 2952 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 2953 2954 /* protected by hash lock, if in the hash table */ 2955 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2956 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2957 ASSERT(state != arc_anon && state != arc_l2c_only); 2958 2959 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2960 size, hdr); 2961 } 2962 (void) zfs_refcount_remove_many(&state->arcs_size[type], size, hdr); 2963 if (type == ARC_BUFC_METADATA) { 2964 arc_space_return(size, ARC_SPACE_META); 2965 } else { 2966 ASSERT(type == ARC_BUFC_DATA); 2967 arc_space_return(size, ARC_SPACE_DATA); 2968 } 2969 2970 if (free_rdata) { 2971 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type); 2972 } else { 2973 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type); 2974 } 2975 } 2976 2977 /* 2978 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the 2979 * data buffer, we transfer the refcount ownership to the hdr and update 2980 * the appropriate kstats. 2981 */ 2982 static void 2983 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2984 { 2985 ASSERT(arc_can_share(hdr, buf)); 2986 ASSERT0P(hdr->b_l1hdr.b_pabd); 2987 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 2988 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2989 2990 /* 2991 * Start sharing the data buffer. We transfer the 2992 * refcount ownership to the hdr since it always owns 2993 * the refcount whenever an arc_buf_t is shared. 2994 */ 2995 zfs_refcount_transfer_ownership_many( 2996 &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)], 2997 arc_hdr_size(hdr), buf, hdr); 2998 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf)); 2999 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd, 3000 HDR_ISTYPE_METADATA(hdr)); 3001 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 3002 buf->b_flags |= ARC_BUF_FLAG_SHARED; 3003 3004 /* 3005 * Since we've transferred ownership to the hdr we need 3006 * to increment its compressed and uncompressed kstats and 3007 * decrement the overhead size. 3008 */ 3009 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 3010 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3011 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf)); 3012 } 3013 3014 static void 3015 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 3016 { 3017 ASSERT(arc_buf_is_shared(buf)); 3018 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3019 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3020 3021 /* 3022 * We are no longer sharing this buffer so we need 3023 * to transfer its ownership to the rightful owner. 3024 */ 3025 zfs_refcount_transfer_ownership_many( 3026 &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)], 3027 arc_hdr_size(hdr), hdr, buf); 3028 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3029 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd); 3030 abd_free(hdr->b_l1hdr.b_pabd); 3031 hdr->b_l1hdr.b_pabd = NULL; 3032 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 3033 3034 /* 3035 * Since the buffer is no longer shared between 3036 * the arc buf and the hdr, count it as overhead. 3037 */ 3038 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 3039 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3040 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 3041 } 3042 3043 /* 3044 * Remove an arc_buf_t from the hdr's buf list and return the last 3045 * arc_buf_t on the list. If no buffers remain on the list then return 3046 * NULL. 3047 */ 3048 static arc_buf_t * 3049 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf) 3050 { 3051 ASSERT(HDR_HAS_L1HDR(hdr)); 3052 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3053 3054 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf; 3055 arc_buf_t *lastbuf = NULL; 3056 3057 /* 3058 * Remove the buf from the hdr list and locate the last 3059 * remaining buffer on the list. 3060 */ 3061 while (*bufp != NULL) { 3062 if (*bufp == buf) 3063 *bufp = buf->b_next; 3064 3065 /* 3066 * If we've removed a buffer in the middle of 3067 * the list then update the lastbuf and update 3068 * bufp. 3069 */ 3070 if (*bufp != NULL) { 3071 lastbuf = *bufp; 3072 bufp = &(*bufp)->b_next; 3073 } 3074 } 3075 buf->b_next = NULL; 3076 ASSERT3P(lastbuf, !=, buf); 3077 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf)); 3078 3079 return (lastbuf); 3080 } 3081 3082 /* 3083 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's 3084 * list and free it. 3085 */ 3086 static void 3087 arc_buf_destroy_impl(arc_buf_t *buf) 3088 { 3089 arc_buf_hdr_t *hdr = buf->b_hdr; 3090 3091 /* 3092 * Free up the data associated with the buf but only if we're not 3093 * sharing this with the hdr. If we are sharing it with the hdr, the 3094 * hdr is responsible for doing the free. 3095 */ 3096 if (buf->b_data != NULL) { 3097 /* 3098 * We're about to change the hdr's b_flags. We must either 3099 * hold the hash_lock or be undiscoverable. 3100 */ 3101 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3102 3103 arc_cksum_verify(buf); 3104 arc_buf_unwatch(buf); 3105 3106 if (ARC_BUF_SHARED(buf)) { 3107 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3108 } else { 3109 ASSERT(!arc_buf_is_shared(buf)); 3110 uint64_t size = arc_buf_size(buf); 3111 arc_free_data_buf(hdr, buf->b_data, size, buf); 3112 ARCSTAT_INCR(arcstat_overhead_size, -size); 3113 } 3114 buf->b_data = NULL; 3115 3116 /* 3117 * If we have no more encrypted buffers and we've already 3118 * gotten a copy of the decrypted data we can free b_rabd 3119 * to save some space. 3120 */ 3121 if (ARC_BUF_ENCRYPTED(buf) && HDR_HAS_RABD(hdr) && 3122 hdr->b_l1hdr.b_pabd != NULL && !HDR_IO_IN_PROGRESS(hdr)) { 3123 arc_buf_t *b; 3124 for (b = hdr->b_l1hdr.b_buf; b; b = b->b_next) { 3125 if (b != buf && ARC_BUF_ENCRYPTED(b)) 3126 break; 3127 } 3128 if (b == NULL) 3129 arc_hdr_free_abd(hdr, B_TRUE); 3130 } 3131 } 3132 3133 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 3134 3135 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 3136 /* 3137 * If the current arc_buf_t is sharing its data buffer with the 3138 * hdr, then reassign the hdr's b_pabd to share it with the new 3139 * buffer at the end of the list. The shared buffer is always 3140 * the last one on the hdr's buffer list. 3141 * 3142 * There is an equivalent case for compressed bufs, but since 3143 * they aren't guaranteed to be the last buf in the list and 3144 * that is an exceedingly rare case, we just allow that space be 3145 * wasted temporarily. We must also be careful not to share 3146 * encrypted buffers, since they cannot be shared. 3147 */ 3148 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) { 3149 /* Only one buf can be shared at once */ 3150 ASSERT(!arc_buf_is_shared(lastbuf)); 3151 /* hdr is uncompressed so can't have compressed buf */ 3152 ASSERT(!ARC_BUF_COMPRESSED(lastbuf)); 3153 3154 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3155 arc_hdr_free_abd(hdr, B_FALSE); 3156 3157 /* 3158 * We must setup a new shared block between the 3159 * last buffer and the hdr. The data would have 3160 * been allocated by the arc buf so we need to transfer 3161 * ownership to the hdr since it's now being shared. 3162 */ 3163 arc_share_buf(hdr, lastbuf); 3164 } 3165 } else if (HDR_SHARED_DATA(hdr)) { 3166 /* 3167 * Uncompressed shared buffers are always at the end 3168 * of the list. Compressed buffers don't have the 3169 * same requirements. This makes it hard to 3170 * simply assert that the lastbuf is shared so 3171 * we rely on the hdr's compression flags to determine 3172 * if we have a compressed, shared buffer. 3173 */ 3174 ASSERT3P(lastbuf, !=, NULL); 3175 ASSERT(arc_buf_is_shared(lastbuf) || 3176 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 3177 } 3178 3179 /* 3180 * Free the checksum if we're removing the last uncompressed buf from 3181 * this hdr. 3182 */ 3183 if (!arc_hdr_has_uncompressed_buf(hdr)) { 3184 arc_cksum_free(hdr); 3185 } 3186 3187 /* clean up the buf */ 3188 buf->b_hdr = NULL; 3189 kmem_cache_free(buf_cache, buf); 3190 } 3191 3192 static void 3193 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags) 3194 { 3195 uint64_t size; 3196 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0); 3197 3198 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 3199 ASSERT(HDR_HAS_L1HDR(hdr)); 3200 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata); 3201 IMPLY(alloc_rdata, HDR_PROTECTED(hdr)); 3202 3203 if (alloc_rdata) { 3204 size = HDR_GET_PSIZE(hdr); 3205 ASSERT0P(hdr->b_crypt_hdr.b_rabd); 3206 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr, 3207 alloc_flags); 3208 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL); 3209 ARCSTAT_INCR(arcstat_raw_size, size); 3210 } else { 3211 size = arc_hdr_size(hdr); 3212 ASSERT0P(hdr->b_l1hdr.b_pabd); 3213 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr, 3214 alloc_flags); 3215 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3216 } 3217 3218 ARCSTAT_INCR(arcstat_compressed_size, size); 3219 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3220 } 3221 3222 static void 3223 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata) 3224 { 3225 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 3226 3227 ASSERT(HDR_HAS_L1HDR(hdr)); 3228 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 3229 IMPLY(free_rdata, HDR_HAS_RABD(hdr)); 3230 3231 /* 3232 * If the hdr is currently being written to the l2arc then 3233 * we defer freeing the data by adding it to the l2arc_free_on_write 3234 * list. The l2arc will free the data once it's finished 3235 * writing it to the l2arc device. 3236 */ 3237 if (HDR_L2_WRITING(hdr)) { 3238 arc_hdr_free_on_write(hdr, free_rdata); 3239 ARCSTAT_BUMP(arcstat_l2_free_on_write); 3240 } else if (free_rdata) { 3241 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr); 3242 } else { 3243 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr); 3244 } 3245 3246 if (free_rdata) { 3247 hdr->b_crypt_hdr.b_rabd = NULL; 3248 ARCSTAT_INCR(arcstat_raw_size, -size); 3249 } else { 3250 hdr->b_l1hdr.b_pabd = NULL; 3251 } 3252 3253 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr)) 3254 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 3255 3256 ARCSTAT_INCR(arcstat_compressed_size, -size); 3257 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3258 } 3259 3260 /* 3261 * Allocate empty anonymous ARC header. The header will get its identity 3262 * assigned and buffers attached later as part of read or write operations. 3263 * 3264 * In case of read arc_read() assigns header its identify (b_dva + b_birth), 3265 * inserts it into ARC hash to become globally visible and allocates physical 3266 * (b_pabd) or raw (b_rabd) ABD buffer to read into from disk. On disk read 3267 * completion arc_read_done() allocates ARC buffer(s) as needed, potentially 3268 * sharing one of them with the physical ABD buffer. 3269 * 3270 * In case of write arc_alloc_buf() allocates ARC buffer to be filled with 3271 * data. Then after compression and/or encryption arc_write_ready() allocates 3272 * and fills (or potentially shares) physical (b_pabd) or raw (b_rabd) ABD 3273 * buffer. On disk write completion arc_write_done() assigns the header its 3274 * new identity (b_dva + b_birth) and inserts into ARC hash. 3275 * 3276 * In case of partial overwrite the old data is read first as described. Then 3277 * arc_release() either allocates new anonymous ARC header and moves the ARC 3278 * buffer to it, or reuses the old ARC header by discarding its identity and 3279 * removing it from ARC hash. After buffer modification normal write process 3280 * follows as described. 3281 */ 3282 static arc_buf_hdr_t * 3283 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, 3284 boolean_t protected, enum zio_compress compression_type, uint8_t complevel, 3285 arc_buf_contents_t type) 3286 { 3287 arc_buf_hdr_t *hdr; 3288 3289 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); 3290 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 3291 3292 ASSERT(HDR_EMPTY(hdr)); 3293 #ifdef ZFS_DEBUG 3294 ASSERT0P(hdr->b_l1hdr.b_freeze_cksum); 3295 #endif 3296 HDR_SET_PSIZE(hdr, psize); 3297 HDR_SET_LSIZE(hdr, lsize); 3298 hdr->b_spa = spa; 3299 hdr->b_type = type; 3300 hdr->b_flags = 0; 3301 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); 3302 arc_hdr_set_compress(hdr, compression_type); 3303 hdr->b_complevel = complevel; 3304 if (protected) 3305 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 3306 3307 hdr->b_l1hdr.b_state = arc_anon; 3308 hdr->b_l1hdr.b_arc_access = 0; 3309 hdr->b_l1hdr.b_mru_hits = 0; 3310 hdr->b_l1hdr.b_mru_ghost_hits = 0; 3311 hdr->b_l1hdr.b_mfu_hits = 0; 3312 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 3313 hdr->b_l1hdr.b_buf = NULL; 3314 3315 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3316 3317 return (hdr); 3318 } 3319 3320 /* 3321 * Transition between the two allocation states for the arc_buf_hdr struct. 3322 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 3323 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 3324 * version is used when a cache buffer is only in the L2ARC in order to reduce 3325 * memory usage. 3326 */ 3327 static arc_buf_hdr_t * 3328 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 3329 { 3330 ASSERT(HDR_HAS_L2HDR(hdr)); 3331 3332 arc_buf_hdr_t *nhdr; 3333 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3334 3335 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 3336 (old == hdr_l2only_cache && new == hdr_full_cache)); 3337 3338 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 3339 3340 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 3341 buf_hash_remove(hdr); 3342 3343 memcpy(nhdr, hdr, HDR_L2ONLY_SIZE); 3344 3345 if (new == hdr_full_cache) { 3346 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3347 /* 3348 * arc_access and arc_change_state need to be aware that a 3349 * header has just come out of L2ARC, so we set its state to 3350 * l2c_only even though it's about to change. 3351 */ 3352 nhdr->b_l1hdr.b_state = arc_l2c_only; 3353 3354 /* Verify previous threads set to NULL before freeing */ 3355 ASSERT0P(nhdr->b_l1hdr.b_pabd); 3356 ASSERT(!HDR_HAS_RABD(hdr)); 3357 } else { 3358 ASSERT0P(hdr->b_l1hdr.b_buf); 3359 #ifdef ZFS_DEBUG 3360 ASSERT0P(hdr->b_l1hdr.b_freeze_cksum); 3361 #endif 3362 3363 /* 3364 * If we've reached here, We must have been called from 3365 * arc_evict_hdr(), as such we should have already been 3366 * removed from any ghost list we were previously on 3367 * (which protects us from racing with arc_evict_state), 3368 * thus no locking is needed during this check. 3369 */ 3370 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3371 3372 /* 3373 * A buffer must not be moved into the arc_l2c_only 3374 * state if it's not finished being written out to the 3375 * l2arc device. Otherwise, the b_l1hdr.b_pabd field 3376 * might try to be accessed, even though it was removed. 3377 */ 3378 VERIFY(!HDR_L2_WRITING(hdr)); 3379 VERIFY0P(hdr->b_l1hdr.b_pabd); 3380 ASSERT(!HDR_HAS_RABD(hdr)); 3381 3382 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3383 } 3384 /* 3385 * The header has been reallocated so we need to re-insert it into any 3386 * lists it was on. 3387 */ 3388 (void) buf_hash_insert(nhdr, NULL); 3389 3390 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 3391 3392 mutex_enter(&dev->l2ad_mtx); 3393 3394 /* 3395 * We must place the realloc'ed header back into the list at 3396 * the same spot. Otherwise, if it's placed earlier in the list, 3397 * l2arc_write_buffers() could find it during the function's 3398 * write phase, and try to write it out to the l2arc. 3399 */ 3400 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 3401 list_remove(&dev->l2ad_buflist, hdr); 3402 3403 mutex_exit(&dev->l2ad_mtx); 3404 3405 /* 3406 * Since we're using the pointer address as the tag when 3407 * incrementing and decrementing the l2ad_alloc refcount, we 3408 * must remove the old pointer (that we're about to destroy) and 3409 * add the new pointer to the refcount. Otherwise we'd remove 3410 * the wrong pointer address when calling arc_hdr_destroy() later. 3411 */ 3412 3413 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 3414 arc_hdr_size(hdr), hdr); 3415 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 3416 arc_hdr_size(nhdr), nhdr); 3417 3418 buf_discard_identity(hdr); 3419 kmem_cache_free(old, hdr); 3420 3421 return (nhdr); 3422 } 3423 3424 /* 3425 * This function is used by the send / receive code to convert a newly 3426 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It 3427 * is also used to allow the root objset block to be updated without altering 3428 * its embedded MACs. Both block types will always be uncompressed so we do not 3429 * have to worry about compression type or psize. 3430 */ 3431 void 3432 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder, 3433 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv, 3434 const uint8_t *mac) 3435 { 3436 arc_buf_hdr_t *hdr = buf->b_hdr; 3437 3438 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET); 3439 ASSERT(HDR_HAS_L1HDR(hdr)); 3440 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3441 3442 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED); 3443 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 3444 hdr->b_crypt_hdr.b_dsobj = dsobj; 3445 hdr->b_crypt_hdr.b_ot = ot; 3446 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3447 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3448 if (!arc_hdr_has_uncompressed_buf(hdr)) 3449 arc_cksum_free(hdr); 3450 3451 if (salt != NULL) 3452 memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN); 3453 if (iv != NULL) 3454 memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN); 3455 if (mac != NULL) 3456 memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN); 3457 } 3458 3459 /* 3460 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. 3461 * The buf is returned thawed since we expect the consumer to modify it. 3462 */ 3463 arc_buf_t * 3464 arc_alloc_buf(spa_t *spa, const void *tag, arc_buf_contents_t type, 3465 int32_t size) 3466 { 3467 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, 3468 B_FALSE, ZIO_COMPRESS_OFF, 0, type); 3469 3470 arc_buf_t *buf = NULL; 3471 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE, 3472 B_FALSE, B_FALSE, &buf)); 3473 arc_buf_thaw(buf); 3474 3475 return (buf); 3476 } 3477 3478 /* 3479 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this 3480 * for bufs containing metadata. 3481 */ 3482 arc_buf_t * 3483 arc_alloc_compressed_buf(spa_t *spa, const void *tag, uint64_t psize, 3484 uint64_t lsize, enum zio_compress compression_type, uint8_t complevel) 3485 { 3486 ASSERT3U(lsize, >, 0); 3487 ASSERT3U(lsize, >=, psize); 3488 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF); 3489 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3490 3491 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 3492 B_FALSE, compression_type, complevel, ARC_BUFC_DATA); 3493 3494 arc_buf_t *buf = NULL; 3495 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, 3496 B_TRUE, B_FALSE, B_FALSE, &buf)); 3497 arc_buf_thaw(buf); 3498 3499 /* 3500 * To ensure that the hdr has the correct data in it if we call 3501 * arc_untransform() on this buf before it's been written to disk, 3502 * it's easiest if we just set up sharing between the buf and the hdr. 3503 */ 3504 arc_share_buf(hdr, buf); 3505 3506 return (buf); 3507 } 3508 3509 arc_buf_t * 3510 arc_alloc_raw_buf(spa_t *spa, const void *tag, uint64_t dsobj, 3511 boolean_t byteorder, const uint8_t *salt, const uint8_t *iv, 3512 const uint8_t *mac, dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 3513 enum zio_compress compression_type, uint8_t complevel) 3514 { 3515 arc_buf_hdr_t *hdr; 3516 arc_buf_t *buf; 3517 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ? 3518 ARC_BUFC_METADATA : ARC_BUFC_DATA; 3519 3520 ASSERT3U(lsize, >, 0); 3521 ASSERT3U(lsize, >=, psize); 3522 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF); 3523 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3524 3525 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE, 3526 compression_type, complevel, type); 3527 3528 hdr->b_crypt_hdr.b_dsobj = dsobj; 3529 hdr->b_crypt_hdr.b_ot = ot; 3530 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3531 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3532 memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN); 3533 memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN); 3534 memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN); 3535 3536 /* 3537 * This buffer will be considered encrypted even if the ot is not an 3538 * encrypted type. It will become authenticated instead in 3539 * arc_write_ready(). 3540 */ 3541 buf = NULL; 3542 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE, 3543 B_FALSE, B_FALSE, &buf)); 3544 arc_buf_thaw(buf); 3545 3546 return (buf); 3547 } 3548 3549 static void 3550 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 3551 boolean_t state_only) 3552 { 3553 uint64_t lsize = HDR_GET_LSIZE(hdr); 3554 uint64_t psize = HDR_GET_PSIZE(hdr); 3555 uint64_t asize = HDR_GET_L2SIZE(hdr); 3556 arc_buf_contents_t type = hdr->b_type; 3557 int64_t lsize_s; 3558 int64_t psize_s; 3559 int64_t asize_s; 3560 3561 /* For L2 we expect the header's b_l2size to be valid */ 3562 ASSERT3U(asize, >=, psize); 3563 3564 if (incr) { 3565 lsize_s = lsize; 3566 psize_s = psize; 3567 asize_s = asize; 3568 } else { 3569 lsize_s = -lsize; 3570 psize_s = -psize; 3571 asize_s = -asize; 3572 } 3573 3574 /* If the buffer is a prefetch, count it as such. */ 3575 if (HDR_PREFETCH(hdr)) { 3576 ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s); 3577 } else { 3578 /* 3579 * We use the value stored in the L2 header upon initial 3580 * caching in L2ARC. This value will be updated in case 3581 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC 3582 * metadata (log entry) cannot currently be updated. Having 3583 * the ARC state in the L2 header solves the problem of a 3584 * possibly absent L1 header (apparent in buffers restored 3585 * from persistent L2ARC). 3586 */ 3587 switch (hdr->b_l2hdr.b_arcs_state) { 3588 case ARC_STATE_MRU_GHOST: 3589 case ARC_STATE_MRU: 3590 ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s); 3591 break; 3592 case ARC_STATE_MFU_GHOST: 3593 case ARC_STATE_MFU: 3594 ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s); 3595 break; 3596 default: 3597 break; 3598 } 3599 } 3600 3601 if (state_only) 3602 return; 3603 3604 ARCSTAT_INCR(arcstat_l2_psize, psize_s); 3605 ARCSTAT_INCR(arcstat_l2_lsize, lsize_s); 3606 3607 switch (type) { 3608 case ARC_BUFC_DATA: 3609 ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s); 3610 break; 3611 case ARC_BUFC_METADATA: 3612 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s); 3613 break; 3614 default: 3615 break; 3616 } 3617 } 3618 3619 3620 static void 3621 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 3622 { 3623 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3624 l2arc_dev_t *dev = l2hdr->b_dev; 3625 3626 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 3627 ASSERT(HDR_HAS_L2HDR(hdr)); 3628 3629 list_remove(&dev->l2ad_buflist, hdr); 3630 3631 l2arc_hdr_arcstats_decrement(hdr); 3632 if (dev->l2ad_vdev != NULL) { 3633 uint64_t asize = HDR_GET_L2SIZE(hdr); 3634 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); 3635 } 3636 3637 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), 3638 hdr); 3639 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 3640 } 3641 3642 static void 3643 arc_hdr_destroy(arc_buf_hdr_t *hdr) 3644 { 3645 if (HDR_HAS_L1HDR(hdr)) { 3646 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3647 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3648 } 3649 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3650 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 3651 3652 if (HDR_HAS_L2HDR(hdr)) { 3653 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3654 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 3655 3656 if (!buflist_held) 3657 mutex_enter(&dev->l2ad_mtx); 3658 3659 /* 3660 * Even though we checked this conditional above, we 3661 * need to check this again now that we have the 3662 * l2ad_mtx. This is because we could be racing with 3663 * another thread calling l2arc_evict() which might have 3664 * destroyed this header's L2 portion as we were waiting 3665 * to acquire the l2ad_mtx. If that happens, we don't 3666 * want to re-destroy the header's L2 portion. 3667 */ 3668 if (HDR_HAS_L2HDR(hdr)) { 3669 3670 if (!HDR_EMPTY(hdr)) 3671 buf_discard_identity(hdr); 3672 3673 arc_hdr_l2hdr_destroy(hdr); 3674 } 3675 3676 if (!buflist_held) 3677 mutex_exit(&dev->l2ad_mtx); 3678 } 3679 3680 /* 3681 * The header's identify can only be safely discarded once it is no 3682 * longer discoverable. This requires removing it from the hash table 3683 * and the l2arc header list. After this point the hash lock can not 3684 * be used to protect the header. 3685 */ 3686 if (!HDR_EMPTY(hdr)) 3687 buf_discard_identity(hdr); 3688 3689 if (HDR_HAS_L1HDR(hdr)) { 3690 arc_cksum_free(hdr); 3691 3692 while (hdr->b_l1hdr.b_buf != NULL) 3693 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf); 3694 3695 if (hdr->b_l1hdr.b_pabd != NULL) 3696 arc_hdr_free_abd(hdr, B_FALSE); 3697 3698 if (HDR_HAS_RABD(hdr)) 3699 arc_hdr_free_abd(hdr, B_TRUE); 3700 } 3701 3702 ASSERT0P(hdr->b_hash_next); 3703 if (HDR_HAS_L1HDR(hdr)) { 3704 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3705 ASSERT0P(hdr->b_l1hdr.b_acb); 3706 #ifdef ZFS_DEBUG 3707 ASSERT0P(hdr->b_l1hdr.b_freeze_cksum); 3708 #endif 3709 kmem_cache_free(hdr_full_cache, hdr); 3710 } else { 3711 kmem_cache_free(hdr_l2only_cache, hdr); 3712 } 3713 } 3714 3715 void 3716 arc_buf_destroy(arc_buf_t *buf, const void *tag) 3717 { 3718 arc_buf_hdr_t *hdr = buf->b_hdr; 3719 3720 if (hdr->b_l1hdr.b_state == arc_anon) { 3721 ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf); 3722 ASSERT(ARC_BUF_LAST(buf)); 3723 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3724 VERIFY0(remove_reference(hdr, tag)); 3725 return; 3726 } 3727 3728 kmutex_t *hash_lock = HDR_LOCK(hdr); 3729 mutex_enter(hash_lock); 3730 3731 ASSERT3P(hdr, ==, buf->b_hdr); 3732 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL); 3733 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3734 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); 3735 ASSERT3P(buf->b_data, !=, NULL); 3736 3737 arc_buf_destroy_impl(buf); 3738 (void) remove_reference(hdr, tag); 3739 mutex_exit(hash_lock); 3740 } 3741 3742 /* 3743 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 3744 * state of the header is dependent on its state prior to entering this 3745 * function. The following transitions are possible: 3746 * 3747 * - arc_mru -> arc_mru_ghost 3748 * - arc_mfu -> arc_mfu_ghost 3749 * - arc_mru_ghost -> arc_l2c_only 3750 * - arc_mru_ghost -> deleted 3751 * - arc_mfu_ghost -> arc_l2c_only 3752 * - arc_mfu_ghost -> deleted 3753 * - arc_uncached -> deleted 3754 * 3755 * Return total size of evicted data buffers for eviction progress tracking. 3756 * When evicting from ghost states return logical buffer size to make eviction 3757 * progress at the same (or at least comparable) rate as from non-ghost states. 3758 * 3759 * Return *real_evicted for actual ARC size reduction to wake up threads 3760 * waiting for it. For non-ghost states it includes size of evicted data 3761 * buffers (the headers are not freed there). For ghost states it includes 3762 * only the evicted headers size. 3763 */ 3764 static int64_t 3765 arc_evict_hdr(arc_buf_hdr_t *hdr, uint64_t *real_evicted) 3766 { 3767 arc_state_t *evicted_state, *state; 3768 int64_t bytes_evicted = 0; 3769 uint_t min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ? 3770 arc_min_prescient_prefetch_ms : arc_min_prefetch_ms; 3771 3772 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 3773 ASSERT(HDR_HAS_L1HDR(hdr)); 3774 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3775 ASSERT0P(hdr->b_l1hdr.b_buf); 3776 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3777 3778 *real_evicted = 0; 3779 state = hdr->b_l1hdr.b_state; 3780 if (GHOST_STATE(state)) { 3781 3782 /* 3783 * l2arc_write_buffers() relies on a header's L1 portion 3784 * (i.e. its b_pabd field) during it's write phase. 3785 * Thus, we cannot push a header onto the arc_l2c_only 3786 * state (removing its L1 piece) until the header is 3787 * done being written to the l2arc. 3788 */ 3789 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 3790 ARCSTAT_BUMP(arcstat_evict_l2_skip); 3791 return (bytes_evicted); 3792 } 3793 3794 ARCSTAT_BUMP(arcstat_deleted); 3795 bytes_evicted += HDR_GET_LSIZE(hdr); 3796 3797 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 3798 3799 if (HDR_HAS_L2HDR(hdr)) { 3800 ASSERT0P(hdr->b_l1hdr.b_pabd); 3801 ASSERT(!HDR_HAS_RABD(hdr)); 3802 /* 3803 * This buffer is cached on the 2nd Level ARC; 3804 * don't destroy the header. 3805 */ 3806 arc_change_state(arc_l2c_only, hdr); 3807 /* 3808 * dropping from L1+L2 cached to L2-only, 3809 * realloc to remove the L1 header. 3810 */ 3811 (void) arc_hdr_realloc(hdr, hdr_full_cache, 3812 hdr_l2only_cache); 3813 *real_evicted += HDR_FULL_SIZE - HDR_L2ONLY_SIZE; 3814 } else { 3815 arc_change_state(arc_anon, hdr); 3816 arc_hdr_destroy(hdr); 3817 *real_evicted += HDR_FULL_SIZE; 3818 } 3819 return (bytes_evicted); 3820 } 3821 3822 ASSERT(state == arc_mru || state == arc_mfu || state == arc_uncached); 3823 evicted_state = (state == arc_uncached) ? arc_anon : 3824 ((state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost); 3825 3826 /* prefetch buffers have a minimum lifespan */ 3827 if ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 3828 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < 3829 MSEC_TO_TICK(min_lifetime)) { 3830 ARCSTAT_BUMP(arcstat_evict_skip); 3831 return (bytes_evicted); 3832 } 3833 3834 if (HDR_HAS_L2HDR(hdr)) { 3835 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); 3836 } else { 3837 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 3838 ARCSTAT_INCR(arcstat_evict_l2_eligible, 3839 HDR_GET_LSIZE(hdr)); 3840 3841 switch (state->arcs_state) { 3842 case ARC_STATE_MRU: 3843 ARCSTAT_INCR( 3844 arcstat_evict_l2_eligible_mru, 3845 HDR_GET_LSIZE(hdr)); 3846 break; 3847 case ARC_STATE_MFU: 3848 ARCSTAT_INCR( 3849 arcstat_evict_l2_eligible_mfu, 3850 HDR_GET_LSIZE(hdr)); 3851 break; 3852 default: 3853 break; 3854 } 3855 } else { 3856 ARCSTAT_INCR(arcstat_evict_l2_ineligible, 3857 HDR_GET_LSIZE(hdr)); 3858 } 3859 } 3860 3861 bytes_evicted += arc_hdr_size(hdr); 3862 *real_evicted += arc_hdr_size(hdr); 3863 3864 /* 3865 * If this hdr is being evicted and has a compressed buffer then we 3866 * discard it here before we change states. This ensures that the 3867 * accounting is updated correctly in arc_free_data_impl(). 3868 */ 3869 if (hdr->b_l1hdr.b_pabd != NULL) 3870 arc_hdr_free_abd(hdr, B_FALSE); 3871 3872 if (HDR_HAS_RABD(hdr)) 3873 arc_hdr_free_abd(hdr, B_TRUE); 3874 3875 arc_change_state(evicted_state, hdr); 3876 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 3877 if (evicted_state == arc_anon) { 3878 arc_hdr_destroy(hdr); 3879 *real_evicted += HDR_FULL_SIZE; 3880 } else { 3881 ASSERT(HDR_IN_HASH_TABLE(hdr)); 3882 } 3883 3884 return (bytes_evicted); 3885 } 3886 3887 static void 3888 arc_set_need_free(void) 3889 { 3890 ASSERT(MUTEX_HELD(&arc_evict_lock)); 3891 int64_t remaining = arc_free_memory() - arc_sys_free / 2; 3892 arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters); 3893 if (aw == NULL) { 3894 arc_need_free = MAX(-remaining, 0); 3895 } else { 3896 arc_need_free = 3897 MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count)); 3898 } 3899 } 3900 3901 static uint64_t 3902 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 3903 uint64_t spa, uint64_t bytes) 3904 { 3905 multilist_sublist_t *mls; 3906 uint64_t bytes_evicted = 0, real_evicted = 0; 3907 arc_buf_hdr_t *hdr; 3908 kmutex_t *hash_lock; 3909 uint_t evict_count = zfs_arc_evict_batch_limit; 3910 3911 ASSERT3P(marker, !=, NULL); 3912 3913 mls = multilist_sublist_lock_idx(ml, idx); 3914 3915 for (hdr = multilist_sublist_prev(mls, marker); likely(hdr != NULL); 3916 hdr = multilist_sublist_prev(mls, marker)) { 3917 if ((evict_count == 0) || (bytes_evicted >= bytes)) 3918 break; 3919 3920 /* 3921 * To keep our iteration location, move the marker 3922 * forward. Since we're not holding hdr's hash lock, we 3923 * must be very careful and not remove 'hdr' from the 3924 * sublist. Otherwise, other consumers might mistake the 3925 * 'hdr' as not being on a sublist when they call the 3926 * multilist_link_active() function (they all rely on 3927 * the hash lock protecting concurrent insertions and 3928 * removals). multilist_sublist_move_forward() was 3929 * specifically implemented to ensure this is the case 3930 * (only 'marker' will be removed and re-inserted). 3931 */ 3932 multilist_sublist_move_forward(mls, marker); 3933 3934 /* 3935 * The only case where the b_spa field should ever be 3936 * zero, is the marker headers inserted by 3937 * arc_evict_state(). It's possible for multiple threads 3938 * to be calling arc_evict_state() concurrently (e.g. 3939 * dsl_pool_close() and zio_inject_fault()), so we must 3940 * skip any markers we see from these other threads. 3941 */ 3942 if (hdr->b_spa == 0) 3943 continue; 3944 3945 /* we're only interested in evicting buffers of a certain spa */ 3946 if (spa != 0 && hdr->b_spa != spa) { 3947 ARCSTAT_BUMP(arcstat_evict_skip); 3948 continue; 3949 } 3950 3951 hash_lock = HDR_LOCK(hdr); 3952 3953 /* 3954 * We aren't calling this function from any code path 3955 * that would already be holding a hash lock, so we're 3956 * asserting on this assumption to be defensive in case 3957 * this ever changes. Without this check, it would be 3958 * possible to incorrectly increment arcstat_mutex_miss 3959 * below (e.g. if the code changed such that we called 3960 * this function with a hash lock held). 3961 */ 3962 ASSERT(!MUTEX_HELD(hash_lock)); 3963 3964 if (mutex_tryenter(hash_lock)) { 3965 uint64_t revicted; 3966 uint64_t evicted = arc_evict_hdr(hdr, &revicted); 3967 mutex_exit(hash_lock); 3968 3969 bytes_evicted += evicted; 3970 real_evicted += revicted; 3971 3972 /* 3973 * If evicted is zero, arc_evict_hdr() must have 3974 * decided to skip this header, don't increment 3975 * evict_count in this case. 3976 */ 3977 if (evicted != 0) 3978 evict_count--; 3979 3980 } else { 3981 ARCSTAT_BUMP(arcstat_mutex_miss); 3982 } 3983 } 3984 3985 multilist_sublist_unlock(mls); 3986 3987 /* 3988 * Increment the count of evicted bytes, and wake up any threads that 3989 * are waiting for the count to reach this value. Since the list is 3990 * ordered by ascending aew_count, we pop off the beginning of the 3991 * list until we reach the end, or a waiter that's past the current 3992 * "count". Doing this outside the loop reduces the number of times 3993 * we need to acquire the global arc_evict_lock. 3994 * 3995 * Only wake when there's sufficient free memory in the system 3996 * (specifically, arc_sys_free/2, which by default is a bit more than 3997 * 1/64th of RAM). See the comments in arc_wait_for_eviction(). 3998 */ 3999 mutex_enter(&arc_evict_lock); 4000 arc_evict_count += real_evicted; 4001 4002 if (arc_free_memory() > arc_sys_free / 2) { 4003 arc_evict_waiter_t *aw; 4004 while ((aw = list_head(&arc_evict_waiters)) != NULL && 4005 aw->aew_count <= arc_evict_count) { 4006 list_remove(&arc_evict_waiters, aw); 4007 cv_broadcast(&aw->aew_cv); 4008 } 4009 } 4010 arc_set_need_free(); 4011 mutex_exit(&arc_evict_lock); 4012 4013 /* 4014 * If the ARC size is reduced from arc_c_max to arc_c_min (especially 4015 * if the average cached block is small), eviction can be on-CPU for 4016 * many seconds. To ensure that other threads that may be bound to 4017 * this CPU are able to make progress, make a voluntary preemption 4018 * call here. 4019 */ 4020 kpreempt(KPREEMPT_SYNC); 4021 4022 return (bytes_evicted); 4023 } 4024 4025 static arc_buf_hdr_t * 4026 arc_state_alloc_marker(void) 4027 { 4028 arc_buf_hdr_t *marker = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 4029 4030 /* 4031 * A b_spa of 0 is used to indicate that this header is 4032 * a marker. This fact is used in arc_evict_state_impl(). 4033 */ 4034 marker->b_spa = 0; 4035 4036 return (marker); 4037 } 4038 4039 static void 4040 arc_state_free_marker(arc_buf_hdr_t *marker) 4041 { 4042 kmem_cache_free(hdr_full_cache, marker); 4043 } 4044 4045 /* 4046 * Allocate an array of buffer headers used as placeholders during arc state 4047 * eviction. 4048 */ 4049 static arc_buf_hdr_t ** 4050 arc_state_alloc_markers(int count) 4051 { 4052 arc_buf_hdr_t **markers; 4053 4054 markers = kmem_zalloc(sizeof (*markers) * count, KM_SLEEP); 4055 for (int i = 0; i < count; i++) 4056 markers[i] = arc_state_alloc_marker(); 4057 return (markers); 4058 } 4059 4060 static void 4061 arc_state_free_markers(arc_buf_hdr_t **markers, int count) 4062 { 4063 for (int i = 0; i < count; i++) 4064 arc_state_free_marker(markers[i]); 4065 kmem_free(markers, sizeof (*markers) * count); 4066 } 4067 4068 typedef struct evict_arg { 4069 taskq_ent_t eva_tqent; 4070 multilist_t *eva_ml; 4071 arc_buf_hdr_t *eva_marker; 4072 int eva_idx; 4073 uint64_t eva_spa; 4074 uint64_t eva_bytes; 4075 uint64_t eva_evicted; 4076 } evict_arg_t; 4077 4078 static void 4079 arc_evict_task(void *arg) 4080 { 4081 evict_arg_t *eva = arg; 4082 eva->eva_evicted = arc_evict_state_impl(eva->eva_ml, eva->eva_idx, 4083 eva->eva_marker, eva->eva_spa, eva->eva_bytes); 4084 } 4085 4086 static void 4087 arc_evict_thread_init(void) 4088 { 4089 if (zfs_arc_evict_threads == 0) { 4090 /* 4091 * Compute number of threads we want to use for eviction. 4092 * 4093 * Normally, it's log2(ncpus) + ncpus/32, which gets us to the 4094 * default max of 16 threads at ~256 CPUs. 4095 * 4096 * However, that formula goes to two threads at 4 CPUs, which 4097 * is still rather to low to be really useful, so we just go 4098 * with 1 thread at fewer than 6 cores. 4099 */ 4100 if (max_ncpus < 6) 4101 zfs_arc_evict_threads = 1; 4102 else 4103 zfs_arc_evict_threads = 4104 (highbit64(max_ncpus) - 1) + max_ncpus / 32; 4105 } else if (zfs_arc_evict_threads > max_ncpus) 4106 zfs_arc_evict_threads = max_ncpus; 4107 4108 if (zfs_arc_evict_threads > 1) { 4109 arc_evict_taskq = taskq_create("arc_evict", 4110 zfs_arc_evict_threads, defclsyspri, 0, INT_MAX, 4111 TASKQ_PREPOPULATE); 4112 arc_evict_arg = kmem_zalloc( 4113 sizeof (evict_arg_t) * zfs_arc_evict_threads, KM_SLEEP); 4114 } 4115 } 4116 4117 /* 4118 * The minimum number of bytes we can evict at once is a block size. 4119 * So, SPA_MAXBLOCKSIZE is a reasonable minimal value per an eviction task. 4120 * We use this value to compute a scaling factor for the eviction tasks. 4121 */ 4122 #define MIN_EVICT_SIZE (SPA_MAXBLOCKSIZE) 4123 4124 /* 4125 * Evict buffers from the given arc state, until we've removed the 4126 * specified number of bytes. Move the removed buffers to the 4127 * appropriate evict state. 4128 * 4129 * This function makes a "best effort". It skips over any buffers 4130 * it can't get a hash_lock on, and so, may not catch all candidates. 4131 * It may also return without evicting as much space as requested. 4132 * 4133 * If bytes is specified using the special value ARC_EVICT_ALL, this 4134 * will evict all available (i.e. unlocked and evictable) buffers from 4135 * the given arc state; which is used by arc_flush(). 4136 */ 4137 static uint64_t 4138 arc_evict_state(arc_state_t *state, arc_buf_contents_t type, uint64_t spa, 4139 uint64_t bytes) 4140 { 4141 uint64_t total_evicted = 0; 4142 multilist_t *ml = &state->arcs_list[type]; 4143 int num_sublists; 4144 arc_buf_hdr_t **markers; 4145 evict_arg_t *eva = NULL; 4146 4147 num_sublists = multilist_get_num_sublists(ml); 4148 4149 boolean_t use_evcttq = zfs_arc_evict_threads > 1; 4150 4151 /* 4152 * If we've tried to evict from each sublist, made some 4153 * progress, but still have not hit the target number of bytes 4154 * to evict, we want to keep trying. The markers allow us to 4155 * pick up where we left off for each individual sublist, rather 4156 * than starting from the tail each time. 4157 */ 4158 if (zthr_iscurthread(arc_evict_zthr)) { 4159 markers = arc_state_evict_markers; 4160 ASSERT3S(num_sublists, <=, arc_state_evict_marker_count); 4161 } else { 4162 markers = arc_state_alloc_markers(num_sublists); 4163 } 4164 for (int i = 0; i < num_sublists; i++) { 4165 multilist_sublist_t *mls; 4166 4167 mls = multilist_sublist_lock_idx(ml, i); 4168 multilist_sublist_insert_tail(mls, markers[i]); 4169 multilist_sublist_unlock(mls); 4170 } 4171 4172 if (use_evcttq) { 4173 if (zthr_iscurthread(arc_evict_zthr)) 4174 eva = arc_evict_arg; 4175 else 4176 eva = kmem_alloc(sizeof (evict_arg_t) * 4177 zfs_arc_evict_threads, KM_NOSLEEP); 4178 if (eva) { 4179 for (int i = 0; i < zfs_arc_evict_threads; i++) { 4180 taskq_init_ent(&eva[i].eva_tqent); 4181 eva[i].eva_ml = ml; 4182 eva[i].eva_spa = spa; 4183 } 4184 } else { 4185 /* 4186 * Fall back to the regular single evict if it is not 4187 * possible to allocate memory for the taskq entries. 4188 */ 4189 use_evcttq = B_FALSE; 4190 } 4191 } 4192 4193 /* 4194 * Start eviction using a randomly selected sublist, this is to try and 4195 * evenly balance eviction across all sublists. Always starting at the 4196 * same sublist (e.g. index 0) would cause evictions to favor certain 4197 * sublists over others. 4198 */ 4199 uint64_t scan_evicted = 0; 4200 int sublists_left = num_sublists; 4201 int sublist_idx = multilist_get_random_index(ml); 4202 4203 /* 4204 * While we haven't hit our target number of bytes to evict, or 4205 * we're evicting all available buffers. 4206 */ 4207 while (total_evicted < bytes) { 4208 uint64_t evict = MIN_EVICT_SIZE; 4209 uint_t ntasks = zfs_arc_evict_threads; 4210 4211 if (use_evcttq) { 4212 if (sublists_left < ntasks) 4213 ntasks = sublists_left; 4214 4215 if (ntasks < 2) 4216 use_evcttq = B_FALSE; 4217 } 4218 4219 if (use_evcttq) { 4220 uint64_t left = bytes - total_evicted; 4221 4222 if (bytes == ARC_EVICT_ALL) { 4223 evict = bytes; 4224 } else if (left > ntasks * MIN_EVICT_SIZE) { 4225 evict = DIV_ROUND_UP(left, ntasks); 4226 } else { 4227 ntasks = DIV_ROUND_UP(left, MIN_EVICT_SIZE); 4228 if (ntasks == 1) 4229 use_evcttq = B_FALSE; 4230 } 4231 } 4232 4233 for (int i = 0; sublists_left > 0; i++, sublist_idx++, 4234 sublists_left--) { 4235 uint64_t bytes_remaining; 4236 uint64_t bytes_evicted; 4237 4238 /* we've reached the end, wrap to the beginning */ 4239 if (sublist_idx >= num_sublists) 4240 sublist_idx = 0; 4241 4242 if (use_evcttq) { 4243 if (i == ntasks) 4244 break; 4245 4246 eva[i].eva_marker = markers[sublist_idx]; 4247 eva[i].eva_idx = sublist_idx; 4248 eva[i].eva_bytes = evict; 4249 4250 taskq_dispatch_ent(arc_evict_taskq, 4251 arc_evict_task, &eva[i], 0, 4252 &eva[i].eva_tqent); 4253 4254 continue; 4255 } 4256 4257 if (total_evicted < bytes) 4258 bytes_remaining = bytes - total_evicted; 4259 else 4260 break; 4261 4262 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 4263 markers[sublist_idx], spa, bytes_remaining); 4264 4265 scan_evicted += bytes_evicted; 4266 total_evicted += bytes_evicted; 4267 } 4268 4269 if (use_evcttq) { 4270 taskq_wait(arc_evict_taskq); 4271 4272 for (int i = 0; i < ntasks; i++) { 4273 scan_evicted += eva[i].eva_evicted; 4274 total_evicted += eva[i].eva_evicted; 4275 } 4276 } 4277 4278 /* 4279 * If we scanned all sublists and didn't evict anything, we 4280 * have no reason to believe we'll evict more during another 4281 * scan, so break the loop. 4282 */ 4283 if (scan_evicted == 0 && sublists_left == 0) { 4284 /* This isn't possible, let's make that obvious */ 4285 ASSERT3S(bytes, !=, 0); 4286 4287 /* 4288 * When bytes is ARC_EVICT_ALL, the only way to 4289 * break the loop is when scan_evicted is zero. 4290 * In that case, we actually have evicted enough, 4291 * so we don't want to increment the kstat. 4292 */ 4293 if (bytes != ARC_EVICT_ALL) { 4294 ASSERT3S(total_evicted, <, bytes); 4295 ARCSTAT_BUMP(arcstat_evict_not_enough); 4296 } 4297 4298 break; 4299 } 4300 4301 /* 4302 * If we scanned all sublists but still have more to do, 4303 * reset the counts so we can go around again. 4304 */ 4305 if (sublists_left == 0) { 4306 sublists_left = num_sublists; 4307 sublist_idx = multilist_get_random_index(ml); 4308 scan_evicted = 0; 4309 4310 /* 4311 * Since we're about to reconsider all sublists, 4312 * re-enable use of the evict threads if available. 4313 */ 4314 use_evcttq = (zfs_arc_evict_threads > 1 && eva != NULL); 4315 } 4316 } 4317 4318 if (eva != NULL && eva != arc_evict_arg) 4319 kmem_free(eva, sizeof (evict_arg_t) * zfs_arc_evict_threads); 4320 4321 for (int i = 0; i < num_sublists; i++) { 4322 multilist_sublist_t *mls = multilist_sublist_lock_idx(ml, i); 4323 multilist_sublist_remove(mls, markers[i]); 4324 multilist_sublist_unlock(mls); 4325 } 4326 4327 if (markers != arc_state_evict_markers) 4328 arc_state_free_markers(markers, num_sublists); 4329 4330 return (total_evicted); 4331 } 4332 4333 /* 4334 * Flush all "evictable" data of the given type from the arc state 4335 * specified. This will not evict any "active" buffers (i.e. referenced). 4336 * 4337 * When 'retry' is set to B_FALSE, the function will make a single pass 4338 * over the state and evict any buffers that it can. Since it doesn't 4339 * continually retry the eviction, it might end up leaving some buffers 4340 * in the ARC due to lock misses. 4341 * 4342 * When 'retry' is set to B_TRUE, the function will continually retry the 4343 * eviction until *all* evictable buffers have been removed from the 4344 * state. As a result, if concurrent insertions into the state are 4345 * allowed (e.g. if the ARC isn't shutting down), this function might 4346 * wind up in an infinite loop, continually trying to evict buffers. 4347 */ 4348 static uint64_t 4349 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 4350 boolean_t retry) 4351 { 4352 uint64_t evicted = 0; 4353 4354 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) { 4355 evicted += arc_evict_state(state, type, spa, ARC_EVICT_ALL); 4356 4357 if (!retry) 4358 break; 4359 } 4360 4361 return (evicted); 4362 } 4363 4364 /* 4365 * Evict the specified number of bytes from the state specified. This 4366 * function prevents us from trying to evict more from a state's list 4367 * than is "evictable", and to skip evicting altogether when passed a 4368 * negative value for "bytes". In contrast, arc_evict_state() will 4369 * evict everything it can, when passed a negative value for "bytes". 4370 */ 4371 static uint64_t 4372 arc_evict_impl(arc_state_t *state, arc_buf_contents_t type, int64_t bytes) 4373 { 4374 uint64_t delta; 4375 4376 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) { 4377 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]), 4378 bytes); 4379 return (arc_evict_state(state, type, 0, delta)); 4380 } 4381 4382 return (0); 4383 } 4384 4385 /* 4386 * Adjust specified fraction, taking into account initial ghost state(s) size, 4387 * ghost hit bytes towards increasing the fraction, ghost hit bytes towards 4388 * decreasing it, plus a balance factor, controlling the decrease rate, used 4389 * to balance metadata vs data. 4390 */ 4391 static uint64_t 4392 arc_evict_adj(uint64_t frac, uint64_t total, uint64_t up, uint64_t down, 4393 uint_t balance) 4394 { 4395 if (total < 32 || up + down == 0) 4396 return (frac); 4397 4398 /* 4399 * We should not have more ghost hits than ghost size, but they may 4400 * get close. To avoid overflows below up/down should not be bigger 4401 * than 1/5 of total. But to limit maximum adjustment speed restrict 4402 * it some more. 4403 */ 4404 if (up + down >= total / 16) { 4405 uint64_t scale = (up + down) / (total / 32); 4406 up /= scale; 4407 down /= scale; 4408 } 4409 4410 /* Get maximal dynamic range by choosing optimal shifts. */ 4411 int s = highbit64(total); 4412 s = MIN(64 - s, 32); 4413 4414 ASSERT3U(frac, <=, 1ULL << 32); 4415 uint64_t ofrac = (1ULL << 32) - frac; 4416 4417 if (frac >= 4 * ofrac) 4418 up /= frac / (2 * ofrac + 1); 4419 up = (up << s) / (total >> (32 - s)); 4420 if (ofrac >= 4 * frac) 4421 down /= ofrac / (2 * frac + 1); 4422 down = (down << s) / (total >> (32 - s)); 4423 down = down * 100 / balance; 4424 4425 ASSERT3U(up, <=, (1ULL << 32) - frac); 4426 ASSERT3U(down, <=, frac); 4427 return (frac + up - down); 4428 } 4429 4430 /* 4431 * Calculate (x * multiplier / divisor) without unnecesary overflows. 4432 */ 4433 static uint64_t 4434 arc_mf(uint64_t x, uint64_t multiplier, uint64_t divisor) 4435 { 4436 uint64_t q = (x / divisor); 4437 uint64_t r = (x % divisor); 4438 4439 return ((q * multiplier) + ((r * multiplier) / divisor)); 4440 } 4441 4442 /* 4443 * Evict buffers from the cache, such that arcstat_size is capped by arc_c. 4444 */ 4445 static uint64_t 4446 arc_evict(void) 4447 { 4448 uint64_t bytes, total_evicted = 0; 4449 int64_t e, mrud, mrum, mfud, mfum, w; 4450 static uint64_t ogrd, ogrm, ogfd, ogfm; 4451 static uint64_t gsrd, gsrm, gsfd, gsfm; 4452 uint64_t ngrd, ngrm, ngfd, ngfm; 4453 4454 /* Get current size of ARC states we can evict from. */ 4455 mrud = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_DATA]) + 4456 zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]); 4457 mrum = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA]) + 4458 zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]); 4459 mfud = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_DATA]); 4460 mfum = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA]); 4461 uint64_t d = mrud + mfud; 4462 uint64_t m = mrum + mfum; 4463 uint64_t t = d + m; 4464 4465 /* Get ARC ghost hits since last eviction. */ 4466 ngrd = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]); 4467 uint64_t grd = ngrd - ogrd; 4468 ogrd = ngrd; 4469 ngrm = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]); 4470 uint64_t grm = ngrm - ogrm; 4471 ogrm = ngrm; 4472 ngfd = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]); 4473 uint64_t gfd = ngfd - ogfd; 4474 ogfd = ngfd; 4475 ngfm = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]); 4476 uint64_t gfm = ngfm - ogfm; 4477 ogfm = ngfm; 4478 4479 /* Adjust ARC states balance based on ghost hits. */ 4480 arc_meta = arc_evict_adj(arc_meta, gsrd + gsrm + gsfd + gsfm, 4481 grm + gfm, grd + gfd, zfs_arc_meta_balance); 4482 arc_pd = arc_evict_adj(arc_pd, gsrd + gsfd, grd, gfd, 100); 4483 arc_pm = arc_evict_adj(arc_pm, gsrm + gsfm, grm, gfm, 100); 4484 4485 uint64_t asize = aggsum_value(&arc_sums.arcstat_size); 4486 uint64_t ac = arc_c; 4487 int64_t wt = t - (asize - ac); 4488 4489 /* 4490 * Try to reduce pinned dnodes if more than 3/4 of wanted metadata 4491 * target is not evictable or if they go over arc_dnode_limit. 4492 */ 4493 int64_t prune = 0; 4494 int64_t dn = aggsum_value(&arc_sums.arcstat_dnode_size); 4495 int64_t nem = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA]) 4496 + zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA]) 4497 - zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA]) 4498 - zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 4499 w = wt * (int64_t)(arc_meta >> 16) >> 16; 4500 if (nem > w * 3 / 4) { 4501 prune = dn / sizeof (dnode_t) * 4502 zfs_arc_dnode_reduce_percent / 100; 4503 if (nem < w && w > 4) 4504 prune = arc_mf(prune, nem - w * 3 / 4, w / 4); 4505 } 4506 if (dn > arc_dnode_limit) { 4507 prune = MAX(prune, (dn - arc_dnode_limit) / sizeof (dnode_t) * 4508 zfs_arc_dnode_reduce_percent / 100); 4509 } 4510 if (prune > 0) 4511 arc_prune_async(prune); 4512 4513 /* Evict MRU metadata. */ 4514 w = wt * (int64_t)(arc_meta * arc_pm >> 48) >> 16; 4515 e = MIN((int64_t)(asize - ac), (int64_t)(mrum - w)); 4516 bytes = arc_evict_impl(arc_mru, ARC_BUFC_METADATA, e); 4517 total_evicted += bytes; 4518 mrum -= bytes; 4519 asize -= bytes; 4520 4521 /* Evict MFU metadata. */ 4522 w = wt * (int64_t)(arc_meta >> 16) >> 16; 4523 e = MIN((int64_t)(asize - ac), (int64_t)(m - bytes - w)); 4524 bytes = arc_evict_impl(arc_mfu, ARC_BUFC_METADATA, e); 4525 total_evicted += bytes; 4526 mfum -= bytes; 4527 asize -= bytes; 4528 4529 /* Evict MRU data. */ 4530 wt -= m - total_evicted; 4531 w = wt * (int64_t)(arc_pd >> 16) >> 16; 4532 e = MIN((int64_t)(asize - ac), (int64_t)(mrud - w)); 4533 bytes = arc_evict_impl(arc_mru, ARC_BUFC_DATA, e); 4534 total_evicted += bytes; 4535 mrud -= bytes; 4536 asize -= bytes; 4537 4538 /* Evict MFU data. */ 4539 e = asize - ac; 4540 bytes = arc_evict_impl(arc_mfu, ARC_BUFC_DATA, e); 4541 mfud -= bytes; 4542 total_evicted += bytes; 4543 4544 /* 4545 * Evict ghost lists 4546 * 4547 * Size of each state's ghost list represents how much that state 4548 * may grow by shrinking the other states. Would it need to shrink 4549 * other states to zero (that is unlikely), its ghost size would be 4550 * equal to sum of other three state sizes. But excessive ghost 4551 * size may result in false ghost hits (too far back), that may 4552 * never result in real cache hits if several states are competing. 4553 * So choose some arbitraty point of 1/2 of other state sizes. 4554 */ 4555 gsrd = (mrum + mfud + mfum) / 2; 4556 e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]) - 4557 gsrd; 4558 (void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_DATA, e); 4559 4560 gsrm = (mrud + mfud + mfum) / 2; 4561 e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]) - 4562 gsrm; 4563 (void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_METADATA, e); 4564 4565 gsfd = (mrud + mrum + mfum) / 2; 4566 e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]) - 4567 gsfd; 4568 (void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_DATA, e); 4569 4570 gsfm = (mrud + mrum + mfud) / 2; 4571 e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]) - 4572 gsfm; 4573 (void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_METADATA, e); 4574 4575 return (total_evicted); 4576 } 4577 4578 static void 4579 arc_flush_impl(uint64_t guid, boolean_t retry) 4580 { 4581 ASSERT(!retry || guid == 0); 4582 4583 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 4584 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 4585 4586 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 4587 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 4588 4589 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 4590 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 4591 4592 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 4593 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 4594 4595 (void) arc_flush_state(arc_uncached, guid, ARC_BUFC_DATA, retry); 4596 (void) arc_flush_state(arc_uncached, guid, ARC_BUFC_METADATA, retry); 4597 } 4598 4599 void 4600 arc_flush(spa_t *spa, boolean_t retry) 4601 { 4602 /* 4603 * If retry is B_TRUE, a spa must not be specified since we have 4604 * no good way to determine if all of a spa's buffers have been 4605 * evicted from an arc state. 4606 */ 4607 ASSERT(!retry || spa == NULL); 4608 4609 arc_flush_impl(spa != NULL ? spa_load_guid(spa) : 0, retry); 4610 } 4611 4612 static arc_async_flush_t * 4613 arc_async_flush_add(uint64_t spa_guid, uint_t level) 4614 { 4615 arc_async_flush_t *af = kmem_alloc(sizeof (*af), KM_SLEEP); 4616 af->af_spa_guid = spa_guid; 4617 af->af_cache_level = level; 4618 taskq_init_ent(&af->af_tqent); 4619 list_link_init(&af->af_node); 4620 4621 mutex_enter(&arc_async_flush_lock); 4622 list_insert_tail(&arc_async_flush_list, af); 4623 mutex_exit(&arc_async_flush_lock); 4624 4625 return (af); 4626 } 4627 4628 static void 4629 arc_async_flush_remove(uint64_t spa_guid, uint_t level) 4630 { 4631 mutex_enter(&arc_async_flush_lock); 4632 for (arc_async_flush_t *af = list_head(&arc_async_flush_list); 4633 af != NULL; af = list_next(&arc_async_flush_list, af)) { 4634 if (af->af_spa_guid == spa_guid && 4635 af->af_cache_level == level) { 4636 list_remove(&arc_async_flush_list, af); 4637 kmem_free(af, sizeof (*af)); 4638 break; 4639 } 4640 } 4641 mutex_exit(&arc_async_flush_lock); 4642 } 4643 4644 static void 4645 arc_flush_task(void *arg) 4646 { 4647 arc_async_flush_t *af = arg; 4648 hrtime_t start_time = gethrtime(); 4649 uint64_t spa_guid = af->af_spa_guid; 4650 4651 arc_flush_impl(spa_guid, B_FALSE); 4652 arc_async_flush_remove(spa_guid, af->af_cache_level); 4653 4654 uint64_t elaspsed = NSEC2MSEC(gethrtime() - start_time); 4655 if (elaspsed > 0) { 4656 zfs_dbgmsg("spa %llu arc flushed in %llu ms", 4657 (u_longlong_t)spa_guid, (u_longlong_t)elaspsed); 4658 } 4659 } 4660 4661 /* 4662 * ARC buffers use the spa's load guid and can continue to exist after 4663 * the spa_t is gone (exported). The blocks are orphaned since each 4664 * spa import has a different load guid. 4665 * 4666 * It's OK if the spa is re-imported while this asynchronous flush is 4667 * still in progress. The new spa_load_guid will be different. 4668 * 4669 * Also, arc_fini will wait for any arc_flush_task to finish. 4670 */ 4671 void 4672 arc_flush_async(spa_t *spa) 4673 { 4674 uint64_t spa_guid = spa_load_guid(spa); 4675 arc_async_flush_t *af = arc_async_flush_add(spa_guid, 1); 4676 4677 taskq_dispatch_ent(arc_flush_taskq, arc_flush_task, 4678 af, TQ_SLEEP, &af->af_tqent); 4679 } 4680 4681 /* 4682 * Check if a guid is still in-use as part of an async teardown task 4683 */ 4684 boolean_t 4685 arc_async_flush_guid_inuse(uint64_t spa_guid) 4686 { 4687 mutex_enter(&arc_async_flush_lock); 4688 for (arc_async_flush_t *af = list_head(&arc_async_flush_list); 4689 af != NULL; af = list_next(&arc_async_flush_list, af)) { 4690 if (af->af_spa_guid == spa_guid) { 4691 mutex_exit(&arc_async_flush_lock); 4692 return (B_TRUE); 4693 } 4694 } 4695 mutex_exit(&arc_async_flush_lock); 4696 return (B_FALSE); 4697 } 4698 4699 uint64_t 4700 arc_reduce_target_size(uint64_t to_free) 4701 { 4702 /* 4703 * Get the actual arc size. Even if we don't need it, this updates 4704 * the aggsum lower bound estimate for arc_is_overflowing(). 4705 */ 4706 uint64_t asize = aggsum_value(&arc_sums.arcstat_size); 4707 4708 /* 4709 * All callers want the ARC to actually evict (at least) this much 4710 * memory. Therefore we reduce from the lower of the current size and 4711 * the target size. This way, even if arc_c is much higher than 4712 * arc_size (as can be the case after many calls to arc_freed(), we will 4713 * immediately have arc_c < arc_size and therefore the arc_evict_zthr 4714 * will evict. 4715 */ 4716 uint64_t c = arc_c; 4717 if (c > arc_c_min) { 4718 c = MIN(c, MAX(asize, arc_c_min)); 4719 to_free = MIN(to_free, c - arc_c_min); 4720 arc_c = c - to_free; 4721 } else { 4722 to_free = 0; 4723 } 4724 4725 /* 4726 * Since dbuf cache size is a fraction of target ARC size, we should 4727 * notify dbuf about the reduction, which might be significant, 4728 * especially if current ARC size was much smaller than the target. 4729 */ 4730 dbuf_cache_reduce_target_size(); 4731 4732 /* 4733 * Whether or not we reduced the target size, request eviction if the 4734 * current size is over it now, since caller obviously wants some RAM. 4735 */ 4736 if (asize > arc_c) { 4737 /* See comment in arc_evict_cb_check() on why lock+flag */ 4738 mutex_enter(&arc_evict_lock); 4739 arc_evict_needed = B_TRUE; 4740 mutex_exit(&arc_evict_lock); 4741 zthr_wakeup(arc_evict_zthr); 4742 } 4743 4744 return (to_free); 4745 } 4746 4747 /* 4748 * Determine if the system is under memory pressure and is asking 4749 * to reclaim memory. A return value of B_TRUE indicates that the system 4750 * is under memory pressure and that the arc should adjust accordingly. 4751 */ 4752 boolean_t 4753 arc_reclaim_needed(void) 4754 { 4755 return (arc_available_memory() < 0); 4756 } 4757 4758 void 4759 arc_kmem_reap_soon(void) 4760 { 4761 size_t i; 4762 kmem_cache_t *prev_cache = NULL; 4763 kmem_cache_t *prev_data_cache = NULL; 4764 4765 #ifdef _KERNEL 4766 #if defined(_ILP32) 4767 /* 4768 * Reclaim unused memory from all kmem caches. 4769 */ 4770 kmem_reap(); 4771 #endif 4772 #endif 4773 4774 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 4775 #if defined(_ILP32) 4776 /* reach upper limit of cache size on 32-bit */ 4777 if (zio_buf_cache[i] == NULL) 4778 break; 4779 #endif 4780 if (zio_buf_cache[i] != prev_cache) { 4781 prev_cache = zio_buf_cache[i]; 4782 kmem_cache_reap_now(zio_buf_cache[i]); 4783 } 4784 if (zio_data_buf_cache[i] != prev_data_cache) { 4785 prev_data_cache = zio_data_buf_cache[i]; 4786 kmem_cache_reap_now(zio_data_buf_cache[i]); 4787 } 4788 } 4789 kmem_cache_reap_now(buf_cache); 4790 kmem_cache_reap_now(hdr_full_cache); 4791 kmem_cache_reap_now(hdr_l2only_cache); 4792 kmem_cache_reap_now(zfs_btree_leaf_cache); 4793 abd_cache_reap_now(); 4794 } 4795 4796 static boolean_t 4797 arc_evict_cb_check(void *arg, zthr_t *zthr) 4798 { 4799 (void) arg, (void) zthr; 4800 4801 #ifdef ZFS_DEBUG 4802 /* 4803 * This is necessary in order to keep the kstat information 4804 * up to date for tools that display kstat data such as the 4805 * mdb ::arc dcmd and the Linux crash utility. These tools 4806 * typically do not call kstat's update function, but simply 4807 * dump out stats from the most recent update. Without 4808 * this call, these commands may show stale stats for the 4809 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 4810 * with this call, the data might be out of date if the 4811 * evict thread hasn't been woken recently; but that should 4812 * suffice. The arc_state_t structures can be queried 4813 * directly if more accurate information is needed. 4814 */ 4815 if (arc_ksp != NULL) 4816 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 4817 #endif 4818 4819 /* 4820 * We have to rely on arc_wait_for_eviction() to tell us when to 4821 * evict, rather than checking if we are overflowing here, so that we 4822 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv. 4823 * If we have become "not overflowing" since arc_wait_for_eviction() 4824 * checked, we need to wake it up. We could broadcast the CV here, 4825 * but arc_wait_for_eviction() may have not yet gone to sleep. We 4826 * would need to use a mutex to ensure that this function doesn't 4827 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g. 4828 * the arc_evict_lock). However, the lock ordering of such a lock 4829 * would necessarily be incorrect with respect to the zthr_lock, 4830 * which is held before this function is called, and is held by 4831 * arc_wait_for_eviction() when it calls zthr_wakeup(). 4832 */ 4833 if (arc_evict_needed) 4834 return (B_TRUE); 4835 4836 /* 4837 * If we have buffers in uncached state, evict them periodically. 4838 */ 4839 return ((zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_DATA]) + 4840 zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]) && 4841 ddi_get_lbolt() - arc_last_uncached_flush > 4842 MSEC_TO_TICK(arc_min_prefetch_ms / 2))); 4843 } 4844 4845 /* 4846 * Keep arc_size under arc_c by running arc_evict which evicts data 4847 * from the ARC. 4848 */ 4849 static void 4850 arc_evict_cb(void *arg, zthr_t *zthr) 4851 { 4852 (void) arg; 4853 4854 uint64_t evicted = 0; 4855 fstrans_cookie_t cookie = spl_fstrans_mark(); 4856 4857 /* Always try to evict from uncached state. */ 4858 arc_last_uncached_flush = ddi_get_lbolt(); 4859 evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_DATA, B_FALSE); 4860 evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_METADATA, B_FALSE); 4861 4862 /* Evict from other states only if told to. */ 4863 if (arc_evict_needed) 4864 evicted += arc_evict(); 4865 4866 /* 4867 * If evicted is zero, we couldn't evict anything 4868 * via arc_evict(). This could be due to hash lock 4869 * collisions, but more likely due to the majority of 4870 * arc buffers being unevictable. Therefore, even if 4871 * arc_size is above arc_c, another pass is unlikely to 4872 * be helpful and could potentially cause us to enter an 4873 * infinite loop. Additionally, zthr_iscancelled() is 4874 * checked here so that if the arc is shutting down, the 4875 * broadcast will wake any remaining arc evict waiters. 4876 * 4877 * Note we cancel using zthr instead of arc_evict_zthr 4878 * because the latter may not yet be initializd when the 4879 * callback is first invoked. 4880 */ 4881 mutex_enter(&arc_evict_lock); 4882 arc_evict_needed = !zthr_iscancelled(zthr) && 4883 evicted > 0 && aggsum_compare(&arc_sums.arcstat_size, arc_c) > 0; 4884 if (!arc_evict_needed) { 4885 /* 4886 * We're either no longer overflowing, or we 4887 * can't evict anything more, so we should wake 4888 * arc_get_data_impl() sooner. 4889 */ 4890 arc_evict_waiter_t *aw; 4891 while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) { 4892 cv_broadcast(&aw->aew_cv); 4893 } 4894 arc_set_need_free(); 4895 } 4896 mutex_exit(&arc_evict_lock); 4897 spl_fstrans_unmark(cookie); 4898 } 4899 4900 static boolean_t 4901 arc_reap_cb_check(void *arg, zthr_t *zthr) 4902 { 4903 (void) arg, (void) zthr; 4904 4905 int64_t free_memory = arc_available_memory(); 4906 static int reap_cb_check_counter = 0; 4907 4908 /* 4909 * If a kmem reap is already active, don't schedule more. We must 4910 * check for this because kmem_cache_reap_soon() won't actually 4911 * block on the cache being reaped (this is to prevent callers from 4912 * becoming implicitly blocked by a system-wide kmem reap -- which, 4913 * on a system with many, many full magazines, can take minutes). 4914 */ 4915 if (!kmem_cache_reap_active() && free_memory < 0) { 4916 4917 arc_no_grow = B_TRUE; 4918 arc_warm = B_TRUE; 4919 /* 4920 * Wait at least zfs_grow_retry (default 5) seconds 4921 * before considering growing. 4922 */ 4923 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry); 4924 return (B_TRUE); 4925 } else if (free_memory < arc_c >> arc_no_grow_shift) { 4926 arc_no_grow = B_TRUE; 4927 } else if (gethrtime() >= arc_growtime) { 4928 arc_no_grow = B_FALSE; 4929 } 4930 4931 /* 4932 * Called unconditionally every 60 seconds to reclaim unused 4933 * zstd compression and decompression context. This is done 4934 * here to avoid the need for an independent thread. 4935 */ 4936 if (!((reap_cb_check_counter++) % 60)) 4937 zfs_zstd_cache_reap_now(); 4938 4939 return (B_FALSE); 4940 } 4941 4942 /* 4943 * Keep enough free memory in the system by reaping the ARC's kmem 4944 * caches. To cause more slabs to be reapable, we may reduce the 4945 * target size of the cache (arc_c), causing the arc_evict_cb() 4946 * to free more buffers. 4947 */ 4948 static void 4949 arc_reap_cb(void *arg, zthr_t *zthr) 4950 { 4951 int64_t can_free, free_memory, to_free; 4952 4953 (void) arg, (void) zthr; 4954 fstrans_cookie_t cookie = spl_fstrans_mark(); 4955 4956 /* 4957 * Kick off asynchronous kmem_reap()'s of all our caches. 4958 */ 4959 arc_kmem_reap_soon(); 4960 4961 /* 4962 * Wait at least arc_kmem_cache_reap_retry_ms between 4963 * arc_kmem_reap_soon() calls. Without this check it is possible to 4964 * end up in a situation where we spend lots of time reaping 4965 * caches, while we're near arc_c_min. Waiting here also gives the 4966 * subsequent free memory check a chance of finding that the 4967 * asynchronous reap has already freed enough memory, and we don't 4968 * need to call arc_reduce_target_size(). 4969 */ 4970 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000); 4971 4972 /* 4973 * Reduce the target size as needed to maintain the amount of free 4974 * memory in the system at a fraction of the arc_size (1/128th by 4975 * default). If oversubscribed (free_memory < 0) then reduce the 4976 * target arc_size by the deficit amount plus the fractional 4977 * amount. If free memory is positive but less than the fractional 4978 * amount, reduce by what is needed to hit the fractional amount. 4979 */ 4980 free_memory = arc_available_memory(); 4981 can_free = arc_c - arc_c_min; 4982 to_free = (MAX(can_free, 0) >> arc_shrink_shift) - free_memory; 4983 if (to_free > 0) 4984 arc_reduce_target_size(to_free); 4985 spl_fstrans_unmark(cookie); 4986 } 4987 4988 #ifdef _KERNEL 4989 /* 4990 * Determine the amount of memory eligible for eviction contained in the 4991 * ARC. All clean data reported by the ghost lists can always be safely 4992 * evicted. Due to arc_c_min, the same does not hold for all clean data 4993 * contained by the regular mru and mfu lists. 4994 * 4995 * In the case of the regular mru and mfu lists, we need to report as 4996 * much clean data as possible, such that evicting that same reported 4997 * data will not bring arc_size below arc_c_min. Thus, in certain 4998 * circumstances, the total amount of clean data in the mru and mfu 4999 * lists might not actually be evictable. 5000 * 5001 * The following two distinct cases are accounted for: 5002 * 5003 * 1. The sum of the amount of dirty data contained by both the mru and 5004 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 5005 * is greater than or equal to arc_c_min. 5006 * (i.e. amount of dirty data >= arc_c_min) 5007 * 5008 * This is the easy case; all clean data contained by the mru and mfu 5009 * lists is evictable. Evicting all clean data can only drop arc_size 5010 * to the amount of dirty data, which is greater than arc_c_min. 5011 * 5012 * 2. The sum of the amount of dirty data contained by both the mru and 5013 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 5014 * is less than arc_c_min. 5015 * (i.e. arc_c_min > amount of dirty data) 5016 * 5017 * 2.1. arc_size is greater than or equal arc_c_min. 5018 * (i.e. arc_size >= arc_c_min > amount of dirty data) 5019 * 5020 * In this case, not all clean data from the regular mru and mfu 5021 * lists is actually evictable; we must leave enough clean data 5022 * to keep arc_size above arc_c_min. Thus, the maximum amount of 5023 * evictable data from the two lists combined, is exactly the 5024 * difference between arc_size and arc_c_min. 5025 * 5026 * 2.2. arc_size is less than arc_c_min 5027 * (i.e. arc_c_min > arc_size > amount of dirty data) 5028 * 5029 * In this case, none of the data contained in the mru and mfu 5030 * lists is evictable, even if it's clean. Since arc_size is 5031 * already below arc_c_min, evicting any more would only 5032 * increase this negative difference. 5033 */ 5034 5035 #endif /* _KERNEL */ 5036 5037 /* 5038 * Adapt arc info given the number of bytes we are trying to add and 5039 * the state that we are coming from. This function is only called 5040 * when we are adding new content to the cache. 5041 */ 5042 static void 5043 arc_adapt(uint64_t bytes) 5044 { 5045 /* 5046 * Wake reap thread if we do not have any available memory 5047 */ 5048 if (arc_reclaim_needed()) { 5049 zthr_wakeup(arc_reap_zthr); 5050 return; 5051 } 5052 5053 if (arc_no_grow) 5054 return; 5055 5056 if (arc_c >= arc_c_max) 5057 return; 5058 5059 /* 5060 * If we're within (2 * maxblocksize) bytes of the target 5061 * cache size, increment the target cache size 5062 */ 5063 if (aggsum_upper_bound(&arc_sums.arcstat_size) + 5064 2 * SPA_MAXBLOCKSIZE >= arc_c) { 5065 uint64_t dc = MAX(bytes, SPA_OLD_MAXBLOCKSIZE); 5066 if (atomic_add_64_nv(&arc_c, dc) > arc_c_max) 5067 arc_c = arc_c_max; 5068 } 5069 } 5070 5071 /* 5072 * Check if ARC current size has grown past our upper thresholds. 5073 */ 5074 static arc_ovf_level_t 5075 arc_is_overflowing(boolean_t lax, boolean_t use_reserve) 5076 { 5077 /* 5078 * We just compare the lower bound here for performance reasons. Our 5079 * primary goals are to make sure that the arc never grows without 5080 * bound, and that it can reach its maximum size. This check 5081 * accomplishes both goals. The maximum amount we could run over by is 5082 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block 5083 * in the ARC. In practice, that's in the tens of MB, which is low 5084 * enough to be safe. 5085 */ 5086 int64_t arc_over = aggsum_lower_bound(&arc_sums.arcstat_size) - arc_c - 5087 zfs_max_recordsize; 5088 int64_t dn_over = aggsum_lower_bound(&arc_sums.arcstat_dnode_size) - 5089 arc_dnode_limit; 5090 5091 /* Always allow at least one block of overflow. */ 5092 if (arc_over < 0 && dn_over <= 0) 5093 return (ARC_OVF_NONE); 5094 5095 /* If we are under memory pressure, report severe overflow. */ 5096 if (!lax) 5097 return (ARC_OVF_SEVERE); 5098 5099 /* We are not under pressure, so be more or less relaxed. */ 5100 int64_t overflow = (arc_c >> zfs_arc_overflow_shift) / 2; 5101 if (use_reserve) 5102 overflow *= 3; 5103 return (arc_over < overflow ? ARC_OVF_SOME : ARC_OVF_SEVERE); 5104 } 5105 5106 static abd_t * 5107 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, const void *tag, 5108 int alloc_flags) 5109 { 5110 arc_buf_contents_t type = arc_buf_type(hdr); 5111 5112 arc_get_data_impl(hdr, size, tag, alloc_flags); 5113 if (alloc_flags & ARC_HDR_ALLOC_LINEAR) 5114 return (abd_alloc_linear(size, type == ARC_BUFC_METADATA)); 5115 else 5116 return (abd_alloc(size, type == ARC_BUFC_METADATA)); 5117 } 5118 5119 static void * 5120 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, const void *tag) 5121 { 5122 arc_buf_contents_t type = arc_buf_type(hdr); 5123 5124 arc_get_data_impl(hdr, size, tag, 0); 5125 if (type == ARC_BUFC_METADATA) { 5126 return (zio_buf_alloc(size)); 5127 } else { 5128 ASSERT(type == ARC_BUFC_DATA); 5129 return (zio_data_buf_alloc(size)); 5130 } 5131 } 5132 5133 /* 5134 * Wait for the specified amount of data (in bytes) to be evicted from the 5135 * ARC, and for there to be sufficient free memory in the system. 5136 * The lax argument specifies that caller does not have a specific reason 5137 * to wait, not aware of any memory pressure. Low memory handlers though 5138 * should set it to B_FALSE to wait for all required evictions to complete. 5139 * The use_reserve argument allows some callers to wait less than others 5140 * to not block critical code paths, possibly blocking other resources. 5141 */ 5142 void 5143 arc_wait_for_eviction(uint64_t amount, boolean_t lax, boolean_t use_reserve) 5144 { 5145 switch (arc_is_overflowing(lax, use_reserve)) { 5146 case ARC_OVF_NONE: 5147 return; 5148 case ARC_OVF_SOME: 5149 /* 5150 * This is a bit racy without taking arc_evict_lock, but the 5151 * worst that can happen is we either call zthr_wakeup() extra 5152 * time due to race with other thread here, or the set flag 5153 * get cleared by arc_evict_cb(), which is unlikely due to 5154 * big hysteresis, but also not important since at this level 5155 * of overflow the eviction is purely advisory. Same time 5156 * taking the global lock here every time without waiting for 5157 * the actual eviction creates a significant lock contention. 5158 */ 5159 if (!arc_evict_needed) { 5160 arc_evict_needed = B_TRUE; 5161 zthr_wakeup(arc_evict_zthr); 5162 } 5163 return; 5164 case ARC_OVF_SEVERE: 5165 default: 5166 { 5167 arc_evict_waiter_t aw; 5168 list_link_init(&aw.aew_node); 5169 cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL); 5170 5171 uint64_t last_count = 0; 5172 mutex_enter(&arc_evict_lock); 5173 if (!list_is_empty(&arc_evict_waiters)) { 5174 arc_evict_waiter_t *last = 5175 list_tail(&arc_evict_waiters); 5176 last_count = last->aew_count; 5177 } else if (!arc_evict_needed) { 5178 arc_evict_needed = B_TRUE; 5179 zthr_wakeup(arc_evict_zthr); 5180 } 5181 /* 5182 * Note, the last waiter's count may be less than 5183 * arc_evict_count if we are low on memory in which 5184 * case arc_evict_state_impl() may have deferred 5185 * wakeups (but still incremented arc_evict_count). 5186 */ 5187 aw.aew_count = MAX(last_count, arc_evict_count) + amount; 5188 5189 list_insert_tail(&arc_evict_waiters, &aw); 5190 5191 arc_set_need_free(); 5192 5193 DTRACE_PROBE3(arc__wait__for__eviction, 5194 uint64_t, amount, 5195 uint64_t, arc_evict_count, 5196 uint64_t, aw.aew_count); 5197 5198 /* 5199 * We will be woken up either when arc_evict_count reaches 5200 * aew_count, or when the ARC is no longer overflowing and 5201 * eviction completes. 5202 * In case of "false" wakeup, we will still be on the list. 5203 */ 5204 do { 5205 cv_wait(&aw.aew_cv, &arc_evict_lock); 5206 } while (list_link_active(&aw.aew_node)); 5207 mutex_exit(&arc_evict_lock); 5208 5209 cv_destroy(&aw.aew_cv); 5210 } 5211 } 5212 } 5213 5214 /* 5215 * Allocate a block and return it to the caller. If we are hitting the 5216 * hard limit for the cache size, we must sleep, waiting for the eviction 5217 * thread to catch up. If we're past the target size but below the hard 5218 * limit, we'll only signal the reclaim thread and continue on. 5219 */ 5220 static void 5221 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag, 5222 int alloc_flags) 5223 { 5224 arc_adapt(size); 5225 5226 /* 5227 * If arc_size is currently overflowing, we must be adding data 5228 * faster than we are evicting. To ensure we don't compound the 5229 * problem by adding more data and forcing arc_size to grow even 5230 * further past it's target size, we wait for the eviction thread to 5231 * make some progress. We also wait for there to be sufficient free 5232 * memory in the system, as measured by arc_free_memory(). 5233 * 5234 * Specifically, we wait for zfs_arc_eviction_pct percent of the 5235 * requested size to be evicted. This should be more than 100%, to 5236 * ensure that that progress is also made towards getting arc_size 5237 * under arc_c. See the comment above zfs_arc_eviction_pct. 5238 */ 5239 arc_wait_for_eviction(size * zfs_arc_eviction_pct / 100, 5240 B_TRUE, alloc_flags & ARC_HDR_USE_RESERVE); 5241 5242 arc_buf_contents_t type = arc_buf_type(hdr); 5243 if (type == ARC_BUFC_METADATA) { 5244 arc_space_consume(size, ARC_SPACE_META); 5245 } else { 5246 arc_space_consume(size, ARC_SPACE_DATA); 5247 } 5248 5249 /* 5250 * Update the state size. Note that ghost states have a 5251 * "ghost size" and so don't need to be updated. 5252 */ 5253 arc_state_t *state = hdr->b_l1hdr.b_state; 5254 if (!GHOST_STATE(state)) { 5255 5256 (void) zfs_refcount_add_many(&state->arcs_size[type], size, 5257 tag); 5258 5259 /* 5260 * If this is reached via arc_read, the link is 5261 * protected by the hash lock. If reached via 5262 * arc_buf_alloc, the header should not be accessed by 5263 * any other thread. And, if reached via arc_read_done, 5264 * the hash lock will protect it if it's found in the 5265 * hash table; otherwise no other thread should be 5266 * trying to [add|remove]_reference it. 5267 */ 5268 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5269 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5270 (void) zfs_refcount_add_many(&state->arcs_esize[type], 5271 size, tag); 5272 } 5273 } 5274 } 5275 5276 static void 5277 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, 5278 const void *tag) 5279 { 5280 arc_free_data_impl(hdr, size, tag); 5281 abd_free(abd); 5282 } 5283 5284 static void 5285 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, const void *tag) 5286 { 5287 arc_buf_contents_t type = arc_buf_type(hdr); 5288 5289 arc_free_data_impl(hdr, size, tag); 5290 if (type == ARC_BUFC_METADATA) { 5291 zio_buf_free(buf, size); 5292 } else { 5293 ASSERT(type == ARC_BUFC_DATA); 5294 zio_data_buf_free(buf, size); 5295 } 5296 } 5297 5298 /* 5299 * Free the arc data buffer. 5300 */ 5301 static void 5302 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag) 5303 { 5304 arc_state_t *state = hdr->b_l1hdr.b_state; 5305 arc_buf_contents_t type = arc_buf_type(hdr); 5306 5307 /* protected by hash lock, if in the hash table */ 5308 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5309 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5310 ASSERT(state != arc_anon && state != arc_l2c_only); 5311 5312 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 5313 size, tag); 5314 } 5315 (void) zfs_refcount_remove_many(&state->arcs_size[type], size, tag); 5316 5317 VERIFY3U(hdr->b_type, ==, type); 5318 if (type == ARC_BUFC_METADATA) { 5319 arc_space_return(size, ARC_SPACE_META); 5320 } else { 5321 ASSERT(type == ARC_BUFC_DATA); 5322 arc_space_return(size, ARC_SPACE_DATA); 5323 } 5324 } 5325 5326 /* 5327 * This routine is called whenever a buffer is accessed. 5328 */ 5329 static void 5330 arc_access(arc_buf_hdr_t *hdr, arc_flags_t arc_flags, boolean_t hit) 5331 { 5332 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 5333 ASSERT(HDR_HAS_L1HDR(hdr)); 5334 5335 /* 5336 * Update buffer prefetch status. 5337 */ 5338 boolean_t was_prefetch = HDR_PREFETCH(hdr); 5339 boolean_t now_prefetch = arc_flags & ARC_FLAG_PREFETCH; 5340 if (was_prefetch != now_prefetch) { 5341 if (was_prefetch) { 5342 ARCSTAT_CONDSTAT(hit, demand_hit, demand_iohit, 5343 HDR_PRESCIENT_PREFETCH(hdr), prescient, predictive, 5344 prefetch); 5345 } 5346 if (HDR_HAS_L2HDR(hdr)) 5347 l2arc_hdr_arcstats_decrement_state(hdr); 5348 if (was_prefetch) { 5349 arc_hdr_clear_flags(hdr, 5350 ARC_FLAG_PREFETCH | ARC_FLAG_PRESCIENT_PREFETCH); 5351 } else { 5352 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 5353 } 5354 if (HDR_HAS_L2HDR(hdr)) 5355 l2arc_hdr_arcstats_increment_state(hdr); 5356 } 5357 if (now_prefetch) { 5358 if (arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) { 5359 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 5360 ARCSTAT_BUMP(arcstat_prescient_prefetch); 5361 } else { 5362 ARCSTAT_BUMP(arcstat_predictive_prefetch); 5363 } 5364 } 5365 if (arc_flags & ARC_FLAG_L2CACHE) 5366 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 5367 5368 clock_t now = ddi_get_lbolt(); 5369 if (hdr->b_l1hdr.b_state == arc_anon) { 5370 arc_state_t *new_state; 5371 /* 5372 * This buffer is not in the cache, and does not appear in 5373 * our "ghost" lists. Add it to the MRU or uncached state. 5374 */ 5375 ASSERT0(hdr->b_l1hdr.b_arc_access); 5376 hdr->b_l1hdr.b_arc_access = now; 5377 if (HDR_UNCACHED(hdr)) { 5378 new_state = arc_uncached; 5379 DTRACE_PROBE1(new_state__uncached, arc_buf_hdr_t *, 5380 hdr); 5381 } else { 5382 new_state = arc_mru; 5383 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5384 } 5385 arc_change_state(new_state, hdr); 5386 } else if (hdr->b_l1hdr.b_state == arc_mru) { 5387 /* 5388 * This buffer has been accessed once recently and either 5389 * its read is still in progress or it is in the cache. 5390 */ 5391 if (HDR_IO_IN_PROGRESS(hdr)) { 5392 hdr->b_l1hdr.b_arc_access = now; 5393 return; 5394 } 5395 hdr->b_l1hdr.b_mru_hits++; 5396 ARCSTAT_BUMP(arcstat_mru_hits); 5397 5398 /* 5399 * If the previous access was a prefetch, then it already 5400 * handled possible promotion, so nothing more to do for now. 5401 */ 5402 if (was_prefetch) { 5403 hdr->b_l1hdr.b_arc_access = now; 5404 return; 5405 } 5406 5407 /* 5408 * If more than ARC_MINTIME have passed from the previous 5409 * hit, promote the buffer to the MFU state. 5410 */ 5411 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access + 5412 ARC_MINTIME)) { 5413 hdr->b_l1hdr.b_arc_access = now; 5414 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5415 arc_change_state(arc_mfu, hdr); 5416 } 5417 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 5418 arc_state_t *new_state; 5419 /* 5420 * This buffer has been accessed once recently, but was 5421 * evicted from the cache. Would we have bigger MRU, it 5422 * would be an MRU hit, so handle it the same way, except 5423 * we don't need to check the previous access time. 5424 */ 5425 hdr->b_l1hdr.b_mru_ghost_hits++; 5426 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 5427 hdr->b_l1hdr.b_arc_access = now; 5428 wmsum_add(&arc_mru_ghost->arcs_hits[arc_buf_type(hdr)], 5429 arc_hdr_size(hdr)); 5430 if (was_prefetch) { 5431 new_state = arc_mru; 5432 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5433 } else { 5434 new_state = arc_mfu; 5435 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5436 } 5437 arc_change_state(new_state, hdr); 5438 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 5439 /* 5440 * This buffer has been accessed more than once and either 5441 * still in the cache or being restored from one of ghosts. 5442 */ 5443 if (!HDR_IO_IN_PROGRESS(hdr)) { 5444 hdr->b_l1hdr.b_mfu_hits++; 5445 ARCSTAT_BUMP(arcstat_mfu_hits); 5446 } 5447 hdr->b_l1hdr.b_arc_access = now; 5448 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 5449 /* 5450 * This buffer has been accessed more than once recently, but 5451 * has been evicted from the cache. Would we have bigger MFU 5452 * it would stay in cache, so move it back to MFU state. 5453 */ 5454 hdr->b_l1hdr.b_mfu_ghost_hits++; 5455 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 5456 hdr->b_l1hdr.b_arc_access = now; 5457 wmsum_add(&arc_mfu_ghost->arcs_hits[arc_buf_type(hdr)], 5458 arc_hdr_size(hdr)); 5459 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5460 arc_change_state(arc_mfu, hdr); 5461 } else if (hdr->b_l1hdr.b_state == arc_uncached) { 5462 /* 5463 * This buffer is uncacheable, but we got a hit. Probably 5464 * a demand read after prefetch. Nothing more to do here. 5465 */ 5466 if (!HDR_IO_IN_PROGRESS(hdr)) 5467 ARCSTAT_BUMP(arcstat_uncached_hits); 5468 hdr->b_l1hdr.b_arc_access = now; 5469 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 5470 /* 5471 * This buffer is on the 2nd Level ARC and was not accessed 5472 * for a long time, so treat it as new and put into MRU. 5473 */ 5474 hdr->b_l1hdr.b_arc_access = now; 5475 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5476 arc_change_state(arc_mru, hdr); 5477 } else { 5478 cmn_err(CE_PANIC, "invalid arc state 0x%p", 5479 hdr->b_l1hdr.b_state); 5480 } 5481 } 5482 5483 /* 5484 * This routine is called by dbuf_hold() to update the arc_access() state 5485 * which otherwise would be skipped for entries in the dbuf cache. 5486 */ 5487 void 5488 arc_buf_access(arc_buf_t *buf) 5489 { 5490 arc_buf_hdr_t *hdr = buf->b_hdr; 5491 5492 /* 5493 * Avoid taking the hash_lock when possible as an optimization. 5494 * The header must be checked again under the hash_lock in order 5495 * to handle the case where it is concurrently being released. 5496 */ 5497 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) 5498 return; 5499 5500 kmutex_t *hash_lock = HDR_LOCK(hdr); 5501 mutex_enter(hash_lock); 5502 5503 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5504 mutex_exit(hash_lock); 5505 ARCSTAT_BUMP(arcstat_access_skip); 5506 return; 5507 } 5508 5509 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5510 hdr->b_l1hdr.b_state == arc_mfu || 5511 hdr->b_l1hdr.b_state == arc_uncached); 5512 5513 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5514 arc_access(hdr, 0, B_TRUE); 5515 mutex_exit(hash_lock); 5516 5517 ARCSTAT_BUMP(arcstat_hits); 5518 ARCSTAT_CONDSTAT(B_TRUE /* demand */, demand, prefetch, 5519 !HDR_ISTYPE_METADATA(hdr), data, metadata, hits); 5520 } 5521 5522 /* a generic arc_read_done_func_t which you can use */ 5523 void 5524 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5525 arc_buf_t *buf, void *arg) 5526 { 5527 (void) zio, (void) zb, (void) bp; 5528 5529 if (buf == NULL) 5530 return; 5531 5532 memcpy(arg, buf->b_data, arc_buf_size(buf)); 5533 arc_buf_destroy(buf, arg); 5534 } 5535 5536 /* a generic arc_read_done_func_t */ 5537 void 5538 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5539 arc_buf_t *buf, void *arg) 5540 { 5541 (void) zb, (void) bp; 5542 arc_buf_t **bufp = arg; 5543 5544 if (buf == NULL) { 5545 ASSERT(zio == NULL || zio->io_error != 0); 5546 *bufp = NULL; 5547 } else { 5548 ASSERT(zio == NULL || zio->io_error == 0); 5549 *bufp = buf; 5550 ASSERT(buf->b_data != NULL); 5551 } 5552 } 5553 5554 static void 5555 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp) 5556 { 5557 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 5558 ASSERT0(HDR_GET_PSIZE(hdr)); 5559 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF); 5560 } else { 5561 if (HDR_COMPRESSION_ENABLED(hdr)) { 5562 ASSERT3U(arc_hdr_get_compress(hdr), ==, 5563 BP_GET_COMPRESS(bp)); 5564 } 5565 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 5566 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); 5567 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp)); 5568 } 5569 } 5570 5571 static void 5572 arc_read_done(zio_t *zio) 5573 { 5574 blkptr_t *bp = zio->io_bp; 5575 arc_buf_hdr_t *hdr = zio->io_private; 5576 kmutex_t *hash_lock = NULL; 5577 arc_callback_t *callback_list; 5578 arc_callback_t *acb; 5579 5580 /* 5581 * The hdr was inserted into hash-table and removed from lists 5582 * prior to starting I/O. We should find this header, since 5583 * it's in the hash table, and it should be legit since it's 5584 * not possible to evict it during the I/O. The only possible 5585 * reason for it not to be found is if we were freed during the 5586 * read. 5587 */ 5588 if (HDR_IN_HASH_TABLE(hdr)) { 5589 arc_buf_hdr_t *found; 5590 5591 ASSERT3U(hdr->b_birth, ==, BP_GET_PHYSICAL_BIRTH(zio->io_bp)); 5592 ASSERT3U(hdr->b_dva.dva_word[0], ==, 5593 BP_IDENTITY(zio->io_bp)->dva_word[0]); 5594 ASSERT3U(hdr->b_dva.dva_word[1], ==, 5595 BP_IDENTITY(zio->io_bp)->dva_word[1]); 5596 5597 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock); 5598 5599 ASSERT((found == hdr && 5600 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 5601 (found == hdr && HDR_L2_READING(hdr))); 5602 ASSERT3P(hash_lock, !=, NULL); 5603 } 5604 5605 if (BP_IS_PROTECTED(bp)) { 5606 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 5607 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 5608 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 5609 hdr->b_crypt_hdr.b_iv); 5610 5611 if (zio->io_error == 0) { 5612 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) { 5613 void *tmpbuf; 5614 5615 tmpbuf = abd_borrow_buf_copy(zio->io_abd, 5616 sizeof (zil_chain_t)); 5617 zio_crypt_decode_mac_zil(tmpbuf, 5618 hdr->b_crypt_hdr.b_mac); 5619 abd_return_buf(zio->io_abd, tmpbuf, 5620 sizeof (zil_chain_t)); 5621 } else { 5622 zio_crypt_decode_mac_bp(bp, 5623 hdr->b_crypt_hdr.b_mac); 5624 } 5625 } 5626 } 5627 5628 if (zio->io_error == 0) { 5629 /* byteswap if necessary */ 5630 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 5631 if (BP_GET_LEVEL(zio->io_bp) > 0) { 5632 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 5633 } else { 5634 hdr->b_l1hdr.b_byteswap = 5635 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 5636 } 5637 } else { 5638 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 5639 } 5640 if (!HDR_L2_READING(hdr)) { 5641 hdr->b_complevel = zio->io_prop.zp_complevel; 5642 } 5643 } 5644 5645 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); 5646 if (l2arc_noprefetch && HDR_PREFETCH(hdr)) 5647 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE); 5648 5649 callback_list = hdr->b_l1hdr.b_acb; 5650 ASSERT3P(callback_list, !=, NULL); 5651 hdr->b_l1hdr.b_acb = NULL; 5652 5653 /* 5654 * If a read request has a callback (i.e. acb_done is not NULL), then we 5655 * make a buf containing the data according to the parameters which were 5656 * passed in. The implementation of arc_buf_alloc_impl() ensures that we 5657 * aren't needlessly decompressing the data multiple times. 5658 */ 5659 int callback_cnt = 0; 5660 for (acb = callback_list; acb != NULL; acb = acb->acb_next) { 5661 5662 /* We need the last one to call below in original order. */ 5663 callback_list = acb; 5664 5665 if (!acb->acb_done || acb->acb_nobuf) 5666 continue; 5667 5668 callback_cnt++; 5669 5670 if (zio->io_error != 0) 5671 continue; 5672 5673 int error = arc_buf_alloc_impl(hdr, zio->io_spa, 5674 &acb->acb_zb, acb->acb_private, acb->acb_encrypted, 5675 acb->acb_compressed, acb->acb_noauth, B_TRUE, 5676 &acb->acb_buf); 5677 5678 /* 5679 * Assert non-speculative zios didn't fail because an 5680 * encryption key wasn't loaded 5681 */ 5682 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) || 5683 error != EACCES); 5684 5685 /* 5686 * If we failed to decrypt, report an error now (as the zio 5687 * layer would have done if it had done the transforms). 5688 */ 5689 if (error == ECKSUM) { 5690 ASSERT(BP_IS_PROTECTED(bp)); 5691 error = SET_ERROR(EIO); 5692 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5693 spa_log_error(zio->io_spa, &acb->acb_zb, 5694 BP_GET_PHYSICAL_BIRTH(zio->io_bp)); 5695 (void) zfs_ereport_post( 5696 FM_EREPORT_ZFS_AUTHENTICATION, 5697 zio->io_spa, NULL, &acb->acb_zb, zio, 0); 5698 } 5699 } 5700 5701 if (error != 0) { 5702 /* 5703 * Decompression or decryption failed. Set 5704 * io_error so that when we call acb_done 5705 * (below), we will indicate that the read 5706 * failed. Note that in the unusual case 5707 * where one callback is compressed and another 5708 * uncompressed, we will mark all of them 5709 * as failed, even though the uncompressed 5710 * one can't actually fail. In this case, 5711 * the hdr will not be anonymous, because 5712 * if there are multiple callbacks, it's 5713 * because multiple threads found the same 5714 * arc buf in the hash table. 5715 */ 5716 zio->io_error = error; 5717 } 5718 } 5719 5720 /* 5721 * If there are multiple callbacks, we must have the hash lock, 5722 * because the only way for multiple threads to find this hdr is 5723 * in the hash table. This ensures that if there are multiple 5724 * callbacks, the hdr is not anonymous. If it were anonymous, 5725 * we couldn't use arc_buf_destroy() in the error case below. 5726 */ 5727 ASSERT(callback_cnt < 2 || hash_lock != NULL); 5728 5729 if (zio->io_error == 0) { 5730 arc_hdr_verify(hdr, zio->io_bp); 5731 } else { 5732 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 5733 if (hdr->b_l1hdr.b_state != arc_anon) 5734 arc_change_state(arc_anon, hdr); 5735 if (HDR_IN_HASH_TABLE(hdr)) 5736 buf_hash_remove(hdr); 5737 } 5738 5739 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5740 (void) remove_reference(hdr, hdr); 5741 5742 if (hash_lock != NULL) 5743 mutex_exit(hash_lock); 5744 5745 /* execute each callback and free its structure */ 5746 while ((acb = callback_list) != NULL) { 5747 if (acb->acb_done != NULL) { 5748 if (zio->io_error != 0 && acb->acb_buf != NULL) { 5749 /* 5750 * If arc_buf_alloc_impl() fails during 5751 * decompression, the buf will still be 5752 * allocated, and needs to be freed here. 5753 */ 5754 arc_buf_destroy(acb->acb_buf, 5755 acb->acb_private); 5756 acb->acb_buf = NULL; 5757 } 5758 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp, 5759 acb->acb_buf, acb->acb_private); 5760 } 5761 5762 if (acb->acb_zio_dummy != NULL) { 5763 acb->acb_zio_dummy->io_error = zio->io_error; 5764 zio_nowait(acb->acb_zio_dummy); 5765 } 5766 5767 callback_list = acb->acb_prev; 5768 if (acb->acb_wait) { 5769 mutex_enter(&acb->acb_wait_lock); 5770 acb->acb_wait_error = zio->io_error; 5771 acb->acb_wait = B_FALSE; 5772 cv_signal(&acb->acb_wait_cv); 5773 mutex_exit(&acb->acb_wait_lock); 5774 /* acb will be freed by the waiting thread. */ 5775 } else { 5776 kmem_free(acb, sizeof (arc_callback_t)); 5777 } 5778 } 5779 } 5780 5781 /* 5782 * Lookup the block at the specified DVA (in bp), and return the manner in 5783 * which the block is cached. A zero return indicates not cached. 5784 */ 5785 int 5786 arc_cached(spa_t *spa, const blkptr_t *bp) 5787 { 5788 arc_buf_hdr_t *hdr = NULL; 5789 kmutex_t *hash_lock = NULL; 5790 uint64_t guid = spa_load_guid(spa); 5791 int flags = 0; 5792 5793 if (BP_IS_EMBEDDED(bp)) 5794 return (ARC_CACHED_EMBEDDED); 5795 5796 hdr = buf_hash_find(guid, bp, &hash_lock); 5797 if (hdr == NULL) 5798 return (0); 5799 5800 if (HDR_HAS_L1HDR(hdr)) { 5801 arc_state_t *state = hdr->b_l1hdr.b_state; 5802 /* 5803 * We switch to ensure that any future arc_state_type_t 5804 * changes are handled. This is just a shift to promote 5805 * more compile-time checking. 5806 */ 5807 switch (state->arcs_state) { 5808 case ARC_STATE_ANON: 5809 break; 5810 case ARC_STATE_MRU: 5811 flags |= ARC_CACHED_IN_MRU | ARC_CACHED_IN_L1; 5812 break; 5813 case ARC_STATE_MFU: 5814 flags |= ARC_CACHED_IN_MFU | ARC_CACHED_IN_L1; 5815 break; 5816 case ARC_STATE_UNCACHED: 5817 /* The header is still in L1, probably not for long */ 5818 flags |= ARC_CACHED_IN_L1; 5819 break; 5820 default: 5821 break; 5822 } 5823 } 5824 if (HDR_HAS_L2HDR(hdr)) 5825 flags |= ARC_CACHED_IN_L2; 5826 5827 mutex_exit(hash_lock); 5828 5829 return (flags); 5830 } 5831 5832 /* 5833 * "Read" the block at the specified DVA (in bp) via the 5834 * cache. If the block is found in the cache, invoke the provided 5835 * callback immediately and return. Note that the `zio' parameter 5836 * in the callback will be NULL in this case, since no IO was 5837 * required. If the block is not in the cache pass the read request 5838 * on to the spa with a substitute callback function, so that the 5839 * requested block will be added to the cache. 5840 * 5841 * If a read request arrives for a block that has a read in-progress, 5842 * either wait for the in-progress read to complete (and return the 5843 * results); or, if this is a read with a "done" func, add a record 5844 * to the read to invoke the "done" func when the read completes, 5845 * and return; or just return. 5846 * 5847 * arc_read_done() will invoke all the requested "done" functions 5848 * for readers of this block. 5849 */ 5850 int 5851 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 5852 arc_read_done_func_t *done, void *private, zio_priority_t priority, 5853 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 5854 { 5855 arc_buf_hdr_t *hdr = NULL; 5856 kmutex_t *hash_lock = NULL; 5857 zio_t *rzio; 5858 uint64_t guid = spa_load_guid(spa); 5859 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0; 5860 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) && 5861 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5862 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) && 5863 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5864 boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp); 5865 boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF; 5866 arc_buf_t *buf = NULL; 5867 int rc = 0; 5868 boolean_t bp_validation = B_FALSE; 5869 5870 ASSERT(!embedded_bp || 5871 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 5872 ASSERT(!BP_IS_HOLE(bp)); 5873 ASSERT(!BP_IS_REDACTED(bp)); 5874 5875 /* 5876 * Normally SPL_FSTRANS will already be set since kernel threads which 5877 * expect to call the DMU interfaces will set it when created. System 5878 * calls are similarly handled by setting/cleaning the bit in the 5879 * registered callback (module/os/.../zfs/zpl_*). 5880 * 5881 * External consumers such as Lustre which call the exported DMU 5882 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock 5883 * on the hash_lock always set and clear the bit. 5884 */ 5885 fstrans_cookie_t cookie = spl_fstrans_mark(); 5886 top: 5887 if (!embedded_bp) { 5888 /* 5889 * Embedded BP's have no DVA and require no I/O to "read". 5890 * Create an anonymous arc buf to back it. 5891 */ 5892 hdr = buf_hash_find(guid, bp, &hash_lock); 5893 } 5894 5895 /* 5896 * Determine if we have an L1 cache hit or a cache miss. For simplicity 5897 * we maintain encrypted data separately from compressed / uncompressed 5898 * data. If the user is requesting raw encrypted data and we don't have 5899 * that in the header we will read from disk to guarantee that we can 5900 * get it even if the encryption keys aren't loaded. 5901 */ 5902 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) || 5903 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) { 5904 boolean_t is_data = !HDR_ISTYPE_METADATA(hdr); 5905 5906 /* 5907 * Verify the block pointer contents are reasonable. This 5908 * should always be the case since the blkptr is protected by 5909 * a checksum. 5910 */ 5911 if (zfs_blkptr_verify(spa, bp, BLK_CONFIG_SKIP, 5912 BLK_VERIFY_LOG)) { 5913 mutex_exit(hash_lock); 5914 rc = SET_ERROR(ECKSUM); 5915 goto done; 5916 } 5917 5918 if (HDR_IO_IN_PROGRESS(hdr)) { 5919 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 5920 mutex_exit(hash_lock); 5921 ARCSTAT_BUMP(arcstat_cached_only_in_progress); 5922 rc = SET_ERROR(ENOENT); 5923 goto done; 5924 } 5925 5926 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head; 5927 ASSERT3P(head_zio, !=, NULL); 5928 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && 5929 priority == ZIO_PRIORITY_SYNC_READ) { 5930 /* 5931 * This is a sync read that needs to wait for 5932 * an in-flight async read. Request that the 5933 * zio have its priority upgraded. 5934 */ 5935 zio_change_priority(head_zio, priority); 5936 DTRACE_PROBE1(arc__async__upgrade__sync, 5937 arc_buf_hdr_t *, hdr); 5938 ARCSTAT_BUMP(arcstat_async_upgrade_sync); 5939 } 5940 5941 DTRACE_PROBE1(arc__iohit, arc_buf_hdr_t *, hdr); 5942 arc_access(hdr, *arc_flags, B_FALSE); 5943 5944 /* 5945 * If there are multiple threads reading the same block 5946 * and that block is not yet in the ARC, then only one 5947 * thread will do the physical I/O and all other 5948 * threads will wait until that I/O completes. 5949 * Synchronous reads use the acb_wait_cv whereas nowait 5950 * reads register a callback. Both are signalled/called 5951 * in arc_read_done. 5952 * 5953 * Errors of the physical I/O may need to be propagated. 5954 * Synchronous read errors are returned here from 5955 * arc_read_done via acb_wait_error. Nowait reads 5956 * attach the acb_zio_dummy zio to pio and 5957 * arc_read_done propagates the physical I/O's io_error 5958 * to acb_zio_dummy, and thereby to pio. 5959 */ 5960 arc_callback_t *acb = NULL; 5961 if (done || pio || *arc_flags & ARC_FLAG_WAIT) { 5962 acb = kmem_zalloc(sizeof (arc_callback_t), 5963 KM_SLEEP); 5964 acb->acb_done = done; 5965 acb->acb_private = private; 5966 acb->acb_compressed = compressed_read; 5967 acb->acb_encrypted = encrypted_read; 5968 acb->acb_noauth = noauth_read; 5969 acb->acb_nobuf = no_buf; 5970 if (*arc_flags & ARC_FLAG_WAIT) { 5971 acb->acb_wait = B_TRUE; 5972 mutex_init(&acb->acb_wait_lock, NULL, 5973 MUTEX_DEFAULT, NULL); 5974 cv_init(&acb->acb_wait_cv, NULL, 5975 CV_DEFAULT, NULL); 5976 } 5977 acb->acb_zb = *zb; 5978 if (pio != NULL) { 5979 acb->acb_zio_dummy = zio_null(pio, 5980 spa, NULL, NULL, NULL, zio_flags); 5981 } 5982 acb->acb_zio_head = head_zio; 5983 acb->acb_next = hdr->b_l1hdr.b_acb; 5984 hdr->b_l1hdr.b_acb->acb_prev = acb; 5985 hdr->b_l1hdr.b_acb = acb; 5986 } 5987 mutex_exit(hash_lock); 5988 5989 ARCSTAT_BUMP(arcstat_iohits); 5990 ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH), 5991 demand, prefetch, is_data, data, metadata, iohits); 5992 5993 if (*arc_flags & ARC_FLAG_WAIT) { 5994 mutex_enter(&acb->acb_wait_lock); 5995 while (acb->acb_wait) { 5996 cv_wait(&acb->acb_wait_cv, 5997 &acb->acb_wait_lock); 5998 } 5999 rc = acb->acb_wait_error; 6000 mutex_exit(&acb->acb_wait_lock); 6001 mutex_destroy(&acb->acb_wait_lock); 6002 cv_destroy(&acb->acb_wait_cv); 6003 kmem_free(acb, sizeof (arc_callback_t)); 6004 } 6005 goto out; 6006 } 6007 6008 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 6009 hdr->b_l1hdr.b_state == arc_mfu || 6010 hdr->b_l1hdr.b_state == arc_uncached); 6011 6012 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 6013 arc_access(hdr, *arc_flags, B_TRUE); 6014 6015 if (done && !no_buf) { 6016 ASSERT(!embedded_bp || !BP_IS_HOLE(bp)); 6017 6018 /* Get a buf with the desired data in it. */ 6019 rc = arc_buf_alloc_impl(hdr, spa, zb, private, 6020 encrypted_read, compressed_read, noauth_read, 6021 B_TRUE, &buf); 6022 if (rc == ECKSUM) { 6023 /* 6024 * Convert authentication and decryption errors 6025 * to EIO (and generate an ereport if needed) 6026 * before leaving the ARC. 6027 */ 6028 rc = SET_ERROR(EIO); 6029 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) { 6030 spa_log_error(spa, zb, hdr->b_birth); 6031 (void) zfs_ereport_post( 6032 FM_EREPORT_ZFS_AUTHENTICATION, 6033 spa, NULL, zb, NULL, 0); 6034 } 6035 } 6036 if (rc != 0) { 6037 arc_buf_destroy_impl(buf); 6038 buf = NULL; 6039 (void) remove_reference(hdr, private); 6040 } 6041 6042 /* assert any errors weren't due to unloaded keys */ 6043 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) || 6044 rc != EACCES); 6045 } 6046 mutex_exit(hash_lock); 6047 ARCSTAT_BUMP(arcstat_hits); 6048 ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH), 6049 demand, prefetch, is_data, data, metadata, hits); 6050 *arc_flags |= ARC_FLAG_CACHED; 6051 goto done; 6052 } else { 6053 uint64_t lsize = BP_GET_LSIZE(bp); 6054 uint64_t psize = BP_GET_PSIZE(bp); 6055 arc_callback_t *acb; 6056 vdev_t *vd = NULL; 6057 uint64_t addr = 0; 6058 boolean_t devw = B_FALSE; 6059 uint64_t size; 6060 abd_t *hdr_abd; 6061 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0; 6062 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 6063 int config_lock; 6064 int error; 6065 6066 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 6067 if (hash_lock != NULL) 6068 mutex_exit(hash_lock); 6069 rc = SET_ERROR(ENOENT); 6070 goto done; 6071 } 6072 6073 if (zio_flags & ZIO_FLAG_CONFIG_WRITER) { 6074 config_lock = BLK_CONFIG_HELD; 6075 } else if (hash_lock != NULL) { 6076 /* 6077 * Prevent lock order reversal 6078 */ 6079 config_lock = BLK_CONFIG_NEEDED_TRY; 6080 } else { 6081 config_lock = BLK_CONFIG_NEEDED; 6082 } 6083 6084 /* 6085 * Verify the block pointer contents are reasonable. This 6086 * should always be the case since the blkptr is protected by 6087 * a checksum. 6088 */ 6089 if (!bp_validation && (error = zfs_blkptr_verify(spa, bp, 6090 config_lock, BLK_VERIFY_LOG))) { 6091 if (hash_lock != NULL) 6092 mutex_exit(hash_lock); 6093 if (error == EBUSY && !zfs_blkptr_verify(spa, bp, 6094 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) { 6095 bp_validation = B_TRUE; 6096 goto top; 6097 } 6098 rc = SET_ERROR(ECKSUM); 6099 goto done; 6100 } 6101 6102 if (hdr == NULL) { 6103 /* 6104 * This block is not in the cache or it has 6105 * embedded data. 6106 */ 6107 arc_buf_hdr_t *exists = NULL; 6108 hdr = arc_hdr_alloc(guid, psize, lsize, 6109 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type); 6110 6111 if (!embedded_bp) { 6112 hdr->b_dva = *BP_IDENTITY(bp); 6113 hdr->b_birth = BP_GET_PHYSICAL_BIRTH(bp); 6114 exists = buf_hash_insert(hdr, &hash_lock); 6115 } 6116 if (exists != NULL) { 6117 /* somebody beat us to the hash insert */ 6118 mutex_exit(hash_lock); 6119 buf_discard_identity(hdr); 6120 arc_hdr_destroy(hdr); 6121 goto top; /* restart the IO request */ 6122 } 6123 } else { 6124 /* 6125 * This block is in the ghost cache or encrypted data 6126 * was requested and we didn't have it. If it was 6127 * L2-only (and thus didn't have an L1 hdr), 6128 * we realloc the header to add an L1 hdr. 6129 */ 6130 if (!HDR_HAS_L1HDR(hdr)) { 6131 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 6132 hdr_full_cache); 6133 } 6134 6135 if (GHOST_STATE(hdr->b_l1hdr.b_state)) { 6136 ASSERT0P(hdr->b_l1hdr.b_pabd); 6137 ASSERT(!HDR_HAS_RABD(hdr)); 6138 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6139 ASSERT0(zfs_refcount_count( 6140 &hdr->b_l1hdr.b_refcnt)); 6141 ASSERT0P(hdr->b_l1hdr.b_buf); 6142 #ifdef ZFS_DEBUG 6143 ASSERT0P(hdr->b_l1hdr.b_freeze_cksum); 6144 #endif 6145 } else if (HDR_IO_IN_PROGRESS(hdr)) { 6146 /* 6147 * If this header already had an IO in progress 6148 * and we are performing another IO to fetch 6149 * encrypted data we must wait until the first 6150 * IO completes so as not to confuse 6151 * arc_read_done(). This should be very rare 6152 * and so the performance impact shouldn't 6153 * matter. 6154 */ 6155 arc_callback_t *acb = kmem_zalloc( 6156 sizeof (arc_callback_t), KM_SLEEP); 6157 acb->acb_wait = B_TRUE; 6158 mutex_init(&acb->acb_wait_lock, NULL, 6159 MUTEX_DEFAULT, NULL); 6160 cv_init(&acb->acb_wait_cv, NULL, CV_DEFAULT, 6161 NULL); 6162 acb->acb_zio_head = 6163 hdr->b_l1hdr.b_acb->acb_zio_head; 6164 acb->acb_next = hdr->b_l1hdr.b_acb; 6165 hdr->b_l1hdr.b_acb->acb_prev = acb; 6166 hdr->b_l1hdr.b_acb = acb; 6167 mutex_exit(hash_lock); 6168 mutex_enter(&acb->acb_wait_lock); 6169 while (acb->acb_wait) { 6170 cv_wait(&acb->acb_wait_cv, 6171 &acb->acb_wait_lock); 6172 } 6173 mutex_exit(&acb->acb_wait_lock); 6174 mutex_destroy(&acb->acb_wait_lock); 6175 cv_destroy(&acb->acb_wait_cv); 6176 kmem_free(acb, sizeof (arc_callback_t)); 6177 goto top; 6178 } 6179 } 6180 if (*arc_flags & ARC_FLAG_UNCACHED) { 6181 arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED); 6182 if (!encrypted_read) 6183 alloc_flags |= ARC_HDR_ALLOC_LINEAR; 6184 } 6185 6186 /* 6187 * Take additional reference for IO_IN_PROGRESS. It stops 6188 * arc_access() from putting this header without any buffers 6189 * and so other references but obviously nonevictable onto 6190 * the evictable list of MRU or MFU state. 6191 */ 6192 add_reference(hdr, hdr); 6193 if (!embedded_bp) 6194 arc_access(hdr, *arc_flags, B_FALSE); 6195 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6196 arc_hdr_alloc_abd(hdr, alloc_flags); 6197 if (encrypted_read) { 6198 ASSERT(HDR_HAS_RABD(hdr)); 6199 size = HDR_GET_PSIZE(hdr); 6200 hdr_abd = hdr->b_crypt_hdr.b_rabd; 6201 zio_flags |= ZIO_FLAG_RAW; 6202 } else { 6203 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 6204 size = arc_hdr_size(hdr); 6205 hdr_abd = hdr->b_l1hdr.b_pabd; 6206 6207 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 6208 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 6209 } 6210 6211 /* 6212 * For authenticated bp's, we do not ask the ZIO layer 6213 * to authenticate them since this will cause the entire 6214 * IO to fail if the key isn't loaded. Instead, we 6215 * defer authentication until arc_buf_fill(), which will 6216 * verify the data when the key is available. 6217 */ 6218 if (BP_IS_AUTHENTICATED(bp)) 6219 zio_flags |= ZIO_FLAG_RAW_ENCRYPT; 6220 } 6221 6222 if (BP_IS_AUTHENTICATED(bp)) 6223 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6224 if (BP_GET_LEVEL(bp) > 0) 6225 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); 6226 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 6227 6228 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 6229 acb->acb_done = done; 6230 acb->acb_private = private; 6231 acb->acb_compressed = compressed_read; 6232 acb->acb_encrypted = encrypted_read; 6233 acb->acb_noauth = noauth_read; 6234 acb->acb_nobuf = no_buf; 6235 acb->acb_zb = *zb; 6236 6237 ASSERT0P(hdr->b_l1hdr.b_acb); 6238 hdr->b_l1hdr.b_acb = acb; 6239 6240 if (HDR_HAS_L2HDR(hdr) && 6241 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 6242 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 6243 addr = hdr->b_l2hdr.b_daddr; 6244 /* 6245 * Lock out L2ARC device removal. 6246 */ 6247 if (vdev_is_dead(vd) || 6248 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 6249 vd = NULL; 6250 } 6251 6252 /* 6253 * We count both async reads and scrub IOs as asynchronous so 6254 * that both can be upgraded in the event of a cache hit while 6255 * the read IO is still in-flight. 6256 */ 6257 if (priority == ZIO_PRIORITY_ASYNC_READ || 6258 priority == ZIO_PRIORITY_SCRUB) 6259 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6260 else 6261 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6262 6263 /* 6264 * At this point, we have a level 1 cache miss or a blkptr 6265 * with embedded data. Try again in L2ARC if possible. 6266 */ 6267 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); 6268 6269 /* 6270 * Skip ARC stat bump for block pointers with embedded 6271 * data. The data are read from the blkptr itself via 6272 * decode_embedded_bp_compressed(). 6273 */ 6274 if (!embedded_bp) { 6275 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, 6276 blkptr_t *, bp, uint64_t, lsize, 6277 zbookmark_phys_t *, zb); 6278 ARCSTAT_BUMP(arcstat_misses); 6279 ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH), 6280 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, 6281 metadata, misses); 6282 zfs_racct_read(spa, size, 1, 6283 (*arc_flags & ARC_FLAG_UNCACHED) ? 6284 DMU_UNCACHEDIO : 0); 6285 } 6286 6287 /* Check if the spa even has l2 configured */ 6288 const boolean_t spa_has_l2 = l2arc_ndev != 0 && 6289 spa->spa_l2cache.sav_count > 0; 6290 6291 if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) { 6292 /* 6293 * Read from the L2ARC if the following are true: 6294 * 1. The L2ARC vdev was previously cached. 6295 * 2. This buffer still has L2ARC metadata. 6296 * 3. This buffer isn't currently writing to the L2ARC. 6297 * 4. The L2ARC entry wasn't evicted, which may 6298 * also have invalidated the vdev. 6299 */ 6300 if (HDR_HAS_L2HDR(hdr) && 6301 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr)) { 6302 l2arc_read_callback_t *cb; 6303 abd_t *abd; 6304 uint64_t asize; 6305 6306 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 6307 ARCSTAT_BUMP(arcstat_l2_hits); 6308 hdr->b_l2hdr.b_hits++; 6309 6310 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 6311 KM_SLEEP); 6312 cb->l2rcb_hdr = hdr; 6313 cb->l2rcb_bp = *bp; 6314 cb->l2rcb_zb = *zb; 6315 cb->l2rcb_flags = zio_flags; 6316 6317 /* 6318 * When Compressed ARC is disabled, but the 6319 * L2ARC block is compressed, arc_hdr_size() 6320 * will have returned LSIZE rather than PSIZE. 6321 */ 6322 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 6323 !HDR_COMPRESSION_ENABLED(hdr) && 6324 HDR_GET_PSIZE(hdr) != 0) { 6325 size = HDR_GET_PSIZE(hdr); 6326 } 6327 6328 asize = vdev_psize_to_asize(vd, size); 6329 if (asize != size) { 6330 abd = abd_alloc_for_io(asize, 6331 HDR_ISTYPE_METADATA(hdr)); 6332 cb->l2rcb_abd = abd; 6333 } else { 6334 abd = hdr_abd; 6335 } 6336 6337 ASSERT(addr >= VDEV_LABEL_START_SIZE && 6338 addr + asize <= vd->vdev_psize - 6339 VDEV_LABEL_END_SIZE); 6340 6341 /* 6342 * l2arc read. The SCL_L2ARC lock will be 6343 * released by l2arc_read_done(). 6344 * Issue a null zio if the underlying buffer 6345 * was squashed to zero size by compression. 6346 */ 6347 ASSERT3U(arc_hdr_get_compress(hdr), !=, 6348 ZIO_COMPRESS_EMPTY); 6349 rzio = zio_read_phys(pio, vd, addr, 6350 asize, abd, 6351 ZIO_CHECKSUM_OFF, 6352 l2arc_read_done, cb, priority, 6353 zio_flags | ZIO_FLAG_CANFAIL | 6354 ZIO_FLAG_DONT_PROPAGATE | 6355 ZIO_FLAG_DONT_RETRY, B_FALSE); 6356 acb->acb_zio_head = rzio; 6357 6358 if (hash_lock != NULL) 6359 mutex_exit(hash_lock); 6360 6361 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 6362 zio_t *, rzio); 6363 ARCSTAT_INCR(arcstat_l2_read_bytes, 6364 HDR_GET_PSIZE(hdr)); 6365 6366 if (*arc_flags & ARC_FLAG_NOWAIT) { 6367 zio_nowait(rzio); 6368 goto out; 6369 } 6370 6371 ASSERT(*arc_flags & ARC_FLAG_WAIT); 6372 if (zio_wait(rzio) == 0) 6373 goto out; 6374 6375 /* l2arc read error; goto zio_read() */ 6376 if (hash_lock != NULL) 6377 mutex_enter(hash_lock); 6378 } else { 6379 DTRACE_PROBE1(l2arc__miss, 6380 arc_buf_hdr_t *, hdr); 6381 ARCSTAT_BUMP(arcstat_l2_misses); 6382 if (HDR_L2_WRITING(hdr)) 6383 ARCSTAT_BUMP(arcstat_l2_rw_clash); 6384 spa_config_exit(spa, SCL_L2ARC, vd); 6385 } 6386 } else { 6387 if (vd != NULL) 6388 spa_config_exit(spa, SCL_L2ARC, vd); 6389 6390 /* 6391 * Only a spa with l2 should contribute to l2 6392 * miss stats. (Including the case of having a 6393 * faulted cache device - that's also a miss.) 6394 */ 6395 if (spa_has_l2) { 6396 /* 6397 * Skip ARC stat bump for block pointers with 6398 * embedded data. The data are read from the 6399 * blkptr itself via 6400 * decode_embedded_bp_compressed(). 6401 */ 6402 if (!embedded_bp) { 6403 DTRACE_PROBE1(l2arc__miss, 6404 arc_buf_hdr_t *, hdr); 6405 ARCSTAT_BUMP(arcstat_l2_misses); 6406 } 6407 } 6408 } 6409 6410 rzio = zio_read(pio, spa, bp, hdr_abd, size, 6411 arc_read_done, hdr, priority, zio_flags, zb); 6412 acb->acb_zio_head = rzio; 6413 6414 if (hash_lock != NULL) 6415 mutex_exit(hash_lock); 6416 6417 if (*arc_flags & ARC_FLAG_WAIT) { 6418 rc = zio_wait(rzio); 6419 goto out; 6420 } 6421 6422 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 6423 zio_nowait(rzio); 6424 } 6425 6426 out: 6427 /* embedded bps don't actually go to disk */ 6428 if (!embedded_bp) 6429 spa_read_history_add(spa, zb, *arc_flags); 6430 spl_fstrans_unmark(cookie); 6431 return (rc); 6432 6433 done: 6434 if (done) 6435 done(NULL, zb, bp, buf, private); 6436 if (pio && rc != 0) { 6437 zio_t *zio = zio_null(pio, spa, NULL, NULL, NULL, zio_flags); 6438 zio->io_error = rc; 6439 zio_nowait(zio); 6440 } 6441 goto out; 6442 } 6443 6444 arc_prune_t * 6445 arc_add_prune_callback(arc_prune_func_t *func, void *private) 6446 { 6447 arc_prune_t *p; 6448 6449 p = kmem_alloc(sizeof (*p), KM_SLEEP); 6450 p->p_pfunc = func; 6451 p->p_private = private; 6452 list_link_init(&p->p_node); 6453 zfs_refcount_create(&p->p_refcnt); 6454 6455 mutex_enter(&arc_prune_mtx); 6456 zfs_refcount_add(&p->p_refcnt, &arc_prune_list); 6457 list_insert_head(&arc_prune_list, p); 6458 mutex_exit(&arc_prune_mtx); 6459 6460 return (p); 6461 } 6462 6463 void 6464 arc_remove_prune_callback(arc_prune_t *p) 6465 { 6466 boolean_t wait = B_FALSE; 6467 mutex_enter(&arc_prune_mtx); 6468 list_remove(&arc_prune_list, p); 6469 if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0) 6470 wait = B_TRUE; 6471 mutex_exit(&arc_prune_mtx); 6472 6473 /* wait for arc_prune_task to finish */ 6474 if (wait) 6475 taskq_wait_outstanding(arc_prune_taskq, 0); 6476 ASSERT0(zfs_refcount_count(&p->p_refcnt)); 6477 zfs_refcount_destroy(&p->p_refcnt); 6478 kmem_free(p, sizeof (*p)); 6479 } 6480 6481 /* 6482 * Helper function for arc_prune_async() it is responsible for safely 6483 * handling the execution of a registered arc_prune_func_t. 6484 */ 6485 static void 6486 arc_prune_task(void *ptr) 6487 { 6488 arc_prune_t *ap = (arc_prune_t *)ptr; 6489 arc_prune_func_t *func = ap->p_pfunc; 6490 6491 if (func != NULL) 6492 func(ap->p_adjust, ap->p_private); 6493 6494 (void) zfs_refcount_remove(&ap->p_refcnt, func); 6495 } 6496 6497 /* 6498 * Notify registered consumers they must drop holds on a portion of the ARC 6499 * buffers they reference. This provides a mechanism to ensure the ARC can 6500 * honor the metadata limit and reclaim otherwise pinned ARC buffers. 6501 * 6502 * This operation is performed asynchronously so it may be safely called 6503 * in the context of the arc_reclaim_thread(). A reference is taken here 6504 * for each registered arc_prune_t and the arc_prune_task() is responsible 6505 * for releasing it once the registered arc_prune_func_t has completed. 6506 */ 6507 static void 6508 arc_prune_async(uint64_t adjust) 6509 { 6510 arc_prune_t *ap; 6511 6512 mutex_enter(&arc_prune_mtx); 6513 for (ap = list_head(&arc_prune_list); ap != NULL; 6514 ap = list_next(&arc_prune_list, ap)) { 6515 6516 if (zfs_refcount_count(&ap->p_refcnt) >= 2) 6517 continue; 6518 6519 zfs_refcount_add(&ap->p_refcnt, ap->p_pfunc); 6520 ap->p_adjust = adjust; 6521 if (taskq_dispatch(arc_prune_taskq, arc_prune_task, 6522 ap, TQ_SLEEP) == TASKQID_INVALID) { 6523 (void) zfs_refcount_remove(&ap->p_refcnt, ap->p_pfunc); 6524 continue; 6525 } 6526 ARCSTAT_BUMP(arcstat_prune); 6527 } 6528 mutex_exit(&arc_prune_mtx); 6529 } 6530 6531 /* 6532 * Notify the arc that a block was freed, and thus will never be used again. 6533 */ 6534 void 6535 arc_freed(spa_t *spa, const blkptr_t *bp) 6536 { 6537 arc_buf_hdr_t *hdr; 6538 kmutex_t *hash_lock; 6539 uint64_t guid = spa_load_guid(spa); 6540 6541 ASSERT(!BP_IS_EMBEDDED(bp)); 6542 6543 hdr = buf_hash_find(guid, bp, &hash_lock); 6544 if (hdr == NULL) 6545 return; 6546 6547 /* 6548 * We might be trying to free a block that is still doing I/O 6549 * (i.e. prefetch) or has some other reference (i.e. a dedup-ed, 6550 * dmu_sync-ed block). A block may also have a reference if it is 6551 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would 6552 * have written the new block to its final resting place on disk but 6553 * without the dedup flag set. This would have left the hdr in the MRU 6554 * state and discoverable. When the txg finally syncs it detects that 6555 * the block was overridden in open context and issues an override I/O. 6556 * Since this is a dedup block, the override I/O will determine if the 6557 * block is already in the DDT. If so, then it will replace the io_bp 6558 * with the bp from the DDT and allow the I/O to finish. When the I/O 6559 * reaches the done callback, dbuf_write_override_done, it will 6560 * check to see if the io_bp and io_bp_override are identical. 6561 * If they are not, then it indicates that the bp was replaced with 6562 * the bp in the DDT and the override bp is freed. This allows 6563 * us to arrive here with a reference on a block that is being 6564 * freed. So if we have an I/O in progress, or a reference to 6565 * this hdr, then we don't destroy the hdr. 6566 */ 6567 if (!HDR_HAS_L1HDR(hdr) || 6568 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6569 arc_change_state(arc_anon, hdr); 6570 arc_hdr_destroy(hdr); 6571 mutex_exit(hash_lock); 6572 } else { 6573 mutex_exit(hash_lock); 6574 } 6575 6576 } 6577 6578 /* 6579 * Release this buffer from the cache, making it an anonymous buffer. This 6580 * must be done after a read and prior to modifying the buffer contents. 6581 * If the buffer has more than one reference, we must make 6582 * a new hdr for the buffer. 6583 */ 6584 void 6585 arc_release(arc_buf_t *buf, const void *tag) 6586 { 6587 arc_buf_hdr_t *hdr = buf->b_hdr; 6588 6589 /* 6590 * It would be nice to assert that if its DMU metadata (level > 6591 * 0 || it's the dnode file), then it must be syncing context. 6592 * But we don't know that information at this level. 6593 */ 6594 6595 ASSERT(HDR_HAS_L1HDR(hdr)); 6596 6597 /* 6598 * We don't grab the hash lock prior to this check, because if 6599 * the buffer's header is in the arc_anon state, it won't be 6600 * linked into the hash table. 6601 */ 6602 if (hdr->b_l1hdr.b_state == arc_anon) { 6603 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6604 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 6605 ASSERT(!HDR_HAS_L2HDR(hdr)); 6606 6607 ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf); 6608 ASSERT(ARC_BUF_LAST(buf)); 6609 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 6610 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 6611 6612 hdr->b_l1hdr.b_arc_access = 0; 6613 6614 /* 6615 * If the buf is being overridden then it may already 6616 * have a hdr that is not empty. 6617 */ 6618 buf_discard_identity(hdr); 6619 arc_buf_thaw(buf); 6620 6621 return; 6622 } 6623 6624 kmutex_t *hash_lock = HDR_LOCK(hdr); 6625 mutex_enter(hash_lock); 6626 6627 /* 6628 * This assignment is only valid as long as the hash_lock is 6629 * held, we must be careful not to reference state or the 6630 * b_state field after dropping the lock. 6631 */ 6632 arc_state_t *state = hdr->b_l1hdr.b_state; 6633 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 6634 ASSERT3P(state, !=, arc_anon); 6635 ASSERT3P(state, !=, arc_l2c_only); 6636 6637 /* this buffer is not on any list */ 6638 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0); 6639 6640 /* 6641 * Do we have more than one buf? 6642 */ 6643 if (hdr->b_l1hdr.b_buf != buf || !ARC_BUF_LAST(buf)) { 6644 arc_buf_hdr_t *nhdr; 6645 uint64_t spa = hdr->b_spa; 6646 uint64_t psize = HDR_GET_PSIZE(hdr); 6647 uint64_t lsize = HDR_GET_LSIZE(hdr); 6648 boolean_t protected = HDR_PROTECTED(hdr); 6649 enum zio_compress compress = arc_hdr_get_compress(hdr); 6650 arc_buf_contents_t type = arc_buf_type(hdr); 6651 6652 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 6653 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6654 ASSERT(ARC_BUF_LAST(buf)); 6655 } 6656 6657 /* 6658 * Pull the buffer off of this hdr and find the last buffer 6659 * in the hdr's buffer list. 6660 */ 6661 VERIFY3S(remove_reference(hdr, tag), >, 0); 6662 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 6663 ASSERT3P(lastbuf, !=, NULL); 6664 6665 /* 6666 * If the current arc_buf_t and the hdr are sharing their data 6667 * buffer, then we must stop sharing that block. 6668 */ 6669 if (ARC_BUF_SHARED(buf)) { 6670 ASSERT(!arc_buf_is_shared(lastbuf)); 6671 6672 /* 6673 * First, sever the block sharing relationship between 6674 * buf and the arc_buf_hdr_t. 6675 */ 6676 arc_unshare_buf(hdr, buf); 6677 6678 /* 6679 * Now we need to recreate the hdr's b_pabd. Since we 6680 * have lastbuf handy, we try to share with it, but if 6681 * we can't then we allocate a new b_pabd and copy the 6682 * data from buf into it. 6683 */ 6684 if (arc_can_share(hdr, lastbuf)) { 6685 arc_share_buf(hdr, lastbuf); 6686 } else { 6687 arc_hdr_alloc_abd(hdr, 0); 6688 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, 6689 buf->b_data, psize); 6690 } 6691 } else if (HDR_SHARED_DATA(hdr)) { 6692 /* 6693 * Uncompressed shared buffers are always at the end 6694 * of the list. Compressed buffers don't have the 6695 * same requirements. This makes it hard to 6696 * simply assert that the lastbuf is shared so 6697 * we rely on the hdr's compression flags to determine 6698 * if we have a compressed, shared buffer. 6699 */ 6700 ASSERT(arc_buf_is_shared(lastbuf) || 6701 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 6702 ASSERT(!arc_buf_is_shared(buf)); 6703 } 6704 6705 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 6706 6707 (void) zfs_refcount_remove_many(&state->arcs_size[type], 6708 arc_buf_size(buf), buf); 6709 6710 arc_cksum_verify(buf); 6711 arc_buf_unwatch(buf); 6712 6713 /* if this is the last uncompressed buf free the checksum */ 6714 if (!arc_hdr_has_uncompressed_buf(hdr)) 6715 arc_cksum_free(hdr); 6716 6717 mutex_exit(hash_lock); 6718 6719 nhdr = arc_hdr_alloc(spa, psize, lsize, protected, 6720 compress, hdr->b_complevel, type); 6721 ASSERT0P(nhdr->b_l1hdr.b_buf); 6722 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt)); 6723 VERIFY3U(nhdr->b_type, ==, type); 6724 ASSERT(!HDR_SHARED_DATA(nhdr)); 6725 6726 nhdr->b_l1hdr.b_buf = buf; 6727 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 6728 buf->b_hdr = nhdr; 6729 6730 (void) zfs_refcount_add_many(&arc_anon->arcs_size[type], 6731 arc_buf_size(buf), buf); 6732 } else { 6733 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 6734 /* protected by hash lock, or hdr is on arc_anon */ 6735 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 6736 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6737 6738 if (HDR_HAS_L2HDR(hdr)) { 6739 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6740 /* Recheck to prevent race with l2arc_evict(). */ 6741 if (HDR_HAS_L2HDR(hdr)) 6742 arc_hdr_l2hdr_destroy(hdr); 6743 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6744 } 6745 6746 hdr->b_l1hdr.b_mru_hits = 0; 6747 hdr->b_l1hdr.b_mru_ghost_hits = 0; 6748 hdr->b_l1hdr.b_mfu_hits = 0; 6749 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 6750 arc_change_state(arc_anon, hdr); 6751 hdr->b_l1hdr.b_arc_access = 0; 6752 6753 mutex_exit(hash_lock); 6754 buf_discard_identity(hdr); 6755 arc_buf_thaw(buf); 6756 } 6757 } 6758 6759 int 6760 arc_released(arc_buf_t *buf) 6761 { 6762 return (buf->b_data != NULL && 6763 buf->b_hdr->b_l1hdr.b_state == arc_anon); 6764 } 6765 6766 #ifdef ZFS_DEBUG 6767 int 6768 arc_referenced(arc_buf_t *buf) 6769 { 6770 return (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 6771 } 6772 #endif 6773 6774 static void 6775 arc_write_ready(zio_t *zio) 6776 { 6777 arc_write_callback_t *callback = zio->io_private; 6778 arc_buf_t *buf = callback->awcb_buf; 6779 arc_buf_hdr_t *hdr = buf->b_hdr; 6780 blkptr_t *bp = zio->io_bp; 6781 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp); 6782 fstrans_cookie_t cookie = spl_fstrans_mark(); 6783 6784 ASSERT(HDR_HAS_L1HDR(hdr)); 6785 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 6786 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL); 6787 6788 /* 6789 * If we're reexecuting this zio because the pool suspended, then 6790 * cleanup any state that was previously set the first time the 6791 * callback was invoked. 6792 */ 6793 if (zio->io_flags & ZIO_FLAG_REEXECUTED) { 6794 arc_cksum_free(hdr); 6795 arc_buf_unwatch(buf); 6796 if (hdr->b_l1hdr.b_pabd != NULL) { 6797 if (ARC_BUF_SHARED(buf)) { 6798 arc_unshare_buf(hdr, buf); 6799 } else { 6800 ASSERT(!arc_buf_is_shared(buf)); 6801 arc_hdr_free_abd(hdr, B_FALSE); 6802 } 6803 } 6804 6805 if (HDR_HAS_RABD(hdr)) 6806 arc_hdr_free_abd(hdr, B_TRUE); 6807 } 6808 ASSERT0P(hdr->b_l1hdr.b_pabd); 6809 ASSERT(!HDR_HAS_RABD(hdr)); 6810 ASSERT(!HDR_SHARED_DATA(hdr)); 6811 ASSERT(!arc_buf_is_shared(buf)); 6812 6813 callback->awcb_ready(zio, buf, callback->awcb_private); 6814 6815 if (HDR_IO_IN_PROGRESS(hdr)) { 6816 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); 6817 } else { 6818 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6819 add_reference(hdr, hdr); /* For IO_IN_PROGRESS. */ 6820 } 6821 6822 if (BP_IS_PROTECTED(bp)) { 6823 /* ZIL blocks are written through zio_rewrite */ 6824 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 6825 6826 if (BP_SHOULD_BYTESWAP(bp)) { 6827 if (BP_GET_LEVEL(bp) > 0) { 6828 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 6829 } else { 6830 hdr->b_l1hdr.b_byteswap = 6831 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 6832 } 6833 } else { 6834 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 6835 } 6836 6837 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 6838 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 6839 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 6840 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 6841 hdr->b_crypt_hdr.b_iv); 6842 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 6843 } else { 6844 arc_hdr_clear_flags(hdr, ARC_FLAG_PROTECTED); 6845 } 6846 6847 /* 6848 * If this block was written for raw encryption but the zio layer 6849 * ended up only authenticating it, adjust the buffer flags now. 6850 */ 6851 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) { 6852 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6853 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6854 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF) 6855 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6856 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) { 6857 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6858 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6859 } 6860 6861 /* this must be done after the buffer flags are adjusted */ 6862 arc_cksum_compute(buf); 6863 6864 enum zio_compress compress; 6865 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 6866 compress = ZIO_COMPRESS_OFF; 6867 } else { 6868 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 6869 compress = BP_GET_COMPRESS(bp); 6870 } 6871 HDR_SET_PSIZE(hdr, psize); 6872 arc_hdr_set_compress(hdr, compress); 6873 hdr->b_complevel = zio->io_prop.zp_complevel; 6874 6875 if (zio->io_error != 0 || psize == 0) 6876 goto out; 6877 6878 /* 6879 * Fill the hdr with data. If the buffer is encrypted we have no choice 6880 * but to copy the data into b_radb. If the hdr is compressed, the data 6881 * we want is available from the zio, otherwise we can take it from 6882 * the buf. 6883 * 6884 * We might be able to share the buf's data with the hdr here. However, 6885 * doing so would cause the ARC to be full of linear ABDs if we write a 6886 * lot of shareable data. As a compromise, we check whether scattered 6887 * ABDs are allowed, and assume that if they are then the user wants 6888 * the ARC to be primarily filled with them regardless of the data being 6889 * written. Therefore, if they're allowed then we allocate one and copy 6890 * the data into it; otherwise, we share the data directly if we can. 6891 */ 6892 if (ARC_BUF_ENCRYPTED(buf)) { 6893 ASSERT3U(psize, >, 0); 6894 ASSERT(ARC_BUF_COMPRESSED(buf)); 6895 arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA | 6896 ARC_HDR_USE_RESERVE); 6897 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6898 } else if (!(HDR_UNCACHED(hdr) || 6899 abd_size_alloc_linear(arc_buf_size(buf))) || 6900 !arc_can_share(hdr, buf)) { 6901 /* 6902 * Ideally, we would always copy the io_abd into b_pabd, but the 6903 * user may have disabled compressed ARC, thus we must check the 6904 * hdr's compression setting rather than the io_bp's. 6905 */ 6906 if (BP_IS_ENCRYPTED(bp)) { 6907 ASSERT3U(psize, >, 0); 6908 arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA | 6909 ARC_HDR_USE_RESERVE); 6910 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6911 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 6912 !ARC_BUF_COMPRESSED(buf)) { 6913 ASSERT3U(psize, >, 0); 6914 arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE); 6915 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize); 6916 } else { 6917 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr)); 6918 arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE); 6919 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data, 6920 arc_buf_size(buf)); 6921 } 6922 } else { 6923 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd)); 6924 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf)); 6925 ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf); 6926 ASSERT(ARC_BUF_LAST(buf)); 6927 6928 arc_share_buf(hdr, buf); 6929 } 6930 6931 out: 6932 arc_hdr_verify(hdr, bp); 6933 spl_fstrans_unmark(cookie); 6934 } 6935 6936 static void 6937 arc_write_children_ready(zio_t *zio) 6938 { 6939 arc_write_callback_t *callback = zio->io_private; 6940 arc_buf_t *buf = callback->awcb_buf; 6941 6942 callback->awcb_children_ready(zio, buf, callback->awcb_private); 6943 } 6944 6945 static void 6946 arc_write_done(zio_t *zio) 6947 { 6948 arc_write_callback_t *callback = zio->io_private; 6949 arc_buf_t *buf = callback->awcb_buf; 6950 arc_buf_hdr_t *hdr = buf->b_hdr; 6951 6952 ASSERT0P(hdr->b_l1hdr.b_acb); 6953 6954 if (zio->io_error == 0) { 6955 arc_hdr_verify(hdr, zio->io_bp); 6956 6957 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 6958 buf_discard_identity(hdr); 6959 } else { 6960 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 6961 hdr->b_birth = BP_GET_PHYSICAL_BIRTH(zio->io_bp); 6962 } 6963 } else { 6964 ASSERT(HDR_EMPTY(hdr)); 6965 } 6966 6967 /* 6968 * If the block to be written was all-zero or compressed enough to be 6969 * embedded in the BP, no write was performed so there will be no 6970 * dva/birth/checksum. The buffer must therefore remain anonymous 6971 * (and uncached). 6972 */ 6973 if (!HDR_EMPTY(hdr)) { 6974 arc_buf_hdr_t *exists; 6975 kmutex_t *hash_lock; 6976 6977 ASSERT0(zio->io_error); 6978 6979 arc_cksum_verify(buf); 6980 6981 exists = buf_hash_insert(hdr, &hash_lock); 6982 if (exists != NULL) { 6983 /* 6984 * This can only happen if we overwrite for 6985 * sync-to-convergence, because we remove 6986 * buffers from the hash table when we arc_free(). 6987 */ 6988 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 6989 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6990 panic("bad overwrite, hdr=%p exists=%p", 6991 (void *)hdr, (void *)exists); 6992 ASSERT(zfs_refcount_is_zero( 6993 &exists->b_l1hdr.b_refcnt)); 6994 arc_change_state(arc_anon, exists); 6995 arc_hdr_destroy(exists); 6996 mutex_exit(hash_lock); 6997 exists = buf_hash_insert(hdr, &hash_lock); 6998 ASSERT0P(exists); 6999 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 7000 /* nopwrite */ 7001 ASSERT(zio->io_prop.zp_nopwrite); 7002 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 7003 panic("bad nopwrite, hdr=%p exists=%p", 7004 (void *)hdr, (void *)exists); 7005 } else { 7006 /* Dedup */ 7007 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL); 7008 ASSERT(ARC_BUF_LAST(hdr->b_l1hdr.b_buf)); 7009 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 7010 ASSERT(BP_GET_DEDUP(zio->io_bp)); 7011 ASSERT0(BP_GET_LEVEL(zio->io_bp)); 7012 } 7013 } 7014 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 7015 VERIFY3S(remove_reference(hdr, hdr), >, 0); 7016 /* if it's not anon, we are doing a scrub */ 7017 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 7018 arc_access(hdr, 0, B_FALSE); 7019 mutex_exit(hash_lock); 7020 } else { 7021 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 7022 VERIFY3S(remove_reference(hdr, hdr), >, 0); 7023 } 7024 7025 callback->awcb_done(zio, buf, callback->awcb_private); 7026 7027 abd_free(zio->io_abd); 7028 kmem_free(callback, sizeof (arc_write_callback_t)); 7029 } 7030 7031 zio_t * 7032 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 7033 blkptr_t *bp, arc_buf_t *buf, boolean_t uncached, boolean_t l2arc, 7034 const zio_prop_t *zp, arc_write_done_func_t *ready, 7035 arc_write_done_func_t *children_ready, arc_write_done_func_t *done, 7036 void *private, zio_priority_t priority, int zio_flags, 7037 const zbookmark_phys_t *zb) 7038 { 7039 arc_buf_hdr_t *hdr = buf->b_hdr; 7040 arc_write_callback_t *callback; 7041 zio_t *zio; 7042 zio_prop_t localprop = *zp; 7043 7044 ASSERT3P(ready, !=, NULL); 7045 ASSERT3P(done, !=, NULL); 7046 ASSERT(!HDR_IO_ERROR(hdr)); 7047 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 7048 ASSERT0P(hdr->b_l1hdr.b_acb); 7049 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL); 7050 if (uncached) 7051 arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED); 7052 else if (l2arc) 7053 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 7054 7055 if (ARC_BUF_ENCRYPTED(buf)) { 7056 ASSERT(ARC_BUF_COMPRESSED(buf)); 7057 localprop.zp_encrypt = B_TRUE; 7058 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 7059 localprop.zp_complevel = hdr->b_complevel; 7060 localprop.zp_byteorder = 7061 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 7062 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 7063 memcpy(localprop.zp_salt, hdr->b_crypt_hdr.b_salt, 7064 ZIO_DATA_SALT_LEN); 7065 memcpy(localprop.zp_iv, hdr->b_crypt_hdr.b_iv, 7066 ZIO_DATA_IV_LEN); 7067 memcpy(localprop.zp_mac, hdr->b_crypt_hdr.b_mac, 7068 ZIO_DATA_MAC_LEN); 7069 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) { 7070 localprop.zp_nopwrite = B_FALSE; 7071 localprop.zp_copies = 7072 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1); 7073 localprop.zp_gang_copies = 7074 MIN(localprop.zp_gang_copies, SPA_DVAS_PER_BP - 1); 7075 } 7076 zio_flags |= ZIO_FLAG_RAW; 7077 } else if (ARC_BUF_COMPRESSED(buf)) { 7078 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf)); 7079 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 7080 localprop.zp_complevel = hdr->b_complevel; 7081 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 7082 } 7083 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 7084 callback->awcb_ready = ready; 7085 callback->awcb_children_ready = children_ready; 7086 callback->awcb_done = done; 7087 callback->awcb_private = private; 7088 callback->awcb_buf = buf; 7089 7090 /* 7091 * The hdr's b_pabd is now stale, free it now. A new data block 7092 * will be allocated when the zio pipeline calls arc_write_ready(). 7093 */ 7094 if (hdr->b_l1hdr.b_pabd != NULL) { 7095 /* 7096 * If the buf is currently sharing the data block with 7097 * the hdr then we need to break that relationship here. 7098 * The hdr will remain with a NULL data pointer and the 7099 * buf will take sole ownership of the block. 7100 */ 7101 if (ARC_BUF_SHARED(buf)) { 7102 arc_unshare_buf(hdr, buf); 7103 } else { 7104 ASSERT(!arc_buf_is_shared(buf)); 7105 arc_hdr_free_abd(hdr, B_FALSE); 7106 } 7107 VERIFY3P(buf->b_data, !=, NULL); 7108 } 7109 7110 if (HDR_HAS_RABD(hdr)) 7111 arc_hdr_free_abd(hdr, B_TRUE); 7112 7113 if (!(zio_flags & ZIO_FLAG_RAW)) 7114 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); 7115 7116 ASSERT(!arc_buf_is_shared(buf)); 7117 ASSERT0P(hdr->b_l1hdr.b_pabd); 7118 7119 zio = zio_write(pio, spa, txg, bp, 7120 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)), 7121 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready, 7122 (children_ready != NULL) ? arc_write_children_ready : NULL, 7123 arc_write_done, callback, priority, zio_flags, zb); 7124 7125 return (zio); 7126 } 7127 7128 void 7129 arc_tempreserve_clear(uint64_t reserve) 7130 { 7131 atomic_add_64(&arc_tempreserve, -reserve); 7132 ASSERT((int64_t)arc_tempreserve >= 0); 7133 } 7134 7135 int 7136 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg) 7137 { 7138 int error; 7139 uint64_t anon_size; 7140 7141 if (!arc_no_grow && 7142 reserve > arc_c/4 && 7143 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT)) 7144 arc_c = MIN(arc_c_max, reserve * 4); 7145 7146 /* 7147 * Throttle when the calculated memory footprint for the TXG 7148 * exceeds the target ARC size. 7149 */ 7150 if (reserve > arc_c) { 7151 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve); 7152 return (SET_ERROR(ERESTART)); 7153 } 7154 7155 /* 7156 * Don't count loaned bufs as in flight dirty data to prevent long 7157 * network delays from blocking transactions that are ready to be 7158 * assigned to a txg. 7159 */ 7160 7161 /* assert that it has not wrapped around */ 7162 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 7163 7164 anon_size = MAX((int64_t) 7165 (zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]) + 7166 zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]) - 7167 arc_loaned_bytes), 0); 7168 7169 /* 7170 * Writes will, almost always, require additional memory allocations 7171 * in order to compress/encrypt/etc the data. We therefore need to 7172 * make sure that there is sufficient available memory for this. 7173 */ 7174 error = arc_memory_throttle(spa, reserve, txg); 7175 if (error != 0) 7176 return (error); 7177 7178 /* 7179 * Throttle writes when the amount of dirty data in the cache 7180 * gets too large. We try to keep the cache less than half full 7181 * of dirty blocks so that our sync times don't grow too large. 7182 * 7183 * In the case of one pool being built on another pool, we want 7184 * to make sure we don't end up throttling the lower (backing) 7185 * pool when the upper pool is the majority contributor to dirty 7186 * data. To insure we make forward progress during throttling, we 7187 * also check the current pool's net dirty data and only throttle 7188 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty 7189 * data in the cache. 7190 * 7191 * Note: if two requests come in concurrently, we might let them 7192 * both succeed, when one of them should fail. Not a huge deal. 7193 */ 7194 uint64_t total_dirty = reserve + arc_tempreserve + anon_size; 7195 uint64_t spa_dirty_anon = spa_dirty_data(spa); 7196 uint64_t rarc_c = arc_warm ? arc_c : arc_c_max; 7197 if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 && 7198 anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 && 7199 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) { 7200 #ifdef ZFS_DEBUG 7201 uint64_t meta_esize = zfs_refcount_count( 7202 &arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7203 uint64_t data_esize = 7204 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7205 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 7206 "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n", 7207 (u_longlong_t)arc_tempreserve >> 10, 7208 (u_longlong_t)meta_esize >> 10, 7209 (u_longlong_t)data_esize >> 10, 7210 (u_longlong_t)reserve >> 10, 7211 (u_longlong_t)rarc_c >> 10); 7212 #endif 7213 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle); 7214 return (SET_ERROR(ERESTART)); 7215 } 7216 atomic_add_64(&arc_tempreserve, reserve); 7217 return (0); 7218 } 7219 7220 static void 7221 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 7222 kstat_named_t *data, kstat_named_t *metadata, 7223 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 7224 { 7225 data->value.ui64 = 7226 zfs_refcount_count(&state->arcs_size[ARC_BUFC_DATA]); 7227 metadata->value.ui64 = 7228 zfs_refcount_count(&state->arcs_size[ARC_BUFC_METADATA]); 7229 size->value.ui64 = data->value.ui64 + metadata->value.ui64; 7230 evict_data->value.ui64 = 7231 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); 7232 evict_metadata->value.ui64 = 7233 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); 7234 } 7235 7236 static int 7237 arc_kstat_update(kstat_t *ksp, int rw) 7238 { 7239 arc_stats_t *as = ksp->ks_data; 7240 7241 if (rw == KSTAT_WRITE) 7242 return (SET_ERROR(EACCES)); 7243 7244 as->arcstat_hits.value.ui64 = 7245 wmsum_value(&arc_sums.arcstat_hits); 7246 as->arcstat_iohits.value.ui64 = 7247 wmsum_value(&arc_sums.arcstat_iohits); 7248 as->arcstat_misses.value.ui64 = 7249 wmsum_value(&arc_sums.arcstat_misses); 7250 as->arcstat_demand_data_hits.value.ui64 = 7251 wmsum_value(&arc_sums.arcstat_demand_data_hits); 7252 as->arcstat_demand_data_iohits.value.ui64 = 7253 wmsum_value(&arc_sums.arcstat_demand_data_iohits); 7254 as->arcstat_demand_data_misses.value.ui64 = 7255 wmsum_value(&arc_sums.arcstat_demand_data_misses); 7256 as->arcstat_demand_metadata_hits.value.ui64 = 7257 wmsum_value(&arc_sums.arcstat_demand_metadata_hits); 7258 as->arcstat_demand_metadata_iohits.value.ui64 = 7259 wmsum_value(&arc_sums.arcstat_demand_metadata_iohits); 7260 as->arcstat_demand_metadata_misses.value.ui64 = 7261 wmsum_value(&arc_sums.arcstat_demand_metadata_misses); 7262 as->arcstat_prefetch_data_hits.value.ui64 = 7263 wmsum_value(&arc_sums.arcstat_prefetch_data_hits); 7264 as->arcstat_prefetch_data_iohits.value.ui64 = 7265 wmsum_value(&arc_sums.arcstat_prefetch_data_iohits); 7266 as->arcstat_prefetch_data_misses.value.ui64 = 7267 wmsum_value(&arc_sums.arcstat_prefetch_data_misses); 7268 as->arcstat_prefetch_metadata_hits.value.ui64 = 7269 wmsum_value(&arc_sums.arcstat_prefetch_metadata_hits); 7270 as->arcstat_prefetch_metadata_iohits.value.ui64 = 7271 wmsum_value(&arc_sums.arcstat_prefetch_metadata_iohits); 7272 as->arcstat_prefetch_metadata_misses.value.ui64 = 7273 wmsum_value(&arc_sums.arcstat_prefetch_metadata_misses); 7274 as->arcstat_mru_hits.value.ui64 = 7275 wmsum_value(&arc_sums.arcstat_mru_hits); 7276 as->arcstat_mru_ghost_hits.value.ui64 = 7277 wmsum_value(&arc_sums.arcstat_mru_ghost_hits); 7278 as->arcstat_mfu_hits.value.ui64 = 7279 wmsum_value(&arc_sums.arcstat_mfu_hits); 7280 as->arcstat_mfu_ghost_hits.value.ui64 = 7281 wmsum_value(&arc_sums.arcstat_mfu_ghost_hits); 7282 as->arcstat_uncached_hits.value.ui64 = 7283 wmsum_value(&arc_sums.arcstat_uncached_hits); 7284 as->arcstat_deleted.value.ui64 = 7285 wmsum_value(&arc_sums.arcstat_deleted); 7286 as->arcstat_mutex_miss.value.ui64 = 7287 wmsum_value(&arc_sums.arcstat_mutex_miss); 7288 as->arcstat_access_skip.value.ui64 = 7289 wmsum_value(&arc_sums.arcstat_access_skip); 7290 as->arcstat_evict_skip.value.ui64 = 7291 wmsum_value(&arc_sums.arcstat_evict_skip); 7292 as->arcstat_evict_not_enough.value.ui64 = 7293 wmsum_value(&arc_sums.arcstat_evict_not_enough); 7294 as->arcstat_evict_l2_cached.value.ui64 = 7295 wmsum_value(&arc_sums.arcstat_evict_l2_cached); 7296 as->arcstat_evict_l2_eligible.value.ui64 = 7297 wmsum_value(&arc_sums.arcstat_evict_l2_eligible); 7298 as->arcstat_evict_l2_eligible_mfu.value.ui64 = 7299 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mfu); 7300 as->arcstat_evict_l2_eligible_mru.value.ui64 = 7301 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mru); 7302 as->arcstat_evict_l2_ineligible.value.ui64 = 7303 wmsum_value(&arc_sums.arcstat_evict_l2_ineligible); 7304 as->arcstat_evict_l2_skip.value.ui64 = 7305 wmsum_value(&arc_sums.arcstat_evict_l2_skip); 7306 as->arcstat_hash_elements.value.ui64 = 7307 as->arcstat_hash_elements_max.value.ui64 = 7308 wmsum_value(&arc_sums.arcstat_hash_elements); 7309 as->arcstat_hash_collisions.value.ui64 = 7310 wmsum_value(&arc_sums.arcstat_hash_collisions); 7311 as->arcstat_hash_chains.value.ui64 = 7312 wmsum_value(&arc_sums.arcstat_hash_chains); 7313 as->arcstat_size.value.ui64 = 7314 aggsum_value(&arc_sums.arcstat_size); 7315 as->arcstat_compressed_size.value.ui64 = 7316 wmsum_value(&arc_sums.arcstat_compressed_size); 7317 as->arcstat_uncompressed_size.value.ui64 = 7318 wmsum_value(&arc_sums.arcstat_uncompressed_size); 7319 as->arcstat_overhead_size.value.ui64 = 7320 wmsum_value(&arc_sums.arcstat_overhead_size); 7321 as->arcstat_hdr_size.value.ui64 = 7322 wmsum_value(&arc_sums.arcstat_hdr_size); 7323 as->arcstat_data_size.value.ui64 = 7324 wmsum_value(&arc_sums.arcstat_data_size); 7325 as->arcstat_metadata_size.value.ui64 = 7326 wmsum_value(&arc_sums.arcstat_metadata_size); 7327 as->arcstat_dbuf_size.value.ui64 = 7328 wmsum_value(&arc_sums.arcstat_dbuf_size); 7329 #if defined(COMPAT_FREEBSD11) 7330 as->arcstat_other_size.value.ui64 = 7331 wmsum_value(&arc_sums.arcstat_bonus_size) + 7332 aggsum_value(&arc_sums.arcstat_dnode_size) + 7333 wmsum_value(&arc_sums.arcstat_dbuf_size); 7334 #endif 7335 7336 arc_kstat_update_state(arc_anon, 7337 &as->arcstat_anon_size, 7338 &as->arcstat_anon_data, 7339 &as->arcstat_anon_metadata, 7340 &as->arcstat_anon_evictable_data, 7341 &as->arcstat_anon_evictable_metadata); 7342 arc_kstat_update_state(arc_mru, 7343 &as->arcstat_mru_size, 7344 &as->arcstat_mru_data, 7345 &as->arcstat_mru_metadata, 7346 &as->arcstat_mru_evictable_data, 7347 &as->arcstat_mru_evictable_metadata); 7348 arc_kstat_update_state(arc_mru_ghost, 7349 &as->arcstat_mru_ghost_size, 7350 &as->arcstat_mru_ghost_data, 7351 &as->arcstat_mru_ghost_metadata, 7352 &as->arcstat_mru_ghost_evictable_data, 7353 &as->arcstat_mru_ghost_evictable_metadata); 7354 arc_kstat_update_state(arc_mfu, 7355 &as->arcstat_mfu_size, 7356 &as->arcstat_mfu_data, 7357 &as->arcstat_mfu_metadata, 7358 &as->arcstat_mfu_evictable_data, 7359 &as->arcstat_mfu_evictable_metadata); 7360 arc_kstat_update_state(arc_mfu_ghost, 7361 &as->arcstat_mfu_ghost_size, 7362 &as->arcstat_mfu_ghost_data, 7363 &as->arcstat_mfu_ghost_metadata, 7364 &as->arcstat_mfu_ghost_evictable_data, 7365 &as->arcstat_mfu_ghost_evictable_metadata); 7366 arc_kstat_update_state(arc_uncached, 7367 &as->arcstat_uncached_size, 7368 &as->arcstat_uncached_data, 7369 &as->arcstat_uncached_metadata, 7370 &as->arcstat_uncached_evictable_data, 7371 &as->arcstat_uncached_evictable_metadata); 7372 7373 as->arcstat_dnode_size.value.ui64 = 7374 aggsum_value(&arc_sums.arcstat_dnode_size); 7375 as->arcstat_bonus_size.value.ui64 = 7376 wmsum_value(&arc_sums.arcstat_bonus_size); 7377 as->arcstat_l2_hits.value.ui64 = 7378 wmsum_value(&arc_sums.arcstat_l2_hits); 7379 as->arcstat_l2_misses.value.ui64 = 7380 wmsum_value(&arc_sums.arcstat_l2_misses); 7381 as->arcstat_l2_prefetch_asize.value.ui64 = 7382 wmsum_value(&arc_sums.arcstat_l2_prefetch_asize); 7383 as->arcstat_l2_mru_asize.value.ui64 = 7384 wmsum_value(&arc_sums.arcstat_l2_mru_asize); 7385 as->arcstat_l2_mfu_asize.value.ui64 = 7386 wmsum_value(&arc_sums.arcstat_l2_mfu_asize); 7387 as->arcstat_l2_bufc_data_asize.value.ui64 = 7388 wmsum_value(&arc_sums.arcstat_l2_bufc_data_asize); 7389 as->arcstat_l2_bufc_metadata_asize.value.ui64 = 7390 wmsum_value(&arc_sums.arcstat_l2_bufc_metadata_asize); 7391 as->arcstat_l2_feeds.value.ui64 = 7392 wmsum_value(&arc_sums.arcstat_l2_feeds); 7393 as->arcstat_l2_rw_clash.value.ui64 = 7394 wmsum_value(&arc_sums.arcstat_l2_rw_clash); 7395 as->arcstat_l2_read_bytes.value.ui64 = 7396 wmsum_value(&arc_sums.arcstat_l2_read_bytes); 7397 as->arcstat_l2_write_bytes.value.ui64 = 7398 wmsum_value(&arc_sums.arcstat_l2_write_bytes); 7399 as->arcstat_l2_writes_sent.value.ui64 = 7400 wmsum_value(&arc_sums.arcstat_l2_writes_sent); 7401 as->arcstat_l2_writes_done.value.ui64 = 7402 wmsum_value(&arc_sums.arcstat_l2_writes_done); 7403 as->arcstat_l2_writes_error.value.ui64 = 7404 wmsum_value(&arc_sums.arcstat_l2_writes_error); 7405 as->arcstat_l2_writes_lock_retry.value.ui64 = 7406 wmsum_value(&arc_sums.arcstat_l2_writes_lock_retry); 7407 as->arcstat_l2_evict_lock_retry.value.ui64 = 7408 wmsum_value(&arc_sums.arcstat_l2_evict_lock_retry); 7409 as->arcstat_l2_evict_reading.value.ui64 = 7410 wmsum_value(&arc_sums.arcstat_l2_evict_reading); 7411 as->arcstat_l2_evict_l1cached.value.ui64 = 7412 wmsum_value(&arc_sums.arcstat_l2_evict_l1cached); 7413 as->arcstat_l2_free_on_write.value.ui64 = 7414 wmsum_value(&arc_sums.arcstat_l2_free_on_write); 7415 as->arcstat_l2_abort_lowmem.value.ui64 = 7416 wmsum_value(&arc_sums.arcstat_l2_abort_lowmem); 7417 as->arcstat_l2_cksum_bad.value.ui64 = 7418 wmsum_value(&arc_sums.arcstat_l2_cksum_bad); 7419 as->arcstat_l2_io_error.value.ui64 = 7420 wmsum_value(&arc_sums.arcstat_l2_io_error); 7421 as->arcstat_l2_lsize.value.ui64 = 7422 wmsum_value(&arc_sums.arcstat_l2_lsize); 7423 as->arcstat_l2_psize.value.ui64 = 7424 wmsum_value(&arc_sums.arcstat_l2_psize); 7425 as->arcstat_l2_hdr_size.value.ui64 = 7426 aggsum_value(&arc_sums.arcstat_l2_hdr_size); 7427 as->arcstat_l2_log_blk_writes.value.ui64 = 7428 wmsum_value(&arc_sums.arcstat_l2_log_blk_writes); 7429 as->arcstat_l2_log_blk_asize.value.ui64 = 7430 wmsum_value(&arc_sums.arcstat_l2_log_blk_asize); 7431 as->arcstat_l2_log_blk_count.value.ui64 = 7432 wmsum_value(&arc_sums.arcstat_l2_log_blk_count); 7433 as->arcstat_l2_rebuild_success.value.ui64 = 7434 wmsum_value(&arc_sums.arcstat_l2_rebuild_success); 7435 as->arcstat_l2_rebuild_abort_unsupported.value.ui64 = 7436 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_unsupported); 7437 as->arcstat_l2_rebuild_abort_io_errors.value.ui64 = 7438 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_io_errors); 7439 as->arcstat_l2_rebuild_abort_dh_errors.value.ui64 = 7440 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_dh_errors); 7441 as->arcstat_l2_rebuild_abort_cksum_lb_errors.value.ui64 = 7442 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors); 7443 as->arcstat_l2_rebuild_abort_lowmem.value.ui64 = 7444 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_lowmem); 7445 as->arcstat_l2_rebuild_size.value.ui64 = 7446 wmsum_value(&arc_sums.arcstat_l2_rebuild_size); 7447 as->arcstat_l2_rebuild_asize.value.ui64 = 7448 wmsum_value(&arc_sums.arcstat_l2_rebuild_asize); 7449 as->arcstat_l2_rebuild_bufs.value.ui64 = 7450 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs); 7451 as->arcstat_l2_rebuild_bufs_precached.value.ui64 = 7452 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs_precached); 7453 as->arcstat_l2_rebuild_log_blks.value.ui64 = 7454 wmsum_value(&arc_sums.arcstat_l2_rebuild_log_blks); 7455 as->arcstat_memory_throttle_count.value.ui64 = 7456 wmsum_value(&arc_sums.arcstat_memory_throttle_count); 7457 as->arcstat_memory_direct_count.value.ui64 = 7458 wmsum_value(&arc_sums.arcstat_memory_direct_count); 7459 as->arcstat_memory_indirect_count.value.ui64 = 7460 wmsum_value(&arc_sums.arcstat_memory_indirect_count); 7461 7462 as->arcstat_memory_all_bytes.value.ui64 = 7463 arc_all_memory(); 7464 as->arcstat_memory_free_bytes.value.ui64 = 7465 arc_free_memory(); 7466 as->arcstat_memory_available_bytes.value.i64 = 7467 arc_available_memory(); 7468 7469 as->arcstat_prune.value.ui64 = 7470 wmsum_value(&arc_sums.arcstat_prune); 7471 as->arcstat_meta_used.value.ui64 = 7472 wmsum_value(&arc_sums.arcstat_meta_used); 7473 as->arcstat_async_upgrade_sync.value.ui64 = 7474 wmsum_value(&arc_sums.arcstat_async_upgrade_sync); 7475 as->arcstat_predictive_prefetch.value.ui64 = 7476 wmsum_value(&arc_sums.arcstat_predictive_prefetch); 7477 as->arcstat_demand_hit_predictive_prefetch.value.ui64 = 7478 wmsum_value(&arc_sums.arcstat_demand_hit_predictive_prefetch); 7479 as->arcstat_demand_iohit_predictive_prefetch.value.ui64 = 7480 wmsum_value(&arc_sums.arcstat_demand_iohit_predictive_prefetch); 7481 as->arcstat_prescient_prefetch.value.ui64 = 7482 wmsum_value(&arc_sums.arcstat_prescient_prefetch); 7483 as->arcstat_demand_hit_prescient_prefetch.value.ui64 = 7484 wmsum_value(&arc_sums.arcstat_demand_hit_prescient_prefetch); 7485 as->arcstat_demand_iohit_prescient_prefetch.value.ui64 = 7486 wmsum_value(&arc_sums.arcstat_demand_iohit_prescient_prefetch); 7487 as->arcstat_raw_size.value.ui64 = 7488 wmsum_value(&arc_sums.arcstat_raw_size); 7489 as->arcstat_cached_only_in_progress.value.ui64 = 7490 wmsum_value(&arc_sums.arcstat_cached_only_in_progress); 7491 as->arcstat_abd_chunk_waste_size.value.ui64 = 7492 wmsum_value(&arc_sums.arcstat_abd_chunk_waste_size); 7493 7494 return (0); 7495 } 7496 7497 /* 7498 * This function *must* return indices evenly distributed between all 7499 * sublists of the multilist. This is needed due to how the ARC eviction 7500 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 7501 * distributed between all sublists and uses this assumption when 7502 * deciding which sublist to evict from and how much to evict from it. 7503 */ 7504 static unsigned int 7505 arc_state_multilist_index_func(multilist_t *ml, void *obj) 7506 { 7507 arc_buf_hdr_t *hdr = obj; 7508 7509 /* 7510 * We rely on b_dva to generate evenly distributed index 7511 * numbers using buf_hash below. So, as an added precaution, 7512 * let's make sure we never add empty buffers to the arc lists. 7513 */ 7514 ASSERT(!HDR_EMPTY(hdr)); 7515 7516 /* 7517 * The assumption here, is the hash value for a given 7518 * arc_buf_hdr_t will remain constant throughout its lifetime 7519 * (i.e. its b_spa, b_dva, and b_birth fields don't change). 7520 * Thus, we don't need to store the header's sublist index 7521 * on insertion, as this index can be recalculated on removal. 7522 * 7523 * Also, the low order bits of the hash value are thought to be 7524 * distributed evenly. Otherwise, in the case that the multilist 7525 * has a power of two number of sublists, each sublists' usage 7526 * would not be evenly distributed. In this context full 64bit 7527 * division would be a waste of time, so limit it to 32 bits. 7528 */ 7529 return ((unsigned int)buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 7530 multilist_get_num_sublists(ml)); 7531 } 7532 7533 static unsigned int 7534 arc_state_l2c_multilist_index_func(multilist_t *ml, void *obj) 7535 { 7536 panic("Header %p insert into arc_l2c_only %p", obj, ml); 7537 } 7538 7539 #define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \ 7540 if ((do_warn) && (tuning) && ((tuning) != (value))) { \ 7541 cmn_err(CE_WARN, \ 7542 "ignoring tunable %s (using %llu instead)", \ 7543 (#tuning), (u_longlong_t)(value)); \ 7544 } \ 7545 } while (0) 7546 7547 /* 7548 * Called during module initialization and periodically thereafter to 7549 * apply reasonable changes to the exposed performance tunings. Can also be 7550 * called explicitly by param_set_arc_*() functions when ARC tunables are 7551 * updated manually. Non-zero zfs_* values which differ from the currently set 7552 * values will be applied. 7553 */ 7554 void 7555 arc_tuning_update(boolean_t verbose) 7556 { 7557 uint64_t allmem = arc_all_memory(); 7558 7559 /* Valid range: 32M - <arc_c_max> */ 7560 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) && 7561 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) && 7562 (zfs_arc_min <= arc_c_max)) { 7563 arc_c_min = zfs_arc_min; 7564 arc_c = MAX(arc_c, arc_c_min); 7565 } 7566 WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose); 7567 7568 /* Valid range: 64M - <all physical memory> */ 7569 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) && 7570 (zfs_arc_max >= MIN_ARC_MAX) && (zfs_arc_max < allmem) && 7571 (zfs_arc_max > arc_c_min)) { 7572 arc_c_max = zfs_arc_max; 7573 arc_c = MIN(arc_c, arc_c_max); 7574 if (arc_dnode_limit > arc_c_max) 7575 arc_dnode_limit = arc_c_max; 7576 } 7577 WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose); 7578 7579 /* Valid range: 0 - <all physical memory> */ 7580 arc_dnode_limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit : 7581 MIN(zfs_arc_dnode_limit_percent, 100) * arc_c_max / 100; 7582 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_limit, verbose); 7583 7584 /* Valid range: 1 - N */ 7585 if (zfs_arc_grow_retry) 7586 arc_grow_retry = zfs_arc_grow_retry; 7587 7588 /* Valid range: 1 - N */ 7589 if (zfs_arc_shrink_shift) { 7590 arc_shrink_shift = zfs_arc_shrink_shift; 7591 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1); 7592 } 7593 7594 /* Valid range: 1 - N ms */ 7595 if (zfs_arc_min_prefetch_ms) 7596 arc_min_prefetch_ms = zfs_arc_min_prefetch_ms; 7597 7598 /* Valid range: 1 - N ms */ 7599 if (zfs_arc_min_prescient_prefetch_ms) { 7600 arc_min_prescient_prefetch_ms = 7601 zfs_arc_min_prescient_prefetch_ms; 7602 } 7603 7604 /* Valid range: 0 - 100 */ 7605 if (zfs_arc_lotsfree_percent <= 100) 7606 arc_lotsfree_percent = zfs_arc_lotsfree_percent; 7607 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent, 7608 verbose); 7609 7610 /* Valid range: 0 - <all physical memory> */ 7611 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free)) 7612 arc_sys_free = MIN(zfs_arc_sys_free, allmem); 7613 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose); 7614 } 7615 7616 static void 7617 arc_state_multilist_init(multilist_t *ml, 7618 multilist_sublist_index_func_t *index_func, int *maxcountp) 7619 { 7620 multilist_create(ml, sizeof (arc_buf_hdr_t), 7621 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), index_func); 7622 *maxcountp = MAX(*maxcountp, multilist_get_num_sublists(ml)); 7623 } 7624 7625 static void 7626 arc_state_init(void) 7627 { 7628 int num_sublists = 0; 7629 7630 arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_METADATA], 7631 arc_state_multilist_index_func, &num_sublists); 7632 arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_DATA], 7633 arc_state_multilist_index_func, &num_sublists); 7634 arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 7635 arc_state_multilist_index_func, &num_sublists); 7636 arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 7637 arc_state_multilist_index_func, &num_sublists); 7638 arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 7639 arc_state_multilist_index_func, &num_sublists); 7640 arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_DATA], 7641 arc_state_multilist_index_func, &num_sublists); 7642 arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 7643 arc_state_multilist_index_func, &num_sublists); 7644 arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 7645 arc_state_multilist_index_func, &num_sublists); 7646 arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_METADATA], 7647 arc_state_multilist_index_func, &num_sublists); 7648 arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_DATA], 7649 arc_state_multilist_index_func, &num_sublists); 7650 7651 /* 7652 * L2 headers should never be on the L2 state list since they don't 7653 * have L1 headers allocated. Special index function asserts that. 7654 */ 7655 arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 7656 arc_state_l2c_multilist_index_func, &num_sublists); 7657 arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 7658 arc_state_l2c_multilist_index_func, &num_sublists); 7659 7660 /* 7661 * Keep track of the number of markers needed to reclaim buffers from 7662 * any ARC state. The markers will be pre-allocated so as to minimize 7663 * the number of memory allocations performed by the eviction thread. 7664 */ 7665 arc_state_evict_marker_count = num_sublists; 7666 7667 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7668 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7669 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7670 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7671 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7672 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7673 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7674 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7675 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7676 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7677 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7678 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7679 zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]); 7680 zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_DATA]); 7681 7682 zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_DATA]); 7683 zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_METADATA]); 7684 zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_DATA]); 7685 zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_METADATA]); 7686 zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]); 7687 zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]); 7688 zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_DATA]); 7689 zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_METADATA]); 7690 zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]); 7691 zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]); 7692 zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]); 7693 zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]); 7694 zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_DATA]); 7695 zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_METADATA]); 7696 7697 wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA], 0); 7698 wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA], 0); 7699 wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA], 0); 7700 wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA], 0); 7701 7702 wmsum_init(&arc_sums.arcstat_hits, 0); 7703 wmsum_init(&arc_sums.arcstat_iohits, 0); 7704 wmsum_init(&arc_sums.arcstat_misses, 0); 7705 wmsum_init(&arc_sums.arcstat_demand_data_hits, 0); 7706 wmsum_init(&arc_sums.arcstat_demand_data_iohits, 0); 7707 wmsum_init(&arc_sums.arcstat_demand_data_misses, 0); 7708 wmsum_init(&arc_sums.arcstat_demand_metadata_hits, 0); 7709 wmsum_init(&arc_sums.arcstat_demand_metadata_iohits, 0); 7710 wmsum_init(&arc_sums.arcstat_demand_metadata_misses, 0); 7711 wmsum_init(&arc_sums.arcstat_prefetch_data_hits, 0); 7712 wmsum_init(&arc_sums.arcstat_prefetch_data_iohits, 0); 7713 wmsum_init(&arc_sums.arcstat_prefetch_data_misses, 0); 7714 wmsum_init(&arc_sums.arcstat_prefetch_metadata_hits, 0); 7715 wmsum_init(&arc_sums.arcstat_prefetch_metadata_iohits, 0); 7716 wmsum_init(&arc_sums.arcstat_prefetch_metadata_misses, 0); 7717 wmsum_init(&arc_sums.arcstat_mru_hits, 0); 7718 wmsum_init(&arc_sums.arcstat_mru_ghost_hits, 0); 7719 wmsum_init(&arc_sums.arcstat_mfu_hits, 0); 7720 wmsum_init(&arc_sums.arcstat_mfu_ghost_hits, 0); 7721 wmsum_init(&arc_sums.arcstat_uncached_hits, 0); 7722 wmsum_init(&arc_sums.arcstat_deleted, 0); 7723 wmsum_init(&arc_sums.arcstat_mutex_miss, 0); 7724 wmsum_init(&arc_sums.arcstat_access_skip, 0); 7725 wmsum_init(&arc_sums.arcstat_evict_skip, 0); 7726 wmsum_init(&arc_sums.arcstat_evict_not_enough, 0); 7727 wmsum_init(&arc_sums.arcstat_evict_l2_cached, 0); 7728 wmsum_init(&arc_sums.arcstat_evict_l2_eligible, 0); 7729 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mfu, 0); 7730 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mru, 0); 7731 wmsum_init(&arc_sums.arcstat_evict_l2_ineligible, 0); 7732 wmsum_init(&arc_sums.arcstat_evict_l2_skip, 0); 7733 wmsum_init(&arc_sums.arcstat_hash_elements, 0); 7734 wmsum_init(&arc_sums.arcstat_hash_collisions, 0); 7735 wmsum_init(&arc_sums.arcstat_hash_chains, 0); 7736 aggsum_init(&arc_sums.arcstat_size, 0); 7737 wmsum_init(&arc_sums.arcstat_compressed_size, 0); 7738 wmsum_init(&arc_sums.arcstat_uncompressed_size, 0); 7739 wmsum_init(&arc_sums.arcstat_overhead_size, 0); 7740 wmsum_init(&arc_sums.arcstat_hdr_size, 0); 7741 wmsum_init(&arc_sums.arcstat_data_size, 0); 7742 wmsum_init(&arc_sums.arcstat_metadata_size, 0); 7743 wmsum_init(&arc_sums.arcstat_dbuf_size, 0); 7744 aggsum_init(&arc_sums.arcstat_dnode_size, 0); 7745 wmsum_init(&arc_sums.arcstat_bonus_size, 0); 7746 wmsum_init(&arc_sums.arcstat_l2_hits, 0); 7747 wmsum_init(&arc_sums.arcstat_l2_misses, 0); 7748 wmsum_init(&arc_sums.arcstat_l2_prefetch_asize, 0); 7749 wmsum_init(&arc_sums.arcstat_l2_mru_asize, 0); 7750 wmsum_init(&arc_sums.arcstat_l2_mfu_asize, 0); 7751 wmsum_init(&arc_sums.arcstat_l2_bufc_data_asize, 0); 7752 wmsum_init(&arc_sums.arcstat_l2_bufc_metadata_asize, 0); 7753 wmsum_init(&arc_sums.arcstat_l2_feeds, 0); 7754 wmsum_init(&arc_sums.arcstat_l2_rw_clash, 0); 7755 wmsum_init(&arc_sums.arcstat_l2_read_bytes, 0); 7756 wmsum_init(&arc_sums.arcstat_l2_write_bytes, 0); 7757 wmsum_init(&arc_sums.arcstat_l2_writes_sent, 0); 7758 wmsum_init(&arc_sums.arcstat_l2_writes_done, 0); 7759 wmsum_init(&arc_sums.arcstat_l2_writes_error, 0); 7760 wmsum_init(&arc_sums.arcstat_l2_writes_lock_retry, 0); 7761 wmsum_init(&arc_sums.arcstat_l2_evict_lock_retry, 0); 7762 wmsum_init(&arc_sums.arcstat_l2_evict_reading, 0); 7763 wmsum_init(&arc_sums.arcstat_l2_evict_l1cached, 0); 7764 wmsum_init(&arc_sums.arcstat_l2_free_on_write, 0); 7765 wmsum_init(&arc_sums.arcstat_l2_abort_lowmem, 0); 7766 wmsum_init(&arc_sums.arcstat_l2_cksum_bad, 0); 7767 wmsum_init(&arc_sums.arcstat_l2_io_error, 0); 7768 wmsum_init(&arc_sums.arcstat_l2_lsize, 0); 7769 wmsum_init(&arc_sums.arcstat_l2_psize, 0); 7770 aggsum_init(&arc_sums.arcstat_l2_hdr_size, 0); 7771 wmsum_init(&arc_sums.arcstat_l2_log_blk_writes, 0); 7772 wmsum_init(&arc_sums.arcstat_l2_log_blk_asize, 0); 7773 wmsum_init(&arc_sums.arcstat_l2_log_blk_count, 0); 7774 wmsum_init(&arc_sums.arcstat_l2_rebuild_success, 0); 7775 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_unsupported, 0); 7776 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_io_errors, 0); 7777 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_dh_errors, 0); 7778 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors, 0); 7779 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_lowmem, 0); 7780 wmsum_init(&arc_sums.arcstat_l2_rebuild_size, 0); 7781 wmsum_init(&arc_sums.arcstat_l2_rebuild_asize, 0); 7782 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs, 0); 7783 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs_precached, 0); 7784 wmsum_init(&arc_sums.arcstat_l2_rebuild_log_blks, 0); 7785 wmsum_init(&arc_sums.arcstat_memory_throttle_count, 0); 7786 wmsum_init(&arc_sums.arcstat_memory_direct_count, 0); 7787 wmsum_init(&arc_sums.arcstat_memory_indirect_count, 0); 7788 wmsum_init(&arc_sums.arcstat_prune, 0); 7789 wmsum_init(&arc_sums.arcstat_meta_used, 0); 7790 wmsum_init(&arc_sums.arcstat_async_upgrade_sync, 0); 7791 wmsum_init(&arc_sums.arcstat_predictive_prefetch, 0); 7792 wmsum_init(&arc_sums.arcstat_demand_hit_predictive_prefetch, 0); 7793 wmsum_init(&arc_sums.arcstat_demand_iohit_predictive_prefetch, 0); 7794 wmsum_init(&arc_sums.arcstat_prescient_prefetch, 0); 7795 wmsum_init(&arc_sums.arcstat_demand_hit_prescient_prefetch, 0); 7796 wmsum_init(&arc_sums.arcstat_demand_iohit_prescient_prefetch, 0); 7797 wmsum_init(&arc_sums.arcstat_raw_size, 0); 7798 wmsum_init(&arc_sums.arcstat_cached_only_in_progress, 0); 7799 wmsum_init(&arc_sums.arcstat_abd_chunk_waste_size, 0); 7800 7801 arc_anon->arcs_state = ARC_STATE_ANON; 7802 arc_mru->arcs_state = ARC_STATE_MRU; 7803 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST; 7804 arc_mfu->arcs_state = ARC_STATE_MFU; 7805 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST; 7806 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY; 7807 arc_uncached->arcs_state = ARC_STATE_UNCACHED; 7808 } 7809 7810 static void 7811 arc_state_fini(void) 7812 { 7813 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7814 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7815 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7816 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7817 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7818 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7819 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7820 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7821 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7822 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7823 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7824 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7825 zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]); 7826 zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_DATA]); 7827 7828 zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_DATA]); 7829 zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_METADATA]); 7830 zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_DATA]); 7831 zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_METADATA]); 7832 zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]); 7833 zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]); 7834 zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_DATA]); 7835 zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_METADATA]); 7836 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]); 7837 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]); 7838 zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]); 7839 zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]); 7840 zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_DATA]); 7841 zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_METADATA]); 7842 7843 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 7844 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 7845 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 7846 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 7847 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 7848 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 7849 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 7850 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 7851 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]); 7852 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]); 7853 multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_METADATA]); 7854 multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_DATA]); 7855 7856 wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]); 7857 wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]); 7858 wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]); 7859 wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]); 7860 7861 wmsum_fini(&arc_sums.arcstat_hits); 7862 wmsum_fini(&arc_sums.arcstat_iohits); 7863 wmsum_fini(&arc_sums.arcstat_misses); 7864 wmsum_fini(&arc_sums.arcstat_demand_data_hits); 7865 wmsum_fini(&arc_sums.arcstat_demand_data_iohits); 7866 wmsum_fini(&arc_sums.arcstat_demand_data_misses); 7867 wmsum_fini(&arc_sums.arcstat_demand_metadata_hits); 7868 wmsum_fini(&arc_sums.arcstat_demand_metadata_iohits); 7869 wmsum_fini(&arc_sums.arcstat_demand_metadata_misses); 7870 wmsum_fini(&arc_sums.arcstat_prefetch_data_hits); 7871 wmsum_fini(&arc_sums.arcstat_prefetch_data_iohits); 7872 wmsum_fini(&arc_sums.arcstat_prefetch_data_misses); 7873 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_hits); 7874 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_iohits); 7875 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_misses); 7876 wmsum_fini(&arc_sums.arcstat_mru_hits); 7877 wmsum_fini(&arc_sums.arcstat_mru_ghost_hits); 7878 wmsum_fini(&arc_sums.arcstat_mfu_hits); 7879 wmsum_fini(&arc_sums.arcstat_mfu_ghost_hits); 7880 wmsum_fini(&arc_sums.arcstat_uncached_hits); 7881 wmsum_fini(&arc_sums.arcstat_deleted); 7882 wmsum_fini(&arc_sums.arcstat_mutex_miss); 7883 wmsum_fini(&arc_sums.arcstat_access_skip); 7884 wmsum_fini(&arc_sums.arcstat_evict_skip); 7885 wmsum_fini(&arc_sums.arcstat_evict_not_enough); 7886 wmsum_fini(&arc_sums.arcstat_evict_l2_cached); 7887 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible); 7888 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mfu); 7889 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mru); 7890 wmsum_fini(&arc_sums.arcstat_evict_l2_ineligible); 7891 wmsum_fini(&arc_sums.arcstat_evict_l2_skip); 7892 wmsum_fini(&arc_sums.arcstat_hash_elements); 7893 wmsum_fini(&arc_sums.arcstat_hash_collisions); 7894 wmsum_fini(&arc_sums.arcstat_hash_chains); 7895 aggsum_fini(&arc_sums.arcstat_size); 7896 wmsum_fini(&arc_sums.arcstat_compressed_size); 7897 wmsum_fini(&arc_sums.arcstat_uncompressed_size); 7898 wmsum_fini(&arc_sums.arcstat_overhead_size); 7899 wmsum_fini(&arc_sums.arcstat_hdr_size); 7900 wmsum_fini(&arc_sums.arcstat_data_size); 7901 wmsum_fini(&arc_sums.arcstat_metadata_size); 7902 wmsum_fini(&arc_sums.arcstat_dbuf_size); 7903 aggsum_fini(&arc_sums.arcstat_dnode_size); 7904 wmsum_fini(&arc_sums.arcstat_bonus_size); 7905 wmsum_fini(&arc_sums.arcstat_l2_hits); 7906 wmsum_fini(&arc_sums.arcstat_l2_misses); 7907 wmsum_fini(&arc_sums.arcstat_l2_prefetch_asize); 7908 wmsum_fini(&arc_sums.arcstat_l2_mru_asize); 7909 wmsum_fini(&arc_sums.arcstat_l2_mfu_asize); 7910 wmsum_fini(&arc_sums.arcstat_l2_bufc_data_asize); 7911 wmsum_fini(&arc_sums.arcstat_l2_bufc_metadata_asize); 7912 wmsum_fini(&arc_sums.arcstat_l2_feeds); 7913 wmsum_fini(&arc_sums.arcstat_l2_rw_clash); 7914 wmsum_fini(&arc_sums.arcstat_l2_read_bytes); 7915 wmsum_fini(&arc_sums.arcstat_l2_write_bytes); 7916 wmsum_fini(&arc_sums.arcstat_l2_writes_sent); 7917 wmsum_fini(&arc_sums.arcstat_l2_writes_done); 7918 wmsum_fini(&arc_sums.arcstat_l2_writes_error); 7919 wmsum_fini(&arc_sums.arcstat_l2_writes_lock_retry); 7920 wmsum_fini(&arc_sums.arcstat_l2_evict_lock_retry); 7921 wmsum_fini(&arc_sums.arcstat_l2_evict_reading); 7922 wmsum_fini(&arc_sums.arcstat_l2_evict_l1cached); 7923 wmsum_fini(&arc_sums.arcstat_l2_free_on_write); 7924 wmsum_fini(&arc_sums.arcstat_l2_abort_lowmem); 7925 wmsum_fini(&arc_sums.arcstat_l2_cksum_bad); 7926 wmsum_fini(&arc_sums.arcstat_l2_io_error); 7927 wmsum_fini(&arc_sums.arcstat_l2_lsize); 7928 wmsum_fini(&arc_sums.arcstat_l2_psize); 7929 aggsum_fini(&arc_sums.arcstat_l2_hdr_size); 7930 wmsum_fini(&arc_sums.arcstat_l2_log_blk_writes); 7931 wmsum_fini(&arc_sums.arcstat_l2_log_blk_asize); 7932 wmsum_fini(&arc_sums.arcstat_l2_log_blk_count); 7933 wmsum_fini(&arc_sums.arcstat_l2_rebuild_success); 7934 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_unsupported); 7935 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_io_errors); 7936 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_dh_errors); 7937 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors); 7938 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_lowmem); 7939 wmsum_fini(&arc_sums.arcstat_l2_rebuild_size); 7940 wmsum_fini(&arc_sums.arcstat_l2_rebuild_asize); 7941 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs); 7942 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs_precached); 7943 wmsum_fini(&arc_sums.arcstat_l2_rebuild_log_blks); 7944 wmsum_fini(&arc_sums.arcstat_memory_throttle_count); 7945 wmsum_fini(&arc_sums.arcstat_memory_direct_count); 7946 wmsum_fini(&arc_sums.arcstat_memory_indirect_count); 7947 wmsum_fini(&arc_sums.arcstat_prune); 7948 wmsum_fini(&arc_sums.arcstat_meta_used); 7949 wmsum_fini(&arc_sums.arcstat_async_upgrade_sync); 7950 wmsum_fini(&arc_sums.arcstat_predictive_prefetch); 7951 wmsum_fini(&arc_sums.arcstat_demand_hit_predictive_prefetch); 7952 wmsum_fini(&arc_sums.arcstat_demand_iohit_predictive_prefetch); 7953 wmsum_fini(&arc_sums.arcstat_prescient_prefetch); 7954 wmsum_fini(&arc_sums.arcstat_demand_hit_prescient_prefetch); 7955 wmsum_fini(&arc_sums.arcstat_demand_iohit_prescient_prefetch); 7956 wmsum_fini(&arc_sums.arcstat_raw_size); 7957 wmsum_fini(&arc_sums.arcstat_cached_only_in_progress); 7958 wmsum_fini(&arc_sums.arcstat_abd_chunk_waste_size); 7959 } 7960 7961 uint64_t 7962 arc_target_bytes(void) 7963 { 7964 return (arc_c); 7965 } 7966 7967 void 7968 arc_set_limits(uint64_t allmem) 7969 { 7970 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */ 7971 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT); 7972 7973 /* How to set default max varies by platform. */ 7974 arc_c_max = arc_default_max(arc_c_min, allmem); 7975 } 7976 7977 void 7978 arc_init(void) 7979 { 7980 uint64_t percent, allmem = arc_all_memory(); 7981 mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL); 7982 list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t), 7983 offsetof(arc_evict_waiter_t, aew_node)); 7984 7985 arc_min_prefetch_ms = 1000; 7986 arc_min_prescient_prefetch_ms = 6000; 7987 7988 #if defined(_KERNEL) 7989 arc_lowmem_init(); 7990 #endif 7991 7992 arc_set_limits(allmem); 7993 7994 #ifdef _KERNEL 7995 /* 7996 * If zfs_arc_max is non-zero at init, meaning it was set in the kernel 7997 * environment before the module was loaded, don't block setting the 7998 * maximum because it is less than arc_c_min, instead, reset arc_c_min 7999 * to a lower value. 8000 * zfs_arc_min will be handled by arc_tuning_update(). 8001 */ 8002 if (zfs_arc_max != 0 && zfs_arc_max >= MIN_ARC_MAX && 8003 zfs_arc_max < allmem) { 8004 arc_c_max = zfs_arc_max; 8005 if (arc_c_min >= arc_c_max) { 8006 arc_c_min = MAX(zfs_arc_max / 2, 8007 2ULL << SPA_MAXBLOCKSHIFT); 8008 } 8009 } 8010 #else 8011 /* 8012 * In userland, there's only the memory pressure that we artificially 8013 * create (see arc_available_memory()). Don't let arc_c get too 8014 * small, because it can cause transactions to be larger than 8015 * arc_c, causing arc_tempreserve_space() to fail. 8016 */ 8017 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT); 8018 #endif 8019 8020 arc_c = arc_c_min; 8021 /* 8022 * 32-bit fixed point fractions of metadata from total ARC size, 8023 * MRU data from all data and MRU metadata from all metadata. 8024 */ 8025 arc_meta = (1ULL << 32) / 4; /* Metadata is 25% of arc_c. */ 8026 arc_pd = (1ULL << 32) / 2; /* Data MRU is 50% of data. */ 8027 arc_pm = (1ULL << 32) / 2; /* Metadata MRU is 50% of metadata. */ 8028 8029 percent = MIN(zfs_arc_dnode_limit_percent, 100); 8030 arc_dnode_limit = arc_c_max * percent / 100; 8031 8032 /* Apply user specified tunings */ 8033 arc_tuning_update(B_TRUE); 8034 8035 /* if kmem_flags are set, lets try to use less memory */ 8036 if (kmem_debugging()) 8037 arc_c = arc_c / 2; 8038 if (arc_c < arc_c_min) 8039 arc_c = arc_c_min; 8040 8041 arc_register_hotplug(); 8042 8043 arc_state_init(); 8044 8045 buf_init(); 8046 8047 list_create(&arc_prune_list, sizeof (arc_prune_t), 8048 offsetof(arc_prune_t, p_node)); 8049 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL); 8050 8051 arc_prune_taskq = taskq_create("arc_prune", zfs_arc_prune_task_threads, 8052 defclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC); 8053 8054 arc_evict_thread_init(); 8055 8056 list_create(&arc_async_flush_list, sizeof (arc_async_flush_t), 8057 offsetof(arc_async_flush_t, af_node)); 8058 mutex_init(&arc_async_flush_lock, NULL, MUTEX_DEFAULT, NULL); 8059 arc_flush_taskq = taskq_create("arc_flush", MIN(boot_ncpus, 4), 8060 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC); 8061 8062 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 8063 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 8064 8065 if (arc_ksp != NULL) { 8066 arc_ksp->ks_data = &arc_stats; 8067 arc_ksp->ks_update = arc_kstat_update; 8068 kstat_install(arc_ksp); 8069 } 8070 8071 arc_state_evict_markers = 8072 arc_state_alloc_markers(arc_state_evict_marker_count); 8073 arc_evict_zthr = zthr_create_timer("arc_evict", 8074 arc_evict_cb_check, arc_evict_cb, NULL, SEC2NSEC(1), defclsyspri); 8075 arc_reap_zthr = zthr_create_timer("arc_reap", 8076 arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1), minclsyspri); 8077 8078 arc_warm = B_FALSE; 8079 8080 /* 8081 * Calculate maximum amount of dirty data per pool. 8082 * 8083 * If it has been set by a module parameter, take that. 8084 * Otherwise, use a percentage of physical memory defined by 8085 * zfs_dirty_data_max_percent (default 10%) with a cap at 8086 * zfs_dirty_data_max_max (default 4G or 25% of physical memory). 8087 */ 8088 #ifdef __LP64__ 8089 if (zfs_dirty_data_max_max == 0) 8090 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024, 8091 allmem * zfs_dirty_data_max_max_percent / 100); 8092 #else 8093 if (zfs_dirty_data_max_max == 0) 8094 zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024, 8095 allmem * zfs_dirty_data_max_max_percent / 100); 8096 #endif 8097 8098 if (zfs_dirty_data_max == 0) { 8099 zfs_dirty_data_max = allmem * 8100 zfs_dirty_data_max_percent / 100; 8101 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 8102 zfs_dirty_data_max_max); 8103 } 8104 8105 if (zfs_wrlog_data_max == 0) { 8106 8107 /* 8108 * dp_wrlog_total is reduced for each txg at the end of 8109 * spa_sync(). However, dp_dirty_total is reduced every time 8110 * a block is written out. Thus under normal operation, 8111 * dp_wrlog_total could grow 2 times as big as 8112 * zfs_dirty_data_max. 8113 */ 8114 zfs_wrlog_data_max = zfs_dirty_data_max * 2; 8115 } 8116 } 8117 8118 void 8119 arc_fini(void) 8120 { 8121 arc_prune_t *p; 8122 8123 #ifdef _KERNEL 8124 arc_lowmem_fini(); 8125 #endif /* _KERNEL */ 8126 8127 /* Wait for any background flushes */ 8128 taskq_wait(arc_flush_taskq); 8129 taskq_destroy(arc_flush_taskq); 8130 8131 /* Use B_TRUE to ensure *all* buffers are evicted */ 8132 arc_flush(NULL, B_TRUE); 8133 8134 if (arc_ksp != NULL) { 8135 kstat_delete(arc_ksp); 8136 arc_ksp = NULL; 8137 } 8138 8139 taskq_wait(arc_prune_taskq); 8140 taskq_destroy(arc_prune_taskq); 8141 8142 list_destroy(&arc_async_flush_list); 8143 mutex_destroy(&arc_async_flush_lock); 8144 8145 mutex_enter(&arc_prune_mtx); 8146 while ((p = list_remove_head(&arc_prune_list)) != NULL) { 8147 (void) zfs_refcount_remove(&p->p_refcnt, &arc_prune_list); 8148 zfs_refcount_destroy(&p->p_refcnt); 8149 kmem_free(p, sizeof (*p)); 8150 } 8151 mutex_exit(&arc_prune_mtx); 8152 8153 list_destroy(&arc_prune_list); 8154 mutex_destroy(&arc_prune_mtx); 8155 8156 if (arc_evict_taskq != NULL) 8157 taskq_wait(arc_evict_taskq); 8158 8159 (void) zthr_cancel(arc_evict_zthr); 8160 (void) zthr_cancel(arc_reap_zthr); 8161 arc_state_free_markers(arc_state_evict_markers, 8162 arc_state_evict_marker_count); 8163 8164 if (arc_evict_taskq != NULL) { 8165 taskq_destroy(arc_evict_taskq); 8166 kmem_free(arc_evict_arg, 8167 sizeof (evict_arg_t) * zfs_arc_evict_threads); 8168 } 8169 8170 mutex_destroy(&arc_evict_lock); 8171 list_destroy(&arc_evict_waiters); 8172 8173 /* 8174 * Free any buffers that were tagged for destruction. This needs 8175 * to occur before arc_state_fini() runs and destroys the aggsum 8176 * values which are updated when freeing scatter ABDs. 8177 */ 8178 l2arc_do_free_on_write(); 8179 8180 /* 8181 * buf_fini() must proceed arc_state_fini() because buf_fin() may 8182 * trigger the release of kmem magazines, which can callback to 8183 * arc_space_return() which accesses aggsums freed in act_state_fini(). 8184 */ 8185 buf_fini(); 8186 arc_state_fini(); 8187 8188 arc_unregister_hotplug(); 8189 8190 /* 8191 * We destroy the zthrs after all the ARC state has been 8192 * torn down to avoid the case of them receiving any 8193 * wakeup() signals after they are destroyed. 8194 */ 8195 zthr_destroy(arc_evict_zthr); 8196 zthr_destroy(arc_reap_zthr); 8197 8198 ASSERT0(arc_loaned_bytes); 8199 } 8200 8201 /* 8202 * Level 2 ARC 8203 * 8204 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 8205 * It uses dedicated storage devices to hold cached data, which are populated 8206 * using large infrequent writes. The main role of this cache is to boost 8207 * the performance of random read workloads. The intended L2ARC devices 8208 * include short-stroked disks, solid state disks, and other media with 8209 * substantially faster read latency than disk. 8210 * 8211 * +-----------------------+ 8212 * | ARC | 8213 * +-----------------------+ 8214 * | ^ ^ 8215 * | | | 8216 * l2arc_feed_thread() arc_read() 8217 * | | | 8218 * | l2arc read | 8219 * V | | 8220 * +---------------+ | 8221 * | L2ARC | | 8222 * +---------------+ | 8223 * | ^ | 8224 * l2arc_write() | | 8225 * | | | 8226 * V | | 8227 * +-------+ +-------+ 8228 * | vdev | | vdev | 8229 * | cache | | cache | 8230 * +-------+ +-------+ 8231 * +=========+ .-----. 8232 * : L2ARC : |-_____-| 8233 * : devices : | Disks | 8234 * +=========+ `-_____-' 8235 * 8236 * Read requests are satisfied from the following sources, in order: 8237 * 8238 * 1) ARC 8239 * 2) vdev cache of L2ARC devices 8240 * 3) L2ARC devices 8241 * 4) vdev cache of disks 8242 * 5) disks 8243 * 8244 * Some L2ARC device types exhibit extremely slow write performance. 8245 * To accommodate for this there are some significant differences between 8246 * the L2ARC and traditional cache design: 8247 * 8248 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 8249 * the ARC behave as usual, freeing buffers and placing headers on ghost 8250 * lists. The ARC does not send buffers to the L2ARC during eviction as 8251 * this would add inflated write latencies for all ARC memory pressure. 8252 * 8253 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 8254 * It does this by periodically scanning buffers from the eviction-end of 8255 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 8256 * not already there. It scans until a headroom of buffers is satisfied, 8257 * which itself is a buffer for ARC eviction. If a compressible buffer is 8258 * found during scanning and selected for writing to an L2ARC device, we 8259 * temporarily boost scanning headroom during the next scan cycle to make 8260 * sure we adapt to compression effects (which might significantly reduce 8261 * the data volume we write to L2ARC). The thread that does this is 8262 * l2arc_feed_thread(), illustrated below; example sizes are included to 8263 * provide a better sense of ratio than this diagram: 8264 * 8265 * head --> tail 8266 * +---------------------+----------+ 8267 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 8268 * +---------------------+----------+ | o L2ARC eligible 8269 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 8270 * +---------------------+----------+ | 8271 * 15.9 Gbytes ^ 32 Mbytes | 8272 * headroom | 8273 * l2arc_feed_thread() 8274 * | 8275 * l2arc write hand <--[oooo]--' 8276 * | 8 Mbyte 8277 * | write max 8278 * V 8279 * +==============================+ 8280 * L2ARC dev |####|#|###|###| |####| ... | 8281 * +==============================+ 8282 * 32 Gbytes 8283 * 8284 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 8285 * evicted, then the L2ARC has cached a buffer much sooner than it probably 8286 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 8287 * safe to say that this is an uncommon case, since buffers at the end of 8288 * the ARC lists have moved there due to inactivity. 8289 * 8290 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 8291 * then the L2ARC simply misses copying some buffers. This serves as a 8292 * pressure valve to prevent heavy read workloads from both stalling the ARC 8293 * with waits and clogging the L2ARC with writes. This also helps prevent 8294 * the potential for the L2ARC to churn if it attempts to cache content too 8295 * quickly, such as during backups of the entire pool. 8296 * 8297 * 5. After system boot and before the ARC has filled main memory, there are 8298 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 8299 * lists can remain mostly static. Instead of searching from tail of these 8300 * lists as pictured, the l2arc_feed_thread() will search from the list heads 8301 * for eligible buffers, greatly increasing its chance of finding them. 8302 * 8303 * The L2ARC device write speed is also boosted during this time so that 8304 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 8305 * there are no L2ARC reads, and no fear of degrading read performance 8306 * through increased writes. 8307 * 8308 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 8309 * the vdev queue can aggregate them into larger and fewer writes. Each 8310 * device is written to in a rotor fashion, sweeping writes through 8311 * available space then repeating. 8312 * 8313 * 7. The L2ARC does not store dirty content. It never needs to flush 8314 * write buffers back to disk based storage. 8315 * 8316 * 8. If an ARC buffer is written (and dirtied) which also exists in the 8317 * L2ARC, the now stale L2ARC buffer is immediately dropped. 8318 * 8319 * The performance of the L2ARC can be tweaked by a number of tunables, which 8320 * may be necessary for different workloads: 8321 * 8322 * l2arc_write_max max write bytes per interval 8323 * l2arc_write_boost extra write bytes during device warmup 8324 * l2arc_noprefetch skip caching prefetched buffers 8325 * l2arc_headroom number of max device writes to precache 8326 * l2arc_headroom_boost when we find compressed buffers during ARC 8327 * scanning, we multiply headroom by this 8328 * percentage factor for the next scan cycle, 8329 * since more compressed buffers are likely to 8330 * be present 8331 * l2arc_feed_secs seconds between L2ARC writing 8332 * 8333 * Tunables may be removed or added as future performance improvements are 8334 * integrated, and also may become zpool properties. 8335 * 8336 * There are three key functions that control how the L2ARC warms up: 8337 * 8338 * l2arc_write_eligible() check if a buffer is eligible to cache 8339 * l2arc_write_size() calculate how much to write 8340 * l2arc_write_interval() calculate sleep delay between writes 8341 * 8342 * These three functions determine what to write, how much, and how quickly 8343 * to send writes. 8344 * 8345 * L2ARC persistence: 8346 * 8347 * When writing buffers to L2ARC, we periodically add some metadata to 8348 * make sure we can pick them up after reboot, thus dramatically reducing 8349 * the impact that any downtime has on the performance of storage systems 8350 * with large caches. 8351 * 8352 * The implementation works fairly simply by integrating the following two 8353 * modifications: 8354 * 8355 * *) When writing to the L2ARC, we occasionally write a "l2arc log block", 8356 * which is an additional piece of metadata which describes what's been 8357 * written. This allows us to rebuild the arc_buf_hdr_t structures of the 8358 * main ARC buffers. There are 2 linked-lists of log blocks headed by 8359 * dh_start_lbps[2]. We alternate which chain we append to, so they are 8360 * time-wise and offset-wise interleaved, but that is an optimization rather 8361 * than for correctness. The log block also includes a pointer to the 8362 * previous block in its chain. 8363 * 8364 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device 8365 * for our header bookkeeping purposes. This contains a device header, 8366 * which contains our top-level reference structures. We update it each 8367 * time we write a new log block, so that we're able to locate it in the 8368 * L2ARC device. If this write results in an inconsistent device header 8369 * (e.g. due to power failure), we detect this by verifying the header's 8370 * checksum and simply fail to reconstruct the L2ARC after reboot. 8371 * 8372 * Implementation diagram: 8373 * 8374 * +=== L2ARC device (not to scale) ======================================+ 8375 * | ___two newest log block pointers__.__________ | 8376 * | / \dh_start_lbps[1] | 8377 * | / \ \dh_start_lbps[0]| 8378 * |.___/__. V V | 8379 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---| 8380 * || hdr| ^ /^ /^ / / | 8381 * |+------+ ...--\-------/ \-----/--\------/ / | 8382 * | \--------------/ \--------------/ | 8383 * +======================================================================+ 8384 * 8385 * As can be seen on the diagram, rather than using a simple linked list, 8386 * we use a pair of linked lists with alternating elements. This is a 8387 * performance enhancement due to the fact that we only find out the 8388 * address of the next log block access once the current block has been 8389 * completely read in. Obviously, this hurts performance, because we'd be 8390 * keeping the device's I/O queue at only a 1 operation deep, thus 8391 * incurring a large amount of I/O round-trip latency. Having two lists 8392 * allows us to fetch two log blocks ahead of where we are currently 8393 * rebuilding L2ARC buffers. 8394 * 8395 * On-device data structures: 8396 * 8397 * L2ARC device header: l2arc_dev_hdr_phys_t 8398 * L2ARC log block: l2arc_log_blk_phys_t 8399 * 8400 * L2ARC reconstruction: 8401 * 8402 * When writing data, we simply write in the standard rotary fashion, 8403 * evicting buffers as we go and simply writing new data over them (writing 8404 * a new log block every now and then). This obviously means that once we 8405 * loop around the end of the device, we will start cutting into an already 8406 * committed log block (and its referenced data buffers), like so: 8407 * 8408 * current write head__ __old tail 8409 * \ / 8410 * V V 8411 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |--> 8412 * ^ ^^^^^^^^^___________________________________ 8413 * | \ 8414 * <<nextwrite>> may overwrite this blk and/or its bufs --' 8415 * 8416 * When importing the pool, we detect this situation and use it to stop 8417 * our scanning process (see l2arc_rebuild). 8418 * 8419 * There is one significant caveat to consider when rebuilding ARC contents 8420 * from an L2ARC device: what about invalidated buffers? Given the above 8421 * construction, we cannot update blocks which we've already written to amend 8422 * them to remove buffers which were invalidated. Thus, during reconstruction, 8423 * we might be populating the cache with buffers for data that's not on the 8424 * main pool anymore, or may have been overwritten! 8425 * 8426 * As it turns out, this isn't a problem. Every arc_read request includes 8427 * both the DVA and, crucially, the birth TXG of the BP the caller is 8428 * looking for. So even if the cache were populated by completely rotten 8429 * blocks for data that had been long deleted and/or overwritten, we'll 8430 * never actually return bad data from the cache, since the DVA with the 8431 * birth TXG uniquely identify a block in space and time - once created, 8432 * a block is immutable on disk. The worst thing we have done is wasted 8433 * some time and memory at l2arc rebuild to reconstruct outdated ARC 8434 * entries that will get dropped from the l2arc as it is being updated 8435 * with new blocks. 8436 * 8437 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write 8438 * hand are not restored. This is done by saving the offset (in bytes) 8439 * l2arc_evict() has evicted to in the L2ARC device header and taking it 8440 * into account when restoring buffers. 8441 */ 8442 8443 static boolean_t 8444 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 8445 { 8446 /* 8447 * A buffer is *not* eligible for the L2ARC if it: 8448 * 1. belongs to a different spa. 8449 * 2. is already cached on the L2ARC. 8450 * 3. has an I/O in progress (it may be an incomplete read). 8451 * 4. is flagged not eligible (zfs property). 8452 */ 8453 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || 8454 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr)) 8455 return (B_FALSE); 8456 8457 return (B_TRUE); 8458 } 8459 8460 static uint64_t 8461 l2arc_write_size(l2arc_dev_t *dev) 8462 { 8463 uint64_t size; 8464 8465 /* 8466 * Make sure our globals have meaningful values in case the user 8467 * altered them. 8468 */ 8469 size = l2arc_write_max; 8470 if (size == 0) { 8471 cmn_err(CE_NOTE, "l2arc_write_max must be greater than zero, " 8472 "resetting it to the default (%d)", L2ARC_WRITE_SIZE); 8473 size = l2arc_write_max = L2ARC_WRITE_SIZE; 8474 } 8475 8476 if (arc_warm == B_FALSE) 8477 size += l2arc_write_boost; 8478 8479 /* We need to add in the worst case scenario of log block overhead. */ 8480 size += l2arc_log_blk_overhead(size, dev); 8481 if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) { 8482 /* 8483 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100) 8484 * times the writesize, whichever is greater. 8485 */ 8486 size += MAX(64 * 1024 * 1024, 8487 (size * l2arc_trim_ahead) / 100); 8488 } 8489 8490 /* 8491 * Make sure the write size does not exceed the size of the cache 8492 * device. This is important in l2arc_evict(), otherwise infinite 8493 * iteration can occur. 8494 */ 8495 size = MIN(size, (dev->l2ad_end - dev->l2ad_start) / 4); 8496 8497 size = P2ROUNDUP(size, 1ULL << dev->l2ad_vdev->vdev_ashift); 8498 8499 return (size); 8500 8501 } 8502 8503 static clock_t 8504 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 8505 { 8506 clock_t interval, next, now; 8507 8508 /* 8509 * If the ARC lists are busy, increase our write rate; if the 8510 * lists are stale, idle back. This is achieved by checking 8511 * how much we previously wrote - if it was more than half of 8512 * what we wanted, schedule the next write much sooner. 8513 */ 8514 if (l2arc_feed_again && wrote > (wanted / 2)) 8515 interval = (hz * l2arc_feed_min_ms) / 1000; 8516 else 8517 interval = hz * l2arc_feed_secs; 8518 8519 now = ddi_get_lbolt(); 8520 next = MAX(now, MIN(now + interval, began + interval)); 8521 8522 return (next); 8523 } 8524 8525 static boolean_t 8526 l2arc_dev_invalid(const l2arc_dev_t *dev) 8527 { 8528 /* 8529 * We want to skip devices that are being rebuilt, trimmed, 8530 * removed, or belong to a spa that is being exported. 8531 */ 8532 return (dev->l2ad_vdev == NULL || vdev_is_dead(dev->l2ad_vdev) || 8533 dev->l2ad_rebuild || dev->l2ad_trim_all || 8534 dev->l2ad_spa == NULL || dev->l2ad_spa->spa_is_exporting); 8535 } 8536 8537 /* 8538 * Cycle through L2ARC devices. This is how L2ARC load balances. 8539 * If a device is returned, this also returns holding the spa config lock. 8540 */ 8541 static l2arc_dev_t * 8542 l2arc_dev_get_next(void) 8543 { 8544 l2arc_dev_t *first, *next = NULL; 8545 8546 /* 8547 * Lock out the removal of spas (spa_namespace_lock), then removal 8548 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 8549 * both locks will be dropped and a spa config lock held instead. 8550 */ 8551 mutex_enter(&spa_namespace_lock); 8552 mutex_enter(&l2arc_dev_mtx); 8553 8554 /* if there are no vdevs, there is nothing to do */ 8555 if (l2arc_ndev == 0) 8556 goto out; 8557 8558 first = NULL; 8559 next = l2arc_dev_last; 8560 do { 8561 /* loop around the list looking for a non-faulted vdev */ 8562 if (next == NULL) { 8563 next = list_head(l2arc_dev_list); 8564 } else { 8565 next = list_next(l2arc_dev_list, next); 8566 if (next == NULL) 8567 next = list_head(l2arc_dev_list); 8568 } 8569 8570 /* if we have come back to the start, bail out */ 8571 if (first == NULL) 8572 first = next; 8573 else if (next == first) 8574 break; 8575 8576 ASSERT3P(next, !=, NULL); 8577 } while (l2arc_dev_invalid(next)); 8578 8579 /* if we were unable to find any usable vdevs, return NULL */ 8580 if (l2arc_dev_invalid(next)) 8581 next = NULL; 8582 8583 l2arc_dev_last = next; 8584 8585 out: 8586 mutex_exit(&l2arc_dev_mtx); 8587 8588 /* 8589 * Grab the config lock to prevent the 'next' device from being 8590 * removed while we are writing to it. 8591 */ 8592 if (next != NULL) 8593 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 8594 mutex_exit(&spa_namespace_lock); 8595 8596 return (next); 8597 } 8598 8599 /* 8600 * Free buffers that were tagged for destruction. 8601 */ 8602 static void 8603 l2arc_do_free_on_write(void) 8604 { 8605 l2arc_data_free_t *df; 8606 8607 mutex_enter(&l2arc_free_on_write_mtx); 8608 while ((df = list_remove_head(l2arc_free_on_write)) != NULL) { 8609 ASSERT3P(df->l2df_abd, !=, NULL); 8610 abd_free(df->l2df_abd); 8611 kmem_free(df, sizeof (l2arc_data_free_t)); 8612 } 8613 mutex_exit(&l2arc_free_on_write_mtx); 8614 } 8615 8616 /* 8617 * A write to a cache device has completed. Update all headers to allow 8618 * reads from these buffers to begin. 8619 */ 8620 static void 8621 l2arc_write_done(zio_t *zio) 8622 { 8623 l2arc_write_callback_t *cb; 8624 l2arc_lb_abd_buf_t *abd_buf; 8625 l2arc_lb_ptr_buf_t *lb_ptr_buf; 8626 l2arc_dev_t *dev; 8627 l2arc_dev_hdr_phys_t *l2dhdr; 8628 list_t *buflist; 8629 arc_buf_hdr_t *head, *hdr, *hdr_prev; 8630 kmutex_t *hash_lock; 8631 int64_t bytes_dropped = 0; 8632 8633 cb = zio->io_private; 8634 ASSERT3P(cb, !=, NULL); 8635 dev = cb->l2wcb_dev; 8636 l2dhdr = dev->l2ad_dev_hdr; 8637 ASSERT3P(dev, !=, NULL); 8638 head = cb->l2wcb_head; 8639 ASSERT3P(head, !=, NULL); 8640 buflist = &dev->l2ad_buflist; 8641 ASSERT3P(buflist, !=, NULL); 8642 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 8643 l2arc_write_callback_t *, cb); 8644 8645 /* 8646 * All writes completed, or an error was hit. 8647 */ 8648 top: 8649 mutex_enter(&dev->l2ad_mtx); 8650 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 8651 hdr_prev = list_prev(buflist, hdr); 8652 8653 hash_lock = HDR_LOCK(hdr); 8654 8655 /* 8656 * We cannot use mutex_enter or else we can deadlock 8657 * with l2arc_write_buffers (due to swapping the order 8658 * the hash lock and l2ad_mtx are taken). 8659 */ 8660 if (!mutex_tryenter(hash_lock)) { 8661 /* 8662 * Missed the hash lock. We must retry so we 8663 * don't leave the ARC_FLAG_L2_WRITING bit set. 8664 */ 8665 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 8666 8667 /* 8668 * We don't want to rescan the headers we've 8669 * already marked as having been written out, so 8670 * we reinsert the head node so we can pick up 8671 * where we left off. 8672 */ 8673 list_remove(buflist, head); 8674 list_insert_after(buflist, hdr, head); 8675 8676 mutex_exit(&dev->l2ad_mtx); 8677 8678 /* 8679 * We wait for the hash lock to become available 8680 * to try and prevent busy waiting, and increase 8681 * the chance we'll be able to acquire the lock 8682 * the next time around. 8683 */ 8684 mutex_enter(hash_lock); 8685 mutex_exit(hash_lock); 8686 goto top; 8687 } 8688 8689 /* 8690 * We could not have been moved into the arc_l2c_only 8691 * state while in-flight due to our ARC_FLAG_L2_WRITING 8692 * bit being set. Let's just ensure that's being enforced. 8693 */ 8694 ASSERT(HDR_HAS_L1HDR(hdr)); 8695 8696 /* 8697 * Skipped - drop L2ARC entry and mark the header as no 8698 * longer L2 eligibile. 8699 */ 8700 if (zio->io_error != 0) { 8701 /* 8702 * Error - drop L2ARC entry. 8703 */ 8704 list_remove(buflist, hdr); 8705 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 8706 8707 uint64_t psize = HDR_GET_PSIZE(hdr); 8708 l2arc_hdr_arcstats_decrement(hdr); 8709 8710 ASSERT(dev->l2ad_vdev != NULL); 8711 8712 bytes_dropped += 8713 vdev_psize_to_asize(dev->l2ad_vdev, psize); 8714 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 8715 arc_hdr_size(hdr), hdr); 8716 } 8717 8718 /* 8719 * Allow ARC to begin reads and ghost list evictions to 8720 * this L2ARC entry. 8721 */ 8722 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); 8723 8724 mutex_exit(hash_lock); 8725 } 8726 8727 /* 8728 * Free the allocated abd buffers for writing the log blocks. 8729 * If the zio failed reclaim the allocated space and remove the 8730 * pointers to these log blocks from the log block pointer list 8731 * of the L2ARC device. 8732 */ 8733 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) { 8734 abd_free(abd_buf->abd); 8735 zio_buf_free(abd_buf, sizeof (*abd_buf)); 8736 if (zio->io_error != 0) { 8737 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list); 8738 /* 8739 * L2BLK_GET_PSIZE returns aligned size for log 8740 * blocks. 8741 */ 8742 uint64_t asize = 8743 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop); 8744 bytes_dropped += asize; 8745 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 8746 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 8747 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 8748 lb_ptr_buf); 8749 (void) zfs_refcount_remove(&dev->l2ad_lb_count, 8750 lb_ptr_buf); 8751 kmem_free(lb_ptr_buf->lb_ptr, 8752 sizeof (l2arc_log_blkptr_t)); 8753 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 8754 } 8755 } 8756 list_destroy(&cb->l2wcb_abd_list); 8757 8758 if (zio->io_error != 0) { 8759 ARCSTAT_BUMP(arcstat_l2_writes_error); 8760 8761 /* 8762 * Restore the lbps array in the header to its previous state. 8763 * If the list of log block pointers is empty, zero out the 8764 * log block pointers in the device header. 8765 */ 8766 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list); 8767 for (int i = 0; i < 2; i++) { 8768 if (lb_ptr_buf == NULL) { 8769 /* 8770 * If the list is empty zero out the device 8771 * header. Otherwise zero out the second log 8772 * block pointer in the header. 8773 */ 8774 if (i == 0) { 8775 memset(l2dhdr, 0, 8776 dev->l2ad_dev_hdr_asize); 8777 } else { 8778 memset(&l2dhdr->dh_start_lbps[i], 0, 8779 sizeof (l2arc_log_blkptr_t)); 8780 } 8781 break; 8782 } 8783 memcpy(&l2dhdr->dh_start_lbps[i], lb_ptr_buf->lb_ptr, 8784 sizeof (l2arc_log_blkptr_t)); 8785 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list, 8786 lb_ptr_buf); 8787 } 8788 } 8789 8790 ARCSTAT_BUMP(arcstat_l2_writes_done); 8791 list_remove(buflist, head); 8792 ASSERT(!HDR_HAS_L1HDR(head)); 8793 kmem_cache_free(hdr_l2only_cache, head); 8794 mutex_exit(&dev->l2ad_mtx); 8795 8796 ASSERT(dev->l2ad_vdev != NULL); 8797 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 8798 8799 l2arc_do_free_on_write(); 8800 8801 kmem_free(cb, sizeof (l2arc_write_callback_t)); 8802 } 8803 8804 static int 8805 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb) 8806 { 8807 int ret; 8808 spa_t *spa = zio->io_spa; 8809 arc_buf_hdr_t *hdr = cb->l2rcb_hdr; 8810 blkptr_t *bp = zio->io_bp; 8811 uint8_t salt[ZIO_DATA_SALT_LEN]; 8812 uint8_t iv[ZIO_DATA_IV_LEN]; 8813 uint8_t mac[ZIO_DATA_MAC_LEN]; 8814 boolean_t no_crypt = B_FALSE; 8815 8816 /* 8817 * ZIL data is never be written to the L2ARC, so we don't need 8818 * special handling for its unique MAC storage. 8819 */ 8820 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 8821 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 8822 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8823 8824 /* 8825 * If the data was encrypted, decrypt it now. Note that 8826 * we must check the bp here and not the hdr, since the 8827 * hdr does not have its encryption parameters updated 8828 * until arc_read_done(). 8829 */ 8830 if (BP_IS_ENCRYPTED(bp)) { 8831 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8832 ARC_HDR_USE_RESERVE); 8833 8834 zio_crypt_decode_params_bp(bp, salt, iv); 8835 zio_crypt_decode_mac_bp(bp, mac); 8836 8837 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb, 8838 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 8839 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd, 8840 hdr->b_l1hdr.b_pabd, &no_crypt); 8841 if (ret != 0) { 8842 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8843 goto error; 8844 } 8845 8846 /* 8847 * If we actually performed decryption, replace b_pabd 8848 * with the decrypted data. Otherwise we can just throw 8849 * our decryption buffer away. 8850 */ 8851 if (!no_crypt) { 8852 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8853 arc_hdr_size(hdr), hdr); 8854 hdr->b_l1hdr.b_pabd = eabd; 8855 zio->io_abd = eabd; 8856 } else { 8857 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8858 } 8859 } 8860 8861 /* 8862 * If the L2ARC block was compressed, but ARC compression 8863 * is disabled we decompress the data into a new buffer and 8864 * replace the existing data. 8865 */ 8866 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 8867 !HDR_COMPRESSION_ENABLED(hdr)) { 8868 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8869 ARC_HDR_USE_RESERVE); 8870 8871 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 8872 hdr->b_l1hdr.b_pabd, cabd, HDR_GET_PSIZE(hdr), 8873 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 8874 if (ret != 0) { 8875 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr); 8876 goto error; 8877 } 8878 8879 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8880 arc_hdr_size(hdr), hdr); 8881 hdr->b_l1hdr.b_pabd = cabd; 8882 zio->io_abd = cabd; 8883 zio->io_size = HDR_GET_LSIZE(hdr); 8884 } 8885 8886 return (0); 8887 8888 error: 8889 return (ret); 8890 } 8891 8892 8893 /* 8894 * A read to a cache device completed. Validate buffer contents before 8895 * handing over to the regular ARC routines. 8896 */ 8897 static void 8898 l2arc_read_done(zio_t *zio) 8899 { 8900 int tfm_error = 0; 8901 l2arc_read_callback_t *cb = zio->io_private; 8902 arc_buf_hdr_t *hdr; 8903 kmutex_t *hash_lock; 8904 boolean_t valid_cksum; 8905 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) && 8906 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT)); 8907 8908 ASSERT3P(zio->io_vd, !=, NULL); 8909 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 8910 8911 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 8912 8913 ASSERT3P(cb, !=, NULL); 8914 hdr = cb->l2rcb_hdr; 8915 ASSERT3P(hdr, !=, NULL); 8916 8917 hash_lock = HDR_LOCK(hdr); 8918 mutex_enter(hash_lock); 8919 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 8920 8921 /* 8922 * If the data was read into a temporary buffer, 8923 * move it and free the buffer. 8924 */ 8925 if (cb->l2rcb_abd != NULL) { 8926 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size); 8927 if (zio->io_error == 0) { 8928 if (using_rdata) { 8929 abd_copy(hdr->b_crypt_hdr.b_rabd, 8930 cb->l2rcb_abd, arc_hdr_size(hdr)); 8931 } else { 8932 abd_copy(hdr->b_l1hdr.b_pabd, 8933 cb->l2rcb_abd, arc_hdr_size(hdr)); 8934 } 8935 } 8936 8937 /* 8938 * The following must be done regardless of whether 8939 * there was an error: 8940 * - free the temporary buffer 8941 * - point zio to the real ARC buffer 8942 * - set zio size accordingly 8943 * These are required because zio is either re-used for 8944 * an I/O of the block in the case of the error 8945 * or the zio is passed to arc_read_done() and it 8946 * needs real data. 8947 */ 8948 abd_free(cb->l2rcb_abd); 8949 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr); 8950 8951 if (using_rdata) { 8952 ASSERT(HDR_HAS_RABD(hdr)); 8953 zio->io_abd = zio->io_orig_abd = 8954 hdr->b_crypt_hdr.b_rabd; 8955 } else { 8956 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8957 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd; 8958 } 8959 } 8960 8961 ASSERT3P(zio->io_abd, !=, NULL); 8962 8963 /* 8964 * Check this survived the L2ARC journey. 8965 */ 8966 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd || 8967 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd)); 8968 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 8969 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 8970 zio->io_prop.zp_complevel = hdr->b_complevel; 8971 8972 valid_cksum = arc_cksum_is_equal(hdr, zio); 8973 8974 /* 8975 * b_rabd will always match the data as it exists on disk if it is 8976 * being used. Therefore if we are reading into b_rabd we do not 8977 * attempt to untransform the data. 8978 */ 8979 if (valid_cksum && !using_rdata) 8980 tfm_error = l2arc_untransform(zio, cb); 8981 8982 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 && 8983 !HDR_L2_EVICTED(hdr)) { 8984 mutex_exit(hash_lock); 8985 zio->io_private = hdr; 8986 arc_read_done(zio); 8987 } else { 8988 /* 8989 * Buffer didn't survive caching. Increment stats and 8990 * reissue to the original storage device. 8991 */ 8992 if (zio->io_error != 0) { 8993 ARCSTAT_BUMP(arcstat_l2_io_error); 8994 } else { 8995 zio->io_error = SET_ERROR(EIO); 8996 } 8997 if (!valid_cksum || tfm_error != 0) 8998 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 8999 9000 /* 9001 * If there's no waiter, issue an async i/o to the primary 9002 * storage now. If there *is* a waiter, the caller must 9003 * issue the i/o in a context where it's OK to block. 9004 */ 9005 if (zio->io_waiter == NULL) { 9006 zio_t *pio = zio_unique_parent(zio); 9007 void *abd = (using_rdata) ? 9008 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd; 9009 9010 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 9011 9012 zio = zio_read(pio, zio->io_spa, zio->io_bp, 9013 abd, zio->io_size, arc_read_done, 9014 hdr, zio->io_priority, cb->l2rcb_flags, 9015 &cb->l2rcb_zb); 9016 9017 /* 9018 * Original ZIO will be freed, so we need to update 9019 * ARC header with the new ZIO pointer to be used 9020 * by zio_change_priority() in arc_read(). 9021 */ 9022 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb; 9023 acb != NULL; acb = acb->acb_next) 9024 acb->acb_zio_head = zio; 9025 9026 mutex_exit(hash_lock); 9027 zio_nowait(zio); 9028 } else { 9029 mutex_exit(hash_lock); 9030 } 9031 } 9032 9033 kmem_free(cb, sizeof (l2arc_read_callback_t)); 9034 } 9035 9036 /* 9037 * This is the list priority from which the L2ARC will search for pages to 9038 * cache. This is used within loops (0..3) to cycle through lists in the 9039 * desired order. This order can have a significant effect on cache 9040 * performance. 9041 * 9042 * Currently the metadata lists are hit first, MFU then MRU, followed by 9043 * the data lists. This function returns a locked list, and also returns 9044 * the lock pointer. 9045 */ 9046 static multilist_sublist_t * 9047 l2arc_sublist_lock(int list_num) 9048 { 9049 multilist_t *ml = NULL; 9050 unsigned int idx; 9051 9052 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES); 9053 9054 switch (list_num) { 9055 case 0: 9056 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 9057 break; 9058 case 1: 9059 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 9060 break; 9061 case 2: 9062 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 9063 break; 9064 case 3: 9065 ml = &arc_mru->arcs_list[ARC_BUFC_DATA]; 9066 break; 9067 default: 9068 return (NULL); 9069 } 9070 9071 /* 9072 * Return a randomly-selected sublist. This is acceptable 9073 * because the caller feeds only a little bit of data for each 9074 * call (8MB). Subsequent calls will result in different 9075 * sublists being selected. 9076 */ 9077 idx = multilist_get_random_index(ml); 9078 return (multilist_sublist_lock_idx(ml, idx)); 9079 } 9080 9081 /* 9082 * Calculates the maximum overhead of L2ARC metadata log blocks for a given 9083 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this 9084 * overhead in processing to make sure there is enough headroom available 9085 * when writing buffers. 9086 */ 9087 static inline uint64_t 9088 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev) 9089 { 9090 if (dev->l2ad_log_entries == 0) { 9091 return (0); 9092 } else { 9093 ASSERT(dev->l2ad_vdev != NULL); 9094 9095 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT; 9096 9097 uint64_t log_blocks = (log_entries + 9098 dev->l2ad_log_entries - 1) / 9099 dev->l2ad_log_entries; 9100 9101 return (vdev_psize_to_asize(dev->l2ad_vdev, 9102 sizeof (l2arc_log_blk_phys_t)) * log_blocks); 9103 } 9104 } 9105 9106 /* 9107 * Evict buffers from the device write hand to the distance specified in 9108 * bytes. This distance may span populated buffers, it may span nothing. 9109 * This is clearing a region on the L2ARC device ready for writing. 9110 * If the 'all' boolean is set, every buffer is evicted. 9111 */ 9112 static void 9113 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 9114 { 9115 list_t *buflist; 9116 arc_buf_hdr_t *hdr, *hdr_prev; 9117 kmutex_t *hash_lock; 9118 uint64_t taddr; 9119 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev; 9120 vdev_t *vd = dev->l2ad_vdev; 9121 boolean_t rerun; 9122 9123 ASSERT(vd != NULL || all); 9124 ASSERT(dev->l2ad_spa != NULL || all); 9125 9126 buflist = &dev->l2ad_buflist; 9127 9128 top: 9129 rerun = B_FALSE; 9130 if (dev->l2ad_hand + distance > dev->l2ad_end) { 9131 /* 9132 * When there is no space to accommodate upcoming writes, 9133 * evict to the end. Then bump the write and evict hands 9134 * to the start and iterate. This iteration does not 9135 * happen indefinitely as we make sure in 9136 * l2arc_write_size() that when the write hand is reset, 9137 * the write size does not exceed the end of the device. 9138 */ 9139 rerun = B_TRUE; 9140 taddr = dev->l2ad_end; 9141 } else { 9142 taddr = dev->l2ad_hand + distance; 9143 } 9144 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 9145 uint64_t, taddr, boolean_t, all); 9146 9147 if (!all) { 9148 /* 9149 * This check has to be placed after deciding whether to 9150 * iterate (rerun). 9151 */ 9152 if (dev->l2ad_first) { 9153 /* 9154 * This is the first sweep through the device. There is 9155 * nothing to evict. We have already trimmmed the 9156 * whole device. 9157 */ 9158 goto out; 9159 } else { 9160 /* 9161 * Trim the space to be evicted. 9162 */ 9163 if (vd->vdev_has_trim && dev->l2ad_evict < taddr && 9164 l2arc_trim_ahead > 0) { 9165 /* 9166 * We have to drop the spa_config lock because 9167 * vdev_trim_range() will acquire it. 9168 * l2ad_evict already accounts for the label 9169 * size. To prevent vdev_trim_ranges() from 9170 * adding it again, we subtract it from 9171 * l2ad_evict. 9172 */ 9173 spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev); 9174 vdev_trim_simple(vd, 9175 dev->l2ad_evict - VDEV_LABEL_START_SIZE, 9176 taddr - dev->l2ad_evict); 9177 spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev, 9178 RW_READER); 9179 } 9180 9181 /* 9182 * When rebuilding L2ARC we retrieve the evict hand 9183 * from the header of the device. Of note, l2arc_evict() 9184 * does not actually delete buffers from the cache 9185 * device, but trimming may do so depending on the 9186 * hardware implementation. Thus keeping track of the 9187 * evict hand is useful. 9188 */ 9189 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr); 9190 } 9191 } 9192 9193 retry: 9194 mutex_enter(&dev->l2ad_mtx); 9195 /* 9196 * We have to account for evicted log blocks. Run vdev_space_update() 9197 * on log blocks whose offset (in bytes) is before the evicted offset 9198 * (in bytes) by searching in the list of pointers to log blocks 9199 * present in the L2ARC device. 9200 */ 9201 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf; 9202 lb_ptr_buf = lb_ptr_buf_prev) { 9203 9204 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf); 9205 9206 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 9207 uint64_t asize = L2BLK_GET_PSIZE( 9208 (lb_ptr_buf->lb_ptr)->lbp_prop); 9209 9210 /* 9211 * We don't worry about log blocks left behind (ie 9212 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers() 9213 * will never write more than l2arc_evict() evicts. 9214 */ 9215 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) { 9216 break; 9217 } else { 9218 if (vd != NULL) 9219 vdev_space_update(vd, -asize, 0, 0); 9220 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 9221 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 9222 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 9223 lb_ptr_buf); 9224 (void) zfs_refcount_remove(&dev->l2ad_lb_count, 9225 lb_ptr_buf); 9226 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf); 9227 kmem_free(lb_ptr_buf->lb_ptr, 9228 sizeof (l2arc_log_blkptr_t)); 9229 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 9230 } 9231 } 9232 9233 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 9234 hdr_prev = list_prev(buflist, hdr); 9235 9236 ASSERT(!HDR_EMPTY(hdr)); 9237 hash_lock = HDR_LOCK(hdr); 9238 9239 /* 9240 * We cannot use mutex_enter or else we can deadlock 9241 * with l2arc_write_buffers (due to swapping the order 9242 * the hash lock and l2ad_mtx are taken). 9243 */ 9244 if (!mutex_tryenter(hash_lock)) { 9245 /* 9246 * Missed the hash lock. Retry. 9247 */ 9248 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 9249 mutex_exit(&dev->l2ad_mtx); 9250 mutex_enter(hash_lock); 9251 mutex_exit(hash_lock); 9252 goto retry; 9253 } 9254 9255 /* 9256 * A header can't be on this list if it doesn't have L2 header. 9257 */ 9258 ASSERT(HDR_HAS_L2HDR(hdr)); 9259 9260 /* Ensure this header has finished being written. */ 9261 ASSERT(!HDR_L2_WRITING(hdr)); 9262 ASSERT(!HDR_L2_WRITE_HEAD(hdr)); 9263 9264 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict || 9265 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 9266 /* 9267 * We've evicted to the target address, 9268 * or the end of the device. 9269 */ 9270 mutex_exit(hash_lock); 9271 break; 9272 } 9273 9274 if (!HDR_HAS_L1HDR(hdr)) { 9275 ASSERT(!HDR_L2_READING(hdr)); 9276 /* 9277 * This doesn't exist in the ARC. Destroy. 9278 * arc_hdr_destroy() will call list_remove() 9279 * and decrement arcstat_l2_lsize. 9280 */ 9281 arc_change_state(arc_anon, hdr); 9282 arc_hdr_destroy(hdr); 9283 } else { 9284 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 9285 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 9286 /* 9287 * Invalidate issued or about to be issued 9288 * reads, since we may be about to write 9289 * over this location. 9290 */ 9291 if (HDR_L2_READING(hdr)) { 9292 ARCSTAT_BUMP(arcstat_l2_evict_reading); 9293 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); 9294 } 9295 9296 arc_hdr_l2hdr_destroy(hdr); 9297 } 9298 mutex_exit(hash_lock); 9299 } 9300 mutex_exit(&dev->l2ad_mtx); 9301 9302 out: 9303 /* 9304 * We need to check if we evict all buffers, otherwise we may iterate 9305 * unnecessarily. 9306 */ 9307 if (!all && rerun) { 9308 /* 9309 * Bump device hand to the device start if it is approaching the 9310 * end. l2arc_evict() has already evicted ahead for this case. 9311 */ 9312 dev->l2ad_hand = dev->l2ad_start; 9313 dev->l2ad_evict = dev->l2ad_start; 9314 dev->l2ad_first = B_FALSE; 9315 goto top; 9316 } 9317 9318 if (!all) { 9319 /* 9320 * In case of cache device removal (all) the following 9321 * assertions may be violated without functional consequences 9322 * as the device is about to be removed. 9323 */ 9324 ASSERT3U(dev->l2ad_hand + distance, <=, dev->l2ad_end); 9325 if (!dev->l2ad_first) 9326 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict); 9327 } 9328 } 9329 9330 /* 9331 * Handle any abd transforms that might be required for writing to the L2ARC. 9332 * If successful, this function will always return an abd with the data 9333 * transformed as it is on disk in a new abd of asize bytes. 9334 */ 9335 static int 9336 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize, 9337 abd_t **abd_out) 9338 { 9339 int ret; 9340 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd; 9341 enum zio_compress compress = HDR_GET_COMPRESS(hdr); 9342 uint64_t psize = HDR_GET_PSIZE(hdr); 9343 uint64_t size = arc_hdr_size(hdr); 9344 boolean_t ismd = HDR_ISTYPE_METADATA(hdr); 9345 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 9346 dsl_crypto_key_t *dck = NULL; 9347 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 }; 9348 boolean_t no_crypt = B_FALSE; 9349 9350 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 9351 !HDR_COMPRESSION_ENABLED(hdr)) || 9352 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize); 9353 ASSERT3U(psize, <=, asize); 9354 9355 /* 9356 * If this data simply needs its own buffer, we simply allocate it 9357 * and copy the data. This may be done to eliminate a dependency on a 9358 * shared buffer or to reallocate the buffer to match asize. 9359 */ 9360 if (HDR_HAS_RABD(hdr)) { 9361 ASSERT3U(asize, >, psize); 9362 to_write = abd_alloc_for_io(asize, ismd); 9363 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize); 9364 abd_zero_off(to_write, psize, asize - psize); 9365 goto out; 9366 } 9367 9368 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) && 9369 !HDR_ENCRYPTED(hdr)) { 9370 ASSERT3U(size, ==, psize); 9371 to_write = abd_alloc_for_io(asize, ismd); 9372 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 9373 if (asize > size) 9374 abd_zero_off(to_write, size, asize - size); 9375 goto out; 9376 } 9377 9378 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) { 9379 cabd = abd_alloc_for_io(MAX(size, asize), ismd); 9380 uint64_t csize = zio_compress_data(compress, to_write, &cabd, 9381 size, MIN(size, psize), hdr->b_complevel); 9382 if (csize >= size || csize > psize) { 9383 /* 9384 * We can't re-compress the block into the original 9385 * psize. Even if it fits into asize, it does not 9386 * matter, since checksum will never match on read. 9387 */ 9388 abd_free(cabd); 9389 return (SET_ERROR(EIO)); 9390 } 9391 if (asize > csize) 9392 abd_zero_off(cabd, csize, asize - csize); 9393 to_write = cabd; 9394 } 9395 9396 if (HDR_ENCRYPTED(hdr)) { 9397 eabd = abd_alloc_for_io(asize, ismd); 9398 9399 /* 9400 * If the dataset was disowned before the buffer 9401 * made it to this point, the key to re-encrypt 9402 * it won't be available. In this case we simply 9403 * won't write the buffer to the L2ARC. 9404 */ 9405 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj, 9406 FTAG, &dck); 9407 if (ret != 0) 9408 goto error; 9409 9410 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key, 9411 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt, 9412 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd, 9413 &no_crypt); 9414 if (ret != 0) 9415 goto error; 9416 9417 if (no_crypt) 9418 abd_copy(eabd, to_write, psize); 9419 9420 if (psize != asize) 9421 abd_zero_off(eabd, psize, asize - psize); 9422 9423 /* assert that the MAC we got here matches the one we saved */ 9424 ASSERT0(memcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN)); 9425 spa_keystore_dsl_key_rele(spa, dck, FTAG); 9426 9427 if (to_write == cabd) 9428 abd_free(cabd); 9429 9430 to_write = eabd; 9431 } 9432 9433 out: 9434 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd); 9435 *abd_out = to_write; 9436 return (0); 9437 9438 error: 9439 if (dck != NULL) 9440 spa_keystore_dsl_key_rele(spa, dck, FTAG); 9441 if (cabd != NULL) 9442 abd_free(cabd); 9443 if (eabd != NULL) 9444 abd_free(eabd); 9445 9446 *abd_out = NULL; 9447 return (ret); 9448 } 9449 9450 static void 9451 l2arc_blk_fetch_done(zio_t *zio) 9452 { 9453 l2arc_read_callback_t *cb; 9454 9455 cb = zio->io_private; 9456 if (cb->l2rcb_abd != NULL) 9457 abd_free(cb->l2rcb_abd); 9458 kmem_free(cb, sizeof (l2arc_read_callback_t)); 9459 } 9460 9461 /* 9462 * Find and write ARC buffers to the L2ARC device. 9463 * 9464 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 9465 * for reading until they have completed writing. 9466 * The headroom_boost is an in-out parameter used to maintain headroom boost 9467 * state between calls to this function. 9468 * 9469 * Returns the number of bytes actually written (which may be smaller than 9470 * the delta by which the device hand has changed due to alignment and the 9471 * writing of log blocks). 9472 */ 9473 static uint64_t 9474 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 9475 { 9476 arc_buf_hdr_t *hdr, *head, *marker; 9477 uint64_t write_asize, write_psize, headroom; 9478 boolean_t full, from_head = !arc_warm; 9479 l2arc_write_callback_t *cb = NULL; 9480 zio_t *pio, *wzio; 9481 uint64_t guid = spa_load_guid(spa); 9482 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9483 9484 ASSERT3P(dev->l2ad_vdev, !=, NULL); 9485 9486 pio = NULL; 9487 write_asize = write_psize = 0; 9488 full = B_FALSE; 9489 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 9490 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); 9491 marker = arc_state_alloc_marker(); 9492 9493 /* 9494 * Copy buffers for L2ARC writing. 9495 */ 9496 for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) { 9497 /* 9498 * pass == 0: MFU meta 9499 * pass == 1: MRU meta 9500 * pass == 2: MFU data 9501 * pass == 3: MRU data 9502 */ 9503 if (l2arc_mfuonly == 1) { 9504 if (pass == 1 || pass == 3) 9505 continue; 9506 } else if (l2arc_mfuonly > 1) { 9507 if (pass == 3) 9508 continue; 9509 } 9510 9511 uint64_t passed_sz = 0; 9512 headroom = target_sz * l2arc_headroom; 9513 if (zfs_compressed_arc_enabled) 9514 headroom = (headroom * l2arc_headroom_boost) / 100; 9515 9516 /* 9517 * Until the ARC is warm and starts to evict, read from the 9518 * head of the ARC lists rather than the tail. 9519 */ 9520 multilist_sublist_t *mls = l2arc_sublist_lock(pass); 9521 ASSERT3P(mls, !=, NULL); 9522 if (from_head) 9523 hdr = multilist_sublist_head(mls); 9524 else 9525 hdr = multilist_sublist_tail(mls); 9526 9527 while (hdr != NULL) { 9528 kmutex_t *hash_lock; 9529 abd_t *to_write = NULL; 9530 9531 hash_lock = HDR_LOCK(hdr); 9532 if (!mutex_tryenter(hash_lock)) { 9533 skip: 9534 /* Skip this buffer rather than waiting. */ 9535 if (from_head) 9536 hdr = multilist_sublist_next(mls, hdr); 9537 else 9538 hdr = multilist_sublist_prev(mls, hdr); 9539 continue; 9540 } 9541 9542 passed_sz += HDR_GET_LSIZE(hdr); 9543 if (l2arc_headroom != 0 && passed_sz > headroom) { 9544 /* 9545 * Searched too far. 9546 */ 9547 mutex_exit(hash_lock); 9548 break; 9549 } 9550 9551 if (!l2arc_write_eligible(guid, hdr)) { 9552 mutex_exit(hash_lock); 9553 goto skip; 9554 } 9555 9556 ASSERT(HDR_HAS_L1HDR(hdr)); 9557 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 9558 ASSERT3U(arc_hdr_size(hdr), >, 0); 9559 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 9560 HDR_HAS_RABD(hdr)); 9561 uint64_t psize = HDR_GET_PSIZE(hdr); 9562 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 9563 psize); 9564 9565 /* 9566 * If the allocated size of this buffer plus the max 9567 * size for the pending log block exceeds the evicted 9568 * target size, terminate writing buffers for this run. 9569 */ 9570 if (write_asize + asize + 9571 sizeof (l2arc_log_blk_phys_t) > target_sz) { 9572 full = B_TRUE; 9573 mutex_exit(hash_lock); 9574 break; 9575 } 9576 9577 /* 9578 * We should not sleep with sublist lock held or it 9579 * may block ARC eviction. Insert a marker to save 9580 * the position and drop the lock. 9581 */ 9582 if (from_head) { 9583 multilist_sublist_insert_after(mls, hdr, 9584 marker); 9585 } else { 9586 multilist_sublist_insert_before(mls, hdr, 9587 marker); 9588 } 9589 multilist_sublist_unlock(mls); 9590 9591 /* 9592 * If this header has b_rabd, we can use this since it 9593 * must always match the data exactly as it exists on 9594 * disk. Otherwise, the L2ARC can normally use the 9595 * hdr's data, but if we're sharing data between the 9596 * hdr and one of its bufs, L2ARC needs its own copy of 9597 * the data so that the ZIO below can't race with the 9598 * buf consumer. To ensure that this copy will be 9599 * available for the lifetime of the ZIO and be cleaned 9600 * up afterwards, we add it to the l2arc_free_on_write 9601 * queue. If we need to apply any transforms to the 9602 * data (compression, encryption) we will also need the 9603 * extra buffer. 9604 */ 9605 if (HDR_HAS_RABD(hdr) && psize == asize) { 9606 to_write = hdr->b_crypt_hdr.b_rabd; 9607 } else if ((HDR_COMPRESSION_ENABLED(hdr) || 9608 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) && 9609 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) && 9610 psize == asize) { 9611 to_write = hdr->b_l1hdr.b_pabd; 9612 } else { 9613 int ret; 9614 arc_buf_contents_t type = arc_buf_type(hdr); 9615 9616 ret = l2arc_apply_transforms(spa, hdr, asize, 9617 &to_write); 9618 if (ret != 0) { 9619 arc_hdr_clear_flags(hdr, 9620 ARC_FLAG_L2CACHE); 9621 mutex_exit(hash_lock); 9622 goto next; 9623 } 9624 9625 l2arc_free_abd_on_write(to_write, asize, type); 9626 } 9627 9628 hdr->b_l2hdr.b_dev = dev; 9629 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 9630 hdr->b_l2hdr.b_hits = 0; 9631 hdr->b_l2hdr.b_arcs_state = 9632 hdr->b_l1hdr.b_state->arcs_state; 9633 /* l2arc_hdr_arcstats_update() expects a valid asize */ 9634 HDR_SET_L2SIZE(hdr, asize); 9635 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR | 9636 ARC_FLAG_L2_WRITING); 9637 9638 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 9639 arc_hdr_size(hdr), hdr); 9640 l2arc_hdr_arcstats_increment(hdr); 9641 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 9642 9643 mutex_enter(&dev->l2ad_mtx); 9644 if (pio == NULL) { 9645 /* 9646 * Insert a dummy header on the buflist so 9647 * l2arc_write_done() can find where the 9648 * write buffers begin without searching. 9649 */ 9650 list_insert_head(&dev->l2ad_buflist, head); 9651 } 9652 list_insert_head(&dev->l2ad_buflist, hdr); 9653 mutex_exit(&dev->l2ad_mtx); 9654 9655 boolean_t commit = l2arc_log_blk_insert(dev, hdr); 9656 mutex_exit(hash_lock); 9657 9658 if (pio == NULL) { 9659 cb = kmem_alloc( 9660 sizeof (l2arc_write_callback_t), KM_SLEEP); 9661 cb->l2wcb_dev = dev; 9662 cb->l2wcb_head = head; 9663 list_create(&cb->l2wcb_abd_list, 9664 sizeof (l2arc_lb_abd_buf_t), 9665 offsetof(l2arc_lb_abd_buf_t, node)); 9666 pio = zio_root(spa, l2arc_write_done, cb, 9667 ZIO_FLAG_CANFAIL); 9668 } 9669 9670 wzio = zio_write_phys(pio, dev->l2ad_vdev, 9671 dev->l2ad_hand, asize, to_write, 9672 ZIO_CHECKSUM_OFF, NULL, hdr, 9673 ZIO_PRIORITY_ASYNC_WRITE, 9674 ZIO_FLAG_CANFAIL, B_FALSE); 9675 9676 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 9677 zio_t *, wzio); 9678 zio_nowait(wzio); 9679 9680 write_psize += psize; 9681 write_asize += asize; 9682 dev->l2ad_hand += asize; 9683 9684 if (commit) { 9685 /* l2ad_hand will be adjusted inside. */ 9686 write_asize += 9687 l2arc_log_blk_commit(dev, pio, cb); 9688 } 9689 9690 next: 9691 multilist_sublist_lock(mls); 9692 if (from_head) 9693 hdr = multilist_sublist_next(mls, marker); 9694 else 9695 hdr = multilist_sublist_prev(mls, marker); 9696 multilist_sublist_remove(mls, marker); 9697 } 9698 9699 multilist_sublist_unlock(mls); 9700 9701 if (full == B_TRUE) 9702 break; 9703 } 9704 9705 arc_state_free_marker(marker); 9706 9707 /* No buffers selected for writing? */ 9708 if (pio == NULL) { 9709 ASSERT0(write_psize); 9710 ASSERT(!HDR_HAS_L1HDR(head)); 9711 kmem_cache_free(hdr_l2only_cache, head); 9712 9713 /* 9714 * Although we did not write any buffers l2ad_evict may 9715 * have advanced. 9716 */ 9717 if (dev->l2ad_evict != l2dhdr->dh_evict) 9718 l2arc_dev_hdr_update(dev); 9719 9720 return (0); 9721 } 9722 9723 if (!dev->l2ad_first) 9724 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict); 9725 9726 ASSERT3U(write_asize, <=, target_sz); 9727 ARCSTAT_BUMP(arcstat_l2_writes_sent); 9728 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize); 9729 9730 dev->l2ad_writing = B_TRUE; 9731 (void) zio_wait(pio); 9732 dev->l2ad_writing = B_FALSE; 9733 9734 /* 9735 * Update the device header after the zio completes as 9736 * l2arc_write_done() may have updated the memory holding the log block 9737 * pointers in the device header. 9738 */ 9739 l2arc_dev_hdr_update(dev); 9740 9741 return (write_asize); 9742 } 9743 9744 static boolean_t 9745 l2arc_hdr_limit_reached(void) 9746 { 9747 int64_t s = aggsum_upper_bound(&arc_sums.arcstat_l2_hdr_size); 9748 9749 return (arc_reclaim_needed() || 9750 (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100)); 9751 } 9752 9753 /* 9754 * This thread feeds the L2ARC at regular intervals. This is the beating 9755 * heart of the L2ARC. 9756 */ 9757 static __attribute__((noreturn)) void 9758 l2arc_feed_thread(void *unused) 9759 { 9760 (void) unused; 9761 callb_cpr_t cpr; 9762 l2arc_dev_t *dev; 9763 spa_t *spa; 9764 uint64_t size, wrote; 9765 clock_t begin, next = ddi_get_lbolt(); 9766 fstrans_cookie_t cookie; 9767 9768 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 9769 9770 mutex_enter(&l2arc_feed_thr_lock); 9771 9772 cookie = spl_fstrans_mark(); 9773 while (l2arc_thread_exit == 0) { 9774 CALLB_CPR_SAFE_BEGIN(&cpr); 9775 (void) cv_timedwait_idle(&l2arc_feed_thr_cv, 9776 &l2arc_feed_thr_lock, next); 9777 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 9778 next = ddi_get_lbolt() + hz; 9779 9780 /* 9781 * Quick check for L2ARC devices. 9782 */ 9783 mutex_enter(&l2arc_dev_mtx); 9784 if (l2arc_ndev == 0) { 9785 mutex_exit(&l2arc_dev_mtx); 9786 continue; 9787 } 9788 mutex_exit(&l2arc_dev_mtx); 9789 begin = ddi_get_lbolt(); 9790 9791 /* 9792 * This selects the next l2arc device to write to, and in 9793 * doing so the next spa to feed from: dev->l2ad_spa. This 9794 * will return NULL if there are now no l2arc devices or if 9795 * they are all faulted. 9796 * 9797 * If a device is returned, its spa's config lock is also 9798 * held to prevent device removal. l2arc_dev_get_next() 9799 * will grab and release l2arc_dev_mtx. 9800 */ 9801 if ((dev = l2arc_dev_get_next()) == NULL) 9802 continue; 9803 9804 spa = dev->l2ad_spa; 9805 ASSERT3P(spa, !=, NULL); 9806 9807 /* 9808 * If the pool is read-only then force the feed thread to 9809 * sleep a little longer. 9810 */ 9811 if (!spa_writeable(spa)) { 9812 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 9813 spa_config_exit(spa, SCL_L2ARC, dev); 9814 continue; 9815 } 9816 9817 /* 9818 * Avoid contributing to memory pressure. 9819 */ 9820 if (l2arc_hdr_limit_reached()) { 9821 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 9822 spa_config_exit(spa, SCL_L2ARC, dev); 9823 continue; 9824 } 9825 9826 ARCSTAT_BUMP(arcstat_l2_feeds); 9827 9828 size = l2arc_write_size(dev); 9829 9830 /* 9831 * Evict L2ARC buffers that will be overwritten. 9832 */ 9833 l2arc_evict(dev, size, B_FALSE); 9834 9835 /* 9836 * Write ARC buffers. 9837 */ 9838 wrote = l2arc_write_buffers(spa, dev, size); 9839 9840 /* 9841 * Calculate interval between writes. 9842 */ 9843 next = l2arc_write_interval(begin, size, wrote); 9844 spa_config_exit(spa, SCL_L2ARC, dev); 9845 } 9846 spl_fstrans_unmark(cookie); 9847 9848 l2arc_thread_exit = 0; 9849 cv_broadcast(&l2arc_feed_thr_cv); 9850 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 9851 thread_exit(); 9852 } 9853 9854 boolean_t 9855 l2arc_vdev_present(vdev_t *vd) 9856 { 9857 return (l2arc_vdev_get(vd) != NULL); 9858 } 9859 9860 /* 9861 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if 9862 * the vdev_t isn't an L2ARC device. 9863 */ 9864 l2arc_dev_t * 9865 l2arc_vdev_get(vdev_t *vd) 9866 { 9867 l2arc_dev_t *dev; 9868 9869 mutex_enter(&l2arc_dev_mtx); 9870 for (dev = list_head(l2arc_dev_list); dev != NULL; 9871 dev = list_next(l2arc_dev_list, dev)) { 9872 if (dev->l2ad_vdev == vd) 9873 break; 9874 } 9875 mutex_exit(&l2arc_dev_mtx); 9876 9877 return (dev); 9878 } 9879 9880 static void 9881 l2arc_rebuild_dev(l2arc_dev_t *dev, boolean_t reopen) 9882 { 9883 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9884 uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 9885 spa_t *spa = dev->l2ad_spa; 9886 9887 /* 9888 * After a l2arc_remove_vdev(), the spa_t will no longer be valid 9889 */ 9890 if (spa == NULL) 9891 return; 9892 9893 /* 9894 * The L2ARC has to hold at least the payload of one log block for 9895 * them to be restored (persistent L2ARC). The payload of a log block 9896 * depends on the amount of its log entries. We always write log blocks 9897 * with 1022 entries. How many of them are committed or restored depends 9898 * on the size of the L2ARC device. Thus the maximum payload of 9899 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device 9900 * is less than that, we reduce the amount of committed and restored 9901 * log entries per block so as to enable persistence. 9902 */ 9903 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) { 9904 dev->l2ad_log_entries = 0; 9905 } else { 9906 dev->l2ad_log_entries = MIN((dev->l2ad_end - 9907 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT, 9908 L2ARC_LOG_BLK_MAX_ENTRIES); 9909 } 9910 9911 /* 9912 * Read the device header, if an error is returned do not rebuild L2ARC. 9913 */ 9914 if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) { 9915 /* 9916 * If we are onlining a cache device (vdev_reopen) that was 9917 * still present (l2arc_vdev_present()) and rebuild is enabled, 9918 * we should evict all ARC buffers and pointers to log blocks 9919 * and reclaim their space before restoring its contents to 9920 * L2ARC. 9921 */ 9922 if (reopen) { 9923 if (!l2arc_rebuild_enabled) { 9924 return; 9925 } else { 9926 l2arc_evict(dev, 0, B_TRUE); 9927 /* start a new log block */ 9928 dev->l2ad_log_ent_idx = 0; 9929 dev->l2ad_log_blk_payload_asize = 0; 9930 dev->l2ad_log_blk_payload_start = 0; 9931 } 9932 } 9933 /* 9934 * Just mark the device as pending for a rebuild. We won't 9935 * be starting a rebuild in line here as it would block pool 9936 * import. Instead spa_load_impl will hand that off to an 9937 * async task which will call l2arc_spa_rebuild_start. 9938 */ 9939 dev->l2ad_rebuild = B_TRUE; 9940 } else if (spa_writeable(spa)) { 9941 /* 9942 * In this case TRIM the whole device if l2arc_trim_ahead > 0, 9943 * otherwise create a new header. We zero out the memory holding 9944 * the header to reset dh_start_lbps. If we TRIM the whole 9945 * device the new header will be written by 9946 * vdev_trim_l2arc_thread() at the end of the TRIM to update the 9947 * trim_state in the header too. When reading the header, if 9948 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0 9949 * we opt to TRIM the whole device again. 9950 */ 9951 if (l2arc_trim_ahead > 0) { 9952 dev->l2ad_trim_all = B_TRUE; 9953 } else { 9954 memset(l2dhdr, 0, l2dhdr_asize); 9955 l2arc_dev_hdr_update(dev); 9956 } 9957 } 9958 } 9959 9960 /* 9961 * Add a vdev for use by the L2ARC. By this point the spa has already 9962 * validated the vdev and opened it. 9963 */ 9964 void 9965 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 9966 { 9967 l2arc_dev_t *adddev; 9968 uint64_t l2dhdr_asize; 9969 9970 ASSERT(!l2arc_vdev_present(vd)); 9971 9972 /* 9973 * Create a new l2arc device entry. 9974 */ 9975 adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 9976 adddev->l2ad_spa = spa; 9977 adddev->l2ad_vdev = vd; 9978 /* leave extra size for an l2arc device header */ 9979 l2dhdr_asize = adddev->l2ad_dev_hdr_asize = 9980 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift); 9981 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize; 9982 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 9983 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end); 9984 adddev->l2ad_hand = adddev->l2ad_start; 9985 adddev->l2ad_evict = adddev->l2ad_start; 9986 adddev->l2ad_first = B_TRUE; 9987 adddev->l2ad_writing = B_FALSE; 9988 adddev->l2ad_trim_all = B_FALSE; 9989 list_link_init(&adddev->l2ad_node); 9990 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP); 9991 9992 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 9993 /* 9994 * This is a list of all ARC buffers that are still valid on the 9995 * device. 9996 */ 9997 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 9998 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 9999 10000 /* 10001 * This is a list of pointers to log blocks that are still present 10002 * on the device. 10003 */ 10004 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t), 10005 offsetof(l2arc_lb_ptr_buf_t, node)); 10006 10007 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 10008 zfs_refcount_create(&adddev->l2ad_alloc); 10009 zfs_refcount_create(&adddev->l2ad_lb_asize); 10010 zfs_refcount_create(&adddev->l2ad_lb_count); 10011 10012 /* 10013 * Decide if dev is eligible for L2ARC rebuild or whole device 10014 * trimming. This has to happen before the device is added in the 10015 * cache device list and l2arc_dev_mtx is released. Otherwise 10016 * l2arc_feed_thread() might already start writing on the 10017 * device. 10018 */ 10019 l2arc_rebuild_dev(adddev, B_FALSE); 10020 10021 /* 10022 * Add device to global list 10023 */ 10024 mutex_enter(&l2arc_dev_mtx); 10025 list_insert_head(l2arc_dev_list, adddev); 10026 atomic_inc_64(&l2arc_ndev); 10027 mutex_exit(&l2arc_dev_mtx); 10028 } 10029 10030 /* 10031 * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen() 10032 * in case of onlining a cache device. 10033 */ 10034 void 10035 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen) 10036 { 10037 l2arc_dev_t *dev = NULL; 10038 10039 dev = l2arc_vdev_get(vd); 10040 ASSERT3P(dev, !=, NULL); 10041 10042 /* 10043 * In contrast to l2arc_add_vdev() we do not have to worry about 10044 * l2arc_feed_thread() invalidating previous content when onlining a 10045 * cache device. The device parameters (l2ad*) are not cleared when 10046 * offlining the device and writing new buffers will not invalidate 10047 * all previous content. In worst case only buffers that have not had 10048 * their log block written to the device will be lost. 10049 * When onlining the cache device (ie offline->online without exporting 10050 * the pool in between) this happens: 10051 * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev() 10052 * | | 10053 * vdev_is_dead() = B_FALSE l2ad_rebuild = B_TRUE 10054 * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild 10055 * is set to B_TRUE we might write additional buffers to the device. 10056 */ 10057 l2arc_rebuild_dev(dev, reopen); 10058 } 10059 10060 typedef struct { 10061 l2arc_dev_t *rva_l2arc_dev; 10062 uint64_t rva_spa_gid; 10063 uint64_t rva_vdev_gid; 10064 boolean_t rva_async; 10065 10066 } remove_vdev_args_t; 10067 10068 static void 10069 l2arc_device_teardown(void *arg) 10070 { 10071 remove_vdev_args_t *rva = arg; 10072 l2arc_dev_t *remdev = rva->rva_l2arc_dev; 10073 hrtime_t start_time = gethrtime(); 10074 10075 /* 10076 * Clear all buflists and ARC references. L2ARC device flush. 10077 */ 10078 l2arc_evict(remdev, 0, B_TRUE); 10079 list_destroy(&remdev->l2ad_buflist); 10080 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list)); 10081 list_destroy(&remdev->l2ad_lbptr_list); 10082 mutex_destroy(&remdev->l2ad_mtx); 10083 zfs_refcount_destroy(&remdev->l2ad_alloc); 10084 zfs_refcount_destroy(&remdev->l2ad_lb_asize); 10085 zfs_refcount_destroy(&remdev->l2ad_lb_count); 10086 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize); 10087 vmem_free(remdev, sizeof (l2arc_dev_t)); 10088 10089 uint64_t elaspsed = NSEC2MSEC(gethrtime() - start_time); 10090 if (elaspsed > 0) { 10091 zfs_dbgmsg("spa %llu, vdev %llu removed in %llu ms", 10092 (u_longlong_t)rva->rva_spa_gid, 10093 (u_longlong_t)rva->rva_vdev_gid, 10094 (u_longlong_t)elaspsed); 10095 } 10096 10097 if (rva->rva_async) 10098 arc_async_flush_remove(rva->rva_spa_gid, 2); 10099 kmem_free(rva, sizeof (remove_vdev_args_t)); 10100 } 10101 10102 /* 10103 * Remove a vdev from the L2ARC. 10104 */ 10105 void 10106 l2arc_remove_vdev(vdev_t *vd) 10107 { 10108 spa_t *spa = vd->vdev_spa; 10109 boolean_t asynchronous = spa->spa_state == POOL_STATE_EXPORTED || 10110 spa->spa_state == POOL_STATE_DESTROYED; 10111 10112 /* 10113 * Find the device by vdev 10114 */ 10115 l2arc_dev_t *remdev = l2arc_vdev_get(vd); 10116 ASSERT3P(remdev, !=, NULL); 10117 10118 /* 10119 * Save info for final teardown 10120 */ 10121 remove_vdev_args_t *rva = kmem_alloc(sizeof (remove_vdev_args_t), 10122 KM_SLEEP); 10123 rva->rva_l2arc_dev = remdev; 10124 rva->rva_spa_gid = spa_load_guid(spa); 10125 rva->rva_vdev_gid = remdev->l2ad_vdev->vdev_guid; 10126 10127 /* 10128 * Cancel any ongoing or scheduled rebuild. 10129 */ 10130 mutex_enter(&l2arc_rebuild_thr_lock); 10131 remdev->l2ad_rebuild_cancel = B_TRUE; 10132 if (remdev->l2ad_rebuild_began == B_TRUE) { 10133 while (remdev->l2ad_rebuild == B_TRUE) 10134 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock); 10135 } 10136 mutex_exit(&l2arc_rebuild_thr_lock); 10137 rva->rva_async = asynchronous; 10138 10139 /* 10140 * Remove device from global list 10141 */ 10142 ASSERT(spa_config_held(spa, SCL_L2ARC, RW_WRITER) & SCL_L2ARC); 10143 mutex_enter(&l2arc_dev_mtx); 10144 list_remove(l2arc_dev_list, remdev); 10145 l2arc_dev_last = NULL; /* may have been invalidated */ 10146 atomic_dec_64(&l2arc_ndev); 10147 10148 /* During a pool export spa & vdev will no longer be valid */ 10149 if (asynchronous) { 10150 remdev->l2ad_spa = NULL; 10151 remdev->l2ad_vdev = NULL; 10152 } 10153 mutex_exit(&l2arc_dev_mtx); 10154 10155 if (!asynchronous) { 10156 l2arc_device_teardown(rva); 10157 return; 10158 } 10159 10160 arc_async_flush_t *af = arc_async_flush_add(rva->rva_spa_gid, 2); 10161 10162 taskq_dispatch_ent(arc_flush_taskq, l2arc_device_teardown, rva, 10163 TQ_SLEEP, &af->af_tqent); 10164 } 10165 10166 void 10167 l2arc_init(void) 10168 { 10169 l2arc_thread_exit = 0; 10170 l2arc_ndev = 0; 10171 10172 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 10173 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 10174 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL); 10175 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL); 10176 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 10177 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 10178 10179 l2arc_dev_list = &L2ARC_dev_list; 10180 l2arc_free_on_write = &L2ARC_free_on_write; 10181 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 10182 offsetof(l2arc_dev_t, l2ad_node)); 10183 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 10184 offsetof(l2arc_data_free_t, l2df_list_node)); 10185 } 10186 10187 void 10188 l2arc_fini(void) 10189 { 10190 mutex_destroy(&l2arc_feed_thr_lock); 10191 cv_destroy(&l2arc_feed_thr_cv); 10192 mutex_destroy(&l2arc_rebuild_thr_lock); 10193 cv_destroy(&l2arc_rebuild_thr_cv); 10194 mutex_destroy(&l2arc_dev_mtx); 10195 mutex_destroy(&l2arc_free_on_write_mtx); 10196 10197 list_destroy(l2arc_dev_list); 10198 list_destroy(l2arc_free_on_write); 10199 } 10200 10201 void 10202 l2arc_start(void) 10203 { 10204 if (!(spa_mode_global & SPA_MODE_WRITE)) 10205 return; 10206 10207 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 10208 TS_RUN, defclsyspri); 10209 } 10210 10211 void 10212 l2arc_stop(void) 10213 { 10214 if (!(spa_mode_global & SPA_MODE_WRITE)) 10215 return; 10216 10217 mutex_enter(&l2arc_feed_thr_lock); 10218 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 10219 l2arc_thread_exit = 1; 10220 while (l2arc_thread_exit != 0) 10221 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 10222 mutex_exit(&l2arc_feed_thr_lock); 10223 } 10224 10225 /* 10226 * Punches out rebuild threads for the L2ARC devices in a spa. This should 10227 * be called after pool import from the spa async thread, since starting 10228 * these threads directly from spa_import() will make them part of the 10229 * "zpool import" context and delay process exit (and thus pool import). 10230 */ 10231 void 10232 l2arc_spa_rebuild_start(spa_t *spa) 10233 { 10234 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 10235 10236 /* 10237 * Locate the spa's l2arc devices and kick off rebuild threads. 10238 */ 10239 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 10240 l2arc_dev_t *dev = 10241 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]); 10242 if (dev == NULL) { 10243 /* Don't attempt a rebuild if the vdev is UNAVAIL */ 10244 continue; 10245 } 10246 mutex_enter(&l2arc_rebuild_thr_lock); 10247 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) { 10248 dev->l2ad_rebuild_began = B_TRUE; 10249 (void) thread_create(NULL, 0, l2arc_dev_rebuild_thread, 10250 dev, 0, &p0, TS_RUN, minclsyspri); 10251 } 10252 mutex_exit(&l2arc_rebuild_thr_lock); 10253 } 10254 } 10255 10256 void 10257 l2arc_spa_rebuild_stop(spa_t *spa) 10258 { 10259 ASSERT(MUTEX_HELD(&spa_namespace_lock) || 10260 spa->spa_export_thread == curthread); 10261 10262 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 10263 l2arc_dev_t *dev = 10264 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]); 10265 if (dev == NULL) 10266 continue; 10267 mutex_enter(&l2arc_rebuild_thr_lock); 10268 dev->l2ad_rebuild_cancel = B_TRUE; 10269 mutex_exit(&l2arc_rebuild_thr_lock); 10270 } 10271 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 10272 l2arc_dev_t *dev = 10273 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]); 10274 if (dev == NULL) 10275 continue; 10276 mutex_enter(&l2arc_rebuild_thr_lock); 10277 if (dev->l2ad_rebuild_began == B_TRUE) { 10278 while (dev->l2ad_rebuild == B_TRUE) { 10279 cv_wait(&l2arc_rebuild_thr_cv, 10280 &l2arc_rebuild_thr_lock); 10281 } 10282 } 10283 mutex_exit(&l2arc_rebuild_thr_lock); 10284 } 10285 } 10286 10287 /* 10288 * Main entry point for L2ARC rebuilding. 10289 */ 10290 static __attribute__((noreturn)) void 10291 l2arc_dev_rebuild_thread(void *arg) 10292 { 10293 l2arc_dev_t *dev = arg; 10294 10295 VERIFY(dev->l2ad_rebuild); 10296 (void) l2arc_rebuild(dev); 10297 mutex_enter(&l2arc_rebuild_thr_lock); 10298 dev->l2ad_rebuild_began = B_FALSE; 10299 dev->l2ad_rebuild = B_FALSE; 10300 cv_signal(&l2arc_rebuild_thr_cv); 10301 mutex_exit(&l2arc_rebuild_thr_lock); 10302 10303 thread_exit(); 10304 } 10305 10306 /* 10307 * This function implements the actual L2ARC metadata rebuild. It: 10308 * starts reading the log block chain and restores each block's contents 10309 * to memory (reconstructing arc_buf_hdr_t's). 10310 * 10311 * Operation stops under any of the following conditions: 10312 * 10313 * 1) We reach the end of the log block chain. 10314 * 2) We encounter *any* error condition (cksum errors, io errors) 10315 */ 10316 static int 10317 l2arc_rebuild(l2arc_dev_t *dev) 10318 { 10319 vdev_t *vd = dev->l2ad_vdev; 10320 spa_t *spa = vd->vdev_spa; 10321 int err = 0; 10322 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10323 l2arc_log_blk_phys_t *this_lb, *next_lb; 10324 zio_t *this_io = NULL, *next_io = NULL; 10325 l2arc_log_blkptr_t lbps[2]; 10326 l2arc_lb_ptr_buf_t *lb_ptr_buf; 10327 boolean_t lock_held; 10328 10329 this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP); 10330 next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP); 10331 10332 /* 10333 * We prevent device removal while issuing reads to the device, 10334 * then during the rebuilding phases we drop this lock again so 10335 * that a spa_unload or device remove can be initiated - this is 10336 * safe, because the spa will signal us to stop before removing 10337 * our device and wait for us to stop. 10338 */ 10339 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER); 10340 lock_held = B_TRUE; 10341 10342 /* 10343 * Retrieve the persistent L2ARC device state. 10344 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10345 */ 10346 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start); 10347 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr + 10348 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop), 10349 dev->l2ad_start); 10350 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 10351 10352 vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time; 10353 vd->vdev_trim_state = l2dhdr->dh_trim_state; 10354 10355 /* 10356 * In case the zfs module parameter l2arc_rebuild_enabled is false 10357 * we do not start the rebuild process. 10358 */ 10359 if (!l2arc_rebuild_enabled) 10360 goto out; 10361 10362 /* Prepare the rebuild process */ 10363 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps)); 10364 10365 /* Start the rebuild process */ 10366 for (;;) { 10367 if (!l2arc_log_blkptr_valid(dev, &lbps[0])) 10368 break; 10369 10370 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1], 10371 this_lb, next_lb, this_io, &next_io)) != 0) 10372 goto out; 10373 10374 /* 10375 * Our memory pressure valve. If the system is running low 10376 * on memory, rather than swamping memory with new ARC buf 10377 * hdrs, we opt not to rebuild the L2ARC. At this point, 10378 * however, we have already set up our L2ARC dev to chain in 10379 * new metadata log blocks, so the user may choose to offline/ 10380 * online the L2ARC dev at a later time (or re-import the pool) 10381 * to reconstruct it (when there's less memory pressure). 10382 */ 10383 if (l2arc_hdr_limit_reached()) { 10384 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem); 10385 cmn_err(CE_NOTE, "System running low on memory, " 10386 "aborting L2ARC rebuild."); 10387 err = SET_ERROR(ENOMEM); 10388 goto out; 10389 } 10390 10391 spa_config_exit(spa, SCL_L2ARC, vd); 10392 lock_held = B_FALSE; 10393 10394 /* 10395 * Now that we know that the next_lb checks out alright, we 10396 * can start reconstruction from this log block. 10397 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10398 */ 10399 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 10400 l2arc_log_blk_restore(dev, this_lb, asize); 10401 10402 /* 10403 * log block restored, include its pointer in the list of 10404 * pointers to log blocks present in the L2ARC device. 10405 */ 10406 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 10407 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), 10408 KM_SLEEP); 10409 memcpy(lb_ptr_buf->lb_ptr, &lbps[0], 10410 sizeof (l2arc_log_blkptr_t)); 10411 mutex_enter(&dev->l2ad_mtx); 10412 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf); 10413 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 10414 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 10415 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 10416 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 10417 mutex_exit(&dev->l2ad_mtx); 10418 vdev_space_update(vd, asize, 0, 0); 10419 10420 /* 10421 * Protection against loops of log blocks: 10422 * 10423 * l2ad_hand l2ad_evict 10424 * V V 10425 * l2ad_start |=======================================| l2ad_end 10426 * -----|||----|||---|||----||| 10427 * (3) (2) (1) (0) 10428 * ---|||---|||----|||---||| 10429 * (7) (6) (5) (4) 10430 * 10431 * In this situation the pointer of log block (4) passes 10432 * l2arc_log_blkptr_valid() but the log block should not be 10433 * restored as it is overwritten by the payload of log block 10434 * (0). Only log blocks (0)-(3) should be restored. We check 10435 * whether l2ad_evict lies in between the payload starting 10436 * offset of the next log block (lbps[1].lbp_payload_start) 10437 * and the payload starting offset of the present log block 10438 * (lbps[0].lbp_payload_start). If true and this isn't the 10439 * first pass, we are looping from the beginning and we should 10440 * stop. 10441 */ 10442 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 10443 lbps[0].lbp_payload_start, dev->l2ad_evict) && 10444 !dev->l2ad_first) 10445 goto out; 10446 10447 kpreempt(KPREEMPT_SYNC); 10448 for (;;) { 10449 mutex_enter(&l2arc_rebuild_thr_lock); 10450 if (dev->l2ad_rebuild_cancel) { 10451 mutex_exit(&l2arc_rebuild_thr_lock); 10452 err = SET_ERROR(ECANCELED); 10453 goto out; 10454 } 10455 mutex_exit(&l2arc_rebuild_thr_lock); 10456 if (spa_config_tryenter(spa, SCL_L2ARC, vd, 10457 RW_READER)) { 10458 lock_held = B_TRUE; 10459 break; 10460 } 10461 /* 10462 * L2ARC config lock held by somebody in writer, 10463 * possibly due to them trying to remove us. They'll 10464 * likely to want us to shut down, so after a little 10465 * delay, we check l2ad_rebuild_cancel and retry 10466 * the lock again. 10467 */ 10468 delay(1); 10469 } 10470 10471 /* 10472 * Continue with the next log block. 10473 */ 10474 lbps[0] = lbps[1]; 10475 lbps[1] = this_lb->lb_prev_lbp; 10476 PTR_SWAP(this_lb, next_lb); 10477 this_io = next_io; 10478 next_io = NULL; 10479 } 10480 10481 if (this_io != NULL) 10482 l2arc_log_blk_fetch_abort(this_io); 10483 out: 10484 if (next_io != NULL) 10485 l2arc_log_blk_fetch_abort(next_io); 10486 vmem_free(this_lb, sizeof (*this_lb)); 10487 vmem_free(next_lb, sizeof (*next_lb)); 10488 10489 if (err == ECANCELED) { 10490 /* 10491 * In case the rebuild was canceled do not log to spa history 10492 * log as the pool may be in the process of being removed. 10493 */ 10494 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks", 10495 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10496 return (err); 10497 } else if (!l2arc_rebuild_enabled) { 10498 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10499 "disabled"); 10500 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) { 10501 ARCSTAT_BUMP(arcstat_l2_rebuild_success); 10502 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10503 "successful, restored %llu blocks", 10504 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10505 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) { 10506 /* 10507 * No error but also nothing restored, meaning the lbps array 10508 * in the device header points to invalid/non-present log 10509 * blocks. Reset the header. 10510 */ 10511 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10512 "no valid log blocks"); 10513 memset(l2dhdr, 0, dev->l2ad_dev_hdr_asize); 10514 l2arc_dev_hdr_update(dev); 10515 } else if (err != 0) { 10516 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 10517 "aborted, restored %llu blocks", 10518 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 10519 } 10520 10521 if (lock_held) 10522 spa_config_exit(spa, SCL_L2ARC, vd); 10523 10524 return (err); 10525 } 10526 10527 /* 10528 * Attempts to read the device header on the provided L2ARC device and writes 10529 * it to `hdr'. On success, this function returns 0, otherwise the appropriate 10530 * error code is returned. 10531 */ 10532 static int 10533 l2arc_dev_hdr_read(l2arc_dev_t *dev) 10534 { 10535 int err; 10536 uint64_t guid; 10537 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10538 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10539 abd_t *abd; 10540 10541 guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10542 10543 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10544 10545 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev, 10546 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, 10547 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 10548 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 10549 ZIO_FLAG_SPECULATIVE, B_FALSE)); 10550 10551 abd_free(abd); 10552 10553 if (err != 0) { 10554 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors); 10555 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, " 10556 "vdev guid: %llu", err, 10557 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10558 return (err); 10559 } 10560 10561 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 10562 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr)); 10563 10564 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC || 10565 l2dhdr->dh_spa_guid != guid || 10566 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid || 10567 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION || 10568 l2dhdr->dh_log_entries != dev->l2ad_log_entries || 10569 l2dhdr->dh_end != dev->l2ad_end || 10570 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end, 10571 l2dhdr->dh_evict) || 10572 (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE && 10573 l2arc_trim_ahead > 0)) { 10574 /* 10575 * Attempt to rebuild a device containing no actual dev hdr 10576 * or containing a header from some other pool or from another 10577 * version of persistent L2ARC. 10578 */ 10579 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported); 10580 return (SET_ERROR(ENOTSUP)); 10581 } 10582 10583 return (0); 10584 } 10585 10586 /* 10587 * Reads L2ARC log blocks from storage and validates their contents. 10588 * 10589 * This function implements a simple fetcher to make sure that while 10590 * we're processing one buffer the L2ARC is already fetching the next 10591 * one in the chain. 10592 * 10593 * The arguments this_lp and next_lp point to the current and next log block 10594 * address in the block chain. Similarly, this_lb and next_lb hold the 10595 * l2arc_log_blk_phys_t's of the current and next L2ARC blk. 10596 * 10597 * The `this_io' and `next_io' arguments are used for block fetching. 10598 * When issuing the first blk IO during rebuild, you should pass NULL for 10599 * `this_io'. This function will then issue a sync IO to read the block and 10600 * also issue an async IO to fetch the next block in the block chain. The 10601 * fetched IO is returned in `next_io'. On subsequent calls to this 10602 * function, pass the value returned in `next_io' from the previous call 10603 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO. 10604 * Prior to the call, you should initialize your `next_io' pointer to be 10605 * NULL. If no fetch IO was issued, the pointer is left set at NULL. 10606 * 10607 * On success, this function returns 0, otherwise it returns an appropriate 10608 * error code. On error the fetching IO is aborted and cleared before 10609 * returning from this function. Therefore, if we return `success', the 10610 * caller can assume that we have taken care of cleanup of fetch IOs. 10611 */ 10612 static int 10613 l2arc_log_blk_read(l2arc_dev_t *dev, 10614 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp, 10615 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 10616 zio_t *this_io, zio_t **next_io) 10617 { 10618 int err = 0; 10619 zio_cksum_t cksum; 10620 uint64_t asize; 10621 10622 ASSERT(this_lbp != NULL && next_lbp != NULL); 10623 ASSERT(this_lb != NULL && next_lb != NULL); 10624 ASSERT(next_io != NULL && *next_io == NULL); 10625 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp)); 10626 10627 /* 10628 * Check to see if we have issued the IO for this log block in a 10629 * previous run. If not, this is the first call, so issue it now. 10630 */ 10631 if (this_io == NULL) { 10632 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp, 10633 this_lb); 10634 } 10635 10636 /* 10637 * Peek to see if we can start issuing the next IO immediately. 10638 */ 10639 if (l2arc_log_blkptr_valid(dev, next_lbp)) { 10640 /* 10641 * Start issuing IO for the next log block early - this 10642 * should help keep the L2ARC device busy while we 10643 * decompress and restore this log block. 10644 */ 10645 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp, 10646 next_lb); 10647 } 10648 10649 /* Wait for the IO to read this log block to complete */ 10650 if ((err = zio_wait(this_io)) != 0) { 10651 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors); 10652 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, " 10653 "offset: %llu, vdev guid: %llu", err, 10654 (u_longlong_t)this_lbp->lbp_daddr, 10655 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10656 goto cleanup; 10657 } 10658 10659 /* 10660 * Make sure the buffer checks out. 10661 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10662 */ 10663 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop); 10664 fletcher_4_native(this_lb, asize, NULL, &cksum); 10665 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) { 10666 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors); 10667 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, " 10668 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu", 10669 (u_longlong_t)this_lbp->lbp_daddr, 10670 (u_longlong_t)dev->l2ad_vdev->vdev_guid, 10671 (u_longlong_t)dev->l2ad_hand, 10672 (u_longlong_t)dev->l2ad_evict); 10673 err = SET_ERROR(ECKSUM); 10674 goto cleanup; 10675 } 10676 10677 /* Now we can take our time decoding this buffer */ 10678 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) { 10679 case ZIO_COMPRESS_OFF: 10680 break; 10681 case ZIO_COMPRESS_LZ4: { 10682 abd_t *abd = abd_alloc_linear(asize, B_TRUE); 10683 abd_copy_from_buf_off(abd, this_lb, 0, asize); 10684 abd_t dabd; 10685 abd_get_from_buf_struct(&dabd, this_lb, sizeof (*this_lb)); 10686 err = zio_decompress_data( 10687 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop), 10688 abd, &dabd, asize, sizeof (*this_lb), NULL); 10689 abd_free(&dabd); 10690 abd_free(abd); 10691 if (err != 0) { 10692 err = SET_ERROR(EINVAL); 10693 goto cleanup; 10694 } 10695 break; 10696 } 10697 default: 10698 err = SET_ERROR(EINVAL); 10699 goto cleanup; 10700 } 10701 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 10702 byteswap_uint64_array(this_lb, sizeof (*this_lb)); 10703 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) { 10704 err = SET_ERROR(EINVAL); 10705 goto cleanup; 10706 } 10707 cleanup: 10708 /* Abort an in-flight fetch I/O in case of error */ 10709 if (err != 0 && *next_io != NULL) { 10710 l2arc_log_blk_fetch_abort(*next_io); 10711 *next_io = NULL; 10712 } 10713 return (err); 10714 } 10715 10716 /* 10717 * Restores the payload of a log block to ARC. This creates empty ARC hdr 10718 * entries which only contain an l2arc hdr, essentially restoring the 10719 * buffers to their L2ARC evicted state. This function also updates space 10720 * usage on the L2ARC vdev to make sure it tracks restored buffers. 10721 */ 10722 static void 10723 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb, 10724 uint64_t lb_asize) 10725 { 10726 uint64_t size = 0, asize = 0; 10727 uint64_t log_entries = dev->l2ad_log_entries; 10728 10729 /* 10730 * Usually arc_adapt() is called only for data, not headers, but 10731 * since we may allocate significant amount of memory here, let ARC 10732 * grow its arc_c. 10733 */ 10734 arc_adapt(log_entries * HDR_L2ONLY_SIZE); 10735 10736 for (int i = log_entries - 1; i >= 0; i--) { 10737 /* 10738 * Restore goes in the reverse temporal direction to preserve 10739 * correct temporal ordering of buffers in the l2ad_buflist. 10740 * l2arc_hdr_restore also does a list_insert_tail instead of 10741 * list_insert_head on the l2ad_buflist: 10742 * 10743 * LIST l2ad_buflist LIST 10744 * HEAD <------ (time) ------ TAIL 10745 * direction +-----+-----+-----+-----+-----+ direction 10746 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild 10747 * fill +-----+-----+-----+-----+-----+ 10748 * ^ ^ 10749 * | | 10750 * | | 10751 * l2arc_feed_thread l2arc_rebuild 10752 * will place new bufs here restores bufs here 10753 * 10754 * During l2arc_rebuild() the device is not used by 10755 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true. 10756 */ 10757 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop); 10758 asize += vdev_psize_to_asize(dev->l2ad_vdev, 10759 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop)); 10760 l2arc_hdr_restore(&lb->lb_entries[i], dev); 10761 } 10762 10763 /* 10764 * Record rebuild stats: 10765 * size Logical size of restored buffers in the L2ARC 10766 * asize Aligned size of restored buffers in the L2ARC 10767 */ 10768 ARCSTAT_INCR(arcstat_l2_rebuild_size, size); 10769 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize); 10770 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries); 10771 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize); 10772 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize); 10773 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks); 10774 } 10775 10776 /* 10777 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put 10778 * into a state indicating that it has been evicted to L2ARC. 10779 */ 10780 static void 10781 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev) 10782 { 10783 arc_buf_hdr_t *hdr, *exists; 10784 kmutex_t *hash_lock; 10785 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop); 10786 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 10787 L2BLK_GET_PSIZE((le)->le_prop)); 10788 10789 /* 10790 * Do all the allocation before grabbing any locks, this lets us 10791 * sleep if memory is full and we don't have to deal with failed 10792 * allocations. 10793 */ 10794 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type, 10795 dev, le->le_dva, le->le_daddr, 10796 L2BLK_GET_PSIZE((le)->le_prop), asize, le->le_birth, 10797 L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel, 10798 L2BLK_GET_PROTECTED((le)->le_prop), 10799 L2BLK_GET_PREFETCH((le)->le_prop), 10800 L2BLK_GET_STATE((le)->le_prop)); 10801 10802 /* 10803 * vdev_space_update() has to be called before arc_hdr_destroy() to 10804 * avoid underflow since the latter also calls vdev_space_update(). 10805 */ 10806 l2arc_hdr_arcstats_increment(hdr); 10807 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10808 10809 mutex_enter(&dev->l2ad_mtx); 10810 list_insert_tail(&dev->l2ad_buflist, hdr); 10811 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); 10812 mutex_exit(&dev->l2ad_mtx); 10813 10814 exists = buf_hash_insert(hdr, &hash_lock); 10815 if (exists) { 10816 /* Buffer was already cached, no need to restore it. */ 10817 arc_hdr_destroy(hdr); 10818 /* 10819 * If the buffer is already cached, check whether it has 10820 * L2ARC metadata. If not, enter them and update the flag. 10821 * This is important is case of onlining a cache device, since 10822 * we previously evicted all L2ARC metadata from ARC. 10823 */ 10824 if (!HDR_HAS_L2HDR(exists)) { 10825 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR); 10826 exists->b_l2hdr.b_dev = dev; 10827 exists->b_l2hdr.b_daddr = le->le_daddr; 10828 exists->b_l2hdr.b_arcs_state = 10829 L2BLK_GET_STATE((le)->le_prop); 10830 /* l2arc_hdr_arcstats_update() expects a valid asize */ 10831 HDR_SET_L2SIZE(exists, asize); 10832 mutex_enter(&dev->l2ad_mtx); 10833 list_insert_tail(&dev->l2ad_buflist, exists); 10834 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 10835 arc_hdr_size(exists), exists); 10836 mutex_exit(&dev->l2ad_mtx); 10837 l2arc_hdr_arcstats_increment(exists); 10838 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10839 } 10840 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached); 10841 } 10842 10843 mutex_exit(hash_lock); 10844 } 10845 10846 /* 10847 * Starts an asynchronous read IO to read a log block. This is used in log 10848 * block reconstruction to start reading the next block before we are done 10849 * decoding and reconstructing the current block, to keep the l2arc device 10850 * nice and hot with read IO to process. 10851 * The returned zio will contain a newly allocated memory buffers for the IO 10852 * data which should then be freed by the caller once the zio is no longer 10853 * needed (i.e. due to it having completed). If you wish to abort this 10854 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes 10855 * care of disposing of the allocated buffers correctly. 10856 */ 10857 static zio_t * 10858 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp, 10859 l2arc_log_blk_phys_t *lb) 10860 { 10861 uint32_t asize; 10862 zio_t *pio; 10863 l2arc_read_callback_t *cb; 10864 10865 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10866 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10867 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t)); 10868 10869 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP); 10870 cb->l2rcb_abd = abd_get_from_buf(lb, asize); 10871 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb, 10872 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY); 10873 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize, 10874 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10875 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL | 10876 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE)); 10877 10878 return (pio); 10879 } 10880 10881 /* 10882 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data 10883 * buffers allocated for it. 10884 */ 10885 static void 10886 l2arc_log_blk_fetch_abort(zio_t *zio) 10887 { 10888 (void) zio_wait(zio); 10889 } 10890 10891 /* 10892 * Creates a zio to update the device header on an l2arc device. 10893 */ 10894 void 10895 l2arc_dev_hdr_update(l2arc_dev_t *dev) 10896 { 10897 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10898 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10899 abd_t *abd; 10900 int err; 10901 10902 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER)); 10903 10904 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC; 10905 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION; 10906 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10907 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid; 10908 l2dhdr->dh_log_entries = dev->l2ad_log_entries; 10909 l2dhdr->dh_evict = dev->l2ad_evict; 10910 l2dhdr->dh_start = dev->l2ad_start; 10911 l2dhdr->dh_end = dev->l2ad_end; 10912 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize); 10913 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count); 10914 l2dhdr->dh_flags = 0; 10915 l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time; 10916 l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state; 10917 if (dev->l2ad_first) 10918 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST; 10919 10920 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10921 10922 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev, 10923 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL, 10924 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE)); 10925 10926 abd_free(abd); 10927 10928 if (err != 0) { 10929 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, " 10930 "vdev guid: %llu", err, 10931 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10932 } 10933 } 10934 10935 /* 10936 * Commits a log block to the L2ARC device. This routine is invoked from 10937 * l2arc_write_buffers when the log block fills up. 10938 * This function allocates some memory to temporarily hold the serialized 10939 * buffer to be written. This is then released in l2arc_write_done. 10940 */ 10941 static uint64_t 10942 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb) 10943 { 10944 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10945 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10946 uint64_t psize, asize; 10947 zio_t *wzio; 10948 l2arc_lb_abd_buf_t *abd_buf; 10949 abd_t *abd = NULL; 10950 l2arc_lb_ptr_buf_t *lb_ptr_buf; 10951 10952 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries); 10953 10954 abd_buf = zio_buf_alloc(sizeof (*abd_buf)); 10955 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb)); 10956 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 10957 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP); 10958 10959 /* link the buffer into the block chain */ 10960 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1]; 10961 lb->lb_magic = L2ARC_LOG_BLK_MAGIC; 10962 10963 /* 10964 * l2arc_log_blk_commit() may be called multiple times during a single 10965 * l2arc_write_buffers() call. Save the allocated abd buffers in a list 10966 * so we can free them in l2arc_write_done() later on. 10967 */ 10968 list_insert_tail(&cb->l2wcb_abd_list, abd_buf); 10969 10970 /* try to compress the buffer, at least one sector to save */ 10971 psize = zio_compress_data(ZIO_COMPRESS_LZ4, 10972 abd_buf->abd, &abd, sizeof (*lb), 10973 zio_get_compression_max_size(ZIO_COMPRESS_LZ4, 10974 dev->l2ad_vdev->vdev_ashift, 10975 dev->l2ad_vdev->vdev_ashift, sizeof (*lb)), 0); 10976 10977 /* a log block is never entirely zero */ 10978 ASSERT(psize != 0); 10979 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 10980 ASSERT(asize <= sizeof (*lb)); 10981 10982 /* 10983 * Update the start log block pointer in the device header to point 10984 * to the log block we're about to write. 10985 */ 10986 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0]; 10987 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand; 10988 l2dhdr->dh_start_lbps[0].lbp_payload_asize = 10989 dev->l2ad_log_blk_payload_asize; 10990 l2dhdr->dh_start_lbps[0].lbp_payload_start = 10991 dev->l2ad_log_blk_payload_start; 10992 L2BLK_SET_LSIZE( 10993 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb)); 10994 L2BLK_SET_PSIZE( 10995 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize); 10996 L2BLK_SET_CHECKSUM( 10997 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10998 ZIO_CHECKSUM_FLETCHER_4); 10999 if (asize < sizeof (*lb)) { 11000 /* compression succeeded */ 11001 abd_zero_off(abd, psize, asize - psize); 11002 L2BLK_SET_COMPRESS( 11003 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 11004 ZIO_COMPRESS_LZ4); 11005 } else { 11006 /* compression failed */ 11007 abd_copy_from_buf_off(abd, lb, 0, sizeof (*lb)); 11008 L2BLK_SET_COMPRESS( 11009 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 11010 ZIO_COMPRESS_OFF); 11011 } 11012 11013 /* checksum what we're about to write */ 11014 abd_fletcher_4_native(abd, asize, NULL, 11015 &l2dhdr->dh_start_lbps[0].lbp_cksum); 11016 11017 abd_free(abd_buf->abd); 11018 11019 /* perform the write itself */ 11020 abd_buf->abd = abd; 11021 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand, 11022 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL, 11023 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE); 11024 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio); 11025 (void) zio_nowait(wzio); 11026 11027 dev->l2ad_hand += asize; 11028 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 11029 11030 /* 11031 * Include the committed log block's pointer in the list of pointers 11032 * to log blocks present in the L2ARC device. 11033 */ 11034 memcpy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[0], 11035 sizeof (l2arc_log_blkptr_t)); 11036 mutex_enter(&dev->l2ad_mtx); 11037 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf); 11038 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 11039 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 11040 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 11041 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 11042 mutex_exit(&dev->l2ad_mtx); 11043 11044 /* bump the kstats */ 11045 ARCSTAT_INCR(arcstat_l2_write_bytes, asize); 11046 ARCSTAT_BUMP(arcstat_l2_log_blk_writes); 11047 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize); 11048 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, 11049 dev->l2ad_log_blk_payload_asize / asize); 11050 11051 /* start a new log block */ 11052 dev->l2ad_log_ent_idx = 0; 11053 dev->l2ad_log_blk_payload_asize = 0; 11054 dev->l2ad_log_blk_payload_start = 0; 11055 11056 return (asize); 11057 } 11058 11059 /* 11060 * Validates an L2ARC log block address to make sure that it can be read 11061 * from the provided L2ARC device. 11062 */ 11063 boolean_t 11064 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp) 11065 { 11066 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 11067 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 11068 uint64_t end = lbp->lbp_daddr + asize - 1; 11069 uint64_t start = lbp->lbp_payload_start; 11070 boolean_t evicted = B_FALSE; 11071 11072 /* 11073 * A log block is valid if all of the following conditions are true: 11074 * - it fits entirely (including its payload) between l2ad_start and 11075 * l2ad_end 11076 * - it has a valid size 11077 * - neither the log block itself nor part of its payload was evicted 11078 * by l2arc_evict(): 11079 * 11080 * l2ad_hand l2ad_evict 11081 * | | lbp_daddr 11082 * | start | | end 11083 * | | | | | 11084 * V V V V V 11085 * l2ad_start ============================================ l2ad_end 11086 * --------------------------|||| 11087 * ^ ^ 11088 * | log block 11089 * payload 11090 */ 11091 11092 evicted = 11093 l2arc_range_check_overlap(start, end, dev->l2ad_hand) || 11094 l2arc_range_check_overlap(start, end, dev->l2ad_evict) || 11095 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) || 11096 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end); 11097 11098 return (start >= dev->l2ad_start && end <= dev->l2ad_end && 11099 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) && 11100 (!evicted || dev->l2ad_first)); 11101 } 11102 11103 /* 11104 * Inserts ARC buffer header `hdr' into the current L2ARC log block on 11105 * the device. The buffer being inserted must be present in L2ARC. 11106 * Returns B_TRUE if the L2ARC log block is full and needs to be committed 11107 * to L2ARC, or B_FALSE if it still has room for more ARC buffers. 11108 */ 11109 static boolean_t 11110 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr) 11111 { 11112 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 11113 l2arc_log_ent_phys_t *le; 11114 11115 if (dev->l2ad_log_entries == 0) 11116 return (B_FALSE); 11117 11118 int index = dev->l2ad_log_ent_idx++; 11119 11120 ASSERT3S(index, <, dev->l2ad_log_entries); 11121 ASSERT(HDR_HAS_L2HDR(hdr)); 11122 11123 le = &lb->lb_entries[index]; 11124 memset(le, 0, sizeof (*le)); 11125 le->le_dva = hdr->b_dva; 11126 le->le_birth = hdr->b_birth; 11127 le->le_daddr = hdr->b_l2hdr.b_daddr; 11128 if (index == 0) 11129 dev->l2ad_log_blk_payload_start = le->le_daddr; 11130 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr)); 11131 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr)); 11132 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr)); 11133 le->le_complevel = hdr->b_complevel; 11134 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type); 11135 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr))); 11136 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr))); 11137 L2BLK_SET_STATE((le)->le_prop, hdr->b_l2hdr.b_arcs_state); 11138 11139 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev, 11140 HDR_GET_PSIZE(hdr)); 11141 11142 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries); 11143 } 11144 11145 /* 11146 * Checks whether a given L2ARC device address sits in a time-sequential 11147 * range. The trick here is that the L2ARC is a rotary buffer, so we can't 11148 * just do a range comparison, we need to handle the situation in which the 11149 * range wraps around the end of the L2ARC device. Arguments: 11150 * bottom -- Lower end of the range to check (written to earlier). 11151 * top -- Upper end of the range to check (written to later). 11152 * check -- The address for which we want to determine if it sits in 11153 * between the top and bottom. 11154 * 11155 * The 3-way conditional below represents the following cases: 11156 * 11157 * bottom < top : Sequentially ordered case: 11158 * <check>--------+-------------------+ 11159 * | (overlap here?) | 11160 * L2ARC dev V V 11161 * |---------------<bottom>============<top>--------------| 11162 * 11163 * bottom > top: Looped-around case: 11164 * <check>--------+------------------+ 11165 * | (overlap here?) | 11166 * L2ARC dev V V 11167 * |===============<top>---------------<bottom>===========| 11168 * ^ ^ 11169 * | (or here?) | 11170 * +---------------+---------<check> 11171 * 11172 * top == bottom : Just a single address comparison. 11173 */ 11174 boolean_t 11175 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check) 11176 { 11177 if (bottom < top) 11178 return (bottom <= check && check <= top); 11179 else if (bottom > top) 11180 return (check <= top || bottom <= check); 11181 else 11182 return (check == top); 11183 } 11184 11185 EXPORT_SYMBOL(arc_buf_size); 11186 EXPORT_SYMBOL(arc_write); 11187 EXPORT_SYMBOL(arc_read); 11188 EXPORT_SYMBOL(arc_buf_info); 11189 EXPORT_SYMBOL(arc_getbuf_func); 11190 EXPORT_SYMBOL(arc_add_prune_callback); 11191 EXPORT_SYMBOL(arc_remove_prune_callback); 11192 11193 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_min, 11194 spl_param_get_u64, ZMOD_RW, "Minimum ARC size in bytes"); 11195 11196 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_max, 11197 spl_param_get_u64, ZMOD_RW, "Maximum ARC size in bytes"); 11198 11199 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_balance, UINT, ZMOD_RW, 11200 "Balance between metadata and data on ghost hits."); 11201 11202 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int, 11203 param_get_uint, ZMOD_RW, "Seconds before growing ARC size"); 11204 11205 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int, 11206 param_get_uint, ZMOD_RW, "log2(fraction of ARC to reclaim)"); 11207 11208 #ifdef _KERNEL 11209 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW, 11210 "Percent of pagecache to reclaim ARC to"); 11211 #endif 11212 11213 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, UINT, ZMOD_RD, 11214 "Target average block size"); 11215 11216 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW, 11217 "Disable compressed ARC buffers"); 11218 11219 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int, 11220 param_get_uint, ZMOD_RW, "Min life of prefetch block in ms"); 11221 11222 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms, 11223 param_set_arc_int, param_get_uint, ZMOD_RW, 11224 "Min life of prescient prefetched block in ms"); 11225 11226 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, U64, ZMOD_RW, 11227 "Max write bytes per interval"); 11228 11229 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, U64, ZMOD_RW, 11230 "Extra write bytes during device warmup"); 11231 11232 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, U64, ZMOD_RW, 11233 "Number of max device writes to precache"); 11234 11235 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, U64, ZMOD_RW, 11236 "Compressed l2arc_headroom multiplier"); 11237 11238 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, U64, ZMOD_RW, 11239 "TRIM ahead L2ARC write size multiplier"); 11240 11241 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, U64, ZMOD_RW, 11242 "Seconds between L2ARC writing"); 11243 11244 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, U64, ZMOD_RW, 11245 "Min feed interval in milliseconds"); 11246 11247 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW, 11248 "Skip caching prefetched buffers"); 11249 11250 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW, 11251 "Turbo L2ARC warmup"); 11252 11253 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW, 11254 "No reads during writes"); 11255 11256 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, UINT, ZMOD_RW, 11257 "Percent of ARC size allowed for L2ARC-only headers"); 11258 11259 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW, 11260 "Rebuild the L2ARC when importing a pool"); 11261 11262 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, U64, ZMOD_RW, 11263 "Min size in bytes to write rebuild log blocks in L2ARC"); 11264 11265 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW, 11266 "Cache only MFU data from ARC into L2ARC"); 11267 11268 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, exclude_special, INT, ZMOD_RW, 11269 "Exclude dbufs on special vdevs from being cached to L2ARC if set."); 11270 11271 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int, 11272 param_get_uint, ZMOD_RW, "System free memory I/O throttle in bytes"); 11273 11274 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_u64, 11275 spl_param_get_u64, ZMOD_RW, "System free memory target size in bytes"); 11276 11277 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_u64, 11278 spl_param_get_u64, ZMOD_RW, "Minimum bytes of dnodes in ARC"); 11279 11280 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent, 11281 param_set_arc_int, param_get_uint, ZMOD_RW, 11282 "Percent of ARC meta buffers for dnodes"); 11283 11284 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, UINT, ZMOD_RW, 11285 "Percentage of excess dnodes to try to unpin"); 11286 11287 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, UINT, ZMOD_RW, 11288 "When full, ARC allocation waits for eviction of this % of alloc size"); 11289 11290 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, UINT, ZMOD_RW, 11291 "The number of headers to evict per sublist before moving to the next"); 11292 11293 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, prune_task_threads, INT, ZMOD_RW, 11294 "Number of arc_prune threads"); 11295 11296 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_threads, UINT, ZMOD_RD, 11297 "Number of threads to use for ARC eviction."); 11298