1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2018, Joyent, Inc.
25 * Copyright (c) 2011, 2020, Delphix. All rights reserved.
26 * Copyright (c) 2014, Saso Kiselkov. All rights reserved.
27 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved.
28 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
29 * Copyright (c) 2020, George Amanakis. All rights reserved.
30 * Copyright (c) 2019, 2024, 2025, Klara, Inc.
31 * Copyright (c) 2019, Allan Jude
32 * Copyright (c) 2020, The FreeBSD Foundation [1]
33 * Copyright (c) 2021, 2024 by George Melikov. All rights reserved.
34 *
35 * [1] Portions of this software were developed by Allan Jude
36 * under sponsorship from the FreeBSD Foundation.
37 */
38
39 /*
40 * DVA-based Adjustable Replacement Cache
41 *
42 * While much of the theory of operation used here is
43 * based on the self-tuning, low overhead replacement cache
44 * presented by Megiddo and Modha at FAST 2003, there are some
45 * significant differences:
46 *
47 * 1. The Megiddo and Modha model assumes any page is evictable.
48 * Pages in its cache cannot be "locked" into memory. This makes
49 * the eviction algorithm simple: evict the last page in the list.
50 * This also make the performance characteristics easy to reason
51 * about. Our cache is not so simple. At any given moment, some
52 * subset of the blocks in the cache are un-evictable because we
53 * have handed out a reference to them. Blocks are only evictable
54 * when there are no external references active. This makes
55 * eviction far more problematic: we choose to evict the evictable
56 * blocks that are the "lowest" in the list.
57 *
58 * There are times when it is not possible to evict the requested
59 * space. In these circumstances we are unable to adjust the cache
60 * size. To prevent the cache growing unbounded at these times we
61 * implement a "cache throttle" that slows the flow of new data
62 * into the cache until we can make space available.
63 *
64 * 2. The Megiddo and Modha model assumes a fixed cache size.
65 * Pages are evicted when the cache is full and there is a cache
66 * miss. Our model has a variable sized cache. It grows with
67 * high use, but also tries to react to memory pressure from the
68 * operating system: decreasing its size when system memory is
69 * tight.
70 *
71 * 3. The Megiddo and Modha model assumes a fixed page size. All
72 * elements of the cache are therefore exactly the same size. So
73 * when adjusting the cache size following a cache miss, its simply
74 * a matter of choosing a single page to evict. In our model, we
75 * have variable sized cache blocks (ranging from 512 bytes to
76 * 128K bytes). We therefore choose a set of blocks to evict to make
77 * space for a cache miss that approximates as closely as possible
78 * the space used by the new block.
79 *
80 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
81 * by N. Megiddo & D. Modha, FAST 2003
82 */
83
84 /*
85 * The locking model:
86 *
87 * A new reference to a cache buffer can be obtained in two
88 * ways: 1) via a hash table lookup using the DVA as a key,
89 * or 2) via one of the ARC lists. The arc_read() interface
90 * uses method 1, while the internal ARC algorithms for
91 * adjusting the cache use method 2. We therefore provide two
92 * types of locks: 1) the hash table lock array, and 2) the
93 * ARC list locks.
94 *
95 * Buffers do not have their own mutexes, rather they rely on the
96 * hash table mutexes for the bulk of their protection (i.e. most
97 * fields in the arc_buf_hdr_t are protected by these mutexes).
98 *
99 * buf_hash_find() returns the appropriate mutex (held) when it
100 * locates the requested buffer in the hash table. It returns
101 * NULL for the mutex if the buffer was not in the table.
102 *
103 * buf_hash_remove() expects the appropriate hash mutex to be
104 * already held before it is invoked.
105 *
106 * Each ARC state also has a mutex which is used to protect the
107 * buffer list associated with the state. When attempting to
108 * obtain a hash table lock while holding an ARC list lock you
109 * must use: mutex_tryenter() to avoid deadlock. Also note that
110 * the active state mutex must be held before the ghost state mutex.
111 *
112 * It as also possible to register a callback which is run when the
113 * metadata limit is reached and no buffers can be safely evicted. In
114 * this case the arc user should drop a reference on some arc buffers so
115 * they can be reclaimed. For example, when using the ZPL each dentry
116 * holds a references on a znode. These dentries must be pruned before
117 * the arc buffer holding the znode can be safely evicted.
118 *
119 * Note that the majority of the performance stats are manipulated
120 * with atomic operations.
121 *
122 * The L2ARC uses the l2ad_mtx on each vdev for the following:
123 *
124 * - L2ARC buflist creation
125 * - L2ARC buflist eviction
126 * - L2ARC write completion, which walks L2ARC buflists
127 * - ARC header destruction, as it removes from L2ARC buflists
128 * - ARC header release, as it removes from L2ARC buflists
129 */
130
131 /*
132 * ARC operation:
133 *
134 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
135 * This structure can point either to a block that is still in the cache or to
136 * one that is only accessible in an L2 ARC device, or it can provide
137 * information about a block that was recently evicted. If a block is
138 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
139 * information to retrieve it from the L2ARC device. This information is
140 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
141 * that is in this state cannot access the data directly.
142 *
143 * Blocks that are actively being referenced or have not been evicted
144 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
145 * the arc_buf_hdr_t that will point to the data block in memory. A block can
146 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
147 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
148 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
149 *
150 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
151 * ability to store the physical data (b_pabd) associated with the DVA of the
152 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
153 * it will match its on-disk compression characteristics. This behavior can be
154 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
155 * compressed ARC functionality is disabled, the b_pabd will point to an
156 * uncompressed version of the on-disk data.
157 *
158 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
159 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
160 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
161 * consumer. The ARC will provide references to this data and will keep it
162 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
163 * data block and will evict any arc_buf_t that is no longer referenced. The
164 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
165 * "overhead_size" kstat.
166 *
167 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
168 * compressed form. The typical case is that consumers will want uncompressed
169 * data, and when that happens a new data buffer is allocated where the data is
170 * decompressed for them to use. Currently the only consumer who wants
171 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
172 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
173 * with the arc_buf_hdr_t.
174 *
175 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
176 * first one is owned by a compressed send consumer (and therefore references
177 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
178 * used by any other consumer (and has its own uncompressed copy of the data
179 * buffer).
180 *
181 * arc_buf_hdr_t
182 * +-----------+
183 * | fields |
184 * | common to |
185 * | L1- and |
186 * | L2ARC |
187 * +-----------+
188 * | l2arc_buf_hdr_t
189 * | |
190 * +-----------+
191 * | l1arc_buf_hdr_t
192 * | | arc_buf_t
193 * | b_buf +------------>+-----------+ arc_buf_t
194 * | b_pabd +-+ |b_next +---->+-----------+
195 * +-----------+ | |-----------| |b_next +-->NULL
196 * | |b_comp = T | +-----------+
197 * | |b_data +-+ |b_comp = F |
198 * | +-----------+ | |b_data +-+
199 * +->+------+ | +-----------+ |
200 * compressed | | | |
201 * data | |<--------------+ | uncompressed
202 * +------+ compressed, | data
203 * shared +-->+------+
204 * data | |
205 * | |
206 * +------+
207 *
208 * When a consumer reads a block, the ARC must first look to see if the
209 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
210 * arc_buf_t and either copies uncompressed data into a new data buffer from an
211 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
212 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
213 * hdr is compressed and the desired compression characteristics of the
214 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
215 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
216 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
217 * be anywhere in the hdr's list.
218 *
219 * The diagram below shows an example of an uncompressed ARC hdr that is
220 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
221 * the last element in the buf list):
222 *
223 * arc_buf_hdr_t
224 * +-----------+
225 * | |
226 * | |
227 * | |
228 * +-----------+
229 * l2arc_buf_hdr_t| |
230 * | |
231 * +-----------+
232 * l1arc_buf_hdr_t| |
233 * | | arc_buf_t (shared)
234 * | b_buf +------------>+---------+ arc_buf_t
235 * | | |b_next +---->+---------+
236 * | b_pabd +-+ |---------| |b_next +-->NULL
237 * +-----------+ | | | +---------+
238 * | |b_data +-+ | |
239 * | +---------+ | |b_data +-+
240 * +->+------+ | +---------+ |
241 * | | | |
242 * uncompressed | | | |
243 * data +------+ | |
244 * ^ +->+------+ |
245 * | uncompressed | | |
246 * | data | | |
247 * | +------+ |
248 * +---------------------------------+
249 *
250 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
251 * since the physical block is about to be rewritten. The new data contents
252 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
253 * it may compress the data before writing it to disk. The ARC will be called
254 * with the transformed data and will memcpy the transformed on-disk block into
255 * a newly allocated b_pabd. Writes are always done into buffers which have
256 * either been loaned (and hence are new and don't have other readers) or
257 * buffers which have been released (and hence have their own hdr, if there
258 * were originally other readers of the buf's original hdr). This ensures that
259 * the ARC only needs to update a single buf and its hdr after a write occurs.
260 *
261 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
262 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
263 * that when compressed ARC is enabled that the L2ARC blocks are identical
264 * to the on-disk block in the main data pool. This provides a significant
265 * advantage since the ARC can leverage the bp's checksum when reading from the
266 * L2ARC to determine if the contents are valid. However, if the compressed
267 * ARC is disabled, then the L2ARC's block must be transformed to look
268 * like the physical block in the main data pool before comparing the
269 * checksum and determining its validity.
270 *
271 * The L1ARC has a slightly different system for storing encrypted data.
272 * Raw (encrypted + possibly compressed) data has a few subtle differences from
273 * data that is just compressed. The biggest difference is that it is not
274 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded.
275 * The other difference is that encryption cannot be treated as a suggestion.
276 * If a caller would prefer compressed data, but they actually wind up with
277 * uncompressed data the worst thing that could happen is there might be a
278 * performance hit. If the caller requests encrypted data, however, we must be
279 * sure they actually get it or else secret information could be leaked. Raw
280 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
281 * may have both an encrypted version and a decrypted version of its data at
282 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
283 * copied out of this header. To avoid complications with b_pabd, raw buffers
284 * cannot be shared.
285 */
286
287 #include <sys/spa.h>
288 #include <sys/zio.h>
289 #include <sys/spa_impl.h>
290 #include <sys/zio_compress.h>
291 #include <sys/zio_checksum.h>
292 #include <sys/zfs_context.h>
293 #include <sys/arc.h>
294 #include <sys/zfs_refcount.h>
295 #include <sys/vdev.h>
296 #include <sys/vdev_impl.h>
297 #include <sys/dsl_pool.h>
298 #include <sys/multilist.h>
299 #include <sys/abd.h>
300 #include <sys/dbuf.h>
301 #include <sys/zil.h>
302 #include <sys/fm/fs/zfs.h>
303 #include <sys/callb.h>
304 #include <sys/kstat.h>
305 #include <sys/zthr.h>
306 #include <zfs_fletcher.h>
307 #include <sys/arc_impl.h>
308 #include <sys/trace_zfs.h>
309 #include <sys/aggsum.h>
310 #include <sys/wmsum.h>
311 #include <cityhash.h>
312 #include <sys/vdev_trim.h>
313 #include <sys/zfs_racct.h>
314 #include <sys/zstd/zstd.h>
315
316 #ifndef _KERNEL
317 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
318 boolean_t arc_watch = B_FALSE;
319 #endif
320
321 /*
322 * This thread's job is to keep enough free memory in the system, by
323 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves
324 * arc_available_memory().
325 */
326 static zthr_t *arc_reap_zthr;
327
328 /*
329 * This thread's job is to keep arc_size under arc_c, by calling
330 * arc_evict(), which improves arc_is_overflowing().
331 */
332 static zthr_t *arc_evict_zthr;
333 static arc_buf_hdr_t **arc_state_evict_markers;
334 static int arc_state_evict_marker_count;
335
336 static kmutex_t arc_evict_lock;
337 static boolean_t arc_evict_needed = B_FALSE;
338 static clock_t arc_last_uncached_flush;
339
340 static taskq_t *arc_evict_taskq;
341 static struct evict_arg *arc_evict_arg;
342
343 /*
344 * Count of bytes evicted since boot.
345 */
346 static uint64_t arc_evict_count;
347
348 /*
349 * List of arc_evict_waiter_t's, representing threads waiting for the
350 * arc_evict_count to reach specific values.
351 */
352 static list_t arc_evict_waiters;
353
354 /*
355 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of
356 * the requested amount of data to be evicted. For example, by default for
357 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation.
358 * Since this is above 100%, it ensures that progress is made towards getting
359 * arc_size under arc_c. Since this is finite, it ensures that allocations
360 * can still happen, even during the potentially long time that arc_size is
361 * more than arc_c.
362 */
363 static uint_t zfs_arc_eviction_pct = 200;
364
365 /*
366 * The number of headers to evict in arc_evict_state_impl() before
367 * dropping the sublist lock and evicting from another sublist. A lower
368 * value means we're more likely to evict the "correct" header (i.e. the
369 * oldest header in the arc state), but comes with higher overhead
370 * (i.e. more invocations of arc_evict_state_impl()).
371 */
372 static uint_t zfs_arc_evict_batch_limit = 10;
373
374 /* number of seconds before growing cache again */
375 uint_t arc_grow_retry = 5;
376
377 /*
378 * Minimum time between calls to arc_kmem_reap_soon().
379 */
380 static const int arc_kmem_cache_reap_retry_ms = 1000;
381
382 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
383 static int zfs_arc_overflow_shift = 8;
384
385 /* log2(fraction of arc to reclaim) */
386 uint_t arc_shrink_shift = 7;
387
388 #ifdef _KERNEL
389 /* percent of pagecache to reclaim arc to */
390 uint_t zfs_arc_pc_percent = 0;
391 #endif
392
393 /*
394 * log2(fraction of ARC which must be free to allow growing).
395 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
396 * when reading a new block into the ARC, we will evict an equal-sized block
397 * from the ARC.
398 *
399 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
400 * we will still not allow it to grow.
401 */
402 uint_t arc_no_grow_shift = 5;
403
404
405 /*
406 * minimum lifespan of a prefetch block in clock ticks
407 * (initialized in arc_init())
408 */
409 static uint_t arc_min_prefetch_ms;
410 static uint_t arc_min_prescient_prefetch_ms;
411
412 /*
413 * If this percent of memory is free, don't throttle.
414 */
415 uint_t arc_lotsfree_percent = 10;
416
417 /*
418 * The arc has filled available memory and has now warmed up.
419 */
420 boolean_t arc_warm;
421
422 /*
423 * These tunables are for performance analysis.
424 */
425 uint64_t zfs_arc_max = 0;
426 uint64_t zfs_arc_min = 0;
427 static uint64_t zfs_arc_dnode_limit = 0;
428 static uint_t zfs_arc_dnode_reduce_percent = 10;
429 static uint_t zfs_arc_grow_retry = 0;
430 static uint_t zfs_arc_shrink_shift = 0;
431 uint_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
432
433 /*
434 * ARC dirty data constraints for arc_tempreserve_space() throttle:
435 * * total dirty data limit
436 * * anon block dirty limit
437 * * each pool's anon allowance
438 */
439 static const unsigned long zfs_arc_dirty_limit_percent = 50;
440 static const unsigned long zfs_arc_anon_limit_percent = 25;
441 static const unsigned long zfs_arc_pool_dirty_percent = 20;
442
443 /*
444 * Enable or disable compressed arc buffers.
445 */
446 int zfs_compressed_arc_enabled = B_TRUE;
447
448 /*
449 * Balance between metadata and data on ghost hits. Values above 100
450 * increase metadata caching by proportionally reducing effect of ghost
451 * data hits on target data/metadata rate.
452 */
453 static uint_t zfs_arc_meta_balance = 500;
454
455 /*
456 * Percentage that can be consumed by dnodes of ARC meta buffers.
457 */
458 static uint_t zfs_arc_dnode_limit_percent = 10;
459
460 /*
461 * These tunables are Linux-specific
462 */
463 static uint64_t zfs_arc_sys_free = 0;
464 static uint_t zfs_arc_min_prefetch_ms = 0;
465 static uint_t zfs_arc_min_prescient_prefetch_ms = 0;
466 static uint_t zfs_arc_lotsfree_percent = 10;
467
468 /*
469 * Number of arc_prune threads
470 */
471 static int zfs_arc_prune_task_threads = 1;
472
473 /* Used by spa_export/spa_destroy to flush the arc asynchronously */
474 static taskq_t *arc_flush_taskq;
475
476 /*
477 * Controls the number of ARC eviction threads to dispatch sublists to.
478 *
479 * Possible values:
480 * 0 (auto) compute the number of threads using a logarithmic formula.
481 * 1 (disabled) one thread - parallel eviction is disabled.
482 * 2+ (manual) set the number manually.
483 *
484 * See arc_evict_thread_init() for how "auto" is computed.
485 */
486 static uint_t zfs_arc_evict_threads = 0;
487
488 /* The 7 states: */
489 arc_state_t ARC_anon;
490 arc_state_t ARC_mru;
491 arc_state_t ARC_mru_ghost;
492 arc_state_t ARC_mfu;
493 arc_state_t ARC_mfu_ghost;
494 arc_state_t ARC_l2c_only;
495 arc_state_t ARC_uncached;
496
497 arc_stats_t arc_stats = {
498 { "hits", KSTAT_DATA_UINT64 },
499 { "iohits", KSTAT_DATA_UINT64 },
500 { "misses", KSTAT_DATA_UINT64 },
501 { "demand_data_hits", KSTAT_DATA_UINT64 },
502 { "demand_data_iohits", KSTAT_DATA_UINT64 },
503 { "demand_data_misses", KSTAT_DATA_UINT64 },
504 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
505 { "demand_metadata_iohits", KSTAT_DATA_UINT64 },
506 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
507 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
508 { "prefetch_data_iohits", KSTAT_DATA_UINT64 },
509 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
510 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
511 { "prefetch_metadata_iohits", KSTAT_DATA_UINT64 },
512 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
513 { "mru_hits", KSTAT_DATA_UINT64 },
514 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
515 { "mfu_hits", KSTAT_DATA_UINT64 },
516 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
517 { "uncached_hits", KSTAT_DATA_UINT64 },
518 { "deleted", KSTAT_DATA_UINT64 },
519 { "mutex_miss", KSTAT_DATA_UINT64 },
520 { "access_skip", KSTAT_DATA_UINT64 },
521 { "evict_skip", KSTAT_DATA_UINT64 },
522 { "evict_not_enough", KSTAT_DATA_UINT64 },
523 { "evict_l2_cached", KSTAT_DATA_UINT64 },
524 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
525 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64 },
526 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64 },
527 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
528 { "evict_l2_skip", KSTAT_DATA_UINT64 },
529 { "hash_elements", KSTAT_DATA_UINT64 },
530 { "hash_elements_max", KSTAT_DATA_UINT64 },
531 { "hash_collisions", KSTAT_DATA_UINT64 },
532 { "hash_chains", KSTAT_DATA_UINT64 },
533 { "hash_chain_max", KSTAT_DATA_UINT64 },
534 { "meta", KSTAT_DATA_UINT64 },
535 { "pd", KSTAT_DATA_UINT64 },
536 { "pm", KSTAT_DATA_UINT64 },
537 { "c", KSTAT_DATA_UINT64 },
538 { "c_min", KSTAT_DATA_UINT64 },
539 { "c_max", KSTAT_DATA_UINT64 },
540 { "size", KSTAT_DATA_UINT64 },
541 { "compressed_size", KSTAT_DATA_UINT64 },
542 { "uncompressed_size", KSTAT_DATA_UINT64 },
543 { "overhead_size", KSTAT_DATA_UINT64 },
544 { "hdr_size", KSTAT_DATA_UINT64 },
545 { "data_size", KSTAT_DATA_UINT64 },
546 { "metadata_size", KSTAT_DATA_UINT64 },
547 { "dbuf_size", KSTAT_DATA_UINT64 },
548 { "dnode_size", KSTAT_DATA_UINT64 },
549 { "bonus_size", KSTAT_DATA_UINT64 },
550 #if defined(COMPAT_FREEBSD11)
551 { "other_size", KSTAT_DATA_UINT64 },
552 #endif
553 { "anon_size", KSTAT_DATA_UINT64 },
554 { "anon_data", KSTAT_DATA_UINT64 },
555 { "anon_metadata", KSTAT_DATA_UINT64 },
556 { "anon_evictable_data", KSTAT_DATA_UINT64 },
557 { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
558 { "mru_size", KSTAT_DATA_UINT64 },
559 { "mru_data", KSTAT_DATA_UINT64 },
560 { "mru_metadata", KSTAT_DATA_UINT64 },
561 { "mru_evictable_data", KSTAT_DATA_UINT64 },
562 { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
563 { "mru_ghost_size", KSTAT_DATA_UINT64 },
564 { "mru_ghost_data", KSTAT_DATA_UINT64 },
565 { "mru_ghost_metadata", KSTAT_DATA_UINT64 },
566 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
567 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
568 { "mfu_size", KSTAT_DATA_UINT64 },
569 { "mfu_data", KSTAT_DATA_UINT64 },
570 { "mfu_metadata", KSTAT_DATA_UINT64 },
571 { "mfu_evictable_data", KSTAT_DATA_UINT64 },
572 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
573 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
574 { "mfu_ghost_data", KSTAT_DATA_UINT64 },
575 { "mfu_ghost_metadata", KSTAT_DATA_UINT64 },
576 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
577 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
578 { "uncached_size", KSTAT_DATA_UINT64 },
579 { "uncached_data", KSTAT_DATA_UINT64 },
580 { "uncached_metadata", KSTAT_DATA_UINT64 },
581 { "uncached_evictable_data", KSTAT_DATA_UINT64 },
582 { "uncached_evictable_metadata", KSTAT_DATA_UINT64 },
583 { "l2_hits", KSTAT_DATA_UINT64 },
584 { "l2_misses", KSTAT_DATA_UINT64 },
585 { "l2_prefetch_asize", KSTAT_DATA_UINT64 },
586 { "l2_mru_asize", KSTAT_DATA_UINT64 },
587 { "l2_mfu_asize", KSTAT_DATA_UINT64 },
588 { "l2_bufc_data_asize", KSTAT_DATA_UINT64 },
589 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64 },
590 { "l2_feeds", KSTAT_DATA_UINT64 },
591 { "l2_rw_clash", KSTAT_DATA_UINT64 },
592 { "l2_read_bytes", KSTAT_DATA_UINT64 },
593 { "l2_write_bytes", KSTAT_DATA_UINT64 },
594 { "l2_writes_sent", KSTAT_DATA_UINT64 },
595 { "l2_writes_done", KSTAT_DATA_UINT64 },
596 { "l2_writes_error", KSTAT_DATA_UINT64 },
597 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
598 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
599 { "l2_evict_reading", KSTAT_DATA_UINT64 },
600 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
601 { "l2_free_on_write", KSTAT_DATA_UINT64 },
602 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
603 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
604 { "l2_io_error", KSTAT_DATA_UINT64 },
605 { "l2_size", KSTAT_DATA_UINT64 },
606 { "l2_asize", KSTAT_DATA_UINT64 },
607 { "l2_hdr_size", KSTAT_DATA_UINT64 },
608 { "l2_log_blk_writes", KSTAT_DATA_UINT64 },
609 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 },
610 { "l2_log_blk_asize", KSTAT_DATA_UINT64 },
611 { "l2_log_blk_count", KSTAT_DATA_UINT64 },
612 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 },
613 { "l2_rebuild_success", KSTAT_DATA_UINT64 },
614 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 },
615 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 },
616 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 },
617 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 },
618 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 },
619 { "l2_rebuild_size", KSTAT_DATA_UINT64 },
620 { "l2_rebuild_asize", KSTAT_DATA_UINT64 },
621 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 },
622 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 },
623 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 },
624 { "memory_throttle_count", KSTAT_DATA_UINT64 },
625 { "memory_direct_count", KSTAT_DATA_UINT64 },
626 { "memory_indirect_count", KSTAT_DATA_UINT64 },
627 { "memory_all_bytes", KSTAT_DATA_UINT64 },
628 { "memory_free_bytes", KSTAT_DATA_UINT64 },
629 { "memory_available_bytes", KSTAT_DATA_INT64 },
630 { "arc_no_grow", KSTAT_DATA_UINT64 },
631 { "arc_tempreserve", KSTAT_DATA_UINT64 },
632 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
633 { "arc_prune", KSTAT_DATA_UINT64 },
634 { "arc_meta_used", KSTAT_DATA_UINT64 },
635 { "arc_dnode_limit", KSTAT_DATA_UINT64 },
636 { "async_upgrade_sync", KSTAT_DATA_UINT64 },
637 { "predictive_prefetch", KSTAT_DATA_UINT64 },
638 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
639 { "demand_iohit_predictive_prefetch", KSTAT_DATA_UINT64 },
640 { "prescient_prefetch", KSTAT_DATA_UINT64 },
641 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
642 { "demand_iohit_prescient_prefetch", KSTAT_DATA_UINT64 },
643 { "arc_need_free", KSTAT_DATA_UINT64 },
644 { "arc_sys_free", KSTAT_DATA_UINT64 },
645 { "arc_raw_size", KSTAT_DATA_UINT64 },
646 { "cached_only_in_progress", KSTAT_DATA_UINT64 },
647 { "abd_chunk_waste_size", KSTAT_DATA_UINT64 },
648 };
649
650 arc_sums_t arc_sums;
651
652 #define ARCSTAT_MAX(stat, val) { \
653 uint64_t m; \
654 while ((val) > (m = arc_stats.stat.value.ui64) && \
655 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
656 continue; \
657 }
658
659 /*
660 * We define a macro to allow ARC hits/misses to be easily broken down by
661 * two separate conditions, giving a total of four different subtypes for
662 * each of hits and misses (so eight statistics total).
663 */
664 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
665 if (cond1) { \
666 if (cond2) { \
667 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
668 } else { \
669 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
670 } \
671 } else { \
672 if (cond2) { \
673 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
674 } else { \
675 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
676 } \
677 }
678
679 /*
680 * This macro allows us to use kstats as floating averages. Each time we
681 * update this kstat, we first factor it and the update value by
682 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall
683 * average. This macro assumes that integer loads and stores are atomic, but
684 * is not safe for multiple writers updating the kstat in parallel (only the
685 * last writer's update will remain).
686 */
687 #define ARCSTAT_F_AVG_FACTOR 3
688 #define ARCSTAT_F_AVG(stat, value) \
689 do { \
690 uint64_t x = ARCSTAT(stat); \
691 x = x - x / ARCSTAT_F_AVG_FACTOR + \
692 (value) / ARCSTAT_F_AVG_FACTOR; \
693 ARCSTAT(stat) = x; \
694 } while (0)
695
696 static kstat_t *arc_ksp;
697
698 /*
699 * There are several ARC variables that are critical to export as kstats --
700 * but we don't want to have to grovel around in the kstat whenever we wish to
701 * manipulate them. For these variables, we therefore define them to be in
702 * terms of the statistic variable. This assures that we are not introducing
703 * the possibility of inconsistency by having shadow copies of the variables,
704 * while still allowing the code to be readable.
705 */
706 #define arc_tempreserve ARCSTAT(arcstat_tempreserve)
707 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
708 #define arc_dnode_limit ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */
709 #define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */
710
711 hrtime_t arc_growtime;
712 list_t arc_prune_list;
713 kmutex_t arc_prune_mtx;
714 taskq_t *arc_prune_taskq;
715
716 #define GHOST_STATE(state) \
717 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
718 (state) == arc_l2c_only)
719
720 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
721 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
722 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
723 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
724 #define HDR_PRESCIENT_PREFETCH(hdr) \
725 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
726 #define HDR_COMPRESSION_ENABLED(hdr) \
727 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
728
729 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
730 #define HDR_UNCACHED(hdr) ((hdr)->b_flags & ARC_FLAG_UNCACHED)
731 #define HDR_L2_READING(hdr) \
732 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
733 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
734 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
735 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
736 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
737 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED)
738 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH)
739 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
740
741 #define HDR_ISTYPE_METADATA(hdr) \
742 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
743 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
744
745 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
746 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
747 #define HDR_HAS_RABD(hdr) \
748 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \
749 (hdr)->b_crypt_hdr.b_rabd != NULL)
750 #define HDR_ENCRYPTED(hdr) \
751 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
752 #define HDR_AUTHENTICATED(hdr) \
753 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
754
755 /* For storing compression mode in b_flags */
756 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1)
757
758 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \
759 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
760 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
761 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
762
763 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL)
764 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
765 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
766 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
767
768 /*
769 * Other sizes
770 */
771
772 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
773 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
774
775 /*
776 * Hash table routines
777 */
778
779 #define BUF_LOCKS 2048
780 typedef struct buf_hash_table {
781 uint64_t ht_mask;
782 arc_buf_hdr_t **ht_table;
783 kmutex_t ht_locks[BUF_LOCKS] ____cacheline_aligned;
784 } buf_hash_table_t;
785
786 static buf_hash_table_t buf_hash_table;
787
788 #define BUF_HASH_INDEX(spa, dva, birth) \
789 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
790 #define BUF_HASH_LOCK(idx) (&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
791 #define HDR_LOCK(hdr) \
792 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
793
794 uint64_t zfs_crc64_table[256];
795
796 /*
797 * Asynchronous ARC flush
798 *
799 * We track these in a list for arc_async_flush_guid_inuse().
800 * Used for both L1 and L2 async teardown.
801 */
802 static list_t arc_async_flush_list;
803 static kmutex_t arc_async_flush_lock;
804
805 typedef struct arc_async_flush {
806 uint64_t af_spa_guid;
807 taskq_ent_t af_tqent;
808 uint_t af_cache_level; /* 1 or 2 to differentiate node */
809 list_node_t af_node;
810 } arc_async_flush_t;
811
812
813 /*
814 * Level 2 ARC
815 */
816
817 #define L2ARC_WRITE_SIZE (32 * 1024 * 1024) /* initial write max */
818 #define L2ARC_HEADROOM 8 /* num of writes */
819
820 /*
821 * If we discover during ARC scan any buffers to be compressed, we boost
822 * our headroom for the next scanning cycle by this percentage multiple.
823 */
824 #define L2ARC_HEADROOM_BOOST 200
825 #define L2ARC_FEED_SECS 1 /* caching interval secs */
826 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
827
828 /*
829 * We can feed L2ARC from two states of ARC buffers, mru and mfu,
830 * and each of the state has two types: data and metadata.
831 */
832 #define L2ARC_FEED_TYPES 4
833
834 /* L2ARC Performance Tunables */
835 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
836 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
837 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
838 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
839 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
840 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
841 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
842 int l2arc_feed_again = B_TRUE; /* turbo warmup */
843 int l2arc_norw = B_FALSE; /* no reads during writes */
844 static uint_t l2arc_meta_percent = 33; /* limit on headers size */
845
846 /*
847 * L2ARC Internals
848 */
849 static list_t L2ARC_dev_list; /* device list */
850 static list_t *l2arc_dev_list; /* device list pointer */
851 static kmutex_t l2arc_dev_mtx; /* device list mutex */
852 static l2arc_dev_t *l2arc_dev_last; /* last device used */
853 static list_t L2ARC_free_on_write; /* free after write buf list */
854 static list_t *l2arc_free_on_write; /* free after write list ptr */
855 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
856 static uint64_t l2arc_ndev; /* number of devices */
857
858 typedef struct l2arc_read_callback {
859 arc_buf_hdr_t *l2rcb_hdr; /* read header */
860 blkptr_t l2rcb_bp; /* original blkptr */
861 zbookmark_phys_t l2rcb_zb; /* original bookmark */
862 int l2rcb_flags; /* original flags */
863 abd_t *l2rcb_abd; /* temporary buffer */
864 } l2arc_read_callback_t;
865
866 typedef struct l2arc_data_free {
867 /* protected by l2arc_free_on_write_mtx */
868 abd_t *l2df_abd;
869 size_t l2df_size;
870 arc_buf_contents_t l2df_type;
871 list_node_t l2df_list_node;
872 } l2arc_data_free_t;
873
874 typedef enum arc_fill_flags {
875 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */
876 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */
877 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */
878 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */
879 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */
880 } arc_fill_flags_t;
881
882 typedef enum arc_ovf_level {
883 ARC_OVF_NONE, /* ARC within target size. */
884 ARC_OVF_SOME, /* ARC is slightly overflowed. */
885 ARC_OVF_SEVERE /* ARC is severely overflowed. */
886 } arc_ovf_level_t;
887
888 static kmutex_t l2arc_feed_thr_lock;
889 static kcondvar_t l2arc_feed_thr_cv;
890 static uint8_t l2arc_thread_exit;
891
892 static kmutex_t l2arc_rebuild_thr_lock;
893 static kcondvar_t l2arc_rebuild_thr_cv;
894
895 enum arc_hdr_alloc_flags {
896 ARC_HDR_ALLOC_RDATA = 0x1,
897 ARC_HDR_USE_RESERVE = 0x4,
898 ARC_HDR_ALLOC_LINEAR = 0x8,
899 };
900
901
902 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, const void *, int);
903 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, const void *);
904 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, const void *, int);
905 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, const void *);
906 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, const void *);
907 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size,
908 const void *tag);
909 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t);
910 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int);
911 static void arc_hdr_destroy(arc_buf_hdr_t *);
912 static void arc_access(arc_buf_hdr_t *, arc_flags_t, boolean_t);
913 static void arc_buf_watch(arc_buf_t *);
914 static void arc_change_state(arc_state_t *, arc_buf_hdr_t *);
915
916 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
917 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
918 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
919 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
920
921 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
922 static void l2arc_read_done(zio_t *);
923 static void l2arc_do_free_on_write(void);
924 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
925 boolean_t state_only);
926
927 static void arc_prune_async(uint64_t adjust);
928
929 #define l2arc_hdr_arcstats_increment(hdr) \
930 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE)
931 #define l2arc_hdr_arcstats_decrement(hdr) \
932 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE)
933 #define l2arc_hdr_arcstats_increment_state(hdr) \
934 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE)
935 #define l2arc_hdr_arcstats_decrement_state(hdr) \
936 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE)
937
938 /*
939 * l2arc_exclude_special : A zfs module parameter that controls whether buffers
940 * present on special vdevs are eligibile for caching in L2ARC. If
941 * set to 1, exclude dbufs on special vdevs from being cached to
942 * L2ARC.
943 */
944 int l2arc_exclude_special = 0;
945
946 /*
947 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU
948 * metadata and data are cached from ARC into L2ARC.
949 */
950 static int l2arc_mfuonly = 0;
951
952 /*
953 * L2ARC TRIM
954 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of
955 * the current write size (l2arc_write_max) we should TRIM if we
956 * have filled the device. It is defined as a percentage of the
957 * write size. If set to 100 we trim twice the space required to
958 * accommodate upcoming writes. A minimum of 64MB will be trimmed.
959 * It also enables TRIM of the whole L2ARC device upon creation or
960 * addition to an existing pool or if the header of the device is
961 * invalid upon importing a pool or onlining a cache device. The
962 * default is 0, which disables TRIM on L2ARC altogether as it can
963 * put significant stress on the underlying storage devices. This
964 * will vary depending of how well the specific device handles
965 * these commands.
966 */
967 static uint64_t l2arc_trim_ahead = 0;
968
969 /*
970 * Performance tuning of L2ARC persistence:
971 *
972 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding
973 * an L2ARC device (either at pool import or later) will attempt
974 * to rebuild L2ARC buffer contents.
975 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls
976 * whether log blocks are written to the L2ARC device. If the L2ARC
977 * device is less than 1GB, the amount of data l2arc_evict()
978 * evicts is significant compared to the amount of restored L2ARC
979 * data. In this case do not write log blocks in L2ARC in order
980 * not to waste space.
981 */
982 static int l2arc_rebuild_enabled = B_TRUE;
983 static uint64_t l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024;
984
985 /* L2ARC persistence rebuild control routines. */
986 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen);
987 static __attribute__((noreturn)) void l2arc_dev_rebuild_thread(void *arg);
988 static int l2arc_rebuild(l2arc_dev_t *dev);
989
990 /* L2ARC persistence read I/O routines. */
991 static int l2arc_dev_hdr_read(l2arc_dev_t *dev);
992 static int l2arc_log_blk_read(l2arc_dev_t *dev,
993 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp,
994 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
995 zio_t *this_io, zio_t **next_io);
996 static zio_t *l2arc_log_blk_fetch(vdev_t *vd,
997 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb);
998 static void l2arc_log_blk_fetch_abort(zio_t *zio);
999
1000 /* L2ARC persistence block restoration routines. */
1001 static void l2arc_log_blk_restore(l2arc_dev_t *dev,
1002 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize);
1003 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le,
1004 l2arc_dev_t *dev);
1005
1006 /* L2ARC persistence write I/O routines. */
1007 static uint64_t l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio,
1008 l2arc_write_callback_t *cb);
1009
1010 /* L2ARC persistence auxiliary routines. */
1011 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev,
1012 const l2arc_log_blkptr_t *lbp);
1013 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev,
1014 const arc_buf_hdr_t *ab);
1015 boolean_t l2arc_range_check_overlap(uint64_t bottom,
1016 uint64_t top, uint64_t check);
1017 static void l2arc_blk_fetch_done(zio_t *zio);
1018 static inline uint64_t
1019 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev);
1020
1021 /*
1022 * We use Cityhash for this. It's fast, and has good hash properties without
1023 * requiring any large static buffers.
1024 */
1025 static uint64_t
buf_hash(uint64_t spa,const dva_t * dva,uint64_t birth)1026 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1027 {
1028 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
1029 }
1030
1031 #define HDR_EMPTY(hdr) \
1032 ((hdr)->b_dva.dva_word[0] == 0 && \
1033 (hdr)->b_dva.dva_word[1] == 0)
1034
1035 #define HDR_EMPTY_OR_LOCKED(hdr) \
1036 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr)))
1037
1038 #define HDR_EQUAL(spa, dva, birth, hdr) \
1039 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
1040 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
1041 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1042
1043 static void
buf_discard_identity(arc_buf_hdr_t * hdr)1044 buf_discard_identity(arc_buf_hdr_t *hdr)
1045 {
1046 hdr->b_dva.dva_word[0] = 0;
1047 hdr->b_dva.dva_word[1] = 0;
1048 hdr->b_birth = 0;
1049 }
1050
1051 static arc_buf_hdr_t *
buf_hash_find(uint64_t spa,const blkptr_t * bp,kmutex_t ** lockp)1052 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1053 {
1054 const dva_t *dva = BP_IDENTITY(bp);
1055 uint64_t birth = BP_GET_PHYSICAL_BIRTH(bp);
1056 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1057 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1058 arc_buf_hdr_t *hdr;
1059
1060 mutex_enter(hash_lock);
1061 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1062 hdr = hdr->b_hash_next) {
1063 if (HDR_EQUAL(spa, dva, birth, hdr)) {
1064 *lockp = hash_lock;
1065 return (hdr);
1066 }
1067 }
1068 mutex_exit(hash_lock);
1069 *lockp = NULL;
1070 return (NULL);
1071 }
1072
1073 /*
1074 * Insert an entry into the hash table. If there is already an element
1075 * equal to elem in the hash table, then the already existing element
1076 * will be returned and the new element will not be inserted.
1077 * Otherwise returns NULL.
1078 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1079 */
1080 static arc_buf_hdr_t *
buf_hash_insert(arc_buf_hdr_t * hdr,kmutex_t ** lockp)1081 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1082 {
1083 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1084 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1085 arc_buf_hdr_t *fhdr;
1086 uint32_t i;
1087
1088 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1089 ASSERT(hdr->b_birth != 0);
1090 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1091
1092 if (lockp != NULL) {
1093 *lockp = hash_lock;
1094 mutex_enter(hash_lock);
1095 } else {
1096 ASSERT(MUTEX_HELD(hash_lock));
1097 }
1098
1099 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1100 fhdr = fhdr->b_hash_next, i++) {
1101 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1102 return (fhdr);
1103 }
1104
1105 hdr->b_hash_next = buf_hash_table.ht_table[idx];
1106 buf_hash_table.ht_table[idx] = hdr;
1107 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1108
1109 /* collect some hash table performance data */
1110 if (i > 0) {
1111 ARCSTAT_BUMP(arcstat_hash_collisions);
1112 if (i == 1)
1113 ARCSTAT_BUMP(arcstat_hash_chains);
1114 ARCSTAT_MAX(arcstat_hash_chain_max, i);
1115 }
1116 ARCSTAT_BUMP(arcstat_hash_elements);
1117
1118 return (NULL);
1119 }
1120
1121 static void
buf_hash_remove(arc_buf_hdr_t * hdr)1122 buf_hash_remove(arc_buf_hdr_t *hdr)
1123 {
1124 arc_buf_hdr_t *fhdr, **hdrp;
1125 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1126
1127 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1128 ASSERT(HDR_IN_HASH_TABLE(hdr));
1129
1130 hdrp = &buf_hash_table.ht_table[idx];
1131 while ((fhdr = *hdrp) != hdr) {
1132 ASSERT3P(fhdr, !=, NULL);
1133 hdrp = &fhdr->b_hash_next;
1134 }
1135 *hdrp = hdr->b_hash_next;
1136 hdr->b_hash_next = NULL;
1137 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1138
1139 /* collect some hash table performance data */
1140 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1141 if (buf_hash_table.ht_table[idx] &&
1142 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1143 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1144 }
1145
1146 /*
1147 * Global data structures and functions for the buf kmem cache.
1148 */
1149
1150 static kmem_cache_t *hdr_full_cache;
1151 static kmem_cache_t *hdr_l2only_cache;
1152 static kmem_cache_t *buf_cache;
1153
1154 static void
buf_fini(void)1155 buf_fini(void)
1156 {
1157 #if defined(_KERNEL)
1158 /*
1159 * Large allocations which do not require contiguous pages
1160 * should be using vmem_free() in the linux kernel\
1161 */
1162 vmem_free(buf_hash_table.ht_table,
1163 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1164 #else
1165 kmem_free(buf_hash_table.ht_table,
1166 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1167 #endif
1168 for (int i = 0; i < BUF_LOCKS; i++)
1169 mutex_destroy(BUF_HASH_LOCK(i));
1170 kmem_cache_destroy(hdr_full_cache);
1171 kmem_cache_destroy(hdr_l2only_cache);
1172 kmem_cache_destroy(buf_cache);
1173 }
1174
1175 /*
1176 * Constructor callback - called when the cache is empty
1177 * and a new buf is requested.
1178 */
1179 static int
hdr_full_cons(void * vbuf,void * unused,int kmflag)1180 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1181 {
1182 (void) unused, (void) kmflag;
1183 arc_buf_hdr_t *hdr = vbuf;
1184
1185 memset(hdr, 0, HDR_FULL_SIZE);
1186 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
1187 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt);
1188 #ifdef ZFS_DEBUG
1189 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1190 #endif
1191 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1192 list_link_init(&hdr->b_l2hdr.b_l2node);
1193 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1194
1195 return (0);
1196 }
1197
1198 static int
hdr_l2only_cons(void * vbuf,void * unused,int kmflag)1199 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1200 {
1201 (void) unused, (void) kmflag;
1202 arc_buf_hdr_t *hdr = vbuf;
1203
1204 memset(hdr, 0, HDR_L2ONLY_SIZE);
1205 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1206
1207 return (0);
1208 }
1209
1210 static int
buf_cons(void * vbuf,void * unused,int kmflag)1211 buf_cons(void *vbuf, void *unused, int kmflag)
1212 {
1213 (void) unused, (void) kmflag;
1214 arc_buf_t *buf = vbuf;
1215
1216 memset(buf, 0, sizeof (arc_buf_t));
1217 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1218
1219 return (0);
1220 }
1221
1222 /*
1223 * Destructor callback - called when a cached buf is
1224 * no longer required.
1225 */
1226 static void
hdr_full_dest(void * vbuf,void * unused)1227 hdr_full_dest(void *vbuf, void *unused)
1228 {
1229 (void) unused;
1230 arc_buf_hdr_t *hdr = vbuf;
1231
1232 ASSERT(HDR_EMPTY(hdr));
1233 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1234 #ifdef ZFS_DEBUG
1235 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1236 #endif
1237 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1238 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1239 }
1240
1241 static void
hdr_l2only_dest(void * vbuf,void * unused)1242 hdr_l2only_dest(void *vbuf, void *unused)
1243 {
1244 (void) unused;
1245 arc_buf_hdr_t *hdr = vbuf;
1246
1247 ASSERT(HDR_EMPTY(hdr));
1248 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1249 }
1250
1251 static void
buf_dest(void * vbuf,void * unused)1252 buf_dest(void *vbuf, void *unused)
1253 {
1254 (void) unused;
1255 (void) vbuf;
1256
1257 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1258 }
1259
1260 static void
buf_init(void)1261 buf_init(void)
1262 {
1263 uint64_t *ct = NULL;
1264 uint64_t hsize = 1ULL << 12;
1265 int i, j;
1266
1267 /*
1268 * The hash table is big enough to fill all of physical memory
1269 * with an average block size of zfs_arc_average_blocksize (default 8K).
1270 * By default, the table will take up
1271 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1272 */
1273 while (hsize * zfs_arc_average_blocksize < arc_all_memory())
1274 hsize <<= 1;
1275 retry:
1276 buf_hash_table.ht_mask = hsize - 1;
1277 #if defined(_KERNEL)
1278 /*
1279 * Large allocations which do not require contiguous pages
1280 * should be using vmem_alloc() in the linux kernel
1281 */
1282 buf_hash_table.ht_table =
1283 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1284 #else
1285 buf_hash_table.ht_table =
1286 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1287 #endif
1288 if (buf_hash_table.ht_table == NULL) {
1289 ASSERT(hsize > (1ULL << 8));
1290 hsize >>= 1;
1291 goto retry;
1292 }
1293
1294 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1295 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, KMC_RECLAIMABLE);
1296 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1297 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL,
1298 NULL, NULL, 0);
1299 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1300 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1301
1302 for (i = 0; i < 256; i++)
1303 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1304 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1305
1306 for (i = 0; i < BUF_LOCKS; i++)
1307 mutex_init(BUF_HASH_LOCK(i), NULL, MUTEX_DEFAULT, NULL);
1308 }
1309
1310 #define ARC_MINTIME (hz>>4) /* 62 ms */
1311
1312 /*
1313 * This is the size that the buf occupies in memory. If the buf is compressed,
1314 * it will correspond to the compressed size. You should use this method of
1315 * getting the buf size unless you explicitly need the logical size.
1316 */
1317 uint64_t
arc_buf_size(arc_buf_t * buf)1318 arc_buf_size(arc_buf_t *buf)
1319 {
1320 return (ARC_BUF_COMPRESSED(buf) ?
1321 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1322 }
1323
1324 uint64_t
arc_buf_lsize(arc_buf_t * buf)1325 arc_buf_lsize(arc_buf_t *buf)
1326 {
1327 return (HDR_GET_LSIZE(buf->b_hdr));
1328 }
1329
1330 /*
1331 * This function will return B_TRUE if the buffer is encrypted in memory.
1332 * This buffer can be decrypted by calling arc_untransform().
1333 */
1334 boolean_t
arc_is_encrypted(arc_buf_t * buf)1335 arc_is_encrypted(arc_buf_t *buf)
1336 {
1337 return (ARC_BUF_ENCRYPTED(buf) != 0);
1338 }
1339
1340 /*
1341 * Returns B_TRUE if the buffer represents data that has not had its MAC
1342 * verified yet.
1343 */
1344 boolean_t
arc_is_unauthenticated(arc_buf_t * buf)1345 arc_is_unauthenticated(arc_buf_t *buf)
1346 {
1347 return (HDR_NOAUTH(buf->b_hdr) != 0);
1348 }
1349
1350 void
arc_get_raw_params(arc_buf_t * buf,boolean_t * byteorder,uint8_t * salt,uint8_t * iv,uint8_t * mac)1351 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt,
1352 uint8_t *iv, uint8_t *mac)
1353 {
1354 arc_buf_hdr_t *hdr = buf->b_hdr;
1355
1356 ASSERT(HDR_PROTECTED(hdr));
1357
1358 memcpy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
1359 memcpy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
1360 memcpy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
1361 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
1362 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
1363 }
1364
1365 /*
1366 * Indicates how this buffer is compressed in memory. If it is not compressed
1367 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1368 * arc_untransform() as long as it is also unencrypted.
1369 */
1370 enum zio_compress
arc_get_compression(arc_buf_t * buf)1371 arc_get_compression(arc_buf_t *buf)
1372 {
1373 return (ARC_BUF_COMPRESSED(buf) ?
1374 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1375 }
1376
1377 /*
1378 * Return the compression algorithm used to store this data in the ARC. If ARC
1379 * compression is enabled or this is an encrypted block, this will be the same
1380 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1381 */
1382 static inline enum zio_compress
arc_hdr_get_compress(arc_buf_hdr_t * hdr)1383 arc_hdr_get_compress(arc_buf_hdr_t *hdr)
1384 {
1385 return (HDR_COMPRESSION_ENABLED(hdr) ?
1386 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF);
1387 }
1388
1389 uint8_t
arc_get_complevel(arc_buf_t * buf)1390 arc_get_complevel(arc_buf_t *buf)
1391 {
1392 return (buf->b_hdr->b_complevel);
1393 }
1394
1395 static inline boolean_t
arc_buf_is_shared(arc_buf_t * buf)1396 arc_buf_is_shared(arc_buf_t *buf)
1397 {
1398 boolean_t shared = (buf->b_data != NULL &&
1399 buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1400 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1401 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1402 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1403 EQUIV(shared, ARC_BUF_SHARED(buf));
1404 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1405
1406 /*
1407 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1408 * already being shared" requirement prevents us from doing that.
1409 */
1410
1411 return (shared);
1412 }
1413
1414 /*
1415 * Free the checksum associated with this header. If there is no checksum, this
1416 * is a no-op.
1417 */
1418 static inline void
arc_cksum_free(arc_buf_hdr_t * hdr)1419 arc_cksum_free(arc_buf_hdr_t *hdr)
1420 {
1421 #ifdef ZFS_DEBUG
1422 ASSERT(HDR_HAS_L1HDR(hdr));
1423
1424 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1425 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1426 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1427 hdr->b_l1hdr.b_freeze_cksum = NULL;
1428 }
1429 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1430 #endif
1431 }
1432
1433 /*
1434 * Return true iff at least one of the bufs on hdr is not compressed.
1435 * Encrypted buffers count as compressed.
1436 */
1437 static boolean_t
arc_hdr_has_uncompressed_buf(arc_buf_hdr_t * hdr)1438 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1439 {
1440 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr));
1441
1442 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1443 if (!ARC_BUF_COMPRESSED(b)) {
1444 return (B_TRUE);
1445 }
1446 }
1447 return (B_FALSE);
1448 }
1449
1450
1451 /*
1452 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1453 * matches the checksum that is stored in the hdr. If there is no checksum,
1454 * or if the buf is compressed, this is a no-op.
1455 */
1456 static void
arc_cksum_verify(arc_buf_t * buf)1457 arc_cksum_verify(arc_buf_t *buf)
1458 {
1459 #ifdef ZFS_DEBUG
1460 arc_buf_hdr_t *hdr = buf->b_hdr;
1461 zio_cksum_t zc;
1462
1463 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1464 return;
1465
1466 if (ARC_BUF_COMPRESSED(buf))
1467 return;
1468
1469 ASSERT(HDR_HAS_L1HDR(hdr));
1470
1471 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1472
1473 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1474 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1475 return;
1476 }
1477
1478 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1479 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1480 panic("buffer modified while frozen!");
1481 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1482 #endif
1483 }
1484
1485 /*
1486 * This function makes the assumption that data stored in the L2ARC
1487 * will be transformed exactly as it is in the main pool. Because of
1488 * this we can verify the checksum against the reading process's bp.
1489 */
1490 static boolean_t
arc_cksum_is_equal(arc_buf_hdr_t * hdr,zio_t * zio)1491 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1492 {
1493 ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1494 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1495
1496 /*
1497 * Block pointers always store the checksum for the logical data.
1498 * If the block pointer has the gang bit set, then the checksum
1499 * it represents is for the reconstituted data and not for an
1500 * individual gang member. The zio pipeline, however, must be able to
1501 * determine the checksum of each of the gang constituents so it
1502 * treats the checksum comparison differently than what we need
1503 * for l2arc blocks. This prevents us from using the
1504 * zio_checksum_error() interface directly. Instead we must call the
1505 * zio_checksum_error_impl() so that we can ensure the checksum is
1506 * generated using the correct checksum algorithm and accounts for the
1507 * logical I/O size and not just a gang fragment.
1508 */
1509 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1510 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1511 zio->io_offset, NULL) == 0);
1512 }
1513
1514 /*
1515 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1516 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1517 * isn't modified later on. If buf is compressed or there is already a checksum
1518 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1519 */
1520 static void
arc_cksum_compute(arc_buf_t * buf)1521 arc_cksum_compute(arc_buf_t *buf)
1522 {
1523 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1524 return;
1525
1526 #ifdef ZFS_DEBUG
1527 arc_buf_hdr_t *hdr = buf->b_hdr;
1528 ASSERT(HDR_HAS_L1HDR(hdr));
1529 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1530 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) {
1531 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1532 return;
1533 }
1534
1535 ASSERT(!ARC_BUF_ENCRYPTED(buf));
1536 ASSERT(!ARC_BUF_COMPRESSED(buf));
1537 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1538 KM_SLEEP);
1539 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1540 hdr->b_l1hdr.b_freeze_cksum);
1541 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1542 #endif
1543 arc_buf_watch(buf);
1544 }
1545
1546 #ifndef _KERNEL
1547 void
arc_buf_sigsegv(int sig,siginfo_t * si,void * unused)1548 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1549 {
1550 (void) sig, (void) unused;
1551 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr);
1552 }
1553 #endif
1554
1555 static void
arc_buf_unwatch(arc_buf_t * buf)1556 arc_buf_unwatch(arc_buf_t *buf)
1557 {
1558 #ifndef _KERNEL
1559 if (arc_watch) {
1560 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1561 PROT_READ | PROT_WRITE));
1562 }
1563 #else
1564 (void) buf;
1565 #endif
1566 }
1567
1568 static void
arc_buf_watch(arc_buf_t * buf)1569 arc_buf_watch(arc_buf_t *buf)
1570 {
1571 #ifndef _KERNEL
1572 if (arc_watch)
1573 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1574 PROT_READ));
1575 #else
1576 (void) buf;
1577 #endif
1578 }
1579
1580 static arc_buf_contents_t
arc_buf_type(arc_buf_hdr_t * hdr)1581 arc_buf_type(arc_buf_hdr_t *hdr)
1582 {
1583 arc_buf_contents_t type;
1584 if (HDR_ISTYPE_METADATA(hdr)) {
1585 type = ARC_BUFC_METADATA;
1586 } else {
1587 type = ARC_BUFC_DATA;
1588 }
1589 VERIFY3U(hdr->b_type, ==, type);
1590 return (type);
1591 }
1592
1593 boolean_t
arc_is_metadata(arc_buf_t * buf)1594 arc_is_metadata(arc_buf_t *buf)
1595 {
1596 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1597 }
1598
1599 static uint32_t
arc_bufc_to_flags(arc_buf_contents_t type)1600 arc_bufc_to_flags(arc_buf_contents_t type)
1601 {
1602 switch (type) {
1603 case ARC_BUFC_DATA:
1604 /* metadata field is 0 if buffer contains normal data */
1605 return (0);
1606 case ARC_BUFC_METADATA:
1607 return (ARC_FLAG_BUFC_METADATA);
1608 default:
1609 break;
1610 }
1611 panic("undefined ARC buffer type!");
1612 return ((uint32_t)-1);
1613 }
1614
1615 void
arc_buf_thaw(arc_buf_t * buf)1616 arc_buf_thaw(arc_buf_t *buf)
1617 {
1618 arc_buf_hdr_t *hdr = buf->b_hdr;
1619
1620 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1621 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1622
1623 arc_cksum_verify(buf);
1624
1625 /*
1626 * Compressed buffers do not manipulate the b_freeze_cksum.
1627 */
1628 if (ARC_BUF_COMPRESSED(buf))
1629 return;
1630
1631 ASSERT(HDR_HAS_L1HDR(hdr));
1632 arc_cksum_free(hdr);
1633 arc_buf_unwatch(buf);
1634 }
1635
1636 void
arc_buf_freeze(arc_buf_t * buf)1637 arc_buf_freeze(arc_buf_t *buf)
1638 {
1639 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1640 return;
1641
1642 if (ARC_BUF_COMPRESSED(buf))
1643 return;
1644
1645 ASSERT(HDR_HAS_L1HDR(buf->b_hdr));
1646 arc_cksum_compute(buf);
1647 }
1648
1649 /*
1650 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1651 * the following functions should be used to ensure that the flags are
1652 * updated in a thread-safe way. When manipulating the flags either
1653 * the hash_lock must be held or the hdr must be undiscoverable. This
1654 * ensures that we're not racing with any other threads when updating
1655 * the flags.
1656 */
1657 static inline void
arc_hdr_set_flags(arc_buf_hdr_t * hdr,arc_flags_t flags)1658 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1659 {
1660 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1661 hdr->b_flags |= flags;
1662 }
1663
1664 static inline void
arc_hdr_clear_flags(arc_buf_hdr_t * hdr,arc_flags_t flags)1665 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1666 {
1667 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1668 hdr->b_flags &= ~flags;
1669 }
1670
1671 /*
1672 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1673 * done in a special way since we have to clear and set bits
1674 * at the same time. Consumers that wish to set the compression bits
1675 * must use this function to ensure that the flags are updated in
1676 * thread-safe manner.
1677 */
1678 static void
arc_hdr_set_compress(arc_buf_hdr_t * hdr,enum zio_compress cmp)1679 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1680 {
1681 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1682
1683 /*
1684 * Holes and embedded blocks will always have a psize = 0 so
1685 * we ignore the compression of the blkptr and set the
1686 * want to uncompress them. Mark them as uncompressed.
1687 */
1688 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1689 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1690 ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1691 } else {
1692 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1693 ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1694 }
1695
1696 HDR_SET_COMPRESS(hdr, cmp);
1697 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1698 }
1699
1700 /*
1701 * Looks for another buf on the same hdr which has the data decompressed, copies
1702 * from it, and returns true. If no such buf exists, returns false.
1703 */
1704 static boolean_t
arc_buf_try_copy_decompressed_data(arc_buf_t * buf)1705 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1706 {
1707 arc_buf_hdr_t *hdr = buf->b_hdr;
1708 boolean_t copied = B_FALSE;
1709
1710 ASSERT(HDR_HAS_L1HDR(hdr));
1711 ASSERT3P(buf->b_data, !=, NULL);
1712 ASSERT(!ARC_BUF_COMPRESSED(buf));
1713
1714 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1715 from = from->b_next) {
1716 /* can't use our own data buffer */
1717 if (from == buf) {
1718 continue;
1719 }
1720
1721 if (!ARC_BUF_COMPRESSED(from)) {
1722 memcpy(buf->b_data, from->b_data, arc_buf_size(buf));
1723 copied = B_TRUE;
1724 break;
1725 }
1726 }
1727
1728 #ifdef ZFS_DEBUG
1729 /*
1730 * There were no decompressed bufs, so there should not be a
1731 * checksum on the hdr either.
1732 */
1733 if (zfs_flags & ZFS_DEBUG_MODIFY)
1734 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1735 #endif
1736
1737 return (copied);
1738 }
1739
1740 /*
1741 * Allocates an ARC buf header that's in an evicted & L2-cached state.
1742 * This is used during l2arc reconstruction to make empty ARC buffers
1743 * which circumvent the regular disk->arc->l2arc path and instead come
1744 * into being in the reverse order, i.e. l2arc->arc.
1745 */
1746 static arc_buf_hdr_t *
arc_buf_alloc_l2only(size_t size,arc_buf_contents_t type,l2arc_dev_t * dev,dva_t dva,uint64_t daddr,int32_t psize,uint64_t asize,uint64_t birth,enum zio_compress compress,uint8_t complevel,boolean_t protected,boolean_t prefetch,arc_state_type_t arcs_state)1747 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev,
1748 dva_t dva, uint64_t daddr, int32_t psize, uint64_t asize, uint64_t birth,
1749 enum zio_compress compress, uint8_t complevel, boolean_t protected,
1750 boolean_t prefetch, arc_state_type_t arcs_state)
1751 {
1752 arc_buf_hdr_t *hdr;
1753
1754 ASSERT(size != 0);
1755 ASSERT(dev->l2ad_vdev != NULL);
1756
1757 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP);
1758 hdr->b_birth = birth;
1759 hdr->b_type = type;
1760 hdr->b_flags = 0;
1761 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR);
1762 HDR_SET_LSIZE(hdr, size);
1763 HDR_SET_PSIZE(hdr, psize);
1764 HDR_SET_L2SIZE(hdr, asize);
1765 arc_hdr_set_compress(hdr, compress);
1766 hdr->b_complevel = complevel;
1767 if (protected)
1768 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
1769 if (prefetch)
1770 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
1771 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa);
1772
1773 hdr->b_dva = dva;
1774
1775 hdr->b_l2hdr.b_dev = dev;
1776 hdr->b_l2hdr.b_daddr = daddr;
1777 hdr->b_l2hdr.b_arcs_state = arcs_state;
1778
1779 return (hdr);
1780 }
1781
1782 /*
1783 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1784 */
1785 static uint64_t
arc_hdr_size(arc_buf_hdr_t * hdr)1786 arc_hdr_size(arc_buf_hdr_t *hdr)
1787 {
1788 uint64_t size;
1789
1790 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
1791 HDR_GET_PSIZE(hdr) > 0) {
1792 size = HDR_GET_PSIZE(hdr);
1793 } else {
1794 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1795 size = HDR_GET_LSIZE(hdr);
1796 }
1797 return (size);
1798 }
1799
1800 static int
arc_hdr_authenticate(arc_buf_hdr_t * hdr,spa_t * spa,uint64_t dsobj)1801 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
1802 {
1803 int ret;
1804 uint64_t csize;
1805 uint64_t lsize = HDR_GET_LSIZE(hdr);
1806 uint64_t psize = HDR_GET_PSIZE(hdr);
1807 abd_t *abd = hdr->b_l1hdr.b_pabd;
1808 boolean_t free_abd = B_FALSE;
1809
1810 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1811 ASSERT(HDR_AUTHENTICATED(hdr));
1812 ASSERT3P(abd, !=, NULL);
1813
1814 /*
1815 * The MAC is calculated on the compressed data that is stored on disk.
1816 * However, if compressed arc is disabled we will only have the
1817 * decompressed data available to us now. Compress it into a temporary
1818 * abd so we can verify the MAC. The performance overhead of this will
1819 * be relatively low, since most objects in an encrypted objset will
1820 * be encrypted (instead of authenticated) anyway.
1821 */
1822 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1823 !HDR_COMPRESSION_ENABLED(hdr)) {
1824 abd = NULL;
1825 csize = zio_compress_data(HDR_GET_COMPRESS(hdr),
1826 hdr->b_l1hdr.b_pabd, &abd, lsize, MIN(lsize, psize),
1827 hdr->b_complevel);
1828 if (csize >= lsize || csize > psize) {
1829 ret = SET_ERROR(EIO);
1830 return (ret);
1831 }
1832 ASSERT3P(abd, !=, NULL);
1833 abd_zero_off(abd, csize, psize - csize);
1834 free_abd = B_TRUE;
1835 }
1836
1837 /*
1838 * Authentication is best effort. We authenticate whenever the key is
1839 * available. If we succeed we clear ARC_FLAG_NOAUTH.
1840 */
1841 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) {
1842 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1843 ASSERT3U(lsize, ==, psize);
1844 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd,
1845 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1846 } else {
1847 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize,
1848 hdr->b_crypt_hdr.b_mac);
1849 }
1850
1851 if (ret == 0)
1852 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH);
1853 else if (ret == ENOENT)
1854 ret = 0;
1855
1856 if (free_abd)
1857 abd_free(abd);
1858
1859 return (ret);
1860 }
1861
1862 /*
1863 * This function will take a header that only has raw encrypted data in
1864 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1865 * b_l1hdr.b_pabd. If designated in the header flags, this function will
1866 * also decompress the data.
1867 */
1868 static int
arc_hdr_decrypt(arc_buf_hdr_t * hdr,spa_t * spa,const zbookmark_phys_t * zb)1869 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb)
1870 {
1871 int ret;
1872 abd_t *cabd = NULL;
1873 boolean_t no_crypt = B_FALSE;
1874 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1875
1876 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1877 ASSERT(HDR_ENCRYPTED(hdr));
1878
1879 arc_hdr_alloc_abd(hdr, 0);
1880
1881 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot,
1882 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv,
1883 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd,
1884 hdr->b_crypt_hdr.b_rabd, &no_crypt);
1885 if (ret != 0)
1886 goto error;
1887
1888 if (no_crypt) {
1889 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd,
1890 HDR_GET_PSIZE(hdr));
1891 }
1892
1893 /*
1894 * If this header has disabled arc compression but the b_pabd is
1895 * compressed after decrypting it, we need to decompress the newly
1896 * decrypted data.
1897 */
1898 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1899 !HDR_COMPRESSION_ENABLED(hdr)) {
1900 /*
1901 * We want to make sure that we are correctly honoring the
1902 * zfs_abd_scatter_enabled setting, so we allocate an abd here
1903 * and then loan a buffer from it, rather than allocating a
1904 * linear buffer and wrapping it in an abd later.
1905 */
1906 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 0);
1907
1908 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1909 hdr->b_l1hdr.b_pabd, cabd, HDR_GET_PSIZE(hdr),
1910 HDR_GET_LSIZE(hdr), &hdr->b_complevel);
1911 if (ret != 0) {
1912 goto error;
1913 }
1914
1915 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
1916 arc_hdr_size(hdr), hdr);
1917 hdr->b_l1hdr.b_pabd = cabd;
1918 }
1919
1920 return (0);
1921
1922 error:
1923 arc_hdr_free_abd(hdr, B_FALSE);
1924 if (cabd != NULL)
1925 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
1926
1927 return (ret);
1928 }
1929
1930 /*
1931 * This function is called during arc_buf_fill() to prepare the header's
1932 * abd plaintext pointer for use. This involves authenticated protected
1933 * data and decrypting encrypted data into the plaintext abd.
1934 */
1935 static int
arc_fill_hdr_crypt(arc_buf_hdr_t * hdr,kmutex_t * hash_lock,spa_t * spa,const zbookmark_phys_t * zb,boolean_t noauth)1936 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa,
1937 const zbookmark_phys_t *zb, boolean_t noauth)
1938 {
1939 int ret;
1940
1941 ASSERT(HDR_PROTECTED(hdr));
1942
1943 if (hash_lock != NULL)
1944 mutex_enter(hash_lock);
1945
1946 if (HDR_NOAUTH(hdr) && !noauth) {
1947 /*
1948 * The caller requested authenticated data but our data has
1949 * not been authenticated yet. Verify the MAC now if we can.
1950 */
1951 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset);
1952 if (ret != 0)
1953 goto error;
1954 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) {
1955 /*
1956 * If we only have the encrypted version of the data, but the
1957 * unencrypted version was requested we take this opportunity
1958 * to store the decrypted version in the header for future use.
1959 */
1960 ret = arc_hdr_decrypt(hdr, spa, zb);
1961 if (ret != 0)
1962 goto error;
1963 }
1964
1965 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1966
1967 if (hash_lock != NULL)
1968 mutex_exit(hash_lock);
1969
1970 return (0);
1971
1972 error:
1973 if (hash_lock != NULL)
1974 mutex_exit(hash_lock);
1975
1976 return (ret);
1977 }
1978
1979 /*
1980 * This function is used by the dbuf code to decrypt bonus buffers in place.
1981 * The dbuf code itself doesn't have any locking for decrypting a shared dnode
1982 * block, so we use the hash lock here to protect against concurrent calls to
1983 * arc_buf_fill().
1984 */
1985 static void
arc_buf_untransform_in_place(arc_buf_t * buf)1986 arc_buf_untransform_in_place(arc_buf_t *buf)
1987 {
1988 arc_buf_hdr_t *hdr = buf->b_hdr;
1989
1990 ASSERT(HDR_ENCRYPTED(hdr));
1991 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
1992 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1993 ASSERT3PF(hdr->b_l1hdr.b_pabd, !=, NULL, "hdr %px buf %px", hdr, buf);
1994
1995 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data,
1996 arc_buf_size(buf));
1997 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
1998 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1999 }
2000
2001 /*
2002 * Given a buf that has a data buffer attached to it, this function will
2003 * efficiently fill the buf with data of the specified compression setting from
2004 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
2005 * are already sharing a data buf, no copy is performed.
2006 *
2007 * If the buf is marked as compressed but uncompressed data was requested, this
2008 * will allocate a new data buffer for the buf, remove that flag, and fill the
2009 * buf with uncompressed data. You can't request a compressed buf on a hdr with
2010 * uncompressed data, and (since we haven't added support for it yet) if you
2011 * want compressed data your buf must already be marked as compressed and have
2012 * the correct-sized data buffer.
2013 */
2014 static int
arc_buf_fill(arc_buf_t * buf,spa_t * spa,const zbookmark_phys_t * zb,arc_fill_flags_t flags)2015 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2016 arc_fill_flags_t flags)
2017 {
2018 int error = 0;
2019 arc_buf_hdr_t *hdr = buf->b_hdr;
2020 boolean_t hdr_compressed =
2021 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
2022 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0;
2023 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0;
2024 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
2025 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr);
2026
2027 ASSERT3P(buf->b_data, !=, NULL);
2028 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf));
2029 IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
2030 IMPLY(encrypted, HDR_ENCRYPTED(hdr));
2031 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf));
2032 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf));
2033 IMPLY(encrypted, !arc_buf_is_shared(buf));
2034
2035 /*
2036 * If the caller wanted encrypted data we just need to copy it from
2037 * b_rabd and potentially byteswap it. We won't be able to do any
2038 * further transforms on it.
2039 */
2040 if (encrypted) {
2041 ASSERT(HDR_HAS_RABD(hdr));
2042 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd,
2043 HDR_GET_PSIZE(hdr));
2044 goto byteswap;
2045 }
2046
2047 /*
2048 * Adjust encrypted and authenticated headers to accommodate
2049 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are
2050 * allowed to fail decryption due to keys not being loaded
2051 * without being marked as an IO error.
2052 */
2053 if (HDR_PROTECTED(hdr)) {
2054 error = arc_fill_hdr_crypt(hdr, hash_lock, spa,
2055 zb, !!(flags & ARC_FILL_NOAUTH));
2056 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) {
2057 return (error);
2058 } else if (error != 0) {
2059 if (hash_lock != NULL)
2060 mutex_enter(hash_lock);
2061 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2062 if (hash_lock != NULL)
2063 mutex_exit(hash_lock);
2064 return (error);
2065 }
2066 }
2067
2068 /*
2069 * There is a special case here for dnode blocks which are
2070 * decrypting their bonus buffers. These blocks may request to
2071 * be decrypted in-place. This is necessary because there may
2072 * be many dnodes pointing into this buffer and there is
2073 * currently no method to synchronize replacing the backing
2074 * b_data buffer and updating all of the pointers. Here we use
2075 * the hash lock to ensure there are no races. If the need
2076 * arises for other types to be decrypted in-place, they must
2077 * add handling here as well.
2078 */
2079 if ((flags & ARC_FILL_IN_PLACE) != 0) {
2080 ASSERT(!hdr_compressed);
2081 ASSERT(!compressed);
2082 ASSERT(!encrypted);
2083
2084 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) {
2085 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
2086
2087 if (hash_lock != NULL)
2088 mutex_enter(hash_lock);
2089 arc_buf_untransform_in_place(buf);
2090 if (hash_lock != NULL)
2091 mutex_exit(hash_lock);
2092
2093 /* Compute the hdr's checksum if necessary */
2094 arc_cksum_compute(buf);
2095 }
2096
2097 return (0);
2098 }
2099
2100 if (hdr_compressed == compressed) {
2101 if (ARC_BUF_SHARED(buf)) {
2102 ASSERT(arc_buf_is_shared(buf));
2103 } else {
2104 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
2105 arc_buf_size(buf));
2106 }
2107 } else {
2108 ASSERT(hdr_compressed);
2109 ASSERT(!compressed);
2110
2111 /*
2112 * If the buf is sharing its data with the hdr, unlink it and
2113 * allocate a new data buffer for the buf.
2114 */
2115 if (ARC_BUF_SHARED(buf)) {
2116 ASSERTF(ARC_BUF_COMPRESSED(buf),
2117 "buf %p was uncompressed", buf);
2118
2119 /* We need to give the buf its own b_data */
2120 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2121 buf->b_data =
2122 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2123 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2124
2125 /* Previously overhead was 0; just add new overhead */
2126 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2127 } else if (ARC_BUF_COMPRESSED(buf)) {
2128 ASSERT(!arc_buf_is_shared(buf));
2129
2130 /* We need to reallocate the buf's b_data */
2131 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
2132 buf);
2133 buf->b_data =
2134 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2135
2136 /* We increased the size of b_data; update overhead */
2137 ARCSTAT_INCR(arcstat_overhead_size,
2138 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2139 }
2140
2141 /*
2142 * Regardless of the buf's previous compression settings, it
2143 * should not be compressed at the end of this function.
2144 */
2145 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2146
2147 /*
2148 * Try copying the data from another buf which already has a
2149 * decompressed version. If that's not possible, it's time to
2150 * bite the bullet and decompress the data from the hdr.
2151 */
2152 if (arc_buf_try_copy_decompressed_data(buf)) {
2153 /* Skip byteswapping and checksumming (already done) */
2154 return (0);
2155 } else {
2156 abd_t dabd;
2157 abd_get_from_buf_struct(&dabd, buf->b_data,
2158 HDR_GET_LSIZE(hdr));
2159 error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2160 hdr->b_l1hdr.b_pabd, &dabd,
2161 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr),
2162 &hdr->b_complevel);
2163 abd_free(&dabd);
2164
2165 /*
2166 * Absent hardware errors or software bugs, this should
2167 * be impossible, but log it anyway so we can debug it.
2168 */
2169 if (error != 0) {
2170 zfs_dbgmsg(
2171 "hdr %px, compress %d, psize %d, lsize %d",
2172 hdr, arc_hdr_get_compress(hdr),
2173 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2174 if (hash_lock != NULL)
2175 mutex_enter(hash_lock);
2176 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2177 if (hash_lock != NULL)
2178 mutex_exit(hash_lock);
2179 return (SET_ERROR(EIO));
2180 }
2181 }
2182 }
2183
2184 byteswap:
2185 /* Byteswap the buf's data if necessary */
2186 if (bswap != DMU_BSWAP_NUMFUNCS) {
2187 ASSERT(!HDR_SHARED_DATA(hdr));
2188 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2189 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2190 }
2191
2192 /* Compute the hdr's checksum if necessary */
2193 arc_cksum_compute(buf);
2194
2195 return (0);
2196 }
2197
2198 /*
2199 * If this function is being called to decrypt an encrypted buffer or verify an
2200 * authenticated one, the key must be loaded and a mapping must be made
2201 * available in the keystore via spa_keystore_create_mapping() or one of its
2202 * callers.
2203 */
2204 int
arc_untransform(arc_buf_t * buf,spa_t * spa,const zbookmark_phys_t * zb,boolean_t in_place)2205 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2206 boolean_t in_place)
2207 {
2208 int ret;
2209 arc_fill_flags_t flags = 0;
2210
2211 if (in_place)
2212 flags |= ARC_FILL_IN_PLACE;
2213
2214 ret = arc_buf_fill(buf, spa, zb, flags);
2215 if (ret == ECKSUM) {
2216 /*
2217 * Convert authentication and decryption errors to EIO
2218 * (and generate an ereport) before leaving the ARC.
2219 */
2220 ret = SET_ERROR(EIO);
2221 spa_log_error(spa, zb, buf->b_hdr->b_birth);
2222 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
2223 spa, NULL, zb, NULL, 0);
2224 }
2225
2226 return (ret);
2227 }
2228
2229 /*
2230 * Increment the amount of evictable space in the arc_state_t's refcount.
2231 * We account for the space used by the hdr and the arc buf individually
2232 * so that we can add and remove them from the refcount individually.
2233 */
2234 static void
arc_evictable_space_increment(arc_buf_hdr_t * hdr,arc_state_t * state)2235 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2236 {
2237 arc_buf_contents_t type = arc_buf_type(hdr);
2238
2239 ASSERT(HDR_HAS_L1HDR(hdr));
2240
2241 if (GHOST_STATE(state)) {
2242 ASSERT0P(hdr->b_l1hdr.b_buf);
2243 ASSERT0P(hdr->b_l1hdr.b_pabd);
2244 ASSERT(!HDR_HAS_RABD(hdr));
2245 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2246 HDR_GET_LSIZE(hdr), hdr);
2247 return;
2248 }
2249
2250 if (hdr->b_l1hdr.b_pabd != NULL) {
2251 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2252 arc_hdr_size(hdr), hdr);
2253 }
2254 if (HDR_HAS_RABD(hdr)) {
2255 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2256 HDR_GET_PSIZE(hdr), hdr);
2257 }
2258
2259 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2260 buf = buf->b_next) {
2261 if (ARC_BUF_SHARED(buf))
2262 continue;
2263 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2264 arc_buf_size(buf), buf);
2265 }
2266 }
2267
2268 /*
2269 * Decrement the amount of evictable space in the arc_state_t's refcount.
2270 * We account for the space used by the hdr and the arc buf individually
2271 * so that we can add and remove them from the refcount individually.
2272 */
2273 static void
arc_evictable_space_decrement(arc_buf_hdr_t * hdr,arc_state_t * state)2274 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2275 {
2276 arc_buf_contents_t type = arc_buf_type(hdr);
2277
2278 ASSERT(HDR_HAS_L1HDR(hdr));
2279
2280 if (GHOST_STATE(state)) {
2281 ASSERT0P(hdr->b_l1hdr.b_buf);
2282 ASSERT0P(hdr->b_l1hdr.b_pabd);
2283 ASSERT(!HDR_HAS_RABD(hdr));
2284 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2285 HDR_GET_LSIZE(hdr), hdr);
2286 return;
2287 }
2288
2289 if (hdr->b_l1hdr.b_pabd != NULL) {
2290 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2291 arc_hdr_size(hdr), hdr);
2292 }
2293 if (HDR_HAS_RABD(hdr)) {
2294 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2295 HDR_GET_PSIZE(hdr), hdr);
2296 }
2297
2298 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2299 buf = buf->b_next) {
2300 if (ARC_BUF_SHARED(buf))
2301 continue;
2302 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2303 arc_buf_size(buf), buf);
2304 }
2305 }
2306
2307 /*
2308 * Add a reference to this hdr indicating that someone is actively
2309 * referencing that memory. When the refcount transitions from 0 to 1,
2310 * we remove it from the respective arc_state_t list to indicate that
2311 * it is not evictable.
2312 */
2313 static void
add_reference(arc_buf_hdr_t * hdr,const void * tag)2314 add_reference(arc_buf_hdr_t *hdr, const void *tag)
2315 {
2316 arc_state_t *state = hdr->b_l1hdr.b_state;
2317
2318 ASSERT(HDR_HAS_L1HDR(hdr));
2319 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) {
2320 ASSERT(state == arc_anon);
2321 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2322 ASSERT0P(hdr->b_l1hdr.b_buf);
2323 }
2324
2325 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2326 state != arc_anon && state != arc_l2c_only) {
2327 /* We don't use the L2-only state list. */
2328 multilist_remove(&state->arcs_list[arc_buf_type(hdr)], hdr);
2329 arc_evictable_space_decrement(hdr, state);
2330 }
2331 }
2332
2333 /*
2334 * Remove a reference from this hdr. When the reference transitions from
2335 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2336 * list making it eligible for eviction.
2337 */
2338 static int
remove_reference(arc_buf_hdr_t * hdr,const void * tag)2339 remove_reference(arc_buf_hdr_t *hdr, const void *tag)
2340 {
2341 int cnt;
2342 arc_state_t *state = hdr->b_l1hdr.b_state;
2343
2344 ASSERT(HDR_HAS_L1HDR(hdr));
2345 ASSERT(state == arc_anon || MUTEX_HELD(HDR_LOCK(hdr)));
2346 ASSERT(!GHOST_STATE(state)); /* arc_l2c_only counts as a ghost. */
2347
2348 if ((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) != 0)
2349 return (cnt);
2350
2351 if (state == arc_anon) {
2352 arc_hdr_destroy(hdr);
2353 return (0);
2354 }
2355 if (state == arc_uncached && !HDR_PREFETCH(hdr)) {
2356 arc_change_state(arc_anon, hdr);
2357 arc_hdr_destroy(hdr);
2358 return (0);
2359 }
2360 multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr);
2361 arc_evictable_space_increment(hdr, state);
2362 return (0);
2363 }
2364
2365 /*
2366 * Returns detailed information about a specific arc buffer. When the
2367 * state_index argument is set the function will calculate the arc header
2368 * list position for its arc state. Since this requires a linear traversal
2369 * callers are strongly encourage not to do this. However, it can be helpful
2370 * for targeted analysis so the functionality is provided.
2371 */
2372 void
arc_buf_info(arc_buf_t * ab,arc_buf_info_t * abi,int state_index)2373 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
2374 {
2375 (void) state_index;
2376 arc_buf_hdr_t *hdr = ab->b_hdr;
2377 l1arc_buf_hdr_t *l1hdr = NULL;
2378 l2arc_buf_hdr_t *l2hdr = NULL;
2379 arc_state_t *state = NULL;
2380
2381 memset(abi, 0, sizeof (arc_buf_info_t));
2382
2383 if (hdr == NULL)
2384 return;
2385
2386 abi->abi_flags = hdr->b_flags;
2387
2388 if (HDR_HAS_L1HDR(hdr)) {
2389 l1hdr = &hdr->b_l1hdr;
2390 state = l1hdr->b_state;
2391 }
2392 if (HDR_HAS_L2HDR(hdr))
2393 l2hdr = &hdr->b_l2hdr;
2394
2395 if (l1hdr) {
2396 abi->abi_bufcnt = 0;
2397 for (arc_buf_t *buf = l1hdr->b_buf; buf; buf = buf->b_next)
2398 abi->abi_bufcnt++;
2399 abi->abi_access = l1hdr->b_arc_access;
2400 abi->abi_mru_hits = l1hdr->b_mru_hits;
2401 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
2402 abi->abi_mfu_hits = l1hdr->b_mfu_hits;
2403 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
2404 abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt);
2405 }
2406
2407 if (l2hdr) {
2408 abi->abi_l2arc_dattr = l2hdr->b_daddr;
2409 abi->abi_l2arc_hits = l2hdr->b_hits;
2410 }
2411
2412 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
2413 abi->abi_state_contents = arc_buf_type(hdr);
2414 abi->abi_size = arc_hdr_size(hdr);
2415 }
2416
2417 /*
2418 * Move the supplied buffer to the indicated state. The hash lock
2419 * for the buffer must be held by the caller.
2420 */
2421 static void
arc_change_state(arc_state_t * new_state,arc_buf_hdr_t * hdr)2422 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr)
2423 {
2424 arc_state_t *old_state;
2425 int64_t refcnt;
2426 boolean_t update_old, update_new;
2427 arc_buf_contents_t type = arc_buf_type(hdr);
2428
2429 /*
2430 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2431 * in arc_read() when bringing a buffer out of the L2ARC. However, the
2432 * L1 hdr doesn't always exist when we change state to arc_anon before
2433 * destroying a header, in which case reallocating to add the L1 hdr is
2434 * pointless.
2435 */
2436 if (HDR_HAS_L1HDR(hdr)) {
2437 old_state = hdr->b_l1hdr.b_state;
2438 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt);
2439 update_old = (hdr->b_l1hdr.b_buf != NULL ||
2440 hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
2441
2442 IMPLY(GHOST_STATE(old_state), hdr->b_l1hdr.b_buf == NULL);
2443 IMPLY(GHOST_STATE(new_state), hdr->b_l1hdr.b_buf == NULL);
2444 IMPLY(old_state == arc_anon, hdr->b_l1hdr.b_buf == NULL ||
2445 ARC_BUF_LAST(hdr->b_l1hdr.b_buf));
2446 } else {
2447 old_state = arc_l2c_only;
2448 refcnt = 0;
2449 update_old = B_FALSE;
2450 }
2451 update_new = update_old;
2452 if (GHOST_STATE(old_state))
2453 update_old = B_TRUE;
2454 if (GHOST_STATE(new_state))
2455 update_new = B_TRUE;
2456
2457 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
2458 ASSERT3P(new_state, !=, old_state);
2459
2460 /*
2461 * If this buffer is evictable, transfer it from the
2462 * old state list to the new state list.
2463 */
2464 if (refcnt == 0) {
2465 if (old_state != arc_anon && old_state != arc_l2c_only) {
2466 ASSERT(HDR_HAS_L1HDR(hdr));
2467 /* remove_reference() saves on insert. */
2468 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2469 multilist_remove(&old_state->arcs_list[type],
2470 hdr);
2471 arc_evictable_space_decrement(hdr, old_state);
2472 }
2473 }
2474 if (new_state != arc_anon && new_state != arc_l2c_only) {
2475 /*
2476 * An L1 header always exists here, since if we're
2477 * moving to some L1-cached state (i.e. not l2c_only or
2478 * anonymous), we realloc the header to add an L1hdr
2479 * beforehand.
2480 */
2481 ASSERT(HDR_HAS_L1HDR(hdr));
2482 multilist_insert(&new_state->arcs_list[type], hdr);
2483 arc_evictable_space_increment(hdr, new_state);
2484 }
2485 }
2486
2487 ASSERT(!HDR_EMPTY(hdr));
2488 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2489 buf_hash_remove(hdr);
2490
2491 /* adjust state sizes (ignore arc_l2c_only) */
2492
2493 if (update_new && new_state != arc_l2c_only) {
2494 ASSERT(HDR_HAS_L1HDR(hdr));
2495 if (GHOST_STATE(new_state)) {
2496
2497 /*
2498 * When moving a header to a ghost state, we first
2499 * remove all arc buffers. Thus, we'll have no arc
2500 * buffer to use for the reference. As a result, we
2501 * use the arc header pointer for the reference.
2502 */
2503 (void) zfs_refcount_add_many(
2504 &new_state->arcs_size[type],
2505 HDR_GET_LSIZE(hdr), hdr);
2506 ASSERT0P(hdr->b_l1hdr.b_pabd);
2507 ASSERT(!HDR_HAS_RABD(hdr));
2508 } else {
2509
2510 /*
2511 * Each individual buffer holds a unique reference,
2512 * thus we must remove each of these references one
2513 * at a time.
2514 */
2515 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2516 buf = buf->b_next) {
2517
2518 /*
2519 * When the arc_buf_t is sharing the data
2520 * block with the hdr, the owner of the
2521 * reference belongs to the hdr. Only
2522 * add to the refcount if the arc_buf_t is
2523 * not shared.
2524 */
2525 if (ARC_BUF_SHARED(buf))
2526 continue;
2527
2528 (void) zfs_refcount_add_many(
2529 &new_state->arcs_size[type],
2530 arc_buf_size(buf), buf);
2531 }
2532
2533 if (hdr->b_l1hdr.b_pabd != NULL) {
2534 (void) zfs_refcount_add_many(
2535 &new_state->arcs_size[type],
2536 arc_hdr_size(hdr), hdr);
2537 }
2538
2539 if (HDR_HAS_RABD(hdr)) {
2540 (void) zfs_refcount_add_many(
2541 &new_state->arcs_size[type],
2542 HDR_GET_PSIZE(hdr), hdr);
2543 }
2544 }
2545 }
2546
2547 if (update_old && old_state != arc_l2c_only) {
2548 ASSERT(HDR_HAS_L1HDR(hdr));
2549 if (GHOST_STATE(old_state)) {
2550 ASSERT0P(hdr->b_l1hdr.b_pabd);
2551 ASSERT(!HDR_HAS_RABD(hdr));
2552
2553 /*
2554 * When moving a header off of a ghost state,
2555 * the header will not contain any arc buffers.
2556 * We use the arc header pointer for the reference
2557 * which is exactly what we did when we put the
2558 * header on the ghost state.
2559 */
2560
2561 (void) zfs_refcount_remove_many(
2562 &old_state->arcs_size[type],
2563 HDR_GET_LSIZE(hdr), hdr);
2564 } else {
2565
2566 /*
2567 * Each individual buffer holds a unique reference,
2568 * thus we must remove each of these references one
2569 * at a time.
2570 */
2571 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2572 buf = buf->b_next) {
2573
2574 /*
2575 * When the arc_buf_t is sharing the data
2576 * block with the hdr, the owner of the
2577 * reference belongs to the hdr. Only
2578 * add to the refcount if the arc_buf_t is
2579 * not shared.
2580 */
2581 if (ARC_BUF_SHARED(buf))
2582 continue;
2583
2584 (void) zfs_refcount_remove_many(
2585 &old_state->arcs_size[type],
2586 arc_buf_size(buf), buf);
2587 }
2588 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
2589 HDR_HAS_RABD(hdr));
2590
2591 if (hdr->b_l1hdr.b_pabd != NULL) {
2592 (void) zfs_refcount_remove_many(
2593 &old_state->arcs_size[type],
2594 arc_hdr_size(hdr), hdr);
2595 }
2596
2597 if (HDR_HAS_RABD(hdr)) {
2598 (void) zfs_refcount_remove_many(
2599 &old_state->arcs_size[type],
2600 HDR_GET_PSIZE(hdr), hdr);
2601 }
2602 }
2603 }
2604
2605 if (HDR_HAS_L1HDR(hdr)) {
2606 hdr->b_l1hdr.b_state = new_state;
2607
2608 if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) {
2609 l2arc_hdr_arcstats_decrement_state(hdr);
2610 hdr->b_l2hdr.b_arcs_state = new_state->arcs_state;
2611 l2arc_hdr_arcstats_increment_state(hdr);
2612 }
2613 }
2614 }
2615
2616 void
arc_space_consume(uint64_t space,arc_space_type_t type)2617 arc_space_consume(uint64_t space, arc_space_type_t type)
2618 {
2619 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2620
2621 switch (type) {
2622 default:
2623 break;
2624 case ARC_SPACE_DATA:
2625 ARCSTAT_INCR(arcstat_data_size, space);
2626 break;
2627 case ARC_SPACE_META:
2628 ARCSTAT_INCR(arcstat_metadata_size, space);
2629 break;
2630 case ARC_SPACE_BONUS:
2631 ARCSTAT_INCR(arcstat_bonus_size, space);
2632 break;
2633 case ARC_SPACE_DNODE:
2634 aggsum_add(&arc_sums.arcstat_dnode_size, space);
2635 break;
2636 case ARC_SPACE_DBUF:
2637 ARCSTAT_INCR(arcstat_dbuf_size, space);
2638 break;
2639 case ARC_SPACE_HDRS:
2640 ARCSTAT_INCR(arcstat_hdr_size, space);
2641 break;
2642 case ARC_SPACE_L2HDRS:
2643 aggsum_add(&arc_sums.arcstat_l2_hdr_size, space);
2644 break;
2645 case ARC_SPACE_ABD_CHUNK_WASTE:
2646 /*
2647 * Note: this includes space wasted by all scatter ABD's, not
2648 * just those allocated by the ARC. But the vast majority of
2649 * scatter ABD's come from the ARC, because other users are
2650 * very short-lived.
2651 */
2652 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, space);
2653 break;
2654 }
2655
2656 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE)
2657 ARCSTAT_INCR(arcstat_meta_used, space);
2658
2659 aggsum_add(&arc_sums.arcstat_size, space);
2660 }
2661
2662 void
arc_space_return(uint64_t space,arc_space_type_t type)2663 arc_space_return(uint64_t space, arc_space_type_t type)
2664 {
2665 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2666
2667 switch (type) {
2668 default:
2669 break;
2670 case ARC_SPACE_DATA:
2671 ARCSTAT_INCR(arcstat_data_size, -space);
2672 break;
2673 case ARC_SPACE_META:
2674 ARCSTAT_INCR(arcstat_metadata_size, -space);
2675 break;
2676 case ARC_SPACE_BONUS:
2677 ARCSTAT_INCR(arcstat_bonus_size, -space);
2678 break;
2679 case ARC_SPACE_DNODE:
2680 aggsum_add(&arc_sums.arcstat_dnode_size, -space);
2681 break;
2682 case ARC_SPACE_DBUF:
2683 ARCSTAT_INCR(arcstat_dbuf_size, -space);
2684 break;
2685 case ARC_SPACE_HDRS:
2686 ARCSTAT_INCR(arcstat_hdr_size, -space);
2687 break;
2688 case ARC_SPACE_L2HDRS:
2689 aggsum_add(&arc_sums.arcstat_l2_hdr_size, -space);
2690 break;
2691 case ARC_SPACE_ABD_CHUNK_WASTE:
2692 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, -space);
2693 break;
2694 }
2695
2696 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE)
2697 ARCSTAT_INCR(arcstat_meta_used, -space);
2698
2699 ASSERT(aggsum_compare(&arc_sums.arcstat_size, space) >= 0);
2700 aggsum_add(&arc_sums.arcstat_size, -space);
2701 }
2702
2703 /*
2704 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2705 * with the hdr's b_pabd.
2706 */
2707 static boolean_t
arc_can_share(arc_buf_hdr_t * hdr,arc_buf_t * buf)2708 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2709 {
2710 /*
2711 * The criteria for sharing a hdr's data are:
2712 * 1. the buffer is not encrypted
2713 * 2. the hdr's compression matches the buf's compression
2714 * 3. the hdr doesn't need to be byteswapped
2715 * 4. the hdr isn't already being shared
2716 * 5. the buf is either compressed or it is the last buf in the hdr list
2717 *
2718 * Criterion #5 maintains the invariant that shared uncompressed
2719 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2720 * might ask, "if a compressed buf is allocated first, won't that be the
2721 * last thing in the list?", but in that case it's impossible to create
2722 * a shared uncompressed buf anyway (because the hdr must be compressed
2723 * to have the compressed buf). You might also think that #3 is
2724 * sufficient to make this guarantee, however it's possible
2725 * (specifically in the rare L2ARC write race mentioned in
2726 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2727 * is shareable, but wasn't at the time of its allocation. Rather than
2728 * allow a new shared uncompressed buf to be created and then shuffle
2729 * the list around to make it the last element, this simply disallows
2730 * sharing if the new buf isn't the first to be added.
2731 */
2732 ASSERT3P(buf->b_hdr, ==, hdr);
2733 boolean_t hdr_compressed =
2734 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF;
2735 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2736 return (!ARC_BUF_ENCRYPTED(buf) &&
2737 buf_compressed == hdr_compressed &&
2738 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2739 !HDR_SHARED_DATA(hdr) &&
2740 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2741 }
2742
2743 /*
2744 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2745 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2746 * copy was made successfully, or an error code otherwise.
2747 */
2748 static int
arc_buf_alloc_impl(arc_buf_hdr_t * hdr,spa_t * spa,const zbookmark_phys_t * zb,const void * tag,boolean_t encrypted,boolean_t compressed,boolean_t noauth,boolean_t fill,arc_buf_t ** ret)2749 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb,
2750 const void *tag, boolean_t encrypted, boolean_t compressed,
2751 boolean_t noauth, boolean_t fill, arc_buf_t **ret)
2752 {
2753 arc_buf_t *buf;
2754 arc_fill_flags_t flags = ARC_FILL_LOCKED;
2755
2756 ASSERT(HDR_HAS_L1HDR(hdr));
2757 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2758 VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2759 hdr->b_type == ARC_BUFC_METADATA);
2760 ASSERT3P(ret, !=, NULL);
2761 ASSERT0P(*ret);
2762 IMPLY(encrypted, compressed);
2763
2764 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2765 buf->b_hdr = hdr;
2766 buf->b_data = NULL;
2767 buf->b_next = hdr->b_l1hdr.b_buf;
2768 buf->b_flags = 0;
2769
2770 add_reference(hdr, tag);
2771
2772 /*
2773 * We're about to change the hdr's b_flags. We must either
2774 * hold the hash_lock or be undiscoverable.
2775 */
2776 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2777
2778 /*
2779 * Only honor requests for compressed bufs if the hdr is actually
2780 * compressed. This must be overridden if the buffer is encrypted since
2781 * encrypted buffers cannot be decompressed.
2782 */
2783 if (encrypted) {
2784 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2785 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED;
2786 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED;
2787 } else if (compressed &&
2788 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
2789 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2790 flags |= ARC_FILL_COMPRESSED;
2791 }
2792
2793 if (noauth) {
2794 ASSERT0(encrypted);
2795 flags |= ARC_FILL_NOAUTH;
2796 }
2797
2798 /*
2799 * If the hdr's data can be shared then we share the data buffer and
2800 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2801 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2802 * buffer to store the buf's data.
2803 *
2804 * There are two additional restrictions here because we're sharing
2805 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2806 * actively involved in an L2ARC write, because if this buf is used by
2807 * an arc_write() then the hdr's data buffer will be released when the
2808 * write completes, even though the L2ARC write might still be using it.
2809 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2810 * need to be ABD-aware. It must be allocated via
2811 * zio_[data_]buf_alloc(), not as a page, because we need to be able
2812 * to abd_release_ownership_of_buf(), which isn't allowed on "linear
2813 * page" buffers because the ABD code needs to handle freeing them
2814 * specially.
2815 */
2816 boolean_t can_share = arc_can_share(hdr, buf) &&
2817 !HDR_L2_WRITING(hdr) &&
2818 hdr->b_l1hdr.b_pabd != NULL &&
2819 abd_is_linear(hdr->b_l1hdr.b_pabd) &&
2820 !abd_is_linear_page(hdr->b_l1hdr.b_pabd);
2821
2822 /* Set up b_data and sharing */
2823 if (can_share) {
2824 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2825 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2826 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2827 } else {
2828 buf->b_data =
2829 arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2830 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2831 }
2832 VERIFY3P(buf->b_data, !=, NULL);
2833
2834 hdr->b_l1hdr.b_buf = buf;
2835
2836 /*
2837 * If the user wants the data from the hdr, we need to either copy or
2838 * decompress the data.
2839 */
2840 if (fill) {
2841 ASSERT3P(zb, !=, NULL);
2842 return (arc_buf_fill(buf, spa, zb, flags));
2843 }
2844
2845 return (0);
2846 }
2847
2848 static const char *arc_onloan_tag = "onloan";
2849
2850 static inline void
arc_loaned_bytes_update(int64_t delta)2851 arc_loaned_bytes_update(int64_t delta)
2852 {
2853 atomic_add_64(&arc_loaned_bytes, delta);
2854
2855 /* assert that it did not wrap around */
2856 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2857 }
2858
2859 /*
2860 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2861 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2862 * buffers must be returned to the arc before they can be used by the DMU or
2863 * freed.
2864 */
2865 arc_buf_t *
arc_loan_buf(spa_t * spa,boolean_t is_metadata,int size)2866 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2867 {
2868 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2869 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2870
2871 arc_loaned_bytes_update(arc_buf_size(buf));
2872
2873 return (buf);
2874 }
2875
2876 arc_buf_t *
arc_loan_compressed_buf(spa_t * spa,uint64_t psize,uint64_t lsize,enum zio_compress compression_type,uint8_t complevel)2877 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2878 enum zio_compress compression_type, uint8_t complevel)
2879 {
2880 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2881 psize, lsize, compression_type, complevel);
2882
2883 arc_loaned_bytes_update(arc_buf_size(buf));
2884
2885 return (buf);
2886 }
2887
2888 arc_buf_t *
arc_loan_raw_buf(spa_t * spa,uint64_t dsobj,boolean_t byteorder,const uint8_t * salt,const uint8_t * iv,const uint8_t * mac,dmu_object_type_t ot,uint64_t psize,uint64_t lsize,enum zio_compress compression_type,uint8_t complevel)2889 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder,
2890 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
2891 dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
2892 enum zio_compress compression_type, uint8_t complevel)
2893 {
2894 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj,
2895 byteorder, salt, iv, mac, ot, psize, lsize, compression_type,
2896 complevel);
2897
2898 atomic_add_64(&arc_loaned_bytes, psize);
2899 return (buf);
2900 }
2901
2902
2903 /*
2904 * Return a loaned arc buffer to the arc.
2905 */
2906 void
arc_return_buf(arc_buf_t * buf,const void * tag)2907 arc_return_buf(arc_buf_t *buf, const void *tag)
2908 {
2909 arc_buf_hdr_t *hdr = buf->b_hdr;
2910
2911 ASSERT3P(buf->b_data, !=, NULL);
2912 ASSERT(HDR_HAS_L1HDR(hdr));
2913 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2914 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2915
2916 arc_loaned_bytes_update(-arc_buf_size(buf));
2917 }
2918
2919 /* Detach an arc_buf from a dbuf (tag) */
2920 void
arc_loan_inuse_buf(arc_buf_t * buf,const void * tag)2921 arc_loan_inuse_buf(arc_buf_t *buf, const void *tag)
2922 {
2923 arc_buf_hdr_t *hdr = buf->b_hdr;
2924
2925 ASSERT3P(buf->b_data, !=, NULL);
2926 ASSERT(HDR_HAS_L1HDR(hdr));
2927 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2928 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2929
2930 arc_loaned_bytes_update(arc_buf_size(buf));
2931 }
2932
2933 static void
l2arc_free_abd_on_write(abd_t * abd,size_t size,arc_buf_contents_t type)2934 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2935 {
2936 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2937
2938 df->l2df_abd = abd;
2939 df->l2df_size = size;
2940 df->l2df_type = type;
2941 mutex_enter(&l2arc_free_on_write_mtx);
2942 list_insert_head(l2arc_free_on_write, df);
2943 mutex_exit(&l2arc_free_on_write_mtx);
2944 }
2945
2946 static void
arc_hdr_free_on_write(arc_buf_hdr_t * hdr,boolean_t free_rdata)2947 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata)
2948 {
2949 arc_state_t *state = hdr->b_l1hdr.b_state;
2950 arc_buf_contents_t type = arc_buf_type(hdr);
2951 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
2952
2953 /* protected by hash lock, if in the hash table */
2954 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2955 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2956 ASSERT(state != arc_anon && state != arc_l2c_only);
2957
2958 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2959 size, hdr);
2960 }
2961 (void) zfs_refcount_remove_many(&state->arcs_size[type], size, hdr);
2962 if (type == ARC_BUFC_METADATA) {
2963 arc_space_return(size, ARC_SPACE_META);
2964 } else {
2965 ASSERT(type == ARC_BUFC_DATA);
2966 arc_space_return(size, ARC_SPACE_DATA);
2967 }
2968
2969 if (free_rdata) {
2970 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type);
2971 } else {
2972 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2973 }
2974 }
2975
2976 /*
2977 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2978 * data buffer, we transfer the refcount ownership to the hdr and update
2979 * the appropriate kstats.
2980 */
2981 static void
arc_share_buf(arc_buf_hdr_t * hdr,arc_buf_t * buf)2982 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2983 {
2984 ASSERT(arc_can_share(hdr, buf));
2985 ASSERT0P(hdr->b_l1hdr.b_pabd);
2986 ASSERT(!ARC_BUF_ENCRYPTED(buf));
2987 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2988
2989 /*
2990 * Start sharing the data buffer. We transfer the
2991 * refcount ownership to the hdr since it always owns
2992 * the refcount whenever an arc_buf_t is shared.
2993 */
2994 zfs_refcount_transfer_ownership_many(
2995 &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)],
2996 arc_hdr_size(hdr), buf, hdr);
2997 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2998 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2999 HDR_ISTYPE_METADATA(hdr));
3000 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
3001 buf->b_flags |= ARC_BUF_FLAG_SHARED;
3002
3003 /*
3004 * Since we've transferred ownership to the hdr we need
3005 * to increment its compressed and uncompressed kstats and
3006 * decrement the overhead size.
3007 */
3008 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
3009 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3010 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
3011 }
3012
3013 static void
arc_unshare_buf(arc_buf_hdr_t * hdr,arc_buf_t * buf)3014 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3015 {
3016 ASSERT(arc_buf_is_shared(buf));
3017 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3018 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3019
3020 /*
3021 * We are no longer sharing this buffer so we need
3022 * to transfer its ownership to the rightful owner.
3023 */
3024 zfs_refcount_transfer_ownership_many(
3025 &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)],
3026 arc_hdr_size(hdr), hdr, buf);
3027 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3028 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
3029 abd_free(hdr->b_l1hdr.b_pabd);
3030 hdr->b_l1hdr.b_pabd = NULL;
3031 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
3032
3033 /*
3034 * Since the buffer is no longer shared between
3035 * the arc buf and the hdr, count it as overhead.
3036 */
3037 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3038 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3039 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
3040 }
3041
3042 /*
3043 * Remove an arc_buf_t from the hdr's buf list and return the last
3044 * arc_buf_t on the list. If no buffers remain on the list then return
3045 * NULL.
3046 */
3047 static arc_buf_t *
arc_buf_remove(arc_buf_hdr_t * hdr,arc_buf_t * buf)3048 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3049 {
3050 ASSERT(HDR_HAS_L1HDR(hdr));
3051 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3052
3053 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
3054 arc_buf_t *lastbuf = NULL;
3055
3056 /*
3057 * Remove the buf from the hdr list and locate the last
3058 * remaining buffer on the list.
3059 */
3060 while (*bufp != NULL) {
3061 if (*bufp == buf)
3062 *bufp = buf->b_next;
3063
3064 /*
3065 * If we've removed a buffer in the middle of
3066 * the list then update the lastbuf and update
3067 * bufp.
3068 */
3069 if (*bufp != NULL) {
3070 lastbuf = *bufp;
3071 bufp = &(*bufp)->b_next;
3072 }
3073 }
3074 buf->b_next = NULL;
3075 ASSERT3P(lastbuf, !=, buf);
3076 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
3077
3078 return (lastbuf);
3079 }
3080
3081 /*
3082 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's
3083 * list and free it.
3084 */
3085 static void
arc_buf_destroy_impl(arc_buf_t * buf)3086 arc_buf_destroy_impl(arc_buf_t *buf)
3087 {
3088 arc_buf_hdr_t *hdr = buf->b_hdr;
3089
3090 /*
3091 * Free up the data associated with the buf but only if we're not
3092 * sharing this with the hdr. If we are sharing it with the hdr, the
3093 * hdr is responsible for doing the free.
3094 */
3095 if (buf->b_data != NULL) {
3096 /*
3097 * We're about to change the hdr's b_flags. We must either
3098 * hold the hash_lock or be undiscoverable.
3099 */
3100 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3101
3102 arc_cksum_verify(buf);
3103 arc_buf_unwatch(buf);
3104
3105 if (ARC_BUF_SHARED(buf)) {
3106 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3107 } else {
3108 ASSERT(!arc_buf_is_shared(buf));
3109 uint64_t size = arc_buf_size(buf);
3110 arc_free_data_buf(hdr, buf->b_data, size, buf);
3111 ARCSTAT_INCR(arcstat_overhead_size, -size);
3112 }
3113 buf->b_data = NULL;
3114
3115 /*
3116 * If we have no more encrypted buffers and we've already
3117 * gotten a copy of the decrypted data we can free b_rabd
3118 * to save some space.
3119 */
3120 if (ARC_BUF_ENCRYPTED(buf) && HDR_HAS_RABD(hdr) &&
3121 hdr->b_l1hdr.b_pabd != NULL && !HDR_IO_IN_PROGRESS(hdr)) {
3122 arc_buf_t *b;
3123 for (b = hdr->b_l1hdr.b_buf; b; b = b->b_next) {
3124 if (b != buf && ARC_BUF_ENCRYPTED(b))
3125 break;
3126 }
3127 if (b == NULL)
3128 arc_hdr_free_abd(hdr, B_TRUE);
3129 }
3130 }
3131
3132 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
3133
3134 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
3135 /*
3136 * If the current arc_buf_t is sharing its data buffer with the
3137 * hdr, then reassign the hdr's b_pabd to share it with the new
3138 * buffer at the end of the list. The shared buffer is always
3139 * the last one on the hdr's buffer list.
3140 *
3141 * There is an equivalent case for compressed bufs, but since
3142 * they aren't guaranteed to be the last buf in the list and
3143 * that is an exceedingly rare case, we just allow that space be
3144 * wasted temporarily. We must also be careful not to share
3145 * encrypted buffers, since they cannot be shared.
3146 */
3147 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) {
3148 /* Only one buf can be shared at once */
3149 ASSERT(!arc_buf_is_shared(lastbuf));
3150 /* hdr is uncompressed so can't have compressed buf */
3151 ASSERT(!ARC_BUF_COMPRESSED(lastbuf));
3152
3153 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3154 arc_hdr_free_abd(hdr, B_FALSE);
3155
3156 /*
3157 * We must setup a new shared block between the
3158 * last buffer and the hdr. The data would have
3159 * been allocated by the arc buf so we need to transfer
3160 * ownership to the hdr since it's now being shared.
3161 */
3162 arc_share_buf(hdr, lastbuf);
3163 }
3164 } else if (HDR_SHARED_DATA(hdr)) {
3165 /*
3166 * Uncompressed shared buffers are always at the end
3167 * of the list. Compressed buffers don't have the
3168 * same requirements. This makes it hard to
3169 * simply assert that the lastbuf is shared so
3170 * we rely on the hdr's compression flags to determine
3171 * if we have a compressed, shared buffer.
3172 */
3173 ASSERT3P(lastbuf, !=, NULL);
3174 ASSERT(arc_buf_is_shared(lastbuf) ||
3175 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
3176 }
3177
3178 /*
3179 * Free the checksum if we're removing the last uncompressed buf from
3180 * this hdr.
3181 */
3182 if (!arc_hdr_has_uncompressed_buf(hdr)) {
3183 arc_cksum_free(hdr);
3184 }
3185
3186 /* clean up the buf */
3187 buf->b_hdr = NULL;
3188 kmem_cache_free(buf_cache, buf);
3189 }
3190
3191 static void
arc_hdr_alloc_abd(arc_buf_hdr_t * hdr,int alloc_flags)3192 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags)
3193 {
3194 uint64_t size;
3195 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0);
3196
3197 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3198 ASSERT(HDR_HAS_L1HDR(hdr));
3199 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata);
3200 IMPLY(alloc_rdata, HDR_PROTECTED(hdr));
3201
3202 if (alloc_rdata) {
3203 size = HDR_GET_PSIZE(hdr);
3204 ASSERT0P(hdr->b_crypt_hdr.b_rabd);
3205 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr,
3206 alloc_flags);
3207 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL);
3208 ARCSTAT_INCR(arcstat_raw_size, size);
3209 } else {
3210 size = arc_hdr_size(hdr);
3211 ASSERT0P(hdr->b_l1hdr.b_pabd);
3212 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr,
3213 alloc_flags);
3214 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3215 }
3216
3217 ARCSTAT_INCR(arcstat_compressed_size, size);
3218 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3219 }
3220
3221 static void
arc_hdr_free_abd(arc_buf_hdr_t * hdr,boolean_t free_rdata)3222 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata)
3223 {
3224 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
3225
3226 ASSERT(HDR_HAS_L1HDR(hdr));
3227 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
3228 IMPLY(free_rdata, HDR_HAS_RABD(hdr));
3229
3230 /*
3231 * If the hdr is currently being written to the l2arc then
3232 * we defer freeing the data by adding it to the l2arc_free_on_write
3233 * list. The l2arc will free the data once it's finished
3234 * writing it to the l2arc device.
3235 */
3236 if (HDR_L2_WRITING(hdr)) {
3237 arc_hdr_free_on_write(hdr, free_rdata);
3238 ARCSTAT_BUMP(arcstat_l2_free_on_write);
3239 } else if (free_rdata) {
3240 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr);
3241 } else {
3242 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr);
3243 }
3244
3245 if (free_rdata) {
3246 hdr->b_crypt_hdr.b_rabd = NULL;
3247 ARCSTAT_INCR(arcstat_raw_size, -size);
3248 } else {
3249 hdr->b_l1hdr.b_pabd = NULL;
3250 }
3251
3252 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr))
3253 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3254
3255 ARCSTAT_INCR(arcstat_compressed_size, -size);
3256 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3257 }
3258
3259 /*
3260 * Allocate empty anonymous ARC header. The header will get its identity
3261 * assigned and buffers attached later as part of read or write operations.
3262 *
3263 * In case of read arc_read() assigns header its identify (b_dva + b_birth),
3264 * inserts it into ARC hash to become globally visible and allocates physical
3265 * (b_pabd) or raw (b_rabd) ABD buffer to read into from disk. On disk read
3266 * completion arc_read_done() allocates ARC buffer(s) as needed, potentially
3267 * sharing one of them with the physical ABD buffer.
3268 *
3269 * In case of write arc_alloc_buf() allocates ARC buffer to be filled with
3270 * data. Then after compression and/or encryption arc_write_ready() allocates
3271 * and fills (or potentially shares) physical (b_pabd) or raw (b_rabd) ABD
3272 * buffer. On disk write completion arc_write_done() assigns the header its
3273 * new identity (b_dva + b_birth) and inserts into ARC hash.
3274 *
3275 * In case of partial overwrite the old data is read first as described. Then
3276 * arc_release() either allocates new anonymous ARC header and moves the ARC
3277 * buffer to it, or reuses the old ARC header by discarding its identity and
3278 * removing it from ARC hash. After buffer modification normal write process
3279 * follows as described.
3280 */
3281 static arc_buf_hdr_t *
arc_hdr_alloc(uint64_t spa,int32_t psize,int32_t lsize,boolean_t protected,enum zio_compress compression_type,uint8_t complevel,arc_buf_contents_t type)3282 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
3283 boolean_t protected, enum zio_compress compression_type, uint8_t complevel,
3284 arc_buf_contents_t type)
3285 {
3286 arc_buf_hdr_t *hdr;
3287
3288 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
3289 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3290
3291 ASSERT(HDR_EMPTY(hdr));
3292 #ifdef ZFS_DEBUG
3293 ASSERT0P(hdr->b_l1hdr.b_freeze_cksum);
3294 #endif
3295 HDR_SET_PSIZE(hdr, psize);
3296 HDR_SET_LSIZE(hdr, lsize);
3297 hdr->b_spa = spa;
3298 hdr->b_type = type;
3299 hdr->b_flags = 0;
3300 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
3301 arc_hdr_set_compress(hdr, compression_type);
3302 hdr->b_complevel = complevel;
3303 if (protected)
3304 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3305
3306 hdr->b_l1hdr.b_state = arc_anon;
3307 hdr->b_l1hdr.b_arc_access = 0;
3308 hdr->b_l1hdr.b_mru_hits = 0;
3309 hdr->b_l1hdr.b_mru_ghost_hits = 0;
3310 hdr->b_l1hdr.b_mfu_hits = 0;
3311 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
3312 hdr->b_l1hdr.b_buf = NULL;
3313
3314 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3315
3316 return (hdr);
3317 }
3318
3319 /*
3320 * Transition between the two allocation states for the arc_buf_hdr struct.
3321 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3322 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3323 * version is used when a cache buffer is only in the L2ARC in order to reduce
3324 * memory usage.
3325 */
3326 static arc_buf_hdr_t *
arc_hdr_realloc(arc_buf_hdr_t * hdr,kmem_cache_t * old,kmem_cache_t * new)3327 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
3328 {
3329 ASSERT(HDR_HAS_L2HDR(hdr));
3330
3331 arc_buf_hdr_t *nhdr;
3332 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3333
3334 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3335 (old == hdr_l2only_cache && new == hdr_full_cache));
3336
3337 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
3338
3339 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3340 buf_hash_remove(hdr);
3341
3342 memcpy(nhdr, hdr, HDR_L2ONLY_SIZE);
3343
3344 if (new == hdr_full_cache) {
3345 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3346 /*
3347 * arc_access and arc_change_state need to be aware that a
3348 * header has just come out of L2ARC, so we set its state to
3349 * l2c_only even though it's about to change.
3350 */
3351 nhdr->b_l1hdr.b_state = arc_l2c_only;
3352
3353 /* Verify previous threads set to NULL before freeing */
3354 ASSERT0P(nhdr->b_l1hdr.b_pabd);
3355 ASSERT(!HDR_HAS_RABD(hdr));
3356 } else {
3357 ASSERT0P(hdr->b_l1hdr.b_buf);
3358 #ifdef ZFS_DEBUG
3359 ASSERT0P(hdr->b_l1hdr.b_freeze_cksum);
3360 #endif
3361
3362 /*
3363 * If we've reached here, We must have been called from
3364 * arc_evict_hdr(), as such we should have already been
3365 * removed from any ghost list we were previously on
3366 * (which protects us from racing with arc_evict_state),
3367 * thus no locking is needed during this check.
3368 */
3369 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3370
3371 /*
3372 * A buffer must not be moved into the arc_l2c_only
3373 * state if it's not finished being written out to the
3374 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3375 * might try to be accessed, even though it was removed.
3376 */
3377 VERIFY(!HDR_L2_WRITING(hdr));
3378 VERIFY0P(hdr->b_l1hdr.b_pabd);
3379 ASSERT(!HDR_HAS_RABD(hdr));
3380
3381 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3382 }
3383 /*
3384 * The header has been reallocated so we need to re-insert it into any
3385 * lists it was on.
3386 */
3387 (void) buf_hash_insert(nhdr, NULL);
3388
3389 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3390
3391 mutex_enter(&dev->l2ad_mtx);
3392
3393 /*
3394 * We must place the realloc'ed header back into the list at
3395 * the same spot. Otherwise, if it's placed earlier in the list,
3396 * l2arc_write_buffers() could find it during the function's
3397 * write phase, and try to write it out to the l2arc.
3398 */
3399 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3400 list_remove(&dev->l2ad_buflist, hdr);
3401
3402 mutex_exit(&dev->l2ad_mtx);
3403
3404 /*
3405 * Since we're using the pointer address as the tag when
3406 * incrementing and decrementing the l2ad_alloc refcount, we
3407 * must remove the old pointer (that we're about to destroy) and
3408 * add the new pointer to the refcount. Otherwise we'd remove
3409 * the wrong pointer address when calling arc_hdr_destroy() later.
3410 */
3411
3412 (void) zfs_refcount_remove_many(&dev->l2ad_alloc,
3413 arc_hdr_size(hdr), hdr);
3414 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
3415 arc_hdr_size(nhdr), nhdr);
3416
3417 buf_discard_identity(hdr);
3418 kmem_cache_free(old, hdr);
3419
3420 return (nhdr);
3421 }
3422
3423 /*
3424 * This function is used by the send / receive code to convert a newly
3425 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3426 * is also used to allow the root objset block to be updated without altering
3427 * its embedded MACs. Both block types will always be uncompressed so we do not
3428 * have to worry about compression type or psize.
3429 */
3430 void
arc_convert_to_raw(arc_buf_t * buf,uint64_t dsobj,boolean_t byteorder,dmu_object_type_t ot,const uint8_t * salt,const uint8_t * iv,const uint8_t * mac)3431 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder,
3432 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv,
3433 const uint8_t *mac)
3434 {
3435 arc_buf_hdr_t *hdr = buf->b_hdr;
3436
3437 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET);
3438 ASSERT(HDR_HAS_L1HDR(hdr));
3439 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3440
3441 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED);
3442 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3443 hdr->b_crypt_hdr.b_dsobj = dsobj;
3444 hdr->b_crypt_hdr.b_ot = ot;
3445 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3446 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3447 if (!arc_hdr_has_uncompressed_buf(hdr))
3448 arc_cksum_free(hdr);
3449
3450 if (salt != NULL)
3451 memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
3452 if (iv != NULL)
3453 memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
3454 if (mac != NULL)
3455 memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
3456 }
3457
3458 /*
3459 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3460 * The buf is returned thawed since we expect the consumer to modify it.
3461 */
3462 arc_buf_t *
arc_alloc_buf(spa_t * spa,const void * tag,arc_buf_contents_t type,int32_t size)3463 arc_alloc_buf(spa_t *spa, const void *tag, arc_buf_contents_t type,
3464 int32_t size)
3465 {
3466 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3467 B_FALSE, ZIO_COMPRESS_OFF, 0, type);
3468
3469 arc_buf_t *buf = NULL;
3470 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE,
3471 B_FALSE, B_FALSE, &buf));
3472 arc_buf_thaw(buf);
3473
3474 return (buf);
3475 }
3476
3477 /*
3478 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3479 * for bufs containing metadata.
3480 */
3481 arc_buf_t *
arc_alloc_compressed_buf(spa_t * spa,const void * tag,uint64_t psize,uint64_t lsize,enum zio_compress compression_type,uint8_t complevel)3482 arc_alloc_compressed_buf(spa_t *spa, const void *tag, uint64_t psize,
3483 uint64_t lsize, enum zio_compress compression_type, uint8_t complevel)
3484 {
3485 ASSERT3U(lsize, >, 0);
3486 ASSERT3U(lsize, >=, psize);
3487 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF);
3488 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3489
3490 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3491 B_FALSE, compression_type, complevel, ARC_BUFC_DATA);
3492
3493 arc_buf_t *buf = NULL;
3494 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE,
3495 B_TRUE, B_FALSE, B_FALSE, &buf));
3496 arc_buf_thaw(buf);
3497
3498 /*
3499 * To ensure that the hdr has the correct data in it if we call
3500 * arc_untransform() on this buf before it's been written to disk,
3501 * it's easiest if we just set up sharing between the buf and the hdr.
3502 */
3503 arc_share_buf(hdr, buf);
3504
3505 return (buf);
3506 }
3507
3508 arc_buf_t *
arc_alloc_raw_buf(spa_t * spa,const void * tag,uint64_t dsobj,boolean_t byteorder,const uint8_t * salt,const uint8_t * iv,const uint8_t * mac,dmu_object_type_t ot,uint64_t psize,uint64_t lsize,enum zio_compress compression_type,uint8_t complevel)3509 arc_alloc_raw_buf(spa_t *spa, const void *tag, uint64_t dsobj,
3510 boolean_t byteorder, const uint8_t *salt, const uint8_t *iv,
3511 const uint8_t *mac, dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
3512 enum zio_compress compression_type, uint8_t complevel)
3513 {
3514 arc_buf_hdr_t *hdr;
3515 arc_buf_t *buf;
3516 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ?
3517 ARC_BUFC_METADATA : ARC_BUFC_DATA;
3518
3519 ASSERT3U(lsize, >, 0);
3520 ASSERT3U(lsize, >=, psize);
3521 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF);
3522 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3523
3524 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE,
3525 compression_type, complevel, type);
3526
3527 hdr->b_crypt_hdr.b_dsobj = dsobj;
3528 hdr->b_crypt_hdr.b_ot = ot;
3529 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3530 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3531 memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
3532 memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
3533 memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
3534
3535 /*
3536 * This buffer will be considered encrypted even if the ot is not an
3537 * encrypted type. It will become authenticated instead in
3538 * arc_write_ready().
3539 */
3540 buf = NULL;
3541 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE,
3542 B_FALSE, B_FALSE, &buf));
3543 arc_buf_thaw(buf);
3544
3545 return (buf);
3546 }
3547
3548 static void
l2arc_hdr_arcstats_update(arc_buf_hdr_t * hdr,boolean_t incr,boolean_t state_only)3549 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
3550 boolean_t state_only)
3551 {
3552 uint64_t lsize = HDR_GET_LSIZE(hdr);
3553 uint64_t psize = HDR_GET_PSIZE(hdr);
3554 uint64_t asize = HDR_GET_L2SIZE(hdr);
3555 arc_buf_contents_t type = hdr->b_type;
3556 int64_t lsize_s;
3557 int64_t psize_s;
3558 int64_t asize_s;
3559
3560 /* For L2 we expect the header's b_l2size to be valid */
3561 ASSERT3U(asize, >=, psize);
3562
3563 if (incr) {
3564 lsize_s = lsize;
3565 psize_s = psize;
3566 asize_s = asize;
3567 } else {
3568 lsize_s = -lsize;
3569 psize_s = -psize;
3570 asize_s = -asize;
3571 }
3572
3573 /* If the buffer is a prefetch, count it as such. */
3574 if (HDR_PREFETCH(hdr)) {
3575 ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s);
3576 } else {
3577 /*
3578 * We use the value stored in the L2 header upon initial
3579 * caching in L2ARC. This value will be updated in case
3580 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC
3581 * metadata (log entry) cannot currently be updated. Having
3582 * the ARC state in the L2 header solves the problem of a
3583 * possibly absent L1 header (apparent in buffers restored
3584 * from persistent L2ARC).
3585 */
3586 switch (hdr->b_l2hdr.b_arcs_state) {
3587 case ARC_STATE_MRU_GHOST:
3588 case ARC_STATE_MRU:
3589 ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s);
3590 break;
3591 case ARC_STATE_MFU_GHOST:
3592 case ARC_STATE_MFU:
3593 ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s);
3594 break;
3595 default:
3596 break;
3597 }
3598 }
3599
3600 if (state_only)
3601 return;
3602
3603 ARCSTAT_INCR(arcstat_l2_psize, psize_s);
3604 ARCSTAT_INCR(arcstat_l2_lsize, lsize_s);
3605
3606 switch (type) {
3607 case ARC_BUFC_DATA:
3608 ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s);
3609 break;
3610 case ARC_BUFC_METADATA:
3611 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s);
3612 break;
3613 default:
3614 break;
3615 }
3616 }
3617
3618
3619 static void
arc_hdr_l2hdr_destroy(arc_buf_hdr_t * hdr)3620 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3621 {
3622 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3623 l2arc_dev_t *dev = l2hdr->b_dev;
3624
3625 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3626 ASSERT(HDR_HAS_L2HDR(hdr));
3627
3628 list_remove(&dev->l2ad_buflist, hdr);
3629
3630 l2arc_hdr_arcstats_decrement(hdr);
3631 if (dev->l2ad_vdev != NULL) {
3632 uint64_t asize = HDR_GET_L2SIZE(hdr);
3633 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
3634 }
3635
3636 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3637 hdr);
3638 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3639 }
3640
3641 static void
arc_hdr_destroy(arc_buf_hdr_t * hdr)3642 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3643 {
3644 if (HDR_HAS_L1HDR(hdr)) {
3645 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3646 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3647 }
3648 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3649 ASSERT(!HDR_IN_HASH_TABLE(hdr));
3650
3651 if (HDR_HAS_L2HDR(hdr)) {
3652 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3653 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3654
3655 if (!buflist_held)
3656 mutex_enter(&dev->l2ad_mtx);
3657
3658 /*
3659 * Even though we checked this conditional above, we
3660 * need to check this again now that we have the
3661 * l2ad_mtx. This is because we could be racing with
3662 * another thread calling l2arc_evict() which might have
3663 * destroyed this header's L2 portion as we were waiting
3664 * to acquire the l2ad_mtx. If that happens, we don't
3665 * want to re-destroy the header's L2 portion.
3666 */
3667 if (HDR_HAS_L2HDR(hdr)) {
3668
3669 if (!HDR_EMPTY(hdr))
3670 buf_discard_identity(hdr);
3671
3672 arc_hdr_l2hdr_destroy(hdr);
3673 }
3674
3675 if (!buflist_held)
3676 mutex_exit(&dev->l2ad_mtx);
3677 }
3678
3679 /*
3680 * The header's identify can only be safely discarded once it is no
3681 * longer discoverable. This requires removing it from the hash table
3682 * and the l2arc header list. After this point the hash lock can not
3683 * be used to protect the header.
3684 */
3685 if (!HDR_EMPTY(hdr))
3686 buf_discard_identity(hdr);
3687
3688 if (HDR_HAS_L1HDR(hdr)) {
3689 arc_cksum_free(hdr);
3690
3691 while (hdr->b_l1hdr.b_buf != NULL)
3692 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3693
3694 if (hdr->b_l1hdr.b_pabd != NULL)
3695 arc_hdr_free_abd(hdr, B_FALSE);
3696
3697 if (HDR_HAS_RABD(hdr))
3698 arc_hdr_free_abd(hdr, B_TRUE);
3699 }
3700
3701 ASSERT0P(hdr->b_hash_next);
3702 if (HDR_HAS_L1HDR(hdr)) {
3703 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3704 ASSERT0P(hdr->b_l1hdr.b_acb);
3705 #ifdef ZFS_DEBUG
3706 ASSERT0P(hdr->b_l1hdr.b_freeze_cksum);
3707 #endif
3708 kmem_cache_free(hdr_full_cache, hdr);
3709 } else {
3710 kmem_cache_free(hdr_l2only_cache, hdr);
3711 }
3712 }
3713
3714 void
arc_buf_destroy(arc_buf_t * buf,const void * tag)3715 arc_buf_destroy(arc_buf_t *buf, const void *tag)
3716 {
3717 arc_buf_hdr_t *hdr = buf->b_hdr;
3718
3719 if (hdr->b_l1hdr.b_state == arc_anon) {
3720 ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
3721 ASSERT(ARC_BUF_LAST(buf));
3722 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3723 VERIFY0(remove_reference(hdr, tag));
3724 return;
3725 }
3726
3727 kmutex_t *hash_lock = HDR_LOCK(hdr);
3728 mutex_enter(hash_lock);
3729
3730 ASSERT3P(hdr, ==, buf->b_hdr);
3731 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
3732 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3733 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3734 ASSERT3P(buf->b_data, !=, NULL);
3735
3736 arc_buf_destroy_impl(buf);
3737 (void) remove_reference(hdr, tag);
3738 mutex_exit(hash_lock);
3739 }
3740
3741 /*
3742 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3743 * state of the header is dependent on its state prior to entering this
3744 * function. The following transitions are possible:
3745 *
3746 * - arc_mru -> arc_mru_ghost
3747 * - arc_mfu -> arc_mfu_ghost
3748 * - arc_mru_ghost -> arc_l2c_only
3749 * - arc_mru_ghost -> deleted
3750 * - arc_mfu_ghost -> arc_l2c_only
3751 * - arc_mfu_ghost -> deleted
3752 * - arc_uncached -> deleted
3753 *
3754 * Return total size of evicted data buffers for eviction progress tracking.
3755 * When evicting from ghost states return logical buffer size to make eviction
3756 * progress at the same (or at least comparable) rate as from non-ghost states.
3757 *
3758 * Return *real_evicted for actual ARC size reduction to wake up threads
3759 * waiting for it. For non-ghost states it includes size of evicted data
3760 * buffers (the headers are not freed there). For ghost states it includes
3761 * only the evicted headers size.
3762 */
3763 static int64_t
arc_evict_hdr(arc_buf_hdr_t * hdr,uint64_t * real_evicted)3764 arc_evict_hdr(arc_buf_hdr_t *hdr, uint64_t *real_evicted)
3765 {
3766 arc_state_t *evicted_state, *state;
3767 int64_t bytes_evicted = 0;
3768 uint_t min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
3769 arc_min_prescient_prefetch_ms : arc_min_prefetch_ms;
3770
3771 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3772 ASSERT(HDR_HAS_L1HDR(hdr));
3773 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3774 ASSERT0P(hdr->b_l1hdr.b_buf);
3775 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3776
3777 *real_evicted = 0;
3778 state = hdr->b_l1hdr.b_state;
3779 if (GHOST_STATE(state)) {
3780
3781 /*
3782 * l2arc_write_buffers() relies on a header's L1 portion
3783 * (i.e. its b_pabd field) during it's write phase.
3784 * Thus, we cannot push a header onto the arc_l2c_only
3785 * state (removing its L1 piece) until the header is
3786 * done being written to the l2arc.
3787 */
3788 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3789 ARCSTAT_BUMP(arcstat_evict_l2_skip);
3790 return (bytes_evicted);
3791 }
3792
3793 ARCSTAT_BUMP(arcstat_deleted);
3794 bytes_evicted += HDR_GET_LSIZE(hdr);
3795
3796 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3797
3798 if (HDR_HAS_L2HDR(hdr)) {
3799 ASSERT0P(hdr->b_l1hdr.b_pabd);
3800 ASSERT(!HDR_HAS_RABD(hdr));
3801 /*
3802 * This buffer is cached on the 2nd Level ARC;
3803 * don't destroy the header.
3804 */
3805 arc_change_state(arc_l2c_only, hdr);
3806 /*
3807 * dropping from L1+L2 cached to L2-only,
3808 * realloc to remove the L1 header.
3809 */
3810 (void) arc_hdr_realloc(hdr, hdr_full_cache,
3811 hdr_l2only_cache);
3812 *real_evicted += HDR_FULL_SIZE - HDR_L2ONLY_SIZE;
3813 } else {
3814 arc_change_state(arc_anon, hdr);
3815 arc_hdr_destroy(hdr);
3816 *real_evicted += HDR_FULL_SIZE;
3817 }
3818 return (bytes_evicted);
3819 }
3820
3821 ASSERT(state == arc_mru || state == arc_mfu || state == arc_uncached);
3822 evicted_state = (state == arc_uncached) ? arc_anon :
3823 ((state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost);
3824
3825 /* prefetch buffers have a minimum lifespan */
3826 if ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3827 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3828 MSEC_TO_TICK(min_lifetime)) {
3829 ARCSTAT_BUMP(arcstat_evict_skip);
3830 return (bytes_evicted);
3831 }
3832
3833 if (HDR_HAS_L2HDR(hdr)) {
3834 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3835 } else {
3836 if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3837 ARCSTAT_INCR(arcstat_evict_l2_eligible,
3838 HDR_GET_LSIZE(hdr));
3839
3840 switch (state->arcs_state) {
3841 case ARC_STATE_MRU:
3842 ARCSTAT_INCR(
3843 arcstat_evict_l2_eligible_mru,
3844 HDR_GET_LSIZE(hdr));
3845 break;
3846 case ARC_STATE_MFU:
3847 ARCSTAT_INCR(
3848 arcstat_evict_l2_eligible_mfu,
3849 HDR_GET_LSIZE(hdr));
3850 break;
3851 default:
3852 break;
3853 }
3854 } else {
3855 ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3856 HDR_GET_LSIZE(hdr));
3857 }
3858 }
3859
3860 bytes_evicted += arc_hdr_size(hdr);
3861 *real_evicted += arc_hdr_size(hdr);
3862
3863 /*
3864 * If this hdr is being evicted and has a compressed buffer then we
3865 * discard it here before we change states. This ensures that the
3866 * accounting is updated correctly in arc_free_data_impl().
3867 */
3868 if (hdr->b_l1hdr.b_pabd != NULL)
3869 arc_hdr_free_abd(hdr, B_FALSE);
3870
3871 if (HDR_HAS_RABD(hdr))
3872 arc_hdr_free_abd(hdr, B_TRUE);
3873
3874 arc_change_state(evicted_state, hdr);
3875 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3876 if (evicted_state == arc_anon) {
3877 arc_hdr_destroy(hdr);
3878 *real_evicted += HDR_FULL_SIZE;
3879 } else {
3880 ASSERT(HDR_IN_HASH_TABLE(hdr));
3881 }
3882
3883 return (bytes_evicted);
3884 }
3885
3886 static void
arc_set_need_free(void)3887 arc_set_need_free(void)
3888 {
3889 ASSERT(MUTEX_HELD(&arc_evict_lock));
3890 int64_t remaining = arc_free_memory() - arc_sys_free / 2;
3891 arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters);
3892 if (aw == NULL) {
3893 arc_need_free = MAX(-remaining, 0);
3894 } else {
3895 arc_need_free =
3896 MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count));
3897 }
3898 }
3899
3900 static uint64_t
arc_evict_state_impl(multilist_t * ml,int idx,arc_buf_hdr_t * marker,uint64_t spa,uint64_t bytes)3901 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3902 uint64_t spa, uint64_t bytes)
3903 {
3904 multilist_sublist_t *mls;
3905 uint64_t bytes_evicted = 0, real_evicted = 0;
3906 arc_buf_hdr_t *hdr;
3907 kmutex_t *hash_lock;
3908 uint_t evict_count = zfs_arc_evict_batch_limit;
3909
3910 ASSERT3P(marker, !=, NULL);
3911
3912 mls = multilist_sublist_lock_idx(ml, idx);
3913
3914 for (hdr = multilist_sublist_prev(mls, marker); likely(hdr != NULL);
3915 hdr = multilist_sublist_prev(mls, marker)) {
3916 if ((evict_count == 0) || (bytes_evicted >= bytes))
3917 break;
3918
3919 /*
3920 * To keep our iteration location, move the marker
3921 * forward. Since we're not holding hdr's hash lock, we
3922 * must be very careful and not remove 'hdr' from the
3923 * sublist. Otherwise, other consumers might mistake the
3924 * 'hdr' as not being on a sublist when they call the
3925 * multilist_link_active() function (they all rely on
3926 * the hash lock protecting concurrent insertions and
3927 * removals). multilist_sublist_move_forward() was
3928 * specifically implemented to ensure this is the case
3929 * (only 'marker' will be removed and re-inserted).
3930 */
3931 multilist_sublist_move_forward(mls, marker);
3932
3933 /*
3934 * The only case where the b_spa field should ever be
3935 * zero, is the marker headers inserted by
3936 * arc_evict_state(). It's possible for multiple threads
3937 * to be calling arc_evict_state() concurrently (e.g.
3938 * dsl_pool_close() and zio_inject_fault()), so we must
3939 * skip any markers we see from these other threads.
3940 */
3941 if (hdr->b_spa == 0)
3942 continue;
3943
3944 /* we're only interested in evicting buffers of a certain spa */
3945 if (spa != 0 && hdr->b_spa != spa) {
3946 ARCSTAT_BUMP(arcstat_evict_skip);
3947 continue;
3948 }
3949
3950 hash_lock = HDR_LOCK(hdr);
3951
3952 /*
3953 * We aren't calling this function from any code path
3954 * that would already be holding a hash lock, so we're
3955 * asserting on this assumption to be defensive in case
3956 * this ever changes. Without this check, it would be
3957 * possible to incorrectly increment arcstat_mutex_miss
3958 * below (e.g. if the code changed such that we called
3959 * this function with a hash lock held).
3960 */
3961 ASSERT(!MUTEX_HELD(hash_lock));
3962
3963 if (mutex_tryenter(hash_lock)) {
3964 uint64_t revicted;
3965 uint64_t evicted = arc_evict_hdr(hdr, &revicted);
3966 mutex_exit(hash_lock);
3967
3968 bytes_evicted += evicted;
3969 real_evicted += revicted;
3970
3971 /*
3972 * If evicted is zero, arc_evict_hdr() must have
3973 * decided to skip this header, don't increment
3974 * evict_count in this case.
3975 */
3976 if (evicted != 0)
3977 evict_count--;
3978
3979 } else {
3980 ARCSTAT_BUMP(arcstat_mutex_miss);
3981 }
3982 }
3983
3984 multilist_sublist_unlock(mls);
3985
3986 /*
3987 * Increment the count of evicted bytes, and wake up any threads that
3988 * are waiting for the count to reach this value. Since the list is
3989 * ordered by ascending aew_count, we pop off the beginning of the
3990 * list until we reach the end, or a waiter that's past the current
3991 * "count". Doing this outside the loop reduces the number of times
3992 * we need to acquire the global arc_evict_lock.
3993 *
3994 * Only wake when there's sufficient free memory in the system
3995 * (specifically, arc_sys_free/2, which by default is a bit more than
3996 * 1/64th of RAM). See the comments in arc_wait_for_eviction().
3997 */
3998 mutex_enter(&arc_evict_lock);
3999 arc_evict_count += real_evicted;
4000
4001 if (arc_free_memory() > arc_sys_free / 2) {
4002 arc_evict_waiter_t *aw;
4003 while ((aw = list_head(&arc_evict_waiters)) != NULL &&
4004 aw->aew_count <= arc_evict_count) {
4005 list_remove(&arc_evict_waiters, aw);
4006 cv_broadcast(&aw->aew_cv);
4007 }
4008 }
4009 arc_set_need_free();
4010 mutex_exit(&arc_evict_lock);
4011
4012 /*
4013 * If the ARC size is reduced from arc_c_max to arc_c_min (especially
4014 * if the average cached block is small), eviction can be on-CPU for
4015 * many seconds. To ensure that other threads that may be bound to
4016 * this CPU are able to make progress, make a voluntary preemption
4017 * call here.
4018 */
4019 kpreempt(KPREEMPT_SYNC);
4020
4021 return (bytes_evicted);
4022 }
4023
4024 static arc_buf_hdr_t *
arc_state_alloc_marker(void)4025 arc_state_alloc_marker(void)
4026 {
4027 arc_buf_hdr_t *marker = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
4028
4029 /*
4030 * A b_spa of 0 is used to indicate that this header is
4031 * a marker. This fact is used in arc_evict_state_impl().
4032 */
4033 marker->b_spa = 0;
4034
4035 return (marker);
4036 }
4037
4038 static void
arc_state_free_marker(arc_buf_hdr_t * marker)4039 arc_state_free_marker(arc_buf_hdr_t *marker)
4040 {
4041 kmem_cache_free(hdr_full_cache, marker);
4042 }
4043
4044 /*
4045 * Allocate an array of buffer headers used as placeholders during arc state
4046 * eviction.
4047 */
4048 static arc_buf_hdr_t **
arc_state_alloc_markers(int count)4049 arc_state_alloc_markers(int count)
4050 {
4051 arc_buf_hdr_t **markers;
4052
4053 markers = kmem_zalloc(sizeof (*markers) * count, KM_SLEEP);
4054 for (int i = 0; i < count; i++)
4055 markers[i] = arc_state_alloc_marker();
4056 return (markers);
4057 }
4058
4059 static void
arc_state_free_markers(arc_buf_hdr_t ** markers,int count)4060 arc_state_free_markers(arc_buf_hdr_t **markers, int count)
4061 {
4062 for (int i = 0; i < count; i++)
4063 arc_state_free_marker(markers[i]);
4064 kmem_free(markers, sizeof (*markers) * count);
4065 }
4066
4067 typedef struct evict_arg {
4068 taskq_ent_t eva_tqent;
4069 multilist_t *eva_ml;
4070 arc_buf_hdr_t *eva_marker;
4071 int eva_idx;
4072 uint64_t eva_spa;
4073 uint64_t eva_bytes;
4074 uint64_t eva_evicted;
4075 } evict_arg_t;
4076
4077 static void
arc_evict_task(void * arg)4078 arc_evict_task(void *arg)
4079 {
4080 evict_arg_t *eva = arg;
4081 eva->eva_evicted = arc_evict_state_impl(eva->eva_ml, eva->eva_idx,
4082 eva->eva_marker, eva->eva_spa, eva->eva_bytes);
4083 }
4084
4085 static void
arc_evict_thread_init(void)4086 arc_evict_thread_init(void)
4087 {
4088 if (zfs_arc_evict_threads == 0) {
4089 /*
4090 * Compute number of threads we want to use for eviction.
4091 *
4092 * Normally, it's log2(ncpus) + ncpus/32, which gets us to the
4093 * default max of 16 threads at ~256 CPUs.
4094 *
4095 * However, that formula goes to two threads at 4 CPUs, which
4096 * is still rather to low to be really useful, so we just go
4097 * with 1 thread at fewer than 6 cores.
4098 */
4099 if (max_ncpus < 6)
4100 zfs_arc_evict_threads = 1;
4101 else
4102 zfs_arc_evict_threads =
4103 (highbit64(max_ncpus) - 1) + max_ncpus / 32;
4104 } else if (zfs_arc_evict_threads > max_ncpus)
4105 zfs_arc_evict_threads = max_ncpus;
4106
4107 if (zfs_arc_evict_threads > 1) {
4108 arc_evict_taskq = taskq_create("arc_evict",
4109 zfs_arc_evict_threads, defclsyspri, 0, INT_MAX,
4110 TASKQ_PREPOPULATE);
4111 arc_evict_arg = kmem_zalloc(
4112 sizeof (evict_arg_t) * zfs_arc_evict_threads, KM_SLEEP);
4113 }
4114 }
4115
4116 /*
4117 * The minimum number of bytes we can evict at once is a block size.
4118 * So, SPA_MAXBLOCKSIZE is a reasonable minimal value per an eviction task.
4119 * We use this value to compute a scaling factor for the eviction tasks.
4120 */
4121 #define MIN_EVICT_SIZE (SPA_MAXBLOCKSIZE)
4122
4123 /*
4124 * Evict buffers from the given arc state, until we've removed the
4125 * specified number of bytes. Move the removed buffers to the
4126 * appropriate evict state.
4127 *
4128 * This function makes a "best effort". It skips over any buffers
4129 * it can't get a hash_lock on, and so, may not catch all candidates.
4130 * It may also return without evicting as much space as requested.
4131 *
4132 * If bytes is specified using the special value ARC_EVICT_ALL, this
4133 * will evict all available (i.e. unlocked and evictable) buffers from
4134 * the given arc state; which is used by arc_flush().
4135 */
4136 static uint64_t
arc_evict_state(arc_state_t * state,arc_buf_contents_t type,uint64_t spa,uint64_t bytes)4137 arc_evict_state(arc_state_t *state, arc_buf_contents_t type, uint64_t spa,
4138 uint64_t bytes)
4139 {
4140 uint64_t total_evicted = 0;
4141 multilist_t *ml = &state->arcs_list[type];
4142 int num_sublists;
4143 arc_buf_hdr_t **markers;
4144 evict_arg_t *eva = NULL;
4145
4146 num_sublists = multilist_get_num_sublists(ml);
4147
4148 boolean_t use_evcttq = zfs_arc_evict_threads > 1;
4149
4150 /*
4151 * If we've tried to evict from each sublist, made some
4152 * progress, but still have not hit the target number of bytes
4153 * to evict, we want to keep trying. The markers allow us to
4154 * pick up where we left off for each individual sublist, rather
4155 * than starting from the tail each time.
4156 */
4157 if (zthr_iscurthread(arc_evict_zthr)) {
4158 markers = arc_state_evict_markers;
4159 ASSERT3S(num_sublists, <=, arc_state_evict_marker_count);
4160 } else {
4161 markers = arc_state_alloc_markers(num_sublists);
4162 }
4163 for (int i = 0; i < num_sublists; i++) {
4164 multilist_sublist_t *mls;
4165
4166 mls = multilist_sublist_lock_idx(ml, i);
4167 multilist_sublist_insert_tail(mls, markers[i]);
4168 multilist_sublist_unlock(mls);
4169 }
4170
4171 if (use_evcttq) {
4172 if (zthr_iscurthread(arc_evict_zthr))
4173 eva = arc_evict_arg;
4174 else
4175 eva = kmem_alloc(sizeof (evict_arg_t) *
4176 zfs_arc_evict_threads, KM_NOSLEEP);
4177 if (eva) {
4178 for (int i = 0; i < zfs_arc_evict_threads; i++) {
4179 taskq_init_ent(&eva[i].eva_tqent);
4180 eva[i].eva_ml = ml;
4181 eva[i].eva_spa = spa;
4182 }
4183 } else {
4184 /*
4185 * Fall back to the regular single evict if it is not
4186 * possible to allocate memory for the taskq entries.
4187 */
4188 use_evcttq = B_FALSE;
4189 }
4190 }
4191
4192 /*
4193 * Start eviction using a randomly selected sublist, this is to try and
4194 * evenly balance eviction across all sublists. Always starting at the
4195 * same sublist (e.g. index 0) would cause evictions to favor certain
4196 * sublists over others.
4197 */
4198 uint64_t scan_evicted = 0;
4199 int sublists_left = num_sublists;
4200 int sublist_idx = multilist_get_random_index(ml);
4201
4202 /*
4203 * While we haven't hit our target number of bytes to evict, or
4204 * we're evicting all available buffers.
4205 */
4206 while (total_evicted < bytes) {
4207 uint64_t evict = MIN_EVICT_SIZE;
4208 uint_t ntasks = zfs_arc_evict_threads;
4209
4210 if (use_evcttq) {
4211 if (sublists_left < ntasks)
4212 ntasks = sublists_left;
4213
4214 if (ntasks < 2)
4215 use_evcttq = B_FALSE;
4216 }
4217
4218 if (use_evcttq) {
4219 uint64_t left = bytes - total_evicted;
4220
4221 if (bytes == ARC_EVICT_ALL) {
4222 evict = bytes;
4223 } else if (left > ntasks * MIN_EVICT_SIZE) {
4224 evict = DIV_ROUND_UP(left, ntasks);
4225 } else {
4226 ntasks = DIV_ROUND_UP(left, MIN_EVICT_SIZE);
4227 if (ntasks == 1)
4228 use_evcttq = B_FALSE;
4229 }
4230 }
4231
4232 for (int i = 0; sublists_left > 0; i++, sublist_idx++,
4233 sublists_left--) {
4234 uint64_t bytes_remaining;
4235 uint64_t bytes_evicted;
4236
4237 /* we've reached the end, wrap to the beginning */
4238 if (sublist_idx >= num_sublists)
4239 sublist_idx = 0;
4240
4241 if (use_evcttq) {
4242 if (i == ntasks)
4243 break;
4244
4245 eva[i].eva_marker = markers[sublist_idx];
4246 eva[i].eva_idx = sublist_idx;
4247 eva[i].eva_bytes = evict;
4248
4249 taskq_dispatch_ent(arc_evict_taskq,
4250 arc_evict_task, &eva[i], 0,
4251 &eva[i].eva_tqent);
4252
4253 continue;
4254 }
4255
4256 if (total_evicted < bytes)
4257 bytes_remaining = bytes - total_evicted;
4258 else
4259 break;
4260
4261 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
4262 markers[sublist_idx], spa, bytes_remaining);
4263
4264 scan_evicted += bytes_evicted;
4265 total_evicted += bytes_evicted;
4266 }
4267
4268 if (use_evcttq) {
4269 taskq_wait(arc_evict_taskq);
4270
4271 for (int i = 0; i < ntasks; i++) {
4272 scan_evicted += eva[i].eva_evicted;
4273 total_evicted += eva[i].eva_evicted;
4274 }
4275 }
4276
4277 /*
4278 * If we scanned all sublists and didn't evict anything, we
4279 * have no reason to believe we'll evict more during another
4280 * scan, so break the loop.
4281 */
4282 if (scan_evicted == 0 && sublists_left == 0) {
4283 /* This isn't possible, let's make that obvious */
4284 ASSERT3S(bytes, !=, 0);
4285
4286 /*
4287 * When bytes is ARC_EVICT_ALL, the only way to
4288 * break the loop is when scan_evicted is zero.
4289 * In that case, we actually have evicted enough,
4290 * so we don't want to increment the kstat.
4291 */
4292 if (bytes != ARC_EVICT_ALL) {
4293 ASSERT3S(total_evicted, <, bytes);
4294 ARCSTAT_BUMP(arcstat_evict_not_enough);
4295 }
4296
4297 break;
4298 }
4299
4300 /*
4301 * If we scanned all sublists but still have more to do,
4302 * reset the counts so we can go around again.
4303 */
4304 if (sublists_left == 0) {
4305 sublists_left = num_sublists;
4306 sublist_idx = multilist_get_random_index(ml);
4307 scan_evicted = 0;
4308
4309 /*
4310 * Since we're about to reconsider all sublists,
4311 * re-enable use of the evict threads if available.
4312 */
4313 use_evcttq = (zfs_arc_evict_threads > 1 && eva != NULL);
4314 }
4315 }
4316
4317 if (eva != NULL && eva != arc_evict_arg)
4318 kmem_free(eva, sizeof (evict_arg_t) * zfs_arc_evict_threads);
4319
4320 for (int i = 0; i < num_sublists; i++) {
4321 multilist_sublist_t *mls = multilist_sublist_lock_idx(ml, i);
4322 multilist_sublist_remove(mls, markers[i]);
4323 multilist_sublist_unlock(mls);
4324 }
4325
4326 if (markers != arc_state_evict_markers)
4327 arc_state_free_markers(markers, num_sublists);
4328
4329 return (total_evicted);
4330 }
4331
4332 /*
4333 * Flush all "evictable" data of the given type from the arc state
4334 * specified. This will not evict any "active" buffers (i.e. referenced).
4335 *
4336 * When 'retry' is set to B_FALSE, the function will make a single pass
4337 * over the state and evict any buffers that it can. Since it doesn't
4338 * continually retry the eviction, it might end up leaving some buffers
4339 * in the ARC due to lock misses.
4340 *
4341 * When 'retry' is set to B_TRUE, the function will continually retry the
4342 * eviction until *all* evictable buffers have been removed from the
4343 * state. As a result, if concurrent insertions into the state are
4344 * allowed (e.g. if the ARC isn't shutting down), this function might
4345 * wind up in an infinite loop, continually trying to evict buffers.
4346 */
4347 static uint64_t
arc_flush_state(arc_state_t * state,uint64_t spa,arc_buf_contents_t type,boolean_t retry)4348 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
4349 boolean_t retry)
4350 {
4351 uint64_t evicted = 0;
4352
4353 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) {
4354 evicted += arc_evict_state(state, type, spa, ARC_EVICT_ALL);
4355
4356 if (!retry)
4357 break;
4358 }
4359
4360 return (evicted);
4361 }
4362
4363 /*
4364 * Evict the specified number of bytes from the state specified. This
4365 * function prevents us from trying to evict more from a state's list
4366 * than is "evictable", and to skip evicting altogether when passed a
4367 * negative value for "bytes". In contrast, arc_evict_state() will
4368 * evict everything it can, when passed a negative value for "bytes".
4369 */
4370 static uint64_t
arc_evict_impl(arc_state_t * state,arc_buf_contents_t type,int64_t bytes)4371 arc_evict_impl(arc_state_t *state, arc_buf_contents_t type, int64_t bytes)
4372 {
4373 uint64_t delta;
4374
4375 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) {
4376 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]),
4377 bytes);
4378 return (arc_evict_state(state, type, 0, delta));
4379 }
4380
4381 return (0);
4382 }
4383
4384 /*
4385 * Adjust specified fraction, taking into account initial ghost state(s) size,
4386 * ghost hit bytes towards increasing the fraction, ghost hit bytes towards
4387 * decreasing it, plus a balance factor, controlling the decrease rate, used
4388 * to balance metadata vs data.
4389 */
4390 static uint64_t
arc_evict_adj(uint64_t frac,uint64_t total,uint64_t up,uint64_t down,uint_t balance)4391 arc_evict_adj(uint64_t frac, uint64_t total, uint64_t up, uint64_t down,
4392 uint_t balance)
4393 {
4394 if (total < 32 || up + down == 0)
4395 return (frac);
4396
4397 /*
4398 * We should not have more ghost hits than ghost size, but they may
4399 * get close. To avoid overflows below up/down should not be bigger
4400 * than 1/5 of total. But to limit maximum adjustment speed restrict
4401 * it some more.
4402 */
4403 if (up + down >= total / 16) {
4404 uint64_t scale = (up + down) / (total / 32);
4405 up /= scale;
4406 down /= scale;
4407 }
4408
4409 /* Get maximal dynamic range by choosing optimal shifts. */
4410 int s = highbit64(total);
4411 s = MIN(64 - s, 32);
4412
4413 ASSERT3U(frac, <=, 1ULL << 32);
4414 uint64_t ofrac = (1ULL << 32) - frac;
4415
4416 if (frac >= 4 * ofrac)
4417 up /= frac / (2 * ofrac + 1);
4418 up = (up << s) / (total >> (32 - s));
4419 if (ofrac >= 4 * frac)
4420 down /= ofrac / (2 * frac + 1);
4421 down = (down << s) / (total >> (32 - s));
4422 down = down * 100 / balance;
4423
4424 ASSERT3U(up, <=, (1ULL << 32) - frac);
4425 ASSERT3U(down, <=, frac);
4426 return (frac + up - down);
4427 }
4428
4429 /*
4430 * Calculate (x * multiplier / divisor) without unnecesary overflows.
4431 */
4432 static uint64_t
arc_mf(uint64_t x,uint64_t multiplier,uint64_t divisor)4433 arc_mf(uint64_t x, uint64_t multiplier, uint64_t divisor)
4434 {
4435 uint64_t q = (x / divisor);
4436 uint64_t r = (x % divisor);
4437
4438 return ((q * multiplier) + ((r * multiplier) / divisor));
4439 }
4440
4441 /*
4442 * Evict buffers from the cache, such that arcstat_size is capped by arc_c.
4443 */
4444 static uint64_t
arc_evict(void)4445 arc_evict(void)
4446 {
4447 uint64_t bytes, total_evicted = 0;
4448 int64_t e, mrud, mrum, mfud, mfum, w;
4449 static uint64_t ogrd, ogrm, ogfd, ogfm;
4450 static uint64_t gsrd, gsrm, gsfd, gsfm;
4451 uint64_t ngrd, ngrm, ngfd, ngfm;
4452
4453 /* Get current size of ARC states we can evict from. */
4454 mrud = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_DATA]) +
4455 zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]);
4456 mrum = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA]) +
4457 zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
4458 mfud = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
4459 mfum = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
4460 uint64_t d = mrud + mfud;
4461 uint64_t m = mrum + mfum;
4462 uint64_t t = d + m;
4463
4464 /* Get ARC ghost hits since last eviction. */
4465 ngrd = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]);
4466 uint64_t grd = ngrd - ogrd;
4467 ogrd = ngrd;
4468 ngrm = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]);
4469 uint64_t grm = ngrm - ogrm;
4470 ogrm = ngrm;
4471 ngfd = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]);
4472 uint64_t gfd = ngfd - ogfd;
4473 ogfd = ngfd;
4474 ngfm = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]);
4475 uint64_t gfm = ngfm - ogfm;
4476 ogfm = ngfm;
4477
4478 /* Adjust ARC states balance based on ghost hits. */
4479 arc_meta = arc_evict_adj(arc_meta, gsrd + gsrm + gsfd + gsfm,
4480 grm + gfm, grd + gfd, zfs_arc_meta_balance);
4481 arc_pd = arc_evict_adj(arc_pd, gsrd + gsfd, grd, gfd, 100);
4482 arc_pm = arc_evict_adj(arc_pm, gsrm + gsfm, grm, gfm, 100);
4483
4484 uint64_t asize = aggsum_value(&arc_sums.arcstat_size);
4485 uint64_t ac = arc_c;
4486 int64_t wt = t - (asize - ac);
4487
4488 /*
4489 * Try to reduce pinned dnodes if more than 3/4 of wanted metadata
4490 * target is not evictable or if they go over arc_dnode_limit.
4491 */
4492 int64_t prune = 0;
4493 int64_t dn = aggsum_value(&arc_sums.arcstat_dnode_size);
4494 int64_t nem = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA])
4495 + zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA])
4496 - zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA])
4497 - zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
4498 w = wt * (int64_t)(arc_meta >> 16) >> 16;
4499 if (nem > w * 3 / 4) {
4500 prune = dn / sizeof (dnode_t) *
4501 zfs_arc_dnode_reduce_percent / 100;
4502 if (nem < w && w > 4)
4503 prune = arc_mf(prune, nem - w * 3 / 4, w / 4);
4504 }
4505 if (dn > arc_dnode_limit) {
4506 prune = MAX(prune, (dn - arc_dnode_limit) / sizeof (dnode_t) *
4507 zfs_arc_dnode_reduce_percent / 100);
4508 }
4509 if (prune > 0)
4510 arc_prune_async(prune);
4511
4512 /* Evict MRU metadata. */
4513 w = wt * (int64_t)(arc_meta * arc_pm >> 48) >> 16;
4514 e = MIN((int64_t)(asize - ac), (int64_t)(mrum - w));
4515 bytes = arc_evict_impl(arc_mru, ARC_BUFC_METADATA, e);
4516 total_evicted += bytes;
4517 mrum -= bytes;
4518 asize -= bytes;
4519
4520 /* Evict MFU metadata. */
4521 w = wt * (int64_t)(arc_meta >> 16) >> 16;
4522 e = MIN((int64_t)(asize - ac), (int64_t)(m - bytes - w));
4523 bytes = arc_evict_impl(arc_mfu, ARC_BUFC_METADATA, e);
4524 total_evicted += bytes;
4525 mfum -= bytes;
4526 asize -= bytes;
4527
4528 /* Evict MRU data. */
4529 wt -= m - total_evicted;
4530 w = wt * (int64_t)(arc_pd >> 16) >> 16;
4531 e = MIN((int64_t)(asize - ac), (int64_t)(mrud - w));
4532 bytes = arc_evict_impl(arc_mru, ARC_BUFC_DATA, e);
4533 total_evicted += bytes;
4534 mrud -= bytes;
4535 asize -= bytes;
4536
4537 /* Evict MFU data. */
4538 e = asize - ac;
4539 bytes = arc_evict_impl(arc_mfu, ARC_BUFC_DATA, e);
4540 mfud -= bytes;
4541 total_evicted += bytes;
4542
4543 /*
4544 * Evict ghost lists
4545 *
4546 * Size of each state's ghost list represents how much that state
4547 * may grow by shrinking the other states. Would it need to shrink
4548 * other states to zero (that is unlikely), its ghost size would be
4549 * equal to sum of other three state sizes. But excessive ghost
4550 * size may result in false ghost hits (too far back), that may
4551 * never result in real cache hits if several states are competing.
4552 * So choose some arbitraty point of 1/2 of other state sizes.
4553 */
4554 gsrd = (mrum + mfud + mfum) / 2;
4555 e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]) -
4556 gsrd;
4557 (void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_DATA, e);
4558
4559 gsrm = (mrud + mfud + mfum) / 2;
4560 e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]) -
4561 gsrm;
4562 (void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_METADATA, e);
4563
4564 gsfd = (mrud + mrum + mfum) / 2;
4565 e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]) -
4566 gsfd;
4567 (void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_DATA, e);
4568
4569 gsfm = (mrud + mrum + mfud) / 2;
4570 e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]) -
4571 gsfm;
4572 (void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_METADATA, e);
4573
4574 return (total_evicted);
4575 }
4576
4577 static void
arc_flush_impl(uint64_t guid,boolean_t retry)4578 arc_flush_impl(uint64_t guid, boolean_t retry)
4579 {
4580 ASSERT(!retry || guid == 0);
4581
4582 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4583 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4584
4585 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4586 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4587
4588 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4589 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
4590
4591 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4592 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
4593
4594 (void) arc_flush_state(arc_uncached, guid, ARC_BUFC_DATA, retry);
4595 (void) arc_flush_state(arc_uncached, guid, ARC_BUFC_METADATA, retry);
4596 }
4597
4598 void
arc_flush(spa_t * spa,boolean_t retry)4599 arc_flush(spa_t *spa, boolean_t retry)
4600 {
4601 /*
4602 * If retry is B_TRUE, a spa must not be specified since we have
4603 * no good way to determine if all of a spa's buffers have been
4604 * evicted from an arc state.
4605 */
4606 ASSERT(!retry || spa == NULL);
4607
4608 arc_flush_impl(spa != NULL ? spa_load_guid(spa) : 0, retry);
4609 }
4610
4611 static arc_async_flush_t *
arc_async_flush_add(uint64_t spa_guid,uint_t level)4612 arc_async_flush_add(uint64_t spa_guid, uint_t level)
4613 {
4614 arc_async_flush_t *af = kmem_alloc(sizeof (*af), KM_SLEEP);
4615 af->af_spa_guid = spa_guid;
4616 af->af_cache_level = level;
4617 taskq_init_ent(&af->af_tqent);
4618 list_link_init(&af->af_node);
4619
4620 mutex_enter(&arc_async_flush_lock);
4621 list_insert_tail(&arc_async_flush_list, af);
4622 mutex_exit(&arc_async_flush_lock);
4623
4624 return (af);
4625 }
4626
4627 static void
arc_async_flush_remove(uint64_t spa_guid,uint_t level)4628 arc_async_flush_remove(uint64_t spa_guid, uint_t level)
4629 {
4630 mutex_enter(&arc_async_flush_lock);
4631 for (arc_async_flush_t *af = list_head(&arc_async_flush_list);
4632 af != NULL; af = list_next(&arc_async_flush_list, af)) {
4633 if (af->af_spa_guid == spa_guid &&
4634 af->af_cache_level == level) {
4635 list_remove(&arc_async_flush_list, af);
4636 kmem_free(af, sizeof (*af));
4637 break;
4638 }
4639 }
4640 mutex_exit(&arc_async_flush_lock);
4641 }
4642
4643 static void
arc_flush_task(void * arg)4644 arc_flush_task(void *arg)
4645 {
4646 arc_async_flush_t *af = arg;
4647 hrtime_t start_time = gethrtime();
4648 uint64_t spa_guid = af->af_spa_guid;
4649
4650 arc_flush_impl(spa_guid, B_FALSE);
4651 arc_async_flush_remove(spa_guid, af->af_cache_level);
4652
4653 uint64_t elaspsed = NSEC2MSEC(gethrtime() - start_time);
4654 if (elaspsed > 0) {
4655 zfs_dbgmsg("spa %llu arc flushed in %llu ms",
4656 (u_longlong_t)spa_guid, (u_longlong_t)elaspsed);
4657 }
4658 }
4659
4660 /*
4661 * ARC buffers use the spa's load guid and can continue to exist after
4662 * the spa_t is gone (exported). The blocks are orphaned since each
4663 * spa import has a different load guid.
4664 *
4665 * It's OK if the spa is re-imported while this asynchronous flush is
4666 * still in progress. The new spa_load_guid will be different.
4667 *
4668 * Also, arc_fini will wait for any arc_flush_task to finish.
4669 */
4670 void
arc_flush_async(spa_t * spa)4671 arc_flush_async(spa_t *spa)
4672 {
4673 uint64_t spa_guid = spa_load_guid(spa);
4674 arc_async_flush_t *af = arc_async_flush_add(spa_guid, 1);
4675
4676 taskq_dispatch_ent(arc_flush_taskq, arc_flush_task,
4677 af, TQ_SLEEP, &af->af_tqent);
4678 }
4679
4680 /*
4681 * Check if a guid is still in-use as part of an async teardown task
4682 */
4683 boolean_t
arc_async_flush_guid_inuse(uint64_t spa_guid)4684 arc_async_flush_guid_inuse(uint64_t spa_guid)
4685 {
4686 mutex_enter(&arc_async_flush_lock);
4687 for (arc_async_flush_t *af = list_head(&arc_async_flush_list);
4688 af != NULL; af = list_next(&arc_async_flush_list, af)) {
4689 if (af->af_spa_guid == spa_guid) {
4690 mutex_exit(&arc_async_flush_lock);
4691 return (B_TRUE);
4692 }
4693 }
4694 mutex_exit(&arc_async_flush_lock);
4695 return (B_FALSE);
4696 }
4697
4698 uint64_t
arc_reduce_target_size(uint64_t to_free)4699 arc_reduce_target_size(uint64_t to_free)
4700 {
4701 /*
4702 * Get the actual arc size. Even if we don't need it, this updates
4703 * the aggsum lower bound estimate for arc_is_overflowing().
4704 */
4705 uint64_t asize = aggsum_value(&arc_sums.arcstat_size);
4706
4707 /*
4708 * All callers want the ARC to actually evict (at least) this much
4709 * memory. Therefore we reduce from the lower of the current size and
4710 * the target size. This way, even if arc_c is much higher than
4711 * arc_size (as can be the case after many calls to arc_freed(), we will
4712 * immediately have arc_c < arc_size and therefore the arc_evict_zthr
4713 * will evict.
4714 */
4715 uint64_t c = arc_c;
4716 if (c > arc_c_min) {
4717 c = MIN(c, MAX(asize, arc_c_min));
4718 to_free = MIN(to_free, c - arc_c_min);
4719 arc_c = c - to_free;
4720 } else {
4721 to_free = 0;
4722 }
4723
4724 /*
4725 * Since dbuf cache size is a fraction of target ARC size, we should
4726 * notify dbuf about the reduction, which might be significant,
4727 * especially if current ARC size was much smaller than the target.
4728 */
4729 dbuf_cache_reduce_target_size();
4730
4731 /*
4732 * Whether or not we reduced the target size, request eviction if the
4733 * current size is over it now, since caller obviously wants some RAM.
4734 */
4735 if (asize > arc_c) {
4736 /* See comment in arc_evict_cb_check() on why lock+flag */
4737 mutex_enter(&arc_evict_lock);
4738 arc_evict_needed = B_TRUE;
4739 mutex_exit(&arc_evict_lock);
4740 zthr_wakeup(arc_evict_zthr);
4741 }
4742
4743 return (to_free);
4744 }
4745
4746 /*
4747 * Determine if the system is under memory pressure and is asking
4748 * to reclaim memory. A return value of B_TRUE indicates that the system
4749 * is under memory pressure and that the arc should adjust accordingly.
4750 */
4751 boolean_t
arc_reclaim_needed(void)4752 arc_reclaim_needed(void)
4753 {
4754 return (arc_available_memory() < 0);
4755 }
4756
4757 void
arc_kmem_reap_soon(void)4758 arc_kmem_reap_soon(void)
4759 {
4760 size_t i;
4761 kmem_cache_t *prev_cache = NULL;
4762 kmem_cache_t *prev_data_cache = NULL;
4763
4764 #ifdef _KERNEL
4765 #if defined(_ILP32)
4766 /*
4767 * Reclaim unused memory from all kmem caches.
4768 */
4769 kmem_reap();
4770 #endif
4771 #endif
4772
4773 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4774 #if defined(_ILP32)
4775 /* reach upper limit of cache size on 32-bit */
4776 if (zio_buf_cache[i] == NULL)
4777 break;
4778 #endif
4779 if (zio_buf_cache[i] != prev_cache) {
4780 prev_cache = zio_buf_cache[i];
4781 kmem_cache_reap_now(zio_buf_cache[i]);
4782 }
4783 if (zio_data_buf_cache[i] != prev_data_cache) {
4784 prev_data_cache = zio_data_buf_cache[i];
4785 kmem_cache_reap_now(zio_data_buf_cache[i]);
4786 }
4787 }
4788 kmem_cache_reap_now(buf_cache);
4789 kmem_cache_reap_now(hdr_full_cache);
4790 kmem_cache_reap_now(hdr_l2only_cache);
4791 kmem_cache_reap_now(zfs_btree_leaf_cache);
4792 abd_cache_reap_now();
4793 }
4794
4795 static boolean_t
arc_evict_cb_check(void * arg,zthr_t * zthr)4796 arc_evict_cb_check(void *arg, zthr_t *zthr)
4797 {
4798 (void) arg, (void) zthr;
4799
4800 #ifdef ZFS_DEBUG
4801 /*
4802 * This is necessary in order to keep the kstat information
4803 * up to date for tools that display kstat data such as the
4804 * mdb ::arc dcmd and the Linux crash utility. These tools
4805 * typically do not call kstat's update function, but simply
4806 * dump out stats from the most recent update. Without
4807 * this call, these commands may show stale stats for the
4808 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4809 * with this call, the data might be out of date if the
4810 * evict thread hasn't been woken recently; but that should
4811 * suffice. The arc_state_t structures can be queried
4812 * directly if more accurate information is needed.
4813 */
4814 if (arc_ksp != NULL)
4815 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4816 #endif
4817
4818 /*
4819 * We have to rely on arc_wait_for_eviction() to tell us when to
4820 * evict, rather than checking if we are overflowing here, so that we
4821 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv.
4822 * If we have become "not overflowing" since arc_wait_for_eviction()
4823 * checked, we need to wake it up. We could broadcast the CV here,
4824 * but arc_wait_for_eviction() may have not yet gone to sleep. We
4825 * would need to use a mutex to ensure that this function doesn't
4826 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g.
4827 * the arc_evict_lock). However, the lock ordering of such a lock
4828 * would necessarily be incorrect with respect to the zthr_lock,
4829 * which is held before this function is called, and is held by
4830 * arc_wait_for_eviction() when it calls zthr_wakeup().
4831 */
4832 if (arc_evict_needed)
4833 return (B_TRUE);
4834
4835 /*
4836 * If we have buffers in uncached state, evict them periodically.
4837 */
4838 return ((zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_DATA]) +
4839 zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]) &&
4840 ddi_get_lbolt() - arc_last_uncached_flush >
4841 MSEC_TO_TICK(arc_min_prefetch_ms / 2)));
4842 }
4843
4844 /*
4845 * Keep arc_size under arc_c by running arc_evict which evicts data
4846 * from the ARC.
4847 */
4848 static void
arc_evict_cb(void * arg,zthr_t * zthr)4849 arc_evict_cb(void *arg, zthr_t *zthr)
4850 {
4851 (void) arg;
4852
4853 uint64_t evicted = 0;
4854 fstrans_cookie_t cookie = spl_fstrans_mark();
4855
4856 /* Always try to evict from uncached state. */
4857 arc_last_uncached_flush = ddi_get_lbolt();
4858 evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_DATA, B_FALSE);
4859 evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_METADATA, B_FALSE);
4860
4861 /* Evict from other states only if told to. */
4862 if (arc_evict_needed)
4863 evicted += arc_evict();
4864
4865 /*
4866 * If evicted is zero, we couldn't evict anything
4867 * via arc_evict(). This could be due to hash lock
4868 * collisions, but more likely due to the majority of
4869 * arc buffers being unevictable. Therefore, even if
4870 * arc_size is above arc_c, another pass is unlikely to
4871 * be helpful and could potentially cause us to enter an
4872 * infinite loop. Additionally, zthr_iscancelled() is
4873 * checked here so that if the arc is shutting down, the
4874 * broadcast will wake any remaining arc evict waiters.
4875 *
4876 * Note we cancel using zthr instead of arc_evict_zthr
4877 * because the latter may not yet be initializd when the
4878 * callback is first invoked.
4879 */
4880 mutex_enter(&arc_evict_lock);
4881 arc_evict_needed = !zthr_iscancelled(zthr) &&
4882 evicted > 0 && aggsum_compare(&arc_sums.arcstat_size, arc_c) > 0;
4883 if (!arc_evict_needed) {
4884 /*
4885 * We're either no longer overflowing, or we
4886 * can't evict anything more, so we should wake
4887 * arc_get_data_impl() sooner.
4888 */
4889 arc_evict_waiter_t *aw;
4890 while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) {
4891 cv_broadcast(&aw->aew_cv);
4892 }
4893 arc_set_need_free();
4894 }
4895 mutex_exit(&arc_evict_lock);
4896 spl_fstrans_unmark(cookie);
4897 }
4898
4899 static boolean_t
arc_reap_cb_check(void * arg,zthr_t * zthr)4900 arc_reap_cb_check(void *arg, zthr_t *zthr)
4901 {
4902 (void) arg, (void) zthr;
4903
4904 int64_t free_memory = arc_available_memory();
4905 static int reap_cb_check_counter = 0;
4906
4907 /*
4908 * If a kmem reap is already active, don't schedule more. We must
4909 * check for this because kmem_cache_reap_soon() won't actually
4910 * block on the cache being reaped (this is to prevent callers from
4911 * becoming implicitly blocked by a system-wide kmem reap -- which,
4912 * on a system with many, many full magazines, can take minutes).
4913 */
4914 if (!kmem_cache_reap_active() && free_memory < 0) {
4915
4916 arc_no_grow = B_TRUE;
4917 arc_warm = B_TRUE;
4918 /*
4919 * Wait at least zfs_grow_retry (default 5) seconds
4920 * before considering growing.
4921 */
4922 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4923 return (B_TRUE);
4924 } else if (free_memory < arc_c >> arc_no_grow_shift) {
4925 arc_no_grow = B_TRUE;
4926 } else if (gethrtime() >= arc_growtime) {
4927 arc_no_grow = B_FALSE;
4928 }
4929
4930 /*
4931 * Called unconditionally every 60 seconds to reclaim unused
4932 * zstd compression and decompression context. This is done
4933 * here to avoid the need for an independent thread.
4934 */
4935 if (!((reap_cb_check_counter++) % 60))
4936 zfs_zstd_cache_reap_now();
4937
4938 return (B_FALSE);
4939 }
4940
4941 /*
4942 * Keep enough free memory in the system by reaping the ARC's kmem
4943 * caches. To cause more slabs to be reapable, we may reduce the
4944 * target size of the cache (arc_c), causing the arc_evict_cb()
4945 * to free more buffers.
4946 */
4947 static void
arc_reap_cb(void * arg,zthr_t * zthr)4948 arc_reap_cb(void *arg, zthr_t *zthr)
4949 {
4950 int64_t can_free, free_memory, to_free;
4951
4952 (void) arg, (void) zthr;
4953 fstrans_cookie_t cookie = spl_fstrans_mark();
4954
4955 /*
4956 * Kick off asynchronous kmem_reap()'s of all our caches.
4957 */
4958 arc_kmem_reap_soon();
4959
4960 /*
4961 * Wait at least arc_kmem_cache_reap_retry_ms between
4962 * arc_kmem_reap_soon() calls. Without this check it is possible to
4963 * end up in a situation where we spend lots of time reaping
4964 * caches, while we're near arc_c_min. Waiting here also gives the
4965 * subsequent free memory check a chance of finding that the
4966 * asynchronous reap has already freed enough memory, and we don't
4967 * need to call arc_reduce_target_size().
4968 */
4969 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000);
4970
4971 /*
4972 * Reduce the target size as needed to maintain the amount of free
4973 * memory in the system at a fraction of the arc_size (1/128th by
4974 * default). If oversubscribed (free_memory < 0) then reduce the
4975 * target arc_size by the deficit amount plus the fractional
4976 * amount. If free memory is positive but less than the fractional
4977 * amount, reduce by what is needed to hit the fractional amount.
4978 */
4979 free_memory = arc_available_memory();
4980 can_free = arc_c - arc_c_min;
4981 to_free = (MAX(can_free, 0) >> arc_shrink_shift) - free_memory;
4982 if (to_free > 0)
4983 arc_reduce_target_size(to_free);
4984 spl_fstrans_unmark(cookie);
4985 }
4986
4987 #ifdef _KERNEL
4988 /*
4989 * Determine the amount of memory eligible for eviction contained in the
4990 * ARC. All clean data reported by the ghost lists can always be safely
4991 * evicted. Due to arc_c_min, the same does not hold for all clean data
4992 * contained by the regular mru and mfu lists.
4993 *
4994 * In the case of the regular mru and mfu lists, we need to report as
4995 * much clean data as possible, such that evicting that same reported
4996 * data will not bring arc_size below arc_c_min. Thus, in certain
4997 * circumstances, the total amount of clean data in the mru and mfu
4998 * lists might not actually be evictable.
4999 *
5000 * The following two distinct cases are accounted for:
5001 *
5002 * 1. The sum of the amount of dirty data contained by both the mru and
5003 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
5004 * is greater than or equal to arc_c_min.
5005 * (i.e. amount of dirty data >= arc_c_min)
5006 *
5007 * This is the easy case; all clean data contained by the mru and mfu
5008 * lists is evictable. Evicting all clean data can only drop arc_size
5009 * to the amount of dirty data, which is greater than arc_c_min.
5010 *
5011 * 2. The sum of the amount of dirty data contained by both the mru and
5012 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
5013 * is less than arc_c_min.
5014 * (i.e. arc_c_min > amount of dirty data)
5015 *
5016 * 2.1. arc_size is greater than or equal arc_c_min.
5017 * (i.e. arc_size >= arc_c_min > amount of dirty data)
5018 *
5019 * In this case, not all clean data from the regular mru and mfu
5020 * lists is actually evictable; we must leave enough clean data
5021 * to keep arc_size above arc_c_min. Thus, the maximum amount of
5022 * evictable data from the two lists combined, is exactly the
5023 * difference between arc_size and arc_c_min.
5024 *
5025 * 2.2. arc_size is less than arc_c_min
5026 * (i.e. arc_c_min > arc_size > amount of dirty data)
5027 *
5028 * In this case, none of the data contained in the mru and mfu
5029 * lists is evictable, even if it's clean. Since arc_size is
5030 * already below arc_c_min, evicting any more would only
5031 * increase this negative difference.
5032 */
5033
5034 #endif /* _KERNEL */
5035
5036 /*
5037 * Adapt arc info given the number of bytes we are trying to add and
5038 * the state that we are coming from. This function is only called
5039 * when we are adding new content to the cache.
5040 */
5041 static void
arc_adapt(uint64_t bytes)5042 arc_adapt(uint64_t bytes)
5043 {
5044 /*
5045 * Wake reap thread if we do not have any available memory
5046 */
5047 if (arc_reclaim_needed()) {
5048 zthr_wakeup(arc_reap_zthr);
5049 return;
5050 }
5051
5052 if (arc_no_grow)
5053 return;
5054
5055 if (arc_c >= arc_c_max)
5056 return;
5057
5058 /*
5059 * If we're within (2 * maxblocksize) bytes of the target
5060 * cache size, increment the target cache size
5061 */
5062 if (aggsum_upper_bound(&arc_sums.arcstat_size) +
5063 2 * SPA_MAXBLOCKSIZE >= arc_c) {
5064 uint64_t dc = MAX(bytes, SPA_OLD_MAXBLOCKSIZE);
5065 if (atomic_add_64_nv(&arc_c, dc) > arc_c_max)
5066 arc_c = arc_c_max;
5067 }
5068 }
5069
5070 /*
5071 * Check if ARC current size has grown past our upper thresholds.
5072 */
5073 static arc_ovf_level_t
arc_is_overflowing(boolean_t lax,boolean_t use_reserve)5074 arc_is_overflowing(boolean_t lax, boolean_t use_reserve)
5075 {
5076 /*
5077 * We just compare the lower bound here for performance reasons. Our
5078 * primary goals are to make sure that the arc never grows without
5079 * bound, and that it can reach its maximum size. This check
5080 * accomplishes both goals. The maximum amount we could run over by is
5081 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
5082 * in the ARC. In practice, that's in the tens of MB, which is low
5083 * enough to be safe.
5084 */
5085 int64_t arc_over = aggsum_lower_bound(&arc_sums.arcstat_size) - arc_c -
5086 zfs_max_recordsize;
5087 int64_t dn_over = aggsum_lower_bound(&arc_sums.arcstat_dnode_size) -
5088 arc_dnode_limit;
5089
5090 /* Always allow at least one block of overflow. */
5091 if (arc_over < 0 && dn_over <= 0)
5092 return (ARC_OVF_NONE);
5093
5094 /* If we are under memory pressure, report severe overflow. */
5095 if (!lax)
5096 return (ARC_OVF_SEVERE);
5097
5098 /* We are not under pressure, so be more or less relaxed. */
5099 int64_t overflow = (arc_c >> zfs_arc_overflow_shift) / 2;
5100 if (use_reserve)
5101 overflow *= 3;
5102 return (arc_over < overflow ? ARC_OVF_SOME : ARC_OVF_SEVERE);
5103 }
5104
5105 static abd_t *
arc_get_data_abd(arc_buf_hdr_t * hdr,uint64_t size,const void * tag,int alloc_flags)5106 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, const void *tag,
5107 int alloc_flags)
5108 {
5109 arc_buf_contents_t type = arc_buf_type(hdr);
5110
5111 arc_get_data_impl(hdr, size, tag, alloc_flags);
5112 if (alloc_flags & ARC_HDR_ALLOC_LINEAR)
5113 return (abd_alloc_linear(size, type == ARC_BUFC_METADATA));
5114 else
5115 return (abd_alloc(size, type == ARC_BUFC_METADATA));
5116 }
5117
5118 static void *
arc_get_data_buf(arc_buf_hdr_t * hdr,uint64_t size,const void * tag)5119 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, const void *tag)
5120 {
5121 arc_buf_contents_t type = arc_buf_type(hdr);
5122
5123 arc_get_data_impl(hdr, size, tag, 0);
5124 if (type == ARC_BUFC_METADATA) {
5125 return (zio_buf_alloc(size));
5126 } else {
5127 ASSERT(type == ARC_BUFC_DATA);
5128 return (zio_data_buf_alloc(size));
5129 }
5130 }
5131
5132 /*
5133 * Wait for the specified amount of data (in bytes) to be evicted from the
5134 * ARC, and for there to be sufficient free memory in the system.
5135 * The lax argument specifies that caller does not have a specific reason
5136 * to wait, not aware of any memory pressure. Low memory handlers though
5137 * should set it to B_FALSE to wait for all required evictions to complete.
5138 * The use_reserve argument allows some callers to wait less than others
5139 * to not block critical code paths, possibly blocking other resources.
5140 */
5141 void
arc_wait_for_eviction(uint64_t amount,boolean_t lax,boolean_t use_reserve)5142 arc_wait_for_eviction(uint64_t amount, boolean_t lax, boolean_t use_reserve)
5143 {
5144 switch (arc_is_overflowing(lax, use_reserve)) {
5145 case ARC_OVF_NONE:
5146 return;
5147 case ARC_OVF_SOME:
5148 /*
5149 * This is a bit racy without taking arc_evict_lock, but the
5150 * worst that can happen is we either call zthr_wakeup() extra
5151 * time due to race with other thread here, or the set flag
5152 * get cleared by arc_evict_cb(), which is unlikely due to
5153 * big hysteresis, but also not important since at this level
5154 * of overflow the eviction is purely advisory. Same time
5155 * taking the global lock here every time without waiting for
5156 * the actual eviction creates a significant lock contention.
5157 */
5158 if (!arc_evict_needed) {
5159 arc_evict_needed = B_TRUE;
5160 zthr_wakeup(arc_evict_zthr);
5161 }
5162 return;
5163 case ARC_OVF_SEVERE:
5164 default:
5165 {
5166 arc_evict_waiter_t aw;
5167 list_link_init(&aw.aew_node);
5168 cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL);
5169
5170 uint64_t last_count = 0;
5171 mutex_enter(&arc_evict_lock);
5172 if (!list_is_empty(&arc_evict_waiters)) {
5173 arc_evict_waiter_t *last =
5174 list_tail(&arc_evict_waiters);
5175 last_count = last->aew_count;
5176 } else if (!arc_evict_needed) {
5177 arc_evict_needed = B_TRUE;
5178 zthr_wakeup(arc_evict_zthr);
5179 }
5180 /*
5181 * Note, the last waiter's count may be less than
5182 * arc_evict_count if we are low on memory in which
5183 * case arc_evict_state_impl() may have deferred
5184 * wakeups (but still incremented arc_evict_count).
5185 */
5186 aw.aew_count = MAX(last_count, arc_evict_count) + amount;
5187
5188 list_insert_tail(&arc_evict_waiters, &aw);
5189
5190 arc_set_need_free();
5191
5192 DTRACE_PROBE3(arc__wait__for__eviction,
5193 uint64_t, amount,
5194 uint64_t, arc_evict_count,
5195 uint64_t, aw.aew_count);
5196
5197 /*
5198 * We will be woken up either when arc_evict_count reaches
5199 * aew_count, or when the ARC is no longer overflowing and
5200 * eviction completes.
5201 * In case of "false" wakeup, we will still be on the list.
5202 */
5203 do {
5204 cv_wait(&aw.aew_cv, &arc_evict_lock);
5205 } while (list_link_active(&aw.aew_node));
5206 mutex_exit(&arc_evict_lock);
5207
5208 cv_destroy(&aw.aew_cv);
5209 }
5210 }
5211 }
5212
5213 /*
5214 * Allocate a block and return it to the caller. If we are hitting the
5215 * hard limit for the cache size, we must sleep, waiting for the eviction
5216 * thread to catch up. If we're past the target size but below the hard
5217 * limit, we'll only signal the reclaim thread and continue on.
5218 */
5219 static void
arc_get_data_impl(arc_buf_hdr_t * hdr,uint64_t size,const void * tag,int alloc_flags)5220 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag,
5221 int alloc_flags)
5222 {
5223 arc_adapt(size);
5224
5225 /*
5226 * If arc_size is currently overflowing, we must be adding data
5227 * faster than we are evicting. To ensure we don't compound the
5228 * problem by adding more data and forcing arc_size to grow even
5229 * further past it's target size, we wait for the eviction thread to
5230 * make some progress. We also wait for there to be sufficient free
5231 * memory in the system, as measured by arc_free_memory().
5232 *
5233 * Specifically, we wait for zfs_arc_eviction_pct percent of the
5234 * requested size to be evicted. This should be more than 100%, to
5235 * ensure that that progress is also made towards getting arc_size
5236 * under arc_c. See the comment above zfs_arc_eviction_pct.
5237 */
5238 arc_wait_for_eviction(size * zfs_arc_eviction_pct / 100,
5239 B_TRUE, alloc_flags & ARC_HDR_USE_RESERVE);
5240
5241 arc_buf_contents_t type = arc_buf_type(hdr);
5242 if (type == ARC_BUFC_METADATA) {
5243 arc_space_consume(size, ARC_SPACE_META);
5244 } else {
5245 arc_space_consume(size, ARC_SPACE_DATA);
5246 }
5247
5248 /*
5249 * Update the state size. Note that ghost states have a
5250 * "ghost size" and so don't need to be updated.
5251 */
5252 arc_state_t *state = hdr->b_l1hdr.b_state;
5253 if (!GHOST_STATE(state)) {
5254
5255 (void) zfs_refcount_add_many(&state->arcs_size[type], size,
5256 tag);
5257
5258 /*
5259 * If this is reached via arc_read, the link is
5260 * protected by the hash lock. If reached via
5261 * arc_buf_alloc, the header should not be accessed by
5262 * any other thread. And, if reached via arc_read_done,
5263 * the hash lock will protect it if it's found in the
5264 * hash table; otherwise no other thread should be
5265 * trying to [add|remove]_reference it.
5266 */
5267 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5268 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5269 (void) zfs_refcount_add_many(&state->arcs_esize[type],
5270 size, tag);
5271 }
5272 }
5273 }
5274
5275 static void
arc_free_data_abd(arc_buf_hdr_t * hdr,abd_t * abd,uint64_t size,const void * tag)5276 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size,
5277 const void *tag)
5278 {
5279 arc_free_data_impl(hdr, size, tag);
5280 abd_free(abd);
5281 }
5282
5283 static void
arc_free_data_buf(arc_buf_hdr_t * hdr,void * buf,uint64_t size,const void * tag)5284 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, const void *tag)
5285 {
5286 arc_buf_contents_t type = arc_buf_type(hdr);
5287
5288 arc_free_data_impl(hdr, size, tag);
5289 if (type == ARC_BUFC_METADATA) {
5290 zio_buf_free(buf, size);
5291 } else {
5292 ASSERT(type == ARC_BUFC_DATA);
5293 zio_data_buf_free(buf, size);
5294 }
5295 }
5296
5297 /*
5298 * Free the arc data buffer.
5299 */
5300 static void
arc_free_data_impl(arc_buf_hdr_t * hdr,uint64_t size,const void * tag)5301 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag)
5302 {
5303 arc_state_t *state = hdr->b_l1hdr.b_state;
5304 arc_buf_contents_t type = arc_buf_type(hdr);
5305
5306 /* protected by hash lock, if in the hash table */
5307 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5308 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5309 ASSERT(state != arc_anon && state != arc_l2c_only);
5310
5311 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
5312 size, tag);
5313 }
5314 (void) zfs_refcount_remove_many(&state->arcs_size[type], size, tag);
5315
5316 VERIFY3U(hdr->b_type, ==, type);
5317 if (type == ARC_BUFC_METADATA) {
5318 arc_space_return(size, ARC_SPACE_META);
5319 } else {
5320 ASSERT(type == ARC_BUFC_DATA);
5321 arc_space_return(size, ARC_SPACE_DATA);
5322 }
5323 }
5324
5325 /*
5326 * This routine is called whenever a buffer is accessed.
5327 */
5328 static void
arc_access(arc_buf_hdr_t * hdr,arc_flags_t arc_flags,boolean_t hit)5329 arc_access(arc_buf_hdr_t *hdr, arc_flags_t arc_flags, boolean_t hit)
5330 {
5331 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
5332 ASSERT(HDR_HAS_L1HDR(hdr));
5333
5334 /*
5335 * Update buffer prefetch status.
5336 */
5337 boolean_t was_prefetch = HDR_PREFETCH(hdr);
5338 boolean_t now_prefetch = arc_flags & ARC_FLAG_PREFETCH;
5339 if (was_prefetch != now_prefetch) {
5340 if (was_prefetch) {
5341 ARCSTAT_CONDSTAT(hit, demand_hit, demand_iohit,
5342 HDR_PRESCIENT_PREFETCH(hdr), prescient, predictive,
5343 prefetch);
5344 }
5345 if (HDR_HAS_L2HDR(hdr))
5346 l2arc_hdr_arcstats_decrement_state(hdr);
5347 if (was_prefetch) {
5348 arc_hdr_clear_flags(hdr,
5349 ARC_FLAG_PREFETCH | ARC_FLAG_PRESCIENT_PREFETCH);
5350 } else {
5351 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5352 }
5353 if (HDR_HAS_L2HDR(hdr))
5354 l2arc_hdr_arcstats_increment_state(hdr);
5355 }
5356 if (now_prefetch) {
5357 if (arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
5358 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
5359 ARCSTAT_BUMP(arcstat_prescient_prefetch);
5360 } else {
5361 ARCSTAT_BUMP(arcstat_predictive_prefetch);
5362 }
5363 }
5364 if (arc_flags & ARC_FLAG_L2CACHE)
5365 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5366
5367 clock_t now = ddi_get_lbolt();
5368 if (hdr->b_l1hdr.b_state == arc_anon) {
5369 arc_state_t *new_state;
5370 /*
5371 * This buffer is not in the cache, and does not appear in
5372 * our "ghost" lists. Add it to the MRU or uncached state.
5373 */
5374 ASSERT0(hdr->b_l1hdr.b_arc_access);
5375 hdr->b_l1hdr.b_arc_access = now;
5376 if (HDR_UNCACHED(hdr)) {
5377 new_state = arc_uncached;
5378 DTRACE_PROBE1(new_state__uncached, arc_buf_hdr_t *,
5379 hdr);
5380 } else {
5381 new_state = arc_mru;
5382 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5383 }
5384 arc_change_state(new_state, hdr);
5385 } else if (hdr->b_l1hdr.b_state == arc_mru) {
5386 /*
5387 * This buffer has been accessed once recently and either
5388 * its read is still in progress or it is in the cache.
5389 */
5390 if (HDR_IO_IN_PROGRESS(hdr)) {
5391 hdr->b_l1hdr.b_arc_access = now;
5392 return;
5393 }
5394 hdr->b_l1hdr.b_mru_hits++;
5395 ARCSTAT_BUMP(arcstat_mru_hits);
5396
5397 /*
5398 * If the previous access was a prefetch, then it already
5399 * handled possible promotion, so nothing more to do for now.
5400 */
5401 if (was_prefetch) {
5402 hdr->b_l1hdr.b_arc_access = now;
5403 return;
5404 }
5405
5406 /*
5407 * If more than ARC_MINTIME have passed from the previous
5408 * hit, promote the buffer to the MFU state.
5409 */
5410 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
5411 ARC_MINTIME)) {
5412 hdr->b_l1hdr.b_arc_access = now;
5413 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5414 arc_change_state(arc_mfu, hdr);
5415 }
5416 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
5417 arc_state_t *new_state;
5418 /*
5419 * This buffer has been accessed once recently, but was
5420 * evicted from the cache. Would we have bigger MRU, it
5421 * would be an MRU hit, so handle it the same way, except
5422 * we don't need to check the previous access time.
5423 */
5424 hdr->b_l1hdr.b_mru_ghost_hits++;
5425 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
5426 hdr->b_l1hdr.b_arc_access = now;
5427 wmsum_add(&arc_mru_ghost->arcs_hits[arc_buf_type(hdr)],
5428 arc_hdr_size(hdr));
5429 if (was_prefetch) {
5430 new_state = arc_mru;
5431 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5432 } else {
5433 new_state = arc_mfu;
5434 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5435 }
5436 arc_change_state(new_state, hdr);
5437 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
5438 /*
5439 * This buffer has been accessed more than once and either
5440 * still in the cache or being restored from one of ghosts.
5441 */
5442 if (!HDR_IO_IN_PROGRESS(hdr)) {
5443 hdr->b_l1hdr.b_mfu_hits++;
5444 ARCSTAT_BUMP(arcstat_mfu_hits);
5445 }
5446 hdr->b_l1hdr.b_arc_access = now;
5447 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
5448 /*
5449 * This buffer has been accessed more than once recently, but
5450 * has been evicted from the cache. Would we have bigger MFU
5451 * it would stay in cache, so move it back to MFU state.
5452 */
5453 hdr->b_l1hdr.b_mfu_ghost_hits++;
5454 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
5455 hdr->b_l1hdr.b_arc_access = now;
5456 wmsum_add(&arc_mfu_ghost->arcs_hits[arc_buf_type(hdr)],
5457 arc_hdr_size(hdr));
5458 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5459 arc_change_state(arc_mfu, hdr);
5460 } else if (hdr->b_l1hdr.b_state == arc_uncached) {
5461 /*
5462 * This buffer is uncacheable, but we got a hit. Probably
5463 * a demand read after prefetch. Nothing more to do here.
5464 */
5465 if (!HDR_IO_IN_PROGRESS(hdr))
5466 ARCSTAT_BUMP(arcstat_uncached_hits);
5467 hdr->b_l1hdr.b_arc_access = now;
5468 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
5469 /*
5470 * This buffer is on the 2nd Level ARC and was not accessed
5471 * for a long time, so treat it as new and put into MRU.
5472 */
5473 hdr->b_l1hdr.b_arc_access = now;
5474 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5475 arc_change_state(arc_mru, hdr);
5476 } else {
5477 cmn_err(CE_PANIC, "invalid arc state 0x%p",
5478 hdr->b_l1hdr.b_state);
5479 }
5480 }
5481
5482 /*
5483 * This routine is called by dbuf_hold() to update the arc_access() state
5484 * which otherwise would be skipped for entries in the dbuf cache.
5485 */
5486 void
arc_buf_access(arc_buf_t * buf)5487 arc_buf_access(arc_buf_t *buf)
5488 {
5489 arc_buf_hdr_t *hdr = buf->b_hdr;
5490
5491 /*
5492 * Avoid taking the hash_lock when possible as an optimization.
5493 * The header must be checked again under the hash_lock in order
5494 * to handle the case where it is concurrently being released.
5495 */
5496 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr))
5497 return;
5498
5499 kmutex_t *hash_lock = HDR_LOCK(hdr);
5500 mutex_enter(hash_lock);
5501
5502 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5503 mutex_exit(hash_lock);
5504 ARCSTAT_BUMP(arcstat_access_skip);
5505 return;
5506 }
5507
5508 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5509 hdr->b_l1hdr.b_state == arc_mfu ||
5510 hdr->b_l1hdr.b_state == arc_uncached);
5511
5512 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5513 arc_access(hdr, 0, B_TRUE);
5514 mutex_exit(hash_lock);
5515
5516 ARCSTAT_BUMP(arcstat_hits);
5517 ARCSTAT_CONDSTAT(B_TRUE /* demand */, demand, prefetch,
5518 !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
5519 }
5520
5521 /* a generic arc_read_done_func_t which you can use */
5522 void
arc_bcopy_func(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * bp,arc_buf_t * buf,void * arg)5523 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5524 arc_buf_t *buf, void *arg)
5525 {
5526 (void) zio, (void) zb, (void) bp;
5527
5528 if (buf == NULL)
5529 return;
5530
5531 memcpy(arg, buf->b_data, arc_buf_size(buf));
5532 arc_buf_destroy(buf, arg);
5533 }
5534
5535 /* a generic arc_read_done_func_t */
5536 void
arc_getbuf_func(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * bp,arc_buf_t * buf,void * arg)5537 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5538 arc_buf_t *buf, void *arg)
5539 {
5540 (void) zb, (void) bp;
5541 arc_buf_t **bufp = arg;
5542
5543 if (buf == NULL) {
5544 ASSERT(zio == NULL || zio->io_error != 0);
5545 *bufp = NULL;
5546 } else {
5547 ASSERT(zio == NULL || zio->io_error == 0);
5548 *bufp = buf;
5549 ASSERT(buf->b_data != NULL);
5550 }
5551 }
5552
5553 static void
arc_hdr_verify(arc_buf_hdr_t * hdr,blkptr_t * bp)5554 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
5555 {
5556 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5557 ASSERT0(HDR_GET_PSIZE(hdr));
5558 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF);
5559 } else {
5560 if (HDR_COMPRESSION_ENABLED(hdr)) {
5561 ASSERT3U(arc_hdr_get_compress(hdr), ==,
5562 BP_GET_COMPRESS(bp));
5563 }
5564 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5565 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
5566 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp));
5567 }
5568 }
5569
5570 static void
arc_read_done(zio_t * zio)5571 arc_read_done(zio_t *zio)
5572 {
5573 blkptr_t *bp = zio->io_bp;
5574 arc_buf_hdr_t *hdr = zio->io_private;
5575 kmutex_t *hash_lock = NULL;
5576 arc_callback_t *callback_list;
5577 arc_callback_t *acb;
5578
5579 /*
5580 * The hdr was inserted into hash-table and removed from lists
5581 * prior to starting I/O. We should find this header, since
5582 * it's in the hash table, and it should be legit since it's
5583 * not possible to evict it during the I/O. The only possible
5584 * reason for it not to be found is if we were freed during the
5585 * read.
5586 */
5587 if (HDR_IN_HASH_TABLE(hdr)) {
5588 arc_buf_hdr_t *found;
5589
5590 ASSERT3U(hdr->b_birth, ==, BP_GET_PHYSICAL_BIRTH(zio->io_bp));
5591 ASSERT3U(hdr->b_dva.dva_word[0], ==,
5592 BP_IDENTITY(zio->io_bp)->dva_word[0]);
5593 ASSERT3U(hdr->b_dva.dva_word[1], ==,
5594 BP_IDENTITY(zio->io_bp)->dva_word[1]);
5595
5596 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock);
5597
5598 ASSERT((found == hdr &&
5599 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5600 (found == hdr && HDR_L2_READING(hdr)));
5601 ASSERT3P(hash_lock, !=, NULL);
5602 }
5603
5604 if (BP_IS_PROTECTED(bp)) {
5605 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
5606 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
5607 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
5608 hdr->b_crypt_hdr.b_iv);
5609
5610 if (zio->io_error == 0) {
5611 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) {
5612 void *tmpbuf;
5613
5614 tmpbuf = abd_borrow_buf_copy(zio->io_abd,
5615 sizeof (zil_chain_t));
5616 zio_crypt_decode_mac_zil(tmpbuf,
5617 hdr->b_crypt_hdr.b_mac);
5618 abd_return_buf(zio->io_abd, tmpbuf,
5619 sizeof (zil_chain_t));
5620 } else {
5621 zio_crypt_decode_mac_bp(bp,
5622 hdr->b_crypt_hdr.b_mac);
5623 }
5624 }
5625 }
5626
5627 if (zio->io_error == 0) {
5628 /* byteswap if necessary */
5629 if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5630 if (BP_GET_LEVEL(zio->io_bp) > 0) {
5631 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5632 } else {
5633 hdr->b_l1hdr.b_byteswap =
5634 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5635 }
5636 } else {
5637 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5638 }
5639 if (!HDR_L2_READING(hdr)) {
5640 hdr->b_complevel = zio->io_prop.zp_complevel;
5641 }
5642 }
5643
5644 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
5645 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
5646 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
5647
5648 callback_list = hdr->b_l1hdr.b_acb;
5649 ASSERT3P(callback_list, !=, NULL);
5650 hdr->b_l1hdr.b_acb = NULL;
5651
5652 /*
5653 * If a read request has a callback (i.e. acb_done is not NULL), then we
5654 * make a buf containing the data according to the parameters which were
5655 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5656 * aren't needlessly decompressing the data multiple times.
5657 */
5658 int callback_cnt = 0;
5659 for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5660
5661 /* We need the last one to call below in original order. */
5662 callback_list = acb;
5663
5664 if (!acb->acb_done || acb->acb_nobuf)
5665 continue;
5666
5667 callback_cnt++;
5668
5669 if (zio->io_error != 0)
5670 continue;
5671
5672 int error = arc_buf_alloc_impl(hdr, zio->io_spa,
5673 &acb->acb_zb, acb->acb_private, acb->acb_encrypted,
5674 acb->acb_compressed, acb->acb_noauth, B_TRUE,
5675 &acb->acb_buf);
5676
5677 /*
5678 * Assert non-speculative zios didn't fail because an
5679 * encryption key wasn't loaded
5680 */
5681 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) ||
5682 error != EACCES);
5683
5684 /*
5685 * If we failed to decrypt, report an error now (as the zio
5686 * layer would have done if it had done the transforms).
5687 */
5688 if (error == ECKSUM) {
5689 ASSERT(BP_IS_PROTECTED(bp));
5690 error = SET_ERROR(EIO);
5691 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5692 spa_log_error(zio->io_spa, &acb->acb_zb,
5693 BP_GET_PHYSICAL_BIRTH(zio->io_bp));
5694 (void) zfs_ereport_post(
5695 FM_EREPORT_ZFS_AUTHENTICATION,
5696 zio->io_spa, NULL, &acb->acb_zb, zio, 0);
5697 }
5698 }
5699
5700 if (error != 0) {
5701 /*
5702 * Decompression or decryption failed. Set
5703 * io_error so that when we call acb_done
5704 * (below), we will indicate that the read
5705 * failed. Note that in the unusual case
5706 * where one callback is compressed and another
5707 * uncompressed, we will mark all of them
5708 * as failed, even though the uncompressed
5709 * one can't actually fail. In this case,
5710 * the hdr will not be anonymous, because
5711 * if there are multiple callbacks, it's
5712 * because multiple threads found the same
5713 * arc buf in the hash table.
5714 */
5715 zio->io_error = error;
5716 }
5717 }
5718
5719 /*
5720 * If there are multiple callbacks, we must have the hash lock,
5721 * because the only way for multiple threads to find this hdr is
5722 * in the hash table. This ensures that if there are multiple
5723 * callbacks, the hdr is not anonymous. If it were anonymous,
5724 * we couldn't use arc_buf_destroy() in the error case below.
5725 */
5726 ASSERT(callback_cnt < 2 || hash_lock != NULL);
5727
5728 if (zio->io_error == 0) {
5729 arc_hdr_verify(hdr, zio->io_bp);
5730 } else {
5731 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5732 if (hdr->b_l1hdr.b_state != arc_anon)
5733 arc_change_state(arc_anon, hdr);
5734 if (HDR_IN_HASH_TABLE(hdr))
5735 buf_hash_remove(hdr);
5736 }
5737
5738 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5739 (void) remove_reference(hdr, hdr);
5740
5741 if (hash_lock != NULL)
5742 mutex_exit(hash_lock);
5743
5744 /* execute each callback and free its structure */
5745 while ((acb = callback_list) != NULL) {
5746 if (acb->acb_done != NULL) {
5747 if (zio->io_error != 0 && acb->acb_buf != NULL) {
5748 /*
5749 * If arc_buf_alloc_impl() fails during
5750 * decompression, the buf will still be
5751 * allocated, and needs to be freed here.
5752 */
5753 arc_buf_destroy(acb->acb_buf,
5754 acb->acb_private);
5755 acb->acb_buf = NULL;
5756 }
5757 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
5758 acb->acb_buf, acb->acb_private);
5759 }
5760
5761 if (acb->acb_zio_dummy != NULL) {
5762 acb->acb_zio_dummy->io_error = zio->io_error;
5763 zio_nowait(acb->acb_zio_dummy);
5764 }
5765
5766 callback_list = acb->acb_prev;
5767 if (acb->acb_wait) {
5768 mutex_enter(&acb->acb_wait_lock);
5769 acb->acb_wait_error = zio->io_error;
5770 acb->acb_wait = B_FALSE;
5771 cv_signal(&acb->acb_wait_cv);
5772 mutex_exit(&acb->acb_wait_lock);
5773 /* acb will be freed by the waiting thread. */
5774 } else {
5775 kmem_free(acb, sizeof (arc_callback_t));
5776 }
5777 }
5778 }
5779
5780 /*
5781 * Lookup the block at the specified DVA (in bp), and return the manner in
5782 * which the block is cached. A zero return indicates not cached.
5783 */
5784 int
arc_cached(spa_t * spa,const blkptr_t * bp)5785 arc_cached(spa_t *spa, const blkptr_t *bp)
5786 {
5787 arc_buf_hdr_t *hdr = NULL;
5788 kmutex_t *hash_lock = NULL;
5789 uint64_t guid = spa_load_guid(spa);
5790 int flags = 0;
5791
5792 if (BP_IS_EMBEDDED(bp))
5793 return (ARC_CACHED_EMBEDDED);
5794
5795 hdr = buf_hash_find(guid, bp, &hash_lock);
5796 if (hdr == NULL)
5797 return (0);
5798
5799 if (HDR_HAS_L1HDR(hdr)) {
5800 arc_state_t *state = hdr->b_l1hdr.b_state;
5801 /*
5802 * We switch to ensure that any future arc_state_type_t
5803 * changes are handled. This is just a shift to promote
5804 * more compile-time checking.
5805 */
5806 switch (state->arcs_state) {
5807 case ARC_STATE_ANON:
5808 break;
5809 case ARC_STATE_MRU:
5810 flags |= ARC_CACHED_IN_MRU | ARC_CACHED_IN_L1;
5811 break;
5812 case ARC_STATE_MFU:
5813 flags |= ARC_CACHED_IN_MFU | ARC_CACHED_IN_L1;
5814 break;
5815 case ARC_STATE_UNCACHED:
5816 /* The header is still in L1, probably not for long */
5817 flags |= ARC_CACHED_IN_L1;
5818 break;
5819 default:
5820 break;
5821 }
5822 }
5823 if (HDR_HAS_L2HDR(hdr))
5824 flags |= ARC_CACHED_IN_L2;
5825
5826 mutex_exit(hash_lock);
5827
5828 return (flags);
5829 }
5830
5831 /*
5832 * "Read" the block at the specified DVA (in bp) via the
5833 * cache. If the block is found in the cache, invoke the provided
5834 * callback immediately and return. Note that the `zio' parameter
5835 * in the callback will be NULL in this case, since no IO was
5836 * required. If the block is not in the cache pass the read request
5837 * on to the spa with a substitute callback function, so that the
5838 * requested block will be added to the cache.
5839 *
5840 * If a read request arrives for a block that has a read in-progress,
5841 * either wait for the in-progress read to complete (and return the
5842 * results); or, if this is a read with a "done" func, add a record
5843 * to the read to invoke the "done" func when the read completes,
5844 * and return; or just return.
5845 *
5846 * arc_read_done() will invoke all the requested "done" functions
5847 * for readers of this block.
5848 */
5849 int
arc_read(zio_t * pio,spa_t * spa,const blkptr_t * bp,arc_read_done_func_t * done,void * private,zio_priority_t priority,int zio_flags,arc_flags_t * arc_flags,const zbookmark_phys_t * zb)5850 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
5851 arc_read_done_func_t *done, void *private, zio_priority_t priority,
5852 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5853 {
5854 arc_buf_hdr_t *hdr = NULL;
5855 kmutex_t *hash_lock = NULL;
5856 zio_t *rzio;
5857 uint64_t guid = spa_load_guid(spa);
5858 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0;
5859 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) &&
5860 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5861 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) &&
5862 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5863 boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp);
5864 boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF;
5865 arc_buf_t *buf = NULL;
5866 int rc = 0;
5867 boolean_t bp_validation = B_FALSE;
5868
5869 ASSERT(!embedded_bp ||
5870 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5871 ASSERT(!BP_IS_HOLE(bp));
5872 ASSERT(!BP_IS_REDACTED(bp));
5873
5874 /*
5875 * Normally SPL_FSTRANS will already be set since kernel threads which
5876 * expect to call the DMU interfaces will set it when created. System
5877 * calls are similarly handled by setting/cleaning the bit in the
5878 * registered callback (module/os/.../zfs/zpl_*).
5879 *
5880 * External consumers such as Lustre which call the exported DMU
5881 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock
5882 * on the hash_lock always set and clear the bit.
5883 */
5884 fstrans_cookie_t cookie = spl_fstrans_mark();
5885 top:
5886 if (!embedded_bp) {
5887 /*
5888 * Embedded BP's have no DVA and require no I/O to "read".
5889 * Create an anonymous arc buf to back it.
5890 */
5891 hdr = buf_hash_find(guid, bp, &hash_lock);
5892 }
5893
5894 /*
5895 * Determine if we have an L1 cache hit or a cache miss. For simplicity
5896 * we maintain encrypted data separately from compressed / uncompressed
5897 * data. If the user is requesting raw encrypted data and we don't have
5898 * that in the header we will read from disk to guarantee that we can
5899 * get it even if the encryption keys aren't loaded.
5900 */
5901 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) ||
5902 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) {
5903 boolean_t is_data = !HDR_ISTYPE_METADATA(hdr);
5904
5905 /*
5906 * Verify the block pointer contents are reasonable. This
5907 * should always be the case since the blkptr is protected by
5908 * a checksum.
5909 */
5910 if (zfs_blkptr_verify(spa, bp, BLK_CONFIG_SKIP,
5911 BLK_VERIFY_LOG)) {
5912 mutex_exit(hash_lock);
5913 rc = SET_ERROR(ECKSUM);
5914 goto done;
5915 }
5916
5917 if (HDR_IO_IN_PROGRESS(hdr)) {
5918 if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
5919 mutex_exit(hash_lock);
5920 ARCSTAT_BUMP(arcstat_cached_only_in_progress);
5921 rc = SET_ERROR(ENOENT);
5922 goto done;
5923 }
5924
5925 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
5926 ASSERT3P(head_zio, !=, NULL);
5927 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5928 priority == ZIO_PRIORITY_SYNC_READ) {
5929 /*
5930 * This is a sync read that needs to wait for
5931 * an in-flight async read. Request that the
5932 * zio have its priority upgraded.
5933 */
5934 zio_change_priority(head_zio, priority);
5935 DTRACE_PROBE1(arc__async__upgrade__sync,
5936 arc_buf_hdr_t *, hdr);
5937 ARCSTAT_BUMP(arcstat_async_upgrade_sync);
5938 }
5939
5940 DTRACE_PROBE1(arc__iohit, arc_buf_hdr_t *, hdr);
5941 arc_access(hdr, *arc_flags, B_FALSE);
5942
5943 /*
5944 * If there are multiple threads reading the same block
5945 * and that block is not yet in the ARC, then only one
5946 * thread will do the physical I/O and all other
5947 * threads will wait until that I/O completes.
5948 * Synchronous reads use the acb_wait_cv whereas nowait
5949 * reads register a callback. Both are signalled/called
5950 * in arc_read_done.
5951 *
5952 * Errors of the physical I/O may need to be propagated.
5953 * Synchronous read errors are returned here from
5954 * arc_read_done via acb_wait_error. Nowait reads
5955 * attach the acb_zio_dummy zio to pio and
5956 * arc_read_done propagates the physical I/O's io_error
5957 * to acb_zio_dummy, and thereby to pio.
5958 */
5959 arc_callback_t *acb = NULL;
5960 if (done || pio || *arc_flags & ARC_FLAG_WAIT) {
5961 acb = kmem_zalloc(sizeof (arc_callback_t),
5962 KM_SLEEP);
5963 acb->acb_done = done;
5964 acb->acb_private = private;
5965 acb->acb_compressed = compressed_read;
5966 acb->acb_encrypted = encrypted_read;
5967 acb->acb_noauth = noauth_read;
5968 acb->acb_nobuf = no_buf;
5969 if (*arc_flags & ARC_FLAG_WAIT) {
5970 acb->acb_wait = B_TRUE;
5971 mutex_init(&acb->acb_wait_lock, NULL,
5972 MUTEX_DEFAULT, NULL);
5973 cv_init(&acb->acb_wait_cv, NULL,
5974 CV_DEFAULT, NULL);
5975 }
5976 acb->acb_zb = *zb;
5977 if (pio != NULL) {
5978 acb->acb_zio_dummy = zio_null(pio,
5979 spa, NULL, NULL, NULL, zio_flags);
5980 }
5981 acb->acb_zio_head = head_zio;
5982 acb->acb_next = hdr->b_l1hdr.b_acb;
5983 hdr->b_l1hdr.b_acb->acb_prev = acb;
5984 hdr->b_l1hdr.b_acb = acb;
5985 }
5986 mutex_exit(hash_lock);
5987
5988 ARCSTAT_BUMP(arcstat_iohits);
5989 ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
5990 demand, prefetch, is_data, data, metadata, iohits);
5991
5992 if (*arc_flags & ARC_FLAG_WAIT) {
5993 mutex_enter(&acb->acb_wait_lock);
5994 while (acb->acb_wait) {
5995 cv_wait(&acb->acb_wait_cv,
5996 &acb->acb_wait_lock);
5997 }
5998 rc = acb->acb_wait_error;
5999 mutex_exit(&acb->acb_wait_lock);
6000 mutex_destroy(&acb->acb_wait_lock);
6001 cv_destroy(&acb->acb_wait_cv);
6002 kmem_free(acb, sizeof (arc_callback_t));
6003 }
6004 goto out;
6005 }
6006
6007 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
6008 hdr->b_l1hdr.b_state == arc_mfu ||
6009 hdr->b_l1hdr.b_state == arc_uncached);
6010
6011 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
6012 arc_access(hdr, *arc_flags, B_TRUE);
6013
6014 if (done && !no_buf) {
6015 ASSERT(!embedded_bp || !BP_IS_HOLE(bp));
6016
6017 /* Get a buf with the desired data in it. */
6018 rc = arc_buf_alloc_impl(hdr, spa, zb, private,
6019 encrypted_read, compressed_read, noauth_read,
6020 B_TRUE, &buf);
6021 if (rc == ECKSUM) {
6022 /*
6023 * Convert authentication and decryption errors
6024 * to EIO (and generate an ereport if needed)
6025 * before leaving the ARC.
6026 */
6027 rc = SET_ERROR(EIO);
6028 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) {
6029 spa_log_error(spa, zb, hdr->b_birth);
6030 (void) zfs_ereport_post(
6031 FM_EREPORT_ZFS_AUTHENTICATION,
6032 spa, NULL, zb, NULL, 0);
6033 }
6034 }
6035 if (rc != 0) {
6036 arc_buf_destroy_impl(buf);
6037 buf = NULL;
6038 (void) remove_reference(hdr, private);
6039 }
6040
6041 /* assert any errors weren't due to unloaded keys */
6042 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
6043 rc != EACCES);
6044 }
6045 mutex_exit(hash_lock);
6046 ARCSTAT_BUMP(arcstat_hits);
6047 ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
6048 demand, prefetch, is_data, data, metadata, hits);
6049 *arc_flags |= ARC_FLAG_CACHED;
6050 goto done;
6051 } else {
6052 uint64_t lsize = BP_GET_LSIZE(bp);
6053 uint64_t psize = BP_GET_PSIZE(bp);
6054 arc_callback_t *acb;
6055 vdev_t *vd = NULL;
6056 uint64_t addr = 0;
6057 boolean_t devw = B_FALSE;
6058 uint64_t size;
6059 abd_t *hdr_abd;
6060 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0;
6061 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
6062 int config_lock;
6063 int error;
6064
6065 if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
6066 if (hash_lock != NULL)
6067 mutex_exit(hash_lock);
6068 rc = SET_ERROR(ENOENT);
6069 goto done;
6070 }
6071
6072 if (zio_flags & ZIO_FLAG_CONFIG_WRITER) {
6073 config_lock = BLK_CONFIG_HELD;
6074 } else if (hash_lock != NULL) {
6075 /*
6076 * Prevent lock order reversal
6077 */
6078 config_lock = BLK_CONFIG_NEEDED_TRY;
6079 } else {
6080 config_lock = BLK_CONFIG_NEEDED;
6081 }
6082
6083 /*
6084 * Verify the block pointer contents are reasonable. This
6085 * should always be the case since the blkptr is protected by
6086 * a checksum.
6087 */
6088 if (!bp_validation && (error = zfs_blkptr_verify(spa, bp,
6089 config_lock, BLK_VERIFY_LOG))) {
6090 if (hash_lock != NULL)
6091 mutex_exit(hash_lock);
6092 if (error == EBUSY && !zfs_blkptr_verify(spa, bp,
6093 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
6094 bp_validation = B_TRUE;
6095 goto top;
6096 }
6097 rc = SET_ERROR(ECKSUM);
6098 goto done;
6099 }
6100
6101 if (hdr == NULL) {
6102 /*
6103 * This block is not in the cache or it has
6104 * embedded data.
6105 */
6106 arc_buf_hdr_t *exists = NULL;
6107 hdr = arc_hdr_alloc(guid, psize, lsize,
6108 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type);
6109
6110 if (!embedded_bp) {
6111 hdr->b_dva = *BP_IDENTITY(bp);
6112 hdr->b_birth = BP_GET_PHYSICAL_BIRTH(bp);
6113 exists = buf_hash_insert(hdr, &hash_lock);
6114 }
6115 if (exists != NULL) {
6116 /* somebody beat us to the hash insert */
6117 mutex_exit(hash_lock);
6118 buf_discard_identity(hdr);
6119 arc_hdr_destroy(hdr);
6120 goto top; /* restart the IO request */
6121 }
6122 } else {
6123 /*
6124 * This block is in the ghost cache or encrypted data
6125 * was requested and we didn't have it. If it was
6126 * L2-only (and thus didn't have an L1 hdr),
6127 * we realloc the header to add an L1 hdr.
6128 */
6129 if (!HDR_HAS_L1HDR(hdr)) {
6130 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
6131 hdr_full_cache);
6132 }
6133
6134 if (GHOST_STATE(hdr->b_l1hdr.b_state)) {
6135 ASSERT0P(hdr->b_l1hdr.b_pabd);
6136 ASSERT(!HDR_HAS_RABD(hdr));
6137 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6138 ASSERT0(zfs_refcount_count(
6139 &hdr->b_l1hdr.b_refcnt));
6140 ASSERT0P(hdr->b_l1hdr.b_buf);
6141 #ifdef ZFS_DEBUG
6142 ASSERT0P(hdr->b_l1hdr.b_freeze_cksum);
6143 #endif
6144 } else if (HDR_IO_IN_PROGRESS(hdr)) {
6145 /*
6146 * If this header already had an IO in progress
6147 * and we are performing another IO to fetch
6148 * encrypted data we must wait until the first
6149 * IO completes so as not to confuse
6150 * arc_read_done(). This should be very rare
6151 * and so the performance impact shouldn't
6152 * matter.
6153 */
6154 arc_callback_t *acb = kmem_zalloc(
6155 sizeof (arc_callback_t), KM_SLEEP);
6156 acb->acb_wait = B_TRUE;
6157 mutex_init(&acb->acb_wait_lock, NULL,
6158 MUTEX_DEFAULT, NULL);
6159 cv_init(&acb->acb_wait_cv, NULL, CV_DEFAULT,
6160 NULL);
6161 acb->acb_zio_head =
6162 hdr->b_l1hdr.b_acb->acb_zio_head;
6163 acb->acb_next = hdr->b_l1hdr.b_acb;
6164 hdr->b_l1hdr.b_acb->acb_prev = acb;
6165 hdr->b_l1hdr.b_acb = acb;
6166 mutex_exit(hash_lock);
6167 mutex_enter(&acb->acb_wait_lock);
6168 while (acb->acb_wait) {
6169 cv_wait(&acb->acb_wait_cv,
6170 &acb->acb_wait_lock);
6171 }
6172 mutex_exit(&acb->acb_wait_lock);
6173 mutex_destroy(&acb->acb_wait_lock);
6174 cv_destroy(&acb->acb_wait_cv);
6175 kmem_free(acb, sizeof (arc_callback_t));
6176 goto top;
6177 }
6178 }
6179 if (*arc_flags & ARC_FLAG_UNCACHED) {
6180 arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED);
6181 if (!encrypted_read)
6182 alloc_flags |= ARC_HDR_ALLOC_LINEAR;
6183 }
6184
6185 /*
6186 * Take additional reference for IO_IN_PROGRESS. It stops
6187 * arc_access() from putting this header without any buffers
6188 * and so other references but obviously nonevictable onto
6189 * the evictable list of MRU or MFU state.
6190 */
6191 add_reference(hdr, hdr);
6192 if (!embedded_bp)
6193 arc_access(hdr, *arc_flags, B_FALSE);
6194 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6195 arc_hdr_alloc_abd(hdr, alloc_flags);
6196 if (encrypted_read) {
6197 ASSERT(HDR_HAS_RABD(hdr));
6198 size = HDR_GET_PSIZE(hdr);
6199 hdr_abd = hdr->b_crypt_hdr.b_rabd;
6200 zio_flags |= ZIO_FLAG_RAW;
6201 } else {
6202 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
6203 size = arc_hdr_size(hdr);
6204 hdr_abd = hdr->b_l1hdr.b_pabd;
6205
6206 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
6207 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6208 }
6209
6210 /*
6211 * For authenticated bp's, we do not ask the ZIO layer
6212 * to authenticate them since this will cause the entire
6213 * IO to fail if the key isn't loaded. Instead, we
6214 * defer authentication until arc_buf_fill(), which will
6215 * verify the data when the key is available.
6216 */
6217 if (BP_IS_AUTHENTICATED(bp))
6218 zio_flags |= ZIO_FLAG_RAW_ENCRYPT;
6219 }
6220
6221 if (BP_IS_AUTHENTICATED(bp))
6222 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6223 if (BP_GET_LEVEL(bp) > 0)
6224 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
6225 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
6226
6227 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
6228 acb->acb_done = done;
6229 acb->acb_private = private;
6230 acb->acb_compressed = compressed_read;
6231 acb->acb_encrypted = encrypted_read;
6232 acb->acb_noauth = noauth_read;
6233 acb->acb_nobuf = no_buf;
6234 acb->acb_zb = *zb;
6235
6236 ASSERT0P(hdr->b_l1hdr.b_acb);
6237 hdr->b_l1hdr.b_acb = acb;
6238
6239 if (HDR_HAS_L2HDR(hdr) &&
6240 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
6241 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
6242 addr = hdr->b_l2hdr.b_daddr;
6243 /*
6244 * Lock out L2ARC device removal.
6245 */
6246 if (vdev_is_dead(vd) ||
6247 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
6248 vd = NULL;
6249 }
6250
6251 /*
6252 * We count both async reads and scrub IOs as asynchronous so
6253 * that both can be upgraded in the event of a cache hit while
6254 * the read IO is still in-flight.
6255 */
6256 if (priority == ZIO_PRIORITY_ASYNC_READ ||
6257 priority == ZIO_PRIORITY_SCRUB)
6258 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6259 else
6260 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6261
6262 /*
6263 * At this point, we have a level 1 cache miss or a blkptr
6264 * with embedded data. Try again in L2ARC if possible.
6265 */
6266 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
6267
6268 /*
6269 * Skip ARC stat bump for block pointers with embedded
6270 * data. The data are read from the blkptr itself via
6271 * decode_embedded_bp_compressed().
6272 */
6273 if (!embedded_bp) {
6274 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr,
6275 blkptr_t *, bp, uint64_t, lsize,
6276 zbookmark_phys_t *, zb);
6277 ARCSTAT_BUMP(arcstat_misses);
6278 ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
6279 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data,
6280 metadata, misses);
6281 zfs_racct_read(spa, size, 1,
6282 (*arc_flags & ARC_FLAG_UNCACHED) ?
6283 DMU_UNCACHEDIO : 0);
6284 }
6285
6286 /* Check if the spa even has l2 configured */
6287 const boolean_t spa_has_l2 = l2arc_ndev != 0 &&
6288 spa->spa_l2cache.sav_count > 0;
6289
6290 if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) {
6291 /*
6292 * Read from the L2ARC if the following are true:
6293 * 1. The L2ARC vdev was previously cached.
6294 * 2. This buffer still has L2ARC metadata.
6295 * 3. This buffer isn't currently writing to the L2ARC.
6296 * 4. The L2ARC entry wasn't evicted, which may
6297 * also have invalidated the vdev.
6298 */
6299 if (HDR_HAS_L2HDR(hdr) &&
6300 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr)) {
6301 l2arc_read_callback_t *cb;
6302 abd_t *abd;
6303 uint64_t asize;
6304
6305 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
6306 ARCSTAT_BUMP(arcstat_l2_hits);
6307 hdr->b_l2hdr.b_hits++;
6308
6309 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
6310 KM_SLEEP);
6311 cb->l2rcb_hdr = hdr;
6312 cb->l2rcb_bp = *bp;
6313 cb->l2rcb_zb = *zb;
6314 cb->l2rcb_flags = zio_flags;
6315
6316 /*
6317 * When Compressed ARC is disabled, but the
6318 * L2ARC block is compressed, arc_hdr_size()
6319 * will have returned LSIZE rather than PSIZE.
6320 */
6321 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
6322 !HDR_COMPRESSION_ENABLED(hdr) &&
6323 HDR_GET_PSIZE(hdr) != 0) {
6324 size = HDR_GET_PSIZE(hdr);
6325 }
6326
6327 asize = vdev_psize_to_asize(vd, size);
6328 if (asize != size) {
6329 abd = abd_alloc_for_io(asize,
6330 HDR_ISTYPE_METADATA(hdr));
6331 cb->l2rcb_abd = abd;
6332 } else {
6333 abd = hdr_abd;
6334 }
6335
6336 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
6337 addr + asize <= vd->vdev_psize -
6338 VDEV_LABEL_END_SIZE);
6339
6340 /*
6341 * l2arc read. The SCL_L2ARC lock will be
6342 * released by l2arc_read_done().
6343 * Issue a null zio if the underlying buffer
6344 * was squashed to zero size by compression.
6345 */
6346 ASSERT3U(arc_hdr_get_compress(hdr), !=,
6347 ZIO_COMPRESS_EMPTY);
6348 rzio = zio_read_phys(pio, vd, addr,
6349 asize, abd,
6350 ZIO_CHECKSUM_OFF,
6351 l2arc_read_done, cb, priority,
6352 zio_flags | ZIO_FLAG_CANFAIL |
6353 ZIO_FLAG_DONT_PROPAGATE |
6354 ZIO_FLAG_DONT_RETRY, B_FALSE);
6355 acb->acb_zio_head = rzio;
6356
6357 if (hash_lock != NULL)
6358 mutex_exit(hash_lock);
6359
6360 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
6361 zio_t *, rzio);
6362 ARCSTAT_INCR(arcstat_l2_read_bytes,
6363 HDR_GET_PSIZE(hdr));
6364
6365 if (*arc_flags & ARC_FLAG_NOWAIT) {
6366 zio_nowait(rzio);
6367 goto out;
6368 }
6369
6370 ASSERT(*arc_flags & ARC_FLAG_WAIT);
6371 if (zio_wait(rzio) == 0)
6372 goto out;
6373
6374 /* l2arc read error; goto zio_read() */
6375 if (hash_lock != NULL)
6376 mutex_enter(hash_lock);
6377 } else {
6378 DTRACE_PROBE1(l2arc__miss,
6379 arc_buf_hdr_t *, hdr);
6380 ARCSTAT_BUMP(arcstat_l2_misses);
6381 if (HDR_L2_WRITING(hdr))
6382 ARCSTAT_BUMP(arcstat_l2_rw_clash);
6383 spa_config_exit(spa, SCL_L2ARC, vd);
6384 }
6385 } else {
6386 if (vd != NULL)
6387 spa_config_exit(spa, SCL_L2ARC, vd);
6388
6389 /*
6390 * Only a spa with l2 should contribute to l2
6391 * miss stats. (Including the case of having a
6392 * faulted cache device - that's also a miss.)
6393 */
6394 if (spa_has_l2) {
6395 /*
6396 * Skip ARC stat bump for block pointers with
6397 * embedded data. The data are read from the
6398 * blkptr itself via
6399 * decode_embedded_bp_compressed().
6400 */
6401 if (!embedded_bp) {
6402 DTRACE_PROBE1(l2arc__miss,
6403 arc_buf_hdr_t *, hdr);
6404 ARCSTAT_BUMP(arcstat_l2_misses);
6405 }
6406 }
6407 }
6408
6409 rzio = zio_read(pio, spa, bp, hdr_abd, size,
6410 arc_read_done, hdr, priority, zio_flags, zb);
6411 acb->acb_zio_head = rzio;
6412
6413 if (hash_lock != NULL)
6414 mutex_exit(hash_lock);
6415
6416 if (*arc_flags & ARC_FLAG_WAIT) {
6417 rc = zio_wait(rzio);
6418 goto out;
6419 }
6420
6421 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
6422 zio_nowait(rzio);
6423 }
6424
6425 out:
6426 /* embedded bps don't actually go to disk */
6427 if (!embedded_bp)
6428 spa_read_history_add(spa, zb, *arc_flags);
6429 spl_fstrans_unmark(cookie);
6430 return (rc);
6431
6432 done:
6433 if (done)
6434 done(NULL, zb, bp, buf, private);
6435 if (pio && rc != 0) {
6436 zio_t *zio = zio_null(pio, spa, NULL, NULL, NULL, zio_flags);
6437 zio->io_error = rc;
6438 zio_nowait(zio);
6439 }
6440 goto out;
6441 }
6442
6443 arc_prune_t *
arc_add_prune_callback(arc_prune_func_t * func,void * private)6444 arc_add_prune_callback(arc_prune_func_t *func, void *private)
6445 {
6446 arc_prune_t *p;
6447
6448 p = kmem_alloc(sizeof (*p), KM_SLEEP);
6449 p->p_pfunc = func;
6450 p->p_private = private;
6451 list_link_init(&p->p_node);
6452 zfs_refcount_create(&p->p_refcnt);
6453
6454 mutex_enter(&arc_prune_mtx);
6455 zfs_refcount_add(&p->p_refcnt, &arc_prune_list);
6456 list_insert_head(&arc_prune_list, p);
6457 mutex_exit(&arc_prune_mtx);
6458
6459 return (p);
6460 }
6461
6462 void
arc_remove_prune_callback(arc_prune_t * p)6463 arc_remove_prune_callback(arc_prune_t *p)
6464 {
6465 boolean_t wait = B_FALSE;
6466 mutex_enter(&arc_prune_mtx);
6467 list_remove(&arc_prune_list, p);
6468 if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
6469 wait = B_TRUE;
6470 mutex_exit(&arc_prune_mtx);
6471
6472 /* wait for arc_prune_task to finish */
6473 if (wait)
6474 taskq_wait_outstanding(arc_prune_taskq, 0);
6475 ASSERT0(zfs_refcount_count(&p->p_refcnt));
6476 zfs_refcount_destroy(&p->p_refcnt);
6477 kmem_free(p, sizeof (*p));
6478 }
6479
6480 /*
6481 * Helper function for arc_prune_async() it is responsible for safely
6482 * handling the execution of a registered arc_prune_func_t.
6483 */
6484 static void
arc_prune_task(void * ptr)6485 arc_prune_task(void *ptr)
6486 {
6487 arc_prune_t *ap = (arc_prune_t *)ptr;
6488 arc_prune_func_t *func = ap->p_pfunc;
6489
6490 if (func != NULL)
6491 func(ap->p_adjust, ap->p_private);
6492
6493 (void) zfs_refcount_remove(&ap->p_refcnt, func);
6494 }
6495
6496 /*
6497 * Notify registered consumers they must drop holds on a portion of the ARC
6498 * buffers they reference. This provides a mechanism to ensure the ARC can
6499 * honor the metadata limit and reclaim otherwise pinned ARC buffers.
6500 *
6501 * This operation is performed asynchronously so it may be safely called
6502 * in the context of the arc_reclaim_thread(). A reference is taken here
6503 * for each registered arc_prune_t and the arc_prune_task() is responsible
6504 * for releasing it once the registered arc_prune_func_t has completed.
6505 */
6506 static void
arc_prune_async(uint64_t adjust)6507 arc_prune_async(uint64_t adjust)
6508 {
6509 arc_prune_t *ap;
6510
6511 mutex_enter(&arc_prune_mtx);
6512 for (ap = list_head(&arc_prune_list); ap != NULL;
6513 ap = list_next(&arc_prune_list, ap)) {
6514
6515 if (zfs_refcount_count(&ap->p_refcnt) >= 2)
6516 continue;
6517
6518 zfs_refcount_add(&ap->p_refcnt, ap->p_pfunc);
6519 ap->p_adjust = adjust;
6520 if (taskq_dispatch(arc_prune_taskq, arc_prune_task,
6521 ap, TQ_SLEEP) == TASKQID_INVALID) {
6522 (void) zfs_refcount_remove(&ap->p_refcnt, ap->p_pfunc);
6523 continue;
6524 }
6525 ARCSTAT_BUMP(arcstat_prune);
6526 }
6527 mutex_exit(&arc_prune_mtx);
6528 }
6529
6530 /*
6531 * Notify the arc that a block was freed, and thus will never be used again.
6532 */
6533 void
arc_freed(spa_t * spa,const blkptr_t * bp)6534 arc_freed(spa_t *spa, const blkptr_t *bp)
6535 {
6536 arc_buf_hdr_t *hdr;
6537 kmutex_t *hash_lock;
6538 uint64_t guid = spa_load_guid(spa);
6539
6540 ASSERT(!BP_IS_EMBEDDED(bp));
6541
6542 hdr = buf_hash_find(guid, bp, &hash_lock);
6543 if (hdr == NULL)
6544 return;
6545
6546 /*
6547 * We might be trying to free a block that is still doing I/O
6548 * (i.e. prefetch) or has some other reference (i.e. a dedup-ed,
6549 * dmu_sync-ed block). A block may also have a reference if it is
6550 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6551 * have written the new block to its final resting place on disk but
6552 * without the dedup flag set. This would have left the hdr in the MRU
6553 * state and discoverable. When the txg finally syncs it detects that
6554 * the block was overridden in open context and issues an override I/O.
6555 * Since this is a dedup block, the override I/O will determine if the
6556 * block is already in the DDT. If so, then it will replace the io_bp
6557 * with the bp from the DDT and allow the I/O to finish. When the I/O
6558 * reaches the done callback, dbuf_write_override_done, it will
6559 * check to see if the io_bp and io_bp_override are identical.
6560 * If they are not, then it indicates that the bp was replaced with
6561 * the bp in the DDT and the override bp is freed. This allows
6562 * us to arrive here with a reference on a block that is being
6563 * freed. So if we have an I/O in progress, or a reference to
6564 * this hdr, then we don't destroy the hdr.
6565 */
6566 if (!HDR_HAS_L1HDR(hdr) ||
6567 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6568 arc_change_state(arc_anon, hdr);
6569 arc_hdr_destroy(hdr);
6570 mutex_exit(hash_lock);
6571 } else {
6572 mutex_exit(hash_lock);
6573 }
6574
6575 }
6576
6577 /*
6578 * Release this buffer from the cache, making it an anonymous buffer. This
6579 * must be done after a read and prior to modifying the buffer contents.
6580 * If the buffer has more than one reference, we must make
6581 * a new hdr for the buffer.
6582 */
6583 void
arc_release(arc_buf_t * buf,const void * tag)6584 arc_release(arc_buf_t *buf, const void *tag)
6585 {
6586 arc_buf_hdr_t *hdr = buf->b_hdr;
6587
6588 /*
6589 * It would be nice to assert that if its DMU metadata (level >
6590 * 0 || it's the dnode file), then it must be syncing context.
6591 * But we don't know that information at this level.
6592 */
6593
6594 ASSERT(HDR_HAS_L1HDR(hdr));
6595
6596 /*
6597 * We don't grab the hash lock prior to this check, because if
6598 * the buffer's header is in the arc_anon state, it won't be
6599 * linked into the hash table.
6600 */
6601 if (hdr->b_l1hdr.b_state == arc_anon) {
6602 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6603 ASSERT(!HDR_IN_HASH_TABLE(hdr));
6604 ASSERT(!HDR_HAS_L2HDR(hdr));
6605
6606 ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
6607 ASSERT(ARC_BUF_LAST(buf));
6608 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
6609 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6610
6611 hdr->b_l1hdr.b_arc_access = 0;
6612
6613 /*
6614 * If the buf is being overridden then it may already
6615 * have a hdr that is not empty.
6616 */
6617 buf_discard_identity(hdr);
6618 arc_buf_thaw(buf);
6619
6620 return;
6621 }
6622
6623 kmutex_t *hash_lock = HDR_LOCK(hdr);
6624 mutex_enter(hash_lock);
6625
6626 /*
6627 * This assignment is only valid as long as the hash_lock is
6628 * held, we must be careful not to reference state or the
6629 * b_state field after dropping the lock.
6630 */
6631 arc_state_t *state = hdr->b_l1hdr.b_state;
6632 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6633 ASSERT3P(state, !=, arc_anon);
6634 ASSERT3P(state, !=, arc_l2c_only);
6635
6636 /* this buffer is not on any list */
6637 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
6638
6639 /*
6640 * Do we have more than one buf?
6641 */
6642 if (hdr->b_l1hdr.b_buf != buf || !ARC_BUF_LAST(buf)) {
6643 arc_buf_hdr_t *nhdr;
6644 uint64_t spa = hdr->b_spa;
6645 uint64_t psize = HDR_GET_PSIZE(hdr);
6646 uint64_t lsize = HDR_GET_LSIZE(hdr);
6647 boolean_t protected = HDR_PROTECTED(hdr);
6648 enum zio_compress compress = arc_hdr_get_compress(hdr);
6649 arc_buf_contents_t type = arc_buf_type(hdr);
6650
6651 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
6652 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6653 ASSERT(ARC_BUF_LAST(buf));
6654 }
6655
6656 /*
6657 * Pull the buffer off of this hdr and find the last buffer
6658 * in the hdr's buffer list.
6659 */
6660 VERIFY3S(remove_reference(hdr, tag), >, 0);
6661 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
6662 ASSERT3P(lastbuf, !=, NULL);
6663
6664 /*
6665 * If the current arc_buf_t and the hdr are sharing their data
6666 * buffer, then we must stop sharing that block.
6667 */
6668 if (ARC_BUF_SHARED(buf)) {
6669 ASSERT(!arc_buf_is_shared(lastbuf));
6670
6671 /*
6672 * First, sever the block sharing relationship between
6673 * buf and the arc_buf_hdr_t.
6674 */
6675 arc_unshare_buf(hdr, buf);
6676
6677 /*
6678 * Now we need to recreate the hdr's b_pabd. Since we
6679 * have lastbuf handy, we try to share with it, but if
6680 * we can't then we allocate a new b_pabd and copy the
6681 * data from buf into it.
6682 */
6683 if (arc_can_share(hdr, lastbuf)) {
6684 arc_share_buf(hdr, lastbuf);
6685 } else {
6686 arc_hdr_alloc_abd(hdr, 0);
6687 abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
6688 buf->b_data, psize);
6689 }
6690 } else if (HDR_SHARED_DATA(hdr)) {
6691 /*
6692 * Uncompressed shared buffers are always at the end
6693 * of the list. Compressed buffers don't have the
6694 * same requirements. This makes it hard to
6695 * simply assert that the lastbuf is shared so
6696 * we rely on the hdr's compression flags to determine
6697 * if we have a compressed, shared buffer.
6698 */
6699 ASSERT(arc_buf_is_shared(lastbuf) ||
6700 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
6701 ASSERT(!arc_buf_is_shared(buf));
6702 }
6703
6704 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
6705
6706 (void) zfs_refcount_remove_many(&state->arcs_size[type],
6707 arc_buf_size(buf), buf);
6708
6709 arc_cksum_verify(buf);
6710 arc_buf_unwatch(buf);
6711
6712 /* if this is the last uncompressed buf free the checksum */
6713 if (!arc_hdr_has_uncompressed_buf(hdr))
6714 arc_cksum_free(hdr);
6715
6716 mutex_exit(hash_lock);
6717
6718 nhdr = arc_hdr_alloc(spa, psize, lsize, protected,
6719 compress, hdr->b_complevel, type);
6720 ASSERT0P(nhdr->b_l1hdr.b_buf);
6721 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt));
6722 VERIFY3U(nhdr->b_type, ==, type);
6723 ASSERT(!HDR_SHARED_DATA(nhdr));
6724
6725 nhdr->b_l1hdr.b_buf = buf;
6726 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
6727 buf->b_hdr = nhdr;
6728
6729 (void) zfs_refcount_add_many(&arc_anon->arcs_size[type],
6730 arc_buf_size(buf), buf);
6731 } else {
6732 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
6733 /* protected by hash lock, or hdr is on arc_anon */
6734 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6735 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6736
6737 if (HDR_HAS_L2HDR(hdr)) {
6738 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6739 /* Recheck to prevent race with l2arc_evict(). */
6740 if (HDR_HAS_L2HDR(hdr))
6741 arc_hdr_l2hdr_destroy(hdr);
6742 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6743 }
6744
6745 hdr->b_l1hdr.b_mru_hits = 0;
6746 hdr->b_l1hdr.b_mru_ghost_hits = 0;
6747 hdr->b_l1hdr.b_mfu_hits = 0;
6748 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
6749 arc_change_state(arc_anon, hdr);
6750 hdr->b_l1hdr.b_arc_access = 0;
6751
6752 mutex_exit(hash_lock);
6753 buf_discard_identity(hdr);
6754 arc_buf_thaw(buf);
6755 }
6756 }
6757
6758 int
arc_released(arc_buf_t * buf)6759 arc_released(arc_buf_t *buf)
6760 {
6761 return (buf->b_data != NULL &&
6762 buf->b_hdr->b_l1hdr.b_state == arc_anon);
6763 }
6764
6765 #ifdef ZFS_DEBUG
6766 int
arc_referenced(arc_buf_t * buf)6767 arc_referenced(arc_buf_t *buf)
6768 {
6769 return (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
6770 }
6771 #endif
6772
6773 static void
arc_write_ready(zio_t * zio)6774 arc_write_ready(zio_t *zio)
6775 {
6776 arc_write_callback_t *callback = zio->io_private;
6777 arc_buf_t *buf = callback->awcb_buf;
6778 arc_buf_hdr_t *hdr = buf->b_hdr;
6779 blkptr_t *bp = zio->io_bp;
6780 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp);
6781 fstrans_cookie_t cookie = spl_fstrans_mark();
6782
6783 ASSERT(HDR_HAS_L1HDR(hdr));
6784 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
6785 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
6786
6787 /*
6788 * If we're reexecuting this zio because the pool suspended, then
6789 * cleanup any state that was previously set the first time the
6790 * callback was invoked.
6791 */
6792 if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
6793 arc_cksum_free(hdr);
6794 arc_buf_unwatch(buf);
6795 if (hdr->b_l1hdr.b_pabd != NULL) {
6796 if (ARC_BUF_SHARED(buf)) {
6797 arc_unshare_buf(hdr, buf);
6798 } else {
6799 ASSERT(!arc_buf_is_shared(buf));
6800 arc_hdr_free_abd(hdr, B_FALSE);
6801 }
6802 }
6803
6804 if (HDR_HAS_RABD(hdr))
6805 arc_hdr_free_abd(hdr, B_TRUE);
6806 }
6807 ASSERT0P(hdr->b_l1hdr.b_pabd);
6808 ASSERT(!HDR_HAS_RABD(hdr));
6809 ASSERT(!HDR_SHARED_DATA(hdr));
6810 ASSERT(!arc_buf_is_shared(buf));
6811
6812 callback->awcb_ready(zio, buf, callback->awcb_private);
6813
6814 if (HDR_IO_IN_PROGRESS(hdr)) {
6815 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
6816 } else {
6817 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6818 add_reference(hdr, hdr); /* For IO_IN_PROGRESS. */
6819 }
6820
6821 if (BP_IS_PROTECTED(bp)) {
6822 /* ZIL blocks are written through zio_rewrite */
6823 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
6824
6825 if (BP_SHOULD_BYTESWAP(bp)) {
6826 if (BP_GET_LEVEL(bp) > 0) {
6827 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
6828 } else {
6829 hdr->b_l1hdr.b_byteswap =
6830 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
6831 }
6832 } else {
6833 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
6834 }
6835
6836 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
6837 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
6838 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
6839 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
6840 hdr->b_crypt_hdr.b_iv);
6841 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
6842 } else {
6843 arc_hdr_clear_flags(hdr, ARC_FLAG_PROTECTED);
6844 }
6845
6846 /*
6847 * If this block was written for raw encryption but the zio layer
6848 * ended up only authenticating it, adjust the buffer flags now.
6849 */
6850 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) {
6851 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6852 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6853 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF)
6854 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6855 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) {
6856 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6857 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6858 }
6859
6860 /* this must be done after the buffer flags are adjusted */
6861 arc_cksum_compute(buf);
6862
6863 enum zio_compress compress;
6864 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
6865 compress = ZIO_COMPRESS_OFF;
6866 } else {
6867 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
6868 compress = BP_GET_COMPRESS(bp);
6869 }
6870 HDR_SET_PSIZE(hdr, psize);
6871 arc_hdr_set_compress(hdr, compress);
6872 hdr->b_complevel = zio->io_prop.zp_complevel;
6873
6874 if (zio->io_error != 0 || psize == 0)
6875 goto out;
6876
6877 /*
6878 * Fill the hdr with data. If the buffer is encrypted we have no choice
6879 * but to copy the data into b_radb. If the hdr is compressed, the data
6880 * we want is available from the zio, otherwise we can take it from
6881 * the buf.
6882 *
6883 * We might be able to share the buf's data with the hdr here. However,
6884 * doing so would cause the ARC to be full of linear ABDs if we write a
6885 * lot of shareable data. As a compromise, we check whether scattered
6886 * ABDs are allowed, and assume that if they are then the user wants
6887 * the ARC to be primarily filled with them regardless of the data being
6888 * written. Therefore, if they're allowed then we allocate one and copy
6889 * the data into it; otherwise, we share the data directly if we can.
6890 */
6891 if (ARC_BUF_ENCRYPTED(buf)) {
6892 ASSERT3U(psize, >, 0);
6893 ASSERT(ARC_BUF_COMPRESSED(buf));
6894 arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA |
6895 ARC_HDR_USE_RESERVE);
6896 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6897 } else if (!(HDR_UNCACHED(hdr) ||
6898 abd_size_alloc_linear(arc_buf_size(buf))) ||
6899 !arc_can_share(hdr, buf)) {
6900 /*
6901 * Ideally, we would always copy the io_abd into b_pabd, but the
6902 * user may have disabled compressed ARC, thus we must check the
6903 * hdr's compression setting rather than the io_bp's.
6904 */
6905 if (BP_IS_ENCRYPTED(bp)) {
6906 ASSERT3U(psize, >, 0);
6907 arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA |
6908 ARC_HDR_USE_RESERVE);
6909 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6910 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
6911 !ARC_BUF_COMPRESSED(buf)) {
6912 ASSERT3U(psize, >, 0);
6913 arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE);
6914 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
6915 } else {
6916 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
6917 arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE);
6918 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
6919 arc_buf_size(buf));
6920 }
6921 } else {
6922 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
6923 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
6924 ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
6925 ASSERT(ARC_BUF_LAST(buf));
6926
6927 arc_share_buf(hdr, buf);
6928 }
6929
6930 out:
6931 arc_hdr_verify(hdr, bp);
6932 spl_fstrans_unmark(cookie);
6933 }
6934
6935 static void
arc_write_children_ready(zio_t * zio)6936 arc_write_children_ready(zio_t *zio)
6937 {
6938 arc_write_callback_t *callback = zio->io_private;
6939 arc_buf_t *buf = callback->awcb_buf;
6940
6941 callback->awcb_children_ready(zio, buf, callback->awcb_private);
6942 }
6943
6944 static void
arc_write_done(zio_t * zio)6945 arc_write_done(zio_t *zio)
6946 {
6947 arc_write_callback_t *callback = zio->io_private;
6948 arc_buf_t *buf = callback->awcb_buf;
6949 arc_buf_hdr_t *hdr = buf->b_hdr;
6950
6951 ASSERT0P(hdr->b_l1hdr.b_acb);
6952
6953 if (zio->io_error == 0) {
6954 arc_hdr_verify(hdr, zio->io_bp);
6955
6956 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
6957 buf_discard_identity(hdr);
6958 } else {
6959 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
6960 hdr->b_birth = BP_GET_PHYSICAL_BIRTH(zio->io_bp);
6961 }
6962 } else {
6963 ASSERT(HDR_EMPTY(hdr));
6964 }
6965
6966 /*
6967 * If the block to be written was all-zero or compressed enough to be
6968 * embedded in the BP, no write was performed so there will be no
6969 * dva/birth/checksum. The buffer must therefore remain anonymous
6970 * (and uncached).
6971 */
6972 if (!HDR_EMPTY(hdr)) {
6973 arc_buf_hdr_t *exists;
6974 kmutex_t *hash_lock;
6975
6976 ASSERT0(zio->io_error);
6977
6978 arc_cksum_verify(buf);
6979
6980 exists = buf_hash_insert(hdr, &hash_lock);
6981 if (exists != NULL) {
6982 /*
6983 * This can only happen if we overwrite for
6984 * sync-to-convergence, because we remove
6985 * buffers from the hash table when we arc_free().
6986 */
6987 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
6988 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6989 panic("bad overwrite, hdr=%p exists=%p",
6990 (void *)hdr, (void *)exists);
6991 ASSERT(zfs_refcount_is_zero(
6992 &exists->b_l1hdr.b_refcnt));
6993 arc_change_state(arc_anon, exists);
6994 arc_hdr_destroy(exists);
6995 mutex_exit(hash_lock);
6996 exists = buf_hash_insert(hdr, &hash_lock);
6997 ASSERT0P(exists);
6998 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
6999 /* nopwrite */
7000 ASSERT(zio->io_prop.zp_nopwrite);
7001 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
7002 panic("bad nopwrite, hdr=%p exists=%p",
7003 (void *)hdr, (void *)exists);
7004 } else {
7005 /* Dedup */
7006 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
7007 ASSERT(ARC_BUF_LAST(hdr->b_l1hdr.b_buf));
7008 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
7009 ASSERT(BP_GET_DEDUP(zio->io_bp));
7010 ASSERT0(BP_GET_LEVEL(zio->io_bp));
7011 }
7012 }
7013 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
7014 VERIFY3S(remove_reference(hdr, hdr), >, 0);
7015 /* if it's not anon, we are doing a scrub */
7016 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
7017 arc_access(hdr, 0, B_FALSE);
7018 mutex_exit(hash_lock);
7019 } else {
7020 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
7021 VERIFY3S(remove_reference(hdr, hdr), >, 0);
7022 }
7023
7024 callback->awcb_done(zio, buf, callback->awcb_private);
7025
7026 abd_free(zio->io_abd);
7027 kmem_free(callback, sizeof (arc_write_callback_t));
7028 }
7029
7030 zio_t *
arc_write(zio_t * pio,spa_t * spa,uint64_t txg,blkptr_t * bp,arc_buf_t * buf,boolean_t uncached,boolean_t l2arc,const zio_prop_t * zp,arc_write_done_func_t * ready,arc_write_done_func_t * children_ready,arc_write_done_func_t * done,void * private,zio_priority_t priority,int zio_flags,const zbookmark_phys_t * zb)7031 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
7032 blkptr_t *bp, arc_buf_t *buf, boolean_t uncached, boolean_t l2arc,
7033 const zio_prop_t *zp, arc_write_done_func_t *ready,
7034 arc_write_done_func_t *children_ready, arc_write_done_func_t *done,
7035 void *private, zio_priority_t priority, int zio_flags,
7036 const zbookmark_phys_t *zb)
7037 {
7038 arc_buf_hdr_t *hdr = buf->b_hdr;
7039 arc_write_callback_t *callback;
7040 zio_t *zio;
7041 zio_prop_t localprop = *zp;
7042
7043 ASSERT3P(ready, !=, NULL);
7044 ASSERT3P(done, !=, NULL);
7045 ASSERT(!HDR_IO_ERROR(hdr));
7046 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
7047 ASSERT0P(hdr->b_l1hdr.b_acb);
7048 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
7049 if (uncached)
7050 arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED);
7051 else if (l2arc)
7052 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
7053
7054 if (ARC_BUF_ENCRYPTED(buf)) {
7055 ASSERT(ARC_BUF_COMPRESSED(buf));
7056 localprop.zp_encrypt = B_TRUE;
7057 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
7058 localprop.zp_complevel = hdr->b_complevel;
7059 localprop.zp_byteorder =
7060 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
7061 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
7062 memcpy(localprop.zp_salt, hdr->b_crypt_hdr.b_salt,
7063 ZIO_DATA_SALT_LEN);
7064 memcpy(localprop.zp_iv, hdr->b_crypt_hdr.b_iv,
7065 ZIO_DATA_IV_LEN);
7066 memcpy(localprop.zp_mac, hdr->b_crypt_hdr.b_mac,
7067 ZIO_DATA_MAC_LEN);
7068 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) {
7069 localprop.zp_nopwrite = B_FALSE;
7070 localprop.zp_copies =
7071 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1);
7072 localprop.zp_gang_copies =
7073 MIN(localprop.zp_gang_copies, SPA_DVAS_PER_BP - 1);
7074 }
7075 zio_flags |= ZIO_FLAG_RAW;
7076 } else if (ARC_BUF_COMPRESSED(buf)) {
7077 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
7078 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
7079 localprop.zp_complevel = hdr->b_complevel;
7080 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
7081 }
7082 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
7083 callback->awcb_ready = ready;
7084 callback->awcb_children_ready = children_ready;
7085 callback->awcb_done = done;
7086 callback->awcb_private = private;
7087 callback->awcb_buf = buf;
7088
7089 /*
7090 * The hdr's b_pabd is now stale, free it now. A new data block
7091 * will be allocated when the zio pipeline calls arc_write_ready().
7092 */
7093 if (hdr->b_l1hdr.b_pabd != NULL) {
7094 /*
7095 * If the buf is currently sharing the data block with
7096 * the hdr then we need to break that relationship here.
7097 * The hdr will remain with a NULL data pointer and the
7098 * buf will take sole ownership of the block.
7099 */
7100 if (ARC_BUF_SHARED(buf)) {
7101 arc_unshare_buf(hdr, buf);
7102 } else {
7103 ASSERT(!arc_buf_is_shared(buf));
7104 arc_hdr_free_abd(hdr, B_FALSE);
7105 }
7106 VERIFY3P(buf->b_data, !=, NULL);
7107 }
7108
7109 if (HDR_HAS_RABD(hdr))
7110 arc_hdr_free_abd(hdr, B_TRUE);
7111
7112 if (!(zio_flags & ZIO_FLAG_RAW))
7113 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
7114
7115 ASSERT(!arc_buf_is_shared(buf));
7116 ASSERT0P(hdr->b_l1hdr.b_pabd);
7117
7118 zio = zio_write(pio, spa, txg, bp,
7119 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
7120 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
7121 (children_ready != NULL) ? arc_write_children_ready : NULL,
7122 arc_write_done, callback, priority, zio_flags, zb);
7123
7124 return (zio);
7125 }
7126
7127 void
arc_tempreserve_clear(uint64_t reserve)7128 arc_tempreserve_clear(uint64_t reserve)
7129 {
7130 atomic_add_64(&arc_tempreserve, -reserve);
7131 ASSERT((int64_t)arc_tempreserve >= 0);
7132 }
7133
7134 int
arc_tempreserve_space(spa_t * spa,uint64_t reserve,uint64_t txg)7135 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg)
7136 {
7137 int error;
7138 uint64_t anon_size;
7139
7140 if (!arc_no_grow &&
7141 reserve > arc_c/4 &&
7142 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
7143 arc_c = MIN(arc_c_max, reserve * 4);
7144
7145 /*
7146 * Throttle when the calculated memory footprint for the TXG
7147 * exceeds the target ARC size.
7148 */
7149 if (reserve > arc_c) {
7150 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
7151 return (SET_ERROR(ERESTART));
7152 }
7153
7154 /*
7155 * Don't count loaned bufs as in flight dirty data to prevent long
7156 * network delays from blocking transactions that are ready to be
7157 * assigned to a txg.
7158 */
7159
7160 /* assert that it has not wrapped around */
7161 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
7162
7163 anon_size = MAX((int64_t)
7164 (zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]) +
7165 zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]) -
7166 arc_loaned_bytes), 0);
7167
7168 /*
7169 * Writes will, almost always, require additional memory allocations
7170 * in order to compress/encrypt/etc the data. We therefore need to
7171 * make sure that there is sufficient available memory for this.
7172 */
7173 error = arc_memory_throttle(spa, reserve, txg);
7174 if (error != 0)
7175 return (error);
7176
7177 /*
7178 * Throttle writes when the amount of dirty data in the cache
7179 * gets too large. We try to keep the cache less than half full
7180 * of dirty blocks so that our sync times don't grow too large.
7181 *
7182 * In the case of one pool being built on another pool, we want
7183 * to make sure we don't end up throttling the lower (backing)
7184 * pool when the upper pool is the majority contributor to dirty
7185 * data. To insure we make forward progress during throttling, we
7186 * also check the current pool's net dirty data and only throttle
7187 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
7188 * data in the cache.
7189 *
7190 * Note: if two requests come in concurrently, we might let them
7191 * both succeed, when one of them should fail. Not a huge deal.
7192 */
7193 uint64_t total_dirty = reserve + arc_tempreserve + anon_size;
7194 uint64_t spa_dirty_anon = spa_dirty_data(spa);
7195 uint64_t rarc_c = arc_warm ? arc_c : arc_c_max;
7196 if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 &&
7197 anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 &&
7198 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) {
7199 #ifdef ZFS_DEBUG
7200 uint64_t meta_esize = zfs_refcount_count(
7201 &arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7202 uint64_t data_esize =
7203 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7204 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
7205 "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n",
7206 (u_longlong_t)arc_tempreserve >> 10,
7207 (u_longlong_t)meta_esize >> 10,
7208 (u_longlong_t)data_esize >> 10,
7209 (u_longlong_t)reserve >> 10,
7210 (u_longlong_t)rarc_c >> 10);
7211 #endif
7212 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
7213 return (SET_ERROR(ERESTART));
7214 }
7215 atomic_add_64(&arc_tempreserve, reserve);
7216 return (0);
7217 }
7218
7219 static void
arc_kstat_update_state(arc_state_t * state,kstat_named_t * size,kstat_named_t * data,kstat_named_t * metadata,kstat_named_t * evict_data,kstat_named_t * evict_metadata)7220 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
7221 kstat_named_t *data, kstat_named_t *metadata,
7222 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
7223 {
7224 data->value.ui64 =
7225 zfs_refcount_count(&state->arcs_size[ARC_BUFC_DATA]);
7226 metadata->value.ui64 =
7227 zfs_refcount_count(&state->arcs_size[ARC_BUFC_METADATA]);
7228 size->value.ui64 = data->value.ui64 + metadata->value.ui64;
7229 evict_data->value.ui64 =
7230 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
7231 evict_metadata->value.ui64 =
7232 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
7233 }
7234
7235 static int
arc_kstat_update(kstat_t * ksp,int rw)7236 arc_kstat_update(kstat_t *ksp, int rw)
7237 {
7238 arc_stats_t *as = ksp->ks_data;
7239
7240 if (rw == KSTAT_WRITE)
7241 return (SET_ERROR(EACCES));
7242
7243 as->arcstat_hits.value.ui64 =
7244 wmsum_value(&arc_sums.arcstat_hits);
7245 as->arcstat_iohits.value.ui64 =
7246 wmsum_value(&arc_sums.arcstat_iohits);
7247 as->arcstat_misses.value.ui64 =
7248 wmsum_value(&arc_sums.arcstat_misses);
7249 as->arcstat_demand_data_hits.value.ui64 =
7250 wmsum_value(&arc_sums.arcstat_demand_data_hits);
7251 as->arcstat_demand_data_iohits.value.ui64 =
7252 wmsum_value(&arc_sums.arcstat_demand_data_iohits);
7253 as->arcstat_demand_data_misses.value.ui64 =
7254 wmsum_value(&arc_sums.arcstat_demand_data_misses);
7255 as->arcstat_demand_metadata_hits.value.ui64 =
7256 wmsum_value(&arc_sums.arcstat_demand_metadata_hits);
7257 as->arcstat_demand_metadata_iohits.value.ui64 =
7258 wmsum_value(&arc_sums.arcstat_demand_metadata_iohits);
7259 as->arcstat_demand_metadata_misses.value.ui64 =
7260 wmsum_value(&arc_sums.arcstat_demand_metadata_misses);
7261 as->arcstat_prefetch_data_hits.value.ui64 =
7262 wmsum_value(&arc_sums.arcstat_prefetch_data_hits);
7263 as->arcstat_prefetch_data_iohits.value.ui64 =
7264 wmsum_value(&arc_sums.arcstat_prefetch_data_iohits);
7265 as->arcstat_prefetch_data_misses.value.ui64 =
7266 wmsum_value(&arc_sums.arcstat_prefetch_data_misses);
7267 as->arcstat_prefetch_metadata_hits.value.ui64 =
7268 wmsum_value(&arc_sums.arcstat_prefetch_metadata_hits);
7269 as->arcstat_prefetch_metadata_iohits.value.ui64 =
7270 wmsum_value(&arc_sums.arcstat_prefetch_metadata_iohits);
7271 as->arcstat_prefetch_metadata_misses.value.ui64 =
7272 wmsum_value(&arc_sums.arcstat_prefetch_metadata_misses);
7273 as->arcstat_mru_hits.value.ui64 =
7274 wmsum_value(&arc_sums.arcstat_mru_hits);
7275 as->arcstat_mru_ghost_hits.value.ui64 =
7276 wmsum_value(&arc_sums.arcstat_mru_ghost_hits);
7277 as->arcstat_mfu_hits.value.ui64 =
7278 wmsum_value(&arc_sums.arcstat_mfu_hits);
7279 as->arcstat_mfu_ghost_hits.value.ui64 =
7280 wmsum_value(&arc_sums.arcstat_mfu_ghost_hits);
7281 as->arcstat_uncached_hits.value.ui64 =
7282 wmsum_value(&arc_sums.arcstat_uncached_hits);
7283 as->arcstat_deleted.value.ui64 =
7284 wmsum_value(&arc_sums.arcstat_deleted);
7285 as->arcstat_mutex_miss.value.ui64 =
7286 wmsum_value(&arc_sums.arcstat_mutex_miss);
7287 as->arcstat_access_skip.value.ui64 =
7288 wmsum_value(&arc_sums.arcstat_access_skip);
7289 as->arcstat_evict_skip.value.ui64 =
7290 wmsum_value(&arc_sums.arcstat_evict_skip);
7291 as->arcstat_evict_not_enough.value.ui64 =
7292 wmsum_value(&arc_sums.arcstat_evict_not_enough);
7293 as->arcstat_evict_l2_cached.value.ui64 =
7294 wmsum_value(&arc_sums.arcstat_evict_l2_cached);
7295 as->arcstat_evict_l2_eligible.value.ui64 =
7296 wmsum_value(&arc_sums.arcstat_evict_l2_eligible);
7297 as->arcstat_evict_l2_eligible_mfu.value.ui64 =
7298 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mfu);
7299 as->arcstat_evict_l2_eligible_mru.value.ui64 =
7300 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mru);
7301 as->arcstat_evict_l2_ineligible.value.ui64 =
7302 wmsum_value(&arc_sums.arcstat_evict_l2_ineligible);
7303 as->arcstat_evict_l2_skip.value.ui64 =
7304 wmsum_value(&arc_sums.arcstat_evict_l2_skip);
7305 as->arcstat_hash_elements.value.ui64 =
7306 as->arcstat_hash_elements_max.value.ui64 =
7307 wmsum_value(&arc_sums.arcstat_hash_elements);
7308 as->arcstat_hash_collisions.value.ui64 =
7309 wmsum_value(&arc_sums.arcstat_hash_collisions);
7310 as->arcstat_hash_chains.value.ui64 =
7311 wmsum_value(&arc_sums.arcstat_hash_chains);
7312 as->arcstat_size.value.ui64 =
7313 aggsum_value(&arc_sums.arcstat_size);
7314 as->arcstat_compressed_size.value.ui64 =
7315 wmsum_value(&arc_sums.arcstat_compressed_size);
7316 as->arcstat_uncompressed_size.value.ui64 =
7317 wmsum_value(&arc_sums.arcstat_uncompressed_size);
7318 as->arcstat_overhead_size.value.ui64 =
7319 wmsum_value(&arc_sums.arcstat_overhead_size);
7320 as->arcstat_hdr_size.value.ui64 =
7321 wmsum_value(&arc_sums.arcstat_hdr_size);
7322 as->arcstat_data_size.value.ui64 =
7323 wmsum_value(&arc_sums.arcstat_data_size);
7324 as->arcstat_metadata_size.value.ui64 =
7325 wmsum_value(&arc_sums.arcstat_metadata_size);
7326 as->arcstat_dbuf_size.value.ui64 =
7327 wmsum_value(&arc_sums.arcstat_dbuf_size);
7328 #if defined(COMPAT_FREEBSD11)
7329 as->arcstat_other_size.value.ui64 =
7330 wmsum_value(&arc_sums.arcstat_bonus_size) +
7331 aggsum_value(&arc_sums.arcstat_dnode_size) +
7332 wmsum_value(&arc_sums.arcstat_dbuf_size);
7333 #endif
7334
7335 arc_kstat_update_state(arc_anon,
7336 &as->arcstat_anon_size,
7337 &as->arcstat_anon_data,
7338 &as->arcstat_anon_metadata,
7339 &as->arcstat_anon_evictable_data,
7340 &as->arcstat_anon_evictable_metadata);
7341 arc_kstat_update_state(arc_mru,
7342 &as->arcstat_mru_size,
7343 &as->arcstat_mru_data,
7344 &as->arcstat_mru_metadata,
7345 &as->arcstat_mru_evictable_data,
7346 &as->arcstat_mru_evictable_metadata);
7347 arc_kstat_update_state(arc_mru_ghost,
7348 &as->arcstat_mru_ghost_size,
7349 &as->arcstat_mru_ghost_data,
7350 &as->arcstat_mru_ghost_metadata,
7351 &as->arcstat_mru_ghost_evictable_data,
7352 &as->arcstat_mru_ghost_evictable_metadata);
7353 arc_kstat_update_state(arc_mfu,
7354 &as->arcstat_mfu_size,
7355 &as->arcstat_mfu_data,
7356 &as->arcstat_mfu_metadata,
7357 &as->arcstat_mfu_evictable_data,
7358 &as->arcstat_mfu_evictable_metadata);
7359 arc_kstat_update_state(arc_mfu_ghost,
7360 &as->arcstat_mfu_ghost_size,
7361 &as->arcstat_mfu_ghost_data,
7362 &as->arcstat_mfu_ghost_metadata,
7363 &as->arcstat_mfu_ghost_evictable_data,
7364 &as->arcstat_mfu_ghost_evictable_metadata);
7365 arc_kstat_update_state(arc_uncached,
7366 &as->arcstat_uncached_size,
7367 &as->arcstat_uncached_data,
7368 &as->arcstat_uncached_metadata,
7369 &as->arcstat_uncached_evictable_data,
7370 &as->arcstat_uncached_evictable_metadata);
7371
7372 as->arcstat_dnode_size.value.ui64 =
7373 aggsum_value(&arc_sums.arcstat_dnode_size);
7374 as->arcstat_bonus_size.value.ui64 =
7375 wmsum_value(&arc_sums.arcstat_bonus_size);
7376 as->arcstat_l2_hits.value.ui64 =
7377 wmsum_value(&arc_sums.arcstat_l2_hits);
7378 as->arcstat_l2_misses.value.ui64 =
7379 wmsum_value(&arc_sums.arcstat_l2_misses);
7380 as->arcstat_l2_prefetch_asize.value.ui64 =
7381 wmsum_value(&arc_sums.arcstat_l2_prefetch_asize);
7382 as->arcstat_l2_mru_asize.value.ui64 =
7383 wmsum_value(&arc_sums.arcstat_l2_mru_asize);
7384 as->arcstat_l2_mfu_asize.value.ui64 =
7385 wmsum_value(&arc_sums.arcstat_l2_mfu_asize);
7386 as->arcstat_l2_bufc_data_asize.value.ui64 =
7387 wmsum_value(&arc_sums.arcstat_l2_bufc_data_asize);
7388 as->arcstat_l2_bufc_metadata_asize.value.ui64 =
7389 wmsum_value(&arc_sums.arcstat_l2_bufc_metadata_asize);
7390 as->arcstat_l2_feeds.value.ui64 =
7391 wmsum_value(&arc_sums.arcstat_l2_feeds);
7392 as->arcstat_l2_rw_clash.value.ui64 =
7393 wmsum_value(&arc_sums.arcstat_l2_rw_clash);
7394 as->arcstat_l2_read_bytes.value.ui64 =
7395 wmsum_value(&arc_sums.arcstat_l2_read_bytes);
7396 as->arcstat_l2_write_bytes.value.ui64 =
7397 wmsum_value(&arc_sums.arcstat_l2_write_bytes);
7398 as->arcstat_l2_writes_sent.value.ui64 =
7399 wmsum_value(&arc_sums.arcstat_l2_writes_sent);
7400 as->arcstat_l2_writes_done.value.ui64 =
7401 wmsum_value(&arc_sums.arcstat_l2_writes_done);
7402 as->arcstat_l2_writes_error.value.ui64 =
7403 wmsum_value(&arc_sums.arcstat_l2_writes_error);
7404 as->arcstat_l2_writes_lock_retry.value.ui64 =
7405 wmsum_value(&arc_sums.arcstat_l2_writes_lock_retry);
7406 as->arcstat_l2_evict_lock_retry.value.ui64 =
7407 wmsum_value(&arc_sums.arcstat_l2_evict_lock_retry);
7408 as->arcstat_l2_evict_reading.value.ui64 =
7409 wmsum_value(&arc_sums.arcstat_l2_evict_reading);
7410 as->arcstat_l2_evict_l1cached.value.ui64 =
7411 wmsum_value(&arc_sums.arcstat_l2_evict_l1cached);
7412 as->arcstat_l2_free_on_write.value.ui64 =
7413 wmsum_value(&arc_sums.arcstat_l2_free_on_write);
7414 as->arcstat_l2_abort_lowmem.value.ui64 =
7415 wmsum_value(&arc_sums.arcstat_l2_abort_lowmem);
7416 as->arcstat_l2_cksum_bad.value.ui64 =
7417 wmsum_value(&arc_sums.arcstat_l2_cksum_bad);
7418 as->arcstat_l2_io_error.value.ui64 =
7419 wmsum_value(&arc_sums.arcstat_l2_io_error);
7420 as->arcstat_l2_lsize.value.ui64 =
7421 wmsum_value(&arc_sums.arcstat_l2_lsize);
7422 as->arcstat_l2_psize.value.ui64 =
7423 wmsum_value(&arc_sums.arcstat_l2_psize);
7424 as->arcstat_l2_hdr_size.value.ui64 =
7425 aggsum_value(&arc_sums.arcstat_l2_hdr_size);
7426 as->arcstat_l2_log_blk_writes.value.ui64 =
7427 wmsum_value(&arc_sums.arcstat_l2_log_blk_writes);
7428 as->arcstat_l2_log_blk_asize.value.ui64 =
7429 wmsum_value(&arc_sums.arcstat_l2_log_blk_asize);
7430 as->arcstat_l2_log_blk_count.value.ui64 =
7431 wmsum_value(&arc_sums.arcstat_l2_log_blk_count);
7432 as->arcstat_l2_rebuild_success.value.ui64 =
7433 wmsum_value(&arc_sums.arcstat_l2_rebuild_success);
7434 as->arcstat_l2_rebuild_abort_unsupported.value.ui64 =
7435 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7436 as->arcstat_l2_rebuild_abort_io_errors.value.ui64 =
7437 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7438 as->arcstat_l2_rebuild_abort_dh_errors.value.ui64 =
7439 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7440 as->arcstat_l2_rebuild_abort_cksum_lb_errors.value.ui64 =
7441 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7442 as->arcstat_l2_rebuild_abort_lowmem.value.ui64 =
7443 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7444 as->arcstat_l2_rebuild_size.value.ui64 =
7445 wmsum_value(&arc_sums.arcstat_l2_rebuild_size);
7446 as->arcstat_l2_rebuild_asize.value.ui64 =
7447 wmsum_value(&arc_sums.arcstat_l2_rebuild_asize);
7448 as->arcstat_l2_rebuild_bufs.value.ui64 =
7449 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs);
7450 as->arcstat_l2_rebuild_bufs_precached.value.ui64 =
7451 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7452 as->arcstat_l2_rebuild_log_blks.value.ui64 =
7453 wmsum_value(&arc_sums.arcstat_l2_rebuild_log_blks);
7454 as->arcstat_memory_throttle_count.value.ui64 =
7455 wmsum_value(&arc_sums.arcstat_memory_throttle_count);
7456 as->arcstat_memory_direct_count.value.ui64 =
7457 wmsum_value(&arc_sums.arcstat_memory_direct_count);
7458 as->arcstat_memory_indirect_count.value.ui64 =
7459 wmsum_value(&arc_sums.arcstat_memory_indirect_count);
7460
7461 as->arcstat_memory_all_bytes.value.ui64 =
7462 arc_all_memory();
7463 as->arcstat_memory_free_bytes.value.ui64 =
7464 arc_free_memory();
7465 as->arcstat_memory_available_bytes.value.i64 =
7466 arc_available_memory();
7467
7468 as->arcstat_prune.value.ui64 =
7469 wmsum_value(&arc_sums.arcstat_prune);
7470 as->arcstat_meta_used.value.ui64 =
7471 wmsum_value(&arc_sums.arcstat_meta_used);
7472 as->arcstat_async_upgrade_sync.value.ui64 =
7473 wmsum_value(&arc_sums.arcstat_async_upgrade_sync);
7474 as->arcstat_predictive_prefetch.value.ui64 =
7475 wmsum_value(&arc_sums.arcstat_predictive_prefetch);
7476 as->arcstat_demand_hit_predictive_prefetch.value.ui64 =
7477 wmsum_value(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7478 as->arcstat_demand_iohit_predictive_prefetch.value.ui64 =
7479 wmsum_value(&arc_sums.arcstat_demand_iohit_predictive_prefetch);
7480 as->arcstat_prescient_prefetch.value.ui64 =
7481 wmsum_value(&arc_sums.arcstat_prescient_prefetch);
7482 as->arcstat_demand_hit_prescient_prefetch.value.ui64 =
7483 wmsum_value(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7484 as->arcstat_demand_iohit_prescient_prefetch.value.ui64 =
7485 wmsum_value(&arc_sums.arcstat_demand_iohit_prescient_prefetch);
7486 as->arcstat_raw_size.value.ui64 =
7487 wmsum_value(&arc_sums.arcstat_raw_size);
7488 as->arcstat_cached_only_in_progress.value.ui64 =
7489 wmsum_value(&arc_sums.arcstat_cached_only_in_progress);
7490 as->arcstat_abd_chunk_waste_size.value.ui64 =
7491 wmsum_value(&arc_sums.arcstat_abd_chunk_waste_size);
7492
7493 return (0);
7494 }
7495
7496 /*
7497 * This function *must* return indices evenly distributed between all
7498 * sublists of the multilist. This is needed due to how the ARC eviction
7499 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
7500 * distributed between all sublists and uses this assumption when
7501 * deciding which sublist to evict from and how much to evict from it.
7502 */
7503 static unsigned int
arc_state_multilist_index_func(multilist_t * ml,void * obj)7504 arc_state_multilist_index_func(multilist_t *ml, void *obj)
7505 {
7506 arc_buf_hdr_t *hdr = obj;
7507
7508 /*
7509 * We rely on b_dva to generate evenly distributed index
7510 * numbers using buf_hash below. So, as an added precaution,
7511 * let's make sure we never add empty buffers to the arc lists.
7512 */
7513 ASSERT(!HDR_EMPTY(hdr));
7514
7515 /*
7516 * The assumption here, is the hash value for a given
7517 * arc_buf_hdr_t will remain constant throughout its lifetime
7518 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
7519 * Thus, we don't need to store the header's sublist index
7520 * on insertion, as this index can be recalculated on removal.
7521 *
7522 * Also, the low order bits of the hash value are thought to be
7523 * distributed evenly. Otherwise, in the case that the multilist
7524 * has a power of two number of sublists, each sublists' usage
7525 * would not be evenly distributed. In this context full 64bit
7526 * division would be a waste of time, so limit it to 32 bits.
7527 */
7528 return ((unsigned int)buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
7529 multilist_get_num_sublists(ml));
7530 }
7531
7532 static unsigned int
arc_state_l2c_multilist_index_func(multilist_t * ml,void * obj)7533 arc_state_l2c_multilist_index_func(multilist_t *ml, void *obj)
7534 {
7535 panic("Header %p insert into arc_l2c_only %p", obj, ml);
7536 }
7537
7538 #define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \
7539 if ((do_warn) && (tuning) && ((tuning) != (value))) { \
7540 cmn_err(CE_WARN, \
7541 "ignoring tunable %s (using %llu instead)", \
7542 (#tuning), (u_longlong_t)(value)); \
7543 } \
7544 } while (0)
7545
7546 /*
7547 * Called during module initialization and periodically thereafter to
7548 * apply reasonable changes to the exposed performance tunings. Can also be
7549 * called explicitly by param_set_arc_*() functions when ARC tunables are
7550 * updated manually. Non-zero zfs_* values which differ from the currently set
7551 * values will be applied.
7552 */
7553 void
arc_tuning_update(boolean_t verbose)7554 arc_tuning_update(boolean_t verbose)
7555 {
7556 uint64_t allmem = arc_all_memory();
7557
7558 /* Valid range: 32M - <arc_c_max> */
7559 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
7560 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
7561 (zfs_arc_min <= arc_c_max)) {
7562 arc_c_min = zfs_arc_min;
7563 arc_c = MAX(arc_c, arc_c_min);
7564 }
7565 WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose);
7566
7567 /* Valid range: 64M - <all physical memory> */
7568 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
7569 (zfs_arc_max >= MIN_ARC_MAX) && (zfs_arc_max < allmem) &&
7570 (zfs_arc_max > arc_c_min)) {
7571 arc_c_max = zfs_arc_max;
7572 arc_c = MIN(arc_c, arc_c_max);
7573 if (arc_dnode_limit > arc_c_max)
7574 arc_dnode_limit = arc_c_max;
7575 }
7576 WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose);
7577
7578 /* Valid range: 0 - <all physical memory> */
7579 arc_dnode_limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit :
7580 MIN(zfs_arc_dnode_limit_percent, 100) * arc_c_max / 100;
7581 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_limit, verbose);
7582
7583 /* Valid range: 1 - N */
7584 if (zfs_arc_grow_retry)
7585 arc_grow_retry = zfs_arc_grow_retry;
7586
7587 /* Valid range: 1 - N */
7588 if (zfs_arc_shrink_shift) {
7589 arc_shrink_shift = zfs_arc_shrink_shift;
7590 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
7591 }
7592
7593 /* Valid range: 1 - N ms */
7594 if (zfs_arc_min_prefetch_ms)
7595 arc_min_prefetch_ms = zfs_arc_min_prefetch_ms;
7596
7597 /* Valid range: 1 - N ms */
7598 if (zfs_arc_min_prescient_prefetch_ms) {
7599 arc_min_prescient_prefetch_ms =
7600 zfs_arc_min_prescient_prefetch_ms;
7601 }
7602
7603 /* Valid range: 0 - 100 */
7604 if (zfs_arc_lotsfree_percent <= 100)
7605 arc_lotsfree_percent = zfs_arc_lotsfree_percent;
7606 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent,
7607 verbose);
7608
7609 /* Valid range: 0 - <all physical memory> */
7610 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
7611 arc_sys_free = MIN(zfs_arc_sys_free, allmem);
7612 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose);
7613 }
7614
7615 static void
arc_state_multilist_init(multilist_t * ml,multilist_sublist_index_func_t * index_func,int * maxcountp)7616 arc_state_multilist_init(multilist_t *ml,
7617 multilist_sublist_index_func_t *index_func, int *maxcountp)
7618 {
7619 multilist_create(ml, sizeof (arc_buf_hdr_t),
7620 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), index_func);
7621 *maxcountp = MAX(*maxcountp, multilist_get_num_sublists(ml));
7622 }
7623
7624 static void
arc_state_init(void)7625 arc_state_init(void)
7626 {
7627 int num_sublists = 0;
7628
7629 arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_METADATA],
7630 arc_state_multilist_index_func, &num_sublists);
7631 arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_DATA],
7632 arc_state_multilist_index_func, &num_sublists);
7633 arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
7634 arc_state_multilist_index_func, &num_sublists);
7635 arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
7636 arc_state_multilist_index_func, &num_sublists);
7637 arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
7638 arc_state_multilist_index_func, &num_sublists);
7639 arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_DATA],
7640 arc_state_multilist_index_func, &num_sublists);
7641 arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
7642 arc_state_multilist_index_func, &num_sublists);
7643 arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
7644 arc_state_multilist_index_func, &num_sublists);
7645 arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_METADATA],
7646 arc_state_multilist_index_func, &num_sublists);
7647 arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_DATA],
7648 arc_state_multilist_index_func, &num_sublists);
7649
7650 /*
7651 * L2 headers should never be on the L2 state list since they don't
7652 * have L1 headers allocated. Special index function asserts that.
7653 */
7654 arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
7655 arc_state_l2c_multilist_index_func, &num_sublists);
7656 arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
7657 arc_state_l2c_multilist_index_func, &num_sublists);
7658
7659 /*
7660 * Keep track of the number of markers needed to reclaim buffers from
7661 * any ARC state. The markers will be pre-allocated so as to minimize
7662 * the number of memory allocations performed by the eviction thread.
7663 */
7664 arc_state_evict_marker_count = num_sublists;
7665
7666 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7667 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7668 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7669 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7670 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7671 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7672 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7673 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7674 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7675 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7676 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7677 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7678 zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]);
7679 zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_DATA]);
7680
7681 zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_DATA]);
7682 zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
7683 zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_DATA]);
7684 zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_METADATA]);
7685 zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]);
7686 zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]);
7687 zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
7688 zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
7689 zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]);
7690 zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]);
7691 zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]);
7692 zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]);
7693 zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_DATA]);
7694 zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_METADATA]);
7695
7696 wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA], 0);
7697 wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA], 0);
7698 wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA], 0);
7699 wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA], 0);
7700
7701 wmsum_init(&arc_sums.arcstat_hits, 0);
7702 wmsum_init(&arc_sums.arcstat_iohits, 0);
7703 wmsum_init(&arc_sums.arcstat_misses, 0);
7704 wmsum_init(&arc_sums.arcstat_demand_data_hits, 0);
7705 wmsum_init(&arc_sums.arcstat_demand_data_iohits, 0);
7706 wmsum_init(&arc_sums.arcstat_demand_data_misses, 0);
7707 wmsum_init(&arc_sums.arcstat_demand_metadata_hits, 0);
7708 wmsum_init(&arc_sums.arcstat_demand_metadata_iohits, 0);
7709 wmsum_init(&arc_sums.arcstat_demand_metadata_misses, 0);
7710 wmsum_init(&arc_sums.arcstat_prefetch_data_hits, 0);
7711 wmsum_init(&arc_sums.arcstat_prefetch_data_iohits, 0);
7712 wmsum_init(&arc_sums.arcstat_prefetch_data_misses, 0);
7713 wmsum_init(&arc_sums.arcstat_prefetch_metadata_hits, 0);
7714 wmsum_init(&arc_sums.arcstat_prefetch_metadata_iohits, 0);
7715 wmsum_init(&arc_sums.arcstat_prefetch_metadata_misses, 0);
7716 wmsum_init(&arc_sums.arcstat_mru_hits, 0);
7717 wmsum_init(&arc_sums.arcstat_mru_ghost_hits, 0);
7718 wmsum_init(&arc_sums.arcstat_mfu_hits, 0);
7719 wmsum_init(&arc_sums.arcstat_mfu_ghost_hits, 0);
7720 wmsum_init(&arc_sums.arcstat_uncached_hits, 0);
7721 wmsum_init(&arc_sums.arcstat_deleted, 0);
7722 wmsum_init(&arc_sums.arcstat_mutex_miss, 0);
7723 wmsum_init(&arc_sums.arcstat_access_skip, 0);
7724 wmsum_init(&arc_sums.arcstat_evict_skip, 0);
7725 wmsum_init(&arc_sums.arcstat_evict_not_enough, 0);
7726 wmsum_init(&arc_sums.arcstat_evict_l2_cached, 0);
7727 wmsum_init(&arc_sums.arcstat_evict_l2_eligible, 0);
7728 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mfu, 0);
7729 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mru, 0);
7730 wmsum_init(&arc_sums.arcstat_evict_l2_ineligible, 0);
7731 wmsum_init(&arc_sums.arcstat_evict_l2_skip, 0);
7732 wmsum_init(&arc_sums.arcstat_hash_elements, 0);
7733 wmsum_init(&arc_sums.arcstat_hash_collisions, 0);
7734 wmsum_init(&arc_sums.arcstat_hash_chains, 0);
7735 aggsum_init(&arc_sums.arcstat_size, 0);
7736 wmsum_init(&arc_sums.arcstat_compressed_size, 0);
7737 wmsum_init(&arc_sums.arcstat_uncompressed_size, 0);
7738 wmsum_init(&arc_sums.arcstat_overhead_size, 0);
7739 wmsum_init(&arc_sums.arcstat_hdr_size, 0);
7740 wmsum_init(&arc_sums.arcstat_data_size, 0);
7741 wmsum_init(&arc_sums.arcstat_metadata_size, 0);
7742 wmsum_init(&arc_sums.arcstat_dbuf_size, 0);
7743 aggsum_init(&arc_sums.arcstat_dnode_size, 0);
7744 wmsum_init(&arc_sums.arcstat_bonus_size, 0);
7745 wmsum_init(&arc_sums.arcstat_l2_hits, 0);
7746 wmsum_init(&arc_sums.arcstat_l2_misses, 0);
7747 wmsum_init(&arc_sums.arcstat_l2_prefetch_asize, 0);
7748 wmsum_init(&arc_sums.arcstat_l2_mru_asize, 0);
7749 wmsum_init(&arc_sums.arcstat_l2_mfu_asize, 0);
7750 wmsum_init(&arc_sums.arcstat_l2_bufc_data_asize, 0);
7751 wmsum_init(&arc_sums.arcstat_l2_bufc_metadata_asize, 0);
7752 wmsum_init(&arc_sums.arcstat_l2_feeds, 0);
7753 wmsum_init(&arc_sums.arcstat_l2_rw_clash, 0);
7754 wmsum_init(&arc_sums.arcstat_l2_read_bytes, 0);
7755 wmsum_init(&arc_sums.arcstat_l2_write_bytes, 0);
7756 wmsum_init(&arc_sums.arcstat_l2_writes_sent, 0);
7757 wmsum_init(&arc_sums.arcstat_l2_writes_done, 0);
7758 wmsum_init(&arc_sums.arcstat_l2_writes_error, 0);
7759 wmsum_init(&arc_sums.arcstat_l2_writes_lock_retry, 0);
7760 wmsum_init(&arc_sums.arcstat_l2_evict_lock_retry, 0);
7761 wmsum_init(&arc_sums.arcstat_l2_evict_reading, 0);
7762 wmsum_init(&arc_sums.arcstat_l2_evict_l1cached, 0);
7763 wmsum_init(&arc_sums.arcstat_l2_free_on_write, 0);
7764 wmsum_init(&arc_sums.arcstat_l2_abort_lowmem, 0);
7765 wmsum_init(&arc_sums.arcstat_l2_cksum_bad, 0);
7766 wmsum_init(&arc_sums.arcstat_l2_io_error, 0);
7767 wmsum_init(&arc_sums.arcstat_l2_lsize, 0);
7768 wmsum_init(&arc_sums.arcstat_l2_psize, 0);
7769 aggsum_init(&arc_sums.arcstat_l2_hdr_size, 0);
7770 wmsum_init(&arc_sums.arcstat_l2_log_blk_writes, 0);
7771 wmsum_init(&arc_sums.arcstat_l2_log_blk_asize, 0);
7772 wmsum_init(&arc_sums.arcstat_l2_log_blk_count, 0);
7773 wmsum_init(&arc_sums.arcstat_l2_rebuild_success, 0);
7774 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_unsupported, 0);
7775 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_io_errors, 0);
7776 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_dh_errors, 0);
7777 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors, 0);
7778 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_lowmem, 0);
7779 wmsum_init(&arc_sums.arcstat_l2_rebuild_size, 0);
7780 wmsum_init(&arc_sums.arcstat_l2_rebuild_asize, 0);
7781 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs, 0);
7782 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs_precached, 0);
7783 wmsum_init(&arc_sums.arcstat_l2_rebuild_log_blks, 0);
7784 wmsum_init(&arc_sums.arcstat_memory_throttle_count, 0);
7785 wmsum_init(&arc_sums.arcstat_memory_direct_count, 0);
7786 wmsum_init(&arc_sums.arcstat_memory_indirect_count, 0);
7787 wmsum_init(&arc_sums.arcstat_prune, 0);
7788 wmsum_init(&arc_sums.arcstat_meta_used, 0);
7789 wmsum_init(&arc_sums.arcstat_async_upgrade_sync, 0);
7790 wmsum_init(&arc_sums.arcstat_predictive_prefetch, 0);
7791 wmsum_init(&arc_sums.arcstat_demand_hit_predictive_prefetch, 0);
7792 wmsum_init(&arc_sums.arcstat_demand_iohit_predictive_prefetch, 0);
7793 wmsum_init(&arc_sums.arcstat_prescient_prefetch, 0);
7794 wmsum_init(&arc_sums.arcstat_demand_hit_prescient_prefetch, 0);
7795 wmsum_init(&arc_sums.arcstat_demand_iohit_prescient_prefetch, 0);
7796 wmsum_init(&arc_sums.arcstat_raw_size, 0);
7797 wmsum_init(&arc_sums.arcstat_cached_only_in_progress, 0);
7798 wmsum_init(&arc_sums.arcstat_abd_chunk_waste_size, 0);
7799
7800 arc_anon->arcs_state = ARC_STATE_ANON;
7801 arc_mru->arcs_state = ARC_STATE_MRU;
7802 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
7803 arc_mfu->arcs_state = ARC_STATE_MFU;
7804 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
7805 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
7806 arc_uncached->arcs_state = ARC_STATE_UNCACHED;
7807 }
7808
7809 static void
arc_state_fini(void)7810 arc_state_fini(void)
7811 {
7812 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7813 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7814 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7815 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7816 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7817 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7818 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7819 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7820 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7821 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7822 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7823 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7824 zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]);
7825 zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_DATA]);
7826
7827 zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_DATA]);
7828 zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
7829 zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_DATA]);
7830 zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_METADATA]);
7831 zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]);
7832 zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]);
7833 zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
7834 zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
7835 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]);
7836 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]);
7837 zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]);
7838 zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]);
7839 zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_DATA]);
7840 zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_METADATA]);
7841
7842 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
7843 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
7844 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
7845 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
7846 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
7847 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
7848 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
7849 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
7850 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
7851 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
7852 multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_METADATA]);
7853 multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_DATA]);
7854
7855 wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]);
7856 wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]);
7857 wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]);
7858 wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]);
7859
7860 wmsum_fini(&arc_sums.arcstat_hits);
7861 wmsum_fini(&arc_sums.arcstat_iohits);
7862 wmsum_fini(&arc_sums.arcstat_misses);
7863 wmsum_fini(&arc_sums.arcstat_demand_data_hits);
7864 wmsum_fini(&arc_sums.arcstat_demand_data_iohits);
7865 wmsum_fini(&arc_sums.arcstat_demand_data_misses);
7866 wmsum_fini(&arc_sums.arcstat_demand_metadata_hits);
7867 wmsum_fini(&arc_sums.arcstat_demand_metadata_iohits);
7868 wmsum_fini(&arc_sums.arcstat_demand_metadata_misses);
7869 wmsum_fini(&arc_sums.arcstat_prefetch_data_hits);
7870 wmsum_fini(&arc_sums.arcstat_prefetch_data_iohits);
7871 wmsum_fini(&arc_sums.arcstat_prefetch_data_misses);
7872 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_hits);
7873 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_iohits);
7874 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_misses);
7875 wmsum_fini(&arc_sums.arcstat_mru_hits);
7876 wmsum_fini(&arc_sums.arcstat_mru_ghost_hits);
7877 wmsum_fini(&arc_sums.arcstat_mfu_hits);
7878 wmsum_fini(&arc_sums.arcstat_mfu_ghost_hits);
7879 wmsum_fini(&arc_sums.arcstat_uncached_hits);
7880 wmsum_fini(&arc_sums.arcstat_deleted);
7881 wmsum_fini(&arc_sums.arcstat_mutex_miss);
7882 wmsum_fini(&arc_sums.arcstat_access_skip);
7883 wmsum_fini(&arc_sums.arcstat_evict_skip);
7884 wmsum_fini(&arc_sums.arcstat_evict_not_enough);
7885 wmsum_fini(&arc_sums.arcstat_evict_l2_cached);
7886 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible);
7887 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mfu);
7888 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mru);
7889 wmsum_fini(&arc_sums.arcstat_evict_l2_ineligible);
7890 wmsum_fini(&arc_sums.arcstat_evict_l2_skip);
7891 wmsum_fini(&arc_sums.arcstat_hash_elements);
7892 wmsum_fini(&arc_sums.arcstat_hash_collisions);
7893 wmsum_fini(&arc_sums.arcstat_hash_chains);
7894 aggsum_fini(&arc_sums.arcstat_size);
7895 wmsum_fini(&arc_sums.arcstat_compressed_size);
7896 wmsum_fini(&arc_sums.arcstat_uncompressed_size);
7897 wmsum_fini(&arc_sums.arcstat_overhead_size);
7898 wmsum_fini(&arc_sums.arcstat_hdr_size);
7899 wmsum_fini(&arc_sums.arcstat_data_size);
7900 wmsum_fini(&arc_sums.arcstat_metadata_size);
7901 wmsum_fini(&arc_sums.arcstat_dbuf_size);
7902 aggsum_fini(&arc_sums.arcstat_dnode_size);
7903 wmsum_fini(&arc_sums.arcstat_bonus_size);
7904 wmsum_fini(&arc_sums.arcstat_l2_hits);
7905 wmsum_fini(&arc_sums.arcstat_l2_misses);
7906 wmsum_fini(&arc_sums.arcstat_l2_prefetch_asize);
7907 wmsum_fini(&arc_sums.arcstat_l2_mru_asize);
7908 wmsum_fini(&arc_sums.arcstat_l2_mfu_asize);
7909 wmsum_fini(&arc_sums.arcstat_l2_bufc_data_asize);
7910 wmsum_fini(&arc_sums.arcstat_l2_bufc_metadata_asize);
7911 wmsum_fini(&arc_sums.arcstat_l2_feeds);
7912 wmsum_fini(&arc_sums.arcstat_l2_rw_clash);
7913 wmsum_fini(&arc_sums.arcstat_l2_read_bytes);
7914 wmsum_fini(&arc_sums.arcstat_l2_write_bytes);
7915 wmsum_fini(&arc_sums.arcstat_l2_writes_sent);
7916 wmsum_fini(&arc_sums.arcstat_l2_writes_done);
7917 wmsum_fini(&arc_sums.arcstat_l2_writes_error);
7918 wmsum_fini(&arc_sums.arcstat_l2_writes_lock_retry);
7919 wmsum_fini(&arc_sums.arcstat_l2_evict_lock_retry);
7920 wmsum_fini(&arc_sums.arcstat_l2_evict_reading);
7921 wmsum_fini(&arc_sums.arcstat_l2_evict_l1cached);
7922 wmsum_fini(&arc_sums.arcstat_l2_free_on_write);
7923 wmsum_fini(&arc_sums.arcstat_l2_abort_lowmem);
7924 wmsum_fini(&arc_sums.arcstat_l2_cksum_bad);
7925 wmsum_fini(&arc_sums.arcstat_l2_io_error);
7926 wmsum_fini(&arc_sums.arcstat_l2_lsize);
7927 wmsum_fini(&arc_sums.arcstat_l2_psize);
7928 aggsum_fini(&arc_sums.arcstat_l2_hdr_size);
7929 wmsum_fini(&arc_sums.arcstat_l2_log_blk_writes);
7930 wmsum_fini(&arc_sums.arcstat_l2_log_blk_asize);
7931 wmsum_fini(&arc_sums.arcstat_l2_log_blk_count);
7932 wmsum_fini(&arc_sums.arcstat_l2_rebuild_success);
7933 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7934 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7935 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7936 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7937 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7938 wmsum_fini(&arc_sums.arcstat_l2_rebuild_size);
7939 wmsum_fini(&arc_sums.arcstat_l2_rebuild_asize);
7940 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs);
7941 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7942 wmsum_fini(&arc_sums.arcstat_l2_rebuild_log_blks);
7943 wmsum_fini(&arc_sums.arcstat_memory_throttle_count);
7944 wmsum_fini(&arc_sums.arcstat_memory_direct_count);
7945 wmsum_fini(&arc_sums.arcstat_memory_indirect_count);
7946 wmsum_fini(&arc_sums.arcstat_prune);
7947 wmsum_fini(&arc_sums.arcstat_meta_used);
7948 wmsum_fini(&arc_sums.arcstat_async_upgrade_sync);
7949 wmsum_fini(&arc_sums.arcstat_predictive_prefetch);
7950 wmsum_fini(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7951 wmsum_fini(&arc_sums.arcstat_demand_iohit_predictive_prefetch);
7952 wmsum_fini(&arc_sums.arcstat_prescient_prefetch);
7953 wmsum_fini(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7954 wmsum_fini(&arc_sums.arcstat_demand_iohit_prescient_prefetch);
7955 wmsum_fini(&arc_sums.arcstat_raw_size);
7956 wmsum_fini(&arc_sums.arcstat_cached_only_in_progress);
7957 wmsum_fini(&arc_sums.arcstat_abd_chunk_waste_size);
7958 }
7959
7960 uint64_t
arc_target_bytes(void)7961 arc_target_bytes(void)
7962 {
7963 return (arc_c);
7964 }
7965
7966 void
arc_set_limits(uint64_t allmem)7967 arc_set_limits(uint64_t allmem)
7968 {
7969 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */
7970 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT);
7971
7972 /* How to set default max varies by platform. */
7973 arc_c_max = arc_default_max(arc_c_min, allmem);
7974 }
7975
7976 void
arc_init(void)7977 arc_init(void)
7978 {
7979 uint64_t percent, allmem = arc_all_memory();
7980 mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL);
7981 list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t),
7982 offsetof(arc_evict_waiter_t, aew_node));
7983
7984 arc_min_prefetch_ms = 1000;
7985 arc_min_prescient_prefetch_ms = 6000;
7986
7987 #if defined(_KERNEL)
7988 arc_lowmem_init();
7989 #endif
7990
7991 arc_set_limits(allmem);
7992
7993 #ifdef _KERNEL
7994 /*
7995 * If zfs_arc_max is non-zero at init, meaning it was set in the kernel
7996 * environment before the module was loaded, don't block setting the
7997 * maximum because it is less than arc_c_min, instead, reset arc_c_min
7998 * to a lower value.
7999 * zfs_arc_min will be handled by arc_tuning_update().
8000 */
8001 if (zfs_arc_max != 0 && zfs_arc_max >= MIN_ARC_MAX &&
8002 zfs_arc_max < allmem) {
8003 arc_c_max = zfs_arc_max;
8004 if (arc_c_min >= arc_c_max) {
8005 arc_c_min = MAX(zfs_arc_max / 2,
8006 2ULL << SPA_MAXBLOCKSHIFT);
8007 }
8008 }
8009 #else
8010 /*
8011 * In userland, there's only the memory pressure that we artificially
8012 * create (see arc_available_memory()). Don't let arc_c get too
8013 * small, because it can cause transactions to be larger than
8014 * arc_c, causing arc_tempreserve_space() to fail.
8015 */
8016 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT);
8017 #endif
8018
8019 arc_c = arc_c_min;
8020 /*
8021 * 32-bit fixed point fractions of metadata from total ARC size,
8022 * MRU data from all data and MRU metadata from all metadata.
8023 */
8024 arc_meta = (1ULL << 32) / 4; /* Metadata is 25% of arc_c. */
8025 arc_pd = (1ULL << 32) / 2; /* Data MRU is 50% of data. */
8026 arc_pm = (1ULL << 32) / 2; /* Metadata MRU is 50% of metadata. */
8027
8028 percent = MIN(zfs_arc_dnode_limit_percent, 100);
8029 arc_dnode_limit = arc_c_max * percent / 100;
8030
8031 /* Apply user specified tunings */
8032 arc_tuning_update(B_TRUE);
8033
8034 /* if kmem_flags are set, lets try to use less memory */
8035 if (kmem_debugging())
8036 arc_c = arc_c / 2;
8037 if (arc_c < arc_c_min)
8038 arc_c = arc_c_min;
8039
8040 arc_register_hotplug();
8041
8042 arc_state_init();
8043
8044 buf_init();
8045
8046 list_create(&arc_prune_list, sizeof (arc_prune_t),
8047 offsetof(arc_prune_t, p_node));
8048 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
8049
8050 arc_prune_taskq = taskq_create("arc_prune", zfs_arc_prune_task_threads,
8051 defclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
8052
8053 arc_evict_thread_init();
8054
8055 list_create(&arc_async_flush_list, sizeof (arc_async_flush_t),
8056 offsetof(arc_async_flush_t, af_node));
8057 mutex_init(&arc_async_flush_lock, NULL, MUTEX_DEFAULT, NULL);
8058 arc_flush_taskq = taskq_create("arc_flush", MIN(boot_ncpus, 4),
8059 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
8060
8061 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
8062 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
8063
8064 if (arc_ksp != NULL) {
8065 arc_ksp->ks_data = &arc_stats;
8066 arc_ksp->ks_update = arc_kstat_update;
8067 kstat_install(arc_ksp);
8068 }
8069
8070 arc_state_evict_markers =
8071 arc_state_alloc_markers(arc_state_evict_marker_count);
8072 arc_evict_zthr = zthr_create_timer("arc_evict",
8073 arc_evict_cb_check, arc_evict_cb, NULL, SEC2NSEC(1), defclsyspri);
8074 arc_reap_zthr = zthr_create_timer("arc_reap",
8075 arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1), minclsyspri);
8076
8077 arc_warm = B_FALSE;
8078
8079 /*
8080 * Calculate maximum amount of dirty data per pool.
8081 *
8082 * If it has been set by a module parameter, take that.
8083 * Otherwise, use a percentage of physical memory defined by
8084 * zfs_dirty_data_max_percent (default 10%) with a cap at
8085 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
8086 */
8087 #ifdef __LP64__
8088 if (zfs_dirty_data_max_max == 0)
8089 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
8090 allmem * zfs_dirty_data_max_max_percent / 100);
8091 #else
8092 if (zfs_dirty_data_max_max == 0)
8093 zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024,
8094 allmem * zfs_dirty_data_max_max_percent / 100);
8095 #endif
8096
8097 if (zfs_dirty_data_max == 0) {
8098 zfs_dirty_data_max = allmem *
8099 zfs_dirty_data_max_percent / 100;
8100 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
8101 zfs_dirty_data_max_max);
8102 }
8103
8104 if (zfs_wrlog_data_max == 0) {
8105
8106 /*
8107 * dp_wrlog_total is reduced for each txg at the end of
8108 * spa_sync(). However, dp_dirty_total is reduced every time
8109 * a block is written out. Thus under normal operation,
8110 * dp_wrlog_total could grow 2 times as big as
8111 * zfs_dirty_data_max.
8112 */
8113 zfs_wrlog_data_max = zfs_dirty_data_max * 2;
8114 }
8115 }
8116
8117 void
arc_fini(void)8118 arc_fini(void)
8119 {
8120 arc_prune_t *p;
8121
8122 #ifdef _KERNEL
8123 arc_lowmem_fini();
8124 #endif /* _KERNEL */
8125
8126 /* Wait for any background flushes */
8127 taskq_wait(arc_flush_taskq);
8128 taskq_destroy(arc_flush_taskq);
8129
8130 /* Use B_TRUE to ensure *all* buffers are evicted */
8131 arc_flush(NULL, B_TRUE);
8132
8133 if (arc_ksp != NULL) {
8134 kstat_delete(arc_ksp);
8135 arc_ksp = NULL;
8136 }
8137
8138 taskq_wait(arc_prune_taskq);
8139 taskq_destroy(arc_prune_taskq);
8140
8141 list_destroy(&arc_async_flush_list);
8142 mutex_destroy(&arc_async_flush_lock);
8143
8144 mutex_enter(&arc_prune_mtx);
8145 while ((p = list_remove_head(&arc_prune_list)) != NULL) {
8146 (void) zfs_refcount_remove(&p->p_refcnt, &arc_prune_list);
8147 zfs_refcount_destroy(&p->p_refcnt);
8148 kmem_free(p, sizeof (*p));
8149 }
8150 mutex_exit(&arc_prune_mtx);
8151
8152 list_destroy(&arc_prune_list);
8153 mutex_destroy(&arc_prune_mtx);
8154
8155 if (arc_evict_taskq != NULL)
8156 taskq_wait(arc_evict_taskq);
8157
8158 (void) zthr_cancel(arc_evict_zthr);
8159 (void) zthr_cancel(arc_reap_zthr);
8160 arc_state_free_markers(arc_state_evict_markers,
8161 arc_state_evict_marker_count);
8162
8163 if (arc_evict_taskq != NULL) {
8164 taskq_destroy(arc_evict_taskq);
8165 kmem_free(arc_evict_arg,
8166 sizeof (evict_arg_t) * zfs_arc_evict_threads);
8167 }
8168
8169 mutex_destroy(&arc_evict_lock);
8170 list_destroy(&arc_evict_waiters);
8171
8172 /*
8173 * Free any buffers that were tagged for destruction. This needs
8174 * to occur before arc_state_fini() runs and destroys the aggsum
8175 * values which are updated when freeing scatter ABDs.
8176 */
8177 l2arc_do_free_on_write();
8178
8179 /*
8180 * buf_fini() must proceed arc_state_fini() because buf_fin() may
8181 * trigger the release of kmem magazines, which can callback to
8182 * arc_space_return() which accesses aggsums freed in act_state_fini().
8183 */
8184 buf_fini();
8185 arc_state_fini();
8186
8187 arc_unregister_hotplug();
8188
8189 /*
8190 * We destroy the zthrs after all the ARC state has been
8191 * torn down to avoid the case of them receiving any
8192 * wakeup() signals after they are destroyed.
8193 */
8194 zthr_destroy(arc_evict_zthr);
8195 zthr_destroy(arc_reap_zthr);
8196
8197 ASSERT0(arc_loaned_bytes);
8198 }
8199
8200 /*
8201 * Level 2 ARC
8202 *
8203 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
8204 * It uses dedicated storage devices to hold cached data, which are populated
8205 * using large infrequent writes. The main role of this cache is to boost
8206 * the performance of random read workloads. The intended L2ARC devices
8207 * include short-stroked disks, solid state disks, and other media with
8208 * substantially faster read latency than disk.
8209 *
8210 * +-----------------------+
8211 * | ARC |
8212 * +-----------------------+
8213 * | ^ ^
8214 * | | |
8215 * l2arc_feed_thread() arc_read()
8216 * | | |
8217 * | l2arc read |
8218 * V | |
8219 * +---------------+ |
8220 * | L2ARC | |
8221 * +---------------+ |
8222 * | ^ |
8223 * l2arc_write() | |
8224 * | | |
8225 * V | |
8226 * +-------+ +-------+
8227 * | vdev | | vdev |
8228 * | cache | | cache |
8229 * +-------+ +-------+
8230 * +=========+ .-----.
8231 * : L2ARC : |-_____-|
8232 * : devices : | Disks |
8233 * +=========+ `-_____-'
8234 *
8235 * Read requests are satisfied from the following sources, in order:
8236 *
8237 * 1) ARC
8238 * 2) vdev cache of L2ARC devices
8239 * 3) L2ARC devices
8240 * 4) vdev cache of disks
8241 * 5) disks
8242 *
8243 * Some L2ARC device types exhibit extremely slow write performance.
8244 * To accommodate for this there are some significant differences between
8245 * the L2ARC and traditional cache design:
8246 *
8247 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
8248 * the ARC behave as usual, freeing buffers and placing headers on ghost
8249 * lists. The ARC does not send buffers to the L2ARC during eviction as
8250 * this would add inflated write latencies for all ARC memory pressure.
8251 *
8252 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
8253 * It does this by periodically scanning buffers from the eviction-end of
8254 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
8255 * not already there. It scans until a headroom of buffers is satisfied,
8256 * which itself is a buffer for ARC eviction. If a compressible buffer is
8257 * found during scanning and selected for writing to an L2ARC device, we
8258 * temporarily boost scanning headroom during the next scan cycle to make
8259 * sure we adapt to compression effects (which might significantly reduce
8260 * the data volume we write to L2ARC). The thread that does this is
8261 * l2arc_feed_thread(), illustrated below; example sizes are included to
8262 * provide a better sense of ratio than this diagram:
8263 *
8264 * head --> tail
8265 * +---------------------+----------+
8266 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
8267 * +---------------------+----------+ | o L2ARC eligible
8268 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
8269 * +---------------------+----------+ |
8270 * 15.9 Gbytes ^ 32 Mbytes |
8271 * headroom |
8272 * l2arc_feed_thread()
8273 * |
8274 * l2arc write hand <--[oooo]--'
8275 * | 8 Mbyte
8276 * | write max
8277 * V
8278 * +==============================+
8279 * L2ARC dev |####|#|###|###| |####| ... |
8280 * +==============================+
8281 * 32 Gbytes
8282 *
8283 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
8284 * evicted, then the L2ARC has cached a buffer much sooner than it probably
8285 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
8286 * safe to say that this is an uncommon case, since buffers at the end of
8287 * the ARC lists have moved there due to inactivity.
8288 *
8289 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
8290 * then the L2ARC simply misses copying some buffers. This serves as a
8291 * pressure valve to prevent heavy read workloads from both stalling the ARC
8292 * with waits and clogging the L2ARC with writes. This also helps prevent
8293 * the potential for the L2ARC to churn if it attempts to cache content too
8294 * quickly, such as during backups of the entire pool.
8295 *
8296 * 5. After system boot and before the ARC has filled main memory, there are
8297 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
8298 * lists can remain mostly static. Instead of searching from tail of these
8299 * lists as pictured, the l2arc_feed_thread() will search from the list heads
8300 * for eligible buffers, greatly increasing its chance of finding them.
8301 *
8302 * The L2ARC device write speed is also boosted during this time so that
8303 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
8304 * there are no L2ARC reads, and no fear of degrading read performance
8305 * through increased writes.
8306 *
8307 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
8308 * the vdev queue can aggregate them into larger and fewer writes. Each
8309 * device is written to in a rotor fashion, sweeping writes through
8310 * available space then repeating.
8311 *
8312 * 7. The L2ARC does not store dirty content. It never needs to flush
8313 * write buffers back to disk based storage.
8314 *
8315 * 8. If an ARC buffer is written (and dirtied) which also exists in the
8316 * L2ARC, the now stale L2ARC buffer is immediately dropped.
8317 *
8318 * The performance of the L2ARC can be tweaked by a number of tunables, which
8319 * may be necessary for different workloads:
8320 *
8321 * l2arc_write_max max write bytes per interval
8322 * l2arc_write_boost extra write bytes during device warmup
8323 * l2arc_noprefetch skip caching prefetched buffers
8324 * l2arc_headroom number of max device writes to precache
8325 * l2arc_headroom_boost when we find compressed buffers during ARC
8326 * scanning, we multiply headroom by this
8327 * percentage factor for the next scan cycle,
8328 * since more compressed buffers are likely to
8329 * be present
8330 * l2arc_feed_secs seconds between L2ARC writing
8331 *
8332 * Tunables may be removed or added as future performance improvements are
8333 * integrated, and also may become zpool properties.
8334 *
8335 * There are three key functions that control how the L2ARC warms up:
8336 *
8337 * l2arc_write_eligible() check if a buffer is eligible to cache
8338 * l2arc_write_size() calculate how much to write
8339 * l2arc_write_interval() calculate sleep delay between writes
8340 *
8341 * These three functions determine what to write, how much, and how quickly
8342 * to send writes.
8343 *
8344 * L2ARC persistence:
8345 *
8346 * When writing buffers to L2ARC, we periodically add some metadata to
8347 * make sure we can pick them up after reboot, thus dramatically reducing
8348 * the impact that any downtime has on the performance of storage systems
8349 * with large caches.
8350 *
8351 * The implementation works fairly simply by integrating the following two
8352 * modifications:
8353 *
8354 * *) When writing to the L2ARC, we occasionally write a "l2arc log block",
8355 * which is an additional piece of metadata which describes what's been
8356 * written. This allows us to rebuild the arc_buf_hdr_t structures of the
8357 * main ARC buffers. There are 2 linked-lists of log blocks headed by
8358 * dh_start_lbps[2]. We alternate which chain we append to, so they are
8359 * time-wise and offset-wise interleaved, but that is an optimization rather
8360 * than for correctness. The log block also includes a pointer to the
8361 * previous block in its chain.
8362 *
8363 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device
8364 * for our header bookkeeping purposes. This contains a device header,
8365 * which contains our top-level reference structures. We update it each
8366 * time we write a new log block, so that we're able to locate it in the
8367 * L2ARC device. If this write results in an inconsistent device header
8368 * (e.g. due to power failure), we detect this by verifying the header's
8369 * checksum and simply fail to reconstruct the L2ARC after reboot.
8370 *
8371 * Implementation diagram:
8372 *
8373 * +=== L2ARC device (not to scale) ======================================+
8374 * | ___two newest log block pointers__.__________ |
8375 * | / \dh_start_lbps[1] |
8376 * | / \ \dh_start_lbps[0]|
8377 * |.___/__. V V |
8378 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---|
8379 * || hdr| ^ /^ /^ / / |
8380 * |+------+ ...--\-------/ \-----/--\------/ / |
8381 * | \--------------/ \--------------/ |
8382 * +======================================================================+
8383 *
8384 * As can be seen on the diagram, rather than using a simple linked list,
8385 * we use a pair of linked lists with alternating elements. This is a
8386 * performance enhancement due to the fact that we only find out the
8387 * address of the next log block access once the current block has been
8388 * completely read in. Obviously, this hurts performance, because we'd be
8389 * keeping the device's I/O queue at only a 1 operation deep, thus
8390 * incurring a large amount of I/O round-trip latency. Having two lists
8391 * allows us to fetch two log blocks ahead of where we are currently
8392 * rebuilding L2ARC buffers.
8393 *
8394 * On-device data structures:
8395 *
8396 * L2ARC device header: l2arc_dev_hdr_phys_t
8397 * L2ARC log block: l2arc_log_blk_phys_t
8398 *
8399 * L2ARC reconstruction:
8400 *
8401 * When writing data, we simply write in the standard rotary fashion,
8402 * evicting buffers as we go and simply writing new data over them (writing
8403 * a new log block every now and then). This obviously means that once we
8404 * loop around the end of the device, we will start cutting into an already
8405 * committed log block (and its referenced data buffers), like so:
8406 *
8407 * current write head__ __old tail
8408 * \ /
8409 * V V
8410 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |-->
8411 * ^ ^^^^^^^^^___________________________________
8412 * | \
8413 * <<nextwrite>> may overwrite this blk and/or its bufs --'
8414 *
8415 * When importing the pool, we detect this situation and use it to stop
8416 * our scanning process (see l2arc_rebuild).
8417 *
8418 * There is one significant caveat to consider when rebuilding ARC contents
8419 * from an L2ARC device: what about invalidated buffers? Given the above
8420 * construction, we cannot update blocks which we've already written to amend
8421 * them to remove buffers which were invalidated. Thus, during reconstruction,
8422 * we might be populating the cache with buffers for data that's not on the
8423 * main pool anymore, or may have been overwritten!
8424 *
8425 * As it turns out, this isn't a problem. Every arc_read request includes
8426 * both the DVA and, crucially, the birth TXG of the BP the caller is
8427 * looking for. So even if the cache were populated by completely rotten
8428 * blocks for data that had been long deleted and/or overwritten, we'll
8429 * never actually return bad data from the cache, since the DVA with the
8430 * birth TXG uniquely identify a block in space and time - once created,
8431 * a block is immutable on disk. The worst thing we have done is wasted
8432 * some time and memory at l2arc rebuild to reconstruct outdated ARC
8433 * entries that will get dropped from the l2arc as it is being updated
8434 * with new blocks.
8435 *
8436 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write
8437 * hand are not restored. This is done by saving the offset (in bytes)
8438 * l2arc_evict() has evicted to in the L2ARC device header and taking it
8439 * into account when restoring buffers.
8440 */
8441
8442 static boolean_t
l2arc_write_eligible(uint64_t spa_guid,arc_buf_hdr_t * hdr)8443 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
8444 {
8445 /*
8446 * A buffer is *not* eligible for the L2ARC if it:
8447 * 1. belongs to a different spa.
8448 * 2. is already cached on the L2ARC.
8449 * 3. has an I/O in progress (it may be an incomplete read).
8450 * 4. is flagged not eligible (zfs property).
8451 */
8452 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
8453 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
8454 return (B_FALSE);
8455
8456 return (B_TRUE);
8457 }
8458
8459 static uint64_t
l2arc_write_size(l2arc_dev_t * dev)8460 l2arc_write_size(l2arc_dev_t *dev)
8461 {
8462 uint64_t size;
8463
8464 /*
8465 * Make sure our globals have meaningful values in case the user
8466 * altered them.
8467 */
8468 size = l2arc_write_max;
8469 if (size == 0) {
8470 cmn_err(CE_NOTE, "l2arc_write_max must be greater than zero, "
8471 "resetting it to the default (%d)", L2ARC_WRITE_SIZE);
8472 size = l2arc_write_max = L2ARC_WRITE_SIZE;
8473 }
8474
8475 if (arc_warm == B_FALSE)
8476 size += l2arc_write_boost;
8477
8478 /* We need to add in the worst case scenario of log block overhead. */
8479 size += l2arc_log_blk_overhead(size, dev);
8480 if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) {
8481 /*
8482 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100)
8483 * times the writesize, whichever is greater.
8484 */
8485 size += MAX(64 * 1024 * 1024,
8486 (size * l2arc_trim_ahead) / 100);
8487 }
8488
8489 /*
8490 * Make sure the write size does not exceed the size of the cache
8491 * device. This is important in l2arc_evict(), otherwise infinite
8492 * iteration can occur.
8493 */
8494 size = MIN(size, (dev->l2ad_end - dev->l2ad_start) / 4);
8495
8496 size = P2ROUNDUP(size, 1ULL << dev->l2ad_vdev->vdev_ashift);
8497
8498 return (size);
8499
8500 }
8501
8502 static clock_t
l2arc_write_interval(clock_t began,uint64_t wanted,uint64_t wrote)8503 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
8504 {
8505 clock_t interval, next, now;
8506
8507 /*
8508 * If the ARC lists are busy, increase our write rate; if the
8509 * lists are stale, idle back. This is achieved by checking
8510 * how much we previously wrote - if it was more than half of
8511 * what we wanted, schedule the next write much sooner.
8512 */
8513 if (l2arc_feed_again && wrote > (wanted / 2))
8514 interval = (hz * l2arc_feed_min_ms) / 1000;
8515 else
8516 interval = hz * l2arc_feed_secs;
8517
8518 now = ddi_get_lbolt();
8519 next = MAX(now, MIN(now + interval, began + interval));
8520
8521 return (next);
8522 }
8523
8524 static boolean_t
l2arc_dev_invalid(const l2arc_dev_t * dev)8525 l2arc_dev_invalid(const l2arc_dev_t *dev)
8526 {
8527 /*
8528 * We want to skip devices that are being rebuilt, trimmed,
8529 * removed, or belong to a spa that is being exported.
8530 */
8531 return (dev->l2ad_vdev == NULL || vdev_is_dead(dev->l2ad_vdev) ||
8532 dev->l2ad_rebuild || dev->l2ad_trim_all ||
8533 dev->l2ad_spa == NULL || dev->l2ad_spa->spa_is_exporting);
8534 }
8535
8536 /*
8537 * Cycle through L2ARC devices. This is how L2ARC load balances.
8538 * If a device is returned, this also returns holding the spa config lock.
8539 */
8540 static l2arc_dev_t *
l2arc_dev_get_next(void)8541 l2arc_dev_get_next(void)
8542 {
8543 l2arc_dev_t *first, *next = NULL;
8544
8545 /*
8546 * Lock out the removal of spas (spa_namespace_lock), then removal
8547 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
8548 * both locks will be dropped and a spa config lock held instead.
8549 */
8550 mutex_enter(&spa_namespace_lock);
8551 mutex_enter(&l2arc_dev_mtx);
8552
8553 /* if there are no vdevs, there is nothing to do */
8554 if (l2arc_ndev == 0)
8555 goto out;
8556
8557 first = NULL;
8558 next = l2arc_dev_last;
8559 do {
8560 /* loop around the list looking for a non-faulted vdev */
8561 if (next == NULL) {
8562 next = list_head(l2arc_dev_list);
8563 } else {
8564 next = list_next(l2arc_dev_list, next);
8565 if (next == NULL)
8566 next = list_head(l2arc_dev_list);
8567 }
8568
8569 /* if we have come back to the start, bail out */
8570 if (first == NULL)
8571 first = next;
8572 else if (next == first)
8573 break;
8574
8575 ASSERT3P(next, !=, NULL);
8576 } while (l2arc_dev_invalid(next));
8577
8578 /* if we were unable to find any usable vdevs, return NULL */
8579 if (l2arc_dev_invalid(next))
8580 next = NULL;
8581
8582 l2arc_dev_last = next;
8583
8584 out:
8585 mutex_exit(&l2arc_dev_mtx);
8586
8587 /*
8588 * Grab the config lock to prevent the 'next' device from being
8589 * removed while we are writing to it.
8590 */
8591 if (next != NULL)
8592 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
8593 mutex_exit(&spa_namespace_lock);
8594
8595 return (next);
8596 }
8597
8598 /*
8599 * Free buffers that were tagged for destruction.
8600 */
8601 static void
l2arc_do_free_on_write(void)8602 l2arc_do_free_on_write(void)
8603 {
8604 l2arc_data_free_t *df;
8605
8606 mutex_enter(&l2arc_free_on_write_mtx);
8607 while ((df = list_remove_head(l2arc_free_on_write)) != NULL) {
8608 ASSERT3P(df->l2df_abd, !=, NULL);
8609 abd_free(df->l2df_abd);
8610 kmem_free(df, sizeof (l2arc_data_free_t));
8611 }
8612 mutex_exit(&l2arc_free_on_write_mtx);
8613 }
8614
8615 /*
8616 * A write to a cache device has completed. Update all headers to allow
8617 * reads from these buffers to begin.
8618 */
8619 static void
l2arc_write_done(zio_t * zio)8620 l2arc_write_done(zio_t *zio)
8621 {
8622 l2arc_write_callback_t *cb;
8623 l2arc_lb_abd_buf_t *abd_buf;
8624 l2arc_lb_ptr_buf_t *lb_ptr_buf;
8625 l2arc_dev_t *dev;
8626 l2arc_dev_hdr_phys_t *l2dhdr;
8627 list_t *buflist;
8628 arc_buf_hdr_t *head, *hdr, *hdr_prev;
8629 kmutex_t *hash_lock;
8630 int64_t bytes_dropped = 0;
8631
8632 cb = zio->io_private;
8633 ASSERT3P(cb, !=, NULL);
8634 dev = cb->l2wcb_dev;
8635 l2dhdr = dev->l2ad_dev_hdr;
8636 ASSERT3P(dev, !=, NULL);
8637 head = cb->l2wcb_head;
8638 ASSERT3P(head, !=, NULL);
8639 buflist = &dev->l2ad_buflist;
8640 ASSERT3P(buflist, !=, NULL);
8641 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
8642 l2arc_write_callback_t *, cb);
8643
8644 /*
8645 * All writes completed, or an error was hit.
8646 */
8647 top:
8648 mutex_enter(&dev->l2ad_mtx);
8649 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
8650 hdr_prev = list_prev(buflist, hdr);
8651
8652 hash_lock = HDR_LOCK(hdr);
8653
8654 /*
8655 * We cannot use mutex_enter or else we can deadlock
8656 * with l2arc_write_buffers (due to swapping the order
8657 * the hash lock and l2ad_mtx are taken).
8658 */
8659 if (!mutex_tryenter(hash_lock)) {
8660 /*
8661 * Missed the hash lock. We must retry so we
8662 * don't leave the ARC_FLAG_L2_WRITING bit set.
8663 */
8664 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
8665
8666 /*
8667 * We don't want to rescan the headers we've
8668 * already marked as having been written out, so
8669 * we reinsert the head node so we can pick up
8670 * where we left off.
8671 */
8672 list_remove(buflist, head);
8673 list_insert_after(buflist, hdr, head);
8674
8675 mutex_exit(&dev->l2ad_mtx);
8676
8677 /*
8678 * We wait for the hash lock to become available
8679 * to try and prevent busy waiting, and increase
8680 * the chance we'll be able to acquire the lock
8681 * the next time around.
8682 */
8683 mutex_enter(hash_lock);
8684 mutex_exit(hash_lock);
8685 goto top;
8686 }
8687
8688 /*
8689 * We could not have been moved into the arc_l2c_only
8690 * state while in-flight due to our ARC_FLAG_L2_WRITING
8691 * bit being set. Let's just ensure that's being enforced.
8692 */
8693 ASSERT(HDR_HAS_L1HDR(hdr));
8694
8695 /*
8696 * Skipped - drop L2ARC entry and mark the header as no
8697 * longer L2 eligibile.
8698 */
8699 if (zio->io_error != 0) {
8700 /*
8701 * Error - drop L2ARC entry.
8702 */
8703 list_remove(buflist, hdr);
8704 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
8705
8706 uint64_t psize = HDR_GET_PSIZE(hdr);
8707 l2arc_hdr_arcstats_decrement(hdr);
8708
8709 ASSERT(dev->l2ad_vdev != NULL);
8710
8711 bytes_dropped +=
8712 vdev_psize_to_asize(dev->l2ad_vdev, psize);
8713 (void) zfs_refcount_remove_many(&dev->l2ad_alloc,
8714 arc_hdr_size(hdr), hdr);
8715 }
8716
8717 /*
8718 * Allow ARC to begin reads and ghost list evictions to
8719 * this L2ARC entry.
8720 */
8721 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
8722
8723 mutex_exit(hash_lock);
8724 }
8725
8726 /*
8727 * Free the allocated abd buffers for writing the log blocks.
8728 * If the zio failed reclaim the allocated space and remove the
8729 * pointers to these log blocks from the log block pointer list
8730 * of the L2ARC device.
8731 */
8732 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) {
8733 abd_free(abd_buf->abd);
8734 zio_buf_free(abd_buf, sizeof (*abd_buf));
8735 if (zio->io_error != 0) {
8736 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list);
8737 /*
8738 * L2BLK_GET_PSIZE returns aligned size for log
8739 * blocks.
8740 */
8741 uint64_t asize =
8742 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop);
8743 bytes_dropped += asize;
8744 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
8745 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
8746 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
8747 lb_ptr_buf);
8748 (void) zfs_refcount_remove(&dev->l2ad_lb_count,
8749 lb_ptr_buf);
8750 kmem_free(lb_ptr_buf->lb_ptr,
8751 sizeof (l2arc_log_blkptr_t));
8752 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
8753 }
8754 }
8755 list_destroy(&cb->l2wcb_abd_list);
8756
8757 if (zio->io_error != 0) {
8758 ARCSTAT_BUMP(arcstat_l2_writes_error);
8759
8760 /*
8761 * Restore the lbps array in the header to its previous state.
8762 * If the list of log block pointers is empty, zero out the
8763 * log block pointers in the device header.
8764 */
8765 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list);
8766 for (int i = 0; i < 2; i++) {
8767 if (lb_ptr_buf == NULL) {
8768 /*
8769 * If the list is empty zero out the device
8770 * header. Otherwise zero out the second log
8771 * block pointer in the header.
8772 */
8773 if (i == 0) {
8774 memset(l2dhdr, 0,
8775 dev->l2ad_dev_hdr_asize);
8776 } else {
8777 memset(&l2dhdr->dh_start_lbps[i], 0,
8778 sizeof (l2arc_log_blkptr_t));
8779 }
8780 break;
8781 }
8782 memcpy(&l2dhdr->dh_start_lbps[i], lb_ptr_buf->lb_ptr,
8783 sizeof (l2arc_log_blkptr_t));
8784 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list,
8785 lb_ptr_buf);
8786 }
8787 }
8788
8789 ARCSTAT_BUMP(arcstat_l2_writes_done);
8790 list_remove(buflist, head);
8791 ASSERT(!HDR_HAS_L1HDR(head));
8792 kmem_cache_free(hdr_l2only_cache, head);
8793 mutex_exit(&dev->l2ad_mtx);
8794
8795 ASSERT(dev->l2ad_vdev != NULL);
8796 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
8797
8798 l2arc_do_free_on_write();
8799
8800 kmem_free(cb, sizeof (l2arc_write_callback_t));
8801 }
8802
8803 static int
l2arc_untransform(zio_t * zio,l2arc_read_callback_t * cb)8804 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb)
8805 {
8806 int ret;
8807 spa_t *spa = zio->io_spa;
8808 arc_buf_hdr_t *hdr = cb->l2rcb_hdr;
8809 blkptr_t *bp = zio->io_bp;
8810 uint8_t salt[ZIO_DATA_SALT_LEN];
8811 uint8_t iv[ZIO_DATA_IV_LEN];
8812 uint8_t mac[ZIO_DATA_MAC_LEN];
8813 boolean_t no_crypt = B_FALSE;
8814
8815 /*
8816 * ZIL data is never be written to the L2ARC, so we don't need
8817 * special handling for its unique MAC storage.
8818 */
8819 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
8820 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
8821 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8822
8823 /*
8824 * If the data was encrypted, decrypt it now. Note that
8825 * we must check the bp here and not the hdr, since the
8826 * hdr does not have its encryption parameters updated
8827 * until arc_read_done().
8828 */
8829 if (BP_IS_ENCRYPTED(bp)) {
8830 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8831 ARC_HDR_USE_RESERVE);
8832
8833 zio_crypt_decode_params_bp(bp, salt, iv);
8834 zio_crypt_decode_mac_bp(bp, mac);
8835
8836 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb,
8837 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
8838 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd,
8839 hdr->b_l1hdr.b_pabd, &no_crypt);
8840 if (ret != 0) {
8841 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8842 goto error;
8843 }
8844
8845 /*
8846 * If we actually performed decryption, replace b_pabd
8847 * with the decrypted data. Otherwise we can just throw
8848 * our decryption buffer away.
8849 */
8850 if (!no_crypt) {
8851 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8852 arc_hdr_size(hdr), hdr);
8853 hdr->b_l1hdr.b_pabd = eabd;
8854 zio->io_abd = eabd;
8855 } else {
8856 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8857 }
8858 }
8859
8860 /*
8861 * If the L2ARC block was compressed, but ARC compression
8862 * is disabled we decompress the data into a new buffer and
8863 * replace the existing data.
8864 */
8865 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8866 !HDR_COMPRESSION_ENABLED(hdr)) {
8867 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8868 ARC_HDR_USE_RESERVE);
8869
8870 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
8871 hdr->b_l1hdr.b_pabd, cabd, HDR_GET_PSIZE(hdr),
8872 HDR_GET_LSIZE(hdr), &hdr->b_complevel);
8873 if (ret != 0) {
8874 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
8875 goto error;
8876 }
8877
8878 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8879 arc_hdr_size(hdr), hdr);
8880 hdr->b_l1hdr.b_pabd = cabd;
8881 zio->io_abd = cabd;
8882 zio->io_size = HDR_GET_LSIZE(hdr);
8883 }
8884
8885 return (0);
8886
8887 error:
8888 return (ret);
8889 }
8890
8891
8892 /*
8893 * A read to a cache device completed. Validate buffer contents before
8894 * handing over to the regular ARC routines.
8895 */
8896 static void
l2arc_read_done(zio_t * zio)8897 l2arc_read_done(zio_t *zio)
8898 {
8899 int tfm_error = 0;
8900 l2arc_read_callback_t *cb = zio->io_private;
8901 arc_buf_hdr_t *hdr;
8902 kmutex_t *hash_lock;
8903 boolean_t valid_cksum;
8904 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) &&
8905 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT));
8906
8907 ASSERT3P(zio->io_vd, !=, NULL);
8908 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
8909
8910 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
8911
8912 ASSERT3P(cb, !=, NULL);
8913 hdr = cb->l2rcb_hdr;
8914 ASSERT3P(hdr, !=, NULL);
8915
8916 hash_lock = HDR_LOCK(hdr);
8917 mutex_enter(hash_lock);
8918 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
8919
8920 /*
8921 * If the data was read into a temporary buffer,
8922 * move it and free the buffer.
8923 */
8924 if (cb->l2rcb_abd != NULL) {
8925 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
8926 if (zio->io_error == 0) {
8927 if (using_rdata) {
8928 abd_copy(hdr->b_crypt_hdr.b_rabd,
8929 cb->l2rcb_abd, arc_hdr_size(hdr));
8930 } else {
8931 abd_copy(hdr->b_l1hdr.b_pabd,
8932 cb->l2rcb_abd, arc_hdr_size(hdr));
8933 }
8934 }
8935
8936 /*
8937 * The following must be done regardless of whether
8938 * there was an error:
8939 * - free the temporary buffer
8940 * - point zio to the real ARC buffer
8941 * - set zio size accordingly
8942 * These are required because zio is either re-used for
8943 * an I/O of the block in the case of the error
8944 * or the zio is passed to arc_read_done() and it
8945 * needs real data.
8946 */
8947 abd_free(cb->l2rcb_abd);
8948 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
8949
8950 if (using_rdata) {
8951 ASSERT(HDR_HAS_RABD(hdr));
8952 zio->io_abd = zio->io_orig_abd =
8953 hdr->b_crypt_hdr.b_rabd;
8954 } else {
8955 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8956 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
8957 }
8958 }
8959
8960 ASSERT3P(zio->io_abd, !=, NULL);
8961
8962 /*
8963 * Check this survived the L2ARC journey.
8964 */
8965 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd ||
8966 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd));
8967 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
8968 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
8969 zio->io_prop.zp_complevel = hdr->b_complevel;
8970
8971 valid_cksum = arc_cksum_is_equal(hdr, zio);
8972
8973 /*
8974 * b_rabd will always match the data as it exists on disk if it is
8975 * being used. Therefore if we are reading into b_rabd we do not
8976 * attempt to untransform the data.
8977 */
8978 if (valid_cksum && !using_rdata)
8979 tfm_error = l2arc_untransform(zio, cb);
8980
8981 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 &&
8982 !HDR_L2_EVICTED(hdr)) {
8983 mutex_exit(hash_lock);
8984 zio->io_private = hdr;
8985 arc_read_done(zio);
8986 } else {
8987 /*
8988 * Buffer didn't survive caching. Increment stats and
8989 * reissue to the original storage device.
8990 */
8991 if (zio->io_error != 0) {
8992 ARCSTAT_BUMP(arcstat_l2_io_error);
8993 } else {
8994 zio->io_error = SET_ERROR(EIO);
8995 }
8996 if (!valid_cksum || tfm_error != 0)
8997 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
8998
8999 /*
9000 * If there's no waiter, issue an async i/o to the primary
9001 * storage now. If there *is* a waiter, the caller must
9002 * issue the i/o in a context where it's OK to block.
9003 */
9004 if (zio->io_waiter == NULL) {
9005 zio_t *pio = zio_unique_parent(zio);
9006 void *abd = (using_rdata) ?
9007 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd;
9008
9009 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
9010
9011 zio = zio_read(pio, zio->io_spa, zio->io_bp,
9012 abd, zio->io_size, arc_read_done,
9013 hdr, zio->io_priority, cb->l2rcb_flags,
9014 &cb->l2rcb_zb);
9015
9016 /*
9017 * Original ZIO will be freed, so we need to update
9018 * ARC header with the new ZIO pointer to be used
9019 * by zio_change_priority() in arc_read().
9020 */
9021 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb;
9022 acb != NULL; acb = acb->acb_next)
9023 acb->acb_zio_head = zio;
9024
9025 mutex_exit(hash_lock);
9026 zio_nowait(zio);
9027 } else {
9028 mutex_exit(hash_lock);
9029 }
9030 }
9031
9032 kmem_free(cb, sizeof (l2arc_read_callback_t));
9033 }
9034
9035 /*
9036 * This is the list priority from which the L2ARC will search for pages to
9037 * cache. This is used within loops (0..3) to cycle through lists in the
9038 * desired order. This order can have a significant effect on cache
9039 * performance.
9040 *
9041 * Currently the metadata lists are hit first, MFU then MRU, followed by
9042 * the data lists. This function returns a locked list, and also returns
9043 * the lock pointer.
9044 */
9045 static multilist_sublist_t *
l2arc_sublist_lock(int list_num)9046 l2arc_sublist_lock(int list_num)
9047 {
9048 multilist_t *ml = NULL;
9049 unsigned int idx;
9050
9051 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES);
9052
9053 switch (list_num) {
9054 case 0:
9055 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
9056 break;
9057 case 1:
9058 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
9059 break;
9060 case 2:
9061 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
9062 break;
9063 case 3:
9064 ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
9065 break;
9066 default:
9067 return (NULL);
9068 }
9069
9070 /*
9071 * Return a randomly-selected sublist. This is acceptable
9072 * because the caller feeds only a little bit of data for each
9073 * call (8MB). Subsequent calls will result in different
9074 * sublists being selected.
9075 */
9076 idx = multilist_get_random_index(ml);
9077 return (multilist_sublist_lock_idx(ml, idx));
9078 }
9079
9080 /*
9081 * Calculates the maximum overhead of L2ARC metadata log blocks for a given
9082 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this
9083 * overhead in processing to make sure there is enough headroom available
9084 * when writing buffers.
9085 */
9086 static inline uint64_t
l2arc_log_blk_overhead(uint64_t write_sz,l2arc_dev_t * dev)9087 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev)
9088 {
9089 if (dev->l2ad_log_entries == 0) {
9090 return (0);
9091 } else {
9092 ASSERT(dev->l2ad_vdev != NULL);
9093
9094 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT;
9095
9096 uint64_t log_blocks = (log_entries +
9097 dev->l2ad_log_entries - 1) /
9098 dev->l2ad_log_entries;
9099
9100 return (vdev_psize_to_asize(dev->l2ad_vdev,
9101 sizeof (l2arc_log_blk_phys_t)) * log_blocks);
9102 }
9103 }
9104
9105 /*
9106 * Evict buffers from the device write hand to the distance specified in
9107 * bytes. This distance may span populated buffers, it may span nothing.
9108 * This is clearing a region on the L2ARC device ready for writing.
9109 * If the 'all' boolean is set, every buffer is evicted.
9110 */
9111 static void
l2arc_evict(l2arc_dev_t * dev,uint64_t distance,boolean_t all)9112 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
9113 {
9114 list_t *buflist;
9115 arc_buf_hdr_t *hdr, *hdr_prev;
9116 kmutex_t *hash_lock;
9117 uint64_t taddr;
9118 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev;
9119 vdev_t *vd = dev->l2ad_vdev;
9120 boolean_t rerun;
9121
9122 ASSERT(vd != NULL || all);
9123 ASSERT(dev->l2ad_spa != NULL || all);
9124
9125 buflist = &dev->l2ad_buflist;
9126
9127 top:
9128 rerun = B_FALSE;
9129 if (dev->l2ad_hand + distance > dev->l2ad_end) {
9130 /*
9131 * When there is no space to accommodate upcoming writes,
9132 * evict to the end. Then bump the write and evict hands
9133 * to the start and iterate. This iteration does not
9134 * happen indefinitely as we make sure in
9135 * l2arc_write_size() that when the write hand is reset,
9136 * the write size does not exceed the end of the device.
9137 */
9138 rerun = B_TRUE;
9139 taddr = dev->l2ad_end;
9140 } else {
9141 taddr = dev->l2ad_hand + distance;
9142 }
9143 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
9144 uint64_t, taddr, boolean_t, all);
9145
9146 if (!all) {
9147 /*
9148 * This check has to be placed after deciding whether to
9149 * iterate (rerun).
9150 */
9151 if (dev->l2ad_first) {
9152 /*
9153 * This is the first sweep through the device. There is
9154 * nothing to evict. We have already trimmmed the
9155 * whole device.
9156 */
9157 goto out;
9158 } else {
9159 /*
9160 * Trim the space to be evicted.
9161 */
9162 if (vd->vdev_has_trim && dev->l2ad_evict < taddr &&
9163 l2arc_trim_ahead > 0) {
9164 /*
9165 * We have to drop the spa_config lock because
9166 * vdev_trim_range() will acquire it.
9167 * l2ad_evict already accounts for the label
9168 * size. To prevent vdev_trim_ranges() from
9169 * adding it again, we subtract it from
9170 * l2ad_evict.
9171 */
9172 spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev);
9173 vdev_trim_simple(vd,
9174 dev->l2ad_evict - VDEV_LABEL_START_SIZE,
9175 taddr - dev->l2ad_evict);
9176 spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev,
9177 RW_READER);
9178 }
9179
9180 /*
9181 * When rebuilding L2ARC we retrieve the evict hand
9182 * from the header of the device. Of note, l2arc_evict()
9183 * does not actually delete buffers from the cache
9184 * device, but trimming may do so depending on the
9185 * hardware implementation. Thus keeping track of the
9186 * evict hand is useful.
9187 */
9188 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr);
9189 }
9190 }
9191
9192 retry:
9193 mutex_enter(&dev->l2ad_mtx);
9194 /*
9195 * We have to account for evicted log blocks. Run vdev_space_update()
9196 * on log blocks whose offset (in bytes) is before the evicted offset
9197 * (in bytes) by searching in the list of pointers to log blocks
9198 * present in the L2ARC device.
9199 */
9200 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf;
9201 lb_ptr_buf = lb_ptr_buf_prev) {
9202
9203 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf);
9204
9205 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
9206 uint64_t asize = L2BLK_GET_PSIZE(
9207 (lb_ptr_buf->lb_ptr)->lbp_prop);
9208
9209 /*
9210 * We don't worry about log blocks left behind (ie
9211 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers()
9212 * will never write more than l2arc_evict() evicts.
9213 */
9214 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) {
9215 break;
9216 } else {
9217 if (vd != NULL)
9218 vdev_space_update(vd, -asize, 0, 0);
9219 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
9220 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
9221 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
9222 lb_ptr_buf);
9223 (void) zfs_refcount_remove(&dev->l2ad_lb_count,
9224 lb_ptr_buf);
9225 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf);
9226 kmem_free(lb_ptr_buf->lb_ptr,
9227 sizeof (l2arc_log_blkptr_t));
9228 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
9229 }
9230 }
9231
9232 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
9233 hdr_prev = list_prev(buflist, hdr);
9234
9235 ASSERT(!HDR_EMPTY(hdr));
9236 hash_lock = HDR_LOCK(hdr);
9237
9238 /*
9239 * We cannot use mutex_enter or else we can deadlock
9240 * with l2arc_write_buffers (due to swapping the order
9241 * the hash lock and l2ad_mtx are taken).
9242 */
9243 if (!mutex_tryenter(hash_lock)) {
9244 /*
9245 * Missed the hash lock. Retry.
9246 */
9247 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
9248 mutex_exit(&dev->l2ad_mtx);
9249 mutex_enter(hash_lock);
9250 mutex_exit(hash_lock);
9251 goto retry;
9252 }
9253
9254 /*
9255 * A header can't be on this list if it doesn't have L2 header.
9256 */
9257 ASSERT(HDR_HAS_L2HDR(hdr));
9258
9259 /* Ensure this header has finished being written. */
9260 ASSERT(!HDR_L2_WRITING(hdr));
9261 ASSERT(!HDR_L2_WRITE_HEAD(hdr));
9262
9263 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict ||
9264 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
9265 /*
9266 * We've evicted to the target address,
9267 * or the end of the device.
9268 */
9269 mutex_exit(hash_lock);
9270 break;
9271 }
9272
9273 if (!HDR_HAS_L1HDR(hdr)) {
9274 ASSERT(!HDR_L2_READING(hdr));
9275 /*
9276 * This doesn't exist in the ARC. Destroy.
9277 * arc_hdr_destroy() will call list_remove()
9278 * and decrement arcstat_l2_lsize.
9279 */
9280 arc_change_state(arc_anon, hdr);
9281 arc_hdr_destroy(hdr);
9282 } else {
9283 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
9284 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
9285 /*
9286 * Invalidate issued or about to be issued
9287 * reads, since we may be about to write
9288 * over this location.
9289 */
9290 if (HDR_L2_READING(hdr)) {
9291 ARCSTAT_BUMP(arcstat_l2_evict_reading);
9292 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
9293 }
9294
9295 arc_hdr_l2hdr_destroy(hdr);
9296 }
9297 mutex_exit(hash_lock);
9298 }
9299 mutex_exit(&dev->l2ad_mtx);
9300
9301 out:
9302 /*
9303 * We need to check if we evict all buffers, otherwise we may iterate
9304 * unnecessarily.
9305 */
9306 if (!all && rerun) {
9307 /*
9308 * Bump device hand to the device start if it is approaching the
9309 * end. l2arc_evict() has already evicted ahead for this case.
9310 */
9311 dev->l2ad_hand = dev->l2ad_start;
9312 dev->l2ad_evict = dev->l2ad_start;
9313 dev->l2ad_first = B_FALSE;
9314 goto top;
9315 }
9316
9317 if (!all) {
9318 /*
9319 * In case of cache device removal (all) the following
9320 * assertions may be violated without functional consequences
9321 * as the device is about to be removed.
9322 */
9323 ASSERT3U(dev->l2ad_hand + distance, <=, dev->l2ad_end);
9324 if (!dev->l2ad_first)
9325 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
9326 }
9327 }
9328
9329 /*
9330 * Handle any abd transforms that might be required for writing to the L2ARC.
9331 * If successful, this function will always return an abd with the data
9332 * transformed as it is on disk in a new abd of asize bytes.
9333 */
9334 static int
l2arc_apply_transforms(spa_t * spa,arc_buf_hdr_t * hdr,uint64_t asize,abd_t ** abd_out)9335 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize,
9336 abd_t **abd_out)
9337 {
9338 int ret;
9339 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd;
9340 enum zio_compress compress = HDR_GET_COMPRESS(hdr);
9341 uint64_t psize = HDR_GET_PSIZE(hdr);
9342 uint64_t size = arc_hdr_size(hdr);
9343 boolean_t ismd = HDR_ISTYPE_METADATA(hdr);
9344 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
9345 dsl_crypto_key_t *dck = NULL;
9346 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 };
9347 boolean_t no_crypt = B_FALSE;
9348
9349 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
9350 !HDR_COMPRESSION_ENABLED(hdr)) ||
9351 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize);
9352 ASSERT3U(psize, <=, asize);
9353
9354 /*
9355 * If this data simply needs its own buffer, we simply allocate it
9356 * and copy the data. This may be done to eliminate a dependency on a
9357 * shared buffer or to reallocate the buffer to match asize.
9358 */
9359 if (HDR_HAS_RABD(hdr)) {
9360 ASSERT3U(asize, >, psize);
9361 to_write = abd_alloc_for_io(asize, ismd);
9362 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize);
9363 abd_zero_off(to_write, psize, asize - psize);
9364 goto out;
9365 }
9366
9367 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) &&
9368 !HDR_ENCRYPTED(hdr)) {
9369 ASSERT3U(size, ==, psize);
9370 to_write = abd_alloc_for_io(asize, ismd);
9371 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
9372 if (asize > size)
9373 abd_zero_off(to_write, size, asize - size);
9374 goto out;
9375 }
9376
9377 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) {
9378 cabd = abd_alloc_for_io(MAX(size, asize), ismd);
9379 uint64_t csize = zio_compress_data(compress, to_write, &cabd,
9380 size, MIN(size, psize), hdr->b_complevel);
9381 if (csize >= size || csize > psize) {
9382 /*
9383 * We can't re-compress the block into the original
9384 * psize. Even if it fits into asize, it does not
9385 * matter, since checksum will never match on read.
9386 */
9387 abd_free(cabd);
9388 return (SET_ERROR(EIO));
9389 }
9390 if (asize > csize)
9391 abd_zero_off(cabd, csize, asize - csize);
9392 to_write = cabd;
9393 }
9394
9395 if (HDR_ENCRYPTED(hdr)) {
9396 eabd = abd_alloc_for_io(asize, ismd);
9397
9398 /*
9399 * If the dataset was disowned before the buffer
9400 * made it to this point, the key to re-encrypt
9401 * it won't be available. In this case we simply
9402 * won't write the buffer to the L2ARC.
9403 */
9404 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj,
9405 FTAG, &dck);
9406 if (ret != 0)
9407 goto error;
9408
9409 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
9410 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt,
9411 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd,
9412 &no_crypt);
9413 if (ret != 0)
9414 goto error;
9415
9416 if (no_crypt)
9417 abd_copy(eabd, to_write, psize);
9418
9419 if (psize != asize)
9420 abd_zero_off(eabd, psize, asize - psize);
9421
9422 /* assert that the MAC we got here matches the one we saved */
9423 ASSERT0(memcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN));
9424 spa_keystore_dsl_key_rele(spa, dck, FTAG);
9425
9426 if (to_write == cabd)
9427 abd_free(cabd);
9428
9429 to_write = eabd;
9430 }
9431
9432 out:
9433 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd);
9434 *abd_out = to_write;
9435 return (0);
9436
9437 error:
9438 if (dck != NULL)
9439 spa_keystore_dsl_key_rele(spa, dck, FTAG);
9440 if (cabd != NULL)
9441 abd_free(cabd);
9442 if (eabd != NULL)
9443 abd_free(eabd);
9444
9445 *abd_out = NULL;
9446 return (ret);
9447 }
9448
9449 static void
l2arc_blk_fetch_done(zio_t * zio)9450 l2arc_blk_fetch_done(zio_t *zio)
9451 {
9452 l2arc_read_callback_t *cb;
9453
9454 cb = zio->io_private;
9455 if (cb->l2rcb_abd != NULL)
9456 abd_free(cb->l2rcb_abd);
9457 kmem_free(cb, sizeof (l2arc_read_callback_t));
9458 }
9459
9460 /*
9461 * Find and write ARC buffers to the L2ARC device.
9462 *
9463 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
9464 * for reading until they have completed writing.
9465 * The headroom_boost is an in-out parameter used to maintain headroom boost
9466 * state between calls to this function.
9467 *
9468 * Returns the number of bytes actually written (which may be smaller than
9469 * the delta by which the device hand has changed due to alignment and the
9470 * writing of log blocks).
9471 */
9472 static uint64_t
l2arc_write_buffers(spa_t * spa,l2arc_dev_t * dev,uint64_t target_sz)9473 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
9474 {
9475 arc_buf_hdr_t *hdr, *head, *marker;
9476 uint64_t write_asize, write_psize, headroom;
9477 boolean_t full, from_head = !arc_warm;
9478 l2arc_write_callback_t *cb = NULL;
9479 zio_t *pio, *wzio;
9480 uint64_t guid = spa_load_guid(spa);
9481 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
9482
9483 ASSERT3P(dev->l2ad_vdev, !=, NULL);
9484
9485 pio = NULL;
9486 write_asize = write_psize = 0;
9487 full = B_FALSE;
9488 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
9489 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
9490 marker = arc_state_alloc_marker();
9491
9492 /*
9493 * Copy buffers for L2ARC writing.
9494 */
9495 for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) {
9496 /*
9497 * pass == 0: MFU meta
9498 * pass == 1: MRU meta
9499 * pass == 2: MFU data
9500 * pass == 3: MRU data
9501 */
9502 if (l2arc_mfuonly == 1) {
9503 if (pass == 1 || pass == 3)
9504 continue;
9505 } else if (l2arc_mfuonly > 1) {
9506 if (pass == 3)
9507 continue;
9508 }
9509
9510 uint64_t passed_sz = 0;
9511 headroom = target_sz * l2arc_headroom;
9512 if (zfs_compressed_arc_enabled)
9513 headroom = (headroom * l2arc_headroom_boost) / 100;
9514
9515 /*
9516 * Until the ARC is warm and starts to evict, read from the
9517 * head of the ARC lists rather than the tail.
9518 */
9519 multilist_sublist_t *mls = l2arc_sublist_lock(pass);
9520 ASSERT3P(mls, !=, NULL);
9521 if (from_head)
9522 hdr = multilist_sublist_head(mls);
9523 else
9524 hdr = multilist_sublist_tail(mls);
9525
9526 while (hdr != NULL) {
9527 kmutex_t *hash_lock;
9528 abd_t *to_write = NULL;
9529
9530 hash_lock = HDR_LOCK(hdr);
9531 if (!mutex_tryenter(hash_lock)) {
9532 skip:
9533 /* Skip this buffer rather than waiting. */
9534 if (from_head)
9535 hdr = multilist_sublist_next(mls, hdr);
9536 else
9537 hdr = multilist_sublist_prev(mls, hdr);
9538 continue;
9539 }
9540
9541 passed_sz += HDR_GET_LSIZE(hdr);
9542 if (l2arc_headroom != 0 && passed_sz > headroom) {
9543 /*
9544 * Searched too far.
9545 */
9546 mutex_exit(hash_lock);
9547 break;
9548 }
9549
9550 if (!l2arc_write_eligible(guid, hdr)) {
9551 mutex_exit(hash_lock);
9552 goto skip;
9553 }
9554
9555 ASSERT(HDR_HAS_L1HDR(hdr));
9556 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
9557 ASSERT3U(arc_hdr_size(hdr), >, 0);
9558 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
9559 HDR_HAS_RABD(hdr));
9560 uint64_t psize = HDR_GET_PSIZE(hdr);
9561 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
9562 psize);
9563
9564 /*
9565 * If the allocated size of this buffer plus the max
9566 * size for the pending log block exceeds the evicted
9567 * target size, terminate writing buffers for this run.
9568 */
9569 if (write_asize + asize +
9570 sizeof (l2arc_log_blk_phys_t) > target_sz) {
9571 full = B_TRUE;
9572 mutex_exit(hash_lock);
9573 break;
9574 }
9575
9576 /*
9577 * We should not sleep with sublist lock held or it
9578 * may block ARC eviction. Insert a marker to save
9579 * the position and drop the lock.
9580 */
9581 if (from_head) {
9582 multilist_sublist_insert_after(mls, hdr,
9583 marker);
9584 } else {
9585 multilist_sublist_insert_before(mls, hdr,
9586 marker);
9587 }
9588 multilist_sublist_unlock(mls);
9589
9590 /*
9591 * If this header has b_rabd, we can use this since it
9592 * must always match the data exactly as it exists on
9593 * disk. Otherwise, the L2ARC can normally use the
9594 * hdr's data, but if we're sharing data between the
9595 * hdr and one of its bufs, L2ARC needs its own copy of
9596 * the data so that the ZIO below can't race with the
9597 * buf consumer. To ensure that this copy will be
9598 * available for the lifetime of the ZIO and be cleaned
9599 * up afterwards, we add it to the l2arc_free_on_write
9600 * queue. If we need to apply any transforms to the
9601 * data (compression, encryption) we will also need the
9602 * extra buffer.
9603 */
9604 if (HDR_HAS_RABD(hdr) && psize == asize) {
9605 to_write = hdr->b_crypt_hdr.b_rabd;
9606 } else if ((HDR_COMPRESSION_ENABLED(hdr) ||
9607 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) &&
9608 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) &&
9609 psize == asize) {
9610 to_write = hdr->b_l1hdr.b_pabd;
9611 } else {
9612 int ret;
9613 arc_buf_contents_t type = arc_buf_type(hdr);
9614
9615 ret = l2arc_apply_transforms(spa, hdr, asize,
9616 &to_write);
9617 if (ret != 0) {
9618 arc_hdr_clear_flags(hdr,
9619 ARC_FLAG_L2CACHE);
9620 mutex_exit(hash_lock);
9621 goto next;
9622 }
9623
9624 l2arc_free_abd_on_write(to_write, asize, type);
9625 }
9626
9627 hdr->b_l2hdr.b_dev = dev;
9628 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
9629 hdr->b_l2hdr.b_hits = 0;
9630 hdr->b_l2hdr.b_arcs_state =
9631 hdr->b_l1hdr.b_state->arcs_state;
9632 /* l2arc_hdr_arcstats_update() expects a valid asize */
9633 HDR_SET_L2SIZE(hdr, asize);
9634 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR |
9635 ARC_FLAG_L2_WRITING);
9636
9637 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
9638 arc_hdr_size(hdr), hdr);
9639 l2arc_hdr_arcstats_increment(hdr);
9640 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
9641
9642 mutex_enter(&dev->l2ad_mtx);
9643 if (pio == NULL) {
9644 /*
9645 * Insert a dummy header on the buflist so
9646 * l2arc_write_done() can find where the
9647 * write buffers begin without searching.
9648 */
9649 list_insert_head(&dev->l2ad_buflist, head);
9650 }
9651 list_insert_head(&dev->l2ad_buflist, hdr);
9652 mutex_exit(&dev->l2ad_mtx);
9653
9654 boolean_t commit = l2arc_log_blk_insert(dev, hdr);
9655 mutex_exit(hash_lock);
9656
9657 if (pio == NULL) {
9658 cb = kmem_alloc(
9659 sizeof (l2arc_write_callback_t), KM_SLEEP);
9660 cb->l2wcb_dev = dev;
9661 cb->l2wcb_head = head;
9662 list_create(&cb->l2wcb_abd_list,
9663 sizeof (l2arc_lb_abd_buf_t),
9664 offsetof(l2arc_lb_abd_buf_t, node));
9665 pio = zio_root(spa, l2arc_write_done, cb,
9666 ZIO_FLAG_CANFAIL);
9667 }
9668
9669 wzio = zio_write_phys(pio, dev->l2ad_vdev,
9670 dev->l2ad_hand, asize, to_write,
9671 ZIO_CHECKSUM_OFF, NULL, hdr,
9672 ZIO_PRIORITY_ASYNC_WRITE,
9673 ZIO_FLAG_CANFAIL, B_FALSE);
9674
9675 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
9676 zio_t *, wzio);
9677 zio_nowait(wzio);
9678
9679 write_psize += psize;
9680 write_asize += asize;
9681 dev->l2ad_hand += asize;
9682
9683 if (commit) {
9684 /* l2ad_hand will be adjusted inside. */
9685 write_asize +=
9686 l2arc_log_blk_commit(dev, pio, cb);
9687 }
9688
9689 next:
9690 multilist_sublist_lock(mls);
9691 if (from_head)
9692 hdr = multilist_sublist_next(mls, marker);
9693 else
9694 hdr = multilist_sublist_prev(mls, marker);
9695 multilist_sublist_remove(mls, marker);
9696 }
9697
9698 multilist_sublist_unlock(mls);
9699
9700 if (full == B_TRUE)
9701 break;
9702 }
9703
9704 arc_state_free_marker(marker);
9705
9706 /* No buffers selected for writing? */
9707 if (pio == NULL) {
9708 ASSERT0(write_psize);
9709 ASSERT(!HDR_HAS_L1HDR(head));
9710 kmem_cache_free(hdr_l2only_cache, head);
9711
9712 /*
9713 * Although we did not write any buffers l2ad_evict may
9714 * have advanced.
9715 */
9716 if (dev->l2ad_evict != l2dhdr->dh_evict)
9717 l2arc_dev_hdr_update(dev);
9718
9719 return (0);
9720 }
9721
9722 if (!dev->l2ad_first)
9723 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
9724
9725 ASSERT3U(write_asize, <=, target_sz);
9726 ARCSTAT_BUMP(arcstat_l2_writes_sent);
9727 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
9728
9729 dev->l2ad_writing = B_TRUE;
9730 (void) zio_wait(pio);
9731 dev->l2ad_writing = B_FALSE;
9732
9733 /*
9734 * Update the device header after the zio completes as
9735 * l2arc_write_done() may have updated the memory holding the log block
9736 * pointers in the device header.
9737 */
9738 l2arc_dev_hdr_update(dev);
9739
9740 return (write_asize);
9741 }
9742
9743 static boolean_t
l2arc_hdr_limit_reached(void)9744 l2arc_hdr_limit_reached(void)
9745 {
9746 int64_t s = aggsum_upper_bound(&arc_sums.arcstat_l2_hdr_size);
9747
9748 return (arc_reclaim_needed() ||
9749 (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100));
9750 }
9751
9752 /*
9753 * This thread feeds the L2ARC at regular intervals. This is the beating
9754 * heart of the L2ARC.
9755 */
9756 static __attribute__((noreturn)) void
l2arc_feed_thread(void * unused)9757 l2arc_feed_thread(void *unused)
9758 {
9759 (void) unused;
9760 callb_cpr_t cpr;
9761 l2arc_dev_t *dev;
9762 spa_t *spa;
9763 uint64_t size, wrote;
9764 clock_t begin, next = ddi_get_lbolt();
9765 fstrans_cookie_t cookie;
9766
9767 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
9768
9769 mutex_enter(&l2arc_feed_thr_lock);
9770
9771 cookie = spl_fstrans_mark();
9772 while (l2arc_thread_exit == 0) {
9773 CALLB_CPR_SAFE_BEGIN(&cpr);
9774 (void) cv_timedwait_idle(&l2arc_feed_thr_cv,
9775 &l2arc_feed_thr_lock, next);
9776 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
9777 next = ddi_get_lbolt() + hz;
9778
9779 /*
9780 * Quick check for L2ARC devices.
9781 */
9782 mutex_enter(&l2arc_dev_mtx);
9783 if (l2arc_ndev == 0) {
9784 mutex_exit(&l2arc_dev_mtx);
9785 continue;
9786 }
9787 mutex_exit(&l2arc_dev_mtx);
9788 begin = ddi_get_lbolt();
9789
9790 /*
9791 * This selects the next l2arc device to write to, and in
9792 * doing so the next spa to feed from: dev->l2ad_spa. This
9793 * will return NULL if there are now no l2arc devices or if
9794 * they are all faulted.
9795 *
9796 * If a device is returned, its spa's config lock is also
9797 * held to prevent device removal. l2arc_dev_get_next()
9798 * will grab and release l2arc_dev_mtx.
9799 */
9800 if ((dev = l2arc_dev_get_next()) == NULL)
9801 continue;
9802
9803 spa = dev->l2ad_spa;
9804 ASSERT3P(spa, !=, NULL);
9805
9806 /*
9807 * If the pool is read-only then force the feed thread to
9808 * sleep a little longer.
9809 */
9810 if (!spa_writeable(spa)) {
9811 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
9812 spa_config_exit(spa, SCL_L2ARC, dev);
9813 continue;
9814 }
9815
9816 /*
9817 * Avoid contributing to memory pressure.
9818 */
9819 if (l2arc_hdr_limit_reached()) {
9820 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
9821 spa_config_exit(spa, SCL_L2ARC, dev);
9822 continue;
9823 }
9824
9825 ARCSTAT_BUMP(arcstat_l2_feeds);
9826
9827 size = l2arc_write_size(dev);
9828
9829 /*
9830 * Evict L2ARC buffers that will be overwritten.
9831 */
9832 l2arc_evict(dev, size, B_FALSE);
9833
9834 /*
9835 * Write ARC buffers.
9836 */
9837 wrote = l2arc_write_buffers(spa, dev, size);
9838
9839 /*
9840 * Calculate interval between writes.
9841 */
9842 next = l2arc_write_interval(begin, size, wrote);
9843 spa_config_exit(spa, SCL_L2ARC, dev);
9844 }
9845 spl_fstrans_unmark(cookie);
9846
9847 l2arc_thread_exit = 0;
9848 cv_broadcast(&l2arc_feed_thr_cv);
9849 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
9850 thread_exit();
9851 }
9852
9853 boolean_t
l2arc_vdev_present(vdev_t * vd)9854 l2arc_vdev_present(vdev_t *vd)
9855 {
9856 return (l2arc_vdev_get(vd) != NULL);
9857 }
9858
9859 /*
9860 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if
9861 * the vdev_t isn't an L2ARC device.
9862 */
9863 l2arc_dev_t *
l2arc_vdev_get(vdev_t * vd)9864 l2arc_vdev_get(vdev_t *vd)
9865 {
9866 l2arc_dev_t *dev;
9867
9868 mutex_enter(&l2arc_dev_mtx);
9869 for (dev = list_head(l2arc_dev_list); dev != NULL;
9870 dev = list_next(l2arc_dev_list, dev)) {
9871 if (dev->l2ad_vdev == vd)
9872 break;
9873 }
9874 mutex_exit(&l2arc_dev_mtx);
9875
9876 return (dev);
9877 }
9878
9879 static void
l2arc_rebuild_dev(l2arc_dev_t * dev,boolean_t reopen)9880 l2arc_rebuild_dev(l2arc_dev_t *dev, boolean_t reopen)
9881 {
9882 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
9883 uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
9884 spa_t *spa = dev->l2ad_spa;
9885
9886 /*
9887 * After a l2arc_remove_vdev(), the spa_t will no longer be valid
9888 */
9889 if (spa == NULL)
9890 return;
9891
9892 /*
9893 * The L2ARC has to hold at least the payload of one log block for
9894 * them to be restored (persistent L2ARC). The payload of a log block
9895 * depends on the amount of its log entries. We always write log blocks
9896 * with 1022 entries. How many of them are committed or restored depends
9897 * on the size of the L2ARC device. Thus the maximum payload of
9898 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device
9899 * is less than that, we reduce the amount of committed and restored
9900 * log entries per block so as to enable persistence.
9901 */
9902 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) {
9903 dev->l2ad_log_entries = 0;
9904 } else {
9905 dev->l2ad_log_entries = MIN((dev->l2ad_end -
9906 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT,
9907 L2ARC_LOG_BLK_MAX_ENTRIES);
9908 }
9909
9910 /*
9911 * Read the device header, if an error is returned do not rebuild L2ARC.
9912 */
9913 if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) {
9914 /*
9915 * If we are onlining a cache device (vdev_reopen) that was
9916 * still present (l2arc_vdev_present()) and rebuild is enabled,
9917 * we should evict all ARC buffers and pointers to log blocks
9918 * and reclaim their space before restoring its contents to
9919 * L2ARC.
9920 */
9921 if (reopen) {
9922 if (!l2arc_rebuild_enabled) {
9923 return;
9924 } else {
9925 l2arc_evict(dev, 0, B_TRUE);
9926 /* start a new log block */
9927 dev->l2ad_log_ent_idx = 0;
9928 dev->l2ad_log_blk_payload_asize = 0;
9929 dev->l2ad_log_blk_payload_start = 0;
9930 }
9931 }
9932 /*
9933 * Just mark the device as pending for a rebuild. We won't
9934 * be starting a rebuild in line here as it would block pool
9935 * import. Instead spa_load_impl will hand that off to an
9936 * async task which will call l2arc_spa_rebuild_start.
9937 */
9938 dev->l2ad_rebuild = B_TRUE;
9939 } else if (spa_writeable(spa)) {
9940 /*
9941 * In this case TRIM the whole device if l2arc_trim_ahead > 0,
9942 * otherwise create a new header. We zero out the memory holding
9943 * the header to reset dh_start_lbps. If we TRIM the whole
9944 * device the new header will be written by
9945 * vdev_trim_l2arc_thread() at the end of the TRIM to update the
9946 * trim_state in the header too. When reading the header, if
9947 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0
9948 * we opt to TRIM the whole device again.
9949 */
9950 if (l2arc_trim_ahead > 0) {
9951 dev->l2ad_trim_all = B_TRUE;
9952 } else {
9953 memset(l2dhdr, 0, l2dhdr_asize);
9954 l2arc_dev_hdr_update(dev);
9955 }
9956 }
9957 }
9958
9959 /*
9960 * Add a vdev for use by the L2ARC. By this point the spa has already
9961 * validated the vdev and opened it.
9962 */
9963 void
l2arc_add_vdev(spa_t * spa,vdev_t * vd)9964 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
9965 {
9966 l2arc_dev_t *adddev;
9967 uint64_t l2dhdr_asize;
9968
9969 ASSERT(!l2arc_vdev_present(vd));
9970
9971 /*
9972 * Create a new l2arc device entry.
9973 */
9974 adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
9975 adddev->l2ad_spa = spa;
9976 adddev->l2ad_vdev = vd;
9977 /* leave extra size for an l2arc device header */
9978 l2dhdr_asize = adddev->l2ad_dev_hdr_asize =
9979 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift);
9980 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize;
9981 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
9982 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end);
9983 adddev->l2ad_hand = adddev->l2ad_start;
9984 adddev->l2ad_evict = adddev->l2ad_start;
9985 adddev->l2ad_first = B_TRUE;
9986 adddev->l2ad_writing = B_FALSE;
9987 adddev->l2ad_trim_all = B_FALSE;
9988 list_link_init(&adddev->l2ad_node);
9989 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP);
9990
9991 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
9992 /*
9993 * This is a list of all ARC buffers that are still valid on the
9994 * device.
9995 */
9996 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
9997 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
9998
9999 /*
10000 * This is a list of pointers to log blocks that are still present
10001 * on the device.
10002 */
10003 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t),
10004 offsetof(l2arc_lb_ptr_buf_t, node));
10005
10006 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
10007 zfs_refcount_create(&adddev->l2ad_alloc);
10008 zfs_refcount_create(&adddev->l2ad_lb_asize);
10009 zfs_refcount_create(&adddev->l2ad_lb_count);
10010
10011 /*
10012 * Decide if dev is eligible for L2ARC rebuild or whole device
10013 * trimming. This has to happen before the device is added in the
10014 * cache device list and l2arc_dev_mtx is released. Otherwise
10015 * l2arc_feed_thread() might already start writing on the
10016 * device.
10017 */
10018 l2arc_rebuild_dev(adddev, B_FALSE);
10019
10020 /*
10021 * Add device to global list
10022 */
10023 mutex_enter(&l2arc_dev_mtx);
10024 list_insert_head(l2arc_dev_list, adddev);
10025 atomic_inc_64(&l2arc_ndev);
10026 mutex_exit(&l2arc_dev_mtx);
10027 }
10028
10029 /*
10030 * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen()
10031 * in case of onlining a cache device.
10032 */
10033 void
l2arc_rebuild_vdev(vdev_t * vd,boolean_t reopen)10034 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen)
10035 {
10036 l2arc_dev_t *dev = NULL;
10037
10038 dev = l2arc_vdev_get(vd);
10039 ASSERT3P(dev, !=, NULL);
10040
10041 /*
10042 * In contrast to l2arc_add_vdev() we do not have to worry about
10043 * l2arc_feed_thread() invalidating previous content when onlining a
10044 * cache device. The device parameters (l2ad*) are not cleared when
10045 * offlining the device and writing new buffers will not invalidate
10046 * all previous content. In worst case only buffers that have not had
10047 * their log block written to the device will be lost.
10048 * When onlining the cache device (ie offline->online without exporting
10049 * the pool in between) this happens:
10050 * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev()
10051 * | |
10052 * vdev_is_dead() = B_FALSE l2ad_rebuild = B_TRUE
10053 * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild
10054 * is set to B_TRUE we might write additional buffers to the device.
10055 */
10056 l2arc_rebuild_dev(dev, reopen);
10057 }
10058
10059 typedef struct {
10060 l2arc_dev_t *rva_l2arc_dev;
10061 uint64_t rva_spa_gid;
10062 uint64_t rva_vdev_gid;
10063 boolean_t rva_async;
10064
10065 } remove_vdev_args_t;
10066
10067 static void
l2arc_device_teardown(void * arg)10068 l2arc_device_teardown(void *arg)
10069 {
10070 remove_vdev_args_t *rva = arg;
10071 l2arc_dev_t *remdev = rva->rva_l2arc_dev;
10072 hrtime_t start_time = gethrtime();
10073
10074 /*
10075 * Clear all buflists and ARC references. L2ARC device flush.
10076 */
10077 l2arc_evict(remdev, 0, B_TRUE);
10078 list_destroy(&remdev->l2ad_buflist);
10079 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list));
10080 list_destroy(&remdev->l2ad_lbptr_list);
10081 mutex_destroy(&remdev->l2ad_mtx);
10082 zfs_refcount_destroy(&remdev->l2ad_alloc);
10083 zfs_refcount_destroy(&remdev->l2ad_lb_asize);
10084 zfs_refcount_destroy(&remdev->l2ad_lb_count);
10085 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize);
10086 vmem_free(remdev, sizeof (l2arc_dev_t));
10087
10088 uint64_t elaspsed = NSEC2MSEC(gethrtime() - start_time);
10089 if (elaspsed > 0) {
10090 zfs_dbgmsg("spa %llu, vdev %llu removed in %llu ms",
10091 (u_longlong_t)rva->rva_spa_gid,
10092 (u_longlong_t)rva->rva_vdev_gid,
10093 (u_longlong_t)elaspsed);
10094 }
10095
10096 if (rva->rva_async)
10097 arc_async_flush_remove(rva->rva_spa_gid, 2);
10098 kmem_free(rva, sizeof (remove_vdev_args_t));
10099 }
10100
10101 /*
10102 * Remove a vdev from the L2ARC.
10103 */
10104 void
l2arc_remove_vdev(vdev_t * vd)10105 l2arc_remove_vdev(vdev_t *vd)
10106 {
10107 spa_t *spa = vd->vdev_spa;
10108 boolean_t asynchronous = spa->spa_state == POOL_STATE_EXPORTED ||
10109 spa->spa_state == POOL_STATE_DESTROYED;
10110
10111 /*
10112 * Find the device by vdev
10113 */
10114 l2arc_dev_t *remdev = l2arc_vdev_get(vd);
10115 ASSERT3P(remdev, !=, NULL);
10116
10117 /*
10118 * Save info for final teardown
10119 */
10120 remove_vdev_args_t *rva = kmem_alloc(sizeof (remove_vdev_args_t),
10121 KM_SLEEP);
10122 rva->rva_l2arc_dev = remdev;
10123 rva->rva_spa_gid = spa_load_guid(spa);
10124 rva->rva_vdev_gid = remdev->l2ad_vdev->vdev_guid;
10125
10126 /*
10127 * Cancel any ongoing or scheduled rebuild.
10128 */
10129 mutex_enter(&l2arc_rebuild_thr_lock);
10130 remdev->l2ad_rebuild_cancel = B_TRUE;
10131 if (remdev->l2ad_rebuild_began == B_TRUE) {
10132 while (remdev->l2ad_rebuild == B_TRUE)
10133 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock);
10134 }
10135 mutex_exit(&l2arc_rebuild_thr_lock);
10136 rva->rva_async = asynchronous;
10137
10138 /*
10139 * Remove device from global list
10140 */
10141 ASSERT(spa_config_held(spa, SCL_L2ARC, RW_WRITER) & SCL_L2ARC);
10142 mutex_enter(&l2arc_dev_mtx);
10143 list_remove(l2arc_dev_list, remdev);
10144 l2arc_dev_last = NULL; /* may have been invalidated */
10145 atomic_dec_64(&l2arc_ndev);
10146
10147 /* During a pool export spa & vdev will no longer be valid */
10148 if (asynchronous) {
10149 remdev->l2ad_spa = NULL;
10150 remdev->l2ad_vdev = NULL;
10151 }
10152 mutex_exit(&l2arc_dev_mtx);
10153
10154 if (!asynchronous) {
10155 l2arc_device_teardown(rva);
10156 return;
10157 }
10158
10159 arc_async_flush_t *af = arc_async_flush_add(rva->rva_spa_gid, 2);
10160
10161 taskq_dispatch_ent(arc_flush_taskq, l2arc_device_teardown, rva,
10162 TQ_SLEEP, &af->af_tqent);
10163 }
10164
10165 void
l2arc_init(void)10166 l2arc_init(void)
10167 {
10168 l2arc_thread_exit = 0;
10169 l2arc_ndev = 0;
10170
10171 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
10172 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
10173 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL);
10174 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL);
10175 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
10176 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
10177
10178 l2arc_dev_list = &L2ARC_dev_list;
10179 l2arc_free_on_write = &L2ARC_free_on_write;
10180 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
10181 offsetof(l2arc_dev_t, l2ad_node));
10182 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
10183 offsetof(l2arc_data_free_t, l2df_list_node));
10184 }
10185
10186 void
l2arc_fini(void)10187 l2arc_fini(void)
10188 {
10189 mutex_destroy(&l2arc_feed_thr_lock);
10190 cv_destroy(&l2arc_feed_thr_cv);
10191 mutex_destroy(&l2arc_rebuild_thr_lock);
10192 cv_destroy(&l2arc_rebuild_thr_cv);
10193 mutex_destroy(&l2arc_dev_mtx);
10194 mutex_destroy(&l2arc_free_on_write_mtx);
10195
10196 list_destroy(l2arc_dev_list);
10197 list_destroy(l2arc_free_on_write);
10198 }
10199
10200 void
l2arc_start(void)10201 l2arc_start(void)
10202 {
10203 if (!(spa_mode_global & SPA_MODE_WRITE))
10204 return;
10205
10206 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
10207 TS_RUN, defclsyspri);
10208 }
10209
10210 void
l2arc_stop(void)10211 l2arc_stop(void)
10212 {
10213 if (!(spa_mode_global & SPA_MODE_WRITE))
10214 return;
10215
10216 mutex_enter(&l2arc_feed_thr_lock);
10217 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
10218 l2arc_thread_exit = 1;
10219 while (l2arc_thread_exit != 0)
10220 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
10221 mutex_exit(&l2arc_feed_thr_lock);
10222 }
10223
10224 /*
10225 * Punches out rebuild threads for the L2ARC devices in a spa. This should
10226 * be called after pool import from the spa async thread, since starting
10227 * these threads directly from spa_import() will make them part of the
10228 * "zpool import" context and delay process exit (and thus pool import).
10229 */
10230 void
l2arc_spa_rebuild_start(spa_t * spa)10231 l2arc_spa_rebuild_start(spa_t *spa)
10232 {
10233 ASSERT(MUTEX_HELD(&spa_namespace_lock));
10234
10235 /*
10236 * Locate the spa's l2arc devices and kick off rebuild threads.
10237 */
10238 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
10239 l2arc_dev_t *dev =
10240 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
10241 if (dev == NULL) {
10242 /* Don't attempt a rebuild if the vdev is UNAVAIL */
10243 continue;
10244 }
10245 mutex_enter(&l2arc_rebuild_thr_lock);
10246 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) {
10247 dev->l2ad_rebuild_began = B_TRUE;
10248 (void) thread_create(NULL, 0, l2arc_dev_rebuild_thread,
10249 dev, 0, &p0, TS_RUN, minclsyspri);
10250 }
10251 mutex_exit(&l2arc_rebuild_thr_lock);
10252 }
10253 }
10254
10255 void
l2arc_spa_rebuild_stop(spa_t * spa)10256 l2arc_spa_rebuild_stop(spa_t *spa)
10257 {
10258 ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
10259 spa->spa_export_thread == curthread);
10260
10261 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
10262 l2arc_dev_t *dev =
10263 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
10264 if (dev == NULL)
10265 continue;
10266 mutex_enter(&l2arc_rebuild_thr_lock);
10267 dev->l2ad_rebuild_cancel = B_TRUE;
10268 mutex_exit(&l2arc_rebuild_thr_lock);
10269 }
10270 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
10271 l2arc_dev_t *dev =
10272 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
10273 if (dev == NULL)
10274 continue;
10275 mutex_enter(&l2arc_rebuild_thr_lock);
10276 if (dev->l2ad_rebuild_began == B_TRUE) {
10277 while (dev->l2ad_rebuild == B_TRUE) {
10278 cv_wait(&l2arc_rebuild_thr_cv,
10279 &l2arc_rebuild_thr_lock);
10280 }
10281 }
10282 mutex_exit(&l2arc_rebuild_thr_lock);
10283 }
10284 }
10285
10286 /*
10287 * Main entry point for L2ARC rebuilding.
10288 */
10289 static __attribute__((noreturn)) void
l2arc_dev_rebuild_thread(void * arg)10290 l2arc_dev_rebuild_thread(void *arg)
10291 {
10292 l2arc_dev_t *dev = arg;
10293
10294 VERIFY(dev->l2ad_rebuild);
10295 (void) l2arc_rebuild(dev);
10296 mutex_enter(&l2arc_rebuild_thr_lock);
10297 dev->l2ad_rebuild_began = B_FALSE;
10298 dev->l2ad_rebuild = B_FALSE;
10299 cv_signal(&l2arc_rebuild_thr_cv);
10300 mutex_exit(&l2arc_rebuild_thr_lock);
10301
10302 thread_exit();
10303 }
10304
10305 /*
10306 * This function implements the actual L2ARC metadata rebuild. It:
10307 * starts reading the log block chain and restores each block's contents
10308 * to memory (reconstructing arc_buf_hdr_t's).
10309 *
10310 * Operation stops under any of the following conditions:
10311 *
10312 * 1) We reach the end of the log block chain.
10313 * 2) We encounter *any* error condition (cksum errors, io errors)
10314 */
10315 static int
l2arc_rebuild(l2arc_dev_t * dev)10316 l2arc_rebuild(l2arc_dev_t *dev)
10317 {
10318 vdev_t *vd = dev->l2ad_vdev;
10319 spa_t *spa = vd->vdev_spa;
10320 int err = 0;
10321 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10322 l2arc_log_blk_phys_t *this_lb, *next_lb;
10323 zio_t *this_io = NULL, *next_io = NULL;
10324 l2arc_log_blkptr_t lbps[2];
10325 l2arc_lb_ptr_buf_t *lb_ptr_buf;
10326 boolean_t lock_held;
10327
10328 this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP);
10329 next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP);
10330
10331 /*
10332 * We prevent device removal while issuing reads to the device,
10333 * then during the rebuilding phases we drop this lock again so
10334 * that a spa_unload or device remove can be initiated - this is
10335 * safe, because the spa will signal us to stop before removing
10336 * our device and wait for us to stop.
10337 */
10338 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER);
10339 lock_held = B_TRUE;
10340
10341 /*
10342 * Retrieve the persistent L2ARC device state.
10343 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10344 */
10345 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start);
10346 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr +
10347 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop),
10348 dev->l2ad_start);
10349 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
10350
10351 vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time;
10352 vd->vdev_trim_state = l2dhdr->dh_trim_state;
10353
10354 /*
10355 * In case the zfs module parameter l2arc_rebuild_enabled is false
10356 * we do not start the rebuild process.
10357 */
10358 if (!l2arc_rebuild_enabled)
10359 goto out;
10360
10361 /* Prepare the rebuild process */
10362 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps));
10363
10364 /* Start the rebuild process */
10365 for (;;) {
10366 if (!l2arc_log_blkptr_valid(dev, &lbps[0]))
10367 break;
10368
10369 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1],
10370 this_lb, next_lb, this_io, &next_io)) != 0)
10371 goto out;
10372
10373 /*
10374 * Our memory pressure valve. If the system is running low
10375 * on memory, rather than swamping memory with new ARC buf
10376 * hdrs, we opt not to rebuild the L2ARC. At this point,
10377 * however, we have already set up our L2ARC dev to chain in
10378 * new metadata log blocks, so the user may choose to offline/
10379 * online the L2ARC dev at a later time (or re-import the pool)
10380 * to reconstruct it (when there's less memory pressure).
10381 */
10382 if (l2arc_hdr_limit_reached()) {
10383 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem);
10384 cmn_err(CE_NOTE, "System running low on memory, "
10385 "aborting L2ARC rebuild.");
10386 err = SET_ERROR(ENOMEM);
10387 goto out;
10388 }
10389
10390 spa_config_exit(spa, SCL_L2ARC, vd);
10391 lock_held = B_FALSE;
10392
10393 /*
10394 * Now that we know that the next_lb checks out alright, we
10395 * can start reconstruction from this log block.
10396 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10397 */
10398 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
10399 l2arc_log_blk_restore(dev, this_lb, asize);
10400
10401 /*
10402 * log block restored, include its pointer in the list of
10403 * pointers to log blocks present in the L2ARC device.
10404 */
10405 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
10406 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t),
10407 KM_SLEEP);
10408 memcpy(lb_ptr_buf->lb_ptr, &lbps[0],
10409 sizeof (l2arc_log_blkptr_t));
10410 mutex_enter(&dev->l2ad_mtx);
10411 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf);
10412 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
10413 ARCSTAT_BUMP(arcstat_l2_log_blk_count);
10414 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
10415 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
10416 mutex_exit(&dev->l2ad_mtx);
10417 vdev_space_update(vd, asize, 0, 0);
10418
10419 /*
10420 * Protection against loops of log blocks:
10421 *
10422 * l2ad_hand l2ad_evict
10423 * V V
10424 * l2ad_start |=======================================| l2ad_end
10425 * -----|||----|||---|||----|||
10426 * (3) (2) (1) (0)
10427 * ---|||---|||----|||---|||
10428 * (7) (6) (5) (4)
10429 *
10430 * In this situation the pointer of log block (4) passes
10431 * l2arc_log_blkptr_valid() but the log block should not be
10432 * restored as it is overwritten by the payload of log block
10433 * (0). Only log blocks (0)-(3) should be restored. We check
10434 * whether l2ad_evict lies in between the payload starting
10435 * offset of the next log block (lbps[1].lbp_payload_start)
10436 * and the payload starting offset of the present log block
10437 * (lbps[0].lbp_payload_start). If true and this isn't the
10438 * first pass, we are looping from the beginning and we should
10439 * stop.
10440 */
10441 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
10442 lbps[0].lbp_payload_start, dev->l2ad_evict) &&
10443 !dev->l2ad_first)
10444 goto out;
10445
10446 kpreempt(KPREEMPT_SYNC);
10447 for (;;) {
10448 mutex_enter(&l2arc_rebuild_thr_lock);
10449 if (dev->l2ad_rebuild_cancel) {
10450 mutex_exit(&l2arc_rebuild_thr_lock);
10451 err = SET_ERROR(ECANCELED);
10452 goto out;
10453 }
10454 mutex_exit(&l2arc_rebuild_thr_lock);
10455 if (spa_config_tryenter(spa, SCL_L2ARC, vd,
10456 RW_READER)) {
10457 lock_held = B_TRUE;
10458 break;
10459 }
10460 /*
10461 * L2ARC config lock held by somebody in writer,
10462 * possibly due to them trying to remove us. They'll
10463 * likely to want us to shut down, so after a little
10464 * delay, we check l2ad_rebuild_cancel and retry
10465 * the lock again.
10466 */
10467 delay(1);
10468 }
10469
10470 /*
10471 * Continue with the next log block.
10472 */
10473 lbps[0] = lbps[1];
10474 lbps[1] = this_lb->lb_prev_lbp;
10475 PTR_SWAP(this_lb, next_lb);
10476 this_io = next_io;
10477 next_io = NULL;
10478 }
10479
10480 if (this_io != NULL)
10481 l2arc_log_blk_fetch_abort(this_io);
10482 out:
10483 if (next_io != NULL)
10484 l2arc_log_blk_fetch_abort(next_io);
10485 vmem_free(this_lb, sizeof (*this_lb));
10486 vmem_free(next_lb, sizeof (*next_lb));
10487
10488 if (err == ECANCELED) {
10489 /*
10490 * In case the rebuild was canceled do not log to spa history
10491 * log as the pool may be in the process of being removed.
10492 */
10493 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks",
10494 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10495 return (err);
10496 } else if (!l2arc_rebuild_enabled) {
10497 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10498 "disabled");
10499 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) {
10500 ARCSTAT_BUMP(arcstat_l2_rebuild_success);
10501 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10502 "successful, restored %llu blocks",
10503 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10504 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) {
10505 /*
10506 * No error but also nothing restored, meaning the lbps array
10507 * in the device header points to invalid/non-present log
10508 * blocks. Reset the header.
10509 */
10510 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10511 "no valid log blocks");
10512 memset(l2dhdr, 0, dev->l2ad_dev_hdr_asize);
10513 l2arc_dev_hdr_update(dev);
10514 } else if (err != 0) {
10515 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10516 "aborted, restored %llu blocks",
10517 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10518 }
10519
10520 if (lock_held)
10521 spa_config_exit(spa, SCL_L2ARC, vd);
10522
10523 return (err);
10524 }
10525
10526 /*
10527 * Attempts to read the device header on the provided L2ARC device and writes
10528 * it to `hdr'. On success, this function returns 0, otherwise the appropriate
10529 * error code is returned.
10530 */
10531 static int
l2arc_dev_hdr_read(l2arc_dev_t * dev)10532 l2arc_dev_hdr_read(l2arc_dev_t *dev)
10533 {
10534 int err;
10535 uint64_t guid;
10536 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10537 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10538 abd_t *abd;
10539
10540 guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10541
10542 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10543
10544 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev,
10545 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd,
10546 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
10547 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
10548 ZIO_FLAG_SPECULATIVE, B_FALSE));
10549
10550 abd_free(abd);
10551
10552 if (err != 0) {
10553 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors);
10554 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, "
10555 "vdev guid: %llu", err,
10556 (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10557 return (err);
10558 }
10559
10560 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
10561 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr));
10562
10563 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC ||
10564 l2dhdr->dh_spa_guid != guid ||
10565 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid ||
10566 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION ||
10567 l2dhdr->dh_log_entries != dev->l2ad_log_entries ||
10568 l2dhdr->dh_end != dev->l2ad_end ||
10569 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end,
10570 l2dhdr->dh_evict) ||
10571 (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE &&
10572 l2arc_trim_ahead > 0)) {
10573 /*
10574 * Attempt to rebuild a device containing no actual dev hdr
10575 * or containing a header from some other pool or from another
10576 * version of persistent L2ARC.
10577 */
10578 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported);
10579 return (SET_ERROR(ENOTSUP));
10580 }
10581
10582 return (0);
10583 }
10584
10585 /*
10586 * Reads L2ARC log blocks from storage and validates their contents.
10587 *
10588 * This function implements a simple fetcher to make sure that while
10589 * we're processing one buffer the L2ARC is already fetching the next
10590 * one in the chain.
10591 *
10592 * The arguments this_lp and next_lp point to the current and next log block
10593 * address in the block chain. Similarly, this_lb and next_lb hold the
10594 * l2arc_log_blk_phys_t's of the current and next L2ARC blk.
10595 *
10596 * The `this_io' and `next_io' arguments are used for block fetching.
10597 * When issuing the first blk IO during rebuild, you should pass NULL for
10598 * `this_io'. This function will then issue a sync IO to read the block and
10599 * also issue an async IO to fetch the next block in the block chain. The
10600 * fetched IO is returned in `next_io'. On subsequent calls to this
10601 * function, pass the value returned in `next_io' from the previous call
10602 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO.
10603 * Prior to the call, you should initialize your `next_io' pointer to be
10604 * NULL. If no fetch IO was issued, the pointer is left set at NULL.
10605 *
10606 * On success, this function returns 0, otherwise it returns an appropriate
10607 * error code. On error the fetching IO is aborted and cleared before
10608 * returning from this function. Therefore, if we return `success', the
10609 * caller can assume that we have taken care of cleanup of fetch IOs.
10610 */
10611 static int
l2arc_log_blk_read(l2arc_dev_t * dev,const l2arc_log_blkptr_t * this_lbp,const l2arc_log_blkptr_t * next_lbp,l2arc_log_blk_phys_t * this_lb,l2arc_log_blk_phys_t * next_lb,zio_t * this_io,zio_t ** next_io)10612 l2arc_log_blk_read(l2arc_dev_t *dev,
10613 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp,
10614 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
10615 zio_t *this_io, zio_t **next_io)
10616 {
10617 int err = 0;
10618 zio_cksum_t cksum;
10619 uint64_t asize;
10620
10621 ASSERT(this_lbp != NULL && next_lbp != NULL);
10622 ASSERT(this_lb != NULL && next_lb != NULL);
10623 ASSERT(next_io != NULL && *next_io == NULL);
10624 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp));
10625
10626 /*
10627 * Check to see if we have issued the IO for this log block in a
10628 * previous run. If not, this is the first call, so issue it now.
10629 */
10630 if (this_io == NULL) {
10631 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp,
10632 this_lb);
10633 }
10634
10635 /*
10636 * Peek to see if we can start issuing the next IO immediately.
10637 */
10638 if (l2arc_log_blkptr_valid(dev, next_lbp)) {
10639 /*
10640 * Start issuing IO for the next log block early - this
10641 * should help keep the L2ARC device busy while we
10642 * decompress and restore this log block.
10643 */
10644 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp,
10645 next_lb);
10646 }
10647
10648 /* Wait for the IO to read this log block to complete */
10649 if ((err = zio_wait(this_io)) != 0) {
10650 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors);
10651 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, "
10652 "offset: %llu, vdev guid: %llu", err,
10653 (u_longlong_t)this_lbp->lbp_daddr,
10654 (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10655 goto cleanup;
10656 }
10657
10658 /*
10659 * Make sure the buffer checks out.
10660 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10661 */
10662 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop);
10663 fletcher_4_native(this_lb, asize, NULL, &cksum);
10664 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) {
10665 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors);
10666 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, "
10667 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu",
10668 (u_longlong_t)this_lbp->lbp_daddr,
10669 (u_longlong_t)dev->l2ad_vdev->vdev_guid,
10670 (u_longlong_t)dev->l2ad_hand,
10671 (u_longlong_t)dev->l2ad_evict);
10672 err = SET_ERROR(ECKSUM);
10673 goto cleanup;
10674 }
10675
10676 /* Now we can take our time decoding this buffer */
10677 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) {
10678 case ZIO_COMPRESS_OFF:
10679 break;
10680 case ZIO_COMPRESS_LZ4: {
10681 abd_t *abd = abd_alloc_linear(asize, B_TRUE);
10682 abd_copy_from_buf_off(abd, this_lb, 0, asize);
10683 abd_t dabd;
10684 abd_get_from_buf_struct(&dabd, this_lb, sizeof (*this_lb));
10685 err = zio_decompress_data(
10686 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop),
10687 abd, &dabd, asize, sizeof (*this_lb), NULL);
10688 abd_free(&dabd);
10689 abd_free(abd);
10690 if (err != 0) {
10691 err = SET_ERROR(EINVAL);
10692 goto cleanup;
10693 }
10694 break;
10695 }
10696 default:
10697 err = SET_ERROR(EINVAL);
10698 goto cleanup;
10699 }
10700 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
10701 byteswap_uint64_array(this_lb, sizeof (*this_lb));
10702 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) {
10703 err = SET_ERROR(EINVAL);
10704 goto cleanup;
10705 }
10706 cleanup:
10707 /* Abort an in-flight fetch I/O in case of error */
10708 if (err != 0 && *next_io != NULL) {
10709 l2arc_log_blk_fetch_abort(*next_io);
10710 *next_io = NULL;
10711 }
10712 return (err);
10713 }
10714
10715 /*
10716 * Restores the payload of a log block to ARC. This creates empty ARC hdr
10717 * entries which only contain an l2arc hdr, essentially restoring the
10718 * buffers to their L2ARC evicted state. This function also updates space
10719 * usage on the L2ARC vdev to make sure it tracks restored buffers.
10720 */
10721 static void
l2arc_log_blk_restore(l2arc_dev_t * dev,const l2arc_log_blk_phys_t * lb,uint64_t lb_asize)10722 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb,
10723 uint64_t lb_asize)
10724 {
10725 uint64_t size = 0, asize = 0;
10726 uint64_t log_entries = dev->l2ad_log_entries;
10727
10728 /*
10729 * Usually arc_adapt() is called only for data, not headers, but
10730 * since we may allocate significant amount of memory here, let ARC
10731 * grow its arc_c.
10732 */
10733 arc_adapt(log_entries * HDR_L2ONLY_SIZE);
10734
10735 for (int i = log_entries - 1; i >= 0; i--) {
10736 /*
10737 * Restore goes in the reverse temporal direction to preserve
10738 * correct temporal ordering of buffers in the l2ad_buflist.
10739 * l2arc_hdr_restore also does a list_insert_tail instead of
10740 * list_insert_head on the l2ad_buflist:
10741 *
10742 * LIST l2ad_buflist LIST
10743 * HEAD <------ (time) ------ TAIL
10744 * direction +-----+-----+-----+-----+-----+ direction
10745 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild
10746 * fill +-----+-----+-----+-----+-----+
10747 * ^ ^
10748 * | |
10749 * | |
10750 * l2arc_feed_thread l2arc_rebuild
10751 * will place new bufs here restores bufs here
10752 *
10753 * During l2arc_rebuild() the device is not used by
10754 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true.
10755 */
10756 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop);
10757 asize += vdev_psize_to_asize(dev->l2ad_vdev,
10758 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop));
10759 l2arc_hdr_restore(&lb->lb_entries[i], dev);
10760 }
10761
10762 /*
10763 * Record rebuild stats:
10764 * size Logical size of restored buffers in the L2ARC
10765 * asize Aligned size of restored buffers in the L2ARC
10766 */
10767 ARCSTAT_INCR(arcstat_l2_rebuild_size, size);
10768 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize);
10769 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries);
10770 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize);
10771 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize);
10772 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks);
10773 }
10774
10775 /*
10776 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put
10777 * into a state indicating that it has been evicted to L2ARC.
10778 */
10779 static void
l2arc_hdr_restore(const l2arc_log_ent_phys_t * le,l2arc_dev_t * dev)10780 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev)
10781 {
10782 arc_buf_hdr_t *hdr, *exists;
10783 kmutex_t *hash_lock;
10784 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop);
10785 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
10786 L2BLK_GET_PSIZE((le)->le_prop));
10787
10788 /*
10789 * Do all the allocation before grabbing any locks, this lets us
10790 * sleep if memory is full and we don't have to deal with failed
10791 * allocations.
10792 */
10793 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type,
10794 dev, le->le_dva, le->le_daddr,
10795 L2BLK_GET_PSIZE((le)->le_prop), asize, le->le_birth,
10796 L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel,
10797 L2BLK_GET_PROTECTED((le)->le_prop),
10798 L2BLK_GET_PREFETCH((le)->le_prop),
10799 L2BLK_GET_STATE((le)->le_prop));
10800
10801 /*
10802 * vdev_space_update() has to be called before arc_hdr_destroy() to
10803 * avoid underflow since the latter also calls vdev_space_update().
10804 */
10805 l2arc_hdr_arcstats_increment(hdr);
10806 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10807
10808 mutex_enter(&dev->l2ad_mtx);
10809 list_insert_tail(&dev->l2ad_buflist, hdr);
10810 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
10811 mutex_exit(&dev->l2ad_mtx);
10812
10813 exists = buf_hash_insert(hdr, &hash_lock);
10814 if (exists) {
10815 /* Buffer was already cached, no need to restore it. */
10816 arc_hdr_destroy(hdr);
10817 /*
10818 * If the buffer is already cached, check whether it has
10819 * L2ARC metadata. If not, enter them and update the flag.
10820 * This is important is case of onlining a cache device, since
10821 * we previously evicted all L2ARC metadata from ARC.
10822 */
10823 if (!HDR_HAS_L2HDR(exists)) {
10824 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR);
10825 exists->b_l2hdr.b_dev = dev;
10826 exists->b_l2hdr.b_daddr = le->le_daddr;
10827 exists->b_l2hdr.b_arcs_state =
10828 L2BLK_GET_STATE((le)->le_prop);
10829 /* l2arc_hdr_arcstats_update() expects a valid asize */
10830 HDR_SET_L2SIZE(exists, asize);
10831 mutex_enter(&dev->l2ad_mtx);
10832 list_insert_tail(&dev->l2ad_buflist, exists);
10833 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
10834 arc_hdr_size(exists), exists);
10835 mutex_exit(&dev->l2ad_mtx);
10836 l2arc_hdr_arcstats_increment(exists);
10837 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10838 }
10839 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached);
10840 }
10841
10842 mutex_exit(hash_lock);
10843 }
10844
10845 /*
10846 * Starts an asynchronous read IO to read a log block. This is used in log
10847 * block reconstruction to start reading the next block before we are done
10848 * decoding and reconstructing the current block, to keep the l2arc device
10849 * nice and hot with read IO to process.
10850 * The returned zio will contain a newly allocated memory buffers for the IO
10851 * data which should then be freed by the caller once the zio is no longer
10852 * needed (i.e. due to it having completed). If you wish to abort this
10853 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes
10854 * care of disposing of the allocated buffers correctly.
10855 */
10856 static zio_t *
l2arc_log_blk_fetch(vdev_t * vd,const l2arc_log_blkptr_t * lbp,l2arc_log_blk_phys_t * lb)10857 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp,
10858 l2arc_log_blk_phys_t *lb)
10859 {
10860 uint32_t asize;
10861 zio_t *pio;
10862 l2arc_read_callback_t *cb;
10863
10864 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
10865 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10866 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t));
10867
10868 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP);
10869 cb->l2rcb_abd = abd_get_from_buf(lb, asize);
10870 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb,
10871 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY);
10872 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize,
10873 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL,
10874 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL |
10875 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE));
10876
10877 return (pio);
10878 }
10879
10880 /*
10881 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data
10882 * buffers allocated for it.
10883 */
10884 static void
l2arc_log_blk_fetch_abort(zio_t * zio)10885 l2arc_log_blk_fetch_abort(zio_t *zio)
10886 {
10887 (void) zio_wait(zio);
10888 }
10889
10890 /*
10891 * Creates a zio to update the device header on an l2arc device.
10892 */
10893 void
l2arc_dev_hdr_update(l2arc_dev_t * dev)10894 l2arc_dev_hdr_update(l2arc_dev_t *dev)
10895 {
10896 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10897 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10898 abd_t *abd;
10899 int err;
10900
10901 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER));
10902
10903 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC;
10904 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION;
10905 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10906 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid;
10907 l2dhdr->dh_log_entries = dev->l2ad_log_entries;
10908 l2dhdr->dh_evict = dev->l2ad_evict;
10909 l2dhdr->dh_start = dev->l2ad_start;
10910 l2dhdr->dh_end = dev->l2ad_end;
10911 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize);
10912 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count);
10913 l2dhdr->dh_flags = 0;
10914 l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time;
10915 l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state;
10916 if (dev->l2ad_first)
10917 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST;
10918
10919 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10920
10921 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev,
10922 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL,
10923 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE));
10924
10925 abd_free(abd);
10926
10927 if (err != 0) {
10928 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, "
10929 "vdev guid: %llu", err,
10930 (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10931 }
10932 }
10933
10934 /*
10935 * Commits a log block to the L2ARC device. This routine is invoked from
10936 * l2arc_write_buffers when the log block fills up.
10937 * This function allocates some memory to temporarily hold the serialized
10938 * buffer to be written. This is then released in l2arc_write_done.
10939 */
10940 static uint64_t
l2arc_log_blk_commit(l2arc_dev_t * dev,zio_t * pio,l2arc_write_callback_t * cb)10941 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb)
10942 {
10943 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk;
10944 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10945 uint64_t psize, asize;
10946 zio_t *wzio;
10947 l2arc_lb_abd_buf_t *abd_buf;
10948 abd_t *abd = NULL;
10949 l2arc_lb_ptr_buf_t *lb_ptr_buf;
10950
10951 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries);
10952
10953 abd_buf = zio_buf_alloc(sizeof (*abd_buf));
10954 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb));
10955 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
10956 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP);
10957
10958 /* link the buffer into the block chain */
10959 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1];
10960 lb->lb_magic = L2ARC_LOG_BLK_MAGIC;
10961
10962 /*
10963 * l2arc_log_blk_commit() may be called multiple times during a single
10964 * l2arc_write_buffers() call. Save the allocated abd buffers in a list
10965 * so we can free them in l2arc_write_done() later on.
10966 */
10967 list_insert_tail(&cb->l2wcb_abd_list, abd_buf);
10968
10969 /* try to compress the buffer, at least one sector to save */
10970 psize = zio_compress_data(ZIO_COMPRESS_LZ4,
10971 abd_buf->abd, &abd, sizeof (*lb),
10972 zio_get_compression_max_size(ZIO_COMPRESS_LZ4,
10973 dev->l2ad_vdev->vdev_ashift,
10974 dev->l2ad_vdev->vdev_ashift, sizeof (*lb)), 0);
10975
10976 /* a log block is never entirely zero */
10977 ASSERT(psize != 0);
10978 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
10979 ASSERT(asize <= sizeof (*lb));
10980
10981 /*
10982 * Update the start log block pointer in the device header to point
10983 * to the log block we're about to write.
10984 */
10985 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0];
10986 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand;
10987 l2dhdr->dh_start_lbps[0].lbp_payload_asize =
10988 dev->l2ad_log_blk_payload_asize;
10989 l2dhdr->dh_start_lbps[0].lbp_payload_start =
10990 dev->l2ad_log_blk_payload_start;
10991 L2BLK_SET_LSIZE(
10992 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb));
10993 L2BLK_SET_PSIZE(
10994 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize);
10995 L2BLK_SET_CHECKSUM(
10996 (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10997 ZIO_CHECKSUM_FLETCHER_4);
10998 if (asize < sizeof (*lb)) {
10999 /* compression succeeded */
11000 abd_zero_off(abd, psize, asize - psize);
11001 L2BLK_SET_COMPRESS(
11002 (&l2dhdr->dh_start_lbps[0])->lbp_prop,
11003 ZIO_COMPRESS_LZ4);
11004 } else {
11005 /* compression failed */
11006 abd_copy_from_buf_off(abd, lb, 0, sizeof (*lb));
11007 L2BLK_SET_COMPRESS(
11008 (&l2dhdr->dh_start_lbps[0])->lbp_prop,
11009 ZIO_COMPRESS_OFF);
11010 }
11011
11012 /* checksum what we're about to write */
11013 abd_fletcher_4_native(abd, asize, NULL,
11014 &l2dhdr->dh_start_lbps[0].lbp_cksum);
11015
11016 abd_free(abd_buf->abd);
11017
11018 /* perform the write itself */
11019 abd_buf->abd = abd;
11020 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand,
11021 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL,
11022 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE);
11023 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio);
11024 (void) zio_nowait(wzio);
11025
11026 dev->l2ad_hand += asize;
11027 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
11028
11029 /*
11030 * Include the committed log block's pointer in the list of pointers
11031 * to log blocks present in the L2ARC device.
11032 */
11033 memcpy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[0],
11034 sizeof (l2arc_log_blkptr_t));
11035 mutex_enter(&dev->l2ad_mtx);
11036 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf);
11037 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
11038 ARCSTAT_BUMP(arcstat_l2_log_blk_count);
11039 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
11040 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
11041 mutex_exit(&dev->l2ad_mtx);
11042
11043 /* bump the kstats */
11044 ARCSTAT_INCR(arcstat_l2_write_bytes, asize);
11045 ARCSTAT_BUMP(arcstat_l2_log_blk_writes);
11046 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize);
11047 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio,
11048 dev->l2ad_log_blk_payload_asize / asize);
11049
11050 /* start a new log block */
11051 dev->l2ad_log_ent_idx = 0;
11052 dev->l2ad_log_blk_payload_asize = 0;
11053 dev->l2ad_log_blk_payload_start = 0;
11054
11055 return (asize);
11056 }
11057
11058 /*
11059 * Validates an L2ARC log block address to make sure that it can be read
11060 * from the provided L2ARC device.
11061 */
11062 boolean_t
l2arc_log_blkptr_valid(l2arc_dev_t * dev,const l2arc_log_blkptr_t * lbp)11063 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp)
11064 {
11065 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
11066 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
11067 uint64_t end = lbp->lbp_daddr + asize - 1;
11068 uint64_t start = lbp->lbp_payload_start;
11069 boolean_t evicted = B_FALSE;
11070
11071 /*
11072 * A log block is valid if all of the following conditions are true:
11073 * - it fits entirely (including its payload) between l2ad_start and
11074 * l2ad_end
11075 * - it has a valid size
11076 * - neither the log block itself nor part of its payload was evicted
11077 * by l2arc_evict():
11078 *
11079 * l2ad_hand l2ad_evict
11080 * | | lbp_daddr
11081 * | start | | end
11082 * | | | | |
11083 * V V V V V
11084 * l2ad_start ============================================ l2ad_end
11085 * --------------------------||||
11086 * ^ ^
11087 * | log block
11088 * payload
11089 */
11090
11091 evicted =
11092 l2arc_range_check_overlap(start, end, dev->l2ad_hand) ||
11093 l2arc_range_check_overlap(start, end, dev->l2ad_evict) ||
11094 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) ||
11095 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end);
11096
11097 return (start >= dev->l2ad_start && end <= dev->l2ad_end &&
11098 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) &&
11099 (!evicted || dev->l2ad_first));
11100 }
11101
11102 /*
11103 * Inserts ARC buffer header `hdr' into the current L2ARC log block on
11104 * the device. The buffer being inserted must be present in L2ARC.
11105 * Returns B_TRUE if the L2ARC log block is full and needs to be committed
11106 * to L2ARC, or B_FALSE if it still has room for more ARC buffers.
11107 */
11108 static boolean_t
l2arc_log_blk_insert(l2arc_dev_t * dev,const arc_buf_hdr_t * hdr)11109 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr)
11110 {
11111 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk;
11112 l2arc_log_ent_phys_t *le;
11113
11114 if (dev->l2ad_log_entries == 0)
11115 return (B_FALSE);
11116
11117 int index = dev->l2ad_log_ent_idx++;
11118
11119 ASSERT3S(index, <, dev->l2ad_log_entries);
11120 ASSERT(HDR_HAS_L2HDR(hdr));
11121
11122 le = &lb->lb_entries[index];
11123 memset(le, 0, sizeof (*le));
11124 le->le_dva = hdr->b_dva;
11125 le->le_birth = hdr->b_birth;
11126 le->le_daddr = hdr->b_l2hdr.b_daddr;
11127 if (index == 0)
11128 dev->l2ad_log_blk_payload_start = le->le_daddr;
11129 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr));
11130 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr));
11131 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr));
11132 le->le_complevel = hdr->b_complevel;
11133 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type);
11134 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr)));
11135 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr)));
11136 L2BLK_SET_STATE((le)->le_prop, hdr->b_l2hdr.b_arcs_state);
11137
11138 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev,
11139 HDR_GET_PSIZE(hdr));
11140
11141 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries);
11142 }
11143
11144 /*
11145 * Checks whether a given L2ARC device address sits in a time-sequential
11146 * range. The trick here is that the L2ARC is a rotary buffer, so we can't
11147 * just do a range comparison, we need to handle the situation in which the
11148 * range wraps around the end of the L2ARC device. Arguments:
11149 * bottom -- Lower end of the range to check (written to earlier).
11150 * top -- Upper end of the range to check (written to later).
11151 * check -- The address for which we want to determine if it sits in
11152 * between the top and bottom.
11153 *
11154 * The 3-way conditional below represents the following cases:
11155 *
11156 * bottom < top : Sequentially ordered case:
11157 * <check>--------+-------------------+
11158 * | (overlap here?) |
11159 * L2ARC dev V V
11160 * |---------------<bottom>============<top>--------------|
11161 *
11162 * bottom > top: Looped-around case:
11163 * <check>--------+------------------+
11164 * | (overlap here?) |
11165 * L2ARC dev V V
11166 * |===============<top>---------------<bottom>===========|
11167 * ^ ^
11168 * | (or here?) |
11169 * +---------------+---------<check>
11170 *
11171 * top == bottom : Just a single address comparison.
11172 */
11173 boolean_t
l2arc_range_check_overlap(uint64_t bottom,uint64_t top,uint64_t check)11174 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check)
11175 {
11176 if (bottom < top)
11177 return (bottom <= check && check <= top);
11178 else if (bottom > top)
11179 return (check <= top || bottom <= check);
11180 else
11181 return (check == top);
11182 }
11183
11184 EXPORT_SYMBOL(arc_buf_size);
11185 EXPORT_SYMBOL(arc_write);
11186 EXPORT_SYMBOL(arc_read);
11187 EXPORT_SYMBOL(arc_buf_info);
11188 EXPORT_SYMBOL(arc_getbuf_func);
11189 EXPORT_SYMBOL(arc_add_prune_callback);
11190 EXPORT_SYMBOL(arc_remove_prune_callback);
11191
11192 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_min,
11193 spl_param_get_u64, ZMOD_RW, "Minimum ARC size in bytes");
11194
11195 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_max,
11196 spl_param_get_u64, ZMOD_RW, "Maximum ARC size in bytes");
11197
11198 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_balance, UINT, ZMOD_RW,
11199 "Balance between metadata and data on ghost hits.");
11200
11201 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int,
11202 param_get_uint, ZMOD_RW, "Seconds before growing ARC size");
11203
11204 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int,
11205 param_get_uint, ZMOD_RW, "log2(fraction of ARC to reclaim)");
11206
11207 #ifdef _KERNEL
11208 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW,
11209 "Percent of pagecache to reclaim ARC to");
11210 #endif
11211
11212 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, UINT, ZMOD_RD,
11213 "Target average block size");
11214
11215 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW,
11216 "Disable compressed ARC buffers");
11217
11218 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int,
11219 param_get_uint, ZMOD_RW, "Min life of prefetch block in ms");
11220
11221 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms,
11222 param_set_arc_int, param_get_uint, ZMOD_RW,
11223 "Min life of prescient prefetched block in ms");
11224
11225 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, U64, ZMOD_RW,
11226 "Max write bytes per interval");
11227
11228 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, U64, ZMOD_RW,
11229 "Extra write bytes during device warmup");
11230
11231 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, U64, ZMOD_RW,
11232 "Number of max device writes to precache");
11233
11234 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, U64, ZMOD_RW,
11235 "Compressed l2arc_headroom multiplier");
11236
11237 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, U64, ZMOD_RW,
11238 "TRIM ahead L2ARC write size multiplier");
11239
11240 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, U64, ZMOD_RW,
11241 "Seconds between L2ARC writing");
11242
11243 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, U64, ZMOD_RW,
11244 "Min feed interval in milliseconds");
11245
11246 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW,
11247 "Skip caching prefetched buffers");
11248
11249 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW,
11250 "Turbo L2ARC warmup");
11251
11252 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW,
11253 "No reads during writes");
11254
11255 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, UINT, ZMOD_RW,
11256 "Percent of ARC size allowed for L2ARC-only headers");
11257
11258 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW,
11259 "Rebuild the L2ARC when importing a pool");
11260
11261 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, U64, ZMOD_RW,
11262 "Min size in bytes to write rebuild log blocks in L2ARC");
11263
11264 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW,
11265 "Cache only MFU data from ARC into L2ARC");
11266
11267 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, exclude_special, INT, ZMOD_RW,
11268 "Exclude dbufs on special vdevs from being cached to L2ARC if set.");
11269
11270 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int,
11271 param_get_uint, ZMOD_RW, "System free memory I/O throttle in bytes");
11272
11273 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_u64,
11274 spl_param_get_u64, ZMOD_RW, "System free memory target size in bytes");
11275
11276 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_u64,
11277 spl_param_get_u64, ZMOD_RW, "Minimum bytes of dnodes in ARC");
11278
11279 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent,
11280 param_set_arc_int, param_get_uint, ZMOD_RW,
11281 "Percent of ARC meta buffers for dnodes");
11282
11283 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, UINT, ZMOD_RW,
11284 "Percentage of excess dnodes to try to unpin");
11285
11286 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, UINT, ZMOD_RW,
11287 "When full, ARC allocation waits for eviction of this % of alloc size");
11288
11289 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, UINT, ZMOD_RW,
11290 "The number of headers to evict per sublist before moving to the next");
11291
11292 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, prune_task_threads, INT, ZMOD_RW,
11293 "Number of arc_prune threads");
11294
11295 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_threads, UINT, ZMOD_RD,
11296 "Number of threads to use for ARC eviction.");
11297