1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2014 by Chunwei Chen. All rights reserved. 23 * Copyright (c) 2019 by Delphix. All rights reserved. 24 */ 25 26 /* 27 * ARC buffer data (ABD). 28 * 29 * ABDs are an abstract data structure for the ARC which can use two 30 * different ways of storing the underlying data: 31 * 32 * (a) Linear buffer. In this case, all the data in the ABD is stored in one 33 * contiguous buffer in memory (from a zio_[data_]buf_* kmem cache). 34 * 35 * +-------------------+ 36 * | ABD (linear) | 37 * | abd_flags = ... | 38 * | abd_size = ... | +--------------------------------+ 39 * | abd_buf ------------->| raw buffer of size abd_size | 40 * +-------------------+ +--------------------------------+ 41 * no abd_chunks 42 * 43 * (b) Scattered buffer. In this case, the data in the ABD is split into 44 * equal-sized chunks (from the abd_chunk_cache kmem_cache), with pointers 45 * to the chunks recorded in an array at the end of the ABD structure. 46 * 47 * +-------------------+ 48 * | ABD (scattered) | 49 * | abd_flags = ... | 50 * | abd_size = ... | 51 * | abd_offset = 0 | +-----------+ 52 * | abd_chunks[0] ----------------------------->| chunk 0 | 53 * | abd_chunks[1] ---------------------+ +-----------+ 54 * | ... | | +-----------+ 55 * | abd_chunks[N-1] ---------+ +------->| chunk 1 | 56 * +-------------------+ | +-----------+ 57 * | ... 58 * | +-----------+ 59 * +----------------->| chunk N-1 | 60 * +-----------+ 61 * 62 * In addition to directly allocating a linear or scattered ABD, it is also 63 * possible to create an ABD by requesting the "sub-ABD" starting at an offset 64 * within an existing ABD. In linear buffers this is simple (set abd_buf of 65 * the new ABD to the starting point within the original raw buffer), but 66 * scattered ABDs are a little more complex. The new ABD makes a copy of the 67 * relevant abd_chunks pointers (but not the underlying data). However, to 68 * provide arbitrary rather than only chunk-aligned starting offsets, it also 69 * tracks an abd_offset field which represents the starting point of the data 70 * within the first chunk in abd_chunks. For both linear and scattered ABDs, 71 * creating an offset ABD marks the original ABD as the offset's parent, and the 72 * original ABD's abd_children refcount is incremented. This data allows us to 73 * ensure the root ABD isn't deleted before its children. 74 * 75 * Most consumers should never need to know what type of ABD they're using -- 76 * the ABD public API ensures that it's possible to transparently switch from 77 * using a linear ABD to a scattered one when doing so would be beneficial. 78 * 79 * If you need to use the data within an ABD directly, if you know it's linear 80 * (because you allocated it) you can use abd_to_buf() to access the underlying 81 * raw buffer. Otherwise, you should use one of the abd_borrow_buf* functions 82 * which will allocate a raw buffer if necessary. Use the abd_return_buf* 83 * functions to return any raw buffers that are no longer necessary when you're 84 * done using them. 85 * 86 * There are a variety of ABD APIs that implement basic buffer operations: 87 * compare, copy, read, write, and fill with zeroes. If you need a custom 88 * function which progressively accesses the whole ABD, use the abd_iterate_* 89 * functions. 90 * 91 * As an additional feature, linear and scatter ABD's can be stitched together 92 * by using the gang ABD type (abd_alloc_gang_abd()). This allows for 93 * multiple ABDs to be viewed as a singular ABD. 94 * 95 * It is possible to make all ABDs linear by setting zfs_abd_scatter_enabled to 96 * B_FALSE. 97 */ 98 99 #include <sys/abd_impl.h> 100 #include <sys/param.h> 101 #include <sys/zio.h> 102 #include <sys/zfs_context.h> 103 #include <sys/zfs_znode.h> 104 105 /* see block comment above for description */ 106 int zfs_abd_scatter_enabled = B_TRUE; 107 108 void 109 abd_verify(abd_t *abd) 110 { 111 #ifdef ZFS_DEBUG 112 ASSERT3U(abd->abd_size, <=, SPA_MAXBLOCKSIZE); 113 ASSERT3U(abd->abd_flags, ==, abd->abd_flags & (ABD_FLAG_LINEAR | 114 ABD_FLAG_OWNER | ABD_FLAG_META | ABD_FLAG_MULTI_ZONE | 115 ABD_FLAG_MULTI_CHUNK | ABD_FLAG_LINEAR_PAGE | ABD_FLAG_GANG | 116 ABD_FLAG_GANG_FREE | ABD_FLAG_ZEROS | ABD_FLAG_ALLOCD)); 117 IMPLY(abd->abd_parent != NULL, !(abd->abd_flags & ABD_FLAG_OWNER)); 118 IMPLY(abd->abd_flags & ABD_FLAG_META, abd->abd_flags & ABD_FLAG_OWNER); 119 if (abd_is_linear(abd)) { 120 ASSERT3U(abd->abd_size, >, 0); 121 ASSERT3P(ABD_LINEAR_BUF(abd), !=, NULL); 122 } else if (abd_is_gang(abd)) { 123 uint_t child_sizes = 0; 124 for (abd_t *cabd = list_head(&ABD_GANG(abd).abd_gang_chain); 125 cabd != NULL; 126 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) { 127 ASSERT(list_link_active(&cabd->abd_gang_link)); 128 child_sizes += cabd->abd_size; 129 abd_verify(cabd); 130 } 131 ASSERT3U(abd->abd_size, ==, child_sizes); 132 } else { 133 ASSERT3U(abd->abd_size, >, 0); 134 abd_verify_scatter(abd); 135 } 136 #endif 137 } 138 139 static void 140 abd_init_struct(abd_t *abd) 141 { 142 list_link_init(&abd->abd_gang_link); 143 mutex_init(&abd->abd_mtx, NULL, MUTEX_DEFAULT, NULL); 144 abd->abd_flags = 0; 145 #ifdef ZFS_DEBUG 146 zfs_refcount_create(&abd->abd_children); 147 abd->abd_parent = NULL; 148 #endif 149 abd->abd_size = 0; 150 } 151 152 static void 153 abd_fini_struct(abd_t *abd) 154 { 155 mutex_destroy(&abd->abd_mtx); 156 ASSERT(!list_link_active(&abd->abd_gang_link)); 157 #ifdef ZFS_DEBUG 158 zfs_refcount_destroy(&abd->abd_children); 159 #endif 160 } 161 162 abd_t * 163 abd_alloc_struct(size_t size) 164 { 165 abd_t *abd = abd_alloc_struct_impl(size); 166 abd_init_struct(abd); 167 abd->abd_flags |= ABD_FLAG_ALLOCD; 168 return (abd); 169 } 170 171 void 172 abd_free_struct(abd_t *abd) 173 { 174 abd_fini_struct(abd); 175 abd_free_struct_impl(abd); 176 } 177 178 /* 179 * Allocate an ABD, along with its own underlying data buffers. Use this if you 180 * don't care whether the ABD is linear or not. 181 */ 182 abd_t * 183 abd_alloc(size_t size, boolean_t is_metadata) 184 { 185 if (abd_size_alloc_linear(size)) 186 return (abd_alloc_linear(size, is_metadata)); 187 188 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE); 189 190 abd_t *abd = abd_alloc_struct(size); 191 abd->abd_flags |= ABD_FLAG_OWNER; 192 abd->abd_u.abd_scatter.abd_offset = 0; 193 abd_alloc_chunks(abd, size); 194 195 if (is_metadata) { 196 abd->abd_flags |= ABD_FLAG_META; 197 } 198 abd->abd_size = size; 199 200 abd_update_scatter_stats(abd, ABDSTAT_INCR); 201 202 return (abd); 203 } 204 205 /* 206 * Allocate an ABD that must be linear, along with its own underlying data 207 * buffer. Only use this when it would be very annoying to write your ABD 208 * consumer with a scattered ABD. 209 */ 210 abd_t * 211 abd_alloc_linear(size_t size, boolean_t is_metadata) 212 { 213 abd_t *abd = abd_alloc_struct(0); 214 215 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE); 216 217 abd->abd_flags |= ABD_FLAG_LINEAR | ABD_FLAG_OWNER; 218 if (is_metadata) { 219 abd->abd_flags |= ABD_FLAG_META; 220 } 221 abd->abd_size = size; 222 223 if (is_metadata) { 224 ABD_LINEAR_BUF(abd) = zio_buf_alloc(size); 225 } else { 226 ABD_LINEAR_BUF(abd) = zio_data_buf_alloc(size); 227 } 228 229 abd_update_linear_stats(abd, ABDSTAT_INCR); 230 231 return (abd); 232 } 233 234 static void 235 abd_free_linear(abd_t *abd) 236 { 237 if (abd_is_linear_page(abd)) { 238 abd_free_linear_page(abd); 239 return; 240 } 241 if (abd->abd_flags & ABD_FLAG_META) { 242 zio_buf_free(ABD_LINEAR_BUF(abd), abd->abd_size); 243 } else { 244 zio_data_buf_free(ABD_LINEAR_BUF(abd), abd->abd_size); 245 } 246 247 abd_update_linear_stats(abd, ABDSTAT_DECR); 248 } 249 250 static void 251 abd_free_gang(abd_t *abd) 252 { 253 ASSERT(abd_is_gang(abd)); 254 abd_t *cabd; 255 256 while ((cabd = list_head(&ABD_GANG(abd).abd_gang_chain)) != NULL) { 257 /* 258 * We must acquire the child ABDs mutex to ensure that if it 259 * is being added to another gang ABD we will set the link 260 * as inactive when removing it from this gang ABD and before 261 * adding it to the other gang ABD. 262 */ 263 mutex_enter(&cabd->abd_mtx); 264 ASSERT(list_link_active(&cabd->abd_gang_link)); 265 list_remove(&ABD_GANG(abd).abd_gang_chain, cabd); 266 mutex_exit(&cabd->abd_mtx); 267 if (cabd->abd_flags & ABD_FLAG_GANG_FREE) 268 abd_free(cabd); 269 } 270 list_destroy(&ABD_GANG(abd).abd_gang_chain); 271 } 272 273 static void 274 abd_free_scatter(abd_t *abd) 275 { 276 abd_free_chunks(abd); 277 abd_update_scatter_stats(abd, ABDSTAT_DECR); 278 } 279 280 /* 281 * Free an ABD. Use with any kind of abd: those created with abd_alloc_*() 282 * and abd_get_*(), including abd_get_offset_struct(). 283 * 284 * If the ABD was created with abd_alloc_*(), the underlying data 285 * (scatterlist or linear buffer) will also be freed. (Subject to ownership 286 * changes via abd_*_ownership_of_buf().) 287 * 288 * Unless the ABD was created with abd_get_offset_struct(), the abd_t will 289 * also be freed. 290 */ 291 void 292 abd_free(abd_t *abd) 293 { 294 if (abd == NULL) 295 return; 296 297 abd_verify(abd); 298 #ifdef ZFS_DEBUG 299 IMPLY(abd->abd_flags & ABD_FLAG_OWNER, abd->abd_parent == NULL); 300 #endif 301 302 if (abd_is_gang(abd)) { 303 abd_free_gang(abd); 304 } else if (abd_is_linear(abd)) { 305 if (abd->abd_flags & ABD_FLAG_OWNER) 306 abd_free_linear(abd); 307 } else { 308 if (abd->abd_flags & ABD_FLAG_OWNER) 309 abd_free_scatter(abd); 310 } 311 312 #ifdef ZFS_DEBUG 313 if (abd->abd_parent != NULL) { 314 (void) zfs_refcount_remove_many(&abd->abd_parent->abd_children, 315 abd->abd_size, abd); 316 } 317 #endif 318 319 abd_fini_struct(abd); 320 if (abd->abd_flags & ABD_FLAG_ALLOCD) 321 abd_free_struct_impl(abd); 322 } 323 324 /* 325 * Allocate an ABD of the same format (same metadata flag, same scatterize 326 * setting) as another ABD. 327 */ 328 abd_t * 329 abd_alloc_sametype(abd_t *sabd, size_t size) 330 { 331 boolean_t is_metadata = (sabd->abd_flags & ABD_FLAG_META) != 0; 332 if (abd_is_linear(sabd) && 333 !abd_is_linear_page(sabd)) { 334 return (abd_alloc_linear(size, is_metadata)); 335 } else { 336 return (abd_alloc(size, is_metadata)); 337 } 338 } 339 340 /* 341 * Create gang ABD that will be the head of a list of ABD's. This is used 342 * to "chain" scatter/gather lists together when constructing aggregated 343 * IO's. To free this abd, abd_free() must be called. 344 */ 345 abd_t * 346 abd_alloc_gang(void) 347 { 348 abd_t *abd = abd_alloc_struct(0); 349 abd->abd_flags |= ABD_FLAG_GANG | ABD_FLAG_OWNER; 350 list_create(&ABD_GANG(abd).abd_gang_chain, 351 sizeof (abd_t), offsetof(abd_t, abd_gang_link)); 352 return (abd); 353 } 354 355 /* 356 * Add a child gang ABD to a parent gang ABDs chained list. 357 */ 358 static void 359 abd_gang_add_gang(abd_t *pabd, abd_t *cabd, boolean_t free_on_free) 360 { 361 ASSERT(abd_is_gang(pabd)); 362 ASSERT(abd_is_gang(cabd)); 363 364 if (free_on_free) { 365 /* 366 * If the parent is responsible for freeing the child gang 367 * ABD we will just splice the child's children ABD list to 368 * the parent's list and immediately free the child gang ABD 369 * struct. The parent gang ABDs children from the child gang 370 * will retain all the free_on_free settings after being 371 * added to the parents list. 372 */ 373 pabd->abd_size += cabd->abd_size; 374 list_move_tail(&ABD_GANG(pabd).abd_gang_chain, 375 &ABD_GANG(cabd).abd_gang_chain); 376 ASSERT(list_is_empty(&ABD_GANG(cabd).abd_gang_chain)); 377 abd_verify(pabd); 378 abd_free(cabd); 379 } else { 380 for (abd_t *child = list_head(&ABD_GANG(cabd).abd_gang_chain); 381 child != NULL; 382 child = list_next(&ABD_GANG(cabd).abd_gang_chain, child)) { 383 /* 384 * We always pass B_FALSE for free_on_free as it is the 385 * original child gang ABDs responsibility to determine 386 * if any of its child ABDs should be free'd on the call 387 * to abd_free(). 388 */ 389 abd_gang_add(pabd, child, B_FALSE); 390 } 391 abd_verify(pabd); 392 } 393 } 394 395 /* 396 * Add a child ABD to a gang ABD's chained list. 397 */ 398 void 399 abd_gang_add(abd_t *pabd, abd_t *cabd, boolean_t free_on_free) 400 { 401 ASSERT(abd_is_gang(pabd)); 402 abd_t *child_abd = NULL; 403 404 /* 405 * If the child being added is a gang ABD, we will add the 406 * child's ABDs to the parent gang ABD. This allows us to account 407 * for the offset correctly in the parent gang ABD. 408 */ 409 if (abd_is_gang(cabd)) { 410 ASSERT(!list_link_active(&cabd->abd_gang_link)); 411 ASSERT(!list_is_empty(&ABD_GANG(cabd).abd_gang_chain)); 412 return (abd_gang_add_gang(pabd, cabd, free_on_free)); 413 } 414 ASSERT(!abd_is_gang(cabd)); 415 416 /* 417 * In order to verify that an ABD is not already part of 418 * another gang ABD, we must lock the child ABD's abd_mtx 419 * to check its abd_gang_link status. We unlock the abd_mtx 420 * only after it is has been added to a gang ABD, which 421 * will update the abd_gang_link's status. See comment below 422 * for how an ABD can be in multiple gang ABD's simultaneously. 423 */ 424 mutex_enter(&cabd->abd_mtx); 425 if (list_link_active(&cabd->abd_gang_link)) { 426 /* 427 * If the child ABD is already part of another 428 * gang ABD then we must allocate a new 429 * ABD to use a separate link. We mark the newly 430 * allocated ABD with ABD_FLAG_GANG_FREE, before 431 * adding it to the gang ABD's list, to make the 432 * gang ABD aware that it is responsible to call 433 * abd_free(). We use abd_get_offset() in order 434 * to just allocate a new ABD but avoid copying the 435 * data over into the newly allocated ABD. 436 * 437 * An ABD may become part of multiple gang ABD's. For 438 * example, when writing ditto bocks, the same ABD 439 * is used to write 2 or 3 locations with 2 or 3 440 * zio_t's. Each of the zio's may be aggregated with 441 * different adjacent zio's. zio aggregation uses gang 442 * zio's, so the single ABD can become part of multiple 443 * gang zio's. 444 * 445 * The ASSERT below is to make sure that if 446 * free_on_free is passed as B_TRUE, the ABD can 447 * not be in multiple gang ABD's. The gang ABD 448 * can not be responsible for cleaning up the child 449 * ABD memory allocation if the ABD can be in 450 * multiple gang ABD's at one time. 451 */ 452 ASSERT3B(free_on_free, ==, B_FALSE); 453 child_abd = abd_get_offset(cabd, 0); 454 child_abd->abd_flags |= ABD_FLAG_GANG_FREE; 455 } else { 456 child_abd = cabd; 457 if (free_on_free) 458 child_abd->abd_flags |= ABD_FLAG_GANG_FREE; 459 } 460 ASSERT3P(child_abd, !=, NULL); 461 462 list_insert_tail(&ABD_GANG(pabd).abd_gang_chain, child_abd); 463 mutex_exit(&cabd->abd_mtx); 464 pabd->abd_size += child_abd->abd_size; 465 } 466 467 /* 468 * Locate the ABD for the supplied offset in the gang ABD. 469 * Return a new offset relative to the returned ABD. 470 */ 471 abd_t * 472 abd_gang_get_offset(abd_t *abd, size_t *off) 473 { 474 abd_t *cabd; 475 476 ASSERT(abd_is_gang(abd)); 477 ASSERT3U(*off, <, abd->abd_size); 478 for (cabd = list_head(&ABD_GANG(abd).abd_gang_chain); cabd != NULL; 479 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) { 480 if (*off >= cabd->abd_size) 481 *off -= cabd->abd_size; 482 else 483 return (cabd); 484 } 485 VERIFY3P(cabd, !=, NULL); 486 return (cabd); 487 } 488 489 /* 490 * Allocate a new ABD, using the provided struct (if non-NULL, and if 491 * circumstances allow - otherwise allocate the struct). The returned ABD will 492 * point to offset off of sabd. It shares the underlying buffer data with sabd. 493 * Use abd_free() to free. sabd must not be freed while any derived ABDs exist. 494 */ 495 static abd_t * 496 abd_get_offset_impl(abd_t *abd, abd_t *sabd, size_t off, size_t size) 497 { 498 abd_verify(sabd); 499 ASSERT3U(off + size, <=, sabd->abd_size); 500 501 if (abd_is_linear(sabd)) { 502 if (abd == NULL) 503 abd = abd_alloc_struct(0); 504 /* 505 * Even if this buf is filesystem metadata, we only track that 506 * if we own the underlying data buffer, which is not true in 507 * this case. Therefore, we don't ever use ABD_FLAG_META here. 508 */ 509 abd->abd_flags |= ABD_FLAG_LINEAR; 510 511 ABD_LINEAR_BUF(abd) = (char *)ABD_LINEAR_BUF(sabd) + off; 512 } else if (abd_is_gang(sabd)) { 513 size_t left = size; 514 if (abd == NULL) { 515 abd = abd_alloc_gang(); 516 } else { 517 abd->abd_flags |= ABD_FLAG_GANG; 518 list_create(&ABD_GANG(abd).abd_gang_chain, 519 sizeof (abd_t), offsetof(abd_t, abd_gang_link)); 520 } 521 522 abd->abd_flags &= ~ABD_FLAG_OWNER; 523 for (abd_t *cabd = abd_gang_get_offset(sabd, &off); 524 cabd != NULL && left > 0; 525 cabd = list_next(&ABD_GANG(sabd).abd_gang_chain, cabd)) { 526 int csize = MIN(left, cabd->abd_size - off); 527 528 abd_t *nabd = abd_get_offset_size(cabd, off, csize); 529 abd_gang_add(abd, nabd, B_TRUE); 530 left -= csize; 531 off = 0; 532 } 533 ASSERT3U(left, ==, 0); 534 } else { 535 abd = abd_get_offset_scatter(abd, sabd, off, size); 536 } 537 538 ASSERT3P(abd, !=, NULL); 539 abd->abd_size = size; 540 #ifdef ZFS_DEBUG 541 abd->abd_parent = sabd; 542 (void) zfs_refcount_add_many(&sabd->abd_children, abd->abd_size, abd); 543 #endif 544 return (abd); 545 } 546 547 /* 548 * Like abd_get_offset_size(), but memory for the abd_t is provided by the 549 * caller. Using this routine can improve performance by avoiding the cost 550 * of allocating memory for the abd_t struct, and updating the abd stats. 551 * Usually, the provided abd is returned, but in some circumstances (FreeBSD, 552 * if sabd is scatter and size is more than 2 pages) a new abd_t may need to 553 * be allocated. Therefore callers should be careful to use the returned 554 * abd_t*. 555 */ 556 abd_t * 557 abd_get_offset_struct(abd_t *abd, abd_t *sabd, size_t off, size_t size) 558 { 559 abd_t *result; 560 abd_init_struct(abd); 561 result = abd_get_offset_impl(abd, sabd, off, size); 562 if (result != abd) 563 abd_fini_struct(abd); 564 return (result); 565 } 566 567 abd_t * 568 abd_get_offset(abd_t *sabd, size_t off) 569 { 570 size_t size = sabd->abd_size > off ? sabd->abd_size - off : 0; 571 VERIFY3U(size, >, 0); 572 return (abd_get_offset_impl(NULL, sabd, off, size)); 573 } 574 575 abd_t * 576 abd_get_offset_size(abd_t *sabd, size_t off, size_t size) 577 { 578 ASSERT3U(off + size, <=, sabd->abd_size); 579 return (abd_get_offset_impl(NULL, sabd, off, size)); 580 } 581 582 /* 583 * Return a size scatter ABD containing only zeros. 584 */ 585 abd_t * 586 abd_get_zeros(size_t size) 587 { 588 ASSERT3P(abd_zero_scatter, !=, NULL); 589 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 590 return (abd_get_offset_size(abd_zero_scatter, 0, size)); 591 } 592 593 /* 594 * Allocate a linear ABD structure for buf. 595 */ 596 abd_t * 597 abd_get_from_buf(void *buf, size_t size) 598 { 599 abd_t *abd = abd_alloc_struct(0); 600 601 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE); 602 603 /* 604 * Even if this buf is filesystem metadata, we only track that if we 605 * own the underlying data buffer, which is not true in this case. 606 * Therefore, we don't ever use ABD_FLAG_META here. 607 */ 608 abd->abd_flags |= ABD_FLAG_LINEAR; 609 abd->abd_size = size; 610 611 ABD_LINEAR_BUF(abd) = buf; 612 613 return (abd); 614 } 615 616 /* 617 * Get the raw buffer associated with a linear ABD. 618 */ 619 void * 620 abd_to_buf(abd_t *abd) 621 { 622 ASSERT(abd_is_linear(abd)); 623 abd_verify(abd); 624 return (ABD_LINEAR_BUF(abd)); 625 } 626 627 /* 628 * Borrow a raw buffer from an ABD without copying the contents of the ABD 629 * into the buffer. If the ABD is scattered, this will allocate a raw buffer 630 * whose contents are undefined. To copy over the existing data in the ABD, use 631 * abd_borrow_buf_copy() instead. 632 */ 633 void * 634 abd_borrow_buf(abd_t *abd, size_t n) 635 { 636 void *buf; 637 abd_verify(abd); 638 ASSERT3U(abd->abd_size, >=, n); 639 if (abd_is_linear(abd)) { 640 buf = abd_to_buf(abd); 641 } else { 642 buf = zio_buf_alloc(n); 643 } 644 #ifdef ZFS_DEBUG 645 (void) zfs_refcount_add_many(&abd->abd_children, n, buf); 646 #endif 647 return (buf); 648 } 649 650 void * 651 abd_borrow_buf_copy(abd_t *abd, size_t n) 652 { 653 void *buf = abd_borrow_buf(abd, n); 654 if (!abd_is_linear(abd)) { 655 abd_copy_to_buf(buf, abd, n); 656 } 657 return (buf); 658 } 659 660 /* 661 * Return a borrowed raw buffer to an ABD. If the ABD is scattered, this will 662 * not change the contents of the ABD and will ASSERT that you didn't modify 663 * the buffer since it was borrowed. If you want any changes you made to buf to 664 * be copied back to abd, use abd_return_buf_copy() instead. 665 */ 666 void 667 abd_return_buf(abd_t *abd, void *buf, size_t n) 668 { 669 abd_verify(abd); 670 ASSERT3U(abd->abd_size, >=, n); 671 #ifdef ZFS_DEBUG 672 (void) zfs_refcount_remove_many(&abd->abd_children, n, buf); 673 #endif 674 if (abd_is_linear(abd)) { 675 ASSERT3P(buf, ==, abd_to_buf(abd)); 676 } else { 677 ASSERT0(abd_cmp_buf(abd, buf, n)); 678 zio_buf_free(buf, n); 679 } 680 } 681 682 void 683 abd_return_buf_copy(abd_t *abd, void *buf, size_t n) 684 { 685 if (!abd_is_linear(abd)) { 686 abd_copy_from_buf(abd, buf, n); 687 } 688 abd_return_buf(abd, buf, n); 689 } 690 691 void 692 abd_release_ownership_of_buf(abd_t *abd) 693 { 694 ASSERT(abd_is_linear(abd)); 695 ASSERT(abd->abd_flags & ABD_FLAG_OWNER); 696 697 /* 698 * abd_free() needs to handle LINEAR_PAGE ABD's specially. 699 * Since that flag does not survive the 700 * abd_release_ownership_of_buf() -> abd_get_from_buf() -> 701 * abd_take_ownership_of_buf() sequence, we don't allow releasing 702 * these "linear but not zio_[data_]buf_alloc()'ed" ABD's. 703 */ 704 ASSERT(!abd_is_linear_page(abd)); 705 706 abd_verify(abd); 707 708 abd->abd_flags &= ~ABD_FLAG_OWNER; 709 /* Disable this flag since we no longer own the data buffer */ 710 abd->abd_flags &= ~ABD_FLAG_META; 711 712 abd_update_linear_stats(abd, ABDSTAT_DECR); 713 } 714 715 716 /* 717 * Give this ABD ownership of the buffer that it's storing. Can only be used on 718 * linear ABDs which were allocated via abd_get_from_buf(), or ones allocated 719 * with abd_alloc_linear() which subsequently released ownership of their buf 720 * with abd_release_ownership_of_buf(). 721 */ 722 void 723 abd_take_ownership_of_buf(abd_t *abd, boolean_t is_metadata) 724 { 725 ASSERT(abd_is_linear(abd)); 726 ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER)); 727 abd_verify(abd); 728 729 abd->abd_flags |= ABD_FLAG_OWNER; 730 if (is_metadata) { 731 abd->abd_flags |= ABD_FLAG_META; 732 } 733 734 abd_update_linear_stats(abd, ABDSTAT_INCR); 735 } 736 737 /* 738 * Initializes an abd_iter based on whether the abd is a gang ABD 739 * or just a single ABD. 740 */ 741 static inline abd_t * 742 abd_init_abd_iter(abd_t *abd, struct abd_iter *aiter, size_t off) 743 { 744 abd_t *cabd = NULL; 745 746 if (abd_is_gang(abd)) { 747 cabd = abd_gang_get_offset(abd, &off); 748 if (cabd) { 749 abd_iter_init(aiter, cabd); 750 abd_iter_advance(aiter, off); 751 } 752 } else { 753 abd_iter_init(aiter, abd); 754 abd_iter_advance(aiter, off); 755 } 756 return (cabd); 757 } 758 759 /* 760 * Advances an abd_iter. We have to be careful with gang ABD as 761 * advancing could mean that we are at the end of a particular ABD and 762 * must grab the ABD in the gang ABD's list. 763 */ 764 static inline abd_t * 765 abd_advance_abd_iter(abd_t *abd, abd_t *cabd, struct abd_iter *aiter, 766 size_t len) 767 { 768 abd_iter_advance(aiter, len); 769 if (abd_is_gang(abd) && abd_iter_at_end(aiter)) { 770 ASSERT3P(cabd, !=, NULL); 771 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd); 772 if (cabd) { 773 abd_iter_init(aiter, cabd); 774 abd_iter_advance(aiter, 0); 775 } 776 } 777 return (cabd); 778 } 779 780 int 781 abd_iterate_func(abd_t *abd, size_t off, size_t size, 782 abd_iter_func_t *func, void *private) 783 { 784 struct abd_iter aiter; 785 int ret = 0; 786 787 if (size == 0) 788 return (0); 789 790 abd_verify(abd); 791 ASSERT3U(off + size, <=, abd->abd_size); 792 793 boolean_t gang = abd_is_gang(abd); 794 abd_t *c_abd = abd_init_abd_iter(abd, &aiter, off); 795 796 while (size > 0) { 797 /* If we are at the end of the gang ABD we are done */ 798 if (gang && !c_abd) 799 break; 800 801 abd_iter_map(&aiter); 802 803 size_t len = MIN(aiter.iter_mapsize, size); 804 ASSERT3U(len, >, 0); 805 806 ret = func(aiter.iter_mapaddr, len, private); 807 808 abd_iter_unmap(&aiter); 809 810 if (ret != 0) 811 break; 812 813 size -= len; 814 c_abd = abd_advance_abd_iter(abd, c_abd, &aiter, len); 815 } 816 817 return (ret); 818 } 819 820 struct buf_arg { 821 void *arg_buf; 822 }; 823 824 static int 825 abd_copy_to_buf_off_cb(void *buf, size_t size, void *private) 826 { 827 struct buf_arg *ba_ptr = private; 828 829 (void) memcpy(ba_ptr->arg_buf, buf, size); 830 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size; 831 832 return (0); 833 } 834 835 /* 836 * Copy abd to buf. (off is the offset in abd.) 837 */ 838 void 839 abd_copy_to_buf_off(void *buf, abd_t *abd, size_t off, size_t size) 840 { 841 struct buf_arg ba_ptr = { buf }; 842 843 (void) abd_iterate_func(abd, off, size, abd_copy_to_buf_off_cb, 844 &ba_ptr); 845 } 846 847 static int 848 abd_cmp_buf_off_cb(void *buf, size_t size, void *private) 849 { 850 int ret; 851 struct buf_arg *ba_ptr = private; 852 853 ret = memcmp(buf, ba_ptr->arg_buf, size); 854 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size; 855 856 return (ret); 857 } 858 859 /* 860 * Compare the contents of abd to buf. (off is the offset in abd.) 861 */ 862 int 863 abd_cmp_buf_off(abd_t *abd, const void *buf, size_t off, size_t size) 864 { 865 struct buf_arg ba_ptr = { (void *) buf }; 866 867 return (abd_iterate_func(abd, off, size, abd_cmp_buf_off_cb, &ba_ptr)); 868 } 869 870 static int 871 abd_copy_from_buf_off_cb(void *buf, size_t size, void *private) 872 { 873 struct buf_arg *ba_ptr = private; 874 875 (void) memcpy(buf, ba_ptr->arg_buf, size); 876 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size; 877 878 return (0); 879 } 880 881 /* 882 * Copy from buf to abd. (off is the offset in abd.) 883 */ 884 void 885 abd_copy_from_buf_off(abd_t *abd, const void *buf, size_t off, size_t size) 886 { 887 struct buf_arg ba_ptr = { (void *) buf }; 888 889 (void) abd_iterate_func(abd, off, size, abd_copy_from_buf_off_cb, 890 &ba_ptr); 891 } 892 893 static int 894 abd_zero_off_cb(void *buf, size_t size, void *private) 895 { 896 (void) private; 897 (void) memset(buf, 0, size); 898 return (0); 899 } 900 901 /* 902 * Zero out the abd from a particular offset to the end. 903 */ 904 void 905 abd_zero_off(abd_t *abd, size_t off, size_t size) 906 { 907 (void) abd_iterate_func(abd, off, size, abd_zero_off_cb, NULL); 908 } 909 910 /* 911 * Iterate over two ABDs and call func incrementally on the two ABDs' data in 912 * equal-sized chunks (passed to func as raw buffers). func could be called many 913 * times during this iteration. 914 */ 915 int 916 abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, 917 size_t size, abd_iter_func2_t *func, void *private) 918 { 919 int ret = 0; 920 struct abd_iter daiter, saiter; 921 boolean_t dabd_is_gang_abd, sabd_is_gang_abd; 922 abd_t *c_dabd, *c_sabd; 923 924 if (size == 0) 925 return (0); 926 927 abd_verify(dabd); 928 abd_verify(sabd); 929 930 ASSERT3U(doff + size, <=, dabd->abd_size); 931 ASSERT3U(soff + size, <=, sabd->abd_size); 932 933 dabd_is_gang_abd = abd_is_gang(dabd); 934 sabd_is_gang_abd = abd_is_gang(sabd); 935 c_dabd = abd_init_abd_iter(dabd, &daiter, doff); 936 c_sabd = abd_init_abd_iter(sabd, &saiter, soff); 937 938 while (size > 0) { 939 /* if we are at the end of the gang ABD we are done */ 940 if ((dabd_is_gang_abd && !c_dabd) || 941 (sabd_is_gang_abd && !c_sabd)) 942 break; 943 944 abd_iter_map(&daiter); 945 abd_iter_map(&saiter); 946 947 size_t dlen = MIN(daiter.iter_mapsize, size); 948 size_t slen = MIN(saiter.iter_mapsize, size); 949 size_t len = MIN(dlen, slen); 950 ASSERT(dlen > 0 || slen > 0); 951 952 ret = func(daiter.iter_mapaddr, saiter.iter_mapaddr, len, 953 private); 954 955 abd_iter_unmap(&saiter); 956 abd_iter_unmap(&daiter); 957 958 if (ret != 0) 959 break; 960 961 size -= len; 962 c_dabd = 963 abd_advance_abd_iter(dabd, c_dabd, &daiter, len); 964 c_sabd = 965 abd_advance_abd_iter(sabd, c_sabd, &saiter, len); 966 } 967 968 return (ret); 969 } 970 971 static int 972 abd_copy_off_cb(void *dbuf, void *sbuf, size_t size, void *private) 973 { 974 (void) private; 975 (void) memcpy(dbuf, sbuf, size); 976 return (0); 977 } 978 979 /* 980 * Copy from sabd to dabd starting from soff and doff. 981 */ 982 void 983 abd_copy_off(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, size_t size) 984 { 985 (void) abd_iterate_func2(dabd, sabd, doff, soff, size, 986 abd_copy_off_cb, NULL); 987 } 988 989 static int 990 abd_cmp_cb(void *bufa, void *bufb, size_t size, void *private) 991 { 992 (void) private; 993 return (memcmp(bufa, bufb, size)); 994 } 995 996 /* 997 * Compares the contents of two ABDs. 998 */ 999 int 1000 abd_cmp(abd_t *dabd, abd_t *sabd) 1001 { 1002 ASSERT3U(dabd->abd_size, ==, sabd->abd_size); 1003 return (abd_iterate_func2(dabd, sabd, 0, 0, dabd->abd_size, 1004 abd_cmp_cb, NULL)); 1005 } 1006 1007 /* 1008 * Iterate over code ABDs and a data ABD and call @func_raidz_gen. 1009 * 1010 * @cabds parity ABDs, must have equal size 1011 * @dabd data ABD. Can be NULL (in this case @dsize = 0) 1012 * @func_raidz_gen should be implemented so that its behaviour 1013 * is the same when taking linear and when taking scatter 1014 */ 1015 void 1016 abd_raidz_gen_iterate(abd_t **cabds, abd_t *dabd, 1017 ssize_t csize, ssize_t dsize, const unsigned parity, 1018 void (*func_raidz_gen)(void **, const void *, size_t, size_t)) 1019 { 1020 int i; 1021 ssize_t len, dlen; 1022 struct abd_iter caiters[3]; 1023 struct abd_iter daiter = {0}; 1024 void *caddrs[3]; 1025 unsigned long flags __maybe_unused = 0; 1026 abd_t *c_cabds[3]; 1027 abd_t *c_dabd = NULL; 1028 boolean_t cabds_is_gang_abd[3]; 1029 boolean_t dabd_is_gang_abd = B_FALSE; 1030 1031 ASSERT3U(parity, <=, 3); 1032 1033 for (i = 0; i < parity; i++) { 1034 cabds_is_gang_abd[i] = abd_is_gang(cabds[i]); 1035 c_cabds[i] = abd_init_abd_iter(cabds[i], &caiters[i], 0); 1036 } 1037 1038 if (dabd) { 1039 dabd_is_gang_abd = abd_is_gang(dabd); 1040 c_dabd = abd_init_abd_iter(dabd, &daiter, 0); 1041 } 1042 1043 ASSERT3S(dsize, >=, 0); 1044 1045 abd_enter_critical(flags); 1046 while (csize > 0) { 1047 /* if we are at the end of the gang ABD we are done */ 1048 if (dabd_is_gang_abd && !c_dabd) 1049 break; 1050 1051 for (i = 0; i < parity; i++) { 1052 /* 1053 * If we are at the end of the gang ABD we are 1054 * done. 1055 */ 1056 if (cabds_is_gang_abd[i] && !c_cabds[i]) 1057 break; 1058 abd_iter_map(&caiters[i]); 1059 caddrs[i] = caiters[i].iter_mapaddr; 1060 } 1061 1062 len = csize; 1063 1064 if (dabd && dsize > 0) 1065 abd_iter_map(&daiter); 1066 1067 switch (parity) { 1068 case 3: 1069 len = MIN(caiters[2].iter_mapsize, len); 1070 zfs_fallthrough; 1071 case 2: 1072 len = MIN(caiters[1].iter_mapsize, len); 1073 zfs_fallthrough; 1074 case 1: 1075 len = MIN(caiters[0].iter_mapsize, len); 1076 } 1077 1078 /* must be progressive */ 1079 ASSERT3S(len, >, 0); 1080 1081 if (dabd && dsize > 0) { 1082 /* this needs precise iter.length */ 1083 len = MIN(daiter.iter_mapsize, len); 1084 dlen = len; 1085 } else 1086 dlen = 0; 1087 1088 /* must be progressive */ 1089 ASSERT3S(len, >, 0); 1090 /* 1091 * The iterated function likely will not do well if each 1092 * segment except the last one is not multiple of 512 (raidz). 1093 */ 1094 ASSERT3U(((uint64_t)len & 511ULL), ==, 0); 1095 1096 func_raidz_gen(caddrs, daiter.iter_mapaddr, len, dlen); 1097 1098 for (i = parity-1; i >= 0; i--) { 1099 abd_iter_unmap(&caiters[i]); 1100 c_cabds[i] = 1101 abd_advance_abd_iter(cabds[i], c_cabds[i], 1102 &caiters[i], len); 1103 } 1104 1105 if (dabd && dsize > 0) { 1106 abd_iter_unmap(&daiter); 1107 c_dabd = 1108 abd_advance_abd_iter(dabd, c_dabd, &daiter, 1109 dlen); 1110 dsize -= dlen; 1111 } 1112 1113 csize -= len; 1114 1115 ASSERT3S(dsize, >=, 0); 1116 ASSERT3S(csize, >=, 0); 1117 } 1118 abd_exit_critical(flags); 1119 } 1120 1121 /* 1122 * Iterate over code ABDs and data reconstruction target ABDs and call 1123 * @func_raidz_rec. Function maps at most 6 pages atomically. 1124 * 1125 * @cabds parity ABDs, must have equal size 1126 * @tabds rec target ABDs, at most 3 1127 * @tsize size of data target columns 1128 * @func_raidz_rec expects syndrome data in target columns. Function 1129 * reconstructs data and overwrites target columns. 1130 */ 1131 void 1132 abd_raidz_rec_iterate(abd_t **cabds, abd_t **tabds, 1133 ssize_t tsize, const unsigned parity, 1134 void (*func_raidz_rec)(void **t, const size_t tsize, void **c, 1135 const unsigned *mul), 1136 const unsigned *mul) 1137 { 1138 int i; 1139 ssize_t len; 1140 struct abd_iter citers[3]; 1141 struct abd_iter xiters[3]; 1142 void *caddrs[3], *xaddrs[3]; 1143 unsigned long flags __maybe_unused = 0; 1144 boolean_t cabds_is_gang_abd[3]; 1145 boolean_t tabds_is_gang_abd[3]; 1146 abd_t *c_cabds[3]; 1147 abd_t *c_tabds[3]; 1148 1149 ASSERT3U(parity, <=, 3); 1150 1151 for (i = 0; i < parity; i++) { 1152 cabds_is_gang_abd[i] = abd_is_gang(cabds[i]); 1153 tabds_is_gang_abd[i] = abd_is_gang(tabds[i]); 1154 c_cabds[i] = 1155 abd_init_abd_iter(cabds[i], &citers[i], 0); 1156 c_tabds[i] = 1157 abd_init_abd_iter(tabds[i], &xiters[i], 0); 1158 } 1159 1160 abd_enter_critical(flags); 1161 while (tsize > 0) { 1162 1163 for (i = 0; i < parity; i++) { 1164 /* 1165 * If we are at the end of the gang ABD we 1166 * are done. 1167 */ 1168 if (cabds_is_gang_abd[i] && !c_cabds[i]) 1169 break; 1170 if (tabds_is_gang_abd[i] && !c_tabds[i]) 1171 break; 1172 abd_iter_map(&citers[i]); 1173 abd_iter_map(&xiters[i]); 1174 caddrs[i] = citers[i].iter_mapaddr; 1175 xaddrs[i] = xiters[i].iter_mapaddr; 1176 } 1177 1178 len = tsize; 1179 switch (parity) { 1180 case 3: 1181 len = MIN(xiters[2].iter_mapsize, len); 1182 len = MIN(citers[2].iter_mapsize, len); 1183 zfs_fallthrough; 1184 case 2: 1185 len = MIN(xiters[1].iter_mapsize, len); 1186 len = MIN(citers[1].iter_mapsize, len); 1187 zfs_fallthrough; 1188 case 1: 1189 len = MIN(xiters[0].iter_mapsize, len); 1190 len = MIN(citers[0].iter_mapsize, len); 1191 } 1192 /* must be progressive */ 1193 ASSERT3S(len, >, 0); 1194 /* 1195 * The iterated function likely will not do well if each 1196 * segment except the last one is not multiple of 512 (raidz). 1197 */ 1198 ASSERT3U(((uint64_t)len & 511ULL), ==, 0); 1199 1200 func_raidz_rec(xaddrs, len, caddrs, mul); 1201 1202 for (i = parity-1; i >= 0; i--) { 1203 abd_iter_unmap(&xiters[i]); 1204 abd_iter_unmap(&citers[i]); 1205 c_tabds[i] = 1206 abd_advance_abd_iter(tabds[i], c_tabds[i], 1207 &xiters[i], len); 1208 c_cabds[i] = 1209 abd_advance_abd_iter(cabds[i], c_cabds[i], 1210 &citers[i], len); 1211 } 1212 1213 tsize -= len; 1214 ASSERT3S(tsize, >=, 0); 1215 } 1216 abd_exit_critical(flags); 1217 } 1218