1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2014 by Chunwei Chen. All rights reserved. 23 * Copyright (c) 2019 by Delphix. All rights reserved. 24 */ 25 26 /* 27 * ARC buffer data (ABD). 28 * 29 * ABDs are an abstract data structure for the ARC which can use two 30 * different ways of storing the underlying data: 31 * 32 * (a) Linear buffer. In this case, all the data in the ABD is stored in one 33 * contiguous buffer in memory (from a zio_[data_]buf_* kmem cache). 34 * 35 * +-------------------+ 36 * | ABD (linear) | 37 * | abd_flags = ... | 38 * | abd_size = ... | +--------------------------------+ 39 * | abd_buf ------------->| raw buffer of size abd_size | 40 * +-------------------+ +--------------------------------+ 41 * no abd_chunks 42 * 43 * (b) Scattered buffer. In this case, the data in the ABD is split into 44 * equal-sized chunks (from the abd_chunk_cache kmem_cache), with pointers 45 * to the chunks recorded in an array at the end of the ABD structure. 46 * 47 * +-------------------+ 48 * | ABD (scattered) | 49 * | abd_flags = ... | 50 * | abd_size = ... | 51 * | abd_offset = 0 | +-----------+ 52 * | abd_chunks[0] ----------------------------->| chunk 0 | 53 * | abd_chunks[1] ---------------------+ +-----------+ 54 * | ... | | +-----------+ 55 * | abd_chunks[N-1] ---------+ +------->| chunk 1 | 56 * +-------------------+ | +-----------+ 57 * | ... 58 * | +-----------+ 59 * +----------------->| chunk N-1 | 60 * +-----------+ 61 * 62 * In addition to directly allocating a linear or scattered ABD, it is also 63 * possible to create an ABD by requesting the "sub-ABD" starting at an offset 64 * within an existing ABD. In linear buffers this is simple (set abd_buf of 65 * the new ABD to the starting point within the original raw buffer), but 66 * scattered ABDs are a little more complex. The new ABD makes a copy of the 67 * relevant abd_chunks pointers (but not the underlying data). However, to 68 * provide arbitrary rather than only chunk-aligned starting offsets, it also 69 * tracks an abd_offset field which represents the starting point of the data 70 * within the first chunk in abd_chunks. For both linear and scattered ABDs, 71 * creating an offset ABD marks the original ABD as the offset's parent, and the 72 * original ABD's abd_children refcount is incremented. This data allows us to 73 * ensure the root ABD isn't deleted before its children. 74 * 75 * Most consumers should never need to know what type of ABD they're using -- 76 * the ABD public API ensures that it's possible to transparently switch from 77 * using a linear ABD to a scattered one when doing so would be beneficial. 78 * 79 * If you need to use the data within an ABD directly, if you know it's linear 80 * (because you allocated it) you can use abd_to_buf() to access the underlying 81 * raw buffer. Otherwise, you should use one of the abd_borrow_buf* functions 82 * which will allocate a raw buffer if necessary. Use the abd_return_buf* 83 * functions to return any raw buffers that are no longer necessary when you're 84 * done using them. 85 * 86 * There are a variety of ABD APIs that implement basic buffer operations: 87 * compare, copy, read, write, and fill with zeroes. If you need a custom 88 * function which progressively accesses the whole ABD, use the abd_iterate_* 89 * functions. 90 * 91 * As an additional feature, linear and scatter ABD's can be stitched together 92 * by using the gang ABD type (abd_alloc_gang()). This allows for multiple ABDs 93 * to be viewed as a singular ABD. 94 * 95 * It is possible to make all ABDs linear by setting zfs_abd_scatter_enabled to 96 * B_FALSE. 97 */ 98 99 #include <sys/abd_impl.h> 100 #include <sys/param.h> 101 #include <sys/zio.h> 102 #include <sys/zfs_context.h> 103 #include <sys/zfs_znode.h> 104 105 /* see block comment above for description */ 106 int zfs_abd_scatter_enabled = B_TRUE; 107 108 void 109 abd_verify(abd_t *abd) 110 { 111 #ifdef ZFS_DEBUG 112 if (abd_is_from_pages(abd)) { 113 ASSERT3U(abd->abd_size, <=, DMU_MAX_ACCESS); 114 } else { 115 ASSERT3U(abd->abd_size, <=, SPA_MAXBLOCKSIZE); 116 } 117 ASSERT3U(abd->abd_flags, ==, abd->abd_flags & (ABD_FLAG_LINEAR | 118 ABD_FLAG_OWNER | ABD_FLAG_META | ABD_FLAG_MULTI_ZONE | 119 ABD_FLAG_MULTI_CHUNK | ABD_FLAG_LINEAR_PAGE | ABD_FLAG_GANG | 120 ABD_FLAG_GANG_FREE | ABD_FLAG_ALLOCD | ABD_FLAG_FROM_PAGES)); 121 IMPLY(abd->abd_parent != NULL, !(abd->abd_flags & ABD_FLAG_OWNER)); 122 IMPLY(abd->abd_flags & ABD_FLAG_META, abd->abd_flags & ABD_FLAG_OWNER); 123 if (abd_is_linear(abd)) { 124 ASSERT3U(abd->abd_size, >, 0); 125 ASSERT3P(ABD_LINEAR_BUF(abd), !=, NULL); 126 } else if (abd_is_gang(abd)) { 127 uint_t child_sizes = 0; 128 for (abd_t *cabd = list_head(&ABD_GANG(abd).abd_gang_chain); 129 cabd != NULL; 130 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) { 131 ASSERT(list_link_active(&cabd->abd_gang_link)); 132 child_sizes += cabd->abd_size; 133 abd_verify(cabd); 134 } 135 ASSERT3U(abd->abd_size, ==, child_sizes); 136 } else { 137 ASSERT3U(abd->abd_size, >, 0); 138 abd_verify_scatter(abd); 139 } 140 #endif 141 } 142 143 void 144 abd_init_struct(abd_t *abd) 145 { 146 list_link_init(&abd->abd_gang_link); 147 mutex_init(&abd->abd_mtx, NULL, MUTEX_DEFAULT, NULL); 148 abd->abd_flags = 0; 149 #ifdef ZFS_DEBUG 150 zfs_refcount_create(&abd->abd_children); 151 abd->abd_parent = NULL; 152 #endif 153 abd->abd_size = 0; 154 } 155 156 static void 157 abd_fini_struct(abd_t *abd) 158 { 159 mutex_destroy(&abd->abd_mtx); 160 ASSERT(!list_link_active(&abd->abd_gang_link)); 161 #ifdef ZFS_DEBUG 162 zfs_refcount_destroy(&abd->abd_children); 163 #endif 164 } 165 166 abd_t * 167 abd_alloc_struct(size_t size) 168 { 169 abd_t *abd = abd_alloc_struct_impl(size); 170 abd_init_struct(abd); 171 abd->abd_flags |= ABD_FLAG_ALLOCD; 172 return (abd); 173 } 174 175 void 176 abd_free_struct(abd_t *abd) 177 { 178 abd_fini_struct(abd); 179 abd_free_struct_impl(abd); 180 } 181 182 /* 183 * Allocate an ABD, along with its own underlying data buffers. Use this if you 184 * don't care whether the ABD is linear or not. 185 */ 186 abd_t * 187 abd_alloc(size_t size, boolean_t is_metadata) 188 { 189 if (abd_size_alloc_linear(size)) 190 return (abd_alloc_linear(size, is_metadata)); 191 192 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE); 193 194 abd_t *abd = abd_alloc_struct(size); 195 abd->abd_flags |= ABD_FLAG_OWNER; 196 abd->abd_u.abd_scatter.abd_offset = 0; 197 abd_alloc_chunks(abd, size); 198 199 if (is_metadata) { 200 abd->abd_flags |= ABD_FLAG_META; 201 } 202 abd->abd_size = size; 203 204 abd_update_scatter_stats(abd, ABDSTAT_INCR); 205 206 return (abd); 207 } 208 209 /* 210 * Allocate an ABD that must be linear, along with its own underlying data 211 * buffer. Only use this when it would be very annoying to write your ABD 212 * consumer with a scattered ABD. 213 */ 214 abd_t * 215 abd_alloc_linear(size_t size, boolean_t is_metadata) 216 { 217 abd_t *abd = abd_alloc_struct(0); 218 219 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE); 220 221 abd->abd_flags |= ABD_FLAG_LINEAR | ABD_FLAG_OWNER; 222 if (is_metadata) { 223 abd->abd_flags |= ABD_FLAG_META; 224 } 225 abd->abd_size = size; 226 227 if (is_metadata) { 228 ABD_LINEAR_BUF(abd) = zio_buf_alloc(size); 229 } else { 230 ABD_LINEAR_BUF(abd) = zio_data_buf_alloc(size); 231 } 232 233 abd_update_linear_stats(abd, ABDSTAT_INCR); 234 235 return (abd); 236 } 237 238 static void 239 abd_free_linear(abd_t *abd) 240 { 241 if (abd_is_linear_page(abd)) { 242 abd_free_linear_page(abd); 243 return; 244 } 245 246 if (abd->abd_flags & ABD_FLAG_META) { 247 zio_buf_free(ABD_LINEAR_BUF(abd), abd->abd_size); 248 } else { 249 zio_data_buf_free(ABD_LINEAR_BUF(abd), abd->abd_size); 250 } 251 252 abd_update_linear_stats(abd, ABDSTAT_DECR); 253 } 254 255 static void 256 abd_free_gang(abd_t *abd) 257 { 258 ASSERT(abd_is_gang(abd)); 259 abd_t *cabd; 260 261 while ((cabd = list_head(&ABD_GANG(abd).abd_gang_chain)) != NULL) { 262 /* 263 * We must acquire the child ABDs mutex to ensure that if it 264 * is being added to another gang ABD we will set the link 265 * as inactive when removing it from this gang ABD and before 266 * adding it to the other gang ABD. 267 */ 268 mutex_enter(&cabd->abd_mtx); 269 ASSERT(list_link_active(&cabd->abd_gang_link)); 270 list_remove(&ABD_GANG(abd).abd_gang_chain, cabd); 271 mutex_exit(&cabd->abd_mtx); 272 if (cabd->abd_flags & ABD_FLAG_GANG_FREE) 273 abd_free(cabd); 274 } 275 list_destroy(&ABD_GANG(abd).abd_gang_chain); 276 } 277 278 static void 279 abd_free_scatter(abd_t *abd) 280 { 281 abd_free_chunks(abd); 282 abd_update_scatter_stats(abd, ABDSTAT_DECR); 283 } 284 285 /* 286 * Free an ABD. Use with any kind of abd: those created with abd_alloc_*() 287 * and abd_get_*(), including abd_get_offset_struct(). 288 * 289 * If the ABD was created with abd_alloc_*(), the underlying data 290 * (scatterlist or linear buffer) will also be freed. (Subject to ownership 291 * changes via abd_*_ownership_of_buf().) 292 * 293 * Unless the ABD was created with abd_get_offset_struct(), the abd_t will 294 * also be freed. 295 */ 296 void 297 abd_free(abd_t *abd) 298 { 299 if (abd == NULL) 300 return; 301 302 abd_verify(abd); 303 #ifdef ZFS_DEBUG 304 IMPLY(abd->abd_flags & ABD_FLAG_OWNER, abd->abd_parent == NULL); 305 #endif 306 307 if (abd_is_gang(abd)) { 308 abd_free_gang(abd); 309 } else if (abd_is_linear(abd)) { 310 if (abd->abd_flags & ABD_FLAG_OWNER) 311 abd_free_linear(abd); 312 } else { 313 if (abd->abd_flags & ABD_FLAG_OWNER) 314 abd_free_scatter(abd); 315 } 316 317 #ifdef ZFS_DEBUG 318 if (abd->abd_parent != NULL) { 319 (void) zfs_refcount_remove_many(&abd->abd_parent->abd_children, 320 abd->abd_size, abd); 321 } 322 #endif 323 324 abd_fini_struct(abd); 325 if (abd->abd_flags & ABD_FLAG_ALLOCD) 326 abd_free_struct_impl(abd); 327 } 328 329 /* 330 * Allocate an ABD of the same format (same metadata flag, same scatterize 331 * setting) as another ABD. 332 */ 333 abd_t * 334 abd_alloc_sametype(abd_t *sabd, size_t size) 335 { 336 boolean_t is_metadata = (sabd->abd_flags & ABD_FLAG_META) != 0; 337 if (abd_is_linear(sabd) && 338 !abd_is_linear_page(sabd)) { 339 return (abd_alloc_linear(size, is_metadata)); 340 } else { 341 return (abd_alloc(size, is_metadata)); 342 } 343 } 344 345 /* 346 * Create gang ABD that will be the head of a list of ABD's. This is used 347 * to "chain" scatter/gather lists together when constructing aggregated 348 * IO's. To free this abd, abd_free() must be called. 349 */ 350 abd_t * 351 abd_alloc_gang(void) 352 { 353 abd_t *abd = abd_alloc_struct(0); 354 abd->abd_flags |= ABD_FLAG_GANG | ABD_FLAG_OWNER; 355 list_create(&ABD_GANG(abd).abd_gang_chain, 356 sizeof (abd_t), offsetof(abd_t, abd_gang_link)); 357 return (abd); 358 } 359 360 /* 361 * Add a child gang ABD to a parent gang ABDs chained list. 362 */ 363 static void 364 abd_gang_add_gang(abd_t *pabd, abd_t *cabd, boolean_t free_on_free) 365 { 366 ASSERT(abd_is_gang(pabd)); 367 ASSERT(abd_is_gang(cabd)); 368 369 if (free_on_free) { 370 /* 371 * If the parent is responsible for freeing the child gang 372 * ABD we will just splice the child's children ABD list to 373 * the parent's list and immediately free the child gang ABD 374 * struct. The parent gang ABDs children from the child gang 375 * will retain all the free_on_free settings after being 376 * added to the parents list. 377 */ 378 #ifdef ZFS_DEBUG 379 /* 380 * If cabd had abd_parent, we have to drop it here. We can't 381 * transfer it to pabd, nor we can clear abd_size leaving it. 382 */ 383 if (cabd->abd_parent != NULL) { 384 (void) zfs_refcount_remove_many( 385 &cabd->abd_parent->abd_children, 386 cabd->abd_size, cabd); 387 cabd->abd_parent = NULL; 388 } 389 #endif 390 pabd->abd_size += cabd->abd_size; 391 cabd->abd_size = 0; 392 list_move_tail(&ABD_GANG(pabd).abd_gang_chain, 393 &ABD_GANG(cabd).abd_gang_chain); 394 ASSERT(list_is_empty(&ABD_GANG(cabd).abd_gang_chain)); 395 abd_verify(pabd); 396 abd_free(cabd); 397 } else { 398 for (abd_t *child = list_head(&ABD_GANG(cabd).abd_gang_chain); 399 child != NULL; 400 child = list_next(&ABD_GANG(cabd).abd_gang_chain, child)) { 401 /* 402 * We always pass B_FALSE for free_on_free as it is the 403 * original child gang ABDs responsibility to determine 404 * if any of its child ABDs should be free'd on the call 405 * to abd_free(). 406 */ 407 abd_gang_add(pabd, child, B_FALSE); 408 } 409 abd_verify(pabd); 410 } 411 } 412 413 /* 414 * Add a child ABD to a gang ABD's chained list. 415 */ 416 void 417 abd_gang_add(abd_t *pabd, abd_t *cabd, boolean_t free_on_free) 418 { 419 ASSERT(abd_is_gang(pabd)); 420 abd_t *child_abd = NULL; 421 422 /* 423 * If the child being added is a gang ABD, we will add the 424 * child's ABDs to the parent gang ABD. This allows us to account 425 * for the offset correctly in the parent gang ABD. 426 */ 427 if (abd_is_gang(cabd)) { 428 ASSERT(!list_link_active(&cabd->abd_gang_link)); 429 return (abd_gang_add_gang(pabd, cabd, free_on_free)); 430 } 431 ASSERT(!abd_is_gang(cabd)); 432 433 /* 434 * In order to verify that an ABD is not already part of 435 * another gang ABD, we must lock the child ABD's abd_mtx 436 * to check its abd_gang_link status. We unlock the abd_mtx 437 * only after it is has been added to a gang ABD, which 438 * will update the abd_gang_link's status. See comment below 439 * for how an ABD can be in multiple gang ABD's simultaneously. 440 */ 441 mutex_enter(&cabd->abd_mtx); 442 if (list_link_active(&cabd->abd_gang_link)) { 443 /* 444 * If the child ABD is already part of another 445 * gang ABD then we must allocate a new 446 * ABD to use a separate link. We mark the newly 447 * allocated ABD with ABD_FLAG_GANG_FREE, before 448 * adding it to the gang ABD's list, to make the 449 * gang ABD aware that it is responsible to call 450 * abd_free(). We use abd_get_offset() in order 451 * to just allocate a new ABD but avoid copying the 452 * data over into the newly allocated ABD. 453 * 454 * An ABD may become part of multiple gang ABD's. For 455 * example, when writing ditto bocks, the same ABD 456 * is used to write 2 or 3 locations with 2 or 3 457 * zio_t's. Each of the zio's may be aggregated with 458 * different adjacent zio's. zio aggregation uses gang 459 * zio's, so the single ABD can become part of multiple 460 * gang zio's. 461 * 462 * The ASSERT below is to make sure that if 463 * free_on_free is passed as B_TRUE, the ABD can 464 * not be in multiple gang ABD's. The gang ABD 465 * can not be responsible for cleaning up the child 466 * ABD memory allocation if the ABD can be in 467 * multiple gang ABD's at one time. 468 */ 469 ASSERT3B(free_on_free, ==, B_FALSE); 470 child_abd = abd_get_offset(cabd, 0); 471 child_abd->abd_flags |= ABD_FLAG_GANG_FREE; 472 } else { 473 child_abd = cabd; 474 if (free_on_free) 475 child_abd->abd_flags |= ABD_FLAG_GANG_FREE; 476 } 477 ASSERT3P(child_abd, !=, NULL); 478 479 list_insert_tail(&ABD_GANG(pabd).abd_gang_chain, child_abd); 480 mutex_exit(&cabd->abd_mtx); 481 pabd->abd_size += child_abd->abd_size; 482 } 483 484 /* 485 * Locate the ABD for the supplied offset in the gang ABD. 486 * Return a new offset relative to the returned ABD. 487 */ 488 abd_t * 489 abd_gang_get_offset(abd_t *abd, size_t *off) 490 { 491 abd_t *cabd; 492 493 ASSERT(abd_is_gang(abd)); 494 ASSERT3U(*off, <, abd->abd_size); 495 for (cabd = list_head(&ABD_GANG(abd).abd_gang_chain); cabd != NULL; 496 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) { 497 if (*off >= cabd->abd_size) 498 *off -= cabd->abd_size; 499 else 500 return (cabd); 501 } 502 VERIFY3P(cabd, !=, NULL); 503 return (cabd); 504 } 505 506 /* 507 * Allocate a new ABD, using the provided struct (if non-NULL, and if 508 * circumstances allow - otherwise allocate the struct). The returned ABD will 509 * point to offset off of sabd. It shares the underlying buffer data with sabd. 510 * Use abd_free() to free. sabd must not be freed while any derived ABDs exist. 511 */ 512 static abd_t * 513 abd_get_offset_impl(abd_t *abd, abd_t *sabd, size_t off, size_t size) 514 { 515 abd_verify(sabd); 516 ASSERT3U(off + size, <=, sabd->abd_size); 517 518 if (abd_is_linear(sabd)) { 519 if (abd == NULL) 520 abd = abd_alloc_struct(0); 521 /* 522 * Even if this buf is filesystem metadata, we only track that 523 * if we own the underlying data buffer, which is not true in 524 * this case. Therefore, we don't ever use ABD_FLAG_META here. 525 */ 526 abd->abd_flags |= ABD_FLAG_LINEAR; 527 528 /* 529 * User pages from Direct I/O requests may be in a single page 530 * (ABD_FLAG_LINEAR_PAGE), and we must make sure to still flag 531 * that here for abd. This is required because we have to be 532 * careful when borrowing the buffer from the ABD because we 533 * can not place user pages under write protection on Linux. 534 * See the comments in abd_os.c for abd_borrow_buf(), 535 * abd_borrow_buf_copy(), abd_return_buf() and 536 * abd_return_buf_copy(). 537 */ 538 if (abd_is_from_pages(sabd)) { 539 abd->abd_flags |= ABD_FLAG_FROM_PAGES | 540 ABD_FLAG_LINEAR_PAGE; 541 } 542 543 ABD_LINEAR_BUF(abd) = (char *)ABD_LINEAR_BUF(sabd) + off; 544 } else if (abd_is_gang(sabd)) { 545 size_t left = size; 546 if (abd == NULL) { 547 abd = abd_alloc_gang(); 548 } else { 549 abd->abd_flags |= ABD_FLAG_GANG; 550 list_create(&ABD_GANG(abd).abd_gang_chain, 551 sizeof (abd_t), offsetof(abd_t, abd_gang_link)); 552 } 553 554 abd->abd_flags &= ~ABD_FLAG_OWNER; 555 for (abd_t *cabd = abd_gang_get_offset(sabd, &off); 556 cabd != NULL && left > 0; 557 cabd = list_next(&ABD_GANG(sabd).abd_gang_chain, cabd)) { 558 int csize = MIN(left, cabd->abd_size - off); 559 560 abd_t *nabd = abd_get_offset_size(cabd, off, csize); 561 abd_gang_add(abd, nabd, B_TRUE); 562 left -= csize; 563 off = 0; 564 } 565 ASSERT3U(left, ==, 0); 566 } else { 567 abd = abd_get_offset_scatter(abd, sabd, off, size); 568 } 569 570 ASSERT3P(abd, !=, NULL); 571 abd->abd_size = size; 572 #ifdef ZFS_DEBUG 573 abd->abd_parent = sabd; 574 (void) zfs_refcount_add_many(&sabd->abd_children, abd->abd_size, abd); 575 #endif 576 return (abd); 577 } 578 579 /* 580 * Like abd_get_offset_size(), but memory for the abd_t is provided by the 581 * caller. Using this routine can improve performance by avoiding the cost 582 * of allocating memory for the abd_t struct, and updating the abd stats. 583 * Usually, the provided abd is returned, but in some circumstances (FreeBSD, 584 * if sabd is scatter and size is more than 2 pages) a new abd_t may need to 585 * be allocated. Therefore callers should be careful to use the returned 586 * abd_t*. 587 */ 588 abd_t * 589 abd_get_offset_struct(abd_t *abd, abd_t *sabd, size_t off, size_t size) 590 { 591 abd_t *result; 592 abd_init_struct(abd); 593 result = abd_get_offset_impl(abd, sabd, off, size); 594 if (result != abd) 595 abd_fini_struct(abd); 596 return (result); 597 } 598 599 abd_t * 600 abd_get_offset(abd_t *sabd, size_t off) 601 { 602 size_t size = sabd->abd_size > off ? sabd->abd_size - off : 0; 603 VERIFY3U(size, >, 0); 604 return (abd_get_offset_impl(NULL, sabd, off, size)); 605 } 606 607 abd_t * 608 abd_get_offset_size(abd_t *sabd, size_t off, size_t size) 609 { 610 ASSERT3U(off + size, <=, sabd->abd_size); 611 return (abd_get_offset_impl(NULL, sabd, off, size)); 612 } 613 614 /* 615 * Return a size scatter ABD containing only zeros. 616 */ 617 abd_t * 618 abd_get_zeros(size_t size) 619 { 620 ASSERT3P(abd_zero_scatter, !=, NULL); 621 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 622 return (abd_get_offset_size(abd_zero_scatter, 0, size)); 623 } 624 625 /* 626 * Create a linear ABD for an existing buf. 627 */ 628 static abd_t * 629 abd_get_from_buf_impl(abd_t *abd, void *buf, size_t size) 630 { 631 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE); 632 633 /* 634 * Even if this buf is filesystem metadata, we only track that if we 635 * own the underlying data buffer, which is not true in this case. 636 * Therefore, we don't ever use ABD_FLAG_META here. 637 */ 638 abd->abd_flags |= ABD_FLAG_LINEAR; 639 abd->abd_size = size; 640 641 ABD_LINEAR_BUF(abd) = buf; 642 643 return (abd); 644 } 645 646 abd_t * 647 abd_get_from_buf(void *buf, size_t size) 648 { 649 abd_t *abd = abd_alloc_struct(0); 650 return (abd_get_from_buf_impl(abd, buf, size)); 651 } 652 653 abd_t * 654 abd_get_from_buf_struct(abd_t *abd, void *buf, size_t size) 655 { 656 abd_init_struct(abd); 657 return (abd_get_from_buf_impl(abd, buf, size)); 658 } 659 660 /* 661 * Get the raw buffer associated with a linear ABD. 662 */ 663 void * 664 abd_to_buf(abd_t *abd) 665 { 666 ASSERT(abd_is_linear(abd)); 667 abd_verify(abd); 668 return (ABD_LINEAR_BUF(abd)); 669 } 670 671 void 672 abd_release_ownership_of_buf(abd_t *abd) 673 { 674 ASSERT(abd_is_linear(abd)); 675 ASSERT(abd->abd_flags & ABD_FLAG_OWNER); 676 677 /* 678 * abd_free() needs to handle LINEAR_PAGE ABD's specially. 679 * Since that flag does not survive the 680 * abd_release_ownership_of_buf() -> abd_get_from_buf() -> 681 * abd_take_ownership_of_buf() sequence, we don't allow releasing 682 * these "linear but not zio_[data_]buf_alloc()'ed" ABD's. 683 */ 684 ASSERT(!abd_is_linear_page(abd)); 685 686 abd_verify(abd); 687 688 abd->abd_flags &= ~ABD_FLAG_OWNER; 689 /* Disable this flag since we no longer own the data buffer */ 690 abd->abd_flags &= ~ABD_FLAG_META; 691 692 abd_update_linear_stats(abd, ABDSTAT_DECR); 693 } 694 695 696 /* 697 * Give this ABD ownership of the buffer that it's storing. Can only be used on 698 * linear ABDs which were allocated via abd_get_from_buf(), or ones allocated 699 * with abd_alloc_linear() which subsequently released ownership of their buf 700 * with abd_release_ownership_of_buf(). 701 */ 702 void 703 abd_take_ownership_of_buf(abd_t *abd, boolean_t is_metadata) 704 { 705 ASSERT(abd_is_linear(abd)); 706 ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER)); 707 abd_verify(abd); 708 709 abd->abd_flags |= ABD_FLAG_OWNER; 710 if (is_metadata) { 711 abd->abd_flags |= ABD_FLAG_META; 712 } 713 714 abd_update_linear_stats(abd, ABDSTAT_INCR); 715 } 716 717 /* 718 * Initializes an abd_iter based on whether the abd is a gang ABD 719 * or just a single ABD. 720 */ 721 static inline abd_t * 722 abd_init_abd_iter(abd_t *abd, struct abd_iter *aiter, size_t off) 723 { 724 abd_t *cabd = NULL; 725 726 if (abd_is_gang(abd)) { 727 cabd = abd_gang_get_offset(abd, &off); 728 if (cabd) { 729 abd_iter_init(aiter, cabd); 730 abd_iter_advance(aiter, off); 731 } 732 } else { 733 abd_iter_init(aiter, abd); 734 abd_iter_advance(aiter, off); 735 } 736 return (cabd); 737 } 738 739 /* 740 * Advances an abd_iter. We have to be careful with gang ABD as 741 * advancing could mean that we are at the end of a particular ABD and 742 * must grab the ABD in the gang ABD's list. 743 */ 744 static inline abd_t * 745 abd_advance_abd_iter(abd_t *abd, abd_t *cabd, struct abd_iter *aiter, 746 size_t len) 747 { 748 abd_iter_advance(aiter, len); 749 if (abd_is_gang(abd) && abd_iter_at_end(aiter)) { 750 ASSERT3P(cabd, !=, NULL); 751 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd); 752 if (cabd) { 753 abd_iter_init(aiter, cabd); 754 abd_iter_advance(aiter, 0); 755 } 756 } 757 return (cabd); 758 } 759 760 int 761 abd_iterate_func(abd_t *abd, size_t off, size_t size, 762 abd_iter_func_t *func, void *private) 763 { 764 struct abd_iter aiter; 765 int ret = 0; 766 767 if (size == 0) 768 return (0); 769 770 abd_verify(abd); 771 ASSERT3U(off + size, <=, abd->abd_size); 772 773 abd_t *c_abd = abd_init_abd_iter(abd, &aiter, off); 774 775 while (size > 0) { 776 IMPLY(abd_is_gang(abd), c_abd != NULL); 777 778 abd_iter_map(&aiter); 779 780 size_t len = MIN(aiter.iter_mapsize, size); 781 ASSERT3U(len, >, 0); 782 783 ret = func(aiter.iter_mapaddr, len, private); 784 785 abd_iter_unmap(&aiter); 786 787 if (ret != 0) 788 break; 789 790 size -= len; 791 c_abd = abd_advance_abd_iter(abd, c_abd, &aiter, len); 792 } 793 794 return (ret); 795 } 796 797 #if defined(__linux__) && defined(_KERNEL) 798 int 799 abd_iterate_page_func(abd_t *abd, size_t off, size_t size, 800 abd_iter_page_func_t *func, void *private) 801 { 802 struct abd_iter aiter; 803 int ret = 0; 804 805 if (size == 0) 806 return (0); 807 808 abd_verify(abd); 809 ASSERT3U(off + size, <=, abd->abd_size); 810 811 abd_t *c_abd = abd_init_abd_iter(abd, &aiter, off); 812 813 while (size > 0) { 814 IMPLY(abd_is_gang(abd), c_abd != NULL); 815 816 abd_iter_page(&aiter); 817 818 size_t len = MIN(aiter.iter_page_dsize, size); 819 ASSERT3U(len, >, 0); 820 821 ret = func(aiter.iter_page, aiter.iter_page_doff, 822 len, private); 823 824 aiter.iter_page = NULL; 825 aiter.iter_page_doff = 0; 826 aiter.iter_page_dsize = 0; 827 828 if (ret != 0) 829 break; 830 831 size -= len; 832 c_abd = abd_advance_abd_iter(abd, c_abd, &aiter, len); 833 } 834 835 return (ret); 836 } 837 #endif 838 839 struct buf_arg { 840 void *arg_buf; 841 }; 842 843 static int 844 abd_copy_to_buf_off_cb(void *buf, size_t size, void *private) 845 { 846 struct buf_arg *ba_ptr = private; 847 848 (void) memcpy(ba_ptr->arg_buf, buf, size); 849 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size; 850 851 return (0); 852 } 853 854 /* 855 * Copy abd to buf. (off is the offset in abd.) 856 */ 857 void 858 abd_copy_to_buf_off(void *buf, abd_t *abd, size_t off, size_t size) 859 { 860 struct buf_arg ba_ptr = { buf }; 861 862 (void) abd_iterate_func(abd, off, size, abd_copy_to_buf_off_cb, 863 &ba_ptr); 864 } 865 866 static int 867 abd_cmp_buf_off_cb(void *buf, size_t size, void *private) 868 { 869 int ret; 870 struct buf_arg *ba_ptr = private; 871 872 ret = memcmp(buf, ba_ptr->arg_buf, size); 873 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size; 874 875 return (ret); 876 } 877 878 /* 879 * Compare the contents of abd to buf. (off is the offset in abd.) 880 */ 881 int 882 abd_cmp_buf_off(abd_t *abd, const void *buf, size_t off, size_t size) 883 { 884 struct buf_arg ba_ptr = { (void *) buf }; 885 886 return (abd_iterate_func(abd, off, size, abd_cmp_buf_off_cb, &ba_ptr)); 887 } 888 889 static int 890 abd_copy_from_buf_off_cb(void *buf, size_t size, void *private) 891 { 892 struct buf_arg *ba_ptr = private; 893 894 (void) memcpy(buf, ba_ptr->arg_buf, size); 895 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size; 896 897 return (0); 898 } 899 900 /* 901 * Copy from buf to abd. (off is the offset in abd.) 902 */ 903 void 904 abd_copy_from_buf_off(abd_t *abd, const void *buf, size_t off, size_t size) 905 { 906 struct buf_arg ba_ptr = { (void *) buf }; 907 908 (void) abd_iterate_func(abd, off, size, abd_copy_from_buf_off_cb, 909 &ba_ptr); 910 } 911 912 static int 913 abd_zero_off_cb(void *buf, size_t size, void *private) 914 { 915 (void) private; 916 (void) memset(buf, 0, size); 917 return (0); 918 } 919 920 /* 921 * Zero out the abd from a particular offset to the end. 922 */ 923 void 924 abd_zero_off(abd_t *abd, size_t off, size_t size) 925 { 926 (void) abd_iterate_func(abd, off, size, abd_zero_off_cb, NULL); 927 } 928 929 /* 930 * Iterate over two ABDs and call func incrementally on the two ABDs' data in 931 * equal-sized chunks (passed to func as raw buffers). func could be called many 932 * times during this iteration. 933 */ 934 int 935 abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, 936 size_t size, abd_iter_func2_t *func, void *private) 937 { 938 int ret = 0; 939 struct abd_iter daiter, saiter; 940 abd_t *c_dabd, *c_sabd; 941 942 if (size == 0) 943 return (0); 944 945 abd_verify(dabd); 946 abd_verify(sabd); 947 948 ASSERT3U(doff + size, <=, dabd->abd_size); 949 ASSERT3U(soff + size, <=, sabd->abd_size); 950 951 c_dabd = abd_init_abd_iter(dabd, &daiter, doff); 952 c_sabd = abd_init_abd_iter(sabd, &saiter, soff); 953 954 while (size > 0) { 955 IMPLY(abd_is_gang(dabd), c_dabd != NULL); 956 IMPLY(abd_is_gang(sabd), c_sabd != NULL); 957 958 abd_iter_map(&daiter); 959 abd_iter_map(&saiter); 960 961 size_t dlen = MIN(daiter.iter_mapsize, size); 962 size_t slen = MIN(saiter.iter_mapsize, size); 963 size_t len = MIN(dlen, slen); 964 ASSERT(dlen > 0 || slen > 0); 965 966 ret = func(daiter.iter_mapaddr, saiter.iter_mapaddr, len, 967 private); 968 969 abd_iter_unmap(&saiter); 970 abd_iter_unmap(&daiter); 971 972 if (ret != 0) 973 break; 974 975 size -= len; 976 c_dabd = 977 abd_advance_abd_iter(dabd, c_dabd, &daiter, len); 978 c_sabd = 979 abd_advance_abd_iter(sabd, c_sabd, &saiter, len); 980 } 981 982 return (ret); 983 } 984 985 static int 986 abd_copy_off_cb(void *dbuf, void *sbuf, size_t size, void *private) 987 { 988 (void) private; 989 (void) memcpy(dbuf, sbuf, size); 990 return (0); 991 } 992 993 /* 994 * Copy from sabd to dabd starting from soff and doff. 995 */ 996 void 997 abd_copy_off(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, size_t size) 998 { 999 (void) abd_iterate_func2(dabd, sabd, doff, soff, size, 1000 abd_copy_off_cb, NULL); 1001 } 1002 1003 static int 1004 abd_cmp_cb(void *bufa, void *bufb, size_t size, void *private) 1005 { 1006 (void) private; 1007 return (memcmp(bufa, bufb, size)); 1008 } 1009 1010 /* 1011 * Compares the contents of two ABDs. 1012 */ 1013 int 1014 abd_cmp(abd_t *dabd, abd_t *sabd) 1015 { 1016 ASSERT3U(dabd->abd_size, ==, sabd->abd_size); 1017 return (abd_iterate_func2(dabd, sabd, 0, 0, dabd->abd_size, 1018 abd_cmp_cb, NULL)); 1019 } 1020 1021 /* 1022 * Check if ABD content is all-zeroes. 1023 */ 1024 static int 1025 abd_cmp_zero_off_cb(void *data, size_t len, void *private) 1026 { 1027 (void) private; 1028 1029 /* This function can only check whole uint64s. Enforce that. */ 1030 ASSERT0(P2PHASE(len, 8)); 1031 1032 uint64_t *end = (uint64_t *)((char *)data + len); 1033 for (uint64_t *word = (uint64_t *)data; word < end; word++) 1034 if (*word != 0) 1035 return (1); 1036 1037 return (0); 1038 } 1039 1040 int 1041 abd_cmp_zero_off(abd_t *abd, size_t off, size_t size) 1042 { 1043 return (abd_iterate_func(abd, off, size, abd_cmp_zero_off_cb, NULL)); 1044 } 1045 1046 /* 1047 * Iterate over code ABDs and a data ABD and call @func_raidz_gen. 1048 * 1049 * @cabds parity ABDs, must have equal size 1050 * @dabd data ABD. Can be NULL (in this case @dsize = 0) 1051 * @func_raidz_gen should be implemented so that its behaviour 1052 * is the same when taking linear and when taking scatter 1053 */ 1054 void 1055 abd_raidz_gen_iterate(abd_t **cabds, abd_t *dabd, size_t off, 1056 size_t csize, size_t dsize, const unsigned parity, 1057 void (*func_raidz_gen)(void **, const void *, size_t, size_t)) 1058 { 1059 int i; 1060 size_t len, dlen; 1061 struct abd_iter caiters[3]; 1062 struct abd_iter daiter; 1063 void *caddrs[3], *daddr; 1064 unsigned long flags __maybe_unused = 0; 1065 abd_t *c_cabds[3]; 1066 abd_t *c_dabd = NULL; 1067 1068 ASSERT3U(parity, <=, 3); 1069 for (i = 0; i < parity; i++) { 1070 abd_verify(cabds[i]); 1071 ASSERT3U(off + csize, <=, cabds[i]->abd_size); 1072 c_cabds[i] = abd_init_abd_iter(cabds[i], &caiters[i], off); 1073 } 1074 1075 if (dsize > 0) { 1076 ASSERT(dabd); 1077 abd_verify(dabd); 1078 ASSERT3U(off + dsize, <=, dabd->abd_size); 1079 c_dabd = abd_init_abd_iter(dabd, &daiter, off); 1080 } 1081 1082 abd_enter_critical(flags); 1083 while (csize > 0) { 1084 len = csize; 1085 for (i = 0; i < parity; i++) { 1086 IMPLY(abd_is_gang(cabds[i]), c_cabds[i] != NULL); 1087 abd_iter_map(&caiters[i]); 1088 caddrs[i] = caiters[i].iter_mapaddr; 1089 len = MIN(caiters[i].iter_mapsize, len); 1090 } 1091 1092 if (dsize > 0) { 1093 IMPLY(abd_is_gang(dabd), c_dabd != NULL); 1094 abd_iter_map(&daiter); 1095 daddr = daiter.iter_mapaddr; 1096 len = MIN(daiter.iter_mapsize, len); 1097 dlen = len; 1098 } else { 1099 daddr = NULL; 1100 dlen = 0; 1101 } 1102 1103 /* must be progressive */ 1104 ASSERT3U(len, >, 0); 1105 /* 1106 * The iterated function likely will not do well if each 1107 * segment except the last one is not multiple of 512 (raidz). 1108 */ 1109 ASSERT3U(((uint64_t)len & 511ULL), ==, 0); 1110 1111 func_raidz_gen(caddrs, daddr, len, dlen); 1112 1113 for (i = parity-1; i >= 0; i--) { 1114 abd_iter_unmap(&caiters[i]); 1115 c_cabds[i] = 1116 abd_advance_abd_iter(cabds[i], c_cabds[i], 1117 &caiters[i], len); 1118 } 1119 1120 if (dsize > 0) { 1121 abd_iter_unmap(&daiter); 1122 c_dabd = 1123 abd_advance_abd_iter(dabd, c_dabd, &daiter, 1124 dlen); 1125 dsize -= dlen; 1126 } 1127 1128 csize -= len; 1129 } 1130 abd_exit_critical(flags); 1131 } 1132 1133 /* 1134 * Iterate over code ABDs and data reconstruction target ABDs and call 1135 * @func_raidz_rec. Function maps at most 6 pages atomically. 1136 * 1137 * @cabds parity ABDs, must have equal size 1138 * @tabds rec target ABDs, at most 3 1139 * @tsize size of data target columns 1140 * @func_raidz_rec expects syndrome data in target columns. Function 1141 * reconstructs data and overwrites target columns. 1142 */ 1143 void 1144 abd_raidz_rec_iterate(abd_t **cabds, abd_t **tabds, 1145 size_t tsize, const unsigned parity, 1146 void (*func_raidz_rec)(void **t, const size_t tsize, void **c, 1147 const unsigned *mul), 1148 const unsigned *mul) 1149 { 1150 int i; 1151 size_t len; 1152 struct abd_iter citers[3]; 1153 struct abd_iter xiters[3]; 1154 void *caddrs[3], *xaddrs[3]; 1155 unsigned long flags __maybe_unused = 0; 1156 abd_t *c_cabds[3]; 1157 abd_t *c_tabds[3]; 1158 1159 ASSERT3U(parity, <=, 3); 1160 1161 for (i = 0; i < parity; i++) { 1162 abd_verify(cabds[i]); 1163 abd_verify(tabds[i]); 1164 ASSERT3U(tsize, <=, cabds[i]->abd_size); 1165 ASSERT3U(tsize, <=, tabds[i]->abd_size); 1166 c_cabds[i] = 1167 abd_init_abd_iter(cabds[i], &citers[i], 0); 1168 c_tabds[i] = 1169 abd_init_abd_iter(tabds[i], &xiters[i], 0); 1170 } 1171 1172 abd_enter_critical(flags); 1173 while (tsize > 0) { 1174 len = tsize; 1175 for (i = 0; i < parity; i++) { 1176 IMPLY(abd_is_gang(cabds[i]), c_cabds[i] != NULL); 1177 IMPLY(abd_is_gang(tabds[i]), c_tabds[i] != NULL); 1178 abd_iter_map(&citers[i]); 1179 abd_iter_map(&xiters[i]); 1180 caddrs[i] = citers[i].iter_mapaddr; 1181 xaddrs[i] = xiters[i].iter_mapaddr; 1182 len = MIN(citers[i].iter_mapsize, len); 1183 len = MIN(xiters[i].iter_mapsize, len); 1184 } 1185 1186 /* must be progressive */ 1187 ASSERT3S(len, >, 0); 1188 /* 1189 * The iterated function likely will not do well if each 1190 * segment except the last one is not multiple of 512 (raidz). 1191 */ 1192 ASSERT3U(((uint64_t)len & 511ULL), ==, 0); 1193 1194 func_raidz_rec(xaddrs, len, caddrs, mul); 1195 1196 for (i = parity-1; i >= 0; i--) { 1197 abd_iter_unmap(&xiters[i]); 1198 abd_iter_unmap(&citers[i]); 1199 c_tabds[i] = 1200 abd_advance_abd_iter(tabds[i], c_tabds[i], 1201 &xiters[i], len); 1202 c_cabds[i] = 1203 abd_advance_abd_iter(cabds[i], c_cabds[i], 1204 &citers[i], len); 1205 } 1206 1207 tsize -= len; 1208 ASSERT3S(tsize, >=, 0); 1209 } 1210 abd_exit_critical(flags); 1211 } 1212