1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2014 by Chunwei Chen. All rights reserved. 23 * Copyright (c) 2019 by Delphix. All rights reserved. 24 */ 25 26 /* 27 * ARC buffer data (ABD). 28 * 29 * ABDs are an abstract data structure for the ARC which can use two 30 * different ways of storing the underlying data: 31 * 32 * (a) Linear buffer. In this case, all the data in the ABD is stored in one 33 * contiguous buffer in memory (from a zio_[data_]buf_* kmem cache). 34 * 35 * +-------------------+ 36 * | ABD (linear) | 37 * | abd_flags = ... | 38 * | abd_size = ... | +--------------------------------+ 39 * | abd_buf ------------->| raw buffer of size abd_size | 40 * +-------------------+ +--------------------------------+ 41 * no abd_chunks 42 * 43 * (b) Scattered buffer. In this case, the data in the ABD is split into 44 * equal-sized chunks (from the abd_chunk_cache kmem_cache), with pointers 45 * to the chunks recorded in an array at the end of the ABD structure. 46 * 47 * +-------------------+ 48 * | ABD (scattered) | 49 * | abd_flags = ... | 50 * | abd_size = ... | 51 * | abd_offset = 0 | +-----------+ 52 * | abd_chunks[0] ----------------------------->| chunk 0 | 53 * | abd_chunks[1] ---------------------+ +-----------+ 54 * | ... | | +-----------+ 55 * | abd_chunks[N-1] ---------+ +------->| chunk 1 | 56 * +-------------------+ | +-----------+ 57 * | ... 58 * | +-----------+ 59 * +----------------->| chunk N-1 | 60 * +-----------+ 61 * 62 * In addition to directly allocating a linear or scattered ABD, it is also 63 * possible to create an ABD by requesting the "sub-ABD" starting at an offset 64 * within an existing ABD. In linear buffers this is simple (set abd_buf of 65 * the new ABD to the starting point within the original raw buffer), but 66 * scattered ABDs are a little more complex. The new ABD makes a copy of the 67 * relevant abd_chunks pointers (but not the underlying data). However, to 68 * provide arbitrary rather than only chunk-aligned starting offsets, it also 69 * tracks an abd_offset field which represents the starting point of the data 70 * within the first chunk in abd_chunks. For both linear and scattered ABDs, 71 * creating an offset ABD marks the original ABD as the offset's parent, and the 72 * original ABD's abd_children refcount is incremented. This data allows us to 73 * ensure the root ABD isn't deleted before its children. 74 * 75 * Most consumers should never need to know what type of ABD they're using -- 76 * the ABD public API ensures that it's possible to transparently switch from 77 * using a linear ABD to a scattered one when doing so would be beneficial. 78 * 79 * If you need to use the data within an ABD directly, if you know it's linear 80 * (because you allocated it) you can use abd_to_buf() to access the underlying 81 * raw buffer. Otherwise, you should use one of the abd_borrow_buf* functions 82 * which will allocate a raw buffer if necessary. Use the abd_return_buf* 83 * functions to return any raw buffers that are no longer necessary when you're 84 * done using them. 85 * 86 * There are a variety of ABD APIs that implement basic buffer operations: 87 * compare, copy, read, write, and fill with zeroes. If you need a custom 88 * function which progressively accesses the whole ABD, use the abd_iterate_* 89 * functions. 90 * 91 * As an additional feature, linear and scatter ABD's can be stitched together 92 * by using the gang ABD type (abd_alloc_gang_abd()). This allows for 93 * multiple ABDs to be viewed as a singular ABD. 94 * 95 * It is possible to make all ABDs linear by setting zfs_abd_scatter_enabled to 96 * B_FALSE. 97 */ 98 99 #include <sys/abd_impl.h> 100 #include <sys/param.h> 101 #include <sys/zio.h> 102 #include <sys/zfs_context.h> 103 #include <sys/zfs_znode.h> 104 105 /* see block comment above for description */ 106 int zfs_abd_scatter_enabled = B_TRUE; 107 108 void 109 abd_verify(abd_t *abd) 110 { 111 #ifdef ZFS_DEBUG 112 ASSERT3U(abd->abd_size, >, 0); 113 ASSERT3U(abd->abd_size, <=, SPA_MAXBLOCKSIZE); 114 ASSERT3U(abd->abd_flags, ==, abd->abd_flags & (ABD_FLAG_LINEAR | 115 ABD_FLAG_OWNER | ABD_FLAG_META | ABD_FLAG_MULTI_ZONE | 116 ABD_FLAG_MULTI_CHUNK | ABD_FLAG_LINEAR_PAGE | ABD_FLAG_GANG | 117 ABD_FLAG_GANG_FREE | ABD_FLAG_ZEROS | ABD_FLAG_ALLOCD)); 118 IMPLY(abd->abd_parent != NULL, !(abd->abd_flags & ABD_FLAG_OWNER)); 119 IMPLY(abd->abd_flags & ABD_FLAG_META, abd->abd_flags & ABD_FLAG_OWNER); 120 if (abd_is_linear(abd)) { 121 ASSERT3P(ABD_LINEAR_BUF(abd), !=, NULL); 122 } else if (abd_is_gang(abd)) { 123 uint_t child_sizes = 0; 124 for (abd_t *cabd = list_head(&ABD_GANG(abd).abd_gang_chain); 125 cabd != NULL; 126 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) { 127 ASSERT(list_link_active(&cabd->abd_gang_link)); 128 child_sizes += cabd->abd_size; 129 abd_verify(cabd); 130 } 131 ASSERT3U(abd->abd_size, ==, child_sizes); 132 } else { 133 abd_verify_scatter(abd); 134 } 135 #endif 136 } 137 138 static void 139 abd_init_struct(abd_t *abd) 140 { 141 list_link_init(&abd->abd_gang_link); 142 mutex_init(&abd->abd_mtx, NULL, MUTEX_DEFAULT, NULL); 143 abd->abd_flags = 0; 144 #ifdef ZFS_DEBUG 145 zfs_refcount_create(&abd->abd_children); 146 abd->abd_parent = NULL; 147 #endif 148 abd->abd_size = 0; 149 } 150 151 static void 152 abd_fini_struct(abd_t *abd) 153 { 154 mutex_destroy(&abd->abd_mtx); 155 ASSERT(!list_link_active(&abd->abd_gang_link)); 156 #ifdef ZFS_DEBUG 157 zfs_refcount_destroy(&abd->abd_children); 158 #endif 159 } 160 161 abd_t * 162 abd_alloc_struct(size_t size) 163 { 164 abd_t *abd = abd_alloc_struct_impl(size); 165 abd_init_struct(abd); 166 abd->abd_flags |= ABD_FLAG_ALLOCD; 167 return (abd); 168 } 169 170 void 171 abd_free_struct(abd_t *abd) 172 { 173 abd_fini_struct(abd); 174 abd_free_struct_impl(abd); 175 } 176 177 /* 178 * Allocate an ABD, along with its own underlying data buffers. Use this if you 179 * don't care whether the ABD is linear or not. 180 */ 181 abd_t * 182 abd_alloc(size_t size, boolean_t is_metadata) 183 { 184 if (abd_size_alloc_linear(size)) 185 return (abd_alloc_linear(size, is_metadata)); 186 187 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE); 188 189 abd_t *abd = abd_alloc_struct(size); 190 abd->abd_flags |= ABD_FLAG_OWNER; 191 abd->abd_u.abd_scatter.abd_offset = 0; 192 abd_alloc_chunks(abd, size); 193 194 if (is_metadata) { 195 abd->abd_flags |= ABD_FLAG_META; 196 } 197 abd->abd_size = size; 198 199 abd_update_scatter_stats(abd, ABDSTAT_INCR); 200 201 return (abd); 202 } 203 204 /* 205 * Allocate an ABD that must be linear, along with its own underlying data 206 * buffer. Only use this when it would be very annoying to write your ABD 207 * consumer with a scattered ABD. 208 */ 209 abd_t * 210 abd_alloc_linear(size_t size, boolean_t is_metadata) 211 { 212 abd_t *abd = abd_alloc_struct(0); 213 214 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE); 215 216 abd->abd_flags |= ABD_FLAG_LINEAR | ABD_FLAG_OWNER; 217 if (is_metadata) { 218 abd->abd_flags |= ABD_FLAG_META; 219 } 220 abd->abd_size = size; 221 222 if (is_metadata) { 223 ABD_LINEAR_BUF(abd) = zio_buf_alloc(size); 224 } else { 225 ABD_LINEAR_BUF(abd) = zio_data_buf_alloc(size); 226 } 227 228 abd_update_linear_stats(abd, ABDSTAT_INCR); 229 230 return (abd); 231 } 232 233 static void 234 abd_free_linear(abd_t *abd) 235 { 236 if (abd_is_linear_page(abd)) { 237 abd_free_linear_page(abd); 238 return; 239 } 240 if (abd->abd_flags & ABD_FLAG_META) { 241 zio_buf_free(ABD_LINEAR_BUF(abd), abd->abd_size); 242 } else { 243 zio_data_buf_free(ABD_LINEAR_BUF(abd), abd->abd_size); 244 } 245 246 abd_update_linear_stats(abd, ABDSTAT_DECR); 247 } 248 249 static void 250 abd_free_gang(abd_t *abd) 251 { 252 ASSERT(abd_is_gang(abd)); 253 abd_t *cabd; 254 255 while ((cabd = list_head(&ABD_GANG(abd).abd_gang_chain)) != NULL) { 256 /* 257 * We must acquire the child ABDs mutex to ensure that if it 258 * is being added to another gang ABD we will set the link 259 * as inactive when removing it from this gang ABD and before 260 * adding it to the other gang ABD. 261 */ 262 mutex_enter(&cabd->abd_mtx); 263 ASSERT(list_link_active(&cabd->abd_gang_link)); 264 list_remove(&ABD_GANG(abd).abd_gang_chain, cabd); 265 mutex_exit(&cabd->abd_mtx); 266 if (cabd->abd_flags & ABD_FLAG_GANG_FREE) 267 abd_free(cabd); 268 } 269 list_destroy(&ABD_GANG(abd).abd_gang_chain); 270 } 271 272 static void 273 abd_free_scatter(abd_t *abd) 274 { 275 abd_free_chunks(abd); 276 abd_update_scatter_stats(abd, ABDSTAT_DECR); 277 } 278 279 /* 280 * Free an ABD. Use with any kind of abd: those created with abd_alloc_*() 281 * and abd_get_*(), including abd_get_offset_struct(). 282 * 283 * If the ABD was created with abd_alloc_*(), the underlying data 284 * (scatterlist or linear buffer) will also be freed. (Subject to ownership 285 * changes via abd_*_ownership_of_buf().) 286 * 287 * Unless the ABD was created with abd_get_offset_struct(), the abd_t will 288 * also be freed. 289 */ 290 void 291 abd_free(abd_t *abd) 292 { 293 if (abd == NULL) 294 return; 295 296 abd_verify(abd); 297 #ifdef ZFS_DEBUG 298 IMPLY(abd->abd_flags & ABD_FLAG_OWNER, abd->abd_parent == NULL); 299 #endif 300 301 if (abd_is_gang(abd)) { 302 abd_free_gang(abd); 303 } else if (abd_is_linear(abd)) { 304 if (abd->abd_flags & ABD_FLAG_OWNER) 305 abd_free_linear(abd); 306 } else { 307 if (abd->abd_flags & ABD_FLAG_OWNER) 308 abd_free_scatter(abd); 309 } 310 311 #ifdef ZFS_DEBUG 312 if (abd->abd_parent != NULL) { 313 (void) zfs_refcount_remove_many(&abd->abd_parent->abd_children, 314 abd->abd_size, abd); 315 } 316 #endif 317 318 abd_fini_struct(abd); 319 if (abd->abd_flags & ABD_FLAG_ALLOCD) 320 abd_free_struct_impl(abd); 321 } 322 323 /* 324 * Allocate an ABD of the same format (same metadata flag, same scatterize 325 * setting) as another ABD. 326 */ 327 abd_t * 328 abd_alloc_sametype(abd_t *sabd, size_t size) 329 { 330 boolean_t is_metadata = (sabd->abd_flags & ABD_FLAG_META) != 0; 331 if (abd_is_linear(sabd) && 332 !abd_is_linear_page(sabd)) { 333 return (abd_alloc_linear(size, is_metadata)); 334 } else { 335 return (abd_alloc(size, is_metadata)); 336 } 337 } 338 339 /* 340 * Create gang ABD that will be the head of a list of ABD's. This is used 341 * to "chain" scatter/gather lists together when constructing aggregated 342 * IO's. To free this abd, abd_free() must be called. 343 */ 344 abd_t * 345 abd_alloc_gang(void) 346 { 347 abd_t *abd = abd_alloc_struct(0); 348 abd->abd_flags |= ABD_FLAG_GANG | ABD_FLAG_OWNER; 349 list_create(&ABD_GANG(abd).abd_gang_chain, 350 sizeof (abd_t), offsetof(abd_t, abd_gang_link)); 351 return (abd); 352 } 353 354 /* 355 * Add a child gang ABD to a parent gang ABDs chained list. 356 */ 357 static void 358 abd_gang_add_gang(abd_t *pabd, abd_t *cabd, boolean_t free_on_free) 359 { 360 ASSERT(abd_is_gang(pabd)); 361 ASSERT(abd_is_gang(cabd)); 362 363 if (free_on_free) { 364 /* 365 * If the parent is responsible for freeing the child gang 366 * ABD we will just splice the child's children ABD list to 367 * the parent's list and immediately free the child gang ABD 368 * struct. The parent gang ABDs children from the child gang 369 * will retain all the free_on_free settings after being 370 * added to the parents list. 371 */ 372 pabd->abd_size += cabd->abd_size; 373 list_move_tail(&ABD_GANG(pabd).abd_gang_chain, 374 &ABD_GANG(cabd).abd_gang_chain); 375 ASSERT(list_is_empty(&ABD_GANG(cabd).abd_gang_chain)); 376 abd_verify(pabd); 377 abd_free(cabd); 378 } else { 379 for (abd_t *child = list_head(&ABD_GANG(cabd).abd_gang_chain); 380 child != NULL; 381 child = list_next(&ABD_GANG(cabd).abd_gang_chain, child)) { 382 /* 383 * We always pass B_FALSE for free_on_free as it is the 384 * original child gang ABDs responsibility to determine 385 * if any of its child ABDs should be free'd on the call 386 * to abd_free(). 387 */ 388 abd_gang_add(pabd, child, B_FALSE); 389 } 390 abd_verify(pabd); 391 } 392 } 393 394 /* 395 * Add a child ABD to a gang ABD's chained list. 396 */ 397 void 398 abd_gang_add(abd_t *pabd, abd_t *cabd, boolean_t free_on_free) 399 { 400 ASSERT(abd_is_gang(pabd)); 401 abd_t *child_abd = NULL; 402 403 /* 404 * If the child being added is a gang ABD, we will add the 405 * child's ABDs to the parent gang ABD. This allows us to account 406 * for the offset correctly in the parent gang ABD. 407 */ 408 if (abd_is_gang(cabd)) { 409 ASSERT(!list_link_active(&cabd->abd_gang_link)); 410 ASSERT(!list_is_empty(&ABD_GANG(cabd).abd_gang_chain)); 411 return (abd_gang_add_gang(pabd, cabd, free_on_free)); 412 } 413 ASSERT(!abd_is_gang(cabd)); 414 415 /* 416 * In order to verify that an ABD is not already part of 417 * another gang ABD, we must lock the child ABD's abd_mtx 418 * to check its abd_gang_link status. We unlock the abd_mtx 419 * only after it is has been added to a gang ABD, which 420 * will update the abd_gang_link's status. See comment below 421 * for how an ABD can be in multiple gang ABD's simultaneously. 422 */ 423 mutex_enter(&cabd->abd_mtx); 424 if (list_link_active(&cabd->abd_gang_link)) { 425 /* 426 * If the child ABD is already part of another 427 * gang ABD then we must allocate a new 428 * ABD to use a separate link. We mark the newly 429 * allocated ABD with ABD_FLAG_GANG_FREE, before 430 * adding it to the gang ABD's list, to make the 431 * gang ABD aware that it is responsible to call 432 * abd_free(). We use abd_get_offset() in order 433 * to just allocate a new ABD but avoid copying the 434 * data over into the newly allocated ABD. 435 * 436 * An ABD may become part of multiple gang ABD's. For 437 * example, when writing ditto bocks, the same ABD 438 * is used to write 2 or 3 locations with 2 or 3 439 * zio_t's. Each of the zio's may be aggregated with 440 * different adjacent zio's. zio aggregation uses gang 441 * zio's, so the single ABD can become part of multiple 442 * gang zio's. 443 * 444 * The ASSERT below is to make sure that if 445 * free_on_free is passed as B_TRUE, the ABD can 446 * not be in multiple gang ABD's. The gang ABD 447 * can not be responsible for cleaning up the child 448 * ABD memory allocation if the ABD can be in 449 * multiple gang ABD's at one time. 450 */ 451 ASSERT3B(free_on_free, ==, B_FALSE); 452 child_abd = abd_get_offset(cabd, 0); 453 child_abd->abd_flags |= ABD_FLAG_GANG_FREE; 454 } else { 455 child_abd = cabd; 456 if (free_on_free) 457 child_abd->abd_flags |= ABD_FLAG_GANG_FREE; 458 } 459 ASSERT3P(child_abd, !=, NULL); 460 461 list_insert_tail(&ABD_GANG(pabd).abd_gang_chain, child_abd); 462 mutex_exit(&cabd->abd_mtx); 463 pabd->abd_size += child_abd->abd_size; 464 } 465 466 /* 467 * Locate the ABD for the supplied offset in the gang ABD. 468 * Return a new offset relative to the returned ABD. 469 */ 470 abd_t * 471 abd_gang_get_offset(abd_t *abd, size_t *off) 472 { 473 abd_t *cabd; 474 475 ASSERT(abd_is_gang(abd)); 476 ASSERT3U(*off, <, abd->abd_size); 477 for (cabd = list_head(&ABD_GANG(abd).abd_gang_chain); cabd != NULL; 478 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) { 479 if (*off >= cabd->abd_size) 480 *off -= cabd->abd_size; 481 else 482 return (cabd); 483 } 484 VERIFY3P(cabd, !=, NULL); 485 return (cabd); 486 } 487 488 /* 489 * Allocate a new ABD, using the provided struct (if non-NULL, and if 490 * circumstances allow - otherwise allocate the struct). The returned ABD will 491 * point to offset off of sabd. It shares the underlying buffer data with sabd. 492 * Use abd_free() to free. sabd must not be freed while any derived ABDs exist. 493 */ 494 static abd_t * 495 abd_get_offset_impl(abd_t *abd, abd_t *sabd, size_t off, size_t size) 496 { 497 abd_verify(sabd); 498 ASSERT3U(off + size, <=, sabd->abd_size); 499 500 if (abd_is_linear(sabd)) { 501 if (abd == NULL) 502 abd = abd_alloc_struct(0); 503 /* 504 * Even if this buf is filesystem metadata, we only track that 505 * if we own the underlying data buffer, which is not true in 506 * this case. Therefore, we don't ever use ABD_FLAG_META here. 507 */ 508 abd->abd_flags |= ABD_FLAG_LINEAR; 509 510 ABD_LINEAR_BUF(abd) = (char *)ABD_LINEAR_BUF(sabd) + off; 511 } else if (abd_is_gang(sabd)) { 512 size_t left = size; 513 if (abd == NULL) { 514 abd = abd_alloc_gang(); 515 } else { 516 abd->abd_flags |= ABD_FLAG_GANG; 517 list_create(&ABD_GANG(abd).abd_gang_chain, 518 sizeof (abd_t), offsetof(abd_t, abd_gang_link)); 519 } 520 521 abd->abd_flags &= ~ABD_FLAG_OWNER; 522 for (abd_t *cabd = abd_gang_get_offset(sabd, &off); 523 cabd != NULL && left > 0; 524 cabd = list_next(&ABD_GANG(sabd).abd_gang_chain, cabd)) { 525 int csize = MIN(left, cabd->abd_size - off); 526 527 abd_t *nabd = abd_get_offset_size(cabd, off, csize); 528 abd_gang_add(abd, nabd, B_TRUE); 529 left -= csize; 530 off = 0; 531 } 532 ASSERT3U(left, ==, 0); 533 } else { 534 abd = abd_get_offset_scatter(abd, sabd, off, size); 535 } 536 537 ASSERT3P(abd, !=, NULL); 538 abd->abd_size = size; 539 #ifdef ZFS_DEBUG 540 abd->abd_parent = sabd; 541 (void) zfs_refcount_add_many(&sabd->abd_children, abd->abd_size, abd); 542 #endif 543 return (abd); 544 } 545 546 /* 547 * Like abd_get_offset_size(), but memory for the abd_t is provided by the 548 * caller. Using this routine can improve performance by avoiding the cost 549 * of allocating memory for the abd_t struct, and updating the abd stats. 550 * Usually, the provided abd is returned, but in some circumstances (FreeBSD, 551 * if sabd is scatter and size is more than 2 pages) a new abd_t may need to 552 * be allocated. Therefore callers should be careful to use the returned 553 * abd_t*. 554 */ 555 abd_t * 556 abd_get_offset_struct(abd_t *abd, abd_t *sabd, size_t off, size_t size) 557 { 558 abd_t *result; 559 abd_init_struct(abd); 560 result = abd_get_offset_impl(abd, sabd, off, size); 561 if (result != abd) 562 abd_fini_struct(abd); 563 return (result); 564 } 565 566 abd_t * 567 abd_get_offset(abd_t *sabd, size_t off) 568 { 569 size_t size = sabd->abd_size > off ? sabd->abd_size - off : 0; 570 VERIFY3U(size, >, 0); 571 return (abd_get_offset_impl(NULL, sabd, off, size)); 572 } 573 574 abd_t * 575 abd_get_offset_size(abd_t *sabd, size_t off, size_t size) 576 { 577 ASSERT3U(off + size, <=, sabd->abd_size); 578 return (abd_get_offset_impl(NULL, sabd, off, size)); 579 } 580 581 /* 582 * Return a size scatter ABD containing only zeros. 583 */ 584 abd_t * 585 abd_get_zeros(size_t size) 586 { 587 ASSERT3P(abd_zero_scatter, !=, NULL); 588 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 589 return (abd_get_offset_size(abd_zero_scatter, 0, size)); 590 } 591 592 /* 593 * Allocate a linear ABD structure for buf. 594 */ 595 abd_t * 596 abd_get_from_buf(void *buf, size_t size) 597 { 598 abd_t *abd = abd_alloc_struct(0); 599 600 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE); 601 602 /* 603 * Even if this buf is filesystem metadata, we only track that if we 604 * own the underlying data buffer, which is not true in this case. 605 * Therefore, we don't ever use ABD_FLAG_META here. 606 */ 607 abd->abd_flags |= ABD_FLAG_LINEAR; 608 abd->abd_size = size; 609 610 ABD_LINEAR_BUF(abd) = buf; 611 612 return (abd); 613 } 614 615 /* 616 * Get the raw buffer associated with a linear ABD. 617 */ 618 void * 619 abd_to_buf(abd_t *abd) 620 { 621 ASSERT(abd_is_linear(abd)); 622 abd_verify(abd); 623 return (ABD_LINEAR_BUF(abd)); 624 } 625 626 /* 627 * Borrow a raw buffer from an ABD without copying the contents of the ABD 628 * into the buffer. If the ABD is scattered, this will allocate a raw buffer 629 * whose contents are undefined. To copy over the existing data in the ABD, use 630 * abd_borrow_buf_copy() instead. 631 */ 632 void * 633 abd_borrow_buf(abd_t *abd, size_t n) 634 { 635 void *buf; 636 abd_verify(abd); 637 ASSERT3U(abd->abd_size, >=, n); 638 if (abd_is_linear(abd)) { 639 buf = abd_to_buf(abd); 640 } else { 641 buf = zio_buf_alloc(n); 642 } 643 #ifdef ZFS_DEBUG 644 (void) zfs_refcount_add_many(&abd->abd_children, n, buf); 645 #endif 646 return (buf); 647 } 648 649 void * 650 abd_borrow_buf_copy(abd_t *abd, size_t n) 651 { 652 void *buf = abd_borrow_buf(abd, n); 653 if (!abd_is_linear(abd)) { 654 abd_copy_to_buf(buf, abd, n); 655 } 656 return (buf); 657 } 658 659 /* 660 * Return a borrowed raw buffer to an ABD. If the ABD is scattered, this will 661 * not change the contents of the ABD and will ASSERT that you didn't modify 662 * the buffer since it was borrowed. If you want any changes you made to buf to 663 * be copied back to abd, use abd_return_buf_copy() instead. 664 */ 665 void 666 abd_return_buf(abd_t *abd, void *buf, size_t n) 667 { 668 abd_verify(abd); 669 ASSERT3U(abd->abd_size, >=, n); 670 if (abd_is_linear(abd)) { 671 ASSERT3P(buf, ==, abd_to_buf(abd)); 672 } else { 673 ASSERT0(abd_cmp_buf(abd, buf, n)); 674 zio_buf_free(buf, n); 675 } 676 #ifdef ZFS_DEBUG 677 (void) zfs_refcount_remove_many(&abd->abd_children, n, buf); 678 #endif 679 } 680 681 void 682 abd_return_buf_copy(abd_t *abd, void *buf, size_t n) 683 { 684 if (!abd_is_linear(abd)) { 685 abd_copy_from_buf(abd, buf, n); 686 } 687 abd_return_buf(abd, buf, n); 688 } 689 690 void 691 abd_release_ownership_of_buf(abd_t *abd) 692 { 693 ASSERT(abd_is_linear(abd)); 694 ASSERT(abd->abd_flags & ABD_FLAG_OWNER); 695 696 /* 697 * abd_free() needs to handle LINEAR_PAGE ABD's specially. 698 * Since that flag does not survive the 699 * abd_release_ownership_of_buf() -> abd_get_from_buf() -> 700 * abd_take_ownership_of_buf() sequence, we don't allow releasing 701 * these "linear but not zio_[data_]buf_alloc()'ed" ABD's. 702 */ 703 ASSERT(!abd_is_linear_page(abd)); 704 705 abd_verify(abd); 706 707 abd->abd_flags &= ~ABD_FLAG_OWNER; 708 /* Disable this flag since we no longer own the data buffer */ 709 abd->abd_flags &= ~ABD_FLAG_META; 710 711 abd_update_linear_stats(abd, ABDSTAT_DECR); 712 } 713 714 715 /* 716 * Give this ABD ownership of the buffer that it's storing. Can only be used on 717 * linear ABDs which were allocated via abd_get_from_buf(), or ones allocated 718 * with abd_alloc_linear() which subsequently released ownership of their buf 719 * with abd_release_ownership_of_buf(). 720 */ 721 void 722 abd_take_ownership_of_buf(abd_t *abd, boolean_t is_metadata) 723 { 724 ASSERT(abd_is_linear(abd)); 725 ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER)); 726 abd_verify(abd); 727 728 abd->abd_flags |= ABD_FLAG_OWNER; 729 if (is_metadata) { 730 abd->abd_flags |= ABD_FLAG_META; 731 } 732 733 abd_update_linear_stats(abd, ABDSTAT_INCR); 734 } 735 736 /* 737 * Initializes an abd_iter based on whether the abd is a gang ABD 738 * or just a single ABD. 739 */ 740 static inline abd_t * 741 abd_init_abd_iter(abd_t *abd, struct abd_iter *aiter, size_t off) 742 { 743 abd_t *cabd = NULL; 744 745 if (abd_is_gang(abd)) { 746 cabd = abd_gang_get_offset(abd, &off); 747 if (cabd) { 748 abd_iter_init(aiter, cabd); 749 abd_iter_advance(aiter, off); 750 } 751 } else { 752 abd_iter_init(aiter, abd); 753 abd_iter_advance(aiter, off); 754 } 755 return (cabd); 756 } 757 758 /* 759 * Advances an abd_iter. We have to be careful with gang ABD as 760 * advancing could mean that we are at the end of a particular ABD and 761 * must grab the ABD in the gang ABD's list. 762 */ 763 static inline abd_t * 764 abd_advance_abd_iter(abd_t *abd, abd_t *cabd, struct abd_iter *aiter, 765 size_t len) 766 { 767 abd_iter_advance(aiter, len); 768 if (abd_is_gang(abd) && abd_iter_at_end(aiter)) { 769 ASSERT3P(cabd, !=, NULL); 770 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd); 771 if (cabd) { 772 abd_iter_init(aiter, cabd); 773 abd_iter_advance(aiter, 0); 774 } 775 } 776 return (cabd); 777 } 778 779 int 780 abd_iterate_func(abd_t *abd, size_t off, size_t size, 781 abd_iter_func_t *func, void *private) 782 { 783 struct abd_iter aiter; 784 int ret = 0; 785 786 if (size == 0) 787 return (0); 788 789 abd_verify(abd); 790 ASSERT3U(off + size, <=, abd->abd_size); 791 792 boolean_t gang = abd_is_gang(abd); 793 abd_t *c_abd = abd_init_abd_iter(abd, &aiter, off); 794 795 while (size > 0) { 796 /* If we are at the end of the gang ABD we are done */ 797 if (gang && !c_abd) 798 break; 799 800 abd_iter_map(&aiter); 801 802 size_t len = MIN(aiter.iter_mapsize, size); 803 ASSERT3U(len, >, 0); 804 805 ret = func(aiter.iter_mapaddr, len, private); 806 807 abd_iter_unmap(&aiter); 808 809 if (ret != 0) 810 break; 811 812 size -= len; 813 c_abd = abd_advance_abd_iter(abd, c_abd, &aiter, len); 814 } 815 816 return (ret); 817 } 818 819 struct buf_arg { 820 void *arg_buf; 821 }; 822 823 static int 824 abd_copy_to_buf_off_cb(void *buf, size_t size, void *private) 825 { 826 struct buf_arg *ba_ptr = private; 827 828 (void) memcpy(ba_ptr->arg_buf, buf, size); 829 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size; 830 831 return (0); 832 } 833 834 /* 835 * Copy abd to buf. (off is the offset in abd.) 836 */ 837 void 838 abd_copy_to_buf_off(void *buf, abd_t *abd, size_t off, size_t size) 839 { 840 struct buf_arg ba_ptr = { buf }; 841 842 (void) abd_iterate_func(abd, off, size, abd_copy_to_buf_off_cb, 843 &ba_ptr); 844 } 845 846 static int 847 abd_cmp_buf_off_cb(void *buf, size_t size, void *private) 848 { 849 int ret; 850 struct buf_arg *ba_ptr = private; 851 852 ret = memcmp(buf, ba_ptr->arg_buf, size); 853 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size; 854 855 return (ret); 856 } 857 858 /* 859 * Compare the contents of abd to buf. (off is the offset in abd.) 860 */ 861 int 862 abd_cmp_buf_off(abd_t *abd, const void *buf, size_t off, size_t size) 863 { 864 struct buf_arg ba_ptr = { (void *) buf }; 865 866 return (abd_iterate_func(abd, off, size, abd_cmp_buf_off_cb, &ba_ptr)); 867 } 868 869 static int 870 abd_copy_from_buf_off_cb(void *buf, size_t size, void *private) 871 { 872 struct buf_arg *ba_ptr = private; 873 874 (void) memcpy(buf, ba_ptr->arg_buf, size); 875 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size; 876 877 return (0); 878 } 879 880 /* 881 * Copy from buf to abd. (off is the offset in abd.) 882 */ 883 void 884 abd_copy_from_buf_off(abd_t *abd, const void *buf, size_t off, size_t size) 885 { 886 struct buf_arg ba_ptr = { (void *) buf }; 887 888 (void) abd_iterate_func(abd, off, size, abd_copy_from_buf_off_cb, 889 &ba_ptr); 890 } 891 892 static int 893 abd_zero_off_cb(void *buf, size_t size, void *private) 894 { 895 (void) private; 896 (void) memset(buf, 0, size); 897 return (0); 898 } 899 900 /* 901 * Zero out the abd from a particular offset to the end. 902 */ 903 void 904 abd_zero_off(abd_t *abd, size_t off, size_t size) 905 { 906 (void) abd_iterate_func(abd, off, size, abd_zero_off_cb, NULL); 907 } 908 909 /* 910 * Iterate over two ABDs and call func incrementally on the two ABDs' data in 911 * equal-sized chunks (passed to func as raw buffers). func could be called many 912 * times during this iteration. 913 */ 914 int 915 abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, 916 size_t size, abd_iter_func2_t *func, void *private) 917 { 918 int ret = 0; 919 struct abd_iter daiter, saiter; 920 boolean_t dabd_is_gang_abd, sabd_is_gang_abd; 921 abd_t *c_dabd, *c_sabd; 922 923 if (size == 0) 924 return (0); 925 926 abd_verify(dabd); 927 abd_verify(sabd); 928 929 ASSERT3U(doff + size, <=, dabd->abd_size); 930 ASSERT3U(soff + size, <=, sabd->abd_size); 931 932 dabd_is_gang_abd = abd_is_gang(dabd); 933 sabd_is_gang_abd = abd_is_gang(sabd); 934 c_dabd = abd_init_abd_iter(dabd, &daiter, doff); 935 c_sabd = abd_init_abd_iter(sabd, &saiter, soff); 936 937 while (size > 0) { 938 /* if we are at the end of the gang ABD we are done */ 939 if ((dabd_is_gang_abd && !c_dabd) || 940 (sabd_is_gang_abd && !c_sabd)) 941 break; 942 943 abd_iter_map(&daiter); 944 abd_iter_map(&saiter); 945 946 size_t dlen = MIN(daiter.iter_mapsize, size); 947 size_t slen = MIN(saiter.iter_mapsize, size); 948 size_t len = MIN(dlen, slen); 949 ASSERT(dlen > 0 || slen > 0); 950 951 ret = func(daiter.iter_mapaddr, saiter.iter_mapaddr, len, 952 private); 953 954 abd_iter_unmap(&saiter); 955 abd_iter_unmap(&daiter); 956 957 if (ret != 0) 958 break; 959 960 size -= len; 961 c_dabd = 962 abd_advance_abd_iter(dabd, c_dabd, &daiter, len); 963 c_sabd = 964 abd_advance_abd_iter(sabd, c_sabd, &saiter, len); 965 } 966 967 return (ret); 968 } 969 970 static int 971 abd_copy_off_cb(void *dbuf, void *sbuf, size_t size, void *private) 972 { 973 (void) private; 974 (void) memcpy(dbuf, sbuf, size); 975 return (0); 976 } 977 978 /* 979 * Copy from sabd to dabd starting from soff and doff. 980 */ 981 void 982 abd_copy_off(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, size_t size) 983 { 984 (void) abd_iterate_func2(dabd, sabd, doff, soff, size, 985 abd_copy_off_cb, NULL); 986 } 987 988 static int 989 abd_cmp_cb(void *bufa, void *bufb, size_t size, void *private) 990 { 991 (void) private; 992 return (memcmp(bufa, bufb, size)); 993 } 994 995 /* 996 * Compares the contents of two ABDs. 997 */ 998 int 999 abd_cmp(abd_t *dabd, abd_t *sabd) 1000 { 1001 ASSERT3U(dabd->abd_size, ==, sabd->abd_size); 1002 return (abd_iterate_func2(dabd, sabd, 0, 0, dabd->abd_size, 1003 abd_cmp_cb, NULL)); 1004 } 1005 1006 /* 1007 * Iterate over code ABDs and a data ABD and call @func_raidz_gen. 1008 * 1009 * @cabds parity ABDs, must have equal size 1010 * @dabd data ABD. Can be NULL (in this case @dsize = 0) 1011 * @func_raidz_gen should be implemented so that its behaviour 1012 * is the same when taking linear and when taking scatter 1013 */ 1014 void 1015 abd_raidz_gen_iterate(abd_t **cabds, abd_t *dabd, 1016 ssize_t csize, ssize_t dsize, const unsigned parity, 1017 void (*func_raidz_gen)(void **, const void *, size_t, size_t)) 1018 { 1019 int i; 1020 ssize_t len, dlen; 1021 struct abd_iter caiters[3]; 1022 struct abd_iter daiter = {0}; 1023 void *caddrs[3]; 1024 unsigned long flags __maybe_unused = 0; 1025 abd_t *c_cabds[3]; 1026 abd_t *c_dabd = NULL; 1027 boolean_t cabds_is_gang_abd[3]; 1028 boolean_t dabd_is_gang_abd = B_FALSE; 1029 1030 ASSERT3U(parity, <=, 3); 1031 1032 for (i = 0; i < parity; i++) { 1033 cabds_is_gang_abd[i] = abd_is_gang(cabds[i]); 1034 c_cabds[i] = abd_init_abd_iter(cabds[i], &caiters[i], 0); 1035 } 1036 1037 if (dabd) { 1038 dabd_is_gang_abd = abd_is_gang(dabd); 1039 c_dabd = abd_init_abd_iter(dabd, &daiter, 0); 1040 } 1041 1042 ASSERT3S(dsize, >=, 0); 1043 1044 abd_enter_critical(flags); 1045 while (csize > 0) { 1046 /* if we are at the end of the gang ABD we are done */ 1047 if (dabd_is_gang_abd && !c_dabd) 1048 break; 1049 1050 for (i = 0; i < parity; i++) { 1051 /* 1052 * If we are at the end of the gang ABD we are 1053 * done. 1054 */ 1055 if (cabds_is_gang_abd[i] && !c_cabds[i]) 1056 break; 1057 abd_iter_map(&caiters[i]); 1058 caddrs[i] = caiters[i].iter_mapaddr; 1059 } 1060 1061 len = csize; 1062 1063 if (dabd && dsize > 0) 1064 abd_iter_map(&daiter); 1065 1066 switch (parity) { 1067 case 3: 1068 len = MIN(caiters[2].iter_mapsize, len); 1069 zfs_fallthrough; 1070 case 2: 1071 len = MIN(caiters[1].iter_mapsize, len); 1072 zfs_fallthrough; 1073 case 1: 1074 len = MIN(caiters[0].iter_mapsize, len); 1075 } 1076 1077 /* must be progressive */ 1078 ASSERT3S(len, >, 0); 1079 1080 if (dabd && dsize > 0) { 1081 /* this needs precise iter.length */ 1082 len = MIN(daiter.iter_mapsize, len); 1083 dlen = len; 1084 } else 1085 dlen = 0; 1086 1087 /* must be progressive */ 1088 ASSERT3S(len, >, 0); 1089 /* 1090 * The iterated function likely will not do well if each 1091 * segment except the last one is not multiple of 512 (raidz). 1092 */ 1093 ASSERT3U(((uint64_t)len & 511ULL), ==, 0); 1094 1095 func_raidz_gen(caddrs, daiter.iter_mapaddr, len, dlen); 1096 1097 for (i = parity-1; i >= 0; i--) { 1098 abd_iter_unmap(&caiters[i]); 1099 c_cabds[i] = 1100 abd_advance_abd_iter(cabds[i], c_cabds[i], 1101 &caiters[i], len); 1102 } 1103 1104 if (dabd && dsize > 0) { 1105 abd_iter_unmap(&daiter); 1106 c_dabd = 1107 abd_advance_abd_iter(dabd, c_dabd, &daiter, 1108 dlen); 1109 dsize -= dlen; 1110 } 1111 1112 csize -= len; 1113 1114 ASSERT3S(dsize, >=, 0); 1115 ASSERT3S(csize, >=, 0); 1116 } 1117 abd_exit_critical(flags); 1118 } 1119 1120 /* 1121 * Iterate over code ABDs and data reconstruction target ABDs and call 1122 * @func_raidz_rec. Function maps at most 6 pages atomically. 1123 * 1124 * @cabds parity ABDs, must have equal size 1125 * @tabds rec target ABDs, at most 3 1126 * @tsize size of data target columns 1127 * @func_raidz_rec expects syndrome data in target columns. Function 1128 * reconstructs data and overwrites target columns. 1129 */ 1130 void 1131 abd_raidz_rec_iterate(abd_t **cabds, abd_t **tabds, 1132 ssize_t tsize, const unsigned parity, 1133 void (*func_raidz_rec)(void **t, const size_t tsize, void **c, 1134 const unsigned *mul), 1135 const unsigned *mul) 1136 { 1137 int i; 1138 ssize_t len; 1139 struct abd_iter citers[3]; 1140 struct abd_iter xiters[3]; 1141 void *caddrs[3], *xaddrs[3]; 1142 unsigned long flags __maybe_unused = 0; 1143 boolean_t cabds_is_gang_abd[3]; 1144 boolean_t tabds_is_gang_abd[3]; 1145 abd_t *c_cabds[3]; 1146 abd_t *c_tabds[3]; 1147 1148 ASSERT3U(parity, <=, 3); 1149 1150 for (i = 0; i < parity; i++) { 1151 cabds_is_gang_abd[i] = abd_is_gang(cabds[i]); 1152 tabds_is_gang_abd[i] = abd_is_gang(tabds[i]); 1153 c_cabds[i] = 1154 abd_init_abd_iter(cabds[i], &citers[i], 0); 1155 c_tabds[i] = 1156 abd_init_abd_iter(tabds[i], &xiters[i], 0); 1157 } 1158 1159 abd_enter_critical(flags); 1160 while (tsize > 0) { 1161 1162 for (i = 0; i < parity; i++) { 1163 /* 1164 * If we are at the end of the gang ABD we 1165 * are done. 1166 */ 1167 if (cabds_is_gang_abd[i] && !c_cabds[i]) 1168 break; 1169 if (tabds_is_gang_abd[i] && !c_tabds[i]) 1170 break; 1171 abd_iter_map(&citers[i]); 1172 abd_iter_map(&xiters[i]); 1173 caddrs[i] = citers[i].iter_mapaddr; 1174 xaddrs[i] = xiters[i].iter_mapaddr; 1175 } 1176 1177 len = tsize; 1178 switch (parity) { 1179 case 3: 1180 len = MIN(xiters[2].iter_mapsize, len); 1181 len = MIN(citers[2].iter_mapsize, len); 1182 zfs_fallthrough; 1183 case 2: 1184 len = MIN(xiters[1].iter_mapsize, len); 1185 len = MIN(citers[1].iter_mapsize, len); 1186 zfs_fallthrough; 1187 case 1: 1188 len = MIN(xiters[0].iter_mapsize, len); 1189 len = MIN(citers[0].iter_mapsize, len); 1190 } 1191 /* must be progressive */ 1192 ASSERT3S(len, >, 0); 1193 /* 1194 * The iterated function likely will not do well if each 1195 * segment except the last one is not multiple of 512 (raidz). 1196 */ 1197 ASSERT3U(((uint64_t)len & 511ULL), ==, 0); 1198 1199 func_raidz_rec(xaddrs, len, caddrs, mul); 1200 1201 for (i = parity-1; i >= 0; i--) { 1202 abd_iter_unmap(&xiters[i]); 1203 abd_iter_unmap(&citers[i]); 1204 c_tabds[i] = 1205 abd_advance_abd_iter(tabds[i], c_tabds[i], 1206 &xiters[i], len); 1207 c_cabds[i] = 1208 abd_advance_abd_iter(cabds[i], c_cabds[i], 1209 &citers[i], len); 1210 } 1211 1212 tsize -= len; 1213 ASSERT3S(tsize, >=, 0); 1214 } 1215 abd_exit_critical(flags); 1216 } 1217