xref: /freebsd/sys/contrib/openzfs/module/zcommon/zfs_fletcher_superscalar4.c (revision fe75646a0234a261c0013bf1840fdac4acaf0cec)
1 /*
2  * Implement fast Fletcher4 using superscalar pipelines.
3  *
4  * Use regular C code to compute
5  * Fletcher4 in four incremental 64-bit parallel accumulator streams,
6  * and then combine the streams to form the final four checksum words.
7  * This implementation is a derivative of the AVX SIMD implementation by
8  * James Guilford and Jinshan Xiong from Intel (see zfs_fletcher_intel.c).
9  *
10  * Copyright (C) 2016 Romain Dolbeau.
11  *
12  * Authors:
13  *	Romain Dolbeau <romain.dolbeau@atos.net>
14  *
15  * This software is available to you under a choice of one of two
16  * licenses.  You may choose to be licensed under the terms of the GNU
17  * General Public License (GPL) Version 2, available from the file
18  * COPYING in the main directory of this source tree, or the
19  * OpenIB.org BSD license below:
20  *
21  *     Redistribution and use in source and binary forms, with or
22  *     without modification, are permitted provided that the following
23  *     conditions are met:
24  *
25  *	- Redistributions of source code must retain the above
26  *	  copyright notice, this list of conditions and the following
27  *	  disclaimer.
28  *
29  *	- Redistributions in binary form must reproduce the above
30  *	  copyright notice, this list of conditions and the following
31  *	  disclaimer in the documentation and/or other materials
32  *	  provided with the distribution.
33  *
34  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
35  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
36  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
37  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
38  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
39  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
40  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
41  * SOFTWARE.
42  */
43 
44 #include <sys/param.h>
45 #include <sys/byteorder.h>
46 #include <sys/spa_checksum.h>
47 #include <sys/string.h>
48 #include <zfs_fletcher.h>
49 
50 static void
51 fletcher_4_superscalar4_init(fletcher_4_ctx_t *ctx)
52 {
53 	memset(ctx->superscalar, 0, 4 * sizeof (zfs_fletcher_superscalar_t));
54 }
55 
56 static void
57 fletcher_4_superscalar4_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp)
58 {
59 	uint64_t A, B, C, D;
60 
61 	A = ctx->superscalar[0].v[0] + ctx->superscalar[0].v[1] +
62 	    ctx->superscalar[0].v[2] + ctx->superscalar[0].v[3];
63 	B = 0 - ctx->superscalar[0].v[1] - 2 * ctx->superscalar[0].v[2] -
64 	    3 * ctx->superscalar[0].v[3] + 4 * ctx->superscalar[1].v[0] +
65 	    4 * ctx->superscalar[1].v[1] + 4 * ctx->superscalar[1].v[2] +
66 	    4 * ctx->superscalar[1].v[3];
67 
68 	C = ctx->superscalar[0].v[2] + 3 * ctx->superscalar[0].v[3] -
69 	    6 * ctx->superscalar[1].v[0] - 10 * ctx->superscalar[1].v[1] -
70 	    14 * ctx->superscalar[1].v[2] - 18 * ctx->superscalar[1].v[3] +
71 	    16 * ctx->superscalar[2].v[0] + 16 * ctx->superscalar[2].v[1] +
72 	    16 * ctx->superscalar[2].v[2] + 16 * ctx->superscalar[2].v[3];
73 
74 	D = 0 - ctx->superscalar[0].v[3] + 4 * ctx->superscalar[1].v[0] +
75 	    10 * ctx->superscalar[1].v[1] + 20 * ctx->superscalar[1].v[2] +
76 	    34 * ctx->superscalar[1].v[3] - 48 * ctx->superscalar[2].v[0] -
77 	    64 * ctx->superscalar[2].v[1] - 80 * ctx->superscalar[2].v[2] -
78 	    96 * ctx->superscalar[2].v[3] + 64 * ctx->superscalar[3].v[0] +
79 	    64 * ctx->superscalar[3].v[1] + 64 * ctx->superscalar[3].v[2] +
80 	    64 * ctx->superscalar[3].v[3];
81 
82 	ZIO_SET_CHECKSUM(zcp, A, B, C, D);
83 }
84 
85 static void
86 fletcher_4_superscalar4_native(fletcher_4_ctx_t *ctx,
87     const void *buf, uint64_t size)
88 {
89 	const uint32_t *ip = buf;
90 	const uint32_t *ipend = ip + (size / sizeof (uint32_t));
91 	uint64_t a, b, c, d;
92 	uint64_t a2, b2, c2, d2;
93 	uint64_t a3, b3, c3, d3;
94 	uint64_t a4, b4, c4, d4;
95 
96 	a = ctx->superscalar[0].v[0];
97 	b = ctx->superscalar[1].v[0];
98 	c = ctx->superscalar[2].v[0];
99 	d = ctx->superscalar[3].v[0];
100 	a2 = ctx->superscalar[0].v[1];
101 	b2 = ctx->superscalar[1].v[1];
102 	c2 = ctx->superscalar[2].v[1];
103 	d2 = ctx->superscalar[3].v[1];
104 	a3 = ctx->superscalar[0].v[2];
105 	b3 = ctx->superscalar[1].v[2];
106 	c3 = ctx->superscalar[2].v[2];
107 	d3 = ctx->superscalar[3].v[2];
108 	a4 = ctx->superscalar[0].v[3];
109 	b4 = ctx->superscalar[1].v[3];
110 	c4 = ctx->superscalar[2].v[3];
111 	d4 = ctx->superscalar[3].v[3];
112 
113 	do {
114 		a += ip[0];
115 		a2 += ip[1];
116 		a3 += ip[2];
117 		a4 += ip[3];
118 		b += a;
119 		b2 += a2;
120 		b3 += a3;
121 		b4 += a4;
122 		c += b;
123 		c2 += b2;
124 		c3 += b3;
125 		c4 += b4;
126 		d += c;
127 		d2 += c2;
128 		d3 += c3;
129 		d4 += c4;
130 	} while ((ip += 4) < ipend);
131 
132 	ctx->superscalar[0].v[0] = a;
133 	ctx->superscalar[1].v[0] = b;
134 	ctx->superscalar[2].v[0] = c;
135 	ctx->superscalar[3].v[0] = d;
136 	ctx->superscalar[0].v[1] = a2;
137 	ctx->superscalar[1].v[1] = b2;
138 	ctx->superscalar[2].v[1] = c2;
139 	ctx->superscalar[3].v[1] = d2;
140 	ctx->superscalar[0].v[2] = a3;
141 	ctx->superscalar[1].v[2] = b3;
142 	ctx->superscalar[2].v[2] = c3;
143 	ctx->superscalar[3].v[2] = d3;
144 	ctx->superscalar[0].v[3] = a4;
145 	ctx->superscalar[1].v[3] = b4;
146 	ctx->superscalar[2].v[3] = c4;
147 	ctx->superscalar[3].v[3] = d4;
148 }
149 
150 static void
151 fletcher_4_superscalar4_byteswap(fletcher_4_ctx_t *ctx,
152     const void *buf, uint64_t size)
153 {
154 	const uint32_t *ip = buf;
155 	const uint32_t *ipend = ip + (size / sizeof (uint32_t));
156 	uint64_t a, b, c, d;
157 	uint64_t a2, b2, c2, d2;
158 	uint64_t a3, b3, c3, d3;
159 	uint64_t a4, b4, c4, d4;
160 
161 	a = ctx->superscalar[0].v[0];
162 	b = ctx->superscalar[1].v[0];
163 	c = ctx->superscalar[2].v[0];
164 	d = ctx->superscalar[3].v[0];
165 	a2 = ctx->superscalar[0].v[1];
166 	b2 = ctx->superscalar[1].v[1];
167 	c2 = ctx->superscalar[2].v[1];
168 	d2 = ctx->superscalar[3].v[1];
169 	a3 = ctx->superscalar[0].v[2];
170 	b3 = ctx->superscalar[1].v[2];
171 	c3 = ctx->superscalar[2].v[2];
172 	d3 = ctx->superscalar[3].v[2];
173 	a4 = ctx->superscalar[0].v[3];
174 	b4 = ctx->superscalar[1].v[3];
175 	c4 = ctx->superscalar[2].v[3];
176 	d4 = ctx->superscalar[3].v[3];
177 
178 	do {
179 		a += BSWAP_32(ip[0]);
180 		a2 += BSWAP_32(ip[1]);
181 		a3 += BSWAP_32(ip[2]);
182 		a4 += BSWAP_32(ip[3]);
183 		b += a;
184 		b2 += a2;
185 		b3 += a3;
186 		b4 += a4;
187 		c += b;
188 		c2 += b2;
189 		c3 += b3;
190 		c4 += b4;
191 		d += c;
192 		d2 += c2;
193 		d3 += c3;
194 		d4 += c4;
195 	} while ((ip += 4) < ipend);
196 
197 	ctx->superscalar[0].v[0] = a;
198 	ctx->superscalar[1].v[0] = b;
199 	ctx->superscalar[2].v[0] = c;
200 	ctx->superscalar[3].v[0] = d;
201 	ctx->superscalar[0].v[1] = a2;
202 	ctx->superscalar[1].v[1] = b2;
203 	ctx->superscalar[2].v[1] = c2;
204 	ctx->superscalar[3].v[1] = d2;
205 	ctx->superscalar[0].v[2] = a3;
206 	ctx->superscalar[1].v[2] = b3;
207 	ctx->superscalar[2].v[2] = c3;
208 	ctx->superscalar[3].v[2] = d3;
209 	ctx->superscalar[0].v[3] = a4;
210 	ctx->superscalar[1].v[3] = b4;
211 	ctx->superscalar[2].v[3] = c4;
212 	ctx->superscalar[3].v[3] = d4;
213 }
214 
215 static boolean_t fletcher_4_superscalar4_valid(void)
216 {
217 	return (B_TRUE);
218 }
219 
220 const fletcher_4_ops_t fletcher_4_superscalar4_ops = {
221 	.init_native = fletcher_4_superscalar4_init,
222 	.compute_native = fletcher_4_superscalar4_native,
223 	.fini_native = fletcher_4_superscalar4_fini,
224 	.init_byteswap = fletcher_4_superscalar4_init,
225 	.compute_byteswap = fletcher_4_superscalar4_byteswap,
226 	.fini_byteswap = fletcher_4_superscalar4_fini,
227 	.valid = fletcher_4_superscalar4_valid,
228 	.uses_fpu = B_FALSE,
229 	.name = "superscalar4"
230 };
231