1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 * Copyright (C) 2016 Gvozden Nešković. All rights reserved. 26 */ 27 /* 28 * Copyright 2013 Saso Kiselkov. All rights reserved. 29 */ 30 31 /* 32 * Copyright (c) 2016 by Delphix. All rights reserved. 33 */ 34 35 /* 36 * Fletcher Checksums 37 * ------------------ 38 * 39 * ZFS's 2nd and 4th order Fletcher checksums are defined by the following 40 * recurrence relations: 41 * 42 * a = a + f 43 * i i-1 i-1 44 * 45 * b = b + a 46 * i i-1 i 47 * 48 * c = c + b (fletcher-4 only) 49 * i i-1 i 50 * 51 * d = d + c (fletcher-4 only) 52 * i i-1 i 53 * 54 * Where 55 * a_0 = b_0 = c_0 = d_0 = 0 56 * and 57 * f_0 .. f_(n-1) are the input data. 58 * 59 * Using standard techniques, these translate into the following series: 60 * 61 * __n_ __n_ 62 * \ | \ | 63 * a = > f b = > i * f 64 * n /___| n - i n /___| n - i 65 * i = 1 i = 1 66 * 67 * 68 * __n_ __n_ 69 * \ | i*(i+1) \ | i*(i+1)*(i+2) 70 * c = > ------- f d = > ------------- f 71 * n /___| 2 n - i n /___| 6 n - i 72 * i = 1 i = 1 73 * 74 * For fletcher-2, the f_is are 64-bit, and [ab]_i are 64-bit accumulators. 75 * Since the additions are done mod (2^64), errors in the high bits may not 76 * be noticed. For this reason, fletcher-2 is deprecated. 77 * 78 * For fletcher-4, the f_is are 32-bit, and [abcd]_i are 64-bit accumulators. 79 * A conservative estimate of how big the buffer can get before we overflow 80 * can be estimated using f_i = 0xffffffff for all i: 81 * 82 * % bc 83 * f=2^32-1;d=0; for (i = 1; d<2^64; i++) { d += f*i*(i+1)*(i+2)/6 }; (i-1)*4 84 * 2264 85 * quit 86 * % 87 * 88 * So blocks of up to 2k will not overflow. Our largest block size is 89 * 128k, which has 32k 4-byte words, so we can compute the largest possible 90 * accumulators, then divide by 2^64 to figure the max amount of overflow: 91 * 92 * % bc 93 * a=b=c=d=0; f=2^32-1; for (i=1; i<=32*1024; i++) { a+=f; b+=a; c+=b; d+=c } 94 * a/2^64;b/2^64;c/2^64;d/2^64 95 * 0 96 * 0 97 * 1365 98 * 11186858 99 * quit 100 * % 101 * 102 * So a and b cannot overflow. To make sure each bit of input has some 103 * effect on the contents of c and d, we can look at what the factors of 104 * the coefficients in the equations for c_n and d_n are. The number of 2s 105 * in the factors determines the lowest set bit in the multiplier. Running 106 * through the cases for n*(n+1)/2 reveals that the highest power of 2 is 107 * 2^14, and for n*(n+1)*(n+2)/6 it is 2^15. So while some data may overflow 108 * the 64-bit accumulators, every bit of every f_i effects every accumulator, 109 * even for 128k blocks. 110 * 111 * If we wanted to make a stronger version of fletcher4 (fletcher4c?), 112 * we could do our calculations mod (2^32 - 1) by adding in the carries 113 * periodically, and store the number of carries in the top 32-bits. 114 * 115 * -------------------- 116 * Checksum Performance 117 * -------------------- 118 * 119 * There are two interesting components to checksum performance: cached and 120 * uncached performance. With cached data, fletcher-2 is about four times 121 * faster than fletcher-4. With uncached data, the performance difference is 122 * negligible, since the cost of a cache fill dominates the processing time. 123 * Even though fletcher-4 is slower than fletcher-2, it is still a pretty 124 * efficient pass over the data. 125 * 126 * In normal operation, the data which is being checksummed is in a buffer 127 * which has been filled either by: 128 * 129 * 1. a compression step, which will be mostly cached, or 130 * 2. a memcpy() or copyin(), which will be uncached 131 * (because the copy is cache-bypassing). 132 * 133 * For both cached and uncached data, both fletcher checksums are much faster 134 * than sha-256, and slower than 'off', which doesn't touch the data at all. 135 */ 136 137 #include <sys/types.h> 138 #include <sys/sysmacros.h> 139 #include <sys/byteorder.h> 140 #include <sys/simd.h> 141 #include <sys/spa.h> 142 #include <sys/zio_checksum.h> 143 #include <sys/zfs_context.h> 144 #include <zfs_fletcher.h> 145 146 #define FLETCHER_MIN_SIMD_SIZE 64 147 148 static void fletcher_4_scalar_init(fletcher_4_ctx_t *ctx); 149 static void fletcher_4_scalar_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp); 150 static void fletcher_4_scalar_native(fletcher_4_ctx_t *ctx, 151 const void *buf, uint64_t size); 152 static void fletcher_4_scalar_byteswap(fletcher_4_ctx_t *ctx, 153 const void *buf, uint64_t size); 154 static boolean_t fletcher_4_scalar_valid(void); 155 156 static const fletcher_4_ops_t fletcher_4_scalar_ops = { 157 .init_native = fletcher_4_scalar_init, 158 .fini_native = fletcher_4_scalar_fini, 159 .compute_native = fletcher_4_scalar_native, 160 .init_byteswap = fletcher_4_scalar_init, 161 .fini_byteswap = fletcher_4_scalar_fini, 162 .compute_byteswap = fletcher_4_scalar_byteswap, 163 .valid = fletcher_4_scalar_valid, 164 .uses_fpu = B_FALSE, 165 .name = "scalar" 166 }; 167 168 static fletcher_4_ops_t fletcher_4_fastest_impl = { 169 .name = "fastest", 170 .valid = fletcher_4_scalar_valid 171 }; 172 173 static const fletcher_4_ops_t *fletcher_4_impls[] = { 174 &fletcher_4_scalar_ops, 175 &fletcher_4_superscalar_ops, 176 &fletcher_4_superscalar4_ops, 177 #if defined(HAVE_SSE2) 178 &fletcher_4_sse2_ops, 179 #endif 180 #if defined(HAVE_SSE2) && defined(HAVE_SSSE3) 181 &fletcher_4_ssse3_ops, 182 #endif 183 #if defined(HAVE_AVX) && defined(HAVE_AVX2) 184 &fletcher_4_avx2_ops, 185 #endif 186 #if defined(__x86_64) && defined(HAVE_AVX512F) 187 &fletcher_4_avx512f_ops, 188 #endif 189 #if defined(__x86_64) && defined(HAVE_AVX512BW) 190 &fletcher_4_avx512bw_ops, 191 #endif 192 #if defined(__aarch64__) && !defined(__FreeBSD__) 193 &fletcher_4_aarch64_neon_ops, 194 #endif 195 }; 196 197 /* Hold all supported implementations */ 198 static uint32_t fletcher_4_supp_impls_cnt = 0; 199 static fletcher_4_ops_t *fletcher_4_supp_impls[ARRAY_SIZE(fletcher_4_impls)]; 200 201 /* Select fletcher4 implementation */ 202 #define IMPL_FASTEST (UINT32_MAX) 203 #define IMPL_CYCLE (UINT32_MAX - 1) 204 #define IMPL_SCALAR (0) 205 206 static uint32_t fletcher_4_impl_chosen = IMPL_FASTEST; 207 208 #define IMPL_READ(i) (*(volatile uint32_t *) &(i)) 209 210 static struct fletcher_4_impl_selector { 211 const char *fis_name; 212 uint32_t fis_sel; 213 } fletcher_4_impl_selectors[] = { 214 { "cycle", IMPL_CYCLE }, 215 { "fastest", IMPL_FASTEST }, 216 { "scalar", IMPL_SCALAR } 217 }; 218 219 #if defined(_KERNEL) 220 static kstat_t *fletcher_4_kstat; 221 222 static struct fletcher_4_kstat { 223 uint64_t native; 224 uint64_t byteswap; 225 } fletcher_4_stat_data[ARRAY_SIZE(fletcher_4_impls) + 1]; 226 #endif 227 228 /* Indicate that benchmark has been completed */ 229 static boolean_t fletcher_4_initialized = B_FALSE; 230 231 void 232 fletcher_init(zio_cksum_t *zcp) 233 { 234 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0); 235 } 236 237 int 238 fletcher_2_incremental_native(void *buf, size_t size, void *data) 239 { 240 zio_cksum_t *zcp = data; 241 242 const uint64_t *ip = buf; 243 const uint64_t *ipend = ip + (size / sizeof (uint64_t)); 244 uint64_t a0, b0, a1, b1; 245 246 a0 = zcp->zc_word[0]; 247 a1 = zcp->zc_word[1]; 248 b0 = zcp->zc_word[2]; 249 b1 = zcp->zc_word[3]; 250 251 for (; ip < ipend; ip += 2) { 252 a0 += ip[0]; 253 a1 += ip[1]; 254 b0 += a0; 255 b1 += a1; 256 } 257 258 ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1); 259 return (0); 260 } 261 262 void 263 fletcher_2_native(const void *buf, uint64_t size, 264 const void *ctx_template, zio_cksum_t *zcp) 265 { 266 (void) ctx_template; 267 fletcher_init(zcp); 268 (void) fletcher_2_incremental_native((void *) buf, size, zcp); 269 } 270 271 int 272 fletcher_2_incremental_byteswap(void *buf, size_t size, void *data) 273 { 274 zio_cksum_t *zcp = data; 275 276 const uint64_t *ip = buf; 277 const uint64_t *ipend = ip + (size / sizeof (uint64_t)); 278 uint64_t a0, b0, a1, b1; 279 280 a0 = zcp->zc_word[0]; 281 a1 = zcp->zc_word[1]; 282 b0 = zcp->zc_word[2]; 283 b1 = zcp->zc_word[3]; 284 285 for (; ip < ipend; ip += 2) { 286 a0 += BSWAP_64(ip[0]); 287 a1 += BSWAP_64(ip[1]); 288 b0 += a0; 289 b1 += a1; 290 } 291 292 ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1); 293 return (0); 294 } 295 296 void 297 fletcher_2_byteswap(const void *buf, uint64_t size, 298 const void *ctx_template, zio_cksum_t *zcp) 299 { 300 (void) ctx_template; 301 fletcher_init(zcp); 302 (void) fletcher_2_incremental_byteswap((void *) buf, size, zcp); 303 } 304 305 static void 306 fletcher_4_scalar_init(fletcher_4_ctx_t *ctx) 307 { 308 ZIO_SET_CHECKSUM(&ctx->scalar, 0, 0, 0, 0); 309 } 310 311 static void 312 fletcher_4_scalar_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp) 313 { 314 memcpy(zcp, &ctx->scalar, sizeof (zio_cksum_t)); 315 } 316 317 static void 318 fletcher_4_scalar_native(fletcher_4_ctx_t *ctx, const void *buf, 319 uint64_t size) 320 { 321 const uint32_t *ip = buf; 322 const uint32_t *ipend = ip + (size / sizeof (uint32_t)); 323 uint64_t a, b, c, d; 324 325 a = ctx->scalar.zc_word[0]; 326 b = ctx->scalar.zc_word[1]; 327 c = ctx->scalar.zc_word[2]; 328 d = ctx->scalar.zc_word[3]; 329 330 for (; ip < ipend; ip++) { 331 a += ip[0]; 332 b += a; 333 c += b; 334 d += c; 335 } 336 337 ZIO_SET_CHECKSUM(&ctx->scalar, a, b, c, d); 338 } 339 340 static void 341 fletcher_4_scalar_byteswap(fletcher_4_ctx_t *ctx, const void *buf, 342 uint64_t size) 343 { 344 const uint32_t *ip = buf; 345 const uint32_t *ipend = ip + (size / sizeof (uint32_t)); 346 uint64_t a, b, c, d; 347 348 a = ctx->scalar.zc_word[0]; 349 b = ctx->scalar.zc_word[1]; 350 c = ctx->scalar.zc_word[2]; 351 d = ctx->scalar.zc_word[3]; 352 353 for (; ip < ipend; ip++) { 354 a += BSWAP_32(ip[0]); 355 b += a; 356 c += b; 357 d += c; 358 } 359 360 ZIO_SET_CHECKSUM(&ctx->scalar, a, b, c, d); 361 } 362 363 static boolean_t 364 fletcher_4_scalar_valid(void) 365 { 366 return (B_TRUE); 367 } 368 369 int 370 fletcher_4_impl_set(const char *val) 371 { 372 int err = -EINVAL; 373 uint32_t impl = IMPL_READ(fletcher_4_impl_chosen); 374 size_t i, val_len; 375 376 val_len = strlen(val); 377 while ((val_len > 0) && !!isspace(val[val_len-1])) /* trim '\n' */ 378 val_len--; 379 380 /* check mandatory implementations */ 381 for (i = 0; i < ARRAY_SIZE(fletcher_4_impl_selectors); i++) { 382 const char *name = fletcher_4_impl_selectors[i].fis_name; 383 384 if (val_len == strlen(name) && 385 strncmp(val, name, val_len) == 0) { 386 impl = fletcher_4_impl_selectors[i].fis_sel; 387 err = 0; 388 break; 389 } 390 } 391 392 if (err != 0 && fletcher_4_initialized) { 393 /* check all supported implementations */ 394 for (i = 0; i < fletcher_4_supp_impls_cnt; i++) { 395 const char *name = fletcher_4_supp_impls[i]->name; 396 397 if (val_len == strlen(name) && 398 strncmp(val, name, val_len) == 0) { 399 impl = i; 400 err = 0; 401 break; 402 } 403 } 404 } 405 406 if (err == 0) { 407 atomic_swap_32(&fletcher_4_impl_chosen, impl); 408 membar_producer(); 409 } 410 411 return (err); 412 } 413 414 /* 415 * Returns the Fletcher 4 operations for checksums. When a SIMD 416 * implementation is not allowed in the current context, then fallback 417 * to the fastest generic implementation. 418 */ 419 static inline const fletcher_4_ops_t * 420 fletcher_4_impl_get(void) 421 { 422 if (!kfpu_allowed()) 423 return (&fletcher_4_superscalar4_ops); 424 425 const fletcher_4_ops_t *ops = NULL; 426 uint32_t impl = IMPL_READ(fletcher_4_impl_chosen); 427 428 switch (impl) { 429 case IMPL_FASTEST: 430 ASSERT(fletcher_4_initialized); 431 ops = &fletcher_4_fastest_impl; 432 break; 433 case IMPL_CYCLE: 434 /* Cycle through supported implementations */ 435 ASSERT(fletcher_4_initialized); 436 ASSERT3U(fletcher_4_supp_impls_cnt, >, 0); 437 static uint32_t cycle_count = 0; 438 uint32_t idx = (++cycle_count) % fletcher_4_supp_impls_cnt; 439 ops = fletcher_4_supp_impls[idx]; 440 break; 441 default: 442 ASSERT3U(fletcher_4_supp_impls_cnt, >, 0); 443 ASSERT3U(impl, <, fletcher_4_supp_impls_cnt); 444 ops = fletcher_4_supp_impls[impl]; 445 break; 446 } 447 448 ASSERT3P(ops, !=, NULL); 449 450 return (ops); 451 } 452 453 static inline void 454 fletcher_4_native_impl(const void *buf, uint64_t size, zio_cksum_t *zcp) 455 { 456 fletcher_4_ctx_t ctx; 457 const fletcher_4_ops_t *ops = fletcher_4_impl_get(); 458 459 if (ops->uses_fpu == B_TRUE) { 460 kfpu_begin(); 461 } 462 ops->init_native(&ctx); 463 ops->compute_native(&ctx, buf, size); 464 ops->fini_native(&ctx, zcp); 465 if (ops->uses_fpu == B_TRUE) { 466 kfpu_end(); 467 } 468 } 469 470 void 471 fletcher_4_native(const void *buf, uint64_t size, 472 const void *ctx_template, zio_cksum_t *zcp) 473 { 474 (void) ctx_template; 475 const uint64_t p2size = P2ALIGN_TYPED(size, FLETCHER_MIN_SIMD_SIZE, 476 uint64_t); 477 478 ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t))); 479 480 if (size == 0 || p2size == 0) { 481 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0); 482 483 if (size > 0) 484 fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, 485 buf, size); 486 } else { 487 fletcher_4_native_impl(buf, p2size, zcp); 488 489 if (p2size < size) 490 fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, 491 (char *)buf + p2size, size - p2size); 492 } 493 } 494 495 void 496 fletcher_4_native_varsize(const void *buf, uint64_t size, zio_cksum_t *zcp) 497 { 498 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0); 499 fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, buf, size); 500 } 501 502 static inline void 503 fletcher_4_byteswap_impl(const void *buf, uint64_t size, zio_cksum_t *zcp) 504 { 505 fletcher_4_ctx_t ctx; 506 const fletcher_4_ops_t *ops = fletcher_4_impl_get(); 507 508 if (ops->uses_fpu == B_TRUE) { 509 kfpu_begin(); 510 } 511 ops->init_byteswap(&ctx); 512 ops->compute_byteswap(&ctx, buf, size); 513 ops->fini_byteswap(&ctx, zcp); 514 if (ops->uses_fpu == B_TRUE) { 515 kfpu_end(); 516 } 517 } 518 519 void 520 fletcher_4_byteswap(const void *buf, uint64_t size, 521 const void *ctx_template, zio_cksum_t *zcp) 522 { 523 (void) ctx_template; 524 const uint64_t p2size = P2ALIGN_TYPED(size, FLETCHER_MIN_SIMD_SIZE, 525 uint64_t); 526 527 ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t))); 528 529 if (size == 0 || p2size == 0) { 530 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0); 531 532 if (size > 0) 533 fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp, 534 buf, size); 535 } else { 536 fletcher_4_byteswap_impl(buf, p2size, zcp); 537 538 if (p2size < size) 539 fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp, 540 (char *)buf + p2size, size - p2size); 541 } 542 } 543 544 /* Incremental Fletcher 4 */ 545 546 #define ZFS_FLETCHER_4_INC_MAX_SIZE (8ULL << 20) 547 548 static inline void 549 fletcher_4_incremental_combine(zio_cksum_t *zcp, const uint64_t size, 550 const zio_cksum_t *nzcp) 551 { 552 const uint64_t c1 = size / sizeof (uint32_t); 553 const uint64_t c2 = c1 * (c1 + 1) / 2; 554 const uint64_t c3 = c2 * (c1 + 2) / 3; 555 556 /* 557 * Value of 'c3' overflows on buffer sizes close to 16MiB. For that 558 * reason we split incremental fletcher4 computation of large buffers 559 * to steps of (ZFS_FLETCHER_4_INC_MAX_SIZE) size. 560 */ 561 ASSERT3U(size, <=, ZFS_FLETCHER_4_INC_MAX_SIZE); 562 563 zcp->zc_word[3] += nzcp->zc_word[3] + c1 * zcp->zc_word[2] + 564 c2 * zcp->zc_word[1] + c3 * zcp->zc_word[0]; 565 zcp->zc_word[2] += nzcp->zc_word[2] + c1 * zcp->zc_word[1] + 566 c2 * zcp->zc_word[0]; 567 zcp->zc_word[1] += nzcp->zc_word[1] + c1 * zcp->zc_word[0]; 568 zcp->zc_word[0] += nzcp->zc_word[0]; 569 } 570 571 static inline void 572 fletcher_4_incremental_impl(boolean_t native, const void *buf, uint64_t size, 573 zio_cksum_t *zcp) 574 { 575 while (size > 0) { 576 zio_cksum_t nzc; 577 uint64_t len = MIN(size, ZFS_FLETCHER_4_INC_MAX_SIZE); 578 579 if (native) 580 fletcher_4_native(buf, len, NULL, &nzc); 581 else 582 fletcher_4_byteswap(buf, len, NULL, &nzc); 583 584 fletcher_4_incremental_combine(zcp, len, &nzc); 585 586 size -= len; 587 buf += len; 588 } 589 } 590 591 int 592 fletcher_4_incremental_native(void *buf, size_t size, void *data) 593 { 594 zio_cksum_t *zcp = data; 595 /* Use scalar impl to directly update cksum of small blocks */ 596 if (size < SPA_MINBLOCKSIZE) 597 fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, buf, size); 598 else 599 fletcher_4_incremental_impl(B_TRUE, buf, size, zcp); 600 return (0); 601 } 602 603 int 604 fletcher_4_incremental_byteswap(void *buf, size_t size, void *data) 605 { 606 zio_cksum_t *zcp = data; 607 /* Use scalar impl to directly update cksum of small blocks */ 608 if (size < SPA_MINBLOCKSIZE) 609 fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp, buf, size); 610 else 611 fletcher_4_incremental_impl(B_FALSE, buf, size, zcp); 612 return (0); 613 } 614 615 #if defined(_KERNEL) 616 /* 617 * Fletcher 4 kstats 618 */ 619 static int 620 fletcher_4_kstat_headers(char *buf, size_t size) 621 { 622 ssize_t off = 0; 623 624 off += snprintf(buf + off, size, "%-17s", "implementation"); 625 off += snprintf(buf + off, size - off, "%-15s", "native"); 626 (void) snprintf(buf + off, size - off, "%-15s\n", "byteswap"); 627 628 return (0); 629 } 630 631 static int 632 fletcher_4_kstat_data(char *buf, size_t size, void *data) 633 { 634 struct fletcher_4_kstat *fastest_stat = 635 &fletcher_4_stat_data[fletcher_4_supp_impls_cnt]; 636 struct fletcher_4_kstat *curr_stat = (struct fletcher_4_kstat *)data; 637 ssize_t off = 0; 638 639 if (curr_stat == fastest_stat) { 640 off += snprintf(buf + off, size - off, "%-17s", "fastest"); 641 off += snprintf(buf + off, size - off, "%-15s", 642 fletcher_4_supp_impls[fastest_stat->native]->name); 643 (void) snprintf(buf + off, size - off, "%-15s\n", 644 fletcher_4_supp_impls[fastest_stat->byteswap]->name); 645 } else { 646 ptrdiff_t id = curr_stat - fletcher_4_stat_data; 647 648 off += snprintf(buf + off, size - off, "%-17s", 649 fletcher_4_supp_impls[id]->name); 650 off += snprintf(buf + off, size - off, "%-15llu", 651 (u_longlong_t)curr_stat->native); 652 (void) snprintf(buf + off, size - off, "%-15llu\n", 653 (u_longlong_t)curr_stat->byteswap); 654 } 655 656 return (0); 657 } 658 659 static void * 660 fletcher_4_kstat_addr(kstat_t *ksp, loff_t n) 661 { 662 if (n <= fletcher_4_supp_impls_cnt) 663 ksp->ks_private = (void *) (fletcher_4_stat_data + n); 664 else 665 ksp->ks_private = NULL; 666 667 return (ksp->ks_private); 668 } 669 #endif 670 671 #define FLETCHER_4_FASTEST_FN_COPY(type, src) \ 672 { \ 673 fletcher_4_fastest_impl.init_ ## type = src->init_ ## type; \ 674 fletcher_4_fastest_impl.fini_ ## type = src->fini_ ## type; \ 675 fletcher_4_fastest_impl.compute_ ## type = src->compute_ ## type; \ 676 fletcher_4_fastest_impl.uses_fpu = src->uses_fpu; \ 677 } 678 679 #define FLETCHER_4_BENCH_NS (MSEC2NSEC(1)) /* 1ms */ 680 681 typedef void fletcher_checksum_func_t(const void *, uint64_t, const void *, 682 zio_cksum_t *); 683 684 #if defined(_KERNEL) 685 static void 686 fletcher_4_benchmark_impl(boolean_t native, char *data, uint64_t data_size) 687 { 688 689 struct fletcher_4_kstat *fastest_stat = 690 &fletcher_4_stat_data[fletcher_4_supp_impls_cnt]; 691 hrtime_t start; 692 uint64_t run_bw, run_time_ns, best_run = 0; 693 zio_cksum_t zc; 694 uint32_t i, l, sel_save = IMPL_READ(fletcher_4_impl_chosen); 695 696 fletcher_checksum_func_t *fletcher_4_test = native ? 697 fletcher_4_native : fletcher_4_byteswap; 698 699 for (i = 0; i < fletcher_4_supp_impls_cnt; i++) { 700 struct fletcher_4_kstat *stat = &fletcher_4_stat_data[i]; 701 uint64_t run_count = 0; 702 703 /* temporary set an implementation */ 704 fletcher_4_impl_chosen = i; 705 706 kpreempt_disable(); 707 start = gethrtime(); 708 do { 709 for (l = 0; l < 32; l++, run_count++) 710 fletcher_4_test(data, data_size, NULL, &zc); 711 712 run_time_ns = gethrtime() - start; 713 } while (run_time_ns < FLETCHER_4_BENCH_NS); 714 kpreempt_enable(); 715 716 run_bw = data_size * run_count * NANOSEC; 717 run_bw /= run_time_ns; /* B/s */ 718 719 if (native) 720 stat->native = run_bw; 721 else 722 stat->byteswap = run_bw; 723 724 if (run_bw > best_run) { 725 best_run = run_bw; 726 727 if (native) { 728 fastest_stat->native = i; 729 FLETCHER_4_FASTEST_FN_COPY(native, 730 fletcher_4_supp_impls[i]); 731 } else { 732 fastest_stat->byteswap = i; 733 FLETCHER_4_FASTEST_FN_COPY(byteswap, 734 fletcher_4_supp_impls[i]); 735 } 736 } 737 } 738 739 /* restore original selection */ 740 atomic_swap_32(&fletcher_4_impl_chosen, sel_save); 741 } 742 #endif /* _KERNEL */ 743 744 /* 745 * Initialize and benchmark all supported implementations. 746 */ 747 static void 748 fletcher_4_benchmark(void) 749 { 750 fletcher_4_ops_t *curr_impl; 751 int i, c; 752 753 /* Move supported implementations into fletcher_4_supp_impls */ 754 for (i = 0, c = 0; i < ARRAY_SIZE(fletcher_4_impls); i++) { 755 curr_impl = (fletcher_4_ops_t *)fletcher_4_impls[i]; 756 757 if (curr_impl->valid && curr_impl->valid()) 758 fletcher_4_supp_impls[c++] = curr_impl; 759 } 760 membar_producer(); /* complete fletcher_4_supp_impls[] init */ 761 fletcher_4_supp_impls_cnt = c; /* number of supported impl */ 762 763 #if defined(_KERNEL) 764 static const size_t data_size = 1 << SPA_OLD_MAXBLOCKSHIFT; /* 128kiB */ 765 char *databuf = vmem_alloc(data_size, KM_SLEEP); 766 767 for (i = 0; i < data_size / sizeof (uint64_t); i++) 768 ((uint64_t *)databuf)[i] = (uintptr_t)(databuf+i); /* warm-up */ 769 770 fletcher_4_benchmark_impl(B_FALSE, databuf, data_size); 771 fletcher_4_benchmark_impl(B_TRUE, databuf, data_size); 772 773 vmem_free(databuf, data_size); 774 #else 775 /* 776 * Skip the benchmark in user space to avoid impacting libzpool 777 * consumers (zdb, zhack, zinject, ztest). The last implementation 778 * is assumed to be the fastest and used by default. 779 */ 780 memcpy(&fletcher_4_fastest_impl, 781 fletcher_4_supp_impls[fletcher_4_supp_impls_cnt - 1], 782 sizeof (fletcher_4_fastest_impl)); 783 fletcher_4_fastest_impl.name = "fastest"; 784 membar_producer(); 785 #endif /* _KERNEL */ 786 } 787 788 void 789 fletcher_4_init(void) 790 { 791 /* Determine the fastest available implementation. */ 792 fletcher_4_benchmark(); 793 794 #if defined(_KERNEL) 795 /* Install kstats for all implementations */ 796 fletcher_4_kstat = kstat_create("zfs", 0, "fletcher_4_bench", "misc", 797 KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL); 798 if (fletcher_4_kstat != NULL) { 799 fletcher_4_kstat->ks_data = NULL; 800 fletcher_4_kstat->ks_ndata = UINT32_MAX; 801 kstat_set_raw_ops(fletcher_4_kstat, 802 fletcher_4_kstat_headers, 803 fletcher_4_kstat_data, 804 fletcher_4_kstat_addr); 805 kstat_install(fletcher_4_kstat); 806 } 807 #endif 808 809 /* Finish initialization */ 810 fletcher_4_initialized = B_TRUE; 811 } 812 813 void 814 fletcher_4_fini(void) 815 { 816 #if defined(_KERNEL) 817 if (fletcher_4_kstat != NULL) { 818 kstat_delete(fletcher_4_kstat); 819 fletcher_4_kstat = NULL; 820 } 821 #endif 822 } 823 824 /* ABD adapters */ 825 826 static void 827 abd_fletcher_4_init(zio_abd_checksum_data_t *cdp) 828 { 829 const fletcher_4_ops_t *ops = fletcher_4_impl_get(); 830 cdp->acd_private = (void *) ops; 831 832 if (ops->uses_fpu == B_TRUE) { 833 kfpu_begin(); 834 } 835 if (cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE) 836 ops->init_native(cdp->acd_ctx); 837 else 838 ops->init_byteswap(cdp->acd_ctx); 839 840 } 841 842 static void 843 abd_fletcher_4_fini(zio_abd_checksum_data_t *cdp) 844 { 845 fletcher_4_ops_t *ops = (fletcher_4_ops_t *)cdp->acd_private; 846 847 ASSERT(ops); 848 849 if (cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE) 850 ops->fini_native(cdp->acd_ctx, cdp->acd_zcp); 851 else 852 ops->fini_byteswap(cdp->acd_ctx, cdp->acd_zcp); 853 854 if (ops->uses_fpu == B_TRUE) { 855 kfpu_end(); 856 } 857 } 858 859 860 static void 861 abd_fletcher_4_simd2scalar(boolean_t native, void *data, size_t size, 862 zio_abd_checksum_data_t *cdp) 863 { 864 zio_cksum_t *zcp = cdp->acd_zcp; 865 866 ASSERT3U(size, <, FLETCHER_MIN_SIMD_SIZE); 867 868 abd_fletcher_4_fini(cdp); 869 cdp->acd_private = (void *)&fletcher_4_scalar_ops; 870 871 if (native) 872 fletcher_4_incremental_native(data, size, zcp); 873 else 874 fletcher_4_incremental_byteswap(data, size, zcp); 875 } 876 877 static int 878 abd_fletcher_4_iter(void *data, size_t size, void *private) 879 { 880 zio_abd_checksum_data_t *cdp = (zio_abd_checksum_data_t *)private; 881 fletcher_4_ctx_t *ctx = cdp->acd_ctx; 882 fletcher_4_ops_t *ops = (fletcher_4_ops_t *)cdp->acd_private; 883 boolean_t native = cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE; 884 uint64_t asize = P2ALIGN_TYPED(size, FLETCHER_MIN_SIMD_SIZE, uint64_t); 885 886 ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t))); 887 888 if (asize > 0) { 889 if (native) 890 ops->compute_native(ctx, data, asize); 891 else 892 ops->compute_byteswap(ctx, data, asize); 893 894 size -= asize; 895 data = (char *)data + asize; 896 } 897 898 if (size > 0) { 899 ASSERT3U(size, <, FLETCHER_MIN_SIMD_SIZE); 900 /* At this point we have to switch to scalar impl */ 901 abd_fletcher_4_simd2scalar(native, data, size, cdp); 902 } 903 904 return (0); 905 } 906 907 zio_abd_checksum_func_t fletcher_4_abd_ops = { 908 .acf_init = abd_fletcher_4_init, 909 .acf_fini = abd_fletcher_4_fini, 910 .acf_iter = abd_fletcher_4_iter 911 }; 912 913 #if defined(_KERNEL) 914 915 #define IMPL_FMT(impl, i) (((impl) == (i)) ? "[%s] " : "%s ") 916 917 #if defined(__linux__) 918 919 static int 920 fletcher_4_param_get(char *buffer, zfs_kernel_param_t *unused) 921 { 922 const uint32_t impl = IMPL_READ(fletcher_4_impl_chosen); 923 char *fmt; 924 int cnt = 0; 925 926 /* list fastest */ 927 fmt = IMPL_FMT(impl, IMPL_FASTEST); 928 cnt += kmem_scnprintf(buffer + cnt, PAGE_SIZE - cnt, fmt, "fastest"); 929 930 /* list all supported implementations */ 931 for (uint32_t i = 0; i < fletcher_4_supp_impls_cnt; ++i) { 932 fmt = IMPL_FMT(impl, i); 933 cnt += kmem_scnprintf(buffer + cnt, PAGE_SIZE - cnt, fmt, 934 fletcher_4_supp_impls[i]->name); 935 } 936 937 return (cnt); 938 } 939 940 static int 941 fletcher_4_param_set(const char *val, zfs_kernel_param_t *unused) 942 { 943 return (fletcher_4_impl_set(val)); 944 } 945 946 #else 947 948 #include <sys/sbuf.h> 949 950 static int 951 fletcher_4_param(ZFS_MODULE_PARAM_ARGS) 952 { 953 int err; 954 955 if (req->newptr == NULL) { 956 const uint32_t impl = IMPL_READ(fletcher_4_impl_chosen); 957 const int init_buflen = 64; 958 const char *fmt; 959 struct sbuf *s; 960 961 s = sbuf_new_for_sysctl(NULL, NULL, init_buflen, req); 962 963 /* list fastest */ 964 fmt = IMPL_FMT(impl, IMPL_FASTEST); 965 (void) sbuf_printf(s, fmt, "fastest"); 966 967 /* list all supported implementations */ 968 for (uint32_t i = 0; i < fletcher_4_supp_impls_cnt; ++i) { 969 fmt = IMPL_FMT(impl, i); 970 (void) sbuf_printf(s, fmt, 971 fletcher_4_supp_impls[i]->name); 972 } 973 974 err = sbuf_finish(s); 975 sbuf_delete(s); 976 977 return (err); 978 } 979 980 char buf[16]; 981 982 err = sysctl_handle_string(oidp, buf, sizeof (buf), req); 983 if (err) 984 return (err); 985 return (-fletcher_4_impl_set(buf)); 986 } 987 988 #endif 989 990 #undef IMPL_FMT 991 992 /* 993 * Choose a fletcher 4 implementation in ZFS. 994 * Users can choose "cycle" to exercise all implementations, but this is 995 * for testing purpose therefore it can only be set in user space. 996 */ 997 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs, zfs_, fletcher_4_impl, 998 fletcher_4_param_set, fletcher_4_param_get, ZMOD_RW, 999 "Select fletcher 4 implementation."); 1000 1001 EXPORT_SYMBOL(fletcher_init); 1002 EXPORT_SYMBOL(fletcher_2_incremental_native); 1003 EXPORT_SYMBOL(fletcher_2_incremental_byteswap); 1004 EXPORT_SYMBOL(fletcher_4_init); 1005 EXPORT_SYMBOL(fletcher_4_fini); 1006 EXPORT_SYMBOL(fletcher_2_native); 1007 EXPORT_SYMBOL(fletcher_2_byteswap); 1008 EXPORT_SYMBOL(fletcher_4_native); 1009 EXPORT_SYMBOL(fletcher_4_native_varsize); 1010 EXPORT_SYMBOL(fletcher_4_byteswap); 1011 EXPORT_SYMBOL(fletcher_4_incremental_native); 1012 EXPORT_SYMBOL(fletcher_4_incremental_byteswap); 1013 EXPORT_SYMBOL(fletcher_4_abd_ops); 1014 #endif 1015