xref: /freebsd/sys/contrib/openzfs/module/zcommon/zfs_fletcher.c (revision 7be9a3b45356747f9fcb6d69a722c1c95f8060bf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  * Copyright (C) 2016 Gvozden Nešković. All rights reserved.
25  */
26 /*
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  */
29 
30 /*
31  * Copyright (c) 2016 by Delphix. All rights reserved.
32  */
33 
34 /*
35  * Fletcher Checksums
36  * ------------------
37  *
38  * ZFS's 2nd and 4th order Fletcher checksums are defined by the following
39  * recurrence relations:
40  *
41  *	a  = a    + f
42  *	 i    i-1    i-1
43  *
44  *	b  = b    + a
45  *	 i    i-1    i
46  *
47  *	c  = c    + b		(fletcher-4 only)
48  *	 i    i-1    i
49  *
50  *	d  = d    + c		(fletcher-4 only)
51  *	 i    i-1    i
52  *
53  * Where
54  *	a_0 = b_0 = c_0 = d_0 = 0
55  * and
56  *	f_0 .. f_(n-1) are the input data.
57  *
58  * Using standard techniques, these translate into the following series:
59  *
60  *	     __n_			     __n_
61  *	     \   |			     \   |
62  *	a  =  >     f			b  =  >     i * f
63  *	 n   /___|   n - i		 n   /___|	 n - i
64  *	     i = 1			     i = 1
65  *
66  *
67  *	     __n_			     __n_
68  *	     \   |  i*(i+1)		     \   |  i*(i+1)*(i+2)
69  *	c  =  >     ------- f		d  =  >     ------------- f
70  *	 n   /___|     2     n - i	 n   /___|	  6	   n - i
71  *	     i = 1			     i = 1
72  *
73  * For fletcher-2, the f_is are 64-bit, and [ab]_i are 64-bit accumulators.
74  * Since the additions are done mod (2^64), errors in the high bits may not
75  * be noticed.  For this reason, fletcher-2 is deprecated.
76  *
77  * For fletcher-4, the f_is are 32-bit, and [abcd]_i are 64-bit accumulators.
78  * A conservative estimate of how big the buffer can get before we overflow
79  * can be estimated using f_i = 0xffffffff for all i:
80  *
81  * % bc
82  *  f=2^32-1;d=0; for (i = 1; d<2^64; i++) { d += f*i*(i+1)*(i+2)/6 }; (i-1)*4
83  * 2264
84  *  quit
85  * %
86  *
87  * So blocks of up to 2k will not overflow.  Our largest block size is
88  * 128k, which has 32k 4-byte words, so we can compute the largest possible
89  * accumulators, then divide by 2^64 to figure the max amount of overflow:
90  *
91  * % bc
92  *  a=b=c=d=0; f=2^32-1; for (i=1; i<=32*1024; i++) { a+=f; b+=a; c+=b; d+=c }
93  *  a/2^64;b/2^64;c/2^64;d/2^64
94  * 0
95  * 0
96  * 1365
97  * 11186858
98  *  quit
99  * %
100  *
101  * So a and b cannot overflow.  To make sure each bit of input has some
102  * effect on the contents of c and d, we can look at what the factors of
103  * the coefficients in the equations for c_n and d_n are.  The number of 2s
104  * in the factors determines the lowest set bit in the multiplier.  Running
105  * through the cases for n*(n+1)/2 reveals that the highest power of 2 is
106  * 2^14, and for n*(n+1)*(n+2)/6 it is 2^15.  So while some data may overflow
107  * the 64-bit accumulators, every bit of every f_i effects every accumulator,
108  * even for 128k blocks.
109  *
110  * If we wanted to make a stronger version of fletcher4 (fletcher4c?),
111  * we could do our calculations mod (2^32 - 1) by adding in the carries
112  * periodically, and store the number of carries in the top 32-bits.
113  *
114  * --------------------
115  * Checksum Performance
116  * --------------------
117  *
118  * There are two interesting components to checksum performance: cached and
119  * uncached performance.  With cached data, fletcher-2 is about four times
120  * faster than fletcher-4.  With uncached data, the performance difference is
121  * negligible, since the cost of a cache fill dominates the processing time.
122  * Even though fletcher-4 is slower than fletcher-2, it is still a pretty
123  * efficient pass over the data.
124  *
125  * In normal operation, the data which is being checksummed is in a buffer
126  * which has been filled either by:
127  *
128  *	1. a compression step, which will be mostly cached, or
129  *	2. a bcopy() or copyin(), which will be uncached (because the
130  *	   copy is cache-bypassing).
131  *
132  * For both cached and uncached data, both fletcher checksums are much faster
133  * than sha-256, and slower than 'off', which doesn't touch the data at all.
134  */
135 
136 #include <sys/types.h>
137 #include <sys/sysmacros.h>
138 #include <sys/byteorder.h>
139 #include <sys/spa.h>
140 #include <sys/simd.h>
141 #include <sys/zio_checksum.h>
142 #include <sys/zfs_context.h>
143 #include <zfs_fletcher.h>
144 
145 #define	FLETCHER_MIN_SIMD_SIZE	64
146 
147 static void fletcher_4_scalar_init(fletcher_4_ctx_t *ctx);
148 static void fletcher_4_scalar_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp);
149 static void fletcher_4_scalar_native(fletcher_4_ctx_t *ctx,
150     const void *buf, uint64_t size);
151 static void fletcher_4_scalar_byteswap(fletcher_4_ctx_t *ctx,
152     const void *buf, uint64_t size);
153 static boolean_t fletcher_4_scalar_valid(void);
154 
155 static const fletcher_4_ops_t fletcher_4_scalar_ops = {
156 	.init_native = fletcher_4_scalar_init,
157 	.fini_native = fletcher_4_scalar_fini,
158 	.compute_native = fletcher_4_scalar_native,
159 	.init_byteswap = fletcher_4_scalar_init,
160 	.fini_byteswap = fletcher_4_scalar_fini,
161 	.compute_byteswap = fletcher_4_scalar_byteswap,
162 	.valid = fletcher_4_scalar_valid,
163 	.name = "scalar"
164 };
165 
166 static fletcher_4_ops_t fletcher_4_fastest_impl = {
167 	.name = "fastest",
168 	.valid = fletcher_4_scalar_valid
169 };
170 
171 static const fletcher_4_ops_t *fletcher_4_impls[] = {
172 	&fletcher_4_scalar_ops,
173 	&fletcher_4_superscalar_ops,
174 	&fletcher_4_superscalar4_ops,
175 #if defined(HAVE_SSE2)
176 	&fletcher_4_sse2_ops,
177 #endif
178 #if defined(HAVE_SSE2) && defined(HAVE_SSSE3)
179 	&fletcher_4_ssse3_ops,
180 #endif
181 #if defined(HAVE_AVX) && defined(HAVE_AVX2)
182 	&fletcher_4_avx2_ops,
183 #endif
184 #if defined(__x86_64) && defined(HAVE_AVX512F)
185 	&fletcher_4_avx512f_ops,
186 #endif
187 #if defined(__x86_64) && defined(HAVE_AVX512BW)
188 	&fletcher_4_avx512bw_ops,
189 #endif
190 #if defined(__aarch64__) && !defined(__FreeBSD__)
191 	&fletcher_4_aarch64_neon_ops,
192 #endif
193 };
194 
195 /* Hold all supported implementations */
196 static uint32_t fletcher_4_supp_impls_cnt = 0;
197 static fletcher_4_ops_t *fletcher_4_supp_impls[ARRAY_SIZE(fletcher_4_impls)];
198 
199 /* Select fletcher4 implementation */
200 #define	IMPL_FASTEST	(UINT32_MAX)
201 #define	IMPL_CYCLE	(UINT32_MAX - 1)
202 #define	IMPL_SCALAR	(0)
203 
204 static uint32_t fletcher_4_impl_chosen = IMPL_FASTEST;
205 
206 #define	IMPL_READ(i)	(*(volatile uint32_t *) &(i))
207 
208 static struct fletcher_4_impl_selector {
209 	const char	*fis_name;
210 	uint32_t	fis_sel;
211 } fletcher_4_impl_selectors[] = {
212 	{ "cycle",	IMPL_CYCLE },
213 	{ "fastest",	IMPL_FASTEST },
214 	{ "scalar",	IMPL_SCALAR }
215 };
216 
217 #if defined(_KERNEL)
218 static kstat_t *fletcher_4_kstat;
219 
220 static struct fletcher_4_kstat {
221 	uint64_t native;
222 	uint64_t byteswap;
223 } fletcher_4_stat_data[ARRAY_SIZE(fletcher_4_impls) + 1];
224 #endif
225 
226 /* Indicate that benchmark has been completed */
227 static boolean_t fletcher_4_initialized = B_FALSE;
228 
229 void
230 fletcher_init(zio_cksum_t *zcp)
231 {
232 	ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
233 }
234 
235 int
236 fletcher_2_incremental_native(void *buf, size_t size, void *data)
237 {
238 	zio_cksum_t *zcp = data;
239 
240 	const uint64_t *ip = buf;
241 	const uint64_t *ipend = ip + (size / sizeof (uint64_t));
242 	uint64_t a0, b0, a1, b1;
243 
244 	a0 = zcp->zc_word[0];
245 	a1 = zcp->zc_word[1];
246 	b0 = zcp->zc_word[2];
247 	b1 = zcp->zc_word[3];
248 
249 	for (; ip < ipend; ip += 2) {
250 		a0 += ip[0];
251 		a1 += ip[1];
252 		b0 += a0;
253 		b1 += a1;
254 	}
255 
256 	ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1);
257 	return (0);
258 }
259 
260 void
261 fletcher_2_native(const void *buf, uint64_t size,
262     const void *ctx_template, zio_cksum_t *zcp)
263 {
264 	(void) ctx_template;
265 	fletcher_init(zcp);
266 	(void) fletcher_2_incremental_native((void *) buf, size, zcp);
267 }
268 
269 int
270 fletcher_2_incremental_byteswap(void *buf, size_t size, void *data)
271 {
272 	zio_cksum_t *zcp = data;
273 
274 	const uint64_t *ip = buf;
275 	const uint64_t *ipend = ip + (size / sizeof (uint64_t));
276 	uint64_t a0, b0, a1, b1;
277 
278 	a0 = zcp->zc_word[0];
279 	a1 = zcp->zc_word[1];
280 	b0 = zcp->zc_word[2];
281 	b1 = zcp->zc_word[3];
282 
283 	for (; ip < ipend; ip += 2) {
284 		a0 += BSWAP_64(ip[0]);
285 		a1 += BSWAP_64(ip[1]);
286 		b0 += a0;
287 		b1 += a1;
288 	}
289 
290 	ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1);
291 	return (0);
292 }
293 
294 void
295 fletcher_2_byteswap(const void *buf, uint64_t size,
296     const void *ctx_template, zio_cksum_t *zcp)
297 {
298 	(void) ctx_template;
299 	fletcher_init(zcp);
300 	(void) fletcher_2_incremental_byteswap((void *) buf, size, zcp);
301 }
302 
303 static void
304 fletcher_4_scalar_init(fletcher_4_ctx_t *ctx)
305 {
306 	ZIO_SET_CHECKSUM(&ctx->scalar, 0, 0, 0, 0);
307 }
308 
309 static void
310 fletcher_4_scalar_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp)
311 {
312 	memcpy(zcp, &ctx->scalar, sizeof (zio_cksum_t));
313 }
314 
315 static void
316 fletcher_4_scalar_native(fletcher_4_ctx_t *ctx, const void *buf,
317     uint64_t size)
318 {
319 	const uint32_t *ip = buf;
320 	const uint32_t *ipend = ip + (size / sizeof (uint32_t));
321 	uint64_t a, b, c, d;
322 
323 	a = ctx->scalar.zc_word[0];
324 	b = ctx->scalar.zc_word[1];
325 	c = ctx->scalar.zc_word[2];
326 	d = ctx->scalar.zc_word[3];
327 
328 	for (; ip < ipend; ip++) {
329 		a += ip[0];
330 		b += a;
331 		c += b;
332 		d += c;
333 	}
334 
335 	ZIO_SET_CHECKSUM(&ctx->scalar, a, b, c, d);
336 }
337 
338 static void
339 fletcher_4_scalar_byteswap(fletcher_4_ctx_t *ctx, const void *buf,
340     uint64_t size)
341 {
342 	const uint32_t *ip = buf;
343 	const uint32_t *ipend = ip + (size / sizeof (uint32_t));
344 	uint64_t a, b, c, d;
345 
346 	a = ctx->scalar.zc_word[0];
347 	b = ctx->scalar.zc_word[1];
348 	c = ctx->scalar.zc_word[2];
349 	d = ctx->scalar.zc_word[3];
350 
351 	for (; ip < ipend; ip++) {
352 		a += BSWAP_32(ip[0]);
353 		b += a;
354 		c += b;
355 		d += c;
356 	}
357 
358 	ZIO_SET_CHECKSUM(&ctx->scalar, a, b, c, d);
359 }
360 
361 static boolean_t
362 fletcher_4_scalar_valid(void)
363 {
364 	return (B_TRUE);
365 }
366 
367 int
368 fletcher_4_impl_set(const char *val)
369 {
370 	int err = -EINVAL;
371 	uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
372 	size_t i, val_len;
373 
374 	val_len = strlen(val);
375 	while ((val_len > 0) && !!isspace(val[val_len-1])) /* trim '\n' */
376 		val_len--;
377 
378 	/* check mandatory implementations */
379 	for (i = 0; i < ARRAY_SIZE(fletcher_4_impl_selectors); i++) {
380 		const char *name = fletcher_4_impl_selectors[i].fis_name;
381 
382 		if (val_len == strlen(name) &&
383 		    strncmp(val, name, val_len) == 0) {
384 			impl = fletcher_4_impl_selectors[i].fis_sel;
385 			err = 0;
386 			break;
387 		}
388 	}
389 
390 	if (err != 0 && fletcher_4_initialized) {
391 		/* check all supported implementations */
392 		for (i = 0; i < fletcher_4_supp_impls_cnt; i++) {
393 			const char *name = fletcher_4_supp_impls[i]->name;
394 
395 			if (val_len == strlen(name) &&
396 			    strncmp(val, name, val_len) == 0) {
397 				impl = i;
398 				err = 0;
399 				break;
400 			}
401 		}
402 	}
403 
404 	if (err == 0) {
405 		atomic_swap_32(&fletcher_4_impl_chosen, impl);
406 		membar_producer();
407 	}
408 
409 	return (err);
410 }
411 
412 /*
413  * Returns the Fletcher 4 operations for checksums.   When a SIMD
414  * implementation is not allowed in the current context, then fallback
415  * to the fastest generic implementation.
416  */
417 static inline const fletcher_4_ops_t *
418 fletcher_4_impl_get(void)
419 {
420 	if (!kfpu_allowed())
421 		return (&fletcher_4_superscalar4_ops);
422 
423 	const fletcher_4_ops_t *ops = NULL;
424 	uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
425 
426 	switch (impl) {
427 	case IMPL_FASTEST:
428 		ASSERT(fletcher_4_initialized);
429 		ops = &fletcher_4_fastest_impl;
430 		break;
431 	case IMPL_CYCLE:
432 		/* Cycle through supported implementations */
433 		ASSERT(fletcher_4_initialized);
434 		ASSERT3U(fletcher_4_supp_impls_cnt, >, 0);
435 		static uint32_t cycle_count = 0;
436 		uint32_t idx = (++cycle_count) % fletcher_4_supp_impls_cnt;
437 		ops = fletcher_4_supp_impls[idx];
438 		break;
439 	default:
440 		ASSERT3U(fletcher_4_supp_impls_cnt, >, 0);
441 		ASSERT3U(impl, <, fletcher_4_supp_impls_cnt);
442 		ops = fletcher_4_supp_impls[impl];
443 		break;
444 	}
445 
446 	ASSERT3P(ops, !=, NULL);
447 
448 	return (ops);
449 }
450 
451 static inline void
452 fletcher_4_native_impl(const void *buf, uint64_t size, zio_cksum_t *zcp)
453 {
454 	fletcher_4_ctx_t ctx;
455 	const fletcher_4_ops_t *ops = fletcher_4_impl_get();
456 
457 	ops->init_native(&ctx);
458 	ops->compute_native(&ctx, buf, size);
459 	ops->fini_native(&ctx, zcp);
460 }
461 
462 void
463 fletcher_4_native(const void *buf, uint64_t size,
464     const void *ctx_template, zio_cksum_t *zcp)
465 {
466 	(void) ctx_template;
467 	const uint64_t p2size = P2ALIGN(size, FLETCHER_MIN_SIMD_SIZE);
468 
469 	ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));
470 
471 	if (size == 0 || p2size == 0) {
472 		ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
473 
474 		if (size > 0)
475 			fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp,
476 			    buf, size);
477 	} else {
478 		fletcher_4_native_impl(buf, p2size, zcp);
479 
480 		if (p2size < size)
481 			fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp,
482 			    (char *)buf + p2size, size - p2size);
483 	}
484 }
485 
486 void
487 fletcher_4_native_varsize(const void *buf, uint64_t size, zio_cksum_t *zcp)
488 {
489 	ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
490 	fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, buf, size);
491 }
492 
493 static inline void
494 fletcher_4_byteswap_impl(const void *buf, uint64_t size, zio_cksum_t *zcp)
495 {
496 	fletcher_4_ctx_t ctx;
497 	const fletcher_4_ops_t *ops = fletcher_4_impl_get();
498 
499 	ops->init_byteswap(&ctx);
500 	ops->compute_byteswap(&ctx, buf, size);
501 	ops->fini_byteswap(&ctx, zcp);
502 }
503 
504 void
505 fletcher_4_byteswap(const void *buf, uint64_t size,
506     const void *ctx_template, zio_cksum_t *zcp)
507 {
508 	(void) ctx_template;
509 	const uint64_t p2size = P2ALIGN(size, FLETCHER_MIN_SIMD_SIZE);
510 
511 	ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));
512 
513 	if (size == 0 || p2size == 0) {
514 		ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
515 
516 		if (size > 0)
517 			fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp,
518 			    buf, size);
519 	} else {
520 		fletcher_4_byteswap_impl(buf, p2size, zcp);
521 
522 		if (p2size < size)
523 			fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp,
524 			    (char *)buf + p2size, size - p2size);
525 	}
526 }
527 
528 /* Incremental Fletcher 4 */
529 
530 #define	ZFS_FLETCHER_4_INC_MAX_SIZE	(8ULL << 20)
531 
532 static inline void
533 fletcher_4_incremental_combine(zio_cksum_t *zcp, const uint64_t size,
534     const zio_cksum_t *nzcp)
535 {
536 	const uint64_t c1 = size / sizeof (uint32_t);
537 	const uint64_t c2 = c1 * (c1 + 1) / 2;
538 	const uint64_t c3 = c2 * (c1 + 2) / 3;
539 
540 	/*
541 	 * Value of 'c3' overflows on buffer sizes close to 16MiB. For that
542 	 * reason we split incremental fletcher4 computation of large buffers
543 	 * to steps of (ZFS_FLETCHER_4_INC_MAX_SIZE) size.
544 	 */
545 	ASSERT3U(size, <=, ZFS_FLETCHER_4_INC_MAX_SIZE);
546 
547 	zcp->zc_word[3] += nzcp->zc_word[3] + c1 * zcp->zc_word[2] +
548 	    c2 * zcp->zc_word[1] + c3 * zcp->zc_word[0];
549 	zcp->zc_word[2] += nzcp->zc_word[2] + c1 * zcp->zc_word[1] +
550 	    c2 * zcp->zc_word[0];
551 	zcp->zc_word[1] += nzcp->zc_word[1] + c1 * zcp->zc_word[0];
552 	zcp->zc_word[0] += nzcp->zc_word[0];
553 }
554 
555 static inline void
556 fletcher_4_incremental_impl(boolean_t native, const void *buf, uint64_t size,
557     zio_cksum_t *zcp)
558 {
559 	while (size > 0) {
560 		zio_cksum_t nzc;
561 		uint64_t len = MIN(size, ZFS_FLETCHER_4_INC_MAX_SIZE);
562 
563 		if (native)
564 			fletcher_4_native(buf, len, NULL, &nzc);
565 		else
566 			fletcher_4_byteswap(buf, len, NULL, &nzc);
567 
568 		fletcher_4_incremental_combine(zcp, len, &nzc);
569 
570 		size -= len;
571 		buf += len;
572 	}
573 }
574 
575 int
576 fletcher_4_incremental_native(void *buf, size_t size, void *data)
577 {
578 	zio_cksum_t *zcp = data;
579 	/* Use scalar impl to directly update cksum of small blocks */
580 	if (size < SPA_MINBLOCKSIZE)
581 		fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, buf, size);
582 	else
583 		fletcher_4_incremental_impl(B_TRUE, buf, size, zcp);
584 	return (0);
585 }
586 
587 int
588 fletcher_4_incremental_byteswap(void *buf, size_t size, void *data)
589 {
590 	zio_cksum_t *zcp = data;
591 	/* Use scalar impl to directly update cksum of small blocks */
592 	if (size < SPA_MINBLOCKSIZE)
593 		fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp, buf, size);
594 	else
595 		fletcher_4_incremental_impl(B_FALSE, buf, size, zcp);
596 	return (0);
597 }
598 
599 #if defined(_KERNEL)
600 /*
601  * Fletcher 4 kstats
602  */
603 static int
604 fletcher_4_kstat_headers(char *buf, size_t size)
605 {
606 	ssize_t off = 0;
607 
608 	off += snprintf(buf + off, size, "%-17s", "implementation");
609 	off += snprintf(buf + off, size - off, "%-15s", "native");
610 	(void) snprintf(buf + off, size - off, "%-15s\n", "byteswap");
611 
612 	return (0);
613 }
614 
615 static int
616 fletcher_4_kstat_data(char *buf, size_t size, void *data)
617 {
618 	struct fletcher_4_kstat *fastest_stat =
619 	    &fletcher_4_stat_data[fletcher_4_supp_impls_cnt];
620 	struct fletcher_4_kstat *curr_stat = (struct fletcher_4_kstat *)data;
621 	ssize_t off = 0;
622 
623 	if (curr_stat == fastest_stat) {
624 		off += snprintf(buf + off, size - off, "%-17s", "fastest");
625 		off += snprintf(buf + off, size - off, "%-15s",
626 		    fletcher_4_supp_impls[fastest_stat->native]->name);
627 		off += snprintf(buf + off, size - off, "%-15s\n",
628 		    fletcher_4_supp_impls[fastest_stat->byteswap]->name);
629 	} else {
630 		ptrdiff_t id = curr_stat - fletcher_4_stat_data;
631 
632 		off += snprintf(buf + off, size - off, "%-17s",
633 		    fletcher_4_supp_impls[id]->name);
634 		off += snprintf(buf + off, size - off, "%-15llu",
635 		    (u_longlong_t)curr_stat->native);
636 		off += snprintf(buf + off, size - off, "%-15llu\n",
637 		    (u_longlong_t)curr_stat->byteswap);
638 	}
639 
640 	return (0);
641 }
642 
643 static void *
644 fletcher_4_kstat_addr(kstat_t *ksp, loff_t n)
645 {
646 	if (n <= fletcher_4_supp_impls_cnt)
647 		ksp->ks_private = (void *) (fletcher_4_stat_data + n);
648 	else
649 		ksp->ks_private = NULL;
650 
651 	return (ksp->ks_private);
652 }
653 #endif
654 
655 #define	FLETCHER_4_FASTEST_FN_COPY(type, src)				  \
656 {									  \
657 	fletcher_4_fastest_impl.init_ ## type = src->init_ ## type;	  \
658 	fletcher_4_fastest_impl.fini_ ## type = src->fini_ ## type;	  \
659 	fletcher_4_fastest_impl.compute_ ## type = src->compute_ ## type; \
660 }
661 
662 #define	FLETCHER_4_BENCH_NS	(MSEC2NSEC(1))		/* 1ms */
663 
664 typedef void fletcher_checksum_func_t(const void *, uint64_t, const void *,
665 					zio_cksum_t *);
666 
667 #if defined(_KERNEL)
668 static void
669 fletcher_4_benchmark_impl(boolean_t native, char *data, uint64_t data_size)
670 {
671 
672 	struct fletcher_4_kstat *fastest_stat =
673 	    &fletcher_4_stat_data[fletcher_4_supp_impls_cnt];
674 	hrtime_t start;
675 	uint64_t run_bw, run_time_ns, best_run = 0;
676 	zio_cksum_t zc;
677 	uint32_t i, l, sel_save = IMPL_READ(fletcher_4_impl_chosen);
678 
679 	fletcher_checksum_func_t *fletcher_4_test = native ?
680 	    fletcher_4_native : fletcher_4_byteswap;
681 
682 	for (i = 0; i < fletcher_4_supp_impls_cnt; i++) {
683 		struct fletcher_4_kstat *stat = &fletcher_4_stat_data[i];
684 		uint64_t run_count = 0;
685 
686 		/* temporary set an implementation */
687 		fletcher_4_impl_chosen = i;
688 
689 		kpreempt_disable();
690 		start = gethrtime();
691 		do {
692 			for (l = 0; l < 32; l++, run_count++)
693 				fletcher_4_test(data, data_size, NULL, &zc);
694 
695 			run_time_ns = gethrtime() - start;
696 		} while (run_time_ns < FLETCHER_4_BENCH_NS);
697 		kpreempt_enable();
698 
699 		run_bw = data_size * run_count * NANOSEC;
700 		run_bw /= run_time_ns;	/* B/s */
701 
702 		if (native)
703 			stat->native = run_bw;
704 		else
705 			stat->byteswap = run_bw;
706 
707 		if (run_bw > best_run) {
708 			best_run = run_bw;
709 
710 			if (native) {
711 				fastest_stat->native = i;
712 				FLETCHER_4_FASTEST_FN_COPY(native,
713 				    fletcher_4_supp_impls[i]);
714 			} else {
715 				fastest_stat->byteswap = i;
716 				FLETCHER_4_FASTEST_FN_COPY(byteswap,
717 				    fletcher_4_supp_impls[i]);
718 			}
719 		}
720 	}
721 
722 	/* restore original selection */
723 	atomic_swap_32(&fletcher_4_impl_chosen, sel_save);
724 }
725 #endif /* _KERNEL */
726 
727 /*
728  * Initialize and benchmark all supported implementations.
729  */
730 static void
731 fletcher_4_benchmark(void)
732 {
733 	fletcher_4_ops_t *curr_impl;
734 	int i, c;
735 
736 	/* Move supported implementations into fletcher_4_supp_impls */
737 	for (i = 0, c = 0; i < ARRAY_SIZE(fletcher_4_impls); i++) {
738 		curr_impl = (fletcher_4_ops_t *)fletcher_4_impls[i];
739 
740 		if (curr_impl->valid && curr_impl->valid())
741 			fletcher_4_supp_impls[c++] = curr_impl;
742 	}
743 	membar_producer();	/* complete fletcher_4_supp_impls[] init */
744 	fletcher_4_supp_impls_cnt = c;	/* number of supported impl */
745 
746 #if defined(_KERNEL)
747 	static const size_t data_size = 1 << SPA_OLD_MAXBLOCKSHIFT; /* 128kiB */
748 	char *databuf = vmem_alloc(data_size, KM_SLEEP);
749 
750 	for (i = 0; i < data_size / sizeof (uint64_t); i++)
751 		((uint64_t *)databuf)[i] = (uintptr_t)(databuf+i); /* warm-up */
752 
753 	fletcher_4_benchmark_impl(B_FALSE, databuf, data_size);
754 	fletcher_4_benchmark_impl(B_TRUE, databuf, data_size);
755 
756 	vmem_free(databuf, data_size);
757 #else
758 	/*
759 	 * Skip the benchmark in user space to avoid impacting libzpool
760 	 * consumers (zdb, zhack, zinject, ztest).  The last implementation
761 	 * is assumed to be the fastest and used by default.
762 	 */
763 	memcpy(&fletcher_4_fastest_impl,
764 	    fletcher_4_supp_impls[fletcher_4_supp_impls_cnt - 1],
765 	    sizeof (fletcher_4_fastest_impl));
766 	fletcher_4_fastest_impl.name = "fastest";
767 	membar_producer();
768 #endif /* _KERNEL */
769 }
770 
771 void
772 fletcher_4_init(void)
773 {
774 	/* Determine the fastest available implementation. */
775 	fletcher_4_benchmark();
776 
777 #if defined(_KERNEL)
778 	/* Install kstats for all implementations */
779 	fletcher_4_kstat = kstat_create("zfs", 0, "fletcher_4_bench", "misc",
780 	    KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL);
781 	if (fletcher_4_kstat != NULL) {
782 		fletcher_4_kstat->ks_data = NULL;
783 		fletcher_4_kstat->ks_ndata = UINT32_MAX;
784 		kstat_set_raw_ops(fletcher_4_kstat,
785 		    fletcher_4_kstat_headers,
786 		    fletcher_4_kstat_data,
787 		    fletcher_4_kstat_addr);
788 		kstat_install(fletcher_4_kstat);
789 	}
790 #endif
791 
792 	/* Finish initialization */
793 	fletcher_4_initialized = B_TRUE;
794 }
795 
796 void
797 fletcher_4_fini(void)
798 {
799 #if defined(_KERNEL)
800 	if (fletcher_4_kstat != NULL) {
801 		kstat_delete(fletcher_4_kstat);
802 		fletcher_4_kstat = NULL;
803 	}
804 #endif
805 }
806 
807 /* ABD adapters */
808 
809 static void
810 abd_fletcher_4_init(zio_abd_checksum_data_t *cdp)
811 {
812 	const fletcher_4_ops_t *ops = fletcher_4_impl_get();
813 	cdp->acd_private = (void *) ops;
814 
815 	if (cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE)
816 		ops->init_native(cdp->acd_ctx);
817 	else
818 		ops->init_byteswap(cdp->acd_ctx);
819 }
820 
821 static void
822 abd_fletcher_4_fini(zio_abd_checksum_data_t *cdp)
823 {
824 	fletcher_4_ops_t *ops = (fletcher_4_ops_t *)cdp->acd_private;
825 
826 	ASSERT(ops);
827 
828 	if (cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE)
829 		ops->fini_native(cdp->acd_ctx, cdp->acd_zcp);
830 	else
831 		ops->fini_byteswap(cdp->acd_ctx, cdp->acd_zcp);
832 }
833 
834 static void
835 abd_fletcher_4_simd2scalar(boolean_t native, void *data, size_t size,
836     zio_abd_checksum_data_t *cdp)
837 {
838 	zio_cksum_t *zcp = cdp->acd_zcp;
839 
840 	ASSERT3U(size, <, FLETCHER_MIN_SIMD_SIZE);
841 
842 	abd_fletcher_4_fini(cdp);
843 	cdp->acd_private = (void *)&fletcher_4_scalar_ops;
844 
845 	if (native)
846 		fletcher_4_incremental_native(data, size, zcp);
847 	else
848 		fletcher_4_incremental_byteswap(data, size, zcp);
849 }
850 
851 static int
852 abd_fletcher_4_iter(void *data, size_t size, void *private)
853 {
854 	zio_abd_checksum_data_t *cdp = (zio_abd_checksum_data_t *)private;
855 	fletcher_4_ctx_t *ctx = cdp->acd_ctx;
856 	fletcher_4_ops_t *ops = (fletcher_4_ops_t *)cdp->acd_private;
857 	boolean_t native = cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE;
858 	uint64_t asize = P2ALIGN(size, FLETCHER_MIN_SIMD_SIZE);
859 
860 	ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));
861 
862 	if (asize > 0) {
863 		if (native)
864 			ops->compute_native(ctx, data, asize);
865 		else
866 			ops->compute_byteswap(ctx, data, asize);
867 
868 		size -= asize;
869 		data = (char *)data + asize;
870 	}
871 
872 	if (size > 0) {
873 		ASSERT3U(size, <, FLETCHER_MIN_SIMD_SIZE);
874 		/* At this point we have to switch to scalar impl */
875 		abd_fletcher_4_simd2scalar(native, data, size, cdp);
876 	}
877 
878 	return (0);
879 }
880 
881 zio_abd_checksum_func_t fletcher_4_abd_ops = {
882 	.acf_init = abd_fletcher_4_init,
883 	.acf_fini = abd_fletcher_4_fini,
884 	.acf_iter = abd_fletcher_4_iter
885 };
886 
887 #if defined(_KERNEL)
888 
889 #define	IMPL_FMT(impl, i)	(((impl) == (i)) ? "[%s] " : "%s ")
890 
891 #if defined(__linux__)
892 
893 static int
894 fletcher_4_param_get(char *buffer, zfs_kernel_param_t *unused)
895 {
896 	const uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
897 	char *fmt;
898 	int cnt = 0;
899 
900 	/* list fastest */
901 	fmt = IMPL_FMT(impl, IMPL_FASTEST);
902 	cnt += sprintf(buffer + cnt, fmt, "fastest");
903 
904 	/* list all supported implementations */
905 	for (uint32_t i = 0; i < fletcher_4_supp_impls_cnt; ++i) {
906 		fmt = IMPL_FMT(impl, i);
907 		cnt += sprintf(buffer + cnt, fmt,
908 		    fletcher_4_supp_impls[i]->name);
909 	}
910 
911 	return (cnt);
912 }
913 
914 static int
915 fletcher_4_param_set(const char *val, zfs_kernel_param_t *unused)
916 {
917 	return (fletcher_4_impl_set(val));
918 }
919 
920 #else
921 
922 #include <sys/sbuf.h>
923 
924 static int
925 fletcher_4_param(ZFS_MODULE_PARAM_ARGS)
926 {
927 	int err;
928 
929 	if (req->newptr == NULL) {
930 		const uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
931 		const int init_buflen = 64;
932 		const char *fmt;
933 		struct sbuf *s;
934 
935 		s = sbuf_new_for_sysctl(NULL, NULL, init_buflen, req);
936 
937 		/* list fastest */
938 		fmt = IMPL_FMT(impl, IMPL_FASTEST);
939 		(void) sbuf_printf(s, fmt, "fastest");
940 
941 		/* list all supported implementations */
942 		for (uint32_t i = 0; i < fletcher_4_supp_impls_cnt; ++i) {
943 			fmt = IMPL_FMT(impl, i);
944 			(void) sbuf_printf(s, fmt,
945 			    fletcher_4_supp_impls[i]->name);
946 		}
947 
948 		err = sbuf_finish(s);
949 		sbuf_delete(s);
950 
951 		return (err);
952 	}
953 
954 	char buf[16];
955 
956 	err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
957 	if (err)
958 		return (err);
959 	return (-fletcher_4_impl_set(buf));
960 }
961 
962 #endif
963 
964 #undef IMPL_FMT
965 
966 /*
967  * Choose a fletcher 4 implementation in ZFS.
968  * Users can choose "cycle" to exercise all implementations, but this is
969  * for testing purpose therefore it can only be set in user space.
970  */
971 /* BEGIN CSTYLED */
972 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs, zfs_, fletcher_4_impl,
973 	fletcher_4_param_set, fletcher_4_param_get, ZMOD_RW,
974 	"Select fletcher 4 implementation.");
975 /* END CSTYLED */
976 
977 EXPORT_SYMBOL(fletcher_init);
978 EXPORT_SYMBOL(fletcher_2_incremental_native);
979 EXPORT_SYMBOL(fletcher_2_incremental_byteswap);
980 EXPORT_SYMBOL(fletcher_4_init);
981 EXPORT_SYMBOL(fletcher_4_fini);
982 EXPORT_SYMBOL(fletcher_2_native);
983 EXPORT_SYMBOL(fletcher_2_byteswap);
984 EXPORT_SYMBOL(fletcher_4_native);
985 EXPORT_SYMBOL(fletcher_4_native_varsize);
986 EXPORT_SYMBOL(fletcher_4_byteswap);
987 EXPORT_SYMBOL(fletcher_4_incremental_native);
988 EXPORT_SYMBOL(fletcher_4_incremental_byteswap);
989 EXPORT_SYMBOL(fletcher_4_abd_ops);
990 #endif
991