1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 * Copyright (C) 2016 Gvozden Nešković. All rights reserved. 25 */ 26 /* 27 * Copyright 2013 Saso Kiselkov. All rights reserved. 28 */ 29 30 /* 31 * Copyright (c) 2016 by Delphix. All rights reserved. 32 */ 33 34 /* 35 * Fletcher Checksums 36 * ------------------ 37 * 38 * ZFS's 2nd and 4th order Fletcher checksums are defined by the following 39 * recurrence relations: 40 * 41 * a = a + f 42 * i i-1 i-1 43 * 44 * b = b + a 45 * i i-1 i 46 * 47 * c = c + b (fletcher-4 only) 48 * i i-1 i 49 * 50 * d = d + c (fletcher-4 only) 51 * i i-1 i 52 * 53 * Where 54 * a_0 = b_0 = c_0 = d_0 = 0 55 * and 56 * f_0 .. f_(n-1) are the input data. 57 * 58 * Using standard techniques, these translate into the following series: 59 * 60 * __n_ __n_ 61 * \ | \ | 62 * a = > f b = > i * f 63 * n /___| n - i n /___| n - i 64 * i = 1 i = 1 65 * 66 * 67 * __n_ __n_ 68 * \ | i*(i+1) \ | i*(i+1)*(i+2) 69 * c = > ------- f d = > ------------- f 70 * n /___| 2 n - i n /___| 6 n - i 71 * i = 1 i = 1 72 * 73 * For fletcher-2, the f_is are 64-bit, and [ab]_i are 64-bit accumulators. 74 * Since the additions are done mod (2^64), errors in the high bits may not 75 * be noticed. For this reason, fletcher-2 is deprecated. 76 * 77 * For fletcher-4, the f_is are 32-bit, and [abcd]_i are 64-bit accumulators. 78 * A conservative estimate of how big the buffer can get before we overflow 79 * can be estimated using f_i = 0xffffffff for all i: 80 * 81 * % bc 82 * f=2^32-1;d=0; for (i = 1; d<2^64; i++) { d += f*i*(i+1)*(i+2)/6 }; (i-1)*4 83 * 2264 84 * quit 85 * % 86 * 87 * So blocks of up to 2k will not overflow. Our largest block size is 88 * 128k, which has 32k 4-byte words, so we can compute the largest possible 89 * accumulators, then divide by 2^64 to figure the max amount of overflow: 90 * 91 * % bc 92 * a=b=c=d=0; f=2^32-1; for (i=1; i<=32*1024; i++) { a+=f; b+=a; c+=b; d+=c } 93 * a/2^64;b/2^64;c/2^64;d/2^64 94 * 0 95 * 0 96 * 1365 97 * 11186858 98 * quit 99 * % 100 * 101 * So a and b cannot overflow. To make sure each bit of input has some 102 * effect on the contents of c and d, we can look at what the factors of 103 * the coefficients in the equations for c_n and d_n are. The number of 2s 104 * in the factors determines the lowest set bit in the multiplier. Running 105 * through the cases for n*(n+1)/2 reveals that the highest power of 2 is 106 * 2^14, and for n*(n+1)*(n+2)/6 it is 2^15. So while some data may overflow 107 * the 64-bit accumulators, every bit of every f_i effects every accumulator, 108 * even for 128k blocks. 109 * 110 * If we wanted to make a stronger version of fletcher4 (fletcher4c?), 111 * we could do our calculations mod (2^32 - 1) by adding in the carries 112 * periodically, and store the number of carries in the top 32-bits. 113 * 114 * -------------------- 115 * Checksum Performance 116 * -------------------- 117 * 118 * There are two interesting components to checksum performance: cached and 119 * uncached performance. With cached data, fletcher-2 is about four times 120 * faster than fletcher-4. With uncached data, the performance difference is 121 * negligible, since the cost of a cache fill dominates the processing time. 122 * Even though fletcher-4 is slower than fletcher-2, it is still a pretty 123 * efficient pass over the data. 124 * 125 * In normal operation, the data which is being checksummed is in a buffer 126 * which has been filled either by: 127 * 128 * 1. a compression step, which will be mostly cached, or 129 * 2. a bcopy() or copyin(), which will be uncached (because the 130 * copy is cache-bypassing). 131 * 132 * For both cached and uncached data, both fletcher checksums are much faster 133 * than sha-256, and slower than 'off', which doesn't touch the data at all. 134 */ 135 136 #include <sys/types.h> 137 #include <sys/sysmacros.h> 138 #include <sys/byteorder.h> 139 #include <sys/spa.h> 140 #include <sys/simd.h> 141 #include <sys/zio_checksum.h> 142 #include <sys/zfs_context.h> 143 #include <zfs_fletcher.h> 144 145 #define FLETCHER_MIN_SIMD_SIZE 64 146 147 static void fletcher_4_scalar_init(fletcher_4_ctx_t *ctx); 148 static void fletcher_4_scalar_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp); 149 static void fletcher_4_scalar_native(fletcher_4_ctx_t *ctx, 150 const void *buf, uint64_t size); 151 static void fletcher_4_scalar_byteswap(fletcher_4_ctx_t *ctx, 152 const void *buf, uint64_t size); 153 static boolean_t fletcher_4_scalar_valid(void); 154 155 static const fletcher_4_ops_t fletcher_4_scalar_ops = { 156 .init_native = fletcher_4_scalar_init, 157 .fini_native = fletcher_4_scalar_fini, 158 .compute_native = fletcher_4_scalar_native, 159 .init_byteswap = fletcher_4_scalar_init, 160 .fini_byteswap = fletcher_4_scalar_fini, 161 .compute_byteswap = fletcher_4_scalar_byteswap, 162 .valid = fletcher_4_scalar_valid, 163 .name = "scalar" 164 }; 165 166 static fletcher_4_ops_t fletcher_4_fastest_impl = { 167 .name = "fastest", 168 .valid = fletcher_4_scalar_valid 169 }; 170 171 static const fletcher_4_ops_t *fletcher_4_impls[] = { 172 &fletcher_4_scalar_ops, 173 &fletcher_4_superscalar_ops, 174 &fletcher_4_superscalar4_ops, 175 #if defined(HAVE_SSE2) 176 &fletcher_4_sse2_ops, 177 #endif 178 #if defined(HAVE_SSE2) && defined(HAVE_SSSE3) 179 &fletcher_4_ssse3_ops, 180 #endif 181 #if defined(HAVE_AVX) && defined(HAVE_AVX2) 182 &fletcher_4_avx2_ops, 183 #endif 184 #if defined(__x86_64) && defined(HAVE_AVX512F) 185 &fletcher_4_avx512f_ops, 186 #endif 187 #if defined(__x86_64) && defined(HAVE_AVX512BW) 188 &fletcher_4_avx512bw_ops, 189 #endif 190 #if defined(__aarch64__) && !defined(__FreeBSD__) 191 &fletcher_4_aarch64_neon_ops, 192 #endif 193 }; 194 195 /* Hold all supported implementations */ 196 static uint32_t fletcher_4_supp_impls_cnt = 0; 197 static fletcher_4_ops_t *fletcher_4_supp_impls[ARRAY_SIZE(fletcher_4_impls)]; 198 199 /* Select fletcher4 implementation */ 200 #define IMPL_FASTEST (UINT32_MAX) 201 #define IMPL_CYCLE (UINT32_MAX - 1) 202 #define IMPL_SCALAR (0) 203 204 static uint32_t fletcher_4_impl_chosen = IMPL_FASTEST; 205 206 #define IMPL_READ(i) (*(volatile uint32_t *) &(i)) 207 208 static struct fletcher_4_impl_selector { 209 const char *fis_name; 210 uint32_t fis_sel; 211 } fletcher_4_impl_selectors[] = { 212 { "cycle", IMPL_CYCLE }, 213 { "fastest", IMPL_FASTEST }, 214 { "scalar", IMPL_SCALAR } 215 }; 216 217 #if defined(_KERNEL) 218 static kstat_t *fletcher_4_kstat; 219 220 static struct fletcher_4_kstat { 221 uint64_t native; 222 uint64_t byteswap; 223 } fletcher_4_stat_data[ARRAY_SIZE(fletcher_4_impls) + 1]; 224 #endif 225 226 /* Indicate that benchmark has been completed */ 227 static boolean_t fletcher_4_initialized = B_FALSE; 228 229 void 230 fletcher_init(zio_cksum_t *zcp) 231 { 232 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0); 233 } 234 235 int 236 fletcher_2_incremental_native(void *buf, size_t size, void *data) 237 { 238 zio_cksum_t *zcp = data; 239 240 const uint64_t *ip = buf; 241 const uint64_t *ipend = ip + (size / sizeof (uint64_t)); 242 uint64_t a0, b0, a1, b1; 243 244 a0 = zcp->zc_word[0]; 245 a1 = zcp->zc_word[1]; 246 b0 = zcp->zc_word[2]; 247 b1 = zcp->zc_word[3]; 248 249 for (; ip < ipend; ip += 2) { 250 a0 += ip[0]; 251 a1 += ip[1]; 252 b0 += a0; 253 b1 += a1; 254 } 255 256 ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1); 257 return (0); 258 } 259 260 void 261 fletcher_2_native(const void *buf, uint64_t size, 262 const void *ctx_template, zio_cksum_t *zcp) 263 { 264 (void) ctx_template; 265 fletcher_init(zcp); 266 (void) fletcher_2_incremental_native((void *) buf, size, zcp); 267 } 268 269 int 270 fletcher_2_incremental_byteswap(void *buf, size_t size, void *data) 271 { 272 zio_cksum_t *zcp = data; 273 274 const uint64_t *ip = buf; 275 const uint64_t *ipend = ip + (size / sizeof (uint64_t)); 276 uint64_t a0, b0, a1, b1; 277 278 a0 = zcp->zc_word[0]; 279 a1 = zcp->zc_word[1]; 280 b0 = zcp->zc_word[2]; 281 b1 = zcp->zc_word[3]; 282 283 for (; ip < ipend; ip += 2) { 284 a0 += BSWAP_64(ip[0]); 285 a1 += BSWAP_64(ip[1]); 286 b0 += a0; 287 b1 += a1; 288 } 289 290 ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1); 291 return (0); 292 } 293 294 void 295 fletcher_2_byteswap(const void *buf, uint64_t size, 296 const void *ctx_template, zio_cksum_t *zcp) 297 { 298 (void) ctx_template; 299 fletcher_init(zcp); 300 (void) fletcher_2_incremental_byteswap((void *) buf, size, zcp); 301 } 302 303 static void 304 fletcher_4_scalar_init(fletcher_4_ctx_t *ctx) 305 { 306 ZIO_SET_CHECKSUM(&ctx->scalar, 0, 0, 0, 0); 307 } 308 309 static void 310 fletcher_4_scalar_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp) 311 { 312 memcpy(zcp, &ctx->scalar, sizeof (zio_cksum_t)); 313 } 314 315 static void 316 fletcher_4_scalar_native(fletcher_4_ctx_t *ctx, const void *buf, 317 uint64_t size) 318 { 319 const uint32_t *ip = buf; 320 const uint32_t *ipend = ip + (size / sizeof (uint32_t)); 321 uint64_t a, b, c, d; 322 323 a = ctx->scalar.zc_word[0]; 324 b = ctx->scalar.zc_word[1]; 325 c = ctx->scalar.zc_word[2]; 326 d = ctx->scalar.zc_word[3]; 327 328 for (; ip < ipend; ip++) { 329 a += ip[0]; 330 b += a; 331 c += b; 332 d += c; 333 } 334 335 ZIO_SET_CHECKSUM(&ctx->scalar, a, b, c, d); 336 } 337 338 static void 339 fletcher_4_scalar_byteswap(fletcher_4_ctx_t *ctx, const void *buf, 340 uint64_t size) 341 { 342 const uint32_t *ip = buf; 343 const uint32_t *ipend = ip + (size / sizeof (uint32_t)); 344 uint64_t a, b, c, d; 345 346 a = ctx->scalar.zc_word[0]; 347 b = ctx->scalar.zc_word[1]; 348 c = ctx->scalar.zc_word[2]; 349 d = ctx->scalar.zc_word[3]; 350 351 for (; ip < ipend; ip++) { 352 a += BSWAP_32(ip[0]); 353 b += a; 354 c += b; 355 d += c; 356 } 357 358 ZIO_SET_CHECKSUM(&ctx->scalar, a, b, c, d); 359 } 360 361 static boolean_t 362 fletcher_4_scalar_valid(void) 363 { 364 return (B_TRUE); 365 } 366 367 int 368 fletcher_4_impl_set(const char *val) 369 { 370 int err = -EINVAL; 371 uint32_t impl = IMPL_READ(fletcher_4_impl_chosen); 372 size_t i, val_len; 373 374 val_len = strlen(val); 375 while ((val_len > 0) && !!isspace(val[val_len-1])) /* trim '\n' */ 376 val_len--; 377 378 /* check mandatory implementations */ 379 for (i = 0; i < ARRAY_SIZE(fletcher_4_impl_selectors); i++) { 380 const char *name = fletcher_4_impl_selectors[i].fis_name; 381 382 if (val_len == strlen(name) && 383 strncmp(val, name, val_len) == 0) { 384 impl = fletcher_4_impl_selectors[i].fis_sel; 385 err = 0; 386 break; 387 } 388 } 389 390 if (err != 0 && fletcher_4_initialized) { 391 /* check all supported implementations */ 392 for (i = 0; i < fletcher_4_supp_impls_cnt; i++) { 393 const char *name = fletcher_4_supp_impls[i]->name; 394 395 if (val_len == strlen(name) && 396 strncmp(val, name, val_len) == 0) { 397 impl = i; 398 err = 0; 399 break; 400 } 401 } 402 } 403 404 if (err == 0) { 405 atomic_swap_32(&fletcher_4_impl_chosen, impl); 406 membar_producer(); 407 } 408 409 return (err); 410 } 411 412 /* 413 * Returns the Fletcher 4 operations for checksums. When a SIMD 414 * implementation is not allowed in the current context, then fallback 415 * to the fastest generic implementation. 416 */ 417 static inline const fletcher_4_ops_t * 418 fletcher_4_impl_get(void) 419 { 420 if (!kfpu_allowed()) 421 return (&fletcher_4_superscalar4_ops); 422 423 const fletcher_4_ops_t *ops = NULL; 424 uint32_t impl = IMPL_READ(fletcher_4_impl_chosen); 425 426 switch (impl) { 427 case IMPL_FASTEST: 428 ASSERT(fletcher_4_initialized); 429 ops = &fletcher_4_fastest_impl; 430 break; 431 case IMPL_CYCLE: 432 /* Cycle through supported implementations */ 433 ASSERT(fletcher_4_initialized); 434 ASSERT3U(fletcher_4_supp_impls_cnt, >, 0); 435 static uint32_t cycle_count = 0; 436 uint32_t idx = (++cycle_count) % fletcher_4_supp_impls_cnt; 437 ops = fletcher_4_supp_impls[idx]; 438 break; 439 default: 440 ASSERT3U(fletcher_4_supp_impls_cnt, >, 0); 441 ASSERT3U(impl, <, fletcher_4_supp_impls_cnt); 442 ops = fletcher_4_supp_impls[impl]; 443 break; 444 } 445 446 ASSERT3P(ops, !=, NULL); 447 448 return (ops); 449 } 450 451 static inline void 452 fletcher_4_native_impl(const void *buf, uint64_t size, zio_cksum_t *zcp) 453 { 454 fletcher_4_ctx_t ctx; 455 const fletcher_4_ops_t *ops = fletcher_4_impl_get(); 456 457 ops->init_native(&ctx); 458 ops->compute_native(&ctx, buf, size); 459 ops->fini_native(&ctx, zcp); 460 } 461 462 void 463 fletcher_4_native(const void *buf, uint64_t size, 464 const void *ctx_template, zio_cksum_t *zcp) 465 { 466 (void) ctx_template; 467 const uint64_t p2size = P2ALIGN(size, FLETCHER_MIN_SIMD_SIZE); 468 469 ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t))); 470 471 if (size == 0 || p2size == 0) { 472 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0); 473 474 if (size > 0) 475 fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, 476 buf, size); 477 } else { 478 fletcher_4_native_impl(buf, p2size, zcp); 479 480 if (p2size < size) 481 fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, 482 (char *)buf + p2size, size - p2size); 483 } 484 } 485 486 void 487 fletcher_4_native_varsize(const void *buf, uint64_t size, zio_cksum_t *zcp) 488 { 489 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0); 490 fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, buf, size); 491 } 492 493 static inline void 494 fletcher_4_byteswap_impl(const void *buf, uint64_t size, zio_cksum_t *zcp) 495 { 496 fletcher_4_ctx_t ctx; 497 const fletcher_4_ops_t *ops = fletcher_4_impl_get(); 498 499 ops->init_byteswap(&ctx); 500 ops->compute_byteswap(&ctx, buf, size); 501 ops->fini_byteswap(&ctx, zcp); 502 } 503 504 void 505 fletcher_4_byteswap(const void *buf, uint64_t size, 506 const void *ctx_template, zio_cksum_t *zcp) 507 { 508 (void) ctx_template; 509 const uint64_t p2size = P2ALIGN(size, FLETCHER_MIN_SIMD_SIZE); 510 511 ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t))); 512 513 if (size == 0 || p2size == 0) { 514 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0); 515 516 if (size > 0) 517 fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp, 518 buf, size); 519 } else { 520 fletcher_4_byteswap_impl(buf, p2size, zcp); 521 522 if (p2size < size) 523 fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp, 524 (char *)buf + p2size, size - p2size); 525 } 526 } 527 528 /* Incremental Fletcher 4 */ 529 530 #define ZFS_FLETCHER_4_INC_MAX_SIZE (8ULL << 20) 531 532 static inline void 533 fletcher_4_incremental_combine(zio_cksum_t *zcp, const uint64_t size, 534 const zio_cksum_t *nzcp) 535 { 536 const uint64_t c1 = size / sizeof (uint32_t); 537 const uint64_t c2 = c1 * (c1 + 1) / 2; 538 const uint64_t c3 = c2 * (c1 + 2) / 3; 539 540 /* 541 * Value of 'c3' overflows on buffer sizes close to 16MiB. For that 542 * reason we split incremental fletcher4 computation of large buffers 543 * to steps of (ZFS_FLETCHER_4_INC_MAX_SIZE) size. 544 */ 545 ASSERT3U(size, <=, ZFS_FLETCHER_4_INC_MAX_SIZE); 546 547 zcp->zc_word[3] += nzcp->zc_word[3] + c1 * zcp->zc_word[2] + 548 c2 * zcp->zc_word[1] + c3 * zcp->zc_word[0]; 549 zcp->zc_word[2] += nzcp->zc_word[2] + c1 * zcp->zc_word[1] + 550 c2 * zcp->zc_word[0]; 551 zcp->zc_word[1] += nzcp->zc_word[1] + c1 * zcp->zc_word[0]; 552 zcp->zc_word[0] += nzcp->zc_word[0]; 553 } 554 555 static inline void 556 fletcher_4_incremental_impl(boolean_t native, const void *buf, uint64_t size, 557 zio_cksum_t *zcp) 558 { 559 while (size > 0) { 560 zio_cksum_t nzc; 561 uint64_t len = MIN(size, ZFS_FLETCHER_4_INC_MAX_SIZE); 562 563 if (native) 564 fletcher_4_native(buf, len, NULL, &nzc); 565 else 566 fletcher_4_byteswap(buf, len, NULL, &nzc); 567 568 fletcher_4_incremental_combine(zcp, len, &nzc); 569 570 size -= len; 571 buf += len; 572 } 573 } 574 575 int 576 fletcher_4_incremental_native(void *buf, size_t size, void *data) 577 { 578 zio_cksum_t *zcp = data; 579 /* Use scalar impl to directly update cksum of small blocks */ 580 if (size < SPA_MINBLOCKSIZE) 581 fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, buf, size); 582 else 583 fletcher_4_incremental_impl(B_TRUE, buf, size, zcp); 584 return (0); 585 } 586 587 int 588 fletcher_4_incremental_byteswap(void *buf, size_t size, void *data) 589 { 590 zio_cksum_t *zcp = data; 591 /* Use scalar impl to directly update cksum of small blocks */ 592 if (size < SPA_MINBLOCKSIZE) 593 fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp, buf, size); 594 else 595 fletcher_4_incremental_impl(B_FALSE, buf, size, zcp); 596 return (0); 597 } 598 599 #if defined(_KERNEL) 600 /* 601 * Fletcher 4 kstats 602 */ 603 static int 604 fletcher_4_kstat_headers(char *buf, size_t size) 605 { 606 ssize_t off = 0; 607 608 off += snprintf(buf + off, size, "%-17s", "implementation"); 609 off += snprintf(buf + off, size - off, "%-15s", "native"); 610 (void) snprintf(buf + off, size - off, "%-15s\n", "byteswap"); 611 612 return (0); 613 } 614 615 static int 616 fletcher_4_kstat_data(char *buf, size_t size, void *data) 617 { 618 struct fletcher_4_kstat *fastest_stat = 619 &fletcher_4_stat_data[fletcher_4_supp_impls_cnt]; 620 struct fletcher_4_kstat *curr_stat = (struct fletcher_4_kstat *)data; 621 ssize_t off = 0; 622 623 if (curr_stat == fastest_stat) { 624 off += snprintf(buf + off, size - off, "%-17s", "fastest"); 625 off += snprintf(buf + off, size - off, "%-15s", 626 fletcher_4_supp_impls[fastest_stat->native]->name); 627 off += snprintf(buf + off, size - off, "%-15s\n", 628 fletcher_4_supp_impls[fastest_stat->byteswap]->name); 629 } else { 630 ptrdiff_t id = curr_stat - fletcher_4_stat_data; 631 632 off += snprintf(buf + off, size - off, "%-17s", 633 fletcher_4_supp_impls[id]->name); 634 off += snprintf(buf + off, size - off, "%-15llu", 635 (u_longlong_t)curr_stat->native); 636 off += snprintf(buf + off, size - off, "%-15llu\n", 637 (u_longlong_t)curr_stat->byteswap); 638 } 639 640 return (0); 641 } 642 643 static void * 644 fletcher_4_kstat_addr(kstat_t *ksp, loff_t n) 645 { 646 if (n <= fletcher_4_supp_impls_cnt) 647 ksp->ks_private = (void *) (fletcher_4_stat_data + n); 648 else 649 ksp->ks_private = NULL; 650 651 return (ksp->ks_private); 652 } 653 #endif 654 655 #define FLETCHER_4_FASTEST_FN_COPY(type, src) \ 656 { \ 657 fletcher_4_fastest_impl.init_ ## type = src->init_ ## type; \ 658 fletcher_4_fastest_impl.fini_ ## type = src->fini_ ## type; \ 659 fletcher_4_fastest_impl.compute_ ## type = src->compute_ ## type; \ 660 } 661 662 #define FLETCHER_4_BENCH_NS (MSEC2NSEC(1)) /* 1ms */ 663 664 typedef void fletcher_checksum_func_t(const void *, uint64_t, const void *, 665 zio_cksum_t *); 666 667 #if defined(_KERNEL) 668 static void 669 fletcher_4_benchmark_impl(boolean_t native, char *data, uint64_t data_size) 670 { 671 672 struct fletcher_4_kstat *fastest_stat = 673 &fletcher_4_stat_data[fletcher_4_supp_impls_cnt]; 674 hrtime_t start; 675 uint64_t run_bw, run_time_ns, best_run = 0; 676 zio_cksum_t zc; 677 uint32_t i, l, sel_save = IMPL_READ(fletcher_4_impl_chosen); 678 679 fletcher_checksum_func_t *fletcher_4_test = native ? 680 fletcher_4_native : fletcher_4_byteswap; 681 682 for (i = 0; i < fletcher_4_supp_impls_cnt; i++) { 683 struct fletcher_4_kstat *stat = &fletcher_4_stat_data[i]; 684 uint64_t run_count = 0; 685 686 /* temporary set an implementation */ 687 fletcher_4_impl_chosen = i; 688 689 kpreempt_disable(); 690 start = gethrtime(); 691 do { 692 for (l = 0; l < 32; l++, run_count++) 693 fletcher_4_test(data, data_size, NULL, &zc); 694 695 run_time_ns = gethrtime() - start; 696 } while (run_time_ns < FLETCHER_4_BENCH_NS); 697 kpreempt_enable(); 698 699 run_bw = data_size * run_count * NANOSEC; 700 run_bw /= run_time_ns; /* B/s */ 701 702 if (native) 703 stat->native = run_bw; 704 else 705 stat->byteswap = run_bw; 706 707 if (run_bw > best_run) { 708 best_run = run_bw; 709 710 if (native) { 711 fastest_stat->native = i; 712 FLETCHER_4_FASTEST_FN_COPY(native, 713 fletcher_4_supp_impls[i]); 714 } else { 715 fastest_stat->byteswap = i; 716 FLETCHER_4_FASTEST_FN_COPY(byteswap, 717 fletcher_4_supp_impls[i]); 718 } 719 } 720 } 721 722 /* restore original selection */ 723 atomic_swap_32(&fletcher_4_impl_chosen, sel_save); 724 } 725 #endif /* _KERNEL */ 726 727 /* 728 * Initialize and benchmark all supported implementations. 729 */ 730 static void 731 fletcher_4_benchmark(void) 732 { 733 fletcher_4_ops_t *curr_impl; 734 int i, c; 735 736 /* Move supported implementations into fletcher_4_supp_impls */ 737 for (i = 0, c = 0; i < ARRAY_SIZE(fletcher_4_impls); i++) { 738 curr_impl = (fletcher_4_ops_t *)fletcher_4_impls[i]; 739 740 if (curr_impl->valid && curr_impl->valid()) 741 fletcher_4_supp_impls[c++] = curr_impl; 742 } 743 membar_producer(); /* complete fletcher_4_supp_impls[] init */ 744 fletcher_4_supp_impls_cnt = c; /* number of supported impl */ 745 746 #if defined(_KERNEL) 747 static const size_t data_size = 1 << SPA_OLD_MAXBLOCKSHIFT; /* 128kiB */ 748 char *databuf = vmem_alloc(data_size, KM_SLEEP); 749 750 for (i = 0; i < data_size / sizeof (uint64_t); i++) 751 ((uint64_t *)databuf)[i] = (uintptr_t)(databuf+i); /* warm-up */ 752 753 fletcher_4_benchmark_impl(B_FALSE, databuf, data_size); 754 fletcher_4_benchmark_impl(B_TRUE, databuf, data_size); 755 756 vmem_free(databuf, data_size); 757 #else 758 /* 759 * Skip the benchmark in user space to avoid impacting libzpool 760 * consumers (zdb, zhack, zinject, ztest). The last implementation 761 * is assumed to be the fastest and used by default. 762 */ 763 memcpy(&fletcher_4_fastest_impl, 764 fletcher_4_supp_impls[fletcher_4_supp_impls_cnt - 1], 765 sizeof (fletcher_4_fastest_impl)); 766 fletcher_4_fastest_impl.name = "fastest"; 767 membar_producer(); 768 #endif /* _KERNEL */ 769 } 770 771 void 772 fletcher_4_init(void) 773 { 774 /* Determine the fastest available implementation. */ 775 fletcher_4_benchmark(); 776 777 #if defined(_KERNEL) 778 /* Install kstats for all implementations */ 779 fletcher_4_kstat = kstat_create("zfs", 0, "fletcher_4_bench", "misc", 780 KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL); 781 if (fletcher_4_kstat != NULL) { 782 fletcher_4_kstat->ks_data = NULL; 783 fletcher_4_kstat->ks_ndata = UINT32_MAX; 784 kstat_set_raw_ops(fletcher_4_kstat, 785 fletcher_4_kstat_headers, 786 fletcher_4_kstat_data, 787 fletcher_4_kstat_addr); 788 kstat_install(fletcher_4_kstat); 789 } 790 #endif 791 792 /* Finish initialization */ 793 fletcher_4_initialized = B_TRUE; 794 } 795 796 void 797 fletcher_4_fini(void) 798 { 799 #if defined(_KERNEL) 800 if (fletcher_4_kstat != NULL) { 801 kstat_delete(fletcher_4_kstat); 802 fletcher_4_kstat = NULL; 803 } 804 #endif 805 } 806 807 /* ABD adapters */ 808 809 static void 810 abd_fletcher_4_init(zio_abd_checksum_data_t *cdp) 811 { 812 const fletcher_4_ops_t *ops = fletcher_4_impl_get(); 813 cdp->acd_private = (void *) ops; 814 815 if (cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE) 816 ops->init_native(cdp->acd_ctx); 817 else 818 ops->init_byteswap(cdp->acd_ctx); 819 } 820 821 static void 822 abd_fletcher_4_fini(zio_abd_checksum_data_t *cdp) 823 { 824 fletcher_4_ops_t *ops = (fletcher_4_ops_t *)cdp->acd_private; 825 826 ASSERT(ops); 827 828 if (cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE) 829 ops->fini_native(cdp->acd_ctx, cdp->acd_zcp); 830 else 831 ops->fini_byteswap(cdp->acd_ctx, cdp->acd_zcp); 832 } 833 834 static void 835 abd_fletcher_4_simd2scalar(boolean_t native, void *data, size_t size, 836 zio_abd_checksum_data_t *cdp) 837 { 838 zio_cksum_t *zcp = cdp->acd_zcp; 839 840 ASSERT3U(size, <, FLETCHER_MIN_SIMD_SIZE); 841 842 abd_fletcher_4_fini(cdp); 843 cdp->acd_private = (void *)&fletcher_4_scalar_ops; 844 845 if (native) 846 fletcher_4_incremental_native(data, size, zcp); 847 else 848 fletcher_4_incremental_byteswap(data, size, zcp); 849 } 850 851 static int 852 abd_fletcher_4_iter(void *data, size_t size, void *private) 853 { 854 zio_abd_checksum_data_t *cdp = (zio_abd_checksum_data_t *)private; 855 fletcher_4_ctx_t *ctx = cdp->acd_ctx; 856 fletcher_4_ops_t *ops = (fletcher_4_ops_t *)cdp->acd_private; 857 boolean_t native = cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE; 858 uint64_t asize = P2ALIGN(size, FLETCHER_MIN_SIMD_SIZE); 859 860 ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t))); 861 862 if (asize > 0) { 863 if (native) 864 ops->compute_native(ctx, data, asize); 865 else 866 ops->compute_byteswap(ctx, data, asize); 867 868 size -= asize; 869 data = (char *)data + asize; 870 } 871 872 if (size > 0) { 873 ASSERT3U(size, <, FLETCHER_MIN_SIMD_SIZE); 874 /* At this point we have to switch to scalar impl */ 875 abd_fletcher_4_simd2scalar(native, data, size, cdp); 876 } 877 878 return (0); 879 } 880 881 zio_abd_checksum_func_t fletcher_4_abd_ops = { 882 .acf_init = abd_fletcher_4_init, 883 .acf_fini = abd_fletcher_4_fini, 884 .acf_iter = abd_fletcher_4_iter 885 }; 886 887 #if defined(_KERNEL) 888 889 #define IMPL_FMT(impl, i) (((impl) == (i)) ? "[%s] " : "%s ") 890 891 #if defined(__linux__) 892 893 static int 894 fletcher_4_param_get(char *buffer, zfs_kernel_param_t *unused) 895 { 896 const uint32_t impl = IMPL_READ(fletcher_4_impl_chosen); 897 char *fmt; 898 int cnt = 0; 899 900 /* list fastest */ 901 fmt = IMPL_FMT(impl, IMPL_FASTEST); 902 cnt += sprintf(buffer + cnt, fmt, "fastest"); 903 904 /* list all supported implementations */ 905 for (uint32_t i = 0; i < fletcher_4_supp_impls_cnt; ++i) { 906 fmt = IMPL_FMT(impl, i); 907 cnt += sprintf(buffer + cnt, fmt, 908 fletcher_4_supp_impls[i]->name); 909 } 910 911 return (cnt); 912 } 913 914 static int 915 fletcher_4_param_set(const char *val, zfs_kernel_param_t *unused) 916 { 917 return (fletcher_4_impl_set(val)); 918 } 919 920 #else 921 922 #include <sys/sbuf.h> 923 924 static int 925 fletcher_4_param(ZFS_MODULE_PARAM_ARGS) 926 { 927 int err; 928 929 if (req->newptr == NULL) { 930 const uint32_t impl = IMPL_READ(fletcher_4_impl_chosen); 931 const int init_buflen = 64; 932 const char *fmt; 933 struct sbuf *s; 934 935 s = sbuf_new_for_sysctl(NULL, NULL, init_buflen, req); 936 937 /* list fastest */ 938 fmt = IMPL_FMT(impl, IMPL_FASTEST); 939 (void) sbuf_printf(s, fmt, "fastest"); 940 941 /* list all supported implementations */ 942 for (uint32_t i = 0; i < fletcher_4_supp_impls_cnt; ++i) { 943 fmt = IMPL_FMT(impl, i); 944 (void) sbuf_printf(s, fmt, 945 fletcher_4_supp_impls[i]->name); 946 } 947 948 err = sbuf_finish(s); 949 sbuf_delete(s); 950 951 return (err); 952 } 953 954 char buf[16]; 955 956 err = sysctl_handle_string(oidp, buf, sizeof (buf), req); 957 if (err) 958 return (err); 959 return (-fletcher_4_impl_set(buf)); 960 } 961 962 #endif 963 964 #undef IMPL_FMT 965 966 /* 967 * Choose a fletcher 4 implementation in ZFS. 968 * Users can choose "cycle" to exercise all implementations, but this is 969 * for testing purpose therefore it can only be set in user space. 970 */ 971 /* BEGIN CSTYLED */ 972 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs, zfs_, fletcher_4_impl, 973 fletcher_4_param_set, fletcher_4_param_get, ZMOD_RW, 974 "Select fletcher 4 implementation."); 975 /* END CSTYLED */ 976 977 EXPORT_SYMBOL(fletcher_init); 978 EXPORT_SYMBOL(fletcher_2_incremental_native); 979 EXPORT_SYMBOL(fletcher_2_incremental_byteswap); 980 EXPORT_SYMBOL(fletcher_4_init); 981 EXPORT_SYMBOL(fletcher_4_fini); 982 EXPORT_SYMBOL(fletcher_2_native); 983 EXPORT_SYMBOL(fletcher_2_byteswap); 984 EXPORT_SYMBOL(fletcher_4_native); 985 EXPORT_SYMBOL(fletcher_4_native_varsize); 986 EXPORT_SYMBOL(fletcher_4_byteswap); 987 EXPORT_SYMBOL(fletcher_4_incremental_native); 988 EXPORT_SYMBOL(fletcher_4_incremental_byteswap); 989 EXPORT_SYMBOL(fletcher_4_abd_ops); 990 #endif 991