xref: /freebsd/sys/contrib/openzfs/module/zcommon/zfs_fletcher.c (revision aca928a50a42f00f344df934005b09dbcb4e2f77)
1eda14cbcSMatt Macy /*
2eda14cbcSMatt Macy  * CDDL HEADER START
3eda14cbcSMatt Macy  *
4eda14cbcSMatt Macy  * The contents of this file are subject to the terms of the
5eda14cbcSMatt Macy  * Common Development and Distribution License (the "License").
6eda14cbcSMatt Macy  * You may not use this file except in compliance with the License.
7eda14cbcSMatt Macy  *
8eda14cbcSMatt Macy  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9271171e0SMartin Matuska  * or https://opensource.org/licenses/CDDL-1.0.
10eda14cbcSMatt Macy  * See the License for the specific language governing permissions
11eda14cbcSMatt Macy  * and limitations under the License.
12eda14cbcSMatt Macy  *
13eda14cbcSMatt Macy  * When distributing Covered Code, include this CDDL HEADER in each
14eda14cbcSMatt Macy  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15eda14cbcSMatt Macy  * If applicable, add the following below this CDDL HEADER, with the
16eda14cbcSMatt Macy  * fields enclosed by brackets "[]" replaced with your own identifying
17eda14cbcSMatt Macy  * information: Portions Copyright [yyyy] [name of copyright owner]
18eda14cbcSMatt Macy  *
19eda14cbcSMatt Macy  * CDDL HEADER END
20eda14cbcSMatt Macy  */
21eda14cbcSMatt Macy /*
22eda14cbcSMatt Macy  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23eda14cbcSMatt Macy  * Use is subject to license terms.
24eda14cbcSMatt Macy  * Copyright (C) 2016 Gvozden Nešković. All rights reserved.
25eda14cbcSMatt Macy  */
26eda14cbcSMatt Macy /*
27eda14cbcSMatt Macy  * Copyright 2013 Saso Kiselkov. All rights reserved.
28eda14cbcSMatt Macy  */
29eda14cbcSMatt Macy 
30eda14cbcSMatt Macy /*
31eda14cbcSMatt Macy  * Copyright (c) 2016 by Delphix. All rights reserved.
32eda14cbcSMatt Macy  */
33eda14cbcSMatt Macy 
34eda14cbcSMatt Macy /*
35eda14cbcSMatt Macy  * Fletcher Checksums
36eda14cbcSMatt Macy  * ------------------
37eda14cbcSMatt Macy  *
38eda14cbcSMatt Macy  * ZFS's 2nd and 4th order Fletcher checksums are defined by the following
39eda14cbcSMatt Macy  * recurrence relations:
40eda14cbcSMatt Macy  *
41eda14cbcSMatt Macy  *	a  = a    + f
42eda14cbcSMatt Macy  *	 i    i-1    i-1
43eda14cbcSMatt Macy  *
44eda14cbcSMatt Macy  *	b  = b    + a
45eda14cbcSMatt Macy  *	 i    i-1    i
46eda14cbcSMatt Macy  *
47eda14cbcSMatt Macy  *	c  = c    + b		(fletcher-4 only)
48eda14cbcSMatt Macy  *	 i    i-1    i
49eda14cbcSMatt Macy  *
50eda14cbcSMatt Macy  *	d  = d    + c		(fletcher-4 only)
51eda14cbcSMatt Macy  *	 i    i-1    i
52eda14cbcSMatt Macy  *
53eda14cbcSMatt Macy  * Where
54eda14cbcSMatt Macy  *	a_0 = b_0 = c_0 = d_0 = 0
55eda14cbcSMatt Macy  * and
56eda14cbcSMatt Macy  *	f_0 .. f_(n-1) are the input data.
57eda14cbcSMatt Macy  *
58eda14cbcSMatt Macy  * Using standard techniques, these translate into the following series:
59eda14cbcSMatt Macy  *
60eda14cbcSMatt Macy  *	     __n_			     __n_
61eda14cbcSMatt Macy  *	     \   |			     \   |
62eda14cbcSMatt Macy  *	a  =  >     f			b  =  >     i * f
63eda14cbcSMatt Macy  *	 n   /___|   n - i		 n   /___|	 n - i
64eda14cbcSMatt Macy  *	     i = 1			     i = 1
65eda14cbcSMatt Macy  *
66eda14cbcSMatt Macy  *
67eda14cbcSMatt Macy  *	     __n_			     __n_
68eda14cbcSMatt Macy  *	     \   |  i*(i+1)		     \   |  i*(i+1)*(i+2)
69eda14cbcSMatt Macy  *	c  =  >     ------- f		d  =  >     ------------- f
70eda14cbcSMatt Macy  *	 n   /___|     2     n - i	 n   /___|	  6	   n - i
71eda14cbcSMatt Macy  *	     i = 1			     i = 1
72eda14cbcSMatt Macy  *
73eda14cbcSMatt Macy  * For fletcher-2, the f_is are 64-bit, and [ab]_i are 64-bit accumulators.
74eda14cbcSMatt Macy  * Since the additions are done mod (2^64), errors in the high bits may not
75eda14cbcSMatt Macy  * be noticed.  For this reason, fletcher-2 is deprecated.
76eda14cbcSMatt Macy  *
77eda14cbcSMatt Macy  * For fletcher-4, the f_is are 32-bit, and [abcd]_i are 64-bit accumulators.
78eda14cbcSMatt Macy  * A conservative estimate of how big the buffer can get before we overflow
79eda14cbcSMatt Macy  * can be estimated using f_i = 0xffffffff for all i:
80eda14cbcSMatt Macy  *
81eda14cbcSMatt Macy  * % bc
82eda14cbcSMatt Macy  *  f=2^32-1;d=0; for (i = 1; d<2^64; i++) { d += f*i*(i+1)*(i+2)/6 }; (i-1)*4
83eda14cbcSMatt Macy  * 2264
84eda14cbcSMatt Macy  *  quit
85eda14cbcSMatt Macy  * %
86eda14cbcSMatt Macy  *
87eda14cbcSMatt Macy  * So blocks of up to 2k will not overflow.  Our largest block size is
88eda14cbcSMatt Macy  * 128k, which has 32k 4-byte words, so we can compute the largest possible
89eda14cbcSMatt Macy  * accumulators, then divide by 2^64 to figure the max amount of overflow:
90eda14cbcSMatt Macy  *
91eda14cbcSMatt Macy  * % bc
92eda14cbcSMatt Macy  *  a=b=c=d=0; f=2^32-1; for (i=1; i<=32*1024; i++) { a+=f; b+=a; c+=b; d+=c }
93eda14cbcSMatt Macy  *  a/2^64;b/2^64;c/2^64;d/2^64
94eda14cbcSMatt Macy  * 0
95eda14cbcSMatt Macy  * 0
96eda14cbcSMatt Macy  * 1365
97eda14cbcSMatt Macy  * 11186858
98eda14cbcSMatt Macy  *  quit
99eda14cbcSMatt Macy  * %
100eda14cbcSMatt Macy  *
101eda14cbcSMatt Macy  * So a and b cannot overflow.  To make sure each bit of input has some
102eda14cbcSMatt Macy  * effect on the contents of c and d, we can look at what the factors of
103eda14cbcSMatt Macy  * the coefficients in the equations for c_n and d_n are.  The number of 2s
104eda14cbcSMatt Macy  * in the factors determines the lowest set bit in the multiplier.  Running
105eda14cbcSMatt Macy  * through the cases for n*(n+1)/2 reveals that the highest power of 2 is
106eda14cbcSMatt Macy  * 2^14, and for n*(n+1)*(n+2)/6 it is 2^15.  So while some data may overflow
107eda14cbcSMatt Macy  * the 64-bit accumulators, every bit of every f_i effects every accumulator,
108eda14cbcSMatt Macy  * even for 128k blocks.
109eda14cbcSMatt Macy  *
110eda14cbcSMatt Macy  * If we wanted to make a stronger version of fletcher4 (fletcher4c?),
111eda14cbcSMatt Macy  * we could do our calculations mod (2^32 - 1) by adding in the carries
112eda14cbcSMatt Macy  * periodically, and store the number of carries in the top 32-bits.
113eda14cbcSMatt Macy  *
114eda14cbcSMatt Macy  * --------------------
115eda14cbcSMatt Macy  * Checksum Performance
116eda14cbcSMatt Macy  * --------------------
117eda14cbcSMatt Macy  *
118eda14cbcSMatt Macy  * There are two interesting components to checksum performance: cached and
119eda14cbcSMatt Macy  * uncached performance.  With cached data, fletcher-2 is about four times
120eda14cbcSMatt Macy  * faster than fletcher-4.  With uncached data, the performance difference is
121eda14cbcSMatt Macy  * negligible, since the cost of a cache fill dominates the processing time.
122eda14cbcSMatt Macy  * Even though fletcher-4 is slower than fletcher-2, it is still a pretty
123eda14cbcSMatt Macy  * efficient pass over the data.
124eda14cbcSMatt Macy  *
125eda14cbcSMatt Macy  * In normal operation, the data which is being checksummed is in a buffer
126eda14cbcSMatt Macy  * which has been filled either by:
127eda14cbcSMatt Macy  *
128eda14cbcSMatt Macy  *	1. a compression step, which will be mostly cached, or
129da5137abSMartin Matuska  *	2. a memcpy() or copyin(), which will be uncached
130da5137abSMartin Matuska  *	   (because the copy is cache-bypassing).
131eda14cbcSMatt Macy  *
132eda14cbcSMatt Macy  * For both cached and uncached data, both fletcher checksums are much faster
133eda14cbcSMatt Macy  * than sha-256, and slower than 'off', which doesn't touch the data at all.
134eda14cbcSMatt Macy  */
135eda14cbcSMatt Macy 
136eda14cbcSMatt Macy #include <sys/types.h>
137eda14cbcSMatt Macy #include <sys/sysmacros.h>
138eda14cbcSMatt Macy #include <sys/byteorder.h>
139eda14cbcSMatt Macy #include <sys/simd.h>
1402a58b312SMartin Matuska #include <sys/spa.h>
141eda14cbcSMatt Macy #include <sys/zio_checksum.h>
142eda14cbcSMatt Macy #include <sys/zfs_context.h>
143eda14cbcSMatt Macy #include <zfs_fletcher.h>
144eda14cbcSMatt Macy 
145eda14cbcSMatt Macy #define	FLETCHER_MIN_SIMD_SIZE	64
146eda14cbcSMatt Macy 
147eda14cbcSMatt Macy static void fletcher_4_scalar_init(fletcher_4_ctx_t *ctx);
148eda14cbcSMatt Macy static void fletcher_4_scalar_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp);
149eda14cbcSMatt Macy static void fletcher_4_scalar_native(fletcher_4_ctx_t *ctx,
150eda14cbcSMatt Macy     const void *buf, uint64_t size);
151eda14cbcSMatt Macy static void fletcher_4_scalar_byteswap(fletcher_4_ctx_t *ctx,
152eda14cbcSMatt Macy     const void *buf, uint64_t size);
153eda14cbcSMatt Macy static boolean_t fletcher_4_scalar_valid(void);
154eda14cbcSMatt Macy 
155eda14cbcSMatt Macy static const fletcher_4_ops_t fletcher_4_scalar_ops = {
156eda14cbcSMatt Macy 	.init_native = fletcher_4_scalar_init,
157eda14cbcSMatt Macy 	.fini_native = fletcher_4_scalar_fini,
158eda14cbcSMatt Macy 	.compute_native = fletcher_4_scalar_native,
159eda14cbcSMatt Macy 	.init_byteswap = fletcher_4_scalar_init,
160eda14cbcSMatt Macy 	.fini_byteswap = fletcher_4_scalar_fini,
161eda14cbcSMatt Macy 	.compute_byteswap = fletcher_4_scalar_byteswap,
162eda14cbcSMatt Macy 	.valid = fletcher_4_scalar_valid,
1632a58b312SMartin Matuska 	.uses_fpu = B_FALSE,
164eda14cbcSMatt Macy 	.name = "scalar"
165eda14cbcSMatt Macy };
166eda14cbcSMatt Macy 
167eda14cbcSMatt Macy static fletcher_4_ops_t fletcher_4_fastest_impl = {
168eda14cbcSMatt Macy 	.name = "fastest",
169eda14cbcSMatt Macy 	.valid = fletcher_4_scalar_valid
170eda14cbcSMatt Macy };
171eda14cbcSMatt Macy 
172eda14cbcSMatt Macy static const fletcher_4_ops_t *fletcher_4_impls[] = {
173eda14cbcSMatt Macy 	&fletcher_4_scalar_ops,
174eda14cbcSMatt Macy 	&fletcher_4_superscalar_ops,
175eda14cbcSMatt Macy 	&fletcher_4_superscalar4_ops,
176eda14cbcSMatt Macy #if defined(HAVE_SSE2)
177eda14cbcSMatt Macy 	&fletcher_4_sse2_ops,
178eda14cbcSMatt Macy #endif
179eda14cbcSMatt Macy #if defined(HAVE_SSE2) && defined(HAVE_SSSE3)
180eda14cbcSMatt Macy 	&fletcher_4_ssse3_ops,
181eda14cbcSMatt Macy #endif
182eda14cbcSMatt Macy #if defined(HAVE_AVX) && defined(HAVE_AVX2)
183eda14cbcSMatt Macy 	&fletcher_4_avx2_ops,
184eda14cbcSMatt Macy #endif
185eda14cbcSMatt Macy #if defined(__x86_64) && defined(HAVE_AVX512F)
186eda14cbcSMatt Macy 	&fletcher_4_avx512f_ops,
187eda14cbcSMatt Macy #endif
188eda14cbcSMatt Macy #if defined(__x86_64) && defined(HAVE_AVX512BW)
189eda14cbcSMatt Macy 	&fletcher_4_avx512bw_ops,
190eda14cbcSMatt Macy #endif
191ac0bf12eSMatt Macy #if defined(__aarch64__) && !defined(__FreeBSD__)
192eda14cbcSMatt Macy 	&fletcher_4_aarch64_neon_ops,
193eda14cbcSMatt Macy #endif
194eda14cbcSMatt Macy };
195eda14cbcSMatt Macy 
196eda14cbcSMatt Macy /* Hold all supported implementations */
197eda14cbcSMatt Macy static uint32_t fletcher_4_supp_impls_cnt = 0;
198eda14cbcSMatt Macy static fletcher_4_ops_t *fletcher_4_supp_impls[ARRAY_SIZE(fletcher_4_impls)];
199eda14cbcSMatt Macy 
200eda14cbcSMatt Macy /* Select fletcher4 implementation */
201eda14cbcSMatt Macy #define	IMPL_FASTEST	(UINT32_MAX)
202eda14cbcSMatt Macy #define	IMPL_CYCLE	(UINT32_MAX - 1)
203eda14cbcSMatt Macy #define	IMPL_SCALAR	(0)
204eda14cbcSMatt Macy 
205eda14cbcSMatt Macy static uint32_t fletcher_4_impl_chosen = IMPL_FASTEST;
206eda14cbcSMatt Macy 
207eda14cbcSMatt Macy #define	IMPL_READ(i)	(*(volatile uint32_t *) &(i))
208eda14cbcSMatt Macy 
209eda14cbcSMatt Macy static struct fletcher_4_impl_selector {
210eda14cbcSMatt Macy 	const char	*fis_name;
211eda14cbcSMatt Macy 	uint32_t	fis_sel;
212eda14cbcSMatt Macy } fletcher_4_impl_selectors[] = {
213eda14cbcSMatt Macy 	{ "cycle",	IMPL_CYCLE },
214eda14cbcSMatt Macy 	{ "fastest",	IMPL_FASTEST },
215eda14cbcSMatt Macy 	{ "scalar",	IMPL_SCALAR }
216eda14cbcSMatt Macy };
217eda14cbcSMatt Macy 
218eda14cbcSMatt Macy #if defined(_KERNEL)
219eda14cbcSMatt Macy static kstat_t *fletcher_4_kstat;
220eda14cbcSMatt Macy 
221eda14cbcSMatt Macy static struct fletcher_4_kstat {
222eda14cbcSMatt Macy 	uint64_t native;
223eda14cbcSMatt Macy 	uint64_t byteswap;
224eda14cbcSMatt Macy } fletcher_4_stat_data[ARRAY_SIZE(fletcher_4_impls) + 1];
225eda14cbcSMatt Macy #endif
226eda14cbcSMatt Macy 
227eda14cbcSMatt Macy /* Indicate that benchmark has been completed */
228eda14cbcSMatt Macy static boolean_t fletcher_4_initialized = B_FALSE;
229eda14cbcSMatt Macy 
230eda14cbcSMatt Macy void
231eda14cbcSMatt Macy fletcher_init(zio_cksum_t *zcp)
232eda14cbcSMatt Macy {
233eda14cbcSMatt Macy 	ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
234eda14cbcSMatt Macy }
235eda14cbcSMatt Macy 
236eda14cbcSMatt Macy int
237eda14cbcSMatt Macy fletcher_2_incremental_native(void *buf, size_t size, void *data)
238eda14cbcSMatt Macy {
239eda14cbcSMatt Macy 	zio_cksum_t *zcp = data;
240eda14cbcSMatt Macy 
241eda14cbcSMatt Macy 	const uint64_t *ip = buf;
242eda14cbcSMatt Macy 	const uint64_t *ipend = ip + (size / sizeof (uint64_t));
243eda14cbcSMatt Macy 	uint64_t a0, b0, a1, b1;
244eda14cbcSMatt Macy 
245eda14cbcSMatt Macy 	a0 = zcp->zc_word[0];
246eda14cbcSMatt Macy 	a1 = zcp->zc_word[1];
247eda14cbcSMatt Macy 	b0 = zcp->zc_word[2];
248eda14cbcSMatt Macy 	b1 = zcp->zc_word[3];
249eda14cbcSMatt Macy 
250eda14cbcSMatt Macy 	for (; ip < ipend; ip += 2) {
251eda14cbcSMatt Macy 		a0 += ip[0];
252eda14cbcSMatt Macy 		a1 += ip[1];
253eda14cbcSMatt Macy 		b0 += a0;
254eda14cbcSMatt Macy 		b1 += a1;
255eda14cbcSMatt Macy 	}
256eda14cbcSMatt Macy 
257eda14cbcSMatt Macy 	ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1);
258eda14cbcSMatt Macy 	return (0);
259eda14cbcSMatt Macy }
260eda14cbcSMatt Macy 
261eda14cbcSMatt Macy void
262eda14cbcSMatt Macy fletcher_2_native(const void *buf, uint64_t size,
263eda14cbcSMatt Macy     const void *ctx_template, zio_cksum_t *zcp)
264eda14cbcSMatt Macy {
265e92ffd9bSMartin Matuska 	(void) ctx_template;
266eda14cbcSMatt Macy 	fletcher_init(zcp);
267eda14cbcSMatt Macy 	(void) fletcher_2_incremental_native((void *) buf, size, zcp);
268eda14cbcSMatt Macy }
269eda14cbcSMatt Macy 
270eda14cbcSMatt Macy int
271eda14cbcSMatt Macy fletcher_2_incremental_byteswap(void *buf, size_t size, void *data)
272eda14cbcSMatt Macy {
273eda14cbcSMatt Macy 	zio_cksum_t *zcp = data;
274eda14cbcSMatt Macy 
275eda14cbcSMatt Macy 	const uint64_t *ip = buf;
276eda14cbcSMatt Macy 	const uint64_t *ipend = ip + (size / sizeof (uint64_t));
277eda14cbcSMatt Macy 	uint64_t a0, b0, a1, b1;
278eda14cbcSMatt Macy 
279eda14cbcSMatt Macy 	a0 = zcp->zc_word[0];
280eda14cbcSMatt Macy 	a1 = zcp->zc_word[1];
281eda14cbcSMatt Macy 	b0 = zcp->zc_word[2];
282eda14cbcSMatt Macy 	b1 = zcp->zc_word[3];
283eda14cbcSMatt Macy 
284eda14cbcSMatt Macy 	for (; ip < ipend; ip += 2) {
285eda14cbcSMatt Macy 		a0 += BSWAP_64(ip[0]);
286eda14cbcSMatt Macy 		a1 += BSWAP_64(ip[1]);
287eda14cbcSMatt Macy 		b0 += a0;
288eda14cbcSMatt Macy 		b1 += a1;
289eda14cbcSMatt Macy 	}
290eda14cbcSMatt Macy 
291eda14cbcSMatt Macy 	ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1);
292eda14cbcSMatt Macy 	return (0);
293eda14cbcSMatt Macy }
294eda14cbcSMatt Macy 
295eda14cbcSMatt Macy void
296eda14cbcSMatt Macy fletcher_2_byteswap(const void *buf, uint64_t size,
297eda14cbcSMatt Macy     const void *ctx_template, zio_cksum_t *zcp)
298eda14cbcSMatt Macy {
299e92ffd9bSMartin Matuska 	(void) ctx_template;
300eda14cbcSMatt Macy 	fletcher_init(zcp);
301eda14cbcSMatt Macy 	(void) fletcher_2_incremental_byteswap((void *) buf, size, zcp);
302eda14cbcSMatt Macy }
303eda14cbcSMatt Macy 
304eda14cbcSMatt Macy static void
305eda14cbcSMatt Macy fletcher_4_scalar_init(fletcher_4_ctx_t *ctx)
306eda14cbcSMatt Macy {
307eda14cbcSMatt Macy 	ZIO_SET_CHECKSUM(&ctx->scalar, 0, 0, 0, 0);
308eda14cbcSMatt Macy }
309eda14cbcSMatt Macy 
310eda14cbcSMatt Macy static void
311eda14cbcSMatt Macy fletcher_4_scalar_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp)
312eda14cbcSMatt Macy {
313eda14cbcSMatt Macy 	memcpy(zcp, &ctx->scalar, sizeof (zio_cksum_t));
314eda14cbcSMatt Macy }
315eda14cbcSMatt Macy 
316eda14cbcSMatt Macy static void
317eda14cbcSMatt Macy fletcher_4_scalar_native(fletcher_4_ctx_t *ctx, const void *buf,
318eda14cbcSMatt Macy     uint64_t size)
319eda14cbcSMatt Macy {
320eda14cbcSMatt Macy 	const uint32_t *ip = buf;
321eda14cbcSMatt Macy 	const uint32_t *ipend = ip + (size / sizeof (uint32_t));
322eda14cbcSMatt Macy 	uint64_t a, b, c, d;
323eda14cbcSMatt Macy 
324eda14cbcSMatt Macy 	a = ctx->scalar.zc_word[0];
325eda14cbcSMatt Macy 	b = ctx->scalar.zc_word[1];
326eda14cbcSMatt Macy 	c = ctx->scalar.zc_word[2];
327eda14cbcSMatt Macy 	d = ctx->scalar.zc_word[3];
328eda14cbcSMatt Macy 
329eda14cbcSMatt Macy 	for (; ip < ipend; ip++) {
330eda14cbcSMatt Macy 		a += ip[0];
331eda14cbcSMatt Macy 		b += a;
332eda14cbcSMatt Macy 		c += b;
333eda14cbcSMatt Macy 		d += c;
334eda14cbcSMatt Macy 	}
335eda14cbcSMatt Macy 
336eda14cbcSMatt Macy 	ZIO_SET_CHECKSUM(&ctx->scalar, a, b, c, d);
337eda14cbcSMatt Macy }
338eda14cbcSMatt Macy 
339eda14cbcSMatt Macy static void
340eda14cbcSMatt Macy fletcher_4_scalar_byteswap(fletcher_4_ctx_t *ctx, const void *buf,
341eda14cbcSMatt Macy     uint64_t size)
342eda14cbcSMatt Macy {
343eda14cbcSMatt Macy 	const uint32_t *ip = buf;
344eda14cbcSMatt Macy 	const uint32_t *ipend = ip + (size / sizeof (uint32_t));
345eda14cbcSMatt Macy 	uint64_t a, b, c, d;
346eda14cbcSMatt Macy 
347eda14cbcSMatt Macy 	a = ctx->scalar.zc_word[0];
348eda14cbcSMatt Macy 	b = ctx->scalar.zc_word[1];
349eda14cbcSMatt Macy 	c = ctx->scalar.zc_word[2];
350eda14cbcSMatt Macy 	d = ctx->scalar.zc_word[3];
351eda14cbcSMatt Macy 
352eda14cbcSMatt Macy 	for (; ip < ipend; ip++) {
353eda14cbcSMatt Macy 		a += BSWAP_32(ip[0]);
354eda14cbcSMatt Macy 		b += a;
355eda14cbcSMatt Macy 		c += b;
356eda14cbcSMatt Macy 		d += c;
357eda14cbcSMatt Macy 	}
358eda14cbcSMatt Macy 
359eda14cbcSMatt Macy 	ZIO_SET_CHECKSUM(&ctx->scalar, a, b, c, d);
360eda14cbcSMatt Macy }
361eda14cbcSMatt Macy 
362eda14cbcSMatt Macy static boolean_t
363eda14cbcSMatt Macy fletcher_4_scalar_valid(void)
364eda14cbcSMatt Macy {
365eda14cbcSMatt Macy 	return (B_TRUE);
366eda14cbcSMatt Macy }
367eda14cbcSMatt Macy 
368eda14cbcSMatt Macy int
369eda14cbcSMatt Macy fletcher_4_impl_set(const char *val)
370eda14cbcSMatt Macy {
371eda14cbcSMatt Macy 	int err = -EINVAL;
372eda14cbcSMatt Macy 	uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
373eda14cbcSMatt Macy 	size_t i, val_len;
374eda14cbcSMatt Macy 
375eda14cbcSMatt Macy 	val_len = strlen(val);
376eda14cbcSMatt Macy 	while ((val_len > 0) && !!isspace(val[val_len-1])) /* trim '\n' */
377eda14cbcSMatt Macy 		val_len--;
378eda14cbcSMatt Macy 
379eda14cbcSMatt Macy 	/* check mandatory implementations */
380eda14cbcSMatt Macy 	for (i = 0; i < ARRAY_SIZE(fletcher_4_impl_selectors); i++) {
381eda14cbcSMatt Macy 		const char *name = fletcher_4_impl_selectors[i].fis_name;
382eda14cbcSMatt Macy 
383eda14cbcSMatt Macy 		if (val_len == strlen(name) &&
384eda14cbcSMatt Macy 		    strncmp(val, name, val_len) == 0) {
385eda14cbcSMatt Macy 			impl = fletcher_4_impl_selectors[i].fis_sel;
386eda14cbcSMatt Macy 			err = 0;
387eda14cbcSMatt Macy 			break;
388eda14cbcSMatt Macy 		}
389eda14cbcSMatt Macy 	}
390eda14cbcSMatt Macy 
391eda14cbcSMatt Macy 	if (err != 0 && fletcher_4_initialized) {
392eda14cbcSMatt Macy 		/* check all supported implementations */
393eda14cbcSMatt Macy 		for (i = 0; i < fletcher_4_supp_impls_cnt; i++) {
394eda14cbcSMatt Macy 			const char *name = fletcher_4_supp_impls[i]->name;
395eda14cbcSMatt Macy 
396eda14cbcSMatt Macy 			if (val_len == strlen(name) &&
397eda14cbcSMatt Macy 			    strncmp(val, name, val_len) == 0) {
398eda14cbcSMatt Macy 				impl = i;
399eda14cbcSMatt Macy 				err = 0;
400eda14cbcSMatt Macy 				break;
401eda14cbcSMatt Macy 			}
402eda14cbcSMatt Macy 		}
403eda14cbcSMatt Macy 	}
404eda14cbcSMatt Macy 
405eda14cbcSMatt Macy 	if (err == 0) {
406eda14cbcSMatt Macy 		atomic_swap_32(&fletcher_4_impl_chosen, impl);
407eda14cbcSMatt Macy 		membar_producer();
408eda14cbcSMatt Macy 	}
409eda14cbcSMatt Macy 
410eda14cbcSMatt Macy 	return (err);
411eda14cbcSMatt Macy }
412eda14cbcSMatt Macy 
413eda14cbcSMatt Macy /*
414eda14cbcSMatt Macy  * Returns the Fletcher 4 operations for checksums.   When a SIMD
415eda14cbcSMatt Macy  * implementation is not allowed in the current context, then fallback
416eda14cbcSMatt Macy  * to the fastest generic implementation.
417eda14cbcSMatt Macy  */
418eda14cbcSMatt Macy static inline const fletcher_4_ops_t *
419eda14cbcSMatt Macy fletcher_4_impl_get(void)
420eda14cbcSMatt Macy {
421eda14cbcSMatt Macy 	if (!kfpu_allowed())
422eda14cbcSMatt Macy 		return (&fletcher_4_superscalar4_ops);
423eda14cbcSMatt Macy 
424eda14cbcSMatt Macy 	const fletcher_4_ops_t *ops = NULL;
425eda14cbcSMatt Macy 	uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
426eda14cbcSMatt Macy 
427eda14cbcSMatt Macy 	switch (impl) {
428eda14cbcSMatt Macy 	case IMPL_FASTEST:
429eda14cbcSMatt Macy 		ASSERT(fletcher_4_initialized);
430eda14cbcSMatt Macy 		ops = &fletcher_4_fastest_impl;
431eda14cbcSMatt Macy 		break;
432eda14cbcSMatt Macy 	case IMPL_CYCLE:
433eda14cbcSMatt Macy 		/* Cycle through supported implementations */
434eda14cbcSMatt Macy 		ASSERT(fletcher_4_initialized);
435eda14cbcSMatt Macy 		ASSERT3U(fletcher_4_supp_impls_cnt, >, 0);
436eda14cbcSMatt Macy 		static uint32_t cycle_count = 0;
437eda14cbcSMatt Macy 		uint32_t idx = (++cycle_count) % fletcher_4_supp_impls_cnt;
438eda14cbcSMatt Macy 		ops = fletcher_4_supp_impls[idx];
439eda14cbcSMatt Macy 		break;
440eda14cbcSMatt Macy 	default:
441eda14cbcSMatt Macy 		ASSERT3U(fletcher_4_supp_impls_cnt, >, 0);
442eda14cbcSMatt Macy 		ASSERT3U(impl, <, fletcher_4_supp_impls_cnt);
443eda14cbcSMatt Macy 		ops = fletcher_4_supp_impls[impl];
444eda14cbcSMatt Macy 		break;
445eda14cbcSMatt Macy 	}
446eda14cbcSMatt Macy 
447eda14cbcSMatt Macy 	ASSERT3P(ops, !=, NULL);
448eda14cbcSMatt Macy 
449eda14cbcSMatt Macy 	return (ops);
450eda14cbcSMatt Macy }
451eda14cbcSMatt Macy 
452eda14cbcSMatt Macy static inline void
453eda14cbcSMatt Macy fletcher_4_native_impl(const void *buf, uint64_t size, zio_cksum_t *zcp)
454eda14cbcSMatt Macy {
455eda14cbcSMatt Macy 	fletcher_4_ctx_t ctx;
456eda14cbcSMatt Macy 	const fletcher_4_ops_t *ops = fletcher_4_impl_get();
457eda14cbcSMatt Macy 
4582a58b312SMartin Matuska 	if (ops->uses_fpu == B_TRUE) {
4592a58b312SMartin Matuska 		kfpu_begin();
4602a58b312SMartin Matuska 	}
461eda14cbcSMatt Macy 	ops->init_native(&ctx);
462eda14cbcSMatt Macy 	ops->compute_native(&ctx, buf, size);
463eda14cbcSMatt Macy 	ops->fini_native(&ctx, zcp);
4642a58b312SMartin Matuska 	if (ops->uses_fpu == B_TRUE) {
4652a58b312SMartin Matuska 		kfpu_end();
4662a58b312SMartin Matuska 	}
467eda14cbcSMatt Macy }
468eda14cbcSMatt Macy 
469eda14cbcSMatt Macy void
470eda14cbcSMatt Macy fletcher_4_native(const void *buf, uint64_t size,
471eda14cbcSMatt Macy     const void *ctx_template, zio_cksum_t *zcp)
472eda14cbcSMatt Macy {
473e92ffd9bSMartin Matuska 	(void) ctx_template;
474*aca928a5SMartin Matuska 	const uint64_t p2size = P2ALIGN_TYPED(size, FLETCHER_MIN_SIMD_SIZE,
475*aca928a5SMartin Matuska 	    uint64_t);
476eda14cbcSMatt Macy 
477eda14cbcSMatt Macy 	ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));
478eda14cbcSMatt Macy 
479eda14cbcSMatt Macy 	if (size == 0 || p2size == 0) {
480eda14cbcSMatt Macy 		ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
481eda14cbcSMatt Macy 
482eda14cbcSMatt Macy 		if (size > 0)
483eda14cbcSMatt Macy 			fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp,
484eda14cbcSMatt Macy 			    buf, size);
485eda14cbcSMatt Macy 	} else {
486eda14cbcSMatt Macy 		fletcher_4_native_impl(buf, p2size, zcp);
487eda14cbcSMatt Macy 
488eda14cbcSMatt Macy 		if (p2size < size)
489eda14cbcSMatt Macy 			fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp,
490eda14cbcSMatt Macy 			    (char *)buf + p2size, size - p2size);
491eda14cbcSMatt Macy 	}
492eda14cbcSMatt Macy }
493eda14cbcSMatt Macy 
494eda14cbcSMatt Macy void
495eda14cbcSMatt Macy fletcher_4_native_varsize(const void *buf, uint64_t size, zio_cksum_t *zcp)
496eda14cbcSMatt Macy {
497eda14cbcSMatt Macy 	ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
498eda14cbcSMatt Macy 	fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, buf, size);
499eda14cbcSMatt Macy }
500eda14cbcSMatt Macy 
501eda14cbcSMatt Macy static inline void
502eda14cbcSMatt Macy fletcher_4_byteswap_impl(const void *buf, uint64_t size, zio_cksum_t *zcp)
503eda14cbcSMatt Macy {
504eda14cbcSMatt Macy 	fletcher_4_ctx_t ctx;
505eda14cbcSMatt Macy 	const fletcher_4_ops_t *ops = fletcher_4_impl_get();
506eda14cbcSMatt Macy 
5072a58b312SMartin Matuska 	if (ops->uses_fpu == B_TRUE) {
5082a58b312SMartin Matuska 		kfpu_begin();
5092a58b312SMartin Matuska 	}
510eda14cbcSMatt Macy 	ops->init_byteswap(&ctx);
511eda14cbcSMatt Macy 	ops->compute_byteswap(&ctx, buf, size);
512eda14cbcSMatt Macy 	ops->fini_byteswap(&ctx, zcp);
5132a58b312SMartin Matuska 	if (ops->uses_fpu == B_TRUE) {
5142a58b312SMartin Matuska 		kfpu_end();
5152a58b312SMartin Matuska 	}
516eda14cbcSMatt Macy }
517eda14cbcSMatt Macy 
518eda14cbcSMatt Macy void
519eda14cbcSMatt Macy fletcher_4_byteswap(const void *buf, uint64_t size,
520eda14cbcSMatt Macy     const void *ctx_template, zio_cksum_t *zcp)
521eda14cbcSMatt Macy {
522e92ffd9bSMartin Matuska 	(void) ctx_template;
523*aca928a5SMartin Matuska 	const uint64_t p2size = P2ALIGN_TYPED(size, FLETCHER_MIN_SIMD_SIZE,
524*aca928a5SMartin Matuska 	    uint64_t);
525eda14cbcSMatt Macy 
526eda14cbcSMatt Macy 	ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));
527eda14cbcSMatt Macy 
528eda14cbcSMatt Macy 	if (size == 0 || p2size == 0) {
529eda14cbcSMatt Macy 		ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
530eda14cbcSMatt Macy 
531eda14cbcSMatt Macy 		if (size > 0)
532eda14cbcSMatt Macy 			fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp,
533eda14cbcSMatt Macy 			    buf, size);
534eda14cbcSMatt Macy 	} else {
535eda14cbcSMatt Macy 		fletcher_4_byteswap_impl(buf, p2size, zcp);
536eda14cbcSMatt Macy 
537eda14cbcSMatt Macy 		if (p2size < size)
538eda14cbcSMatt Macy 			fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp,
539eda14cbcSMatt Macy 			    (char *)buf + p2size, size - p2size);
540eda14cbcSMatt Macy 	}
541eda14cbcSMatt Macy }
542eda14cbcSMatt Macy 
543eda14cbcSMatt Macy /* Incremental Fletcher 4 */
544eda14cbcSMatt Macy 
545eda14cbcSMatt Macy #define	ZFS_FLETCHER_4_INC_MAX_SIZE	(8ULL << 20)
546eda14cbcSMatt Macy 
547eda14cbcSMatt Macy static inline void
548eda14cbcSMatt Macy fletcher_4_incremental_combine(zio_cksum_t *zcp, const uint64_t size,
549eda14cbcSMatt Macy     const zio_cksum_t *nzcp)
550eda14cbcSMatt Macy {
551eda14cbcSMatt Macy 	const uint64_t c1 = size / sizeof (uint32_t);
552eda14cbcSMatt Macy 	const uint64_t c2 = c1 * (c1 + 1) / 2;
553eda14cbcSMatt Macy 	const uint64_t c3 = c2 * (c1 + 2) / 3;
554eda14cbcSMatt Macy 
555eda14cbcSMatt Macy 	/*
556eda14cbcSMatt Macy 	 * Value of 'c3' overflows on buffer sizes close to 16MiB. For that
557eda14cbcSMatt Macy 	 * reason we split incremental fletcher4 computation of large buffers
558eda14cbcSMatt Macy 	 * to steps of (ZFS_FLETCHER_4_INC_MAX_SIZE) size.
559eda14cbcSMatt Macy 	 */
560eda14cbcSMatt Macy 	ASSERT3U(size, <=, ZFS_FLETCHER_4_INC_MAX_SIZE);
561eda14cbcSMatt Macy 
562eda14cbcSMatt Macy 	zcp->zc_word[3] += nzcp->zc_word[3] + c1 * zcp->zc_word[2] +
563eda14cbcSMatt Macy 	    c2 * zcp->zc_word[1] + c3 * zcp->zc_word[0];
564eda14cbcSMatt Macy 	zcp->zc_word[2] += nzcp->zc_word[2] + c1 * zcp->zc_word[1] +
565eda14cbcSMatt Macy 	    c2 * zcp->zc_word[0];
566eda14cbcSMatt Macy 	zcp->zc_word[1] += nzcp->zc_word[1] + c1 * zcp->zc_word[0];
567eda14cbcSMatt Macy 	zcp->zc_word[0] += nzcp->zc_word[0];
568eda14cbcSMatt Macy }
569eda14cbcSMatt Macy 
570eda14cbcSMatt Macy static inline void
571eda14cbcSMatt Macy fletcher_4_incremental_impl(boolean_t native, const void *buf, uint64_t size,
572eda14cbcSMatt Macy     zio_cksum_t *zcp)
573eda14cbcSMatt Macy {
574eda14cbcSMatt Macy 	while (size > 0) {
575eda14cbcSMatt Macy 		zio_cksum_t nzc;
576eda14cbcSMatt Macy 		uint64_t len = MIN(size, ZFS_FLETCHER_4_INC_MAX_SIZE);
577eda14cbcSMatt Macy 
578eda14cbcSMatt Macy 		if (native)
579eda14cbcSMatt Macy 			fletcher_4_native(buf, len, NULL, &nzc);
580eda14cbcSMatt Macy 		else
581eda14cbcSMatt Macy 			fletcher_4_byteswap(buf, len, NULL, &nzc);
582eda14cbcSMatt Macy 
583eda14cbcSMatt Macy 		fletcher_4_incremental_combine(zcp, len, &nzc);
584eda14cbcSMatt Macy 
585eda14cbcSMatt Macy 		size -= len;
586eda14cbcSMatt Macy 		buf += len;
587eda14cbcSMatt Macy 	}
588eda14cbcSMatt Macy }
589eda14cbcSMatt Macy 
590eda14cbcSMatt Macy int
591eda14cbcSMatt Macy fletcher_4_incremental_native(void *buf, size_t size, void *data)
592eda14cbcSMatt Macy {
593eda14cbcSMatt Macy 	zio_cksum_t *zcp = data;
594eda14cbcSMatt Macy 	/* Use scalar impl to directly update cksum of small blocks */
595eda14cbcSMatt Macy 	if (size < SPA_MINBLOCKSIZE)
596eda14cbcSMatt Macy 		fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, buf, size);
597eda14cbcSMatt Macy 	else
598eda14cbcSMatt Macy 		fletcher_4_incremental_impl(B_TRUE, buf, size, zcp);
599eda14cbcSMatt Macy 	return (0);
600eda14cbcSMatt Macy }
601eda14cbcSMatt Macy 
602eda14cbcSMatt Macy int
603eda14cbcSMatt Macy fletcher_4_incremental_byteswap(void *buf, size_t size, void *data)
604eda14cbcSMatt Macy {
605eda14cbcSMatt Macy 	zio_cksum_t *zcp = data;
606eda14cbcSMatt Macy 	/* Use scalar impl to directly update cksum of small blocks */
607eda14cbcSMatt Macy 	if (size < SPA_MINBLOCKSIZE)
608eda14cbcSMatt Macy 		fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp, buf, size);
609eda14cbcSMatt Macy 	else
610eda14cbcSMatt Macy 		fletcher_4_incremental_impl(B_FALSE, buf, size, zcp);
611eda14cbcSMatt Macy 	return (0);
612eda14cbcSMatt Macy }
613eda14cbcSMatt Macy 
614eda14cbcSMatt Macy #if defined(_KERNEL)
615eda14cbcSMatt Macy /*
616eda14cbcSMatt Macy  * Fletcher 4 kstats
617eda14cbcSMatt Macy  */
618eda14cbcSMatt Macy static int
619eda14cbcSMatt Macy fletcher_4_kstat_headers(char *buf, size_t size)
620eda14cbcSMatt Macy {
621eda14cbcSMatt Macy 	ssize_t off = 0;
622eda14cbcSMatt Macy 
623eda14cbcSMatt Macy 	off += snprintf(buf + off, size, "%-17s", "implementation");
624eda14cbcSMatt Macy 	off += snprintf(buf + off, size - off, "%-15s", "native");
625eda14cbcSMatt Macy 	(void) snprintf(buf + off, size - off, "%-15s\n", "byteswap");
626eda14cbcSMatt Macy 
627eda14cbcSMatt Macy 	return (0);
628eda14cbcSMatt Macy }
629eda14cbcSMatt Macy 
630eda14cbcSMatt Macy static int
631eda14cbcSMatt Macy fletcher_4_kstat_data(char *buf, size_t size, void *data)
632eda14cbcSMatt Macy {
633eda14cbcSMatt Macy 	struct fletcher_4_kstat *fastest_stat =
634eda14cbcSMatt Macy 	    &fletcher_4_stat_data[fletcher_4_supp_impls_cnt];
635eda14cbcSMatt Macy 	struct fletcher_4_kstat *curr_stat = (struct fletcher_4_kstat *)data;
636eda14cbcSMatt Macy 	ssize_t off = 0;
637eda14cbcSMatt Macy 
638eda14cbcSMatt Macy 	if (curr_stat == fastest_stat) {
639eda14cbcSMatt Macy 		off += snprintf(buf + off, size - off, "%-17s", "fastest");
640eda14cbcSMatt Macy 		off += snprintf(buf + off, size - off, "%-15s",
641eda14cbcSMatt Macy 		    fletcher_4_supp_impls[fastest_stat->native]->name);
64215f0b8c3SMartin Matuska 		(void) snprintf(buf + off, size - off, "%-15s\n",
643eda14cbcSMatt Macy 		    fletcher_4_supp_impls[fastest_stat->byteswap]->name);
644eda14cbcSMatt Macy 	} else {
645eda14cbcSMatt Macy 		ptrdiff_t id = curr_stat - fletcher_4_stat_data;
646eda14cbcSMatt Macy 
647eda14cbcSMatt Macy 		off += snprintf(buf + off, size - off, "%-17s",
648eda14cbcSMatt Macy 		    fletcher_4_supp_impls[id]->name);
649eda14cbcSMatt Macy 		off += snprintf(buf + off, size - off, "%-15llu",
650eda14cbcSMatt Macy 		    (u_longlong_t)curr_stat->native);
65115f0b8c3SMartin Matuska 		(void) snprintf(buf + off, size - off, "%-15llu\n",
652eda14cbcSMatt Macy 		    (u_longlong_t)curr_stat->byteswap);
653eda14cbcSMatt Macy 	}
654eda14cbcSMatt Macy 
655eda14cbcSMatt Macy 	return (0);
656eda14cbcSMatt Macy }
657eda14cbcSMatt Macy 
658eda14cbcSMatt Macy static void *
659eda14cbcSMatt Macy fletcher_4_kstat_addr(kstat_t *ksp, loff_t n)
660eda14cbcSMatt Macy {
661eda14cbcSMatt Macy 	if (n <= fletcher_4_supp_impls_cnt)
662eda14cbcSMatt Macy 		ksp->ks_private = (void *) (fletcher_4_stat_data + n);
663eda14cbcSMatt Macy 	else
664eda14cbcSMatt Macy 		ksp->ks_private = NULL;
665eda14cbcSMatt Macy 
666eda14cbcSMatt Macy 	return (ksp->ks_private);
667eda14cbcSMatt Macy }
668eda14cbcSMatt Macy #endif
669eda14cbcSMatt Macy 
670eda14cbcSMatt Macy #define	FLETCHER_4_FASTEST_FN_COPY(type, src)				  \
671eda14cbcSMatt Macy {									  \
672eda14cbcSMatt Macy 	fletcher_4_fastest_impl.init_ ## type = src->init_ ## type;	  \
673eda14cbcSMatt Macy 	fletcher_4_fastest_impl.fini_ ## type = src->fini_ ## type;	  \
674eda14cbcSMatt Macy 	fletcher_4_fastest_impl.compute_ ## type = src->compute_ ## type; \
6752a58b312SMartin Matuska 	fletcher_4_fastest_impl.uses_fpu = src->uses_fpu;		  \
676eda14cbcSMatt Macy }
677eda14cbcSMatt Macy 
6787877fdebSMatt Macy #define	FLETCHER_4_BENCH_NS	(MSEC2NSEC(1))		/* 1ms */
679eda14cbcSMatt Macy 
680eda14cbcSMatt Macy typedef void fletcher_checksum_func_t(const void *, uint64_t, const void *,
681eda14cbcSMatt Macy 					zio_cksum_t *);
682eda14cbcSMatt Macy 
683eda14cbcSMatt Macy #if defined(_KERNEL)
684eda14cbcSMatt Macy static void
685eda14cbcSMatt Macy fletcher_4_benchmark_impl(boolean_t native, char *data, uint64_t data_size)
686eda14cbcSMatt Macy {
687eda14cbcSMatt Macy 
688eda14cbcSMatt Macy 	struct fletcher_4_kstat *fastest_stat =
689eda14cbcSMatt Macy 	    &fletcher_4_stat_data[fletcher_4_supp_impls_cnt];
690eda14cbcSMatt Macy 	hrtime_t start;
691eda14cbcSMatt Macy 	uint64_t run_bw, run_time_ns, best_run = 0;
692eda14cbcSMatt Macy 	zio_cksum_t zc;
693eda14cbcSMatt Macy 	uint32_t i, l, sel_save = IMPL_READ(fletcher_4_impl_chosen);
694eda14cbcSMatt Macy 
695eda14cbcSMatt Macy 	fletcher_checksum_func_t *fletcher_4_test = native ?
696eda14cbcSMatt Macy 	    fletcher_4_native : fletcher_4_byteswap;
697eda14cbcSMatt Macy 
698eda14cbcSMatt Macy 	for (i = 0; i < fletcher_4_supp_impls_cnt; i++) {
699eda14cbcSMatt Macy 		struct fletcher_4_kstat *stat = &fletcher_4_stat_data[i];
700eda14cbcSMatt Macy 		uint64_t run_count = 0;
701eda14cbcSMatt Macy 
702eda14cbcSMatt Macy 		/* temporary set an implementation */
703eda14cbcSMatt Macy 		fletcher_4_impl_chosen = i;
704eda14cbcSMatt Macy 
705eda14cbcSMatt Macy 		kpreempt_disable();
706eda14cbcSMatt Macy 		start = gethrtime();
707eda14cbcSMatt Macy 		do {
708eda14cbcSMatt Macy 			for (l = 0; l < 32; l++, run_count++)
709eda14cbcSMatt Macy 				fletcher_4_test(data, data_size, NULL, &zc);
710eda14cbcSMatt Macy 
711eda14cbcSMatt Macy 			run_time_ns = gethrtime() - start;
712eda14cbcSMatt Macy 		} while (run_time_ns < FLETCHER_4_BENCH_NS);
713eda14cbcSMatt Macy 		kpreempt_enable();
714eda14cbcSMatt Macy 
715eda14cbcSMatt Macy 		run_bw = data_size * run_count * NANOSEC;
716eda14cbcSMatt Macy 		run_bw /= run_time_ns;	/* B/s */
717eda14cbcSMatt Macy 
718eda14cbcSMatt Macy 		if (native)
719eda14cbcSMatt Macy 			stat->native = run_bw;
720eda14cbcSMatt Macy 		else
721eda14cbcSMatt Macy 			stat->byteswap = run_bw;
722eda14cbcSMatt Macy 
723eda14cbcSMatt Macy 		if (run_bw > best_run) {
724eda14cbcSMatt Macy 			best_run = run_bw;
725eda14cbcSMatt Macy 
726eda14cbcSMatt Macy 			if (native) {
727eda14cbcSMatt Macy 				fastest_stat->native = i;
728eda14cbcSMatt Macy 				FLETCHER_4_FASTEST_FN_COPY(native,
729eda14cbcSMatt Macy 				    fletcher_4_supp_impls[i]);
730eda14cbcSMatt Macy 			} else {
731eda14cbcSMatt Macy 				fastest_stat->byteswap = i;
732eda14cbcSMatt Macy 				FLETCHER_4_FASTEST_FN_COPY(byteswap,
733eda14cbcSMatt Macy 				    fletcher_4_supp_impls[i]);
734eda14cbcSMatt Macy 			}
735eda14cbcSMatt Macy 		}
736eda14cbcSMatt Macy 	}
737eda14cbcSMatt Macy 
738eda14cbcSMatt Macy 	/* restore original selection */
739eda14cbcSMatt Macy 	atomic_swap_32(&fletcher_4_impl_chosen, sel_save);
740eda14cbcSMatt Macy }
741eda14cbcSMatt Macy #endif /* _KERNEL */
742eda14cbcSMatt Macy 
743eda14cbcSMatt Macy /*
744eda14cbcSMatt Macy  * Initialize and benchmark all supported implementations.
745eda14cbcSMatt Macy  */
746eda14cbcSMatt Macy static void
747eda14cbcSMatt Macy fletcher_4_benchmark(void)
748eda14cbcSMatt Macy {
749eda14cbcSMatt Macy 	fletcher_4_ops_t *curr_impl;
750eda14cbcSMatt Macy 	int i, c;
751eda14cbcSMatt Macy 
752eda14cbcSMatt Macy 	/* Move supported implementations into fletcher_4_supp_impls */
753eda14cbcSMatt Macy 	for (i = 0, c = 0; i < ARRAY_SIZE(fletcher_4_impls); i++) {
754eda14cbcSMatt Macy 		curr_impl = (fletcher_4_ops_t *)fletcher_4_impls[i];
755eda14cbcSMatt Macy 
756eda14cbcSMatt Macy 		if (curr_impl->valid && curr_impl->valid())
757eda14cbcSMatt Macy 			fletcher_4_supp_impls[c++] = curr_impl;
758eda14cbcSMatt Macy 	}
759eda14cbcSMatt Macy 	membar_producer();	/* complete fletcher_4_supp_impls[] init */
760eda14cbcSMatt Macy 	fletcher_4_supp_impls_cnt = c;	/* number of supported impl */
761eda14cbcSMatt Macy 
762eda14cbcSMatt Macy #if defined(_KERNEL)
763eda14cbcSMatt Macy 	static const size_t data_size = 1 << SPA_OLD_MAXBLOCKSHIFT; /* 128kiB */
764eda14cbcSMatt Macy 	char *databuf = vmem_alloc(data_size, KM_SLEEP);
765eda14cbcSMatt Macy 
766eda14cbcSMatt Macy 	for (i = 0; i < data_size / sizeof (uint64_t); i++)
767eda14cbcSMatt Macy 		((uint64_t *)databuf)[i] = (uintptr_t)(databuf+i); /* warm-up */
768eda14cbcSMatt Macy 
769eda14cbcSMatt Macy 	fletcher_4_benchmark_impl(B_FALSE, databuf, data_size);
770eda14cbcSMatt Macy 	fletcher_4_benchmark_impl(B_TRUE, databuf, data_size);
771eda14cbcSMatt Macy 
772eda14cbcSMatt Macy 	vmem_free(databuf, data_size);
773eda14cbcSMatt Macy #else
774eda14cbcSMatt Macy 	/*
775eda14cbcSMatt Macy 	 * Skip the benchmark in user space to avoid impacting libzpool
776eda14cbcSMatt Macy 	 * consumers (zdb, zhack, zinject, ztest).  The last implementation
777eda14cbcSMatt Macy 	 * is assumed to be the fastest and used by default.
778eda14cbcSMatt Macy 	 */
779eda14cbcSMatt Macy 	memcpy(&fletcher_4_fastest_impl,
780eda14cbcSMatt Macy 	    fletcher_4_supp_impls[fletcher_4_supp_impls_cnt - 1],
781eda14cbcSMatt Macy 	    sizeof (fletcher_4_fastest_impl));
782eda14cbcSMatt Macy 	fletcher_4_fastest_impl.name = "fastest";
783eda14cbcSMatt Macy 	membar_producer();
784eda14cbcSMatt Macy #endif /* _KERNEL */
785eda14cbcSMatt Macy }
786eda14cbcSMatt Macy 
787eda14cbcSMatt Macy void
788eda14cbcSMatt Macy fletcher_4_init(void)
789eda14cbcSMatt Macy {
790eda14cbcSMatt Macy 	/* Determine the fastest available implementation. */
791eda14cbcSMatt Macy 	fletcher_4_benchmark();
792eda14cbcSMatt Macy 
793eda14cbcSMatt Macy #if defined(_KERNEL)
794eda14cbcSMatt Macy 	/* Install kstats for all implementations */
795eda14cbcSMatt Macy 	fletcher_4_kstat = kstat_create("zfs", 0, "fletcher_4_bench", "misc",
796eda14cbcSMatt Macy 	    KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL);
797eda14cbcSMatt Macy 	if (fletcher_4_kstat != NULL) {
798eda14cbcSMatt Macy 		fletcher_4_kstat->ks_data = NULL;
799eda14cbcSMatt Macy 		fletcher_4_kstat->ks_ndata = UINT32_MAX;
800eda14cbcSMatt Macy 		kstat_set_raw_ops(fletcher_4_kstat,
801eda14cbcSMatt Macy 		    fletcher_4_kstat_headers,
802eda14cbcSMatt Macy 		    fletcher_4_kstat_data,
803eda14cbcSMatt Macy 		    fletcher_4_kstat_addr);
804eda14cbcSMatt Macy 		kstat_install(fletcher_4_kstat);
805eda14cbcSMatt Macy 	}
806eda14cbcSMatt Macy #endif
807eda14cbcSMatt Macy 
808eda14cbcSMatt Macy 	/* Finish initialization */
809eda14cbcSMatt Macy 	fletcher_4_initialized = B_TRUE;
810eda14cbcSMatt Macy }
811eda14cbcSMatt Macy 
812eda14cbcSMatt Macy void
813eda14cbcSMatt Macy fletcher_4_fini(void)
814eda14cbcSMatt Macy {
815eda14cbcSMatt Macy #if defined(_KERNEL)
816eda14cbcSMatt Macy 	if (fletcher_4_kstat != NULL) {
817eda14cbcSMatt Macy 		kstat_delete(fletcher_4_kstat);
818eda14cbcSMatt Macy 		fletcher_4_kstat = NULL;
819eda14cbcSMatt Macy 	}
820eda14cbcSMatt Macy #endif
821eda14cbcSMatt Macy }
822eda14cbcSMatt Macy 
823eda14cbcSMatt Macy /* ABD adapters */
824eda14cbcSMatt Macy 
825eda14cbcSMatt Macy static void
826eda14cbcSMatt Macy abd_fletcher_4_init(zio_abd_checksum_data_t *cdp)
827eda14cbcSMatt Macy {
828eda14cbcSMatt Macy 	const fletcher_4_ops_t *ops = fletcher_4_impl_get();
829eda14cbcSMatt Macy 	cdp->acd_private = (void *) ops;
830eda14cbcSMatt Macy 
8312a58b312SMartin Matuska 	if (ops->uses_fpu == B_TRUE) {
8322a58b312SMartin Matuska 		kfpu_begin();
8332a58b312SMartin Matuska 	}
834eda14cbcSMatt Macy 	if (cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE)
835eda14cbcSMatt Macy 		ops->init_native(cdp->acd_ctx);
836eda14cbcSMatt Macy 	else
837eda14cbcSMatt Macy 		ops->init_byteswap(cdp->acd_ctx);
8382a58b312SMartin Matuska 
839eda14cbcSMatt Macy }
840eda14cbcSMatt Macy 
841eda14cbcSMatt Macy static void
842eda14cbcSMatt Macy abd_fletcher_4_fini(zio_abd_checksum_data_t *cdp)
843eda14cbcSMatt Macy {
844eda14cbcSMatt Macy 	fletcher_4_ops_t *ops = (fletcher_4_ops_t *)cdp->acd_private;
845eda14cbcSMatt Macy 
846eda14cbcSMatt Macy 	ASSERT(ops);
847eda14cbcSMatt Macy 
848eda14cbcSMatt Macy 	if (cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE)
849eda14cbcSMatt Macy 		ops->fini_native(cdp->acd_ctx, cdp->acd_zcp);
850eda14cbcSMatt Macy 	else
851eda14cbcSMatt Macy 		ops->fini_byteswap(cdp->acd_ctx, cdp->acd_zcp);
8522a58b312SMartin Matuska 
8532a58b312SMartin Matuska 	if (ops->uses_fpu == B_TRUE) {
8542a58b312SMartin Matuska 		kfpu_end();
855eda14cbcSMatt Macy 	}
8562a58b312SMartin Matuska }
8572a58b312SMartin Matuska 
858eda14cbcSMatt Macy 
859eda14cbcSMatt Macy static void
860eda14cbcSMatt Macy abd_fletcher_4_simd2scalar(boolean_t native, void *data, size_t size,
861eda14cbcSMatt Macy     zio_abd_checksum_data_t *cdp)
862eda14cbcSMatt Macy {
863eda14cbcSMatt Macy 	zio_cksum_t *zcp = cdp->acd_zcp;
864eda14cbcSMatt Macy 
865eda14cbcSMatt Macy 	ASSERT3U(size, <, FLETCHER_MIN_SIMD_SIZE);
866eda14cbcSMatt Macy 
867eda14cbcSMatt Macy 	abd_fletcher_4_fini(cdp);
868eda14cbcSMatt Macy 	cdp->acd_private = (void *)&fletcher_4_scalar_ops;
869eda14cbcSMatt Macy 
870eda14cbcSMatt Macy 	if (native)
871eda14cbcSMatt Macy 		fletcher_4_incremental_native(data, size, zcp);
872eda14cbcSMatt Macy 	else
873eda14cbcSMatt Macy 		fletcher_4_incremental_byteswap(data, size, zcp);
874eda14cbcSMatt Macy }
875eda14cbcSMatt Macy 
876eda14cbcSMatt Macy static int
877eda14cbcSMatt Macy abd_fletcher_4_iter(void *data, size_t size, void *private)
878eda14cbcSMatt Macy {
879eda14cbcSMatt Macy 	zio_abd_checksum_data_t *cdp = (zio_abd_checksum_data_t *)private;
880eda14cbcSMatt Macy 	fletcher_4_ctx_t *ctx = cdp->acd_ctx;
881eda14cbcSMatt Macy 	fletcher_4_ops_t *ops = (fletcher_4_ops_t *)cdp->acd_private;
882eda14cbcSMatt Macy 	boolean_t native = cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE;
883*aca928a5SMartin Matuska 	uint64_t asize = P2ALIGN_TYPED(size, FLETCHER_MIN_SIMD_SIZE, uint64_t);
884eda14cbcSMatt Macy 
885eda14cbcSMatt Macy 	ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));
886eda14cbcSMatt Macy 
887eda14cbcSMatt Macy 	if (asize > 0) {
888eda14cbcSMatt Macy 		if (native)
889eda14cbcSMatt Macy 			ops->compute_native(ctx, data, asize);
890eda14cbcSMatt Macy 		else
891eda14cbcSMatt Macy 			ops->compute_byteswap(ctx, data, asize);
892eda14cbcSMatt Macy 
893eda14cbcSMatt Macy 		size -= asize;
894eda14cbcSMatt Macy 		data = (char *)data + asize;
895eda14cbcSMatt Macy 	}
896eda14cbcSMatt Macy 
897eda14cbcSMatt Macy 	if (size > 0) {
898eda14cbcSMatt Macy 		ASSERT3U(size, <, FLETCHER_MIN_SIMD_SIZE);
899eda14cbcSMatt Macy 		/* At this point we have to switch to scalar impl */
900eda14cbcSMatt Macy 		abd_fletcher_4_simd2scalar(native, data, size, cdp);
901eda14cbcSMatt Macy 	}
902eda14cbcSMatt Macy 
903eda14cbcSMatt Macy 	return (0);
904eda14cbcSMatt Macy }
905eda14cbcSMatt Macy 
906eda14cbcSMatt Macy zio_abd_checksum_func_t fletcher_4_abd_ops = {
907eda14cbcSMatt Macy 	.acf_init = abd_fletcher_4_init,
908eda14cbcSMatt Macy 	.acf_fini = abd_fletcher_4_fini,
909eda14cbcSMatt Macy 	.acf_iter = abd_fletcher_4_iter
910eda14cbcSMatt Macy };
911eda14cbcSMatt Macy 
9127877fdebSMatt Macy #if defined(_KERNEL)
913eda14cbcSMatt Macy 
9147877fdebSMatt Macy #define	IMPL_FMT(impl, i)	(((impl) == (i)) ? "[%s] " : "%s ")
9157877fdebSMatt Macy 
9167877fdebSMatt Macy #if defined(__linux__)
917eda14cbcSMatt Macy 
918eda14cbcSMatt Macy static int
919eda14cbcSMatt Macy fletcher_4_param_get(char *buffer, zfs_kernel_param_t *unused)
920eda14cbcSMatt Macy {
921eda14cbcSMatt Macy 	const uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
922eda14cbcSMatt Macy 	char *fmt;
9237877fdebSMatt Macy 	int cnt = 0;
924eda14cbcSMatt Macy 
925eda14cbcSMatt Macy 	/* list fastest */
9267877fdebSMatt Macy 	fmt = IMPL_FMT(impl, IMPL_FASTEST);
927bb2d13b6SMartin Matuska 	cnt += kmem_scnprintf(buffer + cnt, PAGE_SIZE - cnt, fmt, "fastest");
928eda14cbcSMatt Macy 
929eda14cbcSMatt Macy 	/* list all supported implementations */
9307877fdebSMatt Macy 	for (uint32_t i = 0; i < fletcher_4_supp_impls_cnt; ++i) {
9317877fdebSMatt Macy 		fmt = IMPL_FMT(impl, i);
932bb2d13b6SMartin Matuska 		cnt += kmem_scnprintf(buffer + cnt, PAGE_SIZE - cnt, fmt,
933eda14cbcSMatt Macy 		    fletcher_4_supp_impls[i]->name);
934eda14cbcSMatt Macy 	}
935eda14cbcSMatt Macy 
936eda14cbcSMatt Macy 	return (cnt);
937eda14cbcSMatt Macy }
938eda14cbcSMatt Macy 
939eda14cbcSMatt Macy static int
940eda14cbcSMatt Macy fletcher_4_param_set(const char *val, zfs_kernel_param_t *unused)
941eda14cbcSMatt Macy {
942eda14cbcSMatt Macy 	return (fletcher_4_impl_set(val));
943eda14cbcSMatt Macy }
944eda14cbcSMatt Macy 
9457877fdebSMatt Macy #else
9467877fdebSMatt Macy 
9477877fdebSMatt Macy #include <sys/sbuf.h>
9487877fdebSMatt Macy 
9497877fdebSMatt Macy static int
9507877fdebSMatt Macy fletcher_4_param(ZFS_MODULE_PARAM_ARGS)
9517877fdebSMatt Macy {
9527877fdebSMatt Macy 	int err;
9537877fdebSMatt Macy 
9547877fdebSMatt Macy 	if (req->newptr == NULL) {
9557877fdebSMatt Macy 		const uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
9567877fdebSMatt Macy 		const int init_buflen = 64;
9577877fdebSMatt Macy 		const char *fmt;
9587877fdebSMatt Macy 		struct sbuf *s;
9597877fdebSMatt Macy 
9607877fdebSMatt Macy 		s = sbuf_new_for_sysctl(NULL, NULL, init_buflen, req);
9617877fdebSMatt Macy 
9627877fdebSMatt Macy 		/* list fastest */
9637877fdebSMatt Macy 		fmt = IMPL_FMT(impl, IMPL_FASTEST);
9647877fdebSMatt Macy 		(void) sbuf_printf(s, fmt, "fastest");
9657877fdebSMatt Macy 
9667877fdebSMatt Macy 		/* list all supported implementations */
9677877fdebSMatt Macy 		for (uint32_t i = 0; i < fletcher_4_supp_impls_cnt; ++i) {
9687877fdebSMatt Macy 			fmt = IMPL_FMT(impl, i);
9697877fdebSMatt Macy 			(void) sbuf_printf(s, fmt,
9707877fdebSMatt Macy 			    fletcher_4_supp_impls[i]->name);
9717877fdebSMatt Macy 		}
9727877fdebSMatt Macy 
9737877fdebSMatt Macy 		err = sbuf_finish(s);
9747877fdebSMatt Macy 		sbuf_delete(s);
9757877fdebSMatt Macy 
9767877fdebSMatt Macy 		return (err);
9777877fdebSMatt Macy 	}
9787877fdebSMatt Macy 
9797877fdebSMatt Macy 	char buf[16];
9807877fdebSMatt Macy 
9817877fdebSMatt Macy 	err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
9827877fdebSMatt Macy 	if (err)
9837877fdebSMatt Macy 		return (err);
9847877fdebSMatt Macy 	return (-fletcher_4_impl_set(buf));
9857877fdebSMatt Macy }
9867877fdebSMatt Macy 
9877877fdebSMatt Macy #endif
9887877fdebSMatt Macy 
9897877fdebSMatt Macy #undef IMPL_FMT
9907877fdebSMatt Macy 
991eda14cbcSMatt Macy /*
992eda14cbcSMatt Macy  * Choose a fletcher 4 implementation in ZFS.
993eda14cbcSMatt Macy  * Users can choose "cycle" to exercise all implementations, but this is
994eda14cbcSMatt Macy  * for testing purpose therefore it can only be set in user space.
995eda14cbcSMatt Macy  */
9967877fdebSMatt Macy ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs, zfs_, fletcher_4_impl,
9977877fdebSMatt Macy     fletcher_4_param_set, fletcher_4_param_get, ZMOD_RW,
9987877fdebSMatt Macy 	"Select fletcher 4 implementation.");
999eda14cbcSMatt Macy 
1000eda14cbcSMatt Macy EXPORT_SYMBOL(fletcher_init);
1001eda14cbcSMatt Macy EXPORT_SYMBOL(fletcher_2_incremental_native);
1002eda14cbcSMatt Macy EXPORT_SYMBOL(fletcher_2_incremental_byteswap);
1003eda14cbcSMatt Macy EXPORT_SYMBOL(fletcher_4_init);
1004eda14cbcSMatt Macy EXPORT_SYMBOL(fletcher_4_fini);
1005eda14cbcSMatt Macy EXPORT_SYMBOL(fletcher_2_native);
1006eda14cbcSMatt Macy EXPORT_SYMBOL(fletcher_2_byteswap);
1007eda14cbcSMatt Macy EXPORT_SYMBOL(fletcher_4_native);
1008eda14cbcSMatt Macy EXPORT_SYMBOL(fletcher_4_native_varsize);
1009eda14cbcSMatt Macy EXPORT_SYMBOL(fletcher_4_byteswap);
1010eda14cbcSMatt Macy EXPORT_SYMBOL(fletcher_4_incremental_native);
1011eda14cbcSMatt Macy EXPORT_SYMBOL(fletcher_4_incremental_byteswap);
1012eda14cbcSMatt Macy EXPORT_SYMBOL(fletcher_4_abd_ops);
1013eda14cbcSMatt Macy #endif
1014