1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright 2022 MNX Cloud, Inc. 29 */ 30 31 32 33 /* 34 * UTF-8 text preparation functions (PSARC/2007/149, PSARC/2007/458). 35 * 36 * Man pages: u8_textprep_open(9F), u8_textprep_buf(9F), u8_textprep_close(9F), 37 * u8_textprep_str(9F), u8_strcmp(9F), and u8_validate(9F). See also 38 * the section 3C man pages. 39 * Interface stability: Committed. 40 */ 41 42 #include <sys/types.h> 43 #include <sys/string.h> 44 #include <sys/param.h> 45 #include <sys/sysmacros.h> 46 #include <sys/debug.h> 47 #include <sys/kmem.h> 48 #include <sys/sunddi.h> 49 #include <sys/u8_textprep.h> 50 #include <sys/byteorder.h> 51 #include <sys/errno.h> 52 #include <sys/u8_textprep_data.h> 53 #include <sys/mod.h> 54 55 /* The maximum possible number of bytes in a UTF-8 character. */ 56 #define U8_MB_CUR_MAX (4) 57 58 /* 59 * The maximum number of bytes needed for a UTF-8 character to cover 60 * U+0000 - U+FFFF, i.e., the coding space of now deprecated UCS-2. 61 */ 62 #define U8_MAX_BYTES_UCS2 (3) 63 64 /* The maximum possible number of bytes in a Stream-Safe Text. */ 65 #define U8_STREAM_SAFE_TEXT_MAX (128) 66 67 /* 68 * The maximum number of characters in a combining/conjoining sequence and 69 * the actual upperbound limit of a combining/conjoining sequence. 70 */ 71 #define U8_MAX_CHARS_A_SEQ (32) 72 #define U8_UPPER_LIMIT_IN_A_SEQ (31) 73 74 /* The combining class value for Starter. */ 75 #define U8_COMBINING_CLASS_STARTER (0) 76 77 /* 78 * Some Hangul related macros at below. 79 * 80 * The first and the last of Hangul syllables, Hangul Jamo Leading consonants, 81 * Vowels, and optional Trailing consonants in Unicode scalar values. 82 * 83 * Please be noted that the U8_HANGUL_JAMO_T_FIRST is 0x11A7 at below not 84 * the actual U+11A8. This is due to that the trailing consonant is optional 85 * and thus we are doing a pre-calculation of subtracting one. 86 * 87 * Each of 19 modern leading consonants has total 588 possible syllables since 88 * Hangul has 21 modern vowels and 27 modern trailing consonants plus 1 for 89 * no trailing consonant case, i.e., 21 x 28 = 588. 90 * 91 * We also have bunch of Hangul related macros at below. Please bear in mind 92 * that the U8_HANGUL_JAMO_1ST_BYTE can be used to check whether it is 93 * a Hangul Jamo or not but the value does not guarantee that it is a Hangul 94 * Jamo; it just guarantee that it will be most likely. 95 */ 96 #define U8_HANGUL_SYL_FIRST (0xAC00U) 97 #define U8_HANGUL_SYL_LAST (0xD7A3U) 98 99 #define U8_HANGUL_JAMO_L_FIRST (0x1100U) 100 #define U8_HANGUL_JAMO_L_LAST (0x1112U) 101 #define U8_HANGUL_JAMO_V_FIRST (0x1161U) 102 #define U8_HANGUL_JAMO_V_LAST (0x1175U) 103 #define U8_HANGUL_JAMO_T_FIRST (0x11A7U) 104 #define U8_HANGUL_JAMO_T_LAST (0x11C2U) 105 106 #define U8_HANGUL_V_COUNT (21) 107 #define U8_HANGUL_VT_COUNT (588) 108 #define U8_HANGUL_T_COUNT (28) 109 110 #define U8_HANGUL_JAMO_1ST_BYTE (0xE1U) 111 112 #define U8_SAVE_HANGUL_AS_UTF8(s, i, j, k, b) \ 113 (s)[(i)] = (uchar_t)(0xE0U | ((uint32_t)(b) & 0xF000U) >> 12); \ 114 (s)[(j)] = (uchar_t)(0x80U | ((uint32_t)(b) & 0x0FC0U) >> 6); \ 115 (s)[(k)] = (uchar_t)(0x80U | ((uint32_t)(b) & 0x003FU)); 116 117 #define U8_HANGUL_JAMO_L(u) \ 118 ((u) >= U8_HANGUL_JAMO_L_FIRST && (u) <= U8_HANGUL_JAMO_L_LAST) 119 120 #define U8_HANGUL_JAMO_V(u) \ 121 ((u) >= U8_HANGUL_JAMO_V_FIRST && (u) <= U8_HANGUL_JAMO_V_LAST) 122 123 #define U8_HANGUL_JAMO_T(u) \ 124 ((u) > U8_HANGUL_JAMO_T_FIRST && (u) <= U8_HANGUL_JAMO_T_LAST) 125 126 #define U8_HANGUL_JAMO(u) \ 127 ((u) >= U8_HANGUL_JAMO_L_FIRST && (u) <= U8_HANGUL_JAMO_T_LAST) 128 129 #define U8_HANGUL_SYLLABLE(u) \ 130 ((u) >= U8_HANGUL_SYL_FIRST && (u) <= U8_HANGUL_SYL_LAST) 131 132 #define U8_HANGUL_COMPOSABLE_L_V(s, u) \ 133 ((s) == U8_STATE_HANGUL_L && U8_HANGUL_JAMO_V((u))) 134 135 #define U8_HANGUL_COMPOSABLE_LV_T(s, u) \ 136 ((s) == U8_STATE_HANGUL_LV && U8_HANGUL_JAMO_T((u))) 137 138 /* The types of decomposition mappings. */ 139 #define U8_DECOMP_BOTH (0xF5U) 140 #define U8_DECOMP_CANONICAL (0xF6U) 141 142 /* The indicator for 16-bit table. */ 143 #define U8_16BIT_TABLE_INDICATOR (0x8000U) 144 145 /* The following are some convenience macros. */ 146 #define U8_PUT_3BYTES_INTO_UTF32(u, b1, b2, b3) \ 147 (u) = ((((uint32_t)(b1) & 0x0F) << 12) | \ 148 (((uint32_t)(b2) & 0x3F) << 6) | \ 149 ((uint32_t)(b3) & 0x3F)); 150 151 #define U8_SIMPLE_SWAP(a, b, t) \ 152 (t) = (a); \ 153 (a) = (b); \ 154 (b) = (t); 155 156 #define U8_ASCII_TOUPPER(c) \ 157 (((c) >= 'a' && (c) <= 'z') ? (c) - 'a' + 'A' : (c)) 158 159 #define U8_ASCII_TOLOWER(c) \ 160 (((c) >= 'A' && (c) <= 'Z') ? (c) - 'A' + 'a' : (c)) 161 162 #define U8_ISASCII(c) (((uchar_t)(c)) < 0x80U) 163 /* 164 * The following macro assumes that the two characters that are to be 165 * swapped are adjacent to each other and 'a' comes before 'b'. 166 * 167 * If the assumptions are not met, then, the macro will fail. 168 */ 169 #define U8_SWAP_COMB_MARKS(a, b) \ 170 for (k = 0; k < disp[(a)]; k++) \ 171 u8t[k] = u8s[start[(a)] + k]; \ 172 for (k = 0; k < disp[(b)]; k++) \ 173 u8s[start[(a)] + k] = u8s[start[(b)] + k]; \ 174 start[(b)] = start[(a)] + disp[(b)]; \ 175 for (k = 0; k < disp[(a)]; k++) \ 176 u8s[start[(b)] + k] = u8t[k]; \ 177 U8_SIMPLE_SWAP(comb_class[(a)], comb_class[(b)], tc); \ 178 U8_SIMPLE_SWAP(disp[(a)], disp[(b)], tc); 179 180 /* The possible states during normalization. */ 181 typedef enum { 182 U8_STATE_START = 0, 183 U8_STATE_HANGUL_L = 1, 184 U8_STATE_HANGUL_LV = 2, 185 U8_STATE_HANGUL_LVT = 3, 186 U8_STATE_HANGUL_V = 4, 187 U8_STATE_HANGUL_T = 5, 188 U8_STATE_COMBINING_MARK = 6 189 } u8_normalization_states_t; 190 191 /* 192 * The three vectors at below are used to check bytes of a given UTF-8 193 * character are valid and not containing any malformed byte values. 194 * 195 * We used to have a quite relaxed UTF-8 binary representation but then there 196 * was some security related issues and so the Unicode Consortium defined 197 * and announced the UTF-8 Corrigendum at Unicode 3.1 and then refined it 198 * one more time at the Unicode 3.2. The following three tables are based on 199 * that. 200 */ 201 202 #define U8_ILLEGAL_NEXT_BYTE_COMMON(c) ((c) < 0x80 || (c) > 0xBF) 203 204 #define I_ U8_ILLEGAL_CHAR 205 #define O_ U8_OUT_OF_RANGE_CHAR 206 207 static const int8_t u8_number_of_bytes[0x100] = { 208 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 209 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 210 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 211 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 212 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 213 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 214 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 215 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 216 217 /* 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F */ 218 I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, 219 220 /* 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F */ 221 I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, 222 223 /* A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF */ 224 I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, 225 226 /* B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF */ 227 I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, 228 229 /* C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF */ 230 I_, I_, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 231 232 /* D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF */ 233 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 234 235 /* E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF */ 236 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 237 238 /* F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF */ 239 4, 4, 4, 4, 4, O_, O_, O_, O_, O_, O_, O_, O_, O_, O_, O_, 240 }; 241 242 #undef I_ 243 #undef O_ 244 245 static const uint8_t u8_valid_min_2nd_byte[0x100] = { 246 0, 0, 0, 0, 0, 0, 0, 0, 247 0, 0, 0, 0, 0, 0, 0, 0, 248 0, 0, 0, 0, 0, 0, 0, 0, 249 0, 0, 0, 0, 0, 0, 0, 0, 250 0, 0, 0, 0, 0, 0, 0, 0, 251 0, 0, 0, 0, 0, 0, 0, 0, 252 0, 0, 0, 0, 0, 0, 0, 0, 253 0, 0, 0, 0, 0, 0, 0, 0, 254 0, 0, 0, 0, 0, 0, 0, 0, 255 0, 0, 0, 0, 0, 0, 0, 0, 256 0, 0, 0, 0, 0, 0, 0, 0, 257 0, 0, 0, 0, 0, 0, 0, 0, 258 0, 0, 0, 0, 0, 0, 0, 0, 259 0, 0, 0, 0, 0, 0, 0, 0, 260 0, 0, 0, 0, 0, 0, 0, 0, 261 0, 0, 0, 0, 0, 0, 0, 0, 262 0, 0, 0, 0, 0, 0, 0, 0, 263 0, 0, 0, 0, 0, 0, 0, 0, 264 0, 0, 0, 0, 0, 0, 0, 0, 265 0, 0, 0, 0, 0, 0, 0, 0, 266 0, 0, 0, 0, 0, 0, 0, 0, 267 0, 0, 0, 0, 0, 0, 0, 0, 268 0, 0, 0, 0, 0, 0, 0, 0, 269 0, 0, 0, 0, 0, 0, 0, 0, 270 /* C0 C1 C2 C3 C4 C5 C6 C7 */ 271 0, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 272 /* C8 C9 CA CB CC CD CE CF */ 273 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 274 /* D0 D1 D2 D3 D4 D5 D6 D7 */ 275 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 276 /* D8 D9 DA DB DC DD DE DF */ 277 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 278 /* E0 E1 E2 E3 E4 E5 E6 E7 */ 279 0xa0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 280 /* E8 E9 EA EB EC ED EE EF */ 281 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 282 /* F0 F1 F2 F3 F4 F5 F6 F7 */ 283 0x90, 0x80, 0x80, 0x80, 0x80, 0, 0, 0, 284 0, 0, 0, 0, 0, 0, 0, 0, 285 }; 286 287 static const uint8_t u8_valid_max_2nd_byte[0x100] = { 288 0, 0, 0, 0, 0, 0, 0, 0, 289 0, 0, 0, 0, 0, 0, 0, 0, 290 0, 0, 0, 0, 0, 0, 0, 0, 291 0, 0, 0, 0, 0, 0, 0, 0, 292 0, 0, 0, 0, 0, 0, 0, 0, 293 0, 0, 0, 0, 0, 0, 0, 0, 294 0, 0, 0, 0, 0, 0, 0, 0, 295 0, 0, 0, 0, 0, 0, 0, 0, 296 0, 0, 0, 0, 0, 0, 0, 0, 297 0, 0, 0, 0, 0, 0, 0, 0, 298 0, 0, 0, 0, 0, 0, 0, 0, 299 0, 0, 0, 0, 0, 0, 0, 0, 300 0, 0, 0, 0, 0, 0, 0, 0, 301 0, 0, 0, 0, 0, 0, 0, 0, 302 0, 0, 0, 0, 0, 0, 0, 0, 303 0, 0, 0, 0, 0, 0, 0, 0, 304 0, 0, 0, 0, 0, 0, 0, 0, 305 0, 0, 0, 0, 0, 0, 0, 0, 306 0, 0, 0, 0, 0, 0, 0, 0, 307 0, 0, 0, 0, 0, 0, 0, 0, 308 0, 0, 0, 0, 0, 0, 0, 0, 309 0, 0, 0, 0, 0, 0, 0, 0, 310 0, 0, 0, 0, 0, 0, 0, 0, 311 0, 0, 0, 0, 0, 0, 0, 0, 312 /* C0 C1 C2 C3 C4 C5 C6 C7 */ 313 0, 0, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 314 /* C8 C9 CA CB CC CD CE CF */ 315 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 316 /* D0 D1 D2 D3 D4 D5 D6 D7 */ 317 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 318 /* D8 D9 DA DB DC DD DE DF */ 319 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 320 /* E0 E1 E2 E3 E4 E5 E6 E7 */ 321 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 322 /* E8 E9 EA EB EC ED EE EF */ 323 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0x9f, 0xbf, 0xbf, 324 /* F0 F1 F2 F3 F4 F5 F6 F7 */ 325 0xbf, 0xbf, 0xbf, 0xbf, 0x8f, 0, 0, 0, 326 0, 0, 0, 0, 0, 0, 0, 0, 327 }; 328 329 330 /* 331 * The u8_validate() validates on the given UTF-8 character string and 332 * calculate the byte length. It is quite similar to mblen(3C) except that 333 * this will validate against the list of characters if required and 334 * specific to UTF-8 and Unicode. 335 */ 336 int 337 u8_validate(const char *u8str, size_t n, char **list, int flag, int *errnum) 338 { 339 uchar_t *ib; 340 uchar_t *ibtail; 341 uchar_t **p; 342 uchar_t *s1; 343 uchar_t *s2; 344 uchar_t f; 345 int sz; 346 size_t i; 347 int ret_val; 348 boolean_t second; 349 boolean_t no_need_to_validate_entire; 350 boolean_t check_additional; 351 boolean_t validate_ucs2_range_only; 352 353 if (! u8str) 354 return (0); 355 356 ib = (uchar_t *)u8str; 357 ibtail = ib + n; 358 359 ret_val = 0; 360 361 no_need_to_validate_entire = ! (flag & U8_VALIDATE_ENTIRE); 362 check_additional = flag & U8_VALIDATE_CHECK_ADDITIONAL; 363 validate_ucs2_range_only = flag & U8_VALIDATE_UCS2_RANGE; 364 365 while (ib < ibtail) { 366 /* 367 * The first byte of a UTF-8 character tells how many 368 * bytes will follow for the character. If the first byte 369 * is an illegal byte value or out of range value, we just 370 * return -1 with an appropriate error number. 371 */ 372 sz = u8_number_of_bytes[*ib]; 373 if (sz == U8_ILLEGAL_CHAR) { 374 *errnum = EILSEQ; 375 return (-1); 376 } 377 378 if (sz == U8_OUT_OF_RANGE_CHAR || 379 (validate_ucs2_range_only && sz > U8_MAX_BYTES_UCS2)) { 380 *errnum = ERANGE; 381 return (-1); 382 } 383 384 /* 385 * If we don't have enough bytes to check on, that's also 386 * an error. As you can see, we give illegal byte sequence 387 * checking higher priority then EINVAL cases. 388 */ 389 if ((ibtail - ib) < sz) { 390 *errnum = EINVAL; 391 return (-1); 392 } 393 394 if (sz == 1) { 395 ib++; 396 ret_val++; 397 } else { 398 /* 399 * Check on the multi-byte UTF-8 character. For more 400 * details on this, see comment added for the used 401 * data structures at the beginning of the file. 402 */ 403 f = *ib++; 404 ret_val++; 405 second = B_TRUE; 406 for (i = 1; i < sz; i++) { 407 if (second) { 408 if (*ib < u8_valid_min_2nd_byte[f] || 409 *ib > u8_valid_max_2nd_byte[f]) { 410 *errnum = EILSEQ; 411 return (-1); 412 } 413 second = B_FALSE; 414 } else if (U8_ILLEGAL_NEXT_BYTE_COMMON(*ib)) { 415 *errnum = EILSEQ; 416 return (-1); 417 } 418 ib++; 419 ret_val++; 420 } 421 } 422 423 if (check_additional) { 424 for (p = (uchar_t **)list, i = 0; p[i]; i++) { 425 s1 = ib - sz; 426 s2 = p[i]; 427 while (s1 < ib) { 428 if (*s1 != *s2 || *s2 == '\0') 429 break; 430 s1++; 431 s2++; 432 } 433 434 if (s1 >= ib && *s2 == '\0') { 435 *errnum = EBADF; 436 return (-1); 437 } 438 } 439 } 440 441 if (no_need_to_validate_entire) 442 break; 443 } 444 445 return (ret_val); 446 } 447 448 /* 449 * The do_case_conv() looks at the mapping tables and returns found 450 * bytes if any. If not found, the input bytes are returned. The function 451 * always terminate the return bytes with a null character assuming that 452 * there are plenty of room to do so. 453 * 454 * The case conversions are simple case conversions mapping a character to 455 * another character as specified in the Unicode data. The byte size of 456 * the mapped character could be different from that of the input character. 457 * 458 * The return value is the byte length of the returned character excluding 459 * the terminating null byte. 460 */ 461 static size_t 462 do_case_conv(int uv, uchar_t *u8s, uchar_t *s, int sz, boolean_t is_it_toupper) 463 { 464 size_t i; 465 uint16_t b1 = 0; 466 uint16_t b2 = 0; 467 uint16_t b3 = 0; 468 uint16_t b3_tbl; 469 uint16_t b3_base; 470 uint16_t b4 = 0; 471 size_t start_id; 472 size_t end_id; 473 474 /* 475 * At this point, the only possible values for sz are 2, 3, and 4. 476 * The u8s should point to a vector that is well beyond the size of 477 * 5 bytes. 478 */ 479 if (sz == 2) { 480 b3 = u8s[0] = s[0]; 481 b4 = u8s[1] = s[1]; 482 } else if (sz == 3) { 483 b2 = u8s[0] = s[0]; 484 b3 = u8s[1] = s[1]; 485 b4 = u8s[2] = s[2]; 486 } else if (sz == 4) { 487 b1 = u8s[0] = s[0]; 488 b2 = u8s[1] = s[1]; 489 b3 = u8s[2] = s[2]; 490 b4 = u8s[3] = s[3]; 491 } else { 492 /* This is not possible but just in case as a fallback. */ 493 if (is_it_toupper) 494 *u8s = U8_ASCII_TOUPPER(*s); 495 else 496 *u8s = U8_ASCII_TOLOWER(*s); 497 u8s[1] = '\0'; 498 499 return (1); 500 } 501 u8s[sz] = '\0'; 502 503 /* 504 * Let's find out if we have a corresponding character. 505 */ 506 b1 = u8_common_b1_tbl[uv][b1]; 507 if (b1 == U8_TBL_ELEMENT_NOT_DEF) 508 return ((size_t)sz); 509 510 b2 = u8_case_common_b2_tbl[uv][b1][b2]; 511 if (b2 == U8_TBL_ELEMENT_NOT_DEF) 512 return ((size_t)sz); 513 514 if (is_it_toupper) { 515 b3_tbl = u8_toupper_b3_tbl[uv][b2][b3].tbl_id; 516 if (b3_tbl == U8_TBL_ELEMENT_NOT_DEF) 517 return ((size_t)sz); 518 519 start_id = u8_toupper_b4_tbl[uv][b3_tbl][b4]; 520 end_id = u8_toupper_b4_tbl[uv][b3_tbl][b4 + 1]; 521 522 /* Either there is no match or an error at the table. */ 523 if (start_id >= end_id || (end_id - start_id) > U8_MB_CUR_MAX) 524 return ((size_t)sz); 525 526 b3_base = u8_toupper_b3_tbl[uv][b2][b3].base; 527 528 for (i = 0; start_id < end_id; start_id++) 529 u8s[i++] = u8_toupper_final_tbl[uv][b3_base + start_id]; 530 } else { 531 #ifdef U8_STRCMP_CI_LOWER 532 b3_tbl = u8_tolower_b3_tbl[uv][b2][b3].tbl_id; 533 if (b3_tbl == U8_TBL_ELEMENT_NOT_DEF) 534 return ((size_t)sz); 535 536 start_id = u8_tolower_b4_tbl[uv][b3_tbl][b4]; 537 end_id = u8_tolower_b4_tbl[uv][b3_tbl][b4 + 1]; 538 539 if (start_id >= end_id || (end_id - start_id) > U8_MB_CUR_MAX) 540 return ((size_t)sz); 541 542 b3_base = u8_tolower_b3_tbl[uv][b2][b3].base; 543 544 for (i = 0; start_id < end_id; start_id++) 545 u8s[i++] = u8_tolower_final_tbl[uv][b3_base + start_id]; 546 #else 547 __builtin_unreachable(); 548 #endif 549 } 550 551 /* 552 * If i is still zero, that means there is no corresponding character. 553 */ 554 if (i == 0) 555 return ((size_t)sz); 556 557 u8s[i] = '\0'; 558 559 return (i); 560 } 561 562 /* 563 * The do_case_compare() function compares the two input strings, s1 and s2, 564 * one character at a time doing case conversions if applicable and return 565 * the comparison result as like strcmp(). 566 * 567 * Since, in empirical sense, most of text data are 7-bit ASCII characters, 568 * we treat the 7-bit ASCII characters as a special case trying to yield 569 * faster processing time. 570 */ 571 static int 572 do_case_compare(size_t uv, uchar_t *s1, uchar_t *s2, size_t n1, 573 size_t n2, boolean_t is_it_toupper, int *errnum) 574 { 575 int f; 576 int sz1; 577 int sz2; 578 size_t j; 579 size_t i1; 580 size_t i2; 581 uchar_t u8s1[U8_MB_CUR_MAX + 1]; 582 uchar_t u8s2[U8_MB_CUR_MAX + 1]; 583 584 i1 = i2 = 0; 585 while (i1 < n1 && i2 < n2) { 586 /* 587 * Find out what would be the byte length for this UTF-8 588 * character at string s1 and also find out if this is 589 * an illegal start byte or not and if so, issue a proper 590 * error number and yet treat this byte as a character. 591 */ 592 sz1 = u8_number_of_bytes[*s1]; 593 if (sz1 < 0) { 594 *errnum = EILSEQ; 595 sz1 = 1; 596 } 597 598 /* 599 * For 7-bit ASCII characters mainly, we do a quick case 600 * conversion right at here. 601 * 602 * If we don't have enough bytes for this character, issue 603 * an EINVAL error and use what are available. 604 * 605 * If we have enough bytes, find out if there is 606 * a corresponding uppercase character and if so, copy over 607 * the bytes for a comparison later. If there is no 608 * corresponding uppercase character, then, use what we have 609 * for the comparison. 610 */ 611 if (sz1 == 1) { 612 if (is_it_toupper) 613 u8s1[0] = U8_ASCII_TOUPPER(*s1); 614 else 615 u8s1[0] = U8_ASCII_TOLOWER(*s1); 616 s1++; 617 u8s1[1] = '\0'; 618 } else if ((i1 + sz1) > n1) { 619 *errnum = EINVAL; 620 for (j = 0; (i1 + j) < n1; ) 621 u8s1[j++] = *s1++; 622 u8s1[j] = '\0'; 623 } else { 624 (void) do_case_conv(uv, u8s1, s1, sz1, is_it_toupper); 625 s1 += sz1; 626 } 627 628 /* Do the same for the string s2. */ 629 sz2 = u8_number_of_bytes[*s2]; 630 if (sz2 < 0) { 631 *errnum = EILSEQ; 632 sz2 = 1; 633 } 634 635 if (sz2 == 1) { 636 if (is_it_toupper) 637 u8s2[0] = U8_ASCII_TOUPPER(*s2); 638 else 639 u8s2[0] = U8_ASCII_TOLOWER(*s2); 640 s2++; 641 u8s2[1] = '\0'; 642 } else if ((i2 + sz2) > n2) { 643 *errnum = EINVAL; 644 for (j = 0; (i2 + j) < n2; ) 645 u8s2[j++] = *s2++; 646 u8s2[j] = '\0'; 647 } else { 648 (void) do_case_conv(uv, u8s2, s2, sz2, is_it_toupper); 649 s2 += sz2; 650 } 651 652 /* Now compare the two characters. */ 653 if (sz1 == 1 && sz2 == 1) { 654 if (*u8s1 > *u8s2) 655 return (1); 656 if (*u8s1 < *u8s2) 657 return (-1); 658 } else { 659 f = strcmp((const char *)u8s1, (const char *)u8s2); 660 if (f != 0) 661 return (f); 662 } 663 664 /* 665 * They were the same. Let's move on to the next 666 * characters then. 667 */ 668 i1 += sz1; 669 i2 += sz2; 670 } 671 672 /* 673 * We compared until the end of either or both strings. 674 * 675 * If we reached to or went over the ends for the both, that means 676 * they are the same. 677 * 678 * If we reached only one of the two ends, that means the other string 679 * has something which then the fact can be used to determine 680 * the return value. 681 */ 682 if (i1 >= n1) { 683 if (i2 >= n2) 684 return (0); 685 return (-1); 686 } 687 return (1); 688 } 689 690 /* 691 * The combining_class() function checks on the given bytes and find out 692 * the corresponding Unicode combining class value. The return value 0 means 693 * it is a Starter. Any illegal UTF-8 character will also be treated as 694 * a Starter. 695 */ 696 static uchar_t 697 combining_class(size_t uv, uchar_t *s, size_t sz) 698 { 699 uint16_t b1 = 0; 700 uint16_t b2 = 0; 701 uint16_t b3 = 0; 702 uint16_t b4 = 0; 703 704 if (sz == 1 || sz > 4) 705 return (0); 706 707 if (sz == 2) { 708 b3 = s[0]; 709 b4 = s[1]; 710 } else if (sz == 3) { 711 b2 = s[0]; 712 b3 = s[1]; 713 b4 = s[2]; 714 } else if (sz == 4) { 715 b1 = s[0]; 716 b2 = s[1]; 717 b3 = s[2]; 718 b4 = s[3]; 719 } 720 721 b1 = u8_common_b1_tbl[uv][b1]; 722 if (b1 == U8_TBL_ELEMENT_NOT_DEF) 723 return (0); 724 725 b2 = u8_combining_class_b2_tbl[uv][b1][b2]; 726 if (b2 == U8_TBL_ELEMENT_NOT_DEF) 727 return (0); 728 729 b3 = u8_combining_class_b3_tbl[uv][b2][b3]; 730 if (b3 == U8_TBL_ELEMENT_NOT_DEF) 731 return (0); 732 733 return (u8_combining_class_b4_tbl[uv][b3][b4]); 734 } 735 736 /* 737 * The do_decomp() function finds out a matching decomposition if any 738 * and return. If there is no match, the input bytes are copied and returned. 739 * The function also checks if there is a Hangul, decomposes it if necessary 740 * and returns. 741 * 742 * To save time, a single byte 7-bit ASCII character should be handled by 743 * the caller. 744 * 745 * The function returns the number of bytes returned sans always terminating 746 * the null byte. It will also return a state that will tell if there was 747 * a Hangul character decomposed which then will be used by the caller. 748 */ 749 static size_t 750 do_decomp(size_t uv, uchar_t *u8s, uchar_t *s, int sz, 751 boolean_t canonical_decomposition, u8_normalization_states_t *state) 752 { 753 uint16_t b1 = 0; 754 uint16_t b2 = 0; 755 uint16_t b3 = 0; 756 uint16_t b3_tbl; 757 uint16_t b3_base; 758 uint16_t b4 = 0; 759 size_t start_id; 760 size_t end_id; 761 size_t i; 762 uint32_t u1; 763 764 if (sz == 2) { 765 b3 = u8s[0] = s[0]; 766 b4 = u8s[1] = s[1]; 767 u8s[2] = '\0'; 768 } else if (sz == 3) { 769 /* Convert it to a Unicode scalar value. */ 770 U8_PUT_3BYTES_INTO_UTF32(u1, s[0], s[1], s[2]); 771 772 /* 773 * If this is a Hangul syllable, we decompose it into 774 * a leading consonant, a vowel, and an optional trailing 775 * consonant and then return. 776 */ 777 if (U8_HANGUL_SYLLABLE(u1)) { 778 u1 -= U8_HANGUL_SYL_FIRST; 779 780 b1 = U8_HANGUL_JAMO_L_FIRST + u1 / U8_HANGUL_VT_COUNT; 781 b2 = U8_HANGUL_JAMO_V_FIRST + (u1 % U8_HANGUL_VT_COUNT) 782 / U8_HANGUL_T_COUNT; 783 b3 = u1 % U8_HANGUL_T_COUNT; 784 785 U8_SAVE_HANGUL_AS_UTF8(u8s, 0, 1, 2, b1); 786 U8_SAVE_HANGUL_AS_UTF8(u8s, 3, 4, 5, b2); 787 if (b3) { 788 b3 += U8_HANGUL_JAMO_T_FIRST; 789 U8_SAVE_HANGUL_AS_UTF8(u8s, 6, 7, 8, b3); 790 791 u8s[9] = '\0'; 792 *state = U8_STATE_HANGUL_LVT; 793 return (9); 794 } 795 796 u8s[6] = '\0'; 797 *state = U8_STATE_HANGUL_LV; 798 return (6); 799 } 800 801 b2 = u8s[0] = s[0]; 802 b3 = u8s[1] = s[1]; 803 b4 = u8s[2] = s[2]; 804 u8s[3] = '\0'; 805 806 /* 807 * If this is a Hangul Jamo, we know there is nothing 808 * further that we can decompose. 809 */ 810 if (U8_HANGUL_JAMO_L(u1)) { 811 *state = U8_STATE_HANGUL_L; 812 return (3); 813 } 814 815 if (U8_HANGUL_JAMO_V(u1)) { 816 if (*state == U8_STATE_HANGUL_L) 817 *state = U8_STATE_HANGUL_LV; 818 else 819 *state = U8_STATE_HANGUL_V; 820 return (3); 821 } 822 823 if (U8_HANGUL_JAMO_T(u1)) { 824 if (*state == U8_STATE_HANGUL_LV) 825 *state = U8_STATE_HANGUL_LVT; 826 else 827 *state = U8_STATE_HANGUL_T; 828 return (3); 829 } 830 } else if (sz == 4) { 831 b1 = u8s[0] = s[0]; 832 b2 = u8s[1] = s[1]; 833 b3 = u8s[2] = s[2]; 834 b4 = u8s[3] = s[3]; 835 u8s[4] = '\0'; 836 } else { 837 /* 838 * This is a fallback and should not happen if the function 839 * was called properly. 840 */ 841 u8s[0] = s[0]; 842 u8s[1] = '\0'; 843 *state = U8_STATE_START; 844 return (1); 845 } 846 847 /* 848 * At this point, this routine does not know what it would get. 849 * The caller should sort it out if the state isn't a Hangul one. 850 */ 851 *state = U8_STATE_START; 852 853 /* Try to find matching decomposition mapping byte sequence. */ 854 b1 = u8_common_b1_tbl[uv][b1]; 855 if (b1 == U8_TBL_ELEMENT_NOT_DEF) 856 return ((size_t)sz); 857 858 b2 = u8_decomp_b2_tbl[uv][b1][b2]; 859 if (b2 == U8_TBL_ELEMENT_NOT_DEF) 860 return ((size_t)sz); 861 862 b3_tbl = u8_decomp_b3_tbl[uv][b2][b3].tbl_id; 863 if (b3_tbl == U8_TBL_ELEMENT_NOT_DEF) 864 return ((size_t)sz); 865 866 /* 867 * If b3_tbl is bigger than or equal to U8_16BIT_TABLE_INDICATOR 868 * which is 0x8000, this means we couldn't fit the mappings into 869 * the cardinality of a unsigned byte. 870 */ 871 if (b3_tbl >= U8_16BIT_TABLE_INDICATOR) { 872 b3_tbl -= U8_16BIT_TABLE_INDICATOR; 873 start_id = u8_decomp_b4_16bit_tbl[uv][b3_tbl][b4]; 874 end_id = u8_decomp_b4_16bit_tbl[uv][b3_tbl][b4 + 1]; 875 } else { 876 // cppcheck-suppress arrayIndexOutOfBoundsCond 877 start_id = u8_decomp_b4_tbl[uv][b3_tbl][b4]; 878 // cppcheck-suppress arrayIndexOutOfBoundsCond 879 end_id = u8_decomp_b4_tbl[uv][b3_tbl][b4 + 1]; 880 } 881 882 /* This also means there wasn't any matching decomposition. */ 883 if (start_id >= end_id) 884 return ((size_t)sz); 885 886 /* 887 * The final table for decomposition mappings has three types of 888 * byte sequences depending on whether a mapping is for compatibility 889 * decomposition, canonical decomposition, or both like the following: 890 * 891 * (1) Compatibility decomposition mappings: 892 * 893 * +---+---+-...-+---+ 894 * | B0| B1| ... | Bm| 895 * +---+---+-...-+---+ 896 * 897 * The first byte, B0, is always less than 0xF5 (U8_DECOMP_BOTH). 898 * 899 * (2) Canonical decomposition mappings: 900 * 901 * +---+---+---+-...-+---+ 902 * | T | b0| b1| ... | bn| 903 * +---+---+---+-...-+---+ 904 * 905 * where the first byte, T, is 0xF6 (U8_DECOMP_CANONICAL). 906 * 907 * (3) Both mappings: 908 * 909 * +---+---+---+---+-...-+---+---+---+-...-+---+ 910 * | T | D | b0| b1| ... | bn| B0| B1| ... | Bm| 911 * +---+---+---+---+-...-+---+---+---+-...-+---+ 912 * 913 * where T is 0xF5 (U8_DECOMP_BOTH) and D is a displacement 914 * byte, b0 to bn are canonical mapping bytes and B0 to Bm are 915 * compatibility mapping bytes. 916 * 917 * Note that compatibility decomposition means doing recursive 918 * decompositions using both compatibility decomposition mappings and 919 * canonical decomposition mappings. On the other hand, canonical 920 * decomposition means doing recursive decompositions using only 921 * canonical decomposition mappings. Since the table we have has gone 922 * through the recursions already, we do not need to do so during 923 * runtime, i.e., the table has been completely flattened out 924 * already. 925 */ 926 927 b3_base = u8_decomp_b3_tbl[uv][b2][b3].base; 928 929 /* Get the type, T, of the byte sequence. */ 930 b1 = u8_decomp_final_tbl[uv][b3_base + start_id]; 931 932 /* 933 * If necessary, adjust start_id, end_id, or both. Note that if 934 * this is compatibility decomposition mapping, there is no 935 * adjustment. 936 */ 937 if (canonical_decomposition) { 938 /* Is the mapping only for compatibility decomposition? */ 939 if (b1 < U8_DECOMP_BOTH) 940 return ((size_t)sz); 941 942 start_id++; 943 944 if (b1 == U8_DECOMP_BOTH) { 945 end_id = start_id + 946 u8_decomp_final_tbl[uv][b3_base + start_id]; 947 start_id++; 948 } 949 } else { 950 /* 951 * Unless this is a compatibility decomposition mapping, 952 * we adjust the start_id. 953 */ 954 if (b1 == U8_DECOMP_BOTH) { 955 start_id++; 956 start_id += u8_decomp_final_tbl[uv][b3_base + start_id]; 957 } else if (b1 == U8_DECOMP_CANONICAL) { 958 start_id++; 959 } 960 } 961 962 for (i = 0; start_id < end_id; start_id++) 963 u8s[i++] = u8_decomp_final_tbl[uv][b3_base + start_id]; 964 u8s[i] = '\0'; 965 966 return (i); 967 } 968 969 /* 970 * The find_composition_start() function uses the character bytes given and 971 * find out the matching composition mappings if any and return the address 972 * to the composition mappings as explained in the do_composition(). 973 */ 974 static uchar_t * 975 find_composition_start(size_t uv, uchar_t *s, size_t sz) 976 { 977 uint16_t b1 = 0; 978 uint16_t b2 = 0; 979 uint16_t b3 = 0; 980 uint16_t b3_tbl; 981 uint16_t b3_base; 982 uint16_t b4 = 0; 983 size_t start_id; 984 size_t end_id; 985 986 if (sz == 1) { 987 b4 = s[0]; 988 } else if (sz == 2) { 989 b3 = s[0]; 990 b4 = s[1]; 991 } else if (sz == 3) { 992 b2 = s[0]; 993 b3 = s[1]; 994 b4 = s[2]; 995 } else if (sz == 4) { 996 b1 = s[0]; 997 b2 = s[1]; 998 b3 = s[2]; 999 b4 = s[3]; 1000 } else { 1001 /* 1002 * This is a fallback and should not happen if the function 1003 * was called properly. 1004 */ 1005 return (NULL); 1006 } 1007 1008 b1 = u8_composition_b1_tbl[uv][b1]; 1009 if (b1 == U8_TBL_ELEMENT_NOT_DEF) 1010 return (NULL); 1011 1012 b2 = u8_composition_b2_tbl[uv][b1][b2]; 1013 if (b2 == U8_TBL_ELEMENT_NOT_DEF) 1014 return (NULL); 1015 1016 b3_tbl = u8_composition_b3_tbl[uv][b2][b3].tbl_id; 1017 if (b3_tbl == U8_TBL_ELEMENT_NOT_DEF) 1018 return (NULL); 1019 1020 if (b3_tbl >= U8_16BIT_TABLE_INDICATOR) { 1021 b3_tbl -= U8_16BIT_TABLE_INDICATOR; 1022 start_id = u8_composition_b4_16bit_tbl[uv][b3_tbl][b4]; 1023 end_id = u8_composition_b4_16bit_tbl[uv][b3_tbl][b4 + 1]; 1024 } else { 1025 // cppcheck-suppress arrayIndexOutOfBoundsCond 1026 start_id = u8_composition_b4_tbl[uv][b3_tbl][b4]; 1027 // cppcheck-suppress arrayIndexOutOfBoundsCond 1028 end_id = u8_composition_b4_tbl[uv][b3_tbl][b4 + 1]; 1029 } 1030 1031 if (start_id >= end_id) 1032 return (NULL); 1033 1034 b3_base = u8_composition_b3_tbl[uv][b2][b3].base; 1035 1036 return ((uchar_t *)&(u8_composition_final_tbl[uv][b3_base + start_id])); 1037 } 1038 1039 /* 1040 * The blocked() function checks on the combining class values of previous 1041 * characters in this sequence and return whether it is blocked or not. 1042 */ 1043 static boolean_t 1044 blocked(uchar_t *comb_class, size_t last) 1045 { 1046 uchar_t my_comb_class; 1047 size_t i; 1048 1049 my_comb_class = comb_class[last]; 1050 for (i = 1; i < last; i++) 1051 if (comb_class[i] >= my_comb_class || 1052 comb_class[i] == U8_COMBINING_CLASS_STARTER) 1053 return (B_TRUE); 1054 1055 return (B_FALSE); 1056 } 1057 1058 /* 1059 * The do_composition() reads the character string pointed by 's' and 1060 * do necessary canonical composition and then copy over the result back to 1061 * the 's'. 1062 * 1063 * The input argument 's' cannot contain more than 32 characters. 1064 */ 1065 static size_t 1066 do_composition(size_t uv, uchar_t *s, uchar_t *comb_class, uchar_t *start, 1067 uchar_t *disp, size_t last, uchar_t **os, uchar_t *oslast) 1068 { 1069 uchar_t t[U8_STREAM_SAFE_TEXT_MAX + 1]; 1070 uchar_t tc[U8_MB_CUR_MAX] = { '\0' }; 1071 uint8_t saved_marks[U8_MAX_CHARS_A_SEQ]; 1072 size_t saved_marks_count; 1073 uchar_t *p; 1074 uchar_t *saved_p; 1075 uchar_t *q; 1076 size_t i; 1077 size_t saved_i; 1078 size_t j; 1079 size_t k; 1080 size_t l; 1081 size_t C; 1082 size_t saved_l; 1083 size_t size; 1084 uint32_t u1; 1085 uint32_t u2; 1086 boolean_t match_not_found = B_TRUE; 1087 1088 /* 1089 * This should never happen unless the callers are doing some strange 1090 * and unexpected things. 1091 * 1092 * The "last" is the index pointing to the last character not last + 1. 1093 */ 1094 if (last >= U8_MAX_CHARS_A_SEQ) 1095 last = U8_UPPER_LIMIT_IN_A_SEQ; 1096 1097 for (i = l = 0; i <= last; i++) { 1098 /* 1099 * The last or any non-Starters at the beginning, we don't 1100 * have any chance to do composition and so we just copy them 1101 * to the temporary buffer. 1102 */ 1103 if (i >= last || comb_class[i] != U8_COMBINING_CLASS_STARTER) { 1104 SAVE_THE_CHAR: 1105 p = s + start[i]; 1106 size = disp[i]; 1107 for (k = 0; k < size; k++) 1108 t[l++] = *p++; 1109 continue; 1110 } 1111 1112 /* 1113 * If this could be a start of Hangul Jamos, then, we try to 1114 * conjoin them. 1115 */ 1116 if (s[start[i]] == U8_HANGUL_JAMO_1ST_BYTE) { 1117 U8_PUT_3BYTES_INTO_UTF32(u1, s[start[i]], 1118 s[start[i] + 1], s[start[i] + 2]); 1119 U8_PUT_3BYTES_INTO_UTF32(u2, s[start[i] + 3], 1120 s[start[i] + 4], s[start[i] + 5]); 1121 1122 if (U8_HANGUL_JAMO_L(u1) && U8_HANGUL_JAMO_V(u2)) { 1123 u1 -= U8_HANGUL_JAMO_L_FIRST; 1124 u2 -= U8_HANGUL_JAMO_V_FIRST; 1125 u1 = U8_HANGUL_SYL_FIRST + 1126 (u1 * U8_HANGUL_V_COUNT + u2) * 1127 U8_HANGUL_T_COUNT; 1128 1129 i += 2; 1130 if (i <= last) { 1131 U8_PUT_3BYTES_INTO_UTF32(u2, 1132 s[start[i]], s[start[i] + 1], 1133 s[start[i] + 2]); 1134 1135 if (U8_HANGUL_JAMO_T(u2)) { 1136 u1 += u2 - 1137 U8_HANGUL_JAMO_T_FIRST; 1138 i++; 1139 } 1140 } 1141 1142 U8_SAVE_HANGUL_AS_UTF8(t + l, 0, 1, 2, u1); 1143 i--; 1144 l += 3; 1145 continue; 1146 } 1147 } 1148 1149 /* 1150 * Let's then find out if this Starter has composition 1151 * mapping. 1152 */ 1153 p = find_composition_start(uv, s + start[i], disp[i]); 1154 if (p == NULL) 1155 goto SAVE_THE_CHAR; 1156 1157 /* 1158 * We have a Starter with composition mapping and the next 1159 * character is a non-Starter. Let's try to find out if 1160 * we can do composition. 1161 */ 1162 1163 saved_p = p; 1164 saved_i = i; 1165 saved_l = l; 1166 saved_marks_count = 0; 1167 1168 TRY_THE_NEXT_MARK: 1169 q = s + start[++i]; 1170 size = disp[i]; 1171 1172 /* 1173 * The next for() loop compares the non-Starter pointed by 1174 * 'q' with the possible (joinable) characters pointed by 'p'. 1175 * 1176 * The composition final table entry pointed by the 'p' 1177 * looks like the following: 1178 * 1179 * +---+---+---+-...-+---+---+---+---+-...-+---+---+ 1180 * | C | b0| b2| ... | bn| F | B0| B1| ... | Bm| F | 1181 * +---+---+---+-...-+---+---+---+---+-...-+---+---+ 1182 * 1183 * where C is the count byte indicating the number of 1184 * mapping pairs where each pair would be look like 1185 * (b0-bn F, B0-Bm F). The b0-bn are the bytes of the second 1186 * character of a canonical decomposition and the B0-Bm are 1187 * the bytes of a matching composite character. The F is 1188 * a filler byte after each character as the separator. 1189 */ 1190 1191 match_not_found = B_TRUE; 1192 1193 for (C = *p++; C > 0; C--) { 1194 for (k = 0; k < size; p++, k++) 1195 if (*p != q[k]) 1196 break; 1197 1198 /* Have we found it? */ 1199 if (k >= size && *p == U8_TBL_ELEMENT_FILLER) { 1200 match_not_found = B_FALSE; 1201 1202 l = saved_l; 1203 1204 while (*++p != U8_TBL_ELEMENT_FILLER) 1205 t[l++] = *p; 1206 1207 break; 1208 } 1209 1210 /* We didn't find; skip to the next pair. */ 1211 if (*p != U8_TBL_ELEMENT_FILLER) 1212 while (*++p != U8_TBL_ELEMENT_FILLER) 1213 ; 1214 while (*++p != U8_TBL_ELEMENT_FILLER) 1215 ; 1216 p++; 1217 } 1218 1219 /* 1220 * If there was no match, we will need to save the combining 1221 * mark for later appending. After that, if the next one 1222 * is a non-Starter and not blocked, then, we try once 1223 * again to do composition with the next non-Starter. 1224 * 1225 * If there was no match and this was a Starter, then, 1226 * this is a new start. 1227 * 1228 * If there was a match and a composition done and we have 1229 * more to check on, then, we retrieve a new composition final 1230 * table entry for the composite and then try to do the 1231 * composition again. 1232 */ 1233 1234 if (match_not_found) { 1235 if (comb_class[i] == U8_COMBINING_CLASS_STARTER) { 1236 i--; 1237 goto SAVE_THE_CHAR; 1238 } 1239 1240 saved_marks[saved_marks_count++] = i; 1241 } 1242 1243 if (saved_l == l) { 1244 while (i < last) { 1245 if (blocked(comb_class, i + 1)) 1246 saved_marks[saved_marks_count++] = ++i; 1247 else 1248 break; 1249 } 1250 if (i < last) { 1251 p = saved_p; 1252 goto TRY_THE_NEXT_MARK; 1253 } 1254 } else if (i < last) { 1255 p = find_composition_start(uv, t + saved_l, 1256 l - saved_l); 1257 if (p != NULL) { 1258 saved_p = p; 1259 goto TRY_THE_NEXT_MARK; 1260 } 1261 } 1262 1263 /* 1264 * There is no more composition possible. 1265 * 1266 * If there was no composition what so ever then we copy 1267 * over the original Starter and then append any non-Starters 1268 * remaining at the target string sequentially after that. 1269 */ 1270 1271 if (saved_l == l) { 1272 p = s + start[saved_i]; 1273 size = disp[saved_i]; 1274 for (j = 0; j < size; j++) 1275 t[l++] = *p++; 1276 } 1277 1278 for (k = 0; k < saved_marks_count; k++) { 1279 p = s + start[saved_marks[k]]; 1280 size = disp[saved_marks[k]]; 1281 for (j = 0; j < size; j++) 1282 t[l++] = *p++; 1283 } 1284 } 1285 1286 /* 1287 * If the last character is a Starter and if we have a character 1288 * (possibly another Starter) that can be turned into a composite, 1289 * we do so and we do so until there is no more of composition 1290 * possible. 1291 */ 1292 if (comb_class[last] == U8_COMBINING_CLASS_STARTER) { 1293 p = *os; 1294 saved_l = l - disp[last]; 1295 1296 while (p < oslast) { 1297 int8_t number_of_bytes = u8_number_of_bytes[*p]; 1298 1299 if (number_of_bytes <= 1) 1300 break; 1301 size = number_of_bytes; 1302 if ((p + size) > oslast) 1303 break; 1304 1305 saved_p = p; 1306 1307 for (i = 0; i < size; i++) 1308 tc[i] = *p++; 1309 1310 q = find_composition_start(uv, t + saved_l, 1311 l - saved_l); 1312 if (q == NULL) { 1313 p = saved_p; 1314 break; 1315 } 1316 1317 match_not_found = B_TRUE; 1318 1319 for (C = *q++; C > 0; C--) { 1320 for (k = 0; k < size; q++, k++) 1321 if (*q != tc[k]) 1322 break; 1323 1324 if (k >= size && *q == U8_TBL_ELEMENT_FILLER) { 1325 match_not_found = B_FALSE; 1326 1327 l = saved_l; 1328 1329 while (*++q != U8_TBL_ELEMENT_FILLER) { 1330 /* 1331 * This is practically 1332 * impossible but we don't 1333 * want to take any chances. 1334 */ 1335 if (l >= 1336 U8_STREAM_SAFE_TEXT_MAX) { 1337 p = saved_p; 1338 goto SAFE_RETURN; 1339 } 1340 t[l++] = *q; 1341 } 1342 1343 break; 1344 } 1345 1346 if (*q != U8_TBL_ELEMENT_FILLER) 1347 while (*++q != U8_TBL_ELEMENT_FILLER) 1348 ; 1349 while (*++q != U8_TBL_ELEMENT_FILLER) 1350 ; 1351 q++; 1352 } 1353 1354 if (match_not_found) { 1355 p = saved_p; 1356 break; 1357 } 1358 } 1359 SAFE_RETURN: 1360 *os = p; 1361 } 1362 1363 /* 1364 * Now we copy over the temporary string to the target string. 1365 * Since composition always reduces the number of characters or 1366 * the number of characters stay, we don't need to worry about 1367 * the buffer overflow here. 1368 */ 1369 for (i = 0; i < l; i++) 1370 s[i] = t[i]; 1371 s[l] = '\0'; 1372 1373 return (l); 1374 } 1375 1376 /* 1377 * The collect_a_seq() function checks on the given string s, collect 1378 * a sequence of characters at u8s, and return the sequence. While it collects 1379 * a sequence, it also applies case conversion, canonical or compatibility 1380 * decomposition, canonical decomposition, or some or all of them and 1381 * in that order. 1382 * 1383 * The collected sequence cannot be bigger than 32 characters since if 1384 * it is having more than 31 characters, the sequence will be terminated 1385 * with a U+034F COMBINING GRAPHEME JOINER (CGJ) character and turned into 1386 * a Stream-Safe Text. The collected sequence is always terminated with 1387 * a null byte and the return value is the byte length of the sequence 1388 * including 0. The return value does not include the terminating 1389 * null byte. 1390 */ 1391 static size_t 1392 collect_a_seq(size_t uv, uchar_t *u8s, uchar_t **source, uchar_t *slast, 1393 boolean_t is_it_toupper, 1394 boolean_t is_it_tolower, 1395 boolean_t canonical_decomposition, 1396 boolean_t compatibility_decomposition, 1397 boolean_t canonical_composition, 1398 int *errnum, u8_normalization_states_t *state) 1399 { 1400 uchar_t *s; 1401 int sz; 1402 int saved_sz; 1403 size_t i; 1404 size_t j; 1405 size_t k; 1406 size_t l; 1407 uchar_t comb_class[U8_MAX_CHARS_A_SEQ]; 1408 uchar_t disp[U8_MAX_CHARS_A_SEQ]; 1409 uchar_t start[U8_MAX_CHARS_A_SEQ]; 1410 uchar_t u8t[U8_MB_CUR_MAX] = { '\0' }; 1411 uchar_t uts[U8_STREAM_SAFE_TEXT_MAX + 1]; 1412 uchar_t tc; 1413 size_t last; 1414 size_t saved_last; 1415 uint32_t u1; 1416 1417 /* 1418 * Save the source string pointer which we will return a changed 1419 * pointer if we do processing. 1420 */ 1421 s = *source; 1422 1423 /* 1424 * The following is a fallback for just in case callers are not 1425 * checking the string boundaries before the calling. 1426 */ 1427 if (s >= slast) { 1428 u8s[0] = '\0'; 1429 1430 return (0); 1431 } 1432 1433 /* 1434 * As the first thing, let's collect a character and do case 1435 * conversion if necessary. 1436 */ 1437 1438 sz = u8_number_of_bytes[*s]; 1439 1440 if (sz < 0) { 1441 *errnum = EILSEQ; 1442 1443 u8s[0] = *s++; 1444 u8s[1] = '\0'; 1445 1446 *source = s; 1447 1448 return (1); 1449 } 1450 1451 if (sz == 1) { 1452 if (is_it_toupper) 1453 u8s[0] = U8_ASCII_TOUPPER(*s); 1454 else if (is_it_tolower) 1455 u8s[0] = U8_ASCII_TOLOWER(*s); 1456 else 1457 u8s[0] = *s; 1458 s++; 1459 u8s[1] = '\0'; 1460 } else if ((s + sz) > slast) { 1461 *errnum = EINVAL; 1462 1463 for (i = 0; s < slast; ) 1464 u8s[i++] = *s++; 1465 u8s[i] = '\0'; 1466 1467 *source = s; 1468 1469 return (i); 1470 } else { 1471 if (is_it_toupper || is_it_tolower) { 1472 i = do_case_conv(uv, u8s, s, sz, is_it_toupper); 1473 s += sz; 1474 sz = i; 1475 } else { 1476 for (i = 0; i < sz; ) 1477 u8s[i++] = *s++; 1478 u8s[i] = '\0'; 1479 } 1480 } 1481 1482 /* 1483 * And then canonical/compatibility decomposition followed by 1484 * an optional canonical composition. Please be noted that 1485 * canonical composition is done only when a decomposition is 1486 * done. 1487 */ 1488 if (canonical_decomposition || compatibility_decomposition) { 1489 if (sz == 1) { 1490 *state = U8_STATE_START; 1491 1492 saved_sz = 1; 1493 1494 comb_class[0] = 0; 1495 start[0] = 0; 1496 disp[0] = 1; 1497 1498 last = 1; 1499 } else { 1500 saved_sz = do_decomp(uv, u8s, u8s, sz, 1501 canonical_decomposition, state); 1502 1503 last = 0; 1504 1505 for (i = 0; i < saved_sz; ) { 1506 sz = u8_number_of_bytes[u8s[i]]; 1507 1508 comb_class[last] = combining_class(uv, 1509 u8s + i, sz); 1510 start[last] = i; 1511 disp[last] = sz; 1512 1513 last++; 1514 i += sz; 1515 } 1516 1517 /* 1518 * Decomposition yields various Hangul related 1519 * states but not on combining marks. We need to 1520 * find out at here by checking on the last 1521 * character. 1522 */ 1523 if (*state == U8_STATE_START) { 1524 if (comb_class[last - 1]) 1525 *state = U8_STATE_COMBINING_MARK; 1526 } 1527 } 1528 1529 saved_last = last; 1530 1531 while (s < slast) { 1532 sz = u8_number_of_bytes[*s]; 1533 1534 /* 1535 * If this is an illegal character, an incomplete 1536 * character, or an 7-bit ASCII Starter character, 1537 * then we have collected a sequence; break and let 1538 * the next call deal with the two cases. 1539 * 1540 * Note that this is okay only if you are using this 1541 * function with a fixed length string, not on 1542 * a buffer with multiple calls of one chunk at a time. 1543 */ 1544 if (sz <= 1) { 1545 break; 1546 } else if ((s + sz) > slast) { 1547 break; 1548 } else { 1549 /* 1550 * If the previous character was a Hangul Jamo 1551 * and this character is a Hangul Jamo that 1552 * can be conjoined, we collect the Jamo. 1553 */ 1554 if (*s == U8_HANGUL_JAMO_1ST_BYTE) { 1555 U8_PUT_3BYTES_INTO_UTF32(u1, 1556 *s, *(s + 1), *(s + 2)); 1557 1558 if (U8_HANGUL_COMPOSABLE_L_V(*state, 1559 u1)) { 1560 i = 0; 1561 *state = U8_STATE_HANGUL_LV; 1562 goto COLLECT_A_HANGUL; 1563 } 1564 1565 if (U8_HANGUL_COMPOSABLE_LV_T(*state, 1566 u1)) { 1567 i = 0; 1568 *state = U8_STATE_HANGUL_LVT; 1569 goto COLLECT_A_HANGUL; 1570 } 1571 } 1572 1573 /* 1574 * Regardless of whatever it was, if this is 1575 * a Starter, we don't collect the character 1576 * since that's a new start and we will deal 1577 * with it at the next time. 1578 */ 1579 i = combining_class(uv, s, sz); 1580 if (i == U8_COMBINING_CLASS_STARTER) 1581 break; 1582 1583 /* 1584 * We know the current character is a combining 1585 * mark. If the previous character wasn't 1586 * a Starter (not Hangul) or a combining mark, 1587 * then, we don't collect this combining mark. 1588 */ 1589 if (*state != U8_STATE_START && 1590 *state != U8_STATE_COMBINING_MARK) 1591 break; 1592 1593 *state = U8_STATE_COMBINING_MARK; 1594 COLLECT_A_HANGUL: 1595 /* 1596 * If we collected a Starter and combining 1597 * marks up to 30, i.e., total 31 characters, 1598 * then, we terminate this degenerately long 1599 * combining sequence with a U+034F COMBINING 1600 * GRAPHEME JOINER (CGJ) which is 0xCD 0x8F in 1601 * UTF-8 and turn this into a Stream-Safe 1602 * Text. This will be extremely rare but 1603 * possible. 1604 * 1605 * The following will also guarantee that 1606 * we are not writing more than 32 characters 1607 * plus a NULL at u8s[]. 1608 */ 1609 if (last >= U8_UPPER_LIMIT_IN_A_SEQ) { 1610 TURN_STREAM_SAFE: 1611 *state = U8_STATE_START; 1612 comb_class[last] = 0; 1613 start[last] = saved_sz; 1614 disp[last] = 2; 1615 last++; 1616 1617 u8s[saved_sz++] = 0xCD; 1618 u8s[saved_sz++] = 0x8F; 1619 1620 break; 1621 } 1622 1623 /* 1624 * Some combining marks also do decompose into 1625 * another combining mark or marks. 1626 */ 1627 if (*state == U8_STATE_COMBINING_MARK) { 1628 k = last; 1629 l = sz; 1630 i = do_decomp(uv, uts, s, sz, 1631 canonical_decomposition, state); 1632 for (j = 0; j < i; ) { 1633 sz = u8_number_of_bytes[uts[j]]; 1634 1635 comb_class[last] = 1636 combining_class(uv, 1637 uts + j, sz); 1638 start[last] = saved_sz + j; 1639 disp[last] = sz; 1640 1641 last++; 1642 if (last >= 1643 U8_UPPER_LIMIT_IN_A_SEQ) { 1644 last = k; 1645 goto TURN_STREAM_SAFE; 1646 } 1647 j += sz; 1648 } 1649 1650 *state = U8_STATE_COMBINING_MARK; 1651 sz = i; 1652 s += l; 1653 1654 for (i = 0; i < sz; i++) 1655 u8s[saved_sz++] = uts[i]; 1656 } else { 1657 comb_class[last] = i; 1658 start[last] = saved_sz; 1659 disp[last] = sz; 1660 last++; 1661 1662 for (i = 0; i < sz; i++) 1663 u8s[saved_sz++] = *s++; 1664 } 1665 1666 /* 1667 * If this is U+0345 COMBINING GREEK 1668 * YPOGEGRAMMENI (0xCD 0x85 in UTF-8), a.k.a., 1669 * iota subscript, and need to be converted to 1670 * uppercase letter, convert it to U+0399 GREEK 1671 * CAPITAL LETTER IOTA (0xCE 0x99 in UTF-8), 1672 * i.e., convert to capital adscript form as 1673 * specified in the Unicode standard. 1674 * 1675 * This is the only special case of (ambiguous) 1676 * case conversion at combining marks and 1677 * probably the standard will never have 1678 * anything similar like this in future. 1679 */ 1680 if (is_it_toupper && sz >= 2 && 1681 u8s[saved_sz - 2] == 0xCD && 1682 u8s[saved_sz - 1] == 0x85) { 1683 u8s[saved_sz - 2] = 0xCE; 1684 u8s[saved_sz - 1] = 0x99; 1685 } 1686 } 1687 } 1688 1689 /* 1690 * Let's try to ensure a canonical ordering for the collected 1691 * combining marks. We do this only if we have collected 1692 * at least one more non-Starter. (The decomposition mapping 1693 * data tables have fully (and recursively) expanded and 1694 * canonically ordered decompositions.) 1695 * 1696 * The U8_SWAP_COMB_MARKS() convenience macro has some 1697 * assumptions and we are meeting the assumptions. 1698 */ 1699 last--; 1700 if (last >= saved_last) { 1701 for (i = 0; i < last; i++) 1702 for (j = last; j > i; j--) 1703 if (comb_class[j] && 1704 comb_class[j - 1] > comb_class[j]) { 1705 U8_SWAP_COMB_MARKS(j - 1, j); 1706 } 1707 } 1708 1709 *source = s; 1710 1711 if (! canonical_composition) { 1712 u8s[saved_sz] = '\0'; 1713 return (saved_sz); 1714 } 1715 1716 /* 1717 * Now do the canonical composition. Note that we do this 1718 * only after a canonical or compatibility decomposition to 1719 * finish up NFC or NFKC. 1720 */ 1721 sz = do_composition(uv, u8s, comb_class, start, disp, last, 1722 &s, slast); 1723 } 1724 1725 *source = s; 1726 1727 return ((size_t)sz); 1728 } 1729 1730 /* 1731 * The do_norm_compare() function does string comparison based on Unicode 1732 * simple case mappings and Unicode Normalization definitions. 1733 * 1734 * It does so by collecting a sequence of character at a time and comparing 1735 * the collected sequences from the strings. 1736 * 1737 * The meanings on the return values are the same as the usual strcmp(). 1738 */ 1739 static int 1740 do_norm_compare(size_t uv, uchar_t *s1, uchar_t *s2, size_t n1, size_t n2, 1741 int flag, int *errnum) 1742 { 1743 int result; 1744 size_t sz1; 1745 size_t sz2; 1746 uchar_t u8s1[U8_STREAM_SAFE_TEXT_MAX + 1]; 1747 uchar_t u8s2[U8_STREAM_SAFE_TEXT_MAX + 1]; 1748 uchar_t *s1last; 1749 uchar_t *s2last; 1750 boolean_t is_it_toupper; 1751 boolean_t is_it_tolower; 1752 boolean_t canonical_decomposition; 1753 boolean_t compatibility_decomposition; 1754 boolean_t canonical_composition; 1755 u8_normalization_states_t state; 1756 1757 s1last = s1 + n1; 1758 s2last = s2 + n2; 1759 1760 is_it_toupper = flag & U8_TEXTPREP_TOUPPER; 1761 #ifdef U8_STRCMP_CI_LOWER 1762 is_it_tolower = flag & U8_TEXTPREP_TOLOWER; 1763 #else 1764 is_it_tolower = 0; 1765 #endif 1766 canonical_decomposition = flag & U8_CANON_DECOMP; 1767 compatibility_decomposition = flag & U8_COMPAT_DECOMP; 1768 canonical_composition = flag & U8_CANON_COMP; 1769 1770 while (s1 < s1last && s2 < s2last) { 1771 /* 1772 * If the current character is a 7-bit ASCII and the last 1773 * character, or, if the current character and the next 1774 * character are both some 7-bit ASCII characters then 1775 * we treat the current character as a sequence. 1776 * 1777 * In any other cases, we need to call collect_a_seq(). 1778 */ 1779 1780 if (U8_ISASCII(*s1) && ((s1 + 1) >= s1last || 1781 ((s1 + 1) < s1last && U8_ISASCII(*(s1 + 1))))) { 1782 if (is_it_toupper) 1783 u8s1[0] = U8_ASCII_TOUPPER(*s1); 1784 else if (is_it_tolower) 1785 u8s1[0] = U8_ASCII_TOLOWER(*s1); 1786 else 1787 u8s1[0] = *s1; 1788 u8s1[1] = '\0'; 1789 sz1 = 1; 1790 s1++; 1791 } else { 1792 state = U8_STATE_START; 1793 sz1 = collect_a_seq(uv, u8s1, &s1, s1last, 1794 is_it_toupper, is_it_tolower, 1795 canonical_decomposition, 1796 compatibility_decomposition, 1797 canonical_composition, errnum, &state); 1798 } 1799 1800 if (U8_ISASCII(*s2) && ((s2 + 1) >= s2last || 1801 ((s2 + 1) < s2last && U8_ISASCII(*(s2 + 1))))) { 1802 if (is_it_toupper) 1803 u8s2[0] = U8_ASCII_TOUPPER(*s2); 1804 else if (is_it_tolower) 1805 u8s2[0] = U8_ASCII_TOLOWER(*s2); 1806 else 1807 u8s2[0] = *s2; 1808 u8s2[1] = '\0'; 1809 sz2 = 1; 1810 s2++; 1811 } else { 1812 state = U8_STATE_START; 1813 sz2 = collect_a_seq(uv, u8s2, &s2, s2last, 1814 is_it_toupper, is_it_tolower, 1815 canonical_decomposition, 1816 compatibility_decomposition, 1817 canonical_composition, errnum, &state); 1818 } 1819 1820 /* 1821 * Now compare the two characters. If they are the same, 1822 * we move on to the next character sequences. 1823 */ 1824 if (sz1 == 1 && sz2 == 1) { 1825 if (*u8s1 > *u8s2) 1826 return (1); 1827 if (*u8s1 < *u8s2) 1828 return (-1); 1829 } else { 1830 result = strcmp((const char *)u8s1, (const char *)u8s2); 1831 if (result != 0) 1832 return (result); 1833 } 1834 } 1835 1836 /* 1837 * We compared until the end of either or both strings. 1838 * 1839 * If we reached to or went over the ends for the both, that means 1840 * they are the same. 1841 * 1842 * If we reached only one end, that means the other string has 1843 * something which then can be used to determine the return value. 1844 */ 1845 if (s1 >= s1last) { 1846 if (s2 >= s2last) 1847 return (0); 1848 return (-1); 1849 } 1850 return (1); 1851 } 1852 1853 /* 1854 * The u8_strcmp() function compares two UTF-8 strings quite similar to 1855 * the strcmp(). For the comparison, however, Unicode Normalization specific 1856 * equivalency and Unicode simple case conversion mappings based equivalency 1857 * can be requested and checked against. 1858 */ 1859 int 1860 u8_strcmp(const char *s1, const char *s2, size_t n, int flag, size_t uv, 1861 int *errnum) 1862 { 1863 int f; 1864 size_t n1; 1865 size_t n2; 1866 1867 *errnum = 0; 1868 1869 /* 1870 * Check on the requested Unicode version, case conversion, and 1871 * normalization flag values. 1872 */ 1873 1874 if (uv > U8_UNICODE_LATEST) { 1875 *errnum = ERANGE; 1876 uv = U8_UNICODE_LATEST; 1877 } 1878 1879 if (flag == 0) { 1880 flag = U8_STRCMP_CS; 1881 } else { 1882 #ifdef U8_STRCMP_CI_LOWER 1883 f = flag & (U8_STRCMP_CS | U8_STRCMP_CI_UPPER 1884 | U8_STRCMP_CI_LOWER); 1885 #else 1886 f = flag & (U8_STRCMP_CS | U8_STRCMP_CI_UPPER); 1887 #endif 1888 if (f == 0) { 1889 flag |= U8_STRCMP_CS; 1890 } 1891 #ifdef U8_STRCMP_CI_LOWER 1892 else if (f != U8_STRCMP_CS && f != U8_STRCMP_CI_UPPER && 1893 f != U8_STRCMP_CI_LOWER) 1894 #else 1895 else if (f != U8_STRCMP_CS && f != U8_STRCMP_CI_UPPER) 1896 #endif 1897 { 1898 *errnum = EBADF; 1899 flag = U8_STRCMP_CS; 1900 } 1901 1902 f = flag & (U8_CANON_DECOMP | U8_COMPAT_DECOMP | U8_CANON_COMP); 1903 if (f && f != U8_STRCMP_NFD && f != U8_STRCMP_NFC && 1904 f != U8_STRCMP_NFKD && f != U8_STRCMP_NFKC) { 1905 *errnum = EBADF; 1906 flag = U8_STRCMP_CS; 1907 } 1908 } 1909 1910 if (flag == U8_STRCMP_CS) { 1911 return (n == 0 ? strcmp(s1, s2) : strncmp(s1, s2, n)); 1912 } 1913 1914 n1 = strlen(s1); 1915 n2 = strlen(s2); 1916 if (n != 0) { 1917 if (n < n1) 1918 n1 = n; 1919 if (n < n2) 1920 n2 = n; 1921 } 1922 1923 /* 1924 * Simple case conversion can be done much faster and so we do 1925 * them separately here. 1926 */ 1927 if (flag == U8_STRCMP_CI_UPPER) { 1928 return (do_case_compare(uv, (uchar_t *)s1, (uchar_t *)s2, 1929 n1, n2, B_TRUE, errnum)); 1930 } 1931 #ifdef U8_STRCMP_CI_LOWER 1932 else if (flag == U8_STRCMP_CI_LOWER) { 1933 return (do_case_compare(uv, (uchar_t *)s1, (uchar_t *)s2, 1934 n1, n2, B_FALSE, errnum)); 1935 } 1936 #endif 1937 1938 return (do_norm_compare(uv, (uchar_t *)s1, (uchar_t *)s2, n1, n2, 1939 flag, errnum)); 1940 } 1941 1942 size_t 1943 u8_textprep_str(char *inarray, size_t *inlen, char *outarray, size_t *outlen, 1944 int flag, size_t unicode_version, int *errnum) 1945 { 1946 int f; 1947 int sz; 1948 uchar_t *ib; 1949 uchar_t *ibtail; 1950 uchar_t *ob; 1951 uchar_t *obtail; 1952 boolean_t do_not_ignore_null; 1953 boolean_t do_not_ignore_invalid; 1954 boolean_t is_it_toupper; 1955 boolean_t is_it_tolower; 1956 boolean_t canonical_decomposition; 1957 boolean_t compatibility_decomposition; 1958 boolean_t canonical_composition; 1959 size_t ret_val; 1960 size_t i; 1961 size_t j; 1962 uchar_t u8s[U8_STREAM_SAFE_TEXT_MAX + 1]; 1963 u8_normalization_states_t state; 1964 1965 if (unicode_version > U8_UNICODE_LATEST) { 1966 *errnum = ERANGE; 1967 return ((size_t)-1); 1968 } 1969 1970 #ifdef U8_TEXTPREP_TOLOWER 1971 f = flag & (U8_TEXTPREP_TOUPPER | U8_TEXTPREP_TOLOWER); 1972 if (f == (U8_TEXTPREP_TOUPPER | U8_TEXTPREP_TOLOWER)) { 1973 *errnum = EBADF; 1974 return ((size_t)-1); 1975 } 1976 #endif 1977 1978 f = flag & (U8_CANON_DECOMP | U8_COMPAT_DECOMP | U8_CANON_COMP); 1979 if (f && f != U8_TEXTPREP_NFD && f != U8_TEXTPREP_NFC && 1980 f != U8_TEXTPREP_NFKD && f != U8_TEXTPREP_NFKC) { 1981 *errnum = EBADF; 1982 return ((size_t)-1); 1983 } 1984 1985 if (inarray == NULL || *inlen == 0) 1986 return (0); 1987 1988 if (outarray == NULL) { 1989 *errnum = E2BIG; 1990 return ((size_t)-1); 1991 } 1992 1993 ib = (uchar_t *)inarray; 1994 ob = (uchar_t *)outarray; 1995 ibtail = ib + *inlen; 1996 obtail = ob + *outlen; 1997 1998 do_not_ignore_null = !(flag & U8_TEXTPREP_IGNORE_NULL); 1999 do_not_ignore_invalid = !(flag & U8_TEXTPREP_IGNORE_INVALID); 2000 is_it_toupper = flag & U8_TEXTPREP_TOUPPER; 2001 #ifdef U8_TEXTPREP_TOLOWER 2002 is_it_tolower = flag & U8_TEXTPREP_TOLOWER; 2003 #else 2004 is_it_tolower = 0; 2005 #endif 2006 2007 ret_val = 0; 2008 2009 /* 2010 * If we don't have a normalization flag set, we do the simple case 2011 * conversion based text preparation separately below. Text 2012 * preparation involving Normalization will be done in the false task 2013 * block, again, separately since it will take much more time and 2014 * resource than doing simple case conversions. 2015 */ 2016 if (f == 0) { 2017 while (ib < ibtail) { 2018 if (*ib == '\0' && do_not_ignore_null) 2019 break; 2020 2021 sz = u8_number_of_bytes[*ib]; 2022 2023 if (sz < 0) { 2024 if (do_not_ignore_invalid) { 2025 *errnum = EILSEQ; 2026 ret_val = (size_t)-1; 2027 break; 2028 } 2029 2030 sz = 1; 2031 ret_val++; 2032 } 2033 2034 if (sz == 1) { 2035 if (ob >= obtail) { 2036 *errnum = E2BIG; 2037 ret_val = (size_t)-1; 2038 break; 2039 } 2040 2041 if (is_it_toupper) 2042 *ob = U8_ASCII_TOUPPER(*ib); 2043 else if (is_it_tolower) 2044 *ob = U8_ASCII_TOLOWER(*ib); 2045 else 2046 *ob = *ib; 2047 ib++; 2048 ob++; 2049 } else if ((ib + sz) > ibtail) { 2050 if (do_not_ignore_invalid) { 2051 *errnum = EINVAL; 2052 ret_val = (size_t)-1; 2053 break; 2054 } 2055 2056 if ((obtail - ob) < (ibtail - ib)) { 2057 *errnum = E2BIG; 2058 ret_val = (size_t)-1; 2059 break; 2060 } 2061 2062 /* 2063 * We treat the remaining incomplete character 2064 * bytes as a character. 2065 */ 2066 ret_val++; 2067 2068 while (ib < ibtail) 2069 *ob++ = *ib++; 2070 } else { 2071 if (is_it_toupper || is_it_tolower) { 2072 i = do_case_conv(unicode_version, u8s, 2073 ib, sz, is_it_toupper); 2074 2075 if ((obtail - ob) < i) { 2076 *errnum = E2BIG; 2077 ret_val = (size_t)-1; 2078 break; 2079 } 2080 2081 ib += sz; 2082 2083 for (sz = 0; sz < i; sz++) 2084 *ob++ = u8s[sz]; 2085 } else { 2086 if ((obtail - ob) < sz) { 2087 *errnum = E2BIG; 2088 ret_val = (size_t)-1; 2089 break; 2090 } 2091 2092 for (i = 0; i < sz; i++) 2093 *ob++ = *ib++; 2094 } 2095 } 2096 } 2097 } else { 2098 canonical_decomposition = flag & U8_CANON_DECOMP; 2099 compatibility_decomposition = flag & U8_COMPAT_DECOMP; 2100 canonical_composition = flag & U8_CANON_COMP; 2101 2102 while (ib < ibtail) { 2103 if (*ib == '\0' && do_not_ignore_null) 2104 break; 2105 2106 /* 2107 * If the current character is a 7-bit ASCII 2108 * character and it is the last character, or, 2109 * if the current character is a 7-bit ASCII 2110 * character and the next character is also a 7-bit 2111 * ASCII character, then, we copy over this 2112 * character without going through collect_a_seq(). 2113 * 2114 * In any other cases, we need to look further with 2115 * the collect_a_seq() function. 2116 */ 2117 if (U8_ISASCII(*ib) && ((ib + 1) >= ibtail || 2118 ((ib + 1) < ibtail && U8_ISASCII(*(ib + 1))))) { 2119 if (ob >= obtail) { 2120 *errnum = E2BIG; 2121 ret_val = (size_t)-1; 2122 break; 2123 } 2124 2125 if (is_it_toupper) 2126 *ob = U8_ASCII_TOUPPER(*ib); 2127 else if (is_it_tolower) 2128 *ob = U8_ASCII_TOLOWER(*ib); 2129 else 2130 *ob = *ib; 2131 ib++; 2132 ob++; 2133 } else { 2134 *errnum = 0; 2135 state = U8_STATE_START; 2136 2137 j = collect_a_seq(unicode_version, u8s, 2138 &ib, ibtail, 2139 is_it_toupper, 2140 is_it_tolower, 2141 canonical_decomposition, 2142 compatibility_decomposition, 2143 canonical_composition, 2144 errnum, &state); 2145 2146 if (*errnum && do_not_ignore_invalid) { 2147 ret_val = (size_t)-1; 2148 break; 2149 } 2150 2151 if ((obtail - ob) < j) { 2152 *errnum = E2BIG; 2153 ret_val = (size_t)-1; 2154 break; 2155 } 2156 2157 for (i = 0; i < j; i++) 2158 *ob++ = u8s[i]; 2159 } 2160 } 2161 } 2162 2163 *inlen = ibtail - ib; 2164 *outlen = obtail - ob; 2165 2166 return (ret_val); 2167 } 2168 2169 EXPORT_SYMBOL(u8_validate); 2170 EXPORT_SYMBOL(u8_strcmp); 2171 EXPORT_SYMBOL(u8_textprep_str); 2172