xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/zvol_os.c (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
23  */
24 
25 #include <sys/dataset_kstats.h>
26 #include <sys/dbuf.h>
27 #include <sys/dmu_traverse.h>
28 #include <sys/dsl_dataset.h>
29 #include <sys/dsl_prop.h>
30 #include <sys/dsl_dir.h>
31 #include <sys/zap.h>
32 #include <sys/zfeature.h>
33 #include <sys/zil_impl.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/zio.h>
36 #include <sys/zfs_rlock.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zvol.h>
39 #include <sys/zvol_impl.h>
40 
41 #include <linux/blkdev_compat.h>
42 #include <linux/task_io_accounting_ops.h>
43 
44 #ifdef HAVE_BLK_MQ
45 #include <linux/blk-mq.h>
46 #endif
47 
48 static void zvol_request_impl(zvol_state_t *zv, struct bio *bio,
49     struct request *rq, boolean_t force_sync);
50 
51 static unsigned int zvol_major = ZVOL_MAJOR;
52 static unsigned int zvol_request_sync = 0;
53 static unsigned int zvol_prefetch_bytes = (128 * 1024);
54 static unsigned long zvol_max_discard_blocks = 16384;
55 
56 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
57 static const unsigned int zvol_open_timeout_ms = 1000;
58 #endif
59 
60 static unsigned int zvol_threads = 0;
61 #ifdef HAVE_BLK_MQ
62 static unsigned int zvol_blk_mq_threads = 0;
63 static unsigned int zvol_blk_mq_actual_threads;
64 static boolean_t zvol_use_blk_mq = B_FALSE;
65 
66 /*
67  * The maximum number of volblocksize blocks to process per thread.  Typically,
68  * write heavy workloads preform better with higher values here, and read
69  * heavy workloads preform better with lower values, but that's not a hard
70  * and fast rule.  It's basically a knob to tune between "less overhead with
71  * less parallelism" and "more overhead, but more parallelism".
72  *
73  * '8' was chosen as a reasonable, balanced, default based off of sequential
74  * read and write tests to a zvol in an NVMe pool (with 16 CPUs).
75  */
76 static unsigned int zvol_blk_mq_blocks_per_thread = 8;
77 #endif
78 
79 #ifndef	BLKDEV_DEFAULT_RQ
80 /* BLKDEV_MAX_RQ was renamed to BLKDEV_DEFAULT_RQ in the 5.16 kernel */
81 #define	BLKDEV_DEFAULT_RQ BLKDEV_MAX_RQ
82 #endif
83 
84 /*
85  * Finalize our BIO or request.
86  */
87 #ifdef	HAVE_BLK_MQ
88 #define	END_IO(zv, bio, rq, error)  do { \
89 	if (bio) { \
90 		BIO_END_IO(bio, error); \
91 	} else { \
92 		blk_mq_end_request(rq, errno_to_bi_status(error)); \
93 	} \
94 } while (0)
95 #else
96 #define	END_IO(zv, bio, rq, error)	BIO_END_IO(bio, error)
97 #endif
98 
99 #ifdef HAVE_BLK_MQ
100 static unsigned int zvol_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
101 static unsigned int zvol_actual_blk_mq_queue_depth;
102 #endif
103 
104 struct zvol_state_os {
105 	struct gendisk		*zvo_disk;	/* generic disk */
106 	struct request_queue	*zvo_queue;	/* request queue */
107 	dev_t			zvo_dev;	/* device id */
108 
109 #ifdef HAVE_BLK_MQ
110 	struct blk_mq_tag_set tag_set;
111 #endif
112 
113 	/* Set from the global 'zvol_use_blk_mq' at zvol load */
114 	boolean_t use_blk_mq;
115 };
116 
117 static taskq_t *zvol_taskq;
118 static struct ida zvol_ida;
119 
120 typedef struct zv_request_stack {
121 	zvol_state_t	*zv;
122 	struct bio	*bio;
123 	struct request *rq;
124 } zv_request_t;
125 
126 typedef struct zv_work {
127 	struct request  *rq;
128 	struct work_struct work;
129 } zv_work_t;
130 
131 typedef struct zv_request_task {
132 	zv_request_t zvr;
133 	taskq_ent_t	ent;
134 } zv_request_task_t;
135 
136 static zv_request_task_t *
137 zv_request_task_create(zv_request_t zvr)
138 {
139 	zv_request_task_t *task;
140 	task = kmem_alloc(sizeof (zv_request_task_t), KM_SLEEP);
141 	taskq_init_ent(&task->ent);
142 	task->zvr = zvr;
143 	return (task);
144 }
145 
146 static void
147 zv_request_task_free(zv_request_task_t *task)
148 {
149 	kmem_free(task, sizeof (*task));
150 }
151 
152 #ifdef HAVE_BLK_MQ
153 
154 /*
155  * This is called when a new block multiqueue request comes in.  A request
156  * contains one or more BIOs.
157  */
158 static blk_status_t zvol_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
159     const struct blk_mq_queue_data *bd)
160 {
161 	struct request *rq = bd->rq;
162 	zvol_state_t *zv = rq->q->queuedata;
163 
164 	/* Tell the kernel that we are starting to process this request */
165 	blk_mq_start_request(rq);
166 
167 	if (blk_rq_is_passthrough(rq)) {
168 		/* Skip non filesystem request */
169 		blk_mq_end_request(rq, BLK_STS_IOERR);
170 		return (BLK_STS_IOERR);
171 	}
172 
173 	zvol_request_impl(zv, NULL, rq, 0);
174 
175 	/* Acknowledge to the kernel that we got this request */
176 	return (BLK_STS_OK);
177 }
178 
179 static struct blk_mq_ops zvol_blk_mq_queue_ops = {
180 	.queue_rq = zvol_mq_queue_rq,
181 };
182 
183 /* Initialize our blk-mq struct */
184 static int zvol_blk_mq_alloc_tag_set(zvol_state_t *zv)
185 {
186 	struct zvol_state_os *zso = zv->zv_zso;
187 
188 	memset(&zso->tag_set, 0, sizeof (zso->tag_set));
189 
190 	/* Initialize tag set. */
191 	zso->tag_set.ops = &zvol_blk_mq_queue_ops;
192 	zso->tag_set.nr_hw_queues = zvol_blk_mq_actual_threads;
193 	zso->tag_set.queue_depth = zvol_actual_blk_mq_queue_depth;
194 	zso->tag_set.numa_node = NUMA_NO_NODE;
195 	zso->tag_set.cmd_size = 0;
196 
197 	/*
198 	 * We need BLK_MQ_F_BLOCKING here since we do blocking calls in
199 	 * zvol_request_impl()
200 	 */
201 	zso->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
202 	zso->tag_set.driver_data = zv;
203 
204 	return (blk_mq_alloc_tag_set(&zso->tag_set));
205 }
206 #endif /* HAVE_BLK_MQ */
207 
208 /*
209  * Given a path, return TRUE if path is a ZVOL.
210  */
211 boolean_t
212 zvol_os_is_zvol(const char *path)
213 {
214 	dev_t dev = 0;
215 
216 	if (vdev_lookup_bdev(path, &dev) != 0)
217 		return (B_FALSE);
218 
219 	if (MAJOR(dev) == zvol_major)
220 		return (B_TRUE);
221 
222 	return (B_FALSE);
223 }
224 
225 static void
226 zvol_write(zv_request_t *zvr)
227 {
228 	struct bio *bio = zvr->bio;
229 	struct request *rq = zvr->rq;
230 	int error = 0;
231 	zfs_uio_t uio;
232 	zvol_state_t *zv = zvr->zv;
233 	struct request_queue *q;
234 	struct gendisk *disk;
235 	unsigned long start_time = 0;
236 	boolean_t acct = B_FALSE;
237 
238 	ASSERT3P(zv, !=, NULL);
239 	ASSERT3U(zv->zv_open_count, >, 0);
240 	ASSERT3P(zv->zv_zilog, !=, NULL);
241 
242 	q = zv->zv_zso->zvo_queue;
243 	disk = zv->zv_zso->zvo_disk;
244 
245 	/* bio marked as FLUSH need to flush before write */
246 	if (io_is_flush(bio, rq))
247 		zil_commit(zv->zv_zilog, ZVOL_OBJ);
248 
249 	/* Some requests are just for flush and nothing else. */
250 	if (io_size(bio, rq) == 0) {
251 		rw_exit(&zv->zv_suspend_lock);
252 		END_IO(zv, bio, rq, 0);
253 		return;
254 	}
255 
256 	zfs_uio_bvec_init(&uio, bio, rq);
257 
258 	ssize_t start_resid = uio.uio_resid;
259 
260 	/*
261 	 * With use_blk_mq, accounting is done by blk_mq_start_request()
262 	 * and blk_mq_end_request(), so we can skip it here.
263 	 */
264 	if (bio) {
265 		acct = blk_queue_io_stat(q);
266 		if (acct) {
267 			start_time = blk_generic_start_io_acct(q, disk, WRITE,
268 			    bio);
269 		}
270 	}
271 
272 	boolean_t sync =
273 	    io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
274 
275 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
276 	    uio.uio_loffset, uio.uio_resid, RL_WRITER);
277 
278 	uint64_t volsize = zv->zv_volsize;
279 	while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
280 		uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
281 		uint64_t off = uio.uio_loffset;
282 		dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
283 
284 		if (bytes > volsize - off)	/* don't write past the end */
285 			bytes = volsize - off;
286 
287 		dmu_tx_hold_write_by_dnode(tx, zv->zv_dn, off, bytes);
288 
289 		/* This will only fail for ENOSPC */
290 		error = dmu_tx_assign(tx, TXG_WAIT);
291 		if (error) {
292 			dmu_tx_abort(tx);
293 			break;
294 		}
295 		error = dmu_write_uio_dnode(zv->zv_dn, &uio, bytes, tx);
296 		if (error == 0) {
297 			zvol_log_write(zv, tx, off, bytes, sync);
298 		}
299 		dmu_tx_commit(tx);
300 
301 		if (error)
302 			break;
303 	}
304 	zfs_rangelock_exit(lr);
305 
306 	int64_t nwritten = start_resid - uio.uio_resid;
307 	dataset_kstats_update_write_kstats(&zv->zv_kstat, nwritten);
308 	task_io_account_write(nwritten);
309 
310 	if (sync)
311 		zil_commit(zv->zv_zilog, ZVOL_OBJ);
312 
313 	rw_exit(&zv->zv_suspend_lock);
314 
315 	if (bio && acct) {
316 		blk_generic_end_io_acct(q, disk, WRITE, bio, start_time);
317 	}
318 
319 	END_IO(zv, bio, rq, -error);
320 }
321 
322 static void
323 zvol_write_task(void *arg)
324 {
325 	zv_request_task_t *task = arg;
326 	zvol_write(&task->zvr);
327 	zv_request_task_free(task);
328 }
329 
330 static void
331 zvol_discard(zv_request_t *zvr)
332 {
333 	struct bio *bio = zvr->bio;
334 	struct request *rq = zvr->rq;
335 	zvol_state_t *zv = zvr->zv;
336 	uint64_t start = io_offset(bio, rq);
337 	uint64_t size = io_size(bio, rq);
338 	uint64_t end = start + size;
339 	boolean_t sync;
340 	int error = 0;
341 	dmu_tx_t *tx;
342 	struct request_queue *q = zv->zv_zso->zvo_queue;
343 	struct gendisk *disk = zv->zv_zso->zvo_disk;
344 	unsigned long start_time = 0;
345 	boolean_t acct = B_FALSE;
346 
347 	ASSERT3P(zv, !=, NULL);
348 	ASSERT3U(zv->zv_open_count, >, 0);
349 	ASSERT3P(zv->zv_zilog, !=, NULL);
350 
351 	if (bio) {
352 		acct = blk_queue_io_stat(q);
353 		if (acct) {
354 			start_time = blk_generic_start_io_acct(q, disk, WRITE,
355 			    bio);
356 		}
357 	}
358 
359 	sync = io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
360 
361 	if (end > zv->zv_volsize) {
362 		error = SET_ERROR(EIO);
363 		goto unlock;
364 	}
365 
366 	/*
367 	 * Align the request to volume block boundaries when a secure erase is
368 	 * not required.  This will prevent dnode_free_range() from zeroing out
369 	 * the unaligned parts which is slow (read-modify-write) and useless
370 	 * since we are not freeing any space by doing so.
371 	 */
372 	if (!io_is_secure_erase(bio, rq)) {
373 		start = P2ROUNDUP(start, zv->zv_volblocksize);
374 		end = P2ALIGN(end, zv->zv_volblocksize);
375 		size = end - start;
376 	}
377 
378 	if (start >= end)
379 		goto unlock;
380 
381 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
382 	    start, size, RL_WRITER);
383 
384 	tx = dmu_tx_create(zv->zv_objset);
385 	dmu_tx_mark_netfree(tx);
386 	error = dmu_tx_assign(tx, TXG_WAIT);
387 	if (error != 0) {
388 		dmu_tx_abort(tx);
389 	} else {
390 		zvol_log_truncate(zv, tx, start, size, B_TRUE);
391 		dmu_tx_commit(tx);
392 		error = dmu_free_long_range(zv->zv_objset,
393 		    ZVOL_OBJ, start, size);
394 	}
395 	zfs_rangelock_exit(lr);
396 
397 	if (error == 0 && sync)
398 		zil_commit(zv->zv_zilog, ZVOL_OBJ);
399 
400 unlock:
401 	rw_exit(&zv->zv_suspend_lock);
402 
403 	if (bio && acct) {
404 		blk_generic_end_io_acct(q, disk, WRITE, bio,
405 		    start_time);
406 	}
407 
408 	END_IO(zv, bio, rq, -error);
409 }
410 
411 static void
412 zvol_discard_task(void *arg)
413 {
414 	zv_request_task_t *task = arg;
415 	zvol_discard(&task->zvr);
416 	zv_request_task_free(task);
417 }
418 
419 static void
420 zvol_read(zv_request_t *zvr)
421 {
422 	struct bio *bio = zvr->bio;
423 	struct request *rq = zvr->rq;
424 	int error = 0;
425 	zfs_uio_t uio;
426 	boolean_t acct = B_FALSE;
427 	zvol_state_t *zv = zvr->zv;
428 	struct request_queue *q;
429 	struct gendisk *disk;
430 	unsigned long start_time = 0;
431 
432 	ASSERT3P(zv, !=, NULL);
433 	ASSERT3U(zv->zv_open_count, >, 0);
434 
435 	zfs_uio_bvec_init(&uio, bio, rq);
436 
437 	q = zv->zv_zso->zvo_queue;
438 	disk = zv->zv_zso->zvo_disk;
439 
440 	ssize_t start_resid = uio.uio_resid;
441 
442 	/*
443 	 * When blk-mq is being used, accounting is done by
444 	 * blk_mq_start_request() and blk_mq_end_request().
445 	 */
446 	if (bio) {
447 		acct = blk_queue_io_stat(q);
448 		if (acct)
449 			start_time = blk_generic_start_io_acct(q, disk, READ,
450 			    bio);
451 	}
452 
453 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
454 	    uio.uio_loffset, uio.uio_resid, RL_READER);
455 
456 	uint64_t volsize = zv->zv_volsize;
457 
458 	while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
459 		uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
460 
461 		/* don't read past the end */
462 		if (bytes > volsize - uio.uio_loffset)
463 			bytes = volsize - uio.uio_loffset;
464 
465 		error = dmu_read_uio_dnode(zv->zv_dn, &uio, bytes);
466 		if (error) {
467 			/* convert checksum errors into IO errors */
468 			if (error == ECKSUM)
469 				error = SET_ERROR(EIO);
470 			break;
471 		}
472 	}
473 	zfs_rangelock_exit(lr);
474 
475 	int64_t nread = start_resid - uio.uio_resid;
476 	dataset_kstats_update_read_kstats(&zv->zv_kstat, nread);
477 	task_io_account_read(nread);
478 
479 	rw_exit(&zv->zv_suspend_lock);
480 
481 	if (bio && acct) {
482 		blk_generic_end_io_acct(q, disk, READ, bio, start_time);
483 	}
484 
485 	END_IO(zv, bio, rq, -error);
486 }
487 
488 static void
489 zvol_read_task(void *arg)
490 {
491 	zv_request_task_t *task = arg;
492 	zvol_read(&task->zvr);
493 	zv_request_task_free(task);
494 }
495 
496 
497 /*
498  * Process a BIO or request
499  *
500  * Either 'bio' or 'rq' should be set depending on if we are processing a
501  * bio or a request (both should not be set).
502  *
503  * force_sync:	Set to 0 to defer processing to a background taskq
504  *			Set to 1 to process data synchronously
505  */
506 static void
507 zvol_request_impl(zvol_state_t *zv, struct bio *bio, struct request *rq,
508     boolean_t force_sync)
509 {
510 	fstrans_cookie_t cookie = spl_fstrans_mark();
511 	uint64_t offset = io_offset(bio, rq);
512 	uint64_t size = io_size(bio, rq);
513 	int rw = io_data_dir(bio, rq);
514 
515 	if (zvol_request_sync)
516 		force_sync = 1;
517 
518 	zv_request_t zvr = {
519 		.zv = zv,
520 		.bio = bio,
521 		.rq = rq,
522 	};
523 
524 	if (io_has_data(bio, rq) && offset + size > zv->zv_volsize) {
525 		printk(KERN_INFO "%s: bad access: offset=%llu, size=%lu\n",
526 		    zv->zv_zso->zvo_disk->disk_name,
527 		    (long long unsigned)offset,
528 		    (long unsigned)size);
529 
530 		END_IO(zv, bio, rq, -SET_ERROR(EIO));
531 		goto out;
532 	}
533 
534 	zv_request_task_t *task;
535 
536 	if (rw == WRITE) {
537 		if (unlikely(zv->zv_flags & ZVOL_RDONLY)) {
538 			END_IO(zv, bio, rq, -SET_ERROR(EROFS));
539 			goto out;
540 		}
541 
542 		/*
543 		 * Prevents the zvol from being suspended, or the ZIL being
544 		 * concurrently opened.  Will be released after the i/o
545 		 * completes.
546 		 */
547 		rw_enter(&zv->zv_suspend_lock, RW_READER);
548 
549 		/*
550 		 * Open a ZIL if this is the first time we have written to this
551 		 * zvol. We protect zv->zv_zilog with zv_suspend_lock rather
552 		 * than zv_state_lock so that we don't need to acquire an
553 		 * additional lock in this path.
554 		 */
555 		if (zv->zv_zilog == NULL) {
556 			rw_exit(&zv->zv_suspend_lock);
557 			rw_enter(&zv->zv_suspend_lock, RW_WRITER);
558 			if (zv->zv_zilog == NULL) {
559 				zv->zv_zilog = zil_open(zv->zv_objset,
560 				    zvol_get_data, &zv->zv_kstat.dk_zil_sums);
561 				zv->zv_flags |= ZVOL_WRITTEN_TO;
562 				/* replay / destroy done in zvol_create_minor */
563 				VERIFY0((zv->zv_zilog->zl_header->zh_flags &
564 				    ZIL_REPLAY_NEEDED));
565 			}
566 			rw_downgrade(&zv->zv_suspend_lock);
567 		}
568 
569 		/*
570 		 * We don't want this thread to be blocked waiting for i/o to
571 		 * complete, so we instead wait from a taskq callback. The
572 		 * i/o may be a ZIL write (via zil_commit()), or a read of an
573 		 * indirect block, or a read of a data block (if this is a
574 		 * partial-block write).  We will indicate that the i/o is
575 		 * complete by calling END_IO() from the taskq callback.
576 		 *
577 		 * This design allows the calling thread to continue and
578 		 * initiate more concurrent operations by calling
579 		 * zvol_request() again. There are typically only a small
580 		 * number of threads available to call zvol_request() (e.g.
581 		 * one per iSCSI target), so keeping the latency of
582 		 * zvol_request() low is important for performance.
583 		 *
584 		 * The zvol_request_sync module parameter allows this
585 		 * behavior to be altered, for performance evaluation
586 		 * purposes.  If the callback blocks, setting
587 		 * zvol_request_sync=1 will result in much worse performance.
588 		 *
589 		 * We can have up to zvol_threads concurrent i/o's being
590 		 * processed for all zvols on the system.  This is typically
591 		 * a vast improvement over the zvol_request_sync=1 behavior
592 		 * of one i/o at a time per zvol.  However, an even better
593 		 * design would be for zvol_request() to initiate the zio
594 		 * directly, and then be notified by the zio_done callback,
595 		 * which would call END_IO().  Unfortunately, the DMU/ZIL
596 		 * interfaces lack this functionality (they block waiting for
597 		 * the i/o to complete).
598 		 */
599 		if (io_is_discard(bio, rq) || io_is_secure_erase(bio, rq)) {
600 			if (force_sync) {
601 				zvol_discard(&zvr);
602 			} else {
603 				task = zv_request_task_create(zvr);
604 				taskq_dispatch_ent(zvol_taskq,
605 				    zvol_discard_task, task, 0, &task->ent);
606 			}
607 		} else {
608 			if (force_sync) {
609 				zvol_write(&zvr);
610 			} else {
611 				task = zv_request_task_create(zvr);
612 				taskq_dispatch_ent(zvol_taskq,
613 				    zvol_write_task, task, 0, &task->ent);
614 			}
615 		}
616 	} else {
617 		/*
618 		 * The SCST driver, and possibly others, may issue READ I/Os
619 		 * with a length of zero bytes.  These empty I/Os contain no
620 		 * data and require no additional handling.
621 		 */
622 		if (size == 0) {
623 			END_IO(zv, bio, rq, 0);
624 			goto out;
625 		}
626 
627 		rw_enter(&zv->zv_suspend_lock, RW_READER);
628 
629 		/* See comment in WRITE case above. */
630 		if (force_sync) {
631 			zvol_read(&zvr);
632 		} else {
633 			task = zv_request_task_create(zvr);
634 			taskq_dispatch_ent(zvol_taskq,
635 			    zvol_read_task, task, 0, &task->ent);
636 		}
637 	}
638 
639 out:
640 	spl_fstrans_unmark(cookie);
641 }
642 
643 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
644 #ifdef HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID
645 static void
646 zvol_submit_bio(struct bio *bio)
647 #else
648 static blk_qc_t
649 zvol_submit_bio(struct bio *bio)
650 #endif
651 #else
652 static MAKE_REQUEST_FN_RET
653 zvol_request(struct request_queue *q, struct bio *bio)
654 #endif
655 {
656 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
657 #if defined(HAVE_BIO_BDEV_DISK)
658 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
659 #else
660 	struct request_queue *q = bio->bi_disk->queue;
661 #endif
662 #endif
663 	zvol_state_t *zv = q->queuedata;
664 
665 	zvol_request_impl(zv, bio, NULL, 0);
666 #if defined(HAVE_MAKE_REQUEST_FN_RET_QC) || \
667 	defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
668 	!defined(HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID)
669 	return (BLK_QC_T_NONE);
670 #endif
671 }
672 
673 static int
674 zvol_open(struct block_device *bdev, fmode_t flag)
675 {
676 	zvol_state_t *zv;
677 	int error = 0;
678 	boolean_t drop_suspend = B_FALSE;
679 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
680 	hrtime_t timeout = MSEC2NSEC(zvol_open_timeout_ms);
681 	hrtime_t start = gethrtime();
682 
683 retry:
684 #endif
685 	rw_enter(&zvol_state_lock, RW_READER);
686 	/*
687 	 * Obtain a copy of private_data under the zvol_state_lock to make
688 	 * sure that either the result of zvol free code path setting
689 	 * bdev->bd_disk->private_data to NULL is observed, or zvol_os_free()
690 	 * is not called on this zv because of the positive zv_open_count.
691 	 */
692 	zv = bdev->bd_disk->private_data;
693 	if (zv == NULL) {
694 		rw_exit(&zvol_state_lock);
695 		return (SET_ERROR(-ENXIO));
696 	}
697 
698 	mutex_enter(&zv->zv_state_lock);
699 	/*
700 	 * Make sure zvol is not suspended during first open
701 	 * (hold zv_suspend_lock) and respect proper lock acquisition
702 	 * ordering - zv_suspend_lock before zv_state_lock
703 	 */
704 	if (zv->zv_open_count == 0) {
705 		if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
706 			mutex_exit(&zv->zv_state_lock);
707 			rw_enter(&zv->zv_suspend_lock, RW_READER);
708 			mutex_enter(&zv->zv_state_lock);
709 			/* check to see if zv_suspend_lock is needed */
710 			if (zv->zv_open_count != 0) {
711 				rw_exit(&zv->zv_suspend_lock);
712 			} else {
713 				drop_suspend = B_TRUE;
714 			}
715 		} else {
716 			drop_suspend = B_TRUE;
717 		}
718 	}
719 	rw_exit(&zvol_state_lock);
720 
721 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
722 
723 	if (zv->zv_open_count == 0) {
724 		boolean_t drop_namespace = B_FALSE;
725 
726 		ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
727 
728 		/*
729 		 * In all other call paths the spa_namespace_lock is taken
730 		 * before the bdev->bd_mutex lock.  However, on open(2)
731 		 * the __blkdev_get() function calls fops->open() with the
732 		 * bdev->bd_mutex lock held.  This can result in a deadlock
733 		 * when zvols from one pool are used as vdevs in another.
734 		 *
735 		 * To prevent a lock inversion deadlock we preemptively
736 		 * take the spa_namespace_lock.  Normally the lock will not
737 		 * be contended and this is safe because spa_open_common()
738 		 * handles the case where the caller already holds the
739 		 * spa_namespace_lock.
740 		 *
741 		 * When the lock cannot be aquired after multiple retries
742 		 * this must be the vdev on zvol deadlock case and we have
743 		 * no choice but to return an error.  For 5.12 and older
744 		 * kernels returning -ERESTARTSYS will result in the
745 		 * bdev->bd_mutex being dropped, then reacquired, and
746 		 * fops->open() being called again.  This process can be
747 		 * repeated safely until both locks are acquired.  For 5.13
748 		 * and newer the -ERESTARTSYS retry logic was removed from
749 		 * the kernel so the only option is to return the error for
750 		 * the caller to handle it.
751 		 */
752 		if (!mutex_owned(&spa_namespace_lock)) {
753 			if (!mutex_tryenter(&spa_namespace_lock)) {
754 				mutex_exit(&zv->zv_state_lock);
755 				rw_exit(&zv->zv_suspend_lock);
756 
757 #ifdef HAVE_BLKDEV_GET_ERESTARTSYS
758 				schedule();
759 				return (SET_ERROR(-ERESTARTSYS));
760 #else
761 				if ((gethrtime() - start) > timeout)
762 					return (SET_ERROR(-ERESTARTSYS));
763 
764 				schedule_timeout(MSEC_TO_TICK(10));
765 				goto retry;
766 #endif
767 			} else {
768 				drop_namespace = B_TRUE;
769 			}
770 		}
771 
772 		error = -zvol_first_open(zv, !(flag & FMODE_WRITE));
773 
774 		if (drop_namespace)
775 			mutex_exit(&spa_namespace_lock);
776 	}
777 
778 	if (error == 0) {
779 		if ((flag & FMODE_WRITE) && (zv->zv_flags & ZVOL_RDONLY)) {
780 			if (zv->zv_open_count == 0)
781 				zvol_last_close(zv);
782 
783 			error = SET_ERROR(-EROFS);
784 		} else {
785 			zv->zv_open_count++;
786 		}
787 	}
788 
789 	mutex_exit(&zv->zv_state_lock);
790 	if (drop_suspend)
791 		rw_exit(&zv->zv_suspend_lock);
792 
793 	if (error == 0)
794 		zfs_check_media_change(bdev);
795 
796 	return (error);
797 }
798 
799 static void
800 zvol_release(struct gendisk *disk, fmode_t mode)
801 {
802 	zvol_state_t *zv;
803 	boolean_t drop_suspend = B_TRUE;
804 
805 	rw_enter(&zvol_state_lock, RW_READER);
806 	zv = disk->private_data;
807 
808 	mutex_enter(&zv->zv_state_lock);
809 	ASSERT3U(zv->zv_open_count, >, 0);
810 	/*
811 	 * make sure zvol is not suspended during last close
812 	 * (hold zv_suspend_lock) and respect proper lock acquisition
813 	 * ordering - zv_suspend_lock before zv_state_lock
814 	 */
815 	if (zv->zv_open_count == 1) {
816 		if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
817 			mutex_exit(&zv->zv_state_lock);
818 			rw_enter(&zv->zv_suspend_lock, RW_READER);
819 			mutex_enter(&zv->zv_state_lock);
820 			/* check to see if zv_suspend_lock is needed */
821 			if (zv->zv_open_count != 1) {
822 				rw_exit(&zv->zv_suspend_lock);
823 				drop_suspend = B_FALSE;
824 			}
825 		}
826 	} else {
827 		drop_suspend = B_FALSE;
828 	}
829 	rw_exit(&zvol_state_lock);
830 
831 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
832 
833 	zv->zv_open_count--;
834 	if (zv->zv_open_count == 0) {
835 		ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
836 		zvol_last_close(zv);
837 	}
838 
839 	mutex_exit(&zv->zv_state_lock);
840 
841 	if (drop_suspend)
842 		rw_exit(&zv->zv_suspend_lock);
843 }
844 
845 static int
846 zvol_ioctl(struct block_device *bdev, fmode_t mode,
847     unsigned int cmd, unsigned long arg)
848 {
849 	zvol_state_t *zv = bdev->bd_disk->private_data;
850 	int error = 0;
851 
852 	ASSERT3U(zv->zv_open_count, >, 0);
853 
854 	switch (cmd) {
855 	case BLKFLSBUF:
856 		fsync_bdev(bdev);
857 		invalidate_bdev(bdev);
858 		rw_enter(&zv->zv_suspend_lock, RW_READER);
859 
860 		if (!(zv->zv_flags & ZVOL_RDONLY))
861 			txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
862 
863 		rw_exit(&zv->zv_suspend_lock);
864 		break;
865 
866 	case BLKZNAME:
867 		mutex_enter(&zv->zv_state_lock);
868 		error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN);
869 		mutex_exit(&zv->zv_state_lock);
870 		break;
871 
872 	default:
873 		error = -ENOTTY;
874 		break;
875 	}
876 
877 	return (SET_ERROR(error));
878 }
879 
880 #ifdef CONFIG_COMPAT
881 static int
882 zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
883     unsigned cmd, unsigned long arg)
884 {
885 	return (zvol_ioctl(bdev, mode, cmd, arg));
886 }
887 #else
888 #define	zvol_compat_ioctl	NULL
889 #endif
890 
891 static unsigned int
892 zvol_check_events(struct gendisk *disk, unsigned int clearing)
893 {
894 	unsigned int mask = 0;
895 
896 	rw_enter(&zvol_state_lock, RW_READER);
897 
898 	zvol_state_t *zv = disk->private_data;
899 	if (zv != NULL) {
900 		mutex_enter(&zv->zv_state_lock);
901 		mask = zv->zv_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
902 		zv->zv_changed = 0;
903 		mutex_exit(&zv->zv_state_lock);
904 	}
905 
906 	rw_exit(&zvol_state_lock);
907 
908 	return (mask);
909 }
910 
911 static int
912 zvol_revalidate_disk(struct gendisk *disk)
913 {
914 	rw_enter(&zvol_state_lock, RW_READER);
915 
916 	zvol_state_t *zv = disk->private_data;
917 	if (zv != NULL) {
918 		mutex_enter(&zv->zv_state_lock);
919 		set_capacity(zv->zv_zso->zvo_disk,
920 		    zv->zv_volsize >> SECTOR_BITS);
921 		mutex_exit(&zv->zv_state_lock);
922 	}
923 
924 	rw_exit(&zvol_state_lock);
925 
926 	return (0);
927 }
928 
929 int
930 zvol_os_update_volsize(zvol_state_t *zv, uint64_t volsize)
931 {
932 	struct gendisk *disk = zv->zv_zso->zvo_disk;
933 
934 #if defined(HAVE_REVALIDATE_DISK_SIZE)
935 	revalidate_disk_size(disk, zvol_revalidate_disk(disk) == 0);
936 #elif defined(HAVE_REVALIDATE_DISK)
937 	revalidate_disk(disk);
938 #else
939 	zvol_revalidate_disk(disk);
940 #endif
941 	return (0);
942 }
943 
944 void
945 zvol_os_clear_private(zvol_state_t *zv)
946 {
947 	/*
948 	 * Cleared while holding zvol_state_lock as a writer
949 	 * which will prevent zvol_open() from opening it.
950 	 */
951 	zv->zv_zso->zvo_disk->private_data = NULL;
952 }
953 
954 /*
955  * Provide a simple virtual geometry for legacy compatibility.  For devices
956  * smaller than 1 MiB a small head and sector count is used to allow very
957  * tiny devices.  For devices over 1 Mib a standard head and sector count
958  * is used to keep the cylinders count reasonable.
959  */
960 static int
961 zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
962 {
963 	zvol_state_t *zv = bdev->bd_disk->private_data;
964 	sector_t sectors;
965 
966 	ASSERT3U(zv->zv_open_count, >, 0);
967 
968 	sectors = get_capacity(zv->zv_zso->zvo_disk);
969 
970 	if (sectors > 2048) {
971 		geo->heads = 16;
972 		geo->sectors = 63;
973 	} else {
974 		geo->heads = 2;
975 		geo->sectors = 4;
976 	}
977 
978 	geo->start = 0;
979 	geo->cylinders = sectors / (geo->heads * geo->sectors);
980 
981 	return (0);
982 }
983 
984 /*
985  * Why have two separate block_device_operations structs?
986  *
987  * Normally we'd just have one, and assign 'submit_bio' as needed.  However,
988  * it's possible the user's kernel is built with CONSTIFY_PLUGIN, meaning we
989  * can't just change submit_bio dynamically at runtime.  So just create two
990  * separate structs to get around this.
991  */
992 static const struct block_device_operations zvol_ops_blk_mq = {
993 	.open			= zvol_open,
994 	.release		= zvol_release,
995 	.ioctl			= zvol_ioctl,
996 	.compat_ioctl		= zvol_compat_ioctl,
997 	.check_events		= zvol_check_events,
998 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
999 	.revalidate_disk	= zvol_revalidate_disk,
1000 #endif
1001 	.getgeo			= zvol_getgeo,
1002 	.owner			= THIS_MODULE,
1003 };
1004 
1005 static const struct block_device_operations zvol_ops = {
1006 	.open			= zvol_open,
1007 	.release		= zvol_release,
1008 	.ioctl			= zvol_ioctl,
1009 	.compat_ioctl		= zvol_compat_ioctl,
1010 	.check_events		= zvol_check_events,
1011 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
1012 	.revalidate_disk	= zvol_revalidate_disk,
1013 #endif
1014 	.getgeo			= zvol_getgeo,
1015 	.owner			= THIS_MODULE,
1016 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
1017 	.submit_bio		= zvol_submit_bio,
1018 #endif
1019 };
1020 
1021 static int
1022 zvol_alloc_non_blk_mq(struct zvol_state_os *zso)
1023 {
1024 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS)
1025 #if defined(HAVE_BLK_ALLOC_DISK)
1026 	zso->zvo_disk = blk_alloc_disk(NUMA_NO_NODE);
1027 	if (zso->zvo_disk == NULL)
1028 		return (1);
1029 
1030 	zso->zvo_disk->minors = ZVOL_MINORS;
1031 	zso->zvo_queue = zso->zvo_disk->queue;
1032 #else
1033 	zso->zvo_queue = blk_alloc_queue(NUMA_NO_NODE);
1034 	if (zso->zvo_queue == NULL)
1035 		return (1);
1036 
1037 	zso->zvo_disk = alloc_disk(ZVOL_MINORS);
1038 	if (zso->zvo_disk == NULL) {
1039 		blk_cleanup_queue(zso->zvo_queue);
1040 		return (1);
1041 	}
1042 
1043 	zso->zvo_disk->queue = zso->zvo_queue;
1044 #endif /* HAVE_BLK_ALLOC_DISK */
1045 #else
1046 	zso->zvo_queue = blk_generic_alloc_queue(zvol_request, NUMA_NO_NODE);
1047 	if (zso->zvo_queue == NULL)
1048 		return (1);
1049 
1050 	zso->zvo_disk = alloc_disk(ZVOL_MINORS);
1051 	if (zso->zvo_disk == NULL) {
1052 		blk_cleanup_queue(zso->zvo_queue);
1053 		return (1);
1054 	}
1055 
1056 	zso->zvo_disk->queue = zso->zvo_queue;
1057 #endif /* HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS */
1058 	return (0);
1059 
1060 }
1061 
1062 static int
1063 zvol_alloc_blk_mq(zvol_state_t *zv)
1064 {
1065 #ifdef HAVE_BLK_MQ
1066 	struct zvol_state_os *zso = zv->zv_zso;
1067 
1068 	/* Allocate our blk-mq tag_set */
1069 	if (zvol_blk_mq_alloc_tag_set(zv) != 0)
1070 		return (1);
1071 
1072 #if defined(HAVE_BLK_ALLOC_DISK)
1073 	zso->zvo_disk = blk_mq_alloc_disk(&zso->tag_set, zv);
1074 	if (zso->zvo_disk == NULL) {
1075 		blk_mq_free_tag_set(&zso->tag_set);
1076 		return (1);
1077 	}
1078 	zso->zvo_queue = zso->zvo_disk->queue;
1079 	zso->zvo_disk->minors = ZVOL_MINORS;
1080 #else
1081 	zso->zvo_disk = alloc_disk(ZVOL_MINORS);
1082 	if (zso->zvo_disk == NULL) {
1083 		blk_cleanup_queue(zso->zvo_queue);
1084 		blk_mq_free_tag_set(&zso->tag_set);
1085 		return (1);
1086 	}
1087 	/* Allocate queue */
1088 	zso->zvo_queue = blk_mq_init_queue(&zso->tag_set);
1089 	if (IS_ERR(zso->zvo_queue)) {
1090 		blk_mq_free_tag_set(&zso->tag_set);
1091 		return (1);
1092 	}
1093 
1094 	/* Our queue is now created, assign it to our disk */
1095 	zso->zvo_disk->queue = zso->zvo_queue;
1096 
1097 #endif
1098 #endif
1099 	return (0);
1100 }
1101 
1102 /*
1103  * Allocate memory for a new zvol_state_t and setup the required
1104  * request queue and generic disk structures for the block device.
1105  */
1106 static zvol_state_t *
1107 zvol_alloc(dev_t dev, const char *name)
1108 {
1109 	zvol_state_t *zv;
1110 	struct zvol_state_os *zso;
1111 	uint64_t volmode;
1112 	int ret;
1113 
1114 	if (dsl_prop_get_integer(name, "volmode", &volmode, NULL) != 0)
1115 		return (NULL);
1116 
1117 	if (volmode == ZFS_VOLMODE_DEFAULT)
1118 		volmode = zvol_volmode;
1119 
1120 	if (volmode == ZFS_VOLMODE_NONE)
1121 		return (NULL);
1122 
1123 	zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
1124 	zso = kmem_zalloc(sizeof (struct zvol_state_os), KM_SLEEP);
1125 	zv->zv_zso = zso;
1126 	zv->zv_volmode = volmode;
1127 
1128 	list_link_init(&zv->zv_next);
1129 	mutex_init(&zv->zv_state_lock, NULL, MUTEX_DEFAULT, NULL);
1130 
1131 #ifdef HAVE_BLK_MQ
1132 	zv->zv_zso->use_blk_mq = zvol_use_blk_mq;
1133 #endif
1134 
1135 	/*
1136 	 * The block layer has 3 interfaces for getting BIOs:
1137 	 *
1138 	 * 1. blk-mq request queues (new)
1139 	 * 2. submit_bio() (oldest)
1140 	 * 3. regular request queues (old).
1141 	 *
1142 	 * Each of those interfaces has two permutations:
1143 	 *
1144 	 * a) We have blk_alloc_disk()/blk_mq_alloc_disk(), which allocates
1145 	 *    both the disk and its queue (5.14 kernel or newer)
1146 	 *
1147 	 * b) We don't have blk_*alloc_disk(), and have to allocate the
1148 	 *    disk and the queue separately. (5.13 kernel or older)
1149 	 */
1150 	if (zv->zv_zso->use_blk_mq) {
1151 		ret = zvol_alloc_blk_mq(zv);
1152 		zso->zvo_disk->fops = &zvol_ops_blk_mq;
1153 	} else {
1154 		ret = zvol_alloc_non_blk_mq(zso);
1155 		zso->zvo_disk->fops = &zvol_ops;
1156 	}
1157 	if (ret != 0)
1158 		goto out_kmem;
1159 
1160 	blk_queue_set_write_cache(zso->zvo_queue, B_TRUE, B_TRUE);
1161 
1162 	/* Limit read-ahead to a single page to prevent over-prefetching. */
1163 	blk_queue_set_read_ahead(zso->zvo_queue, 1);
1164 
1165 	if (!zv->zv_zso->use_blk_mq) {
1166 		/* Disable write merging in favor of the ZIO pipeline. */
1167 		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, zso->zvo_queue);
1168 	}
1169 
1170 	/* Enable /proc/diskstats */
1171 	blk_queue_flag_set(QUEUE_FLAG_IO_STAT, zso->zvo_queue);
1172 
1173 	zso->zvo_queue->queuedata = zv;
1174 	zso->zvo_dev = dev;
1175 	zv->zv_open_count = 0;
1176 	strlcpy(zv->zv_name, name, MAXNAMELEN);
1177 
1178 	zfs_rangelock_init(&zv->zv_rangelock, NULL, NULL);
1179 	rw_init(&zv->zv_suspend_lock, NULL, RW_DEFAULT, NULL);
1180 
1181 	zso->zvo_disk->major = zvol_major;
1182 	zso->zvo_disk->events = DISK_EVENT_MEDIA_CHANGE;
1183 
1184 	/*
1185 	 * Setting ZFS_VOLMODE_DEV disables partitioning on ZVOL devices.
1186 	 * This is accomplished by limiting the number of minors for the
1187 	 * device to one and explicitly disabling partition scanning.
1188 	 */
1189 	if (volmode == ZFS_VOLMODE_DEV) {
1190 		zso->zvo_disk->minors = 1;
1191 		zso->zvo_disk->flags &= ~ZFS_GENHD_FL_EXT_DEVT;
1192 		zso->zvo_disk->flags |= ZFS_GENHD_FL_NO_PART;
1193 	}
1194 
1195 	zso->zvo_disk->first_minor = (dev & MINORMASK);
1196 	zso->zvo_disk->private_data = zv;
1197 	snprintf(zso->zvo_disk->disk_name, DISK_NAME_LEN, "%s%d",
1198 	    ZVOL_DEV_NAME, (dev & MINORMASK));
1199 
1200 	return (zv);
1201 
1202 out_kmem:
1203 	kmem_free(zso, sizeof (struct zvol_state_os));
1204 	kmem_free(zv, sizeof (zvol_state_t));
1205 	return (NULL);
1206 }
1207 
1208 /*
1209  * Cleanup then free a zvol_state_t which was created by zvol_alloc().
1210  * At this time, the structure is not opened by anyone, is taken off
1211  * the zvol_state_list, and has its private data set to NULL.
1212  * The zvol_state_lock is dropped.
1213  *
1214  * This function may take many milliseconds to complete (e.g. we've seen
1215  * it take over 256ms), due to the calls to "blk_cleanup_queue" and
1216  * "del_gendisk". Thus, consumers need to be careful to account for this
1217  * latency when calling this function.
1218  */
1219 void
1220 zvol_os_free(zvol_state_t *zv)
1221 {
1222 
1223 	ASSERT(!RW_LOCK_HELD(&zv->zv_suspend_lock));
1224 	ASSERT(!MUTEX_HELD(&zv->zv_state_lock));
1225 	ASSERT0(zv->zv_open_count);
1226 	ASSERT3P(zv->zv_zso->zvo_disk->private_data, ==, NULL);
1227 
1228 	rw_destroy(&zv->zv_suspend_lock);
1229 	zfs_rangelock_fini(&zv->zv_rangelock);
1230 
1231 	del_gendisk(zv->zv_zso->zvo_disk);
1232 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
1233 	defined(HAVE_BLK_ALLOC_DISK)
1234 #if defined(HAVE_BLK_CLEANUP_DISK)
1235 	blk_cleanup_disk(zv->zv_zso->zvo_disk);
1236 #else
1237 	put_disk(zv->zv_zso->zvo_disk);
1238 #endif
1239 #else
1240 	blk_cleanup_queue(zv->zv_zso->zvo_queue);
1241 	put_disk(zv->zv_zso->zvo_disk);
1242 #endif
1243 
1244 #ifdef HAVE_BLK_MQ
1245 	if (zv->zv_zso->use_blk_mq)
1246 		blk_mq_free_tag_set(&zv->zv_zso->tag_set);
1247 #endif
1248 
1249 	ida_simple_remove(&zvol_ida,
1250 	    MINOR(zv->zv_zso->zvo_dev) >> ZVOL_MINOR_BITS);
1251 
1252 	mutex_destroy(&zv->zv_state_lock);
1253 	dataset_kstats_destroy(&zv->zv_kstat);
1254 
1255 	kmem_free(zv->zv_zso, sizeof (struct zvol_state_os));
1256 	kmem_free(zv, sizeof (zvol_state_t));
1257 }
1258 
1259 void
1260 zvol_wait_close(zvol_state_t *zv)
1261 {
1262 }
1263 
1264 /*
1265  * Create a block device minor node and setup the linkage between it
1266  * and the specified volume.  Once this function returns the block
1267  * device is live and ready for use.
1268  */
1269 int
1270 zvol_os_create_minor(const char *name)
1271 {
1272 	zvol_state_t *zv;
1273 	objset_t *os;
1274 	dmu_object_info_t *doi;
1275 	uint64_t volsize;
1276 	uint64_t len;
1277 	unsigned minor = 0;
1278 	int error = 0;
1279 	int idx;
1280 	uint64_t hash = zvol_name_hash(name);
1281 	bool replayed_zil = B_FALSE;
1282 
1283 	if (zvol_inhibit_dev)
1284 		return (0);
1285 
1286 	idx = ida_simple_get(&zvol_ida, 0, 0, kmem_flags_convert(KM_SLEEP));
1287 	if (idx < 0)
1288 		return (SET_ERROR(-idx));
1289 	minor = idx << ZVOL_MINOR_BITS;
1290 
1291 	zv = zvol_find_by_name_hash(name, hash, RW_NONE);
1292 	if (zv) {
1293 		ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1294 		mutex_exit(&zv->zv_state_lock);
1295 		ida_simple_remove(&zvol_ida, idx);
1296 		return (SET_ERROR(EEXIST));
1297 	}
1298 
1299 	doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
1300 
1301 	error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, B_TRUE, FTAG, &os);
1302 	if (error)
1303 		goto out_doi;
1304 
1305 	error = dmu_object_info(os, ZVOL_OBJ, doi);
1306 	if (error)
1307 		goto out_dmu_objset_disown;
1308 
1309 	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
1310 	if (error)
1311 		goto out_dmu_objset_disown;
1312 
1313 	zv = zvol_alloc(MKDEV(zvol_major, minor), name);
1314 	if (zv == NULL) {
1315 		error = SET_ERROR(EAGAIN);
1316 		goto out_dmu_objset_disown;
1317 	}
1318 	zv->zv_hash = hash;
1319 
1320 	if (dmu_objset_is_snapshot(os))
1321 		zv->zv_flags |= ZVOL_RDONLY;
1322 
1323 	zv->zv_volblocksize = doi->doi_data_block_size;
1324 	zv->zv_volsize = volsize;
1325 	zv->zv_objset = os;
1326 
1327 	set_capacity(zv->zv_zso->zvo_disk, zv->zv_volsize >> 9);
1328 
1329 	blk_queue_max_hw_sectors(zv->zv_zso->zvo_queue,
1330 	    (DMU_MAX_ACCESS / 4) >> 9);
1331 
1332 	if (zv->zv_zso->use_blk_mq) {
1333 		/*
1334 		 * IO requests can be really big (1MB).  When an IO request
1335 		 * comes in, it is passed off to zvol_read() or zvol_write()
1336 		 * in a new thread, where it is chunked up into 'volblocksize'
1337 		 * sized pieces and processed.  So for example, if the request
1338 		 * is a 1MB write and your volblocksize is 128k, one zvol_write
1339 		 * thread will take that request and sequentially do ten 128k
1340 		 * IOs.  This is due to the fact that the thread needs to lock
1341 		 * each volblocksize sized block.  So you might be wondering:
1342 		 * "instead of passing the whole 1MB request to one thread,
1343 		 * why not pass ten individual 128k chunks to ten threads and
1344 		 * process the whole write in parallel?"  The short answer is
1345 		 * that there's a sweet spot number of chunks that balances
1346 		 * the greater parallelism with the added overhead of more
1347 		 * threads. The sweet spot can be different depending on if you
1348 		 * have a read or write  heavy workload.  Writes typically want
1349 		 * high chunk counts while reads typically want lower ones.  On
1350 		 * a test pool with 6 NVMe drives in a 3x 2-disk mirror
1351 		 * configuration, with volblocksize=8k, the sweet spot for good
1352 		 * sequential reads and writes was at 8 chunks.
1353 		 */
1354 
1355 		/*
1356 		 * Below we tell the kernel how big we want our requests
1357 		 * to be.  You would think that blk_queue_io_opt() would be
1358 		 * used to do this since it is used to "set optimal request
1359 		 * size for the queue", but that doesn't seem to do
1360 		 * anything - the kernel still gives you huge requests
1361 		 * with tons of little PAGE_SIZE segments contained within it.
1362 		 *
1363 		 * Knowing that the kernel will just give you PAGE_SIZE segments
1364 		 * no matter what, you can say "ok, I want PAGE_SIZE byte
1365 		 * segments, and I want 'N' of them per request", where N is
1366 		 * the correct number of segments for the volblocksize and
1367 		 * number of chunks you want.
1368 		 */
1369 #ifdef HAVE_BLK_MQ
1370 		if (zvol_blk_mq_blocks_per_thread != 0) {
1371 			unsigned int chunks;
1372 			chunks = MIN(zvol_blk_mq_blocks_per_thread, UINT16_MAX);
1373 
1374 			blk_queue_max_segment_size(zv->zv_zso->zvo_queue,
1375 			    PAGE_SIZE);
1376 			blk_queue_max_segments(zv->zv_zso->zvo_queue,
1377 			    (zv->zv_volblocksize * chunks) / PAGE_SIZE);
1378 		} else {
1379 			/*
1380 			 * Special case: zvol_blk_mq_blocks_per_thread = 0
1381 			 * Max everything out.
1382 			 */
1383 			blk_queue_max_segments(zv->zv_zso->zvo_queue,
1384 			    UINT16_MAX);
1385 			blk_queue_max_segment_size(zv->zv_zso->zvo_queue,
1386 			    UINT_MAX);
1387 		}
1388 #endif
1389 	} else {
1390 		blk_queue_max_segments(zv->zv_zso->zvo_queue, UINT16_MAX);
1391 		blk_queue_max_segment_size(zv->zv_zso->zvo_queue, UINT_MAX);
1392 	}
1393 
1394 	blk_queue_physical_block_size(zv->zv_zso->zvo_queue,
1395 	    zv->zv_volblocksize);
1396 	blk_queue_io_opt(zv->zv_zso->zvo_queue, zv->zv_volblocksize);
1397 	blk_queue_max_discard_sectors(zv->zv_zso->zvo_queue,
1398 	    (zvol_max_discard_blocks * zv->zv_volblocksize) >> 9);
1399 	blk_queue_discard_granularity(zv->zv_zso->zvo_queue,
1400 	    zv->zv_volblocksize);
1401 #ifdef QUEUE_FLAG_DISCARD
1402 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, zv->zv_zso->zvo_queue);
1403 #endif
1404 #ifdef QUEUE_FLAG_NONROT
1405 	blk_queue_flag_set(QUEUE_FLAG_NONROT, zv->zv_zso->zvo_queue);
1406 #endif
1407 #ifdef QUEUE_FLAG_ADD_RANDOM
1408 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zv->zv_zso->zvo_queue);
1409 #endif
1410 	/* This flag was introduced in kernel version 4.12. */
1411 #ifdef QUEUE_FLAG_SCSI_PASSTHROUGH
1412 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, zv->zv_zso->zvo_queue);
1413 #endif
1414 
1415 	ASSERT3P(zv->zv_kstat.dk_kstats, ==, NULL);
1416 	error = dataset_kstats_create(&zv->zv_kstat, zv->zv_objset);
1417 	if (error)
1418 		goto out_dmu_objset_disown;
1419 	ASSERT3P(zv->zv_zilog, ==, NULL);
1420 	zv->zv_zilog = zil_open(os, zvol_get_data, &zv->zv_kstat.dk_zil_sums);
1421 	if (spa_writeable(dmu_objset_spa(os))) {
1422 		if (zil_replay_disable)
1423 			replayed_zil = zil_destroy(zv->zv_zilog, B_FALSE);
1424 		else
1425 			replayed_zil = zil_replay(os, zv, zvol_replay_vector);
1426 	}
1427 	if (replayed_zil)
1428 		zil_close(zv->zv_zilog);
1429 	zv->zv_zilog = NULL;
1430 
1431 	/*
1432 	 * When udev detects the addition of the device it will immediately
1433 	 * invoke blkid(8) to determine the type of content on the device.
1434 	 * Prefetching the blocks commonly scanned by blkid(8) will speed
1435 	 * up this process.
1436 	 */
1437 	len = MIN(zvol_prefetch_bytes, SPA_MAXBLOCKSIZE);
1438 	if (len > 0) {
1439 		dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ);
1440 		dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len,
1441 		    ZIO_PRIORITY_SYNC_READ);
1442 	}
1443 
1444 	zv->zv_objset = NULL;
1445 out_dmu_objset_disown:
1446 	dmu_objset_disown(os, B_TRUE, FTAG);
1447 out_doi:
1448 	kmem_free(doi, sizeof (dmu_object_info_t));
1449 
1450 	/*
1451 	 * Keep in mind that once add_disk() is called, the zvol is
1452 	 * announced to the world, and zvol_open()/zvol_release() can
1453 	 * be called at any time. Incidentally, add_disk() itself calls
1454 	 * zvol_open()->zvol_first_open() and zvol_release()->zvol_last_close()
1455 	 * directly as well.
1456 	 */
1457 	if (error == 0) {
1458 		rw_enter(&zvol_state_lock, RW_WRITER);
1459 		zvol_insert(zv);
1460 		rw_exit(&zvol_state_lock);
1461 #ifdef HAVE_ADD_DISK_RET
1462 		error = add_disk(zv->zv_zso->zvo_disk);
1463 #else
1464 		add_disk(zv->zv_zso->zvo_disk);
1465 #endif
1466 	} else {
1467 		ida_simple_remove(&zvol_ida, idx);
1468 	}
1469 
1470 	return (error);
1471 }
1472 
1473 void
1474 zvol_os_rename_minor(zvol_state_t *zv, const char *newname)
1475 {
1476 	int readonly = get_disk_ro(zv->zv_zso->zvo_disk);
1477 
1478 	ASSERT(RW_LOCK_HELD(&zvol_state_lock));
1479 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1480 
1481 	strlcpy(zv->zv_name, newname, sizeof (zv->zv_name));
1482 
1483 	/* move to new hashtable entry  */
1484 	zv->zv_hash = zvol_name_hash(zv->zv_name);
1485 	hlist_del(&zv->zv_hlink);
1486 	hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
1487 
1488 	/*
1489 	 * The block device's read-only state is briefly changed causing
1490 	 * a KOBJ_CHANGE uevent to be issued.  This ensures udev detects
1491 	 * the name change and fixes the symlinks.  This does not change
1492 	 * ZVOL_RDONLY in zv->zv_flags so the actual read-only state never
1493 	 * changes.  This would normally be done using kobject_uevent() but
1494 	 * that is a GPL-only symbol which is why we need this workaround.
1495 	 */
1496 	set_disk_ro(zv->zv_zso->zvo_disk, !readonly);
1497 	set_disk_ro(zv->zv_zso->zvo_disk, readonly);
1498 }
1499 
1500 void
1501 zvol_os_set_disk_ro(zvol_state_t *zv, int flags)
1502 {
1503 
1504 	set_disk_ro(zv->zv_zso->zvo_disk, flags);
1505 }
1506 
1507 void
1508 zvol_os_set_capacity(zvol_state_t *zv, uint64_t capacity)
1509 {
1510 
1511 	set_capacity(zv->zv_zso->zvo_disk, capacity);
1512 }
1513 
1514 int
1515 zvol_init(void)
1516 {
1517 	int error;
1518 
1519 	/*
1520 	 * zvol_threads is the module param the user passes in.
1521 	 *
1522 	 * zvol_actual_threads is what we use internally, since the user can
1523 	 * pass zvol_thread = 0 to mean "use all the CPUs" (the default).
1524 	 */
1525 	static unsigned int zvol_actual_threads;
1526 
1527 	if (zvol_threads == 0) {
1528 		/*
1529 		 * See dde9380a1 for why 32 was chosen here.  This should
1530 		 * probably be refined to be some multiple of the number
1531 		 * of CPUs.
1532 		 */
1533 		zvol_actual_threads = MAX(num_online_cpus(), 32);
1534 	} else {
1535 		zvol_actual_threads = MIN(MAX(zvol_threads, 1), 1024);
1536 	}
1537 
1538 	error = register_blkdev(zvol_major, ZVOL_DRIVER);
1539 	if (error) {
1540 		printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
1541 		return (error);
1542 	}
1543 
1544 #ifdef HAVE_BLK_MQ
1545 	if (zvol_blk_mq_queue_depth == 0) {
1546 		zvol_actual_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
1547 	} else {
1548 		zvol_actual_blk_mq_queue_depth =
1549 		    MAX(zvol_blk_mq_queue_depth, BLKDEV_MIN_RQ);
1550 	}
1551 
1552 	if (zvol_blk_mq_threads == 0) {
1553 		zvol_blk_mq_actual_threads = num_online_cpus();
1554 	} else {
1555 		zvol_blk_mq_actual_threads = MIN(MAX(zvol_blk_mq_threads, 1),
1556 		    1024);
1557 	}
1558 #endif
1559 	zvol_taskq = taskq_create(ZVOL_DRIVER, zvol_actual_threads, maxclsyspri,
1560 	    zvol_actual_threads, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
1561 	if (zvol_taskq == NULL) {
1562 		unregister_blkdev(zvol_major, ZVOL_DRIVER);
1563 		return (-ENOMEM);
1564 	}
1565 
1566 	zvol_init_impl();
1567 	ida_init(&zvol_ida);
1568 	return (0);
1569 }
1570 
1571 void
1572 zvol_fini(void)
1573 {
1574 	zvol_fini_impl();
1575 	unregister_blkdev(zvol_major, ZVOL_DRIVER);
1576 	taskq_destroy(zvol_taskq);
1577 	ida_destroy(&zvol_ida);
1578 }
1579 
1580 /* BEGIN CSTYLED */
1581 module_param(zvol_inhibit_dev, uint, 0644);
1582 MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes");
1583 
1584 module_param(zvol_major, uint, 0444);
1585 MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
1586 
1587 module_param(zvol_threads, uint, 0444);
1588 MODULE_PARM_DESC(zvol_threads, "Number of threads to handle I/O requests. Set"
1589     "to 0 to use all active CPUs");
1590 
1591 module_param(zvol_request_sync, uint, 0644);
1592 MODULE_PARM_DESC(zvol_request_sync, "Synchronously handle bio requests");
1593 
1594 module_param(zvol_max_discard_blocks, ulong, 0444);
1595 MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard");
1596 
1597 module_param(zvol_prefetch_bytes, uint, 0644);
1598 MODULE_PARM_DESC(zvol_prefetch_bytes, "Prefetch N bytes at zvol start+end");
1599 
1600 module_param(zvol_volmode, uint, 0644);
1601 MODULE_PARM_DESC(zvol_volmode, "Default volmode property value");
1602 
1603 #ifdef HAVE_BLK_MQ
1604 module_param(zvol_blk_mq_queue_depth, uint, 0644);
1605 MODULE_PARM_DESC(zvol_blk_mq_queue_depth, "Default blk-mq queue depth");
1606 
1607 module_param(zvol_use_blk_mq, uint, 0644);
1608 MODULE_PARM_DESC(zvol_use_blk_mq, "Use the blk-mq API for zvols");
1609 
1610 module_param(zvol_blk_mq_blocks_per_thread, uint, 0644);
1611 MODULE_PARM_DESC(zvol_blk_mq_blocks_per_thread,
1612     "Process volblocksize blocks per thread");
1613 #endif
1614 
1615 /* END CSTYLED */
1616