1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 23 */ 24 25 #include <sys/dataset_kstats.h> 26 #include <sys/dbuf.h> 27 #include <sys/dmu_traverse.h> 28 #include <sys/dsl_dataset.h> 29 #include <sys/dsl_prop.h> 30 #include <sys/dsl_dir.h> 31 #include <sys/zap.h> 32 #include <sys/zfeature.h> 33 #include <sys/zil_impl.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/zio.h> 36 #include <sys/zfs_rlock.h> 37 #include <sys/spa_impl.h> 38 #include <sys/zvol.h> 39 #include <sys/zvol_impl.h> 40 41 #include <linux/blkdev_compat.h> 42 #include <linux/task_io_accounting_ops.h> 43 44 #ifdef HAVE_BLK_MQ 45 #include <linux/blk-mq.h> 46 #endif 47 48 static void zvol_request_impl(zvol_state_t *zv, struct bio *bio, 49 struct request *rq, boolean_t force_sync); 50 51 static unsigned int zvol_major = ZVOL_MAJOR; 52 static unsigned int zvol_request_sync = 0; 53 static unsigned int zvol_prefetch_bytes = (128 * 1024); 54 static unsigned long zvol_max_discard_blocks = 16384; 55 56 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS 57 static const unsigned int zvol_open_timeout_ms = 1000; 58 #endif 59 60 static unsigned int zvol_threads = 0; 61 #ifdef HAVE_BLK_MQ 62 static unsigned int zvol_blk_mq_threads = 0; 63 static unsigned int zvol_blk_mq_actual_threads; 64 static boolean_t zvol_use_blk_mq = B_FALSE; 65 66 /* 67 * The maximum number of volblocksize blocks to process per thread. Typically, 68 * write heavy workloads preform better with higher values here, and read 69 * heavy workloads preform better with lower values, but that's not a hard 70 * and fast rule. It's basically a knob to tune between "less overhead with 71 * less parallelism" and "more overhead, but more parallelism". 72 * 73 * '8' was chosen as a reasonable, balanced, default based off of sequential 74 * read and write tests to a zvol in an NVMe pool (with 16 CPUs). 75 */ 76 static unsigned int zvol_blk_mq_blocks_per_thread = 8; 77 #endif 78 79 #ifndef BLKDEV_DEFAULT_RQ 80 /* BLKDEV_MAX_RQ was renamed to BLKDEV_DEFAULT_RQ in the 5.16 kernel */ 81 #define BLKDEV_DEFAULT_RQ BLKDEV_MAX_RQ 82 #endif 83 84 /* 85 * Finalize our BIO or request. 86 */ 87 #ifdef HAVE_BLK_MQ 88 #define END_IO(zv, bio, rq, error) do { \ 89 if (bio) { \ 90 BIO_END_IO(bio, error); \ 91 } else { \ 92 blk_mq_end_request(rq, errno_to_bi_status(error)); \ 93 } \ 94 } while (0) 95 #else 96 #define END_IO(zv, bio, rq, error) BIO_END_IO(bio, error) 97 #endif 98 99 #ifdef HAVE_BLK_MQ 100 static unsigned int zvol_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ; 101 static unsigned int zvol_actual_blk_mq_queue_depth; 102 #endif 103 104 struct zvol_state_os { 105 struct gendisk *zvo_disk; /* generic disk */ 106 struct request_queue *zvo_queue; /* request queue */ 107 dev_t zvo_dev; /* device id */ 108 109 #ifdef HAVE_BLK_MQ 110 struct blk_mq_tag_set tag_set; 111 #endif 112 113 /* Set from the global 'zvol_use_blk_mq' at zvol load */ 114 boolean_t use_blk_mq; 115 }; 116 117 static taskq_t *zvol_taskq; 118 static struct ida zvol_ida; 119 120 typedef struct zv_request_stack { 121 zvol_state_t *zv; 122 struct bio *bio; 123 struct request *rq; 124 } zv_request_t; 125 126 typedef struct zv_work { 127 struct request *rq; 128 struct work_struct work; 129 } zv_work_t; 130 131 typedef struct zv_request_task { 132 zv_request_t zvr; 133 taskq_ent_t ent; 134 } zv_request_task_t; 135 136 static zv_request_task_t * 137 zv_request_task_create(zv_request_t zvr) 138 { 139 zv_request_task_t *task; 140 task = kmem_alloc(sizeof (zv_request_task_t), KM_SLEEP); 141 taskq_init_ent(&task->ent); 142 task->zvr = zvr; 143 return (task); 144 } 145 146 static void 147 zv_request_task_free(zv_request_task_t *task) 148 { 149 kmem_free(task, sizeof (*task)); 150 } 151 152 #ifdef HAVE_BLK_MQ 153 154 /* 155 * This is called when a new block multiqueue request comes in. A request 156 * contains one or more BIOs. 157 */ 158 static blk_status_t zvol_mq_queue_rq(struct blk_mq_hw_ctx *hctx, 159 const struct blk_mq_queue_data *bd) 160 { 161 struct request *rq = bd->rq; 162 zvol_state_t *zv = rq->q->queuedata; 163 164 /* Tell the kernel that we are starting to process this request */ 165 blk_mq_start_request(rq); 166 167 if (blk_rq_is_passthrough(rq)) { 168 /* Skip non filesystem request */ 169 blk_mq_end_request(rq, BLK_STS_IOERR); 170 return (BLK_STS_IOERR); 171 } 172 173 zvol_request_impl(zv, NULL, rq, 0); 174 175 /* Acknowledge to the kernel that we got this request */ 176 return (BLK_STS_OK); 177 } 178 179 static struct blk_mq_ops zvol_blk_mq_queue_ops = { 180 .queue_rq = zvol_mq_queue_rq, 181 }; 182 183 /* Initialize our blk-mq struct */ 184 static int zvol_blk_mq_alloc_tag_set(zvol_state_t *zv) 185 { 186 struct zvol_state_os *zso = zv->zv_zso; 187 188 memset(&zso->tag_set, 0, sizeof (zso->tag_set)); 189 190 /* Initialize tag set. */ 191 zso->tag_set.ops = &zvol_blk_mq_queue_ops; 192 zso->tag_set.nr_hw_queues = zvol_blk_mq_actual_threads; 193 zso->tag_set.queue_depth = zvol_actual_blk_mq_queue_depth; 194 zso->tag_set.numa_node = NUMA_NO_NODE; 195 zso->tag_set.cmd_size = 0; 196 197 /* 198 * We need BLK_MQ_F_BLOCKING here since we do blocking calls in 199 * zvol_request_impl() 200 */ 201 zso->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING; 202 zso->tag_set.driver_data = zv; 203 204 return (blk_mq_alloc_tag_set(&zso->tag_set)); 205 } 206 #endif /* HAVE_BLK_MQ */ 207 208 /* 209 * Given a path, return TRUE if path is a ZVOL. 210 */ 211 boolean_t 212 zvol_os_is_zvol(const char *path) 213 { 214 dev_t dev = 0; 215 216 if (vdev_lookup_bdev(path, &dev) != 0) 217 return (B_FALSE); 218 219 if (MAJOR(dev) == zvol_major) 220 return (B_TRUE); 221 222 return (B_FALSE); 223 } 224 225 static void 226 zvol_write(zv_request_t *zvr) 227 { 228 struct bio *bio = zvr->bio; 229 struct request *rq = zvr->rq; 230 int error = 0; 231 zfs_uio_t uio; 232 zvol_state_t *zv = zvr->zv; 233 struct request_queue *q; 234 struct gendisk *disk; 235 unsigned long start_time = 0; 236 boolean_t acct = B_FALSE; 237 238 ASSERT3P(zv, !=, NULL); 239 ASSERT3U(zv->zv_open_count, >, 0); 240 ASSERT3P(zv->zv_zilog, !=, NULL); 241 242 q = zv->zv_zso->zvo_queue; 243 disk = zv->zv_zso->zvo_disk; 244 245 /* bio marked as FLUSH need to flush before write */ 246 if (io_is_flush(bio, rq)) 247 zil_commit(zv->zv_zilog, ZVOL_OBJ); 248 249 /* Some requests are just for flush and nothing else. */ 250 if (io_size(bio, rq) == 0) { 251 rw_exit(&zv->zv_suspend_lock); 252 END_IO(zv, bio, rq, 0); 253 return; 254 } 255 256 zfs_uio_bvec_init(&uio, bio, rq); 257 258 ssize_t start_resid = uio.uio_resid; 259 260 /* 261 * With use_blk_mq, accounting is done by blk_mq_start_request() 262 * and blk_mq_end_request(), so we can skip it here. 263 */ 264 if (bio) { 265 acct = blk_queue_io_stat(q); 266 if (acct) { 267 start_time = blk_generic_start_io_acct(q, disk, WRITE, 268 bio); 269 } 270 } 271 272 boolean_t sync = 273 io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS; 274 275 zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock, 276 uio.uio_loffset, uio.uio_resid, RL_WRITER); 277 278 uint64_t volsize = zv->zv_volsize; 279 while (uio.uio_resid > 0 && uio.uio_loffset < volsize) { 280 uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1); 281 uint64_t off = uio.uio_loffset; 282 dmu_tx_t *tx = dmu_tx_create(zv->zv_objset); 283 284 if (bytes > volsize - off) /* don't write past the end */ 285 bytes = volsize - off; 286 287 dmu_tx_hold_write_by_dnode(tx, zv->zv_dn, off, bytes); 288 289 /* This will only fail for ENOSPC */ 290 error = dmu_tx_assign(tx, TXG_WAIT); 291 if (error) { 292 dmu_tx_abort(tx); 293 break; 294 } 295 error = dmu_write_uio_dnode(zv->zv_dn, &uio, bytes, tx); 296 if (error == 0) { 297 zvol_log_write(zv, tx, off, bytes, sync); 298 } 299 dmu_tx_commit(tx); 300 301 if (error) 302 break; 303 } 304 zfs_rangelock_exit(lr); 305 306 int64_t nwritten = start_resid - uio.uio_resid; 307 dataset_kstats_update_write_kstats(&zv->zv_kstat, nwritten); 308 task_io_account_write(nwritten); 309 310 if (sync) 311 zil_commit(zv->zv_zilog, ZVOL_OBJ); 312 313 rw_exit(&zv->zv_suspend_lock); 314 315 if (bio && acct) { 316 blk_generic_end_io_acct(q, disk, WRITE, bio, start_time); 317 } 318 319 END_IO(zv, bio, rq, -error); 320 } 321 322 static void 323 zvol_write_task(void *arg) 324 { 325 zv_request_task_t *task = arg; 326 zvol_write(&task->zvr); 327 zv_request_task_free(task); 328 } 329 330 static void 331 zvol_discard(zv_request_t *zvr) 332 { 333 struct bio *bio = zvr->bio; 334 struct request *rq = zvr->rq; 335 zvol_state_t *zv = zvr->zv; 336 uint64_t start = io_offset(bio, rq); 337 uint64_t size = io_size(bio, rq); 338 uint64_t end = start + size; 339 boolean_t sync; 340 int error = 0; 341 dmu_tx_t *tx; 342 struct request_queue *q = zv->zv_zso->zvo_queue; 343 struct gendisk *disk = zv->zv_zso->zvo_disk; 344 unsigned long start_time = 0; 345 346 boolean_t acct = blk_queue_io_stat(q); 347 348 ASSERT3P(zv, !=, NULL); 349 ASSERT3U(zv->zv_open_count, >, 0); 350 ASSERT3P(zv->zv_zilog, !=, NULL); 351 352 if (bio) { 353 acct = blk_queue_io_stat(q); 354 if (acct) { 355 start_time = blk_generic_start_io_acct(q, disk, WRITE, 356 bio); 357 } 358 } 359 360 sync = io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS; 361 362 if (end > zv->zv_volsize) { 363 error = SET_ERROR(EIO); 364 goto unlock; 365 } 366 367 /* 368 * Align the request to volume block boundaries when a secure erase is 369 * not required. This will prevent dnode_free_range() from zeroing out 370 * the unaligned parts which is slow (read-modify-write) and useless 371 * since we are not freeing any space by doing so. 372 */ 373 if (!io_is_secure_erase(bio, rq)) { 374 start = P2ROUNDUP(start, zv->zv_volblocksize); 375 end = P2ALIGN(end, zv->zv_volblocksize); 376 size = end - start; 377 } 378 379 if (start >= end) 380 goto unlock; 381 382 zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock, 383 start, size, RL_WRITER); 384 385 tx = dmu_tx_create(zv->zv_objset); 386 dmu_tx_mark_netfree(tx); 387 error = dmu_tx_assign(tx, TXG_WAIT); 388 if (error != 0) { 389 dmu_tx_abort(tx); 390 } else { 391 zvol_log_truncate(zv, tx, start, size, B_TRUE); 392 dmu_tx_commit(tx); 393 error = dmu_free_long_range(zv->zv_objset, 394 ZVOL_OBJ, start, size); 395 } 396 zfs_rangelock_exit(lr); 397 398 if (error == 0 && sync) 399 zil_commit(zv->zv_zilog, ZVOL_OBJ); 400 401 unlock: 402 rw_exit(&zv->zv_suspend_lock); 403 404 if (bio && acct) { 405 blk_generic_end_io_acct(q, disk, WRITE, bio, 406 start_time); 407 } 408 409 END_IO(zv, bio, rq, -error); 410 } 411 412 static void 413 zvol_discard_task(void *arg) 414 { 415 zv_request_task_t *task = arg; 416 zvol_discard(&task->zvr); 417 zv_request_task_free(task); 418 } 419 420 static void 421 zvol_read(zv_request_t *zvr) 422 { 423 struct bio *bio = zvr->bio; 424 struct request *rq = zvr->rq; 425 int error = 0; 426 zfs_uio_t uio; 427 boolean_t acct = B_FALSE; 428 zvol_state_t *zv = zvr->zv; 429 struct request_queue *q; 430 struct gendisk *disk; 431 unsigned long start_time = 0; 432 433 ASSERT3P(zv, !=, NULL); 434 ASSERT3U(zv->zv_open_count, >, 0); 435 436 zfs_uio_bvec_init(&uio, bio, rq); 437 438 q = zv->zv_zso->zvo_queue; 439 disk = zv->zv_zso->zvo_disk; 440 441 ssize_t start_resid = uio.uio_resid; 442 443 /* 444 * When blk-mq is being used, accounting is done by 445 * blk_mq_start_request() and blk_mq_end_request(). 446 */ 447 if (bio) { 448 acct = blk_queue_io_stat(q); 449 if (acct) 450 start_time = blk_generic_start_io_acct(q, disk, READ, 451 bio); 452 } 453 454 zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock, 455 uio.uio_loffset, uio.uio_resid, RL_READER); 456 457 uint64_t volsize = zv->zv_volsize; 458 459 while (uio.uio_resid > 0 && uio.uio_loffset < volsize) { 460 uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1); 461 462 /* don't read past the end */ 463 if (bytes > volsize - uio.uio_loffset) 464 bytes = volsize - uio.uio_loffset; 465 466 error = dmu_read_uio_dnode(zv->zv_dn, &uio, bytes); 467 if (error) { 468 /* convert checksum errors into IO errors */ 469 if (error == ECKSUM) 470 error = SET_ERROR(EIO); 471 break; 472 } 473 } 474 zfs_rangelock_exit(lr); 475 476 int64_t nread = start_resid - uio.uio_resid; 477 dataset_kstats_update_read_kstats(&zv->zv_kstat, nread); 478 task_io_account_read(nread); 479 480 rw_exit(&zv->zv_suspend_lock); 481 482 if (bio && acct) { 483 blk_generic_end_io_acct(q, disk, READ, bio, start_time); 484 } 485 486 END_IO(zv, bio, rq, -error); 487 } 488 489 static void 490 zvol_read_task(void *arg) 491 { 492 zv_request_task_t *task = arg; 493 zvol_read(&task->zvr); 494 zv_request_task_free(task); 495 } 496 497 498 /* 499 * Process a BIO or request 500 * 501 * Either 'bio' or 'rq' should be set depending on if we are processing a 502 * bio or a request (both should not be set). 503 * 504 * force_sync: Set to 0 to defer processing to a background taskq 505 * Set to 1 to process data synchronously 506 */ 507 static void 508 zvol_request_impl(zvol_state_t *zv, struct bio *bio, struct request *rq, 509 boolean_t force_sync) 510 { 511 fstrans_cookie_t cookie = spl_fstrans_mark(); 512 uint64_t offset = io_offset(bio, rq); 513 uint64_t size = io_size(bio, rq); 514 int rw = io_data_dir(bio, rq); 515 516 if (zvol_request_sync) 517 force_sync = 1; 518 519 zv_request_t zvr = { 520 .zv = zv, 521 .bio = bio, 522 .rq = rq, 523 }; 524 525 if (io_has_data(bio, rq) && offset + size > zv->zv_volsize) { 526 printk(KERN_INFO "%s: bad access: offset=%llu, size=%lu\n", 527 zv->zv_zso->zvo_disk->disk_name, 528 (long long unsigned)offset, 529 (long unsigned)size); 530 531 END_IO(zv, bio, rq, -SET_ERROR(EIO)); 532 goto out; 533 } 534 535 zv_request_task_t *task; 536 537 if (rw == WRITE) { 538 if (unlikely(zv->zv_flags & ZVOL_RDONLY)) { 539 END_IO(zv, bio, rq, -SET_ERROR(EROFS)); 540 goto out; 541 } 542 543 /* 544 * Prevents the zvol from being suspended, or the ZIL being 545 * concurrently opened. Will be released after the i/o 546 * completes. 547 */ 548 rw_enter(&zv->zv_suspend_lock, RW_READER); 549 550 /* 551 * Open a ZIL if this is the first time we have written to this 552 * zvol. We protect zv->zv_zilog with zv_suspend_lock rather 553 * than zv_state_lock so that we don't need to acquire an 554 * additional lock in this path. 555 */ 556 if (zv->zv_zilog == NULL) { 557 rw_exit(&zv->zv_suspend_lock); 558 rw_enter(&zv->zv_suspend_lock, RW_WRITER); 559 if (zv->zv_zilog == NULL) { 560 zv->zv_zilog = zil_open(zv->zv_objset, 561 zvol_get_data, &zv->zv_kstat.dk_zil_sums); 562 zv->zv_flags |= ZVOL_WRITTEN_TO; 563 /* replay / destroy done in zvol_create_minor */ 564 VERIFY0((zv->zv_zilog->zl_header->zh_flags & 565 ZIL_REPLAY_NEEDED)); 566 } 567 rw_downgrade(&zv->zv_suspend_lock); 568 } 569 570 /* 571 * We don't want this thread to be blocked waiting for i/o to 572 * complete, so we instead wait from a taskq callback. The 573 * i/o may be a ZIL write (via zil_commit()), or a read of an 574 * indirect block, or a read of a data block (if this is a 575 * partial-block write). We will indicate that the i/o is 576 * complete by calling END_IO() from the taskq callback. 577 * 578 * This design allows the calling thread to continue and 579 * initiate more concurrent operations by calling 580 * zvol_request() again. There are typically only a small 581 * number of threads available to call zvol_request() (e.g. 582 * one per iSCSI target), so keeping the latency of 583 * zvol_request() low is important for performance. 584 * 585 * The zvol_request_sync module parameter allows this 586 * behavior to be altered, for performance evaluation 587 * purposes. If the callback blocks, setting 588 * zvol_request_sync=1 will result in much worse performance. 589 * 590 * We can have up to zvol_threads concurrent i/o's being 591 * processed for all zvols on the system. This is typically 592 * a vast improvement over the zvol_request_sync=1 behavior 593 * of one i/o at a time per zvol. However, an even better 594 * design would be for zvol_request() to initiate the zio 595 * directly, and then be notified by the zio_done callback, 596 * which would call END_IO(). Unfortunately, the DMU/ZIL 597 * interfaces lack this functionality (they block waiting for 598 * the i/o to complete). 599 */ 600 if (io_is_discard(bio, rq) || io_is_secure_erase(bio, rq)) { 601 if (force_sync) { 602 zvol_discard(&zvr); 603 } else { 604 task = zv_request_task_create(zvr); 605 taskq_dispatch_ent(zvol_taskq, 606 zvol_discard_task, task, 0, &task->ent); 607 } 608 } else { 609 if (force_sync) { 610 zvol_write(&zvr); 611 } else { 612 task = zv_request_task_create(zvr); 613 taskq_dispatch_ent(zvol_taskq, 614 zvol_write_task, task, 0, &task->ent); 615 } 616 } 617 } else { 618 /* 619 * The SCST driver, and possibly others, may issue READ I/Os 620 * with a length of zero bytes. These empty I/Os contain no 621 * data and require no additional handling. 622 */ 623 if (size == 0) { 624 END_IO(zv, bio, rq, 0); 625 goto out; 626 } 627 628 rw_enter(&zv->zv_suspend_lock, RW_READER); 629 630 /* See comment in WRITE case above. */ 631 if (force_sync) { 632 zvol_read(&zvr); 633 } else { 634 task = zv_request_task_create(zvr); 635 taskq_dispatch_ent(zvol_taskq, 636 zvol_read_task, task, 0, &task->ent); 637 } 638 } 639 640 out: 641 spl_fstrans_unmark(cookie); 642 } 643 644 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS 645 #ifdef HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID 646 static void 647 zvol_submit_bio(struct bio *bio) 648 #else 649 static blk_qc_t 650 zvol_submit_bio(struct bio *bio) 651 #endif 652 #else 653 static MAKE_REQUEST_FN_RET 654 zvol_request(struct request_queue *q, struct bio *bio) 655 #endif 656 { 657 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS 658 #if defined(HAVE_BIO_BDEV_DISK) 659 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 660 #else 661 struct request_queue *q = bio->bi_disk->queue; 662 #endif 663 #endif 664 zvol_state_t *zv = q->queuedata; 665 666 zvol_request_impl(zv, bio, NULL, 0); 667 #if defined(HAVE_MAKE_REQUEST_FN_RET_QC) || \ 668 defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \ 669 !defined(HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID) 670 return (BLK_QC_T_NONE); 671 #endif 672 } 673 674 static int 675 zvol_open(struct block_device *bdev, fmode_t flag) 676 { 677 zvol_state_t *zv; 678 int error = 0; 679 boolean_t drop_suspend = B_FALSE; 680 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS 681 hrtime_t timeout = MSEC2NSEC(zvol_open_timeout_ms); 682 hrtime_t start = gethrtime(); 683 684 retry: 685 #endif 686 rw_enter(&zvol_state_lock, RW_READER); 687 /* 688 * Obtain a copy of private_data under the zvol_state_lock to make 689 * sure that either the result of zvol free code path setting 690 * bdev->bd_disk->private_data to NULL is observed, or zvol_os_free() 691 * is not called on this zv because of the positive zv_open_count. 692 */ 693 zv = bdev->bd_disk->private_data; 694 if (zv == NULL) { 695 rw_exit(&zvol_state_lock); 696 return (SET_ERROR(-ENXIO)); 697 } 698 699 mutex_enter(&zv->zv_state_lock); 700 /* 701 * Make sure zvol is not suspended during first open 702 * (hold zv_suspend_lock) and respect proper lock acquisition 703 * ordering - zv_suspend_lock before zv_state_lock 704 */ 705 if (zv->zv_open_count == 0) { 706 if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) { 707 mutex_exit(&zv->zv_state_lock); 708 rw_enter(&zv->zv_suspend_lock, RW_READER); 709 mutex_enter(&zv->zv_state_lock); 710 /* check to see if zv_suspend_lock is needed */ 711 if (zv->zv_open_count != 0) { 712 rw_exit(&zv->zv_suspend_lock); 713 } else { 714 drop_suspend = B_TRUE; 715 } 716 } else { 717 drop_suspend = B_TRUE; 718 } 719 } 720 rw_exit(&zvol_state_lock); 721 722 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 723 724 if (zv->zv_open_count == 0) { 725 boolean_t drop_namespace = B_FALSE; 726 727 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock)); 728 729 /* 730 * In all other call paths the spa_namespace_lock is taken 731 * before the bdev->bd_mutex lock. However, on open(2) 732 * the __blkdev_get() function calls fops->open() with the 733 * bdev->bd_mutex lock held. This can result in a deadlock 734 * when zvols from one pool are used as vdevs in another. 735 * 736 * To prevent a lock inversion deadlock we preemptively 737 * take the spa_namespace_lock. Normally the lock will not 738 * be contended and this is safe because spa_open_common() 739 * handles the case where the caller already holds the 740 * spa_namespace_lock. 741 * 742 * When the lock cannot be aquired after multiple retries 743 * this must be the vdev on zvol deadlock case and we have 744 * no choice but to return an error. For 5.12 and older 745 * kernels returning -ERESTARTSYS will result in the 746 * bdev->bd_mutex being dropped, then reacquired, and 747 * fops->open() being called again. This process can be 748 * repeated safely until both locks are acquired. For 5.13 749 * and newer the -ERESTARTSYS retry logic was removed from 750 * the kernel so the only option is to return the error for 751 * the caller to handle it. 752 */ 753 if (!mutex_owned(&spa_namespace_lock)) { 754 if (!mutex_tryenter(&spa_namespace_lock)) { 755 mutex_exit(&zv->zv_state_lock); 756 rw_exit(&zv->zv_suspend_lock); 757 758 #ifdef HAVE_BLKDEV_GET_ERESTARTSYS 759 schedule(); 760 return (SET_ERROR(-ERESTARTSYS)); 761 #else 762 if ((gethrtime() - start) > timeout) 763 return (SET_ERROR(-ERESTARTSYS)); 764 765 schedule_timeout(MSEC_TO_TICK(10)); 766 goto retry; 767 #endif 768 } else { 769 drop_namespace = B_TRUE; 770 } 771 } 772 773 error = -zvol_first_open(zv, !(flag & FMODE_WRITE)); 774 775 if (drop_namespace) 776 mutex_exit(&spa_namespace_lock); 777 } 778 779 if (error == 0) { 780 if ((flag & FMODE_WRITE) && (zv->zv_flags & ZVOL_RDONLY)) { 781 if (zv->zv_open_count == 0) 782 zvol_last_close(zv); 783 784 error = SET_ERROR(-EROFS); 785 } else { 786 zv->zv_open_count++; 787 } 788 } 789 790 mutex_exit(&zv->zv_state_lock); 791 if (drop_suspend) 792 rw_exit(&zv->zv_suspend_lock); 793 794 if (error == 0) 795 zfs_check_media_change(bdev); 796 797 return (error); 798 } 799 800 static void 801 zvol_release(struct gendisk *disk, fmode_t mode) 802 { 803 zvol_state_t *zv; 804 boolean_t drop_suspend = B_TRUE; 805 806 rw_enter(&zvol_state_lock, RW_READER); 807 zv = disk->private_data; 808 809 mutex_enter(&zv->zv_state_lock); 810 ASSERT3U(zv->zv_open_count, >, 0); 811 /* 812 * make sure zvol is not suspended during last close 813 * (hold zv_suspend_lock) and respect proper lock acquisition 814 * ordering - zv_suspend_lock before zv_state_lock 815 */ 816 if (zv->zv_open_count == 1) { 817 if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) { 818 mutex_exit(&zv->zv_state_lock); 819 rw_enter(&zv->zv_suspend_lock, RW_READER); 820 mutex_enter(&zv->zv_state_lock); 821 /* check to see if zv_suspend_lock is needed */ 822 if (zv->zv_open_count != 1) { 823 rw_exit(&zv->zv_suspend_lock); 824 drop_suspend = B_FALSE; 825 } 826 } 827 } else { 828 drop_suspend = B_FALSE; 829 } 830 rw_exit(&zvol_state_lock); 831 832 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 833 834 zv->zv_open_count--; 835 if (zv->zv_open_count == 0) { 836 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock)); 837 zvol_last_close(zv); 838 } 839 840 mutex_exit(&zv->zv_state_lock); 841 842 if (drop_suspend) 843 rw_exit(&zv->zv_suspend_lock); 844 } 845 846 static int 847 zvol_ioctl(struct block_device *bdev, fmode_t mode, 848 unsigned int cmd, unsigned long arg) 849 { 850 zvol_state_t *zv = bdev->bd_disk->private_data; 851 int error = 0; 852 853 ASSERT3U(zv->zv_open_count, >, 0); 854 855 switch (cmd) { 856 case BLKFLSBUF: 857 fsync_bdev(bdev); 858 invalidate_bdev(bdev); 859 rw_enter(&zv->zv_suspend_lock, RW_READER); 860 861 if (!(zv->zv_flags & ZVOL_RDONLY)) 862 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0); 863 864 rw_exit(&zv->zv_suspend_lock); 865 break; 866 867 case BLKZNAME: 868 mutex_enter(&zv->zv_state_lock); 869 error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN); 870 mutex_exit(&zv->zv_state_lock); 871 break; 872 873 default: 874 error = -ENOTTY; 875 break; 876 } 877 878 return (SET_ERROR(error)); 879 } 880 881 #ifdef CONFIG_COMPAT 882 static int 883 zvol_compat_ioctl(struct block_device *bdev, fmode_t mode, 884 unsigned cmd, unsigned long arg) 885 { 886 return (zvol_ioctl(bdev, mode, cmd, arg)); 887 } 888 #else 889 #define zvol_compat_ioctl NULL 890 #endif 891 892 static unsigned int 893 zvol_check_events(struct gendisk *disk, unsigned int clearing) 894 { 895 unsigned int mask = 0; 896 897 rw_enter(&zvol_state_lock, RW_READER); 898 899 zvol_state_t *zv = disk->private_data; 900 if (zv != NULL) { 901 mutex_enter(&zv->zv_state_lock); 902 mask = zv->zv_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 903 zv->zv_changed = 0; 904 mutex_exit(&zv->zv_state_lock); 905 } 906 907 rw_exit(&zvol_state_lock); 908 909 return (mask); 910 } 911 912 static int 913 zvol_revalidate_disk(struct gendisk *disk) 914 { 915 rw_enter(&zvol_state_lock, RW_READER); 916 917 zvol_state_t *zv = disk->private_data; 918 if (zv != NULL) { 919 mutex_enter(&zv->zv_state_lock); 920 set_capacity(zv->zv_zso->zvo_disk, 921 zv->zv_volsize >> SECTOR_BITS); 922 mutex_exit(&zv->zv_state_lock); 923 } 924 925 rw_exit(&zvol_state_lock); 926 927 return (0); 928 } 929 930 int 931 zvol_os_update_volsize(zvol_state_t *zv, uint64_t volsize) 932 { 933 struct gendisk *disk = zv->zv_zso->zvo_disk; 934 935 #if defined(HAVE_REVALIDATE_DISK_SIZE) 936 revalidate_disk_size(disk, zvol_revalidate_disk(disk) == 0); 937 #elif defined(HAVE_REVALIDATE_DISK) 938 revalidate_disk(disk); 939 #else 940 zvol_revalidate_disk(disk); 941 #endif 942 return (0); 943 } 944 945 void 946 zvol_os_clear_private(zvol_state_t *zv) 947 { 948 /* 949 * Cleared while holding zvol_state_lock as a writer 950 * which will prevent zvol_open() from opening it. 951 */ 952 zv->zv_zso->zvo_disk->private_data = NULL; 953 } 954 955 /* 956 * Provide a simple virtual geometry for legacy compatibility. For devices 957 * smaller than 1 MiB a small head and sector count is used to allow very 958 * tiny devices. For devices over 1 Mib a standard head and sector count 959 * is used to keep the cylinders count reasonable. 960 */ 961 static int 962 zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo) 963 { 964 zvol_state_t *zv = bdev->bd_disk->private_data; 965 sector_t sectors; 966 967 ASSERT3U(zv->zv_open_count, >, 0); 968 969 sectors = get_capacity(zv->zv_zso->zvo_disk); 970 971 if (sectors > 2048) { 972 geo->heads = 16; 973 geo->sectors = 63; 974 } else { 975 geo->heads = 2; 976 geo->sectors = 4; 977 } 978 979 geo->start = 0; 980 geo->cylinders = sectors / (geo->heads * geo->sectors); 981 982 return (0); 983 } 984 985 /* 986 * Why have two separate block_device_operations structs? 987 * 988 * Normally we'd just have one, and assign 'submit_bio' as needed. However, 989 * it's possible the user's kernel is built with CONSTIFY_PLUGIN, meaning we 990 * can't just change submit_bio dynamically at runtime. So just create two 991 * separate structs to get around this. 992 */ 993 static const struct block_device_operations zvol_ops_blk_mq = { 994 .open = zvol_open, 995 .release = zvol_release, 996 .ioctl = zvol_ioctl, 997 .compat_ioctl = zvol_compat_ioctl, 998 .check_events = zvol_check_events, 999 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK 1000 .revalidate_disk = zvol_revalidate_disk, 1001 #endif 1002 .getgeo = zvol_getgeo, 1003 .owner = THIS_MODULE, 1004 }; 1005 1006 static const struct block_device_operations zvol_ops = { 1007 .open = zvol_open, 1008 .release = zvol_release, 1009 .ioctl = zvol_ioctl, 1010 .compat_ioctl = zvol_compat_ioctl, 1011 .check_events = zvol_check_events, 1012 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK 1013 .revalidate_disk = zvol_revalidate_disk, 1014 #endif 1015 .getgeo = zvol_getgeo, 1016 .owner = THIS_MODULE, 1017 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS 1018 .submit_bio = zvol_submit_bio, 1019 #endif 1020 }; 1021 1022 static int 1023 zvol_alloc_non_blk_mq(struct zvol_state_os *zso) 1024 { 1025 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) 1026 #if defined(HAVE_BLK_ALLOC_DISK) 1027 zso->zvo_disk = blk_alloc_disk(NUMA_NO_NODE); 1028 if (zso->zvo_disk == NULL) 1029 return (1); 1030 1031 zso->zvo_disk->minors = ZVOL_MINORS; 1032 zso->zvo_queue = zso->zvo_disk->queue; 1033 #else 1034 zso->zvo_queue = blk_alloc_queue(NUMA_NO_NODE); 1035 if (zso->zvo_queue == NULL) 1036 return (1); 1037 1038 zso->zvo_disk = alloc_disk(ZVOL_MINORS); 1039 if (zso->zvo_disk == NULL) { 1040 blk_cleanup_queue(zso->zvo_queue); 1041 return (1); 1042 } 1043 1044 zso->zvo_disk->queue = zso->zvo_queue; 1045 #endif /* HAVE_BLK_ALLOC_DISK */ 1046 #else 1047 zso->zvo_queue = blk_generic_alloc_queue(zvol_request, NUMA_NO_NODE); 1048 if (zso->zvo_queue == NULL) 1049 return (1); 1050 1051 zso->zvo_disk = alloc_disk(ZVOL_MINORS); 1052 if (zso->zvo_disk == NULL) { 1053 blk_cleanup_queue(zso->zvo_queue); 1054 return (1); 1055 } 1056 1057 zso->zvo_disk->queue = zso->zvo_queue; 1058 #endif /* HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS */ 1059 return (0); 1060 1061 } 1062 1063 static int 1064 zvol_alloc_blk_mq(zvol_state_t *zv) 1065 { 1066 #ifdef HAVE_BLK_MQ 1067 struct zvol_state_os *zso = zv->zv_zso; 1068 1069 /* Allocate our blk-mq tag_set */ 1070 if (zvol_blk_mq_alloc_tag_set(zv) != 0) 1071 return (1); 1072 1073 #if defined(HAVE_BLK_ALLOC_DISK) 1074 zso->zvo_disk = blk_mq_alloc_disk(&zso->tag_set, zv); 1075 if (zso->zvo_disk == NULL) { 1076 blk_mq_free_tag_set(&zso->tag_set); 1077 return (1); 1078 } 1079 zso->zvo_queue = zso->zvo_disk->queue; 1080 zso->zvo_disk->minors = ZVOL_MINORS; 1081 #else 1082 zso->zvo_disk = alloc_disk(ZVOL_MINORS); 1083 if (zso->zvo_disk == NULL) { 1084 blk_cleanup_queue(zso->zvo_queue); 1085 blk_mq_free_tag_set(&zso->tag_set); 1086 return (1); 1087 } 1088 /* Allocate queue */ 1089 zso->zvo_queue = blk_mq_init_queue(&zso->tag_set); 1090 if (IS_ERR(zso->zvo_queue)) { 1091 blk_mq_free_tag_set(&zso->tag_set); 1092 return (1); 1093 } 1094 1095 /* Our queue is now created, assign it to our disk */ 1096 zso->zvo_disk->queue = zso->zvo_queue; 1097 1098 #endif 1099 #endif 1100 return (0); 1101 } 1102 1103 /* 1104 * Allocate memory for a new zvol_state_t and setup the required 1105 * request queue and generic disk structures for the block device. 1106 */ 1107 static zvol_state_t * 1108 zvol_alloc(dev_t dev, const char *name) 1109 { 1110 zvol_state_t *zv; 1111 struct zvol_state_os *zso; 1112 uint64_t volmode; 1113 int ret; 1114 1115 if (dsl_prop_get_integer(name, "volmode", &volmode, NULL) != 0) 1116 return (NULL); 1117 1118 if (volmode == ZFS_VOLMODE_DEFAULT) 1119 volmode = zvol_volmode; 1120 1121 if (volmode == ZFS_VOLMODE_NONE) 1122 return (NULL); 1123 1124 zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP); 1125 zso = kmem_zalloc(sizeof (struct zvol_state_os), KM_SLEEP); 1126 zv->zv_zso = zso; 1127 zv->zv_volmode = volmode; 1128 1129 list_link_init(&zv->zv_next); 1130 mutex_init(&zv->zv_state_lock, NULL, MUTEX_DEFAULT, NULL); 1131 1132 #ifdef HAVE_BLK_MQ 1133 zv->zv_zso->use_blk_mq = zvol_use_blk_mq; 1134 #endif 1135 1136 /* 1137 * The block layer has 3 interfaces for getting BIOs: 1138 * 1139 * 1. blk-mq request queues (new) 1140 * 2. submit_bio() (oldest) 1141 * 3. regular request queues (old). 1142 * 1143 * Each of those interfaces has two permutations: 1144 * 1145 * a) We have blk_alloc_disk()/blk_mq_alloc_disk(), which allocates 1146 * both the disk and its queue (5.14 kernel or newer) 1147 * 1148 * b) We don't have blk_*alloc_disk(), and have to allocate the 1149 * disk and the queue separately. (5.13 kernel or older) 1150 */ 1151 if (zv->zv_zso->use_blk_mq) { 1152 ret = zvol_alloc_blk_mq(zv); 1153 zso->zvo_disk->fops = &zvol_ops_blk_mq; 1154 } else { 1155 ret = zvol_alloc_non_blk_mq(zso); 1156 zso->zvo_disk->fops = &zvol_ops; 1157 } 1158 if (ret != 0) 1159 goto out_kmem; 1160 1161 blk_queue_set_write_cache(zso->zvo_queue, B_TRUE, B_TRUE); 1162 1163 /* Limit read-ahead to a single page to prevent over-prefetching. */ 1164 blk_queue_set_read_ahead(zso->zvo_queue, 1); 1165 1166 if (!zv->zv_zso->use_blk_mq) { 1167 /* Disable write merging in favor of the ZIO pipeline. */ 1168 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, zso->zvo_queue); 1169 } 1170 1171 /* Enable /proc/diskstats */ 1172 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, zso->zvo_queue); 1173 1174 zso->zvo_queue->queuedata = zv; 1175 zso->zvo_dev = dev; 1176 zv->zv_open_count = 0; 1177 strlcpy(zv->zv_name, name, MAXNAMELEN); 1178 1179 zfs_rangelock_init(&zv->zv_rangelock, NULL, NULL); 1180 rw_init(&zv->zv_suspend_lock, NULL, RW_DEFAULT, NULL); 1181 1182 zso->zvo_disk->major = zvol_major; 1183 zso->zvo_disk->events = DISK_EVENT_MEDIA_CHANGE; 1184 1185 /* 1186 * Setting ZFS_VOLMODE_DEV disables partitioning on ZVOL devices. 1187 * This is accomplished by limiting the number of minors for the 1188 * device to one and explicitly disabling partition scanning. 1189 */ 1190 if (volmode == ZFS_VOLMODE_DEV) { 1191 zso->zvo_disk->minors = 1; 1192 zso->zvo_disk->flags &= ~ZFS_GENHD_FL_EXT_DEVT; 1193 zso->zvo_disk->flags |= ZFS_GENHD_FL_NO_PART; 1194 } 1195 1196 zso->zvo_disk->first_minor = (dev & MINORMASK); 1197 zso->zvo_disk->private_data = zv; 1198 snprintf(zso->zvo_disk->disk_name, DISK_NAME_LEN, "%s%d", 1199 ZVOL_DEV_NAME, (dev & MINORMASK)); 1200 1201 return (zv); 1202 1203 out_kmem: 1204 kmem_free(zso, sizeof (struct zvol_state_os)); 1205 kmem_free(zv, sizeof (zvol_state_t)); 1206 return (NULL); 1207 } 1208 1209 /* 1210 * Cleanup then free a zvol_state_t which was created by zvol_alloc(). 1211 * At this time, the structure is not opened by anyone, is taken off 1212 * the zvol_state_list, and has its private data set to NULL. 1213 * The zvol_state_lock is dropped. 1214 * 1215 * This function may take many milliseconds to complete (e.g. we've seen 1216 * it take over 256ms), due to the calls to "blk_cleanup_queue" and 1217 * "del_gendisk". Thus, consumers need to be careful to account for this 1218 * latency when calling this function. 1219 */ 1220 void 1221 zvol_os_free(zvol_state_t *zv) 1222 { 1223 1224 ASSERT(!RW_LOCK_HELD(&zv->zv_suspend_lock)); 1225 ASSERT(!MUTEX_HELD(&zv->zv_state_lock)); 1226 ASSERT0(zv->zv_open_count); 1227 ASSERT3P(zv->zv_zso->zvo_disk->private_data, ==, NULL); 1228 1229 rw_destroy(&zv->zv_suspend_lock); 1230 zfs_rangelock_fini(&zv->zv_rangelock); 1231 1232 del_gendisk(zv->zv_zso->zvo_disk); 1233 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \ 1234 defined(HAVE_BLK_ALLOC_DISK) 1235 #if defined(HAVE_BLK_CLEANUP_DISK) 1236 blk_cleanup_disk(zv->zv_zso->zvo_disk); 1237 #else 1238 put_disk(zv->zv_zso->zvo_disk); 1239 #endif 1240 #else 1241 blk_cleanup_queue(zv->zv_zso->zvo_queue); 1242 put_disk(zv->zv_zso->zvo_disk); 1243 #endif 1244 1245 #ifdef HAVE_BLK_MQ 1246 if (zv->zv_zso->use_blk_mq) 1247 blk_mq_free_tag_set(&zv->zv_zso->tag_set); 1248 #endif 1249 1250 ida_simple_remove(&zvol_ida, 1251 MINOR(zv->zv_zso->zvo_dev) >> ZVOL_MINOR_BITS); 1252 1253 mutex_destroy(&zv->zv_state_lock); 1254 dataset_kstats_destroy(&zv->zv_kstat); 1255 1256 kmem_free(zv->zv_zso, sizeof (struct zvol_state_os)); 1257 kmem_free(zv, sizeof (zvol_state_t)); 1258 } 1259 1260 void 1261 zvol_wait_close(zvol_state_t *zv) 1262 { 1263 } 1264 1265 /* 1266 * Create a block device minor node and setup the linkage between it 1267 * and the specified volume. Once this function returns the block 1268 * device is live and ready for use. 1269 */ 1270 int 1271 zvol_os_create_minor(const char *name) 1272 { 1273 zvol_state_t *zv; 1274 objset_t *os; 1275 dmu_object_info_t *doi; 1276 uint64_t volsize; 1277 uint64_t len; 1278 unsigned minor = 0; 1279 int error = 0; 1280 int idx; 1281 uint64_t hash = zvol_name_hash(name); 1282 bool replayed_zil = B_FALSE; 1283 1284 if (zvol_inhibit_dev) 1285 return (0); 1286 1287 idx = ida_simple_get(&zvol_ida, 0, 0, kmem_flags_convert(KM_SLEEP)); 1288 if (idx < 0) 1289 return (SET_ERROR(-idx)); 1290 minor = idx << ZVOL_MINOR_BITS; 1291 1292 zv = zvol_find_by_name_hash(name, hash, RW_NONE); 1293 if (zv) { 1294 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 1295 mutex_exit(&zv->zv_state_lock); 1296 ida_simple_remove(&zvol_ida, idx); 1297 return (SET_ERROR(EEXIST)); 1298 } 1299 1300 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP); 1301 1302 error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, B_TRUE, FTAG, &os); 1303 if (error) 1304 goto out_doi; 1305 1306 error = dmu_object_info(os, ZVOL_OBJ, doi); 1307 if (error) 1308 goto out_dmu_objset_disown; 1309 1310 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize); 1311 if (error) 1312 goto out_dmu_objset_disown; 1313 1314 zv = zvol_alloc(MKDEV(zvol_major, minor), name); 1315 if (zv == NULL) { 1316 error = SET_ERROR(EAGAIN); 1317 goto out_dmu_objset_disown; 1318 } 1319 zv->zv_hash = hash; 1320 1321 if (dmu_objset_is_snapshot(os)) 1322 zv->zv_flags |= ZVOL_RDONLY; 1323 1324 zv->zv_volblocksize = doi->doi_data_block_size; 1325 zv->zv_volsize = volsize; 1326 zv->zv_objset = os; 1327 1328 set_capacity(zv->zv_zso->zvo_disk, zv->zv_volsize >> 9); 1329 1330 blk_queue_max_hw_sectors(zv->zv_zso->zvo_queue, 1331 (DMU_MAX_ACCESS / 4) >> 9); 1332 1333 if (zv->zv_zso->use_blk_mq) { 1334 /* 1335 * IO requests can be really big (1MB). When an IO request 1336 * comes in, it is passed off to zvol_read() or zvol_write() 1337 * in a new thread, where it is chunked up into 'volblocksize' 1338 * sized pieces and processed. So for example, if the request 1339 * is a 1MB write and your volblocksize is 128k, one zvol_write 1340 * thread will take that request and sequentially do ten 128k 1341 * IOs. This is due to the fact that the thread needs to lock 1342 * each volblocksize sized block. So you might be wondering: 1343 * "instead of passing the whole 1MB request to one thread, 1344 * why not pass ten individual 128k chunks to ten threads and 1345 * process the whole write in parallel?" The short answer is 1346 * that there's a sweet spot number of chunks that balances 1347 * the greater parallelism with the added overhead of more 1348 * threads. The sweet spot can be different depending on if you 1349 * have a read or write heavy workload. Writes typically want 1350 * high chunk counts while reads typically want lower ones. On 1351 * a test pool with 6 NVMe drives in a 3x 2-disk mirror 1352 * configuration, with volblocksize=8k, the sweet spot for good 1353 * sequential reads and writes was at 8 chunks. 1354 */ 1355 1356 /* 1357 * Below we tell the kernel how big we want our requests 1358 * to be. You would think that blk_queue_io_opt() would be 1359 * used to do this since it is used to "set optimal request 1360 * size for the queue", but that doesn't seem to do 1361 * anything - the kernel still gives you huge requests 1362 * with tons of little PAGE_SIZE segments contained within it. 1363 * 1364 * Knowing that the kernel will just give you PAGE_SIZE segments 1365 * no matter what, you can say "ok, I want PAGE_SIZE byte 1366 * segments, and I want 'N' of them per request", where N is 1367 * the correct number of segments for the volblocksize and 1368 * number of chunks you want. 1369 */ 1370 #ifdef HAVE_BLK_MQ 1371 if (zvol_blk_mq_blocks_per_thread != 0) { 1372 unsigned int chunks; 1373 chunks = MIN(zvol_blk_mq_blocks_per_thread, UINT16_MAX); 1374 1375 blk_queue_max_segment_size(zv->zv_zso->zvo_queue, 1376 PAGE_SIZE); 1377 blk_queue_max_segments(zv->zv_zso->zvo_queue, 1378 (zv->zv_volblocksize * chunks) / PAGE_SIZE); 1379 } else { 1380 /* 1381 * Special case: zvol_blk_mq_blocks_per_thread = 0 1382 * Max everything out. 1383 */ 1384 blk_queue_max_segments(zv->zv_zso->zvo_queue, 1385 UINT16_MAX); 1386 blk_queue_max_segment_size(zv->zv_zso->zvo_queue, 1387 UINT_MAX); 1388 } 1389 #endif 1390 } else { 1391 blk_queue_max_segments(zv->zv_zso->zvo_queue, UINT16_MAX); 1392 blk_queue_max_segment_size(zv->zv_zso->zvo_queue, UINT_MAX); 1393 } 1394 1395 blk_queue_physical_block_size(zv->zv_zso->zvo_queue, 1396 zv->zv_volblocksize); 1397 blk_queue_io_opt(zv->zv_zso->zvo_queue, zv->zv_volblocksize); 1398 blk_queue_max_discard_sectors(zv->zv_zso->zvo_queue, 1399 (zvol_max_discard_blocks * zv->zv_volblocksize) >> 9); 1400 blk_queue_discard_granularity(zv->zv_zso->zvo_queue, 1401 zv->zv_volblocksize); 1402 #ifdef QUEUE_FLAG_DISCARD 1403 blk_queue_flag_set(QUEUE_FLAG_DISCARD, zv->zv_zso->zvo_queue); 1404 #endif 1405 #ifdef QUEUE_FLAG_NONROT 1406 blk_queue_flag_set(QUEUE_FLAG_NONROT, zv->zv_zso->zvo_queue); 1407 #endif 1408 #ifdef QUEUE_FLAG_ADD_RANDOM 1409 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zv->zv_zso->zvo_queue); 1410 #endif 1411 /* This flag was introduced in kernel version 4.12. */ 1412 #ifdef QUEUE_FLAG_SCSI_PASSTHROUGH 1413 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, zv->zv_zso->zvo_queue); 1414 #endif 1415 1416 ASSERT3P(zv->zv_kstat.dk_kstats, ==, NULL); 1417 error = dataset_kstats_create(&zv->zv_kstat, zv->zv_objset); 1418 if (error) 1419 goto out_dmu_objset_disown; 1420 ASSERT3P(zv->zv_zilog, ==, NULL); 1421 zv->zv_zilog = zil_open(os, zvol_get_data, &zv->zv_kstat.dk_zil_sums); 1422 if (spa_writeable(dmu_objset_spa(os))) { 1423 if (zil_replay_disable) 1424 replayed_zil = zil_destroy(zv->zv_zilog, B_FALSE); 1425 else 1426 replayed_zil = zil_replay(os, zv, zvol_replay_vector); 1427 } 1428 if (replayed_zil) 1429 zil_close(zv->zv_zilog); 1430 zv->zv_zilog = NULL; 1431 1432 /* 1433 * When udev detects the addition of the device it will immediately 1434 * invoke blkid(8) to determine the type of content on the device. 1435 * Prefetching the blocks commonly scanned by blkid(8) will speed 1436 * up this process. 1437 */ 1438 len = MIN(zvol_prefetch_bytes, SPA_MAXBLOCKSIZE); 1439 if (len > 0) { 1440 dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ); 1441 dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len, 1442 ZIO_PRIORITY_SYNC_READ); 1443 } 1444 1445 zv->zv_objset = NULL; 1446 out_dmu_objset_disown: 1447 dmu_objset_disown(os, B_TRUE, FTAG); 1448 out_doi: 1449 kmem_free(doi, sizeof (dmu_object_info_t)); 1450 1451 /* 1452 * Keep in mind that once add_disk() is called, the zvol is 1453 * announced to the world, and zvol_open()/zvol_release() can 1454 * be called at any time. Incidentally, add_disk() itself calls 1455 * zvol_open()->zvol_first_open() and zvol_release()->zvol_last_close() 1456 * directly as well. 1457 */ 1458 if (error == 0) { 1459 rw_enter(&zvol_state_lock, RW_WRITER); 1460 zvol_insert(zv); 1461 rw_exit(&zvol_state_lock); 1462 #ifdef HAVE_ADD_DISK_RET 1463 error = add_disk(zv->zv_zso->zvo_disk); 1464 #else 1465 add_disk(zv->zv_zso->zvo_disk); 1466 #endif 1467 } else { 1468 ida_simple_remove(&zvol_ida, idx); 1469 } 1470 1471 return (error); 1472 } 1473 1474 void 1475 zvol_os_rename_minor(zvol_state_t *zv, const char *newname) 1476 { 1477 int readonly = get_disk_ro(zv->zv_zso->zvo_disk); 1478 1479 ASSERT(RW_LOCK_HELD(&zvol_state_lock)); 1480 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 1481 1482 strlcpy(zv->zv_name, newname, sizeof (zv->zv_name)); 1483 1484 /* move to new hashtable entry */ 1485 zv->zv_hash = zvol_name_hash(zv->zv_name); 1486 hlist_del(&zv->zv_hlink); 1487 hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash)); 1488 1489 /* 1490 * The block device's read-only state is briefly changed causing 1491 * a KOBJ_CHANGE uevent to be issued. This ensures udev detects 1492 * the name change and fixes the symlinks. This does not change 1493 * ZVOL_RDONLY in zv->zv_flags so the actual read-only state never 1494 * changes. This would normally be done using kobject_uevent() but 1495 * that is a GPL-only symbol which is why we need this workaround. 1496 */ 1497 set_disk_ro(zv->zv_zso->zvo_disk, !readonly); 1498 set_disk_ro(zv->zv_zso->zvo_disk, readonly); 1499 } 1500 1501 void 1502 zvol_os_set_disk_ro(zvol_state_t *zv, int flags) 1503 { 1504 1505 set_disk_ro(zv->zv_zso->zvo_disk, flags); 1506 } 1507 1508 void 1509 zvol_os_set_capacity(zvol_state_t *zv, uint64_t capacity) 1510 { 1511 1512 set_capacity(zv->zv_zso->zvo_disk, capacity); 1513 } 1514 1515 int 1516 zvol_init(void) 1517 { 1518 int error; 1519 1520 /* 1521 * zvol_threads is the module param the user passes in. 1522 * 1523 * zvol_actual_threads is what we use internally, since the user can 1524 * pass zvol_thread = 0 to mean "use all the CPUs" (the default). 1525 */ 1526 static unsigned int zvol_actual_threads; 1527 1528 if (zvol_threads == 0) { 1529 /* 1530 * See dde9380a1 for why 32 was chosen here. This should 1531 * probably be refined to be some multiple of the number 1532 * of CPUs. 1533 */ 1534 zvol_actual_threads = MAX(num_online_cpus(), 32); 1535 } else { 1536 zvol_actual_threads = MIN(MAX(zvol_threads, 1), 1024); 1537 } 1538 1539 error = register_blkdev(zvol_major, ZVOL_DRIVER); 1540 if (error) { 1541 printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error); 1542 return (error); 1543 } 1544 1545 #ifdef HAVE_BLK_MQ 1546 if (zvol_blk_mq_queue_depth == 0) { 1547 zvol_actual_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ; 1548 } else { 1549 zvol_actual_blk_mq_queue_depth = 1550 MAX(zvol_blk_mq_queue_depth, BLKDEV_MIN_RQ); 1551 } 1552 1553 if (zvol_blk_mq_threads == 0) { 1554 zvol_blk_mq_actual_threads = num_online_cpus(); 1555 } else { 1556 zvol_blk_mq_actual_threads = MIN(MAX(zvol_blk_mq_threads, 1), 1557 1024); 1558 } 1559 #endif 1560 zvol_taskq = taskq_create(ZVOL_DRIVER, zvol_actual_threads, maxclsyspri, 1561 zvol_actual_threads, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC); 1562 if (zvol_taskq == NULL) { 1563 unregister_blkdev(zvol_major, ZVOL_DRIVER); 1564 return (-ENOMEM); 1565 } 1566 1567 zvol_init_impl(); 1568 ida_init(&zvol_ida); 1569 return (0); 1570 } 1571 1572 void 1573 zvol_fini(void) 1574 { 1575 zvol_fini_impl(); 1576 unregister_blkdev(zvol_major, ZVOL_DRIVER); 1577 taskq_destroy(zvol_taskq); 1578 ida_destroy(&zvol_ida); 1579 } 1580 1581 /* BEGIN CSTYLED */ 1582 module_param(zvol_inhibit_dev, uint, 0644); 1583 MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes"); 1584 1585 module_param(zvol_major, uint, 0444); 1586 MODULE_PARM_DESC(zvol_major, "Major number for zvol device"); 1587 1588 module_param(zvol_threads, uint, 0444); 1589 MODULE_PARM_DESC(zvol_threads, "Number of threads to handle I/O requests. Set" 1590 "to 0 to use all active CPUs"); 1591 1592 module_param(zvol_request_sync, uint, 0644); 1593 MODULE_PARM_DESC(zvol_request_sync, "Synchronously handle bio requests"); 1594 1595 module_param(zvol_max_discard_blocks, ulong, 0444); 1596 MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard"); 1597 1598 module_param(zvol_prefetch_bytes, uint, 0644); 1599 MODULE_PARM_DESC(zvol_prefetch_bytes, "Prefetch N bytes at zvol start+end"); 1600 1601 module_param(zvol_volmode, uint, 0644); 1602 MODULE_PARM_DESC(zvol_volmode, "Default volmode property value"); 1603 1604 #ifdef HAVE_BLK_MQ 1605 module_param(zvol_blk_mq_queue_depth, uint, 0644); 1606 MODULE_PARM_DESC(zvol_blk_mq_queue_depth, "Default blk-mq queue depth"); 1607 1608 module_param(zvol_use_blk_mq, uint, 0644); 1609 MODULE_PARM_DESC(zvol_use_blk_mq, "Use the blk-mq API for zvols"); 1610 1611 module_param(zvol_blk_mq_blocks_per_thread, uint, 0644); 1612 MODULE_PARM_DESC(zvol_blk_mq_blocks_per_thread, 1613 "Process volblocksize blocks per thread"); 1614 #endif 1615 1616 /* END CSTYLED */ 1617