1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 23 */ 24 25 #include <sys/dataset_kstats.h> 26 #include <sys/dbuf.h> 27 #include <sys/dmu_traverse.h> 28 #include <sys/dsl_dataset.h> 29 #include <sys/dsl_prop.h> 30 #include <sys/dsl_dir.h> 31 #include <sys/zap.h> 32 #include <sys/zfeature.h> 33 #include <sys/zil_impl.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/zio.h> 36 #include <sys/zfs_rlock.h> 37 #include <sys/spa_impl.h> 38 #include <sys/zvol.h> 39 #include <sys/zvol_impl.h> 40 #include <cityhash.h> 41 42 #include <linux/blkdev_compat.h> 43 #include <linux/task_io_accounting_ops.h> 44 45 #ifdef HAVE_BLK_MQ 46 #include <linux/blk-mq.h> 47 #endif 48 49 static void zvol_request_impl(zvol_state_t *zv, struct bio *bio, 50 struct request *rq, boolean_t force_sync); 51 52 static unsigned int zvol_major = ZVOL_MAJOR; 53 static unsigned int zvol_request_sync = 0; 54 static unsigned int zvol_prefetch_bytes = (128 * 1024); 55 static unsigned long zvol_max_discard_blocks = 16384; 56 57 /* 58 * Switch taskq at multiple of 512 MB offset. This can be set to a lower value 59 * to utilize more threads for small files but may affect prefetch hits. 60 */ 61 #define ZVOL_TASKQ_OFFSET_SHIFT 29 62 63 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS 64 static unsigned int zvol_open_timeout_ms = 1000; 65 #endif 66 67 static unsigned int zvol_threads = 0; 68 #ifdef HAVE_BLK_MQ 69 static unsigned int zvol_blk_mq_threads = 0; 70 static unsigned int zvol_blk_mq_actual_threads; 71 static boolean_t zvol_use_blk_mq = B_FALSE; 72 73 /* 74 * The maximum number of volblocksize blocks to process per thread. Typically, 75 * write heavy workloads preform better with higher values here, and read 76 * heavy workloads preform better with lower values, but that's not a hard 77 * and fast rule. It's basically a knob to tune between "less overhead with 78 * less parallelism" and "more overhead, but more parallelism". 79 * 80 * '8' was chosen as a reasonable, balanced, default based off of sequential 81 * read and write tests to a zvol in an NVMe pool (with 16 CPUs). 82 */ 83 static unsigned int zvol_blk_mq_blocks_per_thread = 8; 84 #endif 85 86 static unsigned int zvol_num_taskqs = 0; 87 88 #ifndef BLKDEV_DEFAULT_RQ 89 /* BLKDEV_MAX_RQ was renamed to BLKDEV_DEFAULT_RQ in the 5.16 kernel */ 90 #define BLKDEV_DEFAULT_RQ BLKDEV_MAX_RQ 91 #endif 92 93 /* 94 * Finalize our BIO or request. 95 */ 96 #ifdef HAVE_BLK_MQ 97 #define END_IO(zv, bio, rq, error) do { \ 98 if (bio) { \ 99 BIO_END_IO(bio, error); \ 100 } else { \ 101 blk_mq_end_request(rq, errno_to_bi_status(error)); \ 102 } \ 103 } while (0) 104 #else 105 #define END_IO(zv, bio, rq, error) BIO_END_IO(bio, error) 106 #endif 107 108 #ifdef HAVE_BLK_MQ 109 static unsigned int zvol_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ; 110 static unsigned int zvol_actual_blk_mq_queue_depth; 111 #endif 112 113 struct zvol_state_os { 114 struct gendisk *zvo_disk; /* generic disk */ 115 struct request_queue *zvo_queue; /* request queue */ 116 dev_t zvo_dev; /* device id */ 117 118 #ifdef HAVE_BLK_MQ 119 struct blk_mq_tag_set tag_set; 120 #endif 121 122 /* Set from the global 'zvol_use_blk_mq' at zvol load */ 123 boolean_t use_blk_mq; 124 }; 125 126 typedef struct zv_taskq { 127 uint_t tqs_cnt; 128 taskq_t **tqs_taskq; 129 } zv_taskq_t; 130 static zv_taskq_t zvol_taskqs; 131 static struct ida zvol_ida; 132 133 typedef struct zv_request_stack { 134 zvol_state_t *zv; 135 struct bio *bio; 136 struct request *rq; 137 } zv_request_t; 138 139 typedef struct zv_work { 140 struct request *rq; 141 struct work_struct work; 142 } zv_work_t; 143 144 typedef struct zv_request_task { 145 zv_request_t zvr; 146 taskq_ent_t ent; 147 } zv_request_task_t; 148 149 static zv_request_task_t * 150 zv_request_task_create(zv_request_t zvr) 151 { 152 zv_request_task_t *task; 153 task = kmem_alloc(sizeof (zv_request_task_t), KM_SLEEP); 154 taskq_init_ent(&task->ent); 155 task->zvr = zvr; 156 return (task); 157 } 158 159 static void 160 zv_request_task_free(zv_request_task_t *task) 161 { 162 kmem_free(task, sizeof (*task)); 163 } 164 165 #ifdef HAVE_BLK_MQ 166 167 /* 168 * This is called when a new block multiqueue request comes in. A request 169 * contains one or more BIOs. 170 */ 171 static blk_status_t zvol_mq_queue_rq(struct blk_mq_hw_ctx *hctx, 172 const struct blk_mq_queue_data *bd) 173 { 174 struct request *rq = bd->rq; 175 zvol_state_t *zv = rq->q->queuedata; 176 177 /* Tell the kernel that we are starting to process this request */ 178 blk_mq_start_request(rq); 179 180 if (blk_rq_is_passthrough(rq)) { 181 /* Skip non filesystem request */ 182 blk_mq_end_request(rq, BLK_STS_IOERR); 183 return (BLK_STS_IOERR); 184 } 185 186 zvol_request_impl(zv, NULL, rq, 0); 187 188 /* Acknowledge to the kernel that we got this request */ 189 return (BLK_STS_OK); 190 } 191 192 static struct blk_mq_ops zvol_blk_mq_queue_ops = { 193 .queue_rq = zvol_mq_queue_rq, 194 }; 195 196 /* Initialize our blk-mq struct */ 197 static int zvol_blk_mq_alloc_tag_set(zvol_state_t *zv) 198 { 199 struct zvol_state_os *zso = zv->zv_zso; 200 201 memset(&zso->tag_set, 0, sizeof (zso->tag_set)); 202 203 /* Initialize tag set. */ 204 zso->tag_set.ops = &zvol_blk_mq_queue_ops; 205 zso->tag_set.nr_hw_queues = zvol_blk_mq_actual_threads; 206 zso->tag_set.queue_depth = zvol_actual_blk_mq_queue_depth; 207 zso->tag_set.numa_node = NUMA_NO_NODE; 208 zso->tag_set.cmd_size = 0; 209 210 /* 211 * We need BLK_MQ_F_BLOCKING here since we do blocking calls in 212 * zvol_request_impl() 213 */ 214 zso->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING; 215 zso->tag_set.driver_data = zv; 216 217 return (blk_mq_alloc_tag_set(&zso->tag_set)); 218 } 219 #endif /* HAVE_BLK_MQ */ 220 221 /* 222 * Given a path, return TRUE if path is a ZVOL. 223 */ 224 boolean_t 225 zvol_os_is_zvol(const char *path) 226 { 227 dev_t dev = 0; 228 229 if (vdev_lookup_bdev(path, &dev) != 0) 230 return (B_FALSE); 231 232 if (MAJOR(dev) == zvol_major) 233 return (B_TRUE); 234 235 return (B_FALSE); 236 } 237 238 static void 239 zvol_write(zv_request_t *zvr) 240 { 241 struct bio *bio = zvr->bio; 242 struct request *rq = zvr->rq; 243 int error = 0; 244 zfs_uio_t uio; 245 zvol_state_t *zv = zvr->zv; 246 struct request_queue *q; 247 struct gendisk *disk; 248 unsigned long start_time = 0; 249 boolean_t acct = B_FALSE; 250 251 ASSERT3P(zv, !=, NULL); 252 ASSERT3U(zv->zv_open_count, >, 0); 253 ASSERT3P(zv->zv_zilog, !=, NULL); 254 255 q = zv->zv_zso->zvo_queue; 256 disk = zv->zv_zso->zvo_disk; 257 258 /* bio marked as FLUSH need to flush before write */ 259 if (io_is_flush(bio, rq)) 260 zil_commit(zv->zv_zilog, ZVOL_OBJ); 261 262 /* Some requests are just for flush and nothing else. */ 263 if (io_size(bio, rq) == 0) { 264 rw_exit(&zv->zv_suspend_lock); 265 END_IO(zv, bio, rq, 0); 266 return; 267 } 268 269 zfs_uio_bvec_init(&uio, bio, rq); 270 271 ssize_t start_resid = uio.uio_resid; 272 273 /* 274 * With use_blk_mq, accounting is done by blk_mq_start_request() 275 * and blk_mq_end_request(), so we can skip it here. 276 */ 277 if (bio) { 278 acct = blk_queue_io_stat(q); 279 if (acct) { 280 start_time = blk_generic_start_io_acct(q, disk, WRITE, 281 bio); 282 } 283 } 284 285 boolean_t sync = 286 io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS; 287 288 zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock, 289 uio.uio_loffset, uio.uio_resid, RL_WRITER); 290 291 uint64_t volsize = zv->zv_volsize; 292 while (uio.uio_resid > 0 && uio.uio_loffset < volsize) { 293 uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1); 294 uint64_t off = uio.uio_loffset; 295 dmu_tx_t *tx = dmu_tx_create(zv->zv_objset); 296 297 if (bytes > volsize - off) /* don't write past the end */ 298 bytes = volsize - off; 299 300 dmu_tx_hold_write_by_dnode(tx, zv->zv_dn, off, bytes); 301 302 /* This will only fail for ENOSPC */ 303 error = dmu_tx_assign(tx, TXG_WAIT); 304 if (error) { 305 dmu_tx_abort(tx); 306 break; 307 } 308 error = dmu_write_uio_dnode(zv->zv_dn, &uio, bytes, tx); 309 if (error == 0) { 310 zvol_log_write(zv, tx, off, bytes, sync); 311 } 312 dmu_tx_commit(tx); 313 314 if (error) 315 break; 316 } 317 zfs_rangelock_exit(lr); 318 319 int64_t nwritten = start_resid - uio.uio_resid; 320 dataset_kstats_update_write_kstats(&zv->zv_kstat, nwritten); 321 task_io_account_write(nwritten); 322 323 if (sync) 324 zil_commit(zv->zv_zilog, ZVOL_OBJ); 325 326 rw_exit(&zv->zv_suspend_lock); 327 328 if (bio && acct) { 329 blk_generic_end_io_acct(q, disk, WRITE, bio, start_time); 330 } 331 332 END_IO(zv, bio, rq, -error); 333 } 334 335 static void 336 zvol_write_task(void *arg) 337 { 338 zv_request_task_t *task = arg; 339 zvol_write(&task->zvr); 340 zv_request_task_free(task); 341 } 342 343 static void 344 zvol_discard(zv_request_t *zvr) 345 { 346 struct bio *bio = zvr->bio; 347 struct request *rq = zvr->rq; 348 zvol_state_t *zv = zvr->zv; 349 uint64_t start = io_offset(bio, rq); 350 uint64_t size = io_size(bio, rq); 351 uint64_t end = start + size; 352 boolean_t sync; 353 int error = 0; 354 dmu_tx_t *tx; 355 struct request_queue *q = zv->zv_zso->zvo_queue; 356 struct gendisk *disk = zv->zv_zso->zvo_disk; 357 unsigned long start_time = 0; 358 boolean_t acct = B_FALSE; 359 360 ASSERT3P(zv, !=, NULL); 361 ASSERT3U(zv->zv_open_count, >, 0); 362 ASSERT3P(zv->zv_zilog, !=, NULL); 363 364 if (bio) { 365 acct = blk_queue_io_stat(q); 366 if (acct) { 367 start_time = blk_generic_start_io_acct(q, disk, WRITE, 368 bio); 369 } 370 } 371 372 sync = io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS; 373 374 if (end > zv->zv_volsize) { 375 error = SET_ERROR(EIO); 376 goto unlock; 377 } 378 379 /* 380 * Align the request to volume block boundaries when a secure erase is 381 * not required. This will prevent dnode_free_range() from zeroing out 382 * the unaligned parts which is slow (read-modify-write) and useless 383 * since we are not freeing any space by doing so. 384 */ 385 if (!io_is_secure_erase(bio, rq)) { 386 start = P2ROUNDUP(start, zv->zv_volblocksize); 387 end = P2ALIGN(end, zv->zv_volblocksize); 388 size = end - start; 389 } 390 391 if (start >= end) 392 goto unlock; 393 394 zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock, 395 start, size, RL_WRITER); 396 397 tx = dmu_tx_create(zv->zv_objset); 398 dmu_tx_mark_netfree(tx); 399 error = dmu_tx_assign(tx, TXG_WAIT); 400 if (error != 0) { 401 dmu_tx_abort(tx); 402 } else { 403 zvol_log_truncate(zv, tx, start, size); 404 dmu_tx_commit(tx); 405 error = dmu_free_long_range(zv->zv_objset, 406 ZVOL_OBJ, start, size); 407 } 408 zfs_rangelock_exit(lr); 409 410 if (error == 0 && sync) 411 zil_commit(zv->zv_zilog, ZVOL_OBJ); 412 413 unlock: 414 rw_exit(&zv->zv_suspend_lock); 415 416 if (bio && acct) { 417 blk_generic_end_io_acct(q, disk, WRITE, bio, 418 start_time); 419 } 420 421 END_IO(zv, bio, rq, -error); 422 } 423 424 static void 425 zvol_discard_task(void *arg) 426 { 427 zv_request_task_t *task = arg; 428 zvol_discard(&task->zvr); 429 zv_request_task_free(task); 430 } 431 432 static void 433 zvol_read(zv_request_t *zvr) 434 { 435 struct bio *bio = zvr->bio; 436 struct request *rq = zvr->rq; 437 int error = 0; 438 zfs_uio_t uio; 439 boolean_t acct = B_FALSE; 440 zvol_state_t *zv = zvr->zv; 441 struct request_queue *q; 442 struct gendisk *disk; 443 unsigned long start_time = 0; 444 445 ASSERT3P(zv, !=, NULL); 446 ASSERT3U(zv->zv_open_count, >, 0); 447 448 zfs_uio_bvec_init(&uio, bio, rq); 449 450 q = zv->zv_zso->zvo_queue; 451 disk = zv->zv_zso->zvo_disk; 452 453 ssize_t start_resid = uio.uio_resid; 454 455 /* 456 * When blk-mq is being used, accounting is done by 457 * blk_mq_start_request() and blk_mq_end_request(). 458 */ 459 if (bio) { 460 acct = blk_queue_io_stat(q); 461 if (acct) 462 start_time = blk_generic_start_io_acct(q, disk, READ, 463 bio); 464 } 465 466 zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock, 467 uio.uio_loffset, uio.uio_resid, RL_READER); 468 469 uint64_t volsize = zv->zv_volsize; 470 471 while (uio.uio_resid > 0 && uio.uio_loffset < volsize) { 472 uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1); 473 474 /* don't read past the end */ 475 if (bytes > volsize - uio.uio_loffset) 476 bytes = volsize - uio.uio_loffset; 477 478 error = dmu_read_uio_dnode(zv->zv_dn, &uio, bytes); 479 if (error) { 480 /* convert checksum errors into IO errors */ 481 if (error == ECKSUM) 482 error = SET_ERROR(EIO); 483 break; 484 } 485 } 486 zfs_rangelock_exit(lr); 487 488 int64_t nread = start_resid - uio.uio_resid; 489 dataset_kstats_update_read_kstats(&zv->zv_kstat, nread); 490 task_io_account_read(nread); 491 492 rw_exit(&zv->zv_suspend_lock); 493 494 if (bio && acct) { 495 blk_generic_end_io_acct(q, disk, READ, bio, start_time); 496 } 497 498 END_IO(zv, bio, rq, -error); 499 } 500 501 static void 502 zvol_read_task(void *arg) 503 { 504 zv_request_task_t *task = arg; 505 zvol_read(&task->zvr); 506 zv_request_task_free(task); 507 } 508 509 510 /* 511 * Process a BIO or request 512 * 513 * Either 'bio' or 'rq' should be set depending on if we are processing a 514 * bio or a request (both should not be set). 515 * 516 * force_sync: Set to 0 to defer processing to a background taskq 517 * Set to 1 to process data synchronously 518 */ 519 static void 520 zvol_request_impl(zvol_state_t *zv, struct bio *bio, struct request *rq, 521 boolean_t force_sync) 522 { 523 fstrans_cookie_t cookie = spl_fstrans_mark(); 524 uint64_t offset = io_offset(bio, rq); 525 uint64_t size = io_size(bio, rq); 526 int rw = io_data_dir(bio, rq); 527 528 if (zvol_request_sync || zv->zv_threading == B_FALSE) 529 force_sync = 1; 530 531 zv_request_t zvr = { 532 .zv = zv, 533 .bio = bio, 534 .rq = rq, 535 }; 536 537 if (io_has_data(bio, rq) && offset + size > zv->zv_volsize) { 538 printk(KERN_INFO "%s: bad access: offset=%llu, size=%lu\n", 539 zv->zv_zso->zvo_disk->disk_name, 540 (long long unsigned)offset, 541 (long unsigned)size); 542 543 END_IO(zv, bio, rq, -SET_ERROR(EIO)); 544 goto out; 545 } 546 547 zv_request_task_t *task; 548 zv_taskq_t *ztqs = &zvol_taskqs; 549 uint_t blk_mq_hw_queue = 0; 550 uint_t tq_idx; 551 uint_t taskq_hash; 552 #ifdef HAVE_BLK_MQ 553 if (rq) 554 #ifdef HAVE_BLK_MQ_RQ_HCTX 555 blk_mq_hw_queue = rq->mq_hctx->queue_num; 556 #else 557 blk_mq_hw_queue = 558 rq->q->queue_hw_ctx[rq->q->mq_map[rq->cpu]]->queue_num; 559 #endif 560 #endif 561 taskq_hash = cityhash4((uintptr_t)zv, offset >> ZVOL_TASKQ_OFFSET_SHIFT, 562 blk_mq_hw_queue, 0); 563 tq_idx = taskq_hash % ztqs->tqs_cnt; 564 565 if (rw == WRITE) { 566 if (unlikely(zv->zv_flags & ZVOL_RDONLY)) { 567 END_IO(zv, bio, rq, -SET_ERROR(EROFS)); 568 goto out; 569 } 570 571 /* 572 * Prevents the zvol from being suspended, or the ZIL being 573 * concurrently opened. Will be released after the i/o 574 * completes. 575 */ 576 rw_enter(&zv->zv_suspend_lock, RW_READER); 577 578 /* 579 * Open a ZIL if this is the first time we have written to this 580 * zvol. We protect zv->zv_zilog with zv_suspend_lock rather 581 * than zv_state_lock so that we don't need to acquire an 582 * additional lock in this path. 583 */ 584 if (zv->zv_zilog == NULL) { 585 rw_exit(&zv->zv_suspend_lock); 586 rw_enter(&zv->zv_suspend_lock, RW_WRITER); 587 if (zv->zv_zilog == NULL) { 588 zv->zv_zilog = zil_open(zv->zv_objset, 589 zvol_get_data, &zv->zv_kstat.dk_zil_sums); 590 zv->zv_flags |= ZVOL_WRITTEN_TO; 591 /* replay / destroy done in zvol_create_minor */ 592 VERIFY0((zv->zv_zilog->zl_header->zh_flags & 593 ZIL_REPLAY_NEEDED)); 594 } 595 rw_downgrade(&zv->zv_suspend_lock); 596 } 597 598 /* 599 * We don't want this thread to be blocked waiting for i/o to 600 * complete, so we instead wait from a taskq callback. The 601 * i/o may be a ZIL write (via zil_commit()), or a read of an 602 * indirect block, or a read of a data block (if this is a 603 * partial-block write). We will indicate that the i/o is 604 * complete by calling END_IO() from the taskq callback. 605 * 606 * This design allows the calling thread to continue and 607 * initiate more concurrent operations by calling 608 * zvol_request() again. There are typically only a small 609 * number of threads available to call zvol_request() (e.g. 610 * one per iSCSI target), so keeping the latency of 611 * zvol_request() low is important for performance. 612 * 613 * The zvol_request_sync module parameter allows this 614 * behavior to be altered, for performance evaluation 615 * purposes. If the callback blocks, setting 616 * zvol_request_sync=1 will result in much worse performance. 617 * 618 * We can have up to zvol_threads concurrent i/o's being 619 * processed for all zvols on the system. This is typically 620 * a vast improvement over the zvol_request_sync=1 behavior 621 * of one i/o at a time per zvol. However, an even better 622 * design would be for zvol_request() to initiate the zio 623 * directly, and then be notified by the zio_done callback, 624 * which would call END_IO(). Unfortunately, the DMU/ZIL 625 * interfaces lack this functionality (they block waiting for 626 * the i/o to complete). 627 */ 628 if (io_is_discard(bio, rq) || io_is_secure_erase(bio, rq)) { 629 if (force_sync) { 630 zvol_discard(&zvr); 631 } else { 632 task = zv_request_task_create(zvr); 633 taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx], 634 zvol_discard_task, task, 0, &task->ent); 635 } 636 } else { 637 if (force_sync) { 638 zvol_write(&zvr); 639 } else { 640 task = zv_request_task_create(zvr); 641 taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx], 642 zvol_write_task, task, 0, &task->ent); 643 } 644 } 645 } else { 646 /* 647 * The SCST driver, and possibly others, may issue READ I/Os 648 * with a length of zero bytes. These empty I/Os contain no 649 * data and require no additional handling. 650 */ 651 if (size == 0) { 652 END_IO(zv, bio, rq, 0); 653 goto out; 654 } 655 656 rw_enter(&zv->zv_suspend_lock, RW_READER); 657 658 /* See comment in WRITE case above. */ 659 if (force_sync) { 660 zvol_read(&zvr); 661 } else { 662 task = zv_request_task_create(zvr); 663 taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx], 664 zvol_read_task, task, 0, &task->ent); 665 } 666 } 667 668 out: 669 spl_fstrans_unmark(cookie); 670 } 671 672 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS 673 #ifdef HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID 674 static void 675 zvol_submit_bio(struct bio *bio) 676 #else 677 static blk_qc_t 678 zvol_submit_bio(struct bio *bio) 679 #endif 680 #else 681 static MAKE_REQUEST_FN_RET 682 zvol_request(struct request_queue *q, struct bio *bio) 683 #endif 684 { 685 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS 686 #if defined(HAVE_BIO_BDEV_DISK) 687 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 688 #else 689 struct request_queue *q = bio->bi_disk->queue; 690 #endif 691 #endif 692 zvol_state_t *zv = q->queuedata; 693 694 zvol_request_impl(zv, bio, NULL, 0); 695 #if defined(HAVE_MAKE_REQUEST_FN_RET_QC) || \ 696 defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \ 697 !defined(HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID) 698 return (BLK_QC_T_NONE); 699 #endif 700 } 701 702 static int 703 #ifdef HAVE_BLK_MODE_T 704 zvol_open(struct gendisk *disk, blk_mode_t flag) 705 #else 706 zvol_open(struct block_device *bdev, fmode_t flag) 707 #endif 708 { 709 zvol_state_t *zv; 710 int error = 0; 711 boolean_t drop_suspend = B_FALSE; 712 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS 713 hrtime_t timeout = MSEC2NSEC(zvol_open_timeout_ms); 714 hrtime_t start = gethrtime(); 715 716 retry: 717 #endif 718 rw_enter(&zvol_state_lock, RW_READER); 719 /* 720 * Obtain a copy of private_data under the zvol_state_lock to make 721 * sure that either the result of zvol free code path setting 722 * disk->private_data to NULL is observed, or zvol_os_free() 723 * is not called on this zv because of the positive zv_open_count. 724 */ 725 #ifdef HAVE_BLK_MODE_T 726 zv = disk->private_data; 727 #else 728 zv = bdev->bd_disk->private_data; 729 #endif 730 if (zv == NULL) { 731 rw_exit(&zvol_state_lock); 732 return (SET_ERROR(-ENXIO)); 733 } 734 735 mutex_enter(&zv->zv_state_lock); 736 /* 737 * Make sure zvol is not suspended during first open 738 * (hold zv_suspend_lock) and respect proper lock acquisition 739 * ordering - zv_suspend_lock before zv_state_lock 740 */ 741 if (zv->zv_open_count == 0) { 742 if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) { 743 mutex_exit(&zv->zv_state_lock); 744 rw_enter(&zv->zv_suspend_lock, RW_READER); 745 mutex_enter(&zv->zv_state_lock); 746 /* check to see if zv_suspend_lock is needed */ 747 if (zv->zv_open_count != 0) { 748 rw_exit(&zv->zv_suspend_lock); 749 } else { 750 drop_suspend = B_TRUE; 751 } 752 } else { 753 drop_suspend = B_TRUE; 754 } 755 } 756 rw_exit(&zvol_state_lock); 757 758 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 759 760 if (zv->zv_open_count == 0) { 761 boolean_t drop_namespace = B_FALSE; 762 763 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock)); 764 765 /* 766 * In all other call paths the spa_namespace_lock is taken 767 * before the bdev->bd_mutex lock. However, on open(2) 768 * the __blkdev_get() function calls fops->open() with the 769 * bdev->bd_mutex lock held. This can result in a deadlock 770 * when zvols from one pool are used as vdevs in another. 771 * 772 * To prevent a lock inversion deadlock we preemptively 773 * take the spa_namespace_lock. Normally the lock will not 774 * be contended and this is safe because spa_open_common() 775 * handles the case where the caller already holds the 776 * spa_namespace_lock. 777 * 778 * When the lock cannot be aquired after multiple retries 779 * this must be the vdev on zvol deadlock case and we have 780 * no choice but to return an error. For 5.12 and older 781 * kernels returning -ERESTARTSYS will result in the 782 * bdev->bd_mutex being dropped, then reacquired, and 783 * fops->open() being called again. This process can be 784 * repeated safely until both locks are acquired. For 5.13 785 * and newer the -ERESTARTSYS retry logic was removed from 786 * the kernel so the only option is to return the error for 787 * the caller to handle it. 788 */ 789 if (!mutex_owned(&spa_namespace_lock)) { 790 if (!mutex_tryenter(&spa_namespace_lock)) { 791 mutex_exit(&zv->zv_state_lock); 792 rw_exit(&zv->zv_suspend_lock); 793 794 #ifdef HAVE_BLKDEV_GET_ERESTARTSYS 795 schedule(); 796 return (SET_ERROR(-ERESTARTSYS)); 797 #else 798 if ((gethrtime() - start) > timeout) 799 return (SET_ERROR(-ERESTARTSYS)); 800 801 schedule_timeout(MSEC_TO_TICK(10)); 802 goto retry; 803 #endif 804 } else { 805 drop_namespace = B_TRUE; 806 } 807 } 808 809 error = -zvol_first_open(zv, !(blk_mode_is_open_write(flag))); 810 811 if (drop_namespace) 812 mutex_exit(&spa_namespace_lock); 813 } 814 815 if (error == 0) { 816 if ((blk_mode_is_open_write(flag)) && 817 (zv->zv_flags & ZVOL_RDONLY)) { 818 if (zv->zv_open_count == 0) 819 zvol_last_close(zv); 820 821 error = SET_ERROR(-EROFS); 822 } else { 823 zv->zv_open_count++; 824 } 825 } 826 827 mutex_exit(&zv->zv_state_lock); 828 if (drop_suspend) 829 rw_exit(&zv->zv_suspend_lock); 830 831 if (error == 0) 832 #ifdef HAVE_BLK_MODE_T 833 disk_check_media_change(disk); 834 #else 835 zfs_check_media_change(bdev); 836 #endif 837 838 return (error); 839 } 840 841 static void 842 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_1ARG 843 zvol_release(struct gendisk *disk) 844 #else 845 zvol_release(struct gendisk *disk, fmode_t unused) 846 #endif 847 { 848 #if !defined(HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_1ARG) 849 (void) unused; 850 #endif 851 zvol_state_t *zv; 852 boolean_t drop_suspend = B_TRUE; 853 854 rw_enter(&zvol_state_lock, RW_READER); 855 zv = disk->private_data; 856 857 mutex_enter(&zv->zv_state_lock); 858 ASSERT3U(zv->zv_open_count, >, 0); 859 /* 860 * make sure zvol is not suspended during last close 861 * (hold zv_suspend_lock) and respect proper lock acquisition 862 * ordering - zv_suspend_lock before zv_state_lock 863 */ 864 if (zv->zv_open_count == 1) { 865 if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) { 866 mutex_exit(&zv->zv_state_lock); 867 rw_enter(&zv->zv_suspend_lock, RW_READER); 868 mutex_enter(&zv->zv_state_lock); 869 /* check to see if zv_suspend_lock is needed */ 870 if (zv->zv_open_count != 1) { 871 rw_exit(&zv->zv_suspend_lock); 872 drop_suspend = B_FALSE; 873 } 874 } 875 } else { 876 drop_suspend = B_FALSE; 877 } 878 rw_exit(&zvol_state_lock); 879 880 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 881 882 zv->zv_open_count--; 883 if (zv->zv_open_count == 0) { 884 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock)); 885 zvol_last_close(zv); 886 } 887 888 mutex_exit(&zv->zv_state_lock); 889 890 if (drop_suspend) 891 rw_exit(&zv->zv_suspend_lock); 892 } 893 894 static int 895 zvol_ioctl(struct block_device *bdev, fmode_t mode, 896 unsigned int cmd, unsigned long arg) 897 { 898 zvol_state_t *zv = bdev->bd_disk->private_data; 899 int error = 0; 900 901 ASSERT3U(zv->zv_open_count, >, 0); 902 903 switch (cmd) { 904 case BLKFLSBUF: 905 #ifdef HAVE_FSYNC_BDEV 906 fsync_bdev(bdev); 907 #elif defined(HAVE_SYNC_BLOCKDEV) 908 sync_blockdev(bdev); 909 #else 910 #error "Neither fsync_bdev() nor sync_blockdev() found" 911 #endif 912 invalidate_bdev(bdev); 913 rw_enter(&zv->zv_suspend_lock, RW_READER); 914 915 if (!(zv->zv_flags & ZVOL_RDONLY)) 916 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0); 917 918 rw_exit(&zv->zv_suspend_lock); 919 break; 920 921 case BLKZNAME: 922 mutex_enter(&zv->zv_state_lock); 923 error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN); 924 mutex_exit(&zv->zv_state_lock); 925 break; 926 927 default: 928 error = -ENOTTY; 929 break; 930 } 931 932 return (SET_ERROR(error)); 933 } 934 935 #ifdef CONFIG_COMPAT 936 static int 937 zvol_compat_ioctl(struct block_device *bdev, fmode_t mode, 938 unsigned cmd, unsigned long arg) 939 { 940 return (zvol_ioctl(bdev, mode, cmd, arg)); 941 } 942 #else 943 #define zvol_compat_ioctl NULL 944 #endif 945 946 static unsigned int 947 zvol_check_events(struct gendisk *disk, unsigned int clearing) 948 { 949 unsigned int mask = 0; 950 951 rw_enter(&zvol_state_lock, RW_READER); 952 953 zvol_state_t *zv = disk->private_data; 954 if (zv != NULL) { 955 mutex_enter(&zv->zv_state_lock); 956 mask = zv->zv_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 957 zv->zv_changed = 0; 958 mutex_exit(&zv->zv_state_lock); 959 } 960 961 rw_exit(&zvol_state_lock); 962 963 return (mask); 964 } 965 966 static int 967 zvol_revalidate_disk(struct gendisk *disk) 968 { 969 rw_enter(&zvol_state_lock, RW_READER); 970 971 zvol_state_t *zv = disk->private_data; 972 if (zv != NULL) { 973 mutex_enter(&zv->zv_state_lock); 974 set_capacity(zv->zv_zso->zvo_disk, 975 zv->zv_volsize >> SECTOR_BITS); 976 mutex_exit(&zv->zv_state_lock); 977 } 978 979 rw_exit(&zvol_state_lock); 980 981 return (0); 982 } 983 984 int 985 zvol_os_update_volsize(zvol_state_t *zv, uint64_t volsize) 986 { 987 struct gendisk *disk = zv->zv_zso->zvo_disk; 988 989 #if defined(HAVE_REVALIDATE_DISK_SIZE) 990 revalidate_disk_size(disk, zvol_revalidate_disk(disk) == 0); 991 #elif defined(HAVE_REVALIDATE_DISK) 992 revalidate_disk(disk); 993 #else 994 zvol_revalidate_disk(disk); 995 #endif 996 return (0); 997 } 998 999 void 1000 zvol_os_clear_private(zvol_state_t *zv) 1001 { 1002 /* 1003 * Cleared while holding zvol_state_lock as a writer 1004 * which will prevent zvol_open() from opening it. 1005 */ 1006 zv->zv_zso->zvo_disk->private_data = NULL; 1007 } 1008 1009 /* 1010 * Provide a simple virtual geometry for legacy compatibility. For devices 1011 * smaller than 1 MiB a small head and sector count is used to allow very 1012 * tiny devices. For devices over 1 Mib a standard head and sector count 1013 * is used to keep the cylinders count reasonable. 1014 */ 1015 static int 1016 zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1017 { 1018 zvol_state_t *zv = bdev->bd_disk->private_data; 1019 sector_t sectors; 1020 1021 ASSERT3U(zv->zv_open_count, >, 0); 1022 1023 sectors = get_capacity(zv->zv_zso->zvo_disk); 1024 1025 if (sectors > 2048) { 1026 geo->heads = 16; 1027 geo->sectors = 63; 1028 } else { 1029 geo->heads = 2; 1030 geo->sectors = 4; 1031 } 1032 1033 geo->start = 0; 1034 geo->cylinders = sectors / (geo->heads * geo->sectors); 1035 1036 return (0); 1037 } 1038 1039 /* 1040 * Why have two separate block_device_operations structs? 1041 * 1042 * Normally we'd just have one, and assign 'submit_bio' as needed. However, 1043 * it's possible the user's kernel is built with CONSTIFY_PLUGIN, meaning we 1044 * can't just change submit_bio dynamically at runtime. So just create two 1045 * separate structs to get around this. 1046 */ 1047 static const struct block_device_operations zvol_ops_blk_mq = { 1048 .open = zvol_open, 1049 .release = zvol_release, 1050 .ioctl = zvol_ioctl, 1051 .compat_ioctl = zvol_compat_ioctl, 1052 .check_events = zvol_check_events, 1053 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK 1054 .revalidate_disk = zvol_revalidate_disk, 1055 #endif 1056 .getgeo = zvol_getgeo, 1057 .owner = THIS_MODULE, 1058 }; 1059 1060 static const struct block_device_operations zvol_ops = { 1061 .open = zvol_open, 1062 .release = zvol_release, 1063 .ioctl = zvol_ioctl, 1064 .compat_ioctl = zvol_compat_ioctl, 1065 .check_events = zvol_check_events, 1066 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK 1067 .revalidate_disk = zvol_revalidate_disk, 1068 #endif 1069 .getgeo = zvol_getgeo, 1070 .owner = THIS_MODULE, 1071 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS 1072 .submit_bio = zvol_submit_bio, 1073 #endif 1074 }; 1075 1076 static int 1077 zvol_alloc_non_blk_mq(struct zvol_state_os *zso) 1078 { 1079 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) 1080 #if defined(HAVE_BLK_ALLOC_DISK) 1081 zso->zvo_disk = blk_alloc_disk(NUMA_NO_NODE); 1082 if (zso->zvo_disk == NULL) 1083 return (1); 1084 1085 zso->zvo_disk->minors = ZVOL_MINORS; 1086 zso->zvo_queue = zso->zvo_disk->queue; 1087 #elif defined(HAVE_BLK_ALLOC_DISK_2ARG) 1088 struct gendisk *disk = blk_alloc_disk(NULL, NUMA_NO_NODE); 1089 if (IS_ERR(disk)) { 1090 zso->zvo_disk = NULL; 1091 return (1); 1092 } 1093 1094 zso->zvo_disk = disk; 1095 zso->zvo_disk->minors = ZVOL_MINORS; 1096 zso->zvo_queue = zso->zvo_disk->queue; 1097 #else 1098 zso->zvo_queue = blk_alloc_queue(NUMA_NO_NODE); 1099 if (zso->zvo_queue == NULL) 1100 return (1); 1101 1102 zso->zvo_disk = alloc_disk(ZVOL_MINORS); 1103 if (zso->zvo_disk == NULL) { 1104 blk_cleanup_queue(zso->zvo_queue); 1105 return (1); 1106 } 1107 1108 zso->zvo_disk->queue = zso->zvo_queue; 1109 #endif /* HAVE_BLK_ALLOC_DISK */ 1110 #else 1111 zso->zvo_queue = blk_generic_alloc_queue(zvol_request, NUMA_NO_NODE); 1112 if (zso->zvo_queue == NULL) 1113 return (1); 1114 1115 zso->zvo_disk = alloc_disk(ZVOL_MINORS); 1116 if (zso->zvo_disk == NULL) { 1117 blk_cleanup_queue(zso->zvo_queue); 1118 return (1); 1119 } 1120 1121 zso->zvo_disk->queue = zso->zvo_queue; 1122 #endif /* HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS */ 1123 return (0); 1124 1125 } 1126 1127 static int 1128 zvol_alloc_blk_mq(zvol_state_t *zv) 1129 { 1130 #ifdef HAVE_BLK_MQ 1131 struct zvol_state_os *zso = zv->zv_zso; 1132 1133 /* Allocate our blk-mq tag_set */ 1134 if (zvol_blk_mq_alloc_tag_set(zv) != 0) 1135 return (1); 1136 1137 #if defined(HAVE_BLK_ALLOC_DISK) 1138 zso->zvo_disk = blk_mq_alloc_disk(&zso->tag_set, zv); 1139 if (zso->zvo_disk == NULL) { 1140 blk_mq_free_tag_set(&zso->tag_set); 1141 return (1); 1142 } 1143 zso->zvo_queue = zso->zvo_disk->queue; 1144 zso->zvo_disk->minors = ZVOL_MINORS; 1145 #elif defined(HAVE_BLK_ALLOC_DISK_2ARG) 1146 struct gendisk *disk = blk_mq_alloc_disk(&zso->tag_set, NULL, zv); 1147 if (IS_ERR(disk)) { 1148 zso->zvo_disk = NULL; 1149 blk_mq_free_tag_set(&zso->tag_set); 1150 return (1); 1151 } 1152 1153 zso->zvo_disk = disk; 1154 zso->zvo_queue = zso->zvo_disk->queue; 1155 zso->zvo_disk->minors = ZVOL_MINORS; 1156 #else 1157 zso->zvo_disk = alloc_disk(ZVOL_MINORS); 1158 if (zso->zvo_disk == NULL) { 1159 blk_cleanup_queue(zso->zvo_queue); 1160 blk_mq_free_tag_set(&zso->tag_set); 1161 return (1); 1162 } 1163 /* Allocate queue */ 1164 zso->zvo_queue = blk_mq_init_queue(&zso->tag_set); 1165 if (IS_ERR(zso->zvo_queue)) { 1166 blk_mq_free_tag_set(&zso->tag_set); 1167 return (1); 1168 } 1169 1170 /* Our queue is now created, assign it to our disk */ 1171 zso->zvo_disk->queue = zso->zvo_queue; 1172 1173 #endif 1174 #endif 1175 return (0); 1176 } 1177 1178 /* 1179 * Allocate memory for a new zvol_state_t and setup the required 1180 * request queue and generic disk structures for the block device. 1181 */ 1182 static zvol_state_t * 1183 zvol_alloc(dev_t dev, const char *name) 1184 { 1185 zvol_state_t *zv; 1186 struct zvol_state_os *zso; 1187 uint64_t volmode; 1188 int ret; 1189 1190 if (dsl_prop_get_integer(name, "volmode", &volmode, NULL) != 0) 1191 return (NULL); 1192 1193 if (volmode == ZFS_VOLMODE_DEFAULT) 1194 volmode = zvol_volmode; 1195 1196 if (volmode == ZFS_VOLMODE_NONE) 1197 return (NULL); 1198 1199 zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP); 1200 zso = kmem_zalloc(sizeof (struct zvol_state_os), KM_SLEEP); 1201 zv->zv_zso = zso; 1202 zv->zv_volmode = volmode; 1203 1204 list_link_init(&zv->zv_next); 1205 mutex_init(&zv->zv_state_lock, NULL, MUTEX_DEFAULT, NULL); 1206 1207 #ifdef HAVE_BLK_MQ 1208 zv->zv_zso->use_blk_mq = zvol_use_blk_mq; 1209 #endif 1210 1211 /* 1212 * The block layer has 3 interfaces for getting BIOs: 1213 * 1214 * 1. blk-mq request queues (new) 1215 * 2. submit_bio() (oldest) 1216 * 3. regular request queues (old). 1217 * 1218 * Each of those interfaces has two permutations: 1219 * 1220 * a) We have blk_alloc_disk()/blk_mq_alloc_disk(), which allocates 1221 * both the disk and its queue (5.14 kernel or newer) 1222 * 1223 * b) We don't have blk_*alloc_disk(), and have to allocate the 1224 * disk and the queue separately. (5.13 kernel or older) 1225 */ 1226 if (zv->zv_zso->use_blk_mq) { 1227 ret = zvol_alloc_blk_mq(zv); 1228 zso->zvo_disk->fops = &zvol_ops_blk_mq; 1229 } else { 1230 ret = zvol_alloc_non_blk_mq(zso); 1231 zso->zvo_disk->fops = &zvol_ops; 1232 } 1233 if (ret != 0) 1234 goto out_kmem; 1235 1236 blk_queue_set_write_cache(zso->zvo_queue, B_TRUE, B_TRUE); 1237 1238 /* Limit read-ahead to a single page to prevent over-prefetching. */ 1239 blk_queue_set_read_ahead(zso->zvo_queue, 1); 1240 1241 if (!zv->zv_zso->use_blk_mq) { 1242 /* Disable write merging in favor of the ZIO pipeline. */ 1243 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, zso->zvo_queue); 1244 } 1245 1246 /* Enable /proc/diskstats */ 1247 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, zso->zvo_queue); 1248 1249 zso->zvo_queue->queuedata = zv; 1250 zso->zvo_dev = dev; 1251 zv->zv_open_count = 0; 1252 strlcpy(zv->zv_name, name, sizeof (zv->zv_name)); 1253 1254 zfs_rangelock_init(&zv->zv_rangelock, NULL, NULL); 1255 rw_init(&zv->zv_suspend_lock, NULL, RW_DEFAULT, NULL); 1256 1257 zso->zvo_disk->major = zvol_major; 1258 zso->zvo_disk->events = DISK_EVENT_MEDIA_CHANGE; 1259 1260 /* 1261 * Setting ZFS_VOLMODE_DEV disables partitioning on ZVOL devices. 1262 * This is accomplished by limiting the number of minors for the 1263 * device to one and explicitly disabling partition scanning. 1264 */ 1265 if (volmode == ZFS_VOLMODE_DEV) { 1266 zso->zvo_disk->minors = 1; 1267 zso->zvo_disk->flags &= ~ZFS_GENHD_FL_EXT_DEVT; 1268 zso->zvo_disk->flags |= ZFS_GENHD_FL_NO_PART; 1269 } 1270 1271 zso->zvo_disk->first_minor = (dev & MINORMASK); 1272 zso->zvo_disk->private_data = zv; 1273 snprintf(zso->zvo_disk->disk_name, DISK_NAME_LEN, "%s%d", 1274 ZVOL_DEV_NAME, (dev & MINORMASK)); 1275 1276 return (zv); 1277 1278 out_kmem: 1279 kmem_free(zso, sizeof (struct zvol_state_os)); 1280 kmem_free(zv, sizeof (zvol_state_t)); 1281 return (NULL); 1282 } 1283 1284 /* 1285 * Cleanup then free a zvol_state_t which was created by zvol_alloc(). 1286 * At this time, the structure is not opened by anyone, is taken off 1287 * the zvol_state_list, and has its private data set to NULL. 1288 * The zvol_state_lock is dropped. 1289 * 1290 * This function may take many milliseconds to complete (e.g. we've seen 1291 * it take over 256ms), due to the calls to "blk_cleanup_queue" and 1292 * "del_gendisk". Thus, consumers need to be careful to account for this 1293 * latency when calling this function. 1294 */ 1295 void 1296 zvol_os_free(zvol_state_t *zv) 1297 { 1298 1299 ASSERT(!RW_LOCK_HELD(&zv->zv_suspend_lock)); 1300 ASSERT(!MUTEX_HELD(&zv->zv_state_lock)); 1301 ASSERT0(zv->zv_open_count); 1302 ASSERT3P(zv->zv_zso->zvo_disk->private_data, ==, NULL); 1303 1304 rw_destroy(&zv->zv_suspend_lock); 1305 zfs_rangelock_fini(&zv->zv_rangelock); 1306 1307 del_gendisk(zv->zv_zso->zvo_disk); 1308 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \ 1309 (defined(HAVE_BLK_ALLOC_DISK) || defined(HAVE_BLK_ALLOC_DISK_2ARG)) 1310 #if defined(HAVE_BLK_CLEANUP_DISK) 1311 blk_cleanup_disk(zv->zv_zso->zvo_disk); 1312 #else 1313 put_disk(zv->zv_zso->zvo_disk); 1314 #endif 1315 #else 1316 blk_cleanup_queue(zv->zv_zso->zvo_queue); 1317 put_disk(zv->zv_zso->zvo_disk); 1318 #endif 1319 1320 #ifdef HAVE_BLK_MQ 1321 if (zv->zv_zso->use_blk_mq) 1322 blk_mq_free_tag_set(&zv->zv_zso->tag_set); 1323 #endif 1324 1325 ida_simple_remove(&zvol_ida, 1326 MINOR(zv->zv_zso->zvo_dev) >> ZVOL_MINOR_BITS); 1327 1328 mutex_destroy(&zv->zv_state_lock); 1329 dataset_kstats_destroy(&zv->zv_kstat); 1330 1331 kmem_free(zv->zv_zso, sizeof (struct zvol_state_os)); 1332 kmem_free(zv, sizeof (zvol_state_t)); 1333 } 1334 1335 void 1336 zvol_wait_close(zvol_state_t *zv) 1337 { 1338 } 1339 1340 /* 1341 * Create a block device minor node and setup the linkage between it 1342 * and the specified volume. Once this function returns the block 1343 * device is live and ready for use. 1344 */ 1345 int 1346 zvol_os_create_minor(const char *name) 1347 { 1348 zvol_state_t *zv; 1349 objset_t *os; 1350 dmu_object_info_t *doi; 1351 uint64_t volsize; 1352 uint64_t len; 1353 unsigned minor = 0; 1354 int error = 0; 1355 int idx; 1356 uint64_t hash = zvol_name_hash(name); 1357 uint64_t volthreading; 1358 bool replayed_zil = B_FALSE; 1359 1360 if (zvol_inhibit_dev) 1361 return (0); 1362 1363 idx = ida_simple_get(&zvol_ida, 0, 0, kmem_flags_convert(KM_SLEEP)); 1364 if (idx < 0) 1365 return (SET_ERROR(-idx)); 1366 minor = idx << ZVOL_MINOR_BITS; 1367 if (MINOR(minor) != minor) { 1368 /* too many partitions can cause an overflow */ 1369 zfs_dbgmsg("zvol: create minor overflow: %s, minor %u/%u", 1370 name, minor, MINOR(minor)); 1371 ida_simple_remove(&zvol_ida, idx); 1372 return (SET_ERROR(EINVAL)); 1373 } 1374 1375 zv = zvol_find_by_name_hash(name, hash, RW_NONE); 1376 if (zv) { 1377 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 1378 mutex_exit(&zv->zv_state_lock); 1379 ida_simple_remove(&zvol_ida, idx); 1380 return (SET_ERROR(EEXIST)); 1381 } 1382 1383 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP); 1384 1385 error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, B_TRUE, FTAG, &os); 1386 if (error) 1387 goto out_doi; 1388 1389 error = dmu_object_info(os, ZVOL_OBJ, doi); 1390 if (error) 1391 goto out_dmu_objset_disown; 1392 1393 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize); 1394 if (error) 1395 goto out_dmu_objset_disown; 1396 1397 zv = zvol_alloc(MKDEV(zvol_major, minor), name); 1398 if (zv == NULL) { 1399 error = SET_ERROR(EAGAIN); 1400 goto out_dmu_objset_disown; 1401 } 1402 zv->zv_hash = hash; 1403 1404 if (dmu_objset_is_snapshot(os)) 1405 zv->zv_flags |= ZVOL_RDONLY; 1406 1407 zv->zv_volblocksize = doi->doi_data_block_size; 1408 zv->zv_volsize = volsize; 1409 zv->zv_objset = os; 1410 1411 /* Default */ 1412 zv->zv_threading = B_TRUE; 1413 if (dsl_prop_get_integer(name, "volthreading", &volthreading, NULL) 1414 == 0) 1415 zv->zv_threading = volthreading; 1416 1417 set_capacity(zv->zv_zso->zvo_disk, zv->zv_volsize >> 9); 1418 1419 blk_queue_max_hw_sectors(zv->zv_zso->zvo_queue, 1420 (DMU_MAX_ACCESS / 4) >> 9); 1421 1422 if (zv->zv_zso->use_blk_mq) { 1423 /* 1424 * IO requests can be really big (1MB). When an IO request 1425 * comes in, it is passed off to zvol_read() or zvol_write() 1426 * in a new thread, where it is chunked up into 'volblocksize' 1427 * sized pieces and processed. So for example, if the request 1428 * is a 1MB write and your volblocksize is 128k, one zvol_write 1429 * thread will take that request and sequentially do ten 128k 1430 * IOs. This is due to the fact that the thread needs to lock 1431 * each volblocksize sized block. So you might be wondering: 1432 * "instead of passing the whole 1MB request to one thread, 1433 * why not pass ten individual 128k chunks to ten threads and 1434 * process the whole write in parallel?" The short answer is 1435 * that there's a sweet spot number of chunks that balances 1436 * the greater parallelism with the added overhead of more 1437 * threads. The sweet spot can be different depending on if you 1438 * have a read or write heavy workload. Writes typically want 1439 * high chunk counts while reads typically want lower ones. On 1440 * a test pool with 6 NVMe drives in a 3x 2-disk mirror 1441 * configuration, with volblocksize=8k, the sweet spot for good 1442 * sequential reads and writes was at 8 chunks. 1443 */ 1444 1445 /* 1446 * Below we tell the kernel how big we want our requests 1447 * to be. You would think that blk_queue_io_opt() would be 1448 * used to do this since it is used to "set optimal request 1449 * size for the queue", but that doesn't seem to do 1450 * anything - the kernel still gives you huge requests 1451 * with tons of little PAGE_SIZE segments contained within it. 1452 * 1453 * Knowing that the kernel will just give you PAGE_SIZE segments 1454 * no matter what, you can say "ok, I want PAGE_SIZE byte 1455 * segments, and I want 'N' of them per request", where N is 1456 * the correct number of segments for the volblocksize and 1457 * number of chunks you want. 1458 */ 1459 #ifdef HAVE_BLK_MQ 1460 if (zvol_blk_mq_blocks_per_thread != 0) { 1461 unsigned int chunks; 1462 chunks = MIN(zvol_blk_mq_blocks_per_thread, UINT16_MAX); 1463 1464 blk_queue_max_segment_size(zv->zv_zso->zvo_queue, 1465 PAGE_SIZE); 1466 blk_queue_max_segments(zv->zv_zso->zvo_queue, 1467 (zv->zv_volblocksize * chunks) / PAGE_SIZE); 1468 } else { 1469 /* 1470 * Special case: zvol_blk_mq_blocks_per_thread = 0 1471 * Max everything out. 1472 */ 1473 blk_queue_max_segments(zv->zv_zso->zvo_queue, 1474 UINT16_MAX); 1475 blk_queue_max_segment_size(zv->zv_zso->zvo_queue, 1476 UINT_MAX); 1477 } 1478 #endif 1479 } else { 1480 blk_queue_max_segments(zv->zv_zso->zvo_queue, UINT16_MAX); 1481 blk_queue_max_segment_size(zv->zv_zso->zvo_queue, UINT_MAX); 1482 } 1483 1484 blk_queue_physical_block_size(zv->zv_zso->zvo_queue, 1485 zv->zv_volblocksize); 1486 blk_queue_io_opt(zv->zv_zso->zvo_queue, zv->zv_volblocksize); 1487 blk_queue_max_discard_sectors(zv->zv_zso->zvo_queue, 1488 (zvol_max_discard_blocks * zv->zv_volblocksize) >> 9); 1489 blk_queue_discard_granularity(zv->zv_zso->zvo_queue, 1490 zv->zv_volblocksize); 1491 #ifdef QUEUE_FLAG_DISCARD 1492 blk_queue_flag_set(QUEUE_FLAG_DISCARD, zv->zv_zso->zvo_queue); 1493 #endif 1494 #ifdef QUEUE_FLAG_NONROT 1495 blk_queue_flag_set(QUEUE_FLAG_NONROT, zv->zv_zso->zvo_queue); 1496 #endif 1497 #ifdef QUEUE_FLAG_ADD_RANDOM 1498 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zv->zv_zso->zvo_queue); 1499 #endif 1500 /* This flag was introduced in kernel version 4.12. */ 1501 #ifdef QUEUE_FLAG_SCSI_PASSTHROUGH 1502 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, zv->zv_zso->zvo_queue); 1503 #endif 1504 1505 ASSERT3P(zv->zv_kstat.dk_kstats, ==, NULL); 1506 error = dataset_kstats_create(&zv->zv_kstat, zv->zv_objset); 1507 if (error) 1508 goto out_dmu_objset_disown; 1509 ASSERT3P(zv->zv_zilog, ==, NULL); 1510 zv->zv_zilog = zil_open(os, zvol_get_data, &zv->zv_kstat.dk_zil_sums); 1511 if (spa_writeable(dmu_objset_spa(os))) { 1512 if (zil_replay_disable) 1513 replayed_zil = zil_destroy(zv->zv_zilog, B_FALSE); 1514 else 1515 replayed_zil = zil_replay(os, zv, zvol_replay_vector); 1516 } 1517 if (replayed_zil) 1518 zil_close(zv->zv_zilog); 1519 zv->zv_zilog = NULL; 1520 1521 /* 1522 * When udev detects the addition of the device it will immediately 1523 * invoke blkid(8) to determine the type of content on the device. 1524 * Prefetching the blocks commonly scanned by blkid(8) will speed 1525 * up this process. 1526 */ 1527 len = MIN(zvol_prefetch_bytes, SPA_MAXBLOCKSIZE); 1528 if (len > 0) { 1529 dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ); 1530 dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len, 1531 ZIO_PRIORITY_SYNC_READ); 1532 } 1533 1534 zv->zv_objset = NULL; 1535 out_dmu_objset_disown: 1536 dmu_objset_disown(os, B_TRUE, FTAG); 1537 out_doi: 1538 kmem_free(doi, sizeof (dmu_object_info_t)); 1539 1540 /* 1541 * Keep in mind that once add_disk() is called, the zvol is 1542 * announced to the world, and zvol_open()/zvol_release() can 1543 * be called at any time. Incidentally, add_disk() itself calls 1544 * zvol_open()->zvol_first_open() and zvol_release()->zvol_last_close() 1545 * directly as well. 1546 */ 1547 if (error == 0) { 1548 rw_enter(&zvol_state_lock, RW_WRITER); 1549 zvol_insert(zv); 1550 rw_exit(&zvol_state_lock); 1551 #ifdef HAVE_ADD_DISK_RET 1552 error = add_disk(zv->zv_zso->zvo_disk); 1553 #else 1554 add_disk(zv->zv_zso->zvo_disk); 1555 #endif 1556 } else { 1557 ida_simple_remove(&zvol_ida, idx); 1558 } 1559 1560 return (error); 1561 } 1562 1563 void 1564 zvol_os_rename_minor(zvol_state_t *zv, const char *newname) 1565 { 1566 int readonly = get_disk_ro(zv->zv_zso->zvo_disk); 1567 1568 ASSERT(RW_LOCK_HELD(&zvol_state_lock)); 1569 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 1570 1571 strlcpy(zv->zv_name, newname, sizeof (zv->zv_name)); 1572 1573 /* move to new hashtable entry */ 1574 zv->zv_hash = zvol_name_hash(zv->zv_name); 1575 hlist_del(&zv->zv_hlink); 1576 hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash)); 1577 1578 /* 1579 * The block device's read-only state is briefly changed causing 1580 * a KOBJ_CHANGE uevent to be issued. This ensures udev detects 1581 * the name change and fixes the symlinks. This does not change 1582 * ZVOL_RDONLY in zv->zv_flags so the actual read-only state never 1583 * changes. This would normally be done using kobject_uevent() but 1584 * that is a GPL-only symbol which is why we need this workaround. 1585 */ 1586 set_disk_ro(zv->zv_zso->zvo_disk, !readonly); 1587 set_disk_ro(zv->zv_zso->zvo_disk, readonly); 1588 1589 dataset_kstats_rename(&zv->zv_kstat, newname); 1590 } 1591 1592 void 1593 zvol_os_set_disk_ro(zvol_state_t *zv, int flags) 1594 { 1595 1596 set_disk_ro(zv->zv_zso->zvo_disk, flags); 1597 } 1598 1599 void 1600 zvol_os_set_capacity(zvol_state_t *zv, uint64_t capacity) 1601 { 1602 1603 set_capacity(zv->zv_zso->zvo_disk, capacity); 1604 } 1605 1606 int 1607 zvol_init(void) 1608 { 1609 int error; 1610 1611 /* 1612 * zvol_threads is the module param the user passes in. 1613 * 1614 * zvol_actual_threads is what we use internally, since the user can 1615 * pass zvol_thread = 0 to mean "use all the CPUs" (the default). 1616 */ 1617 static unsigned int zvol_actual_threads; 1618 1619 if (zvol_threads == 0) { 1620 /* 1621 * See dde9380a1 for why 32 was chosen here. This should 1622 * probably be refined to be some multiple of the number 1623 * of CPUs. 1624 */ 1625 zvol_actual_threads = MAX(num_online_cpus(), 32); 1626 } else { 1627 zvol_actual_threads = MIN(MAX(zvol_threads, 1), 1024); 1628 } 1629 1630 /* 1631 * Use atleast 32 zvol_threads but for many core system, 1632 * prefer 6 threads per taskq, but no more taskqs 1633 * than threads in them on large systems. 1634 * 1635 * taskq total 1636 * cpus taskqs threads threads 1637 * ------- ------- ------- ------- 1638 * 1 1 32 32 1639 * 2 1 32 32 1640 * 4 1 32 32 1641 * 8 2 16 32 1642 * 16 3 11 33 1643 * 32 5 7 35 1644 * 64 8 8 64 1645 * 128 11 12 132 1646 * 256 16 16 256 1647 */ 1648 zv_taskq_t *ztqs = &zvol_taskqs; 1649 uint_t num_tqs = MIN(num_online_cpus(), zvol_num_taskqs); 1650 if (num_tqs == 0) { 1651 num_tqs = 1 + num_online_cpus() / 6; 1652 while (num_tqs * num_tqs > zvol_actual_threads) 1653 num_tqs--; 1654 } 1655 uint_t per_tq_thread = zvol_actual_threads / num_tqs; 1656 if (per_tq_thread * num_tqs < zvol_actual_threads) 1657 per_tq_thread++; 1658 ztqs->tqs_cnt = num_tqs; 1659 ztqs->tqs_taskq = kmem_alloc(num_tqs * sizeof (taskq_t *), KM_SLEEP); 1660 error = register_blkdev(zvol_major, ZVOL_DRIVER); 1661 if (error) { 1662 kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt * sizeof (taskq_t *)); 1663 ztqs->tqs_taskq = NULL; 1664 printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error); 1665 return (error); 1666 } 1667 1668 #ifdef HAVE_BLK_MQ 1669 if (zvol_blk_mq_queue_depth == 0) { 1670 zvol_actual_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ; 1671 } else { 1672 zvol_actual_blk_mq_queue_depth = 1673 MAX(zvol_blk_mq_queue_depth, BLKDEV_MIN_RQ); 1674 } 1675 1676 if (zvol_blk_mq_threads == 0) { 1677 zvol_blk_mq_actual_threads = num_online_cpus(); 1678 } else { 1679 zvol_blk_mq_actual_threads = MIN(MAX(zvol_blk_mq_threads, 1), 1680 1024); 1681 } 1682 #endif 1683 for (uint_t i = 0; i < num_tqs; i++) { 1684 char name[32]; 1685 (void) snprintf(name, sizeof (name), "%s_tq-%u", 1686 ZVOL_DRIVER, i); 1687 ztqs->tqs_taskq[i] = taskq_create(name, per_tq_thread, 1688 maxclsyspri, per_tq_thread, INT_MAX, 1689 TASKQ_PREPOPULATE | TASKQ_DYNAMIC); 1690 if (ztqs->tqs_taskq[i] == NULL) { 1691 for (int j = i - 1; j >= 0; j--) 1692 taskq_destroy(ztqs->tqs_taskq[j]); 1693 unregister_blkdev(zvol_major, ZVOL_DRIVER); 1694 kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt * 1695 sizeof (taskq_t *)); 1696 ztqs->tqs_taskq = NULL; 1697 return (-ENOMEM); 1698 } 1699 } 1700 1701 zvol_init_impl(); 1702 ida_init(&zvol_ida); 1703 return (0); 1704 } 1705 1706 void 1707 zvol_fini(void) 1708 { 1709 zv_taskq_t *ztqs = &zvol_taskqs; 1710 zvol_fini_impl(); 1711 unregister_blkdev(zvol_major, ZVOL_DRIVER); 1712 1713 if (ztqs->tqs_taskq == NULL) { 1714 ASSERT3U(ztqs->tqs_cnt, ==, 0); 1715 } else { 1716 for (uint_t i = 0; i < ztqs->tqs_cnt; i++) { 1717 ASSERT3P(ztqs->tqs_taskq[i], !=, NULL); 1718 taskq_destroy(ztqs->tqs_taskq[i]); 1719 } 1720 kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt * 1721 sizeof (taskq_t *)); 1722 ztqs->tqs_taskq = NULL; 1723 } 1724 1725 ida_destroy(&zvol_ida); 1726 } 1727 1728 /* BEGIN CSTYLED */ 1729 module_param(zvol_inhibit_dev, uint, 0644); 1730 MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes"); 1731 1732 module_param(zvol_major, uint, 0444); 1733 MODULE_PARM_DESC(zvol_major, "Major number for zvol device"); 1734 1735 module_param(zvol_threads, uint, 0444); 1736 MODULE_PARM_DESC(zvol_threads, "Number of threads to handle I/O requests. Set" 1737 "to 0 to use all active CPUs"); 1738 1739 module_param(zvol_request_sync, uint, 0644); 1740 MODULE_PARM_DESC(zvol_request_sync, "Synchronously handle bio requests"); 1741 1742 module_param(zvol_max_discard_blocks, ulong, 0444); 1743 MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard"); 1744 1745 module_param(zvol_num_taskqs, uint, 0444); 1746 MODULE_PARM_DESC(zvol_num_taskqs, "Number of zvol taskqs"); 1747 1748 module_param(zvol_prefetch_bytes, uint, 0644); 1749 MODULE_PARM_DESC(zvol_prefetch_bytes, "Prefetch N bytes at zvol start+end"); 1750 1751 module_param(zvol_volmode, uint, 0644); 1752 MODULE_PARM_DESC(zvol_volmode, "Default volmode property value"); 1753 1754 #ifdef HAVE_BLK_MQ 1755 module_param(zvol_blk_mq_queue_depth, uint, 0644); 1756 MODULE_PARM_DESC(zvol_blk_mq_queue_depth, "Default blk-mq queue depth"); 1757 1758 module_param(zvol_use_blk_mq, uint, 0644); 1759 MODULE_PARM_DESC(zvol_use_blk_mq, "Use the blk-mq API for zvols"); 1760 1761 module_param(zvol_blk_mq_blocks_per_thread, uint, 0644); 1762 MODULE_PARM_DESC(zvol_blk_mq_blocks_per_thread, 1763 "Process volblocksize blocks per thread"); 1764 #endif 1765 1766 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS 1767 module_param(zvol_open_timeout_ms, uint, 0644); 1768 MODULE_PARM_DESC(zvol_open_timeout_ms, "Timeout for ZVOL open retries"); 1769 #endif 1770 1771 /* END CSTYLED */ 1772