xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/zvol_os.c (revision b5daf675efc746611c7cfcd1fa474b8905064c4b)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
24  * Copyright (c) 2024, Rob Norris <robn@despairlabs.com>
25  * Copyright (c) 2024, 2025, Klara, Inc.
26  */
27 
28 #include <sys/dataset_kstats.h>
29 #include <sys/dbuf.h>
30 #include <sys/dmu_traverse.h>
31 #include <sys/dsl_dataset.h>
32 #include <sys/dsl_prop.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/zap.h>
35 #include <sys/zfeature.h>
36 #include <sys/zil_impl.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/zio.h>
39 #include <sys/zfs_rlock.h>
40 #include <sys/spa_impl.h>
41 #include <sys/zvol.h>
42 #include <sys/zvol_impl.h>
43 #include <cityhash.h>
44 
45 #include <linux/blkdev_compat.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/workqueue.h>
48 #include <linux/blk-mq.h>
49 
50 static void zvol_request_impl(zvol_state_t *zv, struct bio *bio,
51     struct request *rq, boolean_t force_sync);
52 
53 static unsigned int zvol_major = ZVOL_MAJOR;
54 static unsigned long zvol_max_discard_blocks = 16384;
55 
56 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
57 static unsigned int zvol_open_timeout_ms = 1000;
58 #endif
59 
60 static unsigned int zvol_blk_mq_threads = 0;
61 static unsigned int zvol_blk_mq_actual_threads;
62 static boolean_t zvol_use_blk_mq = B_FALSE;
63 
64 /*
65  * The maximum number of volblocksize blocks to process per thread.  Typically,
66  * write heavy workloads preform better with higher values here, and read
67  * heavy workloads preform better with lower values, but that's not a hard
68  * and fast rule.  It's basically a knob to tune between "less overhead with
69  * less parallelism" and "more overhead, but more parallelism".
70  *
71  * '8' was chosen as a reasonable, balanced, default based off of sequential
72  * read and write tests to a zvol in an NVMe pool (with 16 CPUs).
73  */
74 static unsigned int zvol_blk_mq_blocks_per_thread = 8;
75 
76 #ifndef	BLKDEV_DEFAULT_RQ
77 /* BLKDEV_MAX_RQ was renamed to BLKDEV_DEFAULT_RQ in the 5.16 kernel */
78 #define	BLKDEV_DEFAULT_RQ BLKDEV_MAX_RQ
79 #endif
80 
81 /*
82  * Finalize our BIO or request.
83  */
84 static inline void
85 zvol_end_io(struct bio *bio, struct request *rq, int error)
86 {
87 	ASSERT3U(error, >=, 0);
88 	if (bio) {
89 		bio->bi_status = errno_to_bi_status(error);
90 		bio_endio(bio);
91 	} else {
92 		blk_mq_end_request(rq, errno_to_bi_status(error));
93 	}
94 }
95 
96 static unsigned int zvol_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
97 static unsigned int zvol_actual_blk_mq_queue_depth;
98 
99 struct zvol_state_os {
100 	struct gendisk		*zvo_disk;	/* generic disk */
101 	struct request_queue	*zvo_queue;	/* request queue */
102 	dev_t			zvo_dev;	/* device id */
103 
104 	struct blk_mq_tag_set tag_set;
105 
106 	/* Set from the global 'zvol_use_blk_mq' at zvol load */
107 	boolean_t use_blk_mq;
108 };
109 
110 static struct ida zvol_ida;
111 
112 /*
113  * This is called when a new block multiqueue request comes in.  A request
114  * contains one or more BIOs.
115  */
116 static blk_status_t zvol_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
117     const struct blk_mq_queue_data *bd)
118 {
119 	struct request *rq = bd->rq;
120 	zvol_state_t *zv = rq->q->queuedata;
121 
122 	/* Tell the kernel that we are starting to process this request */
123 	blk_mq_start_request(rq);
124 
125 	if (blk_rq_is_passthrough(rq)) {
126 		/* Skip non filesystem request */
127 		blk_mq_end_request(rq, BLK_STS_IOERR);
128 		return (BLK_STS_IOERR);
129 	}
130 
131 	zvol_request_impl(zv, NULL, rq, 0);
132 
133 	/* Acknowledge to the kernel that we got this request */
134 	return (BLK_STS_OK);
135 }
136 
137 static struct blk_mq_ops zvol_blk_mq_queue_ops = {
138 	.queue_rq = zvol_mq_queue_rq,
139 };
140 
141 /* Initialize our blk-mq struct */
142 static int zvol_blk_mq_alloc_tag_set(zvol_state_t *zv)
143 {
144 	struct zvol_state_os *zso = zv->zv_zso;
145 
146 	memset(&zso->tag_set, 0, sizeof (zso->tag_set));
147 
148 	/* Initialize tag set. */
149 	zso->tag_set.ops = &zvol_blk_mq_queue_ops;
150 	zso->tag_set.nr_hw_queues = zvol_blk_mq_actual_threads;
151 	zso->tag_set.queue_depth = zvol_actual_blk_mq_queue_depth;
152 	zso->tag_set.numa_node = NUMA_NO_NODE;
153 	zso->tag_set.cmd_size = 0;
154 
155 	/*
156 	 * We need BLK_MQ_F_BLOCKING here since we do blocking calls in
157 	 * zvol_request_impl()
158 	 */
159 	zso->tag_set.flags = BLK_MQ_F_BLOCKING;
160 
161 #ifdef BLK_MQ_F_SHOULD_MERGE
162 	/*
163 	 * Linux 6.14 removed BLK_MQ_F_SHOULD_MERGE and made it implicit.
164 	 * For older kernels, we set it.
165 	 */
166 	zso->tag_set.flags |= BLK_MQ_F_SHOULD_MERGE;
167 #endif
168 
169 	zso->tag_set.driver_data = zv;
170 
171 	return (blk_mq_alloc_tag_set(&zso->tag_set));
172 }
173 
174 /*
175  * Given a path, return TRUE if path is a ZVOL.
176  */
177 boolean_t
178 zvol_os_is_zvol(const char *path)
179 {
180 	dev_t dev = 0;
181 
182 	if (vdev_lookup_bdev(path, &dev) != 0)
183 		return (B_FALSE);
184 
185 	if (MAJOR(dev) == zvol_major)
186 		return (B_TRUE);
187 
188 	return (B_FALSE);
189 }
190 
191 static void
192 zvol_write(zv_request_t *zvr)
193 {
194 	struct bio *bio = zvr->bio;
195 	struct request *rq = zvr->rq;
196 	int error = 0;
197 	zfs_uio_t uio;
198 	zvol_state_t *zv = zvr->zv;
199 	struct request_queue *q;
200 	struct gendisk *disk;
201 	unsigned long start_time = 0;
202 	boolean_t acct = B_FALSE;
203 
204 	ASSERT3P(zv, !=, NULL);
205 	ASSERT3U(zv->zv_open_count, >, 0);
206 	ASSERT3P(zv->zv_zilog, !=, NULL);
207 
208 	q = zv->zv_zso->zvo_queue;
209 	disk = zv->zv_zso->zvo_disk;
210 
211 	/* bio marked as FLUSH need to flush before write */
212 	if (io_is_flush(bio, rq)) {
213 		error = zil_commit(zv->zv_zilog, ZVOL_OBJ);
214 		if (error != 0) {
215 			rw_exit(&zv->zv_suspend_lock);
216 			zvol_end_io(bio, rq, -error);
217 			return;
218 		}
219 	}
220 
221 	/* Some requests are just for flush and nothing else. */
222 	if (io_size(bio, rq) == 0) {
223 		rw_exit(&zv->zv_suspend_lock);
224 		zvol_end_io(bio, rq, 0);
225 		return;
226 	}
227 
228 	zfs_uio_bvec_init(&uio, bio, rq);
229 
230 	ssize_t start_resid = uio.uio_resid;
231 
232 	/*
233 	 * With use_blk_mq, accounting is done by blk_mq_start_request()
234 	 * and blk_mq_end_request(), so we can skip it here.
235 	 */
236 	if (bio) {
237 		acct = blk_queue_io_stat(q);
238 		if (acct) {
239 			start_time = blk_generic_start_io_acct(q, disk, WRITE,
240 			    bio);
241 		}
242 	}
243 
244 	boolean_t sync =
245 	    io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
246 
247 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
248 	    uio.uio_loffset, uio.uio_resid, RL_WRITER);
249 
250 	uint64_t volsize = zv->zv_volsize;
251 	while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
252 		uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
253 		uint64_t off = uio.uio_loffset;
254 		dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
255 
256 		if (bytes > volsize - off)	/* don't write past the end */
257 			bytes = volsize - off;
258 
259 		dmu_tx_hold_write_by_dnode(tx, zv->zv_dn, off, bytes);
260 
261 		/* This will only fail for ENOSPC */
262 		error = dmu_tx_assign(tx, DMU_TX_WAIT);
263 		if (error) {
264 			dmu_tx_abort(tx);
265 			break;
266 		}
267 		error = dmu_write_uio_dnode(zv->zv_dn, &uio, bytes, tx,
268 		    DMU_READ_PREFETCH);
269 		if (error == 0) {
270 			zvol_log_write(zv, tx, off, bytes, sync);
271 		}
272 		dmu_tx_commit(tx);
273 
274 		if (error)
275 			break;
276 	}
277 	zfs_rangelock_exit(lr);
278 
279 	int64_t nwritten = start_resid - uio.uio_resid;
280 	dataset_kstats_update_write_kstats(&zv->zv_kstat, nwritten);
281 	task_io_account_write(nwritten);
282 
283 	if (error == 0 && sync)
284 		error = zil_commit(zv->zv_zilog, ZVOL_OBJ);
285 
286 	rw_exit(&zv->zv_suspend_lock);
287 
288 	if (bio && acct) {
289 		blk_generic_end_io_acct(q, disk, WRITE, bio, start_time);
290 	}
291 
292 	zvol_end_io(bio, rq, error);
293 }
294 
295 static void
296 zvol_write_task(void *arg)
297 {
298 	zv_request_task_t *task = arg;
299 	zvol_write(&task->zvr);
300 	zv_request_task_free(task);
301 }
302 
303 static void
304 zvol_discard(zv_request_t *zvr)
305 {
306 	struct bio *bio = zvr->bio;
307 	struct request *rq = zvr->rq;
308 	zvol_state_t *zv = zvr->zv;
309 	uint64_t start = io_offset(bio, rq);
310 	uint64_t size = io_size(bio, rq);
311 	uint64_t end = start + size;
312 	boolean_t sync;
313 	int error = 0;
314 	dmu_tx_t *tx;
315 	struct request_queue *q = zv->zv_zso->zvo_queue;
316 	struct gendisk *disk = zv->zv_zso->zvo_disk;
317 	unsigned long start_time = 0;
318 	boolean_t acct = B_FALSE;
319 
320 	ASSERT3P(zv, !=, NULL);
321 	ASSERT3U(zv->zv_open_count, >, 0);
322 	ASSERT3P(zv->zv_zilog, !=, NULL);
323 
324 	if (bio) {
325 		acct = blk_queue_io_stat(q);
326 		if (acct) {
327 			start_time = blk_generic_start_io_acct(q, disk, WRITE,
328 			    bio);
329 		}
330 	}
331 
332 	sync = io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
333 
334 	if (end > zv->zv_volsize) {
335 		error = SET_ERROR(EIO);
336 		goto unlock;
337 	}
338 
339 	/*
340 	 * Align the request to volume block boundaries when a secure erase is
341 	 * not required.  This will prevent dnode_free_range() from zeroing out
342 	 * the unaligned parts which is slow (read-modify-write) and useless
343 	 * since we are not freeing any space by doing so.
344 	 */
345 	if (!io_is_secure_erase(bio, rq)) {
346 		start = P2ROUNDUP(start, zv->zv_volblocksize);
347 		end = P2ALIGN_TYPED(end, zv->zv_volblocksize, uint64_t);
348 		size = end - start;
349 	}
350 
351 	if (start >= end)
352 		goto unlock;
353 
354 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
355 	    start, size, RL_WRITER);
356 
357 	tx = dmu_tx_create(zv->zv_objset);
358 	dmu_tx_mark_netfree(tx);
359 	error = dmu_tx_assign(tx, DMU_TX_WAIT);
360 	if (error != 0) {
361 		dmu_tx_abort(tx);
362 	} else {
363 		zvol_log_truncate(zv, tx, start, size);
364 		dmu_tx_commit(tx);
365 		error = dmu_free_long_range(zv->zv_objset,
366 		    ZVOL_OBJ, start, size);
367 	}
368 	zfs_rangelock_exit(lr);
369 
370 	if (error == 0 && sync)
371 		error = zil_commit(zv->zv_zilog, ZVOL_OBJ);
372 
373 unlock:
374 	rw_exit(&zv->zv_suspend_lock);
375 
376 	if (bio && acct) {
377 		blk_generic_end_io_acct(q, disk, WRITE, bio,
378 		    start_time);
379 	}
380 
381 	zvol_end_io(bio, rq, error);
382 }
383 
384 static void
385 zvol_discard_task(void *arg)
386 {
387 	zv_request_task_t *task = arg;
388 	zvol_discard(&task->zvr);
389 	zv_request_task_free(task);
390 }
391 
392 static void
393 zvol_read(zv_request_t *zvr)
394 {
395 	struct bio *bio = zvr->bio;
396 	struct request *rq = zvr->rq;
397 	int error = 0;
398 	zfs_uio_t uio;
399 	boolean_t acct = B_FALSE;
400 	zvol_state_t *zv = zvr->zv;
401 	struct request_queue *q;
402 	struct gendisk *disk;
403 	unsigned long start_time = 0;
404 
405 	ASSERT3P(zv, !=, NULL);
406 	ASSERT3U(zv->zv_open_count, >, 0);
407 
408 	zfs_uio_bvec_init(&uio, bio, rq);
409 
410 	q = zv->zv_zso->zvo_queue;
411 	disk = zv->zv_zso->zvo_disk;
412 
413 	ssize_t start_resid = uio.uio_resid;
414 
415 	/*
416 	 * When blk-mq is being used, accounting is done by
417 	 * blk_mq_start_request() and blk_mq_end_request().
418 	 */
419 	if (bio) {
420 		acct = blk_queue_io_stat(q);
421 		if (acct)
422 			start_time = blk_generic_start_io_acct(q, disk, READ,
423 			    bio);
424 	}
425 
426 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
427 	    uio.uio_loffset, uio.uio_resid, RL_READER);
428 
429 	uint64_t volsize = zv->zv_volsize;
430 
431 	while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
432 		uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
433 
434 		/* don't read past the end */
435 		if (bytes > volsize - uio.uio_loffset)
436 			bytes = volsize - uio.uio_loffset;
437 
438 		error = dmu_read_uio_dnode(zv->zv_dn, &uio, bytes,
439 		    DMU_READ_PREFETCH);
440 		if (error) {
441 			/* convert checksum errors into IO errors */
442 			if (error == ECKSUM)
443 				error = SET_ERROR(EIO);
444 			break;
445 		}
446 	}
447 	zfs_rangelock_exit(lr);
448 
449 	int64_t nread = start_resid - uio.uio_resid;
450 	dataset_kstats_update_read_kstats(&zv->zv_kstat, nread);
451 	task_io_account_read(nread);
452 
453 	rw_exit(&zv->zv_suspend_lock);
454 
455 	if (bio && acct) {
456 		blk_generic_end_io_acct(q, disk, READ, bio, start_time);
457 	}
458 
459 	zvol_end_io(bio, rq, error);
460 }
461 
462 static void
463 zvol_read_task(void *arg)
464 {
465 	zv_request_task_t *task = arg;
466 	zvol_read(&task->zvr);
467 	zv_request_task_free(task);
468 }
469 
470 
471 /*
472  * Process a BIO or request
473  *
474  * Either 'bio' or 'rq' should be set depending on if we are processing a
475  * bio or a request (both should not be set).
476  *
477  * force_sync:	Set to 0 to defer processing to a background taskq
478  *			Set to 1 to process data synchronously
479  */
480 static void
481 zvol_request_impl(zvol_state_t *zv, struct bio *bio, struct request *rq,
482     boolean_t force_sync)
483 {
484 	fstrans_cookie_t cookie = spl_fstrans_mark();
485 	uint64_t offset = io_offset(bio, rq);
486 	uint64_t size = io_size(bio, rq);
487 	int rw = io_data_dir(bio, rq);
488 
489 	if (unlikely(zv->zv_flags & ZVOL_REMOVING)) {
490 		zvol_end_io(bio, rq, SET_ERROR(ENXIO));
491 		goto out;
492 	}
493 
494 	if (zvol_request_sync || zv->zv_threading == B_FALSE)
495 		force_sync = 1;
496 
497 	zv_request_t zvr = {
498 		.zv = zv,
499 		.bio = bio,
500 		.rq = rq,
501 	};
502 
503 	if (io_has_data(bio, rq) && offset + size > zv->zv_volsize) {
504 		printk(KERN_INFO "%s: bad access: offset=%llu, size=%lu\n",
505 		    zv->zv_zso->zvo_disk->disk_name,
506 		    (long long unsigned)offset,
507 		    (long unsigned)size);
508 
509 		zvol_end_io(bio, rq, SET_ERROR(EIO));
510 		goto out;
511 	}
512 
513 	zv_request_task_t *task;
514 	zv_taskq_t *ztqs = &zvol_taskqs;
515 	uint_t blk_mq_hw_queue = 0;
516 	uint_t tq_idx;
517 	uint_t taskq_hash;
518 	if (rq)
519 #ifdef HAVE_BLK_MQ_RQ_HCTX
520 		blk_mq_hw_queue = rq->mq_hctx->queue_num;
521 #else
522 		blk_mq_hw_queue = rq->q->queue_hw_ctx[
523 		    rq->q->mq_map[raw_smp_processor_id()]]->queue_num;
524 #endif
525 	taskq_hash = cityhash3((uintptr_t)zv, offset >> ZVOL_TASKQ_OFFSET_SHIFT,
526 	    blk_mq_hw_queue);
527 	tq_idx = taskq_hash % ztqs->tqs_cnt;
528 
529 	if (rw == WRITE) {
530 		if (unlikely(zv->zv_flags & ZVOL_RDONLY)) {
531 			zvol_end_io(bio, rq, SET_ERROR(EROFS));
532 			goto out;
533 		}
534 
535 		/*
536 		 * Prevents the zvol from being suspended, or the ZIL being
537 		 * concurrently opened.  Will be released after the i/o
538 		 * completes.
539 		 */
540 		rw_enter(&zv->zv_suspend_lock, RW_READER);
541 
542 		/*
543 		 * Open a ZIL if this is the first time we have written to this
544 		 * zvol. We protect zv->zv_zilog with zv_suspend_lock rather
545 		 * than zv_state_lock so that we don't need to acquire an
546 		 * additional lock in this path.
547 		 */
548 		if (zv->zv_zilog == NULL) {
549 			rw_exit(&zv->zv_suspend_lock);
550 			rw_enter(&zv->zv_suspend_lock, RW_WRITER);
551 			if (zv->zv_zilog == NULL) {
552 				zv->zv_zilog = zil_open(zv->zv_objset,
553 				    zvol_get_data, &zv->zv_kstat.dk_zil_sums);
554 				zv->zv_flags |= ZVOL_WRITTEN_TO;
555 				/* replay / destroy done in zvol_create_minor */
556 				VERIFY0((zv->zv_zilog->zl_header->zh_flags &
557 				    ZIL_REPLAY_NEEDED));
558 			}
559 			rw_downgrade(&zv->zv_suspend_lock);
560 		}
561 
562 		/*
563 		 * We don't want this thread to be blocked waiting for i/o to
564 		 * complete, so we instead wait from a taskq callback. The
565 		 * i/o may be a ZIL write (via zil_commit()), or a read of an
566 		 * indirect block, or a read of a data block (if this is a
567 		 * partial-block write).  We will indicate that the i/o is
568 		 * complete by calling END_IO() from the taskq callback.
569 		 *
570 		 * This design allows the calling thread to continue and
571 		 * initiate more concurrent operations by calling
572 		 * zvol_request() again. There are typically only a small
573 		 * number of threads available to call zvol_request() (e.g.
574 		 * one per iSCSI target), so keeping the latency of
575 		 * zvol_request() low is important for performance.
576 		 *
577 		 * The zvol_request_sync module parameter allows this
578 		 * behavior to be altered, for performance evaluation
579 		 * purposes.  If the callback blocks, setting
580 		 * zvol_request_sync=1 will result in much worse performance.
581 		 *
582 		 * We can have up to zvol_threads concurrent i/o's being
583 		 * processed for all zvols on the system.  This is typically
584 		 * a vast improvement over the zvol_request_sync=1 behavior
585 		 * of one i/o at a time per zvol.  However, an even better
586 		 * design would be for zvol_request() to initiate the zio
587 		 * directly, and then be notified by the zio_done callback,
588 		 * which would call END_IO().  Unfortunately, the DMU/ZIL
589 		 * interfaces lack this functionality (they block waiting for
590 		 * the i/o to complete).
591 		 */
592 		if (io_is_discard(bio, rq) || io_is_secure_erase(bio, rq)) {
593 			if (force_sync) {
594 				zvol_discard(&zvr);
595 			} else {
596 				task = zv_request_task_create(zvr);
597 				taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx],
598 				    zvol_discard_task, task, 0, &task->ent);
599 			}
600 		} else {
601 			if (force_sync) {
602 				zvol_write(&zvr);
603 			} else {
604 				task = zv_request_task_create(zvr);
605 				taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx],
606 				    zvol_write_task, task, 0, &task->ent);
607 			}
608 		}
609 	} else {
610 		/*
611 		 * The SCST driver, and possibly others, may issue READ I/Os
612 		 * with a length of zero bytes.  These empty I/Os contain no
613 		 * data and require no additional handling.
614 		 */
615 		if (size == 0) {
616 			zvol_end_io(bio, rq, 0);
617 			goto out;
618 		}
619 
620 		rw_enter(&zv->zv_suspend_lock, RW_READER);
621 
622 		/* See comment in WRITE case above. */
623 		if (force_sync) {
624 			zvol_read(&zvr);
625 		} else {
626 			task = zv_request_task_create(zvr);
627 			taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx],
628 			    zvol_read_task, task, 0, &task->ent);
629 		}
630 	}
631 
632 out:
633 	spl_fstrans_unmark(cookie);
634 }
635 
636 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
637 #ifdef HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID
638 static void
639 zvol_submit_bio(struct bio *bio)
640 #else
641 static blk_qc_t
642 zvol_submit_bio(struct bio *bio)
643 #endif
644 #else
645 static MAKE_REQUEST_FN_RET
646 zvol_request(struct request_queue *q, struct bio *bio)
647 #endif
648 {
649 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
650 #if defined(HAVE_BIO_BDEV_DISK)
651 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
652 #else
653 	struct request_queue *q = bio->bi_disk->queue;
654 #endif
655 #endif
656 	zvol_state_t *zv = q->queuedata;
657 
658 	zvol_request_impl(zv, bio, NULL, 0);
659 #if defined(HAVE_MAKE_REQUEST_FN_RET_QC) || \
660 	defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
661 	!defined(HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID)
662 	return (BLK_QC_T_NONE);
663 #endif
664 }
665 
666 static int
667 #ifdef HAVE_BLK_MODE_T
668 zvol_open(struct gendisk *disk, blk_mode_t flag)
669 #else
670 zvol_open(struct block_device *bdev, fmode_t flag)
671 #endif
672 {
673 	zvol_state_t *zv;
674 	int error = 0;
675 	boolean_t drop_suspend = B_FALSE;
676 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
677 	hrtime_t timeout = MSEC2NSEC(zvol_open_timeout_ms);
678 	hrtime_t start = gethrtime();
679 
680 retry:
681 #endif
682 
683 #ifdef HAVE_BLK_MODE_T
684 	zv = atomic_load_ptr(&disk->private_data);
685 #else
686 	zv = atomic_load_ptr(&bdev->bd_disk->private_data);
687 #endif
688 	if (zv == NULL) {
689 		return (-SET_ERROR(ENXIO));
690 	}
691 
692 	mutex_enter(&zv->zv_state_lock);
693 	if (unlikely(zv->zv_flags & ZVOL_REMOVING)) {
694 		mutex_exit(&zv->zv_state_lock);
695 		return (-SET_ERROR(ENXIO));
696 	}
697 
698 	/*
699 	 * Make sure zvol is not suspended during first open
700 	 * (hold zv_suspend_lock) and respect proper lock acquisition
701 	 * ordering - zv_suspend_lock before zv_state_lock
702 	 */
703 	if (zv->zv_open_count == 0) {
704 		if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
705 			mutex_exit(&zv->zv_state_lock);
706 
707 			/*
708 			 * Removal may happen while the locks are down, so
709 			 * we can't trust zv any longer; we have to start over.
710 			 */
711 #ifdef HAVE_BLK_MODE_T
712 			zv = atomic_load_ptr(&disk->private_data);
713 #else
714 			zv = atomic_load_ptr(&bdev->bd_disk->private_data);
715 #endif
716 			if (zv == NULL)
717 				return (-SET_ERROR(ENXIO));
718 
719 			rw_enter(&zv->zv_suspend_lock, RW_READER);
720 			mutex_enter(&zv->zv_state_lock);
721 
722 			if (unlikely(zv->zv_flags & ZVOL_REMOVING)) {
723 				mutex_exit(&zv->zv_state_lock);
724 				rw_exit(&zv->zv_suspend_lock);
725 				return (-SET_ERROR(ENXIO));
726 			}
727 
728 			/* check to see if zv_suspend_lock is needed */
729 			if (zv->zv_open_count != 0) {
730 				rw_exit(&zv->zv_suspend_lock);
731 			} else {
732 				drop_suspend = B_TRUE;
733 			}
734 		} else {
735 			drop_suspend = B_TRUE;
736 		}
737 	}
738 
739 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
740 
741 	if (zv->zv_open_count == 0) {
742 		boolean_t drop_namespace = B_FALSE;
743 
744 		ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
745 
746 		/*
747 		 * In all other call paths the spa_namespace_lock is taken
748 		 * before the bdev->bd_mutex lock.  However, on open(2)
749 		 * the __blkdev_get() function calls fops->open() with the
750 		 * bdev->bd_mutex lock held.  This can result in a deadlock
751 		 * when zvols from one pool are used as vdevs in another.
752 		 *
753 		 * To prevent a lock inversion deadlock we preemptively
754 		 * take the spa_namespace_lock.  Normally the lock will not
755 		 * be contended and this is safe because spa_open_common()
756 		 * handles the case where the caller already holds the
757 		 * spa_namespace_lock.
758 		 *
759 		 * When the lock cannot be aquired after multiple retries
760 		 * this must be the vdev on zvol deadlock case and we have
761 		 * no choice but to return an error.  For 5.12 and older
762 		 * kernels returning -ERESTARTSYS will result in the
763 		 * bdev->bd_mutex being dropped, then reacquired, and
764 		 * fops->open() being called again.  This process can be
765 		 * repeated safely until both locks are acquired.  For 5.13
766 		 * and newer the -ERESTARTSYS retry logic was removed from
767 		 * the kernel so the only option is to return the error for
768 		 * the caller to handle it.
769 		 */
770 		if (!mutex_owned(&spa_namespace_lock)) {
771 			if (!mutex_tryenter(&spa_namespace_lock)) {
772 				mutex_exit(&zv->zv_state_lock);
773 				rw_exit(&zv->zv_suspend_lock);
774 				drop_suspend = B_FALSE;
775 
776 #ifdef HAVE_BLKDEV_GET_ERESTARTSYS
777 				schedule();
778 				return (-SET_ERROR(ERESTARTSYS));
779 #else
780 				if ((gethrtime() - start) > timeout)
781 					return (-SET_ERROR(ERESTARTSYS));
782 
783 				schedule_timeout_interruptible(
784 					MSEC_TO_TICK(10));
785 				goto retry;
786 #endif
787 			} else {
788 				drop_namespace = B_TRUE;
789 			}
790 		}
791 
792 		error = -zvol_first_open(zv, !(blk_mode_is_open_write(flag)));
793 
794 		if (drop_namespace)
795 			mutex_exit(&spa_namespace_lock);
796 	}
797 
798 	if (error == 0) {
799 		if ((blk_mode_is_open_write(flag)) &&
800 		    (zv->zv_flags & ZVOL_RDONLY)) {
801 			if (zv->zv_open_count == 0)
802 				zvol_last_close(zv);
803 
804 			error = -SET_ERROR(EROFS);
805 		} else {
806 			zv->zv_open_count++;
807 		}
808 	}
809 
810 	mutex_exit(&zv->zv_state_lock);
811 	if (drop_suspend)
812 		rw_exit(&zv->zv_suspend_lock);
813 
814 	if (error == 0)
815 #ifdef HAVE_BLK_MODE_T
816 		disk_check_media_change(disk);
817 #else
818 		zfs_check_media_change(bdev);
819 #endif
820 
821 	return (error);
822 }
823 
824 static void
825 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_1ARG
826 zvol_release(struct gendisk *disk)
827 #else
828 zvol_release(struct gendisk *disk, fmode_t unused)
829 #endif
830 {
831 #if !defined(HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_1ARG)
832 	(void) unused;
833 #endif
834 	boolean_t drop_suspend = B_TRUE;
835 
836 	zvol_state_t *zv = atomic_load_ptr(&disk->private_data);
837 	if (zv == NULL)
838 		return;
839 
840 	mutex_enter(&zv->zv_state_lock);
841 	ASSERT3U(zv->zv_open_count, >, 0);
842 	/*
843 	 * make sure zvol is not suspended during last close
844 	 * (hold zv_suspend_lock) and respect proper lock acquisition
845 	 * ordering - zv_suspend_lock before zv_state_lock
846 	 */
847 	if (zv->zv_open_count == 1) {
848 		if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
849 			mutex_exit(&zv->zv_state_lock);
850 			rw_enter(&zv->zv_suspend_lock, RW_READER);
851 			mutex_enter(&zv->zv_state_lock);
852 
853 			/*
854 			 * Unlike in zvol_open(), we don't check if removal
855 			 * started here, because we might be one of the openers
856 			 * that needs to be thrown out! If we're the last, we
857 			 * need to call zvol_last_close() below to finish
858 			 * cleanup. So, no special treatment for us.
859 			 */
860 
861 			/* check to see if zv_suspend_lock is needed */
862 			if (zv->zv_open_count != 1) {
863 				rw_exit(&zv->zv_suspend_lock);
864 				drop_suspend = B_FALSE;
865 			}
866 		}
867 	} else {
868 		drop_suspend = B_FALSE;
869 	}
870 
871 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
872 
873 	zv->zv_open_count--;
874 	if (zv->zv_open_count == 0) {
875 		ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
876 		zvol_last_close(zv);
877 	}
878 
879 	mutex_exit(&zv->zv_state_lock);
880 
881 	if (drop_suspend)
882 		rw_exit(&zv->zv_suspend_lock);
883 }
884 
885 static int
886 zvol_ioctl(struct block_device *bdev, fmode_t mode,
887     unsigned int cmd, unsigned long arg)
888 {
889 	int error = 0;
890 
891 	zvol_state_t *zv = atomic_load_ptr(&bdev->bd_disk->private_data);
892 	ASSERT3P(zv, !=, NULL);
893 	ASSERT3U(zv->zv_open_count, >, 0);
894 
895 	switch (cmd) {
896 	case BLKFLSBUF:
897 #ifdef HAVE_FSYNC_BDEV
898 		fsync_bdev(bdev);
899 #elif defined(HAVE_SYNC_BLOCKDEV)
900 		sync_blockdev(bdev);
901 #else
902 #error "Neither fsync_bdev() nor sync_blockdev() found"
903 #endif
904 		invalidate_bdev(bdev);
905 		rw_enter(&zv->zv_suspend_lock, RW_READER);
906 
907 		if (!(zv->zv_flags & ZVOL_RDONLY))
908 			txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
909 
910 		rw_exit(&zv->zv_suspend_lock);
911 		break;
912 
913 	case BLKZNAME:
914 		mutex_enter(&zv->zv_state_lock);
915 		error = -copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN);
916 		mutex_exit(&zv->zv_state_lock);
917 		if (error)
918 			error = SET_ERROR(error);
919 		break;
920 
921 	default:
922 		error = SET_ERROR(ENOTTY);
923 		break;
924 	}
925 
926 	return (-error);
927 }
928 
929 #ifdef CONFIG_COMPAT
930 static int
931 zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
932     unsigned cmd, unsigned long arg)
933 {
934 	return (zvol_ioctl(bdev, mode, cmd, arg));
935 }
936 #else
937 #define	zvol_compat_ioctl	NULL
938 #endif
939 
940 static unsigned int
941 zvol_check_events(struct gendisk *disk, unsigned int clearing)
942 {
943 	unsigned int mask = 0;
944 
945 	zvol_state_t *zv = atomic_load_ptr(&disk->private_data);
946 
947 	if (zv != NULL) {
948 		mutex_enter(&zv->zv_state_lock);
949 		mask = zv->zv_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
950 		zv->zv_changed = 0;
951 		mutex_exit(&zv->zv_state_lock);
952 	}
953 
954 	return (mask);
955 }
956 
957 static int
958 zvol_revalidate_disk(struct gendisk *disk)
959 {
960 	zvol_state_t *zv = atomic_load_ptr(&disk->private_data);
961 
962 	if (zv != NULL) {
963 		mutex_enter(&zv->zv_state_lock);
964 		set_capacity(zv->zv_zso->zvo_disk,
965 		    zv->zv_volsize >> SECTOR_BITS);
966 		mutex_exit(&zv->zv_state_lock);
967 	}
968 
969 	return (0);
970 }
971 
972 int
973 zvol_os_update_volsize(zvol_state_t *zv, uint64_t volsize)
974 {
975 	struct gendisk *disk = zv->zv_zso->zvo_disk;
976 
977 #if defined(HAVE_REVALIDATE_DISK_SIZE)
978 	revalidate_disk_size(disk, zvol_revalidate_disk(disk) == 0);
979 #elif defined(HAVE_REVALIDATE_DISK)
980 	revalidate_disk(disk);
981 #else
982 	zvol_revalidate_disk(disk);
983 #endif
984 	return (0);
985 }
986 
987 /*
988  * Provide a simple virtual geometry for legacy compatibility.  For devices
989  * smaller than 1 MiB a small head and sector count is used to allow very
990  * tiny devices.  For devices over 1 Mib a standard head and sector count
991  * is used to keep the cylinders count reasonable.
992  */
993 static int
994 zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
995 {
996 	sector_t sectors;
997 
998 	zvol_state_t *zv = atomic_load_ptr(&bdev->bd_disk->private_data);
999 	ASSERT3P(zv, !=, NULL);
1000 	ASSERT3U(zv->zv_open_count, >, 0);
1001 
1002 	sectors = get_capacity(zv->zv_zso->zvo_disk);
1003 
1004 	if (sectors > 2048) {
1005 		geo->heads = 16;
1006 		geo->sectors = 63;
1007 	} else {
1008 		geo->heads = 2;
1009 		geo->sectors = 4;
1010 	}
1011 
1012 	geo->start = 0;
1013 	geo->cylinders = sectors / (geo->heads * geo->sectors);
1014 
1015 	return (0);
1016 }
1017 
1018 /*
1019  * Why have two separate block_device_operations structs?
1020  *
1021  * Normally we'd just have one, and assign 'submit_bio' as needed.  However,
1022  * it's possible the user's kernel is built with CONSTIFY_PLUGIN, meaning we
1023  * can't just change submit_bio dynamically at runtime.  So just create two
1024  * separate structs to get around this.
1025  */
1026 static const struct block_device_operations zvol_ops_blk_mq = {
1027 	.open			= zvol_open,
1028 	.release		= zvol_release,
1029 	.ioctl			= zvol_ioctl,
1030 	.compat_ioctl		= zvol_compat_ioctl,
1031 	.check_events		= zvol_check_events,
1032 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
1033 	.revalidate_disk	= zvol_revalidate_disk,
1034 #endif
1035 	.getgeo			= zvol_getgeo,
1036 	.owner			= THIS_MODULE,
1037 };
1038 
1039 static const struct block_device_operations zvol_ops = {
1040 	.open			= zvol_open,
1041 	.release		= zvol_release,
1042 	.ioctl			= zvol_ioctl,
1043 	.compat_ioctl		= zvol_compat_ioctl,
1044 	.check_events		= zvol_check_events,
1045 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
1046 	.revalidate_disk	= zvol_revalidate_disk,
1047 #endif
1048 	.getgeo			= zvol_getgeo,
1049 	.owner			= THIS_MODULE,
1050 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
1051 	.submit_bio		= zvol_submit_bio,
1052 #endif
1053 };
1054 
1055 /*
1056  * Since 6.9, Linux has been removing queue limit setters in favour of an
1057  * initial queue_limits struct applied when the device is open. Since 6.11,
1058  * queue_limits is being extended to allow more things to be applied when the
1059  * device is open. Setters are also being removed for this.
1060  *
1061  * For OpenZFS, this means that depending on kernel version, some options may
1062  * be set up before the device is open, and some applied to an open device
1063  * (queue) after the fact.
1064  *
1065  * We manage this complexity by having our own limits struct,
1066  * zvol_queue_limits_t, in which we carry any queue config that we're
1067  * interested in setting. This structure is the same on all kernels.
1068  *
1069  * These limits are then applied to the queue at device open time by the most
1070  * appropriate method for the kernel.
1071  *
1072  * zvol_queue_limits_convert() is used on 6.9+ (where the two-arg form of
1073  * blk_alloc_disk() exists). This converts our limits struct to a proper Linux
1074  * struct queue_limits, and passes it in. Any fields added in later kernels are
1075  * (obviously) not set up here.
1076  *
1077  * zvol_queue_limits_apply() is called on all kernel versions after the queue
1078  * is created, and applies any remaining config. Before 6.9 that will be
1079  * everything, via setter methods. After 6.9 that will be whatever couldn't be
1080  * put into struct queue_limits. (This implies that zvol_queue_limits_apply()
1081  * will always be a no-op on the latest kernel we support).
1082  */
1083 typedef struct zvol_queue_limits {
1084 	unsigned int	zql_max_hw_sectors;
1085 	unsigned short	zql_max_segments;
1086 	unsigned int	zql_max_segment_size;
1087 	unsigned int	zql_io_opt;
1088 	unsigned int	zql_physical_block_size;
1089 	unsigned int	zql_max_discard_sectors;
1090 	unsigned int	zql_discard_granularity;
1091 } zvol_queue_limits_t;
1092 
1093 static void
1094 zvol_queue_limits_init(zvol_queue_limits_t *limits, zvol_state_t *zv,
1095     boolean_t use_blk_mq)
1096 {
1097 	limits->zql_max_hw_sectors = (DMU_MAX_ACCESS / 4) >> 9;
1098 
1099 	if (use_blk_mq) {
1100 		/*
1101 		 * IO requests can be really big (1MB).  When an IO request
1102 		 * comes in, it is passed off to zvol_read() or zvol_write()
1103 		 * in a new thread, where it is chunked up into 'volblocksize'
1104 		 * sized pieces and processed.  So for example, if the request
1105 		 * is a 1MB write and your volblocksize is 128k, one zvol_write
1106 		 * thread will take that request and sequentially do ten 128k
1107 		 * IOs.  This is due to the fact that the thread needs to lock
1108 		 * each volblocksize sized block.  So you might be wondering:
1109 		 * "instead of passing the whole 1MB request to one thread,
1110 		 * why not pass ten individual 128k chunks to ten threads and
1111 		 * process the whole write in parallel?"  The short answer is
1112 		 * that there's a sweet spot number of chunks that balances
1113 		 * the greater parallelism with the added overhead of more
1114 		 * threads. The sweet spot can be different depending on if you
1115 		 * have a read or write  heavy workload.  Writes typically want
1116 		 * high chunk counts while reads typically want lower ones.  On
1117 		 * a test pool with 6 NVMe drives in a 3x 2-disk mirror
1118 		 * configuration, with volblocksize=8k, the sweet spot for good
1119 		 * sequential reads and writes was at 8 chunks.
1120 		 */
1121 
1122 		/*
1123 		 * Below we tell the kernel how big we want our requests
1124 		 * to be.  You would think that blk_queue_io_opt() would be
1125 		 * used to do this since it is used to "set optimal request
1126 		 * size for the queue", but that doesn't seem to do
1127 		 * anything - the kernel still gives you huge requests
1128 		 * with tons of little PAGE_SIZE segments contained within it.
1129 		 *
1130 		 * Knowing that the kernel will just give you PAGE_SIZE segments
1131 		 * no matter what, you can say "ok, I want PAGE_SIZE byte
1132 		 * segments, and I want 'N' of them per request", where N is
1133 		 * the correct number of segments for the volblocksize and
1134 		 * number of chunks you want.
1135 		 */
1136 		if (zvol_blk_mq_blocks_per_thread != 0) {
1137 			unsigned int chunks;
1138 			chunks = MIN(zvol_blk_mq_blocks_per_thread, UINT16_MAX);
1139 
1140 			limits->zql_max_segment_size = PAGE_SIZE;
1141 			limits->zql_max_segments =
1142 			    (zv->zv_volblocksize * chunks) / PAGE_SIZE;
1143 		} else {
1144 			/*
1145 			 * Special case: zvol_blk_mq_blocks_per_thread = 0
1146 			 * Max everything out.
1147 			 */
1148 			limits->zql_max_segments = UINT16_MAX;
1149 			limits->zql_max_segment_size = UINT_MAX;
1150 		}
1151 	} else {
1152 		limits->zql_max_segments = UINT16_MAX;
1153 		limits->zql_max_segment_size = UINT_MAX;
1154 	}
1155 
1156 	limits->zql_io_opt = DMU_MAX_ACCESS / 2;
1157 
1158 	limits->zql_physical_block_size = zv->zv_volblocksize;
1159 	limits->zql_max_discard_sectors =
1160 	    (zvol_max_discard_blocks * zv->zv_volblocksize) >> 9;
1161 	limits->zql_discard_granularity = zv->zv_volblocksize;
1162 }
1163 
1164 #ifdef HAVE_BLK_ALLOC_DISK_2ARG
1165 static void
1166 zvol_queue_limits_convert(zvol_queue_limits_t *limits,
1167     struct queue_limits *qlimits)
1168 {
1169 	memset(qlimits, 0, sizeof (struct queue_limits));
1170 	qlimits->max_hw_sectors = limits->zql_max_hw_sectors;
1171 	qlimits->max_segments = limits->zql_max_segments;
1172 	qlimits->max_segment_size = limits->zql_max_segment_size;
1173 	qlimits->io_opt = limits->zql_io_opt;
1174 	qlimits->physical_block_size = limits->zql_physical_block_size;
1175 	qlimits->max_discard_sectors = limits->zql_max_discard_sectors;
1176 	qlimits->max_hw_discard_sectors = limits->zql_max_discard_sectors;
1177 	qlimits->discard_granularity = limits->zql_discard_granularity;
1178 #ifdef HAVE_BLKDEV_QUEUE_LIMITS_FEATURES
1179 	qlimits->features =
1180 	    BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA | BLK_FEAT_IO_STAT;
1181 #endif
1182 }
1183 #endif
1184 
1185 static void
1186 zvol_queue_limits_apply(zvol_queue_limits_t *limits,
1187     struct request_queue *queue)
1188 {
1189 #ifndef HAVE_BLK_ALLOC_DISK_2ARG
1190 	blk_queue_max_hw_sectors(queue, limits->zql_max_hw_sectors);
1191 	blk_queue_max_segments(queue, limits->zql_max_segments);
1192 	blk_queue_max_segment_size(queue, limits->zql_max_segment_size);
1193 	blk_queue_io_opt(queue, limits->zql_io_opt);
1194 	blk_queue_physical_block_size(queue, limits->zql_physical_block_size);
1195 	blk_queue_max_discard_sectors(queue, limits->zql_max_discard_sectors);
1196 	blk_queue_discard_granularity(queue, limits->zql_discard_granularity);
1197 #endif
1198 #ifndef HAVE_BLKDEV_QUEUE_LIMITS_FEATURES
1199 	blk_queue_set_write_cache(queue, B_TRUE);
1200 	blk_queue_flag_set(QUEUE_FLAG_IO_STAT, queue);
1201 #endif
1202 }
1203 
1204 static int
1205 zvol_alloc_non_blk_mq(struct zvol_state_os *zso, zvol_queue_limits_t *limits)
1206 {
1207 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS)
1208 #if defined(HAVE_BLK_ALLOC_DISK)
1209 	zso->zvo_disk = blk_alloc_disk(NUMA_NO_NODE);
1210 	if (zso->zvo_disk == NULL)
1211 		return (1);
1212 
1213 	zso->zvo_disk->minors = ZVOL_MINORS;
1214 	zso->zvo_queue = zso->zvo_disk->queue;
1215 #elif defined(HAVE_BLK_ALLOC_DISK_2ARG)
1216 	struct queue_limits qlimits;
1217 	zvol_queue_limits_convert(limits, &qlimits);
1218 	struct gendisk *disk = blk_alloc_disk(&qlimits, NUMA_NO_NODE);
1219 	if (IS_ERR(disk)) {
1220 		zso->zvo_disk = NULL;
1221 		return (1);
1222 	}
1223 
1224 	zso->zvo_disk = disk;
1225 	zso->zvo_disk->minors = ZVOL_MINORS;
1226 	zso->zvo_queue = zso->zvo_disk->queue;
1227 
1228 #else
1229 	zso->zvo_queue = blk_alloc_queue(NUMA_NO_NODE);
1230 	if (zso->zvo_queue == NULL)
1231 		return (1);
1232 
1233 	zso->zvo_disk = alloc_disk(ZVOL_MINORS);
1234 	if (zso->zvo_disk == NULL) {
1235 		blk_cleanup_queue(zso->zvo_queue);
1236 		return (1);
1237 	}
1238 
1239 	zso->zvo_disk->queue = zso->zvo_queue;
1240 #endif /* HAVE_BLK_ALLOC_DISK */
1241 #else
1242 	zso->zvo_queue = blk_generic_alloc_queue(zvol_request, NUMA_NO_NODE);
1243 	if (zso->zvo_queue == NULL)
1244 		return (1);
1245 
1246 	zso->zvo_disk = alloc_disk(ZVOL_MINORS);
1247 	if (zso->zvo_disk == NULL) {
1248 		blk_cleanup_queue(zso->zvo_queue);
1249 		return (1);
1250 	}
1251 
1252 	zso->zvo_disk->queue = zso->zvo_queue;
1253 #endif /* HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS */
1254 
1255 	zvol_queue_limits_apply(limits, zso->zvo_queue);
1256 
1257 	return (0);
1258 
1259 }
1260 
1261 static int
1262 zvol_alloc_blk_mq(zvol_state_t *zv, zvol_queue_limits_t *limits)
1263 {
1264 	struct zvol_state_os *zso = zv->zv_zso;
1265 
1266 	/* Allocate our blk-mq tag_set */
1267 	if (zvol_blk_mq_alloc_tag_set(zv) != 0)
1268 		return (1);
1269 
1270 #if defined(HAVE_BLK_ALLOC_DISK)
1271 	zso->zvo_disk = blk_mq_alloc_disk(&zso->tag_set, zv);
1272 	if (zso->zvo_disk == NULL) {
1273 		blk_mq_free_tag_set(&zso->tag_set);
1274 		return (1);
1275 	}
1276 	zso->zvo_queue = zso->zvo_disk->queue;
1277 	zso->zvo_disk->minors = ZVOL_MINORS;
1278 #elif defined(HAVE_BLK_ALLOC_DISK_2ARG)
1279 	struct queue_limits qlimits;
1280 	zvol_queue_limits_convert(limits, &qlimits);
1281 	struct gendisk *disk = blk_mq_alloc_disk(&zso->tag_set, &qlimits, zv);
1282 	if (IS_ERR(disk)) {
1283 		zso->zvo_disk = NULL;
1284 		blk_mq_free_tag_set(&zso->tag_set);
1285 		return (1);
1286 	}
1287 
1288 	zso->zvo_disk = disk;
1289 	zso->zvo_queue = zso->zvo_disk->queue;
1290 	zso->zvo_disk->minors = ZVOL_MINORS;
1291 #else
1292 	zso->zvo_disk = alloc_disk(ZVOL_MINORS);
1293 	if (zso->zvo_disk == NULL) {
1294 		blk_cleanup_queue(zso->zvo_queue);
1295 		blk_mq_free_tag_set(&zso->tag_set);
1296 		return (1);
1297 	}
1298 	/* Allocate queue */
1299 	zso->zvo_queue = blk_mq_init_queue(&zso->tag_set);
1300 	if (IS_ERR(zso->zvo_queue)) {
1301 		blk_mq_free_tag_set(&zso->tag_set);
1302 		return (1);
1303 	}
1304 
1305 	/* Our queue is now created, assign it to our disk */
1306 	zso->zvo_disk->queue = zso->zvo_queue;
1307 #endif
1308 
1309 	zvol_queue_limits_apply(limits, zso->zvo_queue);
1310 
1311 	return (0);
1312 }
1313 
1314 /*
1315  * Allocate memory for a new zvol_state_t and setup the required
1316  * request queue and generic disk structures for the block device.
1317  */
1318 static int
1319 zvol_alloc(dev_t dev, const char *name, uint64_t volsize, uint64_t volblocksize,
1320     zvol_state_t **zvp)
1321 {
1322 	zvol_state_t *zv;
1323 	struct zvol_state_os *zso;
1324 	uint64_t volmode;
1325 	int ret;
1326 
1327 	ret = dsl_prop_get_integer(name, "volmode", &volmode, NULL);
1328 	if (ret)
1329 		return (ret);
1330 
1331 	if (volmode == ZFS_VOLMODE_DEFAULT)
1332 		volmode = zvol_volmode;
1333 
1334 	if (volmode == ZFS_VOLMODE_NONE)
1335 		return (0);
1336 
1337 	zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
1338 	zso = kmem_zalloc(sizeof (struct zvol_state_os), KM_SLEEP);
1339 	zv->zv_zso = zso;
1340 	zv->zv_volmode = volmode;
1341 	zv->zv_volsize = volsize;
1342 	zv->zv_volblocksize = volblocksize;
1343 
1344 	list_link_init(&zv->zv_next);
1345 	mutex_init(&zv->zv_state_lock, NULL, MUTEX_DEFAULT, NULL);
1346 	cv_init(&zv->zv_removing_cv, NULL, CV_DEFAULT, NULL);
1347 
1348 	zv->zv_zso->use_blk_mq = zvol_use_blk_mq;
1349 
1350 	zvol_queue_limits_t limits;
1351 	zvol_queue_limits_init(&limits, zv, zv->zv_zso->use_blk_mq);
1352 
1353 	/*
1354 	 * The block layer has 3 interfaces for getting BIOs:
1355 	 *
1356 	 * 1. blk-mq request queues (new)
1357 	 * 2. submit_bio() (oldest)
1358 	 * 3. regular request queues (old).
1359 	 *
1360 	 * Each of those interfaces has two permutations:
1361 	 *
1362 	 * a) We have blk_alloc_disk()/blk_mq_alloc_disk(), which allocates
1363 	 *    both the disk and its queue (5.14 kernel or newer)
1364 	 *
1365 	 * b) We don't have blk_*alloc_disk(), and have to allocate the
1366 	 *    disk and the queue separately. (5.13 kernel or older)
1367 	 */
1368 	if (zv->zv_zso->use_blk_mq) {
1369 		ret = zvol_alloc_blk_mq(zv, &limits);
1370 		if (ret != 0)
1371 			goto out_kmem;
1372 		zso->zvo_disk->fops = &zvol_ops_blk_mq;
1373 	} else {
1374 		ret = zvol_alloc_non_blk_mq(zso, &limits);
1375 		if (ret != 0)
1376 			goto out_kmem;
1377 		zso->zvo_disk->fops = &zvol_ops;
1378 	}
1379 
1380 	/* Limit read-ahead to a single page to prevent over-prefetching. */
1381 	blk_queue_set_read_ahead(zso->zvo_queue, 1);
1382 
1383 	if (!zv->zv_zso->use_blk_mq) {
1384 		/* Disable write merging in favor of the ZIO pipeline. */
1385 		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, zso->zvo_queue);
1386 	}
1387 
1388 	zso->zvo_queue->queuedata = zv;
1389 	zso->zvo_dev = dev;
1390 	zv->zv_open_count = 0;
1391 	strlcpy(zv->zv_name, name, sizeof (zv->zv_name));
1392 
1393 	zfs_rangelock_init(&zv->zv_rangelock, NULL, NULL);
1394 	rw_init(&zv->zv_suspend_lock, NULL, RW_DEFAULT, NULL);
1395 
1396 	zso->zvo_disk->major = zvol_major;
1397 	zso->zvo_disk->events = DISK_EVENT_MEDIA_CHANGE;
1398 
1399 	/*
1400 	 * Setting ZFS_VOLMODE_DEV disables partitioning on ZVOL devices.
1401 	 * This is accomplished by limiting the number of minors for the
1402 	 * device to one and explicitly disabling partition scanning.
1403 	 */
1404 	if (volmode == ZFS_VOLMODE_DEV) {
1405 		zso->zvo_disk->minors = 1;
1406 		zso->zvo_disk->flags &= ~GENHD_FL_EXT_DEVT;
1407 		zso->zvo_disk->flags |= GENHD_FL_NO_PART;
1408 	}
1409 
1410 	zso->zvo_disk->first_minor = (dev & MINORMASK);
1411 	zso->zvo_disk->private_data = zv;
1412 	snprintf(zso->zvo_disk->disk_name, DISK_NAME_LEN, "%s%d",
1413 	    ZVOL_DEV_NAME, (dev & MINORMASK));
1414 
1415 	*zvp = zv;
1416 	return (ret);
1417 
1418 out_kmem:
1419 	kmem_free(zso, sizeof (struct zvol_state_os));
1420 	kmem_free(zv, sizeof (zvol_state_t));
1421 	return (ret);
1422 }
1423 
1424 void
1425 zvol_os_remove_minor(zvol_state_t *zv)
1426 {
1427 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1428 	ASSERT0(zv->zv_open_count);
1429 	ASSERT0(atomic_read(&zv->zv_suspend_ref));
1430 	ASSERT(zv->zv_flags & ZVOL_REMOVING);
1431 
1432 	struct zvol_state_os *zso = zv->zv_zso;
1433 	zv->zv_zso = NULL;
1434 
1435 	/* Clearing private_data will make new callers return immediately. */
1436 	atomic_store_ptr(&zso->zvo_disk->private_data, NULL);
1437 
1438 	/*
1439 	 * Drop the state lock before calling del_gendisk(). There may be
1440 	 * callers waiting to acquire it, but del_gendisk() will block until
1441 	 * they exit, which would deadlock.
1442 	 */
1443 	mutex_exit(&zv->zv_state_lock);
1444 
1445 	del_gendisk(zso->zvo_disk);
1446 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
1447 	(defined(HAVE_BLK_ALLOC_DISK) || defined(HAVE_BLK_ALLOC_DISK_2ARG))
1448 #if defined(HAVE_BLK_CLEANUP_DISK)
1449 	blk_cleanup_disk(zso->zvo_disk);
1450 #else
1451 	put_disk(zso->zvo_disk);
1452 #endif
1453 #else
1454 	blk_cleanup_queue(zso->zvo_queue);
1455 	put_disk(zso->zvo_disk);
1456 #endif
1457 
1458 	if (zso->use_blk_mq)
1459 		blk_mq_free_tag_set(&zso->tag_set);
1460 
1461 	ida_simple_remove(&zvol_ida, MINOR(zso->zvo_dev) >> ZVOL_MINOR_BITS);
1462 
1463 	kmem_free(zso, sizeof (struct zvol_state_os));
1464 
1465 	mutex_enter(&zv->zv_state_lock);
1466 }
1467 
1468 void
1469 zvol_os_free(zvol_state_t *zv)
1470 {
1471 
1472 	ASSERT(!RW_LOCK_HELD(&zv->zv_suspend_lock));
1473 	ASSERT(!MUTEX_HELD(&zv->zv_state_lock));
1474 	ASSERT0(zv->zv_open_count);
1475 	ASSERT0P(zv->zv_zso);
1476 
1477 	ASSERT0P(zv->zv_objset);
1478 	ASSERT0P(zv->zv_zilog);
1479 	ASSERT0P(zv->zv_dn);
1480 
1481 	rw_destroy(&zv->zv_suspend_lock);
1482 	zfs_rangelock_fini(&zv->zv_rangelock);
1483 
1484 	cv_destroy(&zv->zv_removing_cv);
1485 	mutex_destroy(&zv->zv_state_lock);
1486 	dataset_kstats_destroy(&zv->zv_kstat);
1487 
1488 	kmem_free(zv, sizeof (zvol_state_t));
1489 }
1490 
1491 void
1492 zvol_wait_close(zvol_state_t *zv)
1493 {
1494 }
1495 
1496 struct add_disk_work {
1497 	struct delayed_work work;
1498 	struct gendisk *disk;
1499 	int error;
1500 };
1501 
1502 static int
1503 __zvol_os_add_disk(struct gendisk *disk)
1504 {
1505 	int error = 0;
1506 #ifdef HAVE_ADD_DISK_RET
1507 	error = -add_disk(disk);
1508 	if (error)
1509 		error = SET_ERROR(error);
1510 #else
1511 	add_disk(disk);
1512 #endif
1513 	return (error);
1514 }
1515 
1516 #if defined(HAVE_BDEV_FILE_OPEN_BY_PATH)
1517 static void
1518 zvol_os_add_disk_work(struct work_struct *work)
1519 {
1520 	struct add_disk_work *add_disk_work;
1521 	add_disk_work = container_of(work, struct add_disk_work, work.work);
1522 	add_disk_work->error = __zvol_os_add_disk(add_disk_work->disk);
1523 }
1524 #endif
1525 
1526 /*
1527  * SPECIAL CASE:
1528  *
1529  * This function basically calls add_disk() from a workqueue.   You may be
1530  * thinking: why not just call add_disk() directly?
1531  *
1532  * When you call add_disk(), the zvol appears to the world.  When this happens,
1533  * the kernel calls disk_scan_partitions() on the zvol, which behaves
1534  * differently on the 6.9+ kernels:
1535  *
1536  * - 6.8 and older kernels -
1537  * disk_scan_partitions()
1538  *	handle = bdev_open_by_dev(
1539  *		zvol_open()
1540  *	bdev_release(handle);
1541  *		zvol_release()
1542  *
1543  *
1544  * - 6.9+ kernels -
1545  * disk_scan_partitions()
1546  * 	file = bdev_file_open_by_dev()
1547  *		zvol_open()
1548  *	fput(file)
1549  *	< wait for return to userspace >
1550  *		zvol_release()
1551  *
1552  * The difference is that the bdev_release() from the 6.8 kernel is synchronous
1553  * while the fput() from the 6.9 kernel is async.  Or more specifically it's
1554  * async that has to wait until we return to userspace (since it adds the fput
1555  * into the caller's work queue with the TWA_RESUME flag set).  This is not the
1556  * behavior we want, since we want do things like create+destroy a zvol within
1557  * a single ZFS_IOC_CREATE ioctl, and the "create" part needs to release the
1558  * reference to the zvol while we're in the IOCTL, which can't wait until we
1559  * return to userspace.
1560  *
1561  * We can get around this since fput() has a special codepath for when it's
1562  * running in a kernel thread or interrupt.  In those cases, it just puts the
1563  * fput into the system workqueue, which we can force to run with
1564  * __flush_workqueue().  That is why we call add_disk() from a workqueue - so it
1565  * run from a kernel thread and "tricks" the fput() codepaths.
1566  *
1567  * Note that __flush_workqueue() is slowly getting deprecated.  This may be ok
1568  * though, since our IOCTL will spin on EBUSY waiting for the zvol release (via
1569  * fput) to happen, which it eventually, naturally, will from the system_wq
1570  * without us explicitly calling __flush_workqueue().
1571  */
1572 static int
1573 zvol_os_add_disk(struct gendisk *disk)
1574 {
1575 #if defined(HAVE_BDEV_FILE_OPEN_BY_PATH)	/* 6.9+ kernel */
1576 	struct add_disk_work add_disk_work;
1577 
1578 	INIT_DELAYED_WORK(&add_disk_work.work, zvol_os_add_disk_work);
1579 	add_disk_work.disk = disk;
1580 	add_disk_work.error = 0;
1581 
1582 	/* Use *_delayed_work functions since they're not GPL'd */
1583 	schedule_delayed_work(&add_disk_work.work, 0);
1584 	flush_delayed_work(&add_disk_work.work);
1585 
1586 	__flush_workqueue(system_wq);
1587 	return (add_disk_work.error);
1588 #else	/* <= 6.8 kernel */
1589 	return (__zvol_os_add_disk(disk));
1590 #endif
1591 }
1592 
1593 /*
1594  * Create a block device minor node and setup the linkage between it
1595  * and the specified volume.  Once this function returns the block
1596  * device is live and ready for use.
1597  */
1598 int
1599 zvol_os_create_minor(const char *name)
1600 {
1601 	zvol_state_t *zv = NULL;
1602 	objset_t *os;
1603 	dmu_object_info_t *doi;
1604 	uint64_t volsize;
1605 	uint64_t len;
1606 	unsigned minor = 0;
1607 	int error = 0;
1608 	int idx;
1609 	uint64_t hash = zvol_name_hash(name);
1610 	uint64_t volthreading;
1611 	bool replayed_zil = B_FALSE;
1612 
1613 	if (zvol_inhibit_dev)
1614 		return (0);
1615 
1616 	idx = ida_simple_get(&zvol_ida, 0, 0, kmem_flags_convert(KM_SLEEP));
1617 	if (idx < 0)
1618 		return (SET_ERROR(-idx));
1619 	minor = idx << ZVOL_MINOR_BITS;
1620 	if (MINOR(minor) != minor) {
1621 		/* too many partitions can cause an overflow */
1622 		zfs_dbgmsg("zvol: create minor overflow: %s, minor %u/%u",
1623 		    name, minor, MINOR(minor));
1624 		ida_simple_remove(&zvol_ida, idx);
1625 		return (SET_ERROR(EINVAL));
1626 	}
1627 
1628 	zv = zvol_find_by_name_hash(name, hash, RW_NONE);
1629 	if (zv) {
1630 		ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1631 		mutex_exit(&zv->zv_state_lock);
1632 		ida_simple_remove(&zvol_ida, idx);
1633 		return (SET_ERROR(EEXIST));
1634 	}
1635 
1636 	doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
1637 
1638 	error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, B_TRUE, FTAG, &os);
1639 	if (error)
1640 		goto out_doi;
1641 
1642 	error = dmu_object_info(os, ZVOL_OBJ, doi);
1643 	if (error)
1644 		goto out_dmu_objset_disown;
1645 
1646 	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
1647 	if (error)
1648 		goto out_dmu_objset_disown;
1649 
1650 	error = zvol_alloc(MKDEV(zvol_major, minor), name,
1651 	    volsize, doi->doi_data_block_size, &zv);
1652 	if (error || zv == NULL)
1653 		goto out_dmu_objset_disown;
1654 
1655 	zv->zv_hash = hash;
1656 
1657 	if (dmu_objset_is_snapshot(os))
1658 		zv->zv_flags |= ZVOL_RDONLY;
1659 
1660 	zv->zv_objset = os;
1661 
1662 	/* Default */
1663 	zv->zv_threading = B_TRUE;
1664 	if (dsl_prop_get_integer(name, "volthreading", &volthreading, NULL)
1665 	    == 0)
1666 		zv->zv_threading = volthreading;
1667 
1668 	set_capacity(zv->zv_zso->zvo_disk, zv->zv_volsize >> 9);
1669 
1670 #ifdef QUEUE_FLAG_DISCARD
1671 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, zv->zv_zso->zvo_queue);
1672 #endif
1673 #ifdef QUEUE_FLAG_NONROT
1674 	blk_queue_flag_set(QUEUE_FLAG_NONROT, zv->zv_zso->zvo_queue);
1675 #endif
1676 #ifdef QUEUE_FLAG_ADD_RANDOM
1677 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zv->zv_zso->zvo_queue);
1678 #endif
1679 	/* This flag was introduced in kernel version 4.12. */
1680 #ifdef QUEUE_FLAG_SCSI_PASSTHROUGH
1681 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, zv->zv_zso->zvo_queue);
1682 #endif
1683 
1684 	ASSERT0P(zv->zv_kstat.dk_kstats);
1685 	error = dataset_kstats_create(&zv->zv_kstat, zv->zv_objset);
1686 	if (error)
1687 		goto out_dmu_objset_disown;
1688 	ASSERT0P(zv->zv_zilog);
1689 	zv->zv_zilog = zil_open(os, zvol_get_data, &zv->zv_kstat.dk_zil_sums);
1690 	if (spa_writeable(dmu_objset_spa(os))) {
1691 		if (zil_replay_disable)
1692 			replayed_zil = zil_destroy(zv->zv_zilog, B_FALSE);
1693 		else
1694 			replayed_zil = zil_replay(os, zv, zvol_replay_vector);
1695 	}
1696 	if (replayed_zil)
1697 		zil_close(zv->zv_zilog);
1698 	zv->zv_zilog = NULL;
1699 
1700 	/*
1701 	 * When udev detects the addition of the device it will immediately
1702 	 * invoke blkid(8) to determine the type of content on the device.
1703 	 * Prefetching the blocks commonly scanned by blkid(8) will speed
1704 	 * up this process.
1705 	 */
1706 	len = MIN(zvol_prefetch_bytes, SPA_MAXBLOCKSIZE);
1707 	if (len > 0) {
1708 		dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ);
1709 		dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len,
1710 		    ZIO_PRIORITY_SYNC_READ);
1711 	}
1712 
1713 	zv->zv_objset = NULL;
1714 out_dmu_objset_disown:
1715 	dmu_objset_disown(os, B_TRUE, FTAG);
1716 out_doi:
1717 	kmem_free(doi, sizeof (dmu_object_info_t));
1718 
1719 	/*
1720 	 * Keep in mind that once add_disk() is called, the zvol is
1721 	 * announced to the world, and zvol_open()/zvol_release() can
1722 	 * be called at any time. Incidentally, add_disk() itself calls
1723 	 * zvol_open()->zvol_first_open() and zvol_release()->zvol_last_close()
1724 	 * directly as well.
1725 	 */
1726 	if (error == 0 && zv) {
1727 		rw_enter(&zvol_state_lock, RW_WRITER);
1728 		zvol_insert(zv);
1729 		rw_exit(&zvol_state_lock);
1730 		error = zvol_os_add_disk(zv->zv_zso->zvo_disk);
1731 	} else {
1732 		ida_simple_remove(&zvol_ida, idx);
1733 	}
1734 
1735 	return (error);
1736 }
1737 
1738 int
1739 zvol_os_rename_minor(zvol_state_t *zv, const char *newname)
1740 {
1741 	int readonly = get_disk_ro(zv->zv_zso->zvo_disk);
1742 
1743 	ASSERT(RW_LOCK_HELD(&zvol_state_lock));
1744 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1745 
1746 	strlcpy(zv->zv_name, newname, sizeof (zv->zv_name));
1747 
1748 	/* move to new hashtable entry  */
1749 	zv->zv_hash = zvol_name_hash(newname);
1750 	hlist_del(&zv->zv_hlink);
1751 	hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
1752 
1753 	/*
1754 	 * The block device's read-only state is briefly changed causing
1755 	 * a KOBJ_CHANGE uevent to be issued.  This ensures udev detects
1756 	 * the name change and fixes the symlinks.  This does not change
1757 	 * ZVOL_RDONLY in zv->zv_flags so the actual read-only state never
1758 	 * changes.  This would normally be done using kobject_uevent() but
1759 	 * that is a GPL-only symbol which is why we need this workaround.
1760 	 */
1761 	set_disk_ro(zv->zv_zso->zvo_disk, !readonly);
1762 	set_disk_ro(zv->zv_zso->zvo_disk, readonly);
1763 
1764 	dataset_kstats_rename(&zv->zv_kstat, newname);
1765 
1766 	return (0);
1767 }
1768 
1769 void
1770 zvol_os_set_disk_ro(zvol_state_t *zv, int flags)
1771 {
1772 
1773 	set_disk_ro(zv->zv_zso->zvo_disk, flags);
1774 }
1775 
1776 void
1777 zvol_os_set_capacity(zvol_state_t *zv, uint64_t capacity)
1778 {
1779 
1780 	set_capacity(zv->zv_zso->zvo_disk, capacity);
1781 }
1782 
1783 int
1784 zvol_init(void)
1785 {
1786 	int error;
1787 
1788 	error = zvol_init_impl();
1789 	if (error) {
1790 		printk(KERN_INFO "ZFS: zvol_init_impl() failed %d\n", error);
1791 		return (error);
1792 	}
1793 
1794 	error = -register_blkdev(zvol_major, ZVOL_DRIVER);
1795 	if (error) {
1796 		printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
1797 		return (SET_ERROR(error));
1798 	}
1799 
1800 	if (zvol_blk_mq_queue_depth == 0) {
1801 		zvol_actual_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
1802 	} else {
1803 		zvol_actual_blk_mq_queue_depth =
1804 		    MAX(zvol_blk_mq_queue_depth, BLKDEV_MIN_RQ);
1805 	}
1806 
1807 	if (zvol_blk_mq_threads == 0) {
1808 		zvol_blk_mq_actual_threads = num_online_cpus();
1809 	} else {
1810 		zvol_blk_mq_actual_threads = MIN(MAX(zvol_blk_mq_threads, 1),
1811 		    1024);
1812 	}
1813 
1814 	ida_init(&zvol_ida);
1815 	return (0);
1816 }
1817 
1818 void
1819 zvol_fini(void)
1820 {
1821 	unregister_blkdev(zvol_major, ZVOL_DRIVER);
1822 
1823 	zvol_fini_impl();
1824 
1825 	ida_destroy(&zvol_ida);
1826 }
1827 
1828 module_param(zvol_major, uint, 0444);
1829 MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
1830 
1831 module_param(zvol_max_discard_blocks, ulong, 0444);
1832 MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard");
1833 
1834 module_param(zvol_blk_mq_queue_depth, uint, 0644);
1835 MODULE_PARM_DESC(zvol_blk_mq_queue_depth, "Default blk-mq queue depth");
1836 
1837 module_param(zvol_use_blk_mq, uint, 0644);
1838 MODULE_PARM_DESC(zvol_use_blk_mq, "Use the blk-mq API for zvols");
1839 
1840 module_param(zvol_blk_mq_blocks_per_thread, uint, 0644);
1841 MODULE_PARM_DESC(zvol_blk_mq_blocks_per_thread,
1842 	"Process volblocksize blocks per thread");
1843 
1844 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
1845 module_param(zvol_open_timeout_ms, uint, 0644);
1846 MODULE_PARM_DESC(zvol_open_timeout_ms, "Timeout for ZVOL open retries");
1847 #endif
1848