xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/zvol_os.c (revision 716fd348e01c5f2ba125f878a634a753436c2994)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
23  */
24 
25 #include <sys/dataset_kstats.h>
26 #include <sys/dbuf.h>
27 #include <sys/dmu_traverse.h>
28 #include <sys/dsl_dataset.h>
29 #include <sys/dsl_prop.h>
30 #include <sys/dsl_dir.h>
31 #include <sys/zap.h>
32 #include <sys/zfeature.h>
33 #include <sys/zil_impl.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/zio.h>
36 #include <sys/zfs_rlock.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zvol.h>
39 #include <sys/zvol_impl.h>
40 
41 #include <linux/blkdev_compat.h>
42 #include <linux/task_io_accounting_ops.h>
43 
44 static unsigned int zvol_major = ZVOL_MAJOR;
45 static unsigned int zvol_request_sync = 0;
46 static unsigned int zvol_prefetch_bytes = (128 * 1024);
47 static unsigned long zvol_max_discard_blocks = 16384;
48 static unsigned int zvol_threads = 32;
49 
50 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
51 static const unsigned int zvol_open_timeout_ms = 1000;
52 #endif
53 
54 struct zvol_state_os {
55 	struct gendisk		*zvo_disk;	/* generic disk */
56 	struct request_queue	*zvo_queue;	/* request queue */
57 	dev_t			zvo_dev;	/* device id */
58 };
59 
60 taskq_t *zvol_taskq;
61 static struct ida zvol_ida;
62 
63 typedef struct zv_request_stack {
64 	zvol_state_t	*zv;
65 	struct bio	*bio;
66 } zv_request_t;
67 
68 typedef struct zv_request_task {
69 	zv_request_t zvr;
70 	taskq_ent_t	ent;
71 } zv_request_task_t;
72 
73 static zv_request_task_t *
74 zv_request_task_create(zv_request_t zvr)
75 {
76 	zv_request_task_t *task;
77 	task = kmem_alloc(sizeof (zv_request_task_t), KM_SLEEP);
78 	taskq_init_ent(&task->ent);
79 	task->zvr = zvr;
80 	return (task);
81 }
82 
83 static void
84 zv_request_task_free(zv_request_task_t *task)
85 {
86 	kmem_free(task, sizeof (*task));
87 }
88 
89 /*
90  * Given a path, return TRUE if path is a ZVOL.
91  */
92 boolean_t
93 zvol_os_is_zvol(const char *path)
94 {
95 	dev_t dev = 0;
96 
97 	if (vdev_lookup_bdev(path, &dev) != 0)
98 		return (B_FALSE);
99 
100 	if (MAJOR(dev) == zvol_major)
101 		return (B_TRUE);
102 
103 	return (B_FALSE);
104 }
105 
106 static void
107 zvol_write(zv_request_t *zvr)
108 {
109 	struct bio *bio = zvr->bio;
110 	int error = 0;
111 	zfs_uio_t uio;
112 
113 	zfs_uio_bvec_init(&uio, bio);
114 
115 	zvol_state_t *zv = zvr->zv;
116 	ASSERT3P(zv, !=, NULL);
117 	ASSERT3U(zv->zv_open_count, >, 0);
118 	ASSERT3P(zv->zv_zilog, !=, NULL);
119 
120 	/* bio marked as FLUSH need to flush before write */
121 	if (bio_is_flush(bio))
122 		zil_commit(zv->zv_zilog, ZVOL_OBJ);
123 
124 	/* Some requests are just for flush and nothing else. */
125 	if (uio.uio_resid == 0) {
126 		rw_exit(&zv->zv_suspend_lock);
127 		BIO_END_IO(bio, 0);
128 		return;
129 	}
130 
131 	struct request_queue *q = zv->zv_zso->zvo_queue;
132 	struct gendisk *disk = zv->zv_zso->zvo_disk;
133 	ssize_t start_resid = uio.uio_resid;
134 	unsigned long start_time;
135 
136 	boolean_t acct = blk_queue_io_stat(q);
137 	if (acct)
138 		start_time = blk_generic_start_io_acct(q, disk, WRITE, bio);
139 
140 	boolean_t sync =
141 	    bio_is_fua(bio) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
142 
143 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
144 	    uio.uio_loffset, uio.uio_resid, RL_WRITER);
145 
146 	uint64_t volsize = zv->zv_volsize;
147 	while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
148 		uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
149 		uint64_t off = uio.uio_loffset;
150 		dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
151 
152 		if (bytes > volsize - off)	/* don't write past the end */
153 			bytes = volsize - off;
154 
155 		dmu_tx_hold_write_by_dnode(tx, zv->zv_dn, off, bytes);
156 
157 		/* This will only fail for ENOSPC */
158 		error = dmu_tx_assign(tx, TXG_WAIT);
159 		if (error) {
160 			dmu_tx_abort(tx);
161 			break;
162 		}
163 		error = dmu_write_uio_dnode(zv->zv_dn, &uio, bytes, tx);
164 		if (error == 0) {
165 			zvol_log_write(zv, tx, off, bytes, sync);
166 		}
167 		dmu_tx_commit(tx);
168 
169 		if (error)
170 			break;
171 	}
172 	zfs_rangelock_exit(lr);
173 
174 	int64_t nwritten = start_resid - uio.uio_resid;
175 	dataset_kstats_update_write_kstats(&zv->zv_kstat, nwritten);
176 	task_io_account_write(nwritten);
177 
178 	if (sync)
179 		zil_commit(zv->zv_zilog, ZVOL_OBJ);
180 
181 	rw_exit(&zv->zv_suspend_lock);
182 
183 	if (acct)
184 		blk_generic_end_io_acct(q, disk, WRITE, bio, start_time);
185 
186 	BIO_END_IO(bio, -error);
187 }
188 
189 static void
190 zvol_write_task(void *arg)
191 {
192 	zv_request_task_t *task = arg;
193 	zvol_write(&task->zvr);
194 	zv_request_task_free(task);
195 }
196 
197 static void
198 zvol_discard(zv_request_t *zvr)
199 {
200 	struct bio *bio = zvr->bio;
201 	zvol_state_t *zv = zvr->zv;
202 	uint64_t start = BIO_BI_SECTOR(bio) << 9;
203 	uint64_t size = BIO_BI_SIZE(bio);
204 	uint64_t end = start + size;
205 	boolean_t sync;
206 	int error = 0;
207 	dmu_tx_t *tx;
208 
209 	ASSERT3P(zv, !=, NULL);
210 	ASSERT3U(zv->zv_open_count, >, 0);
211 	ASSERT3P(zv->zv_zilog, !=, NULL);
212 
213 	struct request_queue *q = zv->zv_zso->zvo_queue;
214 	struct gendisk *disk = zv->zv_zso->zvo_disk;
215 	unsigned long start_time;
216 
217 	boolean_t acct = blk_queue_io_stat(q);
218 	if (acct)
219 		start_time = blk_generic_start_io_acct(q, disk, WRITE, bio);
220 
221 	sync = bio_is_fua(bio) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
222 
223 	if (end > zv->zv_volsize) {
224 		error = SET_ERROR(EIO);
225 		goto unlock;
226 	}
227 
228 	/*
229 	 * Align the request to volume block boundaries when a secure erase is
230 	 * not required.  This will prevent dnode_free_range() from zeroing out
231 	 * the unaligned parts which is slow (read-modify-write) and useless
232 	 * since we are not freeing any space by doing so.
233 	 */
234 	if (!bio_is_secure_erase(bio)) {
235 		start = P2ROUNDUP(start, zv->zv_volblocksize);
236 		end = P2ALIGN(end, zv->zv_volblocksize);
237 		size = end - start;
238 	}
239 
240 	if (start >= end)
241 		goto unlock;
242 
243 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
244 	    start, size, RL_WRITER);
245 
246 	tx = dmu_tx_create(zv->zv_objset);
247 	dmu_tx_mark_netfree(tx);
248 	error = dmu_tx_assign(tx, TXG_WAIT);
249 	if (error != 0) {
250 		dmu_tx_abort(tx);
251 	} else {
252 		zvol_log_truncate(zv, tx, start, size, B_TRUE);
253 		dmu_tx_commit(tx);
254 		error = dmu_free_long_range(zv->zv_objset,
255 		    ZVOL_OBJ, start, size);
256 	}
257 	zfs_rangelock_exit(lr);
258 
259 	if (error == 0 && sync)
260 		zil_commit(zv->zv_zilog, ZVOL_OBJ);
261 
262 unlock:
263 	rw_exit(&zv->zv_suspend_lock);
264 
265 	if (acct)
266 		blk_generic_end_io_acct(q, disk, WRITE, bio, start_time);
267 
268 	BIO_END_IO(bio, -error);
269 }
270 
271 static void
272 zvol_discard_task(void *arg)
273 {
274 	zv_request_task_t *task = arg;
275 	zvol_discard(&task->zvr);
276 	zv_request_task_free(task);
277 }
278 
279 static void
280 zvol_read(zv_request_t *zvr)
281 {
282 	struct bio *bio = zvr->bio;
283 	int error = 0;
284 	zfs_uio_t uio;
285 
286 	zfs_uio_bvec_init(&uio, bio);
287 
288 	zvol_state_t *zv = zvr->zv;
289 	ASSERT3P(zv, !=, NULL);
290 	ASSERT3U(zv->zv_open_count, >, 0);
291 
292 	struct request_queue *q = zv->zv_zso->zvo_queue;
293 	struct gendisk *disk = zv->zv_zso->zvo_disk;
294 	ssize_t start_resid = uio.uio_resid;
295 	unsigned long start_time;
296 
297 	boolean_t acct = blk_queue_io_stat(q);
298 	if (acct)
299 		start_time = blk_generic_start_io_acct(q, disk, READ, bio);
300 
301 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
302 	    uio.uio_loffset, uio.uio_resid, RL_READER);
303 
304 	uint64_t volsize = zv->zv_volsize;
305 	while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
306 		uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
307 
308 		/* don't read past the end */
309 		if (bytes > volsize - uio.uio_loffset)
310 			bytes = volsize - uio.uio_loffset;
311 
312 		error = dmu_read_uio_dnode(zv->zv_dn, &uio, bytes);
313 		if (error) {
314 			/* convert checksum errors into IO errors */
315 			if (error == ECKSUM)
316 				error = SET_ERROR(EIO);
317 			break;
318 		}
319 	}
320 	zfs_rangelock_exit(lr);
321 
322 	int64_t nread = start_resid - uio.uio_resid;
323 	dataset_kstats_update_read_kstats(&zv->zv_kstat, nread);
324 	task_io_account_read(nread);
325 
326 	rw_exit(&zv->zv_suspend_lock);
327 
328 	if (acct)
329 		blk_generic_end_io_acct(q, disk, READ, bio, start_time);
330 
331 	BIO_END_IO(bio, -error);
332 }
333 
334 static void
335 zvol_read_task(void *arg)
336 {
337 	zv_request_task_t *task = arg;
338 	zvol_read(&task->zvr);
339 	zv_request_task_free(task);
340 }
341 
342 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
343 #ifdef HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID
344 static void
345 zvol_submit_bio(struct bio *bio)
346 #else
347 static blk_qc_t
348 zvol_submit_bio(struct bio *bio)
349 #endif
350 #else
351 static MAKE_REQUEST_FN_RET
352 zvol_request(struct request_queue *q, struct bio *bio)
353 #endif
354 {
355 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
356 #if defined(HAVE_BIO_BDEV_DISK)
357 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
358 #else
359 	struct request_queue *q = bio->bi_disk->queue;
360 #endif
361 #endif
362 	zvol_state_t *zv = q->queuedata;
363 	fstrans_cookie_t cookie = spl_fstrans_mark();
364 	uint64_t offset = BIO_BI_SECTOR(bio) << 9;
365 	uint64_t size = BIO_BI_SIZE(bio);
366 	int rw = bio_data_dir(bio);
367 
368 	if (bio_has_data(bio) && offset + size > zv->zv_volsize) {
369 		printk(KERN_INFO
370 		    "%s: bad access: offset=%llu, size=%lu\n",
371 		    zv->zv_zso->zvo_disk->disk_name,
372 		    (long long unsigned)offset,
373 		    (long unsigned)size);
374 
375 		BIO_END_IO(bio, -SET_ERROR(EIO));
376 		goto out;
377 	}
378 
379 	zv_request_t zvr = {
380 		.zv = zv,
381 		.bio = bio,
382 	};
383 	zv_request_task_t *task;
384 
385 	if (rw == WRITE) {
386 		if (unlikely(zv->zv_flags & ZVOL_RDONLY)) {
387 			BIO_END_IO(bio, -SET_ERROR(EROFS));
388 			goto out;
389 		}
390 
391 		/*
392 		 * Prevents the zvol from being suspended, or the ZIL being
393 		 * concurrently opened.  Will be released after the i/o
394 		 * completes.
395 		 */
396 		rw_enter(&zv->zv_suspend_lock, RW_READER);
397 
398 		/*
399 		 * Open a ZIL if this is the first time we have written to this
400 		 * zvol. We protect zv->zv_zilog with zv_suspend_lock rather
401 		 * than zv_state_lock so that we don't need to acquire an
402 		 * additional lock in this path.
403 		 */
404 		if (zv->zv_zilog == NULL) {
405 			rw_exit(&zv->zv_suspend_lock);
406 			rw_enter(&zv->zv_suspend_lock, RW_WRITER);
407 			if (zv->zv_zilog == NULL) {
408 				zv->zv_zilog = zil_open(zv->zv_objset,
409 				    zvol_get_data);
410 				zv->zv_flags |= ZVOL_WRITTEN_TO;
411 				/* replay / destroy done in zvol_create_minor */
412 				VERIFY0((zv->zv_zilog->zl_header->zh_flags &
413 				    ZIL_REPLAY_NEEDED));
414 			}
415 			rw_downgrade(&zv->zv_suspend_lock);
416 		}
417 
418 		/*
419 		 * We don't want this thread to be blocked waiting for i/o to
420 		 * complete, so we instead wait from a taskq callback. The
421 		 * i/o may be a ZIL write (via zil_commit()), or a read of an
422 		 * indirect block, or a read of a data block (if this is a
423 		 * partial-block write).  We will indicate that the i/o is
424 		 * complete by calling BIO_END_IO() from the taskq callback.
425 		 *
426 		 * This design allows the calling thread to continue and
427 		 * initiate more concurrent operations by calling
428 		 * zvol_request() again. There are typically only a small
429 		 * number of threads available to call zvol_request() (e.g.
430 		 * one per iSCSI target), so keeping the latency of
431 		 * zvol_request() low is important for performance.
432 		 *
433 		 * The zvol_request_sync module parameter allows this
434 		 * behavior to be altered, for performance evaluation
435 		 * purposes.  If the callback blocks, setting
436 		 * zvol_request_sync=1 will result in much worse performance.
437 		 *
438 		 * We can have up to zvol_threads concurrent i/o's being
439 		 * processed for all zvols on the system.  This is typically
440 		 * a vast improvement over the zvol_request_sync=1 behavior
441 		 * of one i/o at a time per zvol.  However, an even better
442 		 * design would be for zvol_request() to initiate the zio
443 		 * directly, and then be notified by the zio_done callback,
444 		 * which would call BIO_END_IO().  Unfortunately, the DMU/ZIL
445 		 * interfaces lack this functionality (they block waiting for
446 		 * the i/o to complete).
447 		 */
448 		if (bio_is_discard(bio) || bio_is_secure_erase(bio)) {
449 			if (zvol_request_sync) {
450 				zvol_discard(&zvr);
451 			} else {
452 				task = zv_request_task_create(zvr);
453 				taskq_dispatch_ent(zvol_taskq,
454 				    zvol_discard_task, task, 0, &task->ent);
455 			}
456 		} else {
457 			if (zvol_request_sync) {
458 				zvol_write(&zvr);
459 			} else {
460 				task = zv_request_task_create(zvr);
461 				taskq_dispatch_ent(zvol_taskq,
462 				    zvol_write_task, task, 0, &task->ent);
463 			}
464 		}
465 	} else {
466 		/*
467 		 * The SCST driver, and possibly others, may issue READ I/Os
468 		 * with a length of zero bytes.  These empty I/Os contain no
469 		 * data and require no additional handling.
470 		 */
471 		if (size == 0) {
472 			BIO_END_IO(bio, 0);
473 			goto out;
474 		}
475 
476 		rw_enter(&zv->zv_suspend_lock, RW_READER);
477 
478 		/* See comment in WRITE case above. */
479 		if (zvol_request_sync) {
480 			zvol_read(&zvr);
481 		} else {
482 			task = zv_request_task_create(zvr);
483 			taskq_dispatch_ent(zvol_taskq,
484 			    zvol_read_task, task, 0, &task->ent);
485 		}
486 	}
487 
488 out:
489 	spl_fstrans_unmark(cookie);
490 #if (defined(HAVE_MAKE_REQUEST_FN_RET_QC) || \
491 	defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS)) && \
492 	!defined(HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID)
493 	return (BLK_QC_T_NONE);
494 #endif
495 }
496 
497 static int
498 zvol_open(struct block_device *bdev, fmode_t flag)
499 {
500 	zvol_state_t *zv;
501 	int error = 0;
502 	boolean_t drop_suspend = B_FALSE;
503 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
504 	hrtime_t timeout = MSEC2NSEC(zvol_open_timeout_ms);
505 	hrtime_t start = gethrtime();
506 
507 retry:
508 #endif
509 	rw_enter(&zvol_state_lock, RW_READER);
510 	/*
511 	 * Obtain a copy of private_data under the zvol_state_lock to make
512 	 * sure that either the result of zvol free code path setting
513 	 * bdev->bd_disk->private_data to NULL is observed, or zvol_os_free()
514 	 * is not called on this zv because of the positive zv_open_count.
515 	 */
516 	zv = bdev->bd_disk->private_data;
517 	if (zv == NULL) {
518 		rw_exit(&zvol_state_lock);
519 		return (SET_ERROR(-ENXIO));
520 	}
521 
522 	mutex_enter(&zv->zv_state_lock);
523 	/*
524 	 * Make sure zvol is not suspended during first open
525 	 * (hold zv_suspend_lock) and respect proper lock acquisition
526 	 * ordering - zv_suspend_lock before zv_state_lock
527 	 */
528 	if (zv->zv_open_count == 0) {
529 		if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
530 			mutex_exit(&zv->zv_state_lock);
531 			rw_enter(&zv->zv_suspend_lock, RW_READER);
532 			mutex_enter(&zv->zv_state_lock);
533 			/* check to see if zv_suspend_lock is needed */
534 			if (zv->zv_open_count != 0) {
535 				rw_exit(&zv->zv_suspend_lock);
536 			} else {
537 				drop_suspend = B_TRUE;
538 			}
539 		} else {
540 			drop_suspend = B_TRUE;
541 		}
542 	}
543 	rw_exit(&zvol_state_lock);
544 
545 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
546 
547 	if (zv->zv_open_count == 0) {
548 		boolean_t drop_namespace = B_FALSE;
549 
550 		ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
551 
552 		/*
553 		 * In all other call paths the spa_namespace_lock is taken
554 		 * before the bdev->bd_mutex lock.  However, on open(2)
555 		 * the __blkdev_get() function calls fops->open() with the
556 		 * bdev->bd_mutex lock held.  This can result in a deadlock
557 		 * when zvols from one pool are used as vdevs in another.
558 		 *
559 		 * To prevent a lock inversion deadlock we preemptively
560 		 * take the spa_namespace_lock.  Normally the lock will not
561 		 * be contended and this is safe because spa_open_common()
562 		 * handles the case where the caller already holds the
563 		 * spa_namespace_lock.
564 		 *
565 		 * When the lock cannot be aquired after multiple retries
566 		 * this must be the vdev on zvol deadlock case and we have
567 		 * no choice but to return an error.  For 5.12 and older
568 		 * kernels returning -ERESTARTSYS will result in the
569 		 * bdev->bd_mutex being dropped, then reacquired, and
570 		 * fops->open() being called again.  This process can be
571 		 * repeated safely until both locks are acquired.  For 5.13
572 		 * and newer the -ERESTARTSYS retry logic was removed from
573 		 * the kernel so the only option is to return the error for
574 		 * the caller to handle it.
575 		 */
576 		if (!mutex_owned(&spa_namespace_lock)) {
577 			if (!mutex_tryenter(&spa_namespace_lock)) {
578 				mutex_exit(&zv->zv_state_lock);
579 				rw_exit(&zv->zv_suspend_lock);
580 
581 #ifdef HAVE_BLKDEV_GET_ERESTARTSYS
582 				schedule();
583 				return (SET_ERROR(-ERESTARTSYS));
584 #else
585 				if ((gethrtime() - start) > timeout)
586 					return (SET_ERROR(-ERESTARTSYS));
587 
588 				schedule_timeout(MSEC_TO_TICK(10));
589 				goto retry;
590 #endif
591 			} else {
592 				drop_namespace = B_TRUE;
593 			}
594 		}
595 
596 		error = -zvol_first_open(zv, !(flag & FMODE_WRITE));
597 
598 		if (drop_namespace)
599 			mutex_exit(&spa_namespace_lock);
600 	}
601 
602 	if (error == 0) {
603 		if ((flag & FMODE_WRITE) && (zv->zv_flags & ZVOL_RDONLY)) {
604 			if (zv->zv_open_count == 0)
605 				zvol_last_close(zv);
606 
607 			error = SET_ERROR(-EROFS);
608 		} else {
609 			zv->zv_open_count++;
610 		}
611 	}
612 
613 	mutex_exit(&zv->zv_state_lock);
614 	if (drop_suspend)
615 		rw_exit(&zv->zv_suspend_lock);
616 
617 	if (error == 0)
618 		zfs_check_media_change(bdev);
619 
620 	return (error);
621 }
622 
623 static void
624 zvol_release(struct gendisk *disk, fmode_t mode)
625 {
626 	zvol_state_t *zv;
627 	boolean_t drop_suspend = B_TRUE;
628 
629 	rw_enter(&zvol_state_lock, RW_READER);
630 	zv = disk->private_data;
631 
632 	mutex_enter(&zv->zv_state_lock);
633 	ASSERT3U(zv->zv_open_count, >, 0);
634 	/*
635 	 * make sure zvol is not suspended during last close
636 	 * (hold zv_suspend_lock) and respect proper lock acquisition
637 	 * ordering - zv_suspend_lock before zv_state_lock
638 	 */
639 	if (zv->zv_open_count == 1) {
640 		if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
641 			mutex_exit(&zv->zv_state_lock);
642 			rw_enter(&zv->zv_suspend_lock, RW_READER);
643 			mutex_enter(&zv->zv_state_lock);
644 			/* check to see if zv_suspend_lock is needed */
645 			if (zv->zv_open_count != 1) {
646 				rw_exit(&zv->zv_suspend_lock);
647 				drop_suspend = B_FALSE;
648 			}
649 		}
650 	} else {
651 		drop_suspend = B_FALSE;
652 	}
653 	rw_exit(&zvol_state_lock);
654 
655 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
656 
657 	zv->zv_open_count--;
658 	if (zv->zv_open_count == 0) {
659 		ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
660 		zvol_last_close(zv);
661 	}
662 
663 	mutex_exit(&zv->zv_state_lock);
664 
665 	if (drop_suspend)
666 		rw_exit(&zv->zv_suspend_lock);
667 }
668 
669 static int
670 zvol_ioctl(struct block_device *bdev, fmode_t mode,
671     unsigned int cmd, unsigned long arg)
672 {
673 	zvol_state_t *zv = bdev->bd_disk->private_data;
674 	int error = 0;
675 
676 	ASSERT3U(zv->zv_open_count, >, 0);
677 
678 	switch (cmd) {
679 	case BLKFLSBUF:
680 		fsync_bdev(bdev);
681 		invalidate_bdev(bdev);
682 		rw_enter(&zv->zv_suspend_lock, RW_READER);
683 
684 		if (!(zv->zv_flags & ZVOL_RDONLY))
685 			txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
686 
687 		rw_exit(&zv->zv_suspend_lock);
688 		break;
689 
690 	case BLKZNAME:
691 		mutex_enter(&zv->zv_state_lock);
692 		error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN);
693 		mutex_exit(&zv->zv_state_lock);
694 		break;
695 
696 	default:
697 		error = -ENOTTY;
698 		break;
699 	}
700 
701 	return (SET_ERROR(error));
702 }
703 
704 #ifdef CONFIG_COMPAT
705 static int
706 zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
707     unsigned cmd, unsigned long arg)
708 {
709 	return (zvol_ioctl(bdev, mode, cmd, arg));
710 }
711 #else
712 #define	zvol_compat_ioctl	NULL
713 #endif
714 
715 static unsigned int
716 zvol_check_events(struct gendisk *disk, unsigned int clearing)
717 {
718 	unsigned int mask = 0;
719 
720 	rw_enter(&zvol_state_lock, RW_READER);
721 
722 	zvol_state_t *zv = disk->private_data;
723 	if (zv != NULL) {
724 		mutex_enter(&zv->zv_state_lock);
725 		mask = zv->zv_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
726 		zv->zv_changed = 0;
727 		mutex_exit(&zv->zv_state_lock);
728 	}
729 
730 	rw_exit(&zvol_state_lock);
731 
732 	return (mask);
733 }
734 
735 static int
736 zvol_revalidate_disk(struct gendisk *disk)
737 {
738 	rw_enter(&zvol_state_lock, RW_READER);
739 
740 	zvol_state_t *zv = disk->private_data;
741 	if (zv != NULL) {
742 		mutex_enter(&zv->zv_state_lock);
743 		set_capacity(zv->zv_zso->zvo_disk,
744 		    zv->zv_volsize >> SECTOR_BITS);
745 		mutex_exit(&zv->zv_state_lock);
746 	}
747 
748 	rw_exit(&zvol_state_lock);
749 
750 	return (0);
751 }
752 
753 int
754 zvol_os_update_volsize(zvol_state_t *zv, uint64_t volsize)
755 {
756 	struct gendisk *disk = zv->zv_zso->zvo_disk;
757 
758 #if defined(HAVE_REVALIDATE_DISK_SIZE)
759 	revalidate_disk_size(disk, zvol_revalidate_disk(disk) == 0);
760 #elif defined(HAVE_REVALIDATE_DISK)
761 	revalidate_disk(disk);
762 #else
763 	zvol_revalidate_disk(disk);
764 #endif
765 	return (0);
766 }
767 
768 void
769 zvol_os_clear_private(zvol_state_t *zv)
770 {
771 	/*
772 	 * Cleared while holding zvol_state_lock as a writer
773 	 * which will prevent zvol_open() from opening it.
774 	 */
775 	zv->zv_zso->zvo_disk->private_data = NULL;
776 }
777 
778 /*
779  * Provide a simple virtual geometry for legacy compatibility.  For devices
780  * smaller than 1 MiB a small head and sector count is used to allow very
781  * tiny devices.  For devices over 1 Mib a standard head and sector count
782  * is used to keep the cylinders count reasonable.
783  */
784 static int
785 zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
786 {
787 	zvol_state_t *zv = bdev->bd_disk->private_data;
788 	sector_t sectors;
789 
790 	ASSERT3U(zv->zv_open_count, >, 0);
791 
792 	sectors = get_capacity(zv->zv_zso->zvo_disk);
793 
794 	if (sectors > 2048) {
795 		geo->heads = 16;
796 		geo->sectors = 63;
797 	} else {
798 		geo->heads = 2;
799 		geo->sectors = 4;
800 	}
801 
802 	geo->start = 0;
803 	geo->cylinders = sectors / (geo->heads * geo->sectors);
804 
805 	return (0);
806 }
807 
808 static const struct block_device_operations zvol_ops = {
809 	.open			= zvol_open,
810 	.release		= zvol_release,
811 	.ioctl			= zvol_ioctl,
812 	.compat_ioctl		= zvol_compat_ioctl,
813 	.check_events		= zvol_check_events,
814 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
815 	.revalidate_disk	= zvol_revalidate_disk,
816 #endif
817 	.getgeo			= zvol_getgeo,
818 	.owner			= THIS_MODULE,
819 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
820 	.submit_bio		= zvol_submit_bio,
821 #endif
822 };
823 
824 /*
825  * Allocate memory for a new zvol_state_t and setup the required
826  * request queue and generic disk structures for the block device.
827  */
828 static zvol_state_t *
829 zvol_alloc(dev_t dev, const char *name)
830 {
831 	zvol_state_t *zv;
832 	struct zvol_state_os *zso;
833 	uint64_t volmode;
834 
835 	if (dsl_prop_get_integer(name, "volmode", &volmode, NULL) != 0)
836 		return (NULL);
837 
838 	if (volmode == ZFS_VOLMODE_DEFAULT)
839 		volmode = zvol_volmode;
840 
841 	if (volmode == ZFS_VOLMODE_NONE)
842 		return (NULL);
843 
844 	zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
845 	zso = kmem_zalloc(sizeof (struct zvol_state_os), KM_SLEEP);
846 	zv->zv_zso = zso;
847 	zv->zv_volmode = volmode;
848 
849 	list_link_init(&zv->zv_next);
850 	mutex_init(&zv->zv_state_lock, NULL, MUTEX_DEFAULT, NULL);
851 
852 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
853 #ifdef HAVE_BLK_ALLOC_DISK
854 	zso->zvo_disk = blk_alloc_disk(NUMA_NO_NODE);
855 	if (zso->zvo_disk == NULL)
856 		goto out_kmem;
857 
858 	zso->zvo_disk->minors = ZVOL_MINORS;
859 	zso->zvo_queue = zso->zvo_disk->queue;
860 #else
861 	zso->zvo_queue = blk_alloc_queue(NUMA_NO_NODE);
862 	if (zso->zvo_queue == NULL)
863 		goto out_kmem;
864 
865 	zso->zvo_disk = alloc_disk(ZVOL_MINORS);
866 	if (zso->zvo_disk == NULL) {
867 		blk_cleanup_queue(zso->zvo_queue);
868 		goto out_kmem;
869 	}
870 
871 	zso->zvo_disk->queue = zso->zvo_queue;
872 #endif /* HAVE_BLK_ALLOC_DISK */
873 #else
874 	zso->zvo_queue = blk_generic_alloc_queue(zvol_request, NUMA_NO_NODE);
875 	if (zso->zvo_queue == NULL)
876 		goto out_kmem;
877 
878 	zso->zvo_disk = alloc_disk(ZVOL_MINORS);
879 	if (zso->zvo_disk == NULL) {
880 		blk_cleanup_queue(zso->zvo_queue);
881 		goto out_kmem;
882 	}
883 
884 	zso->zvo_disk->queue = zso->zvo_queue;
885 #endif /* HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS */
886 
887 	blk_queue_set_write_cache(zso->zvo_queue, B_TRUE, B_TRUE);
888 
889 	/* Limit read-ahead to a single page to prevent over-prefetching. */
890 	blk_queue_set_read_ahead(zso->zvo_queue, 1);
891 
892 	/* Disable write merging in favor of the ZIO pipeline. */
893 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, zso->zvo_queue);
894 
895 	/* Enable /proc/diskstats */
896 	blk_queue_flag_set(QUEUE_FLAG_IO_STAT, zso->zvo_queue);
897 
898 	zso->zvo_queue->queuedata = zv;
899 	zso->zvo_dev = dev;
900 	zv->zv_open_count = 0;
901 	strlcpy(zv->zv_name, name, MAXNAMELEN);
902 
903 	zfs_rangelock_init(&zv->zv_rangelock, NULL, NULL);
904 	rw_init(&zv->zv_suspend_lock, NULL, RW_DEFAULT, NULL);
905 
906 	zso->zvo_disk->major = zvol_major;
907 	zso->zvo_disk->events = DISK_EVENT_MEDIA_CHANGE;
908 
909 	/*
910 	 * Setting ZFS_VOLMODE_DEV disables partitioning on ZVOL devices.
911 	 * This is accomplished by limiting the number of minors for the
912 	 * device to one and explicitly disabling partition scanning.
913 	 */
914 	if (volmode == ZFS_VOLMODE_DEV) {
915 		zso->zvo_disk->minors = 1;
916 		zso->zvo_disk->flags &= ~ZFS_GENHD_FL_EXT_DEVT;
917 		zso->zvo_disk->flags |= ZFS_GENHD_FL_NO_PART;
918 	}
919 
920 	zso->zvo_disk->first_minor = (dev & MINORMASK);
921 	zso->zvo_disk->fops = &zvol_ops;
922 	zso->zvo_disk->private_data = zv;
923 	snprintf(zso->zvo_disk->disk_name, DISK_NAME_LEN, "%s%d",
924 	    ZVOL_DEV_NAME, (dev & MINORMASK));
925 
926 	return (zv);
927 
928 out_kmem:
929 	kmem_free(zso, sizeof (struct zvol_state_os));
930 	kmem_free(zv, sizeof (zvol_state_t));
931 	return (NULL);
932 }
933 
934 /*
935  * Cleanup then free a zvol_state_t which was created by zvol_alloc().
936  * At this time, the structure is not opened by anyone, is taken off
937  * the zvol_state_list, and has its private data set to NULL.
938  * The zvol_state_lock is dropped.
939  *
940  * This function may take many milliseconds to complete (e.g. we've seen
941  * it take over 256ms), due to the calls to "blk_cleanup_queue" and
942  * "del_gendisk". Thus, consumers need to be careful to account for this
943  * latency when calling this function.
944  */
945 void
946 zvol_os_free(zvol_state_t *zv)
947 {
948 
949 	ASSERT(!RW_LOCK_HELD(&zv->zv_suspend_lock));
950 	ASSERT(!MUTEX_HELD(&zv->zv_state_lock));
951 	ASSERT0(zv->zv_open_count);
952 	ASSERT3P(zv->zv_zso->zvo_disk->private_data, ==, NULL);
953 
954 	rw_destroy(&zv->zv_suspend_lock);
955 	zfs_rangelock_fini(&zv->zv_rangelock);
956 
957 	del_gendisk(zv->zv_zso->zvo_disk);
958 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
959 	defined(HAVE_BLK_ALLOC_DISK)
960 	blk_cleanup_disk(zv->zv_zso->zvo_disk);
961 #else
962 	blk_cleanup_queue(zv->zv_zso->zvo_queue);
963 	put_disk(zv->zv_zso->zvo_disk);
964 #endif
965 
966 	ida_simple_remove(&zvol_ida,
967 	    MINOR(zv->zv_zso->zvo_dev) >> ZVOL_MINOR_BITS);
968 
969 	mutex_destroy(&zv->zv_state_lock);
970 	dataset_kstats_destroy(&zv->zv_kstat);
971 
972 	kmem_free(zv->zv_zso, sizeof (struct zvol_state_os));
973 	kmem_free(zv, sizeof (zvol_state_t));
974 }
975 
976 void
977 zvol_wait_close(zvol_state_t *zv)
978 {
979 }
980 
981 /*
982  * Create a block device minor node and setup the linkage between it
983  * and the specified volume.  Once this function returns the block
984  * device is live and ready for use.
985  */
986 int
987 zvol_os_create_minor(const char *name)
988 {
989 	zvol_state_t *zv;
990 	objset_t *os;
991 	dmu_object_info_t *doi;
992 	uint64_t volsize;
993 	uint64_t len;
994 	unsigned minor = 0;
995 	int error = 0;
996 	int idx;
997 	uint64_t hash = zvol_name_hash(name);
998 
999 	if (zvol_inhibit_dev)
1000 		return (0);
1001 
1002 	idx = ida_simple_get(&zvol_ida, 0, 0, kmem_flags_convert(KM_SLEEP));
1003 	if (idx < 0)
1004 		return (SET_ERROR(-idx));
1005 	minor = idx << ZVOL_MINOR_BITS;
1006 
1007 	zv = zvol_find_by_name_hash(name, hash, RW_NONE);
1008 	if (zv) {
1009 		ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1010 		mutex_exit(&zv->zv_state_lock);
1011 		ida_simple_remove(&zvol_ida, idx);
1012 		return (SET_ERROR(EEXIST));
1013 	}
1014 
1015 	doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
1016 
1017 	error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, B_TRUE, FTAG, &os);
1018 	if (error)
1019 		goto out_doi;
1020 
1021 	error = dmu_object_info(os, ZVOL_OBJ, doi);
1022 	if (error)
1023 		goto out_dmu_objset_disown;
1024 
1025 	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
1026 	if (error)
1027 		goto out_dmu_objset_disown;
1028 
1029 	zv = zvol_alloc(MKDEV(zvol_major, minor), name);
1030 	if (zv == NULL) {
1031 		error = SET_ERROR(EAGAIN);
1032 		goto out_dmu_objset_disown;
1033 	}
1034 	zv->zv_hash = hash;
1035 
1036 	if (dmu_objset_is_snapshot(os))
1037 		zv->zv_flags |= ZVOL_RDONLY;
1038 
1039 	zv->zv_volblocksize = doi->doi_data_block_size;
1040 	zv->zv_volsize = volsize;
1041 	zv->zv_objset = os;
1042 
1043 	set_capacity(zv->zv_zso->zvo_disk, zv->zv_volsize >> 9);
1044 
1045 	blk_queue_max_hw_sectors(zv->zv_zso->zvo_queue,
1046 	    (DMU_MAX_ACCESS / 4) >> 9);
1047 	blk_queue_max_segments(zv->zv_zso->zvo_queue, UINT16_MAX);
1048 	blk_queue_max_segment_size(zv->zv_zso->zvo_queue, UINT_MAX);
1049 	blk_queue_physical_block_size(zv->zv_zso->zvo_queue,
1050 	    zv->zv_volblocksize);
1051 	blk_queue_io_opt(zv->zv_zso->zvo_queue, zv->zv_volblocksize);
1052 	blk_queue_max_discard_sectors(zv->zv_zso->zvo_queue,
1053 	    (zvol_max_discard_blocks * zv->zv_volblocksize) >> 9);
1054 	blk_queue_discard_granularity(zv->zv_zso->zvo_queue,
1055 	    zv->zv_volblocksize);
1056 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, zv->zv_zso->zvo_queue);
1057 #ifdef QUEUE_FLAG_NONROT
1058 	blk_queue_flag_set(QUEUE_FLAG_NONROT, zv->zv_zso->zvo_queue);
1059 #endif
1060 #ifdef QUEUE_FLAG_ADD_RANDOM
1061 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zv->zv_zso->zvo_queue);
1062 #endif
1063 	/* This flag was introduced in kernel version 4.12. */
1064 #ifdef QUEUE_FLAG_SCSI_PASSTHROUGH
1065 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, zv->zv_zso->zvo_queue);
1066 #endif
1067 
1068 	ASSERT3P(zv->zv_zilog, ==, NULL);
1069 	zv->zv_zilog = zil_open(os, zvol_get_data);
1070 	if (spa_writeable(dmu_objset_spa(os))) {
1071 		if (zil_replay_disable)
1072 			zil_destroy(zv->zv_zilog, B_FALSE);
1073 		else
1074 			zil_replay(os, zv, zvol_replay_vector);
1075 	}
1076 	zil_close(zv->zv_zilog);
1077 	zv->zv_zilog = NULL;
1078 	ASSERT3P(zv->zv_kstat.dk_kstats, ==, NULL);
1079 	dataset_kstats_create(&zv->zv_kstat, zv->zv_objset);
1080 
1081 	/*
1082 	 * When udev detects the addition of the device it will immediately
1083 	 * invoke blkid(8) to determine the type of content on the device.
1084 	 * Prefetching the blocks commonly scanned by blkid(8) will speed
1085 	 * up this process.
1086 	 */
1087 	len = MIN(MAX(zvol_prefetch_bytes, 0), SPA_MAXBLOCKSIZE);
1088 	if (len > 0) {
1089 		dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ);
1090 		dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len,
1091 		    ZIO_PRIORITY_SYNC_READ);
1092 	}
1093 
1094 	zv->zv_objset = NULL;
1095 out_dmu_objset_disown:
1096 	dmu_objset_disown(os, B_TRUE, FTAG);
1097 out_doi:
1098 	kmem_free(doi, sizeof (dmu_object_info_t));
1099 
1100 	/*
1101 	 * Keep in mind that once add_disk() is called, the zvol is
1102 	 * announced to the world, and zvol_open()/zvol_release() can
1103 	 * be called at any time. Incidentally, add_disk() itself calls
1104 	 * zvol_open()->zvol_first_open() and zvol_release()->zvol_last_close()
1105 	 * directly as well.
1106 	 */
1107 	if (error == 0) {
1108 		rw_enter(&zvol_state_lock, RW_WRITER);
1109 		zvol_insert(zv);
1110 		rw_exit(&zvol_state_lock);
1111 #ifdef HAVE_ADD_DISK_RET
1112 		error = add_disk(zv->zv_zso->zvo_disk);
1113 #else
1114 		add_disk(zv->zv_zso->zvo_disk);
1115 #endif
1116 	} else {
1117 		ida_simple_remove(&zvol_ida, idx);
1118 	}
1119 
1120 	return (error);
1121 }
1122 
1123 void
1124 zvol_os_rename_minor(zvol_state_t *zv, const char *newname)
1125 {
1126 	int readonly = get_disk_ro(zv->zv_zso->zvo_disk);
1127 
1128 	ASSERT(RW_LOCK_HELD(&zvol_state_lock));
1129 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1130 
1131 	strlcpy(zv->zv_name, newname, sizeof (zv->zv_name));
1132 
1133 	/* move to new hashtable entry  */
1134 	zv->zv_hash = zvol_name_hash(zv->zv_name);
1135 	hlist_del(&zv->zv_hlink);
1136 	hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
1137 
1138 	/*
1139 	 * The block device's read-only state is briefly changed causing
1140 	 * a KOBJ_CHANGE uevent to be issued.  This ensures udev detects
1141 	 * the name change and fixes the symlinks.  This does not change
1142 	 * ZVOL_RDONLY in zv->zv_flags so the actual read-only state never
1143 	 * changes.  This would normally be done using kobject_uevent() but
1144 	 * that is a GPL-only symbol which is why we need this workaround.
1145 	 */
1146 	set_disk_ro(zv->zv_zso->zvo_disk, !readonly);
1147 	set_disk_ro(zv->zv_zso->zvo_disk, readonly);
1148 }
1149 
1150 void
1151 zvol_os_set_disk_ro(zvol_state_t *zv, int flags)
1152 {
1153 
1154 	set_disk_ro(zv->zv_zso->zvo_disk, flags);
1155 }
1156 
1157 void
1158 zvol_os_set_capacity(zvol_state_t *zv, uint64_t capacity)
1159 {
1160 
1161 	set_capacity(zv->zv_zso->zvo_disk, capacity);
1162 }
1163 
1164 int
1165 zvol_init(void)
1166 {
1167 	int error;
1168 	int threads = MIN(MAX(zvol_threads, 1), 1024);
1169 
1170 	error = register_blkdev(zvol_major, ZVOL_DRIVER);
1171 	if (error) {
1172 		printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
1173 		return (error);
1174 	}
1175 	zvol_taskq = taskq_create(ZVOL_DRIVER, threads, maxclsyspri,
1176 	    threads * 2, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
1177 	if (zvol_taskq == NULL) {
1178 		unregister_blkdev(zvol_major, ZVOL_DRIVER);
1179 		return (-ENOMEM);
1180 	}
1181 	zvol_init_impl();
1182 	ida_init(&zvol_ida);
1183 	return (0);
1184 }
1185 
1186 void
1187 zvol_fini(void)
1188 {
1189 	zvol_fini_impl();
1190 	unregister_blkdev(zvol_major, ZVOL_DRIVER);
1191 	taskq_destroy(zvol_taskq);
1192 	ida_destroy(&zvol_ida);
1193 }
1194 
1195 /* BEGIN CSTYLED */
1196 module_param(zvol_inhibit_dev, uint, 0644);
1197 MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes");
1198 
1199 module_param(zvol_major, uint, 0444);
1200 MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
1201 
1202 module_param(zvol_threads, uint, 0444);
1203 MODULE_PARM_DESC(zvol_threads, "Max number of threads to handle I/O requests");
1204 
1205 module_param(zvol_request_sync, uint, 0644);
1206 MODULE_PARM_DESC(zvol_request_sync, "Synchronously handle bio requests");
1207 
1208 module_param(zvol_max_discard_blocks, ulong, 0444);
1209 MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard");
1210 
1211 module_param(zvol_prefetch_bytes, uint, 0644);
1212 MODULE_PARM_DESC(zvol_prefetch_bytes, "Prefetch N bytes at zvol start+end");
1213 
1214 module_param(zvol_volmode, uint, 0644);
1215 MODULE_PARM_DESC(zvol_volmode, "Default volmode property value");
1216 /* END CSTYLED */
1217