xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/zvol_os.c (revision 5956d97f4b3204318ceb6aa9c77bd0bc6ea87a41)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
23  */
24 
25 #include <sys/dataset_kstats.h>
26 #include <sys/dbuf.h>
27 #include <sys/dmu_traverse.h>
28 #include <sys/dsl_dataset.h>
29 #include <sys/dsl_prop.h>
30 #include <sys/dsl_dir.h>
31 #include <sys/zap.h>
32 #include <sys/zfeature.h>
33 #include <sys/zil_impl.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/zio.h>
36 #include <sys/zfs_rlock.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zvol.h>
39 #include <sys/zvol_impl.h>
40 
41 #include <linux/blkdev_compat.h>
42 #include <linux/task_io_accounting_ops.h>
43 
44 #ifdef HAVE_BLK_MQ
45 #include <linux/blk-mq.h>
46 #endif
47 
48 static void zvol_request_impl(zvol_state_t *zv, struct bio *bio,
49     struct request *rq, boolean_t force_sync);
50 
51 static unsigned int zvol_major = ZVOL_MAJOR;
52 static unsigned int zvol_request_sync = 0;
53 static unsigned int zvol_prefetch_bytes = (128 * 1024);
54 static unsigned long zvol_max_discard_blocks = 16384;
55 
56 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
57 static const unsigned int zvol_open_timeout_ms = 1000;
58 #endif
59 
60 static unsigned int zvol_threads = 0;
61 #ifdef HAVE_BLK_MQ
62 static unsigned int zvol_blk_mq_threads = 0;
63 static unsigned int zvol_blk_mq_actual_threads;
64 static boolean_t zvol_use_blk_mq = B_FALSE;
65 
66 /*
67  * The maximum number of volblocksize blocks to process per thread.  Typically,
68  * write heavy workloads preform better with higher values here, and read
69  * heavy workloads preform better with lower values, but that's not a hard
70  * and fast rule.  It's basically a knob to tune between "less overhead with
71  * less parallelism" and "more overhead, but more parallelism".
72  *
73  * '8' was chosen as a reasonable, balanced, default based off of sequential
74  * read and write tests to a zvol in an NVMe pool (with 16 CPUs).
75  */
76 static unsigned int zvol_blk_mq_blocks_per_thread = 8;
77 #endif
78 
79 #ifndef	BLKDEV_DEFAULT_RQ
80 /* BLKDEV_MAX_RQ was renamed to BLKDEV_DEFAULT_RQ in the 5.16 kernel */
81 #define	BLKDEV_DEFAULT_RQ BLKDEV_MAX_RQ
82 #endif
83 
84 /*
85  * Finalize our BIO or request.
86  */
87 #ifdef	HAVE_BLK_MQ
88 #define	END_IO(zv, bio, rq, error)  do { \
89 	if (bio) { \
90 		BIO_END_IO(bio, error); \
91 	} else { \
92 		blk_mq_end_request(rq, errno_to_bi_status(error)); \
93 	} \
94 } while (0)
95 #else
96 #define	END_IO(zv, bio, rq, error)	BIO_END_IO(bio, error)
97 #endif
98 
99 #ifdef HAVE_BLK_MQ
100 static unsigned int zvol_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
101 static unsigned int zvol_actual_blk_mq_queue_depth;
102 #endif
103 
104 struct zvol_state_os {
105 	struct gendisk		*zvo_disk;	/* generic disk */
106 	struct request_queue	*zvo_queue;	/* request queue */
107 	dev_t			zvo_dev;	/* device id */
108 
109 #ifdef HAVE_BLK_MQ
110 	struct blk_mq_tag_set tag_set;
111 #endif
112 
113 	/* Set from the global 'zvol_use_blk_mq' at zvol load */
114 	boolean_t use_blk_mq;
115 };
116 
117 taskq_t *zvol_taskq;
118 static struct ida zvol_ida;
119 
120 typedef struct zv_request_stack {
121 	zvol_state_t	*zv;
122 	struct bio	*bio;
123 	struct request *rq;
124 } zv_request_t;
125 
126 typedef struct zv_work {
127 	struct request  *rq;
128 	struct work_struct work;
129 } zv_work_t;
130 
131 typedef struct zv_request_task {
132 	zv_request_t zvr;
133 	taskq_ent_t	ent;
134 } zv_request_task_t;
135 
136 static zv_request_task_t *
137 zv_request_task_create(zv_request_t zvr)
138 {
139 	zv_request_task_t *task;
140 	task = kmem_alloc(sizeof (zv_request_task_t), KM_SLEEP);
141 	taskq_init_ent(&task->ent);
142 	task->zvr = zvr;
143 	return (task);
144 }
145 
146 static void
147 zv_request_task_free(zv_request_task_t *task)
148 {
149 	kmem_free(task, sizeof (*task));
150 }
151 
152 #ifdef HAVE_BLK_MQ
153 
154 /*
155  * This is called when a new block multiqueue request comes in.  A request
156  * contains one or more BIOs.
157  */
158 static blk_status_t zvol_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
159     const struct blk_mq_queue_data *bd)
160 {
161 	struct request *rq = bd->rq;
162 	zvol_state_t *zv = rq->q->queuedata;
163 
164 	/* Tell the kernel that we are starting to process this request */
165 	blk_mq_start_request(rq);
166 
167 	if (blk_rq_is_passthrough(rq)) {
168 		/* Skip non filesystem request */
169 		blk_mq_end_request(rq, BLK_STS_IOERR);
170 		return (BLK_STS_IOERR);
171 	}
172 
173 	zvol_request_impl(zv, NULL, rq, 0);
174 
175 	/* Acknowledge to the kernel that we got this request */
176 	return (BLK_STS_OK);
177 }
178 
179 static struct blk_mq_ops zvol_blk_mq_queue_ops = {
180 	.queue_rq = zvol_mq_queue_rq,
181 };
182 
183 /* Initialize our blk-mq struct */
184 static int zvol_blk_mq_alloc_tag_set(zvol_state_t *zv)
185 {
186 	struct zvol_state_os *zso = zv->zv_zso;
187 
188 	memset(&zso->tag_set, 0, sizeof (zso->tag_set));
189 
190 	/* Initialize tag set. */
191 	zso->tag_set.ops = &zvol_blk_mq_queue_ops;
192 	zso->tag_set.nr_hw_queues = zvol_blk_mq_actual_threads;
193 	zso->tag_set.queue_depth = zvol_actual_blk_mq_queue_depth;
194 	zso->tag_set.numa_node = NUMA_NO_NODE;
195 	zso->tag_set.cmd_size = 0;
196 
197 	/*
198 	 * We need BLK_MQ_F_BLOCKING here since we do blocking calls in
199 	 * zvol_request_impl()
200 	 */
201 	zso->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
202 	zso->tag_set.driver_data = zv;
203 
204 	return (blk_mq_alloc_tag_set(&zso->tag_set));
205 }
206 #endif /* HAVE_BLK_MQ */
207 
208 /*
209  * Given a path, return TRUE if path is a ZVOL.
210  */
211 boolean_t
212 zvol_os_is_zvol(const char *path)
213 {
214 	dev_t dev = 0;
215 
216 	if (vdev_lookup_bdev(path, &dev) != 0)
217 		return (B_FALSE);
218 
219 	if (MAJOR(dev) == zvol_major)
220 		return (B_TRUE);
221 
222 	return (B_FALSE);
223 }
224 
225 static void
226 zvol_write(zv_request_t *zvr)
227 {
228 	struct bio *bio = zvr->bio;
229 	struct request *rq = zvr->rq;
230 	int error = 0;
231 	zfs_uio_t uio;
232 	zvol_state_t *zv = zvr->zv;
233 	struct request_queue *q;
234 	struct gendisk *disk;
235 	unsigned long start_time = 0;
236 	boolean_t acct = B_FALSE;
237 
238 	ASSERT3P(zv, !=, NULL);
239 	ASSERT3U(zv->zv_open_count, >, 0);
240 	ASSERT3P(zv->zv_zilog, !=, NULL);
241 
242 	q = zv->zv_zso->zvo_queue;
243 	disk = zv->zv_zso->zvo_disk;
244 
245 	/* bio marked as FLUSH need to flush before write */
246 	if (io_is_flush(bio, rq))
247 		zil_commit(zv->zv_zilog, ZVOL_OBJ);
248 
249 	/* Some requests are just for flush and nothing else. */
250 	if (io_size(bio, rq) == 0) {
251 		rw_exit(&zv->zv_suspend_lock);
252 		END_IO(zv, bio, rq, 0);
253 		return;
254 	}
255 
256 	zfs_uio_bvec_init(&uio, bio, rq);
257 
258 	ssize_t start_resid = uio.uio_resid;
259 
260 	/*
261 	 * With use_blk_mq, accounting is done by blk_mq_start_request()
262 	 * and blk_mq_end_request(), so we can skip it here.
263 	 */
264 	if (bio) {
265 		acct = blk_queue_io_stat(q);
266 		if (acct) {
267 			start_time = blk_generic_start_io_acct(q, disk, WRITE,
268 			    bio);
269 		}
270 	}
271 
272 	boolean_t sync =
273 	    io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
274 
275 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
276 	    uio.uio_loffset, uio.uio_resid, RL_WRITER);
277 
278 	uint64_t volsize = zv->zv_volsize;
279 	while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
280 		uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
281 		uint64_t off = uio.uio_loffset;
282 		dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
283 
284 		if (bytes > volsize - off)	/* don't write past the end */
285 			bytes = volsize - off;
286 
287 		dmu_tx_hold_write_by_dnode(tx, zv->zv_dn, off, bytes);
288 
289 		/* This will only fail for ENOSPC */
290 		error = dmu_tx_assign(tx, TXG_WAIT);
291 		if (error) {
292 			dmu_tx_abort(tx);
293 			break;
294 		}
295 		error = dmu_write_uio_dnode(zv->zv_dn, &uio, bytes, tx);
296 		if (error == 0) {
297 			zvol_log_write(zv, tx, off, bytes, sync);
298 		}
299 		dmu_tx_commit(tx);
300 
301 		if (error)
302 			break;
303 	}
304 	zfs_rangelock_exit(lr);
305 
306 	int64_t nwritten = start_resid - uio.uio_resid;
307 	dataset_kstats_update_write_kstats(&zv->zv_kstat, nwritten);
308 	task_io_account_write(nwritten);
309 
310 	if (sync)
311 		zil_commit(zv->zv_zilog, ZVOL_OBJ);
312 
313 	rw_exit(&zv->zv_suspend_lock);
314 
315 	if (bio && acct) {
316 		blk_generic_end_io_acct(q, disk, WRITE, bio, start_time);
317 	}
318 
319 	END_IO(zv, bio, rq, -error);
320 }
321 
322 static void
323 zvol_write_task(void *arg)
324 {
325 	zv_request_task_t *task = arg;
326 	zvol_write(&task->zvr);
327 	zv_request_task_free(task);
328 }
329 
330 static void
331 zvol_discard(zv_request_t *zvr)
332 {
333 	struct bio *bio = zvr->bio;
334 	struct request *rq = zvr->rq;
335 	zvol_state_t *zv = zvr->zv;
336 	uint64_t start = io_offset(bio, rq);
337 	uint64_t size = io_size(bio, rq);
338 	uint64_t end = start + size;
339 	boolean_t sync;
340 	int error = 0;
341 	dmu_tx_t *tx;
342 	struct request_queue *q = zv->zv_zso->zvo_queue;
343 	struct gendisk *disk = zv->zv_zso->zvo_disk;
344 	unsigned long start_time = 0;
345 
346 	boolean_t acct = blk_queue_io_stat(q);
347 
348 	ASSERT3P(zv, !=, NULL);
349 	ASSERT3U(zv->zv_open_count, >, 0);
350 	ASSERT3P(zv->zv_zilog, !=, NULL);
351 
352 	if (bio) {
353 		acct = blk_queue_io_stat(q);
354 		if (acct) {
355 			start_time = blk_generic_start_io_acct(q, disk, WRITE,
356 			    bio);
357 		}
358 	}
359 
360 	sync = io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
361 
362 	if (end > zv->zv_volsize) {
363 		error = SET_ERROR(EIO);
364 		goto unlock;
365 	}
366 
367 	/*
368 	 * Align the request to volume block boundaries when a secure erase is
369 	 * not required.  This will prevent dnode_free_range() from zeroing out
370 	 * the unaligned parts which is slow (read-modify-write) and useless
371 	 * since we are not freeing any space by doing so.
372 	 */
373 	if (!io_is_secure_erase(bio, rq)) {
374 		start = P2ROUNDUP(start, zv->zv_volblocksize);
375 		end = P2ALIGN(end, zv->zv_volblocksize);
376 		size = end - start;
377 	}
378 
379 	if (start >= end)
380 		goto unlock;
381 
382 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
383 	    start, size, RL_WRITER);
384 
385 	tx = dmu_tx_create(zv->zv_objset);
386 	dmu_tx_mark_netfree(tx);
387 	error = dmu_tx_assign(tx, TXG_WAIT);
388 	if (error != 0) {
389 		dmu_tx_abort(tx);
390 	} else {
391 		zvol_log_truncate(zv, tx, start, size, B_TRUE);
392 		dmu_tx_commit(tx);
393 		error = dmu_free_long_range(zv->zv_objset,
394 		    ZVOL_OBJ, start, size);
395 	}
396 	zfs_rangelock_exit(lr);
397 
398 	if (error == 0 && sync)
399 		zil_commit(zv->zv_zilog, ZVOL_OBJ);
400 
401 unlock:
402 	rw_exit(&zv->zv_suspend_lock);
403 
404 	if (bio && acct) {
405 		blk_generic_end_io_acct(q, disk, WRITE, bio,
406 		    start_time);
407 	}
408 
409 	END_IO(zv, bio, rq, -error);
410 }
411 
412 static void
413 zvol_discard_task(void *arg)
414 {
415 	zv_request_task_t *task = arg;
416 	zvol_discard(&task->zvr);
417 	zv_request_task_free(task);
418 }
419 
420 static void
421 zvol_read(zv_request_t *zvr)
422 {
423 	struct bio *bio = zvr->bio;
424 	struct request *rq = zvr->rq;
425 	int error = 0;
426 	zfs_uio_t uio;
427 	boolean_t acct = B_FALSE;
428 	zvol_state_t *zv = zvr->zv;
429 	struct request_queue *q;
430 	struct gendisk *disk;
431 	unsigned long start_time = 0;
432 
433 	ASSERT3P(zv, !=, NULL);
434 	ASSERT3U(zv->zv_open_count, >, 0);
435 
436 	zfs_uio_bvec_init(&uio, bio, rq);
437 
438 	q = zv->zv_zso->zvo_queue;
439 	disk = zv->zv_zso->zvo_disk;
440 
441 	ssize_t start_resid = uio.uio_resid;
442 
443 	/*
444 	 * When blk-mq is being used, accounting is done by
445 	 * blk_mq_start_request() and blk_mq_end_request().
446 	 */
447 	if (bio) {
448 		acct = blk_queue_io_stat(q);
449 		if (acct)
450 			start_time = blk_generic_start_io_acct(q, disk, READ,
451 			    bio);
452 	}
453 
454 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
455 	    uio.uio_loffset, uio.uio_resid, RL_READER);
456 
457 	uint64_t volsize = zv->zv_volsize;
458 
459 	while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
460 		uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
461 
462 		/* don't read past the end */
463 		if (bytes > volsize - uio.uio_loffset)
464 			bytes = volsize - uio.uio_loffset;
465 
466 		error = dmu_read_uio_dnode(zv->zv_dn, &uio, bytes);
467 		if (error) {
468 			/* convert checksum errors into IO errors */
469 			if (error == ECKSUM)
470 				error = SET_ERROR(EIO);
471 			break;
472 		}
473 	}
474 	zfs_rangelock_exit(lr);
475 
476 	int64_t nread = start_resid - uio.uio_resid;
477 	dataset_kstats_update_read_kstats(&zv->zv_kstat, nread);
478 	task_io_account_read(nread);
479 
480 	rw_exit(&zv->zv_suspend_lock);
481 
482 	if (bio && acct) {
483 		blk_generic_end_io_acct(q, disk, READ, bio, start_time);
484 	}
485 
486 	END_IO(zv, bio, rq, -error);
487 }
488 
489 static void
490 zvol_read_task(void *arg)
491 {
492 	zv_request_task_t *task = arg;
493 	zvol_read(&task->zvr);
494 	zv_request_task_free(task);
495 }
496 
497 
498 /*
499  * Process a BIO or request
500  *
501  * Either 'bio' or 'rq' should be set depending on if we are processing a
502  * bio or a request (both should not be set).
503  *
504  * force_sync:	Set to 0 to defer processing to a background taskq
505  *			Set to 1 to process data synchronously
506  */
507 static void
508 zvol_request_impl(zvol_state_t *zv, struct bio *bio, struct request *rq,
509     boolean_t force_sync)
510 {
511 	fstrans_cookie_t cookie = spl_fstrans_mark();
512 	uint64_t offset = io_offset(bio, rq);
513 	uint64_t size = io_size(bio, rq);
514 	int rw = io_data_dir(bio, rq);
515 
516 	if (zvol_request_sync)
517 		force_sync = 1;
518 
519 	zv_request_t zvr = {
520 		.zv = zv,
521 		.bio = bio,
522 		.rq = rq,
523 	};
524 
525 	if (io_has_data(bio, rq) && offset + size > zv->zv_volsize) {
526 		printk(KERN_INFO "%s: bad access: offset=%llu, size=%lu\n",
527 		    zv->zv_zso->zvo_disk->disk_name,
528 		    (long long unsigned)offset,
529 		    (long unsigned)size);
530 
531 		END_IO(zv, bio, rq, -SET_ERROR(EIO));
532 		goto out;
533 	}
534 
535 	zv_request_task_t *task;
536 
537 	if (rw == WRITE) {
538 		if (unlikely(zv->zv_flags & ZVOL_RDONLY)) {
539 			END_IO(zv, bio, rq, -SET_ERROR(EROFS));
540 			goto out;
541 		}
542 
543 		/*
544 		 * Prevents the zvol from being suspended, or the ZIL being
545 		 * concurrently opened.  Will be released after the i/o
546 		 * completes.
547 		 */
548 		rw_enter(&zv->zv_suspend_lock, RW_READER);
549 
550 		/*
551 		 * Open a ZIL if this is the first time we have written to this
552 		 * zvol. We protect zv->zv_zilog with zv_suspend_lock rather
553 		 * than zv_state_lock so that we don't need to acquire an
554 		 * additional lock in this path.
555 		 */
556 		if (zv->zv_zilog == NULL) {
557 			rw_exit(&zv->zv_suspend_lock);
558 			rw_enter(&zv->zv_suspend_lock, RW_WRITER);
559 			if (zv->zv_zilog == NULL) {
560 				zv->zv_zilog = zil_open(zv->zv_objset,
561 				    zvol_get_data);
562 				zv->zv_flags |= ZVOL_WRITTEN_TO;
563 				/* replay / destroy done in zvol_create_minor */
564 				VERIFY0((zv->zv_zilog->zl_header->zh_flags &
565 				    ZIL_REPLAY_NEEDED));
566 			}
567 			rw_downgrade(&zv->zv_suspend_lock);
568 		}
569 
570 		/*
571 		 * We don't want this thread to be blocked waiting for i/o to
572 		 * complete, so we instead wait from a taskq callback. The
573 		 * i/o may be a ZIL write (via zil_commit()), or a read of an
574 		 * indirect block, or a read of a data block (if this is a
575 		 * partial-block write).  We will indicate that the i/o is
576 		 * complete by calling END_IO() from the taskq callback.
577 		 *
578 		 * This design allows the calling thread to continue and
579 		 * initiate more concurrent operations by calling
580 		 * zvol_request() again. There are typically only a small
581 		 * number of threads available to call zvol_request() (e.g.
582 		 * one per iSCSI target), so keeping the latency of
583 		 * zvol_request() low is important for performance.
584 		 *
585 		 * The zvol_request_sync module parameter allows this
586 		 * behavior to be altered, for performance evaluation
587 		 * purposes.  If the callback blocks, setting
588 		 * zvol_request_sync=1 will result in much worse performance.
589 		 *
590 		 * We can have up to zvol_threads concurrent i/o's being
591 		 * processed for all zvols on the system.  This is typically
592 		 * a vast improvement over the zvol_request_sync=1 behavior
593 		 * of one i/o at a time per zvol.  However, an even better
594 		 * design would be for zvol_request() to initiate the zio
595 		 * directly, and then be notified by the zio_done callback,
596 		 * which would call END_IO().  Unfortunately, the DMU/ZIL
597 		 * interfaces lack this functionality (they block waiting for
598 		 * the i/o to complete).
599 		 */
600 		if (io_is_discard(bio, rq) || io_is_secure_erase(bio, rq)) {
601 			if (force_sync) {
602 				zvol_discard(&zvr);
603 			} else {
604 				task = zv_request_task_create(zvr);
605 				taskq_dispatch_ent(zvol_taskq,
606 				    zvol_discard_task, task, 0, &task->ent);
607 			}
608 		} else {
609 			if (force_sync) {
610 				zvol_write(&zvr);
611 			} else {
612 				task = zv_request_task_create(zvr);
613 				taskq_dispatch_ent(zvol_taskq,
614 				    zvol_write_task, task, 0, &task->ent);
615 			}
616 		}
617 	} else {
618 		/*
619 		 * The SCST driver, and possibly others, may issue READ I/Os
620 		 * with a length of zero bytes.  These empty I/Os contain no
621 		 * data and require no additional handling.
622 		 */
623 		if (size == 0) {
624 			END_IO(zv, bio, rq, 0);
625 			goto out;
626 		}
627 
628 		rw_enter(&zv->zv_suspend_lock, RW_READER);
629 
630 		/* See comment in WRITE case above. */
631 		if (force_sync) {
632 			zvol_read(&zvr);
633 		} else {
634 			task = zv_request_task_create(zvr);
635 			taskq_dispatch_ent(zvol_taskq,
636 			    zvol_read_task, task, 0, &task->ent);
637 		}
638 	}
639 
640 out:
641 	spl_fstrans_unmark(cookie);
642 }
643 
644 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
645 #ifdef HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID
646 static void
647 zvol_submit_bio(struct bio *bio)
648 #else
649 static blk_qc_t
650 zvol_submit_bio(struct bio *bio)
651 #endif
652 #else
653 static MAKE_REQUEST_FN_RET
654 zvol_request(struct request_queue *q, struct bio *bio)
655 #endif
656 {
657 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
658 #if defined(HAVE_BIO_BDEV_DISK)
659 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
660 #else
661 	struct request_queue *q = bio->bi_disk->queue;
662 #endif
663 #endif
664 	zvol_state_t *zv = q->queuedata;
665 
666 	zvol_request_impl(zv, bio, NULL, 0);
667 #if defined(HAVE_MAKE_REQUEST_FN_RET_QC) || \
668 	defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
669 	!defined(HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID)
670 	return (BLK_QC_T_NONE);
671 #endif
672 }
673 
674 static int
675 zvol_open(struct block_device *bdev, fmode_t flag)
676 {
677 	zvol_state_t *zv;
678 	int error = 0;
679 	boolean_t drop_suspend = B_FALSE;
680 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
681 	hrtime_t timeout = MSEC2NSEC(zvol_open_timeout_ms);
682 	hrtime_t start = gethrtime();
683 
684 retry:
685 #endif
686 	rw_enter(&zvol_state_lock, RW_READER);
687 	/*
688 	 * Obtain a copy of private_data under the zvol_state_lock to make
689 	 * sure that either the result of zvol free code path setting
690 	 * bdev->bd_disk->private_data to NULL is observed, or zvol_os_free()
691 	 * is not called on this zv because of the positive zv_open_count.
692 	 */
693 	zv = bdev->bd_disk->private_data;
694 	if (zv == NULL) {
695 		rw_exit(&zvol_state_lock);
696 		return (SET_ERROR(-ENXIO));
697 	}
698 
699 	mutex_enter(&zv->zv_state_lock);
700 	/*
701 	 * Make sure zvol is not suspended during first open
702 	 * (hold zv_suspend_lock) and respect proper lock acquisition
703 	 * ordering - zv_suspend_lock before zv_state_lock
704 	 */
705 	if (zv->zv_open_count == 0) {
706 		if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
707 			mutex_exit(&zv->zv_state_lock);
708 			rw_enter(&zv->zv_suspend_lock, RW_READER);
709 			mutex_enter(&zv->zv_state_lock);
710 			/* check to see if zv_suspend_lock is needed */
711 			if (zv->zv_open_count != 0) {
712 				rw_exit(&zv->zv_suspend_lock);
713 			} else {
714 				drop_suspend = B_TRUE;
715 			}
716 		} else {
717 			drop_suspend = B_TRUE;
718 		}
719 	}
720 	rw_exit(&zvol_state_lock);
721 
722 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
723 
724 	if (zv->zv_open_count == 0) {
725 		boolean_t drop_namespace = B_FALSE;
726 
727 		ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
728 
729 		/*
730 		 * In all other call paths the spa_namespace_lock is taken
731 		 * before the bdev->bd_mutex lock.  However, on open(2)
732 		 * the __blkdev_get() function calls fops->open() with the
733 		 * bdev->bd_mutex lock held.  This can result in a deadlock
734 		 * when zvols from one pool are used as vdevs in another.
735 		 *
736 		 * To prevent a lock inversion deadlock we preemptively
737 		 * take the spa_namespace_lock.  Normally the lock will not
738 		 * be contended and this is safe because spa_open_common()
739 		 * handles the case where the caller already holds the
740 		 * spa_namespace_lock.
741 		 *
742 		 * When the lock cannot be aquired after multiple retries
743 		 * this must be the vdev on zvol deadlock case and we have
744 		 * no choice but to return an error.  For 5.12 and older
745 		 * kernels returning -ERESTARTSYS will result in the
746 		 * bdev->bd_mutex being dropped, then reacquired, and
747 		 * fops->open() being called again.  This process can be
748 		 * repeated safely until both locks are acquired.  For 5.13
749 		 * and newer the -ERESTARTSYS retry logic was removed from
750 		 * the kernel so the only option is to return the error for
751 		 * the caller to handle it.
752 		 */
753 		if (!mutex_owned(&spa_namespace_lock)) {
754 			if (!mutex_tryenter(&spa_namespace_lock)) {
755 				mutex_exit(&zv->zv_state_lock);
756 				rw_exit(&zv->zv_suspend_lock);
757 
758 #ifdef HAVE_BLKDEV_GET_ERESTARTSYS
759 				schedule();
760 				return (SET_ERROR(-ERESTARTSYS));
761 #else
762 				if ((gethrtime() - start) > timeout)
763 					return (SET_ERROR(-ERESTARTSYS));
764 
765 				schedule_timeout(MSEC_TO_TICK(10));
766 				goto retry;
767 #endif
768 			} else {
769 				drop_namespace = B_TRUE;
770 			}
771 		}
772 
773 		error = -zvol_first_open(zv, !(flag & FMODE_WRITE));
774 
775 		if (drop_namespace)
776 			mutex_exit(&spa_namespace_lock);
777 	}
778 
779 	if (error == 0) {
780 		if ((flag & FMODE_WRITE) && (zv->zv_flags & ZVOL_RDONLY)) {
781 			if (zv->zv_open_count == 0)
782 				zvol_last_close(zv);
783 
784 			error = SET_ERROR(-EROFS);
785 		} else {
786 			zv->zv_open_count++;
787 		}
788 	}
789 
790 	mutex_exit(&zv->zv_state_lock);
791 	if (drop_suspend)
792 		rw_exit(&zv->zv_suspend_lock);
793 
794 	if (error == 0)
795 		zfs_check_media_change(bdev);
796 
797 	return (error);
798 }
799 
800 static void
801 zvol_release(struct gendisk *disk, fmode_t mode)
802 {
803 	zvol_state_t *zv;
804 	boolean_t drop_suspend = B_TRUE;
805 
806 	rw_enter(&zvol_state_lock, RW_READER);
807 	zv = disk->private_data;
808 
809 	mutex_enter(&zv->zv_state_lock);
810 	ASSERT3U(zv->zv_open_count, >, 0);
811 	/*
812 	 * make sure zvol is not suspended during last close
813 	 * (hold zv_suspend_lock) and respect proper lock acquisition
814 	 * ordering - zv_suspend_lock before zv_state_lock
815 	 */
816 	if (zv->zv_open_count == 1) {
817 		if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
818 			mutex_exit(&zv->zv_state_lock);
819 			rw_enter(&zv->zv_suspend_lock, RW_READER);
820 			mutex_enter(&zv->zv_state_lock);
821 			/* check to see if zv_suspend_lock is needed */
822 			if (zv->zv_open_count != 1) {
823 				rw_exit(&zv->zv_suspend_lock);
824 				drop_suspend = B_FALSE;
825 			}
826 		}
827 	} else {
828 		drop_suspend = B_FALSE;
829 	}
830 	rw_exit(&zvol_state_lock);
831 
832 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
833 
834 	zv->zv_open_count--;
835 	if (zv->zv_open_count == 0) {
836 		ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
837 		zvol_last_close(zv);
838 	}
839 
840 	mutex_exit(&zv->zv_state_lock);
841 
842 	if (drop_suspend)
843 		rw_exit(&zv->zv_suspend_lock);
844 }
845 
846 static int
847 zvol_ioctl(struct block_device *bdev, fmode_t mode,
848     unsigned int cmd, unsigned long arg)
849 {
850 	zvol_state_t *zv = bdev->bd_disk->private_data;
851 	int error = 0;
852 
853 	ASSERT3U(zv->zv_open_count, >, 0);
854 
855 	switch (cmd) {
856 	case BLKFLSBUF:
857 		fsync_bdev(bdev);
858 		invalidate_bdev(bdev);
859 		rw_enter(&zv->zv_suspend_lock, RW_READER);
860 
861 		if (!(zv->zv_flags & ZVOL_RDONLY))
862 			txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
863 
864 		rw_exit(&zv->zv_suspend_lock);
865 		break;
866 
867 	case BLKZNAME:
868 		mutex_enter(&zv->zv_state_lock);
869 		error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN);
870 		mutex_exit(&zv->zv_state_lock);
871 		break;
872 
873 	default:
874 		error = -ENOTTY;
875 		break;
876 	}
877 
878 	return (SET_ERROR(error));
879 }
880 
881 #ifdef CONFIG_COMPAT
882 static int
883 zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
884     unsigned cmd, unsigned long arg)
885 {
886 	return (zvol_ioctl(bdev, mode, cmd, arg));
887 }
888 #else
889 #define	zvol_compat_ioctl	NULL
890 #endif
891 
892 static unsigned int
893 zvol_check_events(struct gendisk *disk, unsigned int clearing)
894 {
895 	unsigned int mask = 0;
896 
897 	rw_enter(&zvol_state_lock, RW_READER);
898 
899 	zvol_state_t *zv = disk->private_data;
900 	if (zv != NULL) {
901 		mutex_enter(&zv->zv_state_lock);
902 		mask = zv->zv_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
903 		zv->zv_changed = 0;
904 		mutex_exit(&zv->zv_state_lock);
905 	}
906 
907 	rw_exit(&zvol_state_lock);
908 
909 	return (mask);
910 }
911 
912 static int
913 zvol_revalidate_disk(struct gendisk *disk)
914 {
915 	rw_enter(&zvol_state_lock, RW_READER);
916 
917 	zvol_state_t *zv = disk->private_data;
918 	if (zv != NULL) {
919 		mutex_enter(&zv->zv_state_lock);
920 		set_capacity(zv->zv_zso->zvo_disk,
921 		    zv->zv_volsize >> SECTOR_BITS);
922 		mutex_exit(&zv->zv_state_lock);
923 	}
924 
925 	rw_exit(&zvol_state_lock);
926 
927 	return (0);
928 }
929 
930 int
931 zvol_os_update_volsize(zvol_state_t *zv, uint64_t volsize)
932 {
933 	struct gendisk *disk = zv->zv_zso->zvo_disk;
934 
935 #if defined(HAVE_REVALIDATE_DISK_SIZE)
936 	revalidate_disk_size(disk, zvol_revalidate_disk(disk) == 0);
937 #elif defined(HAVE_REVALIDATE_DISK)
938 	revalidate_disk(disk);
939 #else
940 	zvol_revalidate_disk(disk);
941 #endif
942 	return (0);
943 }
944 
945 void
946 zvol_os_clear_private(zvol_state_t *zv)
947 {
948 	/*
949 	 * Cleared while holding zvol_state_lock as a writer
950 	 * which will prevent zvol_open() from opening it.
951 	 */
952 	zv->zv_zso->zvo_disk->private_data = NULL;
953 }
954 
955 /*
956  * Provide a simple virtual geometry for legacy compatibility.  For devices
957  * smaller than 1 MiB a small head and sector count is used to allow very
958  * tiny devices.  For devices over 1 Mib a standard head and sector count
959  * is used to keep the cylinders count reasonable.
960  */
961 static int
962 zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
963 {
964 	zvol_state_t *zv = bdev->bd_disk->private_data;
965 	sector_t sectors;
966 
967 	ASSERT3U(zv->zv_open_count, >, 0);
968 
969 	sectors = get_capacity(zv->zv_zso->zvo_disk);
970 
971 	if (sectors > 2048) {
972 		geo->heads = 16;
973 		geo->sectors = 63;
974 	} else {
975 		geo->heads = 2;
976 		geo->sectors = 4;
977 	}
978 
979 	geo->start = 0;
980 	geo->cylinders = sectors / (geo->heads * geo->sectors);
981 
982 	return (0);
983 }
984 
985 /*
986  * Why have two separate block_device_operations structs?
987  *
988  * Normally we'd just have one, and assign 'submit_bio' as needed.  However,
989  * it's possible the user's kernel is built with CONSTIFY_PLUGIN, meaning we
990  * can't just change submit_bio dynamically at runtime.  So just create two
991  * separate structs to get around this.
992  */
993 static const struct block_device_operations zvol_ops_blk_mq = {
994 	.open			= zvol_open,
995 	.release		= zvol_release,
996 	.ioctl			= zvol_ioctl,
997 	.compat_ioctl		= zvol_compat_ioctl,
998 	.check_events		= zvol_check_events,
999 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
1000 	.revalidate_disk	= zvol_revalidate_disk,
1001 #endif
1002 	.getgeo			= zvol_getgeo,
1003 	.owner			= THIS_MODULE,
1004 };
1005 
1006 static const struct block_device_operations zvol_ops = {
1007 	.open			= zvol_open,
1008 	.release		= zvol_release,
1009 	.ioctl			= zvol_ioctl,
1010 	.compat_ioctl		= zvol_compat_ioctl,
1011 	.check_events		= zvol_check_events,
1012 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
1013 	.revalidate_disk	= zvol_revalidate_disk,
1014 #endif
1015 	.getgeo			= zvol_getgeo,
1016 	.owner			= THIS_MODULE,
1017 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
1018 	.submit_bio		= zvol_submit_bio,
1019 #endif
1020 };
1021 
1022 static int
1023 zvol_alloc_non_blk_mq(struct zvol_state_os *zso)
1024 {
1025 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS)
1026 #if defined(HAVE_BLK_ALLOC_DISK)
1027 	zso->zvo_disk = blk_alloc_disk(NUMA_NO_NODE);
1028 	if (zso->zvo_disk == NULL)
1029 		return (1);
1030 
1031 	zso->zvo_disk->minors = ZVOL_MINORS;
1032 	zso->zvo_queue = zso->zvo_disk->queue;
1033 #else
1034 	zso->zvo_queue = blk_alloc_queue(NUMA_NO_NODE);
1035 	if (zso->zvo_queue == NULL)
1036 		return (1);
1037 
1038 	zso->zvo_disk = alloc_disk(ZVOL_MINORS);
1039 	if (zso->zvo_disk == NULL) {
1040 		blk_cleanup_queue(zso->zvo_queue);
1041 		return (1);
1042 	}
1043 
1044 	zso->zvo_disk->queue = zso->zvo_queue;
1045 #endif /* HAVE_BLK_ALLOC_DISK */
1046 #else
1047 	zso->zvo_queue = blk_generic_alloc_queue(zvol_request, NUMA_NO_NODE);
1048 	if (zso->zvo_queue == NULL)
1049 		return (1);
1050 
1051 	zso->zvo_disk = alloc_disk(ZVOL_MINORS);
1052 	if (zso->zvo_disk == NULL) {
1053 		blk_cleanup_queue(zso->zvo_queue);
1054 		return (1);
1055 	}
1056 
1057 	zso->zvo_disk->queue = zso->zvo_queue;
1058 #endif /* HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS */
1059 	return (0);
1060 
1061 }
1062 
1063 static int
1064 zvol_alloc_blk_mq(zvol_state_t *zv)
1065 {
1066 #ifdef HAVE_BLK_MQ
1067 	struct zvol_state_os *zso = zv->zv_zso;
1068 
1069 	/* Allocate our blk-mq tag_set */
1070 	if (zvol_blk_mq_alloc_tag_set(zv) != 0)
1071 		return (1);
1072 
1073 #if defined(HAVE_BLK_ALLOC_DISK)
1074 	zso->zvo_disk = blk_mq_alloc_disk(&zso->tag_set, zv);
1075 	if (zso->zvo_disk == NULL) {
1076 		blk_mq_free_tag_set(&zso->tag_set);
1077 		return (1);
1078 	}
1079 	zso->zvo_queue = zso->zvo_disk->queue;
1080 	zso->zvo_disk->minors = ZVOL_MINORS;
1081 #else
1082 	zso->zvo_disk = alloc_disk(ZVOL_MINORS);
1083 	if (zso->zvo_disk == NULL) {
1084 		blk_cleanup_queue(zso->zvo_queue);
1085 		blk_mq_free_tag_set(&zso->tag_set);
1086 		return (1);
1087 	}
1088 	/* Allocate queue */
1089 	zso->zvo_queue = blk_mq_init_queue(&zso->tag_set);
1090 	if (IS_ERR(zso->zvo_queue)) {
1091 		blk_mq_free_tag_set(&zso->tag_set);
1092 		return (1);
1093 	}
1094 
1095 	/* Our queue is now created, assign it to our disk */
1096 	zso->zvo_disk->queue = zso->zvo_queue;
1097 
1098 #endif
1099 #endif
1100 	return (0);
1101 }
1102 
1103 /*
1104  * Allocate memory for a new zvol_state_t and setup the required
1105  * request queue and generic disk structures for the block device.
1106  */
1107 static zvol_state_t *
1108 zvol_alloc(dev_t dev, const char *name)
1109 {
1110 	zvol_state_t *zv;
1111 	struct zvol_state_os *zso;
1112 	uint64_t volmode;
1113 	int ret;
1114 
1115 	if (dsl_prop_get_integer(name, "volmode", &volmode, NULL) != 0)
1116 		return (NULL);
1117 
1118 	if (volmode == ZFS_VOLMODE_DEFAULT)
1119 		volmode = zvol_volmode;
1120 
1121 	if (volmode == ZFS_VOLMODE_NONE)
1122 		return (NULL);
1123 
1124 	zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
1125 	zso = kmem_zalloc(sizeof (struct zvol_state_os), KM_SLEEP);
1126 	zv->zv_zso = zso;
1127 	zv->zv_volmode = volmode;
1128 
1129 	list_link_init(&zv->zv_next);
1130 	mutex_init(&zv->zv_state_lock, NULL, MUTEX_DEFAULT, NULL);
1131 
1132 #ifdef HAVE_BLK_MQ
1133 	zv->zv_zso->use_blk_mq = zvol_use_blk_mq;
1134 #endif
1135 
1136 	/*
1137 	 * The block layer has 3 interfaces for getting BIOs:
1138 	 *
1139 	 * 1. blk-mq request queues (new)
1140 	 * 2. submit_bio() (oldest)
1141 	 * 3. regular request queues (old).
1142 	 *
1143 	 * Each of those interfaces has two permutations:
1144 	 *
1145 	 * a) We have blk_alloc_disk()/blk_mq_alloc_disk(), which allocates
1146 	 *    both the disk and its queue (5.14 kernel or newer)
1147 	 *
1148 	 * b) We don't have blk_*alloc_disk(), and have to allocate the
1149 	 *    disk and the queue separately. (5.13 kernel or older)
1150 	 */
1151 	if (zv->zv_zso->use_blk_mq) {
1152 		ret = zvol_alloc_blk_mq(zv);
1153 		zso->zvo_disk->fops = &zvol_ops_blk_mq;
1154 	} else {
1155 		ret = zvol_alloc_non_blk_mq(zso);
1156 		zso->zvo_disk->fops = &zvol_ops;
1157 	}
1158 	if (ret != 0)
1159 		goto out_kmem;
1160 
1161 	blk_queue_set_write_cache(zso->zvo_queue, B_TRUE, B_TRUE);
1162 
1163 	/* Limit read-ahead to a single page to prevent over-prefetching. */
1164 	blk_queue_set_read_ahead(zso->zvo_queue, 1);
1165 
1166 	if (!zv->zv_zso->use_blk_mq) {
1167 		/* Disable write merging in favor of the ZIO pipeline. */
1168 		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, zso->zvo_queue);
1169 	}
1170 
1171 	/* Enable /proc/diskstats */
1172 	blk_queue_flag_set(QUEUE_FLAG_IO_STAT, zso->zvo_queue);
1173 
1174 	zso->zvo_queue->queuedata = zv;
1175 	zso->zvo_dev = dev;
1176 	zv->zv_open_count = 0;
1177 	strlcpy(zv->zv_name, name, MAXNAMELEN);
1178 
1179 	zfs_rangelock_init(&zv->zv_rangelock, NULL, NULL);
1180 	rw_init(&zv->zv_suspend_lock, NULL, RW_DEFAULT, NULL);
1181 
1182 	zso->zvo_disk->major = zvol_major;
1183 	zso->zvo_disk->events = DISK_EVENT_MEDIA_CHANGE;
1184 
1185 	/*
1186 	 * Setting ZFS_VOLMODE_DEV disables partitioning on ZVOL devices.
1187 	 * This is accomplished by limiting the number of minors for the
1188 	 * device to one and explicitly disabling partition scanning.
1189 	 */
1190 	if (volmode == ZFS_VOLMODE_DEV) {
1191 		zso->zvo_disk->minors = 1;
1192 		zso->zvo_disk->flags &= ~ZFS_GENHD_FL_EXT_DEVT;
1193 		zso->zvo_disk->flags |= ZFS_GENHD_FL_NO_PART;
1194 	}
1195 
1196 	zso->zvo_disk->first_minor = (dev & MINORMASK);
1197 	zso->zvo_disk->private_data = zv;
1198 	snprintf(zso->zvo_disk->disk_name, DISK_NAME_LEN, "%s%d",
1199 	    ZVOL_DEV_NAME, (dev & MINORMASK));
1200 
1201 	return (zv);
1202 
1203 out_kmem:
1204 	kmem_free(zso, sizeof (struct zvol_state_os));
1205 	kmem_free(zv, sizeof (zvol_state_t));
1206 	return (NULL);
1207 }
1208 
1209 /*
1210  * Cleanup then free a zvol_state_t which was created by zvol_alloc().
1211  * At this time, the structure is not opened by anyone, is taken off
1212  * the zvol_state_list, and has its private data set to NULL.
1213  * The zvol_state_lock is dropped.
1214  *
1215  * This function may take many milliseconds to complete (e.g. we've seen
1216  * it take over 256ms), due to the calls to "blk_cleanup_queue" and
1217  * "del_gendisk". Thus, consumers need to be careful to account for this
1218  * latency when calling this function.
1219  */
1220 void
1221 zvol_os_free(zvol_state_t *zv)
1222 {
1223 
1224 	ASSERT(!RW_LOCK_HELD(&zv->zv_suspend_lock));
1225 	ASSERT(!MUTEX_HELD(&zv->zv_state_lock));
1226 	ASSERT0(zv->zv_open_count);
1227 	ASSERT3P(zv->zv_zso->zvo_disk->private_data, ==, NULL);
1228 
1229 	rw_destroy(&zv->zv_suspend_lock);
1230 	zfs_rangelock_fini(&zv->zv_rangelock);
1231 
1232 	del_gendisk(zv->zv_zso->zvo_disk);
1233 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
1234 	defined(HAVE_BLK_ALLOC_DISK)
1235 	blk_cleanup_disk(zv->zv_zso->zvo_disk);
1236 #else
1237 	blk_cleanup_queue(zv->zv_zso->zvo_queue);
1238 	put_disk(zv->zv_zso->zvo_disk);
1239 #endif
1240 
1241 #ifdef HAVE_BLK_MQ
1242 	if (zv->zv_zso->use_blk_mq)
1243 		blk_mq_free_tag_set(&zv->zv_zso->tag_set);
1244 #endif
1245 
1246 	ida_simple_remove(&zvol_ida,
1247 	    MINOR(zv->zv_zso->zvo_dev) >> ZVOL_MINOR_BITS);
1248 
1249 	mutex_destroy(&zv->zv_state_lock);
1250 	dataset_kstats_destroy(&zv->zv_kstat);
1251 
1252 	kmem_free(zv->zv_zso, sizeof (struct zvol_state_os));
1253 	kmem_free(zv, sizeof (zvol_state_t));
1254 }
1255 
1256 void
1257 zvol_wait_close(zvol_state_t *zv)
1258 {
1259 }
1260 
1261 /*
1262  * Create a block device minor node and setup the linkage between it
1263  * and the specified volume.  Once this function returns the block
1264  * device is live and ready for use.
1265  */
1266 int
1267 zvol_os_create_minor(const char *name)
1268 {
1269 	zvol_state_t *zv;
1270 	objset_t *os;
1271 	dmu_object_info_t *doi;
1272 	uint64_t volsize;
1273 	uint64_t len;
1274 	unsigned minor = 0;
1275 	int error = 0;
1276 	int idx;
1277 	uint64_t hash = zvol_name_hash(name);
1278 
1279 	if (zvol_inhibit_dev)
1280 		return (0);
1281 
1282 	idx = ida_simple_get(&zvol_ida, 0, 0, kmem_flags_convert(KM_SLEEP));
1283 	if (idx < 0)
1284 		return (SET_ERROR(-idx));
1285 	minor = idx << ZVOL_MINOR_BITS;
1286 
1287 	zv = zvol_find_by_name_hash(name, hash, RW_NONE);
1288 	if (zv) {
1289 		ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1290 		mutex_exit(&zv->zv_state_lock);
1291 		ida_simple_remove(&zvol_ida, idx);
1292 		return (SET_ERROR(EEXIST));
1293 	}
1294 
1295 	doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
1296 
1297 	error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, B_TRUE, FTAG, &os);
1298 	if (error)
1299 		goto out_doi;
1300 
1301 	error = dmu_object_info(os, ZVOL_OBJ, doi);
1302 	if (error)
1303 		goto out_dmu_objset_disown;
1304 
1305 	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
1306 	if (error)
1307 		goto out_dmu_objset_disown;
1308 
1309 	zv = zvol_alloc(MKDEV(zvol_major, minor), name);
1310 	if (zv == NULL) {
1311 		error = SET_ERROR(EAGAIN);
1312 		goto out_dmu_objset_disown;
1313 	}
1314 	zv->zv_hash = hash;
1315 
1316 	if (dmu_objset_is_snapshot(os))
1317 		zv->zv_flags |= ZVOL_RDONLY;
1318 
1319 	zv->zv_volblocksize = doi->doi_data_block_size;
1320 	zv->zv_volsize = volsize;
1321 	zv->zv_objset = os;
1322 
1323 	set_capacity(zv->zv_zso->zvo_disk, zv->zv_volsize >> 9);
1324 
1325 	blk_queue_max_hw_sectors(zv->zv_zso->zvo_queue,
1326 	    (DMU_MAX_ACCESS / 4) >> 9);
1327 
1328 	if (zv->zv_zso->use_blk_mq) {
1329 		/*
1330 		 * IO requests can be really big (1MB).  When an IO request
1331 		 * comes in, it is passed off to zvol_read() or zvol_write()
1332 		 * in a new thread, where it is chunked up into 'volblocksize'
1333 		 * sized pieces and processed.  So for example, if the request
1334 		 * is a 1MB write and your volblocksize is 128k, one zvol_write
1335 		 * thread will take that request and sequentially do ten 128k
1336 		 * IOs.  This is due to the fact that the thread needs to lock
1337 		 * each volblocksize sized block.  So you might be wondering:
1338 		 * "instead of passing the whole 1MB request to one thread,
1339 		 * why not pass ten individual 128k chunks to ten threads and
1340 		 * process the whole write in parallel?"  The short answer is
1341 		 * that there's a sweet spot number of chunks that balances
1342 		 * the greater parallelism with the added overhead of more
1343 		 * threads. The sweet spot can be different depending on if you
1344 		 * have a read or write  heavy workload.  Writes typically want
1345 		 * high chunk counts while reads typically want lower ones.  On
1346 		 * a test pool with 6 NVMe drives in a 3x 2-disk mirror
1347 		 * configuration, with volblocksize=8k, the sweet spot for good
1348 		 * sequential reads and writes was at 8 chunks.
1349 		 */
1350 
1351 		/*
1352 		 * Below we tell the kernel how big we want our requests
1353 		 * to be.  You would think that blk_queue_io_opt() would be
1354 		 * used to do this since it is used to "set optimal request
1355 		 * size for the queue", but that doesn't seem to do
1356 		 * anything - the kernel still gives you huge requests
1357 		 * with tons of little PAGE_SIZE segments contained within it.
1358 		 *
1359 		 * Knowing that the kernel will just give you PAGE_SIZE segments
1360 		 * no matter what, you can say "ok, I want PAGE_SIZE byte
1361 		 * segments, and I want 'N' of them per request", where N is
1362 		 * the correct number of segments for the volblocksize and
1363 		 * number of chunks you want.
1364 		 */
1365 #ifdef HAVE_BLK_MQ
1366 		if (zvol_blk_mq_blocks_per_thread != 0) {
1367 			unsigned int chunks;
1368 			chunks = MIN(zvol_blk_mq_blocks_per_thread, UINT16_MAX);
1369 
1370 			blk_queue_max_segment_size(zv->zv_zso->zvo_queue,
1371 			    PAGE_SIZE);
1372 			blk_queue_max_segments(zv->zv_zso->zvo_queue,
1373 			    (zv->zv_volblocksize * chunks) / PAGE_SIZE);
1374 		} else {
1375 			/*
1376 			 * Special case: zvol_blk_mq_blocks_per_thread = 0
1377 			 * Max everything out.
1378 			 */
1379 			blk_queue_max_segments(zv->zv_zso->zvo_queue,
1380 			    UINT16_MAX);
1381 			blk_queue_max_segment_size(zv->zv_zso->zvo_queue,
1382 			    UINT_MAX);
1383 		}
1384 #endif
1385 	} else {
1386 		blk_queue_max_segments(zv->zv_zso->zvo_queue, UINT16_MAX);
1387 		blk_queue_max_segment_size(zv->zv_zso->zvo_queue, UINT_MAX);
1388 	}
1389 
1390 	blk_queue_physical_block_size(zv->zv_zso->zvo_queue,
1391 	    zv->zv_volblocksize);
1392 	blk_queue_io_opt(zv->zv_zso->zvo_queue, zv->zv_volblocksize);
1393 	blk_queue_max_discard_sectors(zv->zv_zso->zvo_queue,
1394 	    (zvol_max_discard_blocks * zv->zv_volblocksize) >> 9);
1395 	blk_queue_discard_granularity(zv->zv_zso->zvo_queue,
1396 	    zv->zv_volblocksize);
1397 #ifdef QUEUE_FLAG_DISCARD
1398 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, zv->zv_zso->zvo_queue);
1399 #endif
1400 #ifdef QUEUE_FLAG_NONROT
1401 	blk_queue_flag_set(QUEUE_FLAG_NONROT, zv->zv_zso->zvo_queue);
1402 #endif
1403 #ifdef QUEUE_FLAG_ADD_RANDOM
1404 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zv->zv_zso->zvo_queue);
1405 #endif
1406 	/* This flag was introduced in kernel version 4.12. */
1407 #ifdef QUEUE_FLAG_SCSI_PASSTHROUGH
1408 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, zv->zv_zso->zvo_queue);
1409 #endif
1410 
1411 	ASSERT3P(zv->zv_zilog, ==, NULL);
1412 	zv->zv_zilog = zil_open(os, zvol_get_data);
1413 	if (spa_writeable(dmu_objset_spa(os))) {
1414 		if (zil_replay_disable)
1415 			zil_destroy(zv->zv_zilog, B_FALSE);
1416 		else
1417 			zil_replay(os, zv, zvol_replay_vector);
1418 	}
1419 	zil_close(zv->zv_zilog);
1420 	zv->zv_zilog = NULL;
1421 	ASSERT3P(zv->zv_kstat.dk_kstats, ==, NULL);
1422 	dataset_kstats_create(&zv->zv_kstat, zv->zv_objset);
1423 
1424 	/*
1425 	 * When udev detects the addition of the device it will immediately
1426 	 * invoke blkid(8) to determine the type of content on the device.
1427 	 * Prefetching the blocks commonly scanned by blkid(8) will speed
1428 	 * up this process.
1429 	 */
1430 	len = MIN(MAX(zvol_prefetch_bytes, 0), SPA_MAXBLOCKSIZE);
1431 	if (len > 0) {
1432 		dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ);
1433 		dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len,
1434 		    ZIO_PRIORITY_SYNC_READ);
1435 	}
1436 
1437 	zv->zv_objset = NULL;
1438 out_dmu_objset_disown:
1439 	dmu_objset_disown(os, B_TRUE, FTAG);
1440 out_doi:
1441 	kmem_free(doi, sizeof (dmu_object_info_t));
1442 
1443 	/*
1444 	 * Keep in mind that once add_disk() is called, the zvol is
1445 	 * announced to the world, and zvol_open()/zvol_release() can
1446 	 * be called at any time. Incidentally, add_disk() itself calls
1447 	 * zvol_open()->zvol_first_open() and zvol_release()->zvol_last_close()
1448 	 * directly as well.
1449 	 */
1450 	if (error == 0) {
1451 		rw_enter(&zvol_state_lock, RW_WRITER);
1452 		zvol_insert(zv);
1453 		rw_exit(&zvol_state_lock);
1454 #ifdef HAVE_ADD_DISK_RET
1455 		error = add_disk(zv->zv_zso->zvo_disk);
1456 #else
1457 		add_disk(zv->zv_zso->zvo_disk);
1458 #endif
1459 	} else {
1460 		ida_simple_remove(&zvol_ida, idx);
1461 	}
1462 
1463 	return (error);
1464 }
1465 
1466 void
1467 zvol_os_rename_minor(zvol_state_t *zv, const char *newname)
1468 {
1469 	int readonly = get_disk_ro(zv->zv_zso->zvo_disk);
1470 
1471 	ASSERT(RW_LOCK_HELD(&zvol_state_lock));
1472 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1473 
1474 	strlcpy(zv->zv_name, newname, sizeof (zv->zv_name));
1475 
1476 	/* move to new hashtable entry  */
1477 	zv->zv_hash = zvol_name_hash(zv->zv_name);
1478 	hlist_del(&zv->zv_hlink);
1479 	hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
1480 
1481 	/*
1482 	 * The block device's read-only state is briefly changed causing
1483 	 * a KOBJ_CHANGE uevent to be issued.  This ensures udev detects
1484 	 * the name change and fixes the symlinks.  This does not change
1485 	 * ZVOL_RDONLY in zv->zv_flags so the actual read-only state never
1486 	 * changes.  This would normally be done using kobject_uevent() but
1487 	 * that is a GPL-only symbol which is why we need this workaround.
1488 	 */
1489 	set_disk_ro(zv->zv_zso->zvo_disk, !readonly);
1490 	set_disk_ro(zv->zv_zso->zvo_disk, readonly);
1491 }
1492 
1493 void
1494 zvol_os_set_disk_ro(zvol_state_t *zv, int flags)
1495 {
1496 
1497 	set_disk_ro(zv->zv_zso->zvo_disk, flags);
1498 }
1499 
1500 void
1501 zvol_os_set_capacity(zvol_state_t *zv, uint64_t capacity)
1502 {
1503 
1504 	set_capacity(zv->zv_zso->zvo_disk, capacity);
1505 }
1506 
1507 int
1508 zvol_init(void)
1509 {
1510 	int error;
1511 
1512 	/*
1513 	 * zvol_threads is the module param the user passes in.
1514 	 *
1515 	 * zvol_actual_threads is what we use internally, since the user can
1516 	 * pass zvol_thread = 0 to mean "use all the CPUs" (the default).
1517 	 */
1518 	static unsigned int zvol_actual_threads;
1519 
1520 	if (zvol_threads == 0) {
1521 		/*
1522 		 * See dde9380a1 for why 32 was chosen here.  This should
1523 		 * probably be refined to be some multiple of the number
1524 		 * of CPUs.
1525 		 */
1526 		zvol_actual_threads = MAX(num_online_cpus(), 32);
1527 	} else {
1528 		zvol_actual_threads = MIN(MAX(zvol_threads, 1), 1024);
1529 	}
1530 
1531 	error = register_blkdev(zvol_major, ZVOL_DRIVER);
1532 	if (error) {
1533 		printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
1534 		return (error);
1535 	}
1536 
1537 #ifdef HAVE_BLK_MQ
1538 	if (zvol_blk_mq_queue_depth == 0) {
1539 		zvol_actual_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
1540 	} else {
1541 		zvol_actual_blk_mq_queue_depth =
1542 		    MAX(zvol_blk_mq_queue_depth, BLKDEV_MIN_RQ);
1543 	}
1544 
1545 	if (zvol_blk_mq_threads == 0) {
1546 		zvol_blk_mq_actual_threads = num_online_cpus();
1547 	} else {
1548 		zvol_blk_mq_actual_threads = MIN(MAX(zvol_blk_mq_threads, 1),
1549 		    1024);
1550 	}
1551 #endif
1552 	zvol_taskq = taskq_create(ZVOL_DRIVER, zvol_actual_threads, maxclsyspri,
1553 	    zvol_actual_threads, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
1554 	if (zvol_taskq == NULL) {
1555 		unregister_blkdev(zvol_major, ZVOL_DRIVER);
1556 		return (-ENOMEM);
1557 	}
1558 
1559 	zvol_init_impl();
1560 	ida_init(&zvol_ida);
1561 	return (0);
1562 }
1563 
1564 void
1565 zvol_fini(void)
1566 {
1567 	zvol_fini_impl();
1568 	unregister_blkdev(zvol_major, ZVOL_DRIVER);
1569 	taskq_destroy(zvol_taskq);
1570 	ida_destroy(&zvol_ida);
1571 }
1572 
1573 /* BEGIN CSTYLED */
1574 module_param(zvol_inhibit_dev, uint, 0644);
1575 MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes");
1576 
1577 module_param(zvol_major, uint, 0444);
1578 MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
1579 
1580 module_param(zvol_threads, uint, 0444);
1581 MODULE_PARM_DESC(zvol_threads, "Number of threads to handle I/O requests. Set"
1582     "to 0 to use all active CPUs");
1583 
1584 module_param(zvol_request_sync, uint, 0644);
1585 MODULE_PARM_DESC(zvol_request_sync, "Synchronously handle bio requests");
1586 
1587 module_param(zvol_max_discard_blocks, ulong, 0444);
1588 MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard");
1589 
1590 module_param(zvol_prefetch_bytes, uint, 0644);
1591 MODULE_PARM_DESC(zvol_prefetch_bytes, "Prefetch N bytes at zvol start+end");
1592 
1593 module_param(zvol_volmode, uint, 0644);
1594 MODULE_PARM_DESC(zvol_volmode, "Default volmode property value");
1595 
1596 #ifdef HAVE_BLK_MQ
1597 module_param(zvol_blk_mq_queue_depth, uint, 0644);
1598 MODULE_PARM_DESC(zvol_blk_mq_queue_depth, "Default blk-mq queue depth");
1599 
1600 module_param(zvol_use_blk_mq, uint, 0644);
1601 MODULE_PARM_DESC(zvol_use_blk_mq, "Use the blk-mq API for zvols");
1602 
1603 module_param(zvol_blk_mq_blocks_per_thread, uint, 0644);
1604 MODULE_PARM_DESC(zvol_blk_mq_blocks_per_thread,
1605     "Process volblocksize blocks per thread");
1606 #endif
1607 
1608 /* END CSTYLED */
1609