xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/zvol_os.c (revision 22cf89c938886d14f5796fc49f9f020c23ea8eaf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
23  */
24 
25 #include <sys/dataset_kstats.h>
26 #include <sys/dbuf.h>
27 #include <sys/dmu_traverse.h>
28 #include <sys/dsl_dataset.h>
29 #include <sys/dsl_prop.h>
30 #include <sys/dsl_dir.h>
31 #include <sys/zap.h>
32 #include <sys/zfeature.h>
33 #include <sys/zil_impl.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/zio.h>
36 #include <sys/zfs_rlock.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zvol.h>
39 #include <sys/zvol_impl.h>
40 
41 #include <linux/blkdev_compat.h>
42 #include <linux/task_io_accounting_ops.h>
43 
44 #ifdef HAVE_BLK_MQ
45 #include <linux/blk-mq.h>
46 #endif
47 
48 static void zvol_request_impl(zvol_state_t *zv, struct bio *bio,
49     struct request *rq, boolean_t force_sync);
50 
51 static unsigned int zvol_major = ZVOL_MAJOR;
52 static unsigned int zvol_request_sync = 0;
53 static unsigned int zvol_prefetch_bytes = (128 * 1024);
54 static unsigned long zvol_max_discard_blocks = 16384;
55 
56 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
57 static unsigned int zvol_open_timeout_ms = 1000;
58 #endif
59 
60 static unsigned int zvol_threads = 0;
61 #ifdef HAVE_BLK_MQ
62 static unsigned int zvol_blk_mq_threads = 0;
63 static unsigned int zvol_blk_mq_actual_threads;
64 static boolean_t zvol_use_blk_mq = B_FALSE;
65 
66 /*
67  * The maximum number of volblocksize blocks to process per thread.  Typically,
68  * write heavy workloads preform better with higher values here, and read
69  * heavy workloads preform better with lower values, but that's not a hard
70  * and fast rule.  It's basically a knob to tune between "less overhead with
71  * less parallelism" and "more overhead, but more parallelism".
72  *
73  * '8' was chosen as a reasonable, balanced, default based off of sequential
74  * read and write tests to a zvol in an NVMe pool (with 16 CPUs).
75  */
76 static unsigned int zvol_blk_mq_blocks_per_thread = 8;
77 #endif
78 
79 #ifndef	BLKDEV_DEFAULT_RQ
80 /* BLKDEV_MAX_RQ was renamed to BLKDEV_DEFAULT_RQ in the 5.16 kernel */
81 #define	BLKDEV_DEFAULT_RQ BLKDEV_MAX_RQ
82 #endif
83 
84 /*
85  * Finalize our BIO or request.
86  */
87 #ifdef	HAVE_BLK_MQ
88 #define	END_IO(zv, bio, rq, error)  do { \
89 	if (bio) { \
90 		BIO_END_IO(bio, error); \
91 	} else { \
92 		blk_mq_end_request(rq, errno_to_bi_status(error)); \
93 	} \
94 } while (0)
95 #else
96 #define	END_IO(zv, bio, rq, error)	BIO_END_IO(bio, error)
97 #endif
98 
99 #ifdef HAVE_BLK_MQ
100 static unsigned int zvol_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
101 static unsigned int zvol_actual_blk_mq_queue_depth;
102 #endif
103 
104 struct zvol_state_os {
105 	struct gendisk		*zvo_disk;	/* generic disk */
106 	struct request_queue	*zvo_queue;	/* request queue */
107 	dev_t			zvo_dev;	/* device id */
108 
109 #ifdef HAVE_BLK_MQ
110 	struct blk_mq_tag_set tag_set;
111 #endif
112 
113 	/* Set from the global 'zvol_use_blk_mq' at zvol load */
114 	boolean_t use_blk_mq;
115 };
116 
117 static taskq_t *zvol_taskq;
118 static struct ida zvol_ida;
119 
120 typedef struct zv_request_stack {
121 	zvol_state_t	*zv;
122 	struct bio	*bio;
123 	struct request *rq;
124 } zv_request_t;
125 
126 typedef struct zv_work {
127 	struct request  *rq;
128 	struct work_struct work;
129 } zv_work_t;
130 
131 typedef struct zv_request_task {
132 	zv_request_t zvr;
133 	taskq_ent_t	ent;
134 } zv_request_task_t;
135 
136 static zv_request_task_t *
137 zv_request_task_create(zv_request_t zvr)
138 {
139 	zv_request_task_t *task;
140 	task = kmem_alloc(sizeof (zv_request_task_t), KM_SLEEP);
141 	taskq_init_ent(&task->ent);
142 	task->zvr = zvr;
143 	return (task);
144 }
145 
146 static void
147 zv_request_task_free(zv_request_task_t *task)
148 {
149 	kmem_free(task, sizeof (*task));
150 }
151 
152 #ifdef HAVE_BLK_MQ
153 
154 /*
155  * This is called when a new block multiqueue request comes in.  A request
156  * contains one or more BIOs.
157  */
158 static blk_status_t zvol_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
159     const struct blk_mq_queue_data *bd)
160 {
161 	struct request *rq = bd->rq;
162 	zvol_state_t *zv = rq->q->queuedata;
163 
164 	/* Tell the kernel that we are starting to process this request */
165 	blk_mq_start_request(rq);
166 
167 	if (blk_rq_is_passthrough(rq)) {
168 		/* Skip non filesystem request */
169 		blk_mq_end_request(rq, BLK_STS_IOERR);
170 		return (BLK_STS_IOERR);
171 	}
172 
173 	zvol_request_impl(zv, NULL, rq, 0);
174 
175 	/* Acknowledge to the kernel that we got this request */
176 	return (BLK_STS_OK);
177 }
178 
179 static struct blk_mq_ops zvol_blk_mq_queue_ops = {
180 	.queue_rq = zvol_mq_queue_rq,
181 };
182 
183 /* Initialize our blk-mq struct */
184 static int zvol_blk_mq_alloc_tag_set(zvol_state_t *zv)
185 {
186 	struct zvol_state_os *zso = zv->zv_zso;
187 
188 	memset(&zso->tag_set, 0, sizeof (zso->tag_set));
189 
190 	/* Initialize tag set. */
191 	zso->tag_set.ops = &zvol_blk_mq_queue_ops;
192 	zso->tag_set.nr_hw_queues = zvol_blk_mq_actual_threads;
193 	zso->tag_set.queue_depth = zvol_actual_blk_mq_queue_depth;
194 	zso->tag_set.numa_node = NUMA_NO_NODE;
195 	zso->tag_set.cmd_size = 0;
196 
197 	/*
198 	 * We need BLK_MQ_F_BLOCKING here since we do blocking calls in
199 	 * zvol_request_impl()
200 	 */
201 	zso->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
202 	zso->tag_set.driver_data = zv;
203 
204 	return (blk_mq_alloc_tag_set(&zso->tag_set));
205 }
206 #endif /* HAVE_BLK_MQ */
207 
208 /*
209  * Given a path, return TRUE if path is a ZVOL.
210  */
211 boolean_t
212 zvol_os_is_zvol(const char *path)
213 {
214 	dev_t dev = 0;
215 
216 	if (vdev_lookup_bdev(path, &dev) != 0)
217 		return (B_FALSE);
218 
219 	if (MAJOR(dev) == zvol_major)
220 		return (B_TRUE);
221 
222 	return (B_FALSE);
223 }
224 
225 static void
226 zvol_write(zv_request_t *zvr)
227 {
228 	struct bio *bio = zvr->bio;
229 	struct request *rq = zvr->rq;
230 	int error = 0;
231 	zfs_uio_t uio;
232 	zvol_state_t *zv = zvr->zv;
233 	struct request_queue *q;
234 	struct gendisk *disk;
235 	unsigned long start_time = 0;
236 	boolean_t acct = B_FALSE;
237 
238 	ASSERT3P(zv, !=, NULL);
239 	ASSERT3U(zv->zv_open_count, >, 0);
240 	ASSERT3P(zv->zv_zilog, !=, NULL);
241 
242 	q = zv->zv_zso->zvo_queue;
243 	disk = zv->zv_zso->zvo_disk;
244 
245 	/* bio marked as FLUSH need to flush before write */
246 	if (io_is_flush(bio, rq))
247 		zil_commit(zv->zv_zilog, ZVOL_OBJ);
248 
249 	/* Some requests are just for flush and nothing else. */
250 	if (io_size(bio, rq) == 0) {
251 		rw_exit(&zv->zv_suspend_lock);
252 		END_IO(zv, bio, rq, 0);
253 		return;
254 	}
255 
256 	zfs_uio_bvec_init(&uio, bio, rq);
257 
258 	ssize_t start_resid = uio.uio_resid;
259 
260 	/*
261 	 * With use_blk_mq, accounting is done by blk_mq_start_request()
262 	 * and blk_mq_end_request(), so we can skip it here.
263 	 */
264 	if (bio) {
265 		acct = blk_queue_io_stat(q);
266 		if (acct) {
267 			start_time = blk_generic_start_io_acct(q, disk, WRITE,
268 			    bio);
269 		}
270 	}
271 
272 	boolean_t sync =
273 	    io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
274 
275 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
276 	    uio.uio_loffset, uio.uio_resid, RL_WRITER);
277 
278 	uint64_t volsize = zv->zv_volsize;
279 	while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
280 		uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
281 		uint64_t off = uio.uio_loffset;
282 		dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
283 
284 		if (bytes > volsize - off)	/* don't write past the end */
285 			bytes = volsize - off;
286 
287 		dmu_tx_hold_write_by_dnode(tx, zv->zv_dn, off, bytes);
288 
289 		/* This will only fail for ENOSPC */
290 		error = dmu_tx_assign(tx, TXG_WAIT);
291 		if (error) {
292 			dmu_tx_abort(tx);
293 			break;
294 		}
295 		error = dmu_write_uio_dnode(zv->zv_dn, &uio, bytes, tx);
296 		if (error == 0) {
297 			zvol_log_write(zv, tx, off, bytes, sync);
298 		}
299 		dmu_tx_commit(tx);
300 
301 		if (error)
302 			break;
303 	}
304 	zfs_rangelock_exit(lr);
305 
306 	int64_t nwritten = start_resid - uio.uio_resid;
307 	dataset_kstats_update_write_kstats(&zv->zv_kstat, nwritten);
308 	task_io_account_write(nwritten);
309 
310 	if (sync)
311 		zil_commit(zv->zv_zilog, ZVOL_OBJ);
312 
313 	rw_exit(&zv->zv_suspend_lock);
314 
315 	if (bio && acct) {
316 		blk_generic_end_io_acct(q, disk, WRITE, bio, start_time);
317 	}
318 
319 	END_IO(zv, bio, rq, -error);
320 }
321 
322 static void
323 zvol_write_task(void *arg)
324 {
325 	zv_request_task_t *task = arg;
326 	zvol_write(&task->zvr);
327 	zv_request_task_free(task);
328 }
329 
330 static void
331 zvol_discard(zv_request_t *zvr)
332 {
333 	struct bio *bio = zvr->bio;
334 	struct request *rq = zvr->rq;
335 	zvol_state_t *zv = zvr->zv;
336 	uint64_t start = io_offset(bio, rq);
337 	uint64_t size = io_size(bio, rq);
338 	uint64_t end = start + size;
339 	boolean_t sync;
340 	int error = 0;
341 	dmu_tx_t *tx;
342 	struct request_queue *q = zv->zv_zso->zvo_queue;
343 	struct gendisk *disk = zv->zv_zso->zvo_disk;
344 	unsigned long start_time = 0;
345 	boolean_t acct = B_FALSE;
346 
347 	ASSERT3P(zv, !=, NULL);
348 	ASSERT3U(zv->zv_open_count, >, 0);
349 	ASSERT3P(zv->zv_zilog, !=, NULL);
350 
351 	if (bio) {
352 		acct = blk_queue_io_stat(q);
353 		if (acct) {
354 			start_time = blk_generic_start_io_acct(q, disk, WRITE,
355 			    bio);
356 		}
357 	}
358 
359 	sync = io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
360 
361 	if (end > zv->zv_volsize) {
362 		error = SET_ERROR(EIO);
363 		goto unlock;
364 	}
365 
366 	/*
367 	 * Align the request to volume block boundaries when a secure erase is
368 	 * not required.  This will prevent dnode_free_range() from zeroing out
369 	 * the unaligned parts which is slow (read-modify-write) and useless
370 	 * since we are not freeing any space by doing so.
371 	 */
372 	if (!io_is_secure_erase(bio, rq)) {
373 		start = P2ROUNDUP(start, zv->zv_volblocksize);
374 		end = P2ALIGN(end, zv->zv_volblocksize);
375 		size = end - start;
376 	}
377 
378 	if (start >= end)
379 		goto unlock;
380 
381 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
382 	    start, size, RL_WRITER);
383 
384 	tx = dmu_tx_create(zv->zv_objset);
385 	dmu_tx_mark_netfree(tx);
386 	error = dmu_tx_assign(tx, TXG_WAIT);
387 	if (error != 0) {
388 		dmu_tx_abort(tx);
389 	} else {
390 		zvol_log_truncate(zv, tx, start, size, B_TRUE);
391 		dmu_tx_commit(tx);
392 		error = dmu_free_long_range(zv->zv_objset,
393 		    ZVOL_OBJ, start, size);
394 	}
395 	zfs_rangelock_exit(lr);
396 
397 	if (error == 0 && sync)
398 		zil_commit(zv->zv_zilog, ZVOL_OBJ);
399 
400 unlock:
401 	rw_exit(&zv->zv_suspend_lock);
402 
403 	if (bio && acct) {
404 		blk_generic_end_io_acct(q, disk, WRITE, bio,
405 		    start_time);
406 	}
407 
408 	END_IO(zv, bio, rq, -error);
409 }
410 
411 static void
412 zvol_discard_task(void *arg)
413 {
414 	zv_request_task_t *task = arg;
415 	zvol_discard(&task->zvr);
416 	zv_request_task_free(task);
417 }
418 
419 static void
420 zvol_read(zv_request_t *zvr)
421 {
422 	struct bio *bio = zvr->bio;
423 	struct request *rq = zvr->rq;
424 	int error = 0;
425 	zfs_uio_t uio;
426 	boolean_t acct = B_FALSE;
427 	zvol_state_t *zv = zvr->zv;
428 	struct request_queue *q;
429 	struct gendisk *disk;
430 	unsigned long start_time = 0;
431 
432 	ASSERT3P(zv, !=, NULL);
433 	ASSERT3U(zv->zv_open_count, >, 0);
434 
435 	zfs_uio_bvec_init(&uio, bio, rq);
436 
437 	q = zv->zv_zso->zvo_queue;
438 	disk = zv->zv_zso->zvo_disk;
439 
440 	ssize_t start_resid = uio.uio_resid;
441 
442 	/*
443 	 * When blk-mq is being used, accounting is done by
444 	 * blk_mq_start_request() and blk_mq_end_request().
445 	 */
446 	if (bio) {
447 		acct = blk_queue_io_stat(q);
448 		if (acct)
449 			start_time = blk_generic_start_io_acct(q, disk, READ,
450 			    bio);
451 	}
452 
453 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
454 	    uio.uio_loffset, uio.uio_resid, RL_READER);
455 
456 	uint64_t volsize = zv->zv_volsize;
457 
458 	while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
459 		uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
460 
461 		/* don't read past the end */
462 		if (bytes > volsize - uio.uio_loffset)
463 			bytes = volsize - uio.uio_loffset;
464 
465 		error = dmu_read_uio_dnode(zv->zv_dn, &uio, bytes);
466 		if (error) {
467 			/* convert checksum errors into IO errors */
468 			if (error == ECKSUM)
469 				error = SET_ERROR(EIO);
470 			break;
471 		}
472 	}
473 	zfs_rangelock_exit(lr);
474 
475 	int64_t nread = start_resid - uio.uio_resid;
476 	dataset_kstats_update_read_kstats(&zv->zv_kstat, nread);
477 	task_io_account_read(nread);
478 
479 	rw_exit(&zv->zv_suspend_lock);
480 
481 	if (bio && acct) {
482 		blk_generic_end_io_acct(q, disk, READ, bio, start_time);
483 	}
484 
485 	END_IO(zv, bio, rq, -error);
486 }
487 
488 static void
489 zvol_read_task(void *arg)
490 {
491 	zv_request_task_t *task = arg;
492 	zvol_read(&task->zvr);
493 	zv_request_task_free(task);
494 }
495 
496 
497 /*
498  * Process a BIO or request
499  *
500  * Either 'bio' or 'rq' should be set depending on if we are processing a
501  * bio or a request (both should not be set).
502  *
503  * force_sync:	Set to 0 to defer processing to a background taskq
504  *			Set to 1 to process data synchronously
505  */
506 static void
507 zvol_request_impl(zvol_state_t *zv, struct bio *bio, struct request *rq,
508     boolean_t force_sync)
509 {
510 	fstrans_cookie_t cookie = spl_fstrans_mark();
511 	uint64_t offset = io_offset(bio, rq);
512 	uint64_t size = io_size(bio, rq);
513 	int rw = io_data_dir(bio, rq);
514 
515 	if (zvol_request_sync)
516 		force_sync = 1;
517 
518 	zv_request_t zvr = {
519 		.zv = zv,
520 		.bio = bio,
521 		.rq = rq,
522 	};
523 
524 	if (io_has_data(bio, rq) && offset + size > zv->zv_volsize) {
525 		printk(KERN_INFO "%s: bad access: offset=%llu, size=%lu\n",
526 		    zv->zv_zso->zvo_disk->disk_name,
527 		    (long long unsigned)offset,
528 		    (long unsigned)size);
529 
530 		END_IO(zv, bio, rq, -SET_ERROR(EIO));
531 		goto out;
532 	}
533 
534 	zv_request_task_t *task;
535 
536 	if (rw == WRITE) {
537 		if (unlikely(zv->zv_flags & ZVOL_RDONLY)) {
538 			END_IO(zv, bio, rq, -SET_ERROR(EROFS));
539 			goto out;
540 		}
541 
542 		/*
543 		 * Prevents the zvol from being suspended, or the ZIL being
544 		 * concurrently opened.  Will be released after the i/o
545 		 * completes.
546 		 */
547 		rw_enter(&zv->zv_suspend_lock, RW_READER);
548 
549 		/*
550 		 * Open a ZIL if this is the first time we have written to this
551 		 * zvol. We protect zv->zv_zilog with zv_suspend_lock rather
552 		 * than zv_state_lock so that we don't need to acquire an
553 		 * additional lock in this path.
554 		 */
555 		if (zv->zv_zilog == NULL) {
556 			rw_exit(&zv->zv_suspend_lock);
557 			rw_enter(&zv->zv_suspend_lock, RW_WRITER);
558 			if (zv->zv_zilog == NULL) {
559 				zv->zv_zilog = zil_open(zv->zv_objset,
560 				    zvol_get_data, &zv->zv_kstat.dk_zil_sums);
561 				zv->zv_flags |= ZVOL_WRITTEN_TO;
562 				/* replay / destroy done in zvol_create_minor */
563 				VERIFY0((zv->zv_zilog->zl_header->zh_flags &
564 				    ZIL_REPLAY_NEEDED));
565 			}
566 			rw_downgrade(&zv->zv_suspend_lock);
567 		}
568 
569 		/*
570 		 * We don't want this thread to be blocked waiting for i/o to
571 		 * complete, so we instead wait from a taskq callback. The
572 		 * i/o may be a ZIL write (via zil_commit()), or a read of an
573 		 * indirect block, or a read of a data block (if this is a
574 		 * partial-block write).  We will indicate that the i/o is
575 		 * complete by calling END_IO() from the taskq callback.
576 		 *
577 		 * This design allows the calling thread to continue and
578 		 * initiate more concurrent operations by calling
579 		 * zvol_request() again. There are typically only a small
580 		 * number of threads available to call zvol_request() (e.g.
581 		 * one per iSCSI target), so keeping the latency of
582 		 * zvol_request() low is important for performance.
583 		 *
584 		 * The zvol_request_sync module parameter allows this
585 		 * behavior to be altered, for performance evaluation
586 		 * purposes.  If the callback blocks, setting
587 		 * zvol_request_sync=1 will result in much worse performance.
588 		 *
589 		 * We can have up to zvol_threads concurrent i/o's being
590 		 * processed for all zvols on the system.  This is typically
591 		 * a vast improvement over the zvol_request_sync=1 behavior
592 		 * of one i/o at a time per zvol.  However, an even better
593 		 * design would be for zvol_request() to initiate the zio
594 		 * directly, and then be notified by the zio_done callback,
595 		 * which would call END_IO().  Unfortunately, the DMU/ZIL
596 		 * interfaces lack this functionality (they block waiting for
597 		 * the i/o to complete).
598 		 */
599 		if (io_is_discard(bio, rq) || io_is_secure_erase(bio, rq)) {
600 			if (force_sync) {
601 				zvol_discard(&zvr);
602 			} else {
603 				task = zv_request_task_create(zvr);
604 				taskq_dispatch_ent(zvol_taskq,
605 				    zvol_discard_task, task, 0, &task->ent);
606 			}
607 		} else {
608 			if (force_sync) {
609 				zvol_write(&zvr);
610 			} else {
611 				task = zv_request_task_create(zvr);
612 				taskq_dispatch_ent(zvol_taskq,
613 				    zvol_write_task, task, 0, &task->ent);
614 			}
615 		}
616 	} else {
617 		/*
618 		 * The SCST driver, and possibly others, may issue READ I/Os
619 		 * with a length of zero bytes.  These empty I/Os contain no
620 		 * data and require no additional handling.
621 		 */
622 		if (size == 0) {
623 			END_IO(zv, bio, rq, 0);
624 			goto out;
625 		}
626 
627 		rw_enter(&zv->zv_suspend_lock, RW_READER);
628 
629 		/* See comment in WRITE case above. */
630 		if (force_sync) {
631 			zvol_read(&zvr);
632 		} else {
633 			task = zv_request_task_create(zvr);
634 			taskq_dispatch_ent(zvol_taskq,
635 			    zvol_read_task, task, 0, &task->ent);
636 		}
637 	}
638 
639 out:
640 	spl_fstrans_unmark(cookie);
641 }
642 
643 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
644 #ifdef HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID
645 static void
646 zvol_submit_bio(struct bio *bio)
647 #else
648 static blk_qc_t
649 zvol_submit_bio(struct bio *bio)
650 #endif
651 #else
652 static MAKE_REQUEST_FN_RET
653 zvol_request(struct request_queue *q, struct bio *bio)
654 #endif
655 {
656 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
657 #if defined(HAVE_BIO_BDEV_DISK)
658 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
659 #else
660 	struct request_queue *q = bio->bi_disk->queue;
661 #endif
662 #endif
663 	zvol_state_t *zv = q->queuedata;
664 
665 	zvol_request_impl(zv, bio, NULL, 0);
666 #if defined(HAVE_MAKE_REQUEST_FN_RET_QC) || \
667 	defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
668 	!defined(HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID)
669 	return (BLK_QC_T_NONE);
670 #endif
671 }
672 
673 static int
674 #ifdef HAVE_BLK_MODE_T
675 zvol_open(struct gendisk *disk, blk_mode_t flag)
676 #else
677 zvol_open(struct block_device *bdev, fmode_t flag)
678 #endif
679 {
680 	zvol_state_t *zv;
681 	int error = 0;
682 	boolean_t drop_suspend = B_FALSE;
683 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
684 	hrtime_t timeout = MSEC2NSEC(zvol_open_timeout_ms);
685 	hrtime_t start = gethrtime();
686 
687 retry:
688 #endif
689 	rw_enter(&zvol_state_lock, RW_READER);
690 	/*
691 	 * Obtain a copy of private_data under the zvol_state_lock to make
692 	 * sure that either the result of zvol free code path setting
693 	 * disk->private_data to NULL is observed, or zvol_os_free()
694 	 * is not called on this zv because of the positive zv_open_count.
695 	 */
696 #ifdef HAVE_BLK_MODE_T
697 	zv = disk->private_data;
698 #else
699 	zv = bdev->bd_disk->private_data;
700 #endif
701 	if (zv == NULL) {
702 		rw_exit(&zvol_state_lock);
703 		return (SET_ERROR(-ENXIO));
704 	}
705 
706 	mutex_enter(&zv->zv_state_lock);
707 	/*
708 	 * Make sure zvol is not suspended during first open
709 	 * (hold zv_suspend_lock) and respect proper lock acquisition
710 	 * ordering - zv_suspend_lock before zv_state_lock
711 	 */
712 	if (zv->zv_open_count == 0) {
713 		if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
714 			mutex_exit(&zv->zv_state_lock);
715 			rw_enter(&zv->zv_suspend_lock, RW_READER);
716 			mutex_enter(&zv->zv_state_lock);
717 			/* check to see if zv_suspend_lock is needed */
718 			if (zv->zv_open_count != 0) {
719 				rw_exit(&zv->zv_suspend_lock);
720 			} else {
721 				drop_suspend = B_TRUE;
722 			}
723 		} else {
724 			drop_suspend = B_TRUE;
725 		}
726 	}
727 	rw_exit(&zvol_state_lock);
728 
729 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
730 
731 	if (zv->zv_open_count == 0) {
732 		boolean_t drop_namespace = B_FALSE;
733 
734 		ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
735 
736 		/*
737 		 * In all other call paths the spa_namespace_lock is taken
738 		 * before the bdev->bd_mutex lock.  However, on open(2)
739 		 * the __blkdev_get() function calls fops->open() with the
740 		 * bdev->bd_mutex lock held.  This can result in a deadlock
741 		 * when zvols from one pool are used as vdevs in another.
742 		 *
743 		 * To prevent a lock inversion deadlock we preemptively
744 		 * take the spa_namespace_lock.  Normally the lock will not
745 		 * be contended and this is safe because spa_open_common()
746 		 * handles the case where the caller already holds the
747 		 * spa_namespace_lock.
748 		 *
749 		 * When the lock cannot be aquired after multiple retries
750 		 * this must be the vdev on zvol deadlock case and we have
751 		 * no choice but to return an error.  For 5.12 and older
752 		 * kernels returning -ERESTARTSYS will result in the
753 		 * bdev->bd_mutex being dropped, then reacquired, and
754 		 * fops->open() being called again.  This process can be
755 		 * repeated safely until both locks are acquired.  For 5.13
756 		 * and newer the -ERESTARTSYS retry logic was removed from
757 		 * the kernel so the only option is to return the error for
758 		 * the caller to handle it.
759 		 */
760 		if (!mutex_owned(&spa_namespace_lock)) {
761 			if (!mutex_tryenter(&spa_namespace_lock)) {
762 				mutex_exit(&zv->zv_state_lock);
763 				rw_exit(&zv->zv_suspend_lock);
764 
765 #ifdef HAVE_BLKDEV_GET_ERESTARTSYS
766 				schedule();
767 				return (SET_ERROR(-ERESTARTSYS));
768 #else
769 				if ((gethrtime() - start) > timeout)
770 					return (SET_ERROR(-ERESTARTSYS));
771 
772 				schedule_timeout(MSEC_TO_TICK(10));
773 				goto retry;
774 #endif
775 			} else {
776 				drop_namespace = B_TRUE;
777 			}
778 		}
779 
780 		error = -zvol_first_open(zv, !(blk_mode_is_open_write(flag)));
781 
782 		if (drop_namespace)
783 			mutex_exit(&spa_namespace_lock);
784 	}
785 
786 	if (error == 0) {
787 		if ((blk_mode_is_open_write(flag)) &&
788 		    (zv->zv_flags & ZVOL_RDONLY)) {
789 			if (zv->zv_open_count == 0)
790 				zvol_last_close(zv);
791 
792 			error = SET_ERROR(-EROFS);
793 		} else {
794 			zv->zv_open_count++;
795 		}
796 	}
797 
798 	mutex_exit(&zv->zv_state_lock);
799 	if (drop_suspend)
800 		rw_exit(&zv->zv_suspend_lock);
801 
802 	if (error == 0)
803 #ifdef HAVE_BLK_MODE_T
804 		disk_check_media_change(disk);
805 #else
806 		zfs_check_media_change(bdev);
807 #endif
808 
809 	return (error);
810 }
811 
812 static void
813 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_1ARG
814 zvol_release(struct gendisk *disk)
815 #else
816 zvol_release(struct gendisk *disk, fmode_t unused)
817 #endif
818 {
819 #if !defined(HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_1ARG)
820 	(void) unused;
821 #endif
822 	zvol_state_t *zv;
823 	boolean_t drop_suspend = B_TRUE;
824 
825 	rw_enter(&zvol_state_lock, RW_READER);
826 	zv = disk->private_data;
827 
828 	mutex_enter(&zv->zv_state_lock);
829 	ASSERT3U(zv->zv_open_count, >, 0);
830 	/*
831 	 * make sure zvol is not suspended during last close
832 	 * (hold zv_suspend_lock) and respect proper lock acquisition
833 	 * ordering - zv_suspend_lock before zv_state_lock
834 	 */
835 	if (zv->zv_open_count == 1) {
836 		if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
837 			mutex_exit(&zv->zv_state_lock);
838 			rw_enter(&zv->zv_suspend_lock, RW_READER);
839 			mutex_enter(&zv->zv_state_lock);
840 			/* check to see if zv_suspend_lock is needed */
841 			if (zv->zv_open_count != 1) {
842 				rw_exit(&zv->zv_suspend_lock);
843 				drop_suspend = B_FALSE;
844 			}
845 		}
846 	} else {
847 		drop_suspend = B_FALSE;
848 	}
849 	rw_exit(&zvol_state_lock);
850 
851 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
852 
853 	zv->zv_open_count--;
854 	if (zv->zv_open_count == 0) {
855 		ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
856 		zvol_last_close(zv);
857 	}
858 
859 	mutex_exit(&zv->zv_state_lock);
860 
861 	if (drop_suspend)
862 		rw_exit(&zv->zv_suspend_lock);
863 }
864 
865 static int
866 zvol_ioctl(struct block_device *bdev, fmode_t mode,
867     unsigned int cmd, unsigned long arg)
868 {
869 	zvol_state_t *zv = bdev->bd_disk->private_data;
870 	int error = 0;
871 
872 	ASSERT3U(zv->zv_open_count, >, 0);
873 
874 	switch (cmd) {
875 	case BLKFLSBUF:
876 		fsync_bdev(bdev);
877 		invalidate_bdev(bdev);
878 		rw_enter(&zv->zv_suspend_lock, RW_READER);
879 
880 		if (!(zv->zv_flags & ZVOL_RDONLY))
881 			txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
882 
883 		rw_exit(&zv->zv_suspend_lock);
884 		break;
885 
886 	case BLKZNAME:
887 		mutex_enter(&zv->zv_state_lock);
888 		error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN);
889 		mutex_exit(&zv->zv_state_lock);
890 		break;
891 
892 	default:
893 		error = -ENOTTY;
894 		break;
895 	}
896 
897 	return (SET_ERROR(error));
898 }
899 
900 #ifdef CONFIG_COMPAT
901 static int
902 zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
903     unsigned cmd, unsigned long arg)
904 {
905 	return (zvol_ioctl(bdev, mode, cmd, arg));
906 }
907 #else
908 #define	zvol_compat_ioctl	NULL
909 #endif
910 
911 static unsigned int
912 zvol_check_events(struct gendisk *disk, unsigned int clearing)
913 {
914 	unsigned int mask = 0;
915 
916 	rw_enter(&zvol_state_lock, RW_READER);
917 
918 	zvol_state_t *zv = disk->private_data;
919 	if (zv != NULL) {
920 		mutex_enter(&zv->zv_state_lock);
921 		mask = zv->zv_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
922 		zv->zv_changed = 0;
923 		mutex_exit(&zv->zv_state_lock);
924 	}
925 
926 	rw_exit(&zvol_state_lock);
927 
928 	return (mask);
929 }
930 
931 static int
932 zvol_revalidate_disk(struct gendisk *disk)
933 {
934 	rw_enter(&zvol_state_lock, RW_READER);
935 
936 	zvol_state_t *zv = disk->private_data;
937 	if (zv != NULL) {
938 		mutex_enter(&zv->zv_state_lock);
939 		set_capacity(zv->zv_zso->zvo_disk,
940 		    zv->zv_volsize >> SECTOR_BITS);
941 		mutex_exit(&zv->zv_state_lock);
942 	}
943 
944 	rw_exit(&zvol_state_lock);
945 
946 	return (0);
947 }
948 
949 int
950 zvol_os_update_volsize(zvol_state_t *zv, uint64_t volsize)
951 {
952 	struct gendisk *disk = zv->zv_zso->zvo_disk;
953 
954 #if defined(HAVE_REVALIDATE_DISK_SIZE)
955 	revalidate_disk_size(disk, zvol_revalidate_disk(disk) == 0);
956 #elif defined(HAVE_REVALIDATE_DISK)
957 	revalidate_disk(disk);
958 #else
959 	zvol_revalidate_disk(disk);
960 #endif
961 	return (0);
962 }
963 
964 void
965 zvol_os_clear_private(zvol_state_t *zv)
966 {
967 	/*
968 	 * Cleared while holding zvol_state_lock as a writer
969 	 * which will prevent zvol_open() from opening it.
970 	 */
971 	zv->zv_zso->zvo_disk->private_data = NULL;
972 }
973 
974 /*
975  * Provide a simple virtual geometry for legacy compatibility.  For devices
976  * smaller than 1 MiB a small head and sector count is used to allow very
977  * tiny devices.  For devices over 1 Mib a standard head and sector count
978  * is used to keep the cylinders count reasonable.
979  */
980 static int
981 zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
982 {
983 	zvol_state_t *zv = bdev->bd_disk->private_data;
984 	sector_t sectors;
985 
986 	ASSERT3U(zv->zv_open_count, >, 0);
987 
988 	sectors = get_capacity(zv->zv_zso->zvo_disk);
989 
990 	if (sectors > 2048) {
991 		geo->heads = 16;
992 		geo->sectors = 63;
993 	} else {
994 		geo->heads = 2;
995 		geo->sectors = 4;
996 	}
997 
998 	geo->start = 0;
999 	geo->cylinders = sectors / (geo->heads * geo->sectors);
1000 
1001 	return (0);
1002 }
1003 
1004 /*
1005  * Why have two separate block_device_operations structs?
1006  *
1007  * Normally we'd just have one, and assign 'submit_bio' as needed.  However,
1008  * it's possible the user's kernel is built with CONSTIFY_PLUGIN, meaning we
1009  * can't just change submit_bio dynamically at runtime.  So just create two
1010  * separate structs to get around this.
1011  */
1012 static const struct block_device_operations zvol_ops_blk_mq = {
1013 	.open			= zvol_open,
1014 	.release		= zvol_release,
1015 	.ioctl			= zvol_ioctl,
1016 	.compat_ioctl		= zvol_compat_ioctl,
1017 	.check_events		= zvol_check_events,
1018 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
1019 	.revalidate_disk	= zvol_revalidate_disk,
1020 #endif
1021 	.getgeo			= zvol_getgeo,
1022 	.owner			= THIS_MODULE,
1023 };
1024 
1025 static const struct block_device_operations zvol_ops = {
1026 	.open			= zvol_open,
1027 	.release		= zvol_release,
1028 	.ioctl			= zvol_ioctl,
1029 	.compat_ioctl		= zvol_compat_ioctl,
1030 	.check_events		= zvol_check_events,
1031 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
1032 	.revalidate_disk	= zvol_revalidate_disk,
1033 #endif
1034 	.getgeo			= zvol_getgeo,
1035 	.owner			= THIS_MODULE,
1036 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
1037 	.submit_bio		= zvol_submit_bio,
1038 #endif
1039 };
1040 
1041 static int
1042 zvol_alloc_non_blk_mq(struct zvol_state_os *zso)
1043 {
1044 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS)
1045 #if defined(HAVE_BLK_ALLOC_DISK)
1046 	zso->zvo_disk = blk_alloc_disk(NUMA_NO_NODE);
1047 	if (zso->zvo_disk == NULL)
1048 		return (1);
1049 
1050 	zso->zvo_disk->minors = ZVOL_MINORS;
1051 	zso->zvo_queue = zso->zvo_disk->queue;
1052 #else
1053 	zso->zvo_queue = blk_alloc_queue(NUMA_NO_NODE);
1054 	if (zso->zvo_queue == NULL)
1055 		return (1);
1056 
1057 	zso->zvo_disk = alloc_disk(ZVOL_MINORS);
1058 	if (zso->zvo_disk == NULL) {
1059 		blk_cleanup_queue(zso->zvo_queue);
1060 		return (1);
1061 	}
1062 
1063 	zso->zvo_disk->queue = zso->zvo_queue;
1064 #endif /* HAVE_BLK_ALLOC_DISK */
1065 #else
1066 	zso->zvo_queue = blk_generic_alloc_queue(zvol_request, NUMA_NO_NODE);
1067 	if (zso->zvo_queue == NULL)
1068 		return (1);
1069 
1070 	zso->zvo_disk = alloc_disk(ZVOL_MINORS);
1071 	if (zso->zvo_disk == NULL) {
1072 		blk_cleanup_queue(zso->zvo_queue);
1073 		return (1);
1074 	}
1075 
1076 	zso->zvo_disk->queue = zso->zvo_queue;
1077 #endif /* HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS */
1078 	return (0);
1079 
1080 }
1081 
1082 static int
1083 zvol_alloc_blk_mq(zvol_state_t *zv)
1084 {
1085 #ifdef HAVE_BLK_MQ
1086 	struct zvol_state_os *zso = zv->zv_zso;
1087 
1088 	/* Allocate our blk-mq tag_set */
1089 	if (zvol_blk_mq_alloc_tag_set(zv) != 0)
1090 		return (1);
1091 
1092 #if defined(HAVE_BLK_ALLOC_DISK)
1093 	zso->zvo_disk = blk_mq_alloc_disk(&zso->tag_set, zv);
1094 	if (zso->zvo_disk == NULL) {
1095 		blk_mq_free_tag_set(&zso->tag_set);
1096 		return (1);
1097 	}
1098 	zso->zvo_queue = zso->zvo_disk->queue;
1099 	zso->zvo_disk->minors = ZVOL_MINORS;
1100 #else
1101 	zso->zvo_disk = alloc_disk(ZVOL_MINORS);
1102 	if (zso->zvo_disk == NULL) {
1103 		blk_cleanup_queue(zso->zvo_queue);
1104 		blk_mq_free_tag_set(&zso->tag_set);
1105 		return (1);
1106 	}
1107 	/* Allocate queue */
1108 	zso->zvo_queue = blk_mq_init_queue(&zso->tag_set);
1109 	if (IS_ERR(zso->zvo_queue)) {
1110 		blk_mq_free_tag_set(&zso->tag_set);
1111 		return (1);
1112 	}
1113 
1114 	/* Our queue is now created, assign it to our disk */
1115 	zso->zvo_disk->queue = zso->zvo_queue;
1116 
1117 #endif
1118 #endif
1119 	return (0);
1120 }
1121 
1122 /*
1123  * Allocate memory for a new zvol_state_t and setup the required
1124  * request queue and generic disk structures for the block device.
1125  */
1126 static zvol_state_t *
1127 zvol_alloc(dev_t dev, const char *name)
1128 {
1129 	zvol_state_t *zv;
1130 	struct zvol_state_os *zso;
1131 	uint64_t volmode;
1132 	int ret;
1133 
1134 	if (dsl_prop_get_integer(name, "volmode", &volmode, NULL) != 0)
1135 		return (NULL);
1136 
1137 	if (volmode == ZFS_VOLMODE_DEFAULT)
1138 		volmode = zvol_volmode;
1139 
1140 	if (volmode == ZFS_VOLMODE_NONE)
1141 		return (NULL);
1142 
1143 	zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
1144 	zso = kmem_zalloc(sizeof (struct zvol_state_os), KM_SLEEP);
1145 	zv->zv_zso = zso;
1146 	zv->zv_volmode = volmode;
1147 
1148 	list_link_init(&zv->zv_next);
1149 	mutex_init(&zv->zv_state_lock, NULL, MUTEX_DEFAULT, NULL);
1150 
1151 #ifdef HAVE_BLK_MQ
1152 	zv->zv_zso->use_blk_mq = zvol_use_blk_mq;
1153 #endif
1154 
1155 	/*
1156 	 * The block layer has 3 interfaces for getting BIOs:
1157 	 *
1158 	 * 1. blk-mq request queues (new)
1159 	 * 2. submit_bio() (oldest)
1160 	 * 3. regular request queues (old).
1161 	 *
1162 	 * Each of those interfaces has two permutations:
1163 	 *
1164 	 * a) We have blk_alloc_disk()/blk_mq_alloc_disk(), which allocates
1165 	 *    both the disk and its queue (5.14 kernel or newer)
1166 	 *
1167 	 * b) We don't have blk_*alloc_disk(), and have to allocate the
1168 	 *    disk and the queue separately. (5.13 kernel or older)
1169 	 */
1170 	if (zv->zv_zso->use_blk_mq) {
1171 		ret = zvol_alloc_blk_mq(zv);
1172 		zso->zvo_disk->fops = &zvol_ops_blk_mq;
1173 	} else {
1174 		ret = zvol_alloc_non_blk_mq(zso);
1175 		zso->zvo_disk->fops = &zvol_ops;
1176 	}
1177 	if (ret != 0)
1178 		goto out_kmem;
1179 
1180 	blk_queue_set_write_cache(zso->zvo_queue, B_TRUE, B_TRUE);
1181 
1182 	/* Limit read-ahead to a single page to prevent over-prefetching. */
1183 	blk_queue_set_read_ahead(zso->zvo_queue, 1);
1184 
1185 	if (!zv->zv_zso->use_blk_mq) {
1186 		/* Disable write merging in favor of the ZIO pipeline. */
1187 		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, zso->zvo_queue);
1188 	}
1189 
1190 	/* Enable /proc/diskstats */
1191 	blk_queue_flag_set(QUEUE_FLAG_IO_STAT, zso->zvo_queue);
1192 
1193 	zso->zvo_queue->queuedata = zv;
1194 	zso->zvo_dev = dev;
1195 	zv->zv_open_count = 0;
1196 	strlcpy(zv->zv_name, name, MAXNAMELEN);
1197 
1198 	zfs_rangelock_init(&zv->zv_rangelock, NULL, NULL);
1199 	rw_init(&zv->zv_suspend_lock, NULL, RW_DEFAULT, NULL);
1200 
1201 	zso->zvo_disk->major = zvol_major;
1202 	zso->zvo_disk->events = DISK_EVENT_MEDIA_CHANGE;
1203 
1204 	/*
1205 	 * Setting ZFS_VOLMODE_DEV disables partitioning on ZVOL devices.
1206 	 * This is accomplished by limiting the number of minors for the
1207 	 * device to one and explicitly disabling partition scanning.
1208 	 */
1209 	if (volmode == ZFS_VOLMODE_DEV) {
1210 		zso->zvo_disk->minors = 1;
1211 		zso->zvo_disk->flags &= ~ZFS_GENHD_FL_EXT_DEVT;
1212 		zso->zvo_disk->flags |= ZFS_GENHD_FL_NO_PART;
1213 	}
1214 
1215 	zso->zvo_disk->first_minor = (dev & MINORMASK);
1216 	zso->zvo_disk->private_data = zv;
1217 	snprintf(zso->zvo_disk->disk_name, DISK_NAME_LEN, "%s%d",
1218 	    ZVOL_DEV_NAME, (dev & MINORMASK));
1219 
1220 	return (zv);
1221 
1222 out_kmem:
1223 	kmem_free(zso, sizeof (struct zvol_state_os));
1224 	kmem_free(zv, sizeof (zvol_state_t));
1225 	return (NULL);
1226 }
1227 
1228 /*
1229  * Cleanup then free a zvol_state_t which was created by zvol_alloc().
1230  * At this time, the structure is not opened by anyone, is taken off
1231  * the zvol_state_list, and has its private data set to NULL.
1232  * The zvol_state_lock is dropped.
1233  *
1234  * This function may take many milliseconds to complete (e.g. we've seen
1235  * it take over 256ms), due to the calls to "blk_cleanup_queue" and
1236  * "del_gendisk". Thus, consumers need to be careful to account for this
1237  * latency when calling this function.
1238  */
1239 void
1240 zvol_os_free(zvol_state_t *zv)
1241 {
1242 
1243 	ASSERT(!RW_LOCK_HELD(&zv->zv_suspend_lock));
1244 	ASSERT(!MUTEX_HELD(&zv->zv_state_lock));
1245 	ASSERT0(zv->zv_open_count);
1246 	ASSERT3P(zv->zv_zso->zvo_disk->private_data, ==, NULL);
1247 
1248 	rw_destroy(&zv->zv_suspend_lock);
1249 	zfs_rangelock_fini(&zv->zv_rangelock);
1250 
1251 	del_gendisk(zv->zv_zso->zvo_disk);
1252 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
1253 	defined(HAVE_BLK_ALLOC_DISK)
1254 #if defined(HAVE_BLK_CLEANUP_DISK)
1255 	blk_cleanup_disk(zv->zv_zso->zvo_disk);
1256 #else
1257 	put_disk(zv->zv_zso->zvo_disk);
1258 #endif
1259 #else
1260 	blk_cleanup_queue(zv->zv_zso->zvo_queue);
1261 	put_disk(zv->zv_zso->zvo_disk);
1262 #endif
1263 
1264 #ifdef HAVE_BLK_MQ
1265 	if (zv->zv_zso->use_blk_mq)
1266 		blk_mq_free_tag_set(&zv->zv_zso->tag_set);
1267 #endif
1268 
1269 	ida_simple_remove(&zvol_ida,
1270 	    MINOR(zv->zv_zso->zvo_dev) >> ZVOL_MINOR_BITS);
1271 
1272 	mutex_destroy(&zv->zv_state_lock);
1273 	dataset_kstats_destroy(&zv->zv_kstat);
1274 
1275 	kmem_free(zv->zv_zso, sizeof (struct zvol_state_os));
1276 	kmem_free(zv, sizeof (zvol_state_t));
1277 }
1278 
1279 void
1280 zvol_wait_close(zvol_state_t *zv)
1281 {
1282 }
1283 
1284 /*
1285  * Create a block device minor node and setup the linkage between it
1286  * and the specified volume.  Once this function returns the block
1287  * device is live and ready for use.
1288  */
1289 int
1290 zvol_os_create_minor(const char *name)
1291 {
1292 	zvol_state_t *zv;
1293 	objset_t *os;
1294 	dmu_object_info_t *doi;
1295 	uint64_t volsize;
1296 	uint64_t len;
1297 	unsigned minor = 0;
1298 	int error = 0;
1299 	int idx;
1300 	uint64_t hash = zvol_name_hash(name);
1301 	bool replayed_zil = B_FALSE;
1302 
1303 	if (zvol_inhibit_dev)
1304 		return (0);
1305 
1306 	idx = ida_simple_get(&zvol_ida, 0, 0, kmem_flags_convert(KM_SLEEP));
1307 	if (idx < 0)
1308 		return (SET_ERROR(-idx));
1309 	minor = idx << ZVOL_MINOR_BITS;
1310 
1311 	zv = zvol_find_by_name_hash(name, hash, RW_NONE);
1312 	if (zv) {
1313 		ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1314 		mutex_exit(&zv->zv_state_lock);
1315 		ida_simple_remove(&zvol_ida, idx);
1316 		return (SET_ERROR(EEXIST));
1317 	}
1318 
1319 	doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
1320 
1321 	error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, B_TRUE, FTAG, &os);
1322 	if (error)
1323 		goto out_doi;
1324 
1325 	error = dmu_object_info(os, ZVOL_OBJ, doi);
1326 	if (error)
1327 		goto out_dmu_objset_disown;
1328 
1329 	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
1330 	if (error)
1331 		goto out_dmu_objset_disown;
1332 
1333 	zv = zvol_alloc(MKDEV(zvol_major, minor), name);
1334 	if (zv == NULL) {
1335 		error = SET_ERROR(EAGAIN);
1336 		goto out_dmu_objset_disown;
1337 	}
1338 	zv->zv_hash = hash;
1339 
1340 	if (dmu_objset_is_snapshot(os))
1341 		zv->zv_flags |= ZVOL_RDONLY;
1342 
1343 	zv->zv_volblocksize = doi->doi_data_block_size;
1344 	zv->zv_volsize = volsize;
1345 	zv->zv_objset = os;
1346 
1347 	set_capacity(zv->zv_zso->zvo_disk, zv->zv_volsize >> 9);
1348 
1349 	blk_queue_max_hw_sectors(zv->zv_zso->zvo_queue,
1350 	    (DMU_MAX_ACCESS / 4) >> 9);
1351 
1352 	if (zv->zv_zso->use_blk_mq) {
1353 		/*
1354 		 * IO requests can be really big (1MB).  When an IO request
1355 		 * comes in, it is passed off to zvol_read() or zvol_write()
1356 		 * in a new thread, where it is chunked up into 'volblocksize'
1357 		 * sized pieces and processed.  So for example, if the request
1358 		 * is a 1MB write and your volblocksize is 128k, one zvol_write
1359 		 * thread will take that request and sequentially do ten 128k
1360 		 * IOs.  This is due to the fact that the thread needs to lock
1361 		 * each volblocksize sized block.  So you might be wondering:
1362 		 * "instead of passing the whole 1MB request to one thread,
1363 		 * why not pass ten individual 128k chunks to ten threads and
1364 		 * process the whole write in parallel?"  The short answer is
1365 		 * that there's a sweet spot number of chunks that balances
1366 		 * the greater parallelism with the added overhead of more
1367 		 * threads. The sweet spot can be different depending on if you
1368 		 * have a read or write  heavy workload.  Writes typically want
1369 		 * high chunk counts while reads typically want lower ones.  On
1370 		 * a test pool with 6 NVMe drives in a 3x 2-disk mirror
1371 		 * configuration, with volblocksize=8k, the sweet spot for good
1372 		 * sequential reads and writes was at 8 chunks.
1373 		 */
1374 
1375 		/*
1376 		 * Below we tell the kernel how big we want our requests
1377 		 * to be.  You would think that blk_queue_io_opt() would be
1378 		 * used to do this since it is used to "set optimal request
1379 		 * size for the queue", but that doesn't seem to do
1380 		 * anything - the kernel still gives you huge requests
1381 		 * with tons of little PAGE_SIZE segments contained within it.
1382 		 *
1383 		 * Knowing that the kernel will just give you PAGE_SIZE segments
1384 		 * no matter what, you can say "ok, I want PAGE_SIZE byte
1385 		 * segments, and I want 'N' of them per request", where N is
1386 		 * the correct number of segments for the volblocksize and
1387 		 * number of chunks you want.
1388 		 */
1389 #ifdef HAVE_BLK_MQ
1390 		if (zvol_blk_mq_blocks_per_thread != 0) {
1391 			unsigned int chunks;
1392 			chunks = MIN(zvol_blk_mq_blocks_per_thread, UINT16_MAX);
1393 
1394 			blk_queue_max_segment_size(zv->zv_zso->zvo_queue,
1395 			    PAGE_SIZE);
1396 			blk_queue_max_segments(zv->zv_zso->zvo_queue,
1397 			    (zv->zv_volblocksize * chunks) / PAGE_SIZE);
1398 		} else {
1399 			/*
1400 			 * Special case: zvol_blk_mq_blocks_per_thread = 0
1401 			 * Max everything out.
1402 			 */
1403 			blk_queue_max_segments(zv->zv_zso->zvo_queue,
1404 			    UINT16_MAX);
1405 			blk_queue_max_segment_size(zv->zv_zso->zvo_queue,
1406 			    UINT_MAX);
1407 		}
1408 #endif
1409 	} else {
1410 		blk_queue_max_segments(zv->zv_zso->zvo_queue, UINT16_MAX);
1411 		blk_queue_max_segment_size(zv->zv_zso->zvo_queue, UINT_MAX);
1412 	}
1413 
1414 	blk_queue_physical_block_size(zv->zv_zso->zvo_queue,
1415 	    zv->zv_volblocksize);
1416 	blk_queue_io_opt(zv->zv_zso->zvo_queue, zv->zv_volblocksize);
1417 	blk_queue_max_discard_sectors(zv->zv_zso->zvo_queue,
1418 	    (zvol_max_discard_blocks * zv->zv_volblocksize) >> 9);
1419 	blk_queue_discard_granularity(zv->zv_zso->zvo_queue,
1420 	    zv->zv_volblocksize);
1421 #ifdef QUEUE_FLAG_DISCARD
1422 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, zv->zv_zso->zvo_queue);
1423 #endif
1424 #ifdef QUEUE_FLAG_NONROT
1425 	blk_queue_flag_set(QUEUE_FLAG_NONROT, zv->zv_zso->zvo_queue);
1426 #endif
1427 #ifdef QUEUE_FLAG_ADD_RANDOM
1428 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zv->zv_zso->zvo_queue);
1429 #endif
1430 	/* This flag was introduced in kernel version 4.12. */
1431 #ifdef QUEUE_FLAG_SCSI_PASSTHROUGH
1432 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, zv->zv_zso->zvo_queue);
1433 #endif
1434 
1435 	ASSERT3P(zv->zv_kstat.dk_kstats, ==, NULL);
1436 	error = dataset_kstats_create(&zv->zv_kstat, zv->zv_objset);
1437 	if (error)
1438 		goto out_dmu_objset_disown;
1439 	ASSERT3P(zv->zv_zilog, ==, NULL);
1440 	zv->zv_zilog = zil_open(os, zvol_get_data, &zv->zv_kstat.dk_zil_sums);
1441 	if (spa_writeable(dmu_objset_spa(os))) {
1442 		if (zil_replay_disable)
1443 			replayed_zil = zil_destroy(zv->zv_zilog, B_FALSE);
1444 		else
1445 			replayed_zil = zil_replay(os, zv, zvol_replay_vector);
1446 	}
1447 	if (replayed_zil)
1448 		zil_close(zv->zv_zilog);
1449 	zv->zv_zilog = NULL;
1450 
1451 	/*
1452 	 * When udev detects the addition of the device it will immediately
1453 	 * invoke blkid(8) to determine the type of content on the device.
1454 	 * Prefetching the blocks commonly scanned by blkid(8) will speed
1455 	 * up this process.
1456 	 */
1457 	len = MIN(zvol_prefetch_bytes, SPA_MAXBLOCKSIZE);
1458 	if (len > 0) {
1459 		dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ);
1460 		dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len,
1461 		    ZIO_PRIORITY_SYNC_READ);
1462 	}
1463 
1464 	zv->zv_objset = NULL;
1465 out_dmu_objset_disown:
1466 	dmu_objset_disown(os, B_TRUE, FTAG);
1467 out_doi:
1468 	kmem_free(doi, sizeof (dmu_object_info_t));
1469 
1470 	/*
1471 	 * Keep in mind that once add_disk() is called, the zvol is
1472 	 * announced to the world, and zvol_open()/zvol_release() can
1473 	 * be called at any time. Incidentally, add_disk() itself calls
1474 	 * zvol_open()->zvol_first_open() and zvol_release()->zvol_last_close()
1475 	 * directly as well.
1476 	 */
1477 	if (error == 0) {
1478 		rw_enter(&zvol_state_lock, RW_WRITER);
1479 		zvol_insert(zv);
1480 		rw_exit(&zvol_state_lock);
1481 #ifdef HAVE_ADD_DISK_RET
1482 		error = add_disk(zv->zv_zso->zvo_disk);
1483 #else
1484 		add_disk(zv->zv_zso->zvo_disk);
1485 #endif
1486 	} else {
1487 		ida_simple_remove(&zvol_ida, idx);
1488 	}
1489 
1490 	return (error);
1491 }
1492 
1493 void
1494 zvol_os_rename_minor(zvol_state_t *zv, const char *newname)
1495 {
1496 	int readonly = get_disk_ro(zv->zv_zso->zvo_disk);
1497 
1498 	ASSERT(RW_LOCK_HELD(&zvol_state_lock));
1499 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1500 
1501 	strlcpy(zv->zv_name, newname, sizeof (zv->zv_name));
1502 
1503 	/* move to new hashtable entry  */
1504 	zv->zv_hash = zvol_name_hash(zv->zv_name);
1505 	hlist_del(&zv->zv_hlink);
1506 	hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
1507 
1508 	/*
1509 	 * The block device's read-only state is briefly changed causing
1510 	 * a KOBJ_CHANGE uevent to be issued.  This ensures udev detects
1511 	 * the name change and fixes the symlinks.  This does not change
1512 	 * ZVOL_RDONLY in zv->zv_flags so the actual read-only state never
1513 	 * changes.  This would normally be done using kobject_uevent() but
1514 	 * that is a GPL-only symbol which is why we need this workaround.
1515 	 */
1516 	set_disk_ro(zv->zv_zso->zvo_disk, !readonly);
1517 	set_disk_ro(zv->zv_zso->zvo_disk, readonly);
1518 }
1519 
1520 void
1521 zvol_os_set_disk_ro(zvol_state_t *zv, int flags)
1522 {
1523 
1524 	set_disk_ro(zv->zv_zso->zvo_disk, flags);
1525 }
1526 
1527 void
1528 zvol_os_set_capacity(zvol_state_t *zv, uint64_t capacity)
1529 {
1530 
1531 	set_capacity(zv->zv_zso->zvo_disk, capacity);
1532 }
1533 
1534 int
1535 zvol_init(void)
1536 {
1537 	int error;
1538 
1539 	/*
1540 	 * zvol_threads is the module param the user passes in.
1541 	 *
1542 	 * zvol_actual_threads is what we use internally, since the user can
1543 	 * pass zvol_thread = 0 to mean "use all the CPUs" (the default).
1544 	 */
1545 	static unsigned int zvol_actual_threads;
1546 
1547 	if (zvol_threads == 0) {
1548 		/*
1549 		 * See dde9380a1 for why 32 was chosen here.  This should
1550 		 * probably be refined to be some multiple of the number
1551 		 * of CPUs.
1552 		 */
1553 		zvol_actual_threads = MAX(num_online_cpus(), 32);
1554 	} else {
1555 		zvol_actual_threads = MIN(MAX(zvol_threads, 1), 1024);
1556 	}
1557 
1558 	error = register_blkdev(zvol_major, ZVOL_DRIVER);
1559 	if (error) {
1560 		printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
1561 		return (error);
1562 	}
1563 
1564 #ifdef HAVE_BLK_MQ
1565 	if (zvol_blk_mq_queue_depth == 0) {
1566 		zvol_actual_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
1567 	} else {
1568 		zvol_actual_blk_mq_queue_depth =
1569 		    MAX(zvol_blk_mq_queue_depth, BLKDEV_MIN_RQ);
1570 	}
1571 
1572 	if (zvol_blk_mq_threads == 0) {
1573 		zvol_blk_mq_actual_threads = num_online_cpus();
1574 	} else {
1575 		zvol_blk_mq_actual_threads = MIN(MAX(zvol_blk_mq_threads, 1),
1576 		    1024);
1577 	}
1578 #endif
1579 	zvol_taskq = taskq_create(ZVOL_DRIVER, zvol_actual_threads, maxclsyspri,
1580 	    zvol_actual_threads, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
1581 	if (zvol_taskq == NULL) {
1582 		unregister_blkdev(zvol_major, ZVOL_DRIVER);
1583 		return (-ENOMEM);
1584 	}
1585 
1586 	zvol_init_impl();
1587 	ida_init(&zvol_ida);
1588 	return (0);
1589 }
1590 
1591 void
1592 zvol_fini(void)
1593 {
1594 	zvol_fini_impl();
1595 	unregister_blkdev(zvol_major, ZVOL_DRIVER);
1596 	taskq_destroy(zvol_taskq);
1597 	ida_destroy(&zvol_ida);
1598 }
1599 
1600 /* BEGIN CSTYLED */
1601 module_param(zvol_inhibit_dev, uint, 0644);
1602 MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes");
1603 
1604 module_param(zvol_major, uint, 0444);
1605 MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
1606 
1607 module_param(zvol_threads, uint, 0444);
1608 MODULE_PARM_DESC(zvol_threads, "Number of threads to handle I/O requests. Set"
1609     "to 0 to use all active CPUs");
1610 
1611 module_param(zvol_request_sync, uint, 0644);
1612 MODULE_PARM_DESC(zvol_request_sync, "Synchronously handle bio requests");
1613 
1614 module_param(zvol_max_discard_blocks, ulong, 0444);
1615 MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard");
1616 
1617 module_param(zvol_prefetch_bytes, uint, 0644);
1618 MODULE_PARM_DESC(zvol_prefetch_bytes, "Prefetch N bytes at zvol start+end");
1619 
1620 module_param(zvol_volmode, uint, 0644);
1621 MODULE_PARM_DESC(zvol_volmode, "Default volmode property value");
1622 
1623 #ifdef HAVE_BLK_MQ
1624 module_param(zvol_blk_mq_queue_depth, uint, 0644);
1625 MODULE_PARM_DESC(zvol_blk_mq_queue_depth, "Default blk-mq queue depth");
1626 
1627 module_param(zvol_use_blk_mq, uint, 0644);
1628 MODULE_PARM_DESC(zvol_use_blk_mq, "Use the blk-mq API for zvols");
1629 
1630 module_param(zvol_blk_mq_blocks_per_thread, uint, 0644);
1631 MODULE_PARM_DESC(zvol_blk_mq_blocks_per_thread,
1632     "Process volblocksize blocks per thread");
1633 #endif
1634 
1635 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
1636 module_param(zvol_open_timeout_ms, uint, 0644);
1637 MODULE_PARM_DESC(zvol_open_timeout_ms, "Timeout for ZVOL open retries");
1638 #endif
1639 
1640 /* END CSTYLED */
1641