1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 23 */ 24 25 #include <sys/dataset_kstats.h> 26 #include <sys/dbuf.h> 27 #include <sys/dmu_traverse.h> 28 #include <sys/dsl_dataset.h> 29 #include <sys/dsl_prop.h> 30 #include <sys/dsl_dir.h> 31 #include <sys/zap.h> 32 #include <sys/zfeature.h> 33 #include <sys/zil_impl.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/zio.h> 36 #include <sys/zfs_rlock.h> 37 #include <sys/spa_impl.h> 38 #include <sys/zvol.h> 39 #include <sys/zvol_impl.h> 40 41 #include <linux/blkdev_compat.h> 42 #include <linux/task_io_accounting_ops.h> 43 44 static unsigned int zvol_major = ZVOL_MAJOR; 45 static unsigned int zvol_request_sync = 0; 46 static unsigned int zvol_prefetch_bytes = (128 * 1024); 47 static unsigned long zvol_max_discard_blocks = 16384; 48 static unsigned int zvol_threads = 32; 49 static const unsigned int zvol_open_timeout_ms = 1000; 50 51 struct zvol_state_os { 52 struct gendisk *zvo_disk; /* generic disk */ 53 struct request_queue *zvo_queue; /* request queue */ 54 dev_t zvo_dev; /* device id */ 55 }; 56 57 taskq_t *zvol_taskq; 58 static struct ida zvol_ida; 59 60 typedef struct zv_request_stack { 61 zvol_state_t *zv; 62 struct bio *bio; 63 } zv_request_t; 64 65 typedef struct zv_request_task { 66 zv_request_t zvr; 67 taskq_ent_t ent; 68 } zv_request_task_t; 69 70 static zv_request_task_t * 71 zv_request_task_create(zv_request_t zvr) 72 { 73 zv_request_task_t *task; 74 task = kmem_alloc(sizeof (zv_request_task_t), KM_SLEEP); 75 taskq_init_ent(&task->ent); 76 task->zvr = zvr; 77 return (task); 78 } 79 80 static void 81 zv_request_task_free(zv_request_task_t *task) 82 { 83 kmem_free(task, sizeof (*task)); 84 } 85 86 /* 87 * Given a path, return TRUE if path is a ZVOL. 88 */ 89 static boolean_t 90 zvol_is_zvol_impl(const char *path) 91 { 92 dev_t dev = 0; 93 94 if (vdev_lookup_bdev(path, &dev) != 0) 95 return (B_FALSE); 96 97 if (MAJOR(dev) == zvol_major) 98 return (B_TRUE); 99 100 return (B_FALSE); 101 } 102 103 static void 104 zvol_write(zv_request_t *zvr) 105 { 106 struct bio *bio = zvr->bio; 107 int error = 0; 108 zfs_uio_t uio; 109 110 zfs_uio_bvec_init(&uio, bio); 111 112 zvol_state_t *zv = zvr->zv; 113 ASSERT3P(zv, !=, NULL); 114 ASSERT3U(zv->zv_open_count, >, 0); 115 ASSERT3P(zv->zv_zilog, !=, NULL); 116 117 /* bio marked as FLUSH need to flush before write */ 118 if (bio_is_flush(bio)) 119 zil_commit(zv->zv_zilog, ZVOL_OBJ); 120 121 /* Some requests are just for flush and nothing else. */ 122 if (uio.uio_resid == 0) { 123 rw_exit(&zv->zv_suspend_lock); 124 BIO_END_IO(bio, 0); 125 return; 126 } 127 128 struct request_queue *q = zv->zv_zso->zvo_queue; 129 struct gendisk *disk = zv->zv_zso->zvo_disk; 130 ssize_t start_resid = uio.uio_resid; 131 unsigned long start_time; 132 133 boolean_t acct = blk_queue_io_stat(q); 134 if (acct) 135 start_time = blk_generic_start_io_acct(q, disk, WRITE, bio); 136 137 boolean_t sync = 138 bio_is_fua(bio) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS; 139 140 zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock, 141 uio.uio_loffset, uio.uio_resid, RL_WRITER); 142 143 uint64_t volsize = zv->zv_volsize; 144 while (uio.uio_resid > 0 && uio.uio_loffset < volsize) { 145 uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1); 146 uint64_t off = uio.uio_loffset; 147 dmu_tx_t *tx = dmu_tx_create(zv->zv_objset); 148 149 if (bytes > volsize - off) /* don't write past the end */ 150 bytes = volsize - off; 151 152 dmu_tx_hold_write_by_dnode(tx, zv->zv_dn, off, bytes); 153 154 /* This will only fail for ENOSPC */ 155 error = dmu_tx_assign(tx, TXG_WAIT); 156 if (error) { 157 dmu_tx_abort(tx); 158 break; 159 } 160 error = dmu_write_uio_dnode(zv->zv_dn, &uio, bytes, tx); 161 if (error == 0) { 162 zvol_log_write(zv, tx, off, bytes, sync); 163 } 164 dmu_tx_commit(tx); 165 166 if (error) 167 break; 168 } 169 zfs_rangelock_exit(lr); 170 171 int64_t nwritten = start_resid - uio.uio_resid; 172 dataset_kstats_update_write_kstats(&zv->zv_kstat, nwritten); 173 task_io_account_write(nwritten); 174 175 if (sync) 176 zil_commit(zv->zv_zilog, ZVOL_OBJ); 177 178 rw_exit(&zv->zv_suspend_lock); 179 180 if (acct) 181 blk_generic_end_io_acct(q, disk, WRITE, bio, start_time); 182 183 BIO_END_IO(bio, -error); 184 } 185 186 static void 187 zvol_write_task(void *arg) 188 { 189 zv_request_task_t *task = arg; 190 zvol_write(&task->zvr); 191 zv_request_task_free(task); 192 } 193 194 static void 195 zvol_discard(zv_request_t *zvr) 196 { 197 struct bio *bio = zvr->bio; 198 zvol_state_t *zv = zvr->zv; 199 uint64_t start = BIO_BI_SECTOR(bio) << 9; 200 uint64_t size = BIO_BI_SIZE(bio); 201 uint64_t end = start + size; 202 boolean_t sync; 203 int error = 0; 204 dmu_tx_t *tx; 205 206 ASSERT3P(zv, !=, NULL); 207 ASSERT3U(zv->zv_open_count, >, 0); 208 ASSERT3P(zv->zv_zilog, !=, NULL); 209 210 struct request_queue *q = zv->zv_zso->zvo_queue; 211 struct gendisk *disk = zv->zv_zso->zvo_disk; 212 unsigned long start_time; 213 214 boolean_t acct = blk_queue_io_stat(q); 215 if (acct) 216 start_time = blk_generic_start_io_acct(q, disk, WRITE, bio); 217 218 sync = bio_is_fua(bio) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS; 219 220 if (end > zv->zv_volsize) { 221 error = SET_ERROR(EIO); 222 goto unlock; 223 } 224 225 /* 226 * Align the request to volume block boundaries when a secure erase is 227 * not required. This will prevent dnode_free_range() from zeroing out 228 * the unaligned parts which is slow (read-modify-write) and useless 229 * since we are not freeing any space by doing so. 230 */ 231 if (!bio_is_secure_erase(bio)) { 232 start = P2ROUNDUP(start, zv->zv_volblocksize); 233 end = P2ALIGN(end, zv->zv_volblocksize); 234 size = end - start; 235 } 236 237 if (start >= end) 238 goto unlock; 239 240 zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock, 241 start, size, RL_WRITER); 242 243 tx = dmu_tx_create(zv->zv_objset); 244 dmu_tx_mark_netfree(tx); 245 error = dmu_tx_assign(tx, TXG_WAIT); 246 if (error != 0) { 247 dmu_tx_abort(tx); 248 } else { 249 zvol_log_truncate(zv, tx, start, size, B_TRUE); 250 dmu_tx_commit(tx); 251 error = dmu_free_long_range(zv->zv_objset, 252 ZVOL_OBJ, start, size); 253 } 254 zfs_rangelock_exit(lr); 255 256 if (error == 0 && sync) 257 zil_commit(zv->zv_zilog, ZVOL_OBJ); 258 259 unlock: 260 rw_exit(&zv->zv_suspend_lock); 261 262 if (acct) 263 blk_generic_end_io_acct(q, disk, WRITE, bio, start_time); 264 265 BIO_END_IO(bio, -error); 266 } 267 268 static void 269 zvol_discard_task(void *arg) 270 { 271 zv_request_task_t *task = arg; 272 zvol_discard(&task->zvr); 273 zv_request_task_free(task); 274 } 275 276 static void 277 zvol_read(zv_request_t *zvr) 278 { 279 struct bio *bio = zvr->bio; 280 int error = 0; 281 zfs_uio_t uio; 282 283 zfs_uio_bvec_init(&uio, bio); 284 285 zvol_state_t *zv = zvr->zv; 286 ASSERT3P(zv, !=, NULL); 287 ASSERT3U(zv->zv_open_count, >, 0); 288 289 struct request_queue *q = zv->zv_zso->zvo_queue; 290 struct gendisk *disk = zv->zv_zso->zvo_disk; 291 ssize_t start_resid = uio.uio_resid; 292 unsigned long start_time; 293 294 boolean_t acct = blk_queue_io_stat(q); 295 if (acct) 296 start_time = blk_generic_start_io_acct(q, disk, READ, bio); 297 298 zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock, 299 uio.uio_loffset, uio.uio_resid, RL_READER); 300 301 uint64_t volsize = zv->zv_volsize; 302 while (uio.uio_resid > 0 && uio.uio_loffset < volsize) { 303 uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1); 304 305 /* don't read past the end */ 306 if (bytes > volsize - uio.uio_loffset) 307 bytes = volsize - uio.uio_loffset; 308 309 error = dmu_read_uio_dnode(zv->zv_dn, &uio, bytes); 310 if (error) { 311 /* convert checksum errors into IO errors */ 312 if (error == ECKSUM) 313 error = SET_ERROR(EIO); 314 break; 315 } 316 } 317 zfs_rangelock_exit(lr); 318 319 int64_t nread = start_resid - uio.uio_resid; 320 dataset_kstats_update_read_kstats(&zv->zv_kstat, nread); 321 task_io_account_read(nread); 322 323 rw_exit(&zv->zv_suspend_lock); 324 325 if (acct) 326 blk_generic_end_io_acct(q, disk, READ, bio, start_time); 327 328 BIO_END_IO(bio, -error); 329 } 330 331 static void 332 zvol_read_task(void *arg) 333 { 334 zv_request_task_t *task = arg; 335 zvol_read(&task->zvr); 336 zv_request_task_free(task); 337 } 338 339 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS 340 #ifdef HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID 341 static void 342 zvol_submit_bio(struct bio *bio) 343 #else 344 static blk_qc_t 345 zvol_submit_bio(struct bio *bio) 346 #endif 347 #else 348 static MAKE_REQUEST_FN_RET 349 zvol_request(struct request_queue *q, struct bio *bio) 350 #endif 351 { 352 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS 353 #if defined(HAVE_BIO_BDEV_DISK) 354 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 355 #else 356 struct request_queue *q = bio->bi_disk->queue; 357 #endif 358 #endif 359 zvol_state_t *zv = q->queuedata; 360 fstrans_cookie_t cookie = spl_fstrans_mark(); 361 uint64_t offset = BIO_BI_SECTOR(bio) << 9; 362 uint64_t size = BIO_BI_SIZE(bio); 363 int rw = bio_data_dir(bio); 364 365 if (bio_has_data(bio) && offset + size > zv->zv_volsize) { 366 printk(KERN_INFO 367 "%s: bad access: offset=%llu, size=%lu\n", 368 zv->zv_zso->zvo_disk->disk_name, 369 (long long unsigned)offset, 370 (long unsigned)size); 371 372 BIO_END_IO(bio, -SET_ERROR(EIO)); 373 goto out; 374 } 375 376 zv_request_t zvr = { 377 .zv = zv, 378 .bio = bio, 379 }; 380 zv_request_task_t *task; 381 382 if (rw == WRITE) { 383 if (unlikely(zv->zv_flags & ZVOL_RDONLY)) { 384 BIO_END_IO(bio, -SET_ERROR(EROFS)); 385 goto out; 386 } 387 388 /* 389 * Prevents the zvol from being suspended, or the ZIL being 390 * concurrently opened. Will be released after the i/o 391 * completes. 392 */ 393 rw_enter(&zv->zv_suspend_lock, RW_READER); 394 395 /* 396 * Open a ZIL if this is the first time we have written to this 397 * zvol. We protect zv->zv_zilog with zv_suspend_lock rather 398 * than zv_state_lock so that we don't need to acquire an 399 * additional lock in this path. 400 */ 401 if (zv->zv_zilog == NULL) { 402 rw_exit(&zv->zv_suspend_lock); 403 rw_enter(&zv->zv_suspend_lock, RW_WRITER); 404 if (zv->zv_zilog == NULL) { 405 zv->zv_zilog = zil_open(zv->zv_objset, 406 zvol_get_data); 407 zv->zv_flags |= ZVOL_WRITTEN_TO; 408 /* replay / destroy done in zvol_create_minor */ 409 VERIFY0((zv->zv_zilog->zl_header->zh_flags & 410 ZIL_REPLAY_NEEDED)); 411 } 412 rw_downgrade(&zv->zv_suspend_lock); 413 } 414 415 /* 416 * We don't want this thread to be blocked waiting for i/o to 417 * complete, so we instead wait from a taskq callback. The 418 * i/o may be a ZIL write (via zil_commit()), or a read of an 419 * indirect block, or a read of a data block (if this is a 420 * partial-block write). We will indicate that the i/o is 421 * complete by calling BIO_END_IO() from the taskq callback. 422 * 423 * This design allows the calling thread to continue and 424 * initiate more concurrent operations by calling 425 * zvol_request() again. There are typically only a small 426 * number of threads available to call zvol_request() (e.g. 427 * one per iSCSI target), so keeping the latency of 428 * zvol_request() low is important for performance. 429 * 430 * The zvol_request_sync module parameter allows this 431 * behavior to be altered, for performance evaluation 432 * purposes. If the callback blocks, setting 433 * zvol_request_sync=1 will result in much worse performance. 434 * 435 * We can have up to zvol_threads concurrent i/o's being 436 * processed for all zvols on the system. This is typically 437 * a vast improvement over the zvol_request_sync=1 behavior 438 * of one i/o at a time per zvol. However, an even better 439 * design would be for zvol_request() to initiate the zio 440 * directly, and then be notified by the zio_done callback, 441 * which would call BIO_END_IO(). Unfortunately, the DMU/ZIL 442 * interfaces lack this functionality (they block waiting for 443 * the i/o to complete). 444 */ 445 if (bio_is_discard(bio) || bio_is_secure_erase(bio)) { 446 if (zvol_request_sync) { 447 zvol_discard(&zvr); 448 } else { 449 task = zv_request_task_create(zvr); 450 taskq_dispatch_ent(zvol_taskq, 451 zvol_discard_task, task, 0, &task->ent); 452 } 453 } else { 454 if (zvol_request_sync) { 455 zvol_write(&zvr); 456 } else { 457 task = zv_request_task_create(zvr); 458 taskq_dispatch_ent(zvol_taskq, 459 zvol_write_task, task, 0, &task->ent); 460 } 461 } 462 } else { 463 /* 464 * The SCST driver, and possibly others, may issue READ I/Os 465 * with a length of zero bytes. These empty I/Os contain no 466 * data and require no additional handling. 467 */ 468 if (size == 0) { 469 BIO_END_IO(bio, 0); 470 goto out; 471 } 472 473 rw_enter(&zv->zv_suspend_lock, RW_READER); 474 475 /* See comment in WRITE case above. */ 476 if (zvol_request_sync) { 477 zvol_read(&zvr); 478 } else { 479 task = zv_request_task_create(zvr); 480 taskq_dispatch_ent(zvol_taskq, 481 zvol_read_task, task, 0, &task->ent); 482 } 483 } 484 485 out: 486 spl_fstrans_unmark(cookie); 487 #if (defined(HAVE_MAKE_REQUEST_FN_RET_QC) || \ 488 defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS)) && \ 489 !defined(HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID) 490 return (BLK_QC_T_NONE); 491 #endif 492 } 493 494 static int 495 zvol_open(struct block_device *bdev, fmode_t flag) 496 { 497 zvol_state_t *zv; 498 int error = 0; 499 boolean_t drop_suspend = B_FALSE; 500 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS 501 hrtime_t timeout = MSEC2NSEC(zvol_open_timeout_ms); 502 hrtime_t start = gethrtime(); 503 504 retry: 505 #endif 506 rw_enter(&zvol_state_lock, RW_READER); 507 /* 508 * Obtain a copy of private_data under the zvol_state_lock to make 509 * sure that either the result of zvol free code path setting 510 * bdev->bd_disk->private_data to NULL is observed, or zvol_free() 511 * is not called on this zv because of the positive zv_open_count. 512 */ 513 zv = bdev->bd_disk->private_data; 514 if (zv == NULL) { 515 rw_exit(&zvol_state_lock); 516 return (SET_ERROR(-ENXIO)); 517 } 518 519 mutex_enter(&zv->zv_state_lock); 520 /* 521 * Make sure zvol is not suspended during first open 522 * (hold zv_suspend_lock) and respect proper lock acquisition 523 * ordering - zv_suspend_lock before zv_state_lock 524 */ 525 if (zv->zv_open_count == 0) { 526 if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) { 527 mutex_exit(&zv->zv_state_lock); 528 rw_enter(&zv->zv_suspend_lock, RW_READER); 529 mutex_enter(&zv->zv_state_lock); 530 /* check to see if zv_suspend_lock is needed */ 531 if (zv->zv_open_count != 0) { 532 rw_exit(&zv->zv_suspend_lock); 533 } else { 534 drop_suspend = B_TRUE; 535 } 536 } else { 537 drop_suspend = B_TRUE; 538 } 539 } 540 rw_exit(&zvol_state_lock); 541 542 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 543 544 if (zv->zv_open_count == 0) { 545 boolean_t drop_namespace = B_FALSE; 546 547 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock)); 548 549 /* 550 * In all other call paths the spa_namespace_lock is taken 551 * before the bdev->bd_mutex lock. However, on open(2) 552 * the __blkdev_get() function calls fops->open() with the 553 * bdev->bd_mutex lock held. This can result in a deadlock 554 * when zvols from one pool are used as vdevs in another. 555 * 556 * To prevent a lock inversion deadlock we preemptively 557 * take the spa_namespace_lock. Normally the lock will not 558 * be contended and this is safe because spa_open_common() 559 * handles the case where the caller already holds the 560 * spa_namespace_lock. 561 * 562 * When the lock cannot be aquired after multiple retries 563 * this must be the vdev on zvol deadlock case and we have 564 * no choice but to return an error. For 5.12 and older 565 * kernels returning -ERESTARTSYS will result in the 566 * bdev->bd_mutex being dropped, then reacquired, and 567 * fops->open() being called again. This process can be 568 * repeated safely until both locks are acquired. For 5.13 569 * and newer the -ERESTARTSYS retry logic was removed from 570 * the kernel so the only option is to return the error for 571 * the caller to handle it. 572 */ 573 if (!mutex_owned(&spa_namespace_lock)) { 574 if (!mutex_tryenter(&spa_namespace_lock)) { 575 mutex_exit(&zv->zv_state_lock); 576 rw_exit(&zv->zv_suspend_lock); 577 578 #ifdef HAVE_BLKDEV_GET_ERESTARTSYS 579 schedule(); 580 return (SET_ERROR(-ERESTARTSYS)); 581 #else 582 if ((gethrtime() - start) > timeout) 583 return (SET_ERROR(-ERESTARTSYS)); 584 585 schedule_timeout(MSEC_TO_TICK(10)); 586 goto retry; 587 #endif 588 } else { 589 drop_namespace = B_TRUE; 590 } 591 } 592 593 error = -zvol_first_open(zv, !(flag & FMODE_WRITE)); 594 595 if (drop_namespace) 596 mutex_exit(&spa_namespace_lock); 597 } 598 599 if (error == 0) { 600 if ((flag & FMODE_WRITE) && (zv->zv_flags & ZVOL_RDONLY)) { 601 if (zv->zv_open_count == 0) 602 zvol_last_close(zv); 603 604 error = SET_ERROR(-EROFS); 605 } else { 606 zv->zv_open_count++; 607 } 608 } 609 610 mutex_exit(&zv->zv_state_lock); 611 if (drop_suspend) 612 rw_exit(&zv->zv_suspend_lock); 613 614 if (error == 0) 615 zfs_check_media_change(bdev); 616 617 return (error); 618 } 619 620 static void 621 zvol_release(struct gendisk *disk, fmode_t mode) 622 { 623 zvol_state_t *zv; 624 boolean_t drop_suspend = B_TRUE; 625 626 rw_enter(&zvol_state_lock, RW_READER); 627 zv = disk->private_data; 628 629 mutex_enter(&zv->zv_state_lock); 630 ASSERT3U(zv->zv_open_count, >, 0); 631 /* 632 * make sure zvol is not suspended during last close 633 * (hold zv_suspend_lock) and respect proper lock acquisition 634 * ordering - zv_suspend_lock before zv_state_lock 635 */ 636 if (zv->zv_open_count == 1) { 637 if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) { 638 mutex_exit(&zv->zv_state_lock); 639 rw_enter(&zv->zv_suspend_lock, RW_READER); 640 mutex_enter(&zv->zv_state_lock); 641 /* check to see if zv_suspend_lock is needed */ 642 if (zv->zv_open_count != 1) { 643 rw_exit(&zv->zv_suspend_lock); 644 drop_suspend = B_FALSE; 645 } 646 } 647 } else { 648 drop_suspend = B_FALSE; 649 } 650 rw_exit(&zvol_state_lock); 651 652 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 653 654 zv->zv_open_count--; 655 if (zv->zv_open_count == 0) { 656 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock)); 657 zvol_last_close(zv); 658 } 659 660 mutex_exit(&zv->zv_state_lock); 661 662 if (drop_suspend) 663 rw_exit(&zv->zv_suspend_lock); 664 } 665 666 static int 667 zvol_ioctl(struct block_device *bdev, fmode_t mode, 668 unsigned int cmd, unsigned long arg) 669 { 670 zvol_state_t *zv = bdev->bd_disk->private_data; 671 int error = 0; 672 673 ASSERT3U(zv->zv_open_count, >, 0); 674 675 switch (cmd) { 676 case BLKFLSBUF: 677 fsync_bdev(bdev); 678 invalidate_bdev(bdev); 679 rw_enter(&zv->zv_suspend_lock, RW_READER); 680 681 if (!(zv->zv_flags & ZVOL_RDONLY)) 682 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0); 683 684 rw_exit(&zv->zv_suspend_lock); 685 break; 686 687 case BLKZNAME: 688 mutex_enter(&zv->zv_state_lock); 689 error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN); 690 mutex_exit(&zv->zv_state_lock); 691 break; 692 693 default: 694 error = -ENOTTY; 695 break; 696 } 697 698 return (SET_ERROR(error)); 699 } 700 701 #ifdef CONFIG_COMPAT 702 static int 703 zvol_compat_ioctl(struct block_device *bdev, fmode_t mode, 704 unsigned cmd, unsigned long arg) 705 { 706 return (zvol_ioctl(bdev, mode, cmd, arg)); 707 } 708 #else 709 #define zvol_compat_ioctl NULL 710 #endif 711 712 static unsigned int 713 zvol_check_events(struct gendisk *disk, unsigned int clearing) 714 { 715 unsigned int mask = 0; 716 717 rw_enter(&zvol_state_lock, RW_READER); 718 719 zvol_state_t *zv = disk->private_data; 720 if (zv != NULL) { 721 mutex_enter(&zv->zv_state_lock); 722 mask = zv->zv_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 723 zv->zv_changed = 0; 724 mutex_exit(&zv->zv_state_lock); 725 } 726 727 rw_exit(&zvol_state_lock); 728 729 return (mask); 730 } 731 732 static int 733 zvol_revalidate_disk(struct gendisk *disk) 734 { 735 rw_enter(&zvol_state_lock, RW_READER); 736 737 zvol_state_t *zv = disk->private_data; 738 if (zv != NULL) { 739 mutex_enter(&zv->zv_state_lock); 740 set_capacity(zv->zv_zso->zvo_disk, 741 zv->zv_volsize >> SECTOR_BITS); 742 mutex_exit(&zv->zv_state_lock); 743 } 744 745 rw_exit(&zvol_state_lock); 746 747 return (0); 748 } 749 750 static int 751 zvol_update_volsize(zvol_state_t *zv, uint64_t volsize) 752 { 753 struct gendisk *disk = zv->zv_zso->zvo_disk; 754 755 #if defined(HAVE_REVALIDATE_DISK_SIZE) 756 revalidate_disk_size(disk, zvol_revalidate_disk(disk) == 0); 757 #elif defined(HAVE_REVALIDATE_DISK) 758 revalidate_disk(disk); 759 #else 760 zvol_revalidate_disk(disk); 761 #endif 762 return (0); 763 } 764 765 static void 766 zvol_clear_private(zvol_state_t *zv) 767 { 768 /* 769 * Cleared while holding zvol_state_lock as a writer 770 * which will prevent zvol_open() from opening it. 771 */ 772 zv->zv_zso->zvo_disk->private_data = NULL; 773 } 774 775 /* 776 * Provide a simple virtual geometry for legacy compatibility. For devices 777 * smaller than 1 MiB a small head and sector count is used to allow very 778 * tiny devices. For devices over 1 Mib a standard head and sector count 779 * is used to keep the cylinders count reasonable. 780 */ 781 static int 782 zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo) 783 { 784 zvol_state_t *zv = bdev->bd_disk->private_data; 785 sector_t sectors; 786 787 ASSERT3U(zv->zv_open_count, >, 0); 788 789 sectors = get_capacity(zv->zv_zso->zvo_disk); 790 791 if (sectors > 2048) { 792 geo->heads = 16; 793 geo->sectors = 63; 794 } else { 795 geo->heads = 2; 796 geo->sectors = 4; 797 } 798 799 geo->start = 0; 800 geo->cylinders = sectors / (geo->heads * geo->sectors); 801 802 return (0); 803 } 804 805 static const struct block_device_operations zvol_ops = { 806 .open = zvol_open, 807 .release = zvol_release, 808 .ioctl = zvol_ioctl, 809 .compat_ioctl = zvol_compat_ioctl, 810 .check_events = zvol_check_events, 811 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK 812 .revalidate_disk = zvol_revalidate_disk, 813 #endif 814 .getgeo = zvol_getgeo, 815 .owner = THIS_MODULE, 816 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS 817 .submit_bio = zvol_submit_bio, 818 #endif 819 }; 820 821 /* 822 * Allocate memory for a new zvol_state_t and setup the required 823 * request queue and generic disk structures for the block device. 824 */ 825 static zvol_state_t * 826 zvol_alloc(dev_t dev, const char *name) 827 { 828 zvol_state_t *zv; 829 struct zvol_state_os *zso; 830 uint64_t volmode; 831 832 if (dsl_prop_get_integer(name, "volmode", &volmode, NULL) != 0) 833 return (NULL); 834 835 if (volmode == ZFS_VOLMODE_DEFAULT) 836 volmode = zvol_volmode; 837 838 if (volmode == ZFS_VOLMODE_NONE) 839 return (NULL); 840 841 zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP); 842 zso = kmem_zalloc(sizeof (struct zvol_state_os), KM_SLEEP); 843 zv->zv_zso = zso; 844 zv->zv_volmode = volmode; 845 846 list_link_init(&zv->zv_next); 847 mutex_init(&zv->zv_state_lock, NULL, MUTEX_DEFAULT, NULL); 848 849 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS 850 #ifdef HAVE_BLK_ALLOC_DISK 851 zso->zvo_disk = blk_alloc_disk(NUMA_NO_NODE); 852 if (zso->zvo_disk == NULL) 853 goto out_kmem; 854 855 zso->zvo_disk->minors = ZVOL_MINORS; 856 zso->zvo_queue = zso->zvo_disk->queue; 857 #else 858 zso->zvo_queue = blk_alloc_queue(NUMA_NO_NODE); 859 if (zso->zvo_queue == NULL) 860 goto out_kmem; 861 862 zso->zvo_disk = alloc_disk(ZVOL_MINORS); 863 if (zso->zvo_disk == NULL) { 864 blk_cleanup_queue(zso->zvo_queue); 865 goto out_kmem; 866 } 867 868 zso->zvo_disk->queue = zso->zvo_queue; 869 #endif /* HAVE_BLK_ALLOC_DISK */ 870 #else 871 zso->zvo_queue = blk_generic_alloc_queue(zvol_request, NUMA_NO_NODE); 872 if (zso->zvo_queue == NULL) 873 goto out_kmem; 874 875 zso->zvo_disk = alloc_disk(ZVOL_MINORS); 876 if (zso->zvo_disk == NULL) { 877 blk_cleanup_queue(zso->zvo_queue); 878 goto out_kmem; 879 } 880 881 zso->zvo_disk->queue = zso->zvo_queue; 882 #endif /* HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS */ 883 884 blk_queue_set_write_cache(zso->zvo_queue, B_TRUE, B_TRUE); 885 886 /* Limit read-ahead to a single page to prevent over-prefetching. */ 887 blk_queue_set_read_ahead(zso->zvo_queue, 1); 888 889 /* Disable write merging in favor of the ZIO pipeline. */ 890 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, zso->zvo_queue); 891 892 /* Enable /proc/diskstats */ 893 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, zso->zvo_queue); 894 895 zso->zvo_queue->queuedata = zv; 896 zso->zvo_dev = dev; 897 zv->zv_open_count = 0; 898 strlcpy(zv->zv_name, name, MAXNAMELEN); 899 900 zfs_rangelock_init(&zv->zv_rangelock, NULL, NULL); 901 rw_init(&zv->zv_suspend_lock, NULL, RW_DEFAULT, NULL); 902 903 zso->zvo_disk->major = zvol_major; 904 zso->zvo_disk->events = DISK_EVENT_MEDIA_CHANGE; 905 906 if (volmode == ZFS_VOLMODE_DEV) { 907 /* 908 * ZFS_VOLMODE_DEV disable partitioning on ZVOL devices: set 909 * gendisk->minors = 1 as noted in include/linux/genhd.h. 910 * Also disable extended partition numbers (GENHD_FL_EXT_DEVT) 911 * and suppresses partition scanning (GENHD_FL_NO_PART_SCAN) 912 * setting gendisk->flags accordingly. 913 */ 914 zso->zvo_disk->minors = 1; 915 #if defined(GENHD_FL_EXT_DEVT) 916 zso->zvo_disk->flags &= ~GENHD_FL_EXT_DEVT; 917 #endif 918 #if defined(GENHD_FL_NO_PART_SCAN) 919 zso->zvo_disk->flags |= GENHD_FL_NO_PART_SCAN; 920 #endif 921 } 922 zso->zvo_disk->first_minor = (dev & MINORMASK); 923 zso->zvo_disk->fops = &zvol_ops; 924 zso->zvo_disk->private_data = zv; 925 snprintf(zso->zvo_disk->disk_name, DISK_NAME_LEN, "%s%d", 926 ZVOL_DEV_NAME, (dev & MINORMASK)); 927 928 return (zv); 929 930 out_kmem: 931 kmem_free(zso, sizeof (struct zvol_state_os)); 932 kmem_free(zv, sizeof (zvol_state_t)); 933 return (NULL); 934 } 935 936 /* 937 * Cleanup then free a zvol_state_t which was created by zvol_alloc(). 938 * At this time, the structure is not opened by anyone, is taken off 939 * the zvol_state_list, and has its private data set to NULL. 940 * The zvol_state_lock is dropped. 941 * 942 * This function may take many milliseconds to complete (e.g. we've seen 943 * it take over 256ms), due to the calls to "blk_cleanup_queue" and 944 * "del_gendisk". Thus, consumers need to be careful to account for this 945 * latency when calling this function. 946 */ 947 static void 948 zvol_free(zvol_state_t *zv) 949 { 950 951 ASSERT(!RW_LOCK_HELD(&zv->zv_suspend_lock)); 952 ASSERT(!MUTEX_HELD(&zv->zv_state_lock)); 953 ASSERT0(zv->zv_open_count); 954 ASSERT3P(zv->zv_zso->zvo_disk->private_data, ==, NULL); 955 956 rw_destroy(&zv->zv_suspend_lock); 957 zfs_rangelock_fini(&zv->zv_rangelock); 958 959 del_gendisk(zv->zv_zso->zvo_disk); 960 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \ 961 defined(HAVE_BLK_ALLOC_DISK) 962 blk_cleanup_disk(zv->zv_zso->zvo_disk); 963 #else 964 blk_cleanup_queue(zv->zv_zso->zvo_queue); 965 put_disk(zv->zv_zso->zvo_disk); 966 #endif 967 968 ida_simple_remove(&zvol_ida, 969 MINOR(zv->zv_zso->zvo_dev) >> ZVOL_MINOR_BITS); 970 971 mutex_destroy(&zv->zv_state_lock); 972 dataset_kstats_destroy(&zv->zv_kstat); 973 974 kmem_free(zv->zv_zso, sizeof (struct zvol_state_os)); 975 kmem_free(zv, sizeof (zvol_state_t)); 976 } 977 978 void 979 zvol_wait_close(zvol_state_t *zv) 980 { 981 } 982 983 /* 984 * Create a block device minor node and setup the linkage between it 985 * and the specified volume. Once this function returns the block 986 * device is live and ready for use. 987 */ 988 static int 989 zvol_os_create_minor(const char *name) 990 { 991 zvol_state_t *zv; 992 objset_t *os; 993 dmu_object_info_t *doi; 994 uint64_t volsize; 995 uint64_t len; 996 unsigned minor = 0; 997 int error = 0; 998 int idx; 999 uint64_t hash = zvol_name_hash(name); 1000 1001 if (zvol_inhibit_dev) 1002 return (0); 1003 1004 idx = ida_simple_get(&zvol_ida, 0, 0, kmem_flags_convert(KM_SLEEP)); 1005 if (idx < 0) 1006 return (SET_ERROR(-idx)); 1007 minor = idx << ZVOL_MINOR_BITS; 1008 1009 zv = zvol_find_by_name_hash(name, hash, RW_NONE); 1010 if (zv) { 1011 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 1012 mutex_exit(&zv->zv_state_lock); 1013 ida_simple_remove(&zvol_ida, idx); 1014 return (SET_ERROR(EEXIST)); 1015 } 1016 1017 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP); 1018 1019 error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, B_TRUE, FTAG, &os); 1020 if (error) 1021 goto out_doi; 1022 1023 error = dmu_object_info(os, ZVOL_OBJ, doi); 1024 if (error) 1025 goto out_dmu_objset_disown; 1026 1027 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize); 1028 if (error) 1029 goto out_dmu_objset_disown; 1030 1031 zv = zvol_alloc(MKDEV(zvol_major, minor), name); 1032 if (zv == NULL) { 1033 error = SET_ERROR(EAGAIN); 1034 goto out_dmu_objset_disown; 1035 } 1036 zv->zv_hash = hash; 1037 1038 if (dmu_objset_is_snapshot(os)) 1039 zv->zv_flags |= ZVOL_RDONLY; 1040 1041 zv->zv_volblocksize = doi->doi_data_block_size; 1042 zv->zv_volsize = volsize; 1043 zv->zv_objset = os; 1044 1045 set_capacity(zv->zv_zso->zvo_disk, zv->zv_volsize >> 9); 1046 1047 blk_queue_max_hw_sectors(zv->zv_zso->zvo_queue, 1048 (DMU_MAX_ACCESS / 4) >> 9); 1049 blk_queue_max_segments(zv->zv_zso->zvo_queue, UINT16_MAX); 1050 blk_queue_max_segment_size(zv->zv_zso->zvo_queue, UINT_MAX); 1051 blk_queue_physical_block_size(zv->zv_zso->zvo_queue, 1052 zv->zv_volblocksize); 1053 blk_queue_io_opt(zv->zv_zso->zvo_queue, zv->zv_volblocksize); 1054 blk_queue_max_discard_sectors(zv->zv_zso->zvo_queue, 1055 (zvol_max_discard_blocks * zv->zv_volblocksize) >> 9); 1056 blk_queue_discard_granularity(zv->zv_zso->zvo_queue, 1057 zv->zv_volblocksize); 1058 blk_queue_flag_set(QUEUE_FLAG_DISCARD, zv->zv_zso->zvo_queue); 1059 #ifdef QUEUE_FLAG_NONROT 1060 blk_queue_flag_set(QUEUE_FLAG_NONROT, zv->zv_zso->zvo_queue); 1061 #endif 1062 #ifdef QUEUE_FLAG_ADD_RANDOM 1063 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zv->zv_zso->zvo_queue); 1064 #endif 1065 /* This flag was introduced in kernel version 4.12. */ 1066 #ifdef QUEUE_FLAG_SCSI_PASSTHROUGH 1067 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, zv->zv_zso->zvo_queue); 1068 #endif 1069 1070 ASSERT3P(zv->zv_zilog, ==, NULL); 1071 zv->zv_zilog = zil_open(os, zvol_get_data); 1072 if (spa_writeable(dmu_objset_spa(os))) { 1073 if (zil_replay_disable) 1074 zil_destroy(zv->zv_zilog, B_FALSE); 1075 else 1076 zil_replay(os, zv, zvol_replay_vector); 1077 } 1078 zil_close(zv->zv_zilog); 1079 zv->zv_zilog = NULL; 1080 ASSERT3P(zv->zv_kstat.dk_kstats, ==, NULL); 1081 dataset_kstats_create(&zv->zv_kstat, zv->zv_objset); 1082 1083 /* 1084 * When udev detects the addition of the device it will immediately 1085 * invoke blkid(8) to determine the type of content on the device. 1086 * Prefetching the blocks commonly scanned by blkid(8) will speed 1087 * up this process. 1088 */ 1089 len = MIN(MAX(zvol_prefetch_bytes, 0), SPA_MAXBLOCKSIZE); 1090 if (len > 0) { 1091 dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ); 1092 dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len, 1093 ZIO_PRIORITY_SYNC_READ); 1094 } 1095 1096 zv->zv_objset = NULL; 1097 out_dmu_objset_disown: 1098 dmu_objset_disown(os, B_TRUE, FTAG); 1099 out_doi: 1100 kmem_free(doi, sizeof (dmu_object_info_t)); 1101 1102 /* 1103 * Keep in mind that once add_disk() is called, the zvol is 1104 * announced to the world, and zvol_open()/zvol_release() can 1105 * be called at any time. Incidentally, add_disk() itself calls 1106 * zvol_open()->zvol_first_open() and zvol_release()->zvol_last_close() 1107 * directly as well. 1108 */ 1109 if (error == 0) { 1110 rw_enter(&zvol_state_lock, RW_WRITER); 1111 zvol_insert(zv); 1112 rw_exit(&zvol_state_lock); 1113 add_disk(zv->zv_zso->zvo_disk); 1114 } else { 1115 ida_simple_remove(&zvol_ida, idx); 1116 } 1117 1118 return (error); 1119 } 1120 1121 static void 1122 zvol_rename_minor(zvol_state_t *zv, const char *newname) 1123 { 1124 int readonly = get_disk_ro(zv->zv_zso->zvo_disk); 1125 1126 ASSERT(RW_LOCK_HELD(&zvol_state_lock)); 1127 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 1128 1129 strlcpy(zv->zv_name, newname, sizeof (zv->zv_name)); 1130 1131 /* move to new hashtable entry */ 1132 zv->zv_hash = zvol_name_hash(zv->zv_name); 1133 hlist_del(&zv->zv_hlink); 1134 hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash)); 1135 1136 /* 1137 * The block device's read-only state is briefly changed causing 1138 * a KOBJ_CHANGE uevent to be issued. This ensures udev detects 1139 * the name change and fixes the symlinks. This does not change 1140 * ZVOL_RDONLY in zv->zv_flags so the actual read-only state never 1141 * changes. This would normally be done using kobject_uevent() but 1142 * that is a GPL-only symbol which is why we need this workaround. 1143 */ 1144 set_disk_ro(zv->zv_zso->zvo_disk, !readonly); 1145 set_disk_ro(zv->zv_zso->zvo_disk, readonly); 1146 } 1147 1148 static void 1149 zvol_set_disk_ro_impl(zvol_state_t *zv, int flags) 1150 { 1151 1152 set_disk_ro(zv->zv_zso->zvo_disk, flags); 1153 } 1154 1155 static void 1156 zvol_set_capacity_impl(zvol_state_t *zv, uint64_t capacity) 1157 { 1158 1159 set_capacity(zv->zv_zso->zvo_disk, capacity); 1160 } 1161 1162 const static zvol_platform_ops_t zvol_linux_ops = { 1163 .zv_free = zvol_free, 1164 .zv_rename_minor = zvol_rename_minor, 1165 .zv_create_minor = zvol_os_create_minor, 1166 .zv_update_volsize = zvol_update_volsize, 1167 .zv_clear_private = zvol_clear_private, 1168 .zv_is_zvol = zvol_is_zvol_impl, 1169 .zv_set_disk_ro = zvol_set_disk_ro_impl, 1170 .zv_set_capacity = zvol_set_capacity_impl, 1171 }; 1172 1173 int 1174 zvol_init(void) 1175 { 1176 int error; 1177 int threads = MIN(MAX(zvol_threads, 1), 1024); 1178 1179 error = register_blkdev(zvol_major, ZVOL_DRIVER); 1180 if (error) { 1181 printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error); 1182 return (error); 1183 } 1184 zvol_taskq = taskq_create(ZVOL_DRIVER, threads, maxclsyspri, 1185 threads * 2, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC); 1186 if (zvol_taskq == NULL) { 1187 unregister_blkdev(zvol_major, ZVOL_DRIVER); 1188 return (-ENOMEM); 1189 } 1190 zvol_init_impl(); 1191 ida_init(&zvol_ida); 1192 zvol_register_ops(&zvol_linux_ops); 1193 return (0); 1194 } 1195 1196 void 1197 zvol_fini(void) 1198 { 1199 zvol_fini_impl(); 1200 unregister_blkdev(zvol_major, ZVOL_DRIVER); 1201 taskq_destroy(zvol_taskq); 1202 ida_destroy(&zvol_ida); 1203 } 1204 1205 /* BEGIN CSTYLED */ 1206 module_param(zvol_inhibit_dev, uint, 0644); 1207 MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes"); 1208 1209 module_param(zvol_major, uint, 0444); 1210 MODULE_PARM_DESC(zvol_major, "Major number for zvol device"); 1211 1212 module_param(zvol_threads, uint, 0444); 1213 MODULE_PARM_DESC(zvol_threads, "Max number of threads to handle I/O requests"); 1214 1215 module_param(zvol_request_sync, uint, 0644); 1216 MODULE_PARM_DESC(zvol_request_sync, "Synchronously handle bio requests"); 1217 1218 module_param(zvol_max_discard_blocks, ulong, 0444); 1219 MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard"); 1220 1221 module_param(zvol_prefetch_bytes, uint, 0644); 1222 MODULE_PARM_DESC(zvol_prefetch_bytes, "Prefetch N bytes at zvol start+end"); 1223 1224 module_param(zvol_volmode, uint, 0644); 1225 MODULE_PARM_DESC(zvol_volmode, "Default volmode property value"); 1226 /* END CSTYLED */ 1227