1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2011, Lawrence Livermore National Security, LLC. 23 * 24 * Extended attributes (xattr) on Solaris are implemented as files 25 * which exist in a hidden xattr directory. These extended attributes 26 * can be accessed using the attropen() system call which opens 27 * the extended attribute. It can then be manipulated just like 28 * a standard file descriptor. This has a couple advantages such 29 * as practically no size limit on the file, and the extended 30 * attributes permissions may differ from those of the parent file. 31 * This interface is really quite clever, but it's also completely 32 * different than what is supported on Linux. It also comes with a 33 * steep performance penalty when accessing small xattrs because they 34 * are not stored with the parent file. 35 * 36 * Under Linux extended attributes are manipulated by the system 37 * calls getxattr(2), setxattr(2), and listxattr(2). They consider 38 * extended attributes to be name/value pairs where the name is a 39 * NULL terminated string. The name must also include one of the 40 * following namespace prefixes: 41 * 42 * user - No restrictions and is available to user applications. 43 * trusted - Restricted to kernel and root (CAP_SYS_ADMIN) use. 44 * system - Used for access control lists (system.nfs4_acl, etc). 45 * security - Used by SELinux to store a files security context. 46 * 47 * The value under Linux to limited to 65536 bytes of binary data. 48 * In practice, individual xattrs tend to be much smaller than this 49 * and are typically less than 100 bytes. A good example of this 50 * are the security.selinux xattrs which are less than 100 bytes and 51 * exist for every file when xattr labeling is enabled. 52 * 53 * The Linux xattr implementation has been written to take advantage of 54 * this typical usage. When the dataset property 'xattr=sa' is set, 55 * then xattrs will be preferentially stored as System Attributes (SA). 56 * This allows tiny xattrs (~100 bytes) to be stored with the dnode and 57 * up to 64k of xattrs to be stored in the spill block. If additional 58 * xattr space is required, which is unlikely under Linux, they will 59 * be stored using the traditional directory approach. 60 * 61 * This optimization results in roughly a 3x performance improvement 62 * when accessing xattrs because it avoids the need to perform a seek 63 * for every xattr value. When multiple xattrs are stored per-file 64 * the performance improvements are even greater because all of the 65 * xattrs stored in the spill block will be cached. 66 * 67 * However, by default SA based xattrs are disabled in the Linux port 68 * to maximize compatibility with other implementations. If you do 69 * enable SA based xattrs then they will not be visible on platforms 70 * which do not support this feature. 71 * 72 * NOTE: One additional consequence of the xattr directory implementation 73 * is that when an extended attribute is manipulated an inode is created. 74 * This inode will exist in the Linux inode cache but there will be no 75 * associated entry in the dentry cache which references it. This is 76 * safe but it may result in some confusion. Enabling SA based xattrs 77 * largely avoids the issue except in the overflow case. 78 */ 79 80 #include <sys/zfs_znode.h> 81 #include <sys/zfs_vfsops.h> 82 #include <sys/zfs_vnops.h> 83 #include <sys/zap.h> 84 #include <sys/vfs.h> 85 #include <sys/zpl.h> 86 #include <linux/vfs_compat.h> 87 88 enum xattr_permission { 89 XAPERM_DENY, 90 XAPERM_ALLOW, 91 XAPERM_COMPAT, 92 }; 93 94 typedef struct xattr_filldir { 95 size_t size; 96 size_t offset; 97 char *buf; 98 struct dentry *dentry; 99 } xattr_filldir_t; 100 101 static enum xattr_permission zpl_xattr_permission(xattr_filldir_t *, 102 const char *, int); 103 104 static int zfs_xattr_compat = 0; 105 106 /* 107 * Determine is a given xattr name should be visible and if so copy it 108 * in to the provided buffer (xf->buf). 109 */ 110 static int 111 zpl_xattr_filldir(xattr_filldir_t *xf, const char *name, int name_len) 112 { 113 enum xattr_permission perm; 114 115 /* Check permissions using the per-namespace list xattr handler. */ 116 perm = zpl_xattr_permission(xf, name, name_len); 117 if (perm == XAPERM_DENY) 118 return (0); 119 120 /* Prefix the name with "user." if it does not have a namespace. */ 121 if (perm == XAPERM_COMPAT) { 122 if (xf->buf) { 123 if (xf->offset + XATTR_USER_PREFIX_LEN + 1 > xf->size) 124 return (-ERANGE); 125 126 memcpy(xf->buf + xf->offset, XATTR_USER_PREFIX, 127 XATTR_USER_PREFIX_LEN); 128 xf->buf[xf->offset + XATTR_USER_PREFIX_LEN] = '\0'; 129 } 130 131 xf->offset += XATTR_USER_PREFIX_LEN; 132 } 133 134 /* When xf->buf is NULL only calculate the required size. */ 135 if (xf->buf) { 136 if (xf->offset + name_len + 1 > xf->size) 137 return (-ERANGE); 138 139 memcpy(xf->buf + xf->offset, name, name_len); 140 xf->buf[xf->offset + name_len] = '\0'; 141 } 142 143 xf->offset += (name_len + 1); 144 145 return (0); 146 } 147 148 /* 149 * Read as many directory entry names as will fit in to the provided buffer, 150 * or when no buffer is provided calculate the required buffer size. 151 */ 152 static int 153 zpl_xattr_readdir(struct inode *dxip, xattr_filldir_t *xf) 154 { 155 zap_cursor_t zc; 156 zap_attribute_t zap; 157 int error; 158 159 zap_cursor_init(&zc, ITOZSB(dxip)->z_os, ITOZ(dxip)->z_id); 160 161 while ((error = -zap_cursor_retrieve(&zc, &zap)) == 0) { 162 163 if (zap.za_integer_length != 8 || zap.za_num_integers != 1) { 164 error = -ENXIO; 165 break; 166 } 167 168 error = zpl_xattr_filldir(xf, zap.za_name, strlen(zap.za_name)); 169 if (error) 170 break; 171 172 zap_cursor_advance(&zc); 173 } 174 175 zap_cursor_fini(&zc); 176 177 if (error == -ENOENT) 178 error = 0; 179 180 return (error); 181 } 182 183 static ssize_t 184 zpl_xattr_list_dir(xattr_filldir_t *xf, cred_t *cr) 185 { 186 struct inode *ip = xf->dentry->d_inode; 187 struct inode *dxip = NULL; 188 znode_t *dxzp; 189 int error; 190 191 /* Lookup the xattr directory */ 192 error = -zfs_lookup(ITOZ(ip), NULL, &dxzp, LOOKUP_XATTR, 193 cr, NULL, NULL); 194 if (error) { 195 if (error == -ENOENT) 196 error = 0; 197 198 return (error); 199 } 200 201 dxip = ZTOI(dxzp); 202 error = zpl_xattr_readdir(dxip, xf); 203 iput(dxip); 204 205 return (error); 206 } 207 208 static ssize_t 209 zpl_xattr_list_sa(xattr_filldir_t *xf) 210 { 211 znode_t *zp = ITOZ(xf->dentry->d_inode); 212 nvpair_t *nvp = NULL; 213 int error = 0; 214 215 mutex_enter(&zp->z_lock); 216 if (zp->z_xattr_cached == NULL) 217 error = -zfs_sa_get_xattr(zp); 218 mutex_exit(&zp->z_lock); 219 220 if (error) 221 return (error); 222 223 ASSERT(zp->z_xattr_cached); 224 225 while ((nvp = nvlist_next_nvpair(zp->z_xattr_cached, nvp)) != NULL) { 226 ASSERT3U(nvpair_type(nvp), ==, DATA_TYPE_BYTE_ARRAY); 227 228 error = zpl_xattr_filldir(xf, nvpair_name(nvp), 229 strlen(nvpair_name(nvp))); 230 if (error) 231 return (error); 232 } 233 234 return (0); 235 } 236 237 ssize_t 238 zpl_xattr_list(struct dentry *dentry, char *buffer, size_t buffer_size) 239 { 240 znode_t *zp = ITOZ(dentry->d_inode); 241 zfsvfs_t *zfsvfs = ZTOZSB(zp); 242 xattr_filldir_t xf = { buffer_size, 0, buffer, dentry }; 243 cred_t *cr = CRED(); 244 fstrans_cookie_t cookie; 245 int error = 0; 246 247 crhold(cr); 248 cookie = spl_fstrans_mark(); 249 if ((error = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 250 goto out1; 251 rw_enter(&zp->z_xattr_lock, RW_READER); 252 253 if (zfsvfs->z_use_sa && zp->z_is_sa) { 254 error = zpl_xattr_list_sa(&xf); 255 if (error) 256 goto out; 257 } 258 259 error = zpl_xattr_list_dir(&xf, cr); 260 if (error) 261 goto out; 262 263 error = xf.offset; 264 out: 265 266 rw_exit(&zp->z_xattr_lock); 267 zpl_exit(zfsvfs, FTAG); 268 out1: 269 spl_fstrans_unmark(cookie); 270 crfree(cr); 271 272 return (error); 273 } 274 275 static int 276 zpl_xattr_get_dir(struct inode *ip, const char *name, void *value, 277 size_t size, cred_t *cr) 278 { 279 fstrans_cookie_t cookie; 280 struct inode *xip = NULL; 281 znode_t *dxzp = NULL; 282 znode_t *xzp = NULL; 283 int error; 284 285 /* Lookup the xattr directory */ 286 error = -zfs_lookup(ITOZ(ip), NULL, &dxzp, LOOKUP_XATTR, 287 cr, NULL, NULL); 288 if (error) 289 goto out; 290 291 /* Lookup a specific xattr name in the directory */ 292 error = -zfs_lookup(dxzp, (char *)name, &xzp, 0, cr, NULL, NULL); 293 if (error) 294 goto out; 295 296 xip = ZTOI(xzp); 297 if (!size) { 298 error = i_size_read(xip); 299 goto out; 300 } 301 302 if (size < i_size_read(xip)) { 303 error = -ERANGE; 304 goto out; 305 } 306 307 struct iovec iov; 308 iov.iov_base = (void *)value; 309 iov.iov_len = size; 310 311 zfs_uio_t uio; 312 zfs_uio_iovec_init(&uio, &iov, 1, 0, UIO_SYSSPACE, size, 0); 313 314 cookie = spl_fstrans_mark(); 315 error = -zfs_read(ITOZ(xip), &uio, 0, cr); 316 spl_fstrans_unmark(cookie); 317 318 if (error == 0) 319 error = size - zfs_uio_resid(&uio); 320 out: 321 if (xzp) 322 zrele(xzp); 323 324 if (dxzp) 325 zrele(dxzp); 326 327 return (error); 328 } 329 330 static int 331 zpl_xattr_get_sa(struct inode *ip, const char *name, void *value, size_t size) 332 { 333 znode_t *zp = ITOZ(ip); 334 uchar_t *nv_value; 335 uint_t nv_size; 336 int error = 0; 337 338 ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock)); 339 340 mutex_enter(&zp->z_lock); 341 if (zp->z_xattr_cached == NULL) 342 error = -zfs_sa_get_xattr(zp); 343 mutex_exit(&zp->z_lock); 344 345 if (error) 346 return (error); 347 348 ASSERT(zp->z_xattr_cached); 349 error = -nvlist_lookup_byte_array(zp->z_xattr_cached, name, 350 &nv_value, &nv_size); 351 if (error) 352 return (error); 353 354 if (size == 0 || value == NULL) 355 return (nv_size); 356 357 if (size < nv_size) 358 return (-ERANGE); 359 360 memcpy(value, nv_value, nv_size); 361 362 return (nv_size); 363 } 364 365 static int 366 __zpl_xattr_get(struct inode *ip, const char *name, void *value, size_t size, 367 cred_t *cr) 368 { 369 znode_t *zp = ITOZ(ip); 370 zfsvfs_t *zfsvfs = ZTOZSB(zp); 371 int error; 372 373 ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock)); 374 375 if (zfsvfs->z_use_sa && zp->z_is_sa) { 376 error = zpl_xattr_get_sa(ip, name, value, size); 377 if (error != -ENOENT) 378 goto out; 379 } 380 381 error = zpl_xattr_get_dir(ip, name, value, size, cr); 382 out: 383 if (error == -ENOENT) 384 error = -ENODATA; 385 386 return (error); 387 } 388 389 #define XATTR_NOENT 0x0 390 #define XATTR_IN_SA 0x1 391 #define XATTR_IN_DIR 0x2 392 /* check where the xattr resides */ 393 static int 394 __zpl_xattr_where(struct inode *ip, const char *name, int *where, cred_t *cr) 395 { 396 znode_t *zp = ITOZ(ip); 397 zfsvfs_t *zfsvfs = ZTOZSB(zp); 398 int error; 399 400 ASSERT(where); 401 ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock)); 402 403 *where = XATTR_NOENT; 404 if (zfsvfs->z_use_sa && zp->z_is_sa) { 405 error = zpl_xattr_get_sa(ip, name, NULL, 0); 406 if (error >= 0) 407 *where |= XATTR_IN_SA; 408 else if (error != -ENOENT) 409 return (error); 410 } 411 412 error = zpl_xattr_get_dir(ip, name, NULL, 0, cr); 413 if (error >= 0) 414 *where |= XATTR_IN_DIR; 415 else if (error != -ENOENT) 416 return (error); 417 418 if (*where == (XATTR_IN_SA|XATTR_IN_DIR)) 419 cmn_err(CE_WARN, "ZFS: inode %p has xattr \"%s\"" 420 " in both SA and dir", ip, name); 421 if (*where == XATTR_NOENT) 422 error = -ENODATA; 423 else 424 error = 0; 425 return (error); 426 } 427 428 static int 429 zpl_xattr_get(struct inode *ip, const char *name, void *value, size_t size) 430 { 431 znode_t *zp = ITOZ(ip); 432 zfsvfs_t *zfsvfs = ZTOZSB(zp); 433 cred_t *cr = CRED(); 434 fstrans_cookie_t cookie; 435 int error; 436 437 crhold(cr); 438 cookie = spl_fstrans_mark(); 439 if ((error = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 440 goto out; 441 rw_enter(&zp->z_xattr_lock, RW_READER); 442 error = __zpl_xattr_get(ip, name, value, size, cr); 443 rw_exit(&zp->z_xattr_lock); 444 zpl_exit(zfsvfs, FTAG); 445 out: 446 spl_fstrans_unmark(cookie); 447 crfree(cr); 448 449 return (error); 450 } 451 452 static int 453 zpl_xattr_set_dir(struct inode *ip, const char *name, const void *value, 454 size_t size, int flags, cred_t *cr) 455 { 456 znode_t *dxzp = NULL; 457 znode_t *xzp = NULL; 458 vattr_t *vap = NULL; 459 int lookup_flags, error; 460 const int xattr_mode = S_IFREG | 0644; 461 loff_t pos = 0; 462 463 /* 464 * Lookup the xattr directory. When we're adding an entry pass 465 * CREATE_XATTR_DIR to ensure the xattr directory is created. 466 * When removing an entry this flag is not passed to avoid 467 * unnecessarily creating a new xattr directory. 468 */ 469 lookup_flags = LOOKUP_XATTR; 470 if (value != NULL) 471 lookup_flags |= CREATE_XATTR_DIR; 472 473 error = -zfs_lookup(ITOZ(ip), NULL, &dxzp, lookup_flags, 474 cr, NULL, NULL); 475 if (error) 476 goto out; 477 478 /* Lookup a specific xattr name in the directory */ 479 error = -zfs_lookup(dxzp, (char *)name, &xzp, 0, cr, NULL, NULL); 480 if (error && (error != -ENOENT)) 481 goto out; 482 483 error = 0; 484 485 /* Remove a specific name xattr when value is set to NULL. */ 486 if (value == NULL) { 487 if (xzp) 488 error = -zfs_remove(dxzp, (char *)name, cr, 0); 489 490 goto out; 491 } 492 493 /* Lookup failed create a new xattr. */ 494 if (xzp == NULL) { 495 vap = kmem_zalloc(sizeof (vattr_t), KM_SLEEP); 496 vap->va_mode = xattr_mode; 497 vap->va_mask = ATTR_MODE; 498 vap->va_uid = crgetuid(cr); 499 vap->va_gid = crgetgid(cr); 500 501 error = -zfs_create(dxzp, (char *)name, vap, 0, 0644, &xzp, 502 cr, 0, NULL, kcred->user_ns); 503 if (error) 504 goto out; 505 } 506 507 ASSERT(xzp != NULL); 508 509 error = -zfs_freesp(xzp, 0, 0, xattr_mode, TRUE); 510 if (error) 511 goto out; 512 513 error = -zfs_write_simple(xzp, value, size, pos, NULL); 514 out: 515 if (error == 0) { 516 ip->i_ctime = current_time(ip); 517 zfs_mark_inode_dirty(ip); 518 } 519 520 if (vap) 521 kmem_free(vap, sizeof (vattr_t)); 522 523 if (xzp) 524 zrele(xzp); 525 526 if (dxzp) 527 zrele(dxzp); 528 529 if (error == -ENOENT) 530 error = -ENODATA; 531 532 ASSERT3S(error, <=, 0); 533 534 return (error); 535 } 536 537 static int 538 zpl_xattr_set_sa(struct inode *ip, const char *name, const void *value, 539 size_t size, int flags, cred_t *cr) 540 { 541 znode_t *zp = ITOZ(ip); 542 nvlist_t *nvl; 543 size_t sa_size; 544 int error = 0; 545 546 mutex_enter(&zp->z_lock); 547 if (zp->z_xattr_cached == NULL) 548 error = -zfs_sa_get_xattr(zp); 549 mutex_exit(&zp->z_lock); 550 551 if (error) 552 return (error); 553 554 ASSERT(zp->z_xattr_cached); 555 nvl = zp->z_xattr_cached; 556 557 if (value == NULL) { 558 error = -nvlist_remove(nvl, name, DATA_TYPE_BYTE_ARRAY); 559 if (error == -ENOENT) 560 error = zpl_xattr_set_dir(ip, name, NULL, 0, flags, cr); 561 } else { 562 /* Limited to 32k to keep nvpair memory allocations small */ 563 if (size > DXATTR_MAX_ENTRY_SIZE) 564 return (-EFBIG); 565 566 /* Prevent the DXATTR SA from consuming the entire SA region */ 567 error = -nvlist_size(nvl, &sa_size, NV_ENCODE_XDR); 568 if (error) 569 return (error); 570 571 if (sa_size > DXATTR_MAX_SA_SIZE) 572 return (-EFBIG); 573 574 error = -nvlist_add_byte_array(nvl, name, 575 (uchar_t *)value, size); 576 } 577 578 /* 579 * Update the SA for additions, modifications, and removals. On 580 * error drop the inconsistent cached version of the nvlist, it 581 * will be reconstructed from the ARC when next accessed. 582 */ 583 if (error == 0) 584 error = -zfs_sa_set_xattr(zp, name, value, size); 585 586 if (error) { 587 nvlist_free(nvl); 588 zp->z_xattr_cached = NULL; 589 } 590 591 ASSERT3S(error, <=, 0); 592 593 return (error); 594 } 595 596 static int 597 zpl_xattr_set(struct inode *ip, const char *name, const void *value, 598 size_t size, int flags) 599 { 600 znode_t *zp = ITOZ(ip); 601 zfsvfs_t *zfsvfs = ZTOZSB(zp); 602 cred_t *cr = CRED(); 603 fstrans_cookie_t cookie; 604 int where; 605 int error; 606 607 crhold(cr); 608 cookie = spl_fstrans_mark(); 609 if ((error = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 610 goto out1; 611 rw_enter(&zp->z_xattr_lock, RW_WRITER); 612 613 /* 614 * Before setting the xattr check to see if it already exists. 615 * This is done to ensure the following optional flags are honored. 616 * 617 * XATTR_CREATE: fail if xattr already exists 618 * XATTR_REPLACE: fail if xattr does not exist 619 * 620 * We also want to know if it resides in sa or dir, so we can make 621 * sure we don't end up with duplicate in both places. 622 */ 623 error = __zpl_xattr_where(ip, name, &where, cr); 624 if (error < 0) { 625 if (error != -ENODATA) 626 goto out; 627 if (flags & XATTR_REPLACE) 628 goto out; 629 630 /* The xattr to be removed already doesn't exist */ 631 error = 0; 632 if (value == NULL) 633 goto out; 634 } else { 635 error = -EEXIST; 636 if (flags & XATTR_CREATE) 637 goto out; 638 } 639 640 /* Preferentially store the xattr as a SA for better performance */ 641 if (zfsvfs->z_use_sa && zp->z_is_sa && 642 (zfsvfs->z_xattr_sa || (value == NULL && where & XATTR_IN_SA))) { 643 error = zpl_xattr_set_sa(ip, name, value, size, flags, cr); 644 if (error == 0) { 645 /* 646 * Successfully put into SA, we need to clear the one 647 * in dir. 648 */ 649 if (where & XATTR_IN_DIR) 650 zpl_xattr_set_dir(ip, name, NULL, 0, 0, cr); 651 goto out; 652 } 653 } 654 655 error = zpl_xattr_set_dir(ip, name, value, size, flags, cr); 656 /* 657 * Successfully put into dir, we need to clear the one in SA. 658 */ 659 if (error == 0 && (where & XATTR_IN_SA)) 660 zpl_xattr_set_sa(ip, name, NULL, 0, 0, cr); 661 out: 662 rw_exit(&zp->z_xattr_lock); 663 zpl_exit(zfsvfs, FTAG); 664 out1: 665 spl_fstrans_unmark(cookie); 666 crfree(cr); 667 ASSERT3S(error, <=, 0); 668 669 return (error); 670 } 671 672 /* 673 * Extended user attributes 674 * 675 * "Extended user attributes may be assigned to files and directories for 676 * storing arbitrary additional information such as the mime type, 677 * character set or encoding of a file. The access permissions for user 678 * attributes are defined by the file permission bits: read permission 679 * is required to retrieve the attribute value, and writer permission is 680 * required to change it. 681 * 682 * The file permission bits of regular files and directories are 683 * interpreted differently from the file permission bits of special 684 * files and symbolic links. For regular files and directories the file 685 * permission bits define access to the file's contents, while for 686 * device special files they define access to the device described by 687 * the special file. The file permissions of symbolic links are not 688 * used in access checks. These differences would allow users to 689 * consume filesystem resources in a way not controllable by disk quotas 690 * for group or world writable special files and directories. 691 * 692 * For this reason, extended user attributes are allowed only for 693 * regular files and directories, and access to extended user attributes 694 * is restricted to the owner and to users with appropriate capabilities 695 * for directories with the sticky bit set (see the chmod(1) manual page 696 * for an explanation of the sticky bit)." - xattr(7) 697 * 698 * ZFS allows extended user attributes to be disabled administratively 699 * by setting the 'xattr=off' property on the dataset. 700 */ 701 static int 702 __zpl_xattr_user_list(struct inode *ip, char *list, size_t list_size, 703 const char *name, size_t name_len) 704 { 705 return (ITOZSB(ip)->z_flags & ZSB_XATTR); 706 } 707 ZPL_XATTR_LIST_WRAPPER(zpl_xattr_user_list); 708 709 static int 710 __zpl_xattr_user_get(struct inode *ip, const char *name, 711 void *value, size_t size) 712 { 713 int error; 714 /* xattr_resolve_name will do this for us if this is defined */ 715 #ifndef HAVE_XATTR_HANDLER_NAME 716 if (strcmp(name, "") == 0) 717 return (-EINVAL); 718 #endif 719 if (ZFS_XA_NS_PREFIX_FORBIDDEN(name)) 720 return (-EINVAL); 721 if (!(ITOZSB(ip)->z_flags & ZSB_XATTR)) 722 return (-EOPNOTSUPP); 723 724 /* 725 * Try to look up the name with the namespace prefix first for 726 * compatibility with xattrs from this platform. If that fails, 727 * try again without the namespace prefix for compatibility with 728 * other platforms. 729 */ 730 char *xattr_name = kmem_asprintf("%s%s", XATTR_USER_PREFIX, name); 731 error = zpl_xattr_get(ip, xattr_name, value, size); 732 kmem_strfree(xattr_name); 733 if (error == -ENODATA) 734 error = zpl_xattr_get(ip, name, value, size); 735 736 return (error); 737 } 738 ZPL_XATTR_GET_WRAPPER(zpl_xattr_user_get); 739 740 static int 741 __zpl_xattr_user_set(struct user_namespace *user_ns, 742 struct inode *ip, const char *name, 743 const void *value, size_t size, int flags) 744 { 745 (void) user_ns; 746 int error = 0; 747 /* xattr_resolve_name will do this for us if this is defined */ 748 #ifndef HAVE_XATTR_HANDLER_NAME 749 if (strcmp(name, "") == 0) 750 return (-EINVAL); 751 #endif 752 if (ZFS_XA_NS_PREFIX_FORBIDDEN(name)) 753 return (-EINVAL); 754 if (!(ITOZSB(ip)->z_flags & ZSB_XATTR)) 755 return (-EOPNOTSUPP); 756 757 /* 758 * Remove alternate compat version of the xattr so we only set the 759 * version specified by the zfs_xattr_compat tunable. 760 * 761 * The following flags must be handled correctly: 762 * 763 * XATTR_CREATE: fail if xattr already exists 764 * XATTR_REPLACE: fail if xattr does not exist 765 */ 766 char *prefixed_name = kmem_asprintf("%s%s", XATTR_USER_PREFIX, name); 767 const char *clear_name, *set_name; 768 if (zfs_xattr_compat) { 769 clear_name = prefixed_name; 770 set_name = name; 771 } else { 772 clear_name = name; 773 set_name = prefixed_name; 774 } 775 /* 776 * Clear the old value with the alternative name format, if it exists. 777 */ 778 error = zpl_xattr_set(ip, clear_name, NULL, 0, flags); 779 /* 780 * XATTR_CREATE was specified and we failed to clear the xattr 781 * because it already exists. Stop here. 782 */ 783 if (error == -EEXIST) 784 goto out; 785 /* 786 * If XATTR_REPLACE was specified and we succeeded to clear 787 * an xattr, we don't need to replace anything when setting 788 * the new value. If we failed with -ENODATA that's fine, 789 * there was nothing to be cleared and we can ignore the error. 790 */ 791 if (error == 0) 792 flags &= ~XATTR_REPLACE; 793 /* 794 * Set the new value with the configured name format. 795 */ 796 error = zpl_xattr_set(ip, set_name, value, size, flags); 797 out: 798 kmem_strfree(prefixed_name); 799 return (error); 800 } 801 ZPL_XATTR_SET_WRAPPER(zpl_xattr_user_set); 802 803 static xattr_handler_t zpl_xattr_user_handler = 804 { 805 .prefix = XATTR_USER_PREFIX, 806 .list = zpl_xattr_user_list, 807 .get = zpl_xattr_user_get, 808 .set = zpl_xattr_user_set, 809 }; 810 811 /* 812 * Trusted extended attributes 813 * 814 * "Trusted extended attributes are visible and accessible only to 815 * processes that have the CAP_SYS_ADMIN capability. Attributes in this 816 * class are used to implement mechanisms in user space (i.e., outside 817 * the kernel) which keep information in extended attributes to which 818 * ordinary processes should not have access." - xattr(7) 819 */ 820 static int 821 __zpl_xattr_trusted_list(struct inode *ip, char *list, size_t list_size, 822 const char *name, size_t name_len) 823 { 824 return (capable(CAP_SYS_ADMIN)); 825 } 826 ZPL_XATTR_LIST_WRAPPER(zpl_xattr_trusted_list); 827 828 static int 829 __zpl_xattr_trusted_get(struct inode *ip, const char *name, 830 void *value, size_t size) 831 { 832 char *xattr_name; 833 int error; 834 835 if (!capable(CAP_SYS_ADMIN)) 836 return (-EACCES); 837 /* xattr_resolve_name will do this for us if this is defined */ 838 #ifndef HAVE_XATTR_HANDLER_NAME 839 if (strcmp(name, "") == 0) 840 return (-EINVAL); 841 #endif 842 xattr_name = kmem_asprintf("%s%s", XATTR_TRUSTED_PREFIX, name); 843 error = zpl_xattr_get(ip, xattr_name, value, size); 844 kmem_strfree(xattr_name); 845 846 return (error); 847 } 848 ZPL_XATTR_GET_WRAPPER(zpl_xattr_trusted_get); 849 850 static int 851 __zpl_xattr_trusted_set(struct user_namespace *user_ns, 852 struct inode *ip, const char *name, 853 const void *value, size_t size, int flags) 854 { 855 (void) user_ns; 856 char *xattr_name; 857 int error; 858 859 if (!capable(CAP_SYS_ADMIN)) 860 return (-EACCES); 861 /* xattr_resolve_name will do this for us if this is defined */ 862 #ifndef HAVE_XATTR_HANDLER_NAME 863 if (strcmp(name, "") == 0) 864 return (-EINVAL); 865 #endif 866 xattr_name = kmem_asprintf("%s%s", XATTR_TRUSTED_PREFIX, name); 867 error = zpl_xattr_set(ip, xattr_name, value, size, flags); 868 kmem_strfree(xattr_name); 869 870 return (error); 871 } 872 ZPL_XATTR_SET_WRAPPER(zpl_xattr_trusted_set); 873 874 static xattr_handler_t zpl_xattr_trusted_handler = { 875 .prefix = XATTR_TRUSTED_PREFIX, 876 .list = zpl_xattr_trusted_list, 877 .get = zpl_xattr_trusted_get, 878 .set = zpl_xattr_trusted_set, 879 }; 880 881 /* 882 * Extended security attributes 883 * 884 * "The security attribute namespace is used by kernel security modules, 885 * such as Security Enhanced Linux, and also to implement file 886 * capabilities (see capabilities(7)). Read and write access 887 * permissions to security attributes depend on the policy implemented 888 * for each security attribute by the security module. When no security 889 * module is loaded, all processes have read access to extended security 890 * attributes, and write access is limited to processes that have the 891 * CAP_SYS_ADMIN capability." - xattr(7) 892 */ 893 static int 894 __zpl_xattr_security_list(struct inode *ip, char *list, size_t list_size, 895 const char *name, size_t name_len) 896 { 897 return (1); 898 } 899 ZPL_XATTR_LIST_WRAPPER(zpl_xattr_security_list); 900 901 static int 902 __zpl_xattr_security_get(struct inode *ip, const char *name, 903 void *value, size_t size) 904 { 905 char *xattr_name; 906 int error; 907 /* xattr_resolve_name will do this for us if this is defined */ 908 #ifndef HAVE_XATTR_HANDLER_NAME 909 if (strcmp(name, "") == 0) 910 return (-EINVAL); 911 #endif 912 xattr_name = kmem_asprintf("%s%s", XATTR_SECURITY_PREFIX, name); 913 error = zpl_xattr_get(ip, xattr_name, value, size); 914 kmem_strfree(xattr_name); 915 916 return (error); 917 } 918 ZPL_XATTR_GET_WRAPPER(zpl_xattr_security_get); 919 920 static int 921 __zpl_xattr_security_set(struct user_namespace *user_ns, 922 struct inode *ip, const char *name, 923 const void *value, size_t size, int flags) 924 { 925 (void) user_ns; 926 char *xattr_name; 927 int error; 928 /* xattr_resolve_name will do this for us if this is defined */ 929 #ifndef HAVE_XATTR_HANDLER_NAME 930 if (strcmp(name, "") == 0) 931 return (-EINVAL); 932 #endif 933 xattr_name = kmem_asprintf("%s%s", XATTR_SECURITY_PREFIX, name); 934 error = zpl_xattr_set(ip, xattr_name, value, size, flags); 935 kmem_strfree(xattr_name); 936 937 return (error); 938 } 939 ZPL_XATTR_SET_WRAPPER(zpl_xattr_security_set); 940 941 static int 942 zpl_xattr_security_init_impl(struct inode *ip, const struct xattr *xattrs, 943 void *fs_info) 944 { 945 const struct xattr *xattr; 946 int error = 0; 947 948 for (xattr = xattrs; xattr->name != NULL; xattr++) { 949 error = __zpl_xattr_security_set(NULL, ip, 950 xattr->name, xattr->value, xattr->value_len, 0); 951 952 if (error < 0) 953 break; 954 } 955 956 return (error); 957 } 958 959 int 960 zpl_xattr_security_init(struct inode *ip, struct inode *dip, 961 const struct qstr *qstr) 962 { 963 return security_inode_init_security(ip, dip, qstr, 964 &zpl_xattr_security_init_impl, NULL); 965 } 966 967 /* 968 * Security xattr namespace handlers. 969 */ 970 static xattr_handler_t zpl_xattr_security_handler = { 971 .prefix = XATTR_SECURITY_PREFIX, 972 .list = zpl_xattr_security_list, 973 .get = zpl_xattr_security_get, 974 .set = zpl_xattr_security_set, 975 }; 976 977 /* 978 * Extended system attributes 979 * 980 * "Extended system attributes are used by the kernel to store system 981 * objects such as Access Control Lists. Read and write access permissions 982 * to system attributes depend on the policy implemented for each system 983 * attribute implemented by filesystems in the kernel." - xattr(7) 984 */ 985 #ifdef CONFIG_FS_POSIX_ACL 986 static int 987 zpl_set_acl_impl(struct inode *ip, struct posix_acl *acl, int type) 988 { 989 char *name, *value = NULL; 990 int error = 0; 991 size_t size = 0; 992 993 if (S_ISLNK(ip->i_mode)) 994 return (-EOPNOTSUPP); 995 996 switch (type) { 997 case ACL_TYPE_ACCESS: 998 name = XATTR_NAME_POSIX_ACL_ACCESS; 999 if (acl) { 1000 umode_t mode = ip->i_mode; 1001 error = posix_acl_equiv_mode(acl, &mode); 1002 if (error < 0) { 1003 return (error); 1004 } else { 1005 /* 1006 * The mode bits will have been set by 1007 * ->zfs_setattr()->zfs_acl_chmod_setattr() 1008 * using the ZFS ACL conversion. If they 1009 * differ from the Posix ACL conversion dirty 1010 * the inode to write the Posix mode bits. 1011 */ 1012 if (ip->i_mode != mode) { 1013 ip->i_mode = ITOZ(ip)->z_mode = mode; 1014 ip->i_ctime = current_time(ip); 1015 zfs_mark_inode_dirty(ip); 1016 } 1017 1018 if (error == 0) 1019 acl = NULL; 1020 } 1021 } 1022 break; 1023 1024 case ACL_TYPE_DEFAULT: 1025 name = XATTR_NAME_POSIX_ACL_DEFAULT; 1026 if (!S_ISDIR(ip->i_mode)) 1027 return (acl ? -EACCES : 0); 1028 break; 1029 1030 default: 1031 return (-EINVAL); 1032 } 1033 1034 if (acl) { 1035 size = posix_acl_xattr_size(acl->a_count); 1036 value = kmem_alloc(size, KM_SLEEP); 1037 1038 error = zpl_acl_to_xattr(acl, value, size); 1039 if (error < 0) { 1040 kmem_free(value, size); 1041 return (error); 1042 } 1043 } 1044 1045 error = zpl_xattr_set(ip, name, value, size, 0); 1046 if (value) 1047 kmem_free(value, size); 1048 1049 if (!error) { 1050 if (acl) 1051 zpl_set_cached_acl(ip, type, acl); 1052 else 1053 zpl_forget_cached_acl(ip, type); 1054 } 1055 1056 return (error); 1057 } 1058 1059 #ifdef HAVE_SET_ACL 1060 int 1061 #ifdef HAVE_SET_ACL_USERNS 1062 zpl_set_acl(struct user_namespace *userns, struct inode *ip, 1063 struct posix_acl *acl, int type) 1064 #else 1065 zpl_set_acl(struct inode *ip, struct posix_acl *acl, int type) 1066 #endif /* HAVE_SET_ACL_USERNS */ 1067 { 1068 return (zpl_set_acl_impl(ip, acl, type)); 1069 } 1070 #endif /* HAVE_SET_ACL */ 1071 1072 static struct posix_acl * 1073 zpl_get_acl_impl(struct inode *ip, int type) 1074 { 1075 struct posix_acl *acl; 1076 void *value = NULL; 1077 char *name; 1078 1079 /* 1080 * As of Linux 3.14, the kernel get_acl will check this for us. 1081 * Also as of Linux 4.7, comparing against ACL_NOT_CACHED is wrong 1082 * as the kernel get_acl will set it to temporary sentinel value. 1083 */ 1084 #ifndef HAVE_KERNEL_GET_ACL_HANDLE_CACHE 1085 acl = get_cached_acl(ip, type); 1086 if (acl != ACL_NOT_CACHED) 1087 return (acl); 1088 #endif 1089 1090 switch (type) { 1091 case ACL_TYPE_ACCESS: 1092 name = XATTR_NAME_POSIX_ACL_ACCESS; 1093 break; 1094 case ACL_TYPE_DEFAULT: 1095 name = XATTR_NAME_POSIX_ACL_DEFAULT; 1096 break; 1097 default: 1098 return (ERR_PTR(-EINVAL)); 1099 } 1100 1101 int size = zpl_xattr_get(ip, name, NULL, 0); 1102 if (size > 0) { 1103 value = kmem_alloc(size, KM_SLEEP); 1104 size = zpl_xattr_get(ip, name, value, size); 1105 } 1106 1107 if (size > 0) { 1108 acl = zpl_acl_from_xattr(value, size); 1109 } else if (size == -ENODATA || size == -ENOSYS) { 1110 acl = NULL; 1111 } else { 1112 acl = ERR_PTR(-EIO); 1113 } 1114 1115 if (size > 0) 1116 kmem_free(value, size); 1117 1118 /* As of Linux 4.7, the kernel get_acl will set this for us */ 1119 #ifndef HAVE_KERNEL_GET_ACL_HANDLE_CACHE 1120 if (!IS_ERR(acl)) 1121 zpl_set_cached_acl(ip, type, acl); 1122 #endif 1123 1124 return (acl); 1125 } 1126 1127 #if defined(HAVE_GET_ACL_RCU) 1128 struct posix_acl * 1129 zpl_get_acl(struct inode *ip, int type, bool rcu) 1130 { 1131 if (rcu) 1132 return (ERR_PTR(-ECHILD)); 1133 1134 return (zpl_get_acl_impl(ip, type)); 1135 } 1136 #elif defined(HAVE_GET_ACL) 1137 struct posix_acl * 1138 zpl_get_acl(struct inode *ip, int type) 1139 { 1140 return (zpl_get_acl_impl(ip, type)); 1141 } 1142 #else 1143 #error "Unsupported iops->get_acl() implementation" 1144 #endif /* HAVE_GET_ACL_RCU */ 1145 1146 int 1147 zpl_init_acl(struct inode *ip, struct inode *dir) 1148 { 1149 struct posix_acl *acl = NULL; 1150 int error = 0; 1151 1152 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX) 1153 return (0); 1154 1155 if (!S_ISLNK(ip->i_mode)) { 1156 acl = zpl_get_acl_impl(dir, ACL_TYPE_DEFAULT); 1157 if (IS_ERR(acl)) 1158 return (PTR_ERR(acl)); 1159 if (!acl) { 1160 ITOZ(ip)->z_mode = (ip->i_mode &= ~current_umask()); 1161 ip->i_ctime = current_time(ip); 1162 zfs_mark_inode_dirty(ip); 1163 return (0); 1164 } 1165 } 1166 1167 if (acl) { 1168 umode_t mode; 1169 1170 if (S_ISDIR(ip->i_mode)) { 1171 error = zpl_set_acl_impl(ip, acl, ACL_TYPE_DEFAULT); 1172 if (error) 1173 goto out; 1174 } 1175 1176 mode = ip->i_mode; 1177 error = __posix_acl_create(&acl, GFP_KERNEL, &mode); 1178 if (error >= 0) { 1179 ip->i_mode = ITOZ(ip)->z_mode = mode; 1180 zfs_mark_inode_dirty(ip); 1181 if (error > 0) { 1182 error = zpl_set_acl_impl(ip, acl, 1183 ACL_TYPE_ACCESS); 1184 } 1185 } 1186 } 1187 out: 1188 zpl_posix_acl_release(acl); 1189 1190 return (error); 1191 } 1192 1193 int 1194 zpl_chmod_acl(struct inode *ip) 1195 { 1196 struct posix_acl *acl; 1197 int error; 1198 1199 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX) 1200 return (0); 1201 1202 if (S_ISLNK(ip->i_mode)) 1203 return (-EOPNOTSUPP); 1204 1205 acl = zpl_get_acl_impl(ip, ACL_TYPE_ACCESS); 1206 if (IS_ERR(acl) || !acl) 1207 return (PTR_ERR(acl)); 1208 1209 error = __posix_acl_chmod(&acl, GFP_KERNEL, ip->i_mode); 1210 if (!error) 1211 error = zpl_set_acl_impl(ip, acl, ACL_TYPE_ACCESS); 1212 1213 zpl_posix_acl_release(acl); 1214 1215 return (error); 1216 } 1217 1218 static int 1219 __zpl_xattr_acl_list_access(struct inode *ip, char *list, size_t list_size, 1220 const char *name, size_t name_len) 1221 { 1222 char *xattr_name = XATTR_NAME_POSIX_ACL_ACCESS; 1223 size_t xattr_size = sizeof (XATTR_NAME_POSIX_ACL_ACCESS); 1224 1225 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX) 1226 return (0); 1227 1228 if (list && xattr_size <= list_size) 1229 memcpy(list, xattr_name, xattr_size); 1230 1231 return (xattr_size); 1232 } 1233 ZPL_XATTR_LIST_WRAPPER(zpl_xattr_acl_list_access); 1234 1235 static int 1236 __zpl_xattr_acl_list_default(struct inode *ip, char *list, size_t list_size, 1237 const char *name, size_t name_len) 1238 { 1239 char *xattr_name = XATTR_NAME_POSIX_ACL_DEFAULT; 1240 size_t xattr_size = sizeof (XATTR_NAME_POSIX_ACL_DEFAULT); 1241 1242 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX) 1243 return (0); 1244 1245 if (list && xattr_size <= list_size) 1246 memcpy(list, xattr_name, xattr_size); 1247 1248 return (xattr_size); 1249 } 1250 ZPL_XATTR_LIST_WRAPPER(zpl_xattr_acl_list_default); 1251 1252 static int 1253 __zpl_xattr_acl_get_access(struct inode *ip, const char *name, 1254 void *buffer, size_t size) 1255 { 1256 struct posix_acl *acl; 1257 int type = ACL_TYPE_ACCESS; 1258 int error; 1259 /* xattr_resolve_name will do this for us if this is defined */ 1260 #ifndef HAVE_XATTR_HANDLER_NAME 1261 if (strcmp(name, "") != 0) 1262 return (-EINVAL); 1263 #endif 1264 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX) 1265 return (-EOPNOTSUPP); 1266 1267 acl = zpl_get_acl_impl(ip, type); 1268 if (IS_ERR(acl)) 1269 return (PTR_ERR(acl)); 1270 if (acl == NULL) 1271 return (-ENODATA); 1272 1273 error = zpl_acl_to_xattr(acl, buffer, size); 1274 zpl_posix_acl_release(acl); 1275 1276 return (error); 1277 } 1278 ZPL_XATTR_GET_WRAPPER(zpl_xattr_acl_get_access); 1279 1280 static int 1281 __zpl_xattr_acl_get_default(struct inode *ip, const char *name, 1282 void *buffer, size_t size) 1283 { 1284 struct posix_acl *acl; 1285 int type = ACL_TYPE_DEFAULT; 1286 int error; 1287 /* xattr_resolve_name will do this for us if this is defined */ 1288 #ifndef HAVE_XATTR_HANDLER_NAME 1289 if (strcmp(name, "") != 0) 1290 return (-EINVAL); 1291 #endif 1292 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX) 1293 return (-EOPNOTSUPP); 1294 1295 acl = zpl_get_acl_impl(ip, type); 1296 if (IS_ERR(acl)) 1297 return (PTR_ERR(acl)); 1298 if (acl == NULL) 1299 return (-ENODATA); 1300 1301 error = zpl_acl_to_xattr(acl, buffer, size); 1302 zpl_posix_acl_release(acl); 1303 1304 return (error); 1305 } 1306 ZPL_XATTR_GET_WRAPPER(zpl_xattr_acl_get_default); 1307 1308 static int 1309 __zpl_xattr_acl_set_access(struct user_namespace *mnt_ns, 1310 struct inode *ip, const char *name, 1311 const void *value, size_t size, int flags) 1312 { 1313 struct posix_acl *acl; 1314 int type = ACL_TYPE_ACCESS; 1315 int error = 0; 1316 /* xattr_resolve_name will do this for us if this is defined */ 1317 #ifndef HAVE_XATTR_HANDLER_NAME 1318 if (strcmp(name, "") != 0) 1319 return (-EINVAL); 1320 #endif 1321 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX) 1322 return (-EOPNOTSUPP); 1323 1324 #if defined(HAVE_XATTR_SET_USERNS) 1325 if (!zpl_inode_owner_or_capable(mnt_ns, ip)) 1326 return (-EPERM); 1327 #else 1328 (void) mnt_ns; 1329 if (!zpl_inode_owner_or_capable(kcred->user_ns, ip)) 1330 return (-EPERM); 1331 #endif 1332 1333 if (value) { 1334 acl = zpl_acl_from_xattr(value, size); 1335 if (IS_ERR(acl)) 1336 return (PTR_ERR(acl)); 1337 else if (acl) { 1338 error = zpl_posix_acl_valid(ip, acl); 1339 if (error) { 1340 zpl_posix_acl_release(acl); 1341 return (error); 1342 } 1343 } 1344 } else { 1345 acl = NULL; 1346 } 1347 error = zpl_set_acl_impl(ip, acl, type); 1348 zpl_posix_acl_release(acl); 1349 1350 return (error); 1351 } 1352 ZPL_XATTR_SET_WRAPPER(zpl_xattr_acl_set_access); 1353 1354 static int 1355 __zpl_xattr_acl_set_default(struct user_namespace *mnt_ns, 1356 struct inode *ip, const char *name, 1357 const void *value, size_t size, int flags) 1358 { 1359 struct posix_acl *acl; 1360 int type = ACL_TYPE_DEFAULT; 1361 int error = 0; 1362 /* xattr_resolve_name will do this for us if this is defined */ 1363 #ifndef HAVE_XATTR_HANDLER_NAME 1364 if (strcmp(name, "") != 0) 1365 return (-EINVAL); 1366 #endif 1367 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX) 1368 return (-EOPNOTSUPP); 1369 1370 #if defined(HAVE_XATTR_SET_USERNS) 1371 if (!zpl_inode_owner_or_capable(mnt_ns, ip)) 1372 return (-EPERM); 1373 #else 1374 (void) mnt_ns; 1375 if (!zpl_inode_owner_or_capable(kcred->user_ns, ip)) 1376 return (-EPERM); 1377 #endif 1378 1379 if (value) { 1380 acl = zpl_acl_from_xattr(value, size); 1381 if (IS_ERR(acl)) 1382 return (PTR_ERR(acl)); 1383 else if (acl) { 1384 error = zpl_posix_acl_valid(ip, acl); 1385 if (error) { 1386 zpl_posix_acl_release(acl); 1387 return (error); 1388 } 1389 } 1390 } else { 1391 acl = NULL; 1392 } 1393 1394 error = zpl_set_acl_impl(ip, acl, type); 1395 zpl_posix_acl_release(acl); 1396 1397 return (error); 1398 } 1399 ZPL_XATTR_SET_WRAPPER(zpl_xattr_acl_set_default); 1400 1401 /* 1402 * ACL access xattr namespace handlers. 1403 * 1404 * Use .name instead of .prefix when available. xattr_resolve_name will match 1405 * whole name and reject anything that has .name only as prefix. 1406 */ 1407 static xattr_handler_t zpl_xattr_acl_access_handler = { 1408 #ifdef HAVE_XATTR_HANDLER_NAME 1409 .name = XATTR_NAME_POSIX_ACL_ACCESS, 1410 #else 1411 .prefix = XATTR_NAME_POSIX_ACL_ACCESS, 1412 #endif 1413 .list = zpl_xattr_acl_list_access, 1414 .get = zpl_xattr_acl_get_access, 1415 .set = zpl_xattr_acl_set_access, 1416 #if defined(HAVE_XATTR_LIST_SIMPLE) || \ 1417 defined(HAVE_XATTR_LIST_DENTRY) || \ 1418 defined(HAVE_XATTR_LIST_HANDLER) 1419 .flags = ACL_TYPE_ACCESS, 1420 #endif 1421 }; 1422 1423 /* 1424 * ACL default xattr namespace handlers. 1425 * 1426 * Use .name instead of .prefix when available. xattr_resolve_name will match 1427 * whole name and reject anything that has .name only as prefix. 1428 */ 1429 static xattr_handler_t zpl_xattr_acl_default_handler = { 1430 #ifdef HAVE_XATTR_HANDLER_NAME 1431 .name = XATTR_NAME_POSIX_ACL_DEFAULT, 1432 #else 1433 .prefix = XATTR_NAME_POSIX_ACL_DEFAULT, 1434 #endif 1435 .list = zpl_xattr_acl_list_default, 1436 .get = zpl_xattr_acl_get_default, 1437 .set = zpl_xattr_acl_set_default, 1438 #if defined(HAVE_XATTR_LIST_SIMPLE) || \ 1439 defined(HAVE_XATTR_LIST_DENTRY) || \ 1440 defined(HAVE_XATTR_LIST_HANDLER) 1441 .flags = ACL_TYPE_DEFAULT, 1442 #endif 1443 }; 1444 1445 #endif /* CONFIG_FS_POSIX_ACL */ 1446 1447 xattr_handler_t *zpl_xattr_handlers[] = { 1448 &zpl_xattr_security_handler, 1449 &zpl_xattr_trusted_handler, 1450 &zpl_xattr_user_handler, 1451 #ifdef CONFIG_FS_POSIX_ACL 1452 &zpl_xattr_acl_access_handler, 1453 &zpl_xattr_acl_default_handler, 1454 #endif /* CONFIG_FS_POSIX_ACL */ 1455 NULL 1456 }; 1457 1458 static const struct xattr_handler * 1459 zpl_xattr_handler(const char *name) 1460 { 1461 if (strncmp(name, XATTR_USER_PREFIX, 1462 XATTR_USER_PREFIX_LEN) == 0) 1463 return (&zpl_xattr_user_handler); 1464 1465 if (strncmp(name, XATTR_TRUSTED_PREFIX, 1466 XATTR_TRUSTED_PREFIX_LEN) == 0) 1467 return (&zpl_xattr_trusted_handler); 1468 1469 if (strncmp(name, XATTR_SECURITY_PREFIX, 1470 XATTR_SECURITY_PREFIX_LEN) == 0) 1471 return (&zpl_xattr_security_handler); 1472 1473 #ifdef CONFIG_FS_POSIX_ACL 1474 if (strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, 1475 sizeof (XATTR_NAME_POSIX_ACL_ACCESS)) == 0) 1476 return (&zpl_xattr_acl_access_handler); 1477 1478 if (strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, 1479 sizeof (XATTR_NAME_POSIX_ACL_DEFAULT)) == 0) 1480 return (&zpl_xattr_acl_default_handler); 1481 #endif /* CONFIG_FS_POSIX_ACL */ 1482 1483 return (NULL); 1484 } 1485 1486 static enum xattr_permission 1487 zpl_xattr_permission(xattr_filldir_t *xf, const char *name, int name_len) 1488 { 1489 const struct xattr_handler *handler; 1490 struct dentry *d __maybe_unused = xf->dentry; 1491 enum xattr_permission perm = XAPERM_ALLOW; 1492 1493 handler = zpl_xattr_handler(name); 1494 if (handler == NULL) { 1495 /* Do not expose FreeBSD system namespace xattrs. */ 1496 if (ZFS_XA_NS_PREFIX_MATCH(FREEBSD, name)) 1497 return (XAPERM_DENY); 1498 /* 1499 * Anything that doesn't match a known namespace gets put in the 1500 * user namespace for compatibility with other platforms. 1501 */ 1502 perm = XAPERM_COMPAT; 1503 handler = &zpl_xattr_user_handler; 1504 } 1505 1506 if (handler->list) { 1507 #if defined(HAVE_XATTR_LIST_SIMPLE) 1508 if (!handler->list(d)) 1509 return (XAPERM_DENY); 1510 #elif defined(HAVE_XATTR_LIST_DENTRY) 1511 if (!handler->list(d, NULL, 0, name, name_len, 0)) 1512 return (XAPERM_DENY); 1513 #elif defined(HAVE_XATTR_LIST_HANDLER) 1514 if (!handler->list(handler, d, NULL, 0, name, name_len)) 1515 return (XAPERM_DENY); 1516 #endif 1517 } 1518 1519 return (perm); 1520 } 1521 1522 #if defined(CONFIG_FS_POSIX_ACL) && \ 1523 (!defined(HAVE_POSIX_ACL_RELEASE) || \ 1524 defined(HAVE_POSIX_ACL_RELEASE_GPL_ONLY)) 1525 struct acl_rel_struct { 1526 struct acl_rel_struct *next; 1527 struct posix_acl *acl; 1528 clock_t time; 1529 }; 1530 1531 #define ACL_REL_GRACE (60*HZ) 1532 #define ACL_REL_WINDOW (1*HZ) 1533 #define ACL_REL_SCHED (ACL_REL_GRACE+ACL_REL_WINDOW) 1534 1535 /* 1536 * Lockless multi-producer single-consumer fifo list. 1537 * Nodes are added to tail and removed from head. Tail pointer is our 1538 * synchronization point. It always points to the next pointer of the last 1539 * node, or head if list is empty. 1540 */ 1541 static struct acl_rel_struct *acl_rel_head = NULL; 1542 static struct acl_rel_struct **acl_rel_tail = &acl_rel_head; 1543 1544 static void 1545 zpl_posix_acl_free(void *arg) 1546 { 1547 struct acl_rel_struct *freelist = NULL; 1548 struct acl_rel_struct *a; 1549 clock_t new_time; 1550 boolean_t refire = B_FALSE; 1551 1552 ASSERT3P(acl_rel_head, !=, NULL); 1553 while (acl_rel_head) { 1554 a = acl_rel_head; 1555 if (ddi_get_lbolt() - a->time >= ACL_REL_GRACE) { 1556 /* 1557 * If a is the last node we need to reset tail, but we 1558 * need to use cmpxchg to make sure it is still the 1559 * last node. 1560 */ 1561 if (acl_rel_tail == &a->next) { 1562 acl_rel_head = NULL; 1563 if (cmpxchg(&acl_rel_tail, &a->next, 1564 &acl_rel_head) == &a->next) { 1565 ASSERT3P(a->next, ==, NULL); 1566 a->next = freelist; 1567 freelist = a; 1568 break; 1569 } 1570 } 1571 /* 1572 * a is not last node, make sure next pointer is set 1573 * by the adder and advance the head. 1574 */ 1575 while (READ_ONCE(a->next) == NULL) 1576 cpu_relax(); 1577 acl_rel_head = a->next; 1578 a->next = freelist; 1579 freelist = a; 1580 } else { 1581 /* 1582 * a is still in grace period. We are responsible to 1583 * reschedule the free task, since adder will only do 1584 * so if list is empty. 1585 */ 1586 new_time = a->time + ACL_REL_SCHED; 1587 refire = B_TRUE; 1588 break; 1589 } 1590 } 1591 1592 if (refire) 1593 taskq_dispatch_delay(system_delay_taskq, zpl_posix_acl_free, 1594 NULL, TQ_SLEEP, new_time); 1595 1596 while (freelist) { 1597 a = freelist; 1598 freelist = a->next; 1599 kfree(a->acl); 1600 kmem_free(a, sizeof (struct acl_rel_struct)); 1601 } 1602 } 1603 1604 void 1605 zpl_posix_acl_release_impl(struct posix_acl *acl) 1606 { 1607 struct acl_rel_struct *a, **prev; 1608 1609 a = kmem_alloc(sizeof (struct acl_rel_struct), KM_SLEEP); 1610 a->next = NULL; 1611 a->acl = acl; 1612 a->time = ddi_get_lbolt(); 1613 /* atomically points tail to us and get the previous tail */ 1614 prev = xchg(&acl_rel_tail, &a->next); 1615 ASSERT3P(*prev, ==, NULL); 1616 *prev = a; 1617 /* if it was empty before, schedule the free task */ 1618 if (prev == &acl_rel_head) 1619 taskq_dispatch_delay(system_delay_taskq, zpl_posix_acl_free, 1620 NULL, TQ_SLEEP, ddi_get_lbolt() + ACL_REL_SCHED); 1621 } 1622 #endif 1623 1624 ZFS_MODULE_PARAM(zfs, zfs_, xattr_compat, INT, ZMOD_RW, 1625 "Use legacy ZFS xattr naming for writing new user namespace xattrs"); 1626