1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2011, Lawrence Livermore National Security, LLC. 23 * 24 * Extended attributes (xattr) on Solaris are implemented as files 25 * which exist in a hidden xattr directory. These extended attributes 26 * can be accessed using the attropen() system call which opens 27 * the extended attribute. It can then be manipulated just like 28 * a standard file descriptor. This has a couple advantages such 29 * as practically no size limit on the file, and the extended 30 * attributes permissions may differ from those of the parent file. 31 * This interface is really quite clever, but it's also completely 32 * different than what is supported on Linux. It also comes with a 33 * steep performance penalty when accessing small xattrs because they 34 * are not stored with the parent file. 35 * 36 * Under Linux extended attributes are manipulated by the system 37 * calls getxattr(2), setxattr(2), and listxattr(2). They consider 38 * extended attributes to be name/value pairs where the name is a 39 * NULL terminated string. The name must also include one of the 40 * following namespace prefixes: 41 * 42 * user - No restrictions and is available to user applications. 43 * trusted - Restricted to kernel and root (CAP_SYS_ADMIN) use. 44 * system - Used for access control lists (system.nfs4_acl, etc). 45 * security - Used by SELinux to store a files security context. 46 * 47 * The value under Linux to limited to 65536 bytes of binary data. 48 * In practice, individual xattrs tend to be much smaller than this 49 * and are typically less than 100 bytes. A good example of this 50 * are the security.selinux xattrs which are less than 100 bytes and 51 * exist for every file when xattr labeling is enabled. 52 * 53 * The Linux xattr implementation has been written to take advantage of 54 * this typical usage. When the dataset property 'xattr=sa' is set, 55 * then xattrs will be preferentially stored as System Attributes (SA). 56 * This allows tiny xattrs (~100 bytes) to be stored with the dnode and 57 * up to 64k of xattrs to be stored in the spill block. If additional 58 * xattr space is required, which is unlikely under Linux, they will 59 * be stored using the traditional directory approach. 60 * 61 * This optimization results in roughly a 3x performance improvement 62 * when accessing xattrs because it avoids the need to perform a seek 63 * for every xattr value. When multiple xattrs are stored per-file 64 * the performance improvements are even greater because all of the 65 * xattrs stored in the spill block will be cached. 66 * 67 * However, by default SA based xattrs are disabled in the Linux port 68 * to maximize compatibility with other implementations. If you do 69 * enable SA based xattrs then they will not be visible on platforms 70 * which do not support this feature. 71 * 72 * NOTE: One additional consequence of the xattr directory implementation 73 * is that when an extended attribute is manipulated an inode is created. 74 * This inode will exist in the Linux inode cache but there will be no 75 * associated entry in the dentry cache which references it. This is 76 * safe but it may result in some confusion. Enabling SA based xattrs 77 * largely avoids the issue except in the overflow case. 78 */ 79 80 #include <sys/zfs_znode.h> 81 #include <sys/zfs_vfsops.h> 82 #include <sys/zfs_vnops.h> 83 #include <sys/zap.h> 84 #include <sys/vfs.h> 85 #include <sys/zpl.h> 86 87 typedef struct xattr_filldir { 88 size_t size; 89 size_t offset; 90 char *buf; 91 struct dentry *dentry; 92 } xattr_filldir_t; 93 94 static const struct xattr_handler *zpl_xattr_handler(const char *); 95 96 static int 97 zpl_xattr_permission(xattr_filldir_t *xf, const char *name, int name_len) 98 { 99 static const struct xattr_handler *handler; 100 struct dentry *d = xf->dentry; 101 102 handler = zpl_xattr_handler(name); 103 if (!handler) 104 return (0); 105 106 if (handler->list) { 107 #if defined(HAVE_XATTR_LIST_SIMPLE) 108 if (!handler->list(d)) 109 return (0); 110 #elif defined(HAVE_XATTR_LIST_DENTRY) 111 if (!handler->list(d, NULL, 0, name, name_len, 0)) 112 return (0); 113 #elif defined(HAVE_XATTR_LIST_HANDLER) 114 if (!handler->list(handler, d, NULL, 0, name, name_len)) 115 return (0); 116 #endif 117 } 118 119 return (1); 120 } 121 122 /* 123 * Determine is a given xattr name should be visible and if so copy it 124 * in to the provided buffer (xf->buf). 125 */ 126 static int 127 zpl_xattr_filldir(xattr_filldir_t *xf, const char *name, int name_len) 128 { 129 /* Check permissions using the per-namespace list xattr handler. */ 130 if (!zpl_xattr_permission(xf, name, name_len)) 131 return (0); 132 133 /* When xf->buf is NULL only calculate the required size. */ 134 if (xf->buf) { 135 if (xf->offset + name_len + 1 > xf->size) 136 return (-ERANGE); 137 138 memcpy(xf->buf + xf->offset, name, name_len); 139 xf->buf[xf->offset + name_len] = '\0'; 140 } 141 142 xf->offset += (name_len + 1); 143 144 return (0); 145 } 146 147 /* 148 * Read as many directory entry names as will fit in to the provided buffer, 149 * or when no buffer is provided calculate the required buffer size. 150 */ 151 static int 152 zpl_xattr_readdir(struct inode *dxip, xattr_filldir_t *xf) 153 { 154 zap_cursor_t zc; 155 zap_attribute_t zap; 156 int error; 157 158 zap_cursor_init(&zc, ITOZSB(dxip)->z_os, ITOZ(dxip)->z_id); 159 160 while ((error = -zap_cursor_retrieve(&zc, &zap)) == 0) { 161 162 if (zap.za_integer_length != 8 || zap.za_num_integers != 1) { 163 error = -ENXIO; 164 break; 165 } 166 167 error = zpl_xattr_filldir(xf, zap.za_name, strlen(zap.za_name)); 168 if (error) 169 break; 170 171 zap_cursor_advance(&zc); 172 } 173 174 zap_cursor_fini(&zc); 175 176 if (error == -ENOENT) 177 error = 0; 178 179 return (error); 180 } 181 182 static ssize_t 183 zpl_xattr_list_dir(xattr_filldir_t *xf, cred_t *cr) 184 { 185 struct inode *ip = xf->dentry->d_inode; 186 struct inode *dxip = NULL; 187 znode_t *dxzp; 188 int error; 189 190 /* Lookup the xattr directory */ 191 error = -zfs_lookup(ITOZ(ip), NULL, &dxzp, LOOKUP_XATTR, 192 cr, NULL, NULL); 193 if (error) { 194 if (error == -ENOENT) 195 error = 0; 196 197 return (error); 198 } 199 200 dxip = ZTOI(dxzp); 201 error = zpl_xattr_readdir(dxip, xf); 202 iput(dxip); 203 204 return (error); 205 } 206 207 static ssize_t 208 zpl_xattr_list_sa(xattr_filldir_t *xf) 209 { 210 znode_t *zp = ITOZ(xf->dentry->d_inode); 211 nvpair_t *nvp = NULL; 212 int error = 0; 213 214 mutex_enter(&zp->z_lock); 215 if (zp->z_xattr_cached == NULL) 216 error = -zfs_sa_get_xattr(zp); 217 mutex_exit(&zp->z_lock); 218 219 if (error) 220 return (error); 221 222 ASSERT(zp->z_xattr_cached); 223 224 while ((nvp = nvlist_next_nvpair(zp->z_xattr_cached, nvp)) != NULL) { 225 ASSERT3U(nvpair_type(nvp), ==, DATA_TYPE_BYTE_ARRAY); 226 227 error = zpl_xattr_filldir(xf, nvpair_name(nvp), 228 strlen(nvpair_name(nvp))); 229 if (error) 230 return (error); 231 } 232 233 return (0); 234 } 235 236 ssize_t 237 zpl_xattr_list(struct dentry *dentry, char *buffer, size_t buffer_size) 238 { 239 znode_t *zp = ITOZ(dentry->d_inode); 240 zfsvfs_t *zfsvfs = ZTOZSB(zp); 241 xattr_filldir_t xf = { buffer_size, 0, buffer, dentry }; 242 cred_t *cr = CRED(); 243 fstrans_cookie_t cookie; 244 int error = 0; 245 246 crhold(cr); 247 cookie = spl_fstrans_mark(); 248 ZPL_ENTER(zfsvfs); 249 ZPL_VERIFY_ZP(zp); 250 rw_enter(&zp->z_xattr_lock, RW_READER); 251 252 if (zfsvfs->z_use_sa && zp->z_is_sa) { 253 error = zpl_xattr_list_sa(&xf); 254 if (error) 255 goto out; 256 } 257 258 error = zpl_xattr_list_dir(&xf, cr); 259 if (error) 260 goto out; 261 262 error = xf.offset; 263 out: 264 265 rw_exit(&zp->z_xattr_lock); 266 ZPL_EXIT(zfsvfs); 267 spl_fstrans_unmark(cookie); 268 crfree(cr); 269 270 return (error); 271 } 272 273 static int 274 zpl_xattr_get_dir(struct inode *ip, const char *name, void *value, 275 size_t size, cred_t *cr) 276 { 277 fstrans_cookie_t cookie; 278 struct inode *xip = NULL; 279 znode_t *dxzp = NULL; 280 znode_t *xzp = NULL; 281 int error; 282 283 /* Lookup the xattr directory */ 284 error = -zfs_lookup(ITOZ(ip), NULL, &dxzp, LOOKUP_XATTR, 285 cr, NULL, NULL); 286 if (error) 287 goto out; 288 289 /* Lookup a specific xattr name in the directory */ 290 error = -zfs_lookup(dxzp, (char *)name, &xzp, 0, cr, NULL, NULL); 291 if (error) 292 goto out; 293 294 xip = ZTOI(xzp); 295 if (!size) { 296 error = i_size_read(xip); 297 goto out; 298 } 299 300 if (size < i_size_read(xip)) { 301 error = -ERANGE; 302 goto out; 303 } 304 305 struct iovec iov; 306 iov.iov_base = (void *)value; 307 iov.iov_len = size; 308 309 zfs_uio_t uio; 310 zfs_uio_iovec_init(&uio, &iov, 1, 0, UIO_SYSSPACE, size, 0); 311 312 cookie = spl_fstrans_mark(); 313 error = -zfs_read(ITOZ(xip), &uio, 0, cr); 314 spl_fstrans_unmark(cookie); 315 316 if (error == 0) 317 error = size - zfs_uio_resid(&uio); 318 out: 319 if (xzp) 320 zrele(xzp); 321 322 if (dxzp) 323 zrele(dxzp); 324 325 return (error); 326 } 327 328 static int 329 zpl_xattr_get_sa(struct inode *ip, const char *name, void *value, size_t size) 330 { 331 znode_t *zp = ITOZ(ip); 332 uchar_t *nv_value; 333 uint_t nv_size; 334 int error = 0; 335 336 ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock)); 337 338 mutex_enter(&zp->z_lock); 339 if (zp->z_xattr_cached == NULL) 340 error = -zfs_sa_get_xattr(zp); 341 mutex_exit(&zp->z_lock); 342 343 if (error) 344 return (error); 345 346 ASSERT(zp->z_xattr_cached); 347 error = -nvlist_lookup_byte_array(zp->z_xattr_cached, name, 348 &nv_value, &nv_size); 349 if (error) 350 return (error); 351 352 if (size == 0 || value == NULL) 353 return (nv_size); 354 355 if (size < nv_size) 356 return (-ERANGE); 357 358 memcpy(value, nv_value, nv_size); 359 360 return (nv_size); 361 } 362 363 static int 364 __zpl_xattr_get(struct inode *ip, const char *name, void *value, size_t size, 365 cred_t *cr) 366 { 367 znode_t *zp = ITOZ(ip); 368 zfsvfs_t *zfsvfs = ZTOZSB(zp); 369 int error; 370 371 ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock)); 372 373 if (zfsvfs->z_use_sa && zp->z_is_sa) { 374 error = zpl_xattr_get_sa(ip, name, value, size); 375 if (error != -ENOENT) 376 goto out; 377 } 378 379 error = zpl_xattr_get_dir(ip, name, value, size, cr); 380 out: 381 if (error == -ENOENT) 382 error = -ENODATA; 383 384 return (error); 385 } 386 387 #define XATTR_NOENT 0x0 388 #define XATTR_IN_SA 0x1 389 #define XATTR_IN_DIR 0x2 390 /* check where the xattr resides */ 391 static int 392 __zpl_xattr_where(struct inode *ip, const char *name, int *where, cred_t *cr) 393 { 394 znode_t *zp = ITOZ(ip); 395 zfsvfs_t *zfsvfs = ZTOZSB(zp); 396 int error; 397 398 ASSERT(where); 399 ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock)); 400 401 *where = XATTR_NOENT; 402 if (zfsvfs->z_use_sa && zp->z_is_sa) { 403 error = zpl_xattr_get_sa(ip, name, NULL, 0); 404 if (error >= 0) 405 *where |= XATTR_IN_SA; 406 else if (error != -ENOENT) 407 return (error); 408 } 409 410 error = zpl_xattr_get_dir(ip, name, NULL, 0, cr); 411 if (error >= 0) 412 *where |= XATTR_IN_DIR; 413 else if (error != -ENOENT) 414 return (error); 415 416 if (*where == (XATTR_IN_SA|XATTR_IN_DIR)) 417 cmn_err(CE_WARN, "ZFS: inode %p has xattr \"%s\"" 418 " in both SA and dir", ip, name); 419 if (*where == XATTR_NOENT) 420 error = -ENODATA; 421 else 422 error = 0; 423 return (error); 424 } 425 426 static int 427 zpl_xattr_get(struct inode *ip, const char *name, void *value, size_t size) 428 { 429 znode_t *zp = ITOZ(ip); 430 zfsvfs_t *zfsvfs = ZTOZSB(zp); 431 cred_t *cr = CRED(); 432 fstrans_cookie_t cookie; 433 int error; 434 435 crhold(cr); 436 cookie = spl_fstrans_mark(); 437 ZPL_ENTER(zfsvfs); 438 ZPL_VERIFY_ZP(zp); 439 rw_enter(&zp->z_xattr_lock, RW_READER); 440 error = __zpl_xattr_get(ip, name, value, size, cr); 441 rw_exit(&zp->z_xattr_lock); 442 ZPL_EXIT(zfsvfs); 443 spl_fstrans_unmark(cookie); 444 crfree(cr); 445 446 return (error); 447 } 448 449 static int 450 zpl_xattr_set_dir(struct inode *ip, const char *name, const void *value, 451 size_t size, int flags, cred_t *cr) 452 { 453 znode_t *dxzp = NULL; 454 znode_t *xzp = NULL; 455 vattr_t *vap = NULL; 456 int lookup_flags, error; 457 const int xattr_mode = S_IFREG | 0644; 458 loff_t pos = 0; 459 460 /* 461 * Lookup the xattr directory. When we're adding an entry pass 462 * CREATE_XATTR_DIR to ensure the xattr directory is created. 463 * When removing an entry this flag is not passed to avoid 464 * unnecessarily creating a new xattr directory. 465 */ 466 lookup_flags = LOOKUP_XATTR; 467 if (value != NULL) 468 lookup_flags |= CREATE_XATTR_DIR; 469 470 error = -zfs_lookup(ITOZ(ip), NULL, &dxzp, lookup_flags, 471 cr, NULL, NULL); 472 if (error) 473 goto out; 474 475 /* Lookup a specific xattr name in the directory */ 476 error = -zfs_lookup(dxzp, (char *)name, &xzp, 0, cr, NULL, NULL); 477 if (error && (error != -ENOENT)) 478 goto out; 479 480 error = 0; 481 482 /* Remove a specific name xattr when value is set to NULL. */ 483 if (value == NULL) { 484 if (xzp) 485 error = -zfs_remove(dxzp, (char *)name, cr, 0); 486 487 goto out; 488 } 489 490 /* Lookup failed create a new xattr. */ 491 if (xzp == NULL) { 492 vap = kmem_zalloc(sizeof (vattr_t), KM_SLEEP); 493 vap->va_mode = xattr_mode; 494 vap->va_mask = ATTR_MODE; 495 vap->va_uid = crgetfsuid(cr); 496 vap->va_gid = crgetfsgid(cr); 497 498 error = -zfs_create(dxzp, (char *)name, vap, 0, 0644, &xzp, 499 cr, 0, NULL); 500 if (error) 501 goto out; 502 } 503 504 ASSERT(xzp != NULL); 505 506 error = -zfs_freesp(xzp, 0, 0, xattr_mode, TRUE); 507 if (error) 508 goto out; 509 510 error = -zfs_write_simple(xzp, value, size, pos, NULL); 511 out: 512 if (error == 0) { 513 ip->i_ctime = current_time(ip); 514 zfs_mark_inode_dirty(ip); 515 } 516 517 if (vap) 518 kmem_free(vap, sizeof (vattr_t)); 519 520 if (xzp) 521 zrele(xzp); 522 523 if (dxzp) 524 zrele(dxzp); 525 526 if (error == -ENOENT) 527 error = -ENODATA; 528 529 ASSERT3S(error, <=, 0); 530 531 return (error); 532 } 533 534 static int 535 zpl_xattr_set_sa(struct inode *ip, const char *name, const void *value, 536 size_t size, int flags, cred_t *cr) 537 { 538 znode_t *zp = ITOZ(ip); 539 nvlist_t *nvl; 540 size_t sa_size; 541 int error = 0; 542 543 mutex_enter(&zp->z_lock); 544 if (zp->z_xattr_cached == NULL) 545 error = -zfs_sa_get_xattr(zp); 546 mutex_exit(&zp->z_lock); 547 548 if (error) 549 return (error); 550 551 ASSERT(zp->z_xattr_cached); 552 nvl = zp->z_xattr_cached; 553 554 if (value == NULL) { 555 error = -nvlist_remove(nvl, name, DATA_TYPE_BYTE_ARRAY); 556 if (error == -ENOENT) 557 error = zpl_xattr_set_dir(ip, name, NULL, 0, flags, cr); 558 } else { 559 /* Limited to 32k to keep nvpair memory allocations small */ 560 if (size > DXATTR_MAX_ENTRY_SIZE) 561 return (-EFBIG); 562 563 /* Prevent the DXATTR SA from consuming the entire SA region */ 564 error = -nvlist_size(nvl, &sa_size, NV_ENCODE_XDR); 565 if (error) 566 return (error); 567 568 if (sa_size > DXATTR_MAX_SA_SIZE) 569 return (-EFBIG); 570 571 error = -nvlist_add_byte_array(nvl, name, 572 (uchar_t *)value, size); 573 } 574 575 /* 576 * Update the SA for additions, modifications, and removals. On 577 * error drop the inconsistent cached version of the nvlist, it 578 * will be reconstructed from the ARC when next accessed. 579 */ 580 if (error == 0) 581 error = -zfs_sa_set_xattr(zp); 582 583 if (error) { 584 nvlist_free(nvl); 585 zp->z_xattr_cached = NULL; 586 } 587 588 ASSERT3S(error, <=, 0); 589 590 return (error); 591 } 592 593 static int 594 zpl_xattr_set(struct inode *ip, const char *name, const void *value, 595 size_t size, int flags) 596 { 597 znode_t *zp = ITOZ(ip); 598 zfsvfs_t *zfsvfs = ZTOZSB(zp); 599 cred_t *cr = CRED(); 600 fstrans_cookie_t cookie; 601 int where; 602 int error; 603 604 crhold(cr); 605 cookie = spl_fstrans_mark(); 606 ZPL_ENTER(zfsvfs); 607 ZPL_VERIFY_ZP(zp); 608 rw_enter(&zp->z_xattr_lock, RW_WRITER); 609 610 /* 611 * Before setting the xattr check to see if it already exists. 612 * This is done to ensure the following optional flags are honored. 613 * 614 * XATTR_CREATE: fail if xattr already exists 615 * XATTR_REPLACE: fail if xattr does not exist 616 * 617 * We also want to know if it resides in sa or dir, so we can make 618 * sure we don't end up with duplicate in both places. 619 */ 620 error = __zpl_xattr_where(ip, name, &where, cr); 621 if (error < 0) { 622 if (error != -ENODATA) 623 goto out; 624 if (flags & XATTR_REPLACE) 625 goto out; 626 627 /* The xattr to be removed already doesn't exist */ 628 error = 0; 629 if (value == NULL) 630 goto out; 631 } else { 632 error = -EEXIST; 633 if (flags & XATTR_CREATE) 634 goto out; 635 } 636 637 /* Preferentially store the xattr as a SA for better performance */ 638 if (zfsvfs->z_use_sa && zp->z_is_sa && 639 (zfsvfs->z_xattr_sa || (value == NULL && where & XATTR_IN_SA))) { 640 error = zpl_xattr_set_sa(ip, name, value, size, flags, cr); 641 if (error == 0) { 642 /* 643 * Successfully put into SA, we need to clear the one 644 * in dir. 645 */ 646 if (where & XATTR_IN_DIR) 647 zpl_xattr_set_dir(ip, name, NULL, 0, 0, cr); 648 goto out; 649 } 650 } 651 652 error = zpl_xattr_set_dir(ip, name, value, size, flags, cr); 653 /* 654 * Successfully put into dir, we need to clear the one in SA. 655 */ 656 if (error == 0 && (where & XATTR_IN_SA)) 657 zpl_xattr_set_sa(ip, name, NULL, 0, 0, cr); 658 out: 659 rw_exit(&zp->z_xattr_lock); 660 ZPL_EXIT(zfsvfs); 661 spl_fstrans_unmark(cookie); 662 crfree(cr); 663 ASSERT3S(error, <=, 0); 664 665 return (error); 666 } 667 668 /* 669 * Extended user attributes 670 * 671 * "Extended user attributes may be assigned to files and directories for 672 * storing arbitrary additional information such as the mime type, 673 * character set or encoding of a file. The access permissions for user 674 * attributes are defined by the file permission bits: read permission 675 * is required to retrieve the attribute value, and writer permission is 676 * required to change it. 677 * 678 * The file permission bits of regular files and directories are 679 * interpreted differently from the file permission bits of special 680 * files and symbolic links. For regular files and directories the file 681 * permission bits define access to the file's contents, while for 682 * device special files they define access to the device described by 683 * the special file. The file permissions of symbolic links are not 684 * used in access checks. These differences would allow users to 685 * consume filesystem resources in a way not controllable by disk quotas 686 * for group or world writable special files and directories. 687 * 688 * For this reason, extended user attributes are allowed only for 689 * regular files and directories, and access to extended user attributes 690 * is restricted to the owner and to users with appropriate capabilities 691 * for directories with the sticky bit set (see the chmod(1) manual page 692 * for an explanation of the sticky bit)." - xattr(7) 693 * 694 * ZFS allows extended user attributes to be disabled administratively 695 * by setting the 'xattr=off' property on the dataset. 696 */ 697 static int 698 __zpl_xattr_user_list(struct inode *ip, char *list, size_t list_size, 699 const char *name, size_t name_len) 700 { 701 return (ITOZSB(ip)->z_flags & ZSB_XATTR); 702 } 703 ZPL_XATTR_LIST_WRAPPER(zpl_xattr_user_list); 704 705 static int 706 __zpl_xattr_user_get(struct inode *ip, const char *name, 707 void *value, size_t size) 708 { 709 char *xattr_name; 710 int error; 711 /* xattr_resolve_name will do this for us if this is defined */ 712 #ifndef HAVE_XATTR_HANDLER_NAME 713 if (strcmp(name, "") == 0) 714 return (-EINVAL); 715 #endif 716 if (!(ITOZSB(ip)->z_flags & ZSB_XATTR)) 717 return (-EOPNOTSUPP); 718 719 xattr_name = kmem_asprintf("%s%s", XATTR_USER_PREFIX, name); 720 error = zpl_xattr_get(ip, xattr_name, value, size); 721 kmem_strfree(xattr_name); 722 723 return (error); 724 } 725 ZPL_XATTR_GET_WRAPPER(zpl_xattr_user_get); 726 727 static int 728 __zpl_xattr_user_set(struct inode *ip, const char *name, 729 const void *value, size_t size, int flags) 730 { 731 char *xattr_name; 732 int error; 733 /* xattr_resolve_name will do this for us if this is defined */ 734 #ifndef HAVE_XATTR_HANDLER_NAME 735 if (strcmp(name, "") == 0) 736 return (-EINVAL); 737 #endif 738 if (!(ITOZSB(ip)->z_flags & ZSB_XATTR)) 739 return (-EOPNOTSUPP); 740 741 xattr_name = kmem_asprintf("%s%s", XATTR_USER_PREFIX, name); 742 error = zpl_xattr_set(ip, xattr_name, value, size, flags); 743 kmem_strfree(xattr_name); 744 745 return (error); 746 } 747 ZPL_XATTR_SET_WRAPPER(zpl_xattr_user_set); 748 749 static xattr_handler_t zpl_xattr_user_handler = 750 { 751 .prefix = XATTR_USER_PREFIX, 752 .list = zpl_xattr_user_list, 753 .get = zpl_xattr_user_get, 754 .set = zpl_xattr_user_set, 755 }; 756 757 /* 758 * Trusted extended attributes 759 * 760 * "Trusted extended attributes are visible and accessible only to 761 * processes that have the CAP_SYS_ADMIN capability. Attributes in this 762 * class are used to implement mechanisms in user space (i.e., outside 763 * the kernel) which keep information in extended attributes to which 764 * ordinary processes should not have access." - xattr(7) 765 */ 766 static int 767 __zpl_xattr_trusted_list(struct inode *ip, char *list, size_t list_size, 768 const char *name, size_t name_len) 769 { 770 return (capable(CAP_SYS_ADMIN)); 771 } 772 ZPL_XATTR_LIST_WRAPPER(zpl_xattr_trusted_list); 773 774 static int 775 __zpl_xattr_trusted_get(struct inode *ip, const char *name, 776 void *value, size_t size) 777 { 778 char *xattr_name; 779 int error; 780 781 if (!capable(CAP_SYS_ADMIN)) 782 return (-EACCES); 783 /* xattr_resolve_name will do this for us if this is defined */ 784 #ifndef HAVE_XATTR_HANDLER_NAME 785 if (strcmp(name, "") == 0) 786 return (-EINVAL); 787 #endif 788 xattr_name = kmem_asprintf("%s%s", XATTR_TRUSTED_PREFIX, name); 789 error = zpl_xattr_get(ip, xattr_name, value, size); 790 kmem_strfree(xattr_name); 791 792 return (error); 793 } 794 ZPL_XATTR_GET_WRAPPER(zpl_xattr_trusted_get); 795 796 static int 797 __zpl_xattr_trusted_set(struct inode *ip, const char *name, 798 const void *value, size_t size, int flags) 799 { 800 char *xattr_name; 801 int error; 802 803 if (!capable(CAP_SYS_ADMIN)) 804 return (-EACCES); 805 /* xattr_resolve_name will do this for us if this is defined */ 806 #ifndef HAVE_XATTR_HANDLER_NAME 807 if (strcmp(name, "") == 0) 808 return (-EINVAL); 809 #endif 810 xattr_name = kmem_asprintf("%s%s", XATTR_TRUSTED_PREFIX, name); 811 error = zpl_xattr_set(ip, xattr_name, value, size, flags); 812 kmem_strfree(xattr_name); 813 814 return (error); 815 } 816 ZPL_XATTR_SET_WRAPPER(zpl_xattr_trusted_set); 817 818 static xattr_handler_t zpl_xattr_trusted_handler = { 819 .prefix = XATTR_TRUSTED_PREFIX, 820 .list = zpl_xattr_trusted_list, 821 .get = zpl_xattr_trusted_get, 822 .set = zpl_xattr_trusted_set, 823 }; 824 825 /* 826 * Extended security attributes 827 * 828 * "The security attribute namespace is used by kernel security modules, 829 * such as Security Enhanced Linux, and also to implement file 830 * capabilities (see capabilities(7)). Read and write access 831 * permissions to security attributes depend on the policy implemented 832 * for each security attribute by the security module. When no security 833 * module is loaded, all processes have read access to extended security 834 * attributes, and write access is limited to processes that have the 835 * CAP_SYS_ADMIN capability." - xattr(7) 836 */ 837 static int 838 __zpl_xattr_security_list(struct inode *ip, char *list, size_t list_size, 839 const char *name, size_t name_len) 840 { 841 return (1); 842 } 843 ZPL_XATTR_LIST_WRAPPER(zpl_xattr_security_list); 844 845 static int 846 __zpl_xattr_security_get(struct inode *ip, const char *name, 847 void *value, size_t size) 848 { 849 char *xattr_name; 850 int error; 851 /* xattr_resolve_name will do this for us if this is defined */ 852 #ifndef HAVE_XATTR_HANDLER_NAME 853 if (strcmp(name, "") == 0) 854 return (-EINVAL); 855 #endif 856 xattr_name = kmem_asprintf("%s%s", XATTR_SECURITY_PREFIX, name); 857 error = zpl_xattr_get(ip, xattr_name, value, size); 858 kmem_strfree(xattr_name); 859 860 return (error); 861 } 862 ZPL_XATTR_GET_WRAPPER(zpl_xattr_security_get); 863 864 static int 865 __zpl_xattr_security_set(struct inode *ip, const char *name, 866 const void *value, size_t size, int flags) 867 { 868 char *xattr_name; 869 int error; 870 /* xattr_resolve_name will do this for us if this is defined */ 871 #ifndef HAVE_XATTR_HANDLER_NAME 872 if (strcmp(name, "") == 0) 873 return (-EINVAL); 874 #endif 875 xattr_name = kmem_asprintf("%s%s", XATTR_SECURITY_PREFIX, name); 876 error = zpl_xattr_set(ip, xattr_name, value, size, flags); 877 kmem_strfree(xattr_name); 878 879 return (error); 880 } 881 ZPL_XATTR_SET_WRAPPER(zpl_xattr_security_set); 882 883 static int 884 zpl_xattr_security_init_impl(struct inode *ip, const struct xattr *xattrs, 885 void *fs_info) 886 { 887 const struct xattr *xattr; 888 int error = 0; 889 890 for (xattr = xattrs; xattr->name != NULL; xattr++) { 891 error = __zpl_xattr_security_set(ip, 892 xattr->name, xattr->value, xattr->value_len, 0); 893 894 if (error < 0) 895 break; 896 } 897 898 return (error); 899 } 900 901 int 902 zpl_xattr_security_init(struct inode *ip, struct inode *dip, 903 const struct qstr *qstr) 904 { 905 return security_inode_init_security(ip, dip, qstr, 906 &zpl_xattr_security_init_impl, NULL); 907 } 908 909 /* 910 * Security xattr namespace handlers. 911 */ 912 static xattr_handler_t zpl_xattr_security_handler = { 913 .prefix = XATTR_SECURITY_PREFIX, 914 .list = zpl_xattr_security_list, 915 .get = zpl_xattr_security_get, 916 .set = zpl_xattr_security_set, 917 }; 918 919 /* 920 * Extended system attributes 921 * 922 * "Extended system attributes are used by the kernel to store system 923 * objects such as Access Control Lists. Read and write access permissions 924 * to system attributes depend on the policy implemented for each system 925 * attribute implemented by filesystems in the kernel." - xattr(7) 926 */ 927 #ifdef CONFIG_FS_POSIX_ACL 928 static int 929 zpl_set_acl_impl(struct inode *ip, struct posix_acl *acl, int type) 930 { 931 char *name, *value = NULL; 932 int error = 0; 933 size_t size = 0; 934 935 if (S_ISLNK(ip->i_mode)) 936 return (-EOPNOTSUPP); 937 938 switch (type) { 939 case ACL_TYPE_ACCESS: 940 name = XATTR_NAME_POSIX_ACL_ACCESS; 941 if (acl) { 942 umode_t mode = ip->i_mode; 943 error = posix_acl_equiv_mode(acl, &mode); 944 if (error < 0) { 945 return (error); 946 } else { 947 /* 948 * The mode bits will have been set by 949 * ->zfs_setattr()->zfs_acl_chmod_setattr() 950 * using the ZFS ACL conversion. If they 951 * differ from the Posix ACL conversion dirty 952 * the inode to write the Posix mode bits. 953 */ 954 if (ip->i_mode != mode) { 955 ip->i_mode = mode; 956 ip->i_ctime = current_time(ip); 957 zfs_mark_inode_dirty(ip); 958 } 959 960 if (error == 0) 961 acl = NULL; 962 } 963 } 964 break; 965 966 case ACL_TYPE_DEFAULT: 967 name = XATTR_NAME_POSIX_ACL_DEFAULT; 968 if (!S_ISDIR(ip->i_mode)) 969 return (acl ? -EACCES : 0); 970 break; 971 972 default: 973 return (-EINVAL); 974 } 975 976 if (acl) { 977 size = posix_acl_xattr_size(acl->a_count); 978 value = kmem_alloc(size, KM_SLEEP); 979 980 error = zpl_acl_to_xattr(acl, value, size); 981 if (error < 0) { 982 kmem_free(value, size); 983 return (error); 984 } 985 } 986 987 error = zpl_xattr_set(ip, name, value, size, 0); 988 if (value) 989 kmem_free(value, size); 990 991 if (!error) { 992 if (acl) 993 zpl_set_cached_acl(ip, type, acl); 994 else 995 zpl_forget_cached_acl(ip, type); 996 } 997 998 return (error); 999 } 1000 1001 #ifdef HAVE_SET_ACL 1002 int 1003 #ifdef HAVE_SET_ACL_USERNS 1004 zpl_set_acl(struct user_namespace *userns, struct inode *ip, 1005 struct posix_acl *acl, int type) 1006 #else 1007 zpl_set_acl(struct inode *ip, struct posix_acl *acl, int type) 1008 #endif /* HAVE_SET_ACL_USERNS */ 1009 { 1010 return (zpl_set_acl_impl(ip, acl, type)); 1011 } 1012 #endif /* HAVE_SET_ACL */ 1013 1014 static struct posix_acl * 1015 zpl_get_acl_impl(struct inode *ip, int type) 1016 { 1017 struct posix_acl *acl; 1018 void *value = NULL; 1019 char *name; 1020 1021 /* 1022 * As of Linux 3.14, the kernel get_acl will check this for us. 1023 * Also as of Linux 4.7, comparing against ACL_NOT_CACHED is wrong 1024 * as the kernel get_acl will set it to temporary sentinel value. 1025 */ 1026 #ifndef HAVE_KERNEL_GET_ACL_HANDLE_CACHE 1027 acl = get_cached_acl(ip, type); 1028 if (acl != ACL_NOT_CACHED) 1029 return (acl); 1030 #endif 1031 1032 switch (type) { 1033 case ACL_TYPE_ACCESS: 1034 name = XATTR_NAME_POSIX_ACL_ACCESS; 1035 break; 1036 case ACL_TYPE_DEFAULT: 1037 name = XATTR_NAME_POSIX_ACL_DEFAULT; 1038 break; 1039 default: 1040 return (ERR_PTR(-EINVAL)); 1041 } 1042 1043 int size = zpl_xattr_get(ip, name, NULL, 0); 1044 if (size > 0) { 1045 value = kmem_alloc(size, KM_SLEEP); 1046 size = zpl_xattr_get(ip, name, value, size); 1047 } 1048 1049 if (size > 0) { 1050 acl = zpl_acl_from_xattr(value, size); 1051 } else if (size == -ENODATA || size == -ENOSYS) { 1052 acl = NULL; 1053 } else { 1054 acl = ERR_PTR(-EIO); 1055 } 1056 1057 if (size > 0) 1058 kmem_free(value, size); 1059 1060 /* As of Linux 4.7, the kernel get_acl will set this for us */ 1061 #ifndef HAVE_KERNEL_GET_ACL_HANDLE_CACHE 1062 if (!IS_ERR(acl)) 1063 zpl_set_cached_acl(ip, type, acl); 1064 #endif 1065 1066 return (acl); 1067 } 1068 1069 #if defined(HAVE_GET_ACL_RCU) 1070 struct posix_acl * 1071 zpl_get_acl(struct inode *ip, int type, bool rcu) 1072 { 1073 if (rcu) 1074 return (ERR_PTR(-ECHILD)); 1075 1076 return (zpl_get_acl_impl(ip, type)); 1077 } 1078 #elif defined(HAVE_GET_ACL) 1079 struct posix_acl * 1080 zpl_get_acl(struct inode *ip, int type) 1081 { 1082 return (zpl_get_acl_impl(ip, type)); 1083 } 1084 #else 1085 #error "Unsupported iops->get_acl() implementation" 1086 #endif /* HAVE_GET_ACL_RCU */ 1087 1088 int 1089 zpl_init_acl(struct inode *ip, struct inode *dir) 1090 { 1091 struct posix_acl *acl = NULL; 1092 int error = 0; 1093 1094 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX) 1095 return (0); 1096 1097 if (!S_ISLNK(ip->i_mode)) { 1098 acl = zpl_get_acl_impl(dir, ACL_TYPE_DEFAULT); 1099 if (IS_ERR(acl)) 1100 return (PTR_ERR(acl)); 1101 if (!acl) { 1102 ip->i_mode &= ~current_umask(); 1103 ip->i_ctime = current_time(ip); 1104 zfs_mark_inode_dirty(ip); 1105 return (0); 1106 } 1107 } 1108 1109 if (acl) { 1110 umode_t mode; 1111 1112 if (S_ISDIR(ip->i_mode)) { 1113 error = zpl_set_acl_impl(ip, acl, ACL_TYPE_DEFAULT); 1114 if (error) 1115 goto out; 1116 } 1117 1118 mode = ip->i_mode; 1119 error = __posix_acl_create(&acl, GFP_KERNEL, &mode); 1120 if (error >= 0) { 1121 ip->i_mode = mode; 1122 zfs_mark_inode_dirty(ip); 1123 if (error > 0) { 1124 error = zpl_set_acl_impl(ip, acl, 1125 ACL_TYPE_ACCESS); 1126 } 1127 } 1128 } 1129 out: 1130 zpl_posix_acl_release(acl); 1131 1132 return (error); 1133 } 1134 1135 int 1136 zpl_chmod_acl(struct inode *ip) 1137 { 1138 struct posix_acl *acl; 1139 int error; 1140 1141 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX) 1142 return (0); 1143 1144 if (S_ISLNK(ip->i_mode)) 1145 return (-EOPNOTSUPP); 1146 1147 acl = zpl_get_acl_impl(ip, ACL_TYPE_ACCESS); 1148 if (IS_ERR(acl) || !acl) 1149 return (PTR_ERR(acl)); 1150 1151 error = __posix_acl_chmod(&acl, GFP_KERNEL, ip->i_mode); 1152 if (!error) 1153 error = zpl_set_acl_impl(ip, acl, ACL_TYPE_ACCESS); 1154 1155 zpl_posix_acl_release(acl); 1156 1157 return (error); 1158 } 1159 1160 static int 1161 __zpl_xattr_acl_list_access(struct inode *ip, char *list, size_t list_size, 1162 const char *name, size_t name_len) 1163 { 1164 char *xattr_name = XATTR_NAME_POSIX_ACL_ACCESS; 1165 size_t xattr_size = sizeof (XATTR_NAME_POSIX_ACL_ACCESS); 1166 1167 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX) 1168 return (0); 1169 1170 if (list && xattr_size <= list_size) 1171 memcpy(list, xattr_name, xattr_size); 1172 1173 return (xattr_size); 1174 } 1175 ZPL_XATTR_LIST_WRAPPER(zpl_xattr_acl_list_access); 1176 1177 static int 1178 __zpl_xattr_acl_list_default(struct inode *ip, char *list, size_t list_size, 1179 const char *name, size_t name_len) 1180 { 1181 char *xattr_name = XATTR_NAME_POSIX_ACL_DEFAULT; 1182 size_t xattr_size = sizeof (XATTR_NAME_POSIX_ACL_DEFAULT); 1183 1184 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX) 1185 return (0); 1186 1187 if (list && xattr_size <= list_size) 1188 memcpy(list, xattr_name, xattr_size); 1189 1190 return (xattr_size); 1191 } 1192 ZPL_XATTR_LIST_WRAPPER(zpl_xattr_acl_list_default); 1193 1194 static int 1195 __zpl_xattr_acl_get_access(struct inode *ip, const char *name, 1196 void *buffer, size_t size) 1197 { 1198 struct posix_acl *acl; 1199 int type = ACL_TYPE_ACCESS; 1200 int error; 1201 /* xattr_resolve_name will do this for us if this is defined */ 1202 #ifndef HAVE_XATTR_HANDLER_NAME 1203 if (strcmp(name, "") != 0) 1204 return (-EINVAL); 1205 #endif 1206 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX) 1207 return (-EOPNOTSUPP); 1208 1209 acl = zpl_get_acl_impl(ip, type); 1210 if (IS_ERR(acl)) 1211 return (PTR_ERR(acl)); 1212 if (acl == NULL) 1213 return (-ENODATA); 1214 1215 error = zpl_acl_to_xattr(acl, buffer, size); 1216 zpl_posix_acl_release(acl); 1217 1218 return (error); 1219 } 1220 ZPL_XATTR_GET_WRAPPER(zpl_xattr_acl_get_access); 1221 1222 static int 1223 __zpl_xattr_acl_get_default(struct inode *ip, const char *name, 1224 void *buffer, size_t size) 1225 { 1226 struct posix_acl *acl; 1227 int type = ACL_TYPE_DEFAULT; 1228 int error; 1229 /* xattr_resolve_name will do this for us if this is defined */ 1230 #ifndef HAVE_XATTR_HANDLER_NAME 1231 if (strcmp(name, "") != 0) 1232 return (-EINVAL); 1233 #endif 1234 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX) 1235 return (-EOPNOTSUPP); 1236 1237 acl = zpl_get_acl_impl(ip, type); 1238 if (IS_ERR(acl)) 1239 return (PTR_ERR(acl)); 1240 if (acl == NULL) 1241 return (-ENODATA); 1242 1243 error = zpl_acl_to_xattr(acl, buffer, size); 1244 zpl_posix_acl_release(acl); 1245 1246 return (error); 1247 } 1248 ZPL_XATTR_GET_WRAPPER(zpl_xattr_acl_get_default); 1249 1250 static int 1251 __zpl_xattr_acl_set_access(struct inode *ip, const char *name, 1252 const void *value, size_t size, int flags) 1253 { 1254 struct posix_acl *acl; 1255 int type = ACL_TYPE_ACCESS; 1256 int error = 0; 1257 /* xattr_resolve_name will do this for us if this is defined */ 1258 #ifndef HAVE_XATTR_HANDLER_NAME 1259 if (strcmp(name, "") != 0) 1260 return (-EINVAL); 1261 #endif 1262 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX) 1263 return (-EOPNOTSUPP); 1264 1265 if (!zpl_inode_owner_or_capable(kcred->user_ns, ip)) 1266 return (-EPERM); 1267 1268 if (value) { 1269 acl = zpl_acl_from_xattr(value, size); 1270 if (IS_ERR(acl)) 1271 return (PTR_ERR(acl)); 1272 else if (acl) { 1273 error = zpl_posix_acl_valid(ip, acl); 1274 if (error) { 1275 zpl_posix_acl_release(acl); 1276 return (error); 1277 } 1278 } 1279 } else { 1280 acl = NULL; 1281 } 1282 error = zpl_set_acl_impl(ip, acl, type); 1283 zpl_posix_acl_release(acl); 1284 1285 return (error); 1286 } 1287 ZPL_XATTR_SET_WRAPPER(zpl_xattr_acl_set_access); 1288 1289 static int 1290 __zpl_xattr_acl_set_default(struct inode *ip, const char *name, 1291 const void *value, size_t size, int flags) 1292 { 1293 struct posix_acl *acl; 1294 int type = ACL_TYPE_DEFAULT; 1295 int error = 0; 1296 /* xattr_resolve_name will do this for us if this is defined */ 1297 #ifndef HAVE_XATTR_HANDLER_NAME 1298 if (strcmp(name, "") != 0) 1299 return (-EINVAL); 1300 #endif 1301 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX) 1302 return (-EOPNOTSUPP); 1303 1304 if (!zpl_inode_owner_or_capable(kcred->user_ns, ip)) 1305 return (-EPERM); 1306 1307 if (value) { 1308 acl = zpl_acl_from_xattr(value, size); 1309 if (IS_ERR(acl)) 1310 return (PTR_ERR(acl)); 1311 else if (acl) { 1312 error = zpl_posix_acl_valid(ip, acl); 1313 if (error) { 1314 zpl_posix_acl_release(acl); 1315 return (error); 1316 } 1317 } 1318 } else { 1319 acl = NULL; 1320 } 1321 1322 error = zpl_set_acl_impl(ip, acl, type); 1323 zpl_posix_acl_release(acl); 1324 1325 return (error); 1326 } 1327 ZPL_XATTR_SET_WRAPPER(zpl_xattr_acl_set_default); 1328 1329 /* 1330 * ACL access xattr namespace handlers. 1331 * 1332 * Use .name instead of .prefix when available. xattr_resolve_name will match 1333 * whole name and reject anything that has .name only as prefix. 1334 */ 1335 static xattr_handler_t zpl_xattr_acl_access_handler = { 1336 #ifdef HAVE_XATTR_HANDLER_NAME 1337 .name = XATTR_NAME_POSIX_ACL_ACCESS, 1338 #else 1339 .prefix = XATTR_NAME_POSIX_ACL_ACCESS, 1340 #endif 1341 .list = zpl_xattr_acl_list_access, 1342 .get = zpl_xattr_acl_get_access, 1343 .set = zpl_xattr_acl_set_access, 1344 #if defined(HAVE_XATTR_LIST_SIMPLE) || \ 1345 defined(HAVE_XATTR_LIST_DENTRY) || \ 1346 defined(HAVE_XATTR_LIST_HANDLER) 1347 .flags = ACL_TYPE_ACCESS, 1348 #endif 1349 }; 1350 1351 /* 1352 * ACL default xattr namespace handlers. 1353 * 1354 * Use .name instead of .prefix when available. xattr_resolve_name will match 1355 * whole name and reject anything that has .name only as prefix. 1356 */ 1357 static xattr_handler_t zpl_xattr_acl_default_handler = { 1358 #ifdef HAVE_XATTR_HANDLER_NAME 1359 .name = XATTR_NAME_POSIX_ACL_DEFAULT, 1360 #else 1361 .prefix = XATTR_NAME_POSIX_ACL_DEFAULT, 1362 #endif 1363 .list = zpl_xattr_acl_list_default, 1364 .get = zpl_xattr_acl_get_default, 1365 .set = zpl_xattr_acl_set_default, 1366 #if defined(HAVE_XATTR_LIST_SIMPLE) || \ 1367 defined(HAVE_XATTR_LIST_DENTRY) || \ 1368 defined(HAVE_XATTR_LIST_HANDLER) 1369 .flags = ACL_TYPE_DEFAULT, 1370 #endif 1371 }; 1372 1373 #endif /* CONFIG_FS_POSIX_ACL */ 1374 1375 xattr_handler_t *zpl_xattr_handlers[] = { 1376 &zpl_xattr_security_handler, 1377 &zpl_xattr_trusted_handler, 1378 &zpl_xattr_user_handler, 1379 #ifdef CONFIG_FS_POSIX_ACL 1380 &zpl_xattr_acl_access_handler, 1381 &zpl_xattr_acl_default_handler, 1382 #endif /* CONFIG_FS_POSIX_ACL */ 1383 NULL 1384 }; 1385 1386 static const struct xattr_handler * 1387 zpl_xattr_handler(const char *name) 1388 { 1389 if (strncmp(name, XATTR_USER_PREFIX, 1390 XATTR_USER_PREFIX_LEN) == 0) 1391 return (&zpl_xattr_user_handler); 1392 1393 if (strncmp(name, XATTR_TRUSTED_PREFIX, 1394 XATTR_TRUSTED_PREFIX_LEN) == 0) 1395 return (&zpl_xattr_trusted_handler); 1396 1397 if (strncmp(name, XATTR_SECURITY_PREFIX, 1398 XATTR_SECURITY_PREFIX_LEN) == 0) 1399 return (&zpl_xattr_security_handler); 1400 1401 #ifdef CONFIG_FS_POSIX_ACL 1402 if (strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, 1403 sizeof (XATTR_NAME_POSIX_ACL_ACCESS)) == 0) 1404 return (&zpl_xattr_acl_access_handler); 1405 1406 if (strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, 1407 sizeof (XATTR_NAME_POSIX_ACL_DEFAULT)) == 0) 1408 return (&zpl_xattr_acl_default_handler); 1409 #endif /* CONFIG_FS_POSIX_ACL */ 1410 1411 return (NULL); 1412 } 1413 1414 #if !defined(HAVE_POSIX_ACL_RELEASE) || defined(HAVE_POSIX_ACL_RELEASE_GPL_ONLY) 1415 struct acl_rel_struct { 1416 struct acl_rel_struct *next; 1417 struct posix_acl *acl; 1418 clock_t time; 1419 }; 1420 1421 #define ACL_REL_GRACE (60*HZ) 1422 #define ACL_REL_WINDOW (1*HZ) 1423 #define ACL_REL_SCHED (ACL_REL_GRACE+ACL_REL_WINDOW) 1424 1425 /* 1426 * Lockless multi-producer single-consumer fifo list. 1427 * Nodes are added to tail and removed from head. Tail pointer is our 1428 * synchronization point. It always points to the next pointer of the last 1429 * node, or head if list is empty. 1430 */ 1431 static struct acl_rel_struct *acl_rel_head = NULL; 1432 static struct acl_rel_struct **acl_rel_tail = &acl_rel_head; 1433 1434 static void 1435 zpl_posix_acl_free(void *arg) 1436 { 1437 struct acl_rel_struct *freelist = NULL; 1438 struct acl_rel_struct *a; 1439 clock_t new_time; 1440 boolean_t refire = B_FALSE; 1441 1442 ASSERT3P(acl_rel_head, !=, NULL); 1443 while (acl_rel_head) { 1444 a = acl_rel_head; 1445 if (ddi_get_lbolt() - a->time >= ACL_REL_GRACE) { 1446 /* 1447 * If a is the last node we need to reset tail, but we 1448 * need to use cmpxchg to make sure it is still the 1449 * last node. 1450 */ 1451 if (acl_rel_tail == &a->next) { 1452 acl_rel_head = NULL; 1453 if (cmpxchg(&acl_rel_tail, &a->next, 1454 &acl_rel_head) == &a->next) { 1455 ASSERT3P(a->next, ==, NULL); 1456 a->next = freelist; 1457 freelist = a; 1458 break; 1459 } 1460 } 1461 /* 1462 * a is not last node, make sure next pointer is set 1463 * by the adder and advance the head. 1464 */ 1465 while (READ_ONCE(a->next) == NULL) 1466 cpu_relax(); 1467 acl_rel_head = a->next; 1468 a->next = freelist; 1469 freelist = a; 1470 } else { 1471 /* 1472 * a is still in grace period. We are responsible to 1473 * reschedule the free task, since adder will only do 1474 * so if list is empty. 1475 */ 1476 new_time = a->time + ACL_REL_SCHED; 1477 refire = B_TRUE; 1478 break; 1479 } 1480 } 1481 1482 if (refire) 1483 taskq_dispatch_delay(system_delay_taskq, zpl_posix_acl_free, 1484 NULL, TQ_SLEEP, new_time); 1485 1486 while (freelist) { 1487 a = freelist; 1488 freelist = a->next; 1489 kfree(a->acl); 1490 kmem_free(a, sizeof (struct acl_rel_struct)); 1491 } 1492 } 1493 1494 void 1495 zpl_posix_acl_release_impl(struct posix_acl *acl) 1496 { 1497 struct acl_rel_struct *a, **prev; 1498 1499 a = kmem_alloc(sizeof (struct acl_rel_struct), KM_SLEEP); 1500 a->next = NULL; 1501 a->acl = acl; 1502 a->time = ddi_get_lbolt(); 1503 /* atomically points tail to us and get the previous tail */ 1504 prev = xchg(&acl_rel_tail, &a->next); 1505 ASSERT3P(*prev, ==, NULL); 1506 *prev = a; 1507 /* if it was empty before, schedule the free task */ 1508 if (prev == &acl_rel_head) 1509 taskq_dispatch_delay(system_delay_taskq, zpl_posix_acl_free, 1510 NULL, TQ_SLEEP, ddi_get_lbolt() + ACL_REL_SCHED); 1511 } 1512 #endif 1513